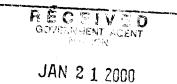


RECEIVED GOVERNMENT AGENT HELSON
MAY 2 2000
NOT AN UPPICIAL RECEIPT
TRANS #

ROCK AND SOIL GEOCHEMICAL


REPORT

ON THE

MCPHEE PROPERTY

NELSON MINING DIVISION BRITISH COLUMBIA

Latitude: 49° 17' North Longitude: 117° 32' West NTS: 82F/5,6 TRIM: 82F.023,.033

to an orrest an macting

Bruce Doyle

by

December 9,1999 TROLOGICAL SURVEY BRANCH COSESSOENCE REPORT

NS #.

TABLE OF CONTENTS

1. Di **6**4 6. .

1.1.11

		Page
1.0	Summary	i
2.0	Introduction	1
3.0	Location and Access	1
4.0	Claim Information	1
5.0	Exploration History	1
6.0	Regional Geology	. 5
7.0	Property Geology	5
8.0	1999 Work Program	7
9.0	Results	7
10.0	Conclusions and Recommendations	12
11.0	Disbursements	13
12.0	Statement of Qualifications	14

LIST OF FIGURES

Figure No.		Page
1	Location Map	2
2	Claim Map	3
3	Regional Geology	6
4 a	Gold Soil Geochemistry (McPhee II)	8
4b	Molybdenum Soil Geochemistry (Mcphee II)	. 9
4c	Gold Soil Geochemistry (Rod 9 & 10)	10
4d	Gold Soil Geochemistry (Waterloo 2)	11
5	Rock, Sediment and Soil Location Plan	(pocket)

LIST OF APPENDICES

I	ANALYTICAL METHOD	Ţ
П	ROCK AND STREAM SEDIMENT SAMPLE DESCRIPTIONS	
ш	GEOCHEMICAL ANALYSES	

1.0 SUMMARY

This report details an exploration program conducted between June 1, 1999 and September 20, 1999 on the Mcphee Property east of Castlegar, B.C. Assessment work was filed in October, 1999. The program comprised rock, soil and sediment sampling over several areas of interest on the Mcphee property, with the aim of discovering new gold showings.

Geochemical results indicate moderate to high precious metal values in soils and low to high base metals in soils. Extremely high gold values were obtained from rock samples on the Mcphee II claim where bonanza style gold was discovered. Elevated gold, molybdenum, arsenic, tungsten in soils is coincident with veining and quartz stockworks in the Bonnington monzonite. Elevated base and precious metal values occur in soils overlying limestone and skarn along the intrusive contact on the Waterloo2 claim. High tungsten values and significant gold values were discovered on the Aarons Rod #1 claim. A follow up trenching program on the Mcphee II claim should reveal more quartz veins carrying free gold. Trenching and a magnetometer survey is recommended on the Aarons Rod #1 claim where skarn containing tungsten and gold values were obtained from samples. More prospecting and geochemistry is recommended on the Waterloo 2 claim where base and precious metals were discovered in skarn and limestone.

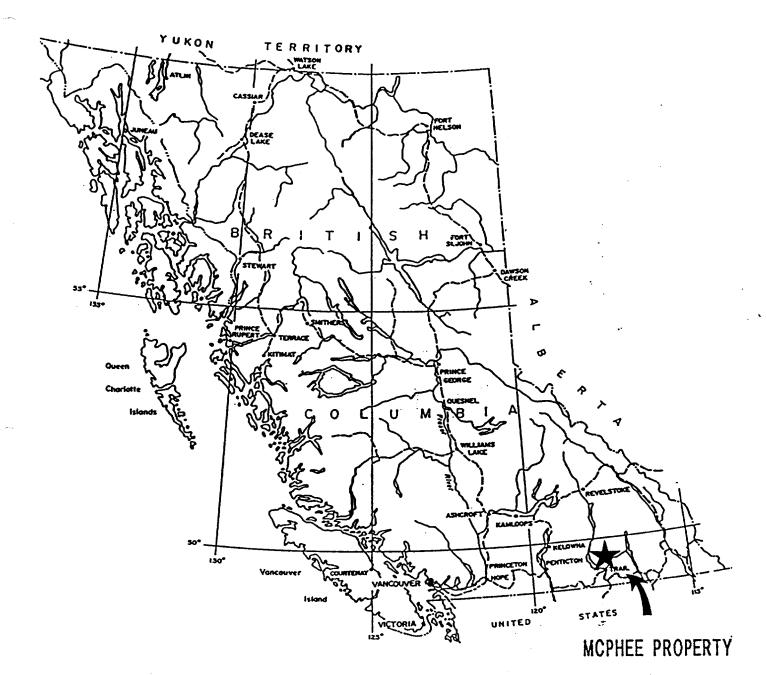
.7

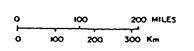
i

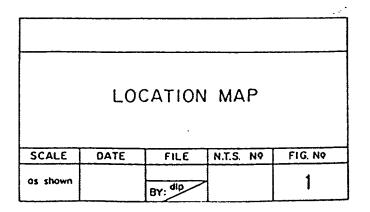
2.0 INTRODUCTION

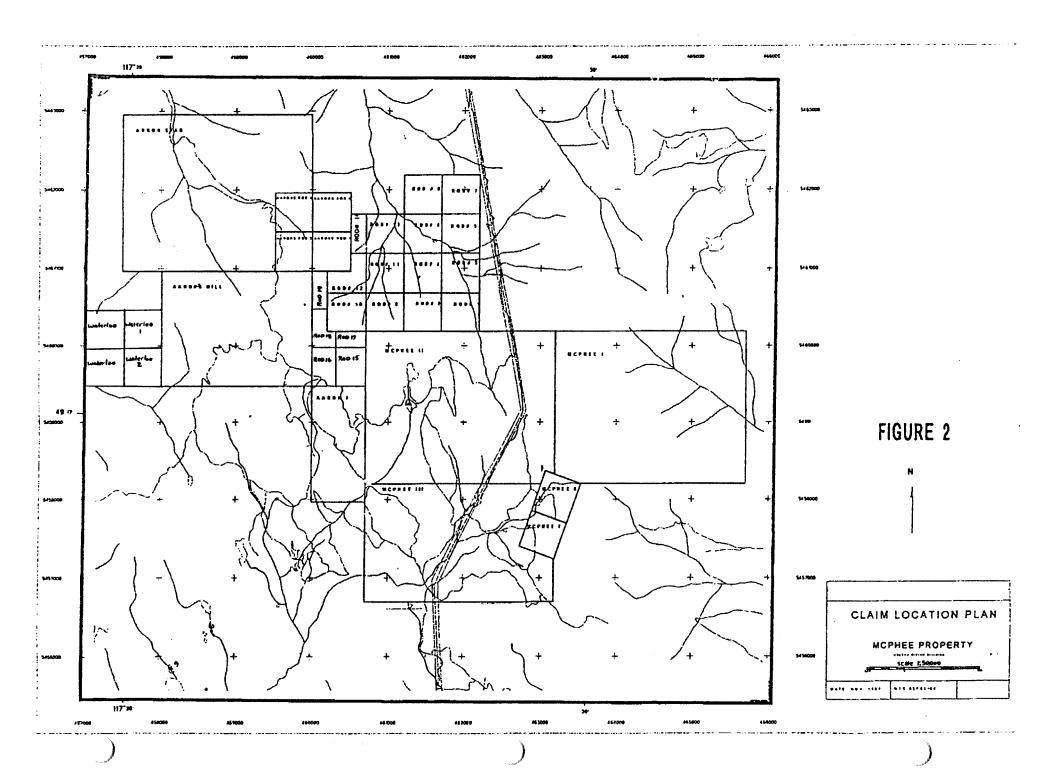
This report details an exploration program conducted between June 1, 1999 and September 20, 1999 on the Mcphee property east of Castlegar, B.C.. Assessment work was filed in October, 1999. The program comprised rock, stream sediment and soil sampling over several areas of interest on the Mcphee property to identify new gold showings not previously discovered.

3.0 LOCATION AND ACCESS


The McPhee property is located approximately six kilometres east of Castlegar, B.C., (See Fig. 1). The claims are situated on Mcphee, Little Mcphee and Champion creeks. The tributaries of Mcphee and Little Mcphee flow north into the Kootenay River, while the Champion creek drains southwest into the Columbia River. The claims are centered at 49° 17' north latitude and 117° west longitude. Access is via a six kilometre logging and powerline road that leaves highway #3 at Bombi Summit, some 15 kilometres east of Castlegar.


4.0 CLAIM INFORMATION


Currently the Mcphee property consists of 35 claims totalling 122 units recorded in the Nelson Mining Division and shown on claim map numbers 082F.023 and 082F.033.


5.0 HISTORY

There is little or no documentation on the Mcphee property prior to Bruce Doyle staking claims in 1995. Several crown granted claims were staked in the early 1900's around Aaron's Hill and though several major workings were discovered not documentation of this work could be found. An old letter in the author's possession describes a high grade gold showing northeast of the old *Maude S* property. The letter by B.W. Meister talks of 2.5 opt Au samples being taken from a shaft. No mention of this property, known as the Wolf claim could be found in any of the old mining books. In 1996 the author discovered gold and base metal values in metavolcanics and the property was optioned to Phelps Dodge in 1997. Phelps Dodge conducted prospecting, mapping and soil geochemistry. The option was dropped and in the late fall of 1997 the property was once again optioned

Latitude 49:30 : Longitude-117.50

		Expiry Date	
Tenure Number	Claim Name	Month/Date/Year	Units
331989	MCPHEE #7	10/28/2000	1
331990	MCPHEE #8	10/28/2000	1
344243	MCPHEE	03/18/2001	20
350108	AARONS HILL	08/14/2000	12
350759	AARONS ROD #1	09/10/2001	1
350760	AARONS ROD #2	09/10/2001	1
350761	AARONS ROD #3	09/10/2001	1
350762	AARONS ROD #4	09/10/2001	1
350779	AARON STAR	09/24/2000	20
352532	MCPHEE	10/29/2000	20
352533	MCPHEE	11/07/2000	15
352534	AARON	11/07/2000	6
356699	ROD #1	06/19/2001	1
356700	ROD #2	06/19/2001	1
356701	ROD #3	06/19/2001	1
356702	ROD #4	06/19/2001	1
356703	ROD #5	06/19/2001	1
356704	ROD #6	06/19/2001	1
356705	ROD #7	06/19/2001	1
356706	ROD #8	06/19/2001	1
356707	ROD #9	06/19/2001	1
356708	ROD #10	06/19/2001	1
356709	ROD #11	06/19/2001	1
356710	ROD #12	06/19/2001	1
356711	ROD #13	06/19/2001	1
356712	ROD #14	06/19/2001	1
369581	ROD #15	05/29/2001	1 *
369582	ROD #16	05/29/2001	1
369583	ROD #17	05/29/2001	1
369584	ROD #18	05/29/2001	1
369585	ROD #19	05/29/2001	1
371894	WATERLOO 1	09/08/2000	1
371895	WATERLOO 2	09/08/2000	1
371896	WATERLOO 3	09/08/2000	1
371897	WATERLOO 4	09/08/2000	1

TOTAL UNITS = 122

to Eagle Plains Resources Ltd. In the spring of 1998 Eagle Plains spent 9 days mapping, soil sampling and prospecting predominantly along the skarn contact. The property was returned to the author in the fall of 1998. In 1999 the author spent 32 days rock and soil sampling resulting in new discoveries. The property was then optioned to Cassidy Gold Corporation who intend to explore these new discoveries.

6.0 REGIONAL GEOLOGY

The regional geology is summarized from the work of Charlie Creig, 1998. Rocks underlying the Mcphee property can be separated into three main subdivisions; two of stratified rocks and one of plutonic rocks. The stratified rocks include one group consisting almost entirely of siliceous fine grained and foliated metaclastic rocks and the other group consisting predominantly of foliated mafic coarse grained fragmental volcanic rocks. The rocks of the two packages are not contiguous and occur in what appears to be large pendants within the third geological subdivision, which consists of plutonic rocks of various compositions that have been assigned, based on previous regional mapping, to the middle Jurassic Bonnington pluton. The metavolcanic rocks on the property are probably correlative with mafic volcanic rocks of the Lower Jurassic Elise formation of the Rossland Group. The metaclastic rocks are of less certain correlation. They may be part of the Hall Formation of the Rossland Group, which typically overlie rocks of the Elise Formation in the region, but they correlate with older clastic rocks common in the region such as the Paleozoic (and older) Mt. Roberts Formation.

7.0 PROPERTY GEOLOGY

The Mcphee property is underlain by two pendants of metasedimentary and metavolcanic rocks enclosed by monzonite and granodiorite of the Bonnington pluton, part of the Nelson suite of intrusions.

.7

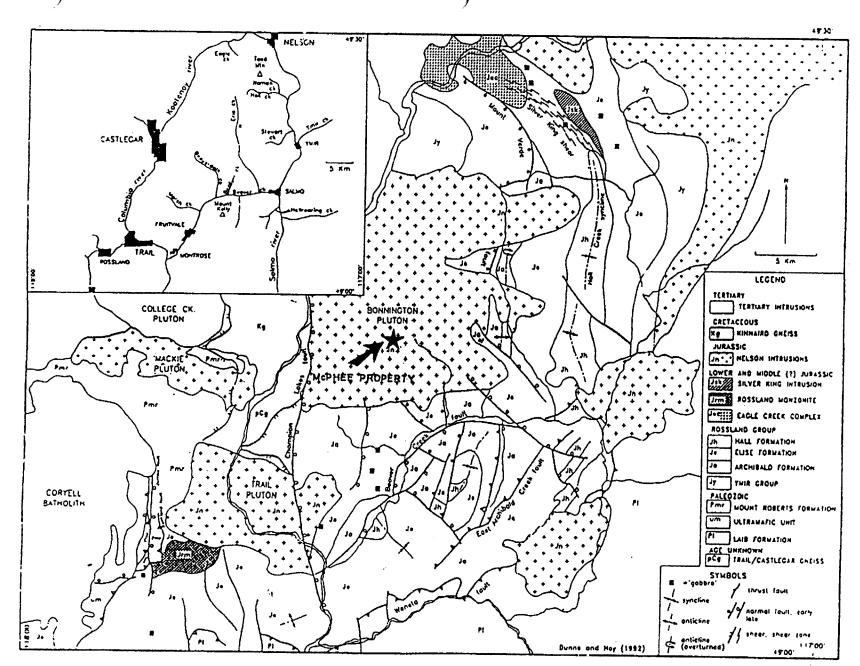


FIGURE 3 REGIONAL GEOLOGY

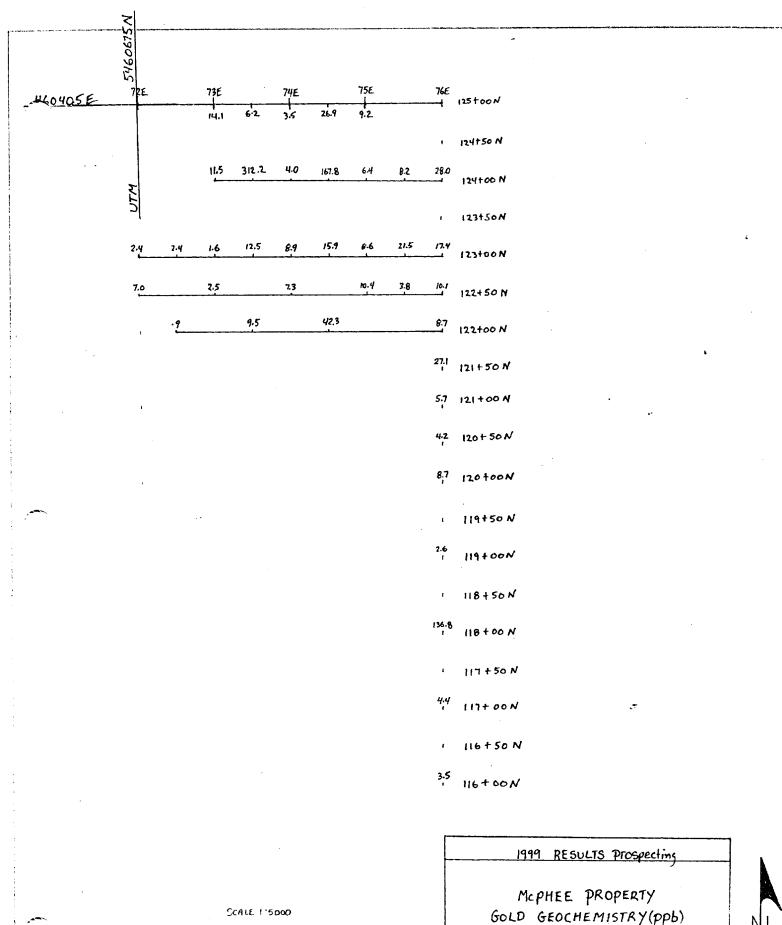
ł

1

-7

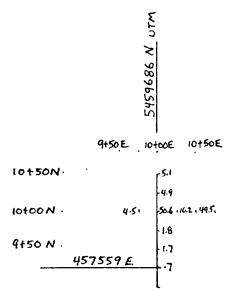
;

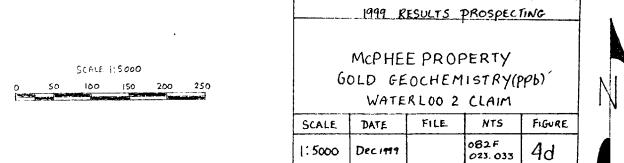
8.0 1999 WORK PROGRAM


This report describes work performed between June 1 and September 20, 1999 on the Mcphee property. The work consisted of 32 days of rock, stream sediment and soil sampling. Rock samples were taken over a large area of the Mcphee property. Soil samples were taken along lines at a spacing of 25 and 50 metres. A total of 96 rock, 150 soil and 8 stream sediment samples were taken. The soil samples were assigned a grid location and the rock and stream sediment samples were given an ID number. All samples were located using a Garmin Model 35 GPS receiver. All samples were sent to Acme Analytical Laboraties Ltd. in Vancouver, B.C.. Samples were analyzed by ICP and fire assay. Analytical procedures are described in Appendix I.

