

Gold Commissioner's Offic VANCOUVER, B.C. GEOCHEMICAL

ASSESSMENT REPORT

on the

ATAN PROPERTY

ATAN 1 - 8 MINERAL CLAIMS

McDAME AREA

LIARD MINING DIVISION, B.C.

NTS:104P/03ELATITUDE:59°12'04"LONGITUDE:129°11'54OWNER:W.R. GilnOPERATOR:DiscoveryAUTHOR:T.H. CarpDATE:September

59°12'04" N 129°11'54" W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo. September 30,1999

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

SUMMARY	Page 1						
LOCATION AND ACCESS							
TOPOGRAPHY	Page 2						
PROPERTY	Page 3						
HISTORY	Page 4						
GENERAL GEOLOGY	Page 5						
MINERALIZATION	Page 5						
WORK COMPLETED	Page 6						
 SOIL SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS 							
CONCLUSIONS	Page 8						
RECOMMENDATIONS	Page 9						
REFERENCES							
STATEMENT OF COSTS	Page 11						
STATEMENT OF QUALIFICATIONS	Page 12						

LIST OF ILLUSTRATIONS

FIGURE 1	Location Map	Following Page 2
FIGURE 2	Claim Map (1:50,000)	Following Page 3
FIGURE 3	Soil Sampling - Cu Values (1:5,000)	In Pocket
FIGURE 4	Soil Sampling - As Values (1:5,000)	In Pocket
FIGURE 5	Soil Sampling - Ba Values (1:5,000)	In Pocket
FIGURE 6	Soil Sampling - Pb Values (1:5,000)	In Pocket
FIGURE 7	Soil Sampling - Zn Values (1:5,000)	In Pocket
FIGURE 8	Soil Sampling - Sb Values (1:5,000)	In Pocket

APPENDICES

APPENDIX 1 Soil Sampling Survey - Analytical Procedures and Results

SUMMARY

The Atan is a possible "manto" or Mississippi Valley Type deposit comprising barite, lead, zinc, copper and silver mineralization in a limestone-dolomite horizon.

The occurrence is located at the western end of Atan Lake, 33 kilometres east-southeast of Cassiar and 100 kilometres northeast of Dease Lake.

Exploration work has been carried out on the property since 1967. Mineralization has been detected over a strike length of 1.5 kilometres and includes assays of 24 g/tonne Ag, 3.07% zinc over 3.4 metres and 6.8% Pb over 2.7 metres. Twelve metres of barite have been exposed in trenching.

In 1994 a program of soil and rock sampling was carried out on the property. Soil samples anomalous in copper, arsenic, barium, lead and zinc were detected away from but apparently on strike with known showings. Additional soil sampling was carried out in 1999 to further define these anomalies.

LOCATION AND ACCESS

The Atan property is centred at latitude 59°12"04'N and longitude 129°11"54' W, 33 km ESE of Cassiar and 2 km NE of McDame Post (Figure 1).

Access to the property can be gained by road 16 kilometres south off the Cassiar-Watson Lake highway.

TOPOGRAPHY

The topography of the property is gentle, with elevations ranging from about 730 metres at Atan Lake to 823 metres at the southeast corner of the claim block.

PROPERTY

The Atan property (Figure 2) comprises eight two-post claims, designated Atan 1-8, located by John Beggs on April 3 and April 5, 1994 and recorded in Vernon, B.C. on April 15,

1994.

Claim Name	Record No.	Owner of Record	Anniversary Date*
Atan 1	324672	W.R. Gilmour	April 3, 2002
Atan 2	324673	W.R. Gilmour	April 3, 2002
Atan 3	324674	W.R. Gilmour	April 3, 2002
Atan 4	324675	W.R. Gilmour	April 3, 2002
Atan 5	324676	W.R. Gilmour	April 3, 2002
Atan 6	324677	W.R. Gilmour	April 3, 2002
Atan 7	324678	W.R. Gilmour	April 5, 2002
Atan 8	324679	W.R. Gilmour	April 5, 2002

The claims are held in trust for the Predator Syndicate.

* Pending acceptance of this report.

