
GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

Sold Commissione WP 1402, 3, 5A-9A, W 1-4, 5A, 6, 7, 8A, 9-20, VANCOUVER, B. John 1A, 1-12, Van 1, 2, V 1-4, Paul 1, 2 MINERAL CLAIMS

> Hedley Area Similkameen and Osoyoos Mining Divisions

92H-8E (49° 19' North Latitude, 120° 10' West Longitude)

for

GRANT F. CROOKER Box 404 Keremeos, B.C. V0X 1N0 (Owner and Operator)

by

GRANT F. CROOKER, P.Geo., GFC CONSULTANTS INC.

November 1999

a Terra di tatan

141. SURVEY BRANCH

の現代はないない

STORY

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	5
	2.1 GENERAL	5
	2.2 LOCATION AND ACCESS	5
	2.3 PHYSIOGRAPHY	5
	2.4 PROPERTY AND CLAIM STATUS	5
	2.5 AREA AND PROPERTY HISTORY	7
3.0	EXPLORATION PROCEDURE	11
	3.1 GRID PARAMETERS	11
	3.2 GEOCHEMICAL SURVEY PARAMETERS	11
	3.3 GEOPHYSICAL SURVEY PARAMETERS	11
4.0	GEOLOGY AND MINERALIZATION	12
	4.1 REGIONAL GEOLOGY	12
	4.2 HEDLEY DISTRICT GOLD DEPOSITS	13
	4.3 CLAIM GEOLOGY	16
	4.3.1 Main Grid East Pettigrew Zone	16
	4.3.2 Detailed Grid East Pettigrew Zone	16
	4.3.3 Blitz Showing	17
	4.4 MINERALIZATION	17
	4.4.1 Mission Showing	18
	4.4.2 Blitz Showing	18
	4.4.3 Main Grid East Pettigrew Zone	19
	4.4.4 Detailed Grid East Pettigrew Zone	19
	4.4.5 Van Showing	20
5.0	GEOCHEMISTRY	21
	5.1 STREAM SEDIMENT GEOCHEMISTRY	21
	5.2 SOIL GEOCHEMISTRY	22
6.0	GEOPHYSICS	24
	6.1 MAGNETIC SURVEY	24
7.0	CONCLUSIONS	25
8.0	RECOMMENDATIONS	27
9.0	REFERENCES	28
10.0	CERTIFICATE OF QUALIFICATIONS	31

.

PAGE

•.

TABLES

PAGE TABLE TABLE 1.0 CLAIM DATA 5 TABLE 2.0 SNOWSTORM SHOWING ROCK GEOCHEMISTRY 8 TABLE 3.0 GOLD HILL SHOWING ROCK GEOCHEMISTRY 9 TABLE 4.0 **MISSION SHOWING 1980 DRILL RESULTS** 10 TABLE 5.0 HEDLEY DISTRICT GEOLOGICAL HISTORY 15 TABLE 6.0 ANOMALOUS STREAM SEDIMENT GEOCHEMICAL VALUES 21 TABLE 7.0 ANOMALOUS SOIL GEOCHEMICAL VALUES 22

LIST OF FIGURES

FIGURE		FOLLOWS
FIGURE 1.0	LOCATION MAP	4
FIGURE 2.0	CLAIM MAP	5
FIGURE 3.0	REGIONAL GEOLOGYY	16
FIGURE 4.0	SILT & ROCK GEOCHEMISTRY & GEOLOGY	Pocket
FIGURE 5.0	GEOLOGY & ROCK GEOCHEMISTRY BLITZ SHOWING	Pocket
FIGURE 6.0	GEOLOGY & ROCK GEOCHEMISTRY	
-	EAST PETTIGREW ZONE	Pocket
FIGURE 7.0	DETAILED GEOLOGY & ROCK GEOCHEMISTRY	
	EAST PETTIGREW ZONE	Pocket
FIGURE 8.0	SOIL GEOCHEMISTRY BLITZ SHOWING	22
FIGURE 9.0	GROUND TOTAL FIELD MAGNETIC CONTOURS	
	EAST PETTIGREW ZONE	Pocket

APPENDICES

APPENDIX I	CERTIFICATES OF ANALYSIS
APPENDIX II	MAGNETIC DATA
APPENDIX III	GEOPHYSICAL EQUIPMENT SPECIFICATIONS
APPENDIX IV	ROCK SAMPLE DESCRIPTIONS
APPENDIX V	COST STATEMENT

1.0 SUMMARY

The Hedley project is located 3 to 12 kilometres southwest of Hedley BC, in the Hedley Gold Camp (production 2.5 million ounces) of southern British Columbia. The property consists of thirteen four-post and thirty-six two-post mineral claims covering 218 units (4000 hectares) in the Similkameen and Osoyoos Mining Divisions. Grant F. Crooker of Keremeos, BC is the owner and operator of the property.

Access to the project area is provided by the Sterling Creek forest access road that turns west off Highway 3 eight kilometres west of Hedley. The Sterling Creek road accesses the northern and western portions of the project area, the Pole Cutter branch road the central and southern portions, and the Johns Creek branch road the eastern portions. These are all weather, two wheel drive roads.

The Hedley Gold Camp has a long tradition of mining, with placer mining first carried out on Twenty Mile Creek in the 1860's and 1870's. The interest in placer mining led to the discovery of gold on Nickel Plate Mountain in the 1890's, with the first claims being staked in 1896. The Nickel Plate and Hedley Mascot mines have been the major producers in the district (to 1986 approximately 51 million grams or 1.6 million ounces of gold). Almost all of this production occurred in the period from 1905 to 1955.

In the 1970's exploration renewed in the Hedley Gold Camp with most of the activity on properties on Nickel Plate Mountain. However exploration was also carried out in other areas of the district. The most important property in the camp is the Nickel Plate mine (Homestake Mining) with skarn hosted gold mineralization. Ore reserves in 1987 were in the order of 9,900,000 tons grading 0.088 ounces gold per ton. The Nickel Plate mine resumed production in August 1987 with a milling rate of 2,700 tons per day using open pit mining and conventional cyanide recovery methods. The mine ceased production in July of 1996 with a reported production of 11,000,000 tonnes of ore yielding approximately 25,630,000 grams gold (824,000 ounces).

A number of gold properties are also located on the south side of the Similkameen River. Historically, the properties on the south side of the Similkameen River were related to quartz-carbonate vein systems and associated shear zones as opposed to skarn-related mineralization at the Nickel Plate mine. Recent geological data by Ray (1986/87) have indicated that similar gold environments exist on the south side.

During the period 1986 through 1997, several mining companies optioned the property from the present owner and conducted exploration programs on the WP claims that generally cover an area west of Pettigrew Creek. These work programs consisted of establishing grid lines and carrying out geological mapping, soil silt and rock geochemical sampling and magnetic, electromagnetic and induced polarization geophysical surveying. Four main target areas were developed by these work programs and subsequently tested by a combination of trenching and/or core drilling. Highlights of the core drilling were anomalous gold and high silver and copper values in drill holes WP001 and WP002 from the Camp zone, and strong sulphide mineralization and homfels alteration in drill hole WP004 from the Pole Cutter zone. A multi-element (Mo-As-Ag) soil geochemical anomaly and a high chargeabilty induced polarization anomaly were also outlined on the East Pettigrew zone.

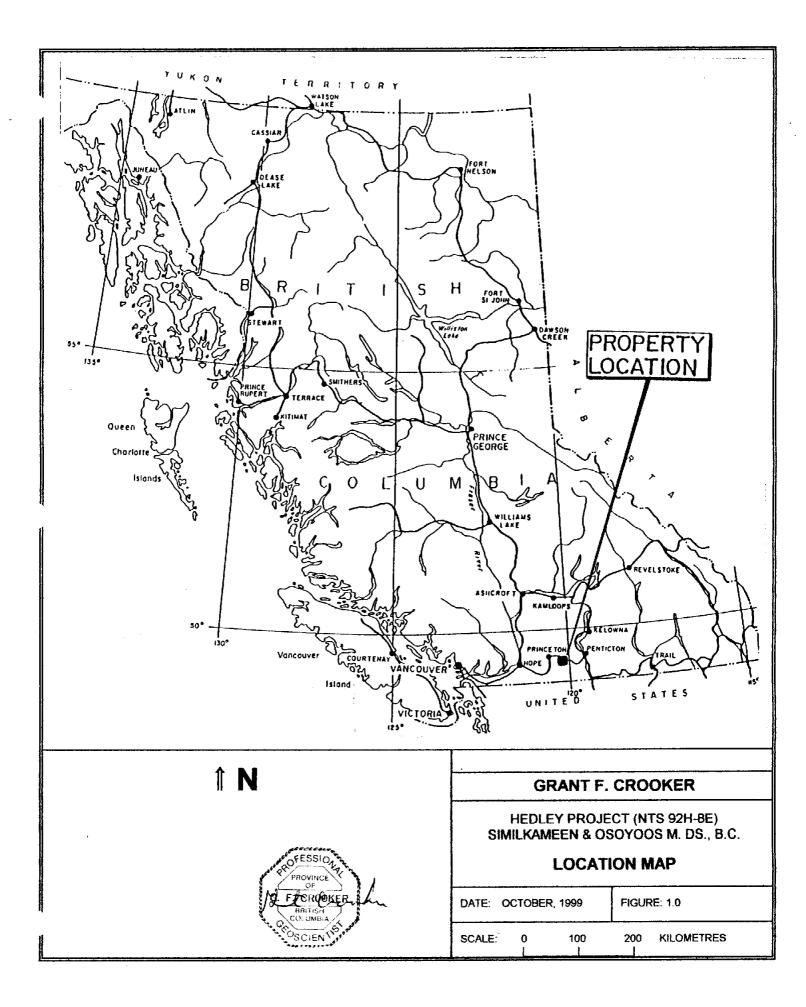
During 1998 and 1999 much of the area east of Pettigrew Creek came open for staking, including a number of old showings (Gold Mine, Mission and Blitz). These areas were staked (W, John, Van, V and Paul claim groups) and the 1999 work program concentrated on them.

The Mission showing is located in the south central portion of the Van-2 claim and is underlain by medium grained granodiorite of the Cahill Creek pluton. Mineralization (pyrite, arsenopyrite, sphalerite and minor amounts of tetrahedrite and chalcopyrite) is fracture controlled and contained within three principle shear zones (Barnes, Walker and Winkler) that cut the granodiorite. Work programs have included VLF-EM, magnetic and induced polarization geophysical surveying, soil geochemical sampling (arsenic, silver and gold), geological mapping and two phases of diamond drilling (1980 4 drill holes, 1987 3 drill holes).

The BC Minister of Mines Annual Report for 1936 (page D12) reports gold values ranging between 1.4 and 2.7 grams gold per tonne, with one sphalerite rich sample assaying 6.8 grams per tonne. The diamond drilling indicates the mineralized zones persist to a depth of at least 25 metres with the highest gold assay 0.045 ounce per ton over 90 centimetres, with 0.89 ounce silver per ton and 0.05% zinc (Phendler 1980, AR # 9222).

The Blitz showing is located on the John 1-6 claims and was explored by hand trenches, a winze and a shaft in the 1930's. Foxes Resources Ltd carried out a number of exploration programs between 1983 and 1986 including establishing grid lines, VLF-EM and magnetic geophysical surveying, soil geochemical sampling (gold, silver, arsenic, copper and zinc) and geological mapping. The property is mainly underlain by thinly bedded black argillite that has been locally silicified and veined with quartz. Pyrite, pyrrhotite, arsenopyrite and chalcopyrite occur in zones of silicification and quartz veining. The soil geochemical sampling indicated a broad north trending zinc anomaly over the area of old showings, with sporadic silver, arsenic and gold values. Two grab samples of quartz vein with pyrite and arsenopyrite assayed 3.53 and 2.69 grams per tonne gold (Freeze 1986, AR #15,441).

The 1999 program consisted of stream sediment sampling the main drainages on the eastern portion of the project area, geological mapping and magnetic surveying on the East Pettigrew zone, and prospecting and rock sampling over a number of areas including the East Pettigrew zone, Blitz and Mission showings. The following conclusions can be drawn from the 1999 work program.


- 1.01 Two of the drainages from which stream sediment samples were collected gave anomalous geochemical values. Sampling of Five A Creek (4 samples) and a subsidiary creek (2 samples) draining the southern portion of the Mo-As-Ag soil geochemical anomaly on the East Pettigrew zone confirmed the soil geochemical anomaly. Two of the samples showed elevated gold values of 10 ppb, and others were anomalous for arsenic (4), molybdenum (6) and copper (5). Ten samples were collected from the upper reaches of Johns Creek and they gave the most strongly anomalous results for gold and pathfinder elements of the stream sediment survey. Three of the samples were anomalous for gold (25, 70, 80 ppb), while others were anomalous for silver (1), arsenic (5), copper (1), molybdenum (1), lead (2), antimony (2) and zinc (8).
- 1.02 Geological mapping, prospecting and rock sampling were carried out over the main grid on the East Pettigrew zone to determine a) the cause of the high chargeability induced polarization anomaly on lines 1700N and 1900N and b) the cause of the multi-element soil geochemical anomaly (Mo-As-Ag) extending from line 000N to 1900N,. There is a general lack of outcrop over the grid. Most of the grid is underlain by siltstone and tuff of the Whistle Formation (often calcareous), although argillite with narrow interbeds of limestone of the Stemwinder Formation are poorly exposed at the south end of the grid. Rock sampling gave weakly anomalous gold (35 ppb) and pathfinder elements, with the highest geochemical values from a cluster of float samples (122, 123, 135) taken around line 1300N and 1900E. The geophysical and geochemical anomalies have not been explained.
- 1.03 The magnetic survey over the East Pettigrew zone did not delineate zones of higher magnetism over the multi-element (Mo-As-Ag) soil geochemical anomaly or the high chargeability induced polarization anomaly outlined in 1997. This indicates the two anomalies are not associated with magnetic sulphide minerals such as pyrrhotite.
- 1.04 Geological mapping, prospecting and rock sampling were carried out on the detailed grid of the East Pettigrew zone to determine the cause of the Au-As soil geochemical anomalies. The grid is undertain by siltstone and tuff of the Whistle Formation, although outcrop is sparse. The highest rock geochemical response was from bleached, fractured, and clay altered tuff float with up to 15% limonite filled boxworks (sample 178) that gave 85 ppb gold, 0.8 ppm silver, 340 ppm arsenic and 317 ppm copper. The cause of the geochemical anomalies has not been adequately explained.

- 1.05 The auriferous quartz veins exposed at the Blitz showing contain the anomalous pathfinder elements arsenic, molybdenum and silver. These pathfinder elements are identical to the Mo-As-Ag soil geochemical anomaly on the East Pettigrew zone, and similar quartz veins and/or shear zones may be causing the soil geochemical anomaly on the East Pettigrew zone.
- 1.06 The Van showing consists of angular boulders of tuffaceous siltstone, strongly altered to hornfels, with fracturing and 2 to 4% pyrite and pyrrhotite exposed at two logging landings. One sample of float collected from each landing gave weakly anomalous gold (100 ppb, 75 ppb) and pathfinder element (Ag, As, Cd, Mo, Zn) values.
- 1.07 The Mission showing is located within granodiorite of the Cahill Creek pluton that has been altered to quartz, sericite, kaolinite, chlorite, carbonate and epidote and cut by fractures and quartz veinlets (1 to 50 millimetres wide) generally striking 104° and dipping steeply north.. The mineralization is contained within one principal zone (Barnes, striking 030°, dipping 70° southeast, 240 metres long, 3 to 5 metres wide) and two subsidiary zones (Walker, striking 060° and dipping 80° northwest, 90 metres long and Winkler striking 060° and dipping 85° southeast, 140 metres long). The quartz veinlets make up to 25% of the altered zone and contain varying amounts of pyrite, arsenopyrite and sphalerite. A selects ample (054) of a 5 centimetre wide quartz veinlet containing 10% pyrite, 5% arsenopyrite and 5% sphalerite gave 4.05 grams gold per tonne, 277 grams silver per tonne, 6.03% zinc and > 10,000 ppm arsenic. A one metre chip sample (055) containing 25% quartz veinlets with 5% pyrite, 2% arsenopyrite and 2% sphalerite gave 0.02 gram gold per tonne, 18.2 grams silver per tonne, 1,000 ppm zinc and > 10,000 ppm arsenic.
- 1.08 The Blitz showing is underlain by thinly bedded argillite and minor limestone of the Stemwinder Formation. Silicified argillite with 1 to 5 % disseminated pyrite are exposed in a number of old trenches. Quartz veins or stockwork with anomalous gold values, striking approximately 007° and dipping moderately west are exposed at three old workings over a strike length of 900 metres. It is not known if they represent en echelon veins, or a single vein with different character along strike. The highest gold values (058-3.35, 062-8.3 grams gold per tonne) with strongly anomalous arsenic (> 10,000 ppm) came from a 10 to 20 centimetre wide guartz vein with pyrite and arsenopyrite exposed in trenches 7 and 8. Four samples (064-066, 069) of a 60 to 140 centimetre wide quartz vein with pyrite exposed at the winze gave weakly anomalous gold values ranging from 105 to 565 ppb with moderately anomalous arsenic (562 to 1010 ppm). At the shaft, a 120 to 140 centimetre wide zone of oxidized quartz stockwork and breccia with weak shearing and fracturing is exposed in the north wall. The guartz veinlets contain up to ½% disseminated pyrite make up 10 to 75% of the zone. Four samples of the quartz stockwork (073-076) gave weakly anomalous gold values ranging from 50 to 90 ppb, while arsenic (70-746 ppm) and molybdenum (40-120 ppm) were both moderately anomalous.
- 1.09 The strongest soil geochemical response for gold and pathfinder elements from the samples collected at the Blitz showing was at trenches 7 and 8 that expose the auriferous quartz veins. The anomalous values extend to the south to trench 2, while the geochemical response to the north was much weaker. This indicates the quartz vein extends along strike to the south for at least 50 metres, while an extension to the north is unclear.

The following recommendations are made:

- 1.11 Prospecting be conducted to determine the source of the anomalous (gold and pathfinder elements) stream sediment samples from Johns Creek.
- 1.12 Prospecting and rock sampling be continued over the high chargeability anomaly and multi-element soil geochemical anomaly on the main grid of the East Pettigrew zone to determine their causes.
- 1.13 Prospecting and rock sampling be continued over the Au-As soil geochemical anomalies on the detailed grid of the East Pettigrew zone to determine their causes. The soil geochemical anomalies easily accessible from the Johns Creek road be trenched.
- 1.14 A grid be established over the Van showing, and soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping be carried out to determine the extent of gold mineralization at the showing. If significant geochemical, geophysical or geological targets are developed they be tested by trenching.
- 1.15 The Mission showing be evaluated by establishing a grid over the showing and conducting soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping to develop targets for trenching.
- 1.16 A new grid be established over the Blitz showings and extended to the east. Soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping be carried out to develop targets for trenching. Trenching should also be carried out over the showings to develop drill targets.

Respectfulik submitted. PROVINCE QF CRODKER BRITIEL Grant & Crooker P.Geo., Consulting Geologist

2.0 INTRODUCTION

2.1 GENERAL

Field work was carried out on the Hedley project from October 10 1998 to October 15 1999 by Grant F. Crooker, P.Geo. The work program consisted of stream sediment sampling, magnetic geophysical surveying, soil and rock geochemical sampling, geological mapping and prospecting.

The work program was carried out on the portion of the Hedley project east of Pettigrew Creek. A \$ 6,500.00 Prospectors Assistance Grant provided the funding for the work program.

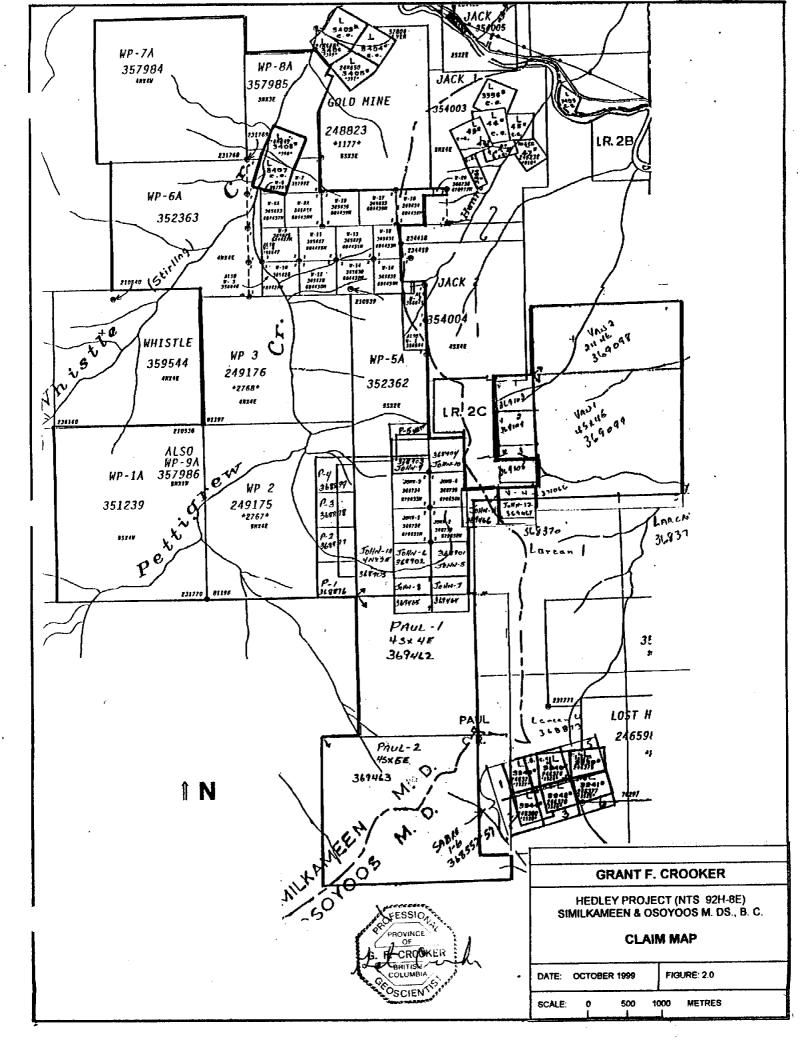
2.2 LOCATION AND ACCESS

The property (Figure 1.0) is located 3 to 12 kilometres southwest of Hedley in southern British Columbia. It lies between 49° 16' and 49° 22' north latitude and 120° 06' and 120° 14' west longitude (NTS 92H-8E).

The main access to the project area is provided by the Sterling Creek forest access road that turns west off Highway 3 eight kilometres west of Hedley. The Sterling Creek road accesses the northern and western portions of the project area, the Pole Cutter branch road the central and southern portions, and the Johns Creek branch road the eastern portions. These are all weather, two wheel drive roads.

A number of old logging roads and cat trails provide access to most areas of the property.

2.3 PHYSIOGRAPHY


The property is located along the eastern edge of the Cascade Mountains and elevation varies from 550 to 2,2024 metres above sea level. Topography varies from gentle to steep, with the steepest areas dropping into the creek bottoms. Outcrop is generally sparse. Pettigrew and Whistle creeks flow northerly through the western and central portions of the property, and Johns Creek flows easterly through the eastern portion of the property. The creeks generally flow all year round.

Vegetation varies from open range land to a forest cover of pine, fir, spruce and aspen trees. Many areas of the property were selectively logged 20 or more years ago and clear cutting is being carried out over portions of the property at the present time.

2.4 PROPERTY AND CLAIM STATUS

The property (Figure 2.0) is owned and operated by Grant F. Crooker of Box 404 Keremeos, BC and consists of thirteen four-post and thirty-six two-post mineral claims covering 218 units in the Similkameen and Osoyoos Mining Divisions.

		TABLE 1.0 -	CLAIM DATA		
Claim	Units	Mining Division	Tenure Number	Record Date m/d/y	Expiry Date m/d/y
WP-1A	20	Similkameen	351239	09/22/96	09/22/07
WP-2	20	Similkameen	249175	12/12/86	12/12/07
WP-3	16	Similkameen	249176	12/12/86	12/12/07
WP-5A	10	Similkameen	352362	10/20/96	10/20/07
WP-6A	16	Similkameen	352363	10/22/96	10/22/03
WP-7A	16	Similkameen	357984	07/23/97	07/23/02
WP-8A	9	Similkameen	357985	07/19/97	07/19/02

D	

•

WP-9A	5	Similkameen	357986	07/29/97	07/29/07
W-1	1	Similkameen	356644	06/03/97	06/03/07
W-2	1	Similkameen	356645	06/03/97	06/03/07
W-3	1	Similkameen	356646	06/17/97	06/17/03
W-4	1	Similkameen	356647	06/17/97	06/17/03
W-5A	1	Similkameen	365623	09/11/98	09/11/03
W-6	1	Similkameen	357991	07/19/97	07/19/03
W-7	1	Similkameen	357992	07/23/97	07/23/03
W-8A	1	Similkameen	365624	09/11/98	09/11/03
W-9	1	Similkameen	365625	09/09/98	09/09/02*
W-10	1	Similkameen	365626	09/09/98	09/09/02*
W-11	1	Similkameen	365627	09/09/98	09/09/02*
W-12	1	Similkameen	365628	09/09/98	09/09/02*
W-13	1	Similkameen	365629	09/09/98	09/09/02*
W-14	1	Similkameen	365630	09/09/98	09/09/02*
W-15	1	Similkameen	365631	09/09/98	09/09/02*
W-16	1	Similkameen	365632	09/09/98	09/09/02*
W-17	1	Similkameen	365633	09/11/98	09/11/02*
W-18	1	Osoyoos	365634	09/11/98	09/11/09*
W-19	1	Similkameen	365635	09/11/98	09/11/02*
W-20	1	Osoyoos	366736	10/27/98	10/27/09*
John-1A	8	Similkameen	368905	04/28/99	04/28/02*
John-1	1	Similkameen	366732	10/26/98	10/26/09*
John-2	1	Similkameen	366733	10/28/98	10/26/09*
John-3	1	Similkameen	366734	10/28/98	10/26/09*
John-4	1	Similkameen	366735	10/28/98	10/26/09*
John-5	1	Similkameen	368901	04/28/99	04/28/10*
John-6	1	Similkameen	368902	04/28/99	04/28/10*
John-7	1	Similkameen	369464	06/01/99	06/01/02*
John-8	1	Similkameen	369465	06/01/99	06/0102*
John-9	1	Similkameen	368903	05/03/99	05/03/02*
John-10	1	Similkameen	368904	05/03/99	05/03/02*
John-11	1	Similkameen	369466	06/01/99	06/01/02*
John-12	1	Osoyoos	369467	06/01/99	06/01/02*
Van-1	16	Osoyoos	369098	05/13/99	05/13/02*
Van-2	8	Osoyoos	369099	05/19/99	05/19/04*
V-1	1	Osoycos	369103	05/10/99	05/10/02*
V-2	1	Osoyoos	369104	05/10/99	05/10/02*
V-3	1	Osoyoos	369105	05/10/99	05/10/02*
V-4	1	Osoyoos	371066	08/12/00	08/12/02*
Paul-1	16	Similkameen	369462	05/27/99	05/27/02*
Paul-2	20	Similkameen	369463	06/10/99	06/10/02*

* Upon acceptance of this report

2.5 AREA AND PROPERTY HISTORY

Placer mining was first carried out in the Hedley area in the 1860's and 1870's. The interest in placer mining led to the discovery of gold on Nickel Plate Mountain in the 1890's, with the first claims being staked in 1896. Many showings were found within the Hedley Gold Camp, both on Nickel Plate Mountain and the surrounding area. The two major producers in the district were the Nickel Plate and Hedley Mascot mines. Production from the district up to 1986 was approximately 51 million grams (1.6 million ounces). Almost all of this production occurred in the period from 1905 to 1955.

In the 1970's exploration renewed in the Hedley Gold Camp with most of the activity concentrated on properties on Nickel Plate Mountain. The most important property in the camp is the Nickel Plate Mine (Homestake Mining). The gold mineralization is skarn hosted and ore reserves in 1987 were in the order of 9,900,000 tons grading 0.088 cunces gold per ton. The property commenced production in August 1987 with a milling rate of 2,700 tons per day using open pit mining and conventional cyanide gold recovery methods. The mine ceased production in July of 1996 with a reported production of 11,000,000 tonnes of ore yielding approximately 25,630,000 grams gold (824,000 ounces).

A number of gold properties are also located on the south side of the Similkameen River. Historically, the properties on the south side of the Similkameen River were related to quartz-carbonate vein systems and associated shear zones as opposed to skarn-related mineralization at the Nickel Plate Mine. Recent geological data by Ray (1986/87) have indicated that similar gold environments exist on the south side.

The Hedley project (Figure 4.0) covers 218 units (4000 hectares) of the Hedley basin (Nicola Group rocks) on the south side of the Similkameen River. Grant F. Crooker owns the claims and is the operator of the project. During the period 1986 through 1996, the present owner conducted a number of exploration programs on the WP claims that generally cover an area west of Pettigrew Creek. These work programs consisted of establishing grid lines and carrying out geological, geochemical and geophysical surveys. A silt sampling program on Pettigrew and Whistle creeks highlighted these exploration programs with heavy metal concentrates returning values to 28000 ppm gold.

Four main target areas were developed by these work programs by a combination of geological, geochemical and geophysical parameters. During 1997 Northpoint Resources Ltd tested these targets by a combination of soil geochemical sampling (2858 samples), induced polarization geophysical surveying (60 kilometres), trenching (16 trenches, 900 lineal metres) or diamond drilling (10 holes, 963.44 metres). The most significant results from the Northpoint program were a multi-element (Mo-As-Ag) soil geochemical anomaly and a high chargeabilty induced polarization anomaly on the East Pettigrew zone, anomalous gold and high silver and copper values in drill holes WP001 and WP002 from the Camp zone, and strong sulphide mineralization and hornfels alteration in drill hole WP004 from the Pole Cutter zone.

During 1998 and 1999 much of the area east of Pettigrew Creek came open for staking, including a number of old showings (Gold Hill, Mission, Blitz) on or near the Hedley project claims. These areas were staked (W, John, Van, V and Paul claim groups) and the 1999 work program concentrated on them. Summary descriptions of these showings, as well as the Snowstorm showing follow.

The Snowstorm showing is located less than 100 metres north of the W-17 claim (Figure 4.0). Documented exploration dates to 1925 and consists of a shaft and a number of old hand dug pits, with a limited amount of bulldozer trenching. Outcrop is sparse over the area, and geology, restricted mostly to the old pits consists of fine grained siliceous sediments and coarser tuffaceous units.

Pits 1 and 2 expose a northwesterly striking shear zone 60 centimetres wide and limonitic. The central part of the zone is bleached, silicified and mineralized with arsenopyrite. It is in part coated with a fine yellow oxide. In Pit 2, a northeasterly striking cross fault, offset by approximately one metre by the northwest striking

fault is also partially silicified and has arsenopyrite and the yellow oxide.

In Pit 3, located 30 metres north of Pit 2, a northerly striking shear zone similar in appearance to the shear in Pit 1 and 2 is exposed. This shear may be a faulted segment of the shear exposed in the other pits or a different shear. Pits 4 and 5 expose strong shearing with calcite fragments.

Philex Gold and Energy Corporation collected a number of rock samples from the workings and the results are given in Table 2.0. These results indicate the shear zones contain strongly anomalous gold values over widths of up to 96 centimetres.

		TABLE 2.0 -	SNOWS	TORM SH	IOWING ROCK GEOCHEMISTRY (JONES 1988)
SAMPLE NO.		LOCATION	Au oz/ton	Ag oz/ton	DESCRIPTION
048573	0.75	pit 3	0.110	0.05	shear zone, 15 cm heavy iron oxide, 46 cm iron oxide, weak cerussite, 14 cm yellow gouge
048574	1.52	pit 4	0.004	0.01	shear, massive calcite with scattered limonite fragments
048575	0.15	pit 2	0.354	0.10	slab sulphides on shear surface, coarse pyrite and fine sulphides, grey- green on surface, minor quartz eyes
048576	spec	pit 1 dump	0.136	0.40	oxidized, shattered and bleached, narrow seams red oxide, no sulphides
048578	spec	pit 1 dump	0.496	1.06	cerussite with fine sulphides, may represent 5-7 cm veinlet?
045879	0.38	pit 2	0.124	0.03	bleached shear and iron oxide
045881	0.96	pit 1	0.416	0.49	south wall near base, oxidized shear zone, minor sulphides, cerussite?

The Gold Hill showing is located on the W-18 and W-20 claims (Figure 4.0). The first documented exploration on the Gold Hill showing dates to the middle 1930's and consists of three adits, a shaft, a number of pits and bulldozer trenching. The workings are located within well bedded cherty sediments, argillite and poorly bedded to massive tuffs. Within the sediments are one or more bands or beds of breccia that consist of fragments of wallrock in a calcite-quartz matrix. A fresh, light grey, medium grained hornblende diorite (Hedley intrusive) and at least one fine grained dyke intrude the sediments.

Adits 2 and 3 and the shaft explore a northwesterly striking shear zone in hornblende diorite of Hedley intrusive. Dump material indicates that the shear zone probably contains coarse masses of arsenopyrite in leached vuggy quartz. The shaft at the northwest end of adits 2 and 3 exposes a large mass of crystalline calcite overlain by and in fault contact with hornblende diorite.

To the northwest of the adits and along trend, stripping has exposed a breccia zone consisting of coarse to fine fragments of sediments in a calcite-quartz matrix with locally occurring coarse masses of pyrite. Minor hornblende diorite is also exposed here. Included within and possibly forming the walls of the breccia are beds of fine grained sediments containing conformable bands of calcite 1 to 3 centimetres wide. The old pits indicate there may be more than one horizon of breccia and calcite banding, alternating with tuff.

Adit 1 is 62 metres long and passes beneath adit 3. The first 42 metres of the adit is in fine grained argillaceous sediments and tuffs cut by numerous 330° to 340° striking, steeply dipping limonitic faults. The remaining 20 metres of the adit is in calcite-quartz breccia and conformable bands of calcite, similar to the rocks exposed on surface. The adit ends in these relatively flat lying brecciated and banded rocks. The relationship between the breccia and banding exposed on surface and in adit 1 is not clear, it may represent several beds within the sediments or may be repeated by faulting or folding.

On surface and underground the brecciated rocks in particular and the banded rocks to a lesser extent are well mineralized with coarse masses of pyrite, small blebs of sphalerite, and minor arsenopyrite, chalcopyrite

and galena. Philex Gold and Energy Corporation collected a number of rock samples from the workings and the results are given in Table 3.0. These results indicate moderately anomalous gold values in the 0.05 to 0.12 ounce per ton range, with a maximum of 0.258 ounce per ton.

		TABLE 3.0	- GOLD	HILL SHO	DWING ROCK GEOCHEMISTRY (JONES 1988)
SAMPLE NO.	WIDTH M	LOCATION	Au oz/ton	Ag oz/ton	DESCRIPTION
048570	spec	adit 2 dump	0.126	0.48	massive arsenopyrite with quartz
048571	spec	adit 1 dump	0.050	0.10	quartz-calcite breccia with abundant pyrite
048572	spec	adit 2 dump	0.032	0,16	fine grained, oxidized, diorite fragments, arsenopyrite on fractures
048577	spec	adit 1 dump	0.008	0.01	oxidized fines, calcite, dark dyke fragments
048582	1.22	adit 1 dump	0.116	0.65	oxidized area near intrusive-calcite contact, only intrusive
048583	grab	above adit 3	0.03	0.56	oxidized dump material, massive pyrite, arsenopyrite tinted
048584	spec	west adit 3	0.258	0.23	bedded fine grained sediments, caldte bands with pyrite, coarse sphalerite
048585	spec	70 m NW adit 3	0.052	0.08	bleached and sheared fine grained sediments, oxidized, calcite stringers, pyrite

The Mission showing (Figure 4.0) is located in the south central portion of the Van-2 claim and documented exploration predates 1936. The showing is located within an elongate mass of medium grained granodiorite of the Cahill Creek pluton near the contact with argillite, siltstone and limestone of the Stemwinder? Formation. Mineralization is fracture controlled and contained within three principle shear zones (Barnes, Walker and Winkler) that cut the granodiorite.

The Barnes zone is the most significant zone, striking 030° and dipping 70° southeast. This zone has been traced for 240 metres along strike and is between three and five metres wide. The Walker and Winkler appear to be subsidiary zones extending southwest from the Barnes zone. The Walker zone has been traced for 90 metres, strikes 060° and dips 80° northwest, while the Winkler zone has been traced for 140 metres, strikes 060° and dips 85° southeast.

The granodiorite is altered in the shear zones to quartz, sericite, kaolinite, chlorite, carbonate and epidote. Disseminations, bands and lenses of sulphides, with local amounts of white quartz form between a trace and 40% of the altered granodiorite. Mineralization consists of pyrite, arsenopyrite, sphalerite and minor amounts of tetrahedrite and chalcopyrite. The BC Minister of Mines Annual Report for 1936 (page D12) reports gold values ranging between 1.4 and 2.7 grams gold per tonne, with one sphalerite rich sample assaying 6.8 grams per tonne. An arsenopyrite rich sample collected by GE Ray (BC Ministry of Mines Bulletin 87) assayed 3.3 grams gold and 370 grams silver per tonne, 0.18% lead, 2.85% zinc, 19% arsenic, 205 ppm bismuth and 620 ppm antimony.

Austro-Can Explorations Ltd and Agio Resources Ltd conducted VLF-EM, magnetic and induced polarization geophysical surveying, a limited amount of soil geochemical sampling (arsenic, silver and gold) and geological mapping near the showing. Diamond drilling was carried out on the property in 1980 (four drill holes) and 1987 (three drill holes). The four 1980 drill holes tested the Mission showing and intersected bleached and oxidized granodiorite with varying amounts of quartz stringers, pyrite, arsenopyrite and sphalerite. Seventeen sections of core were sent for analysis, and the results given in Table 4.0. The highest gold assay was 0.045 ounce per ton over 90 centimetres, with 0.89 ounce silver per ton and 0.05% zinc (Phendler 1980, AR # 9222).

Two of the 1987 drill holes tested the Mission showing and traced the zone to a depth of 25 metres below surface. The zone is reported to be strong at depth with silicification, propylitic alteration and thin stringers and disseminations of pyrite, arsenopyrite and sphalerite. The third drill hole tested an induced polarization

chargeability anomaly along the main road a few hundred metres west of the Mission showing. This drill hole intersected weak pyroxene skarned limestone and argillite with up to 5% pyrite veinlets from 3.04 to 13.71 metres and argillic altered and iron stained tuff with quartz-calcite veinlets and pods with 1-3% pyrite and pyrrhotite from 60.97 to 75.61 metres. No assaying was carried out on these three drill holes.

• • • •	TABLE 4.0 - MISSION S	HOWING 1980 DRILL F	ESULTS (PHEND	LER 1980)	
DRILL HOLE	INTERVAL METRES	WIDTH METRES	Au oz/ton	Ag oz/ton	Zn %
80-1	12.20-12.96	0.76	0.005	0.05	0.62
80-1	18.60-19.21	0.61	0.003	0.09	0.84
80-1	44.21-44.36	0.15	0.009	2.09	2.36
80-2	16.46-16.77	0.31	0.017	0.62	0.19
80-2	52.74-53.05	0.31	0.005	0.32	0.28
80-2	65.40-66.01	0.61	0.009	1,19	1.75
80-3	10.06-11.59	1.53	0.032	0.68	1.05
80-3	11.59-13.11	1.52	0.027	0.25	0.09
80-3	19.36-19.97	0.61	0.015	0.56	7.10
80-3	20.89-21.04	0.15	0.046	1.14	4.90
80-3	45.58-45.73	0.15	0.006	0.13	3.25
80-3	64.24-64.54	0.30	0.005	0.30	0.06
80-3	104.88-105.18	0.30	0.001	0.02	0.02
80-4	5.49-6.40	0.91	0.045	0.89	0.05
80-4	14.94-15.24	0.30	0.008	0.17	4.40
80-4	114.63-114.94	0.31	0.003	0.04	0.03
80-4	127.90-128.66	0.76	0.001	0.02	0.01

The Blitz showing (Figure 4.0) is located on the John 1-6 claims and was initially explored in the 1930's, although no documented information has been found on this work. Approximately 25 hand trenches, a winze and a shaft were excavated on the property.

Thinly bedded black argillite with minor interbedded limestone, tuff and chert underlie the property. The argillites have been locally silicified and veined and flooded with quartz. Pyrite, pyrrhotite, arsenopyrite and chalcopyrite occur in zones of silicification, veining and flooding.

Fox Resources Ltd carried out a number of exploration programs between 1983 and 1986. These programs consisted of establishing grid lines, VLF-EM and magnetic geophysical surveying, soil geochemical sampling (gold, silver, arsenic, copper and zinc) and geological mapping over an area 2500 metres long by 2000 metres wide. The magnetic survey delineated a prominent north trending magnetic high over the area of old showings, while the VLF-EM survey indicated a number of conductors. The soil geochemical sampling indicated a broad north trending zinc anomaly over the area of old showings, with sporadic silver, arsenic and gold values. Two grab samples of quartz vein with pyrite and arsenopyrite assayed 3.53 and 2.69 grams per tonne gold (Freeze 1986, AR #15,441).

3.0 EXPLORATION PROCEDURE

The 1999 exploration program consisted of establishing grid lines, magnetic geophysical surveying, rock, soil and stream sediment geochemical sampling, geological mapping and prospecting. A 1:20,000 base map (Figure 4.0) was also prepared from digital data from the provincial government.

3.1 GRID PARAMETERS

-baseline direction north-south (Blitz) -survey lines perpendicular to baseline -survey line separation 100 metres -survey station spacing 20 metres -stations marked with flagging or pickets and metal tags with grid coordinates -survey total - 1.9 kilometres -declination 21 degrees

3.2 GEOCHEMICAL PARAMETERS

-soil samples collected from old trenches (Blitz) -station spacing 5 metres -survey total -43 soil samples -55 stream sediment samples

-106 rock samples

-soil, rock, stream sediment samples analysed by 32 element ICP and for gold (FA+AA finish) -soil sample depth 20 to 50 centimetres

-soils samples collected from B horizon, some possible C horizon

-stream sediment samples collected from active portion of stream

-stream sediment samples sieved to -20 mesh in the field

All samples were sent to Chemex Labs Ltd, 212 Brooksbank Avenue North Vancouver BC, V7J 2C1 for analysis. Laboratory technique for soil and stream sediment samples consisted of preparing samples by drying at 95° C and sieving to minus 80 mesh. Rock samples were crushed and split, with one split ring ground to minus 150 mesh. Thirty-two element ICP and gold (fire assay, atomic adsorption finish) analyses were then carried out on all samples.

The soil geochemical data is illustrated on Figure 8.0, stream sediment sample locations on Figure 4.0 and rock sample locations on Figures 4.0, 5.0, 6.0 and 7.0. Rock sample descriptions are given in Appendix IV and certificates of analysis for all samples are listed in Appendix I.

3.3 GEOPHYSICAL SURVEY PARAMETERS

-survey line separation 100 metres -survey spacing 25 metres -survey total - 20.0 kilometres -measured total magnetic field in nanoteslas -instrument - Scintrex MP-2 magnetometer -instrument accuracy ± 1 nanotesla -operator faced north for all readings

Readings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method. The total field magnetic contours are illustrated on Figure 9.0 and the data listed in Appendix II.

4.0 GEOLOGY AND MINERALIZATION

4.1 REGIONAL GEOLOGY

The Hedley Gold Camp is located within the Intermontane Belt of the Canadian Cordillera. The oldest rocks in the area belong to the Apex Mountain Group and occur in the southeastern part of the camp. The Apex Mountain Group consists of a deformed package of chert, argillite, greenstone, tuffaceous siltstone and minor limestone. The complex and supercrustal rocks further west are separated by either intrusive rocks or major faults. The area between Winters and Whistle creeks is largely underlain by sedimentary and volcaniclastic rocks of the Upper Triassic Nicola Group and the Lower Cretaceous Spences Bridge Group.

Mapping by Ray and Dawson divides the Nicola Group into three distinct stratigraphic packages. The oldest, the Peachland Creek Formation, comprises massive, mafic quartz-bearing andesitic to basaltic ash tuff and minor chert-pebble conglomerate. This previously unrecognized basal unit is poorly exposed in the Hedley district, but has been identified in several localities. The Peachland Creek Formation is stratigraphically overlain by a 100 to 700 metre thick sedimentary sequence in which a series of east-to-west facies changes are recognized. This sequence progressively thickens westward and the facies changes probably reflect deposition across the tectonically controlled margin of a northwesterly deepening Late Triassic marine basin.

The eastern most and most proximal facies, called the French Mine Formation has a maximum thickness of 150 metres and comprises massive to bedded limestone interlayered with thinner units of calcareous siltstone, chert-pebble conglomerate, tuff, limestone-boulder conglomerate and limestone breccia. This formation hosts the auriferous skarn mineralization at the French and Good Hope mines.

Further west, rocks stratigraphically equivalent to the French Mine Formation are represented by the Hedley Formation that hosts the gold-bearing skarn at the Nickel Plate mine. The Hedley Formation is 400 to 500 metres thick and characterized by thinly bedded, turbiditic calcareous siltstone and units of pure to gritty, massive to bedded limestone that reach 75 metres in thickness and several kilometres in strike length. The formation includes lesser amounts of argillite, conglomerate and bedded tuff; locally the lowermost portion includes minor chert-pebble conglomerate.

The western most, more distal facies is represented by the Stemwinder Formation that is at least 700 metres thick and characterized by a sequence of black, organic-rich, thinly bedded calcareous argitlite and turbiditic siltstone, minor amounts of siliceous fine-grained tuff and impure limestone beds. The Stemwinder Formation hosts the Maple Leaf and Pine Knot gold occurrences (vein).

The Chuchuwaya Formation forms a steeply dipping, wedge shaped unit between the Stemwinder and Hedley formations. To the west and east it is bounded respectively by the Chuchuwaya and Bradshaw faults, while to the north it is intruded by the Lookout Ridge Pluton. The formation is a minimum of 1500 metres thick and consists of predominately thinly bedded calcareous siltstone that closely resembles the siltstones of the Hedley Formation. However unlike the Hedley Formation, it does not contain thick or extensive beds of limestone, with the limestone beds seldom exceeding five metres in thickness. The formation also contains minor argillite and some large units of siliceous and tuffaceous argillite. The Chuchuwaya Formation hosts the Peggy gold occurrence (skarn).

