

GEOCHEMICAL REPORT ON THE RAY PROPERTY

SLOCAN MINING DIVISION, BC

NTS 82 F/ 10W

Latitude: 49° 40'N

Longitude: 116° 51'W

OWNER/OPERATOR: Klondike Gold Corp. #1000 - 675 West Hastings Street Vancouver, B.C. V6B 1N2

BY: P. SOUTHAM, P. Geo. (B.C.)

October, 1999

-92 M (1)

建筑入预制度

1977 - N. F. F.

TABLE OF CONTENTS

LOCATION AND ACCESS	1
TOPOGRAPHY AND VEGETATION	1
PROPERTY STATUS	1
HISTORY	1
REGIONAL GEOLOGY	4
PROPERTY GEOLOGY	. 4
WORK PROGRAM	4
GEOCHEMICAL SURVEY METHOD	5
GEOCHEMICAL SURVEY RESULTS	5
SUMMARY AND CONCLUSIONS	9
LIST OF TABLES	
Table 1 - Claims List	1
Table 2 - Sample Data	4

LIST OF FIGURES

Figure 1 - Property Location Map	2
Figure 2 - Claim and Grid Line Location Map	3
Figure 3 - Lead Geochemistry	6
Figure 4 - Zinc Geochemistry	7
Figure 5 - Magnetometer Survey	8
APPENDICES	
Appendix I - STATEMENT OF EXPENDITURES	

Appendix II - STATEMENT OF QUALIFICATIONS

Appendix III - ASSAY RESULTS

......

LOCATION AND ACCESS

The property is located approximately 40 kilometers northeast of Nelson, BC on the east shore of Kootenay Lake (figure 1). The Ray claims are centered on 49° 40' north latitude and 116° 51' west longitude on NTS sheet 82F/10 or Mineral Titles Reference Map M082F066. It is accessible by paved highway into the village of Crawford Bay, BC.

TOPOGRAPHY AND VEGETATION

The topography of the area is rolling hills ranging in elevation from 520 meters (1706 ft.) above sea level (ASL) at the shore of Kootenay Lake to 940 meters (3083 ft.) ASL. The vegetation consists of economic stands of coniferous trees with underbrush of alders.

PROPERTY STATUS

The property (figure 2) consists of 4 four-post claims listed in Table 1.

CLAIM NAME	RECORD No.	UNITS	EXPIRY DATE*	<u>OWNER</u>
Ray 1 .	358150	15	July 31/2000	KG
Ray 2	358151	12	Aug 1/2000	KG
Ray 3	358152	15	Aug 1/2000	KG
Ray 4	358153	2	Aug 1/2000	KG

Table 1 - Claims List

* With acceptance of this report. KG - Klondike Gold Corp.

HISTORY

1.44

The property is located 12 kilometers south of the former Bluebell Mine at Riondel, BC. The Bluebell ore deposit consisted of 5,702,000 short tons containing an average grade of 5.2% lead, 6.3% zinc, 1.7 ounce per ton silver 0.1% copper and 0.03% cadmium (M. W. Insley).

In 1973 and 1979 Cominco conducted geochemical surveys over an area south of the Ray claims which returned anomalous values of lead, zinc and silver along a roughly northwest trend. In addition, mineralized float was discovered in the area suggesting a local source is responsible for the geochemical anomalies (D. Brabec, 1979). Cominco tested the area with four shallow diamond drill holes totalling 300 meters. Only traces of sulphide mineralization were found in the drill core.

Figure 1. Property Location Map

Figure 2. Claim and Grid Line Location Map

, s 8mu,

REGIONAL GEOLOGY

The Crawford Peninsula forms part of the Kootenay Arc, an arcuate band of high grade metamorphic sediments in the Omineca Belt of the Canadian Cordillera (Wheeler et al., 1972). The stratigraphic sequence includes the fine grained clastics of the Purcell Supergroup which are overlain unconformably by coarse clastics and slates of the Windermere. Quartzites, carbonates and fine grained clastic rocks of the Lower Paleozoic unconformably overlie the Windermere Supergroup, including the Cambrian, thin, extensive Badshot carbonate unit which is host to most of the lead-zinc deposits in the Kootenay Arc (Fyles, 1959). The area has also been intruded by synand post-tectonic granitoid intrusions (Insley, M.W.).

PROPERTY GEOLOGY

The southeast corner of the property is underlain by Lower Cambrian carbonates and metaclastics striking northeasterly and dipping at low angles to the northwest. Granitic stocks of Jurassic or Cretaceous age underlie the majority of the Ray claims north of the sedimentary rocks. The area has undergone complex folding and faulting (Brabec, D., 1979).

The main unit of interest is a limestone believed to be equivalent to the Badshot Formation hosting the Bluebell deposit. Float boulders of massive sulphide mineralization have been found in the vicinity of and "down-ice" of the limestone in question. Previous workers suggest the float boulders are local but have been unable to locate bedrock exposure of a mineralized zone. Geophysical surveys completed in the area have been inconclusive due to the presence of graphite and pyyrhotite in the surrounding sediments.

WORK PROGRAM

Four lines of soil samples (table 2) were taken across two areas of the Ray 3 claim (figure 2). The samples were taken to follow up anomalous geochemical samples taken by Klondike Gold Corp. in 1998 at the southeast corner of the Ray 3 claim near the Cambrian sediments and to the north in the granitic terrane. In addition, four lines of magnetometer survey were completed over the southeast corner of the Ray 3 claim.

