

MAY 1 5 2000

1999

Gold Commissioner's Office RECONNAISSANCE REPORT VANCOUVER, B.C.

on the

JAJAY PROPERTY

CLAIMS:

LORRAINE NO.1-12, LORRAINE 1 FR, LORRAINE 2 FR, LORRAINE 3 FR, LORREX NO. 1-2, GK#1-11, GK#18-21, GK#109 FR, GK#110 FR, GK#111 FR, GK#112 FR, STEELE #1-4, BOOT #6, BOOT 10, STEELHEAD 1-2, SH 8-10, DOROTHY 1-7, DOROTHY NO.1, DOROTHY NO.3, ELIZABETH NO.1, PAL 1-4, PAL 6-10, PAL 12-27, PAL 30-44, PAL 47-48

BOBINO #1, BOBINETTE, FIONA, ISABELLE, SUZANNE, DUCK 1-4

Lat. 55° 55' Long. 125° 27'

NTS 93N/14W, 94C/03W

OMINECA MINING DIVISION

Owner and Operator: LYSANDER MINERALS CORP (LYSANDER GOLD CORP.)

By

JAY W. PAGE P. GEO.

MINCORD EXPLORATION CONSULTANTS LTD.

GEOLOGICAL SURVEY BRANCH December 14, 1999 COMMENT PEPORT

TABLE OF CONTENTS

•

.

e -

,

.

r

e

•

*

. .

.

κ.

, ----

INTRODUCTION LOCATION AND ACCESS LOCATION MAP PYSIOGRAPHY **PREVIOUS EXPLORATION** MINERAL TNURE CLAIM MAP **1999 EXPLORATION PROGRAM RESULTS AND INTERPRETATION** CONCLUSIONS AND RECOMMENDATIONS SAMPLE LOCTION AND RESULTS MAPS REFERENCES COST STATEMENT **CERTIFICATE OF QUALIFICATION** SAMPLE DESCRIPTIONS **GEOCHEMICAL CERTIFICTES**

Page 1 Page 2 Figure 1 Page 1&2 Page 2 to 4 Page 4 to 7 Figure 2 Page 8&9 Page 9 to 13 Page 13 Figures 3 to 15 Page 14 to 16 Page 17 Page 18 **APPENDIX 1 APPENDIX 2**

INTRODUCTION

In August and September of 1999 Mincord Exploration Consultants Ltd. at the request of Lysander Minerals Corp (now Lysander Gold Corp.) carried out a geochemical sampling program on the Jajay copper-gold-PGE property. The objective being to follow-up copper, gold, platinum and palladium anomalies that were discovered in talus fines and seepage samples collected in 1996 and 1997. One to two geologists and one assistant carried out fieldwork during the period August 14th to September 3rd, 1999. A second visit was made to the property in early October. Exploration work focused on areas with geochemical anomalies peripheral to the main known showing, and was based out of 3 fly-camps. These were established on the Steele #3 (southeast of the Lorraine prospect), on the Dorothy 3 (Elizabeth showing), and on the Pal 48 (north end of the property) claims. Additional work was carried out on the MacKenzie showing (extreme southern claims) from a base on Silver Creek. All access to the property was by helicopter. A total of 48 rock and 121 talus fines / seepage / silt samples were collected.

The Jajay property is located in the Omineca Mining Division, approximately 280 km northwest of Prince George, BC. The property is underlain by the Duckling Creek Syenite Complex, an alkalic phase of the Jurassic-Cretaceous Hogam Batholith.

LOCATION & ACCESS

The Jajay property is located in the Swannell Ranges of the Omineca Mountains, and near the headwaters of Duckling Creek. This location is approximately 280-km northwest of Prince George, British Columbia. Road access to the Lorraine prospect, which forms the heart of the Jajay property, is most commonly via Fort St. James and Germansen Landing on the Omineca Mining Road. However, recent logging activity in the area has pushed industrial logging roads to within a few kilometres of the property from the southeast (via Germansen Landing and Mackenzie), from the southwest (via Leo Creek and Fort St. James) and from the north (via Osilinka and Williston Lake). The new logging road approaching from the southwest has bridged the Omineca River and now provides access to the BC Rail terminus at Lovell Cove on Takla Lake.

The new logging roads and the Lorraine \ Omineca Mining road provide access to the central and lower elevation parts of the property. Most of the property, however, still requires access by helicopter. The closest permanent helicopter bases are located in Fort St. James and Smithers, although helicopters are sometimes seasonally based at Tchentlo Lake Lodge, Silver Creek Camp, Germansen Landing and the Osilinka Logging camp.

PHYSIOGRAPHY

The Jajay property is located in a mountainous section of the Swannell Ranges which is truncated to the north and south by the broad, subdued river valleys of the Osilinka and Omineca Rivers. Elevations on the property range from approximately 1000 metres on Duckling Creek to around 2000 metres on some ridge tops. Pleistocene

,

.

. .

-

ъ.

glaciation has incised a number of north and east-facing cirques, which interrupt the general north-south lineation of the topography. Cirque floors are generally found at 1550 to 1600 metres elevation. Tarns, although present, are rare. Other periglacial features, such as stone stripes, frost boils and nivation hollows are common in the alpine. There is currently no active glaciation on the property. Talus development is extensive on the northern and eastern slopes, while the southern and westerly slopes are commonly vegetated. Glacial till and fluvioglacial outwash blanket the valley bottoms, limiting most outcrop exposures to streambeds below tree line. A thick growth of mature spruce, pine and balsam covers much of the lower elevation areas extending up to tree line at approximately 1650 metres elevation.

PREVIOUS EXPLORATION

The focus of most previous exploration on the Jajay property has been the Lorraine prospect, with somewhat less attention being paid to the Dorothy and Elizabeth showings.

In the early 1900's, prospectors and local natives had noted the malachite-stained bluffs of Lorraine Mountain, but it was not until 1931 that the property was first staked. The Consolidated Mining and Smelting Company Limited acquired the Lorraine property in 1943, but dropped it in 1947 after some limited surface sampling.

Kennex (a subsidiary of Kennecott) acquired the Lorraine property in late 1947. And in 1948-49, under the name of Northwestern Explorations Limited, they mapped, sampled and drilled the property. Five widely spaced AX diamond drill-holes were completed in the Upper Main zone. Regional prospecting, undertaken during this program, traced copper-mineralized float found on the east side of Duckling Creek, up to the Dorothy and Elizabeth Breccia showings. In 1949, Northwestern followed-up this new discovery with a program of mapping, line-cutting, hand trenching and diamonddrilling. Four AX diamond-drill holes, totaling 442 metres, were drilled at the Dorothy showing; the best intersection assayed 0.48% copper over 109 metres.

Limited exploration was carried out in the area during the 1950's and early 1960's. In 1951, H. Warren and D. Barr carried out a biogeochemical survey in the Dorothy / Elizabeth area. In the early 1960's Kennco Explorations (Western) Limited carried out a program of mapping, silt and soil sampling, and geophysical (IP and magnetometer) surveys in the area, and in 1963, they drilled 2 AX diamond-drill holes (DDH DY-1, 2). Sufficient assessment work was generated by this work to hold the Dorothy 2-post claims until 1972, after which cash in lieu of work was paid to hold the property.

The Lorraine property then lay dormant until it was optioned to Granby Mining Company Limited in 1970. During the period 1970-73, Granby enlarged the property and carried out a major exploration program of geological mapping, rock and soil sampling, trenching and drilling. A total of 3,992 metres of diamond drilling and 2,470 metres of percussion drilling were completed on the Main Zone. By 1973, the Main zone had been sub-divided into two zones and a preliminary estimate of reserves calculated. The Lower Main zone was inferred to contain 5,500,000 tonnes grading 0.6% copper and 0.1 grams

per tonne gold, and the Upper Main zone was inferred to contain 4,500,000 tonnes grading 0.75% copper and 0.34 grams per tonne gold. A cut off grade of 0.4% copper was used in the calculations.

The Lorraine and Dorothy properties were inactive during the remainder of the 1970's and through most of the 1980's. In 1989, Kennecott Canada Inc. began a reassessment of the gold-copper potential of the Lorraine and Dorothy properties, prompted in part by the Mount Milligan discovery. The property was expanded, and an initial orientation program was contracted to C.E.C. Engineering Ltd. in 1990. This included road rehabilitation, establishing grids, geological mapping, soil sampling, and geophysical (IP and magnetometer) surveys.

In 1991 Kennecott resumed management of the property and embarked on a 12hole (2,392 metres) diamond-drill program in the Lorraine area, with 9 holes drilled in the Lorraine Extension (later called the Bishop) zone, 2 holes drilled in the Webber zone and 1 hole drilled in the North zone. Detailed geological mapping and petrographic studies were begun during this program. The exploration program also extended to the Dorothy / Elizabeth areas. Work consisted of road construction (from the Dorothy / Duckling Creek access road to the Elizabeth Breccia area), test pitting, rock sampling, IP surveys and the diamond drilling of 6 NQ holes for a total of 961.6 metres. The first 3 holes were drilled at the Dorothy showing in the vicinity of Northwestern's 1949 drill-holes, the remaining 3 holes were drilled along the Dorothy / Duckling Creek road south of Dorel Creek. The most significant intersection was in hole D91-1 which averaged 0.34% copper and 0.12 grams per tonne gold over 121 metres.

In 1993, Kennecott drilled another 2 holes (the 3rd hole was lost in overburden) in the Lorraine property, along with detailed rock chip sampling of the Main and Extension zones.

In 1994 Lysander Gold Corporation optioned the Lorraine property from Kennecott and carried out a 10-hole diamond-drill program (1,221.4 metres), which was focused on the higher-grade sections of the western part of the Upper Main (3 holes) and Bishop (7 holes) zones. The success of this program led to the optioning of the adjacent Boot-Steele claims to protect a possible southeastern extension of the Bishop zone.

Lysander continued drilling in 1995 with a 26-hole, 3843.53 metre program. A total of 23 holes (2903 metres) were drilled on the Upper Main Zone in 1995, proving that mineralization occurs as steeply-dipping, irregular masses. Two holes were drilled in the Bishop zone in 1995; however, neither hole intersected economic mineralization suggesting that faulting is an important feature in the Bishop zone. A single "wildcat" hole drilled on Jeno Ridge also failed to intersect economic mineralization. The program drew attention to a potential copper resource that exists in mineralized talus below the Upper Main zone.

In 1996, the importance of the ring structure, then assigned the name Jajay, was recognized and this prompted Lysander to option the Dorothy and Steelhead properties,

and to consolidate the claim position by staking the encompassing Pal claims. Initial work in 1996 on the expanded Jajay property included a geochemical program of sampling soils, talus fines, seepage sediments and rocks over the western third of the ring structure. A 10-hole diamond-drill program in 1996 probed extensions of the Upper Main and the Bishop zones. Significant intersections included hole 96-44 which cut 32.2 metres of 1.49% copper in the Bishop zone.

Lysander continued drilling in 1997 with an 8-hole (1146.3 metres) program. 4 holes were drilled in the Dorothy showing, 3 holes in the Bishop zone and 1 hole in the Ato area (Bobinette claim). In the Bishop zone, hole 97-47 intersected 64 metres of 0.58 % copper and 0.24 grams per tonne gold. The geochemical program was continued in 1997 and a limited amount of follow-up sampling was carried out. Numerous copper and gold anomalies were identified in both of the 1996 and 1997 geochemical surveys. Subsequent reanalyss of some of these samples resulted in the identification of several PGE anomalies.

In 1998, compilation and analysis of the property data resulted in a new (pittable) ore resource estimate of 31.0 million tonnes grading 0.66 % copper, 0.17 grams per tonne gold and 4.7 grams per tonne silver.

MINERAL TENURE

The Jajay project is made up of four optioned properties and 49 claims acquired by staking, for a total of 108 claims (1019 units). Lysander Minerals Corp (now Lysander Gold Corp.) own all of the claims. The Lorraine and Dorothy properties are subject to agreements with Kennecott Canada Inc., the Boot-Steele property is subject to an agreement with Richard Haslinger and Larry Hewitt, and the Steelhead property is subject to an agreement with Alvin Jackson. The remainder of the claims were staked by Lysander and are not encumbered. A listing of mineral tenures is as follows:

Claim Name	Record #	# units	Expiry Date	Expiry Year
Pal 1	346810	6	31-May	2001
Pal 2	346811	20	30-May	2001
Pal 3	346812	20	1-Jun	2001
Pal 4	346813	20	11-Jun	2001
Pal 6	346815	20	11-Jun	2001
Pal 7	346816	20	11-Jun	2001
Pal 8	346817	15	9-Jun	2000
Pal 9	346818	20	9-Jun	2000
Pal 10	346819	20	9-Jun	2000
Pal 12	346820	15	10-Jun	2000
Pal 13	346821	20	12-Jun	2000
Pal 14	346822	15	12-Jun	2000
Pal 15	346823	20	6-Jun	2001
Pal 16	346824	20	7-Jun	2001
Pal 17	346825	20	7-Jun	2001
Pal 18	346826	20	6-Jun	2001
Pal 19	346827	20	5-Jun	2001
Pal 20	346828	8	2-Jun	2001
Pal 21	346829	20	31-May	2001
Pal 22	346830	8	7-Jun	2001
Pal 23	346831	20	7-Jun	2000
Pal 24	346832	20	6-Jun	2000
Pal 25	346833	20	4-Jun	2000
Pal 26	346834	20	4-Jun	2000
Pal 27	346835	20	2-Jun	2000
Pal 30	346838	20	2-Jun	2000
Pal 31	346839	20	3-Jun	2000
Pal 32	349774	20	11-Aug	2001
Pal 33	349775	12	16-Aug	2000
Pal 34	349776	8	16-Aug	2002
Pal 35	349777	10	14-Aug	2000
Pal 36	349778	20	17-Aug	2000
Pal 37	349779	20	17-Aug	2000
Pal 38	349780	20	17-Aug	2000
Pal 39	349781	20	17-Aug	2000
Pal 40	349782	15	16-Aug	2000
Pal 41	349783	15	20-Aug	2000
Pal 42	349784	12	18-Aug	2000
Pal 43	349785	20	21-Aug	2000
Pal 44	349786	20	20-Aug	2000
Pal 47	350425	15	24-Aug	2001
Pal 48	350016	12	23-Aug	2000
Bobino 1	346808	10	7-Jun	2001
Bobinette	346809	10	8-Jun	2000

Claim Name	Record #	# uni	its Expiry Date	Expiry Year
Fiona	352235	1	9-Oct	2000
Isabelle	352236	1	9-Oct	2000
Suzanne	352237	1	9-Oct	2000
Steelhead 1	334766	8	6-Apr	2001
Steelhead 2	334767	8	6-Apr	2001
Sh 8	334773	1	6-Apr	2001
Sh 9	334774	1	6-Apr	2001
Sh 10	334775	1	6-Apr	2001
Lorraine 1	243499	1	17-Sep	2006
Lorraine 2	243500	1	17-Sep	2006
Lorraine 3	243501	1	17-Sep	2006
Lorraine 4	243502	1	17-Sep	2006
Lorraine 5	243503	1	17-Sep	2006
Lorraine 6	243504	1	17-Sep	2006
Lorraine 7	243505	1	17-Sep	2006
Lorraine 8	243506	1	1 7-Se p	2006
Lorraine 9	243507	1	22-Jun	2006
Lorraine 10	243508	1	22-Jun	2006
Lorraine 11	243509	1	22-Jun	2006
Lorraine 12	243510	1	22-Jun	2006
Lorraine 1FR	245449	1	31-May	2006
Lorraine 2FR	245450	1	31-May	2006
Lorraine 3FR	245451	1	31-May	2006
Lorrex 1	243646	1	4-Sep	2006
Lorrex 2	243647	1	4-Sep	2006
GK 1	245043	1	3-Jul	2006
GK 2	245044	1	3-Jul	2006
GK 3	245045	1	3-Jul	2006
GK 4	245046	1	3-Jul	2006
GK 5	245047	1	3-Jul	2006
GK 6	245048	1	3-Jul	2006
GK 7	245049	1	3-Jul	2006
GK 8	245050	1	3-Jul	2006
GK 9	245051	1	3-Jul	2006
GK 10	245052	1	3-Jul	2006
GK 11	245053	1	3-Jul	2006
GK 18	245054	1	3-Jul	2006
GK 19	245955	1	3-Jul	2006
GK 20	245056	1	3-Jul	2006
GK 21	245057	1	3-Jul	2006
GK 109 FR	245452	1	31-May	2006
GK 110 FR	245530	1	25-Jul	2006
GK 111 FR	245453	1	31-May	2006
GK 112 FR	245531	1	25-Jul	2006
Dorothy 1	241431	12	20-Nov	2002