HISTORY

Mineralization on the Atan property was discovered in 1949. At that time an access road was built and a number of trenches excavated. No further work on the Atan property was reported until 1967 when Dresser Industries carried out ground EM and magnetometer surveys on the "Bill" claims.

In 1970 Dresser also completed a soil-sampling program on the claims.

In 1968 Tournigan Mineral Exploration conducted Induced Potential, magnetometer and soil sampling surveys on the "Adair" and "Atan" claims, to the south of the Bill claims. This work was followed in 1973 by linecutting, gravity and topographical surveys.

Esso Resources carried out a diamond-drilling program on the Atan claims in 1976.

Tournigan Mineral Exploration completed diamond drilling and geological programs on the "Ski" claims in 1977. These claims were located to the southwest of the "Bill" claims.

The Atan property, staked in 1994, covers the mineralized areas of the Ski, Atan and Adair claims.

GENERAL GEOLOGY

The Atan property is underlain by Lower Cambrian Atan Group limestone, argillaceous limestone and dolomite, which strike east-southeast, and dip steeply to the south.

Two zones of mineralization have been defined: the North Zone, located 500 m NW of the west end of Atan Lake, and Barite Hill, which lies 800 m SE of the west end of Atan Lake.

The best described is the North Zone where dolostone has been variably replaced by chert. The chert bodies are in general stratiform but locally cut across stratification.

MINERALIZATION

Mineralization consists of disseminated to globular sphalerite that occurs mainly, but not exclusively, in beds replaced by chert and massive barite that occurs as fracture fillings and as replacement bodies.

Galena, in minor amounts, occurs with sphalerite in places and as occasional grains although chip sampling in 1949 assayed 6.8% Pb over 2.7 metres and 10.6% Pb over 1.5 metres. Chalcopyrite and tetrahedrite occur along the margins of some barite bodies. Pyrite is a common constituent of the host rocks.

5

WORK COMPLETED

A field program was carried out on the property in August, 1999 and comprised a soil sampling survey to further define soil anomalies from the 1994 program.

Soil Sampling

a) Program Parameters

Sixty-two soil samples were collected on the Atan 1-8 claims. Samples were taken at 50 metre intervals along lines established using compass and hipchain.

The samples were collected by shovel from the "B" horizon, placed in 9 cm x 25-cm kraft sample bags and sent to Chemex Labs Ltd. in North Vancouver, B.C. At Chemex analyses were carried out for gold by F.A.-A.A. and for 32 other elements by ICP. Sample locations are shown on Figures 3-9. Analytical results are contained in Appendix 1.

b) Program Results

. A soil anomaly over 200 metres in length and up to 150 metres in width has been defined south of the western end of Atan Lake. This anomaly, which appears to have a northwesterly trend, is anomalous in copper, barium, zinc and antimony, with maximum values of 667 ppm, 292 ppm, 2620 ppm, and 62 ppm respectively (Figures 3,4,5,7 and 8). A weak lead anomaly (50 ppm) was noted in the area (Figure 6).

These anomalies occur southwesterly of a narrow barite showing exposed on the south shore of Atan Lake. In most of the anomalous elements, values are higher than over known showings to the south at the Barite Hill Showing and to the northwest at the North Zone Showing.

6

Sampling elsewhere on the property, on the Atan 1, 3, and 4 claims has defined a linear arsenic anomaly on the Atan 1 and 3 claims (Figure 4), and a zinc anomaly north of the west end of Atan Lake (Figure 7). Overall, the zinc values appear to be more widespread than other elements and do not form as discrete anomalies.

CONCLUSIONS

Barite, copper, lead, zinc and silver mineralization in outcrop is located on the Atan claims at locations 1500 metres apart. Previous work has defined 6.8% Pb over 2.7 metres in chip samples, 3.07% Zn over 3.4 metres in drill core and 12 metres of barite exposed in a trench exposure.

Soil and rock sampling in 1994, largely due to the placement of sample lines, corresponded to areas of previous trenching and sampling. Additional soil sampling in 1999, away from these areas, has defined a multi-element anomaly south of the western end of Atan Lake, which may correspond to an extension of mineralization found in outcrop at the south end of the property.

