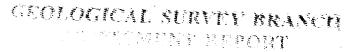
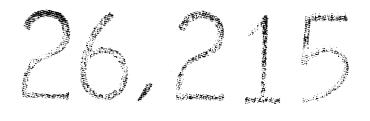


1999 Geological & Geophysical & Geochemical & Diamond Drilling

Report on the Cam Gloria Property

Kamloops Mining Division


British Columbia


Lat. 51deg. 15'N Long. 119deg 34'W

NTS 82M 4E & 5E

For-Teck Corp.

December, 1999 By G.Evans

Table Of Contents

1.0 - Introduction	p.1
1.1 - Location and Access	p.1
1.2 - Property and Status	p.1
1.3 - Physiography and Climate	p.2
1.4 - History	p.2
2.0 - 1999 Program	p.2
3.0 - Geology	
3.1 - Regional Geology	p.3
3.2 - Property Geology	p.3
3.3 - Rock Types & Alteration & Mineralization	р.4
3.4 - Detailed Grid Area Geology	p. 7
4.0 – VLF survey	p.8
5.0 – Trenching Program	p.8
6.0 - Diamond Drilling Program	p.16
7.0 - Conclusions & Recommendations	p.19
8.0 - References	p.21
LIST OF FIGURES	
Fig. 1 - Location and Access	after p.1
Fig. 2 - Claim Map	after p.1
Fig. 3 - Regional Geology	after p.3
Fig. 4 - Property Geology	in pocket
Fig. 5 – Detail Grid Area Geology and Drill Hole Plan	in pocket
Fig. 6 – VLF Survey Plan	in pocket
Fig.7 - Trench #1 plan	in pocket
Fig.8 - Trench #2 plan	in pocket

-

-

Fig.8a – Berube #2 Trench	in pocket
Fig.9 - Trench #3 plan	in pocket
Fig.10 - Trench #4 plan	in pocket
Fig.11 - Trench #5 plan	in pocket
Fig.12 - Trench #6 plan	in pocket
Fig.13 – Trench #7 plan	in pocket
Fig.14 - Trench #8 plan	in pocket
Fig.15 - Trench #9 plan	in pocket
Fig.16 - Trench #10 plan	in pocket
Fig.17 - Trench #11 plan	in pocket
Fig.18 - Trench #12 plan	in pocket
Fig.18 - Trench #12 plan Fig.19 - Trench #13 plan	-
	in pocket
Fig.19 - Trench #13 plan	in pocket in pocket
Fig.19 - Trench #13 plan Fig.20- Cross Section 12+00N –DDH CG 1&2	in pocket in pocket in pocket
Fig.19 - Trench #13 plan Fig.20- Cross Section 12+00N –DDH CG 1&2 Fig.21- Cross Section 11+50N –DDH CG 3	in pocket in pocket in pocket in pocket
Fig.19 - Trench #13 plan Fig.20- Cross Section 12+00N -DDH CG 1&2 Fig.21- Cross Section 11+50N -DDH CG 3 Fig.22- Cross Section 12+50N - DDH CG 4	in pocket in pocket in pocket in pocket in pocket

APPENDICES

Appendix 1 - Rock Description Table

Appendix 2 - Certificates of analysis – Rocks, sands, moss mats

Appendix 3 - Analytical Procedures

Appendix 4 - Statement of Costs

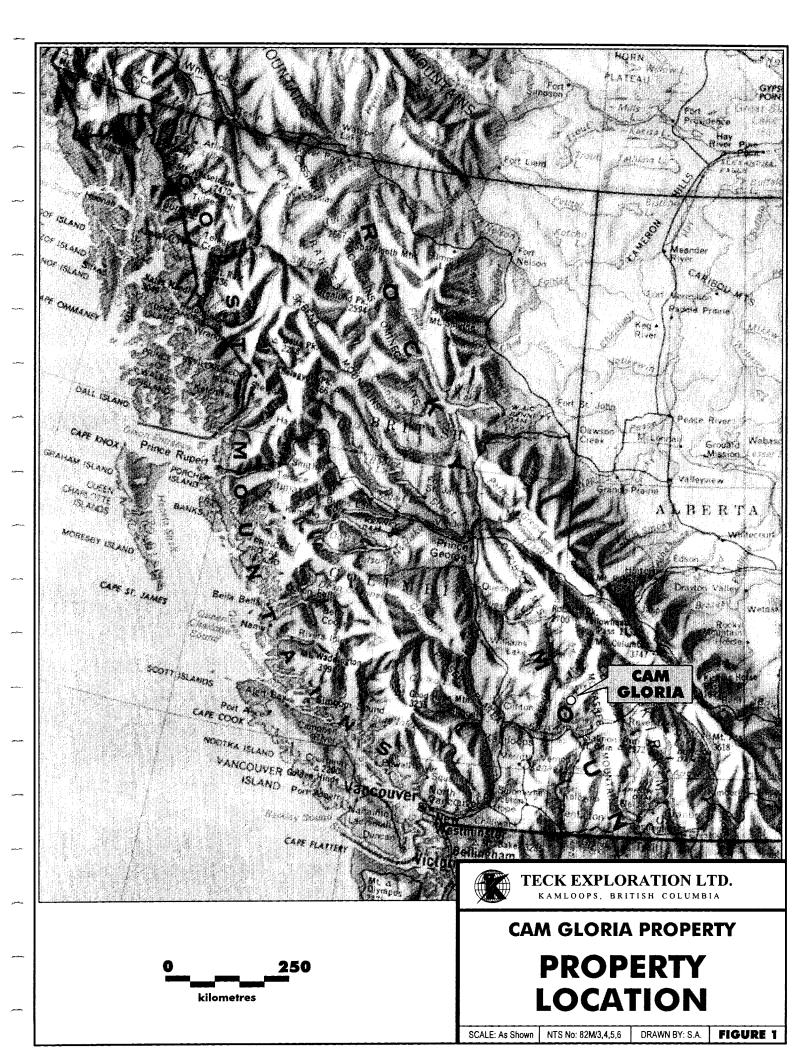
Appendix 5 - Statement of Qualifications

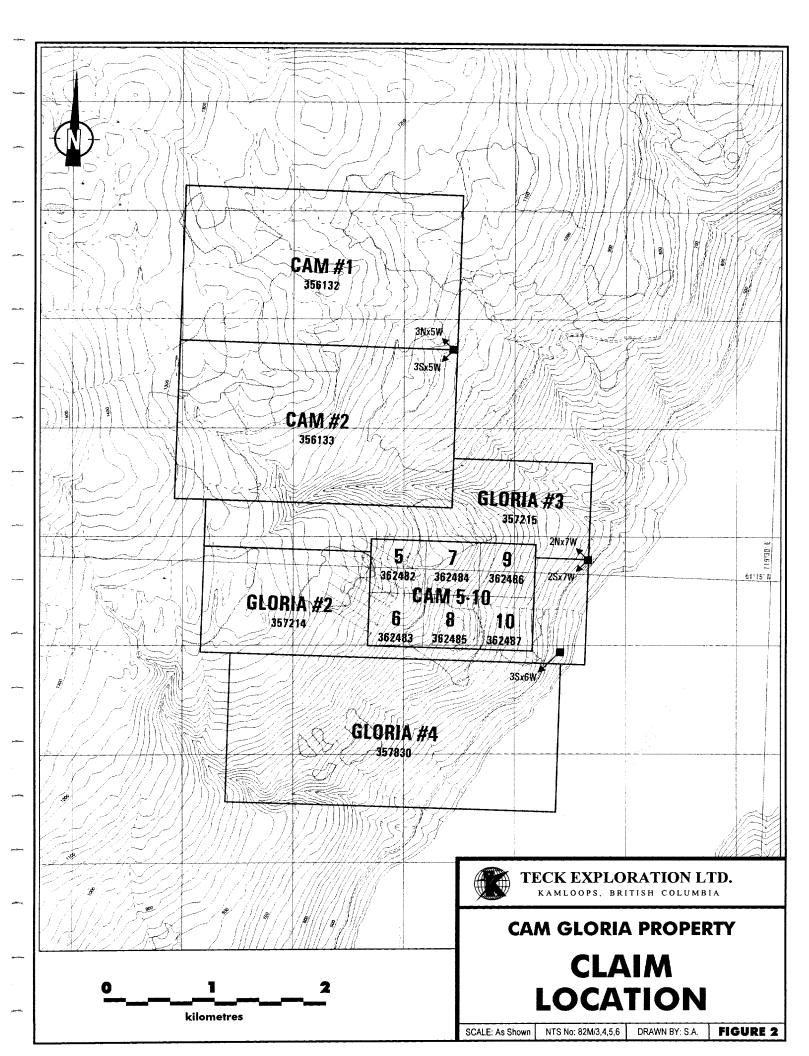
Appendix 6- Diamond Drill Logs

1.0- Introduction

In May of 1999 Teck optioned the Cam Gloria property from Camille Berube a local prospector. He had discovered a large vein with gold values after following up a BCGS basal till anomaly. This new discovery had potential significance as a new Au, Ag, Bi, Pb +/_ As, Zn, Cu, Te and W intrusive gold system, analogous to systems elsewhere in the Yukon-Tanana belt. In 1999 Teck conducted preliminary work over the main property and a focussed program over the "main vein". This work is discussed in detail in this report. The work supports there is widespread mineralization of a intrusive related system and there is a high probability that a large gold bearing system exists on the property.

1.1 - Location and Access (Fig.1)


The Cam Gloria property is located approximately 85 km's NE of Kamloops, B.C.. The property is located on the west side of Adams Lake at Honeymoon Creek(82M/4E& 5E). Numerous gravel logging roads access much of the property. Access can be gained by travelling to Skwam Bay from Barriere or Chase and then via. The Adams West Forest Service Road along Adams Lake. At Km 49.2 the Grizzly spur road accesses the main showing and the southern portion of the property while the Honeymoon spur at km. 51.0 accesses the northern portion of the property.


1.2 - Property Status (Fig.2)

The property consists of the Cam #1, #2, #5, #6, #7, #8, #9, #10 and Gloria #2, #3, #4 claim blocks for a total of 82 units. These have been grouped into Cam Gloria Group for filing purposes in this report. These claims are registered to Teck Corp.

Claim Name	# of Units	Tenure #	Expiry Date
Cam #1	15	356132	May 17,2002*
Cam #2	15	356133	May 18,2002*
Cam #5	1	362482	May 02,2002*
Cam #6	1	362483	May 02,2002*
Cam #7	1	362484	May 02,2002*
Cam #8	1	362485	May 02, 2002*
Cam #9	1	362486	May 02,2002*
Cam #10	1	362487	May 02,2002*
Gloria #2	14	357214	July 02,2002*
Gloria #3	14	357215	July 01,2002*
Gloria #4	18	357830	July 22,2002*
*N.B. dates per	nding acceptance	of this report.	

-1-

1.3 – Physiography and Climate

The property is tree covered and is extensively logged and covers east facing slopes ranging from elevations of 1340 meters on the west side of the property to approximately 410 meters along the eastern side of the property at Adams Lake shore level. Slopes are moderately steep and are covered with variable forest cover ranging from open Birch/ Lodgepole pine cover to extensive Cedar forest in wetter areas. This forest cover is largely replaced by spruce at 1200+ meter elevations. This area is quite wet with a precipitation similar to the eastern shuswap area. Snowfall is common from early November to March. Temperatures range from -30 degrees C in the winter to +30 degrees C in the summer and is slightly cooler than the Shuswap Lakes area.

1.4 – History

The property covers a recent discovery made by Camille Berube in the summer of 1997. While following up two Au basal till anomalies (sites 208,292) from the BCGS O.F. 1997-9 Camille was prospecting the logging roads in the area and discovered a large exposure of quartz vein material hereafter called the "main vein". In the 1997-1998 seasons Camille conducted blast trenching of the "main vein" and prospected the area and located a number of other occurences. Previous to this time there was no work recorded in this area.

2.0-1999 Program

Work on the Cam Gloria property in 1999 consisted of:

1/- Preliminary 1:10,000 property scale mapping (1900 ha.), collection of 21 rock samples, 11 sand samples and 4 moss mat samples.

2/- Established a flagged and picketed grid over the main showing area (4.7 line kilometers)

3/- Detailed mapping of the grid area @ 1:2000 scale (3.5 ha's) and collected 22 rock samples.

4/- Conducted a VLF survey over the grid area (4.0 line kilometers)

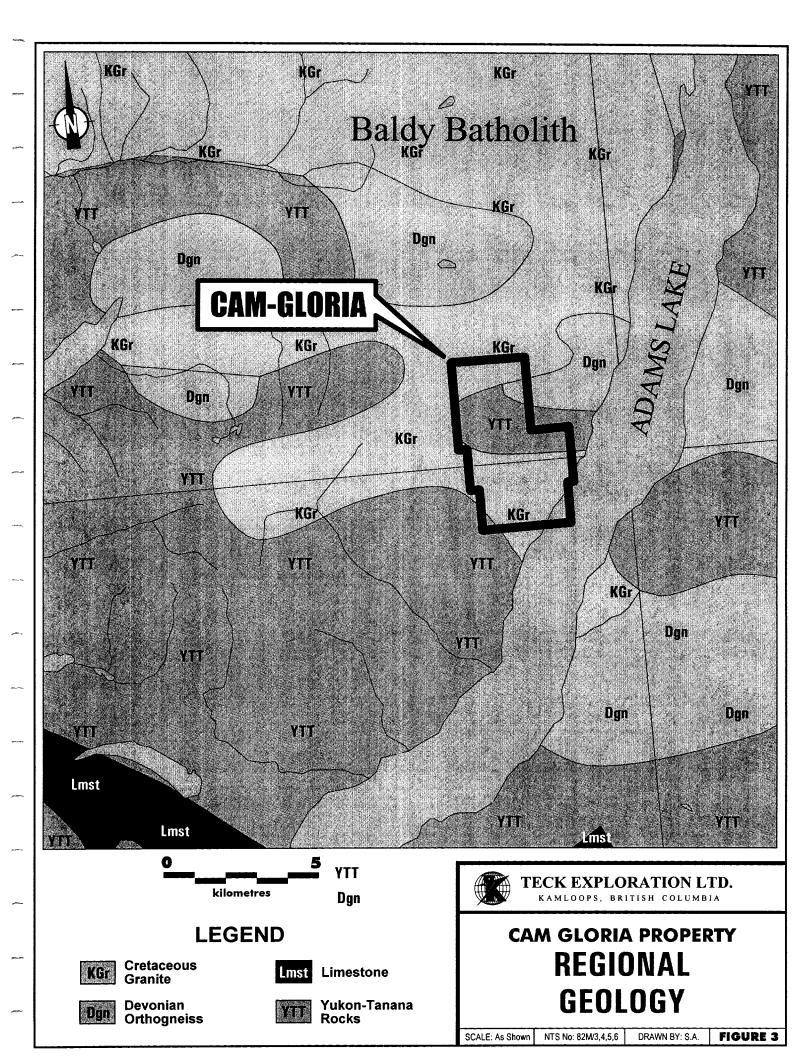
5/- Trenched a number of areas for a total of 390 lineal meters of trenching in 13 trenches and pits. 90 rock grab and chip samples were collected and analyzed for gold and 30 element ICP and a second check of gold values was done by Chemex labs.

6/- 7 NQ diamond drill holes were drilled for a total of 836.0 meters. 149 core samples were split and analyzed for gold and 30 element ICP.

-2-

3.0 - Geology

3.1 - Regional Geology (Fig.3)


The regional geology is based largely on the work of (Schiarizza and Preto Prelim map #56), and in the area of the property is dominated by the metamorphosed Spapilem Creek succession and Devonian orthogneisses intruded by the mid- Cretaceous Baldy batholith. This is overlain with a number of thrust slices consisting of sediments and volcanics of the Eagle Bay formation and sediments and volcanics of the Fennell formation. The lower sequence of Spapilem Creek succession and orthogneisses are not noted to contain signifigant mineral deposits. The Devono-Mississippian paratochtonous Eagle Bay formation hosts numerous mineral occurences in this region including the Samatosun, Rea Gold and Homestake deposits. The Devonian-Permian oceanic assemblage, Fennell formation hosts fewer deposits but in this region does host the Chu Chua cyprus type VMS.

The area is typified by early thrusting and recumbent folding with the later development of Tertiary basins in north trending grabens controlled by block faulting. A new deposit type is being recognized with recent discoveries in the Yukon and Alaska. This is the intrusive associated gold systems for which this region has many favorable attributes. The Cam Gloria property is one of the first of these systems recognized in this region.

3.2 - Property Geology (Fig.4)

Only preliminary geological mapping has been conducted on the property at 1:10,000 scale. A large hourglass shaped stock(s?) intrudes a combination of late devonian orthogneiss and Spapilem Creek succession. The Spapilem sequence occupies much of the east central portion of the property and generally has a northwest strike with variable dips except where deformed by the Baldy stock. The sequence is dominated by amphibolites and muscovite/ biotite schists. There is a distinctive white marble horizon which may offer a useful marker horizon for future work. The Spapilem units are in contact to the northeast with the devonian orthogneiss along what appears to be a folded northwest trending contact.

The Baldy stock or stocks displays a diverse range of compositions and textures. These form a northwest trending series with the main showing hosted within a distinctive megacrystic monzonite in the southermost phase. To the northwest the intrusive contains a higher mafic content with a compositional range of granodiorite to diorite. Commonly along margins but sometimes within the stocks aplites and pegmatites appear common. These intrusives are typical of many of the intrusive rocks in the cordillera known to host gold systems.

Outcrop on the property is very limited due to extensive till sheets. The northwestern corner of the property has the best exposure 3-4% due to thin till sheets while the rest of the property has 1-2% outcrop in road cuts and on ridges. To help with structural trends colour airphotos were studied to see if any of the structural trends could be seen through the overburden areas. Fortunately the structures show quite clearly and groundtruthing of linears in the grid area proved a high correlation with linears and mineralized structures.

The dominant airphoto linear trend is northeast trends which correspond well with the main zone trend. Approximately 30 of these structures can be traced for lengths up to 4-5 km's across the property. The other trends are dominated by north, northwest and easterly trending linears. In the grid area mineralization is know to exist on north and easterly striking structures as well as the main northeast trend. These air photo linears may aid future work and appear to form large corridors on the property and structural junctions may offer a significant exploration target.

Main drainages on the property were sampled by sand sampling of the high energy media (CG- 01-07 using --80 mesh material for analysis), (CG-08-11 using -120 mesh material for analysis) and collection of moss mats(CMM 08,09,10,11). Au anomalies 25-95 ppb have been found at four sites which drain the southern two thirds of the property. Creek sampling in this region has proven difficult (largely due to dilution of till sheet material) but additional sampling on the property is warranted in conjunction with prospecting of airphoto linears.

3.3 - Rock Types & Alteration & Mineralization

The following are field descriptions for the various units and styles of mineralization and specific details of occurences are described in other sections.

The first four units 1-4 are comprised of the lower Cambrian-Hadrynian Spapilem Creek succession.

Unit 1- Marble/ Skarn/Calc Silicates:

This series consists of a variety of rocks originating with granular sugary white- grey marble beds and in amphibolites light green marble/ diopside bearing +/- andradite garnet (1-3mm) calc-silicate beds. These units are quite rare but offer excellent potential marker horizons. Near contacts of the Baldy batholith these horizons can be largely replaced to pyrrhotite bearing garnet-pyroxene units which to date have only been found in float.

Unit 2- Amphibolites

These units are quite common and are likely derived from a mafic volcanic protolith. The rocks are typically dark green well foliated chloritic units with 1-2 mm amphiboles. This unit is commonly quite magnetic.

Unit 3- Muscovite/ Biotite Schists

These rocks are the most common rocktype of the Spapilem Succession and are derived from sediments. They consist of variable amounts of muscovite and biotite schists generally well foliated and quite crumbly. This unit commonly has quartzite interbeds and occasionally has 1-2 cm staurolite crystals and occasionally 3-6 mm red garnets are present.

Unit 4- Quartzite

This unit is derived from siliceous sediments commonly mixed with unit #3 but can be found within unit #2 as well. Typically the rock is white to a pale buff color with 0.5 mm quartz grains and subsidiary biotite or muscovite grains 2-20%. Individual beds are 1-3 cm thick in units up to 50+ meters thick but normally only 1-2 meters in thickness. This unit has some of the best preserved bedding and commonly exhibits strongly deformed isoclinal folds.

Unit 5- Late Devonian Orthogneiss

This unit forms massive outcrops with strong biotite rich laminations and well developed lineations in a siliceous feldspar rich matrix. The protolith for this unit is believed to have been granite-granodiorite in composition.

Units 6-11 consist of various intrusive phases of the Cretaceous Baldy Batholith.

Unit 6-Megacrystic Monzonite

This intrusive rock appears as a distinctive phase of the Mid Cretaceous Baldy batholith. This rocktype hosts the mineralization in the grid area and is distictive with a very low magnetic susceptibility (M. Cathro pers. Comm.). This unit consists of a medium grained matrix with 40-60% plagioclase and orthoclase and 15-20% chlorite altered pyroxene/hornblende and biotite with very distinctive 1-3 cm zoned orthoclase megacrysts (5-20%). Very rarely this unit has 5-10% 1-2 mm quartz phenocrysts. Typically the mafics in this rock have been pervasively chlorite altered (sometimes epidote alteration to feldspars) with hematite/ chlorite fractures being common.

Unit 7- Fine Grained Monzonite

This unit is chemically similar to unit 6 and in areas gradational with unit 6. Visually the difference is a finer grained porphyritic texture with an absence of the zoned megacrysts. Initially it was felt that unit 6 & 7 were separate mappable phases but the relationship is very vague with amorphous contacts.

Unit 8- Fine Grained Hornblende Diorite

This is a very distinctive unit only seen in the NW corner of the property and consists of a fine grained equigranular matrix with a noticeable absence of K feldspars. This produces a whiter hue due to high plagioclase content with equigranular chlorite altered hornblende phenocrysts.

Unit 9- Aplite Dykes

This unit has a aphanitic siliceous matrix with approximately 5-10% 1-2mm quartz phenocrysts. This unit forms 10-30 meter wide dykes typically as border phases to the intrusive stocks. This unit commonly has a platy texture due to fine sheets of muscovite?

Unit 10 – Pegmatite Dykes?

This is another typically border phase unit of the stocks and has generally been seen as float to date but is believed to form dykes. The unit typically has 0.5-2.0 cm crystals of equigranular zoned plagioclase and orthoclase with lesser muscovite –biotite and smoky quartz aggregates. Sometimes a fine grained aplite matrix is present within the coarse phenocrysts.

Unit 11 - K rich Granite

This true granitic intrusive is only encountered at the north end of the property and is a medium grained equigranular intrusive dominated by orthoclase. This unit has approx. 7-8% chlorite altered hornblende and is weakly magnetic. This is probably more representative of much of the Baldy batholith.

Alteration & Mineralization

Gold mineralization seen to date is typically found in milky white mesothermal quartz veins both within the monzonite and within surrounding metamorphic rocks. Alteration envelopes around these veins ranges from hairline to widths of 20 meters of weak to strong pervasive sericite/clay alteration. In a few cases moderate secondary biotite alteration is present over widths of up to 15 meters. Quartz veins range from 1-10 mm stockwork veinlets to vein "blowouts" with widths up to 14.0 meters and are typically 1-2 meters in width and are milky white with minor amounts of hematite on fractures with trace -5% coarse pyrite, pyrrhotite grains and trace amounts of galena, sphalerite and chalcopyrite.

In the detailed grid area there is a diverse range of vein styles supporting multiple vein events. This will be discussed further in that section and in trench and drill sections.

Another style of mineralization seen only as float to date consists of includes garnetpyroxene skarn have been found NE of the grid area near the intrusive/ metamorphic contact. These boulders contain traces of pyrrhotite with anomalous Cu, W values but no additional work on this zone has been carried out.

Mapping on the property indicates that when approaching mineralized zones within the intrusive there is a noticeable increase in fracturing with an increase in chlorite/epidote alteraton and an increase in hematite development but this is only a general guideline.

3.4 - Detailed Grid Area Geology

This area is centred over Berube's main vein discovery and has very little outcrop (2-3%). The following sections including the VLF survey, trenching and drilling discuss specific details of the work conducted in the grid area so the following is a basic summation:

The entire grid area is underlain by the megacrystic monzonite phase of the Baldy Batholith . Just off the northern limits of the grid there are biotite/muscovite schists present with quartz stockwork abundant near the contact, these have values up to 200 ppb Au and require additional work. The main vein shear zone has been traced on surface for approximately 600 meters and trends 035 degrees with a dip ranging from 45-80 degrees to northwest. Various styles of veins are present in the zone including laminated veins +/fluorite, milky mesothermal veins and complex vein breccias as well as banded sulphide rich veins. These veins range in true width from cm scale to in excess of 10 meters and the highest gold values to date are in the vein breccias and sulphide rich veins (up to 32.76 g/t Au). This shear zone ranges in width from 4.0-40.0 meters in width. The highest grade portion of the vein has at least a 200 meter strike length and likely has a SW rake, but structural controls are poorly understood. The air photo lineaments indicate this structure has a probable strike length in excess of 3.0 km's on the property and additional followup is required.

A parallel NE trending structure approx. 100-125 meters to the NW contains alteration and veins with anomalous gold values but has not been drill tested and has only been trenched in one location. This structure has extensive quartz vein float along its strike length with gold values up to 0.725 gpt Au and the airphoto lineaments indicate a potential strike length of close to 3.0 kms. Several north striking and east striking structures containing veins and alteration have been located in the grid area but to date are generally narrow and contain little or no gold values. These structures do contain strongly anomalous Bi, F values in veins and do have strong alteration and there is good potential these could be productive structures particularly at fault junctions.

These combined with widespread pervasive chlorite and hematite alteration do indicate a large hydrothermal system is present in the grid area and remains obscure due to extensive till cover.

A number of NW trending air photo linears transect the grid area but have been difficult to locate in place. There is a vague indication (ie. Trench #03) that these maybe late faults that offset mineralized structures.

4.0 – VLF Survey (Fig .6)

In July the grid area was surveyed with VLF and magnetics. Due to intense mag storms the magnetometer survey was abandoned but the VLF survey was completed. The VLF survey used the Seattle station and results were Fraser filtered to provide the plan map (Fig.#6). The survey defines a large anomalous area trending approx. 030 degrees along the baseline of the grid. This main anomaly has two strong NE trending anomalies internally. The easternmost parallels the main showing along the baseline and swinging further to the NE along the northern portion of the zone. The westernmost anomaly "secondary trend" follows a prominent NE topographic feature which has abundant quartz vein float along its length. This area was trenched in one location Tr-99-10 and exposed a strongly sericite altered and mineralized structure which is likely the source of the VLF anomaly.

VLF appears to work very well at defining altered and mineralized structures. Trenching and drilling indicates the presence of 10-40 meter intervals of strongly sericite altered material with variable amounts of quartz veins and disseminated sulphides. This contrast to the massive homogenous megacrystic monzonite appears to offer a good strong response for the VLF survey.

5.0 – Trenching Program

Between Sept.27-Oct.3 Charlies Backhoe service dug 13 pits and trenches for a total of 390 lineal meters of trenching using a JD-690 which could dig to depths of 5 meters. For a general location map see map #5. Two gold values are provided the first being results from Eco Tech Labs while the second set is from Chemex Labs. The following is a brief description of each trench:

Tr-99-01 (Fig.7)-

Trench #1 opened up the original discovery area on strike to the northeast of the Berube #1 trench. The main vein averages 5.2 meters wide at surface and is typically milky white quartz vein with minor hematite on the fractures. Several adjacent veins (20-120 cm wide veins) are present within moderately sericite altered monzonite \pm silicified sections over a width of 17.0 meters. The highest Au values are located in the central portion of the vein within the sulphide rich sections and the quartz breccias with fine grained sulphides within the matrix. The Berube trench #1 area produced 9.36 g/t Au over 2.0 meters while it only averaged 463 ppb Au over 2.4 meters 8 meters away on strike, this demonstrates the highly erratic nature of mineralization.

Sample	Interval				Au 2nd			Bi	· · · · · · · · · · · · · · · · · · ·
#	m's	m's		ррь		gm/t	ррт	ррт	ррт
5209	0.8-2.9	2.1	Mod chi. And seric altd bio rich monzonite.	15	5		1.6	5	12
5210	Rep	rep	Rep. Of 20 cm QV-milky white in seric. Altd fault gouge	30	35		0.6	<5	6
5211	2.9-5.9	3	Mod. Sericite altd monzonite w/ occas QV	20	5		0.2	<5	6
5212	5.9-7.2	1.3	Heavy sulphide vein 5- 8% po w/ mesh texture	535	360	0.42	1.6	15	82
5213	7.2-8.3	1.1	Sulphide rich vein 15- 20% po,py w/ tr cpy	535	585	0.45	3.0	45	50
5214	8.3-10.0	1.7	QV breccia white frags in black matrix 5-8% dissem and vnlt py	70	75		11.0	60	258
5215	10.0-11.6	1.6	Milky white-grey QV w/ 2- 3% dissem py.	25	<5		<0.2	<5	<2
5216	11.6-13.5	1.9	Strong limonitic and seric. Alt'd monzonite w/ 10% qtz vnits	10	<5		0.2	<5	12
5217	13.5-15.0	1.5	Milky white QVw/ lim fract and slivers of silic'd monzonite w/ 2-3% py dissem.	20	<5		<0.2	<5	4
5218	15.0-17.5	2.5	Broken milky white QV	25	15		<0.2	<5	<2
5219	15.0-17.5	2.5	As above	15	<5		<0.2	<5	6
5220	0.0-1.0	1	Grey Qtz Bx. Sulphide rich w/ 20% po,py w/ tr sp, cpy	>1000	>10000	11.4 17.62	66.2	745	1372
5221	1.0-2.0	1	Milky white limonitic QV	850	1000	1.09	11.2	20	164
5222	2.0-3.0	1	Milky white QV tr lim. Fract	115	205		3.2	20	24
5223	3.0-4.0	1	As above	15	<5		<0.2	<5	<2

Trench 99-02 (Fig.8)

Trench 02 tested the main vein structure approximately 20 meters NE of trench 01 and encountered the main vein over a width of 4.6 meters. The footwall of the vein contains the high sulphide and vein breccia section but grades were disappointing with the 4.6 meter interval averaging only 393 ppb Au.

Sample #	Interval m's	Width m's		Аи ppb		Au Ag gm/t ppm		
5224	8.0-9.4	1.4	Mod sericite and chlorite altd monzonite w/ occas 1-2 cm QV	60	40	0.6	<5	20
5225	9.4-10.4	1.0	Quartz breccia w/ white frags in a dark grey matrix 30% py w/ tr aspy,cpy	720	590	21.0	40	358
5226	10.4-12.0	1.6	Milky white QV w/ 5% py blebs and veinlets	95	130	0.4	<5	14
5227	12.0-14.0	2.0	Fractured milky white QV w/ 3% veinlets and 2-3% Kaolin patches	515	505	3.6	5	114
5228	14.0-16.5	2.5	Moderate sericite altd monzonite w/ limonitic clay gouge	25	5	<0.2	<5	10
5229	16.5-18.8	2.3	As above	25	<5	<0.2	<5	8

Berubes Trench area #2 (Fig. 8a)

This area has been extensively blasted and sampled by a number of people. It cuts across the widest portion of the main vein and exposes a section approx. 14 meters wide. Sulphides dominated by pyrrhotite with lesser pyrite and trace amounts of sp,cpy,aspy and galena form blebs and veinlets commonly forming a mesh texture. The vein has variable amounts of fragments and veinlets of strongly sericite altered and sometimes silicified monzonite wallrock mixed throughout. Gold grades were disappointing and demonstrate the erratic nature of the gold grades. Previous sampling by Berube and Teck had resulted in values >1.0 g/t Au at sample site 5230 and 2.65 g/t Au at sample #5233 as well as values to 7.12 g/t at sample #5234. In general Au values correspond to elevated Ag, Bi, Pb +/- Cu, Zn, As but this area demonstrates the erratic nature of the Au grades.

Sample #	Interval m's	Width m's		Au ppb		Au Ag gm/t ppm		i Pb ppm
5230	0.0-2.0	2.0	Milky white QV w/ limonitic fract and 2-3% po blebs	35	35	3.0	<5	42
5231	2.0-4.0	2.0	Milky white QV as above w/ 20% up to 10 cm frags of strongly seric altd monzonite	15	<5	<0.2	<5	4
5232	0-1.2	1.2	Milky white QV, limonitic w/ 5% po blebs	75	385	37.6	65	100
5233	1.2-3.2	2.0	As above vein w/ 3-4% po w/ mesh texture	30	55	4.2	20	18
5234	3.2-5.2	2.0	As above vein w, 5-8% po,py w/ tr cpy	210	35	1.2	5	20
5235	5.2-7.2	2.0	As above w/ 15% mesh textured po blebs tr py aspy, cpy	35	45	2.0	<5	50

:	5236	7.2-8.7	1.5	Milky white-grey QV w/ 15% seric altd monzonite slivers and frags	10	5		0.2	<5	<2
	5237	8.7-10.7	2.0	Milky QV w/ 3-5% po,py vnlts and 5-8% sericite laminations and frags	>1000	885	1.05	11.0	20	286
	5238	10.7-12.2	1.5	Milky white QV as above	15	20		0.4	<5	16

Trench-99-03 (Fig. 9)

This trench opened up a draw directly south on trend with the thickest portion of the main vein. It was surprising with an almost total absence of vein material and general lack of alteration. Several chlorite altered fault zones are present but do not resolve whether this gully is a fault offset of the vein or the vein has blowouts with rapid thinning and unknown structural controls.

Sample #	Interval m's	Width m's		Au ppb		Au Ag gm/t ppm		
5239	8.0-9.4	1.4	Mod sericite and chlorite altd monzonite w/ occas 1-2 cm QV	60	40	0.6	<5	20
5240	9.4-10.4	1.0	Quartz breccia w/ white frags in a dark grey matrix 30% py w/ tr aspy,cpy	720	590	21.0	40	358
5241	10.4-12.0	1.6	Milky white QV w/ 5% py blebs and veinlets	95	130	0.4	<5	14
5242	12.0-14.0	2.0	Fractured milky white QV w/ 3% veinlets and 2-3% Kaolin patches	515	505	3.6	5	114
5243	14.0-16.5	2.5	Moderate sericite altd monzonite w/ limonitic clay gouge	25	5	<0.2	<5	10

Trench-99-04 (Fig.10)

This trench is located approximately 50 meters SW of trench 03 and encountered a wide section of alteration and a sizeable vein section (6+ meters width). The vein system in this area appears slightly offset to the vein system north of trench #3 and suggests the area of trench #3 maybe a NW? fault offset. The altered zone with numerous quartz veins in this trench is in excess of 30 meters wide and contains a mixture of moderate sericite alteration +/- carbonate and patches of secondary biotite alteration. Unfortunately this good looking section had no significant values.

Sample #	Interval m's	Width m's		Au ppb	Au 2nd ppb	Au			1 10
		<u> </u>				yn#t	ppm	ррт	ррт
5244		1.0	Mod sericite and chlorite altd monzonite w/ occas 1-2 cm QV and kaolinite patches	10	5		0.4	<5	8
5245	19.4-15.0	4.4	Mod chl altd monzonite w/ 15% (10-30cm) silicified zones w/ 1-3% dissem py	5	<5		0.2	<5	4
5246	15.0-11.1	3.9	As above w/ 10% 1-3 cm QV's	10	<5		0.2	<5	4
5247	11.1-8.0	3.1	Weak pervasive seric & silicn altn w/ occas 10 cm qtz vnlt	10	<5		0.2	<5	4
5248	8.0-4.0		As above w/ 15% 10cm milky white QV's w/ 1-2% dissem py	15	25		0.2	<5	<2
5249	4.0-1.0	3.0	Weakly silicd monzonite w/ mod secondary biotite and 20% 10-20 cm milky white QV's	10	<5		0.2	<5	<2
5250	1.0W- 3.0E	4.0	As above	15	70		0.2	<5	<2
5251	3.0-5.0	2.0	Milky white QV 1-2% py dissem w/ 15% seric altd monzonite fragments	10	10		0.2	<5	<2
5252	5.0-7.0	2.0	As above only 2-3% sericite altd monzonite fragments	10	<5		0.2	<5	<2
5253	7.0-8.8	1.8	As 5251	10	<5		0.2	<5	<2
5254	8.8-14.6	5.8	Pervasive secondary biotite alteration 1-2% 1-2 cm qtz vnlts	25	<5		0.2	<5	<2
5255	14.6-17.9	3.3	As above w/ 35% 1-10 cm QV's	10	15		0.2	<5	<2
5256	17.9-18.8		Strong clay/sericite and limonitic fault zone	10	<5		<0.2	<5	4

Trench 99-05 (Fig.11)

Trench 05 tested a wide panel approximately 40 meters SW of trench #4. It encountered a much thinner quartz vein within a narrower and weaker altered interval indicating the zone is pinching out. Weakly anomalous Au values to 130 ppb are in the 40 cm. quartz vein.

Sample #		Width m's		A pp	u Au 2nd b ppb	Au Ag gm/t ppm	Bi ppm	Pb ppm
5257	rep	rep	10 cm milky white QV w/ sericitic selvages and limon fractures 1-2% pyrite cubes	<5	<5	0.2	<5	<2
5258		1.0	Very recessive fault	<5	<5	<0.2	<5	18

			gouge zone w/ strong clay/limonitic +/- Mn stain occas 1-2cm qtz vnlt					
5259	4.9-7.0	2.1	Strong clay/sericite altered monzonite	<5	<5	<0.2	<5	26
5260	12.0-14.0		QV w/ lim fract and 3-4% 1-2cm py, tr aspy blebs	30	130	0.6	5	32

Trench-99-06 (Fig.12)

This trench tested the southern limits of the main zone on a southerly splay? off the main structure located approximately 60 meters south of trench #5. The trench was focussed on a small blast pit of Berubes filled with a large amount of quartz float. When dug through a 4.7 meter wide moderate sericite altered structure was encountered with only minor quartz veins. There were no signifigant Au values in this trench.

	Interval m's			Au ppb	Au 2nd ppb	Au gm/t	Ag ppm	Bi ppm	Pb ppm
5261	5.8-10.5	4.7	Moderate carbonate sericite altered fault zone	<5	<5			<5	20
5262	rep	rep	Milky white QV w/ limonitic fract	25	<5		0.8	<5	22

Trench -99-07 (Fig.13)

This trench tested the southeast side of the main vein and encountered a parallel NE structure with good alteration and a number of small veins but there was no elevated precious metal values.

	Interval m's	Description	Au ppb	Au 2nd ppb gr	Au Ag n/tppm	Bi ppm	Pb ppm
5274	10.6-13.2	 Moderate carbonate sericite altered fault zone w/ strong ferrocrete	25	<5	<0.2		14
5275	13.2-16.2	 As above w/ 10% milky grey quartz veinlets	<5	5	<0.2	<5	12
5276	Rep	Milky white QV w/ limonitic fract and 2-3% dissem py.	<5	15	<0.2	<5	2

Trench -99-08 (Fig.14)

Trench 08 tested the main zone approximately 40 meters northeast on strike of trench #02 and the trench was split into two sections as much of the zone lies under the main logging road.

This trench encountered the main vein in the hangingwall of the shear zone over a width of approximately 5 meters. Sulphide in the central and footwall portions of the vein returned the highest but erratic gold values again with elevated Ag, Bi, Pb. This shows good continuity on strike of this sulphide rich portion of the vein.

Sample #	Interval m's	Width m's	Description	Au ppb			Ag ppm	Bi ppm	Pb ppm
5277	13.0-15.0	2.0	Milky white massive QV w/ 1-2% dissem py	10	10		<0.2	<5	4
5278	15.0-16.5	1.5	As above	10	5		<0.2	<5	6
5279	16.5-18.5	2.0	QV w/ 20-30% very fine grained sulphides py,po tr aspy strongly oxidized	580	740	1.12	158.0	395	1690
5280	18.5-19.5	1.0	50% qtz vein fragments in strong ferrocrete matrix	135	135		4.2	5	174
5281	19.5-24.0	4.5		20	10		<0.2	<5	14
5282	2.2-4.0	1.8	As above	75	100		0.4	<5	42

Trench-99-09 (Fig.15)

This trench attempted to intersect the main zone structure in a gully in excess of 100 meters NE of trench 08 over the VLF anomaly. This trench was in very deep overburden (better than 5 meters). The structure was filled with sandy outwash indicating structures in this area may commonly be filled and be difficult to locate geochemically. The sampling of this trench was strongly hampered by sloughing of the sides but a 11.0 meter wide sericite altered shear zone was cut. Minor quartz vein material was found in the footwall portion but there were no elevated Au,Ag,Bi or Pb values in this trench.

Sample #	Interval m's			Аи ppb		Ag ppm		Pb ppm
5264	0.0-5.5	5.5	Wk-mod seric and secondary biotite altn in monz	<5	<5	<0.2	<5	8
5265	5.5-9.6	4.1	Moderate sericite/limonite altn w/ hem fracts	<5	<5	<0.2	<5	10
5266	9.6-12.6	3.0	As above	<5	<5	<0.2	<5	8
5267	12.6-16.6	4.0	Strong/intense seric altn w/ 1-3% dissem py and 10% qtz vein chips	<5	<5	 <0.2	<5	12

Trench-99-10 (Fig.16)

Trench #10 was the only trench to test a parallel northeast trending structure to the main zone located 100 meters to the northwest.

Trench #10 was an arbitrary location picked to cover a VLF anomaly. A 12 meter wide strong sericite altered shear zone was uncovered and contains anomalous Au values within the quartz veins. This is a large structure indicated by VLF and quartz float and should have additional testing.

