REPORT ON

VLF-EM AND SCINTILLOMETER SURVEY

VAL\#2 CLAIM

FORT ST. JAMES, BRITISH COLUMBIA
NTS 93K/16
$54^{\circ} 54^{\prime} \mathrm{N}, 124^{\circ} 17^{\prime} \mathrm{W}$

BY

Uwe Schmidt, P.Geo.

February 22, 2000
frorbgRCAI SURYEY BTRANKH

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. CLAIMS, LOCATION AND ACCESS 1
3. PHYSIOGRAPHY 1
4. GEOLOGY 2
5. HISTORY AND WORK CARRIED OUT 2
6. CONCLUSIONS 4
7. RECOMMENDATIONS 4
8. BIBLIOGRAPHY AND REFERENCES 5
9. STATEMENT OF EXPENDITURE 6
Appendices
Appendix A Certificate of QualificationsAppendix BAppendix CSurvey Data and StatisticsInstrumentation
List of Illustrations

Figure	Title	Following	
1	Kleedlee Creek, Val 2 Grid Location,	Page	
2	Val 2 Grid VLF-EM Survey, Field Strength	$1: 50,000$	1
3	Val 2 Grid Scintillometer Survey	$1: 5,000$	3
2			4

Photographs

Photo
1 Gravel deposits on Val \#2 claim 3

1. INTRODUCTION

A VLF-EM survey was carried out on a 90 hectare grid located on the Val \#2 mineral claim. The survey was carried during the period from July 20 to 26,1999 and was funded in part by the B.C. prospectors' assistance program. The writer was assisted by Jason McLaughlin, a recent U.B.C. geology graduate.

The Val claims are located approximately 50 km north of Fort St. James, in Central British Columbia. The area is underlain by metasedimentary and volcanic rocks of the Takla Group and coeval plutons within the Quesnel Terrane. This area lies north of northwest trending Pinchi and Prince George faults, the dominant structural elements of the area. The Prince George Fault marks the boundary of the Quesnel and Cache Creek Terranes in the area.

2. CLAIMS, LOCATION AND ACCESS

The Val claims are located in the Kleedlee Creek area, approximately 50 km north of Fort St . James, in central British Columbia, in NTS map area $93 \mathrm{~K} / 16$. Details of the claims are as follows:

Claim Name	Units	Tenure Number	Expiry Date
Val \#1	4	334086	$02 / 23 / 2000$
Val \#2	18	334087	$02 / 24 / 2000$
Val \#3	12	334088	$02 / 25 / 2000$
Val \#5	9	334090	$02 / 27 / 2000$

The claims are accessible by road from Fort St. James via the Germansen Road, which provides all-season access. Kleedlee Creek area lies west of Germansen Road, and is accessed via InzanaMain and Esker F.S. roads. Additional local access is provided by a number of bulldozer trails and clear cuts.

The approximate centre of the Val \#2 claim is $54^{\circ} 54^{\prime} \mathrm{N}$ latitude and $124^{\circ} 17^{\prime} \mathrm{W}$ longitude.

3. PHYSIOGRAPHY

The area lies with the Nechako Plateau at the northern edge of the Fraser Basin physiographic region. The area is predominantly covered by glacial till, with minor glaciofluvial and

glaciolacustrine deposits (Plouffe, 1994). Glaciers moved from west to east in the southern map area and gradually turned northeastward in the northern half of the map area. The terrain in the southern map area is characterized by low rolling hills with swamps and lakes in the low-lying areas. Elevations increase toward the northeast.

4. GEOLOGY

The map area lies within Quesnel and Cache Creek Terranes. The boundary between Cache Creek and Quesnel Terranes lies southwest of the claims and is defined by the northwest trending Prince George Fault (Struik, 1998). The erosional remnants of Miocene basalt flows are evident in the southeast map area.

The Quesnel Terrane rocks are represented by an Early Mesozoic island-arc assemblage of the Takla Group. This group comprises sedimentary, volcanic, pyroclastic, epiclastic and coeval plutonic rocks of Upper Triassic to Early Jurassic time. The Takla Group was subdivided by Nelson et al (1991), into four informal successions. The Tas area is underlain by the predominantly sedimentary, Inzana Lake Formation and early Jurassic intrusions, but no outcrops are known on the Val \#2 claim.

