

<u>å i</u>

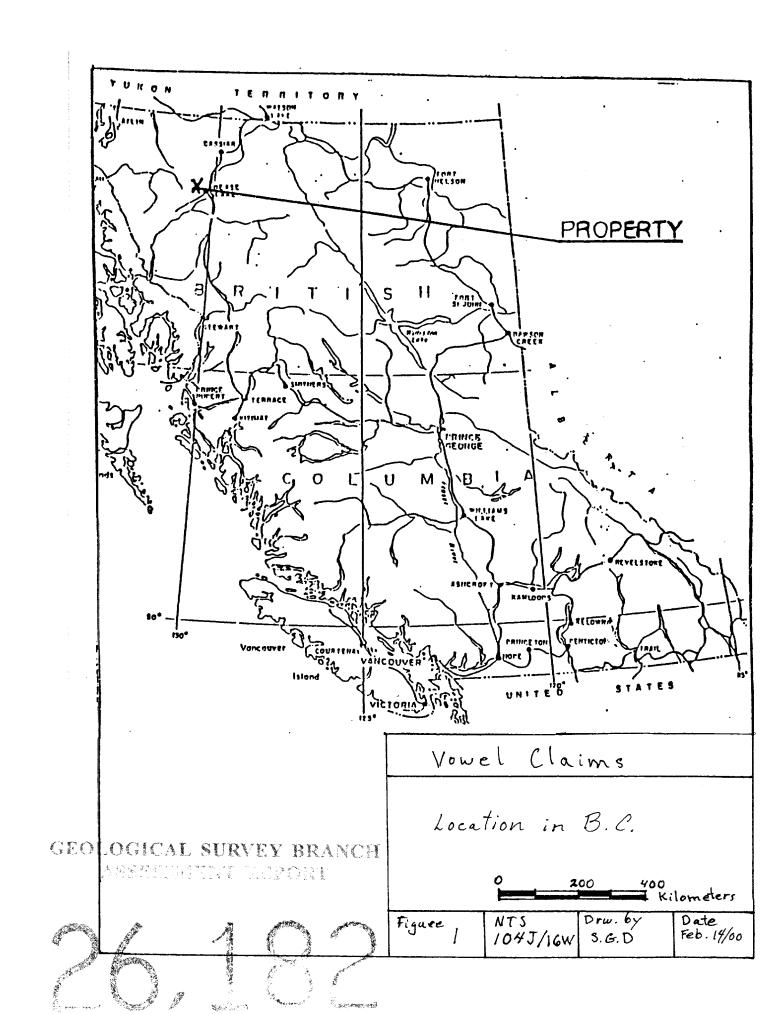
XX XX XX

A S

PROSPECTING REPORT

ON

ROCK AND SILT SAMPLING


OVER THE

VOWEL PROPERTY

VOWEL MOUNTAIN, PORTER LANDING

LIARD MINING DIVISION, BRITISH COLUMBIA

PROPERTY LOCATION	:	Vowel #7 - #14 are 24.0 km @ 270° from Porter Landing On Dease Lake 49° 23' 30"N 121° 36'W 104J/16W
WRITTEN FOR	:	
WRITTEN BY	:	GERRY DIAKOW 6 th Floor, 1100 Melville Street Vancouver, B.C. V6E 4A6
REVISED	:	February 14, 2000

TABLE OF CONTENTS

Summary
Conclusions
Recommendations
Introduction
Location and Access
Property Status
Physiography
History
Prospecting Traverses
Compilation of Samples 10
Assay Methods and Specifications
Statement of Qualifications
Affidavit of Expenses19

LIST OF FIGUIRES AND MAPS

Map 1 Claim location map	•••	. 5
Map 2 - Traverse Rose Creek	•••	. 7
Map 3 - Traverse Vowel Creek	.	. 9
Map 4 - Map showing all samples and traverses In	ו Poc	ket

SUMMARY

The Vowel mineral claims were prospected for three days by three prospectors. Two days were spent in the alpine area of the claims and one day in the forested part of the claims. Rock containing sulfide mineralization were assayed at Chemex labs as were silt samples from the creeks draining the claim area. Silt sampling indicated encouraging gold values but rock samples were mostly barren.

CONCLUSIONS

- 1. The Vowel claims are covering or near a source of gold. The hop claims which were on the same hillside as the Vowel claims had a quart rock sample assay at 0.3 ounces of gold to the ton.
- 2. More exploration needs to be concentrated at lower elevations.
- 3. Trenching done in 1989 on the Hop claims need to be located and resampled.

RECOMMENDATIONS

- Relocated the trenches on the Hop claims map and sample the volcanics that are between Frying Pan creek and Vowel creek.
- 2. Platinum and palladium are both present in the claim area and more exploration needs to be done to locate the sources of these minerals.
- 3. An access trail needs to be put in so that one can ride an all terrain vehicle or walk easily from the exploration camps to the prospecting area.

