

NORTH BRECCIA ZONE

on the

BIG KIDD PROPERTY, NICOLA MINING DIVISION ASPEN GROVE, BRITISH COLUMBIA NTS 92H/15E

OWNED BY

CHRISTOPHER JAMES GOLD CORP. 440-175 Second Avenue Kamloops, BC V2C 5W1

OPERATED BY

KAMLOOPS GEOLOGICAL SERVICES LTD. 910 Heatherton Court Kamloops, BC V1C 1P9

AUTHOR

R.C. Wells, P.Geo., FGAC Consulting Geologist

> December 15, 1992 OLOGICAL SURVEY BRANCH ASSESSMENT REPORT

的關係的影響的 । জনসংগ্ৰহণ জনসংগ্ৰহণ 885% (C.)) den Lora

TABLE OF CONTENTS

-7

Phone

pre-a

SUMMARY1
1.0 INTRODUCTION51.1 LOCATION AND ACCESS51.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE61.3 PROPERTY61.4 EXPLORATION HISTORY9
2.0 GEOLOGICAL SETTING AND MODEL142.1 REGIONAL GEOLOGY142.2 PROPERTY GEOLOGY162.3 THE GEOLOGICAL MODEL AND TARGETS19
3.0 PHASE 1, 1999 DIAMOND DRILLING PROGRAM233.1 PROCEDURE233.2 RESULTS25Lithologies25Alteration and Mineralization27Quality Control on Analytical Data28Gold and Copper Intersections29
4.0 PHASE 2, 1999 DIAMOND DRILLING PROGRAM314.1 PROCEDURE314.2 RESULTS33SECTION NBZ 99-01/02/0333SECTION NBZ 99-0436Quality Control on Analytical Data39
5.0 DISCUSSIONS AND CONCLUSIONS
6.0 RECOMMENDATIONS 44 6.1 COST ESTIMATE YEAR 2000 44
7.0 STATEMENT OF EXPENDITURES
8.0 STATEMENT OF QUALIFICATIONS
9.0 REFERENCES

Page

LIST OF APPENDICES

APPENDIX A	1	Statements	of	Work	1999

PHASE 1 DIAMOND DRILLING 1999

APPENDIX B	Diamond Drill Logs and Relevant Analytical Data
APPENDIX C	Drill Sections Figures 9 and 10. NBZ99-01 and 02

PHASE 2 DIAMOND DRILLING 1999

APPENDIX D	Diamond Drill Logs and Relevant Analytical Data		
APPENDIX E	Drill Sections, Figures 13, 14. NBZ 99-03 and 04		

APPENDIX F Analytical Gold Checks Phase 1 and 2 Drilling Programs Figures 11 and 15

LIST OF FIGURES

FIGURE

-

÷

-

-

-

in such

-

ي حد

K.

		Page
1	Location Map	4
2	Claim Location Map	7
3	Drill Hole Locations and Main IP Anomaly 1997	13
4	Regional Geology	15
5	Property Geology Map	18
6	Comparisons with BC Alkalic Cu-Au Systems	20
7	Alkalic Porphyry Copper-Gold Deposit Modal	21
8	North Breccia Target-Drilling with Phase 1 Hole Locations	24
9	Drill Section NBZ 99-01/02: Gold-Copper Values	Appendix C
10	Drill Section NBZ 99-01/02: Summary Geology with Selected Intervals	Appendix C
11	Analytical Gold Checks Phase 1 Drilling	Appendix F
12	North Breccia Target Drilling with Phase 2 Hole Locations	32
13	Drill Section NBZ99-01, 02 and 03	Appendix E
14	Drill Section NBZ 99-04	Appendix E
15	Analytical Gold Checks: Phase 2 Drilling	Appendix F

LIST OF TABLES

Table 1	The Big Kidd Property-Claim Information	8
Table 2	North Breccia Zone: Data Summary Table	41

SUMMARY

Christopher James Gold Corp. is earning a 100% interest in the Big Kidd property located north and east of Aspen Grove near Merritt in southern British Columbia. The 2500 hectare property has excellent highway access and covers a highly prospective section of the Nicola volcanic belt in southern Quesnellia Terrane for alkalic porphyry related copper-gold deposits such as Copper Mountain, Afton and Mount Polley.

Pre 1992 exploration in the property area by Noranda (1956) and Amax (1972) focussed on its potential for hosting a sizeable porphyry copper deposit; no analysis were made for gold.

A volcanic centred alkalic porphyry copper-gold setting has been demonstrated by recent exploration by Placer Dome in 1992 and Christopher James Gold Corp. in 1997-98. The Big Kidd breccia pipe (volcanic neck) is over 350 metres in diameter. Its geological features including alteration and mineralization fit recent alkalic porphyry models to a remarkable degree.

1997 exploration by the company outlined three target areas for future exploration in the Big Kidd breccia area. The North Breccia Target was by far the most promising for gold, based on the limited amount of previous drilling. All three holes in this area produced 1 to 3 g/t gold values over close to 20 metre widths at 150 to 200 metres vertical depth. These higher grade zones occur within much broader envelopes up to 100 metres wide, averaging 0.3 to 1.0 g/t gold. The potential is for breccia hosted bulk tonnage gold (copper) zones which could contain a million or more ounces.

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

1

A cost effective staged drilling program was planned for 1999 to test the North Breccia Target. The object was to evaluate the geometry of the gold zones(s), grade distribution and start to develop a geological gold (copper) resource. This would be accompanied by step out drilling (2 to 3 holes at a time) 40 to 70 metres along strike, up and down dip. The positioning of holes, azimuths etc. would depend on the evolving understanding of geometry.

Phase 1 diamond drilling on the North Breccia Target took place in September 1999 and consisted of two holes NBZ 99-01(-45^o) and 99-02 (-57^o). These holes were drilled from the same pad SSW into the breccia pipe below mineralized trench 92-2. This was also the area where 1 to 3 g/t gold intersections were returned from previous drilling at 120 to 180 metres vertical depth. Both 1999 holes were highly anomalous in copper and gold. Two, possibly three gold (copper) zones can be interpreted on section: an upper, steeply dipping, 15 to 36 metre wide zone correlates with surface mineralization in trench 92-2. A lower broader zone is centred on a narrow porphyritic monzonite dyke and extensive potassic alteration in the surrounding breccias. This zone in hole NBZ 99-02 features a central area 70.28 metres long averaging 0.622 g/t Au and 0.204% Cu and includes three 10 to 18 metre intervals averaging between 0.5 and 1.0 g/t gold and 0.1 to 0.35% copper.

Phase 2 diamond drilling followed Phase 1 without a break and consisted of a further two holes NBZ99-03 (-67^o) and 04 (-55^o) which were completed by mid October 1999. NBZ99-03 was a steeper hole drilled on the 01-02 section. It demonstrated that the upper and lower gold (copper) mineralized zones continue to depth and that additional low grade mineralization occurs close to surface. The upper mineralized zone probably links to gold (copper) mineralization at surface in trench 92-2 and trenches 40 to 50 metres to the west (David Minerals 1 g/t Au over 12 metre lengths). The lower mineralized zone appears to have been displaced at depth along a steeply dipping fault(s) but is still 60 to 70 metres wide. Hole NBZ99-04 was drilled on a 50 metre step-out section to the east and encountered significant gold (copper) values throughout. Most significant are: a new zone at surface straddling the metavolcanic-breccia contact including

R. C. Wells, P.Geo., FGAC. Kamloops Geological Services Ltd.

2

a 1 g/t gold interval; a broad lower mineralized zone that probably correlates with the lower zone to the west and significant gold (copper) mineralization in several intrusive dykes.

The 1999 drill program on the north Breccia Target met the company's objectives and has produced some very encouraging results. Systematic drill testing of this zone is still in its early stages. A two phase year 2000 drilling-trenching program has been strongly recommended.

1.0 INTRODUCTION

This report on the Big Kidd Property was made at the request of Christopher James Gold Corporation with offices located at Suite 440-175 Second Avenue, Kamloops, BC.

The Big Kidd property covers highly favourable geology for alkalic porphyry related gold-copper deposits within the Nicola volcanic belt near Aspen Grove south east of Merritt British Columbia. Between September and November 1999 the company conducted a two phase diamond drilling program totalling 1080 metres in four holes on the North Breccia target. This target at the northern edge of the Big Kidd breccia pipe (volcanic neck) has produced some of the best gold grades on the property to date from previous drilling and limited trenching and has bulk tonnage potential. The object of the 1999 drilling program was to begin evaluating the geometry of the gold copper zones and grade distribution.

All exploration on the Big Kidd property in 1999 was supervised by R.C. Wells, P.Geo, FGAC, consulting geologist for Kamloops Geological Services Ltd This report documents the results from the drilling program and is also being filed for assessment work credit.

1.1 LOCATION AND ACCESS

The Big Kidd Property (the property) is located in south central British Columbia (Figure 1) north and east of the small settlement of Aspen Grove at Latitude 49^o 57'N and longitude 120^o37'W. Topographic map (1:50,000) NTS 92H/15E covers the property.

The property is bisected by the Coquihalla Okanagan connector highway from Merritt (30 kilometres north west) to Peachland; Highway No.5 from Princeton to Aspen Grove

(60 kilometres) and a major hydro line. A network of old ranching, mining and logging roads provides good access to most parts of the property.

1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE

Elevations range from 1000 to 1300 metres in the property area on the Thompson Plateau with gently rolling topography and patchy woodland cover. It is a watershed area between the upper Otter Creek and Quilchena Creek drainages. Open meadows and farmland occur along the main valleys and in the Big Sioux (bald hill) area north of the connector highway. The higher watershed (Big Kidd) area south of the highway has patchy woodlands with local mature stands of pine and fir. Some recent logging has taken place on the Dawn 100 mineral claim west of the hydro line.

Much of the property is relatively dry; on the higher ground there are a few small ponds, most of which are seasonal. Snowfalls are moderate from November to March with accumulations between 0.5 and 2 metres. Summers are warm and generally dry.

1.3 PROPERTY

The Big Kidd property consisting of the Shear, Halo and Dawn claims has 101 units in 21 contiguous mineral claims within the Nicola Mining Division of British Columbia. These claims are shown on Figure 2 and cover approximately 20 square kilometres. Details regarding these claims are available in Table 1.

In an agreement dated November 20, 1996 the Dawn, Halo and Shear properties were combined (blended) into the Big Kidd and optioned by Christopher James Gold Corp. This agreement remains intact during the option period. Since optioning the Big Kidd property the

TABLE 1: THE BIG KIDD PROPERTY - CLAIM INFORMATION

CLAIM NAME	RECORD NO.	UNITS	ANNIVERSARY DATE
SHEAR 1	237423	18	2002/10/22
SHEAR 2	237424	20	2002/11/01
SHEAR 3	237481	1	2003/02/24
SHEAR 4	237482	1	2003/02/24
SHEAR 5	237483	1	2003/02/24
SHEAR 6	237484	1	2003/02/24
SHEAR 7	237485	1	2003/02/24
SHEAR 8	237486	1	2003/02/24
SHEAR 9	237487	1	2003/02/24
SHEAR 10	237488	1	2003/02/24
SHEAR 11 FR	237489	1	2003/02/24
SHEAR 12	237618	14	2003/01/11
SHEAR 16	300721	1	2003/06/01
SHEAR 18	300720	1	2003/06/11
SHEAR 19	300719	1	2003/06/11
SHEAR 20	300718	1	2003/06/11
DAWN 100	237175	16	2003/08/28
HALO 100	237181	12	2003/02/11
HALO 200	237182	6	2003/02/11
SHEAR 100	306912	1	2003/12/11
SHEAR 101 FR	306913	1	2003/12/12
TOTAL		101	

company has acquired through staking a large contiguous land package in the Aspen Grove-Missezula Lake area.

Assessment work is being applied to the Shear 1 mineral claim which is part of the original group. Assessment work is also being applied to a number of contiguous claims as follows:

To west:	Shear West 1, 2, 3, 4 and Kidd West 1.
To east:	Shear 21 to 37 inclusive.
To south:	Triple A1, 2, 5, 6, 7, 8, 9 and Paycinci 1 (W.R. Gilmour)

1.4 EXPLORATION HISTORY

Aspen Grove has a long history of copper exploration dating back to the early 1900's. There are a very large number of copper showings and small workings in the 'Aspen Grove Copper Camp' with however little production to date. The area covered by the property has basically undergone three main periods of exploration dating back to the turn of the century.

Early work **before 1950** focussed largely on individual showings. Trenches, pits and short adits tested high grade copper showings such as the Golden Sovereign, Copper Belle, Copper Standard and Blue Bird. About 10 tons of copper ore containing 1,000 lbs of copper were shipped from the Golden Sovereign in 1916. In 1918, 44 tons of high grade copper (12%) were shipped from the Big Sioux with silver (68.0 g/t Ag) and gold (0.57 g/t) credits.

During the **1950 to 1973** period the property area received a significant amount of exploration with porphyry copper as the main target. Both Noranda in the mid 1950s and Amax in 1972 completed integrated geological, geochemical and geophysical programs with trenching and

limited drilling on targets in the Big Kidd-Big Sioux area. During this period copper was the target and no analyses were made for gold. Noranda completed 4 small diameter (EX) diamond drill holes on the Big Sioux and 5 on the Big Kidd. Holes 7, 8 and 9 in the Big Sioux area returned several copper intersections in the 0.20% to 0.48% range from mixed volcanic rocks and dioritic intrusions. Holes 2, 3, 4 and 5 were drilled in the northern part of the Big Kidd breccia and probably were testing the adit mineralization. These holes returned copper intersections in the 0.10% to 0.36% range.

Amax in 1972 did no diamond drilling; 22 vertical percussion holes (most to a depth of 300') were scattered in a rough grid pattern to test the extent and grade of copper mineralization in the Big Kidd breccia and Big Sioux area. Holes 72-1, 2 and 22 in the Big Sioux area returned copper intersections in the 0.16% to 0.26% range. Holes 72-6, 7 and 12 were drilled north of the Big Kidd and returned similar copper values to the Big Sioux. Many of the other holes returned low copper values. The validity of this drilling approach with vertical holes has to be questioned as most structures and many intrusive contacts on the property have steep to subvertical dips.

Between 1974 and 1989 there was a lull in exploration activity. There was however some work by junior companies on the Halo and Dawn claims. In 1976-77 five diamond drill holes were completed by David Minerals; three on the Big Kidd, one each on the Big Sioux and Copper Belle. These holes were logged but no analyses were made? Limited sampling from bulldozer trenching (1980, 1982) on the north side of the Big Kidd breccia pipe returned gold values up to 0.08 opt and copper to 0.28%.

Interest in the Aspen Grove area was renewed in 1989 with the construction of the Okanagan Connector highway. A new rock cut on the south side of the Big Sioux exposed intrusive contact related copper mineralization with local multi-gram gold values. This showing was identified and staked by Ab Ablett as the Shear claims. Northair Mines Ltd held the present property under option between 1991 and 1995, however there was only one significant period of

exploration during an agreement with Placer Dome Inc. in **1992.** Placer Dome conducted an integrated geological, geochemical and geophysical program with follow-up trenching and limited diamond drilling. This program was successful in identifying a very promising alkaline porphyry copper-gold porphyry target and produced significant copper-gold intersections in 3 of the 6 diamond drill holes in the Big Kidd and Big Sioux area. Most impressive was DDH92-1 in the northern part of the Big Kidd breccia pipe which returned 71.0 metres at the end of the hole averaging 0.20% copper and 0.75% g/t gold (several individual values in 1 to 2 g/t range). These were the first recorded gold intersections on the property. Further exploration was strongly recommended but for various reasons did not take place, and the property was returned to the vendors.

No further exploration occurred prior to the program by Christopher James Gold Corp. in 1997. This program basically took over where Placer Dome left off and had the author as a consulting geologist. Exploration focussed more on the property's gold potential in this alkalic porphyry setting and featured an integrated geological, geophysical and geochemical program followed by diamond drilling of the better targets. The Big Kidd breccia pipe and proximal surrounding areas (Figure 3) was a first class target with coincident rock, soil and geophysical anomalies. A first phase 10 hole, 2073 metre diamond drilling program tested some of the better targets with one or two holes per target. Results from drilling in the Big Kidd breccia area were excellent. Two intersections 18 to 20 metres long averaged between 2 and 3 g/t gold at 150 to 200 metres vertical depth in the North Breccia Target area. Higher gold values were returned from DDH 97-05 (up to 11.85 g/t gold over 1.46 metres) than Placer Dome's DDH 92-1. In the West Breccia Target area more typical alkalic porphyry copper-gold grades were returned from adjacent 20 to 30 metre intersections close to surface. DDH 97-6 (drilled SE) returned 27.46 metres from the drill collar averaging 0.306% copper, 0.21 g/t gold; DDH 97-7 (drilled NW) returned 23.84 metres from the drill collar averaging 0.325% copper, 0.32 g/t gold. The East Dyke Target area returned a 36 metre intersection averaging 0.32 g/t gold (low copper) beneath 1 to 3 g/t values in a trench at surface. The conclusion following the 1997 program was that the

Big Kidd was primarily an alkalic porphyry gold (copper) target that needed significant amounts of further drilling to be properly evaluated.

2.0 GEOLOGICAL SETTING AND MODEL

2.1 REGIONAL GEOLOGY

The Aspen grove area is located in the Intermontane Belt of the Canadian Cordillera and in the southern part of the Quesnellia Terrane. Within this section of Quesnellia, the Upper Triassic age Nicola Group, consisting of volcanic, sedimentary and associated intrusive rocks, constitutes an island arc assemblage. The Nicola Group forms a north trending belt 20 to 30 kilometres wide extending from the US border to north of Kamloops Lake (Figure 4). Within this belt there was strong interplay between structure, volcanism and sedimentation. Preto (1977) subdivided the Nicola between Merritt and Princeton into three northerly trending fault bounded belts each containing a distinct lithologic assemblage. The Eastern Belt (Tne) consists of mafic, augite phyric volcaniclastic rocks, minor volcanic flows and sedimentary rocks. The Central Belt (Tnc) facies consists of alkaline mafic flows and pyroclastic rocks with abundant subvolcanic intrusions of diorite to syenite composition. The Western Belt (Tnw) facies is an easterly facing succession of calc-alkaline mafic, intermediate and felsic volcanic rocks, syn-volcanic rhyolite plugs, volcaniclastic sediments and reefoid carbonates.

Upper Triassic to Lower Jurassic age alkalic intrusions occur within the Central and Eastern volcanic belts such as the Iron Mask batholith and Copper Mountain intrusions (Figure 4). These consist of generally small to intermediate size fault bounded stocks and dyke swarms of pyroxenite, diorite, monzodiorite, monzonite and syenite. Some of these (Big Kidd complex) probably intrude their own volcanic pile while others such as Copper Mountain can not be directly related to their host volcanics. Both the Iron Mask (Afton-Ajax) and Copper Mountain complexes host significant alkalic type copper-gold porphyry deposits.

In contrast calc-alkaline intrusions of Upper Triassic to Early Jurassic (Nicola) age form larger stocks and batholiths of quartz diorite to granite composition and intrude all four belts of

the Nicola Group. These intrusions have an association with copper and copper-molybdenum porphyry deposits such as the Highland Valley and Brenda; copper-iron skarn deposits such as Craigmont; gold skarns such as Nickel Plate (Figure 4).

The Nicola Group is unconformably overlain on its western flank by mafic to felsic volcanics and clastic sediments of the Spences Bridge Group. These are Late Cretaceous continental sequences. Eocene volcanic rocks of the Princeton and Kamloops Group are some of the youngest formations in the eastern and western parts of the Aspen Grove area.

It is informative to examine the public domain Minfile data for the Aspen Grove belt. A very high concentration of copper showings in the area is clearly evident. Half of the known copper-gold occurrences in this area occur on the property. Five of these: the Big Sioux, Bornite, Giant, Big Kidd and Copper Standard define a northwest trend.

2.2 PROPERTY GEOLOGY

An eroded Nicola age (Triassic) volcanic centre is located on the property close to the triple junction between the three major structures in the belt (Quilchena, Allison and Kentucky-Alleyne fault zones). This high level alkaline volcanic-intrusive complex is centred on the Big Kidd intrusion breccia (volcanic neck) and features comagmatic monzodiorite, monzonite and syenomonzonite intrusives, andesite to trachyandesite volcanic flows and volcaniclastic rocks (Figure 5). The main area of intrusions has southeasterly trend; its exposed part is over 1.5 kilometres long by 1 kilometre in width and extends from Bald Hill to south of the Big Kidd. In this intrusive area structurally controlled and disseminated chalcopyrite-pyrite mineralization has strong copper-gold correlations; the presence of late monzonite to syenomonzonite intrusive phases and potassic alteration appears important. The style of mineralization and type of associations are typical of a volcanic centred alkaline porphyry system. Elsewhere on the property structurally controlled copper mineralization typical of the Aspen Grove belt is

associated with subsidiary structures to the main faults: the Kentucky-Alleyne in the east and Allison in the west. The mineralization is predominantly hosted by Nicola volcanic rocks and contains chalcocite, local bornite and secondary copper minerals including native copper, malachite, azurite and digenite. Gold values are generally rare in this setting. To the west of the Allison fault northerly trending Nicola Group volcaniclastic rocks are intruded by calc-alkaline diorites. Copper mineralization is rare in this area. Younger Jurassic and Cretaceous clastic sediments and felsic volcanics possibly belonging to the Kingsvale Group lie to the northwest.

Intrusion and Intrusion-Hydrothermal Breccias (Unit 7)

The Big Kidd intrusion (hydrothermal) breccias, Unit 7, form an elliptical body with a northwest trending long axis of 600 metres and widths between 300 and 350 metres. The pipe appears to be subvertical and represents a volcanic neck choked with angular to subrounded fragments of Unit 1 volcanic rocks and Unit 5 and 6 intrusive rocks. These fragments range in size from millimetres to tens of metres. Two facies of breccia are recognizable in the pipe. A marginal facies (Unit 7b) which may be a few tens of metres wide. Within Unit 7b, massive wallrock volcanic or diorite grades into volcanic dominated monolithic or bimodal breccia (with diorite). Fragments of other lithologies are rare to absent, in particular syenomonzonite to syenite. Most fragments are angular to subangular and the matrix is fine rock flour, frequently chloritized. A central heterolithic breccia facies (Unit 7a) contains poorly sorted, subangular to rounded, matrix supported fragments of Unit 1 volcanic rocks (including tuffs and hornfels), Unit 5 and 6 intrusions and coarser porphyritic syenite, syenomonzonite. Larger syenitic boulders are commonly well rounded. The matrix to these breccias may be intrusive (Unit 6) to strongly altered (dioritized!) with fine to coarse grained K-feldspar, magnetite, epidote, chlorite, carbonate, pyrite and chalcopyrite (local albite). Potassic altered breccias are well developed on the western and northern sides of the pipe and feature strong K-feldspar alteration rims on most fragments. These also feature some of the strongest disseminated matrix pyrite-chalcopyrite mineralization in the pipe.

Unit 6 dykes are generally between 1 and 10 metres wide and trend north to northwest. They clearly post-date Unit 1 volcanics and Unit 5 intrusives. In the Big Kidd breccia (Unit 7) these may form the intrusive matrix. An earlier suite of syenitic intrusions are represented by fragments in the breccia. There are close spatial and inferred genetic relationships among Unit 6 dykes, potassic (K-feldspar) alteration and sulfide mineralization (pyrite-chalcopyrite-gold?).

2.3 THE GEOLOGICAL MODEL AND TARGETS

The Triassic to Jurassic age volcanic arc terranes of Quesnellia and Northern Stikinia in British Columbia host a distinct group of copper porphyry deposits with high gold content (plus Ag). These alkalic suite porphyry deposits are rare outside of British Columbia. They are generally smaller than the well known copper-molybdenum, calc-alkaline porphyry deposits such as Highland Valley Copper but have higher unit values (\$/tonne) due to the precious metal contents. The location of the main alkalic porphyry deposits in British Columbia including Afton, Copper Mountain, Mount Milligan and Mount Polley (current producer) are shown on Figure 6. The size and grades (Cu, Au, Ag) for these are shown on the accompanying table to this figure.

A volcanic centred alkalic porphyry copper-gold setting has been demonstrated by recent exploration(since 1990) on the Big Kidd Property. The Big Kidd breccia pipe (volcanic neck) is over 350 metres in diameter. Its geological features including alteration and mineralization fit recent alkalic porphyry models to a remarkable degree (see Figure 7). Based on published data and personal experience breccia bodies in these settings commonly have the highest (often multigram) gold grades. Examples occur at Galore Creek, Iron Mask and Mt. Polley. 1997 exploration at Big Kidd by Christopher James Gold Corp. indicated excellent potential for multigram gold zones with low copper in the northern part of the breccia pipe.

Comparisons with BC. Alkane Cu-Au Systems

Figure 1. Location of porphyry base and precious metal deposits in the tectonostratigraphic terranes of British Columbia. The distinction

between silica-saturated and silica-undersaturated deposits is discussed in the text.

TABLE I. Reserves in some alkalic porphyry Cu-Au deposits.

	Age (Ma)	Million Tonnes	Cu %	Au ppm	Ag ppm	Reserve Type	Source
Mount Milligan	183	299	0.22	0.450		mincable	Sketchley and others (in press)
BP-Chuchi	185(est)	50	0.21-0.40	0.21-0.44		gcologic	Nelson and others (1991)
Lorraine	185(est)	10	0.70	0.343		geologic	Kennecott Corp (pers. comm.)
Copper Mtn Camp	205	167.7	0.46	0.127	1.72	production	Holbeck and others (in press)
Afton	206	30.8	0.77	0.580	4.2	mineable/prod	Kwong (1987)
Ajax	206	20.7	0.45	0.340		mincable/prod	Ross and others (in press)
Pothook	206	3.26	0.35	0.770		production	L. Bond (pers. comm.)
Big Onion	206					•	not available
DM	206	2.685	0.38	0.270		geologic	L. Bond (pers. comm.)
Crescent	206	1.448	0.44	0.180		production	L. Bond (pers. comm.)
Katic	185(est)	small	0.04-1	low 0.X		-	Cathro and others (1993)
Galore Creek	211	125	1.06	0.400	7.7	proven	Enns and others (in press);
							Sinclair and others (1982)
Mount Polley	203	48	0.44	0.583	4.5	mineable	Nicic and others (in press);
•							Sinclair and others (1982)

TABLE 2. MORE SIGNIFICANT DRILL INTERSECTIONS: BIG KIDD PROJECT

NORTH BRECCIA TARGET	INTERSECTION (Metres)	Cu%	Au ppm or g/t	
DDH 92-1	173.0 - 244.0 (71.0)	0.20	0.75	
DDH 97-5	200.0 - 234.9 (34.9)	0.11	1.95	
	215.44-234.9 (19.46)	0.11	3.09	
DDH 97-4	227.31-245.31 (18.0)	0.28	1.97	
WEST BRECCIA TARGET				
DDH 97-6	3.96 - 31.42 (27.46)	0.306	0.21	
DDH 97-7	6.66 - 30.50 (23.84)	0.325	0.32	Figure 6

Figure 5. Model of typical alkalic porphyry copper-gold deposit (draws heavily on data from Fox, 1989; Preto, 1989; Mutschler and Mooney, in press; an other sources).

Alkalic Porphyry Copper-Gold Deposit Model.

Figure 7

After McMillan & Panteleyev.

Three targets for future exploration drilling were indicated by 1997 exploration in the Big Kidd breccia area. Several other interesting gold targets occur elsewhere on the property but take low priority at this time. The North Breccia Target is by far the most promising for gold based on the limited amount of drilling to date. All three previous diamond drill holes in this area have produced multigram gold values at fairly shallow depth (150 to 200 metres) over 20 metre widths. The higher grade zones occur within much broader envelopes up to 100 metres wide averaging 0.3 to 1.0 g/t gold. Based on present knowledge there is potential for both open pittable and underground bulk tonnage gold zones depending on grades, geometry etc. In this environment there is room for a single or more likely several breccia hosted gold zones. One of the most exciting features of this breccia environment is its apparent high gold content compared to better known alkalic porphyry systems (see tables on Figure 6 for comparisons).

3.0 PHASE 1, 1999 DIAMOND DRILLING PROGRAM

Early in 1999 a corporate decision was made to concentrate exploration efforts on the North Breccia target. Based on previous results in this area at the northern edge of the Big Kidd breccia pipe it clearly had the best potential for bulk tonnage gold (copper) zones possibly with average gold grades better than 1 g/t. Three previous holes in 1992 and 1997 had returned intersections close to 20 metres long averaging between 1 and 3 g/t gold. Several individual gold values were in the 2 to 11 g/t range. At surface in this area Placer Dome trench 92-2 returned 32.5 metres averaging 0.56 g/t gold, 0.112% copper with some individual gold values close to 1 g/t.

The author recommended a staged drilled program (Wells, 1999) to test the North Breccia target area. The object of this program was to evaluate the geometry of the gold zone(s) and grade distribution in this area; basically to improve understanding and to begin developing geological gold reserves. Systematic diamond drilling would involve regular spaced holes and 40 to 70 metre pierce points along strike and up and down dip. To be cost effective each phase would consist of 2 to 3 drill holes. Drilling would commence from the best understood area below Placer Dome trench 92-2 and step outwards east and west.

3.1 PROCEDURE

The 1999 Phase 1 diamond drilling program consisted of two NQ holes drilled to the SSW azimuth 210^o at 45^o and 57^o dip from a single set up at the northern edge of the breccia pipe (Figure 8). These tested the area beneath trench 92-2 vertically above and below previous drill (gold) intersections. In total 514.81 metres were drilled between the 2nd and 23rd of September using a single shift by Core Enterprises Ltd based in Clinton, BC. Water was pumped from a nearby lake using 7000 feet of water line in two stages.

GEOLOGICAL LEGEND

7

UPPER TRIASSIC TO LOWER JURASSIC

- DITRUSION BRECCIAS (Undifferentiated)- fragments of vokenics, hornfels

 and diorite to symile(5.6) in a diorite to monzonite/symnomenzonite
 matriz is commonly allered with variable K-feldspar,
 albite, carbonate, epidde, magnetite, local pyrite, and chalcopyrite.

 TETEROLITHC BUTRUSION BRECCIAS mixed volcanic, hornfels
- and intrustre rock fragments. 7) MONOLITHIC TO BIMODAL HISTEROLITHIC INTRUSION BRECCLAS -Volcanic(1,1h) and, or diorite(5,5e) fragments dominate.
- POTASSIC DYKES AND SULS Feldspar and feldspar-horablende porphyries. Significant groundmass K-foldspar. May be earlier or later than 7.
- 5 DIORITE, MONZODIORITE TO POTASSIC MONZONITE Predominantly equigranular local plagioclase and/or hornblende porphyries. Sa - fine to medium grained equivilants of 5.

NICOLA GROUP - CENTRAL BELT

1 VOLCANIC ROCKS (Undifferentiated)

 Is
 CREEN TO MARGON ANDESITE AND WINOR BASALT - Massive to amygdalodal flows, interflow fragmental walls, autobreccies.

 Ib
 AUGITE, PLAGIOCLASE AND/OR NORMBLENDE PHYRIC FLOWS (as above)

 ie
 GREEN TO MARGON LAPILI TUFFS, LOCAL CRYSTAL TUFFS, AND VOLCANC RECCLAS

[1h] UNIT 1 IN CONTACT METANORPHIC ZONES - HORNFELS Strongly magnetic with variable magnetile, epidole and pyrite.

Scale

FIGURE 8: NORTH BRECCIA TARGET – DRILLING WITH PHASE 1 HOLE LOCATIONS Drilling was supervised by the author and the core was transported to Kamloops on a regular basis for logging, splitting and sampling. All of this work was by Kamloops Geological Services Ltd.

All core samples were split using a standard Longyear splitter, and one half of the core was sent to Eco-Tech Laboratories in Kamloops for geochemical gold (30 gram) and 30 element ICP analyses. Samples with gold values greater than 900 ppb were routinely assayed. The remaining core is stored at the Amex site near Kamloops BC with that from 1997 and 1992 drilling programs.

3.2 RESULTS

Diamond drill logs are presented in Appendix B with relevant analytical data and composites. Check assays were completed on 15 samples from three different shipments by Eco-Tech Laboratories. This data occurs in Appendix F. 1:500 scale sections for drillholes NBZ99-01 and 02 occur in Appendix C. Figure 9 is a section with all first pass copper (ppm) and gold (ppb) sample values. Figure 10 is a similar drill section with summary geological data and selected intersections with calculated average copper and gold values. Both drill sections show approximate pierce points for 1997 drillholes BK97-4 and 5 with associated copper (%) and gold (g/t) values.

Lithologies

Holes NBZ99-01 (230.43) and NBZ99-02 (284.38m) were collared in intrusion breccia (Unit 7) of the Big Kidd pipe and stayed predominantly in this geological unit apart from several porphyritic monzonite dykes (unit 6). These geological units with their boundaries are shown on drill section, Figure 10.

The intrusion breccias are variably magnetic, predominantly matrix to weak clast supported and heterolithic (unit 7a). Clast lithologies are variably altered, locally quite fresh and include: pink to grey plagioclase (minor hornblende) porphyritic monzonite, more equigranular grey micromonzonites-microdiorites and green to grey andesites and basalts (local augite and/or hornblende porphyries). The latter are commonly metamorphosed (Unit 1h hornfels), quite magnetic and similar in composition to the surrounding country rock Unit 1 volcanics.

In the drill logs (Appendix B) clast size is given as fine (1 to 10 cm), medium (10-30cm) coarse (>30 cm) and very coarse (>50 cm). Clasts are generally subangular to subrounded, however coarse clasts are often well rounded especially pink (potassic) monzonite porphyries. The matrix to these breccias may be microdioritic-intrusive to strongly altered and obscured with variable fine-medium, to locally coarse grained K.feldspar, epidote, chlorite, carbonate, albite, pyrite, magnetite and fine chalcopyrite. Coarse to very coarse breccias are often matrix poor, locally tightly packed, especially Unit 7b bimodal or homolithic (monzonite, and/or metavolcanic clasts) in NBZ 99-02. The matrix to these is often coarse grained with significant amounts of pyrite, magnetite and locally chalcopyrite. The relative positions of coarse breccia facies in the two holes suggests a shallow northerly (apparent) dip on section (Figure 10).

Crowded pink to grey monzonitic porphyries with flow aligned tabular plagioclase and minor (>5%) tabular hornblende phenocrysts in a fine k.feldspar rich groundmass predominate. Most of these dykes have apparent true widths of less than 10 metres on section and frequently contains small, subrounded to rounded magnetic mafic xenoliths (volcanic?) in the 1 to 7 cm size range. On section some dykes have interpreted steep dips others are near horizontal. One more major dyke with interpreted steep dip on section (Figure 10) is closely associated with broad potassic (K. feldspar) alteration zones in the adjacent breccias, both holes. The last 19 metres of hole NBZ99-02 was in a strongly altered potassic to sodic dyke swarm with fine equigranular to plagioclase porphyry sections. This hole did not penetrate through the dyke swarm; hole NBZ 99-01 stopped short of this unit (or was above?).

A narrow shallow dipping mafic dyke or sill (MD) was encountered above 100 metres in both holes. It is chloritic altered, fine grained equigranular to feldspar phryic. In hole NBZ99-01 this unit is intruded, fractured and mineralized by a later potassic monzonite dyke (Unit 6).

Alteration and Mineralization

In both 1999 drillholes breccias display variable patchy pervasive and veinlet related alteration. Pervasive carbonate alteration and veinlets are widespread in the matrix but more restricted in clasts. Monzonite clasts are commonly weak to moderate carbonated. Epidote veinlets are widespread in clasts and matrix, however in the latter fine to coarse grained epidote often forms disseminated clots/aggregates. These clots may be 0.5 to 1.5 cm in diameter and locally form aggregates with coarse pyrite, magnetite, dark chlorite, finer K.feldspar and carbonate. Moderate to strong chloritic alteration is common in mafic volcanic clasts, mafic dykes and locally weak pervasive in breccia matrix. K. feldspar (potassic) alteration is widespread in the matrix to breccias but is often difficult to distinguish from small overprinted potassic monzonite clasts. Pervasive albite (sodic) alteration in matrix areas is even more difficult because of its fine grain size and widespread similar light coloured carbonate. Many of the Unit 6 monzonite dykes have associated K.feldspar alteration and veining in the adjacent breccias. These dykes also commonly feature fracture controlled K.feldspar alteration. Where there is significant matrix and clast rim K.feldspar alteration the breccias are called potassic 7AK or 7K on section (Figure 10).

Extensive areas of potassic breccia (10 to >20 metres wide) occur proximal to the steeply dipping lower monzonite dike. Zones of strong K.feldspar alteration occur in the dyke swarm below. Strong bleaching may be related to strong carbonate or albite alteration locally with associated sericitization of plagioclase. Fine quartz-carbonate vein, veinlet and stockwork zone may occur in more fractured areas proximal to dykes, locally within bleached dykes or in isolated strongly bleached fracture zones.

Fine to medium grained pyrite is ubiquitous to all lithologies on this drill section. The breccias contain between 2 and 10% (often 3 to 6%) pyrite, predominantly as disseminations, clusters and small aggregates. Coarse grained pyrite with magnetite (local chalcopyrite) aggregates are quite common and can be visually spectacular in matrix poor areas to coarse breccias. Pyrite veinlets and anastomosing networks occur locally both in matrix and some clasts. Volumetrically the most pyrite occurs in fine to medium clast, matrix rich, altered breccias. Although visually impressive the sulfide mineralization in coarse breccias is generally low volume. Between 1 and 5% fine to very fine grained pyrite occurs as veinlets and disseminations in monzonite dikes and clasts.

Chalcopyrite is common but difficult to recognize because of fine grain size and association with pyrite grain clusters. Significant amounts of recognizable fine chalcopyrite occur in potassic breccias proximal to the lower, steeply dipping monzonite dyke. Some fine chalcopyrite also occurs with pyrite in veinlets both in breccia and dyke. Medium to coarse grained magnetite is widespread in the matrix to breccias and some metavolcanic clasts (1h). Proximal to monzonite dykes the magnetite may form monomineralic veinlets or lenses in the breccia or occur with quartz and carbonate in veins with fine wallrock sulfides.

Quality Control on Analytical Data

Internal quality control was routinely conducted on samples by the laboratory. In addition 15 samples with higher gold values (10 geochemical, 5 assay) were checked by fire assay using a second split (company request). All of this was by Eco Tech Laboratories Ltd. This check data occurs in Appendix F and is plotted on a comparison graph Figure 11. Assay against assay values indicates good checks between 1 and 2 g/t. The two higher gold values at 2.80 and 2.20 g/t were 1.74 g/t (62%) and 2.02 g/t (89%) respectively from the second split. This suggests a nugget effect or homogenization problem. Second split assays against first split geochemical gold (30 gram) in the 0.3 to 1 g/t range indicates generally higher values by assay with 5 and 15% increase (maximum 135%).

The second split values if averaged with the first split originals do not result in a significant change in average intersection values. For consistency all values and assay intervals on the drill sections were taken (or calculated) from first split, original data.

Gold and Copper Intersections

Individual sample gold and copper values are shown on Figure 9 while selected intervals with calculated average gold and copper values occur in Figure 10 with summary geology. Examination of the individual values over the entire lengths of both holes indicates highly anomalous background. In the breccias gold is rarely below 50 ppb and copper 500 ppm, silver values are generally low (see Appendix A).

There are two main zones of breccia hosted gold-copper mineralization in the two holes with a possible third developing in altered intrusive at the bottom of hole NBZ99-02 (Figure 10):

- An upper mineralized zone in both holes possibly links with the surface mineralization in trench 92-2 (32.5m @ 0.56 g/t Au, 0.112% Cu) which would make it near vertical on section. The higher average values occur in the upper hole with 0.182 g/t gold and 0.113% copper over 35.90 metres (maximum Au value 0.55 g/t). In the lower hole a 15.51 metre intersection averages 0.125 g/t gold and 0.131% copper (maximum Au value 0.18 g/t).
- 2. The second larger and far more significant gold-copper zone is centred on the steeply dipping potassic monzonite dyke and surrounding potassic altered breccias. In hole NBZ99-01 the gold values are stronger below the dyke while in hole NBZ99-02 they are above (Figure 10). The mineralization is visually stronger and has higher values in the deeper hole NBZ99-02. A central area around the dyke averages 0.622 g/t gold and 0.204% copper over 70.28 metres (231 feet) with a further 45.75 metres (150 feet) above

averaging 0.192 g/t gold and 0.101% copper. Within the main intersection three significant intervals average better than 0.5 g/t gold as follows:

167.36m to 177.83m (10.47m)	0.97 g/t Au, 0.11% Cu
191.00m to 209.10m (18.10m)	1.00 g/t Au, 0.27% Cu
213.75m to 229.28m (15.53m)	0.53 g/t Au, 0.35% Cu

The highest gold value was 2.8 g/t, the highest copper 0.78%.

The intersections in hole NBZ99-01 60 to 70 metres vertically above were separated by low values in 6.75 metres of monzonite dyke (Figure 10). Above the dyke 26.31 metres of breccia averaged 0.20 g/t gold, 0.122% copper. Below the dyke to the end of the hole, 61.93 metres (203 feet) averaged 0.31 g/t gold, 0.18% copper, including one 12.0 metre interval with 0.42 g/t gold and 0.32% copper. The highest individual gold value in the total interval was 0.81 g/t; copper 0.5%.

As can be observed from the pierce points on Figures 9 and 10 the highest gold values in hole NBZ99-02 (greater than 2 g/t) closely coincide with the multigram gold (copper) intersections in 1997 holes BK97-4 and 5.

A visually unexpected gold-copper intersection occurs at the bottom of hole NBZ99-02 averaging 0.333 g/t gold, 0.186% copper over 5.15 metres (last sample ran 0.535 g/t Au). This is significant as it is entirely in weak potassic altered intrusive rocks with 1-3% pyrite.

4.0 PHASE 2, 1999 DIAMOND DRILLING PROGRAM

In late September at the end of Phase 1 diamond drilling strong recommendations were made to continue with a Phase 2 program (without a break) while the equipment was on site. The recommended Phase 2 program included 1890 metres of diamond drilling in 7 holes and had an estimated cost of \$230,000. Also:

"The results from the NBZ 99-01/02 drill section warrant a steeper (deeper level) hole below NBZ 99-02. The up dip potential for the lower gold (copper) zone should also be tested on this section by drilling a shallow hole from the upper trail. Step out drilling should consist of 2 or 3 holes (each) on parallel sections, 50 metres east and west of the Phase 1 section. These can be drilled at various angles from the lower trail." (Wells, 1999)

4.1 PROCEDURE

Because of limited funds only two Phase 2 holes could be completed in 1999. A deeper hole NBZ 99-03 (-67) on the NBZ 99-01/02 drill section and a parallel step-out hole 50 metre to the east NBZ 99-04 (-55). The hole locations are shown on Figure 12. In total 565 metres were drilled between the 23 September and 12 October 1999 using single and some double shifts by Core Enterprises Ltd. based in Clinton, BC.

Drilling was supervised by the author and the core was transported to Kamloops on a regular basis for logging, splitting and sampling. All of this work was by Kamloops Geological Services Ltd.

All core samples were split using a standard Longyear splitter, and one half of the core was sent to Eco-Tech Laboratories Ltd. in Kamloops for geochemical gold (30 gram) and 30 element ICP analyses. Samples with gold values greater than 900 ppb were routinely assayed.

GEOLOGICAL LEGEND

UPPER TRIASSIC TO LOWER JURASSIC

7 INTRUSION BRECCIAS (Undifferentiated)- fragments of vokenics, hornfels (1), and diorite to symile(5.8) in a diorite to monsonite/symomenronalle matrix. The matrix is commonly altered with variable K-feldspar, albite, explosed, epidote, magnetite, local pyrite, and chalcopyrite.

1

1

1

- Ta
 HETEROLITHIC BUTRUSION BRECCIAS mixed volcanic, hornleis and intrusive rock fragments.

 Tb
 NONOLITHIC TO BIMODAL METEROLITHIC DITRUSION BRECCIAS
- Volcanic(1,1h) and, or diorile(5,5s) fragments dominate.
- 6 POTASSIC DIVISE AND SILLS Feldspar and feldspar-hornblende porphyries. Significant groundmass K-feldspar. May be earlier or later than 7.
- 5 DIORITE, MONZODIORITE TO POTASSIC MONZONITE Predominantly equigranular local plagicclase and/or hornblende porphyries. Sa - fime to medium grained equivilants of 5.

NICOLA GROUP - CENTRAL BELT

1 VOLCANIC ROCKS (Undifferentiated)

 CREEN TO MARGON ANDESITE AND MINOR BASALT - Massive to amygdaloidal flows, interflow fragmental units, autobreccias. AUCITE, FLAGIOCLASE AND/OR HORMBLENDE PHYRIC FLOWS (as above) I.E. CREEN TO MARGON LAPILLI TUFFS, LOCAL CRYSTAL TUFFS AND VOLCANC BRECCLAS

[1b] UNIT 1 IN CONTACT METANORPHIC ZONES - HORNFELS Strongly magnetic with variable magnetite, epidote and pyrite.

FIGURE 12 : NORTH BRECCIA TARGET – DRILLING WITH PHASE 2 HOLE LOCATIONS
The remaining core is stored at the Amex site near Kamloops BC with that from 1997 and 1992 drilling programs.

4.2 RESULTS

Diamond drill logs are presented in Appendix D with relevant analytical date and composites. Check assays were requested by the company for 15 samples from two different shipments by Eco-Tech Laboratories Ltd., this data occurs in Appendix F. 1:500 scale sections for drillholes NBZ 99-03 and 04 occur in Appendix E. The results from the four holes on the two drill sections are discussed in the following sections.

(A) SECTION NBZ 99-01/02/03

Lithologies and Structure

Hole NBZ 99-03, like the two other holes on this section stayed within the Big Kidd breccia pipe and encountered a sequence of altered intrusion breccias cut by narrow porphyritic monzonite dykes (Figure 13).

The intrusion breccias in hole 03 were very similar to those in the other holes, although very coarse breccias were rare. Some coarse breccia sections do occur in the hole within the top 100 metres, however only the uppermost of these shows any correlation with the coarse breccia zones in the holes above. Heterolithic matrix supported intrusion breccias predominates with mixed mafic metavolcanics, porphyritic monzonite and diorite clasts.

Several late monzonite dykes cut the breccia sequence, these may be plagioclasehornblende or crowded plagioclase porphyries with significant amounts of fine grained K.feldspar in the groundmass. Most dykes contain variably rounded and assimilated mafic (volcanic?) xenoliths. Crowded plagioclase porphyry dykes often display strong alignment of

phenocrysts (flow fabrics) parallel to contacts. The dykes are narrow, between 2 and 10 metres wide on section with sharp to irregular contacts. There is generally good correlation between dykes in the three holes at shallow depth (<100m). These dykes have shallow apparent dips on section but probably have steep east or west dips? The orientation of deeper dykes (>100m) in these holes is more difficult. The relative positions of these dykes, K. feldspar altered breccias and associated mineralization clearly suggest displacements. Two steeply dipping late faults can be interpreted on this section to explain these displacements (figure14). The (upper) more northerly and stronger of these is over 4 metres wide in holes 02 and 03 with chlorite and slip surfaces. This fault has an apparent south downthrow in the order of 30 to 50 metres on section.

Alteration and Mineralization

The styles of veining, alteration and mineralization in hole 03 are consistent with that in the other holes on this drill section. Patchy, fine to medium grained disseminated pyrite is widespread in the variably altered matrix to breccias, rarer in clasts and dykes. Coarse pyrite-magnetite-chalcopyrite aggregates occur with dark chlorite, carbonate, epidote and local K.feldspar in some more restricted matrix areas. Several strong bleached zones cut the breccias and feature intense carbonate (with albite) alteration around quartz-carbonate veins and stockworks. Many of these appear to be early fracture/alteration zones, possibly associated with narrow dykes. Patchy, very fine to fine disseminated pyrite occurs with the alteration as well as dark chlorite which locally appears to overprint magnetite.

Broad zones of potassic (K. feldspar) alteration occurs between 160 and 229.5 metres in the hole associated with crowded porphyry dykes. Patchy, fine disseminated chalcopyrite is recognizable in matrix areas throughout this more magnetic section (magnetite). The potassic dyke at 210.32 to 217.35 is well mineralized with pyrite and chalcopyrite. There is a significant decrease in pyrite, chalcopyrite, and K. feldspar proximal to and below the fault zone at 239 metres in the hole.

Gold and Copper Intersections

Individual sample gold and copper values for hole NBZ 99-03 are shown on Figure 13, with summary geology and selected assay intervals. High background gold and copper values occur throughout the hole within breccia and dyke units. There is however a very noticeable decrease in gold values below 229 metres.

The Upper and Lower gold-copper zones observed in holes NBZ 99-01 and 02 are evident in NBZ 99-03 with an additional low grade zone close to surface. This near surface zone averages 0.11 g/t Au and 0.15% Cu over 41.80 metres (16.20-57.80m) and is hosted by heterolithic intrusion breccias below a larger hornblende-plagioclase porphyry (monzonite) dyke. Numerous fine epidote and carbonate veinlets occur within this section of breccia with local bleached zones accompanying quartz-carbonate veining.

The upper mineralized zone correlates with the steeply dipping zone between NBZ 99-02 and surface trench 92-2. Potassic alteration is stronger with matrix and clast rim K.feldspar. There are two intersections coincident with the stronger potassic alteration including 0.16 g/t Au, 0.20% Cu over 18.37 metres (78.00-96.37m) and 0.28 g/t Au , 0.10% Cu over 13.13metres (100.27-113.49m).

The lower mineralized zone coincides with extensive potassic-K.feldspar alteration in breccias with several potassic monzonite dykes. A 67.34 metre intersection between 157.88 and 225.22 metres in the hole averaged 0.24 g/t Au, 0.17% Cu. Within this are two higher grade sections, one with 24.27 metres (168.93-193.20m) averaging 0.42 g/t Au and 0.21% Cu, well above the main dyke. The second, 9.42 metres long straddles the dyke's lower contact and averages 0.13 g/t Au, 0.26% Cu. Higher copper values up to 0.57% and some higher gold (up to 1.6g/t) commonly correlate with stronger alteration and sulfide mineralization at dyke contacts. Higher average gold values (>0.3g/t) correlate with some other zones of stronger potassic alteration in the breccias with local coarse grained magnetite-pyrite-chalcopyrite veins. The lower

mineralized zone in hole NBZ99-03 has many features in common with hole 02, in particular the distribution of gold-copper values around the dyke(s). There does however appear to be some vertical displacement of the zone between holes 03 and 01/02. This could be accommodated by one or more steeply dipping late faults with downthrow to the south.

The position of the pierce point for hole BK 97-5 (19.46m @3.10g/t Au, 0.113%Cu) lies between the two highest gold intersections in hole NBZ 99-02 and 03.

(B) SECTION NBZ 99-04

Hole NBZ 99-04 was a 50 metre step out to the east from the previous drill hole section. This hole was drilled at -55° at the same azimuth 210 SSW (Figure 14).

Lithologies and Structure

This hole was collared to the north of the Big Kidd breccia pipe and consequently encountered a 29 metre long section of country rocks before entering the breccia body. Nicola Group mafic metavolcanic flows have been converted to strongly magnetic, fine grained, basic hornfels with numerous veinlets and patchy epidote-carbonate alteration. Original trachyandesite compositions are probable. There is a gradual increase in brecciation downwards from strong veining to crackle breccias to mosaic breccias with some intrusive matrix. At the very top of the hole these volcanics are intruded by a nine metre or more wide plagioclase-hornblende porphyry (monzonite) dyke which is quite similar to dykes intruding the breccias below.

