


# SURVEYS CARRIED OUT TO PRIORITIZE DRILL

# TARGETS ON THE STEWART PROPERTY,

**DELTA PEAK AREA:** 

LATITUDE 56° 36' NORTH

LONGITUDE 129° 38' WEST

NTS 104 A/12

SKEENA MINING DIVISION,

## STEWART GOLD CAMP,

## NORTHWESTERN BRITISH COLUMBIA

BY

## DAVID E. MOLLOY

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTER 2000



## **SUMMARY: 1999 DELTA WEST PROJECT:**

The Delta West Project is located on the Stewart Property, situated about 70 km north of Meziadin Junction, in Northwestern British Columbia. Historical work, which is described in the Report on the 1998 Prospectors Assistance Program (Molloy, 1998), outlined a number of large, apparently stratabound zones of Zn-Cd-Ag-Ba soil anomalies that have both IP and EM anomaly associations. The targets are located in close proximity to Hwy 37, but are covered by overburden that ranges up to over 10 m in depth. The 1999 project was carried out to further prioritize drill targets on the large number of geochemical/geophysical anomalies.

The widening and reconstruction of the Hwy 37 hindered access to, and work on the historic Delta West Grid, which strattles the highway. Field activities in 1999 consisted of the restoration of Grid Lines 30+00N, 28+00N, 26+00N, and 22+00N, and Base Line 50+00E; and, the collection of a total of 86 fill-in soil samples and check samples (generally taken at 10 m intervals), which were analyzed by 32 element ICP by Chemex Labs in Vancouver. Prospecting and mapping were carried out to locate additional outcrops and apparent structures; and, to ascertain whether the axes of the most important HLEM anomalies located in 1998 have any apparent overburden association.

As noted in the author's report on the 1999 Prospectors Assistance Program (Molloy, 2000), sediments from streams draining Bowser Group lithologies in the Stewart Camp are generally characterized by rather anomalous Cu and Ni contents. Soil samples overlying Bowser sediments near Hwy 37 appear to have this same Cu-Ni signature, which thus appears to be a useful tool in mapping the contact of the Bowser Group and altered Hazelton Group rocks. The latter rocks are postulated to host wide, stratabound zones of Zn-Cd-Ag-Ba mineralization. This type of mineralization often halos significant Cu-Au mineralization in the Stewart Camp e.g., the Red Mountain Au-Cu deposit; and, the Deltaic Grid Cu-Au mineralization, located on the Stewart Property about 10 km southeast of the Delta West Grid.

From the integration of the historical and current geophysical, geological and soil Cu, Ni, Zn, Cd and Ba geochemical information, the Highway and Central/East Zn Zones are interpreted to offer high priority polymetallic, year round drill targets in close proximity to Hwy 37. The Highway Zn Zone, as outlined by threshold Zn, Cd and Ba contours of 300 ppm, 1.5 ppm and 200 ppm, respectively, ranges up to over 150 m in width. Historical work indicates the zone has a strike length of over 2 km, and moderate IP correlation on the three lines (L26+00N, 22+00N, 14+00N) that have been run with IP.

The Central/East Zn Zone offers a similar, if not more important target, since stronger soil Cu and Ni values, in this case believed associated with altered Hazelton Group rocks, have an overlapping relationship with the east side of the Zn zone. The zone also exhibits an apparent flexure that is associated with some of the strongest Zn, Cu and Ni soil values. A strong IP anomaly is correlative with the zone on L28+00N - the only grid line in the1999 detailed follow-up area on which the historic IP survey was done. At least two HLEM anomaly axes are associated with the wide zone (up to over 200 m), as outlined by threshold contours of 300 ppm Zn, 200 ppm Ba and 1.5 ppm Cd. Based on the historical work, the zone has a strike length of over 2 km.

It is concluded that the Deltaic Grid offers high priority drill targets for polymetallic, stratabound mineralization. Two initial diamond drill holes are now recommended, which total 550 m and represent a significant revision of the original 1998 drill proposal. Hole DW01-00 would be collared on L28+00N at 55+50E and drilled for 250 m at an azimuth of 60° and a dip of 45° to test the East/Central Zn Zone.

Dependent on the success of the first hole, Hole DW02-00 could be immediately drilled under Hole DW01-00 from the same set-up. Or, Hole DW02-00 could be collared at 47+50 E on L24+00N to test the Highway Zn Zone, i.e., drilled at an azimuth of 60° and a dip of 45° under Hwy 37, for about 300 m. In view of the relatively flat topography, close proximity of Hwy 37, and the old lumber roads in the clear-cut area, the targets are amenable to relatively low cost, year round drill testing.

## TABLE OF CONTENTS

~

•

,

.

.

.

.

.

.

•

.

-

•

•

.

.

.

| -    | TITLE:                                                                             | PAGE : |
|------|------------------------------------------------------------------------------------|--------|
|      | SUMMARY                                                                            | ii     |
|      | TABLE OF CONTENTS                                                                  | iv     |
| 1.   | INTRODUCTION:                                                                      | 1      |
| 2.   | STEWART PROPERTY                                                                   | 1      |
| з.   | LOCATION, ACCESS:                                                                  | 5      |
| 4.   | TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND<br>VEGETATION:                         | 4      |
| 5.   | EXPLORATION HISTORY:                                                               | 8      |
| 6.   | STEWART CAMP GEOLOGY                                                               | 9      |
| 7.   | STEWART CAMP MINERALIZATION                                                        | 15     |
| 8.   | GEOLOGY, DELTA WEST PROJECT                                                        | 16     |
| 9.   | 1999 EXPLORATION PROGRAM                                                           | 17     |
| 9.A. | DETAILED FOLLOW-UP SURVEYS TO PRIORITIZE DRILL TARGET<br>ON THE DELTA WEST PROJECT |        |
| 10.  | CONCLUSIONS, RECOMMENDATIONS                                                       | 23     |
| 12.  | REFERENCES                                                                         | 27     |

#### LIST OF FIGURES

,

•

,

.

.

.

.

.

,

-

.

•

| TITLE:                  |                 |                                         | PAGE : |
|-------------------------|-----------------|-----------------------------------------|--------|
| 1. LOCATION MAP         | •••••           |                                         | 2      |
| 2. STEWART GOLD CAMP    |                 |                                         | 3      |
| 3. ROAD MAP             |                 |                                         | 6      |
| 4. RELIEF MAP           | ••••••          |                                         | 7      |
| 5. STEWART COMPLEX      |                 | • • • • • • • • • • • • • • • • • • • • | 10     |
| 6A.DILWORTH FORMATION   |                 |                                         | 12     |
| 6B.STEWART VOLCANIC BEI | Л               |                                         | 13     |
| 6C.GENETIC MODEL FOR MI | NERAL DEPOSITS, | STEWART CAMP                            | 14     |

### LIST OF TABLES

|       | TITLE:                                                         | PAGE : |
|-------|----------------------------------------------------------------|--------|
| TABLE | 1. DELTA WEST MINERAL CLAIMS                                   | 4      |
| TABLE | 2. EXPLORATION EXPENDITURES                                    | 18     |
| TABLE | STUDGSO1: DELTA WEST PROJECTSOIL SAMPLE DESCRIPTIO             | NS20   |
| TABLE | STUDGSOA1: DELTA WEST PROJECT SOIL SAMPLE<br>ANALTICAL RESULTS | 21     |

MAP: MAP POCKET: S1. STEWART PROPERTY CLAIM MAP......POCKET A S2. STEWART PROPERTY GEOLOGY MAP.....POCKET A S3. 1999 DELTA WEST GRID, INTEGRATED SOIL SAMPLE LOC....POCKET B S4. 1999 DELTA WEST GRID, INTEGRATED SOIL ZINC VALUES...POCKET B S5. 1999 DELTA WEST GRID, INTEGRATED SOIL COPPER VALUES..POCKET C S6. 1999 DELTA WEST GRID, INTEGRATED SOIL NICKEL VALUES..POCKET C S7. 1999 DELTA WEST GRID, INTEGRATED SOIL BARIUM VALUES..POCKET D S8. 1999 DELTA WEST GRID, INTEGRATED SOIL BARIUM VALUES..POCKET D S9. 1999 DELTA WEST GRID, INTEGRATED GEOLOGICAL DATA....POCKET E

LIST OF MAPS:

vi

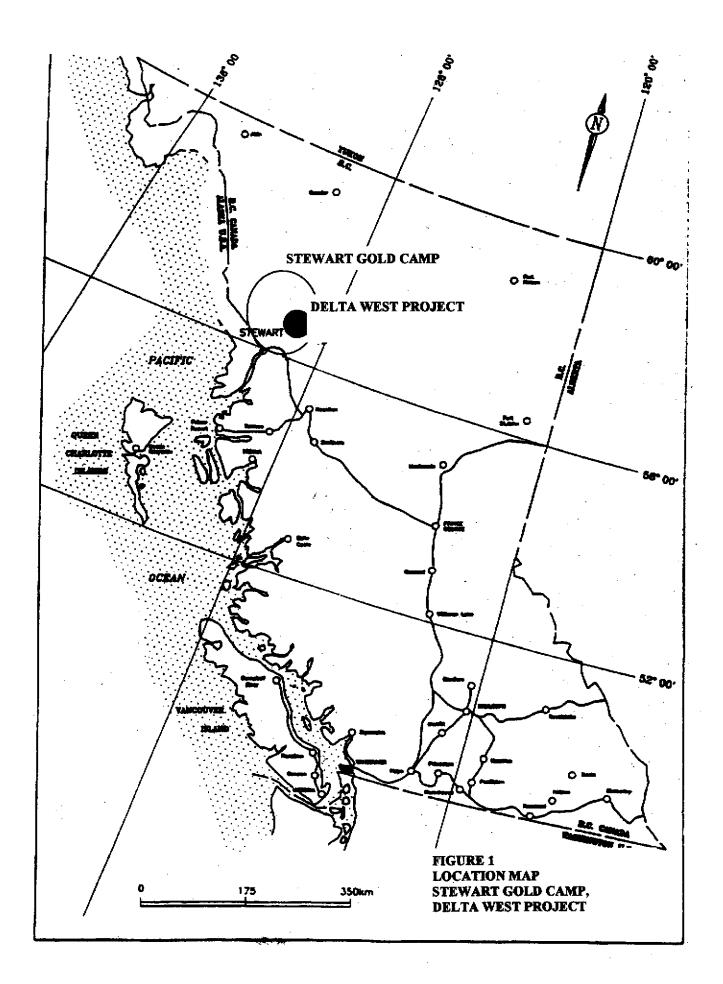
## **REPORT ON THE 1999 DELTA WEST PROJECT**

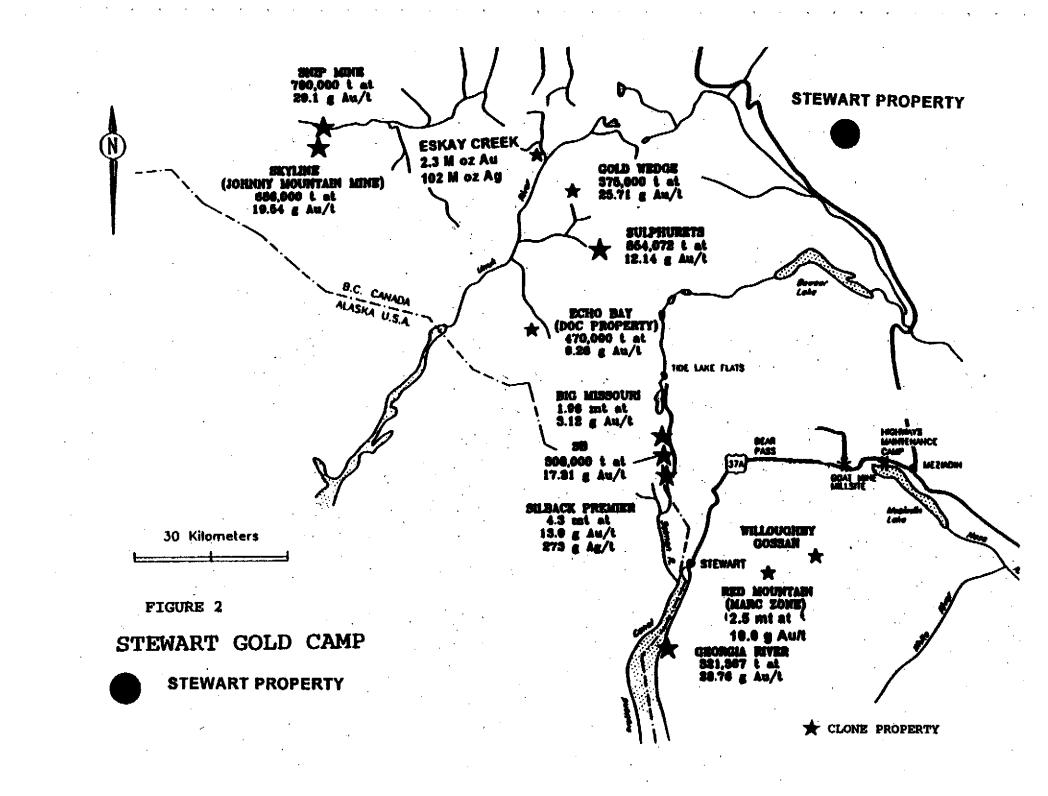
### **CARRIED OUT ON THE DELTA WEST GRID OF**

### THE STEWART PROPERTY,

### SKEENA MINING DIVISION,

### NORTHWESTERN BRITISH COLUMBIA


#### **1. INTRODUCTION:**


The following report reviews the detailed work carried out as part of a 1999 Prospectors Assistance Program on the Highway and Central/East Zn Zones of the Delta West Project of the Stewart Property. The project is located in the Stewart Gold Camp (Figures 1, 2), Northwestern British Columbia, and was utilized to further prioritize drill targets on a number of interesting geochemical/geophysical anomalies in close proximity to the Stewart-Cassiar Hwy 37.

Relevant Stewart Camp exploration models hosted by altered Hazelton Group rocks include the Eskay Creek VMS deposit (Figure 2) with 1999 reserves of about 1.4 million tonnes grading 57.7 g gold/t, and 2493 g silver/t, and with a total deposit size of 7.1 M oz gold equivalent; the historic Silbak-Premier deposit (Figure 2), which produced 56,000 kg of Au and 1,281,400 kg of Ag from 1918 to 1976; and, the Marc Zone, Red Mountain (Figure 2) type mineralization (auriferous pyrite and chalcopyrite in fracture controlled, often brecciated zones associated with Jurassic intrusions), which totals about 1 M oz grading about 10 g Au/t.

#### 2. STEWART PROPERTY:

David R. Kennedy, Janine Calder, Dr. Graeme Wallace and the author each have a 25% ownership interest in the Stewart Property, which comprises 18 claim units (Map 1, Table 1) that cover 86 square km. Cominco Ltd. and Barrick Gold Corp. each retain a net smelter royalty interest in certain claims, which do not include the Delta West Grid.





#### TABLE 1 STEWART PROPERTY, APRIL 2000

¢

e

.

c

~

•

.

.

1

.

.

•

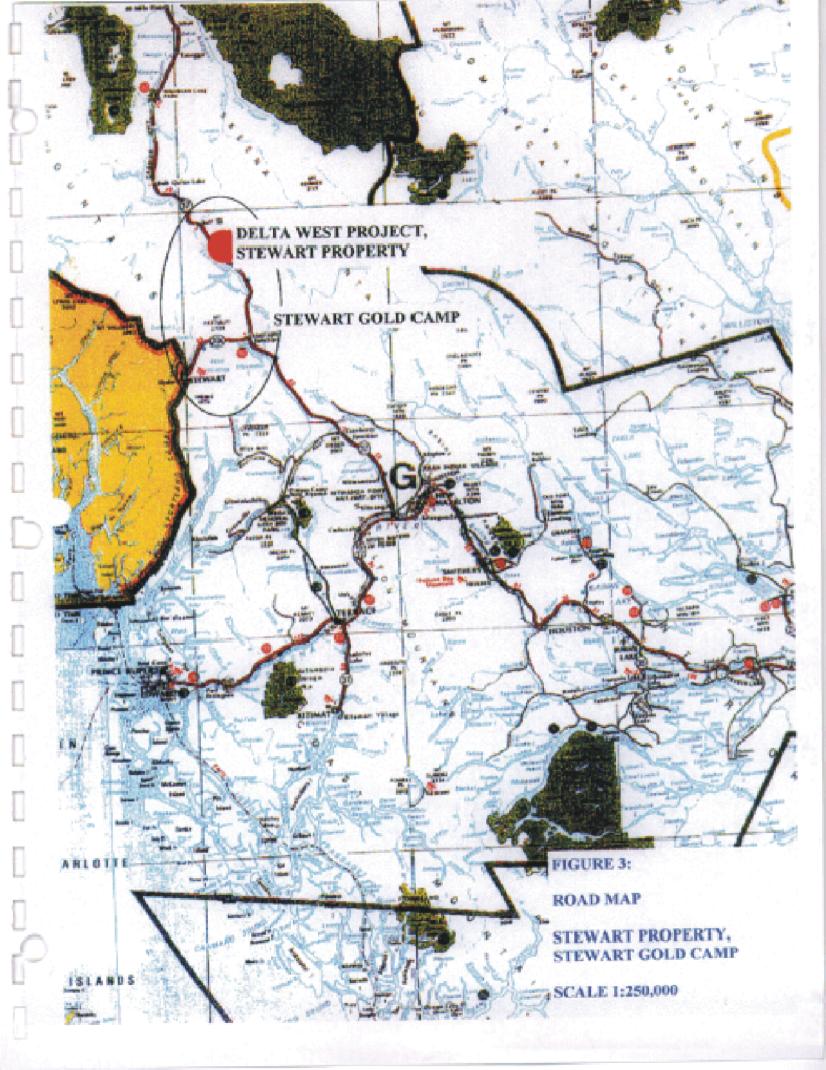
•

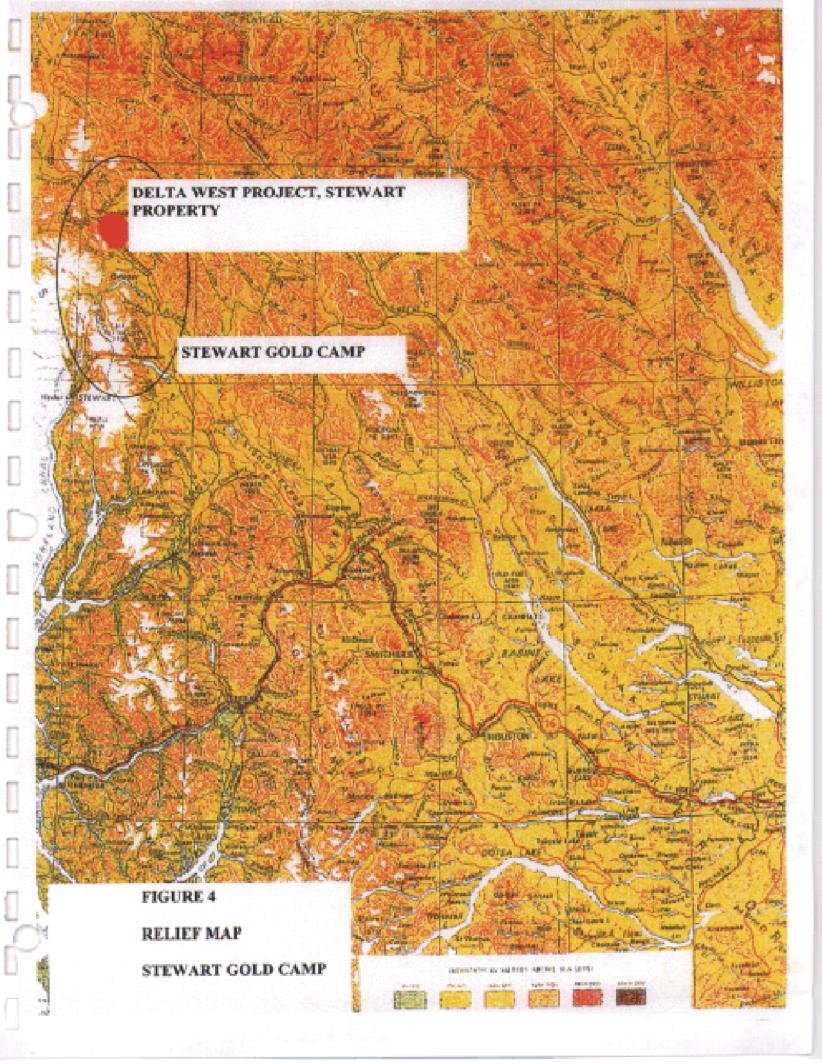
C:\STUCL

| NO. | CLAIM  | UNITS | TENURE    | ANNIV<br>DATE | EXPIRY<br>DATE | NO. | CLAIM   | UNITS | TENURE    | ANNIV<br>DATE | EXPIRY<br>DATE |
|-----|--------|-------|-----------|---------------|----------------|-----|---------|-------|-----------|---------------|----------------|
| 1   | FOX 1  |       | 20 318286 | MAY 21        | 2001           | 31  | FOX 30  | :     | 20 34729: | 3 MAY 21      | 2001           |
| 2   | FOX 2  |       | 20 318287 | MAY 21        | 2001           | 32  | FOX 31  | :     | 20 34729  | 4 MAY 21      | 2001           |
| 3   | FOX 3  |       | 20 318288 | MAY 21        | 2002           | 33  | FOX 32  |       | 16 34729  | 5 MAY 21      | 2002           |
| 4   | FOX 4  |       | 20 318289 | MAY 21        | 2002           | 34  | FOX 33  | :     | 20 34729  | 5 MAY 21      | 2001           |
| 5   | FOX 5  |       | 20 318290 | MAY 21        | 2002           | 35  | FOX 34  | :     | 20 347297 | 7 MAY 21      | 2002           |
| 6   | FOX 6  |       | 20 318291 | MAY 21        | 2002           | 36  | FOX 35  |       | 6 347520  | ) MAY 21      | 2002           |
| 7   | FOX 7  |       | 20 318292 | MAY 21        | 2002           | 37  | FOX 36  |       | 16 347290 | 3 MAY 21      | 2002           |
| 8   | FOX 8  |       | 20 318293 | MAY 21        | 2002           | 38  | FOX 37  | 2     | 20 347299 | 9 MAY 21      | 2002           |
| 9   | FOX 9  |       | 20 318294 | MAY 21        | 2002           | 39  | FOX 38  | 2     | 20 34730  | ) MAY 21      | 2000           |
| 10  | FOX 10 |       | 20 318295 | MAY 21        | 2002           | 40  | FOX 39  |       | 20 347301 | 1 MAY 21      | 2002           |
| 11  | FOX 11 |       | 20 318296 | MAY 21        | 2002           | 41  | FOX 40  | 1     |           | 2 MAY 21      | 2002           |
| 12  | FOX 12 |       | 20 318297 | MAY 21        | 2002           | 42  | FOX 48  | 2     |           | 5 MAY 21      | 2002           |
| 13  | FOX 13 |       | 20 318298 | MAY 21        | 2004           | 43  | FOX 49  |       |           | 7 MAY 21      | 2002           |
| 14  | FOX 14 |       | 20 318299 | MAY 21        | 2004           | 44  | FOX 50  |       |           | 3 MAY 21      | 2002           |
| 14  | FOX 15 |       | 5 318300  | MAY 21        | 2006           | 45  | PAT 50  |       |           | 2 MAY 21      | 2001           |
| 16  | FOX 16 |       | 20 318301 | MAY 21        | 2004           | 46  | PAT 51  |       |           | 3 MAY 21      | 2002           |
| 17  | FOX 17 |       | 20 318852 | MAY 21        | 2001           | 47  | PAT 52  |       |           | 1 MAY 21      | 2002           |
| 18  | FOX 18 |       | 20 318853 | MAY 21        | 2001           | 48  | PAT 53  | -     |           | 5 MAY 21      | 2002           |
| 19  | FOX 19 |       | 20 320182 | MAY 21        | 2004           | 49  | FOX 41  |       |           | I MAY 21      | 2001           |
| 20  | FOX 20 |       | 16 320183 | MAY 21        | 2006           | 50  | FOX 42  | 2     |           | 2 MAY 21      | 2001           |
| 21  | FOX 21 |       | 16 320184 | MAY 21        | 2005           | 51  | FOX 43  |       |           | 3 MAY 21      | 2001           |
| 22  | FOX 22 |       | 16 321176 | MAY 21        | 2004           | 52  | FOX 44  |       |           | 1 MAY 21      | 2001           |
| 23  | FOX 23 |       | 16 321177 | MAY 21        | 2003           | 53  | FOX 45  | 2     |           | 5 MAY 21      | 2001           |
| 24  | FOX 24 |       | 5 321178  | MAY 21        | 2002           | 54  | FOX 46  |       |           | 5 MAY 21      | 2001           |
| 25  | FOX 25 |       | 16 341206 | MAY 21        | 2004           | 55  | FOX 47  | 2     |           | 7 MAY 21      | 2001           |
| 26  | FOX 26 |       | 6 341205  | MAY 21        | 2004           | 56  | DELTA 1 |       |           | 2 MAY 21      | 2006           |
| 27  | OLD 1  |       | 20 323125 | MAY 21        | 2003           | 57  | DELTA 2 | 1     | 6 253003  | 3 MAY 21      | 2006           |
| 28  | OLD 2  |       |           | MAY 21        | 2002           |     |         |       |           |               |                |
| 29  | OLD 3  |       | 20 323127 | MAY 21        | 2003           |     |         |       |           |               |                |
| 30  | OLD 4  |       | 20 323128 | MAY 21        | 2003           |     |         |       |           |               |                |

### **3.** LOCATION AND ACCESS:

The Stewart Property is located in the Skeena Mining Division of Northwestern British Columbia, about 80 km northeast of Stewart, and about 70 km by road north of Meziadin Junction (Figures 1, 2, 3). The Delta West Project is situated on the west side of the property and is centred on NTS Map Sheet 104A/12 at Latitude 56°36N'; Longitude 129°38'W. Hwy 37 generally trends northwest through the Deltaic Grid, and along with some old lumber roads, provides excellent access. However in 1999, a major road corridor widing project at times restricted access ("no stopping in the construction zone") to the grid, and actually obliterated a segment of all the grid lines.


