

*۳.*۹

승물

-

1.13

1.7

. 7

2.8

13

- 7

3

REPORT ON

1999

DRILLING AND GEOLOGICAL STUDY OF

LUSTDUST PROPERTY

OMINECA MINING DIVISION BRITISH COLUMBIA CANADA

FOR

ALPHA GOLD CORPORATION

ΒY

DR. PETER K.M. MEGAW: IMDEX INC.

GEOLOGICAL SURVEY BRANCH October 14, 1999 SERVICENT REPORT

SUMMARY AND CONCLUSIONS

The Lustdust property covers a large, strongly zoned Cu-Zn-Pb-Ag-Au Skarn-Carbonate Replacement Deposit (CRD)-Vein System developed in a steeply-west-dipping northwest-trending section of limestone interbedded with argillite. Numerous intrusive bodies, ranging in composition from monzonite to rhyolite, are intruded along bedding and bedding-parallel structures. Mineralization consists of skarn and massive sulfide replacement bodies developed along stock (?), dike and limestone/argillite contacts. Mineralization also occurs within limestone. The bulk of the areas explored to date are tabular sulfide bodies 1-30 m thick and 20-350 m long. However, 1997 and 1999 drilling in the Canyon Creek area has begun to identify a semi-cylindrical skarn/sulfide chimney at least 100m in diameter. Alteration and mineralization patterns indicate that hydrothermal effects increase towards this skarn center, and to depth within it. It is probable that the dikes encountered in the skarn zone are genetically related to the source intrusion, but that the phase(s) most closely related to mineralization remain hidden at some depth under the Canyon Creek Skarn Zone.

Previous work at Lustdust traced 4 parallel, en echelon, mineralized zones laterally over 1500m from distal high-grade Ag-Pb (Au, As, Sb, Mn, Cu) replacement veins through high-grade Zn (Cu, Au, Pb) manto replacement ores to proximal Cu (Au, Ag, Zn) skarn. These zones were explored over a width of 500m. The bulk of previous work was shallow (<150m) drilling of the replacement veins and mantos. Teck Resources put three holes into the previously unexplored Cu-bearing Canyon Creek Skarn Zone towards the end of their 1996-1997-work program, and this skarn became a starting point for 1999 drilling.

Alpha Gold's 1999 work program consisted of a 5545 meter NQ diamonddrilling, road building and trenching campaign designed to determine the magnitude and large-scale zoning of the Lustdust system; focussing on following the Cu-skarn along strike, and seeking high-grade Zn-sulfide replacements around the Cu-skarn zone. The latter effort focused on the untested 400m long zone between the southern limit of the Canyon Creek Skarn Zone and 4b-Zone replacement mineralization outcrops drilled in previous years. All holes but one (LD99-13, see below) were angle holes (minus 45-75°) drilled west to east, nearly perpendicular to the NW grain of the system. Of the 18 holes drilled, 16 cut mineralization (See Table 1). One of the two that did not (LD99-09), ended in hornfels after cutting 200m of monzonite intrusion, and the other (LD99-16) was drilled off-trend to explore a possible parallel mineralized zone lying to the east.

The 1999 program added nearly 500m of strike length to the north end of the Canyon Creek Skarn Zone. This skarn is composed of coarse-grained garnet-diopside replacements of limestone and previously hornfelsed argillite. Mineralization occurs as Ag and Au-bearing Cu-sulfides emplaced along and

surrounding structures that cut the skarn. Of the 10 holes drilled in the skarn zone (LD99-03 through 12), eight hit copper mineralization, as did the main access road (Trench 99-05: 7.7m of 5% Cu) (Table 1). LD99-09 hit hornfels after a thick intrusion intercept and LD99-10 hit gold (1m of 2 g/T Au) with low copper. Hole LD-12 was drilled 300m (360m down hole) below the Teck skarn holes to test the skarn at depth. This hole hit six copper-bearing structures (0.2-2.22% Cu); several more than were cut in the higher drill holes. LD99-12 demonstrated persistence and down-hole increases of copper mineralization, transition of skarn mineralogy towards more iron-rich garnets, locally pervasive retrograde skarn hydration, and magnetite...especially as pseudomorphs after specular hematite. Copper sulfides increase significantly in the deep magnetite-rich zones.

Seven holes were drilled in Zn-replacement zones (LD99-1, 2, 13, 14, 15, 17, and 18). LD99-01 and 02 were drilled to test conceptual targets deep under the two principal known Zn-zones (3 and 4b-Zones), and were largely unsuccessful. Four of the remaining 5 holes were drilled in the previously untested 400m-long zone lying between the northern end of outcropping highgrade Zn-sulfide mantos (4b-Zone) and the southernmost of Teck's skarn holes. Of these, LD99-14, 17, and 18 hit Zn-rich massive sulfide replacements with associated skarn. The best hole (LD99-17) was drilled under a weakly mineralized skarn outcrop and cut 5.7m of massive sphalerite averaging 18.8% Zn. LD99-18 was drilled between LD99-17 and the surface and hit 1.2m of sulfide-rich skarn carrying 3% Zn with significant Au, Ag, and Cu values. Because LD99-18 was the last hole drilled, the LD99-17 intercept remains open at depth. LD99-15, drilled 150m south of LD99-17 cut nearly 6m of massive cupriferous magnetic pyrrhotite replacement mineralization, which may be a peripheral style of replacement mineralization. LD99-13 was drilled to the south under, and parallel to, the known 4b sphalerite manto zone to determine if there are east-west-trending feeders to the system. The hole hit sulfides that may have a distinct origin from the 4b replacement manto (see below).

Combining the 1999 and prior work (Rotzein, 1992; Johnson, 1993; Evans, 1996, 1997, 1999) shows that the Lustdust skarn-replacement system is at least 2500m long and 500m wide, with longitudinally continuous mineralization over 300-1500m lengths. Lustdust is systematically zoned from Cu-skarn to Znreplacement mantos to Ag-Pb-Zn replacement veins over this length and the entire system is auriferous (>.5 g/T Au values are common throughout). The skarn is zoned over at least 400m vertically and shows the polyphase intrusive and mineralization characteristics typical of major Cu-Zn skarn-replacement systems throughout the American Cordillera, such as San Martin, Zacatecas, Mexico and Antamina, Peru. The Lustdust skarn is open to the north, the Ag-rich replacement vein zone is open to the south, and Alpha have not yet looked widely for parallel, or symmetrical parts of the system. The overall size and characteristics of the system are similar enough to large known systems that considerable effort is justified to locate additional mineralized centers in the area.

¢

TABLE 1:

5-

	ASSAY R	ASSAY RESULTS and WEIGHTED AVERAGES FOR 1999 DRILLING AND TRENCHING AT							
	ALPHA G	ALPHA GOLD LUSTDUST PROPERTY, BRITISH COLUMBIA							
	WITH EAP	WITH EARLIER DRILL RESULTS FOR COMPARISON					1		
		Meters	Meters	Interval	Au	Ag	Cu	Zn	Pb
Zone	DDH/TR #	From	То	Meters	(ppb)	(ppm)	%	%	%
	1 97-13	157.7	159.1	1.4	310	390		0.3	
	1 97-15	31.4	36	4.6	1090	152		1.3	11.8
	1 98-14	58.3	61.2	2.9	2800	148		2.5	1.4
ļ	1 98-14	80.7	83	2.3	2000	838		0.6	1.7
	3 91-01	36.42	61.57	25.15		7		9,9	
	3 91-05	86.05	89.76	3.71	400	17		9.0	
	3 91-08	39.62	46.58	6.96	60	21		6.0	
	3 91-08	61.26	65.38	4.12	1090	13		8.7	
	3 91-10	22.25	26.06	3.81		5		10.9	
	3 91-10	38.05	39.47	1.42		10		17.3	
4B	92-15	24.4	38	13.6				81	
4B	92-20	6.8	27.9	21.1				7.8	
4B	93-08	19.8	21.95	2.15	340	12		17.1	
4B	93-14	14.63	17	2.37	3640	30		12.8	
4B	97-09	131	137.8	6.8	560	12	0.8	4.3	
4B	97-10	117.3	131.3	14	500	15	0.6		
4B	LD99-02	184.7	185.0	0.2	1490				
4B	1 D99-02	225.7	225.9	0.3	1400	9			
			LU.J	0.2	1170			5.0%	
CCSZ	LD99-03	28.2	32.7	4.5	533	55	2.3%		
CCSZ	LD99-04	41	42.0	1.0	700	69	2.5%		
CCSZ	LD99-05	7.4	14.7	7.3	64	7	0.2%		
							0.4 /0		
CCSZ	LD99-06	11.2	12.9	1.7	724	25	1.0%		
CCSZ	LD99-06	49	54.2	5.2	88	Q	0.20/		
						0	0.3%		

and the former of the second second

.

		Meters	Meters	Interval	Au	Ag	Cu	Zn	Pb
Zone	DDH/TR #	From	То	Meters	(ppb)	(ppm)	%	%	%
CCSZ	LD99-07	35.1	36.2	1.1	1400	1			
CCSZ	LD99-07	117.6	118.8	1.2	960	45	2.0%		
ccsz	LD99-08	177.9	179.1	1.2	135	9	0.3%		
CCSZ	LD99-10	85.8	86.7	0.9	2085	8			
ccsz	LD99-11	95.75	97.6	1.8	742	5	0.3%		
CCSZ	LD99-11	111.66	113.6	2.0	1840	47	2.1%		
ccsz	LD99-12	262.1	263.9	1.8	425	16	1.8%		
CCSZ	LD99-12	294.5	297.8	3.3	733	14	0.8%		
CCSZ	LD99-12	310.9	313.3	2.4	313	6	0.2%		
CCSZ	LD99-12	318.5	324.7	6.2	697	18	0.8%		
	OR								
CCSZ	LD99-12	323.0	324.7	1.7	2006	44	2.2%		
CCSZ	LD99-12	339.4	339.7	0.3	590	53	2.2%		
4B	LD99-13	84.5	84.8	0.3	1550	9		4.4%	
4B-CCSZ	LD99-14	36.4	36.7	0.3	680	134	0.6%	7.0%	2.3
4B-CCSZ	LD99-15	160.3	161.5	1.2	90	2	0.3%	1.9%	
4B-CCSZ	LD99-15	162.1	168.0	5.9	101	6	0.4%		
4B-CCSZ	LD99-17	34.4	34.8	0.4	545	12	0.4%	1.6%	
4B-CCSZ	LD99-17	57.6	58.9	1.4	1650	60	1.5%	0.2%	
4B-CCSZ	LD99-17	77.7	83.5	5.8	772	11	0.9%	18.9%	
4B-CCSZ	LD99-17	112.1	115.1	3.0	417	11	0.7%	2.6%	-444, 44, 44, -4,-
4B-CCSZ	LD99-18	29.1	30.3	1.2	3030	183	1.1%	3.1%	
	TRENCH								
CCSZ	TR99-05	17.2	20.0	2.8	400	76	2.4%		
CCSZ	TR99-05	45.1	59.1	5.9	38	11	0.4%		
CCSZ	TR99-05	51.4	59.1	7.7	2464	169	5.1%	0.1%	

RECOMMENDATIONS FOR FUTURE WORK

7.12

?

्रष्ट्

ł

1

ł

٤.

Prospects for a future exploration work are very encouraging. The system shows many of the hallmarks of a large, complex skarn Zn-Cu system including: multiple intrusive phases of differing composition; lateral persistence and largescale zoning of skarn silicates and mineralization; a strong retrograde overprint; pyrite pseudomorphing pyrrhotite; and a broad metals suite. It appears that only the top of the copper-skarn zone has been touched, and several of the highgrade Cu-skarn intercepts such as those in LD99-3, and LD99-12 should be followed. Deep drilling under LD99-07 is warranted because the skarn zone is very wide here, and principally developed as an overprint on hornfels. This suggests very strong hydrothermal activity in this zone and that limestone along a north-plunging fold nose at depth may be very well mineralized. Good widths of high-grade Zn-replacement mineralization were encountered in the skarnreplacement transition zone and should be followed. Immediate drilling targets are led by down-dip offsetting of the 5.7m massive sphalerite intercept cut in LD99-17 and similar targets should be sought around the periphery of the Canyon Creek Skarn Zone. Although the deep sulfide intercept in LD99-13 lines up with previous shallower intercepts under the 4b-Zone, it may have a distinct origin from the 4b manto and should be studied further before attempting to trace it to depth.

The presence of magnetic pyrrhotite and magnetite in the best mineralized skarn and replacement zones strongly suggests detailed ground mag-EM and/or CSAMT/AMT surveys should be undertaken over the skarn and skarn-replacement transition zone(s) to help focus drilling and establish a geophysical "fingerprint" for broader exploration of the property. Published government Air-Mag data (see below) show a strong anomaly located near the Canyon Creek Skarn Zone that deserves careful field checking and evaluation. Detailed airborne Mag-EM may be useful to define the overall limits of this anomaly, the Canyon Creek Skarn Zone, locate the center(s) of the system, and find altogether new skarn zones on the property.

The following are recommended:

1. Obtain new GSBC and GSC data from regional mapping program in the Lustdust area, including age dates, lithological maps, and geochemical data.

2. Incorporate the above with prior years' data into a GIS (Geographic Information System) compilation based on 1999 differential GPS (Global Positioning System) survey. This will eliminate the problems inherent in using several different surveys and baselines.

3. Have a geophysical consultant review the existing magnetic and other data to determine depth to anomalies, and possible interferences in the system.

4. Fly a detailed airborne Mag-EM survey to define the overall limits of the known magnetic anomaly, the Canyon Creek Skarn Zone, locate the center(s) of the system, and seek altogether new skarn zones/intrusive centers on the property.

1

1.2

* ł

2

日本

2

1

1

۳,

t

5. Map (and/or remap), in detail, portions of the property in and around the major geophysical anomalies and the Canyon Creek Skarn Zone. Carry reconnaissance mapping into remainder of property to determine if additional areas exist with significant amounts of limestone.

6. Test EM, and/or CSAMT/AMT over Canyon Creek Skarn Zone, DDH LD99-17, 4b, 3, and 1-Zones to determine signature of known mineralization and determine if deep targets exist.

7. Regional government geochemistry (Soregaroli, 1999) shows that the entire Lustdust area is anomalous in Hg, not just along the Pinchi fault. This suggests that an orientation Hg soil gas survey should be run over Canyon Creek Skarn Zone, DDH LD99-17, 4b, 3, and 1-Zones to determine signature of known mineralization and determine if technique works as district-scale geochemical prospecting tool. Low-temperature and pressure desorption technique of Shea Clark Smith should be considered for this.

8. Drill existing indicated targets, and continue drill definition of the Canyon Creek Skarn Zone. These targets should include:

a. Down-dip offsetting of the 5.7m massive sphalerite intercept cut in LD99-17. This should include tracking mineralization to the south and back towards the skarn zone along the crest of the 4b Anticline nose.

b. Offsetting of high-grade Cu-skarn intercepts, including several deep holes around the flanks of the Canyon Creek Skarn Zone. This should include drilling holes to test if the 4b fold nose plunges north to the north of Canyon Creek and determine if this nose is mineralized.

c. If the nose is present and mineralized, it should be drilled under LD99-07 because of the strength of skarn overprint on hornfels in this area.

d. Deep holes in the 1-Zone, as well as holes to the west to test parallel felsite dikes recognized during 1999 field reconnaissance.

9. Consult a VMS expert to examine the core, opine on the likelihood of finding a significant VMS deposit on the property, and suggest fieldwork to pursue the target concept if viable.

INTRODUCTION

1.1

73

\$7 **%**

~ 7

1

17

3

4

- 5

The Lustdust property covers a large, strongly zoned Skarn-Carbonate Replacement Deposit (CRD)-Vein System that has excellent potential to contain an economic deposit(s). The property is wholly-owned by Alpha Gold Corporation (VSE listed) and is located in the Omineca Mining Division in northcentral B.C., approximately 210 km NW of Prince George. Numerous operators have been attracted to the property for the high metals values and extensive zones of mineralization, but limited outcrop, complex geology, and poor understanding of the deposit type has hampered prior efforts.

Previous work at Lustdust traced 4 parallel, en echelon, mineralized zones laterally over 1500m from distal high-grade Ag-Pb (Au, Cu) replacement veins through high-grade Zn (Au) manto replacement ores to proximal Cu (Au, Ag) skarn. These zones were explored over a width of 500m. The bulk of previous work was shallow (<150m) drilling of the replacement veins and mantos. Teck Resources put three holes into the previously unexplored Canyon Creek Cu-Skarn Zone towards the end of their 1996-1997-work program, and this skarn became a starting point for 1999 drilling.

The 1999 program was designed to determine the magnitude and largescale zoning of the Lustdust system; focusing on following the Cu-skarn along strike, and seeking high-grade Zn-sulfide replacements in the untested 400m wide zone between the southern limit of the Canyon Creek Skarn Zone and 4b-Zone replacement mineralization outcrops drilled in previous years. The 1999 program added nearly 1000m of strike length to the north end of the Canyon Creek Skarn and found significant indications that only the top of the copperskarn zone has been touched. In addition, good widths of high-grade Znreplacement mineralization were encountered in the skarn-replacement transition zone, suggesting that the system may strongly resemble certain Mexican CRDskarn deposits such as Velardeña, Durango, and San Martin-Sabinas, Zacatecas. Immediate drilling targets for 2000 abound in these zones, led by down-dip offsetting of the 5.7m massive sphalerite intercept cut in LD99-17 and several of the high-grade Cu-skarn intercepts. The presence of magnetic pyrrhotite and magnetite in the best mineralized zones strongly suggests detailed ground mag-EM and/or AMT/CSAMT surveys should be undertaken over the skarn and skarn-replacement transition zone(s) to help focus drilling and establish a geophysical "fingerprint" for broader exploration of the property. Airborne Mag-EM may be useful to define the overall limits of the skarn zone. locate the center(s) of the system, and find altogether new skarn zones on the property.

Location and Access

٦

. 7

The Lustdust Property is located in the Omineca Mining Division of northcentral British Columbia, NTS 93N/11W at latitude 55 34' North {Northing 6160175} and 125 25' West {Easting 347850: UTM Zone 10 [NAD 27]} (Fig. 1). The property is located approximately 210 kilometers northwest of Prince George, B.C. and 36 km east of Takla Landing (where there is a B.C. rail-line). The property is located immediately west of the old Takla Mercury Mine (Minfile 093N 008) and encompasses the Takla Silver Mine (Minfile 093N 009).

Access to the property is gained by traveling approximately 45 kilometers of paved road from Fort St. James towards Tachie Lake and thence 68 kilometers along the Leo Creek road, 56 kilometers along the Driftwood, approximately 20 kilometers along the Fall-Tsayta and 3 kilometers along the Silver Creek road. This comprises a total of 147 kilometers along forest service roads.

Property Status

The Lustdust Property is 100% owned by Alpha Gold with some underlying royalties on some of the small central 2-post claims. The property comprises 130 units (see Table 2, Fig. 2) for a total of 2730 hectares (5980 acres).

Physiography and Climate

The terrain is moderate, ranging in elevation from 1000-1525 m on the property. Lower elevations are covered by widely spaced lodgepole pine; while at elevations above 1200m, forest cover consists of overmature spruce and balsam. Summers are short and rainy while moderate snowfall winters persist from late September through April/May at the higher elevations.

Project History

The property has seen a number of operators since the original discovery of the 1-Zone in 1944. They are listed with their activity in Table 3 below. Despite the fact that exposure is limited and that previous efforts have been hampered by poor understanding of the deposit type, new occurrences have been found on a regular basis working along strike. Approximately 75% of the previous work has focussed in small areas comprising less than 10% of Alpha's property position.

		No. 100	
ALPHA	GOLD	ORPOR	ATION
LU	STDUST	PROJEC	ar 👘
Prop	perty	Loca	tion
Prop	perty	Loca	tion

	TABLE 2				
	ALPHA GO	LD: LUST	DUST CLA	IMS	
	Claim	Record	Number	Type of	Expiry
	Name	Number	of Units	Claim	Date
	M.V. 1	246007	1	2 post	15/10/2009
· · · · · · · · · · · · · · · · · · ·	M.V. 2	246008	1	2 post	15/10/2009
	Wow 1	238056	1	2 post	15/10/2009
	L	237969	12	4 post	15/10/2009
	M	237970	20	4 post	15/10/2009
	Air	238053	4	4 post	15/10/2009
	P	238186	10	4 post	15/10/2009
· · · · · · · · · · · · · · · · ·	Ink	238187	16	4 post	15/10/2009
	Hogem	240667	12	4 post	15/10/2009
	LD-1	218016	15	4 post	15/10/2009
	LD-2	681767M	1	2 post	15/10/2009
· ·	LD-3	681768M	1	2 post	15/10/2009
	LD-4	681769M	1	2 post	15/10/2009
	LD-5	681770M	1	2 post	15/10/2009
	LD-6	681771M	1	2 post	15/10/2009
	LD-7	681772M	1	2 post	15/10/2009
	LD-8	681773M	1	2 post	15/10/2009
	LD-9	681774M	1	2 post	15/10/2009
	LD-10	681775M	1	2 post	15/10/2009
	LD-11	681776M	1	2 post	15/10/2009
	LD-12	681777M	1	2 post	15/10/2009
	LD-13	681778M		I 2 post	15/10/2009
	LD-14	681779M		1 2 post	15/10/2009
	LD-15	681780M	+	1 2 post	15/10/2009
i	1 D-16	681781M		1 2 post	15/10/2009
	LD-17	681782M	-	1 2 post	15/10/2009
	LD-18	681783M	· · · · ·	1 2 post	15/10/2009
	LD-19	681784M		1 2 post	15/10/2009
······	LD-20	681785M		1 2 post	15/10/2009
	1 D-21	681786M		1 2 post	15/10/2009
	10-22	681787M		1 2 post	15/10/2009
	LD 22	681788M		12 post	15/10/2009
	1 D-24	681789M		12 post	15/10/2009
	1.D-25	681790M		1 2 post	15/10/2009
	LD-26	681791M		12 post	15/10/2009
	LD-20	681792M		12 nost	15/10/2009
	1 D-28	681703M		1 2 post	15/10/2009
	1 D-20	681704M		$\frac{12}{12}$ post	15/10/2009
		681705M		$\frac{12}{12}$ post	15/10/2009
		681706M		1 2 post	15/10/2009
	LD-31	691707		1 2 post	15/10/2009
	LD-32	681709/1		1 2 post	15/10/2009
	LD-33	1001/901	5	6 4 post	15/10/2009
				1 1 1 MAR 1 11 1251	

Ø **)**

73

* 7

2-**ą**

. J

-7

ś

3

- -1

21 ¥

ţ

ş

.

÷

ं । ध •

TABLE 3EXPLORATION HISTORY SYNOPSIS

.

.

1

- 3

~ }

-1

"7

1

1

- 7

<u>تې</u>

÷₹

7

si.

Year	Operator	Claims	Zone	Work Performed
1944	•	Wow #1	1	1-Zone discovered and staked
1945	McKee Gp.	Wow #1	1	Trenching, 106.7 m of drilling
	Leta Expl. L	td.		
1952-	Bralorne	Wow 1, MV1	1,2,3	5306 m of trenching,
1954	Mines Ltd.	MV2, M	4b	1429 m of drilling
1960	" with			7 rock cuts, 34 test pits, 200m hand
	Noranda Ca	nex		and 1508m cat trenching
1963	Bralorne	Wow #1	1	Sampling
1964	Takla Silver	11	**	229 m of drifting
	Mines Ltd.			
1966	н	**	н	229 m of underground ddh
1968	" with	11		1337 m of surface and 573 m of
	Anchor Mine	es Ltd.		underground ddh, 90 kg bulk sample
1978	Granby	MV1,2	1, 2,	Pulse EM, surface ddh
	Mining Corp	K,L,M	3, 4b,	
1980		LM	"	Airborne mag, VLF, ground mag, VLF
				soil survey, 2 ddhs
1981	Noranda	LM	4b	8 ddhs (7 wildcat)
	Expln. Co.			Soil sampling and property mapping
1986	Welcome	Wow 1, MV	1, 3	Sampling
	North Mines	s LM		4b
	Ltd.			
1986	Pioneer	Wow 1	1,2,	Geological survey
	Metals	MV1, M	3, 4b	0000 (m a f ddb (40 b d a c)
1991	Alpha	MV1	3	906.6m of dan (10 noies)
	Gold		46	Tranching (1500m ddb (20 boloc)
1992		L, IVI	4D	1 renching, 1520m dun (50 noies)
1993		L, IVI	40	24 duris
1996	Teck	Lusidusi	2,3,	Geology, sons, trenching
4007	Expin.		4D, 4 "	Sail compling 2062.8 m drilling in
1997				16 ddbe
4000		11	1 0	1 102m of drilling in 14 ddbs
1998	Alpha		1, ∠, ⊃	r, room of anning in 14 auris
1000	Gola		ა 2 / ჩ	soo balaw
1999			3, 4D,	200 DEIOW

The 1999 program included the cutting of 2 km of new roads, 5 trenches totaling 500 m, 18 DDHs holes totaling 3050 m, and a differential GPS mapping of all existing roads and drill pads to allow accurate compilation of previously acquired data. 1999 work included a synthesis and re-interpretation of previous results from the Canyon Creek Skarn Zone and transitional skarn-replacement zones. Drilling included testing a deep syncline-keel target concept developed by Graeme Evans of Teck Resources, which, although largely unsuccessful, did demonstrate continuation of host rocks to depth (290 m) and tested such a small volume that deep target concepts remain viable. The 1999 work resulted in important new discoveries of mineralization that indicate excellent targets for future drilling. The 1999 work also significantly improved understanding of the system, showing that it is a large, well-zoned, polyphase skarn-replacement system similar to major deposits elsewhere in the Cordillera (Titley and Megaw, 1985; Megaw and others, 1988; Barton and others, 1995, Titley, 1993 and 1995).

CRD INTRODUCTION, EXPLORATION CONCEPTS AND RATIONALE

1

• •

t.

There is much confusion associated with CRD terminology, so it seems worthwhile to familiarize the reader with the terminology as used throughout this report. At the outset it is important to emphasize that: 1) "massive sulfides" is used here as a descriptive term with no genetic connotation (Do not confuse this with Volcanogenic Massive Sulfide [VMS] which is a genetic term); 2) "manto and chimney" are descriptive terms referring to the geometry of the mineralized body with no compositional implications; 3) "replacement" is used in reference to an interpreted depositional mechanism of mineralization, regardless of the composition of the resulting mineralization...either sulfides or calc-silicates.

The following is excerpted from Megaw (1998).

Carbonate Replacement Deposits (CRDs), are epigenetic, intrusionrelated, high-temperature sulfide-dominant Pb-Zn-Ag-Cu-Au-rich deposits that typically grade from lenticular or podiform bodies developed along stock, dike, or sill contacts to elongate-tubular to elongate-tabular bodies referred to as chimneys and/or mantos depending on their orientation. Limestone, dolomite and dolomitized limestones are the major host rocks. Ores grade outward from sulfide-rich skarns associated with unmineralized or porphyry-type intrusive bodies to essentially 100% polymetallic massive sulfide bodies. Both sulfide and skarn contacts with carbonate host rocks are razor sharp and evidence for replacement greatly outweighs evidence for open-space filling or syngenetic deposition (Titley & Megaw 1985). In reduced, high to low-temperature systems, proximal to distal metal zoning generally follows: Cu (Au, W, Mo), Cu-Zn (Ag), Zn-Pb-Ag, Pb-Ag, Mn-Ag, Mn, and Hg. This zoning may be very subtle and large scale (Prescott 1916; Morris 1968; Megaw 1990) or tightly telescoped and smaller scale (Graf 1997). CRD mineralization is associated with polyphase intrusions that evolve from early intermediate phases towards late, highly evolved felsic intrusions and related extrusive phases. The intrusions most closely related to mineralization are usually the most evolved phases and these are not exposed in many districts. However, they are often encountered when the system is explored to depth.

 γ

٦}

•)

3

1

4

1

1

CRD exploration is difficult enough that considerable care should be taken in selecting a target district/deposit prior to high-cost detailed exploration. However, several features make CRDs highly desirable mining targets including, **1) Size-**CRDs average 10-13 million tons of ore and the largest range up to >50 million tons, 2) **Grade**-ores are typically polymetallic with metal contents ranging from 2-12% Pb; 2-18% Zn, 60-600 g/T Ag, Tr-2% Cu and Tr-6 g/T Au. Many have by-product credits for Cd, W, In, Ga, Ge, Bi, and S, 3) **Deposit morphology-**orebodies are continuous and average 0.5 to 2 million tons in size, with some up to 20 million tons, **4) Extraction and Beneficiation-** CRDs are typically metallurgically docile, amenable to low-cost mining methods and the environmental footprint is minimal.