INTRODUCTION

This prospecting report discusses prospecting on Vowel mountain on the Vowel claims.

Work was carried out on the following claims:

Vowel # 1 - 364484

Vowel # 2 - 364485

Vowel # 3 - 364486

Vowel # 4 - 364487

Vowel # 5 - 364488

Vowel # 6 - 364489

Vowel # 7 - 364416

Vowel # 8 - 364417

Vowel # 9 - 364418

Vowel # 10 - 364419

Vowel # 11 - 364420

Vowel # 13 - 364422

Vowel # 14 - 364423

The rock sampling, silt sampling and prospecting was carried out by Gerry Diakow, John Hope and Larry Sharp. Prospecting was carried out on three days with a day off the mountain in between each one Vowel mountain. Vowel mountain alpine areas were accessed by driving up the Adsit lake road to the headwaters of Mosquito Creek. At the small lake at the beginning of Mosquito Creek the prospecting party would set out on foot and climbed the ridge (map 4) southwest of the lake thus arriving on Vowel mountain above treeline with lunches packed these long traverse followed with a short working day spent on a placer lease at the Vowel Creek. The following day was again spent climbing up and across Vowel mountain from Mosquito Creek. One day was spent in the Rose creek part of the Vowel claims by walking up the north side of Thibert Creek and prospecting up the Rose Creek.

Gold mineralization was our primary target hopefully visible gold would be found. Platinumpalladium mineralization was our secondary target, this we expected to occur in an association with mafic rocks especially dunites and serpentinites. Thibert Creek has a long history of placer occurrences containing mostly gold but also PGE's (platinum group elements). Vowel Creek which we traversed from it's headwaters to the mouth has been completely place mined from it's fork at approximately 1300 meters downstream to Thibert Creek.

"Stone houses" were observed along Vowel Creek, these houses were observed along Vowel Creek. These houses are actually the lower half of a tent frame and are made by piling round rocks up to make the lower perimeter walls of a framed tent. John Hope commented that in the Cassiar country these were usually made by Chinese miners.

LOCATION AND ACCESS

The Vowel # 7 - #14 claims are located on Vowel mountain 24 kilometers from Porter Landing at the north end of Dease Lake at a bearing of 270°. Access to the property is by dirt road from Porter Landing. A special use permit to drive the Asdit Lake Road was issued by Guenter Stahl, District Manager Bulkley/Cassiar Forest District. File 11350-20/ Exempt.

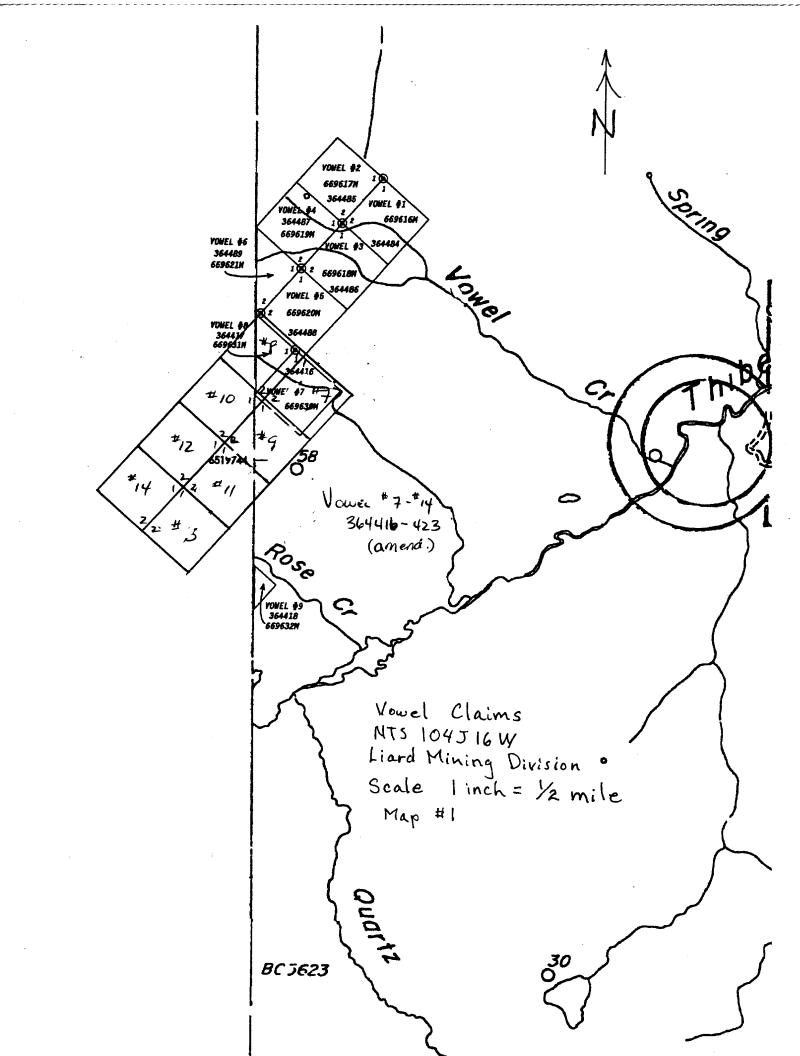
PROPERTY STATUS

The property had consisted of 14 contiguous mineral claims comprising 350 hectares in the Liard