9.0 RESULTS

Analytical results from 150 soil samples returned values up to 621.8ppb Au, 275.8ppm As, 1964.76 ppm Pb, 1004.1 ppm Zn, 3494 ppb Ag and 47.98 ppm Mo. A duplicate sample on station 79E and 110+00N showed an increase in gold values with depth. A sample taken at a depth of 15cm returned 38ppbAu while another at the same location at a depth of 50cm returned 167.1ppb Au. Two moss mat samples returned 570ppb Au and 183ppb Au. Sample locations are shown in Figure 5 (pocket) and soil geochemistry maps of gold and molybdenum are shown in Figures 4a to 4d. Analytical results from 96 rock samples returned up to 20.702 opt Au, 8150 ppm As, 8912 ppm Zn, 2.53% Pb, 796ppm Mo and 0.86%W. Sample BD99R-96 returned 20.702 opt Au in a 22cm chip sample across a quartz vein. Visible gold was clearly identified with the naked eye. Sample BD99R-102 returned 2.53% Pb, 2.410pt Ag, and 0.0150pt Au from a limestone breccia. Sample BD99R-52 returned 0.86%W from a grab of skarn containing semi-massive pyrrhotite. Sample locations are shown in Figure 5 (pocket).


r									
115+50 N	79E 80E	BIE	82E	83E	84E.	85	£	86E.	
	17.0 1.2 4.5 4.1 3	.9		·····					
114+50 N	21.2 110.3 13.6 12.3 4	130 42.4							
	7.7 10.0 110.4 5.5 B	1.9			····	20 70	4:2		
113+50 N	24.6 32.2 12.2 3.3 2	6.5		•					
	4.0 2.7 7.3 2.9		<u></u>	· · · · · · · · · · · ·		2.9 2.	3 2.1	2.0	
112+50 N	H.7 2.5							·······	
	5.5				3.0 2.2	44 <i>I</i> .:	//.7		
111+50 N	7.7 8.6 1	7.7					<u></u>		;
	4.5	10.6	······································	·····		· ··· · · · · · · · · · · · · · · · ·			
110+50 N	/5.3		2.	8 3.5	1.0 2.1	2./ 7.	0 1.9		
	/67./				·			*	
109+50 N	52.4 23.4 15.0 10.2 12.2 12	75 45.5 11.7 23.4 147.7 z	68.4 29.2 /2.3						
	15.5 621.8 308 180 53.6 M	× 660 260 264 178 2	RZ 29-2						
108+50 N	1.7 12.5 88 22.8 171.4 2	16 22 599.9 984 104.7	140 7.5			 			
	24.4						<u></u>		
107+50 N	4.3	₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩					·		
	31.1					-		·	
106+50N	6.6								
							· · · · · · · · · · · · · · · · · · ·		
					Gold	EE PR Geoche	mISTR	RY PPb	
	SCALE 0 50 100	1:5000	ò		Мср	PHEE I	CLAII	Ч	
					LE DATE		NTS		
				1:5	5000 DEC 19	99	82F 023	-33 4a	


115+50 N	79E	80E 216 299 543 263	81E	82E		83E.		04E.		85E		86E.
	7.05	3.96 11.31 3.41 3.93										
114+50 N	7.49	7.51 3.98 10.65 3.44 5.99										
	2,38	3.03 4.67 10.67 14.32				<u></u>			•87	•93	.83	
113+50 N	1.80	1-82 2.97 2.48 4.78										
	1.59	2-78 1.14 2.52					·		1.65	.85	. 92	•88
112+50 N	6.61	1.19						<u></u>				
	1.10						1.46	5 1.28	.74	-95	1.07	
111+50 N	- 91	.79 1.38	<u></u>									
	.79	1.04				<u></u>						
110+50 N	• 89	1.23			1.55	Loi	1.28	. 86	.90	• 79	. 98	<u></u>
	1.39											
10-2+50 N	3.96	·99 1-10 -93 -80 1-27 1-08	-92 6-17 1-20	1.50 1.72 1.08						·······		
	2.01	1-38 1.26 1.11 -73 -73 -75	1.70 12.71 47.9	-96 1.08								,
108+50 N	2.18	141 3.37 -59 1.29 -89 1.05	15.46 -91 1.0	5-81-59	. PLUTANIA (M. 1977) - 1979		and an an a star that	*******	. <u></u>	ura, etter funda y still av Staters og	rada, a state data di ana se u sala	المروع المروي المحمر ومعر مروم المحمول
	2.20					A						
107+50 N	1.96						_ _					
	3.02											
106+50N	1.28	}				·····	. <u></u>					
							N	1cpl	HEE	: P	ROPL	ERTY
							N	10 10 p	Geo HEE	chem I	ristry	ррм
,		SCALE US	000			1				_ <u> </u>	$(L\pi)$	M
	ç	SCALE 1:50		250		C/	ALE	DATI		FILE	NTS	

SCALE 1:5000 100 150 200 50 250

ROD CLAIMS #9, #10 FILE FIGURE DATE NTS SCALE_ 1:5000 DEC 1999 082F 023-033 4c

,#

10.0 CONCLUSIONS AND RECOMMENDATIONS

Four new areas containing significant mineralization were identified during the 1999 work program.

The first discovery was of quartz veins carrying coarse visible gold. The veins are hosted in altered quartz monzonite on the Mchpee II claim at sample location BD99R-96. Shearing and faulting is evident over a 500 metre area from the discovery vein. A large gold geochemistry anomaly exists to the west of the discovery site. It is recommended that further soil geochemistry be completed and a trenching program be carried out to expose more quartz veins that could potentially carry visible gold.

The second area where significant mineralization was discovered is located on the Aarons Rod #1 claim, sample sites BD99R-62,52. Mineralization here consists of skarn with semi-massive pyrrhotite. Arsenopyrite in quartz veins carry significant gold values also. Recommendations for this area include trenching and a geophysical survey.

A third area of interest was a rediscovery of old workings (trench) believed to be that of B.W. Meister. A letter, found while doing research, talks about the Wolf claim located northeast of the old Maude S property. Assays taken from a shaft on the Wolf claim returned up to 2.5 opt Au in 1932. These are believed to be some of workings of B.W. Meister. Samples taken gave just over 3grams per tonne Au. It is recommended that further prospecting be done in the area to find the high grade shaft. Location is on the Aarons Rod #2 claim, sample #BD99R-79.

The last area of interest is located on the Waterloo 2 claim. This showing consists of disseminated arsenopyrite in skarn and semi-massive galena in a limestone/marble breccia. This area has the potential to host gold skarn mineralization or replacement silver, lead and zinc in the carbonate rocks. Prospecting and more soil geochemistry are recommended.

11.0 **DISBURSEMENTS**

Note: The following disbursements cover the period of June 1, 1999 to September 20,1999.

Labour	B. Doyle 32 days @ \$250.00	8,000.00
Transportation	4×4 pickup 32 days @60.00	1,920.00
Analyses	Soils (150), Silt (8), Rock (96)	5,222.35
Field Supplies	Sample bags, flagging, etc.	129.56
Shipping Costs		296.44
Report Writing and Drafting		589.14
	TOTAL	\$16,157.49

.7

13.0 STATEMENT OF QUALIFICATIONS

I, Bruce Doyle of Nelson, British Columbia do hereby certify that:

- 1. I am a graduate of the advanced prospecting course, 1990
- 2. I have been involved in mineral exploration for over 15 years

.

5

3. I am self-employed as a full time prospector

Respectfully submitted,

Bruce Doyle Nelson, B.C. December, 1999 **APPENDIX I**

••

5

ANALYTICAL METHOD

Rock Samples:

ICP: 0.500 gram sample is digested with 3ml 2-2-2 HCL-HNO₃-H₂O at 95°C for one hour and is diluted to 100ml with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Mg, Ba, Ti, B, W and massive sulphide and limited for Na, K and Al. Au* ignited, aqua-regia/MIS k extract, GF/AA. Finished (10gm).

30, 15 gram sample is digested with 180ml 2-2-2 HCL-HNO₃-H₂O at 95°C for one hour and is diluted to 600ml with water. Analysis by ICP/ES &MS. This leach is partial for Mn, Fe, Sr, Ca, P, La, Mg, Ba, Ti, B, W and limited for Na, K, Ga and Al.

0.50 gram leach with 3ml HCL-HNO₃-H₂O at 95°C for one hour. Diluted to 10ml, analysed by ICP-ES upper limits Ag, Au, Hg, W = 100ppm, Mo, Co, Sb, Bi, Th, U, & B =2000ppm. Cu, Pb, Zn, Ni, Mn, As, V, La, Cr = 10,000ppm. Assay recommended for rock and core samples if Cu, Pb, Zn >10,000ppm, As>30ppm & Au >1000ppb.

- sample type rock Au ****** by fire assay from 1 A.T. sample.
- Au-100 Au by fire assay from 1 A.T. sample, duplicate Au; Au duplicated from -100 mesh Nau native gold, total sample fire assay.
- Multi element assay 1000 gram sample aqua-regia digestion to 100ml, analysed by ICP-ES Au ** by fire assay from 1 A.T. sample.

5

- Soils 30gm, 15 gm analysis by ICP/ES & MS as above.

APPENDIX II

••

.7

ROCK AND STREAM SEDIMENT DESCRIPTIONS

.

	ROCK AN	D SEDIMENT SAMPLES
BD 99R-01	Rock grab/bedrock	Skarn Disseminated py & traces of po
BD 99R-02	Rock grab/bedrock	Skarn Disseminated py & traces of po & magnetite
BD 99R-03	Rock grab/bedrock	Silicified sediments with quartz veins containing py
BD 99R-04	Rock grab/subcrop	Monzodiorite with hemitite on fractures
BD 99R-05	Rock grab/float	Quartz veins in quartz mozonite with traces of pyrite &
	Ũ	chlorite
BD 99S-06	Silt (sediment)	Silt
BD 99S-07	Mossmat (sediment)	Mossmat
BD 99S-08	Mossmat (sediment)	Mossmat
BD 99S-09	Sediment grab/creek	Mossmat
BD 99R-10	Rock/grab/bedrock	Fine grained granite with quartz vein cointaing mo + py
BD 99R-11	Rock/grab/bedrock	Fine grained granite with vugs of quartz & pyrite
BD 99R-12	Rock/grab/bedrock	Fine grained granite with vugs of quartz & pyrite
BD 99R-13	Rock/grab/bedrock	Fine grained granite with massive po in vugs very magnetic
BD 99R-14	Rock/grab/bedrock	Rusty fine grained granite with pyrite in vugs
BD 99R-15	Rock/grab/bedrock	Rusty fine grained granite with py on the fractures traces of quartz in vugs
BD 99R-16	Rock/grab/bedrock	Rusty fine grained granite with py in vugs
BD 99R-17	Rock/grab/bedrock	Rusty granite with vugs of weathered py & traces of hemitite
BD 99R-18	Rock/grab/bedrock	Rusty fine grained granite with po in blebs (magnetic)
BD 99R-19	Rock/grab/bedrock	Rusty fine grained granite small amount of quartz & magnetite & traces of po
BD 99R-20	Rock/grab/bedrock	Disseminated py in granite 5% sulfides, non magnetic
BD 99R-21	Rock/grab/bedrock	Altered granite, small amount of py on fractures
BD 99R-22	Rock/grab/subcrop	Quartz with iron carbonate (siderite), no visible sulfides
BD 99R-22	A Rock/grab/bedrock	Quartz with feldspar, white mica, in a potassium feldspar megacrystic quartz monzonite
BD 99R-23	Rock/grab/bedrock	Potassium feldspar megacrystic quartz monzonite with rusty spots of weathered py
BD 99R-24	Rock/grab/bedrock	Rusty quartz veins in a granodiorite
BD 99R-25	Rock/grab/bedrock	Massive po sulfides in skarn magnetic
BD 99R-26	Rock/grab/bedrock	Disseminated po in skarn
BD 99R-27	Rock/grab/bedrock	Intrusive Breccia gneissic texture with quartz & py
BD 99R-28	Rock/grab/bedrock	Granodiorite pyrite on some factors
BD 99R-29	Rock/grab/subcrop	Fine grained granodiorite with quartz and py and vugs
BD 99R-30	Rock/grab/float	Quartz monzodiorite with disemminated py trace chalcopyrite
BD 99R-31	Rock/Grab/ bedrock	Gneissic sediments trace py and quartz
BD 99R-32	Rock/grab/bedrock	Potassium feldspar megacrystic quartz monzonite
BD 99R-33		Stockwork quartz veins with white mica alteration
BD 99R-34		White mica muscovite altered quartz monzonite with vugs of weathered py
BD 99R-35	Rock/grab/bedrock	Quartz veining in a quartz monzonite with muscovite mica

··			
	BD 99R-36	Rock/grab/subcrop	Quartz stockwork open spaces feldspar mica muscovite trace py
	BD 99R-37	Rock/grab/ float	Quartz with trace py and some intrusive
	BD 99R-38	NS	NS
	BD 99R-39	Rock/grab/bedrock	Silicified limestone very fine grained py 30% sulfides
	BD 99R-40	Rock/.5mchip/bedr	Quartz silicious zone in marble 15% py
	BD 99R-41	Rock/grab/bedrock	Garnet skarn with disseminated py and trace arsenopyrite
	BD 99R-42	Rock/ grab/ bedrock	
	BD 99R-43	Rock/grab/ bedrock	Altered quartz monzonite trace pyrite
	BD 99R-44	Rock/grab/subcrop	White quartz with streaks of py and arsenopyrite 30%
			sulfides in medasediments (hornfelds)
	BD 99R-45	Rock/ grab/subcrop	White quartz with veinlets of arsenopyrite 3% sulfides
	BD 99R-46	Rock/grab/subcrop	White quartz with 7% disseminated arsenopyrite 3% sulfides
	BD 99R-47	Rock/grab/subcrop	White quartz with manganese staining no visible sulfides
	BD 99R-48	Rock /select/bedrock	Select sample of small quartz veins in fine grained granite
	BD 99R-49	Rock/grab/ bedrock	Sample of silicified Hornfelds sediments with disseminated py
	DD 00D 50	Deels/analy/ heading als	And small veinlets crosscutting the rock
	BD 99R-50 BD 99R- 51	Rock/grab/ bedrock Rock/grab/float	Sample of quartz vein with py crosscutting Hornfelds sediments Altered granodiorite with yellowish staining
	BD 99R-51 BD 99R-52	Rock/grab/Bedrock	Random grab from outcrop at the tungsten showing fine grained
	DD 77R-52	ROCK grad/ Deditock	Po in a green proxene skarn
	BD 99R-53	Rock/.5m chip/FW	5m chip of semi massive py in quartz from the footwall of an
			addit
	BD 99R-54	Rock/.5mchip/HW	Semi massive py in quartz within a fine grained granodiorite
s			addit
	BD 99R-55	Rock/.3mchip/HW	.3 m chip with massive py and quartz in hanging wall
	BD 99R-56	Rock/ 2m chip/ FW	2m chip of quartz with py and po in the footwall of the addit
	BD 99R-57	Rock/ .2m chip/bedr	Sample across a quartz vein with visible molybdenum and py
	DD 000 59	C = 1 ² = = = + / = = = 1 = = = 1 =	trace sphalerite 20m south of the addit infine grained granodiorite
	BD 99S-58 BD 99S-59	Sediment/grab/creek Sediment/ grab/creek	Moss mat sample Moss mat sample
	BD 998-59 BD 998-60	Sediment /grab/creek	Moss mat sample
	BD 99R- 61	Rock/grab/ bedrock	Grab from a quartz vein with 5% arsenopyrite in Hornfelds
		recen grace, bearborn	sediments
	BD 99R-62	Rock/grab/bedrock	Grab of quartz with 10% arsenopyrite hosted in a Hornfelds
			sedimentary rock
	BD 99R-63	Sediment/grab/creek	Moss ma t sample
	BD 99R-64	Rock/grab/subcrop	Grab of a piece of quartz vein with rusty boxwork texture trace
			Pb and Py
			Quartz monzonite
	BD 99R-65	Rock/grab/subcrop	Grab of quartz rusty colour small pieces of galena visible gold in
	BD 99R-66	Deals/grab/flaat	sample quartz monzonite
	BD 99R-00 BD 99R-67	Rock/grab/float Rock/grab/bedrock	Grab of weathered pyrite in quartz rusty Sample quartz in clay altered quartz monzonite with py and trace
	50 //K-0/	ROOK / grad/ dourdok	galena
	BD 99R-68	Rock/select/bedrock	Select sample of vugy white quartz with crystals and trace py
	BD 99R-69	Rock/grab/bedrock	Grab of vugy crystals of quartz in cutting clay altered quartz
, 		Ĭ	monzonite
	BD 99R-70	Rock/grab/bedrock	Quartz vein with py in clay altered quartz monzonite
	BD 99R-71	Rock/grab/bedrock	Grab of quartz vein trace py in clay altered sheared quartz