Line Name	Line Kilometers	<u>No. of</u> Samples	Sample Spacing
CB-A1S, A2S	1.0	42	25 m
CB-B3N, B5N	2.4	50	50 m
CB-A1S to A4S	2.0	Mag survey	25 m

Table 2 - Sample Data

GEOCHEMICAL SURVEY METHOD

Sample stations are at 25 meter intervals for A1S and A2S lines and 50 meter intervals for B3N and B5N lines and are marked with flagging tape. Soil samples were taken from the B-horizon, found at depths of 5 to 40 centimeters where the soil was undisturbed, using a standard mattock. The samples were placed in kraft soil sample bags and dried prior to shipping to Chemex Labs for analysis. Each sample was tested by 32-element ICP.

GEOPHYSICAL SURVEY METHOD

An MP-2 Proton magnetometer was used for collecting the magnetic readings from the A1S to A4S grid lines. No corrections were made for diurnal variations.

GEOCHEMICAL SURVEY RESULTS

Previous surveys have indicated anomalous levels for lead and zinc as >200 ppm and >500 ppm respectively. Lines A1S and A2S had only one spot anomaly anomalous in lead and no anomalous values in zinc (figures 3 & 4). Lines B3N and B5N have a north-trending anomalous zone from 1+00 W to 1+50 W on line B3N and from 0+50 W to 2+00 W on line B5N with values up to 388 ppm lead and 934 ppm zinc. Other spot anomalies of lead occur at 5+50 W, 6+00 W and 12+00 W on line B3N and 4+00 W on line B5N. A spot anomaly of zinc (822 ppm) occurs at 5+50 W on line B3N, coincident with the 396 ppm lead spot anomaly.

GEOPHYSICAL SURVEY RESULTS

The magnetometer survey did not identify any significant anomalies (figure 5).

								12+00W B3	BN BS	5N 164
Figure	1 Zinc C	aaaha	miotry	Day 2 Claim	_		-2		170	- 226
riguie -		eochei	msuy,	Ray 5 Claim				11+00W	- 236	148
									- 272	- 222
								10+00W	- 214	294
									- 150	- 336
								9+00W	- 164	- 252
									_172	- 246
								8+00W	- 182	- 376
		•							- 368	- 254
								7+00W	- 192	- 310
									260	- 386
								6+00W	- 152	- 254
44	A 22	A						>500 ppm Zn	-822	- 176
s L		60 424 104	5+00W					5+00W	- 412	- 350
	224 - 180	- 340 - 300							146	- 210
⊨ ⊨	166 210	306 284	4+00W					4+00W	- 120	- 378
- -	224 334	412 166							- 410	- 334
- -	388 194	366 188	3+00W					3+00W	- 438	- 414
- -		- 180 - 174							- 320	- 312 >500 ppm Zn
	130 124	- 174 - 158	2+00W					2+00W	_448	792
- -	144 172	202 124							- 800	- 518
- -	204 148	- 172 - 274	1+00W		0 100 mete	200 5		1+00W	- 934	- 592
	208 - 180	392 350		*Values in ppm		-			- 324	<u>− 576</u> >500 ppm Zn
	136	464						#*************************************	344	214

SUMMARY AND CONCLUSIONS

The Ray claims cover a prospective area with potential for discovery of a lead-zinc deposit. Previous work has identified a package of rocks with lead-zinc mineralization permissive of hosting a deposit similar to the Bluebell Mine. A very limited amount of exploration work has been conducted in the area to date in spite of a strong geochemical anomaly and the presence of mineralized float samples.

The geochemical survey identified a modest lead-zinc soil anomaly on the east side of the Ray 3 claim in the northern half. The anomaly coincides with north-northwest trending gullies believed to be faults. The gullies are parallel to the major fault zone that formed Crawford Bay and a prominent valley across the peninsula. The soil anomaly values are less than the anomalous values returned from Cominco's survey on the area to the south and east which also trends north-northwesterly. A possible explanation of the anomalous results is that the mineralization has leaked up through the overlying granitic rocks along the northwest-trending faults from a deposit down dip in the sedimentary rock package. The other conclusion that has been drawn is that the mineralization has been dragged out from a surface exposure by a receding glacier.

The results of the geochemical survey warrant follow up by conducting detailed sampling and prospecting. If initial results from the follow up work are favourable, a second phase trenching program would be recommended.

BIBLIOGRAPHY

- BASSO, M., 1973; A Geophysical assessment report for the BJ claim group of Richard Deane, Crawford Bay. Assessment report #4510
- BRABEC, D., 1979; Geochemical survey on the Craw Property, Slocan Mining District, B.C. Assessment report #8006
- FYLES, J.T., and HEWLETT, C.C., 1959; Stratigraphy and structure of the Salmo lead-zinc area. B.C. Dept. of Mines and Petroleum Resources, Bull. 41.
- INSLEY, M.W.; (undated thesis report) Structure, stratigraphy, metamorphism and mineralization of the Crawford Peninsula, Kootenay Lake, S.E. British Columbia, Canada. Candidate No. 4791
- SZABO, N.L., 1973; Geochemical survey on the Craw mineral claims, Crawford Bay area Slocan Mining District, B.C., Assessment report #4132
- WHEELER, J.O., 1970; Summary and discussion. Structure of the southeastern Canadian Cordillera. Geological Association of Canada, Special Paper 6, pp 155-166.

