GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT ON THE HORN CLAIMS

RECEIVED

OCT 1 8 1999

HORN PROPERTY

Gold Commissioner's Office VANCOUVER, B.C.

VANCOUVER, B.C. Horn 45 through 76, 78 – 80, 82 – 85, 86,87, 96-101

NTS 82F/9

Latitude 49° 36' N Longitude 116° 07'W

Owner - Black Bull Resources Inc.

548 Beatty Street, Vancouver, B.C. V6B 2L3

Operator – Same as above.

Consultant - Anderson Minsearch Consultants Ltd.

3205 6th. St. South Cranbrook, B.C. V1C 6K1

Authors - Douglas Anderson, Geologist

Submitted - October 12, 1999

GEOLOGICAL SURVEY BRANCH

26,046

TABLE OF CONTENTS

1.00 Introd	uction	Page 1
1.10	Property Definition, History, Background Inform	ation 1
1.20	Summary of Work Done	7
2.00 Geolo	gical Mapping	7
3.00 Geoch	nemistry	9
4.00 Summ	ary and Conclusions	9
5.00 Itemiz	ed Cost Statement	10
6.00 Autho	r's Qualifications	11
List of Illus	strations	
Figure 1	Horn Location Map	5
Figure 2	Horn Claim Map	6
Figure 3	Soil Geochem Survey - Sites	in pocket
Figure 4	Soil Geochemistry – PB	64
Figure 5	Soil Geochemistry – ZN	44
Figure 6	Geological Map of the Horn Claims	in pocket

BLACK BULL RESOURCES INC.

ASSESSMENT REPORT GEOLOGICAL MAPPING and SOIL GEOCHEMICAL SURVEY

HORN PROPERTY

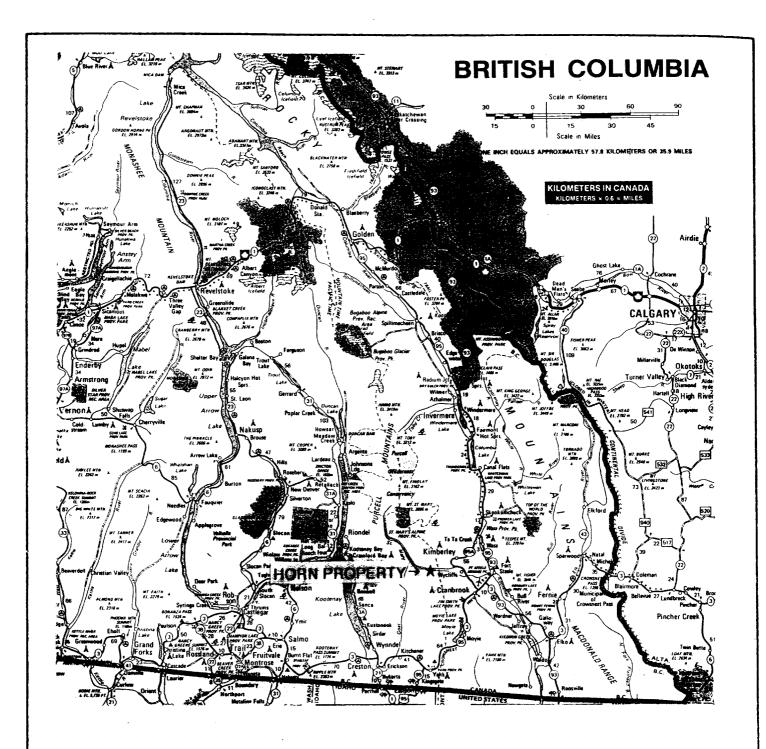
1.00 Introduction

The Horn property which is the subject of this report consists of a large block of contiguous claims situated in the St. Mary valley, centered about 20 kilometers southwest of Kimberley in the East Kootenay region of British Columbia. The claim block occurs mostly on the south side of the St.Mary river, forming an east-west block between Meachen creek and Pitt creek. Relief is modest on the east to rugged on the west, ranging from 900 metres ASL to over 2100 metres. The region has thick forest cover with a modest percentage of outcrop. Access is via two major roads from Highway 95A, the St.Mary Lake road or the River road which is a logging access road. These roads occur on the north and south sides of the St. Mary river respectively. The Angus and Hellroaring creek logging roads provide the secondary access onto tertiary logging roads to various points on the property. (See enclosed Index Map.)

1.10 Property Definition, History, Background Information

The part of the property of concern to this report includes:

Horn Claim	<u>Units</u>	Record #	Anniv. Date
1	1	212445	May 21/2000
2	1	212446	May 21/2000
3	1	212447	May 22/2000
4	1	212448	May 22/2000
5	1	212449	May 22/2000
6	1	212450	May 22/2000
7	1	212451	May 20/2000
8	1	212452	May 20/2000
9	1	212453	May 20/2000
10	1	212454	May 20/2000
11	1	212455	May 20/2000
12	1	212456	May 20/2000
13	1	212457	May 21/2000
14	1	212458	May 21/2000
15	1	212459	May 21/2000
16	12	212460	May 23/2000
17	20	212461	May 24/2000
18	1	212462	May 22/2000
19	1	212463	May 22/2000
20	1	212464	May 22/2000
21	5	212465	May 22/2000

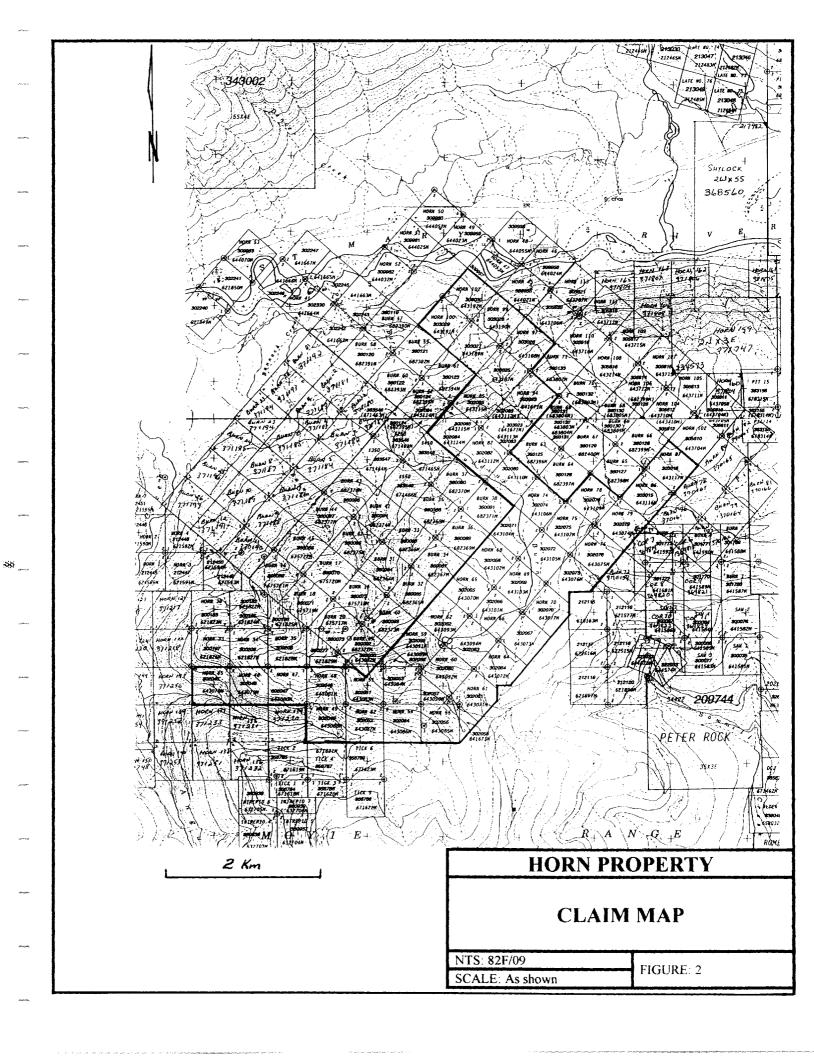

Horn Claim	<u>Units</u>	Record #	Anniv. Date
22	20	300326	June 3/2000
23	18	300327	June 4/2000
24	12	300328	June 5/2004
25	20	300325	June 5/2000
29	1	300182	June 6/2000
30	1	300183	June 6/2000
31	1	300185	June 6/2000
32	1	300196	June 6/2000
33	1	300197	June 6/2000
34	1	300206	June 6/2000
35	1	300208	June 6/2000
36	1	300277	June 6/2000
39	1	302242	June 27/2000
40	1	302243	June 27/2000
45	1	302045	July 14/2000
46	1	302046	July 14/2000
47	1	302047	July 14/2000
48	1	302048	July 14/2000
49	1	302049	July 14/2000
50	1	302050	July 14/2000
51	1	302051	July 14/2000
52	1	302052	July 14/2000
53	1	302053	July 14/2000
54	1	302054	July 14/2000
55	1	302055	July 14/2000
56	1	302056	July 15/2000
57	1	302057	July 15/2000
58	1	302058	July 15/2000
59	1	302059	July 15/2000
60	1	302060	July 15/2000
61	1	302061	July 15/2000
62	1	302062	July 15/2000
63	1	302063	July 15/2000
64	1	302064	July 15/2000
65	1	302065	July 15/2000
66	I	302066	July 15/2000
67	1	302067	July 15/2000
68	1	302068	July 15/2000
69	1	302069	July 15/2000
70	1	302070	July 15/2000
71	1	302071	July 15/2000
72 73	1	302072	July 15/2000
73	1	302073	July 15/2000

Horn Claim	<u>Units</u>	Record #	Anniv. Date
74	1	302074	July 16/2000
75	1	302075	July 16/2000
76	1	302076	July 16/2000
78	1	302078	July 16/2000
79	1	302079	July 16/2000
80	1	302080	July 16/2000
82	1	302082	July 16/2000
83	1	302083	July 16/2000
84	1	302084	July 16/2000
85	1	302085	July 16/2000
86	1	303015	Aug. 11/2000
87	1	303016	Aug. 11/2000
94	1	303023	Aug. 11/2000
96	1	303025	Aug. 13/2000
97	1	303026	Aug. 13/2000
98	1	303027	Aug. 13/2000
99	1	303028	Aug. 13/2000
100	1	303029	Aug. 13/2000
101	1	303030	Aug. 13/2000
102	1	305610	Oct. 21/99
103	1	305611	Oct. 21/99
104	1	305612	Oct. 17/99
105	1	305613	Oct. 17/99
106	1	305614	Oct. 17/99
107	1	305615	Oct. 17/99
108	1	305616	Oct. 17/99
109	1	305617	Oct. 17/99
110	1	305618	Oct. 17/99
111	1	305619	Oct. 17/99
112	1	305620	Oct. 21/99
113	1	305621	Oct. 21/99
114	8	303932	Sept. 10/2000
115	1	371211	Aug. 20/2000
116	1	371212	Aug. 20/2000
117	1	371213	Aug. 20/2000
118	1	371214	Aug. 20/2000
119	1	371215	Aug. 20/2000
120	1	371216	Aug. 20/2000
121	1	371217	Aug. 23/2000
122	1	371218	Aug. 23/2000
123	1	371219	Aug. 23/2000
124	1	371220	Aug. 23/2000
125	1	371221	Aug. 23/2000