Sample #	Interval m's	Width m's			Au 2nd ppb	antrajarar 🖓 🗸 👻	Bi ppm	
5268	6.2-9.0	2.8	mod seric/clay altd monzonite limonitic 1-2% py	5	<5	<0.2	<5	10
5269	9.0-10.7	1.7	Intense sericite/limonite altn w/ 3-4% pyrite	<5	<5	<0.2	<5	12
5270	20 cm	20 cm	20 cm milky QV multiphase w/ 1% vfgr sulphides	5	10	<0.2	<5	16
5271	13.3-15.7	2.4	Strong sericite altn. 2-3% dissem py, 5% 1cm qtz vnlts	5	5	<0.2	<5	12
5272	17.1-18.1	1.0	As above w/ 20% 3-10 cm milky QV's	110	70	1.0	<5	72
5273	Rep	Rep	Rep of QV's mixed in sample #72	175	<180	3.2	<5	182

Trench-99-11 (Fig.17)

Trench 11 tested the main structure an additional 50 meters NE of trench 09 again across a blind VLF anomaly in an overburden covered area. The trench encountered a 4.3 meter wide altered shear zone that is likely the main zone with a number of small quartz veins, there are no significant Au values.

Sample #				Аи ppb	Au 2nd Au ppb gm/			
5283	28.6-30.0	2.8	mod seric/clay altd monzonite limonitic 1-2% py	<5	<5	<0.2	<5	8
5284	30.0-32.0	2.0	Intense sericite/limonite altn w/ 1-3% pyrite	<5	<5	<0.2	<5	8
5285	32.0-35.0	3.0	As above	<5	15	<0.2	<5	14
5286	Rep	rep	Rep of 30 cm QV pale green milky color tr py	<5	10	<0.2	<5	8

Trench 99-12 (Fig.18)

This trench opened up Berube's "fluorite vent" zone located 100 meters north of trench 09 and is on a north-south structure separate from the main zone. No significant gold values are in this zone as could be expected with the presence of fluorite but it does demonstrate that the system does persist in structures outside of the two main NE structures.

Sample #	Interval m's		Description		Au 2nd ppb			
5287	Rep	rep	Rep of 25cm qtz vein w/ minor fluorite & limonitic fractures	5	10	<0.2	<5	<2
5288	0.6	0.6	Mod-strong sericite/limonite altn w/ 1% pyrite	<5	<5	<0.2	<5	12

Trench 99-13 (Fig.19)

Trench 13 was the last of the program and uncovered a 35-40cm north trending quartz vein offset by later northeast trending faults. This is located 40 meters southeast of trench 09 and has no anomalous Au values but has highly elevated Bi values. This appears to be a very narrow structure with virtually no sericite alteration present.

	Interval m's		Au ppb	Au 2nd Au ppb gm/t	Ag ppm	Bi ppm	Pb ppm
5289	Rep	Rep of 35cm milky qtz vein w/ limonitic fractures , 2-3% pyrite clots	<5	<5	<0.2	20	16
5290	0.4	40 cm wide vuggy milky QV w/ grey lams, quite limonitic	<5	10	1.0	555	68

6.0 - Diamond Drilling (Fig.5, 20-25)

Seven holes for a total of 836 meters of NQ core were drilled by Frontier drilling of Kamloops between Oct. 13-25th, 1999. The drilling tested only the core area for continuity of the main vein area see fig.5 for layout.

Hole #	Line	Station	Elevation	Azimuth	Dip	Length
CG-99-01	12+00N	9+50E	1120 m's	120	-45	118.0 m's
CG-99-02	12+00N	9+15E	1122 m's	120	-55	152.4 m's
CG-99-03	11+55N	9+40E	1120 m's	120	-45	103.9 m's
CG-99-04	12+50N	9+45E	1122 m's	120	-55	130.1 m's
CG-99-05	10+95N	9+55E	1123 m's	120	-60	116.1 m's
CG-99-06	10+45N	9+20E	1123 m's	120	-70	109.7 m's
CG-99-07	13+00N	9+50E	1113 m's	120	-60	105.8 m's

The details of each hole are briefly discussed below (see appendix 6 for drill logs).

CG-99-01 (Fig.20)

This hole tested below trench 01 and encountered the main vein (in total a 10.7 meter interval) and its altered structure (in total a 33 meter interval). This intersection suggests a 60 degree dip to the NW for the large structure containing the main vein. The main vein is split into two sections with the sulphide rich upper portion of the vein containing a 1.0 meter section grading 9.57 g/t Au, 128.4 g/t Ag and 160 ppm Bi, 1896 ppm Pb. Moderate to strong sericite alteration envelopes this zone and minor quartz pegmatite veins were noted. These veins were noted in holes 1 & 2 with sericitic envelopes and a close spatial relationship to the veins and suggest these are probably the intrusive source of the volatile rich vein systems and mineralization. Sericitic alteration with up to 15% disseminated sulphides and laminated chalcedonic veinlets have Au values to 150 ppb peripheral to the main vein suggesting this is part of a larger system. A smaller structure located 25-30 meters up dip was encountered in both holes 1&2 and has similar alteration and mineralization to the main zone.

CG-99-02 (Fig.20)

چ.

This hole tested directly downdip of hole #1 and suggests a widening of the main structure to approx. 40 meters width and a flattening of the dip to --45 degrees. At the same time the veins have become narrower and develop a sheeted vein appearance rather than a discrete main vein. Several sections of anomalous Au (+100 ppb) were encountered in both veins and sericite clay alteration but only one 1.0 meter interval had strongly anomalous Au with a value of 1.44 g/t Au, 4.4 g/t Ag, 15 ppm Bi, 124 ppm Pb. The impression from holes 1&2 is that there is a strong structural control that focuses the main vein at a throttle point?

Related to a roll or fault intersection in the main shear zone. This thick portion of the main vein typically with higher sulphides, Au grades and multiple silicified events probably has a rake to it and as a preliminary guess would be to the SW.

CG-99-03 (Fig.21)

This hole tested directly downdip of Berube trench #2 on the thickest portion of the vein. The hole intersected a impressive looking 7.3 meter interval of the main vein within a 27.9 meter interval of altered shear zone. The main vein contained complex vein breccia textures with up to 10% diseminated sulphides and generally 20-25% sericite altered monzonite slivers. This section had disappointing results with only 305 ppb Au over 5.9 meters. The highest value was 1.1 meters grading 0.685 g/t Au, 8.6 g/t Ag, 25 ppm Bi and 376 ppm Pb. This is another example of promising sulphide rich quartz breccias with elevated Ag, Bi and Pb +/- As,Cu, Zn but very erratic gold values. Several areas in sericite altered monzonite with quartz veinlets were anomalous in Au up to 120 ppb. Peripheral sulphide banded veins have gold values up to 0.735 g/t Au over 0.2 m's as well. A number of distal veins outside the main shear zone contain distal green and purple fluorite but are not anomalous in gold.

CG-99-04 (Fig.22)

Hole 4 encountered a 2.7 meter vein within the 20.2 meter wide altered shear zone. The vein is a milky white single phase vein with only 1-2% disseminated pyrite. Values in the vein were generally low with a maximum of 150 ppb over 1.3 meters in the vein and 60 ppb Au in the alteration.

CG-99-05 (Fig.23)

This hole is difficult to reconcile as either the shear zone dips substantially steeper ie. 80 degrees NW and/or faults offset portions of this section subparalell to the drill in the plane of the section. Regardless a 4.0 meter interval of vuggy sulphide rich quartz veins was encountered with numerous sericite altered monzonite slivers. This is within a 11.5 meter wide sericite altered shear zone. The only significant value is a 1.2 meter interval of sulphide rich veins that averaged 0.88 g/t Au, 2.0 g/t and 634 ppm Pb.

CG-99-06 (Fig.24)

Hole #6 is the most southwestern hole of the program and encountered only diffuse sheeted veins and two sections of sericite alteration in shear zones. Some veins were banded sulphide rich veins but most were simple milky white veins and the presence of fluorite in a number of veins suggests the veins are generally distal. No significant gold values were encountered in this hole.

CG-99-07 (Fig.25)

The last hole of the drilling was the northeastermost drill hole and encountered the shear zone over a narrow 4.5 meter interval. At the base of the shear zone 1.5 meter interval of strongly faulted quartz vein breccia is present. Only 40% quartz breccia fragments are present in a strong late stage clay/hematite altered fault. There is an unknown amount of fault offset of the zone in this hole and there were no significant gold values in the hole.

6.0-CONCLUSIONS & RECOMMENDATIONS

This program focussed on the main showing area and has outlined a number of quartz veins within several faults and shear zones hosted within a megacrystic monzonite phase of the cretaceous Baldy Batholth with strong clay sericite alteration. The system appears related to volatile rich pegmatite dykes chemically similar to the host rocks but quite late in the intrusive event. Multiphases in the intrusive and crosscutting events indicate complex intrusive events promising for intrusive gold systems on the property. Alteration and mineralization is present within the intrusive within northeast, north and easterly trending structures to date. There is also evidence of mineralization outboard of the intrusive in surrounding metamorphic rocks in several styles including stockwork veining, sulphide bearing veins, pyroxene skarns and sulphide replacements in carbonates.

Within the grid area the highest gold values (ie. 9.26 g/t Au over 2.0 meters) are within complex vein breccias and sulphide rich quartz veins portions of large quartz veins attaining widths in excess of 10 meters true width. Gold has proven to be very erratic in areas tested to date but generally has a good correlation with Bi, Pb, and Ag and a weaker correlation with As, Cu, Zn, Te, and W. Complex poorly understood structures control individual quatz veins within the main structure will require further definition. Anomalous gold values occur in widespread diverse alteration styles including (sericite, kaolinite, secondary biotite, orthoclase and chlorite?) and multiple stages of veining indicate a high potential for economic intrusive related gold systems on the property.

Future work should be two pronged to test the unknown potential on the bulk of the property and to resolve smaller details on mineralization in the grid area. The additional detailed work on the grid area is required both to test the potential in the immediate area but also to aid ongoing work on the balance of the property. VLF and potentially magnetics as well as boulder train sampling are effective tools for outlining zones of mineralization on the property.

Work on grid area:

~

1/Additional mapping and sampling of isolated exposures to define the larger metal zoning patterns in this area and better define trench targets.

2/1000 lineal meters of trenching on existing and additional targets generated. Priority targets at present time include both strike extensions of the main zone and the secondary VLF anomaly. Trenching should be tightly spaced to resolve the small scale complex structures.

3/1000 meters of diamond drilling on priority targets generated. At the present time the most obvious target is testing the potential SW rake to the thickest, highest grade portion in the center of the main zone.

Work on balance of the property:

1/ Prospecting, mapping, float and rock sampling and in many cases basal till sampling and stream sediment collection over a bulk of the property. This would allow a definition of the areal extent of the gold system. A combination of using quartz float trains and the airphoto lineaments would focus this work as it is very difficult working much of the property with the extensive till sheets. Definition of structures in areas of till is aided by VLF and magnetic surveys as well as boulder train sampling.

2/ Followup trenching 1500 lineal meters on priority targets generated by the prospecting program.

Work & Area	Details	Estimated Cost
Grid Area	This would require an additional 15 man	\$10,000
Mapping/Sampling	days and approx. 120 rock samples	
Grid Area	1000 lineal meters of trenching- two	\$30,000
Trenching	weeks and collection of 200 rock	
_	samples (Geologist, sampler).	
Grid Area	1000 m's of NQ ddh, 2 weeks geologist,	\$80,000
Diamond Drilling	splitter, 200 core samples.	
Property Scale	To adequately test majority of	\$35,000
Mapping	lineaments in a cursory manner would	
	require a geologist and prospector 6-	
	weeks and collection of 500 samples of	
	various media.	
Property Scale	1500 lineal m's of trenching with	\$45,000
Trenching	moving times to various locations -three	
-	weeks and collection of 300 rock	
	samples (Geologist, sampler).	
Total Estimated		\$200,000
Cost		

Stage 2 work proposal:

7-REFERENCES

-

- 1. Bobrowsky P.T. et al.(1997): Till Geochemistry of the Adams Lake Plateau-North Barriere Lake Area (82M/4 and 5).O.F. 1997-9
- 2. Cathro, M.S.(1998):Exploration and Development Highlights in South-Central British Columbia-1997 B.C. MEM pp. 33-41.
- 3. Schiaizza, P and Preto, V.A. (1987): Geology of the Adams Plateau-Clearwater-Vavenby area; MEMPR, Paper 1987-2.

APPENDIX 1

22

-

ROCK DESCRIPTION TABLE

PROPERTY ROCK SAMPLES

Sample #	Width			Au 2nd		4 <i>g</i>		
	m's		ppb	ppb				ррт
5156	Grab	Ang milky white QV float w/ limonitic fract	15		<0).2	<5	<2
5157	Grab	Vuggy limonitic milky QV float	15		<0	.2	<5	<2
5158	Grab	Mod seric altd monz w/ milky qtz vnlts and chalcedonic vns	5		<0).2	<5	<2
5164	Grab	1m X 1m milky QV boulder w/ limonitio fract	5		<0).2	<5	8
5159	chip	0.5-1.0 QV's in amphibolite w/ hem stain	10		<0	.2	<5	8
5160		60% aplite subcrop w/ 1-2% qtz vnlt and tr-1% dissem py	15		<0	.2	<5	10
5161	-	Milky white QV's 5-10cm // foliation within musc schists	10		<0).2	<5	10
5162	Grab	70 cm milky QV w/ 5% po blebs // foliation	10		<0).2	<5	<2
5163	Grab	As above	10		<0).2	<5	<2
CMCG01		Vuggy milky QV w/ tr-1% py within musc. Schists	10		<0	.2	<5	20
CMCG02		3X3 m rubble area w/ milky QV's 2-5% py,po blebs	5		<0	.2	<5	<2
CMCG03	Grab	Mass po replacement to 10cm thick in marble and musc schist	10		2.0	2	10	2882
CMCG04	Grab	1m wide milky QV float lim fract	<5		<0	.2	<5	22
CMCG05	Grab	1-2m wide milky QV w/ 3-5% po blebs in place xcut musc schist	<5		<0	.2	<5	10
CMCG06	Grab	Milky QV's float 0.5 m diameter		<5	<0	.2	<2	<2
CMCG07	Grab	Milky QV subcrop 0.5+m dia		<5	<0	.2	<2	<2
CMCG08	Grab	As above		<5	<0	.2	<2	6
CMCG09		As above		<5	<0	.2	<2	<2
CMCG10	Grab	Mucovite schists 10 meters w/ 3-5% dissem py		<5	<0	.2	<2	6
CMCG11	Grab	30 cm milky QV float		<5	<0	.2	<2	<2
CMCG12	Grab	20 cm milky QV w/ limon fract // foln in musc schist		<5	<0	.2	<2	<2
CMCG13	Grab	10 cm wide QV w/ 10% po blebs		<5	<0	.2	<2	<2
CMCG14	Grab	Bio Schist w/ 5% dissem py,po		<5	<0	.2	<2	2
CMCG15		As above w/ 15% py,po blebs	NR					
CMCG16		QV's to cm in aplite dykes	NR					

GRID AREA ROCK SAMPLES

Sample	Width	Description	Au	Au 2nd	Au	Ag	Bi	Pb
#	i m's		: ppb	ppb	gm/t	ррт	ррт	ррт
5202	Grab	20 cm QV w/ 20-25% vfgr py,po w/ white oxide on fract	10	<5		2.4	5	34
5203	Grab	Mod. Sericite altd monzonite w/ limonitic fract.	30	5		<0.2	<5	10
5204	Grab	Rep of QV material in pit vuggy milky white w/ 5% fgr py,po, aspy blebs & dissem	25	130		0.4	140	<2
5205	Grab	Rep of limonitic mod sericitic QMonz	20	25		<0.2	10	4
5206	Grab	Milky white QV in float from blast strong lim. 1-3% dissem py	60	75		0.4	<5	4
5207	Grab	Vuggy milky QV rep of several pieces	510	725		3.8	<5	112
5208		Milky white QV w/ lim fract	15	<5		<0.2	<5	<2
5291	Grab	Rep of heavy sulphide QV from Berube trench #1 white qv frags in py matrix w/ tr sp,cpy	85	155		37.2	145	854
5292	Grab	Rep of blast material from main vein"blue" quartz breccia w/ vfgr grey sulphides in matrix	165	235		12.0	<5	74
CM-01	Grab	QV float milky white 1% dissem py	70			1.6	5	74
CM-02	Grab	As above	<5			<0.2	<5	<2
CM-03	Grab	As above	<5			0.8	<5	28
CM-04	Grab	Qtz veinlet stockwork 10% vnlts w/ 1% py in bio/musc schists	200			0.4	<5	<2
CM-05	Grab	As above	<5			<0.2	10	4
CM-06	Grab	As above	<5			<0.2	10	4
CM-07	Grab	Vuggy QV's w/ 3-4% vfgr py blebs	<5			0.2	90	10
80-MC		As above	<5			1.6	135	48
CM-09		Mod sericite altd monzonite w/ 5% 1cm qtz stockwork 1-3% dissem py	35			0.2	<5	4
CM-10	Grab	As above	<5			<0.2	<5	14

APPENDIX 2

CERTIFICATES OF ANALYSIS - ROCKS

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-552

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GRAEME EVANS

No. of samples received:56 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

		Au	Äu	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
19	05220	11.17	0.326	66.2	1.93	
31	05232	-	-	37.6	1.10	
36	05237	1.05	0.031	-	-	

QC DATA:

Repeat:

19 05220

13.95

0.407

63.1

TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1.84

XLS/99Teck fax: @ 372-1285

Page 1

19-Oct-99

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

23.12

CERTIFICATE OF ASSAY AK 99-605

TECK EXPLORATION LTD. #350-272 VICTORIA STREET **KAMLOOPS, B.C.** V2C 2A2

ATTENTION: GRAEME EVANS

No. of samples received: 46 Sample Type: Core PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	<u>(g/t)</u>	<u>(oz/t)</u>
8	15058	4.81	0.140	128.4	3.75
31	15085	1.44	0.042	-	-

QC DATA:

STD-M

Repeat: 8	15058	7.44	0.217	-
Standard:				•

1.35

0.039

CO-TECH LABORATORIES LTD. ank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer**

XLS/99

27-Oct-99

1

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-552

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GRAEME EVANS

No. of samples received:56 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

	Metallic Assay		
		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
6	05207	0.68	0.020
11	05212	0.42	0.012
12	05213	0.45	0.013
19	05220	11.4	0.332
20	05221	1.09	0.032
24	05225	0.56	0.016
26	05227	0.62	0.018
36	05237	0.95	0.028

QC DATA:

Standard: STD-M

.

1.24 0.036

XLS/99Teck fax: @ 372-1285

ECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

28-Oct-99

28-Oct-99

Ť.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-557

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GRAEME EVANS

No. of samples received: 35 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: 2 Samples submitted by: G. Evans

			Metalli	Metallic Assay		
. E1	ſ # .	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)
2	2	05279	1.12	0.033	158.0	4.61
3	4	05291	-	-	37.2	1.09

QC DATA:

Standard:				
STD-M	1.24	0.036	-	-
Mpla	-	-	70.0	2.04

E O-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ASSAY AK 99-259M

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GREG THOMSON

No. of samples received: 7 Sample Type: Sand PROJECT #: 176700 SHIPMENT #: None Given Sample submitted by: G. Thomson

·				Metall	ic Assay	
		Weights	s(g)	Au	Au	
ET #.	Tag #	-140	+140	(g/t)	(oz/t)	
4	C.G. 04	13.259	0.268	0.02	0.001	
6	C.G. 06	65.511	0.413	0.01	0.001	

NOTE: -80 fraction pulverized then screened to -140 and analyzed as metallic Au.

TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/99Teck fax: @ 372-1285 4-Nov-99

	16-Jun-99																								
ECO-TECH 10041 Eas KAMLOOF V2C 6T4	st Trans Ca								i	CP CEI	RTIFICATE	OF ANALYSIS	AK 99-'	122				# 	FECK E #350-27 KAMLO /2C 2A3	2 VICT OPS, I	TORIA		т		
Phone: 250 Fax : 250	0-573-4557	7																	ATTENT No. of si Sample PROJE(SHIPME	amples Type: CT #: f	s receiv Rock Vane Gi None G	ed: 3 iven / Siven	767	100	
	•	ss otherwis																:	Sample	submi	tied by:	J. Marl	ow		
<u>Et #.</u>	Tag # CM9901	Au(ppb) 70		AI %	As 10	Ba 15	Bi Ca %	Cd <1	<u>Co</u> 2	Cr 215	Cu Fe %			Mo Na %	NI	P	Pb	Sb	Sn		Ti %	U	V	<u>w</u>	
	CM9902	<5	<0.2		<5	10	<5 <0.01	<1	1	151	10 0.7			8 <0.01 3 0.02	5	<10 70	74 <2	<5 <5	<20 <20		<0.01 <0.01	<10 <10	<1 <1	<10 <10	
3	CM9903	<5	0.8	0.07	<5	15	<5 0.30	<1	4	205	25 1.2			7 <0.01	7	40	28	<5	<20		<0.01	<10	2	<10	
<u>QC DATA:</u> Resplit:	CM9901	85	1.8	0.03	10	10	5 <0.01	<1	1	195	7 0.7	9 <10 <0.0	129	6 <0.01	6	10	68	<5	<20	<1	<0.01	<10	<1	<10	
R/S 1 Repeat:	CM9901	80	1.6	0.03	10	10	5 <0.01	<1	2	219	8 0.8	4 <10 <0.0	140	8 <0.01	8	10	68	<5	<20	<1	<0.01	<10	<1	<10	

df/120 XLS/99Teck fax: 372-1285

1

1 . .

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 26-Jul-99

ł

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-259

(-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1) , (-1)

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

4

;

ATTENTION: GREG THOMSON

No. of samples received: 7 Sample Type: Sand PROJECT #: 178700 SHIPMENT #: None Given Sample submitted by: G. Thomson

Values in ppm unless otherwise reported Weights(g)

<u>Et #.</u>	Tag #	-80 +80	Au(ppb)	Ag	AI %	As	Ba	Bia%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЪ	Sb	Sn	Sr	П%	U	v	w	Y	Zn
1	C.G. 01	280 2399	<5	<0.2	0.90	<5	85	<5 0.51	<1	8	13	14	1.95	10	0.41	276	<1	0.02	7	660	4	10	<20	48	0.06	<10	36	<10	13	25
R1	C.G. 01		<5	-	-		•	• •		•	-	-	-	-	-	-	-	-			-				-					-
2	C.G. 02	109 1654	25	<0.2	0.40	<5	50	<5 7.91	<1	3	4	9	0.95	10	0.16	243	<1	0.01	3	500	<2	5	<20	312	0.02	<10	14	<10	48	13
3	C.G. 03	121 2559	<5	<0.2	0.76	<5	75	<5 0.43	<1	8	14	14	2.21	10	0.44	281	<1	0.01	-				<20							
4	C.G. 04	46 1193	95	<0.2	1.02	<5	90	5 0.47	<1	8	8	15	2.92	40	0.36	743	1	0.01	7	890	8	<5	<20	53	0.04	<10	37	<10	76	73
5	C.G. 05	227 1473	5	<0.2	1.61	<5	100	<5 0.51	<1	17	58	25	2.89	20	1.19	536	<1	0.01	43	830	16	-	<20			<10				
R5	C.G. 05		5	-	•	-	-			-		-	-	-	_	-	-	-		-										
6	C.G. 06	99 1470	5	<0.2	1.07	<5	110	<5 0.56	<1	15	39	19	2.80	10	0.72	320	<1	0.01	24	1730	6	<5	<20	27	0.08	<10	45	<10	14	32
7	C.G. 07	121 1694	5	<0.2	1.11	<5	100	<5 0.32	<1	11	10	25	2.40		0.70		<1			640	6	-	<20			<10				

OC DATA:		

Repeat: 1 C.G. 01	<5	<0.2	0.86	<5	80	<5 0.50	<1	8	12	13	1.95	10	0.40	272	<1	0.02	6	710	6	<5	<20	44	0.06	<10	36	<10	13	25
<i>Standard:</i> GEO'99	120	1.0	1.70	65	145	<5 1.84	<1	18	66	86	3.86	<10	0.98	661	<1	0.02	23	720	16	<5	<20	55	0.10	<10	73	<10	8	68

ECO-TECH LABORATORIES LTD. per Erank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/241 XLS/99Teck fax: 372-1285

 Row Contractor and		 * ,2		a thank is will be a suggest of the strength the set of the second second second second second second second s	an an tain an t	

18-Jun-99

1

· . .

1

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-131

Ļ

i .

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

1

ì

1

1

ATTENTION: RANDY FARMER

No. of samples received: 8 Sample Type: Rock PROJECT #: None Given /7/67,00 SHIPMENT #: None Given Sample submitted by: C. Marlow

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Π%	U	V	w	Y	Zn
1	CM9904	200	0.4	0.24	<5	70	<5	3.61	<1	2	65	19	1.51	<10	0.09	2501	10	0.01	4	410	<2	<5	<20		<0.01	<10	1	<10	12	12
2	CM9906	<5	<0.2	1.56	<5	240	10	0.10	<1	13	175	5	3.24	20	0.89	361	3	0.04	18	230	4	<5	<20	1	0.21	<10	47	<10	20	42
3	CM9907	<5	0.2	0.14	<5	25	90	0.01	<1	2	233	20	2.28	<10	<0.01	116	16	<0.01	5	110	10	<5	<20	<1	<0.01	<10	2	<10	<1	2
4	CM9908	<5	1.6	0.22	20	35	135	0.04	<1	13	127	54	5.99	<10	<0.01	594	8	0.01	4	660	48	<5	<20	<1	<0.01	<10	3	40	<1	14
5	CM9909	35	0.2	1.23	<5	115	<5	1.38	<1	1	101	6	0.78	<10	0.05	151	1	0.10	4	180	4	<5	<20	33	<0.01	<10	10	<10	34	18
6	CM9910	<5	<0.2	0.27	<5	20	5	0.14	<1	3	65	4	1.31	10	0.02	200	1	0.02	2	320	6	<5	<20	6	<0.01	<10	6	<10	3	33
7	CM9911	<5	0.4	0.19	<5	10	<5	0.07	<1	2	118	16	0.69	<10	0.02	161	<1	0.04	5	10	6	<5	<20	4	< 0.01	20	<1	<10	4	7
8	CM9912	<5	<0.2	2.13	<5	155	<5	0.15	<1	16	216	149	4.91	<10	1.72	401	3	0.05	48	440	14	<5	<20	3	0.15	20	74	<10	<1	162
QC DAT	A :																													

R/S 1	CM9904	155	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	•		-	-	-			
Repeat: 1	CM9904	260	0.6	0.23	<5	70	5	3.60	<1	2	65	18	1.50	<10	0.09	2478	5	0.01	3	400	2	<5	<20	231	<0.01	<10	2	<10	12	11
Standard GEO'99	1 :	130	1.2	1.72	65	145	<5	1.77	<1	18	59	79	3.89	<10	0.98	659	<1	0.03	22	680	18	5	<20	56	0.12	<10	76	<10	9	68

df/131 XLS/99Teck fax: 372-1285

Deenlit

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 26-Jul-99

;

Charles and the second second

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-259

an a sea a second a second a second a second de la second d

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

;

ATTENTION: GREG THOMSON

1

1

į.

ł

No. of samples received: 7 Sample Type: Sand PROJECT #: 176700 SHIPMENT #: None Given Sample submitted by: G. Thomson

Values in ppm unless otherwise reported Weights(g)

Et #.	Tag #	-80 +80	Au(ppb)	Ag	AI %	As	Ba	Bia%	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	C.G. 01	280 2399	<5	<0.2	0.90	<5	85	<5 0.51	<1	8	13	14	1.95	10	0.41	276	<1	0.02	7		4		<20					the state of the s	the second second	
R1	C.G. 01			-		-	-			-	-	-	-	-	· -	-	-		-		-				0.00	- 10	-	-10	13	25
2	C.G. 02	109 1654	25	<0.2	0.40	<5	50	<5 7.91	<1	3	4	9	0.95	10	0.16	243	<1	0.01	3	500	<2	5	<20	312	0.02	<10	14	<10	46	13
3	C.G. 03	121 2559	<5	<0.2	0.76	<5	75	<5 0.43	<1	8	14	14	2.21								4	<5	<20	27	0.06	<10	41	<10	14	24
4	C.G. 04	46 1193	95	<0.2	1.02	<5	90	5 0.47	<1	8	8	15	2.92	40	0.36	743	1	0.01	7	890	8	<5	<20	53	0.04	<10	37	<10	76	73
		227 1473	5	<0.2	1.61	<5	100	<5 0.51	<1	17	58	25	2.89	20	1.19	536	<1	0.01	43	830	16	10	<20	53	0.08	<10	45	<10	28	88
R5	C.G. 05		5	-	-	-	•		•	•	-	-	•	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6		99 1470	-					<5 0.56							0.72						6	<5	<20	27	0.08	<10	45	<10	14	32
7	C.G. 07	121 1694	5	<0.2	1.11	<5	100	<5 0.32	<1	11	10	25	2.40	10	0.70	502	<1	0.02	3	640	6	<5	<20	15	0.06	<10	41	<10	11	29

QC DATA:

.

· . .

Repeat: 1 C.G. 01	<5	<0.2	0.86	<5	80	<5 0.50	<1	8	12	13	1.95	10	0.40	272	<1	0.02	6	710	6	<5	<20	44	0.06	<10	36	<10	13	25
<i>Standard:</i> GEO'99	120	1.0	1.70	65	145	<5 1.84	<1	18	66	86	3.86	<10	0. 98	661	<1	0.02	23	720	16	<5	<20	55	0.10	<10	73	<10	8	68

ÉCO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/241 XLS/99Teck fax: 372-1285 19-Oct-99

1

1

1. - -

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-552

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

-i

ATTENTION: GRAEME EVANS

No. of samples received: 56 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

Values in ppm unless otherwise reported

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	v	w	Y	Zn
1	05202	10	2.4	0.16	<5	110	<5	0.08	<1	58	55	833	>10	<10 <0.01	636	24 < 0.01	25	<10	34	<5	<20	7 <0.01	1020	14	<10	<1	17
2	05203	30	<0.2	0.68	<5	55	<5	0.22	<1	3	87	12	2.63	20 0.14	145	4 0.02	3	460	10	<5	<20	30 < 0.01	<10	19	<10	18	48
3	05204	25	0.4	0.04	<5	50	140	0.02	<1	51	122	288	>10	<10 <0.01	64	13 < 0.01	4	<10	<2	<5	<20	<1 <0.01	20	2	<10	<1	11
4	05205	20	<0.2	0.49	<5	55	10	0.13	<1	4	91	53	3.35	<10 0.07	124	5 0.02	2	360	4	<5	<20	10 < 0.01	<10	13	<10	3	16
5	05206	60	0.4	0.08	<5	20	<5	0.04	<1	2	148	29	0.80	<10 <0.01	72	4 <0.01	4	30	4	<5	<20	4 <0.01	<10	2	<10	3	42
6	05207	510	3.8	0.10	65	30	<5	0.01	<1	2	188	8	1.06	<10 <0.01	103	6 0.01	5	40	112	<5	<20	2 < 0.01	<10	4	<10	<1	
7	05208	15	<0.2	0.01	<5	5	<5	0.38	<1	<1	146	2	0.25	<10 < 0.01	227	3 < 0.01	2	<10	<2	<5	<20	18 < 0.01	<10	<1	<10	-1	4
8	05209	15	1.6	0.62	5	75	5	0.44	<1	7	119	28	1.86	10 0.17	963	4 0.02	õ	540	12	<5	<20	35 0.02	<10	13	<10	22	<1 63
9	05210	30	0.6	0.19	<5	30	<5	0.07	<1	5	136	23	0.95	<10 <0.01	797	3 < 0.01	4	20	6	<5	<20	7 < 0.01	<10	2	<10	15	46
10	05211	20	0.2	0.43	<5	60	<5	0.19	<1	7	104	21	2.21	20 0.05	1121	4 0.02	3	480	6	<5	<20	15 <0.01	<10	13	<10	19	99
11	05212	535	1.6	0.09	65	35	15	0.02	<1	6	143	32	2.59	<10 <0.01	94	6 <0.01	3	20	82	<5	<20	4 < 0.01	<10	2	<10	<1	33
12	05213	535	3.0	0.13	30	35	45	0.03	<1	18	155	78	5.69	<10 <0.01	140	10 < 0.01	5	10	50	<5	<20	4 < 0.01	<10	3	<10	<1	24
13	05214	70	11.0	0.05	<5	30	60	0.01	<1	26	131	146	5.33	<10 <0.01	164	8 < 0.01	4	<10	258	<5	<20	1 < 0.01	<10	1	<10	<1	53
14	05215	25	<0.2	0.06	<5	15	<5	0.01	<1	1	190	6	0.72	<10 <0.01	66	6 < 0.01	5	30	<2	<5	<20	<1 <0.01	<10	1	< 10	<1	4
15	05216	10	0.2	0.23	<5	40	<5	0.22	<1	2	117	8	1.26	10 0.04	196	4 0.01	3	330	12	<5	<20	17 <0.01	<10	5	<10	13	33
16	05217	20	<0.2	0.18	5	45	<5	0.14	<1	2	164	6	0.86	20 < 0.01	320	5 0.02	4	240	4	<5	<20	11 <0.01	<10	3	<10	12	11
17	05218	25	<0.2	0.04	5	10	<5	0.01	<1	1	143	5	0.46	<10 <0.01	65	3 < 0.01	3	10	<2	<5	<20	<1 <0.01	<10	1	<10	2	2
18	05219	15	<0.2	0.27	5	45	<5	0.20	<1	3	104	7	0.97	10 0.04	396	3 0.02	3	270	6	<5	<20	18 < 0.01	<10	5	<10	11	21
19	05220	>1000	>30	0.30	<5	55	745	0.15	4	52	69	444	8.94	<10 0.05	327	12 < 0.01	6	220	1372	<5	<20	9 < 0.01	<10	6	<10	<1	578
20	05221	850	11.2	0.04	15	20	20	<0.01	<1	3	201	28	1.89	<10 <0.01	62	9 <0.01	5	30	164	<5	<20	2 < 0.01	<10	2	<10	<1	29
21	05222	115	3.2	0.04	135	20	20	<0.01	<1	1	157	18	1.73	<10 <0.01	51	7 <0.01	2	30	24	<5	<20	<1 <0.01	<10	1	<10	<1	6
22	05223	15	<0.2	0.01	<5	5	<5	<0.01	<1	<1	132	3	0.27	<10 <0.01	37	3 < 0.01	2	<10	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	1
23	05224	60	0.6	0.43	<5	65	<5	0.24	<1	9	87	29	2.59	30 0.02	1034	4 0.01	5	510	20	<5	<20	19 <0.01	<10	15	<10	31	64
24	05225	720	21.0	0.15	190	45	40	0.03	<1	34	149	320	8.89	<10 <0.01	131	15 < 0.01	4	<10	358	<5	<20	2 < 0.01	<10	3	<10	<1	62
25	05226	95	0.4	0.11	5	15	<5	0.03	<1	6	154	13	1.09	<10 <0.01	82	5 < 0.01	4	10	14	<5	<20	4 <0.01	<10	2	<10	5	10

Page 1

TECK EX	PLORATI	ON LTD.								1	CP CE	RTIFIC	ATE O	FANALYSIS	AK 99	-552							ECO	TECH	LABO	RAT	ORIES	LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BiC	Ca %	Cd	Co	Cr	Сц	Fe %	La Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr Ti 🤋	6	J	v	w	Y	Zn
26	05227	515	3.6	0.09	55	25	5	0.01	<1	6	141	8	1.71	<10 <0.01	74	5	<0.01	3	<10	114	<5	<20	3 < 0.0	1 <1	0	1	<10	<1	7
27	05228	25	<0.2	0.59	<5	65	<5	0.22	<1	5	113	11	1.88	20 0.15	i 841	4	0.03	3	450	10	<5	<20	24 < 0.0	1 <1	0 1	6	<10	31	47
28	05229	25	<0.2	0.58	<5	60	<5	0.23	<1	5	89	12	1.96	30 0.14	918	3	0.02	4	470	8	<5	<20	21 <0.0	1 <1	0 1	8	<10	42	66
29	05230	35	3.0	0.06	<5	20	<5	0.01	<1	5	171	123	1.81	<10 <0.01	72	7	<0.01	4	10	42	<5	<20	2 < 0.0	1 <1	0	2	<10	<1	5
30	05231	15	<0.2	80.0	<5	30	<5 <	<0.01	<1	<1	184	8	0.67	<10 <0.01	43	6	<0.01	4	30	4	<5	<20	3 <0.0	1 <1	0	2	<10	<1	4
31	05232	75	>30	0.03	30	5	65 <	<0.01	<1	1	145	20	1.54	<10 <0.0*	37	9	<0.01	3	30	100	<5	<20	<1 <0.0	1 <1	0	1	<10	<1	7
32	05233	30	4.2	0.02	10	10	20 <	<0.01	<1	2	207	18	0.99	10 < 0.01	42	9	<0.01	5	<10	18	<5	<20	<1 <0.0			1	<10	<1	24
33	05234	210	1.2	0.02	10	15	5	0.01	<1	5	155	47	1.87	<10 <0.0	49	6	<0.01	4	<10	20	<5	<20	<1 <0.0			:1	<10	<1	11
34	05235	35	2.0	0.02	25	20	<5 <	<0.01	<1	11	172	118	3.85	<10 <0.0	48	8	<0.01	6	<10	50	<5	<20	<1 <0.0		-	:1	<10	<1	5
35	05236	10	0.2	0.05	<5	15	<5 <	<0.01	<1	<1	151	6	0.38	<10 <0.0	29		<0.01	3	<10	<2	<5	<20	<1 <0.0		-	:1	<10	<1	<1
36	05237	>1000	11.0	0.03	120	20	20 -	<0.01	<1	3	178	8	1.51	<10 <0.0	53	7	<0.01	4	20	286	<5	<20	2 < 0.0	1 <1	0 4	:1	<10	<1	3
37	05238	15	0.4	0.02	5	10	<5 <	<0.01	<1	<1	132	3	0.29	<10 <0.0	41	з	<0.01	3	<10	16	<5	<20	<1 <0.0	1 <1	0 4	-1	<10	<1	<1
38	05239	10	<0.2	0.35	<5	40	<5	0.18	<1	5	64	17	2.11	20 0.03	3 593	3	0.01	3	410	8	<5	<20	12 <0 0	1 <1	0 .	2	<10	36	47
39	05240	5	<0.2	0.53	<5	45	<5	0.31	<1	5	104	8	2.11	30 0.13	2 667	3	0.02	3	470	8	<5	<20	21 0.0	1 <1	0 '	19	<10	36	58
40	05241	10	<0.2	0.57	<5	45	<5	0.21	<1	4	81	7	1.57	20 0.1	9 619	2	0.02	3	410	6	<5	<20	17 <0.0	1 <1	0 ·	13	<10	30	48
41	05242	15	1.4	0.47	<5	55	<5	0.11	<1	21	93	151	5.44	<10 0.0	3 2112	6	<0.01	5	260	36	<5	<20	9 <0.0	1 <1	0	7	<10	<1	28
42	05243	30	0.6	0.40	10	50	<5	0.51	<1	8	71	19	2.22	10 0.0	738	3	0.01	2	390	26	<5	<20	38 < 0.0			11	<10	16	44
43	05244	10	0.4	0.44	<5	35	<5	0.21	<1	5	84	9	1.69	20 0.0	3 459	3	<0.01	3	290	8	<5	<20	13 < 0.0			9	<10	29	37
44	05245	5	<0.2	0.43	<5	50	<5	0.15	<1	3	71	8	1.37	20 0.1	0 408	2	0.02	3	390	4	<5	<20	14 < 0.0			10	<10	28	42
45	05246	10	<0.2	0.47	<5	55	<5	0.14	<1	5	87	8	1.61	10 0.1	3 477	3	0.02	3	330	4	<5	<20	16 0.0			12	<10	29	33
46	05247	10	<0.2	0.38	<5	55	<5	0.14	<1	5	80	16	1.67	20 0.0	7 460	3	0.02	2	350	4	<5	<20	14 <0.0	1 <1	0	10	<10	28	36
47	05248	15	<0.2	0.32	<5	65	<5	0.48	<1	7	80	61	4.26	10 0.0	1 671	6	0.02	4	320	<2	<5	<20	34 < 0.0	1 <1	0	7	<10	15	28
48	05249	10	<0.2	0.22	<5	55	<5	0.20	<1	4	78	20	1.50	10 <0.0	1 640	3	0.01	2	320	<2	<5	<20	13 <0.0	1 <1	0	5	<10	13	16
49	05250	15	0.2	0.24	<5	55	<5	0.25	<1	3	127	22	1.66	<10 <0.0	1 612	4	0.02	4	270	<2	<5	<20	15 < 0.0	1 <1	0	3	<10	5	5
50	05251	10	<0.2	0.20	<5	45	<5	0.03	<1	4	119	35	1.22	<10 <0.0	1 223	4	<0.01	4	170	<2	<5	<20	2 <0.0	1 <1	0	2	<10	4	4
51	05252	10	<0.2	0.20	15	50	<5	0.03	<1	2	159	18	1.37	<10 <0.0	1 167	6	<0.01	4	130	<2	<5	<20	2 < 0.0	1 <1	0	2	<10	<1	3
52	05253	10	<0.2	80.0	<5	15	<5	0.02	<1	2	126	16	0.69	<10 <0.0	1 86	3	<0.01	4	60	<2	<5	<20	<1 <0.0	1 <1	0	1	<10	<1	2
53	05254	25	<0.2	0.36	<5	70	<5	0.25	<1	4	100	20	1.25	10 0.0	7 954	3	0.02	4	420	<2	<5	<20	16 < 0.0			6	<10	15	19
54	05255	10	<0.2	0.27	<5	65	<5	0.21	<1	3	116	15	0.87	10 0.0	3 904	3	0.01	3	330	<2	<5	<20	11 <0.0		-	5	<10	17	10
55	05256	10	<0.2	1.40	<5	110	<5	0.27	<1	16	120	25	2.82	20 0.7		1	0.02	18	480	4	<5	<20	17 0.0		-	38	<10	41	54

· . .