The sedimentary rocks of the French Mine, Hedley, Stemwinder and Chuchuwaya formations pass stratigraphically upward into the Whistle Formation that is probably Late Triassic in age. The formation is 700 to 1200 metres thick and distinguishable from the underlying rocks by a general lack of limestone and a predominance of andesitic volcaniclastic material. The Whistle Formation is host to the Canty (skarn and stockwork) and Gold Hill (vein) gold occurrences.

The base of the Whistle Formation is marked by the Copperfield breccia, a limestone-boulder conglomerate that forms the most distinctive and important stratigraphic marker horizon in the district. The breccia is well developed west of Hedley where it forms a northerly trending, steeply dipping unit that is traceable for over 15 kilometres along strike. The same conglomerate outcrops in small areas within up faulted slices along Pettigrew Creek to the south and as outliers near Nickel Plate and Lookout Mountain to the east.

The Nicola Group rocks in the Hedley area are overlain by calcalkaline waterlain tuffs, and derived epiclastic rocks that were formerly correlated with the Cretaceous Spences Bridge Group. They are now thought to represent a newly recognized mid-Jurassic supracrustal succession, the Skwel Peken Formation. It is uncertain at this time whether their contact with the Nicola Group is a thrust or unconformity. The Skwel Peken Formation is exposed as two erosional outliers in the Hedley area. The largest and southernmost outlier is centred on the Skwel Peken Ridge and the other lies northeast of the Nickel Plate Mine.

Along the western margin of the Hedley Basin, the Whistle Formation is overlain (unconformably?) by volcaniclastic rocks that may belong to the Early Cretaceous Spences Bridge Group. These rocks are not recognized as being gold bearing in the district.

Three suites of plutonic rocks are recognized in the area. The oldest, the Hedley intrusions is probably Early Jurassic in age and is economically important. It forms major stocks up to 1.5 kilometres in diameter and swarms of thin sills and dykes up to 200 metres in thickness and over 1 kilometre in length. The sills and dykes are coarse-grained and massive diorites and quartz diorites with minor gabbro, while the stocks range from gabbro through granodiorite to quartz monzonite. When unaltered they are dark coloured, commonly contain minor disseminations of pyrite and pyrrhotite and are often rusty weathered. In contrast, the skarn-altered diorite intrusions are usually pale coloured and bleached.

The Hedley intrusive suite intrudes the Upper Triassic rocks over a broad area. Varying degrees of sulphide bearing calcic skarn alteration are developed within and adjacent to many of these intrusions, particularly the dykes and sills. This plutonic suite is genetically related to the skarn-hosted gold mineralization in the district including that at the Nickel Plate, Hedley Mascot, French and Good Hope mines, and gold occurrences at Banbury, Gold Hill, Peggy and Canty. The Hedley intrusive suite consists of six stocks known as Toronto, Stemwinder, Aberdeen, Banbury, Larcan and Pettigrew.

The second plutonic suite is the Early Jurassic? Similkameen intrusions that comprise coarse-grained, biotite hornblende granodiorite to quartz monzodiorite. It generally forms large bodies like the Bromley batholith and Cahill Creek pluton that separate the Nicola rocks from the highly deformed Apex Mountain Group.

The third and youngest intrusive suite includes two rock types that are possibly coeval and related to the formation of the dacitic volcaniclastic rocks within the Spences Bridge Group. One of these, the Verde Creek stock comprises a fine to medium grained, massive leucocratic microgranite that contains minor biotite. The other type is represented by fine-grained, leucocratic, felsic quartz porphyry.

4.2 HEDLEY DISTRICT GOLD DEPOSITS

The gold occurrences and deposits within the Hedley area are spatially associated with dioritic bodies of the Hedley intrusions. The gold mineralization can be broadly divided into skarn and vein-related types.

The skam-related mineralization is the most widespread and economically important, and is characterized by the gold being intimately associated with variable quantities of sulphide bearing gamet-pyroxenecarbonate skarn alteration. The gold tends to be associated with sulphides, particularly arsenopyrite, pyrrhotite and chalcopyrite, and in lesser amounts with pyrite, gersdorffite (NiAsS), sphalerite, magnetite and cobalt minerals. Trace minerals include galena, native bismuth, electrum, tetrahedrite and molybdenite. This type of mineralization is found at the Nickel Plate, French, Good Hope, Peggy and Canty deposits. Geochemical studies by Ray (1987) based on analyses of over 300 samples from various ore zones in the Nickel Plate deposits, showed the following correlation coefficients:

High		Mediur	n	Low	
Au:Bi	0.84	Au:Co	0.58	Au:Cu	0.17
Ag:Cu	0.84	Au:As	0:46		
Bi:Co	0.62	Au:Ag	0.46		

Ray states that the strong positive correlation between gold and bismuth reflects the close association of native gold with hedleytite, while the moderate positive correlation between gold, cobalt and arsenic confirms observed association of gold, arsenopyrite and gersdorffite. The high positive correlation between silver and copper may indicate that some silver occurs as a lattice constituent in the chalcopyrite and/or in association with tetrahedrite (Cu-Sb sulphide often contains Zn, Pd, Hg, Co, Ni and Ag replacing Cu). The gold and silver values are relatively independent of each other despite the presence of electrum, and there is generally a low correlation between gold and copper.

The skarn-related mineralization is generally stratabound and follows calcareous tuff, thinly-bedded limestone and limey argillite within the upper sections of the French Mine and Hedley formations and lower sections of the Stemwinder and Whistle formations. Swarms of diorite sills and dykes of the Hedley intrusions have intruded the favourable beds and altered them by contact metamorphism to hornfels. Both the intrusions and sediments were subsequently overprinted with the skarn alteration.

The vein-related mineralization is characterized by gold and sulphides hosted in higher level, fracture-filled quartz-carbonate vein and stockwork systems. This type of mineralization occurs at the Maple Leaf, Pine Knot and Gold Hill gold occurrences.

The Maple Leaf and Pine Knot gold occurrences are located 1000 metres northeast of the W-20 claim. The geology at the Maple Leaf and Pine Knot occurrences consists of northerly striking, steeply dipping sedimentary and tuffaceous rocks that are intruded by two elongate, easterly trending diorite stocks belonging to the Hedley intrusions. They extend over a strike length of 1.3 kilometres and exceed 300 metres in width. The stocks intrude the Upper Triassic succession, crosscutting calcareous siltstone, argillite, and thin limestone of the Stemwinder Formation in the east, a 200 metre thick section of the Copperfield breccia in the centre, and andesitic tuff of the Whistle Formation in the west. Both stocks comprise two rock types, a leucocratic quartz diorite suite and a highly mafic diorite-gabbro suite. The stocks have irregular intrusive contacts that interfinger with the bedded country rocks, and are surrounded by hornfels alteration. Both the stocks and the hornfels alteration are cut by several irregular, northerly trending fracture zones that are filled by steep and shallow-dipping quartz±carbonate vein systems (Maple Leaf and Pine Knot veins). Individual veins are up to 3 metres wide, exceed 100 metres in length and contain mainly glassy to white to pale pinkcoloured, strained quartz with lesser amounts of coarse calcite, sporadic visible gold, arsenopyrite, pyrrhotite, pyrite, sphalerite, and chalcopyrite. Locally they are sheared, yuggy and contain angular brecciated clasts of chloritized, silicified country rock. The leucocratic diorite locally contains pockets of intense skarn alteration. The quartz veins crosscut and postdate the skarn alteration.

The Gold Hill gold occurrence is located on the W-20 claim. The Gold Hill mineralization is hosted by a carbonate+quartz vein that cuts and sitic ash and lapilli tuff, and some tuffaceous sediments in the lowest stratigraphic portion of the Whistle Formation. The tuffaceous rocks are intruded by dykes and sills of both fine and coarse grained hornblende porphyritic diorite of the Hedley intrusive suite that locally carry disseminated pyrite and arsenopyrite. Some tuff beds adjacent to one porphyritic diorite body are hornfelsed and sporadically overprinted with early calcite-diopside-pyrite-chalcopyrite skarn alteration. On surface, the Gold Hill vein is comprised of coarse, crystalline, white to pale buff carbonate together with minor quartz and some disseminated pyrite. At depth, the vein contains abundant vuggy quartz vein material similar in appearance to the Maple Leaf and Pine Knot veins. This quartz-rich material contains massive blebs of

TABLE 5.0 HEDLEY DISTRICT GEOLOGICAL HISTORY (After Ray et al)

1.0 BASIN GEOLOGICAL DEVELOPMENT

- 1.1 Deposition of Triassic mafic extrusive rocks of the Peachland Creek Formation.
- 1.2 Late Triassic deposition of the Hedley, French Mine and Stemwinder formations (sedimentary rocks with calcareous units).
- 1.3 Sudden collapse of the basin resulting in the widespread deposition of the Whistle Formation (volcanic rocks with tuffaceous units) and the deposition of the Copperfield limestone conglomerate and breccia along the sedimentary basin margins.

2.0 GOLD MINERALIZING EVENTS

- 2.1 Following lithification of the Nicola Group rocks, two distinct phases of folding took place that are related to mineralization.
- 2.2 Phase one resulted in a major, north-northeasterly striking, easterly overturned asymmetric anticline which is the dominant structure in the Hedley district. The largest of these are the Cahill Creek fracture zone and Bradshaw fault.
- 2.3 Phase two is economically important as it took place during the emplacement of the Hedley intrusions and partly controlled the late-magmatic auriferous skarn mineralization. It produced the small-scale northwesterly striking, gently plunging fold structures that are an ore control at the Nickel Plate mine. They also controlled the emplacement of the Hedley intrusive dykes and the Banbury, Stemwinder, Toronto and Pettigrew stocks.

3.0 POST MINERALIZING EVENTS

- 3.1 Emplacement of the Hedley intrusions was shortly followed by intrusion of the Cahill Creek pluton.
- 3.2 Deposition of the Early Cretaceous Spences Bridge Group and related quartz porphyries followed a period of uplift and erosion.
- 3.3 Post-Early Cretaceous phase of regional thrust faulting.
- 3.4 Re-activation of the Bradshaw fault and Cahill Creek fracture zone, as well as some faulting along Whistle and Pettigrew creeks occurred in more recent geological time.

15

coarse pyrite with traces of arsenopyrite, chalcopyrite, black sphalerite and galena. The sequence of eventsat Gold Hill are interpreted as follows: (1) intrusion of the diorite body and biotite hornfelsing of the country rock, (2) weak skarn alteration with some sulphides, (3) fault brecciation, (4) minor ankerite injection, and (5) injection of the carbonate \pm quartz \pm sulphide vein with hydrostatic brecciation.

Table 5.0 after Ray et al summarizes the geological history of the Hedley district.

4.3 CLAIM GEOLOGY

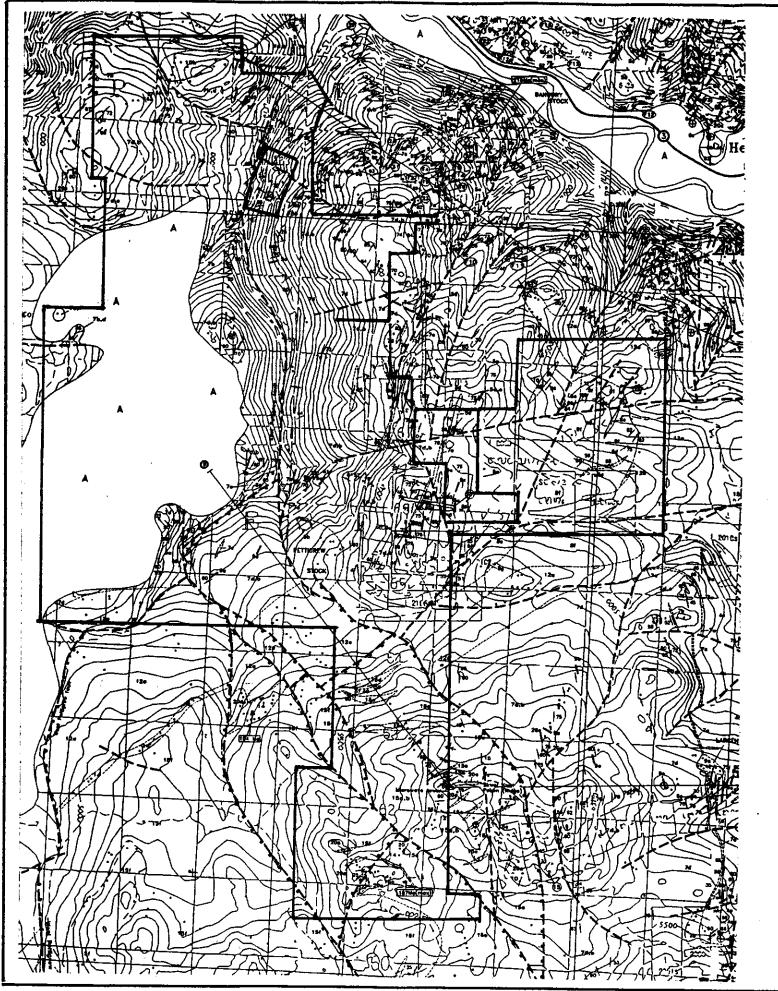
The Hedley District was mapped by Ray and Dawson of the Geological Survey Branch during the 1980's and the geology displayed in Bulletin 87, The Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia (January 1994). Figure 3.0 displays this geology for the Hedley project. The Hedley project is underlain by a variety of rock types including volcanic and sedimentary rocks of the Stemwinder (Unit 5), Whistle (Unit 7) and Skwel Peken (Unit 15) formations, as well as some rocks of uncertain age (Unit 8). Intrusive rocks of the Hedley intrusions (Unit 9) and Cahill Creek pluton (Unit 12) have intruded the sedimentary and volcanic rocks, as have andesite dykes (Unit 20c).

Geological mapping was carried out over the main grid (Figure 6.0, 1:5,000 scale) and detailed grid (Figure 7.0, 1:2,500 scale) on the East Pettigrew zone, as well as along the Johns Creek road north of the East Pettigrew zone (Figure 4.0, scale 1:20,000). A limited amount of geological mapping was also carried out in the old trenches at the Blitz showing (Figure 5.0, scale 1:2,500).

4.3.1 MAIN GRID EAST PETTIGREW ZONE

The main grid (Figure 6.0) is characterized by a general lack of outcrop over most of the area, and where outcrop exists it is often small and poorly exposed. Most of the grid is underlain by siltstone (unit 7b) and andesitic and basaltic ash tuff (Unit 7d) of the Whistle Formation. These units are often calcareous.

The only exception to this is from line 000N to 300N between 1900E and 2300E where argillite with narrow interbeds of limestone of the Stemwinder Formation (Unit 5a) are poorly exposed. One small outcrop of Copperfield breccia (Unit 7a) of the Whistle Formation was also mapped at 025N and 1950E along the western contact of the Stemwinder Formation, indicating one is going up section as one proceeds down hill into Pettigrew Creek. The structures controlling the placement of the Stemwinder Formation within the Whistle Formation have not been recognized at this time.


Bedding is generally slightly east of north in the Whistle Formation, with steep dips to the east and west. In the Stemwinder Formation the bedding is similar, striking northerly with moderate to steep dips to the west.

Narrow, 5 to 10 metre wide hornblende porphyry dykes of the Hedley intrusive suite (Unit 9a) were mapped at several locations on the grid. One east-west striking dyke was mapped at 810N and 2525E, and two northerly striking dykes were mapped between lines 000N and 100N at 1950E. An airborne magnetic survey delineated a small magnetic high to the south of line 000N that may be indicating a small stock of Hedley intrusive. The two northerly striking dykes may be indicating the periphery of the stock.

A greenish, 2 to 5 metre wide, northerly striking late mafic dyke (Unit 20c) was mapped at 020N and 1885E near the Hedley dykes.

4.3.2 DETAILED GRID EAST PETTIGREW ZONE

Outcrop is also sparse over the detailed grid (Figure 7.0), with the best exposures in the narrow gullies. The area is underlain by siltstone (Unit 7b) and andesitic and basaltic ash tuff (Unit 7d) of the Whistle Formation.