Claim Name	Record #	# units	Expiry Date	Expiry Year
Dorothy 2	241432	12	20-Nov	2002
Dorothy 3	241433	12	20-Nov	2002
Dorothy 4	241434	12	20-Nov	2002
Dorothy 5	241961	12	14-May	2002
Dorothy 6	241962	15	14-May	2002
Dorothy 7	241963	18	14-May	2002
Dorothy #1	243511	1	16-Jul	2002
Dorothy #3	243512	1	16-Jul	2002
Elizabeth #1	243513	1	27-Aug	2002
Steele #1	240496	20	29-Apr	2003
Steele #2	240497	20	29-Apr	2003
Steele #3	240498	20	29-Apr	2003
Steele #4	240499	20	29-Apr	2003
Boot 6	242900	15	30-Oct	2001
Boot 10	303913	20	5-Sep	2002
Duck 1	371543	1	31-Aug	2000
Duck 2	371544	1	31-Aug	2000
Duck 3	371545	1	31-Aug	2000
Duck 4	371 546	1	31-Aug	2000
MacKenzie 1	372404	20	6-Oct	2000
MacKenzie 2	372405	20	6-Oct	2000
MacKenzie 3	372406	20	6-Oct	2000
MacKenzie 4	372407	20	6-Oct	2000
MacKenzie 5	372408	8	6-Oct	2000

1999 EXPLORATION PROGRAM

The objective of the 1999 geochemical sampling program was to follow-up copper, gold, platinum and palladium anomalies that were discovered in talus fines and seepage samples collected in 1996 and 1997. 1-2 geologists and 1 assistant carried out fieldwork during the periods August 14th to September 3rd, 1999. Exploration work focused on areas with geochemical anomalies peripheral to the main Lorraine prospect, and was based out of 3 fly-camps established on the Steele #3 (southeast of the Lorraine prospect), Dorothy (Elizabeth showing) and on the Pal 48 (north end of the property) claims. Prospecting and helicopter pad construction was carried out on the MacKenzie showing from a base camp on Silver Creek. All access to the property was by helicopter. A total of 48 rock and 121 soils/talus fines/seepage samples were collected.

Steele #3

Two fly-camps were established on the Steele #3 claim; the first located on Jeno Ridge near the "BM" breccia occurrence (at 1900 metres elevation), and the second at tree-line in the prominent circue south of the Bishop zone.

The BM breccia, which has been sampled by previous exploration programs has been shown to contain highly anomalous concentrations of platinum group metals. The breccia was re-sampled and the area prospected on August 14th. Two rock samples were collected. No additional occurrences of the breccia were found, other than the downslope trend of several exposures of the BM breccia. A reconnaissance line of 8 soil samples was taken on the grass-covered west side of Jeno Ridge to prospect for a possible western extension of the breccia mineralization under cover.

Several days (August 15th to 19th) were spent following-up anomalous samples in the southernmost cirque of Steele #3. Talus fines sampling in 1996 had identified anomalous gold geochemistry coming from both the north and southeast walls of this cirque; and in addition, re-analysis of the fines in 1999 had identified several weak (<15 ppb) platinum anomalies on the north side of this cirque. Exploration this year included prospecting and sampling of several gossans in the cirque, discovery of a zone of malachite-stained, mineralized syenite outcrop and the infill sampling of talus fines on the north and south cirque walls. The newly discovered mineralized zone is located in the north-central part of the cirque at approximately 1740 m elevation, below the line of talus fines and seepage samples collected in 1996. Five short soil sample lines were run over the area to test the geochemical response of the mineralized outcrop and the shear zone. A total of 19 rock samples, and 46 soil and talus fines samples were collected in the cirque.

Dorothy (Elizabeth)

August 22 & 23, 1999 were spent prospecting and sampling the Elizabeth breccia and surrounding area on the Elizabeth 1, Dorothy 3 and Dorothy 4 claims by 2 geologists and 1 assistant. Infill sampling of several copper anomalies in talus fines and seepage

8

samples was also carried out. The Elizabeth breccia was relocated and found to be partly exposed over about a 10-metre width above a 1991 a cat road. There is little evidence of previous work at the showing; a shallow hand trench, now obscured by the cat-road and a few sample ribbons are the only evidence of prior exploration. A total of 10 Rock samples and 26 talus fines and seepage samples were collected in this area.

PAL 48

Two areas were prospected and sampled by 1 geologist and 1 assistant from a flycamp established in a north-facing cirque on Pal 48. The first area examined was the Steelhead 1 claim on August 26, 1999. A total of 10 talus fines samples were taken at 50m spacing on the hillside above a group of anomalous seepage samples (Numbers 111345 to 111350) which were collected in 1996. The following 3 days (August 27 to August 29, 1999) were spent prospecting and sampling the Pal 48 claim area. Much of this time was focused on the hillside above two 1996 talus fine samples, which had yielded a multi-element anomaly. A total of 12 rock samples and 28 talus fines were collected from the Pal 48 claim.

MacKenzie Showing

Two showings, one massive and one semi massive were located on Duckling Creek following up a description provided by Terry Mackenzie, who had worked in this area in the 1980's. The MacKenzie showings were staked (Duck 1-4), and sampled on August 31, 1999. 1 geologist and an assistant collected a total of 5 rock samples and 1 silt sample. The MacKenzie showing was visited again on October 1-2 when helicopter pads were built at each of the exposures. It is believed that the two showings, which occur on the eroded incised edge of the creek, represent fissure infilling of sulfides derived from a porphyry occurrence.

RESULTS & INTERPRETATION

A posting of sample locations and results is included in figures 3 though 15. The results of this work is summarized as follows:

Steele #3

The BM breccia on Jeno Ridge was the focus of the first fly camp. This homolithic breccia is an small irregular zone of fracture fillings / dilations containing angular breccia fragments up to 10 cm long of intense, biotite-altered, gray syenite with a sulfide rich matrix. Locally the breccia contains up to 40% pyrite, bornite and malachite, combined. The gray syenite host displays intense biotite alteration within a few metres of the breccia, in places up to 60% of rock is composed of biotite. Numerous pink K-feldspar veinlets to 1cm thick crosscut through the host and appear to be associated with the breccia. They are unaltered and unmineralized. Many of the K-feldspar crystals appear to be pegmatitic, even within the limited space of the veinlets, suggesting that that the residual melt contained a hydrous / volatile component. This would help to explain the presence of the anomalous platinum group element geochemistry.

Re-analysis of the BM breccia confirmed the precious metals content (Au: 5972 ppb; Ag: 134.8 ppm; Pt: 399 ppb; Pd: 948 ppb). The soil samples collected on the grassy slope to the west of the breccia returned 1 significant anomaly (#C99-ST-001 Pd: 41 ppb). This may be the result of mechanical, down-slope dispersion from a westward extension of the breccia under cover.

Prospecting and sampling in the southernmost cirque of Steele #3 yielded a number of geochemical anomalies in talus fines, soil samples, and the discovery of a zone of malachite-stained, mineralized syenite in the north-central part of the cirque at 1740 m elevation. This outcrop is below the line of talus fines and seepage samples collected in 1996. Mineralization consists of disseminated blebs of pyrite, chalcopyrite and bornite in a medium-grained, malachite-stained, magnetite-rich, gray syenite. The mineralization was traced, discontinuously for approximately 50 metres and is found adjacent to and on the south side of a shear zone. Visibly mineralized gray syenite returned analysis values of 0.71 % copper and 974 ppb gold (P99-ST-006), and 0.45% copper and 563 ppb gold (P99-ST-013). A sample of a pink syenite in contact with a malachite-stained, syenitemagnetite breccia (P99-ST-008) returned higher copper values 1.70 % and a gold value of 53 ppb. The syenite-magnetite breccia itself returned values of 0.54% copper and 369 ppb gold.

A 10-cm wide quartz vein in the shear zone was noted to contain disseminated specks of bornite and pyrite, and when analyzed, was found to contain 18,974 ppb gold. A sample of the silicified, limonitic host rock (syenite?) for the shear zone returned 1071 ppb gold. This shear zone, as exposed in a creek bank is 3-4 metres wide.

Soil sampling across the cirque floor and in the vicinity of the mineralization yielded a number of anomalies in both copper and gold. A soil sample (C99-ST-024) near mineralized outcrop returned values of 347-ppm copper and 40 ppb gold. Samples (C99-ST-018 & 019) taken near the sheer zone and above the mineralized syenite outcrop yielded low copper values but 114 ppb and 247 ppb gold, respectively. Clearly these samples reflect different sources for each anomaly; copper from the mineralized syenite and gold from the shear zone. Another soil sample (C99-ST-025) on trend with the shear zone returned 1230-ppb gold and 103-ppm copper (re-analysis). A group of copper anomalies (but with low gold values) in soils south of the mineralized syenite (C99-ST-014: 305 ppm Cu; C99-ST-015: 914 ppm Cu; C99-ST-021: 279 ppm Cu) suggest a bedrock source for the copper, perhaps mineralized syenite. This copper anomaly remains open to the west and southeast. Platinum and palladium values are generally low, except for soil samples C99-ST-011, 040 & 042 which returned 42, 40 & 45 ppb palladium respectively and remain unexplained.

Talus fines collected in the Steele #3 cirque returned mixed results. Along the north slope of the cirque, the anomalous gold analysis of 495 ppb returned by 1996 talus fines sample #104154 was not reproduced by samples C99-ST-038, 039, 046 which bracketed the 1996 sample. However, sample C99-ST-047, located 100 metres to the northeast, yielded 1311-ppm copper and 107 ppb gold. Moderately anomalous copper

geochemistry was identified in the northwest corner of the cirque. Samples C99-ST-043 & 044 returned 734 ppm and 1514 ppm copper respectively. A sample of soil from a maroon-coloured, hematitic gossan in this area yielded 591 ppm copper and 96 ppb gold.

The talus fines collected along the south slope of the cirque repeated most of the previous gold anomalies, except for #103165 (226 ppb gold) which was bracketed by samples #C99-ST-049 & 050 and which returned 56 ppb & 65 ppb gold respectively. The 1996 gold anomalies in samples #103168 & 103170 (103 ppb, 134 ppb gold) were repeated by samples C99-ST-053, 054, 055 & 056 (335 ppb, 130 ppb, 227 ppb & 118 ppb gold). A rock (float) sample of limonitic intrusive containing pyrite and a quartz veinlet (sample # P99-ST-019) returned 307 ppb gold. The source for the gold in talus fines is probably the prominent sheer zones cutting through the south wall of the cirque.

Dorothy (Elizabeth)

The location and sampling of the Elizabeth breccia was the primary focus of work in the Dorothy area. The Elizabeth breccia is an intrusive breccia, possibly localized by a fault, and cemented with a bornite-chalcocite-malachite matrix. The breccia fragments are generally small, less than 10 cm in length, angular and bleached / clay altered. Vuggy open spaces in the breccia are common. The sulfide matrix is fine-grained and comprises approximately 40% of the rock. A composite grab sample (P99-DE-001) assayed 22.16% copper; precious metals values were relatively low. Samples of bleached, clay-altered and chalcocite-bearing intrusive (M99-DE-002 & 003) were collected near the northern margin of the breccia and returned values of 1360 ppm and 5641 ppm copper, and 81 ppb and 127 ppb gold respectively. A line of 6 talus fines samples (C99-DE-001 to 006) was taken several hundred metres upslope from the Elizabeth breccia. Most contained very low copper values, except for the first sample at the end of the cat road which returned 361 ppm copper. This may suggest a north-south alignment to structures hosting the copper mineralization in this area.

North of Dorel Creek, a 1999 talus fines sample # 972013 had returned 1876 ppm copper. Re-sampling (C99-DE-007) did not reproduce this anomaly (514-ppm copper). Upslope, 200 metres to the northwest, an outcrop of weakly mineralized mafic syenite returned 1722 ppm copper (sample #M99-DE-004), a talus fines sample (#C99-DE-008) taken near by contained 748 ppm copper.

Several samples were taken along the road following the Duckling Creek valley, approximately due west of the Elizabeth breccia. Road cuts along this area expose a gray syenite that is pervasively mineralized with minor amounts of pyrite and chalcopyrite, although the sulfide content locally exceeds 1%. Sample M99-DE-007 (006A) returned 6097-ppm copper and negligible gold. Talus fines collected along the first dogleg of the Elizabeth breccia road (#C99-DE-009 to 023) returned values in the 200 to 500 ppm range. These appear to be above general background values, but are not interpreted to be of special interest because outcrop in this area is weakly mineralized, and in addition, they are downslope from the Elizabeth breccia.

Two seepage samples (#974060 & #974062) taken at 1200 metres elevation below the Duckling Creek road had returned anomalous values of 2476 ppm and 1052 ppm copper, respectively. However, 3 follow-up seepage samples (#C99-DE-024, 025 & 026) which bracketed the anomalous samples were unable to reproduce the anomaly.

Pal 48 (Steelhead 1)

The Talus fines samples collected on the Steelehead 1 claim returned values ranging from 176 ppm to 536 ppm copper, within the range of the 1996 talus fines samples collected here. They provide little information to explain the 1996 seepage sample anomalies below, other than to suggest that the anomalies are indeed due to seepage.

Talus fines samples collected on the Pal 48 claim were moderately anomalous and they identified two area of interest. The southeast wall of the cirque produced three anomalous talus fines samples: sample numbers C99-PAL-002, 0044 & 005, which returned 1211 ppm, 1390 ppm and 1215 ppm copper, and 13 ppb, 69 ppb and 29 ppb gold, respectively. These are moderately anomalous values in this area. The highly anomalous copper values found in the 1996 talus fines were not repeated; however, the samples were found to have been taken from the toe of a relic rock-glacier, and are transported anomalies. It is believed that they originated from the general area of this year's samples #C99-PAL-002 to 005. Malachite-stained gray syenite float was found on this hillside float (rock sample P99-PAL-003 returned 7477 ppm copper), which together with the anomalous talus fines suggests that a zone of mineralization exists upslope.

Talus fines samples #C99-PAL-019 & 021 returned values of 1055 ppm and 1294 ppm copper from the southwest side of the cirque. Several pieces of malachite-stained float (rock sample P99-PAL-009 returned 3886-ppm copper) were also found in this area; however, no pattern is evident to the anomalous samples found so far.

A small zone of chalcopyrite-molybdenite mineralized monzonite was found in the cirque floor at about 1640 metres elevation. Both talus fines (Sample numbers C99-PAL-024 to 026) and rock samples (sample numbers P99-PAL-010 to 012) returned anomalous copper-molybdenum values.