### 4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:


The Delta West Project is located in and on the east side of the rather gentle topography of the Bell-Irving River Valley (Figure 4). Mountainous topography to the east is dominated by Delta Peak and Oweegee Peak, both over 2200 m. The mountain terrain is incised with young, deep valleys, which trend northeast and that drain the area to the southwest into the Bell-Irving River, which flows south and parallel to Hwy 37.

The exploration field season in the Stewart Camp generally extends from late June to October. With their good access and low elevation, the Delta West targets can be pursued year round. In the summer of 1999, the Stewart area experienced adverse weather that long time residents have characterized as the "worst in memory". Below normal temperatures with rather constant rain and fog entailed generally negative exploration conditions for most of the field season.

Winters have been getting milder. However, snow can cover higher evaluations in early September and accumulations can total several meters in a 24-hour period. Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Tide Lake Flats (915 m elevation). Summers are usually characterized by long hours of daylight and pleasant temperatures. However, the proximity to the ocean and relatively high mountains can make for highly changeable weather, including dense morning fog along the coast. Stewart is located on the Portland Canal (Figure 2) and has the distinction of being Canada's most northerly, ice-free seaport.

Wildlife in the camp consists of mountain goats, moose, foxes, black bears, grizzly bears, wolves, coyotes, lynx, marmots, martins, ptarmigan, eagles, hawks, jays, gulls, and crows. Swarms of bees and flocks of robins are not uncommon. Vegetation in the valleys and on their edges ranges from dense tag alders to areas of spruce, pine and poplar forest, to clear cut areas, often densely vegetated with fireweed. Sub-alpine spruce thickets, with heather and alpine meadows, occur at higher elevations. Bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail above treeline, at approximately 1,200 m.





#### 5. EXPLORATION HISTORY:

The central area of the Stewart Camp was prospected at the close of the 19th century, mainly for visible gold in quartz veins. The showings were generally located on patented claims, but very little of this work was documented.

The most prominent early discovery was the historic Silbak-Premier gold-silver mine (Figure 2), which produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine closed in 1998 and the 2500 t/d mill facility is currently shut down and under care and maintenance.

The Camp, after more recent discoveries (Figure 2) that include the recently closed Snip Mine (total deposit size of 1,055,105 ounces of gold contained in 1.3 M tonnes); the Eskay Creek Mine (total deposit size of about 7.1 M ounces gold equivalent); and, Red Mountain (with reserves of about 1 M ounces of gold), continues to be regarded as a very prospective environment where discoveries of rich, gold/silver/base metal deposits can be made.

In 1999, it appears that only minor exploration activity took place in the camp, including some diamond drilling at the Eskay Creek Mine and the current program described herein. The decline in metal prices and in the junior equity markets, along with the uncertainty with regard to natural resource policy in BC, and to the resolution of native land claims settlements, have greatly curtailed exploration in the province. Expenditures in the Northwest Region, which extends up to the Yukon in BC, declined to their lowest levels in years, down to about \$5.3 M from the approximately \$8.5 M in 1998 (pers. com., Paul Wojak, BC geologist). However, industry analysts indicate there could be a dramatic increase in activity in the province, with a more favourable political atmosphere.

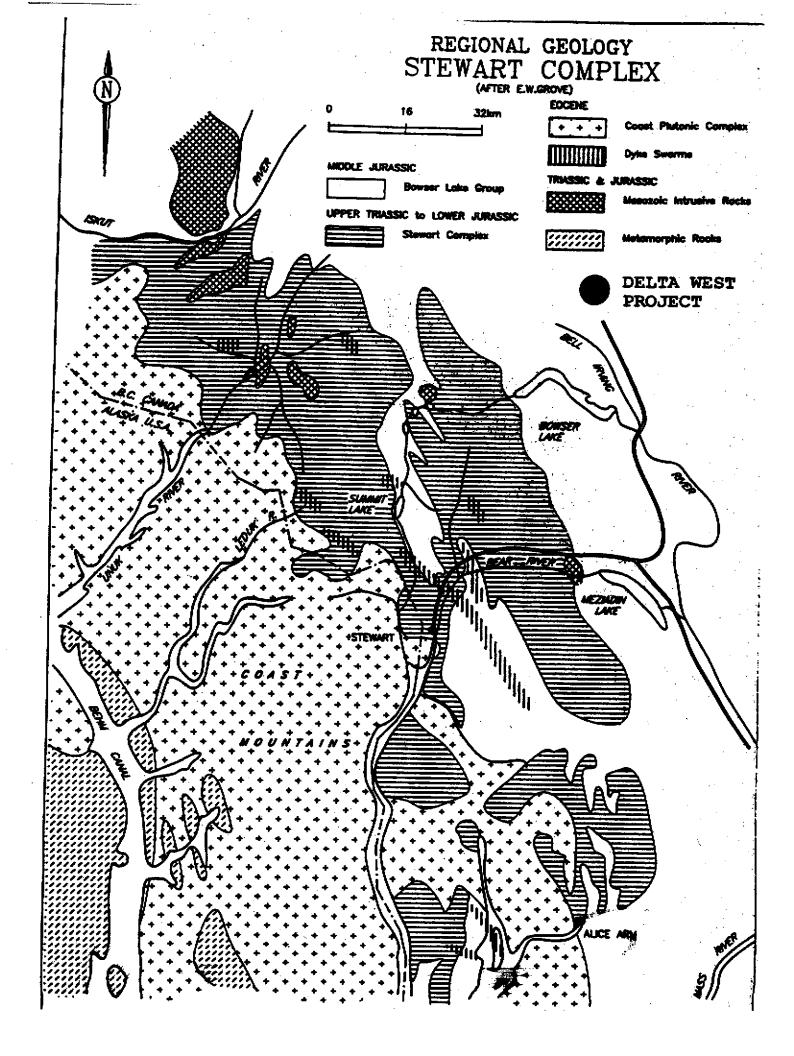
Historical exploration activities on the Stewart Property (Figures 1-4) are reported (Annual Report, BC Minister of Mines, 1929) to include Consolidated Mining and Smelting Company of Canada carrying out exploration work on the north side of Treaty Creek, about 58 km from the confluence of the Bell-Irving River with the Nass River. According to the report, "the values are scattered over a large mineralized area and appear to be mainly in gold, silver, and copper, although sufficient work has not been done to form a criterion of the possible value of the property".

As reported in the Report on the 1998 Delta West Project of the Prospectors Assistance Program, subsequent historical activities included:

- a 1991 airborne magnetometer and VLF-EM survey over the Oweegee Dome by Indigo Mines;
- a 1990 regional geochemical program by Cominco and the staking of the Delta Claims (Map 1) that covered various copper and gold anomalies;
- a 1993 reconnaissance and detailed geochemical, geological and IP program funded

by Barrick on the Delta Claims and surrounding ground;

- a 1996 reconnaissance geochemical, geological and claim staking program on the Delta West Project, partly sponsored by the BC Prospectors Assistance Program;
- a 1997 airborne EM and magnetometer survey, and a detailed geological and geochemical follow-up program, along with some IP surveying, funded by Cordal Resources on the Stewart Property;
- a 1998 detailed follow-up geochemical and geological program, and HLEM surveying on the Delta West Grid to locate drill targets, partly sponsored by the BC Prospectors Assistance Program.


#### 6. STEWART CAMP GEOLOGY:

The Stewart Gold Camp and the Stewart Property are situated in a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figures 5, 6) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane, together with the Cache Creek and Quesnel Terranes, constitute the Intermontaine Superterrane, which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986, Figure 5) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and Thorkelson, 1990; Lewis, et al, 1993; Creig, et al, 1995). The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick, 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian).
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian).
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian).
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian).



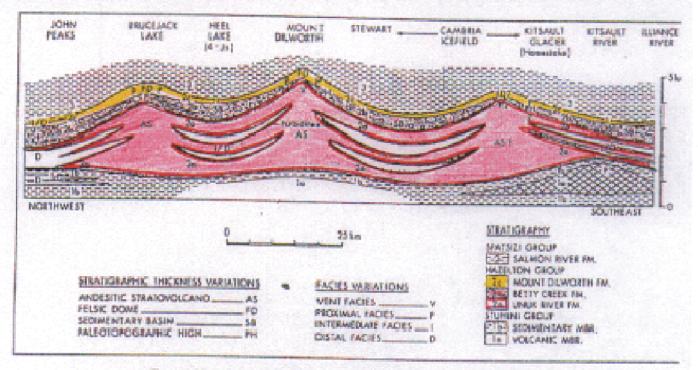



Figure 1-27-4. North-south schematic reconstruction through the Stewart complex.

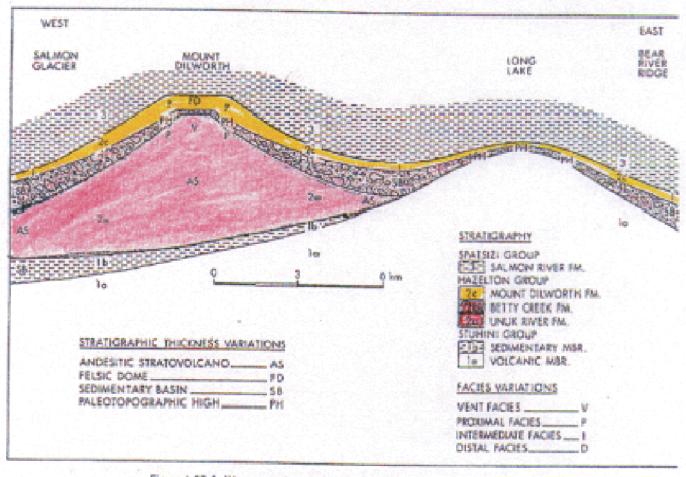



Figure 1-27-5. West-east schematic reconstruction through the Stewart complex.

FIGURE 6A DILWORTH FORMATION IN STEWART COMPLEX STRATIGRAPHY Alldrick assigned formational status (Mt. Dilworth Formation, Figure 6A) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

The Unuk River Formation (Figure 6A), a thick sequence of andesite flows and pyroclastic rocks with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart Camp (Figure 2). The unit is unconformably overlain by heterogeneous, maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure 6A). This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and they include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with the Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.

Two main intrusive episodes occurred in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally pot-assium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dyke phase, represents the Coast Plutonic Complex.

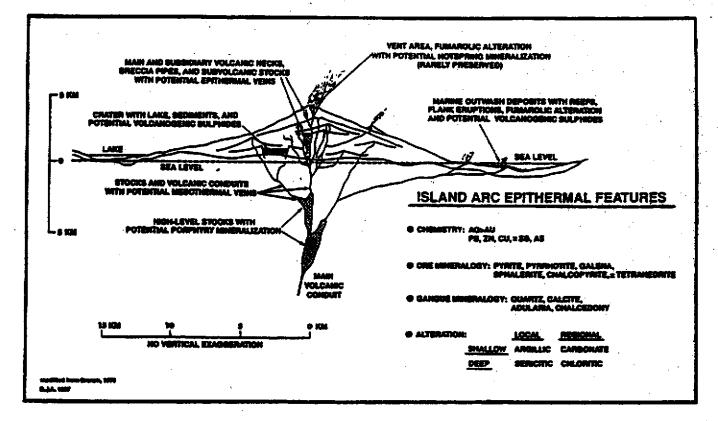

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontaine - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.



Figure 1-27-3. Distribution of the Stewart complex showing the locations of section lines for Figures 1-27-4 and 1-27-5.

#### FIGURE 6B

STEWART VOLCANIC BELT



Distribution of ore deposits within a stratovolcano (modified from Branch, 1976).

## FIGURE 6C

## MINERALIZATION TYPES STEWART CAMP

#### 7. STEWART CAMP MINERALIZATION:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri, Red Mountain, Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic Calc-alkaline intrusions and volcanic centres (Figures 6B, C). These intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier goldsilver mine, which has produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine was closed in the summer of 1997 and the mill is currently up for sale.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections, but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena, with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An

example of this type of deposit is the BC Molybdenum Mine at Lime Creek.

The Eskay Creek Mine (current reserves of 1.4 million tonnes grading 57.7 gold/t and 2493 g silver/t) is planning to increase current production from 150 t/d to 250 t/d in October 2000. The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling continues to expand the original, approximately 280 m by 100 m zone that has an average thickness of 10 m.

The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization, are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

No exploration was carried out on Royal Oak's Red Mountain project in 1999, and the property is now in the hands of a receiver. Royal Oak had apparently curtailed work in 1997 as a result of a dispute with the BC government. The Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi massive, coarse-grained pyrite aggregates, but also with stock works of pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides. Approximately 1 M ounces have been outlined to date, with an average grade of about 10 g gold/t.

#### 8. GEOLOGY, DELTA WEST PROJECT, STEWART PROPERTY:

The Delta West Project is postulated to cover a tectonic window in which Jurassic Hazelton Group and Palaeozoic Stikine Assemblages have been exposed by the uplift of broad anticlinal features know as the Oweegee and Ritchie Domes, and by the erosion of Upper Jurassic sediments of the Bowser Basin. The evolution of geological thinking with regard to the project is described in the 1993, Phase 1B program report (Molloy, 1993A). The results of the Geological Survey of Canada's mapping of the domes are summarized on Map 2. The west margin of the Oweegee Dome is dominated by Lower Jurassic Hazelton Group rocks: intermediate to mafic plagioclase-pyroxene lapilli tuff-breccia, lapilli, ash and dust tuffs; intermediate and felsic flows and drived debris flow; tuffaceous arkose siltstone and mudstone; and conglomerate. These rocks as mapped via 1996 and 1997 reconnaissance activities are interpreted to extend west to 300 m east of, and across Hwy 37. On the west side of this contact, the Hazelton Group is overlain by the Upper Jurassic Bowser Lake Group sediments, which include silty sandstones, and fine grained sandstone and arkose. Hazelton Group rocks exposed on the east side of the highway include dacite and rhyolitic units.

### 9. 1999 PROSPECTORS ASSISTANCE PROGRAM

The 1999 Delta West Project was carried out as part of a regional Prospectors Assistance Program in the Stewart Camp (Molloy, 1999). Exploration activities on the Delta Grid (Map 1) were carried out in July, August and September, as allowed by weather (often incessant rain and fog) and major road construction activities.

The approximately \$7000 project expenditure as summarized Table 2 has been apportioned from the Assistance Program, but also includes the cost of the 1999 and the historical data integration, and full report preparation. The Town of Stewart was used as a base for the work, since road crews occupied facilities at Bell 2 and at Meziadin Junction.

### 9.A. GEOCHEMICAL, GEOLOGICAL ICAL SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT, STEWART PROPERTY:

Historical work on the Delta West Grid, as described in the Report on 1998 Prospectors Assistance Program (Molloy, 1998), outlined a number of apparently stratabound zones of Zn-Cd-Ag-Ba soil anomalies that have both IP and HLEM anomaly associations. The targets are located in close proximity to Hwy 37, but are covered by glacial-fluvial overburden that ranges up to over 10 m in depth.

The target mineralization is interpreted to be associated with altered (silicified, carbonatized, hematized, pyritized) HazeltonGroup rhyolites, volcanic breccias and tuffaceous rocks, intruded by apophyses of diorite. These rocks are in contact with Bowser Group sediments near the east side of Hwy 37 and are part of the Oweegee Dome, which was first identified by the GSC (Map S2; Greig, 1991) as being predominantly composed of Hazelton Group stratigraphy. Such rocks on the Deltaic Grid, located about 10 km to the southeast on the Stewart Property, host au-Cu mineralization.

The widening and construction of the Hwy 37 (Map S1) hindered access to, and work on the historic Delta West Grid, which strattles the highway. For a period of time "no stopping" was

## TABLE 2: EXPLORATION EXPENDITURES (\$ CDN) ( MOB >STEWART CAMP; DELTA WEST PROJECT; DEMOB >TORONTO )

TYPE:

CLAIM NO. (WK ALLOCATION):

| FO                                   | X 33 (55%) FO | OX 30 (45%) |         |
|--------------------------------------|---------------|-------------|---------|
| a. truck: gas, rental, repairs, km\$ | 988.24\$      | 808.56\$    | 1796.80 |
| b. subsistence, accommodation        | 412.50        | 337.50      | 750.00  |
| b. Chemex analytical charges         | 629.72        | 515,22      | 1144.94 |
| c. salaries                          | 467.50        | 382.50      | 850.00  |
| d. supplies                          | 188.90        | 154.56      | 343.46  |
| e. shipping, courier, communication  | 265.00        | 216.81      | 481.81  |
| f. drafting/data integration         | 529,65        | 433,35      | 963.00  |
| b. writing/data interpretation       | 441.38        | 361.12      | 802.50  |
| c. reproduction                      |               | 45.00       | 100.00  |

AMOUNT:

allowed in the construction zone. Exploration activities consisted of the restoration of Grid Lines 30+00N, 28+00N, 26+00N, 22+00N and Base Line 50+00E; and, the collection of a total of 86 fill-in soil samples (Map S3) generally taken at 10 m intervals from the B horizon, and check samples, which were analyzed by 32 element ICP by Chemex Labs in Vancouver.

The samples are described in Table STUDGSO1 and the analytical results for the 11 elements considered most relevant are presented in Table STUDGSOA1. The Zn, Cu, Ni, Ba and Cd soil analytical results have been integrated with the complete, historic geochemical data on Maps S4-S8, respectively. All the1999analytical results are presented on the Chemex Certificates of Analyses in Appendix A. Prospecting and mapping were carried out to locate additional outcrops and apparent structures, and to ascertain whether the axes of the most important HLEM anomalies located in 1998 have any apparent overburden, as opposed to bedrock association. The results of prospecting and mapping activities have been integrated with the historic data on Map S9.

The Delta West project rationale was advanced by both the 1999 regional Prospectors Assistance Program (Molloy, 1999) and by the work on the project. As noted in the program report, sediments from streams draining Bowser Group lithologies in the Stewart Camp are generally characterized by rather elevated Cu and Ni contents. Soil samples overlying Bowser sediments near Hwy 37 appear to have the same Cu-Ni signature (Maps S5, S6), which thus appears to be a useful tool in mapping the contact of the Bowser Group and altered Hazelton Group rocks. The latter rocks are postulated to host wide, stratabound zones of Zn-Cd-Ag-Ba mineralization to the east of the Bowser – Hazelton Group contact. This type of mineralization often halos significant Cu-Au mineralization in the Stewart Camp e.g., the Red Mountain Au-Cu deposit; and, the Delta Grid Cu-Au mineralization located on the Stewart Property about 10 km southeast of the Delta West Grid.

| SAMPLE<br>NO., LOC.               | NAME,<br>HORIZ.,<br>DEVEL.,<br>DEPTH  | gr. size,<br>Colour            | COMPOSITION                                                                                | DRAINAGE,<br>GEOLOGY              | COMMENTS                                          |
|-----------------------------------|---------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| 86801 SO<br>L30N,<br>48+70E       | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM |                                | 70% SLT, 10% SD, 20%<br>GRAV - HETRO FRAGS,<br>ANG TO RD, BOW SEDS<br>OXID MAT, MIN GR VOL | TO S,<br>HETRO BO<br>SIM TO FRAGS | 48+75; NO SURF EVID<br>FOR CONDUCT ON<br>HILLSIDE |
| 8660250<br>L30N,<br>48+60E        | AS<br>86801SS                         |                                |                                                                                            |                                   |                                                   |
| 8680350<br>1.30N,<br>48+60E       | AS<br>6660185                         | BUT C/W 8                      | 0% SLT, 5% ORG                                                                             |                                   |                                                   |
| 86804SO<br>L30N,<br>48+50E        | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM | slt-pebs.<br>Brn               | 50% SLT, 20% SD, 30%<br>GRAV - METRO FRAGS,<br>ANG TO RD, BOW SEDS<br>OXID MAT, MIN GR VOL | TO S,<br>HETRO BO<br>RD TO ANG    | 48+75: NO SURF EVID<br>FOR CONDUCT<br>ON HILLSIDE |
| 86978SO<br>L30N,<br>55+60E        |                                       | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | TO W.<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| <b>86979SO</b><br>130N,<br>55+70E |                                       | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | to W,<br>No geol                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 88980SO<br>L30N,<br>55+80E        |                                       | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | TO W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 86981SO<br>L30N,<br>55+90E        |                                       | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | to W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 8698290<br>L30N,<br>56+10E        |                                       | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | TO W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 86963SO<br>L30N,<br>56+20E        | SLT-SD<br>B, GOOD,<br>30 CM           | SLT-CO,<br>ORG BRN             | 60% SLT, 40% SD                                                                            | to W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 66964SQ<br>L30N,<br>56+30E        | SUT-SID<br>B, GCOD,<br>30 CM          | SLT-CO,<br>ORG BRN,<br>PK TING | 80% SLT, 40% SD                                                                            | TO W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 86965SO<br>L30N,<br>56+40E        | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM | slt-pebs,<br>Brn               | 60% SLT, 30% SD<br>10% ANG FRAGS<br>OF VOL                                                 | TO W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |
| 86986SO<br>L30N,<br>56+80E        | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM | slt-pebs,<br>Brn               | 80% SLT, 30% SD<br>10% ANG FRAGS<br>OF VOL                                                 | TO W,<br>NO GEOL                  | NO APPARENT<br>CAUSE OF CONDUCT                   |

.