 Areas of extensive till cover or fluviol deposits Assocrate Accession of extensive till cover or fluviol deposits Assocrate Accession of the accessistic of the accession o	 Areas of extensive till cover or fluviol depends AssolfTED ADES MINON MITRUSIONS; 200, rhyodocits-docks with garnet phenocrysta (represents alther intrusions or valcanic flows in Siteel Phenof Formation); 200, aphile in garnets is quorit: monzonite (commonly resided to Cabil Creat and Lockeut Ridge plustene; may be related to Quort Prophyry Unit 143; 200, aparts with the andreaks; 200, provide to quort prophyry; 200, divita to gabbro; 200, quarts with MANDIN FORMATION MANDIN FORMATION 18, andesitic, trachyondesitic and phonohitic valcanic flows STRINGBROK FORMATION 18, andesitic, trachyondesitic and phonohitic valcanic flows STRINGBROK FORMATION 17, andesitic, trachyondesitic flows and minor tuffs; 17, binar and minor valoritic breaction; 170, wilded tuff and ignimbrite VERDE CREEK STOCK 13 17, andesitic to rhyodocitic flows and minor valoritic wild and ignimbrite VERDE CREEK STOCK 14 for an minor valoritic breactio; 170, wilded tuff and ignimbrite VERDE CREEK STOCK 15 gaants and micro valoritic breactio; 170, wilded tuff and ignimbrite value of minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; tuff and minor valoritic breactio; 170, wilded tuff and finame; and public tuff; 130, lopitii 19, quoritic way fastic intrusion (may be related to units 12, 13 and 22 tuoortic monzadioritic and granodiaritis; 120, diarite to generation the tuff and minor valoritic breactio; 130, marginal phase granodiaritis; 130, marginal phase granodiaritis; 130, marginal phase granodiaritis; 130, marginal phase granodiaritis; 130, diarite to gashbro; 200, functio;	Areas of extensive till cover or flaviel depeets Assocrate and an interview of the series of the series Areas of extensive till cover or flaviel depeets Assocrate and the series of		LEGEND
ASSOURCE ALES ■MOR NTRUSIONS; ■200. rhyodocle-docke with gornal phenocrysta (represents ather intrusions or voiconic flows in Stevel Paken Formation); 206, applie (contronery related to bits Coll with 14, on Occ check Michaeles and Lockout Ridge phetoms); 200, genoalcinite; 201, federaper (± querts hornblends) porphyty; 200, elorits to gabbro; 200, quert2 wain NUD EOCENE MARRON FORMATION: ■ ■10. notestic, trachyondestic and phonolitic volcanic flows SPRIEGEROX FORMATION ■21. 12, andestic, trachyondestic and phonolitic volcanic flows SPRIEGEROX FORMATION ■21. 13, andestic, trachyondestic and phonolitic volcanic flows SPRIEGEROX FORMATION ■21. 12, andestic, to rhyodocitic flows and minor tuffs; 170, lobat and minor volcanic breach; 170, weided tuff and ignimbrite VERDE CREEK STOCK ■31. 15, genitic and minor volcanic breach; 170, weided tuff and ignimbrite VERDE CREEK STOCK SKIEL FIELD FORMATION ■32. 15, quartz-testspor crystol set and lephis tuff; 15b, lophii tuff and minor tuff breach; 15c, marcano colcured tuff with florence; 15d, tuffscaous witkione, dust tuff, minor argilite and resider or pretol andestic set and teshii tuff (12-15a=lower member; 15f=upper memi OUART2 POPHYTY ■33. 15a, pink, equipromator to fuldear parphytik; quertz monzonice to granodiorite; 12b, diarite to quertz diarite and teshii tuff thereic; 12b, diarite to quertz diarite agranodiorite to docket to marcadiorite; 12b, diarite to quertz diarite agranodiorite to docket and granodiorite; 12b, diarite to quertz diarite agranodiorite to docket and granodiorite; 12b, diarite to quera	ASSOUTTED ALDES MANOR MITRICSONS: 20. crtycodocta-docta with garnet phenocrysta (represents wher intusions or velocanic flows in Skewel Pakan Formation): 200, applies (commony related to the could Child Science Labout Ridge photons: may be change of the second could be an experiment of the second labout Ridge photons: The Lobout Ridge photons: 200, generationic; 200, quartz vein MID EDCENH MARRON FORMATION: 3. 1, andestite, trachyondestite and phonolitic velocanic flows SERVEGESROK FORMATION: 3. 1, andestite, trachyondestite and phonolitic velocanic flows SERVESSEROK FORMATION 3. 1, andestite, trachyondestite and phonolitic velocanic flows SERVESS BRIDGE GROUP SERVER COMPATION 3. 1, andestite, trachyondestite and phonolitic velocanic flows SERVESS BRIDGE GROUP SERVER COMPATION 3. 1, andestite, to chyodochic flows and minor tuffs: 1. 70, andestite to rhyodochic flows and minor tuffs: 1. 70, andestite to rhyodochic flows and minor tuffs: 1. 70, andestite to rhyodochic flows and minor tuffs: 1. 70, andestite, to rhyodochic flows and minor tuffs: 1. 70, andestite to rhyodochic flows SERVES BRIDGE GROUP SERVES SERUES SERUE SOMATION 3. 11, and and minor velocanic breactio; 17c, welded tuff and ignimbrite VEREE CATEX I. 50, andestite to rhyodochic flows SERVES BRIDGE GROUP 3. SKEEL FLEEN FORMATION 3. 15c, quortz-iddapor crystal asti and lephili tuff; 13b, lopkili tuff and minor tuff breacting; 15c, margon coloured tuff with flowmer; 1. 5d, tuffescous wildform, dust tuff, minor arplifile and; periper memi cuarts orgenmator, 13d, andfaller soft and lephili tuff; 13b, lopkili tuff and minor gobbon CAMEL CREEK FULTON 3. 13c, quipramator to flokagor perphyritic, quortz HOMEN STOCK 3. (mathematics; 13b, marginal phase granodorite to mark gabbro, duorts gabbro, and diorite; 11b, harmblands porphyritic granodiarite; 12b, diorite to quartz diorke SERVES MOUNT MORENAM STOCK 3. (mathematics; 8b, merciae and/or marke, 8L, polymit, diorite and gabbro; 8b, and tuff and spating formabing promotion; 3. (mathematics; 8b, merciae and	ABBORTED AGES AMBORTED AGES 200. rhypodocita-docite with gornel phanocrysta (represents ather intrustors or volcanic time in Sicel hand Econand D.) 206, spike the related to Court Porophyry Unit 141, 200, basettic 200, gravite to quarts monsorite (commonly related to Cabil Creat and Lockout Rudpe plutone). 200, sicel and sectors 200, spike relation to related to Court Porophyry Unit 141, 200, basettic 200, gravite to quarts monsorite (commonly related to Cabil Creat and Lockout Rudpe plutone). 200, sicel and phonositic volcanic flows MID ECCINE MARRON FORMATION: Image: Signature and the sector of the sectors STRUCERCON FORMATION Image: Signature and minor polarisets, sondetone, toke, fluvesi and locustrice departs SPENICER COLLS SPENICE CADLE STRUCE Setting Cability (Sector) Image: Signature and minor polarisets form and minor fuffic Image and minor polarise for and minor fuffic Image and minor polarise for and minor fuffic Image and minor transformer volcanic breacies 176, weided tuilf and ignimibrity VEBE CREEX STOCK Image: Signature and minor crystal and and signature and spike and and minor tuilf breacies Informer and spike fuffic former; If Sc. quarts relates or any columer of spike and pathot and and minor tuil for active and angle luff; If St. lapiki fuffic and minor tuil for active and angle luff; If the sport and and spike and lugiki luff; If the spike and and algobility (If ScIsanese montanic; If Sc. quarts and if and and algobility (If ScIsanese montanic; If Sc. quarts and and algobility (If ScIsanese and algobility if Sc. function and gravity algobility and and algobility if Sc. function and gravity algobility and and algobility if Sc. function and gravity algobility anot and algobility algobility and algobility and algobility and a	.	QUATERNARY
 200, rhyposocia-docia with genet phanecrysts (represents sither (commony related to the Cohil Creak and Lockaut Ridge puttons): 200, upton is an estated to Quotz Porphyry Unit 14): 200, baset to andesite: 200, granis to quoriz monzonia (commonly related to Cahil Creak and Lockaut Ridge puttons): 200, granadionics; 201, estates (commonly related to Cahil Creak and Lockaut Ridge puttons): 200, granadionics; 201, estates (commonly related to Cahil Creak and Lockaut Ridge puttons): 200, granadionics; 201, estates (commonly related to Cahil Creak and Lockaut Ridge puttons): 200, granadionics; 201, estates (common common com	 200. rhyodocita-docita with gornet planacysta (spreasets ether formition) 206. spiles (commony related to the Cahil Creek and Lockout Ridge platens). Tool to export momential (commonly related to Cahil Creek and Lockout Ridge platens). Tool to export momential (commonly related to Cahil Creek and Lockout Ridge platens). Tool and the material: 200. specific to export a momential (commonly related to Cahil Creek and Lockout Ridge platens). Tool and the material: 200. specific common (common) and the material commonly related to Cahil Creek and Lockout Ridge platens). Tool and the material common (common) and the spile (common) and the material common (common) and the spile (common) and the material common (common) (commo	 200. reproductive dockle with genet phanecytes (represents either formoning): 200. spike (commonly resided to the Gabil Cresk and Lockout Ridge phatems: mediate to Goorte Ponyhyry Unit 141; 300. besett to endesite its of control Ponyhyry Unit 141; 300. besett to endesite its operations: 201, etaisager (± guertz hornbiende) ponyhyr; 202, etaintis to gubero; 201, quertz vein MID ECCNNS MARCON FORMATION: 11 8, endesitic, trachyondesitic and phonoitic volcanic flows SPRNGBROOK FORMATION: 12 18, poorty conselidated complements, sondetone, toine, fluwei and leastiric etagesits 201, 172, andesitic to rhyodacitic flows and minor tuffs; 170, balant and minor volcanic breacts; 176, welded tuff and ignimetrik VERDEC RECEX STOCK 13 15, quartz-Indeport cytotal asth and hapiti Luff; 150, loopili tuff and ignimetrik velocate for tuff and minor volcanic breacts; 176, welded tuff and ignimetrik velocate tuff and ignimetrik velocate tuff and minor volcanic breacts; 176, welded tuff and ignimetrik velocate tuff and minor volcanic breacts; 176, welded tuff and ignimetrik velocate tuff and minor volcanic breacts; 176, welded tuff and ignimetrik velocate tuff and minor volcanic breacts; 176, welded tuff and ignimetrik velocate tuff and minor volcanic breacts; 176, morpoon coloures tuff and minor volcanic breacts; 156, morpoon coloures tuff and minor volcanic breacts; 156, morpoon coloures tuff and minor tuff and minor volcanic breacts; 156, morpoon coloures tuff and minor tuff and minor volcanic breacts; 156, morpoon coloures tuff and minor volcanic buff and morpholitic volcanic and a physic luff; 150, loopili tuff and minor tuff and minor volcanic breacts; 156, morpoon coloures tuff and minor volcanic breacts; 156, morpholitic and and and and and and and and and and	1	
 Icommonity related to the Cohil Creek and Lockout Ridge puttons; 200, granulotics; 200, g	 Icommonity resided to the Cahil Creek and Locket Ridge patters; may be related to Quartz Prophyty Unit 14); 202, baset to cahil Creek and Locket Ridge patterns; 202, granulating; 202, granulating; 202, granulating; 202, granulating; 202, granulating; 202, granulating; 201, granulating;	 Icommonity resided to the Cahil Cresk and Lockkoul Ridge putters; Tool provide to quority moranite (commonly related to Cahil Creek and Lockkoul Ridge puttern); ZOG, grandlantik; ZOG, facetal to cahil Creek and Lockkoul Ridge puttern); ZOG, divide to gabbro; ZOR, quarit vein MARON FORMATION: IS, endestik, trachyondestik and phonolikic volcanic Nors STRUGEROOK FORMATION: IS, endestik, trachyondestik and phonolikic volcanic Nors STRUGEROOK FORMATION: IS, poorty conselicited complements, sondstane, take, flowing and locations departments; IS, poorty conselicited complements, sondstane, take, flowing and locations departments; IS, poorty conselicited complements, sondstane, take, flowing and locations volcanic Direction; 176, welded tuff and ignimetrik VEREC CHEX STOCK IS, guartz-tektapo crystal ash and tapili tuff; 156, lapili tuff and miner vulcanic breactio; 176, welded tuff and ignimetrik VEREC CHEX STOCK IS, quartz-tektapo crystal ash and lapili tuff; 156, lapili tuff and miner tuff breactin; 156, marcails and relations; and table ash table and public tuff fractions coloured tuff with fammer; 154, tuffaceous silktone, dust tuff, minor anglits and public and andesils ash and lapili tuff; 150, lapili tuff; 150, public and granodiarks; 150, marcained phase granodiarks; 150, duarts to diarks and granodiarks; 150, marcained phase granodiarks; 150, marcained phase granodiarks; 150, duarts to diarks and granodiarks; 150, marcained phase granodiarks; 150, duarts to granotiarks to granotiarks to granotiarks to granotiarks; 150, marcained phase granodiarks; 150, duarts to granotiarks; 150, duarts to granotiarks; 150, duarts to granotiarks; 150, duarts to granotiarks; 150, duarts to granotiche and granotiarks; 150, duarts to granotiary; 150, duarts dia		MINOR INTRUSIONS;
 MARRON FORMATION: 19. endesilic, trachyondesilic and phonoikic volcanic hows SPENCERROX FORMATION 18. poorly conselidated conglamerols, sondetone, tokus, fluvel and locustrine sepasits EARLY CRETACIOUS SPENCES BRIDGE GROUP 17. andesilic to rhyodachic flows and minor tuffs; 17. blohar and minor volcanic braccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 18. Johar and minor volcanic braccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 19. JOHASSEC SWELP FEKEN FORMATION 13. Iso, quartz-feidapor crystal set and lepiki tuff; 15.b, lopiki tuff and minor tuff braccis; 15.c, marcenic; 15.e, diff. feidapor crystal andesits est and lepiki tuff; 15.f. feidapor crystal andesits est and lepiki tuff; 15.f. feidapor crystal andesits and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. diff. feidapor crystal andesits and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. disper member; 15.g. andesits and lepiki tuff; 15.g. disper member; 16.g. print, equipramutor to faidapar parphytikic, tuff. anotz and lepiki tuff; 15.g. disper crystal andesits to diorite to mark gabbro. 14. quartz eye felsic infruence (gabbro and diorite; 11.g. disper to quartz diorite to mark gabbro. 15. aquert monzodiorite and granodiorite; 12.g. dispite to quartz diorite to mark gabbro. 11. 11. sequigramular parbhytikic granodiorite 12. 12.a. quartz monzodiorite and gabbro and diorite; 11.h. hamblende parphytikic granodiorite 13. 13. equipramilar parbhytic granodiorite 14. TRUSDONS 15. (incl	 MARRON FORMATION: 19. endesilic, trachyondesilic and phonoikic volcanic hows SPENCERROX FORMATION 18. poorly conselidated conglamerols, sondetone, tokus, fluvel and locustrine sepasits EARLY CRETACIOUS SPENCES BRIDGE GROUP 17. andesilic to rhyodachic flows and minor tuffs; 17. blohar and minor volcanic braccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 18. Johar and minor volcanic braccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 19. JOHASSEC SWELP FEKEN FORMATION 13. Iso, quartz-feidapor crystal set and lepiki tuff; 15.b, lopiki tuff and minor tuff braccis; 15.c, marcenic; 15.e, diff. feidapor crystal andesits est and lepiki tuff; 15.f. feidapor crystal andesits est and lepiki tuff; 15.f. feidapor crystal andesits and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. diff. feidapor crystal andesits and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. diff. set and lepiki tuff; 15.g. disper member; 15.g. andesits and lepiki tuff; 15.g. disper member; 16.g. print, equipramutor to faidapar parphytikic, tuff. anotz and lepiki tuff; 15.g. disper crystal andesits to diorite to mark gabbro. 14. quartz eye felsic infruence (gabbro and diorite; 11.g. disper to quartz diorite to mark gabbro. 15. aquert monzodiorite and granodiorite; 12.g. dispite to quartz diorite to mark gabbro. 11. 11. sequigramular parbhytikic granodiorite 12. 12.a. quartz monzodiorite and gabbro and diorite; 11.h. hamblende parphytikic granodiorite 13. 13. equipramilar parbhytic granodiorite 14. TRUSDONS 15. (incl	MID BOCKNS MARRON FORMATION: 19. 18, nondesilic, trachyondesilic and phonolitic valcanic flows SPENCERROCK FORMATION 10. 10. A set of the set of		(commonly reioled to the Cahill Creek and Lookout Ridge plutans; may
 19. andestik, trachyondestik and phonolitic volcanic hows SPRINGEROOK FORMATION 18. poorty consolidated conglamerols, sandstone, take, function and leastine depeaks EARLY CRETACIOUS	 19. andestik, trachyondestik and phonolitic volcanic hows SPRINGEROOK FORMATION 18. poorty consolidated conglamerols, sandstone, take, function and leastine depeaks EARLY CRETACIOUS	 19. endesilic, trachyondesilic and phonoikic volcanic flows SPRINGEROOK FORMATION 18. poorly consolidated conglomerols, sondatone, tokus, fluviel and lequilities degastics EARLY CRETACIOUS		MID EOCENE
 SPRINGEROOK FORMATION 18. poorty consellicitied complementate, sendistone, tokes, function of locatestrine departs SPRINCES BRIDDE GROUP 17. John and minor volcanic breactio; 17c, welded tuff and ignimbrite VERDE CREEK STOCK 18. John and minor volcanic breactio; 17c, welded tuff and ignimbrite VERDE CREEK STOCK 18. Jo, granite and minor crystal set and septili tuff; 13b, topkii tuff and minor tuff breactin; 15c, marcon coloured tuff with finamme; 15d, tuffaceaux elistone, dual tuff, more argilite and page tuff and minor tuff breactin; 15c, marcon coloured tuff with finamme; 15d, tuffaceaux elistone, dual tuff, more argilite and page memb conglomerate; 13c, andsette set and tapkii tuff; 13b, tapkier memb conglomerate; 13c, andsette set and tapkii tuff; 13c, fedagor crystal and tupki tuff; 13c, fedagor crystal and tapkii tuff; 13c, fedagor crystal and tupki tuff; 13c, guarts anosoniar to fraideper parphytik; quarts anosoniar to dorite to molic gabbro; CAMRL CREEK FLUTON 13 13c, pink, equiprenutar to fraidaper parphytik; quarts diorite to quarts diorite MOUNT RIDER PLUTON 13 13c, pink, equiprenutar to fraidaper parphytik; diorite to quarts diorite MOUNT RIDER PLUTON 13 13c, grant and tupki tuff; grandbork MEDLY INTRUSONS MOUNT RIDER MATHOLTH 15 10c, grantation grandbork; be, formation; bornet; di, parmitte; be, intestone and/or marbie; di, parmittic diorite	 STRINGEROOK FORMATION TB. poorly conselidated conglemenots, sondetone, toke, fluwel ond localities deposits EARLY CRETACIOUS SFINCES BRIDGE GROUP TO. endesitie to thy objective flows and minor tuffs; TD. islaber and minor voicanic breacie; 17c, welded tuff and ignimbrite VERDE CREEK STOCK TO. endesities and minor voicanic breacie; 17c, welded tuff and ignimbrite VERDE CREEK STOCK TS. plant and minor voicanic breacie; 15c, margan coloured tuff and ignimbrite MID JUASSEC SKWEL FEKEN FORMATION TS. quart-isidepor crystol cen and isplit tuff; 15b, lapili tuff and minor tuff breaccie; 15c, margan coloured tuff with finamme; 15d, tuffaceous emistions, dust tuff, minor arginits and prebing conglomerate; 15a, andebite een and isplit tuff; 15f, fedapor crystol and advise end and isplit tuff (15a-15a-lower member; 15f-upper member 0UARTZ PORPHYRY T4 14, quartz eys felsic infrusion (may be related to units 12, 13 and 20 LOOKOUT NOCE PLUTON T3a, pink, squigranubar to fadgear perphyritic, quartz monzonite to granodiorite; 12b, diorite to generative diorite CAMEL CREEK PLUTON T3a, pink, squigranubar to fadgear generative; 11b, diorite to generative diorite CAMEL CREEK PLUTON T3a, goord monsodiorite and granodiorite; 12b, diorite to generative diorite MOUNT RORDAN STOCK T10, equigranubar gebbro, quartz gebbro and diorite; 11b, homoting adbito; formation; 8c, more adjusted to turble add gebbro; 9c, more diorite MOUNT RORDAN STOCK<td> SPRINGEROOK FORMATION 18. poorty conselicated conglomerole, sondetone, tokus, finitive ond becautrine depastis EARLY CRETACIOUS SPENCES BRIDGE GROUP T7D, Island and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 18. granite and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 15C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 15C, wardon of tull and minor tull breccia; 15C, marcon coloured tull with fiamme; 15G update: -Island and update tull; 15G, telespor crystal and minor tull breccia; 15C, marcon coloured tull with fiamme; 15G update: -Island, update: and tull; 11G (15G-15a-biseer member; 15f-upper mem QUART2 PORPHYNY 14. quartz sys felsic intrusion (may be related to units 12, 13 and 2 tuddett monocomie to granodiorite; 13b, morginal phase granodiarite to diorite to granodiorite; 12b, diarite to guart diorite 13. jan, pink, equipromater to faldepar parphyritic, quart2 PORPHYNY 13. 13a, pink, equipromater to faldepar parphyritic, quart2 RORDHYNY 14. quart2 experiptivic granodiorite; 13b, morginal phase granodiorite to diorite to mork gabbro CAMEL CREEK PLUTON 15. aquery monocomicrite and granodiorite; 12b, diarite to guart2 diorite MOUNT RIORDAN STOCK 10. quigranulur gabbro, quart2 gabbro and diorite; 11b, hombiende porphyritic granodiorite MOUNT RIORDAN STOCK 10. Grauger phyritic granodiorite to guart2 diorite 11. aquigranulur gabbro, 2500X morics); 6d, quart2 diorite 12. Guard2 MINOLTH 13. Ison granodiorite; 13b, more and gabbro; 2b, quarta and gabbbro; 2b, quarta functions diorite and gabbro; 2b, quarta functo</td><td></td><td></td>	 SPRINGEROOK FORMATION 18. poorty conselicated conglomerole, sondetone, tokus, finitive ond becautrine depastis EARLY CRETACIOUS SPENCES BRIDGE GROUP T7D, Island and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 18. granite and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 17C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 15C, welded tull and ignimbrite VERDE CREEK STOCK 19. Island and minor volcanic breccia; 15C, wardon of tull and minor tull breccia; 15C, marcon coloured tull with fiamme; 15G update: -Island and update tull; 15G, telespor crystal and minor tull breccia; 15C, marcon coloured tull with fiamme; 15G update: -Island, update: and tull; 11G (15G-15a-biseer member; 15f-upper mem QUART2 PORPHYNY 14. quartz sys felsic intrusion (may be related to units 12, 13 and 2 tuddett monocomie to granodiorite; 13b, morginal phase granodiarite to diorite to granodiorite; 12b, diarite to guart diorite 13. jan, pink, equipromater to faldepar parphyritic, quart2 PORPHYNY 13. 13a, pink, equipromater to faldepar parphyritic, quart2 RORDHYNY 14. quart2 experiptivic granodiorite; 13b, morginal phase granodiorite to diorite to mork gabbro CAMEL CREEK PLUTON 15. aquery monocomicrite and granodiorite; 12b, diarite to guart2 diorite MOUNT RIORDAN STOCK 10. quigranulur gabbro, quart2 gabbro and diorite; 11b, hombiende porphyritic granodiorite MOUNT RIORDAN STOCK 10. Grauger phyritic granodiorite to guart2 diorite 11. aquigranulur gabbro, 2500X morics); 6d, quart2 diorite 12. Guard2 MINOLTH 13. Ison granodiorite; 13b, more and gabbro; 2b, quarta and gabbbro; 2b, quarta functions diorite and gabbro; 2b, quarta functo		
 fluviel and locustrine depasits EARLY CRETACIOUS SPENCES BRIDGE GROUP [17] 17. andesitic to rhyodacitic flows and minor fuffs; 17. bahar and minor voicanic breach; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK [18] 16. granite and microgramite to quartz monzonite MD JURASSIC SKWEL PEKEN FORMATION [15] 15. quartz-feidepor crystal ash and lepilit tuff; 15b, lapilit tuff and minor tuff breach; 15c, marcon coloured tuff with fiamme; 15d, tuffaceous withons, dust tuff, minor arguitits and pebble complomerate; 15e, andesite set and lepilit tuff; 15f, feidepar crystal andesite set and lepilit tuff (15a-15a-lower member; 15f=upper member; 15d, tuffaceous without to feidepar parphytitic, quartz monzonike to granodiarite; 15d, marginal phase granodiarite to diorite to molic gabbro LOOKOUT RIOGE PLUTON [13] 13., pink, equipromutar to feidepar parphytitic, quartz monzonike to granodiarite; 12b, diarite to quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 121 22. quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 212 12a, quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 213 10. gaugranular gobbro, quartz gabbro and diorite; 11b, homblende parphytic granediarite 214 110, equigranular gobbro, guartz diorite 215 10. gaugranular gobbro, 30, morpion and diorite; 11b, homblende parphytic granediarite 216 110, granodiarite; 10b, diorite to quartz diorite 217 110, apuictoria stocka): 8a, homblende parphytic diorite and gabbro; 250X molice); 8a, quartz diorite and quartz gabbro. 218 1116 110, granodiarite; 10b, diorite to quartz diorite and quartz gabbro. 219 100, granodiarite; 3a, meric tuffs (probably Wheste Formation); Bb, moric tuffs 8c, finnestone and/or marbie; 8d, polymictic conglomerate; 8a, meric tuffs (probably Wheste Formation); Bb, moric tuffs	 fluviel and locustrine depasits EARLY CRETACIOUS SPENCES BRIDGE GROUP [17] 17. andesitic to rhyodacitic flows and minor fuffs; 17. bahar and minor voicanic breach; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK [18] 16. granite and microgramite to quartz monzonite MD JURASSIC SKWEL PEKEN FORMATION [15] 15. quartz-feidepor crystal ash and lepilit tuff; 15b, lapilit tuff and minor tuff breach; 15c, marcon coloured tuff with fiamme; 15d, tuffaceous withons, dust tuff, minor arguitits and pebble complomerate; 15e, andesite set and lepilit tuff; 15f, feidepar crystal andesite set and lepilit tuff (15a-15a-lower member; 15f=upper member; 15d, tuffaceous without to feidepar parphytitic, quartz monzonike to granodiarite; 15d, marginal phase granodiarite to diorite to molic gabbro LOOKOUT RIOGE PLUTON [13] 13., pink, equipromutar to feidepar parphytitic, quartz monzonike to granodiarite; 12b, diarite to quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 121 22. quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 212 12a, quartz monzoniarite and granodiarite; 12b, diarite to quartz diorite 213 10. gaugranular gobbro, quartz gabbro and diorite; 11b, homblende parphytic granediarite 214 110, equigranular gobbro, guartz diorite 215 10. gaugranular gobbro, 30, morpion and diorite; 11b, homblende parphytic granediarite 216 110, granodiarite; 10b, diorite to quartz diorite 217 110, apuictoria stocka): 8a, homblende parphytic diorite and gabbro; 250X molice); 8a, quartz diorite and quartz gabbro. 218 1116 110, granodiarite; 10b, diorite to quartz diorite and quartz gabbro. 219 100, granodiarite; 3a, meric tuffs (probably Wheste Formation); Bb, moric tuffs 8c, finnestone and/or marbie; 8d, polymictic conglomerate; 8a, meric tuffs (probably Wheste Formation); Bb, moric tuffs	fluviel and locustrine depasits EARLY CRETACIOUS SPENCES BRIDGE GROUP T T 70. endesitie to rhyodacitic flows and minor tuffs: T70. endesitie to rhyodacitic flows and minor tuffs: T70. endesitie to rhyodacitic flows and minor tuffs: T70. endesitie to myodacitic flows and minor tuffs: T70. endesitie to myodacitic flows and minor tuffs: T70. endesitie to an minor volcanic breacie; 170. welded tuff and ignimibrit VERDE CREEK STOCK T T T T T T T T T T T T T T T T T T		
 SPENCES BRIDGE GROUP 17. India ond minor volcanic flows and minor tuffs; 17. India ond minor volcanic breccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 18. India ond minor volcanic breccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 19. India ond minor volcanic breccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 19. India ond minor volcanic breccio; 17.c, welded tuff and ignimbrite VERDE CREEK STOCK 19. India ond minor volcanic breccio; 17.c, welded tuff and minor tuff brecci; 15.c, marcon coloured tuff with fiamme; tof, tuffaceous elistions, dust tuff, minor angilite and pabble conglomerate; 15.g, andebits each and lephil tuff; 15.f, teldepac crystal andebits each and lephil tuff 15.f, teldepac crystal andebits each and lephil tuff; 15.f, teldepac crystal andebits each and lephil tuff (15.g, marginal pabble conglomerate; 15.g, andebit to flow be related to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13. India, prink, equipramular to feldepac parphyntic, quartz monzodiorite to diorite to mafic gabbro CAMLL CREEK PLUTON 12. 12.e, quartz monzodiorite and granodiorite; 12b, diorite to quartz diorite MOUNT RIDRDAN STOCK 11. 11.e, equipramular gabbro, quartz gabbro and diorite; 11b, homblende parphyntic granediorite MOUNT RIDRDAN STOCK 11. 11.e, equipramular gabbro, quartz diorite MEDULY INTRUSIONS 19. (includes the Siemwinder, Abenteen, Taronio, Banbury, Petityrew and Larcon stocka): Ba, homblende parphyntic diorite and gabbro; SDE mafics; 16d, quartz diorite and gabbro; SDE mafics; 16d, quartz diorite and quartz gabbro. INCERTAIN AGS MOCKS OF UNCERTAIN ADE 19. Undifferenticitad; So, meric tuffs (probably Whelse Formation); Bb, mafic tuffs; Bc, investore and/or marble; Bd, polynictic conglomerate; Bi, mestore baceis and conglomerate; Bi, chert pebble conglomerate; Bi, mestore baceis gametite storn	 SPENCES BRIDGE GROUP 17. Index and minor volcanic flows and minor tuffs; 17. Index and minor volcanic breach; 17.c. welded tuff and ignimbrite VERDE CREEK STOCK 18. 16. granite and micrographie to quartz monzonike IID JUBASSIC SKWEL PEKEN FORMATION 15. 15. quartz-feidapor crystol ash and lepihi tuff; 15.b. lapihi tuff and minor volcanic base and suppli tuff; 15.d. tuffaceous wildons, dust tuff, minor argilite and pabble conglomerate; 15.e. andasitie ash and kapis tuff; 15.d. tetagor crystal andesits ash and lepihi tuff (15a-15a-lewar member; 15f-supper member conglomerate; 15.e. andasitie ash and kapis tuff; 15.d. tetagor crystal andesits ash and lepihi tuff (15a-15a-lewar member; 15f-supper member conglomerate; 15.e. andasitie ash and kapis tuff; 15.d. tetagor crystal andesits ash and lepihi tuff (15a-15a-lewar member; 15f-supper member duartz monzonite to favorise and granodiorite; 15.d. tufface quartz monzonite to favorise and granodiorite; 12.b. diarite to quartz monzonite to favorise and granodiorite; 12.b. diarite to quartz diarite 17. 110. equigramular poblaro, quartz gebbre and diarite; 11b. homblende parphyntic granadiorite 11. 110. equigramular gebbro, quartz gebbre and diarite; 11b. homblende parphyntic granadiorite 11. 110. granodiorite; 10b. diarite to guartz diarite 12. 12.a. Quartz monzodiarite; 10b. diarite to guartz diarite and gabbro; 50.20K mafric; 10b. diarite to guartz diarite and gabbro; 50.dim mafric; 10d. quartz diarite and quartz gabbro. 11. (Includes the Stamwinder, Abenteen, Taronto, Banbury, Petityrew and Larcon stacta): 8a. homblence porphynikic diarite and gabbro; 50.50K mafric; 10d. quartz diarite and quartz gabbro. 11. Claudes the Stamwinder; Abenteen, Taronto, Banbury, Petityrew and Larcon stacta): 8d. probably Whiete Formation); 8b. mafric tuffs; 8c. śmestone and/or marbie; 8d. polymictic conglomerate; 8b. mestone brace; di poblarite; 7d. poblit tuff; 7d. and gra	 SPENCES BRIDGE GROUP 17. 17. andesitic to rhyodacitic flows and minor tuffs; 17. lohar and minor volcanic breach; 17.c, welded tuff and ignimbrits VERDE CREEK STOCK 18. 16. granite and minor volcanic breach; 17.c, welded tuff and ignimbrits VERDE CREEK STOCK 19. 10. granite and minor volcanic breach; 17.c, welded tuff and ignimbrits WEL PEKEN FORMATION 19. 15.c, quartz-teldspor crystal ash and lepiti tuff; 13.b, lapiti tuff and minor tuff breach; 15.c, andream argitils and peets utiff, minor argitils and peets tuff breach; 15.c, andream argitils and peets utiff, minor argitils and peets and and lepiti tuff; 15.f, teldspor crystal and anglis tuff; 15.f, teldspor crystal andesits ash and lepiti tuff; 15.f, teldspor crystal andesits and and tuff. 14. quartz eys fetsic intrusion (may be related to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13. 13.c, pink, equipranator to feldspor perphytic, quartz monzonite to granodiorite; 12.b, diarite to quartz monzonite granodiorite; 12.b, diarite to quartz diorite 11. 11.c, equigranular gobbro, quartz gabbro and diarite; 11.b, harmblends porphytritic granodiorite; 10.b, diarite to guartz diorite 11. 11.c, equigranular granodiorite to quartz diorite 12. 13.c, and transminder, Abardesen, Taronto, Banbury, Petigrew and Larcon tooka): 8.c, hornblende porphytritic diorite and gabbro; 50.S morfic, 8.d, andraz gabbro; 10.c, quartz diorite and gabbro; 50.S morfic, 8.d, andraz gabbro; 10.c, anglis, 10.d, quartz diorite and gabra; tuff; 7.e, loppin tuff; 7.e, anglist, 10.f, andessite on dorea gabbro; 60.C, morfic tuf	[18 18, poorly consolidated conglamerate, sandstane, take, fluvial and locustrine depasts
 17.5. endeskic to rhysdackic flows and minor tuffs; 17.6. endes and minor volcanic breach; 17.6. eekided tuff and ignimbrits VERUE CREEK STOCK 16. granite and microgramite to quartz monzonite MD JUASSEC SKWEL PEKEN FORMATION 15.0. quartz-teldapor crystal ask and minor arailite and sebilit tuff and minor tuff breach; 15.6. marcon coloured tuff with fiamme; 15.6. tuffaceous elisticans, dust tuff, minor arailite and sebilit conglomerate; 15.9. andesite ask and minor arailite and sebilit andesite ask and leapilit tuff (15.9. Teldapor crystal andesite ask and leapilit tuff (15.9. Teldapor crystal ask and the second crystal crystal ask and the second components is an anonzonite to granodiarite; 12.9. diarite to quartz diarite stalizy JURASSIC MOUNT RIOREN STOCK 11. 10. equigramular pabbro, quartz gabbro and diarite; 11.9. hamblends parphytic granodiarite; 12.9. diarite to quartz diarite stalizy INTRUSHONS (includes the Stemwinder, Aberdese, Taronto, Barbury, Petitigner and Larcon stocks): 9. honotence porphytik diarite and gabbro (>50% mories): 9. honotence porphytik diarite and gabbro (>50% mories): 9. honotence porphytik componerote; 9. equigramular diarite and guartz gabbro. UNCERTAIN AGE ROCKS OF UNCERTAIN AGE B. marticuted; 8. mestone and/or marble; 8. diportecite conglomerate; 8. immestone and/or marble; 8. diportecite coroglomerate; 8. immestone stractic and congenerate; 8. i. cher	 17.5. endeskic to rhysdackic flows and mixor tuffs; 17.6. endes and minor volcanic breactic; 17.6. welded tuff and ignimishits VERUE CREEK STOCK 16. granite and microgramite to quartz monzonite MD JURASSEC SKWEL PEKEN FORMATION 15.0. quartz-teldapor crystal ash and lepili tuff; 13b, lapili tuff and minor tuff breccis; 15c, marcan coloured tuff with fiamme; 15d, tuffesceues witklone, dust tuff, minor argilles and sebble conglomerate; 15a, andesite ash and lepili tuff; 15f, teldspor crystal andesite ash and lepili tuff (15a-15a-lower member; 15f-upper memb QUARTZ PORFWRY 14. quartz eys felsic indusion (may be related to units 12, 13 and 201 LOOKOUT RIDGE PLUTON 13.0. pink, equipronutor to feldspor parphyritic, quartz monzonike to granadiarite; 13b, marginal phase gramodiarite to diorite to mofic gabbro CAMEL CREEK PLUTON 12. 12a, quartz monzolite and granoslorite; 12b, diarite to quartz diorite 110, equigranutor pabbro, quartz gabbro and diorite; 11b, nomblends parphyritic granadiarite; 12b, diarite to quartz diorite 110, equigranutor gabbro, quartz gabbro and diorite; 11b, nomblends parphyritic granadiarite; 10c, diorite he MOURT RATHOLTH 110, equigranutor gabbro, quartz diorite 11110, equigranutor gabbro, quartz diorite MOURT RATHOLTH 112 12a, quartz monzodiarite; 10b, diorite to quartz diorite and gabbro; 50c morics): 50, honoslance porphyritic diorite and gabbro; (>50K morics): 50, honoslance porphyritic diorite and gabbro; (>50K morics): 60, honoslance porphyritic diorite and gabbro; (>50K morics): 60, diorite and quartz gabbro. UNCERTAIN AGE ROCCS OF UNCERTAIN AGE 15. mastone braccia and organization; 60, and site or organ Chains Formation); 8b, morito tuffis; 8c, immestone and for marble; 8d, polymictic conglomerate; 8h, immestone and for marble; 8d, polymictic conglomerate; 8h, immestone sectio and supersectio; 7h, siltstone;	 17. c. endesitic to rhyodacitic flows and minor tuffs; 17. lohar and minor voicanic breactic; 17., welded tuff and ignimishi VERUE CREEK STOCK 16. granite and microgramite to quartz monzonite 15. guartz-feidapor crystal ash and lepili tuff; 13b, lapili; tuff and minor tuff breactic; 15c, maroon coloured tuff with fiamme; 15. tuffaceous withstance, dust tuff, minor angitte and yebble conglomerate; 15e, andesite ash and lepili tuff; 13b, lapili; tuff and minor tuff breactic; 15c, maroon coloured tuff with fiamme; 15. tuffaceous withstance, dust tuff, minor angitte and yebble conglomerate; 15e, andesite ash and lepili tuff; 15f, feldapor crystal andesite ash and lepili tuff (13e-15e-lawer member; 15f supper ment QUARTZ POBPHYRY 14. quartz eye felsic inituation (may be related to units 12, 13 and 2 LOOKOUT RHOE PLIFON 13 13a, pink, equipramator to feldapar porphyritic, quartz monzonike to granodiorits; 13b, marginal phase gramodiorite to diorite to monic gabbro CAMPL CREEK PLUTON 12 12a, quartz monzodiorite and granodiorite; 12b, diarite to quartz diorite 11. 10, equigramular gabbro, quartz gabbro and diorite; 11b, hamblende porphyritic granadiorite 12. TRUSIONS (includes the Stemwinder, Aberdeen, Toronto, Barbury, Petitigner and Larcon stocks): 90, hamblende porphyritic diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, mariz diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 9D, equigramular diorite and gabbro; 9c, moric diorite and gabbro; 10:00000000000000000000000000000000000		
 VERDE CREEK STOCK 16. granite and microgranite to quartz monzonite DURASSIC SKVEL FORMATION 15. quartz-teidapor crystal ash and lapilii tuff; 15b, lapilii tuff and minor tuff brecis; 15c, maroon coloured tuff with fiamme; 15d, tuffaceous sitistone, dust tuff, minor argilite and pabble andesite ash and lapilii tuff (15a-15a-lawer member; 15f upper member QUARTZ FORMATRY 14. 14, quartz eys felsic intrusion (may be related to units 12, 13 and 200 LOOKOUT RIDGE PLUTON 13. 13a, pink, seulgrawdar to faldspar porphynitic, quartz monzonite to granadiarite; 13b, marginal phase granodiarite to diorite to marks; 13b, marginal phase granodiarite to diorite to mark gabbro CAMEL CREEK PLUTON 13. 13a, pink, seulgrawdar so faldspar porphynitic, quartz monzonite to granadiarite; 12b, diarite to guartz diorite ZAMELY JUBASSIC MOURT RORDAN STOCK 11. 10, equigramular gabbro, quartz gabbro and diarite; 11b, homblende porphynitic granadiarite LATE TRIASSIC MOMELY BATHOLITH 10. 100, granadiarite; 10b, diarite to quartz diarite and gabbro; 50, equigramular diarite; end gabbro; Sc, maric diarite and gabbro; 50, equigramular diarite and granadiarite and quartz gabbro. 11. (no, granadiarite; 10b, diarite to quartz diarite and gabbro; 50, equigramular diarite and gabbro; Sc, maric diarite and gabbro; 50, equigramular diarite and gabbro; Sc, maric diarite and gabbro; 50, equigramular diarite and gabbro; Sc, maric diarite and gabbro; 50, equigramular diarite (probably Whistle Formation); 8b, maric tuffs; 8c, immestone and/or marble; 8d, polymictic conglomerate; 8d, maritice and conglomerate; 8d, chert pubble conglomerate; 8d, immestone fraction (bg,h,i and j probably French Mine or Oregon Claims Formations) 247 TETERSSIC WHISTLE FORMATION 25. Animestone baudae breccia (Copperfield breccia); 7b, sillatone; 7c, angilite; 7d, andesize and baselite and tuffaceous engilite. 	 VERDE CREEK STOCK 16. granite and microgramite to quartz monzonke MD JURASSEC SKWEL PKEM FORMATION 15. optiontz-relation or cylicitic and inapiliti Luff; 13b, lapiliti tuff and miner tuff braccis; 15c, manaron coloured tuff all finite merity of a distance in tuff presence in tuff, minor angilitie and pebble conglormatoric; 15c, andeliate area and lapilit Luff; 15d, tuffaceous sitistone, dust Luff, minor angilitie and pebble conglormatoric; 15c, andeliate area and lapiliti Luff; 15d, testinger crystal andeliate area and lapilitie and pebble conglormatoric; 15e, andeliate area and lapilitic, 15d, testinger crystal andeliate area and lapilitic and pebble conglormatoric; 15e, andeliate area and lapilitic, aquest a monzonke to granodiaritie; 13b, manginal phase gramadiaritie to diorite to moric gabbro CAMEL CREEK FLUTON 13 13a, pink, equipremeter to feldaper parphynitic, quartz monzonke to granodiarite; 12b, diarite to quartz monzonide to granodiarite; 12b, diarite to quartz diorite ZABLY JURASSEC MOURT RORDAN STOCK 11 10, equipremuter gabbro, quartz gabbro and diorite; 11b, homblende parphynitic granadiarite; and diorite; 11b, homblende parphynitic granadiarite; 10b, diorite to guartz diorite LATE TRIASSEC MOURT BATHOLTH 10 too, granodiarite; 10b, diorite to quartz diorite HEDLEY INTRUSIONS 3 (includes the Stemwinder, Abardeen, Taronio, Barbury, Freitignew and Larcon stocks: 9a, homblende porphynitic diorite and gabbro; 9b, equipremutar diorite and gabbro; 9c, maric light, quartz globalite, and gabbro; 10c, granodiarite; 9d, utilize and gabbro; 9b, equipremutar diorite and gabbro; 9c, maric light, and gabbro; 10c, diorite and gabbro; 9b, equipremutar diorite and gabbro; 9c, maric light, and gabbro; 10c, marice; 10c, quartz diorite and quartz global, prophysic corrigion complementer; 8b, marice (age); 8d, marice (age); 8d, marice (age); 9d, utilizeous sitilatione; 6d, minor corrigion	 VERDE CREEK STOCK 16. granite and microgranite to quartz monzonite MD JURASSEC SKVEL FORMATION 15. quartz-leidapor crystal aan and lepilik luff; 15b, lapilii tuff and minor tuff breccie; 15c, marcon columed luff with fiamme; 15d, tuffsceous willstone, dust luff, minor argillite and pabble conglomerate; 15a, andealite and and lepilik luff; 15d, fetdapor crystal andealite eah and lepilik luff (15a-15a=lewer member; 15f=upper men QUARTZ FORMYRY 14. 14, quartz eye felsic inituation (may be related to units 12, 13 and 2 LOOKOUT RHOE PLIFTON 13. 150, pint, equipranter to faldapar perphysitic, quartz monzanie to granadiaritis; 13b, marginal phase granodiaritis to diartis to maric gobbro CAMRL CREEK PLUTON 13. 150, quartz monzanies to faldapar perphysitic, quartz diaritis ZA, quartz monzanies to faldapar perphysitic, quartz diaritis ZA, quartz monzanies to maric gobbro and diaritis; 11b, diaritis to quartz diaritis I10, equigranular gobbro, quartz gabbro and diarits; 11b, homblende parphysitic granadiaritis I10, equigranular gobbro, quartz gabbro and diarits; 11b, homblende parphysitic granadiarits I10, og granadiarits; 10b, diarite to quartz diarits HEDLEY INTRUSIONS [includes the Stemwinder, Aberdsen, Taranto, Banbury, Petitignew and Larcon stocks): 96, homblende parphysitic diarite and gabbro: 95.000 marita; 90, quartz diarite and guartz gabbro. UNCERTAIN AGE ROCKS OF UNCERTAIN AGE [includes the Stemwinder, Bernstone, Janomise, Bd, polymictic conglomerote; 8c, innestone and/or marible; 8d, polymictic conglomerote; 8d, innestone shade formation); 8b, marita luffs; 8d, unforceous situators (passibly Oregon Claims Formation); 8g, immestone shades of marita editories; 10 and j probably French Mine or Gregon Claims Formations) LIFT TELESSEC WHISTLE FORMATION 13. In mestione budd		17 17s, endesitic to rhyodacitic flows and minor tuffs;
D. TURASSIC SKREL PEKEN FORMATION 13. 15.0. guartz-feidagor crystol ash and lepili Luff; 15.0. japili tuff and minor tuff breecie; 15.c., marbon coloured tuff with filamme; 15.d. tuffaceous withstone, dust tuff, minor argillite and pabble conglomerate; 15.e., andexite ash and lepilit Luff; 15.f. feidagor crystol andexite esh and lepilit Luff (15.e15.emiourer member; 15f=upper member QUARTZ FORMYNY 14. 14. quartz eye felsic infrusion (may be related to units 12, 13 and 201 LOOKOUT REDGE PLIFON 13. 13.0. pink, squigranular to feldagar porphyritic, quartz monzonite to garanodiarite; 13.0. marginal phase granodiarite to diorite to molic gabbro 14. 12. quartz monzonite to granodiarite; 12.b., diarite to quartz monzonite to diorite and granodiarite; 12.b., diarite to quartz diorite Status ULTON 12. 12.a. quartz monzonite; garanodiarite; 12.b., diarite to quartz diorite BOMLT RIDRESCC MOUNT RIDRESCC MOUNT RIDRESCC MOUNT RIDRESCC	D. TURASSIC SKREL PEKEN FORMATION 13. 15.0. guartz-risidspor crystal ash and lepili Luff; 15b, lapili tuff and minor tuff breecis; 15c, marcoon coloured tuff with fiamme; 15d, tuffaceous withstone, dust tuff, minor argillite and rebble conglomerate; 15e, andexite ash and lepili tuff (15e-15e-iswer member; 15f-aupper member) andexite ash and lepili tuff (15e-15e-iswer member; 15f-aupper member) and sepili tuff; 20e-15e-iswer member; 15f-aupper member) and tupilit tuff (15e-15e-iswer member; 15f-aupper member) and tupilit tuff; 20e-15e-iswer member; 15f-aupper member) and tupilit tuff; 20e-15e-iswer member; 15f-aupper member) and tupilit tuff; 20e-15e-iswer member; 15f-aupper member; 13d-aupper member; 13d-aupper; member; 11d-aupper member; 11d-aupper member; 11d-a	D. TURASSIC SIMPL PEREN FORMATION 13. 15.0. guartz-feidaspor crystol ceh and lepilii Luff; 15b, lapilii tuff and miner tuff breecks; 15c, marcon coloured tuff eith fiamme; 15d, tuffaceous sitteston, dust Luff, minor argillies and pebble and pebble luff; 15f, feidapor crystol andesite esh and lepilii Luff (15e-15e-lever member; 15f-upper men OUARTZ PORFWRY 14. 14. quartz eye feitsic inivusion (may be related to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13. 13a, pink, equipranutar to feidapar parphynkic, quartz monzonke to granodiartis; 12b, marginal phase granodiartis to diorite to molic gabbro CAMEL CREEK PLUTON 13. 12a, quartz monzodiartis and granodiartis; 12b, diartie to quartz monzonke to granodiartis; 12b, diartie to quartz monzodiartie and granodiartis; 12b, diartie to quartz monzodiartie and granodiartis; 12b, diartie to quartz monzodiartie and granodiartis; 12b, diartie to quartz diartie 14. 11a, equipranular gabbro, quartz gabbro and diartie; 11b, hornaliands parphynitic granodiartie 15. HOMAT RIORAM STOCK 11. 11a, equipranular gabbro, quartz gabbro and diartie; 11b, hornaliands parphynitic granodiartie 14. 10a, granodiartie; 10b, diartie to quartz diartie 15. BATHOLTH 16. 10a, granodiartie; 10b, diartie to quartz diartie 17. Relevent the stanwinder, Abardsen, Taronto, Barbury, Pettigrew and Larcon stocks): 8a, hormblande parphynitic diarite and gabbro (>200 Mardics); 8d, amesto		· · ·
Skviči, PEKEN FORMATION IS. 15., quartz-leidspor crystal ask and lepiki luff; 13b, lapiki Liff and minor tuff breacts; 15c, marcon coloured tuff with fiamme; 15d, tuffsceous sittaons, dust luff, minor argilite and pebble conglomerate; 15., andelsit seth and kepiki luff; 154, feldspar crystal andesite ash and lepiki luff (15a-15a-lewer member; 15f-supper member) ULARTZ PORFWAY 14 14, quartz eye felsic indrusion (may be related to units 12, 13 and 201 LOOKOUT RIOGE PLUTON 13 13c, pink, equiprasular to feldspar porphytikic, quartz monzondorite to smallerite; 13b, marginal phase granediorite to diorite to molic gabbro CAMEL CREEK PLUTON 13 12c, quartz monzondorite and granodiorite; 12b, diarite to quartz monzondorite to diorite granediorite; 12b, diarite to quartz diorite 110., equigranular grabbro, quartz gabbro and diorite; 11b, hombiends porphytic; granediorite MOUNT RIORDAN STOCK 11 11c, equigranular grabbro; Aberdsen, Taronto, Banbury, Petigrew and Laroan stocka): 8a, hombiends porphytic diorite and gabbro; 5D, equigranular diorite and gabbro; 5C, molic dierite and gabbro; 5D, margine and/or marbe; 8d, polymictic configurerate; 8j, innestone and/or marbe; 8d, polymictic configurerate; 8j, innestone and/or marbe; 8d, polymictic configurerate; 8j, innestone process assistance (pagibru) (Prench Mine or Oregon Claims Formations) 15 Indifferentitice; 7d, andestic and bosotic cent tuff; 7e, lepiki luff; 7f, tuff	SkWEL FEKEN FORMATION IS. 15., quartz-leidapor crystal ask and lephi luff; 13b, lophi tuff and misor tuff breecks; 15c, marcon coloured tuff with fiamme; 15d, tuffaceous sittaons, dust tuff, minor anglilis and pebble conglomerate; 15d, andlesite ask and lephi tuff; 13d, teldopar crystal andesite ask and lephi tuff; 15d, teldopar crystal andesite ask and lephi tuff; 13d, teldopar crystal andesite ask and lephi tuff; 13d, teldopar crystal andesite ask and lephi tuff; 13d, teldopar crystal andesite ask and logatic to forthe to mark to granodiarite; 13d, tuff, and 20d LOOKOUT RIOGE PLUTON I3 13c, pink, equiprasular to feldapar parphytikic, quartz monzondiarite to granodiarite; 12b, diarite to quartz monzondiarite to mark gaboro CAMEL CREEK PLUTON I3 12e, quartz monzondiarite and granodiarite; 12b, diarite to quartz diarite I2 12e, quartz monzondiarite granodiarite; 12b, diarite to quartz diarite 11c, equigramular gabbro, quartz gabbro and diarite; 11b, hombiende parphytikic granodiarite I10 10c, granodiarite; 10b, diarite to quartz diarite 110m gabbro; 50c marks; 10b, diarite to quartz diarite and quartz gabbro; 9c, mark quartz diarite and gabbro; 9c, situations; 9c, mark quartz gabbro; 9c, and (arcan stacka); 9c, hombiende parphytikic diarite and gabbro; 9c, diarite; 9c, anglite	SKWEL FEREN FORMATION IS. to, quartz-teldspor crystol ash and lepiti luff; 13b, lapiti tuff and minor luff breecis; 15c, marbon coloured tuff with fiamme; 15d, tuffsceous witstone, dust luff, minor argillie and pabble conglomerate; 15e, andesite ash and lepiti luff; 15f, feldepar crystal andesite ash and lepiti luff (15e-15s-lever member; 15f-supper mem CUARTZ PORFNYRY 14 14, quartz are felsic intrusion (may be related to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13 13o, pink, equipresultor to feldepar perphyritic, quartz monzodiorite; 13b, marginoi phase granodiorite to diorite to mafic gabbro CAMEL CREEK PLUTON 12 12a, quartz monzodiorite; and granodiorite; 12b, diarite to quartz diorite MOUNT RIORDAN STOCK 11 11o, equigranular gobbro, quartz gabbro and diorite; 11b, hamblende porphyritic granediorite MOUNT RIORDAN STOCK 11 11o, equigranular gobbro, quartz gabbro and diorite; 11b, hamblende porphyritic granediorite MOUNT RIORDAN STOCK 11 11o, equigranular gobbro, quartz gabbro and diorite; 11b, hamblende porphyritic diorite and gabbro; 500X mafies; 10b, diorite to quartz diorite MOUNT RIORDAN STOCK 11 110. equigranular diorite, and gabbro; rec, marbon diorite; 10b, diorite to quartz diorite MEDLEY INTRUSIONS <td></td> <td>16. granite and microgranite to quartz monzonite</td>		16. granite and microgranite to quartz monzonite
 150. quartz-teidapor crystal ach and lepilli Luff; 150. lapilii tuff and miner tuff breccia; 15c, mardon coloured tuff eith fiamme; 15d, tuffaceus eitkaton, dust Luff, minor anglille and: pebble conglomerate; 15e, andletie sen and lepilli tuff; 15f, feldapar crystal and lepilli tuff (15d-15a-loser member; 15f, feldapar crystal to COKCOUT RIDGE FUITON 130. pink, equipromutor to feldapar parphyritic, quertz monzonila to granodiarita; 13b, marginal phase granodiarita to diorite to molic gaboro CAMEL CREEK FLUTON 12a. quertz monzonila to molic gaboro CAMEL CREEK FLUTON 12a. quertz monzodorite and granodiarite; 12b, diarite to quertz diorite MOUNT RIODEPhar STOCK 11 11o, equipromutor gaboro, quartz pebbro and diorite; 11b, homblende parphyritic granediarite LATE TRUASSIC MOUNT RIODEPhar STOCK 11 11o, equipromutor gaboro, duartz pebbro and diorite; 11b, homblende parphyritic granediarite MOUNT RIODEPhar STOCK 12 100, granodiarite; 10b, diorite to quertz diorite MEDLEY INTRUSIONS 37 (includes the Sternwinder, Aberdeen, Taronto, Banbury, Petigrew and Larcon stocks): 80, homblende parphyritic diorite and quortz gabbro. UNCERTAIN AGE 38, maric tuffs; 86, innestone and/or marbie; 81, polymictic corrite and gabbro; 50X morics); 86, quartz diorite and quortz gabbro. UNCERTAIN AGE 39, maric tuffs; 80, innestone and/or marbie; 81, polymictic corrigonemente; 81, finnestone precisio and corringerente; 81, chemestone breccis and congiomerate; 81, chemestone breccis and congiomerate;	 15., quartz-teidapor crystol esh and isplili Luff; 15., isplili tuff ond miner tuff breccic; 15., margon coloured tuff esh filamme; 15.d, tuffacous existions, dust tuff, minor anglile and pebble conglomerate; 15.a, andesite esh and isplit unit; 15.f, teidapor crystal andesite esh and isplit tuff (15.e15.eexer member; 15.f) reuper marked QUARTZ PORPHYRY 14. quartz eye felsic intrusion (may be related to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13. 13.a, pink, equigranular to feldapar porphyritic, quertz monzonite to granodiorite; 13.b, marginol phase granodiorite to diorite to molic gaboro CAMEL CREEK PLUTON 13. 13.a, quertz monzonite to granodiorite; 13.b, marginol phase granodiorite to diorite to molic gaboro CAMEL CREEK PLUTON 14. 14. quartz eye felsic infruence and granodiorite; 12.b, diarite to quertz diorite EXALLY JURASSIC MOUNTH ROMENAN STOCK 11. 10., squigranular gaboro, quartz gaboro and diorite; 11.b, homblends porphyritic grandiorite LATE TRUSSONS 9 (includes the Stemwinder, Aberdeen, Taronto, Banbury, Petitoreu ond Larcon stocke): 90., homblends porphyritic diorite and gaboro; 9.c, moric diorite and gaboro; 9.c. moric diorite and gaboro; 10. diorite; 9.d. undificatore [8.d. anglitic; 9.d. unditastone (passibly P	 15 quartz-teidapor crystal esh and kepili tuff; 13b, lepilii tuff and minor tuff braccia; 15c, marcon coloured tuff esh fiamme; 15d, tuffaceus selfatone, dust tuff, minor argitle and yeebbe conglomerate; 15s, andeelie ash and kepilii tuff; 15f, feidapor crystal and eshill tuff (15a-15æ-lever member; 13f upper ment QUARTZ PORPHYRY 14 14, quartz eys felsic intrusion (may be related to units 12, 13 and 2 LOOKOUT BIOE PLUTON 13 13a, pink, squigranular to feldapor porphyritic, quartz montanite to granodiarite; 13b, marginel phase granodiarite to diarts to granodiarite; 13b, diartie to quartz diarte to granodiarite; 12b, diartie to quartz montanite to granodiarite; 12b, diartie to quartz montanite; and granodiarite; 12b, diartie to quartz diartie granodiarite; 10b, diartie to quartz formation and granodiarite; 12b, diartie to quartz diartie and granodiarite; 12b, diartie to quartz diartie granodiarite; 10b, diartie to quartz diartie to target and target to target and target to target and target to target and target to quartz diartie and gabbro; BL, margine phase granodiarite; 10b, diartie to quartz diartie and quartz gabbro. 16 10a, granodiarite; 10b, diartie to quartz diartie and quartz gabbro. 17 (includes the Stemwinder, Aberdeen, Taranto, Banbury, Petigrew and Larcon stocies): 8b, homblende porphyritic diartie and gabbro; 9b; couglomerate; 8d, quartz diartie and quartz gabbro. 18 (undifferenticted; 8d, marito tuffs (probably Whiele Formation)): 8b, marito tuffs; 8d, quartz facine (and minor chert pebble conglomerate; 8d; mestone and/or marble; 8d, polymictic conglomerate; 8d; schemestone stard (Gapti); 3d; sinestone dorage formations) 19 (LOEETAIN AGE 10 (LOEETAIN AGE (Additie: 8d; tuffaceous situatos (passby) Oregon Claims Formation); 8d; mestone gramstite sha		
