

MAPPING AND SAMPLING

on the

MOUNT SIDNEY WILLIAMS PROPERTY

Omineca Mining Division

N.T.S. 93-K-14W

Lat.: 540 54' N Long.: 1250 24' W

by

U. MOWAT, P. Geo.

October, 1999

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Table of Contents

1.0	Introduction	1
2.0	Location and Access	2
3.0	Claim Data	2
4.0	History	5
5.0	Regional Geology	6
6.0	Property Geology	7
	6.1 General	7
	6.2 Mid Claim	8
	6.3 West Lake Area	9
	6.4 South Peak Area	9
7.0	Mineralization	9
8.0	Alteration	11
9.0	Work Program	12
10.0	Sample Descriptions	13
11.0	Results	18
12.0	Conclusions	21
13.0	References	22
14.0	Statement of Costs	24
15.0	Statement of Qualifications	26

Tables

Table 1 -	Comparison	of	Nickel	(PPM)	values	20
-----------	------------	----	--------	-------	--------	----

<u>Figures</u>

Figure	1	-	Project Location Map	3
Figure	2	-	Claim Map	4

<u>Maps</u>

Mount Sidney Williams Property - Samplein pocketLocations (1:25000)in pocketMid Claim - Sample Locations (1:5000)in pocketWest Lake Area (1:5000)in pocket

Appendix

Polished Thin Section Study Analytical Data

1.0 Introduction

In June, 1999 two men spent 3 days mapping and sampling 3.5 km of logging roads on the Mid claim. Sixty-four rock samples and 3 silt samples were collected. All samples were analysed for 30 elements by ICP and Au by fire assay/ICP. Thirtyeight rock samples and 3 silt samples were also analysed for Pt and Pd by fire assay/ICP.

In August, 1999 and as a result of consistent but low Au, Pt and Pd values over a distance of 150 meters, the anomalous area was re-examined and sampled again in more detail. Fifteen rock samples were collected from sporadic outcrop over a distance of 150 meters. All samples were analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

Two other areas were briefly examined in August. An area just north of West Lake was visited as one creek draining the area returned slightly elevated Cu and Pd in previous silt sampling. Seven rock samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

A brief stop was also made on a ridge south of Sidney Creek to examine the source of a coincident Zn-Cu-Mo soil anomaly outlined previously. Three rock samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

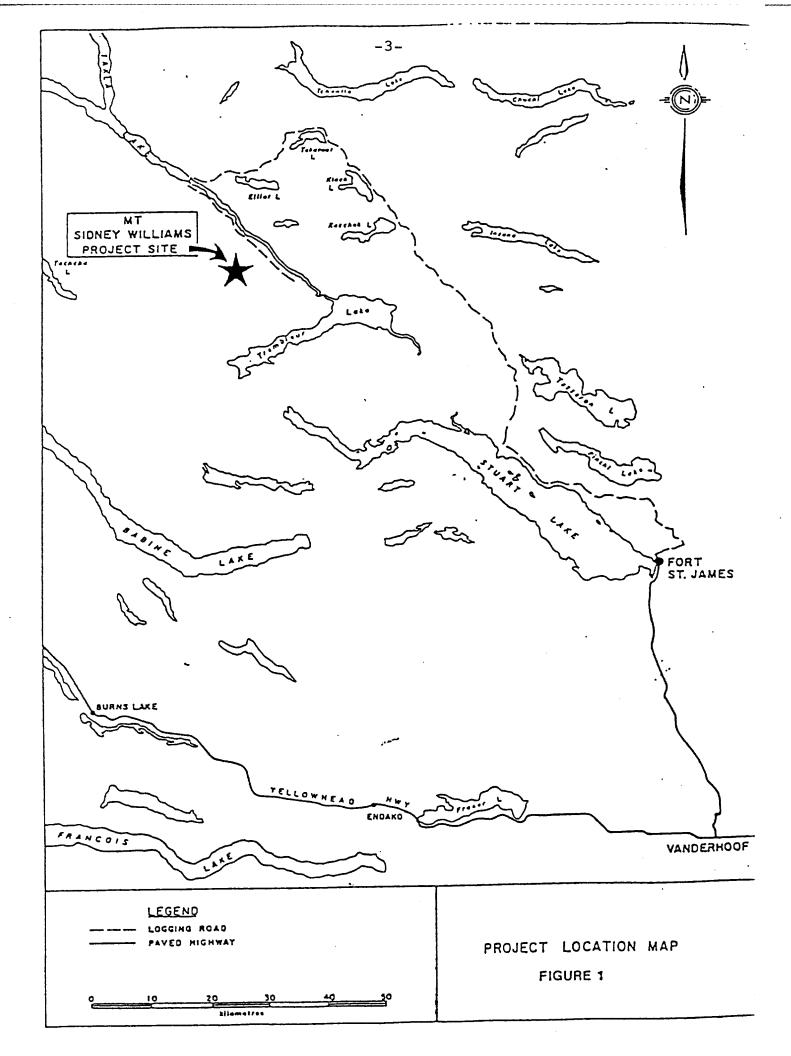
One specimen collected in the Baptiste Creek area was submitted for thin section examination.

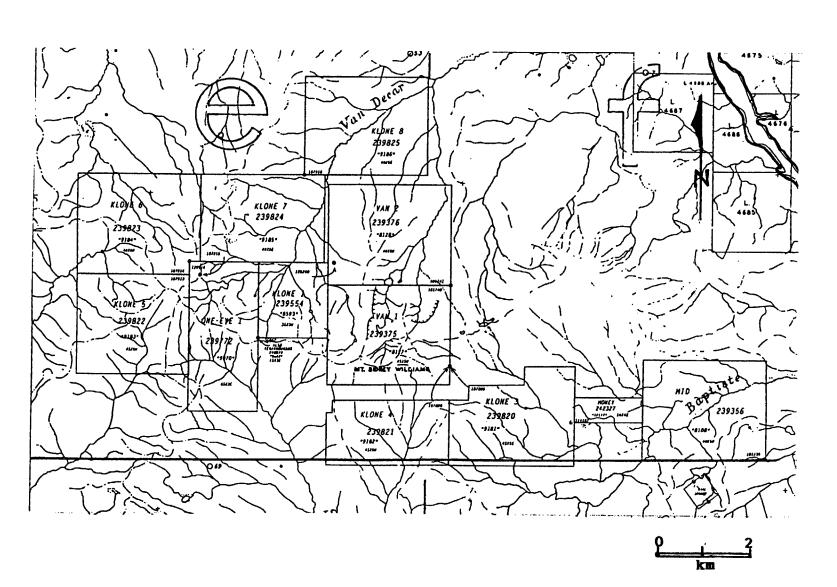
Twenty-five pulps of drill core from drill hole 94-10 were re-analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP. Twenty-four rejects of drill core from 94-10 were also re-analysed for Ni by ICP and Au by fire assay/ICP.

2.0 Location and Access

The Mount Sidney Williams property lies 87 km northwest of the town of Fort St. James and is located at co-ordinates 54° 54' N and 125° 24' W on map sheet 93-K-14W.

Access to the property is at present by helicopter but good logging roads reach the periphery of most of the property and also cut across the Mid claim the most easterly portion of the property.


3.0 Claim Data


The Mount Sidney Williams property consists of the following claims:

<u>Claim Name</u>	Record Number	<u>No. of Unit</u> s
Mid	239256	20
Van 1	239375	20
Van 2	239376	20
Klone 1	239554	9
Klone 3	239820	20
Klone 4	239821	20
Klone 5	239822	20
Klone 6	239823	20
Klone 7	239824	20
Klone 8	239825	20
One-Eye 1	239772	18
Terannoursus	240074	3
Money	242327	4

There are a total of 214 units. The property is 100% owned by U. Mowat.

The claims are located in the Omenica Mining Division.

-4-

4.0 <u>History</u>

The first known geologic record of the Mount Sidney Williams area was made in 1937 following a brief reconnaissance of the Fort St. James area by J. E. Armstrong of the Geologic Survey of Canada. In 1942m nine chromite deposits were located in the Middle River Range by the G.S.C., plus several asbestos showings of varying quality in the area of Mount Sidney Williams.

Prospectors working the region reported gold values in carbonate-quartz-mariposite and carbonate-talc rocks in shear zones in altered Trembleur Intrusions. One sample of carbonatequartz-mariposite rock high in quartz (70%) taken on Baptiste Creek returned values of 0.036 oz/ton gold and 0.07 oz/ton silver.

During the late 1930's, a small placer operation was located on Van Decar Creek for a brief period. The operation was located below serpentinized peridotite and nuggets valued at \$0.50 to \$2.00 (1935 prices) were found.

Old flagging and several camp sites would indicate that Mount Sidney Williams has been examined in the past for chrome, nickel and asbestos. No mention is made of any exploration, however, until 1962 (MMAR) when the main asbestos showing is described. Blasting caps found at this location indicate an attempt to trench the showing.

Since 1975, various groups have examined the Mount Sidney Williams area for chrome, platinum and gold.

The following work has been performed on the Mount Sidney Williams property:

 Silt sampling - 196 samples including 10 heavy mineral samples
 Rock sampling - 1557 samples
 Flagged grid - 105,790 meters
 Soil Sampling - 3283 samples
 Trenching - 52 meters
 Magnetometer/VLF EM survey - 26,150 meters
 IP survey - 11,450 meters
 Drilling - 22 holes totalling 1541.4 meters

5.0 <u>Regional Geology</u>

The area of Mount Sidney Williams is underlain by a 15 km wide belt of northwesterly-trending Pennsylvanian and Permian Cache Creek Group rocks consisting of ribbon chert, argillaceous quartzite, argillite, slate, greenstone, limestone with minor conglomerate and greywacke. The Cache Creek Group has been intruded by Upper Jurassic or Lower Cretaceous Omineca Intrusions consisting of granodiorite, quartz diorite, diorite with minor granite, syenite, gabbro and pyroxenite. As well, Post-Middle Permian, Pre-Upper Triassic Trembleur Intrusions consisting of peridotite, dunite, minor pyroxenite and gabbro with serpentinized and steatized equivalents intrude the Cache Creek Group.

The northwesterly-trending belt of Cache Creek rocks is bordered on the east by the Pinchi Fault and Upper Triassic Takla Group andesites, basaltic flows, tuffs, breccias and agglomerates with interbedded conglomerate, shale, greywacke and limestone. On the west, the belt is bounded by the Takla Fault, an east-dipping zone, up to 5 km wide, which contains a melange of serpentine and greenstone. The melange is adjacent to Triassic metamorphosed pyroclastic rock, basalt, rhyolite, greywacke and argillite of the Sitlika assemblage.

Between the Pinchi Fault and the Takla Fault, the predominant units of the Cache Creek Group of chert, phyllite and argillite with minor greywacke and limestone are highly deformed. Three deformational periods have been recognized in the Cache Creek Group which has been metamorphosed to lower greenschist facies with local glaucophane. The oldest structures are a prominent foliation that parallels compositional layering and trends east-west, marking the axial planes of isoclinal folds. A later structure consists of chevron folds which trend north-south with axial planes dipping moderately westwards. The youngest structures are warps and kinks, probably related to late faulting.

