RECEIVED

JAN 1 5 2000

Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT

ON A

ROCK

AND

SOIL SAMPLING PROGRAM

ON THE

ASPEN PROPERTY

ASP 1-2 AND 4-6 MINERAL CLAIMS

SALMO AREA

NELSON MINING DIVISION, B.C.

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHORS: DATE: 082F/03E 49°11'08"N 117°11'15"W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo December 20, 199GEOLOGICAL SURVEY BRANCH

ASSESSMENT REPORT

TABLE OF CONTENTS

SUMMAR	Y	Page 1	
LOCATION	N AND .	ACCESS	Page 2
TOPOGRA	PHY		Page 2
PROPERTY	Y		Page 3
HISTORY			Page 4
GENERAL	GEOLO	DGY	Page 5
WORK CO 1. 2.	MPLET ROC A) B) SOII A) B)	ED CK SAMPLING PROGRAM PARAMETERS PROGRAM RESULTS SAMPLING PROGRAM PARAMETERS PROGRAM RESULTS	Page 6 Page 6 Page 7
CONCLUS	IONS		Page 8
RECOMM	ENDAT	IONS	Page 9
REFERENC	CES		Page 10
STATEME	Page 11		
STATEME	NT OF (QUALIFICATIONS	Page 12

LIST OF ILLUSTRATIONS

FIGURE 1	LOCATION MAP	Following page 2
FIGURE 2	CLAIM MAP	Following page 3
FIGURE 3	SOIL AND ROCK SAMPLING- Sample Locations and Geology	In Pocket
FIGURE 4	SOIL AND ROCK SAMPLING- Gold Values	In Pocket
FIGURE 5	SOIL AND ROCK SAMPLING- Lead Values	In Pocket
FIGURE 6	SOIL AND ROCK SAMPLING- Zinc Values	In Pocket

APPENDICES

APPENDIX 1 - ROCK SAMPLE DESCRIPTIONS, ANALYTICAL PROCEDURES AND ANALYTICAL RESULTS

APPENDIX 2 - SOIL SAMPLING SURVEY - ANALYTICAL PROCEDURES AND RESULTS

SUMMARY

The Aspen is a probable manto-type silver, gold, lead and zinc deposit hosted by limestone of the Lower Cambrian Laib Formation. The deposit is located on the eastern side of upper Aspen Creek, 65 kilometres east of Salmo and 40 kilometres south of Nelson in the Nelson Mining Division.

Exploration work has been carried out on the property since 1912 and has defined three distinct ore-bearing breccia horizons, which have been strongly affected by folding, faulting and by the emplacement of the Middle to Late Jurassic Nelson Intrusions.

In 1993, programs of silt and soil sampling were carried out on the property. This work was supplemented by additional soil sampling in 1999.

LOCATION AND ACCESS

The Aspen property is centred at latitude 49°11'08"N and longitude 117°11'15" W. The property is located 6.5 km east by east-southeast of Salmo and 4.8 km N of the junction of Aspen and Sheep Creeks (Figure 1).

Access to the property can be gained via a four-wheel drive road up Aspen Creek from the Sheep Creek road off Highway 3/6.

TOPOGRAPHY

The Aspen claims are principally located on the eastern side of Aspen Creek. Elevations range from 4500 feet (1372 metres) to 5000 feet (1524 metres). Slopes are moderate.

PROPERTY

The Aspen property comprises seven two-post claims, designated Asp 1 to 8, located by Richard G. Mitchell and John G. Beggs on October 18, 1993. Portions of the Asp 1, 2 and 4 claims are overstaked by claims owned by another party.

Claim Name	Record #	Owner of Record	Anniversary Date *						
Asp 1	321805	W.R. Gilmour	October 18, 2002						
Asp 2	321806	W.R. Gilmour	October 18, 2002						
Asp 4	321808	W.R. Gilmour	October 18, 2002						
Asp 5	321809	W.R. Gilmour	October 18, 2002						
Asp 6	321810	W.R. Gilmour	October 18, 2002						
Asp 7	321811	W.R. Gilmour	October 18, 2002						
Asp 8	321812	W.R. Gilmour	October 18, 2002						

The claims are held in trust for the Predator Syndicate.

* Pending acceptance of this report.