Many different features of CRDs tend to be well zoned at district, deposit and hand-sample scales. The most important zonations are: 1)- Ore and gangue mineralogy and metal contents, 2)-Orebody geometry, 3)- Intrusive geometry and composition, 4)- Structural controls on mineralization, 5)- Alteration and, 6)- Isotopic characteristics of wallrocks. In general, the largest systems show the best-developed zoning and repetition of zoning and paragenesis. Zoning tends to be most extensive in the elongate manto and chimney systems where individual zones may extend over kilometers vertically and laterally (Megaw 1990, 1998). Zoning in large stock contact skarn systems is typically more compressed because of telescoping and repeated overprinting (Graf 1997). In all cases, multi-phase mineralization is a reliable indicator of large systems.

The evolution of CRD-skarn systems in time and space, and the gradations seen in single orebodies or districts (Figs. 3, 4, 5) suggests that the various manifestations of the deposit type can be considered part of a spectrum (Einaudi et al. 1982; Megaw et al. 1988; Titley 1993; Megaw et al. 1998) (Figs. 3 and 4) ranging from:

- A. Stock contact skarns: formed against either barren or productive stocks
- B. Dike and sill contact skarns
- C. Dike and sill contact massive sulfide deposits
- D. Massive sulfide chimneys
- E. Massive sulfide mantos
- F. Epithermal veins (in some cases)

Figure 3: Cross section through San Martin, Zacatecas, Mexico skarn deposit, showing mineralization along structures cutting skarn, Cu to Zn zoning, and magnitude of system. (From CRM Zacatecas Monograph)

Figure 4: Cross section through Velardeña District, Durango, Mexico skarn-CRD deposit, showing broad scale Cu to Zn and skarn to CRD zoning, and magnitude of system. (From CRM Durango Monograph)

Figure 5: Composite cross-section (looking N60W) through the major orebodies of the Providencia-Concepcion del Oro District, Zacatecas, Mexico, showing successive concordant skarn and massive sulfide bodies that parallel the Providencia Stock contact (From Megaw and others, 1988)

2.3

ž

7

3

1

3

ĸ

Figure 6: Schematic representation of the spectrum of CRD deposit types and the portion of the spectrum displayed within individual districts.

This conceptual framework (Figs. 6,7) allows examination of the mineralization, alteration, intrusion types, host rock and other characteristics of a given deposit and determining where it lies within the spectrum. Examination of the composition, geometry and controls on intrusion emplacement, if possible, is essential to determining district zoning and level of exposure. Perhaps most importantly, understanding of the host rock tectono-stratigraphy can allow rapid determination of the potential for more mineralization in the host section at depth or laterally in the known favorable beds, or in previously unconsidered host units.

1

Structural fabrics are the dominant control variable on mineralization in CRDs, as they control intrusion emplacement and channel ore fluids into favorable host strata. Most CRDs lie in fold-thrust belts on major structural domes, arches, anticlines, synclines or homoclines, and most districts have structural grains controlled by faulting and fracturing related to regional deformation (Megaw et al. 1988). Orebodies are often elongate and parallel district-wide structural trends, but may not be restricted to a given structure over great lengths.

Intrusive stocks commonly occur beneath or adjacent to the most proximal portions of CRD systems, although in many cases they do not crop out. Where intrusions are exposed, they are generally less than 5 km² in areal extent. These stocks are generally polyphase with compositions grading from early diorite to late granite. Texturally, these intrusions range from equigranular to porphyritic and massive to highly fractured with time and proximity to paleosurface. The central stocks may be barren, contain porphyry copper or molybdenum systems, or have marginal zones with porphyry copper or molybdenum affinities (Megaw, 1998). In many systems, the early phases of the intrusion have associated skarnoid or barren skarn, whereas skarn and ore mineralization are related to later, more highly differentiated phases (Meinert, 1995 and 1999; Graf, 1997).

Dikes and sills characterize the intermediate reaches of CRDs and there is often evidence for multiple dike/sill emplacement events (Megaw 1990). These intrusions may be compositionally homogeneous (Megaw 1990) or there may be compositional evolution between dike/sill phases (Graf 1997). Textures range from porphyritic to aphanitic, locally with narrow gradations between textural domains (Megaw 1990). Chimney and replacement veins are the most common orebody types associated with these intrusions, although mantos locally occur along sill contacts.

The distal zones of CRDs are characterized by massive sulfide bodies lacking an associated intrusion. These commonly have the form of high angle to vertical slab-like replacement veins or elongate pipe-like chimneys or low angle to horizontal tabular or elongate tongue-shaped mantos, generally crudely stratabound. Mantos may be developed entirely within selected beds or groups of carbonate beds, or may occur with one or more non-reactive, relatively impermeable sedimentary or intrusive rock contacts.

Development of carbonate rock alteration in CRDs, like mineralization, is highly variable in type and in scale. The major alteration types are:

1. Skarnoid or hornfels: These are typically very fine-grained, mineralogically simple, calc-silicate and silicate assemblages formed through thermal metamorphism without significant addition of outside components. Skarnoid typically forms from a limestone or shaly limestone precursor, whereas hornfels forms from shale or limy shale precursors. Hornfels and skarnoid commonly develop in the thermal aureole around the largest volume (often early) intrusive phase and may aid in ground preparation for later metasomatic events. Skarnoid and hornfels often contain abundant fine-grained pyrite or pyrrhotite, but seldom significant amounts of ore-metal sulfides unless it has been overprinted by subsequent hydrothermal events.

2. Skarn: Skarns are fine to very coarse-grained, often mineralogically complex, calc-silicate or calcic-iron silicate assemblages formed through metasomatism with significant addition of outside components. Endoskarn is skarn formed at the expense of intrusive rock, exoskarn is skarn formed at the expense of wallrocks to the intrusion...most commonly carbonates. Skarn commonly develops around lesser volume, more fluid-rich intrusive phases and may overprint hornfels or skarnoid to varving degrees. Anhydrous calc-silicate minerals (dominantly pyroxenes and garnets) characterize the early "prograde" skarn phase generated during rising temperatures related to magma emplacement. Hydrous calc-silicate minerals (dominantly amphiboles, chlorites, and clavs) formed at the expense of predecessor prograde minerals characterize the later "retrograde" skarn assemblage. Retrograding occurs as temperatures drop and variable amounts of magmatic fluids and groundwater invade the skarn zone. Skarns are said to be mineralized when they contain sulfide minerals of economic interest. Said sulfides may be co-deposited with the calc-silicates, but more commonly are introduced along structures that cut the skarn, replacing skarn minerals and unskarned wallrocks. Complex mineralized skarn systems typically show multiple intrusive phases and a repetition of sulfides replacing calc-silicates silicates...presumably reflecting successive intrusive and hydrothermal events. In some systems, different compositions of skarn and sulfides characterize each phase (Megaw and others, 1998).

3. Marbelization and Recrystallization: These are present in virtually all CRD systems and range from narrow zones around mineralization to zones 100s of meters wide (Titley & Megaw 1985; Megaw et al. 1988).

4. Argentiferous Manganese Oxide Mineralization (AMOM): AMOM is a fracture-controlled interstitial impregnation of carbonate host rock by finegrained manganese oxides accompanied by sulfides, sulfosalts and native silver (Megaw 1990). AMOM is very well developed in the peripheries of many CRD systems and has locally been mined as smelter flux (Megaw et al. 1988; Megaw 1990). Low-silver AMOM also exists, so AMOM can best be considered transitional between mineralization and alteration (Megaw 1990). AMOM tends to follow the same stratigraphic and structural controls that control mineralization in the distal parts of systems, so it can be a valuable tool for determining probable controls on nearby sulfide mineralization.

5. Silicification or Jasperoid development: These consist of finegrained silica replacements of carbonate rocks, with or without appreciable amounts of metals, and are very common in the peripheries of some CRD systems (Titley & Megaw 1985; Megaw et al. 1988; Megaw 1990)

ł

LUSTDUST GEOLOGY AND MINERALIZATION

Regional Geology

۲

2

- 5

7

ся**і**

The Lustdust property is located within the Cache Creek Terrane directly west of the Pinchi Fault (Gabrielse and Yorath, 1992) (Fig. 8). The Pinchi Fault can be traced for 600 km through north-central B.C. and is believed to have been a major thrust fault which was later reactivated as a large right-lateral strike-slip fault (Paterson, 1977). In the project area, the Pinchi Fault separates Cache Creek rocks from the Jurassic Hogem Batholith and Triassic-Jurassic Takla rocks to the west (Fig. 8). The Cache Creek Group is of Pennsylvanian-Permian age and consists of a >500 kilometer-long, >3000 meter thick, complexly deformed sequence of interbedded argillites, cherts, carbonates, and mafic to ultramafic volcanic and plutonic igneous rocks. Alpine peridotites and ophiolite fragments are locally present, especially to the north of Lustdust (Soregaroli, 1999, Schiarizza and MacIntyre, 1999). Although these units are locally metamorphosed to blueschist facies, the overall metamorphic grade throughout the area is low. The argillites and cherts are typical fine-grained thinly bedded deep-marine sediments (Monger, 1977). The volcanic rocks are tholeiitic and include andesitic to basaltic tuffs, flow-breccias, and local pillow basalts...all of oceanic affinity. The carbonates are dominated by bioclastic to micritic and algalbound shallow-water facies limestones interpreted to have been deposited in a carbonate bank or reef environment (Monger, et al, 1991). Regional studies have emphasized the observation that contacts between most of the different lithologies are abrupt and probably are faults. However, detailed studies, executed close to Lustdust (Sano and Struick, 1997), have found limestone conglomerate and sandstones with volcanic fragments and limestone fragments within the argillite-chert section. Similar relationships are seen in core at Lustdust and locally show uninterrupted gradation from massive clastic limestone into mixed limestone-volcanic conglomerates with mafic tuff matrix. Some of these show graded bedding of limestone into the tuffs in what appears to be a classic Bouma sequence (See below, Figs. 10-12).

The entire package is folded with a well-developed axial planar foliation along a north-northwest strike trend typical of the entire Intermontane Belt in which the Cache Creek Terrane lies (Gabrielse and Yorath, 1992). A wide range of Jurassic-Tertiary intrusions cut the Cache Creek throughout the region and are one focus of on-going joint GSC-GSBC research focused in the region (Soregaroli, 1999). Many of these are emplaced along the prominent NWtrending structures and stratigraphic breaks that characterize the region. Numerous Hg occurrences are present along much of the length of the Pinchi (Albino, 1987) and a few Au and base metal occurrences are present within Cache Creek rocks near the Pinchi fault including; the Lustdust, Indata and Axelgold properties.

Figure 9: Close-up of core from LD99-02 (175m) showing highly contorted pyrrhotite-chlorite rock (top), limestone breccia with distorted pyrrhotite matrix (cut by tectonic stylolite?) (center), and mixed fine-grained breccia composed of limestone, volcanic and pyrrhotite fragments (bottom). Note sharp contact between breccia and adjoining argillite (bottom right).

Figure 10: Core from LD99-16 [161 (top)-252 (bottom) meters depth, samples separated by about 10m each] showing transition from massive (grainflow?) limestone (1) to diminishing diameter limestone clasts in deformed argillite matrix (2-4) through a range of finely laminated argillite (5) with elongate and locally deformed limestone fragments (6-11).

Figure 11: Close-up of core sections 1-5 from Fig. 10 [samples separated by about 10m each] showing transition from massive (grainflow?) limestone (1) to diminishing diameter limestone clasts in deformed argillite matrix (2-4) to finely laminated argillite (5). This sequence appears to be a typical turbidite Bouma sequence; this indicates that the section is overturned.

Figure 12: Close-up of core sections 7-10 (left-right) from Fig. 10, showing thinly bedded clastic materials with abundant pyrrhotite (9), contorted conglomerate (10), and tightly folded and contorted pyrrhotite and clastics (7).

5

1

i mare

Figure 8: Regional geologic map showing position of Lustdust in cache Creek Terrane. (From Schiarizza and MacIntyre, 1999)

OVERLAP ASSEMBLAGES

Eocene

basalt, andesite, ash flow, minor debris flow, conglomerate, mudstone

K-feldspar-biotite porphyry, biotite-hornblende-feldspar porphyry

Upper Cretaceous

Sustut Group

Early Cretaceous

Francois Lake suite: granite, quartz monzonite, biotite granodiorite, quartz porphyry

Middle Jurassic

McKnab Lake intrusive suite: quartz diorite, tonalite, diorite

STIKINE TERRANE

Middle Jurassic

Spike Peak intrusive suite: red to pink monzonite, quartz monzonite, homblende diorite; locally porphyritic (176-167 Ma.) Late Triassic to Early Jurassic

Topley intrusive suite: pink to grey, K-feldspar megacrystic granite, quartz monzonite; monzonite; varies from fine-grained equigranular to porphyritic (230-195 Ma.)

Lower to Middle Jurassic

Hazelton Group

subaerial andesite to dacite flows and associated pyroclastic rocks, feldspathic fossiliferous sittstone and sandstone; volcanic conglomerate; typically feldspar or feldspar-pyroxene phyric; locally foliated.

Upper Triassic to Lower Jurassic

quartzose-feldspathic turbidites; wacke, argillite, chert and limestone clast polymictic conglomerate

Upper Triassic

Takla Group

submarine to subaerial basalt and basaltic andesite flows and associated pyroclastic and epiclastic rocks; minor mudstone and siltstone interbeds; typically pyroxene to pyroxene-feldspar phyric; some coarse-grained bladed feldspar phyric

andesite; locally deformed to chlorite schist; may be equivalent to the Savage Mountain and/or Moosevale formations.

marine siltstone, mudstone, cherty argillite; minor limestone, chert and chert-limestone clast conglomerate; locally strongly deformed; may be equivalent to the Dewar Peak formation.

Late Triassic

Paleozoic and/or Triassic

Butterfield Lake intrusive complex: pyroxenite, hornblende gabbro, diorite, chlorite schist

Upper Pennsylvanian to Lower Permian

Asitka Group

massive grey limestone; argillaceous limestone, chlorite schist; minor felsic tuff or flows, metasiltstone, metachert.

CACHE CREEK TERRANE

SITLIKA ASSEMBLAGE

Upper Triassic to Lower Jurassic

Clastic unit: medium to dark grey slate, phyllite; banded siltstone, sandstone and conglomerate; minor limestone and green chloritic phyllite; locally contains felsic volcanic and plutonic clasts; distal to proximal turbidite succession.

Early Triassic

Light grey, medium to coarse-grained tonalite

Late Permian or Early Triassic

Medium grained epidote-chlorite-feldspar schist to semischist; sericite-chlorite-feldspar schist; weakly foliated chloritized homblende diorite

Permian to Lower Triassic

Volcanic unit: medium to dark green chlorite schist, fragmental chlorite schist and pillowed metabasalt; chlorite-sericite schist containing felsic metavolcanic fragments; lesser amounts of quartz-sericite schist, quartz-feldspar porphyry, flow banded metadacite, metasandstone and metachert.

CACHE CREEK COMPLEX

Permian to Triassic?

North Arm succession

massive to pillowed basalt flows with interbeds of pillow breccia, chlorite schist, chert, limestone and graphitic phyllite; includes greenstone dikes and sills; minor metagabbro, amphibolite, serpentinite and listwanite.

sheeted diabase dike complete

gabbro, diorite, diabase; locally includes clinopyroxenite, amphibolite, tonalite.

variably serpentinized harzburgite and dunite; serpentinite, serpentine-magnesite-talc schist; locally includes

- clinopyroxenite, gabbro, greenstone, diabase, amphibolite, chert, limestone, listwanite, nephrite
- mainly carbonate-talc altered ultramafic rocks; minor listwanite.

foliated serpentinite, commonly with lozenges of massive serpentinized ultramafite.

Permian to Jurassic

Phyllite-chert unit: light to medium grey quartz phyllite, platy quartzite and metachert; lesser amounts of recrystallized limestone, dark grey phyllite, massive to pillowed greenstone, fragmental greenstone and chlorite schist; minor amounts of meta sandstone.

Pennsylvanian to Permian

Lustdust Property Geology

The Lustdust property is underlain entirely by Permian Cache Creek units that form overturned west-dipping, north-plunging, folds parallel to the northnorthwest trending Pinchi fault that lies along the eastern property boundary. The stratigraphy strikes N-NW with generally vertical to moderate westerly dips. Very little bedding is preserved and structural information is generally rare on the property except in road cuts. The explored part of the property is dominated by a carbonate sequence interbedded with graphitic and calcareous phyllites, cherts, cherty argillites, and mafic tuffs (Plate 1). To date, little evidence for previously mapped NE trending faults has been recognized but a number of thrust faults have been recognized.

A 1² kilometer monzonite stock occurs in the NW corner of the property (Plate 1) and appears to be (at least one of) the source(s) for a swarm of NW-trending dikes, ranging from monzonite to rhyolite, that cut the property. Pervasiveness of hornfels and skarn reportedly increase towards this stock from the explored area (Evans, 1999) but insufficient fieldwork has been done to determine if this stock is truly the center of the Lustdust hydrothermal system or not (see below).

Several styles of mineralization are present on the property that appear zonally related to each other, and an as-yet poorly defined center. From most proximal to distal these are: **1) Disseminated py, po, aspy** in the monzonite stock and sills with low Au values; **2) Garnet-diopside skarn** cut by Cu-Au-Ag bearing structures (Canyon Creek Skarn Zone); **3)** Structurally and stratigraphically controlled **massive sulfide replacement bodies** [CRD] (4b, deep 3, and deep 2) and their oxidized equivalents (shallow 3 and 3 extension and shallow 2); and **4) Sulfosalt-rich veins** (zone 1) which follow faults and bedding plane structures and contain high values of Au, Ag, Pb, Zn, Sb and Mn.

Stratigraphy

Argillite

The "Argillite" (Units 1 and 2 of Teck Map: Plate 1) is a composite unit that includes a wide range of fine-grained, essentially non-calcareous, carbonaceous, thinly bedded sedimentary rocks. It includes argillites, cherty argillites, thinly bedded cherts, carbonaceous argillites, and phyllites interpreted as metamorphosed equivalents of the above. Graphitic layers are common throughout. Locally, the thinly bedded units contain fine-grained, continuous pyrite or pyrrhotite layers that appear to be part of the original sediments (See below). These units also include local limestone beds and coarser grained units composed of sand to cobble sized fragments of the fine-grained rocks plus extraneous rock types. Most of the variations show intergradations somewhere over the width of the property and certain units, especially the coarser clastic units, are transitional to mafic tuff or limestone layers. The unit is pervasively distorted and locally tightly isoclinally folded.

The polymictic sandstones and conglomerates include fragments of limestone, mafic and intermediate volcanic fragments and tuff, as well as rarer fragments of pyrrhotite and/or pyrite (Fig. 9). These fragments range from a few mm to at least 30cm across (best encountered at 268 and 273 feet in LD99-02)(Appendix A, Figs. 10, 11, 12) and show very fine laminations that are often as highly contorted as the surrounding argillite matrix (Fig. 9). The degree of distortion between the fragments and matrix is comparable, and in one place, (Fig. 9) both limestone and pyrrhotite are cut by tectonic stylolites. This strongly indicates that the sulfides originated as fragments and syngenetic layers deposited in the conglomerate, and have suffered the same deformation history (Figs 9, 10, 11, 12).

Mafic Tuffs

The "Mafic Tuffs" (Unit 3 of Teck map) are well-foliated dark green, to green and white mottled, shales, sandstones, and conglomerates with highly chloritic and locally calcitic matrices. The chlorite is interpreted to result from alteration of mafic-intermediate tuffaceous materials, hence the name (Evans, 1996). 1-30 cm limestone fragments are the dominant clasts (Figs. 13, 14), but fragments of intermediate and mafic volcanic rocks are also present. These rocks contain up to 2% finely disseminated pyrite and/or pyrrhotite and are geochemically anomalous for Pb, Zn, and Cu (Evans, 1996 and 1999). Grading of limestone fragments is common. LD99-16 shows a complete gradation over 15 m from massive limestone, through coarsely clastic limestone (10-30 cm fragments) in a chlorite matrix, through increasingly smaller limestone fragments in increasingly abundant chlorite matrix, to chloritic argillite with sulfide layers (Figs. 10, 11, 12). Evans (1997 and 1999) believed that there was only one mafic tuff unit and that it was a good marker bed. 1999 fieldwork and core logging show that there are multiple mafic tuff units in the section and they show enough lateral variation that their utility as marker beds is significantly reduced.

Limestone

The limestone (Unit 4 of Teck map: Plate 1) consists of a series of massive gray to white limestone units ranging from a few centimeters to over 100m thick interbedded with the argillites and mafic tuffs. The unit generally is strongly recrystallized to a sugary texture and bedding features are uncommon, even in core (Fig. 15). Evans (1977) recognized three subunits, but noted that the "calcite knot limestone" was the most abundant. This unit is very distinctive and shows knots (Fig. 15) or boudins of white calcite in a gray limestone matrix. He speculated that the textures reflect deposition as a debris flow breccia, which fits very well with the gradation of limestone fragments into overlying mafic tuff

Figure 13: Core from LD99-02 at 235-238m, showing two pyrrhotite intercepts. The section is overturned so the lettering is at the stratigraphic bottom of the intercept. The lower contact shows banded chlorite-rich pyrrhotite overlying limestone-fragment rich mafic tuff bed. Note finely interbedded chlorite and pyrite giving way gradually to massive pyrrhotite. The upper intercept shows a brecciated (or clastic?) contact between limestone and overlying pyrrhotite. Pyrrhotite here is brecciated with coarse calcite filling of breccia voids.

Figure 14: Close-up of upper contact from Fig. 13, showing brecciated, or clastic, nature of limestone/pyrrhotite contact. This is in contrast to razor sharp contacts seen between limestone and pyrrhotite in other holes (See Figs. 20, 21, 24, 25, 26).

Figure 15: Limestone run from LD99-16 (150m), showing thinly bedded calcarenite overlain by chaotic limestone breccia cemented by coarse calcite. units. Figure 15 shows that the calcite knots originated as coarse calcite infillings of breccia voids. Acetate peel studies of this limestone might reveal cryptic textures otherwise obliterated by recrystallization.

Origin of the Cache Creek Group

٦.

7

Ę.

-

1

a,

٩.

Ŧ

ė

Regionally, and at Lustdust, the Cache Creek Group is lithologically very diverse and presents features indicative of a complex origin. These include: juxtaposed shallow and deep water sedimentary rocks, a wide range of oceanic volcanic rocks mixed with slices of lower crustal rocks, and relatively low metamorphic grade given the degree of deformation. From the perspective of exploration at Lustdust, this question is not just of academic interest as understanding the intricacies of the Cache Creek is directly related to tracing potential host rocks for skarn-CRD mineralization, distinguishing epigenetic mineralization from syngenetic mineralization, and minimizing confusion in interpretation of geophysical results.

The variety of volcanic, deep crustal, and deep marine sedimentary rocks in the Cache Creek indicate that the sequence is a volcanic-arc related sedimentary wedge scraped off the top of a descending oceanic slab and accreted onto North America during the Triassic. The blueschist metamorphism noted locally is consistent with this interpretation. Fossil fauna are similar to assemblages found in Asia and are so different from those of rocks of similar age in adjoining terranes, that the Cache Creek has been interpreted as a far-traveled allocthonous terrane, (Monger, 1977, Monger and Nokelberg, 1996, Monger, 1998).

The juxtaposition of shallow and deep-water sedimentary rocks has aroused interpretive disagreement. Prior interpretations (Monger et al, 1977) suggested that the Cache Creek carbonates were deposited in-situ as a carbonate reef build-up fringing an off-ridge seamount. However, he noted difficulty in explaining local gradational contacts between the limestones and the underlying deep marine cherts and argillites. Subsequent workers (Sano and Struik, 1997) have noted the mixing of limestone with both the chert-argillite and mafic volcanic sequence and have suggested a deep marine depositional environment at the foot of an oceanic volcanic arc. They interpret that the limestone was transported from its shallow depositional depths as a series of debris flows, or submarine slides, possibly initiated by tremors related to volcanic eruptions.

The interpretation of the overall pattern of sedimentary rocks at Lustdust is similar to that of the region. However, there are additional features to explain at Lustdust that are important to exploration. The most important of these are: 1) the fine-grained, conformably-deformed pyrrhotite layers interbedded in the argillites (Figs. 9 and 12); 2) the fragments of finely banded pyrrhotite surrounded

by deformed argillite matrix... and themselves deformed (Appendix A, log for LD99-02, Fig. 9); and **3)** the pervasive metals anomalies reported for the mafic tuffs throughout the Lustdust property (Evans, 1997). These features are strongly suggestive that materials from a Beshi-type (?) Volcanogenic Massive Sulfide (VMS) were incorporated into the Cache Creek rocks at Lustdust.

The above features indicate the following depositional scenario for the Cache Creek at Lustdust. The fine-grained siliceous sediments accumulated under relatively guiescent conditions in deep water adjoining a volcanic seamount arc. There were probably volcanogenic massive sulfide accumulations surrounding hydrothermal vents on the deep flanks of the seamounts. Near the surface, these volcanic seamounts were surrounded by carbonate reefs and shoals, which built up over time and shed carbonate grain flows into adjacent deeper water. Periodic volcanic eruptions and related tectonic movement caused large chunks of the carbonates to cascade down the sides of the seamount incorporating volcanic and VMS fragments into the debris flows. As the debris flows diminished, intermediate to mafic-tuff dominated materials accumulated until the eruption cycle waned and quiescent depositional conditions resumed. This model explains the repetitions seen in the depositional cycle, the Bouma sequence graded bedding, and the intergradations between the various rock types. Because the VMS materials were transported an unknown distance to their final depositional site, it is not at all certain that their source lies in the Lustdust area. However, Figure 13 shows mafic tuff-limestone debris breccia overlain by finely banded interbedded chlorite and pyrrhotite in apparent depositional contact. This is in turn overlain by limestone and pyrrhotite breccia. If the contacts are depositional, this indicates the pyrrhotite-chlorite was deposited in-situ in an area repeatedly buried by debris flows that incorporated sulfide fragments. If true, these data suggest that these materials are very close to their source vents. Regardless of proximity to source, the presence of an older VMS mineralization must be taken into consideration when interpreting geochemical and geophysical results at Lustdust.

Intrusive Rocks

13

e

Mineralization throughout Lustdust shows a close association to intrusive stocks and dikes ranging from monzonite to rhyolite. Mineralization is preferentially developed along the margins of intrusive bodies (principally dikes) and shows apparent zonation relative to a major exposed intrusive center. Few of the intrusive phases were separated in earlier mapping, and confusion exists between altered and truly different phases. Further, both rhyolite and monzonite dikes occur in contact with, and near, mineralization in both the Cu-Zn and Ag-Pb-Sb-As zones, suggesting that neither intrusive type can be tied directly to mineralization.

Monzonites

ĩ

ŕ

There are at least recognizable 5 phases of the monzonite dikes that can be differentiated based on grain size, relative feldspar and mafic phenocryst content and presence or absence of quartz and/or magnetite. The phases identified to date are:

 Medium-grained monzonite: The most voluminous monzonite phase is a medium-grained equigranular to weakly porphyritic rock composed of plagioclase>K-feldspar, abundant elongate hornblende and euhedral biotite (Fig. 31). Quartz is present, but minor. This unit crops out extensively throughout the area, but seems in increase in dominance from the 4b north.

2. **Fine-grained monzonite:** The next most voluminous monzonite phase is a fine-grained sparse porphyry consisting of widely scattered plagioclase and hornblende phenocrysts in a nearly porcelaneous matrix. This rock crops-out poorly and where cut in core usually occurs as thin dikes or as a strongly altered border zone to the medium-grained phase.

3. **Megacrystic monzonite:** The next most common phase is a very coarsely porphyritic phase characterized by twinned K-spar megacrysts to nearly 1cm with coarse euhedral blocky hornblende and biotite. Quartz phenocrysts are common, but not abundant. The matrix is a fine to medium-grained mixture of plagioclase and K-spar with mafics and quartz. This unit forms large dikes to the west of the 4b and 4-Zones, and locally occurs as core zones to the medium-grained phase.

4. **Salt and Pepper monzonite:** The rarest monzonite phase is a medium-grained, salt and pepper colored, mafic-rich phase with abundant biotite in a plagioclase-K-spar matrix. No quartz was noted in this rock.

5. **Green Dikes** (Evans, 1997): The green dikes are very similar in appearance to the medium-grained phase, except they contain several percent magnetite... enough to be strongly attractive to a pocket magnet. These have previously been held to be separate from the monzonite, but this author can see little reason for separating them.