5. HISTORY AND WORK CARRIED OUT

This area has seen several episodes of mineral exploration. Early porphyry copper exploration occurred after the release of regional airborne magnetic maps by the G.S.C. in the late 1960's. Regional airborne EM and magnetic surveys in early 1980's led to the staking and drilling of several conductors in the search for VMS deposits.

The most significant exploration success in the area to date is the discovery of the Mt. Milligan Cu-Au porphyry deposit which is located approximately 38 km northeast of the claims. This alkalic porphyry system was discovered in 1987 and resulted in a reexamination of the porphyry potential of a number of magnetic anomalies underlain by Takla Group lithologies within NTS $93 \mathrm{~K} / 16$. The Tas, Bio, Max and Hat properties were intermittently explored during the period of 1987 to 1991. Of these properties, the Tas has received the most work. Much of the drilling to date has centered on gold-bearing sulphide-rich shear-veins, which are thought to be peripheral to an alkalic porphyry system. The Val \#2 claim is located at the eastern boundary of the Tas
property and has the potential to host gold-bearing sulphide-rich shear/veins similar to the Tas Ridge Zone.

A till sampling program along the eastern boundary of the Tas property was originally contemplated on the Val claims but due to thick glaciofluvial deposits in the area (Photo 1), this concept was abandoned in favor of a VLF-EM survey.

The VLF-EM survey was carried out on the Val \#2 claim over a $61 / 2$ day period in late July. The Val \#2 claim is one of four claims held by the writer, adjacent to the Tas property. A one kilometre wide perimeter area around the Tas property has received limited exploration to date because of previous ownership conflicts. The EM survey was designed to test a portion of this area.

The survey included the reestablishment of an existing north-trending base line and the surveying of flagged lines by hip-chain and compass, to the boundary of the Tas property. A VLF-EM survey was carried at 50 metre stations and 100 metre line spacing. A few 25 metre stations were added in areas of high field strength response. A Sabre model 27 VLF-EM was used in the survey. Relative field strength measurements were used in this survey to detect conductors. A contoured plot of the field strength data is presented in Fig. 2. The data were analyzed using Probplot software. Three populations were defined with population boundaries at 54 and 38. An upper threshold of 55 is plotted in Fig. 2. Values above 55 outline a strong conductor in the southwest comer of the grid. This conductor has a length of at least 200 metres in a southeast direction. The convergence of three survey lines in the vicinity of the conductor suggests that it is also a magnetic anomaly. This conductor continues in an east-west direction along line $36+00 \mathrm{~N}$. A weaker, northeast trend is defined by three areas, exceeding the field strength anomaly threshold.

A scintillometer survey was carried out concurrently as an overburden and K-silicate alteration mapping tool. The survey was conducted with an Urtec UG-130, threshold scintillometer. Total count readings, over a ten second sample interval, were recorded. A total of 10 line-kilometres were surveyed. The survey data are appended to this report.

Total count radioactivity data were also analyzed by the Probplot software. These data are also divisible into 3 populations having boundaries at approximately 61 and 32 cps . A contoured

Photo 1 Gravel deposits on Val 122 clain

version of the data is presented in Fig. 3. The data also show northeast trends on the east half of the grid. The lower threshold of 32 cps outlines swampy areas where radioactivity is suppressed by water, organics and clay deposits. The higher threshold probably outlines a higher proportion of igneous rock fragments in gravel deposits.

Discussion of Results

The field strength anomaly in the southwest corner of the grid may have detected a massive sulphide shear/vein similar to the Tas veins. The east-west extension of this anomaly, along line $36+00 \mathrm{~N}$ looks suspicious. The higher background along this line may be caused by a calibration error. The Sabre Model 27 VLF-EM is recalibrated at the start of each day and this may have led to lower readings in the northern area of the grid.

6. CONCLUSIONS

A preliminary evaluation of a VLF-EM survey suggests that a massive sulphide shear/vein system, similar to the Tas Ridge Zone veins, may extend on to the Val \#2 claim.