6.0 Property Geology

6.1 General

The Mount Sidney Williams property is divided into two separate geological domains by Van Decar Creek, a fault zone with a postulated 1000 meter horizontal displacement. On the west side of Van Decar Creek the lithologies are dominantly argillite and andesitic volcanics of the Cache Creek Group which generally trend 320° with variable dips subject to faulting. In certain areas the volcanics have been thrust over the argillites and in the vicinity of the thrusts, the argillites have been serpentinized or silicified.

Ultramafics of peridotite and dunite also occur on the west side of Van Decar Creek. Once thought to be of limited abundance, mapping in 1998 and 1999 have indicated the presence of an ultramafic massif underlying the northern claims. The ultramafic found on the West Peak ridge forms a vertical sill approximately 250 meters wide which trends 090°.

All rock types on the west side of Van Decar Creek have been intruded by diorite. In addition, basaltic plugs of possible Tertiary age have been found intruding the volcanics in the West Lake area. A volcanic cone of dacitic composition is located immediately north of West Peak and appears to be responsible for a thick layer of ash covering a substantial area south of West Lake.

On the east side of Van Decar Creek, the dominant rock type is harzburgite with lesser amounts of dunite, peridotite and altered equivalents of the Trembleur ultramafic massif. Drill core has revealed that the ultramafic is, at least in part, a flow with recognizable flow tops and also containing volcanic rafts. A late stage dunite forms vertical pipes and small lopoliths pushing layers of harzburgite-dunite apart.

The 1994 drilling also revealed an extensive package of volcaniclastics with minor limestone, chert and siltstone which have been thrust over the ultramafic. Folding appears to have affected both the volcaniclastics, the ultramafic and possibly the West Zone listwanite. Norite usually occuring as east-west trending dykes and monzonite have been found intruding the ultramafic body. Also a glassy rhyolite? volcanic plug has also been seen intruding the ultramafic in the vicinity of the Camp Zone. Minor amounts of argillite and black basalt also occur on the eastern side of the property. Black basalt has been seen overlying argillite indicating that the basalts on the eastern side of Van Decar Creek are flows which probably emanated from the volcanic cone located north of West Peak.

6.2 Mid Claim

A logging road cutting across the Mid claim has exposed intermittent outcrops of andesitic volcanics, argillite, peridotite with minor diorite, limey quartzite and argillaceous limestone. Large areas of carbonate listwanite and talc have also been exposed and are discussed in the section on alteration.

Andesitic volcanics are the most predominant lithology. Generally a greenish grey in colour, the volcanics are massive. Rarely 5 mm white feldspar phenocrysts are visible. In some areas the volcanics have a brecciated appearance with light greenish grey fragments? in a black matrix or light greenish grey areas outlined by black coated fractures. The black material has an appearance that resembles argillite but may be intensely chloritized volcanics. Graphite has tentatively been identified in the black material.

The argillites are black, massive with thin laminae of recrystallized quartz, formerly siltstone. Occasionally the argillite is cut by irregular veinlets of white carbonate +/- quartz. In areas of shearing the argillite becomes phyllitic.

One small area of limey quartzite and recrystallized limestone cut by myriads of white carbonate veinlets was noted. Pyritic quartzite float was also seen.

The volcanics and argillite have been intruded by both peridotite and diorite. The diorite appears to be dyke-like but in one area a splay of dykes was noted trending 100° , 130° and $155^{\circ}/90^{\circ}$.

Previous work has also located a fossil hotspring and extensive listwanite in the Baptiste Creek gorge.

6.3 West Lake Area

Examination of the West Lake area showed much dunite as felsenmeer and small outcrops indicating that substantial ultramafics occur on the west side of Van Decar Creek. Work in 1998 showed the ultramafics in this area occur in part as a large east-west trending sill.

6.4 South Peak Area

A brief examination of this area showed that it is underlain by fairly gently dipping rusty argillite which is cut by very inconspicuous and very altered quartz diorite dykes. The dykes trend 140° and are vertical.

7.0 <u>Mineralization</u>

Previous exploration has primarily been focused on gold-bearing mineralization within listwanite zones and the intensely carbonated norites. Gold values within the listwanites and altered norites are associated with acicular arsenopyrite which occasionally forms nests of needles up to 2.5 cm in diameter. The auriferous arsenopyrite and the listwanites appears to have a spatial relationship to the norite intrusives. It is also believed that this relationship is also genetic. Additional evidence indicates that there is also a genetic relationship between gold-bearing listwanites and recent volcanism. The epithermal imprint is manifested by chalcedonic veining, the replacement of brecciated listwanite by cryptocrystalline silica and the geochemical responses of some of the listwanites which are anomalous in gold, silver, arsenic and antimony.

Other sulphide mineralization noted include black, massive sulphide of arsenopyrite and pyrite which forms the matrix of a breccia in the Camp Zone, minor chalcopyrite as clots in talc veinlets and as trace amounts disseminated in norite and volcaniclastics and also coarse-grained stibnite in quartz veinlets in an albitized breccia zone. The ultramafics on the Mount Sidney Williams property, including the West Peak area, are host to an assemblage of nickel minerals which include awaruite, heazlewoodite, bravoite and pentlandite. The nickel mineralization which is usually very fine-grained has been seen to reach 0.5 to 1.0 cm in diameter in drill core. The nickel mineralization also appears to be rather uniformly disseminated throughout the ultramafics and does note appear to show a preferred lithological preference. However, the carbonate +/- talc alteration reduces the nickel values substantially. Nickel values are also present in some of the listwanite zones and also in a siltstone intersected in drill hole WZ 94-3.

Gold values, excluding those in the listwanites and the altered norites, have been found within the ultramafics. A 2 meter chip sample of serpentine returned a value of 5960 ppb Au. The gold is believed to be in native form as it is not associated with visible sulphide mineralization or any geochemical response such as nickel or arsenic. In addition, these gold values are not accompanied by any recognizable alteration.

Chromite is ubiquitous throughout the ultramafics. High grade chromite pods with 10 to 20% chromite are found in various locations on the Mount Sidney Williams property.

In the Baptiste Creek area, pyrite occurs as c.g. euhedral cubes in talc alteration which is coated by a yellow arsenic-oxide presumably from arsenopyrite. Pyrite also occurs as minor amounts of vfg disseminations within the carbonate listwanite.

Sulphides are rare within the argillites, quartzites and volcanics. Trace amounts of vfg pyrite was noted in the argillites with slightly coarser but still trace amounts of chalcopyrite occurring as clots in the recrystallized siltstone laminae. Most quartzites have none to trace amounts of sulphides except for some quartzite float which had 3% disseminated euhedral pyrite. The volcanics contain trace to 0.5% chalcopyrite and pyrite as dissemination. Sulphides in the volcanics are weakly anomalous in Au, Pt and Pd. Dunites contain trace to 1% vfg pyrite and trace to 1% white silvery metallic which may be awaruite.

Mapping and sampling in the West Peak area in 1998, resulted in the location of volcanics with 3% pyrite, pyrrhotite and chalcopyrite. A very fine grained diorite with traces of sulphides returned a value of 312 ppb Au. Argillaceous siltstones and argillite were found to have up to 10% pyrite and also had trace amounts of bornite and pyrrhotite. The listwanite located in the West Peak area returned nickel values but does not appear to be gold-bearing. All ultramafic rocks collected in 1998, some with visible silvery metallics presumed to be awaruite and a yellow metallic returned nickel values and in one case returned a value of 164 ppb Au. The degree of limonite on fractures and filling minute vugs in all rock types indicates that the sulphide content was much higher than noted. The 1999 sampling in the West Peak area located dunites with up to 1% awaruite? and 1% pyrite?.

An examination of the South Peak area did not locate any sulphide mineralization although the rusty nature of the argillites would indicate that pyrite is present.

8.0 Alteration

The most visible alteration on the Mount Sidney Williams property, including the West Peak area and the Baptiste Creek area, consists of redorange weathering listwanites which are composed of varying amounts of ferro-dolomite, quartz, mariposite, talc and serpentine. Ferro-dolomite usually forms the major component of the list-Quartz occurs as veinlets which are wanites. often vuggy, chalcedony veinlets and as a pervasive replacement of the ferro-dolomite. Mariposite occurs as very fine-grained disseminations which imparts a pale green hue to the ferro-dolomite and the pervasively silicified The mariposite development along listwanites. the Baptiste Creek road is particularly intense and appears to form 0.2 meter wide selvages along vertical fractures in talc.

Twenty listwanite zones have been identified to date and they are: Upper Zone, Camp Zone, Oro Zone, Stibnite Zone, B.S. Zone, West Zone, West Peak Zone, Baptiste Creek Zone, Palmy Zone, Zero Zone, Sargasso Zone, Middle Zone, Lower Zone, Sedna Zone, Arua Zone, RJS Zone, Cirque Zone, Eddy Zone, Reno Zone and the Reno South Zone.

The listwanite alteration appears to be spatially and genetically related to the norite and diorite intrusives forming a crude mineralogically zoned halo around the intrusives. Most of the listwanites occur within the ultramafic rocks but some, as in the West Peak area, are found in volcanics and volcaniclastics along the contact with the ultramafic.

In certain areas, ferro-dolomite has replaced the norite and diorite intrusives obliterating all intrusive textures.

There is no visible alteration associated with either the nickel mineralization or the gold values found in the ultramafics. However, certain types of alteration appear to be detrimental to the nickel values. Pervasive talc alteration of the ultramafic usually results in substantially lower nickel values although the coarsegrained talc found in the West Peak area does not appear to have a very significant effect on the nickel values. Listwanite and serpentinite alteration does not usually have a significant effect on nickel values.

Other types of alteration noted on the Mount Sidney Williams property include the development of tremolite, epidote, secondary biotite and garnet within volcanics.

9.0 Work Program

In June, 1999 two men spent 3 days mapping and sampling 3.5 km of logging roads on the Mid claim as the road had never received previous exploration. Sixty-four rock samples and 3 silt samples were collected approximately every 50 meters where outcrop permitted. All samples were analysed for 30 elements by ICP and Au by fire assay/ICP. Thirty-eight rock samples and 3 silt samples were also analysed for Pt and Pd by fire assay/ICP.

In August, 1999 and as a result of consistent but low Au, Pt and Pd values over a distance of 150 meters, the anomalous area was re-examined and sampled again in more detail. Fifteen rock samples were collected from sporadic outcrop over a distance of 150 meters. All samples were analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

Two other areas were also briefly examined in August. An area just north of West Lake was visited as a silt sample collected at the head waters of a creek returned slightly elevated Cu and Pd values. Seven rock samples were collected from this area and analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP. A brief stop was also made on a ridge south of Sidney Creek to examine the source of a coincident Zn-Cu-Mo soil anomaly outlined by previous soil sampling. Three rock samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

One specimen collected in the Baptiste Creek area was submitted for thin section examination in order to determine what the lithology was.

Twenty-five pulps of drill core from drill hole 94-10 were re-analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP. Twenty-four rejects of drill core from drill hole 94-10 were also re-analysed for Ni by ICP and Au by fire assay/ICP.

Two samples collected in the Baptiste road and gorge area were also analysed for 30 elements by ICP and Au, Pt, Pd by fire assay/ICP.