 15d. tuffsceous sitistone, dust tuff, minor argilitis and pebble conglomerate; 15e, andelsis set and keptil tuff (15a-15a=kever member; 15f=upper member; 15f=upper member) 14 14, quartz eys felsic intrusion (may be related to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13 13o, prink, equipranutor to feldepar porphytic, quartz monzondiarits; 15b, marginal phase granodiarite to diorite to mofic gabbro CAMEL CREEK PLUTON 12 12a, quartz monzondiarits; 15b, marginal phase granodiarite to diorite to mofic gabbro CAMEL CREEK PLUTON 12 12a, quartz monzondiarite; 15b, marginal phase granodiarite to diorite and granodiarite; 12b, diarite to quartz diorite 23 110, equipranular gabbro, quartz gabbro and diorite; 11b, homolende porphytic; granodiarite; 12b, diarite to guartz diorite 24 111, equipranular gabbro, quartz gabbro and diorite; 11b, homolende porphytic; granodiarite; 10b, diarite 25 (includes the Stemwinder, Aberdeen, Toronto, Banbury, Petigrew and Larcan stocks): 90, homolende porphytic diorite and gabbro; 50K mofics; 90, quartz diorite and quartz gabbro. 25 (includes the Stemwinder, Aberdeen, Toronto, Banbury, Petigrew and Larcan stocks): 90, homolende porphytic diorite and gabbro; 50K mofics; 90, quartz diorite and quartz gabbro. 26 (includes the Stemwinder; 8, tuffscous situations (passbb) Oregon Claims Formation); 80, mentice and gabbro; 80, mofic stoffs; 84, polymictic conglomerate; 86, mestone and/or marble; 84, polymictic conglomerate; 81, innestone and/or marble; 84, polymictic conglomerate; 81, innestone seccia and conglomerate; 81, and if probably French Mine or Oregon Claims Formation); 80, mentice site and ponglomerate; 81, innestone seccia and conglomerate; 81, and if probably French Mine or Oregon Claims Formation); 80, innestone backs: ChurchWaytha FORMATION 70, a militic; 70, andesitic and basolitic ash tuff; 74, hopäli tuff; 71, tuf breccio, 70, tim Minestone	 15d. tuffsceous sitistone, dust tuff, minor crysitis and pebble conglomerate; 15e, andesite sen and lepsit uff; 15f. fetsgeor crystal andesite ash and lepsit uff; 15f. fetsgeor crystal andesite ash and lepsit uff; 15f. fetsgeor crystal andesite ash and lepsit uff; 15f. fetsgeor crystal condetite; 15f. fetsgeor crystal utility, quartz PORPHYRY 14 14, quartz sys fetsic infrusion (may be related to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13 13c, print, equiprosator to fetsgar porphytic, quartz monzondorite; 15b, marginal phase granodiarite to diorite to mofic gabbro CAMEL CREEK PLUTON 12 12c, quartz monzondorite; 13b, marginal phase granodiarite; 12b, diorite to quartz diorite 24000000 RIDGE PLUTON 13 11c, equipronular gabbro, quartz gabbro and diorite; 11b, homelands porphytritic granodiarite; 12b, diorite to guartz diorite 25000000000000000000000000000000000000	 15d, tuffsceous sitistone, dust tuff, minor argilite ond pabble conglomerate; 15d, edispar crystal andesite seth and lapit tuff (15d-15amiswer member; 15f-upper mem QUARTZ PORPHYRY 14 14, quartz sys felsic infrusion (may be related to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13 13o, pink, equipremator to feldepar perphyritic, quartz moutannike to granodiarite; 13b, marginal phase granodiarite its formadiarite; 13b, marginal phase granodiarite to diorite to molic gabbro CAMRL CREEK PLUTON 12 12a, quartz moutannike to granodiarite; 12b, diarite to quartz diorite 24004LY UNITON 13 110, equipremukar pabbro, quartz gabbro and diarite; 11b, homblende parphyritic granodiarite; 12b, diarite to generate diorite 25004LY BATHOLITH 10 10o, granodiarite; 10b, diarite to quartz diorite 14ENEY INTRUSIONS (includes the Stemwinder, Aberdeen, Taronto, Banbury, Petigrew and Larcon stocks): 8a, homblende porphyritic diorite and gabbro; 50C mafice is diorite and gabbro; 50C mafice is diorite and gabbro; 50C mafice list, diarite diorite and gabbro; tell, immestione (and probably French Mine or Gregon Claims Formation); 8b, marstone backs, diar formation; 7c, englite; 7d, andesitic and baselitic and baselitic and conglemerate; 8i, chert pebble conglomerate; 8i, finestone bracia (and conglemerate; 8i, chert pebble conglomerate; 8i, finestone bracia (and conglemerate; 8i, chert pebble conglomerate; 8i, finestone bracia and conglemerate; 8i, and finestone backs; 6b, siltstone ± thin immestone backs; 6b, siltstone ± thin immestone backs; 6b, siltst		15 15c, quartz-teldspor crystol ask and lapili tuff; 15b, lapili tuff and minor tuff braccis; 15c, marton coloured tuff with fiamme;
QUARTZ PORPHYRY 14 14, quartz sye felsic intrusion (may be related to units 12, 13 and 201 LOOKOUT RIDGE PLUTON 13 13a, pink, equipramular to feldepar parphynika, quartz monzonke to granodiorike; 13b, marginel phase granodiorike to diorite to mafic gabbro CLMRLL CREEK PLUTON 12 12a, quartz monzodiorike and granodiorike; 12b, diarite to quartz diorite 2000000000000000000000000000000000000	QUARTZ PORPHYRY 14 14, quartz eye felsic intrusion (may be reinted to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13 130, pink, equipromitor to feldepar porphyritic, quartz monzonke to granodiarke; 135, marginal phase granodiarite to diorite to mofic gabbro CAMRL CREEK PLUTON 12 12. 12a, quartz monzodiarite; 13b, marginal phase granodiarite to diorite to mofic gabbro CAMRL CREEK PLUTON 12 12a, quartz monzadiarite; 13b, diarite; 13b, hornblende porphyritic granodiarite; 12b, diarite to #MOURT RIARDAN STOCK 11 110, equipromular gabbro, quartz gabbro and diarite; 11b, hornblende porphyritic granodiarite LATE TBLASSIC #MOURT RIARDAN STOCK 11 10 10a, granomatic gabbro, quartz gabbro and diarite; 11b, hornblende porphyritic granodiarite IME TBLASSIC #MOURT RIARDAN STOCK 13 10b, granomatic garts, abardsen, Taronio, Banbury, Petigrew and Larcon stocks): 8a, hornblende porphyritic diarite and gabbro (>50% mofics); 8d, quartz diarite and quartz gabbro. UNCEKTAIN AGE 8, undifferentioted; 8a, metic turits (probably Wheate Formation); 8b, motic luffs; 8c, immetane and/or marble; 8d, polymictic conglomerate; 8i, immetane and/or marble; 8d, polymictic conglomerate; 8i, immetane accis and conglomerate; 8i, chert pebble conglomerate; 8i, immetane accis and conglomerate; 8i, chert pebble conglomerate; 8i, immetane garable skarn (6g,h,i and j probably French Mine or Oregan Claime Formatione) LAPT TELASSEC WHUSTLE TORMATON	QUARTZ PORPHYRY 14 14, quartz eye felsic inituation (may be neinted to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13 13a, pint, equipronutor to feldepar parphyritic, quertz moutorite to granodiorite; 13b, marginal phase gramodiorite to diorite to molic gabbro CAMRL CREEK PLUTON 12 12, quertz moutorite to granodiorite; 12b, diorite to genariz diorite 24, quertz diorite and granodiorite; 12b, diorite to motionite to diorite 28, guertz diorite and granodiorite; 12b, diorite to genariz diorite 28, guertz diorite and granodiorite; 11b, homblende porphyritic granadiorite LATE TBLASSIC MOUNT RIORDAN STOCK 11 10, equipranulor gabbro, quartz gabbro and diorite; 11b, homblende porphyritic granadiorite Babbro LATE TBLASSIC MOUNT RIORDAN STOCK 10, guranulor gabbro, duartz diorite 101 10o, granodiorite; 10b, diorite to guertz diorite Babbro 110 10o, granodiorite; 10b, diorite to guertz diorite and gabbro (>500K matice); 8c, noric file diorite and gubry; Petitgrew and Larcon stocks): 8c, quartz diorite and quartz gabbro. UNCERTAIN AGE 8, undifferentiotad; 8a, metic tutts (probably Whietle Formation); 8b, motic tuffs; 8c, imestane shockane (passib) chart pebble conglomerate; 8j, imestane shockane (passib) chart pebble conglomerate; 8j, imestane shockane (passib) chart pebble conglomerate; 8j, imestane shockane (passib) chart pebbble conglomerate; 8j, imestane shockane (pag.		15d, tuffsceous sittstone, dust luff, minor argilite and pebble conglomerate; 15e, andesite ask and lapiti tuff; 15f, feidepar crystal
 14 14, quartz eye fetsic intrusion (may be related to units 12, 13 and 201 LOOKOUT RIDGE PLUTON 13 13a, pink, equigramular to feldepar porphyrikic, quartz morzonke to granodiarite; 13b, marginel phase granodiorite to diorite to mofic gabbro CAMEL CREEK PLUTON 12 12a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 212a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 212a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 211 11a, equigramular gabbro, quartz gabbro and diorite; 11b, homblende porphyritic granodiorite 212a, guartz 10b, diorite to quartz diorite 211 11a, equigramular gabbro, quartz gabbro and diorite; 11b, homblende porphyritic granodiorite 212a, guartz 10b, diorite to quartz diorite 213 10a, granodiarite; 10b, diorite to quartz diorite 214 110 10a, granodiarite; 10b, diorite to quartz diorite 215 (includes the Siemwinder, Aberdsen, Toronto, Banbury, Pettigrew and Larcon stocks): 8a, homblende porphyritic diorite and gabbro: 92,000 moritz; 10d, quartz diorite and quartz gabbro. 216 (includes the Siemwinder, Aberdsen, Joronto, Banbury, Pettigrew and Larcon stocks): 8d, homblende porphyritic diorite and gabbro: 92,000 moritz; 10d, quartz diorite and quartz gabbro. 217 TRIASSIC 218 B, undifferentiated; 6a, mefic tuffs (probably Whistle Formation); 8b, marit uffs; 8t, kinestone and/or marble; 8d, polymictic conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simestone breccio and conglomerate; 8k, chert petble conglomerate; 8k, Simest	 14 14, quartz eye fetsic intrusion (may be related to units 12, 13 and 20 LOOKOUT RIDGE PLUTON 13 13a, pink, equigramular to feldepar perphyrika, quartz morzanke to granodiarite; 13b, marginel phase granodiorite to diorite to mofic gabbro CAMEL CREEK PLUTON 12 12a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 212a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 212a, quartz monzodiarite and granodiarite; 12b, diarite to quartz diorite 211 11a, equigramular gabbro, quartz gabbro and diorite; 11b, hornblende parphyritic granodiorite 212a, guartz 10b, diorite to quartz diorite 211 11a, equigramular gabbro, quartz gabbro and diorite; 11b, hornblende parphyritic granodiorite 212a, guartz 10b, diorite to quartz diorite 210a, granodiarite; 10b, diorite to quartz diorite 212a, guartz 1, and Larcon stocks): 8a, hornblende parphyritic diorite and gabbro; 9b, equigramular diorite end gabbro; 9c, mofic diorite and gabbro; 9c, more diarcon stacks); 9d, quartz diorite and minor chert puble conglomerate; 8d, filmestone, marble; 8d, polymictic conglomerate; 8d, simestone foreccia and conglomerate; 8d, is messive garnetite elemente; 8d, chert puble conglomerate; 8d, filmestone, marble; elementation; 8d, polymictic and i probably French Mine or Oregon Claims Formation; 2147 TRIASSIC 2147 TRIASSIC 2147 TRIASSIC 2157 TRIASSIC 216, inmestone boulde braccio (Copperfield braccio); 7b, siltstone; 7c, ar	 14. quartz eye felsic inirusion (may be reinted to units 12, 13 and 2 LOOKOUT RIDGE PLUTON 13. print, equipromisor to feldeper porphytik, quertz monzonie to granodiorite; 13.0, morginal phase granodiorite to diorite to molic gobbro CAMEL CREEK PLUTON 12. quert monzodiorite and granodiorite; 12b, diorite to quartz diorite 20. quert monzodiorite and granodiorite; 12b, diorite to quartz diorite 21. quert monzodiorite and granodiorite; 12b, diorite to quartz diorite 22. quert monzodiorite; 10b, diorite and granodiorite; 11b, homblende porphytic granodiorite 21. quert MATHOUTH 10. quigramulor gabbro, quartz gabbro and diorite; 11b, homblende porphytic granodiorite 21. A grant and a statistic granodiorite 23. (includes the Stemminder, Abertsen, Toronto, Banbury, Pettigreev and Larcon stocks): Be, homblende porphytik diorite and gabbro: SD. quigramular diorite and gobbro; Sc. molic diorite and gabbro: SD. quigramular diorite and gobbro; Bc. molic diorite and gabbro: SD. quigramular diorite and gobbro; Bc. molic diorite and gabbro: SD. quigramular diorite and gobbro; Bc. molic diorite and gabbro: SD. quigramular diorite and gobbro; Bc. molic diorite and gabbro; SD. guigramular diorite and gobbro; Bc. molic diorite and gabbro; Bo, quigramular diorite and gobbro; Bc. molic diorite and gabbro; Bo, quigramular diorite and gobbro; Bc, molic diorite and gabbro; Be, grantik; Bi, utifaceous silustore (passb) Oregon Claims Formation); Bd, imestone, marble and minor chert pebble conglomerote; Bi, imestone strack and minor chert pebble conglomerote; Bi, imestone strack and conglomerote; Bi, chert pebble conglomerote; Bi, imestone strack and minor chert pebble conglomerote; Bi, imestone strack and conglomerote; Bi, chert pebble; Conglomerote; Bi, imestone strack and conglomerote; Bi, chert pebble; Conglomerote; Bi, imestone strack and inconglomerote; Bi, chert pebble; Conglomerote; Bi, imes		
 13a, pink, seukgranular to feldapar parphynkic, quantz monzonki to granodiorika; 13b, morginol phase granodiorika to diorita to molic gabbro CAMEL CREEK PLUTON 12a, quantz monzodoinke and granodiorika; 12b, diorike to guantz diorika EABLY JURASSIC MOUNT ROMDAN STOCK 11 110, squigranular pabbro, quantz gebbro and diorika; 11b, homblende parphynitic granodiorika Ital, and the state of the state	 13a, pink, equipromutor to feldapar porphyritic, quertz monzorkie to granodioritis; 13b, morginol phase granodioritis to dioritis to molic gabbro. CAMEL CREEK FLUTON 12 12a, quertz monzodioritis and granodioritis; 12b, diorite to quertz dioritis EARLY JURASSIC MOUNT ROMAN STOCK 11 116, equipranulor gabbro, quartz gabbro and dioritis; 11b, hombiends porphyritic granodioritis MOUNT ROMAN STOCK 11 0.0, granodioritis; 10b, diorite to quertz dioritis HEDLEY INTRUSIONS 9 (includes the Stemwinder, Aberdeen, Taronto, Banbury, Petitgree and Larcon stocks); 90, hombiends porphyritic dioritis and gabbro; 9c, molic diorite and gabbro; 9c, molic diorite and gabbro; 9b, equigranulor diorite and gabbro; 9c, molic diorite and gabbro; 9b, equigranulor diorite and gabbro; 9c, molic diorite and gabbro; 9b, equigranulor diorite and gabbro; 9c, molic diorite and gabbro; 9b, equigranulor diorite and gabbro; 9c, molic diorite and gabbro; 9b, equigranulor diorite and gabbro; 9c, molic diorite and gabbro; 9c, gabbro, UNCERTAIN AGE Bb, moric luffis; 8c, imestone and/or marble; 8d, polymictic complomerate; 8d, finastone (pageshy) Oregon Claims Formation); 8d, limestone braccic and conglomerate; 8d, chert pebble conglomerate; 8d, finastone garantite starm (8g,n,i and j probably French kine or Oregon Claims Formations) LATE TEREASSIC MUCHWAYHA FORMATION 7a, inmestone boulder breaccia (Copperfield breaccia); 7b, silitatone; 7c, anglitite; 7d, unbestic cond baselitic cent tuff	 13a, pink, seuigranular to feldapar parphytik, quertz monzonke to granodlarike; 13b, marginel phase granodlarike to diarite to smalle gabero CAHEL CREEK FLUTON 12a, quertz monzodorike and granodlarike; 12b, diarike to quertz diarite Taa, quertz monzodorike and granodlarike; 12b, diarike to quertz diarite Taa, quertz monzodorike and granodlarike; 12b, diarike to quertz diarite Taa, quertz monzodorike and granodlarike; 12b, diarike to quertz diarite Taa, quertz monzodorike and granodlarike; 12b, diarike to quertz diarite Tabassuc MOUNT ROMEAN STOCK 11 10, equigramular gabbro, quartz gabbro and diarite; 11b, homblends parphytic granodorite TATE TRASSUC MOUNEY BATHOLTH 10 100, granodlarike; 10b, diarike to quertz diarite HEDLEY INTRUSIONS (includes the Stemwinder, Aberdeen, Toronto, Banbury, Petigrew and Larcon stocks): 8b, homblends porphytik diarite and gabbro; 8c, malic diarite and gabbro; 9c, 9c, 9c, 9c, 9c, 9c, 9c, 9c, 9c, 9c,		
granodorite to diorite to molic gabbro CAMEL CREEK FLUTON 12 12a, quartz monzadiorite and granodiarite; 12b, diarite to quartz diorite 24. June 25. Status 25. Stat	granodiorite to diorite to molic gabbro CAMEL CREEK FLUTON 12 12a, quertz monzadiorite and granodiorite; 12b, diorite to quertz diorite 24. June 25. Status 25. Sta	granodiorite to diorite to molic gabbro CAMLL CREEK PLUTON 12 12a, quartz monzodiorite and granodiorite; 12b, diorite to quartz diorite 24. June 25. Status and granodiorite; 12b, diorite to quartz diorite 24. June 25. Status and granodiorite; 12b, diorite to quartz diorite 24. June 25. Status and granodiorite; 11b, harmblende porphyritic granediorite 24. Status and granodiorite; 11b, diorite granediorite 24. Status and granodiorite; 10b, diorite to quartz diorite 24. Status and granodiorite; 10b, diorite to quartz diorite 24. Status and granodiorite; 10b, diorite to quartz diorite 25. Status and granodiorite; 10b, diorite to quartz diorite 25. Status and granodiorite; 10b, diorite to quartz diorite diorite 25. Status and granodiorite; 10b, diorite and gabbro; 8c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 25. Status and granodia and granodia and quartz gabbro; 9c, molic diorite 26. Status and granodia and granodia and granodia and quartz gabbro; 9c, molic diorite 26. Status and granodia and granodia and granodia and quartz gabbro; 9c, molic diorite 27. Status and granodia and gra		
CAMLL CREEK PLUTON 12 12c. quert monzodorite and granodiorite; 12b, diarite to querts diorite 13 12.c. quert monzodorite and granodiorite; 12b, diarite to querts diorite HALLY JURASSIC MOUNT RIORDAN STOCK 11 11.6. equigranular gabbro, quartz gabbro and diorite; 11b, homblende porphynitic granodiorite IMOUNT RIORDAN STOCK 11 10. equigranular gabbro, quartz gabbro and diorite; 11b, homblende porphynitic granodiorite MOUNT RIORDAN 10 10c. granodiorite; 10b, diorite to guertz diorite MEDULY INTRUSIONS 10 10c. granodiorite; 10b, diorite to guertz diorite MEDULY INTRUSIONS 11 10. b. equigranular diorite ond gabbro; 5c. maric diorite and gabbro; 50, sequigranular diorite and gabbro; 5c. maric diorite and gabbro; 50, equigranular diorite and gabbro; 50, securatica and/or marbie; 8d, polymictic conglomerate; 8c. orgilite; 8d, limestone and/or marbie; 8d, polymictic conglomerate; 8c. orgilite; 8d, limestone secies and conglamerate; 8f, cherit pabble conglomerate; 8d, immestone secies and conglamerate; 8f, cherit pabble conglomerate; 8d, immestone secies and conglamerate; 8f, cherit pabble conglomerate; 8d, immestone secies and conglamerate; 8f, and j probably French Mine or Gregon Cleims Formations) ATE TELASSIC MMISSILE TORMATION 170, is immestone baulder breccia); 7b, siltstone; 7c, angilite; 7d, andessice ond bacoftic cesh tuff; 7e, lepäli luff; 7f, tuff braccio, 7g, thin immestone bades CHUCHUMATHA FORMATI	CAMLL CREEK PLUTON 12 12c. quert monzodorite and granoslarite; 12b, diarite to querts diarite 13 12c. quert monzodorite and granoslarite; 12b, diarite to querts diarite MOUNT RURDSNC MOUNT RURDSNC 11 11c. equigranular gabbro, quartz gabbro and diarite; 11b, homblende parphyntic granodiarite 12T TRUSSNC MOUNT RURDSNC 10 10c. granodiarite; 10b, diarite to quertz diarite MEDLEY INTRUSIONS 10 11 10b, diarite; 10b, diarite to quertz diarite MEDLEY INTRUSIONS 10 12 10c. granodiarite; 10b, diarite to quertz diarite MEDLEY INTRUSIONS 10 13 10c. granodiarite; 10b, diarite to quertz diarite 14 10 10b, granodiarite; 10b, diarite to quertz diarite 14 100 to grano diarite; 10b, diarite to quertz diarite 10 15 (includes the Sleenvinder, Aberdsen, Taronto, Banbury, Petligrew and Larcon stocia): 8d, quartz diarite and quartz gabbro. 170 ROCKS OF UNCERTAIN AGE 10 8 motic luffs; 8c, immestone and/or martie; 8d, polymictic conglomerate; 8d, orgilite; 8d, minstone breactic and conglomerate; 8f, cherri pabble conglomerate; 8d, immestone secies and conglomerate; 8f, chert pabble conglomerate; 8d, immestone grana	CAMEL CREEK FLUTON 12 12a. quartz monzediorite and granodiorite; 12b, diarite to quartz diorite HOUNT RIORDAN STOCK 11 11a, equigranular gebbro, quartz gebbro and diorite; 11b, hornblende porphyntic granediorite HEDLEY HARNSOC MOUNT RIORDAN STOCK 11 11a, equigranular gebbro, quartz gebbro and diorite; 11b, hornblende porphyntic granediorite HEDLEY INTRUSIONS 6 (includes the Sternwinder, Aberdsen, Toronto, Banbury, Pettigrew and Larcon stocks): 8a, hornblende porphynitic diorite and gebbro; 8b, equigranular diorite and gebbro; 9b, equigranular diorite and gubor; 9c, marice icite inte and gebbro (>50% marice); 8d, quartz diorite and quartz gebbro. UNCERTAIN AGE 8 undifferentiated: 8a, metic tufts (probably Whietle Formation); 8b, maric tuffs; 8c, immetions and/or maribe; 8d, polymictic congionerate; 8e, argillite; 9d, luifaceous sitistome (passible congiomerate; 8i, chert pebble congiomerate; 8i, meestone stoccia on doorgenerate; 8i, chert pebble congiomerate; 8j, meestone vertice and congionerate; 8i, chert pebble congiomerate; 8i, meestone braccia claims Formations) ATE TELASSIC WHISTLE FORMATION 70, argilite; 7d, andestic and basoftic ash tuff; 7e, lopäli tuff; 7f, tuff breacio, 7g, thin immetions bads CHUCHUMAYNA FORMATION 5 go, argilite; 2t thin immetions bads; 6b, silicous and tuffaceous angilite.	I	1.00, prink, equipronulor to feldepar porphynika, quartz monzonike to granodiarike; 1.30, marginal phase
 12. 12. quert: monzediorite and granodiorite; 12b, diorite to quertz diorite 12. 12. quertz monzediorite and granodiorite; 12b, diorite to quertz diorite 13. 110. equigranular gabbro, quertz gabbro and diorite; 11b, homblende porphyritic gronodiorite 13. 110. equigranular gabbro, quertz gabbro and diorite; 11b, homblende porphyritic gronodiorite 14. 100. gronodiorite; 10b, diorite to quertz diorite 15. 100. gronodiorite; 10b, diorite to quertz diorite 16. 100. gronodiorite; 10b, diorite to quertz diorite 17. 110. equigranular diorite ond gabbro; 9c, molic diorite and gabbro; 9b, equigranular diorite and gabbro; 9c, molic diorite gabbro; 9c, molic diorite gabbro; 9c, molic diorite; 9c, financia; 9c, molica (gasta); 9c, quertz diorite and gabbro; 9c, molic diorite gabbro; 9c, molica (gasta); 9c, quertz gabbro; 9c, molic diorite gabbro; 9c, molic diorite; 9c, financia; 9c, mestore and/or marble; 8d, polymictic conglomerate; 8d, encescia and conglomerate; 8d, chert pabble conglomerate; 8d, insestone baccia and conglomerate; 8d, chert pabble conglomerate; 8d, mossive gamatite skarn (8g,h,i and j probably French Mine er Oregon Claims Formations) ATE TRLASSIC MHSTLE FORMATION 70. Immestone baulder breccia (Copperfield breccia); 7b, siltstone; 7c, orgilite; 7d, andesitic and basolitic ash tuff; 7e, kopäli tuff; 71, tuff braccio, 7g, thin fimestone bads 6c, argilitie ± thin fimestone bads; 6b, siltstone ± thin fimastone bads; 6c, fimestone; 6d, siliceous and tuffaceous ergilite. 	 12. 12. quert: monzediorite and granodiorite: 12b, diorite to quertz diorite 12. 12. quertz monzediorite and granodiorite: 12b, diorite to quertz diorite 13. 110. equigranular gabbro, quertz gabbro and diorite: 11b, homblende porphyritic granular gabbro. 13. 110. equigranular gabbro, quertz diorite 14. 110. equigranular gabbro, quertz diorite 15. 110. equigranular gabbro, duertz diorite 16. 110. equigranular gabbro, auertz diorite 17. 110. equigranular gabbro, auertz diorite 18. 110. equigranular diorite to quertz diorite 19. 100. granodiorite: 10b, diorite to quertz diorite 100. granodiorite: 10b, diorite to quertz diorite 110. equigranular diorite end gabbro; Sc. molic diorite and gabbro; Sb. equigranular diorite and guotro; Sc. molic diorite and gabbro; Sb. equigranular diorite and guotro; Sc. molic diorite and gabbro; Sb. equigranular diorite and guotro; Sc. molic diorite and guotro; Sc. molic diorite and gobbro; Sb. equigranular diorite and guotro; Sc. molic diorite and guotro; Sc. molic diorite and guotro; Sb. equigranular diorite and guotro; Bec. molic diorite and guotro; Sc. angliste conglements; Sc. insestone bacecia and conglemente; St. this formation; Sc. chert pabble conglements; St. insestone bacecia and conglemente; St. and j probably french Mine or Gregon Claims Formation; Are TRLASSIC MitSTLE FORMATION 70. inmestone boulder breccia (Copperfield breccia); 7b, siltetone; 7c, orgilite; 7d, andesitic and bacelite and tuffaceous engilite. 50. anglistis 2 thin imestone bade; Sb, siltetone ± thin imaston	 12. 12. quartz monzodiorite and granodiorite; 12b, diarite to quartz diorite 12. 12. quartz diorite 13. 11. 10. quartz diorite granodiorite; 12b, diarite to quartz diorite 14. 11. 11. 11. 11. 11. 11. 11. 11. 11.		
EARLY JURASSIC MOUNT RORDAN STOCK 1 116, equigranular gebbro, quartz gebbro and diorite; 11b, homblende porphyntic granadiorite LATE TRUASSIC MOULT RATHOLTH 10 100, granadiorite; 10b, diorite to guertz diorite MOULT INTRUSIONS 10 100, granadiorite; 10b, diorite to guertz diorite MEDLEY INTRUSIONS 11 110, diorite Stemwinder, Aberdaen, Toronto, Banbury, Pettigraw and Lorcon stocis): Bo, homblende porphyntic diorite and gabbro; 8b, equigranular diorite and gabbro; 8c, marie diorite and gabbro; 10, equigranular diorite and gobbro; 9c, marie diorite and gabbro; 8b, equigranular diorite and gabbro; 8c, marie diorite and gabbro; 8b, equigranular diorite and gabbro; 9c, marie diorite and gabbro; 8c, emissione and/or marble; 8d, polymictic congionerote; 8e, emissione socies situtione (passibly Oregon Claims Formation); 8g, Emissione breache and congionerote; 8i, chert pebble congionerote; 8i, messione socies (accongionerote; 8i, chert pebble congionerote; 8i, messione socies and congionerote; 8i, chert pebble congionerote; 8i, messione formatione) ATE TRUSSSIC WHISTLE FORMATION 70, animestone boulder breacie and congionerote; 8i, chert pebble congionerote; 8i, thin messione bads ATE TRUSSSIC WHISTLE FORMATION 71, infibraccio, 70, thin immestone bads 70 70, inmestone boulder breacie con bounder theraccia; 7, anglii tuff; 7, tuff breacie, 70, thin immestone bads 70 70, inite i thin innestone bads; 6b, s	EARLY JURASSIC MOUNT RORDAN STOCK 1 116, equigranular gobbro, quartz gobbro and diorite; 11b, homblende porphynitic granadiorite LATE TRUASSIC MOULT RATHOLTH 10 100, granodiorite; 10b, diorite to guertz diorite MOULT INTRUSIONS 10 100, granodiorite; 10b, diorite to guertz diorite MEDLEY INTRUSIONS 11 110, diorite Stemwinder, Aberdaen, Toronto, Banbury, Pettigraw and Lorcon stocks): Bo, homblende porphynitic diorite and gobbro; 50X marice); Bd, quartz diorite and quortz gobbro. UNCESTAIN AGE ROCKS OF UNCERTAIN ADE 11 11 5, undifferenticted; So, meric tuffs (probably Whistle Fermatian); Bb, maric tuffs Be, arguitte; Bi, tuffacous situtions (passib) Oregon Claims Formation); Bg, limestone marble; Bd, polymictic congionerate; Bk, insestone subclose glassiby Oregon Claims Formation); Bg, limestone, marble; and minor chert pebble congionerate; Bi, messione secies and congionerate; Bi, chert pebble congionerate; Bi, messione sitution; (passib) Oregon Claims Formation); Bg, limestone merche and minor chert pebble congionerate; Bi, messione secies and congionerate; Bi, and j probably French Mine or Oregon Claims Formations) ATE TRUSSSIC WHISTLE FORMATION 70, andesitic ond bosobic cent tuff; 7e, lopalii tuff; 7f, tuff breccio, 7g, thin Minestone bads CHUCHUMAYNA FORMATION 50, argifite ± thin Kinestone bads; 6b, sitstone ± thin limestone bads; 6c, limestone bads; 6d, siliceous and tuffaceous ergitite.	EARLY JURASSEC MOUNT RORDAN STOCK 1 11.0. equiprenulor gebbro, quartz gebbro and diorite; 11b, homblende porphyritic granadiorite LATE TRIASSEC MOULTY BATHOLTH 10 100, granodiorite; 10b, diorite to quartz diorite HEDLEY INTRUSIONS 10 100, granodiorite; 10b, diorite to quartz diorite HEDLEY INTRUSIONS 11 10, granodiorite; 10b, diorite to quartz diorite HEDLEY INTRUSIONS 11 10, granodiorite; 10b, diorite to quartz diorite and gabbro; 9b, equiprenulor diorite and gabbro; 9b, equiprenulor diorite and quartz gebbro. UNCESTAIN AGE 11 8, undifferentiotad; 8a, metic tufts (probably Whietle Formation); 8b, motic tuffa; 8c, inmestone and/or marbie; 8d, polymictic conglomerote; 8b, formestone; 8i, ismestone quarta gebbro (originmerote; 8i, formestone; Bi, ismestone quarta gebbro (originmerote; 8i, formestone breccia on congenerate; 8i, chert pebble conglomerote; 8j, formestone breccia cloims Formations) ATE TRIASSIC WHUSTLE FORMATION 11 70, nimestone boulder breccia (Copperfield breccia); 7b, siltstone; 7c, angilite; 7d, andesitic and basoftic ash tuff; 7e, lopili tuff; 71, tuff breccio, 7g, thin immestone bada CHUCHUWAYNA FORMATION 50, argilite ± thin firmestone bada; 6b, siltscows and tuffaceous ergilitie.		12 12a, quartz monzadionite and granodionite; 12b, dianite to
 11.6. equigrasular gabbro, quartz gabbro and diorite; 11b. hombiende porphyritic grandiorite; and diorite; 11b. hombiende porphyritic grandiorite; and gabbro; so grandiorite; 10b. diorite to quertz diorite HEDLEY INTRUSIONS (includes the Stemwinder, Abertsen, Taranto, Banbury, Pettigrew and Larcon stocks): Be, hombiende porphyritic diorite and gabbro; so, equigranular diorite and gabbro; So. equigranular diorite and gabbro; So. equigranular diorite and gubbro; Sc. mafic diorite and gabbro; So. equigranular diorite and gubbro; Sc. mafic diorite and gabbro; So. mafic solite; diorite and gubbro; So. mafic solite; diorite and gubbro; So. mafic solite; diorite and gubbro; Sc. mafic diorite and gabbro; So. mafic solite; diorite and gubbro; Sc. mafic diorite; di	 11.6. equigrasular gabbro, quartz gabbro and diorite; 11b. hombiende porphysitic gronadiorite ATE TRASSIC BROKELY BATHOLTH 10.100, gronadiorite; 10b, diorite to quartz diorite HEDLEY INTRUSIONS (includes the Stemwinder, Aberteen, Taronto, Banbury, Petitigrew and Larcon stockal: 9e, hombiende porphysitic diorite and gabbro; 9b, equigranular diorite and gubbro; 9c, maric diorite and gabbro; 9b, equigranular diorite and gubbro; 9c, maric diorite and gabbro; 9b, equigranular diorite and gubbro; 9c, maric diorite and gabbro; 9b, equigranular diorite and quotrz gabbro. INCERTAIN AGE B, undifferenticat; 80, metric tufts (probably Whethe Formation); 8b, motio tuffs; 8c, immestone and/or marble; 8d, polymictic conglomerate; 8d, and/or marble; 8d, polymictic and j probably Franch Mine or Oregon Claims Formation); and j probably Franch Mine or Oregon Claims Formations; 7c, arylitic; 7d, andesic and bosolic ash tuff; 7e, hoplit tuff; 71, tuff breactio, 7g, thin kinestone bads; 6b, siltstone ± thin kinestone bads; 6b, siltecous and tuffaceous orgilite. 	 11. 116. equigramular gebbro. quartz gebbro and diorite; 11b. homblende porphyritic gronodiarite ATE TREASSIC BROALLY BATHOLITH 10. 100. gronodiarité; 10b. diorite to quartz diorite HEDLLY INTRUSIONS (includes the Stemwinder, Aberdeen, Toronto, Banbury, Pettigrew and Lorcon stocks): 90. homblende porphyritic diorite and gabbro; 9b. equipronular diorite and gabbro; 9c. maric diorite and gabbro; 9b. equipronular diorite and gabbro; 9c. maric diorite and gabbro. ROCKS OF UNCERTAIN ADE B. mudifferenticat: 80, metic tutts (probably Whiette Formation); 8b. maric tutts; 81, imestone and/or marbie; 8d, polymictic conglomerate; 8b, imestone and/or marbie; 8d, polymictic conglomerate; 8b, imestone braccio and conglomerate; 8i, chert pebble conglomerate; 8i, imestone gaansby Vregon Claims Formation); 8g, limestone gaansby Arest pebble; conglomerate; 8, imestone gaansby and i probably French Mine or Oregon Claims Formations) ATE TREASSIC WHOSILE FORMATION 7a. limestone boulder braccio (Copperfield braccio); 7b. sittatone; 7c. anglitic; 7d. andestic and basotic ash tutf; 7e. kopili tuff; 7l, tutt braccio, 7g, thin firmestone beds CHUCHUWAYNA FORMATION 6o. anglitic ± thin firmestone beds; 6b. sittatome ± thin firmestone beds; 6c. firmestone; 6d, siliceous and tuffaceous engilitic. 	1	LARLY JURABSSC
 homblende porphyritic gronadiorite homblende porphyritic gronadiorite HET FENASSIC BROMLEY BATHOLITH 100, gronadiorite: 10b, diorite to quertz diorite HEDLEY INTRUSIONS (includes the Stemwinder, Aberdsen, Toronto, Banbury, Pettigrew and Larcon stocks): Bo, homblende porphyritic diorite and gabbro: 3b, equigranular diorite and gabbro; Bc, maric diorite and gabbro: (>500K malice): 9d, quartz diorite and quartz gebbro. NCERTAIN AGE ROCKS OF UNCERTAIN AGE B, undifferentiated: Ba, metic turits (probably Whields Formation): Bb, maric turits; Bc, anelic turits (probably Whields Formation): Bb, maric turits; Bc, anelic turits (probably Whields Formation): congiomerate: Be, anglike; DI, turifacescus situtone (possibly Oregon Claims Formabion): Bg, limestone, marble and minor chert pebble conglomerate; Bi, messione barccia and congionerate: Bi, chert pebble conglomerate; Bj, massive gametite skarn (Bg,h,i and j probably French Mine or Oregon Claims Formations) TO Immestone budder breccio (Copperfield breccio); 7b, sittstone; 7c, anglitis; 7d, andeside and basettic ash turit; 7e, kopäli turif; 71, turit breccio, 7g, thin Himestone bads CNUCHUWAYNA FORMATION So, anglitis ± thin Himestone bads; 6b, sittstone ± thin limestone beds; 6c, Arnestone; 6d, sliceous and turifaceous anglitte. 	 homblende porphyritic granadiorite homblende porphyritic granadiorite HET FENASSIC BROMLEY BATHOLITH 100, granadiorite: 10b, diorite to guertz diorite HEDLEY INTRUSIONS (includes the Slemwinder, Aberdsen, Taronto, Banbury, Pettigrew and Larcon stocks): Bo, homblende porphyritic diorite and gabbro: 3b, sequigramular diorite and gabbro: Sc. mafic diorite and gabbro: (>50X mafice): 9d, quartz diorite and quartz gebbro. NCERTAIN AGE ROCKS OF UNCERTAIN AGE B, undifferentiotest; Ba, metic turis (probably Whietle Formation); Bb, maric turis; Bc, anelic turis (probably Whietle Formation); Bb, maric turis; Bc, immestione and/or marble: 8d, polymictic conglomerote; Bc, anglitic; 2f, lutifacesus situations (passibly Oragon Claims Formation); Bg, limestione, morble and minor chert pebble conglomerote; Bi, massive gemetite skarn (Bg,h,i and j probably French Mine or Oragon Claims Formations) TT TRIASSIC WhISTLE FORMATION 7a, immestone budder breccia (Copperfield breccia); 7b, sittetone; 7c, anglitis; 7d, andeside ond basolitic ash turi; 7e, kopäli turif; 71, turif breccia, 7g, thin immestone bads CNUCHUWAYNA FORMATION So, anglitite ± thin immestone bads; 6b, sittetone ± thin limestone beds; 6c, Ernestone; 6d, siliceous and turifaceous englitte. 	 homblende porphyntik gronodiorite homblende porphyntik gronodiorite HET ETBLASSIC BROMLEY BATHOLITH 100, gronodiorite; 100, diorite to quertz diorite HEDLEY INTRUSIONS includes the Stemwinder, Abardsen, Taronto, Banbury, Pettigrew and Larcan stocks): Ba, hornblende porphyntic diorite and gabbro: (>500% mafice); Bd, quantz diorite and quortz gebbro. Includes the Stemwinder, Abardsen, Taronto, Banbury, Pettigrew and Larcan stocks): Bd, quantz diorite and quortz gebbro. NCERTAIN AGE ROCKS OF UNCERTAIN AGE B. undifferentiated: Ba, mafic tutts (probably Whietle Fermation): Bb, mafic luffs; Bc, kimestone and/or marbie; Bd, polynickic conglomerate; Be, anglilite; Bd, luffaceous silktons (passible conglomerate; Bd, ismestone brackie and namor chert pebble conglomerate; BJ, ismestone brackie akarn (Bg,h] and i probably French Mine or Oregon Claims Formations) To, inmestone baulder braccia (Copperfield braccia); 7b, siltstone; 7c, anglilite; 7d, andessitic and basaltic ash tuff; 7e, kopili luff; 71, tuff braccia, 7g, thin Amestone bads ChulcHUWAYHA FORMATION Gu, anglilite ± thin finnestone bads; 6b, siltstone ± thin limestone bods; 6c, limestone; 6d, siltecous and tuffaceous anglitte. 	٤	11 110, equigranular gabbro, quartz gabbro and diarite; 11b,
BNOALLY BATHOLITH TO 100, gronodiorits; 10b, diorite to quertz diorite HEDLIY INTRUSIONS Image: Intervention of the state of the s	BROALLY BATHOLITH TO 100, gronodiorits; 10b, diorite to quertz diorite HEDLIY INTRUSIONS Image: the stemwinder, Aberdaen, Toronto, Banbury, Pettigrew and Larcon stocks): Ba, homblende porphyritic diorite and gabbro; 5b, equigranular diorite end gabbro; 5c, motic diorite and gabbro; 5b, equigranular diorite end gabbro; 5c, motic diorite and gabbro; 5COK motices): Bd, quartz diorite and quartz gabbro. INCERTAIN AGE B, undifferentioted; Ba, metric turts (probably Whighte Formation); Bb, motic turts; Be, metric turts (probably Whighte Formation); Bb, motic turts; Be, immestone and/or matthe; Bd, polymictic conglomerate; Be, anglitte; Bd, luffaceous situatone (passibly Oregon Claims Formation); Bb, motic turts; Formation; Bb, motic turts; Conglomerate; Bi, immestone braccia and conglomerate; Bi, chert pabble conglomerate; Bj, immestone braccia and conglomerate; Bi, chert pabble conglomerate; Bi, immestone formatione) ATE TRIASSIC WHISTLE FORMATION 7. 7. immestone builder breccia (Copperfield breccia); 7b, sitistone; 7c, anglitis; 7d, andesitic end basettic ath turt; 7e, lopäli tuff; 7f, turt braccia, 7g, thin Himestone bade CHUCHUWAYHA FORMATION Go, anglitis; 2t thin Himestone bade; 8b, sitistone ± thin limestone bede; 6c, Emestone; 6d, siliceous and tuffaceous engilitie.	BROWLEY BATHOLITH TO 100, gronodiorite; 10b, diorite to quertz diorite HEDLEY INTRUSHORS (includes the Slamwinder, Abardsen, Toronto, Banbury, Pettigrew and Larcon stocks): Ba, hornblende porphyritic diorite and gabbro (>50b, equipronular diorite end gabbro; Sc., mafic diorite and gabbro; SD. equipronular diorite end gabbro; Sc., mafic diorite and gabbro; SD. mafics): Bd, quartz diorite and quartz gebbro. INCERTAIN AGE B. undifferentiated: Ba, mefic tuffs (probably Whatte Formation); Bb, mafic tuffs; Bc, immestone and/or marble; Bd, polymictic conglomerate; Be, angilite; M. tuffaceous situations (passibly Oregon Cloims Formation); Bd, immestone breactic and conglomerate; Bi, chert pabble conglomerate; Bi, immestone breactic and conglomerate; Bi, chert pabble conglomerate; Bi, immestone breactic and conglomerate; Bi, immestone breactic and conglomerate; Bi, and i probably French Mime or Oregon Cloims Formations) To, immestores baulder breactio Copertial breactic); Tb, sittstone; Tc, angilite; Td, unit breactic; and tuff; Ta, lopalii tuff; Td, unit breactio, Tg, thin Mimestone bads CHUCHUWAYHA FORMATION To, inmestone bade; Cd, antestone bade; Gb, sittstone ± thin firmestone beds; Cc, irrestone; Cd, aliceous and tuffaceous argiitite.	ı	temblende perphyritic granodionite
HEDLEY INTRUSIONS Includes the Stemwinder, Aberdsen, Taronto, Banbury, Fritigrew and Larcon stocks): 80, hornblands porphyritic diorite and gabbro: 90, equipranular diorite and gabbro: 9c, mafic diorite and gabbro: 90, equipranular diorite and gabro: 9c, mafic diorite and gabbro: 90, equipranular diorite and gabro: 9c, mafic diorite and gabbro: 90, equipranular diorite and gabro: 9c, mafic diorite and gabbro: 90, equipranular diorite and gabro: 9c, mafic diorite and gabbro: 90, equipranular diorite and gabro: UNCERTAIN AGE ROCKS OF UNCERTAIN AGE Image: State State State State State State State State State conglomerate: 8a, anglistic 90, limestone and minor chert pebble conglomerate; 8j, immestone breccie and conglomerate; 8i, chert pebble conglomerate; 8j, immestone gamestie skarn (5g,h,i and j probably French Mine or Oregon Claims Formatione) LATE TREASSIC WHISTLE FORMATION Image: 7c, arguitic; 7d, andesitic and baseditic ash tuff; 7e, logali tuff; 71, tuff breccio, 7g, tuin Minestone bads CHUCHWWATHA CREASTION Image: 6c, arguitite ± thin immestone bads; 6b, sittstone ± thin immestone beds; 6c, immestone; 6d, siliceous and tuffsceous argitite.	HEDLEY INTRUSIONS Implementation Imp	HEDLEY INTRUSIONS Image: Statistic set of a state of the		BROWLEY BATHOLITH
 Petigraw and Larcan stocks): Bo, hombiance porphyritic diorite and gabbre; 3b, equigranular diorite and gabbre; 9c, maric diorite and gabbre; 950% mafice); Bd, quartz diorite and quartz gabbre. UNCESTAIN AGE B, undifferentiated; Bd, meric turits (probably Whilette Formation); Bb, maric turits; Bc, innestone and/or marble; Bd, polymictic congiomerate; Bd, turitaconus situations (passibly Oregon Claims Formation); Bg, innestone backs; Bd, polymictic congiomerate; Bd, innestone marble; Bd, polymictic congiomerate; Bd, innestone situatione, passible congiomerate; Bd, innestone marble; Bd, polymictic chart pebble congiomerate; Bd, innestone braccia and congiomerate; Bd, innestone backs; Gd, polymictic start (Bg,h,i and j probably French Mine or Oregon Claims Formations) LATE TRUASSIC WHUSTLE FORMATION 7.0, anglilite; 7.0, andesitic and bacetic esh tuff; 7.1, tufi braccio, 7.0, tuin innestone bads; 6b, sitistone ± thin limestone bads; 6c, limestone bads; 6b, sitistone ± thin limestone bads; 6c, limestone; 6d, siliceous and turfaceous engilitie. 	 Petigraw and Larcan stocks): Bo, hombience porphyritic diorite and gabbre; 3b, equigranular diorite and gabbre; 9c, maric diorite and gabbre; 950% marice); Bd, quartz diorite and quartz gabbre. UNCERTAIN AGE B, undifferentiated; Ba, metic tutts (probably Whistle Formation); Bb, maric tutts; Bc, innestone and/or marble; Bd, polymictic congiomerate; Be, anglitte; Bt, tuttacous situations (passible congiomerate; Bi, tuttacous situations (passible congiomerate; Bi, timestone and/or marble; Bd, polymictic congiomerate; Bi, timestone marble; Bd, polymictic congiomerate; Bi, timestone seccie and congiomerate; Bi, chert pebble congiomerate; Bi, messione braccis and congiomerate; Bi, and i probably French Mine or Oregon Claims Formations) LATE TRUASSIC WHUSTLE FORMATION 70, inmestone boulder braccia ond bosoftic ash tuft; 7e, lopäli tuft; 7f, tuft braccio, 7g, thin immestone bads; 6b, sitstone ± thin limestone beds; 6c, limestone bads; 6b, sitstone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous enginite. 	Petigrew and Larcon stocie): 80, hornblende porphyritic diorite and gabbro: 90, equigranular diorite and gabbro; 9c. maiic diorite and gabbro (>50% mafice): 9d, quartz diorite and quartz gabbro. UNCERTAIN AGE ROCKS OF UNCERTAIN ADE B. undifferentiated: 80, metic tutts (probably Whietle Formation): 8b, motic tuffs; 8c, inmestane and/or marble; 8d, polymictic conglomerate; 8b, anglite; 2H, utifaceous situations (passible Oragon Claims Formation); 8g, limestone, marble and minor chert pebble conglomerate; 8j, imastane streacts and conglomerate; 8i, chert pebble conglomerate; 3j, imastive gametite skarn (8g,h,i and j probably French Mines Oragon Claims Formations) LATE TREASSIC WHUSTLE FORMATION 70, immestone boulder breccio (Copperfield breccio); 7b, sittstone; 7c, anglitis; 7d, andesitic and basaftic ash tuff; 7e, lopili tuff; 7f, tuff breccio, 7g, thin Amestone bads CHUCHUWAYNA FORMATION 60, anglitis ± thin limestone bads; 6b, sittstone ± thin limestone bads; 6c, limestone; 6d, siliceous and tuffaceous anglitite.		HEDLEY INTRUSIONS
CERTAIN AGE ROCKS OF UNCERTAIN AGE B. undifferentioted; Bd, meric tuffs (probably Whistle Fermation); Bb, maric tuffs; Bc, kinestone and/or marbie; Bd, polymictic conglomerate; Bd, utifaceous sikistone (possibly Oregon Claims Formation); Bd, kinestone, marbie and minor chert pubble conglomerate; BJ, massive garnetite skarn (Bg,h,i and j probably French Mine or Oregon Claims Formations) E TRIASSIC WHISTLE FORMATION 70, kinestone boulder braccio (Copperfield braccio); 7b, situstone; 7c, angiétite; 7d, andesitic and baseltic ash tuff; 7e, topäli tuff; 71, tuff braccio, 7g, thin Amestone bade CHUCHUMATAI FORMATION 60, angihite ± thin linestone bade; 6b, situstone ± thin limestone bade; 6c, kinestone; 6d, siliceous and tuffaceous angihite.	CERTAIN AGE ROCKS OF UNCERTAIN AGE B. undifferentioted: 8a, metic tutis (probably Whistle Fermation); Bb, maric tuffs; 8c, imestone and/or matble; 8d, polymictic conglomerate; 8b, encylikte; 8d, tutifaceous sikistone (possibly Oregon Claims Formation); 8g, imestone, marble and minor chert pubble conglomerate; 8b, imestone breccia and conglomerate; 8i, chert pubble conglomerate; 8j, massive garnetite skarn (Bg.h.i and j probably French Mine or Oregon Claims Formations) E TRIASSIC WHISTLE FORMATION 70, imestone boulder breccia (Copperfield breccia); 7b, situstone; 7c, angilitis; 7d, andesitic and baselitic ash tuff; 7e, lopäli tuff; 71, tuff breccia, 7g, thin immestone beds Guycelwarkar FORMATION 6a, angilitis 2 thin linestone beds; 6b, situstone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous engilitis.	CERTAIN AGE ROCKS OF UNCERTAIN ADE B. undifferentioted; 80, metic tutts (probably Whilete Formation); Bb, matic tutts; 80, kinestone and/or matble; 8d, polymictic conglomerate; 8c, kinestone and/or matble; 8d, polymictic conglomerate; 8d, bit Luffaceous situatone (passby Oregon Claims Formation); 8g, kinestone, methe and minor chert pebble conglomerate; 8j, messione precise and conglomerate; 8i, chert pebble conglomerate; 8j, mossive garnetite skarn (Bg,h,i and j probably French Mine or Oregon Claims Formatione) E TRIASSIC WHISTLE FORMATION 7.0, kinestone boulder braccia (Copperfield braccia); 7b, siltetone; 7c, angilite; 7d, andesitic and basaltic ash tuff; 7e, tepäli tuff; 71, tuft braccia, 7g, thin kinestone basis CHUCHWARMA FORMATION 6g, angilite ± thin kinestone basis kinestone basis; 6c, kinestone; 6d, siltetone ± thin kinestone basis; 6c, kinestone; 6d, siltetone; 6d, siltet		Pettigrew and Larcan stocks); Bo, hombiende porphyritic diorite
 B. undifferentioted; So. metic tufts (probably Whilete Fermation); Bb, motic tuffs; Bc, innestone and/or marble; Bd, polymictic conglomerotts; Bb, innestone your situations (passibly Oregon Claims Formabion); Bg, immetice scale and conglomerate; Bi, chert pebble conglomerate; Bj, immetice succia and conglomerate; Bi, chert pebble conglomerate; Bj, immetice scale and conglomerate; Bi, and j probable conglomerate; Bj, immetice scale and (Bg,h,i and j probable french Mine or Oregon Claims Formations) ATE TRIASSIC WHISTLE FORMATION 70, immetice boulder breccio (Copperfield breccio); 7b, situatone; 7c, angilite; 7d, andesitic and baselit and tuff; 7e, kopäli tuff; 71, tuft braccio, 7g, thin Amestone bade; CHUCHUWATHA FORMATION 50, angilite ± thin Amestone bade; 6b, situatione ± thin Amestone bade; 6c, Amestone; 6d, siliceous and tuffaceous engilite. 	 B. undifferentioted; So. metic tufts (probably Whilete Fermation); Sb. motic tuffs; Sc. innestone and/or marble; Sd. polymictic conglomerote; Bd. innestone; M. tuffaceous sitistone; (passby Oregon Claims Formabion); Sg. innestone streecis and conglomerate; St. chert pebble conglomerate; Bj. innestone breacis and conglomerate; St. chert pebble conglomerate; Bj. innestone breacis and conglomerate; St. chert pebble conglomerate; Bj. innestone braccis and conglomerate; St. and j probably French Mine or Oregon Claims Formatione) ATE TRIASSIC WHISTLE FORMATION 70. inmestone boulder braccio (Copperfield breccio); 7b. sitistone; 7c. orgälis; 7d. andesitic and bosolic ash tuff; 7e. lopäli tuff; 71. tuff braccio; 7g. thin inmestone bads CHUCHUWATHA FORMATION 50. orgälite ± thin inmestone bads; 6b. sitistone ± thin inmestone bads; 6c. inmestone; 6d, siliceous and tuffaceous ergilite. 	 B. undifferentioted; So, meric tufts (probably Whielde Formation); Bb, moric luffs; Bc, immestone and/or marble; Bd, polymictic congiomerote; Bd, explicite; Bd, utifaceous skitzkores (passibly Dregon Claims Formation); Bg, limestone, marble and minor chert pebble congiomerote; Bi, immestone breccia and congiomerate; Bi, chert pebble congiomerote; Bi, massive garnetite skarn (Bg,h,i and j probably French Mine or Oregon Claims Formations) ATE TRIASSIC WHISTLE FORMATION 70, immestone boulder breccia (Copperfield breccia); 7b, sitistone; 7c, argillite; 7d, andesitic and basaftic ash tuff; 7e, lopilli tuff; 71, tuff breccio, 7g, thin immestone bads CHUCHUWATHA FORMATION 6o, argillite ± thin, limestone bade; 6b, sitistone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous ergilitite. 	t	UNCERTAIN AGE
ITE TREASSIC WHISTLE FORMATION 7 nimestone boulder breccio (Copperfield breccio); 7b, sittstone; 7c. orgitilie; 7d, andessice ond bosottic ash tuff; 7e, lopalii tuff; 7t, tuff breccio, 7g, thin immestone beds CHUCHUWAYHA FORMATION Imastone beds; 6c, immestone beds; 6b, sittstone ± thin limestone beds; 6d, siliceous and tuffaceous argitite.	ITE TREASSIC WHISTLE FORMATION 7 nimestone boulder breccio (Copperfield breccio); 7b, sittstone; 7c. orgitilie; 7d, andesice ond bosotic ash tuff; 7e, lopilii luff; 7t, tuff breccio, 7g, thin imestone bads CHUCHUWAYHA FORMATION Imastone beds; 6c, innestone bads; 6b, siltstone ± thin limestone beds; 6d, siliceous and tuffaceous argitite.	ITE TREASSEC WHISTLE FORMATION 7 70. Immestone boulder breccia (Copperfield breccia); 7b, sittetone; 70. orgilitie; 7d. andessitic and basaltic ash tuff; 7e, lopilit tuff; 71. tuft breccia, 7g, thin Amestone bads CHUCHUWAYHA FORMATION Immestone bads; 6b, sittetone ± thin limestone bads; 60, argilitie ± thin limestone bads; 6b, sittetone ± thin limestone bads; 6c, limestone; 6d, sitceous and tuffaceous argiitits.	0	B. undifferenticited; Bo, metic tutts (probably Whilette Formation); Bb, moric tuffs; Bc, immestone and/or marble; Bd, polymictic conglomerote; Be, orgilite; B, tuffaceous silistone (passibly Orsgon Claims Formation); Bg, immestone, morble and minor chert pebble considementa; Bb, immestone braccia and considementa; Bi.
 7a. Immestone boulder braccia (Copperfield braccia); 7b, sittstone; 7c, arquitie; 7d, andesitic and basattic ash tuff; 7e, lopili tuff; 7f, tuff braccio; 7g, thin illumestone beds CHUCHUWAYHA FORMATION 6a, arquitie ± thin innestone beds; 6b, sittstone ± thin innestone beds; 6c, innestone; 6d; siliceous and tuffaceous arguitte. 	 70. Immestone boulder braccio (Copperfield braccio); 7b, sittstone; 7c, orgilitie; 7d, andesatic and bosottic ash tuff; 7e, lopali tuff; 7f, tuff braccio; 7g, thin ilmestone beds CHUCHUWAYHA FORMATION 60, orgilitie ± thin limestone beds; 6b, sittstone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous orgilitie. 	 7a. himestone boulder breccio (Copperfield breccio); 7b, sittatone; 7c. argitile; 7d. andeside and bosotic ash tuff; 7e, lopili tuff; 7f, tuff breccio; 7g, thin kinestone beds; CHUCHUWAYHA FORMATION 6a, argitile ± thin kinestone beds; 6b, sittatone ± thin kinestone beds; 6c, kinestone; 6d, siliceous and tuffaceous argitite. 		LATE TRIASSIC
CHUCHUWAYHA FORMATION 60. argifilie ± thin limestone beds; 6b, siltstone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous ergilite.	CHUCHUWAYHA FORMATION 60. arginite ± thin limestone beds; 6b, siltstone ± thin limestone beds; 6c, limestone; 6d, alliceous and tuffaceous orginite.	CHUCHUWAYHA FORMATION 60. argilite ± thin limestone beds; 6b. siltstane ± thin limestone beds; 6c. limestone; 6d. silicecus and tuffaceous ergilite.	Į	
60, argifite ± thin limestone beds; 60, siltstane ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous ergilite.	60, argifite ± thin limestone beds; 60, siltstane ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous ergilite.	6, argilite ± thin limestone beds; 6b, siltstone ± thin limestone beds; 6c, limestone; 6d, siliceous and tuffaceous argilitie.		
limestone beds; 6c, limestone; 6d, alliceous and tuffaceous ergilitie.	imastone beds; 6c, imestone; 6d, alliceous and tuffaceous ergilitie.	limestone beds; 6c, limestone; 6d, alliceous and tuffaceous argilitie.	ſ	CHUCHUWAYHA FORMATION
e Alexandra de la composición de la composicinde la composición de la composición de la composición de	· Allon			
s and the second s	a second and a second			
				a second and a second
		-		
		-		
		-		
		-		
				-