3

Mining Division. Map number 104J16W. Mining claims (Map #1). The property has been reduced to 8 mining claims,

Claim Name	Record	Expiry date
Vowel # 7	364416	2001-11-15
Vowel # 8	364417	2001-11-15
Vowel # 9	364418	2001-11-15
Vowel # 10	364419	2001-11-15
Vowel # 11	364420	2001-11-15
Vowel # 12	364421	2001-11-15
Vowel # 13	364422	2001-11-15
2001-11-15	364423	2001-11-15

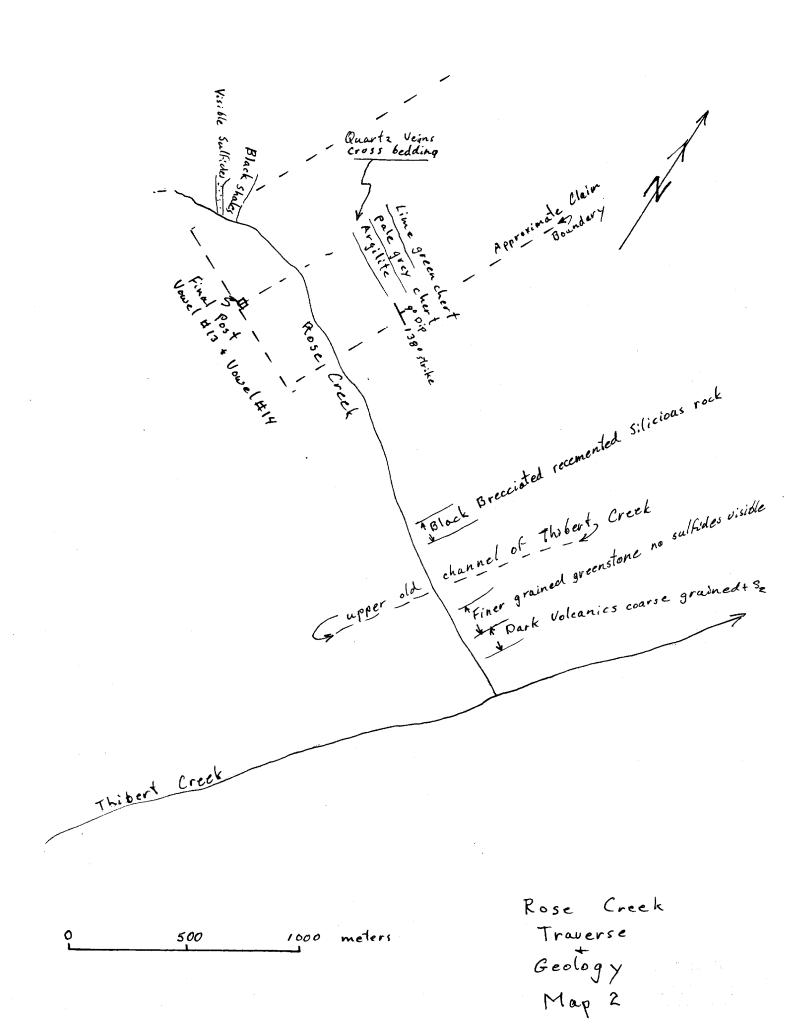

PHYSIOGRAPHY

The Vowel claims are found within the Stikine Plateau an area of generally subdued topography Vowel mountain has a summit of 1614 meters above sea level. The Vowel claims are on the Southeastern slope of the Vowel mountain. The flora on the claims varies from the Alpine through to balsam fir at the lower elevations. A log cabin on Vowel creek is the only site of any tree harvesting observed on the claims group. Three streams flow southeast off the claim group and these creek gullies usually cut through the overburden exposing bedrock.

