

; Y

Aumax Mineral Claims

Lillooet Mining Division Canada

N.T.S. 92J/9E

Lat.50 ° 34' N Long. 122 ° 04' W

Property owned by Gary Polischuk

Author: Gary Polischuk, Prospector Box 792 Lillooet, B.C. VOK 1VO

> Date September 25/99

> > GEOLOGICAL SURVEY BRANCH

Table of contents

1.0 Introduction 1
1.1 Location and Access 1
1.2 Land status 1
1.3 Physiography 4
1.4 Exploration History 4
2.0 Regional Geology
2.1 Property geology
2.2 Mineralization
3.0 97 Zone and Area
4.0 98 Zone and Area 16
5.0 Geochemistry
5.1 Sample number legend
6.0 Aumax rock sample description
6.1 Aumax soil sample locations
7.0 Statement of Costs
9.0 Conclusions and Performandations 22
8.0 Conclusions and Recommendations
9.0 Prospecting experience
Figure 1: Property Location 2
Figure 2: Claim Map 3
Figure 3: Regional Geology map 6
Figure 5: 97 Zone hand trenching 10
Figure 6: 97 Zone grid
Figure 7: 98 Zone sample locations map17
Figure 8: Random rock and soil sample locations
Rock and Geochemistry assays

1.0 Introduction

This report summarizes a prospecting program along a ridge between Phair creek and Cayoosh creek. Work was conducted on the Aumax #1 and Aumax #2 mineral claims and was carried out intermittantly between June 15/99 to Sept 15/99.

1.1 Location and access

Access to this area is gained via highway 99 south to a point 20.5 km south of Lillooet, where the Pamco logging road commences to the east. This area is located on map sheet N. T. S. 92J 9E at latitude 50° 34' N Longitude 122° 04' W. The Pamco logging road accesses the western portion of the Aumax #1 mineral claim. A new logging road has been built up Phair creek and penetrates the Aumax #2 mineral claim on the north boundary by 300m. A further 4km of road is slated to be built, extending well past the central portion of the Aumax #2. This logging road is an extension of the Enterprise creek logging road that turns south off Highway 99 South at a point 1.5km south west of seton lake drainage. See Figure 1:

1.2 Land status

This particular area where prospecting took place is at present staked and owned by Gary Polischuk. The claims are adjoining and form a contiguous group of 39 units. See Figure 2:

Record Number	Claim Name	Units	Record Date	Expiry Date
368966	Aumax #1	20	May 9/99	May 9/00
368967	Aumax #2	15	May 9/99	May 9/00
Table 2: Aumax Mine	eral Claims 2 post.	••••••••••••••••••••••••••••••••••••••	······································	
Record Number	Claim name	Units	Record Date	Expiry Date
371390	Aumax #3	1	Sept 1/99	Sept 1/00
371391	Aumax #4	1	Sept 1/99	Sept 1/00
371392	Aumax #5	1	Sept 1/99	Sept 1/00
371393	Aumax #6	1	Sept 1/99	Sept 1/00

 Table 1: Aumax Mineral Claims 4 post

Figure 1: Property Location

1.3 Physiography

The Aumax property is for the most part heavily timbered with fir, pine and spruce trees. Rock bluffs are found along the Aumax #1 and #2 boundary line and along the south portion of the claims. The remainder of the claim area is in moderately steep hillsides that are easily accessible on foot. Outcrop in the moderately steep areas is obscured by a thick layer of overburden making prospecting difficult. Two recent logging cut blocks on the northwest portion of the Aumax #1 mineral claim has helped in gaining access to this area.

1.4 Exploration History

Mining exploration in the region began as placer mining activity in the mid 1800's, both along the Fraser river and several of its local tributaries, most notably Cayoosh creek. The placer success led to fairly extensive land-based exploration, with two past-producing mines located near the Aumax area.

The most recent mining activity is on the Ample Goldmax property, situated 5.25 km north of the Aumax mineral claims. Since 1994 until the present time, 35 holes totalling 5400 meters has been drilled on the Ample Goldmax ground along with 2400 meters of road access.

During the fall of 1997, logging road construction was started by Randy Polischuk in the Aumax area. During the course of this construction several qtz filled shear zones were uncovered, the best being at the 8km on this new road. A trench was dug by a cat 225 excavator on the qtz vn at the 8km revealing a zone 1.2m wide striking southeasterly. This zone had to be filled in as it was found in the road grade. A grab sample from this zone assayed 0.18 oz gold, 76.12 oz silver and 0.23% copper. The qtz vein found here exhibited a strong ribbon structure with pyrite, silver sulphides, malachite and azurite easily visible. Due to this discovery, the Aubot mineral claims were staked to cover this ground.

During 1998, prospecting on this ground led to the discovery of another zone located on the crest of the ridge between Cayoosh creek and Phair creek at the 2100 m elevation. Two soil samples collected from this zone assayed 650ppb gold and 0.13 oz gold. With the late in the fall season discovery and lack of funding for assessment work these claims were allowed to lapse.

On May 9/99 I restaked this ground when the weather permitted and named the claims Aumax #1 and Aumax #2, consisting of 35 units.

Sept 1/99, I staked four 2 post claims named Aumax 3, Aumax 4, Aumax 5 and Aumax 6 along the west boundary of Aumax #1. These claims were staked to cover an area where abundant quartz float carrying silver sulphides is found. For zone locations see Figure 8:.

2.0 Geology

The Aumax mineral claim group is dominated by rocks of Middle Jurassic Bridge River Complex. The Bridge River Complex is comprised of Greenstone, Chert, Argillite and Phyllite. Immediately south of the claims a small quartz diorite stock of late Cretaceous age is noted. See Figure 3:

2.1 Property Geology

The Aumax mineral claim group is underlain for the most part by Bridge River Greenstones. Numerous felsic and feldspar porphyry dikes cut this sequence and except for the 97 zone, they generally contain little mineralization. In the area of the 97 zone a large felsic dike appears to be hosting the silver bearing quartz veins. This dike is a light grey color, well mineralized with pyrite along with up to 1cm layers of chlorite. The greenstone on the property is highly deformed with fracturing seen trending in a northeast- southwest direction.

2.2 Mineralization

Mineralization is found in quartz veins of the structural controlling shear zones that cut the greenstones. The mineralized quartz veins of the 97 zone area exhibit ribbon structure and quartz breccia with spalled blocks of altered greenstone. Quartz veinlets and pervasive silicification is noted in most hand trenches along the hanging wall and foot wall of each vein. Mineralization consists of silver sulphides, chalcopyrite, galena and pyrite, with malachite azurite and hematite alteration.

The 98 zone appears as a stockwork system of quartz veins from 2mm to 10cm wide with listwanitized greenstone partings. Quartz mineralization consists of pyrite and small 1mm to 3mm blebs of arsenopyrite, with hematite and sericite alteration.

LOWER JURASSIC to LOWER CRETACEOUS

CAYOOSH ASSEMBLAGE: undifferentiated graphitic phyllite, tuffacecus phyllite, siltatone thinly laminated siltstone/sandstone turbicite; volcaniciastic sandstone, shale; arkosic sandstone, quartzces sandstone, thinly laminated phyllitic quartzite; minor limestone, volcanic tuffs, brecciae and intermediate to matic flows; includes rocks previously mapped as BREW GROUP, LILLOGET SROUP and, locally, RELAY MOUNTAIN GROUP

Upper Member, graphitic siltstone, shale, phylitte, arkosic sandstone, quartzise sendstone, thinly laminated phyllitic quartzite (Unit 4); thin-bedded graphitic phyllite, siltstone, volcaniclastic sandstone, and calcareous sandstone (Unit 5), locally containing Neocomian bivalves

7

÷

ŧ

FIGURE 4

Middle Member: thin- and thick-cedded volcariolastic sandstone, graphitic siltstone, minor limestone (Unit 3)

Lower Member. graphitic phyllite, siltstone, thin laminated siltstone/sendstone turbidite (Unit 1); tuffaceous phyllite, minor lapilli tuff and tuff breocia (Unit 2)

Sedimentary Rock of Vedder Mountain: blocks of Upper Jurassic radiolarian chert, sandstone, baselt and limestone in a matrix of graphitic argiillite and phyllite

Recommended citation:

- J.M. Journeay and J.W.H. Monger
 - 1994: Geology and crustal structure of the southern Coast and
 - Intermontane Belts, southern Canacian Cordillera, British
 - Columbia; Geological Survey of Canada, Open File ????, scale 1:500 000

CARBONIFEROUS to MIDDLE JURASSIC

BRIDGE RIVER COMPLEX: unaitterentiated chert, pelite and malic volcanic rocks; minor clistostromal carbonate; gabbro and associated ultramatic rocks; local mélange and talc-carbonate schist

CJBs Radio

Radiolarian enert, sittstone, arguilite, sandstone; minor amounts of greenstone, imestone and serpentinite

Pillowed and massive greenstone and limestone (Lower Norian); lesser amounts of radiolarian chert, argiilite, diabase, sandstone and pebbly mudstone

Blueschist, greenschist, phylitie, metachert, also includes non-schustose pillowed and massive greenstone containing minor blue amphibole and minor ilmestone

Light to dark grey phylifte, quartz phylifte, calcareous phylifte, metachert, green chlorite schiat, greenstone, marble and biotite-quartz schiat; metamorphosed equivalents of BRIDGE RIVER COMPLEX

3.0 97 Zone and area

The 97 zone is located at the 1600m elevation on the west central portion of the Aumax #1 mineral claim. Access to this area is by logging road to two new cut blocks that were logged in 1998. The 97 zone was discovered while road building was taking place along the upper-most road in the highest cut block. Prospecting commenced in this area because of the recently discovered mineralization along the logging road. A soil geochem grid was established using a baseline cut east-west with stations every 25m and lines cut north-south with stations every 15m.