			monzonite
	BD 99R-72	Rock/grab/bedrock	Sample of quartz veins 1-3 cm wide with weathered py and
			manganese
	BD 99R-73	Rock/grab/bedrock	Rusty fine grained tuff with disseminated py
	BD 99R-74	Rock/grab/bedrock	Rusty fine grained tuff with disseminated py
	BD 99R-75	Rock/grab/bedrock	Rusty fine grained tuff with disseminated py
	BD 99R-76	Rock/grab/bedrock	Sheared breccia rusty tuff no visible sulfides
	BD 99R-77	Rock/grab/bedrock	Sample of fractured brecciated tuff with disseminated py
	BD 99R-78	Rock/grab/float	Sample of quartz with rusty vugs trace amount of galena and some sediments on the wall rock
	BD 99R-79	Deeldorehauberen	Grab of quartz from an old trench or caved addit trace amounts
	DD 99K-79	Rock/grab/subcrop	of galena, arsenopyrite and sphalerite, py
	BD 99R-80	Rock/grab/ subcrop	Grab of quartz from and old trench or caved in addit trace
		C 1	amounts of galena, arsenopyrite and sphalerite, py
	BD 99R-81	Rock/grab/old dump	Grab from and old dump small amounts of py, arsenopyrite,
			galena, sphalerite
	BD 99R-82	Rock/grab/old dump	Sample from and old dump trace amounts of py, arsenopyrite
			and galena
	BD 99R-83	Rock/grab/old dump	Random grab from the Maud S. Dump of quartz fragments
	BD 99R-84	Rock/select/old dump	Select sample of quartz fragments
	BD 99R-85	Rock/grab/bedrock	Sample above the Maud S. mine of quartz veins with
			arsenopyrite hosted in course grained diorite
	BD 99R-86	Rock/grab/dump	Above the main Maud S. Mine grab of quartz from top workings trace py and galena
	BD 99R-87	Rock/grab/float	Grab from a white quartz boulder 20cm x15cm trace py
•	BD 99R-87 BD 99R-88	Rock/grab/float	Grab from a quartz boulder trace amounts of galena visible gold
	BD 99R-88	Rock/grab/bedrock	Grab of altered granodiorite with massive chlorite serpentine on
	<u>DD</u> ///(-0)	TOOK STUD DOULOOK	slicks no visible mineralization
	BD 99R-90	Rock/grab/bedrock	Grab of sheared granodiorite with small quartz veins and trace
			amounts of py
	BD 99R-91	Rock/.4chip/bedrock	Chip of quartz vein with disseminated py 10% sulfides
	BD 99R-92	Rock/grab/bedrock	A grab from a 10cm wide quartz vein of white quartz with black
			manganese stain
	BD 99R-93	Rock/grab/bedrock	Grab from the same vein as sample 92, rusty quartz with trace
		U	amounts of pyrite
	BD 99R-94	Rock/grab/subcrop	Sample taken from vein of rusty quartz with trace amounts of
			pyrite and galena
	BD 99R-95	Rock/grab/bedrock	Sample of clay altered quartz monzonite some silicification and
			trace pyrite
	BD 99R-96	Rock/22cmchip/bedr	22 cm chip across a quartz vein with box work weathered
			sulfides visible gold
	BD 99R-97	Rock/grab/subcrop	Subcrop from vein rusty quartz trace py and galena also visible
			gold
	BD 99R-98	Rock/10cmchip/bedr	10cm chip across of rusty quartz vein with trace pyrite
	BD 99R-99	Rock/grab/ bedrock	Grab of granodiorite with small milky quartz veins
	BD 99R-100	Rock/grab/float	Sample of large float slab of silicified granodiorite with disseminated pyrite with calcite stringers
	BD 99R-101	Rock/grab/ subcrop	Sample of silicified limestone with trace py and arsenopyrite and
	101-766 00	KOCKIETAO/ SUDCTOP	small patch of dark brown sphalerite
•	BD 99R-102	Rock/grab/bedrock	Sample of limestone breccia with disseminated galena trace
	DD 77K-102	I TOON SIAU UCUIUCK	sphalerite and chalcopyrite
		ł	

BD 99R-103 BD 99R-104	Rock/grab/bedrock Rock/grab/float	Weathered manganese stained limestone with course patches of galena Quartz boulder 15cm x15cm with trace amounts of galena and
		visible gold

APPENDIX III

••

σ

GEOCHEMICAL ANALYSES

ACME ANATY	TTCA	L LZ	BOR	ATOR	IBS	LTD	•	8	52 E	. H/	STI	NGS	ST.	VAN	сол	/ER	BC	V6A	1R6		РН	ONE (604) 253	-31	58 F.	AX (6	04)2	253-	1716	;
	p02	Accr	edi	ted	Co.)					осн				,	sis			FIC	ATE						1				3	A /	
AA																									÷						A
									D	oyl	e,	Bru	ce	Fi	le	# 9	901	693												LI	
											1424	+ Crea	ase Av	/e, N(elson	BC V	IL IA	<u>د</u>													
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	AL	Na	K		Au*
SAMPLE#	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	%	ppm	ррт	ppm	ppm	ppm	ррт	ррт	ррп	ppm	%	%	ppm	ppm	<u>%</u>	ppm	<u> </u>	ppm	%	*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppb
	:						45	4040	/ 77	108	<8	<2	2	150	-4	6	4	63	2.62	.057	4	15	1.06	92	.06	15	1.11	. 14	.27	2	5
B099R-01	4	86	7	59	.6			1218		100	<8	<2	<2	55	.5	<3	4	72		.070	Ś	11	1.24	60	.10	<3	1.33	.13	.22	<2	2
B099R-02	1	122	3	95	.3	20	10		3.88	6	<8	<2	2	16	<.2	<3	<3	37		.023	3	55	.23	51	.07	3	.75	.04	.09	14	3
B099R-03	2	214		8	.3 <.3	20 3	•••	1109		3	<8	<2	5	45	.3	<3	<3	27	.27	.082	15	10	.40	208	.03	10	1.16	. 14	.33	5	1
B099R-04	5	6	6	27 64	`. 3	6	2	499		5	<8	<2	3	13	.5	<3	<3	8		.035	12	26	.16	276	.01	26	.82	.02	.32	12	13
B099R-05	5	10	57	04	• (ů	2	477	1.50	,			-																		
B099R - 10	796	54	3	7	.3	3	3	159	2.89	<2	<8	<2	8	39	<.2	<3	5	41	.20		9	21	. 19	92	.10	<3		. 14	.30	10	1
B099R-11	9	100	<3	12	.3	3	8	154	2.21	<2	<8	<2	9	34	.2	<3	7	36		.033	15	22	.30	24	.11	5 6	.89 .80	.05 .07	.18	8 10	5
B0998-12	12	277	8	10	.4	4	31	138	2.59	<2	<8	<2	9	31	<.2	<3	<3	30		.024	11	20	.24	31	.10	3		.18	. 12	9	,
B099R-13	15	140	<3	19	<.3	5	14	190		<2	<8	<2	10	49	<.2	<3	4	40	.32		21	21	.38 .32	86 52	.12 .12		.90	.10	.23	9	1
B099R-14	12	85	<3	9	<.3	4	7	141	2.37	<2	<8	<2	10	38	<.2	<3	4	39	.27	.041	14	20	. 32	52	. 12	3	.90	• • •	.25	,	•
			_		-	,	40	227			<8	<2	9	38	<.2	<3	<3	36	.25	.037	16	25	.36	83	.12	<3	.97	.16	.45	11	2
B099R-15	6	103	<3	17	<.3	6	12	223 113		<2 <2	<0 <8	<2	10	46	<.2	<3	<3	37		.037	15	21	.27	66	.12	<3	.94	. 15	.28	9	2
B099R-16	7	73	4	10	<.3	1	11		3.38	<2	<0 <8	<2	9	37	<.2	<3	<3	52		.059	16	26	.45	105	.15	<3	.96	. 13	.57	11	1
8099R-17		11	<3	21	<.3	2	с 8	240		<2	<8	<2	10	40	<.2	<3	3	59		.064	19	24	.61	130	.17	<3	1.12	.17	.72	10	2
B099R-18	14	82	3	27 27	<.3 <.3	2	9	273		~2	<8	<2	10	41	.3	<3	7	59		.064	- 19	23	.61	134	.17	3	1.15	.18	.72	10	2
RE B099R-18	14	86	4	21	`. .	L.	,	213			.0					_										_					
80998-19	4	19	3	17	<.3	3	3	231	1.90	<2	<8	<2	4	66	<.2	<3	<3	33		.054	15	24	.30	53	.10	3	.93	.22	.17	12	
B0998-20	4	64	3	10	<.3	1	6		2.34	<2	<8	<2	<2	73	.2	<3	6	21		.069	13	11	.18	123 117	.09	<3	.86 1.17	.20	.21	6 10	ź
B099R-21	12	90	<3	32	<.3	3	10		3.20	<2	<8	<2	9	40	<.2	<3	4	62		.070	21	27	.63	117	.18		1.93	.06	.00	20	516
STANDARD C3/AU-R	26	71	40	176	6.2	37	13		3.54	55	18	4	21		24.5	20	(32)	84		.087	19 8	183 81	.64 .61	227	.10		1.12	.14	.52	3	1
STANDARD G-2	1	2	<3	42	<.3	8	4	561	2.09	<2	<8	<2	4	84	<.2	<3	<3	43	.69	.094	0	01	.01	221	. 14		1.14				

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

64

Data M

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANAI					CORINAL CO		TD.						SS S Al j		,				76A : 'ICA			PHOI	NE (6	04)2	153 -	3158	5 FAI	K (60	4)25	53-1	716
										Do			ruc Crease			e # son B								1 - I						1	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %		Au* ppb
BD995-06 RE BD995-06	4 4	28 30	27 31	164 168	.4 .3	53 57	•		3.61 3.59	<2 <2	<8 <8	<2 <2	7 5	101 103	.2 <.2	13 11	<3 5	87 85	.99 1.01	.190 .188	32 32			318 335	.22 .23	-	1.87 1.93	.02 .02	.22 .24	2	7 4

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL.

AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) - SAMPLE TYPE: SILT

ACME ANA	LYTIC	AL	LAB	ORAT	TORI	ES L	TD.		852	Е.	HAS	TIN	3S S'	r. v	VANC	OUVE	R B	c v	6A :	1R6		PHO	NE (6	04)	253-	315	8 FA	X (60	4)25	53-11	716
	9002	Ac	cre	dite	ad C	0.)			(GEO	CHE	MIC	AL Z	AN	ls	IS (CER	TIF	ICA	TE						• * . •)	Å	
										Dor	yle	<u>, В</u> 1424 (ruce Crease	2 Ave	File , Net	e # son BC	99 V1L	0194 1A2	45											T	T
SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SÞ	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti			Na	ĸ		Au*
	ppm		ppm		ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	ppm		ppm		ppm		%		ppm	ppm	*		*			*		ppm	
8D99S-07 8D99S-08	2 2	18 24	44 28	86 87	1.1 1.0	26 28	13	610 420	3.66	5 <2	17 <8	<2 <2	5 5	50	<.2 <.2	12 12		91 126	.58	.096 .084	16 12	72	.97	137 135	.18	<3	1.20	<.01	.16 .18	12	570 183
BD998-09 RE BD998-09	1 2	20 19	18 24		<.3 <.3	23 24		400 384		<2 <2	<8 <8	<2 <2	5 6	69 67	<.2 <.2	11 10	<3 9	131 129	.87 .84	.232 .227	34 32	101 100	.53 .50	96 91	.12 .12	7 5	1.10	.02 .01	.15	3	12 13
DATE REC	EIVED	ТН I - S <u>San</u>	SAMPLI	ACH I E TYP	S PAR E: MC nning	GAMPLE TIAL DSS MA <u>1 'RE'</u> DATE	FOR M T are	N FE AU* <u>Rerun</u>	SR CA - AQU <u>s and</u>	P LA A-REG <u>'RRE</u>	CR M IA/MI <u>are</u>	IG BA BK EX <u>Reje</u>	TIBN TRACT, <u>ct Re</u> i	I AND , GF/ <u>runs.</u>	MASS AA FI	IVE SU NISHEI	JLFID). (1	E AND 0 gm)	P	JR AND	OR NA	K AN	D AL.					FIED E	3.C. A	ASSAYE	RS
											Ũ	1	/	./																	
																									•						
																					-										
																		;													

(ISC)02 Ac	credi	teo		:0.)				G	EOC	HEM	[CA	LJ	ANA		3IS	CI	ERT	'IF	ICA	ſΕ											
									Doy	le,	Br	uc	<u>a</u>	Fi	le	# 9	90	19	43												T
•															elson																
SAMPLE#	Mo (Cu l	b m a	Zn	Ag	N i ppm	Co ppm	Mn ppm		As ppm	U ppm	Au ppm	Th ppm p	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	-	La ppm (Mg %	Ba ppm				Na X			
	-	<u>19</u>				3			1.50	8	<8	<2	4	64	.2	<3	<3	3		.036		9		392<				.03			23
BD-99R-22					1.0				2.67		<8	<2		97	.5	<3	<3		1.12				.12	77<				.01		-	11
BD-99R-22A	1 3				.6	4	ž	284	2.01		<8	<2	5	42	<.2	<3	<3	38	.34	.047	14		.14	55	.07	<5	.51	.08	.08		<1 (20
BD-99R-23	30 13								3.20	24	<8	<2	7	8	<.2	3	43	24		.072			.48	80	.04	<3	1.14	.06	.51		420
BD-99R-24	8 72			11	0	272	60	151	14.18		<8	<2	<2	57	2.6	<3	4	18	.59	.039	2	35	.27	24	.05	<3	.71	.02	.02	442	20
8D-99R-25	0 1	20	4		.7	212	00		14110	-	-															-			~~		
	1 2 34	D/	•	20	0	101	18	263	4.64	<2	<8	<2	<2	34	<.2	6	3	33	1.32		_	88	.63	14	.11	<3	1.46	.03	.02	63	
BD-99R-26	3 28			20		40			4.90				<2		<.2	4	<3	64	.60	.055				41	.11	<3	1.04	.08	.10		
BD-99R-27	3 43		_						2.84	2	<8				<.2	4	<3	60	.29	.039	2	26	.61	43	.17	<3	1.04	.11	.18	-	16
8D - 99R - 28	5 15		-	23			10		2.55	24	<8	<2	õ	5	<.2			8	.02	.016	<1	22	.03	18	.01	<3	.09	.01	.04	-	85
BD - 99R - 29	4 9		10	6	.8	16	•				<8	<2	6	74	<.2	<3	<3	12	1.75	.070	22	10	.06	153	.01	<3	.60	.07	.32	2	59
BD - 99R - 30	 1 1	17 7	21	30	.4	9	8	871	2.07	12	10	12	Ŭ	14																	
					•		12	664	0 20	5	<8	<2	4	34	.8	0	<3	178	.59	.094	10	81	1.63	104	.35	<3	2.84	.11	.51	3	14
BD-99R-31	9 29		•	67		07	42	221	8.29	2		<2			<.2			41	.80	.092	14	11	1.02	156	.04	<3	1.20	.04	.30	8	6
BD - 99R - 32	2 9	- T	-		1.1	7			3.72			~2			<.2			13		.095	9	11	.06	1209	.01	4	.58	.01	.38	- 4	27
BD-99R-33	33 2		-	55	.9	3			3.55	69	-				<.2	3.		4		.047		28	.12	446<	.01	6	.43	.02	.23	13	<1
BD-99R-34	12	8	<3	9	.6	6			1.58	3	-	<2			<.2			2		.019		20	.03	825<	.01		.23	.02	.14	6	<1
BD-99R-35	9	17	6	5	.3	6	2	197	1.14	<2	<8	<2	2	10	`. 2	1	1	-													
				_		-	-				<8	~2		1.7	<.2	~3	~3	7	. 44	.047	12	17	.09	668<	.01	<3	.43	.02	.23	- 4	10
BD-99R-36	1 1	14	7	9	.6	2	3		1.69		<0 <8				.2				.43	.062	16	20	.09	235<	.01	<3	.64	.05	.37	9	13
BD-99R-37	5 8	20	5	12	.7	5	- 5	597	1.94			~2	2			7				.057			.42	50<	.01	<3	.47	.01	.06		300
BD - 99R - 39							12	497	5.56	391		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	47	3.5		3			.060			1.07	49	.01	<3	1.31	<.01	.05	5	678
BD-99R-40	5	45 5	68 3	384	3.3	24			10.50			<2	2	<u>در</u>	2.1	17		216	8.90	027			.39	76		6	1.49	.01	.23	4	44
BD-99R-41	2	13 🔅	37 7	211	1.2	10	4	3232	6.86	301	<8	<2	2 (047	2.1	13	~)	614	0.70		-					-					
							_						•	177	E	5	<3	73	12.80	083	0	27	.66	118	.04	8	.92	.01	.19	2	16
BD - 99R - 42	3	2	12 1	111	.5	28			2.96	14		<2		427	.5 .8		-7	77	13.29	.005			.68	122		-				3	14
RE BD-998-42	4	-	10		.7				3.08		<8	<2		440						.043			.18					.08		3	3
BD - 99R - 43	7	95	7	13	.6	4			2.13	7			2	34	<.2	<3 <3	<3	17	2.75			25	.04	134				.08		9	10
BD-99R-44	7	73	10	36	.3	6	6	355	2.03	22	<8	<2	<2			<3 3	<3			.002			.06					.01			565
BD-99R-45	1	5	5	6	.7	4	1	53	1.18	6239	<8	<2	<2	8	<.2	2	<2	۲	.04	.002											
														-		.7	.7	2	05	.002	1	24	.05	29<	.01	<3	.08	.01	.04	7	968
BD - 99R - 46	2	5	5	5	1.5	5	1		1.28		<8	<2	<2		<.2	<2	<u>د></u>	2		.002		34	.33	50-	ึกา	~	.41	.01	10	•	
BD-998-47	3	10	10	15	.7	12	5	581	1.61	639	<8	<2			.3								.20	193	.01	ž	40	.03	.20		78
BD-99R-48	2	11 3	11 3	376	.8	4	3		1.59		8	<2	6	22	3.8	<3	<5	9		.043			.20	150	10	17	1 82	- 05	16		
STANDARD C3/AU-S			38	165	6.4	37	12	781	3.54		29	<2	19	28	23.5	'23	25	82		.088		1/0	ده. + ۲	224	. 10	11	1.03	10	. 15	2	<1
STANDARD G-2	2					8	4	543	2.16	3	<8	<2	4	74	<.2	<3	<3	41	.66	.093	đ	73	.01	624	. 14	<u> </u>	.70		.40		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 25 1999 DATE REPORT MAILED: JUL5/99

