

OMINECA MINING DIVISION, B.C.

54°48" north latitude, 126°54" west longitude

NTS 93L/15W

for

CONSOLIDATED MAGNA VENTURES LTD. 800-850 West Hastings Street Vancouver, B.C. V6C 1E1

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

December 3, 1998

Robert A. Archer Peter Karelse

<u>Summary</u>

The Big Onion is a well-known porphyry copper deposit near Smithers, British Columbia that was explored in the 1960's and 1970's by Noranda, Texas Gulf Sulphur, Cyprus Anvil, Canadian Superior and, in 1992, by Varitech Resources. Previous work has included geological, geochemical and geophysical surveys, 58 diamond drill holes and 67 percussion drill holes. From this work, a geological resource of approximately 80 million tons grading 0.45% Cu and 0.02% Mo has already been identified on the northern claims. A significant portion of this mineralization is recognized as being within a zone of supergene enrichment which may be amenable to lower-cost solvent extraction-electrowinning (SX-EW) processing.

The 1998 diamond drill program at Big Onion consisted of six NQ sized holes, for a total of 1,016 metres, and tested several induced polarization and/or magnetic anomalies in search of new zones of copper mineralization. All holes were drilled in an area to the south and west of the main deposit, beyond the limits of known mineralization. Drill core was sampled at the discretion of the project geologist, in three-metre intervals, and was split in Smithers, with half being retained for reference and half being sent to the lab. A 28-element ICP analysis was conducted on each sample at Eco-Tech Laboratories Ltd. in Kamloops.

The first two holes intersected both quartz-feldspar porphyry and quartz diorite porphyry, the two primary hosts to copper mineralization in the main deposit. Hole BO-98-01 bottomed in andesite, which also contained copper mineralization, and hole BO-98-02 contained porphyry throughout its entire length, with a few minor intervals of andesite. Both holes contained abundant disseminated pyrite, in amounts up to 10%, and chalcopyrite, which locally reached concentrations of 3% over short intervals. Both holes contained elevated copper values throughout but assays from the 3-metre samples did not reach economic levels. The other four holes explained the targeted geophysical anomalies but did not intersect any copper mineralization.

The significance of these results is that holes 1 and 2 were drilled some 500-600 metres away from the closest hole containing porphyry and 800 metres from the nearest known copper mineralization. There is a further 1500 metres of untested ground between holes 1 and 2 and the nearest hole to the southwest. This expansion of the known limits of the mineralizing system has the potential to significantly increase the size of the known porphyry copper deposit at Big Onion with further drilling.

A \$375,000 follow-up exploration program consisting of a digital compilation, additional IP and magnetic surveys and 2,000 metres of diamond drilling is considered to be warranted in light of these results and is recommended for 1999.

Contents

Summary	i
Introduction	1
Location and Access	2
Physiography and Vegetation	2
Regional Geology	3
Property Geology	4
1998 Drill Program	4
Conclusions and Recommendations	9
Cost Statement	11
References	12
Statement of Qualifications	13
Tables	
1. List of Claims - Big Onion Property	
2. Diamond Drill Hole Summary	

.

<u>Figures</u>

- 1. Property Location Map
- 2. Property Claim Map
- 3. 1998 Exploration Targets
- 4. Drill Hole Location Map

Appendices

- I. Diamond Drill Logs
- II. Plan Maps and Sections
- 0 Assay Certificates

Introduction

The Big Onion property lies just east of Smithers, B.C. (Figure 1) and currently comprises a total of 81 claim units recorded as claims JB-JG and BIG O 1-5 (Table 1, Figure 2). Consolidated Magna Ventures Ltd. optioned the property from Jack Hemelspeck of Telkwa, B.C. in 1996 and has sub-optioned it to Gladiator Minerals Inc. Gladiator is earning a 50% interest in Magna's option to earn a 100% interest, subject to a 2% NSR to Hemelspeck. Magna is the operator for all exploration on the property.

The majority of previous exploration was conducted on the northern group of claims (JB-JG), as a northwest-trending, crosscutting fault was believed to terminate the mineralization to the southwest. Only limited drilling was carried out beyond this fault and an extension to the mineralization was never encountered.

The 1998 exploration program at Big Onion was designed to identify new zones of copper mineralization, to the southwest of this fault, which have the potential to increase the size of the known porphyry copper deposit. Pole-dipole IP and ground magnetic surveys were completed by Magna in July and August, 1998 over the southern portion of the property, in order to redefine anomalies obtained in the 1960's which were never drill-tested.

Details of the geophysical program, conducted by Scott Geophysics, are discussed under separate cover, however several large chargeability anomalies were outlined, some with coincident magnetic highs, which correlate well with the 30-year-old surveys. The six-hole diamond drill program tested the best of these anomalies for indications of additional porphyry copper mineralization.

Name of Claim	Number of Units	Tenure Number	Expiry Date
ЛВ	4	237812	Sept. 25, 1999
JC	4	237813	Sept. 25, 1999
JD	4	237814	Sept. 25, 1999
JE	1	237815	Sept. 25, 2000
JF	4	237816	Sept. 25, 1999
JG	2	237817	Sept. 25, 2000
BIG O-1	20	343801	March 02, 2000
BIG O-2	20	343802	March 02, 2000
BIG O-3	20	343803	March 02, 2000
BIG O-4	1	343804	March 01, 2000
BIG O-5	1	343805	March 01, 2000

TABLE 1: List of Claims for the Big OnionProperty

$\hat{\Gamma}$ с. — 19 1 To be set of the

Property Location and Access

The Big Onion property is located approximately 13 kilometres east of the town of Smithers, British Columbia. Geographically the property lies at 54 degrees 47 minutes north latitude and 126 degrees 54 minutes west longitude. The NTS location is 93L/15W and is within jurisdiction of the Omineca Mining division.

Access to the property is gained via paved highway to the all-weather gravel road known as the Babine Lake Road. This road however, is not kept clear of snow accumulation within the bounds of the property and for a distance beyond. The Babine Lake Road runs roughly east to west through the central portion of the property. The road separates the upper Big Onion zone where the majority of the work has been performed, from the lower portion, where the most recent work has taken place.

The nearest railway is located in the town of Smithers.

Although the physical access to the property is relatively straightforward, means of access on the property is limited or hampered by regulatory constraints. The property is located within the Canyon Creek municipal watershed area and, as such, is subject to a higher level of regulation than that found outside such an area. The property is also subject to the Forest Practices code, specifically to the quantity of timber that may be cut. Additionally, a portion of the property lies within the limits of a privately owned woodlot and activities therein are subject to the regulations found within such an area. The most recent drill program was performed entirely with helicopter support to most easily and economically accommodate the constraints briefly described above.

Physiography and Vegetation

The upper portion of the Big Onion property is bisected by Astlais Creek and is located to the east and southeast of the peak of Astlais Mountain. Ground slope ranges from gently sloping in the south to steep toward the north. Although the peak of Astlais Mountain rises to an elevation of 1850 metres, the upper Big Onion zone is confined between 1500 and 1000 metres above sea level.

Water is found on the upper portions of the Onion property, with 2 year-round creeks flowing from the peak regions to the road elevation with a volume (approximately 250-500 litres/min) sufficient to be considered a source of drill water. The change in topography from steep slope to relatively low relief flat lands south of the Babine Lake road causes these two creeks to spread into a number of low volume meandering streams. These streams eventually empty into Llama Lake. Llama Lake is located in the east central portion of the property and is the only significant body of water found within the current bounds of the claim block. It is unavailable for use however due to land/recreation use issues. Several beaver ponds and bogs exist on the far western extremes of the property. Significant water is found at these locations and can be considered a source for drill water. Intermittent seasonal streams are found locally in the central portion of the property. It is apparent from examination prior to the most recent drill program that these are dry for the majority of the year.

The timberline is located at an elevation of approximately 1600 metres. The primary tree type is spruce down to the 1000 metre elevation. These trees are mature and reach a height of roughly 10 metres. A controlled burn was initiated in the mid-1970's and is evident below the 1000 metre elevation. The vegetation in this area is predominantly poplar, reaching heights of about 8 metres. Immature spruce and pine varieties are found to be thriving through out this area as undercover. These varieties were planted subsequent to the burn and currently reach a maximum height of 3 metres. The area south of the Babine Lake Road is primarily covered with mature spruce reaching heights of 15 metres. Small stands of poplar are found in the extreme southwestern portions of the property. These poplars reach heights of approximately 10 metres.

The 1998 drill program was conducted under Ministry of Forests Free Use Permit No. 10550-30/DBU-08, Ministry of Energy and Mines Approval Number SMI-98-0200273-235 and Reclamation Permit No. Mx-2-179. The latter required the posting of a \$6,000 bond, \$4,000 of which has been returned. The remaining \$2,000 is being held to cover the cost of re-planting in the spring of 1999.

Regional Geology

- Andrews

IJ

1

Ŋ

Π

The regional geology of the area east of Smithers is described and illustrated by several government reports and maps (Tipper and Richards, 1976, GSC Open File 351 and BCDM Open File 1987-1) and is summarized in project reports by Stock (1977), Sampson (1991) and McCrossan (1991).

The area is predominantly underlain by Jurassic volcanic and sedimentary rocks of the Hazelton Group. The Telkwa Formation volcanic rocks comprise reddish-purple to greyish-green breccias, tuffs and flows of basaltic to rhyolitic composition and are unconformably overlain by sedimentary rocks of the Smithers Formation. The latter consist mainly of greyish-brown to greenish-grey greywacke, lithic and glauconitic sandstone, siltstone, argillite and minor conglomerate.

The volcano-sedimentary country rock has been cut by a series of predominantly northeast trending faults into which have been emplaced a number of late Cretaceous to early Tertiary quartz diorite to quartz monzonite stocks and plugs known as the Babine Intrusions. This calc-alkaline intrusive complex is the host to several porphyry copper deposits in the region including the Bell, Granisle, Morrison Lake and Big Onion deposits.

Property Geology

A thorough discussion of the property geology can be found in previous reports prepared by Stock (1977), Sampson (1991) and McCrossan (1991) and will not be covered in detail herein.

Briefly, the property straddles the unconformity between the volcanic and sedimentary rocks of the Telkwa and Smithers Formations, as described above. Stratigraphy trends east-northeast and dips steeply to the south-southeast. In the northern portion of the property, where most of the previous exploration was conducted, a northeast trending, elliptical complex of felsic to intermediate porphyries intrudes a series of andesites of the Telkwa Formation.

Copper mineralization, in the form of disseminated chalcopyrite, bornite and chalcocite, is hosted by quartz-feldspar and quartz diorite porphyries and, to a lesser extent, by the host andesites. Alteration and sulphide zoning typical of porphyry copper deposits is evident at the Big Onion and was documented by Canadian Superior (Stock, 1977). One such feature, an extensive pyrite shell containing 3-5% disseminated pyrite, surrounds the copper mineralization and serves to enlarge the exploration target.

Canadian Superior undertook a resource evaluation of the copper mineralization at Big Onion and estimated the deposit to contain 80-100 million tons grading 0.42% Cu and 0.02% Mo. However, these numbers need to be upgraded to modern standards for resource evaluation.

A series of late northwesterly trending faults cuts the intrusive complex, such that the overall deposit is separated into a number of smaller zones. The most southwesterly of these late faults is partially occupied by an unmineralized, magnetic monzonite dyke. An extension to the copper mineralization, to the southwest of this dyke, was not encountered by limited previous exploration.

The southern portion of the property is covered by a thin sheet of overburden and, prior to the 1998 drill program, the geology of this area was unknown. Although the spacing of the 1998 drill holes was quite wide, it appears that the majority of this area is underlain by felsic volcanic rocks (Telkwa Formation?), argillites and greywackes (Smithers Formation?) and a dioritic intrusion of unknown age.

The 1998 Diamond Drill Program

All facets of the 1998 drill program were supervised in the field by Peter Karelse of Consolidated Magna Ventures Ltd. The drilling was contracted to J.T. Thomas Diamond Drilling Ltd. with helicopter support provided by Highland Helicopters Ltd., both based in Smithers. The program commenced on September 22, 1998 with the mobilization of equipment to the site, and was completed on October 7, 1998 with demobilization of the equipment from the site. During this period a total of six holes were drilled to completion, for a total of 1017 metres. The locations for these holes are indicated graphically on Figures 3 and 4. The following table (Table 2) provides a summary of the drill program. Core was recovered for each hole advanced and logged. The diamond drill logs for each hole are provided in Appendix 1. The geology encountered in each hole is described under the heading of lithology. Sections and plans indicating the lithologies for each drill hole are provided in Appendix 2. The plans and sections were created utilizing Gemcom software. ICP results for all samples are located in Appendix 3.

All of the holes in this program were drilled toward geographic north and have a collar inclination of -55 degrees. Acid tests were taken at nominally the mid-point and end points of the hole. As the holes are relatively short the chance for large deviations is minimal, and the requirement for absolute hole accuracy is not warranted at this stage. Deviation in the dip was not more than 5 degrees in 100 metres of hole length, for any hole. The holes are assumed to have no horizontal deviation. The collar locations shown in Table 1 are local grid co-ordinates and are un-surveyed. They are tied directly to the grid fabric by grid-line picket location and compass/taped offsets from these where necessary.

The core recovery for this program was excellent with 100% of the core recovered in most cases. Locally core was lost over short intervals and this is noted as lost core in the log. The RQD was not calculated, but considered to be 80% or better in all cases.

DRILL HOLE	DATE START	DATE RIMESE	LENGTH Rootes)	NORTHING	EASTING
BO98-01	23-09-98	26-09-98	167.64	10600	11575
BO98-02	26-09-98	29-09-98	167.64	10400	11700
BO98-03	29-09-98	01-10-98	152.40	7600	9925
BO98-04	01-10-98	02-10-98	167.64	7800	10350
BO98-05	02-10-98	04-10-98	182.88	8400	10825
BO98-06	05-10-98	06-10-98	178.55	9300	10550

TABLE 2: Drill Hole Summary

Sampling of the drill core was performed in all geologically significant zones at the discretion of the project geologist. Sample length was three metres in most cases. Exceptions to this occurred in zones that were less than three metres wide, and the surrounding geology did not warrant further sampling. Zones selected for sampling were halved by a mechanical splitter, with one half of the sample being sent to Eco-Tech Laboratories in Kamloops, B.C. The remainder of the core is under the care of Jack Hemlespeck, the property owner, and is currently being securely stored on private property. *Lithology*

ме -

The following briefly describes the lithologies encountered during the drilling program. The rock units are presented in no particular order and no chronological relationship is implied.

<u>Overburden</u>

Overburden where encountered is a mixture of clays, silts, and locally derived boulders. Locally discrete till layers can be identified, and these are water saturated. These soils are considered glacioaqueously derived.

Argillite

The argillite unit is typically black, fine grained and moderately soft. The rock is thought to be derived from a mudstone and is moderately indurated.

Where found, the cleavage surfaces display a weakly developed graphitic alteration. Locally alterations to epidote can be identified.

Tops could not be reliably determined. Laminations are very locally discernable; but for the most part the rock is massive.

Mineralization through this unit is local and only fine-grained pyrite and fracture filling ribbons were observed.