HISTORY

The Aspen deposit was discovered by prospectors in 1896. From 1912 to 1928 considerable development work was done on the property by private interests, including trenching, drifting, cross-cutting and diamond drilling.

Between 1928 and 1937 work was continued by Salmo-Malartic Mines Ltd.

Recorded production for three years during this period totalled 28 tonnes grading 31 grams of gold, 36,359 grams of silver, 431 kilograms of lead and 365 kilograms of zinc.

Reserves published in 1937 indicated 29,030 tonnes averaging about \$9 per tonne combined silver and gold (1937 prices) and 90,720 tonnes of low-grade zinc.

In 1951 Sheep Creek Gold Mines Limited conducted 3019 feet (920 metres) of diamond drilling which outlined a considerable tonnage of marginal material.

Extotal Resources Inc. carried out a further 1545 metres of diamond drilling in 1980.

In 1984 Greenwich Resources completed a program of rock, soil and silt sampling combined with a ground electromagnetic survey.

Discovery Consultants carried out a limited soil and silt-sampling program on the property in 1993.

GENERAL GEOLOGY

The Aspen occurrence has been described as a manto-type deposit hosted by limestone of the Lower Cambrian Formation (Reeves Member) correlative with the Lower Cambrian Badshot Formation. The deposits have been strongly affected by folding, faulting, and by the emplacement of the Middle to Late Jurassic Nelson Intrusions. Three distinct stratabound, dolomitic ore-bearing breccia horizons have been recognized.

These are:

- 1. Upper Zinc dolomitic breccia. Sphalerite, pyrite and pyrrhotite are hosted in a calcitedolomite-olivine-serpentine-talc gangue.
- Middle Silver dolomitic breccia. Pyrite, sphalerite, galena and tetrahedrite occur in a diopside-quartz-calcite-wollastonite-serpentine-humite gangue. The unit is 1 to 8 metres thick and is traced about 1100 metres on the surface. Tetrahedrite occurs as small, irregular aggregates easily mistaken for carbonaceous material in an otherwise unmineralized silicified dolomite. The Middle Silver Zone may locally contain up to 15% zinc, 14 grams per tonne gold and 1371 grams per tonne silver.
- 3. Lower Lead-Zinc-Silver dolomitic breccia. Sphalerite, galena and tetrahedrite occur in a calcite-dolomite-olivine-wollastonite gangue. Assay values range from 2.3 to 6% zinc, 2 to 25% lead, and 291 to 2057 grams per tonne silver.

The zones have a general north-northwest trend and dips about 40 to 50 degrees northeast.

WORK COMPLETED

Work carried out on the property in 1999 comprised rock sampling and soil sampling. The individual surveys are discussed below.

I. Rock Sampling

a). Program Parameters

A total of 4 rock samples was collected from various locations on the Asp claims. Samples were shipped to Chemex Labs Ltd. in North Vancouver, B.C. At Chemex, analyses were carried out for gold and 32 element ICP. Sample locations and gold, lead and zinc values are shown on Figures 4, 5 and 6. Rock descriptions and complete analytical results are contained in Appendix 1.

b). Program Results

Of the four samples collected, only one contained significant metal values. Sample 645-Rk002, a chip sample of unaltered and oxide material collected from an old adit on the Asp 4 claim contained 12.5 % zinc over 2.5 metres.

- 2. Soil Sampling
 - a). Program Parameters

Forty-nine soil samples were collected on the Asp 4 to 8 claims. The samples were taken along four lines to cover the area of previously defined mineralization and adjacent to known mineralization to test for parallel zones.

Twenty-three soil samples were collected on the Asp 7 claim at 10 and 15 metre intervals along lines laid out along strike, southeast and northwest of the 1993 Asp-23 soil sample, which contained 968 ppb gold.

Twenty-six soil samples were collected at 50 metre intervals on two northnortheasterly trending lines on the Asp 4, 6 and 8 claims. The lines were placed 100 metres apart and were set at approximate right angles to stratigraphy to test for mineralization stratigraphically parallel to known mineralized zones.

The samples were collected by shovel from the "B" horizon, placed in 9cm x 25cm kraft sample bags and sent to Chemex Labs Ltd. in North Vancouver, B.C. At Chemex the samples were dried and sieved and analyses carried out for gold and 32 element ICP.