10.0 Sample Descriptions

158022	Silt
158023	Medium grey volcanic? sericitized,
2000-0	textureless with trace vvfg yellow and
	silver metallics: float
158024	Medium greenish grey dunite? with 1%
	vvfg disseminated pyrite and chalco-
	pyrite
158025	Orange carbonate listwanite; coarsely
	crystalline with 1% residual magnetite
	and trace pyrite; very rusty on surface
158026	Light greenish grey slightly talcose
	dunite? with trace chalcopyrite and
	pyrite
158027	Buff weathering quartzite with limey
	matrix; no visible sulphides
158028	Orange weathering light greenish grey
	very crystalline carbonate listwanite;
	cut by white coarsely crystalline
	carbonate veinlets; trace chalcopyrite
	and pyrite
158029	Dark greenish black dunite?; minor
	serpentinization; 0.5% vfg disseminated
	chalcopyrite and pyrite
158030	Medium grey carbonated, serpentinized
1 5 0 0 2 1	dunite?; no visible sulphides
158031	Light grey carbonated, serpentinized patches in black matrix of slightly
	serpentinized dunite?; no visible
	sulphides; occasional square void from
	Suthurdes, occasional advate ford from

pyrite?

- 158032 Light grey slightly carbonated dunite?; dense; cut by black-coated fractures; graphite? black chlorite? patch of f.g. white carbonate
- 158033 Dark grey weakly carbonated, serpentinized dunite?; trace chalcopyrite
- 158034 Dark grey peridotite occasionally altered to crystalline talc; very rusty patches after sulphides; no visible sulphides
- 158035 Dark red brown matrix of limonite cut by anastomising veinlets of euhedral glassy quartz occasionally with vugs 1 cm long; no visible sulphides
- 158036 Listwanite of 50% white-pale grey carbonate and 50% pale green mariposite-carbonate; 0.5% vvfg disseminated pyrite
- 158037 Dark grey quartzose argillite with patches of clear quartz grains? crystals?; minor voids lined with quartz crystals; trace disseminated sulphides and also trace on fractures
- 158038 As 158037 only slightly chloritic
- 158039 Black argillite slightly chloritic; trace disseminated chalcopyrite
- 158040 Mottled dark grey and white talc; no visible sulphides
- 158041 Dark grey sheared weakly talcose and serpentinized ???; no visible sulphides
- 158042 Black argillaceous siltstone; trace vvfg sulphides
- 158043 Silt
- 158044 Medium grey sericitized volcanic; very rusty on fractures; 0.5% pyrite; trace chalcopyrite; sulphides disseminated and on fractures
- 158045 Very rusty limonite and manganese covered black argillite with minor clear white carbonate stringers; no visible sulphides
- 158046 Very rusty black argillaceous siltstone; trace vvfg disseminated sulphides
- 158047 Black argillaceous limestone with myriads of white carbonate stringers; no visible sulphides; very rusty on surface
- 158048 Greyish white sericitized diorite; texture almost obliterated; very rusty on surface; no visible sulphides
- 158049 Greenish grey volcanic; minor chlorite, epidote alteration; 0.5% vvfg disseminated chalcopyrite
- 158050 Medium grey argillite? volcanic? with 5% disseminated pyrite; very rusty on surface
- 158051 Extremely weathered deep orange brown on surface; carbonate listwanite; no visible sulphides; much residual magnetite

- 158052 Black argillaceous quartzite; cut by white quartz stringers; dotted throughout by orange spots of limonite; no visible sulphides
- 158053 Orange weathered carbonate listwanite with some greenish areas (mariposite); surface weathers orange-black; trace vvfg disseminated pyrite; cut by a 3 cm wide glassy quartz veinlet
- 158054 Pale orange weathering and pale green carbonate listwanite; cut by white quartz veinlets; trace vvfg disseminated pyrite
- 158054A Streaky pale orange, pale to bright green, pale grey and black (magnetite) sheared carbonate and talc listwanite; trace visible sulphides; cut by white slightly vuggy quartz veinlets
- 158055 Pale orange weathering carbonate listwanite; cut by numerous glassy quartz stringers; trace pyrite
- 158056 Pale grey carbonate listwanite; no visible sulphides; cut by narrow orange weathering carbonate stringers
- 158057 Pale to bright green carbonate listwanite; very crystalline; cut by quartz veinlets with quartz crystals; trace arsenopyrite? pyrite; residual black magnetite spots
- 158058 Black sheared serpentinized, talcose harzburgite; virtually textureless; one patch 1 cm in diameter of concentrated chalcopyrite; otherwise no visible sulphides
- 158059 Mottled pale orange and pale green with bright green mariposite dots; carbonate listwanite; cut by white glassy quartz veinlets; no visible sulphides
- 158060 Dark green black chloritized? peridotite?; no visible sulphides
- 158061 Dark grey moderately serpentinized peridotite; 1% vvfg disseminated pyrite
- 158062 Pale grey quartzite with 3% sub-euhedral disseminated pyrite
- 158063 Pale greenish grey carbonate-talc listwanite; no visible sulphides
- 158064 Mottled pale orange, greyish green and dark grey carbonate-talc listwanite; no visible sulphides
- 158065 Dark greenish grey talcose peridotite; no visible sulphides but rusty limonite patches
- 158066 Dark green black intensely serpentinized peridotite; no visible sulphides
- 158067 Mottled pale orange and dark grey carbonatetalc listwanite; no visible sulphides
- 158068 Pale grey carbonate listwanite; minor talc; trace vvfg disseminated sulphides

158069	Brecciated volcanic? light grey fragments in a black argillaceous? matrix; outcrop rusty on fractures; no visible sulphides
158070	As 158069 but more rust and also open voids; no visible sulphides
158071	Volcanic with heavy rust and covellite stain on fractures
158072	Silt
158073	Light greenish volcanic ash and black argillite
158074	Carbonate listwanite with bright green
100014	mariposite
158075	Argillite with white carbonate veinlets
158076	Grey phyllite
158077	Carbonated norite?; f.g. intrusive texture;
1900//	100% carbonate
158078	Medium grey peridotite and talc
158079	Medium grey peridotite and talc with white
2000/0	wormy carbonate veinlets and vugs
158080	Black phyllite with white carbonate veinlets
158081	Rusty weathering grainy arkose? intrusive?
	has same intrusive-like texture as 158077
158082	Carbonate listwanite with extremely intense
	mariposite
158083	As 158082
158084	As 158082
158085	Deep green mariposite-rich listwanite
158086	Grey talc with 0.5 cm disseminated pyrite
	cubes; coated with yellow arsenic oxide
158087	Combination of 158085 and 158086
158104	Medium greenish grey volcanic?; chloritized;
10010.	trace vfg disseminated pyrite
158105	As 158104; trace vfg disseminated chalcopyrite
158106	As 158104; trace vfg disseminated pyrite
158107	As 158104; no visible sulphides
158108	As 158107
158109	As 158107
158110	As 158104; 0.5% vfg disseminated pyrite and
	chalcopyrite
158111	As 158104; minor epidote clots; no visible
	sulphides; vvfg feldspar laths visible
158112	As 158104; no visible sulphides; epidote
	clots and rusty carbonate clots
158113	As 158104
158114	As 158104
158115	As 158104 but with carbonate banding; no
	visible sulphides
158116	Black argillite banded with irregular quartzite; minor epidote; 0.5% disseminated pyrite

-16-

158117	As 158116
158118	Black silty argillite with recrystallized translucent quartz patches with pyrite
158119	Dark grey dunite; no visible sulphides
158120	Dark grey sheared dunite with minor white carbonate-coated fractures; no visible sulphides
158121	Dark grey banded (layered) dunite; no visible sulphides
158122	Dark grey dunite; much magnetite; trace vfg white silvery metallics
158123	Dark grey dunite with 1% vfg white silvery metallics and 0.5% disseminated pyrite
158124	Dark grey dunite with 1% vfg silvery metallics and 1% disseminated pyrite
158125	Dark grey dunite with 0.5% vfg silvery metall- ics and 0.5% disseminated pyrite
158126	Black argillite with minor recrystallized
	rusty siltstone bands; no visible sulphides; rusty on surface
158127	Black argillite at contact with intrusive; numerous spongey rusty vvfg lenses; no visible
158128	sulphides; very rusty on surface Light grey intensely altered quartz diorite; sericitized; no visible sulphides
158232	Orange carbonate listwanite cut by myriads of white carbonate veinlets; no visible sulphides; pinkish stain - cobalt bloom?; minor mariposite
158233	and large patches of hematitic material As 158118; blackish argillaceous volcanic? argillite? with patches of white quartzose material with vfg chalcopyrite; silvery metallics - graphite?
11701 11702 11703 11704 11705 11706	Ddh 94-10: 2.14 - 6.1 meters (7 - 20 feet) Ddh 94-10: 6.1 - 9.15 meters (20 - 30 feet) Ddh 94-10: 9.15 - 12.2 meters (30 - 40 feet) Ddh 94-10: 12.2 - 15.25 meters (40 - 50 feet) Ddh 94-10: 15.25 - 18.3 meters (50 - 60 feet) Ddh 94-10: 18.3 - 21.35 meters (60 - 70 feet)
11707 11708 11709	Ddh 94-10: 21.35 - 24.4 meters (70 - 80 feet) Ddh 94-10: 24.4 - 27.45 meters (80 - 90 feet) Ddh 94-10: 27.45 - 30.5 meters (90 - 100 feet)

11710 Ddh 94-10: 30.5 - 33.55 meters (100 - 110 feet) Ddh 94-10: 33.55 - 36.6 meters (110 - 120 feet) 11711 Ddh 94-10: 36.6 - 39.65 meters (120 - 130 feet) 11712 11713 Ddh 94-10: 39.65 - 42.7 meters (130 - 140 feet) Ddh 94-10: 42.7 - 45.75 meters (140 - 150 feet) 11714 Ddh 94-10: 45.75 - 48.8 meters (150 - 160 feet) 11715 Ddh 94-10: 48.8 - 51.85 meters (160 - 170 feet) 11716 Ddh 94-10: 51.85 - 54.9 meters (170 - 180 feet) 11717 Ddh 94-10: 54.9 - 57.95 meters (180 - 190 feet) 11718 Ddh 94-10: 57.95 - 61.0 meters (190 - 200 feet) 11719 Ddh 94-10: 61.0 - 64.05 meters (200 - 210 feet) 11720 Ddh 94-10: 64.05 - 67.1 meters (210 - 220 feet) 11721 11722 Ddh 94-10: 67.1 - 70.15 meters (220 - 230 feet) 11723 Ddh 94-10: 70.15 - 73.2 meters (230 - 240 feet) Ddh 94-10: 73.2 - 76.25 meters (240 - 250 feet) 11724

11725 Black dense weakly serpentinized peridotite; weakly magnetic; trace vfg disseminated silvery metallics

11.0 Results

The initial mapping and sampling along the Baptiste Creek logging roads showed that the southern part of the Mid claim in underlain by a considerable amount of talc and listwanite alteration with intense mariposite development. At least two zones were located and, as elsewhere on the Mount Sidney Williams property, the zones have an east-west orientation. Both zones appear to be at least 10 meters wide and were traced for 100 to 200 meters. Other than elevated As and Ni values, no significant values were obtained.