WHEELER, J.O., AIKEN, J.D., BERRY, M.J., GABRIELSE, H., HUTCHINSON, W.W., MONGER, J.W.H., NIBLETT, E.R., NORRIS, D.K., PRICE, R.A. and STACY, R.A., 1972; The Cordilleran structural province. Variations in the tectonic styles in Canada. Geological Association of Canada, Special Paper 11, pp 1-81. APPENDIX I

STATEMENT OF EXPENDITURES

1

11.2

RAY PROPERTY - EXPENDITURES

SALARIES	
Phil Southam - 3 manday @ \$206/day	618
Report preparation - P. Southam - 2 manday @ \$206/day	412
GEOCHEMICAL ANALYSIS	
92 soil samples @ \$8.80/sample	810
LOGISTICAL COSTS	
Food and lodging Supplies Vehicle fuel and maintenance	343 78 226
FILING FEES	440
SUBTOTAL	2927
Administration Fee (15%) GST on administration (#126616507)	439 31
ASSESSMENT TOTAL	\$3397
Portable Assessment Credit	_1003
TOTAL	\$4400

APPENDIX II

STATEMENT OF QUALIFICATIONS

ł

STATEMENT OF QUALIFICATIONS

I, Philip James Southam of 19021 - 117A Avenue, Pitt Meadows, British Columbia, do hereby certify:

- 1. I am a geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2. I graduated from Brandon University in 1987 with a Bachelor of Science degree majoring in geology.
- 3. I have practised my profession continuously since graduation in British Columbia, Manitoba, Yukon Territory and California in the field of mineral exploration.
- 4. I am employed by Hastings Management Corp. to provide geological services for Klondike Gold Corp.
- 5. All work completed for the purpose of this report was done under my supervision.

Philip Southam, P. Geo.

APPENDIX III

ASSAY RESULTS

Chemex Labs Ltd.

.

antitest 25 the

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Comments: ATTN: PHILIP SOUTHAM

A9924792

CERTIFICATE

A9924792

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPEP
2118	92	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	92	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	92	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	92	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	92	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	92	Be ppm: 32 element, soil & rock	ICP-AES	0.5	10000
2123	92	Bi ppm: 32 element, soil & rock	ICP-AKS	0.01	15.00
2124	92	Ca %: 32 element, soll & rock	TCD-188	0.5	500
2125	92	Ca ppm: 32 element, soil & rock	ICP-AES	1	10000
2126	94	Co pomi 32 element, soil & rock	ICP-AES	1	10000
2120	94	Cu nome 32 element, soil & rock	ICP-AES	1	10000
2150	92	We k. 32 element, soil & rock	ICP-AES	0.01	15.00
2130	92	Ga pom: 32 element, soil & rock	ICP-NES	10	10000
2131	92	Hg pom: 32 element, soil & rock	ICP-AES	1	10000
2132	92	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	92	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	92	Mg %: 32 element, soil & rock	ICP-AES	0.01	10000
2135	92	Mn ppm: 32 element, soil & rock	ICP-ASS TOD-ASS	5	10000
2136	92	Mo ppm: 32 element, soll & rock	ICP-ADD	0.01	10.00
2137	92	Na %: 32 element, soll & rock	TCP-1RS	1	10000
2138	92	Ni ppm: 32 element, soll & rock	ICP-AES	10	10000
2139	92	phone 22 element, soil & rock	ICP-AES	2	10000
2140	94	g to 32 element, rock & soil	ICP-AES	0.01	5.00
2141	92	sh nom: 32 element, soil & rock	ICP-AES	2	10000
2142	92	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	92	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	92	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	92	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	92	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	92	V ppm: 32 element, soil & rock	ICP-AES	10	10000
2148	92	W ppm: 32 element, soil & rock	ICP-AES	2	10000
0110	92	Zn ppm: 32 element, soil & rock	ICP-AES	~	

ANALYTICAL PROCEDURES

(RGD) - SOUTHAM, PHILIP

Project: CB P.O. # :

36806

Samples submitted to our lab in Vancouver, BC. This report was printed on 12-AUG-1999.

	SAMPLE PREPARATION											
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION										
201 229	92 92	Dry, sieve to -80 mesh ICP - AQ Digestion charge										
+ NOTE	1.											

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

......

832.5

Chemex Labs Ltd.

A READER OF A R

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Project : CB Comments: ATTN: PHILIP SOUTHAM

1. Supplier to the second state of the seco

**

Page Number:1-ATotal Pages:3Certificate Date:12-AUG-1999Invoice No.:19924792P.O. Number:Account: RGD