Horn Claim	<u>Units</u>	Record #	Anniv. Date
126	1	371222	Aug. 23/2000
127	1	371223	Aug. 23/2000
128	1	371224	Aug. 23/2000
129	1	371225	Aug. 23/2000
130	1	371226	Aug. 23/2000
131	1	371227	Aug. 23/2000
132	1	371228	Aug. 23/2000
133	1	371229	Aug. 23/2000
134	1	371230	Aug. 20/2000
135	1	371231	Aug. 20/2000
136	1	371232	Aug. 20/2000
137	1	371233	Aug. 20/2000
138	1	371251	Aug. 20/2000
139	1	371252	Aug. 20/2000
140	1	371253	Aug. 20/2000
141	1	371254	Aug. 21/2000
142	1	371255	Aug. 21/2000
143	1	371256	Aug. 21/2000
144	1	371257	Aug. 23/2000
145	1	371258	Aug. 21/2000
146	1	371259	Aug. 21/2000
147	1	371260	Aug. 21/2000
148	1	371261	Aug. 21/2000
149	1	371262	Aug. 21/2000
Fecal 001	1	339840	Aug. 31/2001
Fecal 002	1	339841	Aug. 31/2001
Fecal 003	1	339842	Aug. 31/2001
Fecal 004	1	339843	Aug. 31/2001
Fecal 005	1	339844	Aug. 31/2001
Fecal 006	1	339845	Aug. 31/2001
Fecal 007	1	339846	Sept. 8/2001
Fecal 008	1	339847	Sept. 8/2001
Fecal 009	1	339848	Sept. 11/2001
Fecal 010	1	339849	Sept. 11/2001
Fecal 011	1	339850	Sept. 11/2001
Fecal 012	1	339851	Sept. 11/2001

The current owner is Black Bull Resources Inc. of Vancouver, who also own the adjoining Burn claims. The claims involved are shown on Figure 2.

The earlier history of the general area is not well known. It involved the pursuit of several properties in the area as follows. The Dan Howe is a prospect on the north-facing slope above St. Mary Lake. A drift and crosscut (1930's) tested a lenticular quartz vein in


HORN PROPERTY

PROPERTY LOCATION MAP

Scale: As Shown

Date: Jan/95

Plate: 1

sheared sediments immediately beneath the contact with a gabbro sill. Present are pyrrhotite, galena, sphalerite and arsenopyrite. The Warhorse (Boyscout- 1920/30's)) is a northwest-striking, southwest-dipping vein system in sheared sediments on the south side of Hellroaring Creek. It is tested on three levels with vein exposures ranging from 3 to 12 feet containing galena, sphalerite, pyrite, and arsenopyrite with some siderite in the quartz gangue. Minor gold values are indicated. One underground sample across 12 inches: 0.01 oz/t gold; 4.1 oz/t Ag; 15.8%Pb; and 8.5%Zn. This structural zone transects Aldridge sediments and pegmatites associated with the Hellroaring Creek stock.

This historical work and several recent projects highlighted in earlier reports involves principally the west side of the Horn property, not the subject area for this particular report. On the east there is little known early work in the area, the only known showing is the Cotnoir/Fors galena/sphalerite occurrence low down in Pitt creek, east of the map area. Recent exploration has been completed in the area between Pudding Burn and Pitt creeks. During the late 1980's into the early 1990's, intense exploration work was done by two companies. Consolidated Ramrod Gold completed mapping, a large soil geochem grid, some Utem geophysics surveying and fourteen drill holes in an area centered low down topographically and principally east of Pudding Burn creek. The presence of Pb/Zn mineralization in sediments within the Lower Aldridge was the main focus for the work. Beds and bands high in pyrrhotite, with erratic galena and sphalerite were defined. Working higher up topographically was Minnova, exploring roughly the same stratigraphy and also achieving similar results. Their program included Pulse EM and drilling of five holes. This accounts for the known work in the area of concern to this report.

1.20 Summary of Work Done

The 1999 exploration program on the Horn property now owned by Black Bull Resources, included geological mapping and a single soil geochem grid. The area with it's rough terrain, thick bush in places, and a general lack of outcrop means any thorough assessment requires intense investigation which is still lacking to date.

2.00 Geological Mapping

An initial program of mapping was undertaken to help evaluate the property. Mapping at 1:10,000 meant picking up all exposures in roadcuts and then traversing the area to provide a broad coverage of natural exposures. The mapping does not cover the entire eastern Horn property as it exists.

The Horn (Burn) property covers a broad stretch of lower stratigraphy in the Aldridge Formation together with extensive Moyie intrusions, juxtaposed against the major St. Mary reverse fault. The Aldridge is the oldest formation of the Proterozoic Belt-Purcell Supergroup. The Supergroup is a thick sequence of terrigenous clastic, carbonate, and minor volcanic rocks of Middle Proterozoic age. The basal Aldridge Formation, as exposed in Canada, is siliciclastic turbidites about 4000 meters thick. It is informally divided into the Lower, Middle, and Upper members. To the north and east in the basin, the Lower Aldridge, the base of which is not exposed, is about 1500 meters of rusty weathering (due to pyrrhotite), thin to medium bedded argillite, wacke and quartzitic

wacke generally interpreted as distal turbidites. The Sullivan orebody occurs at the top of this division. To the south and west in the basin in Canada, the upper part of the Lower Aldridge is dominated by grey weathering, medium to thick bedded quartz wackes considered to be proximal turbidites. The Lower Aldridge is commonly host to a proliferation of Moyie intrusions, principally as sills. The Middle Aldridge is about 2500 meters of grey to rusty weathering, dominantly medium bedded quartzitic wacke turbidites with periodic inter-turbidite intervals of thin bedded, rusty weathering argillites some of which form finely laminated marker beds (time stratigraphic units correlated over great distances within the Aldridge/Prichard basin). The Upper Aldridge is about 300 meters of thin bedded to laminated, rusty weathering, dark argillite and grey siltite often in couplet-style beds.

It should be noted that the 1999 mapping is incomplete, thereby limiting the coverage of available outcrops and imposing greater uncertainty on the geological interpretation. To add significantly to the interpretations would require more detailed and time consuming traversing in rugged terrain.

The St. Mary region is on the crest of the major Purcell Anticlinorium. The Horn property is underlain predominantly by fault segmented Lower Aldridge stratigraphy with its usual high percentage of Moyie intrusives. The major reverse fault forming the geological boundary to the south of the claims is the St. Mary fault which transects the area on a west-southwest trend.

The eastern portion of the Horn (Burn) claims has been discussed briefly in a previous assessment report for 1998 when a few days were spent on the property. This continuation of the work involved traversing to add to the early framework. The region is entirely within the Lower Aldridge which somewhat characteristically is intruded by numerous Moyie intrusions, principally as sills. The sediments are dominated by thin to medium bedded, pyrrhotite-bearing, wacke to quartzitic wacke distal turbidites. A higher grade of metamorphism and deformation can locally produce phyllitic rocks through to muscovite schists. There are areas with a predominance of quartzite in outcrop and talus, they may represent the footwall quartzite sequence present within the Sullivan Mine footwall stratigraphy but current thinking suggests they are not. The stratigraphic level through the property has not been determined because of poor outcrop, prolific intrusions, and the complex structural setting. More intensive study may provide better definition of the stratigraphy.

On the west side of the claims of concern to this report, the sedimentary/intrusive package is east-dipping with moderate dips yielding to steeper structure against a north-striking major fault which dips 60 to 70 degrees to the west. Up to 100 meters wide, this intense shear includes gabbro and albitized/chloritized sediments within and bounding the structure.

Central to the claims strikes are more east-west with modest dips either to the south or north.

Moving east the geology is dominated by a west-dipping panel of sediments and gabbro sills. This is bounded on the east by a major northeast-striking thrust fault. The majority of the claims being considered lie west of this fault and appear to form a broad syncline with a fold axis plunging to the northwest.

The most easterly claims are underlain by Middle Aldridge rocks east of the northeast-striking thrust fault and north of the St. Mary fault. Wedged between two major faults this panel is intensely deformed. Isoclinal folding dominates with northeast-trending fold axes and some overturned limbs documented. One major gabbro intrusion parallels the thrust fault. Sill-like in it's distribution, it is likely cross-cutting in detail.

The Moyie intrusions are difficult to correlate through the area due to rugged terrain, a lack of outcrop, and folding of the entire package. The intrusions are dominantly dark green weathering, massive, fine through coarse crystalline gabbros dominated by hornblende and plagioclase. On the eastern and western extremities of the claims, one sill in particular has associated granofels. This is considered to be altered sediment bounding or internal to a gabbro sill. Also in evidence on a restricted basis is pegmatite (feldspar, muscovite, quartz, tourmaline) as small cross-cutting bodies or sill-like lenses. These units are considered part of the Proterozoic Hellroaring Creek Stock intrusive suite.

No significant sulfide accumulations were noted during this mapping.

3.00 GEOCHEMISTRY

A small soil geochem grid and a single line of contour soil geochem were completed over the south central portion of the Horn claim block. The grid included 165 samples collected from stations 100 meters apart on lines spaced 200 meters apart. The contour line done on the 2000 meter contour totalled 40 samples collected every 50 meters. Sampling in the field was done by digging to the B horizon soils (average depth 20 cm) and bagging in paper envelopes about 150 to 250 grams of soil. Rocks encountered in the sampling were limited to the Lower Aldridge type wackes and quartzitic wackes and gabbro material.

The analytical work was completed by Rossbacher Laboratories Ltd., 2225 Springer Ave., Burnaby, B.C. V5B 3N1. Soils analyzed were minus 80 mesh with lab preparation of samples including: taking a 0.5 gram sample, digesting it in a HCL-HNO3-H20 at 95 degrees C and then diluting to 10 ml with water. 29-element ICP was then performed. The process is only a partial leach for some elements but not for the base metals of prime interest in this survey.