Rhyolite

The rhyolite unit is very fine grained, very hard, and massive. Typically, the unit is a pale tan to buff colour with pale green zones proximal to contacts with mafic units. This green colouration is a reflection of the increased mafic composition of the rhyolite in the contact zone.

Flow textures were only locally discernable, as possible flow breccias and weakly developed flow banding, in any of the rhyolites logged.

The rhyolite units are locally moderately to strongly fractured in zones up to 30cm in core length. Faulting of these units is rare.

Alteration is generally weakly developed and is reflected as local zones of fuchsitic(?) alteration. Weakly developed chloritic alteration is observed in contact zone areas as described above.

Pyrite is the predominant mineralization found. The pyrite can be observed as fine disseminations and as fracture filling clots. A black, amorphous, fracturecontrolled mineral was also observed. This mineral has not been positively identified. Based on the assay results it does not contribute to either the copper or the molybdenum mineralization. Local fracture filling clots of an orange coloured mineral was also observed. This mineral has been tentatively identified as elbaite, a (sodium lithium aluminum rich) member of the tourmaline group.

<u>Andesite</u>

The andesite units are generally green, fine grained and moderately hard. Locally these units are porphyritic, displaying 1-3 mm feldspar phenocrysyts.

Carbonatization is found to varying degrees throughout these units, from an absence of this type alteration, to strongly developed alteration. The carbonate is not generally reactant to cold, dilute hydrochloric acid. Chloritic alteration is pervasive throughout and ranges from strongly, to weakly developed in intensity. Zones of biotite alteration can be observed locally. Epidote alteration, where observed, has been confined to fracture surface areas. The unit has been locally weakly sericite altered. A number of zones have exhibited a weak red tint and this has been interpreted as a hematitic alteration.

The units are locally weakly to strongly magnetic. This is thought to be a reflection of an elevated magnetite content. It is unknown whether the magnetite is primary or secondary mineralization. Pyrite is the most prevalent sulphide mineralization with zones of fine disseminations and fracture filling ribbons in concentrations of up to 5 %. Less common and associated with the pyrite are zones of chalcopyrite. The chalcopyrite is found in concentrations of less than 1%. However, the concentration is high enough to result in elevated (above background levels) copper values.

Diorite

The diorite units are green, massive, hard and medium grained. Locally subhedral 1-3 mm plagioclase feldspar has been observed. The units contain approximately 15-20% 1mm clotty biotite and 10 % hornblende.

Typically these are weakly silicified, and have a weak to very weak pervasive epidote alteration. Leucoxenes are locally observed in concentrations of up to 2% as 1mm clots. Weakly developed sericite alteration has been observed.

Sulphide mineralization is rare and occurs as pinpoint disseminations of chalcopyrite and possibly bornite in concentrations of much less than 1%.

Altered Diorite

This unit is possibly a weakly argillically altered equivalent of the Diorite unit described above. The rock is typically moderately soft and exhibits more structural features. Sulphide mineralization was not noted during the logging of this unit.

Ouartz Diorite Porphry

This unit is green-yellow grading locally to beige. The Quartz Diorite Porphyry is fine to medium grained, equigranular and hard.

Pervasive silicification and sericite alteration are found throughout this unit. The intensity of this alteration ranges from moderate to strong. Locally, green chloritic clots were observed and these have been interpreted to be altered hornblende. From 3-5% quartz "eyes" less than 5mm in diameter have been noted. These are characteristic of the Quartz Diorite Porphyry units found during the drill programs undertaken on the upper portion of the Big Onion property. In this area, these units were interpreted to form the core of the intrusive complex.

Sulphide mineralization is found in the form 1-3% subhedral pyrite, and pinpoint disseminations of chalcopyrite and possibly bornite in concentrations much less than 1%. These units do however return elevated (100 to 300 PPMS) copper values. Local red tinted zones were observed and have been interpreted as containing elevated values of hematite.

Randomly oriented micro-fractures are found throughout. These fractures are quartz carbonate filled, with carbonate being non-reactant to cold dilute hydrochloric acid.

Ouartz Feldspar Porphyry

official data

and the second

These units are fine grained, hard and light grey-green, with up to 20% 1-2mm slightly sericitized feldspar phenocrysts.

Typically, these units are weakly to moderately silicified. Proximal about the fractures the rock is weakly argillic. Very local quartz "eyes" were noted. Up to 10% chloritic 1-3mm clots were observed, possibly reflecting altered hornblende.

Sulphide mineralization exists throughout the units, as 1-3% 1-3mm clotty pyrite. Closely associated with this is finely disseminated pinpoint chalcopyrite and possibly bornite. The content of the copper sulphide mineralization is estimated to be less than 1%. However, these units return very significant copper assay values, ranging between 100 and 2100 PPM.

Ouartz Monzonite Porphry

This rock consists of fine-grained plagioclase laths, conspicuous medium grained biotite flakes, and irregular quartz grains set in an aphanitic potassium feldspar matrix.

Sulphide Mineralization

The major type of sulphide mineralization is pyrite, with chalcopyrite and possibly bornite being a secondary contributor to the total sulphide content.

The pyrite found in holes B098-01 and BO98-02 has been interpreted as forming a continuation of the pyrite halo associated with the copper sulphide mineralization in the upper Big Onion deposit area. The concentration and mode of the pyrite mineralization and the location of the previously mentioned holes relative to the previous work would seem to make this interpretation valid.

There is an apparent correlation between the level of fracturing and silicification of the host rock and the concentration of sulphide mineralization. During a review of a portion of the core drilled on the upper Big Onion, it was noted that the level of fracturing and silification/alteration of the host, specifically the Quartz Feldspar Porphry and Quartz Diorite Porphry, was better developed. Coincidentally, the concentration of copper sulphide was also higher. Based on these observations it is very possible that holes BO98-01 and BO98-02 form an outer boundary extension of the copper sulphide mineralization encountered in the upper Big Onion project area.

Conclusions and Recommendations

The 1998 diamond drill program on the Big Onion Property was successful in explaining all of the geophysical targets tested. Magnetic highs were caused by increased magnetite content, usually in more mafic lithologies. IP chargeability highs are related to disseminated pyrite and/or chalcopyrite in the porphyries and volcanic rocks, and to graphite +/- pyrite in the sedimentary rocks.

More importantly, the first two holes intersected porphyritic rocks that hosted significant amounts of disseminated pyrite and chalcopyrite, more than 500 metres beyond the previously known limits of sulphide mineralization. Given the position of these two holes relative to the area of previous drilling, it appears that there has been some left-lateral movement on the northwest trending fault that was previously thought to terminate the mineralizing system.

These intersections open up an entirely new area of potential copper mineralization to the southwest of the known deposit. Only four holes had been drilled previously to the west of the aforementioned fault and there now appears to be room to add significant tonnage to the deposit.

Based upon the success of the 1998 program, the following recommendations are proposed:

1. Commence a digital compilation of all historical drill hole data such that the known deposit can be modeled using modern 3-D software. The geology and mineralization

should be subsequently re-interpreted and, based upon this, a new resource calculation made.

Properties and the second second

allan and

alahahaha mananana

nunna

- contractor

annainean annainean

angagan sinisisis

and the second

- 2. Additional IP and magnetic surveys are recommended to further define the new area of potential copper mineralization. The 1998 survey worked well in detecting sulphide mineralization and it is recommended that the same parameters be used. However, these surveys should be conducted with a 100 metre line spacing and should overlap with those surveys from the 1960's such that the results can be properly correlated. This would involve roughly 9200 metres of surveying. As a lower priority, the area to the southwest of this, in the northern portion of claim BIG O-1, could be surveyed at a 200m line spacing (12 line kilometres) in search of additional porphyry bodies.
- 3. Using the new geological model and the geophysics as a guide, a diamond drill program should be conducted to test the extent of copper mineralization in the new area. At this point it is estimated that a 10-15 hole, 2,000 metre program should be sufficient, however the final amount should be dictated by the number and quality of the targets.

An estimated budget for the above recommendations is outlined below:

TOTAL	\$375,000
General & Administration (G&A)	20,000
Reclamation	15,000
Logistics (food, accommodation, travel, etc.)	30,000
Assaying (500 samples at \$15 each)	7,500
Geological technician (2 months drafting and field work)	5,000
Geologist (2 months for compilation, 2 months for drilling)	24,000
Helicopter	70,000
Diamond drilling (2,000m at \$80/m, all-inclusive)	160,000
IP and mag (21.2 line kilometres at \$1,250/km)	26,500
Linecutting (21.2 line kilometres at \$800/km)	17,000

Cost Statement Big Onion 1998 Diamond Drill Program

Item	<u>Cost</u>
Consulting (including report writing) - 29.5 days @ \$200/day - 9.5 days @ \$300/day	\$5,900.00 \$2,850.00
Transportation - helicopter - commercial flights, car rental gas, etc.	\$30,438.30 \$3,751.12
Field Expenses	\$4,130.99
Diamond drilling (all-inclusive) - 1,016 metres @ \$71.61/metre	\$72,757.59
Casual Labour - 63 mandays @\$120/day	\$7,560.00
Meals & Accommodation	\$1,995.09
Assays – 128 samples (28-element ICP analyses) @ \$8.75 each	\$1,056.00
Freight (shipping samples to lab)	<u>\$973.63</u>
TOTAL	\$131,412.72

Note: All expenses were incurred during the period September 21 – October 9, 1998 except for certain consulting charges associated with report writing (October 13 – December 3, 1998)

KA

and a second second
ana ang tang tang tang tang tang tang ta
and approx
annomnon annomnon
ter alla the first state of the second state of the second state of the second state of the second state of the
tissus electronic
a and a second second
and the state
and a state of the
and and a second
and the second
and a straight of
Construction of the second
ann ann an tartha
and the second
and the second second

References

nan een de

and the second

distant.

This with

THE PARTY OF

in a substantia de la constanta de la constant La constanta de la constanta de

Copping .

interation of

A STATE AND IN COLUMN

Contrastitutes

ann, igenn

and the second second

Printingen Burdensteine

in the second second

Supplements

nininin.

Statistics of

- McCrossen, Ed, 1991: Drilling Report on the Big Onion Property including the LISA 1, LISA 5 and LISA 7 Claim Groups; for Varitech Resources Ltd.
- Sampson, Chris J., 1991: Report on Big OnionProperty, Omineca Mining Division near Smithers B.C.; for Varitech Resources Ltd.

Stock, G. C., 1977: Geological and Rock Geochemical Report on the Big Onion area claims; for Canadian Superior Exploration

Stock, G. C., 1977: Big Onion Project, Summary of Exploration to 1977; for Canadian Superior Exploration

Tipper, H.W. and Richards, T.A., 1976: Jurassic Stratigraphy and History of North Central British Columbia, Geological Survey Bulletin 270-1976. Geological Survey of Canada Open File 351 "Smithers".

Statement of Qualifications

I, Robert A. Archer, of 12445 Klassen Place, Maple Ridge, B.C., hereby certify that:

- 1. I am a graduate of Laurentian University (1981) and hold an Honours Bachelor of Science degree in Geology.
- 2. I have practiced my profession of mining exploration continuously since graduation and have worked in Canada, the USA and Mexico.
- 3. I am presently employed as Vice-President of Operations for Consolidated Magna Ventures Ltd., 800-850 West Hastings Street, Vancouver, B.C. and serve as a director of the Company.
- 4. I am a member in good standing of the Canadian Institute of Mining and Metallurgy and the Prospectors and Developers Association of Canada.
- 5. This report is based on visits to the Big Onion Property, firsthand observations of the diamond drill core from the 1998 program and overall supervision of the Big Onion Project.
- 6. I do not own, or expect to receive, any interest in the properties described herein. Neither do I own any securities of Consolidated Magna Ventures Ltd., however I do hold options in said securities.
- 7. I consent to, and authorize the use of, the attached report and my name in, or in conjunction with, any prospectus or statement of material facts issued by the Company.

lest M. M.

nininin.

ALCONDAR .

Robert A. Archer Vice-President, Operations / Director CONSOLIDATED MAGNA VENTURES LTD.

Dated at Vancouver, B.C. this 2-d day of December, 1998

Statement of Qualifications

- I, Peter Karelse of 32474 Marshall Road, Abbotsford, British Columbia hereby certify that:
- 1. I am a geologist under the employ of Canarc Resource Corp., 800-850 West Hastings Street, Vancouver B.C.
- 2. I am a graduate of Cambrian College of Applied Engineering Technology, with a diploma in Engineering Technology (1975).
- 3. I am a member of the Prospector's and Developer's Association of Canada.
- 4. I was a past member of the Ontario Association of Certified Engineering Technologists with an Applied Science (A.ScT.) designation.
- 5. I have practised as Development geologist, and Engineering geologist in the province of Ontario from 1975 to 1996.
- 6. I was responsible for the day to day field operations associated with the Big Onion project, and the report is based on first hand observations of the drill core obtained during these operations.
- 7. I do not own, or expect to receive, any interest in the properties described herein. Neither do I own any securities of Consolidated Magna Ventures Ltd., however I do hold options in said securities.
- 8. I consent to, and authorise the use of, the attached report and my name in or in conjunction with, any prospectus or statement of material facts issued by the company.