The rest of the hole is in intrusion and volcanic breccias of the Bigg Kidd complex with local porphyritic dyks of variable width. Besides a narrow 5 metre wide zone of border phase metavolcanic dominated breccias (unit 7b) the main breccia body is distinctly heterolithic with variable mixtures of mafic metavolcanic, monzonite and diorite clasts. Fine to coarse breccia facies are apparent, most are matrix supported. Coarse breccias are more common in the upper

part of the hole as in the drill section to the west. Matrix supported fine to medium clast breccias predominate below 120 metres in the hole. Some sections of fine clast breccia are matrix dominated (>50%). Strong alteration often makes matrix protolith identification difficult, most appear to be intrusive, however some ash supported volcanic breccias may be present.

Variably crowded plagioclase and plagioclase-hornblende porphyry dykes occur throughout the hole both in the breccia and country rocks. Crowded plagioclase porphyries often display strong flow alignment parallel to contacts. Dyke contacts are sharp. Most dykes have significant amounts of fine grained groundmass K.feldspar and variably rounded, small mafic xenoliths. A large composite dyke with two or three porphyritic phases occurs between 60.55 and 109.00 metres in the hole. Compositionally these phases are quite similar potassic monzonites. Similar but narrow 1 to 4 metre wide dykes occur lower in the hole, contact angles (to the core axis) suggest either steep or shallow dips.

There are no obvious late chloritic faults in this hole similar to those on the section to the west. Strong bleached zones in the hole may represent early healed fracture zones.

Alteration and Mineralization

Most of the sulfide mineralization in the metavolcanic sequence is fracture controlled with fine pyrite and pyrite-magnetite veinlets (with local epidote and carbonate) at variable angles to the core axis. Patchy fine to medium (local coarse) grained disseminated pyrite and magnetite is often present. Patchy carbonate and epidote alteration may be vein related and, or metamorphic (hornfels). K.feldspar in the metavolcanics is probably primary with local overprinting, especially proximal to the monzonite dyke. The dyke has fine disseminated and veinlet pyrite with numerous pyrite-magnetite veinlets at the lower contact with the metavolcanics. As on the section to the west the intrusion breccias have significant amounts of fine to medium grained matrix pyrite throughout. Carbonate alteration is widespread in the breccias with variable matrix, epidote, chlorite, K.feldspar, albite and magnetite. Narrow zones of stronger matrix K.feldspar alteration and clast rims occur at monzonite dyke contacts. A broad zone of potassic altered breccias at the end of the hole (246.17 - 270.66m) occurs below a narrow potassic monzonite dyke and has similarities with the alteration zone associated with the lower mineralized zone in holes to the west. Several narrow bleached (carbonate-albite) zones with quartz-carbonate veins occur in the less potassic altered breccias above.

An interesting feature on this section is that many of the potassic monzonite dykes (including large composite) have far more noticeable fine disseminated and veinlet pyrite, and chalcopyrite mineralization then most of those in the section to the west. Some of these mineralized dykes have contain rare veinlets other than minor quartz-carbonate and, or epidote.

Gold and Copper Intersections

High background gold and copper values occur throughout hole NBZ 99-04 in metavolcanic rocks, breccias and monzonite dykes (Figure 14). Lower gold-copper values in the middle of the hole separate two better grade intervals.

The upper mineralized zone lies directly below shallow overburden (<3.5m) and covers the contact zone between the breccia pipe and country rock volcanics. It also spans an interval between two larger monzonite dykes (Figure 14). A 51.5 metre core interval averaged 0.37 g/t gold and 0.10% copper, including 6.04 metres within heterolithic intrusion breccias averaging 1.25 g/t Au and 0.16% Cu. The average copper values in the metavolcanics (16.89m @ 0.31 g/t Au, 0.11% Cu) and breccia (26.58m @ 0.44 g/t Au, 0.11% Cu) in the main interval are identical; however average gold values in the breccias are a little higher. Both monzonite dykes either side are mineralized; the upper dyke is included with the main assay interval and returned values up to 0.55g/t (below overburden). The lower composite dyke was not entirely sampled; one better

mineralized contact zone returned 10.05 metres averaging 0.12 g/t Au and 0.17% Cu. Two narrow, 3 to 4 metre wide dyke intervals between the composite dyke and lower mineralized zone returned similar gold and copper values.

The lower mineralized zone features a 98.16 metre long interval mainly in breccia to the end of the hole, averaging 0.21 g/t gold and 0.10% copper. Copper values in the zone are low relative to gold. Two better grade intervals correlate with a potassic monzonite dyke (4.23m @ 0.50 g/t Au, 0.15% Cu) and potassic altered intrusion breccias (22.51m @ 0.31g/t Au, 0.11% Cu) at the end of the hole.

(C) QUALITY CONTROL ON ANALYTICAL DATA

Internal quality control was routinely conducted on samples by the laboratory. In addition 15 samples with higher gold values were checked by fire assay using a second split (company request). All of this was by Eco Tech Laboratories Ltd. This check data occurs in Appendix F and is plotted on a comparison graph Figure 15.

There is generally good correlation between first split geochemical gold (30 gram) and second split assay. There is however a small but noticeable decrease in some second split values including assay against assay?

5.0 DISCUSSIONS AND CONCLUSIONS

During September and October four diamond drill holes totalling 1080 metres were completed on the North Breccia Zone in two phases. A vertical fan of three holes, NBZ-01 to 03 were drilled southwest between 1992 Placer Dome trench 2. A single parallel hole NBZ 99-04 was drilled 50 metres to the east. Results from the drilling are summarized in Table 2 with previous exploration highlights from this zone. Note, many lower grade intersection are not included with this table.

All four 1999 holes intersected significant lengths of gold-copper mineralized intrusion breccia with late porphyritic monzonite dykes and potassic (K.feldspar) alteration zones. Hole NBZ 99-04 collared just north of the breccia also intersected significant gold-copper mineralization in metavolcanic rocks, and porphyritic monzonite dykes in the contact area.

On the more westerly three hole drill section two, possibly three gold (copper) zones can be interpreted (Figures 13):

- An upper steeply dipping 15 to 36 metre wide gold-copper zone hosted by heterolithic intrusion breccias probably links with surface mineralization in trench 92-2 (32.5 m @ 0.56 g/t Au, 0.11% Cu). This zone may also extend to the old David Minerals trenches 40 to 60 metres to the west which returned 1 g/t gold values over 12 metre lengths (see Table 2).
- A lower, much broader gold-copper zone is centred on a narrow, steeply dipping porphyritic potassic monzonite dyke and its potassic alteration halo in the surrounding breccias. This zone has been tested at vertical depths ranging from 120 to 200 metres with the strongest intersection in NBZ99-02 featuring a 70.28 metres long interval averaging 0.62 g/t Au and 0.20% Cu. This includes three 10 to 18 metre long intervals

Table 2: NORTH BRECCIA ZONE: DATA SUMMARY TABLE

CHRISTOPHER JAMES GOLD CORP. 1999 DIAMOND DRILLING PROGRAM ON THE NORTH BRECCIA ZONE BIG KIDD PROPERTY SUMMARY TABLE WITH SELECTED GOLD-COPPER INTERSECTIONS

Hole No Dip: Azimuth	Coordinates	Down Hole Depth From - To (m)	Interval (m)	Intersec Au g/t	tion Cu %
PHASE 1		.			
NBZ99-01 -45:210SSW	11624N: 23537E	49.60 - 85.50 135.44 - 161.75 168.50 - 230.43 EOH	35.90 26.31 61.93	0.18 0.20 0.31	0.12 0.12 0.18
NBZ99-02 -57:210SSW	As above	72.42 - 87.93 159.00 - 229.28 Incl. 167.36 - 177.83 Incl. 191.00 - 209.10 Incl. 213.75 - 229.28	15.51 70.28 10.47 18.10 15.53	0.13 0.62 0.97 1.00 0.53	0.13 0.21 0.11 0.27 0.35
PHASE 2					
NBZ99-03 -67:210SSW	As above	16.20 - 57.80 164.93 - 204.92 Incl. 168.93 - 193.20 Incl. 170.93 - 180.70	41.60 39.99 24.27 9.77	0.11 0.33 0.42 0.56	0.15 0.18 0.21 0.24
NBZ99-04 -55:210SSW	11610N: 23585E	4.50 - 56.00 Incl. 29.42 - 56.00 Incl. 39.01 - 45.05 172.50 - 270.66 EOH Incl. 190.67 - 194.90 Incl. 248.15 - 270.66 EOH	51.50 26.58 6.04 98.16 4.23 22.51	0.37 0.44 1.24 0.21 0.50 0.30	0.10 0.11 0.16 0.10 0.15 0.11

*Note: Several low grade intersections are not included in above. Au values in the 0.2 - 0.7 g/t range occur in some intrusive dykes in holes 02 and 04 above.

SOME PREVIOUS EXPLORATION HIGHLIGHTS FROM THIS ZONE:

Drilling: PD92-1: 173.0 - 244.0 (71.0 m) 0.75 g/t Au, 0.20 % Cu. BK97-5: 200.0 - 234.9 (34.9 m) 1.95 g/t Au, 0.11% Cu. Incl. 19.46 m @ 3.09 Au g/t, 0.11% Cu. BK97-4: 227.31 - 245.31 (18.0 m) 1.97 g/t Au, 0.28% Cu.

Trenches: PD92-2: 0.56 g/t Au, 0.11% Cu over 32.5 m. DM80-4: 1.02 g/t Au, 0.12% Cu over 12 m. DM82-1: 1.10 g/t Au, 0.15% Cu over 12 m.

- averaging between 0.5 and 1.0 g/t Au and 0.1 to 0.35% Cu. There appears to have been some vertical displacement of the zone along a steeply dipping late fault at depth. As a consequence the zone occurred at shallower depths in hole NBZ 99-03 than expected. The 1 to 3 g/t gold intersections encountered in the three previous holes in the area (1992, 1997) show excellent correlation with the better gold intersections in the 1999 holes, especially NBZ 99-02 and 03. The lower gold (copper) mineralized has now returned greater then 70 metre widths from holes with three different azimuths, clearly indicating size potential. No drilling has occurred on this target at depths shallower than 130 metres.
- Potential for intrusive hosted mineralization is indicated by an intersection at the very bottom of NBZ99-02 with 5.15 metres averaging 0.13 g/t Au and 0.19% Cu.

The more easterly drill section was tested by a single hole NBZ 99-04 and encountered upper and lower gold (copper) mineralized zones as well as significant values in several potassic monzonite dykes.

- The upper mineralized zone on this section straddles the breccia-metavolcanic contact very close to surface and contains sections averaging 1 g/t gold, low copper. This zone appears to be strongly influenced by two large monzonite dykes and may not be related to the upper zone to the west. Results from BK 99-04 which crosses the two sections supports this interpretation, though this is far from conclusive.
- The lower mineralized zone on the eastern section has features in common with that to the west, in particular the K.feldspar alteration and dyke association. Some of the better mineralization in this zone occurs at the very end of the hole and is therefore open to depth.

• Significant potassic monzonite, intrusive hosted gold (copper) mineralization occurs on this section and more sampling is required. This style of mineralization may be very important in the east breccia area especially considering the long low grade gold intersection encountered in hole BK 97-01, 300 metres to the southeast (35.9m averaging 0.32 g/t Au).

The 1999 drill program on the North Breccia target clearly met the company's objectives and has produced some encouraging results. Systematic drill testing of this zone is still in its early stages. A significant amount of step out drilling with trenching is required to develop this promising target.

6.0 RECOMMENDATIONS

- Further step out drilling and trenching is strong recommended on the North Breccia target. Basically the program should continue as it started testing 40 to 70 metre centres along strike, up and down dip. The up-dip projection of the lower mineralized zone clearly needs to be tested by holes drilled form the upper trail. Well placed trenches will also be very useful to this end.
- All diamond drill hole collars, access trails and trenches on this zone should be tied together by survey during the year 2000 program.
- Exploration data for the zone needs to be in digital form.

6.1 COST ESTIMATE YEAR 2000

Phase 1

7-9 holes, 200 to 300 metres length, 1900 metres total.

Cost all in @ \$100 per metre Surface work, trenching, allow Data processing, surveying, allow Reports and Contingencies

Phase 2

(Contingent on results from Phase 1)

Allow 3000 metres of drilling @ \$120/m all in

\$360,000.00

\$190,000.00

20,000.00 10,000.00

15,000.00

\$ 235,000.00

R.C. Wells Police RGAC

7.0 STATEMENT OF EXPENDITURES

PHASE 1 DIAMOND DRILLING NORTH BRECCIA ZONE, BIG KIDD PROJECT SEPTEMBER - OCTOBER 1999

1. DIAMOND DRILLING COSTS

	Report Costs	1063.35 1063.35
	Core Splitter	48.25
	Supplies	104.79
	Fuel	150.31
	Truck Rental	\$760.00
	Field Support Costs	
	Core splitting, sampling	2.5 days 1,562.50
	R.C. Wells, P.Geo., FGAC,	Consulting Geologist 19 days 8,075.00
	Kamloops Geological Servi	ces Ltd
3.	GEOLOGICAL SERVICES	
	Eco Tech Laboratories, Kar	nloops BC 4,349.25
Ζ.	ANALY IICAL COSTS	
r	ANAL VTICAL COSTS	
	2 NQ holes total 514 metres	\$27,174.80
	Core Enterprises Ltd., Clint	on BC

TOTAL \$46,524.90*

* No GST included.

STATEMENT OF EXPENDITURES

PHASE 2 DIAMOND DRILLING NORTH BRECCIA ZONE, BIG KIDD PROJECT

1. DIAMOND DRILLING COS	TS (23/9/99 - 1	12/10/99)
Core Enterprises Ltd., Cl	inton BC	
2 NQ holes total 565 met	res	\$30,664.60
2. ANALYTICAL COSTS (5/1	1 /99 -12/11/99))
Eco-Tech Laboratories L	td., Kamloops	BC 4,679.25
3. GEOLOGICAL SERVICES		
Kamloops Geological Se	rvices Ltd.	
R.C. Wells, P.Geo., FGA	C. Consulting	Geologist
22 days (27/9/99 - 7/11/9	9)	
Core splitting, sampling	G. Wells, P. W	Vatt)
10 days (20/10/99 - 7/10/	99)	
Field Support Costs (23/2	9/99 - 7/11/99)	
Truck Rental	\$826.02	
Fuel	152.43	
Supplies	<u>120.54</u>	
••	\$1098.99	
Report Costs	• • • • • • • • • • • • • • • • • • • •	
		Total \$51,292.84*

*No GST Included.

8.0 STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of Wales, U.K. with a B. Sc. Hons. in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 4. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 5. I have practised continuously as a geologist for the last 19 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- 6. Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation in both N. Ontario / Quebec and S. British Columbia.
- 7. The author was involved in all phases of exploration on the Big Kidd property in 1999.
- 8. The author has no interests in the Big Kidd Property, nor does he expect any.
- 9. Permission is hereby granted to Christopher James Gold Corp. to use the foregoing report in any submission to the Vancouver Stock Exchange, and that such report may be placed in the public file of the Vancouver Stock Exchange.

R.C. Wells, P.Geo., FGAC

9.0 REFERENCES

Barde, B.W., Wells, R.C., 1992. Report on the Shear Group, Nicola Mining Division.

- Barr, D.A., Fox, P.E., Northcote, K.E., Preto, V.A., 1976. The alkaline suite porphyry deposits -A summary. CIM Spec. Vol. 15, Porphyry Deposits of the Canadian Cordillera..
- Christopher, P.A., 1972. Preliminary geological map of the Aspen Grove area, B.C. B.C. Dept. of Mines and Petroleum Resources, Preliminary Map no.10.
- Cochrane, D.R. and Chase, W.F., 1980. Geochemical Assessment Report on a Trenching Program on portions of the Big Kidd Group of Mineral Claims, Aspen Grove Area, B.C.
- Godfrey, T.J.R., January 1973. Report for Hans Haveroen Property Project #514. Internal report for Amax Exploration Inc.
- Hendrickson, G.A., May 1992. Geophysical Report on the Shear Project for Placer Dome.
- Olien, K.O., May 1957. Geology & Mineral Deposits of Aspen Grove Area, B.C. University of Western Ontario B.Sc thesis.
- Preto, V.A., 1979. Geology of the Nicola Group between Merritt and Princeton, B.C. MEMPR. Bulletin 69.
- Richardson, P.W., 1982. Trenching Report on the Halo #200 Mineral Claim, Aspen Grove Property for David Minerals Ltd.
- Wells, R.C., 1997. Report on the Big Kidd Property. Aspen Grove, B.C. Also two reports on flow-through expenditures 1996-97 period and one promotional report for Christopher James Gold Corp.
- Wells, R.C., 1997. Report on the Big Kidd Property, Nicola Mining Division, Aspen Grove, BC. Assessment and company report.
- Wells R.C., 1999. Several private reports on the Big Kidd Property for Christopher James Gold Corp. (private).
- Wells, R.C., 1999. Report on Phase 1 Diamond Drilling, North Breccia Zone on the Big Kidd Property for Christopher James Gold Corp.

PHASE 1 DIAMOND DRILLING 1999

•

()

-

APPENDIX B

5

)

Diamond Drill Logs and Relevant Analytical Data

KAMLOOPS GE	OI	LOGICAL SERVICES LTD	SUMMARY DRILL LOG:	NBZ 99-01
PROPERTY	:	BIG KIDD	OWNER	: CHRISTOPHER JAMES GOLD CORP.
NTS	:	92H/15E	MINING DIVISION	: NICOLA MD, B.C.
CLAIM	:	HALO 100	LINE/STATION	: 11624N:23537E
GRID	:	BIG KIDD-BIG SIOUX	INCLINATION AT COLLAR	R : -45 [°]
CASING	:	0-2.44M	AZIMUTH	: 210 ⁰ SSW
LENGTH	:	230.43M	ACID TESTS	: @91.44M -43°; @225.55M -42.5°
LOGGED BY	:	R.C. WELLS P.Geo	DRILLED BY	: CORE ENTERPRISES LTD
DATE	:	13-17/9/99	DATES	: FROM 5/9/99 TO 13/9/99
CORE LOCATION	N:	AMEX, KAMLOOPS	CORE SIZE	: NQ

PURPOSE OF THE HOLE:

This hole was drilled from the northeastern edge of the Big Kidd breccia pipe inward. It was the shallowest of the two holes drilled below Placer Dome trench 92-2 which averaged 0.56 g/t gold and 0.112% copper over 32.5metres in altered intrusion breccia.. These holes also tested an area which at 160 to 200 vertical depth had produced 1-3 g/t gold intersections in 1997 holes BK97-04, BK97-05 and 1992 Hole 1.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

1

-

1

 γ

DDH.NBZ99	-01]	Page	No.1		
LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		py	SAMPLING DATA				
MAIN UNITS	SUB UNITS	•	L ·			4 X	2%	Sample No.	From	То	Cu ppm	Au ppb
0 - 2 - 44 C ASING	Taius and sendy overbuilden											
2:44-9:65 Heterolithic matrix Suggested (atomso	R-44-5-47 Rubbly core recovery at top of hole. Pyritic intrusion breccia	oxidized on fronture surfaces		15% Core loss		3-4	Tr					
Brecain Variable weak to strong	5.49-9.65 Matrix supported angular 1-10 cm clasts. Predominant List preinted make metavaleonic	matrix has vague textures due to alteration. Variably carbonated		0-30° CA carbonate Varalets - Low density	Predominantly fine grained clusters of	3-7	Tr	14251	5.49	7.65	964	85
Magneti	and mad grained mangunite-disrite class. Med. grained intrustic matrix	rins/serveste to fine gly ventets to cal magnetite/chlorite matrix blebs	9. 200	veniets + to feldyor selvages	pyrite in matrix, local fracture vernlets. sparse Cay	3-7	Tr	14252	7.65	7.65	1937	145
9.65-18.13 Potassie Monzenite Dyke	Mottlad pinks and greys. Crowded plagioclass porphyry with locally uph 4% hebres	Pervasive moderate carbonate Local made gramed magnetice	1.1	Fairly massive weak - moderate density of carb.	Fine disseminated and veintet fyrite sporse Cpy.	3-4	τr	14253	9.65	12-50	476	35
	hornstende . Fine grained k. feldspor rich grandmess. weak to strong magnetic with rest winters	K. faldspar in groundmass primary or alteration?	i t	+ epidole veinlets Veniable angles. Ep- Mgt veinlets To-to-CA Weak-mad flow alloament flow		3-4	Tr	14254	12.30	15.13	\$17	25
15-13 - 80-16	15.13-19.20 Matrix supported coarse breccia. Variaty of clast	Matrix is variably altered with Carbonate, epidste, weak local	いって	Low density of fine carb. vain/ets variable	Patchy pyrite commonly as fire-	2-5	Tr	14255	15-13	17:13	1067	70
Areccia. Variable fine	altered make Mr diente Many) kin Alt intrusive matris variably myraki	R. feldepor. Sume pink manyonite clasts have patchy epid-carb-Ry hocal dk chlorite in matrix	2	(VELA 80°CA with R 0 17.46-17.62 Dark Chlorite selvage	clusters . Lo cal med - coarse magnetite with esidete in metrix.	2-5	Tr	14256	17.13	19.20	1197	135
to coarse, metrix to Clast supported Variable magnetic	19.20-29.16 Heterolithic med to const	matrix has vague to mud. grained textures local mic	0,0,00	Low density of V.f. the corbonate	Veriable metrix and and local verifiet	3-8	Tr	14257	19.20	22.20	1092	55
	as above but sharper tertura Subangular 2 -> 10 cm clasts	magnetice. Epiclete clots throughout. Pervasive certainste with local first grained sil.	2020	angles CA. Lo cal fine Pyrite and	mainly matrin clusters. Sparse Cay	3-8	Tr	14258	22.20	25.20	1076	75
	and divitized clasts predominal 10-15% prik manzanite clast uph 40cm. some subravided diviti	or albihi patches in matrix. Pink mongenite clasts are carbonated. Variable week	OXONO	Non-tites K. fild Voinles 745°CA		3-8	Tr	1+257	25.20	28.20	1722	100
	ned grand natris with apidate 29.16-30.40 As above though charts rarely 78cm. strong cathered	to strong magnitic carbonate matrix, weak locat mad. mynetic. Patrix find chinte.		29-20-29-36 85-40-64 91-37 Corto Vein Caninda (Arad Parita	Patchy fim matrix by pokked. By in giz V.	2-10	-	14260	28.20	30.40	14-65	100
	· · · · · · · · · · · · · · · · · · ·	TPotchy K falden local spid clots	Ī	,,,,,							Ι	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R.c. welle

DATE 13 Pept 1998

DIAMOND DRILL LOG

BIG KIDD PROPERTY

1

I I

DDH.NBZ99-01

1

¥.,

Page No. 2

LI	THOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	h	ЪУ	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			48	۲ <u>ر</u>	Sample No.	From	То	Cu ppm	Au ppb	1.
	30.40-34.63 Medium to coarse breccia a few pick mongonite	Less carbonated than above Numerous epidote ascregates/clots	2á	Lo cal dirie carbonal ve in lets. Some duie	Patchy fine-medium grained metrics Pr	3-6	Ŧr	14261	30.40	\$2-05	1350	55	ſ
	porphyry class. Matrix has vague to good medicin grained textures.	sà matrix	2002	45°CA pyrite veixlets in clasts	maining aggregates. Local Ry veintets	4-7	Tr	14262	32.05	34 -65	2150	95	
	34.63-37.40 Coarse breccia with some clusts 7 soum. Markly	Maerix has mad-coard magnetil Patchy matrix k. faldspar,	2	Sparse 45-70°CA carbonate ± epidate	coarse pyrite-magnetite in matrix areas. Rore	1-5	Tr	14263	34-63	36-63	538	25	1
	materie Miner Stragg prita materie Moderate to strang ne rate	carbonate and epidote.	F	veinlets	fine by in clasts			14264	\$6.63	18.40	1733	70	
	38.40-43.30 Fire to medium breasin, 2-15cm clasts subaryular matrix supported. Mainly grean	Epidole class not as common mod. magnetic. weak to med. pervasive matrin corbonate	2000	Low density 30° carbonate verintets Some 60° 80° R	Fine-med grained matrix By, local veinlets. Small	<i></i>		14265	38.40	41.20	1378	35	•
	majei metovolcanic some disrilized 5-10% pink monzonite. Dioriki medigranist metrix, vague bechures.	minor to feldspor.	0000	veinlets	coarse by potches -matrix aggregates	4-1	, ''	14266	41-20	43.30	1047	45	
	43:30-47.02 Medwa to coarse breccia. Mafei metavolconic and Monzonite clasts locally 750cm	Mad. pervasive matrix corbonat patchy epidate, k. feldspar		Low density of 30% CA contonate ± excidate verialets in	Fine to coarse Py aggregates in notific	1-5	Ŧ	14267	48.30	45.50	923	45	
	quite nunded. Matrix has vague textures - dioritic-altered.	Matavilconic clash mys magnetic		matrix, some clasts	some cut clots			14268	45.50	47.02	1423	TS	
	47.02-58.48 Vague fectures doe to alteration. Variably altered 01000 models metavolcanis class	Patchy mad to strong matrix K. feldspar also vaialets in many clash. Enidede clate		Local cn scale Ry vers 20°CA Fine Ry versilets	Fine to coarse Ry as aggregates and herelets caarse			14269	47.02	49.60	1441	11	
	pink med ground manganite classi to faldener perphysica. Some appear fragmanted. Many Jiecon Mad-course	and verilets. Fairly strong matrix corbonate. Generally weak magnetic		and epidate - carbonata Ueinlets 30(A common in Under part	magnetite et common with coarser By. Sparse Cpy	4-5	Tr	14270	49.60	52.48	1182	105	ľ
	58.48-55.30 Mixed coarse with fine angular breccia. Matrix supported. Vague med. granad matrix textures.	Patchy weak carbonate, local epistate class some rine. Rare K. feldspor.	5000	Low density of carbonate versitats voriable angles CA cacal 60-9" CA Py the cat	Patchy fire - med. By in matrix and as fire verifiets	2-4	Tr	14271	52-48	55.30	780	110	
	55.30-57.00 strong bleached overprinting textures. Numerus	Parvasive albite-carbonate alteration, little else.	//	NUMEROUS Corbonate versitely variable angles CA	fine med. fracture and determ. cm scale patring	5	Te-1	14272	55.30	57.00	1168	50	
	57.00-67.75 Miked coarse to fine brecein, natrin supported vague textures due to alteration	Pervasive natrix corbonate with local epidate + negretile + dork chlorite class. Veriable	Boo Co	Local low angle 0-30°CA and high angle 60-70°C	Patchy find - mad grained matrix By as aggregates and	2-4	Tr	14273	\$7.00	60.00	18:51	305	
	locally disriti	week-mod-magnetic. Moderate matrix & feldger	ES.	Low ole 1 silly	discontated grains								ť

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-01

ł

}

Page No. 3

LITH	OLOGY	ALTERATION	G ·	STRUCTURE	MINERALIZATION		Ŋ	SA	MPLING	DATA		
MAIN UNITS	SUB UNITS		L ·			Å.	¥C	Sample No.	From	То	Cu ppm	Au
	continued from 193 Mixed coarse to fine braccin	As above patchy moderate. pervasive matrix K. feldsper	λ λ			2-5	τı	14274	60.0	61.70	i174	105
			2			2-5	Tr	14275	61-70	63-45	1260	160
			2			2-3	Tr	14276	63.45	64-70	1294	2.25
			やい			3-7	Tr	14277	64.70	67.75	1267	195
•	67.75-72.10 Mottled greens-greys fine angular matrix dominated braceia. Sub cm. to 2-2cm angular	Pervasive moderate to strong matrix corbonate, cm scale excidence clots common. Local	00000	Low alensity of Low angle a - 30° CA and high angle	Patchy aggregates of predominantly med. grained by it matrix	.4•7	Tr	14278	67.75	70.00	1637	120
	dioriti martin, vague textures	sume dark chierite. Potch, generally		60-90 CA Carbonate Usintata	Some inter connecting matrix A verillet			14272	70.00	72.10	788	45
	72.10-76.30 Vague textures due to alteration. Appears to be a	Patchy noderate K. feldspor alteration. Medicourse epidete		copper port Low classify epidt carb vendet come high	Patchy chisseninated By aggregates from	3-6	π	14280	72.10	74.30	11+7	100
	breccie. Mainly refi netwolceni -deorite closts	pervasive week-moderate matrix carbonate	娹	below 750 m mil.	some Cpy with the Py	3-6	Tr	14 2 9 1	74.30	76-30	500	95
	76.30-90.86 As above more U. coarse-fine breccie mixture	Generally weak patchy natrix carbonate. Small k. feldyper rich	X	Madarate density of 20-45 CA pridate t carbonate vaintet	Very potchy fire - mad. By in epidoke-	2-5	Tr	14232	76.30	78.50	1055	550
	clasts . rad-stray regrets . Matrix Vagre diaritic local coarse	course aggingates of epidate, nografile, My. Some the permasive		local cm Py- k. feldiger vainlats	also alissen and winder Alm/c Ry	2-5	Tr	14283	78.50	90.86	937	240
80.86 - 85.50 Mafii Dyke	Medium to clark greanish grey, fine grained to playisclase physic (coast porphysic) - Possible an	Patchy weak pervasive epidate and epidate verifiets. U weak carbonate restricted atten to	マンシン	Mod-high deshits of fine epictute weinlets also Ry	fire grained Ry weinlets. Local	. 1-2	_	14284	80.86	12-40	630	220
•	early dyke or large volcanic inclusion? Mis magnetic	veillets. Rare epid-mst-Ry clots as inclusions?	13	Lath Low 0-30 and high 60-90" CA	with epidote, magnetite			14285	87.40	\$5.50	\$98	225
85.50-87.40 Feldspor (Hornblende)	Light pinkish gray, Plagiochae J hornblende as plensaysts	Pernasibe moderate carbonate Cyanalmais fin k. felologor	泛	Mudsrate to high density of dire epidate bointed . Some	Fine dubseminated and winlet By	1-3	τr	14286	¥5·5•	\$7.50	257	25
Perphysy Dyra (4)	1-5% hambkale - tabular.	homblends profice	1	fine by verilets. Local premier carb		1-3	Te	1+297	87.50	85.40	6 60	55
	89.40-70.83 mined myll porphyry	wallock - dyke contact	Ĺ	find 40 - Goich care	By vointek in mapel	2-3	72	14.2.8	83:4.0	90.98	•14	1 .

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Anithelle

DDH.NBZ99-01

DIAMOND DRILL LOG

BIG KIDD PROPERTY

Page No. 4 LITHOLOGY ALTERATION STRUCTURE MINERALIZATION %Cpy SAMPLING DATA 212 L MAIN UNITS SUB UNITS Cu Au Sample From To ppm ppb No. 89-40-153-73 90.83 - 93.29 Redium gran, dine Local epidote blabs, patchy fine verillet By. Local Coarer magnetite - prite 1.3 chlorite > corbona Heterolithic Intrusion rectant meteoreleanie inclusion or fracture good Subported CA Wickersides, local agt fine grained magnetite 14287 90.85 Breccia Tr 13.23 601 4.0 mafic dyke . Mod to locally strong map. in verte 60 ca + cy 93-29- 109-00 read to high fine to mad to local Coarse to very coarse angular K. feldspor- monzonihi density of carb. 1-3 Tr 14 2 90 13.27 96.27 724 20 coarse matrix Py braccio with minor introive interstitial precise @ 97.90veinlets many also *Py in v*einteto (desritie) natrix. Predominantly 98-50; 100-50-101-60; 106-18 loss angle to 12 matrix and some Subparallel CA. Te 2-4 14271 96.29 green fg. mafi met avo I can't 99.27 548 1=7.56. 30 clash . Local By and grey to pink mg. mengenite quarty-carb-Pervasive moderate carbonate in wallacks to dk chlorite breen clasts. Many > socn with throughout. Local K. feldeser veite . veries with walland 2-4-Tr 14292 Mest 5- Socn intentified 77-27 102.29 842 35 alteration along fractures. k. felds par - Py breccia matrix, matrix is Sub porollet CA altered made grained with € 75.2-96.2; 1-3 Tr 14293 102-29 105.29 618 25 Py, magnetite, dark chlorite, 97.60-78-0 K. feldspor. Clast to wweak 2-+ Te 14274 105.29 107.29 671 40 matrix supported. Jul parallel witter fractiones 108-109. 2-4 14 295 Tr 107.27 648 107.00 30 109.0-115.92 Monzonitic Patchy K. feldspor, local l mourate desite strong by in matrix intension breccia. Lague textures -11 0 epidate class in matrix Low 0-30° CA - N fm grained local 2-4 Tr 14296 107.00 112.00 due to alteration. Med to 687 35 areas. Course K. feldyror, high 60-90"ca coarse patches. Py coarse breccia predominanty epidate, negretite, pyrite carbonati and content increases manzonitic claste same are epidoke verileto 2-5 Tr 14297 Pervasive moderate carbona 112.00 114-15 1094 55 de unarde hocal larger pink from K. feldspor. med. thoughout. K. feldspor in granded divista mangente many upto 0.70m 20°CA matrix/clasts increases with depter Tr 115.92 3-6 14298 114-15 carbonate veins 556 40 115-92-119-36 As above > 60% variable patchy weak -mod moderate density Patchy find local 2-5 Tr munzanite (pink) . V. coarse 14299 low and high anyle pervasive carbonate. Mungonite med gramed climen. and verilet by in 115.92 117.92 358 15 breccia, durate - nongenite carbonate veintets - disorte clasts have K. feldoper matrix. mod. nogretic I epidate. Local metrix and some 2.5 Tr 14300 paking alteration and weins 117.92 117.96 305 25 high age by canel k Ald rich class

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY A. w. fretty.

DATE . 14 Lept 1993

DIAMOND DRILL LOG

The second second

BIG KIDD PROPERTY

DDH.NBZ99-01

1

Page No. 5

LI	THOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	: •	A	· SA	MPLING	DATA		
MAIN UNITS	SUB UNITS		L ·	•		A N	*	Sample No.	From	То	Cu ppm	Au
	119.86 - 132.44 As above but predominanty coarse class > Socn Gray Monzonite-diorite. 10%	Patchy weak pervosive and verifiet K. feldspor. Carbonale is weak pervasive and or		tow density of low and high angle CA epidate & carbonate	Very patchy fire- ned granded matrix. Local verillet By with	2-4	Ŧe	14301	H4-8C	122.86	۹۹۱	40
	pink plazioclase porphyny-mingunik 220cm dia. Appron. 10-15%	nislet in grey clasts. Auderale pervasive in matrix. Matrix	3	anastamouring mynetite verifiets	coarse may white it matrix areas	2-4	τr	14302	122-36	125-86	2 91	55
	have the feldepar fracture vainteds	has patchy coarse epidate, K. feldspor, magnetite, med. By	ł	eg 723-70- 724-30		1-3	Tr	(43+3	125-86	128-86	\$38	25
		frier carbonall. Furthy 1260 pervasive epidole 126.5-127.30 walknocks to verin are bleached		131-40-132-44 35-CA		2-4	Tr	1+304	128.96	131-65	720	55
		strong corporated with numerous dark chlaritic patcher (after magnetite?)	11	fold. vein . Lange afer after		1-4	Tr	14305	131-65	132-44	616	395
	122.44-140.30 Monzanite-Dimite Clast, coarse breccia - crackle breccia ? Predominanti, grey	harge closts display variable generally weak k. feldspar alt.	Ø	Low - moderate density of cart, k.feetages and epide	fine to medicing restand Ayale generally restricted to making			14306	132-44	135-44	650	70
	medium gravited forty equiproved monzonite, mod. magnetic. Local magnetic cubes. Appears to be	Matrix K. feldspor is stronger. In clasts verilets of corbonste, epidote ± K. feldspor local		cantels three are generally 20-60°CA Local fine by venue	areas. Fine Ry and Cay in epidule verifields Cutting manganite	1-3	Tr	14307	135.44	ł 34 -44	H93	160
	a coarre monolitule breccia - brecciated dyke? Sporse S-10% matrix auth eaid. cach killed mat. A.	intense k-platypar.	X		C CAM.			143+8	138.64	140-30	1301	100
	140.30 - 158.78 Bimodal Manywik - diorite, mad-coarse breesin with 5-15cm claste Ratter	clasts as above with veinlet K-feldspar, epidate, carbonate		how - moderate	sparse verifiet and alignminated Py	3-6	Tr	14309	140.30	142.30	1137	170
	developed brecia textures than above. Subrounded 5-15cm	local by, mynetice. Rare to weak pervasive corbonete. Matrix is rich in K. feldspar	からめ	minor by verilets	Minier fine Goy. In K-feldspor matrix	2.5	τr	14310	143-30	146.30	971	135
	clast common. Manganite ca mainly grey local pink m matrix areas. Patchy intense	clots of epidete, darke chierte and fine carbonate, local		a6012 20-60°CA .	areas can have up to 20% pyrite.	1-5	Tr	14 213	146.34	149.30	7+5	105
	matrix k. feldspar. Mod. Magaetei Hanghant.	porteles of dise weed grained permissive spidete. K. personal	Þ									

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY K.W.W.

DATE 15 sept 1949

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-01

1

Page No.6

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		2	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L			3	80	Sample No.	From	To	Cu ppm	Au	1
	continued from page 5	K. feldspar matrix decreases downward.	K		sparse matrix by.			14312	143.30	151-82	1093	160	154
			8			1-5		14313	151.82	152.78	1367	180	1
153.78-161.75 Haterolithic matrix Sypported Intrusion	Matrix to weak clast supported Medium 10-30cm more Autorolithic intrusion brecsing Cores to ante	Patchy pink matrix k feld. Local clast rims. Matrix	80028	Low density of predominantly	Patchy fine - med. matrix By local			14214	153-78	156.78	1392	285	1
Braccia. K. feldspar rims to some clusts	Monzonibe clasts, diorite and altered mapic metavolcanic clash. Subargular to subrounded. Vague	epistore closs with dark chieft armout magnetite. Moderate pervasive matrix corbonate Variable corbonated close		high angle carboneh and pyrite veshlets	spects of Coy. Fare magnetica.	2-6	Tr	14215	156-78	159.78	1918	330	
	textures due to alteration. Alt disribit matrix. Patchy weak to materiate magnetic	<i>y</i>		Sharp 60°CA contact				14316	159-78	161.75	1118	230	1"
161.75 - 170.79 Feldspar Porphyny- Mongonike Dyke.	161.75-168.80 Light pink to pinkish grey plagioclase porphys Crowolad with tabular phenewsch Web Lange Loral and L	Peruasive moderate corbonate, chloritized medics and some plagicelase phenocrysts. Vague		Low density of 40-60°CA corbuste verilate. Flow	Minor fine dissemindu and local naitifie- verifiet By. Traces			14317	161.75	165.00	9 %	15	1
	alignment. Pink K felolopor -fine grained grandmass, miner Chilortiged napic, Local subanded 1-3cm xenolities some K.feld. rime	- corbonate alteration		abigned phenicyts 50°-60° CA	go fine coy.	1-2		14218	165.00	168.50	1+1	30	
	168.50-169.22 Brecci ated and altered	Coarse breecia with epidole, chi, K. Leid Carbourge Mic amind much	1	contre breceiated	coarse magnetile specks	Tral	TC	1.4.2.0	169.50	169.27	94.2	270	-
	169.22-170.79 Light pink play populyy become breciated near base.	weak - noderate perdire carb. Party & feld, love negative weak into	ŝ	No flow alignment	Wardlet and dissemilated	1	Tr-I	1432.0	169.22	170.73	1866	325	 .,
170-79 -200.45 Hetarolltic Patassic	170.79-877.82 Heterolithic mixed fine to coarse breccia. Subanoular to subawadad risk	Moderate prok k. feldspor in matrix some clast rims and veins		Low density of fine 30-60 cd	fine-med matrix Py local cpy. Also	1-3	Tr	14321	170.77	173.13	1373	440	1
Similar to 183.78 but	upto Imetre, feld. popph. maganite,	pervasive matrix and clost corboat	20	epictote ± carb validets	in some fracture	Fr-1	Tr	14322	173-13	174-48	63	\$0	1
stronges matrix and rim k.feldsper.	grey manzonite - diorite, alt. mafi matavolcanic. Vague textures due to alteration. Alt. dioriti matrix	Med. green chievite widespread in matrix. Local course regretite in	287	Local Py-magnetite Veins to Smm wide	esp. feld. porphyry monzonite.	1-3	Te-1	1432 3	174-48	176.48	1897	805	1
	Patchy mod-strong magnetic	L[0[3.	δζ	20-25°CA		1-3	Tr-1	14324	176.48	177-82	478	290	1
	177.82-200.45 Nottled pink-green potassic (k. lecturor) fix and intrusion	Patchy moderate to strong k. feldspor it matrix. K.feld.	220	very low density of fine carb	Patchy from gramed Py clusters in matrix	2.3	77	14325	177.82	175-82	1587	365	
	breccia. Marria to weak clast supported - continues	cime common	õ Š	VEI-11645	Local Line Cpy.								7

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY A. Colle

DATE 15 fept 1955.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-**01**

1

}

Page No.7

LITH	IOLOGY	ALTERATION	G •	STRUCTURE	MINERALIZATION	•	M	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·	· ·		₹ 1	*	Sample No.	From	To	Cu ppm	Au ppb	,]
	most of clasts display some pink k. feidspar atteration	Many pick k. feldsper rims Patch- pervosuit mod-strong	200	Low density of 30-60°CA Exidente	Patchy fire-med. matrix Re patches	2-4	Tr	14326	179.82	18132	1398	255	-]
	however a high proportion of	matrix k. jeldspor Patchy matrix costants (acad saids	00	+ carbonate verifiets	Local specks of Goy.	2-4	71	14327	181-82	183-82	1201	215	
	plasioclase porphyrike pink	clots. Also patchy matrix	56	pyrite veinlet .		2-4	Tr	14 328	183.82	185-82	2157	43	5
	Mangonist. The matrix has vague altered textwes with	men green chierce.	B			2-4	Tr	14227	1\$ 5· 82	187-82	1952	330	•
	Lo coal coarse mognetile clots		0.9			2-4	Tr	14330	197-82	189.82	1649	439	5
			0000			2-4	Tr	14 331	199-82	192.68	1540	2.21	۶
			000			Tr-)		14332	192.68	194.51	1006	130	•
			8	i several subparallel carb. veralets		3-5	Tr	14333	19451	196.71	1345	140	•
		Bleaching due to strong permit	Ø	8/cached US15 3000	Fine discerninated	3-5		14334	196-71	197.82	1397	18	5
		grailed poten strong to fally and some class	500	mad. density so tout carb verakes local Py	Local coarse of regated of magnetite	2-4	Tr	14 33 5	197.82	200.4	1240	17	•
200-95-212-45 Heterolithic Intrusion	Similar fine to coarse braccin as above. Matrix to weak close	Highly variable , weak to strong pervasive (matrix and many	000	Greene Cow density of Cow and high copie CA	Patchy fine med ground demember	Tr-2		14 33 6	200.45	203.45	1593	139	5
Britchia	dionte and altered notice metavolcanic clashs uph 40cm	pervasive matrix k. feldspor weak-medvate. matrix has	100	fine carbonati verileto. Local dine p. verileto	Matrix Py, Coarser P. with magnetic locally	1-4	Tr	14 337	20345	206.45	1995	22	0
	10-15% of Smaller clasts (agular) howe k. feldspor rims. Vague matrix textures due h. alterna	wides presed mad. green charte Patchy coarse magnetite, Py	0.000		con scale in matrix.	3.5	Tr	14335	206.45	20745	4960	+ 67	٥
	local divibili textures.	with some dark chierte in venilets. Lo cal epidole clots.	100					1				T	1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Me for

DATE . (6. Sept. 1997.

DIAMOND DRILL LOG

THE THE PART OF THE TANK THE T

BIG KIDD PROPERTY

DDH.NBZ99-**01**

1

)

Page No. 8

LITH	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	.' 	þy	SA	MPLING	DATA		
MAIN UNITS	SUB UNITS	•	L			4 %	8	Sample No.	From	To	Cu ppm	Au ppb
	see above Pg7.		15000					14337	209.45	212.45	3304	400
212.45-223.47 Heterolithic Potassic Alternal Catrucia Bracia	212.45-220.34 As above fine-med. brecking, matrix to weak clast supported	Stager k. fullspar alteration than above. Permuine moderate carbonate. e pidote si weak	0000	Lew density of frie, Low orgen (A and high orgen CA	widey read fm. gravit natrie Ry much is quite fine			14340	212.45	215.45	254	315
significant number of clasts with k. feldspar albertion rins	clasts rarely > locm most are 2-locm mainly angular. > 20% are potassic altered and	after restricted to reinlets. Local magnetice aggregates. Rave matrix med. green chlorite. Dark fini	00.00	carbonete ± epidah verilete . Local high angle ch	deceptive %. Pynte vernlets are fairly common.	3-6	TI	14341	215.45	218.45	1922	205
	rimment. Mate to strong maynetic	granied childrite is widespread	РС	veinlets				14342	215.45	220.31	1543	165
	220.34-223.47 As above Many closis with K.feld. rins	10-15% epidote potches moinly fine grained upto 25cm long	2000	Low density med	widespread fine discominated matrix	3-4	Tr	14343	220.34	222.54	2771	425
	Matrix supported. 222.46-223.47 Large plasioclase purphysy class.	with mg. Py. Moderate K. feld. Mainly clost rims	C	i carsonate ± epidate i vainkte	By with epidate and magnetite.	1-3		14344	222.34	223-47	122	140
12347-230.42 (EOH) Pisk Monzonite Intrusio	File to maduin brecus matrix supported. Potassic	Many closels have h. feldspor rims. weak to moderate	2000	Low density Low - high angle CA epidotes	fine to medicin disseminated and			14 \$45	223.47	226-47	1227	150
Maccia. Moderna magnetic, potassic.	K. feiliger rich mongenete clasts upto your generally <td>pervasive contracte, epidate decreases downward. Local</td> <td>0000</td> <td>Carbonate verillete Com 15-20"CA</td> <td>Py. co cal magnetit</td> <td>3-6</td> <td>T</td> <td>14346</td> <td>226.47</td> <td>22.1-47</td> <td>196</td> <td>370</td>	pervasive contracte, epidate decreases downward. Local	0000	Carbonate verillete Com 15-20"CA	Py. co cal magnetit	3-6	T	14346	226.47	22.1-47	196	370
	Vage matrix textures quite Chloritei with plagivelase.	mografite oggregates.		o quertz-cerbonate vein and y section	aggregeres.			14 847	22847	230-43	107	200
				230.43 End of Kole								

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY A. Luce

	SAMPLE NO.	FROM	то	LENGTH Au	(ppb) Cu (ppm)		L X Au	Au-Comp	L X Cu	Cu-Comp	From	То	Length	Au (ppb)	Cu (ppm)
	14251	5.49	7.65	2.16	65.00	964.00	183.60		2062.24						
	14252	7.65	9.65	2.00	145.00	1937.00	290.00		3874.00						
	14253	9.65	12.30	2.65	35.00	476.00	92.75		1261.40						
	14254	12.30	15.13	2.83	25.00	517.00	70.75		1463.11						
	14255	15.13	17.13	2.00	70.00	1067.00	140.00		2134.00						
	14256	17.13	19.20	2.07	135.00	1199.00	279.45		2481.93						
	14257	19.20	22.20	3.00	55.00	1082.00	165.00		3246.00						
	14258	22.20	25.20	3.00	75.00	1076.00	225.00		3228.00						
	14259	25.20	28.20	3.00	100.00	1722.00	300.00		5166.00						
	14260	28.20	30.40	2.20	100.00	1465.00	220.00		3223.00						
	14261	30.40	32.05	1.65	55.00	1350.00	90.75		2227.50						
	14262	32.05	34.63	2.58	95.00	2150.00	245.10	1665.30	5547.00	27253.43	15.13	34.63	19.50	85.40	1397.61
	14263	34.63	36.63	2.00	25.00	538.00	50.00		1076.00						
	14264	36.63	38.40	1.77	70.00	1733.00	123.90		3067.41						
	14265	38.40	41.20	2.80	35.00	1378.00	98.00		3858.40						
	14266	41.20	43.30	2.10	45.00	1047.00	94.50		2198.70						
	14267	43.30	45.50	2.20	45.00	923.00	99.00		2030.60						
	14268	45.50	47.02	1.52	85.00	1423.00	129.20		2162.96						
	14269	47.02	49.60	2.58	96.00	1441.00	252.84	847.44	3717.78	18111.85	34.63	49.60	14.97	56.61	1209.68
	142/0	49.60	52.48	2.88	105.00	1182.00	302.40		3404.16						
	142/1	52.48	55.30	2.82	110.00	780.00	310.20		2199.60						
	142/2	55.30	57.00	1.70	50.00	1168.00	85.00		1985.60						
	14273	57.00	60.00	3.00	305.00	1851.00	915.00		5553.00						
	142/4	60.00	61.70	1.70	105.00	1174.00	178.50		1995.80						
	142/5	61.70	63.45	1.75	160.00	1260.00	280.00		2205.00						
	142/6	63.45	64.70	1.25	235.00	1294.00	293.75		1617.50						
	142//	64.70	67.75	3.05	195.00	1267.00	594,75		3864.35						
	142/8	67.75	70.00	2.25	120.00	1639.00	270.00		3687.75						
	14279	70.00	72.10	2.10	45.00	988.00	94.50		2074.80						
	14280	72.10	74.30	2.20	100.00	1149.00	220.00		2527.80						
	14281	74.30	76.30	2.00	95.00	500.00	190.00	3734.10	1000.00	32115.36	49.60	76.30	26.70	139.85	1202.82
	14282	76.30	78.50	2.20	550.00	1055.00	1210.00		2321.00						
	14203	78.50	80,86	2.36	240.00	939.00	566.40		2216.04						
	14204	80.86	83.40	2.54	220.00	630.00	558.80	0007 70	1600.20						
	14200	03.40	00.00	2.10	225.00	898.00	4/2.50	2807.70	1885.80	8023.04	76.30	85.50	9.20	305.18	872.07
	14200	83.30	01.50	2.00	23.00	330.00	104.60		10.00						
	14207	67.50 80.40	00.92	1.90	50.00	000.00	71.50		1204.00						
	14280	00.92	02.00	2.46	40.00	810.00	71.30		1309.00						
	14209	90.03 03.20	06.20	2.40	20.00	724.00	80.40		14/0.40						
	14201	06.20	00.20	3.00	20.00	549.00	00.00		1644.00						
	14202	00.29	102.20	3.00	35.00	843.00	105.00		2526.00						
	14202	102.29	105.20	3.00	35.00	612.00	75.00		1964.00						
	14204	105.20	107.20	2.00	40.00	671.00	80.00		1242.00						
	14295	107.29	100.20	1 71	30.00	608.00	51 30		1102 58						
	14206	109.00	112.00	3.00	35.00	690.00	105.00		2067.00						
	14207	112.00	114 15	2.15	55.00	1004.00	119.00		2267.00						
	14208	114.15	115.02	4.77	40.00	556.00	70.90		2332.10						
	14200	115.02	117.02	200	15.00	359.00	20.00		716.00						
	14300	117 92	110.86	1 94	25.00	305.00	49.60		501 70						
	14301	119.86	122.86	3.00	40.00	021.00	120.00		2763.00						
	14302	122.86	125.86	3.00	55.00	801.00	165.00		2673.00						
	14303	125.86	128.86	3.00	25.00	538.00	75.00		1614.00						
	14304	128.86	131 65	2 79	55.00	720.00	153 45		2008.80						
	14305	131 65	132 44	0.79	395.00	616.00	312.05		496 64						
	14306	132.44	135.44	3.00	70.00	650.00	210.00	2193.75	1950.00	33696.28	85.50	135 44	49 94	43.93	674 74
	14307	135.44	138 44	3.00	160.00	1193.00	480.00		3579.00	00000.20	00.00	100.14		-10.00	Q1 4.1 4
	14308	138.44	140.30	1.86	100.00	1301.00	186.00		2419.86						
	14309	140.30	143.30	3.00	270.00	1137.00	810.00		3411.00						
	14310	143.30	146.30	3.00	135.00	971.00	405.00		2913.00						
	14311	146.30	149.30	3.00	105.00	745.00	315.00		2235.00						
	14312	149.30	151.82	2.52	160.00	1093.00	403.20		2754.36						
	14313	151.82	153.78	1.96	180.00	1367.00	352.80		2679.32						
	14314	153.78	156.78	3.00	285.00	1392.00	855.00		4176.00						
	14315	156.78	159.78	3.00	330.00	1918.00	990.00		5754.00						
	14316	159.78	161.75	1.97	230.00	1118.00	453.10	5250.10	2202.46	32124.00	135.44	161.75	26.31	199.55	1220.98
	14317	161.75	165.00	3.25	15.00	96.00	48.75		318.50						
	14318	165.00	168.50	3.50	30.00	141.00	105.00	153.75	493.50	812.00	161.75	168.50	6.75	22.78	120.30
	14319	168.50	169.22	0.72	275.00	843.00	198.00		606.96						
	14320	169.22	170.79	1.57	385.00	1866.00	604.45		2929.62						
	14321	170.79	173.13	2.34	440.00	1373.00	1029.60		3212.82					\sim	
	14322	173.13	174.48	1.35	80.00	63.00	108.00	1940.05	85.05	6834.45	168.50	174.48	5.98	324.42	1142.88
	14323	174.48	176.48	2.00	805.00	1897.00	1610.00		3794.00						
	14324	176.48	177.82	1.34	290.00	498.00	388.60		667.32						
	14325	177.82	179.82	2.00	365.00	1587.00	730.00		3174.00						
	14326	179.82	181.82	2.00	255.00	1398.00	510.00		2796.00						
	14327	181.82	183.82	2.00	315.00	1201.00	630.00		2402.00						
	14328	183.82	185.87	2.05	435.00	2159.00	891.75	4760.35	4425.95	17259.27	174.48	185.87	11.39	417.94	1515.30
	14329	185.87	167,82	1.95	330.00	1952.00	643.50		3806.40						
	14330	187.82	189.82	2.00	435.00	1694.00	870.00		3388.00						
	14331	189.82	192.68	2.86	225.00	1540.00	643.50		4404.40						
	14352	192.68	194.51	1.83	180.00	1006.00	329.40		1640.96						
	14333	194.51	196.71	2.20	140.00	1345.00	308.00		2909.00						
j.	14335	190./1	19/.62	1.11	185.00	1387.00	200.35		1039.57						
2	14550	19/.82	200.45	2.63	190.00	1260.00	499.70		3313.80						
	(4530	200.45	∠ UJ.45	3.00	133.00	1593.00	405.00		4//9.00						

÷

-

<u>___</u>

14337	203 45	206 45	3 00	220.00	1998 00	660 00	4564 45	5994 00	32025 15	185 87	206 45	20.58	221 79	1556 13
14338	206.45	209.45	3.00	670.00	4964.00	2010.00		14892.00			200.40	20.00		
14339	209.45	212.45	3.00	400.00	3304.00	1200.00		9912.00						
14340	212.45	215.45	3.00	395.00	2540.00	1185.00		7620.00						
14341	215.45	218.45	3.00	205.00	1922.00	615.00	5010.00	5766.00	38190.00	206.45	218.45	12.00	417.50	3182.50
14342	218.45	220.34	1.89	165.00	1543.00	311.85		2916.27						
14343	220.34	222.34	2.00	425.00	2778.00	850.00		5556.00						
14344	222.34	223.47	1.13	140.00	1223.00	158.20		1381.99						
14345	223.47	226.47	3.00	150.00	1222.00	450.00		3666.00						
14346	226.47	228.47	2.00	370.00	1960.00	740.00		3920.00						
14347	228.47	230.43	1.96	200.00	907.00	392.00	2902.05	1777.72	19217.98	218.45	230.43	11.98	242.24	1604.17
							40470.00		******	400 50				
							19176.90		113526.85	168.50	230.43	61.93	309.65	1833.15
							24580 75		146462 85	135 44	230 43	04 00	258 77	1541 88
							24000.70		140402.00	130.44	230.43	34.33	230.77	1341.00

مينجير .