The grid results are insignificant. A few Pb values above 30ppm occur but there is no clustering. The zinc values are low and uninteresting. The single contour line to the south does have elevated zinc above 120 ppm but only one spot sample significantly high. There are scattered anomalous values for copper, arsenic, and silver but again there are no indications of widespread mineralization.

4.00 SUMMARY AND CONCLUSIONS

A significant amount of geological data has been collected over the claims of concern and on those surrounding. It is impossible to separate comments and make them strictly applicable to the claims with assessment due at this time, so overlap will occur with later reports. Due to the rugged topography, structure, lack of outcrop and volumetrically high intrusion percentage, it is difficult to correlate or extrapolate the geology for any distance. Lower Aldridge sediments dominate but are lacking "markers" to help establish the stratigraphy. Gabbro sills are very common but their distribution is

still poorly defined. No "Sullivan Indicators", ie. features associated with the Sullivan orebody and considered important in it's formation, have been located on the claims under discussion. Two major faults have been mapped, both are thought to be steep-dipping thrust faults. Both have considerable alteration along them as albite and chlorite alteration of the sediments. There are a variety of intrusions including the Moyie gabbros, granitic pegmatites, and granofels noted in two localities fringing the claims.

The soil geochem results are not encouraging. Although it is wide-spaced sampling on the grid, the Pb and Zn values are low and do not justify intensifying the coverage. The single contour line to the south has some elevated Zn values but the results don't stand alone as significant.

5.00 ITEMIZED COST STATEMENT

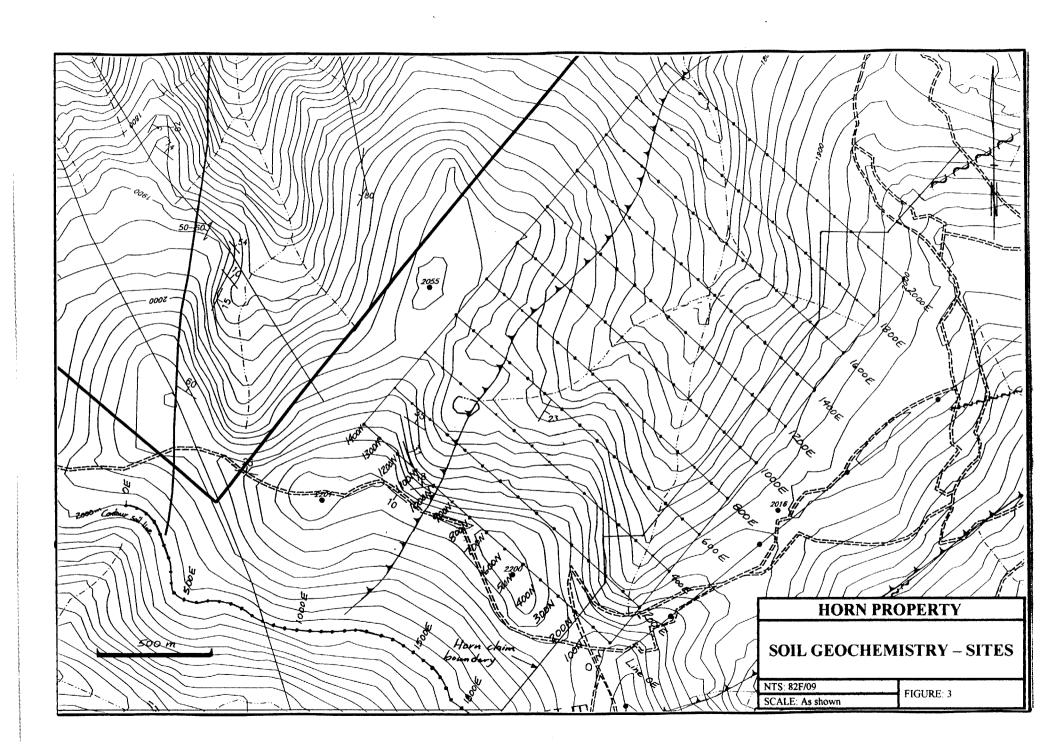
Geological Consultant	-	s @ \$330/day mapping	•	\$ 4,620.00
	3 days	@ \$330/day report w	vriting	990.00
	Transp	ortation 14 days @ \$1	00/day	1,400.00
Geochem Survey Contractor	205 sa	mples collected		1,230.50
Assays - Rossbacher Laborat	ory	205 sample @ \$6.00/sa	amples	1,230.00
•		Freight		29.92
Map Preparation - AutoCad	drawing	16 hrs. X \$25/hr		400.00
Clerical Services - type, asser	nble, de	liver		100.00
			TOTAL =	\$10,000.42

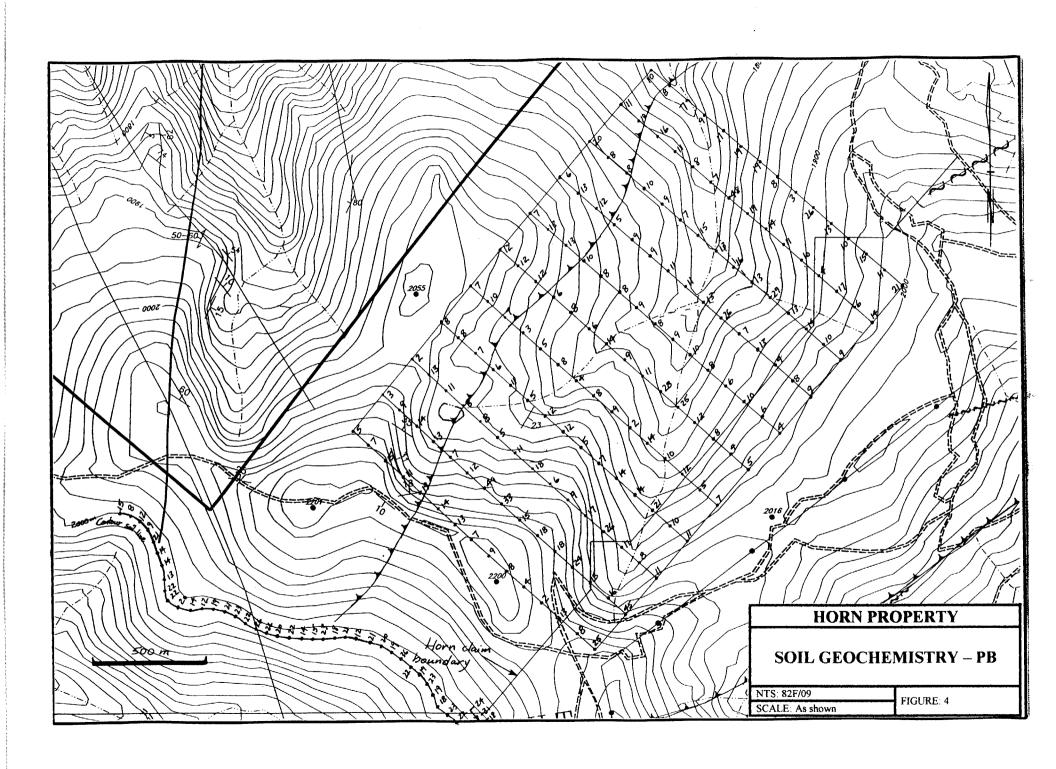
6.00 AUTHOR'S QUALIFICATIONS

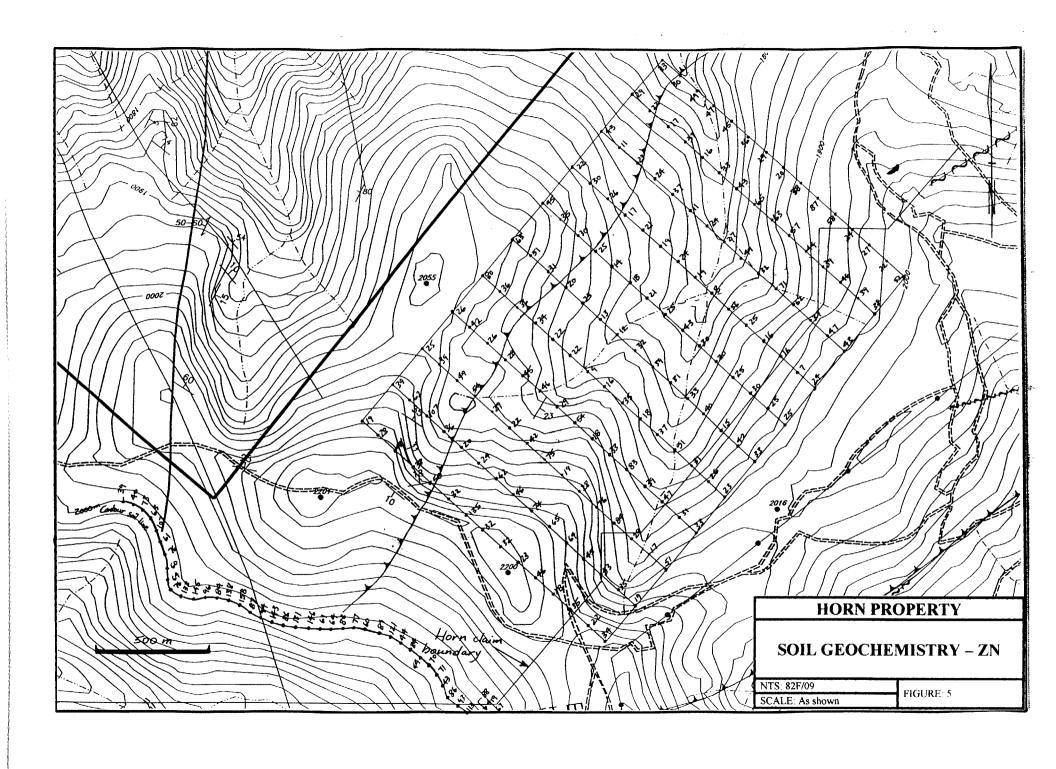
I, Douglas Anderson, Consulting Geological Engineer, have my office at 3205 6th. St. South in Cranbrook, B.C., V1C 6K1.

I graduated from the University of British Columbia in 1969 with a Bachelor of Applied Science in Geological Engineering.

I have practiced my profession since 1969, predominantly with one large mining company, in a number of capacities all over Western Canada.


I am a Registered Professional Engineer and member of the Association of Professional Engineers and Geoscientists of B.C., and I am authorized to use their seal which has been affixed to this report.


