

SUMMARY REPORT ON THE SILVERTIP PROPERTY,

BRITISH COLUMBIA

Physical Work and Diamond Drilling

BULL 16, 23

Liard Mining Division

59° 55' N, 130° 20' W NTS 104-0/16W

Owner: Silvertip Mining Corporation Operator: Silvertip Mining Corporation, Suite 420 - 355 Burrard Street, Vancouver, B.C. V6C 2G8

Submitted May 5, 2000

Chris Rees, P.Geo HVEY BRANCH Chris Akelaitis Stephen Robertson, P.Geo.

SUMMARY

Silvertip is a blind, high grade, silver-lead-zinc carbonate replacement deposit, situated in the Cassiar Mountains just south of the British Columbia-Yukon border. Since 1996, it has been owned and operated by Silvertip Mining Corporation (SMC), a wholly owned subsidiary of Imperial Metals Corporation. The deposit is at the advanced exploration stage, and has undergone extensive surface and underground drilling programs and geophysical surveys since the early 1980s. The estimated geological resource (in-house calculation, January 1998) stands at 2.57 million tonnes grading 325 g/t silver, 6.4% lead, 8.8% zinc and 0.63 g/t gold. Project feasibility largely depends on the discovery of more tonnage.

Mineralization is hosted by middle Paleozoic carbonates, and consists of stratigraphically and structurally controlled bodies or 'mantos' of pyrite-sphalerite-galena-sulphosalt massive sulphide. Most of the resource consists of mantos at or near the limestone's upper, unconformable contact with overlying argillaceous clastics. Recent exploration has been aimed at finding larger tonnage bodies or 'chimneys' deeper in the limestone.

The Winter 2000 underground drilling program, and the preceding rehabilitation of the workings in late 1999, were financed by Peruvian Gold Limited under the terms of an option agreement with SMC. The total expenditure between October 1, 1999 and May 2000 was approximately \$1.45M.

The underground drilling totalled 3,210 metres in 22 holes, and was all done from E-drift, in the Silver Creek South area or marginal to it. The main objective was to trace the extent of thick, feeder-style mineralization found in hole SSD-99-65 during the summer 1999 surface program, which was drilled to test a low-resistivity CSAMT anomaly. Most of the drilling (19 holes) was done in four fans of drill holes inclined towards the WSW. Significant, complex and heterogeneous mineralization was intersected in the two middle fans, concentrated in a 5 to 20-metre thick band about 25 metres below the unconformity. The thickness and textures of the sulphides strongly suggest a manto-shaped feeder in this location, but probably not a chimney, as had been speculated. This zone, known as the '65 Zone', is open to the east and notably to the west towards the Camp Creek fault, which could conceivably host the 'root' of the postulated feeder.

Three other, step-out holes were drilled, and most intersected mineralization typical of their general location. The depth of some mantos, 100 metres below the unconformity, is encouraging and indicates the potential vertical range of mineralization in the limestone, which is still open to depth. The silver-lead-zinc assay values obtained are very typical of the deposit, confirming the consistently high grade character of the mineralization.

The results support the interpretation that the Silvertip deposit, as far as it has been defined to date, lies in the more distal part of a much larger replacement system. High tonnage 'chimney' mineralization may exist at depth directly beneath the present deposit, but perhaps more likely occurs at some distance away in the more proximal part of the system, closer to the fluid source. Future exploration is recommended to determine the size and geometry of the overall system, through both regional geological, geochemical and geophysical exploration, and subsequent

surface and underground drilling and development. Vectoring towards the thermal source of the mineralization is the best way to improve tonnage potential, and advance the project towards feasibility.

۰.

TABLE OF CONTENTS

SUMMARY	i
TABLE OF CONTENTS	i i i
LIST OF TABLES	۷
LIST OF FIGURES	v
LIST OF MAPS	vi
1.0INTRODUCTION1.1Location and Access1.2Physiography1.3Land Tenure1.4Status of Project1.5Property History1.6Acknowledgements	1 1 1 1 5 7
2.0 GEOLOGY 2.1 Regional Geology 2.2 Property Geology 2.2.1 Stratigraphy 2.2.2 Structure 2.2.3 Mineralization and Alteration	8 8 8 17 17
3.0 PHYSICAL WORK	19
 4.0 DIAMOND DRILLING 4.1 Background and Objectives 4.2 Drill Plan 4.3 Implementation - Drilling and Logging Procedures 4.4 Sample Procedures and Analysis 4.4.1 General Sampling Procedures 4.4.2 Laboratory Analysis 4.4.3 Quality Control 4.4.4 Independent Assay Checks 4.5 Drilling Results 4.5.1 Fan 65-C 4.5.2 Fan 65-S 4.5.3 Fan 65-N 4.5.4 Fan 65-SS 4.5.5 Drill Hole SUD-00-79 4.5.6 Drill Holes SUD-00-83 and 86 4.6 Concluding Remarks 	21 21 23 25 25 27 28 29 31 35 37 39 43 43 46 49
	-

5.0 RECOMMENDATIONS

51

SELECTED BIBLIOGRAPHY

PROJECT STATEMENTS

List of Personnel

,

.

,

,

Statement of Expenditures

Statements of Qualifications

Statement of Work

APPENDIX A Diamond drill logs

Assay results

۰.

APPENDIX B

iv

52

54

LIST OF TABLES

,

•

.

.

· ,

.

,

Table 1.1	List of claims	3
Table 1.2	Summary of Silvertip property history	6
Table 4.1	Summary of drill holes	24
Table 4.2	Geotechnical core logging	26

LIST OF FIGURES

Fig. 1.1	Property location map	2
Fig. 2.1	Location of Silvertip in the Canadian Cordillera	9
Fig. 2.2	Main tectonic elements of northern B.C. and southern Yukon	10
Fig. 2.3	Regional geology of the Silvertip area	11
Fig. 2,4	Regional geology stratigraphic column	12
Fig. 2.5	Geology map	13
Fig. 2.6	Stratigraphic column of the Silvertip area	14
Fig. 4.1	Plan of underground drill holes	22
Fig. 4.2	Comparison of analyses – Silver	30
Fig. 4.3	Comparison of analyses – Lead	32
Fig. 4.4	Comparison of analyses – Zinc	33
Fig. 4.5	Comparison of analyses – Gold	34
Fig. 4.6	Fan 65-C - Drill section	36
Fig. 4.7	Fan 65-S - Drill section	38
Fig. 4.8	Fan 65-N – Drill section	41
Fig. 4.9	Interpretive sketch of rubble breccia in hole 00-80	42
Fig. 4.10	Fan 65-SS – Drill section	44
Fig. 4.11	Hole 00-79 – Drill section	45
Fig. 4.12	Hale 00-83 – Drill section	47
Fig. 4.13	Hole 00-86 – Drill section	48

Map 1 Silvertip property claim map

۰.

. .

,

.

.

,

(in pocket)

1.0 INTRODUCTION

1.1 LOCATION AND ACCESS

The Silvertip property is situated in northern British Columbia, just south of the Yukon border, approximately 90 km by air west-southwest of Watson Lake, Yukon (Fig. 1.1). It lies within NTS map sheet 104-O/16W, in the Liard Mining Division. The property is accessible via a 25-km gravel road starting from Mile 701 (kilometre 1128) of the Alaska Highway, about 15 km east of Rancheria, Yukon.

1.2 PHYSIOGRAPHY

The property lies on the northeastern flank of the Cassiar Mountains. The terrain is moderately mountainous, with generally rounded peaks and ridges separated by U-shaped valleys. The highest peaks are about 1950 metres; topographic relief is typically about 300 to 500 metres. Roughly 35% of the property is above tree line, which is at approximately 1450 metres.

1.3 LAND TENURE

The Silvertip property is owned and operated by Silvertip Mining Corporation (SMC), a wholly owned subsidiary of Imperial Metals Corporation of Vancouver. The property currently comprises 887 units in 63 claims and 26 fractional claims, covering an area of approximately 200 square kilometres (Fig. 1.1, Map 1). The claims and their current status, pending acceptance of this report, are listed in Table 1.1.

1.4 STATUS OF PROJECT

Silvertip (formerly Midway) is an epigenetic massive sulphide deposit, formed by carbonate replacement in limestone. A blind deposit, it is characterized by high grade silver-lead-zinc mineralization. The project is at the pre-feasibility stage, accompanied by advanced exploration. Currently, the total geological resource stands at 2.57 million tonnes grading 325 grams per tonne silver, 6.4% lead, 8.8% zinc, and 0.63 grams per tonne gold (Appendix E in Silvertip Mining Corporation, 1998).

In April 1999, SMC entered into an option agreement with Peruvian Gold Limited of Vancouver, which allows Peruvian the option to earn a 60% interest in the Silvertip property by spending \$5.0

Fig. 1.1: Property location map

TITLE NAME	TITLE #	UNITS	RECORD DATE	EXPIRY DATE	REQ'D EXP.
TOOTS 4	221837	20	July 6, 1979	October 15, 2010	4,000.00
RENEE 1	221908	12	November 2, 1979	October 15, 2010	2,400.00
BETH 1	222004	12	August 8, 1980	October 15, 2010	2.400.00
BETH 2	222005	20	August 8, 1980	October 15, 2010	4,000.00
BETH 3	222006	20	August 8, 1980	October 15, 2010	4,000.00
BETH 4	222007	18	August 8, 1980	October 15, 2010	3,600.00
WAY # 1	222040	20	October 20, 1980	October 15, 2010	4,000.00
WAY # 2	222041	20	October 20, 1980	October 15, 2010	4,000.00
WAY # 3	222042	20	October 20, 1980	October 15, 2010	4,000.00
WAY # 4	222043	20	October 20, 1980	October 15, 2010	4,000.00
WAY # 5	222044	20	October 20, 1980	October 15, 2010	4,000.00
BULL #1	222049	12	November 12, 1980	October 15, 2010	2,400.00
BULL #2	222050	20	November 12, 1980	October 15, 2010	4,000.00
POST 1	222051	4	November 12, 1980	October 15, 2010	800.00
CLIMAX # 2	222052	20	November 12, 1980	October 15, 2010	4,000.00
CLIMAX # 3	222053	20	November 12, 1980	October 15, 2010	4,000.00
CLIMAX # 1	222055	8	November 26, 1980	October 15, 2010	1,600.00
CLIMAX # 4	222056	20	November 26, 1980	October 15, 2010	4,000.00
CLIMAX # 5	222057	20	November 26, 1980	October 15, 2010	4,000.00
CLIMAX # 6	222058	15	November 26, 1980	October 15, 2010	3,000.00
CLIMAX #7	222059	15	November 26, 1980	October 15, 2010	3,000.00
CLIMAX # 8	222050	15	November 26, 1980	October 15, 2010	3,000.00
CLIMAX # 9	222061	15	November 26, 1980	October 15, 2010	3,000.00
CLIMAX #10	222062	20	November 26, 1980	October 15, 2010	4,000.00
CLIMAX #11	222063	6	November 26, 1980	October 15, 2010	1,200.00
BULL #4 FR	222064	1	November 26, 1980	October 15, 2010	200.00
WAY#6	222065	20	November 26, 1980	October 15, 2010	4,000.00
WAY # 7	222066	20	November 26, 1980	October 15, 2010	4,000.00
WAY#8	222067	20	November 26, 1980	October 15, 2010	4,000.00
WAY # 9	222068	15	November 26, 1980	October 15, 2010	3,000.00
WAY #10	222069	20	November 26, 1980	October 15, 2010	4,000.00
WAY #11	222070	20	November 26, 1980	October 15, 2010	4,000.00
VVAY #12	222071	15	November 26, 1980	October 15, 2010	3,000.00
WAY #16	222072	20	November 26, 1980	October 15, 2010	4,000.00
WAY #17	222073	20	November 26, 1980	October 15, 2010	4,000.00
WAY #18	222074	15	November 26, 1980	October 15, 2010	3,000.00
WAY #19	222075	20	November 26, 1980	October 15, 2010	4,000.00
WAY #20	222076	20	November 26, 1980	October 15, 2010	4,000.00
WAY #21	222077	20	November 26, 1980	October 15, 2010	4,000.00
WAY #22	222078	10	November 26, 1980	October 15, 2010	2,000.00
WAY #23	222079	18	November 26, 1980	October 15, 2010	3,600.00
BULL #5	222110	12	July 21, 1981	October 15, 2010	2,400.00
POST 2	222155	9	April 20, 1982	October 15, 2010	1,800.00
POST 3	222156	20	April 20, 1982	October 15, 2010	4,000.00
CLIMAX #12	222183	12	August 24, 1982	October 15, 2010	2,400.00
POST 11	222184	10	August 24, 1982	October 15, 2010	2,000.00
POST 12	222185	15	August 24, 1982	October 15, 2010	3,000.00
POST 13	222188	18	August 24, 1982	October 15, 2010	3,500.00
BULL 7	222187	18	August 24, 1982	October 15, 2010	3,600.00
CLIMAX #13	222233	1	October 20, 1982	October 15, 2010	200.00
CLIMAX #14 FR	222234	<u> </u>	October 20, 1982	October 15, 2010	200.00
	222235	2	October 20, 1982	October 15, 2010	400.00
BULL 8	222244	15	January 18, 1983	October 15, 2010	<u>00.000 E</u>
	222245	2	January 18, 1983	October 15, 2010	400.00
BULL 11 FR	222246	├───	January 18, 1983	October 15, 2010	200.00
BULL 12 FR	222247	├ ── <u>-</u>	January 18, 1983	October 15, 2010	200.00
WAY 24 FR	222260	<u>├</u> !	June 14, 1983	October 15, 2010	200.00
IVVAT 20 FR	12ZZ201	1 1	June 14, 19831	October 15, 20101	200.001

Table 1.1: List of claims on Silvertip property

Table 1.1 (cont'd.): List of claims on Silve	rtip property
--	---------------

WAY 26 FR	222262	1	June 14, 1983	October 15, 2010	200.00
WAY 27 FR	222263	1	June 14, 1983	October 15, 2010	200.00
WAY 29 FR	222264	1	June 14, 1983	October 15, 2010	200.00
WAY 30 FR	222265	1	June 14, 1983	October 15, 2010	200.00
WAY 31 FR	222266	1	June 14, 1983	October 15, 2010	200.00
WAY 32 FR	222267	1	June 14, 1983	October 15, 2010	200.00
WAY 33 FR	222268	1	June 14, 1983	October 15, 2010	200.00
WAY 34 FR	222269	1	June 14, 1983	October 15, 2010	200.00
WAY 35 FR	222270	1	June 14, 1983	October 15, 2010	200.00
STAR 2 FR	222271	1	June 14, 1983	October 15, 2010	200.00
BULL 15 FR	222272	1	June 14, 1983	October 15, 2010	200.00
BULL 16	222273	2	June 14, 1983	October 15, 2010	400.00
8ULL 17	222274	2	June 14, 1983	October 15, 2010	400.00
BULL 18	222275	2	June 14, 1983	October 15, 2010	400.00
BULL 19	222276	2	June 14, 1983	October 15, 2010	400.00
BULL 20	222277	2	June 14, 1983	October 15, 2010	400.00
BULL 21	222278	2	June 14, 1983	October 15, 2010	400.00
BULL 22	222279	2	June 14, 1983	October 15, 2010	400.00
BULL 23	222280	2	June 14, 1983	October 15, 2010	400.00
BULL 24 FR	222281	1	June 14, 1983	October 15, 2010	200.00
BULL 25 FR	222282	1	June 14, 1983	October 15, 2010	200.00
BULL 26 FR	222283	1	June 14, 1983	October 15, 2010	200.00
POST 4 FR	222284	1	June 20, 1983	October 15, 2010	200.00
POST 5 FR	222285	1	June 20, 1983	October 15, 2010	200.00
STAR 3	222299	4	July 6, 1983	October 15, 2010	800.00
POST 15	222332	20	September 19, 1983	October 15, 2010	4,000.00
BULL 27 FR	222333	1	September 19, 1983	October 15, 2010	200.00
POST 16	222336	2	October 3, 1983	October 15, 2010	400.00
CLIMAX #15 FR	222345	1	October 17, 1983	October 15, 2010	200.00
CLIMAX #16 FR	222346	1	October 17, 1983	October 15, 2010	200.00
BULL 28 FR	306683	1	October 14, 1986	October 15, 2010	200.00

million (Cdn) over 3 years. Upon completion, SMC can then earn back 20% (to 60%) by spending \$2.0 million (Cdn) during the 18 months following Peruvian's earn-in. SMC remains the operator throughout the agreement. The 1999 summer program called for a minimum commitment of \$450,000 to be spent on a detailed geophysical survey (CSAMT), followed by a limited diamond drilling program to test the best targets for chimney mineralization. As a result of the success of this work (reported in Silvertip Mining Corporation, 1999b), the existing underground workings were re-opened and de-watered in the fall of 1999 in preparation for a program of underground drilling. This drilling, which was conducted between January 4 and February 7, 2000, is the main subject of this report. Twenty-two holes were drilled, totalling 3,210 metres. Drill core assay samples numbered 480. The claims worked were Bull 16 and 23 (see Fig. 4.1).

In this report, the geology and mineralization of the Silvertip property is summarized in Chapter 2, as background and a framework for the interpretation of the drilling results, given in Chapter 4. The drill logs are in Appendix A and the assay results are in Appendix B.

1.5 PROPERTY HISTORY

The property history of Silvertip is summarized in Table 1.2, and a detailed account is in Silvertip Mining Corporation (1998, Appendix I). A brief outline and update follows.

Galena-rich float was discovered by prospectors on Silvertip Hill in 1955. In late 1956 and 1957, Conwest Exploration Company explored gossanous zones in the McDame Group limestone by drilling and surface and underground workings. Zones of galena and silver-rich values were found but most of the sulphides were thoroughly oxidized.

In 1958, drilling was continued by a joint venture between Noranda Mines Limited, Canex Aerial Exploration Limited and Bralorne Mines Limited. A number of other companies optioned the property between 1960 and 1966, conducting AFMAG and IP surveys over Silvertip Hill to identify drill targets. Other work included photo- and geological mapping, rock and soil sampling, and trenching and stripping. Some good anomalies were found, but follow-up drilling found only deeply oxidized mineralization with generally uneconomic silver grades.

Silverknife Mines Limited owned the Silvertip claims from 1966 until the claims lapsed in the early 1970s. During this time, four rotary holes were drilled (1966) to test IP anomalies, and two diamond drill holes were done on EM survey targets (1967). Two diamond drill holes tested geophysical anomalies in 1968. By this time, the idea that silver-lead mineralization was related to replacement of limestone at its contact with overlying 'shale' was the dominant exploration model for the Silvertip Hill area. However, results were still not encouraging due to various drilling problems, weak mineralization, or deep oxidation.

Very little work was done in the 1970s. The main phase of exploration began in 1980 when Cordilleran Engineering, on behalf of property owner Regional Resources Limited, were conducting regional reconnaissance in search of shale-hosted, lead-zinc sedex deposits. The property was then known as Midway. They found base metal anomalies in soils and stream sediments about 1500 metres northeast of Silvertip Hill, which led to the discovery of baritic and siliceous gossans of exhalite origin within the Earn Group. Regional mapping, soil and EM surveys followed in 1981, with six diamond drill holes around the exhalite showings. Four of these unexpectedly intersected massive sulphide below the base of the Earn Group, at the top of the McDame Group limestone, and by the end of 1982 the exploration focus had again shifted back to limestone-hosted replacement mineralization.

r				Surface	Örillin		Undergr	ound		Mine	al Res	ource	Calcula	tion
Vear	Work	Amount/Type	Dia	mond	0	ther	~	Diamo	nd Drilling	Size	Ag	Pbl	Zn	Au
	VI OIN	, include type	Holes	Metres	Holes	Metres	Development	Holes	Metres	(mt)	(a/t)	(%)	(%)	(a/t)
1955	Discovery							9		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		\rightarrow	
	Claim Staking													
1956	Claim Staking							1						
1057	Trenching						Üpper adit 155 m	1 1						
	Manajan						Lower adit 393 m						1	1
	Drilling							6	204					
4050	Crimeny							1 3	972					
1958								۲Ľ –	512					
1960	AFMAG	<u> </u>	————											
1961/62	IP Survey	8,3 KM		405									- 1	
	Uniling		4	490										
1963	Geochemistry (THM)	1650 samples												
	Mapping								1			1		
	Photogeology													
1 1	Trenching		1					1						
i i	Drilling		1	51								1		
	Mercury Vapour Test	80 samples		1										
1966	Drilling	Rotary			4	684								
1967	Airbome EM		F	1						1.8	2778	50.3	1.22	
	Drilling		2	152										
1968	Gravity													
	Drilling		2	388										1
1073	Ctaim Staking							1						
1090	Geochemistor		<u> </u>											
1900	Cleim Staking		1					1						i
1091	Deiliea		6	857	<u> </u>				<u> </u>					
1901	Coostomistry	9000 eemolee	۳.		Į –									
	Line Cutting	425 km	1		1									i i
		435 Km												
	PEM, Gravity	8.5 Km, 8 9 Km												
	Irenches	19							1					
	Claim Staking		+ 15	5 000						2.0	450	67	42.5	
1982	Drilling		15	5,283						3.0	402	0./	12.5	
	Geochemistry				1			1				í		
	Geophysics											÷ .		ļ
1983	Drilling		32	11,733						4.7	350	5.1	12.3	i i
	Petrography, Mineralogy	Metallurgy	<u> </u>			L								L
1984/85	Drilling		50	10,981		1		170	12,383	5.4	390	6.4	12.3	0.54
1	Geophysics													
	Development						Main adit 1,453 m				1			
1986	Drilling	RC	14	2,660	9	984				1.19	410	7	9.6	
	PEM	74.8 km												
	Downhole PEM	2,340 m												
	Magnetometer	182.7 km	1							ļ				
	Genchemistry	166.2 km		1		Dritting				1	1	1		1
1989	Explor Development			1	1	1	765 m	1	1	1	1	1		
1990	Drilling		1	1	1	1		68	9620	1.74	352	6.4	10	[
1007	Drilling		63	8594	4	844	t	1		2.57	325	6.4	8.8	0.63
'''''	Sejemin	7 km 12 lines	1	1	1	1]		1	1	1	1		
	Mapping													
1008	ARD Geochemietov	+	+	1		+		1		1	1	+	1	t
1330	CSAMT Geochemise	3.8 km 5 lines	1				1	1	1		1			
	Castashoust Dulling		1			92.34		1						
1	Environmental		1	1	1 7				1	i				1
1075	Environmental	5 35 km 10 line		+	+	<u> </u>	+		+	ł	+	+	+	t
1999	COAMT Geophysics		່	1 285				1		1				
0000	Drilling	<u> </u>	1 3	1,200	+	1		1 22	3210	+	ł	1	l	+
000	i Dumung	i	1	1	1	1	1	1 **	1 9410	1	1	1	L	

Table 1.2: Summary of Silvertip Property History

the second s

.

An aggressive surface drill program was conducted between 1982 and 1984, along with geophysics and petrographic and metallurgical research. Two main, blind areas of mineralization were outlined, Silver Creek and Discovery, and a manto-type deposit model was formulated. Encouraged by the apparent size of the mineralized area and the good grade and thickness of sulphides, the company began underground exploration development in the Silver Creek area (1984), followed by 12,383 metres of underground drilling over 170 holes, in fans spaced 20 metres apart. The results showed that the mineralization was more erratic and discontinuous than had been modelled from the widely spaced surface drill pattern, leading to a reduced estimate of the size of the resource.

A new underground development initiative was carried out between 1989 and 1991 by operator Strathcona Mineral Services, with the opening of a decline to the east towards the Discovery area, and completion of 9,620 metres of underground drilling.

In 1996, Imperial Metals Corporation of Vancouver acquired Regional Resources and renamed the company Silvertip Mining Corporation (SMC). A large exploration program in 1997 comprising diamond drilling, seismic surveying, and surface geological mapping resulted in the discovery of a new zone, the Silver Creek Extension. This added significantly to the total geological resource, which was subsequently recalculated (see Silvertip Mining Corporation, 1998) at 2.57 million tonnes grading 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au. In 1998, SMC entered the Environmental Assessment review process with the provincial government for project certification. That year, various environmental baseline studies were done and monitoring procedures instigated, along with a reconnaissance CSAMT survey. This survey revealed a large, vertically oriented low-resistivity anomaly between the Silver Creek South area and the Camp Creek fault, suspected of indicating a sulphide chimney.

A more detailed, follow-up CSAMT survey was done in 1999, and the best geophysical targets were drilled. One hole (99-65) intersected thick, feeder-style mineralization. The existing underground workings were re-opened and de-watered in the fall of 1999. This was followed by 3,210 metres of underground diamond drilling in January-February, 2000, centred around hole 99-65 (this report).

1.6 ACKNOWLEDGEMENTS

The drilling program was supervised by Steve Robertson (project manager), and implemented with the assistance of geologists Chris Rees, Chris Akelaitis and Linda Lewis. Drill core was logged by CA, LL and CR. Pat McAndless (Vice President, Exploration, IMC) and Clay Craig (geological engineer, IMC) helped to design the drill plan with SR and CR, and continue to contribute support and interpretive insights. David Henstridge (President, Peruvian Gold Limited) and John Nebocat (Peruvian Gold Limited) are thanked for their constructive input with respect to program planning and direction.

2.0 GEOLOGY

The regional and property geology pertaining to the Silvertip project was given in some detail in the 1997 summary report (Silvertip Mining Corporation, 1998). Other good sources of information are Cordilleran Engineering (1985), Curtis (1986), and Bradford (1988). This chapter is a summary, taken from the 1998 project report (Silvertip Mining Corporation, 1999a), with minor modifications.

2.1 REGIONAL GEOLOGY

The Silvertip property is situated in the northern Omineca Belt of the Canadian Cordillera (Fig. 2.1). The most important element of this region is the Cassiar terrane, composed of Upper Proterozoic through Middle Devonian carbonate and clastic sedimentary rocks formed on a marine platform on the ancient continental margin of western North America (Cassiar Platform), and overlying Devono-Mississippian rift-related clastics (Earn Assemblage). Structurally overlying the Cassiar terrane is a tectonic assemblage of marginal basin and island arc sediments and igneous rocks of the Upper Paleozoic Sylvester allochthon (Fig. 2.2).

The region was moderately deformed by folding and thrust faulting in the Jurassic, and later by extensional and dextral transcurrent faulting in the Late Cretaceous to early Tertiary (Fig. 2.3). The Cassiar Batholith, a large, granite to granodiorite intrusion of mid-Cretaceous age, lies west of the property. Small intrusions and related hydrothermal alteration of possibly Late Cretaceous age are minor but important features of the region.

The main mineral deposits are syngenetic barite +/- lead, zinc prospects in Paleozoic sediments, and skarn and replacement deposits related to Cretaceous intrusive and hydrothermal activity. An account of mineralization in the Rancheria district, including the Silvertip area, is given by Abbott (1983).

The principal sources of regional geology data are Gabrielse (1963), Nelson and Bradford (1993), and Nelson and Bradford's (1987) open file map of the Tootsee Lake area, from which Fig. 2.3 is adapted. The regional stratigraphy is shown in the stratigraphic column in Fig. 2.4.

2.2 PROPERTY GEOLOGY

2.2.1 Stratigraphy

The geology of part of the Silvertip property around where the work was done is shown in Fig. 2.5, and the stratigraphic column in Fig. 2.6. Essentially, the area comprises easterly to southeasterly dipping Tapicca sandstone and McDame Group, overlain by the Earn Group. All

Fig. 2.1: Location of Silvertip with respect to Cassiar terrane and morphogeological belts of the Canadian Cordillera.

Fig. 2.2: Main tectonic elements of northern British Columbia and southern Yukon showing regional setting of Silvertip.

Fig. 2.3: Regional geological setting, showing location of Silvertip with respect to stratigraphic units of the Cassiar Platform, the eastern margin of the Cassiar Batholith, and the western margin of the Sylvester allochthon. Adapted from Nelson and Bradford (1987). Geology differs slightly from that in Fig. 2.5 (outlined). Array of faults are part of Tootsee River fault system. For Legend, see Fig. 2.4.

e Rocks	Late Cretaceous				LK -		felsic dikes
Intrusiv	mid- Cretaceous	CASSIAR BATHOLITH	2		Kg		granite, granodiorite
	ower Mississippian	SYLVESTER			SAII	7	Division II: basalt, gabbro, serpentinite, chert
	Upper Permian and Upper Triassic	ALLOCHTHON			SAI _		Division I: argillite, chert, slate, greenstone
	Upper Devonian to Lower Mississippian	EARN GROUP		×	DME		sandstone, conglomerate siltstone, shale carbonaceous argillite
	Middle (to Upper?) Devonian	McDAME GROUP	-	/	mDм		fossiliferous limestone, dolostone
	Silurian to Lower Devonian	TAPIOCA SANDSTONE (informal)		X	SDTS		dolostone, quartzite dolomitic siltstone, sandstone
C	ordovician to Silurian	ROAD RIVER GROUP		×	OSRR		carbonaceous, partly calcareous slate, siltstone, black limestone
	Middle? or Upper Cambrian to Lower Ordovician	KECHIKA GROUP		· ×	ЄОК		argillaceous limestone, calcareous slate, siltstone
	Lower Cambrian	ATAN GROUP		x	ŀCR		limestone, dolomitized limestone Archeocyathid-bearing
		Boya Formation	,	-	Юв		Quartzite, argillite

Fig. 2.4: Regional geology stratigraphic column.

Fig. 2.5: Geological map of the main Silvertip deposit showing the areas of mineralization, and plan of the underground workings. For regional location of map, see Fig. 2.3. Drilling was done from southern part of E-drift (see Fig. 4.1 for details).

Fig. 2.6: Stratigraphic column of the Silvertip area.

these rocks are deformed by generally north-trending faults related to the Tootsee River fault system (Nelson and Bradford, 1993), the most important of which is the Camp Creek fault.

Tapioca Sandstone

This is an informal unit, partly equivalent to the (formal) Sandpile Group. The Tapioca is Silurian to Lower Devonian in age, and roughly 475 metres thick. It consists of pale buff-grey dolomitic sandstone to quartzite, silty dolostone and dolostone. The characteristic texture is well-rounded sand grains in a dolomitic cement. Good cross-bedding is present locally.

McDame Group

This carbonate unit hosts the massive sulphide mineralization at Silvertip. It consists of a lower dolomitic unit, about 100 metres thick, and an upper limestone unit up to 260 metres thick. The McDame is Middle Devonian, but may extend into the Upper Devonian.

The lower dolomitic unit consists of pale to dark buff-grey or blue-grey, very fine grained dolostone and silty dolostone, grading upwards into dolomitic limestone. The rocks are fairly well bedded, and locally have fine cryptalgal laminations. In contrast to the overlying limestone unit, this unit has a uniform, non-bioclastic texture. It is distinguished from the underlying Tapioca sandstone by the absence of sand grains or siliceous component, and by its colour and less blocky weathering.

The main, upper part of the McDame Group is composed of distinctive bioclastic limestone, noted for its rich fauna of stromatoporoids, corals and brachiopods. The limestone is pale to dark bluish-grey, and fine to medium grained with a crystalline texture. It is moderately to thickly bedded (up to 1 or 2 metres). Parts of the limestone have been hydrothermally altered to a buff-grey, medium-grained dolostone, or to a pink or white, crystalline 'marble'.

The stromatoporoid <u>Amphipora</u> is characteristic of the limestone, as are several forms of massive stromatoporoids. The stratigraphic distribution of these fossils and of solitary and colonial corals and thick- and thin-shelled brachiopods has been used to construct a detailed biostratigraphy of the McDame, resulting in its subdivision into 8 subunits (cf. Fig. 2.5). This scheme is the principal tool used in drill core logging and the subsurface reconstruction of the McDame, although the bioclastic facies are generally not recognizable in surface outcrops because of weathering.

Brecciation is another important feature of the McDame limestone, again most conspicuous in drill core. Some of these are primary depositional breccias related to karst erosion (see below), and others were formed much later by solution collapse processes due to hydrothermal activity accompanying mineralization.

Earn Group

In the Late Devonian, the carbonate platform emerged above sea level for a time, and the McDame limestone was karst eroded. This episode ended with crustal extension, resubmergence, and the deposition of the succeeding Earn Group siliciclastics in the Late Devonian through Early Mississippian. The basal Earn was deposited disconformably on the McDame with little or no angular discordance, but stratigraphic relief due to dissection at the unconformity is up to 165 metres. The top of the Earn is not preserved; the known thickness in the area ranges between 600 and 1000 metres.

The Earn comprises two coarsening-upward cycles (1 and 2) of distal to proximal turbiditic siliciclastics. In each sequence, the lower part is characterized by carbonaceous, siltstone-mudstone and lesser sandstone or greywacke (1A and 2A), and the coarser, upper part by

sandstone-greywacke and chert-pebble conglomerate (1B and 2B). The rocks were deposited as intertonguing turbidite fans in extensional basins or half-grabens with restricted circulation.

Unit 1A

The basal Earn Group consists of very carbonaceous mudstone to siltstone (1AA), deposited directly on top of the McDame limestone, or in cavities at some depth below the unconformity, due to the muddy sediment infiltrating the karst features. These inclusions of Earn in the McDame are termed 'enclaves'. The rocks are fine grained and finely laminated, and indicate low energy deposition under euxinic conditions. Syngenetic or diagenetic pyrite is present, generally less than 2%. The bottom few metres of 1A are commonly calcareous (1AC). Total thickness is up to 45 metres.

Unit 1B

The upper, coarser part of the lower cycle begins with interlaminated siltstone and sandstone, which becomes predominantly medium- to thickly bedded sandstone up-section. The sandstone is grey, medium- to coarse-grained greywacke, characterized by chert-rich detritus. Sandstone beds are generally centimetres to decimetres thick, separated by beds of siltstone or interlaminated sandstone-siltstone. These lithologies may be somewhat calcareous in places. Pyrite, mainly syngenetic or diagenetic, typically varies between 1 and 3 %, and is more prominent in the more argillaceous beds or laminae than in the sandstones. Graded beds of chert-argillite pebble conglomerate are common; they may be two metres thick in the upper part of the unit.

The higher energy conditions implied by unit 1B suggest increasingly active, fault-controlled block uplifts and erosion in the basin. This mode of formation probably contributes to the wide variation in the thickness of unit 1B, which ranges from as little as 60 metres to 200 to 300 metres.

Unit 2A

This is the lower, finer grained part of the upper cycle, and is the thickest and most inhomogeneous unit in the Earn Group. It is between 200 and 640 metres thick. Subunit 2AA at the base is recessive, dark grey to black carbonaceous mudstone to siltstone. Above it is the lowest and generally thickest and most important of the several exhalite subunits that are diagnostic of Unit 2A: the D-zone exhalite. It consists of pale grey to buff, fine-grained, siliceous and pyritic, faminated exhalite. Above the D-zone is 2AC, a calcareous interval comprising interfaminated siltstone, calcarenite and locally impure limestone; it is 5 to 80 metres thick. This is followed by a more siliceous subunit up to 100 metres thick, 2AS, consisting of thinly laminated siliceous siltstone, slate and fine sandstone. In addition to the D-zone, several other minor exhalites occur within subunits 2AC and 2AS. They are typically no more than a few metres thick, and some are probably not very laterally continuous. It is not clear if they occur consistently at the same stratigraphic horizons from place to place.

The thickest (up to 450 metres) and most characteristic subunit of unit 2A is 2AP, which is composed of thinly to thickly interbedded and finely laminated slaty siltstone and fine- to mediumgrained sandstone. The main feature of 2AP is the disrupted structure of the sandstone laminae which have been broken into discrete, sheared and rotated lenses millimetres to centimetres in size, due to slumping and soft-sediment deformation of a semi-consolidated turbidite sequence.

Unit 2B

The highest unit of the Earn is 2B, which is marked by the abrupt appearance of coarse, chertand argillite pebble conglomerates above subunit 2AP. It represents the upper coarse-grained component of the second cycle. These polymictic conglomerates are thickly bedded, and commonly contain subunits of very well bedded greywacke-sandstone. They are typically matrix supported, and the clasts are rounded to subrounded. Unit 2B is at least 200 metres thick. It is quite similar to unit 1B, but is distinguished by its coarser components, thicker bedding, and a lower amount of siltstone.

2.2.2 Structure

The basic structure of the Silvertip area is not complicated. Like the rest of the immediate region, it is dominated by faulting rather than folding. Strata generally strike north to northeast and dip gently to moderately east to southeast. There are no fold closures affecting the local map pattern, which is characterized by a general younging of units eastwards, broken up by faults.

The main regional ductile deformation resulted from crustal shortening in the Jurassic, when the Sylvester allochthon was tectonically emplaced onto the Cassiar stratigraphy and all units were subjected to folding, thrusting and foliation development, accompanied by very low grade metamorphism. The main foliation is generally parallel to bedding. A prominent extension lineation, trending north-northwest, is represented by elongated clasts in the Earn conglomerates, and is kinematically related to the foliation. A north-northwest-striking, moderately dipping crenulation of this foliation is discernible in argillaceous laminae and locally on foliation surfaces. Drilling and mapping in the main Silvertip deposit area indicates that no significant folds are present here, but minor thrusts do occur and larger thrusts have been mapped farther west towards the Cassiar Batholith and elsewhere in the Cassiar terrane.

Faults related to the Tootsee River fault system are Late Cretaceous through early Tertiary in age. The faults are mainly extensional with dominantly dip slip to oblique slip, east-side-down displacement. They strike predominantly north, ranging between northwest and northeast, and dip steeply. The most important fault in the deposit area is the Camp Creek fault, which in cross-section has a vertical separation in the order of several hundred metres, down to the east. Several other faults with the same general geometry are known in the area from drill hole information and surface mapping, but have much smaller, down-to-the-east displacements, in the range of metres to tens of metres.

The main area of mineralization is known in more detail because of the large amount of drilling. Here, reconstruction of the unconformity surface between the Earn and McDame groups shows that it dips gently to the south, but appears to undulate around gently southeast-plunging axes. It is not clear how much of this undulation is due to buckling and how much is the effect of block faulting or even pre-Earn dissection of the McDame.

2.2.3 Mineralization and Alteration

The Silvertip mineralization consists of silver-lead-zinc massive sulphide, formed by hydrothermal replacement processes in McDame Group limestone. In Silvertip terminology it is known as "Lower Zone" (Fig. 2.6). The main mineralized zones are not exposed, lying between about 50 and several hundred metres beneath the surface, and covered by the Earn Group. These zones are mainly north of Silvertip Mountain and east of Camp Creek (Fig. 2.5). The 'Silver Creek' area is in the west and northwest; the 'Discovery' area lies farther east and at greater depth. To the north, the 'Discovery North' area has received relatively little attention to date, but is likely continuous with the other zones.

(Another type of lead-zinc sulphide mineralization is present on the property, namely Early Mississippian syngenetic 'sedex' deposits associated with siliceous to baritic exhalite subunits in unit 2A of the Earn Group (see section 2.2.1, above). These were the original exploration target on the property in 1980, but they are not considered economic, although they are of interest because they contain a sulphide overprint that may be related to the much younger hydrothermal event that mineralized the McDame carbonates structurally below.) The main sulphide deposits formed by the interaction of hot, magmatically derived, metalenriched hydrothermal fluids with McDame carbonate rocks. The source of the fluids has not been found, but an area of quartz-sericite-pyrite alteration on the surface south and southeast of Silvertip Mountain might indicate a buried intrusion below. This alteration has a fluorine signature, and has been dated at around 70 Ma (Late Cretaceous), the same age as felsic intrusions exposed elsewhere in the region. On this basis, the mineralization event is assumed to be Late Cretaceous, although it may be slightly older.

Most of the mineralization so far defined occurs at the top of the McDarne limestone, at or near the unconformable contact with the Earn Group, although significant sulphides are also present much deeper in the McDarne. The massive sulphides are in the form of gently plunging tubes, or mantos, up to about 20 metres thick and 30 metres wide, and in places extend for at least 200 metres. Narrower and thicker bodies of massive sulphide, between 20 and 30 metres thick, have been intersected locally by past drilling, and are probably discordant, vertically oriented (minor) chimneys connecting mantos at different levels. Sulphide intersections deeper in the McDarne are much less well defined; most are probably also mantos, but some might be parts of structurally hosted chimneys (no scale implied) or connections between stacked mantos.

Contacts between the massive sulphides and the host limestone can be remarkably sharp, but transitional zones of alteration (silicification, dolomitization), and recrystallization and brecciation are common. (Not all the dolomitization is related to the mineralization event – some is much older.) The mineralization consists of early-formed pyrite, pyrrhotite and sphalerite and lesser galena, and a slightly younger, higher temperature, sulphosalt-sulphide suite of minerals. The latter contain the main silver-bearing phases including pyrargyrite-proustite, boulangerite-jamesonite and tetrahedrite (freibergite), as well as silver-rich galena. Quartz and calcite are the main gangue minerals and locally fill late-stage vugs and cavities. Brecciation of sulphides, mixed with limestone and vein quartz and calcite, attest to multiple phases of fluid infusion and intra-mineral, solution collapse processes. Unmineralized, crackle- or rubble brecciated limestone is common, as are tectonic stylolites. Some rubble and matrix breccias are of Late Devonian paleokarst origin, although they too may be infiltrated by sulphide replacement, as they represent suitable 'ground preparation'. Paleokarst is probably only an indirect controlling factor with respect to mineralization, however.

The main control on the mineralization in the deposit area is the Earn unconformity which formed a relatively impermeable cap to the upwelling fluids, concentrating the development of mantos at or near the top of the McDame. The Silvertip mantos are believed to have been fed from depth, at some point in the system, by structurally controlled chimney feeders. These feeders were possibly channelled in faults such as the Camp Creek fault and numerous subsidiary fractures, or along other faults such as those in the Discovery area where the unconformity steps down to the east. Many intra-limestone mantos, which occur 100 metres or more vertically below the unconformity, probably formed by lateral fluid flow branching off from the feeders, and were controlled by a combination of structural and stratigraphic permeability contrasts. The main zone of chimney development, if it exists, has not yet been discovered, and is believed to occur closer to the thermal source of the system.

3.0 PHYSICAL WORK

Introduction

Several kinds of physical work had to be carried out in order to implement the underground drilling program. This consisted of the dewatering and rehabilitation (where necessary) of those parts of the workings required for access, i.e. the main decline (or A-drift) and E-drift, a distance of 785 metres. All drilling was done from E-drift. All the side drifts drained by gravity (except sumps), and no work was done in them.

The on-site work was initiated on October 19, 1999, and is summarized as follows.

Dewatering

First, the surface water-treatment (lime) plant was set up for the neutralization of the first water emitted from the drainage of the mine. Once the water pressure behind the 0.5-metre thick concrete dam at the portal was reduced, the dam was breached at the top to allow a small pump to be placed behind it, which pumped the retained water to the surface lime plant.

After the water level had dropped to the sill, the rest of the concrete dam was blasted away, exposing the main decline. Thereafter, the main dewatering was done by a larger pump mounted on a floating raft which descended down the decline as the water level receded. Once the middle, inclined section of the main drift was drained, the raft and pump were physically moved up to the final decline section (the lower part of E-drift), where dewatering resumed. The actual dewatering took 19 days in total (October 29 through November 16).

The pump remained at the bottom of E-drift until the end of the drilling in order to pump out mine recharge and drilling run-off.

The recharge water drained into a section of the workings, the Discovery decline, which was not dewatered. A small underground lime plant was set up at the entrance of the Discovery decline to treat this water. It was removed at the end of the program.

Infrastructure

During and following dewatering, new pipe was installed where necessary, along with vent tubing and electrical cable. The vent tubing and cable were removed at the conclusion of the program.

A mine air heater was installed, which was also removed eventually.

Rehabilitation

Most of E-drift is in Earn Group rocks, which here comprise thinly interbedded carbonaceous argillite, siltstone and greywacke. These rocks, particularly immediately above the limestone or

mineralization, are friable and incompetent, and required considerable ground support when the development was done in 1984. Due to the deterioration of this support in the interim, the rock bolts, straps and screen were replaced in order to make the ground secure for the drill crews. In addition, timbering was necessary along the most unstable portions, immediately above the Earn-McDame unconformity. None of the development in the limestone needed remedial ground support in this program.

The rehabilitation work, done by contract miners, proceeded with the removal of the most degraded straps and screen, followed by the application of new rock bolts, straps and screen all along E-drift from the unconformity down to the last planned drill station. The bolts were drilled on a 4-foot (1.3 m) pattern, and the straps were applied every 6 feet (1.8 m).

Generally, ground conditions improved down the drift (*ca.* southwards), as the drift cuts through higher, more competent Earn stratigraphy (the Earn dips more steeply than the drift).

۰.

4.0 DIAMOND DRILLING

4.1 BACKGROUND AND OBJECTIVES

In the previous program in the summer of 1999 (see Silvertip Mining Corporation, 1999b), a detailed CSAMT survey was done over the Silver Creek South area of the Silvertip deposit. The best low-resistivity targets were subsequently drilled. One of the holes, SSD-99-65, intersected the largest aggregate thickness of mineralization ever encountered on the property, namely 31.4 metres grading 318.4 g/t Ag, 5.52% Pb and 8.65% Zn. The nature of this mineralization also implied a complex paragenesis involving several phases of fluid infusion, intra-mineralization solution and brecciation. These are strong indicators of feeder activity, and were considered adequate to justify another drill program to test the extension of this zone (this report).

On this basis, the existing underground workings were re-opened in the fail of 1999, and dewatered and rehabilitated (see Chapter 3) in order to conduct a program of underground drilling.

The main objective was to determine the size and orientation of the 99-65 zone by drilling fans of inclined holes around it from the nearest part of the underground workings. In addition, several holes were planned to test extensions of other, previously drilled mineralized zones. Part of the objective of the program was to test as much of the vertical depth of the McDame limestone as was feasible in each situation, rather than concentrate on the Earn-McDame unconformity.

The program budget called for the drilling of between 3000 and 3500 metres. The actual drilling totalled 3,210 metres, over 22 holes.

The drill core logs and assay results are given in Appendix A and B, respectively.

4.2 DRILL PLAN

Drill access and pattern

All drilling was done from the southern part of E-drift, near the southern limit and deepest part of the underground development. This is entirely in Earn Group clastics, but is only about 50 metres above the McDame Group unconformity. This represents a considerable saving in terms of minimizing the cost and difficulty of drilling through the Earn Group, compared to what is necessitated by drilling this area from surface.

A map showing the 22 drill holes in the program is given in Fig. 4.1. The full identity of each drill hole is SUD-00-XX (Silvertip/Underground/Diamond-year-number), although only the hole number is indicated. The principal target, i.e. around hole (SSD-) 99-65, is also shown in the figure. Most of the drilling (19 holes) was done in four parallel fans below and west of the drift, oriented along azimuth 250° (or in one case, 070°). From the north, the fans are named 65-N,

Fig. 4.1: Plan map of 2000 drill holes (00-67 through 00-88), the target hole 99-65, and underground access. Claims worked (Bull 16, 23) are also shown. See Table 4.1 for drill hole attributes. See Fig. 2.5 for geological setting.

65-C, 65-S and 65-SS. Fan 65-C contains the target zone of hole 99-65. The fans are spaced 20 metres apart. The spacing and inclinations of the holes were deemed appropriate to track the known mineralization. Details of the collar coordinates (see next section on collar location), inclination and length of holes etc. are given in Table 4.1.

The only significant change to the drill plan that emerged during the program was the decision to add an extra fan, 65-SS, due to the encouraging results from fan 65-S. To compensate for this extra drilling, some long, exploratory holes under Silvertip Mountain from the end of E-drift were eliminated from the original plan.

Three other holes were drilled, not related to the 99-65 target. Hole SUD-00-79 was drilled through an area east of E-drift known to contain sporadic but locally strong and thick, intralimestone mineralization, the characteristics of which also indicate feeder activity. This area has been drilled quite heavily by previous operators; hole 79 targeted the ground about 30 metres to the east of the past drilling and somewhat deeper. The other two holes, SUD-00-83 and 86, were drilled in a gap within past drilling in order to test the possible extension of thick, high grade mineralization in holes 84-77, 85-254 and 85-236.

4.3 IMPLEMENTATION – DRILLING AND LOGGING PROCEDURES

<u>Drilling</u>

Advanced Drilling Ltd. of Surrey, B.C. was contracted to complete the drilling, which was done between January 6 and February 7, 2000. Two electrically powered, ADL 150 Superdrills were used, one tractor-mounted and one skid-mounted. Each drill was worked by day and night crews. Core diameter was HQ (2.5 inches) throughout, as HQ provides for better sampling and core conservation. Bentonite mud and polymer were used to maintain the integrity of the hole.

Ground conditions encountered were similar to past experience. Loss of circulation in the limestone occurred, but did not hinder the drilling performance nor production. Recovery was very good other than in a few isolated intervals.

Drill hole location and surveying

All drilling was done from existing cut-outs in E-drift. None of the drill collars were surveyed in, either before or after drilling. Before drilling, they were tied in from old survey hubs using a transit and EDM. As such, the coordinates given in Table 4.1 should not be presumed to be exact.

Downhole surveys were done using a 'Reflex EZ-Shot' instrument provided by Reflex Instrument Canada. The instrument measured magnetic azimuth (subsequently corrected to grid north), inclination, temperature and total magnetic field. Readings were taken at approximately 30-metre intervals. Drill holes were found to deviate towards the north and to become steeper with depth. The amount of steepening was found to depend on the initial dip of the hole, with shallow holes steepening more than steep holes. Typically, shallow holes would steepen by 3 or 4°, whereas steep holes (e.g. -80°) would steepen by approximately 1°. Longer holes deviated towards the north by approximately 4 or 5°. Survey readings for individual drill holes are listed on the front page of each drill log in Appendix A.

Following drilling, the collar locations were marked with wooden stakes. If the drill holes leaked water, they were plugged using Margo Plugs.

DDH number	Coli Easting	ar Coordin Northing	ates Elevation	Start Date	Completion Date	Azimuth	Dip (collar)	Lower Zone Mineralization	Drilled Depth (m)
SUD-00-67	24958	43318	1133	7-Jan	10-Jan	250°	-51°	55.1 - 60.0, 95.9 - 107.4	185.9
SUD-00-68	24966	43300	112 9	6-Jan	10-Jan	250°	-51°	51.6-52.6, 56.2-57.7, 95.4-101.5 126.0-127.1, 169.5-180.4, 183.8-187.4	212.8
SUD-00-69	24958	43318	1133	10-Jan	12-Jan	250°	-43°	71.3 - 73.7, 99.4 - 105.2 111.8 -126.0	157.0
SUD-00-70	24966	43300	1129	10-Jan	13-Jan	250°	-43°	111.9-113.4, 121.5-122.8, 175.5-175.9 191.3 - 192.3, 196.5 - 196.6	203.6
SUD-00-71	24966	43300	1129	14-Jan	16-Jan	250°	-60°	68.7 - 90.0, 127.1 - 127.7 131.3 - 132.9	183.8
SUD-00-72	24958	43318	1133	15-Jan	17-Jan	250°	-60°	48.8 - 52.1, 81.1 - 85.2	95.4
SUD-00-73	24966	43300	1129	17-Jan	18-Jan	25 0 °	-60°	69.9 - 82.8, 95.8 - 96.1	112.2
SUD-00-74	24958	43318	1133	17-Jan	18-jan	250°	-69°	60.1 - 72.1	92.4
SUD-00-75	24979	43281	1125	18-Jan	21-Jan	250°	- 52 °	180.5 - 181.0, 182.2 - 183.3	193.5
SUD-00-76	24949	43337	1136	19-Jan	21-Jan	250°	-41º	115.1 - 115.6	156.4
SUD-00-77	24979	43281	1125	21-Jan	22-Jan	250°	-66°	N/A	92.4
SUD-00-78	24949	43337	1136	23-Jan	26-Jan	250°	-51°	78.3 - 78.6	200.6
SUD-00-79	24983	43282	1125	23-Jan	27-Jan	098°	-67°	104.8 - 107.4, 114.0 - 114.5	2 0 0.3
SUD-00-80	24949	43337	1136	26-Jan	27-Jan	250°	-69°	48.2 - 55.1, 69.4 - 69.6	113.7
SUD-00-81	24979	43281	1125	27-Jan	29-Jan	250°	-41º	N/A	121.3
SUD-00-82	24949	43337	1136	28-Jan	29-Jan	250°	-60°	54.6 - 55.1	116.7
SUD-00-83	24878	43479	1160	30-Jan	1-Feb	240°	-72°	47.2 - 49.2	150.3
SUD-00-84	24966	43300	1129	30-Jan	31-Jan	25 0°	-80°	67.4 - 75.2	95.4
SUD-00-85	24966	43300	1129	1-Feb	2-Feb	70°	-85°	88.5 - 89.8, 101.6 - 102.4	107.6
SUD-00-86	24878	43479	1160	1-Feb	3-Feb	212°	-6 5 °	38.1 - 38.4, 100.9 - 101.2, 139.4 - 140.6 148.2 - 150.7, 153.0 - 157.0	162.5
SUD-00-87	24958	43318	1133	3-Feb	5-Feb	25 0 °	-36°	100.1 - 103.3, 106.9 - 110.3, 120.6 - 135.3 139.7 - 141.4, 158.4 • 164.3, 165.9 - 169.9	176.2
SUD-00-88	24958	43318	1133	6-Feb	7-Feb	25 0 °	-80°	63.4 - 53.8	80.2

Table 4.1: 2000 SILVERTIP DIAMOND DRILL SUMMARY

Core Logging

At the rig, the core tube was emptied into HQ core boxes, with wood blocks to indicate the footage at the top of each core run. Core boxes were secured and transported by tractor to the surface and to the core shack area where they were stacked. Due to the winter conditions, the core was logged and sampled indoors. When logging, all core boxes for the hole were laid out. Footage marked on the wood blocks was converted to metric, and the top and bottom depths of the core in the box were measured. These numbers were written on the core box with a felt pen for identification in photographs. Aluminum tape embossed with the hole number, box number, and depth interval were stapled to the end of each core box, for identification when it is stacked in racks.

Core was then logged (geological and geotechnical) and photographed. After logging, the relevant boxes were set aside for sampling (see section 4.4, below). Finally, all core was transported to the core racks on site for long-term storage. Core racks built on the Silvertip property are of superior design and stability, constructed with high quality material. Suitable weather resistant roofing is in place to keep the core and core boxes dry, to facilitate long-term preservation of the core.

During and following logging, the hand written drill logs were entered into the Surpac DrillPad computer program.

Geotechnical Core Logging

Initially, from hole SUD-00-67 to hole SUD-00-72, geotechnical core logs were recorded for every alternate hole drilled within a fan. However, due to time restrictions, from drill hole SUD-00-73 to hole SUD-00-88, geotechnical core logs were recorded for mineralized zones only, plus 3 metres above and below. A summary of the geotechnical information collected ("RQD") is in Table 4.2. Geotechnical core logs consist of the following data: recovery, rock quality designation, degree of hardness, degree of weathering, joint description (angle, number and surface type) and bedding planes (angle and number).

4.4 SAMPLE PROCEDURES AND ANALYSIS

4.4.1 General Sampling Procedures

Sample Marking

Sample numbers and intervals were marked on the core boxes and the core itself with a grease pencil. Sample tags (water resistant paper) were prepared before sampling, to prevent errors in sample sequencing. These tags were prepared in triplicate; 1-office copy, 2-field copy, 3-lab. copy. The sample numbers were recorded in the DrillPad program as the logs were entered.

Samples were collected one at a time to avoid confusion, contamination or mis-numbering. Aluminum tape with the sample number was stapled onto the core box edge or divider at the beginning and end of each sample length. Samples were double-bagged to minimize contamination should the bags break during transport. The sample number was written in felt pen on both of the bags, and the sample tag was placed between the two bags to reduce degradation of the tag. Sample bags were sealed with zip-lock fasteners as soon as the sample was collected.

Hole No.	Full RQD Log	Partial RQD Log	Intervais (m)
SUD-00-67	X		0.0 – 185.9
SUD-00-68	X		0.0 - 212.8
SUD-00-69			No RQD completed
SUD-00-70			No RQD completed
SUD-00-71			No RQD completed
SUD-00-72	X		0.0 - 95.4
SUD-00-73		Х	64.9 - 87.8
SUD-00-74			No RQD completed
SUD-00-75		X	0.0 - 25.3, 177.7 - 186.8
SUD-00-76			No RQD completed
SUD-00-77	÷.		No RQD completed
SUD-00-78		X	74.1 - 81.7
SUD-00-79			No RQD completed
SUD-00-80		X	45.1- 57.3, 66.4 - 72.5
SUD-00-81			No RQD completed
SUD-00-82		X	52.7 – 57.3
SUD-00-83		X	43.6 - 51.2
SUD-00-84		x	63.4 – 78.6
SUD-00-85		X	86.3 - 107.6
SUD-00-86		X	145.7 – 159.4
SUD-00-87		X	96.9 - 176.2
SUD-00-88			No RQD completed

Table 4.2: List of drill holes and Geotechnical Core Logging completed.

,

.

Core Splitting

Samples consisting of poor quality core or unconsolidated material were halved using a putty knife, and half removed from the core box with a spoon; both tools were stainless steel.

Intact and competent core was cut with a rock saw. Attention was paid to the orientation of the core to maintain a common orientation within a sample, where possible. Heterogeneous mineralization was sawed in a way that minimized compositional bias. The sample area was cleaned after the collection of each sample.

Sample Packaging

Samples were kept in numbered order while being packaged. Tamper proof plastic pails (20-litre) were used for transport of the samples. A tally of samples in each pail was kept in order to cross check the number of samples on the invoice to the number of samples actually being shipped. The invoice was not filled out until a shipment was to be sent. Pails were filled at the completion of sampling of a hole and sealed immediately prior to transport.

Transportation

The frequency of sample shipments was one or more shipment per week. Transportation off the property and to the expediter in Watson Lake (Yukon) depended on the schedule of SMC staff. Otherwise, an expediter would come to the property and pick up the samples. From Watson Lake, the samples were trucked by a trucking firm (Byers) to the Bondar Clegg laboratory in North Vancouver, British Columbia.

'Chain of Custody' is an assurance that the geological samples have been transported in such a manner as to be secure and completely traceable from field to laboratory. From the time the samples left the Silvertip property to the time that the Company received final analysis, the Chain of Custody is in effect. Progress through the assay labs. in North Vancouver is also traceable.

4.4.2 Laboratory Analysis

<u>General</u>

Intertek Testing Services (Bondar Clegg) of North Vancouver was contracted to analyze the core samples. All samples were pulverized to meet 90%, -150 mesh specifications, using an LM-2 (or equivalent) pulverizer, capable of accommodating a 1-kg charge. The fineness of the samples was required to maximize digestion for the best results.

Samples from diamond drill holes SUD-00-87 and 88 were analyzed using modified techniques from those used to analyze the bulk of the samples, from drill holes SUD-00-67 through 86. These modifications were made in order to improve digestion and to increase the accuracy of the final reported values. The analytical techniques used are summarized immediately below.

<u>Analysis</u>

Drill Holes SUD-00-67 through 86

ICP (Inductively Coupled Plasma) analyses of 34 elements were performed on all samples to determine the trace element suite. Aqua Regia (3HCI:HNO3) digestion was used. Gold was

done by wet geochemical analysis only. Special instructions applied for silver, lead and zinc, as follows:

- If ICP Pb and Zn were greater than 0.1% (1000 ppm), a 0.5 g sample would be treated with 4acid digestion.
- If ICP Pb and Zn were greater than 15%, titration would be implemented.
- If Ag was greater than 50 g/t, it would be analyzed by fire assay with a gravimetric finish.

Drill Holes SUD-00-87 and 88

ICP analyses of 35 elements, using a 4 acid (HF, HNO3, HCLO4, HCL) digestion, were performed on all samples. Gold was done by wet geochemical analysis with an atomic absorption finish. Special instructions applied for silver, lead and zinc, as follows:

- If ICP Pb were greater than 15%, a wet chemical titration would be implemented.
- If ICP Zn were greater than 15 %, reanalysis was done on the same solution by atomic absorption, using a high scale calibration.
- If Ag was greater than 500 ppm, it would be analyzed by fire assay with a gravimetric finish.

4.4.3 Quality Control

<u>General</u>

SMC implemented a comprehensive Quality Control program during the program to monitor and reduce errors occurring in the collection and analysis of samples. Errors resulting from poor handling of the samples can occur in the field (i.e. at the drill or in the core shack), during transport, or within the laboratory. A combination of blank and duplicate samples, introduced into the sample suite from the field and by the laboratory, can indicate the problems. Blank samples are used to detect sample preparation errors (contamination) in the lab., and the duplicates test reproducibility and detect inadvertent sampling bias in the field. Blank or duplicate samples were taken at approximately every tenth sample interval.

In addition, a small sample suite consisting of 35 samples, randomly picked from drill holes SUD-00-70 to 73 and SUD-00-75, were sent to Acme Analytical Laboratories of Vancouver for analysis as an independent check on the results received by SMC from Intertek Testing Services (Bondar Clegg) of North Vancouver (see below under Independent Assay Checks).

Duplicate Samples

Two types of duplicate sampling techniques were utilized to check the reproducibility of assays.

Field duplicates were introduced during sampling in the core shack. Core loggers indicated with grease pencil the location of duplicated samples. The core was halved, and one half was then quartered, using the rock saw. The other half was kept in the box, as usual. The two quarters were put into separate sample bags with two separate sample numbers, with no indication of 'duplicate' in order to keep the samples blind. Aluminum tags were used to mark the duplicated sample intervals in the core box.

Laboratory duplicates were required to be performed by the laboratory. There are two types of laboratory duplicates. Preparation duplicates are splits from the coarse crush from the jaw crusher which have been prepared as two pulps and are indicative of the errors introduced in the analysis of the separate samples. Pulp duplicates are two weightings from the same pulp, and contains only the variation introduced during analysis.

By incorporating all duplicate types, the overall precision and the source of greatest uncertainty in the sampling and analytical process can be quantified by the use of recently developed statistical procedures.

Blank Samples

Blank samples were introduced into the sample stream from the field, and made to be indiscernible to the lab. Blank sample material consisted of barren limestone core, which was obtained from unmineralized drill holes and manually crushed to such a size as to imitate 'normal' assay samples. Blanks were numbered and treated exactly as if they were part of the regular sample suite.

4.4.4 Independent Assay Checks

SMC selected 35 samples from drill holes SUD-00-70, 71, 72, 73 and 75, and sent them to Acme Analytical Laboratories of Vancouver as an independent check of the assay and geochemical values determined by Intertek Testing Services (Bondar Clegg) of North Vancouver. The Acme laboratory ran tests analogous to those performed by Bondar Clegg. Comparisons of the values reported by Acme and Bondar Clegg for the elements silver, lead, zinc and gold are reported here. A comparison of trace elements is not given here, because they are present in such low concentrations that a meaningful statistical comparison is not possible.

<u>Silver</u>

Silver (Ag) was initially analyzed by ICP analysis. If Ag within a given sample was greater than 50 g/t it was analyzed by fire assay with a gravimetric finish. The mean difference between the Acme and Bondar Clegg values is 20.31%. This value is skewed towards larger values by a single large discrepancy between Bondar Clegg and Acme. As a result, the median difference of 11.6% is more representative of the average percentage difference between the values reported by Bondar Clegg and Acme.

A direct comparison of the Ag values reported by Acme and Bondar Clegg is presented in Fig. 4.2. This figure shows that the Ag values reported by Acme Labs are consistently and systematically higher than those obtained by Bondar Clegg. In addition, this plot shows that there are two samples in which the Acme value is anomalously higher than the Bondar Clegg value. The Acme values for these two samples are 720.5 g/t and 2704 g/t. The corresponding Bondar Clegg values are 198 g/t and 2341.2 g/t. With the exception of these two samples, there is a strong correlation between the Acme and Bondar Ag values, and the median percentage difference is within acceptable limits. This suggests that overall the Ag values reported by Bondar Clegg are accurate within reasonable limits.

Lead

Lead (Pb) was initially analyzed by ICP analysis. If the Pb values within a given sample were greater than 0.1% (1000 ppm), a 0.5 g sample was treated with a 4-acid digestion. Following the 4-acid digestion, any samples with greater than 15% Pb were sent for titration. The mean

Figure 4.2: Comparison of Silver values reported by Bondar Clegg and Acme Laboratories.

percentage difference between the Pb values reported by Acme and those reported by Bondar Clegg is 4.44% with a median difference of 4.39%.

A direct comparison of the Pb values reported by Acme and Bondar Clegg shows a very strong correlation between the two laboratories (Fig. 4.3). This suggests that the Pb values provided by Bondar Clegg are accurate within reasonable limits.

<u>Zinc</u>

Zinc (Zn) was initially analyzed by ICP analysis. If the Zn values within a given sample were greater than 0.1% (1000 ppm), a 0.5 g sample was treated with a 4-acid digestion. Following the 4-acid digestion, any samples with greater than 15% Zn were sent for titration. The mean percentage difference between the Zn values reported by Acme and those reported by Bondar Clegg is 3.82% with a median percentage difference of 3.41%.

A direct comparison of the Zn values reported by Acme and Bondar Clegg shows a strong correlation between the laboratories (Fig. 4.4). This suggests that the Zn values provided by Bondar Clegg are accurate within reasonable limits.

Gold

Gold (Au) was analyzed by wet geochemical techniques and reported in g/t. The mean difference between the Acme and Bondar Clegg values is 2,842%. This result is skewed towards larger values by one very large discrepancy between Bondar Clegg and Acme. As a result, the median difference of 1028% is more representative of the average percentage difference between the labs.

A direct comparison of the Au values reported by Acme and Bondar Clegg shows that Acme consistently reports gold values which are significantly higher than those of Bondar Clegg (Fig. 4.5). The Acme values show an expected and normal range in Au values from near 0.0025 g/t to 0.69 g/t. However, the Au values obtained by Bondar Clegg show very little variation and are clustered about the lower detection limit of 0.0025 g/t. This indicates that there is a problem with the analytical technique used by Bondar Clegg and that their Au values are unreliable. SMC is working with Bondar Clegg to resolve this problem.

4.5 DRILLING RESULTS

For descriptive purposes, mineralization that occurs at or close to the Eam-McDame unconformity is distinguished from that which occurs substantially below, within the limestone. The possible validity and significance of this distinction is discussed briefly in a later section (section 4.6).

As noted previously, the full prefix of the drill holes is SUD-00-XX, but in the following sections, the numbers might be simplified to the last two digits only.

The results from fans 65-C and 65-S are described first and in more detail than the rest, as they contain the main target mineralization. For convenience, relevant excerpts from Table 4.1 are given for each fan.

Figure 4.3: Comparison of Lead values Reported by Bondar Clegg and Acme Laboratories.

Figure 4.4: Comparison of Zinc values reported by Bondar Clegg and Acme Laboratories.

Figure 4.5: Comparison of Gold values reported by Bondar Clegg and Acme Laboratories.

4.5.1 Fan 65-C

Fan 65-C was drilled to investigate the dimensions and character of the feeder-style mineralization intersected in drill hole SSD-99-65. Six diamond drill holes, totalling 786.2 m, were drilled along azimuth 250° at various dips (Fig. 4.6; Table 4.5.1).

Table 4.5.1: Fan 65-C						
Drill Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-67	24958	43318	1133	250°	- 51°	185.9
SUD-00-69	24958	43318	1133	250°	- 43º	157.0
SUD-00-72	24958	43318	1133	250°	- 60°	94.5
SUD-00-74	24958	43318	1133	250°	- 69ª	92.4
SUD-00-87	24958	43318	1133	250°	- 36°	176.2
SUD-00-88	24958	43318	1133	250°	- 80°	80.2

Unconformity Related Mineralization: (Holes 00-67, 69, 72 and 87)

Four out of the six drill holes in fan 65-C intersected Lower Zone mineralization associated with the unconformity, ranging in thickness from 2.4 m to 4.85 m. Typically, the style of this mineralization is relatively 'passive' and simple, and consists of fine-grained pyrite, pyrrhotite and sphalerite with lesser galena. Textural features include: fairly massive fine-grained pyrite and sphalerite with remnant limestone fragments (holes 67, 87); strongly silicified pyrite and sphalerite massive sulphide with vague compositional banding (hole 69); early pyrrhotite and pyrite massive sulphide with minor sphalerite and quartz filling open space (hole 72). Each zone of unconformity related mineralization appears to have had at least two phases of sulphide replacement.

Sub-Unconformity Lower Zone Mineralization: (Holes 00-67, 69, 72, 74, 87 and 88)

All six holes in fan 65-C intersected sub-unconformity sulphide mineralization, and holes 69, 74 and 87 intersected multiple zones. The strongest and most continuous mineralization forms a band at least 90 m long, about 25 metres below the unconformity (Fig. 4.6). The apparent thickness of the intercepts ranges from 0.4 m (hole 88) to 14.7 m (hole 87). Sub-unconformity mineralization is highly variable. Some is homogeneous massive sulphide with sharp contacts against unaltered limestone (holes 72, 88), whereas other zones are heterogeneous and complex, and are characterized by stronger brecciation (hole 87). Mineralization varies in detail from place to place, and may be rich in pyrite, pyrrhotite, sphalerite or galena. Commonly, early fine-grained pyrite and pyrrhotite is overprinted by later, coarser grained sphalerite, galena, and pyrite. Textural features include: variably and vaguely banded sphalerite, pyrite and galena massive sulphide with remnant limestone; rubble and mosaic brecciated massive sulphide, with clasts of limestone and Earn argillite (holes 67, 69 and 87); brecciated limestone replaced by sphalerite, pyrite in sharp contact with unaltered limestone (holes 72, 88).

Hole 87 is perhaps the most significant hole in fan 65-C. It was drilled to test both the western extension of the unconformity mineralization in hole SSD-99-65, and the deeper subunconformity, feeder-style mineralization in that hole. Seven mineralized zones were intersected, most displaying fairly typical 'passive' replacement. However, the mineralization from 120.6 to 135.3 m is different, and is characterized by the heterogeneous and brecciated texture found in the lower part of hole 99-65. Thus, hole 87 indicates the extension of feeder-style mineralization for at least 25 m west of 99-65, and it remains open to the west.

Fig. 4.6: Fan 65-C drill section, looking NNW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered except for 99-65. Search distance normal to plane of section is 10 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Interpretation of mineralization (hatched) is applied to new information only. Topographic surface (not shown) is at approximately 1370 metres elevation. Camp Creek fault is approximate.

Interpretive Comments

Apart from hole SUD-00-87, Lower Zone mineralization in the drill holes of fan 65-C generally displays characteristics more typical of 'passive', lateral fluid-flow and replacement than 'active' feeder-style processes which involve significant intra-mineral solution and brecciation. However, the mineralization in hole 87 is highly variable and ranges from simple replacement to heterogeneous, brecciated sulphide and limestone. In addition, the limestone in hole 87 has been disrupted and altered to a greater degree than that in the other holes. Some drill holes in the fan, such as 69 and 74, display a combination of 'simple' and complex mineralization, but overall not as much as hole 87. All this implies that the ground on the western half of fan 65-C, represented by holes 99-65 and 00-87 especially, experienced more fluid activity and reworking than the ground to the east. In as far as a feeder can be invoked from these observations, the western part of the fan, closest to the Camp Creek fault would appear to be more proximal to such a hydrothermal conduit.

4.5.2 Fan 65-S

Fan 65-S was drilled mainly to test the southern extension of feeder-style mineralization in drill hole SSD-99-65. Five holes were drilled at an azimuth of 250° and at various dips (Fig. 4.7; Table 4.5.2). A sixth hole (SUD-00-85), marking the eastern limit of the fan, was drilled at -85° along azimuth 070°.

Table 4.5.2: Fan 65-S						
Drill Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-68	24966	43300	1129	250°	- 51°	212.8
SUD-00-70	24966	43300	1129	250°	- 43°	203.6
SUD-00-71	24966	43300	1129	250°	- 60°	183.8
SUD-00-73	24966	43300	1129	250°	- 68°	112.2
SUD-00-84	24966	43300	1129	250°	- 80°	95.4
SUD-00-85	24966	43300	1129	070°	-85°	107.6

Unconformity Related Mineralization: (Hole 00-68)

Of the six holes in fan 65-S only hole 68 intersected unconformity related Lower Zone mineralization. The intercept is 0.99 m thick and consists of silicified pyrite and sphalerite massive sulphide with lesser galena and pyrrhotite, and 5% remnant limestone. The interval is in sharp contact with both the overlying Earn Group and underlying McDame limestone. It averages 87.3 g/t Ag, 0.3% Pb, and 6.3% Zn. The mineralogy and texture are typical of unconformity-related mantos elsewhere in the deposit.

Sub-Unconformity Lower Zone Mineralization; (Holes 00-68, 70, 71, 73, 84 and 85)

All six holes in fan 65-S intersected some sub-unconformity Lower Zone mineralization, and all except hole 84 intersected multiple zones. The vertical depth of mineralization below the unconformity ranges from 15 to 85 m. The longest intersection was 21.3 m (hole 71) and the thinnest was 0.1 m thick (hole 70). The majority of the zones are typical of 'passive' manto mineralization, characterized by homogeneous pyrite (+/- pyrhotite), sphalerite and galena rich massive sulphide. The mineral paragenesis suggests at least two phases of mineralization. The zones frequently contain intact remnant limestone and lack significant widths of brecciation.

Fig. 4.7: Fan 65-S drill section, looking NNW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 10 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Interpretation of mineralization (hatched) is applied to new information only. Topographic surface (not shown) is at approximately 1375 metres elevation. Camp Creek fault is approximate.

Sulphide compositional banding is another common feature of this mineralization, as are sharp contacts with the bounding host limestone.

The 21.3 m long mineralized intercept in hole 71 is the largest single zone in this drilling program. Along with the 12.6 m-thick zone in the adjacent hole 73, 12 m to the east, these zones display many features which set them apart from the majority of the sub-unconformity mineralization in fan 65-S. They are complex and heterogeneous, and contain various amounts of silicified, early fine-grained pyrite and pyrrhotite mineralization, and coarse-grained sphalerite, pyrite and galena. They also feature silicified limestone rubble breccias, partially replaced by sphalerite, pyrite and galena. The heterogeneity and brecciation imply that these zones sustained multiple stages of fluid infiltration, with associated solution and reworking. In this respect, the zones are very similar to, though not quite as well developed, as the sub-unconformity mineralization in drill holes SSD-99-65 and SUD-00-87.

Deep, Pyrrhotite-rich Mineralization

An important feature of hole 00-68 is the occurrence of thick massive sulphide mineralization at 170 metres down the hole, beginning about 75 metres vertically below the unconformity. Two discrete zones are present. First, a 10.9-m long intercept of homogeneous, pyrrhotite and pyrite rich mineralization with minor relict limestone. This interval is noteworthy for the amount of magnetic pyrrhotite (roughly 40% overall), the paucity of sphalerite and negligible galena, and the presence of minor but still significant chalcopyrite (up to 1%), which rims (and replaces?) pyrite and pyrrhotite. Little or no syn-mineral brecciation is indicated, and the zone appears to reflect passive manto replacement, with sharp limestone contacts. This amount of pyrrhotite is unusual.

The second zone, which follows after 3.4 metres of weakly mineralized limestone, is 3.6 m thick and quite different. It lacks pyrrhotite, although galena is still in only trace amounts. The zone is dominated by fine to coarse-grained pyrite and sphalerite, and averages 16.5% zinc. Considering its proximity to the overlying pyrrhotite-rich zone, the differences in its mineralogy and grade are intriguing. If these mantos have the same source or feeder, the two zones were probably fed at separate times by different mineral fluids. Alternatively, they have quite different sources.

Interpretive Comments

The majority of the sub-unconformity mineralization intersected in fan 65-S is more typical of passive manto replacement than of feeder activity. However, the relatively complex and heterogeneous mineralization in holes 71 and 73 suggests that they are closer to a hydrothermal fluid conduit or feeder, which may be a continuation of that tentatively identified in fan 65-C to the north (see section 4.5.1, above). Thus, the overall mineralized body comprises a combination of active and passive styles of mineralization. This could mean that feeder activity was superimposed on an earlier 'simple' manto, or that passive replacement extended outwards ('bled') around a central feeder, or perhaps each model applies in different places.

The relative paucity of unconformity related mineralization in fan 65-S is interesting. It suggests that the enhanced permeability conducive to mineralization is potentially just as well developed away from this permeability barrier. However, the fundamental reason or control for the subunconformity mineralization in fans 65-C and 65-S is not known at this time. It may be structural or stratigraphic, or both.

4.5.3 Fan 65-N

Fan 65-N, 20 m north of fan 65-C, was drilled in order to investigate the northward projection of feeder-style mineralization in hole SSD-99-65. Four holes, totalling 587.4 m, were drilled at an

azimuth of 250° at various dips (Fig. 4.8; Table 4.5.3). The results are described under three categories:

Unconformity Related Mineralization Sub-unconformity mineralization Brecciation

Table 4.5.3: Fan 65-N						
Drill Hole	Easting(m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-76	24949	43337	1136	250°	- 41º	156.4
SUD-00-78	24949	43337	1136	250°	- 51°	200.6
SUD-00-80	24949	43337	1136	250°	- 69°	113.7
SUD-00-82	24949	43337	1136	250°	- 60°	116.7

Unconformity Related Mineralization: (Holes 00-80 and 82)

Mineralization at the unconformity was intersected in holes 82 and 80, ranging from 0.5 to 6.9 m thick, respectively. The thinner intercept in hole 82 is low grade and pyrite rich with lesser sphalerite. It appears to be the result of sulphide replacement of rubble brecciated McDame limestone. The 6.9 m thick zone in hole 80 is characterized by pyrite, sphalerite and galena mineralization alternating with either intact or brecciated McDame limestone. At least some sulphides post-date brecciation of the limestone.

Sub-unconformity Lower Zone Mineralization: (Holes 00-76, 78 and 80)

Three out of the four drill holes in fan 65-N intersected sub-unconformity mineralization, but all are very thin, ranging from 0.2 to 0.5 m thick. Texturally, these intercepts are typical of passive replacement, with sharp contacts with adjacent host limestone. Much of the limestone was brecciated to a varying degree prior to replacement.

Brecciation: (Holes 00-76, 78, 80 and 82)

Only one hole in fan 65-N, 00-80, intersected significant mineralization. However, an important feature of this and the other holes in the fan is the amount of brecciation. Breccia zones are up to 35.5 m thick (in hole 80) and are highly variable, ranging from limestone rubble breccias, to tightly packed, Earn enclave rubble breccias, to heterolithic breccias with a mixture of limestone, argillite, and rare sulphide clasts. Minor pyrite, sphalerite and galena are found throughout these breccias, replacing limestone fragments and matrix. This implies that the breccias are pre- to syn-mineral. The degree of sulphide replacement within the breccias is highly variable but overall very low.

Interpretive Comments

No feeder-type mineralization was intersected in the drill holes of fan 65-N. However, the extensive brecciation present (generally not mineralized) indicates "vigorous hydrothermal karsting during mineralization" (Megaw, 2000). For the most part, the fluids responsible for this solution were evidently not metal-enriched, but the permeability that they represent may well be connected with the sub-unconformity mineralized zones in fans 65-C and 65-S.

The length of the Earn-rich rubble breccia in hole 00-80 is remarkable. It is tentatively interpreted as representing a deep solution fissure in the limestone which was filled with rubble derived from roof collapse higher in the 'cave' system (Fig. 4.9). The solution and caving was almost certainly

Fig. 4.8: Fan 65-N drill section, looking NNW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 10 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Topographic surface (not shown) is at approximately 1365 metres elevation.

Fig. 4.9: Interpretive sketch of possible formation of rubble breccia in hole SUD-00-80 (cf. Fig. 4.8). This hole contains over 30 metres of heterolithic breccia well below the McDame unconformity. Most of the fragments and matrix are derived from lower Earn Group argillite and siltstone, with lesser limestone and rare sulphide clasts. The breccia fills open space created by hydrothermal solutions before, during or after mineralization. Earn fragments fill the fissure due to roof collapse higher in the 'cave' system, ultimately from the unconformity where the basal Earn is disoriented due to subsidence. Local sulphide replacement of the matrix indicates late stage infiltration by mineral solutions.

not paleokarst (Late Devonian), but much younger and produced by hydrothermal solutions, because the Earn clasts are fully lithified and foliated, and there are also sulphide fragments in the breccia.

4.5.4 Fan 65-SS

Fan 65-SS, 20 m to the south of fan 65-S, was drilled in an attempt to extend the deep sphalerite, pyrite and pyrrhotite mineralization found in hole SUD-00-80, and similarly to test the southerm continuation of the mineralization and brecciation encountered in holes 71 and 73. Three holes, totalling 407.2 metres, were drilled along azimuth of 250° degrees at moderate dips (Fig. 4.10; Table 4.5.4).

Table 4.5.4: Fan 65-SS						
Drill Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-75	24979	43281	1125	250°	- 52°	193.5
SUD-00-77	24979	43281	1125	250°	- 66°	92.4
SUD-00-81	24979	43281	1125	250°	- 41°	121.3

Lower zone mineralization was intersected only in drill hole 75. It occurs approximately 80 vertical metres below the unconformity and consists of two zones of massive sulphide, 0.5 and 1.1 m thick, separated by 1.2 m of recrystallized and brecciated limestone. The mineralization contains remnant limestone and ranges from pyrite and sphalerite-rich to sphalerite and galenarich. The sulphides and texture are typical of passive manto replacement. This interval occurs at approximately the same stratigraphic depth as the deep mineralization in hole 68 on fan 65-S to the north; however, there are differences between them which casts doubt on a direct relationship.

The absence of mineralization in hole 77 implies that the thick zones in holes 71 and 73 in fan 65-S close off to the south along the plane of drilling.

4.5.5 Drill Hole SUD-00-79

The Silver Creek South area has been drilled quite well in the past, particularly below and east of E-drift. It is characterized by sporadic and locally very high grade sulphide mineralization, and by significant brecciation, alteration and recrystallization of limestone. The latter features are strong indicators of abundant hot fluids, and so this area may be close to or above a particularly active part of the system which deserves more investigation.

Hole 79 was drilled as a step-out to the east of Silver Creek South, to further test this area and explore for feeder-style mineralization deeper in the limestone (Fig. 4.11).

Table 4.5.5: Drill hole SUD-00-79						
Drill Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-79	24983	43282	1125	098°	- 67°	200.3

Fig. 4.10: Fan 65-SS drill section, looking NNW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 10 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Topographic surface (not shown) is at approximately 1390 metres elevation.

Fig. 4.11: Hole 00-79 drill section, looking NNE. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 20 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Topographic surface (not shown) is at approximately 1400 metres elevation.

The results are typical of the eastern part of Silver Creek South. Numerous zones of passive, manto-style mineralization occur well below the unconformity, ranging from 0.5 to 3.1 m in thickness, separated by strongly recrystallized (marmonized) and mineralized limestone. Sulphide compositions vary from pyrite to sphalerite to galena rich, and remnant, recrystallized limestone is common. Sulphide compositional banding was observed in some intervals.

Interpretive Comments

The strong recrystallization of limestone and the numerous Lower Zone intercepts in hole 79 (and other holes in the eastern part of Silver Creek South) imply that this area has been infiltrated by multiple phases of high temperature, metal bearing fluids. None of the mineralized zones themselves are particularly thick, and so they may still be quite distal (in relative terms) from the source of the fluids.

4.5.6 Drill Holes SUD-00-83 and 86

This area is well to the north of the main area of exploration in the program, and is closer to Silver Creek North than South. Two holes were drilled into thinly tested ground northwest of holes 84-77, 85-246 and 254, where good mineralization has been found in the past. There is a possibility that this area contains a link between Silver Creek South and the Silver Creek Extension to the north.

Table 4.5.6: Drill Holes SUD-00-83 and 86						
Drill Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Length (m)
SUD-00-83	24878	43479	1160	240°	- 72°	150.3
SUD-00-86	24878	43479	1160	212°	- 65°	162.5

Drill hole SUD-00-83 intersected one small (2 m) intercept of sub-unconformity Lower Zone mineralization (Fig. 4.12). It consists of pyrite and sphalerite varying from massive to vaguely banded. The mineralization is developed in a zone of rubble brecciated limestone and contains remnant clasts of silicified limestone. The mineralogy and texture are typical of passive manto mineralization.

Better results came from drill hole 86 which intersected a 0.3 m wide unconformity-related mineralized zone, followed at depth by four intercepts of sub-unconformity mineralization ranging in width from 0.3 to 4 m (Fig. 4.13). The unconformity zone, 2.9 m into the McDame, is massive, fine-grained pyrite with sharp contacts with unaltered limestone. Sub-unconformity mineralization is variably rich in pyrite and sphalerite, or pyrite, sphalerite and galena, and contains up to 50% remnant limestone. These intercepts are typical replacement mantos and are developed in unaltered limestone as well as in brecciated limestone. The variable mineralizing fluids.

Interpretive Comments

No textures suggestive of feeder mineralization were recognized in holes 83 or 86. However, mineralization was found in a previously untested area. In particular, the depth of the deepest zones (90 m below the unconformity) in hole 86 is important in expanding the vertical limits of the known mineral system, in this area at least.

Fig. 4.12: Hole 00-83 drill section, looking NNW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 20 metres; drill hole plerce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Topographic surface (not shown) is at approximately 1315 metres elevation.

Fig. 4.13: Hole 00-86 drill section, looking NW. Numbers refer to holes drilled in Winter 2000 program; previous holes are not numbered. Search distance normal to plane of section is 20 metres; drill hole pierce points are indicated by small circle symbols. Lower Zone or mineralized limestone intercepts are indicated by thick segments on drill holes. Topographic surface (not shown) is at approximately 1325 metres elevation.

4.6 CONCLUDING REMARKS

The main conclusions are:

- The drilling completed in this program was successful in extending the significant subunconformity mineralization discovered during the summer of 1999 in hole SSD-99-65. This zone of mineralization, called the '<u>65 Zone'</u>, is characterized, though not necessarily dominated, by complexity and overprinting. This is shown by textures implying several phases of fluid input, producing a combination of intra-mineral replacement, hydrothermal solution, and brecciation. These features are typical of large and well developed carbonate replacement deposits (Megaw, 2000).
- The strength and heterogeneity of the mineralizing activity in the '65 Zone' strongly suggests it lies on a part of the network of fluid pathways that was exploited repeatedly by mineral solutions, i.e. a feeder. Other parts of the zone, however, consist of a simpler paragenesis typical of more passive replacement by one or two sulphide 'events' (the latter description also fits unconformity-related mineralization <u>above</u> the '65 Zone').
- The '65 Zone' is confined to the 'middle' drill fans of 65-C and 65-S. Thus, it has an E-W or ENE, apparently stratabound trend, conforming to a depth of about 25 metres below the unconformity. The '65 Zone' is open to the west. It is not clear how, or if, the zone connects to the east with the rest of the mineralization in Silver Creek South.
- The geometry and textural characteristics suggest the '65 Zone' is a manto-shaped feeder. It
 is probably not chimney-shaped, because it could not be traced downwards. However, this
 does not preclude the possibility that it bends or 'chimneys' down beyond the region tested.
 In this regard, the zone is open to the west towards the Camp Creek fault, which might
 represent an excellent structural conduit for the 'root' of the '65 zone'.
- It is still not known if the '65 Zone' is exclusively the source of the low resistivity CSAMT anomaly that led to this and the previous (summer 1999) drilling programs.
- The distinction between unconformity-related and sub-unconformity mineralization is useful, although its genetic significance is debatable. In general, unconformity mineralization appears to the product of more passive replacement by one or two mineralizing events, whereas <u>some</u> sub-unconformity mineralization indicates far more dynamic, multiphase, hydrothermal and mineralizing activity and reworking. The latter implies a feeder or proximity to a feeder. Perhaps all this means is that feeders are more likely to develop within the limestone than at the top of the limestone, i.e. at the unconformity, which in detail is probably a very irregular contact and not necessarily disposed to accommodate sequential pulses of fluids along the same path each time.
- The presence of mineralization up to 100 metres vertically below the unconformity is encouraging (especially holes 68, 75 and 86). These deeper zones are quite variable, some being base-metal rich, and others characterized by pyrrhotite and chalcopyrite. They do not display the 'dynamics' shown by the '65 Zone', and are probably not feeders. They are more likely lateral branches or 'bleeders' from more deeply rooted feeders or chimneys. Their variety suggests that they formed at different times.
- Although the program was not successful in finding a significant sulphide chimney, as was
 postulated based on earlier geophysical and drilling results, the likely reason for this does
 have positive implications. That is, it appears that this part of the deposit is still in the

relatively distal part of the system which is dominated by irregular mantos, and is still outside the medial to proximal domain where high tonnage chimneys tend to be developed (Megaw, 2000). This implies that we have only begun to tap into one, marginal part of the overall deposit, and that potentially substantial increases in resource tonnage can be accrued by tracing the manto mineralization back through the system to the major chimneys that fed them. This has historically been the experience in such deposits as Santa Eulalia and Naica in northern Mexico.

• Exploration and research should proceed with the principal aim of identifying the basic geometry and scale of the Silvertip hydrothermal system, and following it from the already identified distal region back towards the magmatic source. Finding evidence of the source intrusion or proximal skarn mineralization would indicate the dominant vector of the hydrothermal plumbing system, and hence optimize future exploration strategies.

5.0 RECOMMENDATIONS

The recommendations proposed here are aimed towards significantly advancing the Silvertip project. A two-phase approach is envisioned:

PHASE 1

Regional or property-scale geological and geophysical exploration and laboratory research, in order to

- Improve understanding of the scale, morphology and genesis of the overall system,
- To provide a 'vectoring' tool to guide exploration strategies, and
- To avoid overlooking other parts of the system that might offer presently unrecognized potential.

PHASE 2

Underground and surface diamond drilling to investigate specific targets or ideas emerging from Phase 1. This phase would utilize and expand on the existing mine infrastructure, and strive to trace the known mineralization to depth.

- Underground exploration development (1 to 1.2 km) from existing workings,
- Underground geophysics (*potentially*: seismic, radar, mise-à-la-masse, AMT, EM, borehole EM).
- Underground drilling, mainly from new development, and surface drilling of new targets, and possibly stepping-out from previous, thinly tested areas.

SELECTED BIBLIOGRAPHY

- Abbott, G. (1983): Silver-bearing veins and replacement deposits of the Rancheria district; <u>in</u> Yukon Exploration and Geology 1983, Indian and Northern Affairs Canada, Exploration and Geological Services Division, Whitehorse, p. 34-44.
- Bradford, J.A. (1988): Geology and genesis of the Midway silver-lead-zinc deposit, north-central British Columbia; unpublished M.Sc. thesis, University of British Columbia, 285 pp.
- Bradford, J.A. and Godwin, C.I. (1988): Midway silver-lead-zinc manto deposit, northern British Columbia; <u>in</u> B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, p. 353-360.
- Cordilleran Engineering (1985): Midway 1984 Summary Report, Volume 1 (text), August 1985; SMC company files.
- Curtis, L.W. (1986): Report on an examination of the Midway property; Curtis and Associates Inc.; SMC company files.
- Gabrielse, H. (1963): McDame map-area, Cassiar District, British Columbia; Geological Survey of Canada, Memoir 319, 138 pp.
- Megaw, P. K.M. (1998): Report on field visit to Silvertip project, northern British Columbia, Canada; SMC company files, dated August 10, 1998.
- Megaw, P. K.M. (2000): Silvertip core review and discussions; SMC company files, dated March 14, 2000.
- Nelson, J.L. (1993): The Sylvester Allochthon: Upper Paleozoic marginal basin and island arc terranes in northern British Columbia; <u>in</u> Canadian Journal of Earth Sciences, Vol. 30, p. 631-643.
- Nelson, J.L. and Bradford, J.A. (1987): Geology of the Midway area, northern British Columbia (104O/16); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987-5.
- Nelson, J.L. and Bradford, J.A. (1993): Geology of the Midway-Cassiar area, northern British Columbia (104O, 104P); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 83, 94 pp.
- Silvertip Mining Corporation (1998): Silvertip Project, 1997 Summary Report: Geological mapping, seismic surveying and diamond drilling; Rees, C. (author), SMC company files and B.C. Ministry of Energy and Mines Assessment Report 25,495.
- Silvertip Mining Corporation (1999a); Silvertip Project, 1998 Summary Report: Geochemistry, Geophysics, Geology, and Geotechnical Drilling; Rees, C. (author), SMC company files and B.C. Ministry of Energy and Mines Assessment Report 25,791.

Silvertip Mining Corporation (1999b): Silvertip Project, 1999 Summary Report: Geophysics and diamond drilling; Rees, C. (author), SMC company files and B.C. Ministry of Energy and Mines Assessment Report.

÷.

PROJECT STATEMENTS

-.

.

` •

•

.

,

.

,

	Position	Date in	Date out	Rate	Days
Staff		······································			·
Steve Robertson	Manager/Geologist	Dec 2	Dec 6	\$335	50
	•	Jan 3	Feb 16		
Chris Rees	Geologist	Jan 3	Feb 11	\$295	61
	-	Nov 16	Dec 6		
Linda Lewis	Geologist	Jan 2	Feb 12	\$295	42
Chris Akelaitis	Geologist	Jan 3	Feb 16	\$166	66
	-	Nov 16	Dec 6		
Al Boon	Interim Mgr./Shifter	Oct 4	Dec 16	\$485	117
		Jan 3	Feb 15		
Richard Ney	Core Splitter	Jan 3	Feb 15	\$145	44
Rhonda Anderson	Bull Cook	Jan 5	Feb 15	\$145	44
Ivor Saunders	Camp Manager	Oct 1	Nov 10	\$18 5	41
Don Lange	Watchman	Feb 11	Apr 30	\$200	80
Bogart Cross	Camp Helper	Nov 11	Dec 3	\$155	22
Bert Parrent	Miner/Shifter	Oct 19	Dec 16	\$365	59
Tom Colbourne	Shifter	Oct 23	Nov 25	\$485	29
Harry O'Connor	Miner	Oct 19	Dec 16	\$295	59
Bob Fisher	Miner	Oct 19	Jan 4	\$295	78
John Nesgard	Miner	Oct 19	Jan 4	\$295	78
Graeme Ennis	Miner	Oct 19	Dec 1	\$365	43
Mike Sanderson	Miner	Oct 19	Dec 1	\$365	43
Terry Bergeron	Miner	Nov 25	Dec 16	\$295	21
Jim Wilson	Miner	Nov 25	Dec 16	\$295	21
		···· _ -		•	
Contractors					
Norm Beebee	Mechanic	Nov 11	Nov		20
Ray Olafson	Electrician	Dec 1	Dec 16		56
		Jan 3	Feb 11		
Lyle Dennis	Electrician	Oct 19	Dec 1		43
Kel Sax	Surveyor	Jan 3	Jan 7		4
Gunther Geisler	Carpenter	Oct 29	Nov 15		18
Mathias Geisler	Carpenter	Oct 29	Nov 15		18
	· · · · · · · · · · · · · · · · · · ·				
1984 inc.		0.440	D		50
		Uct 19			29
Lorraine Pizzey	Cook / First Ald	Jan 3	Feb 15		44
Advanced Drilling					
Dale McDonald	Mechanic	Jan 3	Jan 12		9
Derrick McDonald	Mechanic	Jan 3	Feb 9		38
Malcoim McLean	Driller	Jan 3	Feb 9		38
Lorne Lloyd	Driller	Jan 3	Feb 4		33
Joe McKeown	Driller	Jan 3	Feb 9		38
Rod Yaworski	Driller	Jan 3	Feb 4		33
Brian Wolfe	Helper	Jan 3	Feb 6		35
Ron Williams	Helper	Jan 3	Feb 9		38
Blake Oakford	Helper	Jan 3	Feb 4		33
Lorin Berisoff	Helper	Jan 3	Feb 4		33

List of Personnel On-Site

Statement of Expenditures

Total Cost				\$1,404,505
Subtotal Overhead Fee (12%)				\$1,254,022 \$150,483
Filing Fees				\$13,150
Report Writing and Drafting				\$35,000
Courier				\$1,6 4 7
Water Sampling				\$16,500
Snow Clearing and Road Work				\$32,000
Equipment Rental				\$156,214
Communications	Satellite phone, radio phon	ie, Long distance		\$9,580
Camp and General Support	Including supplies, repair, i	Including supplies, repair, maintenance		\$75,676
Ground Support	Bolts, Screen, Straps, Timi	ber		\$43,973
Assays	480 core samples	@ \$33/ sample		\$15,840
Diamond Drilling	3210 metres (22 holes)	@ \$85/metre		\$272,850
	Shipping Fuel Airfares	etter au	\$29,623 \$77,000 \$20,543	\$164,216
Transportation	Trucks (3) 190 days	@\$65/dav	\$37.050	
Accommodation	1588 person/days	@ \$20/day		\$31,760
Food	1846 person/days	@ \$22/day		\$40,612
Contract Services				\$119,246
Salaries				\$225,758

STATEMENT OF QUALIFICATIONS

I, Christopher John Rees, currently of Imperial Metals Corporation, Suite 420-355 Burrard Street, Vancouver, British Columbia, certify that

- I hold degrees in geology from Carleton University (Ph.D. 1987), University of Regina (M.Sc. 1980) and University College of Wales (B.Sc. 1976).
- I have been engaged in geological mapping and mineral exploration services in Canada since 1976.
- I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.

Signed this 5^{M} day of 12^{M} 2000 C.J. Rees, P.Geo.

Christopher A. Akelaitis

Statement of Qualifications

- I, Christopher Akelaitis, of 1956 Haro St, Vancouver, British Columbia, hereby certify that:
- I am a geologist, employed by Imperial Metals Corporation.
- I am a 1999 graduate of the University of British Columbia in Vancouver, with a Bachelor of Science degree in Geology.
- I have been employed in mineral exploration since 1997 and have continuously practiced my profession since June of 1999.
- This report is based on the information gained during the 1999-2000 field season and a review of private and public reports.

Signed at Vancouver, British Columbia, this 5th day of May, 2000.

Christophor alekites

Christopher Akelaitis

Stephen B. Robertson, P.Geo.

Statement of Qualifications

I, Stephen Robertson, of 1969-B Lower Road, Roberts Creek, British Columbia, hereby certify that:

- I am a geologist, employed by Imperial Metals Corporation.
- 1 am a 1989 graduate of the University of Alberta in Edmonton, with a Bachelor of Science degree in Geology.
- I have been employed in mining since 1988 and have continuously practiced my profession since 1989.
- I am a Professional Geoscientist, registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- I personally supervised, and was involved in the planning and implementation, of the programs described in this report.
- This report is based on the information gained during the 1999-2000 field season and a review of private and public reports.
- This report may be used for development of the property or raising of funds, provided that no portion of it is used out of context, or in such a manner as to convey a meaning different from that set out in the whole.

Signed at Vancouver, British Columbia, this <u>4</u> day of <u>May</u> 2000.

Stephen Robertson, P.Geo.

S.B. Rubert

APPENDIX A

Diamond Drill Logs

HOLE NO: SUD-00-67

SECTION:65C

GRID:SILVER CK S

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	:CORPORATION
GRID	:SILVER CK S
MAP REFERENCE	E: 104/O-16W
LOCATION	: LIARD MD, BC
HOLE TYPE	:UG

 *** COLLAR COORDINATES AND RL ***

 NOMINAL
 43317.50 mN
 24957.50 mE
 1133.00 RL

Pre-collar depth:Final depth:185.90Purpose of hole:TEST FEEDER
MINERALIZATIONHole status:COMPLETED
LZ: 55.1-59.95 M, 95.85-104.5 M,
105.16-107.5 M

------ *** SURVEYDATA *** --

Depth	Azimuth	Inclination
0.00	250.00	-51.00
30.48	254.50	-51.80
60.96	256.90	-53.60
91.44	258.00	-54.20
121.92	256.50	-55.50
152.40	255.00	-55.90
182.88	256.30	-56.50

SUMMART LOG	
0.00 44.20 1B SILTSTONE /	
44.20 48.20 1AA CARBONACEOU	IS
ARGILLITE	
48.20 51.40 FAULT ZONE 1AA	
CARBONACEOUS	
ARGILLITE	
51.40 55.10 1AC CALCAREOUS	
ARGILLITE	
55.10 59.95 LOWER ZONE MASS	IVE
SULPHIDE	
59.95 82.30 MCDAME LIMESTON	E UNIT
2	
95.85 104.50 LOWER ZONE MASS	IVE
SULPHIDE	
104.50 105.16 LOST CORE	
105.16 107.50 LOWER ZONE MASS	IVE
SULPHIDE RUBBLE	
BRECCIA	

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 185.90 HQ
Drill contractor:	ADVANCE DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	7/1/00
Date finished:	10/1/00
Logged by:	L. LÉWIS
Relogged by:	
Sampled by:	RICHARD NEY

Material left in hole:NONEBase of complete oxidation--Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:0

--- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	РЬ %	Zn %
54.10	60.95	6.85	104.78	0.85	3.97
94.75	104.50	9.75	309.50	4.87	13.88
105.16	108.50	3.34	225.69	3.91	5.01

Checked and signed:

Date:

HOLE NO: SUD-00-67

SECTION:65C

GRID:SILVER CK S

107.50	124.50	MCDAME LIMESTONE UNIT
124.50	126.30	MCDAME LIMESTONE UNIT
126.30	135.30	MCDAME LIMESTONE UNIT
135.30	138.70	MOSAIC BRECCIA RECRYSTALLIZED
		LIMESTONE
138.70	140.90	CRACKLE BRECCIA
		DOLOMITIZED LIMESTONE
140.90	155.50	STYLOLITIC BRECCIA
		RECRYSTALLIZED
		LIMESTONE
155.50	164.20	LIMESTONE
164.20	185.90	CRACKLE BRECCIA
		DOLOMITIZED LIMESTONE
185.90		END OF HOLE

Page 1 SILVER	TIP	2000 UG DRILL LOG							SU	1.00.87
From	το	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
0.00	44.20	 1B SILTSTONE / SANDSTONE General Description: Interbedded, medium grey, fine to coarse grained sandstone and tarninated to thinly bedded, dark grey sitistone, with minor black. fine grained mudstone. Fining upward sequences range from 15cm - 150cm. Bedding ~45 to core axis, occasionally warped, contorted and gradually steepens down section to ~60 to core axis. Sandstone beds decrease in size and abundance with depth. Trace - 2% quartz-carbonate stringers (@5, 20 & 50 degrees to core axis); 1-5% pyrite (increases down hole) as disseminations and clots in stringers; trace sphalerite associated with pyrite in quartz-carbonate stringers down contact. 18.94-17.24 GOUGE Carbonaceous gouge with upper and lower contact @ 60 to core axis. 23.40-24.00 CALCAREOUS SILTSTONE Contorted laminae and bedding; 2% pyrite blabs within quartz-carbonate stringers. 26.00-44.20 SILTSTONE / SANDSTONE Decrease in width and abundance of sandstone beds, now medium to fine grained sandstone layers are min to several centimetres, thick, accompanied by increased pyrite (average 5%), as disseminations throughout both lithologies and as cross-cuting fracture fillings with quartz-carbonate and pyrite bands to 2 centimetres. Rare sporadic calcareous beds. Core in areas of deformation (contorted bedding) are brittle & often rubbly. S2 axial 	18							
44.20	48.20	wide, (2) 20 and 40 to core axis. 1AA CARBONACEOUS ARGILLITE Dark grey to black, rubbly, carbonaceous argiilite, massive to thinly laminated. Rubbly due to brittle fracture of predominantly contorted laminate. 5% pyrtle, as disseminations and clots in quartz-carbonate veinlets, 30 to core axis. Broken lower contact with rubbly fault zone	144							

SUD-00-6" Page 1

Page 2 SILVER	rip.	2000 UG DRILL LOG							su	D-00-67
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
	<u></u>	below.		<u> </u>					· ·	<u>.</u>
48.20	51 40	FAULT ZONE 1AA CARBONACEOUS ARGILLITE 50% carbonaceous gouge, 40% argilitte rubble, 10% bull white quartz venning to 10 centimetres wide. 4% pyrite disseminations and clots. Quartz-venied lower contact.	FZ							
51 40	55.10	TAC CALCAREOUS ARGILLITE Medium to dark grey, fine grained, finely laminated calcareous argillite with abundant crackle breccia. Towards the base of the unit, breccia intensity increases (both styloitic and rubble breccia), healed with coarse grained calcite. 4% pyrite, 6% calcite, 2% quartz. Irregular lower contact appears to be a later stage calcareous fine grained, finely laminated sediment infill ??, 13 centimetres wide. 54.10-55.10 CALCAREOUS ARGILLITE Hanging wall sempte. Styloitic to rubble breccia as described above; lower 13 centimetres is finely laminated calcareous argilitie	1AC	199401	54.10	55.10	0.00	1.80	0.01	0.25
55.10	59.95	LOWER ZONE MASSIVE SULPHIDE 55.10-58.50 PYRITE SPHALERITE MASSIVE SULPHIDE Rubble breciation at the unconformable contact contains breciated pyrite clast, limestone, sphalerite and cerbonaceous argilite clasts (run to 15 centimetres) comented by medium to coarse gramed celcite, 30% pyrite, 10% sphalerite, 1% galena, break and the set of th	Ľ	199402	55.10	58.50	0.00	33.80	0.09	3.43
		bace pyrmotes, fore calcine, 3% quarts. 56:50-57:13 FLOATSTONE Cractile / rubble breccie, vuggy floatstone with 5% pyrite, 2% sphalente clasts, 8% calcite. Irregular lower contact with massive suffice below. Finely taminated, calcareous, in-fit sediment, oriented 30 to core axis at the lower contact. 57:13-58:13 PYRITE SPHALERITE MASSIVE SULPHIDE		199403	58.50 57.13	57.13 58.13	0.00 0.00	9.40	0.08	0.12 8.47
		Fairly massive, medium to coarse grained pyrite and red-brown to black sphalerite, with 15% remnant limestone fragments and clasts. Limestone has brecclation ranging from crackle to mosaic with calcite +- pyrite cement. 50% pyrite, 15% sphalerite, 2-3% galena, 15% limestone, 10% calcite and 8% quartz. 158.13-59.13 PYRITE SPHALERITE MASSIVE SULPHIDE Similar to the previous sample, but decreased limestone. Sulphides are again medium to coarse grained, with almost total		199405	58.13	59.13	0.00	270.40	2.26	7.52

•

, ;

.

Page 3	
SILVERTIP	

.

: # #

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pb %	Zn %
		replacement and only minor brecciation. 55% pyrite, 20% sphalerite, 4% galena, 5% limestone, 10% calcite and 5% quartz. 59.13-59.95 PYRITE SPHALERITE MASSIVE SULPHIDE Very similar to the previous sample. 55% pyrite, 20% sphalerite, 3% galena, 5% limestone, 10% calcite and 5% quartz. Sharp but irregular contact with limestone, along a very carbonaceous stytolite; variable between 50-70 degree contact.		199406	5 <u>0,1</u> 3	59.95	0.00	249.50	3.57	7.34
59.95	82.30	MCDAME LIMESTONE UNIT 1 General Description: Uppermost unit of the McDame limestone. Sharp, styloktic upper contact with massive suffice containing only mnor crackle breccia adjacent and <1% pyrite in calcrie-filled fractures. Variably bioctastic-rich, ranging from pale bluish-grey packstone to floatistone and occasionally rudstone. Fauna includes amphipora, masswe stromatoporoid and tharmopora. Overall, competent rock, with scattered rubbly, brittle intervals where brecciation is present. Also frequent breaks along styloites and vuggi intervals. Fossils stretched along foliation (2) 60 to core axis. Intermittant crackle breccia, healed with calcrie, crystals fine to coarse grained euhedral. 4% carbonate veining to 20 centimetres, at 40 & 70 to core axis. 1% pyrite as small clots with calcrie. Broken lower contact with Unit 2. • 79.25m: Mislatch, lost 0.5 meters of core. 59.95-60.95 PACKSTONE Footwall sample. Sharp, irregular upper contact with massive sulphide along a carbonaceous styloite. Packstone with scattered amphipora. Minor crbx: one calcite vein, 3 centimetres at 20 to core axis. 1% pyrite as blebs within calcrite.	MLS1	199407	59.95	60.95	0.00	5.30	0.07	0.09
82.30	95 85	MCDAME LIMESTONE UNIT 2 Main stromatoparoid unit comprised of rudstone to floatstone. The massive forms are up to 50 centimetres and amphipora mixed in locally. Rugose coral, Trypiasma is also present. Crackle breccia is common throughout, with localized zones of fine rubble to matrix breccia (clasts from 2 mm - 2 centimetres), 25 - 40 centimetres wide, and commonly with pyrite clots and calcite cement. 91:80-91.70 RUBBLE BRECCIA 92:55-94.75 RECRYSTALLIZED LIMESTONE Very motified texture due to partial recrystallization as well as strong styloilization. Original fossit forms obliterated. Very fine grained pyrite (to 4%) occurs as wisps and blebs along styloilites.	MLS2							

SUD-00-6" Page 3

P	2000 UG DRILL LOG							SU	D-00-67
To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %-	Zn %
	94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar to above description; mottled with only faint fossil outlines. Appearance of sphalerite stringers at 40 and 50 to core axis. Stringer at 95.7m is alternating mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% fine grained pyrite, 1% schalerite.		199408	94,75	95.85	0.00	6.20	0.05	0.20
104.50	LOWER ZONE MASSIVE SULPHIDE General Description: Massive pyrits, sphalerite, galena with 10% remnant limestone (limestone is concentrated in the upper 2m of the section). Coarse grained, massive to vaguely banded galena predominant from 98.0-99.45m and is associated with coarse red-brown sphalerite and lesser pyrits. Massive, unbrecciated pyrite (minor sphalerite) comprises the centre of the zone from 99.45-101. 5m (very siliceous and competent). Below the pyritic zone, banded to massive, siliceous, coarse grained red to black sphalerite dominates with lesser pyrite and galena. Strong brecciation below 103.8m has really reduced competency and from 103.8-104.5m, massive sulfide is very sphalerite inch and granular, like sand. Overall estimate: 45% pyrite, 20% sphalerite, 10% galena. 10% quartz, 5% carbonate, 10% limestone. Non-magnetic. 95.85-97.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 80% recovery. Irregular upper contact with limestone, approximately 20 to core axis. Upper 80 centimetres is coarse grained, but incompetent, massive pyrite + sphalerite along fracturee. 30% pyrite, 25% sphalerite, 1% galena, 10% calcite. 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE Similar to previous interval with a pod of crumbly massive, coarse grained pyrite and sphalerite, and below is a fragment of recrystalfized limestone. There is increased limestone in this sample (60%). Sharp, irregular lower contact with banded	LZ	199409 199410 199411	95.85 97.00 98.00	97.00 98.00 98.70	0.01	170.80 70.40 1225.60	0.55	4.85
	P To 104.50	P 2000 UG DRILL LOG To Geological Log To Geological Log 94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar to above description; mottled with only faint fossil outlines. Appearance of sphalerite stringers at 40 and 50 to core axis. Stringer at 95.7m is alternating mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% fine graned pyrite, 1% sphalerite. 104.50 LOWER ZONE MASSIVE SULPHIOE General Description: Massive pyrite, sphalerite, galena with 10% remnant limestone (limestone is concentrated in the upper 2m of the section). Coartse grained, massive to vaguely banded galena predominant from 98.0-99.45m and is associated with coarse red-brown sphalerite and leaser pyrite. Massive, unbrecciated pyrite (mixor sphalerite) comprises the centre of the zone from 90.45-101. 5m (very siliceous and competent). Below the pyritic zone, banded to massive, siliceous, coarse grained red to black sphalerite dominates with leaser pyrite and galena. Strong brecciation below 103.8m has neally reduced competency and from 103.8-104.5m, massive sufficient is very sphalerite rich and granular, like sand. Overall estimate: 45% pyrite, 20% sphalerite, 10% galena, 10% quartz, 5% carbonate, 10% limestone. Non-magnetic. 95.85-97.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 80% recovery. Irregular upper contact with limestone, approximately 20 to core axis. Upper 80 centimetres is coarse grained, but incompetent, massive pyrite + sphalerite. Lower 35 centimetres is remnent, recrystalized limestone, crackle brecciated with partial replacement by pyrite and sphalerite slong fractures. 30% pyrite, 25% sphalerite, if% galena, 10% calcite. 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE Similar to previous interval with a pod of crumbly ma	P 2000 UG DRILL LOG To Geological Log UNIT 94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging will sample. Similar to above description; mottled with only faint foasil outlines. Appearance of sphalerite stringers at 40 and 50 to core axis. Stringer at 95.7m is atternating mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% file grained pyrite, 1% sphalerite. 104.50 LOWER ZONE MASSIVE SULPHIOE General Description: Massive pyrite, sphalerite, galena with 10% remnant limestone (immestone is concentrated in the upper 2m of the section). Coarse grained, massive to vaguely banded galeria predominant from 98.0-99.45m and is associated with coarse red-brown sphalerite and lesser pyrite. Massive. unbrecciated pyrite (minor sphalerite) comprises the centre of the zone from 99.45-101. 5m (very siliceous and competent). Below the pyritic zone, banded to massive, siliceous, coarse grained red to black sphalerite dominates with lesser pyrite and galeria. Strong brecciation below 103.8m has really reduced competency and from 103.8-104.5m, massive suffice is very sphalerite rich and grainular, like sand. Overall estimate: 45% pyrite, 20% sphalerite, 10% galeria. 10% quartz, 5% carbonate, 10% LIMESTONE 80% recovery. Imegular upper contact with limestone. approximately 20 to core axis. Upper 80 centimetres is coarse grained, but imcompetent, massive pyrite and sphalerite along fractures. 30% pyrite, 25% sphalerite, sphalerite along fractures. 30% pyrite, 25% sphalerite, sphalerite along fractures. 30% pyrite, 25% sphalerite, is galena, 10% calcits. 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE Similar to previous interval with a pod of crumbly massive, coarse grained pyrite and sphalerite, and below is a fragment of recrystafized impestone. There is increased impestone in this sa	P 2000 UG DRILL LOG To Geological Log UNIT SAMPLE 94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging well sample. Similar to above description: mottled with only faint fossil outlines. Appearance of sphalerite stringers at 40 and 50 to core axis. Stringer at 95.7m is alternating mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% fine grained pyrite, 1% sphalerite. 199408 104.50 COVER ZONE MASSIVE SULPHIOE General Description: Massive pyrite, sphalerite, galena with 10% remnant limestone (imestone is concentrated in the upper 2m of the section). Coarse grained, massive to vaguety banded galena predominant from 98.0-99.45m and is associated with coarse red-brown sphalerite and genese. Strong breccistion below 103.8m has really reduced competency and from 103.8-104.5m, massive suffice is 1 (very siliceous and competent). Below the pyritic zone, banded to massive, siliceous, coarse grained red to black sphalerite dominates with lesser pyrite and galena. Strong breccistion below 103.8m has really reduced competency and from 103.8-104.5m, massive suffice is 1 very sphalerite rich and granular, like sand. Overall estimate: 45% pyrite. 20% aphalerite, 10% galena. 10% quartz, 5% carbonate, 10% limestone. Non-magnetic. 1 98.65.97.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 80% recovery. Imeguiar upper contact with limestone, exproximately 20 to core axis. Upper 80 centimetres is coarse grained pyrite and sphalerite, and sphalerite along fractures. 30% pyrite, 25% sphalerite, 1% galena, 10% calcite. 1 97.00-98.00 LIMESTONE PYRITE SPHALER	P 2000 UG DRILL LOG To Geological Log UNIT SAMPLE FROM (m) 94.75-95.85 RECRYSTALLIZED LIMESTONE 199408 94.75 Hanging wall sample. Similar to above description; mottled with only faint foasil outlines. Appearance of sphalerite stingers at 40 and 50 to core axis. Stringer at 95.7m is atternating mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% fine graned pyrite, 1% sphalerite. 199408 94.75 104.50 COWER ZONE MASSIVE SULPHIOE General Description: Massive pyrits, sphalerite, galena with 10% fremmant limestone (irrestone is concentrated in the upper 2m of the section). Coarse grained, massive to vaguety banded galene predominant from 98.0-99.45m and its associated with coarse red-brown sphalerite and lesser pyrite. Massive, unbrecciated pyrite (mixor sphalerite) comprises the cantre of the zone from 99.45-101. Sm (very siticeous, coarse grained red to black sphalerite dominates with lesser pyrite and galena. Strong brecciation below 103.8m has really reduced competent, Below the pyritic zone, banded to massive, siticeous, coarse grained red to black sphalerite dominates with lesser pyrite and galena. 10% quertz, 5% carbonate. 10% irrestone. Non-magnetic. 95.85-67.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 199409 95.85 95.85-70.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 199410 97.00 97.00 97.00-98.001 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE 199410 97.00 97.00 97.00 97.00	P 2000 UG DRILL LOG To Geological Log UNIT SAMPLE FROM (m) TO (m) 94.75-95.85 RECRYSTALLIZED LIMESTOME 199408 94.75 95.85 Hanging wall sample. Similar to above description; mottled with only faint foasil outlines. Appearance of sphalerite stringers at 40 and 50 to core axis. Stringer at 95.7m is attenting mm bands of red-brown and black sphalerite. Irregular lower contact approximately 20 to core axis. 6% fine graned pyrite, 1% 199408 94.75 95.85 104.50 LOWER ZONE MASSIVE SULPHIDE General Description: Massive pyrits, sphalerite, galena with 10% remnant limestone (imestore is concentrated in the upper 2m of the section). Coarse grained, massive to vaguely banded galene predominant from 98.0-99.45m and is associated with coarse rad-brown sphalerite and lesser pyrits. Massive. unbracciated pyrite (micor sphalerite) comprises the cantre of the zone from 92.45-101. Sm (very siliceous and competent). Below the pyritic zone. banded to massive, siliceous, coarse grained, red to black sphalerite dominates with lesser pyrite and galena. 10% quartz, 5% carbonate, 10% limestone. Non-magnetic. 199409 95.85 97.00 96.85-97.00 PYRITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 80% recovery. Irregular upper contact with limestone. approximately 20 to core axis. Upper 80 centimetres is coarse graned, but mochanistic of imestone. coarse graned, but mochanistic provide and ephalerite aphalerite along fracture. 30% pyrte. 25% sphalerite, 1% galera. 10% calcite. Similar to previous interval with a pod of rumby massive. coarse graned pyrite and sphalerite, and below is a fr	P 2000 UG DRILL LOG To Geological Log UNIT SAMPLE FROM (m) TO (m) Au (m) 94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar to above description; mottled with only fairt focality outlines. Appearance of sphatente simpers at 40 and 50 to core axis. Stringer at 95.7m is atternating mm bands of red-brown and black sphatente. Irregular lower contact approximately 20 to core axis. 9% fine grained pyrite, 1% sphatente simpers at 40 and 50 to core axis. Stringer at 95.7m is atternating mm bands of red-brown and black sphatente. Irregular lower contact approximately 20 to core axis. 9% fine grained pyrite, 1% sphatente. 199408 94.75 95.85 0.00 104.50 LOWER ZONE MASSIVE SULPHIDE General Description: Massive pyrite, sphatente due to cores predominent from 98.0-99.45m and is associated with coarse predominent from 103.8-104.5m, massive sufficients for measure, sifecours, and competency and from 103.8-104.5m, massive sufficients pressione. Non-magnetic. 1 199409 95.85 97.00 0.01 96.58.70 00 FWITE SPHALERITE MASSIVE SULPHIDE LIMESTONE 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE UNESTONE 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE 199410 97.00 98.00 0.00 97.00-98.00 LIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE 199411 98.00 98.70 0.03	P 2000 UG DRILL LOG To Geological Log UNIT SAMPLE FROM (m) To Au (m) gm/t 94.75-95.85 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar to above description; mottled with only failt foasil cullines. Appearance of sphalerite stimpers at 40 and 50 to core axis. Stringer at 65.7m is alternating mm bands of red-brown and black sphalerite. Imgular lower contact approximately 20 to core axis. 6% fine graned pyrite, 1% sphalerite. 199408 94.75 95.85 0.00 6.20 104.50 LOWER ZONE MASSIVE SULPHIOE General Description: Measive pyrits, sphalerite, galena with 10% remmant limestone (imestone is concentrated in the upper 2m of the section). Corers grained, massive to vaguely banded galens predominant from 80-094 Stm and is associated with cores form 90.45-101. Sm (very sphalerite and galens. 10% quartz, 5% carbonate, 10% limestone. Non-magnetic. 199409 95.85 97.00 0.01 170.80 95.85-97.00 D/VITTE SPHALERITE MASSIVE SULPHIDE LIMESTONE Lower sphalerite indicate pyritic zone, banded to massive, sitierous, non-magnetic. 199409 95.85 97.00 0.01 170.80 95.85-97.00 D/VITTE SPHALERITE MASSIVE SULPHIDE LIMESTONE Lower sphalerite indicate pyritic zone form 90.58 calche. 199410 97.00 96.00 0.01 170.80 97.00-98.00 DIMESTONE PYRITE SPHALERITE MASSIVE SULPHIDE Similar to providue interval with a pod of crumbly massive. collise grained (0%), Shang inregular lower contact with banded grained pyrite and sphaleri	P 2000 UG DRILL LOG SU To Geological Log UNIT SAMPLE FROM TO Au Ag gm/t Ag 94.75-85.85 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar to above description: mottled with only faint (ossi) cultines. Appearance of sphalerite stingers at 40 and 50 to core axis. Stinger at 95.7m is atternating mm bands of red-brown and black sphalerite. Irregular lower contact approximatity 20 to core axis. 6% fine grained pyrite, 1% sphalerite. 199408 94.75 95.85 0.00 6.20 0.05 104.50 LOWER ZONE MASS/VE SULPHIOE General Description: Massive pyrite, sphalerite, galena with 10% fremmant limeshore (imestone as concentrative) or suguery banded galene predominant from 80-096.47m mails associated with coarse red-brown sphalerite and leaser pyrite and is associated with coarse fred-brown sphalerite and leaser pyrite coarse from 90.45-101. Sm Image: sphalerite, sphaleri

,

Page 5	
SILVERTIP	

.