Peter Karelse

i harin

an the second

in the second

antigente.

in the second

Contraction of the local division of the loc

VANCOUVER, BRITSH COLUMBIA

APPENDIX I

in the second second

and the second

antinities.

and the second

and the second second

antin tanja.

and the second

an and a state

Endine.

and the second second

and the second second

and a super-

<mark>towning.</mark> Lasadihad

DIAMOND DRILL LOGS

BIG ONION PORPHRY COPPER DEPOSIT

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-01	GRID COORDINATES: 11575N,10600E	AZIMUTH: 360	LOGGED BY: PK
DATE STARTED: 23-09-98	LAT./LONG.:	DIP: -55	CORE SIZE: NQ
DATE COMPLETED: 26-09-98	UTM COORD'S:	LENGTH: 167.64M	CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-01

Contraction of the Contraction		DAMLE DA	TRUM	10	LEINGIA	ca bbu	IV10	күр	Core
		NUMBER		·	- Anno (1997) - Anno (1997)	Contraction of the second s	ppm	·····	Recov.
6 (CASING NW								<u> </u>
									
7 (QUARTZ FELDSPAR PORPHYRY	4351	3.66	6.1	2.44	277	6		
	-pale grey to pale green, somewhat rhyolitic in appearance				Į				Ļ
	-hard, fine to med grained, equigranular	4352	6.1	9.1	3.0	443	8		
	-strongly silicified with weak to moderate sericite altn.								
-	-local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn.	4353	9.1	9.57	0.47	317	3		
-	-weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures								
	-1-5% 1-2-mm clotty pyrite weakly distended @45/CA with thin chloritic(?) halo								
1	Local fracture controlled pyrite stringers								
· ·	7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA								
1.	-gradational contact @9.57								
9 (QUARTZ DIORITE PORPHYRY								
	-med grn-yellow beige								
1.	-hard, fine to med. Grained, equigranular						÷		
	-moderately silicified, moderate sericite altn.	4354	9.57	11.9	2.33	47	4		
	-3-5% >5mm qtz. "eyes"								
	-dark green chloritic clots, 1-3mm poss. Altd hornblende(?)								
	-weakly foliated @ 45-60/CA								
1.	-randomly oriented micro-fractures qtz/carb filled non-reactant/HCl								
ŀ	-gradational contact @11.9								
						· · · ·			
					t"				
				· ·					
		CASING NW QUARTZ FELDSPAR PORPHYRY -pale grey to pale green, somewhat rhyolitic in appearance -hard, fine to med grained, equigranular -strongly silicified with weak to moderate sericite altnlocal zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altnweakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures -1-5% 1-2-mm clotty pyrite weakly distended @45/CA with thin chloritic(?) halo Local fracture controlled pyrite stringers 7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA -gradational contact @9.57 QUARTZ DIORITE PORPHYRY -med grn-yellow beige -hard, fine to med. Grained, equigranular -moderately silicified, moderate sericite altn3-5% >5mm qtz. "eyes" -dark green chloritic clots, 1-3mm poss. Altd hornblende(?) -weakly foliated @45-60/CA -randomly oriented micro-fractures qtz/carb filled non-reactant/HCl -gradational contact @11.9	CASING NW 4351 -pale grey to pale green, somewhat rhyolitic in appearance - -hard, fine to med grained, equigranular 4352 -strongly silicified with weak to moderate sericite altn. - -local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn. 4353 -weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures - -1-5% 1-2-mm clotty pyrite weakly distended @45/CA with thin chloritic(?) halo 100 Local fracture controlled pyrite stringers 7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA -gradational contact @9.57 - QUARTZ DIORITE PORPHYRY - -med grm-yellow beige - -hard, fine to med. Grained, equigranular - -hard, fine to med. Grained, equigranular 4354 -3-5% >5mm qtz. "eyes" - -dark green chloritic clots, 1-3mm poss. Altd hornblende(?) - -weakly foliated @ 45-60/CA - -randomly oriented micro-fractures qtz/carb filled non-reactant/HCl - -gradational contact @11.9 -	CASING NW 4351 QUARTZ FELDSPAR PORPHYRY 4351 -pale grey to pale green, somewhat rhyolitic in appearance - -hard, fine to med grained, equigranular 4352 6.1 -strongly silicified with weak to moderate sericite altn. - - -local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn. - - -weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures - - -1-5% 1-2-mm clotty pyrite weakly distended @45/CA with thin chloritic(?) halo - - Local fracture controlled pyrite stringers - - 7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA - - -gradational contact @9.57 - - · -med grn-yellow beige - -hard, fine to med. Grained, equigranular - - -moderately silicified, moderate sericite altn. 4354 9.57 -3-5% >5mm qtz. "eyes" - - -dark green chloritic clots, 1-3mm poss. Altd hornblende(?) - - -weakly foliated @ 45-60/CA - - - -gradational contact @11.9	CASING NW 4351 3.66 6.1 -pale grey to pale green, somewhat thyolitic in appearance - - -hard, fine to med grained, equigranular 4352 6.1 9.1 -strongly silicified with weak to moderate sericite altn. - - -local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn. 9.1 9.57 -weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures - - -1-5% 1-2-mm clotty pyrite weakly distender@8 - - - -1.5% 1-2-mm clotty pyrite stringers - - - 7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA - - - -gradational contact @9.57 - - - -wed gm-yellow beige - - - -hard, fine to med. Grained, equigranular - - - -weakly folicited, moderate sericite altn. 4354 9.57 11.9 -3-5% >5mm qtz. "eyes" - - - - -dark green chloritic clots, 1-3mm poss. Altd hornblende(?) - - - -weakly foliated @ 45	CASING NW 4351 3.66 6.1 2.44 -pale grey to pale green, somewhat thyolitic in appearance - - - -hard, fine to med grained, equigranular 4352 6.1 9.1 3.0 -strongly silicified with weak to moderate sericite altn. - - - - -local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn. 9.1 9.57 0.47 -weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures feruginous, local zones 20cm of micro-fractures - - - -1-5% 1-2-mm clotty pyrite weakly distended @45/CA with thin chloritic(?) halo - - - - Local fracture controlled pyrite stringers 7.2-7.4 MAFIC DYKE sharp irregular contacts @90/CA - - - -gradational contact @9.57 - - - - - QUARTZ DIORITE PORPHYRY - - - - - - - -med gr-yellow beige - - - - - - - - - - - - - - - - - -	CASING NW 4351 3.66 6.1 2.44 277 -pale grey to pale green, somewhat rhyolitic in appearance 4352 6.1 9.1 3.0 443 -strongly silicified with weak to moderate sericite altn. 4352 6.1 9.1 3.0 443 -strongly silicified with weak to moderate sericite altn. - - - - - -local zones appear somewhat more mafic (darker green) with an apparent increase in chlorite altn. 4353 9.1 9.57 0.47 317 -weakly fractured qtz/carb filled aperture 3-5mm. @45/CA,locally fractures forruginous, local zones 20cm of micro-fractures - <	CASING NW 4351 3.66 6.1 2.44 277 6 -pale grey to pale green, somewhat rhyolitic in appearance 4351 3.66 6.1 2.44 277 6 -hard, fine to med grained, equigranular 4352 6.1 9.1 3.0 443 8 -strongly slicitified with weak to moderate sericite altn. - - - - - -local zones appear somewhat more mafic (darker green) with an apparent increase in chointe altn. 9.1 9.57 0.47 317 3 -weakly fractured tz/carb filled aperture 3-5mm. @45/CA,locally fractures ferruginous, local zones 20cm of micro-fractures - <td< td=""><td>CASING NW </td></td<>	CASING NW

3

J

FROM	то	DESCRIPTION	SAMPLE	FROM	то	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
11.9	18.75	OUARTZ FELDSPAR PORPHYRY								
		As 3.66-9.57	4355	11.9	14.9	3.0	293	3		
		- local argillic alth proximal to fracture surfaces.								
		-clotty pyrite/chalcopyrite 1-2mm. ~.5-1% total sulphides, chalcopyrite closely associated with pyrite	4356	14.9	17.9	3.0	84	4		
	1	Sharp contact @ 18.75 @ 45/CA	4357	17.9	18.75	0.85	194	2		
		-unit strongly weathered @ 15 metres.								
18.75	30.48	QUARTZ DIORITE PORPHYRY (?)								
		-medium green grey with slight reddish hue to 19.75 poss. hematite altn(?)								
		-3-5% 1-2mm clots chlorite	4358	18.75	21.75	3.0	126	4		
		-poss. Weak epidote altn., weakly to moderately silicified								
		-1-3% pyrite 1-2mm suhedrons, very finely diss.(pin-points) Chalcopyrite, bornite <<1% and inclusions within pyrite	4359	21.75	24.75	3.0	53	6		
		-unit massive, fine to med. Grained, unit appears to be a pyroclastic with 3-5mm angular to sub-angular fragments (10-15%) throughout	4360	24.75	27.75	3.0	141	6		
		Local intensely silicified zones <.5m. sulphide mineralization apparently increased in	4361	27.75	30.48	2.73	161	4		
	İ —	these zones, sulphide mineralization apparently decreasing toward 27.43								
	1	-28.0-28.4 strongly foliated dilative fractured zone qtz/carb filled @45/CA								
30.48	50.52	QUARTZ DIORITE PORPHYRY (?)								
		-med green with a slight red hue poss. Hematite altn(?)	4362	30.48	33.48	3.0	363	8		
		-appears to be a more massive equivalent of 18.75-30.48	4363	33.48	36.48	3.0	155	6		
		-moderately to strongly silicified	4364	36.48	39.48	3.0	129	12		
	1	-fine to med grained aphanitic texture	4365	39.48	42.48	3.0	195	8		
		-very weak foliation @45/CA	4366	42.48	45.48	3.0	148	7		
		-unit becoming weakly sulphide mineralized toward 39.48								
									I	

Ű

FROM	ТО	DESCRIPTION	SAMPLE	FROM	тө	LENGTH	Cu ppm	Мо	RQD	Core
			NUMBER			and the second	in Company in the state of the state	ppm	kog (Ara), (Ara), (Ara) Kaling (Kaling (Kaling), (Kaling)	Recov.
30.48	50.52	(cont.)								
			4367	45.48	48.48	3.0	408	9		
		-local carbonate stringers @45/CA parallel/foliation non-reactant /HCl	4368	48.48	50.52	2.04	1362	10		
		-43.3-43.7 qtz. vein, contacts sub-parallel/CA								
50.52	72.95	OUARTZ FELDSPAR PORPHYRY	4369	50.52	53.52	3.0	78	3		
<u></u>		-pale greenish tan	4370	53.52	56.52	3.0	1454	6		
	<u> </u>	-hard, fine grained, aphanitic, massive	4371	56.52	59.52	3.0	96	4		
		-moderately to strongly silicified	4372	59.52	62.92	3.0	72	5		
		-poss. Relict feldspar phenocrysts 3-4mm, local 2-3mm quartz eyes	4373	62.92	65.92	3.0	186	5		
		-up to 5% clotty pyrite 2-3mm and locally as 1-2mm fracture controlled stringers	4374	65.92	68.92	3.0	287	6		
		-sharp contact @ 72.95 unit becomes more mafic, contact @ 45/CA	4375	68.92	71.92	3.0	519	5		
			4376	71.92	72.95	3.0	245	6		
72.95	105.33	QUARTZ DIORITE PORPHYRY								
		Dark green with pale grey feldspar 20-30% phenocrysts2-3mm, locally unit it green	4377	72.95	75.95	3.0	282	7		
		-medium grained, hard	4378	75.95	78.95	3.0	34	5		
		-<1% fracture controlled clotty <1mm chalcopyrite, local clotty pyrite	4379	78.95	81.95	3.0	406	5		
		-moderately silicified	4380	81.95	84.95	3.0	132	7		
		-weakly dilative fractured at random angles chlorite/epidote filled and locally filled	4381	84.95	87.95	3.0	20	6		
		with sericite								
	[-unit moderately sericite altered	4382	87.95	90.95	3.0	120	6		
	Γ	-unit apparently more strongly sulphide mineralized in the more silicified zones	4383	90.95	93.95	3.0	177	5		
		-98-100 numerous sericite ribbons filling fractures	4384	93.95	96.95	3.0	314	5		
	T	-lost core 103.5-103.62	4385	96.95	99.95	3.0	334	7		
		-unit becomes increasingly fine grained toward 105.33	4386	99.95	102.95	3.0	303	8		
		-sharp contact @105.33 @70/CA	4387	102.95	105.33	3.0	146	5		
										_

لت

FROM	ТО	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH	Cu ppm	Mo	RQD	Core
			NUMBER		· · · · · ·		No.	ppm		Recov.
105.33	167.64	ANDESITE								Ļ
	EOH	-dark green	4388	105.33	108.33	3.0	666	6		
		-fine to medium grained aphanitic texture	4389	108.33	111.33	3.0	417	5		<u> </u>
		-massive	4390	111.33	114.33	3.0	635	6		L
		-poss weak hematite altn to 106.5								
		-unit appears to be a pyroclastic with 10-15% blk green angular fragments up to 3cm	4391	114.33	117.33	3.0	344	4		
		-locally dilative fractured qtz/carb. filled zones, non-reactant/HCl, associated 1-3mm clotty/subhedrons pyrite								
		-local fracture filling pyrite	4392	121.92	124.92	3.0	21	3		
		-sulphide mineralization decreasing toward 115	4393	128.2	131.2	3.0	191	5		
	†	-local 20 cm zones ~1% <1mm ragged leucoxenes	4394	137.2	140.2	3.0	65	2		
		-unit moderately to strongly magnetic	4395	143	146	3.0	79	2		
		-local clots <1mm pyrite and chalcopyrite	4396	151	153	2.0	171	3		
		-127-128 strongly developed shear @20/CA	4488	153	155.5	1.5	34	2		
		-151-153 strongly dilative fractured qtz/carb filled with 2-3% associated clotty pyrite,								
		-155.45-158.5 as 151-153	4397	155.5	158.5	3.0	52	2		
			4489	158.5	161.5	3.0	ns	ns		
			4490	161.5	164.5	3.0	106	2		
			4491	164.5	167.47	3.0	37	1		
										<u> </u>
			· · · · ·		·		-			
			_							
										_
										L
	1									1

ι.

BIG ONION PORPHRY COPPER DEPOSIT

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-02 DATE STARTED: 26-09-98	GRID COORDINATES: 10400N,11700E LAT./LONG.:	AZIMUTH: 360 DIP: -55 LENGTH: 167.64M	LOGGED BY: PK CORE SIZE: NQ CORE LOCATION:
DATE COMPLETED: 29-09-98			CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-02

DIAMOND DRILL HOLE LOG

FROM	ТО	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Cu ppm	Мо	RQD	Core
			NUMBER		C. C. P. P. Norsky			ppm		Recov.
0.0	4.57	CASING NW			·····			.=		
			4398	4.57	7.57	3.0	419	6		
4.57	22.0	QUARTZ FELDSPAR PORPHYRY	4399	7.57	10.57	3.0	669	5		
		-lt grey green, 15-20% 1-2-mm feldspar phenocrysts slightly sericitized	4400	10.57	13.57	2 4	736	3		
		-hard, fine to med grained								
		-lost core 5.47-6.00, unit badly broken to 10.00	4401	13.57	16.57	3.0	678	5		
		-weakly to moderately silicified	4402	16.57	19.57	3.0	408	5		
		-1-3% clotty to subhedral pyrite 1-3mm, chalcopyrite/bornite as finely disseminated	4403	19.57	22.00	2.43	335	7		
		pin-points << 1%								
		-10% 1-3mm chlorite clots randomly oriented poss. Hornblende(?)								
		-unit weakly dilative fractured @80/CA carbonate (non-reactant/HCl) filled				-				
		-weakly developed argillic altn about fractures								
		-very local "qtz. eyes" 2mm								
		-sharp contact @22.00 @ 45/CA								
22.00	34.00	ANDESITE								
		Dark green								
		-massive, fine grained aphanitic texture	4404	22.00	25.00	3.0	533	9		
		-moderately hard	4405	25.00	28.00	3.0	776	8		
		-weakly to strongly magnetic	4406	28.00	31.00	3.0	383	8		
		-locally dilative fractured randomly oriented, 1-2mm aperture carb-filled								
		-semi-massive pyrite clots and ribbons closely associated with shears 10-15cm long	4407	31.00	34.00	3.0	658	6		
		@20/30/CA		·						
		-3-5% disseminated pyrite as fine subhedrons in zones adjacent to shears, may								
		contain chalcopyrite								
		-rest of unit contains local clotty 2-5mm pyrite								