MacKenzie Showing

The Mackenzie showing on Duckling Creek was found to consist of two showings separated by 250 metres of clay bank. The first showing consists of a lenses of massive pyrite-chalcopyrite exposed in a creek cut-bank. This mineralization appears to be hosted by an intensely fractured, chlorite-rich, intermediate to basic intrusive with a late potassic overprint consisting mainly of cross-cutting K-feldspar veins. A second showing located 250 metres to the south consists of a one metre wide massive chalcopyrite lens dipping into the creek bank. Analysis of this lens (sample #P99-DUCK-005) returned 20.75% copper, 127.6 ppm silver and 6764 ppb gold. Sample P99-DUCK-001, a 1.6 metre channel sample across mineralized outcrop at the northern showing, returned 2.68%

copper 16.1-ppm silver and 408 ppb gold. Grab samples P99-DUCK-002 to 004 taken in the vicinity of #P99-DUCK-001, returned 26314 ppm, 8147 ppm and 4422 ppm copper respectively.

CONCLUSIONS & RECOMMENDATIONS

The 1999 field program was successful in finding mineralization at several different locations on the Lorraine property and follow-up exploration work is warranted at all of the sites visited.

Geophysical surveys should be completed at the MacKenzie discovery, at the southern most circue syenite showing on the Steele #3 claim and at the new copper – molybdenum discovery in the vicinity of samples C99-PAL-024 to 026 on the Steelhead 1 claim.

The cat road, which ends immediately below and to the south of the Elizabeth breccia, should be extended. A switchback should be constructed here going higher above the breccia by zigzagging back in a northern direction.

Diamond drill testing will be required to further evaluate all of these targets.

÷

<u>REFERENCES</u>

•

•

.

.

Archambault, M., Price, B.J. and Rebagliati, C.M. (1991): 1990 Exploration Report, Lorraine Property; *C.E.C. Engineering Ltd.* for *Kennecott Canada Inc.*, Unpublished private report, 23 pp. with extensive appendices and 11 plates.

Bishop, S. (1994): 1993 Geochemical and Diamond Drilling Report on the Lorraine Property; *Kennecott Canada Inc.*, Unpublished private report, 20 pp. with appendices.

Bishop, S. and Fingler, J. (1992): 1991 Exploration Report, Lorraine Property; *Kennecott Canada Inc.*, Unpublished private report, 54 pp. with extensive appendices and maps.

Bishop, S.T., Heah, T.S. and Lang, J.R. (1995): Alkalic Intrusion Hosted Copper-Gold Mineralization at the Lorraine Deposit *in* Porphyry Deposits of the Northwestern Cordillera of North America; *CIM*, Special Volume 46, pp. 623-629.

Garnett, J.A. (1971): Duckling Creek Area, Hogem Batholith; B.C. Dept of Mines & Pet. Res., GEM 1971, pp. 203-219.

Garnett, J.A. (1973): Lorraine, Lorrex; B.C. Dept of Mines & Pet. Res., GEM 1973, pp. 370-378.

Garnett, J.A. (1973): Geology and Mineral Occurrences of the Southern Hogem Batholith; B.C. Dept of Mines & Pet. Res., Bulletin 70, 75 pp.

Gravel, J. (1990): Dorothy Project - 1990 Soil Geochemical Survey NTS 93N/14; ; *Prime Geochemical Methods Ltd.* for *C.E.C. Engineering Ltd.*, Unpublished private report consisting of 30 maps.

Gravel, J. (1997): Soil, Talus Fines and Seepage Geochemistry of the JAJAY Project, NTS 94N 13/14 Germansen Landing Area, British Columbia; Prime Geochemical Methods Ltd. for Lysander Gold Corporation, Unpublished private report dated July, 1997 and consisting of 105 maps.

Gravel, J. (1997): Soil, Talus Fines and Seepage Geochemistry of the JAJAY Project, Steel Creek and Dorothy Areas NTS 94N 13/14 Germansen Landing Area, British Columbia; *Prime Geochemical Methods Ltd.* for *Lysander Gold Corporation*, Unpublished private report dated December, 1997 and consisting of 18 maps.

Gravel, J. (1999): Memo to Bill Morton and Jay Page Re Work program on JAJAY Project; *Prime Geochemical Methods Ltd.* for *Lysander Gold Corporation*, Unpublished private report dated August 23, 1999 and consisting of 16 maps.

Hammond, W.P. (1948): Report on Exploration and Development in the Omineca District; *Granby Mining Company Limited*, Unpublished private report, 41 pp. with appendices.

۰.

۱.,

.

•

-

e - 1

.

.

.

.

.

. .

.

, .

.

*

.

.

ь

•

. .

Hammond, W.P. (1949): Report on the Omineca Project; Northwestern Explorations, Limited; Unpublished private report, 29 pp. with appendices.

Koo, J.H. (1968): Geology and Mineralization in the Lorraine Property area, Omineca Mining Division, B.C.; University of British Columbia, Unpublished M.Sc.Thesis, 107 pp.

Lowe, D.F. and Prater, J.D. (1966): Progress Report on the Leaching of Samples from the Lorraine Prospect, British Columbia, Canada; *Hydrometallurgy Research Group* for *Kennco Exploration (Western) Limited*, Unpublished private report, 7 pp.

Page, J.W. (1998): Geological Compilation Report - Lorraine Property; *Mincord Exploration Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 15 pp. with appendices.

Pothorin, C. and Bishop, S. (1992): 1991 Exploration Report Dorothy Property; Kennecott Canada Inc. pp. 33 with extensive appendices.

Price, B.J. and Copeland, D.J. (1990): Assessment Report, Lorraine Property; C.E.C. Engineering Ltd. for Kennco Explorations (Western) Ltd., Unpublished private report, 15 pp. with appendices.

Richardson, P.W. (1995): Assessment Report Describing the 1995 Drilling Program Lorraine Property; *Richardson Geological Consulting Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 12 pp. with extensive appendices.

Richardson, P.W. (1997): The JAJAY Project, Assessment Report Describing the 1996 Geological, Geochemical and Drilling Programs on the Lorraine, Steelhead, Dorothy and Boot Steel Properties and the Pal Claims; *Richardson Geological Consulting Ltd.* for *Lysander Gold Corporation*, Unpublished private report, 22 pp. with extensive appendices.

Stevenson, R.W. (1961): Compilation Report on Previous Work & Claim Expiry Dates; *Kennco Explorations (Western) Limited*; Unpublished private report, 11 pp.

Stevenson, R.W. (1961): Report on Geochemical Survey; *Kennco Explorations (Western) Limited*; Unpublished private report, 4 pp.

Stevenson, R.W. (1962): Interim Report; Kennco Explorations (Western) Limited; Unpublished private report, 8 pp.

Stevenson, R.W. (1963): Interm Report; Kennco Explorations (Western) Limited; Unpublished private report, 9 pp.

.....

İ.,

۰.

Ξ.

.

~

-

•

•

.

e ...

.

.

Stevenson, R.W. (1970): Resume of Data on the Lorraine Deposit, Omineca Mining District, B.C.; Kennco Explorations (Western) Limited; Unpublished private report, 9 pp.

Wilkinson, W.J. (1973): Report on Lorraine Exploration Program 1972; The Granby Mining Company Limited, Unpublished private report, 11 pp.

Wilkinson, W.J. (1974): Lorraine Deposit; The Granby Mining Company Limited, Unpublished private memorandum, 4 pp.

Wilkinson, W.J., Stevenson, R.W. and Garnett, J.A. (1976): Lorraine *in* Porphyry Deposits of the Canadian Cordillera; *CIM*, Special Volume 15, pp. 397-401.

COST STATEMENT

[]

•

р...

ы. .

<u>بر</u>

e -

•

- · ·

~ ·

.

e -

κ.

•

.

с-.

e -

•

.

e -

۰.

r -

-

÷

• • •

J. Page P.Geo	Aug 11 - Aug 31	22 days @ \$450	\$9,990
	Sept 1 - 13	13 days @ \$450	5,850
	Nov 1 - 2	2 days @ \$450	900
J.W. Morton P.Geo	Aug 20 - 24	5 days @ \$450	2,250
	Sept 10	1 days @ \$450	450
	Sept 29 - 30	2 days @ \$450	900
	Oct 1 - 2	2 days @ \$450	900
LP Charbonneau	Aug 10 - Aug 31	23 days @ \$250	5,750
	Sept 1 - 3	3 days @ \$250	750
	Oct 1	1 day @ \$250	250
Mike Mustard	Sept 29 - 30	2 days @ \$250	500
	Oct 1	1 day @ \$250	250
Commercial Airfares:	Vancouver-Prince	George Rtn	4 01
	Vancouver-Smithe	rs Rtn	738
Camp Rental	23 days @ \$100		2,300
Consumables and Field	i Equipment		1,700
Truck rental			2,650
Hotel			1,434
Expense accounts (incl	udes some fuel)		866
Fuel (not in expense ac	counts)		225
Freight			269
Drafting supplies			41
Telephone			91
Helicopter	15.5 hours @ \$847		13,129
Analysis of 169 soil an	d rock samples		2,535
(30 element ICP metal determina	with additional gold ttions)	and platinum group	

TOTAL

\$55,119

17

Certificate of Qualifications

I, Jay W. Page, hereby certify that:

I am a graduate of the University of British Columbia, holding a B.A. in Geography/Geomorphology (1977) and a B.Sc. in Geology (1984).

I am a registered member, in good standing as a Professional Geoscientist, with the Association of Professional Engineers and Geoscientists of the Province of British Columbia, registration number 19596.

I have been employed in mining exploration since 1977 by Placer Development Ltd., D.G. Leighton & Associates Ltd., Bema Industries Ltd., AGIP Canada Ltd., Beaty Geological Ltd., Westex Exploration Ltd., and Mincord Exploration Consultants Ltd.

I have visited the JAJAY property, and I supervised the 1999 exploration program described in this report.

I have no interest, direct or indirect, financial or otherwise in Lysander Minerals Corp. or any of their assets including mineral properties, nor do I expect to receive any.

I give my consent to Lysander Minerals Corp. to use this report in a company prospectus, statement of material facts or other public document.

Signed this 14th day of December, 1999 in the District of Coldstream, British Columbia.

age. P.Geo.

..... . Lu **b**.... APPENDIX 1 **Sample Descriptions** ĺ. -• -• • -. . . . ۰. -. . v -. . ι, e - 1 . - -• * ~ • **-** - -• *.* . .

SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
STEELE 3 - JEN	O RIDGE			
P99-ST-001	STEELE 3 - Jeno Ridge @ 1905m elevation.	Grab sample of BM breccia outcrop	JWP 15/8/99	Syenite breccia, showing intense biotite and k-feldspar alteration, locally contains up to 30% bornite with intense malachite development. Breccia matrix includes k-feldspar crystals to several cm, suggesting growth under high vapour/volatile pressure.
P99-ST-002	STEELE 3 - Jeno Ridge @ 1940m elevation.	Grab sample of outcrop	JWP 15/8/99	Hematitic breccia from ridge top.
STEELE 3 - SOL	JTH CIRQUE			
P99-ST-003	STEELE 3 - south side of south cirque @ ~1700m elevation.	Grab sample of outcrop	JWP 16/8/99	Limonitic/sideritic zone (+/-sheer?) of altered biotite- magnetite syenite.
P99-ST-004	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of float, close to source.	JWP 16/8/99	Quartz vein, 6-8 cm thick, contains 1-2% rust boxwork, minor bornite, malachite, chalcopyrite. Hosted by gossenous soil zone/sheer trending @ 80 and ~3-4 m. wide as exposed by creek.
P99-ST-005	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of outcrop, as exposed by stream.	JWP 16/8/99	Rusty-weathering, limonitic & silicified host (syenite?) for sheer with small quartz veinlets carrying minor pyrite and chalcopyrite.
P99-ST-006	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 16/8/99	Grey, medium-grained, biotite-pyroxene-magnetite syenite containing disseminated & fracture controlled blebs of bornite. Malachite stain in weathering rind.
P99-ST-007	STEELE 3 - north side of south cirque @ 1710m elevation.	Grab sample of outcrop	JWP 17/8/99	Homolithic syenite breccia with magnetite matrix and malachite staining. Small area exposed: 1 x 0.5 m.
P99-ST-008	STEELE 3 - north side of south cirque @ 1710m elevation.	Grab sample of outcrop	JWP 17/8/99	Coarse-grained pink biotite-syenite with malachite staining. Adjacent to, and could be host to, breccia described by P7 above.
P99-ST-009	STEELE 3 - north side of south cirque @ 1715m elevation.	Grab sample of outcrop	JWP 17/8/99	Medium-grained grey to grey-pink biotite-syenite with minor blebs of pyrite, +/- trace chalcopyrite? mineralized area is just a small patch, not typical.
P99-ST-010	STEELE 3 - north side of south cirque @ 1720m elevation.	Grab sample of subcrop	JWP 17/8/99	Grey syenite with tiny blebs of pyrite +/- chalcopyrite, similar to P9 above.
P99-ST-011	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from upper part of o/c of sample P6, sample has less magnetite and little visible sulphide mineralization.
P99-ST-012	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from lower part of o/c of sample P6, sample has several % magnetite and no visible sulphide mineralization. Syenite is coarser-grained and more pink coloured than P6.

			· · · · · · ·	
SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
P99-ST-013	STEELE 3 - north side of south cirque @ 1735-1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey biotite-pyroxene syenite from northwest corner of o/c of sample P6, sample is epidote-altered and contains minor disseminated pyrite and is malachite stained.
P99-ST-014	STEELE 3 - north side of south cirque @ 1740m elevation.	Grab sample of outcrop	JWP 18/8/99	Pink-grey syenite with prominent biotite books, trace of disseminated pyrite.
P99-ST-015	STEELE 3 - north side of south cirque @ 1730m elevation.	Grab sample of subcrop	JWP 18/8/99	Medium-grained, grayish-pink, biotite chlorite-altered- pyroxene syenite with minor pyrite, bornite and malachite.
P99-ST-016	STEELE 3 - north side of south cirque @ 1720m elevation.	Grab sample of outcrop	JWP 18/8/99	Fine-grained pink syenite with 1% disseminated, tiny pyrite cubes.
P99-ST-017	STEELE 3 - north side of south cirque @ 1790m elevation.	Grab sample of outcrop	JWP 19/8/99	Rusty-weathering siliceous breccia, 0.5m wide, 110/85S. weathered surfaces show siliceous rims on syenite(?) fragments, but no quartz veining,
P99-ST-018	STEELE 3 - north side of south cirque @ location of talus fines sample 104153	Grab sample of float	JWP 19/8/99	Bits of cream-coloured, siliceous rock with weathered-out pyrite boxwork.
P99-ST-019	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite with disseminated pyrite and guartz vein.
P99-ST-020	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite with disseminated pyrite. Syenite is k-feldspar rich.
P99-ST-021	STEELE 3 - southern talus slope	Grab of talus	JWP 20/8/99	Rusty-weathering syenite breccia with tiny carbonate veinlets.
DOROTHY - EL				<u> </u>
P99-DE-001	DOROTHY 4 - Elizabeth breccia area	Grab of talus	JWP 22/8/99	Syenite breccia with bornite (+/-chalcocite) -malachite matrix.
P99-DE-002	DOROTHY 3	Grab sample of outcrop	JWP 22/8/99	Biotite-altered intrusive (diorite?) with minor pyrite, trace chalcopyrite and lots of magnetite.
M99-DE-001	DOROTHY 4 - road-cut	Grab sample of outcrop	BM 22/8/99	Dark-coloured, biotite rich intrusive rock containing up to 5% pyrite +/- chalcopyrite.
M99-DE-002	DOROTHY 4 - Elizabeth breccia area	Grab sample of outcrop	BM 22/8/99	Bleached, clay-altered with relic magnetite and black amorphous blebs.
M99-DE-003	DOROTHY 4 - Elizabeth breccia area	Grab sample of outcrop	BM 22/8/99	Bleached, clay-attered rock as above, but more siliceous. Contains black copper/manganese (?) wad.
M99-DE-004	DOROTHY 3	Grab sample of float	BM 22/8/99	Mafic-rich syenite, malachite stain, only one piece from blow down. Lots of pink K-feldspar and manganese stain on float in this area.