Felsite(s)

Felsite dikes also occur throughout the property. These are sparsely porphyritic felsic rocks with sparse to prominent 1-3 mm quartz and feldspar phenocrysts set in a sugary fine-grained matrix of quartz and feldspar. These dikes are often pervasively argillically altered or silicified making them difficult to distinguish from altered fine-grained monzonite. It is also probable that there are several generations of felsite that are texturally too similar to distinguish. The felsite dikes are most common in the 1-Zone where they commonly (but not universally) have vein mineralization along one or both contacts. Altered felsites are present in the 4-Zone, surrounded by skarn and an altered felsite dike, with no associated mineralization was cut nearby in DDHLD99-17 (See drill logs, Appendix A).

Intrusive Relationships

1

1

ł

3

An association between specific intrusive phases and specific metals assemblages at Lustdust has been propounded by prior workers (Evans, 1999). However, examination during the 1999 field season shows that both felsite and monzonite dikes occur throughout the property: unaltered; cut by mineralization. in contact with mineralization; or altered without adjoining mineralization. This suggests that these intrusives were emplaced before and during mineralization, probably sequentially, in a complex pattern. This sounds very similar to patterns determined through detailed mapping and geochemical studies in major skarn-CRD deposits in Mexico and elsewhere (Megaw and others, 1988, Graf, 1997, Megaw and others, 1998, Megaw, 1998, Meinert, 1998). In these systems, the center of the *intrusive* system (usually the most voluminous phase) is not the center of the productive hydrothermal system. These studies further show that the hydrothermal system is commonly centered to one side of the intrusive center, in areas where younger intrusive phases were emplaced. This is very similar to the situation at Lustdust and strongly suggests that detailed mapping and intrusive geochemistry are justified to sort out the intrusive history and relationships in the district.

Structure

The entire property has a strong NW-trending grain reflecting bedding, tight folding, axial plane faulting, and bedding plane faults generated during assemblage, docking and accretion of the Cache Creek rocks Plates 1 and 2, Figs. 5, 16). This structural fabric closely controlled intrusive emplacement, mineralization, and post-mineral movements related to Tertiary dextral strike-slip faulting along the Pinchi Fault zone. Many structures show evidence for repeated movement and reactivation. All rock types show brecciation at least locally.

Regionally, folds in the Cache Creek are typically open (Schiarizza and McIntyre, 1999) but on the Lustdust property folds, are generally overturned with moderate west-dipping western limbs and steep west-dipping narrow eastern limbs. Locally they are isoclinal. The tight folding is likely due to buttressing against the Pinchi Fault, which is believed to have originally been a major thrust fault (Paterson, 1977). Where observed, these folds have a 10-60 degree N-NW plunge and local axial plane thrusts are present. The latter include the west side of the 4b-Zone, which is moderately west dipping (Evans 1999). The noses of antiforms are structurally thickened and these enhanced thicknesses, or structurally fractured zones appear favorable for manto mineralization.

Mapping of carbonates on a district-wide scale (Evans 1997, 1999) shows a wide outcrop band on the southern portion of the property that decreases steadily to the north. This may reflect a gradual pinch-down of the carbonate section as shown on a regional scale (Fig. 5) or, as suggested by Evans (1999); it may reflect a shallow-moderate northerly plunge of the folded carbonate sequence. If it is the latter, it suggests that the 4b sulfide zone lies along the axis of a major N-plunging fold (the "4b Anticline") that dives towards the Canyon Creek Skarn Zone. This has significant implications regarding loci of skarn and replacement mineralization at depth in this area as will be discussed below.

Examination of core shows numerous slip surfaces developed within and between Cache Creek units. These are commonly marked by slickensided graphite and/or chlorite shears. Some of these may mark reactivated boundaries between individual slices of Cache Creek lithologies. Many are surrounded by mineralization or alteration envelopes indicating they acted as hydrothermal fluid conduits.

Post-mineral dextral movement along the Pinchi Fault has been well documented regionally (Paterson, 1977; Schiariazza and MacIntyre, 1999), and foliation-parallel slips marked by smeared and polished sulfides indicate at least some post-mineral movement in the mineralized zone. It is possible that Pinchirelated movement has exaggerated the elongation and zoning of the mineralized zones (Fig. 17), but reconstruction of this possible offset would not eliminate the strong zoning seen across Lustdust. Despite the possibility of strike-slip offset, the fact that the 4b-Zone can be traced for over 1200m without a major dip-slip offset demonstrates that there is little concern for significant post-mineral displacements within the individual mineralized zones.

MINERALIZATION AND ALTERATION

General

· `****

ъ

The Lustdust skarn-replacement system is at least 2500m long and 500m wide, with longitudinally continuous mineralization over 300-1500m lengths (Fig. 16). The property is systematically zoned from Cu-skarn to Zn-replacement mantos to Ag-Pb-Zn replacement veins developed along parallel, en echelon, mineralized zones extending away from what appears to be a central Cu-Zn skarn center. The entire system is auriferous (>.5 g/T Au values are common throughout: Appendix B). The skarn is zoned over at least 400m vertically and shows the polyphase intrusive and mineralization characteristics typical of major Cu-Zn skarn-replacement systems throughout the American Cordillera, such as San Martin, Zacatecas, Mexico and Antamina, Peru. The Lustdust skarn is open to the north and the Ag-rich replacement vein zone is open to the south. The overall size and characteristics of the system are similar enough to large known

systems that considerable effort is justified to locate additional mineralized centers in the area, but Alpha have not yet pursued this possibility.

The following discussion of individual ore types and zones is intended to place the separate (?) mineralized zones in a CRD-skarn framework that highlights the interrelationships between the ore types and presents an impression of the overall size and strength of the Lustdust hydrothermal system. The discussion will follow the discovery and 1999 exploration history of the deposit: from distal to proximal. With the exception of LD99-01, all 1999 work was done in the 4b, 4, and Canyon Creek Skarn Zones, so much of the descriptions of the 1, 2, 3, and pre-1999 4b-Zone work are taken from Evans (1999)

Zn-Pb-As-Sb Vein Zone: 1-Zone

1

1

The 1-Zone at the southern end of the property is the location of the 1944 discovery of mineralization on the property. Here, the limestone and graphitic phyllites are cut by numerous monzonite and felsic dikes. Sulfosalt veins composed of nearly massive pyrite, sphalerite, galena, jamesonite, stibnite, arsenopyrite and freibergite with lesser open-space filling quartz and calcite occur both within the sedimentary rocks and along dike contacts. Three separate veins have been recognized, all of which appear to dip steeply west. Felsic dikes are closely related to all three veins, but the veins do extend beyond the dikes in many places. Reconnaissance traversing in 1999 identified at least two additional felsite dikes emplaced in very pronounced structures to the west of the drilled area, but these targets were not tested. The 1999 reconnaissance recognized moderately developed Argentiferous Manganese Oxide Mineralization (AMOM) throughout the 1-Zone. AMOM (see above) is a typical distal alteration product in certain major CRD systems and the 1-Zone is strongly anomalous in Mn (Evans, 1997).

The principal vein was explored by underground drifting and drilling in the 1945 and 1964-65 seasons. The three ore-shoots (minimum 2 m true widths) above the adit level contain a probable ore reserve of 60,000 Tonnes grading 3.6 g/t Au, 780 g/t Ag, and 5% combined Pb and Zn with 5% Sb. Historic drilling had notoriously bad recovery problems, so in many cases grade was not reported for potentially significant intersections. Evans (1999) estimated that a possible resource of 700,800 to a depth of 1250 meters can be inferred at the abovestated grade. There is excellent potential for these veins to continue a minimum of an additional 300 meters to the north along a very strong soil geochemical anomaly (Evans, 1997) and may grade into CRD mineralization as the Canyon Creek Skarn Zone is approached. Evans (1999) concluded that a 1.5-3.0 Million Tonne Geological resource can be realistically expected in this area. If the parallel zones recognized in 1999 are mineralized, this resource could be substantially increased.

Zn-Au-Ag-Pb CRD Mineralization: 2, 3, 3 Extension, and 4b-Zones

Mineralization in these zones consists of roughly stratigraphically concordant massive sulfide bodies, called "mantos", and their oxidized equivalents. The mantos are best developed along permeable and karsted (?) carbonate beds in close proximity to chlorite altered mafic tuff beds. The mantos occur through the 2-4b-Zones and appear to merge into the Canyon Creek Skarn Zone. Drilling results have failed to find substantial discordant chimney feeders to these mantos, although narrow feeders may have been hit locally (see LD99-13 discussion below). The mantos occur dominantly in structurally thickened and deformed zones along the crests of antiforms. There is some evidence for nesting, or repetition, of mantos in successive limestone beds, giving an overall morphology reminiscent of the stacked "saddle-reef" mantos of the Tombstone District, Arizona (Fig. 18).

2-Zone

c

The 2-Zone is a minor oxidized replacement zone similar to the 3-Zone (see below). It appears to occupy a small synform east of the 3-Zone antiform. Surface sampling indicates an average of 2.3 g/t Au, 109 g/t Ag, 2.16 % Zn and 2.09 % Pb across an average of 5.3 meters true width. This zone has a strike length of 200 meters and could host up to 200-300,000 T of ore. This zone is too small (as known) to be an exploration priority.

3 and 3 Extension Zones

The 3-Zone contains the largest identified CRD resource identified to date at Lustdust. It is thoroughly oxidized to depths of 50 meters, where primary sulfides with elevated grades appear in the drilling. The thickest portions of this manto zone occur in carbonates surrounding a mafic tuff bed along the crest of a small-scale antiform. Drilling has failed to find a feeder vertically beneath it, suggesting that it was probably fed from one end with fluid migration concentrated along the non-reactive tuff bed. The geometry is very similar to the "saddle-reef" mantos of the Tombstone District, Arizona (Fig. 18). The 3-Zone was effectively closed off to the north by the 1996 drilling. This showed that the 3-Zone antiform persists but is not mineralized. Evans (1999) felt that the conduit for this system was down dip along the west limb of the antiform (possibly with a NW rake), but LD99-01 penetrated to 275m in this area without encountering sulfides.

Drilling from the 1950's to 1991, outlines a probable oxide resource (to 60 meters down dip) of 650,000 Tonnes grading approx. 3 g/t Au, 20 g/t Ag, 5 % Zn with Pb, Cu, Sb, In (?), Ga (?) and Ge (?) credits in the main part of the 3-Zone. Grades are understated as core recovery in the oxides has been very poor and loss of grade has been noted by all operators. For comparison, local surface sections carry up to 17.9 g/t Au and 69.4 g/t Ag over 4.0 meters.

Figure 18: Section along West Side Fissure, Tombstone, Arizona showing multiple stacked "saddle-reef" mantos developed along anticlinal crests. (From Butler. Wilson and Rasor, 1938)

The western limb of the 3-Zone continues for an additional 240 meters on strike to the south and averages 2.7 g/t Au, 168.2 g/t Ag, 6.31% Zn and 1. 8.6 % Pb over an average width of 4.1 meters. This adds several I00,000 Tonnes of potential to the resource, as does the possibility of unexplored mineralized zones following felsic dikes, which cut the axial plane of the antiform.

The 3 Extension Zone lies stratigraphically above the 3-Zone along a graphitic phyllite horizon and appears to mimic the shape of the 3-Zone. Surface trenching of this oxide zone has traced it for over 150 meters with average grades of 2.0 g/t Au, 42 g/t Ag, 1.6% Zn and 0.4% Pb over an average width of 4.0 meters. This zone is not considered a priority target due to weak drill results but is important for showing the possibility for stacked "saddle-reef" mantos.

4b-Zone

• •

1

1

1

626

The 4b-Zone CRD manto is developed along the crest of the 4b Antiform, a tight fold, with 60-degree west dips and a 10-15 degree plunge to the NW. Mineralization follows the crest of the fold and is developed along the thrust contact between limestone on the east and hornfelsed graphitic phyllites to the west. A mafic tuff horizon within the limestone appears to be a major conduit for fluid movement as is seen in the 3-Zone. However, the 4b-Zone is essentially unoxidized: sphalerite, arsenopyrite and coarse-grained well-zoned pyrrhotite and pyrite are prominently displayed in surface trenches along the zone. Coarse-grained pyrite replacements of pyrrhotite are common in this zone (Figs. 19, 20, 21).

Overall, 4b mineralization has a strong NW trend, defined by a series of aligned, discontinuous (?) sulfide pods (Plate 1). Examination of the pods shows both NW and nearly E-W structural controls on mineralization. Hole LD99-13 was drilled to test the possibility that these sulfide pods were fed along E-W oriented structures. No series of sulfide intercepts providing evidence for E-W feeders was found. However, massive pyrrhotite was intercepted under Trench 96-5 along the projection of sulfide intercepts hit in several holes drilled higher within the 4b trend. This pyrrhotite is finely banded and shows near-conformity with the bedding of the surrounding limestone (Fig. 20), indicating a probable syngenetic origin. However, the pyrrhotite is pseudomorphed by pyrite and cut by weak late chalcopyrite, indicating a possible later epigenetic overprint. If true, it suggests that a deep-penetrating feeder may have been hit (nicked?) here, which might be a viable chimney target zone. Core samples of this material have been taken for petrographic study prior to further pursuit of this intercept.

Detailed drilling by Alpha in 1992 (27 holes) in an area 150m long and 50m deep indicates a probable resource of 250,000 Tonnes grading 1.3 g/t Au, 12 g/t Ag and 5.5 % Zn with Pb, Cu, In, Ge (?) and Ga (?) credits. Mineralization

24

Figure 19: Close-up of very large euhedral pyrite replacing pyrrhotite in LD99-15.

Figure 20: Finely banded pyrrhotite from LD99-13 at 82m, showing nearconformity between limestone bedding and pyrrhotite banding. Note coarse pyrite replacement of pyrrhotite to left of knife.

Figure 21: Close-up of narrow chlorite-pyrrhotite layer from LD99-02. Note pyrite replacing pyrrhotite and cutting across chlorite matrix. Also note pyrite replacing margins of calcite knot in lower center.

Figure 22: Close-up of 30 cm thick sphalerite-rich vein intersected in LD99-14 at 36m. Intercept (Sample 10388) ran .7 g/T Au, 134 g/T Ag, 0.6% Cu, 2.3% Pb, and 7% Zn.

persists to the south of this interval and Evans (1999) concluded that a 3-4 million T resource is possible for the 4b overall.

Six holes were drilled in the 4b Zn-replacement zone in 1999 (LD99-02. 13, 14, 15, 17, and 18) (Plate 1). LD99-02 was drilled to test a conceptual deep feeder or synform keel mineralization target proposed by Evans (1999). Several narrow (<.5 m) mineralized sections were cut at 185 to 240 m., but these appear synsedimentary (Figs. 9, 10, 11, 12). There is evidence for an epigenetic overprint however (Fig. 21). The results of LD99-13 were described above. The remaining four holes were drilled in the previously untested 400m-long zone lying between the northern end of 4b high-grade Zn-sulfide manto outcrops and the southernmost of Teck's holes in the Canyon Creek Skarn Zone (97-09). LD99-14 was collared at 1810N, 50m north of the northernmost 4b outcrop pod. This hole hit 30 cm of sphalerite-rich vein mineralization at the 4b horizon (Fig. 22), and both monzonite and felsite dikes, but no skarn. LD99-15, drilled 100m north of LD99-14, cut several monzonite dikes and nearly 14m of massive cupriferous magnetic pyrrhotite (Figs. 23, 24). This pyrrhotite is much coarser-grained (Fig. 24) than the inferred syngenetic pyrrhotite described above, which in combination with higher sphalerite and chalcopyrite content argues for a replacement origin. The best hole (LD99-17) was drilled 100m north of LD99-15 under a weakly mineralized skarn outcrop and cut several mineralized intervals. The best of these was 5.7m of massive sphalerite averaging 18.8% Zn on the hangingwall of several meters of Cu-Zn-bearing garnet skarn (Figs. 25, 26, 27, 28). LD99-18 was drilled between LD99-17 and the surface and hit 1.2m of sulfide-rich skarn carrying 3% Zn with significant Au, Ag, and Cu values at the 4b horizon, but nothing at the projection of the Zn-rich intercept in 17. Because LD99-18 was the last hole drilled, the LD99-17 intercept remains open at depth.

Canyon Creek Skarn Zone (Formerly "4-Zone")

The Canyon Creek Skarn Zone [CCSZ] (a new name suggested in this report for what Evans, 1999 called the "4-Zone") is the skarn replacement zone lying north of the 4b-Zone. The discovery of this skarn is so recent that it was not included in Ray and Dawson's (1998) compilation on B.C. skarns. Prior to the 1999 season, this zone had been cut by 3 drill holes (97-9, 10, and 11) and a few hand trenches (Evans, 1996, 1997, 1999). The 1999 Program focused intensely on this zone with 10 holes, 5 trenches and 2 km of drill access roads cut across it. Of the 10 holes drilled in the skarn zone (LD99-03 through 12), eight hit copper mineralization, as did the main access road (Trench 99-05: 7.7m of 5% Cu).

The skarn has two main bulges, separated by, and ending in, narrow necks (Plate 2). The skarn begins erratically as narrow selvages along dike contacts at 1950N, 200m north of the 4b (Plate 1). From here, it rapidly enlarges northward until it affects the entire 120 m true width of the 4b limestone panel under Canyon Creek (2250N). North of Canyon Creek, the skarn narrows abruptly to 25 m wide (at 2350N) and then flares out again to 80 m wide at 2500N (Note that the full breadth is exposed in LD99-07 and is not apparent in

Figure 23: 14m long massive pyrrhotite intercept in LD99-15 (157-171m). Pyrrhotite carries small percentage of sphalerite and chalcopyrite throughout. Note unmineralized limestone horses in section.

Figure 24: Close-up of contact between pyrrhotite and limestone. Note contrast between this coarse pyrrhotite and that seen in LD99-02 or LD99-16 (Figs. 9, 10, 13). Further note contrast between "invasion" of limestone by pyrrhotite and "clastic" contact in Fig. 14.

Figure 25: High-grade sphalerite-chalcopyrite-rich skarn from LD99-17 (77.5-83.5m, top to right), showing sharp contacts with limestone, sphalerite replacing skarn (greenish) and late chalcopyrite interstitial to sphalerite. Also note moderate retrograde hydration of skarn (cream-colored areas in sections 2 and 3 from the left). This section assayed 18.9% Zn, and 0.9% Cu.

Figure 26: Close-up of upper contact of section in Fig. 25, showing concentration of sphalerite at marble contact. This is hand-sample scale version of zoning demonstrated overall by skarn-replacement transition zone.

Figure 27: Close-up of core from 58m in LD99-17, showing massive pyrrhotite replaced by coarse-grained pyrite with interstitial chalcopyrite.

Figure 28: Close-up of chalcopyrite-sphalerite-rich gamet skarn from 83m depth in LD99-17. Section ran (Sample 10413) 1.74 g/T Au, 42.8 g/T Ag, 1.8% Cu, and 7% Zn over 1.2m.

the surface trench shown on Plate 2). Although it should occur along this trend, no skarn was seen in Trench 99-03b (2550N), but 5 m of skarn was cut in Trench 99-03a at 2650N. Drilling at 2735N (LD99-08, 9) failed to cut anything but a wide monzonite dike flanked by hornfels, but older Noranda drilling (81-6) at 2900N again cut skarn. It is notable that despite the width variations, once passing 2250N, the skarn affects the entire limestone panel, and as the limestone panel thins, instead overprints 10-30m widths of hornfels that lie along the trend.

7

^{...} 1

?

At shallow levels around Canyon Creek, the skarn is composed of early coarse-grained green-tan grossular-andradite garnet (Figs. 33, 34, 35, 36), with minor fine-grained greenish-yellow diopside. Specularite is locally very common as euhedral plates and sprays in the skarn. At depth, and north of 2450, a brown garnet stage crosscuts and overprints the green stage, and at the greatest depths in LD99-12, a red-brown garnet stage appears (Figs. 31, 32). These minerals replace massive limestone and locally intrusives (endoskarn) and hornfelsed argillite (Figs. 29, 30). The conversion of flinty hornfels to coarse-grained garnet-diopside skarn is extensive, and especially pervasive in LD99-07 in the bulge at 2500N. Mafic tuff units are altered to distinctive green, banded chlorite-garnet units with 5-15% disseminated pyrite and trace chalcopyrite and sphalerite.

Retrograde hydration of the garnet-diopside skarn is rare, except in the deepest parts of LD99-12. Here the brown-red, brown and green garnet stages are hydrated to a cream-colored mass of very fine-grained amphibole, chlorite, quartz, and clays. This is accompanied by a dramatic increase in magnetite, both as fine-grained masses, and as pseudomorphs after bladed specularite (Figs. 31, 32).

Mineralization in the skarn occurs as Ag and Au-bearing chalcopyrite and bornite with abundant pyrite, minor sphalerite and rare arsenopyrite and stibnite (?) emplaced along and surrounding structures that cut the skarn (Figs. 33, 34, 35, 36). Locally, chalcopyrite is widely dispersed in the skarn. The skarn silicates tend to end abruptly and massive sphalerite-chalcopyrite-pyrite-pyrrhotite mineralization is locally well developed along the contact of skarn with recrystallized limestone (marble front) (Fig. 26).

The amount of mineralization is variable. Drillholes LD99-3-7 and 10-11 cut 1 to 3 Cu-mineralized structures with grades ranging from 0.X% to 3%. Teck holes, drilled directly under Canyon Creek, cut 2-4 Cu-mineralized structures, but showed significantly lower grades (<1%) (Evans, 1997). In contrast, LD99-12 was drilled 300m below the Teck holes and cut six copper-bearing structures (0.2-2.22% Cu). The number and grade of Cu-mineralized structures in these holes, coupled with the changes in skarn mineralogy described above, are strongly indicative that only the top of this skarn has been drilled (see below).

Figure 29: Core section from LD99-07, showing garnet skarn progressively replacing hornfels. Garnet is pervasive at top of section, and along narrow bands between very cherty layers. Note diagonal fractures with skarned margins that connect between skarned hornfels layers.

Figure 30: Close-up of core from LD99-07, showing skarn (left) replacing flinty hornfels (right). Note fine-grained chalcopyrite (metallic yellow) on skarn/hornfels contact Figure 31: Contact skarn from 323m depth in LD99-12, showing medium-grained monzonite (bottom), chalcopyrite-rich skarn on contact (blackish-green) and retrograde altered (cream-colored) red-brown garnet skarn. Chalcopyrite-rich interval (Sample 10376) ran 1.25m of 7.8 g/T Au, 171.3 g/.T Ag, and 8.6% Cu.

Figure 32: Close-up of retrograde skarn section from 339m depth in LD99-12, showing coarse magnetite patches with coarse chalcopyrite cutting across redbrown garnet stage (center) and replacing specularite (left center). This section (Sample 10380) ran 52.6 g/T Ag and 2.21% Cu.

Figure 33: View of roadcut (TR99-05), showing 2m wide zone of massive garnet skarn mineralized by chalcopyrite and bornite. Zone assays 5.1% Cu across 7m with 2.5m zone which assayed 5.7 g/T Au, 351 g/T Ag, 12% Cu, and 0.3% Zn (Sample 10338).

Figure 34: Close-up of roadcut in Fig. 33, Showing fracture-controlled oxidation cutting fresh sulfides. Figure 35: Close-up of face in Fig. 33, Showing early green garnet skarn (light colored material), broken and cut by massive bornite-chalcopyrite mineralization. A 2.5m sample across this face ran 5.7 g/T Au, 351 g/T Ag, 12% Cu, and 0.3% Zn (Sample 10338).

Figure 36: Close-up of several rock samples taken from face in Fig. 33, Showing fracture controlled sulfide mineralization of garnet skarn (center) and extremely high-grade massive bornite (left).

1999 WORK PROGRAM

1999 TRENCHING

20

(Most of the 1999 trenches are oriented roughly 090 and are described from west to east. See Plate 2 for trench locations)

Trench # N grid meters samples assoc drill hole(s)

TR99-01: 2500N 100 10305-308 LD99-07

Cut flinty hornfels, megacrystic monzonite, flinty hornfels, 10m of garnet skarn with coarse pyrite replacing garnet, and flinty hornfels footwall. Skarn samples ran 200-445 g/T Au, 3.5-8 g/T Ag, 0.04-0.1% Cu, and 300-1000 ppm As

TR99-02: 2570N 45 none none

45m of flinty hornfels with iron-oxides. No skarn despite being on trend between TR99-01 and TR99-02

TR99-03: 2650N 50 10301-304 LD99-08, 09 125m to NW

20m of variably developed pyritic skarn overprinting hornfels and 30m of flinty hornfels. Trench cut by very strong NNE fault. 8.5m of skarn zone sampled and ran 150-200 ppb Au, 0.6-6.5 g/T Ag, 111-4890 ppm Cu

TR99-04: 2300N 20 10345-348 LD99-10 directly beneath Crumbly oxidized hornfels, 5m of garnet skarn with sulfides. Skarn samples ran 80 ppb- 1.5 g/T Au, 1.2-9.4 g/T Ag, and 360-700 ppm Cu

TR99-05: 2325-2425 100+ 10309-10344 LD99-03, 04, 05, 06, 11

Oriented N30W, along cut bank of principal drill road (Plates 2 and 4). From S to north cut 60m complex alternating mineralized skarn, monzonite, and hornfels section between very flinty pyritic hornfels zones. Several very highgrade zones with chalcopyrite and bornite cut (Figs. 33, 34, 35, 36). Assays ran from very low to one 2.5m sample that ran 5.7 g/T Au, 351 g/T Ag, 12% Cu, and 0.3% Zn (Sample 10338).

1999 DRILLING

2.

A total of 3050m, distributed among 18 holes, were drilled in the 1999 Lustdust Program. Drilling was done by Leo D. Shaw Drilling, with excellent advance (average 120m/24 hour day with 2 shifts) and recovery (essentially 100%). Core was logged on site by Dr. Peter K.M. Megaw, selected intervals were photographed, and core was split and bagged for assay on site. Doubled plastic bags were used with sample numbers marked on bags and on tags included with the core samples. Samples were placed in cardboard boxes in rice bags for shipment via CanRail to the assay lab. Assaying was performed by Eco-Tech labs of Kamloops, B.C. Drill logs are presented as Appendix A and full assay results are presented as Appendices B and C. The remaining core is stored on site, at the old Takla Silver Mine. Assayed core is piled in one area, and bulk, unsplit core runs piled in a separate area.

SUMMARY OF DRILLING RESULTS BY HOLE:

Hole #: Ore Zone: Coordinates: Azimuth: Inclination: Depth down hole

LD99-01: 3: 1310N/1830W: 068: -80: 289m td: Hole designed to test Evans's (1999) deep synclinal axis target concept under the 3-Zone. Spotted based on thickest shallow level sulfide intercepts, and structural interpretation by Evans (1999). Upper part of hole cut argillite, limestone, and mafic tuff layers, often with strong shears separating units. Several monzonite dikes were cut, some pervasively argillically altered.*Lower 2/3rds was in limestone cut by minor Fe-oxide stained fractures and one thin monzonite dike. Hole bottomed in argillite footwall of 3-Zone without encountering any mineralization.

LD99-02: 4b: 1630N/2220W: 063: -80: 266m td: Hole designed to test deep synclinal axis target concept under the 4b-Zone. Spotted based on thickest shallow level sulfide intercepts, and structural interpretation by G. Evans (1999) and Peter Megaw. Upper 3/4th of hole cut mostly argillite cut by a few graphitic shears and 1-30 cm sphalerite-pyrite-arsenopyrite-chalcopyrite veinlets at 125, 185, and 226m. These carry appreciable Au and Zn values (Appendix A). At 85 m, the argillite contains a number of fragments of pyrrhotite and pyrite incorporated into deformed argillite. Larger similar clasts occur at 175m. 5 Thin limestone beds hit between 214m and 260m, interbedded with mafic tuff layers. Limestone bed at 236m is sandwiched between mafic tuffs and has .5-1m of massive fine-grained magnetic pyrrhotite with trace chalcopyrite and chlorite gangue along the contacts (Figs. 9, 13, 14, 21). Upper contact shows sulfides and chlorite grading into mafic tuff unit. These sulfides carry Au, Cu, and Zn. Hole bottomed in argillite with thin pyrrhotite bands tightly distorted conformably to the surrounding argillite.

LD99-03: CCSZ: 2369N/2222W: 110: -50: 54m td: Hole designed to test skarn zone cut in road, specifically the down-dip extent of the massive chalcopyrite-

bornite mineralization exposed in TR99-05 (Figs. 33, 34, 35, 36)... as originally interpreted. Hole cut 8m of massive hornfels, 15m of medium-grained monzonite dike (cut by .7m of chalcopyrite-bearing endoskarned breccia), 11m of skarn with thin hornfelsed cherty argillite layers, and bottomed in 17m of hornfelsed cherty argillite. 11m skarn zone includes coarse-grained garnet-diopside skarn cut by .5-1.5m chalcopyrite-rich structures. Copper content increases downward through this zone. Remapping of TR99-05, following washing off its entire length suggests that the originally inferred strike and dip of the exposed massive cpybornite-bearing structure was incorrect, and that this hole may not have tested its intended target.