DIAMOND DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
22.00	34.00	ANDESITE (cont.)				-				
		-poss local leucoxenes								
		-unit weakly to moderately chlorite altered, cleavage surfaces slightly more chloritic								
		-contact sharp @ 34.00 irregular orientation						·····	· ·· · · · · · · · · ·	
34.00	39.32	QUARTZ FELDSPAR PORPHYRY	4408	34.00	37.00	3.0	303	11		
		- as at 4.57-22.00	4409	37.00	39.32	2.32	152	14		
		-lower contact 39.32 lost, unit becomes increasingly mafic toward 39.32								
39.32	43.96	ANDESITE								
		-as at 22.00-34.00	4410	39.32	42.3	2.98	675	8		
		-sharp contact @ 43.96 @ 30/CA	4411	42.3	43.96	1.66	519	8		
43.96	52.7	QUARTZ FELDSPAR PORPHYRY								
		-pale pink green	4412	43.96	46.96	3.0	420	13		
		-hard, fine to medium grained	4413	46.96	49.96	3.0	997	10		
		-10-15% clotty 2-3mm pyrite filling fine fractures, locally closely associated chalcopyrite/bornite <<1%	4414	49.96	52.7	2.74	392	8		
		-43.96-44.6 strongly at 40/CA zone strongly carbonatized, vuggy, contains finely disseminated pyrite as wisps and bands								
		-local wisps of epidote								
		-unit weakly foliated @40/CA								
			+							
	1					_				
	<u> </u>			l						<u> </u>

]

DIAMOND DRILL HOLE LOG

FROM	ТО	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH	Cu ppm	Мо	RQD	Core
	а. 899 г. – Салан		NUMBER					ppm		Recov.
52.70	55.94	ANDESITE								
		-dark green with lighter green zones								
		-fine grained, aphanitic texture, massive								
		-hard								
	1	-local fracture filling wisps and clots of pyrite	4415	52.7	55.94	3.24	470	4		
		-contact @55.94 broken								
55.94	64.94	OUARTZ FELDSPAR PORPHYRY								
		-pale grey with a slight green tint, local zone darker green	4416	55.94	58.94	3.0	375	5		
		-very hard, strongly silicified, has a rhyolitic appearance	4417	58.94	61.94	3.0	437	3		
		-55.94-57.00 zone sheared and strongly fractured @ random orientations	4418	61.94	64.94	3.0	217	5		
		-very finely disseminated pin-points of chalcopyrite <<1%, <1% .5mm-1mm fracture]							
		controlled pyrite								
		-contact at 64.94 broken								
64.94	71.65	ANDESITE	4419	64.94	67.94	3.0	58	<1		
		-as at 52.7-55.94	4420	67.94	70.94	3.0	711	3		
		-69.2-69.46 felsite dyke pale ink/green 20-30% mafic wallrock xenoliths, sharp								
		contact @69.46 @ 45/CA								
		-strongly chloritic with local siliceous zones	4421	70. 9 4	71.65	0.71	271	<1		
		-diffuse contact @ 71.65								
71.65	167.64	QUARTZ FELDSPAR PORPHYRY								
		-light green/pink with local reddish green zones poss. Feldspar altn?	4422	71.65	74.65	3.0	2104	<1		
		-hard, fine to medium grained								
		-moderately silicified with clots and ribbons of fuchsite/chlorite, wkly to mod sericitic	4423	74.65	77.65	3.0	460	<1		

]

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
71.65	167.64	QUARTZ FELDSPAR PORPHYRY (cont.)	4424	77.65	80.65	3.0		3		
	E.O.H.	-local <5% 1-3 mm quartz "eyes"								
		-10% pyrite as fine disseminations and 1-3 mm subhedrons and 5mm fracture filling								
		clots								
		-78.7-78.81 quartz vein @20/CA local vugs								
		-unit weakly foliated @45/CA	04425	80.65	83.65	3.0	472	3		
		-cleavage surfaces weakly chloritic	04426	83.65	86.65	3.0	322	3		
		-85.24-86 strongly developed shear parallel to foliation	04427	86.65	89.65	3.0	333	4		
:		- unit becoming darker green increased mafic content toward 94	04428	89.65	92.65	3.0	350	4		
		-strongly mafic zone 95.6-98.6	04429	92.65	95.65	3.0	602	3		
		-unit grades from increased mafic content-less siliceous to increased siliceous -less	04430	95.65	98.65	3.0	494	3		
		mafic sulphide mineralisation apparently increased in the more siliceous zones, zone								
		1-1.5 metres wide								
		-pyrite clots increased toward 116, overall sulphide content same	04431	98.65	101.65	3.0	468	3		
		-unit intensely silicified @ 118 for 2m	04432	101.65	104.65	3.0	826	5		
		@ 122 pyrite become semi-massive with clots 1-5mm subhedral to euhedral fracture controlled	04433	104.65	107.65	3.0	ns	ns		
		-unit generally becomes more silicified toward 125. Increasing <<1%chalcopyrite/bornite clotty <1mm rather than pin-points	04434	107.65	110.65	3.0	417	2		
		-unit becomes increasingly fractured below 125	04435	110.65	113.65	3.0	66	3		
		-local flakes 1-3mm sericite @ 128	04436	113.65	116.65	3.0	21	4		
		-@ 130 3 cm quartz vein @ 10/CA contains local clots 1-5mm chalcopyrite	04437	116.65	119.65	3.0	132	4		
		-unit gradually becomes coarser grained toward 140 ~20-30% feldspar laths 2-3mm								
h		Diffuse edges and randomly oriented.								
		-154.7-156.2 strongly developed shear @20/CA strongly carbonatized (non-reactant/HCl) moderately developed argillic alteration.								

]

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE	FROM	TO	LENCTH	Cu ppm	Mo	RQD	Core
			04428	110.65	122.65	3.0	44 1	4 2		
71.65	167.64	QUARIZ FELDSPAR PORPHYRY (cont.)	04438	122.65	122.05	3.0	232	6		
<u> </u>	E.O.H.		044439	122.05	123.05	3.0	107	5		
			04440	123.05	131.65	3.0	92	14		
			04442	120.05	134.65	3.0	90	4		ł
ļ			04442	134.65	137.65	3.0	203	5		1
<u> </u>			04444	137.65	140.65	3.0	205	3		1
			04445	140.65	143.65	3.0	232	4		+
			04445	143.65	146.65	3.0	337	5		+
			04447	146.65	149.65	3.0	344	6		
			04448	140.65	152.65	3.0	306	3		+
			04449	152.65	155.65	3.0	226	3		1
			04450	155.65	158.65	3.0	205	4		
			04451	158.65	161.65	3.0	464	6		
			04452	161.65	164.65	3.0	261	6		1
			04453	164.65	167.64	3.0	225	5		
			04455	104.00	107.01					1
			1							
	+									1
<u> </u>	<u> </u>					1				1
	<u> </u>					1				+
						1				1
						1				1
						1				1
						1				1
1			1		l					

BIG ONION PORPHRY COPPER DEPOSIT

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-03	GRID COORDINATES: 9925N,7600E	AZIMUTH: 360	LOGGED BY: PK
DATE STARTED: 29-09-98	LAT./LONG.:	DIP: -55	CORE SIZE: NQ
DATE COMPLETED: 01-10-98	UTM COORD'S:	LENGTH: 152.4M	CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-03

DIAMOND DRILL HOLE LOG

FROM	ТО	DESCRIPTION	SAMPLE	FROM	то	LENGTH	Cu ppm	Mo	RQD	Core
•	2 10		RUMDER	<u></u>			<u>ha ana manana an</u> a 13	. ppm	<u>and the second</u>	INCCOT:
<u> </u>	5.18	Nw casing								<u> </u>
5 1 9	152.4				·					
J.18	152.4 E.O.U	AKOILLITE								
	E.O.n.	black						<u></u>		
		-Dlack	· · · · · · · · · · · · · · · · · · ·							
		-soft to moderately hard								
		-ine gramed, weakly to moderately indulated, poss industone derivation								
		-locally magneticu								
		-locally weakly glaphile, increased glaphile on the cleavage surfaces								
		-121.20-124.2 felsite duke unner contact @ 30/CA very hard fine grained dirty nink-								
		heige								
		00180								
						f				
· · · · · · · · · · · · · · · · · · ·										
									_	
			· · · · · · · · · · · · · · · · · · ·							
···										

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-04	GRID COORDINATES: 10825N,8400E	AZIMUTH: 360	LOGGED BY: PK
DATE STARTED: 01-10-98	LAT./LONG.:	DIP: -55	CORE SIZE: NQ
DATE COMPLETED: 02-10-98	UTM COORD'S:	LENGTH: 167.64M	CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-04

DIAMOND DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH	Cu ppm	Мо	RQD	Core
	10.10	n en ser en strangen en ser en se En en ser en s	NUMBER	i er ter mangi (1990) in tak	h i i i i i i i i i i i i i i i i i i i			իրա		Recuv.
0.0	12.19	NW casing								
10.10	10.10									
12.19	18.49	TILL								
		-mixture of matic (poss quartz diorite porphyry) and argillite pebbles								
18.49	19.4	REGOLITH								
		-brown								
		-strongly weathered, soft, local muddy zones								
19.4	56.71	ALTERED DIORITE (?)								
		-pale grey								
		-fine to medium grained with a granular texture								
		-soft								
		-limonitic zones about fractures @ 22								
		-unit badly broken @ 27								
		-lost core 23.7-24.08								
		-15% biotite as <1mm flakes, 5% quartz, 80% plagioclase feldspar, biotite randomly								
		oriented								
		-poss weak pervasive argillic altn								
		-local 1-2mm clots of hornblende								
		44.22-47.5, poss fault badly broken with local gouge filled sections								
		-lost core 46.37-46.64, 48.36-48.79								
		-unit badly broken 56.65-56.71								
		-sharp contact @56.71@30/CA								
	1									

]

...........

DIAMOND DRILL HOLE LOG

FROM	ŦO	DESCRIPTION	SAMPLE	FROM	TO	LENGTH	Cu ppm	Mo	RQD	Core
			NUMBER					ppm		Recov.
56.71	59.90	DIORITE								
		-dark green	04454	56.71	59.9	3.19	43	3		
		-massive, medium grained, hard								
		-weakly silicified, weak pervasive epidote altn.								
		-15-20% clotty 1 mm biotite								
		-finely diss. Chalcopyrite/bornite <<1%								
		-local 20-30 cm zones of above Quartz Feldspar Porphyry								
		-local subhedral 1-3mm plagioclase								
		-contact @ 59.9 sheared @45/CA								
59.9	66.92	ALTERED DIORITE (?)	04455	60.05	63.05	3.0	42	7		
		-pale grey								
		-massive fine-medium grained								
		-moderately hard	04456	63.05	66.05	3.0	30	5		
		-weakly silicified								
		-15-20% 1mm clotty biotite	04457	66.05	66.92	3.0	ns	ns		
		-local zones of weak to moderately developed argillic altn								
		-becoming strongly sericitised toward lower contact								
		-lost core 66.73-66.92, lower contact lost								
66.92	79.25	QUARTZ MONZONITE DYKE (?)								
		-pale pink grey								
		-fine grained, aphanitic texture								
		-hard to locally very hard (silicified)								
	<u> </u>	-massive								
		-occasional 3-5mm pyrite clots								

]

]

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	то	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
66.92	79.75	QUARTZ MONZONITE DYKE (?) cont.								
		-lost core 79.75-80.47, lower contact lost	-	-						
70.75	01 77	OLIADTZ EEL DODAD DODDUVDV	04458	80.47	81 77	13	47	7		
19.15	01.//	bleached note nink grey	04450	00.47	01.77	1.5		-,, - ,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,		
		-bicacitou pare pink grey	{							
		-weakly fractured random orientations	1	1			1 1			
		-10% chlorite clots 1-2mm	1							
	· ····	-weakly developed serictic altn.	1				1			
		-sharp contact @81.77 @ 45/CA								
<u> </u>			1							
81.77	167.64	DIORITE	04459	81.77	84.77	3.0	73	<1		
		-med green grey	04460	84.77	87.77	3.0	67	2		
		-hard, medium grained	04461	87.77	90.77	3.0	51	5	L	
		-15-20% dark green ragged chloritic clots 1-2mm poss altd hornblende/biotite	04462	90.77	93.77	3.0	40	8		
		-local zones .5-1M bleached with tan coloured clots of above (poss sericitic altn ?)chlorite								
		-very finely disseminated pin-point chalcopyrite/bornite << 1%	04463	93.77	96.77	3.0	59	3		
<u></u>		-unit weakly fractured at random orientations quartz filled	04464	96.77	99.77	3.0	61	2		
		-lost core 86.33-86.56, 94.10 - 94.49								
		-95.00-99.97 relatively unaltered Diorite 10-15% hornblende/biotite								
:		-clotty 1mm leucoxenes ~ 1-2%								
		-unit intensely altd 102.77-108 mafic minerals sericitized to a tan colour				<u> </u>				
		-mineralisation becoming weaker toward 115 and increasing toward 120 (<<1%)							<u> </u>	
		-lost core 126.7-126.8	<u>]</u>							

]

..........

DIAMOND DRILL HOLE LOG

FROM	TO	DESCRIPTION	SAMPLE	FROM	FO	LENGTH	Ca ppm	Mo	RQD	Core
			NUMBER					ррт		Recov.
				00.55						
81.77	167.64	DIORITE (cont.)	04465	99.77	102.77	3.0	56	4		
	E.O.H.		04466	102.77	105.77	3.0	42	6		
			04467	105.77	108.77	3.0	34	7		
			04468	108.77	111.77	3.0	42	6		
		-white mineral (poss gypsum) greasy, soft, filling fractures	04469	111.77	114.77	3.0	32	7		
		-unit becomes increasingly more chloritic toward 162, magnetic, finer grained	04470	114.77	117.77	3.0	33	6		
		-155.46 – 156.12 badly broken, gouge evident, poss fault.	04471	117.77	120.77	3.0	36	5		
			04472	120.77	123.77	3.0	45	5		
			04473	123.77	126.71	3.0	47	4		
			04474	126.8	1 29 .8	3.0	34	4		
			04475	129.8	132.8	3.0	39	5		
			04476	132.8	135.8	3.0	40	5		
			04477	135.8	138.8	3.0	47	6		
			04478	138.8	141.8	3.0	39	5		
			04479	141.8	144.8	3.0	38	5		
			04480	144.8	147.8	3.0	39	6		
			04481	147.8	150.8	3.0	37	4		
			04482	150.8	153.8	3.0	34	5		
			04483	153.8	156.8	3.0	58	8		
			04484	156.8	159.8	3.0	67	3		
			04485	159.8	162.8	3.0	46	<1		
			04486	162.8	165.8	3.0	61	<1		
			04487	165.8	167.64	1.84	68	<1		

.....