The grid started at T12 where the 97 vein was first discovered on the logging road at; (L00+00). During the course of establishing L1W a large area of quartz float was noticed at Sta. L1W+45N. A hand trench (T2) was dug at this location revealing a quartz vein with minor silver sulphides. True width of the zone remains unknown here because a large fir stump sits over the vein. One grab sample was taken at this location, (AR99+1) that assayed 8.07 g/t gold and 95.1 g/t silver. Four hand trenches have been excavated along this zone to date, each of which has cut this vein. Sample AR99+14, a channel sample taken at T1 Assayed 100 ppb gold and 68.4 g/t silver across .5m. Sample AR99+13, a channel sample taken at T3 assayed 5.3 g/t gold and 583.6 g/t silver across .8m. Sample AR99+8, a grab sample taken at T4 assayed 1.72 g/t gold and 1615 g/t silver. The vein here was later trenched more thoroughly and was found to be 1.2m wide but resampling was not done.

Two other veins have been discovered, the first being thirty three meters east of Sta. L1W+45N, has an average width of 1m and has been traced in four hand trenches for a distance of 10m. This vein striking at 30° N, dipping 50° E, is well mineralized with silver sulphides, galena, chalcopyrite and pyrite with malachite, azurite and hematite alteration. The ribbon structure of this vein is readily visible along its full strike length with mineralization in the partings and in the quartz. Grab Sample AR99+2 collected at T5, assayed 1.16 g/t gold and 1100.0 g/t silver.

Seven meters above T6, mineralized quartz float was noted on the surface and again another trench (T8) was dug, but bedrock was not encountered. A layer of quartz 35 cm wide can be seen in the soil indicating the presence of a quartz vein nearby. A grab sample from this trench assayed 3.25 g/t gold and 2520 g/t silver.

T9 was dug 9m from T8 at 55°, without encountering bedrock. Another layer of quartz .6m wide is seen in the soil from which grab sample AR99+10 was gathered. AR99+10 assayed 4,56 g/t gold and 2706 g/t silver.

T10 was dug 2m from T9 with the same quartz layer seen in the soil, but no sample was taken here.

T11 was dug 16m from T10 where the vein was finally uncovered. The vein here is 1m wide and well mineralized with silver sulphides, galena, chalcopyrite and pyrite with malachite azurite and hematite alteration. The vein appears to strike at 65° and dips 60° E. Samples AR99+11 a channel taken here, assayed 340 ppb gold and 420 g/t silver. AR99+12 a grab assayed 2.51 g/t gold and 2750.0 g/t silver.

The 97 vein exposed in hand trenches T1, T2, T3 and T4 is thought to be part of the same zone found at T12, as the alignment, mineralization and vein structure are similar in appearance. The two veins located north of T4, are structures that will probably join the 97 vein in the area near T4. This 97 vein strikes at 300 degrees and dips north at 60 degrees.

Several other hand trenches were excavated in this general area but were deleted from the accompanying map because bedrock was not found. These trenches all contained pieces of mineralized quartz float indicating the presence of other vein systems in this area.

A total of 44 soil samples were collected from the grid at the B horizon. A total of seven stations were found to be anomalous for gold and silver but the overburden is too deep for hand trenching. See Figure 6: Also Figures 6a, 6b, 6c and 6d for plotted geochemical results.

Four random geochem soils were gathered in this area also, two of which were found to be anomalous for gold and silver. Random soil samples were labeled as A99+1.

Nine rock samples were gathered from trenches located in this vicinity and were labeled as AR99+1. See Figure 5:

Several other hand trenches were excavated in this general area but were deleted from the accompanying map because bedrock was not found. These trenches all contained pieces of mineralized quartz float indicating the presence of other vein systems in this area.

A total of 44 soil samples were collected from the grid at the B horizon. A total of seven stations were found to be anomalous for gold and silver but the overburden is too deep for hand trenching. See Figure 6:

Four random geochem soils were gathered in this area also, two of which were found to be anomalous for gold and silver. Random soil samples were labeled as A99+1.

Nine rock samples were gathered from trenches located in this vicinity and were labeled as AR99+1. See Figure 5:

.

، بر

<-----N

_____ N

Ag (ppm) in Soils Figure 6a

-

- N

Cu (ppm) in Soils Figure 6d

4.0 98 zone and area

The discovery of the 98 zone came about by prospecting along the crest of the ridge between Phair creek and Cayoosh creek late in the season of 1998. Two soil samples taken off the lower portion of the 98 zone assayed 650 ppb gold and 0.13 oz gold respectively. The lower most portion of this zone is located at the 2100m elevation and extends upward along the crest of the ridge for 150 meters where it is obscured by talus. An easily noticeable red oxidization from 10m to 15m wide covers its entire length. This zone strikes at 160° and dips to the west at approximately 45°.

Examination of the oxidized talus revealed small pieces of quartz mineralized by remnant pyrite and blebs of arsenopyrite in association with altered greenstone. Where bedrock is visible, quartz stockwork with altered greenstone is seen.

July 10/99, I prospected the 98 zone, but a large snow drift was still covering the entire zone. Random soil samples A99+5, 6, 7 and 8 were collected at this time around the perimeter and all were anomalous for gold, silver and arsenic. A99+7, which was taken on the western edge of the 98 zone carried the highest values with 1.94 g/t gold and 20.2 ppm ag.

August 8/99, Wayne Pickett from Gold Ore Resources and myself flew in by helicopter to look at the 98 zone. By this time two thirds of the showing was visible but the lower portion where the two geochems were taken in 1998 was still buried in snow. A total 0f 7 soil samples and 7 rock samples were gathered from the area in and around the 98 zone by Wayne. All seven soil samples were anomalous for gold and silver, three of which were >1000 ppb gold. These three samples were fired assayed and returned values; A99+102- 1.79 g/t gold and 27.6 g/t silver; A99+103- 4.30 g/t gold and 15.8 ppm silver and A99+104- 2.95 g/t gold with 30.9 g/t silver. The seven rock samples were rather low in gold and silver values, the highest assaying 220 ppb gold and 1.2 ppm silver. Wayne gathered one grab sample from T11 on the 97 zone, sample number A99+208 that assayed 2450 ppb gold and 2700 ppm silver. See Figure 5:.

August 23/99 regional geologist Mike Cathro along with Bruce Madu visited the 97 and 98 zones on the Aumax ground. Numerous samples were collected but at this time I had not received any results. Mike suggested I apply for a notice of work to trench the 97 zone with an excavator where grades of silver could be found rich enough to ship to Trail. An application has been submitted for trenching.

Sept 7/ 99 Jim Miller-Tait from Cross Lake Minerals also visited the 97 and 98 zones on the Aumax #1 mineral claim. Samples were collected from the 98 zone after we extended the #1 trench located 10m south of Wayne Pickett's A99+103 and A99+104 soil geochems. Two channel samples taken across 2m and one grab sample of quartz were taken from this trench by Jim; sample #'s 385770 to 774. One 1m channel sample and one grab of quartz were also taken at T1 by me; sample #'s AR99+20 and AR99+21. See Figure 7:. Channel samples were also collected by Jim, from the 97 zone at T2, T3, T4, T5 and T11. See Figure 5:.

11 3899+206

FIGURE 7

5.0 Geochemistry

Geochemistry on the Aumax ground is a useful tool for prospecting with Gold, silver, arsenic and copper being the best pathfinder elements to assay for. Several trenches were excavated by hand on anomalous geochems and although bedrock was not reached pieces of mineralized quartz float were found. All soil samples collected from the Aumax claims were sent to Echo-Tech laboratories in Kamloops and assayed for Gold along with a 30 element ICP. No stream sediment samples were gathered as there are no streams in the area of the Cayoosh facing slope.

5.1 Sample Number Legend

A99+1	Random soil sample
AR99+1	Rock sample
L00+00	Grid soil sample

44 grid soil samples were collected

11 random soil samples were collected. Sample locations see Figure 8:.

22 rock samples were collected

6.0 Aumax rock sample description

.

AR99+1	Float sample taken of qtz float in T1 hand trench on a new discovery, located 5m above grid soil sample sta. L1W+45N. Qtz, py, malachite, and azurite.
AR99+2	Grab sample taken from qtz vn at T5. Well mineralized with silver sulphides, galena, malachite and azurite. Zone outcrop is 1m wide here.
A99R+3, 4, 5	Samples are adjoining channel samples from north to south. Each sample taken across 1m of a bluish colored qtz vn. Aspy, py hem and sericite. Qtz vn located at lowest fork of the road in the upper logging block.
AR99+6	Channel sample across 1m of qtz vn located 5m south of A99+3, 4, 5.Aspy, py, hem and sericite.
AR99+7	Grab of qtz vn taken 3m west of A99+3, 4, 5 sample location. Qtz, py, aspy and hem.
AR99+8	Grab of qtz vn located at T4. Qtz, hem and silver sulphides.
AR99+9	Grab of qtz from T8. Qtz is well mineralized with Silver sulphides 5%.
AR99+10	Float sample of hygrade taken from T9 an incompleted hand trench located 9m north east of AR99+9. Ribbon qtz with 5% silver sulphides, galena, chalcopyrite, malachite and azurite.
A R99 +11	This is a channel sample across 1m taken from a qtz vein at T11. Qtz, with 2% silver sulphides, chalcopyrite, galena, malachite and azurite.
AR99+12	This is a grab sample taken at the same trench AR99+11came from. Qtz is ribbon structure with 5% silver sulphides, chalcopyrite, pyrite, malachite and azurite.
AR99+13	Channel sample taken across .8m from T3. Small bleb of silver sulphide and pyrite.
AR99+14	Channel sample taken at T1 across .5m. Small blebs of silver sulphides and pyrite.
AR99+15	Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite.
AR99+16	Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite
AR99+17	Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite.