_

•

1-Oct-99

(ریک

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

18

1

}

1

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-509

1

1

•

}

1

1

1

1

.

}

3

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

1

1

1

1

ATTENTION: RON WELLS

No. of samples received: 50 Sample type: Core PROJECT #: NBZ-01 SHIPMENT #: 1 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
1	14251	85	<0.2	1.86	<5	50	<5	2.05	<1	27	64	964	5.39	<10	1.99	471	<1	0.04	21	1680	<2	10	<20	38	0.26	<10	190	<10	14	26
2	14252	145	<0.2	1.79	<5	40	<5	2.67	<1	43	83	1937	6.59	<10	2.01	571	2	0.04	24	1670	2	10	<20	36	0.23	<10	180	<10	20	35
3	14253	35	<0.2	1.21	<5	40	<5	3.28	<1	15	28	476	3.80	<10	1.03	446	<1	0.04	5	1510	4	10	<20	52	0.15	<10	111	<10	35	24
4	14254	25	<0.2	1.17	<5	40	<5	2.89	<1	20	36	517	3.66	<10	0.76	370	8	0.04	6	1570	4	<5	<20	67	0.15	<10	114	<10	30	18
5	14255	70	<0.2	1.70	5	40	<5	3.08	<1	29	41	1067	5.85	<10	1.72	555	4	0.03	14	1650	6	10	<20	60	0.19	<10	139	<10	19	54
6	14256	135	0.6	1.55	5	35	<5	3.79	19	31	44	1199	5.90	<10	1.72	516	15	0.03	16	1620	120	5	<20	78	0.15	<10	134	<10	13	168
7	14257	55	<0.2	1.62	<5	45	<5	2.72	<1	35	39	1082	7.26	<10	1.76	434	19	0.03	15	1630	6	<5	<20	63	0.18	<10	133	<10	8	31
8	14258	75	<0.2	1.56	<5	35	<5	2.15	<1	33	51	1076	6.91	<10	1.57	410	14	0.04	14	1670	4	10	<20	49	0.19	<10	124	<10	7	32
9	14259	100	<0.2	1.44	5	30	<5	2.36	<1	35	33	1722	6.64	<10	1.49	459	11	0.03	13	1520	6	<5	<20	52	0.16	<10	119	<10	9	33
10	14260	100	<0.2	1.68	10	35	<5	3.40	6	46	50	1465	7.10	<10	1.81	589	11	0. 04	15	1690	22	<5	<20	85	0.17	<10	147	<10	17	81
11	14261	55	<0.2	1.91	5	40	<5	3.99	<1	36	31	1350	6.77	<10	2.07	778	10	0.03	15	1700	8	10	<20	83	0.20	<10	151	<10	10	44
12	14262	95	<0.2	1.86	<5	40	<5	2.37	<1	43.	43	2150	8.21	<10	1.92	577	12	0.03	18	1630	8	<5	<20	68	0.23	<10	151	<10	3	48
13	14263	25	<0.2	1.85	5	70	<5	2.11	<1	35	28	538	7.36	<10	1.91	586	<1	0.04	15	1670	8	<5	<20	44	0.33	<10	261	<10	16	47
14	14264	70	<0.2	2.09	<5	40	<5	2.21	<1	57	115	1733	7.50	<10	2.42	631	12	0.04	38	1680	10	<5	<20	44	0.29	<10	189	<10	8	52
15	14265	35	<0.2	1.76	5	40	<5	2.47	<1	43	50	1378	7.47	<10	1.90	594	21	0.04	21	1730	8	<5	<20	38	0.24	<10	163	<10	5	47
16	14266	45	<0.2	1.80	10	40	<5	2.18	<1	35	62	1047	6.88	<10	1.89	555	15	0.04	21	1830	12	5	<20	40	0.25	<10	174	<10	10	44
17	14267	45	<0.2	2.07	10	45	<5	2.40	<1	34	172	923	5.42	<10	2.32	566	8	0.03	, 70	1610	12	10	<20	48	0.22	<10	131	<10	14	46
18	14268	85	<0.2	2.23	10	35	<5	2.45	<1	42	84	1423	7.24	<10	2.46	714	17	0.04	27	1740	12	5	<20	40	0.29	<10	179	<10	11	52
19	14269	98	<0.2	1.22	<5	35	<5	2.57	<1	61	35	1441	5.65	<10	1.14	527	27	0.03	12	1340	8	5	<20	48	0.15	<10	84	<10	14	35
20	14270	105	<0.2	1.43	<5	40	<5	2.29	<1	45	92	1182	5.96	<10	1.48	532	16	0.03	29	1490	10	<5	<20	41	0.19	<10	111	<10	11	36

CHRISTOPHER JAMES GOLD CORP.

.

1

ICP CERTIFICATE OF ANALYSIS AK 99-509

ECO-TECH LABORATORIES LTD.

21 1427 110 $ 60$ 2.0 6.61 <1	Et	#. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
122 14272 50 0.6 0.7 60 40 45 7.4 1 28 40 118 500 40 184 1026 15 160 0.01 44 15 20 186 500 40 188 754 20 0.03 12 180 74 16 600 12 10 20 72 0.16 40 45 23 117 630 40 188 730 10 150 647 26 0.03 12 180 14 150 647 26 0.04 10 1690 14 54 10 55 27.7 41 10.4 106 10 155 20 157 40 124 730 410 10.4 168 10 15 40 41 186 168 15 40 124 41 14 1468 168 15 40 131 40 10 40 41 10 163 103 41 143 14 144 144 14	21	14271	110	<0.2	2.11	15	50	<5	2.76	<1	44	34	780	7.47	<10	2.10	661	<1	0.04	19	1800	14	10	<20	46	0.30	<10	205	<10	11	46
23 14273 305 -0.2 1.7.8 5 4.5 3.4.9 4.1 33 38 1851 7.30 7.10 1.85 7.54 20 0.03 16 1690 12 16 20 7.0 7.10 13.3 7.10 15.3 7.5 2.07 4.1 7.30 7.10 <	22	14272	50	0.6	0.76	60	40	<5	7.42	1	28	40	1168	5.90	<10	1.84	1026	15	0.01	14	1340	4	15	<20	198	< 0.01	<10	44	<10	11	73
24 14274 105 <0.2	23	14273	305	<0.2	1.78	5	45	<5	3.49	<1	33	38	1851	7.30	<10	1.85	754	20	0.03	16	1690	12	<5	<20	78	0.16	<10	143	<10	8	47
25 14275 160 -0.2 1.54 15 35 <5	24	14274	105	<0.2	1.66	10	40	<5	2.97	<1	54	38	1174	6.36	<10	1.50	647	26	0.03	12	1690	12	10	<20	72	0.17	<10	133	<10	15	39
26 14276 235 0.2 2.16 10 50 < 5 3.88 < 1 57 40 1294 7.30 < 10 2.25 759 14 0.04 14 1860 16 15 < 20 65 0.26 < 10 131 < 10 133 226 14278 120 < 0.2 1.74 100 35 < 5 2.85 < 1 41 38 1839 7.28 < 10 130 10 150 10 100 20 < 11 0.161 < 10 23 29 14279 45 < 0.2 1.50 55 1.40 6.65 < 10 3.86 65 0.03 10 1720 14 < 5 20 0.165 114 4.65 2.00 0.03 11 10 20 114 4.65 2.00 2.0 1.66 5.02 1.60 1.60 1.65 5.07 1.00 1.65 5.07 1.00 1.65 5.07 1.00 1.65 5.07 1.01 1.66 1.01	25	14275	160	<0.2	1.54	15	35	<5	2.74	<1	72	26	1260	6.35	<10	1.49	609	25	0.04	10	1690	14	5	<20	54	0.19	<10	124	<10	18	38
26 14276 235 <02																															
27 1427 195 <0.2 1.44 10 40 <5 3.8 <1 46 33 1267 619 <10 1.44 678 18 0.03 10 153 10 5 <20 52 0.55 0.15 <10 186 <53 10 41 38 1803 7.28 <10 195 55 31 0.04 11 1720 14 10 <20 77 0.13 <10 161 <10 9 42 30 14280 100 -0.2 1.52 10 35 <5 2.93 <1 50 52 1144 6.65 <1 0.03 7 1600 144 <5 <20 6.02 1.68 10 11 170 14 <5 <20 6.02 1.68 10 10 1.44 10 30 <1 148 42 30 10 10 168 40 17 168 40 17 168 40 17 117 118 10 10	26	14276	235	<0.2	2.16	10	50	<5	3.89	<1	57	40	1294	7.30	<10	2.25	759	14	0.04	14	1860	16	15	<20	65	0.26	<10	196	<10	24	47
28 14278 120 -0.2 1.74 10 35 <5 2.85 <1 4.1 38 1898 7.28 <10 1.89 855 31 0.04 12 1720 12 10 <20 77 0.13 <0 161 <10 7 6.13 <0 11 1720 14 10 <20 77 0.13 <0 161 <10 161 <10 161 <10 161 <10 161 <10 161 <10 165 <10 18 665 <10 0.35 11 1720 14 4 <50 50 50 50 50 50 50 50 50 50 <10 1.38 655 <1 0.03 7 1800 14 <50 50 50 <10 1.38 650 <1 0.03 7 1800 14 <50 20 60 0.17 <10 18 50 10 0.03 7 100 18 50 10 0.02 10 10	27	14277	195	<0.2	1.44	10	40	<5	3.36	<1	46	33	1267	6.19	<10	1.44	678	18	0.03	10	1630	10	5	<20	52	0.15	<10	131	<10	10	39
29 14279 45 < 0.2 1.80 5 35 < 5 < 2.1 < 5 < 5 < 2.1 < 5 < 5 < 1.19 < 6.5 < 1.09 < 5 < 2.0 < 7.0 < 1.14 < 5 < 2.0 7.0 < 0.13 < 1.10 < 5 < 2.0 7.0 < 0.13 < 1.10 < 5 < 2.0 7.0 < 0.13 < 1.01 < 5 < 2.0 7.0 0.13 < 1.01 < 5 < 2.0 7.0 < 0.14 < 5 < 2.0 7.0 < 0.14 < 5 < 2.0 7.0 < 1.14 < 5 < 2.0 7.0 < 1.14 < 5 < 2.0 7.0 < 1.14 < 5 < 2.0 7.0 1.42 < 5 < 2.0 7.0 < 1.14 < 5 < 2.01 7.0 1.42 $5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0$	28	14278	120	<0.2	1.74	10	35	<5	2.85	<1	41	38	1639	7.28	<10	1.95	855	31	0.04	12	1720	12	10	<20	51	0.20	<10	168	<10	7	50
30 14280 100 <02 1.54 10 40 <5	29	14279	45	<0.2	1.80	5	35	<5	4.28	<1	30	29	988	7.29	<10	1.89	935	20	0.03	11	1720	14	10	<20	77	0.13	<10	161	<10	9	49
31 14281 95 0.2 1.52 10 35 < 5 2.83 < 1 58 26 500 6.00 < 10 1.88 650 < 1 0.03 7 1800 14 < 5 < 20 62 0.17 < 10 149 < 10 18 < 40 32 14282 250 0.2 1.68 10 35 < 5 2.23 < 1 32 51 1055 5.87 < 10 1.93 564 5 0.04 17 1830 16 5 < 20 46 0.27 < 10 201 < 17 < 43 34 14285 220 0.2 2.10 10 45 < 5 2.11 < 1 27 72 88 6.63 < 10 2.00 < 10 220 20 17 < 43 35 14285 225 0.2 1.01 35 < 5 3.45 < 1 19 34 358 $< 10 10.02 21 100$	30	14280	100	<0.2	1.54	10	40	<5	2.39	<1	50	52	1149	6.65	<10	.1.38	625	6	0.03	10	1760	14	<5	<20	50	0.19	<10	165	<10	14	45
31 14281 95 0.2 1.52 10 35 < 52 2.93 < 1 58 26 00 0.00 < 10 1.88 650 < 10 0.03 7 1800 14 $< < 5$ < 20 62 0.17 < 10 149 < 10 168 < 44 22 < 10 35 < 5 2.03 < 1 32 51 1055 5.87 < 10 10 < 20 54 0.04 21 188 10 20 54 0.01 17 53 33 14285 222 <0.2 2.18 10 <0.2 2.18 10 20 54 10 20 54 10 32 56 3.10 10 42 10 10 20 54 0.02 12 100 48 1640 10 10 20 20 111 10 32 56 3.16 10 20 50 11 10 20 10																															
32 14282 550 -0.2 1.66 10 35 < 52 2.23 < 1 32 51 1055 5.87 < 10 1.52 563 3 0.04 17 1830 166 5 < 20 46 0.27 < 10 201 5.31 14284 220 < 0.22 2.18 10 70 < 55 1.89 < 11 29 81 630 7.10 10.24 506 < 1 0.04 22 1980 18 5 < 20 40 0.27 < 10 254 < 10 3 3 34 14285 225 < 0.22 1.24 10 35 < 51 910 1.02 574 < 1 0.04 26 1910 18 15 < 20 41 0.28 < 10 2.54 < 10 2.3 3 </th <th>31</th> <th>14281</th> <th>95</th> <th><0.2</th> <th>1.52</th> <th>10</th> <th>35</th> <th><5</th> <th>2.93</th> <th><1</th> <th>58</th> <th>26</th> <th>500</th> <th>6.00</th> <th><10</th> <th>1.38</th> <th>650</th> <th><1</th> <th>0.03</th> <th>7</th> <th>1800</th> <th>14</th> <th><5</th> <th><20</th> <th>62</th> <th>0.17</th> <th><10</th> <th>149</th> <th><10</th> <th>18</th> <th>46</th>	31	14281	95	<0.2	1.52	10	35	<5	2.93	<1	58	26	500	6.00	<10	1.38	650	<1	0.03	7	1800	14	<5	<20	62	0.17	<10	149	<10	18	46
33 14283 240 0.22 1.76 10 30 < 5 2.80 < 1 29 81 630 7.10 < 18 20 18 10 < 2.0 54 0.27 < 10 258 < 10 7.10 < 18 50.3 < 20 80.0 22 960 18 5 < 20 0.27 < 10 258 < 10 34 34 35 14285 225 0.22 1.02 5.25 < 1.27 72 898 6.63 < 10 2.29 500 < 1 0.04 28 1640 10 10 20.2 92 0.17 < 10 118 < 10 33 423 36 14286 25 <0.2 1.11 <0 356 3.58 $.58 < 10 10.2 574 <1 0.04 8 1640 10 10 10 10 10 10 10 10 10 10 10 10 10 <$	32	14282	550	<0.2	1.66	10	35	<5	2.23	<1	32	51	1055	5.87	<10	1.52	563	3	0.04	17	1830	16	5	<20	46	0.27	<10	201	<10	17	59
34 14284 220 $\circ 0.2$ 2.18 10 70 < 5 1.89 < 1 29 81 630 7.0 < 10 2.43 506 < 1 0.04 22 1960 18 5 < 20 41 0.28 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 254 < 10 256 < 20	33	14283	240	<0.2	1.76	10	30	<5	2.80	<1	34	51	939	5.93	<10	1.93	564	5	0.03	20	1830	18	10	<20	54	0.27	<10	195	<10	17	43
35 14285 225 < 0.2 2.10 10 45 < 5 2.11 < 1 27 72 898 6.63 < 10 2.29 500 < 1 0.04 26 1910 18 15 < 20 41 0.28 < 10 254 < 10 33 33 36 14286 25 < 0.2 1.51 5 30 < 5 3.45 < 1 19 34 358 3.58 < 10 1.02 574 < 1 0.04 8 1640 10 10 < 20 92 0.17 < 10 118 < 10 33 442 37 14285 50 < 0.2 1.01 4.43 < 10 1.02 574 < 10 0.03 7 1880 14 10 < 20 92 0.17 < 10 119 44 23 40 122 20 20 20 10 191 40 20 25 10 119 40 120 100 10 10 119 <	- 34	14284	220	<0.2	2.18	10	70	<5	1.89	<1	29	81	630	7.10	<10	2.43	506	<1	0.04	22	1960	18	5	<20	40	0.27	<10	258	<10	3	43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	14285	225	<0.2	2.10	10	45	<5	2.11	<1	27	72	898	6.63	<10	2.29	500	<1	0.04	26	1910	18	15	<20	41	0.28	<10	254	<10	3	39
36 14286 25 <0.2								_																							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	14286	25	<0.2	1.24	10	35	<5	3.45	<1	19	34	358	3.58	<10	1.02	574	<1	0.04	8	1640	10	10	<20	92	0.17	<10	118	<10	33	42
38 14288 50 <0.2	37	14287	55	<0.2	1.51	5	30	<5	4.43	<1	17	23	660	3.77	<10	1.43	705	12	0.03	7	1500	12	20	<20	64	0.13	<10	111	<10	42	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	14288	50	<0.2	2.01	10	40	<5	5.25	<1	46	64	916	6.36	<10	2.10	890	2	0.03	19	1880	14	10	<20	79	0.22	<10	191	<10	19	44
40 14290 20 < 0.2 2.51 10 45 < 5 7.16 < 1 34 62 724 6.32 < 10 3.00 1451 4 0.03 20 1840 16 10 < 20 170 0.19 < 10 197 < 10 17 56 41 14291 30 < 0.2 2.59 15 30 < 5 8.83 < 1 35 62 548 6.18 < 10 3.10 1731 16 0.02 29 1780 20 15 < 20 209 0.05 < 10 172 < 10 19 56 42 14292 35 < 0.2 2.52 5 40 < 5 5.75 < 1 46 644 2.99 1211 32 0.03 32 1870 16 15 < 20 100 108 < 10 190 < 10 25 57 43 14293 25 < 0.2 1.57 3.5 < 5 3.53 < 1 35	39	14289	40	<0.2	3.00	15	60	<5	5.22	<1	45	67	601	7.32	<10	3.76	1179	<1	0.02	25	1980	24	5	<20	93	0.28	<10	220	<10	19	57
41 14291 30 <0.2 2.59 15 30 <5 8.83 <1 35 62 548 6.18 <10 3.10 1731 16 0.02 29 1780 20 15 <20 209 0.05 <10 172 <10 19 53 42 14292 35 <0.2 2.52 5 40 <5 5.75 <1 46 64 842 7.34 <10 2.99 1211 32 0.03 22 1870 16 15 <20 160 0.08 <10 190 <10 22 53 43 14293 25 <0.2 1.72 5 35 <5 3.51 <1 35 70 671 6.02 <10 2.09 33 1770 14 15 <20 70 0.18 <10 189 <10 18 50 33 31 170 14 15 <20 90 0.15 <10 171 <10 16 55 <10 1.37	40	14290	20	<0.2	2.51	10	45	<5	7.16	<1	34	62	724	6.32	<10	3.00	1451	4	0.03	20	1840	16	10	<20	170	0.19	<10	197	<10	17	55
41 14291 30 40.2 2.39 15 30 45 6.83 41 35 62 546 6.16 410 3.10 731 16 0.02 29 1780 20 15 420 209 0.05 <10 172 <10 199 51 42 14292 35 <0.2 2.52 5 40 <5 5.75 <1 46 648 219 2111 32 0.03 22 1870 16 15 <20 163 0.10 <10 188 <10 22 53 43 14293 25 <0.2 2.08 <5 5.61 <1 42 84 618 6.48 <102 219 934 5 0.03 33 1770 14 15 20 70 0.18 <10 199 <10 18 41295 30 <0.2 1.50 5 5.5 4.61 6.51 <10		44204	20	-0.0	2 50	45	20	-5	0.00	- 4	25	60	540	0.40	-40	2.40	4704	40	0.00		4700	~~		-00					- 10		
42 14292 35 40 45 5.75 40 64 642 7.34 410 2.99 1211 32 0.03 22 1870 16 15 20 163 0.10 <10 188 <10 22 55 43 14293 25 <0.2 2.08 <5 30 <5 5.61 <1 42 84 618 6.48 <10 2.58 1235 8 0.02 31 1910 16 15 <20 160 0.08 <10 190 <10 25 55 44 14294 40 <0.2 1.72 5 35 <5 3.53 <1 35 70 671 6.02 <10 2.09 934 5 0.03 33 1770 14 15 <20 70 0.18 <10 189 <10 189 <10 189 <10 189 <10 181 984 12 0.03 18 150 18 10 171 <10 26 66	41	14291	30	<0.2	2.59	15	30	<0	8.83	<1	35	62	040	0.18	<10	3.10	1/31	16	0.02	29	1/80	20	15	<20	209	0.05	<10	172	<10	19	59
43 14293 25 40.2 2.06 55 30 55 3.01 51 42 64 616 6.46 510 2.56 1235 6 0.02 31 1910 16 15 520 160 0.08 <10 190 <10 25 5.5 44 14294 40 <0.2 1.72 5 35 <5 3.53 <1 35 70 671 6.02 <10 2.09 934 5 0.03 33 1770 14 15 <20 70 0.18 <10 189 <10 18 54 45 14295 30 <0.2 1.50 5 35 <5 4.88 <1 34 161 698 6.51 <10 1.81 984 12 0.03 18 1540 18 10 <20 96 0.13 <10 171 <10 26 66 46 14296 35 <0.2 1.46 <1 30 39 689 5.25 <10 <	42	14292	30	~0.2	2.02	5		~5	5.75	-1	40	04	042 610	7.34	~10	2.99	1211	32	0.03	24	10/0	10	15	<20	103	0.10	<10	188	<10	22	59
44 14294 40 40 40 50 50 50 60 60 60 200 90 50 50 18 50 14 15 40 18 40 18 50 18 50 18 10 10 10	40	14203	20	~0.2	2.00	-0	30	~5	3.61	~1	42	70	674	0.40	~10	2.00	1230	0	0.02	31	1910	10	15	<20	100	0.08	<10	190	<10	25	5/
46 14295 35 <0.2 1.30 5 3.0 <1 34 101 038 0.31 <10 101 904 12 0.05 16 1540 16 10 <20 96 0.13 <10 171 <10 28 6. 46 14296 35 <0.2 1.42 10 30 <5 4.16 <1 30 39 689 5.25 <10 1.37 938 2 0.04 8 1840 20 <5 <20 99 0.15 <10 136 <10 47 55 47 14297 55 <0.2 1.51 15 30 <5 3.53 <1 46 29 1094 6.86 <10 1.57 917 14 0.04 9 1850 20 10 <20 91 0.16 <10 135 <10 26 48 14298 40 <0.2 1.59 10 43 556 6.07 <10 1.53 982 20 0.04 9 <t< th=""><th>45</th><th>14205</th><th>· 30</th><th><0.2</th><th>1.74</th><th>5</th><th>35</th><th>-5</th><th>4 88</th><th>~1</th><th>30</th><th>161</th><th>609</th><th>6.61</th><th><10</th><th>1.00</th><th>084</th><th>12</th><th>0.03</th><th>10</th><th>1540</th><th>14</th><th>10</th><th>~20</th><th>70</th><th>0.18</th><th><10</th><th>109</th><th><10</th><th>18</th><th>54</th></t<>	45	14205	· 30	<0.2	1.74	5	35	-5	4 88	~1	30	161	609	6.61	<10	1.00	084	12	0.03	10	1540	14	10	~20	70	0.18	<10	109	<10	18	54
46 14296 35 <0.2 1.42 10 30 <5 4.16 <1 30 39 689 5.25 <10 1.37 938 2 0.04 8 1840 20 <5 <20 99 0.15 <10 136 <10 47 55 47 14297 55 <0.2 1.51 15 30 <5 3.53 <1 46 29 1094 6.86 <10 1.57 917 14 0.04 9 1850 20 10 <20 91 0.16 <10 135 <10 26 56 48 14298 40 <0.2 1.59 10 40 <5 56 6.07 <10 1.53 982 20 0.04 9 1870 18 20 <20 129 0.16 <10 159 <10 32 66 49 14299 15 <0.2 1.41 15 30 <5 3.62 <1 29 23.58 5.84 <10 1.25	-	14230	30	NU.Z	1.50	5	35	~0	4.00	~1	34	101	090	0.51	~10	1.01	904	12	0.03	10	1040	10	10	< <u>2</u> 0	90	0.13	<10	1/1	<10	20	63
47 14297 55 <0.2 1.51 15 30 <5 3.53 <1 46 29 1094 6.86 <10 1.57 917 14 0.04 9 1850 20 10 <20 91 0.16 <10 135 <10 26 56 48 14298 40 <0.2 1.59 10 40 <56 6.07 <10 1.53 982 20 0.04 9 1850 20 129 0.16 <10 159 <10 26 6.07 <10 1.53 982 20 0.04 9 1850 20 129 0.16 <10 159 <10 26 6.07 <10 1.53 982 20 0.04 9 1870 18 20 <20 129 0.16 <10 159 <10 32 60 49 14299 15 <0.2 1.41 15 30 <5 3.62 <1 29 23 358 5.84 <10 1.25 861 <1	46	14296	35	<0.2	1 42	10	30	<5	4 16	<1	30	30	689	5 25	<10	1 37	938	2	0.04	8	1840	20	<5	<20	00	0.15	<10	136	<10	47	57
48 14298 40 <0.2 1.59 10 40 <5 4.11 <1 31 43 556 6.07 <10 1.53 982 20 0.04 9 1870 18 20 <20 129 0.16 <10 159 <10 32 60 49 14299 15 <0.2 1.41 15 30 <5 3.62 <1 29 22 358 5.84 <10 1.25 861 <1 0.03 5 1810 18 <5 <20 100 0.16 <10 157 10 34 55 50 14300 25 <0.2 0.99 5 40 <5 2.81 <10 0.86 477 <1 0.03 5 1370 8 5 <20 72 0.13 <10 97 <10 29 33 50 14300 25 <0.2 0.99 5 40 <5 2.81 <10 0.86 477 <1 0.03 5 1370 8<	47	14297	55	<0.2	1.51	15	30	<5	3.53	<1	46	29	1094	6 86	<10	1.57	917	14	0.04	9	1850	20	10	<20	Q1	0.15	<10	135	<10	26	56
49 14299 15 <0.2 1.41 15 30 <5 3.62 <1 29 22 358 5.84 <10 1.25 861 <1 0.03 5 1810 18 <5 <20 100 0.16 <10 157 10 34 51 50 14300 25 <0.2 0.99 5 40 <5 2.81 <10 0.86 477 <1 0.03 5 1370 8 5 <20 72 0.13 <10 97 <10 29 33	48	14298	40	<0.2	1.59	10	40	<5	4.11	<1	31	43	556	6.07	<10	1.53	982	20	0.04	9	1870	18	20	<20	129	0.16	<10	159	<10	32	60
50 14300 25 <0.2 0.99 5 40 <5 2.79 <1 15 26 305 2.81 <10 0.86 477 <1 0.03 5 1370 8 5 <20 72 0.13 <10 97 <10 29 33	49	14299	15	<0.2	1.41	15	30	<5	3.62	<1	29	22	358	5.84	<10	1.25	861	<1	0.03	5	1810	18	<5	<20	100	0.16	<10	157	10	34	53
	50	14300	25	<0.2	0.99	5	40	<5	2.79	<1	15	26	305	2.81	<10	0.86	477	<1	0.03	5	1370	8	5	<20	72	0.13	<10	97	<10	29	32

CHRIS	TOPHER .	JAMES GOL	D COI	RP.						10	CP CE	RTIFIC	CATE O	FANAL	YSIS .	AK 99-	509								ECO-TI	ECH LA	BORA	TORIES	; LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	<u>Y</u>	Zn
<u>QC DA</u> Respli	TA: ::																													
1	14251	100	<0.2	1.99	5	45	<5	2.12	<1	30	66	1039	5.65	<10	2.11	520	<1	0.04	22	1720	2	10	<20	36	0.28	<10	204	<10	16	30
36	14286	25	<0.2	1.16	10	30	<5	3.27	<1	18	31	337	3.46	<10	0.96	550	<1	0.03	7	1690	14	15	<20	86	0.15	<10	110	<10	31	42
Repea	t																													
1	14251	85	<0.2	1.97	<5	45	<5	2.20	<1	30	68	1015	5.84	<10	2.09	503	<1	0.04	22	1720	2	10	<20	36	0.28	<10	203	<10	10	29
10	14260	90	<0.2	1.71	5	35	<5	3.49	6	48	51	1499	7.27	<10	1.84	603	11	0.04	14	1740	24	<5	<20	85	0.18	<10	149	<10	17	85
19	14269	110	<0.2	1.22	10	35	<5	2.62	<1	61	36	1427	5.73	<10	1.13	529	26	.0.03	12	1400	12	<5	<20	52	0.15	<10	84	<10	12	37
36	14286	25	<0.2	1.18	10	25	<5	3.31	<1	19	37	339	3.49	<10	0.97	554	<1	0.04	7	1630	12	10	<20	80	0.16	<10	113	<10	30	41
Standa	nd:																													
GEO'9	9	115	1.0	1.94	65	150	5	1.74	<1	21	67	90	3.97	<10	0.95	690	<1	0.02	22	770	22	10	<20	65	0.13	<10	83	<10	8	77
GEO'9	9	115	0.8	2.02	65	160	10	1.81	<1	22	69	87	4.11	<10	0.97	713	<1	0.01	23	810	24	5	<20	67	0.14	<10	85	<10	7	81
																											••			•

df/509 XLS/99 cc: ron wells fax @ 372-1012

1

1

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer Þe,

1

6-Oct-99

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

1

1

1

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-523

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

1

1

1

ATTENTION: RON WELLS

)

No. of samples received: 47 Sample type: Core PROJECT #: NBZ-01 SHIPMENT #: 2 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	<u> </u>	Mo	Na %	NI F	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	14301	40	<0.2	1.57	<5	45	<5	2.97	<1	33	55	921	5.90	<10	1.53	801	16	0.05	10 2060	2	10	<20	86	0.17	<10	173	<10	26	56
2	14302	55	<0.2	1.49	<5	50	<5	2.60	<1	32	40	891	6.36	<10	1.38	791	57	0.04	8 2200	6	<5	<20	71	0.16	<10	169	<10	26	59
3	14303	25	<0.2	1.61	20	35	<5	3.49	<1	27	35	538	5.22	<10	1.38	814	21	0.04	7 1970	2	10	<20	95	0.16	<10	163	<10	32	60
4	14304	55	<0.2	1.42	<5	45	<5	3.64	<1	35	40	720	6.01	<10	1.41	945	5	0.04	7 176) <2	<5	<20	89	0.13	<10	164	<10	20	62
5	14305	395	<0.2	1.87	175	20	<5	>10	2	32	32	616	6.05	<10	1.40	1382	14	0.02	8 1460	4	15	<20	230	0.02	<10	58	<10	28	48
									• •								••							0.02			10	20	-10
6	14306	70	<0.2	1.45	<5	60	<5	2.91	<1	36	43	650	6.47	<10	1.34	847	14	0.04	8 2070	6	<5	<20	59	0.15	<10	174	<10	20	65
7	14307	160	<0.2	1.29	<5	35	<5	2.73	<1	28	36	1193	6.06	<10	1.17	755	7	0.04	9 1820	4	10	<20	50	0.14	<10	185	<10	16	70
8	14308	100	<0.2	1.04	<5	40	<5	1.94	<1	23	44	1301	5.37	<10	0.89	583	6	0.04	8 1520	4	<5	<20	54	0.13	<10	181	<10	10	60
9	14309	270	<0.2	1.43	<5	40	<5	2.83	<1	31	54	1137	5.95	<10	1.40	838	25	0.04	6 1850	6	15	<20	69	0.13	<10	149	<10	10	73
10	14310	135	<0.2	1.30	<5	50	<5	2.45	<1	35	47	971	6.23	<10	1 19	706	12	0.04	7 1800	Ă	<5	<20	60	0.13	~10	170	~10	14	13
												• • •									-0	-20	00	0.14	~10	130	~10	11	00
11	14311	105	<0.2	1.32	<5	55	<5	2.40	<1	30	48	745	5.90	<10	1.11	640	9	0.05	8 1930	6	<5	<20	70	0.14	<10	153	<10	21	52
12	14312	160	<0.2	1.67	5	55	<5	2.74	<1	26	69	1093	6.27	<10	1.45	806	42	0.05	7 2200	10	<5	<20	08	0.17	~10	194	<10	21	52
13	14313	180	<0.2	2.07	5	40	<5	2.84	<1	32	52	1367	7.78	<10	2 17	942	7	0.04	13 2020	10	<5	<20	40	0.17	~10	104	<10	20	61
14	14314	285	<0.2	1.82	<5	45	<5	3.31	<1	31	51	1392	7.65	<10	1 60	902	10	0.05	8 2100	12	~5	~20	49	0.23	~10	190	<10	12	60
15	14315	330	<0.2	1.88	<5	45	<5	3.59	<1	42	39	1918	8 80	<10	1 84	1067	10	0.00	8 1020		-5	~20	50	0.17	~10	100	<10	12	70
					•		•	0.00					0.00	-10	1.04	1007		0.04	0 1020		~0	~20	50	0.15	<10	100	<10	<1	13
16	14316	230	<0.2	1.70	<5	70	<5	2.84	<1	27	51	1118	8 34	<10	1 52	861	7	0.04	8 188(18	-5	~20	54	0.15	-10	470	-10	-4	~ ~
17	14317	15	<0.2	0.93	<5	45	<5	3 24	<1	10	42	99	3 28	<10	0.75	762		0.04	2 1150		-5	~20	- 04	0.15	\$10	170	<10	<1	64
18	14318	30	<0.2	0.97	<5	35	<5	3.08	<1	10	51	141	3.62	<10	0.70	700	5	0.04	2 1120		10	~20	03	0.07	<10	80	<10	21	32
19	14319	275	<0.2	1.26	5	40	-5	3.81	-1	12	24	942	5.02	~10	1 10	900		0.04	2 1130		10	<20	34	0.08	<10	88	10	29	35
20	14320	385	<0.2	1 35	10	50	~5	3.04	-1	10	34	1966	5.00	~10	1.10	092	4	0.04	5 1990	8	10	<20	107	0.12	<10	141	<10	23	45
20	14520	555	~V.Z	1.55	10	50	-0	3.04	~1	10	44	0001	5.03	\$10	1.07	041	14	0.04	9 1920	12	<5	<20	57	0.13	<10	157	<10	13	47

CHRISTOPHER JAMES GOLD CORP.

.

· · · · }

ICP CERTIFICATE OF ANALYSIS AK 99-523

ECO-TECH LABORATORIES LTD.

<u>Et #.</u>	Tag #	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
21	14321	440	<0.2	1.87	5	45	<5	3.93	<1	15	35	1373	7.57	<10	1.80	980	8	0.03	7	1960	12	<5	<20	72	0.11	<10	174	<10	<1	54
22	14322	80	<0.2	0.96	5	35	15	2.42	<1	10	56	63	3.31	<10	0.60	440	<1	0.05	3	1260	8	5	<20	46	0.14	<10	87	<10	26	23
23	14323	805	<0.2	1.62	10	50	<5	3.15	<1	26	35	1897	8.45	<10	1.21	710	9	0.04	10	2010	12	<5	<20	39	0.13	<10	197	<10	<1	52
24	14324	290	<0.2	0.96	5	70	<5	1.74	<1	27	39	498	4.35	<10	0.61	389	3	0.05	2	1790	8	<5	<20	40	0.12	<10	126	<10	20	37
25	14325	365	<0.2	1.54	<5	50	<5	3.12	<1	43	32	1587	8.07	<10	1.34	749	17	0.04	8	1910	10	<5	<20	46	0.12	<10	176	<10	<1	51
																						•								0.
26	14326	255	<0.2	1.38	<5	65	<5	2.16	<1	21	66	1398	6.91	<10	1.15	595	6	0.04	10	1770	8	<5	<20	41	0.10	<10	153	<10	<1	54
27	14327	315	<0.2	1.26	<5	45	<5	2.58	<1	27	36	1201	6.72	<10	1.07	605	6	0.03	9	1720	8	<5	<20	35	0.09	<10	135	<10	<1	47
28	14328	435	<0.2	1.30	10	45	<5	2.16	<1	30	41	2159	6.87	<10	1.04	562	6	0.03	9	1720	8	<5	<20	27	0.09	<10	139	<10	<1	47
29	14329	330	. 0.4	1.29	10	35	<5	3.22	<1	36	32	1952	6.67	<10	1.09	751	7	0.03	7	1650	14.	<5	<20	54	0.08	<10	120	<10	3	45
30	14330	435	<0.2	1.20	<5	50	<5	1.89	<1	36	48	1694	7.70	<10	0.94	545	7	0.03	7	1700	10	<5	<20	28	0.10	<10	146	<10	<1	46
																													•	
31	14331	225	<0.2	1.29	<5	40	<5	2.11	<1	28	42	1540	7.78	<10	1.15	604	11	0.03	10	1930	10	<5	<20	53	0.09	<10	153	<10	<1	55
32	14332	180	<0.2	0.94	5	35	<5	1.55	<1	19	38	1006	4.67	<10	0.63	371	5	0.03	6	1430	6	<5	<20	20	0.08	<10	94	<10	<1	30
33	14333	140	0.4	1.19	5	45	<5	3.22	<1	24	34	1345	6.48	<10	1.10	730	9	0.03	8	1570	8	<5	<20	51	0.07	<10	113	<10	<1	41
34	14334	185	0.8	0.98	20	70	<5	9.80	<1	27	30	1387	6.05	<10	1.46	1680	17	0.02	7	1620	8	15	<20	452	0.01	<10	67	<10	10	40
35	14335	190	<0.2	1.65	20	60	<5	5.94	<1	27	28	1260	7.66	<10	1.61	1223	13	0.03	8	2110	16	5	<20	271	0.03	<10	135	<10	10	56
																													-	
36	14336	135	<0.2	1.45	10	45	<5	2.59	<1	14	42	1593	6.22	<10	1.21	627	19	0.03	8	2220	16	5	<20	57	0.12	<10	164	<10	8	54
37	14337	220	<0.2	1.64	10	55	<5	3.28	<1	47	42	1998	8.53	<10	1.28	762	11	0.03	9	2190	12	<5	<20	65	0.12	<10	161	<10	<1	56
38	14338	670	3.0	1.51	20	50	<5	4.12	<1	75	35	4964	9.72	<10	1.33	770	14	0.03	8	1950	20	<5	<20	96	0.09	<10	138	<10	<1	62
39	14339	400	1.2	1.64	15	55	<5	3.58	1	40	56	3304	9.20	<10	1.39	831	13	0.04	11	2170	20	<5	<20	66	0.13	<10	174	<10	<1	65
40	14340	395	1.6	1.92	<5	65	<5	5.09	3	30	36	2540	8.71	<10	1.71	1061	17	0.03	10	2100	58	<5	<20	127	0.08	<10	144	<10	<1	85
41	14341	205	<0.2	1.90	20	50	<5	4.18	<1	32	49	1922	8.87	<10	1.70	1041	13	0.03	9	2220	26	10	<20	74	0.10	<10	176	10	4	73
42	14342	165	<0.2	2.02	15	50	<5	3.87	<1	59	45	1543	>10	<10	1.87	1001	20	0.04	10	2290	28	10	<20	32	0.11	<10	217	<10	<1	80
43	14343	425	<0.2	1.67	25	60	<5	2.59	<1	141	55	2778	>10	<10	1.39	775	24	0.03	8	1980	22	<5	<20	40	0.11	<10	162	10	<1	63
- 44	14344	140	<0.2	1.84	15	45	<5	2.99	<1	64	40	1223	6.57	<10	1.61	743	4	0.03	4	2550	26	<5	<20	58	0.15	<10	144	<10	4	61
45	14345	150	<0.2	1.96	10	70	<5	2.61	<1	60	66	1222	9.03	<10	1.67	918	6	0.05	11	2330	24	10	<20	53	0.14	<10	190	<10	<1	73

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	<u>v</u>	W	Y	Zn
										•																				
46	14346	370	<0.2	2.11	15	55	<5	4.10	<1	61	37	1960	9.73	<10	1.75	1124	12	0.04	11	2170	26	10	<20	38	0.11	<10	187	10	<1	69
47	14347	200	<0.2	1.56	15	85	<5	5.26	1	41	34	907	6.99	<10	1.48	1201	11	0.03	9	2240	24	15	<20	119	0.06	<10	133	<10	15	68
OC DA	TA:																										·			
Resplit	:																													
1	14301	60	<0.2	1.48	5	40	<5	2.74	<1	31	50	875	5.45	<10	1.47	760	15	0.04	7	2000	4	<5	<20	75	0.14	<10	163	<10	20	58
26	14326	-	<0.2	1.50	5	60	<5	2.26	<1	20	54	1412	6.41	<10	1.23	603	10	0.04	8	1810	10	<5	<20	54	0.13	<10	167	<10	2	58
36	14336	115	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		-	-	-	-	-
Repeat	L.														•										•					
1	14301	60	<0.2	1.48	5	45	<5	3.00	<1	33	53	955	6.34	<10	1.44	806	20	0.04	9	2000	4	10	<20	75	0.14	<10	165	<10	20	64
10	14310	135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		
19	14319	325	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
28	14326		<0.2	1.32	<5	60	<5	2.17	<1	21	66	1378	6.80	<10	1.11	587	6	0.03	9	1830	12	<5	<20	31	0.10	<10	147	<10	<1	54
35	14335	-	<0.2	1.62	20	60	<5	5.92	<1	27	28	1223	7.64	<10	1.58	1217	12	0.03	8	2170	18	<5	<20	261	0.03	<10	133	<10	9	57
36	14336	130	-	-	-	-	•	-	•	-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-
Standa	ent.																									•				
CEOIO	η υ. 1	125	0.8	1 02	80	180	10	2.01	-1	24	76	94	4 1 2	~10	4 44	720	-1	0.02	22	720	22	10	~20	60	0.14	~10	62	~10	0	74
OCOW	,	125	0.0	1.82	80	100	40	2.01		24	70	04		-10	1.11	720		0.03	24	720	22	10	~20	00	0.14	-10	02	~10	~	74
- GEO'93	1	120	1.0	1.93	60	100	10	∠.04	<1	20	/5	62	4,14	<10	1.09	720	<1	0.03	- 24	130	24	15	<20	62	U.13	<10	92	<10		- 12

ICP CERTIFICATE OF ANALYSIS AK 99-523

· .

1.2.7

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

1

df/496 XLS/99 cc: ron wells fax @ 372-1012

CHRISTOPHER JAMES GOLD CORP.