•

an in the second	n an an ann ann an Airtean an Airte			
SAMPLE NUMBER	LOCATION / CLAIM / AREA	SAMPLE TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
M99-DE-005	DOROTHY 4 - road-cut	Grab sample of over grown talus, local source	BM 23/8/99	Diorite with 2% pyrite, minor chalcopyrite, and a trace bornite, cut by quartz-feldspar veinlet.
M99-DE-006	DOROTHY 4 - road-cut	Grab sample of over grown talus, local source	BM 23/8/99	K-feldspar altered syenite with patchy silicification and "blue' colour. Contains several % pyrite, minor chalcopyrite and bornite, also perhaps chalcocite as fracture coatings. Sulphides are fracture controlled.
M99-DE-007	DOROTHY 4 - road-cut	Grab sample of outcrop	BM 23/8/99	Diorite with 1-2 % pyrite and trace chalcopyrite. Minor silicification.
M99-DE-008	DOROTHY 4 - road-cut	Grab sample of outcrop	BM 23/8/99	Coarse-grained biotite syenite with large biotite books, lots of magnetite and minor bornite.
PAL 48 CLAIMS				
P99-PAL-001	PAL 48 - southeast ridge top	Grab sample of outcrop	JWP 26/8/99	Rusty-weathering grey syenite with minor pyrite and a trace of chalcopyrite introduced with quartz vein.
P99-PAL-002	PAL 48 - southeast ridge top	Grab sample of outcrop	JWP 26/8/99	Rusty-weathering grey syenite with 2% pyrite and 1% magnetite. Fracture control of pyrite.
P99-PAL-003	PAL 48 - southeast talus slope	Grab sample of talus	JWP 27/8/99	Malachite stained pink syenite.
P99-PAL-004	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Grey/pink syenite fault breccia, epidote atteration, hematite matrix, minor malachite staining.
P99-PAL-005	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Mafic-rich grey syenite with K-feldspar vein and replacement envelope containing possible small specks of bornite.
P99-PAL-006	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Bleached, sericite chlorite-altered grey syenite with minor disseminated and fracture fillings of pyrite. Possible trace of chalcopyrite.
P99-PAL-007	STEELEHEAD 1 - ridge top	Grab sample of outcrop	JWP 28/8/99	Mafic-rich syenite with disseminated specks of pyrite and possible bornite.
P99-PAL-008	STEELEHEAD 1 - Talus slope of cirque @ 1720m elevation.	Grab sample of talus	JWP 28/8/99	Silicified syenite (?) breccia with vuggy quartz, 1% pyrite as disseminated blebs and stringers and minor chalcopyrite.
P99-PAL-009	PAL 48 - southwest talus slope @ 1730m elevation.	Grab sample of talus	JWP 28/8/99	Syenite with 1-2 cm pink K-feldspar vein and many malachite-covered blebs disseminated in alteration envelope.
P99-PAL-010	PAL 48 - southwest slope near camp @ 1640m elevation	Grab sample of talus, 10-15m down slope from source.	JWP 29/8/99	K-feldspar rich (altered?) syenite(?) with disseminated and fracture-fillings of pyrite, chalcopyrite and molybdenite rosettes.

(a) f (a) f (a) f (b)
..

		SAMDI E TYPE	SAMPLER / DATE	DESCRIPTION / NOTES
P99-PAL-011	PAL 48 - southwest slope near camp @ 1645m elevation	Grab sample of outcrop	JWP 29/8/99	Outcrop (3m wide x 2m high) of potassic-altered coarse- grained intrusive containing a few percent of disseminated blebs pyrite, chalcopyrite and molybdenite. Magnetite forms blotches and vague stockworks.
P99-PAL-012	PAL 48 - southwest slope near camp @ 1645m elevation	Grab sample of outcrop	JWP 29/8/99	Same outcrop as above sample P11, sample is more potassic-altered and contains a 1 cm wide quartz vein
P99-OMINECA-001	Omineca Forestry Road 5.8 km past Omineca Bridge	Grab sample of outcrop	JWP 30/8/99	Limonitic, earthy material from sheer zone
P99-OMINECA-002	Omineca Forestry Road 5.8 km past Omineca Bridge	Grab sample of outcrop	JWP 30/8/99	Bleached and altered fine-grained intrusive, magnetite rich, minor quartz-carbonate veining.
MACKENZIE SH	łowing			
P99-DUCK-001	DUCK 1 - Duckling Creek	1.8 metre Channel Sample	JWP 31/8/99	Channel sample across rubbly outcrop with up to 50% pyrite and extensive malachite staining. Patches up to 1-2 cm of chalcopyrite are found in the pyrite. Orientation unknown, best guess is a NE trend. Extensive K-feldspar lateration of host rocks.
P99-DUCK-002	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 10m above P1. Very limonitic, massive pyrite in spots, disseminated and fracture control of chalcopyrite. Extensive malachite staining.
P99-DUCK-003	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 10m above and 30m south of P1. again very limonitic, with massive pyrite in spots. A smaller zone: 1m x 3m. Extensive malachite staining.
P99-DUCK-004	DUCK 1 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Sample taken 1m above P1. Host is very dark-coloured with pyrite veinlets, malachite staining.
P99-DUCK-005	DUCK 3 - Duckling Creek	Grab sample of outcrop	JWP 31/8/99	Massive sulphide lens at lower/downstream exposure from sample site P99-DUCK-001. Massive pyrite, very limonitic and in places earthy. Malachite and azurite staining. Lens is about 10m x 1m wide, varies 0.6m to 2m wide.

-

-

JAJAY PROJECT 1999 SOIL SAMPLES

-

-

b. -

, .

.

۳

.

~

.

P 2

.

.

.

SAMDIE	LOCATIO	N		SA	MPLE DESCR	RIPTION
NUMBER	AREA	ATION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C00_ST 001	STEELE #3 - Jeno Ridge	1890	15	soil	40	brown
C00 ST 002	STEELE #3 - Jeno Ridge	1890	15	soil	40	med. brown
C00 ST 002	STEELE #3 - Jeno Ridge	1890	15	soil	30	brown
C00 ST 004	STEELE #3 - Jeno Ridge	1890	15	soil	20	dark brown
C99-ST- 005	STEELE #3 - Jeno Ridge	1890	15	soil	40	med. brown
C99-ST- 006	STEELE #3 - Jeno Ridge	1890	20	soil	40	brown
C99-ST- 007	STEELE #3 - Jeno Ridge	1900	20	soil	50	med. brown
C00 ST- 008	STEELE #3 - Jeno Ridge	1900	20	soil	50	med brown
C99-ST- 000	STEELE #3 - Jeno Ridge	1980	30	soil	50	brown
C99-01-005	STEELE #3 - Jeno Ridge	1995	0	soil	25	light brown
	01202		<u></u> ,,,,,			
C00_ST_011	South Cirgue - Soil lines	1730	10	soil	50	dark brown
C00 ST 012	South Cirgue - Soil lines	1730	25	soil	50	med. brown
C09-ST-012	South Cirgue - Soil lines	1730	15	soil	30	brown
C00 ST 014	South Cirgue - Soil lines	1730	15	soil	60	brown
C00 ST- 015	South Cirgue - Soil lines	1740	10	soil	20	brown
C00 ST 016	South Cirgue - Soil lines	1740	5	soil	20	med. brown
C00 ST 017	South Cirgue - Soil lines	1740	20	soil	30	brown
C00 ST 019	South Cirgue - Soil lines	1740	10	soil	40	light brown
010-16-660	South Cirque - Soil lines	1730	10	soil	50	brown
099-51-1019	South Cirque Soil lines	1710	20	soil	40	med, brown
C99-51-020	South Cirgue - Soil lines	1730	32	soil	50	med brown
C99-51-021	South Cirque - Soil lines	1730	30	soil	30	light brown
<u>C99-51-022</u>	South Cirque - Soil lines	1730	20	soil	30	light brown
C99-S1-023	South Cirque - Soil lines	1720	25	soil	30	brown
<u>C99-S1- 024</u>	South Cirque - Soil lines	1715	20	soil	30	light brown
C99-ST- 025	South Cirque - Soil lines	1710	5	soil	30	dark brown
C99-ST- 026	South Cirque - Soil lines	1600		soil	30	brown
C99-S1-02/	South Cirque - Soil lines	1605	30	soil	40	green
C99-S1028	South Cirque - Soil lines	1705	25	soil	40	brown
C99-ST- 029	South Cirque - Soil lines	1710	25	soil	30	brown
C99-S1-030	South Cirque - Son lines	1720	10	soil	30	brown
C99-ST- 031	South Cirque - Soil lines	1720	10	soil	30	brown
C99-ST- 032	South Cirque - Soil lines	1720	<u> </u>	soil	40	brown-green
C99-ST- 033	South Cirque - Soil lines	1700		soil	40	light brown
C99-ST- 034	South Cirque - Soil lines	4755	10	lice	30	light brown
C99-ST- 035	South Cirque - Soil lines	1/00	20	soil	30	light green
C99-ST- 036	South Cirque - Soil lines	1750		line	30	light areen
C99-ST- 037	South Cirque - Soil lines	4770	20	enil	50	light green
C99-ST- 038	South Cirque - Soil lines	1770		soil	30	light green
C99-ST- 039	South Cirque - Soil lines	1/80	30			brown
C99-ST- 040	South Cirque - Soil lines		25	5011	30	light brown
C99-ST- 041	South Cirque - Soil lines			100	50	light brown
C99-ST- 042	South Cirque - Soil lines				20	hrown
C99-ST- 043	South Cirque - North slope	1800	30	Talus Fines	20	med brown
C99-ST- 044	South Cirque - North slope	1800	20		20	hrown
C99-ST- 045	South Cirque - North slope	1800	25		30	brown
C99-ST- 046	South Cirque - North slope	1800	45	Talus Fines		brown
C99-ST- 047	South Cirque - North slope	1800	40		40	maroon
C99-ST- 048	South Cirque - Gossen	1785	30	SOII	40	hrown
C99-ST- 049	South Cirque - South slope	1620	<u> </u>	Talus Fines	30	brown
C99-ST- 050	South Cirque - South slope	1600		Talus Fines		
C99-ST-051	South Cirque - South slope	1580	<u> </u>	Talus Fines	30	light brown
C99-ST- 052	South Cirque - South slope	1575	25	Talus Fines	10	Indut prowu

i

į

:

•

.

• • •

. . . .

÷

•

JAJAY PROJECT 1999 SOIL SAMPLES

-

-

5

_

b--

.

.

•

÷

•

.

.

-

.

.

.

*

.

4

.

SAMPI F	LOCATIO	DN		SA	MPLE DESCR	
NUMBER	AREA ELEV	ATION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C99-ST-1053	South Cirque - South slope	1575	35	Talus Fines	20	med. brown
C99-ST- 054	South Cirgue - South slope	1570		Talus Fines	10	med. brown
C99-ST-055	South Cirgue - South slope	1575	32	Talus Fines	20	brown
C99-ST-056	South Cirgue - South slope	1575	40	Talus Fines	20	dark brown
C99-DE-001	Dorothy-Elizabeth Area	1440	30	Talus Fines	30	light brown
C99-DE-002	Dorothy-Elizabeth Area	1450	30	Talus Fines	40	light brown
. C99-DE- 003	Dorothy-Elizabeth Area	1465	35	Talus Fines	20	light orange brown
C99-DE- 004	Dorothy-Elizabeth Area	1490	40	Talus Fines	30	orange brown
C99-DE- 005	Dorothy-Elizabeth Area	1495	30	Talus Fines	20	orange prown
C99-DE- 006	Dorothy-Elizabeth Area	1475	28	Talus Fines	50	orange prown
C99-DE- 007	Dorothy-Elizabeth Area	1465	32	Talus Fines	40	orange prown
C99-DE- 008	Dorothy-Elizabeth Area	1515	35	Talus Fines	20	orange brown
C99-DE- 009	Dorothy-Elizabeth Road cut	1250	25	Talus/soil	40	orange brown
C99-DE- 010	Dorothy-Elizabeth Road cut	1250	25		<u>40</u>	
C99-DE- 011	Dorothy-Elizabeth Road cut	1250	28		<u> </u>	
C99-DE- 012	Dorothy-Elizabeth Road cut	1250	25		40	light olive brown
C99-DE- 013	Dorothy-Elizabeth Road cut	1260	15		<u>JU</u>	light brown
C99-DE- 014	Dorothy-Elizabeth Road cut	1265	30	Talus/soil	50	
C99-DE- 015	Dorothy-Elizabeth Road cut	1270	15	Talus/soil	50	mealum brown
C99-DE-016	Dorothy-Elizabeth Road cut	1280	25	Talus/soil	40	
C99-DE- 017	Dorothy-Elizabeth Road cut	1295	25	Talus/soil	40	orange prown
C99-DE- 018	Dorothy-Elizabeth Road cut	1295	15	Talus/soil	30	orange prown
C99-DE-019	Dorothy-Elizabeth Road cut	1305		Talus/soil	30	dark prown
C99-DE- 020	Dorothy-Elizabeth Road cut	1310	30	Talus/soil	40	meg. onve brown
C99-DE- 021	Dorothy-Elizabeth Road cut	1315	25	Talus/soil	20	
C99-DE- 022	Dorothy-Elizabeth Road cut	1325	30	Talus/soil	40	orange brown
C99-DE- 023	Dorothy-Elizabeth Road cut	1255	15	Talus/soil	40	brauge brown
C99-DE- 024	Dorothy-Elizabeth Area	1200	30	Seepage/soil		dark brown
C99-DE- 025	Dorothy-Elizabeth Area	1200	25	Seepage/soil		orande brown
C99-DE- 026	Dorothy-Elizabeth Area	1200	26	Seepage/soll	30	
					20	orange brown
C99-SH- 001	Steelhead	1760			10	light brown
C99-SH- 002	Steelhead	1755	28		20	hrown
C99-SH- 003	Steelhead	1760	28		20	brown
C99-SH- 004	Steelhead	1765	30	I alus Filles	40	hrown
C99-SH- 005	Steelhead	1755	35	I alus Fines	20	med orange brown
C99-SH- 006	Steelhead	1760	24	Talus Fines	30	orange brown
C99-SH- 007	Steelhead	1765	36			light orange brown
C99-SH- 008	Steelhead	1765	30		+0	hrown
C99-SH- 009	Steelhead	1770	28		30	medium brown
C99-SH- 010	Steelhead	1770	25	laius rines	+0	
		+		T _l	20	dark brown
C99-PAL- 001	PAL 48 Claim	1700	38		20	dark brown
C99-PAL- 002	PAL 48 Claim		45	Talus Fines	40	dark brown
C99-PAL- 003	PAL 48 Claim		45		10	dark brown
C99-PAL- 004	PAL 48 Claim		45			brown
C99-PAL-005	PAL 48 Claim	1/10			20	dark brown
C99-PAL- 006	PAL 48 Claim	1/05	40	Talus Fines	35	med brown
C99-PAL- 007	PAL 48 Claim	1/05	- 35		20	orange brown
C99-PAL- 008	PAL 48 Claim			Talue Fines	5	dark brown
C99-PAL- 009	PAL 48 Claim		30	Talus Fines	25	light brown
C99-PAL-010	PAL 48 Claim	1 1700	<u> </u>	Talus rilles		1.9