21 Ø

6.0 Aumax rock sample description continued

AR99+18	Grab of quartz float from the end of the logging road being built in Phair creek. Near the Aumax #2 north boundary. Chalcopyrite, bornite, pyrrhotite and pyrite.
AR99+19	Grab of quart float from the end of the logging being built in Phair creek. Near the Aumax #2 north boundary. Chalcopyrite, bornite, pyrrhotite and pyrite.
AR99+20	Channel sample across 1m taken at T1 on the 98 zone. Red oxide.
AR99+21	Grab of quartz from same place as AR99+20. Pyrite, arsenopyrite and hematite.
AR99+22	Quartz float taken from ditch line at 5km of Pamco road. Pyrite and silver sulphides

6.1 Aumax soil sample locations

A99+1	Sample taken 60m north of sta. L00+90N along the upper logging road. Qtz float with pyrite and silver sulphide seen in this area.
A99+2	Sample taken 15m southwest of AR99+2.
A99+3	Sample taken 25m northeast of sta. L1W+90N.
A99+4	Sample taken 15m above road at #3 log landing.
A99+5	Sample collected from 98 zone at 2100 m elevation.
A99+6	Sample collected from 98 zone 18m west of A99+5.
A99+7	Sample collected 50m southwest of A99+6.
A99+8	Sample collected 65m north of A99+7.
A99+9	Sample collected on the way down to lower showing at the 6200 foot elevation. Quartz float with hem and pyrite visible on surface.

A99+10 & 11 Soil samples taken along north boundary of Aumax #2. Samples were collected from a redish colored cut bank of the new Phair creek logging road.

7.0 Statement of Costs

43 days prospecting @ \$200.00 per day \$8	3600.00
9 days for hired help to hand trench @ \$75.00 per day \$	675.00
ATV rental for eight days @ \$25.00 per day\$	200.00
Fuel for pickup\$	477.70
Pickup truck rental @ \$30.00 per day\$	1260.00
Assaying costs\$	1843.94
Helicopter\$	242.19
Freight for samples to Kamloops\$	54.39
Photocopying\$	56.99
Report preparation\$	400.00

Total......\$13810.21

Only money spent by Gary Polischuk has been included in the statement of costs

8.0 Conclusions and Recommendations

A total of 43 days were spent prospecting the Aumax mineral claims during the 1999 season. Three areas of interest have been located where more work is required due the to appreciable Gold and silver values received from assays. Given these three new discoveries a grid should be established covering the area between the 97 and 98 zones to test for other mineralized systems. A grid with lines 100m apart and 20m stations over an area 1.5 km x 1 km would be ideal.

The 97 zone has had enough preliminary work done to bring in an excavator for surface trenching. Four days would probably be sufficient time to get enough surface information, when if successful, another follow-up program could be recommended. This area is in a logged off timber block with a gentle relief where a machine can move around with ease and not disrupt large hillsides or timber stands.

The 98 zone located on the crest of the ridge between Phair creek and Cayoosh creek has had only minimal work due to the snow conditions and its remoteness. More hand trenching and sampling is required to better understand the geology of this zone.

One other area of interest was discovered near the halfway point between the 97 and 98 zones. One random soil geochem taken at the 6200 foot elevation was collected in an area where red soil and bits of quartz were seen on the surface. Sample number A99+9 assayed 245 ppb gold 4.2 ppm silver and 2995 ppm arsenic. Several random soil geochems along with hand trenching is required in this area to test the extent of the mineralization in this zone. The overburden does not appear to be very deep on this part of the hillside.

9.0 Prospecting Experience

I have been a prospector for 20+ years with most of my prospecting experience in the Lillooet mining district. Approx., 30% of my time spent prospecting in the last 5 years has been for mining companies such as; Bralorne Pioneer Mines, Homestake Canada Inc., and Gold Ore Resources Ltd. I have taken one geology course, but most of my geological knowledge comes from practical work with geologists in the field.

Hory Johso hut

Geological analysis and assay certificates

Samples collected by Gary Polischuk Samples collected by Regional geologist Mike Cathro Samples collected by Wayne Pickett of Gold Ore Resources Ltd.

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4												RTIFIC	ATE OF	ANALYSIS /		GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0												
Phone: Fax : Values	e: 604-573-5700 : 604-573-4557 es in ppm unless otherwise reported															۸ ۲ ۲ ۲	ATTENTION: GARY POLISCHUK No. of samples received: 2 Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 1 Samples submitted by: G. Polischuk											
<u> </u>	Tag # AR99+1 AR99+2	Au(ppb) >1000	Ag >30 >30	AI % 0.03 0.02	As 45 195	Ba <5 <5	Bi Ca <5 0 ≲5 <0	a % (1.10 1.01	Cd <1 2	Co 1 <1	Cr 342 202	Cu 167 11 4 9	Fe % 0.70 0.44	La Mg % <10 <0.01 <10 <0.01	<u>Mn</u> 119 66 .	Mo Na% 8 <0.01 8 <0.01	Ni 8 5	P 20 <10	Pb 16 1104	Sb 80 1405	S n <20 <20	Sr <1 <1	<u>Ti %</u> <0.01 <0.01	U <10 <10	V 2 <1	W <10 <10	Y <1 <1	Zn 10 130
<u>QC DA</u>	IA: *																										·	
1 Repea	AR99+1	>1000	>30	0.02	45	<5	<5 (0.09	<1	1	312	171	0.62	<10 <0.01	110	8 <0.01	8	10	20	80	<20	<1	<0.01	<10	<1	<10	<1	10
1 <i>Standi</i> GEO'9	AR99+1 ard: 8	>1000 120	>30	0.02 1.82	50 65	<5 160	<5 (5 ⁻	0.09 1.80	<1 <1	2 19	331 64	172 79	0.66 3.71	<10 <0.01	110 682	9 <0.01 <1 0.02	8 23	10 620	18 20	80 10	<20 <20	<1 55	<0.01	<10 <10	1 78	<10 <10	<1 7	10 66

ECO-TECH LABORATORIES LTD. Prenk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

•

10041 E. Trans Canada Hwy, R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-180

GARY POLISCHUK BOX 792

LILLOOET, BC VOK 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 2 Sample type: Rock PROJECT #: AUMAX 97gone SHIPMENT #: 1 Samples submitted by: G. Polischuk

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
1	AR99+1	8.07	0.235	95.1	2,77	72
2	AR99+2	1,16	0.034	1100.0	32.08	T5

QC DATA:

Resplit: 1	AR99+1	6.30	0.1 8 4	-	-
Repeat: 2	AR99+2	1.17	0.034	-	-
<i>Standard:</i> STD-M MPla		1.38	0.040	- 69.6	2.03

TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. ۵ï B.C. Certified Assayer

30-Jun-99

Z

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-181

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 39 Sample type: Soils PROJECT #: Aumax ~ 97 3000 Gruek SHIPMENT #: 1 Samples submitted by: G. Polischuk

.