BIG ONION PORPHRY COPPER DEPOSIT

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-05	GRID COORDINATES: 10825N,8400E	AZIMUTH: 360	LOGGED BY: PK
DATE STARTED: 02-10-98	LAT./LONG.:	DIP: - 55	CORE SIZE: NQ
DATE COMPLETED: 05-10-98	UTM COORD'S:	LENGTH: 182.88M	CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-05

DIAMOND DRILL HOLE LOG

FROM	ТО	DESCRIPTION	SAMPLE NUMBER	FROM	то	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
0.00	17.98	NW Casing								
17.98	18.7	BOULDERS	· · · · · · · · · · · · · · · · · · ·							
		-mix of mafic and sedimentary boulders locally derived								
18.7	23.16	ARGILLITE								
		-black							:	ļ
		-fine grained, moderately soft								
		-unit broken (drilling induced)								
		-weakly fractured @ random orientations qtz/carb filled								L
		-local 20-30cm greywacke beds, tops undetermined due to broken nature of core								L
		-lost core 20.43-21.34, 21.81-22.86								
		-sharp contact @ 23.16 @ 30/CA								ļ
23.16	28.51	MAFIC INTRUSIVE								
	1	-red-black								
		-fine grained, hard								
		-moderately developed chloritic altn on fracture surfaces, with poss gypsum filling,								
ļ		local fuchsitic altn								
		-zone proximal to upper contact brecciated 20-30 cm, bleached to a green /tan		ļ						
		-unit badly broken (drill induced)		ļ						
		-lost core 27.24-27.43								
		-contact @ 28.51 broken		· ·		ļ				
			<u> </u>			<u> </u>				
28.51	30.00	ARGILLITE								ļ
		-as at 18.7-23.16								l

]

-4 / 4

-

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
28.51	30.00	ARGILLITE (cont)	1							
)		- lost core 29.6-29.83								
		-unit strongly fragmented and sheared with 3-6 cm zones of gouge								ļ
30.00	55.24	ALTERED ARGILLITE (?)								L
		-grey to dk grey, poss silicified, hard				<u> </u>				
		- contact at 30 broken								ļ
		-local unaltered sedimentary wallrock fragments 10-15cm.								
		-unit strongly to intensely fractured @ random orientations								
		-35.75-38.58 zone contains 10-15 cm gouge sections								
		- hairline fractures contain varying proportions of epidote/sericite/pyrite, fracture					1			
		randomly oriented	<u> </u>							
		-50.47-50.90 lost core								L
		-unit strongly bx'd 50.9-53.15, angular <1cm->7cm angular fragments, local gouge,								
		wisps and clots of epidote, zone has a weak red tint poss hematite altn(?)								Ļ
		-sharp contact @ 55.24 subparallel /CA								<u> </u>
55.24	55.94	FELSIC INTRUSIVE	· · ·							1
55.24	55.74	-brown-grey fine grained very hard	1							1
		-5-10% subhedral feldspar phenocrysts 1mm randomly oriented								
		-hard								
			1							
55.94	62.79	ALTERED ARGILLITE								
	1	-local (mafic boulders ?) within argillite								
		-unit becoming progressively less altered toward 62.79								

___]

DIAMOND DRILL HOLE LOG

FROM	ТО	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
62.79	79.05	ARGILLITE								
		-poss graded bedding @70.1, indicates tops up hole (south)	04492	74.7	76.2	1.5	34	3		1
		-unit becoming increasingly bx'd toward 72.00 carbonate (non-reactant/HCl) filled								ļ
		-local clots and fracture-filling ribbons of pyrite 74.7-76.2								<u> </u>
		-unit becomes intense black to 79.05 with 20 % felsic bx								
		-contorted contact @ 79.05 hazy and generally subparallel/CA								1
79.05	166.4	RHYOLITE								
		-initially beige-grey with tan-green subangular to rounded fragments poss flow bx.								
		-poss repetitious 20 cm flows to 88.5 @ 50-60/CA	04493	92	93	1.0	29	6		
		-very fine grained, very hard	04494	94.8	96.8	SAMPLE LOST				
		-local green wisps of poss fuchsite								
		-to 88.5 local 2-5mm clots composed of red-orange subhedral transparent prismatic crystals .5mm poss tourmaline (elbaite?)								
		-local patches <1cm of amorphous dull black soft quasi-dendritic patches of mineralisation								
		-unit becomes beige and more massive toward 88.6 reflecting poss reduction in carbon content								
		-92.08-91.3 numerous clots and patches of above black mineralisation								
		-90.35-91.44, 93.05-94.8 lost core	04495	104.8	107.8	3.0	15	6		
		-strongly bx'd 101.0-101.7 fragments <5mm subangular and distended @ 45/ca poss flow top? Fragments fine grained, sericitic?								
		-local fuchsitic filled fractures randomly oriented.]

Hole Number: BO98-05

i.

 \int

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	TO	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
		-104.8-107.8 strongly bx'd zone 40% angular to subangular very hard siliceous fragments 2-5mm, locally fragments altd to a green colour, 2-3% of above black mineral and fracture filling ribbons, clots and patches of fine subhedral brassy yellow pyrite						<u>, , , , , , , , , , , , , , , , , , , </u>		
			04496	132	134	2.0	21	5		
		-132-134 zone contains ~.5% clotty black mineralisation								
		-136.7-137.8 minor <.5%, clotty black mineralisation and fracture filling pyrite ribbons clots appear to be fracture controlled	04497	149.5	150.5	1.0	54	8		
		-140-143.5 wkly bx'd zone, poss shear orientation undetermined, ~1% clotty blk min								
		149.5-150.5 weakly dilative fractured zone, grey quartz filled, black mineralisation								
		halo 1mm about replacement quartz								
-		-very local red-orange tourmaline(elbaite?) 2-3mm clots @146-148								
		-154.75-155.10 poss mafic intrusive, upper contact @ 35/CA lower contact broken								
		Very fine grained, hard, poss 1-2 %, 1-2mm prismatic altd hornblende								
		-154.45-155.3 unit sheared @45/CA, local 4-5cm black mineral clots								
		-sharp contact @166.4@40/CA								
				ļ						
			· · · · · · · · · · · · · · · · · · ·			ļ				
									l	

أردر

••••

100000-00000-0000

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
166.4	169	ALTERED DIORITE	04498	166.4	167.75		25	4		
		-tan-grev								
		-very fine grained, hard								
		-10% subhedral hornblende <1mm randomly oriented, <1% biotite, 20-30% 1-2mm ragged feldspar phenocrysts sericitised			· · · · · · · · · · · · · · · · · · ·					
		-lower contact broken								
		-local clotty black mineral fracture controlled								
		-15 cm felsite dyke @ lower contact @ 60-70/CA								
		,								
						1				
169	169.4	QUARTZ MONZONITE DYKE								
		-bleached tan								
		-fine grained, hard								
		-contacts broken								
									······	
169.4	174.26	RHYOLITE								
	E.O.H	-as above								
									······	

]

| | | |

.....

.....

[]

BIG ONION PORPHRY COPPER DEPOSIT

DIAMOND DRILL HOLE LOG

HOLE NUMBER: BO98-06	GRID COORDINATES: 10550N.9300E	AZIMUTH: 360	LOGGED BY: PK
DATE STARTED: 05-10-98	LAT./LONG.:	DIP: -55	CORE SIZE: NO
DATE COMPLETED: 06-10-98	UTM COORD'S:	LENGTH: 178.55M	CORE LOCATION:

LOCATION SKETCH:

Hole Number: BO98-06

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	ТО	LENGTH	Cu ppm	Mo ppm	RQD	Core Recov.
0	24.38	NW casing								
24.38	30.40	BOULDERS								
		-mixture of locally derived red tuff, argillite and diorite								
30.40	39.9	RHYOLITE (?)								
		-pale tan to zones with a green tint,								
		- very hard and very fine grained								
		- weakly developed sericite altn, weakly weathered								
		-strongly dilative fractured, subangular 3-5cm fragments, unit badly broken to 38.1								
		-37.5-37.8 fractured zone with ferruginous staining poss fault zone (?)								
		-unit becomes more chloritic towards 39.9								
		-sharp contact @80/CA @39.9								
39.9	136.2	ANDESITE (?)								
		-tan green with local zones brown poss biotite altn								
		-moderately hard and fine to medium grained								
		-10% 1-3mm feldspar phenocrysts angular and randomly oriented	· .							
		-intensely dilative fractured with qtz/carb filling weakly reactant/HCl								· · ·
		-minor displacements (3mm) of fractures								
		-60.00-60.96 lost core								
		-61.05-61.93 intensely sheared @ 50/CA, gouge @ 61.93								
		-62.4-62.48, 66.90-67.06 lost core								
		-67.97-68.2 fault zone 70-80% gouge filled				· · · · · · · · · · · · · · · · · · ·				
		-intensely sheared 68.2-70.5								
		- 75.00-75.29 lost core]				

Hole Number: BO98-06

÷.

(°)

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE NUMBER	FROM	то	LENCTH	Cu ppm	Mo ppm	RQD	Core Recov.
39.9	136.2	ANDESITE (?) (cont)								
		-101-101.9 shear zone qtz/carb filled, 1-2% 3-5cm clotty pyrite fracture filling	04499	98	99	1.0	37	10		
		-113.2-113.6 intensely dilative fractured				-				
		-122.6-125.05 shear zone @ 50/CA weakly developed gouge unit corroded								
		-124-125.05 unit tinted red poss weak hematite altn.								
		- @ 131.9 20 cm zone of carbonaceous altn, intensely sheared @ 45/CA	04500	125.05	126.5	1.0	102	5		
		-contact @ 136.2 broken								
136.2	139.8	ARGILLITE					·			
		-black, carbonaceous						*****		
		-moderately soft								
		-weakly developed graphitic altn on fracture surfaces								
		-locally strongly sheared @ 70-80/CA								
		-137.00-137.1 felsite (quartz monzonite?) dyke @90/CA								
		-moderately dilative fractured carbonate filled, strongly reactant/HCl								
		-lower contact broken								
139.8	175.8	ANDESITE								
		-green grev								{
		-fine grained								
		-dark grey to 141.35 possibly reflecting a weakly developed carbonaceous altn. gradually grades to a tan red and grades back to green grey to 142, zone intensely dilative fractured carbonate filled (non-reactant/HCl)								
		- unit massive below 142								;
		-148.8-151.3 unit intensely altd to a tan-green poss sericite and local red patches hematite altn, epidote and chlorite on fracture surfaces, weakly dilative fractured								

.

]

.....

DIAMOND DRILL HOLE LOG

FROM	то	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH	Cu ppm	Мо	RQD	Core
	<u> </u>		NUMBER					ppm		Recov.
139.8	175.8	ANDESITE (cont)								İ
		-159-162.8 intensely sheared mafic fragments 3-5 cm angular/contorted in a poorly								
		developed gouge matrix, locally carbonate matrix, zone locally intensely					Ì			1
		carbonaceous, gouge seam @ 161.5, 3cm wide @ 20/CA zone gradually grades to a								{
		red-green toward 162		1						ľ
		-164.59-168 unit weakly carbonaceous, epidote on fracture surfaces							1	
		-@ 168.5 3mm semi-massive pyrite ribbon @ 90/CA								
175.8	178.55	ARGILLITE								
	E.O.H.	-as above argillite unit			ļ,					
										L
										l
L										
ļ										
			Ι							
					····					

 $\left[\right]$

]

....

APPENDIX II

Γ

PLANS AND SECTIONS

¢,

APPENDIX III

and the second

Ĺ

ł

ASSAY CERTIFICATES

2-Oct-98

ECC-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-594

CONSOLIDATED MAGNA VENTURES LTD. SUITE 800 850 WEST HASTINGS VANCOUVER, BC V6C 1E1

ATTENTION: PETER KARELSE

No. of samples received: 27 Sample type: Core PROJECT #: Big Onion SHIPMENT #: 1 Samples submitted by: Consolidated Magna

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg	; %	Mn	Mo t	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	<u> </u>	<u></u>	W	Y	<u></u>
1	04351	<0.2	0.13	<5	95	<5	2.29	<1	<1	119	277	0.59	<10 <0	.01	367	6	0.05	4	190	<2	<5	<20	87 < 0.01	<10	<1	<10	-1	~1
2	04352	0.4	0.26	<5	35	<5	1.17	<1	5	68	443	1.56	<10 <0).01	281	8	0.04	2	150	<2	<5	<20	53 < 0.01	<10	<1	<10	~1	~1
3	04353	0.2	0.22	<5	85	<5	1.91	<1	1	70	317	0.78	<10 0).04	497	3	0.04	4	140	<2	<5	<20	102 <0.01	<10	<1	<10	2	18
4	04354	<0.2	0.33	<5	395	<5	2.30	<1	3	69	47	1.02	<10 0).36	618	4	0.03	5	500	8	5	<20	135 <0.01	<10	4	<10	2	<1
5	04355	0.2	0.20	<5	90	<5	1.07	<1	<1	78	293	0.71	<10 <0	0.01	240	3	0.05	3	180	<2	<5	<20	56 < 0.01	<10	<1	<10	2	~
a	04256	< n 2	0.16	<5	105	<5	2.06	<1	1	03	84	0.66	<10 <0	01	332	4	0.04	3	150	<2	<5	<20	78 <0.01	<10	<1	<10	2	<1
7	04357	-0.2	0.10	<5	60	<5	3.30	<1	3	63	194	1 14	<10 0	07	557	2	0.04	2	160	6	<5	<20	96 <0.01	<10	2	<10	2	<1
7 Q	04357	0.2	0.48	<5	55	<5	4 40	<1	12	37	126	3.89	<10 0) 66	1498		<0.01	2	870	4	<5	<20	100 <0.01	<10	11	<10	2	33
0	04350	<0.7	0.40	5	40	<5	3.12	<1	33	36	53	5.02	<10 0).75	1235	6	0.02	4	950	<2	<5	<20	58 < 0.01	<10	14	<10	<1	43
10	04360	0.2	0.96	<5	40	<5	3.57	<1	12	45	141	4.15	<10 0).63	1257	6	0.01	2	720	2	<5	<20	67 <0.01	<10	20	<10	<1	44
		.0.0	4 00	Æ	00	۰E	0.50	-4	7	20	404	2 50	-10 0	0.02	1006		0.02	2	500	~?	<5	<20	82 <0.01	<10	19	<10	<1	67
11	04361	<0.2	1.38	<5	90	<0	3.58	<1	27	30	101	3.59	<10 U	1.83	1330	4	0.02	2	970	12	~5	<20	31 < 0.01	<10	14	<10	<1	75
12	04362	1.0	0.91	<0	35	<0	2.03	<1	21	56	303	0.00	<10 0	J.42	090	0	0.02	- J - E	700	2	~5	<20	49 <0.01	<10	10	<10	<1	37
13	04363	0.4	0.62	10	35	<0	3.19	< 1	47	50	100	0.09	<10 0	J. 12.	600	40	0.02	0	700	~	~5	<20	26 < 0.01	<10	14	<10	<1	53
14	04364	0.4	0.97	<0	35	10	1.70	<1	4/	12	129	0.00	<10 U	1.00	000	12	0.02	11	570	~	<5	<20	54 <0.01	<10	24	<10	<1	86
15	04365	0.4	1.22	<0	60	<5	2.30	<1	25	40	. 195	0.21	<10	1.20	909	o	0.02		570	~2	-0	-20	01 0.01					
16	04366	0.2	1.26	<5	50	<5	4.00	<1	15	46	148	5.90	<10 1	1.37	985	7	0.02	4	820	<2	<5	<20	65 <0.01	<10	37	<10	<1	62
17	04367	1.0	1.07	<5	40	<5	2.20	<1	32	50	408	7.89	<10 (). 87	774	9	0.03	4	720	<2	<5	<20	35 <0.01	<10	33	<10	<1	67
18	04368	1.0	0.68	<5	60	<5	2.02	<1	24	77	1362	7.97	<10 (0.85	851	10	0.02	9	570	<2	<5	<20	33 <0.01	<10	19	<10	<1 - 4	57
19	04369	<0.2	0.32	<5	75	<5	1.46	<1	6	43	78	2.50	<10 (0.48	439	3	0.04	3	580	<2	<5	<20	34 <0.01	<10	5	<10	<1 -1	12
20	04370	1.4	0.25	<5	25	<5	1.31	<1	29	74	1454	3.40	<10 (0.28	343	6	0.03	4	560	14	<5	<20	37 <0.01	<10	3	<10	51	26

ECO-TECH LABORATORIES LTD.