Sample locations with gold, lead and zinc values are shown on Figures 4, 5 and 6. Complete analytical results are contained in Appendix 2.

b). Program Results

No significant gold values were detected in the soil samples collected. A maximum value of 19ppb Au was obtained.

Lead values were in general low, with a maximum value of 78 ppm in sample 645-S024. This sample is located near a known mineralized zone on the Asp 4 claim.

Zinc values in the 1999 sampling range up to 1560 ppm in sample 645-S042 on the Asp 8 claim at the contact between limestone to the south and diorite to the north. Zinc values are higher within the limestone unit.

CONCLUSIONS

The source of anomalous gold values in silt samples SS 1 and SS 4, collected in 1993 in separate drainages at the headwaters of Aspen Creek has not been determined. Detailed soil sampling in the vicinity of a 1993 soil sample containing 968 ppb gold has not defined additional mineralization.

The soil sampling has defined higher zinc values in areas underlain by limestone. A value of 1560ppm zinc may represent remobilized mineralization at the limestone/intrusive contact but also may represent mineralization within the limestones.

Rock sampling has defined high-grade zinc mineralization containing 12.9 % zinc as oxide material collected over 2.5 metres in old workings on the property. This mineralization exhibits the potential of the property to host significant zinc oxide material. This material represents an easily mined, easily upgradeable resource which, based on recent advances in metallurgy, may be a viable exploration target in the area.

RECOMMENDATIONS

Further exploration on the property should be aimed toward the definition of possible zinc oxide mineralization on the property as this material can be more easily and profitably mined than primary zinc sulphides.

Exploration to define the source of an anomalous zinc value at the contact between diorite and limestone is recommended.

A VLF-EM survey should be carried out over and along strike from a mineralized zone exposed in an adit at the northwest corner of the Asp 4 claim to test for an extension of mineralization to the northwest. Detailed sampling should be carried out over any conductors defined and trenching carried out over anomalous areas.

Respectfully submitted, T.H. Carpe Geo.

Vernon, B.C. December 20,1999

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources (MEMPR) Annual Report.

1896 pg. 73 1912 pg. 155 1913 pg. 131 1914 pg. 329 1915 pg. 162 1917 pg. 170, 195 1918 pg. 173, 198 1920 pg. 133 1926 pg. 278 1927 pg. 308 1928 pg. 348 1933 pg. 232 1934 pg. E22 1935 pg. A31, G50 1936 pg. E42 1937 pg. E53

BCMEMPR Geology, Exploration and Mining in B.C.

1980 pg. 55 1984 pg. 36

Fyles, J.T. and Hewlett, C.G. - Stratigraphy and structure of the Salmo Lead-Zine Area. British Columbia Department of Mines, Bulletin No. 41, 1959

Geological Survey of Canada, Memoir 172, pg. 65

Geological Survey of Canada, Memoir 308, pg. 134

STATEMENT OF COSTS

Aspen Property – Project 645

l	Professional Service	ces			
	T. Carpenter (P.G	eo.)			
	Planning, Data Ir	nterpretation, & Reporting			
	2 days	@\$350/day	\$ 700.00		
					\$ 700.00
2	Field Personnel				
	R.Mitchell (So	il sampling Sept. 13 - 15)			
	2.5 da	ys @\$283.20/day	708.00		
	Office Personnel				
	Drafting		214.68		
	Secretarial		46.46		
	Data Compilatio	n	53.10		
					1,022.24
3	Expenses				
	Analysis				
	(Au + 32 ele	em. ICP analyses)			
	4 rock	samples @\$18.28/sample	\$ 73.12		
	49 soil	samples @15.92/sample	827.84		
				\$ 900.96	
	Field Supplies			40.74	
	Equipment Rent	tal		26.00	
	Lodging & Mea	ls		127.78	
	Freight			30.00	
	Communication	s, Report & map printing		110.00	
					1,235.48
			Exploration	Costs :	\$2,957.72
5	Transportation		-		·
	a) 4x4 Truck	2.0 days @\$40/day	\$ 80.00		
		670km @30¢/km	201.00		
	gas		69.32		
				\$ 350.32	
	b) @20%	of Exploration Costs of \$2,957.72		\$ 591.54	
		a or b whichever is l	ess		350.32
		Total E	Exploration Costs	:	\$3,308.04
			-		

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration with Discovery Consultants, Vernon, B.C.
- 2. I am a 1971 graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 3. I have been practicing my profession since graduation.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. This report is based upon knowledge of the Aspen property gained from supervision.
- 7. I hold no interest either directly or indirectly in the Aspen property.