#### DELTAIC GRID, STEWART PROPERTY: 1999 DETAILED FOLLOW-LUP GEOCHEMICAL SURVEYS: SOIL SAMPLE DESCRIPTIONS: TABLE STUDGSO1

and the second second

.

.

1

· · ·

.

L30+00N

,

.

|                  | L30+00N          |           |                       |               |           |                |           |           |           |           |           |  |
|------------------|------------------|-----------|-----------------------|---------------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|--|
| SAMPLE<br>NO.    | AG<br>ppm        | CU<br>PPm | N <del>i</del><br>ppm | PB<br>ppm     | ZN<br>ppm | CD<br>ppm      | BA<br>ppm | AS<br>ppm | SB<br>ppm | HG<br>ppm | MO<br>ppm |  |
| 88801SO          | 0.20             | 20.00     | 32.00                 | 12.00         | 252.00    | <0. <b>5</b> 0 | 350.00    | 8.00      | <2        | <1        | <1        |  |
| <b>56</b> 802SO  | <0.20            | 18.00     | 29.00                 | 12.00         | 228.00    | 0.50           | 360.00    | 8.00      | <2        | 41        | <1        |  |
| 8680330          | -0.20            | 17.00     | 33.00                 | 8.00          | 236.00    | 0.50           | 230.00    | e.00      | 2.00      | <1        | ≺1        |  |
| 8 <b>5</b> 804SO | <b>&lt;</b> 0.20 | 87.00     | 67.00                 | 18,00         | 158.00    | 0.50           | 230.00    | 20.00     | <2        | ~1        | 1,00      |  |
| 58978SO          | <0.20            | 41.00     | 45.00                 | 10.00         | 306.00    | 2.50           | 370.00    | 10.00     | <2        | <1        | <1        |  |
| 86979SO          | <0.20            | 33.00     | 33.00                 | 8.00          | 204.00    | 2.50           | 290.00    | 12.00     | e.00      | <1        | <1        |  |
| 88980SO          | <0.20            | 19.00     | 33.00                 | 8.00          | 344.00    | 1.50           | 170.00    | 8.00      | 6.00      | ≺1        | <1        |  |
| 88961SO          | 0.20             | 27.00     | 41.00                 | 8.00          | 272.00    | 0.50           | 190.00    | 14.00     | <2        | <1        | <1        |  |
| 8898250          | 0.40             | 33.00     | 40.00                 | 10.00         | 302.00    | 3.00           | 410.00    | 22.00     | <2        | <1        | 1.00      |  |
| 8698390          | 0.40             | 19.00     | 29.00                 | 10.00         | 394.00    | 3.00           | 340.00    | 14.00     | <2        | <1        | ~1        |  |
| 8698450          | 0.40             | 16.00     | 25.00                 | 8.00          | 222.00    | 2.00           | 230.00    | 14.00     | ~2        | 1.00      | <1        |  |
| 66985SO          | 0.20             | 49.00     | 51.00                 | 10. <b>00</b> | 146.00    | 0.50           | 210,00    | 32.00     | <2        | <1        | 1.00      |  |
| 8698650          | 0.40             | 24.00     | 21.00                 | 12.00         | 152.00    | 1.50           | 220.00    | 18.00     | <2        | ≺1        | 1.00      |  |

#### MOST RELEVENT ANALYTICAL RESULTS (32 ELEMENT ICP; SEE TABLE A1 FOR COMPLETE RESULTS)): TABLE STUDGSOA1

and the second second

|                                                 | L28N+00                               |                          | TABLE STUDGSO1                                                                            |                                     |                                   |
|-------------------------------------------------|---------------------------------------|--------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|
| SAMPLE<br>NO., LOC.                             | NAME,<br>HORIZ.,<br>DEVEL.,<br>DEPTH  | gr. Size,<br>Colour      | COMPOSITION                                                                               | DRAINAGÉ,<br>GEOLOGY                | COMMENTS                          |
| 8680550<br>L28N,<br>49+30E                      | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM |                          | 60% SLT,20% SD, 20%<br>GRAV - HETRO FRAGS,<br>ANG TO RD, BOW SEDS<br>OXID MAT, MIN GR VOL | TO S,<br>HETRO BO                   | NO APPARENT<br>CAUSE OF CONDUCT   |
| 8580690<br>L26N,<br>49+20E                      | SLT-SD-<br>GRAV,<br>B, GOOD,<br>25 CM | SLT-PEBS,<br>BRN         | 80% SLT,20% SD, 20%<br>GRAV - HETRO FRAGS,<br>ANG TO RD, BOW SEDS<br>OXID MAT, MIN GR VOL | TO E,<br>HETRO BO                   | NO APPARENT<br>CAUSE OF CONDUCT   |
| 8680730<br>L28N,<br><b>49+10E</b>               | SLT-SD-<br>GRAV,<br>8, GOOD,<br>20 CM | slt-pebs,<br>Brn         | SLT FI<br>20% SLT,80% SD,<br>MIN FRAGS BOW SEDS,                                          | to s<br>No geol                     | NO APPARENT<br>CAUSE OF CONDUCT   |
| 8690880<br>1.28N,<br>48+90E                     | AS<br>8680750                         | FI, BRN                  |                                                                                           |                                     |                                   |
| 9650950<br>L26N,<br>48+80E                      | SLT-SD-<br>ORG,<br>AB, GOOD,<br>40 CM | slt fi,<br>Br blk        | 70% SLT,10% SD,<br>20% ORG                                                                | TO E<br>NO GEOL                     | NO APPARENT<br>CAUSE OF CONDUCT   |
| 8681090<br>L28N,<br>48+70E                      | org<br>MUCK,<br>A, POOR,<br>20 CM     | slt.<br>Buk              | 50% SLT, 50% SD,<br>10% ORG                                                               | TO E<br>NO GEOL                     | NO APPARENT SALE CAUSE OF CONDUCT |
| 8581150<br>L28N,<br>48+60E                      | ORG<br>MUCK,<br>B, GOOD,<br>20 CM     | slt,<br>Brn              | 50% SLT, 50% SD,<br>10% ORG                                                               | POOR<br>NO GEOL                     | NO APPARENT<br>CAUSE OF CONDUCT   |
| 86812SO<br>L28N,<br>48+40E                      | SLT<br>SD,<br>B, GOOD,<br>30 CM       | slt fi,<br>Brn           | 70% SLT, 25% SD,<br>5% ORG                                                                | TO NW<br>NO GEOL                    | NO APPARENT<br>CAUSE OF CONDUCT   |
| 86813SO<br>L28N,<br>48+30E                      | SLT<br>ORG<br>TR ROOT<br>SAMP         | SLT,<br>BRN              | 50% SLT, 50% ORG,                                                                         | to NW<br>No geol                    | NO APPARENT<br>CAUSE OF CONDUCT   |
| 8681480<br>L28N,<br>48+20E                      | 81.T , SD<br>B, GOOD,<br>20 CM        | SLT-CO<br>BRN,           | 20% SLT, 80% SD,                                                                          | TO NW<br>NO GEOL                    | NO APPARENT<br>GAUSE OF CONDUCT   |
| 8681590<br>L26N,<br>48+10E                      | SLT , ORG<br>AB, GOOD<br>20 CM        | SLT,<br>, ORG BRN<br>BLK | 60% SLT, 40% ORG,                                                                         | to NW<br>NO GEOL                    | NO APPARENT<br>CAUSE OF CONDUCT   |
| 6861650<br>26+75N,<br>47+75E<br>E SIDE OF<br>RD | FLOUR                                 | fi<br>BLK                | SLT                                                                                       | Bow seds exposed<br>During RD const |                                   |

and the second second

.

|                 | • •       | ,         |              | ×         |           | <b>,</b> .   | • •       | • .       |           | -                                                                                            |           |  | • | • • | • | • | • | ì |
|-----------------|-----------|-----------|--------------|-----------|-----------|--------------|-----------|-----------|-----------|----------------------------------------------------------------------------------------------|-----------|--|---|-----|---|---|---|---|
| L               | 28+00N    | TA        | BLE STUDG    | SOA1      |           |              |           |           |           |                                                                                              |           |  |   |     |   |   |   |   |
| SAMPLE<br>NO.   | AG<br>ppm | CU<br>ppm | Ni<br>ppm    | PB<br>ppm | ZN<br>ppm | CD<br>ppm    | BA<br>ppm | AS<br>ppm | S8<br>ppm | HG<br>ppm                                                                                    | MO<br>MQQ |  |   |     |   |   |   |   |
| 8680550         | 0.20      | 21.00     | 37.00        | 10.00     | 340.00    | 0.50         | 220.00    | 6.00      | <2        | 41                                                                                           | <1        |  |   |     |   |   |   |   |
| 8680630         | <0.20     | 49.00     | 55.00        | 10.00     | 110.00    | <0.5         | 150.00    | 12.00     | <2        | ধ                                                                                            | ব         |  |   |     |   |   |   |   |
| 86807SO         | <0.20     | 79.00     | 69.00        | 10.00     | 134.00    | <0.5         | 150.00    | 16.00     | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 8680850         | 0.20      | 40.00     | <b>51.00</b> | 10.00     | 145.00    | <0.5         | 160.00    | 12.00     | 2.00      | <t< th=""><th>&lt;1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<> | <1        |  |   |     |   |   |   |   |
| 8680980         | 1.20      | 190.00    | 94.00        | 8.00      | 298.00    | 2.50         | 490.00    | 10.00     | 2.00      | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| <b>365105</b> 0 | 0.60      | 113.00    | 43.00        | <2        | 248.00    | 1.50         | 210.00    | 2.00      | ्रं       | <1                                                                                           | 1.00      |  |   |     |   |   |   |   |
| 8681150         | <0.20     | 29.00     | 21.00        | 2.00      | 86.00     | <b>0.6</b> 0 | 220.00    | 2.00      | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 8681290         | 0.20      | 27.00     | 36.00        | 6.00      | 156.00    | 0.50         | 180.00    | 13.00     | 2.00      | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 8681390         | 0.80      | 33.00     | 35.00        | 12.00     | 248.00    | 2.50         | 370.00    | 12.00     | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 86614SO         | 0.20      | 29.00     | 35.00        | 10.00     | 372.00    | 2.50         | 250.00    | 10.00     | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 86815SO         | 0.20      | 72.00     | 47.00        | 6.00      | 248.00    | 1.60         | 420.00    | 6.00      | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |
| 86816SO         | 0.20      | 52.00     | 68.00        | 6.00      | 142.00    | <0.51        | 170.00    | 12.00     | <2        | <1                                                                                           | <1        |  |   |     |   |   |   |   |

|                             | L28+00N (C                           | CONT)               | TABLE STUDGSO1                                     |                      |                               |
|-----------------------------|--------------------------------------|---------------------|----------------------------------------------------|----------------------|-------------------------------|
| SAMPLE<br>NO., LOC.         | NAME,<br>HORIZ.,<br>DEVEL.,<br>DEPTH | gr. size,<br>Colour | COMPOSITION                                        | DRAINAGE,<br>GEOLOGY | COMMENTS                      |
| 8896580<br>128N,<br>57+15E  | SLT SD,<br>B, GOOD,<br>25 CM         | SLT - FI<br>BRN     | 80% SLT, 20% SD,                                   | TO W<br>NO GEOL      | NO SURF EVID<br>FOR CONDUCTOR |
| 86966SO<br>L28N,<br>56+90E  | CL SLT<br>ORG,<br>AC, POOR,<br>15 CM | SLT - FI<br>BLK     | 25% SLT, 25% CL,<br>40% ORG, 10% TUFF<br>FRAGS     | TO W<br>NO GEOL      | No surf evid<br>For conductor |
| 66967SO<br>L28N,<br>56+80E  | CL SLT<br>ORG,<br>AC, POOR<br>15 CM  | SLT - FI<br>BLK     | 25% SLT, 25% CL,<br>40% ORG, 10% TUFF<br>FRAGS     | 70 W<br>NO GEOL      | NO SURF EVID<br>FOR CONDUCTOR |
| 8696890<br>L28N,<br>56+70E  | CL SLT<br>ORG,<br>AC, POOR<br>15 CM  | SLT - Fi<br>BLK     | 25% SLT, 25% CL,<br>40% ORG, 10% TUFF<br>FRAGS     | to W<br>No geol      | NO SURF EVID<br>FOR CONDUCTOR |
| 8696990<br>1.28N;<br>56+60E | SLT SO<br>ORG,<br>B, GOOD,<br>40 CM  |                     | 8 80% SLT, 10% SD,<br>5% OXID VOL, BRECC<br>5% ORG | to w<br>No geol      | NO SURF EVID<br>FOR CONDUCTOR |
| 8697050<br>1.28N,<br>56+40E | SLT SD<br>GRAV,<br>B, GOOD,<br>25 CM | BRN                 | 3 50% SLT, 30% SD,<br>20% TUFF FRAGS               | to w<br>No geol      | NO SURF EVID<br>FOR CONDUCTOR |
| 8697190<br>L28N,<br>56+30E  | SLT ORG.<br>AC, POOR<br>30 CM        |                     | 70% SLT, 30% ORG,                                  | to W<br>NO GEOL      | NO SURF EVID<br>FOR CONDUCTOR |
| 9697250<br>(_26N,<br>56+20E | SLT SD,<br>B, GOOD,<br>20 CM         | 9RN<br>SLT FI       | 50% SLT, 40% SD,<br>10% ORG                        | TO W<br>NO GEOL      | NO SURF EVID<br>FOR CONDUCTOR |
| 88973SO<br>L28N,<br>56+10E  | SLT SD,<br>B, GOOD,<br>20 CM         | BRN<br>Slt fi       | 50% SLT, 40% SD,<br>10% ORG                        | to W<br>No geol      | NO SURF EVID<br>FOR CONDUCTOR |
| 9697450<br>L26N,<br>55+90E  | SLT SD<br>ORG,<br>AC, POOR<br>20CM   | SLT<br>BLK BRN      | 25%, SLT, 50%, ORG,<br>25%, SD                     | to W<br>NO GEOL      | No surf evid<br>For conductor |
| 86976\$0<br>L28N,<br>55+80E | SLT &D<br>GRAV,<br>B, GOOD,<br>200M  | BRN                 | 5 50%, SLT, 10%, ORG,<br>40%, SD                   | to W<br>No geol      | NO SURF EVID<br>FOR CONDUCTOR |
| 8697780<br>L28N,<br>55+70E  | SLT &D<br>GRAV,<br>B, GOOD,<br>25CM  | 9RN                 | S 50%, SLT, 10%, ORG,<br>40%, SD                   | to W<br>No geol      | NG SURF EVID<br>FOR CONDUCTOR |

|               | L28+00N (CON | ר (ח          | ABLE STUDG   | ISOA1     |           |           |           |           |           |           |           |
|---------------|--------------|---------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample<br>No. | AG<br>ppm    | CU<br>ppm     | NI<br>ppm    | PB<br>Ppm | ZN<br>ppm | CD<br>ppm | BA<br>ppm | AS<br>ppm | S8<br>ppm | HG<br>ppm | MO<br>ppm |
| 8696550       | 0.60         | 34.00         | 29.00        | 10.00     | 258.00    | 1,50      | 250.00    | 18.00     | 2.00      | <1        | <1        |
| 86966SO       | 0.40         | 76. <b>00</b> | 52.00        | 14.00     | 632.00    | 6.00      | 780.00    | 18.00     | <2        | <1        | <1        |
| 8696750       | 0.60         | 42.00         | 25.00        | 25.00     | 182.00    | 3.00      | 270.00    | 8.00      | 2.00      | <1        | 1.00      |
| 96968SC       | 0.40         | 54.00         | 34.00        | 8.00      | 326.00    | 3,00      | 260.00    | 12.00     | 2.00      | <1        | <1        |
| 8696980       | <0.2         | 52.00         | 26.00        | 14.00     | 386.00    | 2.00      | 280.00    | 14.00     | 6.00      | <1        | ব         |
| 8697050       | <0.2         | 101.00        | <b>61.00</b> | 12.00     | 458.00    | 1.00      | 420.00    | 16.00     | 2.00      | <1        | 1.00      |
| 86971SQ       | 0.60         | 122.00        | 74.00        | 12,00     | 466.00    | 1.50      | 290.00    | 14.00     | 4.00      | <1        | 1.00      |
| 9697250       | <0.2         | 69.00         | 53,00        | 10.00     | 264.00    | 1.50      | 300.00    | 14.00     | 2.00      | <1        | 1.00      |
| 8697390       | 0.20         | 41.00         | 54.00        | 20.00     | 478.00    | 1.50      | 280.00    | 16.00     | 6.00      | <1        | 1.00      |
| 66974SO       | 0.20         | 29.00         | 37.00        | 10.00     | 440.00    | 5.00      | 550.00    | 6.00      | 4.00      | <1        | <1        |
| 6697650       | 0.20         | 27.00         | 33.00        | 12.00     | 370.00    | 2.00      | 370.00    | 18.00     | 2.00      | <1        | <1        |
| 8697750       | 0,40         | 24.00         | 30.00        | 10.00     | 252.00    | 2.50      | 220.00    | 12,00     | 4.00      | <1        | <1        |

and a second second

|                             | L26+00N                                 | 1                       | ABLE STUDGED1                                                 |                            |                                  |
|-----------------------------|-----------------------------------------|-------------------------|---------------------------------------------------------------|----------------------------|----------------------------------|
| SAMPLE<br>NO., LOC.         |                                         | gr. size, (<br>Colour   | COMPOSITION                                                   | DRAINAGE,<br>GEOLOGY       | COMMENTS                         |
| 8684690<br>126N,<br>48+30E  |                                         | ORG BRN                 | 90% SLT, 5% ORGS,<br>5% FRAGS<br>MAINLY BOW                   | to W<br>No geol            | NO APPARENT<br>CAUSE OF CONDUCT  |
| 8684490<br>L29N,<br>48+40E  | AS<br>85540SO                           |                         |                                                               |                            |                                  |
| 868439C)<br>L26N,<br>48+40E | AS<br>8684050                           |                         |                                                               |                            |                                  |
| 86841SO<br>L26N,<br>48+60E  | AS<br>86840SC                           |                         |                                                               |                            |                                  |
| 8554090<br>L26H,<br>46+70E  | SLT , SD,<br>GRAV,<br>B, GOOD,<br>30 CM | ORG BRN                 | 70% SLT, 20 SD% ,<br>6% ANG HETRO<br>ANG FRAGS<br>5% ORG      | to W<br>No geol            | NO APPARENT<br>CAUSE OF CONDUCT  |
| 8553980<br>L25N,<br>46+60E  | AS<br>8683850                           |                         |                                                               |                            |                                  |
| 8583880<br>L26N,<br>45+90E  | SLT , SD,<br>GRAV,<br>B, GOCO,<br>25 CM | slt - Pebs<br>Org Brn   | : 60% SLT, 30 SD% ,<br>10% ANG FRAGS<br>MAINLYBOW SEDS<br>ANG | TO W<br>NO GEOL            | NO APPARENT<br>CAUSE OF CONDUCT  |
| 8581750<br>L26N,<br>49+10E  | SLT , ORG<br>B, GOOD,<br>20 CM          |                         | : 5% SLT, 90% ORG,<br>5% ANG FRAGS<br>BOW SEDS                | TO W<br>SOM BO<br>BOW SEDS | NO APPARENT<br>CAUSE OF CONDUCT  |
| 5681850<br>L25N,<br>49+20E  | AS<br>8681750                           |                         |                                                               |                            |                                  |
| 8681990<br>L25N,<br>49+30E  | SLT, SD,<br>ORG,<br>8, GOOD,<br>30 CM   | BRN                     | 5 80% SLT, 10 ORG,<br>10 SD, MIN<br>FRAGS BOW SEDS            | TO W<br>NO GÉOL            | No apparent<br>Cause of conduct  |
| 8682090<br>L28N,<br>49+40E  | SLT, SD,<br>ORG,<br>8, GOOD,<br>20 CM   |                         | 60% SLT, 10 ORG,<br>30 SD, MIN<br>FRAGS BOW SEDS<br>& GR VOL  | TO W<br>NO GEOL            | NO APPARENT<br>CAUSE OF CONDUCT  |
| 8682180<br>L26N,<br>49+60E  | SLT, SD,<br>ORG,<br>8, GOOD,<br>25 CM   | slt<br>Org Brn          | 100% SLT                                                      | to W<br>No geol            | NO APPARENT<br>CAUSE OF CONDUCT  |
| 8562290<br>L26N,<br>49+70E  | SLT, GRA<br>B, GOOD,<br>25 CM           | y Slt - Pebi<br>Org Brn | 8 80% SLT<br>20 PEB9<br>BOW 8EDS,<br>CXID MAT                 | TO W<br>NO GEOL            | NO APPARENT<br>SOURCE OF CONDUCT |
| 8682350<br>L26N,<br>49+80E  |                                         | V SLT - PEB<br>ORG BRN  |                                                               | to W<br>NO GEOL            | NO APPARENT<br>SOURCE OF CONDUCT |