1

KAMLOOPS GE	οι	LOGICAL SERVICES LTD	SUMMARY DRILL LOG:	DD	DH NBZ 99-02
PROPERTY	:	BIG KIDD	OWNER	: C	CHRISTOPHER JAMES GOLD CORP.
NTS	:	92H/15E	MINING DIVISION	: N	VICOLA MD, B.C.
CLAIM	:	HALO 100	LINE/STATION	:	11624N:23537E
GRID	:	BIG KIDD-BIG SIOUX	INCLINATION AT COLLAI	R:	-57º
CASING	:	3.05M	AZIMUTH	:	210° 55W
LENGTH	:	284.38M	ACID TESTS	:	@106.68M -57°; @240.79M -57°
LOGGED BY	:	R.C. WELLS P.Geo	DRILLED BY	:	CORE ENTERPRISES LTD
DATE	:	17-26/9/99	DATES	:	FROM 14/9/99 TO 23/9/99
CORE LOCATIO	N:	AMEX, KAMLOOPS	CORE SIZE	:	NQ

}

)

))

1

1 7

}

PURPOSE OF THE HOLE:

1

1

This hole was drilled from the northeastern edge of the Big Kidd breccia pipe inward. It was the steepest of the two holes drilled below Placer Dome trench 92-2 which averaged 0.56 g/t gold and 0.112% copper over 32.5 metres in altered intrusion breccia. These holes also tested an area which at 160 to 200 vertical depth had produced 1-3 g/t gold intersections in 1997 holes BK97-04, BK97-05 and 1992 Hole 1.
DIAMOND DRILL LOG

A TANK A TANK

BIG KIDD PROPERTY

⁻DDH.NBZ99-**02**

Page No.1	
-----------	--

LITH	OLOGY	ALTERATION	l.	STRUCTURE	MINERALIZATION		2	SA	MPLING	DATA		
MAIN UNITS	SUB UNITS					8	5	Sample No.	From	То	Cu	Au
2 - 3-05 C AsiNG	Taivs and sandy overburden										ŀ	Ī
8.05-7.75	1.05-4.50 Rubbly core tecovery in medium intrusión brecce		30									-
Brichia. Variably	+.50-7.75 Matrix supported fine to medium intrusion breccia. Angular	Pervasive moderate find grained carbonate. Local pink k. feldepar	Ś	weak to moderate verniet elensit, maili, low thick cd carboni	Matrix patches of file-med. grained Py	4-5	•	14351	4.50	6.00	1251	•5
magnetic	piate manyorite clasts up locm med grained altered ducite matrix	notrix. Patchy weak magnetic Rate epidate outside of veralets		Winkt . Local 60"CA	Local five py verialets			14852	6-00	7.75	1804	120
775-15.90 Potassic Monzonite	Mottled medium pinks to greys. File-medium growlad with Numerous tabular plagioclase	K. feldspor (primary or seconday) throughout. Moderate pervasive and veight corbenate. Faith	1.0.14	Local flow alignment 60°cA Low-moderate	Patchy fracture and descensionated time provided Py			14353	זי∙ז	10.75	746	45
Dyke Crowded plagiaclase (homblende) porphyry.	Phenocryst (crowded) 1-4mm. 1-5% tabular chorite altered hornblende phenocryste. Local	mainly in verilets. some K.feldsport (irregular) veinlets	10,10	cleasily of epidale and, or carb veinble 20-60°CA. Lo cal 60-90°CA. Sures	Local fine dissem. Cpy.	2-5	τı	14354	10:75	13.75	876	35
	Significant groundmass the features of features the factors of the second secon		10,00	Verillets up to Snen Numerous fine Py Verillets variable andles				14855	12.75	15.90	564	29
5.90 - 64.00 Heterolithic Intrusion	15.90-19.87 Fightly packed predominantly madium size clasts	Med to strong matrix contends, weak it clasts. 5-10% k. jeldyer	620	fairly massive, low density of fine	Patchy fine - med Local course matrix Py		_	14356	15.90	17.90	1258	40
Breccia. Fine - medium	majes metavolcanic, cliente and pink mongonite. Altered distric, mad. granad matter with much magnetite	rims to finer clast (LScm). Patchy matrix epidate (clats) usually with K-lectoper, local course magnetic		40-68 EA "eji dahe and or carlo veralets, local magnetite veralets	fine Cpy? Patchy med- coarse manatile locally as veinlets.	3-7	1"	14357	17.90	19.87	1559	70
Supported. Variably	19.87-23.77 Fine 6 Sum matrix Supported Locally dominated	Peruasive corbonate Modistrong matrin. Moderate K. feldspor	0	Low density of 40-60 cA epidate	Fire to med - grained discerninated By			14358	19.87	21.87	1543	88
magnetic.	potassil hangonite hest are altered majel nelevolgance. Matrix, hall.	Ment-coarse dissem. Magnetice	• • • • •	Some sub porollal Lo cal high angle (A Pu verslets	the uphout name - Local frie By Veinlet with Cpy?	4-7		14359	21.87	23.77	1340	10
·	23.77-30.27 Matrix supported predominanty file LSCN	Strong pervasive matrix corboration with some clasts. 5-7% med.	000	Low density of 20-60°CA corporate	Patchy fire-med. grained metrix Py			14360	23.77	26.37	1891	96
	subangular to subrounded. 790% are albered mapic	ground epidole , patches upto 5cm. Some pervasive	2020	and,or epiclohe verinlets. Local R. writete -	in patches. Also dissem Py-stringer	3-6	Tr	14361	26.37	28.37	1786	
	to pink manzonite . Altered file-med gravied Chloritic matrix	matrix k. feldspar (fine) have fine magnetic	0000	vague contacts	grained by veix lats with associated			14362	19-87	30.27	1361	+

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . K. Lully

DIAMOND DRILL LOG

and a sub-second condition of the second condition of

BIG KIDD PROPERTY

DDH.NBZ99-02

Page No. 2

LI	THOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		A	SA	MPLING	DATA		
MAIN UNITS	SUB UNITS	. · · · ·	L ·			4 8	Č X	Sample No.	From	To	Cu ppm	A: PP
	30.27-3675 Rosed fine-medium breceia Matrix to weak clast supported Some courser clasts who Bocm.	As above more k. feldspor. Pervasive carbonate. varially magnetic though little visible	0.0.01	Local 35-45°CA epiclule 8,00 carb. Veixlets. Some fine	variable patchy fine-medium graniad matrix Py. Local	2-5	Tr	14363	30.27	33.47	1791	-
	Mainly green make metanolemic some augite porphyny. 47% pink mingonite (or altered, KP) Matrix is altered diorite.	mognetite. Patch, med-conne expidate clote.	80000	Py vernets contat angles. Local subportellal hemshite -corborate vernets	verhele cutting metre Possible fine Cay with Py in verhele			1+364	33.47	36-75	1431	
	36-75-49-87 File to medium local coarse	moderate - strong pervosive carbonate. Patch weak to	2000	Low density of No-60°CA corborate	Potchy fire-med. grained diseminated	2-4	₽	14365	36.75	37.75	1502	
	matrix supported clasts. Heterolithic with > 10%	moderate K. feldspor. Wide spread epidate clate in matrix.	\$°0	vernlets. Local fine by veriliets. Some irregular	Py in matrix local patches, oggangates in volcanic class	2-4	Tr	14366	39.75	42.75	1729	
	pink monzonite clasts. Section of matrix supported fine anywar breccia. Local Kifald.	Patchy weak to maderate Regnetri as above.	20,00	K.feldspor-Epittote Verilets	Some fine verness	2.4	Tr	14367	42-75	45.75	1184	
	rims. Altered disritic matrix Vacue texture due to alternia		0		increasing local	2-4	Tr	14368	45.75	48.00	760	
	y		20		med-coarse mometile clots downwords	2-4	Tr	14367	48.00	49.87	676	
	49.87-51.00 Strong bleached and	for Massel Carbonale- 311 ta - albite ? fine grained. Normous superalled	Z	500-50-20 gry carb bein stuk High angle	finar grained by in disseminated patches	3.5	-	14370	49.87	51.00	755	;
	51.00-61.00 Fine to medium matrix	Pervosive weak to moderate	100000	Low - moderate density of Vifice	Patchy fire-med. matrix by commonly			14371	51-00	\$4.00	1667	,
	predominantly green figrained mafie networkanic some	K. feldspar. Iam epistabe clots throughout 5.7%.	500°	carbonate verilets many 50-80 CA	in clustery patches. Local Low angle CA	4-3	Tr	14372	\$4.00	5700	1863	3
	augite purphyny. 10-20% fine to medium pink mongonite		0	by veinlets in mongonite	ry vender n cas			14373	\$7.00	59.00	212	2
	Alfered distitic matrix 20-40%		87	clasts.				14374-	59.00	61.00	1430	5

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . A. hardet

DATE 18/19. Parts. 1999.

and a set of the set o

DIAMOND DRILL LOG

and the second second

BIG KIDD PROPERTY

DDH.NBZ99-**02**

2

Page No. 3

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		2	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS	······	L			8	Ū ∦	Sample No.	From	То	Cu ppm	Au ppb	
61.0-67.0 Pink Potassie Mongonibe Dyke or large Class	Fairly massive and homogeneous Local 2-4cm MV. Xenoliths.	strong primary, some secondary, p. factospar? pervasive moderate carturates, conjunctioned make places	H.	Aumanus 40-76°CA hait / he co-carb verseh Sorta wider carb verseh	Fine by and Cpy as fracture veinkts.	1-2	Tr-1	14375	61.00	63-10	297	20	
63·10 - 92·20 Heterolithic Intrusión	63.10-69.12 Vague textures due to alteration. Appears to be a fine-medium breacia with	Pervasive patchy weak to strong carbonate. Weak to mod matrix to carbonate. Aunatous	ALCO CO	Low to high density of fine carbonate verilets many P	V. fine, local med granted pyrite in matrix · Comments	4.4	Tr	14376	63.10	66.10	1359	70	
Breccia. Voriable weak to strong k feldspar	Variably altered clasts and metrix. Weak to local moderate magnetic	epidote clots. Local patches 2.6 mm disseminated dark chlorite (after ?) with fine magnetice	2000000	60-80°CA. Some Subperallel Larger Verns	patchy.			1+377	66-10	69-12	1+23	80	
alteration 7 4	69-12-72-42. As above but stranger alteration and verying	Perrosite continuate as above Patch, notice mod to strong	14	@ 71.0 Sem carb -gtg vera 30°CA	Fine to Vifike Py is fraction controlled	3-(Te	14378	69.12	70-62	1047	35	70
	overprinting dire-med brecch.	K. feldspor. Some silicification? Non to weak magnetic		Nuranus fine irregular corbigly	patches and clissem. Local magnetile veinlets	-		14379	70.62	72.42	1120	95]
	72.42-77.36 Fire to medium breccia. matrin to weak clast	Pervasive weak to moderate Carbonate. Moder matrix K. feld	1000	Local coarse Magnetic-R vome 20°64-2010 30'64	Pakaby fine - med. disseminated by mainte in matrix clusters			14380	72.42	75-00	1467	150	1
	supported. Mining green metavolconic and pink manzonite clasts. File-met granded altered matrix. weak to vistory manufic	patchy. Aumentus 102 epidole clots. Patchy med-coarse local vern magnetites		carbonale negreties Ulits. Many fine discontinuous fine Carbonate Vicilies	Some Coarter by and Coarte by magnetic	* ·3	Tr	(438)	75-00	77:36	2071	180	1
	77:36-79.70 Medwin green maple clast/inclusion or dyte. Fine ground, mod. mynetic, minor be incluse	hidespread verillet and diven. f.g. epidole. Sector is chloriki lacel molic plan costs?		Low-must epidete veridet dansity Bo-70 ca. Aunaans baitine contanate veridete.	Rate by verilleto. fm. ground matrix by in inclusion atmos.	1-3	Tr	14382	77.36	79.70	706	60	
	79.70-84 75 Similar to 72.42m Fine-med some coarse clast,	weak-moderate pervisive and or verilat carbonate. Sections		Mod- density high angle CA	Fine to meatigrained By clusters in metric			1+383	79.70	82-20	1215	95	78.
	metanoscanic (Larger margorite clash. Altered Sine - mad intrain matrin. Greneral weak, local rud. ano	Product permission many Kiplingo Epidale clote in matrix and after playinclase in manyonite (also vein selvagua	Sold o	carbonate and, or exidate veralete both is matrix and magazite class	Fire abiseminated local verilet by in mongonite clasts.	2-5		14384-	\$2.20	8+13	(0+7	110	1
	84.93-92-20 As above fixe- medium some coarse by matrix	Pervasive weak-mod matrix carbonate and smaller classs,	PS S	Low density of 70-90°CA carb Vernlets, Local	As above for grained matrix by as dissem			14385	\$4.73	87.93	1348	150	
	Large grey mongonite clast 89:56-90:27 20% eink	as verilats. Maderate patchy pervasive k faldspar in matrix	063	30°CA. Minor epidate.	Py verillets some file Con. Sporse remark	2-6	Tr	14386	87.93	90.00	12.15	75	
	Manzonite clash and or kifeli alt. Alteration obscures textures	and verilet in clast. Upto 10% M/c. epictote clast Laord Medicara de chi alter Met	Þ.		MC graned dissem. maynetile.								1"

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Kin Kitter

DATE 20 fest 1955.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-**02**

Page No.4

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		M	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L		· ·	A.	С. Ж	Sample No.	From	To	Cu ppm	Au ppb	1
	84.13-12.20 see B3			•		2-6	Tr	14377	90.00	92.20	1240	45	140
92.20-124.58 Coarse to very coarse	92.20 - 94.68 V. Coarse - fin pracin methods. Large place to gray margade Classe to the an priced and fine another bracis as about	Highly variable weak to throng malone and clast carbonate. Patolog weak forgers matrix to determine	29	Irregular 60-90 and 20-90 carbonath and, or quidable winks	Local Mic diversande magnetice. Pately disen matrix P. Fine disterns Versite P. Fine disterns	2-5	Tr	14327	92.20	74.68	1116	45	
Monolithic, Binodal and Local Herolithic	94.68-103.02 Greys and greens Mixed fine and coarse, matrix to weak clast supported breccin	Matavolcanic clasts are weak pervasive carbonated. Matrix areas are moderably		moderate density of 60-70°CA epidde + carbonale vailets	Mast of the Ry occurr as sim grained alissem and patches	3-4	Tr	1+397	14-68	97:68	1270	65	
	Variable proportions of grey manzonite, alterest green notic metawa/casic/microdionite.	corporated . Local matrix weak k. fallspar alt. with patch, epidoke clats.		Local larger carb vers to lon with dark chierite selveser, some low	the matrix. Local frie drisen.or veinlet By in managina clast a	2-3	.Tr	14390	7 7-68	600- 6 8	306	50	- 10
	weak to local moderate magnetic.		No.	angle corbonate Venilete. Lo cat My Venilet. Mod vente Classing below 10000	some metavolcanics	3-4-	Tr	1+391	100-68	107.02	1184	135	
	103.02-105.10 Thild fur mad. Matrix supported breach same class trues as above.	weak pervasive caronate and patcing weak matrix k feldspor Exidate in verifiets and clots.		Rumans 60° CA epid > carb ven lets	Patchy fire med matrix by sporse irregular by veralete	1-4	Tr	14392	10].0Z	105-10	741	85	
	105.10-113.25. Vague textures. Possible dyke or tightly sacked monstituis very case	weak pervasive carbonate throughout: Morgonite has	2	Low to local rescurate density of 60-90°CA spirad	Monzonite 109-112m has most patchy	1-2		14375	105.10	[03-10	268	30	
	brecein - crackle brecein ? Green homblende porrygy with some classifiers descent	with patchs pervasive killed. @ 111.0-112.0. Generally weak	K	± corbonate veinlets	Py, some stringarvain Py. Elsewhere esp.	1-3	Tr	14294-	105-10	11]+1 @	352	10	-"
	in fine granded grand mass constitute chammerals to gray manyouthe with pick sections. Fine	Local moderate megnetic. Loca hematite patches after magnetite?	K		Rear contacts little Py.	2-4	Tr	(4395	\$60.10	112.25	507	15	
	113-25-12458 Matrix poor medium to very coore breccia metre scale subnounded	clashs are weakly altered with patchy epidate, variable pervasive/veintet carbonate,	Ref.	Matrix areas have moreous irregular carb	Matrix areas have up to 15% fine to	1-3	Tr	14896	42.25	116-25	1081	145	5
	green and pikk hamblende manzonite potphyny bouldes smaller 250cm hbl or angite	hocal coarse epidate clats Matrix areas have more epidate clats stronger carb		have be to to the former of th	aggregates, veins- stringer zones. Local	1-2	Tr	14297	46-25	119-25	Léis	350	,
	provide magnetic . Lass than pariable magnetic . Lass than 20% of this section is matrix with line mad scale of divide m.	Cocaliz coarse. Patchy local K. feldispor, M/c. magnetice	K	Scale Carb. Venus and fine carb bx. zone	clasts. M/c maynetil common in materia	1-3	Tr	14398	119-25	122-00	\$76	145	;]"

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . K. W. Wellyn

DATE . 29. Sept. . (13) .

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-**02**

1

Page No. 5

LITH	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		ħ	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS			· ·		2	С Ж	Sample	From	To	Cu	Au	
	113.25-124.58 See 194			e 123.50 4cm Coaste carbonate Vein 50°CA		1-3 1-2	Tr -	(4375 (4375	119.25	122.00 124.58	87(17 7	145	-1/2
124:58-174:64 Heterolithic Intrusion	124.58-144.43 Fine to madium breccia, matrix to weak clast supported	Variably carbonated weak- moderate matrix and some class.	00000	Low-local mod density of fine	Finit to mad graned dissem. By assistant	2-4	Tr	i4400	124-58	127-58	1531	210	
Breccia. Prodominantiz fina ha mudium matrix supported breccia.	Katerolithic, mixed mafic Metavolcanic, diorite, pink- grey mangonite, vague textures	K. falctspar. Epidole clots comme also in some closts.	00.0000	Carbonate vaintes Generally 50-900	disseminated & Local By veinlets. Some m/c marshite with	2-3	Tr	14401	127.58	/30·58	1485	175	-4
Variably magnetic	due to alteration. Variably altered fine-med groined	Moderate matrix K. Aldapor 186.0 -127.0	0380	veinlets in clasts	coarse by in matrix	2-4	Tr	14402	130-58	133-58	2272	520	
	in trustice matrix. Whole Section could be regarded as faith homesone as be		4081.00			2-6	Tr	14403	133-58	136-58	1123	145	
	a breccin.		0000			2-6	Tr	14407	136-578	125-57	1507	150	
			50000			4-6	Tr	14405	139·5 8	14258	1560	150	-
		· ·	8			3-4	Tr	14406	142.57	144.43	1676	us	
	144.49-149.87 As about fine-medium blacking metric supported. Mole homolithic	Mafit phenocryst and clasts are variably chloritized. Potely Reidote clasts. Local	0000	Low density of low to high angle	Fire to med locally blebby coarse	3-6	Tr	1+407	144-43	147.00	1397	62	
	Mainly ned graen, dine graines g Metawolconie claste, subanyular. c . matrix is fine/mad. altered igm neg n	generally weak K. faldspor alt. Rime to some clerk local matrin. Patchy W/M pervosive corb.	2000 2000	verslets. Local irragular By verslet	grains or small aggregates. Local coose ringel the in pick Man.	4-4	π	14408	147-00	14 9 •87	1+67	85	ļ,
					CLARPS.								

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DATE AL Sept 1285.

.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

Dade No 6

1

DDH.NBZ99-02

1

]

1

								1	age	110.0	,		
LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	.	py	SA	MPLING	DATA			ĺ
MAIN UNITS	SUB UNITS					% P	%C	Sample No.	From	То	Cu ppm	Au ppb	
	149.87-159.00 Fire to medium. breccia. Matrix to weak clast supported. 720% pick magonite clasts. Majority are dire preised	Generally moderate pervasive carbonate. Patchy epidole clots. hocal broad epidole vein	50°50°	how density of 45-80°CA carbonte and, or epidole up inter mainte	Automy disseminated fine to coase matrix, local class B.	3-4	Ťr	14409	149-87	152.87	1822	120	150
	to porphyritic mapic metavolanic - deprise clasts. Altered fin -	matrix k. feldsper local rime stronger than above. Local		fine exclusive in manzonite class	aggregates in matrix Noticeable increase	3-4	Tr-)	14410	152.87	155.97	2475	295	
	Variable weak to strong magnetic	M/c grained dissem. magnetile Intense k. feld spor 157.80-159.00	000		associated with k./L(depar and local	3-4	Ťr	144 ()	155.87	15740	977	155	
		with fine dur eminance (by	83		Mic dissen. Magnetite	3-4	Tr	14412	157-80	152-00	330	90	
	157.00-161.26 Coarse-mad. brewin Some monzonite class >50cm, Smaller diorite, Miser alt. durite from	minior matrix with carbonate, Epiclate, K. feldsport.	8	Low density of fine 40-80° CA Carbonate and By Varalate	Minor diseminated and verset by for granded disson matricky	1-2	Tr	14413	159.00	161-34	1284	170	-160
	161-36-171-38 Predominanty fine locally medium breccia, Matrix to weak clast	Moderate pervasibe matrix carbonate. Common epidate clate weak potent. K. lolden	000000	Generally Low density of Low s high angle	finefred. disseminated and vertet R in matrix. Local fine	3-4	Tr	14414	161.36	16+36	1576	245	
	supported. Monzonik and mafic metavolcanic clasts in variable a lass of allority	local M/c may relite some obork chlorite. K. jeckyor	202500	carbonate verilets local epidote. Some very high	specks of Cpy.	3-4	Tr	14415	164.36	{67·36	1207	190	
	hatrix,	patchy moderate below 167.0	00 20 20	verintets.		2-5	TT	144/6	167.3L	169.36	2277	390	
			202			2-4	Tr	14417	168.36	171.33	1155	640	170
	171.33-174.64 Fine matrix supported breezings above. Loco	matrix is altered commonly dioritic. W/m magnetic. W/m	100	At top 3-4 cm 20° LA Carbonate Vers with Viss	In chlorite section fine by aggregates	2-4	Tr.l	14418	121-84	172-67	1807	675	
	med-coarse pink manzonite, green metavo leance clasts. Most clasts are fine angular, matrix symported	pervasiva carbonate. 171-33-172 chiloritic. sparse epidote. Carb increases demonstrats	909	Local fine Low angle care veringet + 60-50 Ca Some P. veringet.	with local fine cay Below in breccie fine dissem matrix Ry.	2-3	Tr	14+19	172.67	174.64	487	2800	
74.64-177.93 Alteration- Fracture Zone. Strong bleaching, some brecuia	Bleached-alteration gone local fine breccia (relict) textures.	Pervasive strong corbonate, chilorite partings. A late bacciated and corbonated fractive zone.	۲۲ ۲۶ ۲۶	Subporabled to 40°CA. Chloritic partilys with Slickonsides.	Sparse high angle By veinlets and fine disseminated by	1-2	Tr	14420	17#-64	177-83	473	530	Ī
Heterolithic Intrusion	177.83-206.00 Mixed fine-medium breccia.	Patchy moderate to strong metric	jo	Low density of	Fine-med grained	1-2	Tr	14421	177-83	179-00	1271	325	1
Breccia. Potassic Alteration. moderate to Stray meseric	Matrix to weak clast supported Altered metavolcanic diority and Manganite clasts . Larger, maganite	(smaller). Patchy pervaive w/m corbonate. Widepread generally svb. cm. enidede clate.	0000	Carb. veinlets.	hatriz - patches common Local coarse grained	3-4	Tr	14422	124 40	182.00	1316	255	-13

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Kin holles

DATE Aller Suge 39.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

ţ

-190

]

DDH.NBZ99	-02								Page	No.	7	
LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		Ŋ	SA	MPLING	DATA		+
MAIN UNITS	SUB UNITS		L ·			3	% C	Sample No.	From	То	Cu ppm	Au
	Porphyry clasts are subrounded. Smaller clasts are subargular. Matter is fin to andian	A/c grained magnetite commonly with coarser by and locally in which both matrix and some	00	Fine pyrite verilets are fairly common 30-90 ch	Locally with M/c grained magnetite.	3-4	Ŧŗ	14422	179-000	192.00	1316	253
	grained altered, disrike	Monzonite clasts. Strong K. feld. alteration at top 177.88- 179.00	000	upto Smm wide	dimeninated Cpy thoughout.	2-4	Tr	14423	182.00	185.00	1164	دەپ
			0.00			3-4	τr	144 24	195.00	(84 -00	1174	405
		0,0000 0,00000000000000000000000000000				2-4	Tr	14425	(82-0=	191000	1285	510
		20,000,000,000,000	Find high + low		3-4	Tr	14426	191-00	<i>د ۹</i> 4۰ <i>თ</i>	746	300	
			0.000	versiets more common.		1-3	-	14427	19400	197.00	1863	675
	- Fine matrix su poorteol potassi breccia, su bangular clasts.		2000			2-4	Tr-I	14428	197.00	200.00	3165	1591
			00000			2-4	Tr-I	14429	200.00	203. 00	1718	555
			2008			2-6	Tr-1	14430	203.00	206-043	5561	224
206.00-209.10 Strong Alteration - Vein Zome at upper contact	Alteration overprink textures. Appear to be a mixed gove	Alternating Socn to Im gones of Strong K. feldsport with gray-to greenish albite. Predom.		High density of quarty-carbonate versitely 50-59 and	Vanish of By Latits in pleached Usik and K- peter alt. Jones. Flm	3-5	Tr .I	146231	206-00	207.50	3712	1100
to dyke. 209.10-215.73 Strong Altered Feldspor Porphys Mongonite Dyke.	209.10-211.60 Light greensh gray, fine granned -bleached with altered mafei phenocayte	find gracing 13/5 magnetic with Kr. Eleached through albite? failly hard. Weak pervasive carb. Non magnetic series to alt beaucryst	1. 23 X V	vains 70-80°CA Local alignment of plagioclase 60-70°CA.	distant windst one can have find - mad grained distant hated Ry.	×1	-	14482	207.10	209.10	2005	95

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. LUL

DATE 22/23 Sapt 97.

265

24 0

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-02

1

Page No.8

								<u> </u>				4
LITHOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	.	ΡY	SA	MPLING	DATA	•	ļ	
MAIN UNITS SUB UNITS					d X	*	Sample No.	From	То	Cu ppm	Au ppb	
Attack Feldoper Porphys to 211-60 See Mg 7	·	1								• •		
Manzonite dyte 211.60-213.75 Altered porphyry some flow al	à playitchez Pakchy bleaching albibet - carbonal mant . with K. Jakobper. Alteration is a manuchi Controlled proven berdin a fract		Alteration fabric 60° CA. Local 913 > carb Windleh 65°C4	sporse finé dissemilate Py.	T/	-	14434	211-60	213.75	149	30	
RIZ.15-215.73 Rubbly P hornblendo (chi) prati par historic (chi) prati par	velase- ny with by Privary & Secondary & fuld your Ma a seavith magnetic. Role Laido to		Some bondary and Py gones 60°CA. Hraquian	Narrow bards and patchy dissem. f/m fy with associated but Con	2-5	Tr-1	14425	2/13-75	215.73	3417	100	
215-73 - 220-30 Many Diak, play Potassic Altered and Mongonite claste. Mu	orphyritic Pervasive weak to moderat		of fine carb reished	Very strong dissem. Local variolat flom	6-9	1-3	14436	215.73	217.50	7750	1280	
Blackad Intrusion Supported. Intrusive Breccias. Bits carbonated with variable M/c	neck grand strangest down to 21750 Patch d bloached below with local elast rims. Ynekte Bleachig prominent downward		charaughart. Local che scale carbonate and,or pyrite verile soch.	Py and Cpy to 217.50 Patch flm disseminated Py + Cpy (clusters) below	2-4	1	14437	217.50	2.20.30	4336	465	220
220-30 - 223-13 Feldspar Light greenish grey, o Porphyry Dyke. Bloached with altered playiell and fractived. Cocally crowded some	is grained K. felcelspar alterstran down e phenosyh to 220.80. Below bleached Paks weak to moderate ponysive carb. chil clay frechure below 221.50	11	1) NUMEROUS GUENTS and Carbonate varues to Icre above 22150 10-35-09. Some allorithe Below soveral 20 40 junt	Patches of flow By local fracture verilet by minor flow Cong. spore magnetics	2-7	77-1	14438	220-30	223-13	3415	395	
223-/3 - 244-42 223-/8- 23425	Peruasile - patchy weak/med.		223 VZ - 224.2 maderate veri desit	Pyribe - magnetite	1-3	Tr	14427	223-13	224.70	1350	385]
Heterolithic Intrusion Mixed fine, man, Breccia. To weak matrix sys,	orted is mod-strong below dyke		fine high ayle CA carbonate ± epidote	Below fracture	2-3	Tr	14440	224-54	226.78	2028	300	
breccia - Porphysit Monzonite, altered metamoleanic and g	pink decrease to weak-moderate the downwards. Epidetigad plaging		100101013. My 12 Maynetik versets 60-90 CA. 224.2-223. 10-30 CA	fin Py in clasts and disseminated clasters	1-2	Tr	14441	226-73	227-28	2020	2.30	
foliorite clasts. Matrix of the graved. Modern	moznake porphysicie prink manzanete	B	carburins some ofg B-go'ce fine carb. Veinlate.	12 matrix . Local flm cpy to 227m	1-2	Tr	14442	227-28	231.25	1173	165	230
231-28-237.05 Med breecia, matrix to clast supported. Si	n-fine Patchy weak pervasive carb seak Restricted patchy weak Kifeld ilw clast bocal small patches, bands	0.09	corbonate and, or corbonate and, or epidole verilete.	Patchy fine/med matrix By commonly in patches . Local	2-4	7.	14443	231-25	251-25	1258	135	
Lampositions to about to subrounded. Mad matrix med gramed vi	subanyular of fine permasure epidote. maynetic epi altered plasinclase phenology a feature lacate. Mad. magnetic flowstand lacate single picture of the	200		Specks of V-fine Cpy.	2-4	Tr	14444	234-25	237.65	1020	70	
287.05-242.05 Alta	trin-Veinlet Potossie - K. feldspor breccio	02	Breccia has nonenous veinles	Fine by occurs through	1 23	Tr	14445	237.05	238-13	478	65]
Zone overprinting of breccia, possibly son	E. dyke. Some the K. feldspor, veriably	Ø	at variable angles Republic	In braceia quite patch. predominante Lie con	3.4	7	44446	238-/3	27720	1286	20	1.
237-05-158-07;239-46-1 altered breccia numer 238-07-239-90;234-56-20	o.se Brasic Magnetic, sparse cpiclate. . care venile Bleachool Zoneo have res pervan as bleached care. possible albeite with chi. Leath			fine cay. In element	3.4	Tr Tr	[4447 [4447	237.20	240.58	792	135	[

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Ass. Welly

DATE 24 list ??

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-**02**

Page No.9

LITHO	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		Py	· SA	MPLING	DATA			l
MAIN UNITS	SUB UNITS		L ·			% P	8 C	Sample No.	From	То	Cu ppm	Au ppb	
nnen, meg eine einen einen einen einen einen eine einen eine einen eine einen eine eine eine eine einen eine ei	Carbonate with some feldepar porphyny remaants	Blaccia textures more evident	1.1.	In Lower bleached gone many subjectly carb verillets 45-50CA		3-4	Tr	14448	240.58	242.05	718	175	24
	242.05-244.42 Fine to medium brech Matrix supported. Vague textures due to alteration	Perrossive mod. matrix Carbonate overprinting disritis technon. Moderate magnetic. Patieny weak by feldspor.	100 00 00 00	Low-mad density of Bo-60°Ca fire Carbors Condete Vernlete Some	Prestonii ontry fine metri Py in small patches local vifine Cpy.	2-3	Tr	14449	242.05	244.42	944	۶J	
144.+2.245.80 Crowded Plagioclase Porphyry Monsaile Duke.	Crowded perphyry with flow aligned phenocrysts in K. feldspol like crained around meth	Strong blanchid at bose 245404 some concordant veine (453-carb) Moderate magnaki in mill. Parah		Sharp Bo'CA contacts Bo' aligned phase with Line Lastrica Care and	fine disseminated - potenes of Py. Local fine	2-3	Tr	14450	244.02	242.80	216	10	
245.80-251.60 Heterolithic Intrusion Rifercia (a) about 1 40	Mined find - madium - coarse haterolithic breccia. Matrix ho week that summary mixed	Moderate pervasive to patchy Clast and matrix carbonate. Patch. K. feldspar in main	1002 ×	moderate density of high and low angle CA carbonati	Fine to med. grained dissem, and patchy Ry fine dissem. Cpy	3-4	Tr - 05	14451	245.80	248.80	1060	95	
is could (a court age)	majic naturolcani, nonzonic and olivriti c (astr. Sone > Socn. Mud. gravied elivriti natrin- Vasue textures, Batch Michaenstic	gets stronger downwards. Widespread epidate class in Matrix. Coorse My assugates with coop My assugates		subported to Soca abo 60-70°CA.	Local coarse By - negretile oggregates.	2-3	Tr	14452	248.80	251.60	1031	230	-,
251.60–254.60 Altered Feidspar Porphyry Dyke	Light greenish strong blenke fairly soft-sericitic? Many phenocysts are altered. Non maning thing of Idias	Pervosive Sericite? possibly some alloite. weak pervosive Carbonete. some selvage silica	3	A single bandled 2cm wide grey gre vein subparable ca 30°CA monetize - by-	fire vein related for with magnetic new Lower contact, minur fire Cay.	1-2	T ₁	144 53	251.60	254.60	\$24	55	
254.60-265.00 Heterolithic Intrusion	Fine to redium breccia, matin to weak clast supported.	Generaliz weak permisive carbonates patchz weak/mod.	000	Low, locally med. density of lo-3014	Patchy generally fine Ry as matrix patches. V. Line Con	3-4	Tr	14454	254.60	257.60	\$ 20	45	
Breccia (as above dyke)	subangular clasts mixed lithelogies as above dyke, generally altered. Fine h	K. feldspor in matrix. Epidoh clotz are common throughout	0.000	and 60-90 cara verillets, rare Py Exidate verillets	Cocally.	3-4	77	14455	257.60	260.60	315	45	2
	medium grained altered dioritic matrix.	Variable - moderate nognetic	0.040%	increase downword esp. near lower contact		3-4	Te	14456	260.60	263.60	785	30	1
			3	30-40 CA fine altere	4	1-3	Tr	14457	263.60	265.00	707	35	1
265.06-284.38 EDH. Altered Massive to	265.00 - 267.90 Light greys to printist greys. First grained - Eltered. Mansive to weaks brechinded Similarto bleached dyles about.	Patchy weak pervasive carbona Local weak patchy k. faldspar faith hard-albitus Local seniciti		generally fine 40.500 Carts. Ve islets. Locas Carter to Icm 9/3- Carter Veins 80°CA	Patchy disseminated fine by case reactes, local stringers. fm may death or solice. in adjudeath	1-3	Tr	14452	265.00	267.90	672	30	
Breccinted Intrusive	267.90-263.67 Auron fm. breccin 2018 . Story A. faids for altered mate	K. feld. alt. Variable carb, magnetic	:00 :00	NUMARIA 40:40 CA	Pakery metric for B/fing	2-5	77-1	14459	267.90	268-69	966	40	
focks- Dykes ? (alkalic)	268-69-277.75 strong K. feldspor altered plagioclose- hurdblede porphyny. Mod. nagretei local	Strong pervosive to voin K. feldepor. moderate permin carbonet.		Low - moderate classity of 30.60°C fine Lats verinlets Local subgranter v	Fine durbern in alert By throughout some Cay Local By I Cay verillets with wic momenta	1-3	Tr-)	14460	268-69	270.00	517	45	-12

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . K. Hully ...

DATE 26. Lept. (??)

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-**02**

Page No. 10

HOLOGY	ALTERATION	l.	STRUCTURE	MINERALIZATION		2	SA SA	MPLING	DATA		
SUB UNITS	•	L ·			1 X	*	Sample No.	From	To	Cu	Au
268-69-273-75 contraved see by 9. Local 2cm mylic xenulithe subrounded.		XX 09			Tr-2	Tr	14461	270.00	272.00	929	55
273.75-274.92 As above but much	Strong pervesive and veinles carb	1	High desuts of tries	Patches of 110 B	Te-2	Te	14462	272.00	273.75	1000	85
Decision - fewspor ale. Remont Disciscione - hours ble de mines textures 174.92-275-55 Variably decised, K. feld	Mod. nogretic. Weak potely K. feldered	FX.	Carbonate Veinlets	Lacad 7554 Par values	1-2	Tr	14463	273.75	274.92	335	55
275:85-279:23 Light gray to graenish 6 leached @ 2550. Reminent Condeal playlactare porphysy few hores.	Roderate to strong pervasive Carbonate . weak pervasive	i i i	Madi clensity 20-30'CA and 60-90'CA carb and or R veinlets	Fine dimensioned business P. Fine dumensions and veinlet Py	2-3	Tr TT	14464	274.92	275.85	845 653	10
Local alt. notice - homble ste? Same flass alignmente. Ana anastri	chlorini partings	11	flow alignment	local fire cay.	2-4	Tr	14466	177-85	279.23	521	55
279.23-284.88 Ar above but weak pervasive K. feldspor throughout Remnant plagicclase porptyry	Pervasive noderate carbonate Patchy pervasive weak kikld. local modi near base. Some	、ハー、	Low density of Py verilets. Local finer chlaritic	Patchy verialet by less than above Mining fine disperse.	2-3	TI	144 67	279-28	282.00	2300	16
Potchy weak magnetic. Light chilo rite or sericite alt, phenocysts	bloached greenish sections		fractures, veinlets	Cpy.	1-3	Tr	14468	272-04	286-38	1354	51
	SUB UNITS 268-69-273-77 contraved see By 9. Local 2cm mafil we notifue subrounded. 272-75-274-92 At above but much weakly the failurger all. Aermant 276-85-279-23 Light yes to green to Lacked & 225-8- Reminent Conden playtone organize two but weak playtone Control of the standard playtone Longtone to make? Sand flam alignment. And by the Remant playtoclase porphysy Potch, weak magnetic Light chie or sericile all planacytic	ALTERATION SUB UNITS 248-19-273.77 contraved see A 9. Local 200 maji xenolithe subremeded. 273.77-270.72 Ar above but mich degices the function for the function france of the function of the function for the or sericite all, planeaget function of the function function of the function function of the function for the function of the function for the or sericite all, planeaget function of the function function of the function of the function function of the function of the function function of the function function of the function function of the function of the function function of the function of the functions function of the function of the function of the function function of the function of the functio	SUB UNITS I. Z(1:(3-2173-TT contrived set b) 9. Local 2con myfic wenuithe SUB UNITS Z(1:(3-2173-TT contrived set b) 9. Local 2con myfic wenuithe Subrounded. ST375-374-32 At about price statum Subrounded. Strong perussithe and verifield cath Materia Subrounded. Strong perussithe cath Subrounded. Strong perussithe cath Materia Subrounded. Strong perussithe cath Materia Subrounded. Strong perussithe cath Materia Strong perussithe cath Strong perussithe cath Materia Strong perussithe cath Strong perussithe cath Perussithe cath Strong perussithe cath Perussithe cath Strong perussithe cath Catherate is strong perussite Catherate is perussite Perussite cath Strong perussite is the strong perussite Perussite cath Perussite cath Perussite cath <	ALTERATION . STRUCTURE SUB UNITS L Local 2cm nagi: we nuithe subranded. 212-37-37-32 hg h asses but make takened in fabriger els. Remark fulleration of the state for the fabriger of the state for the state	ALTERATION	ALTERATION . STRUCTURE MINERALIZATION SUB UNITS	SUB UNITS L. LIERATION	SUB UNITS ALTERATION STRUCTURE MINERALIZATION SA 26143-2017 Continue density of the continue contract continue contract of the continue	ALTERATION ALTERATIONALIZATION ALTERATIONALIZATIONALITATIONALITATI	ALTERATION - STRUCTURE MINERALIZATION - STRUCTURE MINERALIZATION - SAMPLING DATA SUB UNITS 2014 1-2177 continued Ref. 9. Local 200 mpfi: sensitike submasked. 2017 - 277 - 1000 - 770	ALTERATION ALTERATION - STRUCTURE MINERALIZATION - SAMPLING DATA SUB UNITS

DDHNBZ-2

e--

(and all

-

-

÷

SAMPLE														
NO.	FROM	то	LENGTH	Au (ppb)	Cu (ppm)	L X Au	Au-Comp	L X Cu	Cu-Comp	From	То	Length	Au (ppb)	Cu (ppm)
14351	4 50	6.00	1.50	05	1251	142 50		1876 50						
14352	6.00	7.75	1.75	120	1804	210.00		3157.00						
14353	7.75	10.75	3.00	45	766	135.00		2298.00						
14354	10.75	13.75	3.00	35	876	105.00		2628.00						
14355	13.75	15.90	2.15	25	564	53.75		1212.60						
14356	15.90	17.90	2.00	40	1258	80.00		2516.00						
14357	17.90	19.87	1.97	70	1559	137.90		3071.23						
14350	19.07	21.0/	2.00	60 105	1040	170.00		3496.00						
14360	23.77	26.37	2.60	95	1891	247.00		4916.60						
14361	26.37	28.37	2.00	55	1786	110.00		3572.00						
14362	28.37	30.27	1.90	45	1361	85.50		2585.90						
14363	30.27	33.47	3.20	45	1791	144.00		5731.20						
14364	33.47	36.75	3.28	55	1431	180.40		4693.68						
14366	39.75	42 75	3.00	95	1729	285.00		4306.00						
14367	42.75	45.75	3.00	90	1184	270.00	2069.30	3552.00	46913 61	15 90	45 75	29.85	69 99	1571 65
14368	45.75	48.00	2.25	105	760	236.25		1710.00				20.00	00.00	101 1.00
14369	48.00	49.87	1.87	45	676	84.15		1264.12						
14370	49.87	51.00	1.13	85	855	96.05		966.15						
14371	51.00	54.00	3.00	55	1667	165.00		5001.00						
14372	54.00	57.00	3.00	50	1863	150.00		5589.00						
14373	59.00	59.00	2.00	50	2122	1/0.00		4244.00						
14375	61.00	63 10	2.00	20	299	42.00		627.90						
14376	63.10	66.10	3.00	70	1359	210.00		4077.00						
14377	66.10	69.12	3.02	80	1437	241.60		4339.74						
14378	69.12	70.62	1.50	35	1047	52.50		1570.50						
14379	70.62	72.42	1.80	95	1120	171.00		2016.00						
14380	72.42	75.00	2.58	150	1469	387.00		3790.02						
14361	75.00	79.70	2.30	180	20/1	424.50		4667.00						
14383	79.70	82.20	2.50	95	1215	237.50		3037.50						
14384	82.20	84.93	2.73	110	1049	300.30		2863.77						
14385	84.93	87.93	3.00	150	1348	450.00		4044.00						
14386	87.93	90.00	2.07	95	1265	196.65		2618.55						
14387	90.00	92.20	2.20	65	1240	143.00		2728.00						
14388	92.20	94.68	2.48	45	1116	111.60		2767.68						
14309	94.00	97.08	3.00	CO 60	1290	195.00		3670.00						
14391	100.68	103.02	2.34	135	1184	315.90		2770.56						
14392	103.02	105.10	2.08	85	741	176.80		1541.28						
14393	105.10	108.10	3.00	30	268	90.00		804.00						
14394	108.10	111.10	3.00	10	352	30.00		1056.00						
14395	111.10	113.25	2.15	15	507	32.25	5089.75	1090.05	76616.42	45.75	113.25	67.50	75.40	1135.06
14396	113.25	116.25	3.00	185	1081	1050.00		3243.00						
14397	110.20	122.00	3.00	300	1010	398.75		4604.00 2400.00						
14399	122.00	124.58	2.58	180	977	464.40		2520.66						
14400	124.58	127.58	3.00	210	1531	630.00		4593.00						
14401	127.58	130.58	3.00	175	1485	525.00		4455.00						
14402	130.58	133.58	3.00	520	2272	1560.00		6816.00						
14403	133.58	136.58	3.00	145	1123	435.00		3369.00						
14404	130.58	139,58	3.00	150	1507	450.00		4521.00						
14406	142 58	144.00	1 91	115	1676	219.65	6737 80	3201 16	44661 82	113 25	144 49	31 24	215 68	1429 64
14407	144.49	147.00	2.51	62	1397	155.62	0101.00	3506.47		110.20	177.45	01.24	210.00	1420.04
14408	147.00	149.87	2.87	85	1469	243.95		4216.03						
14409	149.87	152.87	3.00	120	1822	360.00		5466.00						
14410	152.87	155.87	3.00	295	2475	885.00		7425.00						
14411	155.87	157.80	1.93	155	999	299.15		1928.07						
14412	157.80	159.00	1.20	90 470	330	108.00	2051.72	396.00	22937.57	144.49	159.00	14.51	141.40	1580.81
14413	161.36	164.36	∠.30 3.00	265	1576	795.00		4728.00						
14415	164.36	167.36	3.00	190	1207	570.00	1766.20	3621.00	11379.24	159.00	167.36	8.36	211.27	1361.15
14416	167.36	169.36	2.00	390	2277	780.00		4554.00						
14417	169.36	171.33	1.97	640	1155	1260.80		2275.35						
14418	171.33	172.67	1.34	675	1809	904.50		2424.06						
14419	172.67	174.64	1.97	2800	489	5516.00	10150 05	963.33		407	477		000 00	4440.00
14420	1/4.64	1/7.83	3.19	530	473	1690.70 390 2F	10152.00	1506.87 1406 42	11/25.61	167.36	177.83	10.47	969.63	1119.92
14421	179.00	182.00	3.00	323 255	1316	765 00		1400.40 3948 00						
14423	182.00	185.00	3.00	405	1164	1215.00		3492.00						
14424	185.00	188.00	3.00	405	1174	1215.00		3522.00						

	14425	188.00	191.00	3.00	510	1288	1530.00	5105.25	3864.00	16322.43	177.83	191.00	13 17	387 64	1239.36
	14426	191.00	194.00	3.00	300	746	900.00		2238.00						1200.00
	14427	194.00	197.00	3.00	675	1863	2025.00		5589.00						
	14428	197.00	200.00	3.00	1590	3165	4770.00		9495.00						
	14429	200.00	203.00	3.00	555	1918	1665.00		5754.00						
	14430	203.00	206.00	3.00	2240	5561	6720.00		16683.00						
	14431	206.00	207.50	1.50	1100	3912	1650.00	17730.00	5868.00	45627.00	191.00	207.50	16.50	1074.55	2765 27
	14432	207.50	209.10	1.60	265	2005	424.00	18154.00	3208.00	48835.00	191.00	209.10	18.10	1002.98	2698.07
	14433	209.10	211.60	2.50	95	308	237.50		770.00						
	14434	211.60	213.75	2.15	30	149	64.50	302.00	320.35	1090.35	209.10	213.75	4.65	64.95	234.48
	14435	213.75	215.73	1.98	900	3619	1782.00		7165.62						
	14436	215.73	217.50	1.77	1280	7750	2265.60		13717.50						
	14437	217.50	220.30	2.80	465	4336	1302.00		12140.80						
	14438	220.30	223.13	2.83	395	3415	1117.85		9664.45						
	14439	223.13	224.30	1.17	385	1350	450.45		1579.50						
	14440	224.30	226.78	2.48	300	2028	744.00		5029.44						
	14441	226.78	229.28	2.50	230	2020	575.00	8236.90	5050.00	54347.31	213.75	229.28	15.53	530.39	3499.50
	14442	229.28	231.25	1.97	165	1173	325.05		2310.81						
	14443	231.25	234.25	3.00	135	1258	405.00		3774.00						
	14444	234.25	237.05	2.80	90	1020	252.00		2856.00						
	14445	237.05	238.13	1.08	65	1178	70.20		1272.24						
	14446	238.13	239.20	1.07	70	1286	74.90		1376.02						
	14447	239.20	240.58	1.38	135	1725	186.30		2380.50						
	14448	240.58	242.05	1.47	175	798	257.25	1570.70	1173.06	15142.63	229.28	242.05	12.77	123.00	1185.80
	14449	242.05	244.42	2.37	65	944	154.05		2237.28						
	14450	244.42	245.80	1.38	10	216	13.80		296.08						
	14451	245.80	248.80	3.00	95	1060	285.00		3180.00						
	14452	248.80	251.60	2.80	230	1031	644.00		2886.80						
	14453	251.60	254.60	3.00	55	824	165.00		2472.00						
	14454	254.60	257.60	3.00	45	820	135.00		2460.00						
	14455	257.60	260.60	3.00	45	918	135.00		2754.00						
	14456	260.60	263.60	3.00	30	785	90.00		2355.00						
	1 445 7	263.60	265.00	1.40	35	707	49.00		989.80						
	14458	265.00	267.90	2.90	30	692	87.00		2006.80						
	14459	267.90	268.69	0.79	40	966	31.60		763.14						
	14460	268.69	270.00	1.31	45	577	58.95		755.87						
	14461	270.00	272.00	2.00	55	929	110.00		1858.00						
	14462	272.00	273.75	1.75	85	1000	148.75		1750.00						
÷	14463	273.75	274.92	1.17	55	335	64.35		391.95						
	14464	274.92	275.85	0.93	105	545	97.65		506.85						
	14465	275.85	277.85	2.00	110	653	220.00		1306.00						
	14466	277.85	279.23	1.38	55	529	75.90		730.02						
	14467	279.23	282.00	2.77	160	2300	443.20		6371.00						
	14468	282.00	284.38	2.38	535	1354	1273.30		3222.52						

_

-

-

-

-

-

20.00

-

-

43716.35

143699.94 159.00 229.28 70.28 622.03 2044.68

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-541

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

8-Oct-99

ATTENTION: RON WELLS

No. of samples received: 68 Sample type: Core PROJECT #: NB2-02 SHIPMENT #: 2 Samples submitted by: R. Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
19	14419	2.80	0.082	
28	14428	1.59	0.046	
30	14430	2.24	0.065	
31	14431	1.10	0.032	
36	14436	1.28	0.037	

QC DATA:				
Resplit:	14436	1 40	0.041	
	14400	1.40	0.041	
<i>Standard:</i> STD-M		1.42	0.041	

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. ۴ B.C. Certified Assayer

XLS/99

Page 1

6-Oct-99

1

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

}

1

1 I

1

1

1

1

1

1

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-524

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

1

1

1

1

1

1

No. of samples received: 50 Sample type: Core PROJECT #: NBZ-02 SHIPMENT #: 1 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	<u>Ai %</u>	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
1	14351	95	<0.2	1.77	<5	75	<5	3.09	<1	39	86	1251	7.18	<10	1.80	614	1	0.04	23	2380	20	10	<20	49	0.21	<10	175	<10	3	45
2	14352	120	<0.2	1.88	10	50	<5	2.80	<1	44	65	1804	7.25	<10	2.10	511	9	0.04	26	2300	26	15	<20	35	0.21	<10	187	10	11	38
3	14353	45	<0.2	1.37	10	45	<5	3.50	<1	19	58	766	4.49	<10	1.12	505	11	0.04	13	2200	22	10	<20	45	0.14	<10	156	10	27	24
4	14354	35	<0.2	1.26	10	35	<5	3.37	<1	27	51	876	5.02	<10	1.00	443	9	0.04	8	2190	16	<5	<20	20	0.14	~10	110	10	16	34
5	14355	25	<0.2	1.09	10	30	<5	2.99	<1	18	38	564	3.76	<10	0.86	417	3	0.03	8	2020	12	10	~20	50	0.14	<10	70	10	10	34
																••••	•	0.00	Ť		14	10	~20	50	0.11	- 10	/9	10	19	23
6	14356	40	<0.2	2.22	10	60	<5	2.65	<1	39	79	1258	8.82	<10	2.39	593	3	0.04	28	2460	24	5	-20	22	0.20	~10	200	-10		50
7	14357	70	<0.2	1.87	5	55	<5	2.46	<1	44	43	1559	8.94	<10	2.05	481	12	0.04	22	2360	22	5	~20	20	0.20	~10	200	< 10	<1	50
8	14358	85	<0.2	1.45	10	45	<5	3.60	<1	35	46	1543	7.46	<10	1 48	546	24	0.03	12	2130	22	-5	~20	30	0.24	<10	100	<10	<1	44
9	14359	105	<0.2	1.58	10	35	<5	2.49	<1	42	47	1840	8 18	<10	1.67	454	17	0.00	14	2070	24	~5	~20	40	0.12	<10	120	<10		46
10	14360	95	<0.2	2.31	10	45	<5	2 05	<1	43	57	1801	0.50	<10	2.60	626	16	0.04	77	2070	24	~0	~20	31	0.14	<10	124	10	<1	44
								2.00	- •			1031	0.00	10	2.03	020	10	0.04	21	2340	30	<0	<20	27	0.24	<10	191	<10	<1	65
11	14361	55	<0.2	2.27	10	40	<5	2 52	<1	54	46	1786	0 32	<10	2.64	677	0	0.04	27	2560	22	40	-20							
12	14362	45	<0.2	2 47	10	50	<5	3.22	<1	54	70	1261	0.22	~10	2.04	777	22	0.04	2/	2000	32	10	<20	39	0.23	<10	186	<10	<1	68
13	14363	45	<0.2	1 90	10	50	<5	2.05		76	55	1701	0.40	<10	2.12	502	20	0.00	32	2/90	32	20	<20	55	0.28	<10	227	<10	2	- 74
14	14364	55	<0.2	2.07	20	45	-5	2.00		50		1424	0 40	~10	2.12	503	30	0.04	20	2350	24	<5	<20	35	0.20	<10	167	<10	<1	62
15	14365	60	<0.2	1 78	10	45	~5	2.50		30	00	1431	0.10	<10	2.34	063	39	0.05	22	2600	30	25	<20	40	0.24	<10	200	10	4	63
15	14300	00	~0.2	1.70	10	40	N 0	3.03	~1	40	55	1502	7.41	<10	1.89	686	37	0.04	20	2400	48	10	<20	63	0.14	<10	135	<10	4	59
16	14366	05	~0.2	1 60	10	45	~5	2.04	~4	50	404	4700	7 00	-40	4 00															
47	14267		-0.2	1.00	10	40	~0 ~5	2.94	51	29	134	1/29	7.22	<10	1.93	665	25	0.04	38	2130	26	20	<20	42	0.17	<10	148	10	5	- 54
40	14307	90	~0.2	1.03	15	40	<0	2.11	<1	62	51	1184	1.12	<10	1.81	614	22	0.03	15	2350	28	10	<20	40	0.14	<10	144	<10	<1	57
10	14308	105	<0.2	1.70	15	50	<5	5.95	<1	57	52	760	7.29	<10	1.75	932	22	0.03	15	2260	30	15	<20	150	0.07	<10	113	<10	14	55
19	14369	45	<0.2	1.64	5	50	<5	4.90	<1	58	43	676	6.54	<10	1.86	937	15	0.03	12	2200	22	15	<20	95	0.07	<10	116	<10	9	56
20	14370	85	0.6	0.80	5	65	<5	5.61	1	34	84	855	5.71	<10	1.85	956	30	0.02	15	2020	26	10	<20	197	<0.01	<10	46	<10	3	53

CHRISTOPHER JAMES GOLD CORP.

•

)

•

Ì

ICP CERTIFICATE OF ANALYSIS AK 99-524

ECO-TECH LABORATORIES LTD.