RECOMMENDATIONS

Additional soil sampling should be carried out at the south end of the property to test the continuity between the Barite Hill Showing and anomalous metal values in soils at the western end of Atan Lake.

A ground EM survey and possibly an IP survey should be carried out to define structural trends and alteration related to mineralization.

Prospecting and mapping should be carried out to the south of the Dease River to check for possible southern extensions of mineralization.

Respectfully submitte T.H. Carpenter, P.Geo.

Vernon, B.C.

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report. 1949 - pg. A71 - A72 1967 - pg. 26 1968 - pg. 35

British Columbia Ministry of Energy, Mines and Petroleum Resources - Geology, Exploration and Mining in British Columbia. 1969 - pg. 43 1970 - pg. 37 1971 - pg. 56 1972 - pg. 561 1973 - pg. 540

British Columbia Ministry of Energy, Mines and Petroleum Resources - Exploration in British Columbia. 1976 - pg. E196 1977 - pg. E244

B.C. MEMPR Assessment Reports #1220, 2592, 4581, 5945, 6438

STATEMENT OF COSTS

		Atan Property - F	Project 649		
1	Professional Service	25			
	T. Carpenter (P.G	ieo.)			
	Planning, Data	Interpretation, & Report Writin	ıg		
	1.25 da	ay at \$350/day	\$ 437.50		
	Geological &	Field Work (August 27 & 28, 19	999)		
	2.0 day	/ @\$350/day	700.00		
					\$1,137.50
2	Field Personnel				
-	R Mitchell (Au	gust 27 & 28, 1999)			
	Soil Sampling	B			
	oon ounpring 2 0 day	, /s @\$283 20/day	566 40		
	2.0 day	13 (1) 42 03 . 20 / day			566 40
2	Offica Parsonnal				500.10
5	Drafting		116.10		
	Diaring		70.65		
	Secretariai	_	79.03		
	Data Compilation	n	44.23		240.00
	-				240.09
4	Expenses	• • • •			
	Analysis - Chem	iex Labs Ltd.			
	(Au + 32 elen	nent ICP)	•••		
	62 soil	s @\$15.92/sample	987.04		
				\$ 987.04	
	Field Supplies			48.94	
	Equipment Renta	al		6.00	
	Freight			45.00	
	Lodging & Meal	s		283.75	
	Maps & Publicat	ions		15.00	
	Communications	, Report & Map printing		95.00	
			-		1,480.73
				-	
			Exploration (Costs :	\$3,424.72
5	Transportation				
	4x4 Truck	2 days @\$40/day	\$ 80.00		
		934 km @\$0.30/km	280.20		
	025		94.83		
	543				
	letot (e	transportation costs	\$ 455.03		
	a) (0(a) b) @2($\frac{1}{2}$	04 77	684 94	~
	0) @20	o as he which was is less	27.72	004.74	455.03
		a or 0 - whichever is less			
		т	atal Fundavation Conte .	-	\$3 870 75
		1	otai Exploration Costs :		

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I am a 1971 graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 3. I have been practicing my profession since graduation.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Atan property gained from fieldwork and supervision.
- 6. I hold no interest either directly or indirectly in the Atan property.

Vernon, B.C.

APPENDIX 1

-

ANALYTICAL PROCEDURES

Geochemical Analysis

by Chemex Labs Ltd.

		LOWER		
ELEM	ENT	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5 ррb	fire assay	A.A.
AI*	Aluminum	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sb	Antimony	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
As	Arsenic	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ba*	Barium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Be*	Beryllium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Bi	Bismuth	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Cd	Cadmium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ca*	Calcium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Cr*	Chromium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Co	Cobalt	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Cu	Copper	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ga*	Gallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Fe	Iron	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
La*	Lanthanum	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Pb	Lead	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Mg*	Magnesium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Mn	Maganese	5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Hg	Mercury	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Мо	Molybdenum	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ni	Nickel	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Р	Phosphorus	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
K*	Potassium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sc*	Scandium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ag	Silver	0.2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Na*	Sodium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sr*	Strontium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
TI*	Thallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ti*	Titanium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
W*	Tungsten	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
U	Uranium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
V	Vanadium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Zn	Zinc	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma

* Incomplete digeston.