ę

÷

,

:

JAJAY PROJECT 1999 SOIL SAMPLES

-

•^•مور ا

,

SAMPLE	LOCATIO	N		S/	MPLE DESCI	RIPTION
NUMBER	AREA	TION (m)	SLOPE	TYPE	DEPTH (cm)	COLOUR
C09-PAL-011	PAL 48 Claim	1705	35	Talus Fines	20	dark brown
C00-PAL-012	PAL 48 Claim	1700	30	Talus Fines	40	dark brown
C00-PAL-013	PAL 48 Claim	1700	30	Talus Fines	45	orange brown
C00. PAL- 014	PAL 48 Claim	1710	25	Talus Fines	20	light brown
C00-PAL-015	PAL 48 Claim	1695	33	Talus Fines	20	med. brown
C00-PAL-016	PAL 48 Claim	1710	25	Talus Fines	40	light brown
C00 PAL 017	PAL 48 Claim	1715	37	Talus Fines	20	med. brown
000 DAL 019	PAL 48 Claim	1725	38	Talus Fines	30	dark brown
C00 PAL-010	PAL 48 Claim	1730	25	Talus Fines	20	dark brown
C99-PAL-019		1730	45	Talus Fines	30	med. brown
000 BAL 021		1730	32	Talus Fines	40	dark brown
C99-PAL- 021	PAL 40 Claim	1715	40	Talus Fines	40	medium brown
C99-PAL- 022		1700	25	Talus Fines	30	light brown
C99-PAL- 023	PAL 40 Claim	1640	34	Talus Fines	?	orange brown
C99-PAL- 024	PAL 46 Claim	1640	35	Talus Fines	30	orange brown
C99-PAL-025	PAL 40 Claim	1645	35	Talus Fines	40	orange brown
C99-PAL- 026	PAL 48 Claim	1040		Talue Finee	30	orange brown
C99-PAL- 027	PAL 48 Claim	1000	23		30	orange brown
C99-PAL-028	PAL 48 Claim	1600	32			Torongo eronn

÷

<u>APPENDIX 2</u>

Analytical Certificates

.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

V6A 1R6

Mincord Exploration Consultants Ltd. PROJECT LYSANDER File # 9903072

110 - 325 Howe St., Vancouver BC V6C 1Z7 Submitted by: Jay Page

852 B. HASTINGS ST. VANCOUVER BC

SAMPLE#	Mo ppm	Сu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th Sr ppm ppm	Сd ррт	Sb ppm	Bi ppin	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррп	ΤĪ %	8 Inqq	Al _%	Na %	к %р	W Pili	Au* ppb
	6.	99797	98	165	134.8	27	Z6	708	4.62	<2	<8	6	<2 224	9.6	9	53	70	2.54	.129	11	13	.66	62	.08	<3	1.03	.09	.76	<5	5240
P99-ST-002	2	188	8	85	1.0	8	18	2201	4.51	7	<8	<2	2 70	.3	21	<3	191	5.93	.173	16	24	.32	306	.01	3	.52	.02	.07	5	17
P99-51-003	2	52	12	112	1.6	66	40	2485	6.38	8	<8	<2	2 190	.9	5	8	200	9.84	.286	16	143	2.72	224	.05	<3	.84	- 01	-44	4	2
P99-ST-004	39	864	1526	281	113.9	12	2	163	1.25	43	<8	21	<2 25	4.Z	68	<3	9	.16	.004	1	40	.01	438	.01	<3	.03-	<.01	.03	16 0	21000
P99-ST-005	Ż	566	86	292	5.7	59	29	1772	5,43	4	<8	<2	2 439	6.2	3	10	182	8.62	.108	8	143	1.70	222	.04	<3	.79	.01	.27	9	1130
DOD. 61.00A	 ; 7	7178	20	57	9.0	11	11	585	4.02	4	<8	<2	6 145	.2	<3	4	227	.90	.289	20	24	.25	253	.07	<3	.41	.07	.29	2	980
P00-ST-007	i 7	5619	22	01	6.6	35	150	452	10.99	<2	<8	<2	3 40	<.2	<3	5	86	-14	.016	2	- 7	. 06	94	.04	3	.25	- 06	.24	<2	439
P99-31-007	2	17259	6	151	.9	28	100	626	2.81	<2	<8	<2	3 79	.8	<3	<3	53	.44	,146	10	18	.57	251	.07	<3	.84	.05	,54	<2	77
P99 51 000 D00-ST-000	, , ,	344	7	32	3	-4	5	254	1.39	7	<8	<2	<2 853	.5	<3	<3	49	1.36	.030	2	18	.21	55	.04	7	2.31	-61	. 25	<2	5
P99-ST-010	2	8466	119	76	15.4	20	19	738	4.81	<2	<8	<2	4 301	1.7	<3	17	207	1.03	.107	7	24	.32	95	.11	<3	1.06	.34	.31	2	226
D00-CT-011	1	100	~7	41	7	13	12	553	3.51	4	<8	<2	3 415	<.2	3	<3	133	1.02	.184	8	22	.43	5 192	.08	<3	1.53	.62	.32	4	19
P99-31-011	2	56	6	08		20	17	928	4.59	2	<8	<2	Z 202	<.2	<3	<3	213	1.88	.252	15	42	. 85	5 154	.11	<3	1.70	.61	.52	2	8
P99-51-012 D00-61-013	: 1	4517	16	96	7.3	14	16	804	4.91	4	<8	<2	3 156	<.2	<3	<3	263	.90	.202	13	33	.52	2 330	.10	<3	.59	.07	.29	<2	644
500-ST-01/	5	124		83	7	15	13	826	3.90	7	<8	<2	3 310	<.2	<3	<3	180	1.30	. 194	15	32	.88	3 127	. 12	6	1.81	.52	.60	3	9
P99-ST-015	2	582	Ś	52	.9	12	13	602	3.83	Z	<8	<2	2 399	<.2	<3	<3	184	1.46	.197	' 11	26	.44	- 59	.08	7	1.91	.66	.46	2	54
D00.67.014	1	17	~7	12	< 3	<1	1	232	. 57	<2	<8	<2	3 78	<.Z	<3	<3	20	.53	.009	> 5	8		2 124	.01	<3	. 20	.09	.14	4	96
P77-51-010 DC D00-CT-016	2	12	4	12	ייי ז	3	1	237	.59	<2	<8	<2	3 81	<.2	<3	<3	21	.56	.009) 5	8	: .02	2 137	.01	<3	.20	.08	. 13	4	31
DOD_ST_017	Ιõ	15	10	86		19	16	1530	4.25	9	<8	<2	2 177	.4	<3	<3	118	10.08	.093	5 4	- 47	2.42	2 38	<.01	5	.21	.01	.08	8	1
D00-ST-018	1 6	27	18	. 8	< 3	ý	5	227	1.09	5	<8	<2	2 125	<.2	<3	3	31	.17	.040) 3	15	1'	1 129	.01	<3	.30	- 04	.22	5	49
P99-ST-019	5	23	Š	42	1.1	8	9	1028	2,38	7	<8	<2	2 60	<.2	<3	<3	57	2.85	. 051	8	19	.5	2 11Z	<.01	<3	.37	.01	.11	9	571
D00_97-020	1	4	٦	71	5	- 6	9	2261	2.63	2	<8	<2	3 83	.2	< 3	<3	- 38	6.97	.022	2 7	11	1.6	9 23	<.01	<3	.41	.03	.10	3	8
P99-31-020	1	7	ر 11 '	135	7	10	14	2793	3.53	5	<8	<2	2 126	,3	<3	3	63	10.47	.034	i 12	<u>د</u> ا	2.5	5 23	<,01	7	.26	. 01	.07	5	19
677731 UC1 678ND800 C3/811-0	27	66	37	179	6.4	. 39	12	826	3.49	57	23	3	22 32	25.6	22	ZŻ	82	.61	.093	5 19	184	· .6	1 162	2.09	21	1.97	.04	.17	16	493
STANDARD COTAC A	1.5	5		42	· <.3	; _,	5	555	2.04	<2	<8	<2	5 74	<.2	< 3	- 4	39	.66	.097	7 8	5 78	3.5	9 229	.12	2 <3	.95	.07	.49	3	<1

GROUP 1D - 0.50 GM SAMPLE, 3 MLS 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 MLS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 25 1999 DATE REPORT MAILED: Sept 1/99

Data 1/FA

PHONE (604) 253-3158 FAX (604) 253-1716

Mincord Exploration Consultants Ltd. PROJECT LYSANDER FILE # 9903073 Page 2

97.94. MA YEECE																											-			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppո	Ag PPm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppin	U ppm	Au ppm	Th Sr ppnn.ppnn	Cd ppm	Sb Ppm	Bi ppm	V ppm	Ca %	P %	La PPm	Cr ppm	Mg %	Ba ppm	Ti %	B B	Al %	Na %	К %	ر W ppm	au* apb
C99-ST-035 C99-ST-036 C99-ST-037 C99-ST-038 C99-ST-039 C99-ST-040	 <1 <1 <1 <1 <1 10	50 29 260 211 17 496	9 <3 9 8 <3	146 162 104 89 137 121	.6 .3 .4 .4	137 118 64 62 87 45	48 57 39 36 54 35	1327 1141 988 859 1347 1302	6.79 10.09 8.33 8.46 6.31 8.97 6.71	8 14 12 13 6 46	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 172 2 221 5 267 5 242 2 387 <2 355	.4 1.1 .2 .2	4 <3 <3 <4 <3 <4	<3 <3 <3 <3 <3 <3 <3 <3	197 309 287 293 205 647 232	2.25 2.45 2.67 2.49 2.95 2.19 2.13	.281 .757 .814 .799 .985 .789 .717	20 35 39 37 40 53 31	369 279 146 153 127 134	3.64 2.13 1.33 1.04 2.25 1.12	281 107 86 68 105 63 154	.18 .04 .04 .05 .05 .05	4 <3 <3 <3 3 <3 3 <3 3	2.49 1.63 1.39 1.11 1.75 3.03 2.29	.02 .04 .02 .02 .02 .02	.85 .72 .47 .39 .66 .15 .43	<2 <2 <2 <2 <2 <2 <2 <2	10 <1 9 15 7 5 7
C99-ST-041 C99-ST-042 C99-ST-043 C99-ST-044	<1 45 4 6	227 66 734 1514	10 6 11 17	106 117 184 409	.3 .6 <.3 .7	61 51 24 34	36 41 31 38	829 1158 1336 2445	6.71 9.61 7.31 8.18	69 17 17	<8 <8 <8	<2 <2 <2 <2	2 213 2 446 2 54 5 88	1.1 .3	<3 5 <3	<3 <3 <3	588 307 432	3.93 .60 1.32	1.086 .258 .295	51 11 24	98 62 55	1.32 1.67 2.77	44 103 206	.12 .23 .13	<3 <3 3	1.85 2.24 2.62	.02 .02 .02	.29 .82 1.32	<2 <2 <2	5 23 24
C99-ST-045 C99-ST-046 C99-ST-047 C99-ST-048 C99-ST-049	<1 <1 <1 10 2	48 103 1311 591 40	3 5 14 1 5 1 82 1 15	88 143 104 125 113	_4 _5 _4 _3 <_3	55 70 65 20 11	33 59 38 23 16	1113 1050 998 1227 3612	7.74 9.52 8.45 5.74 5.24	8 16 10 6 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 106 2 416 3 244 2 45 <2 32	.4 .9 .6 .2 .2	4 <3 <3 4 3	<3 <3 <3 <3 <3 <3	290 291 309 240 171	1.96 3.69 2.31 .26 .41	.333 1.305 .748 .188 .196	17 55 35 22 13	138 73 149 28 21	1.27 2.22 1.27 1.03 .29	31 63 104 33 111	.15 .05 .06 .05 .02	<3 <3 <3 <3 <3 <3	1.90 2.07 1.37 1.80 1.02	.01 .02 .02 <.01 .02	.08 .41 .32 .17 .04	<2 <2 <2 23 <2	2 1 78 138 56
C99-\$T-050 C99-\$T-051 C99-\$T-052 RE C99-\$T-056 C99-\$T-053	1 2 1 2 6	37 20 57 14 37	7 9 5 11 7 10 4 0 2 10	9 54 38) 84 5 35 5 137	<.3 <.3 .3 .3 .7	12 12 13 6 17	11 5 15 5 20	961 303 1613 377 4219	4.14 3.16 4.05 2.77 5.21	2 3 5 3 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 28 <2 76 2 134 <2 28 4 90	 <.2 <.2 <.2 <.2 <.2 <.2 	3 3 3 3 3 3 3 3 3 3 3 3 3	\$ <3 \$ <3 \$ <3 \$ <3 \$ <3 \$ <3	156 134 144 146 146	.49 .52 .94 .23 .63	.171 .060 .249 .105 .149	13 7 27 12 31	20 27 21 15 22	. 37 . 39 . 62 . 11 . 38	35 62 147 77 177	.06 .07 .02 .01	<3 <3 <3 <3 <3	.70 1.40 1.45 1.06 1.06	.02 .01 .03 .01 .01	.06 .04 .07 .03 .05	<2 <2 <2 <2 <2 <2	34 27 54 189 207
C99-ST-054 C99-ST-055 C99-ST-056 STANDARD C3/AU-5 STANDARD G-2	2 1 25 25	1) 3) 1- 6)	B 10 D 12 4 (2 39 4 (5 99 2 119 7 36 5 167 3 45	.6 1.0 <.3 5.8 <.3	12 17 5 38 8	15 19 5 11 4	2853 3192 387 789 561	4.40 5.06 2.74 3.46 2.20	9 7 3 59 <2	<8 <8 <8 22 <8	<2 <2 <2 2 2 2	3 49 3 46 <2 29 21 30 4 78) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <	2 3 2 3 2 3 2 19 2 3	3 <3 3 <3 3 <3 7 24 3 <3	5 133 5 161 5 114 5 80 5 44	.52 .98 .23 .60 .71	.145 .216 .110 .093 .101	30 38 12 18 8	16 22 15 169 82	. 19 . 31 . 17 . 6	9 82 90 81 153 3 239	01 01 01 08	<3 <3 <3 : 20 : <3	.83 .83 1.10 1.91 1.03	01 01 01 04 .09	.04 .04 .03 .17 .52	<2 <2 <2 17 2	165 199 86 58 1