Data____ FA

ACME ANALYTICAL LABORATORIES LTD. (IF 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

SIS CERTIFICATE GEOCHEMICAL AN.

PHONE(604)253-3158 FAX(604)253-1716

Data

Doyle, Bruce File # 9902197 1424 Crease Ave, Nelson BC V1L 1A2 Submitted by: Bruce Doyle

SAMPLE#	Mo		Pb ppm		Ag ppm		Co opm p	Mn pm	Fe %		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm		V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % p	8 xpm	Al X	Na X	K %		Au* ppb	W %	
BD99R - 49 BD99R - 50 BD99R - 51 BD99R - 52	5 8	107 263 49	4 5 <3 3	17 19 4 35	.5 .4 .5	81 18 1 35	12 2 56 2 1	03 45 82	2.55 5.19 1.64 7.62	5 <2 <2 6	<8 <8 11 11	<2 <2 <2 <2 <2 <2	2 2 2 2	29 298 28 9	<.2 <.2 <.2 <.3	6 <3 <3 5	ব্য ব্য ব্য ব্য	11 84 17 28	.67 3.99 .37 .85	.040 .122 .033 .018	3 8 4 5	21	.25 .68 .07 .08	71 88	.08	<3 8 6 <3 3		.79 .09	.17 .07	2	15 1	- - - 86.	
BD99R - 53 BD99R - 54	608 593	192 145	13 8	5	.5	6		99	6.09 7.20	<2 10	15	<2 <2	6 3	9	<.2 <.2	<3 7	10 <3	33 10	.05	.024	2	26	. 18	39<	.01	5		.01	.17	13		•	
8D99R - 55 RE BD99R - 55 BD99R - 56 BD99R - 57	1 .	230 244 14 32	5 <3 3 27	6 7 7 59	.7 .8 <.3 4			14 2 84	0.88 1.85 .83 2.34	19 14 <2 15	<8 <8 <8 8	<2 <2 <2 <2 <2	5 4 2 <2	3 3 6 1	.5 2. 4.2 3.	4 5 5 3	5 <3 <3 <3	10 11 3 1	.05 .05 .03 .01	.014 .013 .009 .006		32	.08 .08 .06 .03	25<	.01	<3 <3 <3 <3	.69	.03 .03 .02 .01	.06 .06 .07	13 12 15 17	10 10 2 2		
STANDARD C3/AU-R Standard G-2	28			162		37 6	11 7 4 5	84	3.43 2.10	58	- 30 <8	- 3 <2	19 5	28	23.3	18 <3	20 <3	80 41	.59 .69	.089 .098						•••	1.88				520 <1		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL.

W BY REGULAR ASSAY ICP.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) - SAMPLE TYPE: ROCK

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

54

DATE REPORT MAILED: July 21/99 DATE RECEIVED: JUL 13 1999

SIGNED BY.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANA (IS		CAL 2 Ac					TD.	1		GEO Do	CHE yle	MIC	AL . ruc	ANJ. e	Fil	IS e #	CER' 99	TIF 021	98	· ·		PHON	TE (6	04)2	:53-	3158	FA2	(604	4)2:	,3-1 A	716 A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Сг ррт	Mg %	Ba ppm	Ti X	B ppm	Al X	Na %	к %	W ppm	Au* ppb
BD995-58 BD995-59 BD995-60 RE BD995-60	6 4 3 3	19 30 31 33		66 91 145 145	<.3 .5 .8 .7	18 19 32 32	8 10	416 3 830 2 629 2 631 2	2.87 2.54	4 2 2 3	11 14 <8 <8	<2 <2 <2 <2	4 2 <2 <2	59 85 86 85	.4 .8 1.8 1.9	<3 <3 <3 <3	<3 3 <3 <3		.80 1.07	.161 .134 .124 .124	32 33 26 25	93 67 57 55	.41 .47 .73 .73	97 124 209 205	.10 .12 .14 .14	<3 / 7 /	1.07 1.48 1.53 1.52	.02	.21	<2 3 3 3	3 17 5 28

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: MOSS MAT AU* - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

54

DATE RECEIVED: JUL 13 1999

٠.

Data V

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (IS' 9002 Accredited Co.) SIS CERTIFICATE GEOCHEMICAL AN. Doyle, Bruce File # 9902359 1424 Crease Ave, Neison BC V1L 1A2 Submitted by: Bruce Doyle P La Cr Mg Ba Ti В A] Na K W TI Hg Se Te Ga S Βi ۷ Ca Си Рb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb SAMPLE# Mo ррт ррт x % ppm ppm X ppm % ppm * * * ppm ppm ppb ppm ppm * ≵ ppm ppm ppb ppm ppm ppm ppm ppb ppm ppm ppm ppm ppm ppm ppm 2.83 29.84 38.66 124.1 1819 40.4 11.6 794 2.98 14.5 29.0 4.0 1.7 90.0 2.02 1.04 .26 96 1.05 .128 15.1 60.0 .74 208.4 .196 2 1.52 .021 .39 6.2 .20 52 4.2 .07 6.8 .08 BD99S-63 STANDARD DS2 14.27 132.33 31.99 158.7 267 37.4 13.1 834 3.29 66.2 20.5 193.6 3.4 29.0 11.42 10.39 11.02 79 .57 .083 13.7 170.5 .60 143.1 .115 2 1.82 .040 .15 7.4 2.18 255 2.9 1.94 6.2 .02 30 GRAM SAMPLE IS DIGESTED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER, ANALYSIS BY ICP/ES & MS. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. - SAMPLE TYPE: MOSS MAT DATE REPORT MAILED: July 30/99 SIGNED BY? DATE RECEIVED: JUL 21 1999 ÷. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data

ACME A).	8	52 I	8. H	ASTI	NGS	ST.	VAN	ICOU	VER	BC	V6A	1R6	5	PI	IONE	(604) 253	3-31	58 F	AX (6	604)	253-	1716	;
	: 1	002	Acci	redi	lted	co.)			GE	OCH	EMI	CAL	AN	IA .	SIS	CE	RTI	FIC	ATE	:										A I	N I
ÎÎ									142	<u>D</u> 4 Cre	oyl ase A	e, ve, N	<u>Bru</u> elson	<u>ce</u> BC V	Fi 11 1A	le 2 s	#9 ubmit	902 ted b	361 y: Br	uce D	oyle											Ľ
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Сг ррт	Mg %	Ba ppm	Ti X	B ppm	Al X	Na %	к Х	W ppm	Tl ppm	Hg ppm
BD99R-64	40	64	1160	278	23.0	5	1	36	2.28	183	<8	16	<2	4	3.6	3	<3				1	199			<.01	<3	.08	.01	.03	<2	<5	1
BD99R-65	2	9	9208		78.2	5	1		1.14	362	<8	80	<2	13	.5	7	<3	2	<.01		<1		<.01		<.01	্র	.06	.01	.05	<2	<5 - 5	<1
BD99R-67	2	6	540		6.0	5	2		1.12	8	<8	<2	3	25	.4	<3	<3	5		.024	11	189	.09		<.01	6	.43	.01	.18	<2	<5 -E	<1
BD99R-68	2	9	94		5.1	6	3		2.02	10	<8	3	4	15	<.2		<3	10		.040			.09		<.01		.66	.01	.34	<2 <2	<5 <5	<1
BD99R-69	.1	6	52	25	4.9	5	2	600	1.22	5	<8	<2	2	(.2	<3	<3	2	.00	.019	9	226	.11	100	<.01	4	.42	<.UI	. 12	~2	10	<1
RE BD998-69	1	6	50	25	4.4	5	2	579	1.17	3	<8	<2	2	7	.2	<3	<3	5		.018		217			<.01		.40	.01		2	<5	<1
STANDARD C3	26	66	38	165	5.8	37	13	781	3.40	57	22	5	19	30	23.5	15	23	82	.57	.087	19	170	.65	144	.09	18	1.90	.04	.17	20	<5	1
			THIS ASSAY	LEAC	O GRAM H IS F OMMEND TYPE:	ARTIA	L FOR	MN I K AND	E SR	CA P Samp	LA CR	MG B F CU	A TI PB ZN	BWA AS>	ND MA 1%,	SSIVE AG >	SULF	IDE A M & A ect R	ND LI U > 1	IMITED	FOR	S DILU NA K	JTED 1 AND A	0 10 L.	ML WI	TH WA	TER.					

DATE RECEIVED: JUL 21 1999 DATE REPORT MAILED: July 29/99 SIGNED BY C. T. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

۰.

Data A -- FA

ACMP ANALYTICAL LABORATORIES LTD.	852 E. HAS	TINGS ST. VANCOUVER BC V6A 1R6	PHONE (604) 253-3158	FAX (604) 253-1716
(If `002 Accredited Co.)		ASSAY CL IFICATE		Λ Λ
	Doyle 1424 Crease Ave	<u>, Bruce</u> File # 9902361 , Nelson BC V1L 1A2 Submitted by: Bruce Doyle		TT
	SAMPLE#	S.Wt NAu -Au DupAu TotAu gm mg opt opt opt		
	BD99R-64 BD99R-65 BD99R-67 BD99R-68 BD99R-68 BD99R-69	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

-AU : -100 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -100 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: ROCK

DATE RECEIVED: JUL 21 1999 DATE REPORT MAILED: July 29/49 SIGNED BY. C.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

٠

Data

	LABORATORIES LTD. Ccredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANA SIS CERTIFICATE
	Doyle, Bruce File # 9902360 1424 Crease Ave, Nelson BC V1L 1A2 Submitted by: Bruce Doyle
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca. P La Cr Mg Ba Ti B. Al Na K. W. Tl Hg Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
BD99R - 61 BD99R - 62 BD99R - 66 BD99R - 70	5 10 46 34 2.9 7 4 110 1.89 2727 <8 6 2 12 <.2 <3 <3 9 .27 .026 4 16 .24 40 .01 3 .34 .01 .13 8 <5 <1 .162 4 14 37 10 3.2 8 5 30 2.86 4561 <8 7 <2 7 <.2 3 <3 7 .04 .019 3 21 .05 28 .01 <3 .17 .01 .11 10 <5 <1 .234 2 20 130 61 3.1 3 1 106 1.01 109 <8 3 <2 5 .5 <3 <3 1 .03 .010 2 21 .02 141<.01 <3 .12<.01 .09 11 <5 <1 .076 <1 7 54 14 5.5 2 4 497 1.83 35 <8 <2 6 29 .3 <3 <8 .41 .070 20 6 .10 199<.01 5 .54 .01 .29 2 <5 <1 .003
BD99R-71 BD99R-72 RE BD99R-72	3 3 113 120 <.3
STANDARD C3/AU-1	26 66 38 165 5.8 37 13 781 3.40 57 22 5 19 30 23.5 15 23 82 .57 .087 19 170 .65 144 .09 18 1.90 .04 .17 20 <5 1 .100
TH AS -	P500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. IS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. SAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. mples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED:	JUL 21 1999 DATE REPORT MAILED: July 29/99 SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

•

Data____FA

•

5**4** - 1

ACME ANALY							•	8	52 1	3. H/	ASTI	NGS	ST.	VAN	COD	VER	BC	V6A	186	5	PH	ONE	(604) 253	-31	58 P.	AX (6	504):	253-	171(5
(IS'	002	Accı	redi	ted	Co.)			GF	OCH	ЕМТ	CAL	AN	A	SIS	CE	RTI	FIC	ATE	1											1
ΔΔ																															
									Ľ	oyl	е,	Bru	ce	Fi	le	# 9	902	603													Γ
								142	4 Cre	ase A	ve, N	elson	BC V	1L 1A	2 S	ubmit	ted b	y: Bri	uce D	oyle											k a
		<u> </u>	06	75		N;	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	ĸ	W	Au*
SAMPLE#	Mo	Cu	Pb	Zn	Ag ppm	Ni ppm	ppm	ppm		ppm	-							ppm	%	%				ppm	*	ppm	X	X	X	ppm	ppb
	ppm	ppii	ppm	ррт			PP***	PP									· · ·	<u></u>						<u> </u>			_				
BD99R-73	2	47	52	84	.8	94	22		5.02	13	<8	<2	2	21	.4	5	<3	102		.088	3		1.99	76	.13		1.54	.06	.10	<2	11
BD99R-74	3	61	6	49	.4	12			3.41	<2	<8	<2	3			<3	<3	129		.104	5		.99	45	.20		1.40	.06	.10	2	23
BD99R-75	5	120	<3	41	<.3	15			3.60	<2	<8	<2	3		<.2	<3	<3	106		.108	6	21	.83		.17	-	1.28	.07	.12	2	227
BD99R-76	1	61	5			21			4.30	6	<8	<2	- 3	78	.3	5	<3	164		.119	10		1.83	59 45	.14	-	1.27	.04	.05	2	2
BD99R-77	2	79	10	54	4.2	18	17	647	2.61	7	<8	<2	4	52	.2	6	15	86	. 39	.052	12	57	1.12	40	.08	< 2	1.21	.05	.05	0	2
BD998-78	6	16	784	117	11.3	12	2	735	2.11	16	<8	<2	<2		1.3	11	<3	10		.007	3	33	.10		<.01		.24		.05	18	13
RE BD99R-78	6	16	771	116	11.0	13	2	722	2.08	18	<8		2		1.3	11	3	10		.007	3	33	.10		<.01	4			.05	18	12
STANDARD C3/AU-R	27	63	39		6.0	38			3.43	57	18		21		25.3	16	24	85		.094	19	183	.59					.04	.17	16	474
STANDARD G-2	1	3	3	42	<.3	8	4	520	2.01	<2	<8	<2	4	74	<.2	3	<3	41	.66	.096	8	79	. 20	218	. 12	< >	.93	.00	.41	۷	
		ICP -	.500) GRAM	I SAMP	PLE IS	DIGE	STED	WITH	3ML 2	-2-2	HCL-H	NO3-H	120 AT	95 D	EG. C	FOR	ONE H	OUR /	AND IS		TED 1	0 10	ML WI	TH WA	AIER.					
		THIS	LEACH	ISF	PARTIA	AL FOR	MN F	E SR	CA P	LA CR	MGE	BA TI	BWA	ND MA	SSIVE	SULF	IDE A	AND LI	MITEL	FOR	NA K	AND A	ι								
						DR ROC	K AND	CORI	E SAMI	PLES I	FCU	PB ZN	AS >	1%,	AG >	30 PP	M & A	(1) ~ 1	000 1	PB											
		- SAM	IPLE	YPE:	ROCK	A	U* -	IGNI	TED, /	AQUA - R	EGIA	MIBK	EXIKA	ы с г, в	F/AA	FINIS	nev.	(10 9	HH Y												
		Sampl	es be	ginni	ng 's	<u>RE' ar</u>	e ker	uns a	and 'I	RRE' a	гек	eject	Keru	15.				$\wedge I$	2												
											Λ		,				(' 1													
DATE RECEI	WED.	.11	1 20	1000	DA	TE R	EPOF	T M	AIL	BD:	Hug	26	lna		SIG	NED	BY.	-:r	\sim). TO	Æ, C	LEON	G, J.	WANG	; CERT	IFIE) B.C.	ASS/	YERS	
DAIG RECEI	. • •••••	30	7	.,,,							1.0	"	71						•			-									
											U																				
																				'											