.

.

÷

SILVERI	n•	00 DAALE 200							30	0-00-01
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
		Crudely banded to massive coarse grained galena, sphalerite and pynte with guartz and calcite the main gangue minerals and as the texture filtera. Panding at 80,70 to open size		199413	98.70	99.45	0.03	870.10	18.55	12.60
		B. 70-99.45 BASE METAL MASSIVE SULPHIDE Similar description as previous sample with slightly more pyrite and decreased galena. Distinct sulphide bands at upper contact, 0.5-1.5 centimetres. 50-60 to core axis. 35% sphalente, 30% pyrite, 20% galena, 10% quartz. 5% calcite. 99 45-100 45 PYRITE MASSIVE SULPHIDE		1994 1 4	99.45	100.45	0.40	116 00	0. 86	8.94
		Predominantly fine to coarse grained massive pyrite in a siliceous matrix: sphalerite occurs as coarse clots or five grained intergrowths with pyrite. 75% pyrite, 9% sphalerite, trace-1% galena, 10% quartz, 5% calcite. Blank sample follows interval.		199416	100.45	101 45	0.31	177.40	3.43	10 27
		Similar to prevous sample, but even more competent and siliceous. Quartz-calcite str4s at 20 & 50 to core axis. 75% pyrite, 4% sphalerite. trace-1% galena, 15% quartz, 5% calcite.		199417	101.45	102.45	0.32	111.70	1.75	11.47
		Increasing coarse grained sphalerite along with pyrite in a quartz-rich matrix; vuggy, but competent core. 50% pyrite, 25% sphalerite, 1% galena, 20% quartz, 5% calcite.		199418	102.45	103.45	0.17	160.90	2.87	20.67
		Sphalerite as coarse grained clots and bands, increases down section, as well as coarse grained galens. Siliceous, competent core in the upper 50 centimetres, becoming crumbly below. 45% pynte, 35% sphalerite, 5% galena, 10% quarz, 5% calcite. 103.45-104.50 BASE METAL MASSIVE SULPHIDE		199419	103.45	104.50	0.00	635.60	10.43	26 43
		Upper 35cm is distinctly banded sphalerite and pyrite with minor galena, widths from 1 to 10 centimetres, @ 30 to core axis. Below 103.8 metres, rubble breciation has reduced the spatiente-rich subhide to sand.								
104.50	105.16	LOST CORE Drillers marker indicates 2 feet of wash where the core is crumbly and sandy. If it was similar to the sample above, it was likely sphalertic-rich.	LOST							

SUD-00-67 Page 5

Page 6 SILVER1	ri P	2000 UG DRILL LOG							SŲ	D-00-87
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
-05.16	107 50	LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA General Description: Chaotic mix of angular to sub-rounded black argilite (Eam), limestone, dolostone and sulphide clasts, mm to 5 centimetres, in a predominantly late stage, coarse grained calcite matrix (crystals to 1 centimetres) and minor sulphides. Probably a paleokarst feature which was partially in-filled with Eam carbonaceous sediments, then underwent late stage brecciation and hydrothermal karst development during mineralization. Overall approximately 25% pyrite, 10% galena, 10% sphalerite. 105.16-106.00 ARGILLITE/SULPHIDE/LIMESTONE RUBBLE BRECCIA As in general description above. Approximately 75% recovery of argilitte (35%), limestona/dolostone (15%) and sulphide (35%) clasts in a fine grained calcite - sulphide matrix. 108.00-107.00 SULPHIDE/ARGILLITE RUBBLE BRECCIA Rubble breccia as above, but with increased sulphides, both as clasts and replacement, in a variable matrix of calcite and sulphides. 35% pyrile, 15% sphalenite, 10% galena, 20% calcite. 107.00-107.50 ARGILLITE/SULPHIDE/LIMESTONE MOSAIC BRECCIA Mosaic breccia at the top of the unit, with mainly angilite clasta and lesser limestone and sulphide clasts, randomly oriented in a coarse grained, suggy calcite matrix. The lower 20 centimetres is rubble breccia consisting mainly of very carbonacous angilite clasts, minor sulphide and limestone clasts, in a calcite +/- pyrite	LZ	199420 199421 199422	105.16 106.00 107.00	106.00 107.00 107.50	0.01 0.14 0.00	252.40 501.80 72.60	4.64 8.46 1.30	7 00 9.12 3.38
107.50	124.50	MCDAME LIMESTONE UNIT 2 RUBBLE BRECCIA General Description: 60-70% of this unit is comprised of rubble breccia in an intermittantly weakly sulphidized lime mud matrix, lesser stylolitic breccia and minor mosaic breccia. Remaining identifiable fossils include stromatoporids, minor euryamphipora intercalations (e.g. @ 111.4m), amphipora, and possible thin shelled brachiopods (e.g. @ 111.4m), amphipora, and possible thin shelled brachiopods (e.g. @ 114.95m). The presence of minor euryamphipora suggests Unit 2, but if that is the case, most or all of Unit 3 is not in the section - possibly displaced by faulting. Overall, 3% pyrte, trace sphalerite and galena. 107.50-108.50 WACKESTONE CRACKLE BRECCIA Footwall sample. Crackle breccated wackestone with minor	MLS2	199423	107.50	108.50	0.01	3.70	0.04	Q.D4
P	a	ge 7								
---	---	--------								
c	н	VCOTIO								

,

.

.

2000 UG DRILL LOG

SUD-00-67

٤

SILVERI	17	**							000	
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ ¥	Zn %
		 stromatoponds and amphipora. Rare, small (<1 centimetres) argilitie clasts in limestone, adjacent to Lower Zone. Vuggy with coarse grained calcite cement and vug fillings. 1% pyrite in calcite cement and as small clasts. 108.50-109.30 DOLOMITIZED LIMESTONE RUBBLE BRECCIA Limestone altered to secondary dolostone. now variably brecciated, from crackle breccia to rubble breccia. 1% fine grained pyrite as blebs along fractures. 115.70-124.50 LIMESTONE RUBBLE BRECCIA As in general description; breccsated ismestone, dolostone and very sparse sulphide clasts, angular to sub-round, in a fine lime mud matrix which is locally sulphidized as are minor clasts being replaced by sulphides. 6% pyrite, trace - 2% galena + sphalerite. Rubble breccia ateo has intermittant strong stylolitzation. Main concentrations of sulphides @ 115.8 - 116.7 metres. 120.0-120.2m, 120.5-120.7m, 121.15m, 121.5m and 121.9m. Bottom of the unit occurs at the appearance of dense euryamphipore. 								
124.50	126.30	MCDAME LIMESTONE UNIT 4 Euramphipora rudstone to floatistone with stromatoporoid and amphipora floatistone in the middle of the unit. Euramphipora and thinness is diagnostic of this unit. Patchy recrystalization; moderate styloittes. Fossilis oriented 35 to core axis. Trace - 1% pyrite.	MLS4							
126.30	135.30	MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA Top of Unit 5, characterized by coarse amphipora (to 6mm) floatstone, minor stromatoporoid packstone. 10% calcite veining to 2 centimetres wide, at 20 to core axis. 1% pyrite associated with	MLS5							
135.30	138.70	MOSAIC BRECCIA RECRYSTALLIZED LIMESTONE 50% coarsely recrystallized imestone in a very coarse grained calcite matrix, remnant rubble breccia with calcareous mud infill sedimentation (e.g. 136.7m). 2% discontinuous pyrite stringers and clots along stylolites and at boundaries between calcite matrix & limestone clasts.	AMLS							
138.70	140.90	CRACKLE BRECCIA DOLOMITIZED LIMESTONE Brittle dolostone, crackle brecciated. Rugose coral at 138.9m. 1% disseminated pyrite and along fractures.	MLSD							

SUD-00-67 Page 7

Page 8 SiLVER1	ΓI₽	2000 UG DRILL LOG							SUC	-00-87
From	Το	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gmvft	Pb %	Zn %
140.90	155.50	STYLOLITIC BRECCIA RECRYSTALLIZED LIMESTONE Light bluish-grey to white, variably recrystallized limestone, from coarse grained sparry calcite to fine grained, sugary textured calcite. Styloities common with some slip movement along them (e.g. 151.75m). Sparse mineralization concentrated along styloities, pyrite - sphalerite stringer at 148.6m and galena clot + stringer at 149.45m. Below 151.2, styloite orientation gradually flatters to nearly perilel to core axis - possible fold nose. Very rare recognizable fossils. 2% pyrite, trace sphalerite and galena.	AMLS							
155.50	164.20	LIMESTONE Unit 5?? Predominantly amphipora floetalone alternating with packatone / wackestone; minor stromatoporids. Approximately 30% altered / recrystallized to sucrosic textured calcite where only faint fossil outlines remain. Styloites throughout and occasional crackle braccia. 1% fine grained pyrite along carbonate stringer margins, 20-30 denses to core axis.	MLS5							
164.20	185.90	CRACKLE BRECCIA DOLOMITIZED LIMESTONE Rubbly, dolomitized limestone with strong crackle breccia texture; 10% calcite heating fractures.	MLSD							

*** END OF HOLE *** 185.90

GRID:SILVER CK S

HOLE NO: SUD-00-68

SECTION:65-S

*** DRILLING SUMMARY ***

	DIAMOND DRILL	0.00 21	2.80 HQ
	Drill contractor:	ADVANCE	D DRILLING LTD.
	Drill rig:	TRACTOR	R DRILL MODEL 150
	Date started:	6/1/00	
	Date finished:	10/1/00	
	Logged by:	CHRIS AK	ELAITIS
	Relogged by:		
i	Sampled by:	RICHARD	NEY

Material left in hole:NONEBase of complete oxidation--Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Р b %	Zn %
50.33	62.31	11.98	26.71	0.11	1.34
94.44	104.54	10.10	280.13	5.20	11.34
123.51	128.10	4.59	244.82	5.30	2.60
168.60	188.40	19.80	24.94	0.08	3.24

PROJECT CO TENEMENT PROSPECT GRID MAP REFERE	DE :SILVER SILVER CORPO SILVER	TIP TIP MINING RATION CK S 6W	
LOCATION	: LIARD, I	MD, BC	
HOLE TYPE	:UG		
NOMINAL	LLAR COORI 43300.00 mN	DINATES AND 24966.50mE	RL ***
Pre-collar dept	h:	Final depth:	212.80
Purpose of hol	e: TEST	FEEDER	
F	MINEF	RALIZATION	
Hole status:	DRILL	ED TO DEPTH	

Comments:

LZ: 51.6-52.6, 56.2-57.8, 95.4-101.5, 126.0-127.1, 169.5-180.4 M

Depth	Azimuth	Inclination
0.00	250.00	-51.00
23.77	257.70	-51.10
54.25	255.10	-52.90
84.73	257.50	-53.50
115.21	260.00	-53.70
145.69	259.00	-54.60
176.17	258.80	-55.00
206.65	260.50	-55.40

		SUMIMARTLUG
0.00	45.54	1B SANDSTONE
		SILTSTONE
45.54	47.60	1A CARBONACEOUS
		ARGILLITE
47.60	49.63	FAULT ZONE
49.63	51.59	1AC CALCAREOUS
		SILTSTONE
51.59	52.58	LOWER ZONE MASSIVE
		SULPHIDE
52.58	56.19	MCDAME LIMESTONE UNIT
		1 AMPHIPORA
		WACKESTONE
56.19	57.82	LOWER ZONE MASSIVE
		SULPHIDE
57.82	95.38	MCDAME LIMESTONE UNIT
		1
95.38	101.50	LOWER ZONE MASSIVE
		SULPHIDE

Checked and signed:

Date:

GR	in (311	VE	R	CK.	S.
U IN	ND.N			IN .	UN.	0

101.50	105.56	DOLOMITIZED LIMESTONE
		CRACKLE BRECCIA
105.56	106.60	MCDAME LIMESTONE UNIT
		1 AMPHIPORA PACKSTONE
106.60	125.96	MCDAME LIMESTONE UNIT
		2 STROMATOPOROID
		FLOATSTONE
125.96	127.11	LOWER ZONE / LIMESTONE
		MASSIVE SULPHIDE
127.11	138.37	MCDAME LIMESTONE UNIT
		3 AMPHIPORA PACKSTONE
138.37	140.57	MCDAME LIMESTONE UNIT
		4 EURYAMPHIPORA
		FLOATSTONE
140.57	169.50	MCDAME LIMESTONE UNIT
		5 AMPHIPORA PACKSTONE
169.50	180.40	LOWER ZONE MASSIVE
		SULPHIDE
180.40	183.80	MCDAME LIMESTONE UNIT
		5 AMPHIPORA PACKSTONE
183.80	187.40	LOWER ZONE MASSIVE
		SULPHIDE
187.40	204.17	MCDAME LIMESTONE UNIT
		5 AMPHIPORA PACKSTONE
204.17	209.70	RECRYSTALLIZED
		LIMESTONE
209.70	212.80	
		5 AMPHIPORA
		FLOATSTONE
212 80		
212.00		

Pa	ge 1.	
¢ II	VIER	TIP

.

.

2000 UG DRILL LOG

4

SILVER	118	00 DINEE 200							301	
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	ዎቴ %	Zn ¥
0.00	45.54	1B SANDSTONE SILTSTONE Interbedded, dark grey to black sandstones and intertaminated sitistones/mudstones with bedding at 40 to the core axis. Sandstones range from fine to coarse grained and form massive to fining upward sequences up to 50 centimetres wide. Ripped up mudstone clasts from 3 mm - 8 centimetres are found in the basal portions of sandstone beds. Sandstone beds decrease in thickness and abundance with depth. Silstones and mudstones are intertaminated (laminae from 1 mm - 3 centimetres) and display soft-sediment deformation features. Quartz-carbonate and calcite veins are present and range from being bedding sub-parallel to cross-outing. 3 % pervasive disseminated pyrite cubes nodules and stringers are found throughout the interval. 0.00-7 60 SILTSTONE MUDSTONE Competent core consisting of interbedded siltstones, mudstones and fine-grained sandstones with bedding at 35 to the core axis. From 5.24 metres - 5.34 metres, there is a 5 mm wide quartz-carbonate vein at 25 to the core axis, containing 3% sphalerite, 10% pyrite and a trace of galera. Directly adjacent and sub-parallel to this vein are a number of small (2 mm - 3 mm) stringers of pyrite and lesser sphalerite. 21 50-21.70 QUARTZ VEIN 1.5 - 3 centimetre wide quartz-carbonate vein at 65 to the core axis. Blebs of pyrite and sphalerite are found within this vein. Pyrite is also found as stringers and disseminated cubes adjacent to the vein. Overall the vein contains 5% pyrite and 1% sphalerite. 38.28-36.83 QUARTZ VEIN Incompetent broken up core consisting of black carbonaceous mudstone and a large, 5 centimetre, milky white quartz vein. Rare blebs of pyrite are found within the quartz vein (2%). 39.73-45.54 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Competent, interbedded sitstones, mudstones and sandstones. Sandstones are more prevalent at the top of the interval and decrease in abundance towards the base of the interval. Beds and laminae are at 65 to the core axis and are occassionally	18							
		cross-bedded. Pervasive disseminated pyrite is found throughout								

Page 2 SILVER	ΠP	2000 UG DRILL LOG							SU	2-00-68
From	То	Geological Log	ŲNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ %	Zn %
		the interval and is concentrated in the coarser grained sandstone beds. Overall, the interval contains 4 % pyrite.								
45.54	47 60	1A CARBONACEOUS ARGILLITE Black, finely taminated, carbonaccous argiitite and sitstone. 3% catche stringers are found throughout the interval and are dominantly orientated parallel to laminae at 70 to the core axis. Pervasive disseminated pyrite is also found throughout the interval. Overall, 2% pyrite. 48.00-46.80 FAULT ZONE Black carbonaceous fault gouge with 2% pervasive disseminated pyrite and broken up pieces, up to 1.5 centimetres wide, of duartz-carbonate vein material.	1A							
47.60	49.63	FAULT ZONE Fault zone consisting of 50 % black carbonaceous gouge and 50 % black carbonaceous argilite rubble of unit 1AA. Rubble fragments are up to 3 centimetres in diameter. 2 % pervasive disseminated pyrite is found they about the zone.	144							
49.63	51.59	TAC CALCAREOUS SILTSTONE Dark grey, laminated and weakly calcareous sitistone with 15 % calcits stringers orientated parallel to laminae at 60 to the core axis. From 50.59 metree - 51.21 metres there is a partially broken up, milky-white quartz-carbonate vein at 25 to the core axis. This vein contains 1% disseminated pyrite. Overall, 2 % disseminated pyrite is found thoughout the interval. 50.33-51.59 TAC CALCAREOUS SILTSTONE Hanging well sample. Dark-grey, weakly calcareous and laminated silitsone as above.	1AC	199351	50.33	51.59	0.01	2.90	0.03	0. 08
51.59	52.58	Lower Zone MASSIVE SULPHIDE Pyrite, sphalerite massive sulphide consisting of 64% pyrite, 15% - 20% red and black sphalerite, 5% relict limestone fragments, 1% magnetic pyriholite, and < 1% galeria. Core is silicified and very competent (10% silica). Vugs throughout interval are lined by euhedral guartz and pyrite crystals. Contacts between massive sulfide and bounding limestone below and unit 1 AC above, are sharp.		199352	51.59	52.58	0.00	87.30	0.27	6.34

Page 3 Silver	TIP	2000 UG DRILL LOG							SL	JD-00-68
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (m)	Au gm/l	Ag gmvt	Pb %	Zn %
52.58	56.19	MCDAME LIMESTONE UNIT 1 AMPHIPORA WACKESTONE Unathered amphipora wackestone with 10 % calcite stringers and veins up to 1 centimetre wide, which cause localised areas of crackle breccation throughout the interval. Massive sulphide veins and stringers, of pynte and sphalerite with lesser galena, up to 3 centimetres wide, are found throughout the interval and are								
		constated from 20 to 50 to the core axis. Overall estimate: 2 % pyrite, 1 % sphalerite, and a trace of galena. 52 58-53 58 Authorized Reck/ESTONE	MLS1	199353	52.58	53.58	0.00	2.50	0.01	0.08
		Footwall sample. Weakly crackle brecciated amphipora wackestone with calcite and pyrite stringers up to 1 centimetre wide. Overall estimate: 5 % pyrite, 10 % secondary calcite.		199354	53.58	54.58	0.00	32.50	0.45	4.63
Í		Unaltered to weakly crackle brecciated amphipora wackestone as above with pyrite, sphalerite massive sulfide veins up to 3 centimetres wide. These veins are orientated at 20 - 30 to the								
		core axis and contain 64 % pyrite, 20 % red and black sphalerite, 15 % relict limestone, and 1 % galena. Overall the interval contains 2 % pyrite, 1% sphalerite and a trace of galena.		199355	54.58	55.58	0.00	4.60	0.06	<u>0.15</u>
		Weakly crackle brecciated and laminated amphipora wackestone as in sample 199353, 10 % calcite stringers and rare massive sulfide stringers up to 3 mm wide are orientated parallel to faminae at 50 to the core axis. Overall, interval contains < 1%		199356	55.58	56.19	0.00	1.00	0.01	0.04
		55.56-56.19 AMPHIPORA WACKESTONE Unaftered amphipora wackestone as above, with 10 % calcite stringers and < 1% pyrite.								
56.19	57.82	LOWER ZONE MASSIVE SULPHIDE Competent, partially elicified pyrite rich massive sulfide consisting of 75 % - 80 % pyrite, 5 % - 10 % fine-grained sphalerite. 5 % silica, 5 % secodary sparry catche, and 2 % - 5 % relicit limitone. Contacts with bounding limestone are sharp with the upper contact orientated at 60 to the core axis and the lower contact at 15 to the core axis. 58 19-69 51 OWER ZONE MASSIVE SIL DUDGE	17							
	! 	Pyrite rich massive sulphide as above with 80 % pyrite, 8 %	4	199357	56.19	56.95	0.00	100.45	0.21	0.12

SUD-00-68 Page 3

.

Pa ge 4 SilvER	TIP	2000 UG DRILL LOG							ຣບ	D-00-6
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Ръ %	Zn %
		sphalerite, 5 % secondary calcite, 5 % salica and 2 % relict limestone. 56.95-57.82 LOWER ZONE MASSIVE SULPHIDE Pyrite rich massive sulfide as above but with slightly more relict irrrestone and slightly leas pyrite. Overall estimate: 75 % pyrite, 8 % sphalerite, 7 % relict limestone, 5 % silica and 5 % secondary calcite.		199359	58.95	57.82	0.00	102.40	0.31	3.37
57 82	95.38	MCDAME LIMESTONE UNIT 1 Variable limestone ranging from sparsely fossilized wackestones to amphipora, stromatoporoid, tharmopora floatistones. Upper portion of interval is dominantly unaltered and intact limestone with localised areas of weak crackle brecciation caused by 2 % calcite stringers. Towards the base of the interval, core becomes more strongly crackle brecciated by up to 5 % calcite stringers. In addition, limestone is dolomitized and finely recrystalized over the tast 3.2 metres of the interval. Fine-grained sulphide (dominantly pyrite and lesser sphalerite) is found throughout the interval within calcite stringers and lining rare styolites and fractures. Overall estimate: 1 % pyrite, < 1% sphalerite. 57.82-58.27 AMPHIPORA WACKESTONE 55.27-59.77 AMPHIPORA WACKESTONE	MLST	199360 199362	57.82 58.27	58.27 59.77	0.00 0.01	1.60 2.30	0.00	0.78
		Sparsely foesilized amphipors wackestone with 5 % randomly oriented stringers of secondary calcite. Disseminated fine-grained pyrite is observed within calcite stringers. Overall 1 % pyrite. 59.77-81.13 WACKESTONE Sparsely fossilized wackestone with rare themnopora, amphipora.		199363	59.77	61.13	0. 00	1.50	0.02	0.02
		and stomatoporoids. Rare calcite stringers are present and contain < 1 % pyrite.		199364	61.13	61.69	0.00	31.30	0.08	2.44
		61.13-61.69 AMPHIPORA PACKSTONE Unaltered limestone which grades from an amphipora, Thamnopora, stomatoporoid packstone into a sparsely fossilized wackestone towards the base of the interval. Two massive suffice veins up to 3 centimetres wide and oriented at 50 to the core axis are present within the interval. The first vein occurs at 61.21 metres, is bounded by styolities on either side and dominantly						1		

2000

8

I İ

1

F

SILVERTI	IP	UG DRILL LOG									
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gmvt	Ag gm/t	P10 %	Zn %	
		 consists of fine-grained pynte. The second ven occurs at 61.56 metres. This vein is up to 1 centimetre wide and is very sphalentle rich (60 % sphalerite, 30 % pyrite, 10 % secondary calcite). Overall estimate: 4 % pyrite, 3 % sphalente. 61.69-82.31 AMPHPORA FLOATSTONE Unaltered wackestone which grades into a stromatoporoid, amphipora floatstone at 62 05 metres. Interval contains 1 %. randomly orientated, calcite stringers. Fine-grained sphalerite and pyrite are found within these stringers. Overall, < 1 % pyrite and < 1 % sphalente. 62.31-77.11 STROMATOPOROID FLOATSTONE Competent, unaltered floatstone with stromatoporoid, iterarinopora floatstone at 62 % secondary calcite stringers are present throughout, and cause localised zones of moderate crackle brecciation. Calcite stringers commonly contain fine-grained sphalerite and pyrite. Rare styolites are present and dominantly occur between 50 and 65 to the core axis. Styolites are occassionally lined by calcite and fine-grained subhiel. Overall estimate: < 1 % sphalerite. < 1 % pyrite. 77.11-82.61 LIMESTONE RUBBLE Unaltered thermopora, stromatoporoid, amphipora floatstone as above, but consisting of 50 % rubble and 50 % intact core. Limestone rubble ranges in diameter from 0.5 centimetres - 5 centimetres. In areas a foliation defined by elongated fossils is observed and orientated parallel to styolites at 50 to the core axis. 86.26-88.01 CRACKLE BRECCIA FLOATSTONE Weakty crackle brecciated limestone that vanes from a stromatoporoid floatstone to a packatone. Rare blebs of pyrite are found lying adjacent to styolites and calcite stringers. At 86.4 metres there is a 4 centimetre wide, sparary calcite vein onertated at 50 to the core axis. The selvage of this vein is lined by fine-grained black sphalerite. At 87.5 metres there is a bleb of massive suffice up to 2 centimetres wide, containing 30 % galena. 30 % pyrite. < 1 % sphalerite. < 1 % galena. 		199385	61.69	62.31	0.00	0.80	0.00	0.03	
,				}			1		1	I	

Page 6 SiLVER1	[IP	2000 UG DRILL LOG							ŞU	D-00-68
From	Τ¢	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		 88.01-92.15 CRACKLE BRECCIA FLOATSTONE Crackle brecciated and vuggy floatstone containing fossits of thamnopora, stromatoporids, and amphipora. 5 % calcite stringers crackle brecciate the interval. At 89.28 metres fine-grained blebs of pyrite are found bleeding into limestone from adjacent styolites and calcite stringers. Overall the interval contains 1 % pyrite. 92. 15-94.44 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Strongly crackle brecciated and dolomitized limestone with localized areas up to 5 centimetres wide of rubble brecciated limestone. 94.44-95.38 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Hanging wall sample described above. At 95.05 metres dolomite begins to gradually change to unaltered limestone. Basal contact with massive sulphide is sharp and orientated at 80 to 90 degrees to the core axie. 		199378	94.44	95.38	Q.00	6.70	0.08	0.08
95.38	101.50	LOWER ZONE MASSIVE SULPHIDE Partially silicified, homogeneous massive sulphide ranging from fine grained pyrite, pyrihotite mineralization to coarser grained, ubiquitous sphalenite, galena, pyrite mineralization. Sphalenite is both red and black with black being dominant. Weak sphalenite, pyrite banding is present from 96.9 metres - 99.9 metres and is orientated at 30 to the core axis. Overall estimate: 30 % pyrite, 30 % sphalenite, 20 % galena, 5 % pyrthotite, and 10 % calcite gangue. 95.38-96.38 LOWER ZONE MASSIVE SULPHIDE Partially silicified sphalenite, galena, pyrite massive sulfide as above. Interval is competent with 2 % vugs lined by euhedrai crystals of calcite, quartz, sphalenite, and pyrite. Pyrite is dominantly coarse grained but also occurs as fine grained sulphide in association with magnetic pyrrhotite. Black and red sulphide in association min sized stringers of pyrite are present and are found cross-cutting earlier coarse grained sphalerite and galena mineralization. An orange carbonate (ankerite) is also present and found filling open space. Overall estimate: 30 % pyrite, 30 % sphalerite, 20 % galena, 10 % magnetic pyrrhotite, 10 % calcite, 5 % silica.	LZ	199366	95.38	96.38	0.01	658.50	13.00	12.61
		96.38-97.38 LOWER ZONE MASSIVE SULPHIDE Partially silicified sphalerite, galena, pyrite massive sulfide as		199367	96.38	97.38	0.00	258.40	3.17	13.89

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %	
		above but with more quartz and calcite gangue and less pyrihotite and pyrite mineralization. In the basal 25 centimetres of the interval two distinct phases of pyrite are visible. The first phase is a fine grained brassy pyrite which, is cross-cut by stringers of a second more golden colored and coarser grained phase of pyrite. This later pyrite mineralization, along with sphalente, is found in association with a late stage open space fill quartz and calcite gangue. 20 % pyrite, 35 % sphalerite. 10 % galena, 5 % pyrrhotite, 30 % quartz and calcite gangue. 97.38-98.45 LOWER ZONE MASSIVE SULPHIDE Sphalerite, galena and pyrite massive sulfide with 3 % relict limestone. The upper 32 centimetres of the interval is competent and partially silicified. Within this upper portion of the sample coarse grained pyrite and sphalerite inmeralization is found in association with late stage open space fill calcite gangue mineralization. Small mm sized stringers of the interval is a less competent hydrothermal collapse massive sulfide rubble breccus. Clasts within this breccia consist of fine-grained pyrite and partially replaced and skicified limestone. Clasts are up to 5 centimetres wide and an elong		199368	97.38	98.45	0.12	175.40	2.07	7.78	
		grained and crumbly black sphalerite mineralization. Very poor core recovery within this breccia. 30 % pyrite. 25 % sphalerite, 10 % galena, 20 % calcite, 10 % silica, 2 % magnetic pyrnhotite. 98.45-98.93 LOWER ZONE MASSIVE SULPHIDE Partially silicified sphalerite, galena, pyrate nch massive sulfide containing 40 % pyrite, 30 % sphalerite, 10 % galena, 10 % calcite, and 10 % quartz. Multiple stages of pyrite and sphalerite mineralization are present with late stage pyrite stringers found		199369	98.45	98.93	0.01	254.60	4.77	17 D5	
		cross-cutting all earlier mineralization. Late stage massive sulfide is found associated with open space fill calcite gangue. 98.93-99.97 LOWER ZONE MASSIVE SULPHIDE Competent, weakly banded sphalerite, galena, pyrite rich massive sulfide containing 40 % red and black sphalerite, 35 % galena, 20 % pyrite, 5 % calcite gangue. Pyrite, sphalerite, and galena		199371	98.93	99.97	0.01	664.80	13.72	26.93	
	l	banding is orientated at 30 to the core axis. 99.97-100.65 LOWER ZONE MASSIVE SULPHIDE		199372	99.97	100.65	0.01	404.85	7.03	21 04	

SUD-00-68 Page 7

Class 9
rayeo
CULVEDTIO
24EA EMILIA

2000 UG DRILL LOG

SUD-00-68

4

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %s
		Sp, pyrite, galena massive sulfide as above but with a decrease in sphalerite and galena mineralization and an increase in pyrite mineralization. Overall estimate: 1 % relict limestone, 40 % pyrite, 35 % sphalerite, 10 % galena. 14 % quartz and calcite gangue. 100 65-101.50 LOWER ZONE MASSIVE SULPHIDE Massive sulphide as above but with a decrease in pyrite and an increase in galena mineralization. Vague sphalerite and pyrite banding is observed at 50 to the core axis. Overall, 35 % pyrite, 35 % sphalerite, 15 % galena, 14 % quartz and calcite gangue and 1 % relict imestone.		199374	100.65	101.50	0.00	609.90	11.58	23.04
101.50	105.58	OCLOMITIZED LIMESTONE CRACKLE BRECCIA Brittle, crackle breccasted dolomitized limestone with rare massive sulfide veins up to 3 centimetree wide. 5 % calcite stringers and veins up to 5 mm wide cross-out and crackle brecciate the core. Core is very brittle and consists of 60 % rubble and 40 % intact rock. 101.50-103.02 CRACKLE BRECCIA DOLOMITIZED <i>LIMESTONE</i> Footwall sample. Crackle brecciated dolomitized limestone rubble. Contact with above lying massive sulfide is broken and rubbly. 5 % calcite stringers crackle brecciate the interval. CALCITE stringers are barren of sulphide. At 101.7 metres there is a small	MLS1	199375	101.50	103.02	0.00	2.90	0.03	D. 19
		 mm wide fracture filled with calcite and a lead grey/blue colored mineral with a radiating acicular habit (Bismuthinite, jamesonite, boulangerite ?). Minor amounts of fine grained pyrite and sphalerite are also found within this fracture. At 102.4 metres there is a 2 cardimetres wide pyrite vein at 20 to the core axis. Overall 2 % pyrite, trace sphalerite. 103.02-103.67 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Intact and crackle brecciated dolomitized limestone with two sphalerite, galens pyrite rich massive suffice veins up to 3 centimetres wide. The first vein is found from 103.02 metres - 103.17 metres and is orientated at 20 to the core axis. Vein contains 60 % red and black sphalerite 10 % galena, 20 % pyrite and 10 % calcite. Small stringers of subplide are visible bleeding out from this vein and into the surrounding dolomite. The second 		199376	103.02	103.87	6.01	162.90	4.27	14.20

.

,

.

2000 UG DRILL LOG

SULLOLA

.

4

SILVERI									00	0-00-00
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
		vein is located at 103.55 metres and is orientated at 50 to the core axis. Overall the interval contains 10 % pyrite 10 % sphalente, 3 % galena, and 2 % quartz and calcrie gangue.		199377	103.67	104.54	0.01	1.00	0.01	0.03
		103 67-104.54 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Crackle breccated and dolomitized limestone rubble with 5 % calote stringers and 1 % pyrite found liming fractures.								
105.56	106.60	MCDAME LIMESTONE UNIT 1 AMPHIPORA PACKSTONE. Unaltered to weakly crackle brecciated limestone with bedding and rare styolites at 45 - 50 to the core axe. Small rare stringers of pyrite are found orientated parallel to bedding. Overall < 1 % pyrite.	MLS1							
106.60	125.98	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Moderately crackle breccated stromatoporoid floatstones and rudstones with lesser euryamphipora, thamnopora and tryplasma throughout. 5 % calcite stringers result in localised areas of crackle brecciation. Rare styolites are present and dominantly occur at 30 - 50 to the core axis. Trace amounts of fine grained pynte are observed liming some of these styolites. From 109-12 metres - 110.18 metres fossil beds are observed and orientated at 60 to the core axis. 110.18-111.64 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Crackle brecciated, dolomitized limestone with 5 % calcite stringers up to 5 mm wide. Relict fossils of amphipora are preserved.	MLS2							
		p. Jacobies 124.52 STROMATOPOROID FLOATSTONE Slightly crackle breccasted amphipora/stromatoporoid floatstone with the degree of crackle breccastion becoming stronger towards the base of the interval. From 124.02 metres - 124.28 metres the interval is rubble brecciated with clasts of imestone up to 2 centimetres wde. The basal 15 centimetres of the interval is dolomitized.		199379	123.51	124.52	0.00	3.20	0 02	0.40
		124.52-125.96 RECRYSTALLIZED LIMESTONE Hanging wall sample. 30 % coarsley recrystallized stromatoporoid floatstone. Upper 43 centimetres of the interval is a hydrothermal collapse rubble breccia with clasts of fine grained pyrite and limestone up to 6 centimetres wide within a matrix of coarse		199380	124.52	125.96	0.03	36.80	0.78	0.83

SUD-00-68 Page 9

Page 10 SILVERT	'IP	2000 UG DRILL, LOG							SUC)-00-58
Fram	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gavît	Ag gm/t	Pb %	Zn %
2 		grained black sphalente, pyrite, and quartz-calcite gangue. Sulphide matrix is observed invading into the host limestone along fractures and styoites. The basai 1.00 metre of the interval is dominantly partially recrystallized limestone with rare blabs, clasts and stringers of pyrite and lesser sphalente. Overall estimate: 7 % cynite, 4 % sphalente, trace galente.								
125.96	127.11	LOWER ZONE / LIMESTONE MASSIVE SULPHIDE 60 % partially recrystallized and crackle bracciated limestone with 40 % massive sulfide wins from 2 centimetres wide. Sulphide is also observed eating into limestone along fractures and styolites found adjacent to sulphide veins. Localised hydrothermal collapse brecciasa up to 8 centimetres thick are present and contain clasts of partially replaced limestone and calcile within a quartz-calcite and sulphide motion. Contain 10 % explained in 10 % catera 10. % burdle	LZ	199381	125.96	127.11	0.00	925.60	20.14	8.95
127.11	138.37	MCDAME LIMESTONE UNIT 3 AMPHIPORA PACKSTONE Limestone ranging from dense amphipora packstones to recrystallized and rubble brecciated limestone. The upper portion of the unit is characterized by dense amphipora packstones with amphipora ranging from 1 mm - 2 mm wide. Rare massive stromatoporids are also present. Numerous styolites throughout are occassionality lined by pyrite. The basal 3 metres of the interval has been styolitic brecciated. 127.11-128.10 CRACKLE BRECCIA RECRYSTALLIZED LIMESTONE Footwall sample. 30 % coarsely recrystallized and moderately crackle brecciated limestone of unit 3. Relict amphipora ranging from 1 mm - 2mm are preserved in the upper portion of the interval. A trace of fine-grained disseminated pyrite is observed lining fractures in the upper 30 centimetres of the interval. 128.10-132.32 LIMESTONE RUBBLE BRECCIA Dominantly dense amphipora packstones with 10 % recrystallized imeastone and 5 % nobble brecciate's.	MLS3	199382	127.11	128.10	0.00	3.10	0.03	0.04

Page 11	
SILVERTIP	

\$

2000 UG DRILL LOG

SUD-00-68

, , , ,

SILVERI	11-								000	
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ %	Zn %
		consist of clasts of limestone up to 5 centimetres within a carbonaceous time mud. Sulphide is observed within these bx's replacing breccia matrix and clasts. Overall 1 % pyme, trace sphalerite, trace galena. 132, 32-138,37 RUBBLE BRECCIA STYLOLITIC BRECCIA Rubble to styolitic brecciated limestone with 30 % intact amphipora packstones and 10 % recrystallized limestone. Rubble breccia's consist of clasts of timestone up to 8 centimetres wide within a matrix of carbonaceous lime mud. Sulphide is dominantly found replacing breccia matrix and clasts. Rare clasts of sulphide may be present. The basal 3.5 matrices of the interval is a styolitic breccia with fine-grained pyrite found liming styolities. Clasts within this breccia are amphipora packstones up to 10 centimetres wide.								
138.37	140.57	MCDAME LIMESTONE UNIT 4 EURYAMPHIPORA FLOATSTONE Euryamphipora floastones and rudstones with minor massive stromatoponds. 2 % calcite stringers are present and cross-cut the limestone. From 139.47 metres - 139.7 metres the interval is rubble brecciated, with clasts of limestone and recrystallized limestone up to 4 centimetres within a time mud matrix. Basal 35 centimetres is a styolitic breccia with fine grained pyrite and sphalerite found lining strolitics and replacing limestone adjacent to styolites.	MLS4							
140.57	169.50	MCDAME LIMESTONE UNIT 5 AMPHIPORA PACKSTONE Dominantly dense amphipora packstones and wackestones with significantly thick intervals of coarsely recrystalitzed and rubble brecciated imrestone. 3 % calcite stringers up 5 mm wide result in the crackle brecciation of the limestone throughout. Stychies are rare, however, they are commonly lined by fine-grained pyrite. Fossils present include amphipora, brachtopods and stromatoporids. 140,57-147.00 AMPHIPORA PACKSTONE Limestone ranging from dense amphipora packstones to wackestones. 3 % calcite stringers have resulted in strong to moderate crackle brecciation of the limestone throughout the interval. 147.00-151.61 RECRYSTALLIZED LIMESTONE Fine to coarsely recrystallized limestone with small intervals up to 25 centimetres wide of unaltered amphipora/stromatoporoid packstones. Stychites throughout interval are commonly lined by fine grained pyrite and are orientated at 45 to the core axia. Overall pyrite is present in trace amounts.	MLS5							

Page 12 SILVERTI	P	2000 UG DRILL LOG							SU	D-00-68
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gan/t	Ag gm/t	Pb %	Zn %
		 151 61-156.59 AMPHIPORA PACKSTONE Amphipora packstones and weckestones with rare brachiopods. 3 % calcite stringers and veins up to 1 centimetre have resulted in moderate to strong crackle breccistion of the limestone. Rare styolites at 40 to the core axis are occassionally lined by fine grained pyrits. At 154.84 metres there is a fracture filled with calcite gangue and pyrits. Overall, trace pyrits. 156.59-157.65 RECRYSTALLIZED LIMESTONE Coarsely recrystalized limestone with up to 20 % relict amphipora packstones. Interval is strongly crackle brecciated by 5 % calcite stringers and veins up to 5 mm wide. At 156.93 metres there is a 1.5 centimetre wide calcite vein with blobs of pyrite within it. Overal, trace pyrite. 157.65-158.45 RUBBLE BRECCIA LIMESTONE Rubble brecciated limestone with clasts of recrystallized limestone, dolomitized limestone and unablered limestone up to 1.5 centimetres within a fine grained calcite matrix. Trace amounts of pyrite are present, and found replacing limestone clasts. 158.45-168.55 RECRYSTALLIZED LIMESTONE Variably fine to coarsely recrystallized limestone, weakly crackle brecciated by 2% calcite stringers. Rare styolites are found throughout the interval, orientated at 40 to the core axis. Styolites are commonly fined by fine grained pyrite. Two sphalerile veins up to 5mm wide and at 45 to the core axis are found at 160.33 metres. Overall trace sphalente, trace pyrite. 168.60-189.50 CRACKLE BRECCIA LIMESTONE Hanging wall sample Crackle brecciated limestone with the degree of crackle brecciation increasing towards the base of the interval. The basel 40 continetres of the interval is strongly crackle brecciated and partially dolomitized with localized areas up to 4 centimetres wide of mosaic brecciator. Mosaic breccias consist of clasts of dolomite up to 2 centimetres wide is found lining fractures and			168.50	169.50	0.00	3.00	0.03	0.03

Page 13	
SILVERTIP	

2000 VG DRILL LOG

• •

									00	0-00-00	2
From	Το	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %	
169.50	180.40	LOWER ZONE MASSIVE SULPHIDE Strongly silicitied and competent pyrrhotite, pyrite massive sulfide with 20 % relict limestone. Interval is very homogeneous and consists of fine to coarse grained pyrite and magnetic pyrrhotite completely to partially replacing limestone. Op is present up to 1 % in localised areas and is found <i>imming pyrite</i> and pyrrhotite. Sp <i>is</i> presents in areas up to 4 %. Stringers and veins of an orange carbonate mineral. possibly sidentic cross-cut sulphide mineralization at 25 to the core axea. The core is slightly vuggy (2 % vugs) with vugs lined by fine grained euhedral pyrite and calcite crystals. Overall 24 % pyrite. 1 % sphalents. 40 % pyrrhotite, <1 % chalcopyrite. 169:50-170.10 DOLOMITIZED LIMESTONE MASSIVE SULPHIDE Dolomitized limestone crackle brecciated by 10 % calcite stringers. Upper 15 centimetres of the interval is a pyrite massive sulfide nubble breccia with clasts of fine-grained pyrite. At 170.0 metres there is a 4 centimetre wide zone of fine-grained pyrite massive sulfide. Contacts between massive sulfide and adjacent dolomite are sharp. Overall, 35 % pyrite. 10 % calcite, 55 % dolomitized limestone. 170.10-171.10 MASSIVE SULPHIDE LIMESTONE Fine to coarse grained pyrite and magnetic pyrrhotite massive sulfide with 45 % unaltered relict LIMESTONE Fine to coarse grained pyrite and resive sulfide with 45 % unaltered relict LIMESTONE fine to coarse grained pyrite and magnetic pyrrhotite massive sulfide with 45 % unaltered relict LIMESTONE fine to coarse grained pyrite, 170.35 metres fine grained pyrite, pyrrhotite nch massive sulfide is cross-cut by 1 % calcite and iron-carbonate stringers. Contact with underlying limestone at 171.1 metres. From 170.1 metres - 170.35 metres fine grained pyrite, pyrite inch massive sulfide is cross-cut by 1 % calcite and iron-carbonate stringers. Contact with underlying limestone at 171.10 - 172.10 LOWER ZONE MASSIVE SULPHIDE Silcefied and competent pyrrhotite, pyrite norm masive sulfide with 15 % relict l	LZ	19938 4 199385 199388	169.50 170.10 171.10	170.10 171.10 172.10	0.00	31.80 13.80 14.00	0.03	0.04 0.03	

Page 14 SILVERTIF	2000 UG DRILL LOG							su	IQ-00-68
From	To Geological Log	UNIT	SAMPLE	FROM (m)	OT (m)	Au gm/t	Ag gm/t	Рb %	Zn %
	of pymhotite. Minor chalcopyme is present and is found rimming pymhotite and pyme mineralization. Core contains 2 % vugs line by euhedral calcite, pyrite, and guartz crystals. Overail, 45 %	3	199387	172.10	173.10	0.00	12.60	0.01	0.03
	pyrite, 25 % pyrrhotile, 15 % silice, 0.5 % chalcopyrite, 15 % iimestone. 172.10-173.10 LOWER ZONE MASSIVE SULPHIDE								
	Pyrite, pyrihotite rich massive suffice as above but with less pyri and more pyrihotite mineralization. Sits of an orange iron-carbonate (sidenite, ankerit?) cross-cut pyrihotite and pyrite		199368	173.10	174.10	0.01	11.60	0.01	0.02
	massive surroe. 40 % pyrmone, 20 % pyrne, 15 % quartz, 0.5 % chalcopyrite, 15 % imestone. 173.10-174.10 LOWER ZONE MASSIVE SULPHIDE During purphyling data massing sufficient shores but with slightly	1	199369	174.10	175.10	0.00	7.00	0.01	0.02
	 Fyrite, pyrite interstone and a decrease in pyrite. 39 % pyrihotite. 2 % pyrite, 20 % relict limestone, 20 % quartz, 1 % chalcopyrite. 174.10-175.10 LOWER ZONE MASSIVE SULPHDE Pyrite, pyrihotite rich massive sulfide as above but with a slight increase in pyrite and decrease in pyrihotite. Overall estimate: 4 % pyrite, 25 % pyrihotite. 20 % quartz 15 % limestone. 0.5 % 	0	199390	175.10	175.20	0.00	5.50	0.01	0.02
	chalcopyrite. 175.10-178.20 MASSIVE SULPHIDE LIMESTONE Pyrite rich massive sulfide as above but with leaser pyrrhotite an pyrite mineralization and more relici limestone. From 175.45 metree - 175.75 metree there is a zone of unreplaced and unaliered limestone. Contacts between this limestone and adjacent MASSIVE SULPHIDE are sharp. Overall estimate: 55 9	÷	199391	176.20	177.20	0.00	4.30	0.01	0.25
	limestone, 15 %quartz, 24 % pyrite, 5 % pyrrhotite, 1 % chakopyrite. 176.20-177.20 LOWER ZONE MASSIVE SULPHIDE Pyrite, pyrrhotite rich massive suifide as in sample 199388 but with slightly more pyrrhotite and pyrite mineralization and less relict innestone. Overall, 40 % pyrrhotite, 33 % pyrite, 15 %		199392	177.20	178.20	0.00	5.30	0.01	1.42
	 quartizet, for the immessione, if the characteristic and a frace of plack coarse grained sphalerite. 177.20-178.20 LOWER ZONE MASSIVE SULPHIDE Pyrite, pyrrhotite rich massive suffice as above but with a decrease in pyrite and an increase in pyrrhotite mineralization. Coarse grained black sphalerite is found in the under 20 		199393	178.20	179.20	0.00	7.70	0.01	1.76

Page 15 SILVERT	'IP	2000 UG DRILL LOG							SU	/D-00-68
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivit	Ag gm/t	Pb %	Zn %
		centimetres of the interval. Overall, 60 % pyrrhotite. 20 % pyrite, 10 % quartz, 10 % relict limestone, 1 % sphalerite. and 0.5 % chalcopyrite. 178.20-179.20 LOWER ZONE MASSIVE SULPHIDE Pyrrite, pyrrhotite rich massive suifide as above. Coarse grained black sphalerite is found from 178.5 metres - 178.7 metres. 47 % pyrrhotite, 25 % pyrite, 10 % quartz, 15 % limestone. 2 % sphalerite. 1 % chalcopyrite. 179 20-180.40 LOWER ZONE MASSIVE SULPHIDE Pyrite, pyrrhotite rich massive suifide as above but with an increase in coarse grained pyrite mineralization. Overall, 40 % pyrrhotite, 35 % pyrite, 15 % limestone. 10 % quartz, trace		199384	179 20	180.40	0.00	81.90	0 16	0.18
180.40	193.80	 <u>chalcopyrite, trace sphalerite.</u> <u>MCDAME LIMESTONE UNIT 5 AMPHIPORA PACKSTONE</u> <u>Amphipora, thampopra, stromatoporoid floatstones to sparsely</u> <u>fossilized wackestones.</u> <u>Massive sulphide veins, of pyrte and</u> <u>pyrrhotite and lesser sphalerite and galena.</u> <u>up to 12 centimetres wide</u> <u>and at 20 to 50 to the core axis, cross cut the interval.</u> <u>5 % calcite</u> <u>stimgers result in localised areas of strong crackle brecciation.</u> <u>Cocassional styplites are found lined by fine-grained pyrite.</u> <u>Overall 4</u> <u>5 pyrite, 1 % pyrhotite, trace sphalerite, trace galena, 5 % calcite.</u> <u>180.40-181.40 AMPHIPORA FLOATSTONE</u> <u>Footwall sample.</u> <u>Amphipora, stromatoporoid floatstone crackle brecciated by 3 % calcite stringers.</u> <u>From 180.97 metres - 181.13</u> <u>metres there is a large pyrite, pyrhotite massive sulfide vein which</u> <u>is bounded by styplites on either side.</u> <u>Vein contains 10 % pyrite.</u> <u>Overall the interval contains 10 % pyrite.</u> <u>Cotasilised amphipora wackestone, crackle brecciated by 3 % calcite.</u> <u>181.40 CRACKLE BRECCIA WACKESTONE</u> <u>Sparsety fossilised amphipora wackestone, crackle brecciated by 3 % calcite stringers wide massive pyrite vein bounded</u> 	MLS5	199396 199397	180.40	181.40 182.40	0.00	12.40	0.03	0.01
		bleeding into the limestone adjacent to this vein. Styoites and fractures throughout the interval are fined by suphide. Overall, trace galena, trace sphalente, 5 % pyrite. 182.40-183.80 CRACKLE BRECCIA PACKSTONE		199398	182.40	183.80	0 .01	1.00	0.00	0.23

SUD-00-68 Page 15

Page 16 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-88
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gen/t	Ag gm/t	P0 %	Zn %
		Hanging wall sample. Crackle breccisted amphipors packstone with rare tryplasma and tharmopora. Contact with below lying massive suffide is sharp and at 90 to the core axis. Overall trace profile attrices								
183.80	3.60 167.40 LOWER ZONE MASSIVE SULPHIDE Strongly homogeneous, partially silicified, ubiquitous, coarse sphalente and pyrite rich MASSIVE SULPHIDE with minor g Zone containe 15 % relict unreplaced limestone which is do found in the upper 1 metre of the interval. Overall the zone of 40 % ovrite, 40 % sohalante, 5 % guartz, 15 % limestone, trace	LOWER ZONE MASSIVE SULPHIDE Strongly homogeneous, partially silicified, ubiquitous, coarse grained sphalerite and pyrite rich MASSIVE SULPHIDE with minor galena. Zone contains 15 % relict unreplaced limestone which is dominantly found in the upper 1 metre of the interval. Overall the zone contains, 40				<u> </u>				
		 % pyrite, 40 % sphaterite, 5 % quartz, 15 % limestone, trace galena. 183.80-184.40 LOWER ZONE MASSIVE SULPHIDE Massive, ubiquitous, coarse grained black sphalerite and pyrite 	12	199399	183.80	184.40	0.00	35.10	0.08	16.41
		mineralization with 10 % relict, saticitied limestone. Overall estimate: 45 % pyrite, 45 % sphalenita, 10 % limestone. 184.40-184.80 AMPHIPORA PACKSTONE Unattered amphipora peckstone with styplites, at 30 to the core		199451	184.40	184.80	0.00	0.80	0.00	0.06
		axis, lined by fine-grained pyrite. 1 % sphalerite, and 1 % pyrite are found within the interval. Contact with above lying massive sulfide is sharp and at 40 to the core axis. 184.80-185.80 LOWER ZONE MASSIVE SULPHIDE Coares grained black sphalerite and pyrite rich massive sulfide as		199452	184.80	185.60	0.02	60.30	0.10	20.54
		in sample 199399. A 1.5 centimetres wide coarse grained pyrite quartz-carbonate vein orientated at 15 to the core axis is present in the upper 40 centimetres of the interval. Overall 50 % pyrite, 45 % sphalente, 5 % quartz-carbonate.		199453	185.80	168.60	0.00	93.00	0.58	17.34
		195.30-185.50 LOWER ZONE MASSIVE SULPHIDE Coarse grained aphalerite, pyrite massive sulfide as above with quartz-carbonate gangue increasing towards the base of the interval. At 186.4 metres there is a small bleb of galena. Overall 16								
		% quartz-carbonata, 10 % relict, silicified imestone, 1 % galena. 35 % sphalerite, and 40 % pyrite. 186.60-187.40 LOWER ZONE MASSIVE SULPHIDE Sphalerite, pyrite massive sulfide as above with sphalerite dominant in the upper 40 certimetres of the interval and pyrite dominant in the upper 40 certimetres of the interval and pyrite		199454	186.60	187.40	0.01	127.90	0.55	18.90
		below lying dolonitized linestone is sharp and at 50 to the core axis. Overall, 45 % sphalerite, 45 % pyrite, 10 %								

SUD-00-68 Page 16

Pa	ge	17		
511	1/5	0	71	P

`

.

2

.

.

2000 UG DRILL LOG

SUD-00-68

4

From	To	Geological Log	UNIT	SAMPLE	(m)	10- (m)	Au gm/t	Ag gm/t	Pb %	Zn %
	<u> </u>	quartz-carbonate.								
187.40	204.17	MCDAME LIMESTONE UNIT 5 AMPHIPORA PACKSTONE Limestone ranging from amphipora floatstones to rudstones with minor stromatoporids. Minor thin shelled brachiopods are noted throughout. 10 % calcite stringers and veins, at 20 - 30 to the core axis, result in strong crackle breccation. From 197, 1 metres - 198,3 metres there is a mosaic breccia with clasts of limestone up to 8 centimetres wide within a coarsely crystalline calcite matrix. Less than 1 % of the clasts have been partially replaced by fine-grained sphalerite, pyrite and lesser galena. 187,40-188 40 AMPHIPORA FLOATSTONE Footwall sample. Crackle brecciated amphipora floatstone with minor stromatoporids. Upper 15 centimetres of the interval has been dolomitized. Sphalerite and pyrite mineralization is found lighting stypities and fractures within the top 25 centimetres of the	MLS5	199455	187.40	168.40	0.90	2 40	0.01	0 39
		interval. Overall, 1 % pyrite, 1 % sphalerite, and 10 % calcite								
204.17	209.70	RECRYSTALLIZED LIMESTONE Light gray to blue recrystallized limestone, variable from fine-grained and sugary to coarsely crystalline. 5 % calcite stringers at 20 - 30 to the core axer, crackle breccizite the interval. From 2087 metres - 2089 metree there is a large sub-vertically oriented styolite lined by fine-grained pyrite. Limestone up to 2 centimetres adjacent to this styolite has been partially replaced. Overall pyrite is present in trace amounts.	MLS5							
209.70	212.80	MCDAME LIMESTONE UNIT 5 AMPHIPORA FLOATSTONE Amphipora floatstone to rudstone with minor stromatoponds. 5 % calcide stringers, at 20 - 30 to the core axis, cross-cut and crackle brecciate the core. Numerous styolites, lined with trace amounts of fine-grained pyrite, are present and are orientated at 50 to the core axis.	MLS5							

*** END OF HOLE *** 212.80

. . **.**

*****.*

...

.

.

• -

SUD-00-68 Page 17

-

- •...

HOLE NO: SUD-00-69

SECTION:65 C

GRID:SILVER CK S

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	CORPORATION
GRID	SILVER CK S
MAP REFERENCE	E: 104/O-16W
LOCATION	LIARD MD, BC
HOLE TYPE	:UG

*** C	OLLAR COORD	INATES AND I	RL ***
NOMINAL	43317.50mN	24957.50mE	1133.00RL

Pre-collar depth:Final depth:157.00Purpose of hole:TEST FEEDER
MINERALIZATIONHole status:COMPLETED
LZ: 71.3-73.7, 99.4-105.3, 111.8-
126.0

*** DRILLING SUMMARY ***

DIAMOND	0.00 157.00 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	10/1/00
Date finished:	12/1/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidationTop of fresh rock:0Water first encountered:Water inflow estimate:

Date:

	***	SIGN	IIF	ICAN	IT .	AS	SA	YS	**
--	-----	------	-----	------	------	----	----	----	----

Depth	Azimuth	Inclination
0.00	250.00	-43.00
33.50	251.70	-42.60
64.00	251.20	-43.20
94.50	252.20	-43.90
124.97	252.20	-44.70
155,40	252.60	-45.50

	***	SUMMARY LOG
0.00	64.00	1B SANDSTONE /
64.00	71.30	1AA CARBONACEOUS
71.30	73.70	LOWER ZONE MASSIVE
73.70	99.40	SULPHIDE MCDAME LIMESTONE UNIT
99.40	105.30	1 LOWER ZONE RUBBLE
105.30	111.80	BRECCIA MCDAME LIMESTONE UNIT
1 11.8 0	126.00	1 LOWER ZONE MASSIVE SULPHIDE RUBBLE
126.00	1 28.00	BRECCIA DOLOMITIZED LIMESTONE RUBBLE BRECCIA
128.00	1 45 .70	MCDAME LIMESTONE UNIT
145.70	157.00	
157.00		END OF HOLE

Checked and signed:

From	То	Width	Ag g/t	РБ %	2n %
70.30	74.70	4.40	104.35	1.09	6.72
89.60	92.10	2.50	8.46	0.04	0.47
98.40	106.30	7.90	176.70	3.24	3.50
110.80	128.00	17.20	330.46	5.18	6.68

Pa	ge 1
911	VERTIP

2000 UG DRILL LOG

4 1 1

SILVER	14F			_				_		
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ %	Zn %
D.00	64.00	18 SANDSTONE / SILTSTONE General Description: Similar to hole SUD-00-87. Interbedded, medium grey, fine to medium grained sandstone, laminated to thinty bedded, dark grey siltstone and black, fine grained mudstone. Graded sandstone beds, fining upward, range between 20-140 centimetres. Bedding at 30 degrees to core axis, intermittantly distorted and convoluted. Scattered sandstone beds weakly calcareous between 16.8 - 31.2m. Betow 26.0m, the sandstone layers are much thinner, averaging mm to 5 centimetres. Moderately competent core down to 15.6m, below which is vanable from poker chip core, brittle fracture zones with core chips between 5mm - 3cm, and carbonaceous gouge zones. Trace - 2% quartz - calcite stringers @ 5, 10 & 30 degrees to core axis. 1-4% pyrite, generally intreases down section with up to 2cm versis associated with the quartz - calcite verining. 15.60-16 50 GOUGE ZONE Carbonaceous gouge and small chips; broken upper contact, discordant, sharp tower contact @ 70 to core axis. 31.30-40.80 FAULT ZONE Series of fault gouge and chip intervals, 30 centimetres to 1.5 metres wide with thinly interbedded sandstone/sitistione between. Crumbly pyrite quartz veins often associated with the rubbly intervals. Bedding angle shallows to 20 to core axis towards the total.	18						5	
		 base. 45.90-58.00 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE Beginning to see an increase in pyrite (to 5%), disseminated throughout the sediments and semi-massive, fine grained, concordant bands to 2 centimetres. Bedding steepens back up to 60 degrees, then flattens again to 40 degrees to core axis @ 56.0m. 51.3-51.8m: Carbonaceous gouge. 52.0-52.15m: Quartz-pyrite rubble, broken contacts. 58.00-64.00 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE Dominantity tarrinated, dark grey sittstone, interbedded with 20% this medium grey sandstone beds. Bedding is 25-30 degrees to 								

Pag e 2 SILV ER 3	TIP	2000 UG DRILL LOG							su	D-00-69
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gen/t	Ag gm/t	Pb %	Zn %
		layers, occurs, which was not noted in drill hole SUD-00-87. The concordant brecciated lenses are 1 to 10 centimetres in width, often contorted and are comented with quartz - calcite. The lower contact is where the sandstone content is less than ~5%. 3% disseminated pyrite and as thin, discontinuous laminae in the breccated layers.								
64.00	71.30	1AA CARBONACEOUS ARGILLITE Dark grey to black, laminated to massive, carbonaceous ar; frequent breaks along graphitic bedding planas. Similar to above sub-interval (58,0, 64,0m), there are apposimately 15% concordant, finely brecciated lenses, healed with quartz - carbonate and often contorted. 3% disseminated pyrits and mm stringers. 70,30-71.30 CARBONACEOUS ARGILLITE Hanging well sample. As in general unit discription above. No real visible staration, except for minor subplication as pyrite clots (4%) immediately adjacent to the massive sulfide. Integular lower context fill x50 denses in come sulfide.	1AA	199424	70.30	71.30	0.02	1.50	0.01	0.01
71.30	73.70	Lower 2 Solve and the set of the	ιz	199425	71.30	72.30	0.01	190.40	3.38	2.23
		4% gatena, 10% quartz and 5% calcite. Sub-pianal lower contact between impestone remnant and massive sulfide @ ~40 degrees to core axis, 72.30-73.00 PYRITE SPHALERITE MASSIVE SULPHIDE Fine grained pyrite at the top, becoming coarser grained below, intergrown with coarse grained, red-brown and black sphatente. Abundant vugs with transparent, euhedral quartz crystals, with the remaining ocen space filed by white anhedral quartz. The black		199426	72.30	73.00	0.02	110.70	0.60	9 47

2000 UG DRILL LOG

SILVER										
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grn/t	Pb %	Zn %
		sphaterite appears to be a later stage phase as it often rims the red-brown sphalerite. 60% pyrite, 25% sphalerite, 3% galena, 10% quartz and 3% calcite. 73.00-73.70 PYRITE SPHALERITE MASSIVE SULPHIDE Similar to previous interval, but coarse grained at the top, becoming finer grained approaching the lower contact, which is sub-planer irregular @ -40 degrees to core axis. Spectacular coarse red-brown and black sphalerite. 55% pyrite, 30% sphalerite, 4% calena, 10% quartz.		199427	73.00	73.70	0.01	268.60	1.42	29.48
73.70	99.40	MCDAME LIMESTONE UNIT 1 General Description: Unit 1 of the limestone, with the upper 18 metres consisting of competent amphipora rudstone, minor massive stromatoponds alternating with dense packstone and mutistone. Below 97.1m begin to see abundant thamnopora, indicating sub-unit 1B. Brittle, broken sections <50 centimetres, generally have increased calcite vening, stringers or crackle breccia. Mein fractures occur (1) 5 & 40 degrees to core axis. Occasional styloities subparallel to fossil elongation <40 degrees to core axis. 1% disseminated pyrite and small clots marginal to calcite or along styloities. Trace galena (1) B9.3m along styloite. Narrow Lower Zone								
		mneralization between 90.6 - 91.1m containing pyrite and sphalents replacing limestone. Sharp lower contact @ 45 to core axis with rubble breccia Lower Zone. Increased crackle breccia approaching <i>lower contact.</i> 73.70-74.70 PACKSTONE CRACKLE BRECCIA Footwall sample. Partially recrystallized to a successic textured cc; weak crackle breccia. 3% disseminated and small blebs of	MLS1	199428	73.70	74.70	0.01	1. 80	Q .01	0.07
	4	pyrine to zimm. Precommanny calcrie-hiled fractures oriented between 30-40 degrees to core axis. 89.80-90.80 FLOATSTONE Hanging wall sample above narrow massive sulfide mineralization.		199429 199430	90.60	90.60 91.10	0.02 0.01	1.19 38.10	0.00 0.18	0.02 2.27
		Appears unaltered; 1% pyrite clots and disseminations. 90.60-91.10 LIMESTONE MINERALIZED 65% limestone, 45% massive sulfide, occurring as a 15 centimetres sulphide vein above, at 40 degrees to core axis, where pyrite and red-brown sphalerite have replaced 95% of the				!				

SUD-00-69 Page 3

Page 4 SILVERTIP	2000 UG DRILL LOG							SU	D-00-69
From T	Geological Log	UNIT	SAMPLE	FROM (m)	то (m)	Au gm/t	Ag gm ⁄i	Pto %	Zn %
	 limestone. Following is a 20 centimetres section of stylol/tic limestone, with calcite-pyrite stringers. Below that is an irregular clot of fine to medium grained pyrite (minor sphalerite) replacing limestone. 91.10-92.10 RUDSTONE Footwall sample. First appearance of abundant thamnopora, indicating sub-unit 18. Feinly unalisered, competent with only trace - 1% disseminated pyrite along fractures and stylolites. 98.40-99.40 FLOATSTONE RUBBLE BRECCIA Hanging wall sample. Upper 30 cantimetres is rubble to mosaic breccia, below in unalisred-looking limestone with 5% vuggy calcite vehing. Sharp lower contact (\$2.45 degrees with rubble brecciated Lower Zone mineralization. 2% pyrite ae 		199431 199432	91.10 98.40	92.10 99.40	0.01	1.00 2.20	0.00	0.01
99.40 105.	 Conservations and code. Conversion of the conservation of th	LZ	199433 199434	99.40 100.40	100.40 101.30	0.01 0.02	70.30 42.70	0.49	4.02

•

SILVER	118											
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	T0 (m)	Au gm/t	Ag grivit	Pb %	Zn %		
		with occasional fragments of sulphide, argillite and imestone. Bedding / layering @ 40 degrees to core axis. Approximately 20% pyrite, 5% sphalerite and trace galena. 101 30-102 20 LIMESTONE RUBBLE REFCCIA	• • 	199435	101.30	102.20	0.01	13.10	0.11	0.56		
	l 1	Remnant block of breccated limestone in a fine graned, black, carbonaceous, pyritic (minor sphalerite) matrix. 6% pyrite, 0.5% sphalerite, Irregular lower contact at ~20 degrees to core axis. 102.20-103.20 BASE METAL MASSIVE SULPHIDE Nearly 100% raplacement with massive sulfide, consisting of 40%		199438	102.20	103.20	0.08	867 30	17.68	9.76		
		fine grained to coarse pyrite, 30% fine to coarse red-brown sphalente and 20% coarse grained galena. Note: Sample 199437		199438	103.20	104.30	0.01	267.80	4.85	5.88		
		is a Duplicate of this interval. 103.20-104.30 PYRITE MASSIVE SULPHIDE Massive to banded sulphides (mm to centimetres bands): upper 20 centimetres is crumbly pyrite sphalente sand. 70% pyrite, 15% sphalente, 10% galena. 104.30-105.30 MASSIVE SULPHIDE / LIMESTONE Upper 20 centimetres is nubble breccia with sulphide and Upper 20 centimetres is nubble breccia with sulphide and		199439	104.30	105.30	0.02	87.80	1 41	4.10		
		matrix. Below is incompetent, carbonaceous, ima granted possibly sediment in-fill at the base of a cave?? Inegular lower contact with limestone. 50% pyrite. 5% sphalerite, trace galena, 10% calcite.										
105.30	111.80	MCDAME LIMESTONE UNIT 1 General Description: Amphipora-stromatoporoid rudstone / floatstone with minor tharmopora. Fossil layering ~ 50 degrees to core axis. Carbonaceous stylolites throughout. Start to see pyrite replacement clots and galena - calcite stringers below 110.9m 105.30-106.30 FLOATSTONE Footwall sample. Upper 20 centimetres is rubble and	MLS1	19 944 1	105.30	106.30	Q.02	23.50	0.37	0.30		
		carbonaceous chips, the remainder - as in general description above: 3% fine graned pyrite, mostly as wisps along styloites. 110.80-111.80 PACKSTONE MINERALIZED Hanging well sample. Limestone above the massive sulfide a pyrite - galena - calcite stringers, fracture fillings and clots to 4 centimetres. Fractures @ 30-40 degrees to core axis. Irregular		19 9512	110.80	111.80	0.07	113.00	2.01	0.89		

Page 6 SiLVER	TIP	2000 UG DRILL LOG							SU	0-00-69
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (т)	Au gm/t	Ag gm/t	Рb %	Zn %
	<u>-</u>	lower contact, 6% pyrite, 1% galena, trace sphalerite, 4% calcite.								
111.80	126.00	LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA General Description: Variable, complex zone with mineralization ranging from pyrite to sphalerite to pyrthotite to galena - rich sulphide.								
		Textures range from massive to vaguely banded, to brecciated (mosaic								
		and rubble precess), partial replacement in a very sinceous metro.					1			1
		zone. Selow 122.8m: pymbotite is abundant, but unlike the pymbotite								ļ
	}	- rich zone in SUD-00-88. base metals galene & sphalente are present.		ł			}	}	1	: [
		The lower contact is gradiational over about 2m, where sulphide clearts	ιz	199442	111.80	112.80	0.12	378.20	6.95	9.21
		within a limestone rubble breccia gradually decrease. Overall estimate: 25% pyrite, 20% pyrmotite, 15-20% sphalenite, 10-15%		-	ļ		}			
		gelene, 15% Imestone and 10% stoca. 111.80-112.80 MASSIVE SULPHIDE / LIMESTONE								l
	1	The upper 30 centimetres is limestone with massive sphalerite clots to 11 centimetres. At 112.1m, the massive suffice begins sions a sharp contact, 40 degrees to core axis. The lower 70		199443	112.80	113.80	û. 02	671.70	11.36	11.70
	ļ	centimetree is 50% pyrile (fine to coarse grained), 20% sphalerite, 15% galena in a calcareous matrix.		199444	113.80	114.80	Q.QQ	259.00	4.08	7.19
{		112.80-113.80 BASE ME IAL MASSIVE SUPPRISE Massive to inegularly banded, fine to coarse grained pyrite (35%), 30% medium to coarse grained sphalerite and 25% coarse	ļ			ļ				
		grained galena in a saica-calcite gangue. 113.80-114.80 BASE METAL MASSIVE SULPHIDE Manual bit authorization authorization (only two places		199445	114.60	115.80	0.06	247.00	2.61	8.42
	ĺ	>10 centimetres) in an increasingly silicaous faity into process in galena from the previous sample. 50% pyrile, 25% red-brown to	ĺ							
		black sphalente, 10% galena and 15% quartz. 114.80-115.80 PYRITE SPHALERITE MASSIVE SULPHIDE.		199446	115.80	116.80	0.03	538.00	0.53	Q.49
Í	ĺ	increased quarz gangue, accreased galera. Emberioca, signify more competent than previous sample. 45% pyrite. 30% sphalerite, 5% galena and 20% quartz.	ĺ	(ĺ	1				
	Į	115.80-116.80 MAŠSIVE SULPHIDĖ / LIMESTONE MOSAIC BRECCIA						l		

Pa	ge 7
¢(i)	VERTIP

2000 UG DRILL LOG

SUD-00-69

4

SILVERI	۲.	OG BIGEE LOG							50	
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gmvit	РЬ ℁	Zn %
		Upper portion of the interval is mosaic breccia comprised of angular to sub-rounded subhide clasts in a mostly calcite (minor quartz) matrix. The lower 25 cantimetres is vuggy, brecciated limestone. 35% pyrte. 10% sphalente. 5% galena, 15% calcite.		199447	116.80	117.90	0.02	1128.60	20.54	6 58
		10% quartz. 116.80-117.90 BASE METAL MASSIVE SULPHIDE Pyrite - sphalerite rich sulphide in a predominantly calcareous matrix, becoming very galena - rich below 117.3m. Crude sulphide banding oriented 50-60 degrees to core axis. 40% ovrite.		199448	117.90	118.50	0.01	55.60	0.82	6.09
		 25% galena, 15% sphalerite. 10% calcite, 5% quartz. 117.90-118.50 PVRITE SPHALERITE MASSIVE SULPHIDE Massive fine grained pyrite in a siliceous gangue with clotty sphalerite associated with coarse grained calcite. Lower 20 centimetres is partially replaced limestone with mainly pyrite & minor sphalerite. 50% pyrite, 10% sphalerite. 5% galena, 15% calcite and 10% quartz. 118 50-119.40 MASSIVE SULPHIDE / LIMESTONE MOSAIC 		199449	118.50	119.40	0.03	172.10	2.91	3.68
		BRECCIA Upper 50 centimetres is limestone / sulphide mosaic breccia with very targe clasts (to 15 centimetree) within a coarse grained calcite matrix. Limestone is partially dolomitized. Below is limestone rubble breccia with minor sulphide replacement and culphide clasts 2006 with 5% cohestria 1% calena 2006		199450	119.40	119 80	0.0Ó	419.70	4 75	13.95
		calcite and 5% quartz. 119:40-119:80 BASE METAL MASSIVE SULPHIDE Narrow interval of massive coarse grained sphalerite - galena - pyrite with coarse grained calcite filling voids. 30% sphalerite, 20% pyrite, 15% galena and 25% calcite. Sharp lower contact with linestone. 60 decrease to core avis		199501	119.80	120.60	0.03 0.04	51.80 260.40	0.87 3.42	1.38
		119.80-120.80 LIMESTONE RUBBLE BRECCIA Unbrecciated irrestone grading into a sulphidized rubble breccia below. The matrix is sulphidized as well as partially to totally replace limestone clasts. 15% pyrite, 3% sphalente. 2% galena, 10% calate.								
		120 60-121.60 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Early fine grained, massive pyrrhotite in a siliceous matrix, with		199505	121.60	122.60	0.01	45.40	0, 16	6 54

SUD-00-69 Page 7

Page B SILVERTIP	I	2000 UG DRILL LOG							SU	D-00-69
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grm/ti	Ag gm/t	P15 %	Zn %
		itter phase, coarse grained sphalerite - galena - pyrite. Vague banding of sphalerite (§ 40 degrees to core axie. 30% sphalerite, 30% pyrrhotite. 15% galena, 7% pyrite, 15% quartz and 3% iron carbonate (yellow-brown -> sidenite). 121.60-122.60 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Massive fine grained, net-textured pyrrhotite in a silica and iron carbonate matrix and a targe (5 centimetres) clot of coarse grained sphalerite at the start of the interval. The lower half is dolornitized limeatone rubble breccia, partially replaced by coarse grained red-brown sphalerite and pyrite. 30% pyrrhotte, 20% pyrite, 15% sphalerite, 5% galene, trace cpy, 15% quartz, 10% calcite + iron carbonata. 122.60-123.60 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Similar textures as the previous sample, with increased pyrrhotte and galene. 45% cyrrhotte, 15% sphalerite. 10% galena, 10% pyrite & 15% quartz. 123.60-124.60 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Similar textures as the previous sample, with increased pyrrhotte and galene. 45% cyrrhotte, 15% sphalerite. 10% galena, 10% pyrite & 15% quartz. 123.60-124.60 PYRRHOTITE BASE METAL MASSIVE SULPHIDE RUBBLE BRECCIA The pyrrhotite is not present below 123.9m and silica also decreases significantly, while calcite increases. Sample varies from partial to total replacement of limestone breccia clasts by pyrite (45%), sphalerite (15%), pyrrhotte (10%) and galene (8%), in a calcite matrix (silica at the top). 124.60-125.40 PYRTE SPHALERITE MASSIVE SULPHIDE RUBBLE BRECCIA Continuation of the sulphidized rubble breccia seen in the prevous		199506 199507 199508 199509	(m) 122.60 123.60 124.60 125.40	(m) 123.60 124.60 125.40 126.00	gm/t 0.01 0.04 0.01 0.02	758.10 202.50 576.10 157.90	9.24 2.63	4.28 7.52 16.25 4.28
		125.40-126.00 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA The frequency of replaced limestone clasts within the rubble								
		breccia decreases quickly over the 60 centimetres of the interval. The majority of remaining limestone clasts are dolomitized. 25% pyrite. 5% sphalerite, trace. 1% galena, 20% calcite matrix and 50% limestone clasts. Rubble breccia continues below but								
		sulphides are <10%, so not classed as Lower Zone.				<u> </u>				<u> </u>

Page 9 SILVER1	ri P	2000 UG DRILL LOG							su	D-00-69
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grn/t	Рb %	Zn %
126.00	128.00	DOLOMITIZED LIMESTONE RUBBLE BRECCIA Two meter interval at the base of the massive sulfide is rubble brecciated dokomitzed limestone. Minor sulphide replacement occurs and generally decreases with depth. 128.00-127.00 DOLOMITIZED LIMESTONE RUBBLE BRECCIA Footwall sample, Continuation of the rubble breccia occurring at the base of the Lower Zone, but <10% sulphides. The intensity of the dolomitization decreases with depth. Clasts are sub-angular to sub-rounded, and range from 3mm - 12cm, in a calcareous matrix. 5% pyrite, 1% galena & 1% sphalerite. 127.00-128.00 LIMESTONE RUBBLE BRECCIA Combination of rubble and styloitic breccia - stromatoponds and amphipora recognizable. 3% pyrite along styloites and as small clots in the rubble breccia.	MLS2	199510 199511	126.00	127.00	0.00	11.50 4.40	0.15	0.50
128.00	145.70	MCDAME LIMESTONE UNIT 2 General Description: Unit intermittantly recrystallized to coarse	MLS2							

Sparty calcite, giving the rock a mottled texture. Abundant stromatoporids and lesser amphipora are visible, indicating Unit 2. Stylolites are common throughout. Competent rock with minor fracturing @ 30 & 50

50 degrees to core axis. 2% disseminated pyrite and clots throughout, associated with calcite fractures and stylofites. Thamnopora are typical at the base of Unit 2 and seen at 145.2m. MCDAME LIMESTONE UNIT 3 General Description: Top of the unit has fine, 1-2 mm amphipora, which is diagnostic of the start of Unit 3. Amphipora rudstone with minor stromatoporids characterizes the interval; layering @ 60 degrees to core axis. Stylofites common, trace - 1% pyrite. 155.80-156.40 LIMESTONE RUBBLE BRECCIA Limestone native braccia in a calcierous, carbonaceous matrix.

Limestone rubble breccia in a calcareous, carbonaceous matrix. 5% limestone clasts replaced by fine grained pyrite.

*** END OF HOLE *** 157.00

MLS3

. .

÷ --

. .

SOD-00-69 Page 9

145.70

SECTION:65S

203.60

GRID:SILVER CK S

Pre-collar dep	th:	Final depth:	203.6
NOMINAL	43300.00 mN	24966.50mE	1129.00RL
Г—— +++ СС	DLLAR COORI	DINATES AND	RL ***
HOLE TYPE	:UG		
LOCATION	LIARD N	ND, BC	
MAP REFERE	INCE: 104/0-1	6W	
GRID	SILVER	CKS	
PROSPECT	CORPO	RATION	
TENEMENT	SILVER	TIP MINING	
PROJECT CC	DE SILVER	TIP	

Purpose of hole: TEST FEEDER **MINERALIZATION** Hole status: COMPLETED Comments: LZ: 109.8-110, 111.8-112.5, 121. 3-122.8, 175.4-176, 191.2-192.3

*** SURVEYDATA *** Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-43.00
19.20	254.80	-43.10
49.68	254.20	-44.30
80.20	256.20	-46.00
110.60	255.10	-46.50
141.10	256,10	-47.00
171.60	256.50	-46.70
202.10	258.30	-46.40

- *** SUMMARY LOG *** --0.00 52.90 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE 52.90 57.00 FAULT ZONE **1BA LAMINATED** 57.00 63.60 SILTSTONE / SANDSTONE MUDSTONE 63,**60** 72.20 1AA CARBONACEOUS ARGILLITE 72.20 109.80 MCDAME LIMESTONE UNIT **1 AMPHIPORA** FLOATSTONE 109.80 110.00 LOWER ZONE MASSIVE SULPHIDE 110.00 111.80 RECRYSTALLIZED LIMESTONE 111.80 113.50 LOWER ZONE MASSIVE SULPHIDE 113.50 121.30 **CRACKLE BRECCIA** MOSAIC BRECCIA DOLOMITIZED LIMESTONE

*** DRILLING SUMMARY ***

DIAMOND	0.00 203.60 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	10/1/00
Date finished:	13/1/00
Logged by:	C. AKELAITIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole: NONE Base of complete oxidation -Top of fresh rock: 0.0 Water first encountered: NONE Water inflow estimate: 0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Р ь %	Zn %
72.10	76.50	4.40	0.98	0.00	0.01
109.00	123.80	14.80	256.79	5.31	4.30
174.40	177.00	2.60	156.78	5.36	5.87
189.70	193.30	3.60	235.35	4.53	4.16
195.50	197.60	2.10	27.36	0.61	0.65
200.40	203.40	3.00	0.52	0.00	0.00

Checked and signed:

Date:

GRI	DSI	VER	CKS
0.1	0.01		

121.30	122.80	LOWER ZONE MASSIVE
		SULPHIDE
122.80	125.40	CRACKLE BRECCIA
		DOLOMITIZED LIMESTONE
125.40	138.90	MCDAME LIMESTONE UNIT
		2 STROMATOPOROID
		FLOATSTONE
138.90	159.60	AMPHIPORA PACKSTONE
159.60	161.90	EURYAMPHIPORA
		PACKSTONE
161.90	175.40	AMPHIPORA FLOATSTONE
175.40	176.00	LOWER ZONE MASSIVE
		SULPHIDE
176.00	189.70	AMPHIPORA PACKSTONE
189.70	1 90.8 0	FAULT ZONE
190.80	191.20	AMPHIPORA PACKSTONE
191.20	192.30	LOWER ZONE MASSIVE
		SULPHIDE MOSAIC
		BRECCIA
192.30	196.50	AMPHIPORA PACKSTONE
		CRACKLE BRECCIA
196.50	196.60	LOWER ZONE MASSIVE
		SULPHIDE
196.60	201. 40	LIMESTONE RUBBLE
		BRECCIA
201.40	203.40	FAULT ZONE
203.40	203.60	LIMESTONE CRACKLE
		BRECCIA
203.60		END OF HOLE

SILVER	TIP	UG DRILL LOG							SUC	0-00-70	,
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	۲O (۳۱)	Au gm/l	Ag gm/t	РЪ %	Zn %	1
2.00	52.90	INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Interbedded, medium-grey, fine to coarse grained sandstone and laminated to thinky bedded siltstones and black mudstones. Bedding is at 30 to the core axis. Sandstone beds are up to 1.2 metres and range from being massive to firing upwards. They are non- moderately calcareous and decrease in abundance and thickness with depth. Cross bedding and soft sediment deformation are observed throughout the interval. Pervasive disseminated pyrite is found throughout the interval and is concentrated in the coarser grained sandstone beds. Overall the interval contains 1 % pyrite. 24 30-24.60 FAULT ZONE Fault zone consisting of dark grey to black carbonaceous fault gouge and crushed rock. The zone has been infiltrated and weakly healed by 10 % quartz-carbonate. 37.50-41.52 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Intertaminated siltstones and moderately carbonaceous mudstones with lesser sandstones. Interval is very broken and consists of 70 % crushed rock and 30 % intact rock, 1 % disseminated pyrite is found throughout. 41.52-45.30 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Intertaminated siltstones and moderately carbonaceous mudstones with lesser sandstones. Interval is very broken and consists of 70 % crushed rock and 30 % intact rock, 1 % disseminated pyrite is found throughout. 41.52-45.30 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Interbedded to laminated mudstones, sitstones and sandstones. Sandstone beds are up to 1.5 centimeters thick and contain up to 70 % pyrite. At 43.65 metres there is a 1 centimetra wide quartz-carbonate vein at 50 to the core axis. Coarse grained pyrite and black sphalerite are found lining the vein selvage. Overall trace sphalerite, 2 % pyrite. 45.30-52.85 INTERBEDDED SILTSTONE / MUDSTONE SANDSTONE Laminated black carbonaceous mudstonesd and siltstones with fare sandstone beds. Interval is very broken and consists of 50 % rubble, 35 % intert rock, and 15 % black carbonaceous fault gouge. At 50.03 metres there is a 3 mm wide pyrite, sphalerite	18								

SUD-00-70 Page 1

.

.

Page 2 SILVERI	rie	2000 UG DRILL LOG							SU	-00- 70
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gmvt	Ag gm/i	Pb %	Zn %
	<u> </u>	contains 2 % pyrite, trace sphalenite.							1	<u> </u>
52.90	57.00	FAULT ZONE Fault zone consisting of black fault gouge and black carbonaceous argiillte rubble with 5 % intact rock. The interval has been heated by quartz-carbonate cement. A trace of sphalerite is found within quartz-carbonate mineralization. 2 % pervassive disseminated pyrite is found throughout the interval	FZ							
57.00	63.60	IBA LAMINATED SLITSTOME / SANDSTONE MUDSTONE Strongly laminated black carbonaceous argiilites, sitsuones, and fine grained medium grey sandstones. 10 -15 % contorted quartz-carbonate stringers and veins orientated parallel to laminations at 30 to core axis are present throughout the interval. Sandstones beds decrease in abundance towards the base of the interval. Quartz-carbonate stringers and veins are commonly folded and contain brecciated clasts of adjacent earn up to 4 mm wide. Fine-grained subhide, dominantly pyrite, is also found within these veins. Overall 3 If certific	1BA		- -					
63.60	72.30	1AA CARBONACEOUS ARGILLITE Fine grained black carbonaceous argillite with rare siltstone laminae at 20 - 30 to core axis. Interval is randomly non-moderately calcareous. 5 - 10 % calcite stringers, orientated parallel to laminae, cause localised areas of crackle to mosaic brecciation. The basel 20 centimetres of the interval is strongly crackle to mosaic brecciated with earn clasts within a coarsely crystalline calcite and pyrite matrix. The unconformity contact with below lying linestone is sharp and at 20 to core axis. Overall the interval contains 1 % pyrite with the majority of the pyrite concentrated in the basel 5 - 10 centimetres of the interval. 71.20-72.20 1AA CARBONACEOUS ARGILLITE Hanging wall sample. Black carbonaceous argillite with 15 % contorled quart-carbonate stringers which crackle brecciate the argilite. Localized areas of mosaic brecciation are present with clasts of argillite up to 3 centimetres wide within a crystalline curst and writin matrix. 1% percenting fine.	144	199456	72.10	72.20	0.00	1 50	0.01	0.02

4

Page 3 SILVERTIP

,

K

SILVER	118								30	
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gun/t	Pb %	Zn %
		disseminated			1		-	İ	+	1
72.30	100 80		÷	<u> </u>	<u>+</u>	┼──	- -	 	+	+
12.20	103.00	Amphinora finatetones to rulationes with minor massive								
		stromatoporids, alternating with amphipora packstones and				1	ļ			Į
		wackestones, Upper 2.5 metres of the unit is mottled by							1	1
		quartz-carbonate veins and clots which contain up to 10 % fine		i						;
		gramed						-		1
		pyrite. Core ranges from being intact and unaltered to crackle,	}		!					1
		mósaic.				ļ				
		and rubble brecciated with targe intervals of limestone rubble	1		Í					ļ
		throughout. A foliation defined by elongated tossils is present and							1	ļ
		onentated at 50 to core axes. Uverall the interval contains 5 %	MLST	400457	70.00	20.00	0.00	1 20	0.04	0.04
		1 QUARD-CARDUNALE VIEWS AND U.S 78 LYTHE		199401	12.20	13.20	0.00	1.30	0.01	1001
	1	Amphipora finatstone crackle brecciated by 5 % contorted and								i i
	1	linear calcite stringers. Pyrite is found associated with calcite								
		stringers throughout but is dominantly found in the upper 15							[1
		centimetres of the interval, directly below the unconformity. It is					1		1	[
		found as fine grained blebs within calcite matrix and eating into		199458	73.20	74 20	0.00	0.90	0.01	0 00
	}	and replacing adjacent imestone. Overall 3 % pyrite. 73.20-74.20 AMPHIPORA FLOATSTONE								ļ
		Amphipora floastone, mottled and crackle brecciated by 10 %								1
		contorted calcite stringers and blebs. Fine grained pyrite is found	j –							1
		associated with calcite stringers and eating into and replacing		199459	74.20	75.20	0.00	0.90	0.00	0.01
	1	adjacent limestone. Overall estimate, 8 % pyrite.								
	1	74 20-75 20 AMPHIPORA FLOATSTONE								
	1	Amphipora licatione that grades into a wackestone towards the		'						
		degree then shows interval and contains 3 % calcite stringers								
		Fine		100480	75.20	78.50	0.00	0 90	0.00	0.01
		orained pyrite is found associated with calcite stringers and along		100400	10.20	10.00	0.00	0.00	0.00	0.01
		styolites at 35 to core axis. Overall 5 % pyrite.							1	
		75.20-76.50 AMPHIPORA WACKESTONE					1			
		Footwall sample. Amphipora wackestone which becomes an			ĺ				1	
		amphipora floatstone towards the base of the interval. 2 % calcite		i					i	
		stringers crackle brecciate the core.							i	
		(/0.50-62.70 AMPHIPORA WACKESTONE							i	
	L	Dank grey ampriporal wackestone to time mudstone with minor					L. 1		L	

SUD-00-70 Page 3

Page 4 SILVERTIP		2000 UG DRILL LOG							SU	D-00-70
From	To	Geological Log	UNIT	SAMPLE	FRÓM (m)	TO (m)	Au grrvt	Ag gm/t	Рb %	Zn %
		massive stromatoponds. Interval is dominantly rubble with 25 % intact limestone. 3 % contorted and linear calcite stringers or brecciate the core with crackle brecciation strongest towards the base of the interval. Overall, trace pyrite found within quart_carbonids becoming more prevalent towards the base of the interval. Exception of float the same of the interval has a sugary texture due to fine grained partial recrystallized tharmopora floatstone with massive stromatoporids becoming more prevalent towards the base of the interval. Interval has a sugary texture due to fine grained partial recrystallization of limestone. 10 % fine grained interconnected blebs of pyrite are visible throughout the interval. Pyrits appears to travel along styplites and fractures and replaces limestone adjacent to these structures. Pyrite is similar to that sampled benesith the unconformity (samples 199456 - 199460). 83.60-67.70 LIMESTONE CRACKLE BRECCIA Variable, uneltered, recrystallized and dolomitized limestone, crackle brecciated by 5 % quartz-carbonate veins and stringers up to 7 mm wide. In the upper portion of the interval a foliation defined by elongated fossils is observed at 50 to core axis. A trace of fine-grained pyrite is found lining fractures. Interval a foliation defined interve nubble and 30 % intact rock. 87.70-90.35 MOSAIC BRECCIA RUBBLE BRECCIA Upper 1 metre of the interval is a limestone mosaic breccia with clasts of recrystallized limestone, unaltered limestone and dolomitized limestone up to 10 certimetree within a coarsely crystalline white calcite matrix. At 88.8 metres themosaic breccia with an intact tharmopora floatstone. Rubble breccia sconsist of angular clasts of dolomitized limestone and timestone up to 3 centimetres wide within a finely ground lime matrix. Fine-grained sphalerite and pyrite are present lining styplites within rubble breccias. Overall trace sphalerite, trace sprite.								

.

Page 5
SILVERTIP

r

.

2000 UG DRILL LOG

SUD-00-70

, , •

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		 wackestone with massive stromatoponds and rare tharmopora throughout. 3 % calcite stringers at 15 and 70 to core axis cause localised areas of weak crackle breccation. A foliation, defined by elongated fossila, is orientated at 40 to core axis. A trace of fine-grained pyrite is found lining styolites throughout interval. 100.80-104.10 RECRYSTALLIZED LIMESTONE Finely recrystalized and motified looking limestone with 8 % interconnected blebs and stringers of pyrite. Fine-grained pyrite is observed along styolites and replacing limestone adjacent to styolites. 15 % , pyrite bearing, contorted and linear quartz-carbonate stringers and veins up to 1 centimetres wide and at 15 to core axis, crackle brecciate the core. 104.10-109.00 FLOATSTONE RUDSTONE Dominantly, unalkered to finely recrystallized stromatoporoid floatstone to rudstone with lesser amphipora. 5 % calcite stringers at 50 and 20 to core axis cause weak to moderate crackle brecciation of the imerval has been finely recrystallized to a sugary texture. Overall trace pyrite, trace sphalerite. 109.00-109.60 RECRYSTALLIZED LIMESTONE Hanging wall sample. Finely recrystallized imestone, weakly crackle brecciated by 1 % calcite stringers. 		199481	109 00	109 80	0.00	1 20	0.00	0.01
109.80	110.00	LOWER ZONE MASSIVE SULPHIDE Medium grained, ubiquitous sphalenite, pyrite, galena, massive sulfide. Overall 45 % red and black sphalerite. 45 % pyrite, 10 % galena. Massive sulphide displays sharp contacts with adjacent limestone.	LZ	199462	109.80	110.00	0.00	906.50	21.71	12.28
110.00	131.80	RECRYSTALLIZED LIMESTONE Finely recrystallized limestone with refict amphipora and lesser stromatoporida. Limestone has been crackle breccated by 3 % calcite stringers. Interconnected blebs and stringers of fine-grained pyrite are observed travelling along styolites and fractures and replacing limestone adjacent to these structures. Overall 3 % pyrite. 110 00-110.90 RECRYSTALLIZED LIMESTONE Footwall sample. Recrystallized amphipora floatstone to rudstone as above. Overall 3 % pyrite.		199483	110.00	110.90	Q.D1	5.90	0.06	0.04

Page6 SILVER	ПР	2000 VG DRILL LOG							SU	D-00-70
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivît	Ag gm/l	РЬ %	Zn %
	<u> </u>	110.90-111.80 RECRYSTALLIZED LIMESTONE Hanging wall sample. Recrystallized amphipora floastone as above but with slightly less write. Overall 2% outline		199464	110.90	111.80	0.00	89.20	2.13	1.60
111.80	113.50	LOWER 20NE MASSIVE SULPHIDE Ubiquitous sphalerite, galens, pyrite rich massive suffide. Mineralization is coarse grained with galene dominantly found in the upper 70 centimetres and basel 50 centimetres of the interval. Both black and red sphalerite are present with red sphalerite found surrounded by black sphalerite. Pyrite occurs as coarse grained crystals and blebs within galene and sphalerite mineralization, and as mm sized stringers which cross-cut all earlier lower zone mineralization. Overail 23 % pyrite, 50 % sphalerite, 22 % galena, 1								
		76 pyrthotite, 3 calcite, 111.60-112.50 LOWER ZONE MASSIVE SULPHIDE Coarse grained sphalenite, galena, pyrite massive sulfide with minor fine carsing memorial muthorite numbering. Overall 40 % antibalarite		199465	111.80	112.50	Q. 00	1835.20	37.39	11.35
		35 % galena, 23 % pytile, 2 % magnetic pytholate. 112:50-113:00 LOWER ZONE MASSIVE SULPHIDE Coarse grained sphalerile, pytile, galena massive sulfide as		199466	112.50	113.00	0.00	426.90	7.22	33.53
		but with an increase in sphalerite and a decrease in galena mineralization. From 112.7 metree -112.95 metres the core is incompetent and consists of sphalerite and lesser pyrite rubble. Overall, 65 % sphalerite, 20 % pyrite, 10 % galena, 5 % quartz. 113.00-113.50 LOWER ZONE MASSIVE SULPHIDE Coarse grained sphalerite, galena, pyrite massive sulfide as above		199467	113.00	113.50	0.02	2341. 20	54.20	8.78
		but with an increase in galena and a decrease in sphalerite. Weak sphalerite, pyrite banding is observed at 50 to core axis. Overall 10 th operations 25 M sectors 25 M sectors and a sector should be								
		40 % spranemue, 30 % gamena, 25 % pyrite, 5 % quarz-carbonate. Sharp contact at 30 to core axis with underlying dolomitized limestone.								
113.50	121.30	CRACKLE BRECCIA MOSAIC BRECCIA DOLOMITIZED LIMESTON Crackle to mosaic brecciated. dolomitized limestone with minor recrystallized limestone. Interval is incompetent and consists of 70 % intact core and 30 % rubble. Upper 8.3 metres of the interval is dominantly dolomitized limestone crackle brecciated by 15 -20 %								

,

÷

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pb %	Zn X
		quartz-carbonate stringers and veins up to 2 centimetres wide. Coarse grained pyrite and red and black sphalerite, are found within quartz-carbonate veins and lining fractures. From 113.7 metres - 113.95 metres there is strongly strained and foliated limestone which appears to have deformed plastically? This highly strained limestone is sandwiched between blocks of stronger dolomite. During jurassic deformation the limestone may have acted as a weak layer and accomodated the majority of the strain. Basal 1.5 metres of the interval is a mossive sulfide up to 8 centimetres wide within a coarsely crystalline white quartz-calcite matrix. Pyrite and sphalerite are also found as crystals within the brecks matrix. Overall 1% pyrite, 1% sphalerite, trace galena.	MLS							
		113 50-114.50 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Crackle brecciated dokomitized irreatone rubble with 15 % quartz-carbonate stringers and veins. Pyrite, sphalerite, and galena are observed replacing dolomite in the upper 10 centimetres of the interval. Overall 1 % pyrite, < 1 % sphalerite, < 1 % caleso		199469	113.50	114.50	0.00	3.20	0.04	0.06
		114-50-15-50 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Crackle brecciated dolomitized limestone rubble as above with		199410	114.50	113.30	0.01	2.00	0.03	0.09
		trace amounts of fine-grained eubedral pyrite cubes found lining fractures and within quartz-carbonate stringers. 115 50-116.50 CRACKLE BRECCIA DOLOMITIZED UMESTONE Crackle brecciated dolomitized imestone rubble as above.		199471	115.50	116 50	0.00	0.70	0. 00	0.01
		a trace amount of pyrite is found lining fractures and as disseminated cubes within stringers. 116.50-117.50 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Intact, crackle brecciated, dolomitized limestone as above. Interval		199472	116.50	117.50	0.00	2.40	0.03	0.73
		contains 5 % vugs which are lined by eunedral quartz and calole crystals. At 117.3 metres there is a 1.5 centimetre wide coarse					1			

Page 8 Silvert	'IP	2000 UG DRILL LOG							SŲ	D-00-70
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grn/t	Ag ganu't	ዖ b %	Zn %
		grained red and black sphalerite vein orientated at 30 to core axis. Small subedral cubes of pyrite are found near and within this sphalerite vein. Overall < 1% sphalerite, trace pyrite. 117 50-118.50 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Intact crackle breccisted dolomitized limestone as above, with		199473	117.50	118.50	0.01	4.50	0.03	2.50
		quartz-carbonate stringers at 45-50 to core axis. From 118.3 metres - 118.5 metres there is a pyrite, sphalerite, massive sulfide vein which pinches and swells up to 1.5 centimetres wide. This vein is orientated at 15 - 20 to core axis. Small stringers and disseminated cubes of pyrite are found adjacent to this vein. Overall, < 1 % sphalerite, < 1 % pyrite.		198474	118.50	119.50	Q.00	15.30	0.15	3.81
		118:50-119:50 RUBBLE BRECCIA LIMESTONE Unaltered to dolomitized, crackle and rubble brecciated limestone. Throughout the interval sphalerite and pyrite are found lining fractures and replacing limestone rubble breccia matrix. Overall 1 % pyrite, 1 % sphalerite. 119:50-120:10 CRACKLE BRECCIA DOLOMITIZED		199475	119.50	120.10	0.01	46.80	0.85	1 59
		LIMESTONE Cractle to mosaic brecciated dolomitized limestone. Mosaic brecciation is dominantly found in the basal 30 centimetres of the interval and consists of clasts of crackle brecciated dolomitized limestone and sphalerite, pyrite, massive suffide up to 10 centimetres wide within a coarsely crystalline white quartz-carbonate matrix. Overall < 1 % pyrite, < 1 % sphalerite,		199478	120.10	120.50	0.02	1146.70	23.68	13.18
		trace galena. 120.10-120.50 MOSAIC BRECCIA LIMESTONE Mosaic breccia consisting of clasts of sphalenile, pynite, galena massive sulfide and dolomitized immestone up to 4 centimetres wide, within a coarsely crystalline white quartz-carbonate matrix. Basal 10 centimetres of the interval is massive sphalente, galena, pyrite mineralization. Overall, 15 % sphalente, 5 % galena, 5% pyrite		199477	120.50	121.30	0. 00	78.30	1.53	1.48
		120.50-121.30 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Vanable crackle and mosaic brecciated, dolomitized limestone. Clasts of sphalerite, galena, pyrite massive sulfide up to 3								

-

, ,

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	I. TO (m)	Au grn/l	Ag gm/t	Pto %	Zn %
ļ		centimetres wide are found within mosaic braccias. Overall trace schalerite, trace calena, trace pyrite.					1		+	
121.30	122.80	LOWER ZONE MASSIVE SULPHIDE Partially silicified sphalente, pyrite, galena massive to mosaic brecciated sulphide. Upper 25 centimetres of the intercept is dominantly silicified fine grained pyrite and magnetic pyrhotite mineralization. From 121.55 metres - 121.8 metres the interval is mosaic brecciated with clasts of sphalente, galena, pyrite and dolomite up to 3 centimetres within a coarsety crystalline quartz-carbonate matrix. Basal 1 metre of the interval is sphalente, pyrite, and galena rich massive sulfide. Overall 2 % magnetic pyritotite, 40 % sphalente, 30 % pyrite, 10 % galena. 121.30-122.00 LOWER ZONE MASSIVE SULPHIDE	LZ							
[[Partially silicified sphalerite, pyrite and lesser galena massive suifide as above. Overail 20 % sphalerite, 40 % pyrite, 5 % magnetic pyrrhottle, 5 % galena. ;122.00-122.80 LOWER ZONE MASSIVE SULPHIDE		199476 199479	121 30	122.00	0.01	191.20	2.63 2.49	9.17
		Partially silicified sphalerite, pyrite, galena massive sulfide with weak sphalerite, pyrite banding at 40 to core axis. Sphalerite and galena are coarse grained whereas pyrite is fine to coarse grained. Overall 45 % pyrite. 35 % sphalerite. 10 % galena. 10 % guartz.								1
122.80	125.40	CRACKLE BRECCIA DOLOMITIZED LIMESTONE Crackle brecciated dolomitized imestone with 15 % randomity orientated quartz-carbonate stringers and veina. Interval is brittle and consists of 70 % intact core and 30 % rubble. From 124.6 metres - 125.0 metres the interval is mosaic brecciated with clasts of unaltered limestone and dolomitized limestone up to 5 centimetres wide within a quartz-carbonate matrix. Sphalerite, pyrite, and galena are found partially replacing dolomite clasts within this breccia. Overall, trace sphalerite, trace pyrite, trace galena. 122.80-123.80 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Footwall sample. Crackle brecciated dolomitized limestone rubble and intect rock with 15 % quartz-carbonate stringers. Relict	MLS	1 99481	122.60	123.80	0.00	2.90	0.03	0.14

Page 10 SILVER1	ΠP	2000 UG DRILL LOG							SU	 70
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
125.40	138.90	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Stromatoporoid floatstones to rudstones with minor amphipora. Significant widths of the unit have been rubble brecciated with clasts of irrestone up to 7 centimetres wide within a taminated lime mud irratrix. Rare sulphide (dominantly pyrite and lesser sphalerite) is found within these limestone rubble breccia's, replacing brecciated limestone clasts. 1 - 2 % calcite stringers which cross-cut areas of rubble brecciation, result in local zones of weak crackle brecciation. Relict recrystalitized thamnopora and trypissma are found throughout the unit. 129.10-132.60 LIMESTONE RUBBLE BRECCIA Limestone rubble breccia with clasts of limestone up to 7 centimetres wide within a lime mud matrix. This breccia is clast supported. Rare pyrite and lesser sphalerite are present within the breccia and are found partially replacing clasts of limestone.	MLS2							
138.90	159.60	AMPHIPORA PACKSTONE AMPHIPORA PACKSTONE Amphipora packstones, floatstones and rudstones with minor measure stromstoporids and tryplasma throughout. Amphipora tend to be fine grained in the upper portion of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards the base of the interval (< 3mm) and become larger (up to 8 mm) towards and footstones with minor massive stromatoporids and amphipora. 1 - 2 % calcite stringers, orientaled at 15 and 70 to core axis create local zones of weak crackle brecciation. Pare blace of ouries up to 8 mm wide are found realising limetroe	MLS3							

Page 11
SILVERTIP

2000 UG DRILL LOG

۱ ۲

From	To	Geological Log	UNIT	SAMPLE	FROM	(m)	Au gm/t	Ag gm/t	Pb %	Zn %
	1	Overall trace pyrite.			+		+		1	1
181.90 175.40	175.40	AMPHPORA FLOATSTONE Unaltered amphipora floatatones, packstones, and wackestones with lesser massive stromatoponds and rare thin shelled brachiopods. 5 - 10 % calcite stringers and veins up to 2 centimetres wide cause intervals of moderate - strong crackle breccation. Styolites at 40-85 to core axis, are observed throughout the interval but become more prevalent towards the base of the interval. Sulphide, dominantly pyrite and lesser sphalerite and galena. is commonly found lining styolites and bleeding into adjacent limestone. Overall, < 1 % pyrite, trace sphalerite, trace galena. 174.40-175.40 CRACKLE BRECCIA FLOATSTONE Hanging wall sample. Amphipora floatstone with massive stromatoponds in the upper 30 cantimetres of the interval. Sample is crackle brecciated by 5 - 10 % calcite stringers up to 1	MLS5	199482	174.40	175.40	0.00	18.80	0.44	0.27
	176.00	centimetra wide. Fine-grained pyrite and lesser sphalerite and galena are found lining stypites and bleeding into adjacent immestione. Overall < 1 % pyrite, trace sphalerite, trace galena. LOWER ZONE MASSIVE SULPHIDE	LZ							
		with weak sphalerite, pyrite banding at 70 to core axis. Zone is weakly calcareous and appears to have been healed by quartz and calcite cement. Contacts with above and below lying limestone are sharp but irregular (replacement front). The basal contact is at 10 to core axis. Overall, 35 % sphalerite, 30 % galena, 30 % pyrite, 5 % relict limestone.		199483	175.40	176.00	0.00	645.90	22.48	24.96
176.00	189.70	AMPHIPORA PACKSTONE Variable unaitered to recrystallized, amphipora packstones, floatstones and wackestones. Minor massive stromatoporids are found throughout the interval. 2 % calcite stringers result in localised areas of weak to moderate crackle brecciation. Styoites are present throughout the interval, orientated parallel to fossil beds at 50 to core axis. Fine-grained pyrite is occasionally found lining styoites and bleeding into adjacent limestone. Recrystallized limestone varies from being finely to coarsely recrystallized. Overall trace pyrite. 176.00-177.00 CRACKLE BRECCLA PACKSTONE	MLS5	199485	176.00	177.00	0.01	1.30	0.01	0.01

Page 12 SILVER1	ΠP	2000 UG DRILL LOG							su	D-00-70
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grn/t	Ag gm/t	Pb %	Zn %
		Footwall sample. Amphipora packstone with minor massive stromatoporids found near the base of the interval. 30 % calcile stringers and veins up to 4 centimetres wide are present and crackle brecciate the interval. Fine-grained pyrite is found lining stypites and fractures and bleeding into adjacent limestone. Overall trace pyrite. 187:00-169:70 RECRYSTALLIZED LIMESTONE Finely recrystallized limestone with a sugary texture. Rare stypilites at 15 - 30 to core axis are lined by fine grained pyrite. Overall trace pyrite.								
189.70	190.80	FAULT ZONE Fault zone consisting of 30 % grey-green (sericite-chlorite) fault gouge and 30 % relict limestone fragments. Interval has been partially heated by a quartz-calcite coment. 20 % pervasive fine grained disseminated control partice before the control the protect the series of the period.	FZ	199486	189.70	190.80	0.00	0.20	Q.01	0.00
190.60	191.20	AMPHIPORA PACKSTONE Hanging wall sample. Amphipora packstone, weakly crackle Dreccisied by 1 - 2 % calcits stringers. A strong foilation, defined by elongated fossile, is present and orientated at 60 to core axis. Styolites throughout the interval are lined by very fine grained suiphide.	MLS5	199487	190.80	191.20	0.00	17.20	0.39	0.13
191.20	192.30	LOWER ZONE MASSIVE SULPHIDE MOSAIC BRECCIA Mosaic brecciated massive suffice consisting of clasts of sphalerite, galena and pyrite up to 4 contimetres wide within a white crystalline calcite and minor quartz matrix. Primary blebs and crystale of pyrite, sphalerite and galena are also found within the breccia matrix. From 191.6 metres - 191.7 metres there is a small grey-green zone of fault gouge, similar to sample 199485. Overall, 20 % pyrite, 20 % sphalerite, 10 % calena, 10 % fault opcowe 40 % calcite matrix	LŻ	199488	191.20	192.30	0.01	760. 60	14.65	13.48
192.30	198.50	AMPHIPORA PACKSTONE CRACKLE BRECCIA Strongly foliated amphipora packatones and wackestones. Foliation is defined by elongated fossils and is onentated at 30 - 40 to core axis. 4 % calcite stringers up to 7 mm wide cause moderate to locally strong crackle breccation of the limestone. Numerous styclites are present and are consentied narately to the foliation. Form 194, 3 metree, 195,4								

•

.

£

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	II TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		metres the limestone has been finely recrystallized. Fine-grained sulphide is found lining styplites in the upper 30 centimetres of the interval. Overall trace pyrite. 192.30-193.30 CRACKLE BRECCIA PACKSTONE Footwall sample. Crackle brecciated amphipora packstone as	MLS5	199489	192.30	193.30	0.00	3 50	0.03	0.11
		above. Fine-grained pyrite is found lining styolites in the upper 30 centimetres of the interval. Overall trace pyrite. 195.50-196.50 CRACKLE BRECCIA PACKSTONE Hanging wall sample. Crackle brecciated and strongly foliated amphipora packstone as above. Sharp contact with underlying massive sulfide.		199490	195.50	196.50	0.00	1.50	0 02	0.03
196.50	198.60	LOWER ZONE MASSIVE SULPHIDE Very fine grained sphalerite, pyrite, galena massive sutfide with weak sphalerite and pyrite bandwing at 75 to core axis. A fine grained, soft, massive, silvery blue mineral is present. It may be galena, however, it does not display galena's typical cubic habit. 1 % calcite stringers cross cut massive sulfide. Overall 70 % pyrite, 20 % sphalerite, 10 % calena	LZ	199401	196.50	198.60	0.01	480.50	11.56	11.86
196.60	201.40	LIMESTONE RUBBLE BRECCIA Rubble brecciated limestone with clasts of limestone, dolomite, calcite and rare pyrite up to 3 centimetres wide within a fine lime mud matrix. Fine grained sulphide is found selectively replacing this breccia matrix. The interval has been healed and crackle brecciated by 20 % calcite and quartz cement and stringers. 196,80-197.60 LIMESTONE RUBBLE BRECCIA Footwall sample. Limestone rubble breccia as above. Interval has been crackle brecciated by 20 - 30 % calcite stringers. Overall. trace sphalerite, trace pyrite, trace gateria. 200,40-201.40 RECRYSTALLIZED LIMESTONE Finely recrystalized imestone stycilite breccia. Interval has been crackle brecciated by 10 - 15 % calcite stringers. Rare fine grained pyrite is observed lining some stycilites. Overall trace pyrite.	MLS5	199492 199483	196.60 200.40	197.80 201.40	0.00	7, 9 0 1.10	0 11	0.14
201.40	203.40	FAULT ZONE Fault zone consisting of 50 % gray-green (sericite and chlorite) fault gouge with 30 % relict, strongly crackle brecciated, fragments of limestone. Fault zone is mildly calcareous and appears to have been								

SUD-00-70 Page 13

Page 14 SILVERT	'IP	2000 UG DRILL LOG							SU	D-00-70
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
		partially healed by quartz and calcite cement. 15 - 20 % fine grained dissminated pynte is found throughout the interval. 201.40-202.30 FAULT ZONE GOUGE 80 % relict innestone fragments within 40 % green - grey (sericite, chlorite) fault gouge with 10 % fine grained disseminated pyrite found throughout. 202.30-203.40 FAULT ZONE GOUGE Fault zone as above but with 60 % green - grey fault gouge and 25 % relict limestone fragments. 15 % fine grained disseminated pyrite is found throughout the interval. A whole rock sample was taken from 203.0 metres - 203.4 metres (semple 199496).	FZ	199494 199495	201.40 202.30	202.30 203.40	0.00	0.40 0.10	0.00 0.00	0.00 0.00
203.40	203.60	LIMESTONE CRACKLE BRECCIA Very strongly crackle brecciated limestone adjacent to fault zone. Overall 30 % calcite stringers.	MLS5							

*** END OF HOLE *** 203.60

.

.

5

SUD-00-71

GRID:SILVER CK S

PROJECT CODE	:SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	CORPORATION
GRID	SILVER CK S
MAP REFERENCE	E: 1 04/O -16/W
LOCATION	:LIARD MD, BC
HOLE TYPE	;UG

*** COLLAR COORDINATES AND RL ***									
NOMINAL	43300.00 mN	24966.50mE	1129.00RL						

Pre-collar depth:	Final depth:	183.80
Purpose of hole:	TEST FEEDER	
	MINERALIZATION	
Hole status:	COMPLETED	
Comments:	LZ 68.7-90.0M, 127.1-1	27.7M.
	131.3-132.9M	

*** DRILLING SUMMARY ***

DIAMOND	0.00 183.80 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL 150 SUPER
Date started:	DRILL
Date finished:	1 4/1/00
Logged by:	16/1/00
Relogged by:	L. LEWIS
Sampled by:	
. ,	R NFY

Material left in hole:NONEBase of complete oxidationTop of fresh rock:0Water first encountered:Water inflow estimate:

- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Pb %	Zn %
19.90	22.30	2.40	6.53	0.17	0.05
67.70	91.00	23.30	187.69	3.84	6.32
125.10	133.90	8.80	238.14	4.58	3.85

Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-60.00
25.30	264.50	-62.60
55.78	267.60	-63.20
86.23	256.20	-64.00
116.74	269.10	-64.80
147.22	269.90	-65.10
177.70	269.10	-65.80

*** SUMMARY LOG ***						
0.00	40.90	1B SANDSTONE /				
40.90	44.50	FAULT ZONE 1A CARBONACEOUS				
44.50	50.20	ARGILLITE 1A CARBONACEOUS				
50.20	63.00	MCDAME LIMESTONE UNIT				
63.00	63.70	MCDAME LIMESTONE/1A				
63.70	65.70	MCDAME LIMESTONE UNIT				
65.70	68.7 0	RECRYSTALLIZED				
68.70	90.00	LOWER ZONE MASSIVE SULPHIDE RUBBLE				
90.00	126.10	BRECCIA MCDAME LIMESTONE UNIT 2				

Checked and signed:

GRID:SILVER CK S

126.10	127.10	MCDAME LIMESTONE UNIT
		1 PYRITIC CRACKLE
		BRECCIA
127.10	127.70	LOWER ZONE MASSIVE
		SULPHIDE
127.70	131.30	MCDAME LIMESTONE UNIT
		3 RUBBLE BRECCIA
131.30	132.90	LOWER ZONE MASSIVE
		SULPHIDE
132.90	142.90	RECRYSTALLIZED
		LIMESTONE CRACKLE
		BRECCIA
142.90	159.20	MCDAME LIMESTONE/1A
		ARGILLITE RUBBLE
		BRECCIA
159 20	169.70	MCDAME LIMESTONE UNIT
100.20		5 CRACKLE BRECCIA
169 70	169.90	
160 00	183.80	MCDAME LIMESTONE
193.90	100.00	
100.00		

Page 1	
SILVERTIP	

.