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALY	TIC	AL L	ABOR	ATO	RIES). ` —	- í	352 1	Е. н.	ASTI	NGS	ST.	VAI	NCOU	ver [}]	BC	v62	i îr	6 ^{`)}	- PH() DNE (604)	253	-315	8 F2	AX (6)	04)2	53-1	716	
	002	ACC	redi	ted	0.)			GI	EOCH	EMI	CAL	AN	IAL	SIS	S CE	RTI	FI	CATE	2					_		_		Z	10	
TT	Ī	Mind	ord	l Ex	plc	rat	ior	<u>110</u>	onsi - 325	<u>ilta</u> Howe	<u>nts</u> St.,	Lt Vanco	d. uver	PRC BC V	<u>)JE(</u> 60 12	<u>TT I</u> 7 \$1	<u>YSZ</u> ubmit	<u>ANDI</u> ted b	<u>ER</u> ŋy: Ja	Fil€ y Page	≥ #	99	030'	73	þ	age	1				2
SAMPLE#	Мо ppm	Cu ppm	Pb ppm	Zn ppm	Аg ppm	Ni PPm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr Ppin	Cd ppm	sp ppm	Bi ppm	V PPm	Ca %	P %	La ppm	Cr PPm	Mg %	Ва ррп	Ťi %	B ppm	Al %	Na %	К %	W mqq	Au* ppb
C99-ST-001 C99-ST-002 C99-ST-003 C99-ST-004 C99-ST-005	1 1 2 2 1	104 216 199 65 122	<3 <3 4 7 7	99 91 125 71 82	.6 .5 .4 .6	34 34 35 24 28	24 23 30 15 19	762 676 1251 1026 657	6.38 5.53 5.95 5.41 4.93	4 7 7 7 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2	229 283 229 141 170	.2 <.2 <.2 <.2 <.2	4 6 3 <3 5	3 <3 <3 <3 <3	243 209 215 188 169	1.51 1.53 1.32 .96 1.02	.560 .524 .462 .397 .365	32 31 29 25 23	66 54 50 51 45	.96 1.06 1.33 .53 .94	86 163 150 103 109	.08 .09 .11 .06 .07	<3 <3 <3 <3 <3 <3	1.80 2.54 2.07 1.40 1.85	.01 .01 .01 .01 .01	.16 .11 .39 .07 .10	<2 <2 <2 <2 <2 <2	10 11 50 18 22
C99-ST-006 C99-ST-007 C99-ST-008 C99-ST-009 C99-ST-009	1 1 1 1	108 189 135 171 9	5 5 7 8 4	60 54 82 138 39	.4 .4 .6 <.3	25 25 28 30 9	17 17 19 33 24	499 654 681 2273 2488	5.02 3.91 4.23 5.27 1.65	6 3 <2 <2 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	207 231 185 338 58	<.2 <.2 <.2 <.2 <.2	3 3 3 6 3	<3 <3 <3 <3 <3	192 142 147 204 37	1.25 1.29 1.11 2.06 3.32	.466 .516 .432 .561 .067	30 32 28 33 8	43 35 38 40 2	.67 .55 .73 1.98 .08	87 134 141 244 203	.07 .07 .06 .06 <.01	<3 <3 <3 <3 <3 <3	1.88 2.28 2.26 1.70 .31	.01 .01 .01 .02 <.01	.08 .16 .14 .43 .07	<2 <2 <2 <2 <2 <2	6 8 6 27 5
C99-ST-011 C99-ST-012 C99-ST-013 C99-ST-014 C99-ST-015	<1 2 2 3 2	69 152 132 305 914	3 8 10 32 14	168 123 107 268 205	.7 .6 .3 .5	62 52 52 66 45	50 36 22 48 30	1382 1201 739 2415 1413	8.77 7.12 6.73 6.30 6.39	5 3 9 22 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 8 2	363 201 164 46 205	.4 .3 .2 <.2 .4	3 6 5 8 8	<3 <3 <3 <3 <3	321 264 231 187 252	3.65 2.13 1.18 .84 1.58	1.084 .555 .374 .291 .358	41 32 17 29 29	103 146 218 119 129	2.33 1.75 1.65 2.88 1.72	217 166 106 63 162	.07 .13 .16 .16 .11	ଏ ଏ ଏ ଏ	2.03 2.08 2.25 2.76 2.57	.02 .02 .02 .02 .02	.58 .36 .27 .65 .32	<2 <2 <2 <2 <2 <2	8 29 8 6 14
C99-ST-016 C99-ST-017 C99-ST-018 C99-ST-019 C99-ST-020	1 1 2 6 4	58 70 65 59 589	13 5 63 53 6	89 109 160 136 160	.6 .4 .7 .8 .5	108 113 111 114 49	37 41 49 56 39	752 943 1882 1805 1880	6.07 6.81 7.21 6.75 7.37	4 2 4 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 2 2 2	237 113 93 112 141	<.2 <.2 .9 .2	9 8 9 6 3	<3 <3 <3 <3 <3	175 192 195 156 307	1.70 1.32 1.01 1.12 2.25	.338 .278 .241 .323 .380	20 15 21 17 28	305 309 323 275 157	2.75 2.82 2.65 3.08 1.84	295 260 304 266 161	.15 .20 .17 .15 .13	<3 <3 <3 <3 <3	2.48 2.75 2.75 2.49 2.45	.02 .02 .01 .02 .01	.73 .74 .21 .45 .32	<2 <2 <2 <2 <2 <2	4 4 111 252 12
RE C99-ST-020 C99-ST-021 C99-ST-022 C99-ST-023 C99-ST-024	4 2 2 <1	597 279 179 116 347	11 9 23 53	161 141 121 150 159	.7 .9 .8 .5 .8	49 99 67 91 53	40 61 32 44 30	1909 2662 818 1300 1099	7.38 8.29 7.24 7.15 6.38	7 13 2 4 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	2 4 2 2 2	143 480 149 119 94	<.2 .6 .3 .2 <.2	9 9 7 4 6	<3 <3 3 4 <3	308 249 213 221 208	2.28 3.57 1.26 1.60 1.28	.385 1.083 .225 .373 .363	28 60 13 23 16	158 214 211 269 133	1.87 4.18 2.05 2.41 1.92	162 706 166 115 53	.13 .07 .18 .14 .11	<3 <3 <3 <3 <3	2.48 4.15 2.56 2.53 2.62	.01 .03 .02 .02 .02	.32 1.48 .30 .34 .08	<2 2 <2 <2 <2 <2	9 91 10 29 42
C99-ST-025 C99-ST-026 C99-ST-027 C99-ST-028 C99-ST-029	 13 2 1	103 91 66 15 103	10 30 11 4 21	121 134 77 271 155	<.3 2.1 1.0 .6 .4	32 17 23 43 91	27 25 13 41 45	1428 2629 614 2097 1527	5 6.32 9 6.29 5 5.63 7 5.29 7 7.42	4 5 <2 <2 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	2 <2 2 4 <2	58 43 36 344 140	<.2 .5 <.2 <.2 <.2	5 11 4 9 8	<3 3 <3 <3 <3	191 94 140 160 225	.89 .40 .33 .2.92 .1.37	- 195 - 237 - 115 - 723 - 306	11 7 6 52 16	104 31 107 52 299	1.08 2.57 .43 2.34 2.45	52 105 46 106 144	.13 .01 .08 .05 .12	<3 <3 <3 <3 <3	1.88 1.92 1.07 1.99 2.26	.01 <.01 <.01 .02 .02	.05 .08 .06 .75 .30	<2 <2 <2 <2 <2	1230 72 18 1 56
C99-ST-030 C99-ST-031 C99-ST-032 C99-ST-033 C99-ST-034	14 14 1	l 132 183 1 32 3 85 1 18	2 11 5 18 2 8 5 6 3 <3	121 200 125 108 79	.4 <.3 .5 .7	48 49 81 89 129	35 66 42 41 38	2158 186 906 83 55	8 7.41 1 9.24 6 6.53 8 7.46 6 6.19	<2 11 4 4 4 2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 2 2 2	77 317 118 240 309	.4 .6 .2.> .2.> .2	3 9 9 8 7	<3 <3 <3 <3 <3	224 320 180 240	4 1.41 2.81 5 1.57 6 1.72 1 1.72	.231 .523 .300 .429 .362	11 26 17 22 20	169 90 232 292 418	1.38 2.24 2.62 2.61 2.95	116 198 75 397 525	5 15 3 12 5 17 7 16 5 13	<3 <3 <3 <3 <3 <3	2.34 2.95 2.48 2.36 2.57	.01 .01 .01 .02 .02	- 18 - 14 - 27 - 76 - 80	<2 <2 <2 <2 <2	6 4 1 5 3
STANDARD C3/AU-S STANDARD G-2	27	7 63 2 4	35 5	171	6.0 <.3	37 8	11 4	78 54	4 3.41 7 2.09	58 3	25 <8	2 <2	22 4	2 30) 24.3 > <.2	23 23	24 <3	8	1.59 1.69	091	18 8	174 79	.60	154	4 .08 3 .12	3 18 2 <3	1.95 1.04	.04 .10	.17 .52	17 2	56 <1
	_ <u>_</u>	ICF THI - S <u>S</u> ar	S LEA SAMPLE	DO GR CH IS TYPE begin	AM SA PART S SOI	MPLE TAL F L 'RE'	IS DI OR MN AU* are R	GEST IFE - AQ Rerun	ED WI1 SR CA UA-RE(s and	TH 3ML P LA SIA/MI <u>'RRE</u> '	2-2-2 CR MG BK EX are	2 HCL BA T TRACT Rejec	-HNO3 (B V , GF/ t Rer	5-H2O / AND /AA Fi	AT 95 MASSI INISHE	DEG. IVE SU D. (1	CFC JLFIDE Ogm)	R ONI E AND		R AND I TED FOR	S DIL NA K	UTED (AND	TO 10 AL.) ML V	WITH V	WATER.					
DATE RECE	IVE	D:	AUG 2	.5 199	9 D	ATE	REP	ORT	MAI	LED:	A	ng	31/	<i>4</i> 9	51	GNE	D BY	Ç.	.h.	·	D. T	OYE,	C.LEQ	NG, J	. WAN	G; CEI	RTIFIE	ED B.C	:. ASS	AYERS	5
All results	are	consid	dered	the c	onfic	lentia	il pro	pert	y of 1	the cl	ient.	Ø Acme	/ assi	umes 1	the li	iabili	ties	for	actua	l cost	of th	ie ana	alysis	s only	y.			Da	ta	FA =	

AMPLE#	Mo ppm	Cu Cu ppri	i Pb i Pb	Zn ppn	Ag. ppm	Ni Ni ppat	Co ppm	Mn þpn	ruaerosuur. F€ %	As ppm	uper u U P pm i	Au Ppni	Th ppn (Sr ppm	Cd ppm	Sb ppn p	Bi Pi	V Pin	Ca X	P ¥ (Le pom p	C.r ppm	Ng X	Be ppm	71 71 71	8 8 9	Al X	Na X	K X	N N Appendix	u** i ppb	ppb	da. bbp
99-0E-001 99-0E-002 99-DE-003 99-DE-004 99-DE-004 99-DE-005	2 1 3 <1 6	816 1360 5641 1722 619		25 12 16 47 6	.9 1.4 .7 5.3 .3	50 16 23 13 12	67 11 15 14 22	435 71 83 552 92	7.48 .77 1.05 5.79 1.63	9 5 6 5 5 5	<8 <8 <8 14 <8	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 10 <2	262 48 43 252 76	1.5 <.2 <.2 .8 .2	3 3 3 3 3 3 3	91 3 3 74 3	98 44 44 88 4 37 1	81 72 74 77 1 17	.084 134 130 .614 .239	3 11 3 98 7	64 8 5 13 8	1.69 .18 .17 .43 .20	81 16 8 60 17	.30 .07 .07 .03 .08	<33 41 <31 3 3	.55 .03 .15 .33 .73	.18 .11 .10 .09 .08	.64 .03 .03 .07 .05	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	34 81 127 297 15	<1 5 <1 8 2	4 <1 20 <1
199- DE - 006 199- DE - 006A 199- DE - 008 199- DE - 001 199- DE - 002	3 4 1 46 <1	222 6097 146 99999 327		6 22 38 291 16	<.3 3.2 .3 2.7 <.3	15 21 6 44 16	26 142 10 28 10	101 65 301 203 202	1.93 3.78 3.61 1.71 3.39	8 5 3 7 4	\$ \$ \$ \$ \$ \$ \$ \$	\$\$\$\$	8 A 4 A 8	48 210 35 39 1 3 9	.2 <.2 <.2 6.1 .2	04000	<3 (3) (3) (3) (3) (3) (3) (3)	43 30 46 01 19 1	.69 .58 .74 .29 .61	. 191 . 112 . 174 . 137 . 097	3 7 9 3	16 6 11 23 100	.38 .14 .58 .51 .53	35 17 48 15 39	.10 .07 .11 .07 .10	3 3 3 3 2 2	.78 .73 .94 .99	.08 .11 .08 .03 .31	.11 .06 .25 .03 .98	88888 8	5 726 12 102 16	2 <1 4 2 10	2 3 4 6
99-DUCK-001 199-DUCK-002 199-DUCK-003 199-DUCK-004 99-DUCK-005	25 76 56 2 12	26810 26314 8147 4422 99999		150 161 75 66 606	16.1 19.7 5.6 2.1 127.6	17 18 8 7 18	21 29 43 13 31	682 476 512 623 85	9,40 6,89 6,86 5,00 18,87	11 7 9 5 36	<8 <8 <8 <8 12	\$\$\$\$\$	****	80 111 173 69 7	3.5 3.0 1.3 1.4 14.4	8 6 5 0 5 0 5	12 1 11 6 1 3 1 <3	90 1 96 24 1 50 1 35	.03 .89 .91 .04 .05	. 134 . 103 . 133 . 152 . 041	4 1 5 4 1	13 10 7 11 53	1.12 1.01 .65 1.20 .25	46 36 23 51 13	. 15 . 11 . 11 . 15 . 03	ଏ 2 ଓ 1 ଓ 2 ଓ 1 ଓ 1 ଓ 1 ଓ 1	2,10 1,46 2,56 1,55 1,44<	.03 .04 .04 .05 .01	.29 .20 .14 .33 .10	<2 56 3 <2 302 (408 310 110 58 5764	3 4 4 2 4	4 26 1 1 17
99 - ONT NECA-001 199 - ONT NECA-002 199 - PAL - 001 199 - PAL - 002 199 - PAL - 003	8 <1 56 2 2	146 97 234 317 7477		332 100 13 11 122	.5 .4 .7 .4 .3	83 49 5 6 8	96 43 5 34 5	3263 1714 113 105 202	10.56 6.15 2.68 2.57 .68	15 7 5 9 6	<8 <8 <8 <8 <8	22228	<2 <2 3 5 2	56 351 55 43 53	2.0 1.5 <.2 .2 .8	3003	15 1 5 2 3 3 3 3	13 15 10 94 68 57 1	.46 .24 .62 .87 .42	.036 .397 .137 .195 .254	8 11 6 20 7	27 47 7 6 5	.36 4.30 .28 .26 .40	330 - 586 43 17 48	.01 .01 .11 .12 .07	34333	.66 .32 .76 .70 .87	.01 .02 .07 .07 .06	.07 .16 .06 .07 .05	4 2 3 2	10 4 5 3 2	1 2 3 2 2	1 7 5 4 *1
99-PAL+004 E P99-PAL+004 99-PAL+005 99-PAL+006 99-PAL+007	<1 <1 1 1 <1	1135 1064 225 541 111		53 50 33 16 39	.6 .6 (.3 .5 (.3	4 9 2 11	7 7 15 4 19	1297 1244 331 159 346	2.15 2.03 5.00 1.00 5.65	36232	< 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 3 2 2 2 2 2 2 2 2 2 2 2	53 51 47 70 44	.3 .4 .6 .3 .8	3353 503 503	<3 1 <3 1 5 2 <3 2 4 2	23 4 17 3 14 53 1 87	20 99 93 11 89	.226 .214 .185 .162 .123	11 10 6 5 3	4 14 5 14	.94 .89 .56 .19 .68	47 46 587 48 139	.09 .09 .09 .08 .15	00000	.99 .96 .66 .70 .86	08 .09 .06 .07 .05	.06 .07 .06 .05 .17	s S N S S S S S S S S S S S S S S S S S	10 8 4 12 7	<1 2 3 3	4 7 6 1 16
99-PAL-008 99-PAL-009 99-PAL-010 99-PAL-011 99-PAL-012	2 <1 363 11 23	151/ 388(280) 290 83(14 254 63 31 23	6. 4. 1.8 2.8 6.	4 10 3 3 3	12 20 23 7 12	1037 647 138 249 206	2.81 5.03 1.80 1.63 1.28	12 4 5 2 2	<5 <5 <5 <5	88888 8	<2 <2 7 6 5	72 50 17 26 27	.3 1.6 .8 .3 .3	99393	3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 4 106 14 14 24	.59 .92 .27 .43 .37	.006 .176 .032 .022 .038	11 9 4 2 4	28 9 12 11 13	.17 1.17 .21 .27 .31	59- 111 40 241 46	01 .17 .05 .03 .07	00000 00000	.04 1.35 .49 1.05 .52	.01 .05 .04 .06 .04	.01 .43 .13 .16 .19	10 <2 5 5 5	15 3 54 41 8	3 7 (1 1	1 10 3 <1 2
TANDARD C3/FA100	27 2	7	0 34 5 1	178 45	6.2 <.3	38 7	12 4	799 559	3.50	55 <2	22 ≺8	2 <2	22 4	31 82	25.7 <,2	19 <3	27 3	82 42	.59 .71	.096 .103	18 8	178 81	.62 .63	160 244	.06 .13	20 : <]	2.06	.04 .10	.17 .53	17 2	49 4	47 1	46 1
GROUP UPPER ASSAY - SAMP <u>Sample</u> DATE RECEIV	1D LINII RECOM LE TY S DS: TBD :	0.50 IS - J MENOI (IDDI) SE	GN S AG, A Ed fo Rock D <u>g (</u> P 3	ampli W, Hu Jr Roi <u>He: Al</u> 1999	:, 3 M ;, W = :K And UA* P :e Ref Dat	LS 2 100 COR: T** (YINS 'B: R	2-2 PPN; SAM D**	AQUA MO, IPLES GROUF IRRE! RT N	REGIA CO, CI IF CU ' 38 B' Arg. R Arg. R Atte	, 1 a D, SB PB Z V FIR R1953	KUR 5, 61 EN AS RE AS E RO	AT S 1, TH 5 > 1 SSAY CHIDE	15 DE 1, U 18, 1 8 A) 6 /	$\frac{66}{8}$ B $\frac{6}{3}$ S $\frac{1}{4}$ C $\frac{1}{4}$; dit = 200 30 PF 15 B1	10160 00 PP W 4 1 ULT	TO 1 N; CL NU > RA/IC NIBD	10 MLS J, PM, 1000 :P. (3 :P. (3	, (CP ZN, PPB 0 gm) つ	es , NI, M	WALY	sis. \$, v ⊉D.	LEA , LA TOYE,	CH H , CR , C.L	S PAR # 10 .Eong	TTAL 1,000	FOR PPM.	зон і ;	E M(H	ERAL:	S. B.C.	ASSAYI	ĒŔS