٦

Data / FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

51

•

	002	2 Ac	ccred	dite	d C	0.)				GEOC	HE	MIC	AL A	AN).	. 53				6A] ICA			PHON							I	X A
4 4										Doy	le,	, B:	ruce	<u>a</u> 1	File	e #	990	026	04											44
La La								1	1424 C	Crease	Ave,	Nels	son BC	V1L	1A2	Subm	itteo	by:	Bruc	e Doy	le									
MPLE#	Mo ppm			Zn ppm	-	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm		Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al X	Na %	к %	W Au** ppm ppb
9R-79	5		3051	35 7		5 5	2 1		1.67 8		<8 9	4 2	<2 <2	9 4	1.2 .2	10 3	<3 <3	3	.05 .02	.007	1 1		.12 .04	40 < 16 <		3 4		.02 .01	.07 .05	16 2762 19 1624
99R-80 99R-81	3 5	7	623 1674 -	79	15.9	5	1	96 [•]	1.15 3	3736	<8	53	<2	4	1.5	7	<3	1	.01	.003	<1	34	.03	9 <	.01	<3	.07	.01	.03	19 3932
BD99R-81 NUMBER 82	4 4		1666 324	77 ⁻ 5	1.0 2.6	4 6	1 2		1.14 3 1.51 4		<8 <8	8 <2	<2 <2		1.5 <.2	7	<3 <3	1 2	.01 .03		<1 2		.03 .04	22 <	.01	<3 <3	.16	.01 .01	.03 .09	19 3410 17 1202
			P5	500 GI	RAM S		IS D		ED WIT	TH 3ML	2-2- CR M	-2 HC	L-HNO3	3-H2O J AND	AT 9	5 DEG. IVE SL	L C FO	OR ON	E HOU	IR AND	IS D	ILUTED K AND	TO AL.	10 ML	WITH	WATE	R.			
			CAV DE	-	NOED	600	DOCK		ADE C/		: 1E (CU DR	71 44	2 5 1	2 46	> 30	PPM J	R 411	> 100	10 PPA										
		- Sai	SAMPLE mples	E TYPI begii	RO Roing	CK	AU* are	* ANAI Reruns	LYSIS s and	BY FA	11CP are	Reje	SU GM ct Rer	n SAM runs.	PLE.				D											
		2.11									1							\cap	T											
DATE REC	EIVEI	D:	JUL 2	29 199	9]	DATE	REF	ORT	MAI	LED:	A	na	610	39	SI	IGNEI	D BY		ころ	·	7 ο.	TOYE,	C.LE	ONG,	J. WA	NG; C	ERTIF	IED E	B.C.	ASSAYERS
											• ,	1	~	• ,							1.									
												v				•					1									
												v				·					I									
												v									1									
												v									I									
												Ū									I									
												Ū									I									
												·									ļ									
												·				·					1									
												Ū							-		1									
												Ū									1				·					
												Ū							-		1									
																			-		1									
																					1									
																					1									
DATE REC								4																						
								۲																						
								4																						
								4																						
								54																						
								6. 1																						

Data / FA

					RATOF ited			•	-	GE D	OCH oyl	EMI e,	CAL Bru		VAN 1. Fi 11. 1A	sis le	СЕ # 9	RTI 903		ATE	{	PH	ONE	(604) 253	1-31	58 1	?AX ((504)	253- 		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe	As ppm	U	Au	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V PPM	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm		8 ppm	Al %	Na X	K X	W ppm	Tl ppm	Hg ppm
BD99R-96 BD99R-97 BD99R-98 RE BD99R-98 STANDARD C3	5 14 5 6 26	• •	8518 2624 70 76 35		217.1 43.3 3.8 4.7 5.7	8 7 9 7 37	1 <1 <1 <1 10	27 57 51	1.64 1.52 .96 .98 3.36	253 201 20 23 56	<8 <8 <8 <8 16	413 47 7 11 4	2 <2 <2 <2 21	-	.5 .4 <.2 <.2 24.0	3 <3 <3 <3 16	3 4 <3 24	3 1 3 3 78	.02 .01 .02 .02 .56	.008 .009 .009	1 2	249 229 245 253 174	.02 <.01 .02 .02 .58	57 24 24	<.01 <.01 <.01 <.01 .08	<3 5 5	. 15	<.01 <.01 <.01	.07 .07	7 <2 <2 <2 20	<5 <5 <5 <5 6	<1 <1 <1 <1 <1

UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

4

ACME ANALYTICAL LABORATORIES LTD. (IS `002 Accredited Co.)	852 E. HASTINGS ST. V		PHONE (604) 253-3158 FAX (604) 253-1716
	ASSAY CI	IFICATE	
TT	Doyle, Bruce 1424 Crease Ave, Nelson BC V1L	'ile # 9903234 1A2 Submitted by: Bruce Doyle	
	SAMPLE# S.Wt NAu gm mg		
	BD99R-96 292 92.66 BD99R-97 510 8.39 BD99R-98 500 <.01	11.461 - 20.716 1.458 - 1.938 .200 .196 .200	
	ROM 1 A.T. SAMPLE. DUPAU: AU DUPLICA		GOLD, TOTAL SAMPLE FIRE ASSAY. . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
DATE RECEIVED: SEP 2 1999 DATE REI	PORT MAILED: Sept 9/99	SIGNED BY	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
			···
	fig	۰.	<i>,</i>

ACME ANALYTICAL LABORATORIES LTD. (IS' 902 Accredited Co.)

. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANA 3IS CERTIFICATE

PHONE(604)253-3158 FAX(604)253-1716

.

Data

Doyle, Bruce File # 9903233 1424 Crease Ave, Nelson BC V1L 1A2 Submitted by: Bruce Doyle

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Ві ppm	V ppm	Ca %	P %	La ppm		Mg %	Ba ppm	ті % р	8 opm	Al X	Na %	К %	W ppm	Tl ppm	Hg ppm	Au* ppb	
BD99R-83 BD99R-84	4	6	17 1623	20	.9 31.0	637	4 3	235 147	1.37 1.25 1.79	359 157 4269	<8 <8 <8	<2 9 3	3 <2 3	6 9 3	<.2 144.6	<3 <3	<3 <3 <3	2 2 2	.11 .15 .02	.019	1	29 17 28	.03 .01 .01	24<	<.01<.01<.01<.01	5 7 4	.11		.13 .10 .15	8 6 9	<5 <5 <5	<1 <1 <1	1940 4540 2500	
BD99R-85 BD99R-86 BD99R-87	4 4 3	26 5	3437 13	227 8	11.8 <.3	7 3 6	4 <1 1	123 39 54	.64 .51	310 28	<8 <8	<2 <2 <2	<2 <2 <2	32	3.5 <.2	7 <3	<3 <3	1 1	.01 .01	.003	<1	36	<.01 <.01	7<	<.01	43	.02		.02	9 10	<5 <5	<1 <1	3500 21	-
8D99R - 88 8D99R - 89 8D99R - 90 8D99R - 91 8D99R - 92	3 <1 3 5 2	8 10 28 27 18	1132 12 252 5 189	97 266 48 2 44	17.0 .6 2.4 .3 1.3	3 309 15 7 2	1 28 5 1 1	1930 720 49	1.20 7.62 1.70 1.72 1.00	148 <2 15 39 15	<8 <8 8 <8 <8	29 <2 <2 <2 <2 <2	<2 7 21 <2 <2	6 89 11 2 4	1.6 1.4 .2 <.2 .6	3 3 3 3 3 3	<3 <3 <3 <3 <3	2 143 15 2 2	.01 2.88 .09 .01 .03	.008 .180 .019 .008 .006	16 10 1	656 27 31	<.01 6.85 .56 .01 .07	18 55 27<	<.01 .16 .01 <.01 <.01	4 4 6 5 4	.67 .90 .07	.01 .03	.06 .03 .13 .05 .07	11 <2 6 11 11	<5 5 <5 <5 <5	1 <1 <1 <1 <1	29000 110 35 2 2020	
RE BD99R-92 BD99R-93 BD99R-94 BD99R-95 BD99R-99	2 4 2 3 2	18 18 47 9 206	191 1910 1305 27 60	44 109 250 15 185	1.3 13.0 16.8 .3 1.4	2 7 2 4 91	1 1 2 21	250 204 149	2.13	17 141 53 35 58	<8 <8 <8 <8 <8	<2 <2 7 <2 <2 <2	2 <2 <2 8 4	4 9 15 658	.6 .6 3.0 .3 1.4	<3 <3 <3 <3 <3	ও ও ও ও ও	3 2 2 4 128	.03 .02 .02 .09 8.72	.008 .008 .037	3 1 12	27 22 16	.02	640< 103< 185<	<.01 <.01 <.01	5 4 6 8 4 1	.20 .15< .43	.01 .01 .01	.07 .08 .09 .23 .03	12 13 10 5 <2	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1	1980 4780 3770 46 11	
BD99R-100 Standard C3/AU-R Standard G-2	2 26 1	6 66 2	11 37 4	27 179 44	<.3 6.2 <.3	10 38 8	9 13 5		2.33 3.39 2.06	3 60 <2	<8 22 <8	<2 <2 <2	5 22 4	115 30 74	.2 25.3 <.2	<3 18 <3	<3 24 <3	21 82 41	1.04 .60 .68		18	16 174 77	.27 .62 .62	•••			.93	.04 .04 .08	.17	4 16 2	<5 <5 <5	<1 1 <1	8 503 <1	

GROUP 1D - 0.50 GM SAMPLE, 3 MLS 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 MLS, ICP-ES ANALYSIS. LEACH IS PARTIAL FOR SOME MINERALS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* GROUP 3A - 10.00 GM SAMPLE, AQUA-REGIA,MIBK EXTRACT, ANALYSIS BY GF/AA. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 2 1999 DATE REPORT MAILED: Sept 9/99

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

* Possible gold nuggets in samples.

ACME ANALYTICAL LAB	ORATORIES LTD.	852 E. HASTINGS ST.	VANCOUVER BC V6	A 1R6 PHONE (604) 253-31	58 FAX(604)253-1716
(IS' 002 Accre	dited Co.)	ASSAY C	E IFICATE		ΑΔ
ΤT		Doyle, Bruce 1424 Crease Ave, Nelson BC V	File # 990358 1L 1A2 Submitted by: B	Bruce Doyle	TT
SAMPLE#	Mo Cu P	b Zn Ag Ni % % oz/t %	Co Mn Fe % % %	As U Th Cd	Sb Bi Au** % % oz/t
BD99R-102 BD99R-103 RE BD99R-103	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 .29 1.10 .001<.	001 .17 2.22 001 .12 1.77 001 .13 1.77	.02 <.01 <.01<.001 .0 .01 <.01 <.01 .003 .0 .01 <.01 <.01 .003 .0	007 <.01 .015 004 <.01 .002 005 <.01 .001
DATE RECEIVED: SEP 2	- SAMPLE TYPE: ROCK	AU** BY FIRE ASSAY FROM 1 RE' are Reruns and 'RRE' are R	A.T. SAMPLE. Reject Reruns.	TO 100 ML, ANALYSED BY ICP-ES.	; CERTIFIED B.C. ASSAYERS
			•		
				·	
		4 4 - 1			
					J ,
All results are considered	the confidential prope	ty of the client. Acme assume	s the liabilities for a	ctual cost of the analysis only.	DataFA

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC PHONE (604) 253-3158 FAX (604) 253-1716 V6A 1R6 (ISC 9002 Accredited Co.) GEOCHEMICAL ANI **SIS CERTIFICATE** Doyle, Bruce File # 9903585 1424 Crease Ave, Nelson BC V1L 1A2 Submitted by: Bruce Doyle SAMPLE# Ni Со Mn Mo Cu Pb Zn Fe As U Au Th Sr Cd Sb Bi ۷ Ag Ca Ρ La Cr Mg Ba Ti В AL Na ĸ W Au** ppm nqq ppm ррп ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm x % % ppm ppm ppm ppm * ppm % % Χ. ppm oz/t BD99R-101 4 12 42 473 1.9 14 2 1993 2.86 753 <8 <2 <2 686 15.6 <3 -5 18 14.55 .039 4 8.37 33 <.01 3 .22 .01 .07 2 .006 BD99R-104 9 58.9 62 .79 199 6 8 1607 10 <1 <8 110 <2 .08 .004 6 <.2 <3 <3 1 <1 32 <.01 16 <.01 <3 .01 .01 .04 15 3.455 RE BD99R-104 5 56 .77 194 7 1564 9 55.2 9 <1 <8 96 <2 6 <.2 <3 <3 <1 .07 .004 <1 31 <.01 15 <.01 3 .01 .01 .04 14 3.435 GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK DATE REPORT MAILED: Sept 30/99 DATE RECEIVED: SEP 22 1999 4