Values in ppm unless otherwise reported Mesh

Et #	. Tag #	Size	Au(ppb)	Ag	<u>Al %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La N	/lq %	Mn	Mo Na%	Ni	Р	Ph	Sh	Sn	Sr Ti	0/		17 18/	. v	-
1	L00+00	-60	145	23.4	1.86	1610	155	<5	0.40	<1	36	41	166	7.64	<10	0.73	1270	8 <0.01	86	700	20	20	~20	20 0	70	<u> </u>	V VV	<u> </u>	<u></u>
2	L00+25 <i>E</i>		55	7.6	2.05	1140	105	<5	0.18	<1	35	41	126	7.63	<10	0.94	810	8 <0.01	00 90	190	10	20	~20	20 U.	JZ 51	U :	59 <10	19	221
3	L00+50 <i>É</i>		10	1.0	2.39	160	140	<5	0.35	<1	28	46	84	6.83	<10	0.01	1002	7 <0.01	0Z 61	1140	10	~0 ~E	~20 ~20	4 U.	ןי> ונ ייי	U E	<i>i</i> 4 <10	<1	144
4	L1E+00		20	0.4	2.58	150	110	<5	0.16	<1	35	53	111	8 16	<10	1.20	705	10 <0.01	02	040	10	<0 	<20	13 0.	JZ <1	07	/8 <10	<1	140
5	L1E+25		10	0.4	2.93	90	200	10	0.39	<1	28	51	73	6.68	~10	0.05	703 651	10 <0.01	01	010	12	<5	<20	4 <0.	J1 <1	0 8	33 <10	/ <1	158
										- •	20	01	15	0.00	~10	0.00	001	9 <0.01	55	1120	18	<5	<20	19 0.	02 <1	0 9	J1 <10	/ <1	170
6	L1E+50		20	0.4	3.42	90	165	10	0.25	<1	37	45	104	7.30	<10	1 10	830	0 ~0 01	70	800	20	-5	-90	~ ~	.				
7	L2E+00		80	1.2	1.37	460	110	5	0.16	<1	38	28	157	0.33	~10 ~10	0.22	901	19 <0.01	617	040	20	<0 	<20	9 0.	JI <1	0 7	/7 <10	/ <1	155
8	L 00 +25 W		20	0.2	2.29	120	155	10	0.40	<1	32	73	62	6.42	~10	0.02	070	10 \0.01	113	940	14	<5	<20	5 <0.	01 <1	Q 4	48 <10	/ <1	222
ġ	L <i>00</i> +50 W		20	0.6	2.64	80	195	10	0.25	<1	22	11	10	6.05	~10	0.01	1400	0 <0.01	83	930	10	15	<20	10 0.	01 <1	0 8	31 <10) <1	127
10	L1W+00	-60	10	0.8	1.77	155	195	<5	0.26	-1	25	- 1-1	40	0.00	~10	0.77	1422	7 < 0.01	60	1690	18	<5	<20	10 0.	01 <1	06	37 <10) <1	142
					,	100	100	-0	0.20	~ 1	JJ	30	110	1.15	~10	0.54	828	12 <0.01	84	1420	18	<5	<20	14 <0.	01 <1	0 (32 <10) 2	188
11	L1W+15 N		·5	0.4	2.14	75	160	<5	043	<1	24	25	. 51	E 46	~10	0.40	1011	0 -0.04				-			_				
12	L1W+30 N		45	0.4	3 76	260	160	15	0.40	~1	24 60	126	101	0.40	~10	0.49	1211	6 < 0.01	51	1400	16	<5	<20	16 0.	02 <1	0 6	52 <10) <1	130
13	L1W+45 N		15	0.8	2.11	240	115	15	0.00	~1	20	130	121	0.91	< 10 	1.94	1012	3 <0.01	118	1050	14	<5	<20	12 0.	13 <1	0 13	22 <10) <1	159
14	L1W+60 N		15	16	3.45	205	170		0.20	~1	33 61	23	103	7.20	<10	0.99	586	8 < 0.01	76	510	12	<5	<20	70.	03 <1	0 f	30 <10) <1	134
15	L1W+75 N		5	~0.2	2.70	125	100	< <u>-</u>	0.00	< 	51	127	172	7.69	<10	1.25	841	5 <0.01	110	550	18	<5	<20	27 0	04 <1	0 1/	J1 <1C) 8	139
	2111.7011		5	~U.Z	2.90	190	601	10	0.44	<1	38	94	72	6.47	<10	1.13	1067	3 <0.01	81	610	16	<5	<20	10 0	08 <r< td=""><td>0 <i>!</i></td><td>93 <1C</td><td>) <1</td><td>143</td></r<>	0 <i>!</i>	93 <1C) <1	143
16	L1W+90 N		10	0.8	2 34	185	155	10	0.43	-1	60	115	140	N10		0.00	70.4	A											
17	L00+15 N	-48	<5	10	2.01	150	240	20	7 20	- 1	42	10	140	210	<10	0.63	724	9 < 0.01	170	570	4	80	<20	6 <0	01 <'	(0 1	93 <1 C) <1	127
18	L00+30 N	_48	25	1.0	2.04	205	440	20	1.58	ا ا	43	42	111	9.17	10	1.20	2660	8 <0.01	59	660	8	<5	<20	60 <0	01 <1	1 0 (97 IC) 104	83
19	L00+45 N	-48	20	1.U 20	2.04	205	110	~0 ~E	0.35	51	33	55	111	7.48	<10	1.03	807	8 <0.01	80	420	12	<5	<20	70	04 <1	i0 1	73 <10) 7	135
20		0	20 E	4.0	3.50	290	2/5	<5	0.59	<1	48	140	173	9.04	<10	1.73	4096	7 <0.01	119	850	18	<5	<20	27 0	03 < ⁻	0 1	15 <10	52	127
20	100±00 N	-40	5	1.0	4.24	115	165	10	0.26	<1	37	70	109	8.45	<10	1.40	860	10 <0.01	97	1730	24	<5	<20	10 0	01 <1	i0 1	18 <10) <1	144

.

.

GARY POLISCHUK

ECO-TECH LABORATORIES LTD.

<u> </u>	Tag #	AL	r(bbp)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Mo Na%	Ni	Р	Pb	SЬ	Sn	Sr	Ti %	U	v	w	v	7
21	L00+75 N		200	>30	0.72	630	145	5	6.28	<1	35	28	148	6.86	<10	0.32	2378	9 < 0.01	84	1120	32	45	<20	34 <	0.01	<10	32	<u>~10</u>	12	150
22	L00+90 N		25	1.6	2.66	170	105	<5	0.48	<1	42	63	163	8.70	10	1.54	1924	9 < 0.01	87	900	14	<5	<20	21 <	:0.01	<10	98	~10	77	100
23	L00+15 \$		65	6.4	1.56	765	65	10	0.25	<1	37	38	148	7.37	10	0.86	1081	9 <0.01	85	530	20	5	<20		0.03	<10	55	<10	28	174
24	L00+30 S	-48	10	1.0	2.28	245	190	5	0.25	<1	30	37	112	6.86	20	0.87	919	8 <0.01 •	72	640	20	<5	<20	23	0.03	<10	55	<10	20 AA	140
25	L00+45 S		40	2.2	1.82	195	110	<5	0.40	<1	36	36	147	8.39	20	1.07	1683	11 <0.01	82	820	12	<5	<20	16 <	0.01	<10	57	<10	51	168
26	L00+60 S	-48	20	0.8	2.64	40	145	5	0.36	<1	37	53	159	8.65	40	1.42	1871	11 <0.01	87	650	16	<5	<20	13	0.01	<10	80	~10	70	167
27	L00+75 S	-48	5	0.6	2.06	10	215	15	0.58	<1	49	34	151	>10	40	0.71	1588	13 < 0.01	88	610	22	<5	<20	26 <	0.01	<10	81 81	~10	100	107
28	L00+90 S		<5	1.2	2.59	40	240	<5	0.61	1	64	78	236	>10	30	1.33	2064	15 < 0.01	146	720	22	<5	<20	26	0.01	<10	64 64	~10	001	210
29	L1E+15 N		<5	<0.2	2.84	50	195	5	0.35	<1	27	54	59	6.07	<10	0.95	671	7 < 0.01	53	1510	18	<5	<20	17	0.02	<10	97 92	<10	02 21	120
30	L1E+30 N		<5	0.2	3.92	60	180	10	0.29	<1	40	69	131	8.70	10	2.21	1025	10 <0.01	94	1320	22	<5	<20	14 <	<0.01	<10	109	<10	1	181
31	L1E+45 N		<5	0.4	2.36	65	195	10	0.33	<1	28	46	46	5.67	<10	0.73	1169	7 <0.01	52	1150	12	<5	<20	13	0.02	<10	78	~10	~1	100
32	L1E+60 N		<5	0.4	3.37	100	160	<5	0.18	<1	35	62	151	8.77	10	1.52	920	11 <0.01	87	1060	18	<5	<20	17 •	<0.01	<10	101	<10	2	120
33	L1E+75 N		<5	0.4	3.37	95	250	10	0.32	<1	27	46	82	6.29	<10	0.82	624	7 <0.01	77	2270	18	<5	<20	19	0.02	<10	78	<10	-1 -1	150
34	L1E+15 S		5	0.8	2.05	225	140	5	0.27	<1	32	46	100	7.35	<10	0.92	737	7 < 0.01	67	890	10	<5	<20	10	0.03	<10	80	<10	-1	140
35	L1E+30 S		5	4.6	2.47	250	155	10	0.34	<1	25	42	53	5.73	<10	0.58	683	6 0.01	63	1290	16	<5	<20	14	0.03	<10	72	<10	<1	126
36	L1E+45 S		15	0.2	0.65	15	105	<5	0.27	<1	35	15	132	8.31	<10	0.11	551	15 < 0.01	85	1180	12	<5	<20	13	<0.01	<10	41	~10	~ 1	170
37	L1E+60 S		10	0.4	2.22	35	240	5	0.38	<1	37	4 2	125	8.90	10	0.90	1432	12 < 0.01	88	930	20	<5	<20	11	<0.01	<10	72	~10	10	172
38	L1E÷75 S		15	0.4	1.78	95	165	<5	0.23	<1	33	40	120	7.69	<10	0.73	902	10 <0.01	80	510	12	<5	<20	6	0.01	<10	65	<10	- 10	154
39	A99+1		75	4.6	2.70	320	145	<5	0.81	<1	39	69	146	8.35	<10	1.59	1320	8 <0.01	83	490	12	<5	<20	17	0.04	<10	97	<10	44	127
<u>QC D</u> Repe	ATA: at:																		-											
1	L00+00		290	24.4	1.86	1550	140	<5	0.39	<1	37	41	162	7 60	~10	0.71	1064	9 <0.01	00	040	20	ΩE.	~20	45	0.00					
10	L1W+00		10	0.6	1.78	130	205	10	0.28	1	35	35	118	7 71	~10	0.54	871	3 ~0.01 12 ~0.01	00	4470	3U 10	20 -5	~20	10	-0.02	<10	59	<10	18	226
19	L00+45 N		<5	2.8	3.60	300	280	<5	0.59	<1	49	143	179	9.25	<10	1 78	4083	8 <0.01	120	920	10	~0 ~5	~20	10	10.02	<10 -40	63	<10	2	189
28	L00+90 S		<5	1.4	2.46	4 0	225	<5	0.59	1	63	74	226	>10	210	1.10	1022	15 <0.01	142	740	24	~0	~20	29	0.03	< 10	118	<10	53	128
36	L1E+45 S		10	0.4	0.67	25	100	10	0.27	<1	35	15	121	8 37	<10	0.12	566	14 <0.01	140	1100	10	~0 ~5	~20	24 10	10.01	<10	90	<10	86	217
Stand	tard:								0.27	••	00	10	131	0.07	~10	0.12	, ,	14 ~0.01	03	UUÐO	14	<0 <i>~</i>	~20	10	<0.01	<1U	42	<10	<1	175
GEO'	99		115	1.2	1.69	65	150	10	1.84	<1	19	66	80	4.23	<10	0.98	672	<1 0.02	22	630	20	<5	<20	58	0.10	< 1 0	74	<10	10	70