TEOREX	PLORATI	UN LID.							I	CP CE	RTIFIC	ATE O	FANALYSIS	AK 99-	552						E	CO-TE	ECH LA	BORA	TORIE	
<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn		ri %	U	<u>v</u>	w	1
QC_DATA Resplit:	:																									
R/S 1	05202	15	0.6	0.16	<5	100	<5 0.07	3	56	51	739	>10	<10 <0.01	603	22 < 0.01	26	<10	10		-00						
R/S 36	05237	>1000	8.8	0.03	110	20	15 <0.01	<1	2	190	7	1.43	<10 <0.01	48	8 < 0.01	20 5	10	16 250	<5 <5	<20 <20	4 < <1 <	0.01 0.01	460 <10	11 <1	<10 <10	
Repeat:																										
1	05202	10	2.0	0.16	<5	105	<5 0.07	2	57	55	828	>10	<10 <0.01	621	22 < 0.01	26	<10	38	<5	<20	6 <	0.01	1010	14	<10	
10	05211	15	0.2	0.42	<5	60	<5 0.19	<1	7	103	19	2.15	20 0.05		4 0.02	5	480	8	<5	<20	13 <		<10	13	<10	
19	05220	>1000	>30	0.30	<5	55	745 0.15	4	53	79	454	9.09	<10 0.05	338	14 < 0.01	5	220	1392	<5	<20	10 <		<10	6	<10	
36	05237	>1000	9.2	0.03	110	15	20 < 0.01	<1	2	155	7	1.32	<10 <0.01	45	6 < 0.01	3	10	258	<5	<20		0.01	<10	<1	<10	
45	05246	10	<0.2	0.47	<5	55	<5 0.14	<1	5	88	8	1.60	10 0.13	476	3 0.02	2	320	4	<5	<20		0.01	<10	11	<10	
Standard	:																									
GEO'99		150	1.0	1.75	65	155	<5 1.82	<1	19	59	89	3.71	<10 0.90	675	<1 0.02	27	660	14	5	<20	58	0.11	<10	77	<10	
GEO'99		120	1.0	1.74	65	150	<5 1.80	<1	19	59	85	3.82	<10 0.94		<1 0.02	24	660	16	10	<20		0.10	<10	74	<10	

ener i de l'argue colo de la color de la color de la color de registre de ferre de factor de la color de la co

df/551/552 XLS/99Teck fax: 372-1285

Ŷ.

÷....

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.O. Certified Assayer

Page 3

)	;	!	;	}	;		i	1	;	;	i	į	i	i	;	1	;
										· · .							
1. A.	(307) (C.S.		 • • • •	r.	19 - 19 - 19	the states of	t de la composito		S - 197 & 1	- ^{Ca} sting a graft	State of the state	an der en			5 - -	1. ST 71	

21-Oct-99

· . .

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-575

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Graeme Evans

No. of samples received: 5 Sample Type: Rock PROJECT #: 1776 SHIPMENT #:None given Samples submitted by: G. Evans

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	РЪ	Sb	Sn	Sr Ti%	U	v	w	Y	Zn
1	CMCG-01	10	<0.2	0.13	5	15	<5	0.10	<1	3	248	16	0.71	<10 0.05	331	7 0.01	10	70	20	<5	<20				<10	<u> </u>	
2	CMCG-02	5	<0.2	0.09	<5	5	<5	0.03	<1	2				<10 0.04						-		<1 <0.01		•	~10	- 1	23
3	CMCG-03	10	2.0	0.23	10	45	10	9,98	41	10				<10 0.29			•					394 < 0.01					
4	CMCG-04	<5	<0.2	0.69	<5			0.20						<10 0.39													
Ė	CMCG-05	•			-		-															<1 0.04				8	34
5	CIVICG-05	< 5	<0.2	0.20	<5	25	<5	0.14	<1	5	231	15	0.72	<10 0.09	155	7 0.01	10	140	10	<5	<20	<1 <0.01	<10	2	<10	4	16

QC DATA: Resplit:																													
R/S 1 CMCG-01	5	<0.2	0.13	<5	10	<5	0.10	<1	3	219	16	0.70	<10	0.05	351	6	0.01	9	80	22	<5	<20	5 <0.0	1 <	10	3	<10	8	25
Resplit: R/S 1 CMCG-01	10	-	-			-	-				-	-	-	-	-		-	-			-	-				-	-	-	-
Standard: GEO'99	120	-						-							_	_	_		_	_									

df/566 XLS/99Teck fax: 372-1285

.

ECD-TECH LABORATORIES LTD. Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

de l'éléctres présentes de la contraction de la contraction de la comparation de la comparation de la contraction de la

27-Oct-99

j.

· • •

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-605

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 1

1

ATTENTION: GRAEME EVANS

No. of samples received: 46 Sample Type: Core PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg	1%	Mn	Mo Na%	Ni	р	РЬ	Sb	Sn	Sr	Ti %	U	v			•.
1	15051	10	<0.2	0.43	<5	35	<5	0.36	<1	5	54	8		_		480	3 0.02	2	· · · ·	10			_	THE OWNER WATER OF			<u>W</u>	T	Zn
2	15052	5	<0.2	0.74	<5	40	10	1.31	<1	5	70	10	1.74			672	3 0.02	<1	420 520	10	<5	<20		< 0.01	<10	18	<10	43	66
3	15053	5	<0.2	0.41	<5	60	<5	5.45	<1	4	78	26	1.86			482	2 0.02	2		•	<5	<20	116	0.04	<10	14	<10	25	53
4	15054	<5	<0.2	0.62	<5	40	10	1.55	<1	Å	66	7	1.98			708	2 0.02		440	4	<5	<20		<0.01	<10	6	<10	33	13
5	15055	5	<0.2	0.68	<5	40	<5	1.25	<1	4	55	9	1.96			616		-	520	8	<5	<20	141	0.02	<10	21	<10	37	49
					-		•		•	•	00	5	1.30	30 0	.32	010	2 0.02	<1	540	6	5	<20	120	0.02	<10	22	<10	37	49
6	15056	5	<0.2	0.38	<5	35	<5	2.13	<1	4	60	8	1.89	30 0	.23	719	2 0.02		500	~		.00					_		
7	15057	60	0.4	0.21	10	30	<5	1.94	1	4	51	ă	1.58			650	2 0.02	ر <1	500	6	<5	<20		<0.01	<10	20	<10	36	48
8	15058	>1000	>30	0.04	230	35	160	0.10	<1	23	140	256	8.59	<10 <0		207	15 < 0.01	~1	470	30	<5	<20		<0.01	<10	7	<10	18	188
9	15059	15	0.4	0.03	<5	<5	<5	0.06	<1	<1	119	200	0.26	<10 <0		45			<10	1896	<5	<20		<0.01	<10	<1	<10	<1	139
10	15060	180	<0.2	0.04	10	20	5	0.33	<1	3	153	7	0.20	<10 <0		136	3 < 0.01	2	<10	6	<5	<20		<0.01	<10	<1	<10	<1	4
							·	0.00		J	100	'	0.77	-10 -0	.01	130	6 <0.01	5	<10	60	10	<20	17	0.02	<10	<1	<10	<1	8
11	15061	20	2.6	0.04	10	10	5	0.33	<1	3	153	7	0.79	<10 <0	01	129	6 -0.01	•	40	~									
12	15062	10	<0.2	0.34	<5	30	<5	1.91	<1	Ă	51	, 7	2.30			903	6 <0.01 2 0.01	2	10	64	<5	<20		<0.01	<10	<1	<10	<1	8
13	15063	5	0.4	0.32	<5	35	<5	3.49	<1	4	58	10	1.89			216		<1	550	10	<5	<20		<0.01	<10	23	<10	36	52
14	15064	<5	<0.2	0.02	<5	<5	<5	0.55	<1	<1	161	6	0.27	<10 <0		131	2 0.02	<1	510	44	<5	<20		<0.01	<10	16	<10	38	52
15	15065	135	2.2	0.47	<5	60	10	2.22	19	5	51	13	2.16			798	5 <0.01 <1 0.02	3	<10	4	<5	<20		<0.01	<10	<1	<10	<1	4
					, i i i i i i i i i i i i i i i i i i i					•	51	10	2.10	20 0	.29	190	<1 0.02	<1	510	322	<5	<20	211	<0.01	<10	21	<10	35	2254
16	15066	15	<0.2	0.69	<5	85	<5	1.62	<1	5	122	9	1.99	20 0	.32	764					-								
17	15067	<5	<0.2	0.49	<5	40	<5	2.48	<1	Ă	51	7	1.99			994	3 0.03	2	490	40	<5	<20	172	0.03	<10	18	<10	33	190
18	15068	5	<0.2	0.67	<5	65	10	2.52	<1	4	85	9	1.88				2 0.02	. 1	480	12	<5	<20	232	0.01	<10	19	<10	31	66
19	15069	40	2.6	0.06	<5	5	25	4.68	<1	-	104	53	1.00			926	3 0.02	1	520	14	5	<20	224	0.02	<10	16	<10	35	54
20	15070	<5	<0.2	0.52	<5	50	<5	1.91	<1		101	- 33				366	3 < 0.01	4	40	68	<5	<20		<0.01	<10	3	<10	40	10
				0.01	•0	50	-0	1.31	-1	*	101	э	2.07	30 0.	.30	789	3 0.02	2	530	10	<5	<20	211	<0.01	<10	19	<10	34	53
21	15071	60	<0.2	0.25	10	30	<5	0.30	<1	5	110	12	2.15	40 0															
22	15072	5	<0.2	0.36	<5	35	<5	2.18	<1	5		-				121	4 0.01	3	280	26	<5	<20		<0.01	<10	7	<10	7	43
23	15073	-	<0.2	0.87	<5	40	<5	1.77	<1	4 5	67	8	2.11			737	3 0.02	1	510	10	5	<20		<0.01	<10	19	<10	37	52
24	15074	5	< 0.2	0.34	<5	30	<5 <5	2.88	<1	5	55	6	1.99			751	2 0.02	<1	620	6	5	<20	206	0.01	<10	25	<10	40	61
25	15075	<5	<0.2	0.41	<5	25	<5	2.00		4	61	0	1.90			790	2 0.02	<1	460	12	<5	<20		<0.01	<10	19	<10	32	47
		-0	~U.Z	U.++ (~0	20	~0	2.00	<1	4	46	6	1.87	30 0.	.26	796	2 0.02	2	520	6	<5	<20	270	<0.01	<10	20	<10	37	49

Page 1

TECK EX	PLORATIO	ON LTD.								1	CP CEF	RTIFIC	ATE O	F ANALYSI	IS AK 9	9-605									ECO-TE		BORA	TORIES	LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bì	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg	% Mr	n Mo	o Na	a %	Nł	Р	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
26	15076	10	<0.2	1.42	5	65	<5	1.45	<1	4	88	8	2.06	20 0.2	20 233	3 4	4 0	0.03	2	500	20	<5	<20		< 0.01	<10	26	<10	52	71
27	15077	175	3.8	0.32	40	25	10	3.98	<1	9	92	11	2.19	<10 0.1	15 1175	; ;	30	0.02	2	220	166	<5	<20		<0.01	<10	8	<10	30	87
28	15078	10	<0.2	0.38	<5	25	<5	2.75	<1	5	58	8	2.39	30 0.2	28 732	: :	30	0.02	<1	510	10	<5	<20		< 0.01	<10	17	<10	31	61
29	15079	25	<0.2	0.23	10	20	<5	4.59	<1	3	51	12	1.51	10 0,1	17 1212	2	2 0).01	<1	450	8	<5	<20		<0.01	<10	8	<10	31	39
30	15080	20	<0.2	0.36	<5	40	<5	2.96	<1	4	82	10	1.97	20 0.2	20 962	2		0.02	2	500	10	<5	<20		<0.01	<10	16	<10	34	39 45
31	15085	>1000	4.4	0.10	100	30	15	0.19	<1	13	96	99	4.36	<10 0.0	05 216	3 7	7 <0	0.01	3	40	124	<5	<20	15	<0.01	<10	3	<10	<1	25
32	15086	125	0.6	0.28	5	60	<5	2.54	<1	3	63	30	1.19	<10 0.0	09 1153		2 0		1	520	16	<5	<20		<0.01	<10	3	<10	17	41
33	15087	50	0.2	0.25	<5	35	5	1.06	<1	4	57	8	2.06	20 0.4	19 75		-	0.01	<1	490	14	<5	<20		<0.01	<10	9	<10	21	70
34	15088	5	<0.2	0.54	<5	50	<5	2.11	<1	4	65	11	2.07	30 0.2	29 87			0.02	<1	520	8	<5	<20	205	0.01	<10	19	<10	37	52
35	15089	5	<0.2	0.50	<5	55	<5	2.21	<1	4	55	9	1.87	20 0.3				0.02	<1	490	12	5	<20	224	0.01	<10	13	<10	31	46
36	15090	<5	<0.2	0.65	<5	155	<5	1.71	<1	4	69	7	2.02	20 0.3	33 782	,	30	0.02	2	540	10	<5	<20	226	0.02	<10	20	~10	22	
37	15091	5	<0.2	0.48	<5	50	<5	2.67	2	4	78	12	1.85	20 0.2				0.02	2	460	6	~5 <5	<20	257	0.02	<10	12	<10 <10	33 31	55 383
38	15092	5	<0.2	0.47	<5	45	<5	3.51	<1	3	58	11	1.75	20 0.2				0.02	<1	520	4	<5	<20	336	0.01	<10	11	<10	37	
39	15093	30	<0.2	0.64	<5	45	5	3.49	<1	4	70	15	2.23	20 0.3).02	1	540	8	-5	<20	347	0.01	<10	14	<10		33
40	15094	5	<0.2	0.41	<5	35	<5	3.13	<1	4	45	10	1.99	20 0.2			2 0		2	510	6	5	<20	306	<0.01	<10	12	<10	42 38	42 36
41	15095	5	<0.2	0.59	<5	40	<5	3.02	<1	3	65	10	1.71	20 0.2	23 122	3 3	20	0.02	1	510	6	<5	<20	293	<0.01	<10	11	<10	35	30
42	15096	<5	<0.2	0.78	<5	35	5	3.96	<1	4	81	11	2.03	20 0.3			-	0.02	<1	510	12	5	<20		<0.01	<10	14	<10	42	38
43	15097	<5	<0.2	1.31	<5	50	5	2.72	<1	4	58	5	2.11	20 0.2				0.03	1	530	10	<5	<20		<0.01	<10	26	<10	43	43
44	15098	5	<0.2	0.26	<5	35	<5	3.86	<1	3	37	5	2.01	20 0.3	31 2074			0.02	<1	650	4	5	<20			<10	14	<10	35	27
45	15099	55	0.2	0.31	<5	45	<5	1.09	<1	4	102	8	1.90	20 0.3	23 50			0.02	2	510	30	<5	<20	137	<0.01	<10	14	<10	26	56
46	15100	20	<0.2	0.34	<5	35	<5	7.66	<1	5	67	26	2.61		27 299			0.02	12	510	10	<5	<20		<0.01	<10	18	<10 <10	20 51	- 45
QC DATA: Resplit:	:																													
R/S 1	15051	5	<0.2	0.40	<5	35	<5	0.37	<1	5	60	7	2.38	30 0.0	03 49	1 :	2 0	D.01	2	440	16	<5	<20	21	<0.01	<10	18	<10	45	78
R/S 36	15090	10	<0.2	0.70	<5	160	<5	1.90	<1	4	64	10	2.10	30 0.3	36 87		3 0		<1	550	8	<5	<20	263	0.02	<10	22	<10	40	53
Repeat:																			.,	000	Ŷ	-0	-20	200	0.02	-10	~~	~10	40	55
1	15051	10	<0.2	0.39	<5	30	<5	0.34	<1	4	54	6	2.23	30 0.0	03 460) :	30	0.01	<1	420	10	<5	<20	18	<0.01	<10	17	<10	39	66
10	15060	290	1.0	0.05	<5	15	<5	0.45	<1	3	170	24	0.87	<10 <0.0	01 17:	36	6 <0	0.01	2	20	38	<5	<20		<0.01	<10	1	<10	<1	2
19	15069	15	2.2	0.06	<5	10	25	4.80	<1	6	107	55	1.37	<10 0.0	08 139	5 3	3 <0	0.01	3	40	72	<5	<20		< 0.01	<10	3	<10	41	10
36	15090	<5	<0.2	0.69	<5	155	<5	1.72	<1	4	70	6	2.01	20 0.3	35 793	3 :	з 0).02	1	530	8	5	<20	246	0.02	<10	22	<10	36	51
Standard: GEO'99		115	0.8	1.53	50	140	10	1.49	<1	18	54	74	3.40		70 00						-									
			0.0	1.00	50	140	10	1.73	~ 1	10	04	74	3.40	<10 0.3	79 62		2 0	1.02	25	670	26	15	<20	50	0.08	<10	55	<10	17	73

นสร้างสีมาร์สารการการการการการการการการการการสมสัญญาสมสัญญาสมัญชาติสมัญชาติสมัญชาติสมัญชาติสมัญชาติสมัญชาติสมัญ

df/605 XLS/99Teck fax: 372-1285

;

1 . .

5

;

ECP-TECH LABORATORIES LTD. prefink J. Pezzotti, A.Sc.T. B.C. Certified Assayer 27-Oct-99

1

1. . .

1

Care Barren Barren and Same

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-604

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

į

į

į.

í

ATTENTION: GRAEME EVANS

No. of samples received; 9 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: None Given Samples submitted by: G. Evans

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba		Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	NI	Р	Pb	Sb	Sn	Sr Ti%	ы	v	w	v	75
1	05156	15	<0.2	0.06	<5	15	<5	0.01	<1	<1	256	5	0.36	<10 <0.01	61	7 <0.01	A	20	<2	<5		2 < 0.01	<10	<1		ania	
2	05157	15	<0.2	0.16	<5	20	<5	0.26	<1	4	183	16			306	6 < 0.01	4	30	~2	-				~ 1	<10	<1	<1
3	05158	5	<0.2	0.04	<5	<5	<5	0.02	<1	<1	194								_	<5	<20	8 <0.01	<10	3	<10	1	1
					-	-	-		•	•			0.34	<10 0.01	65	6 < 0.01	4	<10	<2	<5	<20	<1 <0.01	<10	1	<10	<1	<1
4	05159	10	<0.2	1.71	10	65	<5	3.37	<1	31	45	43	5.26	<10 1.71	474	5 0.02	30	480	8	10	<20	170 <0.01	<10	74	<10	18	30
5	05160	10	<0.2	0.18	<5	5	<5	0.06	<1	<1	92	12	0.44	<10 0.04	131	3 0.03	2	50	ě								
6	05161	16	<0.2	0.50	<5	25											-		0	<5	<20	2 <0.01	<10	<1	<10	8	10
<u> </u>		15		0.50	<0	35	<5	0.16	<1	6	116	14	1.26	<10 0.29	220	6 0.02	11	290	10	<5	<20	3 0.03	<10	6	<10	8	10
7	05162	10	<0.2	0.09	<5	15	<5	0.05	<1	5	140	23	1.16	<10 0.05	100	6 < 0.01	7	60	<2	<5	<20	<1 <0.01	<10	-	<10	<1	6
8	05163	10	<0.2	0.08	<5	5	<5	0.03	<1	2	231		0.49							-				4		~ (•
-		-			-				•	~		5		<10 0.03	144	9 <0.01	8	60	<2	<5	<20	<1 <0.01	<10	3	<10	<1	2
9	05164	5	<0.2	0.29	<5	20	<5	0.26	<1	<1	79	2	0.55	<10 0.05	154	2 0.01	<1	160	6	<5	<20	12 <0.01	<10	6	<10	4	9

QC DATA Resplit: R/S 1	: 05156	15	<0.2	0.04	<5	10	<5 <0.01	<1	<1	200	3 (0.30	<10 <0.01	40	5 <0.01	2	20	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	<1
Repeat: 1	05156	15	-		-			-						-				-	-				-	-		-
Standard: GEO'99		130		-	-	-					-			-			_									

df/604 XLS/99Teck fax: 372-1285

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. pe, B.C. Certified Assayer

28-Oct-99

į

1

State Charles and the second second

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

i

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-606

;

1.

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 1

į

1

1

ATTENTION: GRAEME EVANS

No. of samples received: 32 Sample Type: Drill Core PROJECT #: 1767 SHIPMENT #: None Given Samples submitted by: G. Evans

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	15076	10	<0.2	2.03	5	70	<5	2.08	<1	4	58	8	2.30	30	0.27	268	3	0.06	<1	530	16	5	<20	197	< 0.01	<10	31	<10	31	62
2	15078	5	<0.2	0.33	<5	20	<5	3.11	<1	4	68	6	2.01	20	0.25	1087	3	0.02	2	470	8	10	<20		<0.01	<10	18	<10	38	58
3	15083	10	<0.2	0.27	<5	35	<5	2.19	<1	4	83	7	1.66	20	0.16	768	3	0.02	2	480	8	<5	<20		<0.01	<10	19	<10	35	53 54
4	15084	20	1.8	0.11	25	30	<5	1.22	<1	4	155	37	1.33	<10	0.05	487	5	<0.01	2	100	42	<5	<20		<0.01	<10	2	<10	2	
5	15101	5	<0.2	3.76	5	150	<5	7.39	<1	4	84	7	1.86	20	0.22	504	4		2	570	20	10	<20		<0.01	<10	37	<10	63	47
																	·	,	-	0.0			-20	104	-0.01	-10	57	10	05	41
6	15102	5	<0.2	0.47	<5	35	<5	4.64	<1	5	73	7	2.03	30	0.24	1276	3	0.02	<1	500	10	<5	<20	407	<0.01	<10	24	<10	46	50
7	15103	<5	<0.2	0.28	<5	35	<5	2.92	<1	4	65	6	1.79	20	0.21	924	3	0.02	2	510	4	<5	<20		<0.01	<10	16	<10	30	40
8	15104	<5	<0.2	0.38	<5	35	<5	2.31	<1	4	68	8	2.02	30	0.25	766	2	0.02	<1	520	8	<5	<20		<0.01	<10	24	<10	40	50
9	15105	15	0.6	0.27	<5	45	<5	2.83	<1	7	95	51	2.33	10	0.20	1082	4	0.02	3	440	12	<5	<20		<0.01	<10	10	<10	20	30
10	15106	<5	<0.2	0.51	<5	40	<5	2.69	<1	5	72	10	1.95	20	0.28	1016	2		2	510	10	10	<20	236	0.02	<10	16	<10	33	49
																			-				-20	200	0.02	-10	.0	-10	55	45
11	15107	5	<0.2	0.33	5	35	<5	4.20	5	3	99	21	1.59	10	0.20	1073	3	0.02	1	440	12	<5	<20	270	<0.01	<10	13	<10	29	769
12	15108	440	1.2	0.22	80	40	5	3.05	<1	13	104	10	2.96	<10	0.12	1070		<0.01	<1	340	48	<5	<20		<0.01	<10	2	<10	25	41
13	15109	560	8.6	0.18	135	35	25	2.24	<1	19	153	23	4.09	<10	0.08	1093	8	<0.01	4	130	376	<5	<20		<0.01	<10	4	<10	3	67
14	15110	155	9.0	0.23	75	35	20	2.74	5	7	92	41	2.34	<10	0.08	948		<0.01	2	370	554	<5	<20		<0.01	<10	2	<10	10	964
15	15111	150	1.8	0.24	70	35	<5	2.55	<1	10	103	67	3.08	<10	0.14	957		<0.01	2	460	70	<5	<20		<0.01	<10	ž	<10	3	106
																	-		-				-20		-0.01	-10	~	-10	5	100
16	15112	105	11.8	0.17	60	25	30	0.76	<1	14	133	99	4.08	<10	0.12	798	7	<0.01	4	250	320	<5	<20	26	<0.01	<10	3	<10	<1	15
17	15113	25	1.0	0.28	30	40	<5	1.43	<1	20	144	181	5.87	<10	0.14	994		<0.01	8	370	50	<5	<20		<0.01	<10	2	<10	<1	35
18	15114	5	0.2	0.07	5	25	<5	0.54	<1	2	162	30	0.87	<10	0.02	181		<0.01	1	60	2	<5	<20		<0.01	<10	1	<10	<1	8
19	15115	120	0.4	0.34	20	45	<5	2.37	<1	7	87	38	2.60	10	0.18	900	4		2	520	32	<5	<20		<0.01	<10	8	<10	20	38
20	15116	65	<0.2	0.59	<5	55	5	1.92	<1	7	76	19	2.34	20	0.30	803	3		2	540	56	<5	<20	143	0.02	<10	10	<10	29	63
																	-		-			v	-20	110	0.01	-10	10	-10	20	00
21	15117	90	<0.2	0.21	15	40	<5	2.34	<1	5	125	27	2.05	10	0.15	676	4	0.02	3	400	30	<5	<20	140	<0.01	<10	9	<10	23	119
22	15118	10	<0.2	0.57	<5	55	<5	1.94	<1	5	77	21	2.27	20	0.31	784	3	0.02	2	540	10	<5	<20	177	0.02	<10	17	<10	38	60
23	15119	50	<0.2	0.51	<5	40	5	2.23	<1	5	60	7	2.20	30	0.30	783	3	0.02	2	540	10	<5	<20		<0.02	<10	22	<10	41	61
24	15120	5	<0.2	0.27	5	25	5	3.39	<1	5	63	6	2.27	20	0.23	823	3	0.02	<1	510	10	<5	<20		< 0.01	<10	17	<10	36	60
25	15121	715	2.8	0.12	165	15	15	2.93	<1	10	162	10	4.70	<10	0.10	1162	8	<0.01	6	60	200	<5	<20		<0.01	<10	5	<10	6	322
																		2.21	v		200	-0	-20	200	-0.01	- 10	5	- 10	0	J62

Page 1

and we depend the second of the second of the second second second second second second second second second s

TECK EXPLORATION LTD.

ICP CERTIFICATE OF ANALYSIS AK 99-606

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	v	7-
26	15122	<5	<0.2	2.51	<5	60	15	4.04	<1	4	56	5	2.14	20	0.20	255	2	-	<1	500	-	-	A-1	_	Contractor of the second s				T	Zn
27	15123	<5	0.8	0.33	20	40	<5	2.38	<1	7	86	37	2.60	10		889				500	30	<5	<20		<0.01	<10	29	<10	39	49
28	15124	10	<0.2	0.39	5	30	<5	2.83	<1	,	48	11					4	0.02	3	530	34	<5	<20			<10	8	<10	20	38
29	15125		<0.2		<5	40	<5	1.88		7		1	2.08	20	0.22	1069	2	0.01	<1	540	16	<5	<20	229	<0.01	<10	15	<10	35	52
30	15126		<0.2						<1	4	87	1	2.08	30	0.22	709	3	0.02	3	590	10	<5	<20	187	<0.01	<10	23	<10	42	61
50	10120	5	~ ∪.∡	0.35	<5	30	<5	2.85	<1	5	68	9	1.94	20	0.27	871	3	0.02	2	530	14	<5	<20	237	<0.01	<10	18	<10	37	53
31	15127	10	<0.2	0.32	<5	30	5	0.60	<1	5	63	10	2.20	-																
32	15128	85	0.4	2.17	20	55	<5			5	53	10	2.29	20		301	3	0.01	1	550	- 14	<5	<20	- 36	<0.01	<10	15	<10	25	60
		00	0.4	2.17	20	55	10	2.61	<1	5	94	10	2.19	10	0.14	192	4	0.07	3	410	104	5	<20	57	<0.01	<10	21	<10	67	135
QC DATA Resplit:	:																													
R/S 1	15076	5	<0.2	1.88	10	65	<5	2.13	<1	4	52	7	2.10	20	0. 25	257	2	0.06	<1	550	24	5	<20	174	<0.01	<10	29	<10	32	65
Repeat:																														
1	15076	5	<0.2	1.94	5	65	<5	2.02	<1	4	57	7	2.25	20	0.26	261	3	0.07		540		-								
10	15106	<5	<0.2	0.47	<5	40	<5	2.63	<1	5	79	10		20			-	0.07	<1	540	20	5	<20	185	<0.01	<10	29	<10	30	61
19	15115	105	<0.2	0.46	15	45	<5	2.23	<1		95		1.91		0.27	984	2		2	490	10 1	5	<20	222	0.02	<10	15	<10	31	50
				0.40		-5	-5	2.23	~1	0	95	27	2.52	30	0.22	866	4	0.02	1	550	26	<5	<20	165	<0.01	<10	10	<10	22	42
Standard: GEO'99		115	0.8	1.62	60	455																								
GLU 35		115	0.8	1.63	60	155	5	1.60	<1	19	56	81	3.68	<10	0.87	688	2	0.02	27	750	28	15	<20	49	0.10	<10	65	<10	20	79

df/606 XLS/99Teck fax: 372-1285

· . .

ECO-TECH LABORATORIES LTD. ank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

25-Oct-99

'

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

1

···) ···)

1

1

1

1 1 1

1

1

į

Ĩ

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-557

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GRAEME EVANS

No. of samples received: 35 Sample Type: Rock PROJECT #: 1776 SHIPMENT #: 2 Samples submitted by: G. Evans

Values in ppm unless otherwise reported

																						,					
Et #.	Tag #	Au(ppb)		AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	NI	P	Pb	Sb	Sn	Sr Ti%,	U	v	w	v	Źn
1	05257	<5	<0.2	0.03	<5	5	<5	0.09	<1	<1	181	4	0.37	<10 <0.01	81	1 <0.01	A	20	<2	<5	<20	The second s			and the local division of		
2	05258	<5	<0.2	0.49	<5	40	<5	0.27	<1	7	96	12	1.96	20 0.13	582	1 0.01	Ē	670	-	-		1 < 0.01	<10	<1	<10	<1	2
3	05259	<5	<0.2	0.46	<5	30	<5		<1	5	96	<u>_</u>	2.12	<10 0.03	423	2 < 0.01	0		18	<5	<20	10 <0.01	<10	17	<10	25	50
4	05260	30	0.6	0.23	10	20	5		<1	1	170	13	0.90	<10 <0.03				560	26	<5	<20	9 <0.01	<10	15	<10	18	49
5	05261	5	<0.2		<5	60	<5	-	2	,					48	1 < 0.01	6	20	32	<5	<20	<1 <0.01	<10	<1	<10	<1	9
-		-		0.10	-0		-0	0.20	2	0	86	32	1.99	20 0.30	444	1 0.02	7	740	20	<5	<20	12 0.03	<10	5	<10	31	523
6	05262	<5	0.8	0.04	5	<5	<5	<0.01	<1		204	11			~~		_										
7	05264	<5	<0.2		<5	30	<5							<10 <0.01	68	2 <0.01	5	<10	22	<5	<20	<1 <0.01	<10	<1	<10	<1	3
8	05265	<5	<0.2		-		-		<1	5	52	6	2.16	30 0.15	632	1 0.02	3	660	8	<5	<20	29 < 0.01	<10	27	<10	37	67
9	05266	-			<5	55	<5		<1	4	78	6	2.06	30 0.09	636	1 0.02	2	650	10	<5	<20	51 < 0.01	<10	30	<10	40	58
10		<5	<0.2		<5	30	<5		<1	5	56	9	2.24	30 0.03	661	1 0.01	3	640	8	<5	<20	15 <0.01	<10	22	<10	38	61
10	05267	<5	<0.2	0.35	<5	25	<5	1.11	<1	5	56	7	2.25	30 0.05	735	2 0.01	2	660	12	<5	<20	68 < 0.01	<10	15	<10	34	59
																										÷.	
11	05268	5	<0.2		<5	30	<5	0.28	<1	4	60	6	1.95	20 0.09	630	1 0.02	2	560	10	<5	<20	17 <0.01	<10	26	<10	36	59
12	05269	<5	<0.2	0.32	<5	30	<5	0.57	<1	5	81	7	1.94	20 0.03	600	1 0.01		560	12	<5	<20	26 < 0.01	<10	19	<10	34	
13	05270	5	<0.2	0.12	5	<5	<5	>10	<1	3	101	2	2.30	<10 0.28	3142	2 < 0.01	2	30	16	<5	<20	785 <0.01					68
14	05271	5	<0.2	0.25	<5	25	<5	0.88	<1	4	85	10	1.61	20 0.02	444	1 0.01	5	510	12	-			<10	11	<10	76	33
15	05272	110	1.0	0.22	40	25	<5	0.34	<1	4	77	10	2.19	20 0.02	322	2 0.01	~			<5	<20	38 < 0.01	<10	12	<10	23	55
							-		•	-	••	10	1.10	20 0.02	522	2 0.01	3	410	72	<5	<20	16 <0.01	<10	17	<10	15	87
16	05273	175	3.2	0.06	60	15	<5	0.24	4	3	175	42	1.62	<10 <0.01	267	2 -0.04	-	~~		-							
17	05274	25	<0.2	0.58	<5	65	<5	0.30	<1	8	91	25	2.75			2 < 0.01	5	30	182	<5	<20	5 < 0.01	<10	1	<10	<1	649
18	05275	<5	<0.2	0.48	<5	50	<5	0.20		ŝ				<10 0.12	677	1 0.02	2	510	14	<5	<20	22 0.02	<10	11	<10	9	45
19	05276	<5	<0.2				-		<1	5	119	20	1.96	20 0.09	853	2 0.01	5	460	12	<5	<20	17 <0.01	<10	13	<10	32	76
20	05270	-		0.10	<5	25	<5	0.38	<1	1	112	6	0.56	<10 <0.01	550	1 <0.01	3	90	2	<5	<20	15 <0.01	<10	1	<10	9	10
20	03277	10	<0.2	0.04	<5	<5	<5	<0.01	<1	<1	182	3	0.35	<10 <0.01	47	1 <0.01	6	<10	4	<5	<20	<1 <0.01	<10	<1	<10	<1	1
21	05278					-	_																				
		10	<0.2	0.05	<5	5	<5	0.04	<1	<1	124	4	0.46	<10 <0.01	138	1 < 0.01	3	10	6	<5	<20	<1 <0.01	<10	<1	<10	<1	6
22	05279	580	>30	0.22	45	40	395	0.09	<1	14	129	78	3.07	<10 <0.01	790	3 < 0.01	6	190	1690	<5	<20	5 < 0.01	<10	Å	<10	30	299
23	05280	135	4.2	0.21	35	75	5	0.13	<1	12	153	54	2.78	<10 <0.01	3452	3 < 0.01	7	150	174	<5	<20	10 < 0.01	<10	3	<10	37	262
24	05281	20	<0.2	0.54	<5	55	<5	0.20	<1	8	70	14	2.11	30 0.14	770	1 0.02	4	520	14	<5	<20	11 0.01	<10	24	<10	41	136
25	05282	75	0.4	0.29	5	40	<5	0.10	<1	3	80	14	2.02	<10 <0.01	143	1 < 0.01	2	270	42	<5	<20		-	44			
•					-	-	-		•	-			2.02	10 40.01	.40	1 40.01	2	210	44	~0	~20	11 <0.01	<10	4	<10	3	155

Page 1

ner station and the second second and the second second second second second second second second second second

TECK EX	PLORATI	ON LTD.								1	CP CE	RTIFIC	ATE O	F ANALYSIS	AK 99-	557								ECO-TE	ECH LA	BORA	TORIES	3 LTD.	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo N	la %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	u				-
26	05283	<5	<0.2	0.48	<5	30	<5	0.28	<1	5	76	7	2.11	30 0.09	the second s	and the second second	0.01		690	ومواد الذكر	-					V	W	Ŷ	
27	05284	<5	<0.2	0.31	<5	25	<5	1.43	<1	Ă	42	7	2.25	30 0.03			0.01	3		8	<5	<20		<0.01	<10	26	<10	- 44	64
28	05285	<5	<0.2	0.45	<5	30	<5	0.21	<1	5	80	5	2.08	30 0.03				1	670	8	<5	<20		<0.01	<10	21	<10	47	65
29	05286	<5	<0.2	0.22	<5	20	<5	0.15	<1	1	55	3	1.18	20 < 0.01	209		0.01	3	520	14	<5	<20		<0.01	<10	19	<10	39	67
30	05287	5	<0.2	0.06	<5	<5	<5	1.14	<1	2	188	8					0.01	2	430	8	<5	<20		<0.01	<10	8	<10	24	37
		•		9.00	-0	-0	-0	1.14	~ 1	2	100	0	0.83	<10 <0.01	609	<1 <(0.01	7	<10	<2	<5	<20	53	<0.01	<10	2	<10	11	13
31	05288	<5	<0.2	0.28	<5	30	<5	1.75	<1	5	56	9	2.58	30 0.03	529	2 (0.01	2	650	12	<5	<20		-0.04	-40				
32	05289	<5	<0.2	0.03	<5	<5	20	0.01	<1	1	185	7	0.99	<10 <0.01	90	2 <		6	20		-			< 0.01	<10	23	<10	38	65
33	05290	<5	1.0	0.06	<5	15	555	<0.01	<1	3	124	23	2.92	<10 <0.01		6 <		2		16	<5	<20		<0.01	<10	<1	<10	<1	<1
34	05291	85	>30	0.09	25	65	145	0.18	<1	78	85	508	>10	<10 0.03		8 <0		40	70	68	<5	<20		<0.01	<10	<1	<10	<1	3
35	05292	165	1.2	0.01	20	<5		<0.01	<1	2	176	4	0.80	<10 <0.01		2 <		12	<10 <10	854 74	<5	<20		<0.01	<10	4	<10	<1	629
										-		-	0.00	-10 -0.01		2 -(0.01	•	N 10	/4	<5	<20	<1	<0.01	<10	<1	<10	<1	1
QC DATA:																													
Resplit:																													
R/S 1	05257	<5	<0.2	0.02	<5	<5	<5	0.08	<1	<1	174	4	0.36	<10 <0.01	77	5 <0	0.01		10	~	-5	-00							
													0.00	-10 -0.01		5 -0	0.01	•	10	<2	<5	<20	<1	<0.01	<10	<1	<10	<1	3
Repeat:																													
1	05257	<5	<0.2	0.03	<5	<5	<5	0.09	<1	<1	180	3	0.37	<10 <0.01	83	6 <0	0.01	5	10	~2		-00	- 4						
10	05267	<5					-	•					0.07	-10 -0.01	00	0 -1	0.01	3	10	<2	<5	<20	<1	<0.01	<10	<1	<10	<1	3
19	05276	<5			-	-	-		-	-			-		•	-	-	•	-	-	•	-	-	-	-	•	-	-	-
											•	-	-		• •	-	-	•	-	-	-	•	-	-	-	•	-	•	•
Standard:																													
GEO'99		115	1.0	1.76	60	145	5	1.86	<1	19	66	81	3.74	<10 0.94	686	2 (0.02	24	740	24	5	<20	57	0.13	<10	75	<10	9	79

df/597 XLS/99Teck fax: 372-1285

)

ECO-TECH LABORATORIES LTD. FERNK J. Pezzotti, A.Sc.T. B.C. Certified Assayer

C		cher alytical Cher 212 Brook British Col PHONE: 6	nists * Geo sbank Av umbia, C	chemists * e., N anada	Register Iorth Var	ed Assaye ncouver /7J 2C1			Projec	350 - 27 KAMLO V2C 1Z6	XPLORA 2 VICTOF OPS, BC 3 1767 ATTN: LIF	RIA ST.	D. AX: GRA	NEME E	VANS			Page Nur Total Pag Certificati Invoice N P.O. Nun Account	e Date: 1 lo. : 1 nber :	-A 7-NOV 99331! IPQ
										CE	RTIFI	CATE	OF A	NAL	(SIS	A	\993 3	153		
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	λ1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg X
CG-08 CG-09 CG-10 CG-11 CG-12	211 202 211 202 211 202 211 202 211 202 211 202 211 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.65 1.98 1.33 1.06 2.16	16 8 10 4 10	< 10 < 10 < 10 < 10 < 10 < 10	130 160 120 90 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 6 6 13	51 28 12 18 79	22 20 17 13 24	3.05 2.83 2.10 2.08 3.34	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.33 0.25 0.14 0.15 0.27	10 10 30 20 30	1.07 0.98 0.57 0.58 1.41
																	~			
									1								$\left(\right)$	-17	1	<u> </u>

Page Number : 1-B To: TECK EXPLORATIONS LTD. Total Pages :1 Certificate Date: 17-NOV-1999 Chemex Labs Ltd. 350 - 272 VICTORIA ST. Invoice No. :19933153 KAMLOOPS, BC Analytical Chemists * Geochemists * Registered Assayers P.O. Number V2C 1Z6 North Vancouver HPQ 212 Brooksbank Ave., Account British Columbia, Canada V7J 2C1 Project : 1767 PHONE: 604-984-0221 FAX: 604-984-0218 Comments: ATTN: LINDA FAX: GRAEME EVANS A9933153 **CERTIFICATE OF ANALYSIS** N Zn Тİ 71 U V Sb 8c Sr Ni P ₽b 8 PREP Mn No Na ppa * ppm ppm ppm ppm * ppn ppn DDB SAMPLE CODE ppm * ppm ppm ppm ppm 58 < 10 < 10 46 < 10 40 0.10 CO-08 1180 0.04 < 2 4 211 202 460 1 0.01 35 < 2 72 < 10 43 < 10 0.08 < 10 460 2 0.01 < 2 30 1085 3 0.01 19 4 ca-09 211 202 < 10 54 34 33 0.06 < 10 < 10 6 650 2 0.01 < 2 3 211 202 1130 2 0.01 co-10 33 < 10 44 < 10 690 0.03 < 2 45 0.06 < 10 12 4 2 211 202 1 0.01 CG-11 375 116 48 < 10 83 0.08 < 10 < 10 49 520 14 0.01 < 2 6 CQ-12 211 202 670 1 0.01 . CERTIFICATION:

1

1

1

2

1

1

1 To: TECK EXPLORATIONS LTD. Chemex Labs Ltd. .

1

1

Page Number : 1-A Total Pages : 1 Certificate Date: 17-NOV-1999 Invoice No. :19933152 P.O. Number Account HPQ

1

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

											CE	RTIF	CATE	OF A	NAL	SIS	<u>م</u>	9933	152	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SAMPLE	PRE	-	Au ppb FA+AA	Ag ppm	A1 %	λs ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррв	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppn	Ng %
C1000-08 C1000-09 C1000-10 C1000-11 C1000-12	211 211 211 211 211 211	202 202 202	< 5 < 5 25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.81 1.44 1.85 1.33 1.94	14 8 10 8 10	< 10 < 10 < 10 < 10 < 10 < 10	150 190 200 100 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	0.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 8 7 5 6	45 16 14 19 18	28 24 34 18 39	2.97 2.05 2.53 2.44 2.22	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 1	0.45 0.15 0.14 0.13 0.20	20 30 60 30 160	1.06 0.55 0.52 0.54 0.51
C1901-13 C1901-14 C1901-15 C1901-15 C1901-16 C1901-17	211 211 211 211 211 211	202 202 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.65 1.12 1.29 1.61 1.98	10 6 10 8 6	< 10 < 10 < 10 < 10 < 10 < 10	80 40 70 70 100	1.5 1.0 0.5 1.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.74 0.79 1.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 5 4 5	6 10 17 11 13	6 4 15 13 25	1.65 1.82 2.37 2.36 2.01	< 10 < 10 < 10 < 10 < 10	< 1	0.11 0.08 0.12 0.16 0.24	140 70 70 120 120 80	0.19 0.20 0.40 0.38 0.47 0.28
C)00/-18	211	202	10	< 0.2	1.18	8	< 10	100	1.0	< 2	0.91	< 0.5	4	10	9	2.35 ICATION	< 10	< 1	0.19		

CERTIFICATION:_

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :1-B Total Pages :1 Certificate Date: 17-NOV-1999 Invoice No. :19933152 P.O. Number : HPQ Account

Vala

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

											CE	RTIFI	CATE	OF A	NALY	SIS	A	993315	2	
SAMPLE	PREP		Mn	Mo	Na %	Ni ppm	P	Pb ppm	S %	Sb ppa	Sc ppm	Sr ppn	Ti %	T1 ppm	U mqq	V ppm	N Ppm	Zn ppm		
C1001-08 C1001-09 C1001-10 C1001-11 C1001-12	211 2 211 2 211 2 211 2 211 2 211 2	02 02 02 02	595 1690 2420 365 820	2 2 6 1 1	0.01 0.01 0.01 0.01 0.01	31 13 7 13 15	1240 710 860 750 710	8 6 8 8 10	0.03 0.07 0.06 0.06 0.08	< 2 < 2 2 < 2 < 2 < 2 < 2	4 2 4 3 4	49 57 71 71 259	0.09 0.04 0.05 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 10	44 28 36 39 28	< 10 < 10 < 10 < 10 < 10 < 10	70 62 82 48 110		
C1004-13 C1004-14 C1004-15 C1004-16 C1004-16	211 2 211 2 211 2 211 2 211 2 211 2 211 2	02 02 02	1635 485 530 520 940	2 1 4 4	0.01 0.01 0.01 0.01 0.02	4 4 7 5 9	740 1390 1570 2240 1430	6 6 10 10 10	0.05 0.05 0.04 0.06 0.09	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 2 3	71 42 57 127 127	0.01 0.02 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	60 80 30 130 110	13 22 39 37 33	< 10 < 10 10 < 10 < 10	108 52 60 52 114		
C1004-18	211 2	102	2190	3	0.01	6	1200		0.06	< 2	2	66	0.04	< 10	30	25	< 10	94		1.0

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: I LOK EXFLORING C. J.