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЪ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
21	14371	55	<0.2	1.88	15	40	<5	4.23	<1	49	52	1667	7.84	<10	2.10	864	18	0.03	18	2150	36	<5	<20	70	0.13	<10	138	10		62
22	14372	50	<0.2	1.88	10	40	<5	2.80	<1	53	78	1863	7.72	<10	1.98	667	55	0.04	21	2410	32	15	<20	36	0.18	<10	135	10	2	50 50
23	14373	60	<0.2	1.77	5	50	<5	3.19	<1	56	60	2122	8.74	<10	1.97	739	34	0.03	22	2290	28	10	<20	53	0.10	<10	121	<10	-1	61
24	14374	70	<0.2	1.88	10	50	<5	4.33	<1	59	69	1636	8.08	<10	2.13	848	17	0.03	20	2280	28	10	<20	90	0.10	<10	144	<10	~1	64
25	14375	20	<0.2	1.03	10	30	<5	3.30	<1	18	44	299	3.51	<10	0.92	630	<1	0.03	6	1700	20	10	<20	42	0.10	~10	09	10	22	04
																	•	0.00	Ť				-20	72	0.10	10	50	10	~~	33
26	14376	70	<0.2	1.73	20	45	<5	4.65	<1	53	54	1359	7.44	<10	1.69	705	27	0.03	19	2360	34	15	<20	54	0.11	<10	104	10	5	56
27	14377	80	<0.2	1.93	15	40	<5	4.89	<1	45	54	1437	7.67	<10	2.01	872	61	0.03	22	2510	36	10	<20	55	0.13	<10	136	10	5	33
28	14378	35	<0.2	2.59	5	55	<5	6.13	<1	40	111	1047	7.38	<10	3.13	1238	22	0.03	29	2720	40	25	<20	137	0.10	<10	220	<10	10	69
29	14379	95	0.8	2.16	10	25	<5	7.92	2	34	66	1120	6.91	<10	2.44	1308	28	0.03	19	2570	40	10	<20	329	0.03	<10	126	<10	28	91
30	14380	150	<0.2	1.81	15	45	. <5	3.97	<1	63	66	1469	8.38	<10	1.91	797	32	0.03	19	2300	36	10	<20	97	0.00	<10	123	<10	<1	64
																								ψ.	0.10		120	10	••	04
31	14381	180	<0.2	1.93	15	50	<5	2.38	<1	96	59	2071	9.52	<10	2.07	736	25	0.03	22	2350	36	10	<20	53	0 17	<10	141	10	<1	69
32	14382	60	<0.2	2.56	35	40	<5	2.77	<1	50	123	706	7.77	<10	2.89	865	<1	0.03	42	3160	52	25	<20	41	0.28	<10	216	10	4	77
33	14383	95	<0.2	1.82	25	45	<5	2.42	<1	70	69	1215	6.91	<10	1.78	714	19	0.03	17	2480	40	10	<20	37	0.17	<10	125	10	7	65
34	14384	110	<0.2	1.39	20	10	<5	2.39	<1	50	55	1049	5.58	<10	1.25	594	26	0.03	14	2150	26	25	<20	18	0.13	<10	102	10	5	52
35	14385	150	<0.2	1.76	20	35	<5	2.34	<1	57	58	1348	8.14	<10	1.78	780	26	0.04	18	2370	34	<5	<20	32	0.16	<10	134	10	<1	68
																						-								00
36	14386	95	<0.2	1.81	5	70	<5	4.31	<1	69	53	1265	8.70	<10	1.77	967	38	0.04	15	2370	24	<5	<20	82	0.14	<10	157	<10	<1	65
37	14387	65	<0.2	1.85	25	55	<5	3.31	<1	88	59	1240	8.71	<10	1.80	958	28	0.04	15	2550	40	<5	<20	55	0.19	<10	170	10	2	71
38	14388	45	<0.2	1.67	20	40	<5	5.69	<1	99	42	1116	7.28	<10	1.60	1116	23	0.04	12	2150	32	<5	<20	66	0.12	<10	140	1	3	61
39	14389	65	<0.2	2.26	15	45	<5	5.18	<1	64	72	1290	9.43	<10	2.26	1266	18	0.05	20	2580	46	15	<20	59	0.23	<10	224	<10	7	83
40	14390	50	0.2	2.05	15	40	<5	5.36	<1	32	43	806	7.01	<10	2.14	1216	4	0.03	14	2390	40	<5	<20	116	0.17	<10	163	10	9	71
41	14391	135	<0.2	2.11	20	55	<5	4.25	<1	39	67	1184	8.04	<10	2.14	1069	6	0.04	18	2520	44	15	<20	115	0.20	<10	173	10	6	72
42	14392	85	<0.2	1.97	15	35	<5	3.60	<1	32	62	741	6.74	<10	1.70	898	5	0.04	15	2320	36	20	<20	45	0.18	<10	166	10	3	72
43	14393	30	<0.2	1.84	15	20	<5	3.09	<1	17	56	268	3.55	<10	0.66	386	9	0.06	6	2160	36	<5	<20	36	0.12	<10	120	10	20	26
44	14394	10	<0.2	1.84	10	35	<5	3.95	<1	23	63	352	5.10	<10	1.46	816	8	0.05	13	2080	36	15	<20	47	0.17	<10	158	10	20	47
45	14395	15	<0.2	1.97	135	55	<5	5.45	1	19	43	507	5.94	<10	1.73	1041	16	0.04	11	2190	38	25	<20	101	0.06	<10	134	10	28	60
46	14396	185	<0.2	2.22	35	65	<5	5.12	<1	39	139	1081	8.11	<10	2.58	1286	29	0.04	49	2370	46	25	<20	88	0.19	<10	163	10	9	76
47	14397	350	<0.2	2.36	5	55	<5	4.66	<1	61	66	1618	9.15	<10	2.54	1398	13	0.05	20	2500	38	15	<20	73	0.24	<10	223	<10	4	81
48	14398	145	<0.2	1.65	15	40	<5	3.91	<1	52	41	876	5.75	<10	1.49	1036	11	0.03	9	2020	36	10	<20	64	0.16	<10	126	10	12	60
49	14399	180	<0.2	1.70	20	60	<5	4.98	<1	77	78	977	8.68	<10	1.57	1103	24	0.04	18	1960	32	<5	<20	84	0.17	<10	150	<10	3	64
50	14400	210	<0.2	1.94	20	35	<5	2.76	<1	52	63	1531	7.56	<10	1.75	942	9	0.04	20	2470	38	15	<20	41	0.15	<10	137	10	<1	71

CHRIST	OPHER	JAMES GO	LDCC	ORP.						1	CP CE	RTIFIC	CATE O	FANA	LYSIS	AK 99-	524								ECO-TI		BORA	TORIES	LTD.	
<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Сг	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
<u>OC DAT</u> Resplit	[A :																													
1	14351	115	<0.2	1.67	5	60	<5	2.80	<1	37	80	1165	6.88	<10	1.78	553	1	0.03	23	2360	22	15	<20	40	0.17	<10	168	10	4	45
36	14386	135	<0.2	1.78	5	60	<5	4.30	<1	65	47	1209	8.44	<10	1.75	943	38	0.04	15	2430	28	<5	<20	75	0.14	<10	157	<10	4	64
Repeat	:																													
1	14351	110	<0.2	1.66	5	65	<5	2.80	<1	34	82	1198	7.07	<10	1.72	579	2	0.04	21	2250	18	10	<20	40	0.16	<10	164	<10	6	40
10	14360	110	<0.2	2.34	5	50	<5	2.14	<1	45	60	1914	9.87	<10	2.72	649	18	0.04	27	2520	36	5	<20	30	0.23	<10	194	<10	<1	68
19	14369	45	<0.2	1.75	10	60	<5	5.14	<1	61	42	692	7.03	<10	1.95	988	16	0.03	13	2320	22	10	<20	101	0.08	<10	125	10	11	60
36	14386	80	<0.2	1.80	10	65	<5	4.31	<1	. 70	53	1274	8.63	<10	1.76	956	39	0.04	17	2450	30	10	<20	72	0.15	<10	157	10	. 3	65
Standa	rd:																													
GEO'99	1	125	1.0	1.92	75	170	15	1.82	<1	22	67	82	4.13	<10	1.05	730	<1	0.03	24	740	24	5	<20	59	0.11	<10	86	20	9	74
GEO'99	i i	130	0.8	1.90	75	190	10	1.98	<1	23	78	84	4.14	<10	1.12	720	<1	0.03	24	740	24	10	<20	65	0.13	<10	93	<10	8	74

.

df/496 XLS/99 cc: ron wells fax @ 372-1012

)

. 1

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer P٩

•

1

Ì

1

Page 3

8-Oct-99

1

1

1

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-541

1

1

1

1

1

1

1

}

1

1

}

Į

1

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 68 Sample type: Core PROJECT #: NB2-02 SHIPMENT #: 2 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	14401	175	0.4	1.21	<5	30	<5	1.83	<1	32	35	1485	5.38	<10	1.30	679	17	0.03	8	1450	<2	<5	<20	34	0.06	<10	87	<10	<1	40
2	14402	520	0.8	1.21	<5	35	<5	1.85	<1	26	38	2272	5.51	<10	1.35	678	12	0.03	12	1430	<2	10	<20	33	0.08	<10	109	<10	<1	30
3	14403	145	<0.2	0.96	<5	30	<5	1.56	<1	21	39	1123	3.68	<10	0.87	427	11	0.03	7	1420	<2	5	<20	30	0.05	<10	86	<10	<1	28
4	14404	150	<0.2	1.13	<5	30	<5	1.50	<1	20	190	1507	5.21	<10	1.04	513	27	0.03	11	1510	<2	<5	<20	23	0.00	<10	100	<10	-1	24
5	14405	150	0.4	1.32	<5	35	<5	2.17	<1	24	39	1560	5.52	<10	1.34	724	17	0.03	6	1480	<2	<5	<20	35	0.06	<10	103	<10	<1	41
																						-			0.00			10		71
6	14406	115	0.4	1.33	<5	35	<5	2.11	<1	25	24	1676	5.73	<10	1.31	718	10	0.03	7	1530	<2	<5	<20	33	0.06	<10	114	<10	<1	40
7	14407	65	0.2	1.50	10	40	<5	3.76	<1	30	35	1397	5.54	<10	1.44	807	17	0.02	6	1470	<2	5	<20	117	0.03	<10	107	<10	2	38
8	14408	85	0.2	1.06	<5	30	<5	1.91	<1	25	33	1469	5.10	<10	0.99	540	13	0.03	8	1570	<2	<5	<20	32	0.05	<10	108	<10	<1	31
9	14409	120	0.6	1.18	5	40	<5	3.54	<1	34	32	1822	5.69	<10	1.08	809	21	0.03	7	1490	<2	<5	<20	93	0.03	<10	92	<10	<1	37
10	14410	295	0.6	1.12	<5	30	<5	2.45	<1	28	22	2475	5.36	<10	1.09	672	15	0.03	6	1400	2	<5	<20	39	0.00	<10	112	<10	<1 <1	38
																			-		-			00	0.00	-10			- 1	50
11	14411	155	<0.2	1.02	<5	30	<5	1.91	<1	15	25	999	4.91	<10	0.96	544	8	0.03	7	1460	<2	<5	<20	31	0.05	<10	124	<10	e1	32
12	14412	90	<0.2	0.85	5	25	<5	3.22	<1	7	24	330	2,16	<10	0.84	678	12	0.02	3	1180	<2	10	<20	37	0.05	<10	75	<10	12	20
13	14413	170	<0.2	1.14	<5	40	<5	2.38	<1	24	40	1284	4.91	<10	1.11	650	19	0.03	7	1540	2	<5	<20	30	0.06	~10	117	<10	-1	25
14	14414	265	<0.2	1.15	5	35	<5	2.25	<1	27	25	1578	5.30	<10	1.23	646	21	0.03	. 6	1450	2	<5	<20	35	0.00	~10	107	<10	~1	20
15	14415	190	<0.2	1.35	<5	40	<5	3.27	<1	25	25	1207	5.98	<10	1 4 1	795	12	0.02	Ř	1480	2	~5	~20	53	0.00	~10	140	~10		29
					_		_						0.00					0.02	v	1400	2	-0	-20		0.05	-10	119	~10		31
16	14416	390	0.4	1.45	10	40	<5	3.34	<1	63	21	2277	6.68	<10	1.51	808	18	0.02	6	1400	<2	<5	<20	67	0.04	~10	118	~10	<i>r</i> 1	40
17	14417	640	<0.2	1.30	<5	40	<5	4.13	<1	24	32	1155	5.28	<10	1 4 1	860	74	0.02	â	1520	~	10	~20	0/	0.04	~10	100	<10	2	40
18	14418	675	0.4	1.39	5	50	<5	7.11	<1	17	18	1809	4 36	<10	1 24	1101	23	0.02	5	1460	-2	5	~20	404	0.03	~10	109	10	40	30
19	14419	>1000	<0.2	1.19	<5	50	<5	2.35	<1	11	41	489	4 40	<10	1 13	561	14	0.02	7	1600	7	ن ء~	~20	101	0.01	10	13	<10	10	36
20	14420	530	<0.2	0.85	<5	60	<5	5.91	<1	10	21	473	3.47	<10	1.10	062	20	0.03		1090	4	<0 40	~20	44	0.05	<10	119	<10	<1	32
-0	14420	550	-0.2	0.00	-0	50	-0	0.51	-1	10	21	-13	5.47	~10	1.04	90Z	03	0.01	4	1260	4	10	<20	147	<0.01	<10	26	<10	26	20

CHRISTOPHER JAMES GOLD CORP.

.

ICP CERTIFICATE OF ANALYSIS AK 99-541

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
21	14421	325	0.2	1.09	<5	75	<5	4.73	<1	10	31	1279	4.68	<10	1.16	923	18	0.03	8	1350	4	10	<20	171	0.01	<10	102	<10	10	
22	14422	255	<0.2	1.34	<5	45	<5	3.46	<1	25	22	1316	6.24	<10	1.38	843	26	0.03	7	1530	2	<5	<20	60	0.01	~10	103	~10	-1	30
23	14423	405	0.2	1.11	<5	35	<5	2.35	<1	24	35	1164	5.69	<10	1.11	661	19	0.03	7	1500	Ā	<5	<20	37	0.05	~10	105	<10	-1	
24	14424	405	<0.2	1.32	<5	40	<5	1.84	<1	18	32	1174	6.77	<10	1.36	606	14	0.00	, 8	1600		-5	<20	20	0.03	<10	100	<10	~1	35
25	14425	510	<0.2	1.18	<5	40	<5	2.45	<1	12	36	1288	5 27	<10	1 21	612	14	0.03	7	1620	7	-5	~20	29	0.07	<10	138	<10	<1	40
									-				•			012	14	0.00	,	1550	-	-0	~20	35	0.00	<10	123	<10	<1	36
26	14426	300	<0.2	1.32	<5	45	<5	1.79	<1	20	34	746	6.52	<10	1 30	500	8	0.03	0	1600		10	~20	20	0.00	-10	450	-40		
27	14427	675	<0.2	1.22	<5	50	<5	1.86	<1	26	32	1863	6.00	<10	1 31	587	24	0.03	ő	1690	-	~5	~20	29	0.08	<10	153	<10	<1	35
28	14428	>1000	0.8	1.07	<5	40	<5	2.16	<1	24	67	3165	5.57	<10	1 10	550	70	0.03	9	1420	4	~5	<20	30	0.06	<10	112	<10	<1	41
29	14429	555	0.6	1.05	<5	45	<5	1.59	<1	19	34	1918	5.69	<10	1.10	462	10	0.00	7	1650	7	~0 ~E	~20	40	0.05	<10	90	<10	<1	41
30	14430	>1000	1.8	1.03	<5	40	<5	1.73	<1	26	26	5561	6 15	<10	1.03	534	10	0.03	10	1720	4	<0	<20	31	0.05	<10	111	<10	<1	38
							•			.20		0001	0.15	10	1.05	554	9	0.03	10.	1730	Ζ.	10	<20	32	0.05	<10	104	<10	.<1	45
31	14431	>1000	3.4	0.43	<5	30	<5	4.31	2	22	21	3912	5 04	<10	0.93	791	13	0.02	7	1370	2	4	-20	164	-0.04	-10	24		•	~~
32	14432	265	1.8	0.37	<5	50	<5	5.41	1	16	46	2005	5 13	<10	1 28	000	14	0.02	é	1390	2	5	~20	104 1	SU.U1	<10	34	<10	z	38
33	14433	95	0.4	0.22	15	55	<5	2.89	<1	R	33	308	2.26	<10	0.55	487		0.02	2	1000		10	~20	190 .	<0.01	<10	40	<10	8	34
34	14434	30	<0.2	0.30	<5	100	<5	2.81	<1	7	20	149	2 37	<10	0.62	515	ě	0.02	-1	000	4	-5	~20	104 *	<0.01	<10	8	<10	12	19
35	14435	900	2.6	0.56	<5	45	<5	4.30	2	26	20	3619	5.35	<10	1 14	832	٥ ٥	0.00	0	1470	7	\0 E	~20	102 4	<0.01	<10	23	<10	14	20
					_		_		-			0010	0.00	.10	1.14	UUL		0.02	3	1470	~	5	~20	100	0.01	<10	52	<10	2	77
36	14436	765	3.8	0.82	<5	50	<5	3.97	2	32	18	7750	9.30	<10	1.27	872	35	0.02	11	2090	8	~ 5	-20	141	0.02	~10	04	-10	-4	70
37	14437	465	4.0	0.35	5	30	<5	3.99	4	84	15	4336	7.28	<10	1.07	899	21	0.02		1460	28	<5	<20	122	~0.02	~10	25	<10	~1	13
38	14438	395	1.6	0.33	35	30	<5	5.04	2	43	50	3415	4.77	<10	1.16	960	13	0.01	ĕ	1520	18	-5	~20	222	~0.01	~10	30	<10	51	64
39	14439	385	<0.2	1.32	10	55	<5	4.48	<1	39	24	1350	6.41	<10	1.46	1009	12	0.03	10	1640	8	10	~20	160	0.01	<10	19	<10	3	59
40	14440	300	<0.2	1.07	5	40	<5	2.74	<1	26	57	2028	5.61	<10	1.07	692		0.03	8	1890	10	-5	~20	51	0.04	<10	120	< 10	<1	50
																	·	0.00	Ŭ	1000		-0	~20	31	0.05	~10	124	<10	< I	50
41	14441	230	0.4	1.18	5	75	<5	4.46	<1	18	18	2020	4.94	<10	1.17	836	14	0.03	7	1610	10	10	<20	142	0.03	~10	02	~10		46
42	14442	165	<0.2	1.03	5	40	<5	2.24	<1	15	148	1173	4.33	<10	0.98	589	17	0.03	9	1560	10	<5	<20	52	0.05	~10	93	-10	-1	40
43	14443	135	<0.2	1.17	<5	50	<5	1.57	<1	18	30	1258	6.07	<10	1.03	498	10	0.04	7	1820	10	<5	<20	44	0.00	~10	120	<10	~1	40
44	14444	90	<0.2	1.24	<5	40	<5	1.45	<1	18	57	1020	6.14	<10	1.16	520	10	0.03	9	1860	12	<5	<20	40	0.00	~10	139	<10	-1	40
45	14445	65	<0.2	1.06	10	55	<5	4.08	<1	21	22	1178	6.34	<10	1.48	934	16	0.03	9	1710	6	<5	<20	144	0.00	~10	147	<10	~1	40
																			•		Ŭ	~0	-20	144	0.02	10	117	~10	3	40
46	14446	70	0.2	1.09	15	45	<5	7.20	3	26	26	1286	5.98	<10	1.56	1157	42	0.02	9	1430	48	15	<20	227 .	<0.01	~10	40	~10	20	E 4
47	14447	135	0.6	1.48	<5	60	<5	5.00	<1	17	38	1725	5.60	<10	1.49	956	11	0.03	11	1630	10	10	~20	154	0.01	<10	49	<10	20	04
48	14448	175	0.6	0.90	<5	60	<5	6.05	<1	19	16	798	4.95	<10	1.42	1121	17	0.02	9	1670	8	15	~20	252	~0.02	~10	50	~10	47	51
49	14449	65	<0.2	1.39	<5	40	<5	2.93	<1	31	32	944	6.30	<10	1.40	837	10	0.03	Ř	1750	10	10	~20	203 -	0.01	<10	100	< 10	17	40
50	14450	10	<0.2	1.07	<5	55	<5	3.65	<1	16	69	216	5.04	<10	1 20	708	11	0.00	3	1960	10	~5	~20	76	0.04	<10	120	<10	<1	52
																		0.02	0	1300	10	~U	~20	75	0.04	<10	121	<10	<1	40
51	14451	95	<0.2	1.33	10	45	<5	4.64	<1	39	36	1060	6.25	<10	1.47	963	29	0.03	Q	1700	8	5	<20	141	0.02	~10	100	-10	- 4	40
52	14452	230	<0.2	1.64	10	85	<5	4.58	<1	29	45	1031	6.05	<10	1.91	1078	14	0.03	16	1880	10	10	<20	104	0.05	~10	120	<10	<1	46
53	14453	55	0.4	0.39	15	40	<5	5.31	<1	22	24	824	3.13	<10	0.83	925	50	0.01	.0	1270	4	10	~20 ~20	102 -	0.05	<10	100	<10	40	63
54	14454	45	<0.2	1.54	15	45	<5	6.14	<1	26	20	820	5.17	<10	1.41	1123	18	0.02	7	1670	10	<5	<20	717	<0.01	<10	10	<10	10	19
55	14455	45	<0.2	1.49	10	35	<5	2.95	<1	32	45	918	6.18	<10	1.47	898	11	0.03	10	1910	12	~5	<20	62	0.01	<10	120	<10	11	60
							-		•			÷.•				000		4.44		1910	14	~0	~40	UL.	0.00	NU	130	< IU	<1	- 58

Page 2

CHRISTOPHER JAMES GOLD CORP. ICP CERTIFICATE OF ANALYSIS AK 99-541 ECO-TECH LABORATORIES LTD. Et #. Tag # Au(ppb) Ag Al% Bi Ca % As Ba Cd Co Cr Cu Fe % La Mg % Mo Na % Ni Р Mn Pb Sb Sr Ti% Y Sn U v w Zn 14456 56 30 <0.2 1.34 5 35 <5 2.58 <1 20 23 785 5.25 <10 1.31 814 9 0.03 6 1780 10 10 <20 54 0.06 <10 <1 57 121 <10 57 14457 35 <0.2 1.40 <5 60 <5 3.92 <1 28 32 707 6.19 <10 993 1.49 9 0.03 8 1960 10 <5 <20 97 0.05 <10 155 <10 5 70 58 14458 30 0.2 0.59 10 45 <5 5.14 <1 37 692 40 5.13 <10 1.47 1091 18 0.02 8 1640 50 35 <20 173 < 0.01 <10 53 <10 9 50 59 14459 <0.2 40 0.82 <5 40 <5 3.90 <1 57 35 966 5.62 <10 1.32 1007 14 0.03 7 1790 8 10 <20 106 0.02 <10 107 <10 6 58 60 14460 <0.2 1.05 45 5 25 <5 4.26 <1 44 14 577 3.32 <10 1.40 917 8 0.03 2 1090 2 10 <20 56 < 0.01 <10 39 <10 6 44 61 14461 55 <0.2 0.67 <5 40 <5 4.58 <1 29 27 929 2.76 <10 1.10 736 7 0.02 3 1210 6 15 <20 90 < 0.01 <10 32 <10 20 38 62 14462 85 <0.2 0.70 <5 35 <5 4.21 <1 24 19 1000 3.03 <10 1.00 663 13 0.02 5 1290 4 10 <20 78 0.01 <10 48 <10 15 34 63 14463 55 <0.2 1.40 <5 45 <5 2.83 <1 14 40 335 5.02 <10 1.26 816 8 0.04 6 1650 10 10 <20 58 0.06 <10 142 <10 47 8 14464 0.75 64 105 <0.2 <5 60 <5 4.13 <1 32 14 545 4.87 <10 1.25 931 7 0.03 4 1510 4 20 <20 106 0.02 <10 89 <10 8 41 65 14465 110. 0.2 0.41 10 40 <5 5.71 <1 41 19 653 5.29 <10 1.47 1052 12 0.02 7 1860 6. 10 <20 232 < 0.01 <10 52 <10 9 58 66 14466 55 0.2 0.25 20 45 <5 4.46 <1 37 14 529 3.66 <10 1.16 726 30 0.02 4 1450 8 20 <20 229 < 0.01 <10 22 <10 7 43 67 14467 160 0.6 0.36 200 35 <5 3.62 <1 20 26 2300 3.76 25 <10 1.02 642 0.02 4 1240 8 35 <20 140 < 0.01 <10 17 <10 5 109 68 14468 535 0.2 0.23 30 15 <5 3.51 <1 52 36 1354 4.22 45 <10 0.99 539 0.02 4 1330 6 20 <20 182 < 0.01 <10 15 <10 5 37 OC DATA: Resplit: 1 14401 190 <0.2 1.23 5 30 <5 1.91 <1 38 32 1461 5.69 <10 1.29 692 17 0.03 9 1670 8 5 <20 35 0.06 <10 87 <10 <1 44 36 14436 >1000 4.6 0.81 <5 40 <5 4.06 <1 35 19 7481 9.44 <10 1.23 865 34 0.02 10 2160 14 <5 <20 134 0.01 <10 90 <10 <1 72 Repeat: 14401 200 0.2 1.29 10 1 30 <5 1.92 32 1546 <1 34 5.64 <10 1.38 713 18 0.03 8 1510 <2 10 <20 36 0.07 <10 94 <10 <1 42 10 14410 390 0.6 1.15 <5 40 <5 2.52 <1 28 22 2457 5.50 <10 690 14 1.11 0.03 6 1490 6 <5 <20 47 0.05 <10 113 40 <10 <1 19 14419 >1000 <0.2 <5 55 1.21 <5 2.39 <1 12 47 486 4.52 <10 1.15 570 14 0.03 7 1730 8 5 <20 45 0.05 <10 122 <10 <1 33 36 14436 >1000 5.8 0.86 <5 40 <5 4.28 <1 33 19 7444 9.68 1.32 901 33 <10 0.02 11 2250 12 <5 <20 143 0.01 <10 96 <10 <1 77 45 14445 <0.2 65 1.09 <5 50 <5 4.14 <1 21 23 1169 6.50 <10 1.49 947 16 0.03 8 1790 10 5 <20 142 0.02 <10 121 <10 2 50 54 14454 40 <0.2 1.53 10 50 <5 6.06 <1 26 20 824 5.06 <10 1.41 1109 19 0.02 8 1660 8 10 <20 214 0.01 <10 86 <10 14 64 Standard: GEO'99 130 1.0 1.75 60 160 <5 1.85 <1 20 58 92 3.84 <10 0.90 670 <1 0.02 24 720 24 5 <20 55 0.08 <10 72 <10 8 68 GEO'99 1.80 70 160 <5 82 3.88 130 1.0 1.86 <1 20 54 <10 0.92 675 23 <1 0.02 750 22 <5 <20 55 0.08 <10 76 <10 9 70

1

1

Ì

1

1

...

1

1

1

1

Ĩ

ł

1 .

df/541 XLS/99 cc: ron wells fax @ 372-1012

1

1

)

1

1

APPENDIX C

Drill Sections Figure 9 and 10 NBZ 99-01 and 02

•.

1

4 17

* . **\$**

•

*

٠

÷ -

+ 1-

Ŋ.,

.

4.

· •

+ 1-

PHASE 2 DIAMOND DRILLING 1999

APPENDIX D

Diamond Drill Logs and Relevant Analytical Data

1	I	1	1	1	1	1	1	1	1	1	1	1	l	1	ţ.	1	Ì	
\$ ¹	e en							*										

KAMLOOPS GE	OLOGICAL SERVICES LTD	SUMMARY DRILL LOG:	NBZ99-03
PROPERTY	:BIG KIDD	OWNER	:CHRISTOPHER JAMES GOLD CORP.
NTS	:92H/15E	MINING DIVISION	:NICOLA MD, BC
CLAIM	:HALO 100	LINE/STATION	:11624N : 23537E
GRID	:BIG KIDD-BIG SIOUX	INCLINATION AT COLL	AR : -67
CASING	:3.66M	AZIMUTH	: 210º SSW
LENGTH	:294.74M	ACID TESTS	: @ 93.88M -65; @183.00M -67; @ 290.00M -67
LOGGED BY	:Ronald Wells P.Geo., FGAC	DRILLED BY	: CORE ENTERPRISES LTD
DATE	:3 to 23/10/99	DATES	: 23/9/99 To 2/10/99
CORE LOCATIO	ON: AMEX. KAMLOOPS	CORE SIZE	: NQ

PURPOSE OF THE HOLE: This hole was drilled from the northeastern edge of the Big Kidd breccia pipe inward. It was the steepest of the three holes drilled below Placer Dome trench 92-2 which averaged 0.56 g/t gold and 0.112% copper over 32.5 metres in altered intrusion breccia. The other holes drilled from this set-up were NBZ99-01 and 02. These holes also tested an area which at 160 to 200 vertical depth had produced 1-3 g/t gold intersections in 1997 holes BK97-04, BK97-05 and 1992 Hole 1.

R.C.Wells, P.Geo, FGAC, Kamloops Geological Services Ltd.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-03

Page No.1

LITH	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	<u>م</u>	M	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			% P	S I	Sample No.	From	To	Cu ppm	Au	1~
0-3.66 CASING	Talus and sandy overburden										•		
3.66-6.12 Heterolithic Intrusion Breccia, mod. magnetic	Very reduly receivery in provision be 1990-6-12 Party crowdad, fine - med clad metrix supported. Subaryolar metric - velcanty, diarity - manarchic claste	Generally weak patchy permits carbonalt, bace small carbonate cirty, match & delitions local dark charing	20	Low to moderate desying to - cich Corte.	Presominanty pre local med. discon pototas, local versilet R. Potota No.	2-4	Tr	[450]	4.40	6.12	1923	120	
6.12 - 16-20 Plagioclase - Harnblenda	6-12-8-53 Fairly constant provides perphyry. 1-34 tobucar hal he comm. Find agaignorular at hp. Local 1-350	weak pervasive carbonate, fine priman ? K feldspar in groudness weak growtness chlorite alteration laced mode anisat distant marship	かい	BO'CA" contact must density fine core and P, white 30:40 CA. Local 6514 grz vins	Mainly v fine the fine verifiet pyrite. Local fine disseminated.	1-3	-	14502	6.12	\$-53	605	50	
Porphyry Dyke. Potassic Mongonite. Weak to	8-53-12-13 As general description Light pinkisis K-feldspor groundmast Fairly crowdast plasioclase phenos	weak - moderate permasive grandmass carbonate (k. feldys) kenelitas are chieritiated as are		General law density 30-50°CA. Carbonate + poidate,	As above fine veinlet and disceminated by Local coase manufil	(-3	-	14503	\$.53	10.53	632	40	
hocal small chloribied	>> Hbl. Xenaliths upto ISCM Some with coarse magnetite. Most are charite	some hornblende phenocrysts.		fine verilets. Some larger 912-core vering to Sam Joke R mint	with xaralithe			14504	10.93	12.93	12.42	\$5	
Mafri Kanolitus. These can be strongly mynetic	12.93-16.20 Minised grey to pink plagioclase > Komblende porphyny, k fald stronger 14:0-16:0m. Bebu churdad plagioclase portiging zone flow alad plagioclase portiging zone	As above, Generally patchy. local moderate magnetic		Low density of fix carbonate verilets zo-zoica. fixer ep- carb. Flow alignment so-stick and include	Fire disem. and Verialist By book f/m.gr-ined By in dioritic renovities	1-3	1	14505	12. 93	16.20	613	30	
16.20-56.98 Heterolithic Intrusion	16-20-30-02 Fire to medium size clast. Altered green	Patchy pervasive generally weak local moderate metrix	1000	General low density of fine		A-7	Tr	14506	16.20	19.20	1539	80	
Breccia. Variasy Magnetic.	Clasts predominate. 5.8%. pink K. feldspor maganite	corbonate and some clasts. 5-7% epidote jotches in matrix. K. feldsports patchy	2000	Carbonate and Local film grained Py veris and		4-6	Tr	14507	19-20	22.20	1425	\$5	
	and plagioclase perphysy clasts. Matrix supported fine to medium provided discit. L	in matrix - some is morgonite clasts other is alteration	10.68	verilets 40-70°CA Minor epidate Verilets.	significant amounts	4-7	Tr	14508	22.20	25.20	1698	101	-
	altered. Many smaller clasts	•	00	Carbonate - charty	of wellrock fine by local med/coarse	3-6	Tr -)	14 5 09	25.20	26.70	151	60	
	ere subangular. Larger 710cm Monzonite clasts are subrounded	bleached care well necks to vein pick henetic, remnant magnetic. Success in vein of the order church	0.00		cry and magnetite.	3-4 2-4	Tr Tr	1451D 14511	26.70 28.20	28·20 30·02	1546 2061	· • • 5 • • • 3	•
		, , , , , , , , , , , , , , , , , , ,	Γ								1	1	1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . R.S. Lantis

DATE 3Qcboser.(1)

1

DIAMOND DRILL LOG

1

BIG KIDD PROPERTY

]

1

1

1

DDH.NBZ99-03

Page No. 2

				The second s									4
LITHC	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	Þ	py.	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			%	8	Sample No.	From	То	Cu ppm	Au ppb	170
	30.02-40.70 Failing distinct section of mixed fine-mad size clast heferithic breccia.	Voriable - patchy weak to moderate pervasine carbonate 5-10% green epidote clots	00 00 00 00 00	weak - mad alensik, of t-fine carbante - t epidate veintets	Patchy fine, med local coarse could magnetites pyrite in	2-4	Te	14512	30.02	33.02	1403	85	
	More matrix (diorite) sypported with 10-15% pink monzonite clasts. Rest are predominanty	disseminated in matrix and at clast contacts throughout.	60,000	to CA . Local high Argh CA. By	matrin. Some high angle by verinlets. Widespread 41%	2-4	Tr	14513	33.02	36.02	1619	115	Ī
	green mafie makavolcasie and grey manzonike-dionike. Subayular to local subsounded clasts. Makin	k. feldspor distinct from clasts. Local M/c magnetite with epidole	04000	c magnetile. Sume c magnetile. Sume c larger yoto 7mm. high angle CA cord	med/ coarse grained matrix magnetite Trace fine Cpy	2-4	τr	14514	36.03	39.02	1452	120	
	is fine-med. grained altered. weak to local mode magnetic	Some patchy light coloured matrix areas, may be allitic	2) veins "esp 400-40.70 veng et 40.70 60.70 60 ch carbo do vein	high angle fractures.	3-6	Tr	14515	39.02	40.70	1785	105	f °
	40.70 - 46.04 Sinilar & above but includes some coarse matic netavolcanic- https://www.	Moderate pervasive matrix carbonate. 5-8% epidate clots	NASS OF	Moderate increasing to high deasily of fine carbonate and	Fine to course By often in patches and uninlete mainly	4-7	Tr	14516	4 6.70	43.70	1741	60	1
	clasts > socm , weak altered matrix to clast supported. 5-10% pink mayorite clast (incl) med mysel	Locally nerging into megular pervasive patetas. weak patetag K. falazor sear top A to modern disponsibili at later souther.		epidate vaislets downhole some by. variable angles ch local state vains	matrix some clasts increases chromonels Dreven M/c magnetite	4-7	Tr-1	14517	4370	46.06	2432	120	1
	patassis firs Her meanaite at planthe	Roid - Alteshed care-all dk chi below	Ľ	Actes to the second	Verslet and by Esp Kall	3.5	Tr	14518	46.06	46.99	1061	95	1
	46.19-56.98 Predominanty fine. Clast Local medium, matrix	weak - noderate pervasive matin carbonate. creak to non carbonaly	000	Moderate density	Fine to med. grained By as dissemprovide	4-7	Tr	14 519	46.99	49.00	942	50	1
	supported and heterolithic. Mainly green mafei metavolcanic clasts. 10-15% mane rounded	clasts however many have verifets Variable matrix epidote clots	0,0,0,0	cpidate = carb. Usialets. Perasive bands tend to be	commonly clusters in mattix, some manzonite clasts.	3-5	Tr	14 520	49.00	52.00	1232	300	50
	pink manzonite posphyry clasts. Strong altered fire-med grained metrix Upriable	somes, veinlets common. Approv 10% of clasts have to feldspor	9.9880	60-70 CA. Local fire My verilato 50-70 CA.	Local fine A winkts Patchy M/c dissem. magnetice in K. feld.	4-6	T,	14 521	52.00	55.00	1171	75	
	weak- mod. nogretie	ate. Mins. Party weak - Mad. Metrix K. felds per esp. near top Thetem. local motion blocking at	00	2	and in some epidate	4-6	Tr	14522	55.00	56.98	945	145	;
26.75 - 57. Mafic Dyke Maryin	mer-green, pyrine county see to dyke	story pervasive chi, carb remark mayne	¥//	A south of the second second	verse of fire grained B.	5-7	1	14523	56.98	57.80	1733	135	1
57.80-64.00 Pink Potassic Monzonite Dyke. K.feldspor rich	size - 52-10 First pink K. feldsport rich groundmass, first tabelar harnblende (chloritized), plagioclask	much of pink K. Paldspor will be attended as well as priman cm. scale finis grained a sinch		, Local flow aligament soi-coica Also muderate densite	Miner Uptime clissen. Py. local film grained	Tr-2	Ti	14524	57.80	60.00	343	35	
and altered. Equigranular to constant playtoclase Rephys	(dominant) planecyste after crudes mad. magnetic. Social & two maps	selvages to high angle eard - dk.chlarite vordets. local with cart		of Soi Lo'CA Carb.	upto some width.								

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . Kin GALLS

DATE 3. October (7)3.

. .

DIAMOND DRILL LOG

BIG KIDD PROPERTY

1

DDH.NBZ99-03

·)

1

Page No.3

1

۶

1

LITHC	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	•	ру	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L ·			×.	%C	Sample No.	from	То	Cu ppm	Au ppb	10
	See 19.2		0000	lower sharp contract 30°CA		Tr-L	T)	14525	60.00	62.10	305	15	Ī
	62.10-64.00 Minud gone of K. pelitipor rich manyante dytes who a 35m wide and autitic intrusing Br with manship	Pink K. Jel deper mongenite es above wite local renolitus, some la fecelque is clearly alloration matrix has CN. Co. & feld		Subported dybes 30°CA. Aumeron find reinlet 30°Co CA	Strong by it braccia patchy floop grained	2-5	Tr	14526	62.10	64.00	1292	98	1
64.00-75-59 Potassic Alternal Intrusion Amonin a	Fine to coarse clast braccia Some clasts > Socm. Altered	K. Jerdspar nime to many classe. Valcanie claste are strangly myrchi	00000	Medarota dansity of 55°-80° excidente	Patchy film grained matrix Ry, fine Cpy.	2-4	Ŧ	14827	64.00	67.00	1025	35	
Fins. Variably magnetic	metrovolcanic clasts dominate Matrix supported. Matrix is	Patchy epidola commonly as being selvages in manzonite clasts. Matrix to breccia is altered-	20°0°0	t carbonald veinlets. some sice carb-epichte	Local coarse R - Magnetite aggregates Kaugh rare. Sparso	3-6	Tr	14528	67.00	70.00	991	60	
	strongly altered often bleached fine & medium grained brailly obioritic. Probable prik manganite	bleached. bariable carbonate, albite? Aunarow priolote clots hocal M/c around mercekte		banded verns	Py winters generally	3-4	Tr	14529	70.00	73.00	1099	80	
	dyka e 71.80-72.32 m . harga pink-grey manzonita (plas) posphyzy clost 73.94-74.90 m.	aggregates.	0000		in mangonite clasts.	1-3	Ŧ	14530	73.00	75.59	980	35	
75:59-81:69 Heterolithic Intrusion Romain, company Karbar	Mixed fine to medical to breach alteration obscures textures. Appears to be matrix to use t	corect potchy pervasive metrix carbonate. K. feldspor occurs throughout through access in weat	200	General loss, local moderate density of 50-80 CA esidate	Fire to met. grainest patchy dissem. By	3-5	Tr	14 53 1	75.59	78.00	184/	40	
maarate nyrshi linyint	clast supported mixture of notice	moderate at top and bottom. Some clasts have k. Ald. rins	6.00	t carbonate verniet Local 50-60'CA	throughout notice areas. Local chinets Minist Line Car. Local	2-3	Tr	14 532	78.00	80.00	1470	100	ļ
	claster & few smaller claste have a feed spar ate com All for matrix	5-7% epidota clats and wins	200	By vaintets.	We maywhere with	3-5	T,	14533	80.00	81.69	1917	180	
81-69-100.27 Potassic Altered Intrusion	\$1.69-36.44 Similar to 64.00m with K. feldspar attention nod. to locally strong Friendanding	Patchy week pervosive carbonate. Patring moderate matrix K feldoon matrix blassing and a strike	Disc	density of 40.70 CA	As above pately fim grained dissem By	4-5	Tr	14534	81.69	\$4.00	1842	160	,
Breccia. Variably mognetic	Clast matrix supported breccian Roughly equal anosht of year the map Her and manyorite chart district	Variable week- nod nagretie 5-10% epidole clats and patetas desteaving deconverte.	30°0°	fine epidite 3 carb verilets, some dark chlorite	Py-mynetic aggregates Local fine winter	3-5	Tr	14535	84.00	86.44	1920	45	
	\$644-71.95 Mixed fine and coarse clost precise some large > 500m	A large number of smaller clash bave K. feldspar alt. rims		Low density of 40-70°CA carb	Predominantly firm- med. grained durben	1-3	Tr	14536	86.44	\$9.30	1822	195	;
	closs. Interstitut fine heleroliti matrix sypported breccia.	Carbonoth. For len goiche Han above. 8755-89755 Strong CHI Carb all aspectated with gh-carb V.	200	has foliation to co sure brecciated	My in matrix. Social bar angle CA. By winter and patello in your ant. The downwards	2-4	Tr	14 537	* 7 ·30	71.15	135-	85	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R.

1

1.1.1.1

DIAMOND DRILL LOG

1

. .

1

1

BIG KIDD PROPERTY

1

1

٦.

1

DDH.NBZ99-03

Page No.4

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	8	ру	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L			A P	80	Sample No.	From	To	Cu	Au	2
	See Pg. 3.		3									Ť.	ľ
	9115-9637 Mored frie-madium Clast breccia. Few clasts > Zoca. Similar to 31-69 m. Matrix	Numerous apidate clots. weak pervasive metris carbonate A documents. K. steldspor rims to	0000	low density of fine 40-70 CA carbonate and or existent	Potchy f/m dissem. Py. often as matrix potches. Some course	3-5	Ťr	14535	91-15	93.70	1923	160	Ī
	Supported, Subangular breaction 30-40% claste boue K. feld. rins Allered disuite thetris	many clasts. Variable after weak Magnetic. Locat albitic paties ofto several cm.	275	verniets.	natrix A aggregates. Rare veinlet.	3-5	Tr	14 539	93.70	96.37	1528	235	
	76-37-100-27 Strong alteration	16-37-77-48 blenched and shang carbonates 5-74 dark Line nite pathas. Pateny	1/2	20-70 CA carb	fine by as matrix clubes	4-5	Tr	14540	96.37	97-48	1551	115	1
	fin clast on some course below some albite ?	1748-100 27 Auctively to Strage paking to facto poor some of which is related to polarize manopolite Claster Strage Carty to polarize rare - 20. Brochward all of sole	X	Aunerous hairline Carts. verifiets variat angles to Ca. Austra Mar Comer Cartact.	Patchy fla graniel matrix by . Same stright like games.	2-4	Tr	14541	97.48	100-27	1029	40	
100.27- 118.40 Heterolithic Intrusion	100.27-10600 Weak hetersliken fine - med clast, metrie synortal Predomiantly green subargular	Matrix is weak carbonated with patch, epidate and each k. feldspar. Matrix k feldspar		Low density of 40:70 CA fine	Patchy fine-med dissem by in matrix	3-4	Tr	14542	100.27	103.00	רווו	140	
Breccia , Variable often moderate to stan manshi	Mapie MV clasts. 4.15% Small punk menzonite clasts. Allered med. gramed desrike metrix	A chunavard, generally weak. Patchy weak-nod. Magnetic	0 0 0 0 0	Corbonate winiek	Ry zones in volcanic Clasts.	3-4	Ŧr	14523	in3-00	106-00	807	465	
	106.0-113.40 Miked fine, mad, Coosse clost. Matrix to work clast Supported breccia. Some clasts	weak matrix carbonake. Epidole clob throughout matrix, local	8000	Low to moderate density of Jo-Tick Carto and, or saids	Fine to ned grower patches of By in notring streams in	3-4	π	14544	106.00	107.00	1100	275	
	>30cm. Mikhre of fy. green make AV. porphysike manyonite and diorike class. Matrix is	and selvinger to verintets. K. feld. 12 weak in matrix local stronger patches. Disserviced dark	76.0	Verilets Lo cal 2-5 cm. zones of intense verilets ex, carb	K. feld. altered areas	3-4	ħ	14545	109.00	1/2.00	1060	140	
	strong months.	chlorite in matrix. Local M/5.	6	chi	dissen Maynetile in	2-3	Tr	14546	112.00	113.40	789	500]
113.40-117.70 Placioelase - Kornblende	In upper part to 114.50m	strong pervession carbonete with fine chlorite to 14.50m. Weak		several carb and are gly very to lease	In upper part some fine by verifiets + carb	1-2	Tr	14547	113.40	115.00	307	80	
Perphyry Dyke. Manganitic composition	tabular plancent. Below vorially counted play In homblands portion Mad mapaki. Summers where what its	pervosive carbonate, primary? k. federar below. Some voilet related epidate.		wide. High denvily of Like Carb, 919, chi Willes - Joine Spid 30-50°CH weak kf sch	Lower part 3passes	Tr	-	14548	115.00	117.70	\$14	45]
117.70-160.93	117-70-125.84 Predam. fine clast	Fairly uniform throughout with	10	Sparse epidate ±	Fine, encelling med	3-4	Tr	14549	117.70	119.20	1442	45	1
Breccin.	Join mean marrier supported intersion breccin. Variably regula Varich, of guess make MV and mongarita clasts. MV clasts ca Subarrelar, larger revolted marriet	3-6 % natrix epidolo clobs. Local frie epidole alt. Local frie epidole alt. Local frie epidole alt. Local friesper.	0.200	Carb ve inlate 60:7 is 1 Mod. epid vainlat 0 clensity 117-7-1120 60-80 C 4.	grained dits eninated matrix Ry. Same small clusters. Minist fine Chy.	3.5	Tr	14 550	[19.20	122.20	1727	44	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY A.S. Ketter

DATE 19. October. 1.975.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

1

DDH.NBZ99-03

Page No.5

1

ł

Li	THOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	P	Å	SA	MPLING	DATA		,	T
MAIN UNITS	SUB UNITS		L ·			9% 2	80	Sample No.	From	То	Cu ppm	Au	1
	Clasts. Variably alternal, mad. grained dioritic matrix.	Some K. feldspor rins to clash. Local small patches in matrix.	00000			3-5	Tr	14550	{19·20	122.20	1727	40	Ť
		slightly stronget k. feldspor for 1-2m close to duke (ba)	00			3-4	Tr	14 551	122.20	124.00	1396	15	1
		(iq)	60		Some midium ground Ry clusters is matrix 300	3-5	Tr	14852	124.00	125.84	1211	40	1
	125.74 - 130.74 As above more medium size. clasts. More crowded week	As above, epidole clots and some wider 2-3 cm wide	22,68	Low-molerate density of 10-30 cd	Fine to med. grained disconsidented metricity	2-3	Tr	14553	125.84	128-20	783	20	Ť
	matrix to clast supported, less matrix. Disriki matrix - vague textures due to alterning marreti	botches and bards. Marris k. feldspor is stronger than above. Weak-maderate potchy	800 800 800 800 800 800 800 800 800 800	cond 50-10 CM condate > contonate verslets. some congar aprid. vers	commonly in small patches and synegates	3-5	Tr	14554	128.20	130.94	1262	30	
	130-94-143.25 Fine to medium clast size,	weak to local moderate pervasive notive corbante	0.00	how, local nod.	Fine to fine - med.	3-4	Tr	14555	130-94	132.74	1436	30	-
	matrix supported. Large proportion of grey, some pink	some of which may be albiking alteration . K. faldspor is	0.00	60-70 CA spidele and or carbonete	local patches in matrix some film	3-4	Tr	14856	132.94	125.94	1450	30	
	monzonite clasts. 10-20% green mali metavolconic clasts. Max.	local and weak. 3-54 cpidole	000	verilels also some lo'-30'CA carb	grained by verifiets cut larger metavolc.	3-4	Tr	14557	125.94	137-60	1460	35	
	clast size 20 cm. usually <10 un med. granied altered dioritic	<u>j</u>	0.7:00	verilets. La cal high angle My	clasts Local fine irregular Cay grains	2.3	Tr	1455#	137-60	140.25	989	20	
	Matrix . Variable sym. Magalti B13760-14025 Jame 20.30cm Maganike chalts-Kykler packing Ways and totalan		0.00	e mide.	with By in notions Local 1-3 cm for grine By patches in mating +	2-5	Tr	14559	140.25	142.25	/324	65	
	14325-157.98 Predominantly fine clast	weak to moderate patchy pervasive matrix carbonate,		Low dansity of 50-80 CA fine	Fine to made ground deise eminated matrix	2-4	Tr	14560	143.25	145.25	/29/	35	·
	nation rich. Same clast lithelogies as above. Clasts	albitic in part? Patchy beal matrix k. feedspor a little		Carb an or epid. veinlets. Local	Py local fire Cpy. Local cm. scale	4-5	Tr	14561	14 8.25	148.25	1261	35	
	quite angular. Good matern grained dissitic metrix. Pakas	stranger than alave. 5% sub-con natrix epidate clate.		k. felds por veining in mongonite clash	Patches of fragminen Py in natrix, rare P. wintets.	4-5	Tr	14562	14 8-25	151-25	1237	20	,
	local subre unded to-2500 pink			A fine epidate Velakk denomorde	.,	\vdash	+	+			+	+	-

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. S. Wells

DATE 20. October 1993

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-03

Page No.6

LITH	DLOGY	ALTERATION	G ·	STRUCTURE	MINERALIZATION	•	ЪУ	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			% P	2% %	Sample No.	From	То	Cu ppm	Au ppb	1
160.93 - 193.20 Hetero Iithic Intrusión Breccia . More potawic altered with moderate patchy pervosive [K. faldspar ris matrim Moderate to strong Maguetic	Contraved from Pg. 5. 157.88-160.93 Mednih sige clast breccia in upper part strong everywhed, Veined. Below die clast brecch. Distric regard, Verieble week-sitting register with degree, Verieble week-sitting register 160.93-193.70 Predominantly fine local ned. Clast. Matrix supported. Mixed prik mongonite, maki mu clasts many one subrowded. Vague matrix textures due to stronger alteration - vague. dioritie.	As above to 15700 sine course magalite - By - & faldyper - Egidots patches. Below 15700 peruhise matistry permise and upsilet Es. matistry permise and upsilet Es. matistry moderate matrix k. faldspor. Epidote vein/et 30000 commonly have k.fald. rich selvages. V. weak to non-carbonated. Spare smaller epidate clots (fg.) Mod-strong magneti.	10100000000000000000000000000000000000	Pisteto Chi. Socialia 3000 go'ch. Tan ambig Nevre 15°-son Carbonale 10:10t3 20-35°CA Adela Ngo Carbon Sama Weak- and density of 60-70°CA epited Urilleto with can Scale ep- K. faid. Selvages. Sporse Carbonale Leinleto	Disseminated and local agging also of course my also of course and dissen to clusters of fim. Below Min georgety Very fine disseminated Ry. local small aggingates.	4-6 3-5 2-4 7r-2 7r-2 7r-2 7r-2 7r-2	Tr Tr	14563 14564 14565 14566 14567 14567 14567 14567 14570 14570 14571 14572 14573	/ 5/-25 /54-25 /52-25 /57-38 /57-38 /57-90 /60-73 /60-73 /62-73 /62-73 /62-73 /62-73 /62-73	154-25 156-25 157-88 159-00 166-73 162-93 164-93 164-93 164-93 164-93 170-93	1546 1416 1590 (029 1130 975 455 793 900 1675 254	55 50 70 160 250 110 30 155 231 371 247	
	17370-185.66 As above predominantly fine local med. clast. Clear	weak to non-carbonated. Patchy moderate natrix K feedspar. Epidote is	000000	Low to materiale dessity of 40-70Cl Epictule verilets.	Fire local madium grained dito encirates notrix by local fire	4-5	77-1	14574	173.70	176.36	2.303	\$ 420	•
	(Sypported). Mixed Mongonite - netwolcanic clast. Sections with Mic graited magnetic	generally resident and selvage. plus alteration of plogisclase.	0000	Sections with coan negretite, by + cp + K. feldyor verins to Ico wide,	grained by verified. Coase Mgt + By + Croy	2-3 4-5	Tr 1	14575 1457L	176.3L 179.86	179.36 180.70	1788 352;	2 79	, _ >
1	more matrix by. Subayular		40	variable angles CA.									