2000 UG DRILL LOG

, ,+

From	То	Geological Log		SAMPLE	FROM (m)	TO (m)	Au gen/t	Agi grn/t	РЬ %	Zn %
0.00	40.90	18 SANDSTONE / SILTSTONE 0.00-19 90 SANDSTONE / SILTSTONE 70% fine to medium grained sandstone, interbedded with 30%	18						<u> </u>	
		grained, laminated to thinly bedded. Graded sandstone beds, fining upward, range from 20-90 centimetres. Bedding @ 55 degrees to core axis. Intermittant, weakly calcareous sandstone beds. Moderately competent rock, breaks along bedding and minor fractures, at 5 & 30 degrees to core axis. At 8.8m, 5mm cross-cutting calcits veinlet, 20 degrees to core axis, 1								
		centimetres wide with pyrite + sphatente blebs. 19:90-20:80 SANDSTONE / SILTSTONE Hanging wall sample above quartz - caloits - sulphide vein. Sandstone, interbedded with laminated sitstone becomes strongly calcareous approaching the vein, along with small pyrite blebs (4%) and discontinuous stringers. Share lower contact 15		199513	19.90	20.90	0.00	0.20	0.00	Q.00
		degrees to core axis. 20.90-21.30 VEIN Four centimetres vein, 15 degrees to core axis, consisting of thinly banded quartz, pyrits, calcite with coarse gramed clots of galena & sphalerite within the quartz bands. Sharp lower contact (@ 15 degrees to core axis, 20% outline 5% schedurite, 5%		199514	20.90	21.30	0 00	38.40	0.99 0.	0.29
		galena, 40% quartz & 10% calcite. 21.30-22.30 SANDSTONE / SILTSTONE Footwall sample. Pynte-rich within the upper 60 centimetres as disseminations and associated with calcite stringers. 22.30-40.90 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE		199515	21.30	22.30	0.00	0.10	0.00	0.01
		Marked decrease in the width and percentage of sandstone beda, and an increase in carbonaceous argilite which is often incompetent rubble to chips. Bedding angle varies from 55 degrees at the top, 80 degrees @ 30.5m and back to 60 degrees to core axis at the base. Pyrite generally increasing down section as disseminations and fine grained irregular bands to 3 cantimetres, narallel to bedding (4%).								
40.90	44.50	FAULT ZONE 1A CARBONACEOUS ARGILLITE Consists of 20% pyritic, carbonaceous gouge, 50% sitistone/argillite chips, and 30% rubble and poker chip core. Upper contact sub-parallel to bedding, 55 degrees to core axis. Arbitrary lower	FZ					_		

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU)-00- 71
Fram	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		contact where core becomes more competent. 5% disseminated	<u> </u>	<u> </u>					<u> </u>	
44.50	50.20	1A CARBONACEOUS ARGILLITE SILTSTONE 44.50-48.30 ARGILLITE/SILTSTONE Interbedded siltstone / argillite with pyritic (7%) sandy lenses, bedding / laminations often contorted. Poker chip core. Imegular lower contact with quartz vein. 48.30-48.80 QUARTZ VEIN Brittle, bull white quartz vein, trace - 1% pyrite blebs, 5% carbonaceous wisps. Broken lower contact. 48.80-50.20 ARGILLITE RUBBLE BRECCIA Carbonaceous argilitie, variably silkoffed (nil to strong), brecciated and heated with calcite +/- quartz. 7% fine grained pyrite pods and disaeminations throughout. Incompetent; almost gouge in the lower 30 centimetres. Fairly sharp, unconformable contact with	14							
50.20	63.00	MCDAME LIMESTONE UNIT 1 50.20-51.20 SILICIFIED LIMESTONE CRACKLE BRECCIA Medium grey, becoming very pale grey, cherty-like with depth. The upper 60 centimetree could be silicified argilite - difficult to tell with the alteration. Weak crackle breccia. 9% fine grained pyrite as brads to 5 centimetree, 70-80 degrees to core axis. Broken lower contact with unalicified imestone. 51.20-63.00 FLOATSTONE Predominantly amphipons floatstone, minor rudstone, interlatered with dense packstone. Competent, unaltered-looking with minor crackle breccia. Trace - 2% pyrite blebs associated with calcite fracture filtione.	MLS1							
63.00	63.70	MCDAME LIMESTONE/IA ARGILLITE MCDAME LIMESTONE/IA ARGILLITE Post-karst formation sediment in-fill, consisting of alternating laminations of fine grained carbonaceous sediment and fine to medium grained calcareous sediment with rounded limestone grains to 4 mm. Layering @ 70-80 degrees to core axis. 6% disseminated and clotty profile	MLS/ 1A							

Page 3 SILVER	TIP	2000 UG DRILL LOG							su	JD-00-7
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
63.70	65.70	MCDAME LIMESTONE UNIT 1 Stromatoporoid floatstone and dense packstone, relatively unaltered.	MLS1					<u>+</u>		1
L		2% disseminated and wispy pyrite.	+			<u> </u>				
65.70	68.70	 RECRYSTALLIZED LIMESTONE Partially recrystallized limestone, giving the rock a fine speckled (white and gray) appearance between mottled looking fossils (mainly stromatoporids), i.e. They don't have the sharp outlines typical of unaltered limestone. 4% wispy pyrite clots. 67.70-68.70 RECRYSTALLIZED LIMESTONE Hanging wall sample. Similar description as above. Sharp lower contact, somewhat inregular, @ 70 degrees to core axis. 4% wispy ovithe clots. 	MLSA	199518	67.70	68.70	0.00	2.20	0.02	0.10
68.70	90.00	 Inter ZONE MASSIVE SULPHIDE RUBBLE BRECCIA General Description: Complex, competent Lower Zone consisting of four sub-zones based on sulphide immeralogy and percentage of furnestones replacement. The remnant limestone is mostly pre-mineralization rubble breccia (minor matrix breccia) that has fragments partially replaced by sulphides as well as matrix that is now sulphidized. Looks to be a section of limestone is mostly pre-mineralization rubble breccia (minor matrix breccia) that has fragments partially replaced by sulphides as well as matrix that is now sulphidized. Looks to be a section of limestone that had been brecciated prior to mineralization and formed an excellent host for fluid passage and deposition (CARBONACEOUS. Rees). Siliceous gangue dominant, except for the third zone of pyrite - sphalerite - calcite. The Zone has excellent recovery of 95-100%. 1st Zone: 68.7 - 73 Bm Base metal rich massive sulfide. 25% galena. 25% sphalerite, 25% pyrite, 8% pyrrhotite. 2nd Zone: 73.8 - 83.5m Partially replaced limestone / massive sulfide, silicified. 30% pyrte, 8% sphalerite, 8% galena. 3rd Zone: 83.5 - 86.2m 				[
		Pyrite - sphalerite rich massive sulfide. 60% pyrite, 15% sphalerite in calcite gangue. 4th Zone: 86.2 - 90.0m								

Page 4 Słuvertip	2000 UG DRILL LOG							SU	D-00-71
From	To Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	ዮኴ ጜ	Zn %
+	25% pyrrhotika, 25% pyrrite, 20% sphalerite, 15% galen in a very siliceous gangue, trace cpy. 68.70-69.70 BASE METAL MASSIVE SULPHIDE Very massive coarse grained (to 1.5 centimetres) intergrowths galena, red-brown & black solaistic, cyrities and minor fiber	LZ of	199517	68.70	69.70	0.00	843.00	20.61	13.38
	grained pyrrhotite towards the base of the sample. 35% galer 30% sphalerite, 20% pyrite, 8% pyrrhotite, trace opy. 80 70-70 70 Base Merchal, Massive Still PHIDE	●,	199518	89.70	70.70	0.01	489.30	10.94	12.B2
	 Very similar textures and mineralogy as the sample above, with minor crumbly section @ 70.3m (containing 5-10 centimetres sulphide sand). Becoming siliceous within the lower 60 centimetres. 30% galena, 25% sphalerite, 25% pyrite, 5% pyrrhotite, trace cpy. 70.70.71.70 BASE METAL MASSIVE SULPHIDE Again, massive coarse grained sulphides - very sphalerite - ric Excellent open space mineralization textures visible. The end here above and a size of the size of t	hai of h.	199519	70.70	71.70	0.00	545.00	12.80	12.57
	Fre-prover sphareme coust are immed by what tooks are a late frier grained black sphalerite. The pyrhottic is finge grained and forms a feathery taxture with silica. 35% sphalerite. 35% pyrit 15% galeria and 5% pyrhottic, trace cpy. 71.70-72.80 BASE METAL MASSIVE SULPHIDE Similar to previous sample, very sphalerite - rich, but decrease		199521	71.70	72.80	0.00	241.50	6.28	12.67
	galena and increased fine grained pyrrhotite, also in a siliceou matrix. 35% sphalerite, 35% pyrite, 15% pyrrhotite, 10% galer trace cpy. 72.60-73.60 PYRITE SPHALERITE MASSIVE SULPHIDE	L 2, 	199522	72.80	73.80	0.00	535.90	11.77	5.65
	Massive sulphides decreasing slightly, with 10-15% variably silicified reinnant limestone. Vague orientation of late coarse grained sulphides (g) 30-40 degrees to core axis. 50% pyrite, 10% sphalerite, 10% galena, 5% pyrihotite, 10% quartz. 73.80-74.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA		199524	73.80	74.80	0 00	85.00	1.98	0.95
	Marked decrease in sulphides - this marks the start of the sec zone, characterized by recrystallized limestone rubble breccia, later sulphidized by dominantly pyrite, but also intermittant larg clots of coarse grained red-brown (minor black) sphalente and lesser galena. Sulphides replacing both matrix and clasts. Portions, but not all are saliceous. Low angle fractures. 5-10	e l							

Page 5	
SILVERTIP	

2000 VG DRILL LOG

SUD-00-71

ł

From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivit	Ag gm/t	Р b %	Zn %
		degrees to core axis, are common. 35% pyrite, 5% sphalerite, 1% galena. 74.80-75.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE PRECOM		199525	74 80	75.80	0.00	61.10	0.94	3.67
		Similar to the previous interval; remnant limestone clasts dolomitized in the lower 40 centimetres. 40% pyrite, 5% sphalerite, trace galena. 75.80-76.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA		199526	75 80	76.80	0.00	36.50	0.48	2.81
		Excellent limestone rubble breccia texture visible, with sulphide replacement and also open-space fill with coarse grained pynte, sphalerite and calcite. Less pyrite than previous sample. 20% pyrite, 5% sphalerite, trace galena. 76 80-77.90 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA. The upper 20 certificate contains within participly coarstallized		199527	75 60	77.80	0.00	388.10	7.94	1.76
		imestone with few sxs; below, partially dolonitized and sulkified limestone with few sxs; below, partially dolonitized and sulkified limestone rubble breccia has pyrite, galena and sphalerite partial replacement of both matrix and clasts. There is a vague orientation of sulphides between 20 & 40 degrees to core axis. 25% units 5% calculated 15% contents 15% contents		100629	77 40	79 00	0.00	15.00		0.00
		77.80-78.80 LIMESTONE MOSAIC BRECCIA		133320	/). O U	10.00	0.00	13.90	0.00	j.ua
		calcite) and scattered replacement of clasts by pyrite (7%). 78.80-79.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA		199529	78.00	79.80	0.00	125.40	2.45	2.39
		Sulphides increasing below 79.2m as coarse grained clasts and matrix replacement of siliceous limestone rubble brecca. 25% pyrite, 10% sphalerite, 5% galena. 79.80-80.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE epercia		199530	79.80	80.80	0.01	229.00	4.04	8.02
:		Sulphides continuing to increase, replacing partially dolomitized, sulceous limestone clasts in a rubble breccia. 40% pyrite, 7% sphalente, 3% galena, 3% pyrrhotite. 80.80-81.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA		199531	80.80	81 80	0.00	102.60	0.52	7.45
!		Sample contains 30 centimetres of massive pyrite, sphalerite & galena, vaguely banded @ 40 degrees to core axis. Frequent								

SUD-00-71 Page 5

Page 6 SILVERT	ΊP	2000 UG DRILL LOG							SU	D-00- 71
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
		 vugs lined by coarse grained calcite, sphalente & pynte. Limestone clasts bekow 81.2m appear strongly attered - dolomitized, silicified and/or recrystallized to a sucrosc carbonate. 40% pyrite, 8% sphalente, 6% galens, 10% quartz, 15% calcite. 81.80-82.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA Limestone rubble breccia has a similar altered appearance as the previous sample - dolomitized, parity siliceous and parity recrystalized to a sucrosic-textured carbonate. Patchy pyrite reclarement in the unpure 80 contimetres. increasing helpw with 		199532	81.80	82.80	0.00	14 00	0.14	1.84
		both coarse grained and five grained pyrite, minor sphalerite. Some bladed crystals likely marcasite (~5%). 30% pyrite, 3% sphalerite. 15% calcite, 10% quartz. 82.80-83.80 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA		199535	82.80	83.80	0.00	17.40	0.05	1.90
		Similar description as previous sample. 25% pyrite, 3% sphalente, 20% calcite, 10% quartz. R3 80.9% R0 PYPTIE MASSIVE SUIL PHIDE		199538	83.80	84.60	0.00	57.00	0.07	4.26
		 80% coarse grained pyrite, 2% sphalerite, in a carbonate-silica gangue. Sphalenite as clots and vague bands @ 55 degrees to core axis. 84.80-85.80 PYRITE SPHALERITE MASSIVE SULPHIDE Similar to previous sample, with increased coarse grained carbonate in coarse grained. 		199537	84.60	85.80	0.00	24.10	0.04	9. 66
		coarse grained and fine grained pyrite present. 50% pyrite, 12% sphalerite, trace galena. 25% calcite, 10% quartz. 85 80-86.20 PYRITE MASSIVE SULPHIDE		199538	85.80	66.20	0.04	12.70	0.02	3.73
		70% here to medium grained pyrtie, 2% sphalente in a calore - rich matrix, roughly layered at 50 degrees to core axis. 88.20-87.20 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Distinct change in sulphide mineralogy. Early stage fine grained pyrrhotite is overprinted with tater stage coarse grained pyrite and sphalerite in a strongly siliceous matrix. 35% pyrrhotite, 35%		199539	66.20	87.20	0.00	45.40	0.07	5.54
		87.20-88.20 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Similar to the previous sample. Pyrrhotite - sphalerite - rich		199540	87.20	88.20	0.01	74 60	0.39	11.15

Page 7	
SILVERTIP	

,

6

OFFICE	11									· ·
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
		 massive sulfide, with lesser coarse grained pyrite and marcasite and minor galena in a strongly siliceous gangue. Trace cpy along pyrrhotite margata. Vague banding visible. 50 degrees to core axis. 30% pyrrhotite, 20% red & black sphalerite, 20% pyrite. 3% galena, trace cpy. 88.20-39.20 PYRRHOTITE BASE METAL MASSIVE SULPHIDE As above, with increasing galena as massive bands and intergrowths with sphalerite. 30% sphalerite, 30% pyrite, 10% galena, trace cpy. 10% quartz and 5% calcite. 89.20-90.00 PYRRHOTITE BASE METAL MASSIVE SULPHIDE 30% coarse grained galena as rough bands to 15 centimetres, ~ 60 degrees tca; 25% coarse grained sphalerite, 15% pyrite, 10% pyrrhotite and 25% remnant limestone with sharp upper and lower 		199541 199542	88.20 89.20	89 20 90.00	0 00 0.00	165.30 298.40	2 85 5.31	16.08
90.00	126.10	contact with massive suffice (2.50.3, 80 degrees respectively. MCDAME LIMESTONE UNIT 2 Massive stromatoporoid unit containing the usual abundant massive stromatoporoid rudstone and floatstone, intermittant amphipora and scattered Tryplasma corals. Minor sulphides, mainly fine grained pyrite associated with calcite veining. -94.5m: partial dolomitization over 70 centimetres. -101.7m: 5 centimetres pyrite clot (minor sphalerite in an irregular calcite vein, ~20 centimetres wide. -108.7m: intersection with old drill hole ~30 degrees to core axis. -110.6-115.0m: Partial recrystalization, especially of the stromatoporids, to coarse grained sparry calcite. 1 centimetres calcite vein, 30 degrees to core axis with galenia along vein margin. -115.0-118.5m: Strong recrystalization and crackle breccia, minor rubble breccia. Increased pyrite approaching the base of the unit likely related to the narrow Lower Zone below. 90.00-91.00 PACKSTONE CRACKLE BRECCIA Footwall sample. Sharp upper contact with sulphides @ 60 degrees to core axis. Brittle, weakty siliceous amphipora packstone, abundant styloites, and weak crackle breccia. Trace - 2% fine grained pyrite, 6% calcite. 125.10-128.10 LIMESTONE PYRITIC Amphipora floatstone, moderate crackie breccia, with 6% fine granned pyrite as wispy bands and clota to 3 centimetres, possibly	MLS2	1995 4 3 1995 4 4	90.00	91.00	0.00	7.00	0.03	0.12
		grained pynte as wispy bands and clots to 3 centimetres, possibly related to the narrow massive sulfide below.								

SUD-00-71 Page 7

Page B SILVER1	пP	2000 UG DRILL LOG							SUE	2-00-71
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gun/t	Ag gm/t	Pb %	Zn %
126.10	127.10	MCDAME LIMESTONE UNIT 1 PYRITIC CRACKLE BRECCIA. Very fine amphipora marking the top of Unit 3. Hanging wall sample.	MLS1	199545	126.10	127.10	0.01	111.60	1.92	0.87
		Pyritic amphipora floatstone, partially recrystallized with 10% wispy, fine grained pyrite stringers and clots. Low angle slickensided contact with subhities, 10 decrees to core axis.								
127.10	127.70	LOWER ZONE MASSIVE SULPHIDE Narrow Lower Zone mineralization consisting of rubbly, incompetent massive pyrite (55%), sphalente (20%) and galena (15%). Irregular lower contact with interatione.	LZ	199546	127.10	127.70	0.00	596.10	9.56	9.85
127.70	131.30	MCDAME LIMESTONE UNIT 3 RUBBLE BRECCIA Weakly sulphidized interval of limestone between the two massive sulfide zones. Breccia ranges from crackle, stylolitic, rubble and massic								
		127.70-126.70 LIMESTONE RUBBLE BRECCIA Footwall sample. Inegular, low angle contact with sulphides above. Adjacent rock is strongly brecciated and healed with coarse calcite crystals. 10 centimetree calcite clot at the base contains fine grained pyrite and coarse galena. 3% pyrite, 1%	MLS3	199547	127.70	128.70	0. 03	4.50	0.04	Q.10
		gavena: 128.70-130.30 FLOATSTONE CRACKLE BRECCIA Amphipora floatstone, with 15% calcite veining, 30-50 degrees to		199548 199549	126.70 129.30	129 30 130 30	0.01 0.01	1.30 1.00	0.01 0.00	0.01 0.01
		core axis, trace - 1% pyrite. 130:30-131:30 LIMESTONE CRACKLE BRECCIA Hanging wall sample of mineralized timestone. Increased calcite veining / crackle breccia with 3% fine grained pyrite - sphalerite - galena clots. Sharp lower contact with sulphides, 50 degrees to core axis, which looks to have been cut by later slip movement, cross-cutting the original contact at 25 to core axis (marked by a smooth, slickensided plane).		199550	130.30	131 30	0.00	1.40	0.01	0.01
131.30	132.90	LOWER ZONE MASSIVE SULPHIDE 131.30-132.10 BASE METAL MASSIVE SULPHIDE Crumbly, slickensided, coarse grained black sphalerite and calera	LZ	19 9551	131.30	132.10	0.01	1553.30	29.12	11.16
		 rich massive sulfide with 5% remnant limestone. Slickensides @ 15 & 25 degrees to core axis. 35% sphalerite, 25% galena. 25% pyrite, 15% calcite. 132.10-132.90 BASE METAL MASSIVE SULPHIDE 		199552	132.10	132.90	0.01	462.80	11.57	22.36

Page 9	
SILVERTIP	

•

.

1

2000 UG DRILL LOG

L

SILVERT			•						50	0-00-1
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЪ %	Žn %
		Similar to previous interval with frequent smooth slickensided surfaces. 20-30 degrees to core axis. Very base metal rich with 40% coarse black sphalente. 25% galena and 20% pyrite in a calcite matrix. Irregular lower contact between 20 & 50 degrees.					+ / 		+ 	
132.90	142.90	RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA General Description: The upper 5 metres consists of pale gray to white, recrystallized limestone, now coarse sparry calcite, 1-4 centimetras. No fossils remain. Stylolites are common. as are vugs with open-space subedral calcite. Trace iron carbonate (siderite) @ 135.2m. The lower section. from 138.0-142.9m is a mix of recrystallized limestone, mosaic breccia, crackle breccia and rubbly dolostone. 1% pyrite as fine grained replacement in the brecciated intervals. trace red sphalente @ 149.4m. 132.90-133.90 RECRYSTALLIZED LIMESTONE STYLOLITIC BRECCIA Footwall sample of recrystallized limestone, as described above. Strong carbonaceous styloites often with fine grained pyrite wisps and clots (2%)	MLSA	199553	132.90	133.90	0.00	3.20	0.03	0.15
142.90	159.20	MCDAME LIMESTONE/1A ARGILLITE RUBBLE BRECCIA Wide interval of rubble brecca consisting of angular to sub-rounded clasts of limestone, dolostone and argillite in a black to dark grey, carbonaceous, calcareous, fine to medium grained matrix. Vanable clast size from 3 mm to 10 centimetres. 1-4% pyrite replacing clasts and lesser amount within the matrix. Fissure / cavern fill. Some of the remnant limestone may be large blocks. The lower 70 centimetres consists of sheared-looking rock with bands of soft sericite-chlorite, roughly (g) 40 degrees to core axis, fairly similar looking to the rocks within the Camp Creek Fault Zone.	MLS/ 1A							
159 20	169.70	MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA Possibly Unit 5 (Unit 4 - Euramphipora, has likely been obliterated by the wide rubble breccia above). The upper 3.5m is recrystallized crackle breccia, with 15% very coarse grained, vuggy, calcite verins (crystals to 4 centimetres). Below 162.9m is amphipora rudstone to floatstone, elongation of fossils along 50 degrees to core axis, with frequent stylolites and minor calcite vering. Sharp lower contact with narrow Fault Zone.	MLS5							

SUD-00-71 Page 9

Page 10 SILVER1	NP	2000 UG DRILL LOG							suc	2-00-71
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	A⊔ gm/l	Ag gm/t	Pto %	Zn %
169.70	169.90	FAULT ZONE FAULT ZONE Pale greenish-grey, soft, fine grained chlorite-sericite phyllite, sub-parallel to layering and stylolites within the adjacent limestone. Similar in appearance to rocks within the Camp Creek Fault - possible small soley off the main fault??	FZ				:			
169.90	183.80	MCDAME LIMESTONE Amphipora rudstone to floatstone, minor stroms: Euramphipora (176.6m and scattered rugose corals (178.4m). Sections are partially recrystallized and weakly dolomitized. Note that in Unit 5, Euramphipors is lacking, so this may be Unit 6 - but there is such a large percentage of attered, braccisted limestone, that the stratigraphy is difficult to break down into Units. 1% disseminated pyrite and small blebe with calcite and wisps along styloitee. - 178.9-179.7m: Carbonacous sediment in-fill, ~ 60 degrees to core axis, and rubble breccis below.	MLS							

*** END OF HOLE *** 183.80

SUD-00-72

GRID:SILVER CK S.

PROJECT CODE TENEMENT PROSPECT GRID MAP REFERENCE LOCATION HOLE TYPE	SILVERTIP SILVERTIP MI CORPORATIC SILVER CK S. 104/0-16W LIARD MD, BC	NING)N				
*** COLLA	R COORDINAT	ES AND RL	***			
NOMINAL 433	i17.50mN 249	57.50mE 1	133.00RL			
Pre-collar depth:	Final	depth:	95. 40			
Purpose of hole:	TEST FOR FEEDER MINERALIZATION.					
Hole status:	COMPLETE	D				
Comments: LZ: 49.0-52.1M, 82.0 - 85.1M						
Survey Method: R	SURVEYDATA	∖ *** T				
Depth	Azimuth	Inclinatio	n			

Depth Azimuth		
250.00	-60.00	
250.00	-58.90	
250.00	-59.90	
250.00	-60.50	
	250.00 250.00 250.00 250.00	

	0.00 94.50 HQ
Urill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE SKID MODEL 150
Date started:	15/1/00
Date finished:	17/1/00
Logged by:	C. REES
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation0.0Top of fresh rock:0.0Water first encountered:0.0Water inflow estimate:0.0

- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	РЬ %	Zn %
48.50	53.15	4.65	90.98	1.12	1.07
78.00	86.10	8.10	223.06	3.49	7.20

		SUMMARY LUG
0.00	22.50	1B SANDSTONE / LAMINATED SILTSTONE
22.50	27.60	1B LAMINATED SILTSTONE
27.60	30.90	1BA LAMINATED
30.90	49.00	1A CARBONACEOUS
49.00	52.15	LOWER ZONE MASSIVE
52.15	55.10	
55.10	65.70	MCDAME LIMESTONE UNIT
65.70	75.60	MCDAME LIMESTONE UNIT
75.60	81.95	
81.95	85.10	LOWER ZONE MASSIVE
85.10	95.40	
95.40		END OF HOLE

Checked and signed:

Page 1 SILVER1	ΠP	2000 UG DRILL LOG							SU	D-00-72
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	70 (m)	Au gm/t	Ag gm/t	Рb %	Zn %
0.00	22.50	 1B SANDSTONE / LAMINATED SILTSTONE 0.00-7.01 LAMINATED SILTSTONE / SANDSTONE Thickly interlaminated fine sandstone and siltstone. Laminae up to 2 centimetres. Less than 1% disseminated pyrite, but locally parches of 5%. 6 mm thick quartz - pyrite veniet @ 6.2 metres. 20 degrees to core axis. Abundant laminae are calcareous. 7.01-19.15 SANDSTONE Dominantly medium to coarse grained sandstone in beds up to 40 or 50 centimetres) of intertaminated fine sandstone and siltstone. Generally less than 1% disseminated pyrite. Minor shearin @ 16.5 metres. Bedding @ 40 degrees to core axis. 19.15-22.50 LAMINATED SILTSTONE / SANDSTONE Thickly to thinly inter laminated siltstone, fine sandstone and sandstone. Less than 1% pyrite. Bedding 45 degrees to core axis. Calcareous. 								
22 50	27.60	1B LAMINATED SILTSTONE / SANDSTONE Well and thinly laminated siltstone and fine to medium grained sandstone. Moderately calcareous, especially sandstone. Less than 1% disseminated pyrite. Bedding @ 60 degrees to core axis. Some shearing on slate faminae. 25 60-27.60 PYRITIC SILTSTONE / SANDSTONE As above but with stronger disseminated pyrite, 2-3%. 3 centimetres thick quartz - pyrite vein @ 35 degrees to core axis @ 27.3 metres.								
27.60	30.90	18A LAMINATED SILTSTONE PYRITIC Fairty uniform thinty laminated siltstone and minor fine sandstone. Upper part has 2-3% disseminated pyrite, and some coating fracture surfaces. Weakly to moderately cakcareous. Locally 1 mm pyrite laminae. Poker chip to hockey puck separations. Lower part (1 metres) has less than 1% pyrite. Bedding @82 degrees to core axis.			-					
30.90	49.00	1A CARBONACEOUS SILTSTONE/ARGILLITE 30.90-39.65 LAMINATED SILTSTONE SLATE Grey to dark grey, unformly fine grained slaty argilitie with sitstone laminae. Benerally about 1% disseminated pyrite. Locally 1-2 mm thick laminae of fine to medium grained pyrite. Locally thick laminae (1 centimetres +) of semi-massive (50%) pyrite. Core is generally friable and broken with partings along								

SUD-00-72 Page 1

Pag e 2 SILVERTIP	,	2000 UG DRILL LOG							SU	D-00-72
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %⊳
		 bedding / foliation. No real fault zones. Bedding @ 73 degrees to core axis. 39 65-42.10 CARBONACEOUS ARGILLITE SILICEOUS Mainly carbonaceous, fine grained argititle to siltstone, but with white silicaous, concordant, discordant and contorted laminae, veinlets and micro-veinlets. Locally quartz veinlets have pyrite. Argititte has up to 5% pyrite rarely, but generally 1-3%. 42.10-48.00 CARBONACEOUS ARGILLITE SILTSTONE Moderately laminated argitite and siltstone. Locally calcareous. Some siliceous laminae and micro-veinlets. Bedding @ 55 degrees to core axis. Quartz-pyrite vein @ 44.2 metres, about 1-2 cantimetres thick, some very coarse pyrite. 48.00-48.50 CARBONACEOUS ARGILLITE SILTSTONE Similar to previous, but mostly softer and broken into soft flaky chips. Probably not a fault though. Generally not calcareous. 46.50-49.00 SILCIFIED ARGILLITE Disrupted (probably breciated) pyritic argillite. Ill-defined structure-texture due to pyrite (3-4%) - silica overprint, including 12 centimetres thick quartz vein. 		199601	48.50	49.00	D.00	11 90	0.15	D.13
49.00 52	2.15	LOWER ZONE MASSIVE SULPHIDE General: Unconformity manto. Virtually solid sulphide with no remnant limestone and no brecciation. Dominantly pymhotite - pyrite. Only one good base metal zone. Sharp upper and lower contacts. Overall pyrite 40%, pyrrhotite 28%, sphalerite 10%, galena 2%,								

calcite 10%, quartz 10%. 49.00-49.70 PYRITE PYRRHOTITE MASSIVE SULPHIDE

149.00-49.70 PYRITE PYRRHOTTTE MASSIVE SULPHIDE Fine to medium grained pyrrhotite and pyrite. Partially replaced by coarser pyrite. Minor interstitial sphalente. Very minor quartz - sphalerite space filling. Weakly calcareous at top (pyrrhotite is magnetic). Pyrrhotite 40%, pyrite 40%, sphalerite 5%, galena 5%. 49.70-49.95 BASE METAL MASSIVE SULPHIDE Execution and the sphalerite for medium to the sphalerite for the sphalerit

Fine to medium grained pyrite and sphalente, plus medium to coarse grained pyrite, sphalente and galena. Interstitial quartz, locally strong. Only base metal rich band in the Lower Zone. Pyrite 50%, sphalente 30%, galena 15%, quartz 10%,

0.32

2.35

ł.

0 43

16.17 5.40

0.00

0.00

49.95

199604 49.95 50.45 0.00

199602 49.00 49.70

199603 49.70

53.30

900.60

127.30 0.97
Page 3 SILVERT	P	2000 UG DRILL LOG							su	D-00-72
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TQ (m)	Au gm/t	Ag gm/t	P10 %	Zn %
		 49.95-50.45 PYRRHOTTE PYRITE MASSIVE SULPHIDE Strong bronze coloured pyrrhotite, and pyrite, fine to medium grained. Possibly some fine sphalerite. Interstitial quartz, locally with coarse pyrite and sphalerite. Pyrrhotte 50%, pyrite 40%. sphalerite 5%, quartz 5%. 50.45-51.15 PYRITE MASSIVE SULPHIDE Fine to medium grained pyrite with fine sphalerite, possibly. No significant magnetic pyrrhotite. Fine interstitial calcite and local verifiet. Also interstitial quartz. Whole zone is calcareous. Pyrite 70%, sphalerite 10%, calcite 15%, quartz 7%. 51.15-52.15 PYRITE PYRRHOTTE MASSIVE SULPHIDE Fine to medium grained pyrite - pyrrhotite, but interspersed with significant quartz and minor calcide. Prominent open space vein and cavity lined with very coarse calcite crystals (2-3 centimetres). Vein is 25 centimetres long, subparallel to core axis. Some coarser sphalerite and galena associated with quartz and calcite gangue, but interval is generally base metal poor. Bottom contact with limestone is fine to coarse grained gangue of calcite quartz and circle. Prote 20% pyrthotite 15% sphalerite 		199605 199606	50.45 51.15	51.15 52.15	0.00 0 01	48.30 54.80	0.27	0.16
52.15	55.10	10%, gateria 1%, quartz 25%, calcite 25%, MCDAME LIMESTONE UNIT 1 SUBUNIT 1A, last few meters. Unaitered dense packstone, with amphipora and local massive stromatoporids. Minor calcite crackle and stylolites. 52: 15-53: 15 LIMESTONE Footwall sample of unaitered limestone. Includes about 15 centimetres of strong calcite veins (5-8 rm thick) with recent solution openious but no subbhilds.		199607	52.15	53.15	Q.DO	2.40	0 00	0.01
55.10	65.70	MCDAME LIMESTONE UNIT 1 SUBUNIT 18. Based on appearance of Thamnopora, along with other Thamnopora-rich zones in unit, including at bottom. With Amphipora and Stromataporoids, these concentrations form floatistone to rudstone. Rest of limestone is packstone to amphipora floatistone. Not altered or brecciated. Typical amount of calcite crackle verus and veinlets, up to 5-10 mm thick. 30 degrees to core axis is typical. Veinlet @ 63.9 metres has 1-3 mm thick selvage of sphalerite and galena.	-						· · · · · · · · · · · · · · · · · · ·	

SUD-00-72 Page 3

.

Page 4 SILVER	τı₽	2000 UG DRILL LOG							SU	D-00-72
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TÓ (m)	Au grivit	Ag gm/l	Pb %	Zn %
65 70	75.60	MCDAME LIMESTONE UNIT 1 SUBUNIT 1C. Top based on disappearance of dense Thamnopora. This upper part of 1C is grey packstone with sporadic small Amphipora and infrequent massive stromatopords. Local intervals of floatstone of coarser Amphipora. Bedding about 50 degrees to core axis. Calcite vein to calcite mosaic breccis (25 centimetres thick) @ 73.2 metres, and @ 75.0 metres (15 centimetres thick). No subplicies, 71.40-71.70 RUBBLE BRECCIA CARBONACEOUS Very carbonaceous (bituminous) rubble to matrix breccis or coloration. Brotech care of force and matrix breccis or								
75.60 81.95	Castal erise. Producty cave / results sourcest. Not trystochemia. MCDAME LIMESTONE UNIT 1 PYRITIC SUBUNIT 1C. Roughly coincides with change from upper 1C to lower stromatoporoid 1C, but division based on appearance of stringers and biebs of pyrite. Host limestone is deformed floatstone to mudatone. New thoroughly infiltrated by fine crackle and cracking or suturing, disruptine batture, but not to point of breciation. Incipient dolomitization locally, but not well developed. Pyrite is fine grained, infiltrating along fossil margins and styloities - permeability contrasts rather than following dilational microstuctures or veins. Stringers are 1-3 mm, growing to clots up to 10 - 20 mm across. 75:60-78:00 LIMESTONE PYRITIC		199608	78.00	79.00	0.01	1.80	0.00	0.00	
		Roughly 1-2% pyrite stringers and blebs. 78.00-79.00 LIMESTONE PYRITIC		199609	79.00	80.00	0.00	2.00	0.00	0.01
		Roughly 3% pyrite stringers and blebs. 79.00-80.00 LIMESTONE PYRITIC 1-2% pyrite stringers.		199610	80.00	81.00	0.00	1.80	0.00	0.00
		Much less pyrite here. Sample may be enriched by contamination. Some calcite flooding. 81.00-81.95 DOLOMITIZED LIMESTONE PYRITIC Fracture and crackle veined limestone, partly broken. Patchy dolomitization. Main mineralization is in 5 centimetres thick pyrite vain (probably manto) at the top of the interval - fine to coarse pyrite and minor sphalerite. Another pyrite coated fracture lower down. Grade may be enhanced by contamination (crumbly subbidge abundant)		199611	81.00	81.95	0.00	49.50	0.46	158

Page 5 SILVER1	rip	2000 UG DRILL LOG							SU	D-00-72
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
81.95	85.10	LOWER ZONE MASSIVE SULPHIDE General: Manto-like Lower Zone. Sharp upper and lower contacts at high angle to core axis. Lower contact very simple replacement front against unaltered limestone. Mostly latter stage, coarse grained subpides, with small patches of pyrrhotte nch. sliceous, early stage subpide. Base metals strongest in centre. No remnant limestone. 81 95-82.60 PYRITE MASSIVE SULPHIDE Pyrite rich sulphide. Fine to coarse grained. Significant fine grained sphalente and galena also, and interstitial calcite and quartz gangue. Coarse sphalente and galena locally. Pyrite 2004		199612	81.95	82.60	0.00	693.20	14.31	15.15
		20%, sphalerite 12 %, galena 3%, calcite 5%, quartz 5%. 82.60-83.20 BASE METAL MASSIVE SULPHIDE Rich in coarse grained, maroon-gray sphalerite and galeria. Also coarse pyrite, as overgrowths. Strong interstitial quartz gangue locally. Most of interval is later stage mineralization, but bottom 15 centimetres is dominantly fine to medium grained quartz, pyrrhotite and pyrite, probably of early stage mineralization, and come coarser pyrite. Pyrite 30%, pyrrhotite 10%, sphalerite 20%.		199613	82.60	83.20	0.00	627.80	11 46	14 66
		galena 20%, quartz 15%, calotte 5%. 83 20-84.10 BASE METAL MASSIVE SULPHIDE Vary smilar to previous. Medium to coarse grained pyrite, with significant coarse grained, dark red-grey sphalerite and galena. Minor quartz interstitial gangue and a little open space lined with coarse sulphide. Very little pyrrhotite. Pyrite 40%, pyrrhotite 1%, sphalerite 25%, galena 20%, quartz 10%, calcite 4%. 84 10-85 10 PYRITE SPHAILERITE MASSIVE SUL PHIDE		199615	83.20	85.10	0.00	152.20	0.38	20.95
85.10	95.40	Slight increase in pyrite at expense of sphalerite and especially galena. Zone is much more crumbly, breaking up with coarse and very coarse grained pyrite. No pyrhotite. Late slage, coarse dark red-brown sphalerite is locally strong, but much less galena than previous interval. As in rest of Lower Zone, no remnant limestone. Pyrite 50%, sphalerite 25%, galena 5%, guartz 10%, calcite 5%. MCDAME LIMESTONE UNIT 1 DOLOMITIZED Homogeneous interval (except for first 0.7 metres - see below) of								
		determinated limestone. Medium gray, medium grained crystalline texture, dominated by coacies to fine calcile crackle and beinlets								

SUD-00-7? Page 5

,

Page 6 S/LVERTI	P	2000 UG DRILL LOG							SUI	D-00-72
From	Τ¢	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grvt	Рb %	Zn %
		Only local development (1-3 centimetres) of crackle to mosaic breccia. Marked by lack of sulphides, except for fine, smeared pyrite on fracture surfaces. Relict fossils (small stromatoporids, amphipora) recognizable locally, but core is almost entirely broken so textures are obscure. Main point - no mineralization, even at top. 85.10-86.10 LIMESTONE Footwall sample. Abrupt disappearance of mineralization. Sample is unaltered pale grey limestone with minor calcite veins and crackle. Bottom 30 centimetres is dotomitized, as for the rest of this major unit.		199618	85.10	96.10	0.00	3.00	0.11	0.05

*** END OF HOLE *** 95.40

÷

HOLE NO: SUD-00-73

.

SECTION:65S

GRID:SILVER CK S

PROJECT CC	DE :	SILVERTIP				*** DRI	ILLING S	UMMAF	ł۲
TENEMENT PROSPECT	:	SILVERTIP MI	NING N		DIAMO DRILL	ND	0.00	112.20	н
GRID MAP REFERE LOCATION HOLE TYPE		SILVER CK S 104/Q-16W LIARD, MD, BC UG		Drill o Drill ri Date s Date f	ontractor: g: started: inished:	ADVAN TRACT 17/1/00 18/1/00	iced df Or dri	41 LL	
NOMINAL	0LLAR 4330	COORDINATI	ES AND RL *** 66.50mE 1129.	00RL	Logge Relog Samp	d by: ged by: led by:	C. AKE	LAITIS	
Pre-collar dep Purpose of ho Hole status: Comments:	th: le:	Final (TEST FEEDE MINERALIZA COMPLETEE LZ: 69.9 - 82.	depth: 1 ER .TION 	12.20	Materia Base of Top of f Water fi Water in	l left in ho complete resh rock rst encou nflow estir	le: oxidatio : ntered: nate:	NONE n 0.0 NONE	
	*** (***			- *** SIG	NIFICAN	NT ASSA	ł۲
Survey Metho	d: REF	LEX EZ-SHOT	「		From	To	Width	Ag a/t	
Dep	th	Azimuth	Inclination						Ĺ
	0.00 19.20 49.68 80.20	250.00 262.10 263.60 263.00	-68.00 -69.50 -69.90 -70.20		60.30 68.90 94.80	61.40 83.50 97.10	1.10 14.60 2.30	2.30 300.53 15.67	
	10.60	267.20	-69.80						
	- *** SI	UMMARY LOG	***	——]					
0.00 34.6	50 ·	1B INTERBEDI	DED						

		SANDSTONE/SILSTONE/MU
		DSTONE
34.60	45.15	FAULT ZONE
45.15	48.70	1BA LAMINATED
ĺ		MUDSTONE/SILTSTONE
		SANDSTONE
48.70	54.30	1AA CARBONACEOUS
		ARGILLITE
54.30	69.90	MCDAME LIMESTONE UNIT
		1
69.90	82.50	LOWER ZONE MASSIVE
		SULPHIDE
82.50	95.80	MCDAME LIMESTONE UNIT
		2 STROMATOPOROID
		FLOATSTONE
95.80	96.10	LOWER ZONE MASSIVE
		SULPHIDE
96.10	112.20	MCDAME LIMESTONE UNIT
		2 STROMATOPOROID
		FLOATSTONE
112.20		END OF HOLE

Checked and signed:

DIAMOND	0.00 112.20 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	17/1/00
Date finished:	18/1/00
Logged by:	C. AKELAITIS
Relogged by:	
Sampled by:	R. NEY

(S *** ---

From	То	Width	Ag g/t	Pb %	Zn %
60.30	61.40	1.10	2.30	0.01	0.01
68.90	83.50	14.60	300.53	5.12	9.46
94.80	97.10	2.30	15.67	0.03	2.27

Date:

Page 1
SILVERTIP

.

.

2000 VG DRILL LOG

. .

				T	T					
From	To	Geological Log	UNIT	SAMPLE	(m)	70 (m)	Au gm/i	Ag gm/t	P0 %	Zn %
0.00	34.60	1B INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Interbedded sandatones and laminated sitstones and mudstones with bedding at 40 - 60 to core axis. Soft sediment deformation and cross bedding are observed throughout the area. Sandstone beds are dominantly found in the upper portion of the interval and gradually decrease in abundance and bickness with depth. They range from being massive to fining upwards and are up to 50 centimetres thick. Ripped up mudstone clasts up to 3 centimetres were are occasionally observed within the basal portion of sandstone beds. Beds randomly range from being non-strongly calcareous throughout the interval. Quartz-carbonate veins cross cut the interval at 20 and 50 to core axis and contain pyrite and lesser sphalerite. Pyrite is also present as disseminated grains throughout. Overall, 1-2 % pyrite. 4.55-4.60 QUARTZ VEIN 1.5 centimetre wide quartz-calcite vein at 30 to core axis. Calcitis within the vein is found within the central portion of the vein and is bounded on either side by quartz. Both quartz and calcite portions of the vein contain sphalerite and pyrite. Nowerer, pyrite is dominantly found within calcite. Overall, 20 % pyrite, 10 % sphalerite. 19.50-19.70 QUARTZ VEIN 3.5 centimetre wide quartz-carbonate vein at 20 to core axis. Vein appears to be the product of multiple cycles of fluid infiltration and is ribbon bended. Overall the vein contains 20 % pyrite, and trace sohalerite.	18							
34.60	45.15	FAULT ZONE Fault zone consisting of 60 % black carbonaceous fault gauge and 40 % intact rock. Intact rock consists of interfaminated mudistones, sitistones and sandstones. 2 % linear and contorted quartz-carbonate stringers are found orientated parallel to taminae. Fine-grained disseminated pyrte is present twoughout interval but is dominantly found within coarse grained sandstone laminae. Overail, 2 - 3 % pyrite.	FΖ							

SUD-00-73 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU)-00-73
From	To	Geological Log	UNIT	SAMPLE	F ROM (m)	TO (m)	Au ganu/t	Ag gm/t	P1D %	Zn %
45.15	48.70	1BA LAMINATED MUDSTONE/SILTSTONE SANDSTONE Finely laminated sandstones, sittstones and carbonaceous mudstones, Interval ranges from being non-strongly calcareous on a bed by bed basis. Pyrite is found throughout the interval within quartz-carbonate stringers and as fine grained disseminated cubes, Overall, 1-2 % pyrite.	1 BA							
48.70	54.30	 1AA CARBONACEOUS ARGILLITE Finely laminated carbonaceous argilitie and sitistone with rare sandstone laminae at 70 to core axis. The interval becomes more strongly graphtic with depth. Numerous (~ 10 %) contorted quartz-carbonate stringers are found throughout the interval parallel to laminations. 3 % pyrite is found throughout the interval. 52.30-52.80 FAULT ZONE Black fine-grained carbonaceous fault gouge and 40 % carbonaceous argilite rubble. < 1 % fine grained pyrite is present within the interval. 53.60-53.63 QUARTZ VEIN 3 centimetre wide quartz vein at 80 to core axis. Vein contains 35 % pyrite. 53.70-54.30 ARGILLITE RUBBLE BRECCIA Earn rubble breccia ranging from clast to matrix supported. This breccia consists of carbonaceous argilite up to 5 centimetres wide within a strongly calcareous iner multivity. Localised sections of this breccia argilite and limestone. Very fine-grained dimensional the process (2.3 %) 	144							
54.30	89.90	MCDAME LIMESTONE UNIT 1 Limestone ranging from amphipora packatones or unstated to your stromatoporoid, tharmopora floatstones. The limestone is dominantly unattered and crackle brecciated throughout, but very localised zones of dolomitization and mosaic brecciation are present. The basal 3.8 metres of the interval has been finely recrystallized and displays a sugary texture. 10 % calcite stringers and veins up to 4 cantametres wide crackle brecciate the interval throughout and cause localised zones up to 20 cantametres wide of mosaic brecciation. Mosaic breccias contain clasts of limestone and dolomitized limestone up to	MLST							

٠

Page 3	
SIL VERTIP	

.

.

2000 UG DENI

ł .'

SILVERTIP				SU	D-00-73				
From To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P10 %1	Zn %
	centimetres wide within a coarsely crystalline sparty calcite matrix. Calcite stringers are randomly orientated. Rarely calcite stringers are found associated with fine grained sulphide. Pyrite is also found as stringers up to 3 mm wide and as blebs within limestone. Pyrite blebs are usually found adjacent to styolites or calcite stringers. Overall 1 % pyrite, trace galena, trace sphalerite. 58.80-60.30 CRACKLE BRECCIA WACKESTONE Moderately crackle brecciated and finely recrystallized amphipora wackestone. Shyolites and secondary calcite veris contain very fine grained pyrite which is found bleeding into the adjacent limestone and formining interconnected blebs up to 4 centimetres wide. Overall 4 % calcite stringers, 3 % pyrite. 60.30-61.40 RECRYSTALLIZED LIMESTONE Finely recrystallized limestone as above but with more pyrite and less crackle breccation. Overall, 15 % fine grained pyrite blebs and stringers. 66.10-68.90 RECRYSTALLIZED LIMESTONE Very fine, partially to completely recrystallized limestone. Recrystallization has partially overprinted fossils and has resulted in a sugary, motified texture of the rock. In the basal 1 metre of the interval, possible relict clasts of limestone are visible indicating a possible limestone rubble breccia. Recrystallization has overprinted and masked the protolith making this speculative. 1 - 2 % calcite stringers cross cut the imestone. Fine grained pyrite. sphalertie, and lesser galena are found within these stringers and liming styolites. Overall, trace pyrite, trace galena. 68.90-69.90 DOLOMITIZED LIMESTONE Hanging wall sample. Dolomitized and crackle brecciated limestone which grades into a finely recrystallized limestone in the basal 30 centimetres of the interval. The dolomitized portion of the interval is very brittle and highly fractured and breaks into angular fragments. The recrystallized portion of the rock displays a sugary texture. 2 % calcite stringers and veins up to 1 centimetres wide cross-cut and crackle brecciate the interval. These veins and stringere		199497 199498	60.30	61.40	0.00	2.30	0.01	0.01

SUD-00-73 Page 3

Page 4 SILVER1	Π₽	2000 UG DRILL LOG							SU	D-00-73
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	A g gm/t	РЬ %	Zn %
		the interval and are orientated at 10 - 20 to cora axis. Fine-grained sulphide, dominantly pyrite, is observed bleeding into the limestone adjacent to these veins to form blebs up to 5 mm wide. Fine-graned sulphide is also found following rare stycilizes and fractures throughout the interval, Overall, 1% pyrite.								
69 90	82.50	LOWER ZONE MASSIVE SULPHIDE Complex and competent lower zone mineralization which can be broken down into 5 sub-zones based upon texture and the amount of relici limestone. Sulphide mineralization ranges from early fine grained pyrite, pyrrhotite massive sulfide to later stage coarse grained, ubiquitous sphsierite, galena, pyrite massive sulfide. Partially replaced and strongly silicified limestone rubble breccia's are also present within the lower zone and may indicate that the protolith was a highly permeable limestone rubble breccia. This lower zone intercept appears to have been subject to at least 3 phases of sulphide mineralization and displays similar characteristics to the lower zone intercept and peers. Zone 1: 69.9 - 74.1 metres - 90.0 metres. Zone 1: 69.9 - 74.1 metres Silloified massive sulphide with occasional fragments of pyrite, pyrrhotite partially replaced limestone. Chalcopyrite is present and found rimming sphalerite and pyrrhotite mineralization. In addition a silver mineral with an acicular radiating habit (resembling a pin-cushion) is found lining fractures. Possibly Jamesonite or Bismuthinite? 30 % pyrite, 30 % sphalerite, 20 % pyrrhotite, 15 % limestone, 5 % galena. Zone 2: 74.1 - 75.8 metres Strongly silicified limestone rubble breccia with clasts up to 5 certimetres wide. Limestone clasts have been partially replaced by fine grained disseminated pyrite. Coarse grained sphalerite and pyrtte mineralization is found replacing the matrix of the breccia and mming								

Pa	ge 5
211	VEDTID

.

SUD-00-73

.

SICVERTI	F									0-00-13
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	<u>ک</u> م %
		clasts from the margins inward. 60 % limestone. 15 % pyrite, 10 % sphalente, 10 % quartz, 5 % calcite.								
		Zone 3: 75.6 - 77.9 metres Silicified early fine grained pyrite, pyrrhotite massive sulfide overprinted by later coarse grained sphalerite, galena and pyrite massive sulfide. Weak sphalerite, pyrite banding is observed and orientated at 80 to core axis. This zone is smilar to zone 1. 30 % pyrite. 20 % sphalerite 69 90-70.70 LOWER ZONE MASSIVE SULPHIDE	LZ	19 9499	69.90	70.70	0.00	704.50	12.51	13.75
		Competent and silicified early fine grained pyrite, pyrrhotite massive suffice overprinted by later coarse grained, ubiquitous sphalente, galena, pyrite massive suffice. 2 % relict partially replaced limestone is present. Contact with above tying limestone is sharp and at 30 to core axis. At 70.65 metres there is a fracture lined by suhedral calcite and siderite crystals. Overall, 35 % sphalente. 25 % pyrite. 20 % galena. 15 % maonetic pyrhotite. 3		199500	70.70	71.70	0.00	140.50	0.87	9 95
		% calcite stringers, 2 % relict limestone. 70.70-71.70 LOWER ZONE MASSIVE SULPHIDE Competent, early fine grained pyrite, pyrrhotite massive sulfide overprinted by later coarse grained sphalerite, galena, and pyrite massive sulfide as above. Chalcopyrite is found imming sphalerite and pyrrhotite. Overall, 40 % pyrrhotite. 20 % pyrite, 15 % sobalerite 1 % chalcopyrite 1 % calcite and 33 % relict		140451	71.70	72.70	0.00	91.00	0 23	9.51
		imestone. 71.70-72.70 LOWER ZONE MASSIVE SULPHIDE Dominantly coarse grained pyrite, sphalente massive sulfide with lesser early pyrrhotite. Sphalente ranges from red-black and is found in association with coarse grained pyrite and open space filling sparry calcite veins. Interval is fractured and vuggy with eunedral crystals of calcite and a silver mineral with an acicular radiating habit (jamesonite, bismuthinite?) found lining fractures and vugs. Overall, 65 % pyrite. 15 % sphalerite. 10 % pyrrhotite. 5 % portion of 11%		140452	72.70	73.40	0.07	124.30	0.28	14.54
ľ	_	22.70-73.40 LOWER ZONE MASSIVE SULPHIDE Competent and silicified lower zone mineralization ranging from		140453	73.40	74.10	0.00	83.40	0. 46	22.86

SUD-00-73 Page 5

Page 6 SILVERTIF	2	2000 UG DRILL LOG							SU	D-00-73
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pto %	Zn %
		pyrite, sphalerite, pyrrhotite masaive sulfide to imestone which has been strongly silicified and partially replaced by early fine grained pyrite and pyrrhotite. Overall, 40 % relict limestone, 25 % sphalerite, 25 % pyrite, 10 % pyrrhotite. 73.40-74.10 LOWER ZONE MASSIVE SULPHIDE Lower zone mineralization as above but with more sphalerite and limetholes 20 % impatheme 25 %		140454	74.10	74.80	0.00	233.40	3.86	12.85
		 rest forct interaction. Corrections, but spherocal, both points, 15 % primotite, 5 % quartz-carbonate. 74.10-74.80 LOWER ZONE RUBBLE BRECCIA Competent and silicitied imeestone rubble braccia. Coarse grained pyrits, sphalerite and galaria are found replacing the braccia matrix and rimming imeestone clasts. The margins of imeestone clasts are corrocted and are slowly being replaced by sulphide. Chard S & University of the clasts. The margins of imeestone clasts are corrocted and are slowly being replaced by sulphide. 		140455	74.80	75.60	0.01	194.30	3.99	7.00
		 overall, of a initiality, to vight 2, to to print the provide the print of a initiality, to vight 2, to the print of the prin of the print of the print of the print of the print of the pr		140458	75.60	76.60	Q.D0	153.75	2.87	14 94
		imestone, 15 % pyrite, 5 % sphalente, 10 % quara-casche. 75.60-76.60 LOWER ZONE MASSIVE SULPHIDE Strongly silicified and competent pyrite, pyrmotile, sphalente massive sulfide with 10 % relict partially replaced limestone. Early fine grained pyrite, pyrmotite massive sulfide has been				1				
		by later coarse grained sphalerite, pyrite and minor galena mineralization. Weak sphalerite, pyrite banding is observed towards the base of the interval and orientated at 80 to 90 to core axis. Bismuthinite (?) is found within the interval lining fractures. In advition, a scrift duil lead now mineral is found in association		140458	78.60	77.30	0.00	80.30	1.49	21.18
		with euhedral calcite, lining a vug at the start of the interval (tetrahedrite?). Overail, 30 % pyrite, 20 % sphalerite, 5 % galena, 20 % silica, 5 % calcite, 15 % pyrrhotite, 5 % limestone. 76.60-77.30 LOWER ZONE MASSIVE SULPHIDE Strongly silicified pyrite, pyrrhotite, sphalerite massive sulfice as above. Weak sphalerite, pyrite banding is present at 80 - 90 to		140459	77.30	77.90	0.00	49.80	0.58	4.90

÷

SUD-00-73 Page 6

Page 7 SILVERTIP

.

2000 UG DRILL LOG

SUD-00-73

* ;+

SILVERTIP		UG DRILL LUG										
From	To	Geological Log	ŲNIT	SAMPLE	FROM (m)	DT (m)	Au gm/t	Ag gm/t	Рь %	Zn %		
		core axis. Overall, 30 % sphalerite, 20 % pyrite, 10 % pyrrhotrie, 20 % ilmestone, 15 % quartz, 2 % galena, 3 % calcite. 77.30-77.90 LOWER ZONE MASSIVE SULPHIDE Lower zone pyrite, pyrrhotte, sphalerite massive sulfide as above		140460	77.90	79.00	0.01	48 80	0.32	5.15		
		with ~ 20 % relict limestone. Euhedral, acicular crystals of the mineral Bismuthinite (?) are found lining fractures within the interval. Overall, 30 % limestone, 25 % pyrite, 10 % sphalente, 5 % pyrrhotite, 2 % galena, 15 % quartz, 10 % calcate. 77 90-79.00 LOWER ZONE RUBBLE BRECCIA Limestone rubble breccia with clasts of silicified and finely recrystalized lanestone up to 6 centimetres wide. Disseminated pyrite crystals are found throughout the limestone clasts. Coarse grained pyrite, sphalerite and lesser galena are found throughout the interval replacing the breccia matrix. The mineral Bismuthote		140461	79.00	79.90	0.00	187 40	4.03	5.41		
		(?) is commonly found in association with pyrite and quartz along fracture surfaces. Overall, 69 % limestone, 5 % sphalente, 10 % pyrite, 10 % quartz, 5 % calcite, 1 % galena, trace bismuthinits. 79.00-79.90 LOWER ZONE MASSIVE SULPHIDE Partially replaced to rubble breccated limestone. At 79.05 metres there is a 2 centimetre wide sparty calcite vein at 15 to core axis. Directly beneath this vein to 79.3 metres the limestone is rubble breccated with clasts of limestone up to 3 centimetres wide. Pyrite, sphalente and lesser galena are found replacing limestone clasts and matrix within this breccia. Beneath this breccia the		140462	79.90	80.60	0.01	198.00	12.28	5.80		
		Imestone is highly fractured and is cross-cut by numerous quartz-carbonate veins at 10 - 60 to core axis. Pyrite, sphalente, and galena are found partially replacing limestone throughout the interval. Overall, 15 % pyrite, 10 % sphalerite, 2 % galena, 15 % calorte, 10 % quartz, 50 % limestone. 79 90-80.60 LOWER ZONE MASSIVE SULPHIDE		140463	80.60	81.60	0.00	1357.40	22 03	5.95		
		Coarse grained pyrite, sphalente, galena massive sulfide with 20 % relict immestone. Coarsely crystalline calcite veins up to 3 centimetres wide, and orientated at 15 -30 to core axis, cross-cut refict limestone and sulphide. Overall, 30 % immestone. 20 %calcite. 30 %pyrite, 10 % sphalente, 5 % galena, 5 % quartz. 80.60-31 60 LOWER ZONE MASSIVE SULPHIDE Sphalerite, pyrite, galena massive sulfide with 5 % relict										

SUD-00-73 Page 7

Page 8 SILVER	ГIР	2000 UG DRILL LOG							5U	D-00-73
Fram	To	Geological Log	UNIT	SAMPLE	FROM (m)	TĐ (m)	Au gm∕t	Ag grivit	РЬ %	Zn %
		%calcite, 30 %pyrite, 10 % sphalerite, 5 % galena, 5 % quartz. 80.80-81 60 LOWER ZONE MASSIVE SULPHIDE Sphalerite. pyrite, galena massive sulfide with 5 % relict limestone. Early fine grained pyrite, pyrite/bite massive sulfide is overprinted by coarse grained sphalerite, pyrite, galena massive sulfide. Weak sphalerite, pyrite, galena banding is observed and orientated at 40 - 50 to core axis. Overall, 40 % pyrite, 20 % galena, 20 % sphalerite, 10 % pyrrhotite, 5 % ismestone, 5 % calcite.		140464	81.60	82.50	0.00	1276.20	20.25	13.96
		81.60-82.50 LOWER ZONE MASSIVE SULPHIDE Pyrite, sphalerite, galena massive sulfide as above. Overall, 40 % pyrite, 25 % sphalerite, 15 % galena, 10 % pyrrhotite, 5 % quartz. 5 % calcrite.								
82.50	95.80	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Stromatoporoid floatstones and rudstones with lesser tryplasma and tharmopore throughout. Mixor amphipora are present and become more prevalent towards the base of the interval. Limestone is dominantly unsittered, however, localised areas of finely recrystallized limestone are present. 2 - 3 % calcile stingers and verins are present and cause zones of weak crackle brecciation. Styolites throughout the interval are occasionally lined by fine grained sulphide idomicantly.								
		pyrite). At 89.3 metres there is a fracture lined with euhedral crystals of bismuthinite. Overall, trace pyrite, trace bismuthinite. 82.50-83.50 CRACKLE BRECCIA LIMESTONE Footwall sample. Finely recrystallized imestone with minor dolornitized limestone. 3 % calcite stringers crackle brecciate the interact limestone. 3 % calcite stringers crackle brecciate the	MILS2	140466	82.50	83.50	Q.01	18.20	Q.09	0.15
		 ining styolites and within calcite stringers. styolites and within calcite stringers. 94.80-95.80 CRACKLE BRECCIA FLOATSTONE Hanging wait sample. Partially recrystallized stromatoporoid floatstone crackle brecciated by 2 % calcite stringers. Very fine grained pyrite is found within calcite stringers and lining styolites. 		140467	94.60	95.80	0.00	4.90	0.04	0.14

SUD-00-73 Page 8

Page 9 SILVERT	'IP	UG DRILL LOG							SU	ID-00-7;
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grn/t	РЬ %	Zn %
95.60	98.10	LOWER ZONE MASSIVE SULPHIDE Coarse grained, manto style, sphalenite and pyrite massive sulfide with lesser early fine grained magnetic pyrrholite. Late quartz-calcite veins up to 1 centimetre wide and at 30 to core axis are found throughout the interval. Overall, 70 % pyrite, 15 % sphalenite, 5 % pyrrhotite, 10 % quartz-calcite.	LZ	140468	95.80	96.10	0.00	93 50	0.03	15.54
96.10	112.20	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Stomatoporoid floatstones and rudstones with minor amphipora. Interval dominantly consists of unaltered limestone. However: rare zones up to 50 centimetres wide have been coarsely recrystalized. 2 % calcite stringers and veins up to 5 mm wide cross-cut the interval and cause localised zones of moderate crackle brecciation. Styolites throughout the interval are occasionally lined by fine grained pyrite. Overail. trace pyrite, 96.10-97.10 STROMATOPOROID FLOATSTONE Footwall sample. Stromatoporoid floatstone with minor amphipora. The upper 50 centimetres of the interval is strongly recrystalized and crackle brecciated. At 96.4 metres there is a large vig lined by very coarse crystals of spany calcite up to 3 centimetres across. The basal 50 centimetres of the interval is unaltered and weakly crackle brecciated. Fine-grained pyrite is found lining styolites throughout the interval. Overall, trace pyrite. 108 1D-108.45 STROMATOPOROID FLOATSTONE Stromatoporoid floatstone with large bebs up to 8 centimetres wide of coarse grained black sphalerite and pyrite. Overall, 1 % pyrite, 1 % sphalerite. 108.06-112.20 RECRYSTALLIZED LIMESTONE Finely recrystallized limestone with a sugary texture. Refict amphipora and stromatoporids are preserved. 3 % sparty calcite	MLS2	140469	98.10	97 10	0.00	3.10	0.01	0 41

*** END OF HOLE *** 112.20

SUD-00-73 Page 9

HOLE NO: SUD-00-74

SECTION:65C

GRID:SILVER CK S

NOMINAL	43317.50mN	24957.50mE	1133.00RL
**** CC	ILLAR COORD	INATES AND	RL
*** 0.0			DI 111
HOLE TYPE	;UG		
		10, 00	
LOCATION	LIARD M	ID BC	
MAP REFERE	NCE: 104/O-16	W	
GRID	:SILVER (CKS	
FRUSFEUT	.CORFOR	ONTION	
DDASDEAT		ATION	
TENEMENT	SILVERT	IP MINING	
PROJECT CC	DE SILVERT	'IP	

Pre-collar depth:Final depth:92.40Purpose of hole:TEST FEEDER
MINERALIZATIONHole status:COMPLETEDComments:LZ: 60.1-72.2, 76.5-78.6 M

*** SURVEYDATA *** -

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 92.40 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	17/1/00
Date finished:	18/1/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidationTop of fresh rock:0.0Water first encountered:Water inflow estimate:

- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	РЬ %	Zn %
59.10	79.60	20.50	205.26	3.77	5.36

Depth	Azimuth	Inclination
0.00	250.00	-69.00
23.77	253.90	-69.30
54.25	255.00	-69.90
84.73	258.50	-70.30

		SUMMARY LOG ***
0.00	31.40	1B SANDSTONE /
		SILTSTONE
31.40	36.20	1B SILTSTONE /
		SANDSTONE /
		CARBONACEOUS
		ARGILLITE PYRITIC
36.20	42.50	FAULT ZONE 1BA
42.50	49.80	1A CARBONACEOUS
		ARGILLITE SILICIFIED
49.80	60.10	MCDAME LIMESTONE UNIT
		1 CRACKLE BRECCIA
60.10	72.20	LOWER ZONE MASSIVE
ł		SULPHIDE RUBBLE
		BRECCIA
72.20	76.50	LIMESTONE BRECCIA
		RECRYSTALLIZED
		LIMESTONE
76.50	78.60	LOWER ZONE MASSIVE
		SULPHIDE / LIMESTONE
		BRECCIA
78.60	85.30	RECRYSTALLIZED
		LIMESTONE BRECCIA
85.30	92.40	MCDAME LIMESTONE UNIT
		2
92.40		END OF HOLE

Checked and signed:

Date:

Page	1
SILV	FOTIO

,

.

2000 HG DBU LLOG

, ,

SILVER'	ri p	UG DRILL LOG SUD-00-								
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
0.00	31.40	 1B SANDSTONE / SILTSTONE 0.00-18.70 SANDSTONE / SILTSTONE Interval dominated by medium grey, medium to coarse grained, massive sandstone. Sining upwar, topped by dark grey laminated sittstone. Sandstone layers range from 10 centimetres - 1 metres thick, with rare pyrte nodules to 1 centimetres. Occasional soft sediment deformation and minor rip-up clasts. Laminations @ 50 degrees to core axis. Trace - 1% pyrte, predominantly associated with calcite along mm-centimetres fractures. - 5.6m: 1 centimetres quartz - calcite - pyrte (sphalerite) stringer, 15 degrees to core axis. - 6.7m: Curved, smooth sicklensided surface, 0-5 degrees to core axis. - 13 2 - 16.3m: rubby interval with frequent low angle fracture planes, often sicklensided. 20-30 degrees to core axis. 16.70-31 40 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE Marked decrease in sandstone layers, which now are 0.5-5 centimetres thick, interbedded with laminated sitstone Carbonaceous argilite intervals are usually broken into chips and minor gouge. Poker chip core below 24.2m. 1-2% ft pyrite along fractures and disseminations or discontinuous stringers, parallel to bedding (60-70 degrees to core axis). - 23.8m: 3 centimetres pyrite - quartz - calcite - sphalerite roma-cuting stores. 	18							
31.40	36.20	18 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE PYRITIC Pyrite increasing (8%), as abundant disseminations, especially in the sandstone layers, forming almost massive bands to 1 centimetres. Incompetent poker chip core. Carbonaceous gouge and quartz chips @ 32.7 & 35.3m. Fairly arbitrary lower contact where the amount of gouge and chips increases to greater than the amount of competent core.	18							
36 20	42.50	FAULT ZONE 1BA Rubbly zone consists of 25% pyritic carbonaceous, quartz gouge, 25% carbonaceous argillits chips and the remainder is laminated sittstone, bedding @ ~ 65 degrees to core axis. Very incompetent	FZ							

5UD-00-74 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG SUD-00-									
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TÛ (m)	Au gm/t	Ag gm/t	P15 %	Zn %	
		core.		· · · · · · ·							
42.50	49.80	1A CARBONACEOUS ARGILLITE SILICIFIED Unit 1A of the Earn Group is generally fairly imcompetent and rubbly, but in this hole, the laminated to massive argillite is moderate to strongly slicified from 46.1-49.8m. The upper 3.6m is less competent and less silicified. 5-10% calcareous lenses and minor, this sandy beds contain abundant fine grained pyrits (7%). Contorted calcita lenses contain shandlar fille clasts - small scale bracciation over 1-10 centimetres. Gedding @ 70 degrees to core axis. Fairly sharp lower contact with limestone @ 70 degrees. - 48.2-48.3m; Quartz - calcite - pyrite vein, 65 degrees to core axis. - 48.9-49.0m; 10 centimetres carbonaceous gouge. Imegutar uc; automation of the contact and an another sector axis.	1A								
49.80	60.10	MCDAME LIMESTONE UNIT 1 CRACKLE BRECCIA The upper 1.5 metres tooks to be partial, small-scale post-karst sedimentation, containing calcareous mud and fragments to 3 certimetres, including some Earn fragments and fine grained carbonaceous lenses. Below that is packatone to mudstone, intermittant intervals of amphipora rudstone and floatstone, sparse massive stromatoporids. Weak to moderate crackle breccia, vuggy, healed with calcito. Minor, patchy recrystalization, gives the rock a motified appearance with fine sucrosic texture. One 15 centimetres interval with strong crackle breccia is partially altered to dolostone – 60 centimetres above the massive sulfide. - 56.85m: 5 mm pyrite - sphalerite - calcite stringer, 20 degrees to core axis. 59.10-80.10 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Hanging wall sample. The upper 40 centimetres is a dense packstone; below is a 15 centimetres section of strongly crackle brecciated, partially dolomitized limestone, with fractures @ roughly 40 degrees to core axis and 3% fine grained pyrite along stylolites. The lower 45 centimetres is motified, partially recrystalized limestone accompanied by fine pyrite & galena stmogers adjacent to sulphidea. Lower contact ~60 degrees to	MLST	199554	59.10	60.10	0.00	12.50	0.16	0.02	

,

Page 3 SILVER	Page 3 2000 SILVERTIP UG DRILL LOG								SUD-00-74				
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pto %	Zn %			
80.10	72.20	LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA General Description: This is a very continuous zone of massive sulfide, with only minor remnant limestone over the entire length. The zone can be divided into 3 gneral sub-zones based on mineralogy and texture. 1st Zone: 60.1-65.1m: Massive, coarse grained pyrite - sphalente - galena in a siliceous, fine grained pyrite matrix. Approximately 5% remnant limestone, which are predominantly silicified. The core barrel was jammed between 60.4 & 81.9m by fine grained, sandy pyrite & sphalente. The rod had to be cut to get the core barrel out. Sample 199556 is from this interval and represents about 25 centimetres of lost core. Fractures are frequent @ 25 & 50 degrees to core axis, sub-parallel to quartz stingers, leaving core rubbly. Overall: 40% pyrite, 20% sphalerite, 10% galena, 15% quartz, 5% calcite & 5% limestone. 2nd Zone: 65.1 - 69.9m: Brecciated limestone clasts, replaced by fine grained pyrhotite & silica, followed by a second stage of mineralization consisting of very coarse grained sphalerite, pyrite & galena which partially replaces pyrhotite clasts. Small blebs of chalcopyrite present (<1%), imming pyrhotite. Fine grained quartz acoears to rm the secondary replacement. Iron carbonate ims yuos.											
		 This section is very competent. Overall: 35% pyrite, 35% sphalerite, 10% galena, trace chalcopyrite, 15% quartz. 3rd Zone: 59.8-72.2m: Lacks the pyrithotite seen above; increase in fine grained pyrite and secondary calcite. Core much more fractured and rubby, fractures and minor slickenades @ 10, 30 & 60 degrees to core axis. Overall: 55% pyrite, 15% sphalerite, 8% galena, 10% calcite, 10% quartz. 80.10-61.10 PYRITE SPHALERITE MASSIVE SULPHIDE Upper contact is somewhat gradational, starting with vague bands / clots of medium grained pyrite, sphalerite & galena in a siliceous matrix. Euhedral quartz crystals to 7mm visible in a random onentation. Banding roughly @ 55 degrees to core axis. Suphides increase in abundance and grain size with depth – mostly as measive intergrowths. 55% pyrite, 20% sphalerite, 6% 	LZ	199555 199557	60.10 61.10	61.10 62.10	0.01	316.10 230.80	6.26 3.45	5.82			

SUD-00-74 Page 3

Page 4 SilvERTI	e 4 2000 /ERTIP UG DRILL LOG								SUD-00-74			
From	Τo	Geological Log	ŲNIT	SAMPLE	FROM (m)	TO (m)	Au gmvt	Ag gmit	РЬ %	Zn %		
+		61.10-62.10 PYRITE SPHALERITE MASSIVE SULPHIDE Rubbly to sandy core - this is likely the portion of the 5 foot run (60.4-61.9m) that the core barrel became jammed into the rods by	┝ ─ ─── !									
		very sandy, unconsolidated pyrite & sphalerite. Recovery of core ~75%, and the remainder was collected when the rod was cut off around the core barnel (Sample 198556 - this sample should not be included in the weighted averages). This zone may represent a		199556	62.10	63 .10	0 02	347.90	6.20	6.13		
		 iate fault, with associated abundant quartz gangue and open space fill. 62.10-83.10 PYRITE SPHALERITE MASSIVE SULPHIDE Weak to moderately competent, massive, medium to coarse grained pyrite integrown with fine grained brown to black sphalente and leaser galena. Sphalerite and galena also form rough bands ~ 50 degrees to core axis, 5-10 centimetres thick. 		199559	63.10	64.1Ŭ	0.01	159.60	3.48	0.92		
		60% pyrme, 25% sprimerine, 3% guidelia, 15% quarte. 63.10-64.10 PYRITE SPHALERITE MASSIVE SULPHIDE Coarse grained, massive intergrowthe of pyrite and finer grained sphalerite, cut by fractures 10, 35 & 60 degrees to core axis. A few fragments of siliceous limestone remain, but it is difficult to discern the original texture of the limestone that the fluids invaded - can't tell if it was breccisted or altered or both. Below 63.6m, the		199560	64.10	65.10	0.12	352.75	6.84	4.71		
		 sample is quartz - rich with a sugary texture and vugs lined with fine grained pyrite. 50% pyrite, 15% sphalerite, 4% galena, 30% quartz. 64.10-65.10 PYRITE SPHALERITE MASSIVE SULPHIDE The upper 50 centimetres is fine to coarse grained pyrite and fine grained sphalerite in a siliceous matrix; below is coarse grained pyrite, sphalerite à galena. Sulphides here could be replacing a limestone rubble breccia - pyrite seems to preferentially replace clasts and sphalerite replaces / forms the matrix. Below this interval, start to see pyrinotite. 50% pyrite, 25% sphalerite, 6% galena. 		199582	65.10	66.10	0.02	719.20	8.57	15.83		
		65.10-86.10 PYRHADTITE BASE METAL MASSIVE SULPHIDE RUBBLE BRECCIA Fairly distinct remnant rubble breccia texture, all clasts replaced										

۰.

SUD-00-74 Page 4

Page 5	
SILVERTIP	

.

2000 UG DRILL LOG

SUD-00-74

•

SILVERTIP							300-00-7					
From 1	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %			
	now by pyrrhotite, pyrite, sphalerite and galeria in a suiceous gangue. The coarser grained pyrite, sphalerite & galeria, all rimmed by feathery quartz, is a later phase than the fine grained pyrrhotite. Iron carbonate (siderite) lining vogs. This is the start		199564	66.10	67.10	0.02	306.10	6 54	8.20			
	 the 2nd Zone from the general description. 30% sphalerite, 25% pyrite, 20% pyritetite, 10% galena, trace chalcopyrite, 15% quartz. 66.10-67.10 PYRRHOTITE BASE METAL MASSIVE SULPHIDE COLORDER ERECOLOR 		199565	67.10	68.10	0.03	655.10	13.74	12 48			
	 RUBBLE BRECCIA Similar textures as the previous sample - rubble brecca replaced by massive sulfide in a silkaous matrix. Competent core. 30% pyrite, 25% sphalerite, 15% pyrrhotite. 10% galena, trace chalcopyrite, 20% quartz. 67. 10-68.10 PYRRHOTITE BASE METAL MASSIVE SULPHIDE BUILBIE E RECCIA 		199566	6 8 .10	69.10	0.00	228.50	4.97	14.68			
	Increased coarse grained sphalerite as massive clots and bands to 15 centimetres. 5% remant timestone. Late cross-cutting fractures @ 5 & 20 degrees to core axis. 35% sphalente, 30% soy, 15% pyrhotite. 7% galena trace chalcopyrite, 15% calcite. 88.10-69.10 PYRRHOTITE BASE METAL MASSIVE SULPHIDE RUBBLE BRECCIA		199567	69 .10	70.10	0.03	291.20	. 5 B9	9.92			
	 Very distinct, large coarse grained clots of sphalerite (+/- galena. pyrite), often rimmed by opaque, five grained quartz, replacing sub-angular limestone clasts within a remnant rubble breccia. Fine grained pyrthotite within a siliceous matrix is decrassing. 30% sphalerite. 30% pyrite , 10% galena. 10% pyrrhotite, trace chalcopyrite, 15% quartz. 99 10-70 10 PYRRHOTTE BASE METAL MASSIVE SULPHIDE 		199568	70.10	71.10	0.03	337.60	6.45	987			
	RUBBLE BRECCIA Similar to the previous sample, with increased quartz (as fine grained, opaque matrix) and decreased pyrrhotite. 30% pyrite. 25% sphalerite, 10% galena. 8% pyrrhotite. 20% quartz, trace chalcopyrite. 70.10-71 10 PYRITE SPHALERITE MASSIVE SULPHIDE		199569	71.10	72.20	0.32	61.00	1.13	11.97			
I	breccia textures. Increase in rubbly / sandy pyrite & sphalerite. Coarse grained calcite in the matrix increasing to 10%. Pyrite											

SUD-00-74 Page 5

Page 6 SILVER	rip	2000 UG DRILL LOG							SU	D-00-74
Fram	Ta	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grvt	Pb %	Zn %
		quite fine grained approaching the base of the sample. 40% pyrite, 20% sphalerite, 3% galena, 20% quartz, 10% calcite. 71.10-72 20 PYRITE SPHALERITE MASSIVE SULPHIDE Base of the Lower Zone comprised of finer grained pyrite - sphalerite clots (increased red-brown sphalerite) in a mixed siliceous +/- calcareous matrix. 50% rubbly core. One good slickenside at 45 degrees to core axis. Lower contact broken. 55% pyrite. 15% sphalerite, 5% galena, 15% quartz & 10% calcite.								
72.20	76.50	LIMESTONE BRECCIA RECRYSTALLIZED LIMESTONE Brittle, fractured interval of brecclated limestone, including crackle breccia, pods of matrix breccia and stylolitic breccia. Patchy recrystalization with few remnant fossila. 6% fine grained pyrite slots and wispe along calcite fracture-filled margins, along stylolites and within the matrix breccia. Sampled the entire length to fill-in between subhitic zones.								
		72.20-73.20 RECRYSTALLIZED LIMESTONE BRECCIA Footwall sample comprised of rubbly core at the upper contact, containing abundant fine grained pyrite (10%) along fractures as small euhedral cubes in calcite stringers and trace sphalerite. Dependent to a fine survey lenter.	AMLS	199570	72.20	73.20	0.02	5.20	0.03	0.13
		73.20.74.30 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Brittle, recrystallized timestone, similar to the previous sample.		199571	73.20	74.30	0.00	3.90	0.02	0.01
		74.30-75.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA		199572	74.30	75.50	0.01	3.80	0.01	0.01
		5.50-78.50 RECRYSTALLIZED LIMESTONE MATRIX BRECCIA Hanging well sample. Motied & recrystallized with inegular pode of pyritic matrix breccia, vuggy crackle breccia and 6% wispy and disseminated pyrite. Inegular lower contact.		199573	75.50	78.50	0.04	8.70	0.07	0.10
76.50	78.60	LOWER ZONE MASSIVE SULPHIDE / LIMESTONE BRECCIA General Description: Narrow sulphide replacement containing coarse grained sphalerite and galena, followed by 1.1m of mosaic brecciated limestone with pyrite clots and wisps along fractures. Below that is a rubbly, doiomitized interval with massive sulfide bands to 8 centimetres. Overall ~ 60% limestone, 10% calcite, 10% sphalerite. 5% palera, 15% pyrite.								

Page 7	
SILVERTIP	

2000 UG DRILL LOG

SUD-00-74

.

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grivit	РЬ %	Zn %
		76.50-76.90 BASE METAL MASSIVE SULPHIDE Pod of Lower Zone type replacement containing massive coarse grained intergrowths of pyrite (40%), sphalerite (25%) and galena	ĽŽ	199574	76.50	76.90	0.01	371 50	8.45	7.21
		(15%). 76.90-78.10 RECRYSTALLIZED LIMESTONE MOSAIC BRECCIA Strongly crackle to mosaic breccia, weakly dolomitized limestone.		199575	76.90	78.10	0.01	4.30	0.01	0.03
		6% fine grained pyrite, 30% calcite. 78.10-78.60 DOLOMITIZED LIMESTONE CRACKLE BRECCIA 75% dolomitized limestone, strong crackle breccia and brittle. rubbly core. 20% massive coarse grained pyrite - sphalerite as a band (now crumbly) at the top of the interval. Pyrite also throughout, lining fractures.		199576	78.10	78 60	0.00	6.00	0 01	1.44
78.60	85.30	RECRYSTALLIZED LIMESTONE BRECCtA Variable interval containing rubble brecca, dolomitized fimestone, crackle breccia and calcite veining with 5% pyrite clots. 78 60-79 60 RECRYSTALLIZED LIMESTONE RUBBLE BRECCIA Footwall sample. 10 centimetres below the upper, broken contact, is a rubble breccia fissure filling (?) ~ 20 degrees to core axis, containing calcite and limestone clasts in a muddy, calcareous matrix. Below, the limestone is dolomitized for 15 centimetres, then recrystallized to a white, sugary textured calcite. No fossils remain. 3% pyrite.	AMLS	199577	78.60	79.60	0.00	3 60	D.QQ	0.01
65.30	92.40	MCDAME LIMESTONE UNIT 2 Massive stromatoporoid unit, relatively unaltered, compared to the section above. Section comprised dominantly of massive stromatoporoid rudstone to floastone with scattered amphipora. Minor dolomitized patches. Trace - 1% pyrite.	MLS2							

*** END OF HOLE *** 92.40

. . . .

*,

....

•

•

•

· -

SUD-00-74 Page 7

-

•

4

HOLE NO: SUD-00-75

Hole status:

Comments:

SECTION:65-SS

GRID:SILVER CK S.

PROJECT CODE TENEMENT PROSPECT	SILVER	TIP TIP MINING RATION	
GRID			
MAP REFERENCE	E: 104/O-16	5VV	
LOCATION	LIARD M	ID, BC	
HOLE TYPE	UG		
	R COORD	DINATES AND I 24978.00mE	RL ***
Pre-collar depth:		Final depth:	193.50
Purpose of hole:	TEST I ZONE	EXTENSION O	F 65-S

COMPLETED

LZ: 180.5-181.0M, 182.2-183.3M

*** DRILLING SUMMARY ***

DIAMOND	0.00 193.50 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	18/1/00
Date finished:	21/1/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation0.0Top of fresh rock:0.0Water first encountered:0Water inflow estimate:0

- 1	***	SIGNIF	CANT	ASSAYS	*
-----	-----	--------	------	--------	---

From	То	Width	Ag g/t	РЬ %	Zn %
179.70	184.30	4.60	267.56	5.01	4.16

	*** SURVEYDATA *** -
Survey Method:	REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-52.00
12.19	255.30	-51.20
42.67	255.00)	-50.90
73.15	256.70	-50.20
103.63	257.40	-49.10
134.11	260.10	-47.60
164.59	260.30	-46.20
193.50	262.00	-44.60

	***	SUMMARY LOG ***
0.00	48.60	1B SANDSTONE /
48.60	53.90	FAULT ZONE 1A
53.90	56.20	1AA CARBONACEOUS
		ARGILLITE
56.20	61.90	
		BRECCIA
61.90	114.70	MCDAME LIMESTONE UNIT
		1
114.70	140.60	
140.60	151 70	4 MCDAME LIMESTONE UNIT
140.00	101.10	3
151.70	153.30	MOSAIC BRECCIA MCDAME
		LIMESTONE UNIT 4
153.30	177.00	
177.00	180.50	MCDAME LIMESTONE UNIT
		5 CRACKLE BRECCIA

Checked and signed:

Date:

HOLE NO: SUD-00-75

180.50	181.00	LOWER ZONE MASSIVE
181.00	182.20	RECRYSTALLIZED
		BRECCIA
182.20	183.30	LOWER ZONE MASSIVE
		SULPHIDE
183.30	184.30	RECRYSTALLIZED
		LIMESTONE RUBBLE
		BRECCIA
184.30	189.80	LIMESTONE CRACKLE
		BRECCIA
189.80	191.40	DOLOMITIZED LIMESTONE
		CRACKLE BRECCIA
191.40	193.50	DOLOMITIZED LIMESTONE
		RUBBLE BRECCIA
193.50		END OF HOLE

Checked and signed:

Page 1	

,

.

-

ı .

2000 UG DRILL LOG

Ł

									501	
From	To	Geological Log	UNIT	Sample	FROM (m)	TO (m)	Au gmvīt	Ag gm/t	РЬ %	Zn %
0.00	48.50	 1B SANDSTONE / SILTSTONE 0.00-31.00 SANDSTONE / SILTSTONE Dominantly medium by, medium to coarse grained massive sandstone, fining upward, topped by dark grey laminated sittatone. Sandstone layers range from 10 centimetres - 1.3 metres thick. Bedding @ 30 degrees to core axis. Intermittant rubbly carbonaceous intervals (mainty from 0.0 - 6.5m). 1-3% quartz - calcite stringers, 25 & 45 degrees to core axis, often with fine grained pyrite (2%) lining fractures. Rare trace sphalerite associated with stringers. Occasional fractures 5-10 degrees. with centimetres slip (reverse movement). 31:00-48.60 SILTSTONE / SANDSTONE / CARBONACEOUS ARGILLITE PYRITIC Sharp decrease in the frequency and thickness of the massive sandstone layers, now 0.5 - 5 centimetres thick. Core is less competent - poker chip core. Intermittant calcareous bands, and also pyrtic bands (4%) parallel to bedding. 2mm - 1cm wide. 	1B							
48.60	53.90	Bedding angle variable from 50-85 degrees to core axis. FAULT ZONE 1A Cominantly carbonaceous argilithe rubble to gouge and chips with frequent quartz ven rubble to 5 centimetres, sub-parallel to bedding (often contorted beds, 40-80 degrees to core axis). Broken upper and lower contacts. - 50.4 - 50.6m; two partially intact, cross-cutting pyrite - aphalente - rational transmission and the second second second second second regions arises and the second second second second second second second contacts.	FZ							
53.90	56.20	IAA CARBONACEOUS ARGILLITE Poker chip core, calcareous laminations throughout. 4% disseminated pyrite and wisps within convoluted quartz stringers. Quartz vrid lower contact.	144							
56.20	61.90	MCDAME LIMESTONE/1A ARGILLITE RUBBLE BRECCIA Contact zone between the imestone and Earn, comprised of a chaotic mix of limestone breocia (breccia textures include rubble, matrix and mosaic breccia) with intermittant post-paleokarat infall of calcareous carbonaceous mudstone, as well as finely laminated lime mud. Moderate pyrite mineralization (6%) concentrated in the upper meter of	MLS/ 1A							

SUD-00-75 Page 1

Page 2 SILVER	ſIP	2000 UG DRILL LOG							SU)-00-75
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P10 %	Zn %
	<u> </u>	the unit, as small clots and wisps within motied, recrystallized limestone. Definately fluids through the contact, but only weak pyrite subplication. I owner contact ~25 decrees to core aris								
61 90	114.70	 Submittatorie Lawer construct and pages to core assimilation (Lawer Linkestrone Lawer Core and Core assimilation of Unit 1 which closely follows the stratigraphy breakdown by Regional Resources (i.e. 1A, 1B & 1C). The upper 4.5m is moderate rubble to matrix breccia, fairly broken with patchy recrystallization to white, fine grained, sucreate textured calcite. Below are predominantly packstones and muditiones, amphiporal floatistone and sparse massive stromatoponds and thannopora. Good coreal, Tryplasma, @ 68.7m. Minor partial recrystallization giving fossils a motified texture with vegue outlines. Abundant tharmopora @ 76.6m. Intermittant crackle breccia dolostone intervals, up to 1 metres in length. 96.90-103.70 RECRYSTALLIZED LIMESTONE Zone of motified partial recrystallization to white, fine grained, sugary textured carbonate, Minor rubble to matrix breccia. 5% wispy fine grained pyrite along styloties and along calcite stringer margins, oriented ~ 30-50 degrees to core axis. Sharp, irregular lower contact with dolostone. 103.70.110.20 DOLOMITIZED LIMESTONE CRACKLE BRECCIA Rubbly, britte, coarse grained, dolomitized limestone with moderate cracke breccia. One 2mm sulphide stringer @ 60 degrees to core axis. Sharp, irregular lower contact with dolostone. 	MLST							
		along a calcite - filled fracture.							L	
114.70	140.60	MCDAME LIMESTONE UNIT 2 Well preserved section of the massive stromatoporoid Unit 2 that is virtually unbrecclated or recrystallized, except for the upper 2 metres which is brittle dolomitized limestone. Minor crackle braccis throughout: 3-5% calcite stringers, 5mm - 10cm, predominantly () 25-40 degrees to core axis. Main rock types include massive stromatoporoid rudstone to floatstone, minor amphipora, abundant corals, minor Euramphipora in the upper 12 metres and a few Thamnopora. Carbonaceous styloites are frequent, sub-parallel to layering. Pyrite (trace - 1%) is sparsely dissemnated as small blebs along calcite fractures. Little indication of nearby mineralization.	MLS2							

•

SUD-00-75 Page 2

, 1 1

GILVLIN	15	00 01 AEE 200							500	-0.0-7
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (тт)	Au gm/t	Ag gm/t	Pb %	Zn %
	<u>∤</u> −	- 130.8m: 20cm very coarse grained calcite ven - open space fill texture, 25% to core axis, but tacks sulphides.								
140.60	151.70	MCDAME LIMESTONE UNIT 3 Typical Unit 3 limestone containing the diagnostic dense, fine amphipora rudstone in the upper portion, massive stromatoporids in the middly and dense amphipora rudstone at the base. Low angle (5-10 degrees to core axis) fractures towards the base have open-space euhedral quartz crystals to 6mm. Rare pyrite along calcite fractures. Minor calcite stringers (20 degrees to core axis) and weak crackle breccia.	MLS3							
151.70	153.30	MOSAIC BRECCIA MCDAME LIMESTONE UNIT 4 The upper 50 centimetres is mosaic breccia with limestone clasts in a coarse calcite matrix; sharp styloitic contact, 20 degrees to core axis, with a sliver of Euramphipora rudstone (20 centimetres). Below is an additional 30 centimetres of mosaic breccia followed by 60 centimetres of karst infill tarninated lime mud with fragments of limestone to 2 centimetres. Bedding @ 90 degrees. Sharp, discordant lower contact, at 20 degrees. Trace pyrite in the upper section of the karst sediment.	MLS4							
153.30	177.00	MCDAMÉ LIMESTONE UNIT 5 Top of the unit marked by the characteristic coarse amphipora, followed by interfayered packtone, amphipora rudstone & floatstone, minor massive stromatoponds and, bleached, recrystallized sections to 2.5 metres. 8% calcite veining, 0.5-5 centimetres in width, predominantly cross-cutting @ 25 degrees to core axis, occasionally with pytte clots or cubes (to 1%) and trace sphalente @ 170.55 metres. 159.10-162.90 RECRYSTALLIZED LIMESTONE Bleached, pale bluish-grey, fine to medium grained, recrystallized limestone, portions of which look like a lime mud with mm limestone clasts, tayered @ 35 degrees to core axis and cross-cut by mm pyrite (1%) stringers @ 30 degrees. 175.20-177.00 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Somewhat coarser grained than the previous interval and increased intensity of crackle breccia. Stylotitic contacts with 40 centimetres of unalitered amphipora floatstone occur in the centre of the interval	MLS5							

SUD-00-75 Page 3

Page 4 SILVERT	ΓιP	2000 UG DRILL LOG							SU	D-00-75
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P10 %	Zn %
177.00	180.50	MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA Moderate to strong crackle breccia (calcite healed fractures) with sections up to 30 centimetres of mosaic breccia. Dominant conentation of calcite fractures is 30-40 degrees. Sulphide band (pyrite-sphalerite) occurs 0.8m above the massive sulfide. 179.70-180.50 LIMESTONE CRACKLE BRECCIA Hanging wall sample. Crackle to mosaic brecciated limestone with 1-2 centimetres, fine grained pyrite - sphalerite irregular stringer ~35 degrees to core axis, sub-parallel to calcite fractures at the top of the interval. One sphalerite - pyrite col (2) the base which is likely an extension of the more massive sulphide below. 7% pyrte, 2% sphalerite. Irregular lower contact, and mossic breccia at the base.	MLSS	199578	179.70	180.50	0.00	5.30	0.04	0.76
180.50	181.00	LOWER ZONE MASSIVE SULPHIDE LOWER ZONE MASSIVE SULPHIDE 180.50-181.00 PYRITE SPHALERITE MASSIVE SULPHIDE Massive fine grained pyrite with lesser sphalerite and chalcopyrite. 10% remnant limestone as irregular, partially replaced clots. More chalcopyrite than usually seen in the sulphide zones below the unconformity, occurring as very fine intergrowths or imming pyrite. Sphalerite also occurs as fine grained intergrowths or imming pyrite. Sphalerite also occurs as fine grained intergrowths. The lower contact is sub-planar ~ 40 degrees to core axe. Non-megnetic. Possibly replacing a mossic breccia (??), similar to the non-sulphidized rock above, but difficult to say for sure. 70% anth 10% explanate .2% photometric	LZ	199579	180.50	181.00	0.03	61.40	0.05	0.61
181.00	182.20	RECRYSTALLIZED LIMESTORE ACCIDENCIAL Bleached, motified interval between massive sulfide zones, recrystalized mosaic breccia (?? possible to probable). Trace - 1% pyrite in calcite fractures and small blebs along styloities. Fairty sharo inregular contract. 40-60 degrees to core sxis.	AMLS	199580	181.00	182.20	0.00	25.10	0 D1	0.05
182.20	183.30	LOWER 20NE MASSIVE SULPHIDE 182.20-183.30 BASE METAL MASSIVE SULPHIDE Very massive, coarse grained, black sphalents & galens, with finer grained pyrite, trace chalcopyrite, and 10% coarse grained calcite blebs (remnant, recrystallized limestone?). Minor crumbly sections where the black sphalerite is massive but finer grained. 95% recovery. Lacks silica and pyrrholite (a non-magnetic zone). Sulphide textures suppest in some places that pyrite often	LZ	199581	182.20	183.30	0.08	1055.30	20.87	16.34

Page 5
SILVERTIP

٠

.

.

2000 UG DRILL LOG

SUD-00-75

8

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рь %	2n %
		replaced the timestone clasts and the sphalerite & galena formed in the interstial zones between clasts. At the lower contact (~40 decrees), there is 5 centimetres of rubble to matrix breccia visible.								
183.30	184.30	RECRYSTALLIZED LIMESTONE RUBBLE BRECCIA 183.30-184.30 RECRYSTALLIZED LIMESTONE RUBBLE BRECCIA Footwall sample. MCDAME LIMESTONE UNIT 5? Originally a limestone rubble breccia, now almost completely recrystallized to bluish-white coarse soarry calcite. Trace - 1% pyrite wisps.	AMLS	199584	183.30	184.30	Q.D1	4.90	0.04	0.20
184.30	189.80	LIMESTONE CRACKLE BRECCIA Unit 5? Variable interval, strong stylolitic breccia at the top, abutting spamy calcite clasts with non-recrystalized limestone. Below, crackle breccia increases in intensity. Sulphide wisps (mainty pyrite, minor sphalerite) appear below 184.5 metres along calcite fractures.	AMLS							
189.80	191.40	DOLOMITIZED LIMESTONE CRACKLE BRECCIA Rubbly, preciated upper contact with 3% wisps and disseminations in the matrix. Below is brittle, strongly crackle brecciated, partially dolemitized limestone.	MLSD							
191.40	193.50	DOLOMITIZED LIMESTONE RUBBLE BRECCIA Again, rubbly and brittle, similar to the above interval, but distinct rubble breccia down to 192.7 metres. Minor pyrite (2%) replacement in the matrix and clots in calcele fractures.	MLSD							

*** END OF HOLE *** 193.50

• .

٠, ٠

- -

SUD-00-75 Page 5

-

....

÷ .

GRID:SILVER CK S

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	CORPORATION
GRID	SILVER CK S
MAP REFERENCE	E 104/O-16W
LOCATION	:LIARD, MD, BC
HOLE TYPE	:UG

 **** COLLAR COORDINATES AND RL ***

 NOMINAL
 43337.00 mN
 24949.00 mE
 1136.00 RL

Pre-collar depth:	Final depth:	156.40
Purpose of hole:	TEST FEEDER MINERALIZATION	
Hole status:	DRILLED TO DEPTH	
Comments:	LZ: 115.1 - 115.6 M,	

*** SURVEYDATA *** Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-41.00
26.82	253.00	-40.40
57.30	251.70	-41.80
87.78	252.50	-43.10
118.26	253.10	-43.70
148.74	253.50	-44.20

r	****	
		SUMMART LUG
0.00	44.50	1B INTERBEDDED
		SANDSTONE/SILSTONE/MU
-		DSTONE
44 50	47.00	FALLET ZONE
47.00	54 30	184
	04.00	
64 20	57.25	
04.50	57.25	
57.05	59.00	
57.25	04.90	FAULT ZONE TA
29.90	84.90	1A CARBONACEOUS
04.00	107.05	ARGILLITE
84.9U	107.85	MCDAME LIMESTONE UNIT
		1
107.85	115.10	MCDAME LIMESTONE
		RUBBLE BRECCIA
115.10	115.60	LOWER ZONE / LIMESTONE
		RUBBLE BRECCIA
115.60	11 9.00	MCDAME LIMESTONE
		RUBBLE BRECCIA
119.00	130.45	MCDAME LIMESTONE UNIT
		2 BRECCIA

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 156.40 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	19/1/00
Date finished:	21/1/00
Logged by:	C. AKELAITIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation--Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:0.0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Pb %	Zn %
113.70	116.60	2.90	14.48	0.09	0.83

Checked and signed:

130.45	149.80	MCDAME LIMESTONE UNIT
149.80	156.10	
156.10	156.40	
156.40		5 END OF HOLE

Checked and signed:

Page 1	2000
SILVERTIP	UG DRILL LOG

SUD-00-76

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
0.00	44.50	 16 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Interbedded sandstones and laminated mudstones & sittstones with bedding @ 40 degrees to core axis. Sandstone beds range from massive to graded fining-upward sequences up to 50 centimetres wide. Occasional clasts of ripped up mudstone occur within the sandstone beds. Sandstone beds decrease in abundance and thickness with depth. All lithologies range from being non-calcareous to moderately calcareous. Quartz - carbonate veins cross-cut bedding and are oriented at ~ 15 degrees to core axis. Tension gashes are associated with these veins and typically occur between 30-50 degrees to core axis. These veins are up to 1 centimetres wide and commonly contain fine grained pyrite and sphalerite. Pervasive disseminated pyrite becomes more prevelent towards the base of the unit. Overall trace - 1% pyrite. 10.70-11.70 FAULT ZONE Small fault zone consisting of 40% black carbonaceous fault gouge and 60% crushed carbonaceous mudstone and siltatone. In the basal 5 centimetres of the zone, sheared up precess of quartz vein contain minor fine grained pyrite. 22.30-23.80 MUDSTONE / SANDSTONE SILTSTONE interbedded sandstone and laminated mudstone & siltstone, cross-cut by quartz - carbonate veins @ 15 degrees to core axis. Veins contain fine grained pyrite + sphalerite. 8.00-41.70 PYRITIC MUDSTONE / SANDSTONE Interbedded sandstone with laminated mudstone / siltstone. Beds up to 1.5 centimetres and orientated @ 25-50 degrees to core axis. Pervasive diaseminated pyrite throughout, but concentrated in the coarse grained sandstone beds. At 40.25 metres, there it a 7 mm quartz stringer @ 40 degrees to core axis which cross-cuts bedding and contains 10% pyrite, 10% sphalerite. 0veral 5% pyrite, trace sphalerite. 42.45-42.55 QUARTZ VEIN 3 centimetre quartz - carbonate vein @ 15 degrees to core axis. 	18							

SUD-00-76 Page 1

.

Page 2 SIL VER	TIP	2000 UG DRILL LOG							SU)-00-7 0
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
.44.50	47.00	FAULT ZONE Fault zone consisting of 45% black carbonaceous fault gouge and 55% crushed + intact rock. Intact rock within and adjacent to fault zone contains pyrite bearing quartz - carbonate stringers which have been contorted and warped post employement. These stringers appear to lie parallel to bedding, @ 30-50 degrees to core axis. Overall trace ovrite.	FZ							
47 00	54.30	1BA SANDSTONEMUDSTONE SILTSTONE Strongly laminated sandstone / mudstone / siltstone, with laminae 40 degrees to core sxis. Sandstone laminae decrease in abundance towards the base of the interval. Fine grained disseminated pyrite is found throughout, but is concentrated in the coarser grained sandstone bads. Overail, 1-2% pyrite.	1 BA							
54.30	57.25	1A CARBONACEOUS ARGILLITE Strongly carbonaceous argilitie with occasional sittstone laminae @ 45 degrees to core axis. Interval is incompetent and consists of 40% intact rock 60% rubble. 1% disseminated pyrite throughout.	1A							
57.25	58.90	FAULT ZONE 1A Zone is made up of 60% black carbonaceous fault gouge and 40% crushed tragments of argilities, up to 3 centimetres wide. Trace fine grained disseminated pyrite throughout.	1 A							
58.90	64.90	1A CARBONACEOUS ARGILLITE Laminated carbonaceous argilitie and fine grained sittstone. The interval is thicker than normal (26.0 metres), possibly due to a reposited sequence caused by faulting. Laminate are oriented from 20-30 degrees to core axis. Numerous warped and contorted quartz- carbonate verins are present and are dominantly orientated parallel to laminations, and often contain fine grained pyrite and occasionally a trace sphalerite + galena. A later stage of cakits verins cross-cus the earlier contorted verins and are orientated at 20 degrees to core axis, and contain rare fine grained pyrite. Argilite and siltstone proximal to the fault zone above are brecclated and folded. Folding may also explain the unusually thick sequence. The interval is highly incompetent and consists of 40% crushed rock and 60% intact core. The argilitite and siltstone become strongly calcareous from the middle to the base of the interval. 1% fine grained pyrite throughout, trace sphalerite, trace galena.	1A							

SUD-00-78 Page 2

Page	3
CH M	DITC

2000 UG DRILL LOG

• : •

SILVER I	IF									
From	Τα	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (m)	Au grn/t	Ag gm/t	РЬ %	Zn %
64.90	107.85	 80.90-61.90 CARBONACEOUS ARGILLITE Black carbonaceous argilitie with numerous quartz veins up to 3 centimetres, containing fine grained sphalerite, pyrite and galena. Overall 1% pyrite, trace sphalerite, galena. 72.50-74.10 NO RECOVERY 1A 10% recovery due to miss latch. 75.70-77.10 FAULT ZONE Fault zone consising of 70% black fault gouge and 30% crushed carbonaceous argilite. <1% fine grained disseminated pyrite. Poor recovery due to another miss latch (20% recovery). 77.10-84.90 CARBONACEOUS ARGILLITE Carbonaceous argilite, infitrated by numerous (15%) quartz - calcite stringers up to 3 mm wde, parallel to laminae (30 degrees to core axis) which are now warped and contorted. Argilite is weak to moderately calcareous. <1% dissemmated pyrite. MCDAME LIMESTONE UNIT 1 Limestone ranging from amphipora floatstones to packstones and wackestones with minor massive stronatoporids. Fossil beds are orientated 35-45 degrees to core axis. Interval is cross-cut by numerous quartz - calcite stringers (3-5%) @ 15 - 30 degrees to core axis. Calcite stringers cause weak to strong crackle brecciation and occasionality contain fine grained sulphide (dommanity pyrite, lesser chalcopyrite). Styloites are common and orientated parallet to bedding. Fine grained sulphide lines styloites and bleeds into adjacent limestone. Overall trace pyrite, sphalerite, chalcopyrite. galena. 86.80-80.70 CALCITE VEIN I megular, sub-vertical calcite vein up to 1 centimetre wide, bounded by styloites on either side and containing small fragments of limestone, from 3-5 mm wide. Very fine grained sulphide consisting of pyrite and minor chalcopyrite is found within the matrix of the vein and replacing limestone within and adjacent to the vein. Overall 1% pyrite, trace chalcopyrite. 100 50-100.70 CALCITE VEIN Large white spany calcite vein observed pinching into fractures and swells up to 7 centimetres wide and pinches down to 3 mm. 	MLS1							
		Large white sparry calcite vein observed pinching into fractures and swelling into open space. The vein is sub-vertically oriented and swells up to 7 centimetres wide and pinches down to 3 mm. Fragments of adjacent timestone, up to 4 centimetres wide are								

SUD-00-76 Page 3

Page 4 SILVER	TIP	2000 UG DRILL LOG							su	D-00-76
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		found within the vein. Fine grained pyrite (1%), sphalerite (1%) and galena (trace) occur within the matrix and replacing limestone fracments and ediscent limestone.								
107.85	115.10	MCDAME LIMESTONE RUBBLE BRECCIA Variable rubble brecciated limestone, ranging from an earn limestone rubble breccia in the upper 2.5 metres to a limestone rubble breccia with class of limestone, recrystallized limestone and rare earn in the basal 4.7 metres of the interval. The entire interval appears to have been healed and cracitle brecciated by 10% late stage calcite stringers. Styloites are common and dominantly orientated sub-vertically. Fine grained sulphide (dominantly printe) occurs within calcite stringers, lining styloites and replacing breccia matrix and clasts. Overall: 2% pyrite, trace sphalerite, galena, chalcopyrite. 113.70-115.10 LIMESTONE RUBBLE BRECCIA Hanging wai sample. Limestone rubble breccia, as above, with clasts of limestone, recrystallized limestone, partially dolomitized limestone and rare Earn clasts. Clasts range from 1mm - 5cm. Interval is healed and cracide brecciated by 10-15% randomly orientated calcite stringers. Very fine grained sulphide (dominantly pyrite with lesser sphalerite & chalcopyrite) is found lining styloites and replacing breccia matrix and clasts. Overall: 2% origins trace sphalerite, chalcopyrite	MLS	140470	113.70	115.10	0.02	8.60	0.05	0.21
115.10	115.60	LOWER ZONE / LIMESTONE RUBBLE BRECCIA 25 - 30% pyrite - sphalerite massive sulfide and 70 - 75% rubble breccisted imeetone. Limestone rubble brecciss consist of clasts of limestone, dolomitized limestone and recrystallized limestone, and are cross-cut and heated by 5-10% calcite stringers. Massive sulphide consists of coarse grained pyrite, red and black sphalerite and a soft silvery-lead blue-gray mineral. Black sphalerite is found to rim red sphalerite. Sulphides invade into and replace the breccia matrix and clasts along stylolitee and fractures. In addition, some sulphide occurs within calcite stringers. Overall 15% pyrite, 10% sphalerite, trace galeria (?). Contact between massive sulfide and limestone is irregular bud dominantly sul-werical.	Ľ	140471	115.10	115.60	0.02	49.50	0.35	4.15
115. 60	119.00	MCDAME LIMESTONE RUBBLE BRECCIA Limestone rubble breccia with sub-rounded clasts of imestone and dolomitized limestone within a finely ground limestone / carbonate matrix. Clasts range in size from 1mm to 2cm. The interval is						<u>;</u> 		

-

Page 5 SILVERTIP

.

•

2000 UG DRILL LOG

SUD-00-76

.

GILVERU	16								50	0-00-78
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
		competent and has been healed and crackle brecciated by a calcite fluid. Rare sulphides replace matrix and clasts within the breccia. Sub-rounded clasts and finely ground up matrix of this breccia may indicat a tectonic origin (Chria Rees). Overall: trace pyrite. 115.60-116.60 LIMESTONE RUBBLE BRECCIA Footwall sample. Limestone rubble breccia with clasts of ilmestone and doiomitized imestone from 2 mm - 2.5 centimetres wide. The breccia is competent and has been healed and crackle	MLS	140472	115.60	116.60	0.00	5 20	0.01	0 05
		brecciated by a calcite fluid (10% calcite stringers). Very fine grained pyrite is dominantly found in the upper 35 centimetres of the interval and lines stylolites and replaces matrix and clasts within the breccia. Overall: 1% pyrite, trace sphalerite.								
119.00	130.45	MCDAME LIMESTONE UNIT 2 BRECCIA Variably brecciated unit of firmestone ranging from a styolitic to a rubble breccia. Generally styolitic breccias are dominant and grade into and out of rubble breccas zones which are upwards of 40 centimetres wide. Stylolitic breccas consist of clasts of limestone up to 7 centimetres wide, which are completely bounded by stylolites. Rubble breccias consist of sub-rounded clasts of limestone and recrystalized limestone up to 6 centimetres wide within a fine grained carbonaceous lime / earn mud matrix, possibly of paleokarst origin. Numerous stromatoporids are present and make up a large % of the clasts within the breccas. Fine grained sulphide (dominantly pyrite) is found lining stylolites and bleeding into and replacing adjacent limestone. Overall, trace pyrite.	MLS2							
130.45	149.80	MCDAME LIMESTONE UNIT 3 Highly variable interval of limestone alternating between intact dense amphipora packatones and floatstones with minor massive stromatoporids and collapse limestone rubble bracciasa. Numerous intervals of laminated carbonaceous lime mud of paleokarst origin, which are upwards of 60 centimetres wide are found throughout the interval. The orientation of laminae within these intervals is variable and ranges from 20 - 60 degrees to core axis. Limestone collapse rubble bracciasa consist of sub-rounded clasts of limestone and recrystallized limestone and secondary calcits upwards of 30 or more centimetres within a carbonaceous lime mud matrix. This indicates				· · · · · · · · · · · · · · · · · · ·				

SUD-00-76 Page 5

Page 6 SILVERT	'IP	2000 UG DRILL LOG							SUE)-00- 76
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TÓ (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		 that these breccias are likely the result of gravitational collapse into paleokarst caverres. Very fine grained pyrite is found replacing the lime mud matrix and limestone clasts. The lack of sulphide clasts indicates that brecciation was a pre-mineral event. Overall: trace pyrite. 130.45-137.50 PACKSTONE Dominantly intact dense amphipors packstone with minor intervals upwards of 25 centimetres wide of rubble brecciated limestone, as above. Interval is cross-out by 5% calcite stringers @ 20-30 degrees to core axis. 137.50-147.20 LIMESTONE RUBBLE BRECCIA Gravitational collapse limestone rubble breccia and laminated carbonaceous lime / Eam mud, as above. Rubble breccia consists of sub-rounded clasts of limestone, can be upwards of 30 centimetres wide. Subpide is late but fine grained pyrite occasionally replaces clasts of limestone and lime mud matrix. Overall: trace pyrite. 147.20-149.80 PACKSTONE RECRYSTALLIZED LIMESTONE Intact amphipors packstone and lime mud matrix. Overall: trace pyrite. 147.20-149.80 PACKSTONE RECRYSTALLIZED LIMESTONE Intact amphipors packstone and rubitore sais. The upper 80 centimetres of the interval is cross-cut and strongly crackle brecciated by 10% calcite stringers and wers up to 1 centimetre wide. Trace pyrite. 	MLS3							
149.80	156.10	MCDAME LIMESTONE UNIT 4 CRACKLE BRECCIA Euryamphipora floatstone and rudstone with minor massive stromatoporda. Interval has been strongly crackle breccia throughout and contains localised zones of rubble breccia's, up to 30 centimetres wide. Some calcile stringers contain fine grained sulphide and some cross-cut sulphide - filled fractures. Numerous stylohites are found throughout and are commonly lined by fine grained sulphide. Overall <1% pyrite, trace sphalente, galena.	MLS4					-		

SUD-00-76 Page 6

Page 7 SILVERTIP

-

.

,

•

.

2000 UG DRILL LOG

SUD-00-78

From	To	Geological Log	UNIT	SAMPLE	FROM (E)	TO (m)	Au gm/t	Ag gm/t	ж <mark>д</mark>	Zn %
156.10	158.40	MCDAME LIMESTONE UNIT 5 Weakly crackle brecciated amphipora packstones of Unit 5. Contact with above lying Unit 4 is broken. Minor calcite veining and stringers @ 20-30 degrees to core axis.	MLS5							

*** END OF HOLE *** 156.40

SUD-00-76 Page 7

.

-

, .-. --

···

· · · ·

-

.

•

SECTION:65-SS

GRID:SILVER CK S.

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	:CORPORATION
GRID	:SILVER CK S.
MAP REFERENCE	E: 104/O-16W
LOCATION	LIARD MD, BC
HOLE TYPE	UG

 *** COLLAR COORDINATES AND RL ***

 NOMINAL
 43281.00 mN
 24978.00 mE
 1125.00 RL

Pre-collar depth:Final depth:92.40Purpose of hole:TEST LZ EXTENSION FROM 65-
S.Hole status:COMPLETEDComments:Comments:

*** DRILLING SUMMARY ***

	0.00 92.40 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	21/1/00
Date finished:	22/1/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation0.0Top of fresh rock:0.0Water first encountered:0Water inflow estimate:0

- *** SIGNIFICANT ASSAYS *** -

From	То	Width	Ag g/t	Pb %	Zn %
6.00	6.80	0.80	2.10	0.05	0.05

irve	*** S ey Method: REF	URVEYDATA LEX EZ-SHOT	***
	Depth	Azimuth	Inclination
	0.00	250.00	-66.00
	23.77	256.10	-65.60
	54.25	259.90	-65.70
	84.73	260.50	-66.10

- *** SUMMARY LOG *** ----

0.00 4.60	4.60 6.00	FAULT ZONE 1B 1B SANDSTONE / SILTSTONE
6.00	6.80	VEINED
6.80	43.40	1B SANDSTONE /
43.40	56 40	144 CARBONACEOUS
40.40	00.40	ARGILLITE
56.40	71.40	MCDAME LIMESTONE UNIT
		1
71.40	74.80	
74 80	81 70	
74.00	01.70	CRACKLE BRECCIA
81.70	87.60	MCDAME LIMESTONE UNIT
		1
87.60	92.40	
92.40		END OF HOLE

Checked and signed:

Date:

Pa	ge	1		
SIL	VE	R	TI	P

,

2000 VG DRILL LOG

, f

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P0 %	Zn %
0.00	4.60	FAULT ZONE 18 Rubbly, carbonaceous gouge (10%), chips (40%) and broken core <10 centimetres length (50%). 4% irregular quartz - calcite stringers and fracture filling. 2% purite clots associated with the stringers.	FZ							
4.60	6 00	18 SANDSTONE / SILTSTONE Medium grained, massive sandstone beds to 20 centimetres, interfayered with black, fine grained laminated suitstone - poker chip core. Bedding @ 50 degrees to core axis. Sharp, discordant lower contact with guartz - suichde wen / breccia. 20 degrees.	18						 	† ↓
8.00	6.80	VEINED 6.00-6 B0 QUARTZ SULPHIDE VEIN MOSAIC BRECCIA Sharp upper contact @ 20, lower contact @ 40 degrees to core axis, with a quartz-sulphide vein (10% pyrite, 6% sphalenite). The adjacent sandstone is brecciated.	VN	199585	6.00	6.80	0.02	2 10	0.05	0.05
6.80	43.40	18 SANUSTONE / SILTSTONE 6.80-27.30 SANDSTONE / SILTSTONE Typical 18 lithology, comprised of dominantly medium grey, medium to coarse grained massive sendstone, occasionally fining upward and intermittantly calcareous throughout, interbedded with dark grey, laminated siltstone. The sandstone layers range from 5 centimetres - 1.3 metres thick. Bedding @ 50 degrees to core axis. Minor rubbly sections to 40 centimetres, broken along interpulse carbonaceous fortunae. 244 cores. ottling questr	18							
		stringens, 3 mm to 2 centimetres, 20-40 degrees to core axis, with pyrite clots and rare sphalerite. Pyrite also as smears along joints and fractures. 27.30-43.40 SILTSTONE / SANDSTONE PYRITIC Interbedded sittstone and ss; sittstone layers are 1 mm - 3 centimetres, and sandstone beds 2 mm to 2 centimetres thick. Variable bedding angle averages 55 degrees, but folds occure @ 30.0 metres, with the axial plane @ 40 degrees to core axis. Slip movement occurs along the axial plane. Incompetent, poker chip core and one minor carbonaceous gouge interval @ 30.6 metres. (40 centimetres wide). 25% of the core is comprised of chips <3 centimetres. 2% quartz stringers, 2 mm - 1 centimetree.								

SUD-00-7? Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-7
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		cross-cutting @ 20 degrees and parallel to bedding. 5% fine grained pyrite as pyritic sandstone beds to 1 centimetres and clots within stringers.								
43.40	56.40	1AA CARBONACEOUS ARGILLITE Quartz veined upper contact, sub-parallel to bedding with sphalerite - galena - pyrite bands to 3 mm, 85 degrees to core axis. Black, fine grained messive to taminated, strongly carbonaceous argilite and intermittant dark grey sittstore beds or laminations. Incompetent, rubbly core, <5% of the core pieces >10 centimetres in length. Bedding and taminations, @ 80 degrees to core axis, are occasionally contorted (as are quartz stringers). Predominant fractures @ 10 & 40 degrees. 5% quartz +/- calcite stringers, sub-parallel to bedding and also cross-cutting. 6% fine grained pyrite bands to 1 centimetres, discontinouous lenses and clots within and adjacent to quartz. 55.80-56.40 CARBONACEOUS ARGILLITE RUBBLE BRECCIA Narrow zone of rubble brecis adjacent to the unconformity containing sub-angular to sub-rounded argilitie and sittstore clats, tightty packed within a carbonaceous matrix. 4% pyrite clots and to plan them.	144							
56.40	71.40	MCDAME LIMESTONE UNIT 1 Generally unaltered packstone, amphipora-stromataporid floatstone with locally abundant tharmopora (between 68.0-71.0 metree). Layering / fossi elongation oriented @ 55 degrees to core axis. The upper contact tacks mineralization except for rare (1%) pyrite - calcite stringers to 8 mm, @ 55 degrees, sub-parallel to banding. Crackle braccia is weak to nit. Dominant fractures @ 5 & 30 degrees to core axis. Lower contact with recrystallized interval is gradational over 40	MLS1					-		
71.40	74.80	Centimetres. RECRYSTALLIZED LIMESTONE PYRITIC MCDAME LIMESTONE UNIT 1 ?? Pake bluish-grey, finely recrystallized limestone with no remnant fossils. The rock has a wispy look with dark blue-grey wisps and 7% fine grained pyrite wisps and clots, often oriented ~60 degrees to core axis. Any remnant	AMLS							

•

-

Page 3
SILVERTIP

,

2000 UG DRILL LOG

SUD-00-77

.

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
74.80	e1.70	DOLOMITIZED LIMESTONE CRACKLE BRECCIA Medium to dark grey, coarsely crystalline, dolomitized limestone, with approximately 15% only partially or not recrystallized (i.e. From 77.3-78.6 metres which has motified portions that faintly resemble nubble breccia). Brittle fracture with weak to strong crackle breccia, which grades into mosaic breccia between 78.6 - 80.7. (photo). Prominant fractures @ 15, 30.8 50 degrees to core axis. 2% disseminated pyrite along fractures and small tots in the mosaic breccia reolecing dolostone and rimming calcite matrix.	MLSD							
81.70	87.60	MCDAME LIMESTONE UNIT 1 Dominantly packstone, weakly recrystallized, with minor amphipora floatstone. Nil to very weak crackle breccia. At 86.8 m. fracture @ 20 degrees, filled with euhedral quartz crystals. 2-5 mm. Sparse disseminated pyrite and wisps along fractures. 84.70-85.50 DOLOMITIZED LIMESTONE CRACKLE BRECCIA Dark gray, brittle, coarsely crystalline, dolomitized limestone with moderate to strong crackle breccia and 10% critics code	MLS1							
67.60	92.40	MCDAME LIMESTONE LIMIT 2 Top of the main massive stromatoporoid unit, with characteristic abundant stromatoporids, lesser amphipora and intercalated Euramphipora. Fairly unattered - only weak, intermittant crackle breccia. One low angle coarse grained calcite vein / mosaic breccia from 89.2 - 90.5m. <1% pyrite. 89.20-90.50 MOSAIC BRECCIA Low angle to core axis, anastomosing coarse calcite vein / mosaic breccia, possibly a sub-vertical fracture, infilled with calcite and limeatone clasts. <1% pyrite.	MLS2							

*** END OF HOLE *** 92.40

- . · ·

۰.

÷.

.

.

-

. .

.