CONSOLIDATED MAGNA VENTURES LTD.

ļ

			A1 8/		Ba	Di	Ca %	60	60	Cr	Cu	Fo %	1 2	Ma %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	V	<u></u>	<u>Y</u>	Zn
<u>Et #.</u>	lag #	Ag	AI %	A8	Da			Cu				0.00	-40	0.20	200	4	0.04		490	4	<5	<20	50 < 0.01	<10	2	<10	<1	8
21	04371	<0.2	0.28	<5	25	<5	1.84	<1	21	59	96	2.36	<10	0.30	393	4	0.04	4	400		-0 E	~20	108 <0.01	<10	3	<10	2	9
22	04372	0.8	0.32	<5	70	<5	2.69	<1	9	87	72	1.51	<10	0.26	454	5	0.03	3	470	20	-5 -5	~20	69 <0.01	<10	3	<10	<1	<1
23	04373	0.2	0.26	<5	30	<5	1.91	<1	20	61	186	1.95	<10	0.14	310	5	0.04	3	4/0	4	<0	~20	57 <0.01	<10	2	<10	<1	13
24	04374	0.6	0.21	<5	45	<5	1.73	<1	14	75	287	1.70	<10	0.31	317	6	0.03	3	480	8	10	<20	57 <0.01	<10	6	<10	<1	47
25	04375	3.0	0.32	<5	30	<5	1.59	1	16	63	519	1.94	<10	0.34	298	5	0.04	3	480	10	15	<20	52 <0.01	~10	Ŭ			
																					_		404 -0.04	~10	4	<10	1	28
26	04376	1.0	0.33	5	25	<5	3.02	<1	39	81	245	2.34	<10	0.26	410	6	0.03	4	480	12	<5	<20	101 <0.01	~10	ā	<10	2	15
27	04377	0.4	0.47	<5	95	<5	1.53	<1	10	83	282	1.91	<10	0.33	411	7	0.03	3	470	4	<5	<20	72 <0.01	<10	9	-10	_	
	F.A																											
																											<u> </u>	
Respire 1	04351	<0.2	0.12	<5	100	<5	2.52	<1	<1	109	277	0.63	<10	<0.01	424	5	0.04	3	200	<2	<5	<20	91 <0.01	<10	<1	<10	1	<1
Repeat	:																							.40	-1	~10	1	<1
1	04351	0.2	0.12	<5	85	<5	2.33	<1	1	115	272	0.60	<10	0.01	372	6	0.04	4	190	<2	<5	<20	84 < 0.01	<10	10	~10	-1	45
10	04360	0.2	0.94	<5	40	<5	3.59	<1	11	44	143	4.18	<10	0.65	1268	5	0.01	2	720	2	<5	<20	70 < 0.01	<10	19	<10	~1	12
19	04369	<0.2	0.28	<5	70	<5	1.45	<1	6	41	76	2.46	<10	0.48	435	3	0.04	4	580	<2	<5	<20	34 <0.01	<10	4	<10	~1	12
Standa	rd:																				_			-40	0 2	<10	2	66
GEO'98	}	1.0	1.86	65	160	<5	1.80	<1	20	64	81	4.16	<10	0.97	701	<1	0.03	27	690	24	<5	<20	63 0.13	<10	02	-10	-	00

df/575 XLS/98 _{fax:} 604-685-9744

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

8-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-606

CONSOLIDATED MAGNA VENTURES LTD. SUITE 800 850 WEST HASTINGS VANCOUVER, BC V6C 1E1

- -

ATTENTION: PETER KARELSE

No. of samples received: 34 Sample type: Core PROJECT #: BIG ONION SHIPMENT #: None Given Samples submitted by: P. Karelse

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	<u>Sn</u>	<u>Sr Ti%</u>	<u> </u>	<u> </u>		<u> </u>	Zn
1	04378	0.2	0.52	<5	145	<5	1.58	<1	10	68	34	2.18	<10	0.35	484	5	0.04	2	470	6	<5	<20	82 < 0.01	<10	8	<10	2	14
2	04379	0.4	0.37	<5	65	<5	1.62	<1	10	60	406	2.23	<10	0.17	357	5	0.02	3	420	10	<5	<20	66 <0.01	<10	6	<10	<1	5
3	04380	<0.2	0.30	<5	165	<5	1.52	<1	8	59	132	1.76	<10	0.26	437	7	0.04	2	420	6	<5	<20	61 <0.01	<10	4	<10	<1	5
4	04381	<0.2	0.33	<5	210	<5	1.33	<1	2	61	20	1.64	<10	0.33	448	6	0.04	3	440	4	<5	<20	53 <0.01	<10	7	<10	1	9
5	04382	<0.2	0.31	10	100	<5	2.06	<1	16	68	120	1.86	<10	0.24	526	6	0.03	3	420	4	<5	<20	64 <0.01	<10	4	<10	1	3
6	04383	0.2	0.27	25	120	<5	2.28	<1	8	49	177	1.75	<10	0.31	645	5	0.03	2	420	4	<5	<20	59 <0.01	<10	2	<10	1	3
7	04384	0.4	0.30	<5	180	<5	1.22	<1	3	57	314	1.74	<10	0.30	477	5	0.03	3	440	2	<5	<20	34 <0.01	<10	5	<10	<1	6
. 8	04385	0.8	0.34	<5	95	<5	1.45	<1	13	64	334	2.43	<10	0.35	465	7	0.04	3	420	<2	<5	<20	46 <0.01	<10	4	<10	<1	13
9	04386	0.8	0.40	<5	235	<5	1.82	<1	3	73	303	2.11	<10	0.35	580	8	0.03	3	430	4	<5	<20	80 <0.01	<10	4	<10	1	12
10	04387	0.4	0.42	<5	120	<5	1.32	<1	10	60	146	1.69	<10	0.36	499	5	0.05	3	260	2	<5	<20	45 <0.01	<10	6	<10	1	8
11	04388	0.6	1.81	<5	60	<5	1.37	<1	18	57	666	6.53	<10	1.55	1019	6	0.03	15	270	4	<5	<20	43 <0.01	<10	49	<10	<1	47
12	04390	0.6	2.13	<5	50	<5	2.06	<1	21	102	635	7.64	<10	2.66	1320	6	0.05	35	340	4	<5	<20	58 <0.01	<10	82	<10	; <1	68
13	04391	0.4	2.28	<5	65	<5	2.84	<1	13	107	344	6.39	<10	2.64	1346	4	0.05	33	460	4	<5	<20	87 <0.01	<10	79	<10	<1	66
14	04392	<0.2	2.37	<5	70	15	3.73	<1	21	126	21	6.17	<10	2.93	1467	3	0.06	36	510	4	<5	<20	67 0.03	<10	122	<10	<1	60
15	04393	<0.2	2.67	<5	75	<5	2.32	<1	31	115	191	6.93	<10	3.35	1408	5	0.06	36	580	8	10	<20	48 0.02	<10	111	<10	<1	93
16	04394	<0.2	2.76	<5	50	<5	2.80	<1	19	123	65	7.26	<10	3.22	1703	2	0.05	36	550	6	<5	<20	34 0.05	<10	113	<10	<1	78
17	04395	<0.2	2.69	<5	35	5	3.23	<1	32	130	79	6.46	<10	3.13	1352	2	0.07	36	570	4	<5	<20	41 0.06	<10	119	<10	2	55
18	04396	<0.2	2.52	<5	35	<5	2.55	<1	51	122	171	6.65	<10	2.95	1035	3	0.06	34	570	8	<5	<20	42 0.07	<10	106	<10	<1	51
19	04398	0.6	0.39	10	35	<5	1.45	<1	15	65	419	2.17	<10	0.26	69	6	0.06	4	380	4	25	<20	17 <0.01	<10	6	<10	<1	25
20	04399	0.4	0.50	<5	30	<5	1.79	<1	13	70	669	2.28	<10	0.51	133	5	0.07	4	480	4	<5	<20	19 <0.01	<10	11	<10	<1	6

ECO-TECH LABORATORIES LTD.

CONSOLIDATED MAGNA VENTURES LTD.

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr Ti%	<u>,</u> U	<u>v</u>	W	<u>Y</u>	Zn
21	04400	<0.2	0.53	<5	35	<5	1.83	<1	5	65	736	2.11	<10	0.59	139	3	0.06	3	480	2	<5	<20	21 <0.0	<10	10	<10	<1	3
22	04401	0.2	0.67	<5	35	<5	1.41	<1	4	61	678	2.74	<10	0.64	152	5	0.06	4	540	6	<5	<20	14 <0.0	1 <10	13	<10	<1	4
23	04402	<0.2	0.70	<5	30	<5	1.06	<1	9	62	408	3.57	<10	0.75	161	5	0.06	6	650	6	<5	<20	15 <0.0	1 <10	18	<10	<1	9
24	04403	<0.2	0.64	<5	30	<5	1.32	<1	18	64	335	3.78	<10	0.83	173	7	0.06	7	720	4	<5	<20	20 <0.0	1 <10	23	10	<1	8
25	04404	<0.2	3.98	<5	50	<5	3.80	<1	50	174	533	>10	<10	3.38	591	9	0.02	33	590	10	<5	<20	38 0.0	2 <10	220	<10	<1	33
26	04405	<0.2	4.93	<5	40	<5	2.56	<1	32	198	776	>10	<10	4.13	935	8	0.02	33	710	14	<5	<20	41 0.0	2 <10	226	10	<1	38
27	04406	<0.2	4.78	5	45	<5	2.08	<1	48	202	383	>10	<10	3.88	999	8	0.02	35	700	16	<5	<20	25 0.0	4 <10	209	<10	<1	45
28	04407	0.4	3.38	<5	50	<5	5.17	<1	36	150	658	>10	<10	3.87	985	6	0.02	30	610	10	<5	<20	111 <0.0	1 <10	141	<10	<1	36
29	04408	0.2	0.21	<5	30	<5	0.76	<1	24	97	303	4.88	<10	0.22	71	11	0.03	7	120	6	<5	<20	19 <0.0	1 <10	8	<10	<1	<1
30	04409	<0.2	0.30	<5	25	<5	0.45	<1	22	115	152	5.59	<10	0.22	65	14	0.04	8	120	<2	<5	<20	10 <0.0	1 <10	20	<10	<1	<1
31	04410	<0.2	3.62	<5	30	<5	1.89	<1	35	188	675	9.63	<10	3.46	706	8	0.02	32	660	14	<5	<20	26 0.0	4 <10	185	<10	<1	27
32	04411	0.4	4.33	<5	35	<5	5.09	<1	47	216	519	8.67	<10	4.38	1304	8	0.02	32	690	10	<5	<20	124 0.0	3 <10	162	<10	<1	43
33	04412	3.0	0.51	<5	45	<5	3.67	1	48	85	420	>10	<10	1.15	425	13	0.02	26	460	34	<5	<20	103 <0.0	1 <10	53	10	<1	27
34	04413	0.4	0.63	<5	40	<5	2.21	<1	24	56	997	8.87	<10	0.91	95	10	0.03	9	450	<2	<5	<20	85 <0.0	1 <10	31	<10	<1	5
<u>QC DAT</u> Resplit	A :																											
1	04378	<0.2	0.51	<5	175	<5	1.67	<1	9	65	44	2.29	<10	0.36	490	4	0.04	2	520	8	<5	<20	95 <0.0	1 <10	8	10	2	26
Repeat:	•																											
1	04378	<0.2	0.57	<5	180	<5	1.62	<1	10	75	36	2.28	<10	0.36	481	5	0.05	3	490	6	<5	<20	90 <0.0	1 <10	8	<10	1	17
10	04387	<0.2	0.47	<5	130	<5	1.34	<1	10	68	145	1.78	<10	0.38	509	6	0.05	3	270	4	<5	<20	47 <0.0	1 <10	6	<10	2	9
19	04398	0.4	0.46	15	35	<5	1.52	<1	16	73	442	2.34	<10	0.34	77	6	0.05	4	410	2	25	<20	16 <0.0	1 <10	8	<10	<1	27
Standal	rd:																											
GEO'98		1.0	1.71	60	160	<5	1.76	<1	20	60	84	4.06	<10	0.93	690	<1	0.02	22	680	24	<5	<20	59 0.1	0 <10	76	<10	3	71

ICP CERTIFICATE OF ANALYSIS AK 98-606

df/606 XLS/98 fax: 604-685-9744

ECO-TECH LABORATORIES LTD. Per Frenk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

15-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-623

CONSOLIDATED MAGNA VENTURES LTD. SUITE 800 850 WEST HASTINGS VANCOUVER, BC V6C 1E1

ATTENTION: PETER KARELSE

No. of samples received: 69 Sample type: Core PROJECT #: BIG ONION SHIPMENT #: '003 Samples submitted by: Consolidated Magna