I am also a Fellow of the Geological Association of Canada.


Dated this 12th day of October, 1999

Douglas Anderson, P.Eng., B.A.Sc., FGAC

Consulting Geological Engineer

ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C. V5B 3N1

To: Super group Holdings Ltd. 1805-13th Ave South Cranbrook, B.C.

Cart# 98450 99-08-14 Soi!

Appendix A

Attention: Dave Pightn

Omisct Hom

CERTIFICATE OF	ANAL	A212:	
Sample	PPM	%	P
Name	Aq	Ai	
LOF ON	.3	1.99	

										Pro	ject:	Hom	•		, ,											(AD 7				
CER	TIFICATE OF	ANAL	YSIS:												-									-		ICP 32				
	Sample	PPM	%	PPM	PPM	PPN	PPM	96	PPM	PPM	PPM	PPM	%	96	PPM	16	PPM	PPM	-		PPM		PPM		•	PPM	%		PPM	
	Name	Ag	Ai	As	Ba	Be	21	Ca	Çd	∞	Ċr	Cu	Fø	K	18	Mg	Min	Mo	Na	N	P	PO	<u>50</u>	_ 50_		12	<u>Ti</u>	<u> </u>	W	Zn
	LOE ON	.3	1.99	13	29	.2	<3	.03	.7	2	7	15	2.11	.03	11	.09	75	3	<.01	4	633	25	7	<5	.03	ĵ.	.08	57	<2	34
	LOE 100N	.2	2.43	14	35	.4	<3	8 0,	<.5	a	16	17	1.24	.03	2	.09	120	1	.02	5	558	8	<2	<\$.03		.06	21	<2	22
	FOE SOOM	2	1.76	2	54	.3	<3	.03	<.5	2	8	18	1.73	.03	7	.13	86	1	.01	6	442	13	3	<\$.04	7	.06	30	<2	35
	LOE 300N	1.0	4.04	15	29	.6	<3	.04	.4	2	2	20	1.68	.02	4	.05	163	1	.02	4	1030	2	<2	<5	.O3	6	.11	26	<2	18
	LOE 400N	.2	3.95	3	40	.5	<3	.04	.6	B	14	25	1.75	.03	2	.08	130	1	.02	10	765		3	<5	.03	6	.11	25	<3	46
	LOE SOON	.2	1.17	. 6	31	.2	<3	33	<.5	2	14	18	1.18	.03	3	.09	84	1	.01	5	440	8	<3	<5	.03	4	.09	26	<2	25
	· LOE GOON	.8	4.07	9	36	.6	<3	.05	.7	4	3	26	1.46	.03	4	.08	321	1	.02	. 5	808	9	<2	<\$.03	6	.12	22	<2	32
	LOE 700N	.2	2.57	17	46	.4	<3	.02	<.5	3	10	19	1.55	.04	6	.12	124	1	.02	€	817	7	3	<5	.03	S	.07	21	<2	32
	LOE SOON	.2	1.76	5	49	.5	<3	.05	.6	6	14	21	2,55	.07	16	.43	177	1	.01	15	472	13	<2	<5	.05	6	.07	27	<2	136
	LOE SOON	.2	1.22	10	34	.3	<3	.02	<.5	2	8	34	3,90	.08	8	.20	137	3_	.01	6	471	14	5	<5	.04	5	.12	55	<2	52
	LOE 1000N	,2	1.05	20	3.5	.3	<3	.02	<.5	3	7	24	2.75	,D4	7	.19	150	3	.01	€	456	19	3	<\$.05	4	.08	29	<2	50
	LOE 1100N	.2	1.57	5	40	.4	<3	.04	<.5	5	14	16	2.22	.03	4	.55	217	1	.01	15	152	11	4	<\$.03	5	.10	59	<2	39
	LOE 1200N	.3		28	28	.7	<3	.04	<.5	19	17	40	4,04	.04	14	.89	470	2	<,01	. 26	435	15	7	<5	.OJ	5	.07	40	<2	48
	LOE 1800N	.2	2.09	13	27	4	<3	.02	<.5	3	11	15	1.54	.03	5	.12	85	1	.01	. 6	594	7	<2	<\$.03	5	.09	24	<\$	28
1	LDE 1400N	.2	2.45	12	27		<5	.03	<.5	2	5	15	1,58	.03	1	.08	63	1	.02	: 4	825	5	<2	<5	£0,	6	.10	22	<2	19
	LIDOEON	2.8	2.74	15	35		<3	.03	₹.\$	5	7	18	2.16	.02	<1	.06	72	1	.02	5	766	3	<2	<\$	EO.	5	.09	31	<2	19
,	L100E100N	.5	1.17	7	31	.2	<3	EQ.	<.5	3	15	16	2.25	.04	8	.15	82	*	.01	5	418	16	<2	<5	,D5	4	.08	33	2	-35
	1100E200N	.2	1.53	15	41	.4	<8	.05	<.5	7	20	30	2.23	.05	7	.31	201	1	.01	18	1685	15	<2	<\$.D4	ь	.09	33	×2	53
	1100E300N	.2	1,78	3	33	.4	<5	.08	<.\$	5	52	25	2.11	.05	8	.30	96	1	.02	14	1070	24	<2	<5	.03	8	.O9	31	k2	45
۱ ۱	L100E400N	.2	2.06	10	49	.4	<3	.08	<.5	15	30	59	2.32	.04	6	.59	234	1	.01	27	510	18	9	<\$.04	5	.09	89	×3	54
	LIOCESCON	.2	1.94	12	50	.6	<5	.03	1.0	6	17	32	2.02	.05	10	.40	189	1	.01	15	659	18	7	<5	.03	7	.09	27	<2	65
ł) L100E6DON	.2	2.44	14	38	.5	<8	.04	<.5	3	6	19	2,20	.04	4	.14	86	1	.02	8	857	15	7	<\$	EO .	7	.12	35	42	74 46
1 <	L100E700N	.4	1.58	12	31	.3	<5	.Q3	<.5	4	7	17	1.90	.04	8	.15	67	1	.02	7	552	33	<2	<\$.03	5	.06	32	2	46
'	LHOOESDON	2	1.85	15	41	.5	<\$	EQ.	.8		20	25	2.68	.04	16	.51	152	1	.01	16	351	49	6	<\$-	E 0.	6	.06	32	62	62
1	L100E900N	2	2.04	8	30	.3	<5	.02	<.5	2	1	16	1.90	.03	1	.10	58	1	.02	4	401	122	<2	<5	.03	5	.13	33	<2	24
	L100£1000N	2	1.68	10	33	.3	<8	کار.	<.5	4	5	17	1.32	.03	7	.08	90	1	.02	4	365	7	4	<5	.03	5	.09	24	< 2	20
1 1	L100E1100N	.2	.82	13	21	.2	<5	.04	<.5	3	9	14	1.74	.06	9	.33	106	1	<.01	7	236	13	8	<5	.03	6	.10	33	<5	36
	L100E1200N	.2	1.93	17	42		<3	.04	.9	14	21	53	2.87	.05	12	.44	228	2	.01	35	605	14	8	<5	.03	Б	.09	35	<2	TOO TO
l۱	L100E1300N	2	1.69	5	50	.5	<3	.11	.7	10	33	22	1.89	.05	10	.29	183	1	.01	27	282	9	<2	<5	.03	10	.07	28	42	82
\	L10081400N	.2	3.28	15	37	.5	<3	.03	<.5	3	8	21	2,15	.05	5_	.13	85	1	.02	6	817	3	2	<8	.03	8	.12	31	-45	39
	(L200EON	.2	1.74	<2	41	.3	<3	.05	<.5	12	18	25	2.40	.03	7	.25	148	1	<:01	11	313	111	<2	<5	.03	5	.08	45	<2	51
	L200E100N	.2	1.40	8	30	,2	<3	,02	<.5	2	7	10	.98	.02	4	.05	36	1	.01	2	182	8	<2	<5	.03	5	.07	17	<2	17
	L200E200N	.2	1.34	6	31	.2	< 5	.04	<.5	2	5	17	1.55	.03	<1	.07	103	7	.02	_	1922	11	9	<5	.03	5	.12	31	<2	20
	L200EBOON	.2	2.40	6	55	.5	< 3	.04	<.5	8	7	22	1.95	.03	<1	.13	134	1	.02	9	2172	25	<2	<5	.03	6	.13	34	<2	24
	L2006400N	.2	1.85	4	57	.4	<3	.18	.8	17	23	55	2.87	.05	6	.61	389	2	.02	28	559	17	8	<5	.04	13	.12	65	<2	100
	L2008500N	.2	1.87	6	39	.3	< \$.05	.6	4	20	19	1.36	.03	3	.09	166	1	.02	6	536	9	<2	<\$.03	5	.DB	28	S.S.	28
EX	L200E600N	.8	4.09	5	23	.5	<3	.04	<.5	2	16	20	1.60	.02	<1	.05	55	1	.03	8	1103	6	9	<5	.02	6	.10	22	<2	12
'	L200E700N	.2	2.72	19	41	æ	<3	.04	.9	8	24	19	2.82	.Д6	11	.39	168	1	<.01	15	955	18	5	<5	.03	5	.08	29	<2	75
	L200E800N	.2	1.58	8	33	.3	<3	.03	<.5	4	26	15	1.99	.D3	8	.59	129	1	.01	13	285	11	<2	<5	.04	5	.05	26	<2	42 8
	1200E900N	.2	1.03	8	28	.2	<3	.04	.5	2	21	8	.92	.03	5	.16	49	1	.02	5	280	5	<2	<5	.03	4	.07	15	< 2 th	22, 4

File Name:SGH99450.1.xls

Page)

ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C. V5B 3NI

To: Super group Holdings Ltd. 1805-13th Ave South Cranbrook, B.C.