SUD-00-7." Page 3

-

GRID:SILVER CK S

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	:CORPORATION
GRID	SILVER CK S
MAP REFERENCE	E: 104/O-16W
LOCATION	LIARD, MD, BC
HOLE TYPE	UG

NOMINAL 43337.00mN 24949.00mE 1136.00RL

Final depth:	200.60
TEST FIEEDER	
MINERALIZATION	
COMPLETED	
LZ: 78.2 - 78.5 M, 137.4	4 - 137.9 M
	Final depth: TEST FIEEDER MINERALIZATION COMPLETED LZ: 78.2 - 78.5 M, 137.4

Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-51.00
17.68	252.00	-49.70
48.16	252.20	-50.60
78.64	253.10	-51.10
109.12	253.60	-51.90
139.60	254.10	-52.50
170.08	254.00	-53.00
200.56	253.50	-53.40

!		
0.00	44.00	INTERBEDDED SANDSTONE/SILSTONE/MU
44.00	60.40	1A CARBONACEOUS
60.40	61.20	1AC CALCAREOUS
61.20	63.90	ARGILLITE 1A ARGILLITE RUBBLE
63.90	68.00	BRECCIA ARGILLITE LIMESTONE
68.00	78 20	RUBBLE BRECCIA MCDAME LIMESTONE LINIT
		1 AMPHIPORA PACKSTONE
78.20	78.50	LOWER ZONE MASSIVE
78.50	94.90	MCDAME LIMESTONE UNIT
94.90	1 00.90	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE
60.40 61.20 63.90 68.00 78.20 78.50 94.90	61.20 63.90 68.00 78.20 78.50 94.90 100.90	ARGILLITE 1AC CALCAREOUS ARGILLITE 1A ARGILLITE RUBBLE BRECCIA ARGILLITE LIMESTONE RUBBLE BRECCIA MCDAME LIMESTONE UNIT 1 AMPHIPORA PACKSTONE LOWER ZONE MASSIVE SULPHIDE MCDAME LIMESTONE UNIT 1 AMPHIPORA PACKSTONE MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 200.60 HQ
Drill contractor:	ADVANCED DRILLING LTD
Drill rig:	MINI MYTE MODEL 150
Date started:	23/1/00
Date finished:	26/1/00
Logged by:	C. AKELAITIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation-Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:0.0

- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Pb %	Zn %
77.10	79.50	2.40	105.95	1.34	1.41
102.00	102.20	0.20	2.70	0.03	0.02
136.40	138.90	2.50	37.48	0.96	1.28

Checked and signed:

Date:

GRID:SILVER CK S

100.90	107.60	DOLOMITIZED LIMESTONE
		CRACKLE BRECCIA
107.60	111.80	STROMATOPOROID
		AMPHIPORA FLOATSTONE
111.80	128.50	MCDAME LIMESTONE UNIT
		3 AMPHIPORA PACKSTONE
128.50	130.90	MCDAME LIMESTONE UNIT
		4 EURYAMPHIPORA
		RUDSTONE
130.90	137.40	AMPHIPORA FLOATSTONE
		RUBBLE BRECCIA
137.40	137.90	LOWER ZONE LIMESTONE
		RUBBLE BRECCIA
137.90	180.70	MCDAME LIMESTONE UNIT
		5 AMPHIPORA PACKSTONE
180.70	187.10	MCDAME LIMESTONE UNIT
		5 DOLOMITIZED
		LIMESTONE CRACKLE
		BRECCIA
187.10	200.60	MCDAME LIMESTONE UNIT
		5 AMPHIPORA PACKSTONE
200.60		END OF HOLE

.

÷

Page 1	
SILVERTIP	

.

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	Рb %	Zn %
D.00	44.00	 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Interbedded sandstone and laminated silfstone/mudstone, with bedding at 40 - 50 degrees to core axis. Cross-bedding and soft sediment deformation features are observed throughout the interval. Beds are dominantly non-calcareous, however, weakly to strongly calcareous beds are present. Sandstone beds throughout range from being massive to fining upwards and are up to 80 centimetres thick. Ripped up clasts of mudstone up to 5 centimetres wide are occasionally found in the basal portion of sandstone beds. Quartz and calcite vens are found throughout the interval and are orientated parallel to bedding at 10 - 20 degrees to core axis. Fine grained sulphide, dominantly pyrite and lesser sphalerite, is found within some of these vens. Pyrite is also found as nodules and as disseminated cubes within the Earn group sediments. Core becomes strongly incompetent towards the base of the interval. Overall 1 - 2 % pyrite, trace sphalerite. 10 -11.10 FAULT ZONE Fault zone consisting of 40 % black carbonaceous fault gouge and 60 % intact and crushed rock of unit 1B. Numerous contorted quartz-carbonate stringers are present within intact rock in the upper 20 centimetres of the interval. 1 - 2 % fine grained disseminated pyrite is found throughout the interval. 20.00-20.50 SANDSTONE Fine grained sandstone, fractured and cross-cut by 10 % quartz-calcite stringers and tension gashes orientated at 50 to 70 to core axis. Fine grained pyrite. 23.30-23.35 QUARTZ VEIN 7 mm wide quartz-carbonate vein at 40 to core axis. Vein contains 20 % fine grained pyrite. 26.50-30.90 LAMINATED SILTSTONE / SANDSTONE Very incompetent section of laminated sandstone, carbonaceous fault gouge is mudstone and siltstone. Interval consists of 80 % rubble and 20 % intact rock. A small section of black carbonaceous fault gouge is pyrite. 	18							

SUD-00-78 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SUI	D-00-78
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		disseminated pyrite is found throughout the interval and appears to be concentrated in the coarser sandatone laminae. Overall 3 % pyrite. 30.90-34.40 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Sandatones interbedded with laminated siltstones and mudstones. Beds are up to 2cm wide and are orientated at 50 degrees to core axis. Interval is incompetent and breaks parallel to bedding. 3 - 4 % pyrite is found throughout the interval. 34.40-42.10 LAMINATED SILTSTONE / SANDSTONE incompetent section of laminated sandstones, siltstones and carbonaceous mudstones. Interval consists of 70 % broken nubble, 15 % intact rock and 10 % black carbonaceous fault gouge. Laminae are at 70 degrees to core axis and are up to 1 centimetre wide. Fine-grained pyrite is found throughout the interval and is concentrated in the coarser sandstone beds. Overall, 5 % pyrite. 22.10-44.00 INTERBEDDED SANDSTONE SaNDSTONE/SILSTONE/MUDSTONE Sandstone and carbonaceous mudstone beds are present and are upto 1.5 centimetre wide. These beds contain up to 80 % fine grained disseminated pyrite. Overall, 4 % pyrite.								
44.00	60.40	1A CARBONACEOUS ARGILLITE Incompetent carbonaceous argitite consisting of 50 % intact rock, 30 % rubble and 20 % fault gouge. Numerous contorted and warped quartz-carbonate stringers (10 -15 %) are found throughout, orientated parallel to laminae al 40 - 60 degrees to core axis. Rare calcite veins up to 3 centimetres wide are also present and create local zones of mosaic brecciation with clasts of earn up to 1.5 centimetres wide, within a calcite matrix. Pervasive fine grained disseminated pyrite is found within quartz-carbonate stringers and throughout earn group sediments. Overall 3 - 4 % pyrite.	1A							

2000 LIG DRILL LOG

SUD-00-78

, 1 4

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pb %	۲л %
	+	Incompetent carbonaceous argilite consisting of 60 % rubble, 10	+				+			 -
	1	15 % intact rock, and 25 - 30 % carbonaceous fault gouge.								
	Į	zones are up to 30 cantimetres wide. 3 % fine grained	l	[ļĮ		l i		l	
		disseminated pyrite is found throughout.		1						
		3 Sightly more competent interval of carbonaceous argillite with	ļ							
		rare	i							
ļ	ļ	sancesione and sitestone laminae at 50 to core axis. Fine grained pyrite is found throughout the interval but is concentrated within	ļ						,	
		the coarser grained sandstone beds. Overall, 3 % pyrite.								
!		Fault zone consisting of black carbonaceous fault gouge and	ĺ							i
		arguilite rubble. 4 % fine grained disseminated pyrite is found					i			
		54.30-60.40 CARBONACEOUS ARGILLITE								
		Broken up carbonaceous argillite with occasional sitistone	ļ							!
	[laminae, interval contains numerous contorred and warped quartz-carbonate stringers operated parallel to laminae at 50					Í			
	1	degrees to core axis. 3 % fine grained pyrite found throughout.							$ \longrightarrow $	
60.40	61.20	1AC CALCAREOUS ARGILLITE Finally laminated fine-grained calcageous murtistone and sittstone with							1	
		5 - 10 % calcite stringers at 25 and 60 degrees to core axis Interval is								
}		competent and contains 5 % pervasive fine grained disseminated					Í			
		60.40-61.20 CALCAREOUS ARGILLITE	1AC					ŀ	}	
* 	1	Finely laminated calcareous mudstone and siltstone with 5 - 10 %			1				- 1	
İ		and contains 5 % pervasive fine grained disseminations pyrite.								
61.20	63.90	1A ARGILLITE RUBBLE BRECCIA	1A		+	_	-+			
ł	1	Hydrothermal collapse rubble breccia consisting of angular clasts of							1	
		calcite matrix. Sulphide is rare within the interval, however, very fine			1	1				
		grained pyrite is found within the matrix of the breccia. The lack of		1			ł			
		I supplies within the braccial indicates that the hydrothermal fluids responsible for the bracciation were either baren or spent of subhide.								

SUD-00-78 Page 3

Page 4 Silver	TIP	2000 UG DRILL LOG							su	D-00-78
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grn/t	Pb %	Zn %
63 90	68.00	ARGILLITE LIMESTONE RUBBLE BRECCIA Hydrothermal collapse rubble breccia as above but with clasts of inhified Earn and limestone up to 10 - 15 centimetres wide. Limestone	MLS						 	
		clasts gradually become more abundant towards the base of the interval. A trace of fine grained pyrite is found within the breccia matric.		1	ĺ					
68.00	78.20	MCDAME LIMESTONE UNIT 1 AMPHIPORA PACKSTONE Limestone ranging from amphipora packstones to wackestones with minor stromatoporids and themnopora throughout. Fossil beds are orientated at 40 - 60 degrees to core axis. Rare zones of styolific and rubble braccials, up to 50 centimetres wide are present. Numerous styolites, occasionally lined by fine grained pyrite, are orientated parallel to fossil beds. 10 %, randomly orientated, quartz-carbonate stringers cause local zones of moderate to strong crackle brecciation. Overall trace pyrite. 70.00-70.10 LIMESTONE/ARGILLITE RUBBLE BRECCIA Collapse rubble breccia with clasts of dark grey to black argilitie up to 4 centimetres wide within a laminated carbonaceous lime mud matrix. Lamines are at 35 to core axis. 72.35-72.40 MASSIVE SULPHIDE VEIN 1.5 centimetres wide pyrite, sphalerite massive sulfide vein with 20 % quartz-carbonate gangue. Vein is orientated at 40 to core axis. 75.00-75.30 LIMESTONE STYLOLITIC BRECCIA Styolitic breccia with clasts of limestone up to 3 centimetres wide, bounded by styolites. 75.00-75.30 LIMESTONE STYLOLITIC BRECCIA Styolitic breccia with clasts of limestone up to 3 centimetres wide, bounded by styolites.	MLST	140473	77.10	78.20	0.00	1.60	0.01	0 02
78.20	78.50	LOWER ZONE MASSIVE SULPHIDE Manto style pyrite, sphalerite, galena massive sulfide with 5 % relict limestone and 10 % open space fill quartz-calcite. Massive sulphide consists of fine grained pyrite with lesser sphalerite overprinted by later margine grained pyrite with easer sphalerite are repre-	LZ	140474	78.20	78.50	0.01	831.70	10.65	11.14

Page 5	
SILVERTIP	

.

.

2000 UG DRILL LOG

8

SILVERI	nP	OG DRILL LOG							SU	0-00-78
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Žn %
79.60		coarser grained mineralization is found in association with open space fill quartz-calcite. A very fine grained, massive, soft, lead grey mineral is present, possibly massive galena? Weak sphalerite, pyrite banding is observed and is orientated at 40 to core axis. Overall, 45 % pyrite, 20 % galena, 20 % sphalerite. Contacts with above and below lying limestone are sharp and at 40 and 80 degrees to core axis respectively.								
78.50		 Warable limestone ranging from amphipora packstones and wackestones in the upper and basal portions of the interval to tharmopora and stromatoporoid floatstones in the mid-portion of the interval. 3% calcite stringers up to 4 mm wide cause local zones of weak to moderate crackle brecciation. Crackle brecciation is strongest In the upper 5 metres of the interval. Rare zones of limestone ubble breccia's contain trace amounts of fine grained pyrite which is found replacing the breccia matrix. Styolites are found throughout the interval and are occasionally lined by fine grained sulphide. Overall, trace sphalerite. 78:50-79:50 CRACKLE BRECCIA PACKSTONE Footwall sample. Incompetent interval of amphipora packstones and wackestones consisting of 50 % nobble and 50 % intact rock. 5 % calcite stringers cross-cut and strongly crackle brecciate the interval. Fine-grained pyrite is found throughout the interval. 87:30-88:20 LIMESTONE RUBBLE BRECCIA Westone up to 2 centimetres wide within a lime mud matrix. Trace amounts of fine grained sulphice. Overall, strong stroles and bleeding into and replacing limestone. Overall, strong stroles and bleeding into and replacing limestone. 	MLS1	140475	78.50	79.50	0.00	3.00	0 01	0.02

SUD-00-78 Page 5

Page 6 SILVER	riP	2000 UG DRILL LOG							SU	D-00-78
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gmvt	Ag gm/t	РЬ %	Zn %
94 90	100.90	 MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Stromatoporoid floatstones and rudatones with occasional hyplasma throughout. 2 - 3 % calcite stringers, orientated sub-vertically, are present and cross-cut the limestone causing local zones of weak to moderate crackle bracciation. Crackle bracciation is strongest in the basal 2 metres of the interval. Stypolies within the interval are commonly lined by fine grained subhide including pyrite, galena and sphalerite. Subhide is found bleeding into and replacing adjacent limestone to form blebe up to 5 mm wide. Overall, < 1 % pyrite, trace galena, trace sphalerite. 87.80-97.85 MASSIVE SULPHIDE VEIN 97.80-97.85 MASSIVE SULPHIDE VEIN 98.90-100.90 STROMATOPOROID FLOATSTONE Strometoporoid floatstone partially recrystallized to a fine grained sugary texture. 3 - 5 % calcite stringers have strongly crackle breciated the interval. Stypiles throughout, are lined by fine grained sugary texture. 3 - 5 % calcite stringers the strongly crackle bracciation into and replacing adjacent limestone causing local zone, and sugary texture. 3 - 5 % calcites throughout, are lined by fine grained sulphide including pyrite, sphalerite and galera. Sulphide is found the interval. Stypiles throughout, are lined by fine grained sulphide including pyrite. 	MLS2							
100.90	107.60	DOLOMITIZED LIMESTONE CRACKLE BRECCIA Strongly crackle bracciated dolomitized limestone which grades into and out of zones, up to 20 centimetres wide, of mosaic and rubble breccia's. Relict, highly strained limestone is present and is being squeezed between and around dolomite clasts. Highly strained limestone may be a feature of Jurassic deformation. Fine-grained sulphide, dominantly pyrite, is present and is observed replacing limestone and dolomite clasts throughout. Sulphide is also found as blebs within calcite veins and stringers and lining styolites. Overall, 2 % pyrite, trace galena, trace sphalerite, 30 % calcite. 102.00-102.20 DOLOMITIZED LIMESTONE MOSAIC BRECCIA Crackle to mosaic brecciated, dolomitized limestone with 20 % pyrite found within calcite stringers and veins and replacing dolomitized limestone clasts. Overall, 20 % pyrite, 30 % calcite, trace galena, trace sphalerite, 50 % dolomitized limestone.	MLS2	140476	102.00	102.20	0.01	2.70	0.03	0.02

Pa	98	7	
SIL	vi	R.	rie:

2000 UG DRILL LOG

£

									30	0-00-70
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P10 %	Zn %
107.60	711.80	STROMATOPOROID AMPHIPORA FLOATSTONE Intact and unaltered stromatoporoid, amphipora floatstones and rudstones. 2 % calcite stringers cause local zones of weak crackle breccistion, and rarely contain fine grained pyrite. From 109.2 metres 109.5 metres there is a limestone rubble breccia with sub-rounded clasts of limestone and secondary calcite up to 1 centimetre wide. This breccia is clast supported and contains numerous styolites, a few	MLS2							
111.80	128.50	Or which are lined by the grained pyrite. Overall, pace pyrite. MCDAME LIMESTONE UNIT 3 AMPHIPORA PACKSTONE Variable, amphipora packstones, floatstones and rudstones with minor massive stromatoporids. Fossil beds are orientated at 40 - 60 degrees to core axis. 10 % paleokarst cavems up to 20 centimetres wide, are present and are filled with faminated carbonaceous lime mud. Clasts of limestone up to 5 centimetres wide are commonly found within these paleokarst cavems, creating small local zones of rubble brecciation. Numerous styolites, rarely lined by fine grained pyrite, are present and orientated parallel to fossil beds. 113:30-114.10 LIMESTONE RUBBLE BRECCIA Rubble brecciated limestone consisting of sub-rounded clasts of limestone up to 3 centimetres wide. Interval has been overprinted by weak-moderate crackle brecciation caused by 3 % calcite stringers. Numerous styolites, occasionally lined by fine grained pyrite, are present.	MLS3							
128.50	130.90	MCDAME LIMESTONE UNIT 4 EURYAMPHIPORA RUDSTONE Euryamphipora rudstones with minor massive stromatoporids and thamnopora. Interval contains 60 % paleokarst cavems filled with laminated carbonaceous lime mud and clasts of limestone up to 10 centimetres wide. Sphalerite, galena and pyrite are found lining styolites and partially replacing the matrix and clasts of these breccais. Overall, 1 % pyrite. < 1 % sphalerite, < 1 % galena. 129:00-130.10 LIMESTONE RUBBLE BRECCIA Limestone rubble breccia with clasts of limestone up to 10 centimetres wide within a carbonaceous lime mud matrix. Sulphide (pyrite, sphalerite, galena) as found lining styolites and replacing the matrix and clasts of this breccia. Overall, 1 % pyrite.	MLS4							

SUD-00-78 Page 7

Page 8 SILVER1	ΠP	2000 UG DRILL LOG							SU	D-00-78
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	T O (m)	Au gm/t	Ag gm/l	РЬ %	Z⊓ %s
	†• •	< 1 % galena, < 1 % sphalente,	1	<u>+-</u>	<u> </u>			+	+	
130 90	137.40	AMPHIPORA FLOATSTONE RUBBLE BRECCIA Rubble brecciated limestone consisting of clasts of limestone and secondary calcide from 3 mm wide to large blocks of amphipora floatstones, packstones and rudstones up to 30 centimetres wide. Large blocks of limestone have been rotated, as fossil beds are randomly orientatied from one block to another. Blocks and clasts of limestone are found lying within a matrix of carbonaceoue lime mud. Numerous styolites are present throughout and are commonly lined by fine grained sulphide (dominantity pyrite with lesser sphalerite and galena). Sulphide is replacing brecclasted clasts and matrix. Overall, 1 % pyrite, trace sphalerite, trace galena. 138.40-137.40 RECRYSTALLIZED LIMESTONE Hanging will sample. Coarsely recrystallized limestone with local zones of limestone rubble brecclasto of necrystallized limestone within a dark grey lime mud matrix. Styolites, proximal to brecclasted zones are lime by fine grained sulphide, dominantly pyrite. Sulphide is found bleeding into and replacing limestone and brecclasted limestone clasts. Overall, 1 % pyrite.	MLS5	140477	138.40	137.40	0.90	1.80	0.16	1,16
137.40	137.90	LOWER ZONE LIMESTONE RUBBLE BRECCIA Masaive sulphidefimestone rubble breccia containing sub-rounded clasts of imestone and recrystalized imestone up to 10 centimetres wide within a finely ground limestone matrix. Sulphide is found lining styolites and replacing the matrix and clasts of the breccia. Large clasts of galena, sphalerite, and pyrite rich massive sulfide up to 5 centimetree wide are present within the breccia. Whether these are actual clasts of limestone or selective replacement of pre-existing limestone clasts by sulphide is questionable. Overall 50 % limestone. 20 % pyrite, 15 % calena, 15 % sphalerite. MCDAME LIMESTONE UNIT 5 AMPHIPORA PACKSTONE Variable LIMESTONE UNIT 5 AMPHIPORA PACKSTONE	L Z	140478	137.40	137.90	0.02	178 20	4.31	3.61
		variacie timestone ranging from unaltered amphipora packstones and floatstones with minor stromatoporids to recrystallized and dolomitized limestone. Brachiopods are present throughout with nice examples of stringeocephalids (thick shelled brachiopods) from 170.1 metres -				;				

Page 9 SILVERTIP	2000 UG DRILL LOG							SL	ID-00-78
From To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
	 170.5 metres. Fossil beds throughout the interval lie at 30 - 50 degrees to core axis. Numerous styolites are onentated parallel to fossil beds. Laminated carbonaceous lime mud and blocks of brecciated limestone are observed in the upper 3 metres of the interval. 5 % calcits stringers cause local zones of crackle brecciation. Crackle brecciation is strongest in the dolomitized sections of the interval. Fine-grained sulphide dominantly pyrite is occasionally observed lining styolites, filling fractures and within calcite stringers. Overall < 1 % pyrite, trace sphalerite, brace galena. 137 90-138.90 AMPHIPORA PACKSTONE Footwall sample. Amphipora packstone with 3 % randomly orientated styolites, lined by fine grained sulphide including 2 % pyrite, < 1 % sphalerite, trace galena. 139.20-140.40 LIMESTONE RU88LE BRECCIA Rubble brecciated limestone consisting of blocks of imestone up to 20 centimetres wide within a matrix of dark gray carbonaceous lime mud. Trace amounts of fine grained pyrite are observed liming styolites and replacing the matrix within this breccia. 143.80-144.30 CRACKLE BRECCIA DOLOMITIZED LIMESTONE Dolomitized limestone strongly crackle brecciated by 20 % calcite stringers and veins. From 143.9 metres - 144.0 metres the interval is mosaic brecciated with angular clasts of dolomite and relict limestone up to 3 centimetres wide within a calcite matrix. 145.70-158.40 RECRYSTALLIZED LIMESTONE Variable, fine to coarsely recrystallized limestone with 10 % relict unattered amphipors, stromatoporoid floatstones. At 154.2 metres there is a 7 mm wide fracture at 30 to core axis filled with secondary calcite and pyrite. From 155.8 metres - 156.0 metres fine grained pyrite is observed replacing recrystallized limestone and forming biebs up to 5 centimetres wide. Overall, < 1 % pyrite. 	MLS5	140479	137 90	138.90	0.01	2.80	0 09	0.23

SUD-00-78 Page 9

Page 10 SILVERT	ri#	2000 UG DRILL LOG							SU)-00-78
From	Ta	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
180.70	187.10	MCDAME LIMESTONE UNIT 5 DOLOMITIZED LIMESTONE CRACKLE BRECCIA Britle dokomitized timestone, crackle brecciated by 15 % calcite stringers and veins orientated from 10 - 20 degrees to core axis. Interval consists of 50 % rubble and 50 % intact rock. Local zones of mosaic breccia's up to 15 centimetres wide are present and contain angular clasts of dokomite within a calcite matrix. From 186.5 metres - 188.7 metres fine grained pyrite is found within calcite stringers and replacing dokomitized limestone clasts. Overall < 1 % purits	MLS5							
187.10	200.60	MCDAME LIMESTONE UNIT 5 AMPHIPORA PACKSTONE Amphipore, stromatoporoid packstones and floatstones with lesser thin shelled brachiopods. Styolites are found throughout the interval at 40 - 50 degrees to core axis. Basel 3 metres of the interval has been bleached and partially recrystalized and displays a foliation, defined by elongated fossils, at 70 to core axis. Rare bands of fine grained pyrite are found orientated parallel to this foliation. 2 - 3 % calcite stringers cross-cut the interval and cause localised zones of moderate crackle brecclation. At 197.3 metres there is a 5 mm wide massive suifide vein at 30 degrees to core axis which contains pyrite and sphalerite. Overall < 1 % pyrite, trace sphalerite.	MLS5							

*** END OF HOLE *** 200.60

.

106.68

1**37.16**

167.64

198.12

SECTION:91-S

-67.80

-67.80

-68.80

-69.30

GRID:SILVER CK S.

PROJECT CODESILVERTIPTENEMENTSILVERTIP MININGPROSPECTCORPORATIONGRIDSILVER CK S.MAP REFERENCE:104/0-16WLOCATIONLIARD MD, BCHOLE TYPEUG					
*** COLLAR COORDINATES AND RL *** NOMINAL 43282.00mN 24983.00mE 1125.00RL					
Pre-c	ollar depth:	Final	Final depth: 200.30		
Purpo	se of hole:	TEST EAST	EAST SILVER CK S.		
Hole :	status:	COMPLETE	PLETED		
Comments:		LZ: 104.5-10 120.9-124.0,	7.4, 113.9-114 139.8-140.4 M	.5,	
*** SURVEYDATA ***					
Survey Method: REFLEX EZ-SHOT					
	Depth	Azimuth	Inclination		
	0.00	98.00	-67.00		
	15.24	99.60	-65.90		
	45.72	96.40	-66.80		
	76.20	96.40	-67.50		

94.60

95.60

97.30

98.30

*** DRILLING SUMMARY ***

	0.00 200.30 HQ
DRILL	
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	23/1/00
Date finished:	27/1/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole: NONE Base of complete oxidation 0.0 Top of fresh rock: 0.0 Water first encountered: 0.0 Water inflow estimate: 0.0

-	***	SIGNIE	ICANT	ASSAYS **
---	-----	--------	--------------	-----------

From	То	Width	Ag	Pb	Zn
			g/r	79	70
103.50	108.90	5.40	24.40	0.38	2.14
112.40	116.00	3.60	13.37	0.15	0.04
117.00	118.50	1.50	3.00	0.04	0.01
119.90	134.50	14.60	10.79	0.17	1.04
138.30	141.40	3.10	109.28	1.57	2.57
147.40	149. 90	2.50	13.32	0.22	1.83
155.50	158.00	2.50	20.90	0.38	3.12
173.90	181.50	7.60	39.68	0.60	2.49

*** SUMMARY LOG ***				
0.00	10.10	1B SANDSTONE /		
		SILTSTONE		
10.10	13.80	FAULT ZONE 1B		
13.80	40.40	1B SANDSTONE /		
		SILTSTONE		
40.40	46.40	FAULT ZONE 1AA		
46.40	51.50	1A ARGILLITE SILICIFIED		
51.50	55.80	FAULT ZONE 1A		
55.80	64.30	1BA SILTSTONE /		
		SANDSTONE / ARGILLITE		
64.30	70.90	1A ARGILLITE SILICIFIED		
70.90	73.10	FAULT ZONE 1AA		
		CARBONACEOUS		
		ARGILLITE		
73.10	75.60	1AC CALCAREOUS		
		ARGILLITE		
75.60	79.60	MCDAME LIMESTONE UNIT		
		1 CRACKLE BRECCIA		
79.60	81.10	1A/MLS RUBBLE BRECCIA		
81.10	90.00	LIMESTONE MOSAIC		
		BRECCIA		

Checked and signed:

Date:

HOLE NO: SUD-00-79

GRID:SILVER CK S.

90.00	92.60	YBR DYKE
92.60	93.60	FAULT ZONE 1A
		CARBONACEOUS
		ARGILLITE
93.60	99.70	1AA CARBONACEOUS
		ARGILLITE
99.70	102.80	MCDAME LIMESTONE
102.80	104.50	RECRYSTALLIZED
		LIMESTONE CRACKLE
		BRECCIA
104.50	107.40	LOWER ZONE
		RECRYSTALLIZED
		LIMESTONE RUBBLE
		BRECCIA
107.40	113.90	RECRYSTALLIZED
		LIMESTONE
113.90	114.50	LOWER ZONE MASSIVE
		SULPHIDE
114.50	120.90	RECRYSTALLIZED
400.00	404.00	
120.90	124.00	
		RECRYSTALLIZED
404.00	100.00	
124.00	139.80	RECRYSTALLIZED
120.00	440.40	
139.60	140.40	LUWER ZUNE MASSIVE
140 40	149 40	
140.40	140.40	
		DRECCIA
148.40	148 00	
140.40	140.80	
148 90	156 50	
140.00	100.00	3 STYL OLITIC BRECCIA
156 50	157.00	OWER ZONE MASSIVE
100.00	101.00	SUI PHIDE RUBBLE
		BRECCIA
157.00	174 90	LIMESTONE BRECCIA
174.90	176 10	LOWER ZONE MASSIVE
		SUIPHIDE
176 10	200 30	LIMESTONE BRECCIA
200.30		END OF HOLE

,

Date:
Page 1 SILVERTIP

2000 UG DRILL LOG

, t #

				-						
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Augm/t	Ag gm/t	P10 %	Zn %
0.00	10.10	18 SANDSTONE / SILTSTONE Very broken interval with bedding (2) 20 degrees to core axis. Core breaks easily along carbonaceous bedding planes. Angle shallows to nearly 0 degrees adjacent to gouge / fault zone. Bedding disruption adjacent to fault. Lithology is interbedded. medium to fine grained sandstone and siltstone. 3% quartz stringers. 40-60 degrees to core axis, often with small pyrite close (1%).	1B					<u> </u>		
10.10	13.80	FAULT ZONE 18 Low angle to core axis fault zone (15 degrees), comprised of carbonaceous gouge, sandstone chips and broken up quartz - pyrite stringers / clots. 75% recovery. Broken lower contact.	FZ							
13.80	40.40	1B SANDSTONE / SILTSTONE General Description: Moderately incompetent interval of light grey, fine to medium grained sandstone (massive beds. 0.5 - 20 centimetres thick), interbedded with dark grey, fine grained, laminated sittstone. In addition to frequent breaks along bedding, core is also broken along fractures and cross-cutting quartz stringers. 3% quartz stringers, & 20-40 degrees to core axis, have pyrite blebs and fine grained chlorite. Minor gouge, but frequent chip intervals where bedding has been contorted or folded. Pyrite also occurs as fine stringers parallel to and cross-cutting bedding (3%). Base of unit occurs where core becomes strongly carbonaceous. 35:20-35:70 QUARTZ VEIN Bull white, opaque, brittle quartz vein, 40 degrees to core axis, with 5% ourine core	18							
40.40	46.40	FAULT ZONE 1AA Moderate to poor recovery of strongly carbonaceous argillite gouge (20%), chips (50%) and core >4 centimetres in length (30%), 5% quartz rubble, 4% fine grained pyrite stringers and clots. Sharp lower contact, 50 degrees to core axis.	FZ							
46.40	51.50	1A ARGILLITE SILICIFIED Black, massive to laminated argilitie, bedding 22 60 degrees to core axis. 2% parallel and cross-cutting quartz strs; 5% pyrite clots within the quartz and as mm stringers parallel to bedding. Becomes broken / fractured below 49.3 metres.	1 A	_						

SUD-00-79 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-79
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
51.50	55.80	FAULT ZONE 1A Poor recovery of predominantly siliceous argilitie chips, 1-4 centimetres, except at the lower contact where the chips are <1 centimetres and opuge present. 30 decrees to core axis.	FZ			•				
55.80	64.30	1BA SILTSTONE / SANDSTONE / ARGILLITE Interval of soft sediment deformation - ripup clasts of poorty lithified sandstone, situations and argilite in a sity matrix. Frequent pyrite nodules, discontinous bands and disseminations (8%). Sandstone clasts are occasionally calcareous. Faint layering ~60 degrees to core axis. Sity gouge at impulse lower contact.	1 8A		-					
64.30	70.90	1A ARGILLITE SILICIFIED Rubbly to competent, dark grey, thinly laminated, silicified argilite, layering @ 60 degrees to core axis. 10% quartz as conformable bands to 2 centimetree and as contorted to cross-cutting stringers, predominantly with pyrile (5%) wisps and clots within. Fractures lined with powdery calcing costing.	1A							
70.90	73.10	FAULT ZONE 1AA CARBONACEOUS ARGILLITE Interval comprised of calcareous, carbonaceous argilits chips (65%), gouge (15%) and computent core to 5 centimetres (20%). Sharp uccer contact @ 20 degrase to core axis, broken lower contact	FZ							
73.10	75.60	1AC CALCAREOUS ARGILLITE Dark gray and white striped, thinly leminated, calcareous argitite / mudstone, laminations 75 degrees to core axis and often disrupted by irregular calcies veining. 2% discontinous pyrite stringers and small clots in or adjacent to calcite. Sharp lower contact, 60 degrees to core axis, with timestone.	1AC					, , ,		
75.60	79.60	MCDAME LIMESTONE UNIT 1 CRACKLE BRECCIA The combination of weak to strong crackle breccia, plus abundant dissolution along stylolites gives the amphipona rudatone / floatistone and packstones a strong brecciated texture. 15% coarse sparry calcite matrix is often accompanied by pyrite clots (eg. 76.8 metres). Pyrite and calcite occurs as a net-textured replacement of limestone (eg. 79.4 metres). Sharp lower contact, 80 degrees to core ava.	MLS1							
79.60	61.10	1A/MLS RUBBLE BRECCIA Hydrothermal karsted rubble brecces, containing sub-angular argitite and imnestone clasts, faintly graded from fine at the base to large clasts at the tog. Frequent slickens/dex @ 60 dences. Both	1A/M LS						-	

.

r

•

.

.

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ Ж	Zn %
	<u> </u>	pre-karst and syn-karst replacement pyrite present (4%). Irregular lower contact.	+		│ 		•			<u>├</u>
81.10	90.00	LIMESTONE MOSAIC BRECCIA Highly vanable interval that is not strictly a mosaic breccia, but contains all varieties including crackle, mosaic, and rubble breccia, as well as patches of recrystallized limestone and a section with an anastomosing, pyritic YBR-type dyke from 82.3 - 83.2m. One strongly slickensided, coarse grained calcite vein @ 84.7 metres. 10 degrees to core axis. 5% fine grained pyrite as wispy clots along stykolites, replacement blebs in limestone and clots in calcite fracture-filling. Sharp lower contact @ 80 degrees.	MLS							
90.00	92.60	YBR DYKE Pale greenish-grey, medium to fine grained quartz - sencite - pyrite dyke ?? Faint layening @ upper contact, 60 degrees to core axis. Adjacent to the upper contact are rafts of bleached limestone to 8 centimetres. Below 91.8 metres, the rock becomes incompetent and fractured. Lower contact with course is a commissible 85 degrees	YBR							
92.60	93.60	FAULT ZONE 1A CARBONACEOUS ARGILLITE Probable fault zone containing 50% carbonaceous gouge, 30% chips and 20% core <10 centimetres in length.	FZ		+					<u> </u>
93 60	99.70	1AA CARBONACEOUS ARGILLITE Strongly carbonaceous argilities which varies from incompetent, with frequent narrow (1 - 5 centimetres) gouge seams down to 98.1, below which is more competent and suicified. Some soft sediment deformation evident. 6% pyrite disseminations within bands and as clots & wispy stringers. Laminations are variable from 35 - 65 degrees to core axis. Becoming weakly calcareous approching the sharp lower contact, & 60 degrees to core axis.	144							
99 70	102.80	MCDAME LIMESTONE Predominantly amphipora rudstone to floatstone, relatively unattered, with minor crackle breccia. Calcite-filled fractures oriented 5 & 50 degrees to core axis. 1% pyrite along stylolites and fractures. Gradational contact with recrystallized timestone below.	MLS							
102.50	104.50	RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA General Description: Partially recrystallized crackle breccia at the top, gradually becoming totally recrystallized to coarse sparry calcite. Irregular venilets of possible YBR dyke (pale greenish-grey) occur @ 103.55 metres. 4% wispy pyrite stringers predominantly along	AMLS							

SUD-00-79 Page 3

Page 4 SILVÉR1	ſIP	2000 UG DRILL LOG							su	D-00-79
From	Το	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
		styloites. 103.50-104.50 RECRYSTALLIZED LIMESTONE Hanging wall sample, as in general description. 5% wispy pyrite along styloities. Original textures such as breccia is difficult to determine. Sharp lower contact @ 25 degrees with sphalerite vein.		199586	103.50	104.50	0.01	2.10	0.01	0.04
104.50	107.40	 LOWER ZONE RECRYSTALLIZED LIMESTONE RUBBLE BRECCIA. General Description: Zone comprised of 45% massive suifide replacement bands and clots, 10 - 30 centimetres wide, with strongly recrystalized limestone (to coarse spany calcite) interstial to suiphide bands. At the upper contact, faint rubble breccia remnant textures are visible, but its difficult to say definatively for the remainder of the unit. Sphalente-rich at the top, becoming more pyrite-rich towards the base. Minor galena. Overall estimate: 30% pyrite. 10% sphalente, 3% galena. 104.50-105.00 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA 75% massive sulfide, 25% recrystallized limestone rubble breccia. Immediately below the sharp upper contact (25 degrees to core axia), the rubble brecciated limestone contains a recrystallized class that is nearly totally replaced by pyrite in a fine grained sphalerite - galena matrix (10 centimetres). Below is recrystallized limestone with fine sphalerite, 35% sphalerite, 5% galena. Faint layering 35 degrees to core axis. 105.00-106.10 RECRYSTALLIZED LIMESTONE MINERALIZED Motited white and bluish grey, recrystallized limestone, possible remnant nubble breccia texture (?). Three pyrite .35% sphalerite, and bluish grey, recrystallized limestone, possible remnant nubble breccia texture (?). Three pyrite .35% quartz. 106.10-107.40 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA 	LZ	199587 199588 199588	104.50 105.00 106.10	105.00 108.10 107.49	0.02 0.01 0.00	127.60 11.80 39.40	2.17 0.30 0.49	0.68

•

JEVEN									50	10-00-79
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/i	Ag gm/t	РЬ %	Zn %
		remnant imestone is predominantly recrystalitized with sulphide stringers and wispe along stylolites and as small replacement clasts. A faint remnant rubble breccia texture occurs @ 106.75 metree. The sulphides are in a moderately siliceous metrix with a trace chalcopyrite. 55% pyrite. 14% sphalerite, 1% galena, trace chalcopyrite, 10% guartz.						 		
107.40	113 90	RECRYSTALLIZED LIMESTONE General Description: 95% recrystallized limestone to coarse sparry catcite - motified bluish patches are partially silicified. 6% pyrite as wisps along stylolites and suhedrai crystals to 5 mm often adjacent to a stylolite. Trace sphalerite with pyrite. 107.40-108.90 PEPPYSTALLIZED LIMESTONE BDECCIA								
		Footwall sample. Faint, patchy rubble brecca (as low angle fissure-fillings), strong styloites, coarse spany calcide recrystalization, with 8% wispy pyrite replacement along and adjacent to styloites and as cubes to 5 mm within calcite.		199590	107.40	108.90	0.00	1.10	0.01	0.01
		112.40-113.90 RÉCRYSTALLIZED LIMESTONE Hanging wall sample containing massive, recrystallized imestone (now coarse sparry calcite). Intermittant stylolites, no remnant brecca textures. 2% pyrite as small disseminated cubes and wsps along stylolites.		199591	112.40	113.90	0.00	1.00	0.00	0.00
113.90	114 50	LOWER ZONE MASSIVE SULPHIDE 70% massive suffice, 30% remnant, recrystallized limestone. Sulphides are dominantly crumbly, coarse grained cubic to bladed pyrite (65%) with minor sphalerite (4%) and galena (1%). The sphalerite & galena are concentrated in a clot adjacent to the upper contact.	Ľ	199592	113.90	114.50	0.04	73.20	0.81	0.22
114 50	120.90	RECRYSTALLIZED LIMESTONE General Description: Weakly mineralized, strongly recrystallized limestone with patchy, weak silicification. Mottled texture obliterates most remnant textures. Possible crackle to rubble breccia @ 117.0 - 117.4 metree, with strong stylolites from 117.9 - 118.5 metres. 10% pyrite as wispys along stylolites and fine grained clots adjacent. Trace sphalerite, galena. 114.50-118.00 RECRYSTALLIZED LIMESTONE Footwall sample, as in general description above. 117.00-118.50 RECRYSTALLIZED LIMESTONE STYLOLITIC BRECCIA REPRESENTATIVE SAMPLE of weakly mineralized	AMLS	199593 199594	114.50 117.00	116.00 118.50	0.03 0.01	1.80 3.00	0.03	0.00 0.01

SUO-00-79 Page 5

Page 6 SILVERTIP	2000 UG DRILL LOG							SU	D-00-79
From	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pb %	Zn %
	recrystallized limestone. 10% wisps and replacement clots of fine pyrite, again concentrated in and adjacent to styloites. Rare sphalerite and galena clots. Strong styloites throughout; faint breccas texture from 117.0 - 117.3 metres. 119.90-120.90 RECRYSTALLIZED LIMESTONE Hanging waii sample. Contains a small pod of partially replaced mosaic breccia (??) with fine grained pyrite-sphalerite replacing clasts in a calcite matrix. Spotly disseminated and discontinuous pyrite (10%) stringers throughout, roughly 60 degrees tca; 1% sphalerite, 1% galens as coarse grained clots.		199595	119.90	120.90	0.02	9.20	0.14	D.42
120.90 124	0 LOWER ZONE RECRYSTALLIZED LIMESTONE General Description: Increased silicacus massive suffice bands (pyrite, sphalerite & minor galena), 15 - 45 centimetres wide, with recrystallized limestone (45%) in between. Subhides vary from fine, net-textured replacement to fine to medium grained massive to faintly								
	 banded. Minor open-epace fill. Overal estimate: 35% pyrite, 10% sphalerite, 3% galena, 10% quartz. Non-magnetic. 120.90-121.40 PYRITE SPHALERITE MASSIVE SULPHIDE Clotty to banded massive sulfide in a siliceous matrix. Pyrite is fine to medium grained, often net-textured where only partially. 	LZ	199 596	120.90	121.40	0.19	72.10	1.15	4.07
	replaced. Sanding ~ 45 degree to core axis. 55% pyrme, 12% red & black sphalerite, 8% galena, 15% quartz. 121.40-122.80 MASSIVE SULPHIDE / LIMESTONE 35% massive, fine pyrite, sphalerite, and galena, 65% recrystallized limestone. Moderately siliceous, wspy to banded		199597	121.40	122.80	0.12	10.95	0.11	2.11
	sulphides. Minor vugs and open space, but predominantly replacement. 122.80-124.00 MASSIVE SULPHIDE / LIMESTONE. 50% massive sulfide, 50% partially recrystallized limestone. Again, alternating irregular banded (40 degrees) to massive		199600	122.80	124.00	0.06	11.80	0.08	2.96
	summe clots with partially recrystallized, moderately silicified limestone. Minor iron carbonate rimming small vugs. Sulphides are quite fine grained, except for scattered coarse grained, euhedral pyrite crystals. The remnant limestone has pyrite lining abundant hairline fractures. Imegular lower contact. 40% pyrite, 10% sphalerite 2% nalenge 10% quartz							1	

,

,

Page 7 SILVER1	ΠP	2000 UG DRILL LOG							SU	D-00-79	9
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %	
124.00	139.80	RECRYSTALLIZED LIMESTONE MINERALIZED General Description: Strongly altered / recrystallized limestone with 7% massive sulfide bands and stringers (pyrite, sphalente, & minor galena), mm to 15 centimetres wide, generally onented between 40 & 60 degrees to core axis. Previously dolomitized sections are still visible and contain crackle and mosaic breccia from 127 7 - 130.8 metree. Sampled @ 1.5 metres intervals down to 134.5 metres, and although not ore grade - some of the sulphide bands are very analytic right.							-		T
		Sphareite-tail. 124.00-125.50 RECRYSTALLIZED LIMESTONE MINERALIZED Very motiled, marbly-looking timestone. Stylolites, often lined with fine pyrite, are generally oriented 40 - 60 degrees to core axis. Wispy sulphide replacement consists of 6% pyrite, 1% sphalerite and trace galeria. Possible remnant rubble breccia location from 124 5, 124 B, prostne.	AMLS	140501	124.00	125.50	0.01	1.70	0.01	0.30	
		125.50-127.00 RECRYSTALLIZED LIMESTONE MINERALIZED Similar to the previous sample, with increased pyrite replacement.		140502	125.50	127.00	0,12	7 00	0.13	0.1 8	
		Remnant mosaic breccia texture from 126 5 - 126.8 metres. 12% pyrite. 2% sphalerite, trace galena. 127 00-128.50 RECRYSTALLIZED LIMESTONE MINERALIZED Variable interval containing mm hairline stringers of pyrite. sphalerite & galena at the top, mushrooming into a 15 centimetres		140503	127.00	128.50	0.04	13. 60	0 26	1.37	
		wide pyrite - sphalente - galena band, 40 degrees to core axis. This is followed by 50 centimetres of mosaic breccia containing sub-rounded dolomitized limestone clasts, some of which are partially replace by pyrite, sphalerite or galena. A number of clasts appear to be recrystalized limestone, indicating recrystallization was pre-breccia and mineralization.		140504	128.50	130.00	0.0 0	7.50	0.21	0.33	
		128:50-130.00 DOLCMITIZED LIMESTONE MINERALIZED Upper 50 centimetres is recrystallized, marbly-looking limestone with red sphalerite and galena imming styloiftes. Below is crackle breccia (minor mosaic breccia), dolomitized limestone with one massive sphalerite, galena, pyrite stringer, 30 degrees to core axis, 2 centimetres wide. 2% pyrite, 1% sphalerite, 1% galena. 130.00-131.50 RECRYSTALLIZED LIMESTONE MINERALIZED Contruction of the crackle brecci dolomitized limestone down to		140505	130.00	131.50	0.01	4.40	0.07	0.19	

SUD-00-79 Page 7

Page 8 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-79
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Р b %	Zn %
		130.5 metres, below which becomes recrystallized with moderate styloitise and a 10 centimetres pyrite - sphalerite band. Pyrite cubes also occur in clots to 3 centimetres. 131.50-133.00 RECRYSTALLIZED LIMESTONE MINERALIZED Interval has two massive sulfide bands, the first one @ 55 decrees		140506	131.50	133.00	0.01	4.60	0.08	0.45
		 by core axis, 5 centimetres wide of massive to medium grained pyrite, sphalerite & galana. The second band, 70 degrees to core axis, 4 centimetres, contains massive red and black sphalerite with lesser coarse pyrite + galena. 3% sphalerite, 3% pyrite, trace - 1% galena. 133.00-134.50 RECRYSTALLIZED LIMESTONE MINERALIZED Partial recrystallization gives the rock a pseudo-breccia look. Contains one 10 centimetres massive pyrite - sphalerite (galena) band. 60 degrees to core axis, one irregular cyrite - sphalerite pod 		140507	133.00	134.50	0.03	16.40	0.21	1.34
		and the typical mineralization along stylolites (including galena). 5% pyrite, 3% sphalerite, trace galena. Below 134.5 metres, the remaining limestone is weakly mineralized, but to a lesser extent than above. 138.30-139.80 RECRYSTALLIZED LIMESTONE MINERALIZED Hanging wall sample to narrow Lower Zone below. Mottled, marbly, recrystallized limestone, with one carbonaceous slickenside, 30 degrees to core axis. 2% fine grained pyrite, 1% scholarite, and those calons at wine a submit short shorter.		140508	138.30	139.80	0.01	11.20	0.20	0.56
139.80	140.40	LOWER ZONE MASSIVE SULPHIDE 139:80-140.40 BASE METAL MASSIVE SULPHIDE The upper 15 certimetres is rich sphalerite - galena as partial replacement adjacent to a styloite and below is a massive sphalerite - pyrite - galena band. 25 centimetres wide, ~50 degrees to core axis. Irregular lower contact where sulphides are seeping into the limestone below. 35% pyrite, 30% sphalerite, 10% galena.	LZ	140509	139.80	140.40	0.02	487.80	7.09	11.40
140.40	148.40	RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA General Description: Mottled white and pale blue, marbly recrystallized limestone, with patches of less altered limestone increasing downhole. Crackle to mosaic breccia textures evident. The sulphide bands seen in the previous intervals are not present. 1%								

Page 9 SU VERTIP

SUD-00-79

Ŧ

										0-00-13
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		pyrite, trace sphalerite + galena along infrequent stylolites. - 145.85m: 5 centimetres of fine grained, soft sericite (pyrite) schist	AMLS			— 				
		looks like YBR-type rock squeezed into the limestone. 140.40-141.40 RECRYSTALLIZED LIMESTONE		140510	140 40	141 40	0.02	29.30	0.3Z	0.30
		Footwell sample, as in general description. 2% fine grained pyrite, trace - 1 % sphalerite + galena as wisps and small clots adjacent to stylolites.		140511	147.40	148.40	0.01	2.00	0.04	0.01
		147.40-148.40 RECRYSTALLIZED LIMESTONE Hanging wall sample. Strongly recrystallized with a couple of less attened fragments of limestone - look like possible remnant clasta, but farily rounded now. Faint layering @ 60 degrees to core axis. 1% pyrite, trace sphalerite + galena along stylolites.								,
148.40	148.90	LOWER ZONE MASSIVE SULPHIDE 148.40-149.90 PYRITE SPHALERITE MASSIVE SULPHIDE Narrow interval of Lower Zone type mineralization consisting of fine	LZ	140512	148.40	148.90	0.03	60.80	1 01	9.10
		grained to bladed pyrite (60%), fine grained massive sphalerite clots and stringers (25%) and 5% galena. Faint layering 45 degrees to core axis. Upper and lower contacts gradational with discontacts gradational with advance matrix.								
148.90	158.50	MCDAME LIMESTONE UNIT 3 STYLOLITIC SRECCIA General Description: Recrystalized down to 151 t metres below								
		which is only patchy recrystallization, where fossils are identifiable - mainly amphipora, suggesting Unit 3. Very strong styloilitization -> now a styloilitic breccia with weak crackle. Becomes rubble breccia approaching the lower contact with sulphide zone. 1% pyrite mainly								
1		as wisps along styloites. 148-90-149-90 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Footwall sampl. 40% recrystallized imestone to coarse sparry calcite. B0% crackle breccia limestone. Moderate styloites with	MLS3	140513	148.90	149.90	0. 00	0.90	D. 00	0.02
		 1% pyrite, trace sphalerite as weps along styloites. 155 50-156.50 LIMESTONE RUBBLE BRECCIA Hanging wall sample. Predominantly tubble breccia, minor matrix breccia consisting of small angular to sub-rounded limestone and 		140514	155.50	156.50	0.00	1. 10	0.01	0.09
		argillite clasts in both a calcareous muddy matrix and coarse grained, open-space fill calcite. Irregular lower contact with sulphides. 2% wispy and disseminated pyrite, trace mm								

SUD-00-79 Page 9

Page 10 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-79
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
156.50	157.00	sphalerite stringers. LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA 158.50-157.00 PYRITE SPHALERITE MASSIVE SULPHIDE RUBBLE BRECCIA Rubble breccia at the top in calcite cement with sulphidea replacing limestone clasts. The lower half is massive fine grained to bladed pyrite - sphalerite (galena) in a calcareous matrix. Lower contact ~50 degrees to core axis. 35% pyrite, 35% aphalerite 1% calena	LZ	140515	158.50	157.00	0.00	92.90	1.70	15.00
157.00	174.90	LIMESTONE BRECCIA General Description: Complex interval of highly variable breccia types and intermittant recrystallization & dolomitization. Portions have a compressed / shear texture, oriented 50-60 degrees to core axis. The strain + breccia could indicate proximity to a major structure / fault?? At 164.35m, there is a 3 centimetres band, roughly parallel to foliation, comprised of pale green, soft sericite / chlorite, similar to YBR fault rocks?? All braccia types are present. - 172.0 - 174.9m; particularly strong crackle breccia, grading into mosaic breccia with calcite cement. Intermittant strongly carbonaceous styloities. 1-2% fine grained pyrite wisps and stringers, trace sphalerite. 157.00-158.00 LIMESTONE STYLOLITIC BRECCIA Footwall sample. Strongly styloitic, minor carbonaceous larminated sediment at the base of the nubble breccia / massive sulfide, 8% vuggy calcite - filling. 1% pyrite wisps and small cots. 173.90-174.90 DOLOMITIZED LIMESTONE MOSAIC BRECCIA Hanging wall sample. Very strong crackle to mosaic breccia, partially dolomitized limestone. Irregular lower contact with massive sulfide.	MLS	140516 140517	157.00	158.00	0.01 0.00	4.70 1.20	0.10 0.01	0.21
174.90	178.10	LOWER ZONE MASSIVE SULPHIDE 174.90-176.10 PYRITE SPHALERITE MASSIVE SULPHIDE Very sphalerite - rich, comprised of fine grained clots of re-brown to almost orange-brown sphalerite with very fine grained massive pyrite and minor coarser grained pyrite clots: galena present as irregular clots, all in a siliceous matrix. At the top of the interval, remnant crackie to mosaic breccia limestone is present and likely	ιz	140518	174.90	176.10	0.02	219.80	3.01	14.73

Page 11	
SILVERTIP.	

.

~

: •

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gen/t	РЬ %	Zn %
		the host of mineralization. Faint banding towards the lower contact @ 35 degrees to core axis. 45% sphalerite. 35% pynte, 5% galena, 8% quartz.	F			 				+
176.10	200.30	LIMESTONE BRECCIA General Description: Generally similar to the unit above the massive sulfide, is, limestone, strongly brecciated with a dizzying array of breccia textures, patchy dokomitization and rare recognizable fossils. Breccas textures include crackle & mosaic (the 2 most prevalent), rubble and minor matrix breccia. Excellent potential sulphide host, but only one narrow zone of pyrite replacement from 179.7 - 180.5 metres, otherwise subhides are sparse. 176.10-177.10 LIMESTONE CRACKLE BRECCIA Footwall sample. Moderate crackte breccia and stylolites. Fairly sharp upper contact, 35 degrees, with massive sulfide.	MLS	140519	176.10	177.10	0.00	1.40	0.01	0.05
		177.10-178.70 LIMESTONE BRECCIA Variable sample from relatively unattered, followed at a low angle to core axis (20 degrees) a peculiar zone of lenticular fragments to 2 centimetres long, 1 - 2 mm thick, in a mixed calcareous, carbonaceous matrix. Some clay mineral development (2). This is followed by central literative the development (2). This		140520	177 10	178.70	0.00	Ð.70	0.00	0 01
		with moderate crackle breccia. Trace-1% pyrite as disseminations and small clots. 178.70-179.70 LIMESTONE BRECCIA Hanging wall sample. The upper 60 centimetres is rubble		140521	178.70	179.70	0.00	0.70	0.00	0.01
		precisi, containing limestone clasts in a muddy, calcareous matrix; followed by 40 centimetres of crackle breccia dolomitized limestone. Trace - 1% pyrite. 179 20, 180 50 (LIMESTONE MUNEDA) (200)		140522	179.70	180.50	0.01	40.70	1 19	1.40
		35% fine grained pyrite replacement of partially dolomitized limestone accompanied by moderate crackle breccia. Replacement occurs as irregular clots. 180.50-181.50 DOLOMITIZED LIMESTONE BRECCIA Fontwall sample. Dolomitized limestone with crackle to more in		140523	180.50	181 50	0.01	0.80	0.01	0.01
		breccia. Clasts are sub-rounded. 1-2% disseminations and pyrite clots.								

*** END OF HOLE *** 200.30

· · · ·

÷.,

- -

SUD-00-79 Page 11

-

Ξ.

GRID:SILVER CK S

Zn

%

2.89 1.83

0.10 0.38

PROJECT CODE :	SILVERTIP			*** DR	ILLING S	UMMAR	Y ***	
TENEMENT : PROSPECT :	SILVERTIP MI CORPORATIO	NING N	DIAMON DRILL	D	0.00	113.70	HQ	
MAP REFERENCE: LOCATION : HOLE TYPE :	104/O-16W LIARD, MD, BO UG	2	Drill cor Drill rig: Date sta Date fin	itractor: arted: ished:	ADVAN MINEM 26/1/00 27/1/00	ICED DR YTE MOI	ILLING DEL 150	LTD.)
*** COLLAF NOMINAL 4333	R COORDINATI 17.00 mN 2494	ES AND RL ***	Logged Relogge Sample	by: ed by: d by:	C. AKE	LAITIS		
Pre-collar depth:	Final	depth: 113.	70 Material I	eft in ho	le:	NONE		
Purpose of hole:	TEST FEEDE MINERALIZA	ER TION	Base of c Top of fre Water firs	omplete sh rock t encou	e oxidatio : ntered:	n 0.0 NONE		
Comments:	17.48.2 - 55	/ 1 M 69 4 - 69 6 M	Water inf	ow estir	nate:	0.0		
***	CUDVEVDATA	1 m, 00.4 - 05.0 m		*** SIG		IT ASSA	YS ***	
Survey Method: REF	FLEX EZ-SHOT	-	From	То	Width	Ag a/t	Pb %	Zr %
Depth	Azimuth	Inclination				.		
0.00	250.00	-69.00	47.60	56.10	8.50	245.27	4.10	2
22.25	256.60	-71.30	64.30	70.60	6.30	73.19	1.27	1
52.73	262.80	-72.30	85.00	85.20	0.20	11.30	0.02	0
83.21	265.10	-72.70	94.10	94.80	0.70	12.60	0.15	0
113.69	262.30	-73.00						
		J						
51	UMMART LOG							
0.00 30.50	1B INTERBEDD	DED	1					

Checked and signed:

MCDAME LIMESTONE AMPHIPORA PACKSTONE

SANDSTONE/SILSTONE/MU

MCDAME LIMESTONE UNIT 1 SILICIFIED LIMESTONE

LOWER ZONE MASSIVE SULPHIDE LIMESTONE

HETEROLITHIC RUBBLE

LOWER ZONE MASSIVE

CRACKLE BRECCIA AMPHIPORA PACKSTONE

CARBONACEOUS ARGILLITE LIMESTONE **RUBBLE BRECCIA**

END OF HOLE

1A CARBONACEOUS

1A CARBONACEOUS

DSTONE

ARGILLITE

ARGILLITE

BRECCIA

SULPHIDE

FAULT ZONE

30.50

32.10

33.40

47.60

48.20

55.10

64.30

69.40

69.60

99.80

113.70

32.10

33.40

47.60

48.20

55.10

64.30

69.40

69.60

99.80

113.70

Date:

Page 1
SILVERTIP

•

,

2000 UG DRILL LOG

ו 1 1

									00	00-00-0
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (m)	Au gm/l	Ag gm/t	РЪ %	Zn %
0.00	30.50	18 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Sandstone interbedded with laminated sittstone and carbonaceous mudstone. Bedding is at 60 - 70 degrees to core axis. Cross-bedding and soft sediment deformation is occasionally observed throughout the interval. Sandstone beds are rarely calcareous and form fining upward sequences up to 20 centimetres wide. These beds decrease in abundance and thickness with depth. < 1 % quartz-carbonate veins, up to 1 5 centimetres wide and onentated from 15 - 30 degrees to core axis, cross-cut bedding. These veins are commonly found to contain pyrite and sphalerite. Pervasive fine grained disseminated pyrite is present throughout the interval. Overalt. 1 - 3 % pyrite. 0 00-7.90 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Interbedded sandstone and laminated sittstone and mudstone with bedding at 70 to core axis. Sandstone beds within the interval are up to 5 centimetres wide. Interval is 50 % sandstone and 50 % md/st. 2 % fine grained disseminated pyrite is found throughout. 7.90-8.60 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Interval consists of fining upward sandstone beds up to 20 centimetres wide with leaser md/st beds. Three quartz-carbonate veins up to 1.5 centimetres wide are orientated from 15 - 30 degrees to core axis and contain pyrite and sphalerite. Up to 5 % disseminated pyrite cubes are present within sandstone beds. Overalt, 8 % pyrite. < 1 % sphalerite.	18							
		 8.80-9 10 FAULT ZONE Fault zone consisting of black carbonaceous fault gouge and rubble. Interval has been partially healed by quartz and contains 3 % pyrite throughout. 20.70-30.50 LAMINATED SILTSTONE / SANDSTONE Laminated situtones and sandstones with laminae from 70 - 80 degrees to core axis. Sandstone laminae decrease in abundance towards the base of the interval. Interval is weak and breaks parallel to bedding planes into smaller plecae resembling poker this in 20 for an interval is a set of the interval is weak and breaks 								

SUD-00-80 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG	2000 UG DRILL LOG							0-00-80
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
30 50	32.10	1A CARBONACEOUS ARGILLITE Carbonaceous argilite with occasional sittstone laminae at 60 - 70 degrees to core axis. Numerous quartz veins, up to 1.5 centimetres and orientated parallel to bedding, are found within the basal 60 centimetres of the interval. These veins contain up to 50 % pyrite.	1A							+-
32.10	33.40	FAULT ZONE Fault zone consisting of 50 % grey-black fault gouge and 50 % carbonaceous argilitie and buil guartz rubble. Upper 50 centimetres of the zone has been partially healed by pyrite bearing sitica. Overall, 2 % ovrite.	FZ							
33.40	47 60	 1A CARBONACEOUS ARGILLITE Variably broken to silicified and intact carbonaceous argilitis with occasional siltstone and sandstone taminae. Siltstone and sandstone karninse become more abundant towards the base of the interval and are orientated at 70 -80 degrees to core axis. Numerous pyrite bands and contorted quartz stringers are found orientated parallel to bedding. From 42.1 metres - 43.6 metres the interval displays strong soft sediment folding and deformation. 3 - 4 % pervassive disseminated pyrite and pyrite bands are found throughout. 33.40-41.80 SILICIFIED CARBONACEOUS ARGILLITE Variably broken to intact silicified carbonaceous argilite as above. Overall, 3 % pyrite. 41.80-47.50 CARBONACEOUS ARGILLITE Atypical interval of unit 1A with up to 30 % sandstone and siltstone laminations at 80 to core axis. Interval is silicified and weakly calcareous. Soft sediment folding and deformation of sandstone and siltstone beds is observed from 42.1 metres - 43.6 metres and may be the result of coarser grained sandstones and siltstones siumping into a 1A carbonaceous argilite basin from above. 3 - 4 % fine grained disseminated united argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated argilite basin from above. 3 - 4 % fine grained disseminated arging fine fine fine fine fine fine fine fine	1A							
17.00	-	is found throughout the interval.					<u> </u>		ļ	
47.00	48.20	: MCDAME LIMESTONE UNIT 1 SILICIFIED LIMESTONE Hanging wall sample. Strongly suicified and tractured limestone with numerous quartz veins found filling and heating fractures. Upper 20 centimetres of the interval is a limestone rubble breccia with	MLS1	140480	47.60	48.20	0.00	1640	0.03	0.15

Page 3 SILVERT	ΊP	2000 UG DRILL LOG							SU	/D-00-80
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pto %	Zn %
		sub-rounded clasts of limestone up to 7 mm wide healed by quartz-carbonate cement. Bands of light grey laminated earn group sediment up to 2 centimetres wide are found in the basal 10 centimetres of the interval. Bands of pyrite, sphalente and galena are present throughout the interval at 70 to core axis. Overall, 3 - 4 % pyrite, < 1 % sphalente, < 1 % galena.								
48.20	55.10	 LOWER ZONE MASSIVE SULPHIDE LIMESTONE Alternating massive sulfide and amphipora packstones with minor stromatoponds. Overall the interval contains 55 % limestone and 45 % Sulphide. Upper 1.5 metres of the interval is strongly siticified coarse grained pyrite, sphalerite, galena banding at 50 to core axis. Limestone in the upper 30 centimetres of the interval has been rubble to mosaic brecciated. Limestone clasts within this breccia are being partially to fully replaced by sulphide. Beneath this zone, sulphide mineralization is found within localised zones up to 70 centimetres wide of massive sulfide imestone rubble breccia's. Supplied mineralization is found within localised zones up to 70 centimetres wide of massive sulfide limestone rubble breccia's. Sulphide with in these breccia's is found replacing breccia clasts and matrix. Overall, 55 % limestone. % pyrite, 15 % sphalerite, 10 % galena. 48.20-48.90 LOWER ZONE MASSIVE SULPHIDE Strongly silicified coarse grained pyrite, sphalerite, galena massive sulfide with weak sphalerite, pyrite , galena banding at 50 degrees to core axis. In the upper 30 centimetres of the interval a relict rubble brecciated limestone is visible with clasts and matrix within this breccia partially replaced by sulphide mineralization. Overall, 40 % pyrite, 30 % quartz, 15 % sphalerite, 15 % galena. 48.90-49.70 LOWER ZONE MASSIVE SULPHIDE Strongly silicified pyrite, sphalerite, galena massive sulfide as above. Overall, 30 % pyrite, 30 % quartz, 20 % sphalerite, 20 % galena. 49.70-50.70 LIMESTONE CRACKLE BRECCIA Partially silicified imestone crackle brecciated by 5 % calcite stringers up to 5 mm vide. From 50.1 - 50.3 metres Crackle brecciated limestone grades into a zone of mosaic brecciation with silicified and partially replaced imestone clasts within a late calcite matrix. Fine-coarined ovrite is observed realscing in setup. 	LZ	140481 140483 140485	48.20 48.90 49.70	48.90 49.70 50.70	0.00 0.00 0.00	987.90 1392.50 4.40	17 24 23.95 0.04	6.88 8.26 0.04

SUD-00-80 Page 3

Page 4 SilvERTIP	2000 UG DRILL LOG							SU	D-00-8
From	o Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivit	Ag grm/t	Рb %	Zn %
	from 50.2 metres - 50.6 metres. Pyrite appears to be bleeding intr limestone from calcite stringers, fractures and styckles. Overall, 15 % ovnite. 5 - 10 % calcite. 5 % silica. 70 % imestone.	>	140488	50.70	50.90	0.00	466.40	6.96	7 49
	50.70-50.90 LOWER ZONE / LIMESTONE RUBBLE BRECCIA Rubble brecciated limestone with silicified clasts of limestone and rare earn clasts up to 3 centimetres wide within a lime mud matrix. Sphalerite, galena, and pyrite are found throughout, reclaring tracciated limestone clasts and matrix. Overall 15 %	1	140487	50.90	52.00	0.00	2.90	0.01	0.02
	galena, 20 % sphalerite, 20 % pyrite, 40 % limestone, 5 % earn. 50.90-52.00 AMPHIPORA FLOATSTONE Partially silicified amphipora, stromatoporoid floatstone. 2 % calcite stringers, rarely containing coarse grained euhedral pyrite		140488	52.00	53.10	0.00	6.90	0 03	0.25
	cross-cut the interval. Overall, trace pyrite. 52.00-53.10 LOWER ZONE LIMESTONE Weakly silicitied and competent stromatoporoid floatstone with minor tharmopora. Interval is cross-cut by calcite veins up to 1.5 centimetree wide and orientated at 50 degrees to core axis. From 52.7 metree - 52.9 metree there is a zone of black, laminated, carbonacous, line mud. This zone has been infiltrated and mosaic breccisted by calcite. Fine-grained pyrite is occasionally observed lining stypilites. Overalt, trace pyrite. 53.10-53.60 LOWER ZONE / LIMESTONE RUBBLE BRECCIA	I	140489	53.10	53.80	0.00	75.40	0 55	11.46
	Limestone rubble breccia with sub-rounded clasts of limestone up to 4 centimetres wide. Numerous styolites are found throughout and completely bound some limestone clasts. Pyrite, sphalerite, and minor galena mineralization is found replacing pre-existing brecciated limestone clasts and matrix. Sulphide appears to have used styolites to infitmate into the limestone rubble breccia. A late stage calcite fluid is present and cross-cuts both sulphide mineralization and rubble brecciated limestone. Overall, 35 % relict limestone, 10 % calcite, 30 % sphalerite, 25 % pyrite, and a		140490	53.80	54.50	0.00	9.10	0.02	1 11
	Trace or galena. 53.80-54.50 LIMESTONE RUBBLE BRECCIA Limestone rubble breccia as above but with less replacement of limestone by sulphide. Styolites throughout the interval are lined by coarse grained pyrite and sphalerite. Overall, 3 % sphalerite, 2 % pyrite, 95 % limestone. 54.50-55.10 MCDAME LIMESTONE/1A ARGILLITE RUBBLE		140491	54.50	55 .10	0 00	175.90	2.77	2.65

6

Ра	ge 5	
CII	VEDTID	

.

.

.

1 1

SILVER	11 F									0-70-00
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		BRECCIA Heterolithic rubble breccia with 20 % argilite clasts. Pyrite, sphalerite, and galena are observed replacing limestone clasts and breccia matrix. Overall. 5 % pyrite, 5 % sphalerite, 5 % galena, 5 % calotte, 80 % limestone.								
55.10	64.30	CRACKLE BRECCIA AMPHIPORA PACKSTONE Amphipora packstones and floatstones with rare thamnopora and stromatoporids. Linestone is crackle breccated by 10 - 15 % irandomly orientated calcite stringers and veins up to 6 centimetres wide. From 62.4 metres - 63.1 metres the interval is weakly rubble brecciated, and contains clasts of limestone and secondary calcite up to 4 centimetres wide. From 63.4 metres - 64.3 metres there is a large white sparry calcite vein with clasts of limestone and rare pyrite within it. Numerous styolites are present throughout the interval and are occasionally lined by fine grained pyrite. Overall, trace pyrite. 55.10-56.10 AMPHIPORA FLOATSTONE Footwall sample. Weakly crackle brecciated amphipora floatstone with minor thamnopora and massive stromatoporids. Small fractures up to 5 mm wide are common and are filled with rubble brecciated limestone. The matrix of these brecciass has been partially replaced by fine grained pyrite and lesser sphalerite.	MLS1	140492	55.10	56.10	0.00	5.00	0 03	0.67
64.30	69.40	HETEROLITHIC RUBBLE BRECCIA Mineralized heterolithic rubble breccia with clasts of argillite, limestone and rare sulphide up to 8 centimetres wide. The breccia has been healed by white sparry calcite, which has resulted in local zones of mosaic brecciation. Sulphide is present as rare clasts but is more dominantly found replacing the breccia matrix and limestone clasts. The upper 25 centimetres of the interval is fining upwards. Overall, 3 % pyrite, 1 % sphalerite, < 1 % galena, 47.5 % argilite, 47.5 %limestone. 64.30-65.30 MINERALIZED RUBBLE BRECCIA Upper 50 centimetres of the interval is a mineralized, fining upwards, nubble breccia with clasts of argilite and limestone from	MLS	140493	64.30	65.30	0.00	17. 90	0.24	D. 44

SUD-00-80 Page 5

Page6 SILVER1	rip	2000 UG DRILL LOG							sut)-00 -80
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gmvit	РЬ %	Zn %
		< 1mm - 3 centimetres wide. Fine-grained sulphide, dominantly pyrite, is found replacing limestone clasts and breccia matrix. The basal 50 centimetres of the interval has been infiltrated and mosaic brecciated by a late stage white, sparry calcite vein. Overall, 2 % pyrite. 65.30-86.30 MINERALIZED RUBBLE BRECCIA Mineralized rubble breccia with clasts of limestone and argilite up		140494	65.30	66.30	0. 00	49.90	0.74	1.34
		to 7 centimetres wide. Pyrite and lesser sphalerite is found replacing breccia matrix and limestone clasts. Rare clasts of sulphide may also be present. Overall, 2 % pyrite, and 1 % sphalerite.		140495	66.30	87.70	0.00	20.10	0.28	0.43
		60.30-37.70 IMPERPAUED ROBOLE DECEMP Mineralized rubble braccia as above. Upper 50 centimetres of the interval has been infitizated and mosaic braccia to white spany calvits. Subbids is found rentacing braccia matrix and limestone.		140498	67.70	65.60	0. 90	55.20	1.10	1.08
		claste. Overall, 2 % pyrite, 1 % sphalerile. 67.70-88.60 MINERALIZED RUBBLE BRECCIA Mineralized rubble breccia as above. 2 % pyrite, trace sphalerite, trace natere		140497	68.60	69.40	0.00	146.00	2.43	3.53
		63.60.59.40 MINERALIZED RUBBLE BRECCIA Hanging well sample. Mineralized rubble breccia with clasts of argillite, limestone and rare sulphide up to 8 centimetres wide. Sulphide within the interval is found replacing the breccia matrix and limestone clasts. Overall, 4 % pyrite, 2 % sphalenite, 1 % calena.								
69.40	69.60	LOWER ZONE MASSIVE SULPHIDE Coarse grained pyrite, sphalerite, galena, manto style, massive sulfide with 20 % relict limestone. Contacts between lower zone and adjacent mubble bencha's are sharn. The unner contact is at 60 decrees to core	LZ.	140498	69.40	69.60	0.00	787.50	13.68	8.92
		axis and the lower contact is at 80 degrees to core axis. Overall, 20 % limestone, 40 % ovrite, 25 % sphalerite, 15 % galena.			-		ļ			
69.60	99.80	CARBONACEOUS ARGILLITE LIMESTONE RUBBLE BRECCIA Collapse ar/ist nubble breccia healed by a late stage calcite fluid. Interval is vanable in the amount of argillite vs imeatone with limestone clasts being concentrated in the upper 2 metres and basal 7 metres								

.

.

.

2000 UG DRILL LOG

SUD-00-80

ŧ

SILVERI	112										
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	РЬ %	Zn %	
		of the interval. The majority of the breccia consists of tightly packed angular clasts of carbonaceous argilite. Diagenetic pyrtle is found within argilite clasts throughout the interval. Sulphide is rare within the breccia and is concentrated in the upper 1.5 metres and the basal 6 metres of the interval. Sulphide is found replacing the breccia matrix and limestone clasts. Overail, 3 - 4 % pyrite, trace sphalerite, trace	1A	140499	69.60	7D.6 0	0.00	41 20	0.93	3.54	
		galena, 10 -15 % calcite, 15 % limestone, 65 % arginite. 89.60-70.60 MINERALIZED RUBBLE BRECCIA Footwall sample. Mineralized ar/lst rubble breccia with clasts up to 11 centimetres wide. Pyrite, schalerite, and galena are present.					}				
	,	replacing breccia matrix and limestone clasts. Overall. 50 % argillite. 40 % limestone, 5 % pyrite, 1 % sphalente, 5 % calcite, trace galana.		140500	85.00	85.20	0.01	11.30	0.02	0 10	
		65.00-85.20 CALCITE VEIN 12 centimetre wide, white sparry calcite vein found cross-cutting and healing an argillite rubble breccia. Vein contains 30 % pyrite. 15 % sphatente.		140551	94.10	94.80	0.00	12.60	0.15	0.38	
		94.10-94.80 HETEROLITHIC RUBBLE BRECCIA Representative sample of the collapse a/lst tubble breccia with a relatively high degree of sulphide replacement (relative to the majority of the breccia). Sulphide is found replacing the breccia matrix and limestone clasts. Overall, 10 % calcite, 3 % pyrite, < 1 %sphelerite, trace galera, 60 % arglitte, 25 % limestone. 95 40-95 41 BLOCK MISTAKE									
		Drillers have numbered this block as 318 ft (96.9 metres). This block is actually 313 ft (95.4 metres). 96 60-96.90 HETEROLITHIC RUBBLE BRECCIA						:			
		collapse rubble breccia. Argilitie clasts near the base of the interval are up to 2 centimetres wide and clasts at the top of the interval are < 1mm wide. Trace pynte.									
99.80	113.70	MCDAME LIMESTONE AMPHIPORA PACKSTONE Amphipona packstone with localised zones of rubble breccia's up to 70 continuetree wide. Bubble breccia's promist of clasts of limestone and									
		arguitte up to 5 centimetres wide, with minor amounts of subjective and found replacing timestone clasts and breccia matrix. Upper 5 metres									

SUD-00-80 Page 7

Page 8 Silvertip	2	2000 UG DRILL LOG							SU)-00-80	
From	Τo	Geological Log	UNIT	UNIT SAMPL	SAMPLE	PLE FROM (m)	TO (m)	Au gm/t	Ag gm/t	우 5 %	Zn %
		 of the interval is crackle bracciated by numerous calcite stringers and veins up to 10 centimetree wide. Numerous styolites are present throughout the interval and are occasionally lined by fine grained pyrite. Basal 1 metre of the interval has been coarsely recrystallized. 99.80-105.90 CRACKLE BRECCIA PACKSTONE Amphipora packstone with minor stromatoporids and euryamphipora, crackle brecciated by 10 - 15 % calcite stringers and veins up to 10 centimetres wide. From 101.3 metres - 101.7 metres the interval is mosaic brecciated, with clasts of limestone and rare argilitie, up to 3 centimetres wide. with in a coarsely crystalline sparry calcite matrix. Styolites are occasionally lined by fine grained pyrite. 105.90-106.90 AMPHIPORA PACKSTONE Amphipora packatore cross-cut by 2 % calcite stringers and veins at 40 degrees to core axis. 108.90-107.80 HETEROLTHIC RUBBLE BRECCIA Limestone, wild: collapse rubble breccis with clasts. Overall, 1 % pyrite, trace sphalerite, trace gatens. 107.60-112.70 AMPHIPORA PACKSTONE Amphipora packatores. From 110.4 metres - 111.5 metres there is a calcite vein at 5 degrees to core axis which contains sphalerite. 	MLS								
		Amphipora packatone. From 110.4 metros - 111.5 metros there is a calcite vein at 5 degrees to core axis which contains sphalente and pyrite. Overall, 1 % pyrite, trace sphalente. 112.70-113.70 RECRYSTALLIZED LIMESTONE Coarsely recrystallized limestone.				-					

*** END OF HOLE *** 113.70

.

SECTION:65SS

GRID:SILVER CK S

PROJI		SILVERTIP			*** DF		SUMMAR	(Y ***	
TENEI PROS	MENT PECT	SILVERTIP MII	NING N		DIAMOND	0.00	121.30	HQ	
grid Map F Loca ⁻ Hole	REFERENCE TION TYPE	SILVER CK S 104/0-16W LIARD, MD, BC UG	;		Drill contractor Drill rig: Date started: Date finished: Logged by:	ADVAN TRACI 27/1/00 29/1/00 L. LEW	NCED DF FOR DRII)) /IS	RILLING LL MODI	LTD. EL 150
NOMI	NAL 4328	81.00 mN 2497	8.00mE 1125.	OORL	Relogged by: Sampled by:	R. NEY	/		
Pre-co Purpos Hole st Comm	ilar depth: se of hole: tatus: ents:	Final C TEST FEEDE MINERALIZA COMPLETEE NO LZ MINEI	lepth: 1: :R TION N RALIZATION	21.30	Material left in h Base of comple Top of fresh roc Water first enco Water inflow est	ole: e oxidatio k: untered: imate:	NONE 0.0 NONE 0.0	: :	
Surve	y Method: RE	SURVEYDATA	=D ***		From To	Width	Ag g/t	Pb %	Zn %
	Depth	Azimuth	Inclination				<u>+</u>		
	0.00 22.25 52.73 83.21 113.69	250.00 253.30 252.80 254.30 257.00	-41.00 -42.00 -42.60 -43.20 -43.80						
	*** S	UMMARY LOG	***						
0.00	48.80	1B SANDSTON LAMINATED S	IE / ILTSTONE						
48.80 56.50) 56.50) 59.60	FAULT ZONE 1 1A CARBONAC ARGILLITE	IBA CEOUS						
59.60	62.50	FAULT ZONE							
62.50	72 30								
72.30	73.80	1 1AC CALCARE							

Checked and signed:

MCDAME LIMESTONE UNIT

1AC CALCARENITE PYRITIC

MCDAME LIMESTONE UNIT

DOLOMITIZED LIMESTONE

RECRYSTALLIZED LIMESTONE PYRITIC

CRACKLE BRECCIA

RECRYSTALLIZED LIMESTONE PYRITIC

73.80

76.00

76.90

76.00

76.90

105.00 112.70

112.70 113.90

113.90 119.30

105.00

1

1

Date:

.

.

SECTION:65SS

GRID:SILVER CK S

119.30	121.30	DOLOMITIZED LIMESTONE
		CRACKLE BRECCIA
121.30		END OF HOLE

Checked and signed:

Page 1 SILVER1	nP	2000 UG DRILL LOG							SU	D-00-81
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TQ (m)	Au gm/t	Ag gm/t	Рb %	Zn %
0.00	48.80	 18 SANDSTONE / LAMINATED SILTSTONE 0.00-33.50 SANDSTONE / LAMINATED SILTSTONE Dominantly medium grey, medium to coarse grained massive sandstone, fining upward, topped by dark grey laminated siltstone. Sandstone layers range from 5 centimetres to 1 metres thick. Siltstone layers are 5 mm - 5 centimetres thick. Variable bedding angles: 45 degrees (# 6.0 metres, 50 degrees (# 10.8 metres, then flattening to 35 degrees (# 10.8 metres, then flattening to 35 degrees (# 10.8 metres, 10.9 metres, coasional soft sediment deformation and rip-up clasts (eg: 20.5 & 34 5 metres) 2% guartz - calcite stringers to 1 centimetres, cross-cuting and parallel to badding, occasionally containing pyrite clobs parallel to bands. Pyrite also as harline fractures, nodules and flakes along bedding. The siltstone is moderately carbonaceous from the top down to 12.6 metres, and RQD is moderate to poor in this section. Below 12.6 metres, core is much more competent. 33.50-48 80 SILTSTONE / SANDSTONE / CARBONACEOUS ARGHLITE PYRITIC Below 33.5 metres, there are no longer any thick, fining upward sandstone beds - they are now laminated to thinly interbedded dark grey siltstone, pyritic sandstone and occasional carbonaceous argillite. Incompetent core breaks easily along bedding and frequent low angle fractures (5-10 degrees). 2% cross-cuting fractures. Bedding variable from 50 degrees (39.0 metres). 35 degrees (41.0 metres) and 40 degrees (45.2 metres. Base of the unit located where there is increased carbonaceous argillite gouge and chips. 								
	00.00	Incompetent interval comprised of 15% carbonaceous gouge, 40% chips and rubbly core (no piece >5 centimetres). Major gouge is concentrated near the top and bottom broken contacts. The lithology is predominantly carbonaceous argilite, with minor pyritic sandy lanses and thip beds. 5% carbonaceous argilite, with minor pyritic sandy								

SUD-00-81 Page 1

.

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-81
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag genvit	Рb %	Zn %
56 50	59.60	1A CARBONACEOUS ARGILLITE Narrow interval of weakly competent core, massive to vaguely laminated carbonaceous argillite (60 degrees to core axis) with 4% quartz stringers to 2 centimetree, 15 degrees to core axis. 4% pyritic lenses, parallel to bedding.								
59.60	62.50	FAULT ZONE 1A Contorted, broken interval of carbonaceous argilitie containing 20% gouge and 80% chips. 5% broken up quartz rubble, 4% disseminated pyrite and small clots.								
62.50	66.40	TAC CARBONACEOUS MUDSTONE CALCAREOUS Mix of calcarenite and carbonaceous mudstone, thinly laminated to massive, bedding 50 degrees to core axis. Moderately competent, 3% disseminated pyrite. Sharp lower contact, 50 degrees to core axis.								
66.40	72.30	MCDAME LIMESTONE UNIT 1 Predominently intect amphipora floatistone and dense pa; minor massive stromatoporids and stacyodes, weak to nil crackle breccia. Dominant orientation of havine calctle fractures is 25 degrees to core axis. Moderate pervasive silicification approaching fairty sharp lower contract, ~70 degrees to core axis. Trace fine grained pyrite along fractures								
72.30	73.80	TAC CALCARENTE PYRITIC Likely a pre-Earn deposition dissolution cavity / karst within the imeetone, now filled with finely laminated, pyritic calcareous mulatone. The bedding angle varies from 15 - 50 degrees to core axis. 10% fine grained diagenetic pyrite following layering. Weak pervisive silicification. Sharp lower contact, 40 degrees.								
73.80	76.00	MCDAME LIMESTONE UNIT 1 Unaltered, unbrecciated amphipora floatstone. Trace pyrite along calcite fractures. Share lower contact. 60 decrees to core axis.								
76.00	76.90	1AC CALCARENITE PYRITIC Similar karst / cavity infill as described from 72.3 - 73.8 metres. Laminations @ 45 degrees, 8% fine grained disseminated or veguely banded gynte. Sharp lower contact. 35 degrees.								
76.90	105.00	MCDAME LIMESTONE UNIT 1 Wide section of intact Unit 1 timestone with very minor, intermittant crackle breccia. Lithologies include interlayered amphipora packstone, finatione dense packstone and minor massive								

a,

, ,

,

`

2000 UG DRILL LOG

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	Pb %	Zn %
	<u> </u>	stromatoponds. Fossil layering @ 55 degrees. 5% dolomitized intervals to 40 centimetres wide, usually containing calcite veining / crackle breccia. Sulphides rare: trace - 1% wispy pyrite along stytoitee.								
105.00	112.70	RECRYSTALLIZED LIMESTONE PYRITIC Very light grey and light bluish-grey, motted, finely recrystallized limestone, now a fine sugary texture (not the coarse grained recrystalization to sparry catche seen in SUD-00-79). Fossils not identifiable down to 110.6 m; below, amphipora and massive stromatoponds are recognizable. Pyrite is abundant (7%) as fine grained wisps and clots along hairfine fractures and stylolites. Weak to nil crackle breocia.								-
112.70	113.90	DOLOMITIZED LIMESTONE CRACKLE BRECCIA Dark grey, brittle, dolomitized limestone, weak to moderate crackle breccia. Trace fine grained pyrite along fractures.	-						-	
113.90	119.30	RECRYSTALLIZED LIMESTONE PYRITIC Very similar to the unit described from 105.0 - 112.7 metres. Mottled, light grey and blush grey, finely recrystallized irrestone -> now a fine sugary texture. Fossils obliterated. Again abundant fine grained pyrite (7%) as thin, discontinuous wisps and clots, along stylolites, adjacent to calcite clots and mm fractures.								
119 30	121.30	DOLOMITIZED LIMESTONE CRACKLE BRECCIA Brittle, crackle to mosaic breccia, dark grey, dolornitized limestone with 50 centimetres of bleached, recrystallized limestone. Rubbly core. 1% pyrite associated with calcite cement and stringers.				;				

*** END OF HOLE *** 121.30

· · ·

.

.

٠

· -

.

•

*

SUD-00-81 Page 3

-

4

۰.

SECTION:65-N

GRID:SILVER CK S.

PRO.	JECT CODE	SILVERTIP				*** DRI	ILLING S	SUMMAF	(Y ***	
TENE	EMENT	SILVERTIP MI	NING	Г	DIAMON	ID	0.00	116.70	HQ	
PRO	SPECT	:CORPORATIC)N		DRILL					
GRIC)	SILVER CK S.		Γ	Drill cor	ntractor:	ADVAN	ICED DF	RILLING	LTD.
MAP	REFERENC	E: 104/O-16W			Drill rig:		MINI M	YTE SKI	D MODE	L 150
LOCA		LIARD MD, BC	,		Date st	arted:	28/1/00)		
HUL	E IYPE	;UG			Date fin	nished:	29/1/00)		
				_	Logged	by:	C. REE	S		
NON		337.00 mM 240	10 AND AL		Relogg	ed by:				
			+9.00me 1130.00Kc		Sample	d by:	R. NEY			
Pre-c	ollar depth:	Final	depth: 116.70)	Material i	left in ho	le:	NONE		
Purpo	ose of hole:	NORTH DRI	EAN TESTING 17	, E	Base of c	complete	e oxidatio	n 0.0		
		EXTENT			op of fre	esh rock		0.0		
Hole	status:	COMPLETE	נ	1	Vater fir	st encou	ntered:	0.0		
Comr	nents:		F 54.6 - 55.1M	١	Vater inf	low estir	nate:	0.0		
			12. 04.0 - 00. mi	Г		*** SIG	NIFICA		YS ***	
		* SURVEYDATA		1	Ecom	То	Midth	٨	Dh	7-
Surve	ey Method: R	EFLEX EZ-SHO	Г		FION	10	VVICITI	Ag	P0 0/	20 02
	Death	A	Implimentien					yr.	70	70
	Depth	Azimuti	Inclination		53.50	56.70	3.20	14.10	0.03	1.48
	0.0	0 250.00	-60.00		60.20	60.35	0.15	4 60	0.01	0.01
	23.7	7 256.30	-60.00		113,45	113.65	0.20	2,10	0.01	0.01
	94.2	209.20	-61.00							
	115.2	259.90	-01.90	"	<u> </u>					
	[[].Z	200.00	-02.10							
			<u> </u>							
	***	SUMMARY LOG	***							
0.00	29.80	18 LAMINATEI	D							
		SANDSTONE /	SILTSTONE							
29.8	0 32.00	18A LAMINATI	ED							
		SILTSTONE								
32.0	0 54.45		E/SILISIONE							
34.4	5 54.60									
54.6	0 55 10									
55 10	0 55.70		RUBBLE							
	0 00.70	BRECCIA								
55.70	0 60.15	MCDAME LIME	STONE UNIT							
		1								
60.1	5 63.10	1A ARGILLITE	RUBBLE							
		BRECCIA								
63.10	0 74.00	MCDAME LIME	STONE UNIT							
		1								
	0 76.45	CALCITE VEIN								
/6.4	085.90		STUNE UNIT							
85.90	90 40									
00.30	V VV.TV	BRECCIATED								
90.40	92.35	MCDAME LIME	STONE UNIT							
		1								

Checked and signed:

Date:

2000 SECTION:65-N

GRID:SILVER CK S.

92.35	116.70	MCDAME LIMESTONE UNIT
		2
116.70		END OF HOLE

Checked and signed:

Page 1	
CHIVEDTID	

~

.

.

2000 UG DRILL LOG

.

SILVER										
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
D.00	29.80	18 LAMINATED SANDSTONE / SILTSTONE Thickly to thinly laminated medium to fine grained sandstone and darker gray attistone and slaty arguite. Laminae are mm-scale to several centimetres thick, but no thick or coarse sandstone beds. Sandstone laminae are commonly calcareous. Graded bedding common. Uniform bedding, rather good recovery overall. Bedding 48 degrees to core axis @ 2.8 m. 48 degrees to core axis @ 24.0 metres. Very local pyrite laminae. Generality <1% pyrite, locally patches of 3-5%. Broken core between 9.2 - 11.3 metres.	18							
29.80	32.00	1BA LAMINATED SILTSTONE Well and uniformly laminated (<1-3 mm) dark grey siltstone and slate, and minor paler grey fine sandstone. Latter can be gite pyritic, several %, but unit overall about 1% pyrite. Poker chip to guite broken core. Bedding 55 decrees to core axis @ 31.5 metres.	1BA							
32.00	54 45	1AA ARGILLITE/SILTSTONE Generally dark grey to black, very fine grained carbonaceous argillite, slaty argillite and siltstone, with minor laminae (<5%) of paler grey fine sandstone. Somewhat laminated but less well and regularly than previous units. Basically non-calcareous accept for local calcite crackle and rare calcareous laminae. Generally 1-2% disseminated pyrite but can be much stronger (50%) in mm-scale, isolated laminae, lenses, pods and veinlets. These are generally discordant. Recovery is quite good overall, but one is broken in short intervale. Quartz (and much less calcite) crackle and veinlets are locally strong, but und is not brecciated to any degree. Bedding 62 degrees to core axis @ 38.5 metres. 47.50-50.25 SILTSTONE/ARGILLITE SANDSTONE Interval of thinly laminated sittstone - argilite and minor fine grained sandstone which is disrupted by a combination of soft-sediment deformation and tectonic shearing. Discontinuous laminae, especially of sandstone, some minor folding. Bedding at various angles to core axis, including parallel. Generally 2% pyrite overall, with local laminae (1 centimetres thick) with 30%.	144							

SUD-00-82 Page 1

Page 2 SIL VER	TIP	2000 UG DRILL LOG							SU	D-00-82
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gan /t	Pb %	Zп %
		Not calcareous. 50.25-50.85 INTERBEDDED SILTSTONE / ARGILLITE BRECCIATED As above, but with a stronger brittle overptint - micro brecciation, with quartz crackle. 50.85-53.00 CARBONACEOUS ARGILLITE SLATY Very fine grained black carbonaceous slety argilitie with minor quartz veinlets and crackle. Very broken core but not faulted. Weekly pyritic; not calcareous. 53.00-54.45 ARGILLITE CRACKLE BRECCIA Black, very fine grained carbonaceous but silicified. Moderately to strongly crackle veined and brecciated with fine quartz veinlets. True crackle to mild mosaic breccia only in the last 25 centimetree. Non-calcareous. Weekly pyritic - some pyrite in lamines, some in veinlets. Base taken at appearance of McDame limestone fragment. 53.50-54.45 ARGILLITE CRACKLE BRECCIA Some of additional crackle braccia carbonaceous and appearance of McDame limestone fragment.		199818	53.50	54.45	0.00	1 60	0.01	0.02
54.45	54.60	MCDAME LIMESTONE BRECCIATED PYRITC Short ill-defined interval of brecciated, pyritic and silicified rubble (?) breccia of McDame imestone. Has about 3% fine grained pyrite as disaemisted replacement and in variable in fractures.	MLS	199620	54.45	54.60	0.00	6.60	0.04	0.20
54.80	55.10	LOWER ZONE PYRITIC Small, low grade Lower Zone, developed on possibly rubble brecciated McDame. Not solid massive sulphide except for bottom 20 centimetres which comprises fine grained pyrite and probably sphalerite, plus mediam to coarse pyrite and lesser red-brown sphalerite. No visible galena. Remainder is mainly quartz or silicited limestone and lesser calcite. Overall 55% pyrite, 5% sphalerite, 25% quartz, 15% calcite.	LZ	199621	54.60	55.10	0.00	78.70	0.13	9.18
55.10	55.70	1A ARGILLITE RUBBLE BRECCIA Black, tightly packed and well indurated (but no silicified), clast-supported rubble breccia. Clasts are angular, moderately calcareous, black 1A at. Matrix is fine grained, dark grey to almost black Eam-rich but calcareous sediment. Minor calcite crackde veinlets. About 3% fine disseminated pyrite throughout but no replacement mineralization.	1 A	199622	55.10	55.70	0.00	3.10	0.01	0.07

Page 3 SILVER	TI P	2000 UG DRILL LOG							SL	D-00-8
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
55.70	60.15	MCDAME LIMESTONE UNIT 1 Probably unit MLS1A, Narrow rubble breccia contact with unit above, with a 2 centimetres thick band of medium grained pyrite replacement. Thereaffer, most of limestone is dense packatone with areas of Amphipora. Rare fine grained pyrite in blebs or mm-thick stringers along styloittes.								
		Calcite veinlets and crackle common, with some crackle to mosaic breccia between 57.4 - 57.9 metres. This is followed by 30 centimetres of rubble to matrix breccia with minor fine pyrite replacement. More of this between 59.5 and 60.15 metres. 55.70-56.70 LIMESTONE Sample of mainly solid limestone with ~1% fine grained pyrite in blebs and stringers, and the 2 centimetres thick band referred to above	MLS1	199623	55.70	56.70	Ø.00	2.40	0.01	0.05
60.15	63.10	1A ARGILLITE RUBBLE BRECCIA Rubble breccia in limestone above gives way to this unit with appearance of Earn in poorly sorted rubble breccia composing mm - to several centimetres - scale angular fragments of somewhat calcareous 1A argilitie in medium grey matrix of fine to fine grained calcarenite. Small percentage of limestone clasts, mainly at top and bottom contacts. Matrix becomes more carbonaceous and Earn-flour rich in bottom metre where Earn clasts are farger and more fightly packed. About 1% pyrite overall, as rare small clasts (1-8 mm) or as spotty or disseminated replacement of matrix. Largest pyrite concentration is sample below. 60.20-60.35 PYRITIC RUBBLE BRECCIA Mixed Earn and limestone fragments in calcareous-arenite matrix, overprinted by irregular replacement by fine grained pyrite. Pyrite about 25% overall. Party silicified.	14	199624	60.20	60.35	0.00	4 60	0.01	0.01
63.10	74.00	MCDAME LIMESTONE UNIT 1 Probably unit MLS1A, still largely packstone with areas of Amphipora and a few massive stromatoporids. Mostly solid limestone with typical stylolitization and crackle to crackle breccia. Lesser intervals of rubble breccia to stylolitic breccia, e.g.: 63.1 - 63.7m. Local coarse	MLS1							

SUD-00-82 Page 3

Page 4 SILVER	TIP	2000 UG DRILL LOG							ទបរ	D-00-82
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	2л %
<u></u>		calcite veins. 64.25-74.00 MATRIX BRECCIA PYRITIC Weakly laminated, slightly rubbly matrix breccis - calcareous-atenite, with 3% pyrite replacement in mm-scale patches, up to 1 - 3 centimetres long. No Earn or sulphide clasts.								
		Bedding 85 degrees to core sxis. 72.60-72.90 LIMESTONE PYRITIC MINERALIZATION Grey packstone with patches up to 8 X 4 centimetres of very fine grained pyrite replacement. Benerally follows limestone texture, but immediately adjacent to 1 - 2 centimetres thick calcite veries.								
74.00	76.45	CALCITE VEINED Core runs down a subparallel vein of very clean, creamy white and very coarse grained calcite. Vitreous euhedral calcite crystals up to several centimetres across. No sulphides. Some open space. Contact with impetroe well mot visible in part of core, parallel to axis.	VN					ſ		
76.45	85.90	MCDAME LIMESTONE UNIT 1 Probably still unit MLS1A. Mostly typical McDame mid-grey fine grained pecketone, with local Amphipons and a few stromatopords. Generally solid and non-brecisted, except for a few short (few centimetres) intervals of weak fibbs and crackle breccia where calcite vernlets are strong. Millimeter-scale blebs and stringers of fine grained prite replacement locally (76.7 - 78.8 metres) generally following textural boundaries in limestone. Strongest pyrite infiltration is between 82.1 - 82.5 metres, amounting to 2%, following styloites or edges of calcite crackle. No coares or measure sulfide. 84.10-84.30 ARGILLITE CALCARENITE Very carbonaceous, weakly laminated argillite to graded calcareous-arenite. Probably pelsokarst filling narrow, bedding garallel fissure in McDame. Share contacts.	MLS1							
35.90	90.40	DOLOMITIZED LIMESTONE BRECCIAFED Moderately dolomitized limestone, obscuring original texture except for very local rubble braccia. Remnants of original limestone in places. Texture of unit is dominated by typically strong calcite crackle verning to breccia to minor mosaic breccia. No significant silica or sulphides. Core partity broken up.	MLSD							

ŀ

Page 5 SILVERTIP

.

2000 UG DRILL LOG

. † 1

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	(m)	Au gmit	Ag grrvt	Pb %	Zn %
90.40	92.35	MCDAME LIMESTONE UNIT 1 Transitional contact with unit above, as this is partly dolomatized too, but patchy with islands of limeatone. Minor calcite veinlets and cracke. Possible gastropod @ 91.7 metres. Last 50 centimetres is unaltered limeatone. Very minor fine grained pyrite.	MLS1							<u>+-</u> -
92.35	116.70	MCDAME LIMESTONE UNIT 2 Tentatively starts at 92.35 metree, approximately. Texture near top abscurred by prominent 1-2 centimetres thick calcite vein with much open space, parallel to core axis, @ 92.5 - 93.8 metres. Vein is barren but 5 X 1 centimetres patch of fine grained pyrite @ 92.5 metres. Strong foesiliferous composition characterizing Unit 2 appears @ 94.3 metres, with Tryplasma solitary coral, and abundant massive stromatoporids and Amphipora thereafter. Whole unit is barren grackle to mosaic brecca associated with 1-3 centimetres linck calcite veins. No alteration. 1 centimetres thick, 40 centimetres long calcite shear fracture, 5 degrees to core axis, @ 111.5 metres. 113.45-113.65 LIMESTONE PYRITIC Isolated zone of styloitized fossiliferous limestone with delicate and wispy very fine grained pyrite infiltrating styloities and textural houndaries.	MLS2	199625	113.45	113.65	0.00	2.10	0.01	0.01

*** END OF HOLE *** 116.70

.

٠.

.

•

· •

SUD-00-82 Page 5

-

.

Ξ.

GRID:SILVER CK S

PROJECT CC	DE SILVERT	'IP	
TENEMENT	SILVERT	IP MINING	
PROSPECT	:CORPOF	RATION	
GRID	:SILVER (CKS	
MAP REFERE	INCE: 104/0-16	W	
LOCATION	:LIARD, N	ID, BC	
HOLE TYPE	:UG		
*** CC			RI ***
NOMINAL	42470 00 mN	24979 00mE	1160.0001
NOMINAL	43479.00MN	240/0.00ME	HOU.UURL

150.30 Pre-collar depth: Final depth: Purpose of hole: TEST FEEDER MINERALIZATION Hole status: COMPLETED Comments: LZ: 47.2 - 49.2 M

**** SURVEYDATA *** Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	240.00	-72.00
28.35	252.90	-72.20
58.83	256.30	-72.20
89.31	256.90	-72.00
119.79	259.30	-72.20
150.00	240.00	-72.00
150.27	261.50	-72.30

*** SUMMARY LOG ***									
0.00	15.40	1AA CARBONACEOUS							
1- 10	~~ ~~	ARGILLITE							
15.40	29.60	1AA CARBONACEOUS							
		ARGILLITE							
29.60	31.00	CARBONACEOUS							
		ARGILLITE MOSAIC							
		BRECCIA							
31.00	43.00	MCDAME LIMESTONE UNIT							
		1 CRACKLE BRECCIA							
43.00	47.20	MCDAME LIMESTONE							
		MOSAIC BRECCIA							
47.20	49.20	LOWER ZONE BRECCIA							
		SILICIFIED							
49.20	68.10	MCDAME LIMESTONE							
		BRECCIA							
68.10	74.00	MCDAME LIMESTONE UNIT							
		3							
74.00	76.60	MCDAME LIMESTONE UNIT							
		4							
76.60	98.50	MCDAME LIMESTONE UNIT							
		5							
1									

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 150.30 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	30/1/00
Date finished:	1/2/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole: NONE Base of complete oxidation --Top of fresh rock: 0.0 Water first encountered: NONE Water inflow estimate: 0.0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Pb %	Zn %
45.20	50.20	5.00	66.39	0.31	3.08

Checked and signed:

SECTION:77-N

GRID:SILVER CK S

98.50	111.30	RECRYSTALLIZED
111.30	133.30	MCDAME LIMESTONE UNIT
133.30	137.60	RECRYSTALLIZED LIMESTONE STYLOLITIC BRECCIA
137.60	150.30	MCDAME LIMESTONE UNIT
150.30		END OF HOLE

Checked and signed:

Page 1 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-83
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
0.00	15.40	1AA CARBONACEOUS ARGILLITE Black, fine gramed, massive to thinty laminated, carbonaceous argilitie, intermittantly moderately slicified; breaks easily along carbonaceous beds - at times very broken. Bedding @ 55 degrees. 8% quartz - calcite stringers, parallel to bedding and cross-cutting @ 5-10 degrees. Stringers parallel to bedding are often contorted. 4% fine grained pyrite as disseminations within bands, cross-cutting fractures and in quartz - calcite stringers. Trace galena @ 9.8 metres in a 2 centimetree quertz - calcite stringers.								
15.40	29.60	TAA CARBONACEOUS ARGILLITE Much less competent than the argillite above, due to folding, increased quartz - calcite stringers (12%) and minor faulting. From 17.7 - 19.0 metres, layering is parallel to core axis and contains abundant inegular stringers & pods of quartz - calcite. At the top and bottom of the interval, the bedding is @ 60 degrees. 4% fine grained pyrite clots within the stringers and disseminations within argillite bands. Overall, approximately 25% of the core is chips <2 centimetres, 5% gouge and 70% broken core <8 centimetres. Sharp lower contact, @ 60 degrees								
29.60	31.00	CARBONACEOUS ARGILLITE MOSAIC BRECCIA Mosaic breccia at the unconformity, comprised of 45% large angular clasts of carbonaceous argillite to 7 centimetres, in a dirty carbonaceous calcite matrix. Rare (2%) pyrite as fine grained clots and lenses within the calcite, and somewhat concentrated at the low angle (20 degrees) lower contact with limestone.								
31.00	43.00	MCDAME LIMESTONE UNIT 1 CRACKLE BRECCIA Dominantly packstone and amphipora floatstone, moderate crackle breccia, intermittant strong stylolitic breccia and minor mosaic breccia. Fractures oriented @ 20 & 40 degrees to core axis. 4% pyrite as fine grained clots to 4 centimetres within calcite fractures and as wisps along stylolites.								
43.00	47.20	MCDAME LIMESTONE MOSAIC BRECCIA General Description: Vanably, but strongly breccisted interval above the Lower Zone, consisting of mosaic, grading into rubble breccia at the top. Next is a narrow section of styliftic breccia, then info rubble								

SUD-00-83 Page 1

Page 2 Silver1	ΠP	2000 UG DRILL LOG							SU	D-00-83
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		breccia below. At the appearance of pyrite mineralization (46.3 metres), the breccia is very strongly silicified, 45.20-46.20 LIMESTONE RUBBLE BRECCIA Sample above the weakly mineralized hanging wall sample below.		140524	45.20	46.20	0.00	3.90	0.06	0.11
		Variable styloite, crackly, mossic and rubble breccia, dominantly calcite - healed with a weak pervasive silicification. Fractures trend 30 - 40 degrees to core axis and besides calcite, contain wispy fine grained pyrits (3%). 46.20-47.20 BRECCIA MINERALIZED Silicified, weakly mineralized imestone breccia. **Two episodes of breccia evident as ther are sub-rounded to sub-angular clasts		140525	46.20	47.20	0.00	12.30	0.08	0.83
		of strongly silicified rubble breccia, within a mossic breccia, predominantly heated by calcite. Sulphides (mainly pyrite) appear to have come in during the second stage as the pyrite occurs as clots and stringers imming calcite and partially replaces rubble breccia clasts. 7% pyrite, trace sphalerite.								
47.20	49.20	LOWER ZONE BRECCIA SILICIFIED 47.20-48.20 PYRITE SPHALERITE MASSIVE SULPHIDE RUBBLE BRECCIA Narrow zone of pyrite - sphalente rich massive to faintly banded (40 degrees) sulphides that have partially replaced strongly siticified rubble breccia. 20% retic silicified imestone rubble breccia. 45% pyrite occurs as fine grained integrowths with sphalente as well as later coarse grained crystals with coarse		140528	47.20	48.20	0.01	276.15	0.24	11.91
		grained sphalerite (35%). Irregular lower contact with mineralized limestone below. 48.20-49.20 MASSIVE SULPHIDE / LIMESTONE RUBBLE BRECCIA 30% sitcified limestone rubble breccia with 20% massive sulfide as two bands, both ~ 10 centimetres wide. Both look to have seeped in along very carbonaceous styloites and partially replaced the adjacent brecciated limestone. 12% pyrite, 8% schalarite. both free orsinet.		140528	48.20	49.20	0.03	38. tO		2.47
49.20	68.10	MCDAME LIMESTONE BRECCIA General Description: Variable, but strongly brecciated interval of timestone, sections to 1.5 metres strongly silicified. Occasional relic fossils include amphipora and massive stromatoportis between 60.4								

.*

Pa	98	3		
SIL	VF	ER	ΤI	ρ

.

.

2000 UG 0981 LOG

ł

SILVER	l P								SU	0-00-83
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
		 63.0 metres. Breccia textures include stylolite, crackle, rubble and mosaic breccia. From 50.8 - 53.2 metres, a very low angle, slickenskied contact (2-5 degrees to core axis) between relatively unbrecciated and strongly brecciated limestone (crackle to mosaic breccia). Dominant fracture orientations are 10, 30 & 40 degrees. Sparse pyrite mineralization (1-3%) as fine grained wispy clots along fractures and stylolites. 49.20-50.20 LIMESTONE RUBBLE BRECCIA Footwall sample below mineralized limestone. Strong crackle to rubble breccia, with moderate pervasive silicification. Slickensides. @ 60 degrees to core axis. Sparse pyrite (trace - 1%) as fine grained dois along fractures. 		140530	49.20	50.20	0.00	1 50	0.01	0.05
68.10	74.00	MCDAME LIMESTONE UNIT 3 Out of the brecciated zone and into much less altered limestone. Frequent stytokites, and at times stytolitic breccia along with minor recrystalization, but fosails recognizable, including amphipora rudstone / floatistone and minor massive stromatoporids. Strong stylolitic contact with Unit 4. Dominant fracture orientations are 20 & 50 degrees, healed with coarse calcite, accompanied by 1% fine grained write.								
74 00	75.60	MCDAME LIMESTONE UNIT 4 Distinctive, intact, Euramphipora rudstone, marking Unit 4, with massive stromatoporoid and minor amphipora in the center of the unit. The top has a carbonaceous stylolite along with fine grained pyrite which appears to have crystallized firs along the stylolite, then migrated outward into the limestone. 4% fine grained pyrite.								
76.60	98.50	MCDAME LIMESTONE UNIT 5 The top of Unit 5 is characterized by very coarse amphipora (to 5 mm). In between the amphipora rudstone and floatistone are dense packstone, minor massive stromatoporids and intervals of up to 2 metres of moderate to strongly recrystallized limestone as outlined in the minor intervals below. Relatively intact rocks with only minor intermittant crackle braccia. At 82.5 metres, two stringocephalids (thick shelled bracchoods) were identified - which have so far only been documented on Tour Ridge, 1 metres above the base of the								

SUD-00-83 Page 3

Page 4 SILVER1	TIP	2000 UG DRILL LOG							SU)-00-83
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pto %	Zn %
		unit. May be anomalous here, as Unit 5 is normally 65 - 113 metres thick. Minor stylolites throughout. 1% fine grained pyrite along fracturea and rare wisps lining stylolites. Fossil layering ~ 60 degrees to core axis. A carbonaceous styl. 65 degrees, marks the lower contact. 80.50-82.30 RECRYSTALLIZED LIMESTONE Totally white, sugary-textured, fine to medium grained calcite. Imregular lower contact. No visible sulphides. 84.50-86.40 RECRYSTALLIZED LIMESTONE Similar to the above interval, but comprised of coarser sparry								
98.50	111.30	calcia. Sparse sericite on fractures. No visible sulphides. RECRYSTALLZED LIMESTONE Pale gray to bluish-gray, motified-looking, recrystallized fine grained limestone. Rare, faint relic fossils. Between 99.8 - 100.3 metres. there are 3 irregular bands, 2 - 4 centimetres thick, 40.8 80 degrees to core axis, of soft, crumbly sericite phylitte - pale green color which resemble ** YBR fault rocks. 1-2% fine grained, wispy pyrite along stybilities and with calcite pode. - 101.6m: millimeter sphalerite stringer, 20 degrees to core axis. - 106.0 - 110.0m: moderate crackle breccia, minor partial								
111.30	133.30	Goormagation. MCDAME LIMESTONE UNIT 5 Predominantly amphipora packatone and floatstone, interlayered with dense packstone and minor massive stromatoporids. 5% dolomitized intervals (usually strong crackle breccia and broken core), and sections up to 1 metres partially recrystallized. Crackle breccia is nil to weak throughout, and a nerrow zone of strong stylolitic breccia occurs @ 120.5 - 121.0 metres. Commant fractures are oriented @ 20 degs to core axis. Rere sulphides, trace - 1% fine grained wispy byrite storg stylolities and small clots along calcite fracture services.								
133.30	137.60	RECRYSTALLIZED LIMESTONE STYLED LITIC BRECCIA Partially recrystallized limestone, nat recrystallized to the extent of the previous intervals described. Pale bluish-grey, moderately crystalline limestone, with frequent carbonaceous stylolites oriented @ 65 degrees to core axis. **In the upper 20 centimetres, 4 bands of light green sericite phylite mushly 65 degrees to pore axis. 1-3								

Page 5 SILVERTIP

-

•

.

.

.

.

2000 UG DRILL LOG

SUD-00-83

ł

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	A g gm/t	ж П	Zn %
		centimetres thick, resemble the YBR fault rocks and could be narrow solays from the main fault. Trace 1% pyrite.								
137.60	150.30	MCDAME LIMESTONE UNIT 5 Intact, unbreccasted, unaltered amphipora floatstone, minor rudstone.								
		dense packstone and spheroidal (?) packstone. 1-2% calcite fractures, 5-20 degrees to core axis with trace pyrite.								

*** END OF HOLE *** 150.30

· · ·

•

<u>-</u>---

.

-

-

.

SUD-00-83 Page 5

-

,

· .

SECTION:65-S

GRID:SILVER CK. S.

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	:CORPORATION
GRID	:SILVER CK. S.
MAP REFERENCE	E: 104/O-16W
LOCATION	LIARD MD, BC
HOLE TYPE	UG

NOMINAL 43300.00 mN 24966.00 mE 1129.00 RL

Pre-collar depth:	Final depth:	95.40
Purpose of hole:	TEST E EXTEN. OF LZ SUD-00-73	FROM
Hole status:	DRILLED TO DEPTH	
Comments:	LZ: 67.3 - 75.2 M,	

Survey Method: REFLEX EZ-SHOT

Depth	Azimuth	Inclination
0.00	250.00	-80.00
26.82	278.00	-83.00
57.30	286.90	-83.40
87.78	294.70	-83.20
95.00	250.00	-80.00

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 95.40 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL 150
Date started:	SUPERDRILL
Date finished:	30/1/00
Logged by:	31/1/00
Relogged by:	C. AKELAITIS
Sampled by:	
	R. NEY

Material left in hole:NONEBase of complete oxidation-Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:0.0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	РЬ %	Zn %
17.80	18.00	0. 20	5.60	0.03	0.04
66.30	76.20	9.90	349.54	5.20	12.73
85.40	85.80	0.40	2.00	0.02	0.29

		' SUMMARY LOG ***
0.00	17.80	1B SANDSTONE / SILTSTONE MUDSTONE
17.80	18.00	
18.00	24.60	1B SANDSTONE / SILTSTONE MUDSTONE
24.60	37. 49	1BA SANDSTONE /
37.49	40.34	1A CARBONACEOUS
40.34	A1 53	
41 53	50.53	1A CARBONACEOUS
1	00.00	MUDSTONE / SANDSTONE
50.53	52.28	1AA CALCAREOUS
		CARBONACEOUS
		ARGILLITE
52.28	67.30	MCDAME LIMESTONE UNIT
67.30	75. 20	LOWER ZONE MASSIVE
75.20	95.40	MCDAME LIMESTONE UNIT

Checked and signed:

Date:

SECTION:65-S

GRID:SILVER CK. S.

95.40

.