ACME ANA			LABO				LTD.		8							1				· ·		26	1	PHON	E (6)	04)25	3-31	58 E	7AX	(604) 253	1-17	16
44	J									yle		Bru	ce	F	ile	: #	315 990)23	58		Pag	e 1				نین ، ۱۰۰۰ م ۱۰۰۰ م						Ą	Ą
ka ka													Nels	son B								Doyle											
SAMPLE#	Мо ррт	Сі ррп			n Ag xm ppb		Co ppm	Mn ppm			U ppm			Sr Sr		id Si mi ppi			V Ca m %		La ppm				Ti X	B A1 ppm %	Na X	К \$Кр	W pm	TI H ppm pp	g Se bppm	Te ppm	Ga ppm
L79E 115+00N L79E 114+50N L79E 114+00N L79E 113+50N L79E 113+00N	7.49 2.38 1.80	15.23 14.48 11.26	8 16.95 8 17.09 8 13.59 5 19.91 8 11.89	77. 89. 88.	9 296 6 214 5 173	14.1 13.3 11.0	7.8 7.7 6.5	942 921 675	2.82 2.76 2.83	5.0 5.2 8.8	8.1 1.1 .6	21.2 7.7 24.6	2 4.3 7 3.5 5 3.7	27.1 18.6 14.2	.2 5.2 2.4	2 1.0 7 .9 2 .8 1 1.9 6 1.1	2.3 2.3 4.3	2 6 0 6 5 6	0.24 1.16 7.11	.107 .213 .120	12.0 6.1 5.2	22.5 18.4 19.0	. 38 . 32 . 26	154.5 169.2 107.0	.175 .156 .162	2 3.28 3 3.20 3 3.46 1 2.71 2 4.04	.018 .016 .015	.06 .05 .05	.6 .7 .7	.09 10 .09 10 .11 7	5.7 3.4 4.5	.03 .03 .04	11.2<.0 10.8<.0
179E 112+50N 179E 112+00N 179E 111+50N 179E 111+50N 179E 111+00N 179E 110+50N	1.10 .91 .79	15.81 15.29 12.66	5 19.08 10.41 16.60 5 16.16 24.32	82. 146. 90.	7 251 6 452 2 471	15.6 14.6 12.1	8.1 7.4 6.1	535 938 582	2.48 2.30 2.51	4.3 4.5 7.3	.8 .8 .5	14.7 5.5 7.7 4.5 15.3	5 4.0 7 3.3 5 2.8	14.0 16.6 10.0).3 5.8).2	3 8 8 5 7 1.1 5 1.2 4 1.5	4.2 3.2 0.3	05 45 05	7 .11 4 .17 7 .10	.184 .150 .163	6.0 5.4 4.3	24.2 19.4 20.2	.35 .26 .21	117.0 177.3 120.5	.143 .176 .172	2 2.89 1 3.50 2 3.52 2 3.27 <1 3.33	.016 .017 .015	.05 .05 .05	.7 .7 .6	.08 8 .14 7 .09 5	7.5 3.3 9.4	. 02 . 03 . 04	9.2<.0 10.1<.0 10.7<.0
L79E 110+00N L79E 109+50N L79E 109+00N L79E 108+50N L79E 108+00N	3.36 2.01 2.18	19.10 12.56 10.88	2 14.46) 17.12) 12.35) 13.64) 17.76	37. 62. 54.	7 284 1 135 1 263	9.3 9.0 8.2	5.1 6.0 7.0	138 315 169	2.25 2.52 2.51	5.1 3.8 4.3	38.2 .8 1.6	52.4 15.5 1.7	2.5 5 2.4 7 2.2	40.9 18.5 14.1) .2 5 .2 1 .3	0.1 4.3 9.2 0.6 9.6	3.2 8.2 4.3	55 75 05	6.44 0.13 1.14	.030	17.6 4.2 4.1	18.1 17.5 10.4	.21 .18 .14	113.1 170.3 120.1	.123 .155 .192	1 2.92 1 2.85 2 2.93 1 3.33 3 2.78	.019 .016 .016	.03 .04 .04	.5 .5 .4	.08 2 .06 3 .06 5	9 1.1 1 .3 6 .4	. 02 . 03 . 02	10.4 .02 10.2 .02 11.8 .02
L79E 107+50N L79E 107+00N L79E 106+50N RE L79E 106+50N L79+50E 114+00N	3.02 1.28 1.30	11.19 14.56 14.39	/ 10.44) 15.81) 18.57) 18.78) 13.15	59. 119. 118.	0 275 9 637 9 650	8.3 11.1 11.3	6.3 9.0 9.2	292 547 540	2.31 2.50 2.47	5.4 9.4 10.1	.8 .5 .5	31.1 6.6 7.0	2.1 2.7 2.8	22.6 10.0 10.4	5.3).4 .4	5.2 5.7 31.6 21.7 81.0	6.2 8.3 2.3	9 49 7 59 8 51	9 .25 9 .11 8 .10	.083 .241 .238	,6.6 4.7 4.7	21.2 21.2	.16 .21 .21	109.7 96.3 96.6	.143 .157 .159	1 3.50 3 3.43 2 3.23 1 3.29 2 3.39	.018 .015 .016	.04 .05 .05	.9 .9 .9	.09 11 .09 13 .09 13	0.8 2.4 4.5	.04 .07 .05	9.3 .03 9.1<.03 9.5<.03
L82+50E 110+50N L83+00E 110+50N L83+50E 110+50N L83+75E 112+00N L84+00E 112+00N	1.01 1.28 1.46	13.08 19.02 16.25	12.44 27.26 10.90 15.23 15.13	64. 64. 80.	6 331 6 501 1 267	13.1 12.7 16.7	5.3 6.1 7.7	324 243 291	2.28 2.14 2.81	14.4 5.1 5.7	.8 1.0 .9	3.5	5 3.5 3.3 3.2	12.3 9.7 26.4	3.9 7.3 1.5	4 .3 6 2.8 2 .6 3 .9 8 1.2	4.3 7.2 2.2	2 5 2 5 7 7	4.10 2.08 3.23	.225 .124 .074	5.0 5.3 9.7	26.9 23.6 36.6	.26 .21 .41	69.5 88.2 111.9	.151 .192 .176	1 3.01 2 3.33 2 4.62 2 2.49 2 3.00	.016 .017 .016	.04 .04 .05	.5 .5 .6	.08 12 .08 23 .09 10	1 .8 3 1.1 1 .6	.06 .04 .03	9.1<.01 10.2<.01 9.7.01
L84+00E 110+50N L84+50E 114+00N L84+50E 113+00N L84+50E 112+00N L84+50E 110+50N	.87 1.65 .74	14.80 17.04 17.26	13.57 9.15 13.42 12.11 17.99	25. 85. 76.	5 243 1 416 1 300	9.5 21.0 29.5	3.4 7.7 7.8	71 425 474	1.02 2.65 2.51	6.0 4.3 3.6	57.0 1.9 3.0	2.0 2.9 4.4	1.8 1.9 2.0	58.2 25.1 37.6	2.2 .4 .2	1 .4 5 .2 8 .5 5 .3 0 1.7	3.1 9.2 1.2	9 2 4 6 2 6	7.52 3.23 1.32	.048 .079 .100	12.0 11.6 19.5	15.5 35.5 42.9	.13 .41 .59	60.2 146.6 130.3	.166 .143 .123	2 2.81 1 3.99 2 2.38 1 2.46 2 4.08	.039 .014 .016	.02 < .05 .05	.2 .4 .5	.06 5 .07 7 .09 5	9 1.1 3 .5 0 .2	. 02 . 03 . 04	8.9.02 8.1.0
L85E 114+00N L85E 113+00N L85E 112+00N L85E 110+50N STANDARD DS2	. 85 . 95 79	17.68 19.36	10.59 19.84	59. 91. 69	2 299 5 253 7 208	13.8 20.3 24.6	6.3 7.7 8.5	368 448 395	2.00 2.83 2.78	4.6 12.5 4.1	1.1 1.0 1.0	2.3 11.7 7.0	3.2 4.9 4.5	9.6 20.2 27.2	.2 .5 .2	7.50 62.50 1.40	0.2 0.3 5.2	0 41 2 81 3 7!	5.08 0.19 5.24	.142 .169 .164	5.4 9.9 9.8	21.2 44.3 45.2	.22 .41 .50	75.5 132.4 113.6	.178 .165 .158	2 3.56 1 4.69 2 3.25 2 2.96 2 1.90	.016	.03 .05 .06	.4 .8 .8	.08 15 .11 10 .08 6	3.7 3.4 5.6	.04 .06 .03	10.1 .01 9.1<.01 8.5<.01
TI	0 GRAM HIS LE/ SAMPLE	CH IS	S PART	IAL	FOR M	N FE	SR C/	A P L	A CR	MG E	BA TI	ΒW	AND	LIMI	TED	FOR N	NE HO AKG Ct <u>Re</u>	A AN	D AL	S DIL •	UTED	TO 60	10 ML	WITH	I WATE	ER, ANAL	. YSIS	BY IC	P/E	S & M	i.		

Data 1 FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AMA	1							Do	oyl	e,	Br	uce	•	Fl.	ьE	# 9	90:	235	58							I	Pag	e 2	2	7	ACHE		L AL
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn Ag ppm ppb	,	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppt	i Th ppm		Cd ppm			i V nppm	Ca %	P X	La ppm	Cr ppm	Mg Xi	Ba ppm	Ti %	B A ppm S	Na S X	К Х	W ppm	T) ppm p	Hg Se opb ppr			-
L85+50E 114+00N L85+50E 113+00N L85+50E 112+00N L85+50E 110+50N L86E 113+00N	.92 1.07 .98		11.36 14.43 12.14	69.8 323	12.7 15.8 12.3	7.9 7.4 5.4	480 2 258 2	2.40 2.53 2.19	4.3 4.6 4.0	.6 .9 1.0 .8 .9	2.1 11.7 1.9	3.9 4.6 3.2	15.7 10.3 12.4 9.5 10.9	. 29	1.13	3 .28 .35 .25	8 57 5 64 5 47	. 08 . 09 . 08	. 198 . 165 . 090	5.3 5.9 4.8	29.1 34.1 19.5	.23 .32 .17	170.2 86.6 107.1 119.0 120.3	. 166 . 184 . 157	<1 3.90 <1 3.99	/ .015 5 .015	.04 .05 .04	.5 .6 .8 .9	.13 .08 .11 .07 .12	140 . 180 .	5 .04 7 .05 7 .03	10.2 10.7 10.3 9.8 10.9	<.01 .01 <.01
RE L86E 113+00N 1 79 +50E 114+50N STANDARD DS2	7.51	14.93 21.04 129.13	17.76		14.0	7.2	403 2 439 2 827 3	2.84	7.4		110.3		46.7	. 37	1.16 .78 9.83	.32	2 60	.49	.113	12.0	23.6	. 34	118.3 88.7 146.1	. 145	2 4.30 1 3.4 2 1.8	.016	. 05	. 4		82 .0	3.04	10.9 11.0 6.4	.01

.

•

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

							142	4 CI	reas	e A	ve,	Ne	lso	n B	C V'	11.1	182	S	ubm	itt	ed t	by:	BLU	ce D														
SAHPLE#		Cu ppa		nt Z Ma pp		•															P L ¥pp			Mg l ¥ pj										Te ppa p				
72+00E 23+00N	1.93	15.25	5 15.1	4 109	5 34	1 17.5	11.6	538	3 11	7.3	.4	2.4	2.3	15.5	5.3	3 1.3	24	.43	72 .	10 .1	73 4	9 27	.6.	33 133	.6.19	97	1 2.2	013	.08	1.7	. 09	67	.3	.07 12	2.3	.02		
72+00E 122+00N	2.98	23.60	0 20.1	4 90.	7 18	8 14.6	9.5	381	3.21 1	2.4	1.1	7.0	3.9	26.5	i.3	7 1.	73 .	. 46	63 .	12 .2	81 9.	4 23	.8 .	34 151	.6.16	55	1 3.53	.011	. 09	1.4	.13	102	.6	.06 14	4.1	.02		
72+50E #23+00N	2.28	18.65	5 13.2	5 117	6 11	1 24.8	14.4	1124	3.26	5.0	.5	2.4	2.4	26.7	7.2	6.	99	. 38	82 .	ló .0	96 6.	5 42	.4 .	66 230	.8 .24	11	1 2.48	.014	. 15	1.8	. 16	30	.2	.07 12	2.5	. 01		
72+50E 122+00N				8 113																																		
73+00E 124+00N	3.26	35.36	6 11.1	2 128	7 29	3 32 7	21.4	479	3 97	59	. 8	11.5	2.9	30.5	5.2	9.1	88	. 29 1	120	21 .1	.66 5	.5 59	.7 .	83 280	.0.31	10	1 4 19	019	. 36	4.1	. 27	54	.5	12 12	2.5	.02		
73+00E 123+00N	2.18	23.41	1 13.1	7 82	6 /5	i 18.1	13.8	526	2 86	48	6	16	25	13.4	2	3 .	90	33	60 .	08 0	193 5	7 31	8.	40 146	.8 .22	22	1 2.64	.015	. 09	2.4	. 12	46	.3	.07-11	1.9	.01		
/3+00E 122+00N	1.74	15.87	7 25 8	6 100	4 18	9 12.6	6. I	479	2.98-1	4.9	.4	2.5	23	12.0) .5	4 2.1	21 .	. 49	ō5 .	08 . 2	42 5	3 25	.1 .	28 148	.5 .18	37	1 2.13	.014	.07	1.8	.11	46	.3	.09 12	2.4	.01		
73+50E 124+00N	1.98	13.17	7 11.7	2 89.	8 29	2 16.8	8.4	281	2.78	3.4	.4 3	12.2	1.9	16.4	4.3	1.0	60	. 35	60 .	14 . 1	78 5	3 26	.9.	36 151	.6 .16	59 <	1 1.97	.014	.08	2.4	.09	31	.3	.06 9).3	.01		
73+50E 123+00N	2.80	15.60	0 11.2	8 85	6 ló	6 16.4	11.3	598	2.93	5.0	.3	12.5	1.7	17.4	4.2	6.	97 .	. 22	71.	15 .1	37 5	6 32	.5.	58 145	.0.19	× 04	1 1.82	2.012	. 10	2.1	.09	40	.2	.08 8	3.Z 3.1	.01		
73+50E 122+00N	4.97	19.56	5 18.2	6 91.	8 25	1 17.0	25.3	1636	3.16	4.1	3.6	9.5	2.0	26.7	7.4	7 .	71	. 38	64 .	18 .0	1/0 12	2 2/	.0.	50 204	.7 .23	su <	1.5.10	0.019	.07	2.1	. 10	26	.4	.05 13	3.1	. VJ		
74+00E 124+00N	2.07	21.99	9 15.7	8 95.	7 23	4 17.3	13.2	414	3.29	5.3	. 6	4.0	2.4	30.7	7.4	1.1	80	. 25	86 .	28.1	92 9	3 46	.2 .	65 262	.2 .22	26 <	1 2.20	.019	. 18	2.1	. 11	43	.4	.06 9	9.0	.02		
74+00E 123+00N	2.71	19.28	8 12.3	6 114.	D 35	4 16.1	10.4	335	3.14	6.2	.6	8.9	2.4	19.8	3.3	2.	92 .	.21	69.	19.2	27 7	3 31	.1 .	58 195	.9.18	38 <	1 2.2	.016	. 14	2.8	.08	56	.4	.06 8	8.9	02		
74+00E 122+00N	3.15	25.75	5 19.4	2 85.	8 28	2 16.0	11.8	440	3.26	7.2	7.8	7.3	2.0	38.7	7.6	5.0	65	.31	72.	33 .0	55 14	4 32	.1.	67 214	.4 .20	3	1 2.18	.016	. 09	3.0	.08	29	.5	.07 10	1.2	.04		
74+50E 124+00N	2.89	25.02	2 33.7	9 95.	6 41	1 27.4	15.6	648	3.47 2	8.1	1.3 1	67.8	2.5	40.4	4.7.	2.	97	. 19	93.	39.0	86 11	.0 48	.9.	79 215	.3.23	34 <	12.40	110. (10. (.21	3.8	.12	.)4 10	.5	.03 9	3.2 0.1	.UJ A3		
74+50E 123+00N	2.31	20.13	3 12.4	6 117.	9 34	7 23.2	11.6	395	3.02	8.3	2.2	15.9	2.3	26.1	4	φ	11	.21	65.	27 .1	8/8	./ 38		05 200	.2.10		1 2.4	.010	. 12	3.0	.09	33	. •	.07 3	9.4	.03		
74+50E 122+00N	1.74	17.15	5 40.7	1 183.	i 12	3 13.5	8.4	1476	2.83 1	1.6	1.6	42.3	1.5	32.8	3 .9	2 1.4	07	. 40	57	31.2	08 6	5 23	.1 .	42 202	.5 .14	19	1 2.00	.015	.06	1.8	. 10	41	.3	.07 10	û.6	.03		
75+00E 124+00N	2.68	26.76	5 49 3	9 101.	0 24	1 23.4	11.0	922	2.59 1	0.5	1.5	64	4.3	205.9	9 1.2	0 1.	57	. 35	67 1.	26.1	40 8	5 41	.8.	<u>5</u> 9 202	.5.14	45	1 3.44	.013	. 13	1.5	.11	41	.4	.08 13	3.3	.02		
75+00E #23+00N	2.52	26.69	9 10.9	0 94	6 23	3 33.5	15.8	372	3.80	8.7	1.3	86	18	19.4	1.2	9.	98	.16 1	. 16	18 .1	15 5	.9 65	.4 1.	05 167	.7.28	38 <	1 2.6	014	.33	2.4	.24	31	.4	.07 10)/ 20	.02		
75+00E 122+00N	2.75 2.92	17.29	9 15.7	3 85.	929	1 16.1	12.3	301	3.52	5.7 6.0	3.0	10.4	2.4	35.1	1.2 2	U	50 ·	.JI 32	79 . 70	20 .2	278 8. 976 9.	.5 J4 0 74	.ש. ז	4/ 230 48 232	.U.2L 8 21	י סע א וו	12.4	015	.00	3.1	.00	57 57	.5	.06 1/	2.6	02		
RE 75+00E 222+00N	2.92	10.48	5 10.1	8 80.	1 30	2 12 0	12.3	310	3.34	3.9	3.2	4.5	2.5	JJ . J	J . C	• •	J, .							-0 202								•						
75+50E #24+00N	4.75	51.86	6 25.9	9 108.	5 48	5 39.4	20.0	1366	4.22.2	6.3 1	2.7	8.2	3.5	71.6	6.7	5.	59	.21 1	. 30	64.0	80 30	3 84	.61.	12 294	.4 .32	22 <	1 2.89	.025	. 34	2.6	. 22	27	.5	.06 13	1.8	.03		
75+50E 123+00N	2.84	25.75	5 33.8	7 117.	634	2 21.6	14.5	629	3.72 1	0.0	1.2	21.5	3.2	24.3	3.6	62.	08	38	91 .	19 .2	9 80	7 52	.7 .	56 194	.2 .27	74 <	1 3.1	.019	.11	2.5	.11	84	.5	.07 13	3.7	.01		
75+50E 122+00N	1.78	17.05	5 13.8	81 113. 80 44.	3 31	6 13.4	179	455	3.13	ó.2	9	3.8	3.2	19.0	3.2	41.3	30	.31	66 . 	14 .2	218 7	.8 2/		36 12/	.2 .1/	// >>	1 3.2	.UID . 017	.07	0.1 e	.08	4/ 07	.4	.06.1	1.9	.02		
L76E 119+00N	2.11	21 02	2 1o.9	10 44. 17 81.1	0 24 6 26	1 12 1	5.1 	145	32/ 3201	8.2 0.1	1.3	2.0	4.4	10.5	5 2	22. 17.13	74 . 97	. 33 - 31	60 . 67	10 1	120 4 169 6	0 22	4	20 85 31 128	.9.22	19	1 4.78	3.017	.05	2.0	.00	99	.7	.09 1	39	.02		
176E 118+00N	2 14	19.93	5 10.4	61	9 37	/ 14.6	9 Q.I	200	J. 10 I	0.1	, ,	50.0	50	10.0					• · ·			,				.,												
176E 117+00N	2.29	17.85	5 28 8	2 90	0 38	1 12	17.2	805	3 35 1	4.2	. 8	4.4	2.0	26.0	. 6	2 1.	02	.53	60 .	16 .0	153 8	2 21	.6.	31 182	.4 .24	44	1 1.6	. 020	. 05	.9	. 09	49	.4	.04 1é	65	02		
L70E 116+00N	1.81	23.80	14 8	8 66.	5 12	0 19.0	7.4	267	3.03	7.6	1.3	35	5.3	15.8	8.2	1 1	61	. 30	ol 🛛	09 .1	45 6	.7 27	.4 .	36 98	.1 .19	98	2 4.8	9 .015	07	1.6	. 10	81	.1	.04 12	23	04		
L 76E 124+00N	2.39	19 02	2 9.5	3 69.	29	621 é	10 8	332	3.22	44	, ò	28.0	33	40.7	7.2	4	43	. 15	98 .	48 .2	237 15	.4 65	.0.	65 124	.3 .21	17 <	1 1.4	.023	. 15	2.0	.08	17	.3	.05 7	76	01		
L 76E #23+00N	3.43	24.12	2 12.8	2 64 7 85	1 21	8 25.0	14.7	320	3 58	8.4	34	17.4	4.0	33.1	1.2	3.	80	. 20	99 .	25 .6	20 16	.3 59	· I .	65 145 46 140	6 31	/0 < 54	1 2.50	5 .UZU 5 .016	. 11	2.5	.08	54	.4 5	06 1	J.3 25	.02		
L76E122+50N	2.85	25.62	2 15.5	7 85	6 Z4	3 19.2	2 14.9	570	3 00	5.8	1.8	10.1	4 /	32.0	5 2	21.	32	. 29	50	22 . 1	10 10	.1 4/		00 147	.5 .20	20	1 3.3	7 .010	. 09	6.3	. 11	54		.00 16		. 02		
L 76E #22+00N	3.05	21.35	5 17 0	5 86.	5 24	5 28.0	14.6	572	3.72 1	0 0	10	8.7	3.2	36.9	ə.4	4 .	95	. 25	96 .	30 . 1	27 11	.4 59	.4 .	79 266	.5 .23	33	1 2.9	2 .019	.11	2.8	. 08	41	.6	. 10 - P	13	02		
L76E 121+50N	2.21	23.80	15.6	ió 92.	3 44	2 21 0	12.2	336	3.4ó	4.9	1.7	27.1	3.8	30.6	6.3	1 1.	31	. 24	78.	24 .0	92 11	.8 42	.0.	53 171	.2.20)5. <	1 2.96	5 .016	. 08	2.8	.07	53	.5	.06 10	08	02		
176E 121+00N	2.29	22.27	7 13.2	7 101.	2 18	0 18.0	10.0	318	3.07 1	55	5.0	5.7	4.0	50.5	5.3	5.	91 .	. 2ó	65	44 .3	137 12	2 36	.5 .	52 159	.7 .18	83	1 4.00	3 .016	. 10	2.6	. 09	78	.1	08 12	2.1	02		
L76E 120+50N	3.25	20.57	7 13.1	2 100	2 31	0 18.7	12.7	891	3.15.5	0.2	9.7	4.2	1.1	56.4	4 .8	4.	άġ .	. 23	71 .	64 .1	32 15	.1 34	.7 .	60 207	.0 .16	56	1 3.2	3 .021	.09	1.5	.09	43	.3	.06 10	33	05		
L76E 120+00N	2.54	22.88	3 14.8	3 82.	8 25	2 15:	8.0	254	3.07	7.6	1.2	8.7	4.0	16.9	9.3	1 3.0	07	.27	66 .	13 .1	49 8	2 33	.5.	35 11/	.3.18	51	14.20	5.016	.05	2.0	.08	104	. 0	.00 11	1.0	02		
STANDARD DS2	14.50	129.80	32.3	5 161.	0 28	2 40.5	14.2	834	3.40 6	1.3 2	1.0.1	94.4	3.7	33.0	11.7	6 10.9	98 11	67	78 .	59 .C	88 13	9 161	.1.	55 144	.5.10) 5	2 1.80	.036	. 17	7.9	2.05	266	2.7.2	.10 (6.7	.03		
30 GRAM SAMPLE IS DI THIS LEACH IS PARTIA - SAMPLE TYPE: SOIL	GEST	ED W	VITH N FE	180	ML CA	2- PL	2-2 A CR	HCL MG	- HNC BA)3-н ті	120 B W	AT I AN	95 ID L	DEG	G. C	FO FO	R OI	NE H A K	iour ga	AN AND	ID I:	S DI															MS.	