.

STEMWINDER FORMATION										
5 5a, argilite ± thin limestone timestone beds; 5c, fineston	5. orgilite ± thin limestons beds; 5b, sitistone ± thin timestone beds; 5c, ilmestons; 5d, ondesitic ash tuff.									
40, sittstone; 4b, argilite, 40 ondesitic ash tuff ± tufface	HEDLEY FORMATION 4. sitistone; 4b, argilite, 4c, limestone and/or marble; 4d, andestitic aph turf ± tuffoceous sitistone; 4e, polymictic pabble									
FRENCH MINE FORMATION										
3. So, limestone and/or marble minor chert pebble conglome	i; 36, li erate, a	imestone conglomerate c rgillite and maric turl	and breccia;							
OREGON CLAIMS FORMATION										
20, bosofic esh tuff and m with chart and quartz fragm 2d, basofic tuff with large i conglomerate; 21, limestone	ents; 2 marble	c, bedded malic geh on blocks: 2e chert pehble	d dunt tuff;							
PALEOZOIC AND TRIASSIC	XONTACT FAULTED OR OCCUPIED BY CAHILL CREEK PLUTON Aleozoig and triassic Apex mountain complex									
10, situatione; 1b, argilite; 1a basolic ash tuff; 1e, fimesta	, green	natione; 1d, andesitic to								
Imeetone Boulder conglomen	ote ond	chert; 19, gobbro; 1h, breacie								
SYMBOLS Geological boundaries (defined, assur	ned)		<u> </u>							
Bedding, Tope known (inclined, overtu Bedding, Tope unknown (inclined, ver	rned) licol)		······································							
- Plunge of minor fold axis Fourte sinds indicate downthmen side	•• •• •• ••									
Microfossif locality with sample numb (see appendix 2 for details)	Microfossit locality with sample number (see oppendix 2 for details)									
Limestone sampled for microfosells v Uranium-lead (zircon) ieotopic oga i	nithout ocolity	Success	••••••••••••••••••••••••••••••••••••••							
(see appendicts in to 10 for an Mossive, nonbedded or unfolioted ou Mineralized outcrop (armendowrite, chu	Catological baundories (defined, assumed) Bedding, Tope known (inclined, overturned) Bedding, Tope known (inclined, everturned) Trace of synchre Funge of minor lold axis Foults, ticks indicate downthrown side Microfoesil locality with sometie number (see appendix 2 for details) (moscive, nonbedded or microfoesils without success (see appendix 2 for details) Microfoesil (zircon) isotopic age locality with age (see appendix 2 for details) Microfoesil autorop (arsenopyrite, chalcopyrite, magnetite, molochite, pyrite, pyrite(), chalcopyrite, magnetite, molochite, pyrite, pyrite(), scheelide) (see appendix 2 for scheelide) Mineralized outcrop (arsenopyrite, chalcopyrite, magnetite, molochite, pyrite, pyrite(), scheelide) (see appendix 2 for scheeli									
molachite, pyrite, pyriholike, sche Location of mineral property with nu	etite) mber lu	ted	y, ₽a, <u>5a)</u> =*							
· · · · · · · · · · · · · · · · · · ·										
No. Property some chy		C Desmantes	Minibo No.							
2 Sangata 3 Sangata 4 Manual Anastan			6629450346 6629450346 6629450346 6629450346							
2 Surveyete 3 Standard 4 Standard 5 Francism 6 County (Plantism 7 Standard (Singleth) 7 Standard (Singleth) 8 Paging (Plantism) 8 Paging (Plantism) 9 Paging (Plantism)	222	1 Du 81, 40, 11 An Ca 14, 19 An 40, 20, Ca Ca Ca A 8 Cu 81, An 16, Ca Ca Ca A 8 Cu 81, An 16, 16, 16	69128-62000F De22-62206-4 0622-69206-0 D922-69206-0							
8 Pagg (finding Analysmeted) 9 Dan and Speedator 30 Dally 11 Farmer	11	L Cu, Co, As, Sh, Yo Al, Cu L Cu, Ap	0021452000 0022452051 0022452053 00224522053							
			082452156 082452156 082452154 082452154							
13a Handhar Fullman (mn. 1) 13a Handhar Fallman (mn. 2) 14 Hanghan		5. Cu. Au	002402144 002502144 0031402502 002452550							
19 (auf Hornd 16 Sandan (Brundary Zong) 17 Bail doualabs	111	Cu. Ph. 2a Cu. Sh. Ca. B	082452350 082452366 582452362 082452362							
17 Ruid Strandster 18 Ruid Lie 19 Auto, (Hornwerky) 20 Stray Frankin (Pickama Zone) 21 Wildon Gald 22 Nat.	122	L CH L CH L CH	0121052005							
22 Tau 23 Gate at	21 Windows Galad 3 Cui, An ² CB350261- 22 Mai 8 An, Di, An Cui, An Cu									
25. taria (senay II) 20. Ba 27. Free Kinet (Qambiaty)	State Construction Construction Construction Construction The State (Marsault) V Construction Construction Construction The State (Marsault) V Ann. Ann. Con. Zon. Pape Construction The State (Marsault) V Ann. Ann. Con. Zon. Pape Construction The Marsault (Marsault) V Ann. Ann. Con. Zon. Pape Construction The Marsault (Marsault) V Ann. Ann. Con. Zon. Pape Construction The Marsault (Marsault) V Ann. Ann. Con. Zon. Pape Construction The Marsault (Marsault) V Ann. Ann. Con. Zon. Pape Construction									
26 Statistics (Print) 28 Party tin.)	276 Bundon Law (Break) ジーン AL AL CL SL P5 000000000 286 Mahalan (Pers) ジーン AL AL AL CL SL P5 000000000 287 Panny ML-1 ジーム AL AL AL AL AL AL DO DODACOUT 297 Panny ML-1 ジーム AL AL AL DO DODACOUT									
31 Sectors	31 Sheeman U Au, An California 32 Taranta (Galana) V Au, An California									
34 Bradshav 35 Haday Star 38 Au	33 Woolden V Au, Ag, As, Cu 102/152/036 34 Broadsharr V Au, Ag, Cu, As 102/152/154 35 Handay Star V Au, Ag, Cu, As 102/152/154 36 JJ \$ Cu, As 102/152/154									
37 Jaunt Marten (Shemrack, Crystel Pour.) 38 Patricia 39 Urnamet	3.3.	1. W. 20. Mare . Ag. W	082659114 082859102 083659107							
41 Unsernar 42 Taugé Géne 43 Guille Géne (Envelgarson) 44 Guilles Gene (Erset) 44 Guilles Zene		*	003CS0143 002CS0143 052CS0143							
48 Gelden Zunn	1	******	062054042							
officiaren trottain Te-Tatlage U-Uniterson Type anthe Maynt Riordon ohern is also a polasitat in	4.011iu) ga	met depeal.								
	منصبح									
	ROFE	SSION								
<u> </u>	PRO	DF								
G.	G. F. CROOKER									
	COLUMBIA									
*	COSCIEN ST									
GEOLOGY AFTER	GEOLOGY AFTER G. E. RAY, B. C. M. M., 1994									
CRAN	F (5	CROOKER								
GRAN	I F.	CROOKER								
HEDLEY PR	OJE	CT (NTS 92H-	8E)							
SIMILKAMEEN 8										
			·							
REGIO	NAL.	. GEOLOGY	•							
DATE: OCTOBER 1999		FIGURE: 3.0								

500 1000 METRES

SCALE: 0

المراجع والمتعطمة فتراجع المراجع

A 5 to 15? metre wide, northerly striking unit of Copperfield breccia (Unit 7a) has been mapped from line 1700NA and 1540E to line 1940N and 1480E. Pieces of float were also noted 100 metres north along the Johns Creek road. As Whistle Formation siltstone and tuff have been mapped on either side of the Copperfield breccia, it is assumed not to be the basal unit of the Whistle Formation. Ray describes several areas in the Hedley district where there are two breccia units, separated from each other by several hundred metres of coarse tuffaceous sediments. The breccia zone on the detailed grid is believed to be the upper breccia zone, and if so, presents the possibility that one is going down section as one proceeds down hill into Pettigrew Creek. Bedding on the detailed grid is generally northerly to northeasterly with moderate to steep dips to the east.

4.3.3 BLITZ SHOWING

A limited amount of geological mapping was also carried out in the old trenches around the Blitz showing (Figure 5.0). The area is mainly underlain by argillite and minor interbedded limestone of the Stemwinder Formation (Unit 5a). Copperfield breccia was noted in trench 18, and breccia float noted near trench 25. Bedding in the area is northwesterly, with steep dips to the east and west.

A brief description of the rock units is given below.

Unit 5 (Stemwinder Formation): The formation is a sequence of thinly bedded black and organic rich calcareous argillite, with lesser dark grey limestone beds generally less than three metres in thickness (Unit 5a).

Unit 7 (Whistle Formation): The siltstone of Unit 7b contains abundant fine grained tuffaceous material. They are thinly bedded and commonly graded. Individual beds have pale bottoms dominated by plagioclase rich crystal tuff debris, that pass upwards into dark, fine grained argillaceous tops that contain considerable dust tuff material. The siltstone is intercalated with massive to weakly bedded crystal-lithic tuffs (Unit 7d). Towards the base of the formation these units are between 5 and 40 metres thick, while higher in the sequence siltstone gradually becomes less abundant and tuff predominates. Tuffs form pale to dark green outcrops that occasionally contain elongate, dark, lithic fragments up to 75 millimetres in length.

The Copperfield breccia (Unit 7a) is the basal unit of the Whistle Formation and consists of well rounded to angular limestone clasts generally up to one metre in diameter, with rare fragments of other lithologies. The breccia varies from clast to matrix supported, and the matrix varies from massive to thinly bedded.

Unit 9a (Hedley intrusion): This unit consists of narrow dykes of dioritic composition that generally form coarse grained, porphyritic to equigranular, dark coloured and massive rocks. Porphyritic textures tend to be common in the dykes and are marked by coarse, euhedral to subhedral phenocrysts of plagioclase and hornblende.

Unit 20c (Mafic dyke): This light green, 2 to 5 metre wide dyke consists of porphyritic, 1 to 2 millimetre wide augite phenocrysts in a dark groundmass. Most or all of the augite has been partially or completely pseudomorphed to chlorite.

4.4 MINERALIZATION

One hundred and six rock samples were collected from various areas of the property during the 1999 work program including the Mission and Blitz showings, main and detailed grids on the East Pettigrew Zone and the central portions of the Van-1 and Paul-2 mineral claims. A brief description of each area follows.

4.4.1 MISSION SHOWING

The Mission showing (Figure 4.0) is located in the south central portion of the Van-2 claim and is located within an elongate mass of medium grained granodiorite of the Cahill Creek pluton. Previous workers on the property have described the mineralization as fracture controlled and contained within three principle shear zones. The Barnes zone is the most significant zone, striking 030° and dipping 70° southeast. This zone has been traced for 240 metres along strike and is between three and five metres wide. The Walker and Winkler appear to be subsidiary zones extending southwest from the Barnes zone. The Walker zone has been traced for 90 metres, strikes 060° and dips 80° northwest, while the Winkler zone has been traced for 140 metres, strikes 060° and dips 85° southeast.

A cursory examination was made of the Mission showing (Barnes zone) and two samples taken (054 and 055). The granodiorite is altered to quartz, sericite, kaolinite, chlorite, carbonate and epidote. Fractures and quartz veinlets varying from 1 to 50 millimetres wide cut the altered granodiorite, and generally strike 104° and dip steeply north. The quartz veinlets make up to 25% of the altered zone and contain varying amounts of pyrite, arsenopyrite and sphalerite. Sample 054 was a select sample of a 5 centimetre wide quartz veinlet containing 10% pyrite, 5% arsenopyrite and 5% sphalerite. This sample gave 4.05 grams gold per tonne, 277 grams silver per tonne, 6.03% zinc and > 10,000 ppm arsenic. A one metre chip sample (055) containing 25% quartz veinlets with 5% pyrite, 2% arsenopyrite and 2% sphalerite gave 0.02 grams gold per tonne, 18.2 grams silver per tonne, 1,000 ppm zinc and > 10,000 ppm arsenic.

4.4.2 BLITZ SHOWING

Mineralization occurs at a number of different locations at the Blitz showing (Figure 5.0). The area is underlain by thinly bedded argillites and minor limestone of the Stemwinder Formation. A northerly trending magnetic high approximately 300 to 500 metres wide extends along baseline 10000E from line 9800N to 1100N. The argillite within the magnetic high is silicified and contains disseminated pyrrhotite that appears to be causing the magnetic high.

The highest gold values at the showing came from a 10 to 20 centimetre wide quartz vein within a 75 to 140 centimetre wide shear zone exposed in trenches 7 and 8. The quartz vein and associated shear zone have been exposed for about 10 metres along strike, strike 007° and dip 65° west, with the quartz vein containing 2 to 3% pyrite and 2 to 4% arsenopyrite. Two samples of the quartz vein (058, 062) gave 3.35 grams gold per tonne and > 10,000 ppm arsenic, and 8.3 grams gold per tonne and > 10,000 ppm arsenic respectively. Samples of the shear zone (057, 059, 061, 063) on both the hanging wall and foot wall of the quartz vein gave weakly anomalous gold values ranging from 50 to 675 ppb, with anomalous arsenic and antimony.

A 60 to 140 centimetre wide quartz vein striking 009° and dipping 64° west is exposed over a strike length of 6 metres at the winze. The vein contains up to 5% pyrite locally with limonite filled boxworks. Four samples of the quartz vein (064-066, 069) gave weakly anomalous gold values ranging from 105 to 565 ppb. Arsenic was moderately anomalous (562 to 1010 ppm) and molybdenum was weakly anomalous (8 to 25 ppm). Two samples of silicified argillite (067, 068) with disseminated pyrrhotite and pyrite gave weakly anomalous gold (60 and 100 ppb) and arsenic (106 and 118 ppm) values.

At the shaft, a 120 to 140 centimetre wide zone of quartz stockwork and breccia striking 005° and dipping 76° west is exposed in the north wall. The zone is hosted by weakly sheared and fractured silicified argillite, and consists of 10 to 75% quartz veinlets with breccia fragments of quartz and silicified argillite. The quartz veinlets are strongly oxidized and contains ½% disseminated pyrite. Four samples of the quartz stockwork (073-076) gave weakly anomalous gold values ranging from 50 to 90 ppb. Arsenic (70-746 ppm) and molybdenum (40-120 ppm) were both moderately anomalous.

Silicified argillite with a weak quartz stockwork is also exposed in trench 16. The quartz veinlets contain 2 to 4% disseminated pyrrhotite and ½% disseminated pyrite. Two samples of the quartz stockwork (081, 082) gave weakly anomalous gold values of 65 and 90 ppb respectively. Arsenic (230, 66 ppm) was weakly anomalous and zinc (2510, 1295 ppm) strongly anomalous.

A grab sample (084) of silicified argillite with 1 to 3% disseminated pyrrhotite and 1% disseminated pyrite from trench 14 gave a weakly anomalous gold (20 ppb), moderately anomalous molybdenum (74 ppm) and strongly anomalous zinc (1885) values.

The quartz veins and stockwork exposed at the Blitz showing all have similar strikes (005° to 009°) and dips (64° to 76° west) and appear to be along the same strike. It is not known if they represent en echelon veins, or a single vein with different character along strike.

4.4.3 MAIN GRID EAST PETTIGREW ZONE

Prospecting and rock sampling were carried over the main grid on the East Pettigrew zone (Figure 6.0) to determine a) the cause of the high chargeability induced polarization anomaly on lines 1700N and 1900N between 1700E and 2050E and b) the cause of the multi-element soil geochemical anomaly (Mo-As-Ag) extending from line 000N to 1900N,. Outcrop is generally sparse over the grid and 34 rock samples were collected, mostly of float and mostly along the trend of the multi-element soil geochemical anomaly. A few rock samples gave a weak geochemical response.

There are no outcrop exposures over the high chargeability anomaly on lines 1700N and 1900N. One float sample (144) of siltstone with rusty fractures and limonite filled boxworks gave a weakly anomalous gold value of 10 ppb and silver value of 0.8 ppm.

A cluster of float samples (122, 123, 135) taken around line 1300N and 1900E gave weakly anomalous gold, silver, arsenic, copper and molybdenum values. Sample 122 (argiilite/siltstone breccia with white calcite veinlets) was weakly anomalous in arsenic (80 ppm), sample 123 (bleached tuff, limonite on fractures and disseminated) was weakly anomalous in gold (35 ppb), silver (0.8), arsenic (36 ppm)), copper (135 ppm) and molybdenum (15 ppm), and sample 135 (clay altered calcareous tuff, fine grained boxworks, limonite) was weakly anomalous in silver (1.0 ppm), arsenic (40 ppm) and molybdenum (74 ppm).

Argillite of the Stemwinder Formation is poorly exposed at the south end of the grid between line 000N and 300N in the central portion of the multi-element soil geochemical anomaly. The argillite has rusty fractures and contains locally up to 15% pyrrhotite. Samples of the argillite gave weakly anomalous silver (161-0.6 ppm, 164-0.4 ppm, 167-0.6 ppm), arsenic (164-32 ppm) and copper (167-107 ppm) values.

4.4.4 DETAILED GRID EAST PETTIGREW ZONE

.

Prospecting and rock sampling were carried out on the detailed grid of the East Pettigrew zone (Figure 7.0) to determine the source of the Au-As soil geochemical anomalies. Outcrop is generally sparse over the grid and 24 rock samples were taken, mostly of float. A few samples gave a weak geochemical response.

The strongest geochemical response was from sample 178 (bleached, fractured, clay altered tuff, 15% limonite filled boxworks) that gave 85 ppb gold, 0.8 ppm silver, 340 ppm arsenic and 317 ppm copper. Sample 180 (tuff, 1 cm quartz veinlet, 1% pyrrhotite) was weakly anomalous in gold (25 ppb) and sample 184 (fractured, silicified tuff, 1-8 mm quartz veinlets, rusty boxworks with limonite) was weakly anomalous in gold (30 ppb), copper (132) and molybdenum (39 ppm).

A number of other samples, mainly of fractured and silicified or bleached tuff gave weakly anomalous silver (087, 095, 174), arsenic (092, 139) and copper (095, 173, 174, 181-184) values.

4.4.5 VAN SHOWING

The Van showing (Figure 4.0) is located in the central portion of the Van-1 claim and consists of angular boulders with hornfels alteration exposed at two logging landings approximately 250 metres apart. A tuffaceous siltstone has been altered to glassy grey and black hornfels and/or silicified. The rock is strongly fractured and contains 2 to 4% disseminated pyrite and pyrrhotite, some in seams up to 2 millimetres wide. Four samples (127-130) were taken at the north landing with the highest gold value 100 ppb from sample 129. The samples also gave weakly anomalous silver (0.8 ppm), arsenic (184 ppm), cadmium (1.5 ppm), molybdenum (15 ppm) and zinc (148 ppm) values.

Five samples of the hornfels altered, sulphide bearing material were also taken at the south landing. The highest gold value was 75 ppb from sample 086, with other samples giving weakly anomalous silver (2.4 ppm), arsenic (60 ppm), cadmium (3.0 ppm), copper (225 ppm) and zinc (142 ppm) values.

5.0 GEOCHEMISTRY

5.1 STREAM SEDIMENT GEOCHEMISTRY

Fifty-five stream sediment samples were collected from drainages within the claim area, mainly from the upper reaches of Pettigrew Creek and Johns Creek. The sample locations are shown on Figure 4.0 and background and anomalous values are given in Table 6.0.

ELEMENTS	VALUES				
		RANGE	BACKGROUND	ANOMALOUS	
Au	ppb	<5 - 80	5	15	
Ag	ppm	<0.2 - 0.4	0.2	0.4	
As	ppm	<2 - 186	12	18	
Cu	ppm	3 - 53	15	23	
No	ppm	<1 - 18	3	5	
Pb	ppm	<2-10	3	6	
Sb	(ppm	<2-8	3	6	
Zn	ppm	24 - 236	66	99	

Nine samples were collected from the Central Fork of Pettigrew Creek that drains an area underlain by Skwel Peken Formation, including garnet bearing rhyodacite. None of the samples were anomalous for gold, however two were weakly anomalous for arsenic (005-18 ppm, 007-20 ppm), two were weakly anomalous for antimony ((003-6 ppm, 008-8 ppm) and one was weakly anomalous for lead (004-6 ppm).

Three samples were collected from the upper reaches of Burn Creek, and two from the southeast flowing, upper reaches of Paul Creek. These creeks drain the same area as the Central Fork of Pettigrew Creek and none of the samples were anomalous.

Nineteen samples were collected from the East Fork of Pettigrew Creek that drains an area underlain by the Stemwinder, Whistle and Skwel Peken formations, as well as the Cahill Creek pluton and the Pettigrew stock of the Hedley intrusions. The Blitz showing (quartz vein with gold bearing arsenopyrite) is located at the headwaters of one branch of the creek.

None of the samples were anomalous for gold, however one was weakly anomalous for copper (040-35 ppm), one was weakly anomalous for molybdenum (040-5 ppm), two were weakly anomalous for lead, (011-6 ppm, 040-6 ppm), three were weakly anomalous for antimony (013-6 ppm, 034-6 ppm, 037-6 ppm) and one was weakly anomalous for lead (040-146 ppm). Sample 040 was the most strongly anomalous (copper, molybdenum, antimony and zinc) and is the closest sample taken to the Blitz showing.

Four samples were collected from Five A Creek. This creek drains an area underlain by the Whistle and Stemwinder formations and the East Pettigrew zone Mo-As-Ag soil geochemical anomaly. Two of the samples showed elevated gold values of 10 ppb (025, 026), two were anomalous for arsenic (025-20 ppm, 026-24 ppm), four were anomalous for copper (024-35 ppm, 025-43 ppm, 026-37 ppm, 027-31 ppm), three were anomalous for molybdenum (024-13 ppm, 025-17 ppm, 026-18 ppm), one was anomalous for antimony (024-6 ppm) and one was anomalous for zinc (026-102 ppm). Two samples were also collected from a small creek 500 metres south of Five A Creek and draining the same area. Neither of the samples were anomalous for gold, however both were anomalous for arsenic (028-18 ppm, 029-30 ppm), copper (028-53 ppm, 029-33 ppm) and molybdenum (028-7 ppm, 029-5 ppm).

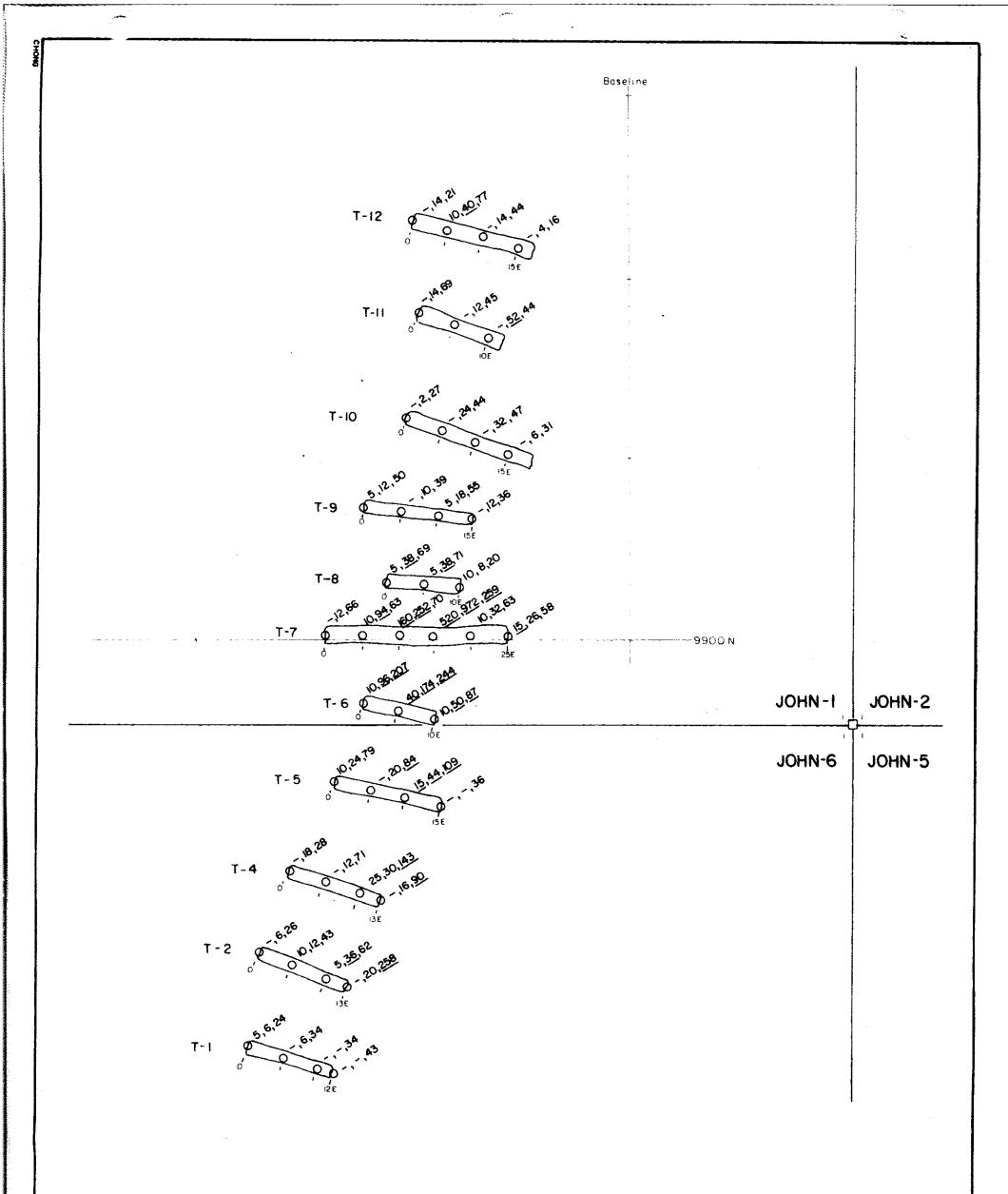
The stream sediment sampling from these two creeks confirmed the East Pettigrew zone Mo-As-Ag soil geochemical anomaly. The creeks were also choked with caliche, indicating the presence of limestone or strongly calcareous rocks.

One sample was collected from the upper reaches of Van Creek that drains an area underlain by the Stemwinder Formation. The sample (046) gave an elevated gold value of 10 ppb and an anomalous copper value of 53 ppm.

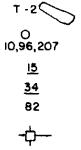
Ten samples were collected from the upper reaches of Johns Creek that is underlain by the Stemwinder and Whistle formations and the Cahill Creek pluton. Three of the samples were anomalous for gold (043-25 ppb, 048-70 ppb, 051-80 ppb), one was anomalous for silver (048-0.4 ppm), five were anomalous for arsenic (041-18 ppm, 042-18 ppm, 047-18 ppm, 050-28 ppm, 051-22 ppm), one was anomalous for copper (048-23 ppm), one was anomalous for molybdenum (042-5 ppm), two were anomalous for lead (042-6 ppm, 048-6 ppm), two were anomalous for antimony (043-8 ppm, 051-6 ppm) and eight were anomalous for zinc (041-120 ppm, 042-188 ppm, 043-114 ppm, 044-106 ppm, 045-104 ppm, 047-116 ppm, 050-104 ppm, 051-110 ppm).

The samples taken from Johns Creek gave the most strongly anomalous results for gold and pathfinder elements of the stream sediment survey. No cause is evident for the anomalous values, although there is hornfels alteration and strong pyrite/pyrrhotite mineralization in the central portion of the Van-1 claim.

Two samples were collected from Jameson Creek that is underlain by tuffaceous siltstone of unknown age and the Cahill Creek pluton. Jameson Creek drains the area of the Mission showing that contains pyrite, arsenopyrite and sphalerite mineralization. Sample 052 gave an elevated gold value of 10 ppb, and was anomalous for silver (0.4 ppm), arsenic (186 ppm), copper (28 ppm), lead (10 ppm) and zinc (236 ppm). Sample 053 was anomalous for zinc (170 ppm). The stream sediment sample results reflect the mineralization at the Mission showing.


5.2 SOIL GEOCHEMISTRY

The soil geochemical survey consisted of sampling a number of old hand trenches (Blitz showing) at five metre intervals to try and locate extensions of a narrow quartz vein with arsenopyrite mineralization and strongly anomalous gold values. The values for gold, arsenic and copper are shown on Figure 8.0 and background and anomalous values are given in Table 7.0.


ELEMENTS	VALUES				
		RANGE	BACKGROUND	ANOMALOUS	
Au	ppb	<5 - 520	5	15	
Ag	ppm	<0.2 -1.2	0.2	0.4	
As	ppm	<2-972	23	34	
Cu	ppm	16 - 259	55	82	
Мо	l ppm	<1 - 48	5.6	9.0	
Pb	ppm	<2 - 18	3.7	6.0	
Sb	mqq	<2 - 14	2.9	6.0	
Zn	ppm	50 - 476	195	293	

GOLD

Gold values ranged from < 5 to 520 ppb (Figure 8.0) with background established at 5 ppb and anomalous values 15 ppb and greater. The highest gold values of 520 and 160 ppb were a mixture of B and C horizon soil taken from trench 7. This trench exposes a shear zone and an arsenopyrite bearing quartz vein with 8.3 grams gold per tonne. One of the samples collected from each of trenches 4, 5 and 6 south of trench 7 also gave an anomalous gold value.

LEGEND

Trench 8 Nº

Soil sample location ppb Au, ppm As, ppm Cu (Au (5ppb 8 As (2ppm are shown as -)

» 15 ppb Au anomalous

> 34 ppm As anomalous

»82 ppm Cu anomalous

Legal post (1 - initial, 2 - final)

PROVINCE PROVINCE DOF CRACKER BRITISH COLUMBIA								
	GEOTSCIEDASULTANTS LTD.							
	GRANT F. CROOKER							
	HEDLEY PROJECT BLITZ SHOWING SOIL GEOCHEMISTRY N.T.S.92H-8E SIMILKAMEEN M.D.B.C. 20 30Metres							
l								
	DATE - OCT 1999	DRAWN BY: G.F.C.	- FIGURE 8.0					
	SCALE: 1:500	REVISED	0.0					

ARSENIC

Arsenic values ranged from < 2 to 972 ppm (Figure 8.0) with background established at 23 ppm and anomalous values 34 ppm and greater. The highest arsenic values of 252 and 972 ppm were also soil samples taken from trench 7 that exposes the arsenopyrite bearing quartz vein. Trench 8, to the north of trench 7 also exposes the arsenopyrite bearing quartz vein and two samples gave moderately anomalous arsenic values. Trench 6, to the south of trench 7 gave three strongly anomalous arsenic values, and one of the samples collected from each of trenches 2, 5, 11 and 12 also gave an anomalous arsenic value.

COPPER

Copper values ranged from 18 to 259 ppm (Figure 8.0) with a background established at 55 ppm and anomalous values 82 ppm and greater. The highest copper value of 259 ppm was also taken from trench 7. Trench 6, to the south of trench 7 gave three anomalous copper values, and two samples from each of trenches 4 and 5, and one sample from trench 2 also gave anomalous copper values.

The strongest gold and multi-element soil geochemical response was in trench 7 that exposes the arsenopyrite bearing quartz veins with anomalous gold values. The anomalous values extend to the south to trench 2, while the geochemical response to the north was much weaker. This indicates the quartz vein extends to the south for at least 50 metres, while an extension to the north is unclear.

6.0 GEOPHYSICS

6.1 MAGNETIC SURVEY

A total of 20.0 kilometres of total field magnetic survey was carried out over the main grid of the East Pettigrew zone during 1999. Survey lines were spaced at 100 metre intervals with station spacing 25 metres. Total field magnetic contours are displayed on Figure 9.0 and the data listed in Appendix II.

The magnetic data can generally be divided into two zones of magnetism. The first is a zone of background magnetism with values ranging from 55,800 nT to 56,000 nT that generally covers the grid area north of line 1100N. This area includes the induced polarization high chargeability anomaly on lines 1700N and 1900N from approximately 1250E to 2100E that has been interpreted to be caused by a high concentration of metallic sulphides. The lack of a magnetic response over the chargeability anomaly indicates that pyrrhotite or other magnetic sulphides are not the cause of the anomaly.

The second zone of magnetism consists of magnetic highs with values ranging from 56,000 nT to 56,500 nT. Magnetic high A (MG-A) is linear feature striking slightly east of north, 400 metres long by 50 metres wide and extending from line 1700N and 2725E to line 1300N and 2675E. Geological mapping has not been carried out over the feature. It may be caused by a Hedley dyke, or a slightly more magnetic sedimentary or volcanic unit.

Magnetic high B (MG-B) is a broad zone of higher magnetism extending from approximately line 600N to 200N between 1700E and 2450E and open to the south. The highest magnetic values occur on line 200N between 2150E and 2250E, an area that is underlain by pyrrhotite rich argillite of the Stemwinder Formation.

With the exception of the zone of high magnetism associated with the pyrrhotite rich argillite on line 200N, the multi-element (Mo-As-Ag) soil geochemical anomaly outlined in 1997 does not coincide with zones of higher magnetism.

7.0 CONCLUSIONS

- 7.01 Two of the drainages from which stream sediment samples were collected gave anomalous geochemical values. Sampling of Five A Creek (4 samples) and a subsidiary creek (2 samples) draining the southern portion of the Mo-As-Ag soil geochemical anomaly on the East Pettigrew zone confirmed the soil geochemical anomaly. Two of the samples showed elevated gold values of 10 ppb, and others were anomalous for arsenic (4), molybdenum (6) and copper (5). Ten samples were collected from the upper reaches of Johns Creek and they gave the most strongly anomalous results for gold and pathfinder elements of the stream sediment survey. Three of the samples were anomalous for gold (25, 70, 80 ppb), while others were anomalous for silver (1), arsenic (5), copper (1), molybdenum (1), lead (2), antimony (2) and zinc (8).
- 7.02 Geological mapping, prospecting and rock sampling were carried out over the main grid on the East Pettigrew zone to determine a) the cause of the high chargeability induced polarization anomaly on lines 1700N and 1900N and b) the cause of the multi-element soil geochemical anomaly (Mo-As-Ag) extending from line 000N to 1900N. There is a general lack of outcrop over the grid. Most of the grid is underlain by siltstone and tuff of the Whistle Formation (often calcareous), although argillite with narrow interbeds of limestone of the Stemwinder Formation are poorly exposed at the south end of the grid. Rock sampling gave weakly anomalous gold (35 ppb) and pathfinder elements, with the highest geochemical values from a cluster of float samples (122, 123, 135) taken around line 1300N and 1900E. The geophysical and geochemical anomalies have not been explained.
- 7.03 The magnetic survey over the East Pettigrew zone did not delineate zones of higher magnetism over the multi-element (Mo-As-Ag) soil geochemical anomaly or the high chargeability induced polarization anomaly outlined in 1997. This indicates the two anomalies are not associated with magnetic sulphide minerals such as pyrrhotite.
- 7.04 Geological mapping, prospecting and rock sampling were carried out on the detailed grid of the East Pettigrew zone to determine the cause of the Au-As soil geochemical anomalies. The grid is underlain by siltstone and tuff of the Whistle Formation, although outcrop is sparse. The highest rock geochemical response was from bleached, fractured, and clay altered tuff float with up to 15% limonite filled boxworks (sample 178) that gave 85 ppb gold, 0.8 ppm silver, 340 ppm arsenic and 317 ppm copper. The cause of the geochemical anomalies has not been adequately explained.
- 7.05 The auriferous quartz veins exposed at the Blitz showing contain the anomalous pathfinder elements arsenic, molybdenum and silver. These pathfinder elements are identical to the Mo-As-Ag soil geochemical anomaly on the East Pettigrew Zone, and similar quartz veins and/or shear zones may be causing the soil geochemical anomaly on the East Pettigrew zone.
- 7.06 The Van showing consists of angular boulders of tuffaceous siltstone, strongly altered to hornfels, with fracturing and 2 to 4% pyrite and pyrrhotite exposed at two logging landings. One sample of float collected from each landing gave weakly anomalous gold (100 ppb, 75 ppb) and pathfinder element (Ag, As, Cd, Mo, Zn) values.
- 7.07 The Mission showing is located within granodiorite of the Cahill Creek pluton that has been altered to quartz, sericite, kaolinite, chlorite, carbonate and epidote and cut by fractures and quartz veinlets (1 to 50 millimetres wide) generally striking 104° and dipping steeply north.. The mineralization is contained within one principal zone (Barnes, striking 030°, dipping 70° southeast, 240 metres long, 3 to 5 metres wide) and two subsidiary zones (Walker, striking 060° and dipping 80° northwest, 90 metres long and Winkler striking 060° and dipping 85° southeast, 140 metres long). The quartz veinlets make up to 25% of the altered zone and contain varying amounts of pyrite, arsenopyrite and sphalerite. A selects ample (054) of a 5 centimetre wide quartz veinlet containing 10% pyrite, 5% arsenopyrite and 5% sphalerite gave 4.05 grams gold per tonne, 277 grams silver per tonne, 6.03% zinc and > 10,000 ppm arsenic. A one metre chip sample (055) containing 25% quartz veinlets with 5% pyrite, 2% arsenopyrite and 2% sphalerite gave 0.02 gram gold per tonne, 18.2 grams silver per tonne, 1,000 ppm zinc and > 10,000 ppm arsenic.

- The Blitz showing is underlain by thinly bedded argillite and minor limestone of the Stemwinder 7.08 Formation. Silicified argillite with 1 to 5 % disseminated pyrite are exposed in a number of old trenches, Quartz veins or stockwork with anomalous gold values, striking approximately 007° and dipping moderately west are exposed at three old workings over a strike length of 900 metres. It is not known if they represent en echelon veins, or a single vein with different character along strike. The highest gold values (058-3.35, 062-8.3 grams gold per tonne) with strongly anomalous arsenic (> 10,000 ppm) came from a 10 to 20 centimetre wide guartz vein with pyrite and arsenopyrite exposed in trenches 7 and 8. Four samples (064-066, 069) of a 60 to 140 centimetre wide quartz vein with pyrite exposed at the winze gave weakly anomalous gold values ranging from 105 to 565 ppb with moderately anomalous arsenic (562 to 1010 ppm). At the shaft, a 120 to 140 centimetre wide zone of oxidized quartz stockwork and breccia with weak shearing and fracturing is exposed in the north wall. The quartz veinlets contain up to 1/2% disseminated pyrite and make up 10 to 75% of the zone. Four samples of the quartz stockwork (073-076) gave weakly anomalous gold values ranging from 50 to 90 ppb, while arsenic (70-746 ppm) and molybdenum (40-120 ppm) were both moderately anomalous.
- 7.09 The strongest soil geochemical response for gold and pathfinder elements from the samples collected at the Blitz showing was at trenches 7 and 8 that expose the auriferous quartz veins. The anomalous values extend to the south to trench 2, while the geochemical response to the north was much weaker. This indicates the quartz vein extends along strike to the south for at least 50 metres, while an extension to the north is unclear.

8.0 RECOMMENDATIONS

- 8.01 Prospecting be conducted to determine the source of the anomalous (gold and pathfinder elements) stream sediment samples from Johns Creek.
- 8.02 Prospecting and rock sampling be continued over the high chargeability anomaly and multi-element soil geochemical anomaly on the main grid of the East Pettigrew zone to determine their causes.
- 8.03 Prospecting and rock sampling be continued over the Ag-As soil geochemical anomalies on the detailed grid of the East Pettigrew zone to determine their causes. The soil geochemical anomalies easily accessible from the Johns Creek road be trenched.
- 8.04 A grid be established over the Van showing, and soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping be carried out to determine the extent of gold mineralization at the showing. If significant geochemical, geophysical or geological targets are developed they be tested by trenching.
- 8.05 The Mission showing be evaluated by establishing a grid over the showing and conducting soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping to develop targets for trenching.
- 8.06 A new grid be established over the Blitz showings and extended to the east. Soil geochemical sampling, magnetic and VLF-EM geophysical surveying and geological mapping should be carried out to develop targets for trenching. Trenching should also be carried out over the showings to develop targets for drilling.

submitted. Respectfol Crooker. P/Geo.. Grant F **Consulting Geologist**

9.0 REFERENCES

- BCEMPR: Annual Report 1925, p 160-170 Annual Report 1935, p D19-D120 Annual Report 1936, p D9-D10, D11-D12 Annual Report 1968, p218-219
- BCEMPR: Minfile 92H-SE052 Mission Minfile 92H-SE053 Snowstorm Minfile 92H-SE054 Gold Hill Minfile 92H-SE138 Hed Minfile 92H-SE175 Blitz

Amendolagine, E. (Feb 1, 1982): Geology and Soil Geochemistry Survey Report GM Claim in the Similkameen Mining Division, BC for Kelly Kerr Energy Corporation. AR# 10,013, Part 1 of 2.

Amendolagine, E. (Feb 1, 1982): Geology and Soil Geochemistry Survey Report EA Claim in the Similkameen Mining Division, BC for Tuscalaloosa Oil and Gas Inc. AR# 10.014, Part 1 of 2.

Amendolagine, E. (Feb 1, 1982): Geology and Soil Geochemistry Survey Report VA Claim in the Similkameen Mining Division, BC for Kadrey Energy Corporation. AR# 10.015, Part 1 of 2.

Amendolagine, E. (Feb 1, 1982): Geology and Soil Geochemistry Survey Report JA Claim in the Similkameen Mining Division, B.C. for Berle Oil Corporation. AR# 10.016, Part 1 of 2.

Billingsley, P. and Hume, C.B. (1941): The Ore Deposits of Nickel Plate Mountain, Hedley, BC, The Canadian Institute of Mining and Metallurgy, Transactions, Volume XLIV, 1941, pp.524-590.

Botel, W. G. (January 13, 1997): Summary Report on the WP Property Hedley Area, Similkameen Mining Division for Northpoint Resources Ltd.

Candy, C. and White, G. (April 1983): Geophysical Report on a Magnetometer and VLF Electromagnetometer Survey for Fox Resources Ltd, Similkameen Mining Division. AR# 11,688.

Cavey, G. and Helgason, R. (Jan 5, 1984): Geochemical Report on the EA Claims for Tuscaloosa Oil and Gas Inc., Similkameen Mining Division, Orequest Consultants Ltd.

Cavey, G. and Helgason, R. (Jan 5, 1984): Geochemical Report on the GM Claims for Kelly Kerr Energy Corporation, Similkameen Mining Division, Orequest Consultants Ltd.

Cavey, G. and Helgason, R. (Nov 30, 1983): Geochemical and Geophysical Report on JA Claims for Berle Oil Corporation, Similkameen Mining Division, Orequest Consultants Ltd.

Cavry, G. and Helgason, R. (Jan 5, 1984): Geochemical Report on the VA Claims for Kadrey Energy Corporation, Similkameen Mining Division, Orequest Consultants Ltd.

Crooker, G.F. (1989): Geochemical Report on the WP 1-4 Claims, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd. AR# 19,413.

Crooker, G.F. and Rockel, E.R. (1987): Geological, Geochemical and Geophysical Report on the WP 1-4 Claims, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd. AR# 16,896.

Crooker, G.F. and Rockel, E.R. (1988): Geological, Geochemical and Geophysical Report on the WP 1-4 Claims, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd. AR# 18,453.

Crooker, G.F. (1994): Geophysical Report on the WP 1-3 Claims, Hedley Area, Similkameen Mining Division for Grant F. Crooker. AR# 23,412.

Crooker, G.F. (1997): Geological and Geochemical Report on the WP 1A, 2,3 5A and 6A Claims, Hedley Area, Similkameen Mining Division for Northpoint Resources Ltd. AR# 24,821.

Crooker, G.F. (1997): Geological, Geochemical, Geophysical, Trenching and Core Drilling Report on the WP 1A, 2, 3, 5A, 9A and W 1, 2 Mineral Claims, Hedley Area, Similkameen Mining Division for Northpoint Resources Ltd. AR# 25,269.

Dolmage, V. and Brown, C.E. (1945): Contact Metamorphism at Nickel Plate Mountain, Hedley BC, Canadian Institute of Mining and Metallurgy, Transactions, Volume XLVIII, 1945, pp 27-67.

Falconer, J.S. et al (1987): Geophysical, Geochemical and Geological Surveys on the Lost Horse Project for Montello Resources Ltd., 92H/8E, Osoyoos Mining Division. AR# 15,177.

Freeze, J.C. (Dec 1986): Geological and Geochemical Report on the Blitz Property, Similkameen Mining Division for Fox Resources Ltd. AR# 15,441.

Freeze, J.C. and White, G. (Nov 1986): Geology and Electromagnetic Report on the Blitz Property, Similkameen Mining Division for Fox Resources Ltd. AR#16,275.

Jones, H.W., (1982): Assessment Report, A Geological-Geochemical Report on Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation. AR# 10,882.

Jones, H.W., (1985): Assessment Report, A Geochemical Report on Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation. AR# 13,988.

Jones, H.W., (1986): A Report on Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation.

Jones, H.W., (1987): Assessment Report, Geology - Geochemical Report on Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation. AR# 16,427.

Jones, H.M., (1988): Assessment Report, Geology - Geochemical Report on the Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation. AR # 17,966.

Jones, H.M., (1988): A Report on the Gold Mine and Gold Hill Claims Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Energy Corporation.

Jones, H.M., (1989): Geophysical Report on the Gold Mine and Gold Hill Claims, Whistle Creek, Hedley Area, Similkameen Mining Division for Philex Gold and Energy Corporation. AR# 19,351.

Kregorsky, R> (1987): Diamond Drilling Report on the Flint and Mission Claims for Agio Resources. AR# 16,916.

Little, H.W. (1961): Geology Kettle River (West Half), BC, Geological Survey of Canada Map 15-1961.

MacDonald, C.C. (1976): Geology, Geochemistry and Diamond Drilling Report on the HED Claims, for Canadian Occidental Petroleum Ltd. AR# 6,060.

Mariano, A., (1982): Prospecting Report on the Gold Mine Mineral Claim, Whistle Creek - Hedley Area, Similkameen Mining Division, BC for Bransol Management Corp. AR# 10,018.

Peto, P> (986): Geological, Electromagnetic and soil Geochemical Report on the Alpha, Flint, Ion and Gamma Claims for Agio Resources. AR#15,630.

Pezzot, E.T. and White, G.E. (Jan 1984): Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, GM Claim, Similkameen Mining Division for Kelly Kerr Energy Corporation. AR# 10,013, Part 2 of 2.

Pezzot, E.T. and White, G.E. (Jan 1984): Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, EA Claim, Similkameen Mining Division for Tuscaloosa Oil and Gas Inc. AR# 10,014, Part 2 of 2.

Pezzot, E.T. and White, G.E. (Jan 1984): Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, VA Claim, Similkameen Mining Division for Kadrey Energy Corporation. AR# 10,015, Part 2 of 2.

Pezzot, E.T. and White, G.E. (Jan 1984): Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, JA Claim, Similkameen Mining Division for Berle Oil Corporation. AR# 10,016, Part 2 of 2.

Phendler, R. (1980): Diamond Drilling and Induced Polarization Survey on the Flint and Mission Claims for Agio Resources. AR#9,222.

Ray, G.E., Dawson, G.L. (1994): The Geology and Mineral Deposits of the Hedley Gold Skarn District, Southern British Columbia, Bulletin 87.

Ray, G.E., Simpson, R., Wilkinson W. and Thomas P. (1986): Preliminary Report on the Hedley Mapping Project, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1986-1, Pages 101-105.

Ray, G.E., Dawson, G.L. and Simpson, R. (1986): The Geology and Controls of Skarn Mineralization in the Hedley Gold Camp Southern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, 1985, Paper 1987-1, pages 65-79.

Ray, G.E., Dawson, G.L. and Simpson, R. (1987): Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-Skarn Camp (92H/08, 82E/05).

Ray, G.E. and Dawson, G.L. (1987): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia (92H-8E), Ministry of Energy Mines and Petroleum Resources, Open File Maps 1987-10 a, b, c.

Ray, G.E. and Dawson, G.L. (1988): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia, BC Ministry of Energy, Mines and Petroleum Resources, Open File Map 1986-6.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area BC, Geological Survey of Canada Memoir 243.

Saleken, L.W. and Crooker, G.F. (1989): Exploration Report Phase I on the WP Property, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd.

Saleken, L.W. (1997): Summary Report Stage I Drilling Program, The WP Property, Hedley Gold District for Northpoint Resources Ltd.

Seraphim, R.H., (1984): Report on Banbury Gold Mines Ltd Hedley, BC.

Vancouver Stock Watch, Banbury Gold Mines Ltd.: November 13, 1986, June 23, July 7, July 30, August 24 and September 29, 1987.

White, G., (1972): Electromagnetic and Soil Geochemical Report on the Flint Claim for Austro-Canadian Exploration. AR# 3,904.

10.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, PO Box 404, Keremeos, British Columbia, Canada, VOX 1N0 do certify that:

I am a Consulting Geologist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Registration No. 18961);

I am a Fellow of the Geological Association of Canada (Registration No. 3758) and I am a Member of the Canadian Institute of Mining, Metallurgy and Petroleum;

I am a graduate (1972) of the University of British Columbia with a Bachelor of Science degree (B.Sc.) from the Faculty of Science having completed the Major program in geology;

I have practised my profession as a geologist for over 25 years, and since 1980, I have been practising as a consulting geologist and, in this capacity, have examined and reported on numerous mineral properties in North and South America;

I have based this report on field examinations within the area of interest and on a review of the available technical and geological data;

I am the owner of the WP, W, John, Van, V and Paul claim groups;

Respectfully 1

Grant F. Crooker - P.G.Co., GFC Consultants Inc.