Rock units which were thought to be dunite or peridotite when collected from the Mid claim returned very low values in Ni and Co. A thin section examination of sample 158104, a typical specimen of this lithology showed that the peridotitic-looking material is in fact a vfg volcanic which is probably an altered basaltic glass. The polygonal fracturing or fragments? could possibly be volcanic bombs or disintegrated pillows. Of all the samples collected on the Mid claim this lithology plus one sample of argillite are the only ones to contain Pt and Pd. Although the PGE values are not of economic significance, other volcanic units on the Mount Sidney Williams property may host higher grade PGE values as they contain substantially more sulphides than the specimens on the Mid claim. The PGE values in the volcanic and argillite are associated with high Fe values and do not appear to have the typical affinity with Cu. It is believed that PGE's are associated with pyrite.

Sulphide-bearing dunite was located in the West Lake area. No precious metal values were obtained. All samples returned elevated nickel values.

Examination of the South Peak area showed it to be underlain by intensely rusty argillites which are cut by minor altered quartz diorite dykes. No significant mineralization was noted. A sample of the very altered quartz diorite returned a value of 210 ppm Zn. The brief examination did not locate the source of the coincident Zn-Cu-Mo soil geochemical anomaly outlined by previous sampling.

Re-analyses of pulps of core from drill hole 94-10 showed a substantial increase in Ni values. Rejects of the core from drill hole 94-10 were also analysed in order to determine if mesh size significantly affects Ni values. The results are compared in Table 1. It would appear that the finer grind (-150 mesh) produces higher Ni values. Also sample 11722 shows clear evidence of the metallic nature of awaruite. Initial analyses returned a value of 1966 ppm Ni but a recheck analyses returned a value of 1855 ppm Ni.

Thirteen samples (11701 - 11713) of reject material from drill hole 94-10 were washed and examined under binocular microscope. Three of the samples contained awaruite easily recognizable as bright silvery metallics that were contorted and grooved indicating awaruite's malleabile nature. Sample 11703 contained 3 awaruite fragments, 11712 contained 1 fragment and 11713 contained 6 fragments. Samples 11705 and 11710 contained silvery metallics in peridotite fragments. In all other samples no silvery metallics were noted. No sulphides were observed in any of the samples examined.

TABLE 1

COMPARISON OF NICKEL (PPM) VALUES

Sample Number	ITS -150	Acme -150	Acme -100
11701 11702 11703 11704 11705 11706 11707 11708 11709 11710	-150 1526 1477 1428 1452 1397 1474 1488 1688 1547 1463 1390	-150 1917 1871 1910 1704 1701 1784 1838 1972 1827 1683 1854	-100 1810 1733 1736 1674 1710 1645 1791 1680 1685 1693 1568
11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11722 11722 11723 11724 11725	1390 1519 1605 1625 1679 1583 1620 1731 1466 1562 1511 1438 1438 1667 1309 1549	1854 1840 1896 2060 2033 1873 1993 1953 1848 1818 1824 1843 1843 1843 2031 1784 1869	1508 1622 1628 1722 1822 1883 1796 1706 1703 1683 1697 1966 1855 1678 1907

~

-20-

12.0 <u>Conclusions</u>

More mapping and sampling are required on the Mid claim in order to determine the economic potential of the listwanite and talc zones.

Platinum and palladium values, although low grade, are exclusively confined to volcanic and argillite on the Mid claim.

The finer grind (-150 mesh) produced more elevated nickel values than the -100 size fraction.

.

13.0 References

- Paper 37-13, West Half of the Fort Fraser Map-Area, B.C., by J. E. Armstrong, 1937.
- Paper 38-10, Northwest Quarter of the Fort Fraser Map-Area, B. C., by J. E. Armstrong, 1938.
- Paper 78-19, Jade in Canada, by S. F. Leaming.
- Paper 74-1, Part B, Geology of the Cache Creek Group and Mesozoic Rocks at the Northern End of the Stuart Lake Belt, Central B.C., by Ian A. Paterson, 1975.
- Memoir 252, Fort St. James Map-Area, Cassiar and Coast Districts, B. C., by J. E. Armstrong, 1949.
- Assessment Report 5648, Rock Sampling and Prospecting on the Pauline Claims, by D. Stelling, 1975.
- Assessment Report 8135, Prospecting Report on the CR Claims, by V. Guinet, 1980.
- Assessment Report 10286, Geophysical Report on the CR 1 - 6 Claims, by T. Pizzot, 1982.
- Assessment Report 11879, Geochemical Survey on the BAP Claims, by R. R. Culbert, 1984.
- Assessment Report 17173, Geochemical Sampling on the Van Group, Klone Group, Mid Claim, by U. Mowat, 1988.
- Assessment Report 18089, Geochemical Sampling, Prospecting and Mapping on the Van Group, Klone Group and Mid Claim, by U. Mowat, 1988.
- Assessment Report 20541, Mapping and Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1990.
- Assessment Report 21870, Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1991.
- Assessment Report 23569, Drilling Program on the Mount Sidney Williams Property, by U. Mowat, 1994.

- Assessment Report 24906, A Geochemical/Petrographic Report on the Mount Sidney Williams Property, by U. Mowat, January 1997.
- Assessment Report 25278, Sampling and Metallurgical Report on the Mount Sidney Williams Property, by U. Mowat, November 1997.

Assessment Report 25727, Mapping and Sampling on the Mount Sidney Williams Property, by U. Mowat, November, 1998.

14.0 Statement of Costs

Analy		
	25 pulps analysed for 30 elements	\$ 435.00
	by ICP and geochem Au, Pt, Pd	
	at \$17.40/sample	
	GST	30.45
	651	\$ 465.45
		Ψ -100-10
		¢ 00 00
	24 rejects analysed for Ni by	\$ 90.00
	ICP at \$3.75/sample	
	24 rejects analysed for Au by	210.00
	FA/ICP at \$8.75/sample	
	13 reject prep at \$2.20/sample	28.60
	11 reject prep at \$4.25/sample	46.75
	GST	26.28
	991	\$ 401.63
		4 401.00
		*
	9 retrieve Pt and Pd at	\$ 27.00
	\$3.00/sample	
	GST	1.89
		\$ 28.89
	53 rock samples analysed for 30	\$ 922.20
	elements by ICP and Au, Pt,	+
	Pd by FA/ICP at \$17.40/sample	270 60
	41 rock samples analysed for 30	270.60
	elements by ICP at \$6.60/	
	sample	
	38 rock samples analysed for Au	332.50
	by FA/ICP at \$8.75/sample	
	91 rock prep at \$4.25/sample	386.75
	3 silt prep at \$2.20/sample	6.60
	5 Silt piep at \$2.207 Sample	\$2052.96
		\$2052.50
Thin	Section	* ~~ ~~
	1 polished thin section at \$26.00	\$ 26.00
	Report: 0.5 hours at \$90.00/hour	45.00
	GST	4.97
		\$ 75.97
Helia	copter	
nerr	7.0 hours at \$630.00/hour	\$4410.00
	797.6 liters at \$0.70/liter	558.60
	GST	347.80
		\$5316.40

<u>/-</u>>

~

1-

Storage Charges 4 months at \$169.23/month 8 months at \$157.42/month service charge	\$ 676.92 1259.36 <u>27.07</u> \$1963.35
Labour 1 man for 4 days at \$275.00/day 1 man for 25 days at \$400.00/day	\$1100.00 000.00 \$11100.00
Freight	\$ 171.78
Airfare	\$ 535.72
Bus	\$ 39.27
Taxi	\$ 58.00
Accommodation 7 nights at 45.20/night	\$ 316.40
Meals	\$ 372.18
Supples	\$ 87.00
Photos	\$ 5.00
Reproduction	\$ 60.54
TOTAL	\$23050.54

15.0 Statement of Qualifications

- 1. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 2. I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- 3. I have practiced my profession since 1969 in mineral, oil and gas, and coal exploration.
- 4. I have a direct interest in the Mount Sidney Williams property.

Insular nowal Ursula G. Mowat, P. Geo. U.G. NOA

Dated this 27th day of October, 1999 at Vancouver, B. C.

Ursula Mowat #1405 - 1933 Robson Street Vancouver, B.C. V6G 1E7

29 September, 1999

Dear Ursula:

RE: Microscopic study (158104) / E.R.L. Job V990634R

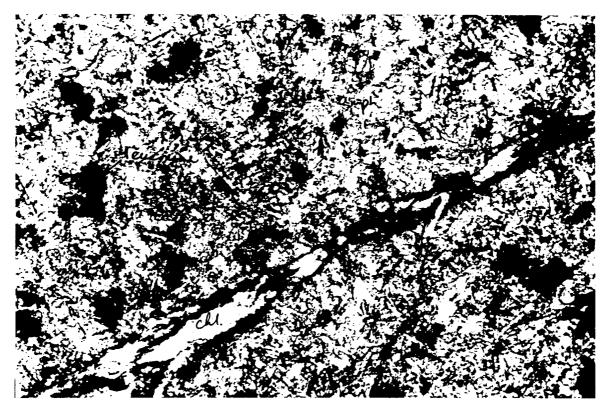
A polished thin section was prepared of a rock specimen numbered 158104.

In section, under transmitted light, the rock is seen to be composed of a massive matte of extremely fine grained crystals, (believed to be a amphibole plus/minus feldspar). This material is fractured in a rectangular to polygonal manner and healed along fractures by chlorite and a dark/opaque phase. This phase may be a manganese oxide. Small, rounded patches of chlorite to 1 mm are present in the rock groundmass.

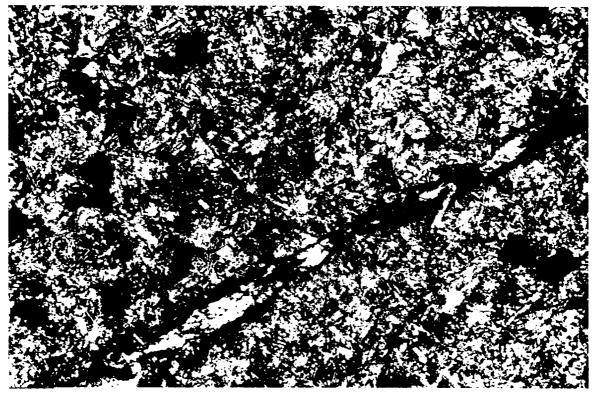
In reflected light, trace amounts of chalcopyrite, in grains up to 0.15 mm, but usually in the 10 - 30 micron size range are disseminated and in fractures. Rare grains of pyrite are noted.

The rock is thought to be an altered/metamorphic equivalent of a basic volcanic.

I have taken a few photomicrographs. These are captioned and appended.


Yours truly,

hi 1


J.A. McLeod, M.A.Sc., P.Eng. E.R.L. Manager

JAM/skw

App. (photomicrographs)

R99:9454. Fine felted groundmass cut by a opaque lined chlorite fracture. Disseminated opaques (leucoxene). Groundmass may be amphibole. Transmitted light, magnification 63x.

R99:9454. As above but crossed nicols.

135 µm

135 *µm*

R99:9454. Disseminated chalcopyrite in the fine felted, amphibole rich, meta-volcanic. Reflected light, magnification 160x.