HISTORY

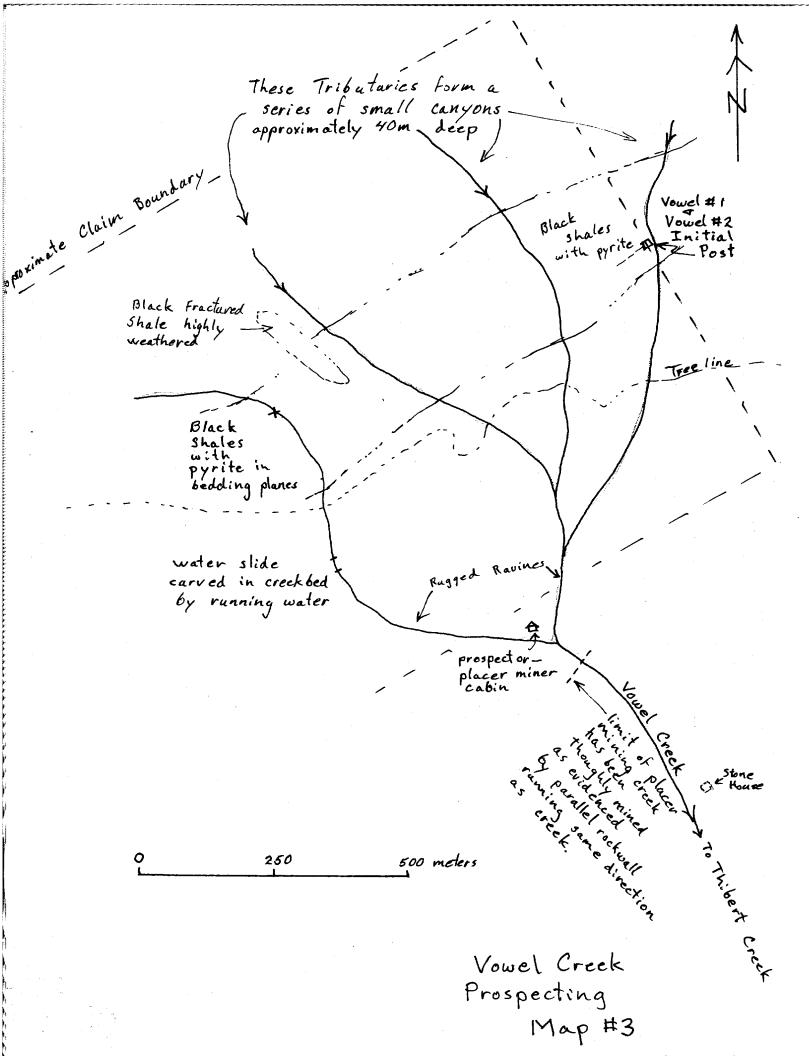
The general area of Thibert creek has a history of placer mining from the 1870's through to the present day. Placer miners were active on Defoe and Delure creek in 1999. The only record of

4


hardrock exploration in the area is work done on the Hop claims in 1888-89 (B.C. government assessment report 19473). The Vowel claims cover some of the same ground that the Hop claims were staked over. A report by a Captain Scott written around 1925 refers to rich placer ground on certain leases on Thibert Creek around and upstream of Vowel Creek. The former report refers to test pits dug on this ground yielding "\$15.75 in gold and \$15.00 in platinum from 4 cubic yards of material hand mined and worked in a sluice box".

PROSPECTING TRAVERSES

The two traverses were made across Vowel mountain from the same starting point at the Mosquito creek headwaters. The same route was taken both times. The ascent route was used twice (Map #) the descent was varied although both descents required climbing down step slide areas necessitating holding on to foliage thus slowing down for safety.


The first trip we prospected up to and including the headwaters of Vowel creek. Mineralization was found at the headwaters of Vowel Creek. Black shale with pyrite was observed in the most westerly of four feeder streams that make up the Vowel creek headwaters. All four streams have cut their own ravines in the soft fractured shales. The best looking mineralization appeared as gold sheets interbedded with the shale bedding. No quartz veins were observed in these streambeds.

The second Alpine traverse was spent at the headwaters of Rose Creek and we followed the limestone and rose quartz veins in the northwest direction. Rose Creek is named after a long rose quartz vein between limestone and volcanic's. (Map # 2). Pyrite was the most common mineral observed here mostly in a lime grain chart on an outcrop at the headwaters of Rose Creek. Black shale with sulfides was also observed below the grain chart. The Rose quartz is brick red in color

and formed vertical dripping bands from 1 inch to 4 feet wide observed on surface for approximately 150 feet. All rock samples taken on these traverses were shown to Dr. Hu Gabrielse the DSC geologist who mapped this area.

Dr. Gabrielsse verified rock identification for all our samples at his Vancouver office. No upper gold mineralization was observed in either alpine traverse. The traverse up Thibert Creek to the claim area was hampered by foul weather. The morning of this traverse the weather was cloudy and cool but it started raining at about 11:00am and continued raining till about 10:00pm that evening the intensity of the rain building to about 2pm at which time a hard steady rain fell for approximately 6 hours. Float in the creek beds was prospected and the lower western side of Rose creek was mapped. The first out croppings closest to Thibert Creek were dark coarse grained volcanics with pyrite mineralization changing further upstream a finer grained greenstones with no visible sulfides (Map3).