7. RECOMMENDATIONS

The VLF-EM survey on the Val \#2 claim should be expanded. The survey interval needs to be reduced to 25 metres or less. Additional lines should be surveyed in the vicinity of the largest conductor. A magnetic survey should also be considered to help define this type of target.

8. BIBLIOGRAPHY AND REFERENCES

Nelson, J.L., Bellefontaine, K.a. (1996): BCGS, Bulletin 99, The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central B.C.

Plouffe, A.(1994):Surficial geology, Tezzeron Lake, B.C., GSC Open File 2846, Scale 1:100,000

Sinclair, A.J., (1976): Applications of Probability Graphs in Mineral Exploration; The Association of Exploration Geochemists, Special Volume No. 4

Struik, L.C. (1998): Bedrock Geology of Tezzeron Map Area, GSC Open File 3624, Scale 1:100,000

Stanley, C.R., (1987): Probplot; The Association of Exploration Geochemists, Special Volume No. 14

9. STATEMENT OF EXPENDITURE

I. Field Expenses

1) Labour
U.Schmidt (July 20-26, 1999) 6.5 days @ \$250/day
$\$ 1,625.00$
J. McLaughlin, (July 20-26, 1999) 6.5 days @ $\$ 100 /$ day
$\$ 650.00$

Amount Eligible for Reimbursement
2) Equipment Rental

Sabre EM 27 (6 days @ $\$ 25.00$)	$\$ 150.00$	$\$ 112.50$
Urtec UG-130 Scintillometer (6 days @ $\$ 10.00$)	$\$ 60.00$	$\$ 45.00$
Magellan Mark V GPS System (6 days @ $\$ 5.00$)	$\$ 30.00$	$\$ 22.50$
2 Motorola HT90 VHF radios (6 Days @ $\$ 5.00$)	$\$ 30.00$	$\$ 22.50$

3) Room and Board
13 man-days @ \$50/m-d \$650.00 $\$ 379.37$
4) Transportation
4 WD Truck 6.5 days @ $\$ 50.00 /$ day $\quad \$ 325.00 \quad \$ 243.75$

II. Office

Report Writing
U. Schmidt $\$ 250.00$
Totals $\quad \$ 3,770.00$
\$1,313.12
Less Reimbursement
(\$1,313.12) Net Assessment Total $\$ 2,456.88$

Appendix A

Certificate of Qualifications

STATEMENT OF QUALIFICATIONS

I, Ewe Schmidt, of 656 Foresthill Place, Port Moody, B.C. do hereby declare:
(1) I am a consulting geologist and controlling shareholder of Northwest Geological Consulting Ltd.
(2) I am a 1971 graduate of the University of British Columbia with a B. Sc. degree in geology.
(3) I am a member of The Association of Professional Engineers and Geoscientists of British Columbia and a Fellow of the Geological Association of Canada.
(4) I have practiced my profession continuously since graduation.

Feb. 22, 2000

Port Moody, B.C.