						Mc	wa	t, 1	GE Jrsu	la	PR	OJ	ECI	<u>.</u> M	A_ 1 <u>SW</u> St.,	F	ile	: #	99	016		F	age	e 1							r	4	
AMPLE#	Mo ppm p				-	Ni ppm	Co ppm	Mn ppm				Au ppm			Cd ppm			V ppm	Ca %		La ppm	Cr ppm	-	Ba ppm		B opm	Ai %	Na %	K %			Pt** ppb	
158023	1	70	6	80	.5	81	41	969	7.02	8	<8	<2	<2	15	2.0						2	177	3.87	60	.22	3	3.71	.03	.12	<2	<1	<1	2
158024	<1				<.3	25		1360	5.82						1.7				1.41		4	18	1.99	169	.49	<3	2.62	.04	.09	2	2	<1	1
E B158024	1 .	44				25		1318		26					1.4						4									<2	1	<1	2
158025	<1		<3			1390	79		3.75	18			<2		1.0						1		16.51			-	.21<			2	7	3	<1
158026	<1	86	5	25	<.3	85	23	391	2.55	<2	<8	<2	<2	7	.2	<5	<5	30	.62	.008	<1	68	1.77	9	.17	3	1.78	.03	.02	<2	<1	7	8
158027	1	20	18	97	.3	36	21	1204	5.16	14	<8	<2	<2	16	.5	<3	<3	94	.60	.091	12	22	.48	594	<.01	5	.46	.07	.03	<2	<1	<1	<1
158028	6		5	• •	.4	457		1123	5.06	87	<8	<2	5		1.8				1.91		21		4.70			6	.80			<2	<1	2	4
158029	<1 1		-	19		29	20	246	2.34	2	-		<2	8		<3		63	.79		1	19			.22		.77			2	<1	<1	<1
158030	1	74		44		41		551	3.60	<2			<2	7		<3					1		1.42								1	1	3
158031	1	44	6		<.3	47	29	670	4.84	<2		<2	<2		1.0	<3	<3	34		.051	1		2.28				2.53			<2	6	<1	4
158032	<1		-	67			36		7.00	<2		<2			1.6						1		1.84				2.55			<2	16	10	28
158033	<1 6		7		<.3	51			5.49			<2								.021			1.69						.04	2	17	6	19
158034		234	-		.4				9.29											.035			2.02							<2	8	10	33
158035	9					1802			9.12						2.1				1.55			153								8	<1	<1	1
158036	<1	15	<5	19	<.3	1365	84	692	4.30	100	<8	<2	<2	8	1.4	<5	<5	12	.17	.004	1	534	15.11	25.	<.01	<5	.19<	.01	.02	2	1	2	1
158038	<1 1	23	4	25	<.3	48	22	312	2.24	<2	<8	<2	<2	43	5	<3	<3	76	2.11	074	1	44	.51	20	.20	<3	2 30	78	10	<2	<1	<1	1
158039	<1 2		4	81	.4	40			8.83	<2	<8		<2	6	2.1					.043			2.55							<2	ż	13	18
158040	<1		<3	3		125	11		1.13	2		<2										1304									<1	5	3
158041	1		6		<.3				2.72			<2			1.1							1376									<1	2	ž
158053	1	11	6	16	<.3	935	59	470	3.48	28	<8	<2	<2	1	.8	<3	<3	14	.05	.016	<1	585	12.65	15	<.01	<3	.19<	.01	.01	3	1	2	2
		-		-							_	_	_	_	. .	_	_				_									-			
158058	<1	9			1.1				10.18	4		<2								.002			10.14		.01		7.39<				1	<1	<1
158060		54			<.3		. –	491	3.07				<2						1.98		1		1.26								<1	<1	<1
158061		20	5						3.85	9			<2									1186			.01						2	5	4
158065	1	34	14	90		71			11.22													113			.02	-	5.99	=			<1	<1	<1
158066	<1	21	6	14	<.s	1316	oУ	240	3.56	11	^0	<2	< 2	I	1.0	د،	< S	32	.08	.005	<	1188	12.52	4 <	<.01	18	.49<	.01<	.01	<2	<1	6	7
158078	<1	18	10	98	.3	157	47	1596	7.61	3	<8	<2	<2	86	2.1	4	<3	129	3.23	.153	14	177	4.01	65	. 14	3	4.01	-02	.12	<2	<1	<1	<1
158086	<1					1152			3.25	38	<8	<2										913									5	2	<1
ANDARD C3/FA100	26						13		3.40											.087					.10						49	47	48

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 8 1999 DATE REPORT MAILED: June 16/99

Mowat, Ursula PROJECT MSW FILE # 9901651

Page 2

Data 4

ACME ANALYTICAL	ACHE ANAL	YTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au**	
	ppm ppm ppm ppm ppm ppm ppm mpq mqq mqq	
B158037 B158042 B158044 B158045 B158046	<1 178 7 94 <.3 51 57 1437 12.33 <2 <8 <2 <2 16 3.0 <3 <3 185 .88 .026 <1 30 2.74 424 .83 <3 3.88 .02 .09 <2 10 2 22 <3 8 <.3 15 2 62 .63 <2 <8 <2 <2 2 <.2 <3 <3 6 .15 .050 3 28 .07 14 .05 <3 .09 .01 .03 5 <2 <1 259 7 72 <.3 101 44 546 6.20 <2 <8 <2 <2 14 1.1 <3 <3 90 .97 .193 7 57 1.53 74 .49 <3 1.95 .05 .36 <2 <2 <1 75 6 107 <.3 94 42 1009 7.00 11 <8 <2 <2 125 1.4 3 <3 82 5.77 .092 <1 78 2.61 128<.01 5 .78 .03 .19 <2 <2 <1 140 6 176 <.3 150 65 1716 10.03 4 <8 <2 <2 62 1.6 <3 3 29 1.27 .077 <1 25 .47 71<.01 <3 .61 .03 .33 <2 <2	
B158047 B158048 B158049 B158050 B158051	<pre><1 97 6 47 .3 51 39 1101 6.33 2 <8 <2 <2 33 1.6 6 <3 119 7.69 .019 <1 30 3.85 72<.01 5 .64 .04 .13 <2 <2 <1 49 <3 53 .4 67 34 941 6.43 <2 <8 <2 <2 108 1.6 4 <3 176 5.46 .039 3 100 2.95 71 .03 3 2.40 .02 .09 <2 <2 <1 126 <3 43 <.3 43 27 645 4.09 <2 <8 <2 <2 13 .5 <3 <3 83 .72 .020 <1 60 1.79 13 .33 <3 2.01 .04 .02 <2 <2 <1 124 11 71 .4 103 54 1253 9.66 11 <8 <2 <2 34 2.3 5 4 217 2.78 .033 1 148 4.96 78 .01 4 3.77 .02 .05 <2 2 <1 4 3 39 .3 1839 106 1445 5.17 357 <8 <2 <2 44 1.8 3 5 54 1.68 .003 2 2378 7.24 70<.01 <3 2.22 .01 .03 <2 <2</pre>	
B158052 B158054 B158054A B158055 B158056	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
B158057 B158059 RE B158059 B158062 B158063	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
B158064 B158067 B158068 B158069 B158070	<pre><1 5 <3 1 <.3 572 55 599 3.37 17 <8 <2 <2 1 .8 <3 <3 5 .07 .003 <1 222 10.45 4<.01 <3 .03<.01<.01 <2 <2 1 4 4 2 <.3 506 54 665 3.28 6 <8 2 <2 1 .9 <3 <3 7 .06 .004 <1 443 12.35 12<.01 <3 .13<.01<.01 <2 <2 <1 14 9 4 <.3 1200 52 468 3.50 37 <8 <2 <2 <1 1.0 3 <3 9 .10 .003 <1 593 19.30 3<.01 <3 .11<.01<.01 2 2 <1 109 <3 40 <.3 56 27 541 3.84 <2 <8 <2 <2 25 .6 3 <3 80 1.05 .033 1 53 1.61 48 .43 <3 1.93 .03<.11 <2 <2 <1 137 5 46 <.3 70 37 607 5.32 2 <8 <2 <2 32 1.4 3 <3 89 1.43 .044 1 143 1.69 49 .65 <3 2.20 .04 .07 <2 <2</pre>	
B158071 B158073 B158074 B158075 B158076	<1 32 7 83 <.3 33 32 1011 6.69 <2 <8 <2 <2 10 1.5 <3 <3 111 .84 .066 1 67 1.98 36 .70 <3 2.82 .03 .22 <2 <2 <1 137 8 77 <.3 87 42 568 5.93 2 <8 <2 <2 27 1.3 <3 <3 73 .76 .125 8 129 2.33 53 .45 <3 2.37 .02 .18 <2 <2 <1 55 5 126 <.3 97 40 763 6.02 28 <8 <2 <2 176 1.7 4 4 29 7.48 .068 6 44 1.27 31 .01 <3 1.43 .03 .19 <2 <2 <1 30 3 100 <.3 86 35 688 6.09 3 <8 <2 <2 171 1.6 <3 <3 80 8.65 .138 9 102 1.68 22 .04 <3 2.59 .03 .11 <2 <2 <1 86 6 103 <.3 73 24 563 4.84 <2 <8 <2 <2 197 1.5 <3 <3 72 6.84 .173 8 64 1.12 66 .05 <3 2.12 .01 .34 <2 <2	
B158077 B158079 B158080 B158081 B158082	<1 9 8 52 .3 206 31 950 4.69 29 <8 <2 <2 144 1.4 4 <3 65 6.32 .039 3 422 4.68 14 14 .01 .02 .10 .10 .10 .10 .10 .2 .2 .2 .2 .10 .10 .2	
STANDARD C3/AU-R STANDARD G-2	26 65 38 165 5.8 37 13 781 3.47 58 23 4 19 29 23.5 18 21 82 .59 .089 19 170 .63 152 .10 17 1.86 .04 .16 20 464 2 2 3 39 <.3	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL)						M	owa	it, 1	Jrsı	ıla	PRO)JE(CT 1) MSW	F	ILE	# !	9901	651						Pag	je 3)	ACME AN	A IAL YTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	в ррт	Al %	Na %	К %	W ppm	Au** ppb
B15083	<1	9	<3	17	<.3				3.60		-	<2	<2	103	1.2	<3	3		2.01		<1		13.18		<.01	_	.22		.01	<2	<2
B15084 B15085	<1	44 6	> <3	104 10	<.3 <.3	199 1012	52 68	403	10.16 3.72	71 427	<8 <8	<2 <2	<2 <2	233	3.2 1.3	<3 <3	<3 <3	65 5	10.70 .55	.086	2 <1		4.43 15.83		<.01 <.01	7 <3	1.35	.01 .01>	.14 .01	<2 2	5 <2
B15087 RE B15087	<1 <1	9 8	5 <3	13 15	<.3 <.3	1150 1164	69 70	655 676	4.20 4.16	69 74	<8 <8	<2 <2	<2 <2	17 18	1.1 1.5	<3 <3	3 <3	21 21		.003	<1 <1		12.03 12.31		<.01 <.01	6 <3		<.01 <.01	.01 .01	3 <2	2 2