CERTIFICATE OF ANALYSIS A9924792 ĸ Mg Mn Ca Cđ Cr Cu Fe Ga Ηđ La Bi Co PREP λg **A1** λs В Ba Be * ppm % ppm * ppm * ppm ppm ppm ppm ppm SAMPLE CODE * ppm ppm DDM ppm ppm ppm 370 9 16 19 2.53 10 < 1 0.07 < 10 0.22 0.24 0.5 201 229 < 10 130 0.5 < 2 CB A15 0+00W 1.0 4.09 8 2.22 < 10 < 1 0.11 < 10 0.46 440 0.5 9 28 14 < 10 160 0.5 < 2 0.22 3.02 10 CB A15 0+25W 201 229 < 0.2 0.12 < 10 0.38 470 15 14 1.86 < 10 < 1 0.5 8 < 10 190 < 0.5 < 2 0.30 CB A15 0+50W 201 229 0.2 2.66 10 2.63 0.58 955 10 0.13 < 10 21 14 < 1 < 10 260 0.5 < 2 0.13 < 0.5 9 CB A15 0+75W 201 229 < 0.2 3.31 18 0.49 710 23 13 2.40 < 10 < 1 0.09 < 10 8 201 229 < 0.2 2.69 6 < 10 210 0.5 < 2 0.16 < 0.5 CB A15 1+00W 43 30 2.73 < 10 < 1 0.13 < 10 1.05 285 0.26 < 0.5 10 2.97 < 10 80 0.5 < 2 201 229 < 0.2 6 CB A15 1+25W < 10 0.40 555 9 23 11 2.42 10 < 1 0.07 0.5 < 2 0.11 < 0.5 201 229 < 0.2 3.19 < 10 190 4 CB A15 1+50W 36 2.46 < 10 < 1 0.10 < 10 0.57 560 < 0.5 11 34 201 229 210 0.5 < 2 0.16 < 0.2 3.00 6 < 10 CB A15 1+75W < 1 0.10 < 10 0.67 255 41 29 2.62 < 10 < 0.5 11 < 0.2 170 0.5 < 2 0.19 CB A15 2+00W 201 229 3.20 8 < 10 0.62 2320 2.15 < 10 < 1 0.13 < 10 0.37 0.5 10 29 32 CB A15 2+25W 201 229 < 0.2 2.45 2 < 10 410 0.5 < 2 < 1 0.15 < 10 0.99 430 2.50 < 10 0.19 < 0.5 10 43 21 201 229 < 0.2 2.99 2 < 10 150 0.5 < 2 CB A15 2+50W 2.35 < 10 < 1 0.10 < 10 0.55 1110 22 180 0.5 < 2 0.12 < 0.5 10 35 CB A15 2+75W 201 229 < 0.2 2.57 < 2 < 10 3.16 < 10 < 1 0.21 < 10 1.11 1110 56 45 220 < 0.5 < 2 0.29 < 0.5 22 2.45 6 < 10 CB A15 3+00W 201 229 < 0.2 3.20 10 < 1 0.06 10 0.15 95 0.23 < 0.5 5 23 28 110 1.5 < 2 4.19 18 < 10 CB A15 3+25W 201 229 1.8 0.05 < 10 0.16 345 7 17 10 2.26 < 10 < 1 < 2 0.09 0.5 < 10 110 0.5 201 229 4.60 14 CB A15 3+50W 0.4 2.06 < 10 < 1 0.07 < 10 0.23 910 0.5 9 18 8 0.14 170 0.5 < 2 CB A15 3+75W 201 229 0.2 4.01 4 < 10 0.10 < 10 0.43 1185 15 1.76 < 10 < 1 0.24 0.5 9 15 < 10 CB A15 4+00W 201 229 < 0.2 1.82 6 190 < 0.5 < 2 0.24 510 0.06 < 10 20 9 1.99 < 10 < 1 0.15 < 0.5 8 CB A15 4+25W 201 229 0.2 3.30 10 < 10 190 0.5 < 2 0.11 < 10 0.19 1260 1.73 < 1 290 0.12 0.5 5 12 10 < 10 CB A15 4+50W 2.28 318 < 10 < 0.5 < 2 201 229 0.6 0.19 665 1.85 < 1 0.07 < 10 5 < 10 < 10 110 < 0.5 < 2 0.07 0.5 5 18 201 229 < 0.2 1.14 14 СВ А15 4+75W 1510 2.23 < 10 < 1 0.07 < 10 0.20 0.09 < 0.5 10 20 12 240 0.5 < 2 18 < 10 201 229 0.4 3.24 CB A15 5+00W 0.37 < 10 1.72 555 117 242 4.29 < 10 < 1 0.43 < 0.5 36 < 10 190 0.5 < 2 CB A25 0+00W 201 229 < 0.2 3.62 < 2 2.41 < 10 < 1 0.09 < 10 0.45 950 29 9 0.13 < 0.5 10 < 10 230 0.5 < 2 CB A25 0+25W 201 229 < 0.2 2.27 < 2 < 1 0.07 < 10 0.72 890 27 8 2.69 10 6 220 0.5 < 2 0.15 < 0.5 3.79 < 10 CB A25 0+50W 201 229 < 0.2 < 2 0.64 360 < 10 < 1 0.10 10 11 41 32 2.39 < 10 110 0.5 < 2 0.18 < 0.5 CB A25 0+75W 201 229 < 0.2 2.77 < 2 < 10 0.41 935 0.08 23 14 2.40 < 10 < 1 280 0.5 < 2 0.11 < 0.5 11 < 2 < 10 201 229 < 0.2 3.57 CB A25 1+00W 0.48 540 0.07 < 10 9 36 15 2.24 < 10 < 1 190 0.5 < 2 0.16 < 0.5 < 10 201 229 < 0.2 2.56 < 2 CB A25 1+25W < 10 0.57 825 0.07 32 17 2.19 < 10 < 1 0.10 < 0.5 8 < 10 0.5 < 2 2.25 < 2 180 CB A25 1+50W 201 229 < 0.2 < 10 1.07 405 2.60 < 10 < 1 0.10 39 31 0.20 < 0.5 13 < 10 < 0.5 < 2 < 0.2 2.49 < 2 140 CB A25 1+75W 201 229 < 1 0.06 < 10 0.49 760 2.25 < 10 7 25 16 0.11 < 0.5 2.28 < 2 < 10 150 0.5 < 2 < 0.2 CB X25 2+00W 201 229 0.55 325 < 1 0.11 < 10 < 10 < 0.5 9 41 29 2.14 120 0.5 < 2 0.23 12 < 10 2.16 CB 325 2+25W 201 229 < 0.2 0.53 335 < 10 < 1 0.09 < 10 0.15 < 0.5 8 39 20 2.07 120 0.5 < 2 < 2 < 10 201 229 < 0.2 2.24 CB 325 2+50W 0.08 < 10 0.80 300 < 1 35 23 2.74 < 10 8 150 0.5 < 2 0.16 < 0.5 < 10 201 229 < 0.2 2.40 6 CB X25 2+75W 0.06 < 10 0.16 1580 1.95 < 10 < 1 17 8 0.5 7 230 0.5 < 2 0.14 0.4 2.23 4 < 10 CB A25 3+00W 201 229 0.39 720 < 10 < 1 0.07 < 10 10 2.18 9 44 0.09 < 0.5 2.23 6 < 10 140 < 0.5 < 2 0.2 CB A25 3+25W 201 229 0.16 535 < 1 0.05 < 10 2.57 10 10 < 2 0.13 0.5 6 24 6.97 28 < 10 200 0.5 201 229 < 0.2 CB A25 3+50W 515 0.73 < 10 < 1 0.08 < 10 2.36 < 2 0.25 < 0.5 11 80 28 < 10 190 0.5 3.40 < 2 201 229 < 0.2 CB A25 3+75W < 10 0.43 210 2.19 < 1 0.07 10 0.13 < 0.5 7 28 17 < 2 < 10 100 < 0.5 2.18 2 CB A25 4+00W 201 229 < 0.2 < 10 295 < 10 < 1 0.08 0.38 7 25 12 2.05 0.12 < 0.5 0.5 < 2 < 10 100 201 229 < 0.2 1.99 < 2 CB A25 4+25W 730 0.22 Q 2.12 < 10 < 1 0.05 < 10 8 17 0.5 < 2 0.06 < 0.5 160 201 229 0.2 3.28 < 2 < 10 CB A25 4+50W