COMPILATION OF SAMPLES

Sample	······		
Number	Location of Sample	Elevated Value	Comments
Silt # 41	Lower Vowel Creek	12 ppb Au Gppb Pd	This part of the Creek has been mined
Silt # 42	Lower Rose Creek	84 ppb Au	Highest value in Au
Silt # 43	Mid Rose Creek	12 ppb Au+ 6 ppb Pd	Palladium present
Silt # 47	Eastern fork of Vowel Creek headwaters	4 ppb Au	
Silt # 48	Western fork of Vowel Creek	232 ppm As	
Silt # 49	Unnamed creek between Rose and Vowel	68 ppb Au +2 ppb Pb	Near headwaters
RS # 1	Headwater Rose Creek	24 ppm As	Black shale +Sz
RS # 3	Headwater of Vowel Creek	10 ppb Au + 2 ppb Pd	Sulphides and black shale
RS # 4	Headwaters of Vowel Creek	8 ppb Au + 4 ppb Pd	Rock sample
RS # 5	Headwaters of Vowel Creek	6ppb Au + 2ppb Pd	Visible sulphides - no comment
RS # 6	Headwaters of Rose Creek	870 ppb Ba	Rock sample
Sample Number	Location of Sample	Elevated Values	Comments
5109	Headwaters of Vowel Creek	4 ppb Au	schist with sulfides
5110	Headwaters of Vowel Creek	12 ppb Au	quartz swirl in road bed
5117	Headwaters of Rose Cree		1.8m talc - soapstone

_ , en -يعبعو -...... -----: ____ ,**~~**~ ~ \mathbf{c} 2

5118	Vowel Creek below cabin		vein 1.0m talc vein
5119	West fork of Vowel		magnetite vein
5127	East fork of Vowel	10 ppb Au	magnetite quartz vein

,----,

i k

11

(QJQ) - DIAKOW, GERRY

NUMBER SAMPLES

23

23

23

Project: P.O. # :

CHEMEX CODE

205

226

3202

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6

Comments:

ANALYTICAL PROCEDURES A9827395 DETECTION UPPER CHEMEX NUMBER LIMIT LIMIT CODE SAMPLES DESCRIPTION METHOD 10000 2 975 23 Au ppb: ICP-fluorescence package FA-ICP-AFS Samples submitted to our lab in Vancouver, BC. 10000 976 23 Pt ppb: ICP-Fluorescence package FA-ICP-AFS 5 This report was printed on 15-AUG-98. Pd ppb: ICP-fluorescence package 977 23 FA-ICP-AFS 2 10000 SAMPLE PREPARATION DESCRIPTION Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject

A9827395

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9827169

(QJQ) - DIAKOW, GERRY

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 14-AUG-98.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	13 13 13 13	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6

Comments: ATTN: GERRY DIAKOW

	1		······································		
CHEMEX	NUMBER SAMPLES		METHOD	DETECTION	UPPEF LIMIT
975	13	Au ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000
976	13	Pt ppb: ICP-Fluorescence package	FA-ICP-AFS	5	10000
977	13	Pd ppb: ICP-fluorescence package	FA-ICP-AFS	2	10000
2118	13	Ag ppm: 32 element, soil & rock	ICP-ARS	0.2	100.0
2119 2120	13 13	Al %: 32 element, soil & rock As pom: 32 element, soil & rock	ICP-AES ICP-AES	0.01	15.00 10000
2120	13	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	13	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	13	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	13	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	13	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	13	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	13	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	13	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	13	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	13	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	13	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	13	R %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	13	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	13	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00 10000
2135	13	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136 2137	13 13	No ppm: 32 element, soil & rock Na %: 32 element, soil & rock	icp-aes icp-aes	0.01	10.00
2138	13	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	13	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	13	Pb ppm: 32 element, soil & rock	ICP-AES		10000
2141	13	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	13	Sc ppm: 32 elements, soil & rock	ICP-AES	ĩ	10000
2143	13	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	13	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	13	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	13	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	13	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	13	W ppm: 32 element, soil & rock	ICP-ABS	10	10000
2149	13	Zn ppm: 32 element, soil & rock	ICP-ARS	2	10000

A9827169

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6

Page Number :2-A Total Pages :2 Certificate Date: 14-AUG-98 Invoice No. : 19827170 P.O. Number : Account :QJQ