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

ACME AN/ TICAL LABORATORIES LTD. 89 (ISC 002 Accredited Co.)	52 E. HASTINGS ST. '	COUVER BC V6A 1R6	PHONE(604)253-3158 FAX(604	53-1716
ΔΔ	GEOCHEMICAL ANAL	YSIS CERTIFICATE		AA
TT Mowat,		<u>SW</u> File # 9901651F , Vancouver BC V6G 1E7	1	
	SAMPLE#	Pt** Pd** ppb ppb		
	B 158037 B 158044 B 158046 B 158050 B 158051	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	B 158079 B 158082 B 158083 B 158084	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
ASSAY RECOMMENDED FOR ROCK AND CORE - SAMPLE TYPE: ROCK PULP PT** PI	SAMPLES IF CU PB ZN AS > 1%, D** BY FIRE ASSAY AND ANALYSI	, AG > 30 PPM & AU > 1000 PPB IS BY ULTRA/ICP. (30 gg)		
DATE RECEIVED: JUN 22 1999 DATE REPORT MA	AILED: June 23/99	SIGNED BY	D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C	. ASSAYERS
All results are considered the confidential property of	the client. Acme assumes th	e liabilities for actual cost o	f the analysis only. Dat	a_U_FA

			JEUCHEMICAI	L ANALISIS CE	RTIFICATE		
4						0	Δ
		Mowat,	1405 - 1933 I	<u>OJECT MSW</u> Fi Robson St., Vancouver	Le # 9901652 BC V6G 1E7	2	
SAMPLE#	Mo Cu Pb Zn	Ag Ni Co Mn F	e As U Au T	ih Sr Cd Sb Bi	V Ca P La Cr	Mg Ba Ti B Al Na	K W Au** Pt** Pd**
	ppm ppm ppm ppm p			om pom pom pom pom po	m % % ppm ppm	% ppm % ppm % %	% ppm ppb ppb ppb
B158022	1 15 <3 52 <	.3 348 28 1174 3.5	57 24 <8 <2 <	<2 17 .8 <3 <3 4	8.26.043 7348	3.38 105 .07 8 1.13 .04	
B158043 B158072	3 22 <3 60 <	<pre>.3 239 26 2149 4.4 <.3 475 58 5316 5.7</pre>	74 25 <8 <2 <	<pre><2 19 1.1 <3 <3 7</pre> <pre><2 19 1.1 <3 <3 6</pre>	2.30.053 8.518	2.24 141 .15 4 1.55 .04 2.89 240 .07 3 1.26 .03	07 <2 <1 2 1
RE B158072	4 22 3 63 <	.3 486 59 5333 5.7	74 26 <8 <2 <	<2 17 1.7 <3 3 6	2.31.053 8 504	2.94 237 .07 <3 1.27 .03	.07 <2 1 3 4
STANDARD C3/FA100	26 65 35 168 5	0.8 36 12 799 3.3	5 58 24 <2 1	9 31 23.5 17 20 8	2 .56 .087 19 170	.61 144 .08 20 1.77 .05	.16 20 49 49 49
ı	ICP500 GRAM SAN	IPLE IS DIGESTED UT	H 3MI 2-2-2 Hri-	HNO3-H20 AT 05 DEC C		S DILUTED TO 10 ML WITH WA	TED
T	THIS LEACH IS PARTI	AL FOR MN FE SR CA	P LA CR MG BA TI	B W AND MASSIVE SULF	IDE AND LIMITED FOR	NA K AND AL.	ICK.
	SAMPLE TYPE: SIL1	AU** PT** PD** RE' are Reruns and	'BY FIRE ASSAY & 'RRE' are Reject	ANALYSIS BY ULTRA/IC	P. (30 gm)		
-					nt.		
ATE RECEIVED:	: JUN 8 1999 D.	ATE REPORT MAI	LED: June 1	6/99 SIGNED	BY.C.	TO	CERTIFIED B.C. ASSAYERS
				- / - /			
			\mathcal{U}			1	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_FA____

ACME ANALYTICAL LABORATORIES LTD. (IE)002 Accredited Co.)

GEOCHEMICAL ANA_ISIS CERTIFICATE

PHONE(604)253-3158 FAX(604)253-1716

Data

Mowat, Ursula PROJECT MSW File # 9902560 1405 - 1933 Robson St., Vancouver BC V6G 1E7 Submitted by: Ursula Mowat

852 E. HASTINGS ST. WANCOUVER BC V6A 1R6

SAMPLE#	N	lo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Вi	v	Ca	P %	La	Cr	Mg	Ba	Ti	в	Al	Na	κ	W.	Au**	Pt**	Pd** ppb	•
B 158104 B 158105 B 158106 B 158107 B 158108		1 1 1	238 47 74	<3 <3 <3	70 46 42	.3 <.3 <.3	30 29 37	31 24 26	845 620 632	4.55 6.10 3.96 3.83 1.83	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	15 11 9	<.2 <.2 <.2	3 4 4	<3 <3 4	180 103 75	.69 .69 .69	.024 .021	1 1 1	20 52 71	1.16 1.75 1.51 1.53 .69	30 . 32 . 16 .	.42 .34 .26	<3 <3 <3	2.77 2.10 2.08	.04 .04 .05	.16 .19 .10	<2 <2 <2	2 4	17 15 16 17 15	21	
B 158109 B 158110 B 158111 B 158112 B 158113		1 1 1	205 58 55	<3 3 <3	55 51 47	.4 <.3 <.3	23 46 51	25 29 29	879 675 683	4.87	<2 2 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	20 6 14	.2 <.2 <.2	3 5 6	<3 3 <3	148 87 74	.72 .58 .76	.023 .044 .016 .017 .039	1 <1 1	17 117 92	1.31	31 . 41 . 34 .	40 29 26	<3 <3 <3	2.18 2.53 2.52	.03 .04 .03	.20 .14 .12	<2 <2 <2	4	14 12 13	18 22 16 14 13	
B 158114 B 158115 B 158116 B 158117 B 158118		1 2 8	62 74 38	<3 4 3	52 108 136	<.3 <.3 <.3	85 63 27	30 21 8	794 749 240	4.34 4.01	<2 5 <2	<8 <8 <8	<2 <2 <2	<2 2 <2	10 8 8	.3 .3 .5	4 6 <3	<3 <3 <3	100 55 27	.92 .31 .24	.093 .053	2 7 4	166 61 37	1.98 2.07	35 . 147 . 156 .	.51 .08 .15	<3 3 6	2.44 2.46 .58	.03 .01 .01	.08 .46 .33	<2 <2 2	3 2	8	14 15 6 3 32	
B 158119 B 158120 RE B 158120 B 158121 B 158122		1 1 1	26 26 18	<3 <3 <3	19 19 36	<.3 <.3 <.3	1284 1290 1455	73 73 91	1059 1069 777	4.63 4.66 4.86	2 4 <2	<8 <8 <8	4 3 3	<2 <2 <2	6 6 1	.2 <.2 <.2	<3 <3 <3	<3 <3 5	40 40 49	3.33 3.35 .22	.003 .004 .004 .004 .005	<1 <1 <1	1844 1864 1851	11.98 12.20 16.10	8. 8. 24.	01 01 01	32 32 43	.58 .58 .74	<.01< <.01< <.01<	.01 .01 .01	<2 <2 <2	1 2 1 <1	7 6 5 6	6 5 5 4 5	
B 158123 B 158124 B 158125 B 158126 B 158127		1 :1 3	3 5 27	<3 <3 5	16 21 59	<.3 <.3 .4	1357 1485 20	67 71 2	498 615 392	3.47 3.42 2.65	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 2	<1 <1 36	.2 <.2 <.2	<3 3 3	<3 <3 <3	29 25 52	.72 .01 .22	.003 .004 .004 .087 .080	<1 <1 10	1289 1213 38	16.52 17.96 .93	4<. 8<. 104	.01 1 .01 .14	165 57 6	.42 .39 1.31	<.01< <.01< .04	.01 .01 .14	<2 <2 2	1 1 3 1	5 6 1 1	6 6 1 3	
B 158128 STANDARD C3/FA100 STANDARD G-2	2	27	63	39	172	<.3 6.0 <.3	38	12	780	3.43	57	18	<2	21	32	25.3	16	24	85	.61	.065 .094 .096	19	183	.59	157.	09	20	1.97	.04	.17	16	1 46 1		2 46 <1	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANAT.YTI	CAL ABORAT			GEOCI	HEMICA	L ANA S	COUVER BC V	ICATE)253-3158	FAX (604) 253-1716
							GM File # G 167 Submitte				
SAMPLE#	Mo Cu Pb Z ppm ppm ppm pp	Ū.				Sr Cd Sb E ppm ppm ppm pp	BiVCa I pm.ppm %		5		W Au** Pt** Pd** pm ppb ppb ppb
B 158232	<1 34 3	5 <.3 122	2 77 993	4.62 45 <8	<2 <2	30 < .2 <3 •	<3 5 2.02 .00	3 <1 110 12.	02 1<.01 3	.03<.01<.01	<2 3 4 3
B 158233	<1 252 <3 6	54 <.3 3	5 32 1382	7.62 2 <8	<2 <2	13 <.2 <3	3 139 .59 .02	8 <1 32 1.0	61 284 .43 4 2	.35 .09 .13	<2 7 11 35
RE B 158233	<1 250 <3 6	56 6 3 3	3 32 130/	7 62 3 68	0 0	17 2 2 1	3 137 50 02	7 21 33 1	61 282 .42 3 2	76 00 17	~7 9 7 31

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) Samples beginning 'RE' are Returns and 'RRE' are Reject Recurns

DATE RECEIVED: OCT 5 1999 DATE REPORT MAILED: Ott 13/99 SIGNED BY.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

AN /TICAL LABORATORIES LTD. 852 E. HASTINGS ST. (ISC 9002 Accredited Co.)