•

|     | L    | 5+00N     | TA        | BLE STUDG | SOA1             |           |           |           |             |           |           |               |  |
|-----|------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|-------------|-----------|-----------|---------------|--|
| HQ. | ٦Ę   | AG<br>ppm | CU<br>ppm | NI<br>ppm | <b>РВ</b><br>ррт | ŻN<br>ppm | CD<br>ppm | BA<br>ppm | AS<br>ppm   | SB<br>ppm | HG<br>ppm | MQ<br>ppm     |  |
| 68  | 680  | <0.20     | 34.00     | 40.00     | 10.00            | 254.00    | 2.00      | 350.00    | 14.00       | <2        | ≺1        | 2,00          |  |
| 868 | 490  | <0.20     | 21.00     | 21.00     | 4.00             | 242.00    | 2.00      | 310.00    | 6.00        | 2.00      | <1        | 1.00          |  |
| 866 | 450  | 0.20      | 26.00     | 26,00     | 14.00            | 358.00    | 4.0Q      | 470.00    | <b>8.00</b> | 2.00      | ≮1        | 3.00          |  |
| 866 | 1190 | 0.20      | 17,00     | 23.00     | 6.00             | 384.90    | 2.50      | 490.00    | 4.00        | <2        | <1        | 1.00          |  |
| 165 | 1650 | 0.20      | 21.00     | 25.00     | 6.00             | 282.00    | 1.50      | 340.00    | 8.00        | 2.00      | <†        | <1            |  |
| 100 | 999Q | <0.20     | 26.00     | 33,00     | 10.00            | 264.00    | 1.60      | 370.00    | 16.00       | Ø         | শ         | <1            |  |
| 668 | 3850 | 40.20     | 34.00     | 34.00     | 12.00            | 310.00    | 1.00      | 210.00    | 14.00       | 2.00      | <1        | <1            |  |
| 861 | 1790 | 0.20      | 23.00     | 30.00     | 6.00             | 310.00    | 1.60      | 450.00    | 6.00        | <2        | ~1        | <1            |  |
| 861 | 1850 | 0.60      | 16.00     | 34.00     | 6.00             | 402.00    | 2.00      | 620.00    | 4.00        | 2.00      | <1        | <b>~</b> †    |  |
| 861 | 1990 | 6.40      | 15.00     | 32.00     | 8.00             | 258.00    | 2.00      | 490,00    | 2.00        | Q         | ধ         | <b>&lt;</b> 1 |  |
| 86  | 2050 | 0.60      | 14.00     | 29.00     | 4.00             | 268.00    | 1,50      | 300,00    | 8.00        | <2        | <1        | 1.00          |  |
| 86  | 2150 | 0.20      | 17.00     | 22.00     | 8.00             | 110.00    | 9.50      | 170.00    | 4.00        | √2        | <1        | <1            |  |
| 86  | 2250 | 0.40      | 19.00     | 27.00     | 10.00            | 172.00    | <0,6      | 280.00    | 12.00       | 2.00      | -1        | 1,00          |  |
|     | 2350 | 1.90      | 47.00     | 33.00     | 12.00            | 236.00    | 1.50      | 320.00    | 6,00        | <2        | ~1        | 2.00          |  |

|                                    | 1.28+00N (C                                                 | ONT)                  | FABLE STUDGSON                                                          |                                                  |                                  |
|------------------------------------|-------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| SAMPLE<br>NO., LOC.                |                                                             | or, size, i<br>Colour | COMPOSITION                                                             | ORAMAGE,<br>GEOLOGY                              | COMMENTS                         |
| <b>86824</b> 30<br>L28N,<br>49+90Ê | SLT, MIN<br>ORG,<br>B, GOOD,<br>20 CM                       | 8LT<br>BRN            | 100% SL7                                                                | to W<br>No Geol                                  | NO APPARENT<br>SOURCE OF CONDUC' |
| 8684680<br>L26N,<br>53+80E         | 81, T , 80,<br>GRAV,<br>8, GOOD,<br>20 CM                   | ORG BRN               | 60% SLT, 10 SDM ,<br>10% ang Frags<br>Of GR Vol Brecc                   | to W<br>Hetro Bo                                 | NO APPARENT<br>SOURCE OF CONDUCT |
| 8684750<br>L26N,<br>53+80E         | sid, grav,<br>B, good,<br>BK samp                           | Fi - PEBS<br>BRN      | 80% SD, 20 GRAV ,<br>HETRO FRAGS                                        | to se<br>No geol                                 | NO APPARENT<br>SOURCE OF CONDUC" |
| 8684690<br>L28N,<br>54+10E         | 8LT, SD,<br>GRAV,<br>B, GOOD,<br>25 CM                      | BLT - PEBI<br>ORG BRN | I 1094 SLT, 10 HETRO<br>FRAGS, MOSTLY OXID,<br>1996 FI SD               | to se<br>Near Major Lin<br>Q 340 Deg<br>Q 54+15E | NO APPARENT<br>SOURCE OF CONDUC" |
| 8554960<br>L25N,<br>54+20E         | ad, org,<br>AC, Poor,<br>30 CM                              | \$1.Т-#)<br>ВЦК       | 30% GLT, 70% SD                                                         | to NW<br>No geol                                 | No apparent<br>Source of Conduc' |
| 8685080<br>L26N,<br>54+30E         | 3D, ORQ,<br>8LT,<br>8, GOOD,<br>35 CM                       | BLT - FI<br>ORG BRN   | 40% SLT, 30% SD<br>10% ORG                                              | to W<br>No geòl                                  | NO APPARENT<br>SOURCE OF CONDUC" |
| 8895280<br>L26N,<br>54+40E         |                                                             | BLKORN                | 70% alt, 5% org,<br>15% hetro frags,<br>Markly oxid Brecc               | to W<br>Pyroclastic<br>Bo incl Tuff              | NO APPARENT<br>SOURCE OF CONDUC" |
| 8895380<br>L25N,<br>54+60E         | BLT, 50,<br>GRAV,<br>8, GOOD,<br>20 CM                      |                       | 8 60% SLT, 10 HETRO<br>FRAGS, INCL ANG<br>SHALE, RD BRECC<br>30% FI SD  | TO W<br>Som Hetro Frags                          | NO APPARENT<br>BOURCE OF CONDUC" |
| 8695450<br>L26N,<br>54+70E         | 6LT, 8D,<br>GRAV,<br>8, GOOD,<br>20 CM                      | SLT - PEB<br>ORG BRN  | 5 60% SLT, 10% HETRO<br>FRAGO, INCL ANG<br>SHALE, RD BRECC<br>30% FI SD | tow<br>Som Hetro Frags                           | NO APPARENT<br>SOURCE OF CONDUCT |
| 8695580<br>1,26N,<br>54+80E        | CL SLT,<br>B, 0000,<br>20 CM                                | clált<br>Org Brn      | 80% OLT, 10% CL,<br>9% ORG8, 5%<br>FRAGE, INCL GR<br>TUFF               | TO W<br>NO GEOL                                  | NO APPARENT<br>BOURCE OF CONDUC" |
| 8895630<br>L28N,<br>54+90E         | CL BLT,<br>B, GOOD,<br>20 CM                                | CL SLT<br>ORG BRN     | 80% SLT, 10% CL,<br>5% ORGS, 8%<br>FRAGE, INCL GR<br>TUFF               | to W<br>No Geol                                  | NO APPARENT<br>SOURCE OF CONDUC" |
| 8696720<br>L29N,<br>58+10E         | 8LT 8D<br>GRAV,<br>8, GOOD,<br>20 CM                        |                       | 8 60% BLT, 30% 80,<br>10% HETRO FRAGE -<br>MOBTLY VOL                   | to W<br>NO GEOL                                  | NO APPARENT<br>SOURCE OF CONDUC" |
| 8696630<br>L2011,<br>55+20E        | SLT 80<br>GRAV,<br>B, GOOD,<br>20 CM                        |                       | 8 60% SLT, 30% 80,<br>10% HETRO FRAGS-<br>MOSTLY VOL                    | to W<br>No Geol                                  | NO APPARENT<br>SOURCE OF CONDUC" |
| 2625050<br>L26N,<br>55+30E         | <ul> <li>SLT SD<br/>GRAV,<br/>8, GOOD,<br/>30 CM</li> </ul> | alt - Per<br>Org arn  | 8 60% SLT, 30% 8D,<br>10% HETRO FRAGS -<br>MOSTLY VOL<br>5% ORG         | to W<br>NO GEOL                                  | NO APPARENT<br>SOURCE OF CONDUC" |
| 8896030<br>L28N,<br>55+40E         | 3LT 90<br>GRAV,<br>8, GOOD,<br>30 CM                        |                       | 13 50% SLT, 30% 80,<br>10% HETRO FRAGS -<br>MOSTLY VOL<br>8% ORG        | TO W<br>NO GEOL                                  | NO APPARENT<br>SOURCE OF CONDUC' |

. .

|                 | L28+00N (CONT) | I         | TABLE STUDG |           |           |           |           |           |           |            |      |
|-----------------|----------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------|
| SAMPLE<br>NO.   | AQ<br>ppm      | CU<br>ppm | Ni<br>ppm   | PB<br>ppm | ZN<br>ppm | CD<br>ppm | BA<br>ppm | AS<br>ppm | 68<br>ppm | HG<br>ppm  | MO   |
| <b>86</b> 82430 | <0.20          | 21.00     | 14.00       | 6.00      | 94.00     | 0.50      | 160.00    | B.QQ      | 4         | <1         | 1.00 |
| 8654650         | 0.20           | 30.00     | 35.00       | 10.00     | 350.00    | 1.50      | 280.00    | 20.00     | <2        | ~1         | ব    |
| 8684790         | 0.20           | 85.00     | 54.00       | 12,00     | 172.00    | 2.00      | 180.00    | 30.05     | 4         | <1         | 2.00 |
| 6684880         | 0.20           | 18.00     | 15.00       | 10.00     | 96.00     | 1.50      | 140.00    | 16.00     | 2.00      | <1         | শ    |
| <b>65849</b> 90 | 0.20           | 63.00     | 45.00       | 12.00     | 144.00    | 2.00      | 220.00    | 14.00     | 4         | <b>~</b> 1 | 1.00 |
| 8685850         | 0.20           | 32.00     | 40.00       | 6.00      | 222.00    | 1.50      | 100.00    | 22.00     | 4         | <1         | 3.00 |
| 8695260         | 0.40           | 43.00     | 39.00       | 2.00      | 396.00    | 8.50      | 380.00    | 10.00     | 4         | <1         | 1.00 |
| 8695390         | 8.20           | 32.00     | 47.00       | 10.00     | 418.00    | 3.50      | 250.00    | 14.00     | 4         | . 4        | 1.00 |
| 8695490         | 0.20           | 54.00     | 26.00       | 16.00     | 258.00    | 4.00      | 430.00    | 10.00     | 4         | 4          | 3.00 |
| 6695590         | -49.20         | 22.00     | 25.00       | 6.00      | 258.00    | 2.50      | 250.00    | 10.00     | 4         | ব          | 1.00 |
| 8995680         | 0.20           | 23.00     | 19.00       | 8.00      | 174.00    | 2.00      | 100.00    | 14,00     | 4         | 4          | 2.00 |
| 8696750         | 0.20           | 29.00     | 28.00       | 10.00     | 298.00    | 3.00      | 150.00    | 12.00     | ~         | ~1         | <1   |
| 895850          | 0.20           | 28.00     | 23.90       | 10.00     | 388,00    | 14.00     | 390.00    | 8.00      | 4         | ~1         | 3.00 |
| 885980          | 0.20           | 29.00     | 44.00       | 12,00     | 272.00    | 2.50      | 200.00    | 18.00     | 4         | <1         | 1.00 |
| 8696080         | 0.20           | 30.00     | 30.00       | 8.00      | 214.00    | 0.50      | 180.00    | 14.00     | 2.00      | <1         | 3.00 |

· · · · ·

.

. .

.

•

.

. .

| SAMPLE NAME,<br>NO., LOC. HORIZ.,<br>DEVEL.,<br>DEPTH     | GR. SIZE, COMPOSITION<br>COLOUR                                                   | DRAINAGE,<br>GEOLOGY                  | COMMENTS                                     |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| 86961SO SLT SD<br>L26N, GRAV,<br>55+60E B, GOOD,<br>25 CM | SLT - PEBS 60% SLT, 30% SD,<br>BRN 10% HETRO FRAGS -<br>MOSTLY VOL<br>MIN ORG     | TO W<br>HETRO BO INCL<br>RHY, GR TUFF | NO APPARENT<br>SOURCE OF CONDUC              |
|                                                           | SLT - PEBS 60% SLT, 30% SD,<br>ORG BRN 10% HETRO FRAGS -<br>MOSTLY VOL<br>MIN ORG | TO W<br>HETRO BO INCL<br>RHY, GR TUFF | NO APPARENT<br>SOURCE OF CONDUC              |
| 86963SO SLT SD<br>L26N, GRAV,<br>55+80E B, GOOD,<br>20 CM | SLT - PEBS 60% SLT, 30% SD,<br>BRN 10% HETRO FRAGS -<br>MOSTLY VOL<br>MIN ORG     | TO W<br>HETRO BO INCL<br>RHY, GR TUFF | NO A <del>PP</del> ARENT<br>SOURCE OF CONDUC |
| 86964SO SLT SD<br>L26N, GRAV,<br>55+90E B, GOOD,<br>20 CM | SLT - PEBS 60% SLT, 30% SD,<br>BRN 5% HETRO FRAGS -<br>MOSTLY VOL<br>5% ORG       | TO W<br>NO GEOL                       | NO APPARENT<br>SOURCE OF CONDUC              |

L26+00N (CONT) TABLE STUDGSO1

|              | L26+00N (    | CONT)     | TABLE STU | DGSOA1    |           |           |           |           |           |           |              |
|--------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| sampi<br>No. | .E AG<br>ppm | CU<br>ppm | NI<br>ppm | PB<br>ppm | ZN<br>ppm | CD<br>ppm | BA<br>ppm | AS<br>ppm | SB<br>ppm | HG<br>ppm | MO<br>ppm    |
| 86961        | SO 0.20      | ) 18.00   | 23.00     | 14.00     | 272.00    | 2.00      | 270.00    | 8.00      | <2        | <1        | <1           |
| 86962        | SO 0.20      | 0 43.00   | 50.00     | 10.00     | 240.00    | 0.50      | 320.00    | 16.00     | <2        | <1        | <1           |
| 86963        | SO <0.2      | 0 27.00   | 36.00     | 10.00     | 272.00    | 0.50      | 260.00    | 12.00     | <2        | <1        | <b>&lt;1</b> |
| 86964        | SO <0.2      | 0 35.00   | 38.00     | 14.00     | 294.00    | 2.00      | 350.00    | 16.00     | 2.00      | <1        | <1           |

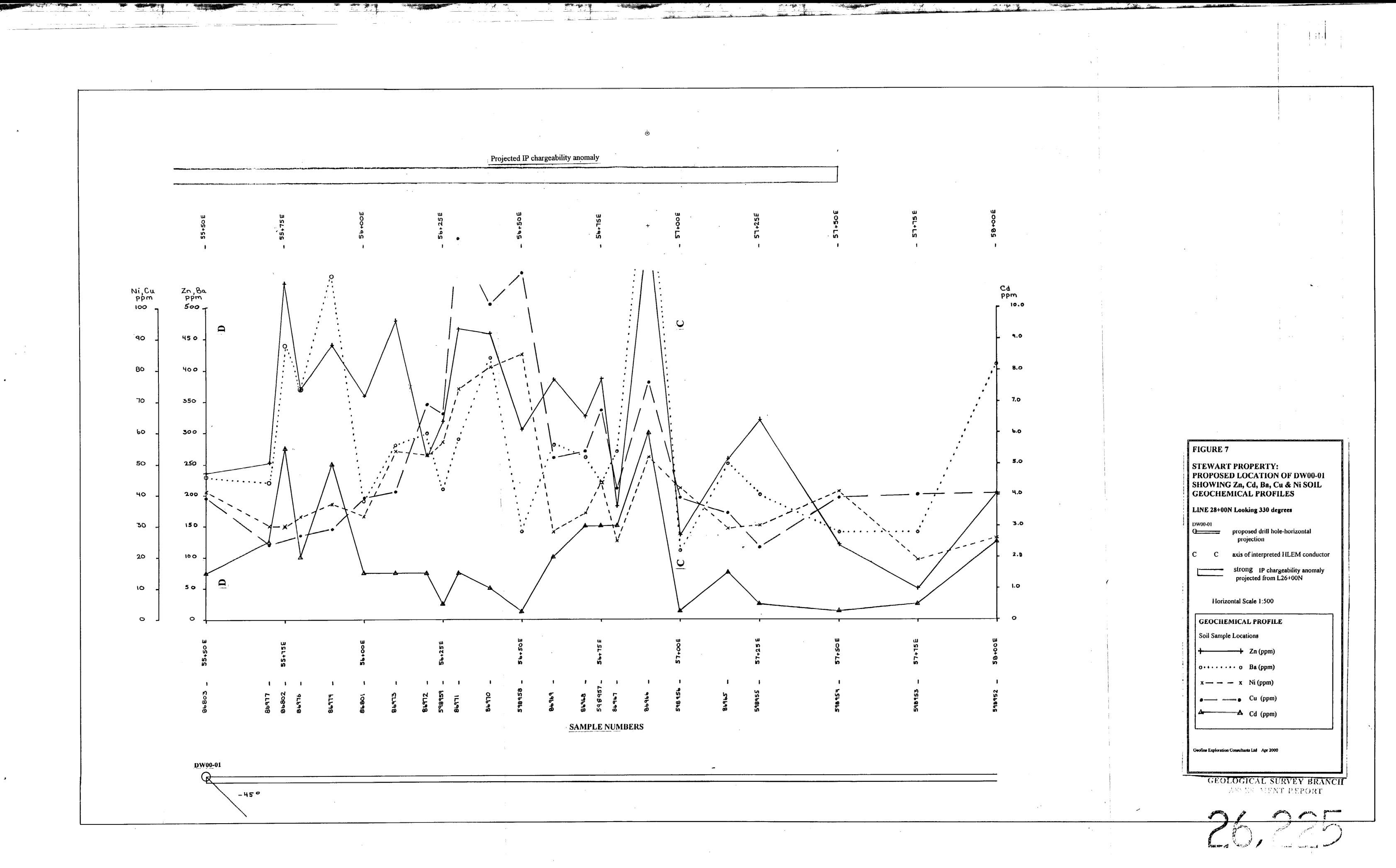
and the second second

1

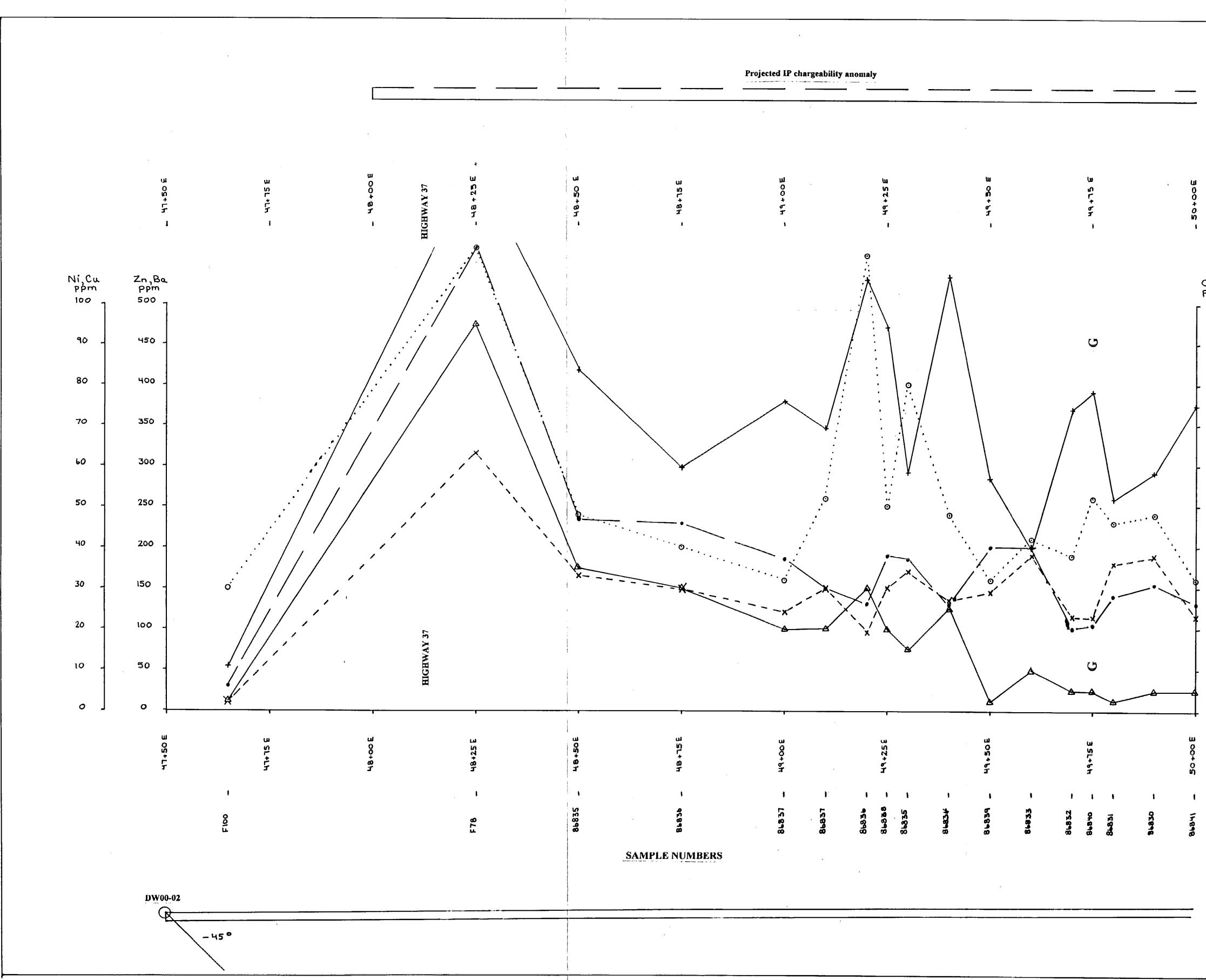
|   |                            |                                               |                     |                                      |                                             |                               | e |  |
|---|----------------------------|-----------------------------------------------|---------------------|--------------------------------------|---------------------------------------------|-------------------------------|---|--|
|   |                            | L24+00N                                       |                     | TABLE STUDGSO1                       |                                             |                               |   |  |
|   | Sample<br>NO., Loc.        |                                               | gr. size,<br>Colour | COMPOSITION                          | DRAINAGE,<br>GEOLOGY                        | COMMENTS                      |   |  |
|   | 66826SO<br>L24N,<br>50+40E |                                               | SLT<br>ORG BRN      | 60 SLT, 40 SD<br>MIN ORG             | to W<br>Som Hetro<br>Bo, Mainly Oxid        | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | L24N,                      |                                               | ORG BRN             | 40 SLT, 40 SD<br>20 HETRO<br>PEBS    | TO W<br>SOM HETRO<br>BO, MAINLY OXID        | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 86828SO<br>L24N,<br>50+20E | AS<br>8682750                                 |                     |                                      | to W<br>Som Hetro<br>Bo, Incl Felsic<br>Mat | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 8582950<br>L24N,<br>50+10E | 6662790                                       |                     |                                      | TO W<br>SOM HETRO<br>BO, INCL RHY<br>MAT    | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 8683050<br>L24N,<br>49+90E | AS<br>8682990                                 |                     |                                      |                                             |                               |   |  |
| • | 86831SO<br>L24N,<br>49+80E | 8682950                                       |                     |                                      | GEOL INCL<br>NO OF RHY BO                   | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | L24N                       | SLT, SD<br>GRAV,<br>B, GOOD,<br>30 CM         | ORG BRN             | S 70 SLT, 20 SD<br>10 HETRO<br>PEBS  | tow<br>Som Hetro<br>Bo                      | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 8683380<br>L24N,<br>49+60E | 8683250                                       |                     |                                      |                                             |                               |   |  |
|   | L24N,                      | SLT, SD<br>GRAV,<br>B, GOOD,<br>30 CM         |                     | 5 70 SLT, 20 SD<br>10 HETRO<br>PEBS  | to W<br>Som Hetro<br>Bo                     | NO SURFEVID<br>FOR CONDUCTOR  |   |  |
|   | 8683580<br>L24N,<br>49+30E | AS<br>86834SO<br>40 CM                        | SLT - CO            | INCL 5 % PEBS<br>70% SILT            | to W<br>Lots of Vol<br>Bregg Bo             | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 8683690<br>L24N,<br>49+20E | 8 GOOD                                        |                     | s 80 SLT, 20 SD                      | to W<br>Lots of Vol<br>Brecc Bo             | NO SURF EVID<br>FOR CONDUCTOR |   |  |
|   | 8683750<br>L24N,<br>49+10E | SLT, SD<br>GRAV,<br>A C,<br>GOOD, B,<br>15 CM | org Brn             | 3 30 SLT, 20 SD<br>50% HETRO<br>PEBS | to W<br>Geol In<br>Vol Brecc Bo             | NO SURF EVID<br>FOR CONDUCTOR |   |  |