CERTIFICATION:

1mg

129261

Chemex Labs Ltd.

5. n.

.

والمشتقا فتقدر والا

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Project : CB Comments: ATTN: PHILIP SOUTHAM

.

**

CERTIFICATION:

Page Number :1-B Total Pages :3 Certificate Date: 12-AUG-1999 Invoice No. :19924792 P.O. Number : Account RGD

										CERTIFICATE OF ANALYSIS						A99247	792
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D mdđ	v ppm	W ppm	Zn ppm	
CB A15 0+00W CB A15 0+25W CB A15 0+50W CB A15 0+75W CB A15 0+75W CB A15 1+00W	201 229 201 229 201 229 201 229 201 229 201 229	3 1 2 2 1	0.01 0.01 0.01 0.01 0.01	25 31 19 17 21	1810 1070 1050 1340 630	38 52 < 32 28 40	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2	1 2 3 3 1	17 15 22 12 11	0.18 0.13 0.16 0.20 0.18	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 30 30 37 34	< 10 < 10 < 10 < 10 < 10 < 10	464 350 392 274 172	
CB A15 1+25W CB A15 1+50W CB A15 1+75W CB A15 1+75W CB A15 2+00W CB A15 2+25W	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01	30 25 35 43 29	530 1060 610 600 860	30 < 30 44 < 54 < 38	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 1 2 3 2	13 9 12 14 29	0.14 0.15 0.14 0.15 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 34 36 39 32	< 10 < 10 < 10 < 10 < 10 < 10	124 202 158 174 174	
CB A15 2+50W CB A15 2+75W CB A15 3+00W CB A15 3+25W CB A15 3+50W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 4 2	0.01 0.01 0.01 0.01 0.01	38 33 36 43 22	500 630 440 580 4030	30 < 58 < 42 < 62 48	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 3 2 1	14 9 16 22 10	0.17 0.13 0.24 0.17 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 33 61 37 28	< 10 < 10 < 10 < 10 < 10 < 10	180 188 366 166 412	
CB A15 3+75W CB A15 4+00W CB A15 4+25W CB A15 4+25W CB A15 4+50W CB A15 4+75W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 2 1 < 1	0.01 0.01 0.01 0.03 0.01	31 15 26 16 10	1650 1780 1140 2720 380	46 58 < 40 208 70	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 776 < 2	1 1 1 1	17 20 13 18 8	0.13 0.12 0.15 0.12 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	28 28 27 24 32	< 10 < 10 < 10 < 10 < 10 < 10	284 306 300 340 104	
CB A15 5+00W CB A25 0+00W CB A25 0+25W CB A25 0+50W CB A25 0+50W CB A25 0+75W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 3 1 1 1	0.01 0.01 0.01 0.01 < 0.01	25 79 23 20 66	770 580 600 1110 620	198 10 72 22 52	0.01 0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 1 4 3	10 17 8 11 10	0.14 0.29 0.14 0.19 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	32 99 35 44 37	< 10 < 10 < 10 < 10 < 10	424 136 180 208 148	
CB A25 1+00W CB A25 1+25W CB A25 1+50W CB A25 1+50W CB A25 1+75W CB A25 2+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 1	0.01 < 0.01 < 0.01 < 0.01 < 0.01	30 30 25 37 16	1060 750 470 280 1210	44 50 50 30 30	0.01 0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 2 1 1	8 11 7 11 10	0.17 0.11 0.12 0.16 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 31 31 42 31	< 10 < 10 < 10 < 10 < 10	204 172 144 124 130	
CB A25 2+25W CB A25 2+50W CB A25 2+75W CB A25 2+75W CB A25 3+00W CB A25 3+25W	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	38 34 25 19 31	870 760 560 1190 1620	68 52 46 62 78	0.01 < 0.01 < 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 3 1 1	13 11 12 14 8	0.11 0.09 0.10 0.12 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 27 39 25 26	< 10 < 10 < 10 < 10 < 10	240 236 194 388 334	
CB A25 3+50W CB A25 3+75W CB A25 4+00W CB A25 4+25W CB A25 4+25W CB A25 4+50W	201 229 201 229 201 229 201 229 201 229 201 229	3 1 1 < 1 1	0.01 0.01 < 0.01 < 0.01 < 0.01	19 58 23 24 20	9320 1190 570 400 900	30 46 52 42 36	0.02 0.01 < 0.01 < 0.01 < 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 1 1	16 17 12 12 10	0.20 0.14 0.10 0.10 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	38 37 31 26 28	< 10 < 10 < 10 < 10 < 10	224 210 166 180 224	-

aid

Chemex Labs Ltd.

A24 11 . . .