• 't

- ٦

73

. 7

····

'3: J

LD99-04: CCSZ: 2369N/2222W: 110: -70: 65m td: Hole designed to test skarn zone cut in road, specifically the down-dip extent of the massive chalcopyrite-bornite mineralization exposed in TR99-05... as originally interpreted, and test down dip extension of chalcopyrite-rich structures hit in LD99-03. Hole cut massive hornfels cut by several medium-grained monzonite dikes. Footwall of deepest dike cut 1m of chalcopyrite-bearing structure before bottoming in hornfels. Remapping of TR99-05, following washing off its entire length suggests that the originally inferred strike and dip of the exposed massive cpy-bornite-bearing structure was incorrect, and that this hole may not have tested this intended target.

LD99-05: CCSZ: 2387N/2230W: 080: -45: 47.6m td: Hole designed to test skarn zone cut in road with hole drilled perpendicular to stratigraphy. Hole largely in hornfels cut by several narrow medium-grained monzonite dikes with chalcopyrite-bearing skarn on or near their margins. Chalcopyrite present throughout skarn zone but is weak.

LD99-06: CCSZ: 2387N/2230W: 080: -70: 70m td: Hole designed to test skarn zone cut in road with hole drilled perpendicular to stratigraphy, but deeper than LD99-05. Hole in hornfels cut by seven narrow to wide narrow medium-grained monzonite dikes and six narrow massive pyrite veins. Garnet skarn is overprinted on hornfels throughout the middle of the hole. Narrow chalcopyrite-bearing structures cut the skarn and weak chalco is present throughout the skarn zones. Overall, hole shows dramatic increase in skarn and mineralization development compared to LD99-05.

LD99-07: CCSZ: 2478N/2304W: 080: -45: 150m: Hole designed to test continuity of Canyon Creek Skarn Zone to the north and test skarn cut in TR99-02 along upper road cut. Hole cut a thick section of hornfels and an aggregate of 42m of skarn. Several of the skarn zones show strong garnet overprinting of hornfels. Several medium-grained monzonite dikes encountered, some pervasively silicified. Skarn is strongly pyritic, but only locally carries chalcopyrite. Two narrow chalcopyrite-rich skarn bands encountered. Hole bottomed in weakly hornfelsed argillite.

29

LD99-08: CCSZ: 2735N/2338W: 080:-50: 223m td: Hole designed to test continuity of skarn to north and under swamp, north of TR99-03a which had several meters of exposed skarn (Plate 2). Hole cut 132m wide composite dikes with fine and medium-grained sections. Thick section of hornfels hit past dike. Hornfels cut by several thin massive pyrite veinlets and fewer pyrite-chalcopyrite veins. Pyrite visible throughout skarn increases in amount down hole. Hole terminated in flinty hornfels.

· 3

LD99-09: CCSZ: 2735N/2338W: 260:-50: 124m td: Hole designed to test continuity of skarn to north and away from big dike hit in LD99-08. Hole cut 64m more of composite dike hit in LD99-08 before entering flinty hornfels with no visible mineralization.

LD99-10: CCSZ: 2312N/2240W: 090: -50: 105m td: Hole designed to test zone between LD99-03, 4,5,6 and northern end of Teck's holes through the Canyon Creek Skarn (97-9,10,11). Goal was to locate hangingwall of skarn for positioning deeper test of hangingwall of Canyon Creek Skarn. Hole collared in skarn, but rapidly entered thick hornfels, including chloritic zone that was probably altered mafic tuff. At 84m entered brecciated and sulfide-bearing limestone, which carried 2 g/T Au. Comparison of results with surface and nearby geology suggests that this area may be structurally complex.

LD99-11: CCSZ: 2328N/2320W: 075: -50: 147m td: Hole designed to cut hangingwall of Canyon Creek Skarn Zone and continue to hit skarn zone hit in LD99-3-6 at depth. Hole collared in hornfels, cut a medium-grained monzonite dike cut by pyrite-chalcopyrite veinlets. Returned to hornfels, which is cut by several strong faults? Entered skarn at 96m and stayed in skarn for 32m. Garnet-diopside skarn here very pyritic and carries variable chalcopyrite. One 2m interval at 112m carried 2% Cu and 2 g/T Au.

LD99-12: CCSZ: 2344N/2404W: 135: -60: 360m: Hole designed to cut Canyon Creek Skarn Zone deeper than LD97-10 and 11 to determine continuity, geometry, width and mineralization. Secondary objective was to determine if a major post-mineral fault exists along Canyon Creek. Hole was collared in hornfels, which is overprinted by garnet skarn on numerous structures. Fine and medium-grained monzonite dikes were also encountered. At 216m, hornfelsed mafic tuff was cut, followed by hornfels cut by more pervasively developed skarn. At 265m, hole passed from hornfels to 80m of skarn punctuated by a mediumgrained monzonite dike. (This is probably the 4b hangingwall contact) Skarn is significantly different from what is seen higher in that retrograde hydration is very well developed, specularite is replaced by magnetite, and chalcopyrite-bearing structures increase in number (Figs. 31, 32). Good Cu values were hit in several of these. Hole bottomed in limestone and a limestone breccia carrying fragments of pyrrhotite and pyrite. Hole demonstrates that Canyon Creek Skarn Zone continues to depth, becomes increasingly retrograde altered, and sulfide content, especially chalcopyrite-bearing structures, increases. These transitions are very

similar to those noted at major Cu-Zn skarn systems such as San Martin, Zacatecas, Mexico and Antamina, Peru.

1.74

3

LD99-13: 4b: 1790N/2150W: 185: -45: 150m: Hole drilled to test possibility that sulfide pods of 4b-Zone are fed along E-W oriented structures. Also intended to test fault inferred to lie at south end of 4b-Zone. Overall, no multiple intercepts indicating E-W feeders were found and hole did not reach fault target. Hole dominantly cut limestone and argillite, but pyrrhotite-rich massive sulfides with minor sphalerite were hit between 79 and 86m, under the 4b sulfide pod in Trench 96-5 (Fig. 20). Pyrrhotite shows fine, contorted banding and is replaced by pyrite along fractures. However, massive pyrrhotite was intercepted under Trench 96-5 along the projection of sulfide intercepts hit in several holes drilled higher within the 4b trend. This pyrrhotite is finely bedded and shows nearconformity of banding with the surrounding limestone (Fig. 20), indicating a syngenetic origin. However, the pyrrhotite is pseudomorphed by pyrite and cut by weak late chalcopyrite, indicating a possible later epigenetic overprint. If true, it suggests that a deep-penetrating feeder may have been hit (nicked?) here, which might be a viable chimney target zone. Core samples of this material have been taken for petrographic study prior to further pursuit of this intercept.

LD99-14: 4b: 1820N/2202W: 090: -45: 135m: Hole designed to test continuity of 4b-Zone to the north through transition to the 4 and Canyon Creek Skarn Zones. Hole collared in argillite, cut two thin fine-grained, silicified monzonite dikes, and passed through the 4b hangingwall contact into massive limestone. 0.3 m of quartz vein with sphalerite, pyrrhotite, pyrite, chalcopyrite was hit at projection of 4b horizon (Fig. 22). Normal 4b-Zone limestone to mafic tuff sequence cut below that.

LD99-15: 4b: 1910N/2030W: 065: -55: 181m: Hole designed to test continuity of 4b-Zone to the north through transition to the 4-5 skarn zone. Hole collared in argillite and passed through the 4b hangingwall contact into massive limestone. 0.6 m of sulfide-rich skarn was hit at projection of 4b horizon. Normal 4b-Zone limestone to mafic tuff sequence cut below that to 158m where 14m of massive pyrrhotite with minor sphalerite and chalcopyrite were hit (Figs. 23, 24). Sulfides are very coarse-grained and chlorite rich. A narrow endoskarned monzonite dike lies in center of sulfide section. Pyrrhotite below the dike is largely replaced by pyrite. Limestone, garnet skarn and hornfels were hit below the sulfides, but carried no values.

LD99-16: Area east of the 4b: 2002N/2048W: 095: -50: 411m td: Hole designed to test area east of 4b-Zone, and north of the 3-Zone, under a series of Ag and Zn soil geochem anomalies and towards skarn zone mapped by Granby and old Noranda drill hole. Hole was collared in argillite, cut numerous limestone interbeds and medium-grained monzonite dikes in top 96m. At 96m hit sugary quartz-eye rhyolite dike (like those in 1-Zone)...but no mineralization. Hole continued through more argillite (Figs. 10, 11, 12), limestone, monzonite,

rhyolites, and finally mafic tuff, but encountered neither significant mineralization nor alteration.

LD99-17: 4b: 2008N/2255W: 065: -55: 193m: Hole designed to test continuity of 4b-Zone 4-5 skarn transition zone below road where significant, but weakly mineralized skarn crops out. Hole collared in argillite cut by .3m of banded sphalerite, chalcopyrite and pyrite: probably the 4b horizon. Just below this a thin quartz-eye rhyolite dike was cut, with no associated mineralization. Limestone was entered at 33.5m where a strong mineralized skarn was encountered. Limestone continued to 185m, cut by massive sulfide/skarn zones at 57, 77, 112, and 182m. Best interval is between 77.7 and 83.5m where the mineralization is up to 95% sphalerite with chalcopyrite and pyrite (Figs. 25, 26, 27). This is adjacent to massive chalcopyrite-rich garnet-pyroxene skarn (Fig. 28). This was the best intercept of the program. The hole terminated in argillite.

LD99-18: 4b: 2008N/2255W: 065: -45: 75m: Hole designed to test continuity of mineralization hit in LD99-17 between 17 and the surface where significant, but weakly mineralized skarn crops out. This hole used last 100' of drilling contract, plus a little extra. Hole was collared in argillite and cut exactly the same sequence of lithology, dikes, and mineralization as LD99-17, except thick sulfide interval was missing... presumably having pinched out above LD99-17. Skarn at argillite/argillite contact (4b hangingwall zone) was thicker in LD99-18 than 17 and carried fair grade.

1999 SURVEYING

Ċ.

The 1999 drilling and trenching program required significant compilation and comparison with work performed in prior years. In addition, there were 2000 m of new roads and new drill pads to add to the existing map base. It became readily apparent that it was difficult to reconcile locations from different years with accuracy because prior programs had used slightly different base and cut lines... all surveyed with different techniques. It was decided to contract Bruce Hobson of Watershed Resources Ltd., based in Smithers, B.C., to run a differential GPS survey of the entire property. This program included a running survey of all accessible roads, with point readings for all recoverable drill pads, claim corners, cultural landmarks and mine workings. Critical claim boundaries were also surveyed to verify that no fractions were present. The resulting map was plotted over digital 1:20,000 topography obtained from the Canadian Government and is presented as Plate 4. It remains to digitize and "rubber-sheet" previous years mapping to create a corrected coordinated digital data GIS base.

MINERALIZATION SUMMARY AND EXPLORATION RECOMMENDATIONS

Combining the 1999 and prior work shows that the Lustdust skarnreplacement system is at least 2500m long and 500m wide, with longitudinally continuous mineralization over 300-1500m lengths. Lustdust is systematically zoned from Cu-skarn to Zn-replacement mantos to Ag-Pb-Zn replacement veins over this length and the entire system is auriferous (>.5 g/T Au values are common throughout). The Canyon Creek Skarn Zone is zoned over at least 400m vertically and shows the polyphase intrusive and mineralization characteristics typical of major Cu-Zn skarn-replacement systems throughout the American Cordillera, such as San Martin, Zacatecas, Mexico and Antamina, Peru. The most important of these are multiphase strongly differentiated intrusions, cross-cutting Cu-mineralization, down-hole increases of copper mineralization, transition of skarn mineralogy towards more iron-rich garnets, locally pervasive retrograde skarn hydration, and magnetite...especially as pseudomorphs after specular hematite.

- 1

Teck's district-wide geologic map (Plate 1, Fig. 16) shows an increase in number and size of dikes to the northwest until they coalesce into an elongate monzonite stock to the northwest of the 4b-Zone. The Lustdust hydrothermal system, from the 1-Zone to the Canyon Creek Skarn Zone, shows a gradual transition towards increasing hornfels and skarn in this direction as well as a classic CRD Mn-Pb-Ag-Zn-Cu metals zoning. This is presumably related to increasing proximity to intrusive heat and mineralizing source(s) and it is tempting to make the interpretation that the hydrothermal system is zoned with respect to the large intrusive body. However, as discussed above in the Intrusive Rocks section, intrusives in this area may be unaltered; cut by mineralization, in contact with mineralization; or altered without adjoining mineralization. This suggests that these intrusives were emplaced before, during and after mineralization, probably sequentially, and that the intrusive/mineralization relationship is complex.

The intrusive, mineralization and alteration patterns seen at Lustdust are very similar to patterns determined through detailed mapping and geochemical studies in major skarn-CRD deposits in Mexico and elsewhere (Megaw and others, 1988, Megaw and others, 1998, Megaw, 1998, Meinert, 1998, Graf, 1998). These show that the center of the *intrusive* system (usually the most voluminous phase) is not necessarily the center of the *productive hydrothermal* system, and that the hydrothermal system is commonly located to one side of the intrusive center, in areas where younger intrusive phases were emplaced. The Canyon Creek Skarn Zone is located to the east of the monzonite intrusive center, which fits this pattern closely.

In short, the very large-scale lateral and vertical zoning features that are only beginning to be unraveled at Lustdust are similar enough to major systems that significant additional exploration effort is warranted. The Lustdust skarn is open to the north, the Ag-rich replacement vein zone is open to the south, and Alpha have not yet looked widely for parallel, or symmetrical parts of the system. Exploration should follow two parallel paths: **1)** Drilling-intensive exploration focused on off-setting known mineralization and mineralization styles throughout the known part of the Lustdust system...focusing on the CCSZ, 4b, and 1-Zones, and **2)** Field-based exploration to find additional mineralized centers on the property. Major skarn systems commonly have more than one focal area, so it is worth determining if additional centers exist at Lustdust and if the Canyon Creek Skarn Zone center is actually the strongest skarn center on the property. Geological mapping and geophysical surveys should be included in this effort.

Figure 37 is an interpretive longitudinal section along the 4b zone from the 4b sulfide outcrops to the top of the hill north of Canyon Creek. This was constructed to show how the northerly plunge on the 4b Anticline may strongly affect location of CRD and skarn mineralization. The section assumes a uniform 20° (Evans, 1999) plunge, and should be extended or contracted where the plunge is lower or higher respectively. The section highlights to following observations and exploration possibilities:

1. The "rootlessness" of the 4b Manto may be the result of erosion of its northern end. This could have removed any feeder connection to the Canyon Creek Skarn Zone. It is also possible that a narrow chimney feeder that has not been drilled (or recognized as such) connects it to deeper "saddle-reef" mantos.

2. South of Canyon Creek, the curvature of the skarn-hydrothermal halo is convex to the south, in opposition to the north-plunging fold axis, giving ready up-dip channels for ore-fluids to generate elongate mantos.

3. In contrast, north of Canyon Creek the curvature of the skarnhydrothermal halo is convex to the north, parallel to the north-plunging fold axis, making it more difficult for fluids to migrate laterally and generate elongate mantos. This suggests mineralization may be more compact in this area.

4. The hornfels cap on hill north of Canyon Creek, especially zones where coarse garnet skarn overprints hornfels (LD99-07), may reflect leakage from strong skarn alteration/mineralization in underlying limestones. The hornfels cap may have also acted as a seal to cause ponding of skarn/CRD mineralization below it, again creating broad compact orebodies.

5. A very large volume of Cu-mineralized retrograde skarn with magnetite may underlie Canyon Creek. This zone should have a strong Mag signature and may be what appears on the government Magnetic maps (Fig. 38

50

34

Figure 37: Interpretive longitudinal section along the 4b zone from the 4b sulfide outcrops to the top of the hill north of Canyon Creek. Shows effect of N-plunge on 4b Anticline and possible location(s) of massive sulfide replacements and skarns.

Comments on Geophysical Prospecting

Geophysical prospecting techniques have been applied to CRD exploration with varying degrees of success depending whether the goal was to locate mineralization, intrusions, structure, favorable host rock sections. or alteration. Techniques that have been widely applied include, conventional IP, aradient IP. Real-section IP. SP: Magnetics (ground and airborne), refraction seismics, gravity, EM, TEM, AMT and CSAMT. Seeking CRD mineralization directly is often difficult because the relatively small cross-section that orebodies present to surface-based techniques makes resolution a problem. Delineating major geologic mineralization controls such as stratigraphic contrasts, intrusive contacts, structural breaks, and alteration is often more feasible. Many geophysical program "failures" can be attributed to failing to appreciate the limitations of the techniques and not considering known geologic features that limit certain techniques, like deep oxidation or highly conductive capping rocks. Successes have resulted from careful selection of technique followed by integration of geologic field data with geophysical results, especially through iterative interpretive refinement as drilling results are included.

Several geophysical surveys have been conducted at Lustdust in the past including VLF, Pulse E.M., and magnetics. VLF was apparently useful for delineating the 4b sulfide manto, but E.M. responded strongly to conductive graphitic phyllites so interpretation of other conductors was difficult. Ground magnetics appears to work well over near-surface pyrrhotite-rich zones, but does not work on 3-Zone oxides or 1-Zone veins (Evans, 1999).

Regional government airborne-magnetics maps show a strong dipole anomaly centered near the Canyon Creek Skarn Zone (Fig. 38). Line spacing is wide and resolution is poor enough that it is difficult to determine if the anomaly reflects the monzonite intrusive center (as Evans, 1999 suggested), the magnetite-pyrrhotite-rich Canyon Creek Skarn Zone, or a new skarn zone between the two. It would be worthwhile to have a geophysical consultant examine this map to comment on whether the anomaly lies at a depth comparable to the magnetite-rich skarn. If it is, the Canyon Creek Skarn Zone should be flown with a helicopter-based Mag instrument, combined with VLF and/or E.M. if the latter can be included for little or no additional cost. Regardless of whether an Air-mag survey is performed, an orientation groundmag-VLF survey should be run over the Canyon Creek Skarn Zone and adjoining LD99-17 sulfide zone to determine if this mineralization has sufficiently strong geophysical signatures to warrant a comprehensive survey over the surrounding areas. If the techniques work, the signatures obtained for the known mineralization should be used as templates for property wide surveys in search of additional mineralization centers.

The high-grade, spatially concentrated nature of CRD mineralization makes deep ore economic, so depth penetration and resolution of a geophysical technique are important. IP techniques lose resolution rapidly with depth because depth of penetration is directly proportional to dipole spacing and the minimum size object that can be distinguished is roughly 1/2 dipole spacing. In contrast, with CSAMT (Controlled Source Audio Magneto Tellurics) and AMT (natural source Audio Magneto Tellurics), depth of penetration is frequency dependent and resolution is a direct function of electrode spacing, so resolution diminishes much less with depth. AMT uses natural source signals that have lower frequencies than the transmitted signals used for CSAMT. As a result, AMT "sees" better at depth (200-1200m), while CSAMT sees better near surface (0-500m). Both can be run from the same set up for minimal additional production cost. Experience with CSAMT/AMT shows that it can (depending on local geology) distinguish between intrusives, carbonates, shales and argillic alteration, highlight high-angle structures, and in certain circumstances detect mineralized skarn and CRD mineralization directly. Imperial Metals have recently had significant success locating manto CRD mineralization directly with CSAMT at their northern B.C. "Silvertip" Property.

An orientation CSAMT/AMT survey should be run over the Canyon Creek Skarn Zone and the LD99-17 sulfide zone, along the same lines used for the recommended ground-mag/VLF survey. Orientation lines should also be considered for the 4b, 3, and 1-Zones to determine if deep drill-target anomalies exist.

REFERENCES

ALBINO, G.V. (1987) The Pinchi Mercury Belt, central British Columbia: nearsurface expression of a Mother Lode-type mineralized system. *Geological Society of America*, Abstracts with Programs, **19:7**, A141-142.

ARMSTRONG, J.E. (1945) G.S.C. Map 844 A

- 4

- 7

BARTON, M.D., STAUDE, J-M, G., ZURCHER, L., AND MEGAW, P.K.M. (1995): Porphyry copper and other intrusion-related mineralization in Mexico. *In* Porphyry Copper Deposits of the American Cordillera, (F.W. Pierce and J.G. Bolm, eds.). *Ariz. Geol. Soc. Digest* **20**, 487-524

BRONDLUND, E.B., Report on the Lustdust property, 1960& 1964, 1965

EINAUDI, M.T., MEINERT, L.D., AND NEWBERRY, R.J. (1981): In Skarn Deposits. *In* Economic Geology 75th Anniversary Volume. (B.J. Skinner, ed.) *Econ. Geol. Pub. Co.*, El Paso, TX. 317-391

EVANS, G. (1996) Exploration of the Lustdust Property, Geology and Geochemical Report. Teck Corp. 18.

EVANS, G. (1997) Diamond Drilling and Geochemical Report on the 1997 Exploration of the Lustdust property. Teck Corp. 16.

GABRIELESE, H., AND YORATH, C.J., eds. (1992) Geology of the Cordilleran Orogen in Canada. *Geological Society of America*, **DNAG G-2**, 875.

GRAF, A. (1997): Geology and porphyry-style mineralization of the Cerro de la Gloria stock associated with high-T, carbonate-hosted Zn-Cu-Ag (Pb) skarn mineralization, San Martin District, Zacatecas, Mexico. Unpubl. M.S. thesis, University of Arizona, Tucson, Arizona, 123p.

HIHALYNUK, M., NELSON, J.A., AND DIAKOW, L.J. (1994) Cache Creek terrane entrapment: Oroclinal paradox within the Canadian Cordillera: *Tectonics*, **13:2**, 575-595.

JAMES, D.H., WILKINSON, W.J. (1979) Geology and Geochemistry of the K, L, M Mineral claims. A.R. # 7059.

JOHNSON, D. (1993) Report on trenching, diamond drilling and geophysical surveying on the Lustdust Property. Alpha Gold Corp. 11p.

LEAHEY, M.H. (1981) Grid control, Geophysics, Geochemistry, Geology and diamond drilling on the Lustdust property. A.R. # 9937

MacINTYRE, D.G., AND STRUIK, L.C. (1999) Nechako NATMAP Project, central British Columbia 1998 Overview British Columbia Geological Survey, Geological Fieldwork 1998, paper 1999-1 (downloaded from BCGS website, August, 1999).

678

្រា

7

-

Ţ

MEGAW, P.K.M. (1990): Geology and geochemistry of the Santa Eulalia mining district, Chihuahua, Mexico. Unpubl. Ph.D. Thesis, Univ. of Arizona, Tucson, Arizona, 463 p.

MEGAW, P.K.M. (1998) Carbonate-hosted Pb-Zn-Ag-Cu-Au replacement deposits: An exploration perspective. *In* Mineralized intrusion-related skarn systems (Lentz, D.R., ed.). *Mineralogical Association of Canada, Short Course Series* **26**, 337-358.

MEGAW, P.K.M., BARTON, M.D., and GRAF, A. (1998): Polyphase skarn mineralization associated with a polyphase differentiated composite intrusion, San Martin-Sabinas District, Zacatecas, Mexico. *Geological Association of Canada/Mineralogical Association of Canada (GAC/MAC) May, 1998 Meeting, Quebec, Quebec, Abstracts,* A122

MEGAW, P.K.M., RUIZ, J., AND TITLEY, S.R. (1988): High-temperature, carbonate-hosted, Pb-Zn-Ag massive sulfide deposits of Mexico: An overview. *Econ. Geol.* **83**, 1856-1885.

MEINERT, L.D. (1995): Compositional variation of igneous rocks associated with skarn deposits -Chemical evidence for a genetic connection between petrogenesis and mineralization. *In* Magmas, fluids, and ore deposits (J.F.H. Thompson, ed.). *Min. Assoc. Can. Short Course Series* **23**, 401-418.

MEINERT, L.D. (1999): Skarns and skarn deposits: Summary and weblinks. Skarn Website. http://www.edu:8000/~meinert/skarnhp.html.

MONGER, J.W.H. (1977) Upper Paleozoic rocks of the western Canadian Cordillera and their bearing on Cordillera evolution. *Canadian Journal of Earth Science*, **14**, 1832-1859.

MONGER, J.W.H. (1998) Plate tectonics and Northern Cordilleran geology: An unfinished revolution. *Geoscience Canada*, **24:4**, 189-198.

MONGER, J.W.H., AND NOKELBERG, W.J. (1996) Evolution of the northern North American Cordillera: generation, fragmentation, displacement and accretion of successive North American plate margin arcs, *in* Ore Deposits of the American Cordillera (Coyner, A.R., and Fahey, P.L., eds.). *Geological Society of Nevada Symposium Proceedings*, Reno/Sparks, Nevada, April 1995, 1133-1152. MORRIS, H.T. (1968): The Main Tintic Mining District, Utah. *In* Ore Deposits of the United States, 1933-1967 (J.D. Ridge ed.). Amer. Inst. Mining Eng. **2**, 1043-1073.

MUROWCHICK, J.B. (1992): Marcasite inversion and the petrographic determination of pyrite ancestry. *Econ. Geol.* **87**, 1141-1152.

PATERSON, I.A. (1977) The geology and evolution of the Pinchi Fault Zone at Pinchi Lake, central British Columbia. Canadian Journal of Earth Science, **14**, 1324-1342.

PRESCOTT, B. (1916): The Main Mineral Zone of the Santa Eulalia District. Am. Inst. Mining Eng. Trans. **51,** 57-99.

PRESCOTT, B. (1926): The underlying principles of the limestone replacement deposits of the Mexican Province. *Engr. Min. Jour.* **122**, 246-253, 289-296.

RAY, G.E., AND DAWSON, K.M., 1998, Mineralized skarns in the Canadian Cordillera, In Mineralized intrusion-related skarn systems (Lentz, D.R., ed.), *Mineralogical Association of Canada*, Short Course Series **26**, Quebec City, 1998, p. 475-518.

ROTZIEN, J. (1992) Drilling Report on the 1991 Exploration of the Lustdust Property.

RUBIN, J. N., and KYLE, J.R. (1988): Mineralogy and geochemistry of the San Martin deposits, Zacatecas, Mexico. *Econ. Geol.* **83**, 1782-1801.

SANO, H., AND STRUIK, L.C. (1997) Field properties of the Pennsylvanian-Lower Permian limestones of the Cache Creek Group, northwest of Fort St. James, British Columbia. *Geological Survey of Canada*, Current Research **1997**-**A**, 85-73.

SCHIARIZZA, P., AND MacINTYRE, D.G. (1999) Geology of the Babine Lake-Takla Lake area, central British Columbia (93K/11,12,13,14; 93N/3,4,5,6. British Columbia Geological Survey, Geological Fieldwork 1998, paper **1999-1** (downloaded from BCGS website, August, 1999).

SOREGAROLI, A. (1999) Memo on regional geological, geochemical, and geophysical studies performed in the Lustdust area by research institutions. Report to Alpha Gold Corp., October, 1999.

1

ł

7

TITLEY, S.R. (1993): Characteristics of High temperature carbonate-hosted massive sulfide ores in the United States, Mexico and Peru. *In* Mineral Deposit Modeling (R.V. Kirkham, W.D. Sinclair, R.I. Thorpe, and J.M. Duke, eds.). *Geol. Assoc. Can.* Special Paper **40**, 585-614.

TITLEY, S.R., AND MEGAW, P.K.M. (1985): Carbonate-hosted ores of the Western Cordillera: an overview. *A.I.M.E. Preprint* **85-115**, 17p.

21

7

- 1

1

7

× 3

1

з

Ŋ

î

TITLEY, S.R., AND MEGAW, P.K.M. (1995): The setting and genesis of hightemperature, massive, carbonate-hosted replacement ores. Society of Economic Geologists International Field Conference on Carbonate-hosted Lead-Zinc Deposits, St. Louis Missouri, June 3-6, 1995, Extended Abstracts, 314-316.

WILKINSON, W.J. (1979) Diamond Drilling Report, L & M Mineral Claims, Lustdust Property, A.R.# 7759.

STATEMENT OF QUALIFICATIONS

٢3

1

1

I, Peter Kenneth McNeill Megaw PhD, do certify that:

1. I am a geologist and have practiced my profession for the last 21 years

2. I graduated from the University of Texas at Austin with a Bachelor of Arts degree in Geology in 1976, and Master of Arts in Geology in 1979.

3. I graduated from the University of Arizona, Tucson, Arizona with Ph.D. in Economic Geology in 1990.

4. I am a Registered Professional Geologist in the State of Arizona (Registration Number 21613).

5. I am a Certified Professional Geologist with the American Institute of Professional Geologists (Certification No. CPG-10227)

6. I am a Fellow of the Geological Society of American and the Society of Economic Geologists and a Member of the Geological Association of Canada.