10.2

*.* 


| SAMPLE<br>NO. | AG<br>ppm | TA<br>CU<br>ppm | NI<br>ppm | SOA1<br>PB<br>ppm | ZN<br>ppm | CD<br>ppm      | BA<br>ppm | AS<br>ppm | SB<br>ppm | HG<br>ppm | MO<br>ppm |
|---------------|-----------|-----------------|-----------|-------------------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|
| 8682650       | <0.2      | 22.00           | 28.00     | 10.00             | 296.00    | 0.50           | 280.00    | 12.00     | 2.00      | <1        | <1        |
| 86827SO       | <0.2      | 21.00           | 25.00     | 10. <b>00</b>     | 306.00    | <b>&lt;0</b> , | 250.00    | 14.00     | <2        | <1        | <1        |
| 8682850       | <0.2      | 28.00           | 30.00     | 14.00             | 306.00    | 0.50           | 220.00    | 16.00     | 6.00      | <1        | <1        |
| 8682950       | 0.20      | 22.00           | 35.00     | 8.00              | 616.00    | 2.00           | 250.00    | 10,00     | 2.00      | <1        | <1        |
| 8683050       | <0.2      | 31.00           | 38.00     | 10.00             | 292.00    | 0,50           | 240.00    | 20.00     | 2.00      | <1        | <1        |
| 8683180       | <0.2      | 28.00           | 36.00     | 12. <b>00</b>     | 260.00    | <0.            | 230.00    | 20.00     | 2.00      | <1        | 1.00      |
| 8683250       | 0.20      | 20.00           | 23.00     | 50.00             | 370.00    | 0.50           | 190.00    | 14.00     | 2.00      | <1        | ≺1        |
| 86833SO       | 0.20      | 40.00           | 38.00     | 12.00             | 200.00    | 1,00           | 210.00    | 22.00     | 2.00      | <1        | 1.00      |
| 8683450       | <0.2      | 26.00           | 27.00     | 14.00             | 534.00    | 2.50           | 240.00    | 12.00     | 2.00      | <1        | <1        |
| 8683580       | <0.2      | 37.00           | 34.00     | 14.00             | 292.00    | 1.50           | 400.00    | 18.00     | ~2        | <1        | <1        |
| 8683890       | <0.2      | 26.00           | 19.00     | 12,00             | 530.00    | 3.00           | 560.00    | 4.00      | ~2        | <1        | <1        |
| 8683750       | <0.2      | 30.00           | 30.00     | 14.00             | 346.00    | 2.00           | 260.00    | 20.00     | 4.00      | <1        | <1        |

From the integration of the historical and current geophysical, geological and soil Cu, Ni, Zn, Cd and Ba geochemical information (Maps S2-S9), the Highway and Central/East Zn Zones are interpreted to offer high priority polymetallic, year round drill targets in close proximity to Hwy 37. Although there are few outcrops on the grid, the distribution of the various rock boulder types (Map S9) appears reflective of the underlying bedrock types. The main zones of interest are thus postulated to be associated with altered Hazelton Group tuffs and breecias. The most common alteration types are limonite, hematite, silica and and chlorite. No apparent surficial sources were found for the HLEM anomalies associated with the main targets.


The Highway Zn Zone, as outlined by threshold Zn, Cd and Ba contours of 300 ppm, 1.5 ppm and 200 ppm, respectively (Maps S4, S7, S8) is centered at about L48+50N (Map S4) and ranges up to over 150 m in width. Historical work indicates the zone has a northwest strike length of over 2 km and moderate IP correlation on the three lines (26+00N, 22+00N, 14+00N) that have been run with IP to date.

The Central/East Zn Zone is centred at about L56+00N and offers a similar, if not more important target, since stronger soil Cu and Ni values (Maps S5, S6), in this case believed to be associated with altered Hazelton Group rocks, have a overlapping relationship with the east side of the Central/East Zn Zone. The zone also exhibits an apparent flexure (Map S4) that is associated with some of the strongest soil Zn, Cu and Ni values. A strong IP anomaly is correlative with the zone on L28+00N (the only grid line in the 1999 detailed follow-up area on which the historic IP survey was run). At least two HLEM anomaly axes (Map 4) are associated with the wide zone (up to over 200 m) as outlined by threshold contours of 300 ppm Zn, 200 ppm Ba and 1.5 ppm Cd (Maps S4, S7, S8). Based on the historical work, the zone has a strike length of over 2 km.

The two diamond drill holes now recommended to initially test the targets (Map S4) total 550 m and represent a significant revision of the1998 drill proposal. Hole DW01-00 would be collared on L28+00N at 55+50E and drilled for 250 m at an azimuth of 60° and a dip of 45° to test the East/Central Zn Zone (Figure 7). Dependent on the success of the first hole, Hole 2 could be immediately drilled under Hole 1 from the same set-up (Figure 7). Or, Hole 2 could be collared at 47+50E on L24+00N to test the Hwy Zone, and would be drilled at an azimuth of 60° and a dip of 45° under Hwy 37, for about 300 m (Figure 8).







•

· . .

•

.

· .

•

•

.

.

| :             |                                                                             |
|---------------|-----------------------------------------------------------------------------|
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |
| Cd            |                                                                             |
| ррт<br>. 10.0 |                                                                             |
|               |                                                                             |
| . 9.ô         |                                                                             |
| . 8.0         |                                                                             |
|               |                                                                             |
| . 7.0         |                                                                             |
|               |                                                                             |
| 6.0           |                                                                             |
| 5.0           |                                                                             |
|               | FIGURE 8                                                                    |
| 4.0           | STEWART PROPERTY:<br>PROPOSED LOCATION OF DW00-02                           |
|               | SHOWING Zn, Cd, Ba, Cu & Ni SOIL<br>GEOCHEMICAL PROFILES                    |
| 3.0           | LINE 24+00N Looking 330 degrees                                             |
| 2.0           | DW00-02<br>G proposed drill hole-horizontal                                 |
|               | projection                                                                  |
| 1.0           | C C axis of interpreted HLEM conductor<br>moderate IP chargeability anomaly |
|               | projected from L26+00N                                                      |
| 0             | Horizontal Scale 1:500 GEOCHEMICAL PROFILE                                  |
|               | Soil Sample Locations                                                       |
|               | ++ Zn (ppm)                                                                 |
|               | о•••••• Ва (ppm)                                                            |
|               | x x Ni (ppm)                                                                |
| star<br>S     | •• Cu (ppm)                                                                 |
|               |                                                                             |
|               | Geofine Exploration Consultants Ltd Apr 2000                                |
|               |                                                                             |
|               | CEOLOGICAL SURVEY BRANCH<br>ALLESOMENT REPORT                               |
|               |                                                                             |
|               |                                                                             |
|               |                                                                             |

### 10. CONCLUSIONS, RECOMMENDATIONS:

### **10.A. CONCLUSIONS:**

It is concluded that the Delta West Grid hosts the most consistent and most extensive Zn-Ag-Cd-Ba soil anomalies that the author is aware of in the Stewart Camp, based on over 12 years of field exploration experience in the camp. The strength of the anomalies also compares favourably to those in the Grenville Province of Ontario, Quebec and New York State that are associated with significant Zn deposits. The anomalies also have moderate to high IP chargeability association, and based on the results of the 1999 program, are deemed to offer high priority Zn-Pb-Ag, and perhaps associated Cu-Au targets, which now require evaluation with diamond drilling.

The Bowser Group Cu-Ni signature and the distribution of rock boulders appear to be useful mapping tools in the mainly overburden covered terrain. The good correlation of soil Zn, Cd, and Ba anomalies and their IP expression delineates rather precise drill targets in favourable Hazelton Group stratigraphy. Soil Cu-Ni anomalies, apparently associated with altered Hazelton Group rocksand associated intrusive rocks of dioritic composition, flank the Central/East Zn Zone on the east. The anomalies are considered to possibly reflect Cu-Au targets, such as those on the Deltaic Grid, about 10 km to the southeast.

### **10.B. RECOMMENDATIONS:**

It is recommended that the Highway and Central/East Zn Zones be initially drill tested with two holes comprising a total of 550 m. The targets are located in close proximity to Hwy 37 and on relatively flat ground, in a clear-cut accessible by old lumber roads. Such infrastructure thus provides low cost, year round exploration opportunities. It is further recommended that the work be carried out in conjunction with follow-up drill testing of the significant gold-copper targets on the Deltaic Grid to the southeast (Molloy, 1997). An aggregate, 1000 m drill program is thus proposed as the next stage of exploration on the Stewart Property.

#### **REFERENCES:**

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BAERG, R, J., BRADISH, L., PELLETIER, B. (1991): Geological, Geochemical, Geophysical and Drilling Report on the Todd Creek Property; for Noranda Exploration Company, Limited.

BARRETT, T. J., SHERLOCK, R. L. (1996): Geology, Lithogeochemistry and Volcanic Setting of the Eskay Creek Au-Ag-Cu-Zn Deposit, Northwestern British Columbia; in: Explor. Mining Geol., Vol. 5, No. 4, p 339-368, 1996.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

GREIG, C. J., MCNICOLL, V. J., ANDERSON, P. H., DAUBENY, P. H., HARAKAL, J. E., RUNKLE, D. (1995): New K-Ar and U-Pb dates for the Cambria Icefield area, northwestern British Columbia; in: Current Research, 1995-A; Geological Survey of Canada, p. 97-103.

GREIG, C. J., ANDERSON, P. H., DAUBENY, BULL, K. F., HINDERMAND, T. K. (1995): Geology of the Cambria Icefield: regional setting for

- 24 -

Red Mountain gold deposit, northwestern British Columbia; in: Current Research, 1994-A; Geological Survey of Canada, p. 45-46.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

HAMILTON, A. (1991): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 21.745, prepared for Cominco Ltd.

KENNEDY, D., R. (1996): Report On The 1996 Delta West Project: Delta Peak Area: Staking, Stream Geochemistry, Rock Geochemistry, and Geology, Skeena Mining Division, Northwestern, British Columbia; BC Ministry of Employment and Investment, Assessment Work File.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MOLLOY, D. E. (1993): Report On The Phase 1A Reconnaissance Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1993A): Report On The Phase 1B Follow-up Geophysical & Geochemical Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1996): Report On The 1996 Deltaic Creek Project Carried Out On The Deltaic Grid Of The Stewart Property: Fox 1-26, Old 1-4, Delta 1, 2 Claims, Skeena Mining Division, Northwestern British Columbia; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1996A): Report On The 1996 Delta West Project: Skeena Mining Division, Northwestern, British Columbia; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1997): Report On The 1997 Exploration Program carried out on the Stewart Property; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1998): Report On The 1998 Delta West Project: Skeena Mining Division, Northwestern, British Columbia; BC Ministry of Employment and Investment, Assessment Work File. MOLLOY, D. E. (2000): Report On The 1999 Prospectors Assistance Program: Skeena Mining Division, Northwestern, British Columbia; BC Ministry of Employment and Investment, Report Requirement.

RAINSFORD, D. R. B. (1990): Report on A Combined Helicopter Borne Magnetic Electromagnetic and VLF Survey, Stewart Area; BCMEMPR Assessment Report # 20,200.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak-Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous Westvergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

TENAJON RESOURCES CORP. (1992): Report to Shareholders; in: Annual Report 1992 p. 1.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

Walcott, Peter E. (1997): A Geophysical Report On Induced Polarization Surveying, Stewart Area, B.C., For Geofine Exploration Consultants Ltd.

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

WOOLHAM, R. W. (1994): Report on a Combined Helicopter-Borne Magnetic and Radiometric Survey, Vista de Oro Property, Todd Creek Area, British Columbia, NTS 104A/4,5 for Geofine Exploration Consultants Limited, 49 Normandale Road, Unionville, Ontario by Geonex Aerodat Inc.

WOOLHAM, R. W. (1997): Report on a Combined Helicopter-Borne Electromagnetic, Magnetic and VLF-EM Survey, Stewart Area, British Columbia, NTS 104A/11,12 for Geofine Exploration Consultants Limited, 49 Normandale Road, Unionville, Ontario by Aerodat Inc.

#### STATEMENT OF QUALIFICATIONS:

I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am a prospector/geologist with an address at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 27 years;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Association of Geoscientists of Ontario; of the Prospectors and Developers' Association; of the Association of Exploration Geochemists; and of the BC & Yukon Chamber of Mines.
- vi. I have prepared this "Report On The 1999 Delta West Project: Detailed Geochemical And Geological Surveys Carried Out To Prioritize Drill Targets On The Stewart Property"; and, have referenced the technical data available in the BCMEMPR assessment work files as well as other sources listed in the References.
- vii. The recommendations herein are solely the responsibility of David E. Molloy.

David E. Molloy, B.A., B.Sc., F.G.A.C.

Dated at Unionville, Ontario, this 9th day of April, 2000.

# **APPENDIX** A



## Chemex Labs Ltd.

.

•

Analytical Chemists \* Geochemists \* Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID To: 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

.

Page Number : 1-A Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number : GR Account : RIX

τ. ٠

•

**.** 

.

,

...\*

Project : GRDW Comments: ATTN: DAVID MOLLOY

.

|                                           |                                                                           |                                                    |                                      |                            |                                              |                                        | - <u>-</u>                                         |                                                             |                                      | CERTIFICATE OF ANALYSIS               |                            |                            | A9927995                     |                                      |                                              |                                               |                                      |                                              |                                      |                                      |
|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------|----------------------------|------------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| SAMPLE                                    | PREP<br>CODE                                                              | λg<br>ppn                                          | 7<br>11                              | As<br>ppm                  | B.<br>P <b>PR</b>                            | Ba<br>ppa                              | Be<br>ppn                                          | Bi<br>ppm                                                   | Ca<br>X                              | Cđ<br>ppz                             | Co<br>ppn                  | Cr<br>ppm                  | Cu<br>ppm                    | Fe<br>X                              | Ga<br>ppm                                    | Eg<br>ppm                                     | R<br>%                               | La<br>ppm                                    | Mg<br>X                              | Ma<br>ppm                            |
| 86801<br>86802<br>86803<br>86804<br>86805 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2     | 2.29<br>2.42<br>2.51<br>2.44<br>2.22 | 8<br>6<br>20<br>6          | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 350<br>360<br>230<br>230<br>230<br>220 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 0.16<br>0.27<br>0.14<br>0.35<br>0.27 | < 0.5<br>0.5<br>< 0.5<br>0.5<br>0.5   | 12<br>13<br>14<br>26<br>16 | 46<br>45<br>50<br>53<br>43 | 20<br>18<br>17<br>87<br>21   | 4.03<br>4.39<br>4.34<br>4.63<br>4.22 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.08<br>0.10<br>0.10<br>0.10<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.58<br>0.56<br>0.57<br>1.01<br>0.69 | 1140<br>1130<br>860<br>1700<br>955   |
| 6806<br>6807<br>6808<br>6809<br>6809      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | < 0.2<br>< 0.2<br>0.2<br>1.2<br>0.6                | 1.88<br>2.18<br>2.09<br>2.77<br>0.63 | 12<br>16<br>12<br>10<br>2  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 150<br>150<br>160<br>490<br>210        | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>0.5              | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.34<br>0.32<br>0.29<br>1.42<br>2.98 | < 0.5<br>< 0.5<br>< 0.5<br>2.5<br>1.5 | 16<br>17<br>13<br>21<br>5  | 41<br>44<br>44<br>54<br>19 | 49<br>79<br>40<br>190<br>113 | 3.44<br>4.09<br>3.67<br>3.42<br>0.59 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.07<br>0.05<br>0.06<br>0.17<br>0.10 | < 10<br>< 10<br>< 10<br>20<br>10             | 0.79<br>0.90<br>0.79<br>0.49<br>0.15 | 1040<br>1145<br>875<br>5000<br>2280  |
| 86811<br>86812<br>86813<br>86814<br>86815 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | < 0.2<br>0.2<br>0.8<br>0.2<br>0.2                  | 0.79<br>1.66<br>1.62<br>1.99<br>1.57 | 2<br>12<br>12<br>10<br>6   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 220<br>180<br>370<br>250<br>420        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.72<br>0.38<br>0.89<br>0.44<br>2.26 | 0.5<br>0.5<br>2.5<br>2.5<br>1.5       | 7<br>15<br>17<br>23<br>17  | 15<br>33<br>32<br>45<br>31 | 29<br>27<br>33<br>29<br>72   | 1.32<br>3.20<br>3.41<br>4.85<br>2.89 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.04<br>0.10<br>0.15<br>0.11<br>0.06 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.28<br>0.62<br>0.56<br>0.58<br>0.55 | 1035<br>1105<br>2460<br>1915<br>3870 |
| 86816<br>86817<br>86818<br>86819<br>86820 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.2<br>0.2<br>0.6<br>0.4<br>0.6                    | 1.56<br>2.06<br>1.62<br>1.22<br>1.33 | 12<br>6<br>4<br>2<br>6     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 170<br>460<br>620<br>490<br>300        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 1.75<br>0.55<br>1.08<br>0.86<br>0.54 | < 0.5<br>1.5<br>2.0<br>2.0<br>1.5     | 20<br>16<br>17<br>16<br>10 | 39<br>40<br>34<br>44<br>32 | 52<br>23<br>15<br>15<br>15   | 3.70<br>4.05<br>3.14<br>2.82<br>3.16 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.06<br>0.11<br>0.11<br>0.12<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.98<br>0.49<br>0.51<br>0.36<br>0.42 | 1485<br>2130<br>2610<br>2400<br>725  |
| 86821<br>86822<br>86823<br>86824<br>86825 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | 0.2<br>0.4<br>1.0<br>< 0.2<br>1.6                  | 1.80<br>1.89<br>2.46<br>0.86<br>1.80 | 4<br>12<br>6<br>122        | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 170<br>280<br>320<br>180<br>70         | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.27<br>0.24<br>0.91<br>0.80<br>2.47 | 0.5<br>< 0.5<br>1.5<br>0.5<br>2.0     | 10<br>14<br>17<br>7<br>23  | 34<br>39<br>47<br>21<br>32 | 17<br>19<br>34<br>17<br>124  | 3.56<br>4.65<br>3.95<br>2.33<br>4.90 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.05<br>0.05<br>0.09<br>0.10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.38<br>0.42<br>0.36<br>0.19<br>1.36 | 930<br>1110<br>4980<br>470<br>735    |
| 86826<br>86827<br>86828<br>86829<br>86830 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.94<br>2.71<br>2.60<br>2.67<br>3.16 | 12<br>14<br>16<br>10<br>20 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 280<br>250<br>220<br>250<br>250<br>240 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.55<br>0.39<br>0.34<br>0.29<br>0.34 | 0.5<br>< 0.5<br>0.5<br>2.0<br>0.5     | 19<br>13<br>18<br>18<br>18 | 47<br>41<br>42<br>44<br>51 | 22<br>21<br>28<br>22<br>31   | 6.15<br>5.29<br>5.51<br>5.11<br>5.74 | 10<br>< 10<br>10<br>< 10<br>< 10             | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.10<br>0.09<br>0.06<br>0.07<br>0.09 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.70<br>0.62<br>0.63<br>0.70<br>0.82 | 1760<br>1190<br>1300<br>1555<br>975  |
| 86831<br>86832<br>86833<br>86834<br>86835 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202            | < 0.2<br>0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2     | 2.51<br>2.12<br>2.26<br>2.18<br>2.26 | 20<br>14<br>22<br>12<br>18 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 230<br>190<br>210<br>240<br>400        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.45<br>0.42<br>0.50<br>0.31<br>0.43 | < 0.5<br>0.5<br>1.0<br>2.5<br>1.5     | 17<br>15<br>19<br>17<br>23 | 51<br>38<br>35<br>41<br>42 | 28<br>20<br>40<br>26<br>37   | 5.36<br>5.50<br>3.94<br>5.14<br>4.86 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.08<br>0.08<br>0.06<br>0.06<br>0.06 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.66<br>0.48<br>0.67<br>0.58<br>0.56 | 2110<br>1320<br>1595<br>1985<br>2870 |
| 86836<br>86837<br>86838<br>86839<br>86840 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2   | 1.67<br>2.01<br>2.43<br>2.27<br>1.83 | 4<br>20<br>14<br>16<br>8   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 560<br>260<br>210<br>370<br>340        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 0.41<br>0.55<br>0.32<br>0.64<br>0.38 | 3.0<br>2.0<br>1.0<br>1.5<br>1.5       | 29<br>23<br>30<br>22<br>18 | 35<br>39<br>46<br>44<br>38 | 26<br>30<br>34<br>26<br>21   | 4.62<br>4.60<br>5.26<br>5.00<br>3.34 | 10<br>< 10<br>< 10<br>< 10<br>< 10           | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.08<br>0.10<br>0.08<br>0.09<br>0(10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.25<br>0.56<br>0.65<br>0.49<br>0.41 | 5330<br>2440<br>2820<br>2500<br>2470 |
|                                           |                                                                           |                                                    |                                      |                            | <u> </u>                                     |                                        |                                                    |                                                             |                                      | ·····                                 |                            |                            |                              | CERTIFI                              | CATION:                                      |                                               | ·2                                   | in l                                         | 1.P                                  | •                                    |

• •



•

· ·

# **Chemex Labs Ltd.**

(a) (a) (b) (b)

Analytical Chemista T Geochemists T Registered Assayers

.

5175 Timberlea Blvd., Mississauge Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

-

Project : GRDW Comments: ATTN: DAVID MOLLOY **...\*** 

Page Number : 1-B Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number : GR Account : RIX

. .

.