Cert# 99450 96-08-14

Attention: Dave Pighin

f Collan a.Maine

Soil

Project Horn

^EØ	TIFICATE OF	AMAI	YSJR.	,							-	Hom													_	ICP32	<u> </u>			
	Sample	PPM	%	PPM	PPM	PPM	PPN	%	PPN	PPM	PPM	PPN	*	%	PPM	*	PPM	PPM	*	PPM	PPM	PPM	PPM	PPM	*	PPM	%	PPM	PPM	PPA
	Name	Ag	A	As	E 2	8e	81	Ċŧ	CO	Ço	Cr	Cu	Fe	X	La	Mg	Mri	MD	Na	All	P	Pb	SD	Se	Si	Sr	11	٧	W	2
4	L200E1000N		3.24	11	37	.,	<3	.02	<.5	5	14	15	1.45	.02	2	,07	64	1	22	8	835	8	3	<5	.03	5	.09	21	<2	2
- 1	L200E1100N	. 2	1.65	11	29	.5	<5	.07	<.5	10	44	33	2.50	.CB	14	.65	222	1	<.01	28	320	8		<5	.04	9	,10	31	<2	5
- 1	1200E1200N	.2	1.07	<2	38	.3	<3	.04	<.5	2	24	9	1.40	.03	5	.11	55	1	.02	- 6	1298	11	<2	<5	,D4	5	.06	25	<2	4
1	L20061300N	.2	99	9	28	.5	<3	.03	.5	5	25	10	1.54	.03	4	.51	110	1	<.01	10	395	15	< 2	<\$.03	5	.06	27	<2	5
\	L200E1400N		2.58	9	38	.5	<3	.03	< .5	3	24	17	1.47	.02	4	.15	89	1	.02	6	452	2	<2	<5	.03	6	.09	22	<2	2
···· `	LACOEON	<u></u>	1.00	8	43	.5	<3	.04	<.5	4	34	26	1.69	.03	4	.13	73	1	.02	9	654	11	<2	<\$.D3	5	.11	27	<2	3
1	/ LADOE100N	Ā	2.51	16	41	.5	<3	.05	<.5	7	52	26	2.31	.03	4	.38	162	1	.02	15	954	10	3	<5	.04	- 6	.07	35	<2	3
1	L400E200N	1.1	2.96	12	65	.7	<5	.04	<.5	5	15	27	2.09	.03	5	,13	\$7	1	.02	7	744	21	<2	<5	5 0.	6	.08	31	<2	4
1	L400E300N	.2	2.03	. 6	38	.4	<8	.05	<.5	4	23	16	1.78	£0.	8	.15	119	1	.01	6	444	14	6	<\$.04	7	.07	31	<3	3
1	LACCESCON		1.71	12	45	.4	< 5	.14	< .5	10	41	54	2.65	.04	10	.21	202	1	.01	21	456	14	3	<5	.04	10	.07	44	<2	8
	L400ESOON		3.88	4	50		<3	.04	.7	4	20	23	1.94	.03	<1	.06	505	1	.02	. 8	1278	7	3	<5	ಖ	7	.13	32	<2	3
10			2.02	7	54	.4	<3	.04	< .5	3	27	18	1.38	.02	1	.06	36	1	.62	6	645	5	<3	< 5	.05	8	.09	27	<3	1
poE	LACOETOON	.2	1.58	S	35	A	< \$.05	<.5	7	58	18	2.71	.05	11	.53	153	1	<.01	15	691	12	4	<\$.04	7	.05	32	<2	5
1	LAGGEBOON	.2	1.35	6	40	.3	<\$.14	<.5	5	38	15	1.47	.03	10	.42	95	1	.01	12	20	12	<2	<5	.04	11	.07	23	<3	2
1	LACCESCON	.2	1.57	4	58	A	< 3	.04	<.5	7	25	17	1.50	.03	14	.28	106		<.01	15	450	. 5	<2	<5.	.05		06	19	<u><2</u> <2	4
l	L400E1000N	.2	1.52	•	35	.5	<5	.06	.5	7	31	14	2.20	.04	10	,38	98	-	<.01	14	873	17	<3	<5	.08	7	.06 .07	27 28	<2	2
	L400E1100N	.2	1.65	. 8	35	.4	<3	.04	<.5	3	18	15	1.78	.02	8	.21	79	1	<.01	8 14	745 954	7	<2	<5	.04 20.	7	.00	54	<3	2
ŀ	L400E1200N			10	32	.5	< 5	.05	.8	7	31	18	2.23	.02	5 7	.37 .24	97 124	1 2	.01 .02	16	132		< 2	<5	.D4	7	.00	27	<2	
ļ	L400E1300N				37	.5	< 5	.04	<.5	9	25	30 13	2.00	.04 .02	3	.07	35	4	.02	1 V	1200		<2	< 5	04		.12	29	<2	2
<u> </u>	L400E1400N		3.78				<u> </u>	.03	<.5		16	23	2.17	.02	<u></u> 3	<u></u> .57	~~∺		.02		920	+ 5	122				.13	37	<2	2
}	LSCORON				41		<5 <8	.03 .04	.5. 5.>	7	10	16	2.17	.05	3	.18	97	1	.02	•	1658	5	3	<5	.05	6	.11	32	<3	2
1	L500E100N		2.58		37 41	.9 .A.	< 5	.04	<.5		15	15	2.23	.03		.25	92	1	.01	8	\$57	12	<2	<5	.04	7	.06	3.8	<2	
1	LS00E300N				46		< 5	.06	<.5	5	20	23	2.46	.03	4	.22	115	•	.02	11	1005	10	< 2	<5	.04	7	.09	39	<2	5
1	LSOOE400M	2	-	_		.3	<3	.06	.7	5	21	17	1.85	.02	6	.20	88	1	.02	7	762	14	<2	<\$.04	7	,97	34	<2	3
}	LSCOESCON			-	*******	<u></u>		- 23	₹.5	2	7	17	1,55	.01	2	D5	25	1	.02	1	1005	2	3	<\$	5Q.	6	.11	30	<2	1
10	LSCOESCOA				•	.5	<5	.05	<.5	5	17	22	2.53	.02	<1	.25	95	1	.02	11	1415	•	7	<5	EQ.	8	.14	58	<2	3
900	1500E700N	.6	5.97	30	29	.6	< 5	.04	.6	2	55	18	5.07	.02	<1	.04	74	2	.02	4	3577		<2	<5	.03	6	.15	50	<2	1
1	LSCOERCON	2	2.18	10	38	.5	` <3	.05	.8	2	19	10	1.11	.02	3	.08	21	1	.01	- 4	< 10	4	<2	<5	.03	4	.07	24	<2	
L	LSCOESCON	2	1.12	7	22	4	<3	.09	.7		37	18	2.22	.02		.65	145	_	<.01		460	8	- -5	<\$.07		<2	2
	L500E1000N	.2			29	.5	<3	.13	< .5	7	28	18	1.42	.02	10	.39	208	1	.02	17	248	5	3	<5	.03	11	.07	33	<\$	2
1	L500E1100A	.2	3.09	4	53	.7	<3	.08	<.5	8	13	38	1,79	EO.	6	.26	123	1	.02	18	757	3	10	< \$.04	7	, 1 1	30	<2	3
1	L500E1200A	.2	1.65	7	44	.4	< 3	.07	<.\$	9	13	29	1.76	.02	5	.24	474	1	.01	18	363	7	<2	< 5	.04	7	.09	34	<3	5
1	LS00E1300N	-			47	.4	<3	.09	<.5	10	42	37	2.01	.03	6	.48	206	3	.01	21	259	10	<2	< 5	.04 .D4	10	.08 .17	39 50	<2 <2	8
	1,500E1400A			14		.8		.06	1.0		23	36	1.77	65		14	1197		.02	17	1262		<3	< 5	D4	- 70	.10	3Q 51	<2 <2	3
	L600EON		-			A	<3	.D6	.5	12	66	32	2,78	.02	5	.64	246	1	.01	21	487	5	7	<5	.04	7		50	<2	4
1	/ L600E1DON				46	,4	< 3	.06	.5	10	67	23	3.08	.03	5	.58	356	7 2	.01	. 17	862		K2	<5 <5	.04	11	.09 .13	28	<2	1
1)1800E200N				41	.6	< 3	.14	< .5	5	25	15	2.39	.03	8	.13	87	_	.03 .co	42	1351	8	<2 <2	<5	D4	15	. 13	45	<3	4
ı	1600E300N				80	.5	< 3	.25	< .5	7	29	21	2.53	.04	9	.57	875	3	.02	13	682	12	7						<2	5
ł	LECOPEACON	4	2.26	ì 7	84	.8	<3	.31	<.5	10	28	22	3.01	.04	12	,38	353	7	.04	14	\$54	25	/	< 5	.04	17	.12	43	~.¢	1 3

File Name:SGH99450.Lxis

Page2

ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C. V5B 3NI

To: Super group Holdings Ltd. 1806-13th Ave South Cranbrook, B.C.