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer Der

19-Jul-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-234

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 6 Sample type: Soil PROJECT #: AUMAX SHIPMENT #: 3 Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

-

Et #	⁴ . Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La M	/lg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	Sr	'Ti %	U	v	w	Y	Zn
1	A-99+5	290	1.4	2.12	800	205	<5	0.33	5	41	40	211	9.65	30	0.53	2149	17 <0.01	100	1140	14	<5	<20	25	<0.01	<10	64	<10	19	251
2	A-99+6	235	1.0	2.30	1160	190	<5	0.29	3	37	36	172	8.33	30	0.58	2909	15 0.01	91	2250	12	<5	<20	26	0.01	<10	54	<10	47	230
3	A-99+7	>1000	20.2	0.19	>10000	- 135	<5	0.13	33	52	<1	165	9.78	20 •	<0.01	2673	10 <0.01	58	710	12	10	<20	17	<0.01	<10	11	<10	38	178
4	A-99+8	480	4.0	0.88	1020	235	<5	0.55	5	38	15	214	8.66	30	0.09	3486	14 <0.01	94	1090	10	<5	<20	17	<0.01	<10	34	<10	107	208
5	A-99+9	245	4.2	0.79	2995	90	<5	0.11	8	52	14	183	7.84	20	0.13	576	15 <0.0 1	119	600	12	5	<20	5	<0.01	<10	27	<10	<1	287
6	SG99+7	10	<0.2	2.59	155	130	<5	0.30	<1	38	83	141	6.50	20	1.22	870	6 <0.01	108	670	8	<5	<20	31	0.06	<10	70	<10	21	143
	ATA:																												
Repe 1	at: A-99+5	405	1.4	2.12	795	195	<5	0.32	4	41	40	213	9.58	30	0.53	2144	17 <0.01	103	3 1130	16	<5	<20	21	<0.01	<10	64	<10	20	248
Stan GEO	dard: 99	135	1.0	1.81	65	155	<5	1.86	<1	19	60	80	3.75	<10	0.94	702	<1 0.02	24	1 720	18	10	<20	59	0.11	<10	78	<10	9	76

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T B.C. Certified Assayer 30

df/235 XLS/99 .

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-237

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

.

Values in ppm ur	niess oth	erwis	e repon	ted																	No. of samp. Sample type	les recei : Rock	ived:6			
<u>Et #. Tag #</u> 1 AR99+3 2 AR99+4	Au(ppb) 65) <u>A</u>	<u>g Al %</u> 4 0.06	As 650	Ba 15	E	3i Ca %	Cd	Co	<u>Cr</u>	C	u Fe%	La Mor≪								PROJECT # SHIPMENT { Samples sub	: AUMA) #: 3 mitted b	К)у: G.	Polischu	'k	
3 AR99+5 4 AR99+6 5 AR99+7 6 SGR 26 QC DATA:	90 60 25 150	<0. 1. 3.; <0.; <0.;	2 0.03 2 0.13 2 0.09 2 0.02 2 0.03	485 1080 850 495 4415	i 10 60 30 15 <	$\vec{v} \neq \vec{v} \neq \vec{v}$	5 0.01 5 0.04 5 0.03 5 <0.01 5 <0.01	1 2 <1 -1 7	1 <1 5 2 <1 1	217 188 185 198 157 76	15 11 3 43	4 0.48 4 0.34 5 1.21 0.83 0.31	<pre><10 <0.01 <10 <0.01</pre>	94 83 693 372 80 65	Mo Na % 5 <0.01 4 <0.01 6 <0.01 6 <0.01 4 <0.01 6 <0.01	N 7 6 10 10 5 6	i P <10 <10 <10 <10 <10 <10 20	Pb 4 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Sb <5 <5 <5 <5 <5	Sn <20 <20 <20 <20 <20 <20	Sr Ti % 2 <0.01 <1 <0.01 <1 <0.01 <1 <0.01 <1 <0.01 <1 <0.01	U <10 <10 <10 <10 <10	V <1 <1 2 <1 <1	W <10 <10 <10 <10 <10	Y <1 <1 1 <1	Zn <1 <1 16 12
Resplit: 1 AR99+3	60	0.4	0.04	655	10											_	-0	~4	<5	<20	<1 <0.01	<10	1	<10	<1	<1 3
Repeat: 1 AR99+3	60	0.4	0.05	650	5	. <5	0.02	<1	1	173	4	0.43	<10 <0.01	90	4 <0.01	6	<10	2	<5	<20	<1 <0.01	<10	~1	<10		
<i>Standard:</i> GEO'99	-	0.8	1.83	60	150	<0	0.02	1	<1	211	4	0.46	<10 <0.01	89	5 <0.01	7	<10	<2	<5	<20	<1 <0.01	<10	- 1	~10	<1	<1
					r JU	10	1.80	<1	18	63	84	3.85	<10 0.94	645	<1 0.02	25	680	16	15	<20	54 0.10	<10	71	<10	<1 8	<1 70

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer Ôч

Page 1

Jf/235 XLS/99 .

9-Ai	.g-99
------	-------

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4	ICP CERTIFICATE OF ANALYSIS AK 99-301
Phone: 604-573-5700 Fax : 604-573-4557	

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 4 Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Aq ,	Al %	As	Ba	Ri Ca %	64	<u> </u>	~	_	-										mileo by	G F0	mscnuk		
1 2 3	AR99+8 AR99+9 AR99+10	>1000 >1000 >1000 >1000	>30 >30 >30 >30	0.01 0.03 0.05	210 300 1125	<5 <5 20	<5 <0.01 <5 0.03 <5 0.01	2 9 3	<pre></pre>	158 174 212	Cu 1413 4365 1914	Fe % 0.45 0.69 1.58	La Mig % <10 <0.01 <10 <0.01 <10 <0.01	<u>Mn</u> 55 131 57	Mo Na % 3 <0.01 6 <0.01 7 <0.01	Ni 5 9 12	P <10 <10 10	Pb 898 3730 2610	S b 1555 3170 2675	<u>Sn</u> <20 <20 <20	Sr Ti % <1 <0.01 <1 <0.01 9 <0.01	<u>บ</u> <10 <10 <10	V <1 2 2	W <10 <10 <10	Y <1 <1 <1	Zn 124 460 223

QC DATA:

1 AR99+8	>1000	>30	0.01	205	<5	<5 <0.01	3	<1	161	1444	0.45	<10 <0.01	62	3 <0.01	6	<10	908	1580	<20	<1 <0.01	<10	<1	<10	<1	127
1 AR99+8	>1000	>30	0.01	195	<5	<5 <0.01	2	<1	152	1376	0.43	<10 <0.01	51	4 <0.01	4	<10	872	1525	<20	<1 <0.01	<10	<1	<10	<1	119
<i>Standard:</i> GEO'99	115	1.4	1.63	55	160	<5 1.54	<1	19	57	89	3.57	<10 0.93	674	<1 0.03	26	740	18	10	<20	61 0.10	<10	74	<10	18	61

Frenk J. Pezzotti, A.Sc.T B.C. Certified Assayer

df/300 XLS/99

10041 E. Trans Carada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-301

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

18-Aug-99

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 4 Samples submitted by: G. Polischuk

		Au	Au	Ag	Ag	
<u> </u>	Tag #	<u>(g/t)</u>	(oz/t)	(g/t)	(oz/t)	
1	AR99+8	1.72	0.050	1615.0	47.10	T4
2	AR99+9	3.25	0.095	2520.0	73.49	T 8
3	AR99+10	4.56	0.133	2706.0	78.92	79
QC DATA:	2					
<i>Resplit:</i> 1	AR 9 9+8	2.38	0.069	-	-	
Repe at: 1	AR99+8	3.85	0.112	-		
<i>Standard:</i> Med		1.32	-	-	-	

EQO-TECH LABORATORIES LTD. raink J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Jury

df/302

XLS/99

ICP CERTIFICATE OF ANALYSIS AK 99-302

•

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received:9 Sample type:SOIL PROJECT #: AUMAX 973000 SHIPMENT #:4 Samples submitted by: GARY POLISCHUK

.