Project 649

Atan

Soil Sample Analyses

file: 649\geodeta\ oit_99.wk4 Reference : a9 28357

		30g FA/AA	ICP	ICP	łCP	ICP	ЮP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ЮP	ICP	ICP	ICF
Sample ID	Lab	Au	Ag	As	Sb	Cu	Pb	Zn	W	Cd	Mo	Bi	Ni	Co	Cr	Fe %	Ma	88
	report #							ppin										
1600N 050E	a9928357	<5	<0.2	18	4	15	12	38	<10	0.5	<1	<2	27	8	38	2.07	265	160
1600N 100E	a9928357	<5	<0.2	12	<2	9	10	28	<10	<0.5	<1	2	22	7	35	1.85	215	100
1600N 150E	a9928357	<5	<0.2	26	2	25	8	48	<10	0.5	<1	8	37	11	45	2.56	355	200
1600N 200E	a9928357	<5	<0.2	26	6	13	8	34	<10	<0.5	<1	<2	25	8	36	2.04	335	140
1600N 250E	#9928357	<5	<0.2	30	<2	18	10	66	<10	<0.5	<1	<2	32	12	44	2.66	440	190
1600N 300E	e992835 7	<5	<0.2	58	<2	24	16	64	<10	<0.5	<1	<2	42	14	45	3.01	640	200
1600N 350E	e9928357	10	<0.2	14	2	10	10	38	<10	<0.5	<1	<2	22	8	33	1.99	2/0	130
1600N 400E	#9928357	115	<0.2	44	10	26	10	64	<10	0.5	<1	<2	45	14	52	2.95	540	220
1600N 450E	a9928357	<5	<0.2	54	4	29	14	76	<10	0.5	1	2	44	13	40	2.94	320	∠ 40 100
1600N 500E	a9928357	<5	<0.2	24	<2	14	10	32	<10	0.5	<1	4	20	40	50	2.00	320	740
1400N 050E	a9928357	<5	<0.2	<2	<2	16	2	44	<10	<0.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	43	10	00	2.00	400	240
1400N 100E	a9928357	<5	<0.2	<2	2	15	<2	40	< 10	0.5	~1	~2	47		20	1.90	270	120
1400N 150E	a9926357	<5	<0.2	18	<2	15	8	30	< 10	<0.5	1	~2 6	20	14	50	3.40	515	270
1400N 200E	a9928357	<5	<0.2	54	6	32	20	70	<10	<0.5	~1		40	14	53	3.40	570	120
1400N 250E	a99283 57	<5	<0.2	~2	8	24	0	· 2	<10	N0.5	1	2	4/ 50	16	62	3.40	375	150
1400N 300E	a9928357	<5	<0.2	2	~2	31	10	90	<10	0.5	1	2	54	15	71	3.80	440	140
1400N 350E	a9928357	15	<0.2	~2	2	23	0	114	<10	0.5	C1	2	60	15	64	4 27	475	190
1400N 400E	#9928357	<0	0.2	-2	0 6	22	10	06	<10	0.5	<1	2	60	16	65	4 30	535	190
1400N 450E	#9928357	400	-0.2	~2	6	22	8	88	<10	<0.5	<1	14	59	16	65	4.25	780	210
1400N 500E	#9928357	<5	~0.2	~2	-2	20	8	138	<10	0.5	<1	2	66	17	65	4.54	590	240
1200N 250W	89928357	<5	0.2	-2	-2	22	ĥ	152	<10	0.5	<1	<2	60	17	69	4.42	630	200
1200N 200W	89928357	105	0.2	2	2	15	4	104	<10	0.5	<1	<2	41	14	58	3.82	920	230
1200N 150W	a9928357	105	<0.2 <0.2	2	2	22	<2	124	<10	0.5	1	<2	51	17	58	3.71	1415	290