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY A.S. 4445

DATE 19/21 Oct /1997.

DIAMOND DRILL LOG

· · · · · ·

· · · · •

1

1

() ()

1

BIG KIDD PROPERTY

DDH.NBZ99-03

Page No.7

1

1

· · · · •

LITH	OLOGY	ALTERATION	G ·	STRUCTURE	MINERALIZATION	~	Py	SA	MPLING	DATA		•	
MAIN UNITS	SUB UNITS		L ·			%P	5%	Sample No.	from	То	Cu	Au	ľ.
	sm /g.6.		0.000			2-3	τr	14577	1 \$4.70	18270	1689	245	ľ
			0.0		increasing number of fine by veinteto drumwords.	2-3	Tr	14\$78	(12.70	185.66	1077	25	
	185.66-191.70 Mixed coarse and fine clast breccia. Two large submoded	As above, non carbonated. More spotty fine epidole also as ven selvage (alt.) Variably often	0) 90	Low to noderate density of fine 30-90 CA epidate	Fine local medium growing diseas. By often in cluster in	1-3	Tr	14 579	185-66	188-66	1507	190	
	Clasts are make mu, and diorite. Matrix supported-voge textures due to alteration, and magnetic	Maderate natrix k. foldypar alteration.	No D	verinalteration goved which gen wide 70 ca Local carts verinets 300	antria. Large clasty are weak pythic with a few fine winkets	1-3	τr	14 580	128.66	191.70	1324	105	ŀ
	19170-192.20 Fine clast matrix Supported. Strange altered and wind	excale. Most. pervasive carbonote and excitate. Local & Sullspar, some variate.	Z,	- carbonate and haratt	Patchy fine by end Cay as dissen many grains	4-5	1-2	14581	191.70	193.20	5660	1550	2
193–20–19485 Plagioclase - Korabianda Parphyry Byke	Potossie mazonite. Med. gran fin granad with plagistase > home for the plase of - Counted - Made macrate	Numeros fine epidale veinlets noro. K.feldspos selvages. weak constants	K	Sharp 60°CA combuils Arimana verilled aron Anitate 15-30-CA Card	V. sparse fine diven. and veinlet By	tr	-	14 582	193-20	194.85	\$01	131	5
194.25-210.32 Potassic Helenlithic Interview	194.95-198.40 Strongly altered with variable matrix the faldspar. Fine	Non to weak carbonated natrie Patchy disen. vertet as and local	000	Low density of high and low angle ch	Pakety find disen. mattin by and cay	3-4	Tr-I	14583	194.25	196.60	1442	2.75	-
Breccia. strongly	Mixed massarite, make Mu. aliante. class. Vogue make Au. aliante.	clots. Potchy natrix k. falelspor.	0000	Carbonate and or epidate versets. Loca Loor mometic -A low	after in separate clushe local coarse by- maynelle	2-3	Tr	14 5 24	196.60	198-40	1146	130	,
altered, variably magnetic.	199.40-200.92 Very strong obteration obsciring primary tasking. E 200.29-200.73 Mostile altered Alaguacione 3 Main Bardage, dyka	Interse K. feldspor with while weak- and contracts, some allerte in which provide a finder of the strength	0000	Mod. density of Carbonat, some dk chladte, i war port variate ages ca	Patchy fine dissen by matter cluster-vein seturgen. Local fine Cory later Mc dimension	2-3	Tr	14585	198.40	200.92	14 23	205	-
	200-92-210-32 poderate to share attend fine to and	Alteration is highly veriable.	200	moderate to high verilet density	Patchy fire - medica grained Py offen	3-5	Tr	14526	200.92	202.92	2222	. 22	s
	clast, natrin supported breccin.	blacked from carbonak alt.	0.0	Mainly fine carbonal local anidate.	patchy in vein	3-4	Tr	14587	202.72	204.92	1979	12!	-
	Heterolithic, high percentage of mangonite clasts > maki	other lighter areas in matrix albihi? Pother manuality	0	some k. faldopar and albite ? Also	Mc grained Ry-Mgt	2-3	Tr	(4 598	204.12	206.92	1317	55	,
	mv. Alteration observes tastimes	weak to strong K. feldspor.	0.00	Primer gly certato. E 206-16-206-37 Several carb vers	12 ratis. Some low ayle (A (subparallel)	2-4	Tr	14589	206.92	203.92	1295	95	;
	Variatle week-and negeri	Cocol notrix clats.	0	6° ca up to lem Chlanthe wallactes. 145° ca contact.	file My venteto 207.0 - 209.0 mile Wearning + K.f.	2-3	Tr	14590	203.72	210.32	1846	/3	•
1			ſ			1	1						

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . A. Malles ...

DATE A October (99)

)

1

· · · •

DIAMOND DRILL LOG

1

ş

s 1917 Sala

.

BIG KIDD PROPERTY

1

. . 7

1

1

DDH.NBZ99-03

Page No.8

·····			G	T								,	1
LITHO	DLOGY	ALTERATION	•	STRUCTURE	MINERALIZATION	2	μ	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			ч%	% C	Sample No.	From	То	Cu ppm	Au ppb	[210
210.82-217.35 Plagisciase Hornblende	210.32-211.10 Crowdad plagioclase hernblende porphyry, Juiz grained	Below 211.10m Peters mod to strong K. feldspor - Mixed pervasive and	60	Moderate density of fine epidate,	fine - mad veinlet By thoushout local	2-3	Ťr	14591	210.32	21200	1057	105	ſ
Porphyry Dyke. Potassic Monzonite	k. faldspar rich gound mass. Mad. magnatic some small last mofic xanalita:	verilet. Bleached sections below Rigion. are non corbonated - albite?	5	corbonate, some K feldspor inineto	discriminated fire to	1-2	τr	14 592	212.00	214.00	1342	130]
5	Below 211-10 Potch strong pervasive alteration and veining obscures below	and minor chlorite hocas atternship veinlet bonds of h. feldspor and	L.	45.60 CA Below 214.00 More bonded 60°CA	Med- coarse Ry-Moguette veins locally to Icm	1-3	Ŧr	14593	214.00	215.80	911	45	
	porphysike sections.	mointy as verilets and selvage alt.	1	K. feld, all bards sure	Py local Cay	8-4	Tr-1	14594	215.80	217.35	3092	150	
217.35-229.55 Potassic Altered	217.35-221.50 story alteration overprinting fine to coase clast, metric supported braccia, manie i	weak to maderate pervasive matrin carts onate. Patchy moderate, local	300	general low dessity	Fine dimeninated	4-7	Te-1	14595	217.35	219.35	3080	165	Ī
Heberolithic Intrusion Breein moderate to strong	Mud. grained distinctly desribi. Pink mangenite and gran make me	strong the feldgent. Epidate veintets and selvage games.	3	lers frè carb.	By with fine Cay. Local coase magnetic By voins carries. Matris Mat	3-5	Tr	14596	219.35	221.50	2657	130	122
mag ski	221.50-225.22 Patchy bleached and verned. Predominantly frie	very patchy weak to moderate pervasive matrix corbante. Patchy	Т Ц	Moderate & high alensity of carbonate	Fire to metrin ground disseminated By Local	3-4	Tr	14597	221.50	223.50	1706	65	1
	local med. clast matrix supported breccia. Alteration obscores textures med to strong mappedas.	some allowise bleaching he peldyer some allowise bleaching head	Ż	K. feld, epid, all , By chil veilles. varable prote CA. Some glz v/t	Save Ry vains to Tam In To'CA. Art dissen. Algt.	2-4	Tr	14598	223.50	225.22	259.	170	1
	225.22-229.55 Fine to reaction clast, matrix supported. Vague	Patchy weak-nod perosive matrix carbonate, nod-strong K.feld	10	V. file exidence and	Fine discen. noting by sporse cay. local	2.3	Tr	14599	225.22	227.55	1260	70	1
	textures due to alteration. mod. to story negretic	also in some claste. Irresular epidate class it matrix, some fine mystile clusters on scale.	000	Com density local <u>Low density local</u> <u>Ly I mometrie verse.</u>	hele By blebs and vein with the mognetite	2-4	Tr	14600	227.55	229.55	1707	90]
229.55-238.65 Plagioclase Porphyry Dybeli	227.55-231.85 Counded playiecter perphysy. weak magnetic	Quarty and carb. Verileto have cm. Scale bleached selvages. Local dark chloritz selvages ± carbonate.		Vorialy organs phanacysty To CA Blanched Lender Panks To to CA. Com alan 184	Very fire dissem. By locally in verillats	1	Tr	14601	229.55	231.15	142	5	8
Grey to prok polassic Monzonites, Crowdad plasioclese porphyries	231:85-274:40 As above but pinker - K.feldspar rich groundouss weak magnetic	Strong bleached zones surrounding quarty verifats 1-30 cm wide 50-70 CA.		Anderste elensity of fire gly ventete fine carts outside of these oreas.	Sparse dissen grounder By after Ufite. Higher consert mating pithe Sons	1-2	Tr	14602	231.85	234 . 40	225	5	1
variably weak to movente	234.40-235.90 Prakish gray crowded playisclose perphyru	weak moreting	17	low density of fine card venter place ,	V. fine disser. and	1-2	Tr	14603	234.40	235.90	170	5	1
Magnetic. Local 1-4 cm Yenoliths. Subrounded portially ansimilated.	23540 · 23525 Piak, playlockost- tatular harablande garabyri, strong Kalad gandrade baat Baat its its ford gandrade baat Baat its its	Some intrusion billion to 300m. Significant ground ness to fill (ground) Norman billional selvers to carb		Licok beco hining , malerati carto vanted drimmondo (15-70°CB artic: of and 1000	Fine local med grins verslet Py local med. Myt. Fine dinoan Ry is	2-3	Tr	14604	235.90	238-25	530	30	
238.65 - 262.33 Potassic Altered	239-65-239-56 Alexchad and contained FRAMANT angular brack (first) toutone 239-56-244-400 Fault Lone	My corbenstal, widele week- mad	30	Bakel - chlorini fraction Corto varileto, valide ch	· sporse V. file By.	Tr	-	14605	238.25	239.56	767	30	_
Heterolithic Intrasin Breccis			کر کا کر کا	- - -									

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . A. Kelly ...

7 1 7

DATE . 21 Ochber 1999.

1

1

DIAMOND DRILL LOG

١

1 1

BIG KIDD PROPERTY

DDH.NBZ99-03

Page No.9

LITHO	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		ų	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L ·			8	5 *	Sample	From	То	Cu	Au	ľ
	239.56-14440 Fault Zone in altered brecia. Chloriki	Chloribi fractures throughout. Intrusion breccions appear guile	555	Mary fractives sub parallel & 20'ch	v. file practine - weintet of . Local	1-2	Tr	14606	2 39.56	242.00	793	4.	Ĵ
	obscures textures	Carbonale some silicification - allite?	ورو د د	la cal glz vénete	disensisted.	Te-1	-	14607	242.00	244.40	616	40	
	294.40-246.93 Poloosic frie clast and fightly packed but matrix Supported. Mad. Magretic	moderate to strag pervalive carbonate natrie and close to the disease moderate to fold wide produced with the	0.00	the d. density of Carts united infalls and in focal dive	V. patchy find R in matrix as clusters.local course R. Mat = Cry course R. Mat = Cry	2-3	Tr	14603	244.40	246.93	614	25	1
	246.98-260.80 Predominanty fine clasts Local medium. Dominated by	Variable weak-moderate. pervasive carbonate in matrix same for K. feldesor. Rovo	00000	Carbonsti venleto 30-Ci CA . Local	Patchy disceminated and veinlet fire -	2-3	Tr	146.09	246.43	249.93	495	25	
	pink-grey momente. vogue Lextures due to alteration. Matrix clierite supported.	epidate as small cloto and veinlets	0.0.0	fine epidete and fine by veritte Local low angle	after in con scale. Clusters Fine-med.	1-3	Tr	14610	249.93	252-13	644	45	f
	253.95-253.65 Crowdad fire plasioclase Posphyry probably a builder			C 256.90 - 257.12	grained dissemisated mynetite in matrix	2-3	Tr	14 6 //	252.93	255.13	1056	40	
	size clast.		K	300 associated with 25°CA carb URIN 6.5 cm.		1-3	π	14612	255.73	257-95	974	45	1
			00	Below 257. fewer but larger tone angle bort vins	lacal integrals coare.	2-4	Tr	14613	257.15	260.30	1065	40	
	24.05-26283 File- and clast potomic altered. Mattin Supported Ba	Permane made and carbonate . may	20	Sip surface Bill day	wallock fire dispers. R. Patchy frie local med granted o	Tr-2	- Tr	14614	260.30	262.53	723	30	1
Counted playioclase Porphyry - Monzonite Dyke	Dark pink-red, potassi (k. fald) Manzonite. Consulad playiociase phanocrysts it k. feld net grounder	Weak Saussutitized plogioclase moderate regretic. How alligned playioclass planocysts 60°CA.		55°CA sharp Contacto. Lous angle O-Exict and high Min 69.50 carb	Local fine-med gramed det enimeted to fraction by. One subparallel her-cine Mat Vain.	Tr-2	-	14615	262.33	264.63	630	15	
264-83-279.75 Potassic Altered	1244.63 - 267.04 As above dyke pine, local med. clost (men mayuri breccia, motive to cast clast approximate of clast	Patch pervisive weak to mad. Carbonate, Patch, K. plityon Low My magazin. Upt Toca wide brade alast office 11 " gards.		A pens bright and Core angle carb. Wainlast. In belanched Jord barded glyrogre	patchy fine dissen matrix By local med ground By Mgt 12	2-4	Tr	14616	264.63	267.04	1407	65	1
Keterolithic Intrusion Breccies.	267-04-269:89 Alternating 40-5010 Strongly bleached carb-alto-511 bunds with K. Keld Ach Becara an about Beached games with Augusti	Pervasive bleaching-carb-alb- 511.? abscures textures, med. Meynetic caek carbonate.	190	V. file carbonate. Winlets verselle angene CA. Lave A Trans	Patchyffm dissen. Py. in bleachad gane. Diss Ry in polossic breccin.	. 1-3	Tr	14617	267.04	267.57	700	35	
													f

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY K.S. Freetly ...

DATE 44: 13. Oct. 1999

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-03

Page No.**10**

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		ру	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L ·			Ϋ́Ρ.	%C	Sample No.	From	То	Cu	Au ppb	27
	269.57-275.65 Fiel to ned . clast predom. Manzonite. Subargular to local	Weak- moderate personice clast + notion carbonate. K. feldspar is patche weak	0000	conto moderate contonate veinlet classite 30-70°CA.	Patchy fine dissen metrix Ry, lo cal Lie Con. Kare Ry	1-3	Te	1461 8	269.87	272.60	695	25	Ţ
	pudet. Voyve torbres due to alteration and vening. Variable disritis myraiaed natrix most. magnetic.	local weak not as strong as about Weak spiddle as sense with year playiectore & verilles. Same albust & beneficia.	200	to cal swarms of 6. CA vernets. Migh vanet density egot carb below 274 m	veinteta	1-3	π	14619	272.60	275.65	664	25	
	275.65-279.75 Strong altertion 30AR. Fairly massive - bleached	Pervosive bleached, moderate corbonate + albite? fine	Ŝ	weak to moderate	to cal shall patches of fine discominated	Tr-I	Tr	14 6 20	235.65	277.70	394	25	
	Some sericite? Possibly an albered dyke. Weak-mad. majnet	K. feldspor. No epidola	5	Caro. a cal of m contrable conder CA. Co cal of the Stockworth fine low and cht fret	Ry, sonafine Cong.	Tr-I	Tr	1462	277.70	279.75	709	30	
277-75-201-75 EDH. Mixed Keterolithic	279.75-28195 Fine crowded clast to marine superior ad with altered maticing grained metrics matrix mag Cacety chilerity 7 mayoris.	Nog to weak patchy pervasive Carto weak patchy k. faldspat local weak had epitche to success	0) 00 00	Numerole infine carb. veinlers, few carge end vene	Poteny fine discers matrix by as clusters some high angle by and	2-3	Tr	14622	279.75	281.95	735	30	
Intrusión - Volcanic Breccias. Voriably	281.75-286.60 Fine clasts predominanty subaryour fine graved K. Beldsporrich mononites	Mainly non carbonated, local weak pervasive policies. Widesground carbonate up ited.	200	moderate density of v. fire to fire	Patchy metric and vainlet related fire	 -3	77	14 623	281.75	294.30	1+24	7=	
magnetic.	and verying. metric supported. F/m ord verying. metric supported. F/m opciesed metric with dissen high	Patchy blacking may be due to find abigen. co. or alle? K. fild	100 101	versleb, several are wasy + druse local the chi. tracking	Ry, minor Upine Cpy	1-2	Tr	14624	274.30	286.60	\$70	70	
	286-60-292.90 Fine - med. elast Subaylor with voyue textures. Manzante and metrusleanic, some	Maderde pervasite carbonal -weak documents. Little		Armenes fire Carbonde and dork chlaib	Patchy fine dissem. and local by	1-2	Tr	14625	286.60	287.60	414	15	
	hbl. prophysica. Matrix is either med. grained charitri or fine chilo note with ny sette Mad. manaki throw hart.	Motrie is more chloritic - Mographi. Sporse epidole.	000°	heritets and frakes minty 60-80 CA. Co cal My veintels	wide .	1-2	tr	14626	2.83.60	292.60	475	15	ľ
	292.40 - 274.74 EDN light green hombands prograciose porting dyke	carbonate and epidate are were related. Narrow selvages with eg		low density fine cars or ap verileto 6 . CA.	Minor tow angle fire Py veialets.	71	Tr	NS.					
		· · · · · · · · · · · · · · · · · · ·		294.74 EON.									

KAMLOOPS GEOLOGICAL SERVICES LTD.

DDH.NBZ99-3

SAMPLE NO.	FROM	то	LENGTH	Au (ppb)	Cu (ppm)	L X Au	Au-Comp	L X Cu	Cu-Comp	From	То	Length	Au (ppb)	Cu (ppm)
14501	4.40	6.12	1.72	120	1423	206.40		2447.56						
14502	6.12	8.53	2.41	50	605	120.50		1458.05						
14503	8.53	10.93	2.40	40	632	96.00		1516.80						
14504	10.93	12.93	2.00	55	1242	110.00		2484.00						
14505	12.93	16.20	3.27	30	613	98.10		2004.51						
14506	16.20	19.20	3.00	50 85	1539	240.00		4017.00						
14508	22 20	22.20	3.00	105	1698	315.00		5094.00						
14509	25.20	26.70	1.50	60	931	90.00		1396.50						
14510	26.70	28.20	1.50	95	1546	142.50		2319.00						
14511	28.20	30.02	1.82	130	2069	236.60		3765.58						
14512	30.02	33.02	3.00	85	1403	255.00		4209.00						
14513	33.02	36.02	3.00	115	1619	345.00		4857.00						
14514	36.02	39.02	3.00	120	1402	176.40		4300.00 2008.80						
14516	40 70	43.70	3.00	60	1741	180.00		5223.00						
14517	43.70	46.06	2.36	120	2432	283.20	1836.20	5739.52	31148.90	28.20	46.06	17.86	102.81	1744.06
14518	46.06	46.99	0.93	95	1061	88.35		986.73						
14519	46.99	49.00	2.01	50	942	100.50		1893.42						
14520	49.00	52.00	3.00	300	1232	900.00		3696.00						
14521	52.00	55.00	3.00	145	1191	225.00		35/3.00						
14523	56.98	57 80	0.82	135	1733	110.70	4590.35	1421.06	62291.71	16.20	57.80	41.60	110.34	1497.40
14524	57.80	60.00	2.20	35	343	77.00		754.60		10.20				
14525	60.00	62.10	2.10	15	305	31.50		640.50						
14526	62.10	64.00	1.90	90	1292	171.00		2454.80						
14527	64.00	67.00	3.00	35	1025	105.00		3075.00						
14528	67.00	70.00	3.00	60	991	180.00		2973.00						
14529	70.00	75.60	3.00	80	1099	240.00		3297.00						
14531	75.59	75.55	2.55		1841	144 60		4436 81						
14532	78.00	80.00	2.00	100	1470	200.00		2940.00						
14533	80.00	81.69	1.69	180	1917	304.20		3239.73						
14534	81.69	84.00	2.31	160	1842	369.60		4255.02						
14535	84.00	86.44	2.44	65	1920	158.60		4684.80						
14536	86.44	89.30	2.86	195	1822	557.70		5210.92						
1400/	89.30 91.15	91.10	1.00	160	1000	408.00		2003.00						
14539	93 70	96.37	2.55	235	1528	627.45	2927.40	4079.76	36303.69	78.00	96.37	16.37	159.36	1976.25
14540	96.37	97.48	1.11	115	1551	127.65		1721.61						
14541	97.48	100.27	2.79	40	1029	111.60		2870.91						
14542	100.27	103.00	2.73	140	1117	382.20		3049.41						
14543	103.00	106.00	3.00	465	809	1395.00		2427.00				•		
14544	106.00	109.00	3.00	275	1100	825.00		3300.00						
14546	112.00	113.40	5.00	500	789	700.00	3722.20	1104 60	13061.01	100 27	113.40	13 13	283 49	994 75
	112.00	110.40	1.40		,		13005.35	1104.00	141892.95	4.40	113.40	109.00	119.32	1301.77
14547	113.40	115.00	1.60	80	309	128.00		494.40						
14548	115.00	117.70	2.70	45	814	121.50		2197.80						
14549	117.70	119.20	1.50	45	1442	67.50		2163.00						
14550	119.20	122.20	3.00	40	1727	120.00		5181.00						
14551	122.20	124.00	1.00	40	1211	73.60		2012.00						
14553	125.84	128.20	2.36	20	783	47.20		1847.88						
14554	128.20	130.94	2.74	30	1262	82.20		3457.88						
14555	130.94	132.94	2.00	30	1436	60.00		2872.00						
14556	132.94	135.94	3.00	30	1450	90.00		4350.00						
1455/	135.94	137.60	1.66	35	1460	58.10		2423.00						
14559	140 25	143.25	3.00	65	1324	195.00		3972.00						
14560	143.25	145.25	2.00	35	1281	70.00		2562.00						
14561	145.25	148.25	3.00	35	1261	105.00		3783.00						
14562	148.25	151.25	3.00	20	1237	60.00		3711.00						
14563	151.25	154.25	3.00	55	1546	165.00		4638.00						
14564	154.25	156.25	2.00	50	1416	100.00		2832.00						
14565	100.20	157.00	1.03	100	1090	112.00		2391.70						
14567	159.00	160.93	1.93	250	1130	482.50		2180.90						
14568	160.93	162.93	2.00	110	975	220.00		1950.00						
14569	162.93	164.93	2.00	30	655	60.00		1310.00						
14570	164.93	166.93	2.00	155	998	310.00		1996.00						
14571	166.93	168.93	2.00	230	900	460.00		1800.00						
145/2	100.83	170.93	2.00	390	10/0	1357 30		3330.00						
14574	173 70	176.36	2.11	420	2303	1117.20		6125.98						
14575	176.36	179.36	3.00	630	1788	1890.00		5364.00						
14576	179.36	180.70	1.34	790	3522	1058.60	5423.10	4719.48	23250.80	170.93	180.70	9.77	555.08	2379.82
14577	180.70	182.70	2.00	245	1689	490.00	8337.60	3378.00	40362.58	157.88	182.70	24.82	335.92	1626.21
14578	182.70	185.66	2.96	85	1077	251.60		3187.92						

۰.

<u>,</u> .

-

į.,

_

.
14579	185.66	188.66	3.00	190	1507	570.00		4521.00						
14580	188.66	191.70	3.04	105	1324	319,20		4024.96						
14581	191.70	193.20	1.50	1550	5660	2325.00	10158.90	8490.00	50202.68	168.93	193 20	24 27	418 58	2068 51
14582	193.20	194.85	1.65	130	801	214.50		1321.65						2000,01
14583	194.85	196.60	1.75	275	1442	481.25		2523.50						
14584	196.60	198.40	1.80	130	1146	234.00		2062 80						
14585	198.40	200.92	2.52	205	1488	516 60		3749 76						
14586	200.92	202.92	2.00	225	2222	450.00		AAAA 00						
14587	202.02	204 92	2.00	125	1070	250.00	6612 16	3059.00	20202 50	100 70	204.00	aa aa	050 57	4700.00
14001	EVE.JE	204.02	2.00	120	1914	200.00	19076.95	3930.00	70058 20	102.70	204.82	42.22	252.5/	1/22.93
14599	204.02	206.02	2.00		4947	110.00	13075.25	0004.00	12030.39	104.90	204.92	39.99	326.96	1801.91
14590	204,32	200.92	2.00	35	1317	110.00		2004.00						
14500	200.92	200.82	2.00	30	1283	190.00		2090.00						
14090	200.92	210.32	1.40	130	1846	182.00		2584.40						
14591	210.32	212.00	1.68	105	1057	176.40		1//5./6						
14592	212,00	214.00	2.00	130	1342	280.00		2684.00						
14593	214.00	215.80	1.80	45	911	81.00		1639.80						
14594	215.80	217.35	1.55	150	3092	232.50		4792.60						
14595	217.35	219.35	2,00	165	3080	330.00		6160.00						
14596	219.35	221.50	2.15	130	2659	279.50		5716.85						
14597	221.50	223.50	2.00	65	1706	130.00		3412.00						
14598	223.50	225.22	1.72	170	2590	292.40	1264.40	4454.80	24536.25	215.80	225.22	9.42	134.23	2604.70
							1 6 213.55		117090.38	157.88	225.22	67.34	240.77	1738.79
							30956.10		315422.48	4.40	225.22	220.82	140 19	1428 41
14599	225.22	227.55	2.33	70	1260	163.10		2935.80						
14600	227.55	229.55	2.00	90	1707	180.00		3414.00						
14601	229.55	231.85	2.30	5	142	11.50		326.60						
14602	231.85	234.40	2 55	5	225	12 75		573 75						
14603	234.40	235.90	1.50	5	170	7.50		255.00						
14604	235.90	238 25	2 35	30	530	70.50		1245 50						
14605	238 25	239.56	1 31	35	767	45.85		1004 77						
14606	230.56	242.00	2.44	40	702	97.60		1024 02						
14607	242.00	244 40	2.40	40	100 816	96.00		1004.02						
14600	242.00	241.40	2.40	35	010	30.00		4569 40						
14600	246.03	240.93	2.55	30	405	75.00		1000.42						
14003	240.83	249,80	3.00	20	400	15.00		1400.00						
14010	248.83	232.93	3.00	45	044	135.00		1932.00						
14011	202.80	200.93	3.00	40	1055	120.00		3168.00						
14012	205.93	257.95	2.02	45	9/4	90.90		1967.48						
14613	257.95	260.30	2.35	40	1065	94.00		2502.75						
14614	260.30	262.33	2.03	30	723	60.90		1467.69						
14615	262.33	264.63	2.30	15	630	34.50		1449.00						
14616	264.63	267.04	2.41	65	1409	156.65		3395.69						
14617	267.04	269.57	2.53	35	700	88.55		1771.00						
14618	269.57	272.60	3.03	25	695	75.75		2105.85						
14619	272.60	275.65	3.05	35	664	106.75		2025.20						
14620	275.65	277.70	2.05	25	394	51.25		807.70						
14621	277.70	279,75	2.05	30	709	61.50		1453.45						
14622	279.75	281.95	2.20	30	788	66.00		1733.60						
14623	281.95	284.30	2.35	70	1024	164.50		2406.40						
14624	284.30	286.60	2.30	90	890	207.00		2047.00						
14625	286.60	289.60	3.00	15	414	45.00		1242.00						
14626	289.60	292 60	3.00	15	479	45.00		1437 00						
1 1 1 1 1 1 1	EWW.WW				71.9	70.00								

,

_

, , ,

а ^с

(,)

5-Nov-99

e

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-625

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

an in an an an

7

1

1 1

ATTENTION: RON WELLS

at the street

No. of samples received: 126 Sample type: Core PROJECT #: NBZ-03 SHIPMENT #: 1 Samples submitted by: R. Wells

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	14501	120	0.2	1.40	<5	50	<5	2.80	<1	31	50	1423	5.93	<10	1.52	561	9	0.03	15	1550	2	10	<20	45	0.16	<10	135	<10	1	34
2	14502	50	<0.2	1.07	<5	40	<5	2.13	<1	18	32	605	3.83	<10	1.04	347	9	0.03	11	1540	6	10	<20	34	0.12	<10	105	~10	7	10
3	14503	40	<0.2	0.92	<5	40	<5	2.67	<1	14	34	632	3.54	<10	0.87	367	10	0.03	8	1400	Ă	10	<20	42	0.02	~10	00	~10	6	20
4	14504	55	0.2	0.87	<5	40	<5	2.38	<1	23	32	1242	3.62	<10	0.83	401	5	0.02	7	1390	ĥ	10	<20	20	0.00	~10	04	<10	45	20
5	14505	30	<0.2	0.88	<5	45	<5	2.50	<1	17	32	613	3.54	<10	0.67	347	13	0.03	Ŕ	1500	Ă	5	~20	40	0.00	10	04	< 10	15	31
												••••	0.01		0.07	041		0.00	v	1550	-	J	~20	49	0.08	<10	73	<10	9	15
6	14506	80	0.4	1.61	<5	45	<5	2.12	<1	32	34	1539	6.35	<10	1 82	469	12	0.03	16	1660	B	10	~20	27	0.42	-10	400	-40		~~
7	14507	85	0.2	1.15	<5	35	<5	2.01	<1	28	30	1425	5.38	<10	1.28	382	18	0.00	10	1520	4	10	~20	3/	0.13	510	132	<10	<1	28
8	14508	105	0.4	1.42	<5	40	<5	1.75	<1	35	42	1698	6 56	<10	1.65	400	10	0.02	10	1560	7	10	~20	34	0.12	<10	105	<10	<1	28
9	14509	60	0.6	1 26	<5	30	<5	3 32	2	31	41	031	A A7	<10	1.00	517	11	0.02	14	1460	-	10	<20	29	0.14	<10	121	<10	<1	31
10	14510	95	0.2	1 16	<5	40	<5	2 15	~1	32	40	1548	4 90	~10	1.97	420	11	0.02	11	1460	14	15	<20	84	0.17	<10	109	<10	9	35
	14010		0.2	1.10	-0		-0	2.10	-1	32	40	1040	4.00	~10	1.29	430	19	0.02	13	1440	4	10	<20	33	0.09	<10	94	<10	<1	28
11	14511	130	02	1 47	<5	45	c 5	2.06	~1	46	64	2060	6 34	-10	4 00	480	40		40		•									
12	14612	85	<0.2	1.46	-5	40	-5	1.62	~1	-+0 =0	04	2009	0.31	~10	1.03	400	43	0.03	16	1610	8	25	<20	36	0.09	<10	119	<10	<1	37
13	14512	115	~0.2	1 27	~5	40	-5	1.03		30	54	1403	0.42	\$10	1.77	400	24	0.02	34	1570	8	<5	<20	33	0.08	<10	87	<10	<1	35
14	14513	110	~0.2	1.57	~0	40	~0 ~5	1.59	<1 - 4	49	00	1019	5.97	<10	1.36	381	20	0.03	16	1590	8	10	<20	32	0.12	<10	95	<10	<1	33
15	14014	120	0.2	1.53	<5	35	<0	2.92	<1	51	- 33	1452	5.88	<10	1.77	525	19	0.02	14	1620	34	10	<20	60	0.10	<10	87	<10	<1	39
15	14515	105	0.2	1.40	<5	35	<5	2.94	<1	50	48	1785	6.13	<10	1.63	523	24	0.02	17	1520	6	15	<20	75	0.14	<10	90	<10	<1	34
							-																							
16	14516	60	0.2	1.53	<5	35	<5	2.07	<1	40	45	1741	6.27	<10	1.81	526	29	0.02	18	1800	8	<5	<20	47	0.17	<10	121	<10	<1	42
17	14517	120	0.4	1.14	<5	50	<5	1.68	<1	76	51	2432	7.31	<10	1.16	407	25	0.03	16	1480	6	5	<20	35	0.07	<10	94	<10	<1	33
18	14518	95	1.6	0.57	<5	35	<5	3.85	2	31	27	1061	3.96	<10	0.99	630	44	0.01	9	1360	36	15	<20	101	<0.01	<10	37	e10	3	45
19	14519	50	<0.2	1.46	5	40	<5	1.63	<1	27	60	942	5.50	<10	1.63	522	9	0.03	18	1880	10	5	<20	29	0.13	<10	122	<10	-1	-1-3
20	14520	300	<0.2	1.17	<5	45	<5	1.71	<1	62	35	1232	6.05	<10	1.30	450	7	0.02	12	1560		10	<20	23	0.10	~10	100	~10	~1	44
																					•	10	-20	- 33	0.09	10	122	< IU	51	- 38

· · · ·

ICP CERTIFICATE OF ANALYSIS AK 99-625

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
21	14521	75	<0.2	1.31	<5	40	<5	2.00	<1	52	75	1191	5.42	<10	1.52	499	9	0.04	17	1620	10	10	<20	38	0.12	<10	119	<10	2	37
22	14522	145	<0.2	1.78	<5	45	<5	2.57	<1	39	79	945	6.01	<10	2.05	675	10	0.02	22	1710	10	20	<20	43	0.08	<10	134	<10	<1	44
23	14523	135	0.6	2.50	10	40	<5	5.35	<1	51	135	1733	6.65	<10	2.78	1041	11	0.02	39	1600	18	15	<20	133	0.08	<10	126	<10	3	51
24	14524	35	<0.2	0.61	<5	20	<5	1.75	<1	12	27	343	2.23	<10	0.61	327	7	0.02	4	1130	8	10	<20	44	0.00	~10	55	~10	14	10
25	14525	15	<0.2	0.78	<5	90	<5	2.15	<1	11	43	305	2.41	<10	0.69	431	. 6	0.03	2	1160	ē	<5	<20	49	0.04	<10	71	~10	40	10
															0.00		Ť	0.00	~	1100	0	-0	-20	40	0.00	-10	()	<10	10	21
26	14526	90	<0.2	0.90	<5	35	<5	1.88	<1	45	45	1292	3.80	<10	0.91	406	32	0.02	10	1290	6	5	<20	34	0.06	<10	51	<10	4	20
27	14527	35	<0.2	1.23	<5	35	<5	1.49	<1	53	46	1025	6.02	<10	1.28	424	29	0.03	13	1540	10	<5	<20	24	0.00	<10	91	<10	-1	27
28	14528	60	<0.2	0.95	<5	35	<5	1.56	<1	36	34	991	4.51	<10	1.00	354	18	0.02	9	1460	8	<5	<20	33	0.03	~10	01	<10	-1	37
29	14529	80	0.2	1.17	<5	40	<5	1.90	<1	29	59	1099	4.61	<10	1 16	470	10	0.03	ă	1420	Ř	-5	~20	46	0.04	~10	70	<10	~1	29
30	14530	35	<0.2	0.98	<5	35	<5	1.64	<1	40	40	980	4 61	<10	0.88	385	14	0.03	7	1350	e		~20		0.00	<10	/0	<10	< I 	32
		•••	•	0.00	•			1.01			-10	000	4.01	-10	0.00	000	14	0.05		1350	0	3	~20	21	0.07	<10	89	<10	<1	28
31	14531	60	0.2	1.25	<5	40	<5	1.30	<1	39	51	1841	6.40	<10	1.28	424	19	0.03	13	1450	8	<5	<20	26	0.08	<10	101	~10	~1	40
32	14532	100	0.2	1.23	<5	35	<5	1.80	<1	32	40	1470	5.32	<10	1.26	493	16	0.02	11	1370	Å	5	<20	28	0.00	<10	00	<10	-1	40
33	14533	180	0.2	1.43	<5	35	<5	1.42	<1	35	67	1917	6.14	<10	1.49	486	18	0.03	23	1590	Ř	10	<20	20	0.00	~10	90	~10	~1	30
34	14534	160	0.2	1.18	<5	35	<5	1.70	<1	37	41	1842	5.61	<10	1 21	467	12	0.03	12	1410	ĕ	<5	~20	27	0.07	~10	92	<10	< 1 	44
35	14535	65	0.2	1.29	<5	35	<5	2.04	<1	40	54	1920	5.59	<10	1 51	579	26	0.00	12	1440	Š	20	~20	27	0.04	<10	70	<10 	<1 	30
					-		-		•		•••		0.00		1.01	010	20	0.00	12	1440	0	20	~20	32	0.00	\$10	01	<10	<1	40
36	14536	195	0.4	1.67	5	60	<5	3.89	<1	40	49	1822	6.01	<10	1.67	759	18	0.02	16	1610	8	15	<20	96	0 14	<10	134	<10	2	41
37	14537	85	<0.2	1.40	<5	35	<5	2.55	<1	62	63	1380	5.15	<10	1.32	558	59	0.03	11	1430	10	15	<20	52	0.13	<10	02	~10	6	35
38	14538	160	0.2	1.49	<5	35	<5	2.10	<1	50	52	1923	5.89	<10	1.55	640	42	0.03	12	1590	10	10	<20	54	0.14	<10	106	~10	-1	42
39	14539	235	0.2	1.40	<5	40	<5	2.81	<1	51	41	1528	5.93	<10	1.44	654	26	0.02	12	1500	10	15	<20	60	0.17	~10	100	<10	~1	40
40	14540	115	0.2	1.82	10	45	<5	4.97	<1	49	42	1551	6.53	<10	1.77	883	16	0.02	12	1480	12	15	~20	116	0.12	~10	120	~10	~1	40
																		0.02		1400		15	~20	115	0.05	~10	132	<10	3	43
41	14541	40	<0.2	1.28	10	45	<5	4.16	<1	26	35	1029	4.35	<10	1.35	823	10	0.02	9	1410	8	10	<20	103	0.07	<10	117	~10	19	22
42	14542	140	0.2	1.72	5	35	<5	2.40	<1	47	35	1117	5.95	<10	1.83	680	37	0.03	14	1730	14	10	<20	50	0.07	~10	127	~10	10	32
43	14543	465	<0.2	1.60	5	40	<5	2.48	<1	41	54	809	5 29	<10	1.55	624	12	0.03	13	1700	10	10	<20	50	0.18	-10	107	-10		40
44	14544	275	<0.2	1.21	<5	35	<5	2.32	<1	63	33	1100	5 19	<10	1 10	525	16	0.03	10	1450	8	10	~20	42	0.14	<10	100	< 10	2	41
45	14545	140	<0.2	1 45	<5	45	<5	2.30	<1	28	46	1060	4 96	<10	1 30	554	11	0.00	11	100	10	5	~20	42	0.09	<10 	108	<10	1	33
			•.=		-		-		•		-10		4.00		1.55	004		0.00		1000	10	5	~20	90	0.12	<10	124	<10	14	38
46	14546	460	<0.2	1.36	<5	30	<5	2.60	<1	26	43	789	4.62	<10	1.32	606	5	0.03	11	1620	10	10	<20	55	0.11	<10	115	~10	7	27
47	14547	80	<0.2	1.44	5	85	<5	4.90	<1	12	33	309	3.03	<10	1.06	723	13	0.02	4	1420	10	10	<20	73	0.06	<10	01	~10		31
48	14548	45	<0.2	1.27	<5	25	<5	2.53	<1	12	37	814	3.30	<10	0.71	422	10	0.04	5	1470	10	5	~20	46	0.00	~10	445	10	21	20
49	14549	45	0.2	1.56	<5	30	<5	2.38	<1	41	59	1442	5 10	<10	1.59	672	18	0.04	12	1640	0	5	~20	40	0.07	10	115	<10	18	24
50	14550	40	0.2	1.81	<5	30	<5	2.12	<1	55	60	1727	5.80	<10	1 60	674	37	0.00	14	1720	12	-5	~20	94	0.09	<10	86	<10	5	41
	11000	-10	0.2	1.01					- 1	00			0.00	-10	1.08	0/4	31	0.03	14	1730	12	<5	<20	49	0.13	<10	104	<10	<1	46
51	14551	15	<0.2	1.70	<5	30	<5	2.21	<1	29	50	1396	5.25	<10	1.44	614	21	0.04	11	1700	12	<5	<20	45	0 13	<10	113	~10	4	20
52	14552	40	<0.2	1.62	<5	35	<5	2.64	<1	42	54	1211	5.84	<10	1.64	742	34	0.03	13	1580	10	5	<20	51	0.13	<10	00	<10	4	39
53	14553	20	<0.2	1.50	<5	35	<5	2.25	<1	24	49	783	4.45	<10	1.10	543	18	0.03	.5	1540	12	15	<20	24	0.12	<10	101	<10	< I 0	42
54	14554	30	0.2	1.58	<5	40	<5	2.44	<1	29	50	1262	5.56	<10	1 47	630	20	0.03	12	1570	<2	15	~20	20	0.11	~10	121	<10 <10	8	34
55	14555	30	0.2	1.47	<5	30	<5	2.09	<1	27	36	1438	5 52	<10	1 45	607	14	0.00	10	1600	2	10	~20	00	0.13	<10	129	<10	14	39
~~	14000	50	v.2.	1.47		~~		 .				1400	0.02	-10	1.40	007	14	0.03	13	1090	Q	10	< <u>2</u> 0	40	0.12	<10	118	<10	<1	39

ICP CERTIFICATE OF ANALYSIS AK 99-625

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
56	14556	30	0.2	1.60	<5	35	<5	2.49	<1	30	47	1450	5.72	<10	1.38	663	25	0.03	12	1700	10	<5	<20	53	0.18	<10	136	<10	4	39
57	14557	35	0.2	1.58	<5	40	<5	2.85	<1	30	41	1460	5.70	<10	1.47	737	43	0.04	10	1690	10	10	<20	60	0.11	<10	123	<10	4	41
58	14558	20	<0.2	1.87	5	65	<5	3.00	<1	27	71	989	5.85	<10	1.58	766	11	0.04	20	1690	12	10	<20	56	0.15	<10	182	<10	8	44
59	14559	65	0.2	1.69	<5	40	<5	2.45	<1	27	36	1324	5.74	<10	1.47	692	23	0.03	9	1690	12	5	<20	56	0.09	<10	135	<10	1	42
60	14560	35	0.2	1.79	<5	40	<5	4.69	<1	28	46	1281	5.89	<10	1.75	987	19	0.03	12	1660	10	10	<20	79	0.12	<10	148	<10	5	46
																													•	
61	14561	35	0.2	1.40	<5	35	<5	2.82	<1	25	40	1261	4.87	<10	1.40	735	17	0.03	9	1550	8	15	<20	48	0.07	<10	110	<10	1	39
62	14562	20	<0.2	1.49	<5	35	<5	2.88	<1	27	50	1237	5.68	<10	1.48	748	16	0.03	10	1680	12	5	<20	50	0.08	<10	136	<10	6	44
63	14563	55	0.2	1.55	10	30	<5	2.41	<1	29	49	1546	5.85	<10	1.55	753	19	0.03	11	1710	14	<5	<20	41	0.08	<10	111	<10	<1	45
64	14564	50	0.2	1.50	<5	35	<5	2.83	<1	26	51	1416	5.74	<10	1.40	752	26	0.03	10	1620	14	15	<20	44	0.07	<10	141	<10	3	40
65	14565	70	0.2	1.49	<5	35	<5	2.88	<1	25	38	1590	5.85	<10	1.53	882	47	0.03	10	1620	12	10	<20	44	0.13	<10	116	<10	<1	43
																													•	
66	14566	100	<0.2	1.39	<5	45	<5	3.77	<1	24	49	1024	4.65	<10	1.28	889	33	0.04	8	1410	10	5	<20	84	0.06	<10	113	<10	15	38
67	14567	250	<0.2	1.62	<5	45	<5	4.91	<1	23	- 34	1130	4.57	<10	1.39	966	7	0.02	7	1470	12	10	<20	164	0.05	<10	74	<10	11	41
68	14568	110	<0.2	1.48	<5	40	<5	2.59	<1	24	40	975	5.51	<10	1.46	712	7	0.03	8	1580	8	5	<20	93	0.07	<10	135	<10	<1	43
69	14569	30	<0.2	1.37	<5	40	<5	1.98	<1	18	35	655	6.44	<10	1.05	467	6	0.03	8	1670	8	<5	<20	50	0.13	<10	170	<10	<1	35
70	14570	155	0.2	1.35	<5	45	<5	1.92	<1	16	45	998	5.44	<10	0.92	420	6	0.04	6	1560	10	<5	<20	50	0.08	<10	141	<10	2	32
																													_	
71	14571	190	<0.2	1.44	<5	55	<5	1.92	<1	16	46	900	5.61	<10	0.88	383	7	0.04	8	1530	8	10	<20	45	0.11	<10	162	<10	<1	30
72	14572	340	0.2	1.28	<5	45	<5	1.70	<1	19	41	1675	5.78	<10	0.90	374	6	0.04	8	1520	8	<5	<20	46	0.06	<10	153	<10	<1	32
73	14573	380	0.4	1.16	<5	90	<5	1.94	<1	21	46	2542	5.69	<10	0.98	451	7	0.03	9	1450	6	<5	<20	52	0.06	<10	139	<10	<1	48
74	14574	420	0.4	1.31	<5	50	<5	1.84	<1	27	31	2303	6.43	<10	1.15	465	9	0.03	11	1490	8	5	<20	45	0.06	<10	143	<10	<1	35
75	14575	445	0.4	1.27	<5	50	<5	1.62	<1	19	39	1788	6.00	<10	1.01	399	14	0.03	7	1600	8	<5	<20	40	0.06	<10	146	<10	<1	34
76	14576	770	0.8	1.26	<5	45	<5	1.66	<1	66	39	3522	8.36	<10	1.03	415	10	0.04	9	1380	6	<5	<20	35	0.11	<10	118	<10	<1	36
77	14577	245	0.2	1.32	<5	45	<5	1.55	<1	20	54	1689	5.65	<10	1.02	381	8	0.04	8	1620	8	<5	<20	42	0.08	<10	129	<10	<1	34
78	14578	85	0.2	1.10	<5	45	<5	2.06	<1	14	- 34	1077	4.16	<10	0.81	420	7	0.03	5	1400	10	<5	<20	36	0.08	<10	113	<10	5	30
79	14579	190	0.2	1.11	<5	50	<5	1.77	<1	16	44	1507	4.21	<10	0.74	334	8	0.03	5	1420	10	<5	<20	45	0.07	<10	104	<10	8	28
80	14580	105	0.2	1.23	<5	55	<5	2.05	<1	15	42	1324	4.64	<10	0.90	476	7	0.03	6	1570	10	<5	<20	56	0.10	<10	141	<10	2	34
••					_																									
81	14581	>1000	1.8	1.53	<5	50	<5	4.05	<1	19	38	5660	5.29	<10	1.36	832	11	0.02	8	1300	20	5	<20	94	0.04	<10	124	<10	5	50
82	14582	130	0.2	1.15	<5	125	<5	2.84	<1	10	43	801	3.01	<10	0.77	576	9	0.04	4	1190	8	<5	<20	76	0.06	<10	94	<10	16	27
83	14583	275	0.4	1.48	<5	50	<5	2.49	<1	25	44	1442	5.13	<10	1.25	652	6	0.03	9	1600	10	<5	<20	70	0.05	<10	122	<10	<1	42
84	14584	130	0.2	1.72	<5	55	<5	3.42	<1	23	36	1146	6.44	<10	1.66	872	7	0.03	11	1720	10	<5	<20	72	0.09	<10	197	<10	<1	52
85	14585	205	0.8	1.11	<5	60	<5	4.18	<1	16	33	1488	4.89	<10	1.39	896	10	0.03	7	1600	6	10	<20	115	0.03	<10	112	<10	6	40
					_		-																							
86	14586	225	0.6	1.50	<5	35	<5	2.82	<1	32	33	2222	7.10	<10	1.57	726	18	0.03	10	1470	12	<5	<20	58	0.07	<10	124	<10	<1	43
87	14587	125	0.6	1.50	<5	40	<5	3.76	<1	27	46	1979	6.19	<10	1.56	831	28	0.03	8	1500	10	<5	<20	96	0.05	<10	108	<10	5	40
88	14588	55	0.8	1.01	<5	45	<5	5.48	<1	21	43	1317	5.39	<10	1.57	1027	28	0.03	6	1390	8	15	<20	235	<0.01	<10	77	<10	9	43
89	14589	95	0.8	0.77	<5	50	<5	4.32	<1	23	30	1295	5.16	<10	1.28	852	17	0.02	5	1460	8	10	<20	142	0.02	<10	85	<10	7	40
90	14590	130	0.4	1.33	<5	45	<5	2.79	<1	27	33	1846	5.56	<10	1.21	673	23	0.03	9	1550	12	10	<20	61	0.05	<10	129	<10	4	43

Page 3

ICP CERTIFICATE OF ANALYSIS AK 99-625

- _ . *

ECO-TECH LABORATORIES LTD.