. .

| SAMPLE | PREP<br>CODE       | No<br>ppm | Na               |            |              |           |              |            |           |           |              |              |              |            |              |             |          |
|--------|--------------------|-----------|------------------|------------|--------------|-----------|--------------|------------|-----------|-----------|--------------|--------------|--------------|------------|--------------|-------------|----------|
|        |                    | FF-       | *                | Ni<br>ppm  | P<br>ppm     | РЬ<br>ррт | 8<br>%       | Sb<br>ppm  | Sc<br>ppm | Sr<br>ppm | Tİ<br>X      | T1<br>ppm    | U<br>Ppm     | V<br>ppm   | W            | - Zn<br>ppm |          |
|        | 201 202            |           | < 0.01           | 32         | 1900         | 12        | 0.01         | < 2        | 4         | 10        | 0.01         | < 10         | < 10         | 71         | < 10         | 252         |          |
|        | 201 202            |           | < 0.01           | 29         | 2060         | 12        | 0.01         | < 2        | 3         | 1.4       | 0.02         | < 10         | < 10         | 85         | < 10         | 226         |          |
|        | 201 202            |           | < 0.01           | 33         | 1750<br>980  | 16        | 0.01         | < 2        | 14        | 8<br>18   | 0.01<br>0.01 | < 10<br>< 10 | < 10<br>< 10 | 73<br>74   | < 10<br>< 10 | 236<br>158  |          |
|        | 201 202<br>201 202 |           | < 0.01<br>< 0.01 | . 67<br>37 | 2190         | 10        | 0.01         | < 2        | 3         | 13        | 0.01         | < 10         | < 10         | 65         | < 10         | 340         |          |
|        | 201 202            |           | < 0.01           | 55         | 730          | 10        | 0.02         | < 2        | 6         | 14        | 0.01         | < 10         | < 10         | 53         | < 10         | 110         | <u> </u> |
|        | 201 202            |           | < 0.01           | 59         | 780          | 10        | 0.01         | < 2        | 6         | 17        | 0.01         | < 10         | < 10         | 61<br>58   | < 10         | 134         |          |
|        | 201 202<br>201 202 | < 1       | < 0.01<br>0.01   | 51<br>94   | 850<br>2800  | 10        | 0.01<br>0.05 | 2          | 5<br>25   | 14 -      | 0.01<br>0.06 | < 10<br>< 10 | < 10<br>< 10 | 55         | < 10<br>< 10 | 146<br>298  |          |
|        | 201 202<br>201 202 | ì         | 0.01             | 43.        | 1560         | < 2       | 0.26         | < 2        | 3         |           | < 0.01       | < 19         | < 10         | 9          | < 10         | 54          |          |
|        | 201 202            |           | < 0.01           | 21         | 890          | 2         | 0.17         | < 2        | 1         | 103       | 0.01         | < 10         | < 10         | 23         | < 10         | 86          |          |
|        | 201 202            | _         | < 0.01           | 38         | 1210         | 6         | 0.03         | 2          | 3         | 15        | 0.01         | < 10         | < 10         | 53         | < 10         | 156         |          |
|        | 201 202            |           | < 0.01           | 35         | 1460         | 12        | 0.06<br>0.01 | < 2        | 2         | 41<br>21  | 0.02<br>0.05 | < 10<br>< 10 | < 10<br>< 10 | 58<br>93   | < 10<br>< 10 | 248<br>372  |          |
|        | 201 202<br>201 202 |           | < 0.01<br>< 0.01 | 35<br>47   | 1090<br>1660 | 10<br>4   | 0.11         | <          | - 4       | 95        | 0.01         | < 10         | < 10         | 43         | < 10         | 348         |          |
| 6816 2 | 201 202            | < 1       | < 0.01           | 68         | \$20         | 8         | 0.50         | < 2        | 6         | 80        | 0.01         | < 10         | < 10         | 43         | < 10         | 142         |          |
|        | 201 202            |           | < 0.01           | 30         | 2110         | 6         | 0.03         | < 2        | 2         | 27        | 0.02         | < 10         | < 10         | 68         | < 10         | 310         |          |
|        | 201 202            |           | < 0.01           | 34         | 1620         | 6         | 0.04         | 2          | 2         | 48<br>45  | 0.03<br>0.01 | < 10<br>< 10 | < 10<br>< 10 | 51<br>40   | < 10<br>< 10 | 407<br>256  |          |
|        | 201 202<br>201 202 |           | < 0.01<br>< 0.01 | 32<br>29   | 1490<br>1390 | 8<br>4    | 0.03         | < 2<br>< 2 | 1         | 25        | 0.01         | < 10         | < 10         | 50         | < 10         | 268         |          |
|        | 201 202            | < 1       | < 0.01           | 22         | 470          | 8         | 0.01         | < 2        | 1         | 13        | 0.02         | < 10         | < 10         | 67         | < 10         | 110         | ·····    |
|        | 201 202            |           | < 0.01           | . 27       | 810          | 10        | 0.03         | 2          | 1         | 13        | 0.03         | < 10         | < 10         | 87         | < 10         | 172         |          |
|        | 201 202            |           | < 0.01           | 33         | 1240         | 12        | 0.08<br>0.07 | < 2        | 7         | 38<br>33  | 0.07<br>0.05 | < 10<br>< 10 | < 10<br>< 10 | 64<br>62   | < 10<br>< 10 | 236<br>94   |          |
|        | 201 202<br>201 202 | 3         | < 0.01<br>0.01   | 47         | 990          | 50        | 1.68         | 6          | 3         | 112       | 0.03         | < 10         | < 10         | 53         | < 10         | 186         |          |
|        | 201 202            |           | < 0.01           | 28         | 3660         | 10        | 0.02         | 2          | 3         | 17        | 0.03         | < 10         | < 10         | 128        | < 10         | 298         |          |
|        | 201 202            | . –       | < 0.01           | 25         | 2350         | 10        | 0.01         | < 2        | 4         | 13<br>14  | 0.04         | < 10<br>< 10 | < 10<br>< 10 | 111<br>110 | < 10<br>< 10 | 308<br>306  |          |
|        | 201 202<br>201 202 |           | < 0.01           | 30<br>35   | 2670<br>2330 | 14        | 0.01<br>0.01 | 6          | 3         | 11        | 0.04         | < 10         | < 10         | 91         | < 10         | 616         |          |
|        | 201 202            |           | < 0.01           | 38         | 1900         | 10        | 0.02         | 2          | 3         | 13        | 0.03         | < 10         | < 10         | 117        | < 10         | 292         |          |
|        | 201 202            |           | < 0.01           | 36         | 2900         | 12        | 0.02         | 2          | 3         | 15<br>15  | 0.03         | < 10<br>< 10 | < 10<br>< 10 | 100<br>119 | < 10<br>< 10 | 260<br>370  |          |
|        | 201 202<br>201 202 |           | < 0.01           | 23<br>35   | 3290<br>1510 | 50<br>12  | 0.03<br>0.04 | 2          |           | 15        | 0.08         | < 10         | < 10         | 76         | < 10         | 200         |          |
|        | 201 202            |           | < 0.01           | 27         | 1970         | 14        | 0.03         | 2          | 3         | 13        | 0.07         | < 10         | < 10         | 97         | < 10         | 542         |          |
|        | 201 202            |           | < 0.01           | 34         | 2110         | 14        | 0.03         | < 2        | ć         | 17        | 0.01         | < 10         | < 10         | 85         | < 10         | 292         |          |
|        | 201 202            |           | < 0.01           | 19         | 1580         | 12        | 0.03         | < 2        | 3         | 18        | 0.10         | < 10<br>< 10 | < 10<br>< 10 | 90<br>90   | < 10<br>< 10 | 530<br>346  |          |
|        | 201 202<br>201 202 |           | < 0.01<br>< 0.01 | 30<br>34   | 1780<br>1990 | 14<br>12  | 0.03<br>0.03 | 2          | 3         | 16        | 0.04         | < 10         | < 10         | 103        | < 10         | 310         |          |
|        | 201 202            |           | < 0.01           | 33         | 2290         | 10        | 0.05         | < 2        | 1         | 29        | 0.03         | < 10         | < 10         | 88         | < 10         | 284         |          |
|        | 201 202            |           | < 0.01           | 25         | 980          | -6        | 0.03         | 2          | 2         | 18        | 0.03         | < 10         | < 10         | 70         | < 10         | 282         |          |

4 p

CERTIFICATION:\_

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :2-A Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. :19927995 P.O. Number :GR Account :RIX

· · ·

•

Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

and the second 
<del>.</del> .

0

.

τ

. .

٢

Project : GRDW Comments: ATTN: DAVID MOLLOY

. . .

``

.

•

.

**\_\_^**\*

.

| _                                                  |                                                          |                            |                                              |                                      |                            |                                                      |                                 |                                                     |                                               | CERTIFICATE OF ANALYSIS              |                                  |                            |                            | /SIS                         | 4                                    | <b>\9927</b>                                 | 995                                    |                                      |                                              |                                      |                                      |
|----------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------|--------------------------------------|----------------------------|------------------------------------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------|----------------------------|----------------------------|------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| SAMPLE                                             | PREP<br>CODE                                             |                            | λg<br>ppm                                    | <u>ы</u>                             | λs<br>ppn                  | B                                                    | Ва<br>рря                       | Be<br>ppn                                           | 9i<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                        | Co<br>ppm                  | Cr<br>pp <del>a</del>      | Cu<br>ppm                    | Fe<br>%                              | Ga<br>ppm                                    | Eg<br>pp <b>n</b>                      | R<br>%                               | La<br>ppa                                    | Ng<br>X                              | Mn<br>ppu                            |
| 86841<br>86843<br>86844<br>86845<br>86846          | 201 20<br>201 20<br>201 20<br>201 20<br>201 20<br>201 20 | )2<br>)2<br>)2             | 0.2<br>0.2<br>< 0.2<br>< 0.2<br>0.2          | 1.39<br>1.46<br>1.70<br>2.47<br>3.00 | 4<br>6<br>5<br>14<br>20    | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 490<br>470<br>310<br>350<br>260 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5  | 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <       | 0.93<br>0.75<br>0.75<br>0.43<br>0.20 | 2.5<br>4.0<br>2.0<br>2.0<br>1.5  | 14<br>32<br>21<br>17<br>19 | 30<br>31<br>31<br>42<br>42 | 17<br>26<br>21<br>34<br>30   | 3.24<br>4.02<br>3.93<br>4.87<br>6.20 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.09<br>0.09<br>0.09<br>0.07<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.35<br>0.27<br>0.42<br>0.75<br>0.66 | 2150<br>5850<br>2150<br>1545<br>1080 |
| 86847<br>86848<br>86849<br>86850<br>86951          | 201 20<br>201 20<br>201 20<br>201 20<br>201 20<br>201 20 | 02<br>02<br>02             | 0.2<br>0.2<br>0.2<br>0.2<br>1.0              | 2.78<br>1.35<br>1.52<br>1.77<br>1.61 | 30<br>16<br>14<br>22<br>8  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 120<br>140<br>220<br>100<br>70  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2<br>2     | 0.32<br>0.22<br>1.07<br>0.50<br>2.26 | 2.0<br>1.5<br>2.0<br>1.5<br>3.0  | 24<br>8<br>18<br>14<br>22  | 44<br>21<br>30<br>28<br>28 | 85<br>18<br>63<br>32<br>112  | 4.66<br>4.12<br>3.40<br>4.11<br>4.58 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>0.06<br>0.05<br>0.06<br>0.09 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.94<br>0.29<br>0.59<br>0.57<br>1.31 | 1740<br>555<br>1850<br>1055<br>665   |
| 86952<br>86953<br>86954<br>86955<br>86955<br>86956 | 201 20<br>201 20<br>201 20<br>201 20<br>201 20<br>201 20 | 02<br>02<br>02             | 0.4<br>0.2<br>0.2<br>< 0.2<br>0.2            | 1.58<br>2.41<br>1.79<br>1.94<br>1.61 | 10<br>14<br>10<br>10<br>14 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 380<br>250<br>430<br>250<br>160 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.35<br>0.36<br>0.69<br>0.32<br>0.29 | 8.5<br>3.5<br>4.0<br>2.5<br>2.0  | 26<br>26<br>16<br>12<br>19 | 28<br>44<br>37<br>34<br>31 | 43<br>32<br>54<br>22<br>23   | 3.78<br>4.80<br>3.87<br>4.29<br>5.34 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | <1<br><1<br><1<br><1<br><1<br><1       | 0.07<br>0.07<br>0.07<br>0.07<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.35<br>0.79<br>0.27<br>0.54<br>0.35 | 5480<br>2210<br>2810<br>1115<br>2030 |
| 86957<br>86958<br>86959<br>86960<br>86961          | 201 20<br>201 20<br>201 20<br>201 20<br>201 20<br>201 20 | 02<br>02<br>02             | 0.2<br>0.2<br>0.2<br>0.2<br>0.2              | 1.58<br>1.03<br>2.55<br>1.61<br>1.48 | 12<br>9<br>16<br>14<br>8   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 150<br>390<br>200<br>160<br>270 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5           | <                                             | 0.33<br>0.44<br>0.26<br>0.25<br>0.17 | 3.0<br>14.0<br>2.5<br>0.5<br>2.0 | 16<br>19<br>13<br>14<br>17 | 24<br>22<br>44<br>27<br>29 | 29<br>26<br>29<br>30<br>18   | 3.66<br>3.73<br>5.05<br>3.73<br>3.93 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.06<br>0.08<br>0.05<br>0.04<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.31<br>0.21<br>0.73<br>0.55<br>0.36 | 2040<br>3800<br>580<br>850<br>2630   |
| 86962<br>86963<br>86964<br>86965<br>86965          | 201 20                                                   | 02<br>02<br>02             | 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.6<br>0.4 | 2.34<br>2.17<br>2.32<br>1.63<br>1.74 | 16<br>12<br>16<br>18<br>18 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 320<br>260<br>350<br>250<br>780 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5           | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.21<br>0.25<br>0.29<br>0.57<br>1.01 | 0.5<br>0.5<br>2.0<br>1.5<br>6.0  | 19<br>15<br>23<br>15<br>50 | 44<br>39<br>44<br>27<br>21 | 43<br>27<br>35<br>34<br>76   | 4.53<br>4.55<br>4.67<br>3.72<br>4.31 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | <1<br><1<br><1<br><1<br><1             | 0.04<br>0.06<br>0.05<br>0.07<br>0.10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.75<br>0.70<br>0.65<br>0.48<br>0.33 | 910<br>775<br>2600<br>1495<br>>10000 |
| 86967<br>86968<br>86969<br>86970<br>86971          | 201 20<br>201 20<br>201 20<br>201 20<br>201 20           | 02<br>02<br>02             | 0.6<br>0.4<br>< 0.2<br>< 0.2<br>0.6          | 0.64<br>0.94<br>1.09<br>2.26<br>1.90 | 8<br>12<br>14<br>16<br>14  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 270<br>260<br>280<br>420<br>290 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1.33<br>1.05<br>0.73<br>1.19<br>1.07 | 7.0<br>3.0<br>2.0<br>1.0<br>1.5  | 5<br>14<br>17<br>33<br>42  | 18<br>19<br>22<br>26<br>25 | 42<br>54<br>52<br>101<br>122 | 1.60<br>2.85<br>3.80<br>4.12<br>4.04 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.07<br>0.07<br>0.08<br>0.20<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.12<br>0.17<br>0.19<br>0.49<br>0.43 | 995<br>2430<br>4030<br>6760<br>6910  |
| 86972<br>86973<br>86974<br>86975<br>86975<br>86976 | 201 2                                                    |                            | < 0.2<br>0.2<br>0.2<br>2.0<br>0,2            | 1.56<br>2.62<br>1.08<br>1.60<br>1.98 | 14<br>16<br>6<br>92<br>18  | < 10<br>< 10<br>10<br>< 10<br>< 10                   | 300<br>280<br>550<br>70<br>370  | < 0.\$<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.80<br>0.62<br>1.96<br>2.14<br>0.75 | 1.5<br>1.5<br>5.0<br>2.5<br>2.0  | 28<br>34<br>22<br>21<br>20 | 23<br>37<br>28<br>29<br>40 | 69<br>41<br>29<br>120<br>27  | 3.70<br>4.75<br>2.53<br>4.54<br>4.46 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.08<br>0.09<br>0.15<br>0.09<br>0.10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.34<br>0.59<br>0.33<br>1.24<br>0.57 | 3450<br>3760<br>4550<br>670<br>2860  |
| 86977<br>86978<br>86979<br>86980<br>86980<br>86981 | 201 2<br>201 2<br>201 2                                  | 02<br>02<br>02<br>02<br>02 | 0.4<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2        | 1.56<br>2.35<br>1.60<br>2.65<br>2.46 | 12<br>10<br>12<br>8<br>14  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10         | 220<br>370<br>290<br>170<br>190 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.66<br>0.85<br>0.66<br>0.15<br>0.24 | 2.5<br>2.5<br>2.5<br>1.5<br>0.5  | 17<br>18<br>16<br>16<br>15 | 32<br>35<br>29<br>42<br>41 | 24<br>41<br>33<br>19<br>27   | 3.75<br>4.02<br>3.47<br>4.35<br>4.38 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.09<br>0.13<br>0.07<br>0.08<br>0.08 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.50<br>0.67<br>0.52<br>0.69<br>0.71 | 1380<br>2470<br>1625<br>1095<br>1100 |
| L                                                  | <b>I</b>                                                 |                            |                                              |                                      |                            |                                                      |                                 |                                                     |                                               |                                      |                                  |                            |                            |                              | CERTIFI                              | CATION:                                      |                                        | Na                                   | uch_                                         | P                                    | •                                    |



## Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 To:

Project : GRDW Comments: ATTN: DAVID MOLLOY

~\*

Page Number :2-B Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. :19927995 P.O. Number :GR RIX Account

.

|              |                    |           |                  |           |              |           |              |           |           | CE                | RTIF           | CATE              | OF A         | NAL      | YSIS         | 9A         | 927995        | 5   |  |
|--------------|--------------------|-----------|------------------|-----------|--------------|-----------|--------------|-----------|-----------|-------------------|----------------|-------------------|--------------|----------|--------------|------------|---------------|-----|--|
| SAMPLE       | PREP               | No<br>ppm | Na<br>X          | Ni<br>ppm | p<br>ppm     | Pb<br>ppm | 9<br>%       | Sb<br>ppm | Sc<br>ppm | Sr<br>pp <b>n</b> | TI<br>X        | Tl<br>pp <b>m</b> | D<br>D       | V<br>ppm | M            | Zn<br>ppm  |               |     |  |
| 6841         | 201 202            | 1         | < 0.01           | 23        | 2250         | 6         | 0.04         | < 2       | < 1       | 28                | 0.03           | < 10              | < 10         | 59       | < 10         | 384        |               |     |  |
| 6843         | 201 202            |           | < 0.01           | 20        | 990          | 14        | 0.04         | 2         | 3         | 33                | 0.07           | < 10              | < 10         | . 82     | < 10         | 358        |               |     |  |
| 6844<br>6845 | 201 202 201 202    |           | < 0.01<br>< 0.01 | 21<br>40  | 790<br>1470  | 4         | 0.04         | 2<br>< 2  | 3         | 32<br>18          | 0.05<br>0.03   | < 10              | < 10<br>< 10 | 85<br>96 | < 10<br>< 10 | 242<br>254 |               |     |  |
| 6846         | 201 202            |           | < 0.01           | 35        | 2330         | 10        | 0.02         | 22        | 5         | 11                | 0.03           | < 10              | < 10         | 118      | < 10         | 350        |               |     |  |
| 6947         | 201 202            |           | < 0.01           | 54        | 960          | 12        | 0.01         | < 2       | 7         | 12                | 0.03           | < 10              | < 10         | 96       | < 10         | 172        | · - ·····     |     |  |
| 6848         | 201 202            |           | < 0.01           | 15        | 610          | 10        | 0.03         | 2         | 1         | 16                | 0.06           | < 10              | < 10         | 112      | < 10         | 9B         |               |     |  |
| 6849         | 201 202            |           | < 0.01           | 45        | 710<br>750   | 12        | 0.05<br>0.03 | < 2       | 5<br>3    | 46                | 0.02           | < 10<br>< 10      | < 10<br>< 10 | 53       | < 10<br>< 10 | 144<br>222 |               |     |  |
| 6850<br>5951 | 201 202<br>201 202 |           | < 0.01<br>< 0.01 | 40<br>46  | 940          | 40        | 1.60         | < 2<br>2  | 3         | 110               | 0.02           | < 10              | < 10         | 47       | < 10         | 180        |               |     |  |
| 6952         | 201 202            |           | < 0.01           | 39        | 1200         | 2         | 0.08         | < 2       | 1         | 54                | 0,03           | < 10              | < 10         | 66       | < 10         | 396        |               |     |  |
| 6953         | 201 202            |           | < 0.01           | 47        | 1450         | 10        | 0.03         | < 2       | 3         | 17                | 0.02           | < 10              | < 10         | BO       | < 10         | 416        |               |     |  |
| 6954<br>6955 | 201 202 201 202    | -         | < 0.01           | 26<br>25  | 2770<br>1650 | 16        | 0.03         | < 2       | 3<br>2    | 32<br>12          | 0.03           | < 10<br>< 10      | < 10<br>< 10 | 79<br>90 | < 10<br>< 10 | 258<br>266 |               |     |  |
| 6956         | 201 202            |           | < 0.01<br>< 0.01 | 19        | 1720         | 1         | 0.03         | < 2 .     | ī         | 14                | 0.05           | < 10              | < 10         | 131      | < 10         | 174        |               | -   |  |
| 6957         | 201 202            |           | < 0.01           | 28        | 1910         | 10        | 0.01         | < 2       | 3         | 19                | 0.01           | < 10              | < 10         | 55       | < 10         | 208        | <u>.</u>      |     |  |
| 6958         | 201 202            |           | < 0.01           | 23        | 1410         | 10        | 0.03         | < 2       | 1         | 18                | 0.03           | < 10              | < 10         | 64       | < 10         | 388        |               |     |  |
| 6959<br>6960 | 201 202 201 202    |           | < 0.01<br>< 0.01 | 44        | 1690<br>1170 | 12        | 0.03<br>0.01 | < 2       | 4         | 12                | < 0.01<br>0.01 | < 10<br>< 10      | < 10<br>< 10 | 78<br>62 | < 10<br>< 10 | 272<br>214 |               |     |  |
| 6961         | 201 202            |           | < 0.01           | 23        | 1800         | 14        | 0.02         | < 2       | ĩ         | - 8               | 0.02           | < 10              | < 10         | 66       | < 10         | 272        |               |     |  |
| 6962         | 201 202            |           | < 0.01           | 50        | 2120         | 10        | 0.01         | < 2       | 5         | 10                |                | < 10              | < 10         | 68       | < 10         | 240        |               |     |  |
| 6963         | 201 202            |           | < 0.01           | .36       | 3010         | 10        | 0.02         | < 2       | 4         | 12<br>13          | < 0.01<br>0.01 | < 10<br>< 10      | < 10<br>< 10 | 66<br>77 | < 10<br>< 10 | 272<br>294 |               |     |  |
| 6964<br>6965 | 201 202 201 202    |           | < 0.01<br>< 0.01 | 38<br>29  | 1180         | 10        | 0.03         | 2         | 2         | 23                | 0.01           | < 10              | < 10         | 56       | < 10         | 258        |               |     |  |
| 6966         | 201 202            | < 1       | 0.01             | 52        | 2390         | 14        | 0.06         | < 2       | 3         | 47                | 0.03           | < 10              | < 10         | 64       | < 10         | 632        |               |     |  |
| 6967         | 201 202            | 1         | 0.01             | 25        | 890          | 8         | 0.09         | 2         | 1         | 47                | 0.04           | < 10              | < 10         | 48       | < 10         | 182        |               |     |  |
| 6968         | 201 202            | -         | < 0.01           | 34<br>28  | 1620<br>2000 | 8<br>14   | 0.05<br>0.04 | 2         | < 1<br>1  | 35<br>25          | 0.01<br>0.05   | < 10<br>< 10      | < 10<br>< 10 | 51<br>66 | < 10<br>< 10 | 326<br>386 |               |     |  |
| 6969<br>6970 | 201 202 201 202    |           | < 0.01           | 81        | 3180         | 12        | 0.04         | 2         | 6         | 66                | 0.03           | < 10              | < 10         | 57       | < 10         | 458        |               |     |  |
| 6971         | 201 202            |           | < 0.01           | 74        | 1730         | 12        | 0.08         | 4         | - Ă       | 50                | 0.01           | < 10              | < 10         | 52       | < 10         | 466        |               |     |  |
| 6972         | 201 202            |           | < 0.01           | 53        | 1570         | 10        | 0.07         | 2         | 3         | 32                | 0.01           | < 10              | < 10         | 55       | < 10         | 264        |               |     |  |
| 6973<br>6974 | 201 202 201 202    |           | < 0.01<br>< 0.01 | 54<br>37  | 2180<br>1800 | 20<br>10  | 0.04<br>0.09 | 6         | 4         | 24<br>72          | 0.04           | < 10<br>< 10      | < 10<br>< 10 | 78<br>41 | < 10<br>< 10 | 478        |               |     |  |
| 6975         | 201 202            | 2         | 0.01             | 45        | 910          | 54        | 1.83         | 12        | 3         | 103               | 0.03           | < 10              | < 10         | 47       | < 10         | 178        |               |     |  |
| 6976         | 201 202            |           | < 0.01           | 33        | 2220         | 12        | 0.03         | . 2       | 3         | 32                | 0.02           | < 10              | < 10         | 71       | < 10         | 370        |               |     |  |
| 6977         | 201 202            |           | < 0.01<br>< 0.01 | 30<br>45  | 1310         | 10        | 0.05         | < 2       | 3         | 29<br>33          | 0.01           | < 10<br>< 10      | < 10<br>< 10 | 62<br>62 | < 10<br>< 10 | 252<br>306 |               |     |  |
| 6978<br>6979 | 201 202            |           | < 0.01           | 33        | 1080<br>920  | 10        | 0.03         | 6         | 3         | 31                | 0.03           | < 10              | < 10         | 55       | < 10         | 204        |               |     |  |
| 6980         | 201 202            |           | < 0.01           | 33        | 870          | 8         | 0.02         | ě         | Ĩ.        | 10                | 0.02           | < 10              | < 10         | 79       | < 10         | 344        | . <b>.</b> .  |     |  |
| 6981         | 201 202            |           | < 0.01           | 41        | 940          | ß         | 0.02         | < 2       | 3         | 11                | 0.03           | < 10              | < 10         | 73       | < 10         | 272        |               | 1   |  |
|              |                    |           |                  |           |              |           |              |           |           |                   |                |                   |              |          |              |            | $\frac{1}{n}$ | 70  |  |
|              |                    |           |                  |           |              |           |              |           |           |                   |                |                   |              | CERTIFI  | CATION:      |            | Varel         | 1st |  |