Values in ppm unless otherwise reported

_	Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ĺa	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	v	7n
	1	AR 99+2	30	3.2	4.09	280	240	<5	0.56	<1	36	69	259	6.04	<10	0.98	964	3 0.02	89	1030	34	10	<20	32	0.09	<10	83	c10	17	
	2	AR 99+3	25	0.2	2.12	110	180	10	0.25	<1	35	67	137	9.29	<10	0.20	334	9 <0.01	112	980	10	100	<20	11	<0.00	<10	06	~10		400
	3	Arr 99+4	30	1.8	2.30	525	135	<5	0.29	<1	33	59	101	5.76	<10	0.77	492	5 0.01	88	560	22	10	<20	15	0.06	~10	90 00	~10	< 	100
	/4	L2E+15S	10	<0.2	3.23	50	170	<5	0.30	<1	37	54	103	5.52	20	1.08	1106	5 0.02	81	1460	30	~5	~20	10	0.00	~10	0U 00	<10 	<1	127
	(5	L2E+30S	20	<0.2	1.46	135	145	10	0.19	1	28	42	99	6.17	10	0.46	546	8 < 0.01	65	050	12	~5	~20	10	0.07	~10	00	<10	13	199
									-							0.10	0,0	0 -0.01	00	500	14	-0	~20	10	0.05	<10	72	<10	<1	153
<	6	L2E+45S	15	<0.2	2.61	250	180	10	0.27	<1	27	56	49	4.71	<10	0.68	522	2 0.01	47	1140	20	~5	<20	14	0.00	~10	00	-10		
	7	L2E+60S	20	<0.2	2.67	130	175	10	0.27	<1	29	58	60	5.82	<10	0.63	633	5 0.01	62	1080	18	~5	~20	47	0.09	~10	00	<1U	<1	150
- [8	L2E+75S	10	<0.2	2.85	75	150	5	0.24	1	25	63	55	5 57	10	83.0	497	4 0.01	54	0000	20.	-0	~20	17	0.06	510	99	<10	<1	145
ļ	9	L2E+90S	15	0.4	2.83	40	205	5	0.24	<1	20	50	46	4.83	10	0.00	507	2 0.01	40	010	20	<0 .F	<20	12	0.08	<10	108	<10	<1	134
	C -			5	2.00		200	v	0.24	- 1	20	00	-0	4.00	10	0.40	527	2 0.01	40	2150	18	<5	<20	16	0.05	<10	84	<10	<1	173
	00.04	τa·																												
	Ronas	<u>4</u> .																												
	1			20	2.00	000	240	-5	0 50	-	0.5	~~																		
	Ś	AR 9972	400	3.0	3.90	280	240	~ ,	0.53	2	30	66	220	5.85	<10	0.94	934	9 0.0 <u>2</u>	92	980	28,	35	<20	33	0.08	<10	81	<10	15	190
	Þ	L2E+408	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
	<u>.</u> ,																													
	Stand	ard:																												
	GEO'9	9	125	1,4	1.75	70	170	<5	1.84	1	20	66	82	4.10	<10	0.94	740	2 0.02	20	720	20	5	55	35	0.08	<10	81	<10	7	74
																										-			ſ	,

ECD-TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. $\phi - c$ B.C. Certified Assayer

+

Page 1

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-234

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

19-Aug-99

ATTENTION: GARY POLISCHUK

No. of samples received; 6 Sample type: Soil PROJECT: # AUMAX SHIPMENT: # 3 Samples submitted by: G. Polischuk

ET #. Tag #	Au (g/t)	Au (oz/t)	
3 A-99+7	1.94	0.057	
<u>QC/DATA:</u> <i>Standard:</i> STD-M	1.08	0.031	

O-TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

. . . <u>.</u>

÷,

10041 E. Trans Canada Hwy., B.R. #2. Kamioops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (260) 573-4557 email: ecotech@mail.wxpowerlink.com

CERTIFICATE OF ANALYSIS AK 99-380

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0 27-Aug-99

ATTENTION: GARY POLISCHUK

No. of samples received: 9 Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 5 Samples submitted by: G. Polischuk

		Au	Ag	As	Сц	Pb
ET #.	Tag #	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
1	AR99+11	340	>30	255	329	314
2	AR99+12	>1000	>30	915	3361	3050
3	AR99+13	>1000	>30	305	640	436
4	AR99+14	100	>30	150	90	34
5	AR99+15	55	4.4	460	30	<2
6	AR99+16	45	4.0	510	4	<2
7	AR99+17	80	4.4	730	4	2
8	AR99+18	15	3.6	<5	180	4
9	AR99+19	<5	3.0	<5	60	8
	TA:					
Repea	t;					
1	AR99+11	~	>30	240	306	296
Respli	t:					
1	AR99+11	*	>30	230	319	302
Standa	ard:					
GEO'9	9	120	1.2	65	89	22

TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. **4**2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-380

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

RAT

ORIE

30-Aug-99

ATTENTION: GARY POLISCHUK

No. of samples received: 9 Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 5 Samples submitted by: G. Polischuk

ET #	Tog #	Au	Au (ozít)	Ag (a(t)	Ag (oz/t)
<u>EI #.</u>	1ay #	(yrt)	(021)	(911)	(021()
1	AR99+11		-	420.0	12.25
2	AR99+12	2.51	0.073	2750.0	80.20
3	AR99+13	5.30	0.155	583.6	17.02
4	AR99+14	•	-	68.4	2.00

QC/DATA:

Standard:				
STD-M	1.57	0.046	-	-
MPla	_	-	70.0	2.04

TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/99

22-Sep-99 ECO-TECH LABORATORIES L' 10041 East Trans Canada Highw	TD. Nay		ICP CERTIFICATE OF ANALYSIS AK 99-491	GARY POLISCHUK BOX 792 LILLOOET, BC VOK 1V0
V2C 6T4				ATTENTION GARY POLISCHUK
Phone: 604-573-5700 Fex : 604-573-4557				No. of samples received: 3 Sample type: Rock PROJECT#: Aumax SHIPMENT#: 6 Samples submitted by: G. Polischuk
Values in ppm unless otherw	vise reported		n c. y la Ma % Mn Mo Na % N	P Pb Sb Sn Sr Ti % U V W Y Zn
Et #. Tag # Au(ppb)* 1 AR99+20 2 AR99+21 3 AR99+22	Ag Al % As 13.2 0.42 >10000 2.2 0.08 2265 >30 0.01 150	Ba Bi Ca % Cd 85 20 1.14 28 20 10 0.74 2 <5 <5 0.01 4	Co Cr Cu Fe % L2 (fig. // fig. // f	1660 <2
QC DATA: Resplit: 1 AR99+20	13.8 0.38 >10000	75 15 1.09 30) 36 89 48 6.89 ≤10 0.07 1311 11 ≤0.01	34 1590 4 <5 <20 87 <0.01 <10 13 <10 18 88
Standard: GEO'99	1.2 1.78 70	155 10 1.83 <1	1 20 64 76 3.88 <10 0.97 680 <1 0.01	21 630 18 5 <20 54 0.07 <10 74 <10 6 70

NOTE: * = Au results still to come

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.So.T. B.C. Certified Assayer

τοο 😰

09/23/99

15:32

☆250 573 4557

ECO-TECH KAM.

24-Se	p-99
-------	------

ECO-TECH LABC 10041 East Trans KAMLOOPS, B.C V2C 6T4	DRATORIES Canada Hig	S LTD. ghway							ŀ	CP CE	RTIFIC	CATE O	F ANAL	YSIS	AK 99-	491						G B L V	60X 75 10X 75 11100	POLISC 92 DET, BC 70	:HUK ;				
Phone: 604-573-5 Fax : 604-573-4	700 557																					A	TTEN	TION: (GARY P	OLIS	CHUK		
Values in ppm ur	aless other	wise re	ported		·		·															N S F S S	lo. of s Sample PROJE SHIPM Sample	samples type: F CT #: 7 ENT #: s subm	receive Rock Aumax 6 itted by:	:d: 3 : G. P	olischuk		
Et #. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Си	Fe %	La	Mg %	Min	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
2 AR99+20 2 AR99+21 3 AR99+22	>1000 190 >1000	13.2 2.2 >30	0.42 > 0.08 0.01	2265 150	85 20 <5	20 10 <5	1.14 0.74 0.01	26 2 4	38 9 1	88 172 215	47 11 1697	7.20 1.78 0.36	<10 <10 <10	0.07 0.02 <0.01	1394 405 59	11 9 10	0.01 <0.01 <0.01	68 21 7	1660 380 <10	<2 2 984	<5 <5 1705	<20 <20 <20	95 14 <1	<0.01 <0.01 <0.01	<10 <10 <10	14 3 <1	<10 <10 <10	15 3 <1	95 20 187
QC DATA:																													
Resplit: 1 AR99+20	>1000	13.8	0.38 >1	10000	75	15	1.09	30	36	89	48	6.89	<10	0.07	1311	11	<0.01	64	1590	4	[,] <5	<20	87	<0.01	<10.	13	<10	18	88
<i>Standard:</i> GEO'99	-	1.2	1.78	70	155	10	1.83	<1	20	64	76	3.88	<10	0.97	680	<1	0.01	21	630	18	5	<20	54	0.07	<10	74	<10	8	70

EGO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

df/488 XLS/99 ECO-TECH RAM.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-491

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0 23-Sep-99

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 6 Samples submitted by: G. Polischuk

		Ag	Ag	As	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
1	AR99+20		-	1.51	
3	AR99+22	1212.0	35,35	-	

QC DATA:

Standard: Mpla 71.0 2.07

TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. C. Certified Assayer

0.84

ECO-TECH KAM.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech瑜mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-491

GARY POLISCHUK

BOX 792 LILLOOET, BC V0K 1V0 28-Sep-99

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 6 Samples submitted by: G. Polischuk

		Au	Au	Ag	Ag	As
ET #.	Teg #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
1	AR99+20	1.07	0.031	-	-	1,51
3	AR99+22	2.03	0.059	1212.0	35.35	-

QC DATA:

Standard:						
STD-M	·	1.39	0.041	-	· –	-
Mpla		-	-	71.0	2.07	0.84

O-TECH LABORATORIES LTD. ank J. Pezzotti, A.Sc.T. C. Certified Assayer

XLS/99

Page 1

Assay Results Samples taken by Mike Cathro Regional Geologist Mines Branch, Kamloops

Cathro, Mike EM:EX

From:Cathiro, Mike EM:EXSent:Thursday, September 23, 1999 10:51 AMTo:Ray, Gerry EM:EXSubject:Aumax claims - sampling results

Gerry,

I just faxed to you some assays from samples I collected from the "97" and "96" zones, Aumax claims.