P.05/05

ISO 9002	L LAI Acort	OR.	h to: t∳d	RII Çu	58) 5.)	LTD	•	<u> </u>	852 Gl	E. I	iast Hem	INC IC	s s \L	t ANJ	VAN ALY	COU 919	VER Cl	BC ERT	VC CQT	A 1 CAT	r6 PE		PH	ONS	(60	4)2	53-	315	8 7/	AX ((504):	253-	1716 A A	
		P	<u>ya</u> ,	ang	ler	g	<u>ol</u> 1	1 <u>C</u> 006	<u>01 D(</u> 750	2 78 W. P	<u>tio</u> ander	n st.	<u>RO</u> , Ve	<u>JE(</u> neou	CT (JAJ c vo	AY C 211	म् १ १	'ile iulomt	≥ # ttedi	99 by i	032 Jay 1	254 Page	·- ·	Pa	ge	1						ĽĽ	
SANPLE#	Mo ppm	Cu Spm	РЬ ppm	2n ppm	Ag ppn	1 B ppm	Co ippin	M PPI	Fe X	As ppm	U PPM	Au PPM (Th ppm p	sr spn	Col ppm	Sb ppn p	Bri Springe	V Xpm	Ca X	P %	la PPM p	Cr ppa	Ng X	Ba ppm	11 7	B ppm	AL X	NВ %	K X	ų پ ppm	ust p ppb	t** P ppb	d** ppb	
099-DE-001	1:	361	<3	69	.4	12	20	77.	5.23	6	<8	<2	3	98	<.2	-3	<3 2	10	.36	109	14	24	.77	49	.04	7	2.61	.01	.D4	<2	6	3	<1	
C99-DE-002 C99-DE-003		54 03	4	49	د.> ۲	6 8	11	32(62)	4.12	5	<b <8</b 	<2 -2	2	63 73	<.2	<3 <7	र दा	154 170 -	.21 .	106	6 R	18 25	.24	52	.05	<3 <3	1.36	.01	.04	2	13 7	2	<1	
C99-DE-004	Ż	84	3	79	.3	11	14	52	4.53	3	<8	è	3	67	<.2	<	31	154	. 19	131	6	21	.48	69	.06	-3	3.10	.0Z	.04	2	4	य	<	
699-06-005	3	196	5	64	.4	11	13	44	4.97	8	<8	2	3	93	.3	<3	31	73	.42	204	9	22	.63	67	.06	< 3	3.39	.02	.04	2	3	3	1	· ·
099-06-006	2	77	6	48	. 6	5	. 9	79	3.52	<2	<8	\boldsymbol{q}	2	55	<.2	<3	3 1	132	.21	149	8	22	.42	54	.06	4	1.84	.01	.04	<2	15	3	1	
C99-DE-007	4	514	7	26	<.3	103	16	24	3.47	2	<8	2	<2	25	.6	<3	<3 1	36	.33	077	3	134 1	1.75	45	.21	5	2.47	.03	, 19	<2	6	5	5	
CYY-DE-005 C99-DE-006		740 257	4	- 55	.7	2/	19	29	/ 4.73 1	11	<0 - 1	<2	~2	25	.5	5	31	20	.38 50	, 119 133	2	57 1	1.54	56	.21	<3 - 3	2.22	.02	.27	3	16	2	<1 2	
C99-DE-010	9	405	5	23	.4	- 11	16	22	4.95	9	18	2	2	168	.4	3	3	134	.58	174	12	29	.49	49	11	<3	2.72	.04	.11	à	24	<1	3	
RF 099-06-008	Ι.	775	-3	36	A	21	10	30	4 4 91	A	٢B	ø	0	27	3	~3	a :	231	30	110	2	60 1	1 3.R	63	. 22	4	2.29	.03	.28	0	8	4	2	
C99-DE-011	3	306	4	43	6	1	19	38	6.74	8	<6	2	3	115	.ž	<3	<3	279 1	.33	404	19	28	.78	104	,07	å	2.29	.02	.07	2	ž	<1	2	
C99-DE-012	4	250	5	40	9	73	21	35	9 5.52	11	<6	2	4	122	<.2	<	<3 i	204	.80	.261	9	87	1.23	114	. 13	4	3.20	.03	. 10	2	7	</td <td>4</td> <td></td>	4	
C99-D2-014	31	430	- 4 - <3	- 45	.3	- 54 35	+ 45 20	69 33	1 5.18 7 6.02	21	-36 ⊲8	2	2	102 192	.8 <.2	ও ব	3	192	.75	.067	8	76	1.50	111 69	.20	3	5.25	.08	.17	4	8	2	4	
			-										-				_													-	-		-	
CYY-DE-015 C99-DE-014		278	- 5	36	.5	10	18	36	25.82 34.50	16	<8 29	-2	5	123	.3	3	<37	235 1	1.15	.273	13	30 20	.74	128	.08	3	2.40	.02. nt	.17	2	8	1	4	
C99-DE-017	19	226	-₹3	30	.4	18	19	27	8 6.90	6		-Z	4	87	<.2	ã	-3 2	240	.52	.247	iõ	36	.53	122	10	- 4	3.06	.03	.08	<2	4	ż	ż	Ī
C99-DE-018	6	341	4	24	.3	14	20	25	5 5.64	8	<8	<2	2	125	<.2	<3	<3 2	216	.74	.144	8	34	.50	- 89	.09	<3	2.74	.02	-09	<2	5	4	2	
C99-0E-019	2	130	3	22	.3	1	18	25	3 3.57	r 11	<8	۰2	3	180	<.2	<3	7	126	1.36	,272	10	18	. 20	104	. 05	3	6.25	.02	.08	۰Z	13	1	< 1	
C99-DE-020	6	396	<3	34	<.3	6	21	32	6 4.53	\$ 3	<8	<2	2	122	<.2	4	<3	164	.47	.097	5	109	1.39	68	.20	<3	3.50	. 03	.16	<2	10	1	Z	
C99-0E-021	19	527	<3	21	-4	3	24	31	85.80	3 16	<8	<2	<2	261	.8.	<3	4	159	.58	.201	ş	54	.71	58	.15	<3	5.85	.03	.09	2	13	6	9	
C99-DE-023	ŝ	183	<3 <3	- 26		, <u>(</u>	2 14	37	1 4.0) 9 5.11	' 0 8	<8	<2	44	86	<.2	4	< <u>s</u>	101 153	.90	.313	11	22	.54	- 07 78	.06	<u>د</u>	3.03	.01	, UY . 06	<2	9	2	2	
C99-0E-024	12	273	<3	54	é	1	5 19	55	6 5.6	7	<8	<2	4	62	<.2	3	3	205	.49	.049	7	51	.65	95	.10	<3	2.49	.02	.09	<2	5	2	7	
C99-0E-025	5	143	3	24	. < .3		6	18	6 3.9	73	<8	<2	<2	55	<.2	3	<3	178	.61	.035	4	19	. 24	51	.09	3	1.33	. 02	. 06	\$2	4	3	2	ļ
C99-0E-026	z .	79	Š	61	i ,ê	i (5 12	25	8 6.1	s 7	<8	<2	3	52	.2	-₹	<3	242	.61	.555	8	41	.32	86	.08	5	3.78	.03	.05	<2	ż	3	ž	
C99-PAL-001	12.	570	12	143			28	205	7 5.7	57	<8	<5	3	170	<.2	3	4	252		. 187	23	10	1.64	209	.10	5	2.47	- 02	.16	<2	10	Ž	11	ļ
C99-PAL-002		211 897	22	115) (.) ; 1.(, 5 29	174	7 9.9 4 5.6	/ 10 9	<8 <8	<2	3	362	./	<3 <3	3	23> 217	1.06	. 192	19	14 8	1.48	216	. 11	ে ব	2.45	.03	.10	~2	22	ź	5	[
COQ. 541 - 004		100		04			5 7,	201		,	فر		,	212	F	, 4	<u>,</u> ,	778		300	44	E	1 60	324	00		3 2		42	~	40	•	,	İ
C99-PAL-005	8 1	215	4	94	1.0		,	164	9 6.2	, 14 7 11	a 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	186	1.2	4	3	215	1.02	.279	16	5	1,36	220	.09	00	2.5	.03	.17	2	29	1	14	
C99-PAL-006	12	666	5	89	. (4 24	169	6 5.2	23	<8	<2	<2	116	.2	ব	-3	147	.50	.260	11	5	.84	107	.04	۰Ğ	2.60	.01	.06	<2	17	<1	<1	
C99-PAL-007 C99-PAL-008	18	807 414	12	92 83	2	r 1 7 1	2 27	119 1 67	65.1 256	999 134	<8 	<br .2	3	148 210	<.2	3	4	144 221	64 37	. 198	13	10	.81	138 111	.07 A4	් ය	2.42	.01	,08 05	<2 -2	13	<1	1	
STANDARD C3/FA100	25	63	33	162	2 5 .	į 3	4 1 <u>1</u>	78	0 3.3	0 56	22	3	20	28	24.2	20	24	77	.54	.087	17	164	.58	147	.03	22	1.8	2 .04	.16	17	47	50	48	
STANDARD G-2 GROUP 1D UPPER LIN - SANPLE Samples C	• 0.50 ILTS • TYPE: reginni	4 GM AG, 6011	<3 SAMI AU, RE1	43 PLE, HQ, AL <u>861</u>	5 < .3 , 4 =)** e Rej	1LS = 10 >1## B	5 2 2-2-2 0 PP) PD** and	: 54 : AQA : HC : GRC : BRC	6 2.0 A REG J, CO, UP 38	IA, 1 CD, BY F Reig	KOUI S0, I IRE J	<2 8 AT 91, 1 855A1 855A1	95 (18, 1 7 & 7 14	83 DEG. J # 6 NAL1	.2 C, D 9 = 2 (SIS	<3 ILUTE 000 F By UL	<3 20 TO 2991; .TRA/	40 10 CU, 'ICP,	.66 ML3, P8, 7 (30	.098 CP- N, N gm)/	- 7 ES AI ち NR ろ	80 NALYS N, AS	.59 ils. i, V,	LEAC	.13 H IS CR	4 PAR = 10	1.04 TIAL ,000	FOR PPN.	.55 Some	<u>3</u> MIN	<1 ERALS.	<1	_<1	
DATE RECEIVED	1 51	P 3	199	9	DAT	2	RBPI	DRT	MAT	LED	S	eð	r 1	u/ 0	19	9 1	GNE	DR	¥.	.h			б . т	OYE	C.11	EONG	. .	UANO	ir CFG	וזנדא	ED B.	C. 49	SAYEBS	
				-								7	11	' I '	₹ [·]'						100 (1 m d	,,		**			

P.02/05

.