#### ab nex I

Analytical Chemists \* Geochemists \* Registered Assayers

| 5175 Timberlea Blvd., | Mississauga       |
|-----------------------|-------------------|
| Ontario, Canada       | L4W 2S3           |
| PHONE: 905-624-2806   | FAX: 905-624-6163 |

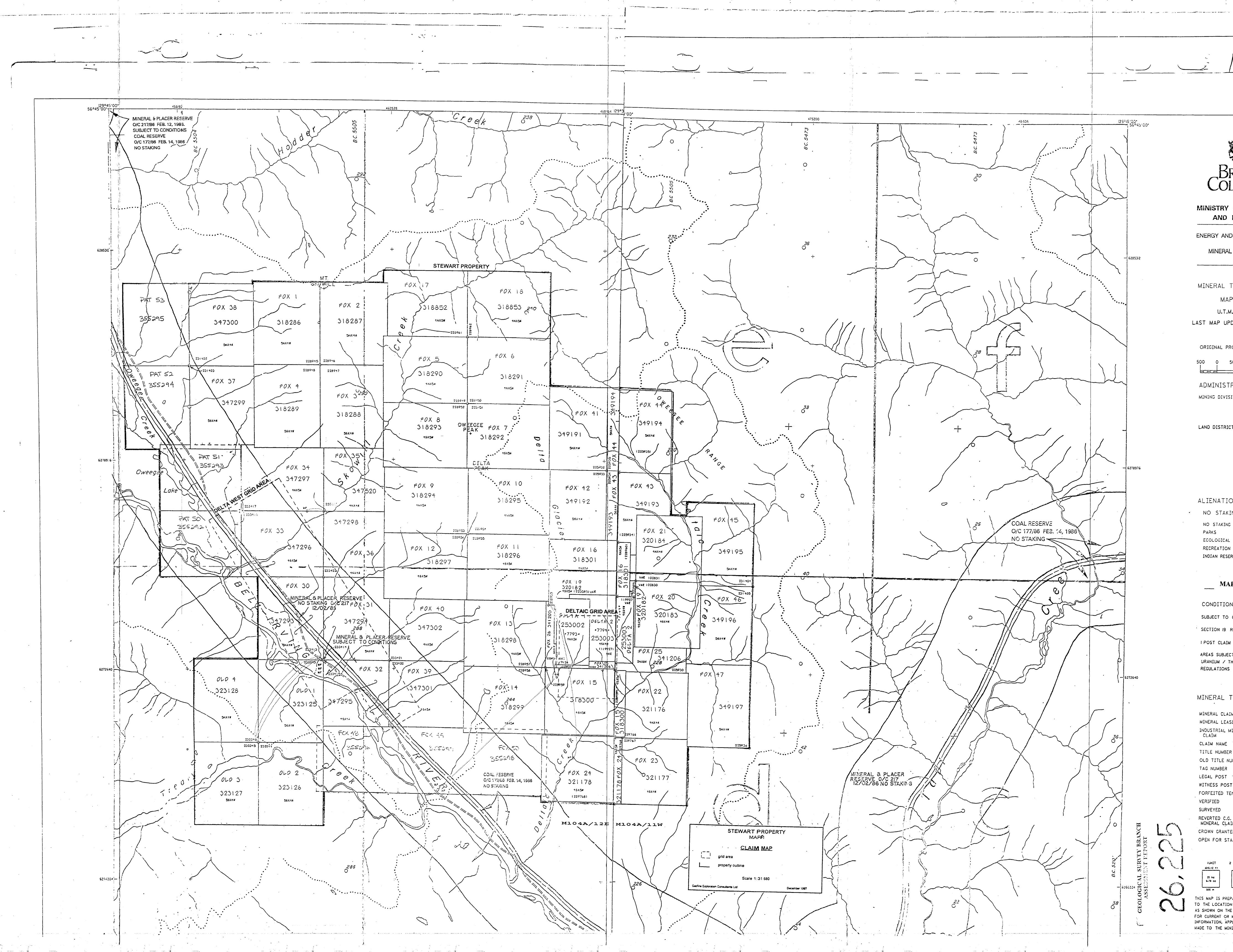
PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRDW Comments: ATTN: DAVID MOLLOY

**CERTIFICATE OF ANALYSIS** A9927995 ĸ La М Ga ₿ġ - 2 Be Bi Cá Cđ Co Cr Cu Je. PREP х1 B Ba λg λs ×, ٩. PP ٩. þpm ррш ppm **DDE** ۰. ppa ppa pp# ppn SAMPLE CODE ۰. ppa DDE **ppm** DDE **DDM** 0.11 < 10 0.50 306 < 10 < 1 20 40 33 4.45 201 202 201 202 410 < 0.5 0.35 3.0 86982 0.4 2.75 22 < 10 < 2 17 0.12 < 10 0.45 269 19 3.85 < 10 < 1 35 < 10 340 < 0.5 < 2 0.37 3.0 86983 0.4 2.10 14 0.08 < 10 0.38 188 3.99 < 10 1 < 2 15 35 16 201 202 14 32 < 10 230 < 0.5 0.20 2.0 86984 0.4 2.05 0.06 < 10 0.79 121 4.58 < 10 < 1 201 202 210 < 0.5 < 2 0.25 0.5 16 41 49 0.2 2.91 < 10 86985 0.07 < 10 0.29 151 5.25 10 < 1 < 10 0.70 1.5 13 31 24 201 202 0.4 1.65 18 220 < 0.5 < 2 86986 Notred No 86987 ..... ---< 1 0.09 < 10 1.30 27 135 4.69 < 10 < 2 2.23 3.0 20 70 < 0.5 201 202 1.8 1.70 92 < 10 86987A

5 B

Tote :3 98 Certs. ...e Date: 17-SE Invoice No. :19927 P.O. Number : GR Account :RIX


**CERTIFICATION:** 

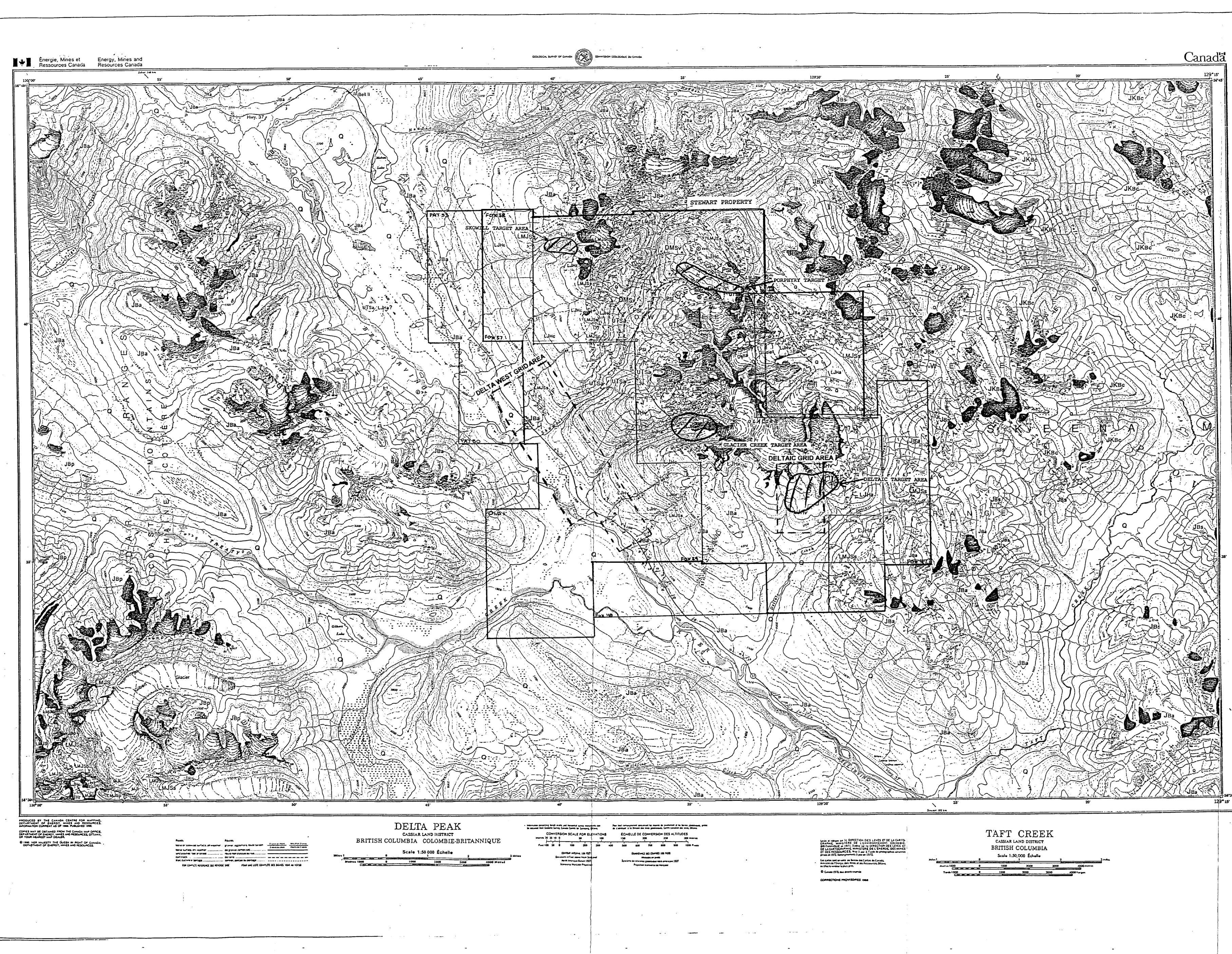
ilit.

Page Number : 3-B **.**.• MOLLOY, DAVID To: Total Pages :3 Chemex Labs Ltd. PROP Certificate Date: 17-SEP-1999 49 NORMANDALE RD. :19927995 Invoice No. UNIONVILLE, ON P.O. Number : GR Analytical Chemists \* Geochemists \* Registered Assayers L3R 4J8 :RIX Account 5175 Timberlea Blvd., Mississauga L4W 2S3 GRDW Project : Ontario, Canada Comments: ATTN: DAVID MOLLOY PHONE: 905-624-2806 FAX: 905-624-6163 A9927995 **CERTIFICATE OF ANALYSIS** Ħ Zn ¥ U Ŧ1 Sz TÌ 8b Sc. Pb 9 Ni P Na PREP No **pp**ii pp∎ ppn ٩. pp= ppm **ppe** ٩. ppn ppa DDM \* ppm. **ppe** SAMPLE CODE DDE 302 < 10 99 < 10 < 10 0.04 5 17 0.03 < 2 10 0.01 40 1160 < 10 394 1 < 10 < 10 73 201 202 86982 0.03 3 20 10 0.01 < 2 < 1 0.01 29 1580 222 < 10 79 < 10 201 202 < 10 0,03 86983 11 2 1 0.02 < 2 25 880 146 < 10 < 1 < 0.01 < 10 90 201 202 < 10 0.03 86984 13 4 0.02 < 2 710 10 152 51 < 10 1 0.01 133 201 202 0.07 < 10 < 10 29 86985 з < 2 12 0.01 620 1 < 0.01 21 201 202 86986 Notred 110 0.03 < 10 86987 ------44 1.70 < 2 3 1010 201 202 7 < 0.01 47 869873

CERTIFICATION:

н.,

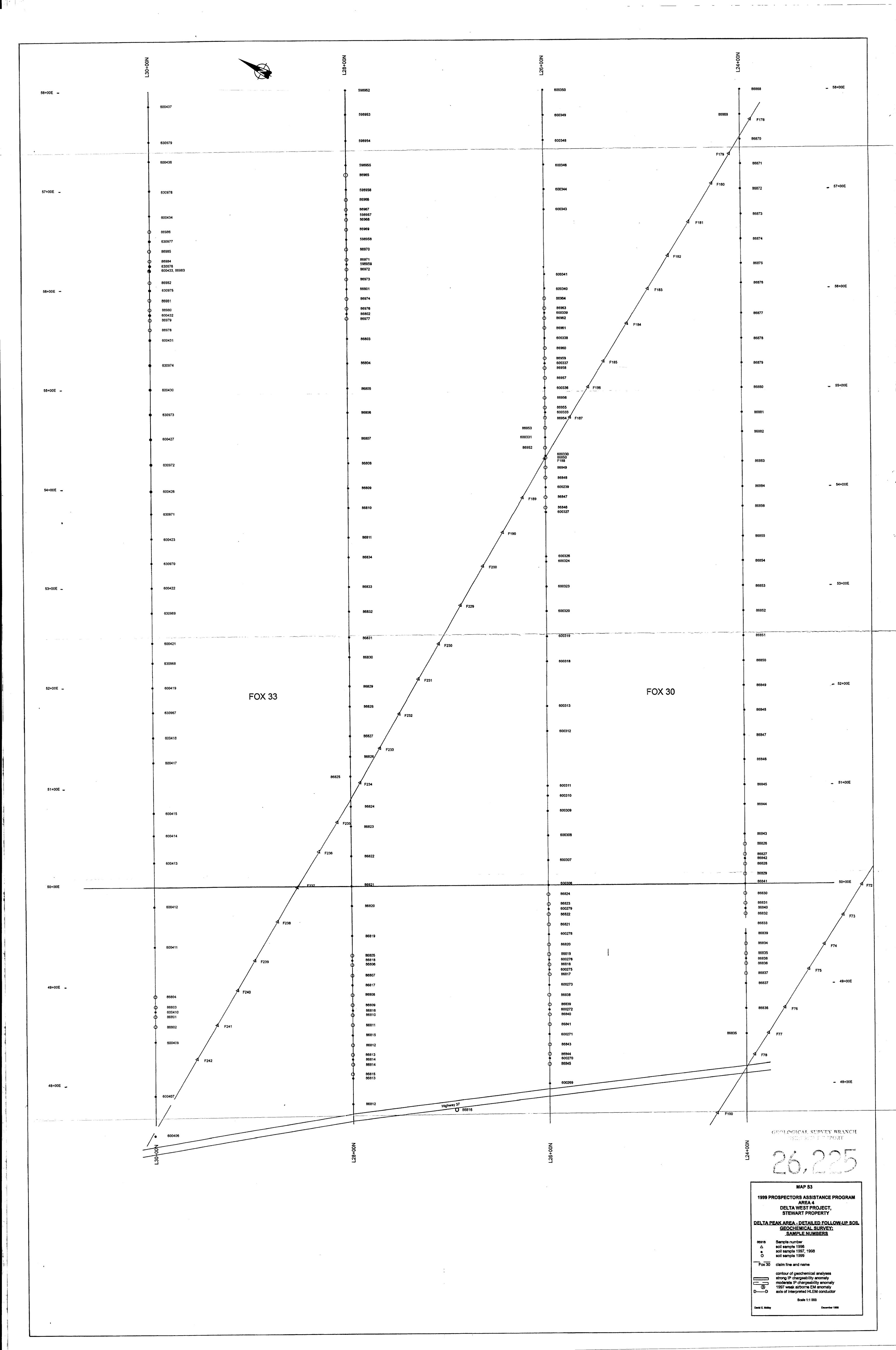


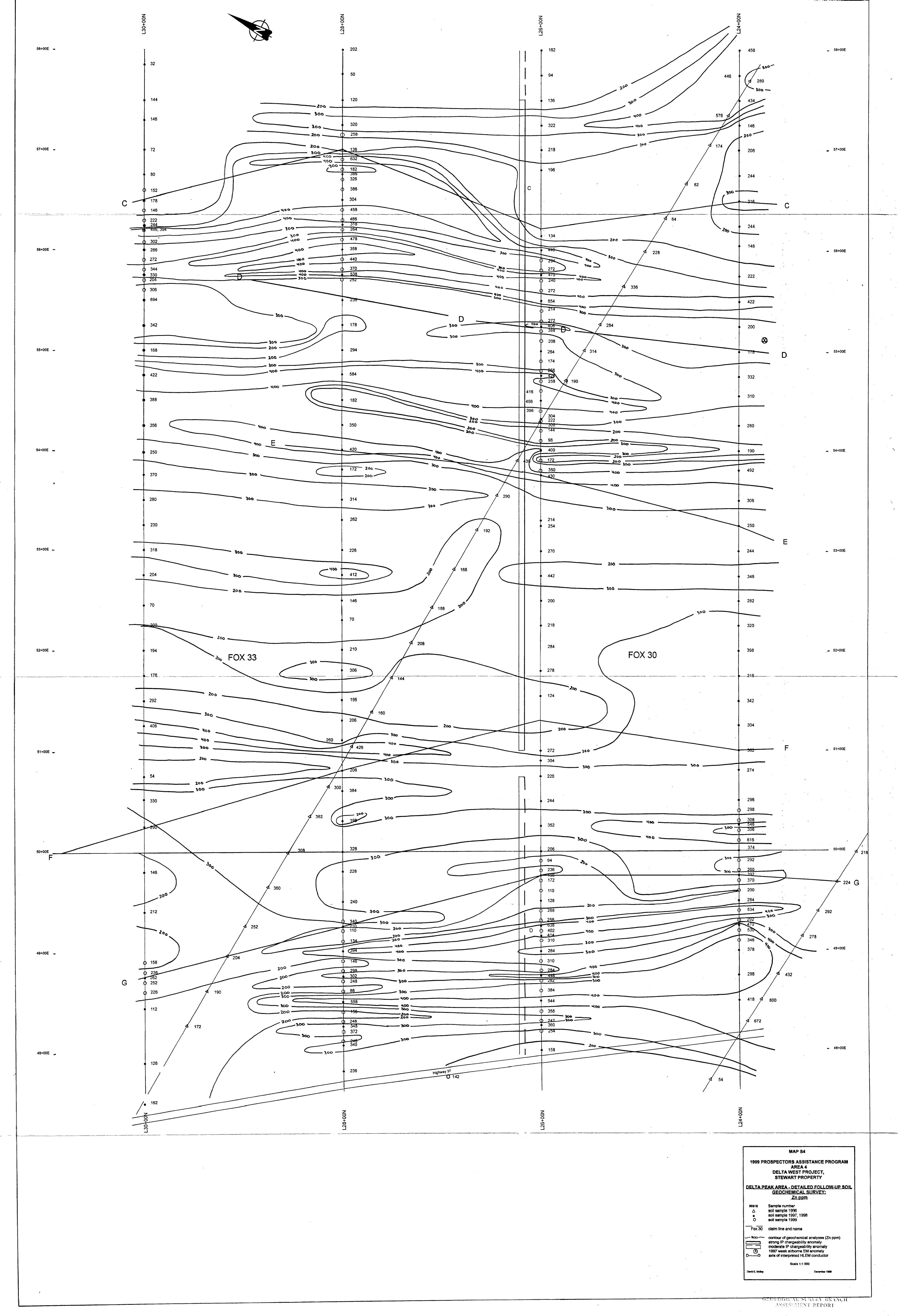

والموسوسية وسنترج والمودوني وبالموسوس والمراجع والمنافع والمنافع والمنافع والمراجع والموسوسا الموسي والمراجع

BRITISH **\_OLUMBIA** MINISTRY OF EMPLOYMENT AND INVESTMENT ENERGY AND MINERALS DIVISION MINERAL TITLES BRANCH MINERAL TITLES REFERENCE MAP IO4AIIW U.T.M. ZONE 9 LAST MAP UPDATE: 1996 NOV OI ORIGINAL PRODUCED AT 1:31680 METRES 500 0 500 1000 1500 2000 ADMINISTRATIVE AREAS MINING DIVISIONS: SKEENA LAND DISTRICTS: ALIENATIONS NO STAKING AREAS NO STAKING RESERVES PARKS ECOLOGICAL RESERVES RECREATION AREAS INDIAN RESERVES MAP S1 ------CONDITIONAL AREAS SUBJECT TO CONDITIONS RESERVES SECTION 19 RECREATION AREAS I POST CLAIM AREAS AREAS SUBJECT TO  $\bigcap$ URANIUM / THORIUM REGULATIONS MINERAL TENURE MINERAL CLAIM MINERAL LEASE -----INDUSTRIAL MINERAL -----CLAIM CLAIM NAME EXAMPLE TITLE NUMBER 345679 OLD TITLE NUMBER 131561 TAG NUMBER 100000 LEGAL POST 0 WITNESS POST WP () FORFEITED TENURE C VERIFIED SURVEYED REVERTED C.G. REV CG OR RCG MINERAL CLAIM CROWN GRANTED CG OPEN FOR STAKING 0F\_S. Z POST CLAIM 2 POST CLAIM TINUI 1640.42 TT 1640.42 PT :500 ft 25 ma 20.90 ha 25 hd 51.78 oc \$1.78 oc 51.65 cc 457.2 m

THIS MAP IS PREPARED ONLY AS A GUIDE TO THE LOCATION OF MINERAL TENURE AS AS SHOWN ON THE LOCATOR'S SKETCHES. FOR CURRENT OR MORE SPECIFIC INFORMATION, APPLICATION SHOULD BE MADE TO THE MINING DIVISION CONCERNED.