Appendix B

Survey Data and Statistics

	A	B	C	D	E	F	G
1	LABEL	EAST	NORTH	NULL	FS	OUTPH	CPS
2	35N1000	999	3483	0	62	0	76.1
3	35N1050	1051	3485	0	61	0	64.4
4	35N1100	1099	3486	0	58	0	68.5
5	35N1150	1149	3486	-2	57	0	69.0
6	35N1200	1199	3488	-4	53	0	62.5
7	35N1250	1248	3488	-3	52	1	59.5
8	35N1300	1299	3489	-3	47	0	64.0
9	35 N 1350	1349	3490	-1	47	0	73.8
10	35 N 1400	1398	3490	2	44	0	71.9
11	35 N 1450	1450	3492	7	45	0	80.1
12	35 N 1500	1497	3493	4	46	0	83.7
13	35N1550	1546	3493	3	47	0	80.0
14	35N1600	1595	3494	0	58	0	91.1
15	35 N 1650	1647	3495	-1	63	0	79.0
16	35N1700	1696	3496	0	61	0	72.0
17	35N1750	1747	3498	5	55	0	75.8
18	35N1800	1796	3498	0	58	0	69.3
19	35N1850	1846	3498	4	59	0	69.0
20	35N1900	1895	3501	0	59	0	70.7
21	35N1950	1944	3501	-1	54	0	70.4
22	35N2000	1994	3502	0	51	0	
23	36N1000	1000	3582	2	75	0	64.5
24	36N1050	1051	3583	0	76	0	59.2
25	36N1100	1099	3584	1	75	0	70.1
26	36N1150	1148	3585	0	83	0	67.0
27	36 N 1200	1200	3585	-5	78	1	67.1
28	36 N 1250	1249	3587	-1	73	0	36.5
29	36N1300	1299	3588	-4	74	0	37.9
30	36N1350	1349	3590	-3	72	0	70.9
31	36 N 1400	1398	3592	-1.	70	0	74.7
32	36 N 1450	1451	3591	0	70	0	69.9
33	36 N 1500	1498	3594	0	70	0	86.6
34	36N1550	1549	3594	2	71	0	73.4
35	36N1600	1598	3595	1	72	0	79.3
36	36N1650	1649	3596	0	69	0	89.2
37	36N1700	1697	3596	3	67	0	81.7
38	36N1750	1746	3599	2	65	0	81.4
39	36 N 1800	1795	3598	3	66	0	82.3
40	36N1850	1846	3599	0	67	0	71.9
41	36N1900	1895	3600	0	62	0	81.4
42	36×1950	1946	3601	0	55	0	85.8
43	36 N 2000	1995	3602	0	50	0	75.4
44	37 N 1000	999	3754	2	70	0	66.5
45	37N1025	1024	3752	2	75	0	
46	37N1050	1049	3752	5	80	0	69.9
47	37N1075	1073	3750	0	97	0	

	A	B	C	D	E	F	G
48	37N1100	1097	3749	-3	57	0	43.6
49	37N1150	1147	3748	-3.	52.	0	26.6
50	37N1200	1197	3745	-4	46	0	24.4
51	37N1250	1248	3742	-4	40	0	28.8
52	37N1300	1298	3740	-1	40.	0	
63	37N1350	1351	3737	0	39	0	23.6
64	37N1400	1397	3734	1	39	0	25.6
65	37 N 1450	1447	3730	1	42	0	64.2
56	37 N 1500	1497	3726	-2	42.	0	93.8
57	$37 \mathrm{N1550}$	1548	3726	-1	38	0	83.3
58	37 N 1600	1597	3723	-2	34	0	72.6
59	37 N 1650	1649	3720	2	37	0	79.4
60	37N1700	1697	3717	0	37	0	81.9
61	37N1750	1745	3716	0	37.	0	54.7
62	37N1800	1795	3713	0	45	0	67.8
63	37N1850	1847	3711	0	39	2	84.7
64	37N1900	1897	3708	0	40	2	64.0
65	37N1950	1947	3706	0	40.	2	30.0
66	37N2000	1996	3704	-2	40	2	33.9
67	$38 N 1000$	999	3800	6	44	.	67.5
68	38N1050	1051	3800	1	63	1	68.2
69	38N1100	1098	3800	-3	45	0	69.5
70	38N1150	1148	3800	0	47	0	67.9
71	38N1200	1198	3800	-4	46	0	69.7
72	38 N 1250	1249	3799	0	45	0	70.2
73	38 N 1300	1298	3799	0	46	0	60.3
74	38N1350	1351	3800	8	48	0	65.3
75	38N1400	1398	3800	8	51	0	67.0
76	38N1450	1449	3800	3	49	0	66.2
77	38N1500	1497	3801	-2	37.	0	81.6
78	38N1550	1549	3800	0	38	0	75.6
79	38 N 1600	1598	3800	0	37	0	81.2
80	38N1650	1648	3800		38	0	78.2
81	38N1700	1699	3801	1	38	0	81.7
82	38N1750	1747	3801	-1	41	0	85.0
83	38N1800	1797	3800	-3	38	0	80.4
84	38N1850	1847	3801	-1.	35	0	71.8
85	38N1900	1898	3801	-2	39	0	77.2
86	38N1950	1946	3802	0	35	0	69.2
87	38 N 2000	1995	3801	3	34	0	62.3
88	39N1000	1001	3816	5	40	0	76.8
89	39×1050	1050	3819	6	54	0	66.4
90	39N1100	1099	3824	-6	43	1	70.6
91	39 N 1150	1149	3828	-4	37	1	71.9
92	39N1200	1199	3832	-2	39	0	76.1
93	39N1250	1250	3836	0	34	0	72.6
94	39N1300	1299	3840	5	32	0	74.1