ACME AN

GEOCHEMICAL ANALYSIS CERTIFICATE

Mowat, Ursula PROJECT MSW File # 9900576 1405 - 1933 Robson St., Vancouver BC V6G 1E7 Submitted by: Ursula Mowat

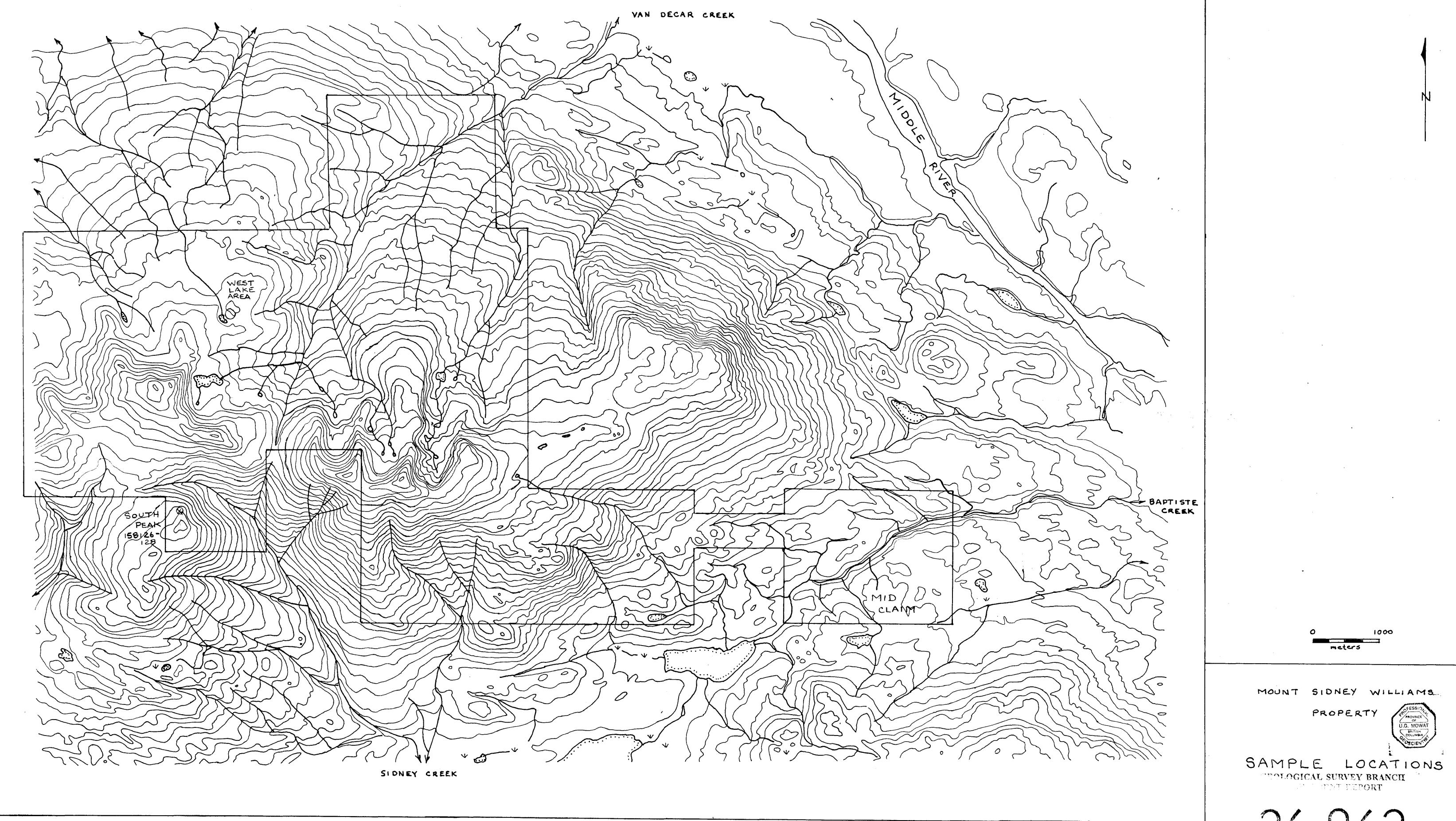
							140	- c	1733	RODS	on s		vanc	ouvei																				
SAMPLE#	Mo ppn p														Cd	Sb	Вi	v	Ca	Ρ	La	Cr	Mg) Ba	Ti	в	Al %				Au** ppb	Pt**	Pd**	
11701						1917																					.48<				3	7	4	
11702						1871																	20.14				.59<				8	4	3	
11703						1910																	18.15		<.01						1	6	5	
11704																							17.61				.42<			_	10	4	<1	
11705	<1	7	<3	25	<.3	1701	83	846	3.83	<2	10	<2	<2	2	.7	<3	<3	37	.97	.004	<1	1347	18.15	5 1<	<.01	30	.45<	.01<	.01	<2	1	4	3	
11706	1																						18.20		<.01	34	.44<	.01<	.01	<2	3	4	3	
11707	<1					1838																	18.64		<.01	30	.48<	.01<	.01	<2	<1	4	2	
11708	<1	11	<3	26	<.3	1972	87	582	4.09	2	11	<2	<2	<1	.5	<3	3	39	.42	.005	<1	1567	18.59) 1<	<.01	26	.52<	.01<	.01	<2	<1	4	2	
11709	1					1827																	18.65		<.01	32	.45<	.01<	.01	<2	<1	6	5	
11710	<1	9	<3	26	<.3	1683	83	753	4.03	<2	10	<2	<2	<1	.4	<3	<3	36	.72	.004	<1	1383	18.00) 1<	<.01	30	.41<	.01<	.01	<2	2	6	5	
11711	<1	9	<3	23	<.3	1854	92	927	4.06	22	9	<2	<2	5	.6	3	<3	35	.86	.004	<1	1367	19.58	3<	<.01	44	.39<	.01<	.01	<2	<1	4	3	
11712	<1	8	<3	23	<.3	1840	85	640	4.10	- 73	9	<2	<2	1	.6	<3	<3	38	.67	.004	<1	1405	18.63	i 1<	.01	29	.48<	.01<	.01	<2	<1	3	1	
11713	<1	9	<3	26	<.3	1896	94	920	4.23	4	11	3	<2	<1	.9	- 7	<3	36	.82	.005	<1	1452	20.17	' 1<	<.01	52	.41<	.01<	.01	<2	<1	5	4	
11714	<1	11	<3	26	<.3	2060	99	818	4.42	<2	10	<2	<2	<1	1.0	3	4	39	.79	.005	<1	1590	20.45	i 1<	.01	51	.46<	.01<	.01	<2	<1	4	2	
11715	<1	11	<3	27	<.3	2033	94	632	4.33	<2	9	<2	<2	<1	.7	<3	<3	40	.66	.005	<1	1639	19.11	1<	.01	35	.50<	.01<	.01	<2	1	6	4	
11716	1	10	8	25	<.3	1873	89	667	4.41	<2	<8	<2	<2	1									19.74		.01	38	.53<	.01<	.01	<2	2	7	5	
11717	1	10	<3	24	<.3	1993	96	689	4.09	4	<8	<2	<2	1	.8	3	<3	37	.60	.004	<1	1525	19.23	i 1<	:.01	38	.49<	.01<	.01	<2	1	5	3	
11718	<1	10	<3	23	<.3	1953	92	715	4.23	3	10	<2	<2	1	.7	<3	4	39	.72	.004	<1	1542	18.78	s 1<	:.01	40	.50<	.01<	.01	<2	1	4	3	
11719	<1	10	<3	25	<.3	1848	89	744	3.93	<2	11	2	<2	1	.8	<3	<3	35	.66	.005	<1	1431	18.14	2<	.01	39	.43<	.01<	.01	<2	2	4	3	
11720	<1	9	<3	24	<.3	1818	88	813	4.06	<2	11	<2	<2	1	.8	<3	<3	39	.88	.004	<1	1523	18.72	! 1<	:.01	40	.47<	.01<	.01	<2	2	5	2	
RE 11720	<1	9	<3	26	<.3	1877	91	835	4.15	2	11	2	<2	1	.9	3	<3	40	.91	.004	<1	1564	19.30	2<	.01	42	.48<	.01<	.01	<2	2	5	3	
11721	<1	9	<3	25	<.3	1824	89	948	4.48	- 7	11	<2	<2	1	.5	<3	<3	38	.91	.004	<1	1478	18.92	2<	.01	49	.41<	.01<	.01	<2	<1	4	3	
11722	<1	9	<3	25	<.3	1843	92	907	4.04	<2	10	<2	<2	1	.5	<3	3	35	.71	.004	<1	1454	18.97	′ 2<	.01	48	.41<	.01<	.01	<2	<1	1	1	
11723	<1	10	<3	25	<.3	2031	98	911	4.42	6	8	3	<2	1	1.0	4	<3	37	.68	.005	<1	1495	19.24	. 1<	.01	51	.41<	.01<	.01	<2	1	4	3	
11724	<1					1784							<2	1	.7								18.25		.01	47	.37<	.01<	.01	<2	<1	2	<1	
11725	<1	9	3	25	<.3	1869	87	585	4.17	<2	8	<2	<2	<1	.7	<3	6	39	.43	.004	<1	1570	18.09	1<	.01	25	.52<	.01<	.01	<2	2	5	4	
STANDARD C3/FA100	27	66	35	179	5.6	35	12	791	3.31	59	22	3	22	28	23.8	16	22	82	.57	.090	18	171	.59	149	.09	21	1.99	.04	. 16	15	47	47	46	
STANDARD G-2	2	4	3	45	<.3	- 7	4	499	1.84	<2	<8	<2	4	65	<.2	<3	<3	39	.62	.086	7	69	.55	209	.12	<3	.91	.06	.43	2	-	-	-	
	****																											·						

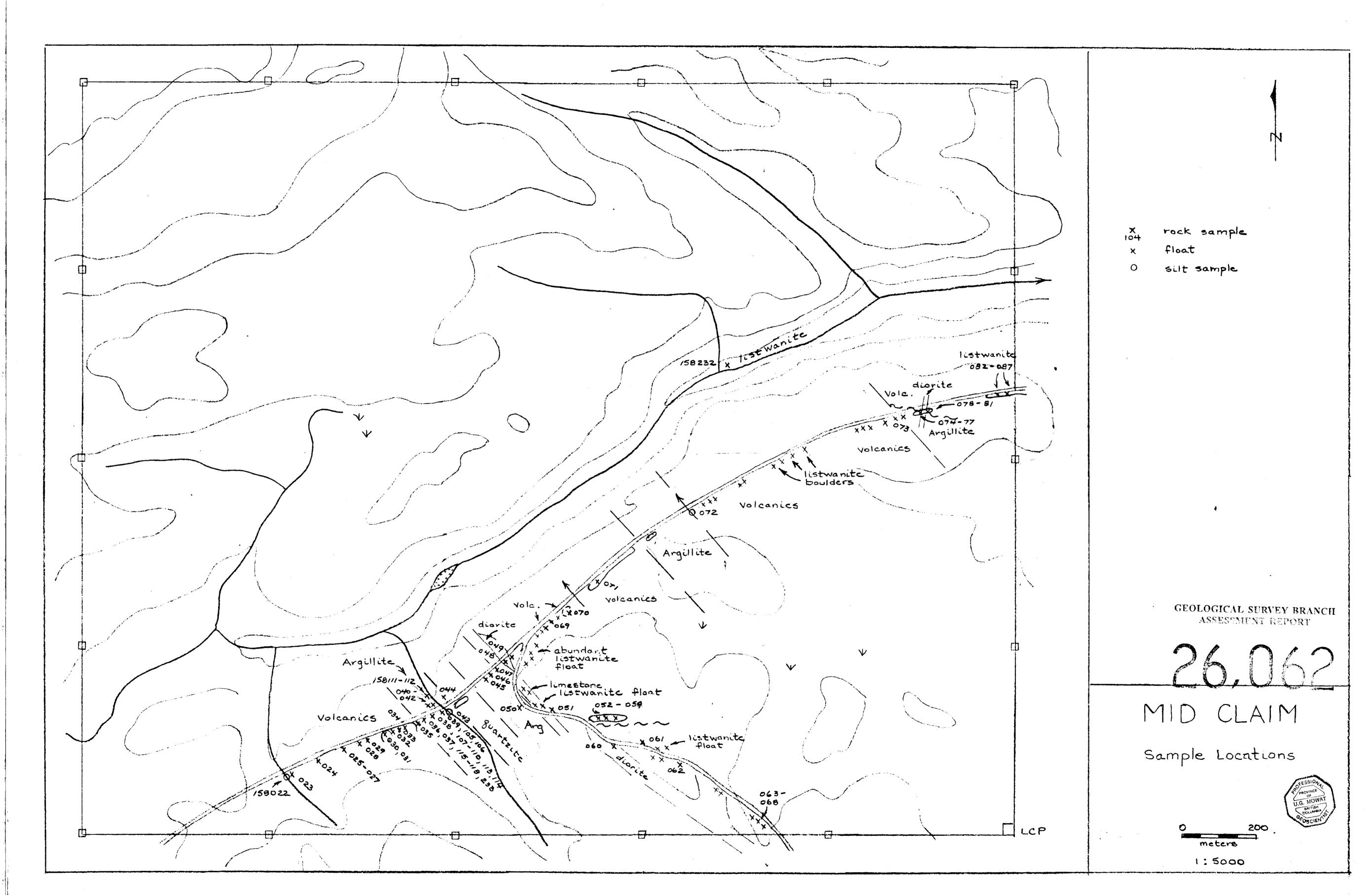
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK PULP AU** PT** & PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