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Page Number :2-A Total Pages :3 Certificate Date: 12-AUG-1999 Invoice No. : 19924792 P.O. Number : Account :RGD

Project : CB Comments: ATTN: PHILIP SOUTHAM

**

										CE	RTIFIC	CATE	OF A	NALY	(SIS	F	9924	792		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	В ррт	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg X	Mn ppm
CB A25 4+75W CB A25 5+00W CB B3N 0+00W CB B3N 0+50W CB B3N 1+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.54 2.22 2.58 2.95 2.98	6 4 12 18 58	< 10 < 10 < 10 < 10 < 10 < 10	130 230 270 290 190	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.28 0.16 0.21 0.48 0.28	< 0.5 < 0.5 0.5 1.5 3.0	7 14 9 10 9	19 59 37 34 29	10 16 17 7 34	1.94 2.42 2.69 2.74 2.38	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.15 0.14 0.32 0.11	< 10 10 < 10 < 10 < 10	0.26 0.74 1.05 1.71 0.49	280 1025 3240 3200 520
CB B3N 1+50W CB B3N 2+00W CB B3N 2+50W CB B3N 3+00W CB B3N 3+50W	201 229 201 229 201 229 201 229 201 229 201 229	0.6 < 0.2 < 0.2 < 0.2 < 0.2	2.24 2.88 3.00 2.40 2.46	26 12 12 22 8	< 10 < 10 < 10 < 10 < 10 < 10	360 490 120 170 260	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.42 0.10 0.14 0.13	2.5 1.0 < 0.5 < 0.5 0.5	10 14 10 8 10	24 90 19 27 34	15 32 8 10 12	2.61 2.78 2.28 2.11 2.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.19 0.03 0.08 0.10	< 10 < 10 < 10 < 10 < 10	0.45 1.37 0.24 0.35 0.41	2510 2230 140 900 980
CB B3N 4+00W CB B3N 4+50W CB B3N 5+00W CB B3N 5+50W CB B3N 5+50W CB B3N 6+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 0.2 0.6 0.8	3.96 2.90 2.45 2.37 5.77	6 12 16 32 24	< 10 < 10 < 10 < 10 < 10 < 10	80 90 210 150 70	0.5 0.5 0.5 0.5 3.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.08 0.06 0.19 0.10 0.08	< 0.5 < 0.5 < 0.5 0.5 < 0.5	6 7 11 7 7	15 29 39 20 19	14 21 19 15 37	2.22 2.42 2.57 2.29 2.27	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.05 0.08 0.12 0.06 0.05	< 10 < 10 < 10 < 10 40	0.20 0.45 0.59 0.26 0.14	370 395 685 945 255
CB B3N 6+50W CB B3N 7+00W CB B3N 7+50W CB B3N 8+00W CB B3N 8+50W	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 0.2 < 0.2 < 0.2	2.29 1.60 1.88 5.03 2.63	12 < 2 8 10 8	< 10 < 10 < 10 < 10 < 10 < 10	210 70 130 200 280	0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.23 0.12 0.18 0.13 0.11	0.5 < 0.5 0.5 < 0.5 < 0.5	9 6 8 17 6	39 33 28 52 26	19 10 9 37 11	2.18 2.19 2.05 3.95 2.52	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.12 0.07 0.07 0.26 0.15	10 10 < 10 < 10	0.52 0.60 0.44 0.76 0.36	1100 170 255 510 1035
CB B3N 9+00W CB B3N 9+50W CB B3N 10+00W CB B3N 10+50W CB B3N 10+50W CB B3N 11+00W	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.2 0.2 0.2 < 0.2	3.08 3.32 3.45 2.23 1.54	6 8 10 4 20	< 10 < 10 < 10 < 10 < 10 < 10	180 160 220 200 90	1.0 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.13 0.11 0.08 0.18 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 8 6 11 9	53 21 19 60 27	56 12 8 9 21	2.79 2.09 2.13 2.13 1.80	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.24 0.06 0.05 0.07 0.06	10 < 10 < 10 < 10 < 10	0.79 0.27 0.24 0.37 0.36	475 280 455 680 340
CB B3N 11+50W CB B3N 12+00W CB B5N 0+00W CB B5N 0+50W CB B5N 0+50W CB B5N 1+00W	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 1.0 < 0.2 0.6 0.8	2.43 3.51 4.20 3.57 2.67	6 10 6 32 28	< 10 < 10 < 10 < 10 < 10 < 10	220 150 490 160 160	0.5 0.5 1.0 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.13 0.11 0.29 0.19 0.15	< 0.5 < 0.5 0.5 0.5 1.0	8 12 31 10 8	30 42 41 30 26	13 37 125 29 15	2.17 2.56 5.43 2.71 2.33	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.08 0.65 0.10 0.09	< 10 < 10 < 10 < 10 10	0.45 0.55 1.82 0.59 0.43	1235 750 1820 610 965
CB B5N 1+50W CB B5N 2+00W CB B5N 2+50W CB B5N 3+00W CB B5N 3+50W	201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.8 < 0.2 0.4 < 0.2	3.01 4.73 2.88 2.56 2.23	26 38 12 6 16	< 10 < 10 < 10 < 10 < 10 < 10	190 130 210 130 190	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.23 0.15 0.13 0.09 0.25	0.5 2.0 < 0.5 0.5 0.5	10 8 12 7 6	32 26 50 22 22	35 20 18 10 14	2.69 2.48 2.87 1.98 2.16	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.13 0.07 0.10 0.07 0.10	10 < 10 < 10 < 10 < 10	0.60 0.32 0.75 0.25 0.39	770 615 1745 640 1200
CB B5N 4+00W CB B5N 4+50W CB B5N 5+00W CB B5N 5+50W CB B5N 6+00W	201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.57 3.75 2.26 2.12 2.59	20 14 2 2 2	< 10 < 10 < 10 < 10 < 10 < 10	180 160 240 120 190	2.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.14 0.20 0.15 0.12 0.14	0.5 < 0.5 0.5 < 0.5 < 0.5	19 16 10 7 9	29 54 42 26 38	41 60 15 12 21	2.55 3.32 2.09 2.15 2.23	10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.31 0.16 0.13 0.13	40 10 < 10 < 10 < 10	0.31 0.94 0.48 0.43 0.52	1920 295 675 770 305
							<u> </u>						<u></u>	CERTIFI	CATION:	la	∕ ─		A	Ų