KAMLOOPS, BC V2C 1Z6 NumInTotal Pages:5Certificate Date:17-NOV-1999Invoice No.:19933149P.O. Number:Account: HPQ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

CERTIFICATE OF ANALYSIS A9933149 PREP Au Au ppb CODE FA+AA g/t SAMPLE 05156 NotRed _ _ _ ~ ~ ---------05157 NotRed ____ ----------05158 NotRed ____ _ _ ------05159 _ _ ----NotRod ____ 05160 ------NotRed ____ 05161 NotRed _____ -------05162 _ _ NotRed _ _ _ _ _ -----NotRed _____ 05163 ---------05164 ----NotRed _ _ _ _ _ _ -----205 226 < 5 ____ 05202 226 05203 205 5 ____ 05204 205 226 130 ____ 205 226 205 226 25 05205 ____ 75 ____ 05206 05207 205 226 725 _ _ _ _ _ < 5 05208 205 226 205 226 _ _ _ _ _ _ 05209 5 205 226 35 05210 ____ 205 226 5 _ _ _ _ _ _ 05211 05212 205 226 360 ____ 205 226 585 ----05213 205 226 75 ____ 05214 205 226 < 5 _ _ _ _ _ 05215 05216 205 226 < 5 _ _ _ _ _ 05217 205 226 < 5 ____ 05218 205 226 15 ____ 205 226 ____ 05219 < 5 17.62 05220 205 226 >10000 205 226 1000 _ _ _ _ _ 05221 205 226 205 _ _ _ _ _ 05222 05223 205 226 < 5 _ _ _ _ _ 205 226 40 _ _ _ _ _ 05224 205 226 590 _ _ _ _ _ 05225 _ _ _ _ _ 205 226 130 05226 05227 205 226 505 _ _ _ _ _ 5 05228 205 226 _ _ _ _ _ < 5 205 226 _ _ _ _ _ 05229 205 226 35 _ _ _ _ _ 05230 205 < 5 _ _ _ _ _ 226 05231 205 226 385 ____ 05232

De l'Aun CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 IN: IEUNEXPLUMATIONS LIU

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 , ago Numbor, .2 Total Pages :5 Certificate Date: 17-NOV-1999 Invoice No. : 19933149 P.O. Number : Account : HPQ

n.A.

, p

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

				(ERTIFIC	ATE OF A	NALYSIS	A99	33149	
SAMPLE	PREP CODE	Au ppb FA+AA	Au g/t							
05233 05234 05235 05236 05237	205 226 205 226 205 226 205 226 205 226 205 226	55 35 45 5 885								
05238 05239 05240 05241 05242	205 226 205 226 205 226 205 226 205 226 205 226	20 10 50 < 5 10								
05243 05244 05245 05246 05247	205 226 205 226 205 226 205 226 205 226 205 226	25 5 < 5 < 5 < 5 < 5								
05248 05249 05250 05251 05252	205 226 205 226 205 226 205 226 205 226 205 226	25 < 5 70 10 < 5								
05253 05254 05255 05256 05257	205 226 205 226 205 226 205 226 205 226 205 226	< 5 15 < 5								
05258 05259 05260 05261 05262	205 226 205 226 205 226 205 226 205 226 205 226	< 5 130 < 5	 							
05263 05264 05265 05266 05267	 205 226 205 226 205 226 205 226	< 5		<u></u>						
05268 05269 05270 05271 05272	205 226 205 226 205 226 205 226 205 226 205 226	< 5 10 5		e - ,						

CERTIFICATION:__

1 3 1 **Chemex** I abs :**d**.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

TO: IECK EXPLUHATIONS LIU.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :3 Total Pages :5 Certificate Date: 17-NOV-1999 Invoice No. : 19933149 P.O. Number : Account : HPO 1 HPQ Account

Ĭ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

					0	ERTIFIC	ATE OF /	ANALYSIS	A99	33149	
SAMPLE	PREP CODE	Au ppb FA+AA	Au g/t								
5273	205 226	180									
05274	205 226	25									
05275	205 226	10									
05277	205 226	10									
5278	205 226	5									
05279 05280	205 226	740									i i
05280	205 226	10									
05282	205 226	100		1							
05283	205 226	< 5									
05284	205 226	15									
05285 05286	205 226	10					1				
05287	205 226	10									
05288	205 226	< 5									
05289 05290	205 226	10					}			1	
05291	205 226	155								1	
05292	205 226	235									
15051	205 226	< 5									
15052	205 226	< 5 55									
15053 15054	205 226	< 5					1				
15055	205 226	< 5									
15056	205 226	< 5					1				
15057	205 226	35									
15058	205 226	>10000	9.57				1				
15059 15060	205 226 205 226	< 5 190									
15061	205 226	15									
15062	205 226	< 5									
15063	205 226	20					1				l
15064	205 226	< 5		ļ l			1			ł	1
15065									<u></u>		
15066	205 226	15								1	ļ
15067	205 226	< 5									
15068 15069	205 226	10					ł				
15070	205 226	< 5									
						l	1			1	
			1	L		1]	CERTIFICATION:	$\overline{\Lambda}$	r	71.

r

ne abs

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

to: LEXPL TIONS

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

 Num
 Images

 Total Pages
 5

 Certificate Date:
 17-NOV-1999

 Invoice No.
 19933149

 P.O. Number
 Image:

 Account
 Image:

٦

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

1

1

		<u></u>			C	ERTIFIC	ATE OF /	ANALYSIS	A 9	933149	
SAMPLE	PREF		Au g/t								
15071	205 22										
15072	205 22										
15073 1507 4	205 22			1							
L5075	205 22										
15076	205 22										
15077	205 22 205 22										
15078 15079	205 22				1						
15080	205 22										
15081	205 22										
15082 15083	205 22										1
15084	205 22	6 20			1						
15085	205 22	1250					<u> </u>				
15086 15087	205 22										
15088	205 22	6 10							1		
15089	205 22			1							
15090	205 22	.6 < 5									
15091	205 22										
15092	205 22										
15093 15094	205 22										
15095	205 2										
15096	205 22										
15097	205 22										
15098 15099	205 22										
15100	205 2										
15101	205 2										
15102	205 2										
15103 15104	205 2						ł				
15105	205 2										
15106		26 5									
15107		26 10 26 465							1	1	
15108 15109		26 465 26 685									1
15109		26 220									
~~~~ V									<u> </u>		
				L.,	****					C	Mar



÷

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 to: IEUNEXPLUMATIONS LID.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 126 Total Pages :5 Certificate Date: 17-NOV-1999 Invoice No. : 19933149 P.O. Number : Account : HPQ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

### CERTIFICATE OF ANALYSIS A9933149

SAMPLE	PREP CODE	Au ppb FA+AA	Au g/t					
15111 15112 15113 15114 15115	205 226 205 226 205 226 205 226 205 226 205 226	165 220 150 20 120			-			
15116 15117 15118 15119 15120	205 226 205 226 205 226 205 226 205 226 205 226	85 55 10 25 5						
15121 15122 15123 15124 15125	205 226 205 226 205 226 205 226 205 226 205 226	735 < 5 < 5 5 < 5		1				
15126 15127 15128	205 226 205 226 205 226	5 5 70						

CERTIFICATION: Ingelies Musen



1

1

2

1

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Number : 1-A Total Pages : 3 Certificate Date: 08-NOV-1999 Invoice No. : 19932423 P.O. Number : Account : HPQ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

					<u> </u>						CI	ERTIF	ICATI	EOF	ANAL	YSIS		A993	2423		
SAMPLE	PRI		Au ppb FA+AA	Au g/t		A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm			Hg ppm	K %	La ppm
15127			NotRed										NotRed							NotRed	
15128		5.	NotRed						NOTRCO 80	< 0.5	NOTRCO < 2	NOTRCO 3.22	NotRcd < 0.5	NOTRCA	NOTRCA	NOTRCO	NOCKCO 1.51	NotRcd < 10	not/88	NotRcd 0.20	NOTREA 30
15129 15130		226 226	15		< 0.2 0.6	0.50 0.43	8 14	< 10 < 10	80	< 0.5	< 2	3.30	< 0.5	4	92	25		< 10	< 1		10
15131		226			0.4	0.63	6	< 10	80	0.5	< 2	3.09	< 0.5	1	54	7		< 10	< 1		20
15132	205		15		0.2	0.16	8	< 10	30	< 0.5	< 2	1.55	< 0.5	1	167	10		< 10	< 1		< 10
15133		226	150		1.0	0.46	14	< 10	80	< 0.5	< 2	1.23	1.5	7	148	10		< 10	< 1		< 10
15134	205	226			0.2	0.59	2	< 10	100	< 0.5	< 2	3.54	< 0.5	2	46	10		< 10 < 10	< 1		10 20
15135 15136	205	226 226			0.4 < 0.2	0.61 0.77	< 2 < 2	< 10 < 10	90 90	0.5 < 0.5	< 2 < 2	3.08 1.82	< 0.5 < 0.5	2	50 59	13 5	1.50 1.78		< 1 < 1		30
15137	205	226	60		0.2	0.46	6	< 10	70	< 0.5	< 2	0.14	< 0.5	4	107	12	1.66	< 10	< 1	0.22	10
15138	205	226	5		< 0.2	0.53	< 2	< 10	50	0,5	< 2	1.19	< 0.5	3	73	6	1.86	< 10	< 1		30
15139	205		< 5		< 0.2	0.50	< 2	< 10	50	0.5	< 2	3.22		1	65	9			< 1		30
15140		226	< 5		< 0.2	0.85	< 2	< 10	60	0.5	< 2	0.90		3	71	5					40
15141	205	226	< 5		0.2	1.65	< 2	< 10	40	< 0.5	< 2	1.81	< 0.5	4	109	2	4.62	< 10	< 1	0.32	30
15142	205		< 5		< 0.2	0.68	< 2	< 10	40	0.5	< 2	1.55		4	77	+					30
15143	205		90		34.2	0.88	6	< 10	110	< 0.5	108	3.84	< 0.5	9	72	14 59		< 10			10
15144 15145	205	226 226	< 5		< 0.2	0.69	< 2	< 10 < 10	70 70	< 0.5	< 2	2.50	< 0.5	4 3	117 56	29		< 10 < 10			10 20
15146		226	10 25		< 0.2	0.73	< 2 10	< 10	50	< 0.5	< 2	2.00		5	87	8					10
15147	205	226	< 5		< 0.2	0.27	24	< 10	30	< 0.5	< 2	0.53	< 0.5	16	197	31	3.25	< 10	< 1	0.09	< 10
15148	205	226	5		0.4	0.66	6	< 10	70	< 0.5	< 2	0.83	< 0.5	7	100	32			-	=	10
15149	205		10		0.2	0.41	2	< 10	40	< 0.5	< 2	0.76		16		96					< 10
15150	205		< 5		< 0.2	0.73	2	< 10	50	0.5	< 2	1.10		3	77	6			-		20
15151	205	226	< 5		< 0.2	0.58	< 2	< 10	40	< 0.5	< 2	1.51	< 0.5	7	123	20	2.60	< 10	< 1	0.19	20
15152		226	5		< 0.2	1.02	10	< 10	70	< 0.5	< 2	1.88		3	. –				-		20
15153	205	226	< 5		< 0.2	0.58	2	< 10	70 50	< 0.5	< 2	4.89		< 1	114	3 11					< 10 20
15154 15155	205		< 5 35		0.2 < 0.2	0.51 2.15	28	< 10 < 10	100	0.5	< 2 < 2	3.38	1.0	4	96				_		20
15156	205	226			< 0.2	0.58	< 2	< 10	70	< 0.5	< 2	0.58		4	85						20
15157	205	226	35		< 0.2	3.00	14	< 10	160	0.5	< 2	2.76	< 0.5	4	78	24	2.08	< 10	< 1	0.80	10
15158		22,6	5		< 0.2	1.22	< 2	< 10	50	0.5	< 2	0.49		4	103	4					30
15159	205		880			2.25	48	< 10	120	0.5	< 2	1.38		2	79	8					10
15160	205		5		< 0.2	0.58	< 2	< 10	50	< 0.5	< 2	1.33		4	81						30
15161	205	226	< 5		< 0.2	0.55	12	< 10	90	< 0.5	< 2	2.53	< 0.5	1	70	10	1.56	< 10	< 1	0.24	. 10
15162	205		< 5		< 0.2	0.42	28	< 10	50	< 0.5	< 2	1.80		3	56				· · -		20
15163	205		< 5		< 0.2	0.91	< 2	< 10	50	< 0.5	< 2	0.77	< 0.5	3	76						30
15164 15165	205	226 226	10		< 0.2	0.96	< 2	< 10 < 10	50	0.5	< 2	0.63 2.89		د 1	71 56		2.41				20 10
15166		226	< 5 < 5		< 0.2 < 0.2	0.73 0.50	< 2	< 10	120 110	< 0.5	< 2 < 2	2.89		< 1							< 10
L																				7	

1

}

Ť

CERTIFICATION:

ĵ.

lic

1

1

ł



1 1

1

1

1

ť

ł

## **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Number :1-B Total Pages :3 Certificate Date: 08-NOV-1999 Invoice No. :19932423 P.O. Number : Account :HPQ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

											C	ERTIF	ICATI	EOF	ANAL	YSIS		A9932	2423	
SAMPLE	PR CO		Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W mqq	Zn ppm	
5127					NotRed															
5128 5129	205	226	Notred	NOTRCO 805	NotRed < 1	Notrea 0.05	NOTRCO	Notrea 450	NOTRCA 8	NOTRCO 0.25	NOTRCO < 2	NOTRCO < 1		< 0.01	NOTRCA < 10	NOTRCO < 10	NOTRCO	Notrea < 10	NOTREE 22	
5130		226	0.12	840	< 1	0.03	4	240	16	0.59	2	< 1		< 0.01	< 10	< 10	5	< 10	24	
5131		226	0.21	1015	< 1	0.03	2	370	16	0.18	< 2	1		< 0.01	< 10	10	5	< 10	28	
5132		226	0.02	330		< 0.01	3	10	2	0.29	< 2	< 1		< 0.01	< 10	< 10	1	< 10	< 2	
5133 5134		226 226	0.07	495 1765	1	< 0.01	2	130 420	40	0.80	< 2 < 2	< 1		< 0.01	< 10 < 10	< 10 < 10	2	< 10 < 10	318 60	
5135	205		0.35	1165	< 1	0.03	2	440	26	0.19	< 2	1		< 0.01	< 10	< 10	* 6	< 10	50	
5136		226	0.28	795	< 1	0.04	1	430	6	0.12	< 2	ī		< 0.01	< 10	< 10	12	< 10	40	
5137	205		0.08	65	< 1		3	190		1.11	< 2	< 1		< 0.01	< 10	< 10	2	< 10	26	
5138 5139	205		0.24	485 1150	< 1 < 1	0.03	2	410 410		0.29	< 2	1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	8	< 10 < 10	40 38	
5140	205		0.29	405	< 1	0.03	2	450		0.41	< 2	1		< 0.01	< 10	< 10	13	< 10	56	
5141	205		0.13	105	< 1	0.02	4	420			4	2		< 0.01	< 10	10	15	< 10	58	
5142	205		0.20	560	< 1	0.03	2	440		0.92	< 2	1		< 0.01	< 10	< 10	12	< 10	60	
5143 5144	205		0.20	1415	1	0.03	3	400 240		1.61 0.78	2	1		< 0.01	< 10	< 10	78	< 10	22	
5145		226	0.21	620	< 1 < 1	0.03	2	350	16		< 2 < 2	1		< 0.01	< 10 < 10	< 10 < 10	11	< 10 < 10	24 114	
5146	205		0.20	535		0.04	3	240			2	1		< 0.01	< 10	10	9	< 10	30	
5147	205		0.08	125		< 0.01	4	60		1.83	2	< 1		< 0.01	< 10	10	3	< 10	2	
.5148	205		0.20	250	< 1	0.01	3	240		1.25	< 2	< 1		< 0.01	< 10	< 10	6	< 10	12	
5149 5150	205		0.11	225 475	1	< 0.01	63	100 320	-	3.54	< 2	< 1		< 0.01	< 10 < 10	10 10	3 12	< 10 < 10	< 2 46	
5151		226	0.21	460	1	0.03	4	270			4	1		< 0.01	< 10	< 10	8	< 10	32	
5152		226	0.27	715	< 1	0.04	2	350	-	0.21	< 2	1	214	0.01	< 10	10	12	< 10	38	
5153	205		0.34	2770	< 1	0.02	2	200	-		< 2	< 1		< 0.01	< 10	< 10	3	< 10	6	
5154 5155		226 226	0.29	730 360	< 1 < 1	0.04	3	390 330	20 18	0.35	< 2 < 2	1		< 0.01	< 10 < 10	< 10 < 10	6 21	< 10	34 208	
5156		226	0.24	540	< 1	0.04	4	320	12	1.67	< 2	3 1		< 0.01	< 10	< 10	10	< 10 < 10	208	
5157	205		0.20	255	< 1	0.13	3	310	24	1.25	< 2	3	100	< 0.01	< 10	< 10	20	< 10	90	
5158		226	0.21	415	< 1	0.04	3	400		0.87	2	2		< 0.01	< 10	< 10	16	< 10	60	
5159 5160	205	226 226	0.14	110 380	< 1	0.03	3	280	634	2.08	< 2	1		< 0.01	< 10	< 10	13	< 10	1050	
5160		226	0.19	1095	< 1 < 1	0.04 0.05	3 2	350 340		1.51 0.48	2 < 2	1 < 1		< 0.01 < 0.01	< 10 < 10	< 10 < 10	9 4	< 10 < 10	64 18	
5162	205	226	0.15	495	< 1	0.03	1	260	8	0.37	< 2	< 1	187	< 0.01	< 10	< 10	6	< 10	26	
5163	205		0.28	300	< 1	0.02	2	320			< 2	1		< 0.01	< 10	< 10	10	< 10	42	
5164		226	0.22	245	< 1	0.03	3	260		1.35	< 2	1		< 0.01	< 10	< 10	9	< 10	48	
5165 5166	205	226 226	0.19 0.19	930 1140	< 1 < 1	0.04	2	340 340	14	0.11 0.01	< 2	< 1 < 1		< 0.01	< 10 < 10	< 10 < 10	6	< 10 < 10	36	
			5,19	1140	<b>`</b> 1		1	340	× 4	0.01	× 4	~ 1	174	. 0.01	~ 10	10	4	Ĩ		,
	<b>L</b>																		1 1	

CERTIFICATION:

þ

8



1

1

1

1

1

1

## Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Number :2-A Total Pages :3 Certificate Date: 08-NOV-1999 Invoice No. : 19932423 P.O. Number : Account :HPQ

Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS

					William of the Work and an angel of the State					CE	RTIF	ICATE	OF A	NALY	SIS		49932	423		
SAMPLE	PREP CODE	Au ppb FA+AA	Au g/t	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
15167	205 220	5 < 5		< 0.2	0.54	< 2	< 10	90	< 0.5	< 2	4.35	< 0.5	< 1	25	4	1.17	< 10	< 1	0.25	10
15168	205 220			< 0.2	0.60	< 2	< 10	90	< 0.5	< 2	3.65	< 0.5	< 1	78	7	1.05	< 10	< 1	0.26	< 10
15169	205 220			< 0.2	0.53	8	< 10	70	< 0.5	< 2	2.98	< 0.5	3	107	17	2.26	< 10	< 1	0.25	< 10
15170 15171	205 220			< 0.2	0.52	26	< 10	80	< 0.5	< 2	3.88	< 0.5	2	107	16	2.24	< 10	< 1	0.24	< 10
µ 51 / 1	205 220			< 0.2	0.65	< 2	< 10	100	< 0.5	< 2	2.73	< 0.5	1	117	6	1.04	< 10	< 1	0.26	< 10
15172	205 220			0.2	0.46	< 2	< 10	60	< 0.5	2	3.41	< 0.5	3	75	15	2.42	< 10	< 1	0.19	10
15173 15174	205 220			< 0.2	0.56	< 2	< 10	50	< 0.5	< 2	0.71	< 0.5	3	92	13	1.64	< 10	< 1	0.17	10
15175	205 220			< 0.2 < 0.2	0.49 1.16	< 2 < 2	< 10 < 10	50 60	< 0.5 < 0.5	< 2 < 2	1.88	< 0.5 < 0.5	3	84 98	8	1.23	< 10	< 1	0.21	10
15176	205 220			< 0.2	2.16	< 2	< 10	100	0.5	< 2	2.40	< 0.5	3	87	11	1.54	< 10 < 10	< 1 < 1	0.21 0.37	10 10
				~ ~ ~ ~		· · ·	·	+00	····				J	• /	·····	1.10	× 10	<u>``</u>	0.37	10
15177	205 220			< 0.2	0.51	< 2	< 10	70	< 0.5	< 2	2.49	< 0.5	4	90	30	1.52	< 10	< 1	0.23	10
15178	205 22			0.2	0.42	< 2	< 10	70	< 0.5	32	1.79	< 0.5	4	91	63	1.87	< 10	< 1	0.20	10
15179 15180	205 220			< 0.2 < 0.2	0.62 2.37	< 2	< 10 < 10	30 50	0.5	< 2 < 2	1.59	< 0.5	3	81	4	1.31	< 10	< 1	0.27	10
15181	205 22			< 0.2	0.63	< 2	< 10	40	0.5	< 2	2.69	< 0.5 1.0	4	99 148	1 8	1.51	< 10 < 10	< 1 < 1	0.47 0.24	10 10
										<u> </u>					•	1.30	· • • •	· +		
15182	205 220			< 0.2	0.48	< 2	< 10	50	< 0.5	< 2	1.74	< 0.5	1	138	2	1.22	< 10	< 1	0.18	< 10
15183 15184	205 22			0.8	0.51	12	< 10	50	< 0.5	< 2	2.43	< 0.5	3	101	3	1.32	< 10	< 1	0.27	10
15185	205 22			< 0.2 < 0.2	0.55 0.49	< 2 < 2	< 10	30	< 0.5 < 0.5	< 2	2.19	< 0.5	4	90	2	2.20	< 10	< 1	0.14	20
15186	205 220			< 0.2	0.49	< 2	< 10 < 10	50 30	< 0.5	< 2	1.02	< 0.5 < 0.5	2	88 96	4	1.55 1.55	< 10 < 10	< 1 < 1	0.18 0.18	10 10
							· IV			· •	1.04	× 0.5	<b>د</b>			1.35	× 10	<u> </u>	0.10	10
15187	205 220			< 0.2	0.55	6	< 10	40	< 0.5	< 2	1.46	< 0.5	3	94	4	1.35	< 10	< 1	0.22	10
15188 15189	205 22			< 0.2	0.62	< 2	< 10	20	< 0.5	< 2	1.26	< 0.5	2	93	5	1.47	< 10	< 1	0.13	10
15201	205 220			< 0.2 1.4	0.44 0.41	26	< 10 < 10	40 50	< 0.5 < 0.5	< 2 30	0.55 3.95	< 0.5	3	92	10	1.59	< 10	< 1	0.19	10
15202	205 220			< 0.2	0.32	< 2	< 10	50	< 0.5	< 2	2.74	< 0.5 < 0.5	3	59 61	38 14	1.94 1.75	< 10 < 10	< 1 < 1	0.18 0.14	10 20
							· 1V			· •	4.74	· ···	J		14	1./3	× 10	<u> </u>	0.14	<b>4</b> 0
15203	205 220			< 0.2	0.49	< 2	< 10	40	0.5	< 2	2.58	< 0.5	3	54	11	1.97	< 10	< 1	0.17	30
15204	205 220			< 0.2	0.04	< 2	< 10	10	< 0.5	< 2	0.92	< 0.5	< 1	197	< 1	0.30	< 10	< 1	0.02	< 10
15205 15206	205 220			< 0.2	0.39	< 2	< 10	70	< 0.5	< 2	2.76	< 0.5	< 1	28	< 1	1.08	< 10	< 1	0.19	40
15207	205 220			< 0.2 0.4	0.38 0.53	< 2	< 10 < 10	60 70	< 0.5 0.5	< 2	1.36 2.40	< 0.5 1.0	< 1	32 81	< 1 7	0.61	< 10	< 1	0.19	40
				v. <del>1</del>	v. 55		× 10		0.5	· •	2.40	1.0	<b></b>	01	/	1.41	< 10	< 1	0.26	10
15208	205 226			0.2	0.44	< 2	< 10	50	< 0.5	< 2	0.78	< 0.5	4	79	4	2.84	< 10	< 1	0.15	30
15209	205 226			< 0.2	1.07	< 2	< 10	30	< 0.5	< 2	1.17	< 0.5	3	70	7	1.99	< 10	< 1	0.17	30
15210 CMCG-06	205 220			< 0.2	0.58	4	< 10	50	< 0.5	< 2	0.95	< 0.5	3	88	7	2.01	< 10	< 1	0.15	30
CMCG-07	205 226			< 0.2 < 0.2	0.50 0.06	< 2 < 2	< 10 < 10	80 < 10	< 0.5 < 0.5	< 2 < 2	1.37 0.01	< 0.5	5 1	205 200	5	1.17	< 10	< 1	0.31	< 10
		<u> </u>		~ U.A	v.vo	<u> </u>	× 10	× 10	× 0.5	~ 4	0.01	< 0.5	1	200	1	0.32	< 10	< 1	0.01	< 10
CMCG-08	205 226			< 0.2	0.33	< 2	< 10	40	< 0.5	< 2	0.09	< 0.5	3	232	6	0.64	< 10	< 1	0.10	< 10
CMCG-09	205 226			< 0.2	0.02	< 2	< 10	< 10	< 0.5	< 2	0.16	< 0.5	1	281	8	0.46	< 10		< 0.01	< 10
CMCG-10 CMCG-11	205 226			< 0.2	3.07	< 2	< 10	160	< 0.5	< 2	1.10	< 0.5	10	79	63	3.75	< 10	< 1	0.60	< 10
CMCG-12	205 226			< 0.2 < 0.2	1.29 0.64	2 < 2	< 10 < 10	60 40	< 0.5 < 0.5	< 2 < 2	0.96 0.41	< 0.5 < 0.5	6 10	171 158	9 42	1.31	< 10		0.31	< 10
		1 `*			V.0%	<b>`</b> •	× 10	14.0	× V.9	► <b>4</b>	0.41	× 0.5	10	129	44	1.29	< 1	\ < 1	0.10	< 10
		J															1	1	1	

CERTIFICATION:_

.

ł

}

UNC



## **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :2-B Total Pages :3 Certificate Date: 08-NOV-1999 Invoice No. :19932423 P.O. Number • :HPQ Account

1

1 1 1

Projec Comm

ect : ments:	1767 ATTN: LINDA	FAX: GRAEME EVANS	

										CE	RTIFI	CATE OI		YSIS		<b>\9932</b>	423	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	р ррш	Pb ppm	S %	Sb ppm	Sc ppm	Sr 9 ppm	'i Tl % ppm	U mqq	V ppm	W ppm	Zn ppm	
15167	205 226	0.16	1930	< 1 <	0.01	1	450	2	0.07	< 2	< 1	390 < 0.		< 10	3	< 10	20	
L5168	205 226	0.15	2100		0.01	1	270	2	0.05	< 2	< 1	319 < 0.1		< 10	1	< 10	12	
5169	205 226	0.35	1845	< 1	0.01	4	250	2	0.92	< 2	< 1	255 < 0.1		< 10	4	< 10	12	
.5170 .5171	205 226 205 226	0.36 0.15	2540 1250	< 1 < < 1 <		3 2	250 280	2 < 2	0.43 0.07	2 < 2	< 1 < 1	326 < 0. 268 < 0.		< 10 < 10	2 4	< 10 < 10	10 12	
5172	205 226	0.24	985	< 1	0.01	3	430	12	0.32	2	1	329 < 0.		10	8	< 10	28	
5173	205 226	0.31	325	< 1	0.01	3	510	10	0.15	< 2	1	123 < 0.1		< 10	8	< 10	42	
15174	205 226	0.26	825	< 1	0.01	3	500	4	0.14	< 2	1	196 < 0.	-	< 10	7	< 10	32	
L5175 L5176	205 226 205 226	0.30 0.32	395 365	< 1 < 1	0.01 0.01	3 11	490 490	8	0.1B 0.21	2 < 2	1 1	138 < 0. 126 < 0.		< 10 < 10	10 11	< 10 < 10	44 32	
15177	205 226	0.27	940	< 1	0.03	4	520	6	0.26	< 2	1	240 < 0.		< 10	8	< 10	84	
15178	205 226	0.19	515	< 1	0.01	6	440	22	1.03	2	< 1	169 < 0.		< 10	5	< 10	28	
L5179	205 226	0.24	355 570	< 1	0.02	3	530	12	0.10	< 2	1	255 < 0.		< 10	6	< 10	42	
15180 15181	205 226 205 226	0.38 0.67	595	< 1 < 1	0.02 0.03	4	490 340	10 38	$0.10 \\ 0.11$	< 2 < 2	2 1	301 < 0. 248 < 0.		< 10 10	14 9	< 10 < 10	42 232	
.5182	205 226	0.28	360	< 1	0.02	3	330	20	0.18	< 2	< 1	134 < 0.		< 10	6	< 10	30	
5183	205 226	0.29	435	< 1	0.03	3	520	54	0.24	< 2	1	277 < 0.		< 10	4	< 10	64	
5184	205 226	0.81	415	< 1	0.02	5	440	22	0.60	2	1	350 < 0.		< 10	12	< 10	56	
5185 5186	205 226 205 226	0.35 0.48	210 265	< 1 < 1	0.04 0.03	3 4	470 490	10 10	0.41 0.15	< 2 < 2	< 1 1	114 < 0. 143 < 0.		< 10 < 10	5 11	< 10 < 10	38 50	
15187	205 226	0.28	390	< 1	0.04	3	500	22	0.22	< 2	1	207 < 0.		10	7	< 10	46	
15188	205 226	0.33	265	< 1	0.01	4	490	12	0.27	< 2	1	219 < 0.		< 10	9	< 10	54	
15189	205 226	0.24	200	< 1	0.03	4	450	26	0.49	< 2	1	93 < 0.		< 10	6	< 10	68	
15201 15202	205 226 205 226	0.17 0.15	1180 650	< 1 < 1	0.02 0.03	2	400 350	38 8	0.56 0.46	< 2 < 2	1 < 1	371 < 0. 239 < 0.		< 10 < 10	5 5	< 10 < 10	42 24	
15203	205 226	0.19	715	< 1	0.02	2	380	8	0.48	< 2	1	249 < 0.		< 10	8	< 10	36	
5204	205 226	0.02	380	< 1 <		2	30	-	< 0.01	< 2	< 1	91 < O.		< 10	< 1	< 10	< 2	
5205	205 226	0.22	770	< 1	0.03	1	420	10	0.01	< 2	< 1	284 < 0.		< 10	5	< 10	38	
.5206	205 226	0.11	375	< 1	0.04	1	390	8	0.01	< 2	< 1	154 < 0.		10	3	< 10	30	
.5207	205 226	0.18	725	< 1 <	0.01	1	320	12	0.29	2	< 1	303 < 0.		10	6	< 10	210	
.5208	205 226	0.20	260	< 1	0.03	2	350	10	1.88	< 2	1	168 < 0.		< 10	10	< 10	58	
.5209	205 226	0.21	390	< 1	0.01	2	400	6	0.95	< 2	2	270 < 0.		10	15	< 10	56	
L5210 CMCG-06	205 226	0.20	475 355	< 1	0.03	3	400	2 < 2	0.60	4	1	232 < 0. 133 0.		10	13	< 10	102 20	
MCG-07	205 226 205 226	0.64 0.03	355	< 1 < 1 <	0.01 0.01	28 3	110 < 10	< 2	0.04	< 2 < 2	< 1	$\begin{array}{rrrr} 133 & 0. \\ 1 < 0. \end{array}$		< 10 < 10	15 1	< 10 < 10	< 2	
MCG-08	205 226	0.12	145		0.01	8	70	6	0.01	< 2	1	9 0.		< 10	10	< 10	6	
:MCG-09	205 226	0.01	75	< 1 <		5	< 10	< 2	0.02	< 2	< 1	5 < 0.		< 10	1	< 10	2	
CMCG-10 CMCG-11	205 226	1.21 0.63	440 505	< 1 < 1	0.11 0.01	5	240 280	6 < 2	0.45	< 2 < 2	4	57 0. 24 0.		10 < 10	47 19	< 10 < 10	64	
INCG-12	205 226	0.31	200	< 1	0.01	4	190	< 2	0.02	2	1	15 0.		< 10 < 10	19	< 10	10	1
	<b>B</b> I		. , <u> </u>								· · · · · · · · · · · · · · · · · · ·		CERTIF	ICATION:		•2		1.0

}

1

	Chemex Labs Ltd. Analytical Chemists * Geochemists * Begistered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218					·	Pro	To: TECK EXPLORATIONS LTD. 350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Project : 1767 Comments: ATTN: LINDA FAX: GRAEME EVANS CERTIFICATE OF ANALYSIS A							Page Number :3-A Total Pages :3 Certificate Date: 08- Invoice No. :199 P.O. Number : Account :HP					
SAMPLE	PREP CODE	Au ppb FA+AA	Au g/t	Ag ppm	A1 %	As ppm	В	Ba ppm	Ве	Bi	Ca	Cđ	Co	Cr	Cu	Fe %		Eg	K %	
CNCG-13 CNCG-14 CNCG-15 CNCG-16	205 226 205 226  	< 5 < 5 NotRcđ		< 0.2 < 0.2 NotRcd	0.52 2.98 NotRcd	< 2 6 NotRcđ	< 10 < 10 NotRcd	20 140 NotRcd	< 0.5 < 0.5 NotRed	< 2	0.33 0.75 NotRcd	< 0.5 < 0.5 NotRcd	10 18 NotRcd	237 106 NotRcd	35 57 NotRed	1.23 3.21 NotRed	< 10 < 10 NotRcd	< 1 < 1 NotRed	0.09 1.27 NotRcd	< 10 < 10 NotRcd
				··							<del>.</del>							$\left( \right)$	n7.	
														CERTIF	ICATION	:	·	2092		/

a the state of the

	Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218				Proje	350 - 27 KAMLO V2C 1Z ct : nents:	1767 ATTN: LII	RIA ST.	FAX: GR				Page Number Total Pages Certificate Da Invoice No. P.O. Number Account A9932423		
SAMPLE	PREP Mg CODE %	Mn Mo ppm ppm	Na Ni % ppm	P Pl ppm ppn		Sb ppm	Sc ppm	Sr ppm	- OF A Ti %	T1 ppm	YSIS U ppm	V ppm	A993 W	Zn	
CMCG-13 CMCG-14 CMCG-15 CMCG-16	205 226 0.16 205 226 1.44 NotRcd N	105 1 0	.01 5 .13 5 Rcd NotRcd N	50 < 2 220 2 NotRed NotRed	0.18 0.54 NotRcd	2 < 2 NotRcđ	1 3 NotRcd N	14 40 JotRcd	0.03 0.17 NotRcd 1	< 10 < 10 NotRcđ	< 10 10 NotRcd	11 48 NotRcđ	< 10 < 10 NotRcd	8 84 NotRcđ	
														( )	
L						<u>,</u>				CERTIFI	CATION	l:	• 2		1.0

### **APPENDIX 3**

### ANALYTICAL PROCEDURES



## **Chemex Labs Ltd.**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

### To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Comments: ATTN: LINDA FAX: GRAEME EVANS

A9933153

1

Comments, ATTN, LINDA PAA, GHA

### CERTIFICATE

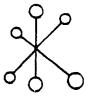
A9933153

### (HPQ) - TECK EXPLORATIONS LTD.

Project: 1767 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 17-NOV-1999.

1


1

1

SAMPLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION					
211 202 229	5 5 5	Screen 150 um 100 mesh save reject ICP - AQ Digestion charge					
* NOTE	1:						

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 10 0.5 2 0.01 0.5 1 1 1 1 0.01 10 10 0.01	10000 100.0 15.00 10000 10000 100.0 10000 15.00 10000 10000 15.00 10000 10000 10000 10000 10000
Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock G ppm: 32 element, soil & rock F %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 2 10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 10	100.0 15.00 10000 10000 100.0 10000 15.00 10000 10000 10000 10000 10000 10000
As ppm: 32 element, soil & rock B ppm: 32 element, rock & soil Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	2 10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 10	10000 10000 10000 10000 15.00 10000 10000 10000 10000 10000 10000 10000
B ppm: 32 element, rock & soil Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 10 10	10000 100.0 100.0 15.00 10000 10000 10000 15.00 10000 10000 10000
Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 0.5 2 0.01 0.5 1 1 1 0.01 10 10	10000 100.0 15.00 500 10000 10000 15.00 10000 10000 10000 10000
Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	0.5 2 0.01 0.5 1 1 1 0.01 10 10 0.01	100.0 10000 15.00 500 10000 10000 15.00 10000 10000 10000 10000
Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	2 0.01 0.5 1 1 0.01 10 10 0.01	10000 15.00 10000 10000 15.00 15.00 10000 10.00 10.00
Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	0.01 0.5 1 1 0.01 10 1 0.01 10	15.00 500 10000 10000 15.00 10000 10000 10.00 10.00
Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.5 1 1 0.01 10 1 0.01 10	500 10000 10000 15.00 10000 10000 10.00 10.00
Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10 1 0.01 10	10000 10000 15.00 10000 10000 10000 10.00
Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10 1 0.01 10	10000 10000 15.00 10000 10000 10.00 10.00
Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 10 1 0.01 10	10000 15.00 10000 10000 10.00 10000
<pre>Fe %: 32 element, soil &amp; rock Ga ppm: 32 element, soil &amp; rock Hg ppm: 32 element, soil &amp; rock K %: 32 element, soil &amp; rock La ppm: 32 element, soil &amp; rock Mg %: 32 element, soil &amp; rock Mn ppm: 32 element, soil &amp; rock</pre>	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 10 1 0.01 10	15.00 10000 10000 10.00 10.00
Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP- <b>AES</b> ICP- <b>AES</b> ICP- <b>AES</b> ICP- <b>AES</b> ICP- <b>AES</b> ICP- <b>AES</b>	10 1 0.01 10	10000 10000 10.00 10000
Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 0.01 10	10000 10.00 10000
K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	icp-aes icp-aes icp-aes icp-aes icp-aes	0.01 10	10.00
La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10	10000
Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	icp <b>-aes</b> icp <b>-aes</b>	=+	
Mn ppm: 32 element, soil & rock	ICP-ARS	0.0X	15.00
		5	10000
	ICP-AES	ĩ	10000
Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
P ppm: 32 element, soil & rock	ICP-AES	10	10000
Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
	ICP-AES	0.01	5.00
	ICP-ARS	2	10000
	ICP-ARS		10000
		1	10000
Ti %: 32 element, soil & rock			10.00
			10000
			10000
			10000
			10000 10000
		Pb ppm: 32 element, soil & rock ICP-AES S %: 32 element, rock & soil ICP-AES S %: 32 element, soil & rock ICP-AES Sc ppm: 32 element, soil & rock ICP-AES Sr ppm: 32 element, soil & rock ICP-AES Ti %: 32 element, soil & rock ICP-AES Tl ppm: 32 element, soil & rock ICP-AES V ppm: 32 element, soil & rock ICP-AES V ppm: 32 element, soil & rock ICP-AES W ppm: 32 element, soil & rock ICP-AES	Pb prm: 32 element, soil & rockICP-AES2S %: 32 element, rock & soilICP-AES0.01Sb prm: 32 element, soil & rockICP-AES2Sc prm: 32 element, soil & rockICP-AES1Sr prm: 32 element, soil & rockICP-AES1Ti %: 32 element, soil & rockICP-AES1Ti %: 32 element, soil & rockICP-AES10U prm: 32 element, soil & rockICP-AES10V prm: 32 element, soil & rockICP-AES10V prm: 32 element, soil & rockICP-AES1W prm: 32 element, soil & rockICP-AES1W prm: 32 element, soil & rockICP-AES10