ACME ANT			LABC cred				FD.		8!							YANCO YSI			1. 	V6A FICZ			P	HONE	:(60	4)253	-31	58 FAI	(604	1)253	-17	16
ŤŤ									1424					ruc son B	e IC V1L	File 1A2	: # Submi				ice D	oyle									T	
SAMPLE#	Mo ppm	Cı ppr			Ag ppb	Ni ppm			Fe الا	As ppm	U ppm		u TI Sippo	n Sr n ppr			Bi ppm		Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	BA1 ppm %	Na %	K W ≵ppmr		Hg Se opb ppm		Ga S ppm X
109+50N 79+25E 109+50N 79+50E	1.10	11.97	14.04 11.84	89.7	104	14.4	9.0	220	2.82	5.Ò	1.3	15.0	3 4.5	9 20.3 5 17.8	3.61	.64 .52	.22	71	.12	.026	9.6	38.3	. 37	130.1 175.7	.136	1 2.37	.011		.07	66 .6 38 .5	.03	8.2 .01 7.5<.01
109+50N 79+75E 109+50N 80+00E 109+50N 80+25E	. 80	13.38	14.41 26.29 20.08	68.3	49	11.6	5.7	445	2.45	18.6	1.1	12.3	24.3	9 17.6 1 24.8 2 19.2	3.45	1.05	. 29	60	. 18		9.4	28.2	. 40	100.1 84.9 92.4	.067	1 2.44 1 1.88 1 2.59	. 009	.05 .6	. 08	58 .6 72 .6 54 .6	.04	7.6.01 5.6.01 7.9<.01
109+50N 80+50E 109+50N 80+75E	1.08 .82	15.93 20.03	8 10.45 8 29.89	59.5 112.7	1268	14.9	6.6	472	2.40	6.3	1.2	11.1	74.(5 37.8	3.28	.82	.31	50	. 25	.102	7.8	21.2	. 39	94.5 177.7	.094	1 3.46	.011	.04 .9	.10		.06	6.6<.01 9.6 .01
109+50N 81+00E 109+50N 81+25E 109+50N 81+50E	6.17 1.20 1.50	10.12	10.65 19.43 19.98	83.5	346	13.4	5.7	252	1.80	7.0	1.1	167.	74.:	0 33.6 1 24.6 3 26.9	5.36	1.17	.18	38	. 16	.047	8.5	21.6	.41	326.0 128.4 94.7	.108	1 2.52	.012	.06 .4 .04 1.0 .06 1.2	.08	58.5	.03	7.8.06 8.5.01 7.2.01
109+50N 81+75E 109+50N 82+00E	1.72	15.10) 10.49) 12.61	53.9 83.1	90 118	14.3 29.8	6.2 10.1	265 314	2.57 3.27	5.3 6.1	3.1 1.0	29.1 12.1	27.9 34.0	9 26.6 5 25.3	5.09 3.26	. 39	.26	85	.21	.080	9.6	53.8	.63	131.7	.142		.012	.06 .6	. 07	62 .5	.04	6.2<.01 8.2<.01
RE 109+50N 82+00E 25+00N 73+00E 25+00N 73+50E	2.17	14.09	12.22 16.80 27.52	77.3	147	18.5	10.1	395	2.73	4.9	.9 .5 .6	14.	1 2.8	2 24.9 3 33.6 4 41.7	5.28	. 62	. 20	81	. 34	.190 1	10.9	56.6	.50	128.9 180.5 113.1	.179	<1 1.80	.019	.06 .6 .10 3.5 .09 3.5	. 09	64 .5 29 .4 55 .4	.05	8.0<.01 6.7 .01 9.3 .02
25+00N 74+00E 25+00N 74+50E	2.52	12.76	11.04 9.08	83.3	82	12.3	8.3	366	2.04	3.4	.5 .4	26.	2.2	9 23.9 2 24.8	. 22	. 28	.13	58	. 16	. 263 .	6.0	28.5	.44	129.1 136.4	. 136	<1 1.62	.012		.08	58 .5 22 .3	.05	7.4<.01 6.0<.01
25+00N 75+00E .79E 110+00N STANDARD DS2	81	16.10	8.79 17.63 28.51	59.0	232	18.4 12.2 34.8	6.9	394	2.76	6.0	.9	167.	1 4.3	3 25.3 3 27.9 5 30.8	.23	.57 .46 10.12	. 14	65	. 24	.100	9.1	28.1	. 38	121.7 99.1 127.9	. 093	1 2.07	.010	.10 1.5 .04 .7 .15 7.6	. 06	53 .5	.03	7.2<.01 7.3<.01 5.8.02

GROUP 1F15 - 15.00 GM SAMPLE, 90 MLS 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2000 PPM; CU, PB, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: SEP 2 1999 DATE REPORT MAILED: Sept 9/99 SIGNED BY.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

٠.