7. I was actively involved in, and supervised the Lustdust program for 1999 and authored the report herein.

8. All data contained in this report and conclusions drawn from them are true ands accurate to the best of my knowledge.

9. I hold no direct or indirect personal interest in the Lustdust Property, which is the subject of this report.

Peter & M. Megaw Ph.D. Senior Project Geologist October 1999

APPENDIX A: 1999 DIAMOND DRILL HOLE LOGS

0.046

3

17 1) <u>___</u> APPENDIX A: 1999 DIAMOND DRILL HOLE LOGS 2.3 ~ 3 **4** 3 ~7 5夏 ŧ 1 **~**? 3 ł 1

Ť

4

DRILL LOG

Date started	July 29, 1999
Date completed_	July 26, 1999
Azimuth 068	

Hole *.	1099-01	
Depth_	955 Fret	
Hole size	e	
Contract	tor <u>LDS</u>	

Col	lar	Coordinates:
•••		

Elevation 1500m

D1p <u>80°</u>

N_	1300	01+0		
WX-	1800	+30	Ŵ	

Drill type _	LY 38
Logged by	Peter Megaw

DOWN HOLE SURVEYS

Inclination	<mark>Bearing</mark> ریر 0
	ND
80°	ND
	Inclination <u>so</u> ° <u>so</u> ° <u>so</u> °

COMMENTS Hole designal to test doep succlined axis trust concept.

Spotted based on thickest sulfite intercepts in shallow holes and structured

registation by G. Erong Dilling condition excellent.

loo scale = 1:500
HOLE No. 10 9901

Page 1 of 3

	DE	<u>ртн</u> ft:	COLOR	MINERAL- IZATION .	DESCRIPTION	RECOVERY
	2.1	12			Case	
					Argillite. Phyllite [2] Foliation very contorted at dominantly 0° and 45° to C.A.	• • • • • • • • •
	11:00	36.3	Black	pyrite =	Shear with graphitz and praite cubes to 3mn	
	17:3	53.0	Dark Grey Black Med-Dark	Pyrite	Limestone - highly broken grehealed with calcite veinlets [4] shear with graphite & pyrite to 1 mm Matic tuff(?)[30r2] Top Im is transitional to	
	20.6	59.5	gray		LIMESTONE à BOUE	
2	23.5	70.0	Greenish gray	pytite =	Breccia with graphite and pyrite to 3mm Mafic tuff [3] with smeared out limestone clasts Foliation 40° to C.A.	•
	31.0	92.0	Striped Black and		Interlayered calcareous graphite and limestone with strong shearing on	· · · · · · · · · · · · · · · · · · ·
	.36.0	1090	nea greg Pale Greenish		DIKE Fine - med grained hbdi-bi-plag monzonite [7] No guartz, All femags chloritized. No alteration or	••••••••••••••••••••••••••••••••••••••
			Grey		mineralization on contacts	
· ·	49.4	149.0			tangent I show all inaction	
			Nottled & Striped Grey and		with numerous graphitic slips dom. @ 50° to CA. [4]	• • • • • • •
			Black		······································	• ····
	65.5	199.0	Black		shear with massive toleated graphite Foliation & 45° to GA	
	173.0	222.0	Pale green Cream		DIKE-Probably same mongonite as above but pervasively angillized core is Very soft. From on frontinged core is	· · · · · · · · · · · ·
			Mottled medium		Limestone [4] with bleaching on irregular fractures Numerous	• • • • • • • • • • • • • • • • • • •
			to light arey		Styliolites at various angles to C.A probably tectonic. Some styliolites	•
					have graphite accumulations. Slips mottled with graphite	
			•			•
		and				• • • • • • • • • • • • • • • • • • •
┣ —-	198.0	245.3	Pale green-		DIKE Medium grained Hod -Bi-Plag.	
	102.0	310-0	ish grey		monzonite [7] mod. chloritized but still competent. Cut by chloriteslips @ 15° to CA	
			medium to		Limestone [4] As above.	•
			igni greg			• • •
						• · · · ·
1	:	1	1			
1	•	I	,	I		1.

HOLE No. LD 9901

Page 2 of 3

	<u>DE</u> m	<u>PIH</u> ft.	COLOR	NINERAL- IZATION .	DESCRIPTION	RECOVERY
1	105.2	345	Medium grey		Limestone [4] as above	100%
	1.05.8-	344	Greenish	Mod pyrite		
	11.3		grey	E pytthotite		
	110 0-		, .		Limestana F47 Minan is suggest Iliantian	• • • • • • • •
	·		110 lun		LIMESIONELT J TITNER VEETYSIAIIIJAIION	. //
			HE didt		In parches	
- '	-		TO light			
. ·			9101			
						1
						A second second
			1			
		•				11
j í		1				
į .						
·		ļ				• • •
	179.3	469			Fraitures with Fe-Oscides	
	137.0	l ' '	Modium		Limestone [4] as above	1/
1 '			9rey		· · · · · · · · · ·	• • • • •
F	1450-	1 ⁴⁷²	M. Grey		Kimestone [4] Finely brecisted & rehealed	11
	149.5	404 .	M. Grey		Limestone [4] - Solid	
↓	149.2 -	489.5	Medium grey		Limestone [4] Mod, broken with Fe Oxon Bracturas	· //
	10.10		Medium grey		LIMESTONE L41 - Solid	. 11
<u> </u>	163.0	Shear=			LimesTone I'd highly broken with Fe-On on frac	tures
	ł	ľ	Medium grey		Limestone [4] Moderately broken with	· · · · · · · · · · · · · · · · · · ·
	ł		and Orange	,	Fc.Dou on tractures.	100%
	160.6	(27	· ·	_		
	100 -) **/		} -	Limestone [4] - Solid	4
		Cup	Medium grey	1		
	160.~	542			Ling to an THT Broken with Fr. Once on	
			Hedium area		fire + fire (
					Traciores	1
¥	172.4-	565	<u> </u>		+	
	1				1 martin Tilt C-link	
		1	Medium grey	1	LIMESTONE LAJ - Solia	1
L	=179.5	189			the start of the start	
	.,,.		Dark grey		Limestone L4J Dark colored with	**** · · · · · ·
	124.1	104		-	numerous grankite slips	
			Medium grey		Limestone - Solid	
+	187.1 -	619	Mediumgrey		+Limestone Luj with solution enlargement of	
h	189.6-	622	t Orange		Imestone - Solid FUT	1
K	1.91.1 -	624	icaium gray		Limestone, [4] Dark colored with numerous	11
<u>⊢</u>	193.8 -	636	WARR Yrcy		graphitu slips	ŀ
1					Limestone [4] Dark colored Broken with	. 11
	ł	1	Dark ghey		abundant calcite vein lets. Numerous	ł
		1			graphite SIIPS @ 30" to C.A	.
		1		1		l
	(- st.)	-		1		
	206.0	676	Black] . =	Fault with messive - to liated graphite	\cdot n
	1			1	Limestone [4]-Solid-Beds(?) @36" to CA.	
		1	Medium	1		11
	ł		arey	ļ		· · · ·
	1		7	1		
						<u> </u>
	1	1	1			. //
	1	1	1	1 ·		1
- i - i	1	4	-	. 		I
1	1		1	1		

HOLE No. <u>LD99-01</u>

Page 3 of 3

DEPTH MINERAL-COLOR RECOVERY DESCRIPTION <u>ft</u> 676 <u>m</u>. 206 Limestone [4] continued from 672' Medium , 100% grey 227.6 947 Limestone [4] with fractures @ 20-40 to Medrum C.A with Fe oscides grey 4 Orange 1/ 233-5- 766 LIMESTONE [4] - Solid Medium 9404 2398 787 PIME Monzonite IFJ Chloritized and argillized Top Im very fractured Brecchated & 798 with chlorite matrize - 907-Greenish cream 100% 245 - 804 Medium Limestone [4] Solid grey 100% 277 - 909 striped Argillite L2] Thin bedded with altern-ating cherty argillite and black Poliated graphite shell, Contact with blackand 11 medium overlying limestone is at 400 to C.A. and ragor sharp. grey -291:1- 955:0 End of hole

· Date started _JJy 26, 1949 Date completed July 28, 14 4 9 Azimuth ______ 63 Dip ______ Elevation _ 1500 m Collar Coordinates:

N_1630N 2220W **K**-

Hole # 0 2
Depth 877'
Hole sizeNQ
Contractor LDS Drilling
Drill type Ky 3 8
Logged by Peter Marine

DOWN HOLE SURVEYS

1-1

Instrument <u>Acid Test</u>		
Eootage	Inclination 80°	Bearing N.D.
557 1	80°	р. D.
777 /	78°	N. D.
	·	
COMMENTS	· · · · · · · · · · · · · · · · · · ·	
·		·

HOLE No. 10 99-02

Page __ of _3_

DEPTH MINERAL-IZATION COLOR RECOVERY DESCRIPTION ft m Casing 15 46 Carbonaceous argillite [2] Striped Altronating araillite and graphitic 100% layers. Foliation @ 40° to C.A. Appears to be deformed clastic light grey and black rock with argillite clasts dominating over carbonaceous matrior A79 47.2 Grephite Slip = fault Carbonaceous argillite E2J. Similar to 182 Black striped above but narrow PJ-Po veinlets appearing in graphitic layers, 5 mm pyrite veinlet @ 156.5 A>9 black and Light Grey 55-5 182 Carbonaceous argillite 5] with graphito loyers strinch black 11 2-5% dominating our argillite Mod py-po dissemination throughout (251) 97A and light grey, Overall black po >> py 62-5 205 Striped black and light quey___ Carbonaceous argillite [2] with argillite > graphite. Smill (1.5cm) pyrite clasts 11 . 5% po >>py 67-7 222 5-12% Striped po t py black and \equiv lightgrey corbonaceous argillite [2] Argillite 2 carbonaceous matriou Foliation strond & 40° to C.A. Graphite 5/1PS @ 242' \$ 250' = Flts? Py-Po clasts increase in size & number dow wards shctch K Bester 268' and 277 5 - Clasts 86.9 Surrounded by toliated graphitic matrioe : , involved in deformation Possible fragments of Penn-Perm 98.1 322 VMS in Cache Creek time ion Py Micro veinlets I Po clasy Graphitics layers = 268'

HOLE No. 1099-02

-

Page 2 of 3

	DE	ртн ft	COLOR	MINERAL- IZATION	DESCRIPTION	RECOVERY
•			Striped black and light grey	5-12%. Po >> Py	Same as above	•
,						·
1 <u>1</u>	98-!- -101:2	-322	striped black and light grey Emetallic layers	Py-Po-Sp-AS CP 15%	- Cherty araillite with Poin foliation (deta and Po-Pv-Sp-As-Cp bands cutting deform- ation fabric (remobilized)	rmed)
				5-12%. Po > Py throughout	Same al above	•
	- <i>116 •</i> 4-	382	Striped Black and Light	I ст bandu are 1001.S= Ру-Sph-Asp Ро-Ср	Carbonaccous (graphitic) cherty argillite [2] with strong foliation @ 30° to C.A. 5-B% finely dispersed PotPy in graphitic layers- dominantly and small Po clasts locally Chert? graphite Sulfide veinlets & 1 cm thick @ 432 9513 fect and composed of pyrite sphulerite, arsenopyrite pyrrhotite and tiny chalcopyrite blebs	• • • • • • • • • • • • • • • • • • •
						• • • • • • • • • • • • • • • • • • •
					Carbonaceous cherty argillite as above but with numerous coarse bodies of pyrrhotite (PotoScm) Poalso abundanth present in laminae with elonagte lenses to Scm. in layers and Po and ccr is widely cut by thin transgressione Pyrite micro veinlets	
	174,3 1754 1754 177.4 178.1 179.2		Dark grey + Gold 6126s St. 61K(Ltgre Black white Black white	Po 25%+- Po 15%-	CCA as above ~ 15%. Po as leases idespersed grow Bricin with v angular trags of sulfides ECCA Poll Py Po As Sp Cp. Healed with Coart Calcite in Ungs lining. Bladed CC Clots to 5 Cm.	7
• ·				· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •
		-				

HOLE No. 10 99-02

MINERAL-IZATION DEPTH RECOVERY COLOR DESCRIPTION m CCA contouted and dougy = Fault? 178-1584.5 179-2 588.0 Blackewhite Carbonaceous cherty argillito with Shift from carb > chert to chert > carb. downwards 5-BJ. Poin tiny dispersed grains and as lenses to Bcm. Massive Sulfide vein with coarse vuy filling bladed calcite Stripad BIA 5-8% PO-Py +Ltgrey to Ltgrey>Blk 185.9metallic - Py, Sp, Po, As Ism Cny Carbonaceous cherty angillite [2] striped Dark grey and Foliation @ 40° to CA hight grey rimestone 197 Brecciated and going y Some ground up sulfides. Py Po Limestone E47 Broken and healed with callite veinists Py Po Aspy 215:5-707 -Light grey Light arey -Carb cherty arg, very chloritic. (Matic tutt component?) 10%. Po By overall dominantly as tiny lenses and dispersed grains 220,0 722 12, 12. Aspy greenish grey striped Blissi light Py. Po Sp Cpy 100/11 Massive sulfides (4"total) Py Sp As Po Cp Limestone [4] Sulfide vern lets (10m)@742 Py Sp As Po Cp Matic tutt [3] with abundant limestoge clasts 5-15%. Po in creasing downwards grading into massive Re large below I Hassive sulfide Po 99%. 1%. Chalconyrite tine I magnetic Gradis in to matic tutt abour. Limestonelt] Fractured with cc verylets Matic tutt [3] with abundant limestone Metallic 227.1 745 light arey 230.4 754 greenish grey (dark) grained 236.4 775.5 Gold Metallic light quer metallic 239.1 784 5 239.6 786.0 Matic tutt [3] with abundant limestone clasts Cut by late calcite vein lits to 5cm dark greenish grey Lt grix blobs 245.9 804. Limestone I4] Highly tragmented. Light arey - clastic? Garbon accous cherty argillite with detorned chert and pyrhotite fragments Well toliated trightly toliated locally Po Gands ave also tolded = syngenetic ? = Limestone [4] As above -253.6 832 striped black flight grey 2603 854 Lt grey Carbonaceous cherty arailite with less sulfide Will Foliated & 500 to CA Striped black e Ltgrey 267.3 877 END OF HOLE

Page 3 of 3

Date started 28, 1999	Hole #
Date completed July 29, 1999	Depth
Azimuth	Hole size.
D1p 50°	Contractor
Elevation 1370 est	
Collar Coordinates:	Drill type
N_2369	Logged by
WZ 2222	
• · · · · · · · · · · · · · · · · · · ·	

1

•

Hole #	L099-03
Depth	177'
Hole size _	NQ
Contractor	LDS
	····
Drill type _	LY 38
Logged by _	Peter Megaw

	·•	
DOWN HOLE SURVEYS		
Instrument <u>AcidTest</u>		
Footage	Inclination	Bearing
177'	500	N.D.
		·
COMMENTS <u>George's [</u>	the - Dosigned to cut a	Kain 2 pe -
Clunburgerte and Bornite	at shellow depth.	
	· · · · · · · · · · · · · · · · · · ·	

HOLE No. LD 99-03

Page __ of /

ł	DE	PTH Ft	COLOR	MINERAL-	DESCRIPTION	RECOVERY
	<u><u><u> </u></u></u>					
	4-25	14	B.I. ALCONT		LASING Hornfelical cherty araillite 137 Brecciate	Luite .
	~ <u>`</u>		grey	Py Cpy	Sulfide and garnet sharn fragments 5-81. Sul 1-1,51, 45 Cpy in motriou and fractures. PN cuts	fids 00%.
	- 8-2	28	hight grey	1 ² Y	Mongenite med. grd. itbd Bi Plag Po Ksp me	dacrysts
<u> </u>	13.3	44.0	green reddish	Py Cpy =	Breccin with mons > sharn Thot A fels Frags 3-81.S Monzonite porcelaneous natrix (silicitied) 59. py	py TTCp x Endos harn
	15.5	51:0	green grey	/ / -	Mongonite med. and. as above Fermags	100%
			hight grey	PY .	replaced by Py	
<u> </u>	22-0	·	Pale green	Py Cpy -	Garnet sharn Fine to med grained 5-20% C. grained Pyrite Hinor Cpy	PHISE
	26.0	82.0	greenish	Py =	Horntels vitreous 25% By on microfractures	
	200	92.6	+ Creaming	CPY Py =	Garnet's harn as about but stronger & Coasser gr Sarnetz 19-201. S Pyschy Bar cry increases de	youand
· 	33.0		metallic	Cry TPy 7 BM	Garnet sharn yellow green to plive garnets sa	m, massive
	35.5	112.		1°Y py =	(1) Very well mineralised & Aarn by	ades to ica
	37.0	/22		Py	Fault By (15% v coarse 2-6 mm) Foulting with graphite slips 2"	•
•					How to load about anailleta with	•· ·· · · · · ·
					minor graphite Firsty horotclsing	·
					3-5% Py on tractures sulfides	
		þ.			dispersed Throughout.	
	540	177		· · · · ·		†
					akanal al a to ante	1 •
•					SAMAN: Charco CUIS garners	· · · ·
					and TITIS INTERSTICES BETWEEN	
					garnet Crystals	
					Limited SURICE reprice Prince	• • • • •
					of garner D.	• ··· ··· · · ·
						• • •
- 4						
•				•		.*
•	•				1	
•						•.
,						•
						•
						•• •••
• •					1	
•						•
• : .						
•						
	1	ţ	1	l		•

<u>ر</u>

-

7

"3

1

77

-12

: 7

-1

1

ţ

7

•

Date started	7 29, 199	9	Hole #	LD 99-04	
Date completed <u>J</u>	11y 29, 190	19	Depth	20'	
Azimuth10	-		Hole size NQ Contractor LDS		
Dip <u>70°</u>					
Elevation	st			-	
Collar Coordinates:		Drill type <u>LY 38</u>			
N_2369_	······		Logged by	Peter Megaw	
₩ <u>₹_2222</u>				•	
DOWN HOLE SURVEY	S		•		
Instrument <u>Acid</u>	test				
Footage			lion	Bearing	
T		50			
					
		<u> </u>		-	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		······································	······		
OMMENTS Dec.	dbat	barris 2	. toot	1 off	
		Utorges jo	re al great n	caepiy.	
	•				
	•				
				······································	

HOLE No. 1099-04

Page ___ of ___

•	DE	ft	COLOR	MINERAL-	DESCRIPTION	RECOVERY
	4 4.4 10.0 11.6 13.0 18.95 18.95 18.95 18.95	13 33-5 38-5 43		Py - Py - Py = Py = Py =	CASING Hornfelsed cherty argillite [3] with 25% mess. Coarse 19. Cuts Mornfels Hornfelsed chert + argillite [2] Very hord and flinty 2% Py on fractures & disseminated Monnonite matrice silicified Plag Ahenos clay a High fldep mon zonite Contact a 50° to C.A Monnonite as a soure Hornfelsed argillite breeclar Monzonite as below Hornfels as above Garnet sharn w arean diopside + specularite Hornfelsed cherty gravillite as above Breecia w. garnet sharn & hornfels fragments Monzonite II ighly silicified with 3%.	ive Hered No sulfidos < 2% Ry
) A A	440.0	,165		Pyrite PyCpyGal	dispersed Pyrite Very hard Monnonite endo sharned w garnet & diopside well mineralized with Cay & Py to 15%. Combi- 133' Fracture with massive Pyrite chalcopyrite 134' Fracture with massive pyrite tother sulfides 135'S = Contact Garnet sharn with 20%. Chelcopyrite Garnet sharn with 20%. Chelcopyrite Garnet sharn with 10-15% sulfides Py7 Epy Hown telsed cherty carbonaccous Argillite [2] Very flinty w. 3-8%. Ay as veinlets t dispersed Broken gougy 300e = Fault	galena galena
	- 65-	- 2/ J -			END OF HOLE	
					·	

Date started	Hole *	LD 99-05				
Date completed _ July 30	Depth	157'				
Azimuth <i>080</i>	Hole st	Hole size NQ				
Dip <u>- 45</u> °	Contrac	ctor LDS				
Elevation 380	· · · · · · · · · · · · · · · · · · ·					
Collar Coordinates:	Drill ty	pe 44 38				
N_2387	Logged	by _ Peter Meyour				
W/E_2230		, , , , , , , , , , , , , , , , , , , ,				
• •						
DOWN HOLE SURVEYS						
Instrument <u>Acio Test</u>						
Footage	Inclination	Bearing				
117	450	м. D_				
		· · · · · · · · · · · · · · · · · · ·				
COMMENTS Designed to est	Skarn zone @ 900	North A				
George's 3me,		, , , , , , , , , , , , , , , , , , ,				
· · · · · · · · · · · · · · · · · · ·						

HOLE No. 10 99-05

Page ___ of ___

	OE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVERY
	_ <u>m</u>	<u>t I:</u>		1211.0		
	n.C	16.0				
	7.5	12.0	Med grey	pyrite	Horntels flinty 5-8% Pyrite	100%
	- 4.4 -	145	greengrey	Py 201783	Garnet skarn Mod. By on Eractures overprinted horn te	ls have fil
	11.0		green layers	Py 501785 -	- Horn feli w 5 Cm Skarn layers w PyETrCry Prob, low a	rade Lega C 777 B
	12.7	42.0	green grey	701786 =	Man Janite Siller Sparn Som Brown carnet 5-5-201	increase down
	14.3	485	green	01788	Py > Cointop Co>Py in 60 thom Best CP near hounte	's contact
	18-2	60.0	Med. 9-cy	Py/ h -	Hornfols Highly fractured & rehealed Minor pyrite	5-8%
			Striped	Sample	H & had carbon geores cherty availlite	
			Black and	Nos.	Flora Cerson Carobana - coro di ante	s
			Grey		chipvite partings 3-5% Pyrite	
	29.0	97.0	Dark grey	-	Hornfels [1] Very carbon accoss Cherty and illite	
	32.0	105.0	Med yrey		Hornfels L29 Cherty argillite preccia	• · · · · · · ·
	33.5	114.0	DK Green Hottler		DIKE Monsonite	
	32.0-	123.0	preen w. grey	e =	Hometelsed cherty argillite breecia	
<u> </u>	32.2	124"			Have fall - Cherty argillite [2] 2-5% pyrite as	
			Med grey		disseminated fracture coatings and	
,					veinlets	
	11-2-1	1157				
	47.6	-457			END OF HOLF	
		ļ				
		1				
	Ì					
]				
						ŀ
						• *
	·					
	1					
	1	1				
	1	1				ľ
						1.
	•					
						1
			1			
	·]	1	1	•		
	1	1	•	•	,	

2

-1

r 7

: 1

3

٢٦

· •

ş

-1

1.)

; s

Date started	999 Hole *	Hole # _ 10 99-06			
Date completed <u>July 31, 19</u>		Depth			
Azimuth <u>187</u>	Hole size _	NR			
Dip	Contractor	1.205 P. 11.			
Elevation					
Collar Coordinates:	Drill type.	17 38			
N_2387	Logged by .	Piles Megan			
WF_2230					
1					
DOWN HOLE SURVEYS					
Instrument <u>Acio Test</u>					
Footage	Inclination	Bearing			
107	700	N.C.			
·····					
COMMENTS CHARLES	sis onion 1 gene on	1. M.			
20-120 wording and	Likes . Han erade Conson	Concert Land Starte			
an a derived of a					
	· · · · · · · · · · · · · · · · · · ·	د بر ه بر به به بر _ا ین این در <mark>این بر این این این این این این این این این این</mark>			
		· · · · · · · · · · · · · · · · · · ·			

HOLE No. 6099-06

Page __ of __

1	DE	PTH	Corio	MINERAL-		Increases.
	<u>m</u>	ft	LULUR	IZATION .	DESCRIPTION	RELOVERY
	4.2	14			Handale chanty and Contrated building & hall at 20	to CA
	7.3	24			Public horafels Diop. on fract. cut hat's bands shaw	100.4
	3.6	29 JZ			Monzonite F.grd. siled matrix. Fract. 8, 30 + + C.A	100%
	11.2	3739			Hernfels w mod Py & Cp	E.I.
	13.00	49.5			Cpy Py in shain 201.5 Cpy cuts Py & sharn	P-3
	15.5	536.5	na y na sana sa sa nana		Avaite horatels w Cr & blebs sulfides (?) 101.5	
	20.0				Prvitic sk. w brown garnets cutgreen garnets Endo	shown /Y.Cpy
	20.6				Hornfels Lower 2 one is a breacine of hels & Mon 301/3 pyritic hornfels 5-10% in veinlets cutting hfls.	trags
	23.0		······································		Hornfels brecciated touture wabundant gas	incts
	24.4	90.0			replacing hels. 8-15%. Py Increasing Starn d	punwara
	11 A.M.				Sharned horntels w. 5-10%. Py & Tr F. grd.	Yeq. >
					a second to a much like a much like	
					Massive by vein by very coarsely crystalling	32
<u> </u>	35.6	11.2.5		Py Goy	HIGHTONITE DITTE , DY 1-3% CRY	
	36 8	1288	-	/ ² Y	Hornfels Abund. Py (5-8%) UP to 11. Cry	
	39.7	+34		-	Pyrite Usin Montonite DIME	
· · ·	1		-	1	Horn fels 31. late Pyrite	in and
	44.0	152			6 brecala on lower contact.	18100
	1.0			1. S	Garnet sharn Verytine grained Crythy	BN
				1 . A	Massive Pyrite veins & 160 and 175	
	53:3	176			Garnetskarn replacing horntels	
	55-1	182		-	Horntels W. Garnet la yers. Garnet cuts hils	
					the folget shouts anaillet	
					HOFA FEISCA CHEVIS aDDIIIIE	
	1				Dedding & SS TO LITT	
	70.0	231		_		
					END OF HOLE	
		l				
						• *
						.
	1			1		
	1	1				
		1				
	[
· ·						1
	1					
				1		}
			1			·
] .
			ł			1.
-		1 .		•		
	1	1	ł	l	1	Ts in its in the second s

Date started <u>Avg 1, 1999</u>	
Date completed <u>Avy</u> z. 1999	
Azimuth <i>go</i>	<u></u>
Dip45	
Elevationert.	
Collar Coordinates:	
N 2478	
WE_2304	
DOWN HOLE SURVEYS	

Hole *.	6099-07	
Depth_	496.51	
Hole siz	e	
Contrac	tor 195 Dalling	

Drill type _	14 38	
Logged by _	Peter Megaw	

۴.1

-7

-1

7

67

1.1

Footage 187'	Inclination 45 °	Bearing N. O	
Y47'	45°	N D.	
,			

COMMENTS Designed to test containty sicain to North + under tranch cit along upper road. Found multiple intrusions + seen

42.5 m Aggregate Liter Asken cit. = 140'

.