Cert# 99450 99-08-14

Attention: Dave Pighin

Soil

Project: Horn

	CERTIFICATE	OF ANAL	YSIS:
ı	4	600a e	~

ERT	TRICATE OF	ANAL.	YSIS:																	-							ICP32	2		·····	,
	Sample	PPM	%	PPN	PPN	PP	A F	PPM	%	PPM	PPM	PPM	PPM	56	%	PPM	*	PPM	PPM	96	PPM	PPM	PPM	PPM	PPM	%	PPM	%	PPM	PPM	PF
	Name	Ag	A	1	B 3		e	Bi	C)	œ	Co	¢r	ದಿ	Fe	K	La	Mg	Mn	Wo	Na	Ni	P	Pt)	56	24	<u>Ş}</u>	Sr	Tì	٧	W	;
	LECOESCON	2	1.54	į	3 78		3	<3	23	<.5	5	13	13	1.43	.D4	4	.24	109	2	.03	8	87	26	<2	<5	.04	10	.11	29	<3	1
	LECOE GOOM	.2	2.33	<;	4:	} .	5	<3	.D7	.8	5	20	23	2.69	.03	3	.27	257	1	.02	11	1525	11	< 2	<5	.04	4	.09	46	<2	
1.	/ LECOETGON	.2	1.20	<:	350	,	4	< \$.06	<.5	7	25	22	2.15	.03	10	.45	118	1	.01	14	360	9	<5	<5	.04	5	.08	31	<2	-
W	F800E800M	2	1.58	< 2	B K	•	4	<3	.07	< 5	5	11	15	.87	.02	2	.10	35	1	.02	11	< 10	14	<2	<\$.04	7	.16	17	<2	
	FEOOESOON		2.50		41	3 .	7	< 3	.10	<.5	. 8	25	19	2.11			.19	. 68	2	01	14	517	5	- < 2	<u><5</u>	.03		<u>:11</u>	33	<2.	[
- 1	L600E1000N	2	.91	<:		3	2	< 3	.11	< .5	7	13	18	1.90	.02	8	.26	92	• •	C D1	14	173	8	3	<\$.03	4	.07	38	<2	-
- 1	L600E1100N	.6	4.02	23		_	8	< 3	.05	< .5	6	4	18	1.56	.02	2	.06	73	2	.02	15	1948	6	3	<5	.04	- 5	.12	25	<3	-
- [L600E1200N	2	1.93	4			5	<3	.11	.9	9	14	52	2,21	.04	9	,47	139	7	.01	21	376	12	\$	<5	.04	9	.09	48	<2	-
- (L600E1300N	2	1.89	1	3 9	5.	6	< 3	.07	<.5	9	17	26	2.29	.04	12	.A1	195	3	.02	31	586	12	<2	<5	.05	6	.00	29	<2	١
'	1600E1400N	. 2	3.03	1!	44		6	<3	,03	.7	7	11	22	2.05	.03	. 5	.18	149	2	.01	9	949	12	<2	<5	.04		.09	27	<2.	
	, L700EON	.2	1.58	1	3 21	-	4	<3	.05	<.5	7	18	17	2.75	.02	8	.34	107	1 4	<.01	12	908	9	4	<5	.04	<1	.07	37	<3	-
	L700E100N	.2	1.37				3	<3	.03	<.5	6	12	17	1.85	.02	11	.25	84	7	.01	10	724		<2	<5	.Oc	<1	.04	25	<2	1
	L700E200N	2	2.88		4		6	<\$.03	<.5	- 6	13	15	1.56	.02	7	.12	110	1	.02	7	887	10	<2	<5	.03	<1	.10	24	<2	-
	L700E300N	.2	1.97	1			4	<3	.06	<.5	6	20	15	2.26	.03	5	.16	90	1	03	5	1632		2	<5	.04	3	.09	37	<2	
	L700E400N	4	3.49			T	5	<3	.08	1.0		11	14	2.85	.02	<u>5</u>	.09		1	.03	5	4076	8		<5 .	.04	💃	.14	52	<2	
,	L700ESOON	2	1.28		? ?		5	7	.21	.7	14	16	22	4.73	.02	5	.57	236	1	.03	10	839	10	7	<5	.03	′	.13	80	5	
64	2700E600N	.2	2.82	7			7	<3	.11	.6	9	1	16	3.57	.03	7	.26	164	3	.02		1814	1	<2	<5	.04		.12	49	<2	į
	L700E700N	.2	3.13	1	•		7	<3	.04	.9	5	25	29	2.27	.02	3	.14	74	2	.02		1008		<2	<5	.04	4	.12	3Q	<2	
	L700E800N	.2	1.27			•	3	<3	.12	< .5	7	27	22	1.75	.02	17	.40	120		<.01	15	<10	9	1.	<5	EQ.	•	.08	50	<2	
	L700E900N	. 2.	1.53	14			4	.<3	.05	<u> < .5</u>		35	. 17	1,91	.02	7.	.31	85		<u>.D1</u>	13	. 157		<2	< 5	.03		.06	34	<2	
- 1	L790E1000N	.2	.75				2	<3	.09	<.5		21	11	.96	.02	6	.20	67	1	.01	*	175	8	3	<5	.04	5	.08	25	<2	1
- [1700E1100N	.2	1.55	<7			6	< 3	.10	.8	9	30	23	1.76	.02	11	.44	113	7	.01	20	18	10	>	<5	.04	8	.06	37	<2	1
١	L700E1200N	.5	1.88		•		5	< 3	.04	.7	5	28	34	2.35	.02	10	.35	118		2.01	19	604	13	2	<\$.03		.06	33	<\$	1
1	L700E1300N	.2	1.80	4	_		5	<3	.04	<.\$	8	17	16	1.87	.03	9	27	172	1	.01	15	299	13	3	<5	.04	5	.07	28	<\$	1
	U700E1400N	2	2.46				6	<3	.05	8	10	20	21	1.89	.04	12	_32	229		.02		1002	<u> </u>	 < 2 -	< <u>5</u> _	.04	~~ <u>~</u>	.07	22	<u><3</u>	
	LBOOGON	.2	1.59	11	61) ,1	6	< 3	.08	۶.	8	45	35	2.05	.03	10	.43	140	1	.01	15	345	9	<5	<5	.04	7	.08	37	<2	١
	LECOE-100N	.2	2.87	11			6	< 3	.04	<.5	3	15	13	1.58	.01	3	.05	33	1	.02		1407	8	<2	<\$.04	4	.13	27	< 2	-
	L800E 200IN	.2	2.77	•	32	•	6	< 3	.04	< .5	7	19	50	1.65	.02	6	.15	67	1	.02		1099	4	<2	< 5	.03	4	.09	25	< 2	1
	LECOESCON	.4	2.79	10			7	< 3	.06	1.0	6	26	18	2.81	.02	6	.22	115	7	.02		1789	13	6	< 5	.03	5	.10	33	<2	
	1800E400N	4	1.60		47	<u> </u>	.	<3	.29	<u>5</u>	3	23	15	2.78	.02	14	.62	298		.02	- 11	505	 7 .	9	_<5_				42	<3	4
	LBOCESDON	.2	1.81	<2	? 71		5	< \$.17	.7	9	13	21	2.54	.04	10	45	165	2	.02	15	253	26	<2	<5	.04	9	.08	48	<2	١
	1800E600N	.7	3.46	13	35	3 .	9	<3	.25	.7	6	20	21	1.88	.03	17	.06	96	1	.04	5	560	13	6	<\$.03	20	.19	33	<2	-
(1)	/ L800E700N	2	1.25	<2	39		đ	<\$.28	₽.	10	20	22	2.16	703	14	.42	309	1	.02	- 14	402	11	<2	< 5	.04	5	.05	50	<2	-
//	LBOOEBOON	3	2.91	17	4:		7	<3	.06	1.0	6	24	43	2.04	.02	4	.15	68	3	.02		1936	111	< 2	< \$.03	8	.11	39	<2	
	LBOOESOON	.2	.96	<	51		3	< 3	.12	<.5		24	15	1.25	.02	8	.85	- 84		.01	10	28	8	1.3.	< \$.03	7	.07	72	<2	4
7	L800E1000N	.2	1.51	<2	36		3	< 3	.05	.9	5	28	15	1.59	.03	9	.42	95	3 <	01	14	45	9	5	<5	.04	3	06	31	< 2	-
- [1800E1100N	.3	.86	1	29		5	3	.17	< .5	10	\$2	18	1.74	.02	\$.34	114	t	.01	13	290	5	<2	<5	.04	7	CB	33	<2	ı
- {	L800E1200N	.2	1.60	10) S (. (5	< 3	.08	.7	7	26	23	2.50	D3	11	.48	120	2	.01	15	219	12	4	<\$.04	\$.07	35	<2	-
1	LB00E1300N	.2	1.95	t	47		5	< 3	.04	≺.5	8	21	19	1.81	DS	7	.25	107	2	.02	9	890	13	<2	<5	.04	5	.08	25	<2	1
1	LB00E1400N	.4	3.37	22	39	.!	9	< 3	.05	<.5	6	9	30	1.41	.03	3	.10	62	1	.03	9	1192	6	4	<5	.05	7	.12	23	<2	1

File Name:SGH99450.1.xls

Page3

Certified By: Suhong Yang

ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C. V5B 3N1

File Name: SGH99450.Lah

To: Super group Holdings Ltd. 1805-13th Ave South Cranbrook, B.C.