•

•

Ż

SEP 14'99 14:43 FR. ACME LABS

Lysander Gold Corporation PROJECT JAJAY FILE # 9903254 Page 2 ACHE ANALYLICA ICHE ANNUYITIC ····· K # Au** Pt** Pd** P ia Cr Ma Ba Ti B AL Na Mo Cu Pb Zn AsiNi Co Nan fe AsiU AsiTh Sr. Col Sb Bi Y Ca SAMPLE# ppio ppio ppio 2 X x X ppm X ope pos por por por pos pos pos pos pos X open pom X ppm X ppm bem post post part part post post 4 2 277 <.2 <3 <3 228 .53 .189 2 5 102 .9 7 32 731 7 14 <2 <8 <2 9 5 1.29 116 .19 6 3.51 .01 .15 -2 C99-PAL-009 15 907 <.2 <3 <3 136 .57 .209 15 12 .67 67 .08 <3 2.49 .01 .04</p> 5 <1 3 <3 59 <.3 11 26 461 4.78 4 <8 <2 3 82 <2 C99-PAL-010 502 6 <.2 <3 <3 154 .54 .294 16 17 .83 85 .08 <3 2.84 .02 .07 <2 11 3 4 <2 2 50 522 6 77 .4 14 27 1168 5.18 2 <8 C99-PAL-011 6 3 2 7 .49 72 .05 <3 1.96 .03 .06 <2 5 4 43 <.3 9 11 318 3.21 <2 <8 <2 <.2 <3 <3 95 .54 .247 11 2 45 C99-PAL-012 4 171 5 .3 <3 <3 146 .31 .131 10 9 .52 72 .08 <3 2.13 .01 .05 <2 2 4 C99-PAL-013 3 191 **Q** 56 < 3 6 9 308 4 35 <2 <8 <2 <2 49 <.2 <3 3 151 .84 .313 20 2 .88 105 .16 <3 1.73 .03 .37 2 6 8 34 C99-PAL-014 446 <3 91 <.3 3 22 1170 5.40 <2 <8 **~**2 5 <2 7 4 10 3 82 <.2 <3 5 231 .86 .198 23 7 1.51 108 .07 6 2.78 .02 .09 æ C99-PAL-015 489 13 123 .6 8 22 1722 5.69 <5 <8 t 4 249 1.58 .335 15 9 1.60 159 .09 <3 2.25 .03 .07 <2 5 3 7 -3 10 <6 <2 2 237 .6 C99-PAL-016 2 469 9 72 .B 12 33 2462 6.09 6 3 156 .95 .178 14 1 1.04 585 .04 3 2.08 .02 .19 <2 25 1 11 C99-PAL-017 902 3 104 .6 1 36 2578 6.31 4 <8 <2 3 327 .3 6 ,5 8 <3 196 1.13 .315 16 7 1.54 531 .11 <3 2.60 .02 .23 <2 15 3 7 6 91 .9 11 25 1567 4.90 4 <8 <2 <2 408 C99-PAL-018 2 661 7 .5 <3 <3 240 1.09 .261 16 40 2.72 199 .16 <3 3.24 .03 .42 <2 -5 6 .8 42 26 2177 6.19 C99-PAL-019 <1 1055 8 124 3 <8 <2 <2 307 <2 610 <.2 <3 <3 196 .75 .164 11 20 1.27 182 .09 4 2.79 .03 .15 <2</p> 2 3 3 C99-PAL-020 206 11 144 .4 12 16 1780 4.91 3 <8 <2 1 5 3 296 1.33 .313 21 5 2.14 232 .16 <3 2.78 .03 .57 <2 28 20 C99-PAL-021 2 1294 14 166 1.2 11 33 2243 6.84 3 <8 <2 2 438 1.0 4 .4 <3 5 284 ,72 ,202 15 7 1.41 117 .11 10 2.15 .02 .18 <2 13 2 **<**† 2 <8 <2 <2 199 1 748 13 123 .6 6 21 1920 5.87 C99-PAL-022 .3 <3 <3 217 1.36 .246 20 22 1.65 645 .09 <3 2.76 .02 .13 <2 9 3 2 1 118 11 120 .9 12 25 2706 6.05 4 <8 <2 <2 767 C99-PAL-023 4 .60 213 .03 3 2.40 .01 .09 6 1 1 <3 <3 169 .40 .204 15 \sim C99-PAL-024 20 478 10 - 00 .5 4 22 2212 6.28 5 <8 <2 4 54 <.2 4 126 .24 .173 11 4 .52 123 .03 <3 2.27 .01 .11 -2 24 1 5 59 1123 12 4 38 1668 6.04 13 <8 <2 7 181 <.2 4 C99-PAL 025 66 -4 25 3 2 5 <8 <2 8 179 <.2 3 3 128 .25 .178 12 4 .53 123 .03 <3 2.27 .01 .11 <2 61 1135 67 38 1666 6.13 8 RE C99-PAL-025 11 .5 4 .96 171 .04 3 2.50 .02 .08 <2 8 3 4 7 6 42 5 113 4.2 4 43 232 .46 .213 15 .7 33 1926 6.59 C99-PAL-026 21 684 5 88 4 .69 74 .04 <3 3.26 .02 .05 12 2 <2 85 <.2 <3 <3 190 .34 .288 7 9 <2 6 3 16 927 6.07 6 (8 <2 C99-PAL-027 6 433 6 72 .5 6 1.23 95 .05 <3 2.73 .04 .13 1.0 <3 <3 201 .51 .242 15 <2 -34 <1 6 C99-PAL-028 3 666 21 164 .8 • 21 2418 5.19 - 4 <8 <2 4 42 9 12 .60 115 .09 4 2.89 .02 .05 <2 1 2 3 225 12 525 5.40 <2 <8 <2 2 79 <.2 <3 <3 185 .32 .252 C99-SH-001 2 8 91 .7 9 <.2 <3 <3 191 .48 .234 13 15 .73 108 .05</p> <3 2.55 .02 .07 <2 4 2 4 15 1068 5.28 <2 <8 <2 276 C99-SH-002 2 324 8 73 .3 11 5 2.54 .02 .10 5 <1 1 <2 13 15 683 4.63 6 <8 <2 4 50 C99-SH-003 5 536 6 148 .3 9 10 .41 91 .07 <3 2.35 .02 .04 <2 1 1 9 673 3.68 <2 <8 <2 <2 62 .3 <3 <3 120 .20 .098 1 8 C99-SH-004 2 132 4 53 .3 3 60 <3 <3 109 .53 .206 10 9 .49 80.05 <3 2.48 .03 .06 2 <1 <1 <1 C99-58-005 2 222 3 43 <.3 A 10 361 3.39 <2 -8 -<2 .4 <.2 <3 <3 156 .47 .331 12 14 .58 90.05 5 3.58 .02 .04 <2 2 2 4 C99-SH-006 257 3 68 .4 12 11 333 5.02 2 <8 <2 3 53 2 2 <1 2 3 41 <.2 <3 .34 .237 16 .56 78 .06 <3 3.56 .01 .05 2 176 6 57 .5 14 10 363 3.71 4 <8 <5 3 <3 101 -11 C99-SH-007 <2 <1 1 <1 <3 94 .46 .180 12 10 .49 70 .07 <3 2.59 .03 .08 <3 50 < 3 10 348 3.14 3 -8 <2 3 36 <.2 <3 C99-SH-008 1 194 11 7 33 <.2 <3 <3 146 .43 .207 1 <1 5 <8 <2 16 11 .60 82 .10 <3 2.77 .02 .05 <2 <1 C99-SH-009 4 310 5 67 .5 9 12 465 5.47 <.2 <3 <3 166 .73 .395 14</p> a .47 67 .07 <3 2.26 .03 .09 <2 <1 <1 3 2 <8 <2 5 30 C99-SH-010 4 402 <3 62 .3 7 15 516 5.23 33 172 5.6 35 12 819 3.44 55 23 3 21 31 23.7 21 26 80 .57 .093 18 172 .60 158 .08 18 1.94 .05 .17 16 45 50 49 66 STANDARD C3/FA100 27 4 5 41 <.3 6 4 549 2.01 <2 <3 <2 6 95 <.2 <3 <3 40 .69 .096 7 79 .59 274 .12 <3 1.21 .16 .59 <1 <1 2 1 STANDARD G-2 1 Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the limbilities for actual cost of the analysis only.

ហ Ø 100

۵.

89

D.

ſ

Data A SA YIL

ACKE ANALYTICAL LABORATORIES LT	D. 852 R. HASTINGS ST. V	ANCOUVER B	IC VEA	irs Pho	NB (604) 253 - 3158	PAX (604) 253-171
AA	GEOCHEM PRECIOUS	METALS	ANALYS	18 37 4 000	· • • • • • • •	A
	1006 - 750 W. Pender St., Vancouver	BC V6C 2T8	Submitted	LIC # 990	3072R	
	SAMPLE#	Au** E ppb	Pt** Po ppb p	pb		
	P99-ST-001 P99-ST-002 P99-ST-003 P99-ST-004 P99-ST-005	5972 11 2 18974 1071	399 9 8 8 3 3	48 12 11 <3 <3		
	P99-ST-006 P99-ST-007 P99-ST-008 P99-ST-009 P99-ST-010	974 369 53 8 224	4 17 15 3	23 40 25 6 8		
	P99-ST-011 P99-ST-012 P99-ST-013 P99-ST-014 P99-ST-015	17 6 563 10 54	344 4 3	7 <3 14 3 14		
	P99-ST-016 RE P99-ST-016 P99-ST-017 P99-ST-018 P99-ST-019	27 36 <2 43 307	<3 <96 4 4	x 3 x 3 x 3 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4		
	P99-ST-020 P99-ST-021 Standard Fa100	7 23 47	3 <3 46	<3 <3 48		
GROUP 3B - FIRE GEOCHEM - SAMPLE TYPE: ROCK PULP DATE RECEIVED: SEP 3 1999 DATE	AU, PT, PD - 30 GN SANPLE FUSION, DORE Samples beginning 'RE' are Reruns REPORT MAILED: Sept 0/99	DISSOLVED IN A and (RRE' are SIGNED	AQUA · REGI Reject Ref BY. Cr.	A, ICP ANALYSI:	I. UPPER LIMITS = 10 F	PPM. CERTIFIED B.C. ASSAYER

n I

·

1

Lysander Gold Corporation PROJECT LYSANDER FILE # 9903073R

4Þ

Ą

ŝ

Page 2

r 3 f

٦.

1 3

alme, analy11Ca

Data []. FA ////

ALTER AND THE ADDRESS	SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	SAMPLE gm	
	C99-ST-035 C99-ST-036 C99-ST-037 C99-ST-038 C99-ST-039	15 <1 12 8 8	11 9 10 22 9	11 6 16 14	20.4 30.0 27.3 8.5 30.0	
	C99-ST-040 C99-ST-041 C99-ST-042 C99-ST-043 C99-ST-043 C99-ST-044	9 11 28 23	8 7 7 7 7 1 9	40 9 45 6	30.0 24.3 10.4 27.2 30.0	
	C99-ST-045 C99-ST-046 C99-ST-047 C99-ST-048 C99-ST-049	3 2 107 96 56	8 96 1 2	7 3 6 2	30.0 30.0 30.0 29.5 20.3	
	C99-ST-050 C99-ST-051 C99-ST-052 RE C99-ST-047 C99-ST-053	65 73 42 75 335	1 2 <1 1 <1	<1 <1 <1 2	14.215.47.410.09.7	
	C99-ST-054 C99-ST-055 C99-ST-056 STANDARD FA100	130 227 118 50	<1 <1 <1 44	<1 2 1 46	$6.1 \\ 13.7 \\ 13.5 \\ 30.0$	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC VGA 1R6 PHONE (604) 253-31

PHONE (604) 253-3158 FAX (604) 253-1716

1

Data

GEOCHEM PRECIOUS METALS ANALYSIS

Lysander Gold Corporation PROJECT LYSANDER File # 9903073R Page 1 1006 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Jay Page

Pt** Pd** SAMPLE 'Au** SAMPLE# ppb ppb ppb gm 30.0 23 13 41 C99-ST-001 8 4 15 30.0 C99-ST-002 32 15 30.0 19 C99-ST-003 15 17 7 30.0 C99-ST-004 23 30.0 4 C99-ST-005 6 12 6 30.0 C99-ST-006 17.1 2 9 8 C99-ST-007 2 30.0 9 11 C99-ST-008 19 18.2 8 23 C99-ST-009 6.9 5 3 <1 C99-ST-010 7 5 9 2 42 30.0 C99-ST-011 77 30.0 C99-ST-012 13 7 30.0 C99-ST-013 8 3 4 30.0 C99-ST-014 4 10 30.0 21 C99-ST-015 $^{2}_{1}$ 10 6 30.0 C99-ST-016 1 2 4 30.0 10 C99-ST-017 Ĩ5.6 10 C99-ST-018 114 247 29.6 C99-ST-019 6 12 18.1 2 C99-ST-020 15 131 6 2 11 14.9 C99-ST-021 7 14.6 C99-ST-022 8 8 30.0 35 9 C99-ST-023 Ŝ. 4 29.6 40 C99-ST-024 ě 20.8 12 39 C99-ST-025 94 21 3 2 12.7 1 C99-ST-026 <1 3 2 16.9 C99-ST-027 30.0 C99-ST-028 <1 19.2 24.3 9 110 6 C99-ST-029 ŝ 15 11 C99-ST-030 13 30.0 8 4 C99-ST-031 6 8 30.0 1 5 C99-ST-032 Ğ 5 9.6 C99-ST-033 2 20.8 5 10 C99-ST-034 49 30.0 48 48 STANDARD FA100

> GROUP 38 - FIRE GEOCHEM AU, PT, PD - TOTAL SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: SOIL PULP

DATE RECEIVED: SEP 3 1999 DATE REPORT MAILED: >

.

.

٠,

1

sect 10/99 SIGNED BY

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1 PHONE (504) 253-3158 PAX (604) 253-1716 ANALYTICAL LABORATORIES LTD. HASTINGS ST. VANCOUVER BC V6A 1R6 ACM2 852 в. (ISO 9002 Accredited Co.) ASSAY CERTIFICATE ¥ ¥ Lysander Gold Corporation PROJECT JAJAY. File # 9903256R2 902 1006 - 750 W. Pender St., Vancouver 8C V6C 218 Submitted by: Jay Page SAMPLE# Cu 8 РАGЕ P99-DE-001 22.160 TOTAL GROUP 7 - MULTI ELEMENT ASSAY - 0.250 GH SAMPLE, AQUA - REGIA DIGESTION TO 100 ML, ANALYSED BY ICP-ES. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK PULP × ¥ DATE REPORT MAILED: DATE RECEIVED: SEP 24 1999 ກ ហ N. SПР All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data FA

P.02/02

3822

89

٩ ω 2 ო ĺΩ. Ň 604

LABS

АСМЕ

Ľ. D Ñ ----ກ

.

Y

ACHE ANALYTICAL LABORATORIES LTD. (150 9002 Accredited Co.)	652 B. HASTINGS ST. VANCOU ABSAY CERTIF	UVER BC V6A 1R6 ICATE	PHONE (604) 253-3158 FAX (604) 253-1715
Lysander	Gold Corporation PROJEC 1006 • 750 W. Pender St., Vancouver 80 W	T JAJAY File 60 218 Submitted by:	# 9903256R TT
	SAMPLE#	Cu	ana sangan sa kangan penggan kangan kang Kangan kangan
	M99-DE-001 P99-DUCK-001 P99-DUCK-002 P99-DUCK-005 RE P99-DUCK-00	.081 2.717 2.648 20.635 5 20.753	
	STANDARD R-1	.821	· · · · · · · · · · · · · · · · · · ·
GROUP 7 - MULTI E - Sample Type: Ro	LEMENT ASSAY - 0.250 GM SAMPLE, AQUA - RI CK PULP <u>Samples beginning (RE', are R</u> i	EGIA DIGESTION TO 100 M Bruns and 'BRE' apa Raja A	, ANALYSED BY ICP-ES. I <u>ct. Refune.</u>
DATE RECEIVED: SEP 15 1999 DATE REPO	ORT MAILED: Sept 23/49 SI	GNED BY	T.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
	¥ 1		ł
All results are considered the confidential or	operty of the client. Acme assumes the li	abilities for actual co	at of the enalysis only. Deta Arra

2 • .

.

.

, • •

P.02/02

2

2

•

.

(x - t - x - t - x - t - x - t - x - t)

PHONE (604) 253-3158 FAX (604) 253-1716 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 ANALYTICAL LABORATORIES LTD. (Ido 9002 Addredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Lysander Gold Corporation PROJECT JAJAY File # 9903255 1008 - 750 W. Pender St., Vancouver QC V&C 278 Submitted by: Jay Pege P Le Cr Mg Ba TÌ B AL Na K 🏼 Au** Pt** Pd** Mo Cu Pò Zh Ag Ni Co Mh Fe As U Au Th Sr Cd Sb Si V Ca SAMPLE# pon pon pon opn con pon pon pon 1 53 <3 28 <,3 11 8 442 3.71 <2 <8 <2 2 73 <,2 <3 3 133 .66 .137 7 34 .43 72 .06 <3 .77 .04 .09 <2 15 <1 - 4 C99-DUCK-001 GROUP 1D - 0.50 GM SAMPLE, 3 HLS 2-2-2 AQUA REGIA, 1 HOUR AT 95 DEG. C, DILUTED TO 10 MLS, ICP-ES ANALYSIS, LEACH 1S PARTIAL FOR SOME HIMERALS. UPPER LIMITS - AG, AU, NG, H = 100 PPM; NO, CO, CD, SB, B1, TH, U & B = 2000 PPM; CU, PB, ZN, NI, HN, AS, V, LA, CR = 10,000 PPM. AU** PT** PD** GROUP 38 - BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gd) - SAMPLE TYPE: SILT DATE REPORT MAILED: Sept 14/99 DATE RECEIVED: SEP 3 1999 Data A.FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

04/05

.

6813855

LABS

ACME

Ц Ц

14:44

SEP 14'39

•

1