CERTIFICATION

C

80286C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

Salahan and a salahan s

To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Page Number :2-B Total Pages :3 Certificate Date: 12-AUG-1999 Invoice No. : 19924792 P.O. Number : RGD Account

5

10004700

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : CB Comments: ATTN: PHILIP SOUTHAM

**

OF ANIAL VOIC

								СЕ	RIIFI	CATE	313	AJJZ	4136		
SAMPLE	PREP CODE	Mo ppm	Na N % pr	li p om ppm	Pb S ppm %	Sb ppm	Sc ppm	: Sr ppm	Tİ %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
CB A25 4+75W CB A25 5+00W CB B3N 0+00W CB B3N 0+50W CB B3N 1+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 0 1 < 0 1 < 0 1 0 1 0	.01 .01 .01 .01 .01	21 660 13 300 23 730 17 770 33 1430	52 0.01 58 < 0.01 90 < 0.01 62 0.02 388 0.01	< 2 < 2 < 2 2 < 2 < 2	1 4 3 3 3	12 24 15 46 19	0.11 0.16 0.16 0.21 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 44 40 40 30	< 10 < 10 < 10 < 10 < 10	222 234 344 324 934	
CB B3N 1+50W CB B3N 2+00W CB B3N 2+50W CB B3N 3+00W CB B3N 3+50W	201 229 201 229 201 229 201 229 201 229 201 229	1 < 0 1 < 0 2 < 0 1 < 0 1 < 0	.01 .01 .01 .01 .01	22 1190 77 1400 24 210 30 1590 43 670	$\begin{array}{rrrr} 294 < 0.01 \\ 92 & 0.01 \\ 104 & 0.01 \\ 104 & 0.01 \\ 102 < 0.01 \end{array}$	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 1 1 1	15 25 11 14 15	0.11 0.16 0.11 0.10 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 37 35 25 28	< 10 < 10 < 10 < 10 < 10 < 10	800 448 320 438 410	
CB B3N 4+00W CB B3N 4+50W CB B3N 5+00W CB B3N 5+50W CB B3N 5+50W	201 229 201 229 201 229 201 229 201 229 201 229	2 < 0 1 < 0 1 < 0 1 < 0 2 0	.01 .01 .01 .01 .02	14 1270 25 760 39 450 20 790 28 1100	52 0.02 90 0.02 102 0.01 396 0.01 228 0.03	< 2 < 2 < 2 < 2 < 2 < 2	3 2 2 1 5	10 8 19 9 14	0.12 0.11 0.14 0.11 0.18	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 34 34 31 30	< 10 < 10 < 10 < 10 < 10 < 10	120 146 412 822 152	
CB B3N 6+50W CB B3N 7+00W CB B3N 7+50W CB B3N 8+00W CB B3N 8+50W	201 229 201 229 201 229 201 229 201 229 201 229	1 0 1 < 0 1 < 0 3 0 1 < 0	.01 .01 .01 .01 .01	34 980 25 140 30 520 45 1180 20 2980	$\begin{array}{r} 90 < 0.01 \\ 22 < 0.01 \\ 54 < 0.01 \\ 28 & 0.02 \\ 44 & 0.01 \end{array}$	< 2 < 2 < 2 < 2 < 2 < 2	2 1 1 5 2	23 10 15 13 13	0.11 0.09 0.08 0.25 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 27 23 68 34	< 10 < 10 < 10 < 10 < 10	260 192 368 182 172	
CB B3N 9+00W CB B3N 9+50W CB B3N 10+00W CB B3N 10+50W CB B3N 11+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 < 0 1 0 2 0 1 0 < 1 < 0	0.01 0.01 0.01 0.01 0.01 1	61 360 28 490 24 690 59 930 23 740	44 < 0.01 72 0.01 48 0.01 40 < 0.01 92 < 0.01	< 2 < 2 < 2 < 2 < 2 < 2	4 1 1 1	14 13 14 27 8	0.15 0.12 0.13 0.12 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	45 27 26 25 21	< 10 < 10 < 10 < 10 < 10	164 150 214 272 236	
CB B3N 11+50W CB B3N 12+00W CB B5N 0+00W CB B5N 0+50W CB B5N 1+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 < 0 2 < 0 1 < 0 2 0 1 < 0).01).01).01).01).01	29 550 61 900 55 690 32 1080 28 800	$\begin{array}{c} 62 < 0.01 \\ 342 & 0.01 \\ 36 & 0.01 \\ 374 & 0.01 \\ 222 < 0.01 \end{array}$	< 2 < 2 2 < 2 < 2 < 2	1 3 7 3 2	11 9 24 14 11	0.10 0.12 0.33 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	28 34 147 37 29	< 10 < 10 < 10 < 10 < 10 < 10	170 210 214 576 592	
CB B5N 1+50W CB B5N 2+00W CB B5N 2+50W CB B5N 3+00W CB B5N 3+50W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 0 3 0 1 < 0 1 0 1 0	0.01 0.01 0.01 0.01 0.01	31 970 37 1670 44 1090 26 1320 19 1560	308 < 0.01 188 0.01 76 0.01 100 < 0.01 126 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 3 1 1	15 13 10 10 24	0.11 0.14 0.18 0.12 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	33 33 45 25 27	< 10 < 10 < 10 < 10 < 10	518 792 312 414 334	
CB B5N 4+00W CB B5N 4+50W CB B5N 5+00W CB B5N 5+50W CB B5N 6+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	3 (2 < (1 < (< 1 < (1 < (0.02 0.01 0.01 0.01 0.01	54 1320 45 660 61 320 21 490 46 680	656 0.01 98 < 0.01 82 < 0.01 74 0.01 56 < 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 5 2 1 2	16 16 15 19	0.14 0.19 0.12 0.09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 56 29 27 29	< 10 < 10 < 10 < 10 < 10	378 210 350 176 254	
							<u> </u>					CERTIFI	CATION:	the	all