HOLE No. LD99-07

Page 1 of 2

	DE	PTH Ft	COLOR	NINERAL-	DESCRIPTION	RECOVERY
			P		CASING	
	13.3	44.0	greenish grey	pyrite 5-81.pj	Horntels Cut by gar-epidote-dipp. on tr abun. Pyrite 5-8%. Flinty	a ctures
	17.0	56.0	red-brown green	Py 3-61.	Garnet skarn w. red brown garnets outris green. Abundant specularite é pyrite	
	23.6	78	Yellow Blackish Green	27. Py Tr Cpy	- Garnet DIOR SHARN abundant specularite son Slips, Jugery Crumbly retrogrounded.	ne araphite
	26.7 28.2 29.4	······	Green grey Green grey	5-10% PyTr-Cpx	Horntels w. 2% By on fractures, pyrite. Branned horntels w. 5-1015; pyrite. Gar -epid.skarn w 5-154. 104. specularite	iraded
= ===	32.2	<u>99</u> 116 :	Blackish green	1-21.Py	- Cur-epid sharn Aver Spec. Very County Herry Horntels cherty argillite Egarnetsharn 4+ brown overprinting green 31. Py T	Cpv Diopsid.
	36-0	,20	Stripool and mottled Light +	1-21 Py	Hornfels - CA - Flinty Local agences haven, lavers 2-6 cm thick Banding contorted or 45% to C.A.	
	41-6	154	grey		11 AND TO LIKE	
	50-0-	163	Black specks	11. Py 51. Py	Horntels w abundant chlorite layers + slips [3] Matic tutt 51. Pyrite Very broken	COL PU
F	52.7	- - -	Hed grey	1-21.12y	Horntels-CA-Flinty Ry bands to 8/ total Ry 5- with VFG CRY inclusions 1%. 2 stages of Ry Zones of Partially replaced horntels	
= ==	58.5 59.2	191 195		Py T+ CPY = 5-10% Py	Hornfels 201. + Py ucins Very coarse 11. Cpy + Garnet 5 karn Diopside pyrite replaces hfls.	Bn
	63:2 24:0 16:0	209		Py -	Hornfels Garnetskarnw veryabun. By 20-80%. Bands to Diffuse contacts	10cm wide
			Med grey	1%. Py	Hornfels w. garnet & pyrite layers	
= ===	75.5	2490	Green Brown	27. Py =	Garnet skarn	
	80.0	266.5	Med grey	1% Py	Hornfels	
			greenish grey	1-2%. Py	Mongonite - pervasively silicified	
	90:0	2920				
			Med grey	17. Py 19. Carpone	Hornfels	
	101.0	334.0	Green Browni	1-10%. Py	Garnet-diop. sharn to 1-101. By incubes to in bands. Blubs of Cpy & Bn in the pyrite cu increases down section	Icm
	110.0	363.5	Observish ares	11. Upy TON	-S"massive sheared chiorite 0400 to C.A. DINS. Massive aurnet + brown gar-diop sharn + 5-8	1, 0 Slicks 3 4. 174
	113.0	386	green + 6rows	5-81.17, 74 41;	Horntels	Py
	118.0	389 394 394	Green Brown Med grey	Py 1-5%. Py Cry BA3-8% Py 1%.	Bracciated hornfels Incipient charn	
				ŕ		
	:	1		•	1	

HOLE No. ____99-07

Page 2 of 2

		DE	PTH Ft	COLOR	MINERAL- IZATION	DESCRIPTION	RECOVERY
Ţ		121	397	Med - Dark grey with arey ratches	1-2% Py	Horn fels	
		126.6 128.3	418 421	tant green gre Tan + green metallie	руніе 3-20%. Сру 1-4%.	Garnet skarn w Py & Cpy Several 6"-1" of unsharned hountels in gone	•
		1342	436 4405	greenish	27 Pyrite- pyriteli.	Breccia Misera hornfels E DIKE Coorse Ry in Bx mattisc More DIME Fragments near DIKE	
		141.3	466	grey Med+Dh.Grey	2%. Pyrite	Breccia As above	
				Med-light quey	pyrite 1-2%	Argillite E2J Weakly hornfelsed. Very breecented and distorted	
		-150:5	496.5	END	OF HOLE		
			- - -				· · · ·
	-	1					
	~	A					
						1	
	i	1	1	ļ	l I	1	1.

Date started Arg 2, 1999	-
Date completed A14 3, 1999	_
Azimuth	-
Dip 50	
Elevation H32 M Approx.	
Collar Coordinates:	
N 2735	

WE.	2338	<u></u>

Hole #	-D 99-08
Depth	737'
Hole size	NR
Contractor.	LOS Drilling
Drill type	L7 38
Logged by	PeterMegar

DOWN HOLE SURVEYS

- ·}

~`'I

ł

~ }

}

Ĩŧ

• 1

Instrument Acio Test

Footage	Inclination	Bearing N. D.
487'	50 °	ν. ο.
654'	540	N. D.
		· · · · · · · · · · · · · · · · · · ·
.		

COMMENTS To fam contractly of skew to worth and under swamp. Hit large	
have a to body (converte Grander court) a lasteric have 6(5 up	
1 tel al date to march al a los be adall - where did she in the source 500 5	
22 (1 at 2) (mus at the change during the	_

HOLE No. 1099-08

Page 1 of 2

1	DE	PT H Ft	COLOR	NINERAL-	DESCRIPTION	RECOVERY
1		<u>_L.I:</u>	y		CASING	
	44.25	14	greenish		Monsonite - Very fine god Phase w Py Fe-Oxin	les
-12	8.25	27	green-Cream		Monzonite Sheaved zone of bright arean chlorite	100 /.
, '	2.20	10			Mon sonite very fine arained w pyrite	
			greenisa grey	2-4%. Py	disseminated and as local veinlets	
1					1-47. Fy / 07 0 20 100 y	
	21-0	66-	acceptsh		Mongonite Med grained phase Prominent Horable	ndc Ebio.
	15.0	83.0	grey	2-3%. Py	phases partially chlorifized Matrix Pervasic chlorific. 2-3% Ry	
			greenish	3-54.Py	Hongonite - Fine grained phase As above	
	37.0 -	103	golden	100%. Py -	Icm Pyrite ucin @ 30° to C-A.	
÷	33.0 33.3	109 110	greenish crehm	10% Py	Argilliged zonc @ 20° +0 GA.with Py = 1 auti	1/
			greenish grey	3-67.14		
	39.7	171.5	Greenish Cream	3-5%.Py	= Brokentargillined = FAULT	
			Greenish cream	51. Py	Argillised & chloritized some Very soft = Fault w	Pyrite
			• /			
			Greenish grey			
		[3-57. My		
						11
	au 5				the literated place	
	64.	213-	Greenish	r.1 D	Monzonite Meduum grained Nonasc Reseccipted with prester to 5%.	
	70%	777	9+ 04	51. Fy		
	1 10	199	greenish	17. PY	Monsonite Fine grained phase 11. pyrite	
	77-3		grey	141 P. 17 Cm	Brencia, W. 15%, sulfides: 14%. Py 1%. Cry Matura	chlorite
	27.5		anonich			/
			grey	17. Py	F.G. Monsonite	1901.
	86.7	286.0			Mongonite Medium grained Phase	
	88.0	241.3	Greenish grey	Py Cpy 90%	Prite Ucin 90% Ry 7+ Cpy	ŀ
			grey	Tr-2%. Py	to 27. pyrite as disseminations & micro veinlets	
	95.0	314	and and an	1-3% Pv	Monsonite Fine grained phase as about	e
+	97.6	322	yrcenish yre	2 37. 7	1	e
			areenich	1-2.1 D	Mongonite Medium grained ishase as about	-
			grey	1 ×1. Fy		
	7	2.00				
F	- 109.1	3620	nan an			
	.]					
]				
•		1	•	•		-

HOLE No. LD99-08

Page _2 of 2

	ł	DEI	OT H	COLOR	MINERAL-	DESCRIPTION	RECOVERY
1		<u>m</u>	<u>t</u> T:				100%.
	·	109.7	362 368	green gray	51. P+	Mongonite M.G. phase sheared wheavy chlorite	St. Coarsery
		114	3.77	green grey	3%. Py -	- Sheared	
			•••	areenish aver	1-2%.Py	Monsonite M.G phase as above	100%
		120.0	396	cteam		Broken w chlorite slips = Fault	
F		1207	397		1-2% 12-	Mananaite M.C. 12 hase	
	1			greenish	,	126/417 Prote contents increase to 2-4%	
				9101		Systematic, incremental increase	
		177.0	436.5		2-41.14	Contact BX Mixed Hfls & Monz. 5% K-spar	
F		1323	437	Medum grey		Hornfels cherty argillite (almost no graphite)	
				Brown	1-4%	2-4% py as disseminations & micro fractures	ľ
				Stripes		Very flinty	·
		144	11.75.5	,	· · · · · · · · ·	Brechated poratels wehlerite = Fault @ 30" toc.	4
F .		145	479	arocre Grey			
				Medium grey		there fals as change	. -
				with Brown	2-4%.Py	HOMITIS WS UND DE	
				Stripes.			
			•				
F		160	532	greenish Grean metallic	5-50% Py	+Broken +w carb larg 11/13ed ~61. Py +Multiple 1-3 cm Pyrite veins	
		162	534	Medium grey	2-4%. PV	Hornfels as above	
F		+67	552	stripes		Broken & Argillised = Fault yone	
			-	11	1-3%. Py	Horntels as above minine.	
=		<u></u>	568	Metallic	· · · · · · · · · · · · · · · · · · ·	= 1-4 cm By vein lets striated cones to 6 cm	
				with 6rown	1-3%Py	Horntells as above	
<u></u>		178-	587	Metallic	5-901.5 11.Cpy Bi	+ Hfls cut by multiple Py-Converns to 4cm Minor B.	n i i
L		182.	600	BLOWN STRIPES Metallic	1-3%. Py	Apprile Vein & 5° to G.A. 15%. Soverall 14%. Py 1%. Cioy	
Γ		182.2	602	Midium grey with brown	1-4%.174	Hornfels as above	
Ļ		190	627	Stripes Medigrey, w	HEIS 2-SI-Py	Horntels cut by suifide veins @ low angle to CA.	
╞	······································	193	634	green-medgre	Vein 25% Cpy75 X 1-4% Pyr. D	Hornfels w strong chlorite alteration 5%. By= Fau	17
		1012.6	65.0	greenish grey	2-3%. Py	Munnonite Medium grained phase sparse ier i spar mega crysts Chlonitised largilliged 30.	nd = Flt
						Monnenite as above. Overall this dike is	
				Green grey		more pervasively chloritizen than above	
					2-3%.Py	re-mans & pray _ chil	
		1				A STITY ON FRANKER & MINOUTHING	
		1.					
F		210.6	695	Green		Crushed & chloritized argillized zone. Vu c" contact zone formed by dike & hornte	solt. Mon
				Medium grey	1-24 D	Horntels Cherty argillite(2) originally	
			1	with brown		Very flinty	
				5771000		1-34. Py on tractures e disseminated	
\vdash	<u>_</u> _	223	737		C Hale		·
			-	ENUD	. TONE		1.
1		1				I	1 °

1.14

Date started	Hole #	-099-09
Date completed <u>Aug 4, 199</u>	<u>9</u> Depth	409
Azimuth <u>260</u>	Hole size _	NQ
Dip 500	Contractor	LOS Dulling
Elevation <u>1432 m mpn</u>	·Ľ,	·
Collar Coordinates:	Drill type.	<u>LY 38</u>
N_2735	Logged by	Fete Meyow
WE 2338		,
/		
DOWN HOLE SURVEYS		
Instrument <u>Acid Test</u>		
Footage	Inclination	Bearing
311	520	N.D.
·		
		······································
		
<u></u>		· · · · · · · · · · · · · · · · · · ·
	·	
Dec 11		1 10 11
COMMENTS <u>JUSIS ned to Co</u>	mand tracking Clair gre	to worth, plawing
- lach of contraction	into 6099-08. Interiment	very fling horn et, vere all
thethere hat hot ferminant	ul	
	······································	

HOLE No. 10 99-09

Page ___ of _2

	1	OE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVERY
1		_ <u>m·</u>	<u>TT</u>		124110/0	DESCRIPTION	
	,	5.0	16			CASING	inot
		7.6	75	greenish grey	1-37. Py	on fractures 1-3%. Py	
	- ,		~ 3	greenish	1-24 R	Monsonite medium grained phase	160%
		13,3	44	grey	1-31.14 101. Py =	Monsonite Broben + chlorite - Fault 10% Py	100%
	1	14:0	46	912212			
						Monzonite Medium grained phase	
				Greenish			1001
				grey	1-37. Py		1007.
				1			
	<u> </u>	35.0	118.5	Green		Broken & chloritized = Fault	100%
		40.0	133	Grey	yey	Mongonite Fine grained phase	
	-	41.2	-136	greenish	1-21 P.1	4" massive Prvite	100%
		-45	148-5	Cream		Managenite fine grained phase chloritic	
				Greenish			1
				grey		all a graduard - Englt	1001.
		53 -	146			- Chi + arginigea - i avii	
	<u> </u>	60.5	197		-	- chlorifiged + broken = Fault	
		61.0	261			- Chloritized + broken = Fault	
		63.6	210			Breccia + broken transition some between	
				Green Grey	2-51.Py	about grading to dominantly horntels al	1001
		68	-224	g cream	· · · · · · ·	-depth.	
				striped	1-2 1.124	Hornfols charty argillite(2)+-3%. Py	100%
				lightand	1 2/1/	Contorted and parollel Ganding @ 30° to C.A	
				quey			
			1				
			1	1			
		:					
		100	_33_2_	_			
	- .						
	\checkmark						
	Cont	inved	1				
	1, XT	speer					
						· ·	
		1	1	1	L .	,	11

HOLE No. 10 99-09

Page 2 of 2

	<u>DE</u> m	<u>ртн</u> ft:	COLOR	NINERAL- IZATION	DESCRIPTION	RECOVERY
	-100	-330	hight Grey and		As above Locally pyrite on fractures to	· · · · · · · · · · · · · · · · · · ·
			medium grey stringd		3 mm thick.	
1		-	imarbled			
	124	409 -				
			ENDOF	HOLE.		••••••
· · · · · ·					and a set of	• • • • • • • • • • • • • • • • • • •
						•
					······································	
<u>.</u>						•
						· · · · · · · · · · · · · · · · · · ·
					····	
					1	
					·	
-	•					
						··· • · · · · ·
к.		4	·	•		

Date started Aug 4, 190	19	Hole # 99- 10		
Date completed Aug 5, 1951	9	Depth 347		
Azimuth <u>90</u>		Hole size		
Dip50	·····	Contractor DS Drilling		
Elevation 1230 ost.				
Collar Coordinates:		Drill type 28		
N_2312	61-618-90	Logged by Peter Megar		
₩ Ø	10 3471-92			
DOWN HOLE SURVEYS				
Footage	Inclina	ation Bearing		
227	50•	Nº D.		

					-
				<u></u>	
					_
COMMENTS	Short Lole L fost	Skorr between	George Bore +	Tech ? one. Noal to Gil	
hanging n	all of Stain gover	site deep ratio	I have to test h	anging wall skarn min at	
depth.	Snippet & skarn in .	op feir feet the	music hornfuls up a	, intraining. Nothing hot C	

project of sign seen moral directly above hole ... hhy - Faulting?

HOLE No. LD 99-10

Page __ of __

1	DE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVERY
·	<u>m</u> .	<u>ft</u>	LULUR	IZATION .	DESCRIPTION	
					CASING	
,						,
L	15.75	52.0	areen Vellow	Py CAY	Verret-dippside sharn cut by by cpy veins	
F ==	17.6	58	Dark grey	-1-37. Py	Hornfills Curbonaceous c urapanno	
			Dark +		How fils - dark colored - caupagaceos chants	
			Inedun		availlite.	
			ares	1-3% Pv	Varia flight 1-3% Py	
			7.7		Very linning to strip	
			¥ .			
·					· ·	
	43-e.5 43.5	143	park green		Chiorite = Fault	
			zoned	1	Horntels carbonaceous cherty argillite	1
			Dark ?		Very fligty (2)	
		þ	medium	1-3%. Py	1-3% Py	
			grey			
	1		ļ.			
	61.2	202			Horntels - very chloritic = Matic tuts [3] ?	
			greenish	1-240	1-3 1. My	
			9424	1 SA My		
	69.7	-230			Hornfels-cherty argillite [2] Very flinty	
		1	Striped		1-3%. Py	
	1		Light	1-3%.Py		
	-		quey		/Limestone [4]	
	79.7	263	· · · · · · ·	Py Cpy 3%.	Horntels brecciated sharned & brokin w pyrite	tragments
[04	208	ł	5% Pr	Hornfels as above	••
	8584-4	280.5		50%. Py	Limestone breccia heavily pyritic 50% wTr Cpy 1 Sph	
	86 -	291	•• •• •• •• •• •• •• •• •• •• •• •• ••		Limestone recrystalliged	1
1	1	1		2-4%.12y	Hornfels - chloritic - Máfic tuft !	
	93-	307-			there fals chenty availlite	
				1-3% PV	ITOPHICIS - UNITIN G. JUNIC	. <u> </u>
1	99	7277			Chimestone incipient garnit diopside skam on upi	Der contact
	100:2	372 337		2-41. Py	Hornfels Carbonaceous w abun. graphite silks	x-+1.py=rav
				1-3%.Py	Hornfels Cherty argillite as above	
<u>├</u>	105-2	- 347 -	FAID OF	HPLE		
			END OF	HUNE		
1		1				
1		1				4
1	.]				l'
1	·	1				1. ·

Date started <u>Aug 5, 1999</u>	Hole # 99-11
Date completed <u>Avg 6, 1999</u>	Depth <u>487'</u>
Azimuth	Hole size NQ
D1p 50	Contractor LDs Drilling
Elevation <u>1320 e st.</u>	
Collar Coordinates:	Drill type 19 38
N_2328	Logged by Peter Mecan
WE_2320	
DOWN HOLE SURVEYS	· .
Instrument Acid Test	
Footage	
	SSO U.D
337	55° N.D
COMMENTS Designed to a to be	
"George' 200" Stars O J. all	will to Main Skarn gove at ht
- preside you scarn (n pyrig	
	n ,
· · · · · · · · · · · · · · · · · · ·	······

2;,**,**

HOLE No. 1099 -11

Page 1 of 2

1	DE	PTH	COLOR	MINERAL-	Access ATION	RECOVERY
·	<u>m</u> .	<u>ft</u>	- DLUR	TZATION .	DESCRIPTION	1-001211
	1					
,					CASING	**
	15.0	50			the chardeletere	
	17.3	570			overburden à Boulders	
			Light t		Horntels - cherty argillie lop 20° w Fe BOLINES	100%.
			medium	2-4%. PY	on fractures from Weathering	
			grey		2-F/ 10 90110 1000 00 910001	^
		-	11		- word the second howley phose	
	2828-5	9294	4		Monsonite The arained burger poince	
			greenish grey	2-47.14	-Fault by fractures 2-4%. Sulfides 80%. py	
7.8.8.4	_		"	80:20 Py Cpy	Fault 20% Cpy	
			./	7-41/BV		1
	39-0-5	128 ,20		2-77.77	Monsunite Fine grained border phase + C.A.	
	41°	136	Light + Mich grey	2-4%.Py -	Horntels cheris angilite - + Billation so is charter	1
	42.6	140.5	11			
					Hornfels as above	1
				2-4%. 10y		· 11
		u l	l l	1		
	Ì					11
						•
	58 -	192	· · · · · · · · · · · · · · · · · · ·	2-47 0-	provinted proben & availlised hornfuls= Fault	
	60	198	//	~ /////	Hornfels as above	.) <i>t</i>
	63-	207	41		Brokens argillized hornfels = Fault@ 10 to C.A.	
<u>_</u>	64-2	2/2				
				2-4% Py	Horntels as above	11
	73	242			Broken faltered = Fault	
	1-49.5	275	11	11	Horntels as above	
XXX	77	254		2-41.12	Brokent sheured = Fault	1 Jr
<u>kry</u>	78.5	260			Harnfell as aboute	
			11		Bud distante Fault	1.
	8484.5	277278			+ Broken & SACARCH = FAVIT	11
			· 11	2-47. Py	Horntels as above	
	0 0 · M	200		151 Pu	sheared w prite (15%5) = Fault	ŀ
	40 91-2 91.7 m	306 301	2. 19 ,	2-41. Py	Broken & shequed = Fault	·
	74		· · · ·	2-4%.Py	Hornfels as above	
⊨ ==	9546.4	316 318	Green & brown	15-201. Py 16 Cpy	Garnets karn Very pyritic 25-50%. Py w.s pecula	inite THEPY
<u></u>	101-	334	append , or our o	GOIR, THINK	Honzonite DIKE Medgrd. epidote on fract. 13;	· chit
	103	341	- 1de-		Tr CPY on Fractures	
			Brann	3-7%.Py	Garnet Diopside skarn with 3-21. Py + Tr Cpy	
			1.1	Tr. Cry	Broken Scm thick	
L	109-	360		7-(10 7=	Garnet Diopside skarn 25% partially conn.	ected
┝	110.6	365	, , , , , , , , , , , , , , , , , , , ,	- y ry rupy -	horntels domains. 3-61 By w Tr Cpy	
						.
					· · ·	
		4	1			
	4	1	1	ł	1	I

HOLE No. 1099 -11

	DE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVERY
1	<u></u>	<u>t</u> I	r		Garnet dio poide Skarn Massive - Very coarse grained	100%.
	110.6	368.5	greentbrown	- 3515	Land coarse specularite on tractures Garnet diopside skurn coarse grained w 10-201 tot	1 sulfides
	114.2	377	greene brown	50:50 Py Cpy_	E 60:50 Py: CPY Sulfide interstillial to garnet B! Spec	Ulgrite NO Cp.
	1/7	387	greens brown	5-10%. Py	Monsonite Cut by culaity wins w Vugs lined w	innil
<u>⊢</u> —	118.7	392	chalky	Pyrite 2% _	euhedral guarty & Pyrite Crystals	insteal
			greenish grey	2-51.Py	Monnonite Medium grained phases. 1-3%. Alssem	W area
	125	412		Tr Cpy	This this winds a harm Very Pyritic 5-20% Py Tr CPY	1.
	126.6	418	greenish grey	5-201. Py _	Mongonite Medium grained phase	100%
	1/20	744	green é	5-20% Pr	Garnet diopside sharn Very coarse grained	1
L	132.3	436.5	brown		Garant diopside over printing hountels. Transit	Pion
		14.110	+ grey	3-51. Py	some mostly skarn at too mostly hounters at	
	186	947	striped	1-7.1 P	Hornfels-Carbonaceous chertyaraillile Dark	
	141	465	9tey	1-31. Py	color ASUM. arabalite Sills & 40 to but the	
			Medium &	1010	Horn fels cherty argillite-Bedding ceto 18 C.A. 1-2% Pr	
		1	Light grey	1-21. My		
┝	147.6	484_			+	
1.			ENDOF	HOLE		
						•
	1					
		[
		ļ				
						•
	4					
						.
1	1.					1.
			1			
						.
						ŀ
1						ŀ.
		1				
	4					l.
						·
}						· ·
4		4	ł			1.
1	·	l	i.	l I	I	1.

Page 2 of 2

Date started Augost 6, 1999
Date completed August 10,1999
Azimuth/35
D1p 60°
Elevation <u>1310 est</u>
Collar Coordinates:
N 2344

	- IN	6.5.17	
W	É	2404	
· ,	/		

Hole #	60 99-	-12	
Depth	1187'	, 	
Hole size _	NQ		
Contractor	605	Dulling	
• •	·.	•	

Drill type	4738
Logged by	Peter Meyer

DOWN HOLE SURVEYS Instrument <u>Acid TEST</u>

ł

1

Ś

ĨĨ

1

Į

T.

Footage 307	Inclination	Bearing
667	600	N. D.
1187'	(00°	۰. ۲۰
		

COMMENTS DESIGNED to bet de	eggth oftent, geometry & width of Tech skorn
Brly, Soundarily to determine , f. a. f.	uit exist along Conyon (recel. Lutter my not he
determinable is oreclarden is too a	leep.

HOLE No. 1099-12

Page __ of ___

DE	PTH FF	COLOR	MINERAL-	DESCRIPTION	RECOVERY
	<u> </u>				
1					
/ <u>`</u>					
				CASING	· · · · · · · · · · · · · · · · · · ·
1					
			1		
				and a second	•
25	B3 —		2-5%.Pv	Munzonite Medium grained phase, 2-5% Py	
7		grey	Tr. Cpy	with Tr Cpy on tractures	e
30.631.0	101,01.5		÷ ≘	Horntals Churched & Sheared 2010 = Fault	
2 37.8	11.5	striped	1-27 By	Hornfels cherty avgillite Banding & 40 to CA.	1
7		greenish grey	1-27. Py	Cuthornfels - mongenite contact	•
37 3	123	Lti Med grey	1-27.Py	Hornfels cherty argillite - Very cherty	
39,7	150			Horafels as above	
2		"	1-27.14	arokent sheared = Fault chloritic	
44.8	14/148	Green Lt & Med	1-27. P.	the state of above	•
4B·3	159.5	grey		Hophyere as unove	
		.,		Horntels as above	
2	ſ	11	1-2/.Py		
56-	185		-	Fault	•
(m.1		11	1-2%. Py	Hornfels as above	• ·
	201	Greens grey	3-4%.Py	Broken sheared Ebrecciated Sone = Fault	• • •
1	1 201	Lt. Medium	,		
2		grey	1-27. Py	Hornfels as above	ľ
		Bandad	Í Í		•
1 1	776	15 4119 - 00			· · · · · · · · · · · · · · · · · · ·
5 73.3	242	greenfbrown	10-15%. Py _	Garnet diopside shara over normers	+
76	250.5	grey+Lt.green	1-27. Py	Horntels as above merrhernels pyritie	
77.7	256 .5	green + brown	10-151.14	Lu + le chanty availlite	. · ·
2		grey	1-21.14	Horndels Cherry arginine	
81.7	273	Green+brown L++ Medium	5-12% Py 3	Hornfels as about 1 - aug	••••••
	281	green + brown	5-81.124	-Garnet, diopside skyrn as above 5-81. Py Portasine retroorade chi-ata + 10-111 Py.	
	2862875	green + brown	5-207. 12	Gar-diop sharn w 15%. perussively retrograd	e 5-20%.py
90.6	199	greenishquey	2-47. Py	Monsonite Fine grained 104 abe	l.
		Greenish		and the second	-
· ~	1	quey	1-37. Py	Monopite Medium availed phase.	
100.5	731.5		14 - 1	Fnult	
~		11	1-3%. Py	Monnonite Medium grained phase	
7 105.1	347	"	"	+ Mangonite fine araiged Fault Broken	
107 6	355 100	n n n	30% Py	Hornfels pervasively pyritised w 30%. Py	
2	-	Light grey	1-21. Py	Hornfels Very cherty	
1/1.5	368	9		T	
					[·
					1.
+ •	1		•	· · · · · · · · · · · · · · · · · · ·	
	1	1			1

HOLE No.	·		Page _2 of	4
DEPTH	COLOR	MINERAL-	DESCRIPTION	RECOVERY
<u>M.</u> <u>EI:</u> 111.5 368 5 114.5 378 and	greens brown over grey	51.	Garnet die Pside skarn over hornfels incipient sy py = Fault none chloritic sheared	. 100%.
118.5 34/	Light; medium grey Darkgreen.grey	5-8%. Py 5-101. Py	Horntels cherty argillite w. 1-5 mm Byrite veinlets 5-8% By overall Horntels Very chloritic = Mafic tuff? slips @ 395 sug	yest old faul
2	Light and Medium aver	2-4% Py	Hornfels cherty argillito Banding @ 40° to C.A.)/
	greenf grey Ltg Mod. grey	2-47.Py 2-47.Py	Broken argillized chloritic shear sone=Fauh - Fault	F 11
2 /35.5 449		11	Hornfels as above	·
140.9 462	"/	· //	Hornfels as above	" "——
2	1	4	Horntels as above	ц. <u>1</u>
156,4 518,79 S	Greenish grey Lt & Hed grey Greenish grey	1-27 Py = 2-47 Py = 1-37 Py =	Homonite-H.G Chloritic Homfels as above - Montonite-M.G - Chloritic	
2	Light plus Hedium grey	z-47. Py	Hornfels as above Banding @ 40° to G.A.	
178.5 585	Green é	7.6 Y D	Hornfels - Very chloritic = Matic tuff	• •
3 185.5 612	grey Light t	5 67- Fy	3-6% Py	· · //
2	Medium grey	2-4% Py	Hornfels cherty argillite	•
				, <i>1</i> /
		-	-2 cm Pyrite vein 95% Py 5%. Cpy	
2 214.5 708 216.4 714			Very chloritic shear sone chlorite Prite smeared out Postmineral	
		•	· Springer - State	