Vernon, B.C. December 20, 1999 APPENDIX 1

ROCK DESCRIPTIONS

335N 6452E	Granite. Cream to brownish in weathered surface. Well developed quartz phenos to 5mm.
IN 170E	Diorite. Feldspar phenos. (plagioclase) to 4mm in a medium grained salt and pepper matrix.
645-RK-01	Granular (to 0.5mm) light grey to beige rock. Quite porous. Possible aplite(?) cutting limestone. 028/080°W dip 85m above 645-S06
645-RK-02	Gossan from adit. 17 m N. & 65 m E. of Asp 5 & 6 initial post. Comprising limestone and marble. Boudins(?) with primary sphalerite and pyrite and secondary oxide. Strike and dip 330°/-70°E. Rusty vein material (1.0m). Siliceous limestone in hanging wall. Magnetic material in hanging wall. Sample collected over 2.5m.

n:\645\rep\99_0921a.doc

ANALYTICAL PROCEDURES

Geochemical Analysis

by Chemex Labs Ltd.

ELEMENT		LOWER DETECTION LIMIT	EXTRACTION	METHOD					
Au	Gold	5 ppb	fire assay	A.A.					
Al*	Aluminum	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sb	Antimony	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
As	Arsenic	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ba*	Barium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Be*	Beryllium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Bi	Bismuth	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Cd	Cadmium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ca*	Calcium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Cr*	Chromium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Со	Cobalt	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Cu	Copper	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ga*	Gallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Fe	Iron	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
La*	Lanthanum	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Pb	Lead	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Mg*	Magnesium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Mn	Maganese	5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Hg	Mercury	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Мо	Molybdenum	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ni	Nickel	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ρ	Phosphorus	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
K*	Potassium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sc*	Scandium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ag	Silver	0.2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Na*	Sodium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sr*	Strontium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
TI*	Thallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ti*	Titanium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
W*	Tungsten	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
U	Uranium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
V	Vanadium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Zn	Zinc	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					

* Incomplete digeston.

Project 645

Aspen

file: 645\geodata\Rock_99.wk4

Reference : as	929460, 29	864(o/l), 29973) -*=====								=======		=====		******			
Sample ID	Lab report#	30g FA/AA Au ppb	ICP Ag ppm	ICP As ppm	ICP Sb ppm	ICP Cu ppm	ICP Pb ppm	ICP Zn ppm	FA Zn %	ICP W ppm	ICP Cd ppm	ICP Mo ppm	ICP Bi ppm	ICP Ni ppm	ICP Co ppm	ICP Cr ppm	ICP Fe %	ICP Mn ppm
RK-001 RK-002 RK-003 RK-004	a9029973 a90294660 a9029973 a9029973 a9929973	5 30 <5 5	<0.2 9.6 <0.2 <0.2	10 8 10 8	<2 <2 <2 <2 <2	16 19 3 2	6 122 8 8	8 >10000 26 98	12.9	<10 <10 <10 <10	<0.5 206.0 <0.5 0.5	1 3 <1 <1	<2 <2 <2 <2 <2	8 27 2 12	2 6 <1 15	93 5 140 35	0.6 10.25 0.85 4.62	65 315 145 965

Rock Sample Analyses

Aspen

Rock Sample Analyses (part 2)

sample ID	ICP Ba ppm	ICP V ppm	ICP Hg ppm	ICP Sr ppm	ICP La ppm	ICP Al %	ICP Mg %	ICP Ca %	ICP Na %	юр К К %	ICP Ti %	ICP U ppm	ICP Be ppm	iCP Ga ppm	ICP P ppm	ICP Sc ppm	ICP TI ppm	ICP B ppm	кср \$ %
RK-001	80	8	<1	75	10	1.4	0.05	1.18	0.14	0.16	0.06	<10	0.5	<10	360	<1	<10	<10	0.03
RK-002	70	7	<1	63	<10	0.39	3.98	6.10	3.19	<0.01	0.01	10	<0.5	<10	160	<1	<10	<10	3.69
RK-003	50	3	<1	7	40	0.34	<0.01	0.03	0.08	0.17	<0.01	<10	<0.5	<10	150	1	<10	<10	<0.01
RK-004	180	141	<1	110	30	1.85	1.39	1.68	0.13	0.22	0.17	<10	<0.5	<10	2090	7	<10	<10	<0.01

APPENDIX 2

ANALYTICAL PROCEDURES

Geochemical Analysis

by Chemex Labs Ltd.