APPENDIX I

CERTIFICATES OF ANALYSIS

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Г

Comments:

•

.

С	ERTIFI	CATE A9925795			ANALYTICAL PI	ROCEDURES	5	
(LOY) - Project: P.O. # :	BLITZ		CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples		ed to our lab in Vancouver, BC. printed on 23-AUG-1999.	866 983 2118 2119 2120 557 2121	13 13 13 13 13 13 13 13	Fusion weight in grams Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock	BALANCE FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 5 0.2 0.01 2 10 10	60.00 10000 100.0 15.00 10000 10000 10000
	SAM	PLE PREPARATION	2122 2123 2124 2124 2125	13 13 13 13	Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock	ICP -AES ICP -AES ICP -AES ICP -AES	0.5 2 0.01 0.5	100.0 10000 15.00 500
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	2126 2127 2128 2150	13 13 13 13	Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 1 1 0.01 10	10000 10000 10000 15.00 10000
201 202 229	13 13 13	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge	2130 2131 2132 2151 2134	13 13 13 13 13	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock X %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP -AES ICP -AES ICP -AES ICP -AES ICP -AES	10 1 0.01 10 0.01	10000 10.00 10000 15.00
			2135 2136 2137 2138	13 13 13	Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 1 0.01 1	10000 10000 10.00 10000
			2139 2140 551 2141	13 13 13	P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock S %: 32 element, rock & soil Sb ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	10 2 0.01 2	10000 10000 5.00 10000
* NOTE_	1:		2142 2143 2144 2145	13 13	Sc ppm: 32 elements, soil & rock Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock	ICP -NES ICP -NES ICP -NES ICP -NES	1 1 0.01 10	10000 10000 10.00 10000
trace i Element: digestia	metals s for wi on is po	ICP package is suitable for in soil and rock samples. hich the nitric-aqua regia ossibly incomplete are: Al, Ga, K, La, Mg, Na, Sr, Ti,	2145 2146 2147 2148 2149	13 13 13	U ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2	10000 10000 10000 10000

A9925795

Chemex Labs Ltd. red Assaven

alylical Chomists " Geochemists " Registered Assaye 212 Brookabank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

Project : BLITZ Comments:

Page Number : 1-A Total Pages :2 Certificate Date: 19-JUL-1999 Invoice No. : 19922107 P.O. Number : Account :LOY

										CERTIFICATE OF ANALYSIS							9922					
SAMPLE	PRE		ku ppb FA+AA		Ag ppm	11	λs pps	8 pps	Ba	Be ppn	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppn	Cu ppm	Po L	Ga рри	Bg ppm	К %	La ppin	Mg K
126001 126002 126003 126004 126005	201 201 201 201 201	229 229 229	****	* * *	0.2 0.2 0.2 0.2 0.2 0.2	2.42 1.07 1.39 2.75 1.79	14 * < 2 * 1	< 10 < 10 < 10 < 10 < 10 < 10	160 70 100 170 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.61 0.36 0.40 0.50 0.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 3 5 8 7	9 6 7 14 9	5 3 8 5	2.44 1.65 1.97 3.55 2.53	< 10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 1	0.06 0.04 0.06 0.08 0.07	< 10 < 10 < 10 10 < 10	0.33 0.25 0.32 0.30 0.28
126006 126007 126008 126009 126009	201 201	229 229 229 229	< 5 < 5 < 5 < 5 < 5 710	* * *	0.2 0.2 0.2 0.2 0.2	1.61 1.90 1.52 1.59 1.40	2 20 10 12 4	< 10 < 10 < 10 < 10 < 10 < 10	130 130 100 100 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 < 2 2 < 2 2 < 2 2	0.44 0.47 0.43 0.44 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 4	8 8 7 7 8	4 5 4 4	2.26 2.17 2.26 2.06 2.31	< 10 < 10 < 10 < 10 < 10 < 10	1 2 < 1 1	0.05 0.05 0.06 0.07 0.07	< 10 10 10 10 10	0.26 0.24 0.29 0.28 0.28
126011 126012 126013 126014 126014 126015	201 201 201	229 229 229 229 229 229	\$ < 5 < 5 < 5 < 5			1.23 1.47 1.02 1.01 1.47	16 16 4 10 16	< 10 < 10 < 10 < 10 < 10 < 10	80 100 80 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.47 0.55 0.43 0.45 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4	9 8 11 11 10	6 7 6 5 12	2.05 1.99 3.50 3.26 2.59	< 10 < 10 < 10 < 10 < 10 < 10	1 2 < 1 1 < 1	0.06 0.06 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.28 0.23 0.24 0.34
126016 126017 126018 126019 126020	201 201 201		< \$ < 5 < 5 < 5		0.3 0.3 0.3 0.3 0.3	1.49 1.42 1.29 1.59 1.51	8 14 14 6 2	<pre>< 10 < 10</pre>	100 90 90 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2	0.61 0.69 0.64 0.39 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 4 7 5	14 10 8 12 6	12 P 7 4 3	3.81 3.41 3.04 3.91 1.86	<pre> 10 < 10 < 10 < 10 < 10 < 10 < 10 </pre>	< 1 < 1 1 1	0.07 0.07 0.06 0.05 0.05	< 10 10 < 10 < 10	0.32 0.36 0.31 0.18 0.34
126021 126022 126023 126024 126025	201 201 201	229 229 229 229 229	< 5 < 5 < 5 < 5 < 10	~ ~ ~ ~	0.2 0.2 0.2 0.2 0.2	1.64 1.76 1.74 1.51 1.69	4 12 16 20	< 10 < 10 < 10 < 10 < 10 < 10	70 80 110 120 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.43 0.47 0.47 14.95 13.90	< 0.5 < 0.5 < 0.5 0.5 0.5	5 7 1 6 6	9 12 11 26 32	4 5 7 35 43	2.41 3.32 3.34 2.16 2.35	< 10 < 10 < 10 < 10 < 10 < 10	< 1 2 1 1 1	0.05 0.08 0.08 0.16 0.19	< 10 < 10 < 10 < 10 < 10	0.29 0.40 0.33 0.94 1.12
126026 126027 126028 126029 126029		229 229	10 < 5 < 5 5 < 5	č	0.2 0.2 0.2 0.2 0.2	1.72 2.02 2.65 1.80 1.81	24 16 18 30 14	< 10 < 10 < 10 < 10 < 10 < 10	140 130 230 100 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2	13.50 13.00 3.94 9.83 1.18		6 5 11 7 7	38 24 29 16 13	37 31 53 33 19	2.39 2.53 3.16 2.38 2.55	< 10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 1	0.19 0.21 0.19 0.12 0.10	< 10 < 10 < 10 < 10 < 10 < 10	1.27 1.15 0.77 0.55 0.46
126031 126032 126033 126034 126034 126035	201	229 229 229 229 229	<pre>< 5 < 5 < 5 < 5 < 5</pre>	~ ~ ~	0.2 0.2 0.2 0.2 0.2 0.2	1.29 1.19 1.21 1.25 1.07	14 10 14 14 10	< 10 10 < 10 10 < 10 < 10	100 90 80 80 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2		< 0.5 < 0.5 < 0.5	3 4 4 5	8 9 8 11 13	8 7 8 9	1.84 2.05 1.74 3.25 3.61	< 10 < 10 < 10 < 10 < 10	2 < 1 < 1 < 1 < 1	0.07 0.06 0.06 0.06 0.06	10 10 < 10 10 10	0.28 0.26 0.25 0.27 0.23
126036 126037 126038 126039 126039	201 201 201	229 229 229 229 229 229	< 5 < 5 < 5 < 5	٠ ۲	0.2 0.2 0.2 0.2 0.2	0.83 0.85 0.91 1.34 1.86	2 4 4 6 6	< 10 < 10 < 10 10 10	60 60 60 70 100	< 0.9 < 0.9 < 0.9 < 0.9 < 0.9	< 2 < 2 < 2	0.54 0.64 0.68 1.07 1.88	< 0.5	3 3 4 5 8	8 7 8 17 23	6 B 7 14 35	2.34 1.53 1.73 3.25 2.80	< 10 < 10 < 10 < 10 < 10 < 10		0.04 0.04 0.04 0.06 0.09	10 10 10 10 10 10 10	0.16 0.16 0.18 0.30 0.41
L	I	<u> </u>	<u>}</u>													CERTIFI	CATION			uel	ŀf	

**

##

L

.

Chemex Labs Ltd. Analytical Chemists * Geochamists * Registered Assayers 212 Brookabank Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : Comments:	BLITZ

.

Page Number : 1-B Total Pages :2 Certificate Date: 19-JUL-1999 Invoice No. : 19922107 P.O. Number : Account :LOY

-

		• • •																	
											CE	RTIFI	CATE	OF A	NALY	SIS	P	9922107	
SAMPLE	PREP		Ma ppa	Мо рря	Ka X	Ni 9pm	P Ppm	Pb ppm	8 %	Sb ppa	Sc ppm	Sr ppa	Tİ X	T1 ppm	U PPL	V ppn	и ррн	20 ррв	
26001	201 22		680	3	0.04	5	390	2	0.01	< 2	3	58	0.11	< 10	< 10	56	< 10	38	
26002	201 22		270	1	0.03	3	230		< 0.01	< 2	1	26	0.09	< 10	< 10	40	< 10 < 10	24 26	
26003	201 22		460	1	0.03	4	250		< 0.01	6	2	30	0.08	< 10 < 10	< 10 < 10	84	< 10	38	
26004	201 22		920	< 1	0.03	?	360	6	0.01	3	4	48 34	0.09	< 10	< 10	59	< 10	32	
26005	201 22	9	895	1	0.03	5	280		< 0.01	•									
26006	201 22		880	3	0.03	5	360		< 0.01	< 2	2 2	37 41	0.10 0.08	< 10 < 10	< 10 < 10	56 51	< 10 < 10	28 31	
26007	201 22		705	1	0.03	4	370 350	2	< 0.01	1	2	33	0.09	< 10	< 10	51	< 10	28	
26008	201 22 201 22		715 550	3	0.03	5	320		< 0.01	< 2	2	32	0.09	< 10	< 10	46	< 10	30	
26009 26010	201 22		2290	4	0.03	ŝ	430	< 2	0.01	4.2	2	31	0.10	< 10	< 10	52	< 10	30	
	_			-							2	42	0.09	< 10	< 10	51	< 10	60	
26011	201 22		215	2	0.03	3	400		< 0.01 < 0.01	< 2	- 1	67	0.10	< 10	< 10	16	< 10	46	
26012	201 22		325	< 1	0.01	4	380		< 0.01	12	ī	35	0.09	< 10	< 10	93	< 10	32	
26013 26014	201 22		315	î	0.02	ĩ	400		< 0.01	2	ī	34	0.10	< 10	< 10	17	< 10	34	
26018	201 22		335	ī	0.02	÷.	440	< 2	< 0.01	2	3	46	0.10	< 10	< 10	68	< 10	50	
26016	201 22		320	2	0.03	7	410	< 2	< 0.01	< 2	3	42	0.13	< 10	< 10	107	< 10	52	
26017	201 22		425	1	0.03	5	420		< 0.01	< 2	3	45	0.11	< 10	< 10	64	< 10	44	
26018	201 22	9	355	3	0.03	5	310		< 0.01	< 2	2	43	0.11	< 10	< 10 < 10	55 80	< 10 < 10	32	
26019	201 22		535	1	0.03	5	190		< 0.01	< 2	2	28 34	0.13	< 10 < 10	< 10	51	< 10	40	
26029	201 22	9	405	1	0.04	3	350	2	0.01	4		39	0.14	× 10					
26021	201 22		285	1	0.03	4	230	< 2	0.01	< 2	2	30	0.12	< 10 < 10	< 10 < 10	66 91	< 10 < 10	38 56	
26022	201 22		485	1	0.04	5	610	< 2	0.01	< 2	3	33 38	0.15	< 10	< 10	84	< 10	58	
26023	201 32		900	.1	0.05	17	310 1430	< 2	< 0.01 0.08	6	3	273	0.05	< 10	< 10	64	< 10	78	
26024	201 22 201 22		505 565	13 17	0.05	20	1740	< 1	0.08	< 2	ž	281	0.05	< 10	< 10	72	< 10	90	
												299	0.05	< 10	< 10	77	< 10	102	
26026	201 22		585	18	0.05	22 14	2250 760	2	0.08	< 2	- 1	204	0.09	< 10	< 10	66	< 10	72	
26027 26028	201 22 201 22		480 855	4	0.05	29	1540	< 2	0.05	1	- 1	440	0.10	< 10	< 10	90	< 10	98	
26029	201 32		535	ś	0.08	13	660	22	0.05	2	Ĵ	177	0.09	< 10	< 10	69	< 10	64	
26030	201 22		515		0.07		510	< 2	0.01	< 2	3	94	0.11	< 10	< 10	72	< 10	62	
26031	201 22		360	2	0.04	4	500	< 2	0.01	< 2	2	56	0.09	< 10	< 10	47	< 10	42	
26032	201 22		445	2	0.04	5	520	< 2	0.01	2	1	53	0.09	< 10	< 10	55 46	< 10 < 10	40	
26033	201 23		350	3	0.04	5	480	< 2	0.01	2	2	55 50	0.09	< 10	< 10 < 10	85	< 10	46	
26034	201 22		440	3	0.04	5	620 680	< 2	0.01	< 2	2	50	0.10	< 10	< 10	96	< 10	50	
26035	201 22	3	465	< 1	0.04	•													
26036	201 22		385	2	0.03	1	530 530	< 2	0.01	4	1	40	0.07	< 10 < 10	< 10 < 10	61 39	< 10 < 10	40 40	
26037 26038	201 22 201 22		435 435	< 1	0.04	- 1	500	22	0.01	< 2	ī	43	0.08	< 10	< 10	47	< 10	36	
26039	201 22		135	3	0.05	13	930	22	0.03	2	2	84	0.06	< 10	< 10	93	< 10	94	
26040	201 22		275	5	0.05	22	1290	6	0.10	2	4	144	0.08	< 10	< 10	78	< 10	(Y46	
																		1	
		_																N. 01.0	
															CERTIFI	CATION:		Nauch 1	
																	~	Arrich Ser	
																		$V = V_{i}$	
																		. /	

##

Page Number : 2-A Total Pages : 2 Certificate Data: 19-JUL-1999 Invoice No. : 19922107 P.O. Number : Account : LOY

Chemex Labs Ltd. Analytical Chemists * Geochemistis * Registered Assayers 212 Brooksbank Ave, Bribsh Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

Project : BLITZ Comments:

									Com	101163.										
		_								CI	RTIF	CATE	OF A	NAL	rsis	A	\9922	107		
SAMPLE	PREP CODE	Au ppb TA+AA	λg ppm	41 %	ka Popul	B ppa	Ba pp a	Be ppn	Bi ppm	Ca %	Cđi Ppm	Co ppm	Cr	Cu ppm	Pa X	Ga ppn	Eg pp e	K	La ppa	Ng %
126041 126042 126043 126044 126045	201 22 201 22 201 22 201 22 201 22 201 22	9 < 5 9 25 9 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.02 2.42 1.95 1.89 1.90	18 18 4 10 14	10 < 10 < 10 10 < 10	160 100 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 3 < 3 < 3 < 1 < 2	4.29 3.56 1.58 2.75 4.26	< 0.5 0.5 0.5 0.5 0.5	10 11 8 9 9	32 36 25 22 20	22 32 17 22 23	2.97 3.61 2.95 2.69 2.77	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 1	0.16 0.16 0.12 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.67 0.72 0.62 0.61 0.57
126046 126047 126048 126049 126050	201 22 301 22 201 22 201 22 201 22 201 22	9 < 5 9 70 9 < 5	< 0.2 < 0.2 0.4 < 0.2 < 0.2	1.52 1.80 1.72 1.61 1.80	4 18 10 16 28	< 10 < 10 < 10 10 < 10	180 170 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.92	< 0.5 0.5 < 0.5 < 0.5 < 0.5	6 10 7 6 10	18 19 17 17 21	53 21 23 19 20	2.34 3.50 3.08 3.41 3.76	< 10 < 10 < 10 < 10 < 10 < 10	1 1 2 < 1	0.08 0.21 0.18 0.15 0.22	< 10 10 10 10 < 10	0.59 0.65 0.48 0.41 0.65
126051 126052 126053	201 22 201 22 201 22	9 10	< 0.3 0.4 < 0.2	1.95 1.32 1.53	22 106 12	< 10 10 < 10	140	< 0,5 < 0.5 < 0.5	< 2 < 2 < 2	1.73 2.90 2.37	< 0.5 3.5 1.5	10 10 4	17 18 21	16 28 14	3.97 3.47 2.26	< 10 < 10 < 10	1 ∢1 ∢1	0.23 0.11 0.09	20 10 < 10	0.77 0.45 0.50
													·							
																	\cap	1	,	
													с	ERTIFIC	ATION:	• /	Yier	ł.	0 5	

ı.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbark Ave, British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : Comments:	BLITZ
[ERTIFIC

. - ·· -

##

.

CERTIFICATION:_

Page Number : 2-8 Total Pages : 2 Certificate Date: 19-J Invoice No. : 1992 P.O. Number : Account : LOY

tal Pages	:2
artificate Date	: 19-JUL-1999
	: 19922107
O. Number	:
count	:LOY

			_									CE	RTIF	CATE	OF /	NAL	rsis		\9922107	
SAMPLE		er Dr		Ma pps	No ppa	Na X	Ni Ppm	P PPM	Pb ppa	8	sb ppa	Sc ppm	ar pp n	ti \$	T1 ppn	U Dem	V ppa	W ppm	Zn ppm	
26041	201	22	2	295	3	0.06	18	\$10	< 2	0.10	2	4	276	0.12	< 10	< 10	83	< 10	120	
36043	201	22	3	685 320	5 3	0.08	27 15	1060 850	6 2	0.04	< 2	6 5	268 148	0.10 0.12	< 10 < 10	< 10 < 10	86 83	< 10 < 10	198	
26044	201	22		615	i	0.07	16	\$10	< 2	0.03	< 2	ŝ	170	0.09	< 10	< 10	70	< 10	106	
26045	201	221	1	490	1	0.08	16	920	< 2	0.04	2	4	276	0.10	< 10	< 10	73	< 10	104	
26046 26047	201	221	2	440 810	3	0.05	23	690	< 2	0.07	< 2	3	424	0.09	< 10	< 10	\$7	< 10	80	
26048		229		460	3	0.05	16 9	1060 710	< 2 6	0.03	2	5	165 115	0.11 0.10	< 10 < 10	< 10 < 10	82 85	< 10 < 10	116 6B	
26049	201	225		390	i	0.05		650		< 0.01	< 2	- 1	121	0.11	< 10	< 10	95	< 10	60	
26050	201	225	'	945	4	0.05	15	980	< 3	0.01	< 2	6	149	0.13	< 10	< 10	95	< 10	104	
26051 26052	201	225		775	1	0.05 0.04	13 17	1660	< 2	0.01	6	:	121	0.16	< 10	< 10	95 68	< 10	110	
26053	201			250	1	0.05	10	810 770	10	0.03	< 1	3	194 197	0.08	< 10 < 10	< 10 < 10		20 < 10	236 170	
																			$\int d$	

	<u>ر</u>
0	

Chemex Labs Ltd.

÷

Analylical Chemets ' Geochemists ' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

##

Page Number :1-A Total Pages :1 Certificate Date: 23-AUG-1999 Invoice No. :19925795 P.O. Number : Account :LOY

ncouver /7J 2C1 84-0218	Project : Comments:	BLITZ
	C	ERTIF

										Com	nenis:										
											CE	RTIF	ICATE	OF A	NALY	'SIS		49925	795		
SAMPLE	PREP			lu ppb F2+22	Ag Pom	11 1	As ppn	B ppm	Ва ррш	Be ppz	Bİ PPH	Ca %	Cđ ppm	Co ppa	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	к %	La ppn
126090 126091 126097 126098 126098	201 20 201 20 201 20 201 20 201 20 201 20	2 15 2 5 2 15	.93 .00 .65 .48 .59	10 < 5 < 3 < 10	0.8 0.4 < 0.2 < 0.2 < 0.2	1.77 2.11 0.93 0.92 0.91	22 26 2 2 2 4	< 10 < 10 < 10 < 10 < 10 < 10	100 110 40 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.22 2.34 0.31 0.29 0.35	0.5 4.5 < 0.5 < 0.5 < 0.5	14 15 4 3 4	20 23 9 6 9	73 78 4 4	3.31 3.71 2.14 1.26 2.16	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.14 0.19 0.04 0.04 0.03	10 10 < 10 < 10 10
26100 26101 26102 26102 26103 26104	201 20 201 20 201 20 101 20 201 20	2 5 2 15 2 5	.98 .48 .23 .61 .24	< 10 < 10 < E < 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.44 1.83 1.97 1.73 1.53	2 2 4 4 2	< 10 < 10 < 10 < 10 < 10 < 10		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.48	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 6 8 5 5	8 7 9 8 9	4 5 6 5 5	1.90 2.17 2.60 2.10 2.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.05 0.07 0.06 0.06	< 10 10 10 10 10
126305 126306 126107	201 20 201 20 201 20 201 20	2 5	.34 .98 .04	< 10 د 10	< 0.2 < 0.2 < 0.2	0.83 0.85 1.04	< 2 2 < 2 2 2 2 2 2	< 10 < 10 < 10	50 60 60	< 0.5 < 0.5 < 0.5			< 0.5 < 0.5 < 0.5	584	16 13 11	4555	4.76 3.77 3.14			0.04 0.05 0.06	10 10 10
		<u> </u>												с	ERTIFIC	ATION:			uel y	Ĩ,ŗ	

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave, Brüsh Columbia, Canada V7/201 PHONE: 604-984-0221 FAX: 604-984-0218

.

Project : Comments:	BLITZ_
r	

1.14

Page Number : 1-8 Total Pages : 1 Certificate Date: 23-AUG-1999 Invoice No. : 19925795 P.O. Number : Account : LOY

_									CE	ATIFI	CATE	OF /	NAL	YSIS	1	49925	795
		М <u>а</u> \$	Ma. ppa	Мо рра	Ha K	Ni ppm	P ppa	Pb S ppm %	sb ppm	Sc ppm	Sr ppm	Tİ X	T1 ppm	U P PR	V ppm	W ppm	Zn ppm
201 201 201	202 202 202	0.77 0.83 0.14 0.14 0.12	755 \$50 700 395 590	11 11 1 1 1	0.01 0.01 0.02 0.02 0.02	30 32 4 3 3	1130 1340 250 250 310	8 0.04 8 0.03 < 2 < 0.01 < 2 0.01 < 2 < 0.01 < 2 < 0.01	6 4 4 4 7 7 7 7	4 5 1 1 1	121 83 20 20 23	0.04 0.05 0.09 0.08 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 50 52 29 52	< 10 < 10 < 10 < 10 < 10 < 10	122 138 20 18 20
201 201 201	202 202 202	0.17 0.19 0.28 0.25 0.25	1105 1660 2400 1165 1075	2 3 4 3 3	0.03 0.03 0.03 0.03 0.03	4 4 6 4 5	370 430 460 420 450	<pre>< 2 < 0.01 < 2 0.01 < 2 0.01 < 2 0.01 < 2 0.01 < 2 0.01 < 2 0.01</pre>	< 2 < 2 < 2 < 2 < 2 < 2	2 2 3 3 2	27 36 40 33 30	0,08 0.08 0.10 0.11 0,10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 37 43 38 46	< 10 < 10 < 10 < 10 < 10 < 10	22 26 30 28 28
201	202	0.16 0.19 0.21	765 450 435	1 1 1	0.01 0.01 0.01	4	410 400 390	< 2 < 0.01 < 2 0.01 < 2 0.01	< 2 < 2 < 2 < 2	1 1 2	19 18 22	0.10 0.10 0.09	< 10 < 10 < 10	< 10 < 10 < 10	118 93 72	< 10 < 10 < 10	26 26 26
																(,
				·													170
	CO 201 201 201 201 201 201 201 201 201 201	PREP 201 202	CODB % 201 202 0.77 201 202 0.83 201 202 0.14 201 202 0.14 201 202 0.12 201 202 0.12 201 202 0.19 201 202 0.28 201 202 0.28 201 202 0.28 201 202 0.26 201 202 0.26 201 202 0.26 201 202 0.26 201 202 0.26 201 202 0.26 201 202 0.26 201 202 0.15 201 202 0.25 201 202 0.15	CODE % ppm 201 202 0.77 755 201 202 0.83 850 201 202 0.14 700 201 202 0.14 395 201 202 0.14 395 201 202 0.13 1660 201 202 0.28 1460 201 202 0.28 1465 201 202 0.28 1075 201 202 0.28 1075 201 202 0.16 765 201 202 0.18 560 201 202 0.28 1075 201 202 0.28 1075 201 202 0.18 765 201 202 0.19 1560 201 202 0.18 765	CODB 4 ppm pps 201 202 0.77 755 11 201 202 0.83 850 11 201 202 0.14 700 1 201 202 0.14 395 1 201 202 0.14 395 1 201 202 0.14 395 1 201 202 0.12 590 1 201 202 0.19 1660 1 201 202 0.28 2400 4 201 202 0.25 1075 1 201 202 0.25 1075 1 201 202 0.25 1075 1 201 202 0.16 765 1 201 202 0.16 765 1 201 202 0.18 450 1	CODB % ppm ppm % 201 202 0.77 755 11 0.01 201 202 0.83 450 11 0.01 201 202 0.14 700 1 0.02 201 202 0.14 395 1 0.02 201 202 0.14 395 1 0.02 201 202 0.14 395 1 0.02 201 202 0.14 395 1 0.02 201 202 0.14 395 1 0.02 201 202 0.14 395 1 0.02 201 202 0.15 1660 3 0.03 201 202 0.28 2400 4 0.03 201 202 0.25 1075 3 0.03 201 202 0.16 765 1 0.03 201	CODB 4 ppm ppm 4 ppm 201 202 0.77 755 11 0.01 30 201 202 0.83 450 11 0.01 32 201 202 0.14 395 1 0.02 3 201 202 0.14 395 1 0.02 3 201 202 0.14 395 1 0.02 3 201 202 0.14 395 1 0.02 3 201 202 0.14 395 1 0.02 3 201 202 0.14 395 1 0.02 3 201 202 0.15 1660 1 0.03 4 201 202 0.25 1075 3 0.03 4 201 202 0.16 765 1 0.01 4 201 202 0.16 450 <td>CODB 4 ppm ppm k ppm ppm ppm 201 202 0.77 755 11 0.01 30 1130 201 202 0.83 850 11 0.01 32 1340 201 202 0.14 395 1 0.02 3 250 201 202 0.14 395 1 0.02 3 210 201 202 0.14 395 1 0.02 3 210 201 202 0.14 395 1 0.02 3 310 201 202 0.14 395 1 0.02 3 310 201 202 0.19 1660 3 0.03 4 430 201 202 0.25 1075 3 0.03 4 400 201 202 0.16 765 1 0.01 4 410</td> <td>CODB 4 ppm ppm 4 ppm ppm ppm 5 201 202 0.77 755 11 0.01 30 1130 8 0.04 201 202 0.63 450 11 0.01 32 1340 8 0.04 201 202 0.14 700 1 0.02 4 250 <2</td> <0.01	CODB 4 ppm ppm k ppm ppm ppm 201 202 0.77 755 11 0.01 30 1130 201 202 0.83 850 11 0.01 32 1340 201 202 0.14 395 1 0.02 3 250 201 202 0.14 395 1 0.02 3 210 201 202 0.14 395 1 0.02 3 210 201 202 0.14 395 1 0.02 3 310 201 202 0.14 395 1 0.02 3 310 201 202 0.19 1660 3 0.03 4 430 201 202 0.25 1075 3 0.03 4 400 201 202 0.16 765 1 0.01 4 410	CODB 4 ppm ppm 4 ppm ppm ppm 5 201 202 0.77 755 11 0.01 30 1130 8 0.04 201 202 0.63 450 11 0.01 32 1340 8 0.04 201 202 0.14 700 1 0.02 4 250 <2	PREP CODB Mg Ma Mo Na Mi P Pb S Sb 201 202 0.77 755 11 0.01 30 1130 B 0.04 6 201 202 0.63 450 11 0.01 30 1130 B 0.04 6 201 202 0.14 700 1 0.02 4 250 <2	PREP CODB Mg Ma Mo Na Mi P Pb S Sb Sc 201 202 0.77 755 11 0.01 30 1130 B 0.04 6 4 201 202 0.63 450 11 0.01 30 1130 B 0.04 6 4 201 202 0.63 450 11 0.01 30 1130 B 0.04 6 4 201 202 0.63 450 1 0.01 30 130 B 0.04 6 4 201 202 0.14 700 1 0.02 4 250 c 2 0.01< <ctd>c 2 1 201 202 0.12 590 1 0.02 3 310 c 2 0.01<<ctd>c 2 1 201 202 0.19 1660 3 0.03 4 4370 c 2 0.01<<ctd>2<</ctd></ctd></ctd>	PREP CODE Mg Mn Mo Na Ni P Pb 8 Sb Sc Sr 201 202 0.77 755 11 0.01 30 1130 8 0.04 6 4 121 1201 202 0.77 755 11 0.01 30 1130 8 0.04 6 4 121 201 202 0.14 700 1 0.02 4 250 <2	PREP CODE Mg Ma Mo Na Mi P Pb s pba ppa ppa	PREP Mg Ma Mo Ma Mi P Pb 8 fb SC BC TI T1 201 202 0.77 755 11 0.01 30 1140 8 0.065 4 123 0.05 4 123 0.05 4 123 0.065 4 123 0.065 4 123 0.065 4 123 0.065 4 123 0.065 4 123 0.065 4 123 0.065 4 123 0.05 4 123 0.05 4 123 0.05 4 123 0.05 4 123 0.06 4 0.07 4 130	PREP Mg Ma Mc Na Mi P PD 8 pDa ppa ppa	PREP Mg Ma Ma Ma Pai P Pb 8 SD SC SC SC Ti Ti <thti< th=""> Ti Ti Ti<</thti<>	PREP CODE Mg Ma Mi P Pb S Sb Bc Br T1 T1 <t< td=""></t<>

##

.

**

Page Number : 1-A Total Pages : 1 Certificate Date: 19-JUL-1999 Invoice No. : 19922147 P.O. Number : Account : LOY

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brookabank Ave. Bribsh Columbia, Canada V7J 2C1 PHONE: 604-994-0221 FAX: 604-984-0218

Project : Comments:

										CE	RTIF	CATE	OF A	NAL	YSIS		49922	2147		
SAMPLE	PREP CODE	Ац ррђ Ја+аа	Ag ppa	11 *	λ s ppm	8 ppm	Ba ppn	Be ppm	Bi ppm	Ca \$	Cd ppm	Со ррв	Cr ppa	Cu ppm	70 %	Ga ррв	Hg ppm	K %	La ppm	Mg X
T-1 0 T-1 52 T-1 102 T-1 122 T-3 9	201 202 201 202 201 202 201 202 201 202 201 202	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.53 2.34 1.68 1.15 2.06	6 < 2 < 2 6	10 10 10 < 10 < 10	110 90 120 140 100	< 0.5 < 0.8 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.67 0.63 1.01 0.61 0.66	2.0 0.5 2.0 3.5 0.6	6 9 5 4 8	10 15 8 5 13	24 34 34 43 26	1.75 2.26 1.31 0.97 2.07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.16 0.09 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	0.24 0.36 0.19 0.14 0.32
T-2 5E T-2 10E T-3 13E T-4 0 T-4 5E	201 202 201 202 201 202 201 202 201 202 201 202	10 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.79 1.58 1.34 2.00 1.55	12 36 20 18 12	< 10 10 10 < 10 10	70 90 70 120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.64 0.85 0.38 0.50 0.69	< 0.5 1.5 3.0 0.5 2.0	7 9 10 7 6	12 9 5 15 8	43 82 258 28 71	2.17 1.81 1.09 2.23 1.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.10 0.05 0.22 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.37 0.28 0.11 0.33 0.17
T-4 10E T-4 13E T-5 0 T-5 5E T-8 10E	201 202 201 202 201 202 201 202 201 202 201 202	25 < 8 10 < 5 15	0.6 0.2 < 0.2 0.2 0.6	2.61 1.95 2.29 1.94 2.05	30 16 24 20 44	< 10 10 10 10 < 10	120 110 100 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.33	1.0 2.0 < 0.5 0.5 < 0.5	12 11 11 9	22 11 20 12 18	143 90 79 64 109	3.11 2.17 3.08 2.21 2.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.14 0.13 0.26 0.13 0.16	10 < 10 < 10 < 10 < 10	0.48 0.26 0.50 0.33 0.53
Y-5 152 T-6 0 T-6 52 T-6 102 T-7 0	201 202 201 202 201 202 201 202 201 202 201 202	< 1 10 40 10 < 5	<pre>< 0.2 0.2 1.2 0.2 < 0.2 < 0.2</pre>	1.41 2.27 2.52 1.70 2.26	< 2 96 174 50 12	< 10 10 10 < 10 10	80 140 110 70 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2	0.71 0.86 0.92 0.71 0.74	2.0 0.5 < 0.5 2.0 < 0.5	5 9 15 12	6 13 21 4 20	36 207 244 87 66	1.21 4.65 5.98 1.96 2.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.06 0.19 0.15 0.06 0.25	< 10 < 10 10 < 10 < 10	0.12 0.25 0.45 0.16 0.44
r-7 5E r-7 10E r-7 15E r-7 25E	201 202 201 202 201 202 201 202 201 202 201 202	10 160 520 10 15	0.2 0.2 1.0 0.2 < 0.2 < 0.2	2.30 2.12 2.08 1.86 2.45	94 252 972 32 26	< 10 10 10 10 10	160 120 110 100 100	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.98 0.87 0.68 0.92 0.61	1.0 0.5 2.0 2.0 0.5	22 10 22 10 9	17 13 24 9 17	146 70 259 63 58	4.79 2.74 7.33 1.77 2.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.16 0.14 0.13 0.11	< 10 < 10 10 < 10 < 10	0.69 0.32 0.53 0.19 0.37
																C	X			
														ERTIFIC		-,2	Livel	1.e	7	
													C	ERTIFIC	ATION:	·2	Livel	Å		

,

Chemex Labs Ltd. Arabilical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

##

Page Number : 1-8 Total Pages : 1 Certificate Date: 19-JUL-1999 Invoice No. : 19922147 P.O. Number : Account : LOY

.

										CE	RTIF	ICATE	OF /	NAL	/SIS		A9922147
SAMPLE	PREP CODE	Jin ppm	Mo ppm	Na %	Ni ppa	P ppm	Pb ppa	8 X	Sb pp	Sc ppm	Sr ppa	ti t	Tl ppm	U Ppm	V ppm	W ppm	Zn ppm
-1 0 -1 5E -1 108 -1 12E -2 0	201 202 201 202 201 202 201 202 201 202 201 202 201 202	420 360 745 970 310]] 3 4 3	0.03 0.01 0.02 0.01 0.03	17 21 12 10 17	1750 1090 2270 1980 720	< 2 < 2 4 < 2 2 2	0.07 0.04 0.09 0.05 0.03	< 2 4 < 2 < 2 < 2 < 2	1 3 < 1 < 1 3	40 49 52 37 46	0.05 0.06 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 49 25 16 42	< 10 < 10 < 10 < 10 < 10 < 10	476 288 330 366 274
2 5E 2 10E 2 13E 4 0 4 5E	201 202 201 202 201 202 201 202 201 202 201 202	320 、605 530 350 830	3 3 4 3	0.03 0.03 0.01 0.01 0.01 0.02	19 18 43 15 19	850 1110 840 1150 1980	< 2 < 2 < 2 18 < 2	0.03 0.05 0.15 0.04 0.07	< 1 < 2 < 2 < 2 < 2 < 2	3 1 < 1 2 < 1	50 52 19 44 40	0.04 0.03 0.02 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 34 19 46 24	< 10 < 10 < 10 < 10 < 10 < 10	104 196 218 268 332
4 108 4 138 5 0 5 58 5 108	201 202 201 202 201 202 201 202 201 202 201 202	510 680 380 710 440	4 3 3 6 7	0.04 0.03 0.04 0.04 0.05	38 25 22 24 27	1090 2430 1080 1050 690	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.12 0.04 0.10 0.07	< 2 2 4 4	5 1 6 2 4	60 60 62 67 86	0.08 0.03 0.06 0.05 0.05	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 36 57 39 62	< 10 < 10 < 10 < 10 < 10 < 10	234 260 124 152 92
5 152 6 0 6 52 6 105 7 0	201 202 201 202 201 202 201 202 201 203 201 203	770 2380 1225 795 290	8 15 24 9 2	0.01 0.02 0.04 0.02 0.02	14 46 48 47 19	1430 1430 1120 1220 860	< 2 2 8 < 2 < 2	0.08 0.09 0.09 0.08 0.08	< 2 < 2 10 < 2 < 2	< 1 3 6 1 5	36 61 89 32 51	0,01 0.06 0.07 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 46 72 26 51	< 10 < 10 < 10 < 10 < 10 < 10	250 158 136 304 114
-7 5E -7 105 -7 152 -7 205 -7 255	201 202 201 202 201 202 201 202 201 202 201 202	1025 555 1145 920 355	13 7 48 10 4	0.02 0.03 0.01 0.02 0.04	46 25 51 30 18	1220 1150 1660 1780 1010	10 4 18 < 2 < 2 < 2	0.07 0.08 0.14 0.08 0.04	8 < 2 14 2 4	4 3 6 1 4	163 64 65 45 51	0.04 0.05 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 45 86 31 55	< 10 < 10 < 10 < 10 < 10 < 10	156 198 220 306 152
																	\mathbf{O}
	L												c	ERTIFIC	ATION:	•	Juch I.f

Project : Comments:

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayers 212 Brocksbank Ave, British Columbia, Canada V7J 2C1 PHONE: 604-964-0221 FAX: 604-964-0218

.

##

Page Number : 1-A Total Pages : 1 Certificate Date: 23-JUL-1999 Invoice No. : 19922858 P.O. Number : Account :LOY

12 Brocksbank Ave., Ritish Columbia, Canada HONE: 604-984-0221 J	

Project : BLITZ

		1								CE	RTIF	ICATE	OF A	NAL	YSIS	/	9922	858		
SAMPLE	PREP	ли ррб Рд+дд	λg ppm	A1 *	λs ppn	B PPm	Ba ppm	Ве рра	Bi ppa	Ca %	Cđ PPB	Co ppm	Cr ppm	Cu ppn	ře X	Ga ррж	Bg ppm	K K	La ppm	Ng
8 0 8 5 1 8 10 1 9 0 9 5 1	201 229 201 229 201 229 201 229 201 229 201 229	5 10 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2	2.73 2.70 2.92 2.38 2.52	38 38 12 10	< 10 < 10 < 10 < 10 < 10 < 10	90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.02 0.80 0.41 0.89 0.69	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 9 7 8 9	18 18 11 18 20	69 71 20 50 39	3.43 3.18 1.80 2.33 2.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.24 0.23 0.13 0.16 0.29	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.47 0.22 0.42 0.42
0 102 152 10 0 10 52 10 102	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.48 2.51 2.44 1.69 1.74	18 12 2 24 32	< 10 < 10 < 10 < 10 < 10 < 10	90 130 110 110 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.66 0.65 0.73 0.91 0.75	< 0.5 0.5 0.5 0.5 1.5	11 7 6 8 7	17 12 9 9	55 36 27 44 47	2.59 1.93 1.44 1.72 1.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.17 0.08 0.15 0.14	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.26 0.21 0.25 0.23
0 155 1 0 1 52 1 10 2 0	201 229 201 229 201 229 201 229 201 229 201 229	< 5	0.2 < 0.2 < 0.2 0.2 0.2 0.2	2.23 3.70 3.84 2.23 2.91	6 14 12 52 14	< 10 < 10 < 10 < 10 < 10 < 10	60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.98 1.08 0.79 1.02 0.74	1.0 0.5 < 0.5 0.5 0.5	5 12 11 7 7	10 19 22 12 11	31 49 45 44 21	1.53 2.65 2.60 2.02 1.77	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.11 0.26 0.17 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.44 0.48 0.29 0.24
2 102 2 152	201 229		0.2 0.2 ≺ 0.2	2.85 3.03 2.91	40 14 4	< 10 < 10 < 10	140	< 0.5 < 0.5 < 0.5	< 3 < 2 < 2	0.90 0.88 0.52		13 10 7	19 22 11	77 44 16	3.05 2.57 1.77	< 10 < 10 < 10	< 1 < 1 < 1	0.120	< 10 < 10 < 10	0.46

CERTIFICATION:

##

C

____.

Chemex Labs Ltd. Analytical Chemistis * Coochemistis * Registered Assayers 212 Brockebank Ave., North Vancouver British Columbia, Canada V7J 201 PHONE: 604-984-0221 FAX: 604-984-0218

.....

Project : BLITZ Comments:

Page Number : 1-B Total Pages : 1 Certificate Date: 23-JUL-1999 Invoice No. : 19922858 P.O. Number : Account : LOY

Ŧ

					·					CE	RTIF	CATE	OF /	NAL	sis	/	A9922858
BARPLE	PREP CODE	Mn ppn	Mo ppm	Ha N	Ni ppa	p ppm	Pb pp a	8	SD ppu	Sc ppa	Sr ppa	Tİ X	T1 ppm	U DDM	V ppa	W ppm	Zn. pps
8.0 8.52 8.102 9.0 9.512	201 229 201 229 201 229 201 229 201 229 201 229 201 229	505 330 550 355 325	4 3 1 1 < 1	0.03 0.04 0.03 0.05 0.02	18 21 13 17 15	1820 1050 2270 760 990	10 3 < 2 2 2	0.07 0.03 0.07 0.04 0.05	2 4 4 2 4 2 4 2 4 2	4 5 1 4 5	74 67 60 66 50	0.06 0.07 0.05 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 75 29 52 54	< 10 < 10 < 10 < 10 < 10 < 10	136 50 196 74 92
-9 102 -9 152 -10 0 -10 52 -10 102	201 229 201 229 201 229 201 229 201 229 201 229	405 385 705 680 820	1 3 3 5	0.03 0.03 0.03 0.04 0.03	19 14 13 14 16	810 1060 2670 1490 1200	< 3 3 4 6	0.04 0.05 0.09 0.06 0.05	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 < 1 1 1	57 46 39 55 44	0.05 0.05 0.03 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	56 34 23 30 26	< 10 < 10 < 10 < 10 < 10 < 10	84 128 152 128 174
-10 152 -11 0 -11 52 -11 102 -12 0	201 229 201 229 201 229 201 229 201 229 201 229 201 229	310 535 378 325 590	4 1 7 4	0.04 0.04 0.04 0.07 0.04	12 23 20 16 14	750 2020 930 1020 1520	2 2 4 2 4 2 4 2	0.05 0.08 0.04 0.06 0.07	2 4 2 2 2 2 2 4 2 2 2 4 2 2 3 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 3 3 4 4 4 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5	2 4 5 1	50 94 67 62 58	0.06 0.09 0.06 0.06 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 54 56 40 31	< 10 < 10 < 10 < 10 < 10 < 10	234 220 200 266 238
-12 50 -12 10x -12 15x	201 229 201 229 201 229	585 410 310	4	0.06 0.05 0.05	25 17 13	770 710 750	2 2 < 2	0.02 0.03 0.04	< 2 < 2 < 2	522	68 84 29	0.08	< 10 < 10 < 10	< 10 < 10 < 10	67 61 31	< 10 < 10 < 10	150 150 310
																_/11	7

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

PHONE: 604-984-0221	

IFICATE	A9922859
TZ	
itted to our la was printed on :	b in Vancouver, BC. 23-JUL-1999.
	TZ itted to our la was printed on

.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	23 23 23 23 23	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

		ANALYTICAL P	ROCEDURES	5	
CHEMEX CODE	NUMBER SAMPLES		METHOD	DETECTION LIMIT	UPPEF LIMIT
983	23	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	23	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	23	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	23	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	23	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	23	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	23	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	23	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	23	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	23	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	23	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	23	Cr ppm: 32 element, soil & rock	ICP-AES	ī	10000
2128	23	Cu ppm: 32 element, soil & rock	ICP-AES	ī	10000
2150	23	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	23	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	23	Hg ppm: 32 element, soil & rock	ICP-AES		10000
2132	23	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	23	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	23	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	23	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	23	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	23	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
2138	23	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	23	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	23	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
551	23	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	23	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	23	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	23	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
2144	23	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	23	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	23	U ppm: 32 element, soil & rock	ICP-ABS	10	10000
2147	23	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	23	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	23	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

A9922859

Comments:

.