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	<u></u>	Y	Zn
1	04389	0.4	2.89	<5	50	<5	1.47	<1	21	121	417	8.42	<10	3.29	1469	5	0.04	39	360	4	<5	<20	41 •	<0.01	<10	112	<10	<1	86
2	04397	<0.2	2.18	<5	80	20	2.80	<1	31	131	52	6.37	<10	2.90	1214	2	0.07	31	580	<2	<5	<20	61	0.08	<10	109	<10	<1	44
3	04414	0.4	0.79	<5	35	<5	2.08	<1	20	67	392	8.22	<10	1.55	209	8	0.04	11	320	<2	<5	<20	34 -	<0.01	10	34	<10	<1	10
4	04415	0.4	1.98	<5	50	<5	2.34	<1	27	48	470	6.37	<10	2.50	386	4	0.04	12	500	2	<5	<20	64 -	<0.01	<10	66	<10	<1	20
5	04416	0.6	0.16	<5	30	<5	1.60	<1	7	79	375	1.83	<10	0.34	163	5	0.06	2	170	<2	<5	<20	40 ·	<0.01	<10	5	<10	1	3
6	04417	0.6	0.24	<5	40	<5	1.10	<1	5	71	437	1.23	<10	0.23	123	3	0.05	2	190	4	<5	<20	32 ·	<0.01	<10	3	<10	2	5
7	04418	0.4	0.27	<5	30	<5	1.45	<1	12	62	217	1.67	<10	0.48	189	5	0.04	3	220	<2	<5	<20	37 •	<0.01	<10	5	<10	1	7
8	04419	<0.2	3.68	<5	115	15	5.68	<1	24	183	58	7.98	<10	5.72	1336	<1	0.03	76	620	<2	<5	<20	127	0.15	<10	135	<10	<1	32
9	04420	<0.2	3.37	<5	40	<5	2.31	<1	38	231	711	9.41	<10	4.00	802	3	0.04	63	710	<2	<5	<20	60	0.06	<10	110	<10	<1	23
10	04421	<0.2	2.36	<5	35	<5	1.42	<1	29	36	271	6.02	<10	2.93	306	<1	0.05	7	540	4	<5	<20	20	0.13	<10	61	<10	3	21
11	04422	0.2	2.05	<5	40	<5	2.13	<1	23	33	2104	5.34	<10	2.89	312	<1	0.04	11	870	4	<5	<20	30	0.11	<10	63	<10	7	21
12	04423	<0.2	1.36	<5	25	<5	1.82	<1	30	46	460	3.88	<10	2.24	255	<1	0.06	6	770	4	<5	<20	21	0.07	<10	68	<10	8	17
13	04424	0.2	1.58	<5	25	<5	1.97	<1	20	41	920	3.78	<10	2.59	298	3	0.05	6	600	4	10	<20	22 ·	<0.01	<10	59	<10	10	25
14	04425	<0.2	1.01	<5	35	<5	1.68	<1	23	59	472	3.45	<10	1.82	181	3	0.05	9	500	4	<5	<20	26 ·	<0.01	<10	45	<10	3	12
15	04426	0.2	0.50	<5	45	<5	3.59	<1	23	47	322	3.10	<10	1.68	232	3	0.04	9	480	2	10	<20	53 ·	<0.01	<10	24	<10	1	9
16	04427	0.4	1.14	<5	20	<5	2.63	<1	37	46	333	4.42	<10	1.69	663	4	0.04	7	470	4	<5	<20	40 ·	<0.01	<10	48	<10	<1	34
17	04428	0.6	1.77	<5	35	<5	2.51	<1	47	41	350	6.14	<10	2.64	910	4	0.03	9	460	4	<5	<20	46 ·	<0.01	<10	71	<10	<1	54
18	04429	0.2	1.85	<5	20	<5	3.43	<1	32	73	602	4.60	<10	2.95	736	3	0.04	18	510	4	5	<20	49 ·	<0.01	<10	82	<10	<1	32
19	04430	<0.2	2.95	<5	25	<5	4.69	<1	38	181	494	6.04	<10	4.52	1656	3	0.03	46	550	6	<5	<20	83 •	<0.01	<10	109	<10	1	47
20	04431	0.2	1.90	<5	20	<5	4.05	<1	36	40	468	4.48	<10	2.82	722	3	0.04	14	520	4	10	<20	65 ·	<0.01	<10	68	<10	<1	38

CONSOLIDATED MAGNA VENTURES LTD.

- ٦

1

maal

......

i.

a a a a a a

.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %	U	<u>v</u>	W	Y	Zn
12 0443 0.4 1.06 -65 20 -55 4.86 c1 29 24 417 3.70 c10 21 54.36 c1 28 38 63 30 c10 21 54.36 41 0.63 23 15 26 63 0.01 c10 21 c10 21 c10 21 c10 22 0.01 23 0.03 23 550 c2 c5 c20 0.03 c10 c10 c10 c10 c10 c10 c11 c10 c11 c10 c11	21	04432	0.6	1.49	<5	25	<5	2.15	<1	30	52	826	4.71	<10	2.16	412	5	0.03	12	460	6	<5	<20	36 < 0.01	<10	45	<10	<1	37
22 04438 04 0.8 e5 3.0 e5 3.8 e6 3.70 e10 2.51 811 3 0.04 9 480 2 15 e20 611 e11 e12 22 20 133 4 0.02 23 500 e16 e10 20 e10 21 25 25 04437 0.4 0.81 e5 20 65 441 483 e10 19 972 4 0.06 17 000 e5 e20 11 11 15 22 100 e10 11 49 80 17 100 18 25 0.03 2 45 e20 11 11 17 100 11 49 80 16 e20 13 e10 e20 16 e20 13 e10 e20 80 10 e20 80 10 25 23 0.04 1 45 20 </td <td>22</td> <td>04434</td> <td>0.4</td> <td>1.06</td> <td><5</td> <td>20</td> <td><5</td> <td>4.68</td> <td><1</td> <td>29</td> <td>44</td> <td>417</td> <td>3.70</td> <td><10</td> <td>3.07</td> <td>1206</td> <td>2</td> <td>0.05</td> <td>17</td> <td>580</td> <td>4</td> <td>10</td> <td><20</td> <td>63 <0.01</td> <td><10</td> <td>71</td> <td><10</td> <td><1</td> <td>31</td>	22	04434	0.4	1.06	<5	20	<5	4.68	<1	29	44	417	3.70	<10	3.07	1206	2	0.05	17	580	4	10	<20	63 <0.01	<10	71	<10	<1	31
24 04436 0.4 0.88 45 20 64 10 51 50 64 10 51 20 65 20 108 0.01 55 20 108 0.01 10 45 20 10 45 20 10 45 20 10 45 20 10 40 33 410 1 57 4 0.05 17 400 8 45 20 110 400 4 40 0.05 2 20 410 22 4 0.05 2 42 0.05 2 40 10 10 40 4 0.05 2 40 41 40 0.05 2 50 70 70 70 70 70 70 70 20 20 20 40 41 45 40 4 45 40 45 400 45 40 45 <	23	04435	<0.2	0.89	<5	30	<5	3.98	<1	29	38	66	3.70	<10	2.51	811	3	0.04	9	480	2	15	<20	61 <0.01	<10	29	<10	<1	27
25 04437 0.4 0.31 <5 20 <5 4.91 <1 37 61 132 4.83 <10 19 67.2 4 0.04 17 300 10 -5 <20 122 <0.01 <10 31 <10 1 49 27 04430 0.8 0.5 4.00 1.87 7.8 6 0.05 17 40.05 17 40.04 15 320 16 -5 20 17.0 10.0 -10 31.4 -10 -1 2 12 28 04440 10 0.28 -5 40 -5 2.00 14 40.03 3 800 8 10.0 -10 2 10 2 10 11 12 10.01 20.01 14 0.03 13 800 8 10.01 10.0 10 2 10 10 2 10 10 2 10 10 <t< td=""><td>24</td><td>04436</td><td>0.4</td><td>0.58</td><td><5</td><td>45</td><td>10</td><td>6.11</td><td><1</td><td>82</td><td>29</td><td>21</td><td>5.94</td><td><10</td><td>3.20</td><td>1393</td><td>4</td><td>0.03</td><td>23</td><td>590</td><td><2</td><td><5</td><td><20</td><td>108 <0.01</td><td><10</td><td>20</td><td><10</td><td><1</td><td>26</td></t<>	24	04436	0.4	0.58	<5	45	10	6.11	<1	82	29	21	5.94	<10	3.20	1393	4	0.03	23	590	<2	<5	<20	108 <0.01	<10	20	<10	<1	26
28 04438 0.4 0.86 <5 20 <5 3.5 <1 49 35 441 4.83 <10 1.91 577 4 0.05 17 400 8 <5 <20 110 <0.01 <10 33 <10 <1 490 28 04443 1.0 2.5 30 <5	25	04437	0.4	0.81	<5	20	<5	4.91	<1	37	61	132	4.63	<10	1.99	972	4	0.04	17	300	10	<5	<20	122 <0.01	<10	31	<10	1	52
27 04439 0.8 1.05 < 5 30 < 5 4.91 < 1 0 2 4.40 100 2.28 64.40 1.6 7.28 6 0.44 15 320 16 -5 200 17 7.01 <10 170	26	04438	0.4	0.95	<5	20	<5	3.54	<1	49	35	441	4.83	<10	1.91	557	4	0.05	17	400	8	<5	<20	110 <0.01	<10	43	<10	1	49
28 04440 1.0 0.28 -5 4.0 -5 2.00 -7 -7.1 107 170 -100 110 2.0 5 0.33 2 450 4 -55 2.00 -41 -4 -7 73 -0.01 -100 2 120 2.03 2.05 5 0.03 2 450 6 -5 -200 81 -0.01 -100 2 -100 21 12 30 04442 0.6 0.27 -55 45 -55 1.58 <1 7 62 203 2.59 <10 0.17 212 4 0.04 1 450 6 -5 -00 2 -400 4 -5 -200 -400 -400 -400 -400 -400 -400 -400 -400 -45 -200 -400 <td>27</td> <td>04439</td> <td>0.8</td> <td>1.05</td> <td><5</td> <td>30</td> <td><5</td> <td>4.91</td> <td><1</td> <td>62</td> <td>40</td> <td>232</td> <td>6.43</td> <td><10</td> <td>1.87</td> <td>728</td> <td>6</td> <td>0.04</td> <td>15</td> <td>320</td> <td>16</td> <td><5</td> <td><20</td> <td>176 <0.01</td> <td><10</td> <td>33</td> <td><10</td> <td><1</td> <td>29</td>	27	04439	0.8	1.05	<5	30	<5	4.91	<1	62	40	232	6.43	<10	1.87	728	6	0.04	15	320	16	<5	<20	176 <0.01	<10	33	<10	<1	29
29 04441 12 0.38 5 35 <5 28 <11 67 92 3.4 <10 0.17 212 4 0.00 1 450 6 6 <20 88 100 <20 88 0.01 <10 2 <10 21 100 31 04443 0.6 0.30 <5 35 <5 1.56 <1 7 63 99 2.13 <10 0.12 2.43 0.04 2 450 4 <5 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <20 2.45 <	28	04440	1.0	0.28	<5	40	<5	2.19	<1	7	71	107	1.70	<10	0.16	202	5	0.03	2	450	4	<5	<20	73 <0.01	<10	4	<10	2	12
30 04442 0.6 0.27 5 2.62 7 63 99 2.13 <10 0.17 212 4 0.04 1 450 6 <5 <20 81 <0.01 <10 2 <10 <11 <10 2 <5 <20 81 <0.01 <10 2 <10 <10 3 10 <11 <10 3 10 <11 <10 3 10 <11 <10 3 10 <11 <10 3 10 <11 <10 3 10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <11 <10 <10 <11 <10 <10 <11 <10 <10 <11 <10 <10 <11 <10 <th< td=""><td>29</td><td>04441</td><td>1.2</td><td>0.36</td><td>5</td><td>35</td><td><5</td><td>2.86</td><td><1</td><td>14</td><td>67</td><td>92</td><td>3.14</td><td><10</td><td>0.18</td><td>240</td><td>14</td><td>0.03</td><td>3</td><td>890</td><td>8</td><td>10</td><td><20</td><td>98 <0.01</td><td><10</td><td>3</td><td><10</td><td>2</td><td>12</td></th<>	29	04441	1.2	0.36	5	35	<5	2.86	<1	14	67	92	3.14	<10	0.18	240	14	0.03	3	890	8	10	<20	98 <0.01	<10	3	<10	2	12
31 04443 0.6 0.30 < 5 35 < 5 1.58 < 1 7 62 203 2.59 < 10 0.26 98 5 0.04 2 430 2 < 5 < 20 54 < 0.01 < 10 3 10 < 1 93 33 04445 0.6 0.36 < 5 0.66 < 222 222 1.83 < 00 0.04 2 480 4 < 5 20 3 0.01 2 < 10 < 1 93 34 04445 0.4 0.30 < 5 30 < 5 2.59 2 10 67 332 2.66 < 10 0.16 24 5 0.04 3 450 4 < 5 20 2.60 0.01 11 11 11 113 36 04448 0.4 0.31 < 5 0.46 < 7 76 32 2.16 0.18 232 3 0.04 3 450 4 < 5 20 2.001 10 <td>30</td> <td>04442</td> <td>0.6</td> <td>0.27</td> <td><5</td> <td>45</td> <td><5</td> <td>2.62</td> <td><1</td> <td>7</td> <td>63</td> <td>99</td> <td>2.13</td> <td><10</td> <td>0.17</td> <td>212</td> <td>4</td> <td>0.04</td> <td>1</td> <td>450</td> <td>6</td> <td><5</td> <td><20</td> <td>81 <0.01</td> <td><10</td> <td>2</td> <td><10</td> <td><1</td> <td>10</td>	30	04442	0.6	0.27	<5	45	<5	2.62	<1	7	63	99	2.13	<10	0.17	212	4	0.04	1	450	6	<5	<20	81 <0.01	<10	2	<10	<1	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	04443	0.6	0.30	<5	35	<5	1.58	<1	7	62	203	2.59	<10	0.26	98	5	0.04	2	430	2	<5	<20	54 <0.01	<10	3	10	<1	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	04444	0.4	0.41	<5	45	<5	1.21	<1	5	72	221	1.83	<10	0.30	125	3	0.04	2	480	4	<5	<20	23 <0.01	<10	2	<10	<1	38
34 04446 0.4 0.30 <5 1.96 <1 8 73 337 2.66 <10 0.16 224 5 0.04 3 450 2 <5 20 2 <10 59 344 319 <10 0.08 268 6 0.02 3 420 20 <5 <20 26 <0.01 <10 1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10 <10 <10 <11 <10 <11 <10 <10 <10 <10 <10 <11 <10 <11 <10 <10 <10 <10 <10 <10 <11 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <11 <10 <10 <11 <10 <10 </td <td>33</td> <td>04445</td> <td>0.6</td> <td>0.36</td> <td><5</td> <td>40</td> <td><5</td> <td>1.55</td> <td><1</td> <td>6</td> <td>67</td> <td>232</td> <td>2.20</td> <td><10</td> <td>0.25</td> <td>138</td> <td>4</td> <td>0.04</td> <td>2</td> <td>490</td> <td>4</td> <td><5</td> <td><20</td> <td>35 <0.01</td> <td><10</td> <td>2</td> <td><10</td> <td><1</td> <td>9</td>	33	04445	0.6	0.36	<5	40	<5	1.55	<1	6	67	232	2.20	<10	0.25	138	4	0.04	2	490	4	<5	<20	35 <0.01	<10	2	<10	<1	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	04446	0.4	0.30	<5	30	<5	1.96	<1	8	73	337	2.56	<10	0.16	224	5	0.04	3	450	2	<5	<20	26 <0.01	<10	2	<10	<1	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	04447	0.8	0.25	<5	30	<5	2.59	2	10	59	344	3.19	<10	80.0	268	6	0.02	3	420	20	<5	<20	32 <0.01	<10	1	<10	<1	113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	04448	0.4	0.31	<5	40	<5	2.31	<1	8	67	306	1.93	<10	0.18	232	3	0.04	3	450	4	<5	<20	26 <0.01	<10	2	10	<1	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	04449	0.2	0.31	<5	30	<5	2.46	<1	7	63	226	1.85	<10	0.20	200	3	0.03	2	420	4	<5	<20	44 <0.01	<10	2	<10	<1	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	04450	0.4	0.27	<5	30	<5	1.78	<1	7	66	205	1.94	<10	0.18	163	4	0.04	2	430	<2	<5	<20	20 <0.01	<10	2	<10	<1	7
40 04452 0.4 0.25 <5 40 <5 2.03 <1 6 65 261 1.86 <10 0.18 271 6 0.05 3 480 4 <5 <20 29 <0.01 <10 2 <10 <1 9 41 04453 0.4 0.34 <5	39	04451	0.4	0.29	35	30	<5	1.69	<1	7	78	464	2.16	<10	0.25	186	6	0.06	3	520	<2	15	<20	19 <0.0 1	<10	2	10	<1	22
41 04453 0.4 0.34 <5	40	04452	0.4	0.25	<5	40	<5	2.03	<1	6	65	261	1.86	<10	0.18	271	6	0.05	3	480	4	<5	<20	29 <0.01	<10	2	<10	<1	9
42 04454 <0.2	41	04453	0.4	0.34	<5	40	<5	1.98	<1	6	77	225	2.00	<10	0.34	349	5	0.06	4	540	4	<5	<20	32 <0.01	<10	4	<10	<1	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	04454	<0.2	1.26	40	175	15	3.11	<1	30	43	77	6.65	<10	1.97	1173	3	0.09	15	2970	12	<5	<20 °	243 0.10	<10	129	<10	13	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	04455	0.2	0.98	25	95	15	3.93	1	28	42	53	7.74	10	2.28	1344	7	0.03	21	3470	10	<5	<20	257 0.01	<10	101	<10	14	168
45 04458 <0.2 0.71 65 110 10 4.42 <1 27 47 45 7.12 <10 2.62 1237 7 0.03 34 2690 12 <5 <20 228 <0.01 <10 115 <10 12 94 46 04459 <0.2 1.55 20 220 <5 2.50 <1 27 73 78 6.83 <10 2.19 1170 <1 0.10 32 2400 14 <5 <20 181 0.20 <10 118 <10 9 85 47 04460 <0.2 1.08 360 115 <5 3.37 <1 28 67 95 5.99 <10 2.27 1079 2 0.07 31 2530 10 <5 <20 210 111 128 <10 12 64 48 04461 <0.2 1.08 360 115 <5 3.66 <1 28 51 0.04 31 2850 12	44	04456	<0.2	0.95	<5	165	15	4.13	<1	29	30	44	7.26	<10	2.33	1328	5	0.04	15	3190	10	<5	<20	282 0.08	<10	124	<10	13	79
46 04459 <0.2	45	04458	<0.2	0.71	65	110	10	4.42	<1	27	47	45	7.12	<10	2.62	1237	7	0.03	34	2690	12	<5	<20	228 <0.01	<10	115	<10	12	94
47 04460 <0.2	46	04459	<0.2	1.55	20	220	<5	2.50	<1	27	73	78	6.83	<10	2.19	1170	<1	0.10	32	2400	14	<5	<20	181 0.20	<10	138	<10	9	85
48 04461 <0.2	47	04460	<0.2	1.12	15	170	5	3.37	<1	28	67	95	5.99	<10	2.27	1079	2	0.07	31	2530	10	<5	<20	260 0.13	<10	128	<10	12	68
49 04462 0.2 0.65 50 110 <5	48	04461	<0.2	1.08	360	115	<5	3.66	<1	28	51	129	7.91	<10	2.59	1431	5	0.04	31	2850	12	<5	<20	276 0.08	<10	122	<10	11	123
50 04463 <0.2 0.91 20 140 5 3.54 <1 30 59 98 6.43 <10 2.19 1157 3 0.08 30 2470 14 <5 <20 283 0.10 <10 130 <10 10 82 51 04464 <0.2	49	04462	0.2	0.65	50	110	<5	5.13	<1	33	40	90	7.60	10	2.60	1369	8	0.02	37	3240	12	<5	<20	349 0.01	<10	101	<10	16	91
51 04464 <0.2	50	04463	<0.2	0.91	20	140	5	3.54	<1	30	5 9	98	6.43	<10	2.19	1157	3	0.08	30	2470	14	<5	<20	283 0.10	<10	130	<10	10	82
52 04465 <0.2	51	04464	<0.2	1.24	10	200	10	2.17	<1	26	61	71	5.57	<10	1.72	828	2	0.14	25	2500	16	<5	<20	176 0.13	<10	151	<10	7	68
53 04466 <0.2	52	04465	<0.2	0.92	40	140	10	4.07	<1	36	56	70	6.77	<10	2.27	1206	4	0.05	35	3020	14	<5	<20	273 0.08	<10	125	<10	13	96
54 04467 0.2 0.66 40 110 10 4.35 <1 33 34 55 7.15 <10 2.33 1294 7 0.03 36 2900 14 <5 <20 280 0.01 <10 104 <10 13 80 55 04468 <0.2 0.71 55 130 10 5.62 <1 35 42 58 7.35 10 2.68 1532 6 0.03 47 2900 12 <5 <20 421 0.01 <10 107 <10 13 88	53	04466	<0.2	0.56	75	105	<5	6.48	<1	33	42	63	6.74	10	3.09	1420	6	0.02	42	3310	12	15	<20	341 <0.01	<10	106	<10	15	88
55 04468 <0.2 0.71 55 130 10 5.62 <1 35 42 58 7.35 10 2.68 1532 6 0.03 47 2900 12 <5 <20 421 0.01 <10 107 <10 13 88	54	04467	0.2	0.66	40	110	10	4.35	<1	33	34	55	7.15	<10	2.33	1294	7	0.03	36	2900	14	<5	<20	280 0.01	<10	104	<10	13	80
	55	04468	<0.2	0.71	55	130	10	5.62	<1	35	42	58	7.35	10	2.68	1532	6	0.03	47	2900	12	<5	<20	421 0.01	<10	107	<10	13	88