END OF HOLE

Checked and signed:

Page 1	
SILVERTIP	

2000 UG DRILL LOG

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЬ %	Zn %
0.00	17.80	18 SANDSTONE / SILTSTONE MUDSTONE General Description: Interbedded grey, massive to fining upwards sandstone with laminated black siltstone and mudstone. Bedding and laminae are @ 65 - 70 degrees to core axis. Sandstone beds range from being non- to strongly calcareous and occasionally are found to contain mum deals of mudstone. Bare quarts - cathonals years up	18							
		5 mm wide, @ 40 degrees to core axis, cross-cut bedding and contain pyrite + lesser sphalente mineralization. Very fine grained diagenetic pyrite is found throughout the interval and occurs as disseminated grains and nodules within the Earn group sediments. At 10.6m there is a conducted for mineralization with a single a conductant of the first sediments.								
		shadow parallel to bedding. Overall 1% pyrite.								
17.80	18.00	QUARTZ VEIN MINERALIZED 6 centimetre wide, nibbon-banded quartz - carbonate vein @ 20 degrees to core axia, with pyrite found in the vein setvage. Overall the vein contains 35% pyrite, 55% silica, 10% carbonate and a possible trace of shokarite.	VN	140552	17 60	18.00	0.00	5.60	0.03	0.04
18.00	24.60	18 SANDSTONE / SILTSTONE MUDSTONE Competent interbedded to laminated sandstone / siltstone / mudstone with bedding @ 55-60 degrees to core axis. Sandstone beds are up to 15 centimetres wide and decrease in thickness towards the base of the interval. Bedding occasionally displays soft-sediment folding and deformation. Pervasive disseminated pyrite is present and up to 2%.	18							
24.60	37,49	1BA SANDSTONE / SILTSTONE CARBONACEOUS ARGILLITE General Description: Finely laminated sandstone / siltstone / carbonaceous mudstone with laminae at 70 degrees to core axis. Interval ranges from being moderately competent to incompetent and consists of 60% intact rock and 40% broken up rubble. 5% localised zones of fault gouge up to 10 centimetres wide are present throughout the interval. Pervasive disseminated pyrite is present throughout and is concentrated in the coarse grained sandstone beda. At 38.1 metres there is a 1.5 centimetre wide massive sulfide vein at 30 degrees to core axis. Vein contains 80% pyrite, 10% sphalerite.	1BA							

SUD-00-84 Page 1

Page 2 SILVERTIP UG DRILL LOG SUD-00-84 To UNIT SAMPLE FROM Fram Geological Log TO Au Ag gm/t Pb Zn % gm/t % (m) (m) 1A CARBONACEOUS ARGILLITE 37.49 40.34 14 Highly incompetent carbonaceous argillite with rare sitisfone laminae at 70 degrees to core axis. Interval consists of 65% argilitte rubble, 20% intact and silicified rock and 15% black carbonaceous fault gouge. Pervasive fine grained disseminated pyrite is found throughout the interval (1%) 40.34 41.53 FAULT ZONE FΖ Black carbonaceous fault gouge with 10 - 15% carbonaceous argilits rubble. Fine-grained disseminated pyrite is present throughout (1-2%). Very poor recovery over the interval (~53%). 1A CARBONACEOUS MUDSTONE / SANDSTONE 41.53 50.53 18 Anomalously coarse grained interval of Unit 1A, with 30% sandstone lenses and soft sediment deformed beds from 1mm - 9cm wide. Sandstone beds and lenses decrease in thickness and abundance towards the base of the interval. The sandstone component of this interval may be the result of soft sediment slumping into a carbonaceous argilitie basin from above. Pervasive fine grained pyrite is found throughout (2-3%). 1AA CALCAREOUS CARBONACEOUS ARGILLITE 50.53 52.28 1AA Partially silicified and weakly calcareous, blocky, moderately carbonaceous argillite, with rare (<1%) mm sized calcite stringers found throughout the interval. 2-3% pervasive, disseminated, fine grained pyrite, 52.28 67.30 MCDAME LIMESTONE UNIT 1 MLS1 Limestone ranging from unaltered amphipora packstones and wackestones with minor massive stromatoporids to brittle dolomitized limestone rubble. 1-2% linear and contorted calcite stringers and veins up to 7 mm wide, cross-cut the core and commonly contain fine grained pyrite. Stylolites throughout interval are lined by fine grained pyrite. Overall, 1% pyrite. 52.73-55.18 ALTERED PACKSTONE Weakly bleached and fractured amphipora packstone cross-cut by 2% contorted calcite stringers. Bleaching gives the rock a mottled appearance. Pyrite is found throughout the interval within calcite stringers and lining stylolites and fractures. In addition,

2000

Page 3	
SILVERTIP	

SILVERTI	-	00 DRICE COG							30	0-00-04
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		interconnected blebs of pyrite up to 2 centimetres wide are found within the limestone adjacent to these structures. Overall 4% pyrite. 57.73-60.04 ALTERED PACKSTONE Weakly bleached amphipora packstone as above but with less pyrite and less fracturing. Relict amphipora and stromatoponds are visible. Overall 1-2% pyrite, 1% calcite stringers. 60.80-61.90 DOLOMITIZED LIMESTONE Very brittle and incompetent, partially dolomitized limestone rubble. From 80.9 - 61.0 metres, there is a fracture @ 10 degrees to core axis lined by subedral crystals of barite and lesser calcite. 64.10-86.30 DOLOMITIZED LIMESTONE Crackle brecciated, brittle dolomitized limestone rubble with 25% relict unaltered limestone found in the basal 55 centimetres of the interval. 2% calcite stringers cause localised zones of weak to moderate crackle brecciation. Pyrite is rare but is occasionally found lining fractures and as fine grained disseminated crystals within unaltered limestone. Overall <1% pyrite. 65.30-67.30 PACKSTONE Hanging wall sample. Dominantly weak and broken amphipora packstone with minor massive stromatoporids. Interval is cross cut by 2% calcite stringers. From 68.45 - 66.65 metres, there is a localised zone of fractured dolomitized limestone. Beneath this zone, the limestone becomes more competent and intact. Fine grained pyrite (1%) is found liming stylolites and within calcite stringers over the basal 40 centimetres of the interval. The basal contact with Lower Zone massive suffice is sharp but irregular (wavy).		140553	66.30	67.30	0.00	5.80	¢.10	0.04
67.30 7	75 20	LOWER ZONE MASSIVE SULPHIDE Ubiquitous sphalerite, galena, pyrite - rich massive sulfide, partially sikcified, with 10% intervals of intact and unaltered limestone up to 44 centimetres wide. Un-replaced limestone is dominantly found in the upper 2.5 metres of the intersection. Massive sulphide mineralization consists of early fine grained pyrite and magnetic pyrrhotite, averprinted by coarser grained red and black sphalerite, pyrite + galena. Large blebs of chalcopyrite, up to 1 centimetre across, are found rimming early fine grained pyrite and pyrhotite and later sphalerite. Weak sphalerite, pyrite, galena banding is present and								

SUD-00-84 Page 3

Page 4 SILVERTIF	,	2000 UG DRILL LOG							SU	D-00-84
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P15 %	Zn %
		oriented at 35 - 50 degrees to core axis. Late stage stringers of pyrite and ankerite up to 3 mm wide are present, and cross cut all earlies mineralization. In addition, euhedrat crystals of siderite are found tining vugs. Overall 30% pyrite, 20% magnetic pyrrhotite, 20% sphalerite, 14% galena, 1% chalcopyrite, 5% quartz. 67.30-88.60 PYRITE PYRRHOTITE SPHALERITE MASSIVE SULPHIDE Silicified, ubiquitous sphalerite, pyrite, pyrrhotite massive sulfide. Pyrite is present as fine grained massive sulfide and as coarse grained euhedral cubes. Stringers of ankerite and pyrite at 10-20 degrees to core axis cross-cut all earlier mineralization. Overall 30% pyrite, 30% sphalerite, 30% magnetic pyrrhotite, 1% galena, trace chalcopyrite, 1% ankerite, 8% selica. 68.60-69.50 MASSIVE SULPHIDE / LIMESTONE Dominantly unaltered amphipora packstone with pyrite, sphalerite, pyrrhotite massive sulfide from 69.05 - 69.19 metres and sphalerite, galena, pyrite from 69.4 - 69.5 metres. Contacts between massive sulfide and irrestone are sharp but irregular with	١Z	140554	67.30 68.60	68.60 89.50	0.00	315.40	0.99	21.21
		Sytylolites and calcite stringers within the unreplaced limestone are lined by fine grained pyrite. Overall, 75% limestone, 2% galena, 3% pyrihotite, 10% pyrite, trace chalcopyrite. 69:50-70:50 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Sphalerite, pyrite, galena, pyrrhotite - rich massive sulfde with weak sulphide banding at 35 - 50 degrees to core axis. The		140556	69.50	70.50	0.00	669.30	12.98	14.98
		upper 70 centimetres of the sample is sphalente and gelena rich whereas the basal 30 centimetres is pyrite, pyrrhotite + silica rich. Chalcopyrite is present throughout and found rimming early fine grained pyrite + pyrrhotite and later coarse grained sphalerite. Overall 25% pyrite, 15% silica, 1-2% chalcopyrite, 20% sphalerite, 13% galena. 70.50-71.50 BASE METAL MASSIVE SULPHIDE Sphalerite, galena and pyrite rich massive sulfide with weak sulphide banding at ~40 degrees to core axis. Magnetitc		140557	70.50	71.50	0.00	902.30	16.11	21.39

SUD-00-84 Page 4

Page 5
SILVERTIP

,

,

2000 UG DRILL LOG

SUD-00-84

•

SILVERIN	-					SUD-00-84				
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	(m)	Au gm/t	Ag gm/t	Pb %	Zn %
		pyrrhotite is present throughout the interval but is concentrated in the upper 40 centimetres of the sample. Galena. on the other hand, is concentrated in the basal 50 centimetres of the sample. Chalcopyrite is found rimming early pyrite, pyrrhotite and later sphalente. Stringers of pyrite + ankente @ ~20 degrees to core axis, cross-cut all earlier mineralization. Overall 35% sphalerite. 20% galena, 14% pyrrhotite, 20% pyrite, 10% quartz, 1% chalcopyrite. 71.50-72 50 PYRITE PYRRHOTITE SPHALERITE MASSIVE		140558	71.50	72.50	a DD	365.80	4.47	19 31
		SULPHIDE Sphalerite, pyrite and galena massive sulfide as above but with a decrease in galena mineralization and an increase in sillcrified relict imestone. Sulphide banding is present @ 60 degrees to core axis. At 72.1 metres, there is a large vug filled with green-orange euhedral siderite crystals. Overall 35% sphalente, 5% galena, 10% relict silicified limestone, 1% chalcopyrite, 1% siderite, 30% pyrite, 18% pyrthotte. 72.50-73.50 PYRITE PYRRHOTITE MASSIVE SULPHIDE Dominantly fine grained pyrhotite & pyrite massive sulfide with lesser sphalerite and galena mineralization. Chalcopyrite is present throughout mmwng early fine grained pyrhotite and		140559	72.50	73.50	0.00	432.70	5.25	9 45
		pyrite as well as later coarse grained sphalerite. An orange carbonate, possibly ankente, is present and is found filling open space. Overall 45% pyrrhotite, 5% relict silicifed limestone, 26% pyrite, 10% sphalente, 10% galena, 1% chalcopyrite, 3% ankente, trace bornite (?? blue, purple, green massive mineral on freshly fractured		340561	73.50	74.50	0. 00	187 90	2.45	12.96
		faces). 73:50-74:50 PYRITE PYRRHOTITE SPHALERITE MASSIVE SULPHIDE Massive sulphide as above but with a decrease in pyrrhotite and slight increase in sphalerite. Overall 10% silica, 15% sphalerite, 10% galena, 1% chalcopyrite. 1% ankente, 35% pyrrhotite, 28% pyrite, trace bornite (?? found with quartz - carbonate on fresh fractures. 74:50-75:20 PYRRHOTITE BASE METAL MASSIVE SULPHIDE Massive sulphide as above but with a slight increase in sphalerite		140562	74.50	75.20	0.00	489.90	9.61	19.38

SUD-00-84 Page 5

Page 6 SilvER1	TIP	2000 UG DRILL LOG S					SU	SUD-00-84		
From	To	To Geological Log I			FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zn %
		underlying limestone is sharp but irregular (wavy). Overall 30% sphalerite, 10% galena, 15% silica, 1% chalcopyrite, 25% pyrnhotite, 19% pyrite.							+	
75.20	95.40	MCDAMÉ LINESTONE UNIT 1 Limestone ranging from stromstoporoid, amphipora floatstones and rudatones, to amphipora packstones with rare localized intervals of dolomitized intestone up to 40 centimetres wide. Dense beds of thamnopora are present between 77.7 - 78.64 metres (possibly subunit 18?). 3-5% randomly oriented calcite stringers and veins up to 7 centimetres wide, cross-cut the interval and cause weak to strong crackle breccistion of the limestone. Rarely pyrite + lesser sphalentie & galena are found within or adjacent to these veins. Numerous styloities are present throughout and are dominantly oriented parallel to fossil beds at 70 degrees to core axis. Fine grained sulphide is occasionally found liming styloites and fractures. Overall trace sphalenties and galena, <1% pyrite. 75.20-76.20 FLOATSTONE Footwall sample. Intact and unaltered amphipora, stromatoporoid floatistone, cross-cut by 2% calcite stringers. Fine grained pyrite, sphalentie and galena, set commonly found living the margins of these stringers. Numerous styloites at 75 degrees to core axis are present throughout the interval and are also commonly lived by fine grained sulphide. Overall <1% pyrite, trace sphalerite, trace galena.	MLS1	140564	75.20 85.40	76.20 85.80	0.00	7.40	0.10	0.08

*** END OF HOLE *** 95.40

.

SECTION:65S

М

٢

GRID:SILVER CK S

PROJECT CODE : TENEMENT : PROSPECT : GRID :	SILVERTIP SILVERTIP MINING CORPORATION SILVER CK S	
MAP REFERENCE:	104/O-16W	
LOCATION :	LIARD, MD, BC	
HOLE TYPE	UG	
NOMINAL 4330	COORDINATES AND 0.00 mN 24966.00 mE	RL *** 1129.00RL
Pre-collar depth:	Final depth:	107.60
Purpose of hole:	TEST E EXTEN. OF L SUD-00-73	Z FROM
Hole status:	DRILLED TO DEPTH	
Comments:	LZ: 88.5 - 89.8 M, 101	.6 - 102.4 M

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 107.60 HQ
Drill contractor: Drill rig: Date started: Date finished: Logged by: Relogged by: Sampled by:	ADVANCED DRILLING LTD. TRACTOR DRILL MODEL 150 1/2/00 2/2/00 C. AKELAITIS R. NEY
· · · · · · · · · · · · · · · · · · ·	

NONE Material left in hole: Base of complete oxidation --Top of fresh rock: 0.0 Water first encountered: NONE Water inflow estimate: 0.0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Р М	Zn %
56.30	59.20	2.90	2.90	0.00	0.04
87.50	90.80	3.30	63.22	0.06	6.80
100.60	103.40	2.80	135.96	2.51	2.81

A:	zimutl	h	Inc	lination
	70	0.00		-85.0
	53	3.20		-84.3
	46	6.60		-84.2
	42	2.10		-83.8
	70	00.0		-85.0

- *** SURVEYDATA *'

Survey Method: REFLEX EZ-SHOT

	***	SUMMARY LOG ***
0.00	30.84	1B SANDSTONE / SILTSTONE MUDSTONE
30.84	32.10	FAULT ZONE
32.10	35.31	1BA MUDSTONE /
		SANDSTONE SILTSTONE
35.31	36.53	FAULT ZONE
36.53	41.30	1AA CARBONACEOUS
		ARGILLITE
41.30	41.95	FAULT ZONE
41.95	49.77	1A ARGILLITE SANDSTONE
49.77	54.7 4	1AA CARBONACEOUS
		ARGILLITE
54.74	67.53	MCDAME LIMESTONE UNIT
07.50		1 CRACKLE BRECCIA
67.53	88.50	MCDAME LIMESTONE UNIT
00 50	00.00	
88.50	89.80	LOWER ZONE MASSIVE
00.00	00.00	
09.00	92.00	HINESTONE
02.83	101 60	
92.00	101.00	
101 60	102 40	OWER ZONE MASSIVE
101.00	102.40	SULPHIDE

Checked and signed:

Date:

.

٠

.

SECTION:65S

GRID:SILVER CK S

102.40	107.60	MCDAME LIMESTONE UNIT
		3
107.60		END OF HOLE

Checked and signed:

Page 1
SILVERTIP

,

2000 UG DRILL LOG

, , ,

CAL VEIG									000	
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	РЪ %	Zn %
0.00	30.84	18 SANDSTONE / SILTSTONE MUDSTONE Interbedded sandstone, sittstone and carbonaceous mudstone with bedding @ 70 degrees to core axis. Sandstone beds are up to 50 centimetres wide, and decrease in thickness with depth. They are vaibby massive to fining upwards and range from geing non- to strongly calcareous. From 27.35 - 30.84m, bedding is warped and contorted and orientated between 20 - 45 degrees to core axis. This change in bedding character may be the result of a proximal shear zone. Quartz - carbonate stringers up to 3 centimetres wide and dominanity at 20 degrees to core axis, commonly contain pyrite and lesser sphalente. Pyrite is also found throughout the interval. lining fractures and as disseminated cubes. Overall 2-3% pyrite. 19.06-19.20 QUARTZ VEIN 4 centimetre wide ribbon banded quartz - carbonate vein at 20 degrees to core axis, with pyrite and rare sphalente found within the vein and lining the selvage. This vein is very similar to the one sampled from hole SUD-00-84. Overall 40% pyrite, trace sphalente, 60% quartz - carbonate. 22.00-27 35 LAMINATED SILTSTONE / SANDSTONE MUDSTONE Strongly conseitaminated and @ 70 degrees to core axis. Disseminated fine grained pyrite (2%) throughout. 27.35-30.84 LAMINATED SILTSTONE / SANDSTONE MUDSTONE Strongly contorted and disturbed taminated siltstone, sandstone & mudstone with bedding at ~20 - 45 degrees to core axis. Disturbed nature of bedding may be the result of the fault zone lying below. Fine grained disseminated pyrite is found throughout the interval (2%).	18							
30.84	32.10	FAULT ZONE Fault zone consisting of 40% black carbonaceous fault gouge and 60% sandstone, siltstone & mudstone rubble. 1% disseminated pyrate throughout.	r2			_				
32.10	35.31	1BA MUDSTONE / SANDSTONE SILTSTONE Weak and broken laminated carbonaceous mudstone and siltstone with lesser sandstone. Laminate are @ 70 degrees to core axis. 5% localised zones of fault gouge up to 10 centimetres wide are present	1BA							

SUD-00-85 Page 1

Page 2 SILVER	ΠP	2000 UG DRILL LOG							SU	D-00-85
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P10 %	Źn %
	<u> </u>	throughout. Fine grained disseminated pyrits is found throughout, but is concentrated within the coarse grained sandstone beds. Overall 2-3 % ovrite.				-				
35 31	38.53	FAULT ZONE Fault zone consisting of 50% black carbonaceous fault gouge and 50% black carbonaceous arcilitie rubble. 1% pyrite throughout.	FZ							
36.53	41.30	1AA CARBONACEOUS ARGILLITE Incompetent and broken (poker chip core) carbonaceous argillite with occasional satistone laminase at 70-80 degrees to core axis. Numerous contorted and warped calcite stringers up to 1 centimetre wide are present, oriented subparallel to bedding. Fine grained pyrite blebs and euhedral cubes are commonly found within the stringers (1-2%).	1 AA							
41.30	41.95	FAULT ZONE Fault zone consisting of 60% black carbonaceous fault gouge and 40% broken carbonaceous argilite rubble. Overall 1% fine grained disseminated overlie.	FZ			_				
41 95	49.77	7A ARGILLITE SANDSTONE Anomalously coarse grained and sandy interval of Unit 1A with 40% lanticular beds and deformed notules of sandstone. The coarse grained nature of the interval may be the result of sand stumping into an argillite basin from above. This theory is supported by the widespread soft eacliment deformation observed throughout the interval. The other possibility is that this is a repeated sequence of 1B caused by faulting. This is unlikely as the interval does not display the regular and distinct bedding found in Unit 1B. 2% disseminated prvite.	1A							
49.77	54.74	1AA CARBONACEOUS ARGILLITE Incompetent and broken carbonaceous angilite (poker chip core). Interval is randomly non- to strongly catcareous and is cross-cut by 1% quartz - calcite stringers. Blebs of fine grained pyrite are occasionally observed within these stringers. Pyrite also occurs as fine grained cubes throughout the interval. Overall 1% ovrite.	144							
54.74	67.53	MCDAME LIMESTONE UNIT 1 CRACKLE BRECCIA Amphipore packstone and wackestone with minor massive stromatoporids. Interval ranges from being weakly bleached and dolomitized in the upper 7 metres of the interval, to unaitered in the	MLS1							

Page 3	

SUD-00-85

.

SILVERTI	P	36 Bhitz 200					_			
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TÖ (m)	Au gm/t	Ag gm/t	P10 %	Zn %
		basal 6 metres of the interval. 1-2% calcite stringers and veins up to								
		mm wide cross-cut the interval and cause localised zones of weak to moderate crackle brecciation. Occasionally, blebs of pyrite and								
		lesser sphalerite are found within these veins and replacing limestone adjacent to the veins. A weak foliation, defined by elongated fossils		140566	56.30	57.30	.0.00	2.60	0.01	0 01
		oriented @ 30-50 degrees to core axis. Stylolites are present throughout the interval and are parallel to the foliation. Overall, trace is shale rite. <1% ovrite.								
		55.30-57.30 ALTERED MCDAME LIMESTONE Weakly bleached and motified looking limestone with 2% blebs and stringers of fine grained pyrite, up to 3 centimetres wide. Pyrite occurs within and ediacent to contorted calcite stringers		140567	57.30	58.10	0.00	2.40	0.00	0.01
		which cross-cut the interval. 57.30-58.10 ALTERED MCDAME LIMESTONE Weakly bleached limestone as above but with less pyrite (<1%) Pelicit amphrova and massive stromatopoords present. Weak		140568	58.10	58.20	0.D0	16.00	0.00	0.98
		foliation @ 65 degrees to core axis. 58.10-58.20 MINERALIZED VEINED Large clot of calcite up to 10 centimetres wide. This clot contains								
		coarse grained sphalerite and pyrite and appears to have eaten into and replaced previous limestone. Fractures and stylolites adjacent to this clot are lined by calcite and fine grained sulphides. 3% sphalerite, 5% pyrite, 15% calcite, 77% limestone		140589	58.20	59.20	0.00	2 30	D.00	0.00
		58 20-59.20 FLOATSTONE Amphipora / massive stromatoporoid floatstone with a strong foliation @ 45 degrees to core axis (defined by elongated fossis).								
		Interval contains <1% pyrite within contorted calcite stringers. 59. 68-60-53 DOLOMITIZED LIMESTONE CRACKLE BRECCIA Brittle, fractured and crackle brecciated dolomitized limestone consisting of 50% broken rubble and 50% intect rock. 2-3%								
		 carcite stringers cross-car and crackle precise the downine, and occasionally contain pyrite (+1%) as well as trace galena. 60.53-61 67 ALTERED MCDAME LIMESTONE 								

SUD-00-85 Page 3

Page 4 SILVERT	ri P	2000 UG DRILL LOG							SU	D-00-85
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/l	Ag gm/t	РЬ %	Zn %
		Limestone ranging from being locally bleached in the upper 90 centimetres of the interval to unaftered in the basal 25 centimetres of the interval. From 61.28 - 61.37 metres, timestone is bluish-green and strongly strained, possibly as a result of Jurassic deformation. <1% pyrite within calcite stringers.								
67.53	88.50	MCDAMÉ LIMESTONE UNIT 2 Competent, intact and unaltered stromatoporoid floatstone and lesser amphipora packstone. Rare beds of Euryamphipora and Tharmoopora are found within the unit. 3% randomly orientated calcite stringers and veins up to 12 centimetres wide cross-out the interval and cause local weak crackle braccistion. Fine grained pyrite is occasionally found within veins and replacing adjacent limestone. Numerous styloites, parallel to fosail bedding at 60 - 70 degrees to core axis are present and are rarely lined by fine grained sulphides (dominantly pyrite). From 76.8 - 78.6 metres, stromatoporoid fossis have been partially to completely recrystallized to coarse grained calcite. Overall trace pyrite. 87.50-88.50 FLOATSTONE Hanging well sample. Unaltered amphipora floatstone with rare stromatoporids. Interval is cross-out by 3% calcite stringers and veina up to 7 centimetres wide and at 35 - 50 degrees to core axis. Rare fine grained pyrite is found associated with these stringers and fixing styloities. Besal contact with massive sulfide is invegular, but sharp. Overall trace pyrite.	MLS2	140570	87.50	88.50	0.00	2 30	0.00	0.00
88.50	89.60	LOWER ZONE MASSIVE SULPHIDE / LIMESTONE Ubiquitous red & black sphalerite, pyrite, pyrrhotite rich massive suffice with 50% unaltered amphipora / stromatoporoid floatstone. Massive sulphide mineralization consists of early fine grained pyrite and magnetic pyrrhotite overprinted by coarse grained red & black sphalerite and pyrite. Chalcopyrite is found in trace amounts lining pyrite masses. Contacts between massive sulfide and limestone are sharp but irregular and are anastomozing in the top 25 centimetrees of the interval. 1-2% localized zones of rubble brecciated limestone (up to 2 centimetrees wide) are found adjacent to limestone (transite cubide contacts. Contends adjacent to limestone (transite cubide contacts								

`

.

.

SUD-00-85

¢

SILVERT	ri P	UG DRILL LUG							30	0-00-03
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grvt	РЪ %	Zn %
		limestone are lined by fine grained sulphide. Overall 20% sphalerite. 15% pyrite. 14% pyrrhotite, trace galena, trace chalcopyrite. 50% limestone, 1% calcite. 88.50-89.40 MASSIVE SULPHIDE / LIMESTONE Sphalerite, pyrite, pyrrhotite rich massive sulfide, as above, with	Ľ	140571	88.50	89.40	0.00	212.20	0 20	17 65
		10% unartered ampripora & stomatoporod itoatstone. Overall 15% sphalerite, 10% pyrite, 5% pyrhotite, trace chalcopyrite, galena, 69% limestone, 1% calcite stringers. 89.40-89.80 PYRITE PYRRHOTITE SPHALERITE MASSIVE SULPHIDE		140572	89 40	89.80	0.00	32.60	0.02	16.36
		Ubiquitous sphalerite, pyrite & pyrrhotite rich massive suffice, as above. Upper and lower contacts with litrestone are sharp and 60 & 20 degrees to core axis respectively. 50% red & black sphalerite, 30% pyrite, 20% magnetic pyrrhotite, trace chalcowrite.								
89.80	92.83	Clinic Control of the second strength of the	AMLS	140573	89.80	90.80	0.00	2.30	a 60	Q.D1
92.83	101.60	MCDAME LIMESTONE UNIT 3 Dense amphipora packstone and floatstone with rare massive stromatoporids, and thamnopora. Interval is cross-cut and locally weakly crackle breccated by 3-4% calcite stringers and veins up to 1 centimetre wide. Fine grained pyrtle is rarely observed within and adjacent to calcite veins. Stylolites are common throughtout and oriented at ~70 degrees to core axis. Trace pyrite is found fixing stylolites. 100.60-101.60 FLCATSTONE Hanging wall sample. Completely unaltered and pristine amphipora floatstone. Fossil beds oriented (§ 60 degrees to core axis. Basel context with Lower Zone massive sufficie is share, at	MLS3	140574	100.60	101.60	0.00	2.20	a.oo	0.01

SUD-00-85 Page 5

Page 6 SiLVER1	ri P	2000 UG DRILL LOG							SU	2-00-85
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		50 degrees to core axis.								
101.60	102.40	LOWER ZONE MASSIVE SULPHIDE Partially slicified and strongly banded pyrthotite, pyrite, sphalerite, galena massive sulfide. Interval is very competent and consists of early fine grained pyrite and pyrthotite mineralization, overprinted by coarser grained pyrite, sphalerite and galena. Chalcopyrite is found throughout the Interval liming pyrite and sphalerite masses. Strong sulphide banding is present throughout @ 70 degrees to core axe. Sidente is found within vugs over the basal 20 centimetres. Overall 40% pyrrhotite, 20% sphalerite, 20% pyrite, 9% galena, trace chalcopyrite, 10% cuerts, 19% siderite	LZ	140575	101.60	102.40	0.00	470.00	8.78	9 80
102.40	107.60	MCDAME LIMESTONE UNIT 3 Amphipora floatistone with rare massive stromatoporids, cross-cut by 1-2% calcite stringers up to 1 certimetre wide and @ 10 - 20 degrees to core axis. Numerous styloities are oriented parallel to fossil beds. @ 50 - 70 degrees to core axis. Fine grained pyrite is very rare within calcite stringers and lining styloities. The basal 45 centimetres is strongly crackle breccisted. Overall trace pyrite. 102.40-103.40 FLOATSTONE Footwall sample. Amphipora floatistone with occasional massive stromstoporids. Styloities and calcite stringers throughout the interval are sined by fine grained pyrite. Upper contact with above lying massive suffice is sharp. @ 50 degrees to core axis. Overall trace pyrite.	MLS3	140578	102.40	103.40	0.00	2.50	0.01	0.02

*** END OF HOLE *** 107.60

SECTION:77-S

2000

GRID:SILVER CK S.

PROJECT CODE	SILVERTIP
TENEMENT	SILVERTIP MINING
PROSPECT	:CORPORATION
GRID	:SILVER CK S.
MAP REFERENCE	E: 104/O-16W
LOCATION	:LIARD MD, BC
HOLE TYPE	:UG

NOMINAL 43479.00mN 24878.00mE 1160.00RL

Pre-collar depth:	Final depth:	162.50
Purpose of hole:	TEST EAST- SILVER C	K. SOUTH
Hole status:	COMPLETED	
Comments:	LZ: 100.9-101.2, 139.4-1 148.2-150.7, 153.0-157.	1 40 .6, 0

*** SURVEYDATA *** Survey Method: RELEX EZ-SHOT

	Azimuun	Incimation
0.00	212.00	-65.00
40.54	220.60	-66.00
71.02	222.90	-66.60
101.50	222.80	-67.10
131.98	221.30	-67.50
150.00	212.00	-65.00
162.46	224.70	-68.30

- *** SUMMARY LOG *** --0.00 1AA CARBONACEOUS 13.90 ARGILLITE 18.00 FAULT ZONE 1AA 13.90 CARBONACEOUS ARGILLITE 1AA CARBONACEOUS 18.00 33.00 ARGILLITE 1A/MLS CARBONACEOUS 33.00 36.90 ARGILLITE / LIMESTONE RUBBLE BRECCIA MCDAME LIMESTONE UNIT 36.90 38.10 1 CRACKLE BRECCIA LOWER ZONE PYRITE 38.10 38.40 MASSIVE SULPHIDE MCDAME LIMESTONE UNIT 38.40 52.50 1 DOLOMITIZED LIMESTONE 52.50 68.80 BRECCIA MCDAME LIMESTONE UNIT 68.80 88.40 2 MCDAME LIMESTONE UNIT 88.40 100.90

3

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 162.50 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	MINI MYTE MODEL 150
Date started:	1/2/00
Date finished:	3/2/00
Logged by:	L. LEWIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation0.0Top of fresh rock:0.0Water first encountered:0.0Water inflow estimate:0.0

*** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Рb %	Zn %
37.10	39.40	2.30	3.80	0.01	0.01
99.90	101.80	1.90	60.47	1.26	0.73
138.40	141.60	3.20	14.32	0.12	1.73
147.20	158.00	10.80	54.06	1.07	1.32

Checked and signed:

Date:
`

.

.

,

GRID:SILVER CK S.

100.90101.20LOWER ZONE MASSIVE SULPHIDE101.20101.80LIMESTONE RUBBLE BRECCIA101.80111.50MCDAME LIMESTONE UNIT 3 CRACKLE BRECCIA111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA140.60148.20LIMESTONE BRECCIA150.70150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE153.00157.00LOWER ZONE / LIMESTONE153.00157.00RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE			
SOLFHIDE101.20101.80LIMESTONE RUBBLE BRECCIA101.80111.50MCDAME LIMESTONE UNIT 3 CRACKLE BRECCIA111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	100.90	101.20	LOWER ZONE MASSIVE
BRECCIA101.80111.50111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	101.20	101.80	
101.80111.50MCDAME LIMESTONE UNIT 3 CRACKLE BRECCIA111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA140.60148.20LIMESTONE BRECCIA150.70150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE			BRECCIA
3 CRACKLE BRECCIA111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	101.80	111.50	MCDAME LIMESTONE UNIT
111.50119.10MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE			3 CRACKLE BRECCIA
119.10127.40RECRYSTALLIZED LIMESTONE127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA140.60148.20LIMESTONE BRECCIA140.60148.20LIMESTONE BRECCIA150.70150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	111.50	119.10	ACDAME LIMESTONE UNIT
113.10121.40INECRIVITE LEDLIMESTONE127.40139.40RECRYSTALLIZEDLIMESTONE CRACKLEBRECCIA139.40140.60MASSIVE SULPHIDE /LIMESTONE MOSAICBRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVESULPHIDE RUBBLEBRECCIA150.70153.00RECRYSTALLIZEDLIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZEDLIMESTONE CRACKLEBRECCIA162.50END OF HOLE	110 10	127 40	BECRYSTALLIZED
127.40139.40RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	110.10	121.40	LIMESTONE
LIMESTONE CRACKLE BRECCIA 139.40 140.60 MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA 140.60 148.20 LIMESTONE BRECCIA 148.20 150.70 LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA 150.70 153.00 RECRYSTALLIZED LIMESTONE 153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE	127.40	139.40	RECRYSTALLIZED
BRECCIA 139.40 140.60 MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA 140.60 148.20 LIMESTONE BRECCIA 148.20 150.70 LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA 150.70 153.00 RECRYSTALLIZED LIMESTONE 153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE			LIMESTONE CRACKLE
139.40140.60MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE			BRECCIA
LIMESTONE MOSAICBRECCIA140.60148.20148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	139.40	140.60	MASSIVE SULPHIDE /
140.60148.20LIMESTONE BRECCIA148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE			BRECCIA
148.20150.70LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA150.70153.00RECRYSTALLIZED LIMESTONE153.00157.00LOWER ZONE / LIMESTONE157.00162.50RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA162.50END OF HOLE	140.60	148.20	LIMESTONE BRECCIA
SULPHIDE RUBBLE BRECCIA 150.70 153.00 RECRYSTALLIZED LIMESTONE 153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE	148.20	150.70	LOWER ZONE MASSIVE
BRECCIA 150.70 153.00 RECRYSTALLIZED LIMESTONE 153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE			SULPHIDE RUBBLE
150.70 153.00 RECRYSTALLIZED LIMESTONE 153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE			BRECCIA
153.00 157.00 LOWER ZONE / LIMESTONE 157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE	150.70	153.00	RECRYSTALLIZED
157.00 162.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE	153.00	157.00	LOWER ZONE / LIMESTONE
LIMESTONE CRACKLE BRECCIA 162.50 END OF HOLE	157.00	162.50	RECRYSTALLIZED
BRECCIA 162.50 END OF HOLE			LIMESTONE CRACKLE
162.50 END OF HOLE			BRECCIA
	162.50		END OF HOLE

Page 1	
SILVEDTID.	

,

.

-

2000 UG DRILL LOG

SUD-00-86

. '

SILVER	I IP								000	
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pto %	2л %
Ø 00	13.90	1AA CARBONACEOUS ARGILLITE Black, fine grained, massive to thinly laminated carbonaceous argiffite. Brittle, incompetent core with intermittant chip and gouge intervals. Bedding angle varies from 30-45 degrees to core axis. 3% quartz - calcite stringers, 1mm - 2cm, sub-parallel to bedding and cross-cutting @ 80 degrees to core axis. 4% fine grained pyrite as disseminated bands and clots within quartz - calcite stringers. Trace sphalerite + galena also in stringers. - 8.3-8.5m: gouge & chips - 8.3-8.5m: gouge & chips - 8.6m: 2 centimetres cross-cuttine quartz - galena - pyrite stringer, 60 degrees to core axis. - 9.0m: 2 centimetres cross-cutting quartz - calcite - sphalerite stringer, 55 degrees to core axis. - 9.56m: gouge and chips	144							
13.90	18.00	FAULT ZONE 1AA CARBONACEOUS ARGILLITE Incompetent zone comprised of 25% gouge, 45% argitite + quartz chips and 30% core <10 centimetres in length. Quartz stringers and stockwork throughout, minor cream-colored iron carbonate. Bedding, where discernable, is highly contorted / deformed. 4% pyrite dissemnations and clobs. Broken upper and lower contact.	FZ							
18.00	33.00	1AA CARBONACEOUS ARGILLITE Similar to the rocks described above the fault zone, comprised of black, fine grained, thinly laminated to massive ar: intermittant sandy lenses (<5mm) occur between 29.0 - 30.0 metres. Bedding vanes from 20 - 40 degrees to core axis, occasionally contorted, as are quartz +/- calcite stringers. 4% pyrtle clots within the quartz stringers. 5% minor gouge / chip intervals, to 15 centimetres. Lower contact where the argilitie is beginning to appear brecolated.	1AA							
33.00	38 90	1A/MLS CARBONACEOUS ARGILLITE / LIMESTONE RUBBLE BRECCIA Rubble brecciated, solution collapse contact zone between the Earn sediments and limestone. Down to 35.2 metres, the clasts are tightly packed angular argilithe in a calcite +/- quartz matrix, with 5-7% pyrite clots within the matrix, as well as partial replacement of clasts. Below 35.2 metres, clasts include both argilithe + limestone in a matrix varying from coarse grained calcite to fine calcareous pyritic much towards the base of the breccise. A trace of sphalerite also occurs in the matrix. Sharp lower contact (2) 60 degrees.	tA/M LS							

SUD-00-86 Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-86
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gmvt	P15 %	Zn %
·		"Note: Lost core from 34.6 - 35.3m.							<u> </u>	
36 90	38.10	MCDAME LIMESTONE UNIT 1 CRACKLE BRECCIA Amphipora floatstone with weak crackle breccia, fractures trending 30	MLS1		1					
		degrees to core axis. 2% fine grained pyrite wispe and clots along and extending outward from stylolites. 37.10-38.10 FLOATSTONE CRACKLE BRECCIA Hanging well sample above the narrow pyritic Lower Zone. As described above. 2% fine grained pyrite.		140550	37.10	38.10	0.00	2.30	0.00	D.Q1
38.10	38.40	LOWER ZONE PYRITE MASSIVE SULPHIDE Narrow band of massive fine grained pyrite in a calcite matrix, with trace - 1% fine grained sphalertle. The upper contact is along a carbonaceous stylelite ~45 degrees and the lower contact is also ~45 degrees to core axis. The sulphides dolomite not appear to be replacing a bracclated ilmestone, just a quiet, fine grained replacement of unstaned impactore.	LZ	140601	38.10	38.40	0.00	12.50	0.07	0.04
38.40	52.50	MCDAME LIMESTONE UNIT 1 Intact limestone, containing dense packstone, amphipora floatstone and scattered massive stromatopords. Bekow 43.8 metres, crackle breccia is weak to moderate. 1-2% fine grained pyrite as small clots and wispe along styloities. 38.40-39.40 PACKSTONE Footwall sample. Unaftered with 4% calcite - filled fractures, 40 degrees to core axis. 1% wispy fine grained pyrite along styloities. 41.70-42.40 MATRIX BRECCIA Fissure of fine matrix breccia and carbonaceous styloities. The	MLS1	140602	38.40	39.40	0.00	2.70	0.01	0.01
		 upper contact is @ 30 degrees, while the lower contact is irregular. 6% fine grained pyrite, 1% fine grained sphaler(te, and trace galena as disseminations in the muddy, calcareous matrix. Very few clasts. 50.50-52.50 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Fine, recrystallized limestone, orientation of stylolites @ 55 degrees, containing a 5 centimetres band of matrix breccia, oriented 15 - 20 degrees. Strong crackle breccia approaching the lower contact. 3% purits along stylettes. 								

Page 3	
SILVERTI	P

.

SUD-00-86

; ;

SILVER	11114								36	0-00-86
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pt %	2n %
52.50	66.80	DOLOMITIZED LIMESTONE BRECCIA Variably recrystallized and brecciated limestone. Upper contact @ 10 degrees, is with a rubble breccia - possibly a fissure-fill, healed with calcite, but quite crumbly down to 54 0 metres. Pyrite occurs as fine grained replacement of small clasts. Below 54.0 metres. dolomitization increases, as dows the crackle breccia - brittle, broken core. 3% fine grained pyrite dominantly along calcite margins within the crackle breccia. Irregular lower contact. - 56.0 - 56.2m: 20 centimetres of possibly a weak cataclastic fault zone comprised of pale, bleacted, very finely broken up and at the	MLSD							
68.80	88.40	Dates, strongly rollates (a) 55 degrees to core axis. MCDAME LIMESTONE UNIT 2 Main massive stromatoporoid unit, very fossiliferous with dominantly massive stromatoporoid unit, very fossiliferous with dominantly weak crackle breccia, and two bands of mosaic breccia (calcife very) between 68.1 - 69.5m. 15 centimetres wide (2) 30-40 degrees. Trace - 1% wispy pyrite along fractures and occasional carbonaceous styloitite. 78 00-78.30 LIMESTONE MATRIX BRECCIA 15% fine grained wispy pyrite partially replacing fossils and time mud matrix within a weak matrix breccia, vague layering ~ 55 degrees.	MLS2							
88.4D	100.90	MCDAME LIMESTONE UNIT 3 General Description: Unit 3, marked by the characteristic dense packstone with fine amphipora at the top, is dominated by amphipora which forms rudatorie and floatstone. Scattered massive stromatoporids. Unaltered / unbreccisted. 4% calcite stringers to 3 centimetres. 99.90-100.90 FLOATSTONE Hanging wall sample to stringer Lower Zone below. The only difference from the general description above, is increased stytolites along with associated pyrite (3%). Stytolites are post crackle breccia. Irregular anastomosing lower contact, following a stytolite.	MLS3	140531	99.90	100.90	0.00	2.60	0.00	0.01

SUD-00-86 Page 3

Page 4 SILVER1	rip.	2000 UG DRILL LQG							SU	D-00-86
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
100 90	101.20	LOWER ZONE MASSIVE SULPHIDE Narrow Lower Zone massive sulfide with a very irregular upper contact and fairly sharp lower contact @ 55 degrees to core axis. Replacement of limestone, first by fine grained pyrite, then by later coarser grained pyrite, sphalerite and minor galena, all cut by late	LZ	140532	100.90	101.20	0.00	491.20	7.85	4.40
101.20	101.80	Linestone requires. Lower contact contents a router proces broom, Linestone RvBBLE SRECCIA Partially recrystallized rubble breccia, frequent styloites in a coarse grained calcite matrix. 2% wispy pyrite inwrning styloites. Carbonacous styloities matrix the involuter lower contact.	MLS	140533	101.20	101.80	Q.00	4.90	0.06	0.09
101. 80	111.50	MCDAME LIMESTONE UNIT 3 CRACKLE BRECCIA Continuation of Unit 3, dominantly amphipora packstone and floatistone, patchy partial recrystalization to coarse spany calcite (~20%). Week crackle breccis. Main calcite fractures onented 15-25 decrees to core and. 1% wiscy ovrife along stytolites.	MLS3							
111.50	119.10	MCDAME LIMESTONE UNIT 5 CRACKLE BRECCIA "Note: No Unit 4, Euramphipora, identified in this hole, possibly recrystalized and not identifiable or not present/?? Picked 111.5 metree as the top of Unit 5 with the occurrence of very coarse amphipora (to 4mm). Paticity coarse recrystalization downhole of the dense pactations and amphipora floatistone. Crackle breccia also increasing down section. Dominant fractures (2) 30 degrees, 1% fine grained pyrite. Sharp lower contact with recrystalized limestone, 45 degrees to room and	MLS5'							
119.10	127.40	RECRYSTALLIZED LIMESTONE RecryStalLized LIMESTONE Nearly complete recrystallization of limestone to either a bleached, coarse mosaic of calcite porphyroblasts or fine grained sucrosio-textured calcite. Only one interval of 50 centimetree remains with identifiable fossils. Dark grey dolomitization and associated cracide breccia occurs in the lower 1.5 metres. 2% pyrite wisps lining and adiacent to styloites.	AMLS							
127.40	139.40	RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Similar to previous unit, but more variable in alteration and breccia. Partial dolomitization in the upper 4 metres is accompanied by strong crackle breccia. grading into mosaic breccia with coarse grained calcite, vuggy, open-space filling. Two 15 centimetres calcite veins, 20 degrees to core axis, have fine grained pyrite lining the margins. Itrace substants.	AMLS							

SUD-00-86 Page 4

Ρ	а	ge	5		
0	н	1.0		1	

,

.

.

.

2000 UG DRILL LOG

SUD-00-88

. .

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	P1D %	Zn %
		recrystallization to a bleached, coarse mosaic of calcite porphyroblasts, with intermittant amphipora and massive stromatoporids identifiable. 138,40-139,40 FLOATSTONE STYLOLITIC BRECCIA Hanging will sample. Abundant styloifies ~ 55 degrees to core axis, within weakly recrystallized amphipora floatstone. 2% pyrite rimming calcite fractures and along styloities.		140534	138.40	139.40	0.00	2.30	0.00	0.00
139.40	140 60	MASSIVE SULPHIDE / LIMESTONE MOSAIC BRECCIA Broken, incompetent Lower Zone / limestone interval comprised of brecciated limestone, partially replaced by fine grained pyrite (25%) and red-brown sphalente (20%), trace galena, in a mixed siliceous, calcite matrix. Unreplaced limestone clasts are very dark grey dolomitized.		140535	139.40	140.60	0.09	34.10	0.31	4.59
140.60	148.20	LIMESTONE BRECCIA General Description: Variably strongly brecciated including crackle, mosaic, rubble and stylolite, with mosaic breccia dominant. Core is fractured frequently, 25 degrees to core axis. 2% fine grained pyrife partially replacing limestone clasts and as wisps along stylolites. 140,60-141.80 LIMESTONE BRECCIA Footwall sample. Sharp upper contact with Lower Zone, 30 degrees to core axis. Strong crackle and stylolitic breccia. 2% fine grained pyrite liming stylolites. 147,20-148.20 FLOATSTONE Hanging wall sample. Not as brecciated as the rocks above. Amphipora floatstone with 10% calcite stringers. 25 degrees to core axis, 1-3 centimetres wide, minor to moderate stylolites.	MLS	140536 140537	140.60 147.20	141.60 148.20	0.00 0.00	2.60 2.00	0.01	0 03
148.20	150.70	LOWER ZONE MASSIVE SULPHIDE RUBBLE BRECCIA General Description: Massive pyrite (30%), sphalerite (40%) and galena (10%) replacing limestone rubble breccia, cut by a post-mineralization fault, 15 degrees to core axe (slickensides, rubbly core). "Interesting in that the zone appears more vertical than horizontal. 148.20-149.20 PYRITE SPHALERITE MASSIVE SULPHIDE RUBBLE BRECCIA The upper 20 centimetres is gradational with irregular stringers and verinlets of pyrite teaking upward through the crackle breccated limestone. Below 148.4 metres, the zone a very sphalerite - rich + pyrite and marcasite (bladed) has replaced 95%	LZ	140538	148.20	149.20	0.01	95.60	1.15	5.43

SUD-00-86 Page 5

Page 6 SILVERT	'IP	2000 UG DRILL LOG							SU	D-00-88
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grm/t	Ag gm/t	P10 %	Zn %
		of rubble breccis limestone, in a calcareous matrix. Core is crumbly with 85% recovery - due to a tate cross-cutting fault / slip (2) 15 degrees to core axis -> one side is competent massive sulfide, the other crumbly, pebbly core. 50% red & black sphalerite, 30% pyrite (+ marcasite), 5% galena. 149:20-150:30 BASE METAL MASSIVE SULPHIDE Massive to faintly banded pyrite - sphalerite - galena, in a calcareous matrix, with faint to nil relic breccia textures evident.		140539	149.20	150.30	0.44	380.DD	8.89	7.19
		Layering ~ 40 degrees to core axis. 150.30-150.70 MASSIVE SULPHIDE / LIMESTONE BRECCIA Low angle (10 degrees) pyrite - sphsierite vein, 8 centimetres, cross-curting the length of the sample, possibly the micro-feeder to the sulphide zone above. Predominantly fine grained pyrite (20%), aphalerite (10%) and 1% galens. Sulphides are also concentrated along stylolites. Rock becoming bleached / remeating the base		140540	150.30	150.70	0.12	92.20	1.38	1.88
150.70	153.00	RECRYSTALLIZED LIMESTONE General Description: Bleached, recrystallized limestone with abundant carbonaceous styloites. 15% calcite stringers and fractures, 15 - 30 degrees to core axis. Only minor fine grained wispy pyrite along styloites. 150.70-151.90 RECRYSTALLIZED LIMESTONE Footwall sample, as in general description above. 1% fine grained pyrite. 151.90-153.00 RECRYSTALLIZED LIMESTONE Hanging wall sample, as above. Irregular low angle to core axis	AMLS	140541 140542	150.70 151.90	151.90	0.00	2.40 1.10	0.01	0.03 0.04
153.00	157.00	lower contact with massive suffide. LOWER ZONE / LIMESTONE General Description: 50% massive pyrite & sphalerite with minor galena, pyrrhotite and chalcopyrite, and 50% recrystallized, crackle breccia limestone, accompanied by abundant carbonaceous styloites. The sulphide - limestone contact is highly irregular, as the sulphides appear to weave in and out of the limestone a a fairly steep angle (le low angle to core axis). The sulphide / limestone contacts follow strongly carbonaceous styloites. The sulphides are predominantly fine to medium grained pyrite, intergrown with fine black sphalerite.	LZAS							

SUD-00-86 Page 6

Page 7 SILVER1	NP	2000 UG DRILL LOG							su	0-00-86
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zп %
	-	153.00-153.90 MASSIVE SULPHIDE / LIMESTONE 60% fine grained, massive pyrite - sphalerite. 40% recrystallized limestone. Anastamosing sulphide contact, sub-paratiel to core axis, along very carbonaceous stylolites. Trace chalcopyrite.		140543 140544	153.00 153.90	153.90 154.80	0.00	8.00	0.00	0.01
		153.90-154.80 MASSIVE SULPHIDE / LIMESTONE 70% massive pyrite sphalerite with minor pyrrhotite, galena and cp; 30% recrystalized limestone. Lower contact ~35 degrees to core axis. 154 80-158 00 RECRYSTALLIZED LIMESTONE CRACKLE 8RECOLA		140545	154.80	156.00	0.00	1.80	Q.00	0.01
		Bleached, recrystallized limestone with strong crackle breccia and moderate styloites. Calcite fractures ~25 degrees to core axis. 156.00-157.00 MASSIVE SULPHIDE / LIMESTONE Again, a mix of steep, sulphide replacement lenses (50%) along		140548	156.00	157.00	0.02	5.85	0.00	0 01
		strongly stylelitized, irregular contacts (5-30 degrees) and recrystalized irrestone. Increased chalcopyrite (~0.5%); no pyrrhotile detected, 35% pyrite, 15% sphalerite, trace galena, chalcopyrite.								
57.00	162.50	RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA General Description: Recrystallized limestone with moderate to strong crackle breccia, and weak to moderate styloities (dissolution increases in the more intensely recrystallized upper 3 metres, adjacent to the sulphides). Below 160.5 metres, amphipora fossils								
		are visible. 2% fine grained pyrite along calcite selvages and stylolites. ** 161.6m: 5 centimetres sericite - chlorite phyllite, 55 degrees to core axis - YBR??	AMLS							
		157.00-158.00 RECRYSTALLIZED LIMESTONE CRACKLE BRECCIA Footwall sample - as in general description.		140549	157.00	158.00	0.00	1.70	0.00	0.00

4 .

*** END OF HOLE *** 162.50

- . · ·

٠.,

.

•

- -

·

•

SUD-00-86 Page 7

-

Ξ.

,

GRID:SILVER CK S

HOLE NO: SUD-00-87

SECTIC	N:65C
--------	-------

*** DRILLING SUMMARY ***

DIAMOND DRILL	0.00 176.20 HQ
Drill contractor:	ADVANCED DRILLING LTD.
Drill rig:	TRACTOR DRILL MODEL 150
Date started:	3/2/00
Date finished:	5/2/00
Logged by:	C. AKELAITIS
Relogged by:	
Sampled by:	R. NEY

Material left in hole:NONEBase of complete oxidation--Top of fresh rock:0.0Water first encountered:NONEWater inflow estimate:0.0

- *** SIGNIFICANT ASSAYS ***

From	То	Width	Ag g/t	Pb %	Zn %
99.30	111.30	12.00	89.76	1.02	5.45
119.60	142.40	22.80	296.87	4.75	7.59
157.30	172.70	15.40	39.15	0.28	4.36

PROJECT CODESILVERTIPTENEMENTSILVERTIP MININGPROSPECTCORPORATIONGRIDSILVER CK SMAP REFERENCE:104/0-16WLOCATIONLIARD, MD, BCHOLE TYPEUG

NOMINAL 43318.00mN 24958.00mE 1133.00RL

Pre-collar depth:	Final depth:	176.20
Purpose of hole:	TEST FEEDER	
	MINERALIZATION	
Hole status:	DRILLED TO DEPTH	
Comments:	LZ: 100.1-103.5, 108.6-	110.3,120
	6-135.3.139.7-141.4.15	8.7-159.1

*** SURVEYDATA ***

Depth	Azimuth	Inclination
0.00	250.00	-36.00
19.20	253.80	-36.50
49.68	252.80	-37.50
80.16	253.10	-38.30
110.64	254.80	-39.30
141.12	255.20	-39.60
160.00	250.00	-36.00
171.60	256.10	-40.20

	***	SUMMARY LOG ***
0.00	17,10	1B INTERBEDDED SANDSTONE/SILSTONE/MU
17.10	17.70	FAULT ZONE
17.70	46.30	1B INTERBEDDED
		SANDSTONE/SILSTONE/MU
		DSTONE
46.30	48.00	FAULT ZONE
48.00	54,90	1B LAMINATED SILTSTONE
		/ SANDSTONE
54.90	61.00	1AA CARBONACEOUS
		ARGILLITE
61.00	62.50	NO RECOVERY
62.50	63.40	FAULT ZONE
		CARBONACEOUS
		ARGILLITE
63.40	94.30	1AA CARBONACEOUS
		ARGILLITE

Checked and signed:

Date:

HOLE NO: SUD-00-87

SECTION:65C

GRID:SILVER CK S

94.30	99.30	
00.20	100 10	BREUUIA MODANE LINESTONE
99.30	100.10	
100 10	102.50	
	103.30	
103 50	103 80	MODAMELIMESTONE
100.00	100.00	
		FLOATSTONE
103 80	104 80	
100.00	10 1.00	SILTSTONE MOSAIC
		BRECCIA
104.80	108.60	MCDAME LIMESTONE UNIT
		1 AMPHIPORA PACKSTONE
108.60	110.30	LOWER ZONE MASSIVE
		SULPHIDE
110.30	120.60	MCDAME LIMESTONE
		MOSAIC BRECCIA
120.60	135.30	LOWER ZONE MASSIVE
		SULPHIDE
135.30	139.70	MCDAME LIMESTONE UNIT
		2 STROMATOPOROID
		FLOATSTONE
139.70	1 41 .40	LOWER ZONE MASSIVE
		SULPHIDE
141.40	156.00	MCDAME LIMESTONE UNIT
156.00	160.20	
100.00	100.00	
158 30	158 70	
100.00	100.10	RUBBLE BRECCIA
158 70	159 10	LOWER ZONE / LIMESTONE
	100110	RUBBLE BRECCIA
159.10	160.20	MINERALIZED RUBBLE
		BRECCIA
160.20	164.30	LOWER ZONE MASSIVE
		SULPHIDE
164.30	165.90	LIMESTONE CRACKLE
		BRECCIA
165.90	16 9 .90	LOWER ZONE MASSIVE
		SULPHIDE
169.90	170.60	AMPHIPORA RUDSTONE
170.60	171.80	MINERALIZED
		HETEROLITHIC RUBBLE
		BRECCIA
171.80	176.20	
470.00		
170.20		

Checked and signed:

Date:

Page 1	
SILVERTIP	

,

ς.

.

2000 UG DRILL LOG

SUD-00-87

4

SILVERTIP									300	-00-87
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TQ (m)	Au genit	Ag grivt	P10 %	گ∩ %
Q.DQ	17.10	1B INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Relatively competent and intact, terninated black carbonaceous mudstone and siltstone interbedded with coarser grained sandstone. Bedding is at 30 degrees to core axis. Sandstone beds, up to 40 centimetres wide, are randomly non-moderately calcareous and range from being massive to fining upwards. These beds increase in thickness towards the base of the interval. Rare (<1%) quartz-carbonate stringers cross-cut the core from 5 - 20 degrees to core axis, and occasionally contain fine grained pyrite. At 6.9 metres there is a magnetic pyrthotite nodule surrounded by a quartz pressure checker, 1, 2% concession disconting to the tore to an advect the core to a the through of	18							
17.10	17.70	FAULT ZONE - 2 % pervasore disseminated pyrice is found throughout. FAULT ZONE 60 % black carbonaceous fault gouge and 40 % sandstone and mudstone nibble 1 % fine grained norte is found throughout	FZ						_	
17.70	46.30	19 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Variably intact and competent to broken rubble of laminated black carbonaceous mudstone and sitistone interbedded with coarser grained sandstone. Bedding is at 30 to core axis. Sandstone beds are up to 30 centimetres wide, are massive to fining upwards, and decrease in thickness and abundance towards the base of the interval. 1-2 % quartz-carbonate stringers and veins cross-cut the interval and are orientated from 15 - 45 degrees to core axis. Pyrite and rarely galerna and sphalerite are occasionally found within these veins. Pyrite is also present as disseminated cubes throughout the interval. 0-verall, 1 - 2 % pyrite, trace sphalerite, trace galens. 17.70-34 90 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE Relatively competent and intact, laminated black carbonaceous mudstone and siltstone interbedded with coarser grained sandstones. Sandstone beds are up to 30 centimetres wide. 35.30-35 50 QUARTZ VEIN 1.5 centimetre quartz-carbonate vein at 30 to core axis, containing pyrite and lesser sphalerite and galens. Overall, the vein contains	18							

SUD-00-8." Page 1

Page 2 SILVER	TIP	2000 UG DRILL LOG							SU	D-00-87
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
46.30	48.00	60 % pyrite, < 1 % galena, < 1 % sphalerite. 35.50-46.30 INTERBEDDED SANDSTONE/SILSTONE/MUDSTONE RUBBLE Incompetent and broken laminated mudatone, siltstone and sandstone bode, with bedding at 30 - 40 degrees to core axis. Sandstone bode are up to 1.5 centimetres wide and decrease in thickness and abundance towards the base of the interval. 1 - 2 % fine grained disseminated pyrite is found throughout the interval. FAULT ZONE 40 % gray-black fault gouge and 60 % sandstone, siltstone, and								
48.00	54.90	mudetone rubble. 2 - 3 %fine-grained pyrits is found throughout the interval. 19 LAMINATED SILTSTONE / SANDSTONE Weak broken up rubble of laminated carbonaceous mudstone, sitistone and sandstone with beds up to 1 centimetre wide, and at 30 degrees to core axis. Sandstone beds decrease in width and abundance towards the base of the interval. 3 % disseminated pyrite, concentrated in the coarser grained sandstone laminae, is found	18							
54.90	61.00	1AA CARBONACEOUS ARGILLITE 1Veak carbonaceous argilitie rubble with 20 % intact rock. 3 % linear and contorted, pyrite and quartz stringers up to 3mm wide, cross-cut the interval and are orientated parallel to taminae, at 30 - 40 to core axis. Pyrite also occurs as fine grained disseminated cubes within the amilities	144							
61.00	62.50	NO RECOVERY	NR							
82.50	63.40	FAULT ZONE CARBONACEOUS ARGILLITE Fault zone consisting of 50 % black carbonaceous fault gouge and 50 % very weak and broken carbonaceous argillite rubble. Less than 1 % fine grained disseminated pyrile is present within the interval.	FZ							
63.40	94.30	1AA CARBONACEOUS ARGILLITE Highly incompetent and broken, variably non-moderately calcareous carbonaceous argilite with occasional sittstone taminae at 30 degrees to core axis. 20 % of the interval is intact and has been healed by a carbonate and sitica cament 3 - 4 % linear and contorted calcite and	144					-		

SUD-00-87 Page 2

Page 3 SILVER3	٦P	2000 UG DRILL LOG							su	D-00-87
From	Ta	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivt	Ag gmA	Pb %	Zn %
		quartz vemiets are present and are dominantly onentated parallel to laminae. Pyrite is present as disseminated cubes throughout the interval and within calcite and quartz vemiets. Overall, 2 - 3% pyrite, trace sphalente. 75.20-75.60 FAULT ZONE Fault zone consisting of black fault gouge and 50 % black carbonaceous argilite nuble. 1 % disseminated pyrite is found throughout the interval.								
94.30	99.30	1AA CARBONACEOUS ARGILLITE CRACKLE BRECCIA Competent and silicified, non-weakly calcareous, strongly crackle breccated, carbonaceous argilitte. 10 % of the interval is a tightly packed 1AA argilitte hydrothermal collapse breccia. Brecciated clasts are up to 3 centimetres wide and have undergone very little rotation or transport. Pyritte is found within quartz and calcite stringers and as disseminated cubes within the argilitte. Overall, 2 % pyrite, 3-4 % quartz and calcite stringers.	144							
99.30	100.10	MCDAME LIMESTONE ARGILLITE MOSAIC BRECCIA Hanging wall sample. Limestone ranging from a weakly crackle brecciated lime mudstone in the upper 25 centimetres of the interval to a collapse mosaic breccia in the basal 55 centimetres of the interval. Brecciated zone contains clasts of 1AA carbonaceous argilite and limestone up to 5 centimetres wide within a crystalline calcite and quartz matrix. < 1 % pyrite is found within the matrix of this breccia and particity replacing limestone clasts.	MLS	140577	99.30	100.10	0.00	6.30	0.01	0.02
100.10	103.50	 LOWER ZONE MASSIVE SULPHIDE Pyrite, sphalerite rich massive sulfide which can be divided into two distinct sub-zones based upon mineralization. Zone 1: 100.1 - 101.9 metres Competent and silicified pyrite rich massive sulfide with minor galena and sphalerite and 30 % relici timestone. Intervals of unreplaced limestone are up to 30 centimetres wide. Sphalerite and galena are more prevalent towards the base of the interval, and are commonly found adjacent to secondary calcite mineralization. Zone 2: 101.9 - 103.5 metres Lower based to substantia and red substantia with lesser 								

SUD-00-8?" Page 3

Page 4 SILVERTIP		2000 UG DRILL LOG							su	D-00-87
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gnvît	P b %	Zn %
		pyrite and galena and 7 % relict imestone. Weak sphalerite, pyrite banding is observed from 101.9 metres - 102.0 metres and is orientated at 30 - 40 degrees to core axis. Sphalerite throughout this zone is rimmed by an orange-light green mineral with a grey streak. Sphalerite cores are commonly found within this mineral indicating that it may be a sphalerite alteration product.								
		Overall the interval contains, 20 % limestone, 10 % quartz, 5 % calcite, 5 % galena, 25 % pyrita, 30 % sphalerite, 5 % oninge/light green mineral.								
		100.10-100.90 LIMESTONE MASSIVE SULPHIDE Silicified limestone, partially replaced by pynie and lesser sphalarite and galena. The degree of sulphide replacement increases towards the base of the interval. Styclites, throughout the interval, are at 30 - 40 degrees to core axis and are commonly lined by fine gramed sulphide. Sulphide is observed replacing limestone adjacent to these styclites. In addition, the interval is	LZ	140578	100.10	100.90	0.00	79.30	1.54	2.92
		cross-cir by calces singlers and verifi which continue contain pyrite, sphalente, and lesser gatena. Overall, 50 % limestone, 10 % quantz, 10 % calcite, 25 % pyrite, 5 % sphalente, trace gatena. 100.90-101.60 LOWER ZONE MASSIVE SULPHIDE Silicified pyrite rich massive suifide with lesser sphalente and gatena found over the basal 45 centimetres of the interval.		140579	100.90	101.60	0.01	598.30	11.06	4.78
		 70 % pyrite, 10 % sphalerite, 5 % galena, 10 % quartz, 5 % calcide. 101.60-101.90 AMPHIPORA FLOATSTONE Relict amphipore floatstone with numerous styolites, rarely fined by fine grained sulphide, at 40 degrees to core axis. 2 % pyrite bearing calcide stripcers cross-cut the interval. Overall, trace 		140560	101.60	101.90	0.00	6.50	0.02	0.04
		pyrite. 101.90-102.60 LOWER ZONE MASSIVE SULPHIDE Incompetent and crumbly, black sphalerite rich massive sulfide with lesser pyrite and 20 % relict limestone. An orange/light green mineral with a grey streak is found mming sphalerite. The upper contact with the above lying limestone is sharp and at 40 degrees to core axis. Weak sphalerite pyrite banding is found within the		140581	101.90	102.60	0.00	59.10	0.14	26.51

J,

Pa	ge 5		
e 114	1000	Ŧ	

٢

,

2000 UG DRILL LOG

E.

SILVERT											
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gum/t	Ag gm/t	Pb %	Zn %	
		upper 5 centimetres of the interval, with bands onentated parallel to this contact. Overall, 56 % sphalerite. 10 % pyrte, trace galena, 10 % orangs/light green minaral. 20 % limestone. 2 % quartz, 2 % calcite. 102,60-103,50 LOWER ZONE MASSIVE SULPHIDE Very crumbly, black sphalerite rich massive sulfide as above but with more sphalerite and less relict limestone. Basal 15 centimetres of the interval is rubble brecciated with clasts of sphalerite and pyrite massive sulfide, limestone and argillite up to 4 centimetres wide. The breccia has been heated by a calcite cement. Overall, 70 % sphalerite. 15 % pyrte, 5 % argillite. 5 % limestone, 5 % calcite.		140582	102.60	103.50	0.01	73.10	0.29	33.03	
103.50	103.80	MCDAME LIMESTONE CRACKLE BRECCIA FLOATSTONE Footwall semple. Crackle brecclated amphipora floatstone with minor massive stromatoporids. Upper contact with above lying lower zone is sharp but irregular (wavy) and orientated at 50 to core axis. Overall, trace sphalerite, trace pyrite.	MLS	140584	103.50	103.80	0.00	940	0.04	0.61	
103.80	104.80	1AA LAMINATED SILTSTONE MOSAIC BRECCIA Post mineral, hydrothermal collapse mosaic brecca consisting of angular clasts of 1 AA and sub-rounded clasts of limestone and pyrite - sphalerite massive sulfide, from < 1 mm to 5 cantimetres wide, within a white crystalline calcite matrix. Overall, 1 % pyrite, 1 % sphalerite, 50 % 1AA, 15 % limestone, 33 % calcite.	MLS	140585	103.80	104.60	0.05	19.60	0.24	2.16	
104.80	108.60	MCDAME LIMESTONE UNIT 1 AMPHIPORA PACKSTONE Competent limestone ranging from amphipora packatones to Roatstones with minor massive stromatoponds. 3 % calcite stringers and velos up to 5 mm wide cross-cut the interval and values localised zones of weak - moderate crackle brecciation. Trace amounts of fine grained pyrite are found within these venilets. Numerous styolites, orientated parallel to fossil beds at 50 degrees to core axis are present throughout the interval. Overall, trace pyrite. 104.80-108.70 AMPHIPORA PACKSTONE Weakly crackle brecciated limestone as above. Overall, trace pyrite, 3% calcite stringers.	MLS1	1405 86 140587	104.80 108.70	106.70 108.60	0.00	3.90 2.70	0.01	0.01 0.01	
1		108,70-108.60 AMPHIPORA PACKSTONE Hanging wall sample. Non-weakely crackle brecciated amphipora									

SUD-00-8? Page 5

Page 6 SILVER1	пр	2000 UG DRILL LOG							SUI	7-00-87
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gmvt	Pto %	Zn %
	<u> </u>	packstone as above. Contact with below lying massive sulfide is sharp and irregular (wavy). Overall, trace pyrite, 3 % calcite stringers		-						
108 60	110.30	LOWER ZONE MASSIVE SULPHIDE Pyrite rich massive suffice with lesser sphalerite and minor galena. Interval contains rare (7%) localised zones up to 8 centimetres wide of rubble brecciated pyrite clasts within a pyrite and sphalerite matrix. The interval is calcareous throughout and has been healed by a calcite - quartz cement. 1 % calcite stringers and clots cross-cut the lower zone mineralization at 40 degraes to core axis. Overall, 72 % pyrite, 10 % sphalerite, 1 % galena, 10 % calcite, 5 % quartz, 2 % limestone. 108.60-109.40 LOWER ZONE MASSIVE SULPHIDE Pyrite rich massive suffice with lesser sphalerite and minor galeria. Overall, 74 % pyrite, 10 % sphalerite, 1 % galena, 10 % calcite, 5 % quartz. 109.40-110.30 LOWER ZONE MASSIVE SULPHIDE Pyrite rich massive suffice as above but with 2 % relict limestone. Upper 8 centimetres of the interval has been rubble breccated and consists of clasts of pyrite up to 1 centimetre wide within a pyrite and sphalerite subplice matrix. Overall, 73 % pyrite, 10 % sphalerite calcite of 0 % calcite for a limestone. Upper 8 centimetres of 0 % calcite for a limestone. 109.40-110.30 LOWER 20 MASSIVE SULPHIDE Pyrite rich massive suffice as above but with 2 % relict limestone. Upper 8 centimetres of the interval has been rubble breccated and consists of clasts of pyrite up to 1 centimetre wide within a pyrite and sphalerite trace rubos 10 % calcite 5 % quartz, 2 % limestone.	LZ	140 588 140590	108.80 109.40	109.40 110.30	0.01 0.00	206.05 308.30	1.80	5 25 5 26
110.30	120.60	MCDAME LIMESTONE MOSAIC BRECCIA Hydrothermal collapse mosaic breccia with local zones up to 25 centimetres wide of cracide and rubble brecciated limestone. Breccia's consist of sub-rounded clasts of limestone up to 10 centimetres wide within a crystalline calcits metric. Rare clasts of Earn are present and are dominantly found from 112.04 metres. I 12.4 metres. Sulphide is rare within the interval but is found as clasts within the breccia and replacing brecciated limestone clasts. From 116.7 metres - 118.4 metres the core is fractured with numerous vugs and fracture surfaces lined by suhedral calcite and barite crystals. Overall, trace sphalerite, trace pynte. 30 % calcite matrix.	MLS	140591	110.30	111.30	0.00	4.80	0.01	Q.D4

SUD-00-8? Page 6

Page 7 SILVERTIP	2000 UG DRILL LOG							SU	0-00-8
From To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zп %
	Footwall sample. Strongly crackle to mosaic brecciated limestone with numerous styolites, occasionally lined by fine grained pyrite, at 50 - 60 degrees to core axis. Relict amphipora and thamnopora are observed within limestone clasts. Overall, trace pyrite, trace sphalerite, 15 - 20 % calcite. 112.04-112.40 LIMESTONE MOSAIC BRECCIA Hydrothermal collapse mosaic breccia with clasts of limestone. 1AA carbonaceous argilite, and suphide within a calcite matrix. Overall, 1 % sphalerite, 2 % pyrite. 119.60-120.60 LIMESTONE MOSAIC BRECCIA Hanging wall sample. Hydrothermat collapse mosaic breccia with sub-rounded clasts of limestone up to 8 centimetres wide within a crystalline calcite matrix. Suphide is rare but is observed within the calcite matrix. Ining styolites, and partially replacing limestone diarte. Overall		140592	119.60	120.60	0.00	8.10	0.03	0.07
120.60 135.30	LowER ZONE MASSIVE SULPHIDE LowER ZONE MASSIVE SULPHIDE Complex and highly variable lower zone mineralization ranging from fine grained pyrrhotite, pyrte nch massive sulfide to mosaic and rubble brocciated sulphide and limestone. Fine-grained pyrite and pyrrhotite masaive sulfide appears to be an early phase of mineralization. This early stage mineralization is found associated with a silica fluid and has been mosaic and nubble brocciated by later stages of mineralization. Mosaic breccia's are found throughout the interval but are concentrated in the upper 6 metres of the interval. These breccia's are commonly sphalerite and galena rich and consist of clasts of limestone and early fine grained pyrite and pyrrhotite massive sulfide within a coarsety crystalline calcite matrix. Coarse grained sphalerite, galena and pyrite are found within the calcite matrix of these breccia's as well as replacing and overprinting clasts of limestone and fine grained pyrite the basal 7 - 8 metres of the interval and consist of clasts of limestone and early fine grained pyrite and pyrmotite massive sulfide. Coarse grained pyrite, sphalerite, and galena are found within these breccia's replacing limestone clasts. Overall estimate, 33% ouring 15 % calcing 15 % outpatient 7 % metres.	ιz	140593	120.80	121 90	0.00	483 10	7.50	6.42

SUD-00-8" Page 7

Page B SILV ERTI F	5	2000 UG DRILL LOG							SU	D-00-87
From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gnvit	Рb %	Zn %
		% limestone, 10 % calcite.					†		1	
		120.80-121.90 LOWER ZONE MOSAIC BRECCIA Lower zone mosaic breccia with clasts of limestone and sulphide up to 5 centimetres wide within a crystalline calcite matrix. Coarse grained sphalenite, pyrite and galena are found within the calcite matrix, replacing limestone clasts and overprinting earlier pyrite and pyrhotite massive sulfide. Overall, 10 % pyrite, 10 % sphalenite, 10 % galena, 10 % pyrhotite, 40 % limestone, 10 % calcite, 10 % quartz.		140594	121.90	122.80	0.00	983.60	10.75	12.91
		121:90-122.80 LOWER 20NE with class of limestone and sphalente, pyrite, galena massive sulfide within a crystalline calcite matrix. Sphalente, pyrite, and galena are also found within the breccia matrix and replacing brecciated limestone class. Overall, 25 %pyrite, 20 % sphalente, 15 % galena, trace pyriholite, 20 % limestone, 10 % guartz, 10 % calcite.		140595	122.80	123.80	0.01	89.00	1.07	2.63
		122.80-123.80 LOWICK 2014E MASSIVE SOLPHIDE Early stage, silicified fine grained pyrite, pyrithotte massive suifide. Basal 25 centimetres of the interval has been crackle and mosaic brecciated by calcite veins and clots. In addition, coarse grained red sphalerite and pyrite is found in the basal 25 contimetres of the interval, overprinting earlier pyrite, pyrrhotte massive suifide. Overall, 50 % pyrrhotte, 30 % pyrite, 5 % sphalerite, 10 % quartz, 5 % calcite.		140598	123.80	124.80	0.01	163.90	3.09	9.30
		123.60-124.80 MASSIVE SULPHIDE MOSAIC BRECCIA Massive sulphide mosaic breccia consisting of clarits of early fine grained pyrite up to 10 contimetres wide within a quartz and calcite matrix. Coarse grained pyrite and sphalente are found within the matrix and replacing breccaled pyrite clasts. Overall, 45 % pyrite, 20 % sphalente, 15 % calcite, 15 % quartz, 5 %	1	140597	124.80	125.80	0.12	27.70	0.20	12.78
		Interatore. 124.80-125.80 MASSIVE SULPHIDE CRACKLE BRECCIA Early stage fine grained pyrite massive sulfide cross-cut and crackle bracciated by calcite and quartz stringers and veins up to 6 centimetres wide. These veins are found to contain coarse grained pyrite and and red sphalerite. Overall, 40 % pyrite, 30 % sphalerite, 10 % calcite, 15 % quartz, 5 % limestone.		140598	125.80	126.80	0.00	39.30	0.38	5.16

ŧ.

SILVERTIP											
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	PD %	Zn %	
		125.80-126.80 MASSIVE SULPHIDE CRACKLE BRECCIA Early fine grained pyrite massive sulfide crackle brecciated by calcite stringers and veins. Coarse grained sphalerite and pyrite are found within these vens and replacing earlier fine grained pyrite massive sulfide. The basal 30 centimetres of the interval is massive sulphide mosaic breccia with clasts of early fine grained pyrite up to 3 centimetres wide within a coarsely crystalline calcite and sulphide matrix. Overall, 45% pyrite, 5 % pyrite, 2 % pyrrhotite, trace galena, 30 % calcite, 15 % quartz, 3 %		140600	126.80	127.80	0.01	320.10	5.49	15.45	
		imestone. 126.80-127.80 LOWER ZONE MASSIVE SULPHIDE Early fine grained pyrite, pyrihotite massive sulfide cross-cut and weakly crackle brecciated by 5 % calcite veins. Coarse grained red sphalerite, galena and pyrite are found within these veins and are observed partially replacing early fine grained pyrite.		140651	127.80	128.80	0.01	454.70	7 89	18.61	
		pyrrhotite massive sulfide. Overall. 60 % pyrite, 10 % sphalerite, 10 % pyrrhotite, 5 % galena, 10 % quartz, 5 % calcite. 127 80-128.80 MASSIVE SULPHIDE RUBBLE BRECCIA Rubble brecciated fine grained pyrite, pyrrhotite massive sulfide. Later stage, coarse grained, sphalerite, pyrite and galena are found in association with open space fill calcite and partially replacing clasts of earlier pyrite and pyrrhotite massive sulfide. Overall, 55 % pyrite, 10 % sphalerite, 10 % galena, 10 % pyrrhotite, 10 % quartz, 5 % calcite. 128.80-129.80 MASSIVE SULPHIDE RUBBLE BRECCIA		140652	128 80	129.80	0.00	180.30	2.79	9.75	
		Rubble brecciated massive sulfide as above. From 129.4 metres - 129.6 metres the interval has been mosaic brecciated, with clasts of fine grained pyrite and coarse grained sphalerite and pyrite massive sulfide within a crystalline calcrite matrix. Overall, 50 % pyrite, 10 % sphalerite, 10 % galena, trace pyritotite, 15 % calcrite, 10 % quartz, 5 % limestone. 129 80-130.80 MASSIVE SULPHIDE RUBBLE BRECCIA Rubble breccaled massive sulfide as above. Clasts of relict limestone and early fine grained sphalerite, pyrite, galena and partially replaced by coarse grained sphalerite. pyrite, galena and		140853 140854	129.60 130.80	130.80	0.00 0.00	376 30 577 80	6.75 9.16	12.65	

SUD-00-8" Page 9

Page 10 SILVERTIP	,	2000 UG DRILL LOG							\$U	D-00-87
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Рb %	Zп %
		calcite mineralization. Overall, 55 % pyrite, 5 % sphalente, 5 % galena, 15 % calcite, 10 % quartz, 10 % limestone. 130.80-131.80 MASSIVE SULPHIDE RUBBLE BRECCIA Rubble brecciated massive sulfide with clasts of early fine grained pyrite and relict limestone up to 8 centimetres wide within a		140655	131.80	132.80	0.00	327.30	4.66	11.59
		Classic of early fine grained pyrite and relict lineator. Classic of early fine grained pyrite and relict lineatone are immed and partially replaced by later stage sphalerite, galena, and pyrite mineralization. Overall, 40 %pyrite, 15 % sphalerite, 10 % galena. 15 % lineatone, 10 % calcite, 10 % quartz. 131.80-132.80 LOWER ZONE MASSIVE SULPHIDE Competent, calcareous and coarsely crystalline sphalerite, pyrite rich massive sulfide. Basel 40 centimetres of the interval has		140656	132.80	133.90	0.00	599.80	7 84	11.71
		Deen rubble brecciated and contains clasts of limestone and fine grained pyrite within a matrix of coarse grained sphalerite, pyrite and galena. Overall, 45 % pyrite, 20 % sphalerite, 5 % galena, 15 % cractine 10 % limestone 5 % duatz.	1	140657	133.90	134.40	0.00	94.70	1.37	4.26
		132.60-133.90 MASSIVE SULPHIDE RUBBLE BRECCIA Rubble breccia consisting of clasts of limestone and fine grained pyrite up to 8 centimetres wide, which have been completely to partially replaced by coarse grained sphalerite, galena, pyrite and calcite mineralization. Overall, 40 % pyrite, 15 % sphalerite, 5 % galena, 25 % timestone, 15 % calcite. 133.90-134.40 RECRYSTALLIZED LIMESTONE Partially recrystallized limestone, partially replaced by coarse grained sphalerite, galena, and pyrite adjacent to styolites. Overall, 95 % limestone, 2 % sphalerite, 2 % pyrite, 1 % galena. 134.40-135.30 LOWER ZONE / LIMESTONE		140658	134.40	135.30	0.00	453.20	7.34	7.24
		Linestone, partially replaced by coarse grained sphalerite, pyrite, and galena mineralization adjacent to styclites. Sulphide forms large massive blebs from < 1 mm to 18 centimetres wide. Oversil, 35 % pyrite, 10 % sphalerite, 5 % galena, 40 % limestone, 10 % realifie	Ì							
135.30 1	39.70	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Competent, stromatoporoid floatstones and rudstones with lesser amphipore and rare euryamphipora. Interval contains numerous styolites at 50 - 60 degrees to core axis, which cause local zones up								

SUD-00-87 Page 10

Page 11	
SH VERTIP	

2000 UG DRILL LOG

SUD-00-87

. .

.

SILVER	l IP								50	0-00-07
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
		to 10 centimetres wide of stycitic threectas. Red sphalerite, pyrite and galena are found lining stycities and replacing limestone adjacent to stycities. Overall, trace pyrite, trace sphalerite, trace galena. 135.30-136.30 STROMATOPOROID FLOATSTONE Footwall sample. Stromatoporoid floatstone as above. 1 % pyrite, < 1 % sphalerite, trace galena.	ML2	140659	135.30	136.30	0.00	34.20	0.36	0.66
		136.30-137.50 STROMATOPOROID FLOATSTONE		140660	136.30	137 50	a 00	5.60	0.02	0 02
		137:50-138.70 STROMATOPOROID FLOATSTONE Stromatoporoid floatstone as above but with a trace of pyrite and cabalteria		140681	137.50	138.70	0.00	5 10	0.Q1	0.02
		sprate ite: 138.70-139.70 STROMATOPOROID FLOATSTONE Hanging wall sample. Stromatoporoid floatstone as above. Contact with below blog massive sulfide is sharp and at 40 to core axis.	}	140662	138.70	139.70	0.00	5 60	0.02	0.03
139 70	141 40	Overall, trace pyrite.	 						·	
		Manto type lower zone mineralization consisting of early fine grained pyrite, pyrrhotite rich massive sulfide, partially replaced by coarse grained pyrite, sphalente, and galena. Later stage mineralization is associated with open space fill calcite and ankerite. The interval contains 2 % relict limestone which is concentrated in the upper 20 centimetres of the interval. Overall. 20 % pyrite, 20 % sphalerite, 17 %								
	ļ	galena, 15 % pyrrhotite, 20 % calcite, 5 % quartz, 2 % limestone, 1 %	١Z							
		ankerne. 139.70-140.70 LOWER ZONE MASSIVE SULPHIDE Coarse grained sphalerite, galena, pyrite massive sulfide with crystalline calcite and ankerite found filling open space. 5 % relict limestone is observed in the upper 20 centimetres of the interval. Overall, 24 % galena, 20 % pyrite, 20 % sphalerite, 25 % calcite, 5 % limestone 5 % quietta, 1 % ankerite		140664	139.70 140.70	140.70 141.10	0.00	1165.00 283.40	∠3.49 5.87	13.77 7 96
		140.70-141.10 LOWER ZONE MASSIVE SULPHIDE Early fine grained pyrite, pyrrhotite massive sulfide partially replaced by later coarse grained sphalerite, galena, pyrite massive								

SUD-00-8' Page 11

Page 12 SILVER1	ri p	2000 UG DRILL LOG							SU	D-00-87
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	ТО (т)	Au gm/t	Ag gm/t	РЬ %	Zn %
		sulfide. Ankente is found filling open space. Overall, 35 % pyrrholite. 25 % pyrite, 15 % sphalerite, 10 % galena, 10 % quartz, 5 % ankente. 141.10-141.40 LOWER ZONE MASSIVE SULPHIDE Sphalerite, pyrite, galena rich massive sulfide as from 139.7 metres - 140.7 metres. Overall, 30 % pyrite, 30 % galena, 30 % schalerite. 10 % calcite.		140666	141.10	141.40	0.00	757.20	16.29	14.21
141.40	158.00	MCDAME LIMESTONE UNIT 2 STROMATOPOROID FLOATSTONE Stromatoporoid floatstones and rudstones with leaser amphipona. Numerous styolites throughout the interval, cause local zones of styolitic brecciation up to 15 centimetres wide. Fine-grained sulphide is commonly found lining styolites. From 151.8 metree – 156.0 metres the interval is crackle brecciated by calcite stringers and veins up to 1 centimetre wide. Contact with above lying massive sulfide is sharp and at 50 to core axis. Overall, trace schalerite, trace pyrite, trace galent,	MLS2							
		141.40-142.40 STROMATOPOROID FLOATSTONE Footwall sample. Strongtoporoid floatstone with numerous swolites lined by fire organized subside. Overall trace swite.		140667	141.40	142.40	0.00	16.50	0.21	0.17
156.00	158.30	RECRYSTALLIZED LIMESTONE RUBBLE BRECCIA Rubble brecciated limestone which has subsequently been coarsely recrystallized. In the upper 20 centimetres of the interval very fine (~ 1mm wide) amphipora are preserved, indicating that this may possibly be unit 3. Fine-grained pyrile is present lining styolites and partially replacing brecciated limestone clasts. Overall, trace pyrile. 157.30-158.30 RECRYSTALLIZED LIMESTONE Hanging wall sample. Rubble brecciated and recrystallized limestone on show Overall < 1% mitted	MLS	140888	157.30	158.30	0.00	3.60	0.02	0.03
158.30	158.70	MINERALIZED LINESTONE RUBBLE BRECCIA Rubble breccisted limestone with clasts from < 1 mm - 3 centimetres with, interval has been recrystalized and partially replaced by sphalerite, galena, and pyrite mineralizatiation adjacent to styolites. 2 % pyrite. < 1 % sphalerite. < 1 % galena.	MLS	140669	158.30	158.70	0.14	68.20	1 17	4 27
158.70	159.10	LOWER ZONE / LIMESTONE RUBBLE BRECCIA Pyrite and sphalente massive sulfide are found selectively replacing clasts and matrix of a imestone rubble breccia. The interval has been healed by a calcite cement. 40 % oprife. 15 % sphalenite, trace palena. 35 % linestone. 10 % oprife.	LZ	140670	15 8 .70	159.10	0.00	219.60	0.27	3 21

Pa	ge 13	
C II	VEDTID	

•

,

2000	
UG DRILL	LOG

SUD-00-87

י ז נ

From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
159.10	160.20	MINERALIZED RUBBLE SRECCIA Footwall and hanging wall sample. Rubble and crackle brecciated limestone with clasts up to 9 centimetres wide, interval has been recrystallized and partially replaced by pyrite, sphalerite and minor galena adjacent to styolites and fractures. 3 % pyrite, 1 % sphalerite, trace galena, 5 % calcite.	MLS	140671	159.10	160.20	0.00	10.00	0.05	0.54
160.20	164.30	LOWER ZONE MASSIVE SULPHIDE Pyrite, sphatentie and rare galena massive sulfide found replacing the clasts and matrix of a previous limestone rubble breccia. The interval is competent and has been heated by a quartz and calcite cement. Overall, 34 % pyrite, 15 % sphatente, 1 % galena, 15 % quartz, 1 % calcite, 25 % limestone.					ſ			
		Pyrite, sphalerite and galena massive SUEPHIDE Pyrite, sphalerite and galena massive sulfide healed by calcite cement. Galena is rare and is concentrated in the upper 20 centimetres of the interval. 55 % pyrite, 10 % sphalerite, 5 % cablera, 15 % calcite, 10 % ismastrate, 5 % crustrated	Ľ	140872	160.20	1 61 .10	0.00	184.00	2.98	9 30
		gateria, 10 & ballio, 10 / a mASSIVE SULPHIDE Black sphalerite and pyrite rich massive sulfide, healed by calcite cement. Relict brecciated clasts of recrystallized impsione are present and have been partially replaced by sphalerite and pyrite. 45 % pyrite, 40 % sphalerite, 10 % calcite, 5 % limestone.		140873	161.10	162.10	0.00	7B.40	Q. 22	18.73
		162.10-162.70 MINERALIZED RUBBLE BRECCtA Rubble brecciated limestone with clasts and matrix partially replaced by pyrite and sphalerite. Interval is competent and has been healed by a quartz and calcite cement. 30 % pyrite, 5 % sphalerite. 50 % imestone. 10 % quartz 5 % calcite		140674	162.10	162.70	0.00	29.50	0.10	1.13
		162.70-163.20 MINERALIZED RUBBLE BRECCIA Rubble brecciated limestone as above but with mora sulphide replacement 35 % sphalerite, 25 % pyrite, 30 % limestone, 5 % quart 5 % califie		140675	162.70	163.20	0.00	74.50	0.04	17 05
		163.20-164.30 LOWER ZONE / LIMESTONE RUBBLE BRECCIA Rubble and crackle brecciated imestone partially replaced by pyrite and minor sphalenite mineralization. Interval is competent and has been salicified, 47 % pyrite, 3 % sphalenite, 40 % limestone, 10 % quartz.		140676	163.20	164.30	0.00	35.00	0.02	2.97

SUD-00-8? Page 13

Page 14 SiLVERT	ri P	2000 UG DRILL LOG							SU	0-00-87
From	To	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au grivit	Ag gm/t	Pb %	Zn %
164.30	165.90	LIMESTONE CRACKLE BRECCIA Crackle brecciated and weakly bleached limestone with numerous styclites at 10 - 50 degrees to core axis. Fine-grained pyrite is commonly found lining styclites and replacing limestone adjacent to styclites. Basal contact with below lying massive sulfide is sharp and at 50 degrees to core axis. Overall, 4 % pyrite. 184.30-185.10 LIMESTONE CRACKLE BRECCIA Footwell sample. Crackle brecciated limestone as above but with only a trace of pyrite. 185.10-185.90 LIMESTONE CRACKLE BRECCIA Hanging well sample. Crackle brecciated and bleached limestone	MLS	140677 140678	164.30 165.10	165.10 165.90	0.00	5.60 9.80	0.01	0.04
165.90	169.90	as above but with 8 % pyrite. LOWER ZONE MASSIVE SULPHIDE Partially silicified, pyrite, sphalerite massive sulfide with 25 % relict crackle brecciated limestone. The interval is competent and has been heeled by a quartz and calcite cement. 25 % pyrite, 20 % sphalerite, 25 % limestone, 15 % quartz, 15 % calcite. 195,90-168.70 LOWER ZONE MASSIVE SULPHIDE Pyrite and sphalerite massive sulfide with 20 % relict limestone. The upper 35 centimetres of the interval has been silicified. Oversil, 45 % pyrite, 25 % sphalerite, 20 % limestone, 10 %	LZ	140679	165.90	166.70	0.01	57 80	0.13	7.67
		9 quartz. 168:70-187.50 LIMESTONE CRACKLE BRECCIA Crackle and styolitic breccisted amphipora packstone. The limestone has been partially replaced by pyrite and sphalente adjacent to styolites, veins, and fractures. 5 % pyrite, 3 % consistent.		140680	166.70	167.50	0.02	12.20	0.09	2.78
		187.50-168.60 LOWER ZONE MASSIVE SULPHIDE Competent, partially slicified sphalerite, pyrite massive sulfide with 15 % relict slicified limestone. Overall, 40 % pyrite, 30 % sphalerite, 15 % limestone, 15 % quartz.		140681	167.50	168.60	0.00	21.10	0.05	6.70 4.92
		168.80-169.90 LOWIER ZONE MASSIVE SULPHIDE Pyrite and sphalente massive sulfide as above but with more relict limestone. Bassi contact with below lying limestone is sharp and at 70 degrees to core axis. Overall, 25 % pyrite, 10 % sphalente. 40 % limestone, 15 % quartz.			100.00		0.00		9.21	

Page 15	
SILVERTIP	

2000 UG DRILL LOG

•

From	Τo	Geological Log	UNIT	SAMPLE	FROM (m)	OT (m)	Au grivit	Ag gmnt	Pb %	Zn %
169.90	170.60	AMPHIPORA RUDSTONE Footwall sample: Amphipora rudstone cross-cut by numerous styckies and occasional calcite veins and stringers. Fine-gramed pyrite and sphalerite are found lining stycilies and replacing imestone adjacent to stycilies. Overall, < 1 % purite, trace schalerite.	MLS	140683	169.90	170.60	0.01	3 40	0.01	0.45
170.60	171.80	MINERALIZED METEROLITHIC RUBBLE BRECCIA Heterolithic rubble breccia with class of limestone, argilite, and light green strongly sericite altered rock(YBR?). Clasts are up to 5 centimetres wide and are found within a lime mud matrix. Pyrite and sphalerite are found throughout the interval selectively replacing the breccia matrix and limestone clasts. Overall, 3 % sphalerite, 10 % ovrite.	MLS	140684	170.60	171.80	D.00	7.30	0.09	0.74
171.80	176.20	LIMESTONE CRACKLE BRECCIA Strongly crackle brecciated limestone with local zones up to 60 centimetres wide of rubble brecciated limestone. Styolites are common throughout the interval and are lined by fine grained sulphide (dominantly pyrite). Overall, trace pyrite, 15 - 20 % calcite stringers and veins. 171.80-172.70 LIMESTONE CRACKLE BRECCIA Footwall sample. Strongly crackle brecciated imestone which has been rubble brecciated in the upper 60 centimetres of the interval. Styolites are common and are lined by fine grained pyrite mineralization. Overall, trace pyrite, 15 - 20 % calcite stringers and veins.	MLS	140685	171 80	172.70	0.02	8.30	0.03	0.26

*** END OF HOLE *** 176.20

. . . ·

.

*

. ..

.

-

.

SUD-00-8? Page 15

+

•

•

;

2.52

HOLE NO: SUD-00-88

.

SECTION:65-C

2000

PROJECT CODE	SILVERTIP				*** DRI	LLING S	UMMAF	(Y ***	
TENEMENT PROSPECT	SILVERTIP MI	NING N	[DIAMON DRILL	D	0.00	80.20	HQ	
GRID	SILVER CK S.		Γ	Drill con	RILLING	TD.			
MAP REFERENCE	: 104/O-16W			Drill rig:	LL MODE	L 150			
LOCATION	LIARD MD, BC			Date sta	irted:	6/2/00			
HOLE TYPE	UG		ļ	Date fini	ished:	7/2/00			
				Logged	by:	L. LEW	IS		
COLLA	R COORDINATI	ES AND RL		Relogge	d by:				
NOMINAL 433	18.00mN 2495	58.00mE 1133.00R	L	Sample	d by:	R. NEY			
Pre-collar depth: Purpose of hole: Hole status: Comments:	Final TEST EAST MIN'N. COMPLETEL LOWER ZOM SURVEYDATA ELEX EZ-SHOT	depth: 80.2 EXTENT OF LZ D IE: 63.4 - 63.8 M	0	Material II Base of c Top of fre Water firs Water infl	eft in ho omplete sh rock: t encou ow estir *** SIG To	le: oxidatio ntered: nate: SNIFICAN Width	NONE 0.0 0.0 0.0 0.0 NT ASS/ Ag	4YS *** - Pb %	Zn
Depth	Azimuth	Inclination					3.4		
0.00	250.00	-80.00		62.40	64.80	2.40	124.20	1.65	2.5
16.1	251.70	-80.00							
46.63	253.10	-80.60	ļ						
80.16	73.10	-67.40							
95.00	250.00	-80.00							

*** SUMMARY LOG ***								
0.00	31.40	1B SANDSTONE /						
		SILTSTONE						
31.40	39.20	FAULT ZONE 1BA						
39.20	50.40	1A SILICIFIED ARGILLITE						
50.40	63. 40	MCDAME LIMESTONE UNIT						
		2						
63.40	63.80	LOWER ZONE MASSIVE						
		SULPHIDE						
63.80	77.10	DOLOMITIZED LIMESTONE						
		BRECCIA						
77.10	80.20	MCDAME LIMESTONE UNIT						
		2						
80.20		END OF HOLE						

Checked and signed:

Date:

.

GRID:SILVER CK S.

Page 1 SILVER1	ne	2000 UG DRILL LOG							Su	D-00-88
From	Та	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/t	Pb %	Zn %
0.00	31.40	18 SANDSTONE / SILTSTONE 0.00-18.30 SANDSTONE / LAMINATED SILTSTONE The usual sequence of interbedded massive to fining upward sandstone (15 - 100 centimetres) and láminated siltstone (to 10 centimetres). Bedding angle 65 degrees to core axis. Sandstone layers are rarely calcareous. Intermittant zones of soft sediment deformation (eg: 10.3 metres). 1% concordant quartz (+/- pyrite) stringers, 1% cross-cutting quartz-calcite stringers, 20 & 40 degrees to core axis, often with pyrite, +/- sphalerite. Trace - 2% pyrite, trace sphalerite, pyrithotite (pyrithotite a nodules with calcite pressure shadows). 18.30-31.40 LAMINATED SILTSTONE / SANDSTONE PYRITIC Loss the thick beds of fining upward sandstone and the unit becomes moderately incompetent, breaktone and the unit becomes moderately incompetent, breaktone and the unit becomes moderately incompetent, breaktone. 3% cross-cutting quartz - calcite stringers, 10 & 50 degrees rcs, with fine to coarse pyrite, trace sphalerite. 8% pyrite, finely disseminated, as clots or smears on fractures, and in quartz stringers.	18							
31.40	39.20	FAULT ZONE 18A Probable fault zone consisting of 20% carbonaceous gouge, 40% flaky sitistone & sandstone chips, and 40% laminated sitistone core < 10 centimetres in length. Bedding @ 70 degrees. Moderate to poor recovery. 1-2% quartz - calcite stringers parallel and cross-cutting bedding. 2% disseminated and clotty pyrits.	ΓΖ.							
39 20	50.40	1A SILICIFIED ARGILLITE Moderately siliceous, finely taminated sitistone and argitite with sandstone lenses that have slumped in or are rip-up class. 5% quart2 - calcel stimogers, pods and deformed verintet to 3 centimetres wide, often with fine clotty pyrite. 8% fine pyrite also as disseminations throughout. Broken lower contact. - 41.5m: 20 centimetres gouge and rubble with cross-cutting upper contact, 30 degrees to core axis. - 48 2m: 25 centimetres gouge.	14							

SUD-00-88 Page 1

Page 2 Sil VER	TIP	2000 UG DRILL LOG							SU	D-00-88
From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag gm/l	P10 %	Zn %
50.40	63.40	MCDAME LIMESTONE UNIT 2 Broken up unit of limestone along frequent low angle to core axis fractures (avg 20 degree). Fauna consists of abundant massive stromatoponde (which are intermittantly finely recrystalized), minor amphipora, scattered thermopora and one excellent rugose coral - Tryplasma, @ 81.1m. These form floatistone and minor rudstone, interlayered with leaser dense packstone. Tryplasma is not typically found in Unit 1, therefore classified as Unit 2. Minor crackle with locally moderate calcite stringers and veining. 1-2% fine grained pyrite, locally up to 10% from 61.6 - 62.2m, as fine replacement following and extending outward from open-space fill calcite. Inregular quiet replacement front lower contact with Lower Zone, 61.60-62.20 LIMESTONE PYRITIC 10% fine grained pyrite clots in a calcite matrix.	MILS2	140603	62.40	83.40	0.00	6.30	0.01	0.02
ļ		(a2.40-b3.40 records instance of the constraints of partly Hanging wall sample. Rubbly, broken interval of partly recrystallized ilmestone, now finely crystalline. 6% coarse grained calcits filling low angle (to core axis) fractures (10-20 degrees), along which the core breaks. 2% pyrite lining stylolites and ex small drive in calcite.	ł							
63.40	63.60	LOWER ZONE MASSIVE SULPHIDE 83.40-63.80 PYRITE PYRHOTITE SPHALERITE MASSIVE SULPHIDE Fine granular pyrhotite overprinted by coarse grained pyrite, sphalerite (red & black) and galena in a quartz - calcile matrix. No remnant limestone. Manto-like minoralization, with faint layering subparallel to fossil layering (~65 degrees) with quiet, irregular replacement fronts at upper and lower contact. 30% pyrite, 25% pyrhotite, 25% sphalerite. 8% galena, 6% calcile, 6% guertz.	١Z	140604	63.40	63.80	q. 00	714.20	9.85	15.00
63.80	77.10	DOLOMITIZED LIMESTONE BRECCIA Variable unit comprised of medium crystalline, partial to fully dolomitized, dark gray limestone, lesser bleached, finely recrystalized foliated limestone. Crackle is the dominant breccia with localized zones of rubble breccia (66.3 - 67.0 metres) and mosaic breccia (67.6 - 67.9 metres). Brittle, broken core with low RQD. A well preserved coral - Tryplesma occurs in the dolostone @ 69.95m. 3-5% fine								

SUD-00-88 Page 2

2000

Page 3 SILVERTIP

.

.

2000 UG DRILL LOG

SUD-00-88

.

From	То	Geological Log	UNIT	SAMPLE	FROM (m)	TO (m)	Au gm/t	Ag grivit	Pb %	¥5,
		grained pyrite, trace sphalerite as stringers and lining stylolites. 83.80-84.80 RECRYSTALLIZED LIMESTONE Footwell sample. Parially recrystallized limestone with moderate crackle and 3% fine grained wispy pyrite adjacent to upper contact with subhides.	MLSD	140605	63. 80	64.80	0.00	6.10	0.01	0.02
77.10	80.20	MCDAME LIMESTONE UNIT 2 Probably still Unit 2, containing abundant massive stromatoporids. (locally thin layers of dense amphipora, scattered tharmopora and Trypiasma corais. Thin Euramphipora intercalations towards the bottom (79,0 metres). Moderate crackle and local low angle to core axis calcite veining (accompanied by minor breccia). 1-2% fine orained owne adon carbonacous stylelites.	MLSZ							

*** END OF HOLE *** 80.20

. . . .

.

•

..

SUD-00-88 Page 3

٠

•

••

۰.

APPENDIX B

-.

,

.

.

Assay Results

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-67		
55.1 - 59.95 Including	4.85	146.52	1.19	5.54
57.13 - 59,95	2.82	233.12	1. 99	7.80
95.85 - 107.5	11.65	322.83	5.20	13.02
95.85 - 104.5	8.65	348.07	5.49	15.60
105.16 - 107.5	2.34	320.56	5.56	7.13

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-68		
	•.			
56.19 - 57.82	1.63	97.92	0.26	1.86
95.38 - 103.67	8.29	345.94	4.98	13.68
125.96 - 127.11	1.15	925.60	20.14	8.95
183.8 - 187.4	3.60	71.09	0.28	16.50

Interval in	Interval length	Ag	Pb	Źn						
Metres	in Metres	g/t	%	%						
SUD-00-69										
71.3 - 73.7	2.40	190.02	2.00	1 2.29						
99.4 - 106.3	6.90	201.99	3.70	4.20						
144.9 400.0	44.00	204.40	6.44	7.00						
111.8 - 120.0	14.20	391.19	b .14	7.98						
1										

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-70		
109.8 - 113.5	3.70	790.60	17.08	8.93
120.1 - 122.8	2.70	299.87	5.38	8.73
474 4 470 0	4.00	050.00	0.05	0.50
1/4.4 - 1/0.0	1.60	253.95	0.65	9.53
101 2 - 102 2	1 10	760.60	14 65	12.40
191.2 4 192.3	1.10	700.00	14.00	13.40

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-71		
68.7 - 81.8 including	13.10	284.16	6.30	6.60
68.7 - 73.8 and	5.10	525.26	12.57	11.63
76.8 - 81.8	5.00	172.20	3.01	3.94
83.8 - 90.0 including	6.20	98.42	1.24	9.34
87.2 - 90.0	2.80	170.94	2.67	13.21
126.1 - 127.7	1.60	293.29	4.79	4.24
127.1 - 127.7	0.60	596.10	9.56	9.85
131.3 - 132.9	1.60	1008.05	20.34	16.76

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-72		
49.7 - 50.5	0.80	417.29	6.67	3.49
81.0 - 85.1	4.10	418.36	6.62	14.00

Interval in	Interval length	Ag	Pb	Zn	
Metres	in Metres	g/t	%	%	
SUD-00-73					
69.9 - 82.5	12.60	345.52	5.91	10.85	
including					
69.9 - 77.3	7.40	219.33	3.28	15.67	
and					
79.0 - 82.5	3.50	803.78	14.99	8.10	
95.8 - 96.1	0.30	93.50	0.03	15.54	

Interval in Metres	Interval length in Metres	Ag g/t	Pb %	Zn %
	su	ID-00-74		
60.1 - 72.2	12.10	327.83	6.00	8.76
76.5 - 76.9	0.40	371.50	8.45	7.21

Interval in	Interval length	Ag	Pb	Zn	
Metres	in Metres	g/t	%	%	
SUD-00-75					
182.2 - 183.3	1.10	1028.50	19.33	15.06	

Interval in	Interval length	Ag	Pb	Zn	
Metres	in Metres	g/t	%	%	
SUD-00-78					
78.2 - 78.5	0.30	831.70	10.65	11.14	

.

interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-79		
104.5 - 105.0	0.50	127.60	2.17	12.09
120.9 - 124.0	3.10	26.41	0.32	3.71
139.8 - 140.4	0.60	487.80	7.09	11.40
156.5 - 157.0	0.50	92.90	1.70	1 7.8 7
174.9 - 176.1	1.20	219.80	3.01	14.73

Interval in	Interval length	Ag	Pb	Źn	
Metres	in Metres	g/t	%	%	
SUD-00-80					
	•.				
48.2 - 55.1	6.90	310.31	5.04	3.23	
including					
48.2 - 50.9	2.70	728.02	12.10	4.24	
and					
53.1 - 55.1	2.00	82.35	1.03	5.25	
68.6 - 69.6	1.00	274.30	4.68	4.61	

Interval in Metres	Interval length in Metres	Ag a/t	Pb %	Zn %	
SUD-00-82					
54.6 - 55. 1	0.50	76.70	0.13	9.16	

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-83		
47.2 - 48.2	1.00	247.00	1.04	12.11

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
SUD-00-84				
67.3 - 75.2	7.90	428.87	6.41	15.94

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
m	SU	UD-00-85		
88.5 - 89.8	1.30	156.94	0.14	17.25
101.6 - 102.4	0.80	470.00	8.78	9.80

Interval in Metres	Interval length	Ag g/t	Pb %	Zn %
	-	SUD-00-86		
100.9 - 101.2	0.30	49 1.20	7.85	4.40
148.2 - 150.7	2.50	220.19	4.59	5.63

Interval in	Interval length	Ag	Pb	Zn
Metres	in Metres	g/t	%	%
		SUD-00-87		
100.1 - 103.5	3.40	173.52	2.75	15.88
108.6 - 110.3	1.70	249.90	1.84	4.36
120.6 - 141.4	20.80	329.70	5.22	8.34
including				
120.6 - 135.3	14.70	352.71	5.23	10.27
and				
139 7 - 141 4	1 70	953 11	18 49	12 78
100.1 141.4	1.70	000.11	10.10	
158 3 - 163 2	4 90	86 77	0.73	8 14
100.0 - 100.2	7,00	00.77	0.10	0.14
165 0 - 160 0	4.00	26.17	0.13	5 53
103.8 - 108.8	4.00	20.17	0.15	0.00

Interval in Metres	Interval length in Metres	Ag g/t	Pb %	Zn %
		SUD-00-88		
63.4 - 63.8	0.40	714.20	9.85	15.00

Interval in	Interval length		Ag	Pb	Zn
Metres	in Metres		g/t	%	%
	Res	ource Av	erage		
63.4 - 63.8	0.40	0.63	325.00	6. 40	8.80

۰,

.

· · ·

ITS Intertek Testing Services Bondar Clegg

REPORT: V00-00111.0 (COMPLETE)

PROJECT: SILVER TIP

Vancouver Branch

Geochemical Lab Report

•

CLIENT: SILVERTIP MINING CORP

REFERENCE:

SUBMITTED BY: C. AKELAITIS

DATE RECEIVED: 22-JAN-00 DATE PRINTED: 8-FEB-00

DATE		1	NUMBER OF	LOWER			DATE			NI MRE	R OF						:
APPROVED) ELE	MENT	ANALYSES	DETECTION	EXTRACTION	METHOD	APPROVED	E	LEMENT	ANAL	YSES	DETECTION	EXTRACT	ION	METH	00	:
000125	1 Wet Au	Partial Ext. Gold	d 23	5 PP B	ASH/AQ REG/DIBK	ATCHIC ABSORPTION	000125 37 1	Nb	Niobium		23	1 PPM	HCL: HNO3	(3:1)	TNDUC	COLINE .	DIACM
000125	2 Ag	Silver	23	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ	000125 38 9	Sc	Scandium		23	5 PPM	HCL HNO3	(3:1)	INDUC	COLIP	DI ASM
000125	3 AgGrav	/ Silver (Grav.)	16	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000125 39 1	Ta	Tantalum		23	10 PPM	HCL : HNO3	3:1	THOUS	m P	DLACH
000125	4 wt/Ag	Sample Weight	16	0.10 GM			000125 40 1	Ti	fitanium		23	0.010 PCT	HCL HNO3	(3:1)	INDUC	COLIP	PLASM
000125	5 Cu	Copper	23	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP, PLASMA	000125 41 2	Zr	Zirconium		23	1 PPM	HCL HNO3	3:1)	INDUC	COLD .	DIASM
000125	6 Pb	Lead	23	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000125	7 Pb	Lead	12	0.01 PCT	HF-HND3-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE TYP	PES	NUMBER	SIZ	E FRAC	TIONS	NLIMBER	SAMPLE	PREPARATIO	NS N	UMBER
000125	8 Pb	Lead	3	0.01 PCT		TITRIMETRIC											
000125	9 Zn	Zinc	23	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	D DRILL (CORE	23	2	-150		23	CRUSH/:	SPLIT & PUL	v.	23
000125 1	0 Zn	Zinc	17	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY								RIVER	ROCK CLEAN	NG	23
000125 1	1 Zn	Zinc	5	0.01 PCT		TITRIMETRIC								SILICA	CLEANING		23
000125 1	2 Mo	Molybdenum	23	1 PPM	HCL:HWQ3 (3:1)	INDUC. COUP. PLASHA											
000125 1	3 Ni	Nickel	23	1 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASMA	REMARKS: F	Plea	se note that there	are d	arrvo	vers to the					:
000125 1	4 Co	Cobalt	23	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	5	stan	dards and blanks d	ue to	híon	level of Pb					:
000125 1	5 Cd	Cadmium	23	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	8	🖁 Zn	in the samples. 1	/25/20)00 Ge	na					;
000125 1	6 Bi	Bismuth	23	5 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASMA	F	Plea	se note that the h	iah Fe	e nesu	it reported					
000125 1	7 As	Arsenic	23	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMÁ		was (determined by AAS.	Pleas	se adv	ise if					
000125 1	8 \$b	Antimony	23	5 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASNA	t	titri	imetric result is	requir	red.						÷
000125	9 Fe	Iron	23	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000125 2	20 Min	Manganese	23	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	REPORT COP	PIES	TO: MR. STEVE ROB	ERTSON			INVOLCE T	0-MP <	TEVE DODEC	TOON	1
000125	l Te	Tellurium	23	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASNA					-			97 PNN 1			1
000125 2	2 Ba	Barium	23	1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		****	****	*****	*****	*****	*****	******	*****	*****	int i
000125	23 Cr	Chramium	23	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASHA		Thi	s report must not	ье гес	roduc	ed except in	full The	data ne	monted in	*hic	
000125 (24 V	Vanadium	23	1 PPN	HCL:HNQ3 (3:1)	INDUC. COUP. PLASHA		repr	ort is specific to	those	samp	les identifie	d under "S	ample Nu	mber ^H and	is	
000125	5 50	fin	23	20 224	HCL+HMO3 /3-11			app	cicable only to the	e samp	oles a	s received ex	pressed on	a dry t	xasis unles	5	
000125	5 U	Tunasten		20 004	HCL -HNO3 (3-1)				erwise ingica(60	ور المراجع المراجع							
000125	~~ , 77 ia	lanthanum	77	1 POM	HCL: HNO3 (3:1)	INDUCTOUR PLASMA	-							******	*********	*****	**
000125	7 LG. MALAI	Aluminum	23	0 01 PCT	HCL -HNO3 (3-1)	TNDIC COUD DIASMA											
000125	NO Man	Mannecium	73	0 01 PCT		TNDIC COUP. FLASHA											1
000125	ία Ο Ca	Calcium	23	0.01 PCT	HCL-HNO3 (3.1)	THEOR. COUP. PLASHA											
	iv ca	Carcian	4	4.01 FU	NGE. NACO (J.1)	INDUC. COUP. PLASMA											
000125 (51 Na	Sodium	23	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000125	52 K	Potassium	23	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA											
000125	53 Sr	Strontium	23	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASHA											
000125	54 Y	Yttrium	23	1 PP M	HCL:HNC3 (3:1)	INDUC. COUP, PLASMA											:
000125	35 Ga	Gallium	23	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000125	56 Li	Lithium	23	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											

ан аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы Аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы аралы арал

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

REPORT: VI	00-00111.0	COMPL	EIE)									DA	TE RE	CEIV	ÆD:	22-JAN	-00	Di	ATE PR	INTED:	8-FE	B-00		PAG	E 1.	AC 17	6)					
SAMPLE	ELEMENT	Wet Au	I Ag	AgGrav	wt/Ag	Cu	Pb	Pb	Pb	Zn	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Τe	Ba	Cr	v	Sn	W	La	AL	Mg	Ca	Na
NUMBER	UNITS	PPB	I PPP	I PPH	GH	PPH	PPM	PCT	PCT	РРМ	PCT	PCT	РРМ	PPM	PPM	PPN	PPM	PPM	PPM	PCT	PPH	PPN	PP M	ррм	PPH	PPM	PPM	PPM	PCT	PCT	PCT	PCT
199401		<5	1.6	L		65	51			2491			48	156	13	14.9	ক	144	22	3.74	622	<10	60	47	107	<20	<20	6 ().75	0.59	>10.00	<.01
1 99 402		<5	33.8	l i		247	924			>10000	3.43		27	99	10	134.2	107	1764	88	>10.00	1000	22	16	128	77	<20	53	2 ().53	0.23	5.98	<.01
199403		<5	9.4	i		45	836			1226			3	10	<1	5.8	22	97	11	0.99	1225	<10	758	7	19	<20	<20	4 (9.02	0.18	>10.00	<.01
199404		<5	186.6	182.4	15.19	534	4122			>10000	8.47		<1	15	2	315.5	5 58	1787	184	>10.00	556	50	15	52	8	23	139	<1 •	<.01	0.04	3.02	<.01
1 994 05		<	i >200.0	270.4	16.33	1212	>10000	2.26		>10000	7.52		<1	12	2	306.9	623	3023	457	>10.00	447	50	15	71	7	409	121	<1 •	¢.01	0.02	2.52	<.01
199406		<5	>200.0	249.6	15.44	1464	>10000	3.57		>10000	7.34		8	10	<1	297.9	245	4957	730	>10.00	475	41	16	58	8	626	117	<1 ∙	c.01	0.03	2.51	<.01
199407		<5	i 5.3	\$		12	702			890			2	4	<1	4.4	6	54	8	0.58	1051	<10	174	5	14	<20	<20	3 <	<.01	0.17	>10.00	<.01
199408		- 5	6.2	<u>></u>		17	473			1999			4	2	<1	9.4	12	41	7	1.02	1016	<10	50	4	2	<20	<20	4 -	<.01	0.81	>10.00	<.01
199409		8	175.4	170.8	15.54	1407	5506			>10000	>15.00	18.19	4	5	2	788.6	726	3373	129	>10.00	885	36	10	55	6	64	283	1 ().05	1.71	2.12	<.01
199410		4	65.2	70.4	15.26	628	2425			>10000	4.85		6	4	<1	187.6	322	748	69	>10.00	1104	12	19	29	5	<20	64	3 0).04	5.59	8.11	<.01
199411		37	/ >200.0	1225.8	15.48	9443	>10000	>15.00	18.39	>10000	>15.00	29.48	6	3	<1	1450.2	538	1298	1191	>10.00	1008	50	7	57	2	>2000	518	1 -	<.01	0.02	1.15	<.01
199412		28	8 >200.0	1251.6	16.22	9094	>10000	>15.00	18.18	>10000	>15.00	29.85	6	3	<1	1411.1	393	1212	1093	>10.00	982	42	6	45	2	>2000	439	1 •	<.01	0.01	1.25	<.01
199413		33	>200.0	870.1	15.77	2121	>10000	>15.00	18.55	>10000	12.60		17	2	<1	683.3	108	7182	1006	>10.00	730	26	9	89	4	550	190	5 -	¢.01	0.05	2.56	<.01
199414		397	127.6	5 116.0	15.58	1441	8570			>10000	8.94		26	6	1	416.8	139	4811	275	>10.00	597	35	17	66	5	264	131	3 •	4.01	0.02	1.77	<.01
199415		<	5 1.4	•		4	112			178			2	2	<1	1.0	<5	<5	45	0.25	154	<10	379	7	1	<20	<20	2 0).04	1.60	>10.00	<.01
199416		308	3 188.6	5 177.4	15.72	927	>10000	3.43		>10000	10.27		4	4	<1	539.3	75	5305	314	>10.00	539	31	13	90	4	332	166	9 -	<.01	0.01	1.66	<.01
199417		327	5 118.2	2 111.7	16.64	1711	>10000	1.75		>10000	11.47		4	9	<1	5 96 .5	19	7456	264	>10.00	570	27	13	92	3	673	168	14 -	01	0.01	1.78	<.01
199418		160	5 177.0	3 160.9	15.80	2218	>10000	2.87	,	>10000	>15.00	20.67	<1	7	<1	1103.7	25	4003	237	>10.00	749	28	10	106	3	1171	294	47 -	4 .0 1	<.01	0.88	<.01
199419		<	\$ >200.6	635.6	15.52	4513	>10000	10.43		>10000	>15.00	26.43	<1	4	<1	1346.2	27	2494	622	>10.00	867	29	73	57	3	>2000	386	1 +	4.01	0.04	0.46	<.01
199420		14	· >200.1	252.4	15.78	1270	>10000	4.64		>10000	7.00		10	30	3	29 7.0	35	843	177	8.81	790	15	162	61	22	6 41	82	2 0).20	1.79	6.08	<.01
199421		141	I ≻200.)	501.8	15.29	2301	>10000	8.46		>10000	9.12		5	17	2	424.2	37	3173	494	>10.00	944	21	17	70	11	12 32	126	3 ().07	0.82	3.95	<.01
199422		<	5 71.4	72.6	5 15.42	470	>10000	1.30	l	>10000	3.36		22	39	3	126.0	9	634	64	6.55	1764	<10	77	62	24	204	35	4 (J.21	2.10	>10.00	<.01
199423			5 3.1	7		10	360			369			3	3	<1	2.0	- 5	25	<5	0.38	3196	<10	28	7	3	<20	<20	5 ().O1	0.67	>10.00	<.01

ITS Intertek Testing Services Bondar Clegg

CLIENT: SILVERTIP MINING CORP REPORT: V00-00111.0 (COMPLETE)

• • •

. .

DATE RECEIVED: 22-JAN-00 DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP

PAGE 18(2/ 6)

.

SAMPLE	ELEMENT	ĸ	Şг	Y	Ga	Li	Nb	Sc	Ta	Tİ	Zr
NUMBER	UNITS	РСТ	PPM	PPM	PPM	PPM	PPN	PPM	PPM	PCT	PPN
199401		0.06	193	11	3	5	8	<5	<10	<.010	5
199402		0.04	39	5	17	3	3	<5	<10	<.010	<1
199403		<.01	245	5	<2	<1	<1	<5	<10	<.010	<1
199404		<.01	35	1	22	<1	<1	<5	<10	<.010	<1
199405		<.01	29	<1	31	<1	<1	<5	<10	<.010	<1
199406		<.01	31	<1	37	<1	<1	<5	<10	<.010	<1
199407		<.01	Z27	2	<2	<1	<1	<5	<10	<.010	<1
199408		<.01	142	3	<2	4	<1	-5	<10	<.010	<1
199409		0.01	26	1	21	1	<1	<5	<10	<.010	<1
199410		<.01	100	3	6	1	<1	<5	<10	<.010	<1
199411		<.01	11	<1	150	<1	<1	~ 5	<10	<.010	<1
199412		<.01	10	<1	146	<1	<1	<5	<10	<.010	<1
199413		<.01	19	2	37	<1	<1	<5	<10	<.010	<1
199414		<_01	29	<1	39	<1	<1	<5	<10	<.010	<1
199415		0.01	178	<1	4	<1	<1	ላ	<10	<.010	<1
199416		<.01	21	<1	48	<1	<1	ৎ	<10	<.010	<1
199417		<.01	20	2	46	<1	<1	ሳ	<10	<.010	<1
199418		<.01	13	3	80	<1	<1	<5	<10	<.010	<1
199419		<.01	11	<1	132	<1	<1	ব	<10	<.010	<1
199420		0.06	14	2	31	1	<1	Q	<10	<.010	<1
199421		0.02	14	1	40	<1	<1	<5	<10	<.010	<1
199422		0.05	52	3	15	1	<1	<5	<10	<.010	2
199423		<.01	126	5	<2	<1	<1	<\$	<10	<.010	<1

Intertek Testing Services Bondar Clegg ITS

CLIENT: SILVERTIP MINING CORP REPORT: V00-00111.0 (COMPLETE)

~

•

•

PROJECT: SILVER TIP

Geochemical Lab Report

													DATE	RECE	EIVED	: 22∙jan	1-00	DA	NTE P	RINTED:	8-F	EB -0	0	PAC	εz	A(3/	′ 6)					
STANDARD	ELEMENT	Wet Au	Ag	AgGrav	wt/Ag	Cu	PE) Pł	1 P	ь :	m	7-	7																			
NAME	UNITS	PPB	PPN	PPN	GN	PPM	PPM	PC1	PC	t pr	M Pi	CT F	PCT P	10 PF	nt ci Ph ppi	o Co M PPM	1 Bi PPM	As PP M	Sib PPM	Fe PCT	Mn P PH	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PP¥	i W LPPK	i La I PPM	AL PCT	Ма Рст	Ca	Na
0)(8 Oxide		184	-	-	-		-																								r e i	PLI
Number of A	nalyses	1	-	-		-	_	_		-	-	-	-	-	•		-	-	-	-	-	-	-	-	-	-		-	-	-	-	_
Mean Value		184	-	-	-	_		-		•	-	-	-	-			-	-	•	-	-	-	-	-	-	-	_	-	-	-		_
Standard De	viation	-			_	_	_	-		-	-	-	-	-	- •		-	-	-	-	-	-	•	-	-	-	-	-	-	-	_	
Accepted Va	lue	-	-	-	-	-	-	-		-	-	-	-	-		· .	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	
GS91-1		-	0.6	-	-	07	77				-																				•	-
Number of Ar	nalyses	-	1	-	_	4	25	-	-	- 10	9	-	• <	1 3	6 21	0.2	<5	7	<5	4.79	723	<10	185	53	117	<20	<20	8	3 45	173	1 07	0.04
Mean Value		-		_	_	07	1	-	-	•	1	-	-	1	1 1	1	1	1	1	t	1	1	1	1	1	1		1	1	1.7.5	1.07	0.06
Standard Dev	/iation	-		_	-	97	2	-	-	10	9	-	- <	1 3	6 21	0.2	3	7	3	4.79	723	5	185	53	117	10	10	, R	3 /5	1 77	1 07	۱ م مر
Accepted Val	ue	8	07	_		~		-	-		-	-	-	-		-	-	-	-	-	-	-	_		_		-			1.13	1.07	0.06
		Ŭ	0.7	-	•	7 3	11	-	-	8	Û	-	-	2 4	0 18	0.1	1	8	1	4.74	720	<1	200	54 1	133	4	2	5	3.09	1.83	1.08	- 0.06
UXY UXIDE		457	-	-	-	-	-	-	-		-	-		•		-	_		_													
NUMBER OF AN	alyses	1	-	•	-	-	-	-	-		-	-	• •	. .	• -	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-
Mean Value		457	-	-	-	-	-	-	-		•	-		• .			-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-
Standard Dev	iation	-	-	-	-	-	-	-	-		-	-				_	_		-	-	-	-	-	-	-	-	-	-	٠	-	-	-
Accepted Val	ue	-	•	-	-	-	-	-	-			•				•	-	-	-	-	-	•	-	-	• -	-	-	•	-	-	-	-
ANALYTICAL B	LANK	-	<0.2		-	<1	3	-	_	17	,																					
Number of An	alyses	-	1	-	-	1	1	_		1		-	• <1	<]	<1	<0.2	<5	<5	4	<0.01	<1	<10	<1	<1	<1	<20	<20	<1 -	<.01	<.01	<0.01	< 01
Mean Value		-	0.1	-	-	<1	र		_	17	,	-	- 1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Standard Dev	iation	-	•	-	_	•	-	_	_		-	-	- <1	<1	<1	0.1	3	3	3	<0.01	<1	5	<1	<1	<1	10	10	<1 •	<.01	<_01	<0.01	< 01
Accepted Vali	ue	1	0.2	<0.1	<0.01	1	2	<0.01	<0.01	1	<0.01	<0.0	· -	1	1	- 0.1	2	- 5	- 5	0.05	- 1	- <1	रा	- 1	1	<1	-	•	- 01	-	-	-
CANNET CERTI	FIED STD	_	-	-	_	-		/ 77																	-	•		-			NO.01	01
Number of An	alvses	-	-	-		-	-	4.37	-	•	>15.00) 19.2	3-	-	-	-	-	-	•	-	-	-	•	-	-		_	-	-	_		
Mean Value	,		_	_		-	-	1	•	-	1		1 -	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Standard Devi	iation	_	_	_	•	-	-	4.57	-	-	15.00	19.2	3.	-	-	-	-	-	-	-	-	-	_	-	_	_	_	_		-	-	-
Accepted Valu	10-	-	_	_	•	-	-	-	-	-	-		• -	-	-	-	-	-	-	-		-	-	-	_	_	_		-	-	•	-
				-	-	-	-	4.33	4.33	-	19.02	19.0	2 -	•	-	-	-	-	-		-	-		-	-		-	-	- ,	-	-	-
CANMET STANDA	ARD	_	•	-	_	_																				-	_	-	- 0		-	-
Number of Ana	alvses	_	_	_		-	-	- (4.37	-	-			-	•	-	-	•	-	-	-	-	-	-	-	-	_	-	_			
Mean Value	,	-	-	_	-	-	-	-	1	-	•			-	-	-	•	-	-	-	-	-		-	_	-		_	-	-	•	•
Standard Devi	iation	_	-	-	•	-	-	• 6	4.37	-	-			-	-	•	-	-	-	•	-	-	-	_	-	-	-	-	-	•	-	-
Accepted Value		_	435 7	-		•	-	-	-	-	-	•	• -	-	-	-	-	-	-	-		_	-	_	_		-	-	-	-	•	-
VOIC	~	-	023.7	•	- 2	540 6470	000	64.70 6	4.74	44200	4.42	4.42	2 •	-	-	- 2	30	560 36	00	8.43	_		_	_	_	-	•	-	-	-	-	-

Intertek Testing Services Bondar Clegg

.