4

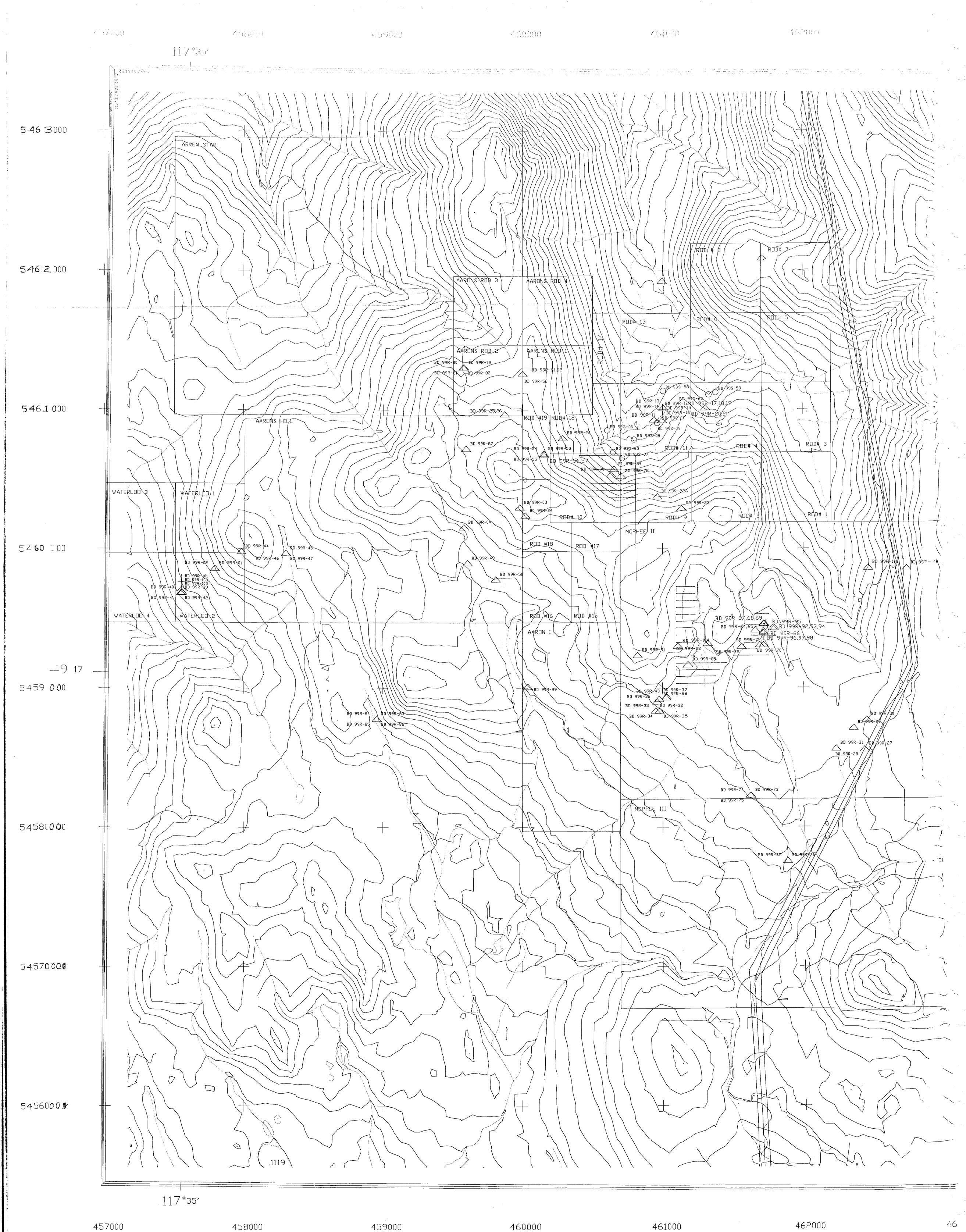
Data

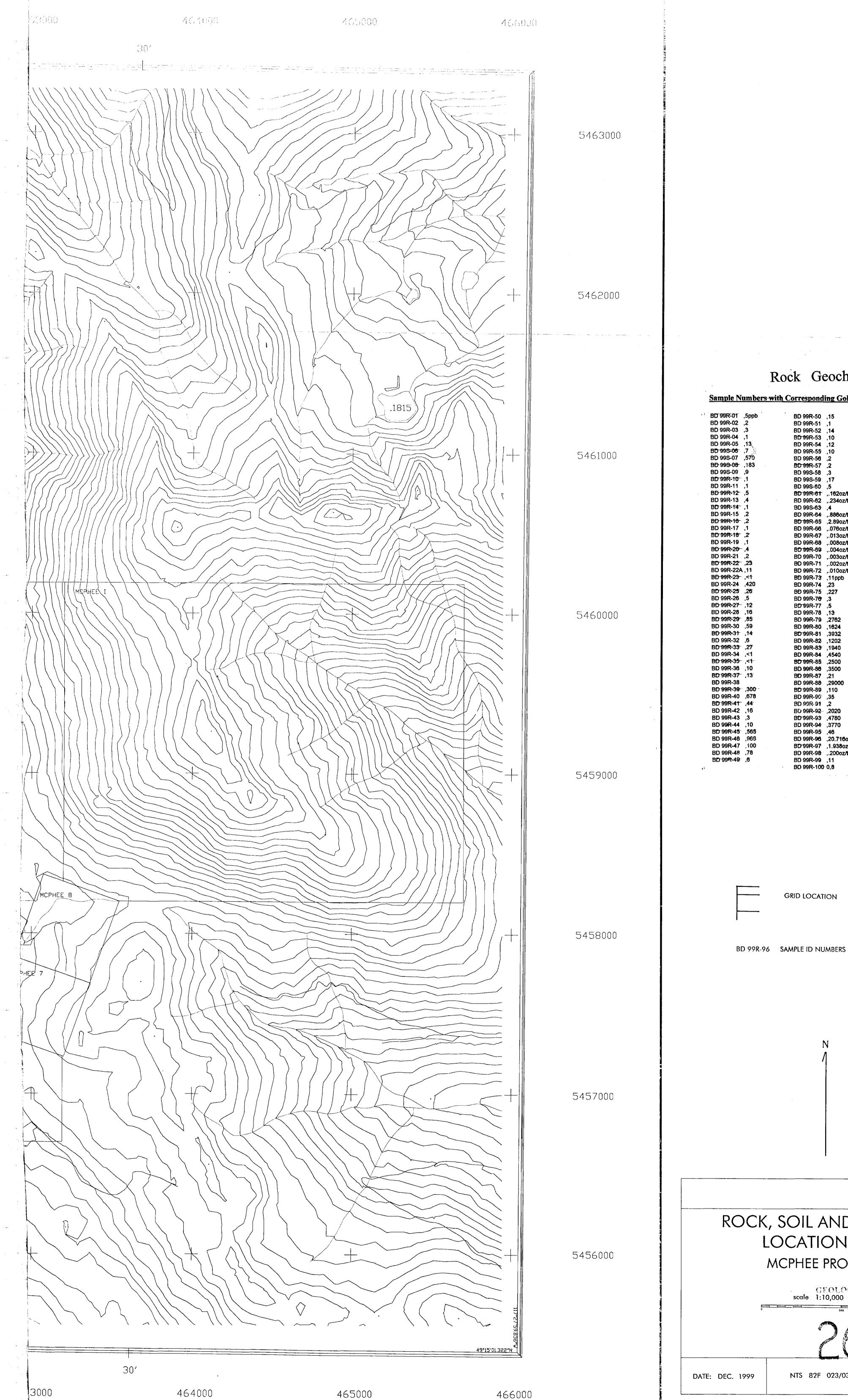
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	ACM:		LYT								D.		8	52	E.)	HAS'	FIN	GS	ST.	V	ANCO	UVEI	B	¢	V6A	1R	6	3	PHON	E(6(04)2	53-	315	8 F.	AX (604	1)2	53-	171	.6
		(IS [®]	DG	2 A	ccı	red	ite	d (:0.)				GI	EOC	HEN	IIC	AL	AN	12.	SI	s c	ER	TI	FIC	TAT	2												Ä,	Δ
	27	Ê											<u>Do</u>	yle		Bru]	Fil BC V	.e 11 1	# 9 1A2	903 Subm	58	4 d by		age													Ľ	Ľ
SAMPLE#			Mo ppm	С рр		Pb ppm		n Ag nippt				Mn ppm	Fe	As		A	u T	h S m pp	Sr.	Cd	Sb ppm	Bi	٧	Ca	P	La	Cr	Mg	Ba ppr	i Ti 1 X	В ррт	A1 %	Na X					Se ppm j		Ga S ppm %
115+50N 115+50N 115+50N 115+50N 115+50N 115+00N	79+7 80+0 80+2	5E 10E 15E	2.94 5.43 2.63	15.8 14.5 16.2 14.8 15.0	9 17 1 16 6 12	7.24 5.20 2.32	76.3 95.3 69.8	1 142 3 161 8 172	2 15. 1 13. 2 12.	.07 .27	7.6 7.8 3.0	641 305 313	2.70 2.61 2.70	5.6 6.0 4.8	1.4 3.1 1.1	4. 7. 47.	25. 74. 04.	425. 414.	5 2 4	. 19 . 28 . 47 . 19 . 24	.73 1.13 .49 .51 .80	. 29 . 26 . 27	57 59 63	.20 .19 .08	.191 .056 .079	9.1 11.9 10.3	18.5 19.8 18.6	.41 .33 .35	128.0 103.3 109.3	.096 .136 .124	1 2 1 2 1 2 1 2 1 2 1 2	2.70 2.90 2.52	.009 .012 .009	.06 .05 .05	.5 .6 .5	.07 .07	55 54 53	.5 .6 .5	.04 .05 .04	9.0.01 8.5.01 8.6<.01 8.4.01 8.7<.01
115+00N 115+00N 115+00N 115+00N 114+50N 114+50N	80+0 80+2 79+7	0E 5E 5E	3.93	18.6 17.2 19.5	1 16 2 15 2 12	5.70 5.62 2.63	68.0 65.0 73.0	5 102 0 139 0 126	2 13. 5 18. 5 17.	.57 .78 .99	7.4 3.3 9.3	299 283 494	2.43 2.63 2.81	6.3 5.6 6.5	1.4 3.2 1.3	4. 3. 13.	14. 94. 63.	628.	8 8 8	. 25 . 32 . 21 . 24 . 48	.40 1.15 .57 .95 .52	. 29 . 26 . 26	54 63 60	.15 .21 .22	.078 .069 .171	8.8 11.7 10.2	21.5 25.4 23.8	.35 .46 .49	113.6 117.4 142.7	.128 .120 .135	<1 2 1 2 <1 2 1 2 1 2	2.77 2.41 2.70	.010 .012 .011	.06 .06 .07	.4 .5 .4	.08 .07 .08	40 46 57	.5 .5 .5	.05 .04 .08	7.7.02 8.8.01 8.0<.01 9.9.01 9.6.02
114+50N 114+50N 114+00N 114+00N 114+00N 114+00N	80+5 79+5 79+7	0E 0E 5E	5.99 3.03	20.8 12.3 18.7 19.6 46.7	0 12 9 14 3 14	2.43 1.79 1.28	48.7 66.7 85.2	7 121 7 371 2 336	L 13. L 16. 5 22.	.1 6 .1 8 .7 11	5.6 3.6 1.2	173 433 638	2.52 2.95 2.98	3.9 6.4 5.0	1.1 9.7 8.4	42. 110.	43. 47. 96.	6 12. 7 32. 6 52.	3 7 9	.15 .16 .18 .24 .34	. 53 . 45 . 52 . 42 . 36	. 24 . 31 . 28	58 64 71	. 08 . 26 . 39	.025 .076 .068	7.6 15.8 17.5	19.4 33.4 38.6	.27 .44 .64	123.9 115.4 109.9	.109 .144 .151	12 12	2.51 2.59 2.39	.009 .015 .016	. 04 . 06 . 06	.4 .5 .6	.06 .10 .09	48 62 40	.4 .7 .7	.03 .06 .04	8.0<.01 8.1<.01 9.3 .01 8.7<.01 8.6 .01
114+00N RE 114+ 113+50N 113+50N 113+50N	00N 8 79+5 79+7	0+25E 0E 5E	2.97	16.5 16.9 21.5 19.2 14.5	4 16 7 13 6 14	5.52 3.00 1.57	49.6 68.3 64.0	5 199 3 209 3 223) 11. 5 14. 3 12.	.67 .610 .27	7.4).1 7.5	482 299 452	2.58 2.47 2.61	5.5 6.3 6.4	20.0 1.8 4.2	81. 32. 22.	95. 23. 23.	536. 920. 327.	4 3 9	. 25 . 25 . 41 . 34 . 24	. 58 . 57 . 87 . 77 . 58	. 28 . 26 . 27	64 61 59	. 36 . 18 . 26	.056 .093 .063	16.8 14.9 14.3	25.1 34.5 24.5	.31 .31 .29	84.4 123.1 95.1	.138 .153 .129	1 3 1 3 1 3 1 1 1 2	3.02 3.00 .93	.016 .014 .014	.04 .06 .05	.5 .8 .5	.08 .08 .06	49 62 92	.9 .6 .5	.04 1 .05 .05	9.9.02 10.1.02 9.4.01 9.0.01 8.1.01
113+50N 113+00N 113+00N 113+00N 113+00N 112+50N	79+50 79+7! 80+00	0 E 5E 0E	2.28 1.41 2.32	17.03 20.30 21.64 17.59 16.99	6 11 4 10 5 10	1.73).66).56	58.0 40.9 45.8	0 159 9 109 8 134	5 15. 5 16. 1 15.	.8 9 .6 9 .3 9	9.8 9.1 9.2	427 311 353	2.79 2.87 2.99	5.0 5.5 4.9	4.1 2.2 2.1	2. 7. 2.	77. 35. 94.	5 33. 4 41. 7 25.	3 8 8	.23 .11 .18 .13 .27	. 38 . 33 . 40 . 37 . 69	. 19 . 18 . 19	73 89 82	.26 .45 .23	.072 .179 .046	20.6 22.6 13.9	36.3 65.7 42.9	.50 .41 .41	86.7 115.5 116.2	.109 .105 .106	1 3 1 2 1 1 1 2 1 1 1 2	2.22	.010 .014 .011	.07 .08 1 .05 1	.8 .3 .0	.09 .06 .07	38 34 40	.5 .5 .6	.03 .05 .03	9.3 .01 7.2<.01 6.2<.01 7.1 .02 6.9<.01
111+50N 111+50N 111+00N 110+50N 109+00N	80+2 80+2 80+2	5E 5E 5E	1.38 1.04 1.23	16.84 15.85 18.97 13.38 12.27	526 714 811	5.45 1 1.13 56	116.8 64.1 51.5	3 235 1 102 5 72	5 13. 2 16. 2 11.	.7 8 .7 9 .6 6	3.3 9.1 5.6	369 339 301	2.75 2.83 2.46	6.0 5.0 4.2	1.2 1.4 1.2	107. 90. 6.	74. 65. 13.	9 13. 6 16. 8 18.	6 4 6	. 33 . 38 . 20 . 19 . 21	.61 .86 .41 .50 .40	. 30 . 21 . 18	66 79 59	.08 .11 .11	.112 .086 .025	10.4 12.6 9.4	28.5 44.1 22.6	. 36 . 45 . 35	106.6 114.3 159.8	.142 .136 .088		2.90 2.26 2.17	.010 .012 .010	.06 .06 1 .03	.8 .0 .4	.10 .08 .06	75 29 44	.6 .4 .4	. 04. . 05 . 03	7.9<.01 9.1.01 6.9<.01 7.4<.01 6.0.01
109+00N 109+00N 109+00N 109+00N 109+00N STANDARI	79+79 80+00 80+25	5E 0E 5E	1.98 1.11 73	14.09 13.64 17.53 15.54 134.33	4 16 3 12 4 10	5.52 2.01 1.41	56.1 61.9 54.8	658 196) 10. 5 15. 9 12	1 5 0 9 7 7	5.2 9.1 7.0	149 324 370	2.51 2.89 2.58	5.0 5.3 4.2	7.6 1.6 1.1	18. 53. 10.	03. 65. 14.	824. 417. 714.	1. 3. 7.	.17	. 32	.22 .21 .17	65 82 71	.20 .13 .09	.040 .085 .113	18.3 16.2 11.1	30.5 48.2 38.6	26 .41 .32	123.8 81.5 81.5	.124 .113 .110	1 2 1 2 1 2	2.61 2.11 2.43	.013 .010 .010	.04 .06 .05	.7 .9 .8	.07 .09 .07	59 56 81	.6 .5 .6	.03 .04 .03	7.0<.01 8.3.02 7.2<.01 6.9<.01 6.7.02
		UPPI	JP 1F1 ER LIM AMPLE	ITS - TYPE:	AG SO	, AU IL	,, н <u>s</u>	G, M ampl	I, SI es l	E, T begi	E, Inni	TL, ng '	GA, S RE'	SN = are f	100 lerur	PPM; <u>s an</u>	MO, <u>d 'R</u>	CO, RE'	CD, are	SB, <u>Reje</u>	, Bl, ect Re	тн, ι	J, B	DILU = 2	ITED 1000	to 30 PPM; <i>O</i>	00 ML CU, 1	, AN. PB,	ALYSI ZN, N	S BY I, MN	ICP/E , AS,	S& V, 1	MS. La, c	R = 1	10,0	00 P	PM.			
E	ATE	REC	BIVE	D:	SEF	P 22	199	9	DAI	re :	REF	PORT	с M2	I LI	۲D:	Sq	đ	31	0/9	9	SIC	gned	BZ	<u>,(</u>	<u>.</u>	<u></u>		7 . T	OYE,	C.LEC	DNG, .	J. W	ANG;	CERT	IFIE	DB.	.c. /	ASSAY	ERS	
A	ll r	esults	are	consid	dere	ed th		onfi	dent	tial	pro	oper	ty of	fthe	cli	ent.	Acm	e as	sume	s th	ne lia	bili	ies	for	act	ualc	ost o	of ti	ne añ	alysi	s onl	<u>y.</u>				Di	ata_	F,	A	

Doyle, Bruce FILE # 9903584

Page 2


Data____FA


ACME ANALTITICAL																								_														
	SAMPLE#	MO	Cu	Pb	Zn	Ag	Ni	Co	Ма	Fe	As	U	Au	Ĩh	Sr	٤J	SD	81	٧	Ca	ρ	La	Cr	Hg	Ba	Ti	B	AÌ	Na	ĸ	¥ i	n +	łg	Se	Te	Ga	5	
		pon	ppm	ppin	ppm	ppb	ppm	ppm	ppm	é	ppn	ppm	pçð	ppm	ppm	ppn	ppa	ppm	ppa	ł	X	ppm `	, bbu	ł	ppm	Ł	ppm	ł	ł	⊀ pi	om py	pe pç	k de	ppm p	i mag	ppm	ł	
	······																																					
	109+00N 80+50E			13.61																																		
	109+00N 80+75E			15.69																																		
	109+00N 81+00E			17.18																																		
	109+00N 81+25E			14.55																																		
	109+00N 81+50E	.96	17.12	15.74	58.1	258	14.3	7.6	280 2	2.49	7.0	1.3	28 2	4.5.1	8.2	. 23	. ło	. 23	59	.11	.086 1	11.1	30.7	.32	110.3	. 139	13.	22 .0	13 .()5	.9(19 7	4	.5 .	04 1	8.8	.01	
	109+00N 81+75E			16.24																																		
	108+50N 8M25E			17.78																																		
	108+50N 8W50E			13 60																																		
	108+50N 79+25E			16.52																																		
	108+50N 79+50E	3.37	18.29	12.75	75.4	290	15.0	7.9	597 2	2.99	20 4	18.8	8.8	2.1 5	6.9	. 43	. 55	. 26	71	. 63	. 105 2	20.0	45.5	.41	163.6	. 113	12	65.0	17 .0)5	.6.(19 5	6	.9 .	05 (8.5	. 05	
																																		•				
	108+50N 79+75E			8.52																																		
	108+50N 80+00E			13.13																																		
	108+50N 80+25E			12.65																																		
	108+50N 80+50E			9.98																																		
	108+50N 80+75E	15.46	17.73	13.17	55.7	315	26.2	8.8	611 3	1.39	9.6	13.2	599.9	1.6 4	8.9	. 21	. 50	. 21	6/	. 39	.073 1	13.3	49.3	. 69	103.5	.089	- SI I.	95 .U	13 .6	. כו		10 3	4	.9	00	1.1	03	
	100 500 01 005		10.55	13.64		267			207 1	07	0.1	1.0	00 1			22	65	12	46	70	000 1	12 2	18 0	28	117.6	065	1 2	61 0	10 0	и		N6 6			NA 4	67	A 1	
	108+50N 81+00E			13.64																																		
	108+50N 81+75E			9.78																																		
	RE 108+50N 81+75E			9.78																																		
	BL 10+50N 10+00E			28.06																																		
	BL 10+25N 10+00E	.93	18.09	20.00	107.1	119	21.1	0.0 1	14,00 2		34.0	.0	4 5	3.12	9.3	1.39	2.03			. 4 4	. 174	7.0	67.7		565.5		52.			•			•		u / 1			
	L10+00N 9+75E	2 22	10 22	34.20	217 0	71	18 2	4.2	946 1	77	11 4	10	4 5	175	4 9	1 92	1 36	35	20	98	050	8.0	74	13	181 3	063	31	38 0	15 0	۲ ۲	2 (19 2	×ς	3	05 (394	< 01	
	L10+00N 10+00E			1964.76																																		
	L10+00W 10+00E			30.65																																		
	L10+00N 10+25E			66.92																																		
				69.53																																		
	8L 9+75N 10+00E	2.44	10.75	5.53	243.0	202	20.3	7.0 1	523 2		ц. т. Э		1.0	7.4.3	U . U	1.04	3.40		5,					. •														
	BL 9+50N 10+00E	1 26	20 71	30.93	163.2	85 3	26 5 1	3.5	831.3	21	22 1	5	1.7	3 4 4	0.9	.77	1.85	.38	75	.30	.077	9.3	54.1	1.04	338.3	.249	23.	05.0	19.1	з.	3.2	20 2	2	.3 .	04 10	0.2 <	<.01	
	BL 9+25N 10+00E			15.92																																		
	STANDARD DS2			30 80																																		
	JIANUANU USZ	14.41	161.64	00 00	104 4	2.30			5-5-5				.,, 0	0.0.0																								

۰,

Sample type: SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Rock Geochemistry

Sample Numbers with Corresponding Gold Values in ppb's and/or oz/t

BD 99R-01	,5ppb	BD 99R-50	,15	BD 99R-101 ,.006oz/t
BD 99R-02	,2	BD 99R-51	.1	BD 99R-102 ,.015oz/t
BD 99R-03	,3	BD 99R-52	.14	BD 99R-103002oz/t
BD 99R-04	,1	BD 99R-53	,10	BD 99R-104 ,3.455oz/t
BD 99R-05	,13	BD 99R-54	.12	•
BD 998-06	,7	BD 99R-55	.10	
BD 99S-07	,570	BD 99R-56	.2	
BD 999-08	,183	BD 99R-57	.2	
BD 99S-09	,9	BD 995-58	.3	
BD-99R-10-	° ,1	BD 99S-59	.17	
BD 99R-11	,1	BD 995-60	.5	
DD.000.40	E		400	

BD 99K-0T , 1620Z/

BD 99R-62 ,.234oz/t

BD 99R-64: ,.886oz/t

BD 99R-65 ,2.890z/t

BD 99R-66 ,.076oz/t BD 99R-67 ,.013oz/t

BD 99R-68 ,.008oz/t

BD 99R-69 ...004oz/t

BD 99R-70 ,.003oz/t

BD 99R-71 ,.002oz/t

BD 99R-72 ,.010oz/t BD 99R-73 ,11ppb

BD 99R-74 ,23

BD 99R-78 ,3

BD 99R-77 ,5

BD 99R-78 ,13

BD 99R-79 ,2762 BD 99R-80 ,1624 BD 99R-81 ,3932

BD 99R-82 ,1202

BD 99R-83 ,1940

BD 99R-84 ,4540

BD 99R-85 ,2500

BD 99R-86 ,3500 BD 99R-87 ,21

BD 99R-88 ,29000

BD 99R-89 ,110

BD 99R-92 ,2020

BD 99R-96 ,20.716oz/t BD-99R-97 ,1.938oz/t

BD 99R-98 , 200oz/t

BD 99R-99 ,11

BD 99R-90 ,35

BD 99R-91 ,2

BD 99R-75 ,227

BD 99S-63 ,4

ROCK, SOIL AND SEDIMENT LOCATION PLAN MCPHEE PROPERTY GEOLOGICAL CULTURANCH scale 1:10,000 \cdot NTS 82F 023/033 FIGURE 5

Ν