1200N 100W	#9928357	<5	-0.2	54	Å	47	20	146	<10	0.5	2	<2	70	18	76	4.89	705	430
1200N 050W	a9920357	<5	0.4	12	6	14	2	90	<10	0.5	<1	2	42	16	69	3.67	1790	300
120011 030E	aga2033/	<5	0.2	6	<2	10	2	80	<10	<0.5	<1	2	45	13	63	3.54	545	240
120011 1002	-0028357	35	0.2	10	<2	11	2	128	<10	0.5	<1	4	39	14	67	4.01	430	230
1200N 700F	a0028357	5	0.2	56	8	24	14	100	<10	0.5	<1	<2	38	18	58	3.92	675	360
1200N 250E	#0028367	<5	<0.2	6	<2	9	<2	70	<10	0.5	1	4	41	12	58	3.36	1030	330
1200N 300E	#9928357	<5	<0.2	14	2	11	12	76	<10	<0.5	<1	4	44	14	60	4.35	665	260
1200N 350E	#9928357	35	<0.2	8	2	6	<2	48	<10	<0.5	1	2	34	10	55	2.92	845	210
1200N 400E	9928357	<5	<0.2	4	2	12	2	72	<10	<0.5	<1	<2	40	11	57	2.99	655	200
1200N 450E	e9928357	<5	<0.2	2	8	5	2	88	<10	<0.5	<1	2	31	14	49	3.76	1035	210
1200N 500E	#9928357	10	<0.2	2	4	6	<2	90	<10	0.5	<1	<2	27	12	48	3.76	645	150
9600N 050E	a9925357	<5	<0.2	46	10	7	36	46	<10	<0.5	6	2	34	9	43	4.38	585	170
9600N 110E	a9928357	<5	0.6	20	<2	41	36	194	<10	1.0	1	<2	49	16	56	4.58	340	470
0600N 150E	a9928357	10	<0.2	32	6	51	28	128	<10	<0.5	<1	<2	37	10	45	4.56	710	1820
9690N 200E	a9928357	15	0.2	292	12	667	14	296	<10	1.0	<1	2	38	12	33	7.37	1370	2620
0600N 250E	a9928357	<5	<0.2	10	6	16	10	124	<10	<0.5	1	2	38	12	62	3.39	345	450
0600N 300E	a9926357	<5	<0.2	14	10	20	8	116	<10	0.5	<1	6	40	14	58	4.14	815	330
0600N 350E	a9928357	<5	<0.2	16	8	23	6	74	<10	0.5	<1	6	57	15	59	3.40	600	260
0400N 050E	a9928357	<5	0.2	<2	6	7	4	126	<10	0.5	1	6	36	19	53	4.30	1030	210
0400N 100E	a9928357	<5	<0.2	6	6	30	2	48	<10	<0.5	<1	<2	48	14	55	2.80	380	190
0400N 150E	a9928357	10	<0.2	2	<2	6	<2	6	<10	<0.5	11	<2	3	<1	2	0.30	35	200
0400N 215E	a9928357	<5	0.2	152	22	111	12	98	<10	0.5	<1	2	19	10	2/	10.05	2000	3040
0400N 250E	a9928357	55	<0.2	46	<2	41	4	54	<10	<0.5	1	<2	37	10	53	3.85	080	400
0400N 300E	a9928357	<5	0.2	12	<2	14	8	104	<10	<0.5	<1	8	51	19	61	4.88	1135	390
0400N 350E	a9928357	<5	0.2	6	8	11	4	102	<10	0.5	1	6	40	15	61	4.33	780	320
0400N 400E	a9928357	5	0.2	6	<2	9	6	150	<10	0.5	<1	2	31	15	5/	4.25	030 725	290
0400N 450E	a9928357	<5	0.2	2	8	16	6	136	<10	0.5	<1	<2	39	18	01	4.15	133	200
0390N 490E	a99283 57	<5	<0.2	<2	<2	12	4	68	<10	0.5	<1	2	42	16	49	3.90	420	310