Et #	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
91	14591	105	0.2	0.97	<5	65	<5	3.17	<1	17	36	1057	4.26	<10	1.00	696	8	0.03	5	1280	8	10	<20	83	0.04	<10	104	<10	12	42
92	14592	130	0.4	0.90	<5	70	<5	2.64	<1	15	28	1342	3.83	<10	0.79	577	11	0.03	4	1230	8	5	<20	73	0.03	<10	95	<10	11	32
93	14593	45	0.2	0.69	5	65	<5	3.57	<1	18	35	911	3.71	<10	0.88	698	13	0.02	3	1210	6	10	<20	94	0.01	<10	69	<10	15	34
94	14594	150	2.6	0.75	<5	30	<5	3.45	<1	32	28	3092	5.02	<10	1.00	662	37	0.02	2	1220	6	<5	<20	89	0.03	<10	65	<10	9	37
95	14595	165	0.6	1.56	<5	45	<5	2.59	<1	42	62	3080	8.39	<10	1.51	762	24	0.04	8	1420	12	<5	<20	50	0.07	<10	140	<10	<1	48
																						•			0.01	-10	140		- 1	40
96	14596	130	0.4	1.38	<5	40	<5	2.56	<1	34	39	2659	6.28	<10	1.25	662	15	0.03	8	1500	10	5	<20	48	0.09	<10	126	<10	<1	41
97	14597	65	0.2	1.06	<5	45	<5	3.73	<1	25	40	1706	7.12	<10	1.37	865	14	0.03	6	1620	16	5	<20	105	0.03	<10	154	<10	<1	47
98	14598	170	0.4	1.41	<5	50	<5	2.91	<1	29	50	2590	8.29	<10	1.49	809	13	0.03	8	1580	6	<5	<20	74	0.04	<10	152	<10	<1	44
99	14599	70	0.2	1.37	<5	50	<5	3.14	<1	27	52	1260	6.53	<10	1.40	788	14	0.03	8	1490	10	5	<20	71	0.05	<10	143	<10	1	42
100	14600	90	0.2	1.50	<5	40	<5	2.77	<1	30	34	1707	7.28	<10	1.44	804	10	0.03	5	1510	10	<5	<20	45	0.05	<10	163	<10	-1	43
																			-			•	20		0.00	-10	100	-10	~ 1	-0
101	14601	5	<0.2	0.68	<5	55	<5	2.64	<1	9	52	142	2.68	<10	0.63	501	7	0.03	2	960	6	5	<20	63	0.02	<10	57	<10	19	22
102	14602	5	<0.2	0.50	<5	45	<5	2.58	<1	10	45	225	2.71	<10	0.68	527	8	0.03	1	950	6	10	<20	74	< 0.01	<10	50	<10	13	25
103	14603	5	<0.2	0.79	<5	75	<5	2.17	<1	20	51	170	2.89	<10	0.63	471	6	0.03	<1	970	6	5	<20	43	0.04	<10	62	<10	18	23
104	14604	30	<0.2	0.81	<5	50	<5	3.89	<1	32	32	530	3.78	<10	0.95	772	5	0.02	4	1300	8	<5	<20	98	0.02	<10	102	<10	17	34
105	14605	35	<0.2	0.76	5	50	<5	6.07	<1	27	33	767	4.72	<10	1.21	1175	8	0.02	4	1370	2	<5	<20	173	<0.01	<10	76	<10	8	32
																													•	
106	14606	40	<0.2	1.12	<5	50	<5	4.65	<1	23	30	793	6.16	<10	1.70	1083	18	0.03	8	1630	4	10	<20	180	<0.01	<10	139	<10	<1	43
107	14607	40	<0.2	0.71	<5	45	<5	5.00	<1	18	30	616	4.85	<10	1.36	1007	10	0.02	5	1570	6	10	<20	229	<0.01	<10	58	<10	9	36
108	14608	35	<0.2	1.10	<5	50	<5	4.98	<1	23	37	614	4.98	<10	1.30	955	10	0.02	6	1480	6	10	<20	138	<0.01	<10	94	<10	10	42
109	14609	25	<0.2	1.28	<5	40	<5	3.48	<1	22	35	485	5.64	<10	1.23	778	9	0.03	6	1530	8	<5	<20	66	0.06	<10	155	<10	3	44
110	14610	45	<0.2	1.41	<5	35	<5	4.33	<1	30	32	644	6.06	<10	1.42	1015	9	0.03	6	1610	8	5	<20	71	0.05	<10	149	<10	2	50
111	14611	40	<0.2	1.38	<5	45	<5	2.88	<1	32	32	1056	6.64	<10	1.44	821	10	0.03	9	1620	12	<5	<20	64	0.10	<10	182	<10	<1	50
112	14612	45	<0.2	1.20	<5	45	<5	3.47	<1	25	39	974	6.13	<10	1.39	913	10	0.03	7	1520	6	10	<20	99	0.04	<10	154	<10	<1	46
113	14613	40	<0.2	1.29	<5	40	<5	2.68	<1	29	32	1065	5.70	<10	1.29	782	13	0.03	7	1470	8	15	<20	67	0.04	<10	130	<10	<1	43
114	14614	30	<0.2	1.22	<5	50	<5	2.91	<1	22	31	723	5.90	<10	1.37	791	9	0.02	7	1530	6	10	<20	94	0.03	<10	138	<10	<1	44
115	14615	15	<0.2	1.27	<5	35	<5	2.80	<1	19	22	630	4.90	<10	1.28	548	9	0.02	3	1910	8	5	<20	46	0.04	<10	166	<10	4	47
116	14616	65	0.2	1.27	<5	45	<5	3.27	<1	80	41	1409	7.85	<10	1.43	777	11	0.03	9	1680	10	5	<20	102	0.05	<10	152	<10	<1	50
117	14617	35	<0.2	1.05	<5	60	<5	4.05	<1	22	32	700	5.96	<10	1.42	816	10	0.02	7	1770	10	<5	<20	119	0.02	<10	117	<10	5	49
118	14618	25	<0.2	1.40	<5	60	<5	4.44	<1	24	35	695	6.18	<10	1.46	1045	8	0.03	8	1620	10	5	<20	84	0.03	<10	160	<10	10	55
119	14619	35	<0.2	1.32	<5	60	<5	3.83	<1	24	35	664	5.63	<10	1.45	887	29	0.04	6	1680	10	10	<20	74	0.05	<10	165	<10	6	48
120	14620	25	<0.2	0.48	<5	185	<5	5.45	<1	11	24	394	4.25	<10	1.44	1138	5	0.02	4	1690	2	10	<20	133	<0.01	<10	72	<10	11	45
														*																
121	14621	30	<0.2	0.47	<5	60	<5	4.90	<1	22	26	709	5.40	<10	1.48	982	9	0.02	5	1730	<2	10	<20	159	<0.01	<10	56	<10	<1	42
122	14622	30	<0.2	1.60	<5	45	<5	2.51	<1	29	39	788	7.99	<10	1.69	873	11	0.03	9	1790	10	10	<20	70	0.04	<10	183	<10	<1	47
123	14623	70	0.2	0.53	<5	35	<5	4.64	<1	51	34	1024	7.23	<10	1.53	1010	8	0.03	7	1630	2	<5	<20	114	<0.01	<10	113	<10	<1	44
124	14624	90	0.2	0.73	<5	45	<5	4.81	<1	37	32	890	7.57	<10	1.63	1023	14	0.03	6	1640	4	<5	<20	125	<0.01	<10	136	<10	<1	42
125	14625	15	<0.2	2.38	<5	85	<5	5.21	<1	27	201	414	6.22	<10	2.73	1096	8	0.03	67	1630	16	20	<20	118	0.03	<10	151	<10	9	51

Page 4

ICP CERTIFICATE OF ANALYSIS AK 99-625 ECO-TECH LABORATORIES LTD. CHRISTOPHER JAMES GOLD CORP. Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni Ρ Pb Sb Sn Sr Ti% U v W Υ Zn Tag # Au(ppb) Ag Al% Ba Bi Ca % Et #. As <5 33 835 11 0.03 8 1680 12 <20 83 0.04 9 40 126 14626 15 <0.2 1.62 45 <5 3.93 <1 44 479 5.45 <10 1.44 5 <10 146 <10 127 14512A 90 <0.2 1.38 5 30 <5 1.88 <1 31 40 1179 4.93 <10 1.42 460 19 0.03 14 1830 12 5 <20 40 0.05 <10 84 <10 <1 37 QC DATA: Resplit: 1 14501 120 0.4 1.62 <5 3.79 <1 39 43 1783 6.07 <10 1.61 742 19 0.02 16 1640 10 5 <20 88 0.10 <10 126 <10 41 36 14536 295 5 50 4 7 1600 10 <5 40 1.82 <1 18 40 914 5.69 <10 0.91 390 0.03 8 <20 40 0.07 <10 161 <10 <1 31 71 14571 190 <0.2 1.35 <5 <5 4.50 <1 22 38 770 5.94 <10 1.65 1065 18 0.03 9 1630 8 15 <20 171 < 0.01 <10 138 <10 2 42 106 30 <0.2 1.12 <5 45 <5 14606 Repeat: 1343 5.60 <10 530 8 0.03 15 1490 15 <20 42 0.16 123 2 14501 130 < 0.2 1.29 <5 40 <5 2.66 <1 29 48 1.41 4 <10 <10 34 1 <5 30 2.16 <1 33 40 1554 4.86 <10 1.29 437 20 0.02 12 1490 6 15 <20 30 0.10 <10 96 <10 29 10 14510 110 <0.2 1.17 <5 <1 <5 1.55 <1 25 56 888 5.17 <10 1.50 490 10 0.03 17 1820 10 15 <20 25 0.10 130 <1 43 50 <0.2 1.34 <5 35 <10 <10 19 14519 <0.2 0.94 <5 30 <5 1.56 <1 36 33 1015 4.50 <10 1.00 354 19 0.02 8 1460 6 5 <20 31 0.04 <10 79 <10 <1 29 28 14528 -55 <5 3.78 <1 36 45 1802 5.86 <10 1.60 724 17 0.02 16 1490 8 5 <20 92 0.10 <10 128 37 36 <0.2 1.62 5 <10 3 14536 230 45 115 <0.2 1.44 <5 45 <5 2.31 <1 28 44 1083 4.99 <10 1.38 548 15 0.03 11 1580 8 10 <20 63 0.14 <10 136 <10 16 37 14545 35 2.40 <1 29 51 1216 5.55 <10 1.46 629 21 0.03 13 1660 2 10 <20 63 0.10 39 54 20 <0.2 1.58 5 <5 <10 121 <10 10 14554 71 175 <0.2 1.45 <5 50 <5 1.94 <1 17 46 897 5.65 <10 0.88 385 5 0.04 7 1580 10 5 <20 41 0.15 <10 170 <10 1 31 14571 10 80 115 <0.2 1.30 <5 55 <5 2.14 <1 16 41 1350 4.78 <10 0.93 491 6 0.03 7 1610 <5 <20 57 0.07 <10 138 <10 5 35 14580 89 14589 90 <0.2 0.80 <5 50 <5 4.48 <1 24 32 1335 5.38 <10 1.32 883 17 0.02 6 1540 10 10 <20 152 0.02 <10 91 <10 9 41 1.02 <5 40 <5 4.23 <1 21 27 772 5.83 <10 1.61 985 16 0.03 8 1550 6 5 <20 178 < 0.01 <10 130 <1 39 106 14606 35 <0.2 <10 23 635 4.92 548 8 0.02 2 1890 12 10 115 14615 20 <0.2 1.29 <5 35 <5 2.82 <1 19 <10 1.29 <20 47 0.05 <10 170 <10 6 47 Standard: 2 0.01 GEO'99 120 1.76 65 160 5 1.84 <1 20 59 82 3.86 <10 0.96 686 22 670 24 15 <20 55 0.09 <10 75 <10 8 65 1.4 22 GEO'99 1.4 1.71 60 165 <5 1.80 <1 20 62 82 3.82 <10 0.98 694 2 0.02 24 660 5 <20 60 0.08 <10 76 7 67 135 <10 62 88 3.88 0.98 678 3 0.02 22 710 20 10 <20 GEO'99 125 1.74 65 155 10 1.82 <1 19 <10 56 0.10 <10 76 7 71 1.4 <10

<10 0.96

680

2 0.02

25

750

22

10 <20

a in

1

1

gramma gramma gramma de la construcción de la construcción de la construcción de la construcción de la constru Al)

1

EOD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

<10

78

<10

8 71

57 0.10

1

1

df/625 XLS/99 cc: ron wells fax @ 372-1012

130

1.2 1.73

65 150

<5 1.86

<1

19

63

88 3.86

GEO'99

KAMLOOPS GE	OLOGICAL SERVICES LTD	SUMMARY DRILL LOG:	DDH NBZ99-04
PROPERTY	:BIG KIDD	OWNER	: CHRISTOPHER JAMES GOLD CORP.
NTS	:92H/15E	MINING DIVISION	: NICOLA MD, BC
CLAIM	:HALO 100	LINE/STATION	: 11610N:23585E
GRID	:BIG KIDD-BIG SIOUX	INCLINATION AT COLLAR	k: -55
CASING	:3.66M	AZIMUTH	: 210 ⁰ SSW
LENGTH	:270.66M	ACID TESTS	: @91.00M -55; @270M -55
LOGGED BY	:Ronald Wells P.Geo., FGAC	DRILLED BY	: CORE ENTERPRISES LTD
DATE	:25/10/99 to 31/10/99	DATES	: 3/10/99 TO 8/10/99
CORE LOCATION	N: AMEX, KAMLOOPS	CORE SIZE	: NQ

a a barren al a construction al construction al a construction a

PURPOSE OF THE HOLE:

<u>}</u>

This hole was drilled from the northeastern edge of the Big Kidd breccia pipe inwards. It was the first step-out hole drilled on a parallel SSW section 47 metres east of holes NBZ99-01 to 03.

R.C.Wells, P.Geo, FGAC, Kamloops Geological Services Ltd.

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-04

ł

i

Page No.1

1

LITH	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	λ	Ρy	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS			1		%Р	80	Sample No.	From	То	Cu	Au	,
0-3.66											· ·	† <u> </u>	1
Casing	Sandy overburden and Talus												
3.44 - 12.53	3-66-5-80 Rully core recovery	Oxidized fractures . Non carbonded	9/2	Rubby receivery	Fine pyritic verillets							<u>+</u>	
Crowned Plasioclass	Agre- malium green, crowdad payroclass porphyry-Mongorite. break/mod. mogratic] 7/1	Harry low angle tractiones 10-30 CA	strong osidahin below osm.	1-2	-	14651	4.50	5.80	\$67	55	0
Porphyry - Monzonite Pyke (potassic)	580-12.53 Light green, crowolad plagioclase peoplysy-mangenite. 77% kabular plagioclase 1-3mm	Alteration is mainly verillet related, weak carbonate selvages. Background k jeldyse		Crude flow align. mart 60°CA. Low density of fine	Both fine dissem. and veinlet By	Tt-2	Tr	14652	5.90	₹-10	520	27:	5
	with local crude flow alignment Fine ground mass with significant to feed your. Local submended resulting some > local plack, May	primary in large part.	1.1.1.	Cocol gtg. Bath al Cocol gtg. Bath al Coco y high angles CA Some have narrows fleagted sely gens	gtz and carb. verilets.	Te-2	Tr	14653	¶•(o	12.53	646	20	5
12.53-29.42	12.53-1400 Mad pore of green meter -andesite, busalt with former of green	Mad becoming areak negretic during some strong migratic pyriles sections (pool anticle bleaches, Non corberates		high angle ca contact Lage angle and the sold t card	Patchy find - med graning ween by theyt	4.5	Tr	14654	12.53	14.60	373	21	5
Majie Volcanics -	14.00 - 17.57 med. green, fine grained tracks - andesite / basatt	Significant amounts of fire package and k. feldsport. Non to	Z	Jo 15.50 Numerous Ry verillets high	Generally fine by	2.3	Tr	14655	14-60	15.60	832	190	•
Hornfels. Medium	mad magnetic. Patchy textures - basic hamplels. Short wanty	weak corbonated. Ep verilets local stock works with more pervasive	-	TO- TOCA COME - A-AU URINIESS and Nage only	15.50 . Below mainly	Tr-2	Tr-1	14656	15.60	17.57	2678	10	•
green, fine grained	17.57-20.90 Green due grained	These are daysetic harryles.	×1	To 18.30 Aumerous	Veintet P. at too	2.3	Trel	10187	17.57	19.00	2014	+	
Trachy and esite - basalt	mad magnetic tracky enderite with	crackle to weak mosaic breccios	1	Relow low density	Bx has fire to come			/463/			~~47	1	
rich in K. Leudspar.	Py-Mgt mucrolized matrix, some	Icm. some pink k. fald. Dk. chi, By, Mgt		of epid veinlets 40-SOCA	matrie By, Mgt.	2-4	11	14658	1 17-60	20.90	195	1 170	,
moderate to strong magnetic.	20.70-23.12 Med. to dark green more maine trachyandsoite. Fire grained, mad. magretic harnels	Fine granted epidate pateles, weintite with selvages. weak pervolve carbonate with or without		Low to mad density 40-50 CA ex veinted 50 ma 40 CA fria Carbonat veilet	Local 60: 90 CA Py Us inlets Lans than Som wide .	1-2	Tr	14659	20-90	23-12	582	70	,
	23.12-25.50 madiin to dark gran weakly breckinted tracky medicity mad to beat straig magnetic themistic mark to school altered the	Massive sections are v. weak carbonated with losal on patches weak missi breaches are more carbonated with coid. A. Mat.	<u>}</u>	varies of vain speak of variate and on generaly file. End, carte end the fight and	Using and matrix by minor thy t, cay . govern drise/med grands (card	2-3	Tr	14660	13.12	25.90	1045	31	5
	25-10-18-42 weak to beel	weak to mad. pately pervasive	<u>[</u>]	breccia low/med	Course Myt - My in	3-5	Tr	14661	25.90	27.36	309	11:	 ۲
	brach anders the miner introsive matrix	Fue to med. epid. Local class in	5	density of sol- 60 carb vein, v. fine Ry.	precighes of hat	1-2	Tr	14662	27.36	29.42	602	. 91	5
29.42-34.12	2942-3277 mosail to matrix	weak to moderate pervasive	3	spore fin	Small patches of fire							T	
Monolithic to weak	anite more messive sections	K. laddener Small and alt	68	carbonate veinlets subponellal to	Py in matrix local	2-3	Tr	14663	27.42	39.56	1829	1 42	5
Hetenlithic (Bimodal)	Voyve textures - due to alteration	are quite common. Some kil vins	8	Lo'CA.	verslate local Afchan	4			1				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Rise Lally

DATE 25 October 93.

DIAMOND DRILL LOG

3. A month of the state of t

BIG KIDD PROPERTY

DDH.NBZ99-04

Page No.2

1

LITHO	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	Y	py	SA	MPLING	DATA	,		1
MAIN UNITS	SUB UNITS		L ·			9%P	*	Sample No.	From	То	Cu ppm	Au ppb	
Pradominantly mapic metavolcanic (hompels) clasts, some diorite.	brachy and esite dominates with local pink crowded playioschie Porphyny. Variable week - 5500 ap magnetic		30000			1.3	Tr	19664	30.50	\$2.77	456	120	Ī
	32.77-34.12 Section of more massive green brachy undersited. Lo call crachele breacher fatch goid mode more the	Patchy permenie fine grained epidete and as reistates. Noo contenated		Low dersty of Contale - contanget winder som Mat inin	b. raiser fine discor. and versited B	Te-1	-	14665	32.77	34.12	761	75	1
34.12-60.55 Heterolithic Intrusion	34-12-41.05 Fine to medium clast, heteroliki	Non to weak carbonated norms. Weak patchy epidole generally	20.00	Low desity of fine carbonate t	Patchy fine to med. grained dimen nation	2-4	Tr	14666	34.12	36.50	1/30	160	
Breccia. mixed matic	bressia. Matthe to went clost supported. Variable proportions	fine grained local close to low. in matrix areas. Weak to much.	2000	Cpicloke verileto 30-70 CA.	Py commonly in potenti Coase Py with momenta	1-3	Tr	14667	36.50	39.01	1009	205	-
grey mangonite clasts	J. grey w pink manyonite and green make MV. alast. Some Mong. Clasts & 60 cm dia. Vage FERFORS in How events docthe parties. N. A north	batchy pervasive (matrix) k. jeld. local clast rims.	2010		in which like genes upto zem wide between mongonite class, bood Me	1-2	Tr	14668	37-01	41-05	2521	132	- 2
Subangular to subrounded Variable altered diorities	41.05 - 46.46 As above, fine to med clast betanlith is have	Non to very weak carbonated	20	As above low density of exidence	Fine to med . grained	2-3	Tr	14669	41.05	42.05	1004	1200	,
matrix. Variably	Predominantly week clost support	and K faldspor - patchy.	No Co	+ corbarate verilet	to col clusters. Some	2-3	Tr	14670	43.05	45.05	1132	590	,
magnetic.	potassic (K. Ald) than above weather		1	cars - By venteto	medicoare by + Mgt with epid, kiped, albit	,	-	14671	45.05	46.46	\$25	115	-1
	46.46-49.27 Fine clost beter lite. braccie . matrix supported . Mare mazanite than make the closts most accessive. Alt. devile analytic	Blod, to story K. feldspor in notice - policy. weak policy pervosive matter corb. Spore agiante Mic diasa. matre Mat	00000	3 parse high angle 6 CA. carbonate ± 6 cpidate veinlets.	Medoninanty fine some med. discom by in matrix local clusters line can	2-3	Tr	14672	46.46	49.27	789	190	
	4+27-5148 As above but weaks k. feldiger, local bleaching + corbonate with depth. & negatic das	weak to malistrony perustica continuate downwards . K. feldspor decreases down weak sporty epidol	Y.F	P & Son St and Shelm 1 2-7 cm wide 30 " To CA Carb Lains, chi selvages I carb dest A y drive	Patchy fine, local med. granded Py, clushe compose to 200 . Local Age	4-5	τι	14673	49.27	ちーン	926	185	
	51-48-54-10 Section is dominated by large green refit MU. clasts >1m. Some interstitist fine time peterstitus bracein reformation	Mod. magachi with policy fine exileste. In want policy permine controvate autride of venter areas matrix hasts most exist cores, high		Mund. density of 30-70 CA cathe verinter years exid. vointers (ocal fun	Dissem fine natrin Ry alsowhere fine Ry veralets variable ages	1-2	Tr	14674	51.2	54.10	1423	32	-
	54.10-57.95 Madiis to fine clast, clast to weak matrix	Mapie MV. clasts - harafels with patchy epid, weak-non	240	density of 40-60	5 parse matris fine & local med. goines	1-2	-	14675	\$4.10	56.00	1057	24	5
	MU. Clasts dominate. Smaller Monzanite clasts. Strong alt. matrix	epid, K. fald, upm carb local Mgt	00	g some band to 1-50	duisen by	1-2	-	14676	54.00	\$7.95	339	20	
	57.95-60.55 that supported to	weak to non carbonaled, spotty epidate. Local w/m	000	C have density of Vifine coldate =	Decepture amounts of V. fine alissem matrix	2-3	Tr	14677	\$7.45	59.50	312	20	
	ME magnetic variably all matting	K. feldspor in matrix.	ř٥ ٩	agles CA. Sarre of the	My , local gying ales .	3-6	Tr	14678	59.50	60.55	291	35	_
	1					1		L		1	1		1

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Rechtells...

DATE 26. Act. 1993.

DIAMOND DRILL LOG

[1,1] = [1,1

BIG KIDD PROPERTY

DDH.NBZ99-04

Page No.3

LITHO	DLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	N	A	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS		L ·			4. 8	0 %	Sample No.	From	То	Cu ppm	Au ppb	ľ
60.55-121.84 Plagioclase (Hornblande) Paral, a. Dukes	(0.53-62.03 pink-green consider faileson porphy, Fastures antipode hypotest 18/2010 Met. Mypothe (2.03-64.35 Light green consider)	, soussurational plagioclase. widespread week brecombon & kfeld k. fild wining alt. decreases	4	Tragular upper contral Bo'ch. K. Galar. find Carle of the Verders weak- most alers in	Vifine A at contast local fine Ry verilets. Fine to very fine	1-2	-	14679	60.55	62·03	1640	190	
Local crowded	playioclase > hirallende perphysy wariable fine to foldspar rich ground- mass. Small angulat stantithe be I cm.	deconwords. mod. maynetic throughout, non corponeted.		Joisi CA. Q (7.6-67.6 Several al-curb verias	Mainly near bop.	1.2	-	14680 N.S.	62.03	64.35	1573	155	
Plagioclase Perphyry.	64.35-69.95 Light green to greenish grey, predominantly	wen carbonated outride of vernlet/vern areas. V. weak	X	W. fine to fine	By outside of gtg ceins			14681	65.70	66 .45	1404	215	1
Much ground mass k. feldspar - Potassic Mensonites, snall	med. grained. Yabular hernblad upto 4 mm and souscritized plays class. K. feld rich fine grood. Mali. Subargular matic xenglike 1.300,	pervasive epidate - soussuaite 65.70-66.50 Pervasive aym.carb in wallacks to veins		Corte I Epid. Vernet Verieble angles CA 65.80-LL:10 9/37 Carts vain stockwork fris ground Chi footmat	The glz. shekork has been cluster of fine cluster. B.	Tr-1	-	NS					
mafic after nagreti	69.95-73-34 Konblende Porphycy with playioclase microphano crysts .	Patchy weak local moderate epidote and K. feldspor alt.	1	density of epiduta verilats. Some P.	Mainly fine Rusinkts with or without epid.	1-2	Tr	14682	69.95	72.00	1625	135	
Moderately magnetic	potchy epidote and K. feld. alt weak megnetic, local maji kendites	Non corbonated.	1.	K. fald verniets higher		1-2	Tr	14683	71.00	78.34	1826	125	
_	73.34-81.23 Pink, crowded planisclast purphyny minst	Patchy weak pervasive carb.		Cou to moderate	Sparse Vifine dissem. local veinlet By	1	Tr	14684	73.34	75.34	320	15	
	hornblande, significant growthe	are altered. Primary		, density of fine	some fine cpy	•	Tr	14685	75.84	77.34	1929	120	2
	with local flow alignment bis. Mapic volcanic xensiths sub-	groundmass k.faldspar Mod. Magnehi.	1.1.1	Joi-to'ca Rave fine by veinlats	upper contact.	Te-I	Tr	14 686	77.34	80.00	2613	190	,
	angular to subnounded to Sem Lo cal fine to course requestive. 81.23-12.25 Grey to pink grey, crouded	Non to patchy weak peruasive carb. W/m naguete		Non to poor alignment of Observenste. Low	sparse very fine disseminated Mr.			NS					
	plagioclase porphysy as above	magnetite follow K. feedsp.	Į?	density of 60- sich	•			14687	\$4.00	85.00	1145	. 115	<u> </u>
	weaker than above. Several	Both primary and secondar	化	, epidale veinlets fewer carbonate,	,	Tr.	Tr	NS					
	subrounded to subangular	Chloritized plagioclase		40-50CA.				14688	\$7.20	89.20	1839	13	5
	mafie xenolites to 15cm dia. per/m. Commonly 1-3cm.	Local epid selvages to veinlets.		43. carb veining Veine upto 10cm @ Cort clock better Cort clock chi ham Cort clock chi ham	4			NS					

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY . K.a. Latter

DATE 26/270 ct. 1879.

1

1

1

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-04

1

1

Page No.4

Proces

1

			-										~
LITH	OLOGY	ALTERATION	G ·	STRUCTURE	MINERALIZATION	P	λd	SA	MPLING	DATA			
MAIN UNITS	SUB UNITS	·····	L ·			% F	80	Sample No.	From	То	Cu ppm	Au ppb	,
logoo-122.95 Heteralithic Intrusion Braccia.	98.25-101.60 Pinkish grey as above Not as crowded, sauswritized Plagioclase local chloritized. Miner chloritized homblende 1-3mm. Generally weak mayeric local moderate. No flow alignment of phenesysts Local cn scale altered mafic xenoliths. Subagular to subarded playioclase, miner hbl. foir 60-106.45 As above-med. pink. Altered playioclase, miner hbl. foir 60 crowded. Local subarylaw mafic xenoliths & Som most are Icm. More crowded fina play. Porphyry, motted great h public Sault altered xenylite and mail 1076-111-60 Fine to med. clast info crowded works and mail are Icm. More crowded fina play. Porphyry, motted great h public Sault at area y englike and mail 1070-111-60 Fine to med. clast mined mafic More clast when menetic superiod of collectic the Armetic 111-60-114-12 As above some case Majec MW clasts near holom Vaye textures. weak main clast Muned mafic MV. and maganik Intured mafic MV. and maganik Intured mafic MV. and maganik Inture matrix supported Vaye textures due to odt.	Variable very weak to moderale patch, pervasive carbonate Usinable weak to m/s backyrow K. feldspar - primary ± secondary? savisuritized playbolase common tocol fine graned epidole in usin selvages. Moderate back ground k. feldspar. Generally vieneak pervasive carbonate. Epidole veriteto and veri selvages upto Zim wide Moderate magnetic Hanghart. Non h weak patch carbonate weak k. feldspar increasing deun- weak k. feldspar increasing deun contact-perasive grading and k. feldspar alternin strong at contact pervasive grading contact pervasive grading contact pervasive grading contact pervasive grading contact pervasive grading contact pervasive grading contact of k kfeld. Fins to work cite weak k. feldspar, moderate pervasive matrix corbonate strong contacts is view area local Non to potch weak carbonate Patch weak matrix k. feld. 5-8% matrix Epidole clots throughout.	20000 0000 100 00000 1 X X X X X X X X 1 2 1 X X X X X X X X	Low density of fine epid carbo veinlets, variable angles CA. Some 20-30 CA. Ploons - 100.87 30.02 of white carbo and glossy of veingoi Low to moderate clensity of epideke - carbo ander veinlets mast are 40°-60°CA Many veintes and patches 40°-60°CA Contact 40° CA Many veintes and patches 40°-60°CA Contact 40° CA Contact 40° CA Contact 40° CA Contact 40° CA Contact 40° CA Contact 60°CA Contact 60°CA C	V. Sparse, V.fine disseminated R. As above As above Mc dissem. magnetite with k. Feld. att. Fine dissem By close to Contacts. V.fine to fine dissem. and veintet P, and Car in Martin. Sond coarse My Systemet Cars. Fine - med grained dissem. and vaintet G. atom to cal selonge My Cocal fine Cory also both in veintes at variable angles ca	Tr-1 Tr 1-2 3-5 3-5 1-2 2-5 3-4	- Tr Tr-1 Tr-1 Tr-1 Tr Tr Tr	NO. NS 14689 NS 14697 NS 14697 14697 14697 14697 14697 14697 14697 14697 14697	94.30 100.00 104.0L 104.0L 104.0L 104.0L 104.0L 104.0L 113.00 113.00 113.00 114.12 116.12	10 5.00 10 5.00 10 5.00 10 5.00 10 5.00 11 0.00 11 0.00 11 1.00 11 4.12 11 4.12 11 8.12	2003 825 1442 7221 617 1371 821 740 972 1263 991	ppb 125 75 75 63 75 63 75 63 75 63 75 55 60 75	
Dy ke	Non to weat magnetic 120:32-121:04 Plasioclase Komblande Porphyn	lepichte verileto with broad selvates vats form wide coord		So-boic A High density of epid Some k. laideant		3-3		14180	118-12	120.32	1186		,

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Kit welle

DATE P.ck. 22, 195.5

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-04

}

Page No.5

1

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	A	ру	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L ·			9% D	% C	Sample No.	From	То	Cu ppm	Au	m
Dyke	see by 4. Local dark notic pensities to len. Mod. mometic	20% of dyke. Some amoriased file K. feldspar all. Non carb.	1	weins and bands many soich	spane fine dissem. Py.	Tr	-	14701	120.32	121.04	1300	70	ľ
Heterolithic intrusion Brief.	121.84-122.95 Predominantis fine. crowdad breccia intruside matrix worke textures will marrie to	Non to weak native carbonate patchy w/m K-feckyon cycal matrix	67	Local fine wid winder fine a sid	Fine to med. dissen by local U. Line Con.	3-5	٦T	14702	121.04	122.95	1793	130	1
122.95-124.36 Porphyritic Potassic Magganise Duke	Playioclase Hernokende potassi mayzonite dyka. K. Beder goonalmass	Primary and secondary (vertet) k-feld: Local epid class han carb.	ľ.	Local fine epidote veinlets also fine A	hocal fine by and Cay verteto.	1-3	Tr-1	14703	122.95	124.36	2936	245	1
124.36 - 137.65 Heterolithic Intrusion	129.36-131.40 Fine to medium clast heteroliku breccia - matrix supported	variable weak-moderate pervasive matrix carbonate.	0000	sporse fine carb veintets, local	Disseminated often patchy matrix by.			14764	124.36	127.00	563	40	
Breccias	Subangular clasts. Vague textures due to alteration. Mixed green	Patchy weak local moderate K. feldspar. 2.4% mabrix	000	fine Py veralets possibly by fine cpy at variable contact	Fine local med grained. Some assoc. with dark chlorik.	3-5	Tr	14705	127.00	129.50	267	25	
	Manzonile clasts. Variable weak to Manzonile clasts. Variable weak to Mad. Maynetic. Max clast size zo-esin	dark green to black chlorite patches - after nogelite.	0000	ch. Lorger are at 20-30 ch.	widespread fire, V. fire dispers Cpy. Local fire by veriles some Cpy.			14706	129.50	131.40	142	90	_]/3
	131.40-137.65 Fine to mediclast breccia as above textures are	Moderate pervasive. Carbonate matrix and many	000	General low local mod density	Fine to medium matrix by often in			14707	131.40	134.00	305	15	
	majority of clast appear to	clasts. week to moderate pervasive matrix K. feldspar	000	verillets must are	clusters to usvally clem local	3-5	Tr	147+8	134.00	136.00	312	10	
	hatix med gromed textures-vogue weak local mod. magnetic	bleaching - Not all is carbonate Same of ? Irranter 2-400 ch anna	000	Loisica 90° contact	CA Py veileto			14709	136.00	137.65	1646	240	,
137.65-138.65 Playisclass - Homblende Potassic Manyasik Dy	Pratish green crowdest plagioclase alathe, < 3% takelar hall small recality	Non carbonated - nuch prinary K-fald weak veralet epidato.	E	erect-mod denvity	Sparse V. file diven.	Tr.3	T,	14710	137.65	139.60	\$13	100	1
138-65-190-67	138.65-141.68 A. 1 minot 1 in 1994		00	To CA contract.	Greneral fine dissem								- #
Heterolithic Intrusion	intracine matrix suggested	Cathonate Patch weak	0	dessity of fine	Py. Rare high angle	3-4	Te	14711	139.60	141-68	428	30	
Brecues.	breccia. Rare pink Monzonite	matrix K. feldspar. 2-4%	0000	carbonate tepid veinlets 30-60°CA.	CA To si CA Py Usinkts	3-5	Tr	14712	141.68	144.00	4 >3	45	
	clasts commost are 210cm Altered dioritic matrix	epidote clots in matrix to lem. Local pervasive	0			3-5	Tr	14713	144.00	146.00	554	30	1
	good to vague textures	patches of fine epidate	000			3-6	Tr	14714	146.00	143.00	445	25	1
	General weak spotty Moderate nagnetic.	upto locm.	0.000		Fine by forms	3.7	τr	14715	148.00	150.00	623	25	
			20		distinct patches in matrix Icm size.								Ţ

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Really

DATE 27/21. Oct 1935

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-04

Page No.6

1

L	ITHOLOGY	ALTERATION ·	ч •	STRUCTURE	MINERALIZATION	ħ	by .	SA	MPLING	DATA		
MAIN UNITS	SUB UNITS		L ·			4 b	8	Sample No.	From	То	Cu	Au
	See Pg S.		000			3-7	τı	4716	150.00	152.00	904	390
			00	·		3-5	Tr	14717	152.00	152.29	227	20
	15327-178:27 Predominantly dia Clast intrusive name apported. High volume of matrix 30-40%. Mixture of clast lithelasia.	Potchy weak pervasive to local moderate matrix carbonate k. local sort is generally weak	000000	low density of very fine epid	Fine local med gained dissem by in matrix local	3-5	Tr-I	14718	153-23	156.00	172	(0
	matic MV., no Azonile. At. ned grane matrix local good disrike textings though usually averpointed.	local moderate in finer notive rich areas. 2-57 matrix epid. Clar upto Ica. Sens larger parton	0	So- Lo CA Some Carl Verilleto - fine Interview	Clusters upto Zem fine cay in some areas Rare Ry carallets	3-6	Tr-1	14719	156.00	158.27	663	20
	158-27-164-65 Mixed fine to med Some coarse clast process	General weak local moderat	P	Low density	Fine - med grained	2-3	Tr	14720	152.27	160.00	2.377	, .
	hate alithic superied by alt. disribit natrice as above. Many clast have name & have it	3-4% matrie epid. clots weak-mod. cary localized	0.00	of fine epidde some carbonate weinlets most	commonly os clusters	3-4	Tr	\$472)	160.00	162.40	2056	60
	rims. Dissem A/c nogreble. Veriable commonly mod. magnetic	matrix and clast rim k. fald.	D D	A AW lower could A AW lower could 20-35'CA	P. & Mgt aggregates some with associated epid. Local specks (by	3-4	τ,	14722	162.40	164.65	1+78	5
	164.65-175.90 As above mixed fine, med,	As above less k. foldsport rare clast rims. More	200	As above	Fine-med grained dissem. Py in matrix	3-4	Tr	14723	164.65	167.00	1243	· 4
	Supported . Very similar to above	epidote clots in matrix	00		as above. Coarse	3-5	Tr	14724	167.00	169.00	1345	· 4
	but less obvious K. feldspor, more natrix epidote clots		2002		magnetite - R agregate are rare . Local	Tr-3	Tr	14725	169.00	170.50	1643	<u>،</u> د
	4-7%. Large porphysiki		300	@ 172.55 Bandled	fine to Py vaintets	3-4	Tr	14726	170.50	172.50	310	
	Mainly subangular clasts	K. feldspor alteration is	100	wide 45'ch		3-4	Tr	14727	172.50	174.50	145	1 13
		a feed class and patter matrix	0.0		· · · · · · · · · · · · · · · · · · ·	3-6	Tr	14728	174.50	175.90	518	12
	175.90-181.07 Mare counded fine-medium	Patchy weak social moderates	1202	Mairline epidake	Fine to local ned grained dimens.	3-5	Tr	14729	175.90	178.00	147	. z
	clast breccia. Clast to weak matrix supported. Less matrix	4-6% matrix epidote clots and patches. weak- moderate	OF S	a contest thoughout a contrad. density	Matrix Ry clecreases dominards	2-4	Tr	14730	178.00	180/00	950	•
	than above. There note the the the then disrite clasts. Value matrix textures - first are used mad manufic	patchy matrix k. feldspor .	00	epid verning some								

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Kin fully

DATE 28 Oct 1950.

DIAMOND DRILL LOG

A straight the second stra

1

Ì

BIG KIDD PROPERTY

A CONTRACTOR OF A

DDH.NBZ99-04

Page No.7

T T

LITH	OLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION	~	Ā	SA	MPLING	DATA			1
MAIN UNITS	SUB UNITS		L			%	5	Sample No.	From	То	Cu ppm	Au ppb	m
MAIN UNITS 190-67-134-30 Crouded Plagioclase Porphyny Dyke Potassic Mongonite. 194-90-244-70	SUB UNITS 181.07-190.67 Predominanty fine clast Subargular and matrix rich breccin with local medicin to Coarse more ounded manzanile clasts. Smaller clasts are mixed Mati MV. and pink Manzanile Matrix is generally allosted Commonly fine grained. Med. myshil Matrix textures become more med grained instructures become one and grained interview become one and grained plagioclase (rich) hocal 1-2 cm portiolly animisted pendities (myshi). No Marklede. Med myshile 194.90-202.80 Fairly counded	Non to patchy noderale penning carbonate in nation. generally small matrix epiche clots. K. feldspar is very localized as small matrix patches Significant amounts of fine dissemiated nations chaite Are increase in K feetspar accurs below 188-patchy mak. Non carbonated. Much groundmass K. feldspar. Also local veins-bands. Minor veinlet related epiche	L 000000000000000000000000000000000000	Several car is with (seal To-TO'CA G vain maderale density of fine epidak, carbonate, lo cal carbonate, lo cal cal carbonate, lo cal cal cal cal cal cal cal cal	Generally fine grained patchy dissem. By 12 natrix. Some Matrix Ach sections are notably By poor. A high angle Ak grained By veris cuts large pink manzenile clost. U. fine to fine disserviced By local aggregates.	4 3 1-2 1-3 1-3 1-3 2-4 2-4 1-2 1-2	- Tr Tr Tr -	Sample No. 14731 14732 14733 14733 14734 14735 14736 14736	From 180.00 181.07 184.00 187.00 187.00 187.00 190.67 192.67	To 181.07 184.00 187.00 189.00 190.67 192.67 192.67	Cu ppm 427 795 74 1554 432 1545 14/4	Ац ррb 130 30 115 140 315 715 310	
Heterolichic Intrusion Breccins,	nedium-fine clast heterolithie breccin. mixed engular to subrunded clasts. Marganite and green mafie MV. Fine to local medium gravied matrix some of which appears to be	matrix K. feldspor. weak epidote, few matrix clots mainly veinlets. Aren to weak patchy matrix carbonate.	202000000000	cerileto end narrow veins So-60°CA cuidesone Aairiine en cambre 5 Carto. Co cat 2-30 Corto, ghz-carto vein 5 ame cuite dasse,	Py-notrix clusters. F/m grained Py verillato, verins, leneas variable angles CA. Local fine Cpy.	3-y 8-5 3-4	Tr Tr Tr Tr	14738	194.90	197.00 199.00 201.00	782 783 1224	120 140 70	
	20250-20711 Fire clast-matrix Supported hetrolithic intrusion breccia. upto 40% altered fire to medicin grained intrusion matrix. Same clast types as above. weak-moderate magnetic	Potchy weak to rederate matrix K. feddspar. Non to weak/mod. matrix carbonate. Potchy fire grained weak pervosive epidate. @204.60-205.13 Strong bleached 30AL-fire grained carbonate with milk gip voins dissen for some paid.	0.0.0.0.0.0.0.0.0	Local By variate and Generity of vifice to fine carts and exidate winters low angles - Local 7/3 cars variates 10-30'CA T chang-	Potchy five dimen. Matrix By gthen in Clusters. Local snall mad. graned By aggingates.	2-4 2-3 2-5	Tr Tr Tr	14742 14743 14744	202.50 205.00 205.50	205.00	1072 706 1042	235 255 85 145	
	209.71-210.95 As above strong blookbing.	Bards of blacking - pervasie cot.		Numeros carb mate	Fine by form cm. scale potton, dimen.	3-7	7,	14745	20770	210.95	183	70	-210

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY

DIAMOND DRILL LOG

1

ł

1

1

BIG KIDD PROPERTY

DDH.NBZ99-04

Page No.8

1

LII	THOLOGY	ALTERATION	G	STRUCTURE	MINERALIZATION		py	SA	MPLING	DATA		·
MAIN UNITS	SUB UNITS		Ľ			4 %	2 %	Sample No.	From	То	Cu ppm	Au ppb
	210.95-219.33 Mixed medium and fine clast hataach is house in day in h	Variable weak to moderate pervasive matrix corbonate, some		Low density of 40-50 CA carb.	Fire, local med. grained diream. By	3-5	Tr	14746	210.95	213.00	985	150
	subsounded make my and	closts. Patch bleaching as above to 212m. Weak epidote-rare		@ 112.45 loca gone	and aggregates you tom	4-6	Tr	14747	213.00	215.50	381	370
	to medium grained intrusive? matrix. Matrix to wear clast	clote. K. feldspor in matrix is patchy weak		and carb vaine to ch chlorite parting	Some fire generally irregular by verilles	2-4	Tr	14748	215.50	217.50	1003	215
	Supported. Non to mod. nagretic	Below 217.0m molerate pervassue matrix K. feldspar.	5	@116.75 coarse carb. Chi vein 38°CA ten wide	Local high myte 60-20 CA My veinles below 217	2-4	Tr	14749	217.50	219.33	1105	225
	219:38-222:05 strong stranded Bank obscuring original textures Chloritic verifics and aggregates.	Pervasive week-moderate carbonale, faity hard areas -allite Dart cheorine patches to 6mm construction and the 6mm		Many carbonate miner grz weistelt Some chlorite-clay parties 60-20 CA.	Patches and driven fine to u.f. the Py local clusters of fine cay	2-5	Tr.1	14750	219.33	222.05	573	45
	228.05-227.48 Very fine to fine clost Keterolithic breccia. Matrix	Vague texpires due to alteration. beak to moderate		weak to maderate	fine to vifine disen by bacel	2-4	Tr	06560	222-05	224.50	1095	421
	supported to dominated > 50% matrix does not appoint to he introduce return altificing yound ash?	pervasua natre carbonate. Local weak k. feldspar.		40-60°CA. Most 40-60°CA. Most all corbonate t exit Minor R. veineate.	varillets and leney anied	2-4	Tr	06561	224.50	227.48	794	455
	227.49-228.87 Strang bending and blacking foca irregular win genes	bleached. carbonated plus albited local dark chio itii patches sone wear perusius K. Jakin patiles.]]]	so banding and incurat carb rain	Both fire disseminated	2-4	Tr	06562	227.4#	228.87	1100	22:
	228.87-233.88 Mixed fine, mad. clast hele polithic breccia. Matrix G break clast supported. Angula	Patchy K. faldspor and albite - Carbonate bleaching. Highly		several gtz-carb Leine zoi-co CA upto 1.5cm wide, whith	Both fine disem. and leney tensional	2-3	Tr	66563	228.87	2.31.40	858	
	to model clash rately 718cm dia Matrix is fire-med. grained and altered	Carbonate (non to mill strong) same with k-fuldspor bocal chi partings .		Carlo Selvages of alk green chi. Same vein bx. Mod pleasity of the bi	cluster of fire drisen. by local by. v.	2-3	TI	06564	231.40	233-88	658	120
	233.88 - 244.70 As above but clast to weak metric supported. Matrix is	Patchy weak-mod pervasive matrix corbonate. Patche pervasive	C Se	weak- mod. fine carbonate, local epid. veinlets about	Patchy file disem matrix by commonly	2-5	Tr	06565	235.88	236.00	156	20
	fine-med grained altered disritie - intrustin? An apparent	epidate above 236m b downwards. K. feldspar is		237m. Below power veinlets - hairline	in clusters. A in By content downword	2-4	Tr	06566	236.00	238.00	477	10
	A in matrix k. feldspor & pyste drawnwords towards dyke Contact. Clasts rarely 715cm	weak patchy becoming mod. patchy downwoords exp below 240m. Epidate clots follow this	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Carb. Veinletz. Rare fine Py veinletz 70:90°CA Mainly sear to-	also local fine cay	3-6	Tr	06567	233.00	240.00	495	80

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Richards

DIAMOND DRILL LOG

BIG KIDD PROPERTY

DDH.NBZ99-04

1

1

Page No.9

i.