Unfortunately, I wrote the wrong trench numbers on the assay sheets.

Sample C99-043 was a grab sample from Trench 5 (not Trench 2) Sample C99-044 was a grab from Trench 7 (not Trench 5)

These should now agree with the map and field notes I mailed down last week.

Mike Cathro Regional Geologist Mines Branch, Kamloops

tel. 250 828-4566 fax 250 828-4726 Email: Mike.Cathro@gems2.gov.bc.ca

x

5단 23 1999 1	22-Sep-99 ECO-TECH LABORATORIES LTD. 1004 I East Tions Canada Highway KAMLOOPS, O.C. V2C 614							ICt	CERI	FIFICA1	if of ,	ANALY	SIS AI	K 99-46	17						M)) #21 KA \√2	4157RY 00-2985 MLOOF 8 7W0	of ei Airpi S, Bc	NERGI ORT D	/ 生 秋i RTVE	(N25		
0: <i>0</i> 7	Phone: 350-573-5700 Fax : 250-573-4557 Velues in ppm unless otherwise (reported																			Al Na Pi Si Si	TENTIC , of 180 mple (/ RQJEC7 HIPLAEN smplos 1)N; A ppigg; R (#; Nc (T #; (lubmit	viike C receive lock ma Gir None C ited by	ATHF d: 13 Man Siven : M. C	λΟ ethre	,	
	ELU. TAQ M AU/POD)	Ag Al X	A	Đa	BI CA	<u>* </u>	Cet	Co	Cr	Cu	Fa % _	<u> </u>	Mg %	Mn	_ <u>Mo</u> 1	+ <u>a %</u>	<u> M</u>	_ <u>P</u>	_Pb	SÞ	\$n	8ı T	1%	U	v	W	¥	Zn
no samele isocations F	$umax (a.max 2002 y = \frac{165}{9} \frac{165}{10} \frac{165}{10} \frac{165}{15} \frac{165}{15} \frac{165}{15} \frac{11}{12} \frac{169.042}{12} \frac{97}{12} \frac{1}{13} \frac{11}{13} \frac{109.042}{13} \frac{97}{12} \frac{1}{13} $	 <0.2 1.47 1.2 0.60 1.0 0.36 >30 0.05 >30 0.02 >39 0.04 	<5 1475 345 219 345 655	65 70 65 10 10 20	30 0 15 5 10 5 <5 0 <5 0 <5 0	.15 .48 .62 .00 .00	<1 5 2 1 7 13	17 27 42 2 2	80 37 64 163 139 166	70 46 50 304 2640 4902	6,99 6,00 7,58 0,72 0,60 1,05	<10 <10 <18 <10 <10 <10 <10	0.50 0.48 5.95 0.03 <0.01 <0.01	316 1218 1306 150 42 60	⊀1 6 6 3 5	0.04 0.03 0.01 <0.01 <0.01 <0.01	15 87 175 10 6 8	1270 1960 990 40 <10 50	(2 +2 =2 298 1516 2642	5 5 -205 -2840 	<20 +20 <20 <20 <20 <20 <20 <20	23 165 26.) < <1 = <1 = 4 -	0.40 0.02 0.01 0.01 0.01 0.01	<10 <10 <10 <10 <10 <10	66 18 18 2 <1 1	<10 <10 <10 <10 <10 <10 <10	4D 22 ~1 ~1 ~1 ~1 ~1	57 58 54 52 238 422

•

** TOTAL PAGE.03 **

PAGE.01

-

Page I

.

SEP 23 1999 10:25 FR MINES BRANCH MARLOOPS250 828 4726 TO 812502567946 P.03 03

Ministry of Energy and Mines Kamiloopa, B.C.

Recid SEP 2 3 1999

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10021 E. Trans-Oerlade Hwy., R.R. #2. Kamloops, B.C. V2C 574 Phone (250) 573-5700 Fax (250) 573-4557 email: ecolecth@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-487

MINISTRY OF ENERGY & MINES #200-2985 AIRPORT DRIVE KAMLOOPS, BC V2B 7W8 22-Sep-99

ATTENTION: MIKE CATHRO

No. of samples received: 13 Sample type: Rock PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: M. Cathro

	ET #.	Tao #	Au (g/t)	Au (az/t)	Ag (g/t]_	Ag (oz/t)	Te (%)
umax 17 Zone	, 11 2 12 (13	C99-042 T3 60cm chip C99-043 T2 grads C99-044 T5 grads	1.16 14.65 2.49	0.034 0.427 0.073	251.4 2170.0 2820.0	7.33 63.28 82.24	-
=	QC DATA: Repeat		L.				
	Standard: STD-M MPia		1. 38 -	0.040	- 70.0	2.04	<0.01

TECH LABORATORIES LTD. nk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

Aumax assays from Gold Ore Resources Taken by J. Wayne Pickett, M.Sc., P.Geo

20-Aug-99

ECO-TECH LABORATORIES LTD 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-575-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #. 1ag# Au(ppb) Ag Al% As Ba Bi Ca% Cđ Co Cr Cu Fe % La Ma % ងាក Mo Na % Ni Р Pb Sb 5n Sr TI% U ¥ w ¥ Zn <5 0.38 4.0 1.25 2135 140 40 21 118 6.29 10 0.28 12 <0.01 89 1080 <5 32 0.01 A99+101 190 ß 1958 14 <20 27 155 1 <10 31 <10 2 A99+102 >1000 >36 0.61 >10000 190 20 0.44 58 187 5 141 >10 20 < 0.01 5094 13 <0.01 305 2180 28 <5 <20 53 <0.01 <10 13 <10 70 207 >1000 15.8 0.14 >10000 145 25 0.82 93 65 4 115 >10 10 <0.01 4845 14 <0.01 131 1700 12 <5 3 A99+103 <20 86 <0.01 <\i6 14 <10 16 162 4 A99+104 >1000 >30 0.27 >10000 185 20 1 31 99 95 <1 178 >10 20 < 0.01 6061 15 < 0.01 183 4030 16 10 <20 159 <0.01 <10 19 <10 56 328 20 5 7810 135 <5 016 69 302 >10 2757 12 <0.01 72 970 16 A99+105 76C 6.6 0.72 4 <10 <0.01 <5 <20 18 <0.01 <10 38 < 10 <1 144 610 6 A99+106 205 6.2 1.43 \$45 120 5 012 4 15 21 77 6.33 10 0.20 9 -0.01 39 1810 12 <5 -20 16 <0.01 <1D 27 < 10 1 123 134 7.86 1845 155 <5 0.17 46 20 0.84 1861 7 A95+107 250 2.0 2.47 6 44 9 ~0 01 92 1790 12 <5 <20 17 0.02 < 10 65 < 10 28 154

ICP CERTIFICATE OF ANALYSIS AK 99-363

WV DAIA.	Q¢	DATA.
----------	----	-------

Repeat:																											
1 A99+	101	3.8	1.27	2090	140	5	0 37	10	40	20	121	6.25	10 0.2	9 1950	13 <0.0	1 8	8 1070	14	<5	<20	29	<0.01	<10	31	<10	25	152
2 A091	102 >1000	-	-	-		-		-	-	•		-		-	-	-	- ·	•		-	-		•	•	-	-	
Standard: GEO'99	115	1.6	1 74	80	160	10	1.88	3	20	64	87	3.87	<10 0.9	6 648	<1 0.0	z 2	2 700	24	10	<20	57	0.08	~10	78	<10	8	66

ECO-TECH LABORATORIES LTD. Ørank J. Pezzotti, A.Sc T **B.C. Certified Assayer**

GOLD-ORE RESOURCES LTD. 1540-750 WEST PENDER STREET VANCOUVER, BC V6C 2T8

ATTENTION: WAYNE PICKETT

No. of samples received: 7 Sample type: Soil PROJECT #: AUMAX SHIPMENT #: 1 Samples submitted by: W. Pickett

10041 €. Trans Canada Hwy, R.B. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700, Fax (250) 573-4557 eina⊛ ecotech@mail.wkpowerink.com

CERTIFICATE OF ASSAY AK 99-363

GOLD-ORE RESOURCES LTD. 1540-750 WEST PENDER STREET VANCOUVER, BC V6C 2T8 26-Aug-99

ATTENTION: WAYNE PICKETT

No. of samples received: 7 Sample type: Soil PROJECT #: AUMAX SHIPMENT #: 1 Samples submitted by: W. Pickett

		Au	Au	Ag	Ag	As
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(ozít)	(%)
2	A99+102	1.79	0.052	27.6	0.81	2.22
3	A99+103	4.30	0.125	-	-	2.65
4	A99+104	2.95	0.086	30.9	0.90	2,74

QC/DATA:

.