ECO-TECH LABORATORIES LTC

7

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4:

### GEOCHEMICAL LABORATORY METHODS

### SAMPLE PREPARATION (STANDARD)

1.	Soil or Sediment:	Samples are dried and then sieved through 80 mesh sieves.
2.	Rock, Core:	Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.
3.	Humus/Vegetation:	The dry sample is ashed at 550 C. for 5 hours.

### METHODS OF ANALYSIS

All methods have either cannet certified or in-house standards carried through entire procedure to ensure validity of results.

### 1. MULTI ELEMENT ANALYSES

(a) ICP Packages (6,12,30 element).

Digestion Finish

Hot Aqua Regin ICP

(b) ICP - Total Digestion (24 element).

Digestion

Finish

Hot HC104/HN03/HF

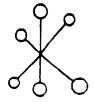
ICP

(c) Atomic Absorption (Acid Soluble) Ag*, Cd*, Cr, Co*, Cu, Fe, Pb*, Mn, Mo, Ni*, Zn.

Digestion

Finish

Hot Aqua Regia


Atomic Absorption * = Background corrected

(d) Whole Rock Analyses.

Digestion

Finish

Lithium Metaborate fusion ICP



## ECO-TECH LABORATORIES LT

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (804) 573-5700 Fax 6

9. Gallium

-----

-----

1000000

and the second se

Contraction of the local diversion of the loc

Digestion

Hot HC104/HN03/HF

10. Germanium

Digestion

Hot HC104/HN03/HF

11. Mercury

Digestion Hot aqua regia Finish Cold vapor generation -A.A.S.

12. Phosphorus

Digestion

Lithium Metaborate Fusion

13. Selenium

Digestion

Hot aqua regia

- -

14. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion 'Finish

Finish

ICP finish

Finish

_____

Finish

-----

Atomic Absorption

Atomic Absorption

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.



### ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4657

### GEOCHEMICAL LABORATORY METHODS

### Multi Element ICP Analyses

Digestion:

• 1 gram sample is digested with 6 ml dilute aqua regia in a waterbath at 90°C for 90 minutes and diluted to 20 ml.

Analysis:

Inductively coupled Plasma.

# **APPENDIX 4**

# STATEMENT OF COSTS

# STATEMENT OF COSTS CAM GLORIA PROPERTY

1. Wages Graeme Evans -Geologist @ \$330/day for 30 days (May 10,21,28 Sept. 17,21,2 Oct 1-7,13-20,22,25-27) 1999	22,24,27-30
Field work and supervising trenching ,diamond drilling and logging drill core	\$9,900.00
Greg Thomson-Geologist @ \$306/day for 5 days (July 12-16)1999 VLF survey and sand sampling and prospecting.	\$1,530.00
Rob MacDonald-Geologist @ \$260/day for 5 days (Oct.21-25), 1999 Supervising drilling and core logging.	\$1,300.00
Chuck Marlow- Prospector/ Technician @ \$216/day for 41 days (June 1-7, Sept. 27-30, Oct 1-5,11-30, Nov 1-5) 1999 establishing grid, prospecting, rock sampling splitting core, storage and reclama	ation <b>\$8,856.00</b>
2. Transportation And Field Suplies	
Truck and fuel 57 days @ \$80/day	\$4,560.00
Pickets, bags, flagging, equipment etc.	\$ 640.00
Meals, Accommodation 81 man days @ \$85.00/day	\$6,855.00
Grass Seed and fertilizer	\$ 276.00
4. Rock Analyses	
196 rocks analyzed for Au geochem & 30 element ICP @ \$18.50/sample	\$3,626.00

13 sand and moss samples analyzed for Au geochem & 30 element ICP @ \$21.30/sample \$ 276.90

# 5. Diamond Drilling Costs

835.9 meters of NQ diamond drilling by Fro @ \$52.00/m all in costs.	ontier diamond drilling \$43,4	66.80
32.0 cat hrs D-6 pad building and reclamati		40.00
6. Trenching Costs		
Charlies Backhoe Service (Sept.24-Oct.4,1		40.00
7. Report Writing & Compiling		
G. Evans 7 days @ \$330/day	\$2,3	10.00
S. Archibald -Draftsman 8 days @ \$230/day	-	40.00
Materials & Copy Costs	\$ 1	35.00
TOTAL COST	<u>\$ 92,851.70</u>	

### **APPENDIX 5**

# STATEMENT OF QUALIFICATIONS

_____

#### STATEMENT OF QUALIFICATIONS

- I, Graeme Evans, do certify that:
- 1) I am a geologist and have practiced my profession for the last seventeen years.
- 2) I graduated from the University of British Columbia, Vancouver, British Columbia with a Bachelor of Science degree in Geology (1983).
- 3) I am a member in good standing with the APEGBC as a professional geoscientist.
- 4) I was actively involved and supervised the Cam Gloria program and authored the report herein.
- 5) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- I hold no direct or indirect personal interest, in the Cam Gloria property which is the subject of this report.



Summer France

Graeme Evans Senior Geologist December, 1999

6)

#### **APPENDIX 6**

# **DIAMOND DRILL LOGS**

TECK EXPLORATIONS	LIMITED	- W. <u></u>		НО	LE No.	CG	- 99-	01			P	ige 1	of
DIAMOND DRILL LOG COMPANY FRONTIER PROJECT 1775 PROPERTY Cam Gloria		_112 0E	0m	DATE : COLLARED Oct	<u>15,1969</u> <u>18.</u> <u>18.</u>	РТН   - С -	DIP -45 - <b>45</b>	AZ.	DE CA WA	EPTH ASING ATERL	OF O REMAI	18.0 m vb : 0.6 Ning : Non Ength :	6 Ione
DEPTH O (metres) I FROM A DESCRIPTION		OVERY	STRUCTURE ANGLES VEINS	ALTERATION	METALLIC MINERALS (%)		AMPL	E D/	ATA			RESUL	TS
D-0.6 OVERBURDEN		RECOV		-		SAMFL NO.	FROM	то	LENGT	A.	Au		
0.6-2.5 Strongly Ocidized Megocrystic -broken limonitic	NTS CLAIM ELEVATION GRID COOR NORTHING EASTING EASTING Monz Supp LG Monz CA												
2.5-3.5 Fault Zone W serieite QU's s strong serie alt's contacts CI pervosit we serie alt's timou JC 3.0m a Som QV C 60° to W 20% yfar pu blebs	inte NA				Section average 8-10% Som	1	12.5	3.5	1.0	10	<u> </u>		
W 20% ufar my blebs					ufgr 1								
3.5-38.4 Measonstic Monzonite - unal -Mild al equipron phenoix phone is al to have -montics totally replaced by s epidete	hlorite			fract eveny 10-15 on wy chil selv 30-50° to CA		1509	123.0	29.0	6.0	5	5		
-5% j-2cm feldspay stals ojnkish -This rock non magnetic			henlen		31.2-31.3 Icm QV m							18.0 m VB : 0.6 NING : NOM ENGTH :	
		¥		36.7-37.0 5cm ( Selvage and hom?	Selvace 10% pm i		36.7	271.0		<b>C</b>	55		
			serie	A PARTY AND THE PARTY		13033	30.1	320	2.2	<u>.</u>	<u> </u>		

Service of the service of

TECK EXPLORATIONS LIMITED PAGE 2 of HOLE NO. CG-99-01 DEPTH (metres) GRAPHIC RECOVERY STRUCTURE ALTERATION METALLIC SAMPLE DATA RESULTS MINERALS (%) ANGLES VEINS DESCRIPTION FROM NO. FROM TO LENGTH AU . то Mon Monz hem/seric all 9 patenty her all overprivated by selic bands w/ av centers SCO 70 seric (20-30cm) bands C 60° to CA 38.4 - 40.8 15054 38.4 40.0 1.0 <5 5% at mits -5 Inm-+ lon ZONE 19055 400 405 1.4 5 39.4 Mod - Strong illow Serisite att Monz variable mod - attrong spricite att of FP's STo 1-3 min att with in several orientations 40.8-4417 tr year discom 15056 40.8 42.8 2.0 5 -5 5000 15057 42.8 44.7 1.9 60 35 t an tet so? 20% for m. 30% man and QU by 15058 4413 45.3 1.0 +1000 4.81d milley whit av meetion 243 90 Million, 1-29 and 55 15059 453 463 1.0 15 -5 as above w/100 % and vein but I for such matrix 1/ 15050 463 463 110 15 -5 S2 py, 5% gg for sulpe 1, some sould land to go 15061 477 48.9 1.2 20 15 SMUPHIDE Right GTZ VEIN - MODER CONTRACT C GO - Milley white GV wy variable Subsidie context and patches of any atz by - lower locatact C 55° 44.7-48.9 15058 44.7 45.7 1.0 1000 4.81 dis 9.57014 48.9-53.7 to dissemen 15062 48.9 51.0 2.1 10 15053 51.0 53.7 2.7 5 20 1000110001 tranch ÷..., #12000 0 60°/ to CAI -1-37. Smm at valts, -1-22 Kaolinite Imm valts Millen white QV containty C 70 to CA -fract C 60° to CA 537-55A 1-270 year sulph 15084 53.7 55.4 1.7 45 -5

the second s

	TECK EXPLORATIONS LIMITED				HOLE	No. <u>Ca-99-0</u>	1					P.	AGE	3 of	
DEPTH C (metres) 7		Ϋ́	STRUC	TURE	ALTERATION	METALLIC	s	MPL	E D,	ATA	1		RESU	JLTS	
DEPTH C (metres) H FROM d	DESCRIPTION	Š	ANGLES	VEINS		MINERALS (%)	1								
101 -		RECOVE			<i>.</i>		SAMPLI NO.	FROM	то	LENGT	Ay	1.h			-
55.4- 64.4	Wie-s Mad Serie alter Monz wy QU3 accurating with pervasive serie alt ¹² w/ 20% 10-20 cm sect ¹⁸ of mod socie alt ² ( 60° to CA 5% 1-5cm nitry QU3 ( 60° to CA 1-2% how are 1 with - some sections still have chlorite	Ĺ		]				1		1		1	<u> </u>		
	generally we pervasive savic alt?					3-4% your as	15065	55,4	57.4	2.0	135	150	t		
	W/ 20% 10-20 cm sect of med			<u> </u>		on utin selvaces	LING	57-4	159.4	2.0		1.	1		
	I sovie all C. 60° to CA						SOG	59,4 61.4	GL4	2.0	<5		1		
	5% 1-Scm nilky QUZz C CO to CA	ļ		L			15068	61.4	69.4	20	5	1	<u> </u>		
	1-2% how gtz 1 mltz											1			
	some sections still have chlorite							I							
	preserved										1				
				ļ									1		
64.4- 65 5	Milley White QV contracts C 30° to CA			·			_								
	contracts ( 30 to CA			ļ		5% dissemt					1				
	- milling av w/ fract @ 30-40°	<u> </u>	[	<u> </u>		fract 04 2-3%	15069	64H	€S.S	1.	140				
	my servic	ļ	<u> </u>			Smart on 2-3%	1				[	i –			
	· + ··· + ···· • • ··· • • • • • • • • •			·											
65.5-70.4	mont & strong serie alt Monz w/ QV's				·····				[			Į			
	mod pervois ilsevic w/ strong alts				5/000 mil	s troy	15070	(S.S.	673	1.8	45	-5			
·	seric/selvages on QU's	1.35%	tav pu, 10 Joy	11507, w	5% Qtr. unit t= chalendenic QV3 nun QV, tr py	OLO HO CA	15074	67:3 68:3	<del>G8.3</del>	1.0	60	75			
	-1570 10-30 cm QUZ (= 60" to CA	<u> </u>	<b>110</b>	5701-3	hun QV, tr py		15072	8.3	704	2.1	5	1-			
·	w strong subhides	<b> </b>			- 10		 				L	<b>_</b>			
	- 2-37 Jun Btz mits						İ	1	<u> </u>	I	Ĺ	ĺ			
	mod - strong serie all Monz v QV-3 mod pervos Userie w/ strong alls serie selvages on QV-3 -1590 10-30 cm QV-3 C 60° to CA w strong subhides -2-39 lybe Btz mits - sharp lower all contact - ne fault	l		· • • • • • • • • • • • • • • • • • • •			i 	<u> </u>				ĺ			
				 			L	1		L					
70.4-118.0	Meanonspic Monzonite - unalt	ļ			a mumber of mod 5-10 cm QV3	seric alt-sections		<u> </u>							
FOH	mediar lolan phonot my chi co reduced matice and 5% 1-2 cm plan - Krtals -fract every 15cm P 30-50 to CA	<b> </b>		• *	5-10en QVS							L			
	matics and 15% 1-2 cm place Kytals	<u> </u>			1 73.9-79.00 60 %	(A)									
	-fract every 15cm ( 30-50 to CA	<u> </u>			76.3-76.7 680		19073	90.0	96.0	6.0	5				
	- hem alt fractures 77-105m	ļ		ļ <u></u>	817-820070	1	L	l		L		l			
···-·	- hem alt fractures 77-105m - avg 1-270 milky ste volts 1-2mm				81.7 - 82.0 C 70 85.4- 85.9 C 70			l	L	L					
		ļ	i		92.3 - 92.8 CH5°			1	<b>!</b>			ļ			
	generally chl on fract			 				ļ	ļ		<b>.</b>	l			
				· · · · · · · · · · · · · · · · · · ·											
			1							]			[		

TECK EXPLORATIONS	· · · · ·				но	LE No.	<u>C</u> G-	-99-C	<u>)2</u>			PAC.	se j	of
DIAMOND DRILL LOG COMPANY _ERONITIER PROJECT PROPERTY CAM- GIORIA	NORTHING	117 20. B		,	DATE COLLARED Oct. COMPLETED COGGED BY C.C.E.VOV CORE SIZE NQ	<u> </u>	ертн Эм 1.5	DIP -55° 1 -57	<u>AZ</u> 120°	De C4 W/	EPTH SING ATERLI	OF OVE REMAINE	2.4m B : <b>4.7</b> NG : <b>NO</b>	
DEPTH U (metres) T FROM Q DESCRIPTION		OVERY	STRUC		ALTERATION	METALLIC MINERALS (%	S.		E D/	ATA		F	RESULTS	3
		RECO					SAMFL NO.	FROM	то	LENGTI	Au			
4.7-6.7 Oxidized Megacinet, Monoronite d/Kalter my more ben on part deservation 6.7-15.6 Megacinety Monoronite - unat - rational alter FPS and matics altered to del pondote 5.6-RD Serie Alter Manual Marca W. O														
- aradational frontiers & 60° to "If with-mod permanent covid- Dotties" - 117.7-17.9 million what QV 2 80° - 117.7-17.7-17.7-17.7-17.7	hematite						15074	15.6	18.0	2.4	5			
18.0-25.3 Menacrustic Monzonie - noutever some as G.7-15.6 Thas a contr. K has to part a form the manual a manual					31.9 - a 10cm QV C 60° to CA yy 5% grow pulphides + 15ch We Isoric Stivaac									

		TECK EXPLORATIONS LIMITED				н	DLE	No	<u>(फ़-99-0</u>	2				-	P,	AGE	2 0	of
DEPTH (metres) FROM	APHIC	DESCRIPTION	RECOVERY	STRUC ANGLES		ALTERA	TION		ALLIC ALS (%)		MPL	E D/	ATA			RES	JLTS	
TO			REC					unte	- I-Rum	SAMPLE NO	FROM	то	LENGT	A			ch	
35.3-41.4		Sociate Alt Monzonite -weak-med social alt mouz w/ Otz veins in cover of alt	$\square$		]	We permane. 1-22 mildes 92 culture datas 3mm milles	serie al	- w 37	mile CV	15074	35.3	37.1	1.9	<b>4</b> 5	1	1	IS I	
		- weak - mod seric alta mouz		- mod - str	nt, sevic y	<u>بالمارم 23 بالم</u>	J-ISon d	Jakaday	Vision 1	SOT	37.1	38.7	1.6	līō			is	
		w/ Otz veins in cover of alt?		-mod-2 stree	- Levic -	<u> 92 eulfil-chaice</u>	Sam va 19	9-152 bel	h w 2	ko∓+	39.7	40.0	1.3	175			-5	
				+mod seri	Lwy 570 J	t <u>3mm'nillen (</u>	Qu 2 🟹 _	Hz% p	t gov sulf	IS078	40.0	41.4	1.4	10		Ļ	-5	
41.4-66.5		M I. M. I Ild	+			<u>v</u> _		10	11 1	<u> </u>		ļ		<u> </u>		L		
11.01 - 100.7	<b>_</b>	Menacrystic Monzonite - whatted sightly les K, hue w/ chiller alter matics -hemorite on fractives				-9	ud					-	<u> </u>	╂	<u> </u>	<u> </u>		<b></b>
		Signity (55 b) nue	+			5% sonicit	<u>e alt-</u>	<u> </u>		<u> </u>		\		<u> </u>	ļ	<u> </u>		<u>i</u>
		housting on hand to a	+	·····		5 gtz mt	Sections	<u> </u>			<u> </u>	ļ	<b> </b>				ļ	
		-frost C 45° to CA	+			IN- CUCHA		p						+		┥		-+
				† <u> </u>														
66.5-75.4	1	Strongly sericite all Monz w/ QV3	Strong	509-04/c-1	A.	1- CA)- 57.5		ф <u></u>	an blean		me.	~	1.5	25	+		170	
		- mod & frong parosive ser all V primary tempera after pitted 156 1-10 fm miley toon quartz veing typically 10-30 to (A)	Lev I	5201		to traine			Go BICAN	15020		000		20	<u> </u>	<u> </u>		
	_	W onmany toutheres after blitzed	STOR	20% imm-1		that Qtz. una		1 MOG 24		12080	<u>01.+</u>	57.1 21 U	1.6	Hace			$\frac{15}{2c}$	
		-15% 1-10pm milky trans quarte veing	30-	10% 1-10m	w water w	mod silis"	12 - dissen 1	A AU		15081 15082	71.4	28.8	24	125	1		20	
		turically 10-30 to CA, IV	1872	8-10% 1-2.	m atz m	a - the disser	Did Bin			15083	73.9	76.4	1.6	50	10		20	
		- 12 To 1-15mmatz veinlets	<u> </u>									7			<u> </u>			
		- larger veing & composily have 5-10% py and 52 grey supplided zones																
		and 152 grey sulphidel zones 11	$\downarrow$			<u> </u>								1				
			-			•		+1200	and have	i			I					
<u> 54- 77.</u>		Nht QV wy grey + heavy subhiges		miles what	QV wy se	nic, menges	w/ 2-37.	by bund	dissen	95084	76.4	76.7	1.3 *	lice	ZD		20 10:29	
<u> </u>		Whit QV w great heavy subhides varies from a wilk with to de grey w strong sorie all mone neders builtin variable but gyte heavy 5-25%	<u> </u>	2570 Parpy	guy sulon	ric medices	ga, sp			5085	76.7	77.7	10	125	21000	2 1.44	10:25	2
		w strong sorie all mone wedges Unitedin		V17	011	0		┣						I				
		variable y but gute neavy 5-25%	-	<u> </u>		<b> </b>		╞	<del>_,</del>	┟──┤				ļ	L			
		py+ ufor area sulphides	+	<u>├</u>										<u> </u>	L			
77-51.0		SL_ C ist Ald?	+ -		19			<u> </u>	<u> </u>									
π.τ. δι.Ψ		Strong Service HIT- mone wy Leve	· <del> </del>	000114 9400	and 156		2-3/0 di	men py		150RC	77.7	78.9	1.2	125			2.2	
		Strong Sericite Alt mone w/ QV's -strong pervisive sorie att w/ 1570 2mm- USEM ate veins millen + grey units	+	12-00 (1) 3	MM = 204	1-ymm QU's	~1 & disso	r <b>ey, hi</b> le	an <u>y sulph</u>	15087	FR.9.	81.0	1.1	so_			<u>'-i-</u>	
		- Usen the vers miles - over vous	+		· · · · · ·	<u> </u>			┡┈╬╌╌╌┞	╞╌╌┥								<u> </u>
+		¥¥*	+	1		·		<u>├</u> ───									<del></del>	+-
			+		. —				<u> </u>	┝──┤			<u> </u>				{	-+
			1					t							┝╍┤			<u> </u>

1.1

	TECK EXPLORATIONS LIMITED			<u> </u>		HOLE		No. <u>Ce-99-</u>	07			<u> </u>	-	P	AGE	3	of	<u>.                                    </u>
DEPTH (metres)	DESCRIPTION	OVERY	STRUC		AL	TERATION	1	METALLIC MINERALS (%)	S	AMPL	E D	ATA			RES	ULTS		
10	-	EC							SAMPL	FROM	то	LENGT	An		1		Γ	1
81.0-	Unatter Manz w/ 50% Atz + seric. all? Sheeted yns (Standard Marz W/K hue -fresh waatter daller menz W/K hue W/ 50% 10-200 and seric alf? sections ( w/ 3-20 milley (sometimes FP- Peg ms P. 70-80 to CA	Zoues		ļ	ļ		_		<u> </u>			+		<u>† – – – – – – – – – – – – – – – – – – –</u>		1	<u> </u>	+
107.3	Sheeted yns 1 (Stonesond		4% 2-600 6% 1-500 1% QV2 3-4% 1-300 5% QV2 1-300 5% QV2 1-3 3% QV2 1-3 2% QV2 1-3 2% QV2 1-3	1														
	1 503 10-2000 Loging US	$\frac{1}{1}$	14/0 2-604	$0V_{5}, T_{0}$	o serie	to py gry	, mi	neval		81.0							Ļ	L.
	wy 3-20m willer (sometimer EP- Par me		19.002	1, 207	Serie 1	my, griller	hete		15089	84.0	87.0	3.0	S	+	ļ	┫━━━	<b></b>	<u> </u>
	9 -0-89 to 14 0	1	107.012.3	121. 20%	Sonc		51		15010	87.0	40.0	3.0	<u> <u> </u></u>	(> 		<u> </u>	╂	
	-2-370 1-2mm Otre mits w/ 1-2cm sorie		3-4% 1-30-	Pa vac	19	W:17		1	1001	93.0	90 A	3.0 7 A	5	-5		┨───-	┨───	
	Selvages		57. QV2+1	609	evic to	3 177		<b></b>	10/16	<u>96.0</u>	19.0	20		172	+		<u> </u>	<u> </u>
	- compon to have on any such assoc	<u>er</u>	37.0131-3	04 70% S	nic 19	D'Alat			15094	990	102 0	20	150	1-5			├──	+
	wy veins 10 11	↓	5% QV = 1-1	am, 70%	enc. to	hell and sul			15095	102.0	105.0	3.0	5	• •		1		1
· · · · · ·			2700131	40 <del>7.</del> 5	evic ,	rin John s	well		SOAC	105.0	07.3	23	45					†
	transition very gradational k	<u> </u>		ļ		100	11											
107.3 -	11-11d Martin	+		<u> </u>	ļ				<u> </u>						Í	Ĺ	1	1
111.0	Unalta Monzonite quite fresh y chiles alta merica	+							<u> </u>		ļ		╞──	<b> </b>	<b> </b>			l
		1		<u> </u>	<u> </u>		- +			<u> </u>			<u> </u>	<u> </u>				
	-10% serie alter w 1%. Sem QUES C 500 to CA			1			-+			<u> </u>			i	┼──-			┢───┩	
	C Soo to CA									<u> </u>			+	<u></u> +			┢───┤	
		1											<u> </u>					
11.0-	Weak Serie sheeted teg veins in Monz	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>														
119.3	Woole Serie, sheeted they reins in Morre -60-7090 west - monz -19, z-300 wilker white type? request te veins ( 60-80 the CA) weak Serie			<b> </b>	ļ	······											-+	<u> </u>
	- The Z-Son wilky white + place & pegment te		······································		<u> </u>		4		ļ	L			L					
	Vens ( 80-80 (10 CA) what Seric			<u> </u>			-+			I			L	ļ				
	- her common on front	<u> </u>			ļ					<b> </b>			<b> </b>	<b> </b>				
											<b>_</b>		L		L			
1193-	Generally write more w/ acca sic/OV			the all	1	tit.	\.	s include					<u> </u>					
192,4	- according pink hurd, menaconstic						- 1		126.0	128.4	7		<u> </u>	·			<u> </u>	<u>.</u>
EOH	mone wilcolles alt motical	107	p 1-10cm ch	alcedonic	ms Q 46	to CA WIS	32	ma diagram at an	1509	1263	121 4	2.1	45	10				<u> </u>
	Generally white more w/ accas spic/QV - generally pink hurd, messernatic mianz w/ Ichles alt milical W/ 2020 ern will spice alt zones - 1-2/a 1-10m QUZ & orcas heavy chalcedonic and by uns + bx	100	pervosive	Some a	12 ~~	2-39.00	VINS	m, diagen of pu + mfs / 245 to CA ) € 35° to CA	15091	129.9	130.9	0.9	S					
	1- 1-27 of 1-10cm QU3 = occas heavy	100	lobros s	evic WIS	-6% 0	y atel du	13 (	HS to DA	5099	137.4	139.7	0,8	SS	25		+		<u> </u>
	chalcedonic and py unstbx (	- mo	lipenas =	evic w/3-	4% 4	\$7 py ms (	()ert)	) C 35° + CA	15100	140.7	<u>141 4</u>	0.7	20	1				
			1	· ·	\	F V	1			1 Ī								

· · · · · · · · · ·

TECK EXPLORATIONS LIMITED 11+55N Az. 120° Shout Oct 17-Hn. Oct. 18 Acid TEST 90.5 - -46° direct. - 9+45E DIP-45° EOH-103.9m HOLE NO. CG-99-03 40 Elev-1120m PAGE 1 of DEPTH (metres) APHIC RECOVERY STRUCTURE METALLIC SAMPLE DATA ALTERATION RESULTS MINERALS (%) ANGLES VEINS DESCRIPTION FROM SAMPLE FROM С В TO LENGTH AN то NO er' 0-3.1 OVERBURDEN Menacryptic Monzoprite - unaltered -volciable pink pottasic hue - motics perfosively chilop replaced - here + denic on type: 20+40 km spaced @45° to CA 2.1-15.0 1% 1-2mm ate valts my lam servicite med aevrops 13.0 13.6 - servicite alt = structure n/contacts C CO w/ a 15 cm chalcedant - fluorite vein men white = me 15101 1100 1600 0.5 5 5 120 py you in atte uns Ote-hem Craclele Bx Cresh and Spirite matrix of moreonite mannered wildly by 5-500 and fragments by 15% miles - 3mm 150-17.4 tr dissompy 15102 15.0 17.4 24 3 Megacystic Monronite - underred - conversive ch/ep all of matics - the all front even 30-48cm C 30° to CA 17-4-29.2 affe for the serie -190 HZmm Ote Vite Spricite Alto Monzonite with mod porvasive seric/hem att to monz. generally we serie att - w 1-2% 1-2mm QUZ, trps 11 " " y/9e gtz with mod sorie att - w 12% QUZ w 1-2% or below weak sorie att - w 12% QUZ w 1-2% or below weak sorie att - w 19e gtz with mod sorie and strong perceptive silic - w tr disson py 292-360 13103 29.231 19 <5 -5 15104 31.1 32.5 1.4 <5 15105 32.5 33.6 1.1 15 -5 - --2-39. 2mm-1000 gtz units - vng - C 50-70°to CA wy fr - 670 pm blebs ISIOC 33.6 35.1 1.5 45 15103 5.1 36.0 0.9 5 M MS

And the stand of the stand of the standard standard the standard standard standard standards and the standard standards at the standard standard standard standards at the standard standard standard standard standard standards at the standard standard standard standard standard standards at the standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard s

	TECK EXPLORATIONS LIMITED				HOLE	No.	<u> </u>	03				279 1 754 220 165 264	"5/ _{5,0} PJ	GE	2 0	uf .	6
DEPTH (metres) T	DESCRIPTION	OVERY	STRUC ANGLES		ALTERATION		TALLIC RALS (%)		MPLI		АТА			RESU	JLTS		
то		U U						SAMPL! NO	FROM	то	LENGT	Au	· h				
360-43.3 (7.3)	Vein Seric zone		intense 30	vie fault	douge w/ 50% and	ant with	tav	15108	36.0	36.6	0.6	440	465	$\vdash$	$\left  - \right $		
	- Vourious twees of voing wy 20-252		complex v	ain br	- Vallet from blogs 3	n w/sw	and Show	15109	36.6	37.7	1.1	500	624	$\left  - \right $	$\vdash$		
	+ strangly faulted contracts and vein (contracts C 45-60° to CA		50% QU N	k as alk	the solid betweening	Servicit	Jights I	15110	37.7	38.7	1.0	155		F	$\square$		
	vein Jobritades @ 45-60° to CA	30	\$ 70 miley	White Q7.	strongly broken 3	2 110	MONZ	15111	38.7	39.7	1.0	150	165	H,	OSat	1/0	2 2
		14	90 milley w	I GUS	W/Show bless, Sto	ver po	aleles traf	15112	59.7	40.9	1.2	105	20				
		- 4	5% milka	with QU'S w	5-6% og blette, 51%	vier po c	oklas, trop	15113	40.9	419	1.0	25	<u>v&lt;</u>	┣.			
		9	7. miles	WAT QU	down wy 50% promotion wy 100 promotion - 10% promotion - 20% p	JO13	42%	हाम	41.9	43.3	1.4	5			┝───╂		
433-	Servicity alter monzonitz w QUZ			נון נפאסא	1 to you patient su						<u>†</u>				<b>I</b>		
57.1	generally use-amon sovir alter monz		od sevic	att w	10% 3-6 mile	QUZ I	-3% di	5115	43.3	<b>141</b> 3	1.4	120	12C 85				
	hatchy I w a number of S-20cm niky Inhite QV's to suppliedes ?	¥	nod seric	alla y 3	10% 3-6 cm miller miller QV3 tr- 10% miller QV3 m/	2r37. 6	blebs 1	15116	47.4	49.9	2.4	90	<u> </u>				
	45° (+o CA.	¥	via, serie,	27. 2mm 7. OV3	Don QU'S I tu py Smon-Son tu dy QU'S w heavy sulla	w vein	s.,	15113 15119	52.2	54.5	2.3	150	5				
			nonlanic	w 8-10%	BUTS w/ heavy sullely	S7 	the py s	15120	54,5	รม	2.6	5_	5				<u> </u>
57-1- 87-9	Megacruptic Monzgnite - unaltered - generally months Krich, wy motics - schlep					-											