Project : Comments: ATTN: GERRY DIAKOW

**

												CE	RTIF	ICATI	EOF	ANAL	YSIS		A9827	170		
	SAMPLE		rep Ode	Au ppb AFS		Pđ ppb AFS	Ag ppm	A1 %	ks ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
#41 #42	1 2		1 202 1 202				< 0.2 0.2	1.68 1.39	10 10	530 960	< 0.5 < 0.5	< 2 < 2	0.70 1.19	0.5 0.5	15 13	35 38	73 61	2.94	< 10 < 10	< 1 < 1	0.16 0.16	10 10
#43 #44 #45 #46 #47	4 5 5	20 20 20	1 202 1 202 1 202 1 202 1 202 1 202	4 not/ss < 2	< 10	< 4 not/ss 2	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.39 1.49 1.55 1.48 2.08	10 10 8 18 6	960 100 510 240 510	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.97 0.95 0.87 1.82 0.73	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	19 15 16 11 12	33 65 63 87 41	74 34 25 33 57	3.28 4.96 3.67 4.72 2.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.09 0.09 0.09 0.12	10 < 10 10 < 10 10
#48 #49 #50 #51 #52)) 	20 20 20	1 202 1 202 1 202 1 202 1 202 1 202	68 10 12	< 5 5	2 < 6	0.2 0.4 < 0.2 < 0.2 0.2	1.81 1.72 1.72 2.23 1.05	4 6 8 8 10	210 630 100 220 480	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.63 0.50 0.99 1.03 1.63	1.0 1.0 < 0.5 < 0.5 0.5	20 15 31 24 13	33 35 211 146 48	98 66 66 58 61	3.40 3.52 3.23 3.87 3.31	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.11 0.06 0.13 0.10	10 10 < 10 20 10
	SAMPLE		EP DE	Ng %	Mn ppm	Mo	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V	W	Zn ppm		- <u></u>	
#41 #42			202 202	0.73 0.71	860 640		< 0.01 < 0.01	52 49	590 790	8 6	< 2 < 2	4	89 57	0.09	< 10 < 10	< 10 < 10	40 36	< 10 < 10	200 146			
#43 #44 #45 #46 #47		201	202 202 202	0.70 0.87 0.91 0.94 0.63	1110 630 6600 625 570	1 4 < 6 <	0.01 0.01 0.01 0.01 0.01	58 42 58 44 48	680 720 600 950 770	12 < 2 4 < 2 8	< 2 2 < 2 < 2 < 2 < 2 < 2	4 6 4 5 5	56 54 65 213 98	0.04 0.13 0.14 0.12 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 137 56 98 44	< 10 < 10 < 10 < 10 < 10 < 10	190 74 106 132 196			
#48 #49		201 201	202 202	0.68 0.56	945 705		0.01	52 57	500 790	12 8	< 2	5	166 62	0.12	< 10	< 10 < 10	46 37	< 10 < 10 < 10	232			

Г

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6

Page Number : 1-A Total Pages : 1 Certificate Date: 14-AUG-98 Invoice No. : 19827169 P.O. Number : aja Account

Project :

Comments: ATTN: GERRY DIAKOW

**

									CERTIFICATE OF ANALYSIS				'SIS	A9827169					
SAMPLE	PREP CODE	Au ppb Pt AFS	ppb Pd ppb AFS AFS	-	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррж	Cr ppm	Cu ppm	Fe %	Ga. ppm	Hg ppm	К %	La ppm
R5#1 R5#2 R5#3 R5#4 R5#5	205 226 205 226 205 226 205 226 205 226 205 226	4 < 2 10 8 6	<pre>< 5 < 2 < 5 < 2 < 5 < 2 < 5 2 < 5 2 < 5 4 < 5 4 < 5 2</pre>	< 0.2 < 0.2	0.39 3.07 2.18 1.47 0.96	24 4 12 10 8	50 130 80	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	< 1 8 8 5 11	49 71 39 49 58	8 11 76 49 113	0.83 2.67 3.58 2.91 2.30	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.23 0.01 0.24 0.16 0.14	10 < 10 < 10 < 10 < 10 < 10
R\$#6 R\$#7 R\$#8 R\$#9 R\$#10	205 226 205 226 205 226 205 226 205 226 205 226	2 2 < 2 < 2 < 2 < 2	<pre>< 5 < 2 < 5 < 2 </pre>	< 0.2	0.35 1.13 0.01 0.51 0.77	< 2 18 < 2 2 < 2	290 < 10 480	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.12 1.09 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 7 < 1 3 4	128 102 192 104 58	15 23 1 121 12	0.75 2.28 0.20 1.06 1.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.08 0.12 < 0.01 0.19 0.29	< 10 < 10 < 10 10 < 10
R <i>s</i> #11 Rs#12 R <i>s</i> #13	205 226 205 226 205 226	< 2 6 2	5 < 2 < 5 < 2 < 5 2		2.54 2.05 1.48	< 2 < 2 < 2	< 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2		< 0.5 < 0.5 < 0.5	17 20 12	227 75 48	51 541 35	3.26 3.39 2.26	< 10 < 10 < 10	< 1 < 1 1	1.17 0.01 0.11	< 10 < 10 < 10
	<u></u>								•			CE	RTIFICA	TION:_	14	ant	<u>ß</u>	<u>م</u>	<u> </u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6 Page Number : 1-B Total Pages : 1 Certificate Date: 14-AUG-98 Invoice No. : 19827169 P.O. Number : Account : QJQ