CLIENT: SILVERTIP MINING CORP.

Accepted Value

۰.

REPORT: V00-00111.0 (COMPLETE)

• '

•

OT AND ADD		ĸ	6 -		•			_	-		_
STANDARD	ELEMENT	K	SF	Y	Ga	LI	ND	Sc	Tà	11	Zr
NAME	UNITS	PCI	13-34	PPM	PPM	PPM	PPN	PPM	PPM	PCT	PPH
OX8 Oxide		-	-	•	-	-	-	-	-	-	-
Number of An	alyses	-	-	-	-	•	•	•	-	-	-
Mean Value		-	-	-	-	-	-	•	•	-	-
Standard Dev	iation	-	•	•	-	-	-	-	-	-	-
Accepted Val	ue	-	-	-	•	•	-	-	÷	-	-
G S91- 1		0.32	40	8	5	23	7	10	<10	0.180	10
Number of Ana	alyses	1	1	1	1	1	1	1	1	1	1
Mean Value		0.32	40	8	5	23	7	10	5	0.180	10
Standard Dev	iation	-	-	-	•	-	-	-	-	-	-
Accepted Val	Je	0.32	39	9	4	-	1	18	1	-	9
0X9 Oxide		-	÷	-	-	-	-	-	•	-	-
Number of An	alyses	-	-	-	-	-	-	-	-	-	- '
Mean Value		-	-	-	-	•	-	-	-	-	+
Standard Dev	iation	-	-	-	-	-	-	-	•	-	-
Accepted Val	Je	-	-	-	. •	-	-	-	-	-	-
ANALYTICAL B	LANK	<.01	<1	<1	<2	<1	<1	\$	<10	<.010	<1
Number of An	alyses	1	1	1	1	1	1	1	1	1	1
Mean Value		<.01	<1	<1	1	<1	<1	3	5	0.005	<1
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-
Accepted Val	.e	<.01	<1	<1	<1	<1	<1	<1	<1	<.001	<1
CANNET CERTI	FIED STD	-	-	-		-	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	-	•	•
Standard Dev	iation	•	-	-	-	-	-	-	-	-	-
Accepted Valu	æ	-	-	-	-	-	-	-	-	-	-
CANNET STAND	ARD	-	-	-		-	-	-	-	-	
Number of An	alyses	-	-	-	-	-	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	•	-	-
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-

--- -

- -

Geochemical Lab Report

. .

.

DATE RECEIVED: 22-JAN-00 DATE PRINTED: 8-FEB-00

PAGE 2B(4/ 6)

PROJECT: SILVER TIP

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

	ΓS		nte Bonc	erte lar C	k Neg	Te	sti	ng	Se	erv	ice	s												Vancou		2) not	C L F	Geo Lab Rep	or or	nem t	iical	l
CLIENT: SILVE	ERTIP MINI	NG COR	P																						PR	OJECT	: Si	LVER	TIP			
REPORT: VUU-L			(E)									DA	re re	CEIV	ED:	22- JAN	-00	D	ATE PR	INTED:	8-FE	B-00		PAGE	3A	(5/)	6)					
SAMPLE	ELEMENT W	et Au	Ag	AgGrav	wt/Ag	Cu	Pb	Pb	Pb	Zn	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Min	1e	Ba	Cr	v	Sn	¥	La	AL	Mg	Ca	Na
NUMBER	UNITS	PPB	PPM	PPM	GH	PPM	PPM	PCT	PCT	PPN	PCT	PÇT	PPN	PPM	PPH	PPM	PPN	PPM	PPM	PCT	PPM	PPM #	PM	PPM P	PN	PPN	PPM	PPM	PCT	РСТ	PCT	PCT
199402		<5	33.8			247	924			>10000	3.43		27	99	10	134.2	107	1764	88	>10.00	1000	22	16	128	77	<20	53	2 0	.53	0.23	5.98	< 01
Duplicate		<5	31.8			242	937			>10000	3.42		25	94	9	121.0	109	1709	87	>10.00	947	17	12	120	78	<20	45	2 0	1.52	0.21	6.04	<.01
199409 Duplicate		8	175.4	170.8	15.54	1407	5506			>10000	>15.00	18.19 18.26	4	5	2	788.6	726	3373	129	>10.00	885	36	10	55	6	64	283	10	.05	1.71	2.12	<.01
199411 Duplicate		37	>200.0	1225.8 1281.1	15.48	9443	>10000	>15.00	18.39 18.44	>10000	>15.00	29.48	6	3	<1	1450.2	538	1298	1191	>10.00	1008	50	7	57	2 >	2000	518	1 <	.01	0.02	1.15	<.01
199414 Duplicate		397	127.6	116.0	15.58	1441	8570			>10000	8.94 8.96		26	6	1	416.8	139	4811	275	>10.00	597	35	17	66	5	264	131	3 <	.01	0.02	1.77 -	<.01
199417		323	118.2	111.7	16.64	1 711	>10000	1.75		>10000	11.47		4	9	<1	596.5	19	7456	264	>10.00	570	27	13	92	3	673	168	14 •	.01	0.01	1.78	<.01
Prep Duplicat	te	328	110,1	101.4	16.29	1948	>10000	1.44	·	>10000	11.79		3	8	1	640.3	21	7464	265	>10.00	613	23	13	83	3	750	152	15 <	.01	0.01	1.75	<.01
199420		14	>200.0	252.4	15.78	1270	>10000	4.64		>10000	7.00		10	30	3	297 .0	35	843	177	8.81	790	15	162	61	72	641	82	21	20	170	6.08	< 01
Duplicate			>200.0			1187	>10000	4.65		>10000	6.96		10	30	3	286.3	34	833	174	8.30	763	14 2	200	61	25	615	73	20	.23	1.77	5.94	<.01

A state of the sta

• • •

Intertek Testing Services Bondar Clegg CLIENT: SILVERTIP MINING CORP PROJECT: SILVER TIP REPORT: V00-00111.0 (COMPLETE) DATE RECEIVED: 22-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 3B(6/ 6)

Geochemical

Lab Report

SAMPLE	ELEMENT	ĸ	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	ZΓ	
NUMBER	UNITS	PCT	PPH	РРМ	PPM	PPH	PPH	PPM	PPN	PCT	PPM	
199402		0.04	39	5	17	3	3	ও	<10	<.010	<1	
Duplicate		0.04	40	5	15	3	3	4	<10	<.010	<1	
199409		0.01	26	1	21	1	<1	4	<10	<.010	<1	
Duplicate												
199411		<.01	11	<1	150	<1	<1	୍ୟ	<10	<.010	<1	
Duplicate												
•												
199414		<.01	29	<1	39	<1	<1	4	<10	<.010	<1	
Duplicate												
199417		<.01	20	2	46	<1	<1	ক	<10	<.010	<1	
Prep Duplica	te	<.01	20	2	45	<1	<1	-5	<10	<.010	<1	
199420		0.06	14	2	31	1	<1	ক	<10	<.010	<1	
Duplicate		0.07	15	2	31	1	<1	ত	<10	<.010	1	

٦ ~ **5 F S S**

REPORT: V00-00130.0 (COMPLETE)

CLIENT: SILVERTIP MINING CORP PROJECT: SILVER TIP REFERENCE :

SUBMITTED BY: C. AKELAITIS

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00

DATE	NUMBEI	ROF	LOWER			DATE			NUMB	ER OF	LOMER				
APPROVED EL	.EMENT ANAL'	YSES	DETECTION	EXTRACTION	METHOD	APPROVED	ſ	ELEMENT	ANA	LYSES	DETECTION	EXTRACI	ION	METHOD	
000127 1 Wet A	W Partial Ext. Gold	55	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000127 37	' ND	Nicbium		55	1 PPM	HCL : HNO3	(3:1)	INDUC. COU	P. PLAS
000127 2 Ag	Silver	55	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ	000127 38	i Şç	Scandium		55	5 PPM	HCL:HNO3	(3:1)	INDUC. COU	P. PLAS
000127 3 AgGra	av Silver (Grav.)	18	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000127 39	l Ta	Tantalum		55	10 PPH	HCL:HNO3	(3:1)	INDUC. COL	P. PLAS
000127 4 wt/Au	/ Sample weight/grams	55	0.01 GM	NOT APPLICABLE		000127 40	l Ti	Titanium		55	0.010 PCT	HCL:HNO3	(3:1)	INDUC. COU	P. PLAS
000127 5 Cu	Copper	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ	000127 41	Zr	Zirconium		55	1 PPW	HCL : HNO3	(3:1)	INDUC. COL	P. PLAS
000127 6 Pb	Lead	5 5	Z PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA										
000127 7 рь	Lead	10	0.01 PCT	KF-NNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE T	YPES	NUMBER	\$IZ	e frac	TIONS	NUMBER	SAMPLE	PREPARATIONS	NUMBER
000127 8 Pb	Lead	1	0.01 PCT		TITRIMETRIC						• • • • • • • • • • • • • • • • • • • •				
000127 9 Zn	Zinc	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ	D DRILL	COR	E 55	2	-150		55	CRUSH/	SPLIT & PULV.	55
000127 10 Zn	Zinc	21	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY								RIVER	ROCK CLEANING	55
000127 11 Zn	Zinc	10	0.01 PCT		TITRIMETRIC								SILICA	CLEANING	55
000127 12 Mo	Molybdenum	55	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASNA								OVERNE	IGHT/KG	129
000127 13 Ni	Nickel	55	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA										
000127 14 Co	Cobalt	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS:	PLE	ASE NOTE THAT THERE	IS C	ARRY C	VER TO THE				
000127 15 Cd	Cadmium	55	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		STA	NDARDS DUE TO HIGH	LEVEL	S OF S	CIME ELEMENTS				
000127 16 Bi	Bismuth	55	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		IN 1	THE SAMPLES.							
000127 17 As	Arsenic	55	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA		Zin	c concentration >1%	ิพาไป	enhan	ce Tungsten				
000127 18 Sb	Antimony	55	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		resi Whit	ults. Therefore, T	ungst true	en con value	centration				
000127 19 Fe	Iron	55	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		Tha	nik volu KAF							
000127 20 Mn	Manganese	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Ple	ase note that the o	wer-l	imit F	a result				
000127 21 Te	Tellurium	55	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		(>1	1% Fe) was determin	ert hv	the A	AS method				
000127 22 Ba	Barium	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Ple	ase advise if titri	motri	C LOGU	it is needed				
000127 23 Cr	Chromium	55	1 PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASMA					- 1030		-			
000127 24 v	Vanadium	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
						REPORT C	OPIE	S TO: NR. STEVE ROB	ERTSO	N			10- MP	STEVE POREPTSC	1
000127 25 Sn	Tin	55	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
000127 26 🖬 👘	Tungsten	55	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		****	***************	*****	*****	*****	*********	******	***	***
000127 27 La	Lanthanum	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA		Th	is report must not	be re	oroduc	ed excent in	full The	data rv	esented in thi	c
000127 28 AL	Aluminum	55	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		re	port is specific to	thos	e samo	les identifi	ed under ¹¹⁹	Samula N	umber ⁿ end ie	3
000127 29 Mg	Magnesium	55	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA		- 80	licable only to th	e sam	nles a	s received e	coressed or	n a drv	hacic unlocc	
000127 30 Ca	Calcium	55	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		oti ***	herwise indicated	*****	*****	******	*****			
000127 31 Na	Sodium	55	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
000127 32 K	Potassium	55	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA										
000127 33 Sr	Strontium	55	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
000127 3 4 y	Yttrium	55	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA										
000127 35 Ga	Gallium	55	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA										
000127 36 Li	Lithium	55	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA										

, **, .** .

PROJECT: SILVER TIP

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 1A(1/12)

ELEMENT Wet Au SAMPLE Ag AgGrav wt/Au Сu Pb PЬ ₽b Zn Zn Ni Co Zn Mo Cđ Bi As Sb Fe Mm Te Ba Cr v Sn Π. AI. Mo l a Сa Na NUMBER UNITS PPB PPM **PPM** PPM GM. PPM PCT PCT PPM PCT PCT PPN PPM PPM PPM PPM. PPN PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT 199351 6 2.9 28 307 774 9 53 3.9 8 75 3.22 602 <10 72 175 30 -5 7 <20 <20 2 2.11 0.74 3.07 0.01 199352 <5 >50.0 87.3 16.31 375 2674 >10000 6.34 2 432 1983 54 >10.00 281 37 35 66 <1 16 262.2 6 31 70 2 0.01 0.07 1.32 <.01 199353 <5 2.5 7 89 785 2 7 <1 3.9 <5 36 <5 441 <10 147 6 15 2.33 <20 <20 4 0.02 0.17 >10.00 <.01 199354 <5 32.5 707 4540 >10000 4.63 2 5 <1 179.3 77 600 47 9.70 546 14 26 14 10 278 48 3 <.01 0.15 >10.00 <.01 199355 <5 4.6 74 640 1460 z 9 <1 7.1 <5 50 6 2.00 568 <10 238 5 16 <20 <20 3 0.02 1.02 >10.00 <.01 199356 <5 1.0 5 50 440 1 4 <1 2.1 13 5 -6 0.42 333 <10 436 4 12 <20 <20 3 <.01 0.31 >10.00 <.01 199357 <5 >50.0 92.8 15.59 38 2034 1267 <1 12 - 2 464 1824 64 >10.00 8.0 78 33 52 59 -5 28 <20 <1 <.01 0.03 0.69 <.01 199358 <5 >50.0 108.1 16.63 36 2238 1080 <1 11 3 7.1 507 1584 72 >10.00 77 34 52 55 5 <20 <20 <1 <.01 0.05 0.30 <.01 199359 <5 >50.0 102.4 15.19 250 3059 >10000 3.37 <1 11 2 129.9 575 1994 124 >10.00 313 39 19 56 4 32 36 2 <.01 0.05 2.38 <.01 199360 <5 1.6 32 38 7800 1 3 <1 33.5 <5 80 5 1.63 352 <10 98 5 8 <20 <20 5 <.01 0.22 >10.00 <.01 199361 <5 1.0 19 6 76 2 5 2 0.5 <5 5 ୍ତ 0.67 188 <10 590 20 9 <20 <20 2 0.31 1.78 >10.00 0.01 199362 12 2.3 9 314 214 3 6 < 1.3 <5 <5 -6 0.46 483 <10 527 3 14 <20 <20 3 0.02 0.33 >10.00 <.01 199363 <5 1.5 3 223 181 <1 4 1.3 **<**5 33 10 0.23 1043 <10 338 3 14 <20 <20 3 0.02 0.39 >10.00 <.01 199364 <5 31.3 991 789 >10000 2.44 2 5 <1 112.4 86 245 23 6.06 963 11 186 6 9 359 31 3 0.01 0.30 >10.00 <.01 199365 0.8 <5 9 11 292 2 1 <1 1.6 -5 15 🐟 0.19 2169 <10 114 3 6 <20 <20 4 <.01 0.30 >10.00 <.01 199366 9 >50.0 658.5 15.08 2620 >10000 13.00 >10000 12.61 <1 608.7 438 603 785 >10.00 556 36 13 40 2 6 5 297 153 4 <.01 0.11 1.61 <.01 199367 <5 >50.0 258.4 15.66 2774 >10000 3.17 >10000 13.89 <1 613.3 14 328 1454 547 >10.00 473 37 13 76 5 535 161 4 <.01 0.03 1.11 <.01 199368 122 >50.0 175.4 15.12 1908 >10000 2.07 >10000 7.78 2 10 1 349.3 146 3477 478 >10.00 573 29 13 55 5 316 108 5 <.01 0.04 2.79 <.01 199369 254.6 16.53 2092 >10000 8 >50.0 4.77 >10000 >15.00 17.05 11 <1 824.2 41 3419 383 >10.00 442 31 13 54 4 819 173 21 <.01 0.01 3 0.39 < .01199370 <5 1.2 5 95 283 2 2 <1 1.7 **S** 8 🐬 0.21 206 <10 293 - 4 1 <20 <20 2 0.03 2.17 >10.00 0.03 199371 14 >50.0 664.8 16.39 4578 >10000 13.72 >10000 >15.00 26.93 5 4 <1 1433.5 55 830 826 >10.00 824 33 9 44 3 >2000 335 3 <.01 <.01 0.39 < .01199372 8 >50.0 472.0 15.45 3439 >10000 9.84 >10000 >15.00 19.61 9 11 1 971.5 112 1737 578 >10.00 681 37 11 72 3 1420 230 3 <.01 0.01 0.81 <.01 199373 <5 >50.0 337.7 15.16 4326 >10000 4.21 >10000 >15.00 22.46 <1 10 <1 1132.2 199 1562 398 >10.00 777 36 -11 85 3 1659 276 3 <.01 <.01 0.56 <.01 199374 609.9 15.37 5682 >10000 11.58 <5 >50.0 >10000 >15.00 23.04 <1 6 1 1067.6 190 1243 739 >10.00 819 39 9 69 3 >2000 234 3 <.01 0.07 0.82 <.01 199375 <5 2.9 24 314 1865 2 12 <1 9.5 <5 48 70 4.10 1091 <10 23 13 8 <20 <20 3 <.01 7.40 >10.00 <.01 199376 14 >50.0 162.9 31.06 1054 >10000 4.27 >10000 >15.00 14.20 2 8 <1 663.9 53 900 985 5.90 2575 10 13 18 7 497 146 14 <.01 4.60 8.58 <.01 199377 1.0 6 3 106 277 1 2 <1 1.4 -5 16 6 0.55 1293 <10 29 7 6 <20 <20 3 0.01 7.64 >10.00 0.01 199378 <5 6.7 21 808 799 4 2 <1 4.5 <5 113 30 1.39 1748 <10 - 35 7 3 <20 <20 4 0.02 5.39 >10.00 <.01 199379 <5 3.2 177 70 4003 1 2 <1 17.9 -6 52 6 0.71 653 <10 45 <20 <20 5 2 3 0.01 1.58 >10.00 <.01 199380 31 36.8 112 7808 8329 2 5 <1 41.5 <5 599 44 6.51 771 <10 73 7 Ż <20 <20 3 <.01 0.66 >10.00 <.01

CLIENT: SILVERTIP MINING CORP REPORT: V00-00130.0 (COMPLETE)

Geochemical Lab Report

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00

B-00 PAGE 1

PAGE 1B(2/12)

PROJECT: SILVER TIP

SAMPLE	ELEMENT	к	\$r	Y	Ga	Li	Nb	Sc	Ta	Ti	Z٢
NUMBER	UNITS	PCT	₽₽₩	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
199351		0.21	21	6	5	4	<1	<5	<10	<.010	11
199352		0.01	26	9	20	<1	<1	<5	<10	<.010	<1
199353		<.01	584	3	<2	<1	<1	<5	<10	<.010	<1
199354		<.01	239	3	17	<1	<1	-5	<10	<.010	<1
1 993 55		0.01	374	3	<2	<1	<1	<5	<10	<.010	<1
19 93 56		<.01	315	5	<2	<1	<1	4	<10	<.010	<1
199357		<.01	21	1	13	<1	<1	-5	<10	<.010	<1
199358		<.01	19	<1	14	<1	<1	-5	<10	<.010	<1
199359		<.01	30	14	19	<1	<1	-5	<10	<.010	<1
199360		<.01	281	5	2	<1	<1	ব	<10	<.010	<1
		.			_	_		-			_
199361		0.04	149	1	2	2	<1	<u></u>	<10	0.025	<1
199562		<.01	386	2	<2 2	<1	<1	୍ଚ ୍	<10	<.010	<1
100202		0.01	272	2	~~	<1	<1	9 7	<10	<_010	<1
199364		<.01	182	2	81 	<1	<1	<) -	<10	<.010	<1
199303		<.ui	190	2	~2	<1	<1	\$	<10	<.010	<1
100344		r 01	20	τ	1.6	71	71	-5	~10	< 010	~1
199367		< 01	18	2	54	1	्य	ँ	<10	< 010	- 21
199368		<.01	25	ר ז	77	<1	<1	<5	<10	< 010	<1
199369		<.01	16	1	59	<1	<1	<5	<10	<.010	<1
199370		<.01	152	<1	<2	1	्र	-5	<10	<.010	<1
				-	-			-			·
199371		<.01	12	<1	112	<1	<1	<5	<10	<.010	<1
199372		<.01	17	<1	96	<1	<1	<5	<10	<.010	<1
199373		<.01	15	<1	107	<1	<1	<5	<10	<.010	<1
199374		<.01	15	<1	101	<1	<1	<5	<10	<.010	<1
199375		<.01	126	2	2	Z	<1	<5	<10	<.010	<1
199376		<.01	68	9	48	1	<1	<5	<10	<.010	<1
199377		<.01	120	3	<2	Z	<1	ব্য	<10	<.010	<1
199378		<.01	69	4	<2	2	<1	4 5	<10	<.010	<1
199379		<.01	147	3	<2	<1	<1	<5	<10	<.010	<1
199380		<.01	154	2	4	<1	<1	<5	<10	<.010	<1

Pb

PPM

PPM

GM

РЬ

PCT

₽Ь

PCT

Ag AgGrav wt/Au Cu

DDM

CLIENT: SILVERTIP MINING CORP.

SAMPLE

NUMBER

-

۰.

. ς.

REPORT: V00-00130.0 (COMPLETE)

ELEMENT Wet Au

PPB

PPM

UNITS

PROJECT: SILVER TIP

Ca Na

PCT PCT

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 2A(3/12)

Zn	Zn	Zn	Mo	Ni	Co	Çd	Bi	As	sb	Fe	Mn	Tę	80	Cr	v	Sn	W	La	AL	Mg
PPM	PCT	PCT	PPM	PPM	PPN	PPH	PPM	PPM	PPM	PCT	ррн	PPM	PPN	PPN	PPM	PPM	PPM	PPM	PCT	РСТ

199381	<5 >50.0	925.6 15.42 324	>10000 >	15.00 20.14 >10000	8.95	4	8	1	413.4	20	572	834	>10.00	1075	20	7	39	4	106	99	2 0.01 0.50	6.4	3 <.01
199382	<5 3.1	11	330	386		Ż	1	<1	3.2	ব	<5	<5	0.19	683	<10	215	4	Ż	<20 <	<20	3 0.02 0.40	>10.0	0 <.01
199383	<5 3.0	63	324	254		2	<1	<1	1.5	9	56	6	1.30	733	<10	29	7	2	<20 •	<20	4 0.04 2.04	· >10.0	0 <.01
199384	<5 31.8	3805	284	366		<1	3	1	3.6	408	1458	39	>10.00	575	18	11	39	6	24 •	<20	1 0.14 3.60	3.5	0 <.01
199385	<5 13.8	3775	181	301		2	4	<1	2.6	237	1005	31	>10.00	518	23	17	26	7	- 20 -	20	101504	1 4 70	0 < 01
																		•					
199386	<5 14.0	5262	168	361		<1	6	2	2.3	748	480	14	>10.00	73	20	20	92	ġ	<20 -	<i>2</i> 0	<1 0.13 0.1	; 0 2 [,]	4 < N1
199387	<5 12.6	6618	90	314		<1	7	2	2.0	615	304	16	>10.00	00	29	20	80	Á	32	20	<10.020.0	, 0.C	4 < 01
199388	6 11.8	6058	107	205		<1	6	- 7	1.3	620	106	12	>10.00	73	33	20	on .	я Я	<20 -	<20	<100400	•.• • • •	R ~ 01
199389	<5 7.0	4675	61	174		<1	6	1	1.2	902	325	19	>10.00	171	32	18	01	R	<2n -	20	1 0 11 0 4	1 2 8	2 ~ 01
199390	<5 5.5	4327	82	211		2	6	ح1	1.8	880	503	51	>10.00	740	26	15	70	R	~20 /	-20 -20	10140.0	, 2.0a) 7.0a	1 - 101 0 - 01
						-	U	.,		000	275		- 10.00		24	.,	.,	U	120	-20	1 0.14 0.9	2.70	3 5.01
199391	<5 4,3	6710	63	2541		<1	5	1	12.5	700	747	75	>10.00	RD	20	10	60	a	26 -	. 2ù	<10.04.0.02	1	7 2 01
199392	<5 5.3	7748	62	>10000	1.42	<1	5	1	67.2	1130	46	ō	>10.00	141	41	73	30	ó	20 √	-20		, 0.0 10 0 0	7 - 101 X - 101
199393	<5 7.7	6554	93	>10000	1.76	۲	2	<1	50	001	04	7	>10.00	150	रू	10	45	Â	~20	~20 ~20	<1 0.02 0.0	, 0.0. 4 0 0	J ~.01
199394	<5 >50.0	81.9 16.83 6614	1553	1775		d	4	<1	11 1	>2000	1167	52	>10.00	175	1.2	20	45	7	- 20	~20	20.020.0	, u.u. , n.y	2 3.01 X 2 01
199395	14 D.B	13	18	74		2	,	-1	0.2	~2000		32	0.24	ir) bne	4C	20 222	4.7	4	- 36	×≈u ⊿nn	2 0.03 0.1) U.Z:) <.01
	.,		.0	24		-	-	.,	0.5		~ ~	~	0.24	200	10	~~~	4	•	120	~ 20	20.081.7	/ >10.00	J <.01
199396	<5 12.4	1213	257	94		1	2	<1	1.0	323	167	10	0.77	Los	<10	*	23	7	~7 0 .	-20	τιύοις	<u>م</u> ر د	0 ~ 01
199397	12 16.7	1448	1818	2013		4	3	<1	11 0	232	517		8.06	201	~10	1Ř	8	7	-20	-20	30.090.0) -10.00) -10.00	0 2 01
199398	6 1.0	18	24	2253		,	-1	-1	10 4		18	~	0.00	46	~10	18	4	4	-20	~20	20.020.7	· >10.00	J ~.01
199399	<5 31.0	1146	670	>10000	15 00 16 41	-1	1	-1	445 3	810	1281	~ ~ ~	>10.00	E1C	24	14	77	,		177		, >10.0	J <.01
199400	6 30 2	008	R57	>10000	14.04	24	z	-1	47/ E	1076	1/201	46	-10.00	212	30	44	36		<20	1.37	4 0.02 0.1		J <.01
	V 37.E	//0	655	- 10000	14.74	1	2	~1	014.2	1033	1429	22	210.00	477	28	12	34	4	<20	122	4 0.03 0.1	2.9	3 <.01
199451	<5 0.8	0	16	566		,	z	<i>~</i> 1	3.0	~	15	~	0.59	696		łÓ	E	,	-20	-20	F 0 10 0 0	. 10.0	.
199452	18 >50.0	60.3 15.43 2843	1000	>10000	15 00 20 54	τ		-1	948 1	1079	1391	cz.	>10.00	100	20	17	117	4	~20 ·	~20	5 0.10 0.8	>10.00) <.UI
199453	<5 550 0	03 0 15 28 3712	5550	>10000 >	515 nn 17 74		4	-1	9/7 0	0010	1000	0L 111	-10.00	473 327	37	32	11.3	,	י∪ב	140	4 U. 14 U.4	: 1.5	3 <.01
199454	11 350 0	107 0 14 44 2793	5/.90	>10000	S15 00 17.34	4 E	7	×1 -4	043.9	757	1404	112	210.00		45	11	170	0	275	155	14 0.02 0.0	0.84	5 <.01
100/55	0.00	121.7 10.00 3/02	2407	710000	×13.00 10.90	2	э •	<1 	ל. זכע ה הו	/15	1001	141	>10.00	735	40	15	29	2	118	153	5 0.06 0.2	, Z.3	<.01
	5 2.4	68	07	3624		5	- 5	<1	19.0	18	100	6	Z.93	1130	<10	13	7	2	<20 ·	<20	4 0.04 2.5	: >10.0f	0 <.01
1 S. 19 S. 19

REPORT: V00-00130.0 (COMPLETE)

SAMPLE	ELEMENT	ĸ	Sr	Y	Ga	Li	NЬ	Sc	Ta	Ťi	Ź٣
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
199381		<.01	40	<1	17	<1	<1	<5	<10	<.010	<1
199382		<.01	170	2	<2	<1	<1	<5	<10	<.010	<1
199383		<.01	159	3	<2	1	<1	<5	<10	<.010	<1
199384		<.01	26	<1	9	1	<1	<5	<10	<.010	<1
199385		0.02	35	<1	14	1	<1	~ 5	<10	<.010	<1
199386		0.04	22	<1	16	3	<1	<5	11	<.010	<1
199387		<.01	24	<1	17	<1	<1	<5	18	<.010	<1
199388		0.01	22	<1	15	1	<1	<5	11	<.010	<1
199389		0.02	30	<1	15	2	<1	<5	<10	<.010	<1
199390		0.0Z	8 5	<1	13	2	<1	<5	<10	<.010	<1
199391		0.01	22	<1	16	1	<1	<5	<10	<.010	<1
199392		0.02	26	<1	20	2	<1	<5	19	<.010	<1
199393		0.01	24	<1	18	1	<1	<5	<10	<.010	<1
199394		<.01	25	<1	17	<1	<1	<5	<10	<.010	<1
199395		0.02	161	1	<2	1	<1	<5	<10	<.010	<1
199396		0.01	161	2	3	<1	ব	<5	<10	<.010	<1
199397		<.01	122	2	4	<1	<1	<5	<10	<.010	<1
199398		<.01	149	2	2	<1	<1	<5	<10	<.010	<1
199399		<.01	24	<1	32	<1	<1	<5	<10	<.010	<1
199400		<.01	24	<1	32	<1	<1	<5	<10	<.010	<1
199451		<.01	165	3	<2	<1	<1	<5	<10	<.010	<1
199452		0.01	21	<1	28	2	<1	<5	<10	<.010	<1
199453		<.01	15	<1	48	<1	<1	<5	<10	<.010	<1
199454		<.01	23	<1	41	<1	<1	<5	<10	<.010	<1
199455		<.01	91	3	<2	<1	<1	<5	<10	<.010	<1

Lab Report

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00

PAGE 28(4/12)

PROJECT: SILVER TIP

.

CLIENT: SILVERTIP MINING CORP.

CLIENT: SIL	VERTIP MIN	ING COR	P																						Ρ	ROJEC	T: SI	LVER	E TIP			
REPORT: VOO-	-00130.0 (COMPLE	TE)									DA	TE R	ECEI	VED:	24-JAN	-00	DA1	re pr	RINTED:	8-F	8-00)	PA	GE 3	A(5/	12)					
STANDARD	ELEMENT 1	Wet Au	Ag i	AgGrav (wt/Au	Cu	Pb	Pb	РЪ	Zn	Zn	Zn	Мо	NĪ	Со	Cd	Bi	As	sb	Fe	Mm	te	Ba	Cr	v	Sn	u	La	AL	Ma	Са	Na
NAME	UNITS	PPB	PPM	PPM	GM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPM	PPM	PPM	РРИ	PPM	PPH	PCT	ррм	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PCT	PCT	PCT	PCT
ONS Oxide		856	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-		-	-	-	-	-	-	-	-		-
Number of Ar	nalyses	1		-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		٠		-	-	
Mean Value		856	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_
Standard Dev	viation	-	-	-	-	-		-	•	-	-	-	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Accepted Val	lue	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-
0X11 Oxide		-	-	23.3	-	-	-	-		-		-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	•
Number of Ar	nal yses	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	_	-	-	-	-		-	_
Mean Value		-	-	23.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	_	-	-	-	•	_
Standard Dev	viation	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	
Accepted Val	lue	-	-	25.0	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	_
CANNET STSD-	- 4	-	<0.2	-	-	67	25	-	-	110	-	-	1	24	11	0.7	ব	15	5	2.88	1201	<10	695	31	47	<20	<20	13	1.23	0.74	1.27	ር በ በፊ
Number of Ar	nalyses	-	1	-	-	1	1	-	-	1	-	-	1	1	1	1	1	1	1	1	1	. 1	1	1	1		1	1	1	1	1	1
Mean Value		-	0.1	-	-	67	25	-	-	110	-	•	1	24	11	0.7	3	15	5	2.88	1201	5	695	31	47	10	10	13	1.23	0.74	1 21	. ი ი.
Standard Dev	viation	-		-	-	-	-	-	-		-	_	-	-	-	•	-	_	-					-		-	-	-		•		
Accepted Val	lue	-	0.3	-	-	66	13	-	-	82	-	•	Ż	23	11	0.6	-	11	4	2.60	1200	-	-	30	51	-	-	-	-	-		. .
OK8 Oxide		174	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	· 2	-	_	-		-	-	_	-	-			-	
Number of Ar	nalyses	1	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-		-	1.1	_	-	-	-	-	-	-	-	-		
Mean Value		174	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-			· .	-					-	-	-	
Standard Dev	viation	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	_	- -		4	-	_	-	-	-		-	_	_
Accepted Val	lue	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	· · +	-	÷	-	-	-	-	-	-	-	-	-
ANALYTICAL F	BLANK	-	<0.2	-	-	<1	<2	_	_	10	-	_	<1	<1	~1	<0.2	<5	ব	5	<0.01	-	<10	<1	્ત	د1	<20	<20	د1	< 01	< 01	<i>c</i> 0_01	< 01
ANALYTICAL E	BLANK	-	<0.2	-	-	2	<2	-	-	3	-	-	<1	<1	<1	<0.2	<5	45	-5	<0.01	e.	<10	- 1			~20	~20	-1	e 01	< 01	~0.01	< 01
Number of Ar	nalyses	-	z	-	-	2	2	-		2	-	-	2	2	2	2	2	2	2	2.01	2	2	5	2	2		-20	2	ייעויי כ	וטיי	-0.01 T	יט,-י מיי
Mean Value	•	•	0.1	-	-	1	1	-	-	6	-	_	<1	<1	<1	0.1	- t	ž	7	<0.01	يع افع	د د	2	.1	-1	10	10	د ر	ے ۱۹ م	ے در ب	ے 10.01ء	ے د 0 م
Standard Dev	viation	-	-	•	-	<1	-	-	-	5	-	-	-	-	-	•	-	-	-	-0.01		-	-	-		-	•	-	-	-	«U.UI -	<.UI -
Accepted Va	lue	1	0.2	<0.1	<0.01	1	2	<0.01	<0.01	1	<0.01 <	0.01	1	1	1	0.1	z	5	5	0.05	1	<1	<1	1	1	₹1	د1	<1	<.01	<.01	<0.01	< 01

Intertek Testing Services Bondar Clegg $\mathbf{)}$

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00130.0 (COMPLETE)

.

.

- x - e - x - e - x

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FE8-00

PROJECT: SILVER TIP

3

PAGE 38(6/12)

STANDARD	ELEMENT	K	Ş٢	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
NAME	UNITS	PCT	PPM	PPM	PPN	PPM	PPM	PPM	PPM	PCT	PPM
OX5 Oxide		-	-	•	•	-	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	-	•	-	-	-
Mean Value		-	•	-	-	-	-	-	-	-	-
Standard Dev	viation	-	-	-	•	•	-	-	-	-	-
Accepted Val	ue	-	-	-	-	-	•	-	•	-	-
0X11 Oxide		-	-	-	-	-	·	-	-	-	-
Number of Ar	alyses	-	-	-	-	-	-	-	-	-	-
Mean Value		-	-	-	•	•	-	-	-	-	-
Standard Dev	viation	•	-	-	-	-	-	-	-	•	-
Accepted Val	ue	-	-	•	-	-	-	-	-	-	-
CANMET STSD-	4	0.10	5 5	11	3	9	4	4	<10	0.078	1
Number of Ar	alyses	1	1	1	1	1	1	1	1	1	1
Mean Value		0.10	55	11	3	9	4	3	5	0.078	1
Standard Dev	viation	-	-	-	-	•	•	•	-	-	-
Accepted Val	ue	-	-	-	-	-	-	-	-	•	-
0X8 Oxide		-	-	-	-	-	-	-	٠	•	-
Number of Ar	alyses	-	-	•	•	-	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	-	-	-
Standard Dev	viation	-	•	-	-	-	-	•	-	•	-
Accepted Val	ue	-	-	-	-	-	-	-	-	-	-
			_		_						
ANALYTICAL B	LANK	<.01	<1	<1	<2	<1	<1	<5 -	<10	<.010	<1
ANALYTICAL E	LANK	<.01	<1	<1	<2	<1	<1	<5	<10	<.010	<1
Number of Ar	alyses	2	S	S	2	2	2	2	2	2	2
Mean Value		<.01	<1	<1	1	<1	<1	3	5	0.005	<1
Standard Dev	viation	-	-	-	-	-	-	-	•	-	-
Accepted Val	ue	<.01	<1	<1	<1	<1	<1	<1	<1	<.001	<1

ITS Intertek Testing Services Bondar Clegg

.

CLIENT: SILVERTIP MINING CORP REPORT: VOO-00130.0 (COMPLETE)

PROJECT: SILVER TIP

REPORT: VOI	0-00130.0 (COMPLE	TE)									D/	ATE 1	RECE	IVED	24-JAN	~00	DAT	e pr	INTED:	8-F	EB-0	00	P	NGE 4	A(7/1	Z)					
STANDARD	ELEMENT I	Wet Au	Ag /	AgGrav W	it/Au	Çu	Pb	Pb	Pb	Zn	Zn	Zn	Мо	Nī	Co	Cd	Bi	As	Sb	Fe	Мг	n Te	e Ba) CI	- v	Sn	W	La	AL	Mg	Ca	Na
NAME	UNITS	PPB	PPM	PPM	GM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPN	I PPM	PPM	PPM	PPM	ррм	PCT	PPN	I PPI	1 PPW	I PPI	1 PPM	PPM	PPM	ррм	PCT	PCT	PCT	PCT
00x9 Oxide		477	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-					-		•	-	-		-
Number of A	Analyses	1	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-		-		-					-	-	-	-	-	-	-
Mean Value		477	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-					-	-	-	-	-	-	-
Standard De	eviation	-	-	•	-	-	•	•		-			-	-	•		-	-	-	-	-			•		-	-	-	-		•	-
Accepted Va	alue	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-					-	-	-	-	-	-	-
GS91-1		-	0.7	-	-	96	10	-	-	122	-	-	1	36	5 21	0.6	<5	8	<5	4.67	700) <10	0 172	2 52	2 110	<20	<20	7	3.24	1.57	0.99	0.05
Number of /	Analyses	-	1	-	-	1	1	-	-	1	-	-	1	1	1	1	1	1	1	1	1	· ۱	1 1	1	1 1	1	1	1	1	1	1	1
Mean Value		-	0.7	-	•	96	10	-	-	122	•	•	1	36	5 21	0.6	3	8	3	4.67	700) !	5 172	2 52	2 110	10	10	7	3.24	1.57	0.99	0.05
Standard De	eviation	-	-	-	-	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	-	-			•		-	-	•	-	-	-	••••
Accepted Va	alue	8	0.7	-	-	95	11	•	•	80	•	-	2	40) 18	0.1	1	8	1	4.74	720) <	1 200) 54	4 133	4	2	5	3.09	1.83	1.08	0.06
0X12 Oxide		-	-	9.6	-					-	-	-	-	-		-	-	-		-				•		-		-	-	-	-	-
Number of <i>i</i>	Analyses	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		۰. ۲		-	-	-	÷	-	-	-
Mean Value		-	-	9.6	•	-	•	-	-	-	-	-	-	-		-	÷	-	-	-	-	•		-		-	•	٠	-	-	-	-
Standard D	eviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•		. .		-	-	-	-	-	-	-
Accepted Va	alue	•	-	10.4	-	-	-	-	-	-	-	-	-	-	• •	-	-	-	٠	-	•	•	• •	•		-	-	-	-	-	-	-
CANMET CER	TIFIED STD	-	-	-	-	-	-	4.33	-	-	>15.00	19.07	-	-			-	-	•	-	•			- .		-	-	-	-	-	-	-
Number of a	Analyses	-	-	•	-	-	-	1	•	-	1	1	-	-	· -	-	-	-	-	-		•		•		-	-	-	-	-	-	-
Mean Value		-	-	-	-	-	-	4.33	-	•	15.00	19.07	-	-		-	-	-	-	-	··· •	-		• .		-	-	-	-	-	-	-
Standard D	eviation	-	•	-	-	-	-	-	-	-	-	-	-	-	• •	•	-	•	-	-	•	•		-		-	-			-	-	-
Accepted Va	alue	-	-	-	-	-	-	4.33	4.33	-	19.02	19.02	-	-		-	-	-	٠	-	•	•		-		-	-	-	-	0.02	-	-
CANMET STA	NDARD	-	-	-	-	-	-	-	64.48	-	-	-	-	-			-	-	-	-		•		•		•	-	-	-	-	-	-
Number of	Analyses	•	-	-	-	-	-		1	-	-	-	-	-		-	-	•	-	-	-	-		÷		-	-		-	-	-	-
Mean Value	•	-	-	-	-	-	-	-	64.48	-	-	-	-	-		-	-	-	-		-	•	_ · .	<u>.</u> .		-	-	-	-	-	-	-
Standard D	eviation	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		•		-		-	-	-	-	-	-	-
Accepted V	alue	-	625.7	-	-	2540 (547000	64.70	64.74	44200	4,42	4.42	-			-	230	560	>99	8.43		-		-		-	-	-	-	-	_	-

Ν. · · · .

CLIENT: SILVERTIP MINING CORP REPORT: VOO-00130.0 (COMPLETE)

STANDARD

.

.

.

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 4B(8/12)

ELEMENT K Sr Y Ga Li Nb Sc Ta Ti Zr NAME UNITS PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM DX9 Dxide Number of Analyses Mean Value Standard Deviation Accepted Value GS91-1 0.27 33 7 4 22 6 8 <10 0.170 10 Number of Analyses 7 1 1 1 1 1 1 1 1 1 Mean Value 0.27 33 7 4 22 6 8 5 0.170 10 Standard Deviation --- - ------Accepted Value 0.32 39 9 4 - 1 18 1 - 9 OX12 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value --CANMET CERTIFIED STD Number of Analyses Mean Value Standard Deviation Accepted Value CANNET STANDARD Number of Analyses Mean Value Standard Deviation Accepted Value

REPORT: V00-00130.0 (COMPLETE)

PROJECT: SILVER TIP

DATE RECEIVED: 24-JAN-00	DATE PRINTED:	8-FEB-00	PAGE	5A(9/12)
--------------------------	---------------	----------	------	-----------

SAMPLE	ELEMENT W	let Au	Ag	AgGrav	wt/Au	Çu	РЬ	РЬ	РЬ	Zn	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Min	Te	Ba	Ċr	v	\$n	W	La	AL	Mg	Ca	Na
NUMBER	UNITS	PPB	PPM	PPM	GM	PPM	PPM	PCT	РСТ	PPH	PCT	PCT	PPN	PPM	PPM	PPM	PPN	PPM	PPH	PCT	РРМ	PPM	PPM	PPM F	PM	PPM	PPM (PPM	PCT	PCT	PCT	PCT
100351		6	20			78	307			771.			0	57	9	70	-5	*	7	7 77	400	~10	77	175	70	-70	~70	2 -		0.76	2 07	0.01
Duplicate		~5	۲.7 ۲1			20	307			7/90			7	57	o g	J.7 7 0	~5	73	7	2.22	602	<10 210	49	102	30 30	~20	<20 <20	20	2.12	0.74	3.07	0.01
54pt 100tt		- 2	5.1			20	714			107			,	<i>)</i> -4	0	3.7	.,	n	'	3.32	010	10	00	102	27	~20	~20	~ ~	2.12	0.76	J. 14	0.01
199352		<5	>50.0	87.3	16.31	375	2674			>10000	6.34		<1	16	2	262.2	432	1983	54	>10,00	281	37	35	66	6	31	70	2 (0.01	0.07	1.32	<.01
Prep Duplica	ite	-5	>50.0	90.6																												
Pren Dublica	ite			717	16 22	0,57	2500			~10000	5 55		~1	1R	2	275 0	177	2081	51	<u>>10.00</u>	275	74	79	7/.	7		45	2.	< 01	0 11	1 12	- 01
Duplicate				,,,,,	10.22	207	2377			- 10000	6.48		~1	10	2	۵.,	111	2001		210.00	213	30	90	74	,	22	4.7		 01	0.11	1.13	×.01
•																							•									
1 993 57		<5	>50.0	92.8	15.59	38	2034			1267			<1	12	5	8.0	464	1824	64	>10.00	78	33	52	59	5	28	<20	<1 ·	<.01	0.03	0.69	<,01
Duplicate				92-8																												
199358		<5	>50.0	108.1	16.63	36	2738			1080			<1	11	र	71	507	1584	72	>10.00	77	74	52	55	5	<20	< 2 0	<1	< 01	0.05	030	< 01
Duplicate		_		104.8			1250						- •		-	,				- 10.00	.,	54	20		1	-LU	~2.0	.,		0.05	0.00	
199359		<5	>50.0	102.4	15.19	250	3059			>10000	3.37		<1	11	2	129.9	575	1994	124	>10.00	313	39	19	56	4	32	36	2	<.01	0.05	2.38	<.01
Duplicate				99.4																										• .		
199366		9	>50.0	658.5	15.08	2620	>10000	13.00		>10000	12.61		2	6	<1	608.7	438	603	785	>10.00	556	36	13	40	5	207	153	4	<.01	0.11	1 61	< 11
Duplicate				682.5									_	-	-										÷			·				
		_	. .																													
199367		<5	>50.0	258.4	15.66	2774	>10000	3.17		>10000	13.89		2	14	<1	613.3	328	1454	547	>10.00	473	37	13	76	5	535	161	4	<.01	0.03	1,11	<.01
Puplicate				259.8																												
199368		122	>50.0	175.4	15.12	1908	>10000	2.07		>10000	7.78		2	10	1	349.3	146	3477	478	>10.00	573	20	13	- 55	5	316	108	5	< 01	AD D	2.70	< 11
Duplicate				167.0									_										-		-	2.0		-		••••	2,	
199369		8	>50.0	254.6	16.53	2092	>10000	4.77		>10000	>15.00	17.05	4	11	<1	824.2	41	3419	383	>10.00	442	31	13	54	3	819	173	21 -	<.01	0.01	0.39	<.01
Duplicate			>50.0			2096	>10000			>10000		16.98	4	11	<1	813.8	40	3399	379	>10.00	437	30	14	52	4	822	142	19	<.01	0.01	0.40	<.01
199372		8	>50.0	472.0	15.45	3439	>10000	9.84		>10000	>15.00	19.61	9	11	1	971.5	112	1737	578	>10.00	681	37	11	72	3	1420	230	τ.	<.01	0.01	0.81	< 01
Duplicate				474.4				9.87			>15.00				-								••		-			-			0.01	1
100		_	.																													
199374		<5	>50.0	609.9	15.37	5682	>10000	11.58		>10000	>15.00	23.04	<1	6	1	1067.6	190	1243	739	>10.00	819	39	9	69	3 >	2000	234	3	<.01	0.07	0.82	<.01
puplicate		<5																														

ITS Intertek Testing Services Bondar Clegg

CLIENT: SILVERTIP MINING CORP.

÷

REPOR	T:	V00-0	0130.	0 (COMPLETE)
		••			+	

1 C 1

.

PROJECT: SILVER TIP PAGE 5B(10/12)

anch

the state of the s

Lab Report

Geochemical

.

SAMPLE	ELEMENT	ĸ	Sr	Y	Ga	Li	Nb	Sc	Ťa	Ti	Zr	
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPN	
199351		0.21	21	6	5	4	<1	<5	<10	<.010	11	
Duplicate		0.20	20	6	5	4	<1	ج	<10	<.010	11	
199352 Prep Duplicat	te	0.01	26	9	20	<1	<1	ر ج	<10	<.010	<1	
Prep Duplicat Duplicate	e	<.01	27	6	21	<1	<1	45	<10	<.010	<1	
199357 Duplicate		<.01	21	1	13	<1	<1	<5	<10	<.010	<1	
1 99358 Duplicate		<.01	19	<1	14	<1	<1	ব	<10	<.010	<1	
199359 Duplicate		<.01	30	14	19	<1	<1	45	<1Ö	<.010	<1	
199366 Duplicate		<.01	20	3	46	<1	<1	<5	<10	<.010	<1	
199367 Duplicate		<.01	18	2	54	<1	<1	<5	<10	<.010	<1	
1 99368 Duplicate		<.01	25	3	32	<1	<1	\$	<10	<.010	<1	
199369		<.01	16	1	59	<1	<1	< 5	<10	<.010	<1	
Duplicate		<.01	16	1	60	<1	<1	<5	<10	<.010	<1	
199372 Duplicate		<.01	17	<1	96	<1	<1	ৎ	<10	<.010	<1	
199374 Duplicate		<.01	15	<1	101	<1	<1	<5	<10	<.010	<1	

1

ITS	Inte	ertek Te tar Clegg	esti	ng Se	ervi	ice	5														R)	C L R	de Lat lep	ocł))01	nen t	nica	ત્રી
CLIENT: SILVERTIP NIN REPORT: VOO-00130.0 (ing Corp Complete)						DATE	e re	CEIV	ÆD:	24-jan-	00	DAT	e pr	INTED:	8-FE	8-00		PAGE	PR 6A	OJECT	: si 2)	LVER	ΤIΡ			
SAMPLE ELEMENT NUMBER UNITS	WetAu Ag PPB PPM	AgGrav wt/Au Cu PPM GM PPM	Pd PPM	Pb Pb PCT PCT	Zn PPM	Zn PCT	Zn I PCT PI	Mio Pimi p	Ni PM F	Co PM	Cd PP M	Bi PPM	As PPM	Sb PPM	Fe PCT	Nn PPM	te PPM f	Ba PPM F	Cr PPM P	V PM	Sn PPM	W PPM	La PPM	AL PCT	Mg PCT	Ca PC1	i Na í PCT
199381 Duplicate	<5 >50.0	925.6 15.42 324 924.4	>10000	>15.00 20.14 > 19.95	10000	8.95		4	8	1	413.4	20	572	834	>10.00	1075	20	7	39	4	106	99	2	0.01	0.50	6.4	3 <.01
199388 Duplicate	6 11.8 12.0	6058 5653	107 104		205 192			<1 <1	6 6	2 1	1.3 1.1	620 654	106 99	12 16	>10.00 >10.00	73 70	33 29	20 19	90 73	8 7	<20 <20	<20 <20	ব ব	0.04 0.04	0.08 0.08	0.0 0.0	3 <.01 9 <.01
Prep Duplicate Duplicate	<5 >50.0	71.7 16.22 369 73.7	2599	>	10000	5.55 5.65		<1	18	2	235.9	377	2081	51	>10.00	275	36	38	74	7	22	45	2	<.01	0.11	1.1	3 <.01
199394 Prep Duplicate	<5 >50.0 <5 >50.0	81.9 16.83 6614 76.1	1553		1775			<1	4	<1	11.1 :	>2000	1147	52	>10.00	175	42	20	45	7	32	<ż0	2	0.03	0.13	0.2	3 <.01
Prep Duplicate		67.5 15.16 6710	1460		1940			4	5	1	11.9 :	>2000	1150	47	>10.00	186	44	20	42	8	31	<20	2	Ö.03	0.14	0.2	8 <.01
199396 Duplicate	<5 12.4 6	1213	257		94			İ	z	<1	1.0	323	167	10	9.22	495	<10	25	23	2	<20	<20	3	0.09	0.58	>10.0	0 <.01
199452 Duplicate	18 >50.0	60.3 15.43 2843 62.3	1009	,	•10000 : ;	>15.00 2 >15.00	0.54	<u> 3</u>	4	<1	868.1	1078	1281	56	>10.00	493	39	12	113	7	30	146	4	0.14	0.42	1.5	8 <.01
199453 Duplicate	<5 >50.0	93.0 15.28 3712 99.9	5550	>	10000 ;	>15.00 1	7.34	4	6	<1	843.9	957	1000	112	>10.00	354	43	11	170	6	273	135	14	0.02	0.05	0.8	6 <.01
199454 Duplicate	11 >50.0	127.9 16.66 3782 130.6	5489	د	•10000 :	>15.00 1 1	8.90 8.86	5	3	<1	937.5	713	1601	141	>10 .00	733	40	- 13	29	5	118	153	3	0.06	0.25	2.3	1 <.01
199455 Duplicate	<5 2.4 2.6	68 74	67 67		3899 3871			3 3	3 2	ব ব	19.0 19.7	18 22	100 103	6 6	2.93 2.98	1130 1139	<10 <10	13 13	7 8	Ż	<20 <20	<20 <20	4	0.04 0.04	2.52	>10.0 >10.0	0 <.01 0 <.01
Prep Duplicate Duplicate	<5 >50.0	67.5 15.16 6710 63.6	1460		1940			<1	5	1	11.9	>2000	1150	47	>10.00	186	- 44	20	42	8	31	<20	2	0.03	6 0.14	0.2	8 <.01

.

-

· · · · · · ·

.

Intertek Testing Services Bondar Clegg

SAMPLE

NUMBER

199381

197388

Duplicate

Duplicate

Duplicate

199394

199396 Duplicate

199452

199453 Duplicate

199454 Duplicate

199455

Duplicate

Duplicate

Prep Duplicate

Prep Duplicate

Prep Duplicate

n.

. 3

PROJECT: SILVER TIP PAGE 68(12/12) DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 ELEMENT K Sr Y Ga Li Nib Sc Ta Ti Zr UNITS PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM <.01 40 <1 17 <1 <1 <5 <10 <.010 <1 0.01 22 <1 15 1 <1 <5 11 <.010 <1 0.01 22 <1 15 1 <1 <5 <10 <.010 <1 <.01 27 6 21 <1 <1 <5 <10 <.010 <1 <.01 25 <1 17 <1 <1 <5 <10 <.010 <1 <.01 26 <1 18 <1 <1 <5 16 <.010 <1 0.01 161 2 3 <1 <1 <5 <10 <.010 <1 0.01 21 <1 28 2 <1 <5 <10 <.010 <1 <.01 15 <1 48 <1 <1 <5 <10 <.010 <1 <.01 23 <1 41 <1 <1 <5 <10 <.010 <1 <.01 91 3 <2 <1 <1 <5 <10 <.010 <1 <.01 93 3 <2 <1 <1 <5 <10 <.010 <1

<.01 26 <1 18 <1 <1 <5 16 <.010 <1 Prep Duplicate Duplicate

 $(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x$

REPORT: V00-00129.0 (COMPLETE)

CLIENT: SILVERTIP MINING CORP PROJECT: SILVER TIP

.

REFERENCE:

SUBMITTED BY: C. AKELAITIS DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00

date Approved	ELE	MENT	NUMBER OF ANALYSES	LOWER Detection	EXTRACTION	METHOD	date Approved		ELEMENT	NUMBE Anal	r of Yses	LOWER Detection	EXTRACT	TON	метн	00	-
000126	1 Wet Au	Partial Ext. Gol	ld 39	5 PP8	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000126 37	Nb	Niobium		39	1 PPM	HCL:HNO3	(3:1)	INDUC.	COUP.	PLASM
000126	2 Ag	Silver	39	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	000126 38	SC Sc	Scandium		39	5 PPM	HCL:HNO3	(3:1)	INDUC.	COUP.	PLASM
000126	3 AgGrav	Silver (Grav.)	25	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000126 39) Te	Tantalum		39	10 PPM	HCL:HNO3	(3:1)	INDUC.	COUP.	PLASH
000126	4 wt/Ag	Sample Weight	25	0.10 GM			000126 40) Ti	Titanium		39	0.010 PCT	HCL:HNO3	(3:1)	INDUC.	COUP.	. PLASH
000126	5 Cu	Copper	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	000126 41	l Zr	Zirconium		39	1 PPM	HCL : HNO3	(3:1)	INDUC.	COUP,	. PLASM
000126	6 Pb	Lead	39	Z PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000126	7 Pb	Lead	21	0.01 PCT	HF-HNO3-HCLO4+HCL	AAS LOW LEVEL ASSAY	SAMPLE 1	TYPES	NUMBER	SIZE	FRAC	TIONS	NUMBER	SAMPLE	PREPARATIO	NS N	UMBER
000126	B Pb	Lead	2	0.01 PCT		TITRIMETRIC			•••••								
000126	9 Zn	Zinc	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	D DRILL	. Cor	E 39	2	-150		39	CRUSH/	SPLIT & PUL	٧.	39
000126 1	0 Zn	Zinc	27	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY								RIVER	ROCK CLEANS	NG	39
000126 1	1 Zn	Zinc	3	0.01 PCT		TITRIMETRIC								SILICA	CLEANING		39
000126 1	2 Mo	Molybdenum	39	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA											
000126 1	3 Ni	Nickel	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS:	: Zin	c and Arsenic conce	ntrati	on >1;	% will enhand	ce				
000126 1	4 Co	Cobalt	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Tun	gsten and Cadmium r	es ults	resp	ectively.					
000126 1	5 Cd	Cadmium	39	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		The	refore, Tungsten an	d Cadm	ium r	esults would					
000126 1	6 Bi	Bismuth	39	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		be	greater than true v	alues.	Thani	k you, GEN					
000126 1	7 As	Arsenic	39	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Ple	ase note that there	are c	arryo	vers to the					
000126 1	8 Sb	Antimony	39	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		sta ZN	nderds and blanks d in the samples, gen	lue to no	high	level of PB					
000126 1	9 Fe	Iron	39	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA		Ple	ase note that the o	a verlim	ńt Fe	result (>10)	X)				
000126_2	0 Mm	Manganese	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Was	determined by AAS.	Pleas	e adv	ise if	-,				
000126 2	1 Te	Tellurium	39	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		tit	rimetric result is	requir	ed.						
000126 2	2 Ba	Barium	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000126 2	3 Cr	Chromium	39	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA											
000126 2	4 ∨	Vanadium	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT	OPIE	S TO: MR. STEVE ROB	ertson	l		INVOICE 1	10: MR.	steve rober	TSON	
000126_2	5 Sn	Tin	39	20 pp n	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		***	******	******	*****	*********	********	******	******	****	intr
000126 2	16 W	Tungsten	39	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		Th	is report must not	be rep	roduc	ed except in	full. The	data pr	esented in	this	:
000126 2	7 La 👘	Lanthanum	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ		ге	port is specific to	those	Sano	les identifi	ed under "?	Sample N	umber ¹¹ and	is	-
000126 2	1A 8	Aluminum	39	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMÁ		80	plicable only to th	e samo	lesa	s received e	koressed or	n a drv	hasis unler	15	
000126 2	9 Hg	Magnesium	39	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		ot	herwise indicated					,			:
000126-3	0 Ca	Calcium	39	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA		***	*****	*****	*****	*********	********	******	******	*****	r#
000126-3	il Na	Sodium	39	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA											
000126 3	2 K	Potassium	39	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA											:
000126 3	13 Sr	Strontium	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000126 3	K4 Υ	Yttrium	39	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA											
000126 3	55 Ga	Gallium	39	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											
000126 3	16 Li	Lithium	39	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA											

.

 $(\mathbf{x}_{1}, \mathbf{x}_{2}) = \mathbf{x}_{1} + \mathbf{x}_{2}$

PROJECT: SILVER TIP

PAGE 1A(1/12)

SAMPLE	ELEMENT Wet A	U A	g AgG	rav wi	:/Aq	Cu	РЬ	Pb	Pb	7n	1 7 11	7n	Mo	м;	60	rd		•	cL	- F-	M.,	7 -	. .	· ·							
NUMBER	UNITS PP	9 PP	M I	PPM	GM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPN	PPM	PPM	PPM	I PPM	AS PPM	PPM	i PCT	PPM	ррмр	ua PM P	ur v Michael	/ Si I DDI	יר ע אוססאו	La	AL	Mg Pot	Ca Ca	i Na Coct
																								FT FFF		1 668	rrm.	FUI	FUI	FLI	PUI
199424	1	71.	5			31	90			113	1		19	78	8	0.6	5 < 5	39	11	1.96	521	<10	93 1	00 49) -2	0 <20	4 1	0.49	1.09	4.14	<.01
199425		8 >50.1	0 190	0.4 15	. 18	871	>10000	3.38	:	>10000	2.23		3	14	1	99.5	20	7177	914	>10.00	578	21	13 (55 15	48	3 36	1 /	0.03	0.07	3.15	<.01
199426	2.	3 >50.	0 110	0.7 15	. 19	2521	6035		:	>10000	9.47		<1	14	2	420.6	136	8714	85	>10.00	533	32	65	17 10	85	5 63	<1 /	0.01	0.02	1.7	i <.01
199427	14	4 >50.1	0 268	8.8 15	.44	5135	>10000	1.42		>10000	>15.00	29.48	1	12	<1	1351.2	459	3167	143	>10.00	1180	34	31 3	25 e	s >200	0 230	<1	<.01	0.04	0.68	i <.01
199428	(5 1.	6			14	108			747	,		30	32	1	3.5	<5	36	11	1.66	765	<10_1	55	768	<2) < 2 0	5 (0.1Z	0.85	>10.00	F<.01
199429	18	3 1.	1			6	43			194			2	7	-1	1 2	~	10	Æ	0 17	777	-10.2	~	7 44			-				
199430	1	38.	1			94	1813		:	>10000	2.27		2	ō	-1	80 /	250	4/7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	510.00	347	10 3	90 E/	0 10 10 40	· • • • •	J < 20	51	J.02	0.55	> 10,00	<.01
1 9943 1	14	i 1.0	0			8	8			56			2	ź	21	07.4	2.70	(17) (17)	43	0.00	323	-10	24 70	12 12	< <2	J 215	~ ~ ~	<.U1	0.42	>10.00	/ <.01
199432	9	2.2	2			4	331			107			5	1	~1	1.0		10	~ 2	0.21	247	<10 -10 T	(8 ~i	4 8	s <2) <20	21	0.02	1.38	>10.00	⊥ <.01
199433	e	5 >50.0	0 70	0.3 15	.41	340	4003		-	10000	6.02		14	4	7	174 6		19		0.20	1037	<10 \$	05	4 5	<2) <20	3 (3.01	0.31	>10.00	.01
				-	•					10000	4.02		10	40	J	0.0	204	774	()	>10.00	902	21	12 1	57 52	: 11	1 51	2.6	J. 16	1.05	6.05	<.01
199434	19	42.3	7			178	2707		;	-10000	2.75		70	তং	τ	111 2	154	1001	¢ à	>10 00	1.552	17	18 4.								
199435	14	13.1	1			47	1067			5583	2175		- 0	10	ر 1-	26.5	070. 170	1401		- 710.00	1234	1Z -10	18 1	K 73	4) <u>56</u>	3 1	J. 14	1.99	7.79	<.01
199436	117	⁷ >50.0	5 867	7.3 16	.39	1235	>10000	>15.00	17.68	>10000	11 10		, c1	7	2	658 B		0110	er ner	2.73	2191	< IU .	58	10 15	· </td <td>) <20</td> <td>31</td> <td>).04</td> <td>0.47</td> <td>>10.00</td> <td>↓ <.01</td>) <20	31).04	0.47	>10.00	↓ <.01
199437	34	>50.0	563	3.7 15	.54	1197	>10000	9.46		10000	8.41		4	10	1	6.000	16	0774	404	>10.00	- 413 257	שב היים בי	11 4 4 9	N 0	784	152	2 •	<.01	0.03	2.51	<.01
199438	14	>50.0) 267	7.8 15	. 15	1335	>10000	4.85	3	10000	5.88		0	-10 20	1	309.7	10	>10000	2004	>10.00	424	0	15 4	ir 10 	704	+ 119	3 -	<.01	0.08	2.95	<.01
										10000	2.00		'	20	1	20.7	10	>10000	972	>10.00	407	0	10 3	51 9	910) 92	9.	<.01	0.05	1.36	<.01
199439	20) >50.0	5 87	7.8 15	.03	310	>10000	1.41	2	10000	4,10		37	62	₹	177 5	ŐS.	5752	150	>10.00	1700	44	(* * /	w / 1							
199440	11	0.9	7			4	43			138			2	3	4	0.8	5	7	3	0.26	344	10 ~10_1	() ((20	NJ 97 Z 9	100		01	1.13	1.55	5.49	<.01
199441	23	23.5	5			76	3742			3001			2	5	<1	16.2	~	276		1 75	4222	~10 1.	90 NA	0 Z	< <u>~</u>	1 <20	20	1.05	2.69	>10.00	<.01
199442	115	5 50. 0	378	3.2 15	.42	694	>10000	6.95	2	10000	9.21		<1	6	-1	344.2	372	674	570	>10.00	1222	<10 II 77 /	ар 1911 - 1		<20 40	1 <20	4 4	<.01	0.61	>10.00	<.01
199443	20	>50.0	671	1.7 15	.98 1	1482	>10000	11.36	,	10000	11.70		et	5	-1	526.1	477	9201	- 277 - 476	>10.00	(33	33	12 1	174) 	181	147	2 1	4.01	0.07	4.08	<.01
													-,	1	~1	524.1		2,00	000	210.00	402	33	13 2	4	645	152	1 <	4.01	<.01	0.73	<.01
199444		>50.0	259	2.0 16	.02 1	1641	>10000	4.08	3	10000	7.19		<1	11	1	327.9	351	2008	393	>10.00	287	36		X 4	282	, ac	κ.	· 01	0.02	1 20	< ni
199445	61	>50.0) 247	7.0 16	.57 1	1153	>10000	2.61	,	10000	8.42		7	16	1	399.1	378	2815	229	>10.00	419	31 3	20	1 3	310	> 112		- 01	0.02	2 29	~ 01
199446	29	>50.0) 538	3.0 16	.67	848	>10000	6.53	,	10000	6.49		5	15	1	257.4	659	1023	333	>10.00	1170	37 3	Xi 2	ำ 2 ก 5	220	175	5.	- 01	0.02	0.7	< 01
199447	17	' >50.0	1128	3.6 15	.79	847	>10000	>15.00	20.54 >	10000	6.58		4	10	<1	311.7	132	2487	1084	>10.00	A14	28	in 2	n /	100	: () 1 106	2 - A	- 01	0.11	7.43	<.UI
199448	9	>50.0) 55	i.6 16	.00	3 29	8247		2	10000	6.09		4	12	<1	255.0	18	6530	70	>10.00	CER	24	14 2	0 4 0 7	370	- 70			0.08	5.58	<.01
															•		.0		10	-10.00	203	20	14 6	U 4	142	47	15 <		0.08	2.51	<.01
199449	25	>50.0	172	2.1 16	.12	477	>10000	2.91	,	10000	3.68		3	10	<1	162.4	68	1818	107	>10.00	1405	15 7	., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n ∡	1/7					. 40. 04	
199450	<5	>50.0	419	7.7 15	.34 2	2642	>10000	4.75	,	10000	13.95		3	9	<1	601.9	400	1035	284	>10.00	1004	74 - 24 74 - 4	ייה רכו	v Þ n /	14/	1.77	• • •		0.01	210.00	<_01
1 995 01	30	>50.0	51	1.8 30	. 23	125	8694		,	10000	1.38		4	11	<1	64.5	47	631	2003 RA	4 77	1/00	JO 4	12 2 10	0 4 0 /	722	173	. y <	.01	0.11	4.69	<.01
199502	62	>50.0	260).4 15	.28 1	1103	>10000	3,64	,	10000	>15.00 1	5.59	<1	4	<1	741 0	71A	707	177	510.00	707	∿iU 6 ∠o 4	יעק איז ליו	у 4 , ,	<20	<2U	4 <	.01	1.06	>10.00	< 01
199503	20	>50.0	224	.1 15	.08 1	1191	>10000	3.21	,	10000	14.23		<1	5		720.7	270	070	127	>10.00	705	40 1) Z	44 	156	200	7 <	.01	0.04	0.73	<.01
															- 1	167.1	210	719	141	×10.00	(10	ר אכ	4 4	ν 5	171	184	7 <	.01	0.05	0.19	<.01

DATE RECEIVED: 24-JAN-00

DATE PRINTED: 8-FEB-00

r . •

K Sr Y Cali Nh Sr Ta Ti Zr

CLIENT: SILVERTIP MINING CORP.

CAMDI F

REPORT: V00-00129.0 (COMPLETE) FLEMENT

DATE RECEIVED: 24-JAN-00

DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP PAGE 18(2/12)

					40		1410	-			~	
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
199424		0.20	85	7	Z	Z	3	<5	<10	<.010	10	
199425		0,02	47	1	20	<1	<1	<5	<10	<.010	<1	
199426		0.01	31	1	52	<1	<1	<5	<10	<.010	<1	
199427		<.01	17	<1	133	<1	<1	ر ج	<10	<,010	<1	
199428		<.01	317	8	<2	2	4	<5	<10	0.011	1	
199429		<.01	151	3	~2	<1	<1	<5	<10	<.010	<1	
199430		<.01	93	1	8	<1	<1	<5	<10	<.010	<	
199431		<.01	132	Z	<2	1	<1	<5	<10	<.010	<1	
199432		<.01	178	2	<2	<1	<1	<5	<10	<.010	<1	
199433		0.03	35	Z	17	1	<1	<5	<10	<.010	<1	
199434		0.02	39	z	10	1	4	<5	<10	<.010	<1	
199435		<.01	125	3	<2	<1	<1	<5	<10	<.010	<1	
199436		<.01	17	<1	43	<1	<1	<5	<10	<.010	<1	
199437		<.01	21	<1	37	<1	<1	ব	<10	<.010	<1	
199438		<.01	19	<1	32	<1	<1	<5	<10	<.010	<1	
199439		0.02	29	1	17	1	1	<5	<10	<.010	<1	
199440		0.02	139	1	~2	1	<1	<5	<10	<.010	<	
199441		<.01	132	3	<2	<1	<1	<5	<10	<.010	<1	
199442		<.01	26	<1	35	<1	<1	<5	<10	<.010	<1	
199443		<.01	14	<1	49	<1	<1	<5	<10	<.010	<1	
1 99444		<.01	18	1	30	<1	<1	<5	<10	<.010	<1	
199445		<.01	15	2	36	<1	<1	<5	<10	<.010	<1	
199446		<.01	35	5	23	<1	<1	<5	<10	<.010	<1	
199447		<.01	21	1	26	<1	<1	<5	<10	<.010	<1	
199448		<.01	23	i 1	25	<1	<1	<5	<10	<.010	<1	
199449		<.01	55	i 5	14	<1	<1	<5	<10	<.010	<1	
199450		<.01	26	5 12	2 62	<	<1	<5	<10	<.010	<1	
199501		<.01	115	i 4	. 4	<1	<1	<5	<10	<.010	<1	
199502		<,01	1 16	6 2	46	; <1	<1	<5	<10	<.010	∣ <1	
199503		<.01	I 16	; 1	- 46	5 <1	<1	<5	<10	<.010	⊢ <1	

.

.

``

CLIENT: SILVERTIP MINING CORP.

VERCENCE | Geochemical Lab Report

. . .

.

PROJECT: SILVER TIP

REPORT: VI	IU-UU129.U (COMPLETE)									DA	TE R	ECE I	VED:	24-JAN	1-00	DAT	E PRI	NTED:	8-FEE	8-00		PAGE	2A((3/12)					
SAMPLE	ELEMENT Wet Au	Ag i	AgGrav wt	:/Ag	Cu	РЬ	Pb	Pb	Zn	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	sb	Fe	Min	Te	8a	Cr	v	Sn	ų	la	AL	Mg	Ca	Na
number	UNITS PPB (PPM	PPM	GM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPM	PPH	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPN	PPM	ррм	РРМ	ppm (PPM	PCT	PCT	PCT	PCT
199504	<5	1.0			3	58			176			3	3	<1	0.8	<5	<5	<5	0.31	227	<10	297	6	2	<20	<20	2 (0.11	3.77	>10.00	<.01
199505	8 49	5.4			1216	1563			>10000	6.54		<1	5	<1	300.4	131	844	19	>10.00	320	26	15	38	5	163	53	4 -	<.01	0.02	0.46	<.01
199506	8 >5(0.0	758.1 15	. 44	1146	>10000	11.34	:	>10000	4.26		2	12	1	187.5	247	985	904	>10.00	274	34	16	38	4	176	32	2	<.01	0.05	0.20	<.01
199507	44 >50	0.0	202.5 16	5.00	832	>10000	3.19	:	>10000	7.52		6	11	<1	415.7	78	4562	277	>10.00	1989	25	13	20	3	225	111	6 -	<.01	0.0 8	4.29	<.01
199508	15 >5(0.0	576.1 16	5.15	1400	>10000	9.24		>10000	>15.00	16.25	7	17	2	958.6	222	4608	619	>10.00	1270	29	10	18	3	614	245	4 ·	<.01	0.66	2.81	<.01
19 9 509	18 >50	0.0	157.9 20).50	51 9	>10000	2.63	:	>10000	4.26		5	7	2	190,7	39	2089	147	>10.00	1431	11	21	19	10	227	48	51	0.31	3.61	>10.00	0.02
199510	<5 1	1.6			60	1469			4983			4	3	<1	24.0	6	183	15	1.87	2060	<10	18	8	3	<20	<20	3 (0.01	5.75	>10.00	<.01
199511	6 (4.4			12	286			778			Z	3	<1	3.7	< 5	76	5	0.70	4370	<10	15	6	3	<20	<20	5 (0.01	1.11	>10.00	<.01
199512	71 >5	0.0	113.0 31	1.61	39 5	>10000	2.01		8897			1	3	<1	48.8	13	1093	267	4.06	1512	<10	66	8	Ĵ	179	<20	3 -	<.01	0.29	>10.00	<.01

the second second second second second second second second second second second second second second second s

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00129.0 (COMPLETE)

DATE RECEIVED: 24-JAN-00 DATE

DATE PRINTED: 8-FE0-00

PROJECT: SILVER TIP PAGE 2B(4/12)

SAMPLE	ELEMENT	κ	Sr	Y	Ga	Li	Nb	Sc	Ta	Tí	Zr
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
199504		0.03	139	1	<2	2	<1	<5	<10	<.010	<1
199505		<.01	18	<1	26	<1	<1	<5	13	<.010	<1
199506		<.01	16	1	18	<1	<1	<5	<10	<.010	<1
1 99 507		<.01	23	2	36	<1	<1	<5	<10	<.010	<1
199508		<.01	18	<1	62	<1	<1	<5	<10	<.010	<1
199509		0.01	54	3	15	1	<1	<5	<10	0.019	<1
199510		<.01	81	3	<2	1	<1	<5	<10	<.010	<1
199511		<.01	110	4	<2	<1	<1	-5	<10	<.010	<1
199512		<.01	125	2	4	<1	<1	<5	<10	<.010	<1

ITS Intertek Testing Services Bondar Clegg

.

PROJECT: SILVER TIP CLIENT: SILVERTIP MINING CORP PAGE 3A(5/12) REPORT: V00-00129.0 (COMPLETE) DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 W La Na Sn. AL Mg Са STANDARD ELEMENT Wet Au Ag AgGrav wt/Ag Cu РЬ ΡЬ ΡЬ Zn Zn Zn Mo Ni Co Cd Bi As Sb Fe Mm Te 8a Cr v PPM PPM PPN PCT PCT PCT PCT UNITS **PPM** PCT PPH PCT PCT PPM PPM PPM PON PPM PPM. **PPM** PCT PPN PPM PPN PPN NAME PPB PPM PPM GM PPM PCT DDM. 2951 OX11 Oxide Number of Analyses 1 Mean Value 2951 Standard Deviation Accepted Value 25.0 6802 OX12 Oxide 10.1 _ Number of Analyses 1 . 1 Mean Value 6802 10.1 -Standard Deviation 10.4 Accepted Value -4.55 701 <10 169 50 111 <20 <20 6 3.19 1.68 0.98 0.05 G\$91-1 17 89 0.3 <5 -6 0.6 95 35 -20 11 ٩. 1 1 1 1 1 1 1 1 1 1 Number of Analyses 1 1 1 1 1 1 1 1 1 1 1 1 1 17 3 4.55 701 5 169 50 111 10 10 6 3.19 1.68 0.98 0.05 Mean Value 0.6 95 89 1 35 20 0.3 - 3 11 Standard Deviation ---. --4.74 720 <1 200 54 133 Z 5 3.09 1.83 1.08 0.06 95 11 80 2 40 18 0.1 1 8 1 4 Accepted Value 8 0.7 34 ⊲0.2 <5 ارک <0.01 <20 <20 <1 <.01 <.01 <0.01 <.01 া ব -5 <1. <10 <1 <1 <1 ANALYTICAL BLANK - <0.2 . <1 6 < 1 3 15 ≪0.2 <5 S. <0.01 <1 <1 <20 <20 <1 <.01 <.01 <0.01 <.01 ANALYTICAL BLANK <0.2 <1 -<1 <1 <1 Q <1 <10 <1 ---2 2 2 2 2 2 Ż 2 2 2 2 2 2 2 Z 2 Z 22 2 2 2 2 2 Number of Analyses -. . 25 3 3 3 10 10 <1 <.01 <.01 <.01 <.01 0.1 <1 4 <1 <1 <1 0.1 <0.01 ÷١ 5 <1 <1 <1 Mean Value _ --. . -14 2 Standard Deviation 2 <0.01 <0.01 <1 <1 <1 <.01 <.01 <.01 <.01 Accepted Value 0.2 <0.1 <0.01 1 1 <0.01 <0.01 1 1 1 0.1 2 5 5 0.05 1 < <1 1 1 1

CANNET LKSD-2	-	0.3	-	-	37	59	-	-	214	-	-	1	23	16	0.9	ৎ	11	45	3.57 1823	<10	202	28	43	<20 <	20	49 1	.74 ().76	0.69	0.04
Number of Analyses	-	1	-	-	1	1	-	•	1	-	•	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1
Mean Value	-	0.3	•	-	37	59	-	-	214	-	-	1	23	16	Q.9	3	11	3	3.57 1823	5	202	28	43	10	10	49 1	.74 (). 76	0.69	0.04
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-		•	•	-	-	•	-	-	-	-		-
Accepted Value	-	0.8	•	-	36	40	-	-	200	-	-	2	23	17	0.8	-	9	1	3.50 1840	-	-	29	48	-	-	-	-	-	-	-

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00129.0 (COMPLETE)

DATE RECEIVED: 24-JAN-00

PROJECT: SILVER TIP DATE PRINTED: 8-FEB-00 PAGE 38(6/12)

STANDARD ELEMENT K Sr Y Ga Li Nb Sc Ta Ti Zr UNITS PCT PPM PPM PPM PPM PPM PPM PPM NAME PCT PPM 0X11 Oxide --Number of Analyses Mean Value Standard Deviation Accepted Value OX12 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value GS91-1 0.29 32 7 4 22 6 8 <10 0.162 9 Number of Analyses 1 1 1 1 1 1 1 1 1 1 Mean Value 0.29 32 7 4 22 6 8 5 0.162 9 Standard Deviation --_ _ _ _ _ _ - -Accepted Value 0.32 39 9 4 - 1 18 1 - 9 ANALYTICAL BLANK <.01 <1 <1 <2 <1 <1 <5 <10 <.010 <1 ANALYTICAL BLANK <.01 <1 <1 <2 <1 <1 <5 <10 <.010 <1 Number of Analyses 2 2 2 2 2 2 2 2 2 2 2

www.con on Anacyses	-	-	-	-	-	-	-	њ L	~
Mean Value	<.01	<1	<1	1	<1	<1	3	5 0.005	<1
Standard Deviation	-	-	-	-	-	-	-		-
Accepted Value	<.01	<1	<1	<1	<1	<1	<1	<1 <.001	<1

CANNET LKSD-2	0.27	28	25	4	16	3	ج	<10_0,	.079	5
Number of Analyses	1	1	1	1	1	1	1	1	1	1
Mean Value	0.27	28	25	4	16	3	3	50	.079	5
Standard Deviation	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	•	-	-	-	-	-	-	-	-

Intertek Testing Services Bondar Clegg

NAME

Na

PROJECT: SILVER TIP CLIENT: SILVERTIP MINING CORP. PAGE 4A(7/12) REPORT: V00-00129.0 (COMPLETE) DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 STANDARD ELEMENT Wet Au Cu PЬ Pb Zn Zn Zn Mo Ni Co Cd Bi As . Sb 1e 8a Cr ٧ Sn W La AL Mg Са Ag AgGrav wt/Ag Pb Fe PCT PCT PPM PPM PPM PCT PCT UNITS PPB GM PPM PCT PCT PPM PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM DOW ODM PPM BCC standard ME89-2 1.38 6.83 Number of Analyses 1 Mean Value 1.38 6.83 Standard Deviation Accepted Value - 2300 13200 1.32 1.32 67300 6.73 6.73 CANMET CERTIFIED STD - 19.03 Number of Analyses Mean Value - 19.03 . . Standard Deviation 0.02 - 19.02 19.02 Accepted Value 4.33 4.33 -CANMET STANDARD - 64.54 Number of Analyses -1 - 64.54 Mean Value Standard Deviation -**Z**30 560 3600 Accepted Value - 625.7 - 2540 647000 64.70 64.74 44200 4.42 4.42 8.43

• • • ·

1 S 2 S

.

•

CLIENT: SILVERTIP MINING CORP REPORT: V00-00129.0 (COMPLETE)

DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP

-

.

PAGE 48(8/12)

STANDARD	ELEMENT	K	Sr	Y	Ga	Li	NЬ	Sc	Tə	Тi	Z٢	
NAME	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
BCC standard	1 ME89-2	-	-	-	•	-	-	-	-	-	-	
Number of Ar	nalyses	-	-	-	-	-	-	-	•	•	-	
Mean Value		-	٠	~	-	-	-	-	-	-	-	
Standard Dev	viation	-	-	-	-	-	-	-	-	-	-	
Accepted Val	lue	•	•	-	-	-	-	-	-	-	-	
CANMET CERTI	IFIED STD	-	-	-	-		-	-	-	-	_	
Number of Ar	nalyses	-	-	-	-	-	-	-	-	-	-	
Mean Value		-	-	-	-		-	-	-	-	-	
Standard Dev	/iation	-	-	-	-	-	-	-	•	-	-	
Accepted Val	lue	-	-	•	•	-	-	-	-	-	-	
CANNET STAND	ARD	-	-			-	-	-	-	-		
Number of Ar	alyses	-	-	-	-	-	-	-	-	-	-	
Mean Value		-	-	-	-	-	-	-	-	-		
Standard Dev	viation	-	-	-	-	-	÷	-	-	-	-	
Accepted Val	ue	-	+		-	_	_	-	-	-	-	

a second second

•

.

CLIENT: SILVERTIP MINING CORP.

.

٦

•

-

۰.

.

.

а. P

.

PROJECT: SILVER TIP

REPORT: VOO-O	0129.0 (COMPLI	ETE)	I									D.	ATE F	RECE	VED	: 24-JA	N-00	DAT	TE PRI	NTED:	8-FE	B-00		PAGE	54	(9/1	2)	•				
SAMPLE NUMBER	ELEMENT UNITS	Wet Au PPB	A PP	ig Agi Mi	Grav (PPM	Nt/Ag GM	Cu PPM	Pb PPM	Pb PCT	РЬ РСТ	Zn PPM	Zn PCT	Zn PCT	Мо РРМ	Ni PPM	Со РРМ	Cd PPM	I Bi I PPM	As PPM	S15 PPM	Fe PCT	Min PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPN	V PPM	La PPM	AL PCT	Mg PCT	Ca PCT) Na PCT
100/ 7				.																													
199425 Duplicate		8	>50.	.0 19 18	70.4 37.9	15.18	871	>10000	3.38 3.36		>10000	2.23 2.18		3	14	1	99.5	20	7177	914	>10.00	578	21	13	65	15	483	36	1	0.03	0.07	3.15	<.01
199426 Duplicate		23	>50.	0 1	10.7 78.6	15.19	2521	6035			>10000	9.47		<1	14	2	420.6	5 136	8714	85	>10.00	533	32	65	17	10	855	63	<1	0.01	0,02	1.73	i <.01
199427 Duplicate		14	>50.	.0 20 20	58.8 54.7	15.44	5135	>10000	1.42		>10000	>15.00	29.48 29.50	1	12	<1	1351.2	459	3167	143	>10.00	1180	34	31	25	6	>2000	230	<1	<.01	0.04	0.68	\$ <.01
199433		6	>50.	0	70.3	15.41	340	4003			>10000	4.02	I	16	46	3	136.5	264	994	75	>10.00	902	21	12	87	32	111	51	2	0.16	1.05	6.05	i< ∩1
Duplicate		<5	>50,	0	74.9		341	3902			>10000			17	45	3	143.0	258	999	76	>10.00	911	22	12	89	34	103	54	2	0.16	1.05	6.05	<.01
199436 Prep Duplicat	e	117 97	>50. >50.	D 80 0 80	57.3 57.2	16.39	1235	>10000	>15.00	17.68	>10000	11.10	l	<1	7	2	658.8	3 22	8118	964	>10.00	413	30	11	20	6	784	152	2	<.01	0.03	2.51	i <.01
Prep Duplicat Duplicate	ė			82	9.6	16.33	1292	>10000	>15.00	17.21 17.67	>10000	10.53	1	2	7	1	581.1	20	7603	960	>10.00	509	19	13	23	7	830	144	2	<.01	0.05	3.05	i <.0 1
199437 Duplicate		34	>50.	0 50 50	53.7 55.3	15.54	1197	>10000	9.46		>10000	8.41		4	10	1	484.6	16	9736	624 :	>10.00	424	25	13	47	10	704	119	3	<.01	0.08	2.95	; <.01
199438 Duplicate		14	>50.	0 20 25	57.8 50.8	15.15	1335	>10000	4.85		>10000	5.88	i	9	20	1	328.7	' 18	>10000	692	>10.00	467	25	16	31	9	910	92	9	<.01	0.05	1.36	. <.01
199439 Duplicate		20	>50.	Dł	37.8	15.03	310	>10000	1.41 1.41		>10000	4.10 4.11	I	37	62	3	177.5	95	5252	150 :	>10.00	1328	16	ii 11	100	47	162	59	6	0.11	1.33	5.49	×.01 ا
199443 Duplicate		20	>50.	0 67 66	71.7 51.0	15.98	1482	≻1 000 0	11.36		>10000	11.70		<1	5	<1	524.1	134	2580	608 :	>10.00	402	33	13	37	4	649	152	1	<.01	<.01	0.73	<.01
199446 Duplicate		29	>50.	0 53	38. 0	16.67	848	>1 000 0	6.53 6.54		>10000	6.49 6.53	I	5	15	1	257.4	659	1023	333	>10.00	1170	37	20	20	5	220	75	5	<.01	0.11	9.43	; <.01
199448 Duplicate		9	>50.	0	55.6 57.6	16.00	329	8247			>10000	6.09		4	12	<1	255.0	18	6539	70	>10.00	563	26	14	20	4	142	47	15	<.01	0.08	2.51	<.01

and the second second second second second second second second second second second second second second second

r 1

CLIENT: SILVERTIP REPORT: V00-00129.	MINING CORP 0 (COMPLETE)	DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00	PROJECT: SILVER TIP PAGE 5B(10/12)
SAMPLE ELEME Number uni	NT K Sr Y Ga Li Nb Sc Ta Ti Zr TS PCT PPH PPM PPM PPM PPH PCT PPM		
199425 Duplicate	0.02 47 1 20 <1 <1 <5 <10 <.010 <1		
199426 Duplicate	0.01 31 1 52 <1 <1 <5 <10 <.010 <1		
199427 Duplicate	<.01 17 <1 133 <1 <1 <5 <10 <.010 <1		
199433 Duplicate	0.03 35 2 17 1 <1 <5 <10 <.010 <1 0.03 35 2 16 1 <1 <5 <10 <.010 <1		
199436 Prep Duplícate	<.01 17 <1 43 <1 <1 <5 <10 <.010 <1		
Prep Duplicate Duplicate	<.01 21 <1 42 <1 <1 <5 <10 <.010 <1		
199437 Duplicate	<.01 21 <1 37 <1 <1 <5 <10 <.010 <1		
199438 Duplicate	<.01 19 <1 32 <1 <1 <5 <10 <.010 <1		
199439 Duplicate	0.02 29 1 17 1 1 <5 <10 <.010 <1		
199443 Duplicate	<.01 14 <1 49 <1 <1 <5 <10 <.010 <1		
199446 Duplicate	<.01 35 5 23 <1 <1 <5 <10 <.010 <1		
199448 Duplicate	<.01 23 1 25 <1 <1 <5 <10 <.010 <1		

ITS Intertek Testing Services Bondar Clegg

,

× ,

CLIENT: SILVERTIP MINING CORP

ł

			••																						PRO	DJECT	: SIL	.VER	TIP			
REPORT: VOO	0-00129.0 (Compl	ETE)									D/	ATE R	ECEI	VED :	: 24-JA	N-00	DAT	E PR	INTED:	8 -FE	B-00		PAGE	6A)	(11/1)	2)					
SAMPLE NUMBER	ELEMENT W UNITS	let Au PP8	Ag PPN	i AgGrav I PPH	/wt/Ag I GP	g Cu M PPM	i Pib I PPM	РЬ РСТ	РЬ РСТ	Zn PPM	Zn PCT	Zn PCT	Mo PPM	NÎ PPM	Co PPM	Cd PPM	I Bi IPPM	As PPM	Sb PPM	Fe PCT	. Mr PPN	Te PPM	8a PPM	Cr PPN	V	Sn PPM	W	La	AL	Mg PCT	Ca PCT	Na PCT
																						,										101
199449 Duplicate		25	>50.0	172.1	16.12	2 477	>10000	2.91		>10000	3.68		3	10	<1	162.4	68	1818	197	>10.00	1695	15	37	70	6	147	21	6	<.01	0.61	>10.00	. <.01
199450		<5	>50.0	419.7	15.34	4 2642	>10000	4.75		>10000	13.95		Ŧ	•	-1	A01 0	100	1035	784	>10.00	1004	74	17	20	,	OCC	177	•		0 11		
Duplicate			>50.0	400.7	•	2662	>10000			>10000			4	9	<1	585.6	403	1038	298	>10.00	1012	37	13	19	4	963	182	10	<.01	0.11	4.09	۰۰.» v <.01
199501 Duplicate		30	>50.0	51.8 50.2	30.2 3	3 125	8694		;	>10000	1.38 1.34		4	11	ব	64.5	47	631	86	6.22	1498	<10	69	9	4	<20	<20	4	<.01	1.06	>10.00	۰ <.01
199502 Duplicate		62	>50.0	260.4	15.28	8 1103	>10000	3.64	:	>10000	>15.00	15.59	<1	4	<1.	741.0	318	7 07	137	>10.00	703	40	13	24	4	156	200	7	<.01	0.04	0.73	×.01
199503 Duplicate		20	>50.0	224.1	15.08	3 1191	>10000	3.21	:	>10000	14.23		<1	5	<1	729.7	270	979	141	>10.00	716	39	14	40	5	171	184	7	<.01	0.05	0.19	[,] <.01
199506 Duplicate		8 6	>50.0	758.1	15.44	1146	>10000	11.34	:	>10000	4.26		2	12	1	187.5	247	985	904	>10.00	274	34	16	38	4	176	32	2	<.01	0.05	0.20	↓ <.01
199507 Duplicate		44	>50.O	202.5	16.00	832	>10000	3.19 3.24	;	>10090	7.52 7.44		6	11	<1	415.7	78	4562	277	>10.00	1989	25	13	20	3	225	111	6	<.01	0.08	4.29	· <.01
199509 Duplicate		18	>50.0	157.9 165.7	20.50	519	>10000	2.63	;	>10000	4.26		5	7	2	190.7	39	2089	147	>10.00	1431	11	21	19	10	227	48	5	0.31	3.61	>10.00	0.02
																						•										

. . .

.

. .

CLIENT: SILVERTIP MINING CORP REPORT: VOO-00129.0 (COMPLETE

х

7

PROJECT: SILVER TIP

.

.

.

REPORT: V00-00129.0 (COMPLETE) PAGE 68(12/12) DATE RECEIVED: 24-JAN-00 DATE PRINTED: 8-FEB-00 SAMPLE ELEMENT K Sr Y Ga Li Nb Sc Ta Ti Zr NUMBER UNITS PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM 199449 <.01 55 5 14 <1 <1 <5 <10 <.010 <1 Duplicate 199450 <.01 26 12 62 <1 <1 <5 <10 <.010 <1 Duplicate <.01 27 13 62 <1 <1 <5 <10 <.010 <1 199501 <.01 115 4 4 <1 <1 <5 <10 <.010 <1 Duplicate 199502 <.01 16 2 46 <1 <1 <5 <10 <.010 <1 Duplicate 199503 <.01 16 1 46 <1 <1 <5 <10 <.010 <1 Duplicate 199506 <.01 16 1 18 <1 <1 <5 <10 <.010 <1 Duplicate 199507 <.01 23 2 36 <1 <1 <5 <10 <.010 <1 Duplicate 199509 0.01 54 3 15 1 <1 <5 <10 0.019 <1 **Duplicate**

.

.

Vuncouver Branch | Geochemical Lab Report

REPORT: V00-00157.0 (COMPLETE)

REFERENCE:

SUBMITTED BY: C. AKELAITIS DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00

date Approved	ELEMENT	NUMBER OF ANALYSES	LOWER Detection	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER Detection	EXTRACT	TION	METHOD	1
000129 1 1	Wet Au Pactial Ext	Gold 40	5 PPR	ASH/AQ REG/D18K	ATOMIC ABSORPTION :	000129 37 N	b Nimbium	40	1 PPM	HCL : HNO3	(3:1)	INDUC. CO	UP. PLASM
000129 2	AgGrav Silver (Grav.	.) 13	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000129 38 \$	c Scandium	40	5 PPM	HCL: HNO3	(3:1)	INDUC. CO	UP. PLASH
000129 3	wt/Aq Sample Veight	t 40	0.10 GM			000129 39 T	a Tantalum	40	10 PPM	HCL: HNO3	(3:1)	INDUC. CO	UP. PLASH
000129 4	Aa Silver	40	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	000129 40 T	i Titanium	40	0.010 PCT	HCL:HNO3	(3:1)	INDUC. CO	UP. PLASM
000129 5	Cu Cooper	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	000129 41 z	r Zirconium	40	1 PPM	HCL:HNO3	(3:1)	INDUC. CO	UP. PLASM
000129 6 1	Pb Lead	40	Z PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000129 7 1	Ph Lead	13	0 01 PCT	HE-HNO3-HOLO4-HOL	AAS LOW LEVEL ASSAY	SAMPLE TYP	ES MEMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE	PREPARATION	S NUMBER
000129 8	Pb Lead	5	0.01 PCT		TITRIMETRIC		•••••						
000129 9	7n Zinc	40	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	D DRILL D	ORE 40	2 - 150		40	CRUSH/S	PLIT & PULV.	. 40
000129 10	7n 7inc	16	0.01 PCT	HE-HN03-HCL04-HCL	AAS LOW LEVEL ASSAY						RIVER F	ROCK CLEANING	5 40 E
000129 11	Zn Zinc	2	D.01 PCT		TITRIMETRIC						SILICA	CLEANING	40
000129 12	No Molybdenum	40	T PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						OVERWEI	IGHT/KG	60
000129 13	Ni Nickel	40	1 PPM	HCL+HNO3 (3·1)	INDUC. COUP. PLASMA								
000129 14	Co Cobalt	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS: 7	inc concentration >1	Kivilt embar	nce Tunnesten				:
000129 15	Col Cadmium	40	fi 2 PPH	HCL - HNO3 (3:1)	INDUC. COLP. PLASMA		esults. Therefore.	lungsten cor	centration				
000129 16	Ri Rismuth	40	5 PPM	HC1:HN03 (3:1)	INDUC. COUP. PLASMA	u	ould be greater than	true value.	Also.				
000129 17	As Arsenic	40	5 PPN	HCL: HNO3 (3:1)	INDUC, COUP, PLASMA	Ċ	arrvover problem on	the analytic	al blank				
000129 18	Sb Antimony	40	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASHA	d 1	lue to high concentra 1/29 JCA	tions of Zir	nc in solutio	n.			
000129 19	Fe Iron	40	0.01 PCT	HCL: HNO3 (3:1)	INDUC. COUP. PLASHÁ								
000129 20	Mn Manganese	40	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								:
000129 21	Te Tellurium	40	10 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COP	IES TO: MR. STEVE RO	BERTSON		INVOICE	TO: MR. !	STEVE ROBERTS	SON
000129 22	Ra Barium	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								•
000129 23	Cr Chromium	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	*	*******	**********	***********	****	*****	******	****
000129 24	V Vanadium	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		This report must not	be reproduc	ed except in	full. The	data pr	esented in t	his
				·····			report is specific t	o those same	oles identifi	ed under "	Sample N	umber" and i	5
000129 25	Sn Tin	40	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		applicable only to t	he samples a	as received e	xpressed o	n a dryl	basis unless	
000129 26	W Tungsten	40	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		otherwise indicated	•		•	•		
000129 27	La Lanthanum	40	1 PPM	HCL:HW03 (3:1)	INDUC. COUP. PLASMÀ	*	*******	********	*********	*******	******	******	****
000129 28	AL Aluminum	40	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000129 29	Mg Magnesium	40	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000129 30	Ca Calcium	40	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000129 31	Na Sodium	40	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000129 32	K Potassium	40	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000129 33	Sr Strontium	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								•
000129 34	Y Yttrium	40	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000129 35	Ga Gallium	40	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000129 36	Li Lithium	40	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP.

199485

6

1.3 3

89

Geochemical Lab Report

.

PROJECT: SILVER TIP

13 1.47 1012 <10 63 13 1 <20 <20 3 0.02 0.58 >10.00

REPORT:	V00-00157.0 (COMPL	ETE)									DAT	e rei	CEIV	ED:	28-JAN-	00	DATE	PRINT	ED: 23-	FEB-(00	PA	GE	1A(1	1/12)					
SAMPLE	ELEMENT Wet Au	AgGrav	v wt/Ag	Ag	Cu	Pb	Pb	Pb	Zn	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Min	Te	8a	Cr	v	Sn	w	La .	AL I	Mg	Ca
NUMBER	UNITS PPB	PPM	I GM	PPM	PPM	РРМ	РСТ	РСТ	PPM	PCT	PCT	ppm I	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM I	PPM	PPM	PPM P	PM P	et pr	CT	PCT
199456	<5	I		1.5	37	73			182			27	92	10	0.9	\$	64	14	1.89	824	<10	113	68	39	<20	<20	40.	42 1.3	36	9.99
199457	<5	ı.		1.3	9	81			148			7	19	2	0.7	<5	55	11	1.64	729	<10	231	21	12	<20	<50	30.	05 0.(62 >	10.00
199458	<5	i		0.9	9	53			44			4	20	<1	0.4	<5	20	6	9.49	356	<10	22	24	13	<20	<20	2 0.	04 1.7	22 >	10.00
1 99 459	<5	i i		0.9	8	35			64			3	18	1	0.4	<5	16	-5	4.97	778	<10	39	21	24	<20	<20	3 0.	11 1./	03 >	10.00
199460	<5	;		0.8	2	23			57			1	5	<1	0.3	ব	<5	ব	0.19	1326	<10	484	6	19	<20	<20	3 <.	01 0.!	59 >	10.00
1 99461	<5			1.2	4	49			138			3	1	<1	0.7	4	7	ৎ	0.15	4429	<10	41	9	1	<20	<20	4 <.	01 0 ./	66 >	10.00
199462	<5	906.5	5 15.72	>200.0	1165	>10000	>15.00	21.71	>10000	12.28		5	6	2	557.1	11	1210	914	>10.00	1297	136	9	84	4	121	338	2 <.	01 0.	11	3.41
199463	6)		5.9	6	597			372			7	13	<1	1.8	<\$	168	25	4.82	3851	<10	72	15	3	<20	<20	6 <.	01 2.3	30 >	10.00
199464	<5	77.7	30.19	89.2	242	>10000	2.13		>10000	1.60		7	9	<1	74.8	~5	166	142	6.05	2538	<10	62	25	3	<20	42	5 <.	01 2.4	69 >	10.00
19946 5	<5	1835.2	2 15.85	>200.0	1725	>10000	>15.00	37.39	>10000	11.35		5	10	<1	587.2	240	294	1783	>10.00	320	29	6	59	4	468	307	<1 <.	01 0.0	01	0.27
1 9946 6	<5	426.5	15.20	>200.0	8666	>10000	7.22	!	>10000	>15.00	33.53	6	7	<1	1513.7	101	418	501	>10.00	1085	20	6	78	4 :	>2000	1008	2 <.	O1 O.	02	2.04
199467	23	2341.2	2 15,32	>200.0	618	>10000	>15.00	54.20	>10000	8.78		4	2	<1	425.6	324	339	>2000	9.73	313	40	5	85	7	400	227	10.	09 0.	29	1.08
199468	<5	,		1.8	4	231			143			2	4	<1	1.0	5	6	୍	0.44	380	<10	41	19	4	<20	<20	30.	20 7.	65 >	10.00
199469	<5	•		3.2	10	432			596			3	2	<1	3.0	4	19	7	0.55	1651	<10	101	18	3	<20	<20	50.	01 5.	25 >	10.00
199470	5	•		2.6	33	320			884			2	2	<1	4.2	4	24	8	0.43	1226	<10	264	12	3	<20	<20	40.	01 6.	65 >	10.00
199471	<5	i		0.7	1	45			64			1	2	<1	0.4	\$	6	-5	0.29	889	<10	49	16	3	<20	<20	2 <.	01 8.	81 >	10.00
199472	<5	i		2.4	76	263			7338			2	1	<1	33.7	ব	25	16	0.56	1089	<10	114	16	2	<20	24	3 <.	01 7.	88 >	10.00
199473	5)		4.5	239	296			>10000	2,50		3	1	<1	101.6	7	945	35	1.51	1271	<10	37	30	Ż	<20	67	4 <.	01 6.	51 >	10.00
199474	<5	5		15.3	536	1538			>10000	3.81		3	2	<1	146.5	22	173	51	1.77	1759	<10	18	18	2	151	86	60.	01 2.	90 >	10.00
199475	14	•		46.8	369	8514			>10000	1.59		3	7	3	66.3	32	71	50	2.72	1369	<10	19	73	11	<20	39	40.	43 5.	46 >	10.00
199476	20	1146.7	7 15.55	>200.0	877	>10000	>15.00	23.68	>10000	13.18		7	3	<1	573.4	137	169	845	5.96	1242	17	7	39	2	285	345	2 0.	.01 1.	66	8.27
199477	<5	5 78 .3	30.21	77.6	421	>10000	1.53	5	>10000	1.46		3	3	<1	64.8	30	241	113	2.92	1658	<10	15	48	2	<20	39	6 <.	.01 4.	96 >	10.00
199478	8	3 191.2	2 15.26	178.0	3386	>10000	2.63	5	>10000	9.17		6	17	3	440.6	104	1434	466	>10.00	803	18	- 7	101	6	594	283	4 <.	.01 1.	79	3.91
199479	<	5 193.1	1 15.75	>200.0	3077	>10000	2.46	3	>10000	13.38		3	19	4	631.4	215	1256	437	>10.00	368	26	9	88	4	395	395	Ζ<.	.01 0.	07	0.45
1 9948 0	<5	5 179.5	5 15.56	192.0	3084	>10000	2.50)	>10000	10.33		1	19	3	476.3	236	1160	416	>10.00	265	27	9	58	3	251	304	2 <.	01 0.	03	0.12
199481	<5	5		2.9	28	328			1414			z	2	<1	7.5	<5	24	11	0.53	858	<10	301	21	4	<20	<20	2 0.	.01 8.	34 >	10.00
199482	<5	5		18.8	50	4366	•		2736			1	1	<1	14.2	< 5	65	95	0.48	1021	<10	81	12	1	<20	<20	20.	.01 O.	84 >	10.00
199483	<	5 645.9	9 16.60	>200.0	4409	>10000	>15.00	22.48	>10000	>15.00	24.96	4	<1	<1	951.9	-5	4314	>2000	>10.00	723	22	6	78	3	1320	573	10.	.01 0.	11	3.36
199484	<	5		2.0	12	461			368			2	2	<1	2.2	-6	9	79	0.34	320	<10	33	14	3	<20	<20	3 0.	13.5.	77 >	10.00

1 4 <1

0.6 <5

21

98

ITTS Intertek Testing Services Bondar Clegg

The second second second second second second second second second second second second second second second se

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

1

٠

•

.

.

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00

PROJECT: SILVER TIP PAGE 1B(2/12)

SAMPLE	ELEMENT	Na	K	Sr	Ŷ	Ga	Li	Nb	Sc	Та	Tİ	Zr
NUMBER	UNITS	PÇT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PCT	PPM
199456		<.01	0.18	80	8	Z	3	3	<5	<10	<.010	8
1 9945 7		<.01	0.03	Z95	4	<2	<1	<1	<5	<10	<.010	<1
199458		<.01	<.01	185	2	4	t	<1	<5	<10	<.010	<1
199459		<.01	<.01	193	2	<2	1	<1	4	<10	<.010	<1
199460		<.01	<.01	197	3	<2	<1	1	<5	<10	<.010	<1
199461		<.01	<.01	113	3	<5	<1	<1	45	<10	<.010	<1
199462		<.01	<.01	21	1	20	<1	<1	<5	<10	<.010	<1
199463		<.01	<.01	160	4	S	<1	<1	<5	<10	<.010	<1
199464		<.01	<.01	132	3	3	1	<1	~5	<10	<.010	<1
199465		<.01	<.01	10	<1	50	<1	<1	<5	<10	<.010	<1
199466		<.01	<.01	14	9	181	<1	<1	<5	<10	<.010	<1
199467		<.01	0.10	9	<1	28	17	<1	<5	<10	<.010	<1
199468		0.01	0.06	89	3	<2	5	<1	<5	<10	<.010	<1
199469		<.01	<.01	160	4	<2	2	<1	<5	<10	<.010	<1
199470		0.01	<.01	136	3	<2	2	<1	<5	<10	<.010	<1
199471		0.01	<.01	114	Z	<2	2	<1	<5	<10	<.010	<1
199472		0.01	<.01	84	3	2	2	<1	<5	<10	<.010	<1
199473		0.01	<.01	185	3	8	2	<1	<5	<10	<.010	<1
199474		<.01	<.01	100	6	14	1	<1	-5	<10	<.010	<1
199475		0.03	0.02	9 9	5	5	3	<1	<5	<10	0.024	<1
199476		<.01	< 01	40	Z	44	<1	<1	ক	<10	<.010	<1
199477		0.01	<.01	104	6	4	1	<1	ক	<10	<.010	<1
199478		<.01	<.01	28	1	38	<1	<1	45	<10	<.010	<1
199479		<.01	< 01	16	<1	58	<1	<1	ক	<10	<.010	<1
199480		<.01	<.01	14	<1	43	<1	<1	<5	<10	<.010	<1
199481		0.02	<.01	73	3	<2	2	<1	<5	<10	<.010	<1
199482		<.01	<.01	260	<1	<2	<1	<1	<5	<10	<.010	<1
199483		<.01	<.01	22	<1	118	<1	<1	<5	<10	<.010	<1
199484		0.01	0.04	115	2	<2	4	<1	<5	<10	<.010	<1
199485		<.01	0.01	383	1	<2	<1	<1	<5	<10	<.010	<1

ITS Intertek Testing Services Bondar Clegg

.

.

٦

CLIENT: SILVERTIP MINING CORP.

Α.

PROJECT: SILVER TIP

REPORT: V00-00157.0 (COMPLETE) DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00 PAGE 2A(3/12) SAMPLE ELEMENT Wet Au AgGrav wt/Ag Ag Cu Pb ΡЬ Pb Zn Zn Zn Mo Ni Co Cd Bi Sb As Fe Mn Te Ba Cr - V Ś'n W La Al Mg Са NUMBER UNITS: PPB **PPM** GM PPM PPM PPM PCT PCT PPM PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM. PPM PPM PCT PCT PCT 199486 <5 0.2 28 56 39 4 17 33 0.4 <5 32 15 >10.00 151 <10 107 68 34 <20 <20 4 0.94 0.58 6.24 199487 <5 17.2 26 3876 1302 2 1 <1 6.8 <5 7 0.36 700 <10 30 14 21 2 <20 <20 9 0.03 0.78 >10.00 199488 14 760.6 30.69 >200.0 2572 >10000 14.65 >10000 13.48 28 5 4 633.7 56 1663 819 >10.00 871 18 8 53 10 1041 400 14 0.17 0.46 7.41 199489 <5 3.5 24 334 1122 2 2 <1 5.7 <5 19 5 0.46 775 <10 34 9 1 <20 <20 3 0.02 0.94 >10.00 199490 <5 1.5 9 Z44 272 2 <1 6 1.4 <5 47 5 0.32 520 <10 92 7 1 <20 <20 3 0.02 0.34 >10.00 199491 6 480.5 15.32 >200.0 3443 >10000 11.56 >10000 11.86 349 3 <1 474.3 6 >10000 1022 >10.00 767 28 8 56 5 1218 355 4 0.03 0.06 4.55 199492 <5 7.9 46 1055 1384 23 3 <1 6.6 <5 346 32 0.96 1010 <10 22 8 2 <20 <20 3 0.03 1.33 >10.00 199493 <5 3 1.1 32 72 3 <1 13 0.4 <5 30 7 0.65 835 <10 36 12 2 <20 <20 3 0.08 1.02 >10.00 199494 <5 0.4 6 19 37 2 7 12 0.4 <5 11 6 2.51 399 <10 21 22 26 <20 <20 6 0.69 4.94 >10.00 199495 <5 <0.2 11 19 37 3 10 26 7 7.15 161 <10 31 42 44 0.4 5 10 <20 <20 6 0.91 2.05 5.57

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

3 .

 \sim

.

.

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00

PROJECT: SILVER TIP PAGE 28(4/12)

Sample Number	ELEMENT UNITS	Na PCT	K PCT	Sr PPM	ү РР М	Ga PPM	Li PPM	ND PPM	Sc PPM	ta PPM	Ti PCT	Zr PPM
199486		0.01	0.50	44	12	7	3	<1	ر ج	<10	0.013	11
199487		<.01	<.01	219	5	<2	<1	<1	<5	<10	<.010	<1
199488		<.01	0.06	36	7	69	1	<1	<5	<10	<.010	<1
199489		<.01	<.01	277	3	<2	<1	<1	<5	<10	<.010	<1
199490		<.01	<.01	346	2	<2	<1	<1	<5	<10	<.010	<1
199491		<.01	<.01	25	<1	110	<1	<1	<5	<10	<.010	<1
199492		<.01	<.01	140	2	<2	<1	<1	<5	<10	<.010	<1
199493		<.01	0.01	156	3	<2	<1	<1	<5	<10	<.010	<1
199494		0.01	0.27	76	9	<2	4	1	ৎ	<10	0.048	13
199495		0.02	0.50	34	11	4	3	3	5	<10	0.076	26

. N 1 N 1 N 1

.

Report _____

. . . .

CLIENT: SIL	LVERTIP MI	NING CO	RP																							сст. с		T10	,		
REPORT: VOI	0- 0 0157.0	(Compl	ETE)									DA	TERI	ECEI	VED:	28- JAN	-00	DATE	PRINT	ED: 23	5-FE B	-00	P	AGE	3A(5/12)	ILVER	110			
STANDARD	ELEMENT	Wet Au	AgGrav	wt/Ag	Ag	Cu	Pb) Pb	Pb	Zn	Zn	Zn	Mo	Ni	Co	Cd	Rí	å e	sh	£e	. Mr	1 Ta	. Ba	ſr	v	5-	U.	1.0		58.m	6 -
NAME	UNITS	PPB	PPM	GM	PPM	PPM	PPM	РСТ	PCT	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PC1	· PP	I PPM	PPM	PPM	PPM	PPM	PPN	PPM	PCT	PCT	La PCT
0X8 Oxide		192	-	-		-	-	-	-	-	-	-	-	-	•	_	-		_	_				_	_	_	_	_			
Number of A	Analyses	1	-	-	-		-	-		-	-	-	-	-	-	-	-	-		_			_		_	_	-	•	-	-	-
Mean Value		192	-	-	-	-	-	-	-	-		-	-	-	-	-		_	_				_		-	-	-	-	-	-	-
Standard De	viation	-	-	-	-	.	-	-		-	-	-	-	-	•	_	-	_					-	-	-	-	-	-	-	-	-
Accepted Va	alue	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-		-	-	-	-	-	-	-	-	-
GS 91-2		-	-	-	<0.2	170	23	. <u>-</u>	-	161	-	-	2	141	34	0.6	6	162		7 66	1555	. 210	•	24.3	11	-20	-30	7	3 00	3 74	• •
Number of A	unal yses	-	-	-	1	1	1	-	-	1	-	-	1	1	1	1	1	1		1	1	1 10	- U	242	44	~20	1	3	2.00	2.71	3.73
Mean Value		-	-	-	0.1	170	23	-		161	-		2	141	36	, 0 A	ż	142	, T	7 4	1000		, a	1		1 40	10	-	1	1	
Standard De	viation	-	-	-	-	-	-	-	-	•	-	-			-			146	-	7.04	1000	. ,	o	292	44	10	10	. د	2.08	2.71	5.75
Accepted Va	lue	-	-	-	0.2	148	20	•	-	1 48	•	-	4	135	35	0.2	1	145	1	7.20	1450) <1	6	251	50	- 5	12	-	- 1.80	2.70	- 4.00
OX12 Oxide		-	9.9	-	-	-	-	-	_	-		-	_	-	-	-	•	-	_		_			_	_						
Number of A	nalyses	-	1	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-		_	_	-	•	-	-	-	-	-	-
Mean Value		-	9.9	-	-	-	-	-	-	-	-	-			-	_		_	-			•	-	-	-	•	-	-	-	-	-
Standard De	viation	-	-	-	-		_	-	•	-	-		_	_	-	_	_	_		-	_	-	-	•	•	-	-	-	-	-	-
Accepted Va	itue	-	10.4	-	-	-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0X9 Oxide		499	-		-	-	-	-	-		-		-	_	_	-		-		_											
Number of A	inalyses	1	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-				-	-	-	-	-	-	-	-	-
Mean Value		499		-	-	•	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	•	-	-	-	-	-	-	-
Standard De	viation	-	-	-	-	-	-	-	-	-	-	-	-	-	_			_	-	-	-	-	-	-	-	-	-	-	-	-	•
Accepted Va	itue	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANALYTICAL	BLANK	-	-		<0.2	<1	3	_	-	30	-	-	<1	<1	د1	c0 2	5	0	~	-A 11		-10	.4	.4	- 8	-20	-òn		~ ~	••	
ANALYTICAL	BLANK	-	-	-	<0.2	<1	<2	-	-	8	-	-	<1	<1	~1	-0.2	.5	, ,		<0.01		-10		< I .4	<1 	<20	<20	<1 •	<.01	<_01	<0.01
Number of A	natyses	-	-	-	z	2	2	-		2	-	-	2	יי	7	~V.L 2	ر. د	2	· ·	10.01	1	< 10	<1	<1	<1	<20	<20	<1 ·	<.01	<.01	<0.01
Mean Value		-		-	0.1	<1	2	-		10	-	-	د حا	- 1	-1	د ۱	د ۲	د د	د ۲	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2	Z	2	Z	2	2	S	Z	2	2
Standard De	viation	-	-	-	-	-	2	-	-	16	-	-	-	-	-	•	.) -	5	-	<0.01	<1 -	-	<1 -	<1 •	<1 -	10 -	10	<1 • -	<.01	<.01 -	<0.01 -
Accepted Va	ilue	1	<0.1	<0.01	0.Z	1	Z	<0.01	<0.01	1	<0.01 ·	<0.01	1	1	1	0.1	2	5	5	0.05	1	<1	<1	1	1	<1	ব	4.	<.01	<.01	⊲0.01

.

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

ų

٠ .

.

c.

Geochemical Lab Report

PROJECT: SILVER TIP

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00

PAG

GE	380	6/12)	
	207	0,10,	

STANDARD	ELEMENT	Na	K	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Z٢
NAME	UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
OX8 Oxide		-	-	-	-	-	-	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	-	-	-	-		-
Mean Value		-	-	-	-	-		-	-	-	-	-
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	-
Accepted Val	ue	-	-	-	-	-	-	-	-	-	-	-
G591-2		0.01	0.05	80	3	8	23	2	7	<10	<.010	5
Number of An	alyses	1	1	1	1	1	1	1	1	1	1	1
Mean Value		0.01	0.05	80	3	8	23	2	7	5	0.005	5
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	
Accepted Val	Je	0.01	0.04	70	3	-	24	2	6	1	0.003	5
0X12 Oxide		-	-	-	-	-	-	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	-	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	-	-	-	-
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	-
Accepted Valu	Je 🛛	-	-	-	-	-	-	-	-	-	-	-
0X9 Oxide		-	-	•	-	-	-	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	•	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	•	-	-	-
Standard Dev	iation	-	-	-	•	•	-	-	-	-	•	-
Accepted Value	ue	-	-	-	-	-	•	-	-	-	-	•
ANALYTICAL BI	ANK	<.01	<.01	<1	<1	<2	<1	<1	4	<10	<.010	<1
ANALYTICAL BI	.ANK	<.01	<.01	<1	<1	<2	<1	<1	ح	<10	<.010	<1
Number of Ana	alyses	2	2	2	2	S	Z	Z	2	2	2	2
Mean Value		<.01	<.01	<1	<1	1	<1	<1	3	5	0.005	<1
Standard Dev	iation	-	-	-		-	-	-	-	•		-
Accepted Value	ue	<.01	<.01	<1	<1	<1	<1	<1	<1	<1	<.001	<1

ITS Intertek Testing Services Bondar Clegg

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

٦

N 100

.