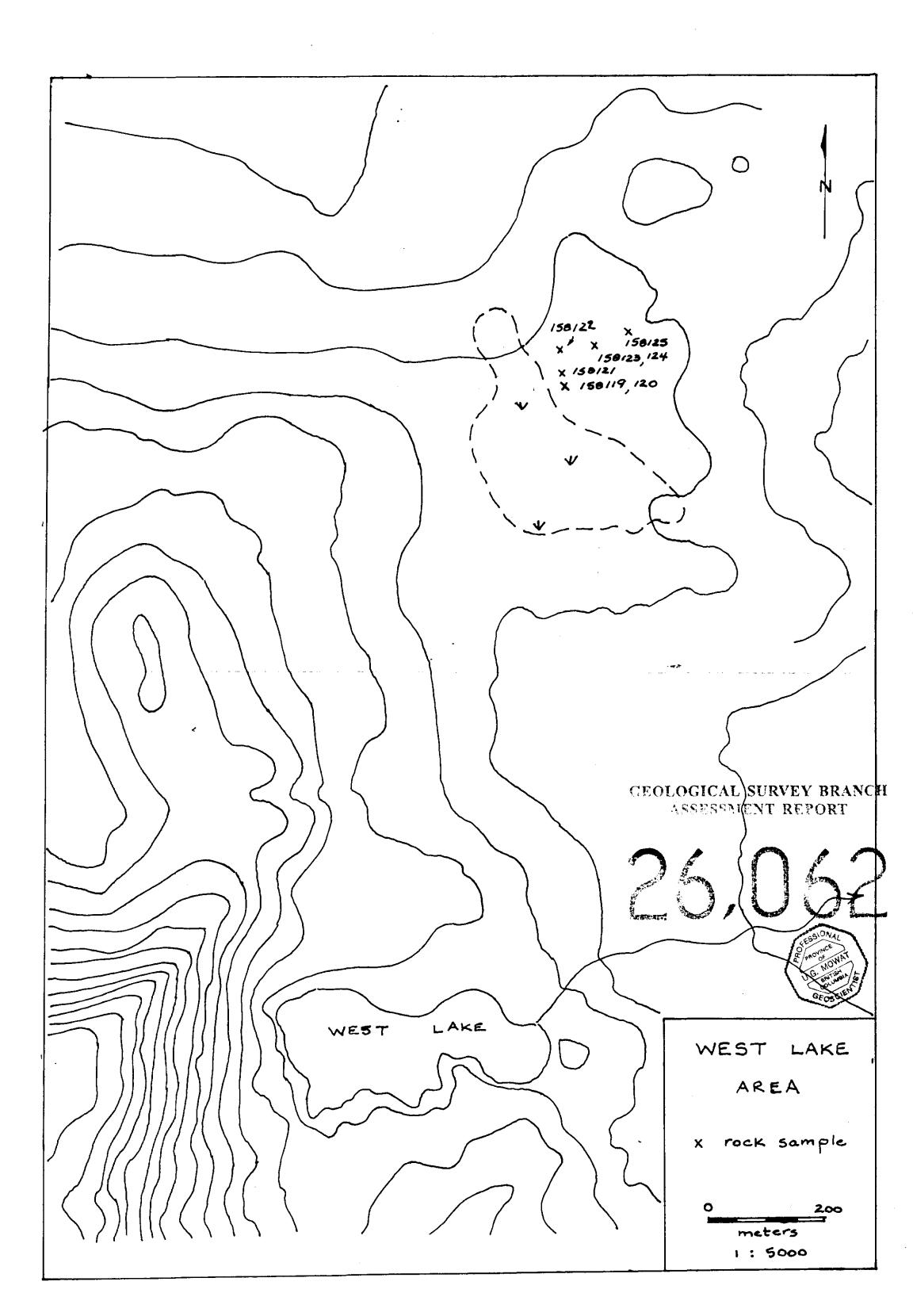
COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60

Data 🖉 - FA

ACME AN (ISU ACA	JTICAL LABORATORIES LTD.	852 E. HASTINGS ST. ACOUN GEOCHEMICAL ANALYSIS <u>Mowat, Ursula</u> File 1405 - 1933 Robson St., Vanco	# 9901288	PHONE(604)253-3158 FAX(60)53-1716 ÅÅ
		SAMPLE#	Ni Au** ppm ppb		
		11701 11702 11703 11704 11705	1810 <2 1733 <2 1736 <2 1674 <2 1710 <2		
		11706 11707 11708 11709 11710	1645 <2 1791 <2 1680 2 1685 <2 1693 <2		
		11711 RE 11711 11712 11713 STANDARD C3/AU-R	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
		STANDARD G-2	6 <2		


Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


Data FA Mill


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mowat, Ursula PROJECT MSW 1405 - 1993 Robson St., Vancouver BC V66 127 File # 9903769 Submitted by: Ursula Mowat SAMPLE# Ni Aut* ppm ppb C 11714 1722 3 C 11715 1822 5 C 11716 1883 2 C 11719 1706 3 C 11720 1663 2 C 11721 1697 2 C 11722 1855 <2 C 11723 1678 <2 C 11724 1907 <2 STANDARD C3/AU-R 9 Stanobard C3/AU-R 9 Stanobard C3-AU 1000 PPB Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. 1000 PPB	ACME AN TICAL LABORATORIES LTI (IS 002 Accredited Co.)	· · · · · · · · · · · · · · · · · · ·		PHONE(604)253-3158 FAX(604' 753-1716
Image: Sample in the second state i	Image: Sample in the image: Sample in the image: Sample		GEOCHEMICAL ANALISIS	CERTIFICATE	
SAMPLE# Ni Au** ppm ppb C 11714 1722 3 C 11715 1822 5 C 11716 1883 2 C 11717 1796 2 C 11718 1706 3 C 11721 1683 2 C 11721 1687 2 C 11721 1685 2 C 11721 1667 2 C 11722 1966 <2 RE C 11723 1678 <2 C 11724 1907 <2 STANDARD G-2 9 <2 GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. ASSAT RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AND CORE SAMPLES IF CU PB ZM AS > 1%, AG > 30 PPM & AU > 1000 PPB - Samples beginning 'RE' are Reving and 'RRE' are Reject Reruns. () P	SAMPLE# Ni Au** ppm ppb C 11714 1722 3 C 11715 1822 5 C 11716 1883 2 C 11717 1796 2 C 11718 1706 3 C 11721 1683 2 C 11721 1683 2 C 11721 1687 2 C 11721 1687 2 C 11722 1966 <2 RE C 11722 1966 <2 RE C 11724 1855 <2 C 11724 1907 <2 STANDARD G-2 9 <2 GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF GU PB ZN AS > 1%, AG > 30 PPM & & Au > 1000 PPB - SAMPLE TYPE: ROCK AND CORE SAMPLES IF GU PB ZN AS > 30, PPM & & Au > 1000 PPB - SAMPLE TYPE: ROCK AND CARE SAMPLES IF GU PB ZN AS > 30, PPM & & Au > 1000 PPB - SAMPLE TYPE: ROCK AND CARE SAMPLES HE ANALYSED BY FA/ICP. Samples beginning 'RE' are Reving and 'RRE' are Reject Reruns.		Mowat, Ursula PROJECT MSW 1405 - 1933 Robson St., Vancouver BC V6G 1E	7 Submitted by: Ursula	Mowat S.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SAMPLE#	Ni Au**	
C 11723 1678 2 C 11724 1907 2 STANDARD C3/AU-R 39 459 STANDARD G-2 9 <2	$\begin{array}{c} C \ 11723 \\ C \ 11724 \\ STANDARD \ C3/AU-R \\ STANDARD \ G-2 \\ \end{array} \begin{array}{c} 1678 & < 2 \\ 1907 & < 2 \\ 39 & 459 \\ 9 & < 2 \end{array}$ $\begin{array}{c} GROUP \ 1D \ - \ 0.50 \ GM \ SAMPLE \ LEACHED \ WITH \ 3 \ ML \ 2-2-2 \ HCL - HNO3 - H2O \ AT \ 95 \ DEG. \ C \ FOR \ ONE \ HOUR, \ DILUTED \ TO \ 10 \ ML, \ ANALYSED \ BY \ ICP - ES. \\ ASSAY \ RECOMMENDED \ FOR \ ROCK \ AND \ CORE \ SAMPLES \ IF \ CU \ PB \ ZN \ AS \ > \ 1\%, \ AG \ > \ 30 \ PPM \ \& \ AU \ > \ 1000 \ PPB \\ - \ SAMPLE \ TYPE: \ ROCK \ AU** \ GROUP \ 3B \ - \ 30.00 \ GM \ SAMPLE \ ANALYSIS \ BY \ FA/ICP. \\ Samples \ beginning \ 'RE' \ are \ Reject \ Reruns. \end{array}$		C 11715 C 11716 C 11717	1722 3 1822 5 1883 2 1796 2 1706 3	
GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. ()	GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		C 11720 C 11721 C 11722	1703 2 1683 2 1697 2 1966 <2 1855 <2	
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.		C 11724 STANDARD C3/AU-R	1678 <2 1907 <2 39 459 9 <2	
		ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK AU	CAND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 3 J** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/	0 PPM & AU > 1000 PPB	ED TO 10 ML, ANALYSED BY ICP-ES.
		ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK AU <u>Samples beginning 'RE' are</u>	CAND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 3)** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ 2 Reruns and 'RRE' are Reject Reruns.	0 PPM & AU > 1000 PPB 1CP. () T	
		ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK AU <u>Samples beginning 'RE' are</u>	CAND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 3)** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ 2 Reruns and 'RRE' are Reject Reruns.	0 PPM & AU > 1000 PPB 1CP. () T	
		ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK AU <u>Samples beginning 'RE' are</u>	CAND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 3)** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ 2 Reruns and 'RRE' are Reject Reruns.	0 PPM & AU > 1000 PPB 1CP. () T	
		ASSAY RECOMMENDED FOR ROCK - SAMPLE TYPE: ROCK AU <u>Samples beginning 'RE' are</u>	CAND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 3)** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ 2 Reruns and 'RRE' are Reject Reruns.	0 PPM & AU > 1000 PPB 1CP. () T	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