•

Atan

Soil Sample Analyses (part 2)

	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ЮP	ICP	ICP	ICP	ICP	ICP	ICP	ICI
Sample ID	v	Hg	Sr	La	AI	Mg	Ca	Na	ĸ	Ti	U	Be	Ga	P	Sc	TI	В	
	ppm	ppm	ppm	ppm	%	%	% %	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	۳
1600N 050E	40	<1	25	20	1.23	0.55	0.52	0.01	0.11	0.09	<10	<0.5	<10	630	4	<10	<10	<0.0
1600N 100E	38	1	19	10	0.99	0.49	0.45	<0.01	0.10	0.09	<10	<0.5	<10	570	3	<10	<10	<0.0
1600N 150E	45	<1	25	20	1.39	0.66	0.53	0.01	0.15	0.09	<10	<0.5	<10	720	5	<10	<10	<0.0
1600N 200E	40	<1	23	20	1.13	0.51	0.48	0.01	0.14	0.08	<10	<0.5	<10	630	4	<10	<10	<0.0
1600N 250E	45	<1	25	20	1.39	0.62	0.54	0.01	0.19	0.09	<10	<0.5	<10	770	5	<10	<10	<0.0
1600N 300E	47	<1	25	20	1.48	0.68	0.54	0.01	0.19	0.09	<10	<0.5	<10	740	6	<10	<10	<0.0
1600N 350E	35	<1	21	10	1.04	0.49	0.46	0.01	0.11	0.07	<10	<0.5	<10	/50	3	<10	<10	<0.0
1600N 400E	51	<1	31	20	1.63	0.80	0.65	0.01	0.18	0.10	<10	<0.5	<10	800	6	<10	<10	<0.0
1600N 450E	47	<1	26	20	1.56	0.65	0.56	0.01	0.17	0.08	<10	0.5	<10	680	5	<10	<10	<0.0
1600N 500E	32	<1	17	10	0.89	0.49	0.42	<0.01	0.08	0.06	<10	<0.5	<10	630	3	<10	<10	<0.0
1400N 050E	66 70	<1	18	<10	1.32	0.66	0.43	0.01	0.07	0.10	<10	<0.5	<10	700	3	<10	<10	<0.0
1400N 100E	70	51	10	10	1.30	0.00	0.41	0.01	0.00	0.10	<10	<0.5	<10	650	3	<10	<10	<0.0
1400N 150E	53	1	20	20	4 77	0.91	0.42	0.01	0.07	0.07	<10	-0.5	<10	630	6	<10	<10	<0.0
1400N 200E	55		20	10	1.17	0.01	0.32	0.01	0.20	0.05	<10	0.5	<10	550	6	<10	<10	<0.0
1400N 250E	80	21	20	<10	2.63	0.74	0.70	0.01	0.07	0.13	<10	0.5	<10	890	4	<10	<10	<0.0
1400N 360E	97	21	23	10	2.05	0.73	0.00	0.01	0.00	0.18	<10	<0.5	<10	830	5	<10	<10	<0.0
1400N 400F	۵ <u>۵</u>	<1 <1	21	<10	2.67	0.70	0.36	0.01	0.07	0.21	<10	0.5	<10	800	3	<10	<10	<0.0
1400N 460E	01	<1	22	10	2 74	0.72	0.37	0.01	0.07	0.20	<10	0.5	<10	960	4	<10	<10	<0.0
1400N 500F	91	<1	19	<10	2 45	0.73	0.38	0.01	0.08	0.18	<10	<0.5	<10	1190	4	<10	<10	0.0
1700N 250W	89	<1	17	<10	3.05	0.74	0.32	0.01	0.08	0.19	<10	0.5	10	1560	4	<10	<10	<0.0
1200N 200W	92	<1	19	<10	3.05	0.82	0.37	0.01	0.10	0.17	<10	0.5	<10	2060	5	<10	<10	0.0
1200N 150W	85	<1	18	<10	2.56	0.59	0.30	0.01	0.07	0.18	<10	<0.5	10	1150	4	<10	<10	0.0
1200N 100W	84	<1	23	10	2.65	0.69	0.38	0.01	0.09	0.17	<10	<0.5	<10	1060	5	<10	<10	<0.0
1200N 050W	78	<1	27	10	3.03	0.93	0.37	0.01	0.28	0.17	<10	0.5	<10	680	9	<10	<10	<0.0