Project : Comments: ATTN: GERRY DIAKOW **

										CE	RTIF		E OF A	NAL	/SIS	<u> </u>	9827169	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
RS#1 RS#2 RS#3 RS#4 RS#5	205 226 205 226 205 226 205 226 205 226	1.12 1.14 0.83	15 575 495 455 300	3 3 < 3	: 0.01 0.03 : 0.01 0.01 : 0.01	3 8 12 13 27	70 660 650 280 210	14 6 18 12 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 7 5 5 4	3 251 47 15 9	< 0.01 0.15 0.21 0.13 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 67 36 31 15	< 10 < 10 < 10 < 10 < 10 < 10	14 60 48 38 62	
RS#6 RS#7 RS#8 RS#9 RS#10	205 226 205 226 205 226 205 226 205 226 205 226	0.65 < 0.01 0.31	165 300 40 250 235	1	0.01 0.03 0.01 0.05 0.06	9 25 3 3 7	80 410 10 330 440	6 2 < 2 < 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 4 < 1 1 1	17 ·	< 0.01 < 0.01 < 0.01 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	4 37 < 1 18 16	< 10 < 10 < 10 < 10 < 10 < 10	14 42 2 28 36	
R\$#11 R\$#12 R\$#13	205 226 205 226 205 226 205 226	1.55	375 440 455	16 1 1	0.03 0.03 0.05	61 28 13	720 820 780	< 2 2	< 2 < 2 < 2	8 5 3	14 122 85	0.16 0.17 0.18	< 10 < 10 < 10	< 10 < 10 < 10	99 97 81	< 10 < 10 < 10	96 50 52	
													C	ERTIFICA		14-3-	J. Core	101

Г

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver To: DIAKOW, GERRY

1537 54TH STREET DELTA, BC V4M 3H6

**

Page Number :1 Total Pages :1 Certificate Date: 15-AUG-98 Invoice No. :19827395 P.O. Number Account QJQ

Project : Comments:

					CE	RTIFIC	ATE OF	ANALYSIS	A9	827395	
SAMPLE	PREP CODE	Au ppb AFS	Pt ppb AFS	Pd ppb AFS							
M605106 M605107 M605108 M605109 M605110	205 226 205 226 205 226 205 226 205 226 205 226	4 2 < 2 4 12	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 10</pre>	4 < 2 < 2 < 2 < 2 < 4							
M605111 M605112 M605113 M605114 M605115	205 226 205 226 205 226 205 226 205 226 205 226	<pre> < 2 < 2 < 2</pre>	<pre>< 5 < 5 < 5 < 5 < 5 < 10 </pre>	< 2 < 2 < 2 < 2 < 2 < 4							
M605116 M605117 M605118 M605119 M605120	205 226 205 226 205 226 205 226 205 226 205 226	< 2 2 2 4 < 4 < 2	<pre></pre>	< 2 < 2 < 2 < 4 < 2		-					
M605121 M605122 M605123 M605124 M605125	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 4 < 4 < 4 < 4 < 4 < 4 < 7 < 4 < 7 < 7 < 7 </pre>	<pre>< 10 < 5 < 10 < 5 < 5 < 5 < 5 </pre>	< 4 < 2 < 4 < 2 < 2 < 2							
M605126 M605127 M605128	205 226 205 226 205 226	< 2 10 < 2	< 5 < 5 < 5	< 2 2 < 2							
									·		
								ERTIFICATION	144	A-S-	elize+

STATEMENT OF QUALIFICATION STEPHEN G. DIAKOW

- 1. I attended Vancouver City College and the University of British Columbia completing courses leading to a B.Sc in chemistry.
- 2. Studied Civil and Structural Engineering at British Columbia Institute of Technology.
- I have worked in Mineral Exploration for the past 34 years. Including the major companies Union Carbide Mining Exploration, Canadian Superior Mining Exploration and Anaconda Mining Exploration.
- 4. I have received 3 British Columbia prospector assistance grants, the first from Dr. Grove in 1975 and last in 1998.