•

HOLE No. 10 99-12

1	DE	PTH	COLOR	MINERAL-	Dree avariant	RECOVERY
2.0	m	ft	LULUR	IZATION .	DESCRIPTION	
-					composed of recry stallised limestone and	very fin
					arained AVrite tragments Mutric is mine	Finely
	216 4	-714 -			sheaved chloritic material in slickensides = F	witt
			greenish		Below this is broken sheared and fractured h Overall this is a prominent intra (?) Mineral	Fault
	-		Emedium		u still at the literation	1001
3 .			grey	3-5% My	Horntels Moderately chlorific	1
1	1				= Matic Tutt 3-5%. Py	•
t.	5.00	1 - 5				-
2	229	759	Lt.+ Med. 9rey	2 = 47.13y	Hornfels cherty avgillite Banding @ 40 to C.	A. ,,
	232	770	W. TMELL YCIIDW	5-71. Py -	-Gar-diop skarn Fine grained 5-7%, Py ,	•
ן בי	-05	, ,	greentbrown	5-15% Py	Gar- diois. Sharn Very coarse grained with	. 1'
	236.7	781	Dh. Green	5-15% Py	Secabore *	il.
1	z38.2	787	pale green		Hornfels Very broken & chtoritic Pate green c	htorite
1	342.7		tht grey	3-5% 14	(ortine grained amphibule) is prominent Footwol	
	X72 7				to fault above	II.
1			Lightand	2-5%.Py		•
			Medium		Horntens cherry argilline	. I ¹
2			griy	Tr Cpy	Banding Q. 40° to C.A.	r
						*
						• • <i>*</i>
•	9			PY. CAY		
- 7	-260.0	857.5	Greenish grey	15-251 1-34	Hornfels w. 15-25% Py	high arado
2	262.0	865	mettalic	5-10%. Tr 1-3%. Total	Sharn, Amph, chi retrograde w Py Covueins to 12 cm	.50:50 PY:C
2	264	871 051	DE CEDEN	15-40 Total Tr Bo	Chloritic retrograde sharn Py (75%) Cry (25%) Bn. Tr. Ver	ns to socm
	265	8/4	green grey	1-3% Py	Horntels Very chloritic = Matic Tutt	grained
	267.3	883 885	cream_	1-21. Py -	Garnet dipp Sharn Fine grained Retrograde to ch.	+ Mgt.
5	271	B94	greenish	5-10%. Py	assemblage. Mate Dy late Eco-mingled Strongest	Mgt Py
タ	~//		greenish	1-4% Py	Vin 10 cm adjoining contact	to C.A
	274.5	906	an grey	10 10	(wminer Bn) Lower contact & 70° to CA.	
			green-brown	5-7%. Py	Garnet diop, -> amphchi-Magnetite retrog	rade
5			+	TICAN	Medium grained 5-7%. S dom. Pyrite	100
			cream	12 0 49		
	284	938				,
	,	ľ	green		Garnet-diop. skarn Coarse grained wabune	ant
. 5			h rowal	2-5%.Py	magnetite Coarse red brown garners as	late
	290.3	968	V V V W	-	with these in vugs 2-5%. Py	. 100
(ľ	cream.	1-5/1	Garnet-diop - amph, chl-mgt. retrograde	- 101/
5	101.6	0,75.5	overprint	5-101.	Fine grained 1-5% PV increase downward to	101.
	770 -	775	μ	1-3/. Cpy-	TGARACT diop. SRAPA-> ampn. chi-1791 = Strong F.C. retrograde 1-3% F.G. Cry throut w 5% P.	
	275	752		stin n	s coarsens downward.	100
5	20.2	992	"	2-47.14 _	Loverprint & 50%	
1	302	1 / / ~			AL above 75% retrograde overprint	
				1-21.Py	Minor Mgt.	100
5				0.5% to The Cpy	As above but pervasive (Boi) retrograde y.	abundan
1	211	1004		2-4%. Py	Mate The CAY Chloritic Slips & Cryslical a slars	600
1	21713	1020 -	t DK green	1-21.17	As above Moderately decreasing	an'l Cost
	3/18.314	1038 36	DA GLEEN	Layencisch	REAL Matu Carto Course Cay in retrograte Sono REAL Matu Cay overprint on Gn-PV 5-8% S 78% Py	251. Cmy
1	315.8	1042	pinkegreen	2-21 PTO CAT	Chi-Matamph. retrograde sone 2-2%. By Tr	Cpy
· · ·	318	1056		- sily in upy -	Mala at the old M + a - h water	red.
			Green thrown		There garnet-chior w Uni-Hat-MMPA Feltoy	
5	ł	1	augu print	1-5%. Cpy	MAICHES OUTO I STELAT BITT	
	1			, í		ŀ "
I .			ł.,,,		Karaet-Dive amph chi Matter massive	CPYERS
	324.3	1070:20	Blebby allic .	70% Cny 301	10% CAN 20% PV. High grade CAN fills in bet	ween
17	1 3~/ ·	ľ	greenish		Manaponite (cre below)	l
		•	grey			

HOLE No. 10 99-12

Page 4 of 4

 	<u>DE</u> m	ртн ft:	COLOR	MINERAL- IZATION .	DESCRIPTION	RECOVERY
 7,	324.7	1071.5	greenish grey		Mongonite medium grained phase Lower contact brecciated ; sheared	1001
5	335.B 339.4 339.7 342.9 342.9	110C 4739 11735	arzentbrown cream. overprint metallistblk gracnistbrow cream overpr Biack fmet.	57. PY 17. CPY 107. CPY 307. PY 307. Py Try CPY 307. Py Tr CPY	B 70 TO C.A Garnit diop Amph-chl Mgt retrograde 5-15/Mat 5% Py Magnetite is finely bladed inshears. Replaces specularite. Garnet diop. SA. repl. by spec - Mgt. Py(30%) Cmy Garnet diop. Sharn. Fine grained 5% Py Tr. C	4 1 (10);) 04 11
 4	-3464	1153		10-15%. By + Po	Limestone Broken and locally carbonaceous Limestone Broken carbonaceous Breechated w tragmints of pyurhotite and pyrite Bx deformed VHS tragments?	· · · · · · · · · · · · · · · · · · ·
4	35510	1187	END DE	HOLE	Limestone Recrystallized	· · · · · · · · · · · · · · · · · · ·
		0			ан алан алан алан алан алан алан алан а	
-					· · · · · · · · · · · · · · · · · · ·	
						· • • • • • • • • • • • •
						•
1					· · · · · · · · · · · · · · · · · · ·	• • • •
			: .			•
						• · · · · · · ·
						• • •
				-		
ł		1		•		

1

1.3

1-3

1

the man and and

General and the most planar and a lite and

and a contraction content

· Date started	99 Hol	* LO 99-13
Date completed Argust 11, 190	³⁹ Den	th 492'
Azimuth/85	Hole	size NQ
Dip <u>- 45</u>	Con	tractor 605 Drilling
Elevation		
Collar Coordinates:	Dril	1 type 27
N_1790	Log	ged by Peter Mey an
W \$ 2150		
DOWN HOLE SURVEYS		
Instrument <u>Acio Test</u>		
Footage	Inclination	Bearing
216'	450	N · O.
4871	<u> </u>	N · P.
······································		
		· · · · · · · · · · · · · · · · · · ·
,		
COMMENTSHole der the for	fet poss , bility that so	Ifal poral 4B 3rd are
Feelby E-W Structures ve	vsis NS as ling assumed.	Also inkiel to fast Fait
1. ferred lo Sut end i julie	Antil Y-B 3 me. N	ocurdence of the feeders
ancountered - except under	Tranch 96-5 there	sevend holes have let suifiles
for depth. Did Not Mash ?	En:14 Los	
HOLE No. 10 99-13

Page __ of _2_

MINERAL-DEPTH RECOVERY COLOR DESCRIPTION ft. m. 16.0 4.8 LIMESTONE _ Gossan Fe oxides. DK. Grey Red brown 5.66 Limestone 4 DA Grey metallic Massive pyrrhotite (90%) & Py (10%) Verr irregular Embayed ? with LS = HIP 3.7.5 100 h Py+ Ro T+ Cpy? 11-4-Brown 43 13 Limestone dh grey 15.516.0 51 52 Py + Po 100%-= 124 >7 Po (Boy. -20%) manto Limestone 4 32.6 1075 Argillite Carbonaccous i cherty 1-3%.Py 3 45-148-5 Bx & broken = Fault with graphite slips 3 -Bx & broke w graphite slips = Fit. 66.4 219 -Bx & broken a graphite slips = FIF 71.2 235 3 TArgillite cut by downward increasing number of Po yeins & stringers Pyrhotite contorted banding Py teplacing margins soft Scd Der 15-40%. Po 79.4 DR grey metallic brow DR grey 262 1001. Po 5-201. Po Araillite as immediately about thing margins soft scalled Araillite as immediately about Mussive Pour Pyreaction rims Pyalso as veins cutting argillite w Po stringers as about Similar to about but less Po 270 273 81.5 5-201 Pyth PyAS Py CP 15-201 P 5-81 Pa Metallin 84 54 8 867 - 3 275.276 Brown or grey 284 Dark Argillite, as above No to 11. Po Tr-11.Po quey 2 From above at 84 Bm 30 cm band of arseno pyrite (evhedral crystals) sphelerite Pyrite & Pyrchotite cutting across arguilite to liation connected 100 -330 to vins about by matching walls

HOLE No. 1099-13

Page _2 of 2_

	DE	PTH	COLAR	MINERAL-	DESC QUETION	RECOVERY
4	m	ft	LULUR	IZATION .	DESCHIMITON	- COVENT
3	100	330	dark grex + Light grey		Araillite As above. Foliation Locally parallel to C.A.	•
	123.0	40B			-Fault Gouge + slips	•
- -	140-142-	462. 468	dark grey t shiny black		-Gover + slips = Fault Argillite More carbonaceous section graphite Glips very abundant. Gover + slips = Fault	
	150	997 9497	END OF	HOLE.		
		T				

DRILL LOG

<u>ј</u>. ч

Date started <u>August 11, 1999</u> Date completed <u>August 12, 1999</u> Azimuth <u>090</u> Dip <u>-45</u> Elevation <u>1442</u> Collar Coordinates: N <u>1820</u>	Hole # Depth Hole size Contracto Drill type Logged by	LD 99-14 447 NQ r_LDS Duilling L7 38 Peter Meyor
WE 2202 DOWN HOLE SURVEYS Instrument <u>Acid Test</u>		
Eootage 757'	Inclination 45°	Bearing <i>N</i> · <i>D</i> .
COMMENTSTo fest continue to YB encountered wat m	14B zone + tran	situr to sitarn.

HOLE No. 1099-14

Page 1 of 2

	DE	PTH	I COLOR	MINERAL-	brander	RECOVER
	<u>m.</u>	ft	LOLUR	IZALION	DESCRIPTION	ALDUT LI
ł					CASING	
[- 6.0	20				
ļ	/		Black			
· · ·			+ Malina	1-2% Pu	Argillite - charty w. foliation	
			arey	. ~	0 50° to C.A. (2)	
I	'		9			•
	22.7	75.9.5	Pale green	17, Py + Blk SFDS	Monsenite-fine grained - silicitied +	
[23.2	,,, -	Black +	1-2-1 8.	A willite work hountels (2)	
1	18.0	c12.0 -	Medium grey	1-27.14	Argillite - Vary broken = Fault w. Fo oxides (2))
	28-6	1-94.5	D-la	21	Monsonite fine grained Pervasively	1.
. •			green	TE BIKSENS	silicified w. 3% fine grained pyrite +	
	34.2	113 -	Medium grey		Linestone recrystullingde (4)	
	3636.7	120 121	=Mctallic =	_	Sph. Py Cay Vein W. Calcite + avartz	
					Contacts @ 50° To C.A.	[·
1						· .
1			Medium			
		ľ	grey		Limestone - recrystallised (4)	
1			ł			
	1	a conset				
1						l.
			1			
1						
	1					ŀ
						1.
	- ^{8°} 80'S	263265.5	FUSTY	3-5% 020 -	Fe Oscides W. Matic Tutt (3)	
	4		Medium			
	-		grey		Limestone as above (4)	ŀ
1						
,						
·			Dh. green	3-5%.02-	= Band of matic tutf (3)	ľ
1	1	. .	Mealum grex		Limestone-as above (4) Matin tuff band (3)	ł
	98.2 98.	3243 24 .5	- Med. green	3-57-030	Limestone (4)	ļ.
	106.8	771	Med. + Dk. grey	1-27.Py	Araillite (3) w. toliation @ 45" to C.A.	
*			Medium aver		limestan	ľ
						.
1	1075	354.5		n general en sen hannel (Annesigne a sen factor e a en factor e anti-	Ť	ļ.
To	Nest	page				.
I				ļ		
1				1		<u>, </u> -
	·					le s
1		1 :				
1	1	I I	1	1	4	Ľ

HOLE No. 10 99-14

Page 2 of 2

		DE	PTH	ECOLOR	MINERAL-		RECOVER
<u> </u>	t	<u>m</u> .	ft	LULOR,	IZATION .	DESCRIPTION	ALDUVER
	.3			Oark green	1-37. Py	Matic tutt wabundant Limestone clasts	. 100·1
18.1	3	116 116.3	382 ₃₈₂ -5		11	Fooscides in (3) = Perrhotite band? Matic tuff - as above	16
	3	120,3	392392.6			Hafictuffias above-Lower contact is some of	goige 11
	4	124.2	410 410 3	Dark great	20%	LIMESTONE SEC below *	11
				. 11		Clas Gouge	
	4					Limestone as above.	
• •	·	135.5	447 -	~			
						* 10 cm - layering w pyrite + vein	
-) 					tesctures Matching walls + siliccous webs around fragments	
	1						1
	1						
							•
	•	1					
	•						
	- 4	1	· ·				
	1						
	1				-		•
						· · · · · · · · · · · · · · · · · · ·	.
							· ·
	, ,						
	·····			-	·		
	ļ .						
-							
		1					
1			1 1		••••••••••••••••••••••••••••••••••••••		1
ł	•	ł	i I	l	1	1	1.

DRILL LOG

1 -

.....

. Date started August 17 10		1-0.06
Date completed August 13 19	<u> </u>	C52
Azimuth $06 <$		
Dio -55		
Flevation 1410		
Collar Coordinates		14 28
N 1910	Drift type -	Delec Maine
N	Logged by _	Peter Megan
W <u>F</u>		
	•	
Instrument <u>Acid Test</u>		
Footage	Inclination	Bearing
427 .	55	N.D.
		4199
COMMENTS Test northern com	timention of 4B Jone and	proaching Tech
- Glarnzone. Hit minor Guer	in and significal Massive pyrtuti	to 7 CPy + 5/6.
·		
		······································

HOLE No. 10 99-15

Page 1 of 2

MINERAL-DEPTH RECOVER COLOR DESCRIPTION £t. m CASING 3.6-- 12 Dark and light Horn tels - Charty argillite (2) 1-3%. Py groy Banded 1.5 cm prrite vein 22 72 11 11 -1 cm Pyrite vein 28 92 11 17 Broken + Sheared = Fault 40 132 1/ 11 Was 1001. Py= P? Massive sulfide skarn Pyrite-sphalerite 48.8.2 161163 Metallic. (5%) + garnet Limeston (4) Medium grey Gossan Fe-oscides @ 40° to C.A 5454.5 179,80 Limestone w abundant Fe-oscide on "rusty" lines breaks Were Po-Py? cutting medium quey 67-202 Limestone (4) Medium 9404 Broken + sheared = Fault 243 244 73:44 Medium Limestone (4) 9414 Broken sones w. + .7 cm Po-Sph w Py replacing Po = VMS? 90'90.0298'5990 Hetallic 100% Medium quey Gossan w slips @ 30° to C.A. = Fit - Hingd. 95.896 316 316 316 3 Limestone 11 Broken w. Fe-Oscides = Fault 107 352 Limes tone 111.2 367

HOLE No. 60 99-15

Page 2 of 2

DEPTH MINERAL-RECOVER COLOR IZATION . DESCRIPTION ft: n 111.2 367 Limestone - Dolomitio- Limited fizz DA. grey 114 388 Medium Limestone grey 419 -127 Mafic tuff (3) w. abundant limestone fragments 438 447 448 133 Limestone - clastic breccias healed + recrystallized Limestone - broken chealed w. Fe-Oocide - Fault Prein? 135 Limestone TTassive sulfide Prochotite 40% Chalco 3% Sph. 3%. chlorite 4%. Upper contact irregulor to shern Lower contact@40 to C. A. Finely banded 521.5 158 901. Po 1-31, CPY 3-36 Ph-5-01. Po 1-37. Sph. 1-37. Sph. 1-37. Sph. 1. Cp, S01. Py 481, Po Metallic Herallic Pole green Metallic Drown Met. Grown Met. Grown Hong on ite-Endoskarned - 5-10%. Po Massive sulfide Po 90% Covi-3%. Sph. 1-3%, Felter tibrous chlorite on amphibole Cry dom in late cross-cutting Structures in Po. Massive sulfide as about but sol, of Po is replaced by by late coarse subhodral Pyrite Calcite matrices 2%. 161.5 533535 544.5 165 167.3 168.3 169.4 552 559.5 564.5 assive sulfide Po Caysph as above w. gar Sharn matine. (over print of Dk chlorite) Tr Py/Cpy 171 Limestone Bodding & 50° to C.A. 5-7%. as VEINTETS Horntelsed cherty argillite - Banding at 40° to C.A. Weakens downward + 6/265. 182 592 END OF HOLE Contact between massive sulfides + limestone is planar @ 50° to C.A. Limestone bedding is also @ So" to C.A. BUT the two are not conformable; There's a 20° offset (rotational) between them.

DRILL LOG

Date started	
Date completed August 16, 1999	
Azimuth095	
Dip -50	
Elevation	
Collar Coordinates:	
N_2002	
E_2048	

Hole #	1099-16
Depth	1357'
Hole size _	NQ
Contractor	COS Drilling
	*

Drill type	44 78	
Logged by	Peter Megan	

DOWN HOLE SURVEYS

- -

¥

Instrument ______Acio Test

Eootage Giar	Inclination 50 °	Bearing M. Q
		·····
		· · · · · · · · · · · · · · · · · · ·

	Designed to fest	and to los	1.7 4B3	one: Ag A Zman	conclies: 516400	
maggered by Gra	- len + drilled on	Norenda - o	llas norther	extension of	33nc.	
No significant	Mineralization enc	auntored 1				

HOLE No. 1099 -16

	<u>DE</u>	PTH ft	COLOR	MINERAL- IZATION	DESCRIPTION	RECOVER
1			, , , , , , , , , , , , , , , , ,		CASING	
	4.5 6.2 _{6.8}	2222.6	_	1951. Py 3/Sph 24. Cpy =	5cm, S=Vein - Py-Sph-Cipy w. dark Green chlorite Argillite - cherty	. 100%.
 	9.2	30.5	Lt + med.	1 - 2 Y Pro	+Graphite - Sheard = Flt. Araillite	
·····	-15'B	52	y cy	·	-Graphite - sheared = Fit.	. 'i
I			grey	1-3% Py	Argillite - cherty carbonaccous layers	. <i>K</i>
	21.0	er.5	greenish grey	2-3%. Po	Dike - Mongonite - med grained w. pyrrhotite	1,
	46	OF .	Med-dark			. h
			grey .	1-37.Py	Argillite as above.	. 4 . k
1	- 39.7 - 41 - 11.11	155.5	Med, quey Lt-mod. grey	1-3%. Py	ELIMESTONE Cherty argillite	
1	47.3	156	Med. grey	1-37. P.	Limestone + cherty araillite	ι 1) . α
	48.0 50 52.1	165	Med grey L+ grey Hed. grey	1-37.Py	Limestone Cherty graillite	· 11
	55 56.4	182 186 -	ij	· ·	Argillite as above Brokene sheared = Fit Aruillite as above	
			greenish		Dike Monsonite - M-grained phase	
-	• . •• ••		grey	2-41. My	with 2-41. Po	· 11
	69.4	229 /	Dk. grey		Breccia broken & sheared Argillite = Fit	. <i>II</i>
	⁷³ 74	242	Med. grey		TArgillite as above Limestone	
I			At + Med. grey	1-3%. Py	Argidlite - cherty - Banding @ 40 to C.A.	$\frac{1}{2}$
l 	82	272	Maderalark	·	- Very graphitic slips = Flt.	<i>I</i> (
			grey	1-3%.Py	Argillite - very carbonaccous-graphitic	. <u>1</u> (
	• • • •					. И
0 0	94 96	310 -316.5	Med + Lt. grey	1-3% Py	Argillite-cherty w. weak hornfels Dike pervasively silicified over weak of	h orite
	99	322 3273325			Avaits eyes = Sugary Felsic dire Araillite Very chertye contorted Graphite slips = Fit	\cdot i^{\prime}
· · · · ·	104.5	345 347-3		· · · · ·	Dike-Argillized Quarty cyc Porphyry= Sugar Carbonaceous graphilic shear=Slip = Fit	Felsic
					Araillite - cherty	. <i> </i>
1	·		To neact	page		ľ.
l						1.
1	· 		1	l	1	•

Page __ of ___

HOLE No. 1099-16

Page 2 of 4

m. Ff. COLON 1241104 DESCRIPTION 110 Lt t medium 1-37.Py grey Areillite as above 130.7 Val 144 Val 149 Val 149 Val 149 Val 149 Val 140 Val 140 Val 140 Val 141 Areillite-caubonacous-Shaly 142 Val 144 Sup 145 Val <th></th> <th>DE</th> <th>PTH</th> <th>ECOLOR</th> <th>MINERAL-</th> <th>Dece and the M</th> <th>RECOVER</th>		DE	PTH	ECOLOR	MINERAL-	Dece and the M	RECOVER
100 1120 1		<u>_m</u> .	<u>ft.</u>	LOLOR	IZAIIDN .	DESCRIPTION	1000ren
130:# 449 Hed grey Ameritation and the set of the		, , , , , , , , , , , , , , , , , , ,		Lt + medium grcy	1-37.py	Arnillito as above	100%
144 496 149 492 "red for y White y 149 492 "Webbing" 149 492 "Webbing" 140 492 "Webbing" 140 492 "Webbing" 140 Ard grey 140 541 140 541 1		128.8 130.0 132.7	425 439 43B	Med grey Lt.+ med.grey Med.grey	1-37. Py	Limestone Argillite-chertx W. 10-30 cm limestone beds or fragments. Limestone	
104 Seed grey Limestone-Fragmental texture = 104 Seed Black 2-37. Py 105:9 Black 2-37. Py Aroillito black shalv wabundant 106 Jack grey Argillite-carboneccous-Shaly = 107 Dark grey Argillite-carboneccous-Shaly = 108 Dark grey Argillite-carboneccous-Shaly = 109 Dark grey Argillite-carboneccous-Shaly = 110 Argillite-carboneccous-Shaly = 111 Argillite-carboneccous-Shaly = 111 Argillite-carboneccous-Shaly = 111 Argillite-carboneccous-Shaly = 111 Argillite-carboneccous-Shaly = 112 Dark grey 113 Argillite-carboneccous-Shaly = 114 Bready = 115 Greensh 116 Bready = 117 Bready = 118 Bready = 119 Bready = 111 Bready = 1111 Bready = 1111 Bready = 1111 Bready = 115 Breanistone		144	476 492	Mod-grey white "webbing"		Limestone with calcite veinlet Stockwork	
144, 544 1664 549 1664 549 1664 549 1664 549 10000 Bark grey 10000 Bark grey 100000 Bark grey 10000 Bark grey 100000 Bark grey 10000				Med grey		Limestone-Fragmental texture = = clastic LS.	· · · · · · · · · · · · · · · · · · ·
Dark grey abundunt limestone tragments. Limestone and Light grey grey abundunt limestone tragments. Limestone grey grey 200 662 greenish to informed to anything cutting cutting the argillite 200 662 greenish to informed to anything cutting cutting the argillite 200 662 greenish to informed to anything cutting cutting the argillite 200 662 greenish to informed to anything cutting cutting the argillite 200 662 greenish ind deformed. Possible matic toff color and bight grey 210 692 Dark grey Argillite - fine grained lavered w color Argillite - fine grained lavered w and color and kight grey 210 692 Dark grey Argillite - fine grained lavered w color Shale 214 To proct		164 166.4	541 549	Black	2-3% Py	Araillite black shalv w. abundant limestone tragments All determed Araillite-carbonaceous-shaly =	
200 662 Greenish tan 1-3% Py Argillite-fine grained shaly-Laminated and detormed Possible matic tuff Component suggested by greenish Color Dark grey and Light grey 224.5 7441 To proct Page				Dark grey and Light grey		abvndunt limestone tragments. Limeston trags large (20-50cm) near top gradually diminishing in size downward to 1-5 cm. Limestone trags show culcite vein let stockworks that are not connected to anything cutting cutting the argillite	e 11
200 602 Greenish tan 1-3% Py Argillite-fine grained shaly-Laminated and deformed Possible matic tuff Component suggested by greenish color Dark grey and Light grey 224.5 741 To proct page							•
Dark grey and Light grey 224.5 741 To proct page		210	692	Greenish tan	1-3% Py	Argillite - fine grained shaly-Laminated and deformed Possible matic tuff component buggested by greenish color	. //
To proct page				Dark grey and Light grey		Araillite - fine grained lavered w coarse limestone sand and black Shale	· //
		274.5		To proct.	page		

HOLE No. 99-16

	DE	PTH Ft	COLOR	MINERAL-	DESCRIPTION	RECOVER
	Fron	n pre	vious page	•		
·	2245	741	Dh grey		Argillite - w 50% sand since limestone & shale argins, 10% large limestone	
·	231	762	Dk grey	5-8%. Po	traaments-elongute & deformed Araillite-fine grained calcareous limestone > shale 2-4	•
, 	235	776	Med. grey Med grey	75-201, Po =	Argillite limestone frags in f.g. pyrthetite rich shale - contorted Argillite - very calcurcous - approaching	•
	243	802		~ 57.70	limestone Abundant late calcite veinlets	A.
			Dh.grey		Arainine-laminated & bedded Grajnije W layers of sand siged shale & limestone chips Possible grainflows? - Deformed layers between un disturbed layers indicates soft sediment deformation. Minor Po frags.	
	255.8	844	Med. grey		Limestone - fragmental (1-5cm) frags with minor interstitial shale matrice	
 	261.5	863 864-5	greenish	5-10% Por-	Earbonaceous arguillite-thin bedded w. sulfide for Breecia w. Arg. & Mong frags. Dike-Monnonite-medium grained phase.	agments
 	267	880	grey Mad area		1-31. Po dispersed & as veinlets Limestone-fragmental-No shale matrix	
273 90	273 0	902 6		3-8%. Po ==	Argillite tragmental w. L.S. & Po Frags Quarts vein sugary white	
	377:5	915.5 915.7	an the same of the second second		Limestone - Fragmental w. shale matrix (3%)	
	282	930			FAULT Limestone - fragmental - No shale	
	287	947 961		· · · · · · · · · · · · · · · · ·	Dike Sugary guartz exe porphyry	
1					Limestone- clastic as above	
1						•
ł						
1						
1						
+	335 -	+105.5	continues Dage	to neart	+	. .
Ì						

Page 3 of 4

HOLE No. 99-16

DEPTH MINERAL-IZATION RECOVER COLOR DESCRIPTION £t. m 1105.3 335 Limestone - as above - continued Med-grey 341.5 Limestone w. matic tuff mixture increasing downwards. Gradational Med. - grey zone to matic tuff. 351 Matic tuff = limestone fragments dark 1 mm-30cm. Frags, lensoid Z greenish determed matrizu. grey 363.3 mis Dark shalv matic tiff w. numerous dark ptigmatic calcite vinlets Bottom section greenish stransition, into limestone Overall fine grained & laminuted. Limestone-clastic as above. Open solution escipanded fructures beginning a 371m grex 369 Med-grey 373 1232 Med-grey Limestone - clastic - fractured & broken Med quex w.rust Lt quex E y ust 1257 Limestone - shuttered w. Fe oscides on fracture surfaces 381 1265 383 Limestone-very bleached Eshattered EFC ox. Completely in competent 385 1,2.70 Limestone - cohevent but spider webbed Med grey cutby by bleaching along hairline fractures Lt. grey 397 5 1312 bight+Mcd. Charty argillite (2) w. sulfide fragments grey 1325-401 cherty argillite (2) Very broken & sheared = Fault 404.5 405-2 1335 Med grey =Limestone - Broken Limestone- coherent Med. grey 411-2 1357 END OF HOLE

Page 4 of 4

DRILL LOG

Date started <u>August 16, 1999</u>
Date completed August 17, 1999
Azimuth065
D1p55
Elevation1375
Collar Coordinates:
N_2008
WF 2755

Hole #	099-1	17	
Depth	6371		
Hole size _	NR		
Contractor	LDS	Drilling	
		5	

Drill type _	LY 38	
Logged by _	Peter Meyon	

DOWN HOLE SURVEYS

1

~ <u>,</u>

n ş

1

1

2

Footage	Inclination	Bearing
		-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,
		4
······································		
·		
MMENTS To first star	- revolucionent transform 2 me h	also and sheet
Sign ficant Skarn Crons	- Het vern shore manuful ha	in the sum

HOLE No. 1099-17

Page 1 of 2

	DE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVER
1	, <u>111</u> .		······································	<u></u>	CASING	
	4,2	14	Lt grey			
	,		w rust	1-2%. Py	Fe oscides on fractures	1001
	12.4	41	white	· · · · · · · · · · · · · · · · · · ·		
			+ light grey	1-2%. Py	Cherty argillite	• 11
1	18.19.0	60 63	white & light grey	1-2% Py	Cherty argillite sheared e clay altered = FAULI Cherty argillite	
	22.8.1	75.25 .65	white +1,9ht	1-2%. Py 25% Sp Cpy Py -	Massive sulfides cherty argillite White sugary for Quarts yein w minor Py & Po	* 1(
1			white t light grey	1-27. Py		
	32 7	108,00.5	Hight grey	5-8% Py	cherts graillite Puritio	. "
	33.539 4 34.8	110.5113.5		, /	smarn Limestone gar, & Px sharn	. <i>II</i>
					109-110.5 Puso w Corr rich sharm abun. chlorite	
ł			Medium		Topis 50:50 skarn: Sulfide - bottom halt is 80%. Skarn 20%. Sulfides	
1			grey		110 S-113'S Limestone Recrystallized	
1		P			clean mutual embayments between Po	
1					on marble front	•
	57.6	190	Metallic	100% S= -=	sulfides Po-35%, Py-Sol. replaces Po, 5-10%.	i 11
Г.,					S-57. SN. COURSE EVICATAL PY PEPIACES PO	
			Medium		Limestone Fracturing increases	
•			9129	÷	dowhole	
	H. 1				The fill for the state of the state	
	75.7		Medium grcy		Limestone-highly tractured wire buildes t contact is razor sharp t a contact is razor sharp	. 11
	80.4 81.2		metallic Med quet	10-95% 5=	W. PV SPH & CPY Remainder is 30-65/SPh. 30-40 3-10% CPY W. 25% garact Sharn	2.Py 11
	83.5	275.5	metallic	507.5=	Gar-Px sharn Top4" 1-51. Cpy: Bottom 1' 15	
			Medium	10.00000000000000000000000000000000000	50% gar. 46%. Sph. & 3-5%. Cpy	
			grey		Limestone - as above	•
ł	·					· · ·
I	ĺ					
J	108		a the same			
1	1/2		Medeum grey		Limestone Broken w Feoscide stains	11
1			Green		Skarnv w. 101. Sph & Cpy. Very chloritic in limestone remnants	
l .		· .				· 11
I	ł		ļ		I construction of the second se	·

HOLE No. 10 99-17

Page 2 of 2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			DE	PTH	COLOR	MINERAL-	DESCRIPTION	RECOVER
Hed- grey $ist = 137$ $ist = 1137$ ist			<u>.m.</u> 115	380	· · · · · · · · · · · · · · · · · · ·			
Hed- 974 137 451 138 451 139 451 139 451 1007 1		I .						
137 451 137	-				Med-			. .
137 451 137 451 137 451 137 451 100%					grey		Limestone	1001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•						
Med- grey Wei Hedgreyinst Hedgreyinst Hedgreyinst Hedgreyinst Hedgreyinst Hedgreyinst Limestone Broken w. Fe oxides. Limestone Limestone Limestone 1007 Limestone 1007 Limestone 1007		-	137	451		5-20%. Py -	-6" calcite veining 5-20% Py	
1007 1007		• ,			Med-		himostone	100%
Limestone $ \begin{array}{c} $			145	479 481	Hed.greyZrust		Limestone Broken w. Fe oxides.	100.1
Limestone 1007		• .						
1007 1812 active 1812 active 1813 active 1813 active 1813 active 1814 active								
1007 1007		•						•••••••
1007 1007							Limestone	
1931 cov 1931 cov 1931 cov 1951 c								100%
1931 c 1931 c 1932 c 1932 c 1957 c 190								
19312 6025 (1932 Construction of the constru								
193:4 6035 Green 193:4 6055 Green 193:4 60611 Green 190 G26 It + dark 193 G39 Grey Hold Grey Hold Green 193 G39 Grey Hold Cherty Green Gar-dion. Endote with the could be the form of the the solution of the solutio								
1931 1931 1951 1951 1951 195 195 195 195								
190 626 1967 190 626 11 Green Tropy Po 1727, Py 190 626 11 Green 190 626 11 Green 1927, Py 193 637 Grey 1-27, Py 193 637 Grey 1-27, Py 193 637 Grey 1-27, Py Cherty argillite 1007 193 637 Grey 1-27, Py Cherty argillite 1007 100			182.6	602.5	Green	Tr Cpy & Po =	Gar-diop. Sharn w trace Cox & Po	100%
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$			185185.3	610611	Med grey Green	Tropy & Po ==	Skarn gar-dior. eridote w. trace sulfide Cry &	Py100%
193 C39 Grey 1-27. By Cherty argillite 1007	•		190	626	grey	1-2% Py	cherty argillite Shear = Fault	100%.
			193	637 -	grey	1-27. Py	Cherty argillite	. 100%
					END OF	HOLE		•
	1.00-0					19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	e e e e e e e e e e e e e e e e e e e	
	1							
	ļ							
	ſ							
	1							
					-			
	I							
		•						1.
	I	-			•			l.