144896

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Project : CB Comments: ATTN: PHILIP SOUTHAM **

Page Number :3-A Total Pages :3 Certificate Date: 12-AUG-1999 Invoice No. :19924792 P.O. Number : Account :RGD

A9924792 **CERTIFICATE OF ANALYSIS** Mn Ga Ħg K La Mg Fe Ca Cđ Co Cr Cu Bİ А1 λs В Ba Be PREP λg * * ppm ppm ppm * ppm ppm % ppm ppm ppm ppm CODE * ppm DDM ppm ppm SAMPLE ppm 425 0.15 < 10 0.59 < 10 < 1 8 43 15 1.91 0.20 0.5 < 0.5 < 2 < 10 150 CB B5N 6+50W 201 229 < 0.2 1.60 6 280 0.10 10 0.51 34 19 2.12 < 10 < 1 8 0.5 < 2 0.16 < 0.5 2.12 130 CB B5N 7+00W 201 229 < 0.2 10 < 10 0.73 360 2.68 < 10 < 1 0.15 < 10 < 0.5 13 61 34 0.5 < 2 0.26 201 229 0.2 2.91 18 < 10 200 CB B5N 7+50W 945 1.92 < 1 0.13 < 10 0.26 7 < 10 17 < 2 0.32 0.5 8 2.57 14 < 10 490 0.5 CB B5N 8+00W 201 229 < 0.2 < 10 0.22 2200 < 1 0.09 21 11 2.35 < 10 11 360 0.5 < 2 0.11 0.5 201 229 3.63 10 < 10 CB B5N 8+50W 0.2 0.64 560 0.12 < 10 50 2.66 < 10 < 1 0.20 < 0.5 12 55 0.5 < 2 22 < 10 240 201 229 0.2 3.37 CB B5N 9+00W 0.48 680 < 10 2.25 < 10 < 1 0.07 9 31 17 < 2 0.12 < 0.5 170 0.5 6 < 10 CB B5N 9+50W 201 229 < 0.2 2.67 1125 0.14 < 10 11 7 1.47 < 10 < 1 0.10 5 < 2 0.08 0.5 28 < 10 260 < 0.5 CB B5N 10+00W 201 229 0.2 1.43 490 < 10 0.37 2.72 < 10 < 1 0.12 29 20 10 < 2 0.12 < 0.5 2.47 8 < 10 250 0.5 CB B5N 10+50W 201 229 < 0.2 0.19 910 < 10 < 1 0.06 10 20 2.17 12 18 0.12 < 0.5 0.2 6 < 10 220 1.0 < 2 CB B5N 11+00W 201 229 5.11 800 < 1 0.07 < 10 0.38 12 2.33 < 10 < 0.5 37 < 2 0.09 8 12 < 10 200 0.5 201 229 0.2 3.00 CB B5N 11+50W < 10 0.38 375 < 1 0.08 28 21 2.39 < 10 0.5 < 2 0.10 < 0.5 8 2.92 4 < 10 110 201 229 < 0.2 CB B5N 12+00W

.

CERTIFICATION:_

1.14 mm -

12000

Chemex Labs Ltd.

Contraction and the second

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SOUTHAM, PHILIP

19021 - 117A AVE. PITT MEADOWS, BC V3Y 1Y4

Page Number :3-B Total Pages :3 Certificate Date: 12-AUG-1999 Invoice No. : 19924792 P.O. Number : Account RGD

Project : CB Comments: ATTN: PHILIP SOUTHAM

.

**

										CERTIFICATE OF ANALYSIS						A99	924792	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	s %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	D mđđ	V ppm	W ppm	Zn ppm		
E B5N 6+50W E B5N 7+00W E B5N 7+50W E B5N 8+00W E B5N 8+50W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < 1 1 1	0.01 0.01 0.01 0.01 0.01	39 34 53 22 31	230 550 1100 1750 1330	40 82 54 40 52	0.01 0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 2	2 2 3 1 2	17 13 38 46 16	0.12 0.08 0.13 0.10 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 25 38 25 30	< 10 < 10 < 10 < 10 < 10 < 10	386 310 254 376 246		
28 85N 9+00W 28 85N 9+50W 28 85N 10+00W 28 85N 10+50W 28 85N 10+50W 28 85N 11+00W	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < 1 < 1 < 2	0.01 0.01 0.01 0.01 0.01	46 30 9 30 33	1320 780 1110 750 1300	194 110 50 60 42	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 1 2 4	18 10 11 15 16	0.14 0.11 0.09 0.12 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 29 20 32 28	< 10 < 10 < 10 < 10 < 10 < 10	252 336 294 222 148		
:B B5N 11+50W :B B5N 12+00W	201 229 201 229	1 < 1 <	0.01 0.01	30 23	2200 1040	62 58	0.01 0.01	< 2 < 2	1 3	13 8	0.13 0.12	< 10 < 10	< 10 < 10	32 33	< 10 < 10	226 164		
											•							
				<u></u>										CERTIFI	CATION:	the		All