MAIN UNITSSUB UNITSL $\frac{1}{2}$ \frac	LITH	DLOGY	ALTERATION.	G	STRUCTURE	MINERALIZATION	•	ру	SA	MPLING	DATA		•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MAIN UNITS	SUB UNITS		L ·			9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2% %	Sample No.	From	То	Cu ppm	Au	, -[
$\frac{4}{2} \frac{1}{1} \frac{1}$		See 19.8.		2890			3-5	Tr	06 568	240.00	242.50	12/4	185	
$\frac{1}{10^{10} \text{ model}} \frac{1}{10^{10} \text{ model}} \frac{1}$				5.80			4-6	Tr	06569	242.50	244.70	1630	23!	;
$ \begin{array}{c} 226 \pm 17 + 230 \pm 6 \ \ math in the superior in the sup$	294.70-246.17 Crowded Plagioclase Porphyry Dyke- Massic Manzanita	Crowded plagioclase lattes 1-4mm in fine K. feldspar rich goundmass funced sub-anothed maki senelike uph recom	Carbonak altered win selvages + creak pervasive groundmass.		flow alignment going fine coid carbon with	Fine to made grained desigen By. Color clusters Mara chundrant and contactor	3-4	-	06570	244.70	246-17	63	35	-
Heberolichii Intrusion Breccia. Mred manyarite and green makin Abberolichii Caabb. Caab A metric carbonele. Local small green makin supported. Earling green makin supported. Earling topported. Earling green makin matrix off. Earling green matrix	246.17-270.66 COH. Potassic Altered	246-17-248-15 Predeminanty fine Clasts marrie supported Local story matrix-instruction ? Mod magnetic	weak patchy pervasive matrix carb. Local weak epid patches + selvages Patchy weak/med horas h. cets.	.00	A few 10-30°CA epidale verilles borde + fine carb V.	fine detsen. matrix Ry commonly in clusters	2-3	-	06571	246.17	248.15	46	10	-
Breccia. Mired manganite and green major instantion supported. Texture all commonly rayed die to green major instantion supported. Texture green major instantion for the supported. Texture green major instantion for the supported. Texture green major instantion for the supported. Texture all erateria. Many clasts have supported. Exist a supported. Texture all erateria. Many clasts have supported. Exist a supported. Texture to with find green and supported. Exist a supported. Texture to be divisit a major and approx to be divisit a support. So be divisit a first and support. So be divisit a support. So be divisit a first and support. So be divisit a support. So be divisit a support. So be divisit a support. So be divisit and support. So be divisit and support. So be divisit a support. All text and the support support. All text and support. All tex	Heterolithic Intrusion	24845-257.96 Fine to medium Asternithic clasts. Clast to	Patchy moderate pervanie	200	Carb, epid and Ry Usins and winters	Patchy fire dimem	3-4	7.	06572	248-15	250.15	943	2.70	
green metri metenoricani alte cantani gravied for la mide fini gravied epidale is materiale alterity is encluded with N/L alterity is alterial of the partiely and the partiely	Breccia. Mixed Monzonite and	weak matrix supported. Textures	notrix corbonate. Local small epidote clots , à mobrix. Local	0980	@ 10-30 CA and 70-90 CA . Low-	local fin cluster of pyrite. Local Ry	2-3	Tr	06 573	250.15	252.15	1177	33¢	
clasts. Matrix he clast supported. Finis he clast supported. Finis he follower he for the media matrix he follower he have been and matrix and the follower he have been and matrix and the follower he have been and the have been and	green majic metavolcanic	are commonly pague due to	Ican wide fine grained epidote	00	moderate density	weintets	2-5	Tr	06 574	252.15	253.20	\$36	295	
Supported. Find to medium grained matrix commonly allered - ungue textores appears to be divited in part.	clasts. Matrix to clast	alleration. Many closes have	bands. weak - mod. matrix	*	@253.20-254.13	Brecciated with M/c	7-(0	1-2	06575	2.53.20	254.13	1015	341	, -
Alle find granter and the find and the second formed course to the second formed course for the second formed course to the second for the sec	supported. Fine to	natrow k. feldspor alt. nms	K. feldspar cs rime and matrix alt.	30	19-19 VEINS 30-40 CM	Zern wield	4-5	Tr	06576	254.13	256.13	1527	330	
Continently allered - regice textures appears to be dioritic in part.	medium grainer martin			b??			3-4	Tr	06577	256.13	2.57.46	1365	330	,
appears to be diorited purposed class many control and class in the second class in th	commonly altered - vague textures	257.46-261.05 Fine-med-coarse clast breccia - med grained dissible marries Mainly with	Weak patchy matrix and Clast carbonate mod-strong	Deg	sparse hairline. Carbonate vointeto	clusters of fine/med grained by in matrix	5-6	Tr	.4578	257.46	159.40	1503	37	>
261.05-267.53 Minised fire-med clast, Some coarse. Monzonite, mefici NV. Ratrix to wark clast Supported. Anywar clast Clasts, Alt. objection Prine clasts, metrix Clasts, metrix supported Clasts, supported	appears to be dioritic in part.	purphyriti Manzonite clash Many K. feldep rime. Weak-mod. Magnetic	k. feld. natrix and clost rims. Some white aboute in natrix Mine memetite in motrix. Sparse epidels.			Local blebs in clasts Some areas with upto 207. marrix Ro.	3-5	Tr	06579	259.40	261.05	794	230	,
some course. Many soule, mapel MV. Matrix to weak clust Supported. Anywork to subander clasts. All. dimiti namis ment. May after many antie Clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti namis ment. May after many after to subander clasts. All. dimiti supported clasts. Mahis supported clasts. The possible k. feldsport after many after to subander clast and to subander to subander to subander to subander clasts. Mahis supported clast and subander to suband	,	261.05-267.53 Mixed fine-med clast,	weak patchy natrie carbonati local 5-10 cm exidote patches	3000 1000	how density of fine carbonate =	Fire - local madium grained disconside	1-3	Tr	04580	261.05	263.55	1051	25:	;
clasts. All. discrite normine clasts. La call fine clasts. Clasts. La call fine clasts. Clasts. Clasts		NV. Matrix to weak clast Supported Anno to site	K. feldspor occurs throughout	808	epidate veinlete Görsöch Rare	ly after in clusters within matrix . P.	2-3	Tr	065 8 1	263.55	266.00	993	330	 ,
267.58-270.66 weak. mod. personic matrix 000 Moderati alensity fire to med. dimen. 2-4 Tr 06523 267.53 267.		clasts. Alt. diarita marris neal-mad. magretie.	rime, patchy matrix	1 X	Chlorite-hendia	Content alogn near bollom with large clash	1-3	Τr	06582	266.00	267.53	1083	255	
clast compositions as above. The more provinence clast times 14 the and cart vernlets of clusters. Lucal fine 2.3 Tr 06584 269:20 270.66 1639 400		267.53-270.66 Pine clasts, matrix supported	weak. mod. persona making Carbonale. Variable K. feldsp	000	Moderate alensity of fine epidole	fire to med dissen.	2-4	Tr	****3	267.53	269.20	865	240	
		clast compositions as above. The motion is fire-med. grained up texture	more pronumente class rins in upper part, local epidate clate and varis selvasco.	600	and care winters	as clusters . Lo cal fine By markets.	2-1	Tr	06584	269.20	270.66	1639	4.00	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Restauts

DATE 3/ Qct. 1993

DHNBZ99-04														
SAMPLE NO.	FROM	то	LENGTH	Au (ppb)	Cu (ppm)	L X Au	Au-Comp	L X Cu	Cu-Comp	From	То	Length	Au (ppb) (Cu (ppm)
14651	4 50	5.80	1 30	550	869	715.00		1129.70						
14652	5.80	9 10	3.30	275	520	907.50		1716.00						
14653	9 10	12.53	3.43	205	646	703.15	2325.65	2215.78	5061.48	4.50	12.53	8.03	289.62	630.32
14654	12.53	14.00	1.47	215	373	316.05		548.31						
14655	14.00	15.60	1.60	190	832	304.00		1331.20						
14656	15.60	17.57	1.97	900	2678	1773.00		5275.66						
14657	17.57	19.00	1.43	720	2049	1029.60		2930.07						
14658	19.00	20.90	1.90	190	995	361.00		1890.50						
14659	20.90	23.12	2.22	70	582	155.40		1292.04						
14660	23.12	25.90	2.78	315	1045	875.70		2905.10						
14661	25.90	27.36	1.46	115	309	167.90		451.14						
14662	27.36	29.42	2.06	95	602	195.70	5178.35	1240.12	17864.14	12.53	29.42	16.89	306.59	1057.68
14663	29.42	30.50	1.08	425	1829	459.00		1975.32						
14664	30.50	32.77	2.27	120	456	272.40		1035.12						
14665	32.77	34.12	1.35	75	761	101.25		1027.35						
14666	34.12	36.50	2.38	160	1130	380.80		2689.40						
14667	36.50	39.01	2.51	205	1009	514.55		2532.59						
14668	39.01	41.05	2.04	1320	2521	2692.80		5142.84						
14669	41.05	43.05	2.00	1800	1004	3600.00		2008.00		20.04	45.05	6.04	1007 00	4660 76
14670	43.05	45.05	2.00	590	1132	1180.00	7472.80	2204.00	9414.84	39.01	45.05	0.04	1231.22	1000.70
14671	45.05	46.46	1.41	115	525	162.15		/40.25						
14672	46.46	49.27	2.81	190	789	533.90		4706 44						
14673	49.27	51.21	1.94	185	926	358.90		1/90.44						
14674	51.21	54.10	2.89	325	1423	939.20	11000 50	4112.47	20540 17	20 42	56.00	26 58	438.60	1111 71
14675	54.10	56.00	1.90	245	1057	403.00	11000.00	2006.30	29049.17	29.42	56.00	51.50	372 13	1018.03
					220	20.00	19104.00	661.05	324/4.19	4.50	30.00	51.50	572.15	1010.33
14676	56.00	57.95	1.95	20	339	39.00		03.00						
14677	57.95	59.50	1.55	20	312	31,00		305 55						
14678	59.50	60.55	1.05	30	291	30,73		2427 20						
14679	60.55	62.03	1.46	190	1040	201.20	640.90	2605 76	6122.06	60 55	64 35	3.80	168 63	1611 31
14680	62.03	64.35	2.32	100	1093	464.25	040.00	1053.00	0122.00	00.00	04.00	0.00	100.00	
14681	65.70	56.45	0.75	210	1404	101.23		3331.25						
14682	69.95	72.00	2.05	133	1020	167 50		2446.84						
14683	72.00	73,34	1.34	120	1020	30.00		640.00						
14684	73.34	75.34	2.00	15	320	240.00		3858.00						
14685	75.34	11.34	2.00	120	1929	240.00 605.40	1210 65	6950 58	17226 67	69 95	80.00	10.05	121 36	1714.10
14686	77.34	80.00	2.66	190	2013	115.00	1213.00	11/15 00	11220.07	00.00	00.00			
14687	84.00	85.00	1.00	113	1140	135.00		1830.00						
14688	87.20	88.20	1.00	130	1039	125.00		2003.00						
14689	94.30	90.30	1.00	75	2003	75.00		828.00						
14690	100.00	101.00	1.00	140	1442	140.00		1442.00						
14691	104.06	100.00	1.00	75	731	116 25		1133.05						
14092	100.45	100.00	1.00	65	677	65.00		677.00						
14093	100.00	110.00	1.00	75	1371	75.00		1371.00						
14094	110.00	111 60	1.60	60	821	96.00		1313.60						
14090	111.60	113.00	1.00	75	940	105.00		1316.00						
14090	113.00	114 12	1 12	120	872	134.40		976.64						
14097	114 12	116 12	2 00	90	1263	180.00		2526.00						
14600	116 12	118 12	2.00	55	989	110.00		1978.00						
14035	118 12	120.32	2 20	70	1186	154.00		2609.20						
14700	120 32	121 04	0.72	70	1300	50.40		936.00						
14702	121 04	122.95	1 91	130	1793	248.30	771.25	3424.63	9067.05	109.00	122.95	13.95	55.29	649.97
14703	122.95	124.36	1.41	245	2936	345.45	593.75	4139.76	7564.39	121.04	124.36	3.32	178.84	2278.43
14704	124.36	127.00	2.64	40	563	105.60		1486.32						
14705	127.00	129.50	2.50	25	267	62.50		667.50						
14706	129.50	131.40	1.90	90	142	171.00		269.80						
14707	131.40	134.00	2.60	15	305	39.00		793.00						
14708	134.00	136.00	2.00	10	312	20.00		624.00						
14709	136.00	137.65	1.65	240	1646	396.00		2/15.90		400.00	120 60	2 60	164 17	1032.29
14710	137.65	139.60	1.95	100	513	195.00	591.00	1000.35	3/16.25	130.00	139.00	3.00	104.17	1052.25
14711	139.60	141.68	2.08	30	428	62.40		890.24						
14712	141.68	144.00	2.32	45	499	104.40		1157.68						
14713	144.00	146.00	2.00	30	554	60.00		1108.00						
14714	146.00	148.00	2.00	25	445	50.00		690.00						
14715	148.00	150.00	2.00	25	623	50.00		1246.00						
14716	150.00	152.00	2.00	390	904	780.00		1008.00						
14717	152.00	153.29	1.29	20	227	25.80		292.03						
14718	153.29	156.00	2.71	10	172	27.10		400.12						
14719	156.00	158.27	2.27	20	668	45.40		1010.00						
14720	158.27	160.00	1.73	65	23/7	112.40		4034 40						
14721	160.00	162.40	2.40	60	2006	144.00		2/25 50						
14722	162.40	164.65	2.25	50	10/8	04.00		2921.05						
14723	164.65	167.00	2.35	40	1243	420.00		2690.00						
14724	167.00	169.00	2.00	60	1040	90.00		2164.50						
14725	169.00	1/0.50	1.00	40	380	20.00	692.95	760.00	20007.66	158.27	172.50	14.23	48.70	1406.02
14726	170.50	172.50	∡. ∪U	10		20.00								

SAMPLE NO.	FROM	то	LENGTH	Au (ppb)	Cu (ppm)	L X Au	Au-Comp	L X Cu	Cu-Comp	From	To	Length	Au (ppb) (Cu (ppm)
14727	172 50	174 50	2.00	135	1451	270.00		2902.00						
14728	174.50	175.90	1.40	235	518	329.00		725.20						
14729	175 90	178.00	2.10	220	1470	462.00		3087.00						
14730	178.00	180.00	2.00	120	956	240.00		1912.00						
14731	180.00	181.07	1.07	130	427	139.10		456.89						
14732	181.07	184.00	2.93	30	795	87.90		2329.35						
14733	184.00	187.00	3.00	115	754	345.00		2262.00						
14734	187.00	189.00	2.00	140	1554	280.00		3108.00						
14735	189.00	190.67	1.67	315	482	526.05	2679.05	804.94	17587.38	172.50	190.67	18.17	147.44	967.94
14736	190.67	192.67	2.00	710	1565	1420.00		3130.00						
14737	192.67	194,90	2.23	310	1414	691.30	2111.30	3153.22	6283.22	190.67	194.90	4.23	499.13	1485.39
14738	194.90	197.00	2.10	120	782	252.00		1642.20						
14739	197.00	199.00	2.00	140	788	280.00		1576.00						
14740	199.00	201.00	2.00	70	1226	140.00		2452.00						
14741	201.00	202.50	1.50	235	731	352.50		1096.50						
14742	202.50	205.00	2.50	255	1072	637.50		2680.00						
14743	205.00	207.50	2.50	85	706	212.50		1765.00						
14744	207.50	209.70	2.20	135	1042	297.00		2292.40						
14745	209.71	210.95	1.24	70	983	86.80	2258.30	1218.92	14723.02	194.90	210.95	16.05	140.70	917.32
14746	210.95	213.00	2.05	150	985	307.50		2019.25						
14747	213.00	215.50	2.50	370	881	925.00		2202.50						
14748	215.50	217.50	2.00	215	1003	430.00		2006.00						
14749	217.50	219.33	1.83	225	1105	411.75	2074.25	2022.15	8249.90	210.95	219.33	8.38	247.52	984.47
14750	219.33	222.05	2.72	65	573	176.80		1558.56						
6560	222.05	224.50	2.45	420	1095	1029.00		2682.75						
6561	224.50	227.48	2.98	455	794	1355.90	0007 OF	2366.12	CE77 07	222.05	220.07	6 03	205 55	064.60
6562	227.48	228.87	1.39	225	1100	312.75	2697.65	1529.00	10.1100	222.05	220.01	0.02	393.33	504.50
6563	228.87	231.40	2.53	80	858	202.40		4024.04						
6564	231.40	233.88	2.48	120	658	297.60		1031.04						
6565	233.88	236.00	2.12	20	100	42.40		054.00						
6566	236.00	238.00	2.00	100	4//	200.00		000.00						
6567	238.00	240.00	2.00	405	493	462.50		3035.00						
6568	240.00	242.00	2.50	100	1620	402.30 517.00	4756 35	3586.00	20834 73	219 33	244 70	25.37	187 48	821 23
6569	242.50	244.70	2.20	200	63	51.45	47.50.55	92.61	20004.10	210.00	2	20.01		
6570	244.70	240.17	1.47	10	46	19.80		91.08						
65/1	240.17	240.10	1.90	270	943	540.00		1886.00						
6572	240.10	250,15	2.00	330	1199	00.000		2398.00						
6373	200,10	252.15	1.05	285	836	299.25		877.80						
6074	202.10	255.20	0.03	340	1015	316 20		943.95						
6070	255.20	204.10	2.00	330	1529	660.00		3058.00						
63/6	204.13	200.10	1 33	330	1365	438.90		1815.45						
00//	200,13	251.40	1.35	370	1503	717.80		2915.82						
6576	207.40	208.40	1.65	220	794	379.50		1310.10						
6579	209.40	201.00	2.60	255	1051	637.50		2627.50						
0660	201.00	203.00	2.50	330	993	808.50		2432.85						
0301	203.00	260.00	1.53	255	1083	390.15		1656.99						
0002	200.00	269.20	1.67	240	865	400.80		1444.55						
6584	207.33	203.20	1.46	400	1639	584.00	6832.60	2392.94	25759.95	248.15	270.66	22.51	303.54	1144.38
0004	203.20	210.00	1.40				20783.10		93621.89	172.50	270.66	98.16	211.73	953.77

-

. .

, .

, , ,

16-Nov-99

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

7

1

1

.

)

1

}

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-643

1

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

1

)

1

1

ATTENTION: RON WELLS

1

No. of samples received: 125 Sample type: Core PROJECT #: NBZ-04 SHIPMENT #: None Given Samples submitted by: R. Wells

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ш	v	w	v	7 n
1	14651	300	<0.2	1.48	<5	45	<5	3.64	1	28	31	869	5.72	<10	1.53	830	9	0.03	7	1410	<2	5	<20	84	0.08	~10	117	<10	<u> </u>	<u><u> </u></u>
2	14652	275	<0.2	1.32	<5	40	<5	2.78	<1	23	36	520	4.90	<10	1.34	739	5	0.03	9	1420	~	š	<20	54	0.00	~10	101	<10	-1	59
3	14653	205	0.4	0.90	<5	45	<5	5.23	3	29	36	646	5.45	<10	1.17	840	11	0.02	8	1540	12	-5	~20	164	~0.00	~10	44	<10	~1	50
4	14654	215	<0.2	1.41	<5	50	<5	3.62	<1	16	44	373	5.39	<10	1.37	818	7	0.03	5	1610	~	-5	~20	90	~0.01	<10	44	<10	3	50
5	14655	190	<0.2	1.22	<5	60	<5	4.27	2	21	44	832	5.36	<10	1.47	913	11	0.03	8	1690	2	10	<20	170	0.09	<10	100	< 10	9	53
																	••	0.00	v	1000	~	10	~20	178	0.05	\$10	103	\$10	8	73
6	14656	900	1.0	1.23	<5	35	<5	2.49	2	33	33	2678	5.28	<10	1.12	624	7	0.03	٩	1230	-2	16	~20	46	0.07	-10	00	-10		
7	14657	545	0.8	1.28	<5	30	<5	2.89	2	21	55	2649	4.37	<10	1.17	637	6	0.00	5	1270	~	5	~20	40	0.07	<10	92	<10	<1	76
8	14658	190	<0.2	1.30	<5	35	<5	2.37	1	33	40	995	5.17	<10	1.11	594	ě	0.03	8	1460	-2	5	~20	45	0.10	<10	100	< 10	15	113
9	14659	70	<0.2	1.38	<5	35	<5	2.80	<1	29	39	582	5.95	<10	1 17	612	6	0.00	8	1540	2	10	~20	40	0.09	<10	110	<10	3	56
10	14660	315	<0.2	1.58	<5	40	<5	2.92	<1	30	47	1045	7.05	<10	1 42	694	7	0.03	0	1720	4	10	~20	52	0.09	<10	128	<10	<1	49
													1.00	-10	1. 14.	004	'	0.05	3	1730	4	<0	<20	51	0.10	<10	145	<10	<1	65
11	14661	115	<0.2	1.45	<5	45	<5	3.24	<1	19	42	309	4 82	<10	1 23	718	2	0.02		1960		40	-00	~~~		- 10			_	
12	14662	95	<0.2	1.41	<5	30	<5	2.18	1	26	40	602	5 20	<10	1.00	527	5	0.03		1000	4	10	<20	62	0.11	<10	136	<10	9	56
13	14663	425	0.6	1.42	<5	40	<5	2.45	2	48	50	1820	6.40	<10	1.00	509	5	0.04		1090	4	<5	<20	50	0.10	<10	131	<10	4	49
14	14664	120	<0.2	1.35	<5	35	<5	2 75	<1	26	37	456	5 20	<10	1.12	090	É	0.03	0	1080	4	<5	<20	49	0.10	<10	117	<10	<1	97
15	14665	75	<0.2	1.39	<5	55	<5	2.67	4	44	26	761	5.20	~10	1.10	677	5	0.03	0	1600	4	10	<20	55	0.08	<10	124	<10	5	54
			•			00		2.07	'		50	701	0.43	<10	1.10	0//	8	0.03	6	1730	6	<5	<20	53	0.10	<10	138	<10	2	72
16	14666	160	<0.2	146	<5	45	<5	2 38	2	00	20	1120	0.45	-10	4.24	740	•				-									
17	14667	205	<0.2	1 47	-5	45	~5	2.00	-4	34	50	1130	9.15	<10	1.31	749	9	0.03	8	1550	2	<5	<20	46	0.10	<10	119	<10	<1	95
18	14668	925	-0.2 0 6	1 20	-5	45	~5	2.09	~	51	20	1009	6.17	<10	1.25	750	7	0.04	8	1690	6	5	<20	51	0.12	<10	142	<10	4	81
10	14660	>1000	-0.2	1.38	-5	40	~0 ~E	3.10	2	50	40	2521	6.29	<10	1.22	750	9	0.03	9	1630	12	5	<20	65	0.08	<10	111	<10	2	98
20	14670	- 1000	~0.2	1.34	~5 ~5	40	<0	2.30	<1	3/	47	1004	5.19	<10	1.20	665	9	0.04	4	1600	8	5	<20	39	0.10	<10	100	30	7	68
20	14070	590	~U.Z	1.13	<5	40	<5	2.27	2	36	33	1132	2.93	<10	0.81	532	26	0.03	4	1410	8	5	<20	40	0.09	<10	59	<10	16	69

.

1

ICP CERTIFICATE OF ANALYSIS AK 99-643

ECO-TECH LABORATORIES LTD.

Et #	i, Tag#	Au(ppb)	Ag	AI %	As	Ba	Bl	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Ph	Sh	Sn	Sr	ті %		v	w	v	7n
21	14671	115	<0.2	1.47	<5	70	<5	3.27	1	20	40	525	5.68	<10	1 14	728	٩	0.03	7	1780	10		<20	72	0.00		145	-10		
22	14672	190	<0.2	1.48	<5	40	<5	2.61	<1	20	44	789	6.50	<10	1 23	751	11	0.00	, 0	1910	0	~5	~20	13	0.08	< 10	140	<10	10	60
23	14673	185	<0.2	1.38	<5	35	<5	2.89	2	24	58	926	5.08	<10	1 07	676	7	0.04	10	1600	10	-5	~20	60	0.12	<10	100	<10	~~~	54
24	14674	325	0.4	1.44	<5	25	<5	3.28	<1	26	35	1423	5 11	<10	1 35	800	é	0.04	7	1600	10	- 5 E	~20	50	0.11	<10	112	< 10	14	59
25	14675	245	<0.2	1.49	<5	45	<5	3.09	<1	32	30	1057	8 40	<10	1.00	764	10	0.03	42	1020	0	5	~20	52	0.09	<10	107	<10	6	73
							-	0.00		~-		1007	0.40	10	1.461	104	10	0.03	15	1740	0	~ 0	<20	67	0.10	<10	155	<10	<1	60
26	14676	20	<0.2	1.48	<5	35	<5	1.65	<1	13	56	330	3 14	<10	0.75	222	2	0.02	e	040	40	~	-00	•						
27	14677	20	<0.2	1.38	<5	45	<5	2 42	<1	14	95	312	3 11	<10	0.73	203	5	0.03	10	740	10	2	<20	9	0.10	<10	87	<10	16	25
28	14678	35	<0.2	0.99	<5	30	<5	1.59	<1	12	57	201	2.67	<10	0.62	291	5	0.04	10	740	8	2	<20	20	0.10	<10	82	<10	14	22
29	14679	190	<0.2	1.59	<5	50	<5	1.89	<1	52	37	1640	7 78	<10	1 22	492	5	0.04	ు ం	1400	4	10	<20	18	0.09	<10	61	<10	17	21
30	14680	155	<0.2	2.31	<5	55	<5	2.51	<1	36	14	1503	7.60	~10	2.05	40Z	~	0.04	44	1490	10	<5	<20	26	0.18	<10	136	<10	<1	51
					-			2.01	- 1		14	1000	7.00	~10	2.00	530	9	0.03		1900	12	5	<20	34	0.24	<10	194	<10	<1	53
31	14681	215	<0.2	2.04	<5	45	<5	2.30	<1	28	43	1404	7 64	<10	1 97	450	~1	0.04	10	1020	•	-6	-00	~~			~~ ~			
32	14682	135	<0.2	1.82	<5	40	<5	2 18	1	49	56	1625	8 31	<10	1 73	469	2	0.04	12	1930	0	<0 -5	<20	62	0.23	<10	201	<10	<1	45
33	14683	125	<0.2	1.89	<5	45	<5	2 71	i.	56	37	1826	8 75	<10	1.70	554	3	0.03	10	2010	0	<0	<20	26	0.18	<10	1//	<10	<1	52
34	14684	15	<0.2	1.64	<5	35	<5	3.03	<1	30	44	320	5.87	<10	1.07	542	-1	0.04	0	2100	0	5	<20	41	0.22	<10	185	<10	<1	54
35	14685	120	<0.2	1.90	<5	60	<5	2 75	2	58	132	1929	9.40	<10	2.22	626		0.04	44	1750	8	<0 -5	<20	64	0.23	<10	179	<10	16	41
					-	•••	•	2.70	-	00	102	1020	3.40	-10	£.££	030	5	0.05	41	1750	10	<0	<20	32	0.20	<10	182	<10	<1	59
36	14686	190	<0.2	1.96	<5	70	<5	2.47	<1	71	43	2613	>10	<10	2.01	665	٥	0.04	10	1020	•	-5	-00				400			
37	14687	115	<0.2	1.78	<5	50	<5	3.59	<1	51	37	1145	849	<10	1.88	606		0.04	19	1030	0	<0 	<20	45	0.22	<10	189	<10	<1	62
38	14688	135	<0.2	1.58	<5	45	<5	2.88	1	68	76	1830	0.74	<10	1.64	576	, ,	0.03	20	1930	0	<0 -5	<20	50	0.19	<10	189	<10	<1	49
39	14689	125	<0.2	1.16	<5	65	<5	2.88	2	43	40	2003	783	~10	1 12	373 464	7	0.04	20	1000	0	<0 -5	<20	37	0.19	<10	150	<10	<1	50
40	14690	75	<0.2	1.77	<5	40	<5	2.54	1	36	34	828	7.54	<10	1.15	459	-1	0.03	14	1740	40	<0	<20	45	0.14	<10	144	<10	<1	38
					-		•		•		01	020	1.04	-10	1.40	400	~1	0.04		2270	10	5	<20	53	0.21	<10	184	<10	3	40
41	14691	140	<0.2	1.19	<5	50	<5	2.28	1	41	41	1442	7 71	<10	1.02	401		0.02	40	4600	~		-00	~~			400			
42	14692	75	<0.2	1.06	<5	45	<5	2.49	<1	27	34	731	6 20	<10	0.02	424	7	0.03	12	1450	~2	<0 40	<20	32	0.13	<10	162	<10	<1	35
43	14693	65	<0.2	1.30	<5	55	<5	1.76	1	23	34	677	7 51	<10	0.00	360	7	0.03	40	1400	4	10	<20	4/	0.09	<10	123	<10	<1	33
44	14694	75	<0.2	1.45	<5	60	<5	2.38	<1	63	47	1371	8 72	<10	1 27	451		0.03	10	1900	4	5	<20	38	0.13	<10	1/9	<10	<1	42
45	14695	60	<0.2	1.76	<5	50	<5	2.56	1	40	36	821	7 00	~10	1.37	202	2	0.04	14	1000	0	<0 -5	<20	38	0.17	<10	182	<10	<1	40
					-	•••	•	2.00	•	10	00	UL I	1.50	-10	1.14	303	3	0.04	15	1970	8	<0	<20	44	0.17	<10	188	<10	<1	39
46	14696	75	<0.2	1.37	<5	50	<5	2.33	<1	55	33	940	6 77	<10	1 36	500	~1	0.04	44	2050	10	<i></i>	-200	20		-10	450			
47	14697	120	<0.2	1.27	<5	60	<5	2 34	<1	31	43	872	6.67	~10	1.00	204		0.04	10	2000	10	<0 5	<20	39	0.20	<10	150	<10	9	47
48	14698	90	<0.2	1.85	10	55	<5	5.58	<1	44	52	1263	7.54	<10	1.00	650	11	0.03	10	1920	40	5	<20	32	0.12	<10	156	<10	4	37
49	14699	55	<0.2	1.81	<5	45	<5	3 72	<1	29	14	080	7 65	~10	1.02	625		0.03	10	1090	12	<5	<20	169	0.12	<10	137	<10	<1	42
50	14700	70	<0.2	1.78	<5	70	<5	2 49	2	34	36	1186	7.00	<10	1.00	407	- 3	0.03	12	2200	10	10	<20	90	0.15	<10	202	<10	3	41
							•	2.40	-	~	50	1100	1.22	~10	1./4	497	1	0.03	15	2170	10	<5	<20	59	0.19	<10	169	<10	<1	42
51	14701	70	<0.2	1.73	<5	55	<5	2.32	1	63	52	1300	6 84	<10	1 67	470	-1	0.03	10	2100	12	40	-20		0.00	-40	407			
52	14702	130	<0.2	1.68	<5	45	<5	1.68	1	41	59	1793	7.05	<10	1.55	373	2	0.03	10	2190	12	10	<20	5/	0.20	<10	197	<10	4	50
53	14703	245	<0.2	1.54	<5	45	<5	1.83	1	54	43	2936	7 42	<10	1 40	412	2 5	0.04	10	1900	10	10	<20	3/	0.18	<10	153	<10	<1	41
54	14704	40	<0.2	1.61	<5	45	<5	2.50	<1	34	62	563	4.50	<10	0.81	403	5	0.04	7	1960	14	<0 <5	<20	39	0.15	<10	117	<10	<1	43
55	14705	25	<0.2	1.51	<5	30	<5	3.26	<1	21	54	267	4 09	<10	0.01	516	2	0.04	é	1700	14	50 - 6	<20	39	0.14	<10	125	<10	16	30
					-		-		•		•••	201	4.00	-10	0.00	510	3	0.04	0	1/00	14	~ 0	<20	48	0.13	<10	137	<10	19	32

.

ICP CERTIFICATE OF ANALYSIS AK 99-643

ECO-TECH LABORATORIES LTD.

Et #.	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Mo	Na %	Ni	P	Ph	Sh	Sn	e-	T1 #/		v	14/	v	-
56	14706	90	<0.2	1.24	10	115	<5	6.33	1	13	81	142	3.25	<10	1.06	801	10	0.01	5	1410	18	10	<20	171	<0.01			- 40	<u> </u>	<u></u>
57	14707	15	<0.2	1.30	<5	25	<5	2.33	<1	16	49	305	2.91	<10	0.78	390	23	0.04	ē	1790	10	10	~20	95	-0.01	<10	32	<10	31	32
58	14708	10	<0.2	1.38	<5	40	<5	2.41	<1	18	69	312	3.92	<10	0.62	352	13	0.05	ğ	1840	12	5	~20	47	0.14	<10	95	<10	23	25
59	14709	240	<0.2	1.42	<5	40	<5	3.56	<1	32	42	1646	4.89	<10	0.99	468	12	0.03	8	1620	10	5	~20	47	0.12	<10	143	<10	18	21
60	14710	100	<0.2	1.65	<5	35	<5	3.04	1	11	55	513	5.06	<10	1 15	481	2	0.00	0	1620	10	10	<20	00	0.09	<10	124	<10	9	27
													0.00		1.10	401	5	0.00	0	1020	0	10	<20	38	0.11	<10	141	<10	4	32
61	14711	30	<0.2	1.78	<5	50	<5	3.03	<1	11	38	428	5 07	<10	1 12	470	c1	0.02	0	1770	10	-5	-00	•						
62	14712	45	<0.2	1.89	<5	30	<5	4.40	1	12	53	499	4 79	<10	1 43	716	1	0.02	40	1000	12	<0	<20	34	0.10	<10	149	<10	4	32
63	14713	30	<0.2	1.67	<5	50	<5	5.58	<1	10	72	554	4 26	<10	1 16	816	2	0.03	10	1900	12	10	<20	69	0.10	<10	142	<10	7	37
64	14714	25	<0.2	2.07	<5	40	<5	4.85	<1	17	55	445	4 76	<10	1 28	915	2	0.02	<u>,</u>	1000	10	10	<20	87	0.07	<10	111	<10	11	29
65	14715	25	<0.2	1.76	<5	60	<5	6 15	<1	13	47	623	4.10	~10	1 20	010	~	0.02	9	1760	14	10	<20	95	0.10	<10	131	<10	12	32
					•			0.10			-1	020		~10	1.30	910	2	0.02	1	1710	12	15	<20	133	0.08	<10	95	<10	20	34
66	14716	390	<0.2	1.96	<5	40	<5	3.37	<1	13	52	904	4 63	~10	1.06	620	- 4	0.04		4000										
67	14717	20	<0.2	1.88	<5	110	<5	3.84	<1	13	47	204	3 80	<10	1.00	600	<1	0.04	8	1680	16	15	<20	37	0.13	<10	189	<10	12	44
68	14718	10	<0.2	1.75	<5	35	<5	3.02	<1	11	51	170	3.05	~10	0.07	099	~1	0.04		1760	16	10	<20	75	0.14	<10	138	<10	21	37
69	14719	20	<0.2	1.42	<5	55	<5	3.09	<1	17	41	668	3.04	<10	1.00	202	1	0.05	6	1//0	14	5	<20	74	0.14	<10	134	<10	21	32
70	14720	65	0.2	1.65	<5	45	<5	3 18	<1	31	70	2277		<10	1.00	727	4	0.03	5	1460	14	15	<20	45	0.11	<10	85	<10	13	48
					•	.0	-0	0.10		51	12	23/1	0.31	~10	1.11	709	10	0.04	10	1620	16	5	<20	46	0.13	<10	121	<10	3	49
71	14721	60	<0.2	1.52	<5	50	<5	4 25	2	27	40	2056	6 64	-10	4 37	000	40	0.00	40	4700										
72	14722	50	<0.2	1.86	45	35	<5	6.87	<1	18	47	1079	6.04	<10	1.3/	1407	12	0.03	10	1790	10	15	<20	79	0.06	<10	122	<10	<1	58
73	14723	40	<0.2	1.48	<5	40	<5	3.00	e 1	33	57	10/0	5.10	~10	1.00	1127	9	0.02	10	1960	38	15	<20	259	0.03	<10	122	<10	27	94
74	14724	60	<0.2	1.40	<5	25	<5	3.86	2	30	50	1240	0.77 E EE	<10	1.29	790	18	0.04	8	1800	14	15	<20	44	0.09	<10	109	<10	1	45
75	14725	60	<0.2	1 42	10	30	<5	3.51	-1	47	46	1440	0.00	<10	1.42	931	10	0.03	10	1/10	14	25	<20	80	0.09	<10	134	<10	5	49
							-0	0.01			40	1443	0.14	\$10	1.52	020	19	0.03	9	1830	10	<5	<20	45	0.10	<10	115	<10	<1	51
76	14726	10	<0.2	1.02	5	15	<5	1 76	د1	10	42	200	266	-10	0.40	250						_								
77	14727	135	0.2	1 19	10	40	<5	3 11	-1	72	40	1461	2.00	<10	0.49	300	4	0.04	4	1540	12	<5	<20	55	0.08	<10	81	<10	15	29
78	14728	235	<0.2	1.03	5	20	<5	2.67	-1	24	21	1401 E10	0.00	<10	0.90	122	13	0.03	6	1710	16	<5	<20	40	0.09	<10	90	10	4	50
79	14729	220	<0.2	1 27	15	40	-5	1 12	-1	57	20	1470	3.07	<10	0.67	5/3		0.03	2	1450	16	10	<20	30	0.07	<10	81	<10	16	41
80	14730	120	<0.2	1.59	<5	55	~5	3.69	~1	37	42	14/0	0.00	<10	1.19	868	7	0.03	8	1860	18	10	<20	77	0.05	<10	113	10	5	48
				1.00	-0	55	-5	5.00	~1	37	40	900	0.22	<10	1.65	899	2	0.03	13	1880	16	<5	<20	53	0.14	<10	174	<10	<1	50
81	14731	130	<0.2	1 5 1	15	35	-5	5 1 1	-1	44	20	407																		
82	14732	30	<0.2	1.01	<5	40	~5	4 90	~1		30	427	6.22	<10	1.37	870	15	0.03	11	1820	18	25	<20	103	0.05	<10	108	<10	7	44
83	14733	115	<0.2	1 42	-5	25	~5	4.00	~1	51	400	795	0.24	<10	1.30	885	22	0.03	8	1780	28	15	<20	100	0.05	<10	99	10	16	49
84	14734	140	-0.4 0.4	1.48	15	35	_0 ∠5	4.07		50	120	/54	5.93	<10	1.39	923	23	0.03	12	1830	20	10	<20	54	0.08	<10	131	<10	10	55
85	14735	315	~0.7	1.70	15	40	~5 ~E	4.00	- 4	44	24	1554	6.04	<10	1.32	921	9	0.03	8	1840	20	10	<20	74	0.07	<10	109	<10	1	47
00	14700	515	~0. Z	1.55	~5	40	<0	3.44	~1	10	36	482	4.00	<10	0.92	744	6	0.04	6	1570	14	10	<20	45	0.09	<10	110	<10	11	42
86	14736	645	-02	1 65	~ E	40	-12	2.45	- 4	24																				
87	14727	210	~0.2	1.00	40	40	<0 -5	3.45	<1	31	40	1565	5.42	<10	1.34	840	11	0.04	10	1930	18	10	<20	55	0.11	<10	127	<10	<1	51
89	14730	420	~0.2	1.00	10	40	50	4.95	<1	3/	36	1414	6.40	<10	1.62	987	26	0.03	10	1940	18	10	<20	85	0.09	<10	120	<10	2	51
80	14730	140	~0.2	1.00	10	40	<0	3.32	<1	46	36	782	6.38	<10	1.54	877	26	0.04	7	2080	18	5	<20	42	0.13	<10	140	<10	<1	55
00	14740	70	-0.2	1.40	~0 ~5	30	<0	2.69	1	4/	51	788	6.69	<10	1.29	752	31	0.03	10	2050	14	5	<20	28	0.10	<10	124	<10	<1	52
ອປ	14/40	70	<u.2< th=""><th>1.53</th><th><0</th><th>35</th><th><5</th><th>2.49</th><th>1</th><th>52</th><th>52</th><th>1226</th><th>6.93</th><th><10</th><th>1.52</th><th>766</th><th>32</th><th>0.03</th><th>11</th><th>2000</th><th>14</th><th>5</th><th><20</th><th>34</th><th>0.12</th><th><10</th><th>134</th><th><10</th><th><1</th><th>56</th></u.2<>	1.53	<0	35	<5	2.49	1	52	52	1226	6.93	<10	1.52	766	32	0.03	11	2000	14	5	<20	34	0.12	<10	134	<10	<1	56

Page 3

.

· **-**

1

ICP CERTIFICATE OF ANALYSIS AK 99-643

ECO-TECH LABORATORIES LTD.

Et #	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Ph	Sb	Sn	Sr	Ti %	ū	v	187	v	7
91	14741	235	<0.2	1.49	<5	30	<5	3.10	<1	49	34	731	6.51	<10	1.41	817	14	0.03	11	2080	18	10	<20	20	0.00		405		1	<u></u>
92	14742	255	<0.2	1.42	<5	35	<5	2.11	<1	52	60	1072	6.73	<10	1 27	687	19	0.03	11	2000	10	10	<20	39	0.09	<10	135	<10	<1	56
93	14743	85	<0.2	1.54	<5	40	<5	2.95	<1	38	45	706	6.29	<10	1.31	756	12	0.04		2010	10	-0	~20	35	0.09	<10	117	<10	<1	58
94	14744	135	<0.2	1.79	<5	45	<5	2.45	<1	50	68	1042	6.91	<10	1.60	785	6	0.03	40	2010	10	10	<20	40	0.09	<10	141	<10	<1	55
95	14745	70	<0.2	1.38	<5	40	<5	2.67	<1	23	49	983	5.03	<10	1.00	674	7	0.04	10	2170	22	5	<20	- 34	0.15	<10	160	<10	<1	63
							-		•			000	0.00	-10	1.00	0/4	'	0.04	9	1910	10	5	<20	41	0.10	<10	116	<10	1	48
96	14746	150	<0.2	1.55	<5	40	<5	2.93	<1	53	52	985	8 17	<10	1 52	807	20	0.02	40	2040	40		-00							
97	14747	370	<0.2	1.42	<5	35	<5	2 56	<1	46	55	881	6 32	~10	1 27	742	20	0.03	10	2040	18	<5	<20	38	0.09	<10	146	<10	<1	61
98	14748	215	<0.2	1.51	5	40	<5	2.40	1	39	41	1003	6 52	<10	1.27	752	37	0.04	10	2020	22	<5	<20	34	0.11	<10	115	<10	<1	54
99	14749	225	<0.2	1.61	<5	40	<5	2 07	1	38	61	1105	6 73	<10	1.46	700	رد م	0.03	40	2220	18	10	<20	32	0.10	<10	129	<10	<1	65
100	14750	65	<0.2	1.07	<5	25	<5	1 70	<1	21	36	573	3.84	~10	0.65	742	0	0.05	13	2240	20	10	<20	38	0.14	<10	132	<10	<1	69
					•			1.70		21	50	5/5	3.04	-10	0.05	306	a	0.03	6	1880	12	<5	<20	26	0.08	<10	97	<10	4	36
101	6560	420	<0.2	1.50	<5	45	<5	1 84	<1	31	54	1005	6 74	~10	1 24	500	40		40	0.470										
102	6561	455	<0.2	1.68	<5	40	<5	2 27	4	36	00	704	7.24	<10	1.24	233	12	0.04	13	2170	18	10	<20	28	0.11	<10	120	<10	<1	52
103	6562	225	<0.2	1.70	<5	45	<5	2.62	<1	44	62	1100	7.24	~10	1.00	600	12	0.04	22	2250	22	15	<20	52	0.13	<10	144	<10	<1	64
104	6563	80	<0.2	1 72	<5	60	<5	3.81	4	22	40	969	7.00	<10	1.40	039	15	0.04	11	2150	20	5	<20	46	0.15	<10	146	<10	<1	56
105	6564	120	<0.2	1.91	<5	35	<5	3.06	2	20	62	659	6 07	~10	1.01	040	10	0.03	13	2190	24	10	<20	58	0.09	<10	144	<10	<1	62
						00	.0	0.00	-	23	03	000	0.07	<10	1.71	830	10	0.04	15	2210	26	10	<20	57	0.13	<10	149	<10	<1	61
106	6565	20	<0.2	1.85	<5	45	<5	2 71	-1	15	76	150	e 15	-10	4 07		-													
107	6566	100	<0.2	1 70	<5	35	-5	2 72	4	24	20	477	0.10	<10	1.37	692		0.03	11	2340	22	5	<20	54	0.11	<10	181	<10	<1	61
108	6567	80	<0.2	1 71	<5	55	<5	2 08	4	18	00 60	4/1	5.05	<10	1.33	781	8	0.04	11	2100	22	10	<20	69	0.10	<10	138	<10	2	51
109	6568	185	<0.2	1 40	<5	75	~5	2.50	-1	25	28	490	5.07	<10	1.13	692	5	0.04	10	2030	20	5	<20	57	0.10	<10	147	<10	<1	46
110	6569	235	<0.2	1.39	<5	45	-5	2.10	~1	40	50	1214	5.90	<10	1.05	669	6	0.03	10	2020	16	<5	<20	67	0.08	<10	128	<10	<1	53
		200	-0.L	1.00	-0	45	~5	£.1£	~1	10	50	1030	5.49	<10	0.99	529	6	0.04	11	2050	18	<5	<20	37	0.10	<10	128	<10	<1	49
111	6570	35	<0.2	1 20	<5	45	5	2 24	-1	17	66	60	2.42	- 10			_		_											
112	6571	10	<0.2	1 16	<5	35	10	2.34	~1	10	60 60	03	3.43	<10	0.55	436	5	0.04	3	1240	24	5	<20	21	0.08	<10	69	<10	12	27
113	6572	270	<0.2	1.56	-5	50	-6	2.37	~1	24	59	40	3.04	<10	0.64	469	5	0.04	3	1260	18	15	<20	28	0.08	<10	73	10	17	28
114	6573	330	0.2	1.50	-5	35	~5	2.33	~1	24	59	943	0.41	<10	1.14	5/4	6	0.04	12	2170	20	<5	<20	41	0.13	<10	162	<10	<1	67
115	6574	285	<0.2	1.62	10	45	~5	2.00	-1	21	52	1199	5.83	<10	1.10	584	16	0.04	8	2060	26	5	<20	40	0.10	<10	122	<10	<1	89
		200	-0.2	1.00	10	45	-0	3.71	'	30	00	830	0.63	<10	1.46	882	10	0.03	11	2120	26	10	<20	64	0.08	<10	138	<10	<1	77
116	6575	340	<0.2	1 77	~5	20	-	2 02		20	~~		o				_													
117	6576	330	-0.2	1.77	~0 ~E	50	<0	2.9Z	-4	20	63	1015	6.17	<10	1.38	830	7	0.04	10	2050	20	10	<20	33	0.10	<10	134	<10	<1	85
118	6577	330	10	1.01	~5	00 45	<0 ~8	4.00	~1	20	40	1529	6.44	<10	1.58	1083	8	0.03	10	2160	22	<5	<20	83	0.08	<10	140	<10	2	108
119	6578	370	0.4	1.07	~5	40	-5	3.31	~	24	4/	1365	6.08	<10	1.39	859	6	0.04	12	2090	22	25	<20	58	0.08	<10	134	<10	<1	87
120	6579	220	<0.7	1.09	<5 45	60	< 5	4.30	~	33	37	1503	7.21	<10	1.57	1032	15	0.03	10	2040	20	20	<20	78	0.06	<10	132	<10	<1	111
120	0078	230	~0. ∠	1.10	<0	60	<9,	5.05	2	35	30	794	6.94	<10	1.67	1173	9	0.03	9	2130	14	10	<20	156	0.04	<10	99	<10	<1	95
121	6580	255	-0.2	4 76	~E	60		4.00		•••																				
121	6691	200	<0.2	1.75	<5	50	<5	4.69	<1	33	46	1051	7.33	<10	1.60	1073	10	0.03	6	2120	26	<5	<20	114	0.06	<10	126	<10	1	111
122	6692	330	~U.Z	1.75	10	50	<5	3.70	1	41	42	993	7.44	<10	1.69	1007	8	0.03	11	2100	24	10	<20	55	0.10	<10	148	10	<1	93
124	6592	200	U.4 ∠0.2	1.42	<0	55	<5	5.09	1	30	38	1083	6.20	<10	1.35	1061	10	0.03	9	1870	18	20	<20	122	0.04	<10	123	<10	2	93
124	0000	2 9 0 400	~U.Z	1.00	10	50	<5	3.48	<1	21	49	865	5.94	<10	1.29	962	7	0.04	7	1960	22	10	<20	60	0.08	<10	139	<10	<1	83
1.4.5		41.0			~	-	~~	/ / / / 1		-20	22	4000	6 40	- 4 0	4 4 0															

Page 4

CHRISTOPHER JAMES GOLD CORP. ICP CERTIFICATE OF ANALYSIS AK 99-643 ECO-TECH LABORATORIES LTD. Et #. Tag # Au(ppb) BiCa% Cd Co Ag Al% As Ba Cr Cu Fe% La Mg % P Pb Sb Sn Sr Ti%, Min Mo Na% Ni υ V W Y Zn QC DATA: Resplit: 1 14651 570 <0.2 1.53 <5 45 <5 3.76 32 36 904 5.86 1 <10 1.63 870 10 0.03 9 1500 2 15 <20 85 0.11 <10 120 <10 5 64 36 14686 215 <0.2 2.02 <5 65 <5 75 2.68 2.00 1 50 2658 >10 <10 581 8 0.05 21 2090 10 <5 <20 45 0.24 <10 203 <10 <1 68 71 14721 80 <0.2 1.61 5 50 <5 <1 4.39 29 50 1994 6.75 <10 1.36 874 10 10 0.04 1960 14 10 <20 78 0.08 <10 125 <10 <1 60 106 06565 25 <0.2 1.77 35 <5 <5 2.60 1 14 61 155 5.89 <10 1.24 677 5 0.03 9 2130 18 5 <20 50 0.09 <10 177 <10 <1 55 Repeat: 1 14651 465 <0.2 1.54 <5 45 <5 3.82 <1 30 35 925 5.86 <10 1.68 860 10 0.03 8 1500 2 <5 <20 83 0.10 <10 121 <10 5 63 10 14660 360 <0.2 1.50 <5 40 <5 2.84 <1 29 1015 42 6.86 <10 1.35 676 8 0.03 9 1700 6 <5 <20 48 0.10 <10 138 <10 <1 65 19 14669 >1000 0.2 1.27 <5 40 <5 2.22 <1 35 44 962 4.94 <10 638 1.14 8 0.03 5 1520 8 <5 <20 37 0.09 <10 95 20 5 65 36 14686 185 <0.2 1.90 <5 65 <5 2.45 2 70 42 2577 >10 <10 1.95 544 8 0.04 20 1970 10 <5 <20 42 0.21 183 <10 <10 <1 62 45 14695 65 <0.2 1.67 <5 40 <5 2.50 2 38 33 803 7.56 <10 1.09 370 3 0.04 13 1980 6 10 <20 40 0.16 <10 176 <10 <1 37 54 14704 45 < 0.2 1.61 <5 40 <5 2.51 <1 33 60 535 4.38 <10 0.79 398 5 0.04 8 1810 14 5 <20 40 0.14 <10 123 <10 15 28 71 14721 65 <0.2 1.53 5 40 <5 4.27 <1 28 39 2072 6.74 <10 1.38 866 12 0.03 10 1870 14 10 <20 68 0.06 <10 122 <10 <1 58 80 14730 125 <0.2 1.61 <5 50 <5 3.78 <1 37 44 961 6.40 <10 1.68 921 2 0.03 13 1960 20 5 <20 53 0.13 <10 176 <10 <1 52 89 14739 150 <0.2 1.52 5 35 <5 2.75 <1 50 52 815 7.03 <10 1.35 784 32 0.03 10 2170 16 <5 <20 29 0.10 <10 128 10 <1 54 106 06565 20 <0.2 1.78 5 40 <5 2.62 <1 14 145 66 5.86 <10 1.32 672 4 0.03 9 2150 20 15 <20 50 0.09 <10 177 <10 <1 54 115 06574 250 <0.2 1.57 5 50 <5 3.51 2 28 57 793 6.21 <10 1.37 832 8 0.03 9 2010 24 15 <20 63 0.09 <10 131 <10 <1 71 Standard: GEO'99 115 1.0 1.76 60 145 <5 1.86 <1 20 66 86 3.68 <10 0.96 663 <1 0.02 25 780 22 10 <20 56 0.10 <10 73 <10 8 79 GEO'99 130 1.0 1.80 60 155 10 1.75 <1 22 64 84 4.00 <10 0.98 719 <1 0.03 24 740 22 5 <20 57 0.11 <10 79 <10 9 74 GEO'99 120 1.2 1.78 70 150 <5 1.84 <1 20 64 90 3.77 <10 0.96 696 <1 0.02 26 760 24 15 <20 56 80.0 <10 77 <10 72 8 GEO'99 120 1.0 1.79 65 160 <5 1.88 <1 19 64 82 3.86 <10 0.92 660 <1 0.02 22 750 22 15 <20 54 0.08 <10 76 <10 9 76

}

1

1

1

1

1

1

1

df/643 XLS/99 cc: ron wells fax @ 372-1012

.

1

1

1

1

1

1

1

ĩ

1

ECO-TECH LABORATORIES LTD. Ary Frank J. Pezzotti, A.Sc.T. D.C. Certified Assayer

APPENDIX E

Drill Sections, Figures 13 and 14 NBZ99-03 and 04

÷

a- 100

APPENDIX F

Analytical Gold Checks Phase 1 and 2 Drilling Programs Figures 11 and 15

ANALYTICAL CHECKS ON CORE SAMPLE RESULTS

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6 Phone (250) 573-5700 Fax (250) 573-45 email: ecotech@direct.

CERTIFICATE OF ASSAY AK 99-509

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

14-Oct-99

ATTENTION: RON WELLS

No. of samples received; 50 Sample type: Core PROJECT #: NBZ-01 SHIPMENT #: 1 Samples submitted by: R. Wells

		AU	AU	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	
32	14282	0.55	0.016	

CO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 6

XLS/99

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-523

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 47 Sample type: Core PROJECT #: NBZ-01 SHIPMENT #: 2 Samples submitted by: R. Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
23	14323	0.93	0.027	
38	14338	0.73	0.021	
39	14339	0.21	0.006	
40	14340	0.45	0.013	

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. por B.C. Certified Assayer

14-Oct-99

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-541A

14-Oct-99

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

ATTENTION: RON WELLS

No. of samples received: 68 Sample type: Core PROJECT #: NB2-02 SHIPMENT #: 2 Samples submitted by: R. Wells

		Au	Au	
er#	Tag #	(<u>g</u> /t)	<u>(oz/t)</u>	
E1#.	44417	0.82	0.024	
17	14417	0.70	0.020	
18	14410	1.74	0.051	
19	14419	0.93	0.027	
27	14427	1 72	0.050	
28	14428	0.62	0.018	
29	14429	2.02	0.059	
30	14430	2.02	0.033	
31	1443 1	0.10	0.026	
35	14435	0.03	0.020	
36	14436	1.29	0,000	

QC	DA	TA:

Repeat:		0.80	0.026
17	14417	0.09	Q.024

CH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. P C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-625

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

5-Nov-99

ATTENTION: RON WELLS

No. of samples received: 126 Sample type: Core PROJECT #: NBZ-03 SHIPMENT #: 1 Samples submitted by: R. Wells

ET #.	Tag #	Au (g/t)	Au (oz/t)	
81	14581	1.55	0.045	
QC DATA: Repeat:				
81	14581	1.28	0.037	
Standard: STD-M		1.37	0.040	

ECO-TECH LABORATORIES LTD. Erank J. Pezzotti, A.Sc.T. fer B.C. Certified Assayer

XLS/99 cc: ron wells fax @ 372-1012

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-625R

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

9-Nov-99

ATTENTION: RON WELLS

No. of samples received: 126 Sample type: Core PROJECT #: NBZ-03 SHIPMENT #: 1 Samples submitted by: R. Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
43	14543	0.34	0.010	
46	14546	0.50	0.015	
71	14571	0.23	0.007	
72	14572	0.39	0.011	
73	14573	0.49	0.014	
74	14574	0.42	0.012	
75	14575	0.63	0.018	
76	14576	0.79	0.023	
81	14581	1.42	0.041	

QC DATA:			
Repeat:			
43	14543	0.37	0.011
Standard:			
STD-M		1.31	0.038

XLS/99 cc: ron wells fax @ 372-1012

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer**

Page 1

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-643

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

16-Nov-99

ATTENTION: RON WELLS

No. of samples received: 125 Sample type: Core PROJECT #: NBZ-04 SHIPMENT #: None Given Samples submitted by: R. Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
19	14669	1.46	0.043	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. per **B.C. Certified Assayer**

XLS/99 cc: ron wells fax @ 372-1012

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-643M

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT. KAMLOOPS, BC, V1S 1P9

18-Nov-99

ATTENTION: RON WELLS

No. of samples received: 125 Sample type: Core PROJECT #: NBZ-04 SHIPMENT #: None Given Samples submitted by: R. Wells

		Metallic Assay		
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	14651	0.55	0.016	

O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99 cc: ron wells fax @ 372-1012

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-643

CHRISTOPHER JAMES GOLD CORP. C/O RON WELLS 910 HEATHERTON CRT.

18-Nov-99

ATTENTION: RON WELLS

KAMLOOPS, BC, V1S 1P9

No. of samples received: 125 Sample type: Core PROJECT #: NBZ-04 SHIPMENT #: None Given Samples submitted by: R. Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
6	14656	0.87	0.025	
7	14657	0.72	0.021	
18	14668	1.32	0.038	
19	14669	2.13	0.062	
20	14670	0.45	0.013	
86	14736	0.71	0.021	
QC/DATA				
Repeat:				
6	14656	0.79	0.023	
Standard:				
STD-M		1.33	0.039	

O-TECH LABORATORIES LTD. nk J. Pezzotti, A.Sc.T. ۵ B.C. Certified Assayer

XLS/99 cc: ron wells fax @ 372-1012

Page 1