500 m

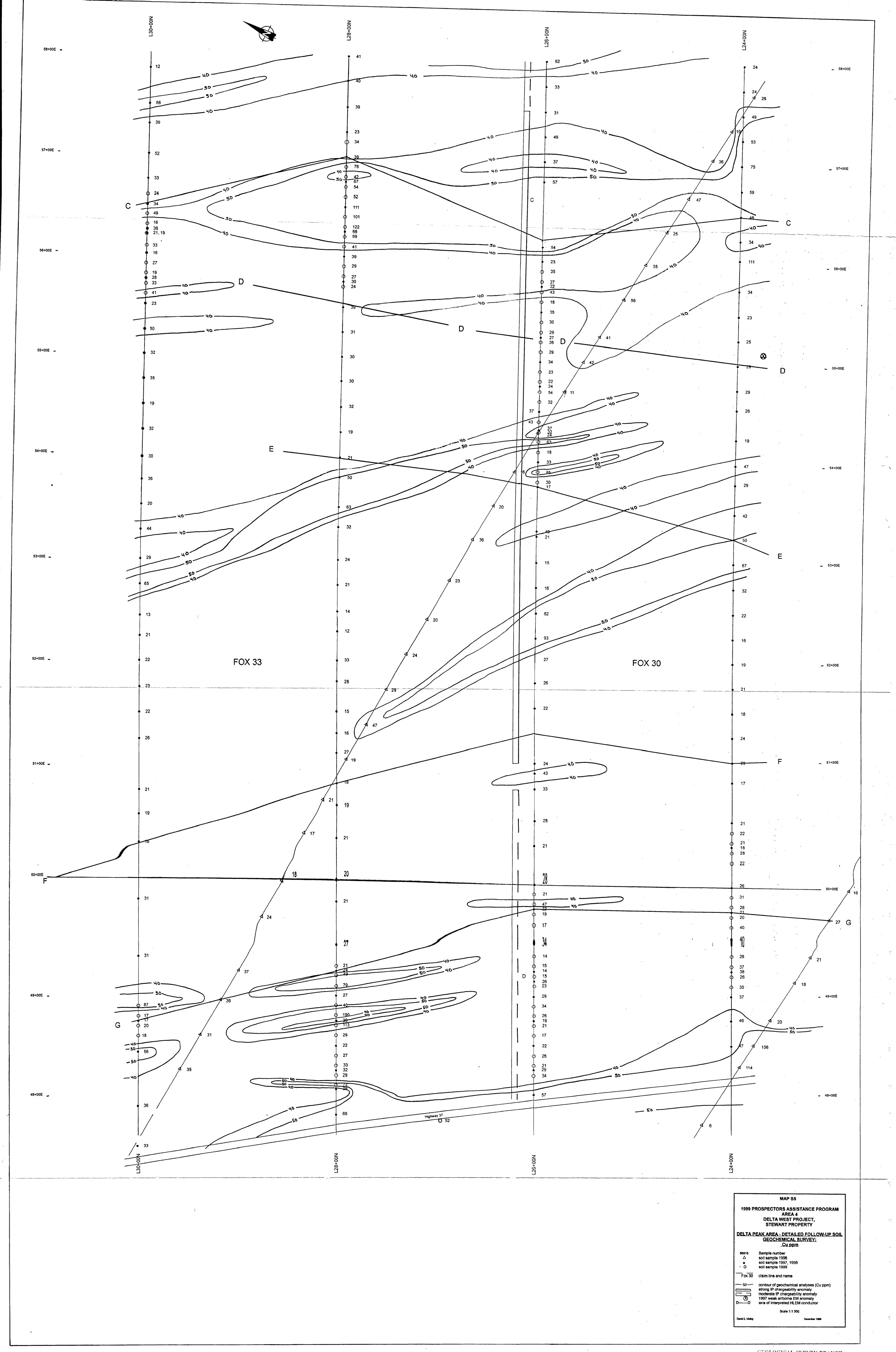

500 m




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOGY OF OWEEGEE D                                                                                             |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| DELTA PEAK (10<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4A/12) AND TAFT CREEK (104A/1<br>ORTHWESTERN BRITISH COLUMI                                                   | BIA                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C.J. GREIG and C.A. EVENCHICK                                                                                 |                                                                      |
| (with contrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | outions by M.H.Gunning, B.D.Ricketts a                                                                        | nd S.P.Porter)                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scale 1:50,000                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LEGEND                                                                                                        |                                                                      |
| QUATERNARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                                                                      |
| C thick drift col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lluvium, alluvium, till.                                                                                      | · ·                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STRATIFIED ROCKS                                                                                              | •                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JURASSIC TO LOWER CRETACEOUS(?)<br>BOWSER LAKE GROUP                                                          |                                                                      |
| JKBc chert lithareni<br>interrbedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite Ethofacies: fine to medium grained, moderately silty mudstone, common bivalve coquinas, rare che          | well sorted chert lunarenite,<br>ert pebble conglomerate.            |
| MIDDLE(?) AND UPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JURASSIC                                                                                                      |                                                                      |
| JBs silty mudston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BOWSER LAKE GROUP<br>le littofacies: bioturbated silty mudstone with regula                                   | urly interbedded, buff                                               |
| weathering, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe-carbonate cemented fine grained sandstone.                                                                 | bedded, fine to medium                                               |
| JBa grained, poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ty sorted arkosic litharenite with interbedded silty m                                                        | nudstone.                                                            |
| JBp pyritic silty m<br>grained lithic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | udstone lithofacies; pyritic, siliceous, tuffaceous silt                                                      | y mudstone, fine to medium                                           |
| LOWER AND MIDDLE J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HAZELTON GROUP<br>SALMON RIVER FORMATION                                                                      |                                                                      |
| LMJSs thin bedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | siliceous silty mudstone, day-altered dust tuff(?), di                                                        | iscantinuous limestone lenses.                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                                                                      |
| LMJSb amygdaloida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Il pillow basalt, basalt pillow breccia, tuff-breccia an                                                      | d debris flow breccia.                                               |
| LMJSr rhyodacite la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | apilli tuff-breccia; locally welded.                                                                          |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                             | der and robble consistmerate                                         |
| fossiliferous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | limy, coarse grained arkose; polymict pebble, bouk                                                            | der and coodie congiomerate.                                         |
| LMJSp pyritic silty s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | shale and mudstone.                                                                                           |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                                                                      |
| LOWER JURASSIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | patsizi Group                                                                                                 | ÷                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HAZELTON GROUP                                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tulf-breccia, ash and dust tulf. Diff ( 2007th)                                                               |                                                                      |
| LJHc boulder and lapilli and d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i cobble conglomerate, pebbly sandstone; well-strai<br>lust tuff, tuffaceous arkose and mudstone.             | tified, green and maroon ash,                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e to mate planinclase-pyroxene and subordinate pla                                                            | agioclase-hornblende phyric                                          |
| Lune lapilli tuff-br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reccia, lapilli, ash and dust tulf, flows; derived debri                                                      | s nows, arkose and subione:                                          |
| LJHa thick bedde soft-sedime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d and massive tuffaceous arkose and siltstone with<br>int deformation structures; mafic to intermediate frag  | a abundant syn-depositional<br>gmental volcanic rocks and            |
| UPPER TRIASSIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | debris flows.                                                                                                 |                                                                      |
| UTSa plagicclase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STUHINI GROUP<br>-pyroxene crystal tuff turbidite arkose and siltstone,                                       | ;<br>plagioclase-pyroxene phyric<br>lows: minor limestone lenses     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ermediate lapilli and ash tuff, tuff-breccia and rare f                                                       |                                                                      |
| PALEOZOIĆ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STIKINE ASSEMBLAGE                                                                                            |                                                                      |
| PERMIAN<br>PSI medium an<br>micrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d thick bedded to massive bioclastic limestone with                                                           | t chert interlayers; thin-bedded                                     |
| LEVONIAN AND MISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | USSIPPIAN                                                                                                     |                                                                      |
| mafie to jet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ermediate plagiclase-pyroxene phyric lapilli tuff, lap<br>phyric amygdaloidal andesite(?) flows; rhyolite and | villi tuff-breccia, and flows;<br>d rhyodacite lapilli tuff-breccia. |
| pilg.colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p. ,                                                                                                          | · ·                                                                  |
| MIDDLE JURASSIC O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INTRUSIVE ROCKS                                                                                               |                                                                      |
| MJI pyroxene d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAP SYMBOLS                                                                                                   |                                                                      |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit of thick Quaternary drift.                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Geologic contact: defined, approximate, inferred.                                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thrust or reverse fault, defined, approximate, infe                                                           | erred; teeth on upthrown side.                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High angle fault, defined, approximate, inferred; b                                                           |                                                                      |
| 13 × × 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bedding: inclined, vertical, overturned;                                                                      | 09) m-moderate/309-509)                                              |
| t3 \ \ ₩'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | estimated: vg=very gentle(<10°), g=gentle (10°-3<br>s=steep(50°-70°), vs=very steep(>70°).                    | 0°), manoderate(30°30°),                                             |
| Alt-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bedding formlines.                                                                                            |                                                                      |
| 12× ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cleavage: inclined, vertical.                                                                                 |                                                                      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minor fold axis, plunge.                                                                                      |                                                                      |
| a for the second and a second and a second a s | Antictine, overturned anticline, trace of axial surfaindicates vergence direction.                            | ace: defined, approximate; arrow                                     |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Synctice, overturned syncline, trace of axial surface                                                         | ace: defined, approximate; arrow                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | indicates vergence direction.                                                                                 |                                                                      |
| KH -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line of cross-section                                                                                         |                                                                      |
| ()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fossil locality                                                                                               | MAP S2                                                               |
| GEOLOGIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Property Outline<br>SURVEY BRANCH                                                                             | STEWART PROPERTY                                                     |
| الله (بالله الله الله الله الله الله الله الله                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SSMENT REPORT                                                                                                 | PROPERTY GEOLOGY<br>GSC 1993                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               | · ·                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( and therease (                                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A line line was                                                                                               | -                                                                    |

-

··- · · •






•

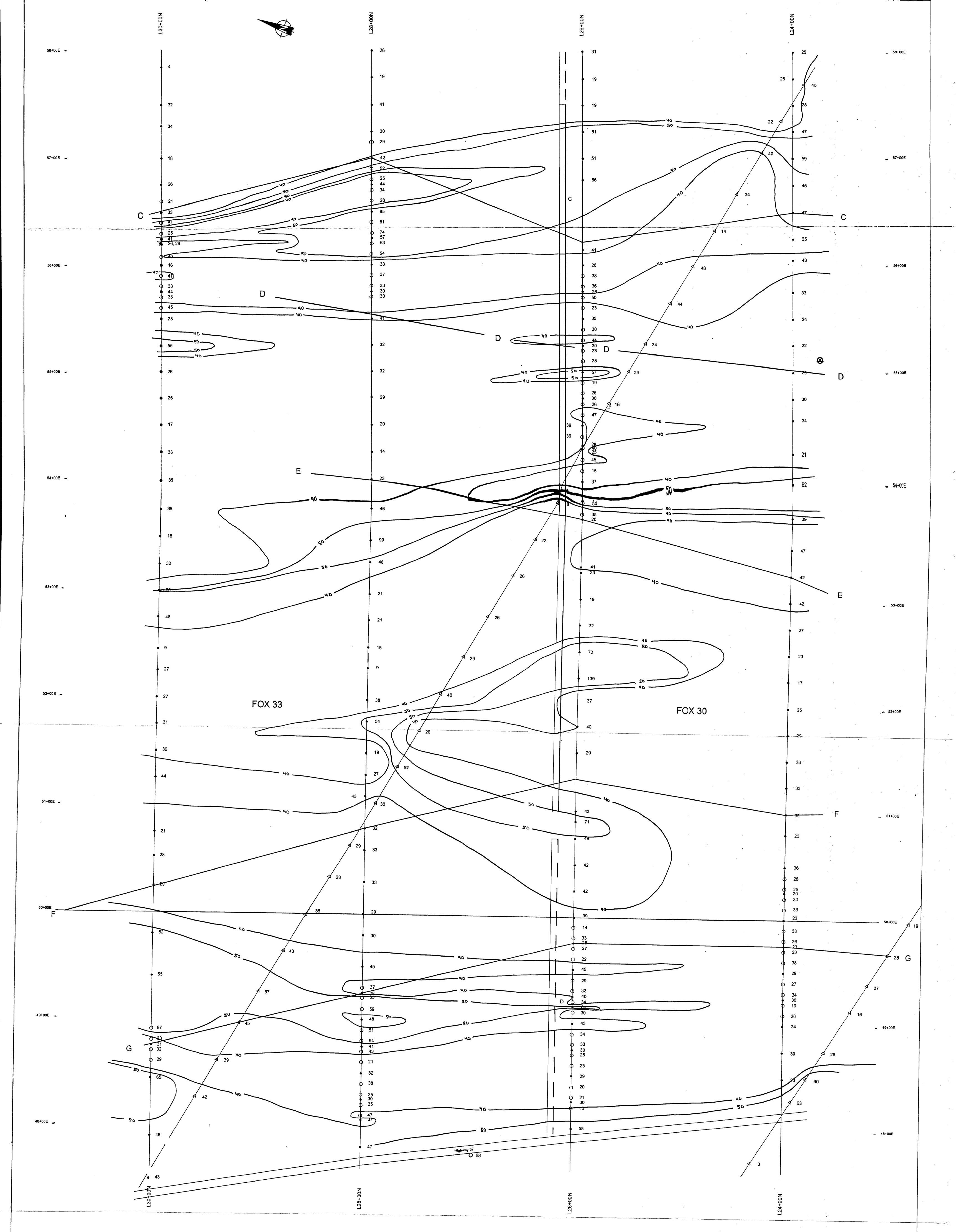
26.225

. · · ·



.

# GEOLOCICAL SURVEY BRANCH


19 **.** N

,

• • •

.





|  | MAP S6                                                                                                                                                                                                                               |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | 1999 PROSPECTORS ASSISTANCE PROGRAM<br>AREA 4<br>DELTA WEST PROJECT,<br>STEWART PROPERTY                                                                                                                                             |
|  | DELTA PEAK AREA - DETAILED FOLLOW-UP SOIL<br>GEOCHEMICAL SURVEY:<br>NI ppm                                                                                                                                                           |
|  | 88918         Sample number           △         soil sample 1996           ●         soil sample 1997, 1998           ○         soil sample 1999                                                                                     |
|  | Fox 30 claim line and name                                                                                                                                                                                                           |
|  | 50       contour of geochemical analyses (Ni ppm)         strong IP chargeability anomaly         moderate IP chargeability anomaly         8       1997 weak airborne EM anomaly         D       axis of interpreted HLEM conductor |
|  | Scale 1:1 000                                                                                                                                                                                                                        |
|  | Devid E. Molloy December 1999                                                                                                                                                                                                        |

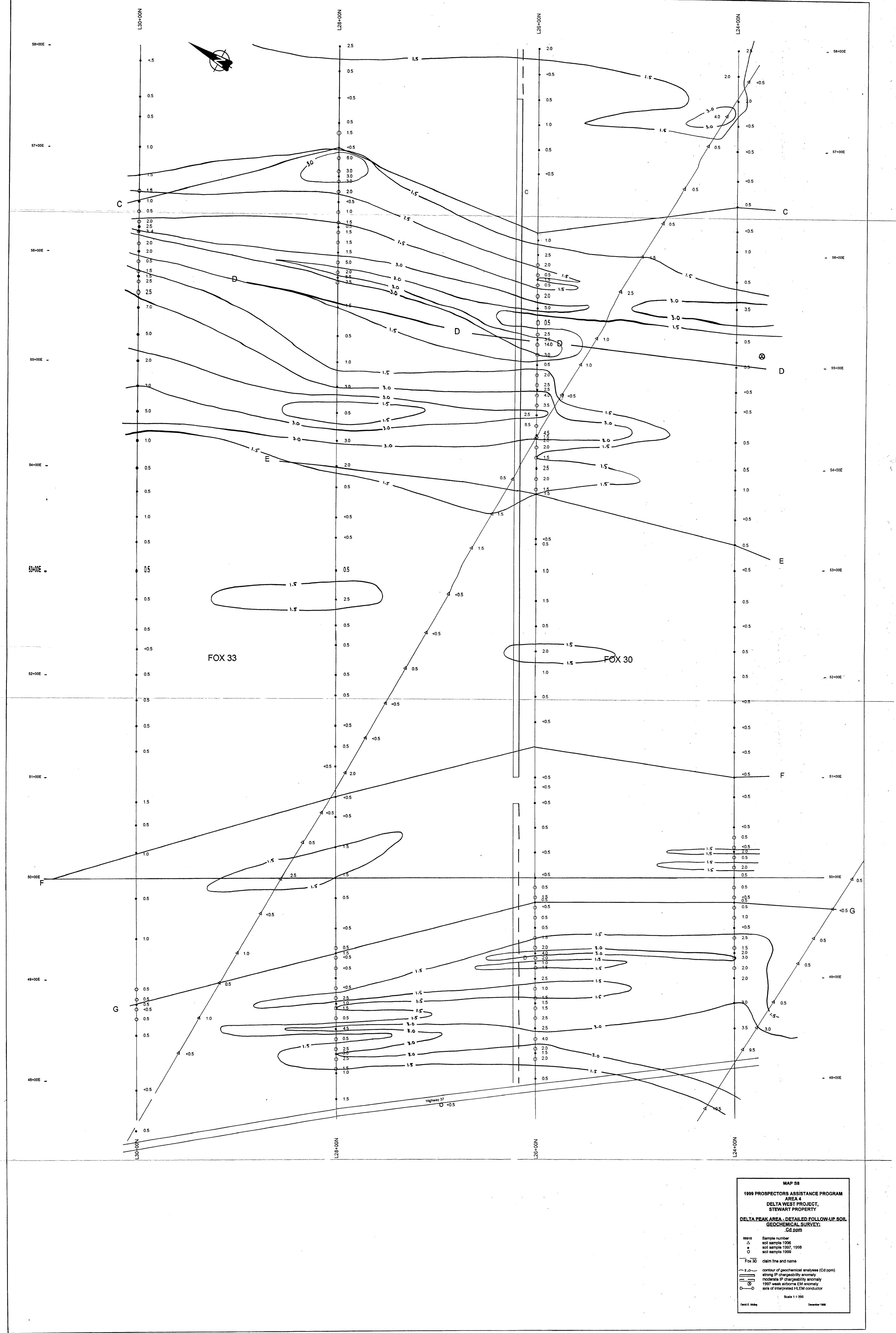
i

GEOLOGICAL SURVEY BRANCH

•

• .

2.8

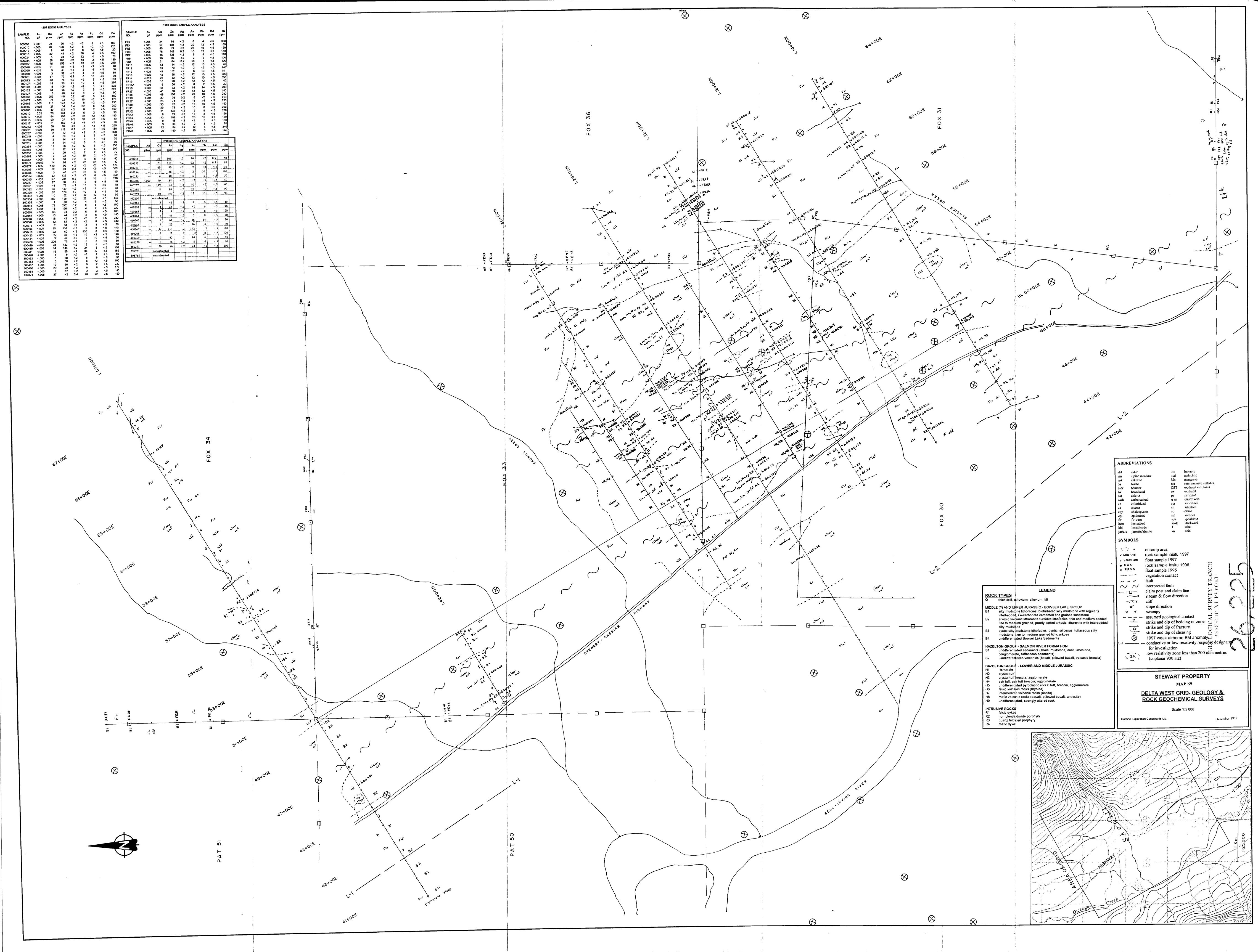

٠

.

10



•




GEOLOGICAL SURVEY BRANCH ASSESSMENT PEPORT



·.

•