1200N 050E	94	<1	31	<10	2.53	0.77	0.58	0.01	0.13	0.17	<10	<0.5	<10	680	4	<10	<10	0.0
1200N 100E	84	<1	25	<10	2.14	0.60	0.45	0.01	0.10	0.14	<10	<0.5	<10	1320	3	<10	<10	<0.0
1200N 150E	93	<1	18	<10	2.15	0.68	0.33	0.01	0.11	0.16	<10	<0.5	<10	650	3	<10	<10	<0.0
1200N 200E	63	<1	22	20	2.30	0.76	0.38	0.01	0.22	0.08	<10	0.5	<10	740	6	<10	<10	<0.0
1200N 250E	75	<1	23	<10	1.91	0.60	0.45	0.01	0.10	0.14	<10	<0.5	<10	1550	3	<10	<10	<0.0
1200N 300E	74	<1	28	10	2.85	0.63	0.57	0.01	0.04	0.15	<10	0.5	<10	260	6	<10	<10	0.0
1200N 350E	74	<1	22	<10	1.71	0.45	0.42	0.01	0.07	0.12	<10	<0.5	<10	1290	3	<10	<10	<0.0
1200N 400E	71	<1	20	<10	1.75	0.66	0.39	0.01	0.07	0.11	<10	<0.5	<10	1560	4	<10	<10	<0.0
1200N 450E	81	<1	12	<10	1.74	0.37	0.27	<0.01	0.04	0.19	<10	<0.5	<10	430	2	<10	<10	<0.0
1200N 500E	79	<1	12	<10	1.61	0.37	0.22	< 0.01	0.05	0.19	<10	<0.5	<10	820	2	<10	<10	<0.0
0600N 050E	102	<1	75	10	2.56	0.68	3.23	< 0.01	0.05	0.03	<10	0.5	<10	580	6	<10	<10	0.04
0600N 110E	89	6	12	10	3.24	0.59	0.29	0.01	0.03	0.24	<10	0.5	<10	250	5	<10	< 10	<0.0
0600N 150E	55	<1	24	10	1.80	1.98	2.71	0.01	0.03	0.10	<10	<u.5< td=""><td>< 10</td><td>200</td><td>5</td><td><10</td><td><10</td><td>0.04</td></u.5<>	< 10	200	5	<10	<10	0.04
0600N 200E	43	<1	37	<10	1.53	1.56	2.20	<0.01	0.05	0.00	<10	<0.5	<10	240	5	<10	<10	<0.0
0600N 250E	79	<1	19	10	2.17	0.65	0.45	0.01	0.04	0.13	<10	<0.5 <0.5	10	770	3	<10	<10	-0.0
0600N 300E	100	<1	20	< 10	2.59	0.69	0.41	0.01	0.00	0.21	<10	<0.5	<10	740	4	<10	<10	<0.0
0600N 350E	80	<1	27	<10	2.3/	0.80	0.40	0.02	0.09	0.10	<10	<0.5	10	870	- - -	<10	<10	<0.0
0400N 050E	91	<1	18	< 10	1.90	0.41	0.50	0.01	0.10	0.24	<10	<0.5	<10	890	Ă	<10	<10	<0.0
NAMEN INCOM	2	~1	147	<10	0.10	0.75	4 30	<0.01	<0.01	<0.01	<10	<0.5	<10	300	<1	<10	<10	0.5
NAVON 15VE	20		141	10	1.65	1 71	3.24	<0.01	0.01	0.07	<10	<0.5	<10	390	3	<10	<10	0.0
0400N 213E	39 58	4 21	4J 25	10	1.03	1 75	2.21	0.01	0.07	0.11	<10	<0.5	<10	120	5	<10	<10	<0.0
0400N 23VE	20	<1	20	<10	2.83	0.48	0.36	0.01	0.09	0.28	<10	0.5	10	610	3	<10	<10	0.0
140011 300E	07	<1	21	<10	2.43	0.54	0.35	0.01	0.09	0.24	<10	<0.5	<10	350	3	<10	<10	<0.0
0400N 4045	06	<1	20	<10	2.00	0.48	0.40	0.01	0.12	0.22	<10	<0.5	<10	500	3	<10	<10	<0.0
0400N 450F	94	<1	26	<10	2.58	0.64	0.49	0.01	0.13	0.17	<10	<0.5	<10	620	4	<10	<10	0.0
			46	~10	2 18	0.53	0.31	0.01	0.08	0.18	<10	<0.5	<10	710	2	<10	<10	<0.0