	A	B	c	D	E	F	G
95	39N1350	1351	3844	6	35	0	72.7
96	39N1400	1398	3848	10	36	0	68.8
97	39N1450	1449	3853	5	40	0	58.4
98	39N1500	1498	3858	1	40	0	75.0
99	39N1550	1550	3862	-2	37	0	72.5
100	39N1600	1596	3866	-2	37	0	80.2
101	39 N 1650	1647	3870	-2	35	0	70.1
102	39N1700	1698	3875	5	35	0	82.4
103	39N1750	1746	3879	0	40	0	86.6
104	39N1800	1794	3884	0	38	0	81.0
105	39N1850	1847	3888	0	35	0	87.5
106	39N1900	1896	3893	2	38	0	85.0
107	39N1950	1945	3897	-2	35	0	81.4
108	39N2000	1994	3901	3	37	0	81.4
109	40N1000	999	4007	0	54	0	61.1
110	40N1050	1049	4007	0	54	0	60.1
111	40N1100	1098	4006	-1	55	0	62.8
112	40N1150	1148	4006	-2	52	0	62.1
113	40N1200	1199	4006	2	51	0	74.4
114	40N1250	1249	4007	2	55	0	74.0
115	40N1300	1299	4007	3	55.	0	71.2
116	40N1350	1349	4006	0	57	0	69.8
117	40N1400	1398	4006	0	56	1	73.4
118	40N1450	1450	4005	2	54	1	76.9
119	40N1500	1498	4003	-1	57	2	77.9
120	40N1550	1548	4004	-2	50	4	57.9
121	40 N1600	1595	4005	1	45	2	71.7
122	40N1650	1647	4004	0	42	0	74.2
123	40N1700	1696	4004	0	40	0	72.9
124	40N1750	1746	4004	1	43	0	69.0
125	40N1800	1795	4002	-1	40	1	76.3
126	40N1850	1848	4003	1	38	1	84.4
127	40N1900	1895	4003	1	39	1	81.8
128	40N1950	1944	4002	0	38	0	87.4
129	40N2000	1994	4002	3	40	0	80.5
130	41N1000	1000	4101	-3	43	0	35.4
131	41N1050	1050	4102	0	45	0	31.7
132	41N1100	1098	4100	0	46	0	67.9
133	41N1150	1148	4101	-1.	43	0	73.8
134	41N1200	1198	4100	4	47	0	66.0
135	41N1250	1248	4101	3	47	0	61.3
136	41N1300	1298	4101	-2	48	0	66.2
137	41N1350	1349	4101	-3	48	0	64.5
138	41N1400	1398	4100	-2	42	0	70.0
139	41N1450	1448	4101	-1	47	2	75.2
140	41N1500	1497	4101	0	47	0	78.7
141	41N1550	1549	4101	2	49	1	80.8