X. A. Diatam S.G.DIAKOW

AFFIDAVIT OF EXPENSES

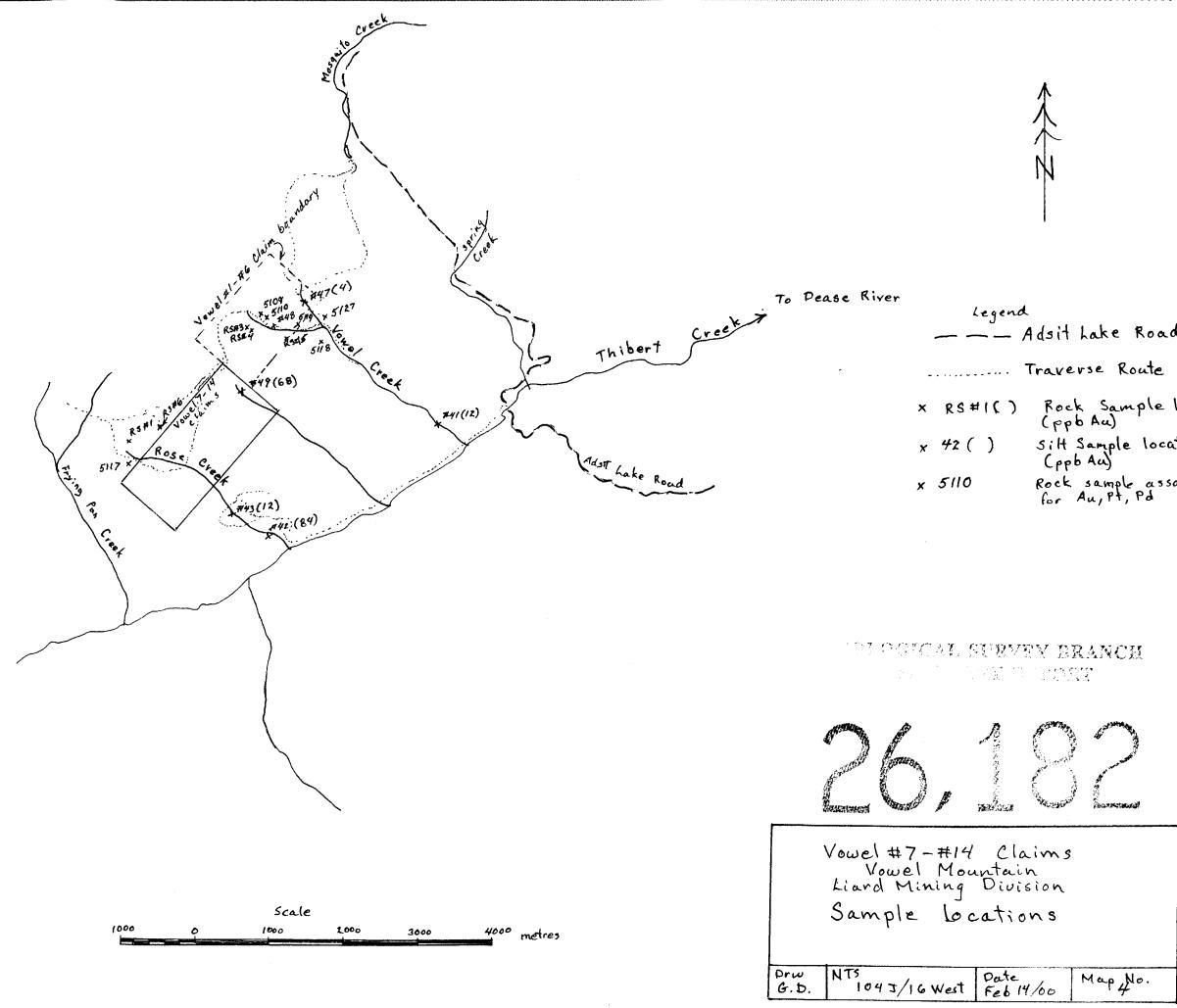
Prospecting and general reconnaissance was carried out within the Vowel #7- #14 claims belonging to Gerry Diakow, from August 1 to September 20 1999 located on Vowel mountain Liard Mining Division, British Columbia, to the value of the following:

Field:

3 men, 3 days @ \$800/day Room & board, 3 days @ \$300/day	\$2400.00 \$900.00	
Truck & fuel, $3 \text{ days} @ $125/\text{day}$	\$375.00	
Field Supplies	\$ 25.00	\$3700.00
Laboratory		

Sample preparation and testing of: 6 silts @ \$25.10 \$150.60 11 rock @ \$21.10 \$232.10 \$382.70

Report


Grand total:

\$4082.70

Respectfully submitted,

A. R. Duten

S.G. Diakow **Project Manager**

.

- Adsit Lake Road x RS#1() Rock Sample loc. (ppb Au) silt Sample location (ppb Au) Rock sample assayed for Au, Pt, Pd