Chamay Labe Ltd

•

##

Page Number :1-A Total Pages :1 Centricate Date: 19-JUL-1999 Invoice No. :19922105 P.O. Number : Account :LOY

																##			Total Pa	ste Date:	1
			212 Brook British Co PHONE: (ksbank A lumbia, (ve., Canada	North Va	ncouver V7J 2C1			Proje Comr	cil: nents:	BLITZ							P.O. Nu Account	mber :	LOY
	- -		r								C	ERTIF	ICATE	OFA	NAL	YSIS		A9922	2105		
SAMPLE		ep De	Au ppb Fa+aa	Ag ppm	41 X	۸ø ppm	B Red	Ba ppa	Be PPR	Bi ppm	Ca.	Cđ ppe	Со рря	Cr ppa	Cu pp=	70 X	Ga ppm	Hg ppm	K L	La Ppm	Ng X
5054 5055 5056 5057 5058	205 205 205	226 226 226 226 226 226	200 15 80	>100.0 18.2 1.8 1.8 1.8	0.36 2.70 1.30	>10000 >10000 396 766 >10000	30 10 < 10 < 10 < 10	10 30 90 100 10	< 0.5 < 0.5 0.5 < 0.5 < 0.5	50 44 < 2 < 2 < 2	< 0.01 0.02 2.19 0.31 0.15	28.0 3.0 < 0.5	21 1 5 15 < 1	60 109 93 111 189	684 38 62 233 15	11.50 4.37 1.66 9.38 2.26	< 10 < 10 < 10 < 10 < 10	7 1 2 1 1	0.18 0.28 0.09 0.22 0.06	< 10 < 10 < 10 < 10 < 10	0.01 0.03 0.36 0.35 0.07
6059 6060 6061 6062 6063	205	226 226 226 226 226 226	15 50 8300	1.4 0.4 0.8 0.2 1.0	0.96 2.41 2.43 0.13 1.68	2620 80 408 >10000 444	10 < 10 10 < 10 < 10 < 10	120 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 3 < 3 < 3 </pre>	0.25 1.98 1.61 0.05 0.92	< 0.5 < 0.5 2.0 < 0.5 < 0.5	7 7 8 < 1 9	151 112 95 153 161	68 70 79 5 84	2.76 1.89 2.93 3.52 2.72	< 10 < 10 < 10 < 10 < 10	< 1 < 1 4 1 < 1	0.29 0.10 0.12 0.04 0.17	10 < 10 < 10 < 10 < 10 10	0.22 0.30 0.37 0.07 0.54
,																					
C			chei naytlea Che British Cc British Cc	imists * Gi ksbank A dumbia, I	eochemist Ve., Canadia	s * Registe North Vi	red Assay ancouver V7J 2C1	915		Proje	ot:	BLITZ			ERTIFIC	CATION: ##		<u>D</u> u	Paga N Total Pa Certifice Invoice P.O. Nu Account	imber :	1-8 1 19-JUL 199221 LOY
			PHONE:	004-904-	0221 F	AX: 604-1	464-0218			Com	ments:	ERTIF	ICATE		NAL	YSIS		A9922	2105		
SAMPLE		æp	Ma	No	Ma	Nİ	P	Pb	8	 8b	Sc	Sr	Ti	71	U	v	¥	žn			
6054 6055 6056 6057 6058	209 209 209	DE 326 326 326 326 326 326	20 125 235	3 5	< 0.01 < 0.01 0.14 < 0.01 0.01	9994 4 20 30 4	<pre></pre>	500 518 8 8 2	>5.00 1.53 0.53 0.07 0.87	900 318 242 2 10 162	ppm < 1 < 1 3 8 < 1	204 27	< 0.01 < 0.01 0.11 < 0.01 < 0.01	<pre>ppm < 10 < 10 < 10 < 10</pre>	<pre>ppm < 10 < 10 < 10 < 10 < 10 < 10</pre>	ppm 1 4 29 51 9	< 10 < 10 < 10	ppm >10000 1030 180 90			
16059 16060 16061 16062 16063	205 205 205	226 226 226 226 226	175 100 655 20	12 5 13 2	< 0.01 0.11 0.19 < 0.01 0.08	15 28 31 7 20	580 1120 1050 < 10 1130	2 < 2 6 2	0.11 0.97 0.18 2.03 0.38	18 6 10 366 8	4 1 6 < 1 5	20 204 219 4	< 0.01 0.11 0.07 < 0.01 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 22 52 6 77	< 10 < 10 < 10 < 10 < 10 < 10	32 22 38 212 8 104			

 \setminus Ņ CERTIFICATION:

 ∂

Chemex Labs Ltd. Anaylical Chemists * Geochemists * Registered Assayers 212 Brooksberk Ave., British Columbia, Canada PHONE: 504-984-0221 FAX: 604-984-0218

.

##

##

CERTIFICATION:

Page Number :1-A Total Pages :1 Certificate Date: 23-JUL-1999 Invoice No. :19922859 P.O. Number : Account :LOY

Project : BLITZ Comments:

										ments:										
										CE	RTIFI	CATE	QF A	NAL	rsis	ł	9922	859		
		Ац ррђ РА+АА	Ag ppm	11 X	As ppm	9 PP=	Be ppm	Be ppn	Bi ppa	Ca %	Cđ ppn	Со ррв	Cr pps	Cu ppm	Fe X	Са ррд	Hg ppm	R %	La ppa	Mg %
		565 425	0.8	0.52	734	< 10	80	< 0.5	< 2	0.27	< 0.5	1	181	30	3.70	< 10	<u>;</u>]	0.07	< 10	0.12
205	226	105	0.8	0.78	562	< 10	60	< 0.5	42	0.40	< 0.5	3	175	58	2.39					0.17
			1.2	4.25 3.56	118 106	< 10 < 10	150 140	0.5 0.5	< 2 < 2	3.43 2.72	0.5 < 0.5	10	\$3 102	87 63	2.72	< 10 < 10	< 1 < 1	0.12 0.13	< 10 10	0.34
		365	0.8	0.61	826	< 10	< 10	< 0.5	< 2	0.38	< 0.5	5	209	80	3.34	< 10	< 1	0.04	< 10	0.20
205	326																			1.13
205	226	< 5	0.8	1.65	< 2	< 10	90	< 0.5	21	9.33	0.5	Ē	132	34	2.98	< 10				0.93
_		90	1.8	2.88	434	< 10	< 10	< 0.5	< 2	1.78	< 0.5	4	108	76	4.63	< 10	< 1	0.06	< 10	0.30
205	226	70	0.8	2.40	746	< 10	80 40	< 0.5	< 2	1.73		í.	96	110	1.91	< 10	< 1	0.08	< 10	0.44
205	226	70	1.0	1.66	70	< 10	10	< 0.5	< 2	1.52		ī	205	32	1.98	< 10	- i	0.05		0.43
		10 < 5	0.4 9.8	2.81 4.10	8 80	< 10 < 10	130 150	0.5 < 0.5	< 2 < 3	2.46 3.37		9 26	118 24	90 75	1.90	< 10 < 10	< 1 < 1	0.15 0.10	10 < 10	0.39
205	226	< 5	0.8	6.77	< 1	< 10	100	0.5	< 2			9	88	50	2.15	10	< 1	0.05	< 10	0.16
																				0.33
205	226	90	0.6	0.71	66	< 10	60	< 0.5	42	0.53	7.0	3								0.25
205	226	10	0.6	7.96	28	< 10	160	< 0.5	< 2	4.25	< 0.5	12	60	35	2.38	10	< ī	0.30	< 10	1.07
		20	0.B	2.07	34	< 10	70	< 0.5	< 2	4.70	18.5	13	81	134	3.13	< 10	< 1	0.09	< 10	0.20
													80		3.84	< 10	< 1	0.10	< 10	0.49
										••••					9.01	10	• 1	0.79	< 10	1.10
	CCC 205 205 205 205 205 205 205 205 205 205	205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226	CODE FA+AA 205 226 565 205 226 425 205 226 425 205 226 425 205 226 365 205 226 5 205 226 5 205 226 5 205 226 70 205 226 70 205 226 10 205 226 10 205 226 50 205 226 10 205 226 10 205 226 10 205 226 10 205 226 10 205 226 10 205 226 10 205 226 10 205 226 10	CODE FAMA pps 205 226 565 0.8 205 226 425 0.8 203 224 105 0.8 203 224 105 0.8 205 226 60 1.2 205 226 365 0.8 205 226 5 1.0 205 226 5 0.8 205 226 5 0.8 205 226 70 0.8 205 226 70 0.4 205 226 70 1.0 205 226 70 1.0 205 226 1.0 0.4 205 226 1.0 0.8 205 226 1.0 0.4 205 226 4 0.9 205 226 1.0 0.4 205 226 1.0 0.4 205	CODE FAAA pps % 205 226 565 0.8 0.521 205 226 425 0.8 0.94 205 226 105 0.8 0.78 205 226 105 0.6 0.78 205 226 565 0.8 0.78 205 226 565 0.8 0.613 205 226 5 1.0 2.04 205 226 5 1.0 2.04 205 226 70 0.8 2.40 205 226 70 0.8 2.40 205 226 70 0.4 2.40 205 226 70 0.4 2.40 205 226 70 0.4 1.41 205 226 10 0.4 1.41 205 226 10 0.4 1.41 205 226 10	CODE FAAA ppm % ppm 205 226 565 0.8 0.52 734 205 226 425 0.8 0.94 1010 203 224 105 0.8 0.94 1020 203 226 105 0.8 0.78 562 205 226 100 0.6 3.55 106 205 226 565 0.8 0.61 826 205 226 455 0.6 0.61 826 205 226 45 1.0 2.04 2 205 226 45 0.6 4.55 426 205 226 45 0.6 4.55 426 205 226 70 0.4 2.40 746 205 226 70 0.6 7.7 46 205 226 1.0 0.6 7.7 42 205	CODE FAAA ppm % ppm ppm <td>CODE FAAA ppm % ppm ppm ppm ppm ppm 205 226 565 0.8 0.52 734 < 10</td> 80 205 226 425 0.8 0.94 1010 < 10	CODE FAAA ppm % ppm ppm ppm ppm ppm 205 226 565 0.8 0.52 734 < 10	CODE Fành ppm % ppm ppm <td>CODE På+ÅÅ ppm % ppm ppm<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>PREP COD Au ppb Ag Al As B Ba Ba Ba Bi Ca Cd Co 205 226 565 0.8 0.52 734 <10</td> 80 0.5 2 0.27 <0.5 1 205 226 565 0.8 0.52 734 <10</td> 80 <0.5 2 0.47 <0.5 1 205 226 60 1.2 4.25 100 0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 2 0.40 <0.5 < 3 0.5 < 3 0.5 < 2 0.40 <0.5 < 2 0.5 2 0.40 0.5 < 2 0.5 < 3 0.5 2 0.5 < 2 0.5 2 $0.$	CODE På+ÅÅ ppm % ppm ppm <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>PREP COD Au ppb Ag Al As B Ba Ba Ba Bi Ca Cd Co 205 226 565 0.8 0.52 734 <10</td> 80 0.5 2 0.27 <0.5 1 205 226 565 0.8 0.52 734 <10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PREP COD Au ppb Ag Al As B Ba Ba Ba Bi Ca Cd Co 205 226 565 0.8 0.52 734 <10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CODE FAAAA ppm ypm ppm ppm<	PREP COD Au ppb Ag Al As B Be Be Bi Ca Cd Co Cr Cu Fa Ga 205 225 565 0.8 0.52 734 <10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PREP CODE Au ppb Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fa Ga Hg K 205 226 565 0.8 0.52 734 <10	PREP CODE Au ppb Ag Al As B Ba Be Bi Ca Cd Co Cz Cu Fa Ga Hg K ppa 205 226 565 0.8 0.52 734 <10

N.

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave, North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX; 604-984-0218

Project : BLITZ Comments:

Page Number : 1-B Total Pages : 1 Certificate Date: 23-JUL-1999 Invoice No. : 19922859 P.O. Number : Account : LOY

ı.

	. <u></u>										CE	RTIF	CATE	OF A	NALY	sis		A9922859	
SAMPLE		Lep)de	Ma ppm	Mo ppm	Na t	Ni Ppe	P ppm	Pb ppa	8 X	SD ppa	Sc ppa	Sr ppa	Tİ X	Tl ppn	U ppm	V ppa	W ppa	Zn ppn	
26064		226		21	0.01		240	10	0.60	4	1	32	0.03	< 10	< 10	43	< 10	16	
26065		226		17 25	0.01	22	370	< 2	2.05	ę	1	42	0.03	< 10	< 10	60	< 10	20	
26067	205	226	285		0.16	11 30	1090	6 8	0,42	10	1	25 422	0.03	< 10 < 10	< 10 < 10	53 31	< 10 < 10	14	
26068	205	226	190	i	0.14	31	1540	2	0.85	6	ž	332	0.12	< 10	< 10	28	< 10	102	
26069 26070		226			< 0.01	20	200	3	1.87	2	i	9	0.01	< 10	< 10	38	< 10	10	
26071		226		< 1 6	0.21 0.19	17 25	250 4210	< 2	3.33	< 2	15	92	0.18	< 10	< 10	126	< 10	54	
26072		226		ī	0.20	23	4160	6	1.06	2	6	411 398	0.08	< 10 < 10	< 10 < 10	109	< 10 < 10	124 124	
26073		226			¢ 0.01	24	960	12	0.13	ŝ	i	82	0.09	< 10	< 10	168	< 10	28	
26074		226		65	0.04	29	880		0.48	6	ļ	89	0.11	< 10	< 10	128	< 10	32	
26076		226		40 76	0.02	19	350 610	4	0.75 0.37	< 2	4	42	0.08	< 10	< 10	111	< 10	16	
26077		226		2	0.36	36	2790	- 1	0.80	1	1	272	0.07	< 10 < 10	< 10 < 10	103	< 10 < 10	12	
4078	205	226	370	< Ī	0.14	11	740	24	1.79	2	ŝ	201	0.22	< 10	< 10	71	< 10	72	
6079 6080		226 226		< 1	0.33	14	\$10	6	0.88	2	1	365	0.13	< 10	< 10	11	< 10	38	
6081		226		19	0.08	28 18	710 330	1	1.38 0.82	2	2	182	0.11	< 10	< 10	43	< 10	60	
6083	205	226	270	17	0.02		350	- 2	0.59	2	i	34	0.03	< 10 < 10	< 10 < 10	47	< 10 < 10	2530 1295	
6083	205	226	190	2	1.10	13	530	2	0.92	ě.	ē	946	0,17	< 10	< 10	98	< 10	60	
6084 6085		226		74	0.07	35 29	960	Ę	1.70	2	2	244	0.08	< 10	< 10	57	< 10	1895	
6086		226		< 1	0.15 0.36	11	1120 590	< 2	1.91 1.73	2	4 15	419 187	0.16	< 10 < 10	< 10 < 10	47 165	< 10 < 10	90 48	
	1																		
	1																		
		1																	
																	n	سر ا	

Chemex Labs Ltd. Analytical Chemists " Registered Assayers 212 Brooksbenk Ave. North Vancouver British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

,

##

Page Number :1-A Total Pages :2 Certificate Date:23-AUG-1999 Invoice No. :19925799 P.O. Number : Account :LOY

lytical Chemists * Geochemis	ls " Hegislered Assayers
12 Brooksbank Ave.,	North Vancouver
British Columbia, Canada	V7J 2C1
PHONE: 604-984-0221 F	AX: 604-984-0218

Project : BLITZ Comments:

EAMPELE CODE PARAB ppm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.84 1.41 0.43 0.74 1.06 0.60 1.54 0.09 0.12
$ \begin{array}{c} 126088 \\ 126089 \\ 126092 \\ 1260 \\ 126092 \\ 1260 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.41 0.43 0.74 1.06 0.60 1.54 0.09 0.12 0.29 0.13 0.06 0.10 1.50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.43 0.74 1.06 0.60 1.54 0.09 0.12 0.29 0.12 0.29 0.13 0.06 0.10 1.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 < 10 2 < 10 3 < 10 0 < 10 1 < 10 3 10 5 < 10 0 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10 5 < 10	0.74 1.06 0.60 1.54 0.09 0.12 0.29 0.13 0.06 0.10 1.50 1.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 4 \\ 4 \\ 3 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	1.06 0.60 1.54 0.09 0.12 0.29 0.13 0.05 0.10 1.50 1.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.54 0.09 0.12 0.29 0.13 0.06 0.10 1.50 1.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 < 10 3 10 5 < 10 0 < 10 7 < 10 5 10 6 < 10 3 10	0.09 0.12 0.29 0.13 0.06 0.10 1.50 1.98
$ \begin{array}{c} 136108 \\ 206 \\ 226 \\ 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.12 0.29 0.13 0.06 0.10 1.50 1.98
1 46109 205 226 $< 5 < 0.2$ 2.59 10 < 10 $s_0 < 0.5$ < 2 $0.56 < 0.5$ < 1 96 2 1.43 < 10 < 10 136110 205 226 $< 5 < 0.2$ 2.07 < 10 s_0 < 0.5 < 1 96 2 1.43 < 10 < 10 136111 205 226 $< 5 < 0.2$ 1.09 < 2 < 10 $120 < 0.5 < 2$ $2 0.73 < 0.5$ < 1 s_1 $0.93 < 10$ < 1 0.21 136113 205 226 < 5 0.2 3.67 $6 < 10$ $10 < 0.5 < 2$ $2 0.23 < 0.5$ 10 57 54 1.44 < 10 < 10 21.57 $6 < 10$ $1.27 < (0.5$ 17 21.58 $6.10 < 10$ 11.63 $10 < 21.5$ 10 $11.67 < 61.5$ 11 51.56 10 51.56 10 $21.5 < (10 & 21.5)$ 10 10.51 10.51 10.52 10	5 < 10 0 < 10 7 < 10 5 10 6 < 10 3 < 10	0.13 0.06 0.10 1.50 1.98
136111 205 226 $< 5 < 0.2$ 1.97 2 < 10 $120 < 0.5$ < 2 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ < 1 $0.74 < 0.5$ $< 10 & 77 & 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5$ $1.72 < 0.5 = 0.72 < 0.5$ $1.72 < 0.5 = 0.72 < 0.5$ $1.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5$ $1.72 & 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5 = 0.72 < 0.5$	7 < 10 5 10 6 < 10 3 < 10	0.05 0.10 1.50 1.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 < 10 5 10 6 < 10 3 < 10	0.05 0.10 1.50 1.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 < 10 1 < 10	1.50
136114 205 226 < 5 0.2 3.11 2 10 370 c 0.8 < 2 1.27 c 5.5 17 21 56 4.53 c 10 c 10 370 c 0.8 < 2 1.46 0.8 7 66 46 2.55 < 10 < 10 10.33 136114 205 226 10 1.4 0.23 18 < 10 $120 < c$ 0.5 < 2 13.46 0.8 7 66 46 2.55 < 10 < 20 < 10.5 < 2 13.35 5.0 3 41 10.02 < 0.5 < 2 2.33 < 0.5 10 20 46 4.09 < 10 < 1 0.16 0.5 < 2 2.33 < 0.5 10 20 40 0.07 10 11.6 0.5 10 20 10 10 10 10 10 10 10 10 10 10	3 < 10	1.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 10	3.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.30
1216119205226< 5< 0.23.274< 10180< 0.5< 2 2.75 < 0.516711144.00< 10< 10.11126120205226< 5		1.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 10	0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 < 10	0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 10	0.87
136139 205 226 100 0.8 2.43 24 <10 70 < 0.5 <2 2.03 <0.5 19 81 81 3.50 <10 <1 0.00 136130 205 226 15 0.2 1.76 16 <10	5 < 10	0.71
126130 205 226 15 0.2 1.76 16 <10 30 <0.5 <2 2.00 0.5 17 146 83 2.31 <10 <1 0.0 126131 205 226 <5		0.73
126131 205 226 < 5 0.4 2.77 60 < 10 40 < 0.5 < 2 3.54 0.5 11 48 64 1.44 < 10 < 1 0.11 126132 205 226 < 5 0.6 3.02 32 < 10 70 < 0.5 < 2 2.70 0.5 12 58 77 1.87 < 10 < 1 0.21	8 < 10	0.34
126132 205 226 < 5 0.6 3.02 32 < 10 70 < 0.5 < 2 2.70 0.5 12 59 77 1.87 < 10 < 1 0.2		0.23
		0.35
		0.45
126134A 205 226 5 0.8 1.11 36 < 10 90 < 0.5 < 2 0.20 < 0.5 7 36 120 10.60 < 10 < 1 0.10		0.50
126134B 205 226 < 5 < 0.2 2.38 8 < 10 230 < 0.5 < 2 1.90 < 0.5 17 33 30 3.33 < 10 < 1 0.20	< 10	1.51
126135 205 226 10 1.0 1.96 40 < 10 290 < 0.5 < 2 7.63 3.0 10 65 77 2.70 < 10 < 1 0.20		1.23
126136 <u>205 226</u> < <u>5</u> 0.2 2.80 < 2 < 10 410 < 0.5 < 2 0.56 < 0.5 9 35 42 4.41 < 10 < 1 0.24		1.84
$126137 \qquad 105 126 < 5 < 0.2 2.38 2 < 10 110 < 0.5 < 2 3.09 < 0.5 18 26 114 3.65 < 10 < 1.0.03 100 < 0.5 18 26 114 3.65 < 10 < 1.0.03 100 < 0.5 18 26 114 3.65 < 10 < 1.0.03 100 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 $		1.14
$126138 \qquad 205 226 < 5 < 0.2 1.20 \qquad 4 < 10 \qquad 20 < 0.5 < 2 > 15.00 < 0.5 \qquad 7 \qquad 9 \qquad 20 \qquad 1.64 < 10 \qquad < 1 \qquad 0.07$	-/10	0.68
	$\beta + \beta$	}
	1 1 1 1	

##

Page Number :1-B Total Pages :2 Certificate Date: 23-AUG-1999 Invoice No. :19925799 P.O. Number : Account :LOY

Ŋ

ł

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbark Ave., North Vencouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : BLITZ Comments:

									-		RTIFIC						9925799
SAMPLE	PREP CODE	Mn ppa	Mo ppm	HA X	Ni. Ppa	P PPM	Pb ppm	8 %	Bb ppa	Sc ppa	Sr ppa	Tİ X	71 pp=	U Dom	Y ppa	W ррш	žn ppa
5087	205 226	1105	3 <	0.01	8	1090	< 2	0.02	2	1	567 <	0.01	<`10	< 10	14	< 10	52
088	205 226	1395	1	0.05	13	1680	< 2	0.07	2	5		0.05	< 10	< 10	73	< 10	68
6089 5092	205 226	1990		0.01	< 1	60	< 2	0.07	2	< 1	1545 <		< 10	< 10	4	< 10	6
093	205 226	580		0.01	9 29	3350 820	< 2 22	0.01 0.01	4	23	534 × 259 ×		< 10 < 10	< 10 < 10	17 36	< 10 < 10	54 120
5094	205 226	1210		0.01	6	130	< 2	0.03	4	< 1	1015 ¢	0.01	< 10	< 10	18	< 10	96
6095 6096	205 226	680 785		0.01	28	1060	< 2	0.01	3	3	98 <		< 10	< 10	58	< 10	96
108	205 226	565	1	0.01	3 2	70	< 1	0.01	< 2	< 1		0.01	< 10	< 10	4	< 10	8
109	205 226	570	16	0.35	2	230	1	0.53	< 2 < 2	< 1 < 1		0.02	< 10 < 10	< 10 < 10	< 1 < 1	< 10 < 10	60 66
110	205 226	620	1	0.27	1	270		0.04	< 2	< 1		0.02	< 10	< 10	< 1	< 10	
111	205 224	310	3	0.25	2	370	-	0.32	< 2	< 1		0.01	< 10	< 10	< 1	< 10	94
111	205 226	415 505	1 2	0.14 0.22	1 15	320 620	< 2	0.01	< 2	< 1		0.01	< 10	< 10	< 1	< 10	46
114	205 226	475	- 1	0.04	14	1870		0.01	2	5	130 151 <	0.19 0.01	< 10 < 10	< 10 < 10	88 55	< 10 < 10	80 102
115	205 226	900		0.01	26	1870	2	0.46	2	6	417 <	0.01	< 10	< 10	49	< 10	142
116 117	205 226	\$05		0.01	16	860	< 2	0.01	6	2		0.01	< 10	< 10	19	< 10	82
116	205 226	410 1025	3	0.05	8 14	540 1260	< 2	0.05	2	<u>+</u>		0.16	< 10	< 10	63	< 10	106
119	205 226	480	i	0.09	24	770	< 2	0.36	1	6 9		0.12 0.19	< 10 < 10	< 10 < 10	84 106	< 10 < 10	80 92
120	205 226	1780	< 1 <		6	4030	< 2 <		2	4	500 <	0.01	< 10	< 10	18	< 10	68
121 122	205 226	1010	3	0.04	7	980	< 2 <		4	6		0.01	< 10	< 10	129	< 10	78
123	205 226	220	\$ < 15	0.01	6 65	260 5230	× 2 2 <	0.04	2	< 1		0.01	< 10	< 10	3	< 10	26
124	205 226	435	4	0.37	5	730	< 2	0.34	< 2	5		0.13	< 10 < 10	< 10 < 10	112 70	< 10 < 10	202
125	205 226	1025	< 1	0.01	17	410	< 2	0.01	2	17		0.01	< 10	< 10	56	< 10	80
127	205 226	650 430	3	0.13	66 66	1050 610	< 2 < 2	0.21	2	5		0.18	< 10	< 10	74	< 10	62
128	205 226	305	15	0.12	39	540	22	2.44	5 2	3		0.31 0.15	< 10 < 10	< 10 < 10	55 125	< 10 < 10	68 126
129	205 226	315	15	0.09	27	450	< 2	1.90	< 2	ĩ		0.16	< 10	< 10	66	< 10	72
130	205 226	615	11	0.06	52	270	•	1.43	< 2	5		0.12	< 10	< 10	62	< 10	146
132	205 226	115 130	4	0.26	22 18	730 600	< 2	0.52	2	1		0.20	< 10 < 10	< 10 < 10	47 56	< 10	38 46
133	205 226	430		0.42	23	860	12	1.13	-	7		0.23	< 10	< 10	101	< 10 < 10	116
134A	205 226	175	9	0.05	18	870	< 2	0.17	6	29		0.01	< 10	< 10	260	< 10	142
1348 135	205 226	720	74	0.03	18 56	1010 6980	< 2 <	0.01	2	4	47 <		< 10	< 10	49	< 10	160
.36	205 226	240	14	0.02	13	2590	< 2	0.02	10	5	211 < 1		< 10 < 10	< 10 < 10	60 45	< 10 < 10	160 76
137	205 226	685	2	0.15		1060	21	0.16	< 2	4.		0.21	< 10	< 10	127	< 10	76
138	205 226	1385	< 1 <	0.01	3	350	< 2 <	0.01	2	5	1710 < 0		< 10	10	30	< 10	in ,
									·								11070
													с	ERTIFIC	ATION:		1 June lev
													-				

		C
--	--	---

Chemex Labs Ltd.

.

Analytical Chemists * Geochemists * Registered Asseyers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Page Number :2-A Total Pages :2 Centificate Date: 23-AUG-1999 Invoice No. :19925799 P.O. Number : Account :LOY

Project : BLITZ Comments:

MPLE PREP CODE Au ppb 72+3A Ag As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Bg K La Mg 205 226 < 5 < 0.2 0.22 28 < 10 10 < 0.5 < 2 12.40 < 0.5 1 102 15 1.02 < 10 < 1 0.01 < 10 0.30	PREP Au ppb Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Pe Ga Eg K La Mg SAMPLE CODE 72+3A ppm % ppm ppm ppm ppm % ppm ppm ppm ppm	PREP Au ppb Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Eg K La K SAMPLE CODE FA+AA ppm % ppm ppm ppm % ppm ppm % ppm % ppm % ppm % ppm % ppm %	PREP Au ppb Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Eg K La K SAMPLE CODE FA+AA ppm % ppm ppm ppm ppm % ppm ppm % ppm % ppm % ppm % ppm %	SAMPLE CC	ODE J	A+AA pi	pan 14	ppm	ppm	ppm	рра	ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Си ррж	Pe k	Ga ppm	Eg ppm	K L	ppn	
MPLE CODE 774+8.4. ppm % ppm ppm ppm ppm % ppm ppm ppm ppm	SAMPLE CODE 78+8.8 ppm % ppm ppm ppm ppm % ppm ppm ppm ppm	ЗАМРЫЕ СОДЕ ТАНА рра % рра рра рра рра ура % рра рра % рра ура % рра % рра %	ЗАМРЫЕ СОДЕ ТАНА рра % рра рра рра рра ура % рра рра % рра ура % рра % рра %	SAMPLE CC	ODE J	A+AA pi	pan 14	ppm	ppm	ppm	рра	ppm	*	ppm	pp	ppm	ррщ	4	ppn	ppm	*	ppn	
205 226 < 5 < 0.2 0.22 28 < 10 10 < 0.5 < 2 12.40 < 0.5 1 102 15 1.02 < 10 < 1 0.01 < 10 0.3	16139 205 226 < 5 < 0.2 0.22 28 < 10 10 < 0.5 < 2 12.40 < 0.5 1 102 15 1.02 < 10 < 1 0.01 < 10 0.3	24139 205 226 < 5 < 0.2 0.22 28 < 10 10 < 0.5 < 2 12.40 < 0.5 1 102 15 1.02 < 10 < 1 0.01 < 10 0.7		.26139 201	5 226	< 5 < 0	.2 0.22	28	< 10	10	< 0.5	< 2	12.40	< 0.5	1	103	15	1.07	< 10	< 1	0.01	< 10	0,3

.

уюла	
r	
1	Project :
B	Comments:

Page Number	2-8
Total Pages	:2
Certificate Date	: 23-AUG-1999
Invoice No.	: 19925799
P.O. Number	:
Account	LOY

-

BANDTLE PREP Mn Mo Ha N1 P PD S SD Sc Sc T T U V N Za 126139 205 26 870 2 < 0.01 5 200< 2 0.27 < 2 1 815 < 0.01 < 10 5 10 15 126139 26 870 2 < 0.01 5 200< 2 0.27 < 2 1 815 < 0.01 < 10 5 10 15						 			CE	RTIFI	CATE	OF	rsis	,	992579	9	
26139 205 226 1970 2 < 0.01 5 200 < 2 0.27 < 1 1 818 < 0.01 < 10 < 10 9 < 10 16	SAMPLE																
	26139	205 226	870	2 ·	0.01	 	··· · · · · ·	0.27					 				
\land															0		

##

Page Number :1-A Total Pages :1 Certificate Date: 04-OCT-1999 Invoice No. :19929702 P.O. Number : Account :LOY

	C
4	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayan 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7 J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : BLITZ Comments: ATTN: GRANT CROOKER

										CI	RTIFI	CATE	OF A	NAL	YSIS	· /	49929	702		
SAMPLE	PREP CODE	Ац ррб РА+АА	Ag ppm	11 %	ya Ya	B PPM	Ba ppm	Be ppa	Bİ ppm	Ca t	Cd. ppm	Со ррш	Cr ppn	Cu ppa	Fe X	Ga ррж	Hg ppa	K %	La ppu	Ng %
126140 126141	205 226		< 0.2	3.46	< 2	< 10	120	< 0.5	< 2	9.01	< 0.5	19	40	93	4.67	10	< 1	0.33	< 10	1.95
126142	205 226		< 0.2 0.2	1.37	2	< 10 < 10	230 470	< 0.5	< 2	0.30	< 0.5	10 18	36 121	61 67	5.21 5.08	< 10 10	<1	0.26	10 10	2.34
126143 126144	205 226		< 0.2 0.8	1.01 2.19	< 2 < 2	< 10 < 10	60 120	< 0.5	< 2 : < 2	>15.00 0.81	< 0.5 0.5	3 12	25 125	13 70	1.76	< 10 10	1	0.06	< 10 < 10	0.75
126145	205 226	5	< 0.2	2.89	< 2	< 10	20	< 0.5	< 1	3.34	< 0.5	14	40	93	3.15	10	< 1	0.09	< 10	1.25
126147	205 226		< 0.2 1.0	4.44	10 22	570 < 10	30 80	< 0.5	< 2 < 2	6.13 12.00	< 0.5 0.5	10 7	38 32	29 59	1.92	10 < 10	< 1 < 1	0.03	< 10 < 10	0.40
126161 126162	205 226		0.6 0.2	2.30	< 2	< 10 < 10	220 230	< 0.5	< 2 < 2	0.32	< 0.5 0.5	12 11	40 59	57 45	3.29	10		0.37	< 10 < 10	1.64
126163	205 226	< 5	< 0.2	2.92	< 2	< 10	60	< 0.5	< 2	2.63	< 0.5	18	55	59	5.44	10	< 1	0.51	< 10	1.82
126165	205 226	1 21	0.4	2.69	32	< 10 < 10	250 150	< 0.5	< 2	4.38	< 0.5	13 16	36 60	40 51	3.82	10 10	< 1 < 1	0.45	< 10 < 10	1.48
136166 136167	205 226		0.2	4.19 2.19	6	< 10 < 10		< 0.5	< 1 < 2	3.17	< 0.5 < 0.5	29 11	20 52	63 107	6.67	10		0.50	< 10 < 10	3.01
126168	205 226	1	< 0.2 < 0.2	1.99	< 3 2	< 10 < 10	460 50	< 0.5		15.00	< 0.5		12	29	2.95	4 10	< 1	0.37	< 10	1.17
126170	205 226	< 5	< 0.2	2.93	< 2	< 10	750	< 0,5	4 2 4 2	1.02	< 0.6 < 0.5	14	68 51	101	3.10	< 10 10	< 1 < 1	0.12	< 10 10	0.66
126171 126172	205 226	< 5 < 5	< 0.2 < 0.2	1.12	< 2 < 2	< 10 < 10	30 60	< 0.5 < 0.5	< 2 < 2	0.99	< 0.5 < 0.5	10	26 73	72 73	2.06	< 10 < 10	< 1 < 1	0.09	< 10 < 10	0.32
126173 126174	205 226	< 5 10	< 0.2 1.2	4.41 3.15	10 16	< 10 < 10	60 40	< 0.5	< 2 < 2	2.57	< 0.5	19 18	37	148	4.24	10	< 1	0.13	< 10	1.31
126175	205 226	< 5	< 0.2	2.46	8	< 10	10	< 0.5	23	5.35	< 0.5	5	62 29	131	4.42	10 < 10	< 1 < 1	0.09	< 10 < 10	1.95
12617 6 126177	205 226 205 226	< 5	0.2 < 0.2	3.05	14 12	< 10 < 10	10 20	0.5 < 0.5	< 2 < 2	6.00 9.34	< 0.5 < 0.5	9 8	40 41	58 32	1.38	< 10 < 10	<1 <1	0.03	< 10 < 10	0.64
126178	205 226	85 < 5	0.8	2.82	340	< 10 < 10		< 0.5 < 0.5	< 2	1.16	< 0.5	25 13	29	317	7.09	10	< 1	0.10	< 10	1.68
126180	205 226	25	< 0.2	2.60	20	< 10		< 0.5	< 2		< 0.5	13	22 38	60 82	3.38	10 10	< 1 < 1	0.07	< 10 < 10	1.64
126181 126182	205 226 205 226	< 5 < 5	< 0.2 < 0.2	1.33 3.36	58 8	< 10 < 10	40 90	< 0.5 < 0.5	< 2 < 2	1.24	< 0.5 < 0.5	13 18	21 62	121 151	2.49 3.93	< 10 10	< 1 < 1	0.05 0.17	< 10 < 10	0.72
126183	205 226 205 226	< 5 30	< 0.2 0.2	2.25	10 16	< 10 < 10		< 0.5 < 0.5	< 2 < 2	2.34	< 0.5 < 0.5	17 20	22 34	116 132	4.34	10 < 10	< 1 < 1	0.07	< 10 < 10	1.26
																	\cap		,	
																	++	71	77	
													CI	RTIFIC	ATION:		<u>L'A</u>	<u>; (' </u>	2	
																		\langle	Ŋ	

.....

Chemex Labs Ltd. Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver Brishs Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : BUTZ Commenter ATTN: GRANT CROOKER

Page Number : 1-B Total Pages :1 Certilicate Date: 04-OCT-1999 Invoice No. ;19929702 P.O. Number : Account :LOY

ŧ

FRUNE, 009-909-0221 FAX; 009-909-0218						Comments: ATTN: GRANT CROOKER											
									CERTIFICATE OF ANALYSIS A99297						49929702		
PREP CODE	Min. ppm	No ppa	lia X	Ni ppm	P ppm	Pb 900	8	Sb Dpm	Sc ppn	Sr ppm	Tİ X	T1 ppm	U	V ppm	W ppm	Zn ppn	
205 226	2070	1	0.08	16	1510	< 2	0.09	< 2	12	246	0.19	< 10	< 10	195	< 10	92	
				18	240	< 2	0.01	4	5			< 10	< 10	56	< 10	146	
													< 10		< 10		
		1	0.01	44	740		0.05	< 2	1	1760	0.01	< 10	< 10 < 10	19	< 10 < 10		
205 226	570	•	0.13	10		4.3	0.30			~~~~~							
				21													
		2	0.06	15	780	6	1.02	< 2		70	0.02	< 10	< 10	39	< 10	90	
205 226	955	1	0.05	16	1880	2	0.35	< 2	5	100	0.01	< 10	< 10	55	< 10	132	
		4	0.16	14	1620	< 2	2.09	< 2	10	90	0.06	< 10	< 10	98	< 10	132	
										108	0.07	< 10	< 10	55	< 10	66	
205 226	655														< 10	140	
		` i	0.06	15	470	- 2	1.02	1	17	50	0.03	< 10	< 10	157	< 10	90 64	
205 226	2680	1	0.05	- 10	1120		0.10										
	300																
205 226	405	ā	0.03	19	1400	1	0.40		;								
		1	0.11	5	760	< 2	0.20	< 2	à	23	0.17	< 10	< 10	66	< 10	26	
205 226	365	3	0.01	5	320	2	0.01	< 2	1	92	0.04	< 10	< 10	52	< 10	28	
205 226	515	6	0.38	10	980	< 2	0.92	< 2	3	147	0.23	< 10	< 10	108	< 10	52	
							0.64	2	5	120	0.18	< 10	< 10	116	< 10	62	
205 226	700	ĩ	0.07	16	1900	< 2	0.18	2 2	3	159	0.10	< 10	< 10	35	< 10	60 96	
205 226	1260		0.04		1060		0.01		•	24	0.16	< 10	. 10	100	. 10		
205 226	780	< 1	0.04	9	600	< 2	0.01	1	5	249	0.01						
	605		0.16	12	760	< 2	0.89	< 2	4	79	0.12	< 10	< 10	77	< 10	70	
205 226							0.28	< 2	з	56	0.07	< 10	< 10	39	< 10	26	
	415		0.35	23	1040	< 2	1.21	< 2	2	167	0,12	< 10	< 10	98	∢ 10	68	
	785	1	0.15		980	< 2	0.91	< 2	?	83	0.12	< 10	< 10	128	< 10	76	
						••		••	-		0.10	. 10	• 10	~	v 10	64	
																$\int -d$	
				• • • •							•						0
												С	ERTIFIC	ATION:_		· Xasai la	<u> </u>
																Ċ	A. C. C. C. C. C. C. C. C. C. C. C. C. C.
	CODE 205 226 205 226 206 226 208 226 208 226 208 226 208 226 205 20	CODE ppm 205 226 2070 205 226 345 206 224 345 206 224 345 206 224 345 206 224 374 206 224 1763 205 226 570 205 226 400 205 226 400 205 226 1015 205 226 1015 205 226 400 205 226 405 206 226 1015 205 226 405 205 226 300 205 226 405 205 226 405 205 226 450 205 226 450 205 226 450 205 226 326 205 226 326 2	CODE ppm ppm 205 226 2070 1 205 226 345 10 206 226 375 4 208 224 345 10 208 224 345 10 208 224 1765 <1	CODE ppm ppm x 205 226 2070 1 0.08 205 226 345 10 < 0.01	CODE ppm ppm % ppm 205 226 2070 1 0.06 16 205 226 345 10 4.01 18 206 226 375 4 0.02 60 205 224 1765 <1	CODE ppm ppm ppm ppm ppm 205 226 226 345 10 < 0.08	CODE ppm ppm k ppm in{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BREP CODE Mn Ma Mi P Pb g gb gc 205 226 2070 1 0.08 16 1510 <2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PREP CODE No. N	PREP CODE Mn Mo No n{array}{ c c c c c c c c c c c c c c c c c c c$	PREP CODE Mm Mi P PD S BD BC BI MI P PD S BD BC BI PP r>CODE No. N			

	Che
	Analytical Ci
N	212 Bro British C PHONE

.

mex Labs Ltd. :hemists "Geochemists " Registered Assaye ooksbank Ave., North Vancouver Columbia, Canada V7J 2C1 E: 604-984-0221 FAX: 604-984-0218

Comments:

С	ERTIFI	CATE	A992	3233					ANAI		PROCEDU	RES		
DY)- sject: D.#:	BLITZ]	CHEMEX CODE	NUMBER SAMPLES		DESCRIP	PTION	METHOD		DETECTION LIMIT	UPPER LIMIT
mples			ab in Vancouver 20-JUL-1999.	, вс.		384 316	1 1	Ag g/t: Gi En %: Cond	avimatric . Mitric-HC	L dig'n	FA-GRAVIN XXS	BTRIC	3 0.01	3500 100.0
	SAM	PLE PRE	PARATION		٦									
emex Kde	NUMBER SAMPLES		DESCRIPTION							-				
212	1	Overlimit	pulp, to be for	unđ										
					-									
]									
								[· · · ·					
											,	•		
				ex La							##		Page Nun Total Pag- Certificate	aber:1 əs::1 Date:20-JUL
	0		Analytical Chemists 212 Brooksband British Columbia PHONE: 604-90	kAvs., No a.Canada	rth Vancou V7J	ver 2C1		Project : Comment	BLITZ 8:				Invoice No P.O. Num Account). : [9923 2
Г				1	r				CERTIFIC	ATE OF	ANALYSIS	A	9923233	1
		NPLE	PREP CODE	Ag FA g/t	Zn ¥									
	126054		212	277	[03								
				-										

27.1

OVERLIMITS from A9922105

APPENDIX II

.

MAGNETIC DATA

,

			1						2
			•						-
Grant F.	Crooker		Line and Station:	+=Northing/Easting		1800 1800	1850 1875	55891 55867	
				-=Southing/Westing		1800	1900	55845	
A			File Name: WPma			1800	1925	55856	
	VP5A Cla		Flie Name: WPmau	וט		1800	1950	55863	
Grid: Er	ast Pettig	rew				1800	1975	55854	
Date: Sr	eptember	1999				1800	2000	55853	
	ent Type:		Details:			1800 1800	2025 2050	55844 55925	
						1800	2050	55922	
Scintrex	MP-2:		Corrected Total Fie	eld Magnetic Values		1800	2100	55932	
						1800	2125	55929	
Data Typ	nce [.] #1		Corrected Total Fig	eld Magnetic Values		1800	2150	55908	
Data Typ	µca. #1		Concount inter inter inter	ald magnetic values		1800	2175	55936	
N/S	E/W	#1				1800	2200	55926	
ine 1900						1800 1800	2225 2250	55941 55942	
1900	1700	55939				1800	2275	55939	
1900	1725	55933				1800	2300	55929	
1900	1750	55885				1600	2325	55908	
1900 1900	1775 1800	55882 55868				1800	2350	55954	
1900	1800	55874				1800	2375	55964	
1900	1850	55867				1800 1800	2400 2425	55979 55937	
1900	1875	55892				1800	2420	55959	
1900	1900	55875				1800	2475	55943	
1900	1925	55870				1800	2500	55941	
1900	1950	55878				1800	2525	55927	
1900 1900	1975 2000	55854 55851				1800	2550	55957	
1900	2000	55822				1800	2575	55981	
1900	2050	55923				1800 1800	2600 2625	56035 55995	
1900	2075	55937				1800	2625	55968	
1900	2100	55938				1800	2675	55984	
1900	2125	55993				1800	2700	55974	
1900	2150	55964 55980				1800	2725	55935	
1900 1900	2175 2200	56020				1800	2750	55925	
1900	2225	55992				1800 line 1700	2775	56002	
1900	2250	55943				1700	1700	55890	
1900	2275	55956				1700	1725	55868	
1900	2300	55970				1700	1750	55853	
1900 1900	2325 2350	55980 56019				1700	1775	55847	
1900	2375	55951				1700	1800	55831	
1900	2400	56028				1700 1700	1825	55847	
1900	2425	55966				1700	1850 1875	55854 55849	
1900	2450	55995				1700	1900	55831	
1900	2475	55920				1700	1925	55626	
1900 1900	2500 2525	55929 55907				1700	1950	55828	
1900	2550	55931				1700	1975	55827	
1900	2575	55961				1700 1700	2000 2025	55809 55821	
1900	2500	55939				1700	2025	55898	
1900	2625	55966				1700	2075	55916	
1900	2650	55966				1700	2100	55908	
1900	2675 2700	55956 55948				1700	2125	55937	
1900 1900	2700	55899				1700	2150	55017	
1900	2725	55912				1700 1700	2175	55938	
1900	2775	55937				1700	2200 2225	55908 55928	
line 1800						1700	22250	55939	
1800	1700	55877				1700	2275	55935	
1800	1725	55882				1700	2300	55990	
	1750	55877				1700	2325	55927	
	1776								
1800 1800 1800	1775 1800	55867 55870				1700 1700	2350 2375	55994 56078	

•

-

*

•

1400	2350	55946
	2375	55931
1400		
1400	2400	55916
1400	2425	55909
1400	2450	55904
1400	2475	55907
1400	2500	55907
1400	2525	55926
1400	2550	55951
1400	2575	55947
1400	2600	55965
1400	2625	55986
1400	2650	55733
1400	2675	56131
1400	2700	56045
1400	2725	56233
1400	2750	56472
1400	2775	56400
1400	2800	56045
line 1300		
1300	1700	55884
1300	1725	55956
1300	1750	55910
1300	1775	55900
1300	1800	55938
1300	1825	55932
1300	1850	55683
1300	1875	55865
1300	1900	55849
1300	1925	55860
1300	1950	55851
1300	1975	55838
1300	2000	55847
1300	2025	55838
1300	2050	55829
1300	2075	55638
1300	2100	55840
1300	2125	55838
1300	2150	55880
1300	2175	55908
1300	2200	55909
1300	2225	55922
1300	2250	55914
1300	2275	55954
1300	2300	55964
1300	2325	55979
1300	2350	55998
1300	2350	55979
1300		
	2400	55974
1300	2425	55959
1300	2450	55926
1300	2475	55897
1300	2500	55892
1300	2525	55900
1300	2550	55930
1300	2575	55954
1300	2600	55995
1300	2625	56051
1300	2650	56130
1300	2675	56301
1300	2700	56060
1300	2725	56028
1300	2725	56009
1300 line 1200	2/50	36009
	4700	
1200	1700	55851
1200	1725	55871
1200	1750	55901

.