			milky w	LOVE	5° to CA wy 25% fg	cou lams	59 Sulda	15121	81.4	81.6	0.2	7.14					
	- approx. 10% 30-120cm whe seric att2 bands w/t 1- 20cm QV Q 60° to CA				/ //	10 -	<u> </u>										
	- and tr 5% 1-2mm ate mits																
														_			

5 . A.L.

	TEC	K EXPLORATIONS LIMITED	<u> </u>			HOLE	No.							Ρ.	AGE	3	of	<u></u>
DEPTH (metres) FROM	GRAPHIC	SCRIPTION	RECOVERY	STRUC		ALTERATION		TALLIC RALS (%)		MPLE	<b>.</b>	ATA		· ·	RES	ULTS		
10			REC				-		SAMPLI NO	FROM	то	LENGT					ļ	ļ
879-	Seri	gite all Monz wy QUB + Fluerite	1,				1		i		t —	1	<u> </u>	1	1	í –	<u></u>	+
95.9	-mo	d pervasive sovicite alt=	the see	25% vue	(Q1/3 v/ 3	412 fluorite 2-4 fluorite 290 plies tv fl. 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1-292 discover t , 1	بعدناه م	m bleb py	15122	879	89.4	1.5	45	-5				
<b> </b>		0-20 to fite with ( vuggy whit )	<u> </u>	2076 qtb/	mits tr	flugite, 2% pluss	en eu	- 10	15123	89.4	90.9	1.5	45			L		
		The creat the work in	<u>и</u> в	15% db	dencest vinit	t tr fl, 1-27 disca	4 p. J. V		15124	96.9 92.4 93.9	92.4	1.5	10	<u> </u>	ļ			L
		D-29 AND AND TO TOLA	- I unde	10/0 032	with and	1, <u>1-27</u> any mil	<u> </u>		15125	92,4	<u>939</u>	են լ	5		<u> </u>	i	<u> </u>	
	ble	cite alt ^d Monz w, QUB + Fluerite a pervasive sovicite alt ² Q-20% at with (many wht) reen purple clear fluority in tiple briteriations, dom 45% to CA 2-3% on w, QUB as laws and by withing monzanite			VNITS	tr viet ph			15 26	93.9	95,9	2.0	5	5			<u> </u>	┣
95,9-		constic Morzonite - unally					1		<u>ا</u>						1			
103.9		Constic 1 100200112 - LINGITS	<b>  -</b>				╂────		<u> </u>		<u> </u>	<u> </u>	<b> </b>		<u> </u>		<b></b> _	<u> </u>
FOH		int with war with the property	┨━──	····	÷	······································					<u> </u>	<u> </u>	[	<u> </u>	<b> </b>		$\square$	<u> </u>
<b>SHU!</b>	-20	ical unoff" monzy w/ ch/co veracement To use seric alts zones 20-100cm G 45° to CA								-		<u> </u>	<u> </u>				<u> </u>	÷
	wide	Q 45° th CA	<b>₿</b> i				┨────		ļ	-			<b> </b>	<u> </u>	<u>-</u>	<u> </u>		<u> </u>
			†				+	<u> </u>	<u>{</u>						<u> </u>		$\vdash$	┼──
							1		†				<b></b> -					<u></u>
									<b>-</b> -					<b></b>			[	t—
···							<u> </u>											1
			<u> </u>				<u> </u>		!									
						· · · · · · · · · · · · · · · · · · ·	i											
							+		<u> </u>								<u>                                     </u>	
						· · · · · · · · · · · · · · · · · · ·	╆	<u></u> .										
							┼───		<u> _</u>								<u> </u>	<u> </u>
									<u> </u>								<u> </u>	
			<u> </u>				<u> </u>		}									
							1											<b></b>
							1											
							1											
													_					<b></b>
							<u> </u>											
							1											
		······································	<u>├</u>				<u> </u>											
							}									1	Ī	

		TECK EXPLORATIONS LIMITED	9+450		D° eler II		- fimish Oct. 2 No. <u>Ca-99</u> -			∽ E(	ж	Acie			<b>8.8</b> m 1		-55'
DEPTH (metres) FROM	APHIC	DESCRIPTION	OVERY	STRUC	VEINS	ALTERATION	METALLIC MINERALS (%)		MPLE		TA			RES	ULTS		
то	5		REC					NO	FROM	то	LENGT	Au					
0-1.8		OVERBURDEN						1			1					1	• <b>•</b>
18-6.7		Hematitic/Oridized Monzonite - unolt perropive hem crid from weathered from - othernize still fresh bia ch/ep															
07 04														<u> </u>		<u> </u>	<u>+</u>
6.7-94	╡	Dencite althe mone w/ QUS		59.000	- 012	-10 2-7911-44		1817	67	0 -				┨	<b> </b>	<u> </u>	<u> </u>
	_	Sericite alter monz w/ QV3 - pompaire mod seric w/ 1-50m QV3 (245 to CA - voyiable prote dissen + labo		209. WII	phy chale	-10mm, 2-3% blebt -any/whit law QV w	Abre II	15128	8.7	9. <del>7</del> 9.4	0.7	85	70				
		and in put time w/ 2V3		5-10%	pr py						<i>.</i>		+		╂──┦		$\vdash$
9.4-67.6	+	Megacrystic Monzonte - unattered	+	<u> </u>								ļ	<u> </u>	<u> </u>		, 	
		- typical man monz W/ 1-5% - typical man monz W/ 1-5% - typical first - typical first - typical first - typical first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical man first - typical m		<u></u>		strong - intense ( Kattil zones within monz - centrats for have occas serve of occas QV core alter zones (? 39)	rimary text abit)	<u> </u>		-							<u>†                                    </u>
	╡	- matrices attered to chiles				Kata zones within	A COLO						──				-
	1	-ty-170 1-2 mm, Otr, white			Co.	have occas serve	ialt - selvages	<u> </u>					<u> </u>				<u> </u>
· · · · · · · · · · · · · · · · · · ·		-chl 1/2 here developed on Fract	. <b> </b>			of occas QV core	it-190py										
		е 45-60° to CA			<u> </u>	althe zones (° 38)	6-33.0 mod				<b>.</b>		ļ	<u> </u>	<u> </u>	I	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _				35,	7-36.3 interse	· ·			hemix	<b> </b>	+	<u> </u>	$\vdash$	ļ	
	1		- <u> </u> -		<b> </b> -	<u> </u>	0-37,4 Werse	<u> </u>			siem x		<u> </u>	<u> </u>	<b>├──</b> ┦		
	-			interee	Kw. 29	d coord holes 41	<u>V- 5707</u> 4 - U2 7	16170	41.9	בכו	10	15	15	<u> </u> '		<b>-</b>	┼──
				20% milky	from QUZ	415 to CA 43 200 63.	2-63.6	ISITA	<u>63.7</u>	53 A	0.4	115	112			i	╂
						11		1.1.2.20					<u> </u>				<b></b>
67. <u>6 - 68.8</u>	-1-3	Strong serie alter Monz W/ QV2 0% 3-10mm milky whit QV2 P45to	. <u> </u>														
	-4	0% = 10mm milky whit QV= P45 to 0	¥[			<u>_</u>	· · · · ·										
		trong pryvasive service alt					·	5131	67.6	68.8	1.2	30	<u>.</u>				
	-++	race dissem supplides			ļ		<u> </u>	<u> </u>					<u> </u>	l	┟┈┈╸┨		$\square$
	+-				ļ					<u> </u>		ļ	┝──┘	┝──┤	┝──┥		$\vdash$
	+	· · · · · · · · · · · · · · · · · · ·	1				<u> </u>						<u>├</u>		┟───╂		┟──┨

		TECK EXPLORATIONS LIMITED				HOLE	No	<u> </u>	-04					P	AGE Z	c	d
DEPTH (metres) (FROM	GRAPHIC	DESCRIPTION	RECOVERY	STRUC		ALTERATION	і м MINI	ETALLIC ERALS (%)	S/		E D/	ATA			RESU	LTS	
то	69		REC						NO	FROM	то	LENGTI	An	them			
<u>&amp;&amp;-</u> 71.5	l	Quartz Vain				1-2-may	ļ.,				<del></del> -	÷	+++	ļ			1
<u></u>		-quite massive million QV my only		- mi	ky BV w	2-3% as for as lan	<u>b</u> .and	1-270 gring lines	5132	68.8	70.2	1.4	15	15_			
		-contacts R 45-60		1010 Serie	had a molter	av by suithed to as abo	ye		15133	70.2	71.5	1.3	ISO	150			— [-
		-footwall is a moderate fault my servic gauge									ļ		<u> </u>	†			
71.5-		Strong Serie alt Mone my QY3		modesting	sevic 6-7	% 1-Son white QVB tr-	90 BH	ams	15134	71,5	73.5	7.0	55	55			
87.8		-strang pervasive serie ally w variable zmm- zoom Otz withs		strig- in	ense se	2-39, 1cm QUE, to	PUT		15135	73.5	755	2.0	25	25			
		wy varipyle Zmm - 20cm Otz withs		Storal serie	8-10% mg	2-32 len QU'z, to manorhous QU'z to Will, nu 162 pu hors ; Dan habite Bute Cust	ity .	tr- 190 py	હાઝ	75.5	78.2	2.7	35				
		+ veins (my stronger servic selvages) 20-80° to (A - myltistrae		80%QV-30+	of will and	Wet any 1070py pors,	4%	for bleskiph	15137	78.2	79.2	1.0	SO.				
		-some veine have py juins and		Stroma serie	10-12/0	Dom Kallete BUTE CHS	<u>1/. tr</u>	- 170 pu Helds	15138	<del>79.</del> 2	81.2	2.0	5	<u> </u>			
		Some of patches		Frind Sev	2-22-1-	n Hom QV2 (60° w/ QV2 still 1% per lan Nic-1-among vering 7		IFSern ph	115134	81.2 83.7	1832	2.0		<u> </u>	i{		
				Strong String	w/ 60% s	Nich 1- amand verifie 7	199		IIS(40	<u>83.2</u>	186.U	0.8	2				
		- lower alt - costact gradational		strong sev	w/ 1-29	Smm QUZ +- 1% 0	SSEM	IOL .	5142	86.8	87.8	1.0	S	<b>-</b>			_
		<u></u>		┟╴───₩────	J -			1/									
<u>87.8-</u> 96.	{	who mad seric alt montanite					L		1	I	<u> _</u>	I					
		-very gradational alt w generally					ļ		<u> </u>	ļ		<u> </u>					
	{	when provide servicity all wy implices					<u> </u>		-	<u> </u>		<u> </u>					
		- Sto and serie fract 1-3mm 45-60° to CA.			<u> </u>											+	
		-only ~ 170 1-2 mm ate ventets - milky white			<u> </u>		<u> </u>		, 								
						<u> </u>	1		<u> </u>								
96.1-		Mecacyustic Monzonite - unattered										ļ					
30.2		Mecacinistic Monzonite - unattered -typtically may more with lead motice -typtically may more with lead motice -route heaving fractured clean intervals my chill = bein on fract							[								
EOH		-rottle heavily & fractured ( lim I intervals						······									
							<u> </u>				Į						
<u> </u>	-+	-only rove -					<b> </b>	··· · · · · · · · · · · · · · · · · ·									
	$\rightarrow +$										<u> </u>						<u> </u>
			=.	<u> </u>			†—–	<del></del> .									<u> </u>
				<u>_</u>			<u></u>				<u> </u>				+		

.....

A MA

Start: Oct JI - Fin: Oct 22 10+95N 9+55E TECK EXPLORATIONS LIMITED ACID TEST - 81.4 - - 610 N A= 120° EN 116- HOLE NO. _____ Ē 6:7 -60° ELEV: 1123 PAGE | of DEPTH (metres) FRANTILZ GRAPHIC STRUCTURE RECOVERY METALLIC SAMPLE DATA ALTERATION RESULTS 1776 DESCRIPTION MINERALS (%) ANGLES VEINS FROM CAM GLORIA SAMPLE LENGTH AN TO FROM то NO 0+67-Over burden 6.7_to Stronging exidized, meet grained manz. 7.8m - broken, himmiliz - strong epidote? alt of Ridapors Mai grainail, bally negocrystic monz. - morturate the property att of filderpro. - putety, alt of metrics. 7.8-- limenite freedures eine 10-20 cm 01. 10 YO 6CA to 10.7 every 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10-30 cm - Emergin 10760 - weak to mainter priface all of fildspers - weak to mainter epiface all of fildspers - met and petchy chlor all, tone to concertate on free freetures 17.3 70° mass 21 1-3% 15143 118 123 05 90 -STE Maryins gn + 🚛 lan lani of grey sulpherion on + fad 521 Pa buring Qu's from 158 to 162 moderale 15144 15 3 162 04 5 sec alt of margins & 51 clot of 20 tault geuge ' booken reck in morente to internet still for the pathy suchtable S. replace ment of never cryston - mong 17.2 6 A 1 34 ISI4S + - 2% RdSpy, por - silve had box 17,2 184 1.2 10 16205 - mal grande to may compter inon ge

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>Ce</u> -0	<u> 19 - 1</u>	<u>25</u>				PA	ge 2	. of	
DEPTH netres)	2		RY	STRUC	TURE	ALTERATION	METALLIC		AMPLI	E D	ΑΤΑ		. 1	RESU	LTS	
ROM	RAPHIC	DESCRIPTION	N N	ANGLES	VEINS		MINERALS (%)									
TO			RECO					SAMPL NO.	FROM	то	LENGT	Am				
8.4											1					
239		Mildy to unultical med grad mon 3						ļ	ļ	<b>_</b>						
2011		- 15 cm qu'in 1 - 1 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 2 - 2	· · ·				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
		- 13cm white gu LAOS phillip 10 19 m		<u></u> +			<u> </u>	<u> </u>	ļ	<u> </u>	╡───-					
		- Tem qu. w 1-31. py pu stringers by 20 sm		<u> </u>	70"	mortcate to sultine sec -	etz alteration	<u>,15146</u>	21.6	1222	0.6	25				
		- <u>26m qu w pop (a) 21 t ma</u>		<b> </b>	750	on usin marying (en (lots of po + py in gray subhides + po c	fre <u>boen longth</u>		ł	ļ		-				
		-1965 41 - 1/19		<u>├──</u> ──		Lots of pot py in i	their grz		┣							
			_			grey supplicates + po a	th vern matgins.		<u> </u>						·	
23.9		White Pulse cross cutter 20 m dama		· · · · · · · · · · · · · · · · · · ·			-			<del>  -</del>	÷					-
25.1		white as in cross cathing porpy verns				Get cl				<del> </del>	╂───	+				<u> </u>
		- ~ 1.2% suricities fractures + dats			89 C	hower	<u>†                                    </u>	In state	239	De i	1.3	c				
		- moderate to intere sertile altern		•	25° Long d	Src clay. bpmarzin A Lovermarzin, which and with I zore all	l'in ambr	1121512		<u> </u> ≪⊇.:I	1.3				_   .	
		for 10 20cm on view marcin				and with 7 20% all	and Arrele Rock	+	<u> </u>					-+	-+-	
		for 10 20cm ~ vin margins					1									
		may be clay alt									<u> </u>					
								ļ		[		1				
5.1		Alternating intersely see altered monz					y veins cross cut	1548	25.1	26.1	1.0	S				
244		and by				Qr. a.	d are common gins, supplied 5% of very material	15149	261	27.4	1.3	10				
27.7		- Qu. from 0.5 - 10 cm ~ 20 - 50%. p				Uain m	aring suppliedy									_
		- iScun gouge @ 25.5 m contama				for 1:	5% of very ing his	1								
		- iben gence @ 25.5 m conterns - iben grey and phile stringers - vein orientethen is erruhz, provide				Vein pis hi	est "(3601.)	١.								
	<u> </u>	- vein orientetion is erruhz, mosable				from 261-2	A.7m .									
	<u> </u>	stekwer	· .					.L								
	<u> </u>						ļ.,	ļ			L					
7-1-		Modurate to Intensity altered monz.		<u>-</u>		te: 1/2 Fr.	Spylpe in sor	<u> </u>	<u> </u>							
30.3		- Grey Sulph de stringer & we anouste				altered heat.	larc sulphide	ļ			I					
	-+-	Modurate to Internely altered monz. - Grey subpliede atringers car anociate w subme are alt + gonge at @ 28.1 m 2 grey gu - 10com unde white qu' in 5% stringers + cloth of pojoy @ 29.2m				stringers in	cic	115150	774	28.6	1.2	S				
—					0-0		<u> </u>		<u> </u>		<b> </b>					
		- IDCM wide white gr w 57 stringers + child			80°			1 <u>D</u> RI	29.0	39.6	0.10	S				
		<u>af pajpy &amp; 29.2m</u>				Patchy silicification vons from 65 - 10cm	t qt3-sulphite	150	30.0	31.1	1.1	5				
						Ven fim 65 Dem	I allent mod	แรเผ	いわる	30 %	10	15	. • [			

FROM     DESCRIPTION     ANGLES     VEINS     MINERALS (%)       23.3     Wanks, attend to analterial, and     and summer, and subject of analterial and analterial     and summer, analterial       43.4     general memory     attend to analterial and     attend to analterial     attend to analterial       43.4     general memory     attend to analterial and analterial     attend to analterial     attend to analterial       43.4     general in all analterial in going the summer of a state     attend to analterial     attend to analterial	Т	ECK EXPLORATIONS LIMITED				HOLE	No	<b>1</b> 9	1-0	<u> </u>	• • •	<u> </u>	P	AGE	3 (	of	
ID     ID     ID       28.3     Wark & construct and     Index track set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the set in the			/ERY	F ==		ALTERATION	METALLIC		MPLI	E D/	ATA			RES	ULTS		<u></u>
10     10     10       23.3     Warke, altered to analitered and     10     10       42.4     general memory     10     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     10       - See all another is young to 35 im     75     11       - See all another is young to 35 im     11     11       - See all another is the see all another is young to 35 im     11       - See all another is the see all another is young to 11     10       - See all another is the see all another is another in another is another in another is another in another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another is a see all another	RAF	DESCRIPTION	Ś	ANGLES	VEINS			L	· · ·	r	T —	<b> </b>	<del>.</del>		r	<del>-</del>	
424 general many - See all size providence as in 75°			RE			[		NO	FROM	то	LENGTI		-			ĺ	
- Ste all enserted in yorg the t - Ste all enserted in yorg the t - Ste gly shake where and ste to the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of	. – – –	Weakly eltered to unattered neel				Patchy + week St + P	nilch	1				1	<del> </del>	1			<u> </u>
- 5th an anereted in garge two 4 - 5th all anereted in garge two 4 - 5th 23 m gl/suphrate who from 35th - 151 / suphrate - 5th 23 m group in glz alch + 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphra	1	grained monz				alterational felderary	and makes					<u> </u>	1				<u> </u>
- 5th an anereted in garge two 4 - 5th all anereted in garge two 4 - 5th 23 m gl/suphrate who from 35th - 151 / suphrate - 5th 23 m group in glz alch + 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphrate - 5 th 20 m started gr i 1:31 suphra		m While QU in St. repay stringen @ 35.1m		L	750	17 Rematile Stamon	fractures .						1				
- 5. 10.2000 Strekel que wirst sublide in herring of moderak set. from 35.5: 41.1 42.4 Roberts fullgance, brake more 43.4 Roberts fullgance, brake more 43.4 Roberts fullgance, brake more 43.4 Roberts fullgance, brake more 43.4 Roberts fullgance, brake more 44.4 Roberts fullgance, black 44.4 Roberts fullgance, black 45.5 State, fullgance, black 45.5 State, fullgance, fu	╶╴┟╶╍╌╺┟╶╴	- STC all associated in games from +		<b>└</b>	ļ							1	1	1		<u> </u>	
- 5 10 2000 Strekel ov w 1.31 Sublide in Anilog of moderak see from 35.5 411 424 Roberts full gamp, brake more 43.6 Another of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o		· Som qu/sulphode when from 35.6-36.4		! 			<u> </u>										
- 5 10 2000 Strekel ov w 1.31 Sublide in Anilog of moderak see from 35.5 411 424 Roberts full gamp, brake more 43.6 Another of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o		- 20 cm gonge in gtz clot + 1:3% sulphile		ļ				i 								í T	· · · ·
- 5. 10.2000. Shekel qu. 21.37 Suphile in Anthop of modernic set. from 39.5 - 41.1 42.4 Robertie Builtgance, honeumony. H3. is another more for the more set of the second of the second for an ulfilde - another more that mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine them. H3. is another mine the form of general blow 20/2 S3.9 mine another mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is mine the form of general blow 20/2 - another is more general the form of general blow 20/2 - another is more general the form of general blow 20/2 - another is more general the form of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general blow 20/2 - another is another of general		4 Q 38.3 m		<u> </u>													<u> </u>
H34       Roberts functione, holder more,       Shings Q ~ 3.5% Q.         H3.6       in acestanonic, chilope functure.       Image Q ~ 3.5% Q.         H3.6       inthe recentential anice te trice.       Image Q ~ 3.5% Q.         H3.6       Weekly ackned most general to trice.       Image Q ~ 3.5% Q.         H3.6       Weekly ackned most general to trice.       Image Q ~ 3.5% Q.         H3.6       Weekly ackned most general to trice.       Image Q ~ 3.5% Q.         H3.6       Weekly ackned most general to trice.       Image Q.         H3.6       Weekly ackned most general to trice.       Image Q.         H3.6       Weekly ackned most general to trice.       Image Q.         H3.6       Weekly ackned most general to trice.       Image Q.         H3.6       Weekly to trice.       Image Q.         H3.6       H3.6       H3.7.43.44         H3.6       Weekly to trice.       Image Q.         Image Q.       Image Q.       Image Q.	┽╾┼╸	5 10-20cm sheeted qv. in 1-31 suphila		L	600	Veins are white to good		1515	39.9	41-1	1.2	5	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	╺┼╌╍┼─	- An-elop of moderate set from \$9.9-41.1				Vien and hord cut in	or sulphide					i	Ī	-			
43.6 increasing of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the function of the functio						Shingen @ ~ 3-54	2				1						
43.6 Weikly sitered mot grand & backly 53.9 mega cryptic morganit. - Deem hill grand & backly - Deem hill grand & 1954 - Deem hill be been weight - 1954 - Deem hill be been weight - 1954 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill been hill been hill be been hill been hill been hill been hill been hill been hill been hill been hill been hill been hill been hi	╺┫╼╌╌┤╼╴	- robable faultgringe, broken morg				• • · · · · · · · · · · · · · · · · · ·				L.							
43.6 Weikly sitered mot grand & backly 53.9 mega cryptic morganit. - Deem hill grand & backly - Deem hill grand & 1954 - Deem hill be been weight - 1954 - Deem hill be been weight - 1954 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill been hill been hill be been hill been hill been hill been hill been hill been hill been hill been hill been hill been hill been hi	•	- unastanioning on leps fractures									DATA RESULTS						
43.6 Weikly sitered mot grand & backly 53.9 mega cryptic morganit. - Deem hill grand & backly - Deem hill grand & 1954 - Deem hill be been weight - 1954 - Deem hill be been weight - 1954 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill - 1955 - Deem hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill be been hill been hill been hill be been hill been hill been hill been hill been hill been hill been hill been hill been hill been hill been hi		with no consistant origination -								{	[	Í	Ì	1	[		
43.6 Werkly eitred mod grent blowel 539 men angents. 539 men angents. - Joen Buit grave @ 454 - Joen Buit grave @ 45.4 - Joen Buit grave @ 47.3 - 43.4 - materia to she are are are are are are are are are ar		- the grange at 4			<u>-</u>												Ē
47.9 to 50 to 47.9 to 50 to 53.9 Westly to unaltered mongenetic media 60.0 granned to backly mega cryste. 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.	╶╁╸╍╸┥╌╸							ļ		<u> </u>	<u> </u>		L				
47.9 to 50 6 53.9 Westly & weather of mongenetic medicu 60.0 grained to backly mega cryste. 		Werkly attered mer grand & lowely				·		↓									
47.9 to 50 to 47.9 to 50 to 53.9 Westly to unaltered mongenetic media 60.0 granned to backly mega cryste. 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.	<u> </u>	mega charte monzonite.	_	······						<b></b>							
47.9 to 50 6 53.9 Westly & weather of mongenetic medicu 60.0 grained to backly mega cryste. 		den fault en ce @ 454					<u> </u>										
47.9 to 50 6 53.9 Westly & weather of mongenetic medicu 60.0 grained to backly mega cryste. 		son glefabilized win w Son met			<u> </u>	ir ds in sec margin	iə										į .
47.9 to 50 to 47.9 to 50 to 53.9 Westly to unaltered mongenetic media 60.0 granned to backly mega cryste. 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 9450 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (5153 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.3 5 951 Single 20m qu. i Sre marzina (515 548 55.1 0.	╉╍╌┠╌	STE margins			<u> </u>								L'				_
47.9 to 50 to 47.9 to 50 to 53.9 Weekly to unaltered monagement media 60.0 granned to backly mega argente. 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5 9450 Single 20m qu. i See margine 19153 54.8 55.1 0.3 5	┥╴┼┈	- moderate to mine arc @ 47.3 - 48.4			<u>.</u>												
53.9 Wardy & maltered mongants mediu 60.0 govined to bardy mega crypte. 943. Albite van from 1 an to 150. 945° Single 200 gov. (500 mega crypte) 945° Single 200 gov. (500 mega crypte) 94°		Chi Machina ham -															
60.0 grained to breadly mega cryste 	┼╌╶┼╼╸	_ 47.9 to 50 6												_			
60.0 grained to barrell on the grant of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the																	
	┟──┼──	weakly to unaltered mangements, medium															
45° Single 20m qu. i Sre marzina 15153 548 55.1 03 5 web - unnell annabel i 10-24m276 popp along ven marzin 7 mds	4	gothered to locally mega countre				······											
	+	suries of one tech on the poor			CP												
- numeron of noderale to intere size - see for - see for -	<del>  </del>	atz-albite verm from 1 cm to 15cm			45*	Single 20th qu. i	See marsing	15(53	54.8	55.1	03	5	]			]	
+ Sice + a/b/c a/brahm	┼╾╍┼╾╼	white - unally anothered a 10-24 m				~ 2 % pola along vern	hargin 7 mids						]				
t slice alteration	┟┈╼┠╾╼	murph of moderate TO in the Site			<u> </u>	in sector .							<u>لــــــا</u>				