CONSOLIDATED MAGNA VENTURES LTD.

ļ

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>		<u>Y</u>	Zn
56	04469	0.2	0.61	35	100	10	4.29	<1	30	32	65	6.82	10	2.06	1373	7	0.03	30	3010	20	<5	<20	334	0.01	<10	88	<10	16	116
57	04470	<0.2	0.70	15	105	5	3.19	<1	30	33	61	6.59	10	1.69	1184	6	0.04	28	3030	12	<5	<20	208	0.04	<10	110	<10	14	72
58	04471	<0.2	0.70	40	110	<5	3.34	<1	30	36	68	6.71	10	1.98	1299	5	0.04	25	2880	10	<5	<20	290	0.05	<10	103	<10	14	83
59	04472	<0.2	0.65	<5	140	10	3.58	<1	27	45	52	6.42	10	1.92	1136	5	0.04	24	2830	14	<5	<20	383	0.06	<10	123	<10	14	74
60	04473	<0.2	0.75	20	140	5	2.88	<1	28	47	54	6.26	10	1.86	1213	4	0.05	25	2930	32	<5	<20	226	0.07	<10	117	<10	15	82
61	04474	<0.2	0.71	40	135	5	3.58	<1	31	34	55	5.63	10	2.14	1156	4	0.04	28	2930	20	<5	<20	246	0.07	<10	94	<10	15	92
62	04475	<0.2	0.80	45	115	10	4.02	<1	35	39	60	5.87	10	2.33	1318	5	0.04	40	2860	12	<5	<20	306	0.05	<10	85	<10	14	106
63	04476	<0.2	0.89	455	140	15	4.37	<1	43	40	62	7.05	<10	2.60	1250	5	0.03	36	2780	8	<5	<20	413	0.03	<10	105	<10	11	84
64	04477	<0.2	0.67	65	150	10	3.48	<1	29	47	42	5.81	20	2.18	1014	6	0.05	- 34	3030	10	<5	<20	270	0.05	<10	108	<10	15	83
65	04478	<0.2	0.66	35	165	10	3.18	<1	29	39	46	6.02	10	2.19	1127	5	0.04	32	2940	8	<5	<20	254	0.04	<10	92	<10	14	84
66	04479	<0.2	0.71	1165	135	10	3.20	<1	43	38	56	6.64	10	2.31	1306	5	0.04	35	2930	10	<5	<20	223	0.03	<10	103	<10	12	84
67	04480	<0.2	0.67	40	130	5	3.75	<1	31	39	71	5.98	20	2.45	1179	6	0.04	31	3220	14	<5	<20	243	0.02	<10	91	<10	15	97
68	04481	<0.2	0.65	35	120	10	4.71	<1	31	37	61	5.24	10	2.82	1012	4	0.04	31	2850	10	5	<20	270	0.06	<10	103	<10	13	74
69	04482	<0.2	0.57	90	110	10	6.51	<1	31	34	49	6.81	<10	3.81	1371	5	0.02	34	2670	10	<5	<20	362	0.03	<10	114	<10	12	77
QC DA	TA:																			÷									
Resplit	:																												~ .
1	04389	0.6	2.99	<5	50	<5	1.52	<1	22	126	394	8.82	<10	3.60	1510	5	0.05	40	400	6	<5	<20	4 1	<0.01	<10	114	<10	<1	94
36	04448	0.6	0.28	<5	35	<5	2.19	<1	8	68	279	1.93	<10	0.18	225	3	0.03	2	450	2	<5	<20	24	<0.01	<10	2	<10	<1	29
Repeat																													~~
<u> </u>	04389	0.4	3.04	<5	55	<5	1.52	<1	23	134	460	8.74	<10	3.36	1620	6	0.05	41	390	6	<5	<20	45	<0.01	<10	118	<10	<1	90
10	04421	<0.2	2.32	<5	35	<5	1.41	<1	28	35	268	5.96	<10	2.86	303	<1	0.05	8	530	6	5	<20	21	0.12	<10	59	<10	3	21
19	04430	0.2	3.06	5	30	<5	4.95	<1	41	190	509	6.38	<10	4.71	1741	3	0.03	48	590	8	<5	<20	90	<0.01	<10	113	<10	<1	50
36	04448	0.6	0.30	<5	40	<5	2.35	<1	8	67	300	1.97	<10	0.19	237	3	0.04	2	470	4	<5	<20	26	<0.01	<10	3	<10	<1	29
45	04458	<0.2	0.69	65	100	<5	4.42	<1	29	48	47	7.14	<10	2.63	1238	7	0.03	34	2740	10	<5	<20	224	<0.01	<10	114	<10	12	90
54	04467	0.4	0.57	50	100	<5	4.33	<1	33	32	54	7.09	10	2.28	1287	6	0.03	34	2910	12	<5	<20	280	<0.01	<10	102	<10	14	79
Standa	rd:																											_	<u>-</u>
GEO'98	3	1. 4	1.75	60	160	10	1.79	<1	20	62	84	4.24	<10	1.18	720	<1	0.02	22	720	22	<5	<20	57	0.12	<10	79	<10	5	67
GEO'98	1	1.4	1.80	60	165	5	1.86	<1	19	66	81	4.03	<10	1.06	695	<1	0.02	22	690	26	<5	<20	56	0.10	<10	74	<10	5	68

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

fax: 604-685-9744

df/623 XLS/98

Page 3

19-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Values in ppm unless otherwise reported

Phone: 250-573-5700 Fax : 250-573-4557

i.

ICP CERTIFICATE OF ANALYSIS AK 98-630

CONSOLIDATED MAGNA VENTURES LTD.

SUITE 800 850 WEST HASTINGS VANCOUVER, BC V6C 1E1

ATTENTION: PETER KARELSE

No. of samples received: 17 Sample type: Core PROJECT #: Big Onion SHIPMENT #: 004 Samples submitted by: Peter Karelse

Et #	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	<u></u>	<u>Y</u>	Zn
	04433	0.2	0.95	<5	30	<5	3.46	<1	23	57	230	3.16	<10	1.56	718	3	0.04	17	410	<2	<5	<20	65	<0.01	<10	40	<10	1	34
2	04483	<0.2	0.70	85	140	5	5.90	1	30	52	58	7.44	20	2.73	1376	8	0.02	32	2640	8	10	<20	339	<0.01	<10	127	<10	12	83
3	04484	<0.2	1.17	175	185	20	3.73	1	29	62	67	7.24	20	2.32	1287	3	0.06	33	2680	8	<5	<20	256	-0.16	<10	119	<10	15	98
4	04485	<0.2	1.45	30	280	10	3.09	<1	25	61	46	6.69	10	2.18	1136	<1	0.09	30	2190	10	<5	<20	245	0.21	<10	139	<10	12	98
5	04486	<0.2	1.77	10	345	15	2.36	<1	30	79	61	5.36	<10	1.94	785	<1	0.19	46	1880	6	5	<20	200	0.23	<10	144	<10	7	63
6	04487	<0.2	1.74	5	355	10	2.74	1	33	76	68	5.32	<10	2.15	765	<1	0.16	48	1870	10	<5	<20	275	0.27	<10	143	<10	7	69
7	04488	<0.2	2.44	<5	100	15	2.66	<1	25	118	34	6.02	<10	2.91	1191	2	0.05	32	580	<2	5	<20	65	0.06	<10	123	<10	<1	70
8	04490	<0.2	2.45	<5	50	15	2.84	<1	32	125	106	6.11	<10	3.02	1197	2	0.05	35	620	2	5	<20	88	0.08	<10	146	<10	2	66
9	04491	<0.2	2.18	<5	20	20	2.95	<1	32	122	37	6.05	<10	2.58	1167	1	0.05	31	620	<2	<5	<20	80	0.08	<10	121	<10	2	61
10	04492	<0.2	1.45	55	135	10	0.53	2	15	68	34	4.41	<10	0.59	1058	3	0.07	20	540	14	10	<20	56	0.08	<10	105	<10	<1	219
11	04493	0.4	0.47	55	80	<5	0.36	2	9	80	29	2.70	10	0.26	682	6	0.04	12	970	28	5	<20	26	<0.01	<10	19	<10	4	350
12	04495	0.2	0.46	45	75	<5	0.16	1	5	88	15	2.34	10	0.24	653	6	0.04	7	320	22	<5	<20	10	<0.01	<10	17	<10	3	1 61
13	04496	<0.2	0.81	45	145	10	0.31	1	7	81	21	4.34	<10	0.49	958	5	0.04	11	490	12	<5	<20	15	0.03	<10	49	<10	2	95
14	04497	0.6	0.20	195	45	<5	0.48	1	2	90	54	1.99	<10	0.20	546	8	0.05	5	250	10	10	<20	18	<0.01	<10	4	<10	3	72
15	04498	0.4	0.20	115	45	<5	0.30	<1	2	90	25	1.16	<10	0.13	263	4	0.05	5	310	4	<5	<20	14	<0.01	<10	3	<10	4	52
16	04499	0.4	0.31	310	55	<5	0.30	2	6	78	37	3.40	10	0.30	616	10	0.05	10	810	26	20	<20	15	<0.01	<10	25	<10	7	90
17	04500	<0.2	2. 48	265	50	15	2.16	2	23	38	102	7.93	<10	1.58	993	5	0.32	12	1070	26	5	<20	190	0.07	<10	105	<10	<1	121
	ATA:																												
Repe	at:																												
1	04433	<0.2	0.96	<5	30	<5	3.45	<1	23	58	231	3.18	<10	1.58	712	3	0.04	17	400	<2	10	<20	66	<0.01	<10	40	<10	1	34
Stand	lard:																												
GEO'	98	1.2	1.78	60	170	5	0.92	<1	20	61	89	4.22	<10	1.00	717	4	0.02	27	690	23	<5	<20	61	0.11	<10	78	<10	4	69
																										1 L			
df/629	1																								1	EDO-TI	ECH LA	BORA	TORIES LTC
XI S/	, 18																									Nank J	J. Pezzo	tti. A.S	с.Т.
fay fil	4-685-9744																								1-1	3.C. Ce	ertified A	ssaver	

fax: 604-685-9744