	A	B	c	D	E	F	G
142	41N1600	1598	4102	0	52	0	74.9
143	41N1650	1648	4101	-2	55	0	77.2
144	41N1700	1695	4102	-1	47	0	87.0
145	41N1750	1746	4101	-2	45	0	73.5
146	41N1800	1794	4102	1	44	0	75.2
147	41N1850	1845	4102	3	45	0	81.5
148	41N1900	1895	4101	,	47.	0	76.4
149	41N1950	1945	4103	0	46	0	74.9
150	41N2000	1994	4103	1	51.	0	81.5
151	42N1000	999	4212	-2	46	0	24.4
152	42N1050	1050	4211	-2	45	0	41.4
163	42N1100	1098	4211	0	47	0	30.5
164	42N1150	1148	4211	-1	47.	0	66.6
165	42N1200	1199	4211	-2	46	0	73.3
166	42N1250	1248	4210	-3	47	0	71.7
167	42N1300	1298	4210	-2	39	0	64.1
168	42N1350	1348	4210	0	41.	0	27.9
159	42N1400	1398	4209	1	41	0	29.6
160	42N1450	1447	4208	4	47	0	60.7
161	42N1500	1496	4208	1	55.	0	76.7
162	42N1550	1547	4208	1	57	0	70.8
163	42N1600	1597	4206	-1	56	1	73.7
164	42N1650	1647	4206	-1	55	1	75.4
165	42N1700	1696	4206	-1	48	2	69.3
166	42N1750	1745	4205	0	48	0	74.2
167	42N1800	1794	4205	0	51	0	76.9
168	42N1850	1845	4204	3	55	0	73.6
169	42N1900	1893	4204	0	55	0	68.4
170	42N1950	1943	4203	2	51	0	71.5
171	42N2000	1993	4203	2	55	0	77.6
172	43N1000	999	4291	2	40	0	72.4
173	43 N 1050	1050	4291	0	42	0	29.2
174	43N1100	1099	4293	1	41	1	30.5
175	43N1150	1148	4292	-1	40	1	27.8
176	43N1200	1199	4292	2	41	0	63.0
177	43N1250	1250	4294	-1	39	2	50.8
178	43N1300	1299	4293	1	37	0	25.0
179	$43 N 1350$	1348	4296	3	50	0	29.6
180	43N1400	1396	4296	1	38	0	46.9
181	43N1450	1448	4296	1	41	0	69.7
182	43N1500	1497	4297	3	45	0	77.2
183	43N1550	1548	4298	1	47	3	76.7
184	43N1600	1597	4298	-1	45	2	73.2
185	43N1650	1647	4298	-1	41	5	76.5
186	43N1700	1697	4298	1	38	3	75.0
187	$43 N 1750$	1745	4299	3	42	3	75.9
188	43N1800	1794	4300	-1	46	1	79.9

	A	B	C	D	E	F	G
189	43N1850	1848	4300	-2	45	3	79.5
190	43N1900	1894	4300	-2	46	3	67.2
191	43N1950	1943	4300	1	46	1	72.1
192	43N2000	1994	4302	0	49	0	76.3
193	44N1000	998	4398				77.3
194	44N1050	1049	4398				76.1
195	44N1100	1098	4399				88.0
196	44N1150	1148	4399				79.2
197	44N1200	1197	4398				60.8
198	44N1250	1246	4399				28.8
199	44N1300	1297	4398				30.8
200	44N1350	1347	4399	1	35	4	29.9
201	44N1400	1396	4398	4	36	1	76.2
202	44N1450	1445	4398	3	38	2	70.2
203	44N1500	1494	4398	2	37	2	70.1
204	44N1550	1546	4399	3	40	1	71.6
205	44N1600	1595	4398	-2	43	1	69.5
206	44N1650	1644	4400	1	35	2	75.3
207	44N1700	1694	4398	2	46	5	72.8
208	44N1750	1743	4398	1	50	3	75.6
209	44N1800	1792	4399	3	39	4	73.5
210	44N1850	1844	4400	-2	53	1	71.6
211	44N1900	1895	4400	1	41	2	81.9
212	44N1950	1943	4401	-2	48	1	75.3
213	44N2000	1994	4402	0	47	0	67.6

\# PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name $=$ VALGRID3.DAT

Variable $=\quad$ US \quad Unit $=\quad$| N | $=205$ |
| ---: | :--- |
| | $\mathrm{NCI}=$ |
| 24 | |

Transform $=$ Logarithmic \quad Number of Populations $=3$
\# Of Missing Observations $=0$.
7 Observations Were Below the Minimum Value of 0.0001
0 Observations Were Above the Maximum Value of 99999.9999

Users Visual Parameter Estimates

Population	Mean	Std Dev	Percentage	
1	35.667	-	34.324	10.00
2	45.138	+	37.063	
3		+	39.528	75.00
3	68.585	-	60.948	
		+	77.178	15.00

User Defined Thresholds.
Thresholds

54.163
38.512
\#
\# SUMMARY STATISTICS and HISTOGRAM

Variable $=$	FS	Unit $=$	$N=205$		
Mean $=$	48.351	Min $=$	32.000	lst Quartile $=$	40.000
Std. Dev. $=$	11.328	Max $=$	97.000	Median $=$	46.000
CV $\%=$	23.428	Skewness $=$	1.261	3rd Quartile $=$	54.000