DRILL LOG

١,

1- -

Date started August 12, 1999	Hole # 60 99-18	
Date completed	Depth $Z 44'$	
Azimuth	Hole size	
Dip	Contractor Los Drelling	
Elevation		
Collar Coordinates:	Drill type <u>29 38</u>	
N2008	Logged by Reta Mayor	
E2755		
DOWN HOLE SURVEYS		
Instrument Nine Performed		
<u>Footage</u> <u>Inclir</u>	ation Bearing	
		<u></u>
<u> </u>		
COMMENTS Driller to fest updin extan	sond Mineralgation hat in	
LD 99-17 . Surface ortargo of Sharn is	not well mineralized so expectations a	ne
limited. Used bast 100' of drilling an	trait. Mineralgate dees art	
fortist sprands well - most drill,	Q-65°	

DEPTH COLOR MINEGRA- IZATION DESCRIPTION RECOV s 16 ⁵ CASING CASING 100 s 16 ⁵ dark + 119ht Argillite 100 s 16 ⁵ Gar. Sharn w Sp. Cay, ry & chlorite Tr. galenae 11 s g2 Tr. Sp. Sol, Ss. Gar. Sharn w Sp. Cay, ry & chlorite Tr. galenae 11 s g2 Tr. Sp. Sol, Ss. Gar. Sharn w Sp. Cay, ry & chlorite Tr. galenae 11 s g2 Tr. Sp. Sp. Sp. Sp. Sp. Sh. Sh. Sol, and The t. Cpy Sulfides in discreet bands 11 s g2 Tr. Sp. Sp. Sp. Sp. Sh. Sp. and The t. Cpy Sulfides in discreet bands 11 s 100 Medium Limestone 100 g1 100 Medium Limestone 100 g1 100 Medium Limestone 100 g1 100 The Str	Н	OLE	No.	99-1	8	Page of	_/
S 165 S		<u>DE</u>	ртн ft	COLOR	MINERAL- IZATION	DESCRIPTION	RECOVER
5 16 ⁻³ dark + 100 84 1944 1944 Argillite 100 84 9754 501.51 Garsham w Sn, Cny, Ny & chlorite Tr. galenae 11 82 9774 Sol. Sn, Fn, Sharn w Sulfides 501. Gar-dios. Sol. 11 83 100 metallik Chark argillite 100 83 100 metallik Chark argillite 11 83 100 metallik Chark argillite 11 84 100 Chark argillite 11 11 100 metallik Chark argillite 11 11 11 100 Chark argillite 11 11 11 11 Chark argillite 11 11 123 100 Chark argillite 11 11 133 100 Chark argillite 11 11 14 100/15 Chark argillite 100/15 11 14 100/15 Medium argin 11 11 11 15 100 100/15 Charkargi argin argin argin argin a					- ·	CASING	
0dr# + 1994t 100 01 2152 78 rg 02 2152 78 rg 03 700 recently 04 21 29 96 31 700 metalline 100 700 metalline 11 700 metalline 12 710 metalline 100 / S 710 metalline 100 / S 710 metalline 100 / S 710 metalline		- S	16.3				
0. 21, 2 P2 73 Procently 507,52 Gar.sharn w Sp. Cry, ry i chlorite Tr. galena 11 75 92 darker 1947 75 92 darker 1947 75 94 Green w Sort, Sp. Fr. 73 100 metallic Cay, Pe 73 100 metallic Cay, Pe 75 95 P1 P2 73 Provent Cay, Pe 76 96 P1 P2				light grex		Argillite	. 100%.
24 77 3 2 motalle _ 50% 5° ~ = Gar.sharn w 50, Cry, ry i chlorite Ingalener II 78 92 7° ~ The Malle _ Angli I'r 78 92 7° ~ The Malle _ Sol S	1			green t			
24 94 37 100 metallic Cox, Ro 100 metallic Cox, Ro 100 Metallic Cox, Ro 100 Anadres 507. Gar-diop. 50% 100 Anadres 507. Gar-diop. 50% 100 Anadres 507. Gar-diop. 50% 100 Anadres 50%. Gar-diop. 50% 100 Anadres 50% 100 Anadres 50%. Gar-diop. 50% 100 Anadres 5	₿A <u></u>	7 25	72 73 = 82	dark+light grey	So% S=~_= 	= Garsharn w Sp, Cpy, py & chlorite Tr. galena Argillite Fault	• 11
33 100 metallic Cpx, Ro 328-59 Jun 19		- 29	96	" Green w	50% SR, Py.,	cherty argillite Skarn w. sulfides 50%, Gar-diop. 50%	1
Medium grey With Sign Medium grey Constance Medium grey Constance Medium grey Constance Medium grey Constance Medium grey Constance Medium grey Medium grey Me		33	100	metallic	Cpy, Po	SPA-1-y and 140 T CPY SUITIDES IN DISCREET GARAS	. "
9/ey 9/ey 9/ey 9/ey 9/ey 9/ey 1007/5 10	' <u></u> 			Medium		Limestone	100%
Average and the server of the				grey			
11 12 12 12 12 12 12 12 12 12	l		, ,				
Constrained in the interview of the product of the	<u>_</u>	54 55 56 56.4	-	Med; grey Med: grey	······································	Quartz vein Limestone Limestone broken w calcite veins + Fe-oxide Limestone	· // · // //
4000 68 224 Medium grey 172 232 172 232 174 7057 175 0 175		60.8	· · · ·	Metallic : Medium	1007.5= =	Poreplaced by Py wCpy, Sph & chlorite Pyrite dominant Limestone	· // //
72 232 with rest Hedium gree 4448 247 Kedium gree 55.0 247 Kedium gree 11 END OF HOLE 11 11 11 11 11 11 11 11 11 1	ا ممم	68	224	grey Medium grey		Breccia = Fault Aumestone Braken & Euroruda stained	. 11
75-0 277 WITH FUST END OF HOLE		72	232	with rust Medium grey		Limestone	1/
		75.0		with rust	END OF	HOLE	. 11
		4				······································	
				·			
					, 		
	1				-		•
						· · · · ·	
							Ì.

•

APPENDIX B: ASSAYS FOR 1999 DRILL HOLE AND TRENCH SAMPLING

·" "}

~ 1

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	SD (nom)
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppn)	<u>(bbiu)</u>
01751	20			0.4		777		9		<2	1610	<0
01751	20			3.0		666		<1	-	10	135	<u>ر></u>
01751	5			1.2		747		26		<2	24/5	C>
01752				9.4		885		116		382		1110
01752	1480	1.48	0.043								115000	
01753				22.0		641		49500		4058		/0
01753	1170	1.17	0.034						4.95		11200	
01754	40			1.8		1795		51		6	4265	<5
01755	305			3.2		1874		318		34		<5
01755											13400	
						-						
01756	30			2.0		746		28		6	195	5
01757	160			9.2		3123		33		4	190	<5
01758	20			0.8		545		<1		10	1260	<5
01759	5			<0.2		63		<1		<2	150	<
01760	5			1.2		229		<1		38	395	<
01760	5			2.8		1037		<1		<2	185	<5
01761	45			2.6		1008		<1		14	90	15
01762	70			4.8		2113		8		18	125	10
01763	65			14.8		4745		72		10	85	15
01764	625					23000		204		<2	450	<
01764				65.0	1.90		2.30					
01765	485			21.4		8288		85		4	265	<
01766	590					46000		734		<2	400	
01766				127.8	3.73		4.60					
01767	585					14500		170		<2	450	
01767				38.8	1.13		1.45					
01768	5			<0.2		196		<1		12	135	1
01769	<5			<0.2		107		<1		24	175	1(
01769	<5											
01770	10			0.6		127		830	-	64	125	2
01771	5			<0.2		84		69		28	215	2

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
01790	190			5.6		1118		7		14	1255	<5
01772	20			0.4		182		50		26	45	5
01773	150				-	9313		132		88	25	40
01773				22.6	0.66							
01774	730					28900		675		10	590	<5
01774				83.2	2.43		2.89					
01775	675					22000		914		<2	560	<5
01775				56.8	1.66		2.20					
01776	365			19.8		6705		127		8	240	<5
01783	80			4.2		1284		11		14	750	<5
01784	175			5.0		1582		29		12	825	55
01785	160			10.4		3704		41		16	1095	<5
01786	25			4.6		1580		16		14	305	10
01787	30			2.6		691		<1		12	145	<5
01787	45					-						
01787	30			2.4		626		<1		12	130	<5
01788	185			16.8		4659		18		<2	770	<5

E.

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
01777	40			0.8		201		23		24	225	15
01778	450			18.4		6131		48		16	1365	60
01779						25600		145		<2	860	<5
01779	1960	1.96	0.057	56.0	1.63		2.56					
01780	270			6.4		1770		<1		90	1415	15
01781	215			8.8		2573		8		48	1040	<5
01789	80			2.0		528		<1		20	1200	<5
01791	25			0.8		45		<1		16	375	<5
01792	200			4.8		1063		31		46	2945	45
01793	35			1.0		283		<1		14	2910	<5
01794	45			1.0		403		<1		8	325	<5
01795	30			1.2		423		<1		12	330	<5
01796	35			3.2		1028		<1		6	210	<5
01796	40											
01797	50			2.0		446		<1		18	440	<5
01798	110			10.0		3337		10		14	220	5
01799	25			2.6		394		<1		<2	160	<5
01800	55			7.6		2503		<1		12	125	<5
01801	80			2.4		400		<1		<2	495	<5
01802	75			3.6		1417		<1		8	285	<5
01803	330			7.0		2907		93		20	420	<5
01804	115			0.8		299		<1		<2	550	<5
01805	35			1.0		338		<1		<2	760	<5
01805	-			1.2		340		<1		10	770	<5
01806	140			7.2		2932		4		<2	720	<5
01807	115			7.6		2809		<1		<2	720	<5
01808	35			5.4		1433		<1		<2	240	<5
01809	90			11.4		3497		31		14	90	5

ta da anticipada de la compansión de la comp La compansión de la compansi La compansión de la comp

...

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
					[
01810	125			2.0		726		67		<2	<5	<5
01810	130			1.8		690		70		4	5	<5
01810	165			2.4		786		74		2	5	<5
01811	265			2.2		960		37		<2	375	<5
01812	165			2.4		1404		58		4	280	<5
01813	140			1.0		514		27		2	140	<5
01814	165			1.4		521		37		8	25	<5
01815	215			1.8		642		47		<2	65	<5
01816	235			1.2		555		16		4	290	<5
01817	160			1.4		514		20		<2	95	<5
01818	180			3.8		1361		41		14	65	<5
01819	95			1.4		669		25		8	10	<5
01819	130			1.8		653		23		12	20	<5
01820	310			2.8		1919		37		10	35	<5
01821	130			2.8		838		30		<2	20	<5
01822	240			1.4		1160		30		<2	140	<5
01823	130			4.2		1182		31		4	110	<5
01824	110			2.0		545		30		6	140	<5
01825	25			1.0		354		34		6	40	<5
01826	115			3.2		1235		32		<2	170	<5
01827	150			5.8		2069		51		<2	165	<5
01828	215			5.6		1822		29		10	60	<5
01828	200			6.0		1837		30		12	65	<5
01829	135			2.8		770		46		<2	200	<5
01830	260			6.4		1887		28		12	80	<5
01831	130			2.4		851		28		14	60	<5
01832	60			1.0		229		25		10	55	<5
01833	55			1.0		171		31		8	150	<5
01834	50			0.6		198		19		10	85	<5
01835	35			0.8		123		21		20	45	<5
01836	120			3.2		856		16		<2	230	<5
01837	145			3.4		1443	_	13		8	175	<5
01838	70			3.4		1386		53		16	60	5

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
01839	520					19600		86		4	105	<5
01839				45.3	1.32		1.96					
01840	45			1.2		188		88		12	90	<5
01841	135			6.4		2565		25		<2	170	<5
01842	35			2.4	I	817		15		<2	165	<5
01843	70			3.6		1840		13		<2	175	<5
01844				1.0		267		19		6	135	<5
01844	1400	1.40	0.041						· · · · · · · · · · · · · · · · · · ·			
01845	35			2.4		1334		30		6	<5	<5
01845	35			2.6		1363		31		10	5	<5
01845	45			2.6		1289		31		4	<5	<5
01846	195			1.0		49		36		28	450	<5
01847	65			1.2		66		255		80	195	10
01848	135			9.4		3391		59		4	110	60
01849	125			2.8		1112		26		10	35	5
01850	65			1.4		373		27		12	100	10
01851	155			3.4		950		44		14	55	10
01854	30			0.8		548		45		8	110	<5
01855	675			2.0		15		12		4	3785	<5
01856				7.8		145		14		26	1795	<5
01856				7.8		134		11		24	1725	<5
01856*	1570	1.57	0.046									
01856*	2600	2.60	0.076									

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	St
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
01857	225			2.2		1114		22		<2	210	<5
01858				6.0		3555		37		<2	175	<5
01858	1000	1.00	0.029									
01859	80			3.6	· · · · · · · · · · · · · · · · · · ·	448		29		10	270	<5
01860	40			1.8		315		25		<2	215	<5
01861	50			1.4		218		21		2	440	<5
01862	230			0.6		135		26		<2	245	<5
01863	15			0.6		13		15		<2	600	<5
01864	15			0.6	· · · · · · · · · · · · ·	5		23		6	615	<5
01865	15			0.4		7		21		6	310	<5
01865				0.2	-	10		20		6	285	10
01866	50			1.8	·····	468		18		2	595	<5
01867				• • • • • • • • • • • • •		20500		89		<2	560	<5
01867	1840	1.84	0.054	47.3	1.38		2.05					~~
1868	160			8.6		4127		32		<2	615	<5
1868	130			8.4		4070		36		2	670	<5
1868	180			8.6		3945		40		2	615	<5
1869	5			0.4		121		19		<2	660	<5
1870	5			0.2		22		17		<2	695	<5
1871	5			0.4		21		17		<2	805	<5
1872	235			0.6		188		28		8	3545	70
1873	50			0.8		95		17		4	865	<5
1874	220			<0.2		6		25		4	880	<5
1875	10			0.4		13		23		<2	810	<5
1876	5			0.4		69		22		<2	900	<5
1877	15			<0.2		67		19		<2	465	~5
1877	10			<0.2		60		19		<2	430	<5
1878	5			0.4		22		39		<2	230	
1879	75			1.4		23		61		16	845	10
1880	10			0,6		5		39		8	155	10

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
1881	35			2.8		560		116		60	170	25
1882	50			2.2		1087		38		4	125	<5
1883	5			0.6		310		20		<2	565	<5
1884	<5			0.4		122		30		<2	490	<5
1885	35			2.0		1419		72		34	20	80
1886	15			1.0		573		31		14	15	15
1886	15			1.2		572		32		14	20	15
1887						36600		176		<2	5	10
1887	780	0.78	0.023									
1887*	810	0.81	0.024	46.8	1.37		3.66					
1888	240			11.0		8561		47		<2	<5	<5
1889	20			1.2		586		34		<2	460	<5
1890	10			1.0		357		26		<2	620	<5
1891	20			0.6		621		36		<2	135	<5
1892	30			1.0		683		43		4	50	<5
1893	10			0.6		220		27		4	225	<5
1894	10			1.0		325		29		2	255	<5
1895	5			0.4		131		34		4	165	<5
1896	10			0.6		112		65		6	210	<5
1897	60			1.8		921		45		4	130	<5
1898	20			1.0		514		57		4	105	15
1899	25			1.8		951		24		<2	630	<5
1900	5			0.6		132		21		4	570	<5
10349	<5			0.4		60		19		<2	620	<5
10350	20			1.0		383		21		4	350	<5
10351	5			0.2		7		21		<2	440	<5
10351	10			<0.2		9		22		<2	465	<5
10351				<0.2		9		19		<2	405	<5
10352	5			<0.2		22		33		4	50	5
10353	10			0.4		20		22		4	95	<5
10354	10			0.4		225		23		4	55	5

the second second

and the second second

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
10355	425			9.8		5175		31		4	40	20
10356				27.4		16200		287		30	85	10
10356	1500	1.50	0.044				1.62					
10357	330			7.0		4192		57		58	55	25
10358	60			1.0		458		34		16	40	25
10359	45			1.8		907		32		6	225	<5
10360	20			0.4		169		23		2	250	<5
10360	20			0.4		176		24		2	265	<5
10361	20			0.2		44		18		<2	365	<5
10362	25			0.4		38		27		4	205	<5
10363	15			0.2		20		19		<2	240	<5
10364	15			<0.2		10		22		2	215	<5
10365	25			0.2		243		24		12	190	<5
10366	10			<0.2		106		26		10	210	<5
10367	55			2.4		1157		34		12	<5	<5
10368	570			9.2		2698		64		18	20	70
10369	10			0.8		88		66		<2	190	<5
10369	15			0.6		94		62		<2	210	<5
10370	90			3.4		1775		77		<2	205	<5
10371	15			0.6		60		28		<2	200	<5
10372	590			21.4		9553		64		<2	75	5
10373	30			3.2		1347		30		<2	105	<5
10374	30			1.6		569		40		8	30	15
10375	290			6.8		3380		48		12	70	<5
10376						86200		1254		<2	130	<5
10376	7840	7.84	0.229	171.3	5.00		8.62					
10377	95			2.8		987		90		12	25	<5
10378	65			1.4		402		60		10	20	10
10379	40			1.6		368		42		8	10	<5
10380	590					22100		160		<2	<5	<5
10380				52.6	1.53		2.21					
10381	55			1.8		574		60		8	30	<5
10382	35			1.2		399		41		<2	50	<5
10383	60			5.8		2143		225		<2	580	<5
10384	25			2.2		627		79		4	2115	255

the second se

	Au	Au	Au	Ag	Âg	Cu	Cu	Zn	Zn	Pb	As	Sh
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(mgg)	(ppm)
10403	15			3.0		1440		883		8	90	<5
10385	25			1.2		530		109		8	1370	<5
10386				9.2		163				3322	1070	1235
10386				9.4		159				3208		1105
10386				9.2		156				3364		1715
10386	2100	2.1	0.061					· - ···		0004		1215
10386*	1000	1.00	0.029		· · · · · · · · · · · · · · · · · · ·	·····		44200	4.42		62700.00	
10387	90	• • • • • • • • • • • • • • • • • • • •		0.4		37		151		20	220	
10388						5673		101		20	520	20
10388*	680	0.68	0.020	133.8	3 90	0010		60600	6.06	22600	5510	60
10389	20			0.4	0.00	13		236	0.90	22000	24.00	
								230		40	2160	65
10390	165			1.8		758		011				
10391	45			3.6		2568		2505		12	20	<5
10392	50			4 2		2789		3595		8	55	<5
10393	90			24		2474					< 5	<5
10393						27/7		18800	1 00		<>	<5
10394	115			32		655		130	1.00			
10395	55			5.0		3954		139		0	<5	25
10395	40			5.0		4143		111		-2	100	<5
10396	55			4.6		4099		50		-2	100	<5
10397	100			82		4848		228		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15	<5
10398	95			5.8		4005		71			255	<5
10399	330			6.0		3877		2976		<2	240	<5
10400	195			26		71		140	·	~2	<5 110	<5
						/		140			110	5
10401	<5			0.4		791		107		14	10	175
10402	<5			<0.2		22		75		24	60	1/5

	Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
10404	155			3.2		401		53		4	2535	<5
10404	310			3.0		374		55		8	2585	<5
10405	400			3.8		483		200		12	500	<5
10406	545			12.0		3908				16	125	<5
10406								16100	1.61	I		
10407						15300		1926		28	385	<5
10407	1650	1.65	0.048	60.0	1.75		1.53					
10408	220			<0.2		3169				4	70	<5
10408								252000	25.20			
10409				<0.2		7638				8	25	<5
10409*	800	0.80	0.023					307000	30,70			
10410				<0.2		13600				2	<5	<5
10410	1210	1.21	0.035				1.36	323000	32.30			
10411	230			<0.2		1318				<2	30	<5
10411								218000	21.80			
10412	315			15.0		5786		5357		<2	80	<5
10413						17800				<2	75	<5
10413	1740	1.74	0.051	42.8	1.25		1.78	69600	6.96			
10414	510			15.4		4830				10	120	20
10414								13800	1.38			
10415	325			6.4		8841				14	70	10
10415								38000	3.80			
10416	125			2.2		813		1992		14	40	15
10417	515			9.0		2350		242		10	100	<5
10418	395			7.6		1400		188		10	395	<5
10419	30			6.8		1820		149		2	<5	<5
10420						10800				8538	3140	520
10420	3030	3.03	0.088	182.6	5.33		1.08	31000	3.10			
10421	470			13.6		2771		884	•	166	135	145

۰.

	Au	Au	Au	Aa	ρĄ	Cu	Cu	Zn	Zn	Ph	Δς	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
10305	445			8.0		604		123		12	595	15
10306	335			3.4		970		<1		<2	1060	<5
10307	330			6.4		676		23		6	935	<5
10308	195			5.6		396		<1	· ·	<2	295	<5
10301	190		-	2.6		479		32		16	805	<5
10301	165			2.6		489		43		22	835	<5
10301	155			2.4		476		30		22	795	<5
10302	205			6.4		372		18		14	280	<5
10303	25			0.6		111		6		22	70	<5
10304	150			1.8		162		<1		20	130	<5
10345	80			1.2		700		97		26	130	15
10345				1.4		689		96		28	135	<5
10346	425			9.4		405		15		26	250	<5
10347	245			3.6		359		2		22	375	<5
10348				6.4		376		53		52	465	<5
10348	1460	1.46	0.043									
10309	260			6.2		2365		2218		26	885	<5
10310	135			2.4		701		17		24	685	<5
10310	185			2.2		714		16		22	680	<5
10311				26.0		764		1		52	675	5
10311*	1650	1.65	0.048									
10311*	2.76		0.080									
10312	40			2.0		795		27		12	145	20
10313	465			26.2		1909		55		26	760	935
10314	340			10.8		2116		52		22	1730	65
10315	35			1.6		1086		12		16	70	15
10316	195			8.6		2087		27		22	1150	20
10317	155			23.0		4965		68		12	115	5
10318	100			9.6		2754		40		14	210	<5
10319	470			16.6		992		13		10	490	<5
10319	250			16.4		973		13		12	490	<5
10320	110			7.8		743		19		12	250	<5

۴.

[Au	Au	Au	Ag	Ag	Cu	Cu	Zn	Zn	Pb	As	Sb
Sample #	(ppb)	(ppm)	oz/T	(ppm)	oz/T	(ppm)	%	(ppm)	%	(ppm)	(ppm)	(ppm)
10321	400					24200		199		16	580	<5
10321				76.2	2.22		2.42					
10322	20			2.2		1017		27		8	590	<5
10323	35			2.2		1261		82		12	600	<5
10324	30			1.2		740		56		12	545	10
10325	20			0.8		1193		135		10	635	<5
10326	290			14.2		2734		106		14	2135	<5
10327	35			2.6		872		15		14	1040	10
10328	35			3.6		1657		134		24	180	<5
10329	35		· · · · · · · · · · · · · · · · · · ·	1.2		588		15		8	340	<5
10330	20			1.2		372		21		12	925	<5
10331	10			1.6		627		<1		6	460	<5
10332	25			5.2		3676		16		12	220	<5
10333	60			21.8		4299		9		4	530	<5
10334	30			2.8		2369		6		12	40	10
10335	125			16.6	•	9400		83		20	505	<5
10335							0.94					
10336*	245			24.4		6104		49		8	555	<5
10336*	160			24.6		5984		55		10	570	<5
10336*	425			26.8		6782		57		16	670	<5
10337						26200		261		10	370	<5
10337	1470	1.47	0.043	142.5	4.16		2.62					
10338						120000		3142		24	680	120
10338	5670	5.67	0.165	351.0	10.24		12.00					
10339						15700		127		6	660	<5
10339	1510	1.51	0.044	55.6	1.62		1.57					
10340	545			2.6		1442		56		32	275	25
10341	160			6.4		2360		121		52	605	<5
10342	35			0.6		362		17		72	270	20
10343	10			0.2		391		38		42	230	20
10344	70			2.0		480		500		22	1290	<5
Note: overlim	its replaced b	by ppb or p	pm from fo	low-up re-a	ssays							
* Eco-Techs	comment that	at coarse n	netallic gold	is present a	and that a so	creen-assay	should be	done				
Multiple analy	ses for same	e sample re	eflect reassa	iys, resplits,	etc. peforn	ned by Eco	-Tech					

APPENDIX C: ASSAY CERTIFICATES FOR 1999 DRILL HOLE AND TRENCH SAMPLING

' 1

<u>رب</u>

- -

~ **1**

· 1

ł

-1

1

?

۲٦

- 3

3

;

)

``}

the chief of

NXEN

• 1

1...

· . .

1 .

، ۲.

• , . •

ا مغل ا ا ا

· · · · · ·

9-41