Standard:					
STD-M	1.35	0.039	-	-	-
Mp-IA		-	69.6	2.03	0. 8 7

D-TECH LABORATORIES LTD. hk J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/99

df/348 XLS/99 CC Gary Polischuk

17-Aug-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 614

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

					• -	(3 -	n :	0- ti	c.a	Co	Cr	Cu	Fe %	La Most	6 Mm	MO NE %	Ni	P	Pb	Şb	Sn	Sr	Ti %	<u> </u>	V	W	Y	Zn
Et#	Tag #	Au(ppb)	Ag	AI %	As	152	81			<u> </u>	125		1 4	10 0.0	9 325	5 < 0.01	16	840	<2	-5	<20	52	<0.01	<10	3	<10	9	18
1	AR99+201	30	<0.2	0.10	805	25	<5	197	4		100	77	7 69	210 0.0	2 822	3 0.01	20	990	<2	<5	<20	81	-0.01	<10	5	<10	11	42
2	AR99+202	220	1.2	0.16	1490	40	<5	3.96	6	10	120	21	0.06	~10 0.0	A 136	1 <0.01	14	80	<2	<5	<20	3	<0.01	<10	2	-10	<1	8
3	AR99+203	35	0.6	0.05	120	10	<5	0.15	1	3	1/0		0.50	- 200 - 000 - 210 - 200	1 151	<1 <0.01	10	30	<2	<5	<20	~1	<0.01	~10	2	<10	<1	3
4	AR99+294	25	0.4	0.04	200	10	<5	0.02	<1	ŕ	160	c	014	NIQ NO.														
						_	_				140		1 43	<10 ×0.0	a 200	1 <0.01	9	120	<2	-5	-20	<1	-0.01	<10	3	<10	3	5
5	AR99+205	115	0 B	C 04	2155	46	<5	0.13	8	- 10 - F	140	4	1.40		1 566	2 <0.01	- 13	160	4	<5	~20	1	< 0.01	<10	2	<10	~1	13
6	AR99+206	90	1.6	0.04	395	15	<5	0.03	2	5	191	0	1.33	~10 ~0.0	1 050	-1 -<0.01	7	10	<2	<5	-20	<1	<0.01	<10	2	<10	⊴1	<1
7	AR99+207	20	04	0.01	20	~5	~5	<0.01	<1 ~1	Î A	213	3000	0.59	-10 -0.0	н 90 н 90	5 001	7	<10	2868	3785	<20	2	<0.01	<10	۲>	<10	₹1	291
₿	AR99+208	>1009	>30	0.03	575	10	<5	0.02	13	1	173	3.998	0.80	×10 ×0.0		0.01	•											
001																									_		10	
Rep - 1	AR99+201	35	0.4	0.09	815	50	<5	1.96	4	6	164	6	1.32	<10 0.0	09 318	5 <001	17	850	<2	~ 5	<20	47	' <0.01	<10	3	<10	ų,	18
Resj 1	olit: AR99+201	35	04	0.10) 825	15	~ 5	197	3	6	167	6	1.35	<10 0.	09 329	5 <0.01	17	900	<2	<5	<20	46	i <0.01	<10	4	<10	8	18
Star GEC	i <i>dard:</i> 2'99	125	1.4	4 17 8	5 65	155	4	5 1.82	<1	19	66	86	3,81	<10 0.	92 648	<1 0.02	22	670	20	10	<20	52 }	2 0.08	<10	76	<10	8	65
																						1						

ECO-TECH LABORATORIES LTD. Krank J. Pezzotti, A.Sc.T

B.C. Certified Assayer

No. of samples received:B Sample type: Rock PROJECT # AUMAX SHIPMENT# 1 Samples submitted by: W. Pickelf

GOLD-ORE RESOURCES LTD. 1540-750 WEST PENDER STREET VANCOUVER, BC V6C 2T8

ATTENTION: WAYNE PICKETT

1

ICP CERTIFICATE OF ANALYSIS AK 99-362

and the second . and the second second

Aumax assays from Cross Lake Minerals Ltd. Taken by J. Miller-Tait, P.Geo.

September 27, 1999

Mr. Gary Polischuk Box 792 Lillooet, B.C. V0K-1V0

Gary,

The samples are very interesting, especially the 97-zone with the high silver and the one half ounce gold kick. I am sending a set of photos, assays, and a list below of the sample locations with descriptions, its amazing how computer literate or illiterate I am.

<u>97-ZONE;</u>

Sample #	Gold (ppb or g/t)	Silver (ppm)	Description
385776	105	12.0	T-2, W=2m. Gal, Arg, Py, Mal, Az. In qtz.
385777	55	30.6	40m below T-1. Grab bull qtz, minor Sx.
385778	15.07	65.0	T-3, W=1m. Vuggy qtz, epithermal, Py.
385779	6080	921	T-3, Grab. Vuggy qtz, Py, Gal, Mal/Az.
385780	155	65.2	T-4, W=0-0.8 N. side. Vuggy qtz, minor sx.
385781	280	4.8	T-4, W=0.8-1.6m. Stockwork qtz stringers.
385782	2160	1555	T-5, W=1.25m. Gal, Py, Mal/Az in qtz.
385783	565	770	T-11, W=1.5m. Py, Gal, Cpy banded qtz.
385784	1770	2570	T-11. Gary's grab.
385785	265	588	Halfway down road and slope at culvert. Qtz
-			with same mineralogy as T-11
Average	2650.5 ppb	658.2 ppm	

At \$300 US gold and \$5/oz. US silver the average = \$119 x \$1.5 CDN. = \$178.5 CDN. /tonne

<u>98-ZONE:</u>

Sample #	Gold (ppb)	Silver (ppm)	Description
385770	170	2.2	Float grab at T-99-1. Oxid. Qtz.
385771	25	1,4	W=30 cm. At T-99-1. Mn + oxid. Vuggy qtz.
385772	105	2.0	W. side of T-99-1. Oxid. Qtz.
385773	1020	14.8	T-99-1, W=0-1.5m. Samples west – east.
385774	945	6.2	T-99-1, $W=1.5-3.0$ m.
385775	1085	9.6	Grab of red oxid. Layer with qtz frags.
Average	558	6.0	

SOIL SAMPLES:

There were three soil samples collected. Soil sample A99-301 was collected along strike to the south of the 98-zone. Sample A99-302 was collected below T-99-1. Sample A99-303 was collected down in the timber halfway between zones 97 & 98. The gold in the 98-zone is associated with arsenopyrite that is reflected in the high soil arsenic numbers. The samples A99-301 & 302 are anomalous in gold, arsenic and silver.

Cross Lake can't offer anything at this time but if you "borrow" Randy's 225 hoe I'll come and examine the Property again.

Yours truly,

CROSS LAKE MINERALS LTD.

J. Miller-Tait, P.Geo. V.P. Exploration

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CROSS LAKE MINERALS LTD.

210 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Project : DUFFY Comments: ATTN; JIM MILLER - TAIT **CP21999** Page Number : 1-A Total Pages : 1 Certificate Date: 16-SEP-1999 Invoice No. : 19928201 P.O. Number : Account : NWT

[CE	ERTIFI	49928	928201								
SAMPLE	PRE P CODE	Ац ррђ FA+AA	pA mqq	А1 %	Аз ррш	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Сd ррд	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg mqq	К %	La ppm	Mg %
AAAPLE A99 301 A99 302 A99 303	201 202 201 202 201 202	710 6850 35	ppm 21.8 33.4 0.6	1.23 0.23 3.70	ppm 4160 >10000 240	ppm < 10 < 10	ppm 140 110 140	ppm < 0.5 < 0.5 < 0.5	ppm < 2 < 2 < 2	% 0.16 1.03 0.51	ppm < 0.5 < 0.5	ppm - 70 26	ppm 22 < 1 75	ppm 100 167 59	* 7.69 13.30 4.82	ppm < 10 < 10 10	ppm < 1 1 < 1	2 0.09 0.07 0.10	ppm 10 < 10 < 10	% 0.34 0.05 1.44
																			n -{	

Г

CERTIFICATION:

·Xaio

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CROSS LAKE MINERALS LTD.

210 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Project : DUFFY Comments: ATTN: JIM MILLER - TAIT

Page aber :1-8 Total Pages :1 Certificate Date: 16-SEP-1999 Invoice No, :19928201 P.O. Number . Account :NWT

BARFLE CODE Ma No. Na. Ni. p PED S. S.0 S.C. Ti. Ti. U. V M. Z.0 ASP 501 201 202 1515 2 0.13 64 520 38 0.39 44 14 76 0.00 < 10 41 4.0 14 76 0.00 < 10 41 4.0 14 76 0.00 < 10 41 4.0 14 76 0.00 < 10 41 4.0 14 76 0.00 < 10 41 4.0 14 76 0.00 < 10 41 14 76 0.00 < 10 10 10 14 14 14 76 0.00 < 10 10 14											CERTIFICATE OF ANALYSIS A9928201								
AS9 301. 201 202 1515 2 0.13 64 630 38 0.39 44 14 76 0.03 <10 41 <10 142 AS9 301 201 202 1515 2 0.13 64 630 38 0.39 44 14 76 0.03 <10 41 <10 142 AS9 301 201 202 1515 1 0.01 59 540 14 0.01 54 43 55 <10 10 10 142 AS9 301 201 202 1050 1 0.07 46 750 4 0.01 <2 9 37 0.15 <10 10 102 <10 128 AS9 301 2 10 0.07 46 750 4 0.01 2 9 37 0.15 <10 10 102 <10 128 AS 4 0.01 2 9 37 0.15 <10 10 10 10 10 10 1	SAMPLE	PREP CODE	Mn ppm	Мо ррш	Na %	Ni ppm	P ppm	dq mqq	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	У ррщ	W ppm	Zn ppm	
	A99 301 A99 302 A99 303	201 202 201 202 201 202	1515 3480 1050	2 1 1 1	0.13 < 0.01 0.07	64 59 46	620 640 750	38 14 4	0.39 0.01 0.01	44 54 < 2	14 43 9	76 81 37	0.03 <0.01 0.15	< 10 < 10 < 10	< 10 < 10 < 10	41 19 102	< 10 < 10 < 10	142 142 128	
										·									
																		ί\	·

CERTIFICATION:_