	╇╾╶┼╾	t since alberation															
A - Wan Anela	╆╼╌┢╌╴	20-50cm vun spacine									<b> </b>	]	]				

TECK EXPLORATIONS LIMITED PAGE 4 of HOLE No. <u>CG-99-05</u> DEPTH ž STRUCTURE GRAPHIC METALLIC ALTERATION SAMPLE DATA RESULTS (metres) RECOVE MINERALS (%) ANGLES | VEINS DESCRIPTION FROM SAMPLE FROM TO то LENGTH ----wienkly to unait med grained ming. - 30 cm patch src -albete alt. - Q cal 3 m - 90 cm patch of src - gtz alt. - Q is 3 m 60.0 in2 - E O.Sen Quin 20cm unde mit ste alt Ralo & 69.0 m 692 Weakly altered medium grand manz hematite t chil ait 450 73.7 of metre and along En Practures - 10 cm gtz sould be @ 72.2m - Kapar - 2 arange felopars are stained orange from Asmulite or pessible week Ksparal 73.7 Mourately altered neil grad mong ~ 107 p for 5rt + gt oringers fordapar orange colour 76 50" 914 - Fe stain of feldoar popols & Kspurall - 1.Scm QUTU 25cm wide, internely - Sulphide stringert muein marger 15154 750 752 02 5 1-21. ds in site Aprt STL margin - inc density of fractures from 762 to 785 - many factures is 1-2ma Keel - Qu @ 793 1.50m in sulphile stringer at very margin 350 narrow 2-5cm mail arcalt vein margins.

		TECK EXPLORATIONS LIMITED				HOLE	No. <u></u>	19 -	<u>05</u>				PAGI	εS	of
DEPTH metres) 'ROM	APHIC	DESCRIPTION	OVERY	STRUC ANGLES		ALTERATION	METALLIC MINERALS (%)						RE	SULT	S
то	GR		REC					SAMPL NO	FROM	то	LENGT	Н			
81.4		Moderate to stringly attered made				Beckeround	4-2% d5 2	1	9+7	002					-
91.9		grace monz. i ranze relatively unsit. 				in alteration	h. h.							-	
		intervels - horach negacoust 2				Increasing d5+	Stomper substices		1						
		1	_,	• •		alme commercing	locally Aming	_							
						branching networ	cs								
		- 4 to 10cm w de vinger per, pertrally Chalcelenz, over 501 of ven material in group, possiscy - having for your sight			550	Increasing d'S + informations de transmissions branching wetwar Créc d'S pype in in	QV.'S.	1515	811	83.3	1.6	35			
		Chalcelenz, over Sci of vein material				·	0	<u>!</u>					_		
		is grey, post 5 m tour og for gonel sit philo						Ļ	ļ		<u> </u>				
									1	L					
+		- reliebuchy fresh rock @ 83.5 - 84. lom					<b> </b>		<u> </u>		<u> </u>				
				<b>└───</b> ┤		ļ	<b>_</b>	Ļ	Į	ļ		ļ;			
		- Single intervel of als pylow + <. 5cm gr. @ 849 - 85.3			<u>-</u> -			15156	849	856	Q.7	35			_ <b>_</b>
					-							╞╼╼┝	·		
	j.	+ 24200 de una atara 1.0 de		<u> </u>	<u></u>	cd Sayto invension	1 11 1	16164	845	(2/2)					
		- 2 to 20cm under vingen gtz-smillide veins, particuly Relationer er 365-882		<u>} </u> {		La spiro invension	alroid	13431	184-5	1082	<u> </u>	32	<u> </u>		-
				•		witness, up to soil of ver very crossenting well	127, grysuppide	<del>.</del>							
		- Moderately altered wedrock, with boor				Wind chartering the	UPPCR . V J /·	15156	882	50 L.		c	~	_	
		& gtz - supplide vers + discerning time				1-3-1. d Szy - inon	<u>hu</u>	1-0	100+	01.0	-1.4	<u> </u> ⊒			-
		- more suppliede cista o 1.5cm - altred				· · · · · · · · · · · · · · · · · · ·						t			•
		hatacis				• • • • • • • • • • • • • • • • • • •	<u> </u>	<u>:</u> 1				┟╾╺╍┥			+
							<u> </u>	1	<u>†</u>			<u>├</u>			1-
		- 2 30 cm intervals of aborsalahile						15159	81.6	90.4	1.2	880			+
		comental brown sreat mone.				manive Sulplader form	I torn intrend	1							+
		gtz is pridon detadout + Vichey,~50%				4 the bx .		1	<u> </u>		<u> </u>				1-
		in grey gots (Sulphide bourne?) Mussive	]			0		L							1
		Sulphides (py+pu+trepy) coment													
		- 2 30 cm inter wils of gly+ Smiphile Concentral box in Sit all monz: giz is pridos chaladonit + Virginy, ~ 50% is grey ggtz (Sniphite bondony?) Massive Smiphides (py+po+tropy) Comment Silvers + Sit all rock freeys													
							L								
		- Tault gang @ 90.3 - 91.5			<b></b> .										
		~ u				l		1							

· · · · ·

					HOLE	No. <u>_CG-9</u>		2				P.			
ROM		OVERY	STRUC		ALTERATION	METALLIC	S/	MPLI	E D/	ATA			RES	ULTS	
ROM A	DESCRIPTION	20	ANGLES	VEINS	Ţ	MINERALS (%)									
то 5		REC					SAMPLI NO	FROM	то	LENGT	H				
91.9	idagities to wrate altered			}							1		<b></b>		
96.1	idealtical to warkly altered more good to locally mercing to locally mercing the manz		······································							-	1		<u>†</u>		
	- O.Scm flowite ! win " with Src Zem			200	+	ļi							<u> </u>		
	-0.5cm flourite ! win - mity ste 2cm margin - Quite soft , possible gra Ste vein										<u> </u>				
						· · · · · · · · · · · · · · · · · · ·				<b> </b>		ļ	<u> </u>		
108.8	warkly to malorately alteral mong . 2									<b></b>	]				
	Warkly to malorately altered mong is senteral in turning of storyly are altered rack, the up to low therem														
	- Weak its - suppliede bor - mod to. Stongly cultured bot @ 96 6 - 97.4				013 +STC cinantomosin	Kart albert	15160	9-6	<u>91.4</u>	0.8	S		$\left[ - \right]$		
					land unak suplid	c Shingers									
		· · · · · · · · · · · · · · · · · · ·			pt3 + STE cure atomosin Usins tr 2 /. d Single Bon dram demenine ted reple	Som hernite						<b>ا</b> ــــــــــــــــــــــــــــــــــــ			
	- 01-			2:0											
	- atz - Ste vein in strongly altered			<b>ə</b> 5°	<u> </u>						$\left  - \right $				
	- OSCM atz vein @ 103.9 m	***		25		1-21+ ind d5 24					┝╌╾┦		┟╌╌┨		
	- Stongly size alt monz @ 1054 - 106.2 m														
	- Strongh sci altered monzo 1036 1051 OSCM gtz vein @ 1039 m - Stronghz siz alt monz @ 1054 - 106.8m OSCM gtz gray gtz- Sulphideven @ 106.0 m			2 <b>6°</b>		21. rddSpj	15161	105.4	106-2	<u>a.a.</u>	5_				
	- 20 cm of parking soc alt @ 1063														
											$\mid - \downarrow$		-		
				·····											

TECK EXPLORATIONS LIMITED PAGE 7 of HOLE NO. __C&-99-05 DEPTH (metres) RECOVERY STRUCTURE GRAPHIC ALTERATION METALLIC SAMPLE DATA RESULTS MINERALS (%) ANGLES VEINS DESCRIPTION FROM NO FROM TO LENGTH то 108.8 114.6 Variable weak to moderate see albahn weak gtz-siz stark-out h ~5-bil-p Salphulus very from tr-21 (py) -2000 grage & 113.2 - 1144 114.6 Wick to inaltered manz. monty mercel in Remable shined -goinge from 115 2 - 115 9 116-1 EOH 1161

	TECK EXPLORATIONS LIMITED				Acib	TEST -	- 102.7		5	50	_			<u> </u>			
	Arontice Dilline colleged Det 23	199	Constated	l Octa:								Q					•
DEPTH ( (metres)	10+45 N EDH 109 7 9+20 E DESCRIPTION 1123 m	ERY	STRUC	TURE	ALTERATION				MPL	E D4	ATA			RESI	JLTS		
FROM	9+20 E DESCRIPTION	OVE	ANGLES	VEINS		MINER	ALS (%)										
то	1123 m 120° Az -60 diz.	REC						SAMPLE NO.	FROM	то	LENGTI	•					
0	Casing -					]			-								
315						<u> </u>		<del> </del>	┣ ·						╞╼╼┫		
3.65	We-kly altered to unsitered medium		<b>↓</b>								<u> </u>						
20.0	granced monz weeks i heldows ( Know)				En Strong Ste alter	tim w	nt serve		9.9	10.9	10	5			├──┤		
	1 Marcan 1				qtz stuks 9 101. P. Some chalcolomz Alumitz in some gr.	Ture them	يط حرائد	15164	109	11.9	1.0	10					
	rately motorate to string sensite alt		·]		Some chalectriz	Heining	PSELLE	-									<u></u>
	Parting moderate to strong sensite alt anexated is inc p of gr - y strong to - 21. ds my to - more altered inteactor Strong Sic alt from 9.9 - Host - 11.9				Bulphide Clats (Icm	1- monz	0 10.0								King y		
}	Strong Sie alt from 9.9 - Hart 119_			600		<u>                                     </u>											
	Sic marying gradient to the				ļ	+		! 	<u> </u>	ļ		<u> </u>	↓  			,	
		<u> </u>				<u> </u>		ļ									
0.00				<u>_</u>		<u> </u>								MAC DOWNED			
	Matrak to intendly 556 + 973 altered monze Primery textures from 22.0 - 22.2 and 23.0 to 23.5m nearly entirely Oblaterated by 50 all	[						1									
	menzy Krimery textures from 220-222					<u> </u>			ļ	<u> </u>							
	- Obliteratel by sic all		· · · · ·			1									ł		
	- Truth grange at 22.1 - (20 cm)							(									
		<u> </u>			<u> </u>		• • • • •	<u> </u>									·····
13.5	ener Shetter to usekfy alkrul mong some Shetter & branch a get Vernlakh S-10 from 242 37.0					<u> </u>											<u> </u>
	Super Shelten branch and Vernleh		/	450				<u> </u>									
	- 1cm que in 4cm sec alt margins			(800									-		-+		
235					10.00.0												
21.8	Meycing the Minzoute - unalted				Scalle 27.8-28.4 M	i.										-	<u></u>
	Sie alte internity				ILM CINFICMENT LATE VI												
┠╼╼╾┼╍╾	- m chlatt of makes for south of his par	<b>b</b>		+4 ./ 0/	atis - fish	<u> </u>	·										
	- WITH TY STALLY AND A STALL	<u> </u>	WE NU	<u> </u>	blacs - Most	1											

	TECK EXPLORATIONS LIMITED								41	<i>4.1</i>					—
			_		HOLE	No	<u>99-0</u>	6				PA	AGE 2	20	× 4
DEPTH 인 hetres) H ROM 석		ĒRΥ	STRUC	TURE	ALTERATION	METALLIC	S	AMPL	E D	ATA			RESU	ILTS	. <del></del>
ROM A	DESCRIPTION		ANGLES	VEINS		MINERALS (%	1								
то		U U U					SAMP.	FROM	1 70	LENGT	<u>j</u>	Ţ			
44				<u> </u>		<u> </u>	NO.				]				_
9.9,	Shectul Qu Zone		+ 3% Q.	lon 4m	- 4cm @ 90° to CA to			302	212	+		┨──┤	<u>}</u> }		
38.5 2-3	10% 2mm - 15cm milky av is strong sre alt		0	Helon La sta		121 as a succe	115165	1.50-1	1-21-2	╧┓╤┲	3	+	┣───╂		
(8.7)	enclopes. from dem - barn apart		+ 20.30%	milk Quz.	tother te ? the , intersely SI	( hant do au	KY4	320	227	12	5	╉╌╌┥			·
	At- 2% by as dissin + 00 stringers an		and disk.	·	1 4-12 WAS @ 90	the CA	USING	1.34-42		1		╋──┤			
	au margins and a gr. Alb. + Philteration		+ 1-54 mil	y Qiz-alb	Duns invariable ment	tin more	1567	33.7	244	0.1	c	<del>                                      </del>			
	of m using and in selvages,		acherch +	Imake - 9	in the strongly see the	the an and the com					┤┛	+		+	
	Oblitered primer bet in string he stre		+ 4cm m. 1k	an 6 65	A CA + Sum claugtz -	LI up as 200 LC	11544	20.7		04	5	+	┟───╂	+	
	- en schores ( + Im), unalt mong boture		in show	Kit hunt	No app salphody		1	122 1	20.1	104	⊇	<u>┼──</u> ┦	├		
	at sie vien		- 4:06 Se	- chuca	w_sinn_py margin	1 1 - 0 +	ILLIA	11.1	210		C	++	┢╾╼╉		
			ab ally he	MAR MA & J	the vertuca		1 2191	20.7	36.3	04	-	1-1			
			Sme of	- Salah ye	he son to CA, patche	all alfs: au	115.20	223	774	(1) 7	C	+ +	<b>├──</b> ╊		
		Ì	Sime of	e a Short	there in verse cure		1031-112	1 1-4	1 - <del>7 - 7</del>	10.2		<u>+</u> {	└── <b>├</b>		
			4 x 2-8cm	Milky of	7 - 11 - 11 - 11 - 11 - 1	- auduruu - A	1517	271	100	100	C	╞──┼		+	
			blebs in a	H ven an	alt bot. ~201 vn	0		1246	1 235.		3	i f		-+	
		ļ					1	-							
8.5	Magacaphe Manz - unhild						1	1		† —					
44.B	Chi+Run all of mt + alone fracts (2-31)	L					<u>†                                    </u>	<b>†</b>		+					
	tr-11. Otzunits, milling Kispur uit of Rts. (da-20m), Qu in 1:20m sic chickipm.							<u> </u>	-						
	(In-20m), as is 1.2cm secondors.						-	1				r t			
	~ 70 10 CA						1	1		1		t	<u> </u>		
							1	1		<u> </u>		<b>├</b> ──- <b>†</b>			
4.8	Mixed unait mycicrystic monz + sin		- Scm ate	Saluh MA C	med to strong see ma	124.0	15173	462	40	04	10			-	
2 Walt	_ altered mone + chalcher steknicks		4 30% 20 3	+ HITCH Sula	when as t flourite .	2			4.0		19			+	
	child here ast " + patring kappie all" of email		- 30% che	Ltanuar	shorted for . S. Jen 6	in with	5173	49.6	505	09	105				
	mone, alterting 05m : 20 m intervalued att 45		+ Zom	then the n	who to - 21. py dime	+ in we sal hide									
	unull - ~ 50% sre all rece(10)		- 5-10% R. F	2 Chall OF	in H. 21. ps in dissen +	Adre vier	15.74	515	51.4	09	20				
	5-40% gtz; cluk stk works - strongly to mail		- 20 - 301. br	inchine whi	+ that any in stone are L	of succession	15:34	52.4	53.1	0.7	5	<del> </del>	-+		
			+ 0100 0	evons. t	a schole or in strong soch	Lin Vilan )	1		L				-+		
	single sim atz-py wan & loom -		- 5-10% als	- Koich nes	اند المقادمة المساد	0.19.51	ISI7K	537	555	1.8	5	-+	-	-+-	
	Se huch		4-21 2	a mer di so	un quithout + gray mil	Rite Cam Il busin	1							-+	
			-20 3:1 at	e chale she	KIN SUE CAN. HT - 31. 2	as disci una	15.77	519	58.7	03	5			-+	
			- Sinch 2	Millin (2) 45"	WCA+ 10% brendly 2mm	hallon to 17 a	16.76	42	4.5	03	S			-+	-

	TECK EXPLORATIONS LIMITED				HOLE	No. <u>_сь</u>	<u>491</u> -06	,				PAGE	3 0	<b>st</b> 4
EPTH CH etres) H COM Q TO D	DESCRIPTION	RECOVERY	STRUC	TURE	ALTERATION	METALLIC MINERALS (*		AMPL	εD	ATA		RES	BULTS	
101		REC					SAMPL NO	FROM	то	LENGT				
(e.) 70-0	nd	ļ							1	+			┿┯┿	<u> </u>
-10-0	Mix unult mong + STC alt Qu.	·	301. che	<u>ddrz fliwr</u> 1	SE VAS win Born sie	env. tr-py,	15179	666	49	0.3	5			
	aited in 20-30th analt intention		2.51.0	rey qu	aurin soc env. tr g	· · · · · · · · · · · · · · · · · · ·				ļ			1-1	
	- Unalt. on the alter method + in SE al fighting	†	10-401 C	alc qu. +H	<del>korin src env. tr g</del>	they gtz vein	115180	686	619	1-3	5		┥↓	
	10cm-loSm of 20 301 whit = chate av			┥───		<u> </u>			┦──		$\left  \right $		∔₽	<u> </u>
	- 10cm-los of 20 301. whit > choic gu 			<u> </u>	<u>+                                     </u>					╉───	╈╼╌┧	— <b> </b>	╉╼╼╉	
	tr-11 d Spy + gry Sulphides.					<u> </u>	·	†	┼━	<u> </u>	┼╼╌╀		+	
						1	- <u>í</u>				;+		╂──╂	
<u>२००८</u> अम्म	- Unait & Medium good to Alguraphe mon 3 -		<u> </u>							1			<u>+</u> +	
	- Cut by descrite 3 Wim milky gr w more		12 cm qu	in som	soc alt coustup, aris a	ter salph	15184	72.5	730	0.5	S		+ +	
	Su alt envelops att-5% py tpo an		in eastle	<u>e. av.s</u>	to in som goingo									
	- Cleb + Stringen in qu - Sqr sy by 400 - 2m could interach	<u> </u>	25cm mi	<u> </u>	k in <u>Soungoinge</u> Physicial laws 035 ming see envidese	1 to CA	1582	18.4	789	05	5	1		
	Some walky altred 25 your patelo		VA win	<u>50.~ st</u>	time see envilope.	<u> </u>		<b> </b>	<u> </u>	<u> </u>	T			
		<u>†                                    </u>				<u> </u>				<u> </u>			┟──┟	
81.4	Med and to measure mons i me et stokes	+ 5m	elt	<u> </u>		<u> </u>							┼┈╌╂	
905	Medgend to menocryphic mong is more glashter Chi Ellem ail of number, SEI. hub rock		15% 1	ok on stake	1 i + 1-31 c- c	11.	1002	84.3	9.3	0.4	20		╞──┾	
	1-10% chit at 2 + Ster keel bautures		on an di	men in ill	at in + 1-3% goy so	i china i		01.2	0-1	UY.		<del></del>	┢╾╌╁╴	
	2 40-Socie much to Stong sie alt juiths give						i					<u> </u>	╞──┿	
	1 in - 201, chall and then - A tra 54		25-34	Loka ski	ut i 1.5% por sule	Lam tay +	15,94	870	875	0.5	5			
	grey sulph lim + py as disser + clubs in vern + hal		py and	man m	Vin + hat	7	1				-		<u>}</u> −− <u></u> †−	
·	- + Coil					<u> </u>								
90.5	Variably bre all & monz			<u> </u>										
42.4	most to show so all ament in		<u>307. cha</u>	lc.gv + g	im (2 Som that) + 5	tuspy	15185	91.0	97.7	1.7	5			
	10-101 that as the to be all all the		<u> </u>	ry supply	<u>kim (J. Sinn-Hitk), t s</u>	minijeri							┨──┤	
- +	workley and a strawho + Suit all - of how The		······································											
	10-201. Chall go Stawho + 5.11 alt of had rack Vertuble view ment, any -45th of the form		·										┟──┼╸	···,
												_ <u></u>	├──┼	
			·						-				├──-┣─	
						f							┢╼╾╄╸	$ \rightarrow $

1. ...

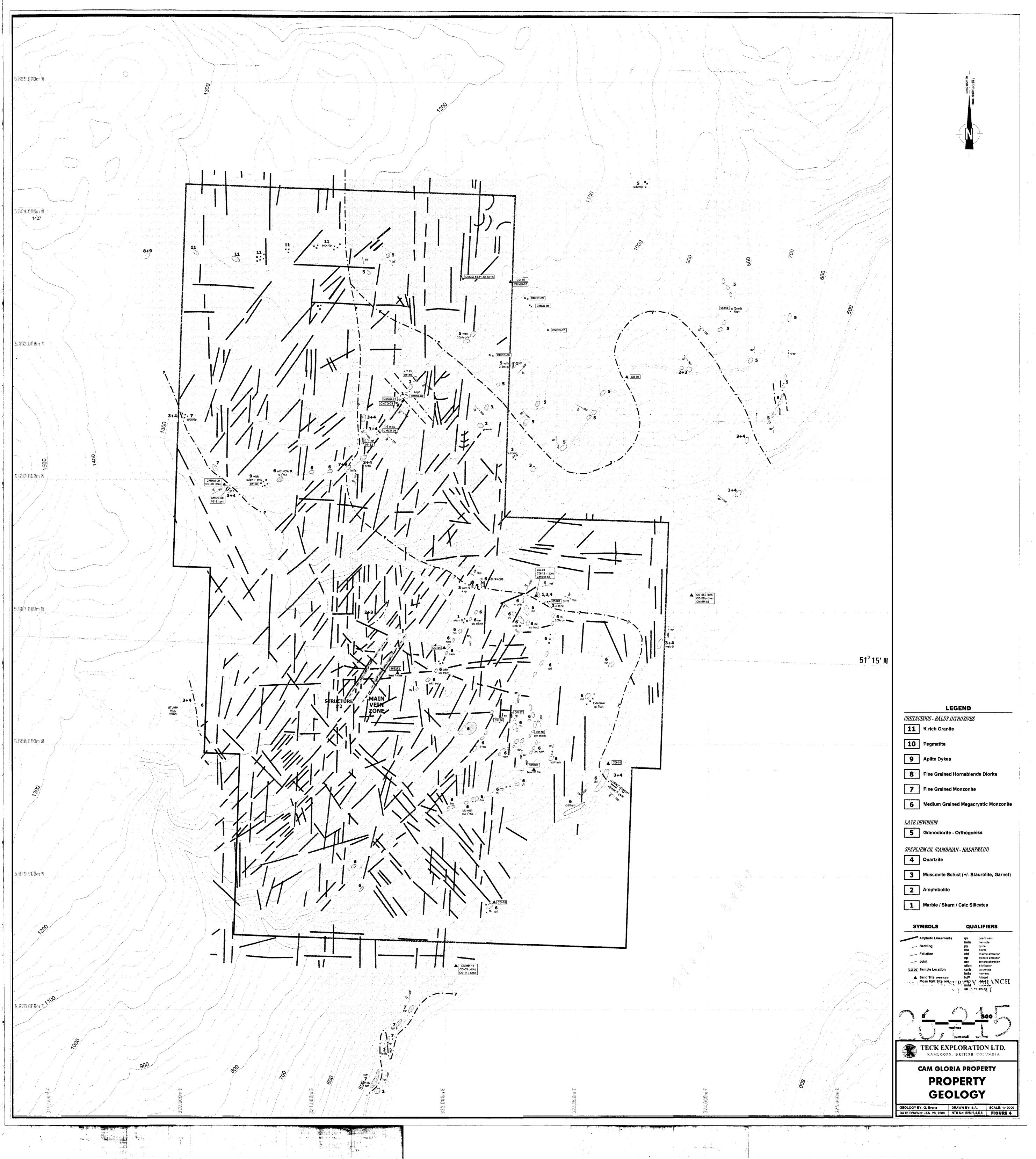
<u>×</u> 7	<del></del>	TECK EXPLORATIONS LIMITED				HOLE	No. <u>ca 99</u> -	. <i>6</i> 6					PA	_{ige} 4	of	4
DEPTH (metres) FROM	GRAPHIC	DESCRIPTION	RECOVERY	ST RUC ANGLES		ALTERATION	METALLIC MINERALS (%)	S/	AMPL	E DA	<b>ATA</b>		. (	RESUL	.TS	
то	5	ļ	REC	Ļ'	<u> </u>	!		SAMPLE NO	FROM	то	LENGTH					
929 p 109 7		Mix unull ^d + mod to strong sic all ^d monz - Ste all envelope acoud name chuic - structure 101.0		30 cm 20 in - 2% j Artall	e of 301. Phy 1 grey 21	aleve que unger in flan alphite leve - vers.	eile £ Kool + shinge w	586	480	98.4	04	5				
		monz. Stealt environ around name chuic - stenwhitter 101. P) - SO: So all fundle <del>from</del> 5-157. chit sreigtz fructures (< 10m) - SOI of 10 through is booken		]												
(007 60 1062 (5.5)		Atz- Sulpinde Ven 5 in sere alt but minz, immetted may in planning, 2 1-5 3 m chok qu'in malto siving in and to siving in - Sol of are going of s/subject of your sulpinde Vien - Forth engad views for 40-50 feel.		1-51. gerra 91-31. grr 97. 200	hat state is cl	her pe t mile, vins 15 p. t mile, vins 15 p. r. toma in 1 g. t het, and as 4 10 m.		15183	1085	S 102.3	<u> </u>	5	}+ }+ }+			
		- 50% of circ going gtz/sufficient in your supported - 50% of circ going gtz/sufficient in your support vision - Form engaged interior from 40-50° tock. Protocol gibro of host vacu		- 2-201 o In gry sulf much to so	15 limm - hale va ste hal - the has	Han with + gity + viggy gtz - grt 1-2 mm Strin im un + chic me + mill in concerne + Stringen	tr-31. py +	15168	105.3	3 106 2	0.9	S				
106.2		Meri good to Mayo monz concelt of		1-201. 54 4-51. 2	times for	win + chie ma + mill in lun + stringe	<b>i</b> g <i>Uns</i>	15:89	102.8	8 1638	1.0	IS				
		~ pluca E04 101.7														
					<del> </del>	l	<u> </u>				<u> </u>		+		<b>—</b> —	Ŧ

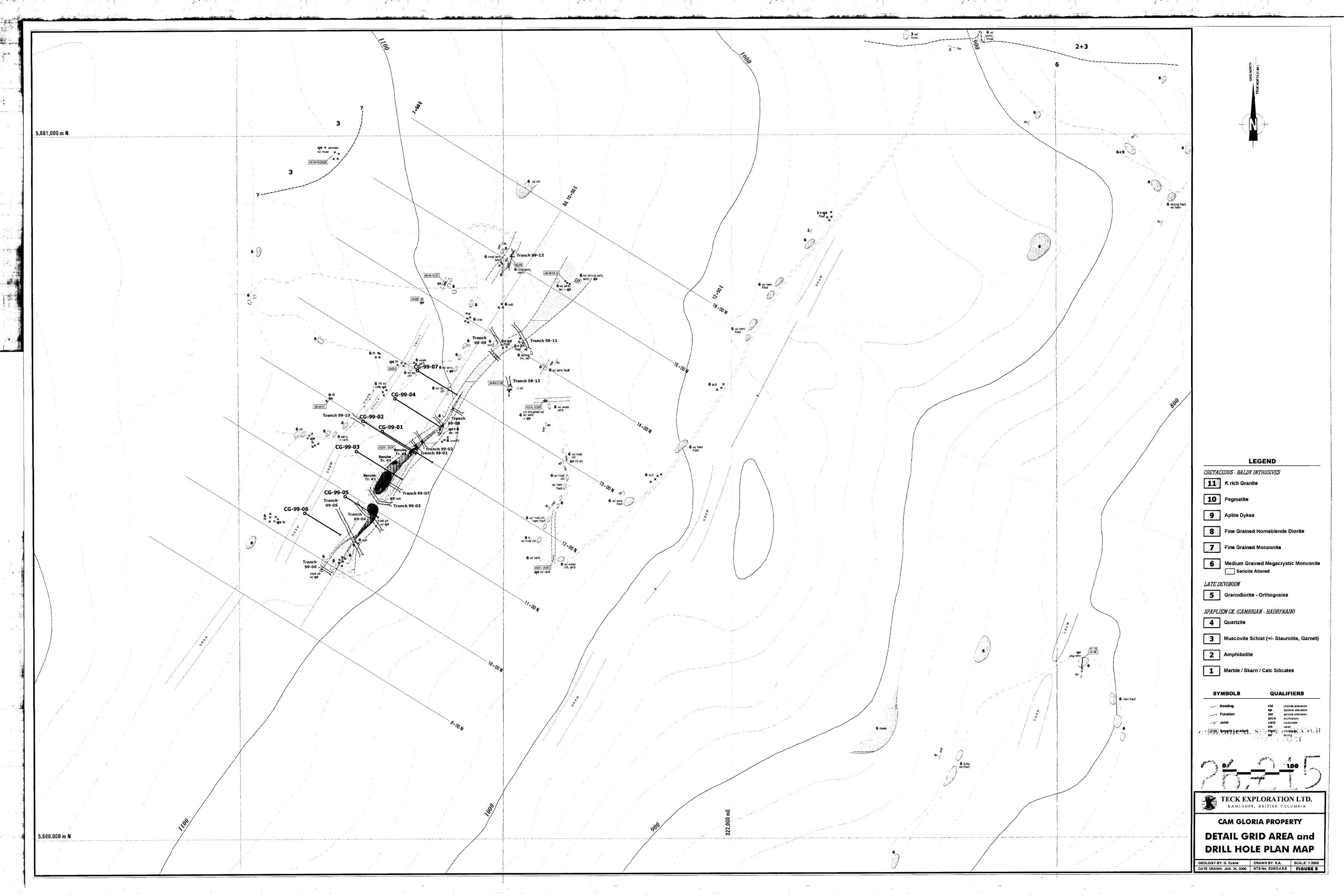
and a second and a second and a second and a second and a second and a second and a second and a second and a s

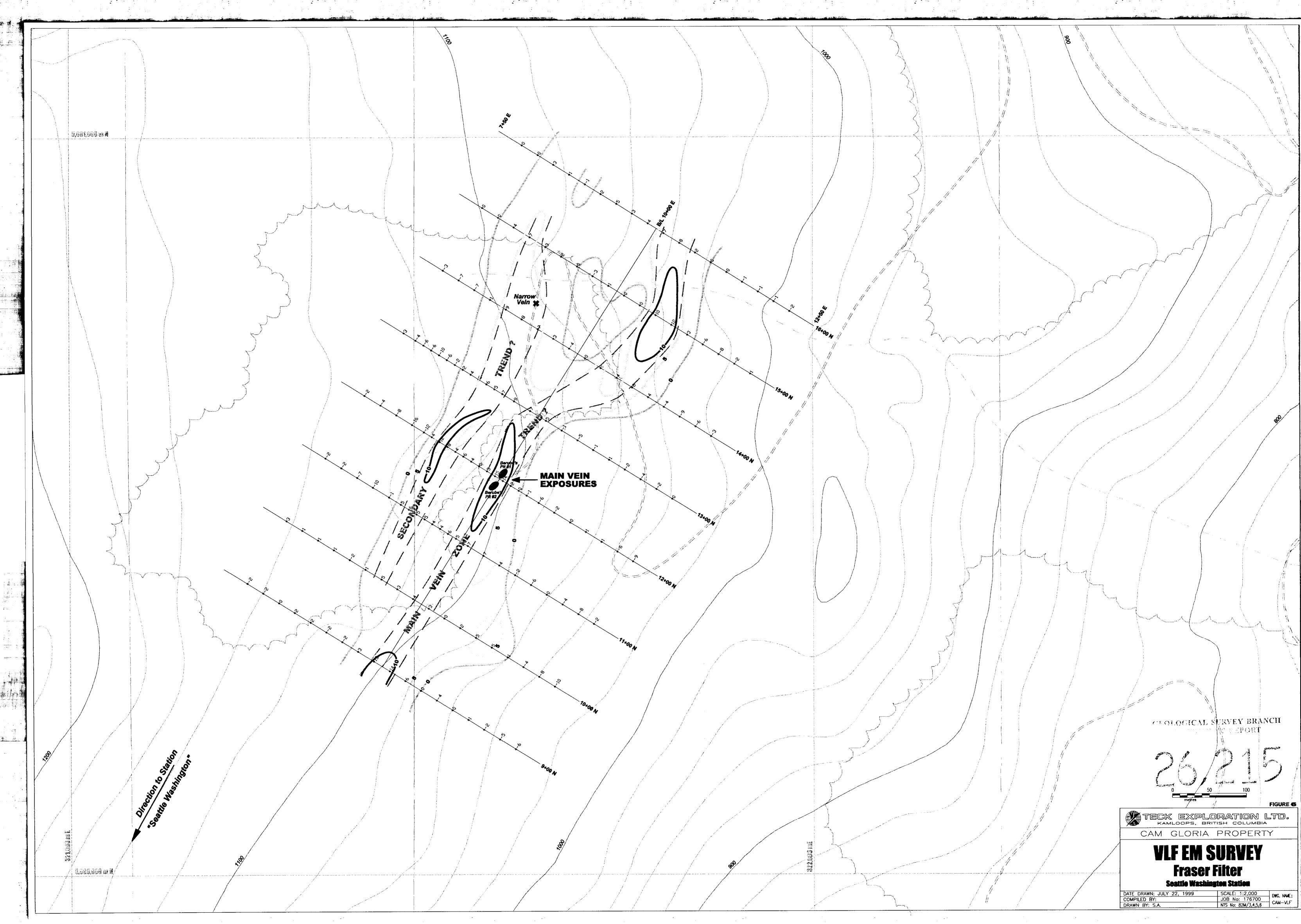
 
 Start Oct 24
 Finnish Oct 25
 Acid TEST - 105.8m - - 59°

 Finn
 L 13+00N

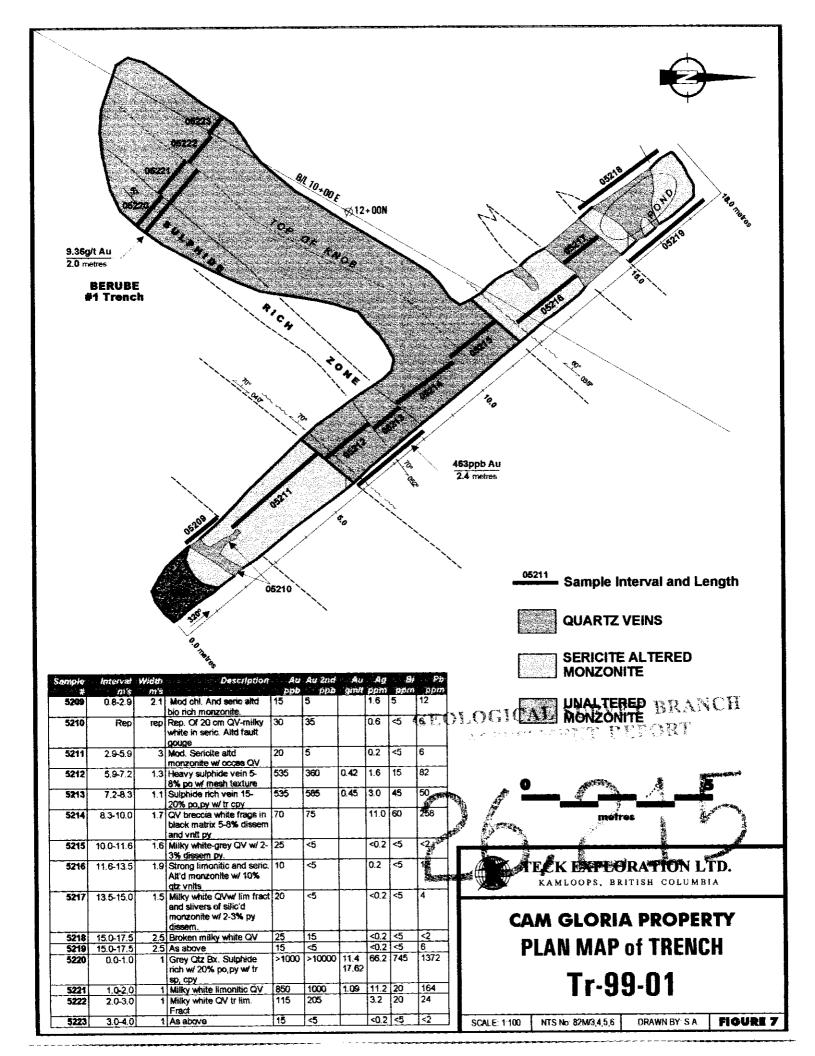
 Az-120°
 Stn 9+50E

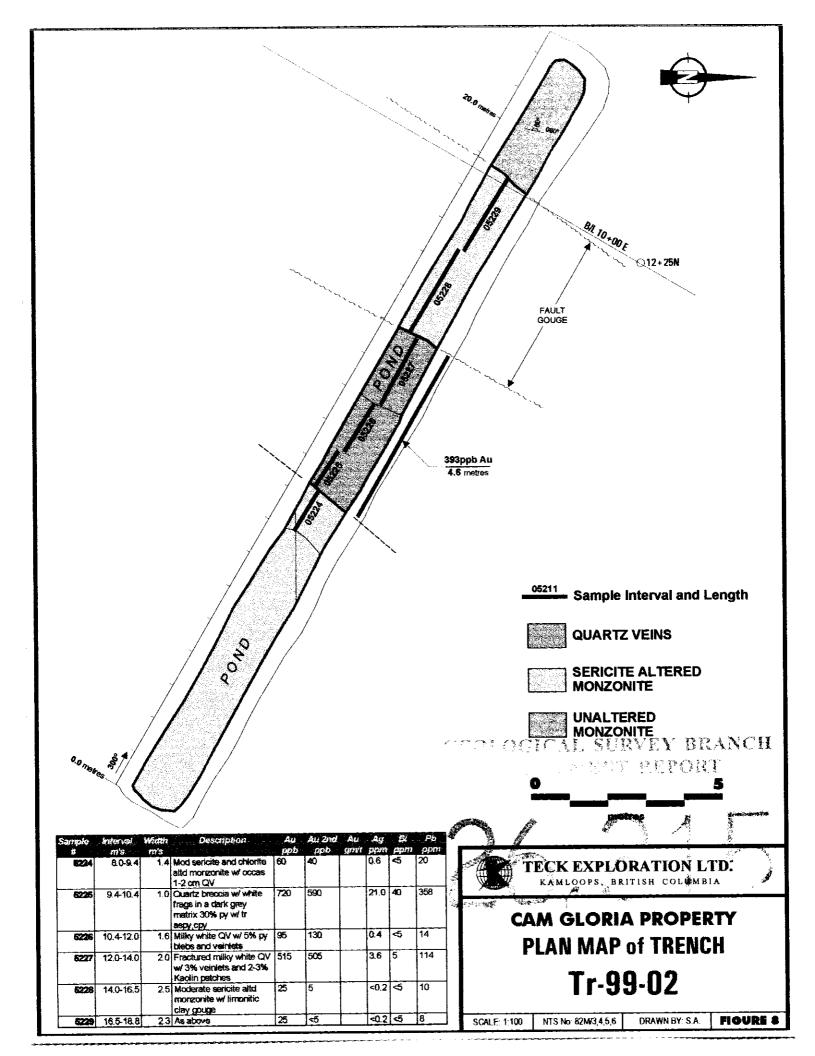

 Dip-60°
 Elev. 1113 approx
 TECK EXPLORATIONS LIMITED PAGE 1 of DEPTH GRAPHIC RECOVERY STRUCTURE ALTERATION METALLIC SAMPLE DATA RESULTS (metres) MINERALS (%) ANGLES VEINS DESCRIPTION FROM SAMPLE FROM TO LENGTH TO 0-6.7 Overburden Megacrustic Monzonite - unattered typical yehl per alt wy vave lom 6.7-13.8 - 5% 10-80cm megacynets QUE 70° to CA - senderally pink from hem! 12.6 - 13.5. strong her weather along a fault C 45 to CA - we fault Strong serie alter w QV's not it strong serie alter mone The QU'S in mad serie att w 270 pu 120 pollebs 150023 in strong serie att w 270 pu 120 pollebs 10-1270 2-19 QVS in strong seried latt w 120 publics 13.8-7.3 15201 13.8 14.8 1.0 30 Inod all strong serie alla monz w only vague phenos 1070 11 10cm valley white QVS and C 50-60° to CA commonly w US70 as write to gry subhides of Megacrustic Monzonite - unaltered - on / cool w we pink hue K? S70 1-2 cm zoned FP3 15202 14.8 16.1 1.3 5 15203 16.1 17.3 1.2 5 17.3-21.4 2-3% 1-3mm sevic Weak Servicite Alter Momeonite 21.4-24.0 -weak, pervosive seric alt turning A3 white but chi still present 24.0-46.5 Mego crustic, Monzonite - unaltered dullep latte mon matics by pink K alt - hue 32.2-32.6 milley wht QV @ 60°+ CA, to py 15204 32.2 32.6 0.4 5 weak servicite alt- permasive contract on 20cm fault (234.1 (260° to CA

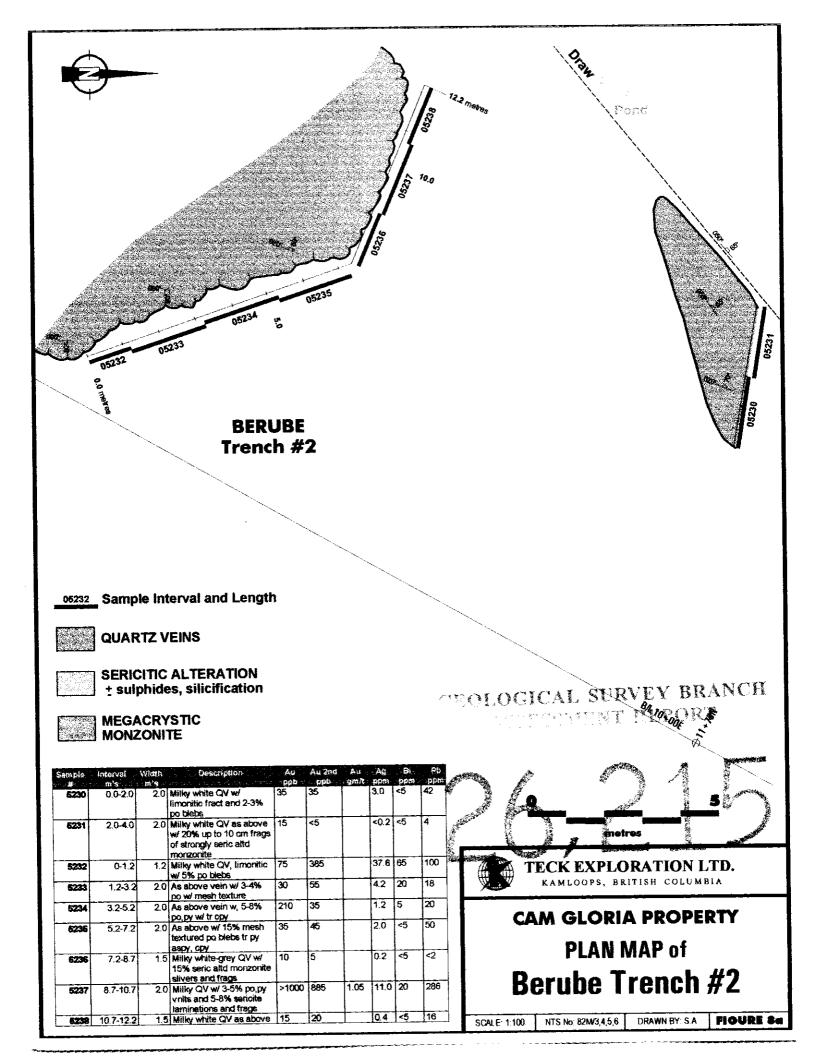

and the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the

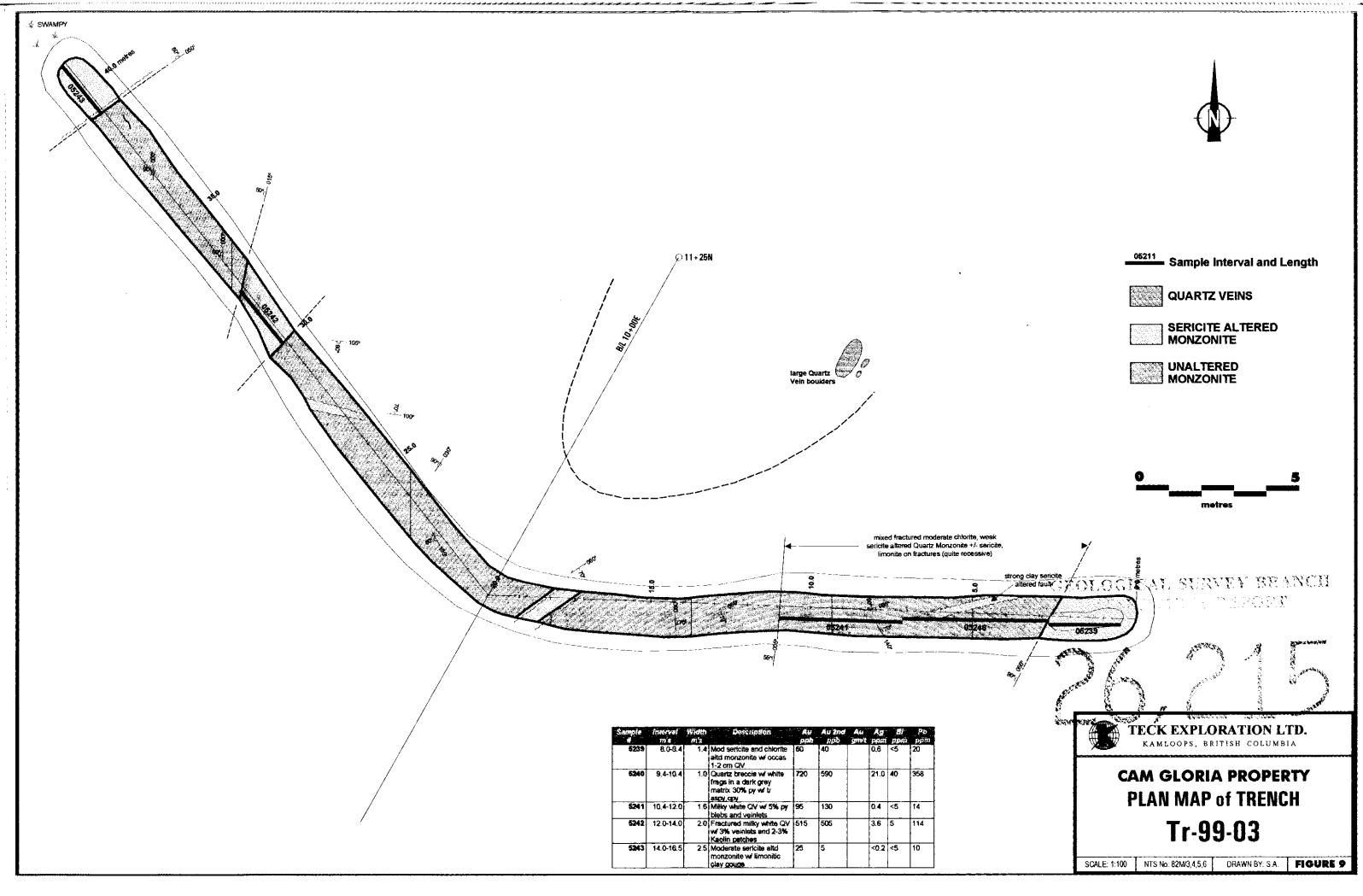

TECK EXPLORATIONS LIMITED PAGE? of HOLE No. <u>Ca-99-07</u> DEPTH (metres) GRAPHIC RECOVERY STRUCTURE ALTERATION METALLIC SAMPLE DATA RESULTS MINERALS (%) ANGLES VEINS DESCRIPTION FROM SAMPLE FROM TO LENGT то 44.8-46.5 weak serie turning FP2 creany wy mod serie attel fract's 24.0-46.5 Mod > Strong Sericite Alto Monz acherally and Seric alt pervasive In cylul 12. 0.5 - 1.0cm Atz-Permatite veins (145° to CA - Inte pole an serie with P 30° to CA 46.5-50.9 1-2mm -tr dissem + blebby py Megachystic Moreconite - unalted -quite relatic n/ 30% chiles alter matics - 3% lem Zoned Fiz - pink bue - Katt 50,9- 91,1 att fract P 35-45° to Mixed unglid monz w/ sevtk all'd patches 60% ch/co vich unallel monz w/40% 10-150 on mod sevic and mod K alter cones (some strong pervosive K alter (245-60°to CA)) 11-2% milky white QV3 Z-15mm (245-50°to JCA 59.1-66.0 Strong > Intense Serie All-primatry textures almost pulit to a preamy aphanitic texture 66.0-68.9 15205 96.0 67.5 1.5 5 15206 67.5 98.9 1.4 5 -tr diesem Jow

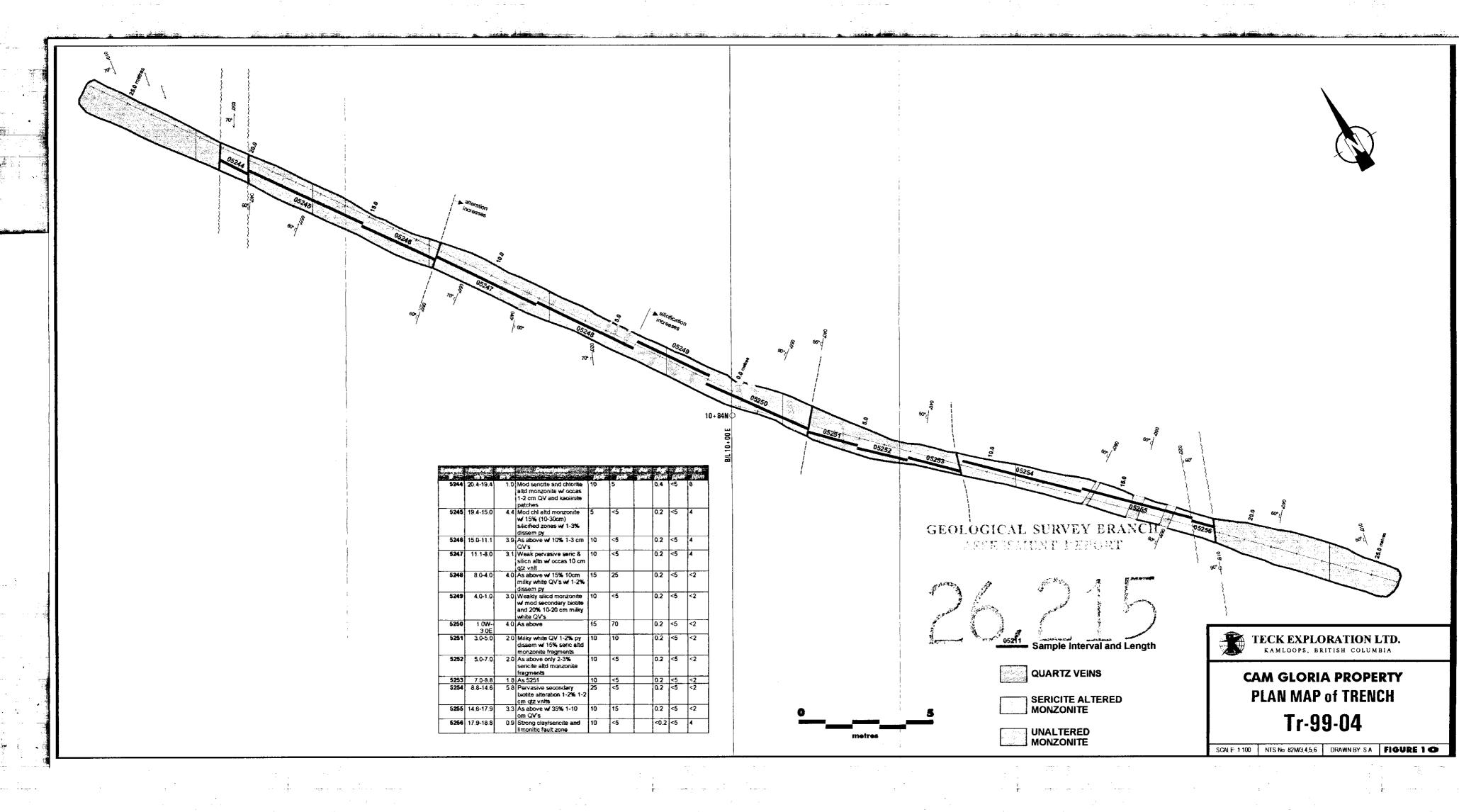
TECK EXPLORATIONS LIMITED PAGE 3 of HOLE No. (G-99-07 DEPTH STRUCTURE GRAPHIC RECOVERY METALLIC ALTERATION SAMPLE DATA RESULTS (metres) MINERALS (%) DESCRIPTION ANGLES VEINS FROM SAMPLE FROM TO LENGTH то 689-FAULTED QUARTZ VEIN! 70.4 intense servicite altered fault gover w 609:0.5-5.0cm mile. white -15207 68 9 70.4 1.5 20 laven at z vein Hauhtt going (= 45-80° to CA Cinst daniel 1-2% vtgv an in guy subhide vein -fragment are generally subancular based in fault 20pm of hematic rich fault source Meganustic Megaponte - unattered - parentilly unatter my Kalter person we wy mpg.cs. politared to chilep 70.4mod serie alter avoing a Scon milling av C450to CA my 105.8 15208 79.8 79.6 0.4 15 EOH 22 10 py - yfar - only weakly fractived - Options 30 + VED cm mod service strong servic aff" my a central IDem QV + 57. C50° 2-4 mm atz volts - average 3-49 mit+dissomption 15209 85.3 86.8 1.5 10 att zone = QV= and sulphide. -some sections w/ here on fractives Mod servic alt = zone w 10% 3mm - Dom avis 15210 101.1 102.7 1.6 5 

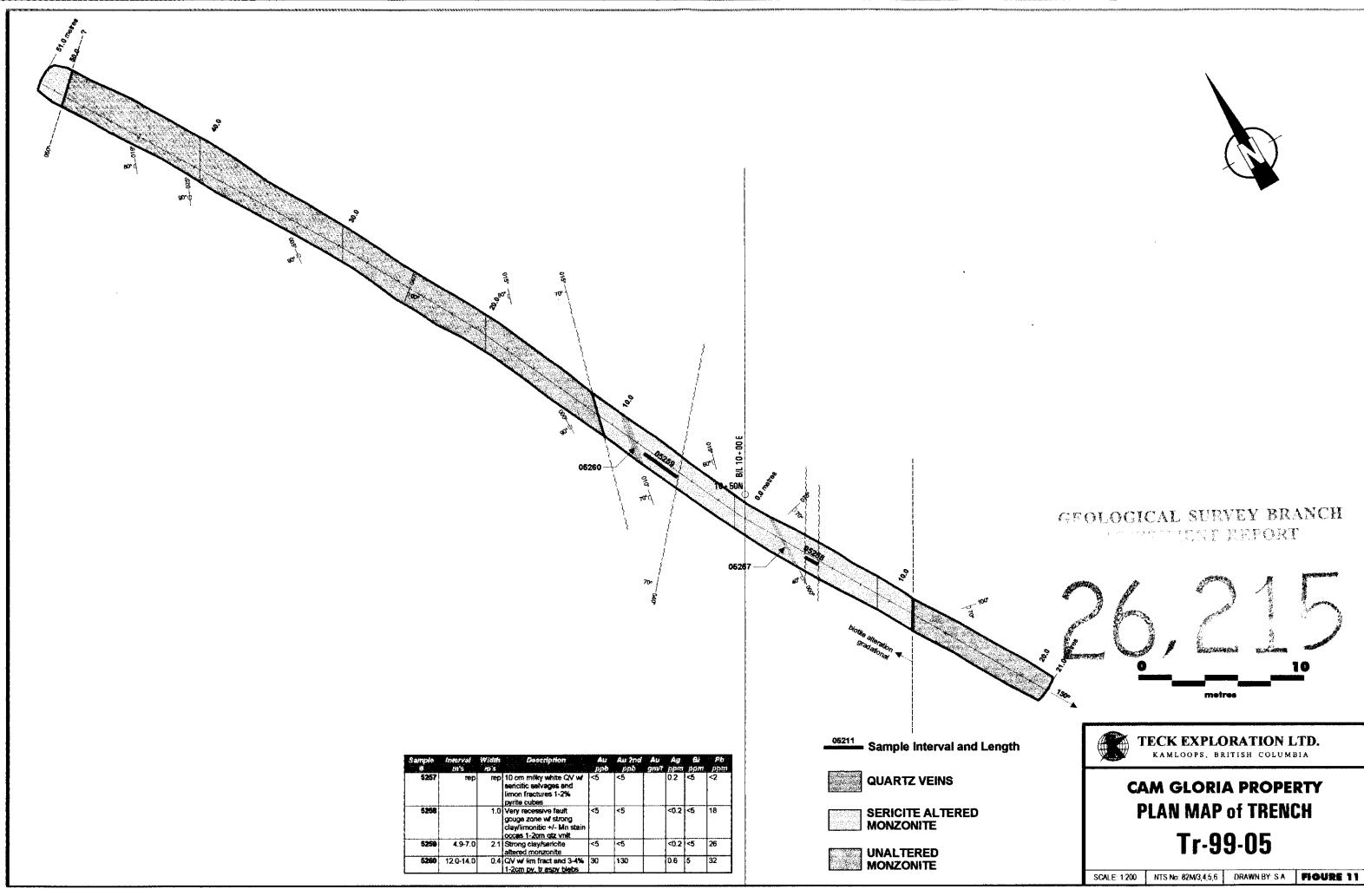

الرواب المتحول المتصافية والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والم


n an thair ann an thair ann an thair ann an thair ann an thairtean airtean airtean airtean an thairtean an thairtean an thairtean airtean 

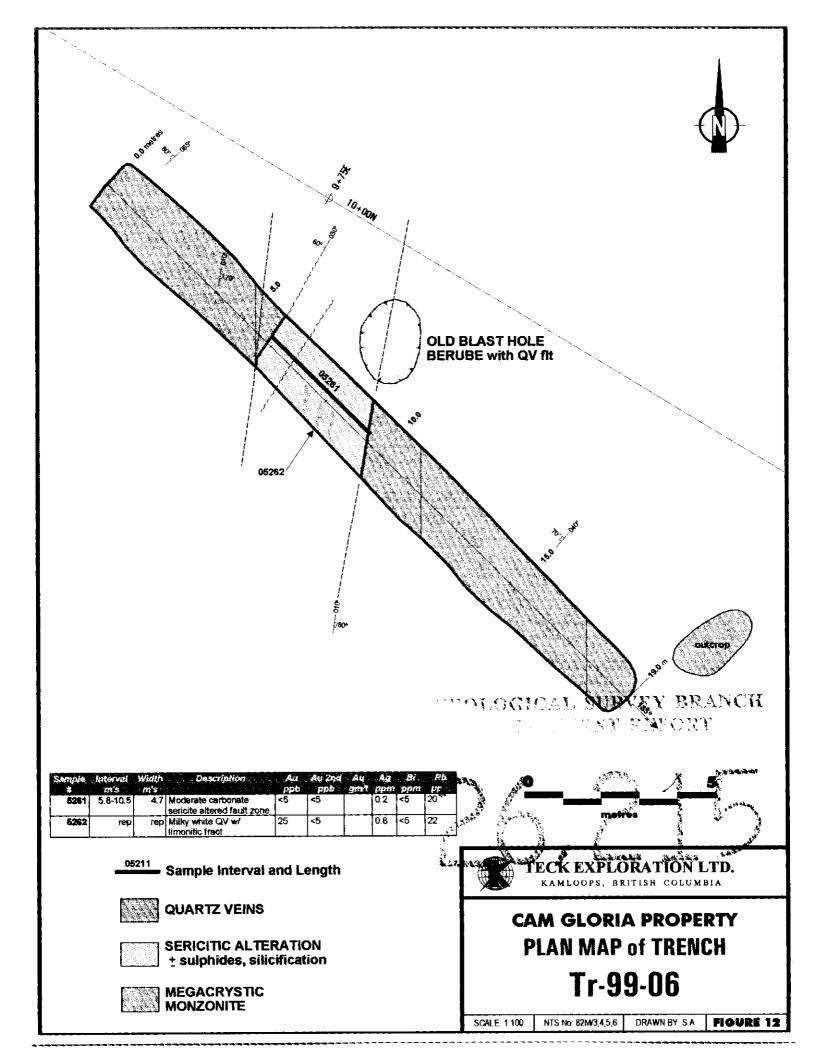



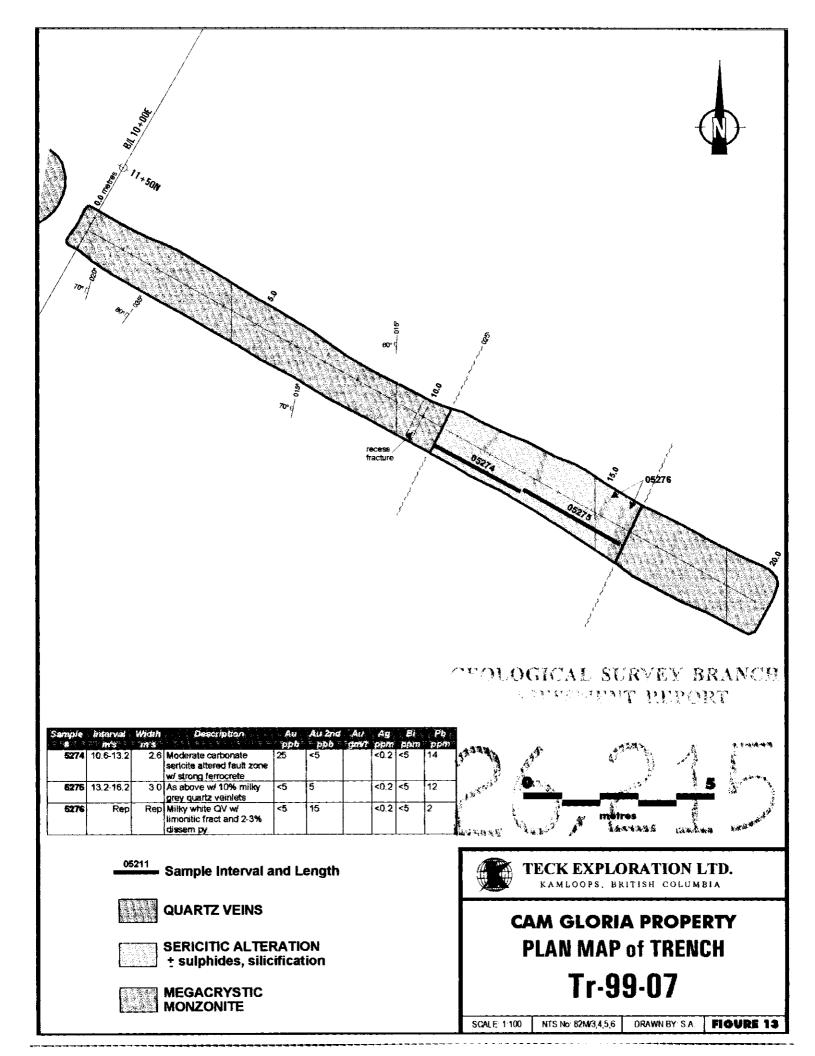



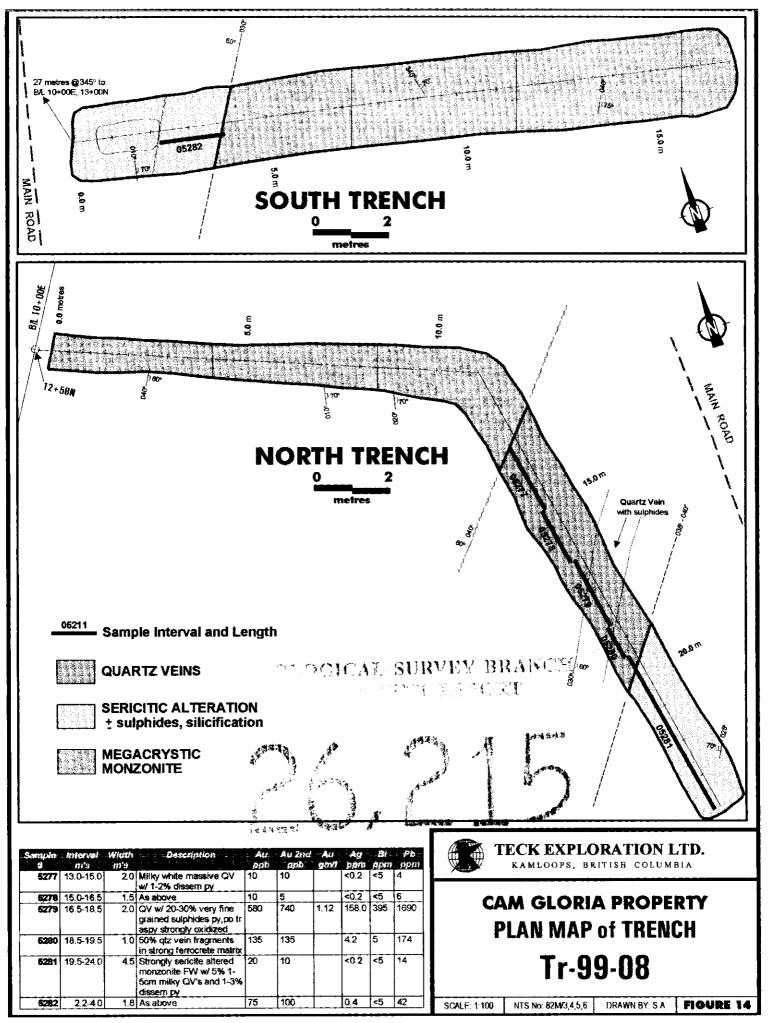



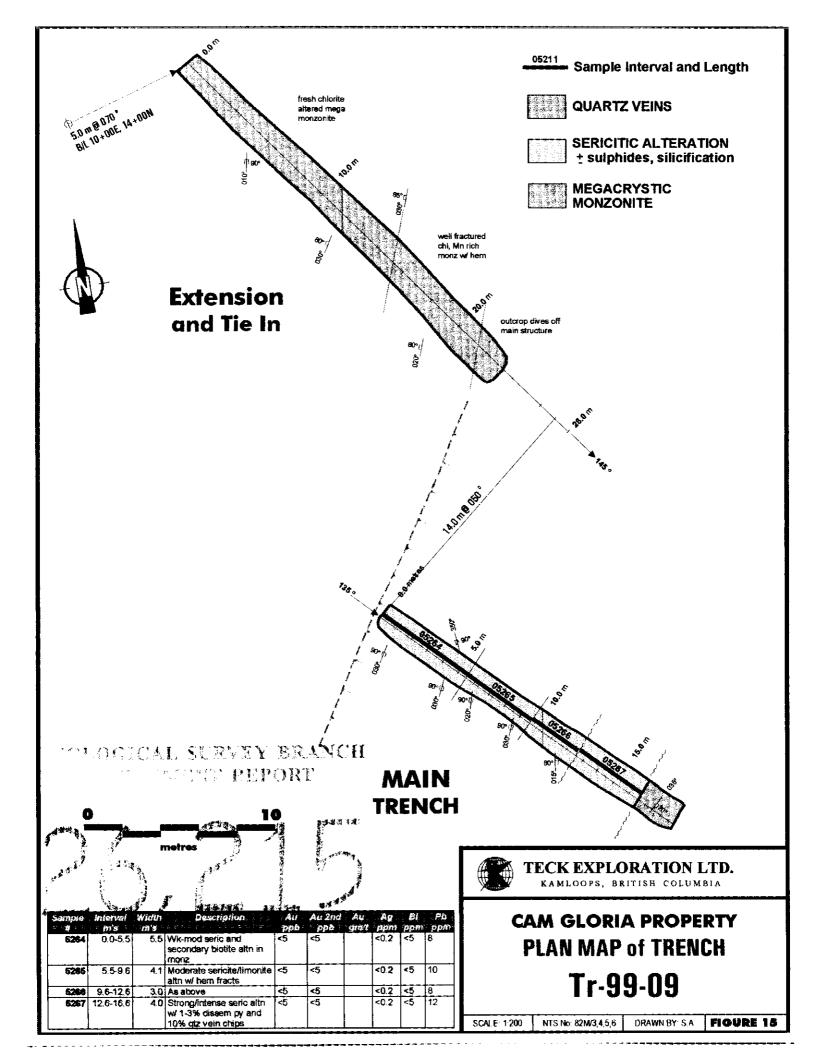



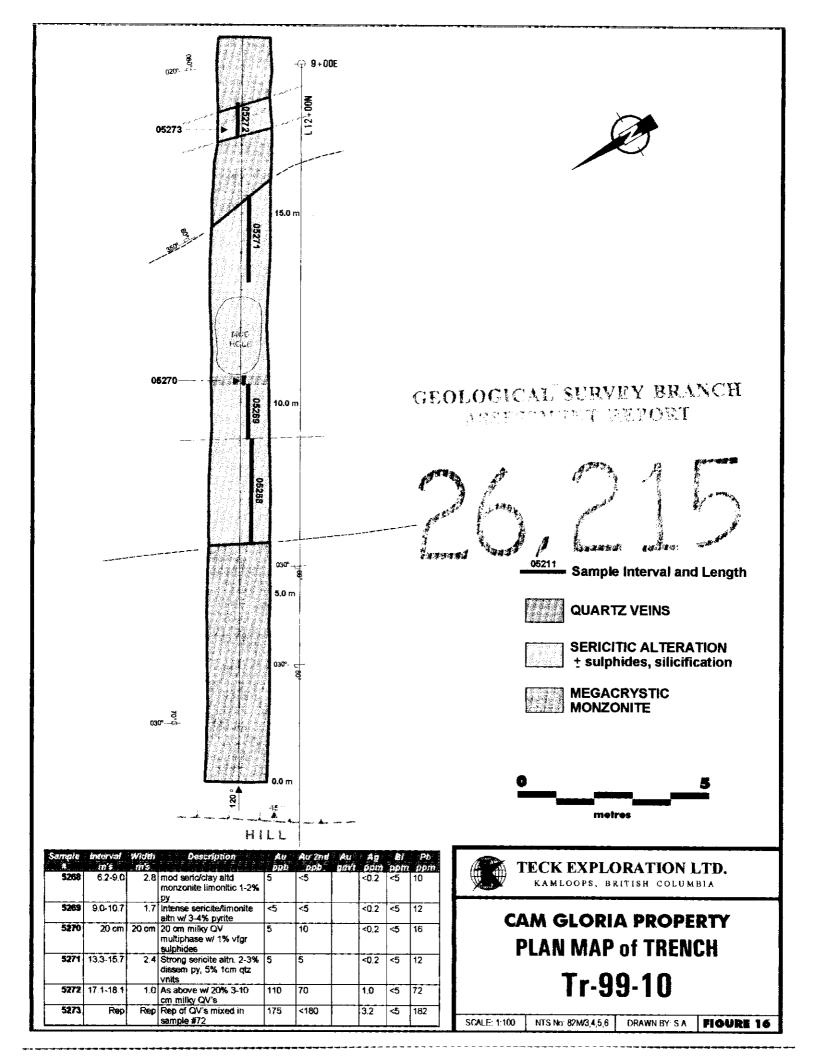


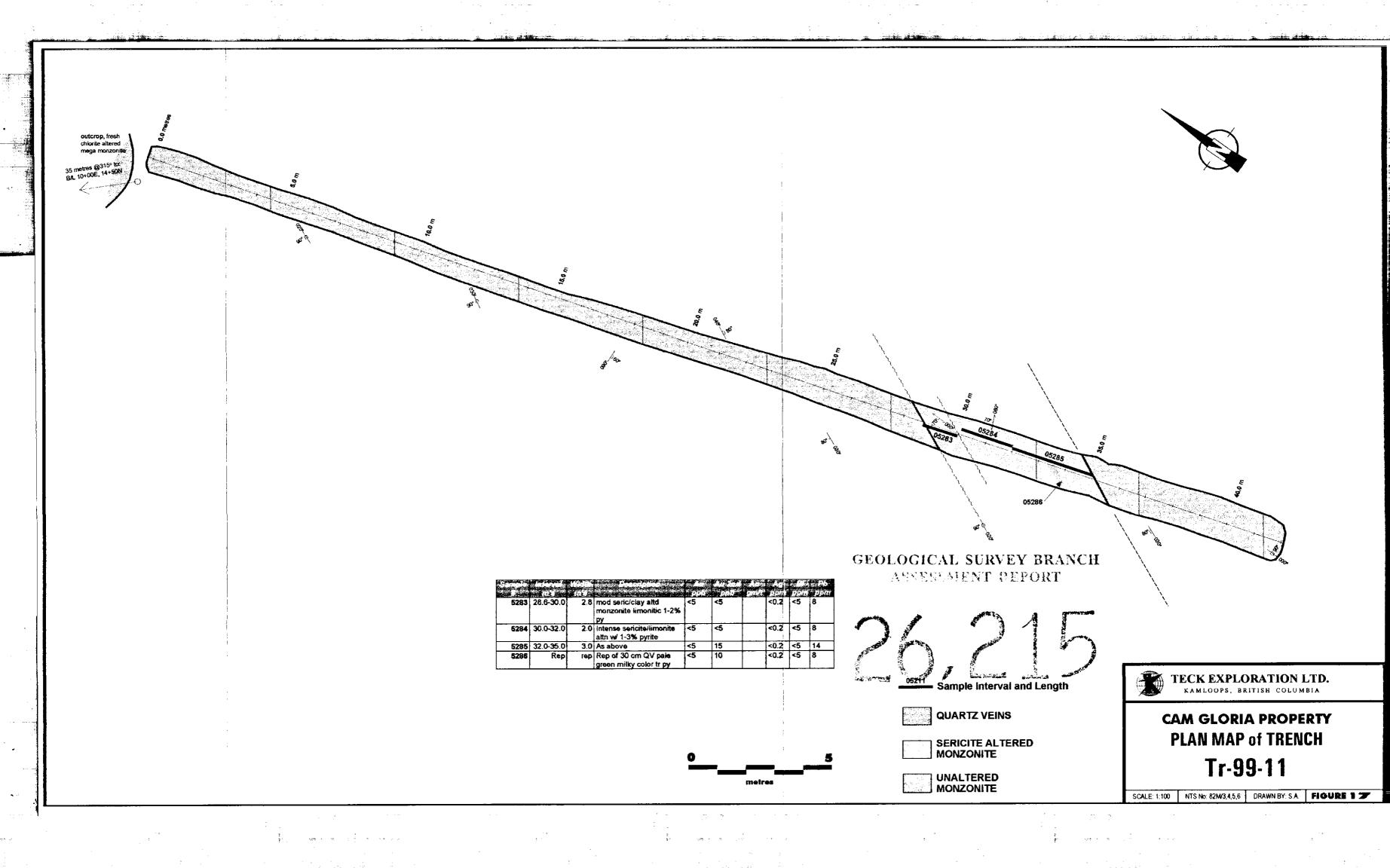



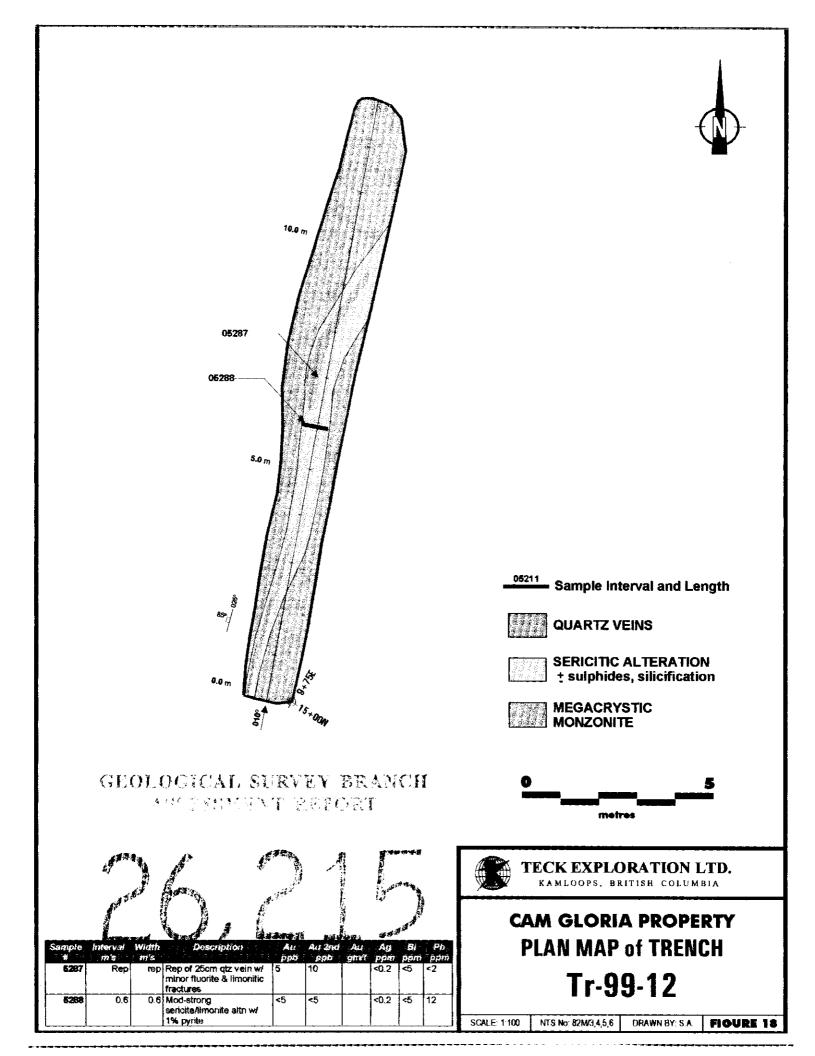



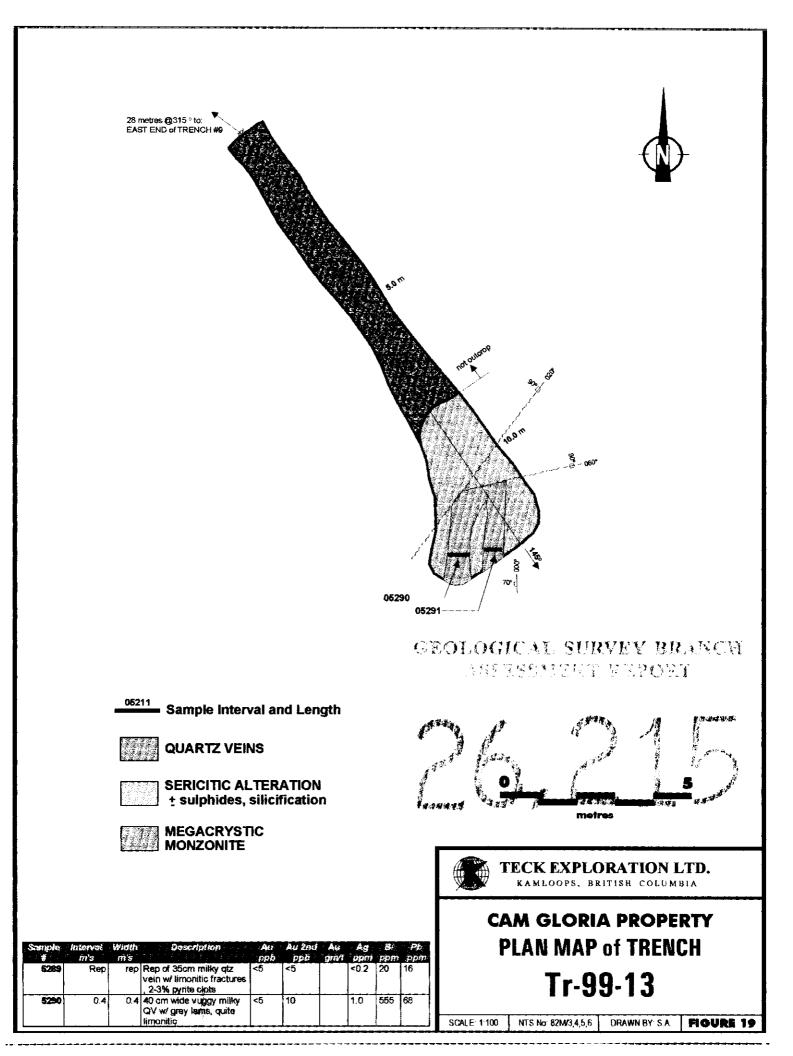



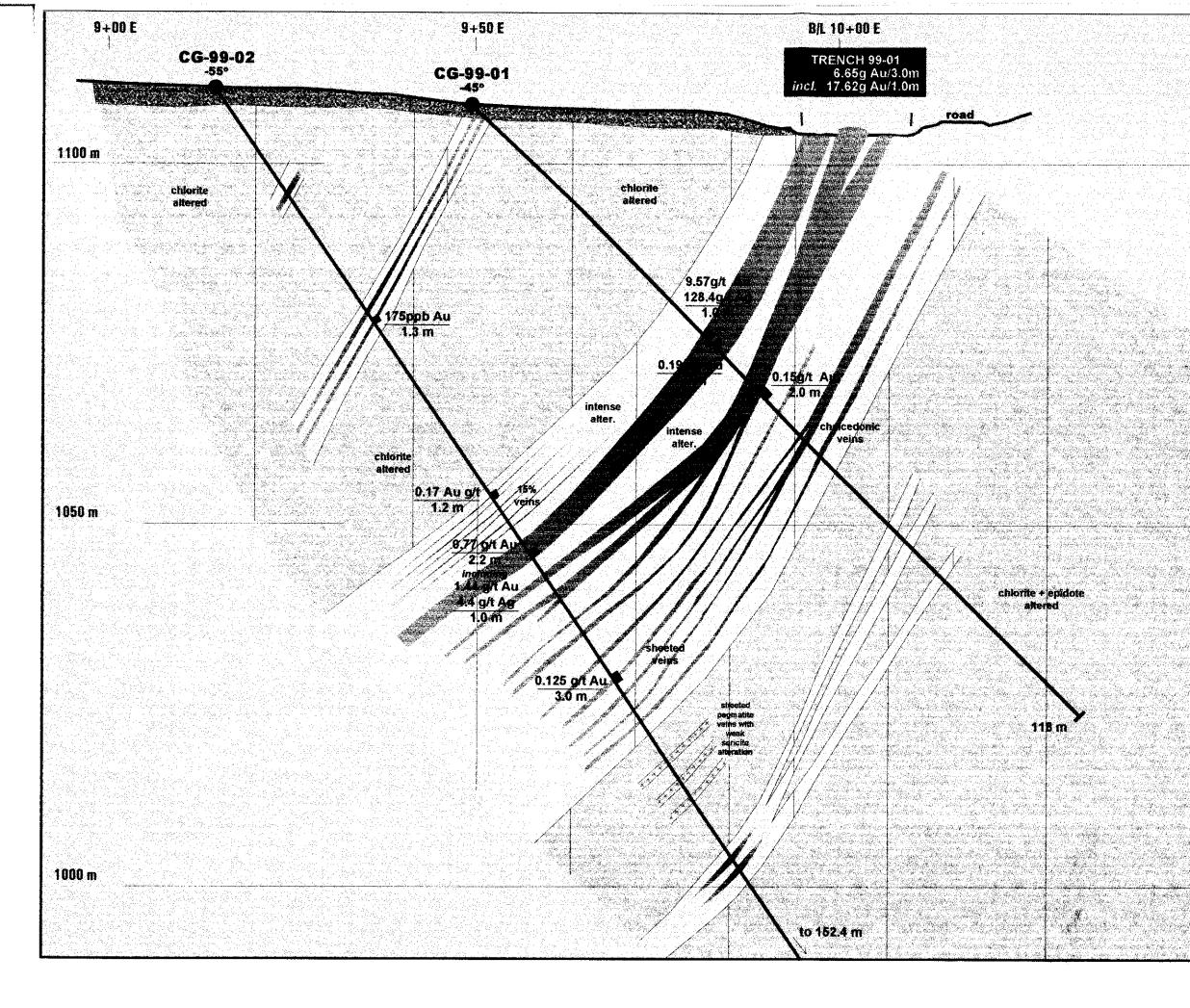
















## QUARTZ VEINS

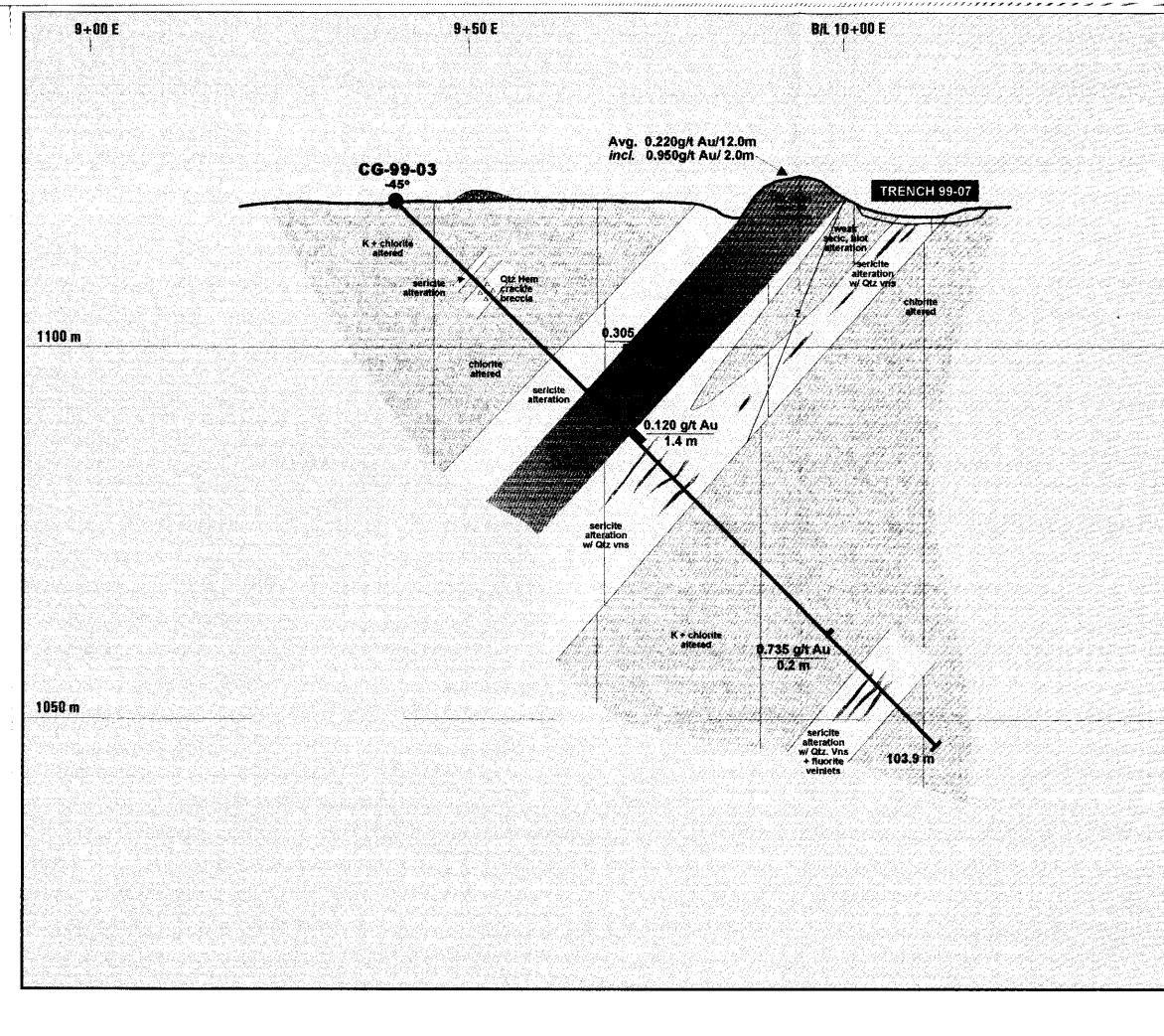


#### SERICITIC ALTERATION <u>+</u>sulphides, silicification

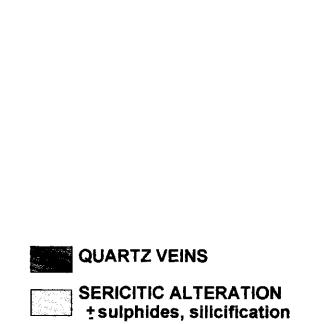


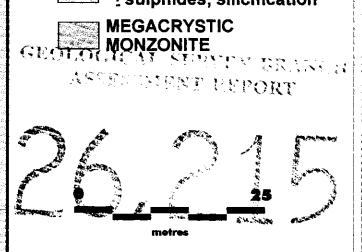
STREETENT THEORY




metres

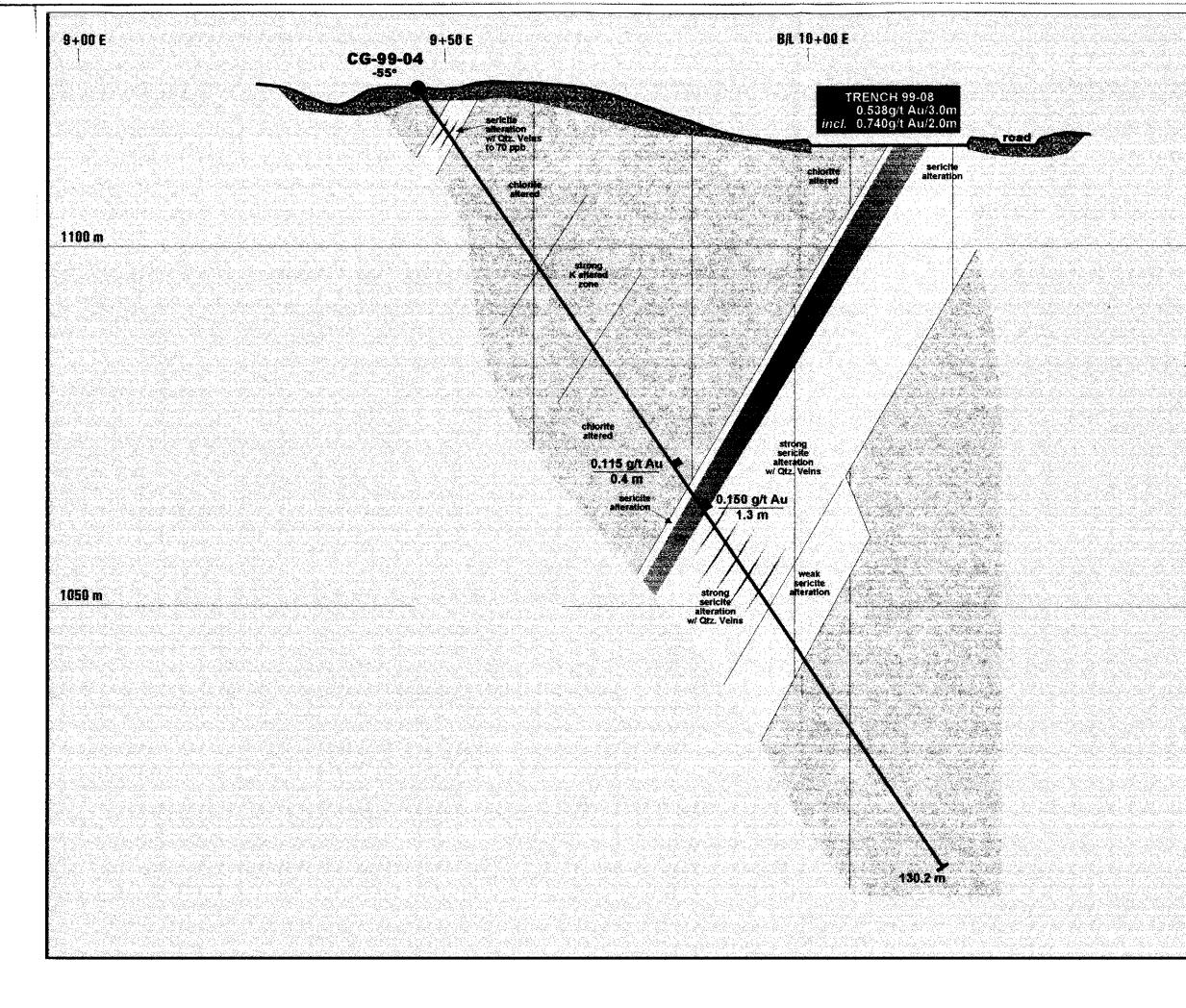


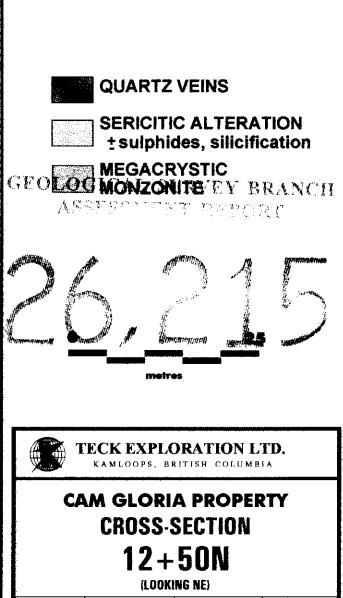

# CAM GLORIA PROPERTY CROSS-SECTION 12+00N (LOOKING NE)


DRAWN BY: S.A. FIGURE 20

SCALE: 1:500 NTS No: 82M/3,4,5,6

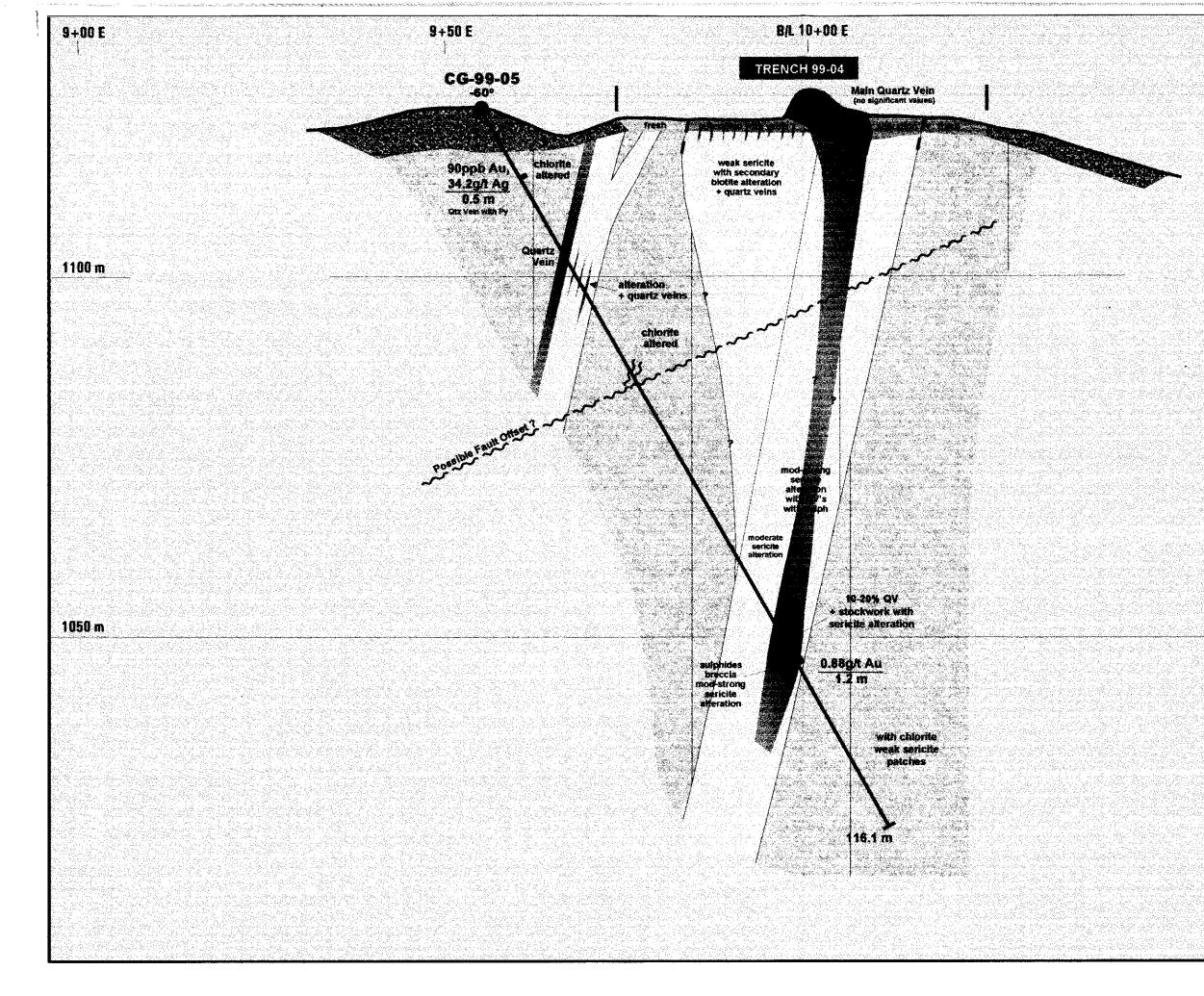



.












SCALE: 1:500 NTS No: 82W3,4,5,6 DRAWN BY: S.A. FIGURE 22

22







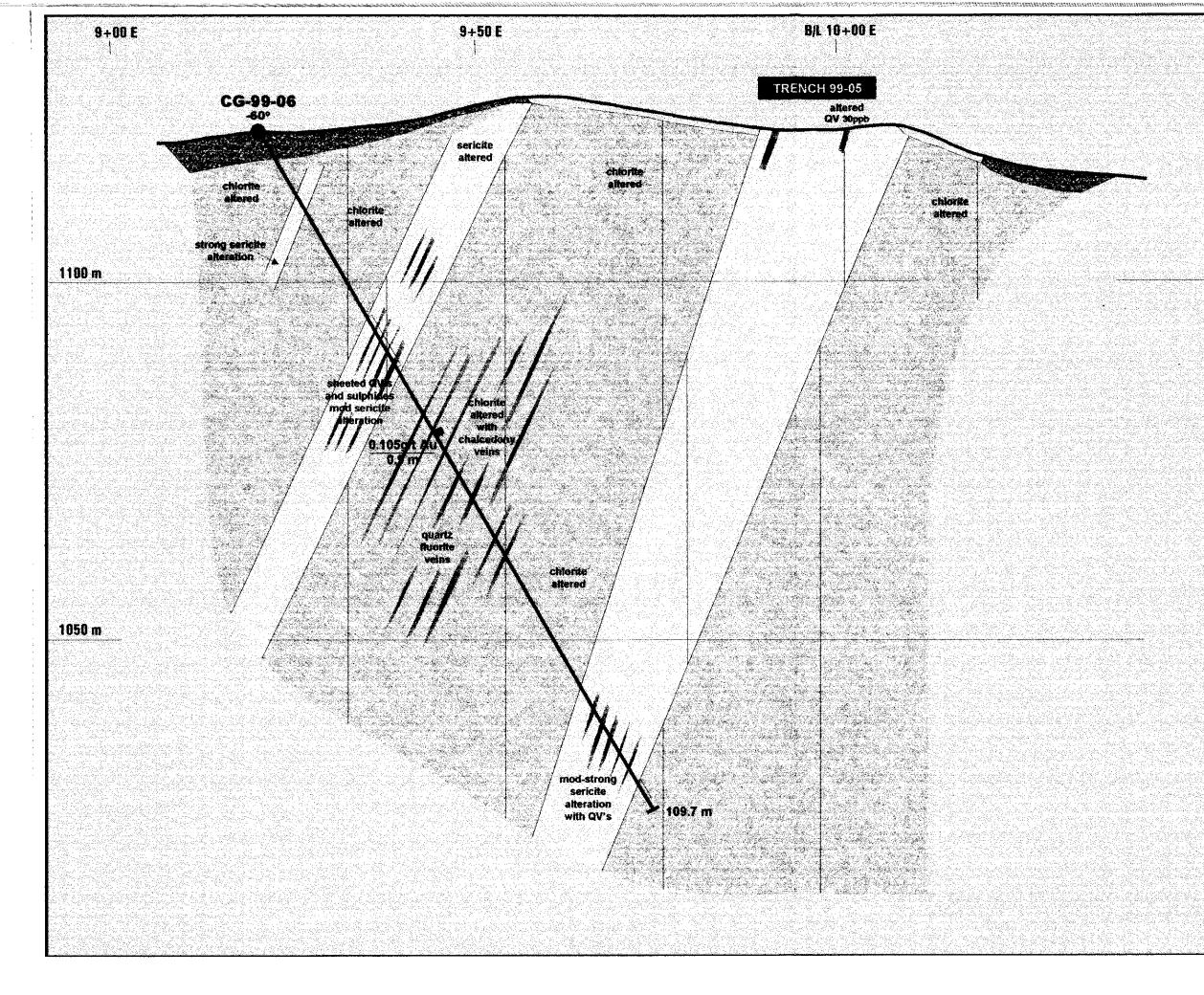
#### QUARTZ VEINS



SCALE: 1:500

### SERICITIC ALTERATION ± sulphides, silicification

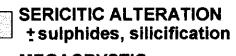
GE MEGACRYSTIC MONZONITE




TECK EXPLORATION LTD. KAMEOOPS, BRITISH COLUMBIA

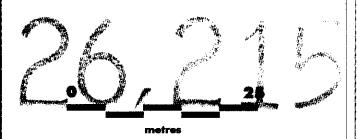
# CAM GLORIA PROPERTY CROSS-SECTION 11+00N

DRAWN BY: S.A. FIOURE 23


NTS No: 82M/3,4,5,6







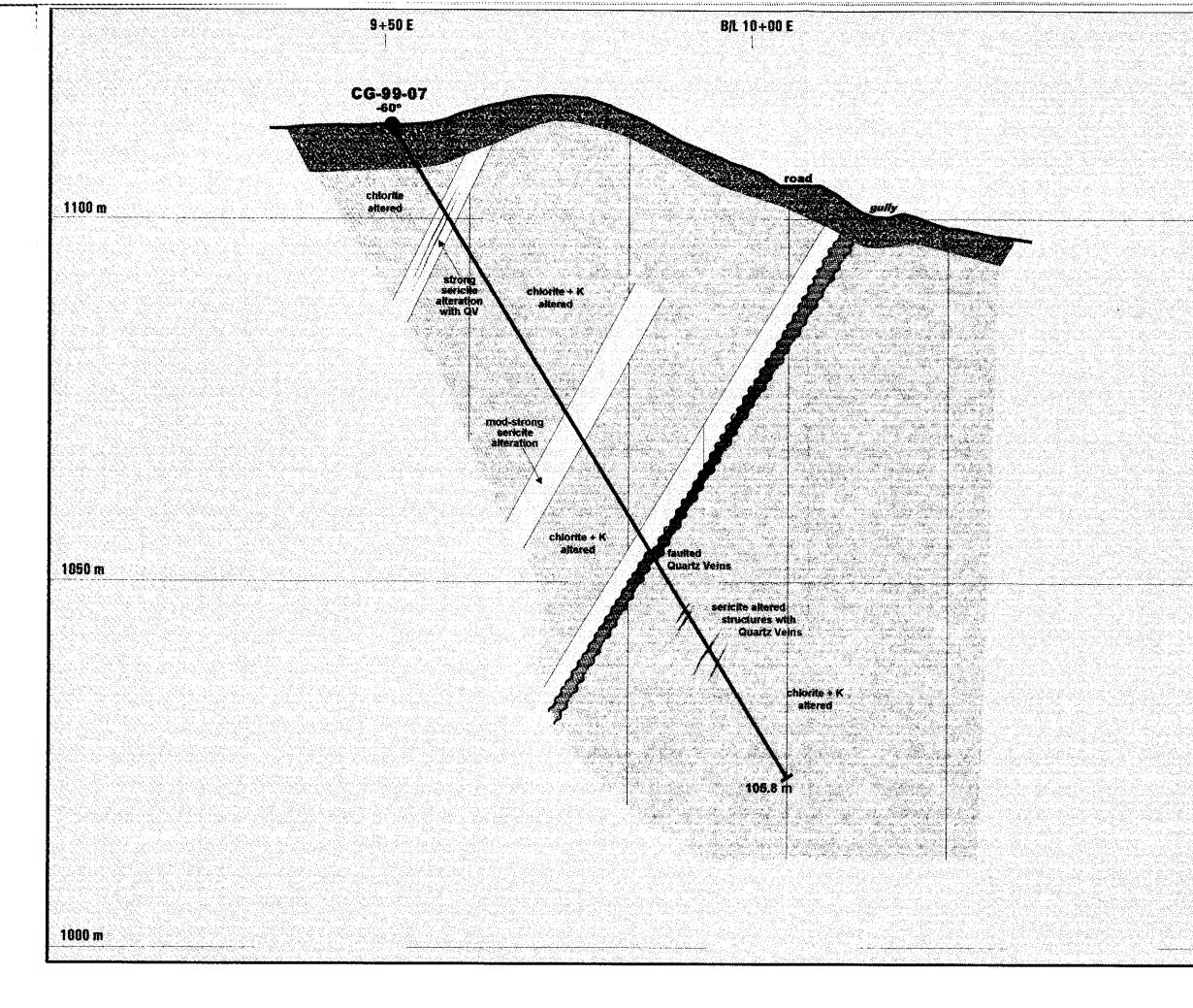

# QUARTZ VEINS

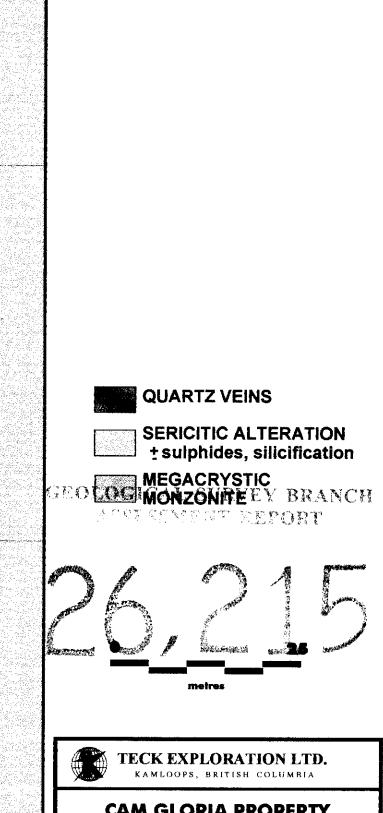




ASSESSMENT REPORT







TECK EXPLORATION LTD. KAMLOOPS, BRITISH COLUMBIA

# CAM GLORIA PROPERTY CROSS-SECTION 10+50N (LOOKING NE)

(LUOVING N

SCALE: 1:500 NTS No: 82M3,4,5,6 DRAWN BY: S.A. FIGURE 24





## CAM GLORIA PROPERTY CROSS-SECTION 13+00N (LOOKING NE) SCALE 1:500 NTS No: 82M/3,45,6 DRAWN BY: S.A. FIGURE 25