5

6

-

1100	2375	56046
1100	2400	55997
1100	2425	55975
1100	2450	56094
1100	2475	56073
1100	2500	56050
1100	2525	55923
1100	2550	55948
1100	2575	55874
1100	2600	55985
1400		
1100	2625	56013
1100	2650	56025
1100	2675	56102
1100	2700	56082
ine 1000		
1000	1700	55897
	1725	55040
1000		55946
1000	1750	55907
1000	1775	55913
1000	1800	55976
1000	1825	55939
	1850	55951
1000 1000		
1000	1875	55949
1000	1900	55839
1000	1925	55918
1000	1950	55986
1000	1975	58065
1000		
	2000	55995
1000	2025	55947
1000	2050	55930
1000	2075	55931
1000	2100	55982
1000	2125	56001
1000		
	2150	55979
1000	2175	56055
1000	2200	56036
1000	2225	56021
1000	2250	55991
1000	2275	56054
1000	22/0	
1000	2300	56059
1000	2325	56002
1000	2350	56027
1000	2375	56096
1000	2400	56042
1000	2425	56049
1000		
	2450	56002
1000	2475	
		56044
1000	2500	56000
1000	2500 2525	
1000	2525	56000 55895
1000	2525 2550	56000 55895 55952
1000 1000 1000	2525 2550 2575	56000 55895 55952 55957
1000 1000 1000 1000	2525 2550 2575 2600	56000 55895 55952 55957 56023
1000 1000 1000 1000 1000	2525 2550 2575 2600 2625	56000 55895 55952 55957 56023 55993
1000 1000 1000 1000 1000 1000	2525 2550 2575 2600 2625 2650	56000 55895 55952 55957 56023 55993 56012
1000 1000 1000 1000 1000	2525 2550 2575 2600 2625 2650	56000 55895 55952 55957 56023 55993
1000 1000 1000 1000 1000 1000 1000	2525 2550 2575 2600 2625 2650 2650 2675	56000 55895 55952 55957 56023 55993 56012 56065
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650	56000 55895 55952 55957 56023 55993 56012
1000 1000 1000 1000 1000 1000 1000 100	2625 2550 2575 2600 2655 2650 2675 2700	56000 55895 55952 55957 56023 55993 56012 56065 56116
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700	58000 55895 55952 55957 56023 55993 56012 56065 56116 55945
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1725	58000 55895 55952 55957 56023 55993 56012 56055 56116 55945 55946
1000 1000 1000 1000 1000 1000 1000 100	2625 2550 2575 2600 2625 2650 2675 2700 1700 1725 1750	58000 55895 55952 55957 56023 55993 56012 56065 56116 55945
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1725	58000 55895 55952 55957 56023 55993 56012 56055 56116 55945 55946
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2650 2875 2700 1700 1725 1750 1775	56000 55895 55952 55957 56023 55933 56012 56052 56012 56055 56116 55845 55845 55846 56008 55981
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1725 1750 1775 1880	56000 55895 55952 55957 56023 55993 56012 56055 56016 55945 55945 55945 55945 55945 55946 55991 56017
1000 1000 1000 1000 1000 1000 1000 100	2526 2550 2575 2800 2625 2650 2675 2700 1700 1725 1750 1750 1775 1800 1825	56000 55895 55952 55952 55993 56012 55002 55002 55002 55002 56012 56012 56055 56116 55945 55945 55946 559845 559846 559817 56017 56136
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1700 1700 1775 1750 1775 1800 1825 1850	56000 55895 55952 55952 55953 56012 55933 56012 55085 56116 55945 55945 55945 55945 55945 55945 55981 56017 66136
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1725 1750 1775 1880 1825 1850 1875	56000 55895 55952 55957 56023 55933 56012 56023 55945 55945 55945 55945 55945 55945 55945 55945 55981 56008 55981 56017 56136 56088
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2655 2650 2675 2700 1725 1750 1775 1800 1775 1800 1825 1825 1825 1825	56000 55895 55952 55952 55953 56012 55933 56012 55085 56116 55945 55945 55945 55945 55945 55945 55981 56017 66136
1000 1000 1000 1000 1000 1000 1000 100	2525 2550 2575 2600 2625 2650 2675 2700 1700 1725 1750 1775 1880 1825 1850 1875	56000 55895 55952 55957 56023 55933 56012 56023 55945 55945 55945 55945 55945 55945 55945 55945 55981 56008 55981 56017 56136 56088

a

.

1700 1700 1700 1700 1700 1700 1700 1700	1725 1700 1650 1625 1625 1575 1525 1575 1525 1575 1525 1575 1525 152	55869 55901 55875 55875 55875 55875 55875 55875 55892 55920 55921 55921 55921 55921 55924 55920 55921 55924 55926 55926 55926 55927 55926 55927 55927 55927 55926 55927 55926 55927 55926 55927 55927 55926 55927 55926 55926 55927 55926 55926 55927 55927 55926 55927 55927 55926 55927 55926 55926 55927 55926 55926 55927 55926 55926 55926 55926 55927 55927 55926 55926 55927 55926 55926 55926 55926 55927 55927 55926 55926 55926 55926 55926 55926 55926 55927 55927 55926 55926 55926 55926 55926 55926 55926 55926 55926 55926 55926 55926 55926 55926 55927 55927 55927 55927 55926 55926 55926 55927 55927 55927 55926 55926 55927 55927 55927 55926 559277 55927 55927 55927 55927 55927 55927 55927 55927 55927 55927
1700 1700 1700 1700	375 350 325 300	56015 56023 55990 55991

•

.

1700 1700

025 000 56222 56262

.

.

APPENDIX III

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution:	1 gamma
Total Field Accuracy:	± gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automat- ic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells ≈25,000 readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to +60° C.
Size:	Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm;
Weights:	Console, 1.8 kg; Sensor, 1.3 kg; Staff, 0.6 kg;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

APPENDIX IV

ROCK SAMPLE DESCRIPTIONS

•

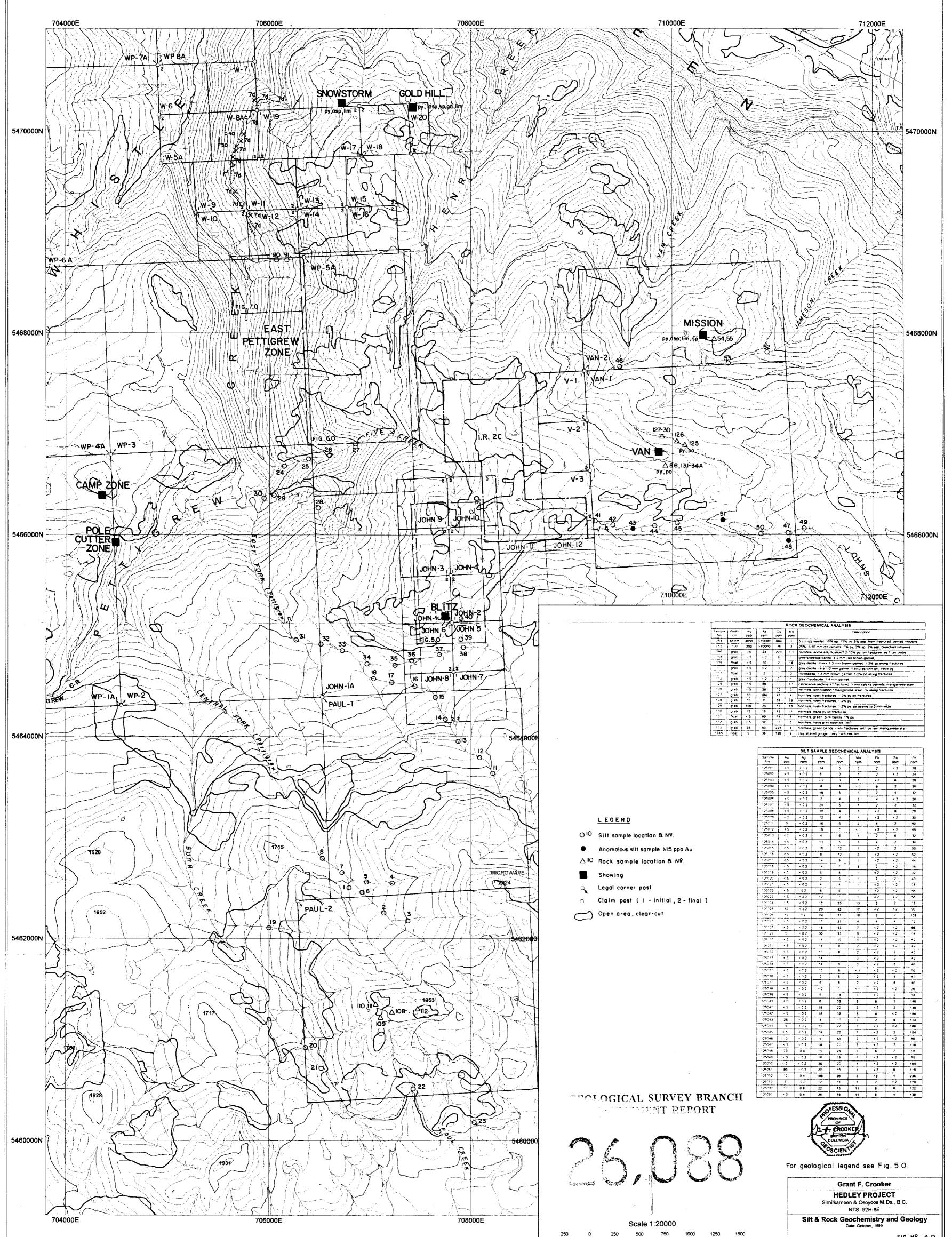
						GEOCHEMICAL ANALYSIS
Sample No	Width	Au ppb	As ppm	Cu ppm	Mo ppm	Description
054	select	4050	>10000	684	1	5 cm qtz veinlet, 10% sp, 10% py, 5% asp, from fractured, veined intrusive
055	100	200	>10000	38	3	25%, 1-10 mm gtz veinlets, 5% py, 2% sp, 2% asp, bleached intrusive
056	60	15	396	62	5	footwall, silicified argillite, rusty fractures, 1% py, minor 1 cm qta veinlets
057	20	80	766	233	61	footwall shear, bleached, oxidized, silicified argillite, red gouge
057	12	3350	>10000	15	4	white gtz vein, fractured, 2% asp, 1% py
					+	
059	50	675	2620	68	12	hangingwall shear, bleached, sillcified argillite, rusty gouge, 1 cm qtz veinlets
060	60	15	80	70	5	grey-black argillite, some weakly silicified, 2% po
061	25	50	400	79	13	footwall shear, fractured, weakly silicified argillite, rusty gouge, trace po
062	18	8300	>10000	5	2	white qtz vein, fractured, 3% asp, 1% py
063	100	145	444	84	21	hangingwall shear, silicified argillite, rusty gouge, 1% py, 1-5 mm qtz veinlets
064	130	565	734	30	21	white qtz vein, qtz flooding along margins, fg boxworks, lim, 2% py
065	140	425	1010	63	17	white, grey qtz vein, fractures, locally to 5% py
066	60	105	562	58	25	white, grey qtz vein, ½% py
067	70	60	118	87	8	footwall, grey argillite, silicified? 1-4% po, ½% py on fractures
068	grab	100	106	63	1	hangingwall, grey argillite, silicified? 1-2% diss py
069	grab	365	826	80	8	dump, qtz vein, 5% py
070	grab	< 5	4	93	<1	black, rusty argiilite, 2-4% diss py
071	grab	< 5	2	38	6	calcareous breccia, 3 cm clasts, 1-4% diss po
072	grab	< 5	< 2	34	1	calcareous breccia, Copperfield? 2-4% diss po
073	30	90	434	76	120	breccia, argillite frags, 25% 5-10 mm qtz veinlets, breccia, ½% diss py, lim,
074	60	70	746	110	65	silicified argillite, strongly oxidized, 10% qtz veinlets
075	40	50	406	92	40	silicified argillite, 75% qtz veinlets, strongly oxidized, 1/2% py
076	select	70	70	32	76	dump, qtz vein, breccia, lim in boxworks
077	grab	10	8	90	2	silicified argillite, rusty fractures
078	grab	< 5	80	75	<1	grey, rusty silicified limestone? 5-10% diss po
079	30	< 5	<2	58	< 1	silicified zone, white, translucent qtz, 1/2% po, py along fractures
080	grab	10	56	61	8	silicified argillite, 5% po diss, along fractures
081	grab	65	230	34	19	silicified argillite, 60% qtz veinlets, 1-4% po, 1/2% py, diss, along fractures
082	grab	90	66	62	17	silicified argillite, minor gtz veinlets, 2-4% diss po, ½% py
083	grab	10	28	35	2	silicified argillite, 1-2% diss po
084	grab	20	34	134	74	dump, silicified argilite, 1-3% po, 1% py, diss
085	grab	10	48	240	1	dump, sillcified argillite, 5% po diss, along fractures
086	grab	75	24	223	····	hornfels, some silicification? 2-10% po, on fractures, as 1 cm blebs
087	float	< 5	10	18	3	calcareous siltstone, white and black calcite veinlets, lim
088	float	10	10	32	1	calcareous tuff, 2-8 mm calcite veinlets, rusty fractures, lim, trace py
089	float	< 5	16	6	< 1	white and black calcite vein, trace to 1/2% py along fractures
003	grab	< 5	32	40	1	calcareous tuff, rusty fractures, some with calcite
093		< 5			·	calcareous tuff, stockwork 2-10 mm calcite veinlets, rusty fractures
093	fioat float	< 5	18 12	59 13	3	massive white crystalline calcite, minor fractures, trace py
094	float	< 5	12	104	6	
						argillite, 1-2 mm qtz-carb veinlets, rusty boxworks
096	float	< 5	2	7	< 1	massive white crystalline calcite, minor rusty fractures
108	grab	< 5	< 2	8	1	grey siliceous dacite, 1-2 mm red-brown garnet,
109	float	< 5	10	2	16	grey dacite, minor 1-3 mm brown garnet, 1-2% po along fractures
110	grab	< 5	<2	3	2	grey dacite, rare 1-2 mm garnet, fractures with chl, trace py
111	float	< 5	2	1	3	rhyodacite, 1-4 mm brown garnet, 1-2% po along fractures
112	grab	< 5	< 2	3	1	grey rhyodacite, 1-4 mm garnet,
113	float	< 5	6	54	2	argillite, rusty fractures, 1-3 mm calcite veinlets
114	float	< 5	2	58	4	calcareous argillite, bleached, weak clay alteration, rusty fractures

116	float	10	16	16	26	argilite breccia, stockwork white calcite veinlets
117	float	< 5	4	48	3	tuff, rusty fractures
118	float	< 5	< 2	40	1	calcareous tuff, rusty fractures
119	float	< 5	4	114	1	calcareous tuff, rusty fractures with calcite
120	float	< 5	6	37	< 1	grey-green tuff, stockwork of rusty, 1-10 mm white calcite veinlets
121	float	< 5	2	35	3	bleached calcareous tuff, rusty
122	float	< 5	80	10	5	argilite breccia, stockwork white calcite veinlets
123	float	35	36	136	15	bleached tuff, lim on fractures, diss
124	float	< 5	6	126	4	Hedley diorite dyke, rusty fractures
125	grab	< 5	56	9	< 1	calcareous sediment? fractured, 1 mm calcite veinlets, manganese stair
126	grab	< 5	26	32	3	hornfels, silicification? manganese stain, py along fractures
127	grab	10	184	41	4	hornfels, rusty fractures, 1-2% py on fractures
128	grab	10	8	89	15	hornfels, rusty fractures, 1-2% py
129	grab	100	24	81	15	hornfels, rusty fractures, 1-2% py, py seams to 2 mm wide
130	grab	15	16	83	11	hornfels, trace py on fractures,
131	float	< 5	60	64	6	hornfels, green, pink bands, 1% po
132	grab	< 5	32	77	5	hornfels, trace grey sulphide, po?
133	grab	25	60	225	4	hornfels, green bands, rusty fractures, with py, lim, manganese stain
134A	float	5	36	120	9	clay altered gouge, rusty fractures, lim
134B	float	< 5	5	10	7	bleached intrusive, rusty boxworks
135	float	10	40	72	74	clay altered calcareous tuff, fg boxworks, lim
136	float	< 5	< 2	42	4	bleached, banded tuff, rusty fractures, boxworks, lim
137	float	< 5	2	114	2	grey-green tuff, 1-2 mm calcite veinlets, fractures, ½% po
138	float	< 5	4	20	<1	white calcite veinlets, angular fragments tuff
139	float	< 5	28	15	2	5-10 mm qtz-carb veinlet, angular fragments tuff, 3% py, rusty boxworks
140	float	< 5	< 2	93	1	tuff, 2 mm frags, rusty fractures, boxworks, lim, 2% diss py
141	float	< 5	2	61	10	bleached, clay altered argillite breccia, fractures, boxworks, lim
142	float	5	6	67	4	tuff, 1-3 mm argillite frags, rusty boxworks, lim
143	grab	< 5	< 2	13	<1	tuff, 1-4 cm wide calcite veinlets, minor rustiness
144	float	10	<2	70	4	siltstone, 2-3 mm argillite frags, rusty fractures, minor boxworks, lim
145	float	5	<2	93	3	tuff, 20% 1-10 mm gtz veinlets, trace py
146	float	< 5	10	29	3	tuff, 2-10 mm gtz veinlets, rusty fractures, trace py
147	grab	< 5	22	59	1	calcareous tuff, 1 mm py cubes, fractures, calcite, trace py
161	+	5	4	57	2	siltstone, rusty fractures, lim, py
162	grab	-5 <5	< 2	45	<u> </u>	
	float				1	argillite, argillite frags, rusty boxworks, lim, 5% diss po
163	float	< 5	< 2	59	4	argillite, 5% diss po
164	grab	< 5	32	40	<1	argillite, rusty fractures, 5% diss po
165	float	< 5	< 2	51	1	calcareous argillite, argillite frags, 5% diss po
166	float	< 5	6	63	<1	grey limestone? 10-15% po
167	float	5	2	107	3	siltstone, rusty fractures, 1% po
168	grab	< 5	< 2	29	<1	interbedded limestone, siltstone, 2-5% po
169	float	< 5	2	105	3	grey felsic dyke, minor py on fractures
170	fioat	< 5	< 2	45	3	argillite breccia, 5% rusty boxworks, lim
171	float	< 5	< 2	72	1	fg green dyke, rusty fractures
172	float	< 5	< 2	73	3	calcareous grey tuff, 2-3 mm qtz veinlets, rusty boxworks
173	grab	< 5	10	148	6	tuff, strong fractures, po, py
174	grab	10	16	151	5	tuff, fractures, trace py, 1-4 mm qtz-carb veinlets
175	float	< 5	8	13	5	silicified tuff? 1-3 mm qtz veinlets, minor rusty boxworks, trace py
176	float	< 5	14	58	3	tuff, 1-6 mm qtz-carb veinlets, boxworks, lim, trace py
177	float	< 5	12	22	1	silicified tuff, rusty fractures, calcite, 1% po
178	float	85	340	317	6	bleached, clay altered tuff, fractures, 15% rusty boxworks, lim
179	float	< 5	10	60	< 1	tuff, stockwork 1-4 mm calcite veinlets, rusty boxworks
180	grab	25	20	82	6	tuff, 1 cm qtz veinlet, 1% po

181	grab	< 5	58	121	2	Hedley dyke, 1-3% diss py
182	float	< 5	8	151	7	silicified tuff, fractures, 1-3 mm qtz veinlets, py
183	float	< 5	10	116	1	tuff, rusty fractures, po
184	float	30	16	132	39	silicified tuff, fractures, 1-8 mm qtz veinlets, rusty boxworks, lim, trace py

.

APPENDIX V

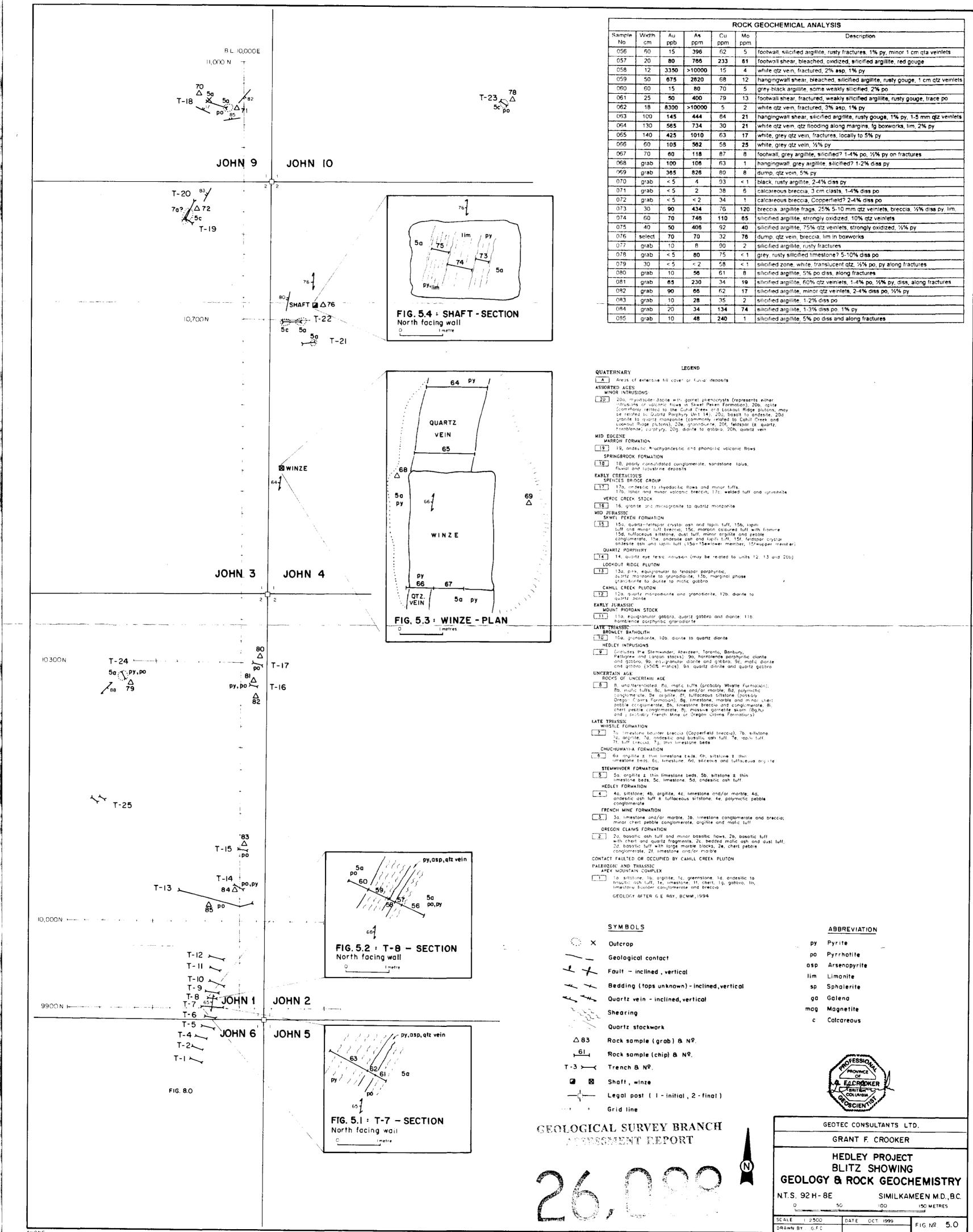

COST STATEMENT

.

COST STATEMENT

SALARIES

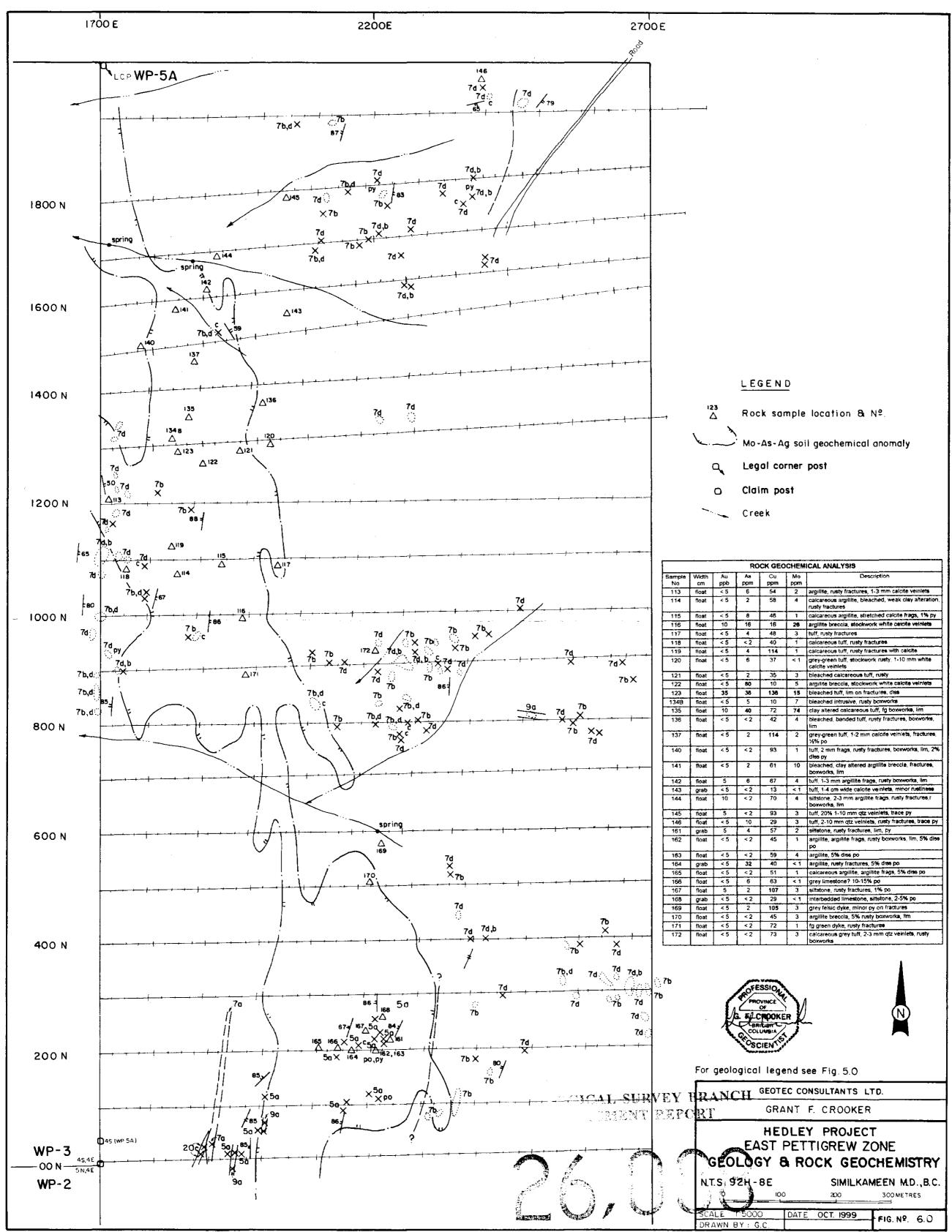
Grant Crooker, Geologist Oct 10, 1998 - Nov 10, 1999 40 days @ \$ 400.00/day	\$ 16,000.00
LW Saleken, Geologist Oct 10, 1998 1 day @ \$ 400.00/day	400.00
MEALS AND ACCOMMODATION	
Grant Crooker - 32 days @ \$ 60.00/day	1,920.00
Len Saleken - 1 day @ \$ 60.00/day	60.00
TRANSPORTATION	
Vehicle Rental (Blazer 4 x 4) Oct 10, 1998 - Oct 15, 1999 32 days @ \$ 60.00/day	1,920.00
Gasoline	404.72
EQUIPMENT RENTAL	
Magnetometer (Scintrex MP-2) June 4, 25, July 23, Sept 1, 3, 5 days @ \$ 25.00/day	125.00
GEOCHEMICAL ANALYSIS	
55 silt samples - 32 element ICP, Au (30 gram) @ \$ 20.33 43 soil samples - 32 element ICP, Au (30 gram) @ \$ 21.29 106 rock samples - 32 element ICP, Au (30 gram) @ \$ 24.45 1 rock sample - silver, zinc assay @ \$ 21.13	1,118.15 915.47 2,591.70 21.13
BASE MAP	1,000.00
SUPPLIES	140.00
FREIGHT	114.32
DRAFTING	400.00
PREPARATION OF REPORT (Reproduction, copying, telephone, overhead) TOTAL	\$ <u>_250.00</u> 27,380.49

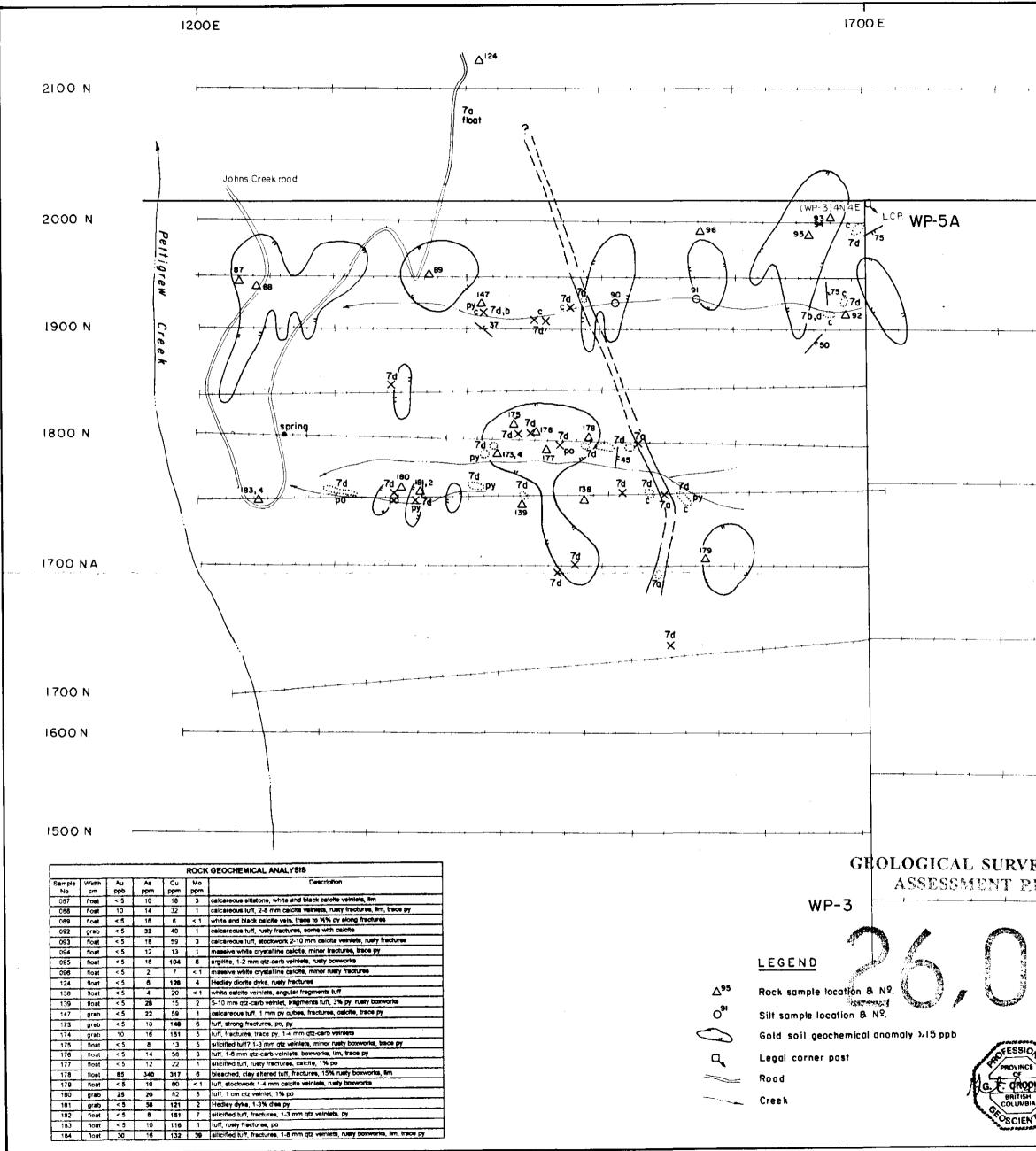

					ROCI	OEOCHEMICAL ANALYBIS
Samp-+ No	WHEN CTR	A., POD	4.8 00000	୍ର ମ ତ ମ୍ମ	Mo	Description
, 154	serect	40.50	>10000	084	1	5 cm gtz veinlet 10% ep 10% py 5% eep from frectured, veined intrusive
- 15	00	200	>10000	38	3	25% 1-10 mm gtz veinlets 5% py, 2% sp, 2% sep, bleached intrusive
186	grab	75	24	223	+ 1	homfels, some sticification? 2.10% pd, on fractures, as 1 cm blebs
**•9	0.sp	. 5	· 2		1 1	grey siliceous decile: 1.2 mm red brown garnet.
179	Poet	< 5	10	2	16	grey dacks minor 1.3 mm brown garnet, 1-2% po along fractures
•• ÷	grab	< 5	1 (2	1	2	grey dacRe rare 1-2 mm gamel, fractures with chi, trace py
•••	float	• 5	2	. 1]]	rhyodacte, 1-4 mm brown gemet 1-2% po along fractures
•••2	g'#0	* 5	12	3	<u> </u>	grev myodaote 1.4 mm gamet,
125	0.90	< 5	30	•	< 1	calcareous sediment? fractured 3 mm calcits vehilets, manganese stain
1.29	grab	< 5	26	32	3	hornfels, silicification? manganese stain, py slong fractures
127	grab	10	184	41	4	homfels, rusty tractures, 1 2% by on fractures
128	grab	•0	8	8 9	15	hornfels, rusty fractures, 1-2% py
- 29	grøb	100	24	51	15	homfels, rusty fractures, 1-2% by by seams to 2 mm wide
110	grab	:5	16	•1	11	hornfels, trace py on fractures
131	fical	- 5	*0	-64	5	homfels, green pink tente 1% po
112	grab	+ 5	32	-17	5	homfels, trace grey suiphide: po?
• 13	grab.	25	-50	225	4	horntels, green bands many fractures with py im manganese stain
134A	float	5	X	120	9	clay attered poupe rush "actures am

COLOGICAL	SUR	VEY	BRANCH
ter and the second second second second second second second second second second second second second second s	INT	PEP	ORT

51000	Au .	A0	A 4	i Cu	٧o	FD .	Sb	75
No	ppb	ppm	50m	ppm	ppm	ppm	ppm	ppm.
2600	< 5	< 0.2	14	5	3	2	* 2	38
126002	< 5	< C 2	0	3	1 1	2	• 2	24
*26901	< 5	< 0.2	< 2	3	1	× 2	6	25
\$26004	< 5	< 2.2	1 · •	8	< 1		2	30
Chinh5	< 5	< 0.2	1	5		7		12
* 20001	< 5	< 0.2	2	4	3		¢ 2	28
126007	< 5	< 0.2	20	5	<u> </u>		2	12
125000	< 5	<02			3	4 2 4 2	<u> </u>	
+	å	↓	10		····· ·			28
		- 32	12	· · · · ·	↓	< 2	• 2	30
250 1	5	<02	16	. 6	2	6	2	~~
250-2	< 5	1 - 02	15	,	< 1	< 2	< 2	- 66
260.3	</td <td><02</td> <td>1.4</td> <td>6</td> <td>1</td> <td>:</td> <td>•</td> <td>32</td>	<02	1.4	6	1	:	•	32
1,8014	< 5	- 0 Z	10		1	4	2	34
126015	< 5	×02	19	•2	1	< 7	2	50
1.4016	< 5	+ 22	8	•2	2	< 2	× 2	52
1.50	< 5	< 0.2	14	3	1	< 2	+2	44
126014	₹5	< 0.2	14	7	3	1	• 2	30
126019	< 5	< 0.2	6	4	1	< 7	< 2	32
27620	< 5	< 9 Z	2	3	- 1			40
12102		1 1 0 2		4	1	< 2	• 2	
1.6521	5	02	6	- 5		- 2		*6
125(21	. 5	< 32	12		1		2	. 58
125224	- 5	< 3.2	18					1.1
		<u> </u>	<u> </u>	35	13		2	
126025	13	< 0.2	20	- 43	17	< 2	• 2	90
126/28		<u> </u>	24	37	18	2	2	102
125227	• 5	• C 2	16	31		4		•2
120.220	< 5	. 22	18	53	7	< Z	< 2	
(2fin29	÷	< 0.2	30	33	5	* 2	- 42	K.4
1.26-10	< 5	+ 0.2	-4	19	4	< 2	2	- 12
2013	r 5	< 0.2	•4	8	2	< 2	< 2	42
16.12	• 5	< 0.2	10	8	2	< 2	2	40
2.035	• 5	• 0 2	- 4	7	3	< 2	2	42
2634	15	102	•4	A	3	< 2	6	46
	• 5	< 0.2	• • 7	9	< 1	< 2	× 2	50
75110	< 5	× 9 2	2	5	2	* 2	4	47
	< 5	< 0.2	6		2	- 2		40
-25038	. 5	< 0.2	4 2	,	<1	< 2	×7	36
- 26:239	< <u>5</u>	< 0.2	5	14	3	• 2	2	
25040	- 5	<02	8	31	3			146
.804								
	< 5	< 0.2	18	. 22	3	• 7	2	120
-1-C47	< 5	- 32	18	32	3	8	<2	168
15043	25	< 0.5	4		3	2		114
• 24044	5	+ 3.2	10	22	3	()	≺2	100
•25045	< 5	< 2.7	-4	22	1	< 2	2	104
-26046	÷٦	< 3.2	4	53	3	• 2	< 7	80
-2604	• 5	< 0.7	18	21	3	<1	2	116
25044	70	04	10	23	3	B -	2	64
26049	-5	102	16	19		< ?	- 2	A 0
26050		2	28	20	4		2	104
125051	80	- 0.2	27	19		- 2		110
28052	- 0 0							
		04	180	28	3	10	4	236
25053		. 12			··· '		2	170
126090	· · ·	0.	22	73	- 11			122
25091	- 5	04	20	78	11		4	138

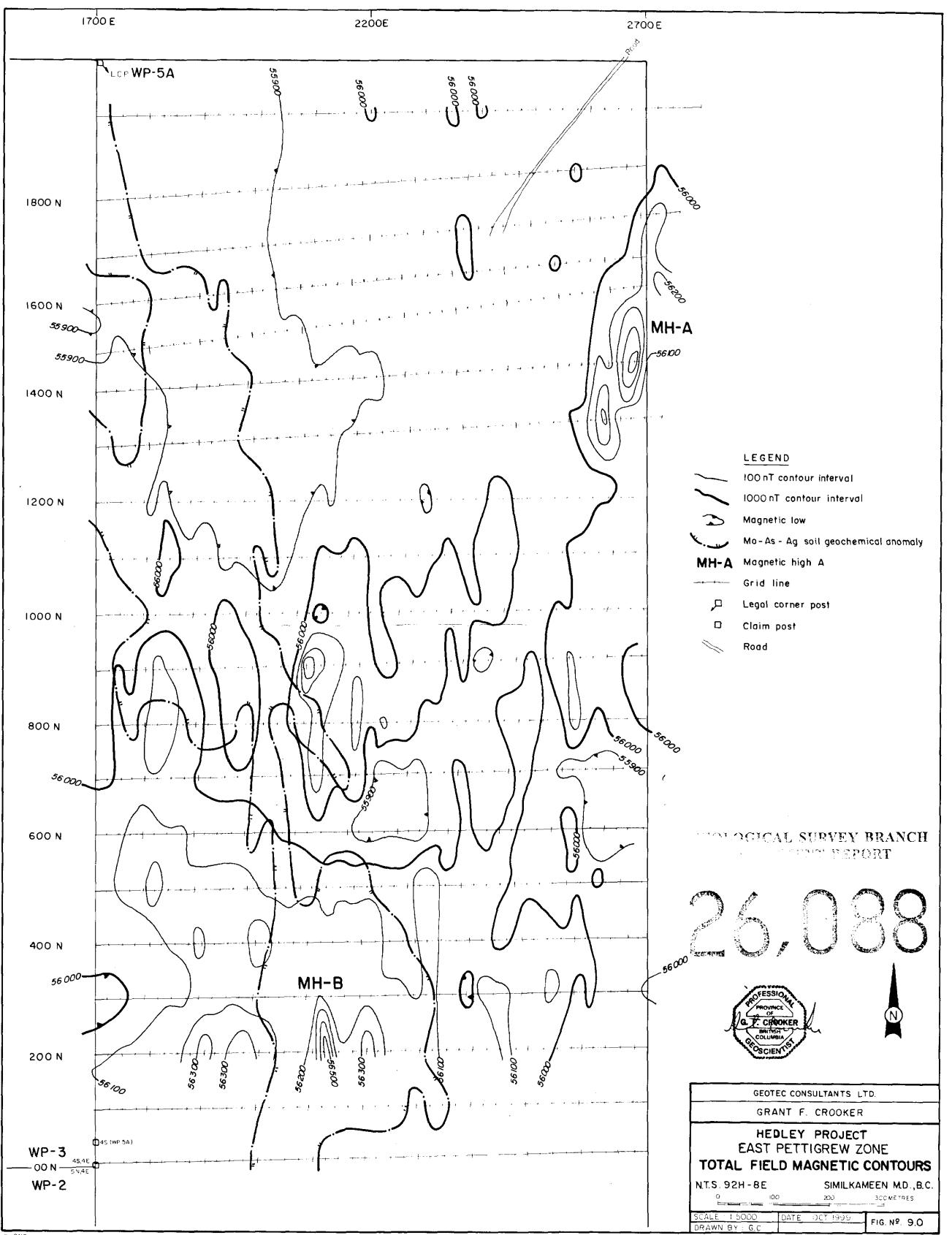
	(Grant	F. C	rool	ker			
	Н	EDLE	YP	ROJ	EC1	٢		
	Similka	meen 8	Oso	yoos N	A.Ds.	, B.C.		
		NT	S: 92	H-8E				
Silt &	Rock			nistry er. 1999		id Ge	eolo	gy




	HEDLEY INTRUSIONS		
9			
	ERTAIN AGE		
<u>5</u>	ROCKS OF UNCERTAIN AGE B, undifferentiated, 80, mafic triffs (probably Whistle Formation); Bb, multicrentiated, 80, immestane and/or marble; 8d, polymicite conglomerate, 8e arguilite, 8f, tulfaceous sitistane (possibly Oregon Claims Formation), 8g, Immestane breaction and conglomerate, 8i, cheft pebble conglomerate, 8j, massive garnetite skarn (8g,h) and j probably French Mine or Oregon Claims Formations)		
	TRIASSIC		
7	7a timestony bouvter breccia (Copperfield breccia), 7b, sillstone, 7c, argelate, 7d, andesitic and busaltic ash fuff, 7e, rapide tuff, 7f, tuff treccia, 7g, thin limestone beds		
ې 6	HUCHUWAYHA FORMATION] – 6a - arguilitu ± thin limestone tieds, 6h, siltstone ± thin		
	 Immestone beds, 6c, limestone, 6d, siliceous and tuffaceous onj ite. ITEMWINDER FORMATION 		
5			
<u> </u>	andesitic osh tuff ± tuffaceous sittstone; 4e, polymictic pebble conglomerate		
		cia;	
c	minor chert pebble conglomerate, argiilite and mofic tuff IRECON CLAIMS FORMATION		
_2	2a, basallic ash tuff and minor basallic flows. 2b, basaltic luff with chert and quartz fragments. 2c, bedded matic ash and dust 2d, basaltic tuff with large marble blocks, 2e, chert pebble conglomerate, 2t, imestane and/or matble	tuff;	
	ACT FAULTED OR OCCUPIED BY CAHILL CREEK PLUTON		
	OZGIC AND TRIASSIC PEX MOUNTAIN COMPLEX		
] to substand, ta, organite, to, greensione, ta, andesitio to brischt, ash tuff, te, ilmestande, th, chert, tg, gabbro, th, ilmestania baular, considemente, and breccio.		
	GEOLOGY AFTER & E RAY, BCMM, 1994		
	SYMBOLS		ABBREVIATION
 × 	Outerop	РУ	Pyrite
<u> </u>	Geological contact	þô	Pyrrhotite
11	Fault — inclined , vertical	osp	Arsenopyrite
		lim	Limonite
the th	Bedding (tops unknown) - inclined, vertical	sp	Sphalerite
and the	Quartz vein - inclined, vertical	ĝū	Galena
2 . 2 . 2 . 	Shearing	mdg c	Magnetite Calcareous
	Quartz stockwork		
△83	Rock sample (grab) & Nº.		
، 61	Rock sample (chip) & Nº.		
т-3 ┝━━◀	Trench & Nº.		PROVINCE
a 2	Shaft, winze		A. EACROOKER
	Legal post (I - initial , 2 - finat)		COLUMISIA
···· t · +	Grid line		SCIEN
LOCIC	AL SURVEY BRANCH		GEOTEC CONSULT
	MENT REPORT		GRANT F. CF
an gu a theas	State Contraction and a second a		
			HEDLEY PF
<i>*</i>			BLITZ SH
S .		GEULUG	Y & ROCK
		N.T.S. 92 H-	8E S
		0	50 10
4		SCALE 2500	DATE OCT.

·	6.6	i yi i ie	
	ρ٥	Pyrrhotite	
	asp	Arsenopyrite	
	lim	Limonite	
	sp	Sphalerite	
	ġ0	Galena	
	mag	Magnetite	
	с	Calcareous	
		PROVINCE OF A EALCROOKER BRITER COLUMBIN SCIENT	
		GEOTEC CONSULTANTS	LI

GEOTEC CON	SULTANTS LTD.
GRANT	F. CROOKER
BLITZ	Y PROJECT SHOWING CK GEOCHEMISTRY
N.T.S. 92 H-8E	SIMILKAMEEN M.D., B.C.
0 50	IDD ISO METRES
SCALE 2500 DATE DRAWN BY G.F.C	OCT. 1999 FIG. № 5.0


CHONG

́х`

-71 C - 1 C

	· · · · · · · · · · · · · · · · · · ·
	2100 E
• • • • •	·
· · · ·	
· · · · · · · · · · · · · · · · · · ·	······································
•	
·*· ··+ ·· ·* ·* ·•·+·	
	······································
EY BRANCH	
EPORT	
	·
	For geological legend see Fig. 5.0
	GEOTEC CONSULTANTS LTD.
A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF	GRANT F. CROOKER
	HEDLEY PROJECT EAST PETTIGREW ZONE
	GEOLOGY & ROCK GEOCHEMISTRY
	N.T.S. 92H-BE SIMILKAMEEN M.D. , B.C.
MER L	0 50 100 150 METRES
	SCALE 1250C DATE OCT 1999 FIG. Nº. 7.0