ELEME	NT	LOWER DETECTION LIMIT	EXTRACTION	METHOD					
Au	Gold	5 ppb	fire assay	A.A.					
Al*	Aluminum	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sb	Antimony	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
As	Arsenic	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ba*	Barium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Be*	Beryllium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Bi	Bismuth	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Cd	Cadmium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ca*	Calcium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Cr*	Chromium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Co	Cobalt	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Cu	Copper	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ga*	Gallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Fe	Iron	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
La*	Lanthanum	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Pb	Lead	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Mg*	Magnesium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Mn	Maganese	5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Hg	Mercury	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Мо	Molybdenum	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ní	Nickel	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ρ	Phosphorus	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
K*	Potassium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sc*	Scandium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ag	Silver	0.2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Na*	Sodium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
Sr*	Strontium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
TI*	Thallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Ti*	Titanium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma					
W*	Tungsten	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
U	Uranium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
V	Vanadium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					
Zn	Zinc	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma					

* Incomplete digeston.

Project 645

Aspen

Soil Sample Analyses 1999

Ne: 645\geodata\Soil_99.wk4 Reference : a9929461

	30	g FA/AA	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP		ICP
Sample ID	Lab	Au	Ag	As	Sb	Çu	Pb	Zn	w	Cd	Mo	Bi	Ni	Co	Çr	F8	Mn	Ba
•	report #	ррь	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	76 		
	#9929461	<5	0.2	6	<2	19	18	98	<10	0.5	<1	<2	22	11	20	3.20	585	190
5002	49929461	<5	0.4	18	<2	29	14	118	<10	0.5	2	<2	35	14	30	3.30	770	2/0
S003	a9929461	<5	0.6	6	<2	18	16	158	<10	0.5	1	<2	23	15	20	3.40	750	290
5004	a9929461	<5	0.2	6	<2	21	18	152	<10	0.5	1	<2	26	13	22	3.24	550	160
5005	a9929461	<5	0.2	8	<2	18	12	140	<10	0.5	<1	<2	24	16	21	3.13	955	200
S006	a9929461	<5	0.8	10	<2	53	16	178	<10	0.5	1	<2	30	11	22	3.17	750	120
S007	49929461	<5	0.4	4	<2	23	14	112	<10	<0.5	2	2	24	10	24	2 97	590	120
S008	#9929461	<5	0.2	10	<2	22	12	98	<10	<0.5	2	-2	20	10	25	2.92	390	130
S009	a 9929461	<5	0.2	8	<2	20	12	102	<10	<0.5	4	-2	18	12	19	2.81	795	120
S010	a9929461	<5	0.4	2	<2	16	12	406	<10	<0.5	-	~2	19	12	19	2.86	820	130