Each "*" represents approximately 1.7 observations.
\#
\# SUMMARY STATISTICS and HISTOGRAM

LOGARITHMIC VALUES

\%	cum \%	antilog	cls int	(\# of bins $=24$ - b	0.0209)
0.00	0.24	31.238	1.4947		
0.49	0.73	32.781	1.5156	*	
1.46	2.18	34.400	1.5366	**	
5.37	7.52	36.099	1.5575	******	
5.37	12.86	37.883	1.5784	******	
10.24	23.06	39.754	1.5994	************	
11.22	34.22	41.718	1.6203	*************	
5.37	39.56	43.778	1.6413	******	
7.32	46.84	45.941	1.6622	*********	
16.59	63.35	48.210	1.6831	********************	
3.41	66.75	50.592	1.7041	****	
5.85	72.57	53.091	1.7250	******	
7.80	80.34	55.714	1.7460	*********	
4.88	85.19	58.466	1.7669	******	
1.95	87.14	61.354	1.7878	**	
1.95	89.08	64.384	1.8088	**	
1.95	91.02	67.565	1.8297	**	
2.44	93.45	70.902	1.8507	***	
2.44	95.87	74.405	1.8716	***	
2.44	98.30	78.080	1.8925	***	
0.49	98.79	81.937	1.9135	*	
0.49	99.27	85.985	1.9344	*	
0.00	99.27	90.232	1.9554		
0.00	99.27	94.689	1.9763		
0.49	99.76	99.367	1.9972	*	

Each "*" represents approximately 1.7 observations.
\#
\#
PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS
Data File Name = VALGRID3. DAT

Variable $=$ Scint \quad Unit $=\quad$ CPS \quad| N | 208 |
| ---: | ---: |
| 24 | |

Transform $=$ Logarithmic \quad Number of Populations $=3$
\# of Missing Observations $=0$.
4 Observations Were Below the Minimum Value of 0.0001
0 Observations Were Above the Maximum Value of 99999.9999

Users Visual Parameter Estimates

Population	Mean	Std Dev	Percentage	
1	28.605	-	25.694	10.00
2	46.704	-	31.846	
		+	56.384	5.00
3	73.495	-	66.826	
		+	80.763	85.00

User Defined Thresholds.
Thresholds

60.856
31.550
\#
\# SUMMARY STATISTICS and HISTOGRAM

LOGARITHMIC VALUES

Variable $=$ Scint			Unit =	CPS			$\mathrm{N}=$	208
Std.	Mean $=$	1.8164	Min $=$	1.3729	1st	Quartile		1.8209
	Dev.	0.1344	Max	1.9722		Median		1.8573
	CV \% $=$	7.4006	Skewness =	-2.0081	3 rd	Quartile		1.8876
Anti-Log Mean			65.531	Anti-Log	std.	Dev. :	$(-)$	48.086
							$(+)$	89.304

Each "*" represents approximately 1.7 observations.
\#
\# SUMMARY STATISTICS and HISTOGRAM

Variable =		Unit $=$	CPS		$\mathrm{N}=$	208
Mean $=$	68.135	Min $=$	23.600	1st	Quartile	66.200
Std. Dev.	15.759	Max	93.800		Median	72.000
CV \%	23.130	Skewness	-1.515	3rd	Quartile	77.200

Each "*" represents approximately 1.7 observations.
\#

Appendix C

Instrumentation

Sabrac Electironic Instruments Lad.

4248 EABT HASTINGS STREET - BURNAGY, 日.C. VBC 2J5 • TELEPHONE: 291.1817

SABRE MODEL 27 VLF-EM RECEIVER

The model 27 EM unit was deaigned originally for a large Canadian mining company to overcome the defioiencies inherent in existing unita.

The instrument is so atable and selective that completely reliable measurements can be made on distant stations without interference from nearby powerful transmitters. Stability and selectivity are especially important when making field-strength measurements, which are now being emphasized as a means of locating conductors.