Cert# 99450 99-08-14

Attention: Dave Pighin

Project: Hom

Soil

ICP32

Certified By: Suhong Yang

																										ICP32				
ERT	TECATE OF			PPM	PPM	PPAR	PPM	*	PPM	PPM	PPM	PPM	*	96	PPM	%	PPM	PPM	%	PPM	PPLA	PPM	PPNI	PPM	%	PPM		PPM		PP
	Sample	PPM	%	PPTA						Do	OT.	Cu	Fe	ĸ	La	Ma	Min	Mo	Na	N	P	Pb	3 5	Se	Şİ	ST	TI	V	₩	_2
	Name	AO	Al	AS	88	- 54	<u>B</u>	<u> </u>	<u> </u>	-~	11	28	2.86	.03	15	43	162	2	<.01	13	617	8	4	<\$.04	3	.QG	56	<2	1
-	1,900E0N	.2	1.81	9	35	4	<3	.04	.6	<i>'</i>	10	24	2.08	.02	11	-49	157	1	,01	15	74	10	4	<5	.04	9	.06	47	<2	1
/	1900E100N	.2	1.39	5	48	.4	<3	.11	<.5	¥	10	67	2.82	.03	1	.11	15	2	.02	8	1596	14	<2	<\$.04	3	.15	74	<2	1
1	L900E200N	.2	1.88	12	38	.4	<3	.05	<.5		4 =	192	4.39	.05	Š	35	206	2	.02	16	947	13	3	<5	.04	10	.11	176	<2	1
1	LSCOESCON	.5	1.90	<2	34	.5	< 3	.17	1.3	24	15			.04	5	.19	126	1	.02	11	1628	29	2	<\$.04	4	.07	35	< 2	4
1	L900E400N	.4	2.30	16	54		<u> </u>	.08	<u><.5</u>	9		35 83	2.53	.04	<u> </u>	.28	142	1	.03	19	1115	13	7	<\$.03	7	.12	59	<2	ı
7	L900E500N	.4	2.32	2	65	.6	<5	.14	.3	12	17 14	39	2.22	.04		.25	116	1	.02	12	834	16	<2	<5	.04	. 4	.08	40	<2	Ì
62	LECCESCON	.2	1.51	<3	41	.5	<3	.08	Æ		-	45	2.21	.02	5	.22	99	1	<.01	10	962	13	3	<5	.03	3	.07	32	<2	ł
``)	L900E700N	.2	1.23	7	36	.4	<3	.07	.9	3	40			.02	11	.14	61	2	.01	9	584	15	<2	<5	.04	3	.08	39	<2	
- 1	LECCEBOON	.2	1.14	5	33	.5	<3	.07	<.5	5	10	33	1.61	.01	23	.06	24	- 4	.02	7	224	7	<2	<5	.03	8	.08	10	<2	
- /	L9DGE9GON	, 2	1,45	2	30	. 6	<3_	.10	8	5		23	.59	-		***	111		.02	10	_	9	1	~~~ <u>~~</u>	.04	11	.09	26	<2	7
~1	L900E1000N	.2	2.09	•	51	.6	<3	.15	. 9	5	9	22	1.81	.02	4	.13		2	.01	10	125	10	1 4	<5	.04	6	.07	27	<2	
- [L900E1100N	i .4	1.17	<2	36	3	<3	.07	<.5	7	30	13	1.34	.02		.59	101	4	.01	11	122		<2		.04	9	.09	29	<2	
t	L900E1200N	.2	1.29	3	42	,4	<3	.12	.5	7	24	15	1.45	.02	9	.37	107	•	.02	5	226		<2		.04	9	.07	18	<2	
- /	L900E1500N	2	,57	<2	43	A	<3	.11	<.5	3	9	13		.02	7	.13	42	1	.03	18	3.4	20	11	_	.04	19	.17	66	<2	
1	L900E1400N	_	2.34	26	64	1.0	<3	.42	1.6	17	30			.15	14	.68	346			19	***	- 14	1 <2		.04	, ***	.07		<2	•
	LICOCEON		1,40	<2	51	.5	<3	.12	.9	9	21			.03	11	.40	152]	.02	7	742	6	<2		.04	_	.14		<2	
	L1000E100A	_	2.84	10	37	.6	<3	.07	1.0	4	11	30			1	.10		1	.02		1, 145	17	5	_	.03		15		<2	
	L1000E200A		1.78		37	.5		.22	. 8	15	. 11	148	3.84	,04	4	.44	216	*	.03	16		- 1	<2		03		.11		<2	
	L1000E300A	• -		_	4	. £	< 3	.07	<.5	7	11	20	1.79	.03	3	.10	113	2	.02	11	1252	10	111		.04	_				
	L1000E400	•		5 4	56	.4	<3	.18	1.0	10	14	1 45	2.16		8	.36	145		.02	15			+- <u>:</u>				.10		<2	•
7	LIDDOE SOUP			,	63	.5	< 8	.12	.8	13	40	56	2.55	.04	7	.39	249	1	.02	19	110	11	1 -		.03		.13	_		
4	L1000E600	-			5!	.7	< 3	.08	1.3	10	1 4	77	2.01	.03	4	.17	176	1	.02	15		14	<2			_	.08		<2	
							i <3	.06	8	8	17	24	2.19	.03	5	.27	122	2	.01	16	1, 25	19	<2		.03		.05			
1	L1000E700						<3	.10	7	7	14	57	2.42	.04	11	.25	117	2	.01	11	1.0	45	4		.03					
/	L100068001	•				-		.14		12	: 11	5.5	2.21	.04	8	.39	155	2	.01	18	683	7	7		05		.08			_
 -/-	L1000E900							.11		4	20	2	1.80	.01	13	.08	41	2	.02	7	1745	8	<2	<5	.05		.15			
1	L100061000				•			.05		5	21	1 12	1.59	.02	5	.07	101	2	.02	. 6	1789	11	2		.04		.11			
	L1000E1100			_ `.		•		.07		ė		3 1	1.13	.02	6	.17	58	1	.02	8	140	18	<2	< 5	.04	5				
11	L1000E1200						•	.09	_	7	110			.04	10	27	95	2	.01	15	462	10	<2	< 5	.04	•	.07			
1	L1000E1300			_		•	•	.01		. 6					4	.15	95	1	.02	8	664	11	<2	< 5	.04	7	.10			_
	L1000E1400							.03							11	.79	256	2	.01	25	681	21	8	< 5	.04	4	.10	48	-	
	/ 13000EC							-			1 1				4	.15		t	.02	. 7	597	11	- 6	i <5	,04	3	.12	2 45	<2	
ŀ	(1,5000E100	N' .			3		- :	.04		7		4 14			8	.16	71	•	.02	. 8	409	15	<2	<5	.04	3	.10	38	<2	
l	\ L3000E200	N .3	2 .9	2	3	-	-	.04						-	3	.06		2	.02	•	3894	10	3	< 5	.03	5	.15	38	<2	
1	13000E300	N 1.0	3.8	8 1	5 3	9.	5 <3	.04		. 4		1				.11		R	.02	·	1004	13) <\$	EO.	7	.12	29	<2	
1.6	/ L3000E400	N .	3.5	2 2	3 5	7 .	9 <3	.0.			-				10				.01	37		26	1		.04	7	.10	3 37	<2	
10°	\15000E500	N .	5 2.4	9 1	7 10	2 .:	7 <3	.00	-			_				.28		2	.01	14		1 .	<2		.03	4	.09	29	<2	
1	3000E600	N A	2 1.6	6	5 3	6 .4	4 <3	.0:		. 7	7 2!	_			5 3	.29		2	.03			8		<5	.03		.11	1 17	<2	
Į.	3000E700	N 1.	0 2.7	4 2	4 2	8 .:	7 <3	.0!	5 <.5	4	· <'	1 1			_			Ä	.02	. 1		19	< 2		.03		.17	7 47	3	
i	3000E900		5 3.3	2 3	1 3	0 .	7 <3	.D	3 .6	:		5 1				.08		• •	<.01	11		1.		_	.08	_	.06		<2	
1	13000E900		¥ .9	•	5 2	7.	5 <3	.01	8 <.5		5 t	1 1	1.83	.04	16	.38	124		5.01	17		<u>' </u>								_

Page4

ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C. V5B 3N1

To: Super group Holdings Ltd. 1805-13th Ave South Cranbrook, B.C.

Cert# 99450 99-08-14

Attention: Dave Pighin

Project: Horn

Soil

CER:	THICATE OF	ANAL.	ysks:																						·	ICP32				
	Sample	PPM	96	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	%	PPM	%	PPM	PPM	*	- 7	PPM	*		PPE	96	PPM	%	PPM		
	Name	Ag	Ai	As	Ba.	80	B1	Ca	Ø	CO	C	Cu	Fe	K	La	Mg	Wn	Mo	Na.	M	P	Pb	Sb.	26	- 당	<u>Br</u>	11	50 A	- V	
7	L300061000N	.7	2.52	12	40	.5	<3	.04	.5	7	11	17	1,44	.02	8	.15	177	1	.02	15	889	113	9	< 5	.03	6	.10	27	<2	
1	L3000E1100N	.5	2.31	10	37	.5	<3	.05	.9	8	13	16	1.79	.03	5	.27	113	2	.02	16	842		7	<5	.03	5 7	.12	28	<3	- 1
\	L3000E1200N	.2	1.78	<2	54	.5	<5	.05	1.1	10	15	17	2.10	.03	10	.51	125	2	.01	18	515	7	3	< 5	.04	•	.DB .CD	29	<2	- 1
∤	L3000E1300N	.3	2.31	13	36	.5	< 3	.03	.8	4	16	13	1.73	.01	7	.16	76	5	.01	8	944	1.5	5	<5	.04	5 6	.08	32		
(L8000E1400N	2	1.36	5	87	.4	< 3	.05	1,1		35	15	2.08	.02	11	.46	119		.01	16	434	10	7	<\$.04		.08	52		_
	C1.20000E	.2	1,36	4	44	.5	< 3	.14	1.1	13	15	36	225	.03	11	.44	315	2	.02	14	475	15	4	<\$. 4	.08			i
	CL200050E	.2	1.35	12	68	4	<3	.12	.8	10	37	30	1.68	.02	12	.57	171	2	.02	20	293	8	<2	<\$.04	9			< 2	
	CL2000100E	.4	2.00	<2	63	.5	<3	.08	.5	8	9	21	1.49	.05	2	.13	141	1	.02		1231	12	10	<5	.04	•	.14			
	CL2000150E	.5	2.15	12	52	.7	<3	.08	< .5	6	34	23	1.35	.03	1	.10	E 2	1	.03	14	7.747	5	<2	<5	.04	11	.11	22	-	
	CL2000200E	.6	2.45	29	112	.7	<3	.09	1.3	12	30	22	210	.04	13	_33	137	<u>2</u> ,	.02	25	-	21	5	<.\$_,	.04	13	.12	-		-
****	CL2000250E	. 6	2.36	72	74	.6	<3	.06	<.5	6	7	17	1.53	.05	6	.11	230	2	.02	12		14	7	<\$.04	8	.14			
	CL2000500E	.4	1.40	<2	61	.4	4	.08	.7	7	20	15	1.36	.04	11	.24	98	2	.01	11	880	14	<2	<\$.03	8	.07	17		
	C12000350E	.7	1.55	15	51	.4	<3	.07	<.5	5	17	13	1.39	.04	11	.23	138	1	.01	10	549	13	4	<5	.05	10	.08	17		
Ų	C1.2000400E	.2	1.09	15	56	Æ	9	.07	1.2	9	10	25	2.22	.06	20	.41	173	3	.01	12	576	22	<2	<5	.03	11	.08	25		
	D.2000450E	.4	1.81	17	73	.6	<3	.06	1.0	9	40	20	1.79	.05	13	.26	114	2	.01	14	935	22	. 4	< 5	.03	10	.10	20		
	C12000500E	7	2.17	27	74	τ,	< 3	.05	1.0	8	6	18	2.25	.05	10	.27	180	2	.01	17	757	20	<2	< 5	.04	9	.10	24		
	CL2000550E	, .2	1.55	3	79	.5	<3	.07	1.4	10	4	12	1.52	.05	9	.13	993	2	.02	15	827	14	<2	< 5	.04	13	.13	23		
0	CL2000600E	.3	2.46	14	68	. ,7	<5	.07	J	9	<1	14	1.53	202	4	.12	543	2	.02	18	1041	12	5	< 5	.04	12	.14	22		
٨	C1.2000650€	.5	1.95	3	74	6	< 5	.06	A	10	8	13	1.56	.04	4	.16	469	3	.02	15	1155	19	6	< 5	.04	8	.10	23		
0	CL2000700E	.2	1.85	11	88	.6	< 3	.06	Æ	11	12	16	1.66	.06	13	.23	321		.02	21	1237	21	3	< 5	.04	9_	.10		-	
	CL2000750E	.2	1.96	9	85	7	< 3	.07	1.1	8	20	13	1.77	.06	6	.18	265	3	.02	15	1213	23	<2	<5	.04	11	.12	25		
	C1.2000@00E	.2	1.95	7	91	.8	< 3	.05	.9	14	19	19	2.06	.07	12	.30	165	3	.02	28	409	22	3	<5	.03	11	.10	22		
	CL2000850E		1.53	13	87		6 6	.07	.8	11	15	21	1.88	.06	11	.34	236	3	.02	12	474	26	8	<5	.04	11	.09	21	<2	
	CL2000900E	.4	1.96		91	.	<3	.06	1.0	10	10	15	1.81	.05	8	,22	314	3	.02	21	817	26	<2	<5	.04	9	.10			
	CL2000950E	.4	2.84	17	_		< 3	.08	.9	10	8	18	1.70	.04	6	.14	597	•	.02	19	961	20	<2	<\$.03	13	.14	23	<2	
	CL20001000E	.6	2.05	7	90	7	6	.09	1,2	15	<1	13	1.73	.05	6	.18	474	2	.02	26	1052	22	<2	<\$.04	11	.14	27	<2	
	CL20001050E	.4	1.96	4	75			.09	1.1	12	<1	14	1.46	.04	4	.14	728	1	.02	17	1484	14	5	<5	.03	11	.12	22		
	CL20001100E		1.38	3	55	5	<3	.06	1.0	8	<1	15	1.26	.04	10	.19	141	1	.01	15	711	15	3	<5	,03	8	.09	18	<2	
	CL20001150E	.6	1.55	11	61	`.€	3	.06	1.3	12	4	22	1.63	.04	10	27	183	2	.01	20	581	23	4	<\$.03	7	.10	25	<.5	
	CL20001200E	. 4	2.31	13	81	.6		.08	.8	8	10	22	1.57	.04	8	.27	323	2	.02	19	863	18	6	<5	.04	11	.12	24	<.5	
	€20001250€	<u> </u>		<2	71	.5	<3	.07	.6	9	<1	15	1.45	.04	6	.19	291	2	.02	11	696	21	<2	<5	.04	8	.11	27	<3	
	CL20001300E	,2		<2	52			.06	.7	8	<1	17	1,47	.03	6	.12	253	1	.02	13	694	12	5	< 5	.04	•	.12	27	<2	
	CL20001350E	.4	1.98	18	62			.07		12	15	15	1,80	.04	6	.26	314	2	.02	15	633	21	5	<5	.04	7	.10	28	<2	
	CL20001400E		1.99	13	78			.05	1.0	11	15	18	1.92	.04	6	.20	429	1	.02	14	1544	20	7	<5	.04	8	.13	28	<2	
	CL20001450E	.2		<3	46			.05	.6	4	15	9	1.50	.04	10	.15	106	1	.01	7	372	19	9	<5	.04	7	.12	28	<2	
			1,60	25	54			.09	.5		:	13	1.91	.04	8	.14	177	5	.02	9	1286	36	3	<5	.04	14	.14	30	30	•
	CL20001500E			7	50	-		.06	<.5	7	<1	12	1.30	.03	7	.11	125	2	.01	9	960	22	3	< 5	.04	12	.12	27	12	
	CL20001550E			17	54			.05	9	9	4	18	1.98	.04	6	.14	119	4	.02	17	1335	19	8	< 5	.04	10	.14	33	5	
	CL20001800E				54 68			.08	1.4	41	9	23	2.71	.04	7	.19	109	4	.02	21	14B3	23	9	< 5	.04	13	.14	33	18	
	CL20001650E			20	•			.06	1.4	6	10		2.05	.03		.11	78	3	.02		1067	19	10	<5	.04	11	.15	33		