5011	#9929461	<5	0.2	<2	<2	15	10	120	~10	20.5	<1	<2	16	11	19	2.66	1070	190
S012	a9929461	<5	0.4	0	~2	10	12	132	<10	<0.5	<1	<2	15	10	18	2.90	525	150
S013	a9929461	<5	0.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	16	108	<10	<0.5	<1	<2	15	10	20	3.07	595	170
S014	a9929461	<5	0.2	~2	~2	12	20	126	<10	0.5	<1	<2	14	10	20	3.24	735	180
SOIS	a9929461	<0	0.2	-2	<2	14	12	76	<10	<0.5	1	<2	13	9	16	2.59	685	110
SUID	a9929461	<5	0.2	<2	<2	16		54	<10	<0.5	<1	<2	14	8	13	1.85	585	100
5017	199294h1	-5	0.2	2	<2	21	12	112	<10	<0.5	1	<2	22	12	22	3.20	630	160
5010	#9929401	~5	0.2		<2	12	16	94	<10	<0.5	1	<2	15	8	18	2.63	400	140
5019	#9929461	<5	0.6	<2	<2	9	10	114	<10	<0.5	<1	<2	11	8	15	2.52	635	200
5920	89929461 - (***)10461	<5	0.0	<2	ō	9	10	88	<10	<0.5	<1	<2	14	8	17	2.57	510	210
5021	-0010461	<5	0.2	<2	<2	11	12	92	<10	<0.5	1	<2	13	9	17	2.79	685	240
5022	-04722461	<5	0.2	<2	<2	11	12	84	<10	<0.5	<1	<2	19	11	23	3.07	285	200
5024	19129461	<5	0.4	24	<2	23	78	286	<10	1.5	1	<2	40	19	27	3.61	1785	140
5025	+9279461	<5	0.4	52	<2	15	20	312	<10	0.5	1	<2	32	19	21	3.29	990	150
5026	a9929461	<5	0.4	8	<2	18	36	224	<10	1.0	<1	<2	26	13	37	3.20	1310	170
5027	9929461	<5	0.2	<2	<2	10	14	118	<10	<0.5	<1	<2	17	9	23	2.66	430	170
5028	a9929461	<5	0.2	<2	<2	12	20	162	<10	<0.5	1	<2	20	10	31	2.90	305	140
S028A	#9929461	10	0.2	2	<2	15	16	154	<10	<0.5	1	<2	30	10	42	3.02	200	140
S028B	a9929461	<5	0.2	<2	<2	16	18	154	<10	<0.5	1	<2	31	10	44	3.03	1245	140
S029	a9929461	<5	0.2	4	<2	6	32	222	30	0.5	3	<2	12	10	20	2.00	085	160
S030	a9929461	<5	0.4	2	<2	19	16	228	<10	1.0	<1	<2	24	10	44	3.17	830	140
S031	19929461	<5	0.2	6	<2	11	22	136	<10	<0.5	<1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	12	78	3.17	1715	250
S032	a9929461	<5	0.4	<2	<2	22	22	160	<10	1.5	2	~2	41	12	62	3.11	925	160
S033	a9929461	<5	0.4	<2	<2	16	16	124	< 10	<0.5		~2	55	18	139	3 75	2200	240
S034	29929461	<5	0.2	<2	<2	21	24	130	< 10	<0.5	4		31	11	72	3 55	660	150
S035	a9929461	<5	0.4	<2	<2	16	15	1.34	<10	<0.0	ر د1	<2	15	8	19	2.93	360	120
S036	a9929461	<5	0.4	<2	<2	14	14	04	~ 10 n/e	~0.J	nle	n/s	n/s	n/s	n/s	n/s	n/s	n/s
\$037	a9929461	n/s	n/s	n/s	n/s	n/s	11/5	105	<10 <10	105	103	<2	11	6	14	3.26	890	130
S038A	a9929464	<5	0.2	2	<2	13	20	001	<10	<0.5	<1	<2	7	6	14	3.37	710	130
S038B	a9929461	<5	0.4	<2	~2	12	20	154	<10	<0.5	1	<2	24	6	25	3.61	655	120
S039	∎9929461	<5	0.2	2	~2	12	16	119	<10	<0.5	, <1	<2	12	8	18	2.48	1010	90
\$040	a9929461	<0	0.0	4	~2	13	20	140	<10	<0.5	<1	<2	9	7	15	2.88	1160	130
5041	19929441	<5	0.4	14	2	08	52	1560	<10	17.5	1	<2	130	17	84	3.53	1510	720
5042	a9929461	50 - F	0.U A	-22	2) 2)	15	34	184	<10	1.5	2	<2	16	9	20	2.84	1680	170
5043	a9929461	<5 ~=	0.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	26	364	<10	1.5	<1	<2	15	9	17	2.72	990	140
5044	a9929461	~0	0.4	~2	<2	13	12	116	<10	<0.5	2	<2	19	9	25	2.83	425	100
3043	a9929461	<0 25	0.2	<2	0	13	18	128	<10	<0.5	<1	<2	17	10	23	2.92	760	190
3040	100201C	~3	0.2	12	<2	20	22	294	<10	1.5	1	<2	17	11	23	2.79	1170	270
3047 5048	89929461	-3	0.0	36	<2	17	16	228	<10	0.5	<1	<2	32	12	26	3.01	450	110
5040	a9929401	-5	0.0	50	<2	15	40	302	<10	1.5	1	<2	55	20	37	3.57	1760	170
5049	29929461	<5	0.2	50	~2	10	40	002	- 10		•	-						