This EM recelver is very compact, requires no earphones or loudspeakers and is housed in a heavj scotch asddle leatber case. All of these features add up to make an ideal one-man EM unit of unexcelled electrical penformance and mechanical ruggedness. SPECIFICATIONS

Source of Primary Field - VLF radio stations (12 to $24 \mathrm{KHz}$.) Number of Stations - 4, selected by awitch; Cutler, Main on 17.8 KHz . and Seattle, Washington on 18.6 KBz . are standard, leaving 2 other stations that can be selected by the user.

Types of Measurement

1. Dip angle in degrees, read on a meter-type inclinometer uitb a range of $\pm 60^{\circ}$ and an accuracy of $\pm 1^{\circ}$.
2. Field atrength, read on meter and a precision digital dial with an accuracy oxceoding 2%.
3. Out of phase component, read on the field strength meter as a residual reading when measuring the dip angle.

SABRE MODEL 27 VLF．$E M$ RECEIVER
 －（Continued）

Dimensions and Weight
Approx．9童＂x 2尔＂x 8年＂；Weighs 5 lbs．

Batteries

8 alkaline penlite cells．The instrument will run continuously on 1 set of batteries for over 200 hours；So that in normal on－off use，the batteries will last all season．The battery condition under load is shown by pushing a button and reading voltage on the field strength meter．

FOR A PORTABLE, FIVE-CHANNEL

THRESHOLD BCINTILLOMETER

The UG 130 unit is a high-performance, threshold scintillometer for measuring all gamma radiation above five selectable energy levels. Each selectable energy level may be sampled at either one or ten second time intervals. The count rate displayed on the ruggedized five digit liquid crystal display is nomalized to CPS (counts per second) regaroless of the selected sample rate. When operated in the ten second sample mode, a decimal point is displayed automatically. UG 130 may be operated in two different total count modes or in a threshold mode for the measurement of Uranium, Potassium and Thorium.

The unit is a ruggedized, compact portable field instrument with simplified operational controls. The main enclosure is a single piece aluminum casting with sealed controls and battery compartment. The unit can be operated safely in the rain or in high humidity environments.

The detector is a custom designed ruggedized Nat (Ti) crystal detector which has a volume of $66 \mathrm{~cm}^{3}$ (4 cu in.). The geometry of the crystal has been optimized to provide a greater detection sensitivity compared to other simiar units. An audio signal generator has been incorporated which may be operated in a continuous mode or in an adjustable count rate threshotd mode. The frequency response of the audio is five times the actual displayed count rate in CPS. This feature allows for a greater audio response to low intensity anomalies.

The UG 130 is equipped with a unique calibration source. Supplied with the unit is a set of alkaline batteries, two carrying handles, genuine leather case with shoulder strap, operating manual and shipping container.

TECHNICAL SUMMARY (Cont)

Selectable energy levels:

CAL-Calibration
TCI - Total count I
TC2 - Total count II
KUT - Potassium +
Uranium + Thorium UT - Uranium + Thorium T. Thorium

Detector:

Spectral shitt as a function of count rate:

Energy response linearity error:

Wisual display:
Energy response linearity
error:

TECHNICAL SUMMARY

All energy above 0.30 MeV All energy above 0.08 MeV All energy above 0.40 MeV All energy above 1.36 MeV

All energy above $1,66 \mathrm{MeV}$ All energy above $2,46 \mathrm{MeV}$

Nal (Til crystal; Volume, $66 \mathrm{~cm}^{3}(4.0 \mathrm{cu} \mathrm{in}$.$) .$ Mechanically ruggedized.
3% or less from 0 CPS to 15000 CPS, Integrated over an energy Interval from 80 keV to 1500 keV

Less than 2\%

Ruggedized fow temperature versiom five digit liquid crystal display. Feadout in CPS regardless of selected sample rate. Excellent visibility in direct sumlight.

When count exceeds 99999 , two dots will indicate count rate overflow.
1.0 or 10.0 seconds, auto recycle. for all enargy levels, except the 'CAL' position

Three ' C ' size alkaline betteries provide 40 hours continuous operation at $23^{\circ} \mathrm{C}$ ambient without audio.

Threa indicators provide battery charge status when required. When batteries are nearly discharged, a keyed audio alam is activated, overriding count rate audio.

The count rate may be monitored in a continuous mode or may be adjusted to monitor above any background threshold.