PROJECT: SILVER TIP

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00 PAGE 4A(7/12)

STANDARD I	ELEMENT W	let Au 🖊	lgGrav (wt/Ag	Ag	Cu	РЬ	Pb	> Pb	Zn	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	sb	Fe	Me	1 Je	Ra	Cr	v	\$n	U	1a	۸I	Ma	<u>^</u> _
NAME	UNITS	PPB	PPM	GM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPM	РРМ	PPM	PPM	PPM	PPM	PCT	РРМ	PPN	PPM	i ppn	PPM	PPM	PPM (PPM	PCT	PCT	PCT
CANMET STSD-4		-	-	-	<0.2	65	15	-	-	83	-	-	1	77	11	05	~5	14	5	2 47	1145	10	077	77			.70	47	4 47	• • •	4 70
Number of Anal	lyses	-	-	-	1	1	1	-	-	1	-	-	1	دد 1	4	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	1	2,03	100		4		40	<20	~20	12	1.17	J_77	1.50
Mean Value		-	-	-	n 1	65	15	-	_	83	-	_	1	י ככ	11	0 5	7	4/	ו ד	3 (7	11/5	· •	ا متتا	1	1	1	1	1	1	1	1
Standard Devia	ation	-	-			-	-	-		- -	-					0.5		14	2	2.03	1100		973 9	53	40	10	10	12 1	1.17 (0.77	1.30
Accepted Value	ė	-	-	-	0.3	66	13	-	-	82		-	Z	23	11	0.6	-	11	4	2.60	1200	, -	-	30	51	-	-	-	-	-	-
CANNET CERTIFI	IED STD	-	_	-		-	-	4.26		-	>15.00	-			-	-	-		_	_			_	_	_	_	_				
Number of Anal	lyses	-	-	-	-	-	•	1	-	-	1	-	_	-	-		-	_		_	_	_	_	_	_	_	_	-	-	-	-
Mean Value		-	-	-	-	-	-	4.26			15.00	-		_	-	-	•	_	_				_		_			-	•		-
Standard Devia	ation	-	-	-	-	-	-	-	-	-		-	_	-	-	-	_		-	_	_	_	_	_	_	-	-	-	-	-	-
Accepted Value	ė	-	-	•	-	-	-	4.33	4.33	-	19.02	19.02	-	-	-		-	-	-	•	-	-	-	-	-	-	-	-	- (- 0 .02	-
CANMET STANDAR	RD	-	-		-	-	-	-	64.79	-	-		_	-	-	•	_	_	-	-	_	_				_	_	_	_		
Number of Anal	lyses	-	-	-	-	-	-	-	1	-	-	-	-	-	_	-	-	-	-	-	-			-	-		-	•	•	-	-
Mean Value		-	-		-	-	-	-	64.79	-	-	-	_	-	-	-		-	•			_	_	_		-	-	-	-	-	-
Standard Devia	ation	-	-	-	-		-	-	-	-	-	-	-	-	_	-	-		_	-	-	-	_		-		-	•	-	-	-
Accepted Value	e	-	-	-	625.7	2540 (547000	64.70	64.74	44200	4.42	4.42	-	-	-	-	230	560	3600	8.43	-	-	•	-	-	-	-	-	-	-	-
Zinc Concentra	ate CRM	-	-	-	-	-	-	-	-	-	-	50.97	-			-	-	-	-	-	-	_	-	_	_	_	_	_	_		
Number of Anal	lyses	-	-	-	-	-	-	-	-	-	-	1	-	-	-		-	_			_	_				-	-	-	•	-	-
Mean Value		•	-	-	-		-	-	-	-	-	50.97		-	-	-	-	-	_	_	_	_	-	-	-	-	-	-	-	-	•
Standard Devia	ation	-	•	-	-	-		-	-	-	-		_		-	-	_	-	-	-	-	-	-		-	-	-	•	-	-	-
Accepted Value	e	-	-	-		-	-	0.11	0.11	-	50.92	50.92	-	-	-	-	-	_		-	-		-		-	-	-	-	•	-	-

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

.

.

DATE RECEIVED: 28-JAN-00

PROJECT: SILVER TIP DATE PRINTED: 23-FEB-DO

PAGE 48(8/12)

STANDARD	ELEMENT	Na	K	Sn	Ŷ	Ga	Li	Nb	Sć	Ta	Τi	Zr
NAME	UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
CANMET STSD-	4	0.05	0.12	72	9	3	10	4	ବ	<10	0.078	<1
Number of Ar	alyses	1	1	1	1	1	1	1	1	1	1	1
Mean Value		0.05	0.12	72	9	3	10	4	3	5	0.078	<1
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	-
Accepted Val	ue	-	-	-	-	•	-	-	•	-	-	-
CANMET CERTI	FIED STD	-	-	-	-	-	_	_		_	_	_
Number of An	alyses	-	-	-	-	-		_	-	_	_	-
Mean Value		-	-	-	-	-	_	-		-		
Standard Dev	iation	-	-	-	-	-	-	-	-		_	_
Accepted Val	Ue	-	-	-	-	-	-	•	-	-	-	-
CANMET STAND	ARD	-	-	-		-	-	_	-	-	-	
Number of An	alyses	-	-	-	-	-	-		-	-	-	-
Mean Value		•	-	-	•	-	-	-	-	-	_	-
Standard Dev	iation	-	-	-	-		-	-		-	-	-
Accepted Valu	æ	•	-	-	-	-	-	-	-	-	-	
Zinc Concentr	ate CRM	-	-		-	-	-	-		_		
Number of Ana	alyses	-	-	-	•	-	-	-	-	-	_	
Mean Value		-	+	-	-	-	-	-	-	-	_	-
Standard Devi	iation	-	-		-	-	-	-	•	-	-	-
Accepted Valu	æ	-	-	-		-	-	-	-		-	

• A + S

PROJECT: SILVER TIP

2

· ·

-

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00157.0 (COMPLETE)

SAMPLE

NUMBER

199461

199462

199463

199464

199465

199466

199467

199476

199477

199480

199486

199488

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Duplicate

Prep Dupli

Duplicate

0-00157.0	(.	EIE)								DATE R	ECET	VED :	28- JAN	1-00	DATE	E PRIN	TED: 23	-FEB-(00	PA	AGE	5A(9	9/12)					
ELEMEN	T Wet Au	AgGrav	/ wt/Ag	Ag	Cu	Pta	Pb	Pb Zr	1 Zn	Zn Mo	Nī	Co	Co	ł Bi	As	sb	Fe	Mn	Te	₿a	Ĉr	v	Sn	พ	La	AL	Mg	Ca
UNIT	S PPB	PPM	I GM	PPM	PPM	PPM	PCT	PCT PPM	PCT	PCT PPM	₽ PM	PPM	PPN	1 PPM	PPM	PPM	PCT	PPM	PPM	PPM	ppm	PPM	PPM	PPM	P PM	РСТ	PCT	PCT
	<5			1.2	4	49	,	138	3	3	1	<1	0.7	7 <5	7	<5	0.15	4429	<10	41	9	1	<20	<20	4	<.01	0.66	>10.00
cate	6			1.2	3	51		120)	2	Ş	<1	0.6	5 <5	12	<5	0.15	4174	<10	41	12	1	<20	<20	4	0.01	0.64	>10.00
	<5	906.5 900-1	5 15.72	>200.0	1165	>10000	>15.00 2	21.71 >10000	12.28	5	6	Z	557.1	11	1210	914	>10.00	1297	13 6	9	84	4	121	338	2	<.01	0.11	3.41
		077.1					213.00 (21.05	16.64																			
	6			5. 9	6	597	•	372	2	7	13	<1	1.8	8 <5	168	25	4.82	3851	<10	72	15	3	<20	<20	6	<.01	2.30	>10.00
	8			6.0	7	655		410)	7	13	<1	1.9	/ <5	163	28	4.56	3801	<10	70	16	3	<20	<20	5	<.01	2.26	>10.00
	<5	77.7 78.3	7 30.19 \$	89.2	242	>10000	2.13	>10000	1.60	7	9	<1	74,8	3 5	166	142	6.05	2538	<10	62	25	3	<20	42	5	<.01	2.69	>10.00
	<5	1835.2 1841.4	? 15.85 ;	>200.0	1725	>10000	>15.00 3	37.39 >10000	11.35	5	10	<1	587.2	240	294	1783	>10.00	320	29	6	59	4	468	307	₹1	<.01	0.01	0.27
	\$	426.9 4 3 8.8	9 15.20 3	>200.0	8666	>10000	7.22	>10000) >15.00 (33.53 6 33.49	7	<1	1513.7	7 101	418	501	>10.00	1085	20	6	78	4 :	>2000	1008	2	<.01	0.02	2.04
	23	2341.2 2517.7	2 15.32	>200.0	618	>10000	>15.00 5	54.20 >10000	8.78	4	2	4	425.6	5 324	339	>2000	9.73	313	40	5	85	7	400	227	1	0.09	0,29	1,08
	20	1146.7 1087.8	7 15.55 3	>200.0	877	>10000	>15.00 å	23.68 >10000	13.18	7	3	<1	573.4	137	169	845	5.96	1242	17	7	39	2	285	345	Z	0.01	1.66	8.27
	4	78.3 78.7	30.21	77.6	421	>10000	1.53 1.51	>10000) 1 .46 1.46	3	3	<1	64.8	3 30	241	113	2.92	1638	<10	15	48	2	<20	39	6	<.01	4.96	>10, 0 0
	<5	179.5	5 15.56	192.0	3084	>10000	2.50	>10000	10.33	1	19	3	476.3	236	1160	416	>10.00	265	27	ģ	58	3	251	304	2	<_01	0.03	0.12
		184.2	2	187.5	2926	>10000	ļ	>10000)	2	19	3	483.0	240	1136	409	>10.00	270	32	9	62	3	254	309	2	<.01	0.03	0,19
	<5			0.2	28	56	,	39	,	4	17	33	0.4	-5	32	15	>10.00	151	<10	107	68	34	<20	<20	4 1	D. 94	0.58	6.24
	<5																											

14 760.6 30.69 >200.0 2572 >10000 14.65 >10000 13.48 28 4 5 633.7 56 1663 819 >10.00 871 18 8 53 10 1041 400 14 0.17 0.46 7.41 14.74 12.97

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

ITS Intertek Testing Services Bondar Clegg

CLIENT: SILVERTIP MINING CORP

1 N 6 N

· ·

~

.

REPORT: VOO-OO	157.0	(COM	PLETE)									DATE RECEIV	/ED: 28-JAN-00) (DATE PRINT	ED: 23-F	EB-00	PAGE	PROJECT: SILVER TIP 5B(10/12)
SAMPLE EI	LEMENT	Na	κ	۶r	¥	Ga	Li	٨b	Şc.	Тə	Ti	Zr								
NUMBER	UNITS	РСТ	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM								
199461		<.01	<.01	113	3	<2	<1	<1	<5	<10	<.010	<1								
Prep Duplicate		<.01	<.01	123	3	<2	<1	<1	<5	<10	<.010	<1								
199462		<.01	<.01	Z 1	1	20	<1	<1	<5	<10	<.010	<1								
Duplicate																				
199463		<.01	<.01	160	4	2	<1	<1	<5	<10	<.010	<1								
uplicate		<.01	<.01	164	3	<2	<1	<1	<5	<10	<.010	<1								
199464		<.01	<.01	132	3	3	1	<1	ব	<10 -	<.010	<1								
uplicate																				
199465		<.01	<.01	10	<1	50	<1	<1	ক	<10 ·	<.010	<1								
uplicate																				
199466		<.01	<.01	14	9	181	<1	<1	<5	<10	<.010	<1								
uplicate																				
199467		<.01	0.10	9	<1	28	17	<1	<5	<10 -	<.010	<1								
Duplicate																				
99476		<.01	<.01	40	2	44	<1	<1	ক	<10 -	<.010	<1								
uplicate												-								
99477		0.01	<.01	104	6	4	1	<1	ব	<10 •	<_010	<1								
uplicate																				
99480		<.01	<.01	14	<1	43	<1	<1	<5	<10 •	c.010	<1								
uplicate		<.01	<.01	15	<1	45	<1	<1	-5	<10	<.010	ব								
99486		0.01	0 50	<i>L1</i> .	12	7	τ	-1	~	~10 ·	047	11								
uplicate		0.01	0.00	-4-4	12	'	Ľ	~1	5	<10 L	1.013									
00/.88		< 04	0.04	7/	-4		4													
uolicate		<.01	u.U¢	30	1	07	1	<1	9	<10 •	<.010	<1								

A state of the sta

.

-

-

~

•

CLIENT: SIL REPORT: VOO	VERTIP MIN))-00157.0 (ing Corp Complet	Ē)									DATE RECEIVED:	28- JAN-00	DATE	PRINTED	: 23-	FEB-00	PAGE	PROJI 6A(1	:CT: S 1/12)	jlver t	ΙP		
SAMPLE NUMBER	ELEMENT N UNITS	let Au A PPB	igGrav v PPM	rt/Ag GM	Ag PPM	Cu PPN	РЬ РРМ	Pb PCT	Pb PCT	Zn PPM	Zn PCT	Zn No Nî Co PCT PPM PPM PPM	Cd Bi PPM PPM	As PPM	Sb PPM	Fe PCT	Мп Те РРМ РРМ Р	Ba Ci PM PPI	r V ¶PPM	Sn PPN	W L PPN PF	a Al M PCT	Mg PCT	Ca PCT
199495 Prep Duplic	ate	≺5 6			<0.2 <0.2	11 11	19 22			37 40		3 10 26 4 11 27	0.4 <5 0.4 <5	10 9	7 6	7.15 7.58	161 <10 145 <10	31 47 31 61	2 44 1 45	<20 <20	<20 <20	6 0.91 6 0.89	2,05 1.68	5.57 5.05

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

CLIENT: SILVERTIP MINING CORP REPORT: V00-00157.0 (COMPLETE)

.....

1 N

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 23-FEB-00

PROJECT: SILVER TIP

PAGE 68(12/12)

SAMPLE	ELEMENT	Na	ĸ	Şг	Y	Ga	Li	Nb	Sc	1a	Ti	ZΓ
NUMBER	UNETS	PCT	PCT	PPM	PPN	PPM	PPM	PPM	PPM	PPM	PCT	ррм

199495	0.02 0.50	34	11	4	3	3	5 <10 0.076	26
Prep Duplicate	0.02 0.51	31	11	5	3	3	5 <10 0.078	26

· · · · · · · · · · · · · ·

ITS Intertek Testing Services Bondar Clegg

REPORT: V00-00158.0 (COMPLETE)

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

REFERENCE:

SUBMITTED BY: C. AKELAITIS DATE RECEIVED: 28-JAN-00 DATE PRINTED: 4-FEB-00

WHX/DED ELEMENT MAIL ISS DETENTION EXAMPLESS DEX	DATE	51 8	AF-117	NUMBER OF	LOWER	CVTRACTION		DATE			LOWER	EVTOAC.		NETHOD	
D00129 1 Met. Au Partial Ext. pold 41 5 Pep Assva Regora Arous Assource 000029 38 Second un 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 3 kt/Ag Sample Meight 21 0.1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 38 Second un 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 5 Lexid 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 38 Second un 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 5 Dic Copper 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 42 Zirconium 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 42 Zirconium 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 000129 42 Zirconium 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 0 PLASM 000129 12 Zirconium 41 1 Per Micland3 (3:1) INDIC: 002 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM 0 PLASM	APPROVED	ELE	WEN I	ANALTSES	DELECTION	CATRACTION	METHOD	APPROVED		ANALTSES	DETECTION	EATRAL	T T C M		
000129 2 ApdCrew Silver (Grav.) 21 0.7 PPM FIRE ASSX* (EAW 000129 3 st. 6 Scandium 41 5 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 3 tr. Ag Silver 41 0.2 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 3 st. 6 Scandium 41 0.01 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 4 at 1 Trimerium 41 0.01 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 4 at 1 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 4 at 1 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 000129 4 at 1 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 0 PLASM 000129 4 at 1 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 0 PLASM 000129 4 at 1 PPM HCL:HRO3 5(1) HDCL. COLP. PLASM 0 PLASM	000129	1 Wet Au	Partial Ext. Go	ld 41	5 PP8	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000129 37 N	b Niobium	41	1 PPM	HCL ; HNO3	(3:1)	INDUC. CO	UP. PLASM
CODD2 9 Sumple bare into C1 D.10 CH CODD2 9 Sumple bare C1 DIPUT Code C	000129	2 AgGrav	Silver (Grav.)	21	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000129 38 s	c Scandium	41	S PPM	HCL:HNO3	(3:1)	INDUC. CO	J.P. PLASM
000129 4 Ag Silver 41 0.2 PM HDL:HND3 (S:1) HDUC. CD2.P PLASM 41 0.010 PT HDL:HND3 (S:1) HDUC. CD2.P PLASM 000129 5 DL Lead 16 0.010 PT HL:HND3 (S:1) HDUC. CD2.P PLASM 41 1 PPM HCL:HND3 (S:1) HDUC. CD2.P PLASM 000129 6 DL Lead 16 0.010 PT HF-HA03-HCL-HL ATOMIC ABSORPTION SAMPLE TYPES MHBER SIZE FACTIONS MABER SAMPLE PREPARATIONS MLMEER 000129 9 Zric 41 1 PPM HCL:HND3 (S:1) HDUC. CD2.P PLASM SAMPLE TYPES MLHBER SIZE FACTIONS MLMER S	000129	3 wt/Ag	Sample Weight	21	0.10 GM			000129 39 T	a Tantalum	41	10 PPM	HCL:HNO3	(3:1)	INDUC. CO	NP. PLASM
CODI29 FAIL Copper 41 1 PPH HCL:HKG3 (3:1) TRUCL. COUP. PLASM COUPS / 12 Z inc 1 PPH HCL:HKG3 (3:1) TRUCL. COUP. PLASM COUPS / 12 Z inc 2 PPH HCL:HKG3 (3:1) TRUCL. COUP. PLASM COUPS / 12 KHGER SIZE FRACTIONS MMMER SAMPLE PREPARATIONS MMER SAMPLE PREPARATIONS MMER SAMPLE PREPARATIONS MMER SAMPLE PREPARATIONS MMMER SAMPLE PREPARATIONS	000129	4 Ag	Silver	41	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	000129 40 T	i Titanium	41	0.010 PCT	HCL: HNO3	(3:1)	INDUC. CO	JJP. PLASM
CODI29 6 Pb Lead 41 2 PPH HCL:HH03 (3:1) INUC. COUP. PLANK CODI29 6 Pb Lead 16 0.01 PCT HF-HH03-HCL04-RCL ATCHIC ASSORTION MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SAMPLE TYPES MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTIONS MARGER SIZE FRACTION	000129	5 Cu	Copper	41	1 PPM	HCL:HWO3 (3:1)	INDUC. COUP. PLASMÀ	000129 41 Z	r Zirconium	41	1 PPM	HCL: HNO3	(3:1)	INDUC. CO	JUP. PLASM
000129 7 Pb Lead 16 0.01 PCT HF-HNG3-HCL0-HCL ATONIC ABSORPTION SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER	000129	6 Pb	Lead	41	2 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASHA								
000129 B Pb Lead 2 0.01 PCT TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC Import TITRIMETRIC TITRIME	000129	7 Pb	Lead	16	0.01 PCT	HF-HN03-HCL04-HCL	ATOMIC ABSORPTION	SAMPLE TYP	ES NUMBER		TIONS	NUMBER	SAMPLE	PREPARATIONS	NUMBER
000129 9 2n 2inc 41 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA D RELL CORE 41 2 -150 41 CRUSH/SPLIT & PULV. 41 000129 10 Nicket 41 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA SULCA CLEANING 41 CRUSH/SPLIT & PULV. 41 000129 12 Ni Nicket 41 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA SULCA CLEANING 41 CRUSH/SPLIT & PULV. 41 000129 16 C Codmiun 41 0.2 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA blanks, standards, and prep repeat sample OVERSEIGHT/KG 76 000129 16 As Arsenic 41 5 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA due to the high levels of Pb, Zn and As in the 500129 50 Antimury enables 41 64 41	000129	8 Pb	Lead	2	0.01 PCT		TITRIMETRIC		••••••	• •••••••					· • • • • • • • • • • • • • • •
000129 10 2n Zinc 25 0.01 PCT HF-HH03-HC04-BCL ATOHIC ASSERTION RIVER ROCK CLEANING 41 000129 11 Wi Nicket 1 IPPM HCL:HH03 (3:1) INDUC. COUP. PLASMA SILICA CLEANING 47 000129 12 Wi Nicket 41 IPPM HCL:HH03 (3:1) INDUC. COUP. PLASMA OVERWEIGHT/KG 76 000129 12 Wi Nicket 41 0.2 PM HCL:HH03 (3:1) INDUC. COUP. PLASMA OVERWEIGHT/KG 76 000129 15 Bi Bismuth 41 5 PPM HCL:HH03 (3:1) INDUC. COUP. PLASMA blanks, standards, and prop repet sample 000129 17 Sb Antimory 41 5 PPM HCL:HH03 (3:1) INDUC. COUP. PLASMA camera and As in the 000129 17 Sb Antimory 41 0.01 PCT HF-HM03-HCL:HCL ASSERTION Zinc and Arsenic concentration >1X will enhance Turgsten and Cachinum results respectively. 000129 12 Sc India Arsenic concentration >1X will enhance Turgsten and Cachinum results respectively. 000129 22 Sc India Arsenic concentration >1X will enhance India Arsenic concentration >1X will enhance NO0129 22 Sc India Arsenic concentration >1X wi	000129	9 Zn	Zinc	41	1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	D DRILL C	CORE 41	2 - 150		41	CRUSH/S	SPLIT & PULV.	. 41
000129 11 Mo Noickel 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASM SILICA CLEANING 41 OVERWEIGHT/K6 76 000129 12 Ni Nickel 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASM OVERWEIGHT/K6 76 000129 15 Go Cobit 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASM EMARKS: Please note that there are carryovers to the bigh levels of Pb, Zn and As in the 1000129 15 As Arsenic 41 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASM Courp. P	000129 1	0 Zn	Zinc	25	0.01 PCT	hf-hno3-hclo4-hcl	ATOMIC ABSORPTION						RIVER	ROCK CLEANING	i 41 j
000129 12 Ni Nickel 41 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA OVERMEIGHT/KG 76 000129 13 Co. Cobait 41 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA EDUARD Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample 000129 16 As Arsenic 41 5 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA due to the high levels of Pb, Zn and As in the 000129 16 As Arsenic 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA Samples. geng 1/29 000129 16 Fe Iron 41 0.01 PCT HF-HK03-HCL:HK03 (3:1) INDUC. COUP. PLASMA Diarks, standards, and prep repert sample Diarks, standards, and prep repert sample 000129 19 Fe Iron (Total) 24 0.01 PCT HF-HK03-HCL:HK03 (3:1) INDUC. COUP. PLASMA De greater than true values. Thank you, RED 000129 19 Fe Iron (Total) 10 PPH	000129 1	1 Mo	Molybdenum	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						SILICA	CLEANING	41
000129 13 Co Cobalt 11 1 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA NUCL COUP. PLASMA 000129 14 Cd Cadmium 41 0.2 PPH NULLING3 (3:1) INDUC. COUP. PLASMA NUCL COUP. PLASMA blanks, standards, and prep repeat sample 000129 16 As Arsenic 41 5 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA blanks, standards, and prep repeat sample 000129 16 As Arsenic 41 5 PPH HCL:HNG3 (3:1) INDUC. COUP. PLASMA due to the high levels of PD, Zn and As in the 000129 16 As Arsenic 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA due to the high levels of PD, Zn and As in the 000129 18 Fe Iron 41 0.01 PCT HCL:HNG3 (3:1) INDUC. COUP. PLASMA Zinc and Arsenic concentration >1% will enhance 000129 19 Fe Iron (fotal) 24 0.01 PCT HF-HNG3 (3:1) INDUC. COUP. PLASMA be greater than true values. Thank you, RD 000129 21 Fe Tellurium 41 1 PPH NCL:HNG3 (3:1) INDUC. COUP. PLASMA report is specific	000129 1	2 Ni	Nickel	41	1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						overwe:	IGHT/KG	76
000129 14 Cd Cachium 41 0.2 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA blarks, standards, and prop repeat sample 000129 16 As Arsenic 41 5 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA blarks, standards, and prop repeat sample 000129 17 Sb Antimory 41 5 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA blarks, standards, and prop repeat sample 000129 17 Sb Antimory 41 5 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA blarks, standards, and prop repeat sample 000129 17 Sb Antimory 41 0.01 PCT HCL:HN03 (3:1) HDUC. COUP. PLASMA Samples. geng 1/29 000129 19 Fe Iron (Total) 24 0.01 PCT HF-HN03-HCL04-HCL ATOHIC ABSORPTION Therefore, Tungsten and Cachium results would 000129 20 Mn Marganese 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 22 Ba Barium 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 24 V Vanadium 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA report must not b	000129 1	3 Co	Cobalt	41	1 PPN	HCL:HN03 (3:1)	INDUC. COUP. PLASHA								
000129 15 Bi Bismuth 41 5 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA blanks, standards, and prep repeat sample 000129 17 Sb Antimory 41 5 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA samples. geng 1/29 000129 18 Fe Iron 41 0.01 PCT HCL:HN03 (3:1) HDUC. COUP. PLASMA samples. geng 1/29 000129 19 Fe Iron 41 0.01 PCT HF-HN03-HCL04-HCL HOUC. COUP. PLASMA samples. geng 1/29 000129 19 Fe Iron (fotal) 24 0.01 PCT HF-HN03-HCL04-HCL HOUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 21 Te Teilurium 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 21 Te Teilurium 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 24 V Vanadium 41 1 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA HEPORT COPIES TO: NR. STEVE ROBERTSON HVOICE TO: HR. STEVE ROBERTSON 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) HDUC. COUP. PLASMA report is specific to those samples ident	000129 1	4 Cd	Cadmium	41	0.2 PPH	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA	REMARKS: F	lease note that the	re are carryo	wers to the				
000129 16 As Arsenic 41 5 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA due to the high levels of Pb, Z and As in the 000129 15 Xb Antimory 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA Zinc and Arsenic concentration >1X will enhance 000129 18 Fe Iron (Total) 24 0.01 PCT HF-HN03-HCL04-HCL ATONIC ABSORPTION Therefore, Tungsten and Cadmium results would 000129 20 Hn Manganese 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 22 Ba Barium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 23 Cr Chronium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 24 V Vanadium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 25 Cr Chronium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA report in specific to those samples identified under "Sample Number" and is 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1)	000129 1	5 Bi	Bismuth	41	5 PPM	HCL:HWO3 (3:1)	INDUC, COUP. PLASMA	t	olanks, standards, a	nd prep repea	at sample				
000129 17 Sb Antimory 41 5 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA samples.geng 1/29 000129 18 Fe Iron 41 0.01 PCT HCL:HNG3 (3:1) INUCL COUP, PLASHA Zinc and Arsenic concentration >1% will enhance 000129 19 Fe Iron (Total) 24 0.01 PCT HF-HNG3-HCL04-HCL ATOMIC ABSORPTION Therefore, Tungsten and Cadmium results would 000129 20 He Homganese 41 1 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA be greater than true values. Thank you, RRD 000129 21 Te Teilurium 41 1 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA be greater than true values. Thank you, RRD 000129 22 Rs Barium 41 1 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA 000129 25 Sr Tin 41 20 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA 000129 26 V Yungsten 41 20 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA 000129 27 Zh Lanthanum 41 20 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA 000129 27 Zh Lanthanum 41 20 PPM HCL:HNG3 (3:1) INUCL COUP, PLASHA	000129 1	6 As	Arsenic	41	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA	c	we to the high leve	ls of Pb, Zn	and As in th	ê			
000129 18 Fe Iron 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA Zinc and Arsenic concentration >1% will enhance 000129 19 Fe Iron (Total) 24 0.01 PCT HF-HN03-HCL04-HCL ATONIC ABSORPTION Therefore, Tungsten and Cadmium results respectively. 000129 20 Mn Manganese 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 21 Te Tellurium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 25 Cr Chromium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 27 La Lantharum 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 27 La Lantharum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 27 La Lantharum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA applicable only to the	000129 1	7 Sb	Antimony	41	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	S	amples, geng 1/29						
000129 19 Fe Iron (Total) 24 0.01 PCT HF-HN03-HCL04-HCL ATONIC ABSORPTION Therefore, Tungsten and Cadmium results would 000129 20 Mn Manganese 41 1 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA be greater than true values. Thank you, RD 000129 22 Ba Bariun 41 1 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA be greater than true values. Thank you, RD 000129 23 Cr Chronium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA be greater than true values. Thank you, RD 000129 25 Cr Chronium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA 000129 25 Sn Tin 41 20 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA 000129 25 Sn Tin 41 20 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA report must not be reproduced except in full. The data presented in this 000129 27 La Lantharum 41 1 PPM HCL:HN03 (3:1) INDUC. COUP, PLASMA otherwise indicated 000129 27 La Lantharum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP, PLASMA otherwise indicated 000129 27 La Lantharum	000129 1	8 Fe	Iron	41	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	7	inc and Arsenic con Sungsten and Cadmium	entration > results resp	l% will enhan pectively.	ce			
000129 20 Wn 000129 21 Te TelluriumHanganese411 PPH HCL:HN03 (3:1)HDUC. COUP. PLASMA INDUC. COUP. PLASMA be greater than true values. Thank you, RRD 000129 21 Te Tellurium411 PPH HCL:HN03 (3:1)HDUC. COUP. PLASMA INDUC. COUP. PLASMA REPORT COPIES TO: MR. STEVE ROBERTSONINVOICE TO: MR. STEVE ROBERTSON000129 23 Cr 000129 24 V 000129 24 V 000129 24 V 000129 25 SnTin4120 PPH HCL:HN03 (3:1)INDUC. COUP. PLASMA 	000129_1	9 Fe	Iron (Total)	24	0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ABSORPTION	1	herefore, Tungsten :	and Cadmium i	esuits would	l i			:
000129 21 Te Tellurium 41 10 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 22 Ba Barium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 22 Cr Chromium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 24 V Vanadium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 26 W Tungsten 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in this 000129 26 W Tungsten 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA report must not be reproduced except in full. The data presented in this 000129 27 La Lantharum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA applicable only to the samples as received expressed on a dry basis unless 000129 26 M Magnesium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA otherwise ind	000129 2	0 Min	Manganese	41	1 PPM	HCL:HN03 (3:1)	TINDUC. COUP. PLASMA	t	e greater than true	values. Than	nk you, RRD				
000129 22 8a Barium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 23 Cr Chromium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA REPORT COPIES TO: MR. STEVE ROBERTSON INVOICE TO: MR. STEVE ROBERTSON 000129 24 V Vanadium 41 1 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in this 000129 25 Sn Tin 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in this 000129 26 W Tungsten 41 20 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA report is specific to those samples identified under "Sample Number" and is 000129 27 La Lanthanum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA applicable only to the samples identified under "Sample Number" and is 000129 28 AL Aluminum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA otherwise indicated 000129 29 Mg Magnesium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 31 Na Sodium 41 0.01 PCT HCL:HN03 (3:1)	000129 2	1 Te	Tellurium	41	10 PPM	HCL:HWO3 (3:1)	INDUC. COUP. PLASMÀ		-						
00012923 CrChromium4111PPMHCL:HN03 (3:1)INDUC. COUP. PLASHAREPORT COPIES TO: MR. STEVE ROBERTSONINVOICE TO: MR. STEVE ROBERTSON00012924 VVanadium411PPMHCL:HN03 (3:1)INDUC. COUP. PLASHAThis report must not be reproduced except in full. The data presented in this00012926 VTungsten4120PPMHCL:HN03 (3:1)INDUC. COUP. PLASHAThis report must not be reproduced except in full. The data presented in this00012926 VTungsten411PPMHCL:HN03 (3:1)INDUC. COUP. PLASHAreport is specific to those samples identified under "Sample Number" and is00012927 LaLantharum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHAapplicable only to the samples as received expressed on a dry basis unless00012928 ALAluminum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012929 MgMagnesium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012930 CaCalcium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012931 NaSodium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012932 KPotassium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012933 SrStrontium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASHA00012934 YYttrium411 PPMHCL:HN03 (3:1)INDUC. COUP	000129 2	2 Ba	Barium	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ								
000129 24 V Vanadium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 25 Sn Tin 41 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASHA 000129 26 V Tungsten 41 20 PPM HCL:HN03 (3:1) INDUC. COUP. PLASHA report must not be reproduced except in full. The data presented in this 000129 26 V Tungsten 41 0.01 PPH HCL:HN03 (3:1) INDUC. COUP. PLASHA report is specific to those samples identified under "Sample Number" and is 000129 27 La Lanthanum 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA applicable only to the samples as received expressed on a dry basis unless 000129 28 Mg Magnesium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA otherwise indicated 000129 30 Ca Calcium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASHA ************************************	000129 2	3 Cr	Chromium	41	1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASHÀ	REPORT COP	IES TO: MR. STEVE R	DBERTSON		INVOICE	TO: HR. S	STEVE ROBERTS	SON .
000129 25 Sn Tin 41 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA This report must not be reproduced except in full. The data presented in this 000129 26 W Tungsten 41 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA report is specific to those samples identified under "Sample Number" and is 000129 27 La Lanthanum 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA report is specific to the samples identified under "Sample Number" and is 000129 28 AL Aluminum 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA otherwise indicated 000129 30 Ca Calcium 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA return the samples identified under "Sample Number" and is 000129 30 Ca Calcium 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 000129 32 K Potassium 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 000129 32 K Potassium 41 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASHA 000129 33 Sr Strontium 41 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASHA 000129 36 Li Lithium	000129 2	4 V	Vanadium	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000129 25 SnTin4120 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAThis report must not be reproduced except in full. The data presented in this000129 26 WTungsten4120 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAreport must not be reproduced except in full. The data presented in this000129 27 LaLanthanum411 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMAapplicable only to the samples as received expressed on a dry basis unless000129 28 ALAluminum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated000129 29 MgMagnesium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated000129 30 CaCalcium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 31 NaSodium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 32 KPotassium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 33 SrStrontium411 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 34 YYttrium411 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 35 GaGallium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 35 GaGallium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 35 GaGallium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 35 GaGallium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA<								4	******	*********	***********	********	******	***********	****
000129 26 WTungsten4120 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMAreport is specific to those samples identified under "Sample Number" and is000129 27 LaLanthanum411 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMAapplicable only to the samples as received expressed on a dry basis unless000129 28 ALAluminum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated000129 29 MgMagnesium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated000129 30 CaCalcium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated000129 31 NaSodium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 32 KPotassium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 33 SrStrontium411 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 34 YYttrium411 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 36 LiLithium411 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMA000129 36 LiLithium411 PPHHCL:HN03 (3:1)INDUC. COUP. PLASMA	000129 2	5 Sn	Tin	41	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA		This report must no	t be reprodu	ed except in	n full. The	data pro	esented in th	nis
000129 27 LaLanthanum4111PPMHCL:HN03 (3:1)INDUC. COUP. PLASNAapplicable only to the samples as received expressed on a dry basis unless000129 28 ALAluminum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNAapplicable only to the samples as received expressed on a dry basis unless000129 29 MgMagnesium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNAotherwise indicated000129 30 CaCalcium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNAotherwise indicated000129 31 NaSodium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 31 NaSodium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 32 KPotassium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 33 SrStrontium411 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 35 GaGaltium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 35 GaGaltium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 35 GaGaltium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 35 GaGaltium412 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA000129 36 LiLithium411 PPMHCL:HN03 (3:1)INDUC. COUP. PLASNA	000129 2	6 V	Tungsten	41	20 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA		report is specific	to those sam	oles identifi	ed under "	Sample N	umber" and is	3
00012928 ALAluminum410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAotherwise indicated00012929 MgMagnesium410.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMAhttp://www.http	000129 2	7 La	Lanthanum	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA		applicable only to	the samples i	as received e	expressed o	n a dryl	basis unless	
000129 29 Mg Magnesium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 30 Ca Calcium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 31 Na Sodium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 34 Y Yttrium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Galtium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 36 Li Lithium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA	000129 2	B AL	Aluminum	41	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASNÀ		otherwise indicated						
000129 30 Ca Calcium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 31 Na Sodium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 34 Y Yttrium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Galtium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 36 Li Lithium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA	000129 2	9 Mg	Magnesium	41	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	•	*********	***********	**********	********	******	***********	****
000129 31 Na Sodium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Gallium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 36 Li Lithium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA	000129 3	l0 Ca	Calcium	41	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000129 32 K Potassium 41 0.01 PCT HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 34 Y Yttrium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Gallium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Gallium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 36 Lithium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA	000129 3	51 Na	Sodium	41	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								-
000129 33 Sr Strontium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 34 Y Yttrium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 35 Ga Gallium 41 2 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA 000129 36 Li Lithium 41 1 PPM HCL:HN03 (3:1) INDUC. COUP. PLASMA	000129 3	32 K	Potassium	41	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ								
000129 34 Y Yttrium 41 1 PPM HCL:HNQ3 (3:1) INDUC. COUP. PLASNA 000129 35 Ga Gallium 41 2 PPM HCL:HNQ3 (3:1) INDUC. COUP. PLASNA 000129 36 Li Lithium 41 1 PPM HCL:HNQ3 (3:1) INDUC. COUP. PLASNA	000129	33 Sr	Strontium	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ								
000129 35 Ga Gallium 41 2 PPM HCL:HNG3 (3:1) INDUC. COUP. PLASMA 000129 36 Li Lithium 41 1 PPM HCL:HNG3 (3:1) INDUC. COUP. PLASMA	000129	34 Y	Yttrium	41	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA								
000129 36 Li Lithium 41 1 PPN HCL:HNO3 (3:1) INDUC. CCUP. PLASMÀ	000129	35 Ga	Gallium	41	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
	000129	36 Li	Lithium	41	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMÀ								
CLIENT: SILVERTIP MINING CORP

. . . .

PROJECT: SILVER TIP

Report: V	00-00158.0 (COMPLE	TE)									1	DATE	REC	EIVED:	28- J/	AN-00	DAT	E PRIN	TED: 4	-FEB-0	0	PAGE	1A(1	/12)					
SAMPLE	ELEMENT	Wet Au	AqGrav	wt/Ag	Aq	Cu	Pb	РЬ	Pb	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Fe	Min	Te	8a C	r V	Sn	1 H	La	Al	Mg	Ca
NUMBER	UNITS	PPB	PPM	CH	PPN	PPM	PPM	PCT	рст	PPM	PCT	PPN (PPM (PPM	PPN	PPM	PPM	PPM	PCT	РСТ	PPM	PPM	PPM PP	m ppm	PP	i PPN	PPM	PCT	PCT	PCT
199513		<5			0.2	35	12			46		5	52	13	0.2	4	94	<5	3.31		179	<10	85 8	7 31	<20) <20	10	1.25	0.89	1.30
199514		ক			38.4	72	9924			2944		4	49	14	14.9	35	757	26	>10.00	12.49	465	<10	11 15	0 25	31	<20	7	0.98	1.25	3.08
199515		<5			<0.2	35	28			97		4	61	13	0.4	<5	146	<5	4.16	,	190	<10	26 6	0 34	<20	<20	10	1.54	1.03	1.09
199516		<5			2.2	3	224			102		6	9	<1	0.7	<5	13	6	2.44		508	<10	145	83	<20	<20	5	0.01	0.58	>10.00
199517		<5	843.0	15.31	>200.0	2324	>10000	>15.00	20.61	>10000	13.38	4	7	<1	663.7	53	1084	939	>10.00	22.77	636	38	95	35	147	347	2	<.01	0.07	1.50
199518		6	489.3	15.66	>200.0	2708	>10000	10.94		>10000	12.82	4	4	<1	631.4	10	2521	655	>10.00	25.17	812	32	97	78	591	330	1	0.07	0.11	0.35
199519		<5	545.0	16.79	>200.0	2151	>10000	13.86	,	>10000	13.62	5	4	<1	681.0	18	2181	770	>10.00	22.76	676	42	76	35	219	346	12	<.01	0.05	0.33
199520		6	470.4	15.12	>200.0	2041	>10000	11.75		>10000	11.53	6	5	<1	565.2	15	1761	625	>10.00	24.06	642	44	87	45	17	1 298	5	<.01	0.06	0.26
199521		<5	241.5	15.17	>200.0	1982	>10000	6.28		>10000	12.67	3	6	<1	626.9	\$	1342	382	>10.00	24.50	730	38	10 10	01 7	187	′ 331	17	<.01	0.05	0.23
199522		<5	535.9	15.44	>200.0	2209	>10000	11.77	,	>10000	5.65	3	6	S	253.6	13	912	586	>10.00	21.14	286	33	8 10	157	213	i 1 36	4	0.01	0.07	1.88
199523		9			1_4	5	138			123		2	3	<1	0.8	<5	ৎ	~ 5	0.47	•	404	<10	24 1	64	<2) <20	3	0.16	7.79	>10.00
1 99 524		<5	85.0	30.44	76.1	871	>10000	1.98	l I	9492		6	7	<1	51.0	17	514	97	>10.00	12.40	1025	16	23 16	51 7	2	28	3	<.01	0.12	>10.00
199525		<5	61.1	15.77	60.5	i 1102	9404			>10000	3.67	10	5	<1	161.5	34	899	74	>10.00	17.03	879	19	8 13	8 6	12/	5 95	5	<,01	0.11	6.34
199526		<5			36.5	617	4845			>10000	2.81	7	5	<1	118.7	55	325	57	6.59)	2103	11	36 17	73 5	6	1 67	3	<.01	0.17	>10.00
199527		<5	388.1	15.41	>200.0) 587	>10000	7.94	•	>10000	1.76	6	5	<1	86.9	76	432	418	9.32	1	1066	23	10 16	50 6	10) 43	4	<.01	0.10	>10.00
199528		ব			15.9	93	800			575		10	6	<1	3.0	Z 3	145	12	3.27	,	2261	<10	19 17	7 7	<20) <20	3	<.01	0.16	>10.00
199529		<5	125.4	30.11	114.8	3 694	>10000	2.45	i	>10000	2.39	9	7	<1	103.3	94	456	99	>10.00	10.44	653	17	14 14	i 3 6	54	3 54	3	<.01	0.09	>10.00
199530		11	229.0	15.41	>200.0	2254	>10000	4.04	•	>10000	8.02	7	9	<1	381.9	235	974	183	>10.00	17.86	601	35	7 17	737	17	3 209	5	<.01	0.06	4.89
199531		-5	102.6	15.19	111.8	3 2145	5154			>10000	7.45	6	10	<1	346.8	258	1020	71	>10.00	18.63	709	25	7 15	6 6	104	182	4	<.01	0.06	4.63
199532		6			14.0	373	1460			>10000	2.12	17	18	1	107.2	12	1364	107	>10.00	14.53	1824	13	9 12	27 7	3) 55	3	<.01	0.09	9.58
199533		<5			20.6	5 510	1322			>10000	1 .5 6	16	19	1	75.9	18	1763	95	>10.00	18.06	1642	15	7 18	307	5	3 44	3	<.01	0.08	7.61
199534		<5			0.9) 2	53			36		2	2	<1	0.3	4	<5	<5	0.31	l	356	<10	69 a	20 3	<2) <20	3	0.09	5.48	>10.00
199535		ৎ			17.4	\$ 545	533			>10000	1.90	20	14	<1	88.5	47	553	44	9.60)	2184	<10	34 15	5 8	2	43	4	0.01	0.95	>10.00
199536		<5	57.0	15.15	5 60.8	3 1917	740	ļ		>10000	4.26	5	7	1	182.2	91	1915	175	>10.00	27.77	439	23	9 11	12 6	19	5 116	4	<.01	0.04	3.79
1 99 537		<5			24.1	1 2431	406	Ì		>10000	9.66	4	9	1	445.5	35	2251	49	>10.00	23.81	738	26	8 14	7 6	19	\$ 244	9	<.01	0.06	4,11
199538		37	,		12.3	7 1519	182	!		>10000	3.73	2	6	<1	163.6	49	3284	8	>10.00	28.55	238	21	9 6	58 6	2	2 148	5	<.01	0.03	1.47
199539		<5	45.6	4 15.77	7 51.(0 3210	710)		>10000	5.54	2	7	<1	259.7	175	938	22	>10.00	30.57	267	32	10 10	X9 8	14	329	2	<.01	0.04	0.11
199540		8	3 74.0	5 15.20	79.	2 3110	3881			>10000	11.15	3	7	1	556.6	169	1313	64	>10.00) 27.73	465	32	10 11	16 9	10) 283	78	<.01	0.05	0.57
199541		<5	165.3	3 15.0	1 189.5	5 3113	>10000	2.85	5	>10000	16.08	4	14	<1	768.7	88	1546	396	>10.00	22.78	706	26	9 11	18 6	77	3 393	41	<.01	0.05	0.98
199542		<5	298.4	4 15.43	3 >200.0	0 2743	i >10000	5.31	1	>10000	12.19	- 4	5	<1	583.6	497	669	351	>10.00	20.31	3038	41	98	396	65	3 328	2	<.01	0.10	4.47

N 6 N 7 •

ITS Intertek Testing Services Bondar Clegg

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00158.0 (COMPLETE)

Report

٦

DATE RECEIVED: 28-JAN-00

DATE PRINTED: 4-FEB-00

PROJECT: SILVER TIP PAGE 18(2/12)

SAMPLE	ELEMENT	Na	ĸ	Sr	Y	Ga	Lİ	NÞ	Sc	Ta	Ťi	Zr
NUMBER	UNITS	PCT	PCT	PPM	PPM	PPM	PPH	PPM	PPM	PPN	PCT	PPM
199513		<.01	0.36	58	6	4	10	1	-5	<10	<.010	14
199514		<.01	0.40	69	19	8	7	<1	\$	<10	<.010	10
199515		<.01	0.40	53	6	5	13	1	6	<10	<.010	17
199516		<.01	<.01	200	2	<2	<1	<1	Q	<10	<.010	<1
199517		<.01	<.01	19	<1	32	<1	<1	ক	<10	<.010	<1
199518		0.02	0.02	18	<1	47	<1	<1	ক	<10	<.010	<1
199519		<.01	<.01	13	<1	44	<1	<1	<5	<10	<.010	<1
199520		<.01	<.01	14	<1	37	<1	<1	4	<10	<.010	<1
199521		<.01	<.01	15	<1	46	<1	<1	Q	<10	<.010	<1
1 99 522		0.01	<.01	19	<1	22	<1	<1	\$	<10	0.019	<1
199523		0.01	0.04	78	3	4 2	5	<1	6	<10	<.010	<1
199524		<.01	<.01	85	1	9	<1	<1	ব	<10	<.010	<1
199525		<.01	<.01	32	1	20	<1	<1	- 5	<10	<.010	<1
199526		<.01	<.01	88	1	13	<1	<1	4	<10	<.010	<1
199527		<.01	<.01	41	1	11	<1	<1	Q	<10	<.010	<1
199528		<.01	<.01	227	4	<2	<1	<1	ক	<10	<.010	<1
199529		<.01	<.01	62	2	14	<1	<1	<5	<10	<.010	<1
199530		<.01	<.01	30	<1	39	<1	<1	ଟ	<10	<.010	<1
199531		<.01	<.01	51	1	25	<1	<1	4	<10	<_010	<1
199532		<.01	<.01	116	2	14	<1	<1	ক	<10	<.010	<1
199533		<.01	<.01	98	1	13	<1	<1	Q	<10	<.010	<1
199534		<.01	0.03	117	2	<2	3	<1	6	<10	<.010	<1
199535		<.01	0.01	76	1	8	1	<1	ৎ	<10	<.010	<1
199536		<.01	<.01	30	1	20	<1	<1	ব	<10	<.010	<1
1 99537		<.01	<.01	29	3	36	<1	<1	ବ	<10	<.010	<1
199538		<.01	<.01	20	<1	19	<1	<1	<5	<10	<.010	<1
199539		<.01	<.01	20	<1	30	<1	<1	<5	<10	<.010	<1
1995 40		<.01	<.01	17	2	38	<1	<1	୍	<10	<.010	<1
199541		<.01	<.01	15	2	61	<1	<1	Q	<10	<.010	<1
199542		<.01	<.01	28	<1	52	! <1	<1	\$	<10	<.010	<1

. . . .

.

•

PROJECT: SILVER TIP

CLIENT: SI	LVERTIP MINING (CORI	P																					PI	SOJEC	T: SI	LVER 1	ΓĮΡ			
REPORT: VO	0-00158.0 (COM	PLEI	TE)									I	DATE	REC	EIVED:	28- J	IAN - 00	DAT	E PRIN	TED :	4-FEB-0	30	PAG	E 2/	AC 3/	12)					
SAMPLE	ELEMENT Wet /	Au <i>I</i>	Ag <u>Grav</u>	wt/Ag	Ag	ı Cu	РЬ	РЬ	Рb	Zn	2n	Mo	Ni	Co	Çd	Bi	As	Sb	Fø	Fe	e Min	Te	Ba	Сг	۷	Sn	W I	la	AL	Mg	Ca
NUMBER	UNITS PI	PB	PPM	GM	PPN	I PPH	PPM	PCT	PCT	PPM	PCT	PPM	PPN (PPM	PPM	PPM	PPM	PPH	PC1	PCI	PPM	PPM	PPH	PPM I	PPM	PPN	PPM P	PM F	¢Τ	PCT	PCT
199543		<5			7.0	22	335			1189		2	2	<1	6.5	<5	31	17	0.44		11800	<10	22	13	2	<20	<20	60	.02 (0.30	>10.00
199544		<5			2.6	18	158			517		Z	5	<1	2.9	<5	135	13	4.20		616	<10	91	29	3	<20	<20	3 <	.01 (0.54	>10.00
199545		9	111.6	30.61	120.4	261	>10000	1.92		8721		2	5	<1	47.3	<5	148	155	5.12		589	<10	26	34	3	74	23	30	.01 (0.38	>10.00
199546		<5	596.1	15.38	>200.0	1748	>10000	9.56	>'	10000	9.85	10	17	1	506.3	<5	3760	805	>10.00	18.90	517	19	10	91	6	736	245	20	.01 (0.23	5.23
199547		26			4.5	i 11	428			1017		3	5	<1	5.8	<5	474	18	1.83		1435	<10	13	18	3	<20	<20	50	.04 (0.69	>10.00
199548		9			1.3	5 3	66			106		3	4	<1	0.6	<5	45	8	0.39		1077	′ <10	19	10	2	<20	<20	40	.02 (0.37	>10.00
199549		9			1.0) 2	39			113		2	4	<1	0.6	<5	31	7	0.24		1389	<10	20	9	2	<20	<20	40	.02	0.26	>10.00
199550		<5			1.4	3	83			142		1	2	<1	0.9	حە	20	<5	0.18		1396	<10	25	7	2	<20	<20	40	.02	0.30	>10,00
199551		9	1553.3	15.38	>200.0	8647	>10000	>15.00	29.12 >	10000	11.16	11	2	<1	528.8	126	6854	>2000	>10.00	18.03	3 581	32	7	41	3 :	×2000	273	11 <	.01	0.01	3.68
199552		12	462.8	3 15.69	>200.0	6020	>10000	11.57	>	10000	22.36	13	3	<1	1016.9	238	>10000	>2000	>10.00	17.8	9 952	37	7	51	3 :	∗2000	602 1	41 <	.01	0.02	4.34
1 99553		4 5			3.2	2 41	252			1547		3	3	<1	7.4	<5	99	12	0.33	;	1178	<10	48	7	2	<20	<20	4 0	.04	0.16	>10.00

CLIENT: SILVERTIP MINING CORP

×.

REPORT: V00-00158.0 (COMPLETE)

*
*

.

. . . *

DATE PRINTED: 4-FEB-00

DATE RECEIVED: 28-JAN-00

PROJECT: SILVER TIP

PAGE 28(4/12)

SAMPLE	ELEMENT	Na	к	\$r	Ŷ	Ga	Li	NÞ	Sc	Ta	Тi	ZΓ
NUMBER	UNITS	PCT	PCT	PPM	PPH	PPM	PPM	PPM	PPM	PPM	PCT	PPM
199543		<.01	<.01	146	- 4	2	<1	<1	5	<10	<.010	<1
199544		<.01	<.01	284	2	<2	<1	<1	ৰ্ণ	<10	<.010	<1
199545		<.01	<.01	206	1	5	<1	<1	ব	<10	<.010	<1
199546		<.01	0.01	29	<1	49	<1	<1	<5	<10	<.010	<1
199547		<.01	<.01	141	4	<2	<1	<1	ৎ	<10	<.010	<1
199548		<.01	<.01	156	3	2	<1	<1	<5	<10	<.010	<1
199549		<.01	<.01	157	2	<2	<1	<1	<5	<10	<.010	<1
1 995 50		<.01	<.01	172	4	2	<1	<1	ক	<10	<.010	<1
199551		<.01	<.01	22	1	93	<1	<1	4	<10	<.010	<1
199552		<.01	<.01	20	5	162	<1	<1	~ 5	<10	<.010	<1
199553		<.01	0.01	141	3	<2	<1	<1	~ 5	<10	<.010	<1

,

.

`

CLIENT: SILV	VERTIP MIN	ING CORF	>																					P	ROJEC	T: SIL	.VER T	t I P			
REPORT: VOO	-00158.0 (COMPLET	re >									. (DATE	RECE	IVED: 3	28- JA	N-00	DAT	E PRIN	TED: 4	FEB	00	PAG	E 3.	A(5/	12)					
STANDARD	ELEMENT	Wet Au /	AgGrav 1	wt/Ag	Ag	Cu	РЬ	Pb	Pb	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Fe	Min	Te	Ba	Cr	v	Sn	w i	La	Al	Mg	Ca
NAME	UNITS	PPB	PPM	GH	PPN	PPN	PPM	PCT	PCT	PPH	PCT (P PM I	PPM I	PPM	PPM I	PPM	PPM	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPH PF	P H :	PCT	PCT	PCT
0X9 Oxide		538	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of Ar	nalyses	1	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-
Mean Value		538	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-
Standard Dev	viation	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	•		-	-	-	-	-	-	•	-	-	-	-	-
Accepted Va	lue	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	•	-	•	-	-	-	-	-	-
OX11 Oxide		3000	23.6	-	-			-	-	-	-	-	-	-	-	•	-	-	-	-	-		-	-	-	•	-	-	-	-	-
Number of A	nalyses	1	1	-	•	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
Mean Value		3000	23.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	•	-	•	-	-
Standard De	viation	-	-	-	-	-	-	-	-	-	-	-	•	•	*	•	-	-	-	-	-		-	•	-	-	-	-	-	-	-
Accepted Va	lue	-	25.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	•
CANMET STSD	-4	-	-		<0.2	69	17	-		107	-	2	25	12	0.6	<5	13	<5	3.16	. -	1257	7 <10	1016	33	53	<20	<20	14 1	1.40	0.83	1,45
Number of A	nalyses	-	-	-	1	1	1	-	-	1	-	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1
Mean Value		-	-	-	0.1	69	17	-	-	107	-	2	25	12	0.6	3	13	3	3.16	; -	1257	75	1016	33	53	10	10	14 1	1.40	0.83	1.45
Standard De	viation	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
Accepted Va	lue	-	-	-	0.3	66	13	-	-	82	•	2	23	11	0.6	-	11	4	2.60) -	1200) -	٠	30	51	-	•	•	-	-	-
ANALYTICAL	BLANK	-	-	-	⊲0.2	<1	<2	-	-	8	-	<1	<1	<1	⊲0.2	<5	<5	<5	<0.01	I -	<'	1 <10	<1	<1	<1	<20	<20	<1 ·	<.01	<.01	0.02
ANALYTICAL	BLANK	-	-	-	<0.2	<1	<2	-	-	15	-	<1	<1	<1	≪0.2	<5	ৎ	ক	<0.01	- 1		<10	<1	<1	<1	<20	<20	<1 (<.01	<.01	<0.01
Number of A	nalyses	-	•	-	2	2	2	•	•	2	-	2	2	2	2	2	2	2	Ĩ	2 -	1	2 2	2	2	2	2	Ż	2	2	2	2
Nean Value		•	-	-	0.1	<1	1	-	-	11	-	<1	<1	<1	0.1	3	3	3	<0.0°	I -	<'	1 5	<1	<1	<1	10	10	<1 -	<.01	<.01	0.01
Standard De	viation	-	-	•	-	-	-	-	-	5	-	-	-	-	-	-	-	-		• •	<'	1 -	-	-	-	•	-	-	-	-	0.01
Accepted Va	alue	1	<0.1	<0.01	0.2	1	2	<0.01	<0.01	1	<0.01	1	1	1	0.1	2	5	5	0.0	5 <0.01	4	1 <1	<1	1	1	<1	<1	<1 -	<.01	<.01	<0.01

OX12 Oxide	-	10.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Number of Analyses	-	1	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
Mean Value	-	10.7	-	-	-	-	-	•	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Accepted Value	-	10.4	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	٠	-	•	-	-	-	-	-	-	-

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

and the second second second second second second second second second second second second second second second

Lab Report

Geochemical

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00158.0 (COMPLETE)

Vans DATE RECEIVED: 28-JAN-00 DATE PRINTED: 4-FEB-00 PA

PROJECT: SILVER TIP PAGE 38(6/12)

inch.

STANDARD	ELEMENT	Na	K	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr	
NAME	UNITS	PCT	PCT	PPM	PPH	PPM	PPH	PPH	PPM	PPM	PCT	PPM	
0019 Oxide		-	-	-	-	•	•	-	-	-	-	-	
Number of A	nalyses	-	-	-	-	-	-	-	-	•	-	-	
Mean Value		-	-	•	•	-	-	-	-	-	-	-	
Standard Dev	viation	-	-	-		•	-	-	-	-	-	-	
Accepted Va	lue	-	-	-	-	-	-	-	•	-	-	-	
OX11 Oxide		-	-	-	-	-	•	-	-	-	-		
Number of Ar	nalyses	-	-	-	-	-	-	-	-	-	-	-	
Mean Value		-	-	•	-	-	-	-	-	-	-	-	
Standard Dev	viation	-	-	-	-	-	-	-	-	-	-	•	
Accepted Val	lue	-	-	-	-	-	-	-	-	-	-	-	
CAMMET STSD	-4	0.05	0.11	68	11	3	9	4	6	<10	0.085	<1	
Number of Ar	nalyses	1	1	1	1	1	1	1	1	1	1	1	
Mean Value		0.05	0.11	68	11	3	9	4	3	5	0.085	<1	
Standard Dev	viation	-	-	-	-	•	-	-	-	-	-	-	
Accepted Val	ue	-	-	-	÷	-	-	•	•	-	-	-	
ANALYTICAL E	BLANK	<.01	<.01	<	<1	<2	<1	<1	ক	<10	<.010	<1	
ANALYTICAL E	BLANK	<.01	<.01	<1	<1	<2	<1	<1	-5	<10	<.010	<1	
Number of Ar	nalyses	2	2	Z	2	2	2	2	2	2	2	2	
Mean Value		<.01	<.01	<1	<1	1	<1	<1	3	5	0.005	<1	
Standard Dev	viation	-	-	-	-	-	-	-	-	•	-	-	
Accepted Val	ue	<.01	<.01	<1	<1	<1	<1	<1	<1	<1	<.001	<1	

OX12 Oxide	-	-	-	•	-	-	-	-	-	-	-
Number of Analyses	-	-	-	-	•	-	-	•	-	-	-
Mean Value	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	-	•	-	-	-	-	-	-
Accepted Value	-	-	-	•	-	-	-	•	-	-	

CLIENT: SILVERTIP MINING CORP

REPORT: VOO-O	0158.0 (COMPLE	TE)										DAT	e reci	EIVED	28	6N-DO	DAT	C 60 TU	TED. (00		ا ح	PROJE	T: 51	_VER	TIP		
STANDARD (ELEMENT	Wet Au	AgGrav	wt/Ag	Ag	ı Cu	Pb	PE	Ph	70	71	3 Mo	Mi		Cd.				C FRIN	150: 4	-108-1		PAU		4A(/)	12)				
NAME	UNITS	PPB	PDM	GM	DOM		obu	007		·		1 1764				DI	AS	SD	Fe	Fe	Mn	Te	Ba	Сг	۷	Sn	W 1	la A	i Mg	Ca
					r F F	I FFM	P P P	PCI	PCI	PPN	I PCI	PPM	PPN	PPM	PPH	PPN	PPM	PPM	PCT	PCT	PPM	PPN	PPM	PPM	PPM	PPM	P PM P I	PM PC	г рст	PCT
GS91-1		-	-	-	1.0	98	76	-	-	189		1	34	21	n /	~5	10	æ	(63					_						
Number of Anal	lyses	-		-	1	1	1	_	_					-	9.4	~2	10	< <u>></u>	4.92	-	755	<10	190	54	119	<20	<20	7 3.4	1.75	1.22
Mean Value		-	_	_	• •		74			1			1	1	1	1	1	1	1	•	1	1	1	1	1	1	1	1	í 1	1
Standard Devia	ation	-	-	-	1.4	- 70	۵۱	•	-	189	-	1	36	21	0.4	3	18	3	4.92	-	735	5	190	54	119	10	10	7 3.4	1.75	1.22
Iccented Value	•							-	•	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-		-
	E	0	•	-	U.7	כע	11	-	-	80	-	2	40	18	0.1	1	8	1	4.74	•	720	<1	200	54	133	4	2	5 3.0	1.83	1.08
CANNET CERTIFI	IED STD	-	-	-	-	-	-	4.36		-	10 28				_															
lumber of Anal	lyseş	-	-	-	-		-	1	_	_	4			-	-	-	-	-	-	6.06	-	-	-	-	•	-	-	•	• •	-
lean Value	-		-		-	_	_	1.74	_	-	10.00		-	•	-	-	-	-	-	1	-	-	•	-	-	•	-	-	• -	-
itandard Devia	ation	-		_		_	_	4.00	-	-	19.20	-	-	-	•	-	•	-	•	6.06	-	-	-	•	-	-	-	-	• -	-
created Value	•				_	_	-			-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-		-
ccepted value	2	-	-	-	-	-	•	4.32	4.33	•	19.02	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.02	-
ANMET STANDAR	æ	-	-	-	-		-		64.61		_			_																
lumber of Anal	vses		-	-	-	-		-	1	_			-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	· -	-
lean Value		-	-	_	-		-		4 4		-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-		· –	-
itandard Devia	ation		_	-	-	_		-	04.01	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
ccented Value						-		-	··	-	-	-	•	-	-	-	-	-	-	-	-	-	-	٠	-	-	-		-	-
vectored value	7	-	•	-	825.7	<i>0</i> 40 (47000	64.70	64.74	44200	4.42	•	-	-	-	230	560	3600	8.43	8.43	-	-	-	-	•	-	•		-	-

N P N N N

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00158.0 (COMPLETE)

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 4-FEB-00

.

FEB-00 PAGE

PROJECT: SILVER TIP PAGE 4B(8/12)

STANDARD	ELEMENT	Na	κ	Sn	Y	Ga	Li	Nb	Sc	Ta	ti	Zr
NAME	UNITS	PCT	PCT	PPH	PPM	PPM	PPM	PPN	PPH	PPM	PCT	PPM
GS91-1		0.05	0.30	42	7	4	22	8	9	<10	0.193	9
Number of An	alyses	1	1	1	1	1	1	1	1	1	1	1
Mean Value		0.05	0.30	42	7	4	22	8	9	5	0.193	9
Standard Dev	iation	-	-	-	•	-	-	-	-	-	-	-
Accepted Val	ue	0.06	0.32	39	9	4	-	1	18	1	•	9
CANNET CERTI	FIED STD	-	-	-	•	-	-	-	-	-	-	-
Number of Ani	alyses	-	-	-	-	-	•	-	-	-	-	-
Mean Value		-	•	-	-	-	-	-	-	-	-	-
Standard Dev	iation	-	-	-	-	-	•	-	-	-	-	-
Accepted Value	Je –	-	-	-	-	-	-	-	•	-	-	-
CANNET STAND	ARD	•	-	-	-	-	-	-	-	-	-	-
Number of Ana	alyses	-	-	•	-	-	-	-	-	•	-	-
Mean Value		-	-	-	-	-	•	-	-	-	+	-
Standard Devi	iation	-	•	-	•	-	-	-	-		-	-
Accepted Valu	æ	-	-	-	-	•	-	-	-	-	-	-

r 3 r 4

э.

CLIENT: SIL	VERTIP MIN	ING CO	RP																								T.			
REPORT: VOO	-00158.0 (COMPLI	ETE)										DAT		CE I VED -	28-	IAN-00	DAT	7 001	TCD				PI	ROJE	I: SH	ÆR TI	P		
																	00 VAN		E PKIP	TED:	4-158-	UU	PAG	iE 5i	A(9/	(12)				
SAMPLE	ELEMENT	Wet Au	AgGrav	wt/Ag	Ag	; Cu	Pb	РЫ	Pb	Zn	Źr	n Mo	Nī	Со	Co	1 81	As	sh	Fe					c _						
NLIMBER	UNITS	PPB	PPM	GN	PPM) PPM	PPM	PCT	PCT	РРМ	PCI	r ppn	PPM	PPH	PPN	PPN	PPN	PPM	PC1	i pot	PPN	PPM	ea PPM	Cr PPH	V PPM	Sn PPN P	Wi La Mi PPW	AL PCT	Mg PCT	Ca PCT
199514		<5			38.4	72	9974			207.7		,		•••																
Duplicate							7724			2744		4	49	14	14.9	35	757	26	>10.00	12.49	465	<10	11	150	25	31 <i< td=""><td><u>'</u>07</td><td>0.98</td><td>1.25</td><td>3.08</td></i<>	<u>'</u> 07	0.98	1.25	3.08
199517		<5	843.0	15.31	>200.0	2324	>10000	>15.00	20.61	>10000	13 36		7	.1	447 7		100/													
Duplicate			843.1						20.73				'	~1	003.7	23	1084	939	>10.00	22.77	636	38	9	53	5	147 34	72	<.01	0.07	1.50
199518		6	489.3	15.66	>200.0	2708	>10000	10.94		>10000	17.83		,	~4			7544													
Duplicate			471.5			-				- 10000			4	~1	031.4	IU	621	655 :	>10.00	25.17	812	32	9	77	8	591 33	<i>i</i> 01	0.07	0.11	0.35
199519		<5	545.0	16.79	>200.0	2151 :	>10000	13.86		>10000	13.62	5	4	-1	681 0	10	3104	1 780 .	40.00				_							
Duplicate			557.7					-				-	•		001.0	10	2101	770 ;	×10.00	22.16	6/6	42	7	63	5	219 34	6 12	<.01	0.05	0.33
199520		6	470.4	15.12	>200.0	2041 :	>10000	11.75		>10000	11.53	6	5	<1	545 2	15	1741	4 3 5 \	.1 <u>0</u> 00	24.04			-		_					
Duplicate			474.9									-	-	•	20212	.,		02,1 4	10.00	24.00	042	44	8	74	5	178 29	85	<.01	0.06	0.26
199521		<5	241.5	15.17	>200.0	1982 >	>10000	6.28		>10000	12.67	3	6	<1	676 O	~	17/2	203 .	10 00	7/ 50	-				_					
Duplicate		<5	242.9		> 20 0.0	1919 :	>10000			>10000		3	5	<1	642.5	ં	1335	382 3	10.00	24.30	730	-58 70	10 1	101	7	187 33	1 17	<.01	0.05	0.23
100500		_																	10100		139	50		72	'	202 32	¥ 18	<.01 (0.05	0.25
Duplicate		<5	535.9 514.0	15.44	>200.0	2209 >	10000	11.77		>10000	5.65	3	6	5	253.6	13	912	586 >	10.00	21.14	286	33	8 1	05	7	213 13	64	0 .01 (0.07	1.88
199524		<5	85.0	30.44	76.1	871 >	10000	1.98		04.07		4	7	-1	61 A	47														
Duplicate			82.5									Ū		~1	51.0	17	514	¥/ >	10.00	12.40	1025	16	23 1	61	7	21 2	33	<.01 (J.12 >	10.00
199526		<5			36.5	617	4845		:	>10000	2.81	7	5	<1	118.7	55	725	67	4 60		3400		-	_	_					
Duplicate											2.79	•	-				14.1	71	0.39		2103	11	36 1	73	5	67 6	' 3	<.01 0).17 >	10.00
199529		ক	125.4	30.11	114.8	694 >	10000	2.45	;	>10000	2 700	o	ź	-1	107 7	o /	157	~	** **											
Duplicate			114.6								2.39	,	<i>'</i>	~1	103.3	94	400	99 ×	10.00	10.44	653	17	14 1 ₄	43	6	58 54	· 3·	<.01 0). 09 >	10.00
199531		<5	102.6	15.19	111.8	2145	5154		;	>10000	7.45	6	10	د1	7 44 9	25.9	1070	71 -	10 00				_	_						
Prep Duplica	te	6	91.0	15.70	103.2	1983	4006		3	>10000	6.74	8	11	1	321.5	242	1020	- 11 × - 64 ×	10.00	18.63	709 400	25 17	7 1	56 or	6	104 182	1 4	<.01 Q	.06	4.63
100530												-		•		m 76.	1011		10.00	(0.73	092	35	8 1	5	8	93 163	. 3.	<.01 0	.06	4.76
19952 Duolicet-		6			14.0	373	1460		;	10000	2.12	17	18	1	107.2	12	1364	107 ×	10.00	14.53	1824	13	9 1:	27	7	30 54	. 7	- 04 - 0	00	0.69
vupri rate											2.12									14.05			- "	- '	•				.09	7.78

.

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

.

•

.

.

REPORT: VOO-C	00158.0	(COMF	PLETE)											DATE REC	EIVED:	28-JAN-	-00	DATE P	RINTED:	4-F	E8-00	PAGE	58(10/	'12)
SAMPLE	ELEMENT	Na	к	Sr	Y	Ga	Li	Nb	Sc	Ta	т	i Z	-												
NUMBER	UNITS	PCT	PCT	PPM	PPN	PPM	PPN	PPM	PPM	PPM	PC	t ppi	4												
199514		<.01	0.40	69	19	8	7	<1	ক	<10	<.01	0 1)												
Duplicate																									
199517		<.01	<.01	19	<1	32	<1	<1	ক	<10	<.01	0 <	1												
Duplicate																									
199518		0.02	0.02	18	<1	47	<1	<1	ব	<10	<.01	0 <	1												
Duplicate																									
199519		<.01	<.01	13	<1	44	<1	<1	ক	<10	<.01	0 <	t												
Duplicate																									
199520		<.01	<.01	14	<1	37	<1	<1	5	<10	<.01	0 <	1												
Duplicate																									
199521		<.01	<.01	15	<1	46	<1	<1	ر ه	<10	<.01	¢ <	1												
Duplicate		<.01	<.01	16	<1	45	<1	<1	4	<10	<.01	0 <	1												
199522		0.01	<.01	19	<1	22	<1	<1	4	<10	0.01	9 <	1												
Dupl icate																									
199524		<.01	<.01	85	1	9	<1	<1	4	<10	<.01	0 <	1												
Duplicate																									
199526		<.01	<.01	- 88	1	13	<1	<1	-5	<10	<.01	0 <	1												
Duplicate																									
199529		<_01	<.01	62	2	14	<1	<1	<5	<10	<.01	0 <	1												
Duplicate					-	•••	- •	- •					-												
100531		e 01	2 61	51	4	25	.1	.1		~10	2.04	ń -	1												
Prep Duplica	ite	<.01	<.01	55	י 1	25	<1	 _<1	<) <)	- 10 - <10	<.01	0 < 0 <	' 1												
	~~	-191					••	- 1			-101		-												
199532		<.01	<.01	116	2	14	<1	<1	<	i <10	<.01	0 <	1												

.

· .

.

CLIENT: SILV	VERTIP MIN	NING CO	₹P																						PF	OJEC	T: SI	LVER	TIP			
REPORT: VOO	-00158.0 ((Comple	TE)										DATE	REC	EIVED:	28-J	AN-00	DAT	E PRI	INTED	: 4-	FE8-0	Ю	PAG	E 64	AC112	12)					
SAMPLE NUMBER	ELEMENT Units	Wet Au PPB	AgGrav PPM	wt/Ag GM	Ag PPN	Cu PPN	Pb PPN	Pb PCT	РЬ РСТ	Zn PPM	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPN	Bi PPM	As PPM	Sb PPM	l Pt	Fe CT I	Fe PCT	Mrs PPM	Те Р РН	Ba PPM	Cr PPN I	V PP H	Sn PPM	U PPM F	La >PH	AL PCT	Mg PCT	Ca PCT
199538		37			12.7	1519	182			>10000	3.73	2	6	<1	163.6	49	3284	8	>10.0	00 28	.55	238	21	9	68	6	22	148	5 <	c.01	0.03	1.47
Duplicate					12.8	1515	174			>10000	3.67	3	4	1	162.5	48	3058	8	>10.0	00 27	.84	235	1 9	9	63	6	27	141	5 <	. 01	0.03	1.50
199539 Duplicate		4	45.4 44.0	15.77	51.0	3210	710			>10000	5.54	2	7	<1	259.7	175	938	22	>10.(00 30	.57	267	32	10	109	8	141	329	2 <	:.01	0.04	0.11
199540 Duplícate		6	74.6 72.2	15.20	79.2	3110	3881			>10000	11.15	3	7	1	556.6	169	1313	64	>10.(00 27	.73	465	32	10	116	9	100	283	78 <	:.01	0.05	0.57
199541 Duplicate		4	165.3 164.3	15.01	189.5	3113	>10000	2. 8 5		>10000	16.08	4	14	<1	768.7	88	1546	396	>10.1	00 22	.78	706	26	9	118	6	778	393	41 <	:.01	0.06	0.98
199542		ব	298.4	15.43	>200.0	2743	>10000	5.31		>10000	12.19	4	5	<1	583.6	497	669	351	>10.1	00 20	.31	3038	41	9	89	6	658	328	2 <	< . 01	0.10	4.47
Duplicate			260.5										•																			
199544 Duplicate		ত ত			2.6	18	158			517		2	5	<1	2.9	ব	135	13	4.3	20		616	<10	91	29	3	<20	<20	3 <	c.01	0.54	>10.00
199545 Duplicate		9	111.6 115.2	30.61	120.4	261	>10000	1.92 1.95		8721		2	5	<1	47.3	ব	148	155	5.1	12		589	<10	26	34	3	74	23	3 0	9.01	0. 38	>10.00
199546 Duplicate		<5	596.1 588.7	15.38	>200.0	1748	>10000	9.56		>10000	9.85	10	17	1	506.3	ব	3760	805	>10.1	00 18	.90	517	19	10	91	6	736	245	2 0).01	0.23	5.23
199551 Duplicate		9	1553.3 1531.9	i 15 .38	>200.0	8647	>10000	>15.00	29.12	>10000	11.16	5 11	2	<1	528.8	126	6854	>2000	>10,1	00 18	.03	581	32	7	41	3 >	2000	273	11 <	< .0 1	0.01	3.68
Prep Duplic Duplicate	ate	6	91.0 90.2	15.70	103.2	1983	4006			>10000	6.74	8	11	1	321.5	242	1091	66	>10.1	00 18	.93	692	33	8	185	8	93	163	3 <	c.01	0.06	4.76
199552		12	462.8	15.69	>200.0	6020	>10000	11.57		>10000	22.36	5 13	3	<1	1016.9	238	>10000	>2000	>10.0	00 17	.89	952	37	7	51	3 >	2000	602 ⁻	141 <	:.01	0.02	4.34
Prep Duplic	ate	6	462.7	7 15.69	>200.0	6953	>10000	13.34		>10000	20.92	2 13	3	<1	959.6	273	>10000	>2000	>10.0	00 17	.91	895	34	7	71	4 >	2000	554	94 <	- 01	0.02	3.68
Prep Duplic Duplicate	ate	6	462.7	7 15.69	>200.0	6953	>10000	1 3.3 4 13.50		>10000	20.92	2 13	3	<1	959.6	273	>10000	>2000	>10.(00 17 18	.91 .60	895	34	7	71	4 3	2000	554	94 <	:_01	0.02	3.68

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

n n a star a star a star a star a star a star a star a star a star a star a star a star a star a star a star a Na

đ

. .

2

PROJECT: SILVER TIP

PAGE 68(12/12)

4-FEB-00

CLIENT: SILV REPORT: VOO-	ERTIP MI) 00158.0 (NING ((COMP	Corp Plete)									 	DAT	E RECEIV	ED: 28	- JAN-	00	DATE	PR INTED :
Sample Number	ELEMENT Units	Na PCT	k PCT	Sr PPN	y PPN	Ga PPN	Lî PPM	Nb PPM	Sc PPN	Ta PPN	T i PCT	Zr PPN								
199538 Duplicate		<.01 <.01	<.01 <.01	20 20	<1 <1	19 18	<1 <1	<1 <1	ণ্ ণ	<10 <10	<.010 <.010	<1 ⊧ <1								
199539 Duplicate		<.01	<.01	20	<1	30	<1	<1	<5	<10	<.010	<1								
199540 Duplicate		<.01	<.01	17	2	38	<1	<1	4	<10	<.010	I <1								
199541 Duplicate		<.01	<.01	15	2	61	<1	<1	4	<10	<.010	<1								
199542 Duplicate		<.01	<.01	28	<1	52	<1	<1	ବ	<10	<.010) <1								
199544 Duplicate		<.01	<.01	284	2	<2	<1	<1	ふ	<10	<.010) <1								
199545 Duplicate		<.01	<.01	206	1	5	<1	<1	<	<10	< .01 () <1								
199546 Duplicate		<.01	0.01	29	<1	49	<1	<1	4	i <10	<.010) <1								
199551 Duplicate		<.01	<.01	22	1	93	<	<1	\$	i <10	<.010) <1								
Prep Duplica Duplicate	ite	<.01	<.01	55	1	25	<1	<1	<	i <10	<.01) <1								
199552		<.01	<.01	20	5	162	: <1	<1	6	i <10	<.01) <1								

Prep Duplicate <.01 <.01 20 3 147 <1 <1 <5 <10 <.010 <1

Prep Duplicate <.01 <.01 20 3 147 <1 <1 <5 <10 <.010 <1 Duplicate

REPORT: V00-00159.0 (COMPLETE)

CLIENT: SILVERTIP MINING CORP.

PROJECT: SILVER TIP

DATE			NUMBER O	F LONE	R			
APPROVED	ELEM	I ENT	ANALYSE	S DETEC	TION	EXTRA	CTION	METHOD
000203 1	\$i02	Silica (SiO2)		1 0.01	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 2	T 102	Titanium (TiO2)		1 0.01	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 3	AL203	Alumina (Al203)		1 0.01	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 4	Fe203*	Total Iron (Fe20	3)	1 0.01	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 5	MmO	Manganese (MnO)		1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 6	MgO	Magnesium (MgO)		1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 7	CaO	Calcium (CaO)		1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 8	Na20	Sodium (Na20)		1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 0	K20	Potassium (K20)		1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 10	p2n6	Phosphorous (92)	ና	1 0.0	PCT	BORATE	FUSION	XRAY FLUORESCENCE
000203 11	int	Loss on Ignition	,,	1 -2.0	PCT	Ignitic	m 1000 Deg.	GRAVIMETRIC
000203 12	Total	Whole Rock Total	•	1 0.0	РСТ			
000203 12	10101	WINTE ROOK TOTAL	•					
000203 13	Cr203	Chromium Oxide		1 0.0	I PCT	BORATE	FUSION	XRAY FLUORESCENCE
SAMPLE T	YPES	NUMBER	SIZE FR	ACTIONS		NUMBER	SAMPLE PR	REPARATIONS NUMBER
SAMPLE T	YPES	NUMBER	SIZE FR	ACTIONS		NUMBER	R SAMPLE PR	REPARATIONS NUMBER
-SAMPLE T	YPES CORE	NLMBER 1	SIZE FR 2 - 15	ACTIONS		NUMBER 1	CRUSH/SPL	REPARATIONS NUMBER
-SANPLE T D DRILL	YPES CORE	NUMBER	SIZE FR 2 - 15	ACTIONS 0		NUMBEF 1	CRUSH/SPLE PR	REPARATIONS NUMBER .IT & PULV. 1 CX CLEANING 1
-SANPLE T D DRILL	YPES CORE	NUMBER 	SIZE FR 2 -15	ACTIONS		NUMBER 1	R SAMPLE PR CRUSH/SPL RIVER ROO SILICA CI	REPARATIONS NUMBER IT & PULV. 1 IX CLEANING 1 LEANING 1
-SANPLE T	YPES CORE	NLMBER 	SIZE FR 2 2 -15	ACTIONS 0		NUMBER 1	R SAMPLE PR CRUSH/SPL RIVER ROU SILICA CI	REPARATIONS NUMBER IT & PULV. 1 IX CLEANING 1 LEANING 1
-SAMPLE T	CORE	NLMBER1	SIZE FR 2 -15	ACTIONS		NUMBER 1	R SAMPLE PR CRUSH/SPL RIVER ROO SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 LX CLEANING 1 LEANING 1
-SAMPLE T D DRILL	YPES CORE s indic	NUMBER 1 ates See Obs Rem	SIZE FR 2 -15 arks	ACTIONS 0		NUMBER 1	R SAMPLE PR CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 IX CLEANING 1 LEANING 1
SANPLE T	YPES 	NUMBER 1 ates See Obs Remi	SIZE FR 2 -15 arks	ACTIONS 0		NUMBE 1	R SAMPLE PR CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 CX CLEANING 1 LEANING 1
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic	NUMBER 1 ates See Obs Rem whole rock total	SIZE FR 2 -15 arks was obta	ACTIONS 10	sample	NLMBE(1	R SAMPLE PR CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 CX CLEANING 1 LEANING 1
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A Low 199496	NUMBER 1 ates See Obs Rem whole rock total . A retest gave :	SIZE FR 2 -15 arks was obta similar i	ained for results.	sample CLF	NLMBE(1	R SAMPLE PR CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 X CLEANING 1 LEANING 1
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A low 199496	NUMBER 1 ates See Obs Rem whole rock total . A retest gave :	SIZE FR 2 -15 arks was obta similar r	ACTIONS 0 ained for results.	sample CLF	NLIMBE 1	R SAMPLE PR CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 IX CLEANING 1 LEANING 1
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A LOW 199496	NUMBER 1 ates See Obs Rem whole rock total . A retest gave :	SIZE FR 2 -15 arks was obta similar r	ained for results.	sample CLF	NUMBER 1	R SAMPLE PF CRUSH/SPL RIVER ROC SILICA CI	REPARATIONS NUMBER LIT & PULV. 1 X CLEANING 1 LEANING 1
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A LOW 199496	NUMBER 1 ates See Obs Rem whole rock total . A retest gave : 0: MR. STEVE ROB	SIZE FR 2 -15 arks was obta similar r ERTSON	ACTIONS 0 ined for results.	sample CLF	NUMBE 1 1	R SAMPLE PR CRUSH/SPI RIVER ROO SILICA CI SILICA CI	REPARATIONS NUMBER IT & PULV. 1 IX CLEANING 1 LEANING 1 EVE ROBERTSON
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A LOW 199496 COPIES T	NUMBER 1 ates See Obs Rem whole rock total . A retest gave : 0: MR. STEVE ROB	SIZE FR 2 -15 arks was obta similar r ERTSON	ACTIONS 0 ained for results.	sample CLF	NUMBE 1 INVOIC	R SAMPLE PF CRUSH/SPL RIVER ROU SILICA CI SILICA CI	REPARATIONS NUMBER IT & PULV. 1 IX CLEANING 1 LEANING 1 EVE ROBERTSON
SAMPLE T D DRILL NOTES: REMARKS:	YPES CORE s indic : A LOW 199496 COPIES T	NUMBER 1 ates See Obs Rem whole rock total . A retest gave : 0: MR. STEVE ROB	SIZE FR 2 -15 arks was obta similar r ERTSON	ACTIONS ined for results.	sample CLF	NUMBER 1 INVOIC	R SAMPLE PR CRUSH/SPL RIVER ROO SILICA CI SILICA CI	REPARATIONS NUMBER IT & PULV. 1 IX CLEANING 1 LEANING 1 EVE ROBERTSON EVE ROBERTSON EVE ROBERTSON

REFERENCE:

..... SUBMITTED BY: C. AKELAITIS

DATE RECEIVED: 28-JAN-00 DATE PRINTED: 11-FEB-00

applicable only to the samples as received expressed on a dry basis unless otherwise indicated

1 1

PROJECT: SILVER TIP

×

.

•

- 1 - E

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00159.0 (COMPLETE)

DATE PRINTED: 11-FEB-00 PAG

DATE RECEIVED: 28-JAN-00

PAGE 1 OF Z

 SAMPLE
 ELEMENT
 SIO2
 TIO2
 AL2O3
 Fe2O3*
 MnO
 MgO
 CaO
 Na2O
 K2O
 P2O5
 LDI
 Total
 Cr2O3

 NUMBER
 UNITS
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT
 PCT</

199496 47.71 3.78 13.75 9.34 0.02 2.13 5.49 0.14 3.83 0.56 9.11 95.88s 0.02

CLIENT: SILVERTIP MINING CORP REPORT: V00-00159.0 (COMPLETE)

·. •

.

DATE RECEIVED: 28-JAN-00

DATE PRINTED: 11-FEB-00

PAGE 2 OF 2

PROJECT: SILVER TIP 2 OF 2

STANDARD	ELEMENT	Si02	T i 02	AL203	Fe203*	MnO	MgO	CaO	Na2O	K20	P205	LOI	Total	Cr203
NAME	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT
CANNET SO-2	REF STD	51.76	1.37	14,59	7.70	0.09	0.84	2.60	2.40	2.82	0.69	14.21	84.85	<0.01
Number of An	alyses	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		51.76	1.37	14.59	7.70	0.09	0.84	2.60	2.40	2.82	0.69	14.21	84.85	<0.01
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	•	-	-
Accepted Val	ue	51.70	1.38	14.75	7.69	0.09	0.87	2.64	2.48	2.85	0.67	14.26	-	<0.01
CANNET STSD-	2	53.71	0.75	15.66	7.33	0.14	3.04	4.19	1.70	2.14	0.32	10.11	89.00	0.02
Number of An	alyses	1	1	1	1	1	1	1	1	1	1	1	1	1
Nean Value		53.71	0.75	15.66	7.33	0.14	3.04	4.19	1.70	2.14	0.32	10.11	89.00	0.02
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Val	ue	53.70	0.79	15.75	7.25	0.14	3.11	4.00	1.72	2.12	0.32	10.30	-	0.01

A 1 K 1 K 1 K

REPORT: V00-00177.0 (COMPLETE)

ACCOUNT BRANCH | Geochemical Lab Report

F

REFERENCE:

CLIENT: SILVERTIP MINING CORP PROJECT: SILVER TIP

SUBMITTED BY: C. AKELAITIS DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00

DATE APPROVED E	LEMENT	NUMBER OF ANALYSES	LOMER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRAC	TION	метн	00	
000202 1 Vet	Au Partial Ext. Go	ld 48	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000202 37 T	a Tantalum	48	10 PPM	HCL:HNO3	(3:1)	INDUC.	COUP. PL/	ASM
000202 2 Ag	Silver	48	0.2 PPH	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	000202 38 T	i Titanium	48	0.010 PCT	HCL:HNO3	(3:1)	INDUC.	COUP. PL/	ASM
000202 3 Apgr	av Silver (Grav.)	30	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000202 39 Z	r Zirconium	48	1 PPM	HCL : HNO3	(3:1)	INDUC.	COUP. PL/	ASM
000202 4 Cu	Cooper	48	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						•		-	
000202 5 Pb	Lead	48	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									:
000202 6 Pb	Lead	17	0.01 PCT	HF-HN03-HCLO4-HCL	ATOMIC ABSORPTION	SAMPLE TYP	ES NUMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE	PREPARATIC	ns numbi	R
000202 7 Pb	Lead	5	0.01 PCT		TITRIMETRIC	D DRILL C	ORE 48	2 -150		48	CRUSH/S	PLIT& PUL	.v. 4	8
000202 8 Zn	Zinc	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						RIVER	OCK CLEANI	NG 4	8
000202 9 7n	Zinc	28	0.01 PCT	HE-HNO3-HCLO4-HCL	ATCHIC ABSORPTION						SILICA	CLEANING	4	8 ÷
000202 10 Mo	Molvbdenum	48	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						OVERWEI	GHT/KG	8	4
000202 11 Ni	Nickel	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA							-		÷
000202 12 Co	Cobelt	48	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
						REMARKS: P	LEASE NOTE THAT THERE	E IS CARRY O	VER DUE TO					÷
000202 13 cd	Cadmium	48	0.2 PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASNÁ	H	IGH LEVELS OF SOME EL	LEMENTS IN T	HE SAMPLES.					
000202 14 Bi	Rismuth	48	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	2	/02/2000 KAF.							
000202 15 As	Arsenic	48	5 PPM	HCL:HNO3 (3:1)	INDUC. COLP. PLASMA	Ā	rsenic concentration	>1X will en	hance Cadmiu	m				
000202 16 Sb	Antimony	48	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA		esults. Therefore, (Cadmium conc	entration					÷
000202 17 FA	Iron	48	D 01 PCT	HCL-HNO3 (3:1)	INDUC. COLP. PLASMA	H	nuld be greater than	true value.						
000202 18 Mn	Manganese	48	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	т	hank you, KAE							
000202 19 Te	Tellurium	48	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000202 20 Ba	Barium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COP	IES TO: MR. STEVE ROL	BERTSON		INVOICE	TO: MR. S	TEVE ROBER	RTSON	:
000202 21 Cr	Chromium	48	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000202 22 V	Vanadium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	*	********	**********	********	******	*****	********	*****	÷
000202 23 Sn	Tin	48	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMÁ		This report must not	be reproduc	ed except in	full. The	data pre	sented in	this	1
000202 24 W	Tungsten	48	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		report is specific to	o those same	oles identifi	ed under "	Sample Nu	mber" and	is	÷
000202.25.1.4	Lanthan	/ B		UCL.UNCT (3.1)			otherwise indicated	ne samptes a		Apresseu u		asis unica		1
000202 25 18		40 48	0 01 001	HCL:HNO3 (3.1)	INDUC COUP, PLOSING	+			**********	********	*******	********	******	÷
000202 20 KL	Magnanium	40		NCL.NHOJ (J.1) UCL.NHOZ (Z.1)	INDUC, COUP, FLASHA									÷
000202 27 Mg	Pagnestum	40		HCL:HNO3 (3:1)	THEOC. COUP. PLASHA									1
000202 20 Va	Calcium Deulium	40		HCL.NHO3 (J.1)	THEOC. COUP. FLASHA									:
000202 ZY Na	500100	40	0.01 PCT		TAINING COUPT PLASHA									:
000202 30 K	Potassium	40	0.01 PL1	HUL:HWUS (STI)	INDUC. COUP. PLASMA									1
000202 31 Sr	Strontium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASNA									:
000202 32 Y	Yttrium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									;
000202 33 Ga	Gallium	48	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000202 34 Li	Lithium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000202 35 Nb	Niobium	48	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA									
000202 36 Sc	Scandium	48	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	i i								

~

-

4- 4-0

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE)

CANEDI F

ELEMENT LAS ALL

e e e e e e e

.

PROJECT: SILVER TIP

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 1A(1/14)

SAMA IC	CLEMENT WEL AL	1 MŰ	g Agurav	CU PC	סיי כ	י אי אי	i zn	MO	N1	CO	Co	1 61	As	Sb	Fe	e Min	Te	6a	Ĉr.	V	Sn I	a La	AL	Mg	Ca	Na	ĸ	Sr
NUMBER	UNITS PPE	S PP	1 РРМ Р	PM PP	я рст	PCT PPM	PCT	PPM	PPM	PPM	PPM	PPN	РРМ	PPH	PCT	PPM	PPM	PPM	ppn	ppm	PPM PPI	n ppm	PCT	PCT	PCT	РСТ	PCT	PPM
140451	<	i 99.e	5 91.0 31	57 2284	4	>10000	9.51	4	22	3	349.3	204	1765	1615	>10.00) 744	18	<1	19	<1	237 <2	03	<.01	0.03	1.82	<.01	<.01	8
140452	69	111.4	4 124.3 13	93 2783	3	>10000	14.54	6	18	3	581.8	199	5146	449	>10.00	676	27	<1	16	<1	108 <2	06	<.01	D.01	1.47	<.01	<.01	8
140453	<5	i 84.0	83.4.32	36 4609	9	>10000	22.86	5	14	4	818.5	103	1505	160	>10.00	1244	34	<1	30	1	233 <2	0 11	<.01	0.05	0.61	<.01	<.01	4
140454	<	>200.C	233.4 22	87 >10000	3.86	>10000	12.85	6	15	4	490.0	141	515	288	>10.00	849	30	<1	61	2	139 <2	06	<.01	0.04	0.45	<.01	<.01	3
140455	ť	180.2	2 194.3 11	72 >10000	3.99	>10000	7.00	4	11	3	300.0	64	643	336	>10.00	707	33	1	50	<1	99 <2	0 17	<_01	0.03	4.49	<.01	<.01	22
140456	<5	i 143.1	1 141.2 28	76 >10000	0 2.80	>10000	13.73	4	17	3	503.1	13	938	241	>10.00	573	24	<1	34	<1	279 <2	06	<.01	0.03	0.13	<.01	<.01	1
140457	<5	i 154.9	2 166.3 26	15 >10000) 2.94	>10000	16.15	6	16	3	609.3	20	1204	390	>10.00	638	34	<1	50	<1	215 <2	07	<.01	0.03	0.14	<.01	<.01	1
140458	<	5 81. 9	80.3 24	91 >10000	0 1.49	>10000	21.18	2	15	3	756.2	26	659	253	>10.00	698	35	<1	40	<1	261 <2	05	<.01	0.05	0.17	<.01	<.01	1
140459	<	53.0	49.8 21	38 5608	8	>10000	4.90	4	16	3	178.2	51	1647	164	>10.00	290	<10	<1	45	1	49 <2	a 42	<.01	0.03	0.10	<.01	<.01	1
140460	e	48.8	3 16	11 3248	B	>10000	5.15	5	12	3	203.9	56	1637	151	>10.00	870	<10	<1	41	<1	146 <2	0 19	<.01	0.04	2.80	<.01	<.01	12
140461	4	168.6	5 187.4 16	54 >10000	0 4.03	>10000	6.41	2	12	4	252.2	9	963	264	>10.00	868	25	<1	36	<1	234 <2	n 4	<.01	0.02	3 42	< 01	< 01	10
140462	5	>200.0	198.0 24	95 >10000	0 12.28	>10000	5.80	3	11	3	214.2	392	1057	502	>10.00	569	41	<1	37	<1	561 <2	03	<_01	0.02	2.80	<.01	<.01	14
140463	<5	>200.0) 1357.4 39	92 >10000	>15.00	22.03 >10000	5.95	5	13	4	212.8	952	1016	1001	>10.00	716	49	<1	43	<1	1424 <2	03	<.01	0.07	0.54	<.01	<.01	4
140464	<5	>200.0	1276.2 54	90 >10000) >15.00	20.25 >10000	13.96	Z	10	4	492.2	976	783	1029	>10.00	651	76	<1	21	<1	>2000 <2	0 1	< 01	0.04	0.83	<.01	<_01	5
140465	~5	5.8	3	10 653	3	285		2	3	<1	1.2	ب	5	ৎ	0.43	379	<10	64	9	3	<20 <2	0 4	0.10	6.42	>10.00	0.01	0.03	126
140466	E	3 18.2	2	79 900	נ	1515		2	3	<1	8.6	22	507	13	2 07	2525	<10	27	12	¥	<20 - 2	a c	× 01	1 63	10.00	- 01	~ 01	107
140467	<5	5 4.5	,	15 417	7	1438		1	2	<1	5.3	5	30	5	0.83	477	<10		3	- 1	- 20 - 20 - 20 - 20	n 6	0.07	n 76 -	10.00	< 01	< 01	144
140468	<5	98 .7	7 93.5 34	94 256	5	>10000	15.54	3	16	3	467.5	1317	1061	119	>10.00	488	45	<1	32	<1	<20 <2	ni 1	< 01	0.70	1 75	2 01	2 01	8
140469	<	3. 1	1	37 62	2	4129	1	1	2	<1	14.6	ব	27	9	0.76	911	<10	80	7	2	<20 <2	ο, . Ο Δ	n n>	0.34	10.00	~ 01	- 01	175
199497	<5	z. 3	5	2 84	4	111		7	69	4	Ċ.7	<	30	<u>ج</u>	>10.00	341	<10	ব	13	6	<20 <2	0 2	<.01	0.52	6.36	<.01	<.01	68
1 99498	<5	3.5	5	5 201	1	356	,	13	10	<1	1.6	ক	46	12	1.91	1432	<10	102	4	4	<20 <2	03	<.01	7.19	×10.00	0.01	<.01	103
199499	<5	>200.0) 704.5 39	94 >10000	12.51	>10000	13.75	9	16	4	440.6	130	443	855	>10.00	514	<10	<1	17	Ì	1324 <21	0 4	<.01	0.04	0.92	<.01	<.01	4
199500	<5	145.0	0 140.5 39	17 8701	ו	>10000	9.95	6	16	3	342.8	239	386	89	>10.00	657	15	<1	29	<1	227 <2	D 5	<.01	0.04	0.46	<.01	<.01	3
199578	<5	5.3	5 1	33 381	1	7568	l.	22	3	1	27.8	10	647	15	3.07	1446	<10	28	4	1	<20 <2	0 6	0.03	1.71	10.00	<.01	<.01	226
199579	26	61.4	51.8 82	57 526	5	6050	I	267	14	4	67.3	762	8528	233	>10.00	543	<10	<1	28	<1	767 <2	02	0.08	0.27	2.56	<.01	<.01	19
199580	<	5 25.°	1 z	03 121	1	528		55	3	<1	15.6	38	309	29	1.35	837	<10	112	4	1	<20 <20	06	0.08	0.16 :	10.00	<.01	<.01	227
199581	25	>200.0	0 1028.5 62	65 >10000	0 >15.0 0	19.33 >10000	15.06	95	18	4	621.7	31	>10000	1555	>10.00	664	46	<1	10	<1	>2000 <2	0 10	0.03	0.03	2.56	<.01	<.01	11
199582	84	+ >200.(0 1082.1 59	90 >10000	> >15.00	22.41 >10000	17.61	64	15	4	702.9	ব	>10000	1686	>10.00	696	61	<1	19	<1	>2000 <2	5	0.01	0.04	2.71	<.01	<.01	10
199583	<	5 2.1	2	2 148	5	144		2	2	<1	0.6		16	<5	0.21	262	<10	220	4	2	<20 <20	0 3	0.14	2.87	10.00	0.02	0.05	157
199584	0	5 4.9	9	45 387	2	1979		2	2	<1	10.2	<5	568	7	0.39	611	<10	419	<1	<1	<20 <2	0 4	0.05	0.82 ;	10.00	<.01	0.01	147

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE)

.

· ·

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP

PAGE 1B(2/14)

SAMPLE	ELEMENT	Y	Gə	Li	Nb	\$c	Ta	Ti	Zr
NLMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
140451		<1	<2	<1	<1	<5	<10	<.010	<1
140452		<1	16	<1	<1	<5	<10	<.010	<1
140453		<1	25	<1	<1	<5	<10	<.010	<1
140454		<1	15	<1	<1	<5	<10	<.010	<1
140455		Z	11	<1	<1	<5	<10	<.010	<1
140456		<1	4	<1	<1	<5	<10	<.010	<1
140457		<1	12	<1	<1	<5	10	<.010	<1
140458		<1	34	<1	<1	5	<10	<.010	<1
140459		2	<2	<1	<1	<5	<10	<.010	<1
140460		2	<2	<1	<1	<5	<10	<.010	<1
140461		<1	5	<1	<1	<5	<10	<.010	<1
14 0462		<1	3	<1	<1	<5	<10	<.010	<1
140463		<1	4	<1	<1	<5	<10	<.010	<1
140464		<1	36	<1	<1	- S	<10	<.010	<1
140465		Z	<2	4	<1	4	i <10	<.010	<1
140466		5	<2	<1	<1	<	<10	<.010	<1
140467		4	<2	<1	<1	4	i <10	<.010	<1
140468		<1	<2	<1	<1	<	i <10	<.010	<1
140469		3	<2	<1	<1	<	5 <10	<.010) <1
199497		<1	<2	<	<		5 <10) <.010) <1
199498		3	<2	: 1	<1	<	5 <10) <.01() <1
199499		<1	29	<	<	4	5 <10) <.010) <1
199500		<1	<2	<	< *	1 <	5 <10) <.010) <1
199578		2	<2	: <1	i <'	1 <	5 <10) <.010) <1
199579		<1	<2	! <'	<'	1 <	5 <10) <.010) <1
199580		3	5 3	s <	1 <	1 <	5 <10) <.01) <1
199581		<'	77	7 <	۱ <	1 <	5 <1(0 <.01) <1
199582		¢	103	s <	1 <	1 <	5 <10	0 <.01	0 <1
199583		2	2 <2	2	2 <	1 <	5 <1	0 <.01	01
199584		3	3 <2	2 <	1 <	1 <	5 <10	0 <.01	0 <1

. .

CLIENT: SILVERTIP MINING CORP REPORT: VOD-00177.0 (COMPLETE)

•

PAGE 2A(3/14)

DATE PRINTED: 8-FE8-00

PROJECT: \$1UVER TIP

SAMPLE	ELEMENT Wet /	Au	Ag	AgGrav	Cu	Pb	Pb	Pb	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mm	Te	8a	Cr	v	Sn	W.	La	Al	Mg	Ca	Na	ĸ	Sr
NUMBER	UNITS PR	PB	PPM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	РСТ	PCT	PCT	PCT	PPM
199601		<5	11,9		64	1513			1297		18	57	9	9.1	<5	401	37	6.40	335	<10	12	106	21	36	<20	3	0.40	0.35	2.90	<.01	0.16	51
199602		<5	53.3	49.8	1738	4314			3163		9	30	4	19.0	144	1624	111	>10.00	109	<10	6	20	1	<20	<20	<1	<.01	0.04	0.30	<.01	<.01	Z
199603		<5 >	200.0	900.6	3045	>10000	>15.00	16.17 >	10000	5.40	5	19	4	196.4	246	2838	711	>10.00	126	13	<1	44	<1	1984	<20	2	<.01	<.01	0.0Z	<.01	<.01	1
199604		<5	131.3	127.3	2155	9650		>	10000	2.35	6	28	4	82.6	198	Z 38 0	83	>10.00	87	<10	<1	24	<1	182	<20	<1	<.01	0.01	0.07	<.01	<.01	1
199605		<5	56.5	48.3	345	2695			1555		7	14	4	30.7	198	4141	70	>10.00	54	<10	22	38	<1	87	<20	2	<.01	<.01	1.25	<.01	<.01	8
199606		6	58.9	54.8	883	1305		>	10000	2.06	5	18	4	73.4	232	1317	222	>10.00	254	<10	<1	29	<1	<20	<20	1	<.01	0.04	2.76	<.01	<.01	14
199607		<5	2.4		2	24			80		2	4	<1	0.5	<5	42	13	0.24	401	<10	1105	4	13	<20	<20	4	0.01	0.22	>10.00	<.01	i <. 01	207
199608		9	1.8		<1	41			46		6	22	2	0.3	-5	17	<5	8.04	292	<10	31	<1	3	<20	<20	4	<.01	0.33	>10.00	<.0!	. <.01	121
199609		<5	2.0		6	24			83		4	12	2	0.4	୍	15	<5	2.62	510	<10	215	12	13	<20	<20	3	0.30	0.57	>10.00	0.04	, 0.03	122
199610		<5	1.8		<1	25			38		6	4	<1	<0.2	ব	9	<5	0.29	822	<10	188	2	4	<20	<20	6	<.01	0.30	>10.00	<.0'	<.01	138
																										_				_		
199611		<5	56.7	49.5	128	4558		>	10000	1.58	8	8	2	56.9	76	285	-34	5.49	1128	11	57	4	5	<20	<20	5	<.01	4.48	>10.00	· <.0	<.01	1 91
199612		<5 >	200.0	693.2	2275	>10000	14.31	>	10000	15.15	12	17	4	533.7	416	1454	504	>10.00	609	50	~1	23	<1	483	<20	2	0.02	0.11	0.78	; <.0	10.01	
199613		<5 >	200.0	627.8	4391	>10000	11.46	>	10000	14.66	6	13	4	484.6	164	721	612	>10.00	473	53	<1	25	<1	1970	<20	<1	<.01	0.03	0.27	<.0	1 <.01	+ 2
199614		<5	2.4		3	140			218		3	3	<1	0. 8	<5	<5	ぐち	0.33	364	<10	231	1	3	<20) < 20	4	0.09	5.67	>10.00	0.0	1 0.03	5 140
199615		<5 >	200.0	801.1	4477	>10000	12.03	>	10000	18.89	3	14	3	631.3	670	1212	651	>10.00	549	61	<1	13	<1	>2000) <20	<1	<.01	0.02	0,00	• <.0°	<.01	<1
																											÷					
199616		<5 >	200.0	913.8	4558	>10000	12.81	>	10000	19.31	5	14	3	679.7	1122	1295	753	i >10.00	592	2 57	<1	32	<1	>2000	20	<1	<.01	0.02	0.0	· <.0	1 <.03	1 <1
199617		<5	149.3	152.2	2953	3797		>	10000	20.95	5	15	5	697.3	1225	1688	294	>10.00	805	5 63	×1	17	<1	153	5 <20	3	0.01	0.04	1.2	<.0	<.0"	1 6
199618		<5	3.0		5	i 112			497		3	1	<1	1.9	5	21	5	i 0.50	1085	5 <10	- 25	2	3	<20) <20	- 4	0,02	5.49	>10.0	0.0	1 <.0	1 116

DATE RECEIVED: 31-JAN-00

a second a second second second second second second second second second second second second second second s

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE)

DATE RECEIVED: 31-JAN-00

PROJECT: SILVER TIP DATE PRINTED: 8-FEB-00 PAGE 2B(4/14)

.

Report

Lab

Geochemical

•

1 6

SAMPLE	ELEMENT	Y	Ga	Li	NÞ	Sc	Ta	Ťi	Z٢	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
1996/01		6	-2	1	۲1	~5	<10	< 010	13	
199602		۔ 1	~2	<1	<1	-5	<10	<.010	<1	
199603		<1	3	<1	<1	<5	<10	<.010	<1	
199604		<1	<2	<1	<1	<5	<10	<.010	<1	
199605		<1	<2	<1	<1	ব	<10	<.010	<1	
199606		<1	<2	<1	<1	<5	<10	<.010	<1	
199607		3	<2	<1	<1	<5	<10	<.010	<1	
199608		Z	<2	<1	<1	<5	<10	<.010	<1	
199609		2	<2	2	<1	<5	<10	0.021	<1	
199610		8	<2	<1	<1	<5	<10	<.010	<1	
199611		4	<2	<1	<1	<5	<10	<.010	<1	
199612		<1	10	<1	<1	<5	<10	<.010	<1	
199613		<1	43	<1	<1	<5	<10	<.010	<1	
199614		2	~2	3	<1	<5	<10	<.010	<1	
199615		<1	51	<1	<1	ر ج	<10	<.010	<1	
199616		<1	45	<1	<1	<5	<10	<.010	<1	
199617		1	<2	<1	<1	<5	<10	<.010	<1	
199618		4	<2	2	<1	ব	<10	<.010	<1	

. S •

CLIENT: SILVERTIP MINING CORP.

а.

PROJECT: SILVER TIP REPORT: V00-00177.0 (COMPLETE) DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 3A(5/14) STANDARD **ELEMENT Wet Au** Pb Ag AgGrav Cu Pb ΡЬ Zn Zn Мо Ni Со Cd Bi As Sb Cr ٠v Sh U. La AL. Ma Са Na K Sr Fe Te Ba NAME UNITS PPB PCT **PPM** PPM. **PPH** PPM PCT **PPM** PCT **PPM** PPN PPM PCT PCT PCT PCT PPM PPM PPM **PPM** - PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT OX12 Oxide 10.9 10.0 OX12 Oxide 2 Number of Analyses -10.5 Mean Value Standard Deviation 0.6 Accepted Value 10.4

OX8 Dxide	177	-	-	-	-	-	-	-	-	-		-	•	-	-		-						-	-
Number of Analyses	1	-	-	-	-	-	-	-	-	-		-	-	-	-		-						-	-
Mean Value	177	-	-	-	-	-	•	-	-	-	• •	-	-	-	-		-		-				-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-						-	-
Accepted Value	-	-	-	-	•	-	-	•	•	-	• •	-	•	-	-		-	÷	•			• -	•	-
G\$91-2	-	0.4	-	155	18	-	-	173	-	4 14	7 36	1.6	-5	148	<5	7.57 15 35 <	10	5 209 45	j. d	20 <20	4 1.99 2.38	3.48 0.01	0.05	78
Number of Analyses	-	1	-	1	1	-	-	1	•	1	1 1	1	1	1	1	1 1	1	1 1 1	1	1 1	1 1 1	1 1	1	1
Mean Value	-	0.4	-	155	18	-	-	173	-	6 14	7 36	1.6	3	148	3	7.57 1535	5	5 209 45	;	10 10	4 1.99 2.38	3.48 0.01	0.05	78
Standard Deviation		•	-	-	-	•	-	-	-	-		-	-	-	-		-						-	-
Accepted Value	-	0.2	-	148	20	-	-	148	-	4 13	5 35	0.2	1	145	1	7.20 1450	<1	6 251 50	j	5 12	• 1.80 2.70	4.00 0.01	0.04	70
CX(9 Oxide	477	-	-	-	-	-	-	-	-	-		-	-	-	-			• • ·					-	-
Number of Analyses	1	-	-	-	-	•	-	-	-	•		-	-	-	-		-	· · ·	•				-	-
Mean Value	477	-	-	-	-	-	-	-	-	-		•	-	-	-		-		•				-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-		-					-
Accepted Value	-	-	-	-	-	-	•	-	-	-		-	-	-	-		•		-				-	-
OX11 Oxide	3285	-	24.7	-	-	-	-	-	-	٠	. .	-	-	-	-		-						-	-
OX11 Oxide Number of Analyses	3285 1	-	24.7 1	-	-	-	-	-	-	• -	 	-	-	-	-		-				· · ·		-	-
OX11 Oxide Number of Analyses Mean Value	3285 1 3285	-	24.7 1 24.7	- - -	- - -	- -	- -	- -	- -	• - -	 	- -	- •	-	-		-				 • • •		-	- -
OX11 Oxide Number of Analyses Mean Value Standard Deviation	3285 1 3285	- - -	24.7 1 24.7	- - -	- - -	- -	- -	- -	- - -	• - •	 	- - -		- - -						 				-

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

PROJECT: SILVER TIP

· · · · · · ·

-

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00177.0 (COMPLETE)

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 3B(6/14)

STANDARD ELEMENT Y Ga Li Nb Sc Ta Ti Zr NAME UNITS PPM PPM PPM PPM PPM PPM PCT PPM

DX12 Oxide	-	-	-	-	-	-	-	-	
0X12 Oxide	-	-	-	-	-	-	-	٠	
Number of Analyses	-	-	-	•	-	-	-	-	
Mean Value	-	-	-	-	-	-	-	-	
Standard Deviation	•	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-	-	-	•	•	

OX8 Oxide	-	-	-	-	-	-	-	÷	
Number of Analyses	-	-	-	-	-	•	-	-	
Mean Value	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	-	-	-	•	-	
Accepted Value	-	•	-	-	-	-	-	-	
	-			-				-	
GS91-2	5	<2	22	2	· · ·	cių.	<.010	1	
Number of Analyses	1	1	1	1	1	1	1	1	
Mean Value	3	1	22	2	7	5	0.005	7	
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	3	-	24	2	6	1	0.003	5	
0X9 Oxide	-			-	-	-	-	-	
0X9 Oxide Number of Analyses	-	•	•	• -	-	-	-	-	
0X9 Oxide Number of Analyses Mean Value	-	•	• •	- - -	- -	- -	- -	-	
0X9 Oxide Number of Analyses Mean Value Standard Deviation	- - -	•	- -	-	- - -	- - -	- - -		
0X9 Oxide Number of Analyses Wean Value Standard Deviation Accepted Value	- - -				-		- - -		
OXY9 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value OX11 Oxide	-	•		• • • •	-	- - -			
OXY9 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value OX11 Oxide Number of Analyses	-	•		•		- - - -	-		
OXY9 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value OX11 Oxide Number of Analyses Mean Value		-					-		
OX9 Oxide Number of Analyses Mean Value Standard Deviation Accepted Value OX11 Oxide Number of Analyses Mean Value Standard Deviation	-		• • • •			· · · · · · · · · · ·	-	-	

.

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00177.0 (COMPLETE)

			PROJECT: SILVER TIP
DATE RECEIVED: 31-JAN-00	DATE PRINTED: 8	-FEB-00 PAGE	4A(7/14)

STANDARD	ELEMENT W	et Au	Ag A	gGrav	Cu	РЬ	Pb	РЬ	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mm	Te	Bə	Cr	v	Sn	u	ia	AI	Ma	Ca	Na	ĸ	Sn
NAME	UNITS	PP8	PPM	PPM	PPM	PPM	PCT	PCT	PPN	РСТ	PPM	PPM	PPM	ррм	РРМ	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PPH	PCT	PCT	PCT	PCT	PCT	PPM
ANALYTICAL E	BLANK	-	<0.2	-	<1	<2	-	-	4	-	<1	<1	<1	⊲0.2	\$	<5	<5	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<0.01	<.01	<.01	<1
ANALYTICAL E	BLANK	-	<0.2	-	<1	2	-	-	71	-	<1	<1	<1	<0.2	4	<5	<5	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<0.01	<_01	<.01	~1
Number of Ar	nalyses	-	z	-	2	2	-	-	Z	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2
Mean Value		•	0.1	-	<1	z	•	-	37	-	<1	<1	<1	0.1	3	3	3	<0.01	<1	5	<1	<1	<1	10	10	<1	< 01	< 01	<0.01	< 01	< 01	-1
Standard Dev	viation	-	-	-	-	1	-	-	48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-0.01	-	-	-
Accepted Val	lue	1	0.2	<0.1	1	z	<0.01	<0.01	1 <	0.01	1	1	1	0.1	2	5	5	0.05	1	<1	<1	1	1	<1	<1	<1	<.01	<.01	<0.01	<.01	<.01	<1

CANNET STSD-4	-	0.5	-	63	68	-	-	221	•	2	25	10	0.8	6	13	<5	2.81	1234	<10	842	30	48	<20 ·	<20	13 1	1.20	0.63	1.04 0	.04 0)_ 10	61
Number of Analyses	-	1	-	1	1	-	-	1	-	1	1	1	1	1	1	1	1	ł	l 1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value	-	0.5	-	63	68	-	-	221	-	2	25	10	0.8	3	13	3	2.81	1234	5	842	30	48	10	10	13 1	1.20	0.63	1.04.0	. na. n	10	۲۵
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	•	-	-	-		-		-	-	-	
Accepted Value	-	0,3	-	66	13	-	-	82	-	2	23	11	0.6	•	11	4	2.60	1200) -	-	30	51	•	-	-	-	-	-	-	-	-
CANNET CERTIFIED STD	-	•	-	-	-	4.36	-	- 19	.05	-	-	-	-	-	-	-	-						-		-	-	-	_	_	-	-
Number of Analyses	-	-	-	-	•	1	-	-	1	-	-	-	-	-	-	-	-	-		ш	_	-	-	-	-	-	-	-	_	_	_
Mean Value	•	-	-	-	-	4.36	-	- 19	.05	•	•	-	-	-	-	-	-		-		-		-	-	-	-	_	_		-	_
Standard Deviation	-	-	-	•	-	-	-	•	-	-	-	-		-	-	-	-	-		•	-	•	-	_	-	-	_	_	-	-	
Accepted Value	-	-	-	-	•	4.32	4.33	- 19	.02	-	-	-	-	-	-	-	-		• -		-		-	-	-	-	0.02	_	-	-	-

and the second second second second second second second second second second second second second second second

CLIENT: SILVERTIP MINING CORP REPORT: VOO-00177.0 (COMPLETE) Vencouver Branch

Geochemical Lab Report

S 7

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP PAGE 4B(8/14)

STANDARD	ELEMENT	Y	Ga	Li	Nb	\$c	Ta	Ti	Z٢
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
ANALYTICAL	BLANK	<1	<2	<1	<1	<5	<10	<_010	۲۱
ANALYTICAL	BLANK	<1	<2	<1	<1	<5	<10	<.010	<1
Number of A	nalyses	2	2	2	2	2	2	Z	2
Mean Value		<1	1	<1	<1	3	5	0.005	<1
Standard De	viation	-	-	-	-	-	-	-	-
Accepted Va	lue	<1	<1	<1	<1	<1	<1	<.001	<1

CANNET STSD-4	11	<2	9	4	<5	<10	0.079	<1	
Number of Analyses	1	1	1	1	1	1	1	1	
Mean Value	11	1	9	4	3	5	0.079	<1	
Standard Deviation	•	-	-	-	-	-	•	•	
Accepted Value	-	-	•	-	-	-	-	-	
CANNET CERTIFIED STD	•	-	-	-	-	-	-	-	
Number of Analyses	-	-	-	-	-	•	-	-	
Mean Value	-	-	-	-	-	-	-		
Standard Deviation	•	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-	-		-	-	

PROJECT: SILVER TIP CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE) DATE RECEIVED: 31-JAN-00 PAGE 5A(9/14) DATE PRINTED: 8-FEB-00 K Sr SAMPLE ELEMENT Wet Au Ag AgGrav Cu ΡЬ ΡЬ ΡЬ Zn Zn CO Cđ Bi As Sb Fe Te Ba Ċr - V \$n u. La AL Ma Са Na Ni PCT PCT PCT PPM UNITS PPM PCT. PCT PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PP8 PPM PPM PPM PCT NUMBER 99.6 >10000 9.51 140451 <5 91.0 3157 2284 4 22 3 349.3 204 1765 1615 >10.00 744 18 <1 19 <1 237 <20 3 <.01 0.03 1.82 <.01 <.01 8 Duplicate 90.9 9.66 5146 449 >10.00 676 27 <1 16 <1 108 <20 6 <.01 0.01 1.47 <.01 <.01 8 140452 >10000 14.54 6 18 3 581.8 199 69 111.4 124.3 1393 2783 109.2 Duplicate 1505 160 >10.00 1244 34 <1 30 1 233 <20 11 <.01 0.05 0.61 <.01 <.01 140453 <5 84.0 83.4 3236 4609 >10000 22.86 5 14 4 818.5 103 - 4 79.8 Duplicate 515 288 >10.00 849 30 <1 61 2 139 <20 6 <.01 0.04 0.45 <.01 <.01 3 140454 <5 >200.0 233.4 2287 >10000 3.86 >10000 12.85 6 15 4 490.0 141 Duplicate 230.6 140455 6 180.2 194.3 1172 >10000 3.99 >10000 7.00 4 11 3 300.0 - 44 643 336 >10.00 707 33 1 50 <1 99 <20 17 <.01 0.03 4.49 <.01 <.01 22 189.7 Duplicate 13 938 241 >10.00 573 24 279 <20 6 <.01 0.03 0.13 <.01 <.01 1 140456 <5 143.1 141.2 2876 >10000 2.80 >10000 13.73 4 17 3 503.1 <1 34 <1 Duplicate 145.2 140457 <5 154.9 166.3 2615 >10000 2.94 >10000 16.15 6 16 3 609.3 20 1204 390 >10.00 638 34 <1 50 <1 215 <20 7 <.01 0.03 0.14 <.01 <.01 1 161.4 Duplicate 80.3 2491 >10000 1.49 >10000 21.18 2 15 3 756.2 659 253 >10.00 698 35 <1 40 <1 261 <20 5 <.01 0.05 0.17 <.01 <.01 1 140458 81.9 26 <5 >10000 620 236 >10.00 653 45 Duplicate <5 76.9 2258 >10000 2 15 4 741.4 30 <1 38 <1 239 <20 5 <.01 0.05 0.17 <.01 <.01 1 1637 151 >10.00 870 <10 140460 48.8 1611 3248 >10000 5.15 5 12 3 203.9 56 <1 41 <1 146 <20 19 <.01 0.04 2.80 <.01 <.01 12 6 5.09 Duplicate 2 12 4 252.2 963 264 >10.00 868 25 140461 <5 168.6 187.4 1654 >10000 4.03 >10000 6.41 9 <1 36 <1 234 <20 4 <.01 0.02 3.42 <.01 <.01 19 Duplicate 181.5 140463 <5 >200.0 1357.4 3992 >10000 >15.00 22.03 >10000 5.95 5 13 4 212.8 952 1016 1001 >10.00 716 49 <1 43 <1 1424 <20 3 <.01 0.07 0.54 <.01 <.01 4</p> **Duplicate** 21.96 140468 <5 98.7 93.5 3494 256 >10000 15.54 <u>3 16 3 467.5 1317 1061 119 >10.00 488 45 <1 32 <1 <20 <20 1 <.01 0.04 1.75 <.01 <.01 8</u> 90.5 15.34 **Duplicate**

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

.