Aspen

Soil Sample Analyses (part 2)

Sample ID	IĆP V	iCP Ha	ICP Sr	ICP La	ICP AI	ICP Ma	ICP Ca	ICP Na	ICP K	ICP Ti	ICP U	ICP Be	ICP Ga	ICP P	ЮР Sc	ICP TI	ICP B	ICF
	ppm	ppm	ppm	ppm	%	%	%	% %	% %	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
5001	58	<1	25	30	3.39	0.46	0.31	0.02	0.13	0.13	<10	0.5	<10	1180	3	<10	<10	0.03
S002	59	<1	40	50	3.69	0.71	0.42	0.02	0.14	0.16	20	0.5	<10	810	4	<10	<10	0.03
5003	56	<1	45	10	4.12	0.51	0.54	0.03	0.11	0.18	<10	0.5	10	1590	3	<10	<10	0.03
S004	58	<1	30	10	3.15	0.42	0.34	0.01	0.11	0.14	<10	<0.5	<10	1360	3	<10	<10	0.01
S005	59	<1	27	10	3.65	0.57	0.39	0.01	0.12	0.15	<10	0.5	<10	1210	3	<10	<10	0.01
S006	65	<1	28	50	3.68	0.60	0.43	0.03	0.11	0.16	40	1.5	<10	780	5	<10	<10	0.01
S007	58	<1	25	40	2.81	0.46	0.34	0.01	0.11	0.12	10	0.5	<10	910	3	<10	<10	0.03
S008	54	<1	24	30	3.12	0.45	0.29	0.01	0.10	0.12	10	0.5	<10	670	3	<10	<10	0.03
S009	51	<1	23	30	3.13	0.45	0.27	0.01	0.11	0.12	10	0.5	<10	820	3	<10	<10	0.03
S010	47	<1	18	10	3.13	0.30	0.18	0.02	0.08	0.15	<10	0.5	10	640	2	<10	<10	0.02
5011	40	<1	16	10	3.99	0.28	0.16	0.02	0.08	0.14	< 10	0.5	<10	2130	4	<10	<10	0.02
5012	40 50	~1	10	10	3.74	0.30	0.10	0.02	0.07	0.13	<10	0.5 <0.5	<10	1920	2	~10	<10	0.02
5013	58	<1	23	10	3.30	0.32	0.14	0.02	0.08	0.13	<10	-0.5	<10	1250	2	~10	<10	0.01
\$015	59	<1	20	10	2 /0	0.34	0.20	0.01	0.09	0.13	<10	<0.5	<10	2040	2	<10 e10	<10	0.01
SALA	48	<1	20	30	2.13	0.33	0.13	0.01	0.03	0.09	<10	0.5	<10	660	1	<10	<10	0.02
5017	33	<1	19	20	1 71	0.20	0.24	0.01	0.06	0.03	<10	0.5	<10	550	i	<10	<10	0.00
S018	59	<1	35	30	3 12	0.51	0.32	0.01	0.14	0.12	<10	0.5	<10	850	3	<10	<10	0.04
S019	54	<1	17	20	2.56	0.40	0.22	0.01	0.09	0.10	<10	<0.5	<10	1390	ž	<10	<10	0.01
5020	44	<1	26	10	2.63	0.31	0.28	0.01	0.07	0.11	<10	<0.5	<10	2360	1	<10	<10	0.01
S021	54	<1	23	20	1.93	0.44	0.29	0.01	0.09	0.09	<10	<0.5	<10	2140	2	<10	<10	0.01
5022	58	<1	26	20	2.34	0.44	0.26	0.01	0.11	0.11	<10	<0.5	<10	1830	2	<10	<10	0.01
S023	60	<1	21	20	3.32	0.50	0.20	0.01	0.11	0.14	<10	0.5	<10	710	3	<10	<10	0.01
S024	53	<1	23	20	5.37	1.78	0.95	0.02	0.09	0.15	10	1.0	<10	3310	5	<10	<10	0.03
\$025	39	<1	16	<10	4.65	0.40	0.42	0.03	0.07	0.17	<10	0.5	10	3790	3	<10	<10	0.02