File Name:SGH99450.Lxls

Pages

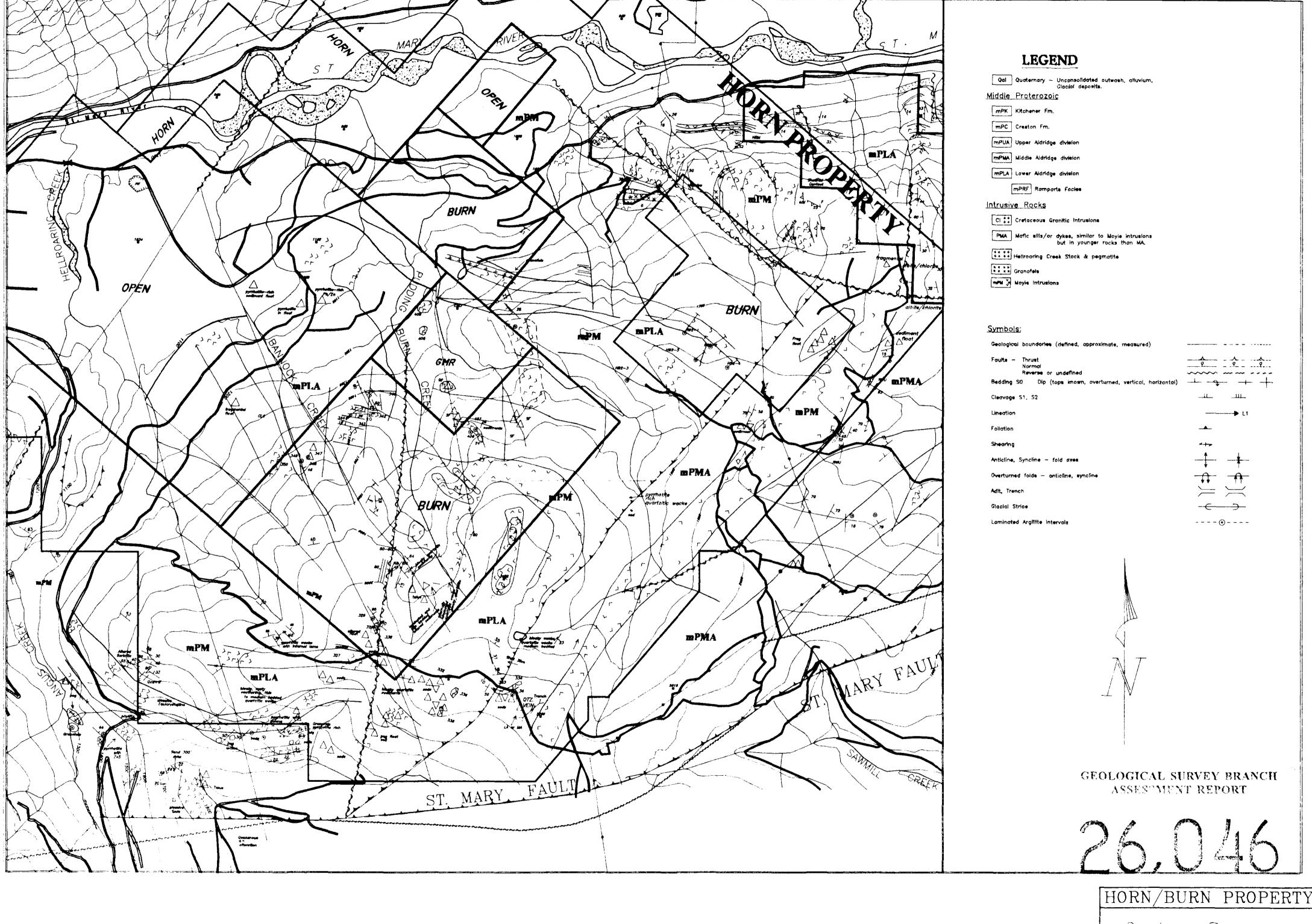
ROSSBACHER LABORATORY LTD. 2225 SPRINGER AVENUE BURNABY, B.C.

To: Super group Holdings Ltd. 1805-13th Ave South Cranbrook, B.C.

Cert# 99450 99-08-14

V5B 3N1

Attention: Dave Pighin Project: Horn


Soil

ICP32

Sample	PPM	%	PPN	PPN	l PP	M (PPE	79	er m	L D. III	PPM	PYM	%	7.	PPM	79	PT 196	PPM	70	PPM	L Limb	C	1.5.00	***		PPM			PPH	
Name	Ag					re Te	Bi	Car	CI	Co	œ	Cu		K	La	Mg	Mn.	MO	Na	NE		Pb	Şb	\$e	12	Sr	Ti		W	-
CL20001750E		2.02	10			.5	4	.07	.7	8	8	16	1.59	EO.	10	.11	184	3	.02		763	18	1		.04	12	.15		6	1
CL20001800E		2.40	15	7		. 6	<\$.06	1.1	10	9	20		E 0.	6	.15	139	2			1127	23	10		.04		.14		5	- 1
CL20001850E	.5	2.50	14	7:	5	.7	5	.05	<.5	12	<1		1.84	.04	11	.23	108		.01		887	22	10		.04		.10			,
CL20001900E	1.2	2.09	24	i 41	3	.8	5	.06	1.3	8	13			.04	8	.19	69	4			1521	24	10		.04	10	.16		<3	- 1
CL20001950E		2.20	45		*** *****	.5	<3_	.15	.9	10	24		1.42	.04	13_	.21			.03		761	<u>51</u> 18	<2	<u><\$</u>	.04	17	. 13 .11		<2	
CF30003000E	1.1	2.52	11	37	,	.7	7	.05	1.3	11	10	47	2.71	.04	ŧ	.40	96	•	.01	19	815	165	8	•		ı	.*1	30	••	(
a da a "arresantinto anti- i a in little	~				•••			1/40/01		D Pen man	MOTA F		11/5 44 41 /		##=# · · ·				arda 1989						******	**************************************		Na.	ra eminan	
			.											• • • • • • • • • • • • • • • • • • • •																
					****				n agentus du la generalista	***	n+u+=+			***	######################################		p 10 qua pa 410 s			1611 1 1804 4 -1					• • • • • • • • • • • • • • • • • • • •	-4		******	1-20-040-0-	
		* , , , , , , , , , , , , , , , , , , ,			- 100 ago 400 Alexon •	****			- La Carlo de Sa, carrelando	****				****	##**** * **	a t territorio di col	, u , u p tra t				******								1-27-245-0-	
	•••••				. (20 (20 (20 (20 (2				-	*****	n 4 w≥ ≠ =				## \$14 W.Y		p ta qua que èras sé		+ 0-0 17-11		******				* ***	-4			1-23 aus a-	••••
	•••••	* , /skitania-1			- SP - 40 About •		. Name of the local	polytic idea (Ma		*******	n+ w+ ≠		·	••• •••	er is no 12 no 12 no	to testing day t	p ta qua q ue è res se		444 6 4 6 -4		 				******	••• •		• ***	1700 000 00	
		. , (1841-1866)		****			, warmy or sad system	-1	. W. G. de Landani		n du s water				##**********			outes on to do 9 Miles	Topo 4-01 (0-0) (0-1)	144 0 mili A. A.		1 m + m 4 * *		····································	• • • • • • • • • • • • • • • • • • • •					
		. , , , , , , , , , , , , , , , , , , ,			. 1950 nga dagan n			ga ki sirin ki si si gala.			# 1								4-11 0-3	pri 1 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
				,	- 150 tab dan About -															,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
				•	. 1950 ngo qua dasson e																									•
				,		•								articonom 4																
				,																										
				,																										
				1																										
				1																										
								allege dia di																						
				,																										
				,																										

File Name:SGH99450.Lxls

Pageó

Geology Basemap

This Plot: 99/09/07 Map Ref.: HN82F080/070

Date: 99/10/128YPRO Scale: 1:20000