S026	44	<1	29	30	5.67	3.70	1.20	0.02	0.10	0.14	<10	1.5	10	1620	5	<10	<10	0.02
S027	60	<1	24	10	2.58	0.48	0.29	0.01	0.11	0.14	<10	<0.5	<10	1600	2	<10	<10	0.01
S028	53	<1	13	10	3.52	0.41	0.14	0.02	0.08	0.14	<10	0.5	<10	2050	2	<10	<10	0.01
S028A	60	<1	16	20	3.66	0.70	0.17	0.01	0.10	0.14	<10	0.5	<10	1500	3	<10	<10	0.01
S028B	62	<1	17	20	3.70	0.73	0.17	0.01	0.10	0.15	<10	0.5	<10	1330	3	<10	<10	0.01
\$029	32	<1	15	20	2.48	0.31	2.35	0.01	0.03	0.09	<10	0.5	<10	1560	1	<10	<10	0.01
5030	48	<1	13	<10	4.42	0.47	0.15	0.02	0.08	0.17	<10	0.5	10	2780	2	<10	<10	0.02
S031	51	<1	11	10	3.38	0.24	0.11	0.01	0.06	0.14	<10	0.5	10	1440	3	<10	<10	0.02
S032	53	<1	28	40	3.81	0.85	0.74	0.02	0.09	0.16	10	1.0	<10	950	3	<10	<10	0.05
S033	53	<1	15	30	4.15	0.67	0.19	0.01	0.10	0.17	10	0.5	<10	1130	3	<10	<10	0.03
S034	68	<1	28	30	3.30	1.26	0.29	0.02	0.12	0.21	<10	1.0	10	1090	3	<10	<10	0.03
\$035	60	<1	14	10	4.53	0.60	0.10	0.02	0.10	0.20	<10	0.5	10	1260	3	<10	<10	0.02
5036	53	<1	13	10	4.38	0.34	0.09	0.02	0.08	0.15	<10	0.5	<10	980	3	<10	<10	0.03
\$037	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	<u> </u>	n/s	n/s	п/S	n/s	n/s	n/s	n/s
5038A	51	<1	19	20	1.65	0.22	0.09	0.01	0.07	0.14	<10	<0.5	10	500	2	<10	<10	0.04
2038B	53	<1	11	10	3.10	0.18	0.07	0.03	0.05	0.17	<10	<0.5	10	1280	2	<10	<10	0.02
5037	20	~1	11	30	3.50	0.45	0.11	0.01	0.09	0.13	<10	0.5	10	1730	4	<10	<10	0.03
3040 6041	39		10	10	5.21	0.21	0.10	0.02	0.05	0.14	< 10	0.5	10	1550	3	<10	<10	0.03
5047	42 68	~1	9 27	50	4.41	1 20	1.09	0.02	0.07	0.10	*0	10.0	10 <10	2010	3 5	<10	240	0.03
5041	49	<1	21	30	3.13	0.40	0.82	0.03	0.14	0.20	10	0.5	<10	1070	3	<10	<10	0.04
\$044	45	<1	2 I 0	30	3.13	0.49	0.02	0.02	0.09	0.14	<10	0.5	10	980	2	<10	<10	0.04
\$045	54	<1	11	10	3.18	0.46	0.14	0.03	0.00	0.19	<10	<0.5	<10	960	2	<10	<10	0.01
S046	56	<1	19	10	3,30	0.48	0.33	0.02	0.00	0.14	<10	0.5	<10	780	3	<10	<10	0.01
5647	48	<1	17	10	3.92	0 43	0.35	0.02	0.00	0.15	<10	0.5	10	2460	2	<10	<10	0.07
S048	47	<1	12	<10	5.03	0.45	0.15	0.03	0.08	0.15	<10	0.5	<10	1690	3	<10	<10	0.02
\$049	42	<1	24	10	4.35	1 24	0.86	0.03	0.11	0.13	<10	0.5	<10	2880	ă	<10	<10	0.02
~~ • • •	-+-	~ •	£7	10	4.00		0.00	A164		9.10	- 10	0.0	. 19	2000		- 10	- 19	V.VZ

•

- **4**

2 · · · ·

•.