CLIENT: SILVERTIP MINING CORP.

٦

Lab Report PROJECT: SILVER TIP

. . .

.

Geochemical

REPORT: VOC)-00177.0 (COMPLETE)	DATE RECEIVED: 31-JAN-00	DATE PRINTED: 8-FEB-00 PAGE 58(10/14)
SAMPLE	ELEMENT Y Ga Li No Sc Ta Ti Zr		
NUMBER	UNITE FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY AND FAMILY		
140451	<1 <2 <1 <5 <10 <.010 <1		
Duplicate			
140452	<1 16 <1 <1 <5 <10 <.010 <1		
Duplicate			
140453	<1 25 <1 <1 <5 <10 <.010 <1		
Ðuplicate			
140454	<1 15 <1 <1 <5 <10 <.010 <1		
Duplicate			
140455	2 11 <1 <1 <5 <10 <.010 <1		
Duplicate			
140456	<1 4 <1 <1 <5 <10 <.010 <1		
Duplicate			
140457	<1 12 <1 <1 <5 10 <.010 <1		
Duplicate			
140458	<1 34 <1 <5 <10 <.010 <1		
Duplicate	<1 32 <1 <1 <5 <10 <.010 <1		
140460	z <z <.010="" <1="" <10="" <1<="" <5="" td=""><td></td><td></td></z>		
Duplicate			
140461	<1 5 <1 <1 <5 <10 <.010 <1		
Duplicate			
140463	<1		
Duplicate			

.

. .

A.

N,

*

CLIENT: SILV	ERTIP MI	NING CO	RP																							F	PROJE	ECT: 1	SILVER	₹ TIP				
REPORT: VOO-	00177.0	(COMPL	ETE)											DA	TE REC	EIVEC): 31-J/	AN - 00	DA	re pr	INTED	: 8	- FEB	00	PA	GE (5A(1)	1/14)						
SAMPLE	ELEMENT	Wet Au	L L	Ag A	lgGrav	Cu	Pb	Pb	Pb	Zn	Zn	Ho	Ni	Co	Cd	Bi	As	Sb	Fe	Mm	Te	Ba	Çr	۷	Sn	W	La	Al	Mg	Ca	N	а	ĸs	ir
NUMBER	UNITS	i PP	8 PI	PM	PPM	PPM	PPM	PCT	PCT	РРМ	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPN	i ppm	PPM	PPM	PPM	PPN	PPH	PPM	PCT	PCT	PCT	PC.	T PC	jt ppi	M
1995 79		26	5 61	.4	51.8	8257	526			6050		267	14	4	67.3	762	8528	233	>10.00	543	<10	<1	28	<1	767	<20	2	0.08	0.27	2.56	۰<.۵	1 <.0)1 1	19
Duplicate			60	.0		8484	473			6055		264	14	4	68.5	689	8655	223	>10.00	529	<10	<1	25	<1	773	<20	2	0.07	D.26	2.48	<.0	1 <.0)1 1	9
199581		2	9 >200	.0 1	1028.5	6265	>10000	>15.00	19.33	>10000	15.06	95	18	4	621.7	31	>10000	1555	>10.00	664	46	<1	10	<1	>2000	<20	10	0.03	0.03	2.56	· <.0	11 <.(J1 1	ŧ1
Duplicate				1	018.6			>15.00			14.97																							
199582		8	4 >200	.0 1	1082.1	599 0	>10000	×15.00	22,41	>10000	17.61	64	15	4	702.9	<5	>10000	1686	>10.00	696	5 61	<	19	<1	>2000	<20	5	0.01	0.04	2,71	<.0	11 <.(31 1	10
Duplicate				1	1073.9																													
199601		<	5 11	.9		64	1513			1297		18	57	9	9.1	ক	401	37	6.40	335	5 <10	12	106	21	36	s <20	3	0.40	0.35	2.90) <.0)1 O.	16 5	51
Duplicate		<	5																															
199602		<	5 53	.3	49.8	1738	4314			3163		9	30	4	19.0	144	1624	111	>10.00	105	₹10	e	5 20	1	<20) <20	<1	<.01	0.04	0.30) <.() 1 <. f	01	2
Duplicate					50.1																													
199603		<	5 >200	.0	900.6	3045	>10000	>15.00	16.17	>10000	5.40	5	19	4	196.4	246	2838	711	>10.00	12	5 13	<1	44	<1	1984	<20	2	<.01	<.01	0.02	2 <.()1 <./	01	1
Duplicate					901.1																													
199606			6 58	1.9	54.8	883	1305			>10000	2.06	5	18	4	73.4	232	1317	222	>10.00	254	4 <10	<	29	<1	<20) ~2 0	1	<.01	0.04	2.76	5 <.()1 <.º	01 [·]	14
Duplicate					59.2																													
199608			91	.8		<1	41			46		6	22	2	0.3	4	17	· <5	8.04	297	2 <10	3	<	3	<2) <20) 4	<.01	0.33	s >10.00) <.(01 <.	01 1;	21
Prep Duplic	ate		61	.7		<1	34			37		6	19	2	0.2	-5	13		6.75	29	5 <10	37	5 9	3	<21) <20) 4	<.01	0.32	2 >10.00) <.()1 <.'	01 17	25
199614		<	5 Ż	2.4		3	140	1		218		3	3	<1	0.8	ঁ	<5	i <5	0.33	36	4 <10	23	i 1	1	-21) <20) 4	0.09	> 5.67	' >10.00	0 0.(01 0.	03 1 (40
Duplicate			Z	.4		3	129	•		245		Ż	3	<1	0.8	<5	<5	<	0.33	35	2 <10	23	4	3	~2	0 <20) 4	0.10	5.65	i >10.00) 0.0)1 O.	03 13	36
199615		~	5 >200).0	801.1	4477	' >10000	12.03		>10000	18.89	3	14	3	631.3	670	1212	2 651	>10.00	54	9 61	<	1 13	i <1	>200	0 < 20) <1		0.02	. 0.0	5 <.(01 <.	01 -	<1
Prep Duplic	ate	•	5 >200	0.0	782.3																													
Prep Duplic	ate				820.1	4521	>10000) 11.99		>10000	18.10	4	16	4	608.1	738	1335	683	5 >10.00	51	656	. <	1 95	i <1	>200	0 <20) <1	<.0*	0.02	2 0.04	4 <_(01 <.	.01	<1
Duplicate								12.09			19.01																							
199616			<5 >20(0.0	913.8	3 4558	s >10000) 12.81		>10000	19.31	5	14	3	679.7	1122	1295	5 753	\$ >10.00) 59	2 57	' <	1 32	2 <1	>200	0 <20) <1	<.0'	1 0.02	2 0.0	5 <.1	01 <.	.01	<1
Dupl icate					907.2	2																												

Intertek Testing Services

Bondar Clegg

2 <2 3 <1 <5 <10 <.010 <1

<1 51 <1 <1 <5 <10 <.010 <1

<1 44 <1 <1 <5 <10 < 010 <1

<1 45 <1 <1 <5 <10 <.010 <1

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE)

SAMPLE

NUMBER

199579

199581

199582

199601

199602

199603

199606

199608

199614

199615

Duplicate

Prep Duplicate

Prep Duplicate

Duplicate

199616

Duplicate

٩

£ \cdot

2

.

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00 ELEMENT Y Ga Li ND Sc Ta Ti Zr UNITS PPM PPM PPM PPM PPM PPM PCT PPH <1 <2 <1 <1 <5 <10 <.010 <1 Duplicate <1 <2 <1 <1 <5 <10 <.010 <1 <1 77 <1 <1 <5 <10 <.010 <1 Dupl icate <1 103 <1 <1 <5 <10 <.010 <1 Duplicate 6 <2 1 <1 <5 <10 < .010 13 Duplicate <1 <2 <1 <1 <5 <10 <.010 <1 Duplicate <1 3 <1 <1 <5 <10 <.010 <1 Duplicate <1 <2 <1 <1 <5 <10 <.010 <1 Duplicate 2 <2 <1 <1 <5 <10 <.010 <1 Prep Duplicate 2 <2 <1 <1 <5 <10 <.010 <1 2 <2 3 <1 <5 <10 <.010 <1

PROJECT: SILVER TIP PAGE 68(12/14)

and the second second second second second second second second second second second second second second second

PROJECT: SILVER TIP

N 5

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE)

UNITS

ELEMENT Wet Au

PPB

Ag /

PPM

SAMPLE

NUMBER

DATE RECEIVED: 31-JAN-00 DATE PRINTED: 8-FEB-00 PAGE 7A(13/14)

AgGrav	Cu	Pb	РЬ	Pb	Zn	Zn Mo	Ni Co	Cd Bi	As	sb	Fe	Min Te	Ba Cr V	Sn W La	Al Mg	Сa	Na	K Sr	
PPN	PPM	PPN	PCT	PCT	PPN	PCT PPM	PPM PPM	PPM PPN	PPM	PPM	PCT	PPM PPM	PPN PPN PPN	PPM PPM PPM	PCT PCT	PĊT	РСТ	PCT PPM	

Prep Duplicate	<5 >200.0 820.1 4521 >10000 11.99	>10000 18.10 4 16 4 608.1 738	1335 683 >10.00 516 56 <1 95 <1 >2000 <20 <1 <.01 0.02	0.04 <.01 <.01 <1
Duplicate	782.0			

. . • Υ.

CLIENT: SILVERTIP MINING CORP REPORT: V00-00177.0 (COMPLETE) Geochemical Lab Report

e

· ·

· ·

DATE RECEIVED: 31-JAN-00

DATE PRINTED: 8-FEB-00

PROJECT: SILVER TIP PAGE 78(14/14)

•

SAMPLE ELEMENT Y Ga Li ND Sc Ta ti Zr UNITS PPN PPM PPM PPM PPM PPM PCT PPM NUMBER

Prep Duplicate <1 44 <1 <1 <5 <10 <.010 <1 Duplicate

 $(A_{i}, A_{i}) = A_{i} + A_{$

· ·

× -

REPORT: V00-00233.0 (COMPLETE)

REFERENCE;

CLIENT: SILVERTIP MINING CORP PROJECT: SILVER TIP

SUBMITTED BY: C. AKELAITIS

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 22-FEB-00

date Approve	D EL	EMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT		NUMBER OF ANALYSES	LOWER Detection	EXTRACT	ION	METHOD	
000211	1 Wet A	w Partial Ext. Go	old 28	5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000211 37 T	a Tanta	alum	28	10 PPM	HCL : HNO3	(3:1)	INDUC. COL	UP. PLAS
000211	2 Ag	Silver	28	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	000211 38 T	i Tita	nium	28	0.010 PCT	HCL:HNO3	(3:1)	INDUC. COL	UP. PLAS
000211	3 AgGra	v Silver (Grav.)	15	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000211 39 z	r Zirce	onium	28	1 PPM	HCL: HNO3	(3:1)	INDUC. COL	UP. PLAS
000211	4 Cu	Copper	28	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000211	5 Pb	Lead	28	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000211	6 Pb	Lead	26	0.01 PCT	HF-HN03-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE TYP	ES	NUMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE	REPARATIONS	NUMBER
000211	7 Zn	Zinc	28	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	D DRILL C	ORE	28	2 -150		28	CRUSH/SI	PLIT & PULV.	28
000211	8 Zn	Zinc	28	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAU							RIVER R	OCK CLEANING	- 28
000211	9 Zn	Zinc	1	0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ABSORPTION							SILICA	CLEANING	28
000211	10 Mo	Molybdenum	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							OVERWEI	GHT/KG	70
000211	11 Ni	Nickel	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000211	12 Co	Cobalt	28	t ppm	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	DEMADES - D		TWAT THERE		NED TO				
000211	13 cd	Cadmium	78	0.2 004	HCL+HNO3 (3-1)		T	HE STANDAR		HICH LEVELS	OF SOME				
000211	14 Bi	Riemath	28	5 PPM	NEL-NNO3 (3-1)	INDEC COUP, PLASMA		IEMENTS IN	THE SAMPLE	e 2/11/200					
000211	15 40	Accenic	28	5 004	HCL-HNO3 (3-1)			CCHERIO IN							
000211	16 Sh	Antimon/	28	5 PPM	HCL-HN03 (3-1)										
000211	17 Fo	Iron	28			INDUC COULD PLASMA	DEPORT COD	TES TO- MD	STEVE PO	EDIST		TNVDTCE	TO- MP 5		nu .
000211	18 Mn	Manganese	28	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASHA		MR	. PAT MCAN	DLESS					
000211	19 Te	Tellurium	28	10 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASHA		********	*********	**********	******	*******	*******	**********	****
000211	20 Ba	Barium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	1	This repor	t must not	be reproduc	ed except in	full. The	data pre	sented in th	is
000211	21 Cr	Chromium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA	1	report is :	specific to	o those same	les identifi	ed under "	Sample Nu	mber" and is	,
000211	22 V	Vanadium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	i	applicable	only to t	he samples a	s received e	expressed o	n a dry b	asis unless	
000211	23 Sn	Tin	28	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	i -	otherwise	indicated	•		•	,		
000211	24 W	Tungsten	28	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	•	******	*****	*********	*****	******	********	**********	****
000211	25 La	Lanthanum	28	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	i i								
000211	26 Al	Aluminum	28	0.01 PCT	HCL:HNQ3 (3:1)	INDUC. COUP. PLASM	L .								
000211	27 Mg	Magnesium	28	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								
000211	28 Ca	Calcium	28	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	1								
000211	29 Na	Sodium	28	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								
000211	30 K	Potassium	28	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	L								
000211	31 Sr	Strontium	28	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH	L								
000211	32 Y	Yttrium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	L I								
000211	33 Ga	Gallium	28	2 PPH	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								
000211	34 Li	Lithium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								
000211	35 Nb	Niobium	28	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASH	L Contraction of the second seco								
000211	36 Sc	Scandium	28	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	N								

Cu

19

339

1

2

6 189.4 182.9 713 >20000 2.75 17044

23 335.9 347.9 1678 >20000 6.20 >20000

87 305.6 307.4 2062 >20000 5.77 >20000

158.0 159.8 1047 >20000 3.48

230.8 3386 >20000 3.45 >20000

Pb

PPM

ΡЬ

PC1

Zn

1.62

4.17

6.13

0.92

4.75

PPM

9423

Ag AgGrav

PPM PPM

PPM

8.6

49.5

5.2

12.5

229.3

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP REPORT: V00-00233.0 (COMPLETE)

SAMPLE

NUMBER

140470

140471

140472

199554

199555

199556

199557

199558

199559

199560

199566

199567

199568

199569

199570

199571

ELEMENT Wet Au

PPB

15

17

<5

<5

<5

6

UNITS

DATE RECEIVED: D9-F	EB-OO DATE	PRINTED:	22-FEB-00	PAGE	1A(17	8)
---------------------	------------	----------	-----------	------	-----	----	----

Zn	Zn Mo Ni Co	Cd Bi As Sb	Fe Min Te	e Ba Cr V	Sn Wita	Al Mg	Ca Na	K Sr Y Ga
РСТ	PCT PPM PPM PPM	PPN PPN, PPN PPN	PCT PPM PPM	1 PPM PPM PPM	PPN PPN PPN	PCT PCT	PCT PCT	PCT PPN PPM PPM

419 0.05 2048 0.21 2 7.4 7 131 25 3.08 1856 <10 47 5 8 14 6 <20 <20 7 0.01 3.69 >20.00 <.01 <.01 117 5 <2 0.35 >20000 3218 4.15 7 -16 5 147.8 240 647 254 13.36 1509 27 23 31 5 <20 94 6 <.01 2.92 16.54 <.01 <.01 76 5 <2 147 0.01 552 0.05 5 1 2.1 <5 92 13 1.32 1901 <10 52 5 <20 <20 6 <.01 5.51 >20.00 0.01 <.01 167 6 6 <2 1488 0.16 200 0.02 0.9 <5 0.88 6013 <10 145 6 8 1 42 10 6 8 <20 <20 5 <.01 1.22 >20.00 <.01 <.01 128 4 <2 6 315.5 316.1 1668 >20000 6.26 >20000 5.82 4 19 9 212.5 26 1225 426 >20.00 263 38 <1 99 3 152 159 2 <.01 <.01 0.98 <.01 <.01 3 <1 <2

> 12 63.7 149 1718 123 >20.00 91 < 10 4 55 87 112 1 <.01 <.01 6 20 5 0.18 <.01 0.01 2 <1 <2 9 146.4 54 1317 335 >20.00 210 25 <1 92 4 <.01 <.01 2 -14 2 203 102 0.99 <.01 <.01 5 <1 <2 15 9 231.9 14 1845 408 >20.00 232 39 <1 68 3 189 159 5 <.01 <.01 0.58 <.01 <.01 5 <1 <2 9 36.8 30 1638 182 >20.00 309 <10 <1 105 5 177 22 3 <.01 0.09 0.65 <.01 <.01 4 <1 <2 2 9 175.3 5 2659 498 >20.00 136 34 <1 93 3 341 118 5 <.01 <.01 - 16 0.28 <.01 <.01 2 <1 <2

199561 144 378.2 398.1 1509 >20000 7.90 >20000 4.67 5 16 8 172.3 <5 3342 487 >20.00 148 23 <1 91 4 373 125 3 <.01 <.01 0.44 <.01 <.01 2 <1 199562 21 >400.0 719.2 4044 >20000 8.57 >20000 >15.00 15.83 <1 12 7 536.7 <5 619 839 >20.00 443 57 <1 47 3 1445 442 2 <.01 0.01 0.05 <.01 <.01 <1 <1 53 5.4 <5 6 0.20 305 <10 120 9 199563 <5 7 465 0.04 347 0.02 <1 1.5 <5 3 <20 <20 6 0.08 3.12 >20.00 0.01 0.03 156 2 <2 199564 18 299.5 306.1 3020 >20000 6.54 >20000 8.20 15 10 264.8 <5 997 394 >20.00 315 44 <1 71 5 751 227 3 <.01 0.03 0.40 <.01 <.01 2 <1 18 199565 30 >400.0 655.1 2290 >20000 13.74 >20000 12.48 7 445.6 87 824 690 >20.00 409 76 3 - 14 6 61 4 609 315 2 <.01 0.02 0.74 <.01 <.01 3 <1 34

<5 232.4 228.5 3215 >20000 4.97 >20000 7 516.1 <5 848 354 >20.00 550 73 <1 76 4 1013 410 14.68 <1 15 9 <.01 0.03 1.17 <.01 <.01 5 <1 53 28 284.6 291.2 2698 >20000 5.89 >20000 9.92 17 9 344.7 <5 1422 408 >20.00 374 50 <1 98 5 353 264 8 <.01 0.01 0.64 <.01 <.01 3 <1 20 7 376.0 21 1258 435 >20.00 539 63 <1 86 3 333 242 6 <.01 0.03 2.39 <.01 <.01 11 27 324.4 337.6 2455 >20000 6.45 >20000 9.87 2 15 1 11 319 65.8 61.0 1045 10897 1.13 >20000 11.97 5 19 8 467.4 7 4682 170 >20.00 778 79 <1 103 4 119 338 6 <.01 0.01 2.79 <.01 <.01 10 <1 27 5.2 323 0.03 18 9 1202 0.13 2 2 6.1 <5 183 <5 1.10 3628 <10 30 13 2 <20 <20 9 <.01 0.21 >20.00 <.01 <.01 142 4 <2 1 <5 3.9 <1 146 0.02 195 <0.01 20 0.12 4998 <10 32 5 3 <20 <20 2 2 <1 0.9 <**5**. ര 8 <.01 0.15 >20.00 <.01 <.01 129 4 <2

199572 3.8 71 6 <1 163 <0.01 2 -2 <1 0.5 <5 18 -5 0.23 3388 <10 62 6 4 <20 <20 7 <.01 0.53 >20.00 <.01 <.01 143 4 <2 199573 35 8.7 5 649 0.07 1011 0.10 5.6 <5 295 3.46 2722 <10 89 2 2 5 <20 <20 6 9 4 8 <.01 0.68 >20.00 <.01 <.01 148 5 <2 199574 5 266.4 9 729 369 14.08 923 51 18 57 5 45 164 328.1 371.5 948 >20000 8.45 >20000 7.21 6 3 12 5 0.09 0.28 13.22 0.02 0.02 61 2 <2 199575 4.3 <1 243 0.01 392 0.03 1.6 <5 37 <5 6 2 - 4 <1 0.71 1825 <10 104 12 7 <20 <20 6 0.01 4.91 >20.00 <.01 <.01 254 5 <2 199576 <5 6.0 55 116 0.01 13453 1.44 2 47.1 36 408 4.17 1450 <10 37 21 3 <20 30 3 -5 - 18 4 0.01 8.94 19.60 0.02 0.01 89 2 <2 199577 <5 3.6 <1 33 180 <0.01 0.7 <5 Ż <1 18 <5 0.31 1019 <10 43 8 2 <20 <20 8 <.01 2.55 >20.00 <.01 <.01 260 4 <2 199585 2.1 15 73 473 0.05 2.9 <5 237 8 5.29 549 <10 116 101 11 <20 <20 9 0.53 0.77 2.04 <.01 0.25 66 568 0.05 2 53 16 7 <2

and the second second second second second second second second second second second second second second second

CLIENT: SILVERTIP MINING CORP. REPORT: VD0-00233.0 (COMPLETE)

12

.

Geochemical Lab Report

7 5 5

. ÷

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 22-FEB-00

× . .

PROJECT: SILVER TIP

PAGE 18(2/ 8)

SAMPLE	ELEMENT	Li	NЬ	Sc	Ta	Ŧi	Zr	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PCT	PPM	
140470		1	<1	<5	<10	<.010	<1	
140471		1	<1	<5	<10	<.010	<1	
140472		2	<1	<5	<10	<.010	<1	
199554		<1	<1	<5	<10	<.010	<1	
199555		<1	<1	<5	<10	<.010	<1	
199556		Z	<1	<5	<10	<.010	<1	
199557		<1	<1	<5	<10	<.010	<1	
199558		<1	<1	ব	10	<.010	<1	
199559		<1	<1	<5	<10	<.010	<1	
199560		<1	<1	~ 5	<10	<.010	<1	
199561		<1	<1	\$	<10	<.010	<1	
199562		<1	<1	<5	<10	<.010	<1	
199563		2	<1	< 5	<10	<.010	<1	
199564		<1	<1	<5	<10	<.010	<1	
199565		<1	<1	<5	<10	<.010	<1	
199566		<1	<1	<5	<10	<.010	<1	
199567		<1	<1	<5	13	<.010	<1	
199568		<1	<1	<5	<10	<.010	<1	
199569		<1	<1	<5	<10	<.010	<1	
199570		<1	<1	<5	<10	<.010	<1	
199571		<1	<1	<5	<10	<.010	<1	
199572		<1	<1	< 5	<10	<.010	<1	
199573		<1	<1	<5	<10	<.010	<1	
199574		2	<1	<5	<10	<.010	<1	
199575		1	<1	<5	<10	<.010	<1	
199576		3	<1	<5	<10	<.010	<1	
199577		<1	<1	<5	<10	<.010	<1	
199585		Z	<1	<5	<10	<.010	9	

CLIENT: SILVERTIP MINING CORP REPORT: V00-00233.0 (COMPLETE) PROJECT: SILVER TIP

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 22-FEB-00 PAGE 2A(3/ 8)

STANDARD	ELEMENT	Wet Au	Ag A	lgGrav	Cu	Pb	Pb	Zn	Zn	Zn	Мо	Ni	Co	Cdi	Bi	As	Sb	Fe	Mn	te	Ba	Çr	۷	Sn	¥.	La	AL	Mg	Cə	Na	K	Sr	Ŷ	Ga	
NAME	UNITS	PPB	PPM	PPM	PPM	PPM	PCT	PPM	PCT	PCT	ppm f	PM P	PΜ	PPM P	PM	PPM F	PPM	PCT	РРМ	ppn i	PPM I	PPM F	PM	ppm i	PPM F	фМ	PCT	рст	PĊŢ	PCT	PCT	PPM	PPM	PPM	
0X11 Oxide		2956	-	25.0	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	
Number of A	Analyses	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	
Mean Value		2956	-	25.0	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard De	eviation	-	-		-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	
Accepted V	alue	•	-	25.0	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•	•	-	-	-	-	-	•	-	-	
OX12 Oxide		6766	-	9.8	-		-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-		-	-	
Number of a	Analyses	1	-	1	•	-	-	-	•	-	-	-	-	•	-	-	-	-	-	•	•	-	-	-	•	-	-	-	-	-		• •	-	-	
Mean Value		6766	-	9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-			-	-	
Standard D	eviation	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-			•	-	
Accepted V	alue	-	-	10.4	-	-	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	-	•	•	-	-	-	•	-	-			• -	-	
GS 91-2		-	1.1	-	154	83	-	437	-	-	3	146	39	1.7	4	154	<5	7.35	1512	<10	5	209	49	<20	<20	7	1.94	2.38	3.47	0.01	0.0	680	3	1 ~2	
Number of	Analyses	-	1	-	1	1	-	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		 			· 1	
Mean Value	!	-	1.1	-	154	83	-	437	-	-	3	146	39	1.7	3	154	3	7.35	1512	5	5	209	49	10	10	7	1.94	2.38	3.47	0.0	0.0	4 80	3	<i>j</i> 1	
Standard D	eviation	-	-	-	-	•	-	-	-	•	•	-	-	-	-	•	•	-	-	-	-	•	-	-	-	-	-	•			-	- ·			
Accepted V	alue	-	0.2	-	148	20	-	148	-	-	4	135	35	0.2	1	145	1	7.20	1450	<1	6	251	50	5	12	•	1.80	2.70	4.00	0.0	1 0.0	4 7ι	2	• -	
ANALYTICAL	, BLANK	-	0,4	-	<1	41	-	3	•	-	<1	<1	<1	<0.2	ৎ	ব	ৎ	<0.01	<1	<10	<1	1	<1	<20	<20	<1	<.01	<.01	<0.01	<.0	1 <.0	1 <	1 <	<2	!
Number of	Analyses	-	1	-	1	1	-	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1 '	1 '	1	
Mean Value	5	-	0.4	-	<1	41	-	3	-	-	<1	<1	<1	0.1	3	3	3	<0.01	<1	5	<1	1	<1	10	10	<1	<.01	<.01	<0.01	<.0	1 <.0	1 <	1 <	1 1	•
Standard D	eviation	-	-	-	-	-	-	-	-	-	-	-	-	•	٠	-	-	-	-	-	•	-	-	-	-	-	-	•	•		-		- ·	• -	
Accepted V	/alue	1	<0.1	<0.1	<1	<1	<0.01	<1	<0.01	<0.01	<1	<1	<1	<0.1	<1	<1	<1	<0.01	<1	<1	<1	<1	<1	<1	<1	<1	<.01	<,01	<0.0*	<.0	1 <.0	1 <	1 <'	<1	i
BCC standa	and ME89-2	-	-	-	-	-	1.34	-	6.79	-	-	-	-	-	-	•	-	-	-	-	-	•	•	-	٠	-	-			•	-	-			
Number of	Analyses	-	-	-		-	1	-	1	-	-	-	•	-	-	-	-	-	-	-	•	•	-	-	-	-	•	• •		•	-	-	-		•
Mean Value	2	-	-	-	-	-	1.34	-	6.79	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	•	•	•				-	-	-		•
Standard (Deviation	-	-	-	-	•	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-			•	-	*	-		•
Accepted V	Value		-	-	-	-	1.32	-	6.73	6.73	-	-	-	-	•	-	-	-	-	-	-	-	٠	-	•	-					-	-	-		•

-

- -

-

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00233.0 (COMPLETE)

CTANDADD

Accepted Value

1 N N N N

Geochemical Lab Report

DATE RECEIVED: 09-FEB-00

DATE PRINTED: 22-FEB-00

PROJECT: SILVER TIP PAGE 2B(4/ 8)

STANDARD	ELEMENT	Li	Nb	Sc	Ta	Ti	Zr
NAME	UNITS	PPM	PPM	PPM	PPM	PCT	PPM
ox11 Oxide		-	-	-	-	-	-
Number of A	nalyses		-	-	-	-	-
Mean Value		-	-	-	-	-	-
Standard De	viation	-	-	-	-	-	-
Accepted Va	lue	-	-	-	-	-	-
0X12 Oxide		-	-	-	-	-	-
Number of A	Inalyses	-	•	-		-	-
Mean Value		-	-	-	-	-	-
Standard De	viation	-	-	-	-	-	•
Accepted Va	alue	-	-	-	-	-	-
GS 91-2		20	1	7	<10	<.010	5
Number of A	Inal yses	1	1	1	1	1	1
Mean Value		20	1	7	5	0.005	5
Standard De	eviation	-	-	-	-	-	-
Accepted Va	alue	24	2	6	1	0.006	5
ANALYTICAL	BLANK	<1	<1	<5	<10	<.010	<1
Number of <i>I</i>	Analyses	1	1	1	1	1	1
Mean Value		<1	<1	3	5	0.005	<1
Standard D	eviation	-			-	-	-
Accepted Vi	alue	<1	<1	<1	<1	<.001	<1
BCC standa	rd ME89-2	-		. <u>-</u>	. <u>-</u>	-	
Number of <i>i</i>	Analyses	-		-	-	-	
Mean Value						-	•
Standard D	eviation	-		· -		-	

Geochemical Lab Report

~

1

~

· ·

.

PROJECT: SILVER TIP

PAGE 3A(5/8) DATE RECEIVED: 09-FE8-00 DATE PRINTED: 22-FE8-00

SAMPLE	ELEMENT W	et Au	Ag	AgGrav	Cu	РЬ	Рb	Zn	Zn	Zn Mo	Ni	Co	Cd	Bi	As	5b	Fe	Mn	Ťe	Ba	Сг	۷	Sn	W.	La Al	. Mę	9	Ca	Na	ĸ	Sr	Y	Ga
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	PCT	PPM	PCT	PCT PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PP N	PPM	PPM F	PPM	PPM F	PPM P	PM PC	PC ³	r	рст	PCT	PCT	PPM F	PM F	PM
1/0/70		10	o 4		10	<i>k</i> 10	0.05	207.8	0.21	Ŕ	17	,	7.6	7	131	25	3.08	1856	<10	47	5	6	<20	<20	7 0.0	13.6	? >20	.00 •	:.01	<.01	117	5	<2
140470 Duplicate		. 15	0.0		19	419	0.05	2040	0.21	Ű	14	e.	7.4	'		0	5.00	10,0	10		2	Ū	-20	-20	, .,.				•				
Dupticate							0.05		VIL,																								
199554		<5	12.5		z	14 88	0.16	200	0.02	6	8	1	0.9	<5	42	10	0.88	6013	<10	145	6	8	<20	<20	5 <.0	1 1.2	2 >20	. 00 ·	¢,01	<.01	128	4	<2
Duplicate		<5	12.2		2	1504		214		7	7	<1	1.4	ব	40	<5	0.85	5882	<10	141	9	6	<20	<20	5 <.0	1 1.2	0 >20),00 ·	<.01	<.01	105	3	<2
100555		6	315.5	316.1	1668	>20000	6.26	>20000	5.82	4	19	9	212.5	26	1225	426	>20.00	263	38	<1	99	3	152	159	2 <.0	1 <.0	1 ().98 ·	<.01	<.01	3	<1	<2
Duplicate		•	2.2.2	319_1																													
100554		4	180 /	197 0	713	>20000	275	17044	1.62	6	20	12	63.7	149	1718	123	>20.00	91	<10	4	55	5	87	112	1 <.0	1 <.0	1 (0.18	<.01	0.01	2	<1 ·	<2
Duplicate		0	107.4	186.9	113	~20000	2.13	11044	1.00	Ū	. 20	12	05.7	,			- 20.00					-	-										
												-							~~			4	207						- 01	- 01	F	.1	-3
199557		<5	229.3	230.8	3386	>20000	3.45	>20000	4.17	2	14	9	146.4	54	1317	335	>20.00	210	B	<1	92	2	203	10Z	4 <.0	1 <.0	1	J.99	<.UI	<.01	2	51	~2
Duplicate				225.7																													
199558		23	335.9	347.9	1678	>20000	6.20	>20000	6.13	1	15	9	231.9	14	1845	408	>20.00	232	39	<1	68	3	189	159	5 <.0	t <.0	H I	0.58	<_01	<.01	5	<1	<z< td=""></z<>
Duplicate				348.5																													
199559		6	158.0	159.8	1047	>20000	3.48	9423	0.92	6	5 17	9	36.8	30	1638	182	>20.00	309	<10	<1	105	5	177	Z 2	3 <.0	1 0.0	19 =	0.65	<_01	<.01	4	<1	<2
Duplicate				164.1																													
100540		07	705 4	107 /	2042	>20000	5 77	<u>√20000</u>	45	2) 16		175 3	5	2659	40R	>20.00	134	. 74	<1	9 3	3	341	118	5 <.C	1 <.(11	0.28	<.01	<.01	2	<1	<2
Duplicate		07	303.0	306.0		20000	5.83	-20000	4.79	-				-	2057					•		-							·				
Vapricare				20010			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																										
199561		144	378.2	398.1	15 09	>20000	7.90	>20000	4.67	5	5 16	. 8	172.3	<5	3342	487	>20.00) 148	3 23	<1	91	4	373	125	3 <.()1 <.()1	0.44	<.01	<.01	S	<1	2
Prep Duplic	ate	142	381.4	410.0)															_		_											_
Prep Duplic	ate			387.2	1687	>20000	7.35	>20000	4.31	ć	5 18	10	161.5	- 5	3460	499	>20.00) 163	: 22	<1	111	5	407	116	4 <.(11 <.()1	0,50	<.01	<.01	4	<1	~2
199565		30	>400.0	655.1	2290	>20000	13.74	>20000	12.48	3	3 14	7	445.6	87	824	690	>20.00) 409	76	. 6	61	4	609	315	2 <.0	01 0.0)2	0.74	<.01	<.01	3	<1	34
Duplicate		20					13.75		12.26																								
100540		740		φ ∡1 /	1 102 E	10907	/ 1 1 ⁻¹²	50000	11 07		5 10	, (R 467 1		649	170	אח הכר	1774 ו	1, 70) 21	103	4	110	33R	6 < 1	01-0.0	01	2.79	<_01	<.01	10	<1	27
Duplicate		עוכ		61_U	5 1042 B	10077	1.13	, ~ <u>c</u> uuu	11.77		- 13								,		.03	-			- •						. 2	•	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681
• • •

~

٠

.

CLIENT: SILVERTIP	MINING CORP			PROJECT: SILVER TIP
REPORT: V00-00233.	.0 (COMPLETE)	DATE RECEIVED: 09-FEB-00	DATE PRINTED: 22-FEB-00	PAGE 38(6/ 8)
SAMPLE ELEME	ENT LI Mb Sc Ta Ti Zr			
NUMBER UN [ITS PPM PPM PPM PCT PPM			
140470	1 <1 <5 <10 <.010 <1			
Duplicate				
199554	<1 <1 <5 <10 <.010 <1			
Duplicate	<1 <1 <5 <10 <.010 <1			
100555	<1 <1 <5 <10 < 010 <1			
Duplicate				
199556	2 <1 <5 <10 <.010 <1			
Duplicate				
100557	<1 <1 <5 <10 < 010 <1			
Duplicate				
199558	<1 <1 <5 10 <.010 <1			
Duplicate				
100550	<1 <1 <5 <10 < 010 <1			
Duplicate				
199560	<1 <1 <5 <10 <.010 <1			
Duplicate				
100541	<1 <1 <5 <10 < 010 <1			
Prep Dunlicate				
Prep Duplicate	<1 <1 <5 12 <.010 <1			
· ·				
100547	4 4 F 40 - 010 - 1			
Duplicate	< < <> < U <.U U <			
ownite				
199569	<1 <1 <5 <10 <_010 <1			
Duplicate				

 ٩

CLIENT: SILVERTIP MINING CORP REPORT: V00-00233.0 (COMPLETE)

. . . .

PROJECT: SILVER TIP

DATE RECEIVED: 09-FEB-00	DATE PRINTED: 22-FE0-00	PAGE	4A(7/8)
--------------------------	-------------------------	------	---------

SAMPLE	ELEMENT We	et Au	Ag	AgGrav	Ըս	Pb	Pb	Zn	Zn	Zn	Мо	Ni	Со	Cd	Bi	As	sb	Fe	Mm	Te	8a	Cr	V	Sn	W	La	AL	Mg	Ca	Na	K	Sr	Y	Ga
NUMBER	UNITS	PP8	PPM	PPM	PPM	PPM	PCT	PPM	PCT	PCT	PPM I	PPM	PPH	PPM	PPM	PPM	ррм	PCT	PPN	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM I	PPM
199570		18	5.2		9	323	0.03	1202	0.13		z	z	1	6.1	ক	183	<5	1.10	3628	<10	30	13	2	<20	<20	9	<.01	0.21	>20.00	<.01	<.01	142	4	~2
Duplicate							0.03		0.12																									
199571		<5	3.9		<1	146	0.02	195	<0.01		z	z	<1	0.9	<5	20	ব	0.12	4998	i <10	32	5	3	<20	<20	8	<.01	0.15	>20.00	<.01	<.0	129	4	<2
Duplicate			4.1		<1	132		172			2	3	<1	1.0	ৎ	16	<5	0.11	4949	<10	33	5	2	<20	<20	6	<.01	0.15	>20.00	<.01	<.01	117	3	<2
199574		6	328.1	371.5	948	>20000	8.45	>20000	7.21		3	12	5	266.4	9	729	369	14.08	923	51	18	57	5	45	164	5	0.09	0.28	13.22	0.02	0.0	2 61	Z	2
Duplicate				377.6																														
199575		6	4.3		<1	243	0.01	392	0.03		z	4	<1	1.6	ব	37	<5	0.71	1825	<10	104	12	7	<20) <20	6	0.01	4.91	>20.00	<.01	<.0	1 254	5	<2
Duplicate							<0.01		0.02																									
199577		ক	3.6		<1	33		180	<0.01		2	1	<1	0.7	45	18	ক	0.31	1015) <10	43	8	z	<2() <20	8	<.01	2.55	>20.00	<.01	۲.0	1 260	4	<2
Duplicate		<5																																
Prep Duplica	ate	142	381.4	387.2	1 687	>20000	7.35	>20000	4.31		6	18	10	161.5	ব	3460	499	>20.00	163	i 22	ব	111	5	407	7 116	. 4	<.01	<.01	0.50	<.01	<.0	14	<1	<2
Duplicate				377.5							-	-																						

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP. PAGE 4B(8/ 8) DATE PRINTED: 22-FEB-00 DATE RECEIVED: 09-FEB-00 REPORT: V00-00233.0 (COMPLETE) ELEMENT Li Nb Sc Ta Ti Zr SAMPLE NUMBER UNITS PPM PPM PPM PPM PCT PPM 199570 <1 <1 <5 <10 <.010 <1 Duplicate 199571 <1 <1 <5 <10 <.010 <1 <1 <1 <5 <10 <.010 <1 Duplicate 2 <1 <5 <10 <.010 <1 199574 Duplicate 199575 1 <1 <5 <10 <.010 <1 **Duplicate** 199577 <1 <1 <5 <10 < .010 <1 **Duplicate** Prep Duplicate <1 <1 <5 12 <.010 <1 Duplicate

N P N N N

REPORT: V00-00234.0 (COMPLETE)

REFERENCE:

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

SUBMITTED BY: R. NEG

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 28-FEB-00

DATE		NUMBER OF	LOWER			DATE		NUMBER OF	LOWER				-	
APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACT ION	METHOD	APPROVED	ELÉMENT	ANALYSES	DETECTION	EXTRACT	ION	METHU	D	-
000211 1 4	let Au Partial Ext. Gol	ld 45	5 PPB	ASH/AQ REG/D1BK	ATOMIC ABSORPTION	000211 37 Ta	a Tantalum	45	10 PPM	HCL : HNO3	(3:1)	INDUC. C	XOUP. P	PLASM
000211 2 4	g Silver	45	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ	. 000211 38 Ti	i Titanium	45	0.010 PCT	HCL:HNQ3	(3:1)	INDUC. C	20UP.P	PLASM
000211 3 A	gGrav Silver (Grav)	9	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000211 39 Zi	r Zirconium	45	1 PPM	HCL:HNO3	(3:1)	INDUC. C	JOUP. F	PLASH
000211 4 0	u Copper	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								
000211 5 F	b Lead	45	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L								:
000211 6 P	b Lead	36	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE TYPE	ES NLIMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE	PREPARATIO	IS NUM	MBER
000211 7 z	n Zinc	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	D DRILL C	ORE 45	2 - 150		45	CRUSH/S	PLIT & PULV	1.	45
000211 8 2	n Zinc	39	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY	1					RIVER R	OCK CLEANII	16	45
000211 9 2	n Zinc	1	0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ABSORPTION						SILICA	CLEANING		45
000211 10 🕨	lo Molybdenum	45	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	١					OVERMET	GHT/KG		87
000211 11 N	li Nickel	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	۱.								
000211 12 0	o Cobalt	45	1 PPH	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	h i i i i i i i i i i i i i i i i i i i								:
					<u>i</u>	REMARKS: Z	inc concentration >17	Kwill enhan	ce Tungsten					:
000211 13 0	cd Cadmium	45	0,2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	l 11	esults. Therefore, 1	iungsten con	centration					:
000211 14 E	li Bismuth	45	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	\ M	ould be greater than	true value.						
000211 15 /	ls Arsenic	45	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	N TI	here is carryover to	the blanks	and standards	:				
000211 16 9	Sb Antimony	45	5 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASMA	\ d	We to the high levels	s of lead, z	inc and					÷
000211 17 1	Fe Iron	45	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	N Ci	admium in the samples	s. RRD 2/11/	00					÷
000211 18 1	In Manganese	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	N								
000211 19 1	fe Tellurium	45	10 PPH	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COP	IES TO: MR. STEVE ROE	BERTSON		INVOICE	TO: MR. S	teve rober	ISON	:
000211 20 6	3a Barium	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	4	MR. PAT MCANE	DLESS						
000211 21 0	Cr Chrami⊔m	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	A .								
000211 22 1	/ Vanadium	45	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	N *	******	**********	**********	*******	********	*********	*****	
000211 23 9	Sn Tin	45	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	Ŋ	This report must not	be reproduc	ed except in	full. The	data pre	sented in	this	
000211 24 1	l Tungsten	45	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	L.	report is specific to applicable only to the	o those same he samples a	oles identifie as received en	ed under ": pressed o	Sample Nu n a dry h	mber" and asis unles	is s	÷
000211 25	la lanthan m	45	1 ром	HOL-HNOR (3-1)	TNDUC COUP PLASMA		otherwise indicated							-
000211 25	Le Laurinan	45		HCL +HNO3 (3:1)	INDUC. COUP. PLASMA	. +	************	**********	***********	*****	******	******	******	, ÷
000211 27	No Mognorium	45	0.01 PCT	HCL-HNO3 (3-1)	INDUC. COUP. PLASM									
000211 28	ng nagnestum Ca Calcium	45		HCL +HNO3 (3:1)	INDUC. COUP. PLASMA	4								
000211 20	La Catchum Na Codium	45	0 01 PCT	HCL .HNO3 (3.1)	INDUC COLP PLASM									
000211 30	K Potassium	45	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	Å								
000211 31	Sr. Strontium	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	h								
000211 32	Y Yttrium	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	À								
000211 33	Ga Gallium	45	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	Á								
000211 14	ti Lithium	45	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A								:
000211 35	Nb Niobium	45	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	Á								
000211 36	Sc Scandium	45	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	A								

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP REPORT: V00-00234.0 (COMPLETE)

× 1

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 28-FEB-00 PAGE 1A(1/12)

SAMPLE	ELEMENT Wet Au	Ag	AgGrav	Cu	Pb	Pb	Zn	Zn	Zn i	Mo	Nì	Co	Cd	Bî	As	Sb	Fe	e Me	Te	8a	Сг	۷	Sn	W	La A	. Mg	Ca	Na	ĸ	Sr
NUMBER	UNITS PPB	PPM	PPM	PPM	PPM	PĊT	PPM	PCT	PCT PI	PM F	PPM F	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM I	PPN	PPM	PPM (PPM PC	r pct	PCT	PCT	PCT	PPM
140473	<5	1.6		4	81		148	0.02		5	4	<1	0.9	<5	60	8	0.61	1954	<10	153	12	8	<20	<20	4 0.0	2 1.79	>20.00	<.01	<.01	168
140474	9	>400.0	831.7	2385	>20000	10.65	>20000	11.14		9	6	<1	632.2	ব	7180	>4000	17.46	6 4504	28	29	43	8 :	×4000	269	15 <.0	1 0.24	12.92	<.01	<.01	61
140475	<5	3.0		10	282	0.01	316	0.02		5	10	<1	1.6	<5	51	28	1.28	873	<10	722	3	5	<20	<20	4 0.0	1 0.63	>20.00	<.01	<,01	208
140476	11	2.7		20	301	0.03	225	0.02		6	17	<1	1.0	<5	179	43	>20.00	628	14	27	76	5	<20	<20	2 <.0	1 4.77	9.88	<.01	<.01	91
140477	<5	1.8		7	1567	0.16	10756	1.16		12	7	<1	18.0	<5	115	127	0.77	507	<10	82	8	2	<20	31	3 0.0	6 0.31	>20.00	<.01	0.02	211
140478	20	165.1	178.2	790	>20000	4.31	>20000	3.61		21	12	1	151.6	4 5	2729	887	9.42	2 809	F 19	71	56	4	355	71	20 0.0	8 0.11	>20.00	<.01	0.04	96
140479	11	2.8	l	10	840	0.09	2194	0.23		6	4	<1	9,1	<5	75	29	0.40) 632	<10	268	5	2	<20	<20	4 0.0	4 0.45	>20.00	<.01	<.01	182
140501	8	1.7		43	116	0.01	2888	0.30		2	2	<1	14.6	ক	286	<5	2.23	5 7380	<10	9	17	1	<20	<20	8 0.0	5 0.40	>20.00	<.01	0.02	168
140502	116	7.0	1	156	1308	0.13	1745	0.18		4	3	<1	9.4	ব	991	17	6.69	9 4717	^r <10	131	60	3	<20	<20	6 0.0	3 0.89	>20.00	<.01	<.01	150
140503	41	13.6		413	2460	0.26	11789	1.37		1	<1	<1	66.2	10	758	53	7.58	3 3342	2 10	137	34	2	37	32	6 0.0	3 0.60	>20.00	<.01	<.01	151
140504	<5	7.5		55	2060	0.21	3186	0.33		3	3	<1	17.4	\$	147	17	1.91	3044	5 <10	6	16	Ż	<20	<20	6 0.0	4 5.67	' >20.0 0	0.01	0.02	106
140505	11	4.4		311	6 42	0.07	1769	0.19		2	1	<1	8.7	14	252	19	4.64	678	<10	6	21	1	<20	<20	8 0.0	2 2.12	>20.00	<.01	0.01	154
140506	5	4.6		54	774	0.08	4271	0.45		3	<1	<1	21.5	- 5	109	9	1.53	5 807	3 <10	7	9	<1	<20	20	6 0.0	3 0.66	>20.00	<.01	0.02	238
140507	27	16.4	+	134	2010	0.21	12062	1,34		2	2	<1	62.7	16	296	76	5.45	5 9020	3 <10	8	27	2	<20	36	6 0.0	6 0.99	>20.00	<.01	0.03	189
140508	6	11.2	2	20	1936	0.20	5450	0.56		2	2	<1	42.6	ふ	14	24	0.39	7 6554	<10	15	6	<1	<20	<20	5 0.0	5 0.68	>20.00	<.01	0.02	: 251
140509	18	>400.0	487.8	937	>20000	7.09	>20000	11.40		4	2	<1	548.1	98	1213	554	13.73	3 203	30	9	72	4	224	271	5 0.0	2 0.19	12.75	<.01	0.01	91
140510	20	29.3	;	36	3240	0.32	2999	0.30		2	5	<1	16.2	4	165	39	1.4	680	5 <10	11	15	1	<20	<20	7 0.0	3 0.8	>20.00	<.01	<.01	233
140511	12	2.0)	2	383	0.04	81			2	2	<1	0.4	<5	<5	- 5	0.2	1 112	7 <10	17	9	2	<20	<20	5 0.1	8 1.00	5 >20.00	<.01	0.07	' 239
140512	30	51.9	60.8	514	9748	1.01	>20000	9.10		1	3	<1	438.5	6	2960	91	>20.0	0 101	5 29	12	112	5	222	216	6 0.0	7 0.44	8.57	<.01	0.06	67
140513	-5	0.9	2	S	31		163	0.02		2	2	<1	0.9	< <u>5</u>	<5	5	0.2	3 147	7 <10	40	10	S	<20	<20	40.	6 0.8) >20.00	: <. 01	0.05	235
140514	ব	1.1	I	5	132	0.01	873	0.09		4	5	<1	5.7	<5	47	' ক	0.5	1 802	5 <10	11	21	4	<20	<20	6 0.3	740	i >20.00	0.01	0.03	; 121
140515	<5	89.8	3 92.9	905	16643	1.70	>20000	>15.00 17	7.87	3	3	<1	1152.5	15	8323	427	>20.0	0 222	29	14	79	4	513	458	29 0.0	1 0.0	2.54	<.01	0.01	18
140516	8	4.7	7	10	937	0.10	2022	0.21		3	5	<1	12.2	-5	203	9	0.9	8 255	2 <10	20	24	Ż	<20	<20	7 0.1	3 0.58	3 >20.00	<.0	0.03	160
140517	<5	1.2	2	3	124	0.01	249	0,02		6	2	<1	1.3	-5	11	ক	0.5	6 184	0 <10	7	14	4	<20	<20	4 0.0	7 6.2	19.49	· <.01	1 <.01	117
140518	17	188.6	5 219.8	1329	>20000	3.01	>20000	14.73		4	3	<1	699.3	523	3022	218	19.2	3 59	7 39	13	100	4	522	377	30.	0 0.7	3.59	· <.01	1 0.03	; 30
140519	<5	i 1.4	4	6	114	<0.01	597	0.05		4	2	<1	2.8	\$	7	′ <5	0.2	7 126	9 <10	8	11	<1	<20	<20	4 0.	4 0.3	s >20.00	I <.0'	1 0.01	250
140520	<5	0.7	7	3	- 28		167	0,01		4	2	<1	0. 9	<5	7	' <5	0.3	7 147	5 <10	6	51	2	<20	<20	4 0.	6 2.4	2 >20.00	<.0	1 0.01	157
140521	<5	0.3	7	2	49	I	95			4	4	<1	0.5	<5	<5	i 5	0.8	2 177	1 <10	5	28	4	<20	<20	4 0.	17 6.5	18.10	0.0	1 0.02	2 131
140522	5	40.	7	178	11391	1.15	12140	1.40		7	9	<1	72.9	්	235	5 77	19.4	5 139	1 11	11	35	7	72	34	30.	64.8	11.35	i 0.0'	1 0.02	? 67
140523	5	i 0.4	8	4	92		92			9	9	<1	0.5	<5	63	s <5	i 1.4	2 107	4 <10	10	11	8	<20	<20	4 0.	8 6.8	5 18.76	» 0.0°	1 0.03	\$ 149

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00234.0 (COMPLETE)

PROJECT: SILVER TIP DATE PRINTED: 28-FEB-00 DATE RECEIVED: 09-FEB-00

PAGE 1B(2/12)

.

SAMPLE	ELEMENT	Y	Ga	Li	Nb	\$c	Ta	Ti	Zr	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
14.04.73		3	0	1	د1	~5	<10	< 010	<1	
140475		5	51	<	- 21	- 5	<10	< 010	<1	
140475		3	0	<1	<1	<5	<10	<.010	<1	
140476		1	8	1	<1	<5	<10	< 010	<1	
140477		2	<2	<1	<1	<5	<10	<.010	1	
140478		2	16	<1	<1	<5	<10	<.010	<1	
140479		2	<2	<1	<1	<5	<10	<,010	<1	
140501		4	<2	<1	<1	<5	<10	<.010	<1	
140502		3	2	1	<1	<5	<10	<.010	<1	
140503		3	7	<1	<1	<5	<10	<_010	<1	
140504		5	<2	2	<1	<5	<10	<.010	<1	
140505		6	~2	<	<1	-5	<10	<.010	<1	
140506		3	<2	<1	<1	- 5	<10	<.010	<1	
140507		3	4	. 1	<1	<5	<10	<.010	<1	
1405 08		2	<2	<1	<1	<5	<10	<.010	<1	
140509		3	37	' <1	<1	<5	<10	<.010	<1	
140510		4	<2	! <1	<	4	<10	<_010	<1	
140511		3	- Z	2	5 <1	<	<10	<.010	1	
140512		3	5 49	2	5 <1	- 5	<10	<.010	1> 1	
140513		3	s <2	2 7	? <1	<5	<10) <.010) <1	
140514		3	s <2	2	i <1	l <5	<10) <.010) 1	
140515		1	85	; <1	<	<	i <10	<.010) <1	
140516		3	s <2	? '	<1	<	i <10) <.010) <1	
140517		3	5 <2	2 2	2 <1	<	s <10) <.010	3 <1	
140518		<'	1 53	5 <	<		5 <10	> <.010) <1	
140519		-	3 <	2 <	1 <'	1 <	5 <10) <.010) <1	
140520			3 <	2	1 <	1 <	5 <10) <.010) <1	
140521			3 <	2	4 <	1 <	5 <1(0 <.010) <1	
140522		4	4	9	4 <	1 <	5 <1(9 <.010	⊃ <1	
140523			7 <	2	6 <	1 <	5 <10) <.010	0 1	

· · · ·

-

CLIENT: SILVERTIP MINING CORP REPORT: VOO-OO234.D (COMPLETE)

. .

PROJECT: SILVER TIP DATE PRINTED: 28-FEB-00 PAGE 2A(3/12)

UNITS PP8 PPN PPN PPN PP1 PP1 PP1 PPN PPN </th <th>SAMPLE</th> <th>ELEMENT</th> <th>Wet Au</th> <th>Ag</th> <th>AgGrav</th> <th>Cu P</th> <th>b Pt</th> <th>) Zn</th> <th>Zn</th> <th>Zn</th> <th>Mo</th> <th>Ni</th> <th>Со</th> <th>Cd</th> <th>Bi</th> <th>As</th> <th>Sb</th> <th>Fe</th> <th>Mn</th> <th>Te</th> <th>Ba</th> <th>Cr</th> <th>۷</th> <th>Sr</th> <th>1 W</th> <th>La</th> <th>AL</th> <th>Mg</th> <th>Ca</th> <th>Na</th> <th>к</th> <th>Sr</th>	SAMPLE	ELEMENT	Wet Au	Ag	AgGrav	Cu P	b Pt) Zn	Zn	Zn	Mo	Ni	Со	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	۷	Sr	1 W	La	AL	Mg	Ca	Na	к	Sr
199586 8 2.1 16 70 386 0.04 4 9 <1	NUMBER	UNITS	PP B	PPM	PPM P	PM PP	M PCI	I PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PP	(PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM
199587 22 118.8 127.6 2745 >20000 2.17 >2000 12.09 2 2 1 580.4 297 593 209 >20.00 966 31 33 70 6 456 320 3 0.06 0.13 11.33 <0.01	199586		8	2.1		16 7	0	386	0.04		4	9	<1	1.8	<5	26	6	1.01	551	<10	46	14	7	<20) <20	4	0.10	0,51	>20.00	<.01	0.03	274
199588 5 11.8 235 289 0.30 5991 0.66 5 5 <1	199587		22	118.8	127.6 27	45 >2000	0 Z.17	* >200 00	12.09		Ż	Ζ	<1	580.4	297	593	209	>20.00	966	31	33	70	6	456	5 320	3	0.06	0.13	11.33	<.01	0.02	81
199589 <5	199588		5	11.8	Z	35 289	8 0.30	5991	0.66		5	5	<1	28.8	<5	336	41	3.50	1090	<10	17	15	3	<20	24	- 4	0.05	1.01	>20.00	<.01	0.01	162
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199589		<5	39.4	z	15 467	6 0.49	>20000	3.63		11	27	4	152.0	212	1457	263	>20.00	1084	24	17	65	6	66	5 92	8	0.08	0.99	15.64	<.01	0.02	72
199591 <5 1.0 11 15 27 3 2 <1 <0.2 <5 98 <5 0.88 377 <10 10 12 <1 <20 <20 3 0.03 0.67 >20.00 <0.10 199592 35 72.1 73.2 3068 7655 0.81 2032 0.22 1 4 8 11.0 2083 1869 945 >20.00 393 27 13 85 5 263 20 8 <0.01 0.13 2 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 $<$	199590		<5	1.1		24 9	3	113	<0.01		5	14	<1	0.5	<5	119	15	2.59	1085	<10	27	19	4	<20	> <20	5	0.07	3.89	>20.00	<.01	0.01	132
199592 35 72.1 73.2 3068 7655 0.81 2032 0.22 1 4 8 11.0 2083 1869 945 >20.00 393 27 13 85 5 263 20 8 <.01	199591		<5	1.0		11 1	5	27			3	z	<1	<0.2	ক	98	<5	0.88	377	<10	10	12	<1	<20) <20	3	0.03	0,67	>20.00	<.01	0.01	260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	199592		35	72.1	73.2 30	68 · 765	5 0.8	2032	0.22		1	4	8	11.0	2083	1869	945	>20.00	393	27	13	85	5	263	s <20	8	<.01	0.18	15.56	<.01	<.01	79
199594 5 3.0 19 395 0.04 79 3 2 <1 0.6 7 424 25 4.20 1858 <10 34 19 3 <20 <20 5 0.05 1.50 >20.00 <.01 0 199595 17 9.2 55 1442 0.14 3913 0.42 3 3 <1	199593		27	1.8		14 23	0 0.03	5 45			3	2	<1	0.3	<5	122	<5	1.11	680	<10	10	13	2	<20) <20	4	0.04	0.56	>20.00	<.01	0.02	170
199595 17 9.2 55 1442 0.14 3913 0.42 3 3 <1 19.6 <5 174 17 2.52 4187 <10 27 21 1 <20 <20 7 0.02 0.33 >20.00 <.01 199596 190 66.9 72.1 381 11048 1.15 >20000 4.07 3 2 <1	199594		5	3.0		19 39	5 0.04	4 79			3	Z	<1	0.6	7	424	25	4.20	1858	<10	34	19	3	<20) <20	5	0,05	1.50	>20.00	<.01	0.01	158
199596 190 66.9 72.1 381 11048 1.15 >20000 4.07 3 2 <1 204.4 43 2304 146 18.45 2525 21 11 11 4 37 105 11 0.05 0.25 10.53 <.01 0 199597 131 13.4 202 1357 0.14 19887 2.25 <1	199595		17	9.2		55 144	2 0.14	3913	0.42		3	3	<1	19.6	<5	174	17	2.52	4187	<10	27	21	1	<20) <20	7	0.02	0.33	>20.00	<.01	<.01	155
199597 131 13.4 202 1357 0.14 19887 2.25 <1 1 109.8 14 1840 26 13.57 7496 15 9 48 3 <20 66 10 0.01 0.34 >20.00 <.01 < 199598 100 8.5 226 778 0.08 17731 1.97 3 2 <1	199596		190	66.9	72.1	81 1104	8 1.15	5 >20000	4.07		3	2	<1	204.4	43	2304	146	18.45	පප	21	11	114	4	37	7 105	11	0.05	0.25	10.53	<.01	0.01	34
199598 100 8.5 226 778 0.08 17731 1.97 3 2 <1 95.6 9 1248 26 12.43 8848 13 11 86 2 <20 56 13 0.02 0.40 >20.00 <.01 199599 <5	199597		131	13.4	2	02 135	7 0.14	4 19887	2.25		<1	1	<1	109.8	14	1840	26	13.57	7496	15	9	48	3	<20	66	10	0.01	0.34	>20.00	<.01	<.01	71
199599 <5 1.0 2 71 120 <0.01 3 2 <1 0.8 <5 <5 6 0.21 324 <10 76 8 1 <20 <20 3 0.06 3.23 >20.00 <.01 0 199600 59 11.8 492 752 0.08 >20000 2.96 1 1 <1 163.8 16 1236 49 18.22 3048 15 9 74 3 <20 80 7 0.02 2.62 14.22 <.01 0	199598		100	8.5	2	26 77	8 0.0	8 17731	1.97		3	2	<1	95.6	9	1248	26	12.43	8848	13	11	86	2	<20	a se	13	0.02	0.40	>20.00	<.01	<.01	73
199600 59 11.8 492 752 0.08 >20000 2.96 1 1 <1 163.8 16 1236 49 18.22 3048 15 9 74 3 <20 80 7 0.02 2.62 14.22 <.01 0	199599		<5	1.0		2 7	'1	120	<0.01		3	2	<1	0.8	<5	4	6	0.21	324	<10	76	8	1	<2	0 <20	3	0.06	3.23	>20.00	<.01	0.02	154
	199600		59	11.8	4	92 75	2 0.0	8 >20000	2.96		1	1	<1	163.8	16	1236	49	18.22	304 8	15	9	74	3	<2	080	7	0.02	2.62	14.22	<.01	0.0Z	48

DATE RECEIVED: 09-FEB-00

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00234.0 (COMPLETE)

,

Geochemical Lab Report

. •

DATE PRINTED: 28-FEB-00 DATE RECEIVED: 09-FEB-00

PROJECT: SILVER TIP PAGE 28(4/12)

SAMPLE	ELEMENT	Y	Ga	Li	Nb	Sc	ta	Ti	Zr	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	РСТ	PPM	
199586		- 3	<2	<1	<1	<5	<10	<.010	1	
199587		1	34	<1	<1	<5	<10	<.010	<1	
199588		4	<2	<1	<1	-5	<10	<.010	<1	
199589		6	14	1	<1	<5	<10	<.010	<1	
199590		4	<2	2	<1	<5	<10	<.010	<1	
199591		Z	<2	<1	<1	<5	<10	<,010	<1	
199592		4	13	<1	<1	<5	<10	<.010	<1	
199593		Z	<2	<1	<1	<5	<10	<.010	<1	
199594		3	<2	1	<1	<5	<10	<.010	<1	
199595		3	<2	<1	<1	<5	<10	<.010	<1	
199596		2	16	<1	<1	<5	<10	<.010	<1	
199597		3	11	<1	<1	<5	<10	<.010	<1	
199598		4	10	· <1	<1	<5	<10	<.010	<1	
199599		1	<2	2	: <1	<5	<10	<.010	<1	
199600		4	15	; 1	<1	<5	<10	<.010	<1	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

- 4.34

· 0.02

- 15.00 18.83

(4) S. S. S. S. S.

1

Mean Value

Standard Deviation

e a constante a ser a

CLIENT: SILVER REPORT: V00-00	TIP MIN: 0234.0 (ing Corf Complet	P TE)										DA	te rece	IVED:	09 · Fe	EB-00	DA	TE PRI	NTEC): 28·	FEB-	00	PA	F GE 3	NON SAC	CT: 9	SILVER	TIP			-
standard e Name	LEMENT I	Wet Au PPB	Ag PPM	AgGrav PPM	Cu PP M	Pb PPM	Pb Pct	Zn PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	s5 PPM	Fe PCT	Mn PPH	Te PPM	Sa PPM	Сг РРМ	V PPM	Sn PPM	u PPM	La PPM	Al PCT	Mg PCT	Ca PC1	i Na PC1	а К ГРСТ	Sr Sppm
0x12 0xide		7668	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-			· -
Number of Anal	yses	1	•	-	-	-		-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		· -	· -
Mean Value		7668	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		٠	•	•	-	•	-	-				· -
Standard Devia	ation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Accepted Value	2	-	•	10.4	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-			· -	
CANNET STSD-4		-	0.3	-	71	30		161	-	-	1	25	11	0.8	ব	13	<5	2.92	1240	<10	1160	32	46	<20	<20	14	1.29	0.78	1.2	5 0.0	5 0.12	2 86
Number of Anal	yses	-	1	-	1	1	-	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		<u>ا</u>	1 1	1 1
Mean Value		-	0.3	-	71	30	-	161	-	-	1	25	11	0.8	3	13	3	2.92	1240	5	1160	32	46	10	10	14	1.29	0.78	1.2	5 O.Or	5 0.12	2 86
Standard Devia	ation	-	•	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-		
Accepted Value	2	-	0.3	-	66	13	-	82	-	-	2	23	11	0.6	-	11	4	2.60	1200	-	-	30	51	-	•		-	-		•		• -
ANALYTICAL BLA	NK.	<5	<0.2	-	<1	2	-	1	-	-	<1	<1	<1	<0.2	4	ゥ	<5	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<0. 0	1 <.0	1 <.01	1 <1
ANALYTICAL BLA	NK .	٠	<0.2	-	<1	<2	-	<1	-	-	<1	<1	<1	⊲0.2	ব	<5	-5	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	⊲0.0	t <.0	1 <.01	1 <1
Number of Anal	yses	1	S	-	S	2	-	2	-	-	2	2	2	2	Ż	2	2	2	2	2	Z	2	2	2	z	2	2	2	;	2 :	27	2 2
Mean Value		3	0.1	-	<1	2	-	1	-	-	<1	<1	<1	0.1	3	3	3	<0.01	<1	5	<1	<1	<1	10	10	<1	<.01	<.01	<0.0	1 <.0	1 <.01	1 <1
Standard Devia	ation	-	-	-	-	<1	-	<1	-	-	-	-	-	•	•	•	•	-	-	-	•	-	-	-	-	-	-	-				
Accepted Value	2	1	<0.1	<0.1	<1	<1	<0.01	<1	<0.01	<0.01	<1	<1	<1	<0.1	<1	<1	<1	<0.01	<1	<1	<1	<1	⊀1	<1	<1	<1	<.01	<.01	<0.0	1 <.0	1 <.01	I <1
OX11 Oxide		-	-	23.4	-		-	-	-	-	-		-	-	-	-	_	-	-	-	-	•		-	-	-	-			-		
Number of Anal	lyses	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		-		
Mean Value		-	-	23.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-			-		
Standard Devi:	ation	-	-	•	-		-	-	•	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-			-		
Accepted Valu	e	-	-	25.0	•		-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	٠		-	-	-					
CANNET CERTIF	IED STD	-	-	-	-	-	4.36	-	>15.00	18.83	-	-	-	-	-				-	-	-	_	_	-	_	-	-			-		
CANMET CERTIF	IED STD	_	-	-	-	-	4.33	-	>15.00		-	-	_	-	_	-	•	-	-	-	-	-	-	-	-	-	_			_		
Number of Ana	lyses	-	-	-	-	-	2	-	2	1	-	-	-	-	-	-	-	-		-	-			-	-	-				_		

.

CLIENT: SILVERTIP MINING CORP REP

ŧ

Geochemical Lab

Report

PROJECT: SILVER TIP

.

REPORT: VOO-OO234.0 (COMPLETE) STANDARD ELEMENT Y Galinb Scita TiZm													
STANDARD ELEMENT Y Ga Li NHo Sc Ta Tỉ Zr NAME UNITS PPM PPM PPM PPM PPM PPM PCT PPM													
STANDARD ELEMENT Y Ga Li Nob Sc ta ti Zr NAME UNITS PPM PPM PPM PPM PPM PPM PCT PPM													
0X12 Oxide	-	-	-	-	-	-	-	-					
Number of Analyses	-	•	-	-	-	-	-	-					
Mean Value	-	-	-	-	-	-	-	-					
Standard Deviation	-	-	-	-	-	-	-	-					
Accepted Value	-	•	-	-	-	•	-	-					
CANMET STSD-4	10	2	10	4	<5	<10	0.095	<1					
Number of Analyses	1	1	1	1	1	1	1	1					
Mean Value	10	2	10	4	3	5	0.095	<1					
Standard Deviation	•	-	-	-	-	-	-	-					
Accepted Value	-	-	-	-	-	-	-	-					
ANALYTICAL BLANK	<1	~2	<1	<1	\$	<10	<.010	<1					
ANALYTICAL BLANK	<1	<2	<1	<1	<5	<10	<.010	<1					
Number of Analyses	Z	2	Z	2	2	2	2	Z					
Mean Value	<1	1	<1	<1	3	5	0.005	<1					
Standard Deviation	-	•	-	-	•	-	-	•					

<1 <1 <1 <1 <1 <1 <1 <1 <1

0X11 Oxide	-	-	-	-	-	-	-	•	
Number of Analyses	-	-	-	-	•	-	-	-	
Mean Value	•	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-	-	-	•	-	
CANNET CERTIFIED STD	-	-	-	-	-	-	-	-	
CANNET CERTIFIED STD	-	-	-	-	-	-	-	-	
Number of Analyses	-	-	-	-	-		-	-	
Mean Value	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	~	-		-	•	

DATE RECEIVED: 09-FEB-00

DATE PRINTED: 28-FEB-00

PAGE 38(6/12)

Accepted Value

	S		ite 1 2 nda	rte ur C	k ' leg	Te:	stiı	ng	Se	rv:	ic	es	5														Ge La Re	och b port	em	ical	
CLIENT: SILVE REPORT: VOO-O	RTIP MININ 0234.0 (C	ig Corp Complete	E)										DA	te reci	EIVED:	: 09 -FI	EB-00	DAT	e pri	NTED	: 28-	Fe r - Q()	PAGE	PRO 4A(IECT : 7/12	SILVE)	ER TIP			
STANDARD I Name	ELEMENT We UNITS	et Au PPB	Ag A PPM	gGrav PPM	Cu PPM	Pto PPM	Pb Pct	Zri PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	SI5 PPM	Fe PCT	Mn PPM	Те РРМ	Ba PPM ⁻	Cr PPM PF	V PH	Sn PPM P	W L: PM PPI	à A ¶ PC	t Mę TPC	g Ca r PC1	Na PCT	k Pct f	Sr PPM
Accepted Value	ė	-	-	-	-	-	4.33	-	19.02	19. 02	-	-	-	-	-	-	-	-	·	•	-	-	-	-	-	-			-	-	-
0XS Oxide		990	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-				•	-	-			-	-
Number of Ana	lyses	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	•	-	-	-	-	-	-	-	- ·	-	-	-
Mean Value		990	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•		-	-	
Standard Devi	ation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•	•	-	-	-	-	-	-	-	-		•	-	-
Accepted Valu	e	-	-	-	-	-	-	•	-	•	-	-	-	-	-	-	+	-	+	-	-	-	-	-	-	-	-	- ·		•	•

and the second second second second second second second second second second second second second second second

GS91-1	-	0.6	-	91	12	-	112	•		<1	36	5 21	0.6	\$	8	-5	4.7	1 73	34 <	10	204	56 113	<20	<20	6	3.24	1.74	1.1	16 0.	06 0.	32	39
Number of Analyses	-	1	•	1	1	-	1	-	-	1	1	1	t 1	1	1	1		1	1	1	1	1 1	1	1	1	1	1		1	1	1	1
Mean Value	-	0.6	-	91	12	-	112	-	-	<1	36	i 21	I 0.6	3	8	3	4.7	1 73	34	5	204	56 113	10	10	6	3.24	1.74	1.1	16 0.	06 0.	32	39
Standard Deviation	-	-	-	•	-	-	-	-	-	-	-			-	-	-		-	-	-	-		-	-	-	-	-		-	-	-	-
Accepted Value	8	0.7	-	95	11	-	80	-	-	2	40	18	3 0.1	1	8	1	4.7	4 72	20 -	<1	200	54 133	4	2	5	3.09	1.83	1.0	380.	06 0.	32	39

.

S 1 1

١.

٠ ,

> Geochemical Lab

Report PROJECT: SILVER TIP

DATE RECEIVED: 09-FEB-00 DATE PRINTED: 28-FEB-00

PAGE 48(8/12)

STANDARD	ELEMENT	۲	Ga	Li	NÞ	Sc	Ta	Τí	Zr	
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	

Accepted Value - - - -

OX5 Oxide	-	-	-	-	-	-	-	-	
Number of Analyses	-	-	-	-	-	-	-	-	
Mean Value	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-	٠	•	•	-	
GS 91 - 1	7	4	22	7	8	<10	0.210	10	
Number of Analyses	1	1	1	1	1	1	1	1	
Mean Value	7	4	22	7	8	5	0.210	10	
Standard Deviation	-	-	-	-	-	-	-	•	
Accepted Value	9	4	-	1	18	1	-	9	

٠

Duplicate

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP. DATE PRINTED: 28-FEB-00 PAGE 5A(9/12) DATE RECEIVED: 09-FEB-00 REPORT: V00-00234.0 (COMPLETE) K Sr W. Al Mg Сa Na v Sn La **ELEMENT Wet Au** ΡЬ Pb Zn Zn Zn Ni Со Cd Bi As Sb 1e Ba Cr SAMPLE Ag AgGrav Cu PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PCT PPM PCT DOM PPM PPM PCT DOM DDM UNITS PP8 DOM DOM **PPM** PPM PCT PCT PPM PPM 10DW NUMBER <20 <20 4 0.02 1.79 >20.00 <.01 <.01 168 0.61 1954 <10 153 12 8 0.9 60 8 <5 81 148 0.02 5 4 <1 <5 140473 1.6 4 0.01 **Duplicate** <5 7180 >4000 17.46 4504 28 29 43 8 >4000 269 15 <.01 0.24 12.92 <.01 <.01 61 9 >400.0 831.7 2385 >20000 10.65 >20000 11.14 0 <1 632.2 140474 - 6 830.0 **Duplicate** <20 31 3 0.06 0.31 >20.00 <.01 0.02 211</p> 127 0.77 507 <10 82 8 Z 18.0 <5 115 1.8 7 1567 0.16 10756 1.16 12 7 <1 140477 <5 3 0.06 0.29 >20.00 <.01 0.02 216 <20 36 500 <10 84 7 2 10668 <1 18.1 <5 107 124 0.71 <5 1.6 8 1565 12 7 **Duplicate** 71 56 4 355 71 20 0.08 0.11 >20.00 <.01 0.04 96 178.2 790 >20000 4.31 >20000 3.61 21 12 1 151.6 <5 2729 887 9.42 809 19 140478 20 165.1 180.8 Duplicate 7.58 3342 10 137 34 2 37 32 6 0.03 0.60 >20.00 <.01 <.01 151 10 758 53 1 <1 <1 66.2 140503 41 13.6 413 2460 0.26 11789 1.37 0.26 1.35 Duplicate 5 0.05 0.68 >20.00 <.01 0.02 251 5450 0.56 2 <1 42.6 <5 -14 24 0.39 6554 <10 15 6 <1 <20 <20 1936 0.20 2 11.2 20 140508 6 0.19 0.56 Duplicate 5 0.02 0.19 12.75 <.01 0.01 91 98 1213 554 13.73 2039 30 9 72 4 224 271 18 >400.0 487.8 937 >20000 7.09 >20000 11.40 140509 2 <1 548.1 457.0 **Duplicate** 91 >20.00 1016 29 12 112 5 222 216 6 0.07 0.44 8.57 <.01 0.06 67 9.10 3 <1 438.5 6 2960 9748 1.01 >20000 140512 30 51.9 60.8 514 52.3 Duplicate 0.23 1477 <10 40 10 2 <20 <20 4 0.16 0.80 >20.00 <.01 0.05 235 2 -31 163 0.02 5 2 <1 0.9 <5 <5 <5 <5 0.9 140513 0.02 Duplicate 15 8323 513 458 29 0.01 0.04 2.54 <.01 0.01 18 16643 1,70 >20000 >15.00 17.87 3 <1 1152.5 427 > 20.00 2220 29 14 - 79 4 3 140515 <5 89.8 92.9 905 524 497 31 <.01 0.04 2.68 <.01 0.01 17 15 8526 428 >20.00 2250 41 13 80 - 4 87.2 92.3 844 16754 >20000 3 3 <1 1181.8 Duplicate 0.56 1840 <10 <20 <20 4 0.07 6.21 19.49 <.01 <.01 117 0.02 -6 11 <5 7 14 4 140517 3 124 0.01 249 <1 1.3 <5 1.2 3 0.06 6.30 >20.00 <.01 <.01 113 7 <5 0.61 1665 <10 7 11 4 <20 <20 1.5 <5 1.6 2 180 0.02 286 0.03 5 3 <1 Prep Duplicate <5 522 377 3 0.10 0.78 3.59 <.01 0.03 30 3 <1 699.3 523 3022 218 19.23 597 39 13 100 4 140518 188.6 219.8 1329 >20000 3.01 >20000 14.73 17 3.02 14.64

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

• • •

.

.

.

CLIENT: SILVER	RTIP MINING CORP				PROJECT: SILVER TIP
REPORT: VOO-DO	0234.0 (COMPLETE)	D.	ATE RECEIVED: 09-FEB-00	DATE PRINTED: 28-FEB-00	PAGE 58(10/12)
SAMDIF I	FIFMENT Y Gali Nob Sc Ta Ti Zr				
NUMBER	UNITS PPM PPM PPM PPM PPM PPM PCT PPM				
140473	3 <2 1 <1 <5 <10 <.010 <1				
Duplicate					
140474	5 51 <1 <1 <5 <10 <.010 <1				
Duplicate					
140477	2 <2 <1 <1 <5 <10 <.010 1				
Duplicate	2 2 <1 <1 <5 <10 <.010 1				
140478	2 16 <1 <1 <5 <10 <.010 <1				
Duplicate					
140503	3 7 <1 <1 <5 <10 <.010 <1				
Duplicate					
140508	2 <2 <1 <1 <5 <10 <.010 <1				
Duplicate					
140509	3 37 <1 <1 <5 <10 <.010 <1				
Duplicate					
140512	3 49 3 <1 <5 <10 <.010 <1				
Duplicate					
140513	3 <2 2 <1 <5 <10 <.010 <1				
Duplicate					
140515	1 85 <1 <1 <5 <10 <.010 <1				
Duplicate	1 85 <1 <1 <5 <10 <.010 <1				
140517	3 <2 2 <1 <5 <10 <.010 <1				
Prep Duplica	te 3 <2 2 <1 <5 <10 <.010 <1				
140518	<1 53 <1 <1 <5 <10 <.010 <1				
Duplicate					

x 4

. .

× .

CLIENT: SILV REPORT: VOO-	VERTIP MINI -00234.0 (ng cor Comple	P TE)										DA	TE REC	EIVED	: 09-1	EB-00	DA	ITE	PRINTE	D: 2	2 8 - FI	EB-O	0	PAC	р ЭЕ б	ROJE A(11	(/12)	SILVER	HP			
SAMPLE	ELEMENT W	let Au	Ag	AgGrav	Cu	РЬ	РЪ	Zn	Zn	Z'n	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	2	Min Te	E	la	Cr	۷	Şn	¥	La	AL	Mg	Ca	i Na	ı K	Sr
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	PCT	PPM	PCT	PCT	PPH	PPM	PPM	PPM	PPM	PPM	PPM	PC1	r P	ipm ppm	PF	WH P	PMP	PM	PPM	PPN	PPM	PCI	PCI	PCI	PUI	PCI	PPM
140521		<5	0.7		2	49		95			4	4	<1	0.5	<5	ব	5	0.82	2 17	71 <10)	5	28	4	<20	<20	4	0.07	6.51	18.10	1 0.0'	0.02	: 131
Duplicate		<5																															
199587		22	118.8	127.6	2745	>20000	2.17	>20000	12.09		2	2	<1	580.4	297	593	209	>20.00	9	86 31	3	3 3	70	6	456	320	3	0.06	0.13	11.33	; <.0	0.02	: 81
Duplicate				136.6	,		2.18		12.07																								
199592		35	72.1	73.2	3068	7655	0.81	2032	0.22		1	4	8	11.0	2083	1869	945	>20.00	0 3	593 27	•	13	85	5	263	<20	8	<.01	0.18	15.50	5 <.0	t <.0 1	79
Duplicate							0.81		0.21																								
199596		190	66.9	72.1	381	11048	1.15	>20000	4.07		3	2	<1	204.4	43	2304	146	18.4	5 25	525 21	<u>ا</u>	11 1	14	4	37	105	11	0.05	0.25	10.53	\$ <.0	1 0.01	34
Duplicate			65.2		369	10976		>20000			2	3	<1	203.4	41	2231	136	18.1	2 24	482 22	2	10 1	13	4	37	104	10	0.05	0.25	10.49) <.0	1 0.01	1 33
199597		131	13.4		202	1357	0.14	19887	2.25		<1	1	<1	109.8	i 14	1840	26	13.5	7 74	496 15	i	9	48	3	<20	66	10	0.01	0.34	>20.0	0 <.0	1 <.0'	1 71
Prep Duplic	ate	134	14.9		235	1450	0.16	>20000	2.55		2	2	<1	117.5	12	5 1811	35	14.3	8 <i>6</i> 8	331 1 5	j i	10	ъ	3	<20	69	10	0.01	0.35	19.3	5 <.0	1 <.01	1 58
199600		59	11.8		492	752	0.08	>20000	2.96		1	1	<1	163.8	3 16	5 1236	49	18.Z	2 30	048 15	5	9	74	3	<20	80	7	0.02	2.62	14.2	2 <.0	1 0.0	2 48
Duplicate							0.08		2.97																								

× ·

Vancouver Branch Vancouver Branch

PROJECT: SILVER TIP

.

PAGE 68(12/12) DATE RECEIVED: 09-FEB-00 DATE PRINTED: 28-FEB-00 ELEMENT Y Ga Li Nb Sc Ta SAMPLE TI Zr NUMBER UNITS PPM PPM PPM PPM PPM PPM PCT PPM 140521 3 <2 4 <1 <5 <10 <.010 <1 Duplicate 199587 1 34 <1 <1 <5 <10 <.010 <1 Dupl icate 199592 4 13 <1 <1 <5 <10 <.010 <1 Duplicate 2 16 <1 <1 <5 <10 <.010 <1 199596 Duplicate 2 16 <1 <1 <5 <10 <.010 <1 199597 3 11 <1 <1 <5 <10 <.010 <1 Prep Duplicate 3 12 <1 <1 <5 <10 <.010 <1

199600 4 15 1 <1 <5 <10 <.010 <1

Duplicate

.

REPORT: V00-00292.0 (COMPLETE)

REFERENCE:

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

SUBMITTED BY: R. NEY DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00

ATE			NUMBER (f Lower			DATE		NUMBER OF	LOWER					-
PPROVED	ELE	MENT	ANALYSE	S DETECTION	EXTRACTION	METHOD	APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRAC	FION	METHOU	,	
00218 1	Wet Au	Partial Ext. Go	old 4	3 5 PPB	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000218 37 NI	o Niobium	43	1 PPM	HCL : HNO3	(3:1)	INDUC. CO	JUP. PLA	SM
00218 2	AgGrav	/ Silver (Grav.)		1 0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000218 38 \$	s Scandium	43	5 PPM	HCL:HNO3	(3:1)	INDUC. CO	JUP. PLA	S
00218 3	wt/Ag	Sample Weight		1 0.10 GM			000218 39 Te	a Tantalum	43	10 PPM	HCL:HNO3	(3:1)	INDUC. CO	JUP. PLA	S
00218 4	Ag	Silver		3 0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	000218 40 T	i Titanium	43	0.010 PCT	HCL:HNO3	(3:1)	INDUC. CO	JUP. PL#	S
00218 5	Cu	Copper	4	3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ	000218 41 Z	r Zirconium	43	1 PPM	HCL: HNO3	(3:1)	INDUC. CO	JUP. PL/	9
00218 6	Pb	Lead		3 2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
00218 7	РЬ	Lead	3	7 0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE TYP	ES NUMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE	PREPARATION:	s numbe	R
00218 8	I Pb	Lead		3 0.01 PCT		TITRIMETRIC	• • • • • • • • • • •						••••		• - :
00218 9	Zn	Zinc	4	3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	D DRILL D	DRE 43	2 - 150		43	CRUSH/S	PLIT & PULV	. 4?	5
00218 10) Zn	Zinc		2 0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY						RIVER R	OCK CLEANING	G 43	£.
00218 11	Zn	Zinc		4 0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ABSORPTION						SILICA	CLEANING	4?	5
00218 12	Mo	Malybdenum	4	3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						OVERWEI	GHT/KG	75	ذ
00218 13	i Ni	Nickel		3 1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000218 14	Co	Cobalt		3 1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS: Z	inc concentration >1	X will enhar	ice Tungsten					;
00218 15	i Cd	Cadmium		3 0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	r	esults. Therefore,	Tungsten cor	centration					
00218 16	5 8 i	Bismuth		3 5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	W	puld be greater than	true value.						
000218 17	7 As	Arsenic		3 5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	Ť	here is carryover to	the blanks	and standard	ls i				
00218 18	3 Sb	Antimony		3 5 PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASMA	di i	ue to the high level n the samples. RRD 2	s of copper. /18/00	lead and zi	nc				
000218 19	7 Fe	tron		3 0.01 PCT	HCL:HW03 (3:1)	INDUC. COUP. PLASMA	P	lease note that the	reported over	er-limit Zn w	las				
000218 20) Min	Manganese		3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	d	etermined by AAS. Pl	ease advise	if titration	1				
000218 21	Te	Tellurium		3 10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	n n	esult is required.							
000218 22	2 Ba	Barium		3 1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		·							
000218 2	5 Cr	Chromium		3 1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000218 24	4 V	Vanadium		3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COP	IES TO: MR. STEVE RO	BERTSON		INVOICE	TO: MR. S	TEVE ROBERT	SON	
								MR. PAT MCAN	DLESS						
000218 2	5 Sn	Tin		3 20 PPM	HCL:HNO3 (5:1)	INDUC. COUP. PLASMA									
000218 20	6 W	Tungsten		3 20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA	*	*******************			*********	*******	********	*****	
000218 2	7 La	Lanthanum		3 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	1	This report must not	be reprodu	ed except in	n full. The	data pre	sented in t	his	
000218 28	B AL	Aluminum		3 0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASHA	h	report is specific t	o those sam	oles identifi	ed under "	Sample Nu	mber" and is	5	
000218 2	9 Mg	Magnesium		3 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASH	h	applicable only to t	he samples (as received e	expressed o	n a dry b	asis unless		
000218 3	0 Ca	Calcium		3 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	i *	otherwise indicated	********	*********	******	*******	*****	*****	
000218 3	1 Na	Sodium		43 0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	l .								
000218 3	2 K	Potassium		43 0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	L .								
000218 3	3 Sr	Strontium		4 3 1 PP H	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	L .								
000218 3	4 Y	Yttrium		43 1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	1								
000218 3	5 Ga	Gallium		43 2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	l I								
000218 3	6 Li	Lithium		43 1 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA	N N								

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00 PAGE 1A(1/14)

SAMPLE	ELEMENI	Wet A	u AgG	гау (wt/Ag	Ag	Cu	РЬ	Pb	i Pb	Zn	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Hn	Te	Ba	Cr	V	Sn	H.	La	Al	Mg	J Cr	a Na
NUMBER	UNITS	PP	B	PPM	GM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PCT F	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM I	PPM	PPM 1	PPM	PPM	PCT	PCT	PCI	Г РСТ
140480		<	5			1.8	74	203	0.03	i	1240	0.15		45	147	15	5.5	< 5	54	16	5.20	268	<10	64	00 -	180	c20	<20	6 (0.84	. n रा	د د <u>د</u>	7 e 01
140481		<	5 107	7.1	15.63	>400.0	3670	>20000	>15.00	17.24	>20000	4.73		<1	13	5	236.0	404	2660	944	>20.00	357	20	71	100	Å	1045	-20 -20		7.00 n.ñv.	0.00	, <u> </u>	0 × 01
140482		<	5 89	8.7	15.39	>400.0	5226	>20000	14.18		>20000	9.03		<1	13	7	448.1	749	2010	867	>20.00	484	52	24	76	6	3040	<20	<1 (າ.04 ຄ.ດ2	50.00 50.07	, J.J.	7 - 01
140483		<	5 139	2.5	15.13	>400.0	2390	>20000	>15.00	23.95	>20000	8.26		<1	10	4	418.5	487	1787	1321	>20.00	317	46	17	120	4	1333	~20		7.04 0.04	0.01	5 1 7 [.]	1 × 01
140484		<	5			Z.7	24	161	0.02		79			2	2	<1	<0.2	<5	ح	্	0.27	318	<10	154	3	3	<20	<20	1 (D.16	4.80) >20.00	J 0.01
140485		<	5			4.4	59	404	0.04		454	0.04		9	93	4	1.8	<5	88	21	9.90	1020	<10	125	69	43	<20	<20	21	0.22	! 0.34	14.5	9 <.01
140486		<	5 46	6.4	15.64	>400.0	2544	>20000	6.96	,	>20000	7.49		2	26	5	344.8	363	1367	424	>20.00	875	57	115	95	19	1272	<20	2 (0.13	0.17	2 9.3	4 <.01
140487		<	5			2.9	22	90			213	50.0		2	2	<1	0.5	ক	7	<5	0.16	273	<10	680	1	11	<20	<20	1 (0.01	0.41	>20_0	0 <.01
140488		<	5			6.9	54	243	0.03		2264	0.25		3	5	<1	10.5	17	61	12	0.73	625	<10	595	4	9	<20	<20	31	0.11	0.38	3 >20.00	0 <.01
140489		<	57	5.4	15.62	80.6	1015	5580	0.55		>20000	11.46		1	11	1	524.6	332	1320	144	17.41	883	44	46	69	15	103	<20	3 (0.09	0.23	14.4	3 <.01
140490		<	5			9.1	155	195	0.02		10624	1.11		4	9	<1	49.1	51	151	14	2.19	1089	<10	160	13	13	<20	<20	3 (0.05	0.45	5 >20.0(0 <.01
140491		<	5 17	5.9	15.17	172.0	935	>20000	2.77	,	>20000	2.85		6	21	3	143.2	77	359	170	5.35	1054	13	205	70	17	573	<20	3 (J.13	0.61	>20.00) <.01
140492		<	5			5.0	150	345	0.03		6966	0.67		5	5	<1	33.0	14	192	37	1.97	779	<10	280	3	7	80	<20	2 (ð. <mark>03</mark>	0.21	>20.00) <.01
140493		<	5			17 .9	125	2538	0.24		4357	0.44		4	15	2	21.1	23	106	21	1.92	2275	<10	336	23	7	41	<20	4 (<u>9, 13</u>	0.26	>20.0r) <.01
140494		<	54	9.9	15.65	50.6	363	7417	0.74		13102	1.34		7	32	5	62.7	60	218	69	4.73	906	<10	155	74	18	177	<20	4 (J.31	0.53	13.92	\$ <.01
140495		<	5			20.1	136	2867	0.28		4422	0.43		4	13	2	21.0	21	75	21	2 01	1625	<10	382	20	10	50	~20	3.1	0 11	0.21	isto or	0 - 01
140496		</td <td>55</td> <td>5.2</td> <td>15.45</td> <td>64.6</td> <td>192</td> <td>10996</td> <td>1.10</td> <td></td> <td>10390</td> <td>1.08</td> <td></td> <td>6</td> <td>26</td> <td>4</td> <td>50.6</td> <td>85</td> <td>146</td> <td>63</td> <td>3 31</td> <td>1260</td> <td><10</td> <td>83</td> <td>47</td> <td>15</td> <td>89</td> <td>~20</td> <td>30</td> <td>7.11 0.20</td> <td>10.31 77.01</td> <td>-20.0</td> <td>/ 5.01 6 2 01</td>	55	5.2	15.45	64.6	192	10996	1.10		10390	1.08		6	26	4	50.6	85	146	63	3 31	1260	<10	83	47	15	89	~20	30	7.11 0.20	10.31 77.01	-20.0	/ 5.01 6 2 01
140497		<	5 14	6. 0	15.14	146.6	641	>20000	2.43		>20000	3.53		5	28	4	158.9	143	485	125	11.24	631	17	ÂQ	104	18	218	~20 ~20	31	7.20 n 25	17.0	0.00	2 ~ 01
140498		</td <td>5 78</td> <td>7.5</td> <td>15.89</td> <td>>400.0</td> <td>252</td> <td>>20000</td> <td>13.68</td> <td></td> <td>>20000</td> <td>8.92</td> <td></td> <td><1</td> <td>6</td> <td>1</td> <td>447.7</td> <td>112</td> <td>1534</td> <td>754</td> <td>>20.00</td> <td>210</td> <td>51</td> <td>17</td> <td>100</td> <td>5</td> <td>73</td> <td>~20 <20</td> <td>-11</td> <td>ን-ድጋ ስ በን</td> <td>0.01</td> <td>7.72 7 65/</td> <td>01</td>	5 78	7.5	15.89	>400.0	252	>20000	13.68		>20000	8.92		<1	6	1	447.7	112	1534	754	>20.00	210	51	17	100	5	73	~20 <20	-11	ን-ድጋ ስ በን	0.01	7.72 7 65/	01
140499		<	54	1.2	15.17	63.6	684	9445	0.93		>20000	3.54		8	41	5	160.5	42	509	59	9.46	479	22	43	109	26	281	<20	3 ().25	0.51	5.92	5 <.01
140500		(5			11.3	501	231	0.02		953	0.10		8	84	8	4.6	73	321	104	13.99	292	<10	47	134	18	<20	<20	4 (0.32	0.27	7 3.6	3 <.01
140551		<	5			12.6	69	1560	0.15		3676	0.38		8	26	3	18.7	16	234	21	3.78	804	10	268	50	18	21	<20	3 (0 .27	2.08	15.03	5 <.01
140552		<	5			5.6	84	319	0.03		284	0.04		<1	53	24	3.3	15	1128	<5	18.19	542	<10	39	161	22	<20	<20	5 (3.88	0.99	, Z.9	5 0.01
140553		<	5			5.8	28	982	0.10		208	0.04		2	1	<1	0.8	6	123	7	1.46	519	<10	60	2	3	<20	<20	2 (3.01	3.15	>20.00) <.01
140554		<	5 31	5.4 1	15.64	333.6	2906	10286	0.99		>20000	>15.00 21	1.21	<1	7	Z	1030.3	2029	586	104	>20.00	626	110	15	41	8	31 -	<20	<1 ().09	0.19	1.10) <.01
140555		<	5 15	1.4	15.77	157,3	801	>20000	2.22		>20000	7.38		<1	2	<1	320.3	262	205	111	11.40	521	<10	48	18	5	<20	<20	2 ().0 4	0.56	>20.00) <.01
140556		<	5 66	9.3	15.74	>400.0	4162	>20000	12.98		>20000	14.98		<1	4	3	710.1	164	457	641	>20.00	411	45	6	85	4	1517	<20	3 (J.03	0.05	0.48	3 <.01
140557		<	5 90	2.3	15.60	>400.0	5926	>20000	>15.00	16.11	>20000	>15.00 21	1.39	<1	4	6	1047.5	244	293	1033	>20.00	548	43	4	69	3	3212	<20	2 ().01	0.04	0.11	< .01
140558		<	5 36	5.8	15.73	378.6	3954	>20000	4.47		>20000	>15.00 15	7.31	<1	4	3	923.3	427	666	427	>20.00	539	45	5	63	4	1268	<20	2 ().02	0.04	0.07	′ <.01
140559		<	5 37	3.6	15.50	372.1	3225	>20000	4.62		>20000	9.50		<1	1	2	479.6	421	257	237	>20.00	359	48	4	55	5	87	<20	1.0).03	0.03	0.02	2 <.01

٠. ۴.

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00292.0 (COMPLETE) Geochemical Lab Report

.

÷

DATE RECEIVED: 16-FEB-00

٠.

PROJECT: SILVER TIP DATE PRINTED: 28-FEB-00 PAGE 1B(2/14)

SAMPLE	ELEMENT	ĸ	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPN	PPM	PPM	PCT	PPM
140480		0.04	46	7	<2	6	14	<5	<10	0.035	16
140481		<.01	9	1	14	<1	<1	<5	<10	<.010	<1
140482		<.01	11	1	41	<1	<1	<5	<10	<.010	<1
140483		<.01	7	<1	32	<1	<1	<5	<10	<.010	<1
140484		0.04	125	2	<2	2	<1	<5	<10	<.010	1
140485		0.02	86	4	<2	5	2	ব	<10	<.010	<1
140486		0.03	26	3	21	<1	<1	<5	<10	<.010	<1
140487		<.01	202	3	<2	<1	1	<5	<10	<.010	<1
140488		0.02	114	4	<2	<1	<1	<5	<10	<.010	1
140489		0.01	58	4	16	<1	<1	<5	<10	<.010	<1
140490		<.01	117	5	<2	<1	<1	<5	<10	<.010	1
140491		0.03	74	4	6	<1	<1	<5	<10	<.010	<1
140492		<.01	120	5	3	<1	<1	<5	<10	<.010	<1
140493		0.04	97	8	2	<1	<1	< <u>5</u>	<10	<.010	2
140494		0.11	76	6	<2	1	<1	<5	<10	<.010	2
140495		0.03	100	6	<2	<1	<1	<5	<10	<.010	2
140496		0.05	70	6	<2	<1	<1	<5	<10	<.010	4
140497		0.08	39	4	7	<1	<1	<5	<10	<.010	<1
140498		<,01	3	<1	21	<1	<1	<5	<10	<.010	<1
140499		0.09	58	4	11	<1	<1	<5	<10	<.010	z
					_	_		_			
140500		0.11	34	11	<2	1	<1	<5 -	<10	<.010	2
140551		0,10	66	5	<2	<	<1	ঁ	<10	<.010	2
140552		0.33	69	8	< 2 -	4	- <1	<5	<10	<.010	4
140553		<.01	109	4	<2	<1	<1	<5	<10	<.010	<1
140554		0.04	4	<1	24	5	<1	<5	<10	<.010	<1
			_		-			_	· •		
140555		0.02	. 75	4	< <2 	<1	<1	<5	<10	<.010	<1
140556		<.01	2	! <1	59	<1	<	<5	<10	<.010	<1
140557		<.01	<1	<1	104	<1	<1	<5	<10	<.010	<1
140558		<.01	<	<1	71	∣ <1	<1	<5	i <10	<.010	<1
140559		<_01	<	I <1	I <2	< <	< <	i <5	· <10	∣ <.010	<1

÷4.

.

.

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00 PAGE 2A(3/14)

÷4

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

•

N 6 N

SAMPLE	ELEMENT	Wet A	u Ag(Grav	wt/Ag	Ag	Cu	Pb	РЬ	РЬ	Zn	Zn	Zn	Мо	Ni	Co	Cď	Bi	As	sb	Fe	Mn	Te	Ba	Ċr	V	Sn	W	La	AL	. Mg	Ca	Na
NUMBER	UNITS	PP	B	PPM	GM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPN	PPM	P PM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT
140560		¢	5 49	91.8	15.94	>400.0	3148	>20000	5.87		>20000	9.40		<1	2	z	473.7	598	189	265	>20.00	342	42	5	37	6	82	<20	<1	0.03	60.03	0.02	<.01
140561		<	5 18	37.9	15.92	196.6	4106	>20000	2.45		>20000	12.96		<1	2	3	633.8	262	246	122	>20.00	426	17	5	63	6	789	331	1	0.03	\$ 0.07	0.02	<.01
140562		<	5 48	89.9	15.19	>400.0	5159	>20000	9.61		>20000	>15.00	19.38	<1	5	4	887.1	93	143	574	>20.00	551	28	9	74	6	1641	<20	<1	0.03	\$ 0.05	0.13	<.01
140563		<	5			2.5	10	93			197	<0.01		1	2	<1	0.6	<5	<5	-5	0.24	288	<10	370	4	3	<20	<20	1	0.13	\$ 4.17	/ >20.00	0.01
140564		<	5			7.4	30	967	0.10		946	0.08		1	Z	<1	4.5	<5	10	9	0. 66	310	<10	135	5	3	<20	<20	2	0.02	2 0.83	> 20.0 0	<.01
140565		<	5			2.0	12	205	0.02		2945	0.29		1	9	<1	7.4	<5	31	16	11.56	650	<10	98	12	5	<20	<20	1	0.02	2 5.75	>20.00	0.01
199619		<	5			1.6	36	92			273	0.02		19	65	7	1.0	<5	71	10	2.01	335	<10	119	185	49	<20	<20	2	0.48	3 0.47	4.02	<.01
199620		<	5			6.6	161	337	0.04		2036	0.20		66	217	20	9.7	37	271	31	9.19	377	<10	62	92	121	<20	<20	7	0.6E	3 0.15	7.88	<.01
199621		<	5 7	76.7	15.89	75.2	1351	1359	0.13		>20000	9.16		6	61	4	427.7	704	548	139	>20.00	268	45	58	154	10	<20	<20	<1	0.0	5 0.05	2.08	<.01
199622		<	5			3.1	51	87			731	0.07		39	135	13	3.4	6	85	z	2.47	264	<10	249	142	82	<20	<20	7	0.61	0.36	3.04	<.01
199623		<	5			2.4	13	68			596	0.05		7	24	1	2.6	5	51	9	1.72	601	<10	376	5	23	<20	<20	2	0.07	7 0.19	>20.00	<.01
199624		<	5			4.6	25	117	0.01		185	<0.01		5	59	2	0.3	-5	64	28	>20.00	1290	<10	28	25	29	<20	<20	2	0.07	7 1.27	[,] 13.18	<.01
199625		<	5			2.1	27	75			215	<0.01		5	36	4	<0.2	<5	188	45	14.01	1209	11	128	209	10	<20	<20	3	0.04	0.2	>20.00	<.01

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00292.0 (COMPLETE)

2 N

. . .

4 *

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00

PROJECT: SILVER TIP

PAGE 28(4/14)

SAMPLE	ELEMENT	ĸ	۶r	Y	Ga	Li	Nb	Sc	Ta	Ti	Z٢
NUMBER	UNITS	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
140560		<.01	<1	<1	<2	<1	<1	<5	<10	<.010	<1
140561		<.01	<1	<1	29	<1	<1	<5	<10	<.010	<1
140562		<.01	<1	<1	87	<1	<1	<5	<10	<.010	<1
140563		0.04	129	2	<2	2	<1	<5	<10	<.010	<1
140564		<.01	144	4	<2	<1	<1	<5	<10	<.010	<1
140565		<.01	127	3	<2	1	<1	<5	<10	<.010	<1
199619		0.04	32	4	<2	4	4	<5	<10	<.010	9
199620		0.06	119	13	<2	5	8	ৎ	<10	<.010	13
199621		0.01	6	2	5	<1	<1	<5	<10	<.010	<1
199622		0.14	27	6	<2	3	6	<5	<10	<.010	14
199623		0.02	134	5	<2	<1	2	<5	<10	<.010	2
199624		<.01	57	5	<2	<1	<1	<5	<10	<.010	<1
199625		<.01	118	4	<2	<1	<1	<5	<10	<.010	<1

(A) Y Y A. (19)

CLIENT: SILVERTIP MINING CORP. PROJECT: SILVER TIP REPORT: V00-00292.0 (COMPLETE) DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00 PAGE 3A(5/14) STANDARD ELEMENT Wet Au AgGrav wt/Ag ΡЬ ΡЬ Zn Zn Ni Co Ag. Cu ΡЬ Zn Mo Cđ Bi Sb As. Mm Je Ba Cr V. Sn W La AL Mg Ca Na Fe NAME UNITS PPB GM PPM. PPM PPM PPM PCT PCT PPM PCT PCT PPM PPM PPM PPM PPM PPM PPH PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT 0X9 Oxide 467 Number of Analyses 1 Mean Value 467 Standard Deviation Accepted Value OX11 Oxide 2874 25.6 Number of Analyses 1 1 2874 25.6 Mean Value Standard Deviation 25.0 Accepted Value CANMET LKSD-2 0.8 45 88 297 23 - 17 1.0 **5** 10 <5 3.56 1863 <10 230 32 43 <20 <20 53 1.69 0.61 0.61 0.04 - 1 Number of Analyses 1 1 1 1 -1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 88 297 Mean Value 45 23 17 5 230 32 43 1 1.0 3 10 3 3.56 1863 10 10 53 1.69 0.61 0.61 0.04 Standard Deviation --_ . 40 200 2 23 17 Accepted Value 0.8 36 Û.8 9 3.50 1840 29 48 1 . -CANMET CERTIFIED STD 4.40 - >15.00 18.89 -CANMET CERTIFIED STD 4.41 - >15.00 • -Number of Analyses 2 2 _ Mean Value _ 4.40 15.00 18.89 -Standard Deviation Accepted Value 4.33 4.33 - 19.02 19.02

ANALYTICAL BLANK	-	-	-	<0.2	9	6	-	-	38	-	-	<1	<1	<1	<0.2	\$	<5	ح	<0.01	<1 <	10 -	c1	<1	<1	<20	<20	<1 <	.01 <	.01	<0.01 <.	01
ANALYTICAL BLANK	-	-	-	<0.2	6	4	-	-	17	•	-	<1	<1	<1	<0.2	<5	< 5	\$	<0.01	<1 <	10 -	<1	<1	<1	< 2 0 ·	<50	<1 <	.01 <	.01	<0.01 <.	01
Number of Analyses	-	-	-	2	2	2	-	-	2	-	-	2	2	2	2	2	2	2	5	z	2	2	2	z	2	2	2	Z	2	Z	2
Mean Value	-	-	-	0.1	7	5	-		28	-	-	<1	<1	<1	0.1	3	3	3	<0.01	<1	5 ·	<1	<1	<1	10	10	<1 <	.01 <	.01	<0.01 <.	.01
Standard Deviation	-	-	-	-	2	2	-	-	15	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-		-	-	-

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

A 6 A

ANALYTICAL BLANK	<.01	<1	<1	<2	<1	<1	<5	<10	<.010	<1
ANALYTICAL BLANK	<.01	<1	<1	~?	<1	<1	<5	<10	<.010	<1
Number of Analyses	2	2	2	2	2	2	2	2	2	2
Mean Value	<.01	<1	<1	1	<1	<1	3	5	0.005	<1
Standard Deviation	-	-	-	-	-	-	-	-	-	-

.

Geochemical Lab Report

. . . -

÷.

DATE RECEIVED: 16-FEB-00

DATE PRINTED: 28 FEB-00

PAGE 38(6/14)

PROJECT: SILVER TIP

OX9 Oxide	-	-	-	-	-	-	-	-	
Number of Analyses	-	-	-	-	-	-	-	-	
Mean Value	-	-	-		-	-	-	•	
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	-	•	-	-	-	-	-	-	
0)(11 Oxide	-	-	-	-	-	-	-	-	
Number of Analyses	-	-	•	•	-	-	-	•	
Mean Value	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-	-	•	•	-	
CANMET LKSD-2	0.23	26	28	<2	15	4	5	<10	0.08
Number of Analyses	1	1	1	1	1	1	1	1	
Mean Value	0.Z3	26	28	1	15	4	5	5	0.08
Standard Deviation	-	-	-	-	-	-	-	-	
Accepted Value	•	•	-	-	-	-	-	-	
CANMET CERTIFIED STD	-	-	-	-	-	-	-	-	
CANMET CERTIFIED STD	-	•	•	-	-	-	-	-	

1

• •

.

1

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

Υ.

· ·

.

•

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 28-FEB-00 PAGE 4A(7/14)

STANDARD	ELEMENT	Wet Au	AgGrav	wt/Ag	Ag	Сu	РЬ	Pb	РЬ	Zn	Zn	Zn	Mo	Ni	Co	Cď	Bi	As	sb	Fe	Mn	le	8a	Cr	v	Sn	W	La	AL	Mg	Ca	Na
NAME	UNITS	PPB	PPM	GM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	PPM I	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM I	PPM F	PPM	PPN F	PPM F	PPM	PCT	РСТ	PCT	PCT
Accepted Val	ue	1	<0.1	<0.01	<0.1	<1	<1	<0.01	<0.01	<1	<0.01	<0.01	<1	<1	<1	<0.1	<1	<1	<1	<0.01	<1	<1	<1	<1	<1	<1	<1	<1 <	4.01	<.01	<0.01	<.01

OX12 Oxide	6808	10.9	-	-	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-			• -	-			-	· -
Number of Analyses	1	1	-	-	-	-	-	•	-	-	-		-	-	-	-	-	-	-	-	-				-			-	· -
Mean Value	6808	10.9	-	-	•-	-	-	-	-	-	•		-	-	-	-	-	-	-	-	-				-			-	· -
Standard Deviation	-	-	-	•	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-				-			-	· · -
Accepted Value	-	10.4	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-	-				-			-	. .
GS91-2	-	-	-	0.2	170	20	-		161	-	-	2 147	39	0.3	<5	144	45	7.61	1572	<10	10 23	8 55	2	0 <20	5	2,0	6 Z.62	3.85	0.02
GS91-2 Number of Analyses	-	-	-	0.2 1	1 7 0 1	20 1	• -	•	161 1	-	- -	2 147 1 1	39 1	0.3 1	<5 1	144 1	⊲5 1	7.61 1	1572 †	<10 1	10 23 1	8 55 1 1	i	0<20 1 1	5 1	2,0	6 2.62 1 1	3.8 5	i 0.02 1
GS91-2 Number of Analyses Mean Value	-	- -	- - -	0.2 1 0.2	170 1 170	20 1 20	- - -	• -	161 1 161	- -	- - -	2 147 1 1 2 147	39 1 39	0.3 1 0.3	<5 1 3	144 1 144	<5 1 3	7.61 1 7.61	1572 1 1572	<10 1 5	10 23 1 10 23	8 55 1 1 8 55	i <2 1	0 <20 1 1 0 10	5 1 5	2.0 2.0	6 2.62 1 1 6 2.62	3.85 1 3.85	0.02 1 0.02
GS91-2 Number of Analyses Mean Value Standard Deviation	- - -	- - -	- - -	0.2 1 0.2	170 1 170 -	20 1 20 -	- - -	• • •	161 1 161 -	- - -	- - -	2 147 1 1 2 147	39 1 39 -	0.3 1 0.3	<5 1 3 -	144 1 144 -	<5 1 3 -	7.61 1 7.61 -	1572 1 1572	<10 1 5 -	10 23 1 10 23	8 55 1 1 8 55 	i <2 i 1	0 <20 1 1 0 10 	5 1 5 -	2,0 2.0	6 2.62 1 1 6 2.62 	3.85 1 3.85	; 0.02 1 ; 0.02 -

e

,

.

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

PROJECT: SILVER TIP

•

٦

DATE RECEIVED: 16-FEB-00

DATE PRINTED: 28-FEB-00

00 PAGE 4B(8/14)

STANDARD ELEMENT K Sr Y Ga Li Nib Sc Ta Ti Zr NAME UNITS PCT PPM PPM PPM PPM PPM PPM PCT PPM

Accepted Value <.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

OX12 Oxide		-	-	-	-		-	-	-	-
Number of Analyses	-	-	-	-	-	-	-	-	-	-
Mean Value	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	•	-	-	-	-	-	-	-	-
Accepted Value	-	-	•	-	-	-	-	-	-	•
GS91-2	0.06	76	4	<2	22	2	9 -	<10	<.010	4
Number of Analyses	1	1	1	1	1	1	1	1	1	1
Mean Value	0.06	76	4	1	22	2	9	5	0.005	4
Standard Deviation	-	-	-	-	•	-	-	-	-	-

х.

CLIENT: SILVERTIP MINING CORP.

Duplicate

<5

.

•

PROJECT: SILVER TIP

REPORT: VOO	D-00292.0 (C	Comple	ETE)								t	DATE REI	EIV	ED:	16-FEB-	00	DAT	TE PR	INTED: 2	28-FEI	B-00		PAGE	5A	(9/'	14)					
sample Number	ELEMENT WE UNITS	et Au PP9	AgGrev PPM	wt/Ag GM	Ag PPM	Cu PPM	Pb PPM	Pb PCT	Pb PCT	Zn PPM	Zn : PCT PC	Zn Mio CTPPMI	Ni PPM	Co PPN	Cd PPM	Bi PPM	As PPM	Sb PPH	Fe PCT	Hn PPM	Те РРМ	Ba PPM	Cr PPM (V PPM	Sn PPM	W PPM	La PPM	AL PCT	Mg PCT	Ca PC1	Na PCT
140480 Duplicate		~ 5			1.8	74	203	0.03 0.02		1240	0.15 0.1 3	45	147	15	5.5	\$	54	16	5.20	248	<10	64	99	180	<20	<20	4	0.86	0.38	2.27	′ <.01
140481 Duplicate		<5	1077.1 1122.4	15.63	>400.0	3670	>20000	>15.00	17.24 17.25	>20000	4.73	<1	13	5	236.0	404	2669	964	>20.00	357	49	71	100	6	1945	<20	<1	0.04	0.03	3.39) <.01
140482 Duplicate		<5 <5	898.7 890.6	15.39	>400.0 >400.0	5226 4892	>20000 >20000	14.18		>20000 >20000	9.03	<1 <1	13 13	7 7	448.1 433.0	249 252	2010 2010	867 872	>20.00 >20.00	484 465	52 51	24 24	76 78	6 7	3040 3041	<20 <20	<1 <1	0.04 0.04	0.03 0.03	3.77 3.60	/ <.01) <.01
140483 Duplicate		<5	1392.5 1378.4	15.13	>400.0	2390	>20000	>15_00	23.95	>20000	8.26	<1	10	4	418.5	487	1787	1321	>20.00	317	46	17	120	4	1333	<20	<1	0.04	0.03	1.71	1 <.01
140486 Duplicate		<5	466.4 467.5	15.64	>400.0	2544	>20000	6.96		>20000	7.49	2	26	5	344.8	363	1367	424	>20.00	875	57	115	95	19	1272	<20	2	0.13	0.12	9.34	i <.01
140489 Duplicate		<5	75.4 76.7	15.62	80.6	1015	5580	0.55		>20000	11.46 11.48	1	11	1	524.6	332	1320	144	17.41	883	44	46	69	15	103	<20	3	0.09	0.23	14.48	3 <.01
140491 Duplicate		<5	175.9 171.9	15.17	172.0	935	>20000	2.77		>20000	2.85	6	21	3	143.2	π	359	170	5.35	1054	13	205	70	17	573	<2 0	3	0.13	0.61	>20.00) <.01
140494 Duplicate		<5	49.9 47.7	15.65	50.6	5 363	7417	0.74 0.75		13102	1.34 1.34	7	32	5	62.7	60	218	69	4.73	906	• <10	155	74	18	177	<20	4	0.31	0.53	13.93	\$ <.01
140498 Duplicate		4	787.5 811.7	15.89	• >400. (252	>20000	13.68	ł	>20000	8.92	<1	6	1	447.7	112	1534	754	>20.00	210	51	17	109	5	73	<20	<1	0.02	0.02	0.54	4 <.01
140499 Duplicate		<5	41.2	15.17	63.6 61.8	6 684 3 692	9445 9562	0.93 0.92	; ?	>20000 >20000	3.54 3.52	8 7	41 40	5 5	160.5 160.6	42 42	509 509	59 58	9.46 9.63	479 486	22 21	43 53	109 112	26 28	281 284	<20 <20	3 3	0.25 0.27	0.51	5.91 6.00	5 <.01) <.01
140554 Duplicate		<5	315.4	15.64	333.6	5 2906	10286	0.99		>20000	>15.00 21. >15.00 21.	21 <1 25	7	Z	1030.3	2029	586	104	>20.00	626	110	15	41	8	31	<20	<1	0.09	0.19	1.10) <.01
140555		<5	151.4	15.77	7 157.3	5 801	>20000) 2.22	!	>20000	7.38	<1	2	<1	320.3	262	205	111	11.40	521	<10	48	18	5	<20	<20	Z	0.04	0.56	· >20.0(01.> د

.

. .

•

•

1

CLIENT: SILVERTIP MINING CORP

Duplicate

18

. ъ.

• ٠ •

CLIENT: SIL	VERTIP MINING CORP 1-00292 0 (COMPLETE)			PROJECT: SILVER TIP
NEFORT TOO		DATE RECEIVED. 10-TEB-00	DATE PRINTED: 20-FEB-00 PA	GE 38(10/14)
SAMPLE	ELEMENT K Sr Y Gali Nb Sc Ta Tí Zr			
NUMBER	UNITS PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM			
140480	0.04 46 7 <2 6 14 <5 <10 0.035 16			
Duplicate				
140481	<.01 9 1 14 <1 <t <.010="" <10="" <5="" <t<="" td=""><td></td><td></td><td></td></t>			
Duplicate				
140482	<.01 11 1 41 <1 <f <.010="" <10="" <5="" <f<="" td=""><td></td><td></td><td></td></f>			
Duplicate	<.01 11 1 37 <1 <1 <5 <10 <.010 <1			
140483	<.01 7 <1 32 <1 <1 <5 <10 <.010 <1			
Duplicate				
140486	0.03 26 3 21 <1 <1 <5 <10 <.010 <1			
Duplicate				
140489	0.01 58 4 16 <1 <1 <5 <10 <.010 <1			
Duplicate				
140491	0.03 74 4 6 <1 <1 <5 <10 <.010 <1			
Duplicate				
140494	0.11 76 6 <2 1 <1 <5 <10 <.010 2			
Duplicate				
1404 98	<.01 3 <1 21 <1 <5 <10 <.010 <1			
Duplicate				
140499	0.09 58 4 11 <1 <1 <5 <10 <.010 2			
Duplicate	0.10 60 4 10 <1 <1 <5 <10 <.010 2			
140554	0.04 4 <1 24 5 <1 <5 <10 <.010 <1			
Duplicate				
140555	0.02 75 4 <2 <1 <1 <5 <10 <.010 <1			

.

.

Prep Duplicate

<5

4.8

30

130 0.01

0.3 <5 65 25 >20.00 1251 <10 25 261 30 <20 <20 2 0.06 1.40 12.71 <.01

CLIENT: SILV	ERTIP MIN	ING CO	Rb.																						PROJ	ECT:	: SIL	VER 1	(I P			
REPORT: VOO-	00292.0 (COMPL	ETE)									DA	TE RE	CEIV	ED:	16-FEB	00	DA	te pr	INTED: 2	28-FE1	B-00		PAGE	6A(1	1/14	4)					
SAMPLE	ELEMENT	Wet Au	AgGrav	wt/Ag	Ag	Cu	РЬ	РЬ	РЬ	Zn	Zn	Zn	Mo	Ni	Co	Cd	8 i	As	sb	Fe	Mn	Te	8a	Cr	v	Sn	¥	La	AL	Mg	Ca	Na
NUMBER	UNITS	PPB	PPM	GM	PPM	PPM	PPM	PCT	PCT	PPM	PCT	PCT	PPM	ppm	PPM	PPM	PPM	PPM	РРМ	РСТ	PPM	PPM 1	PPM	PPM PF	M F	ipm p	PPM F	PPM I	хt	PCT	PCT	PCT
1405 56		<5	669.3	15.74	>400.0	4162	>20000	12.98		>20000	14.98		<1	4	3	710.1	164	457	641	>20.00	411	45	6	85	4 15	617 ×	<20	30	.03	0.05	0.48	<.01
Duplicate			686.3																													
140557		<5	902.3	15.60	>400.0	5926	>20000	>15.00	16.11	>20000	>15.00	21.39) <1	4	6	1047.5	244	293	1033	>20.00	548	43	4	69	3 32	212 •	<20	20	.01	0.04	0.11	<.01
Duplicate			922.5																													
140558		<5	365.8	15.73	378.6	3954	>20000	4.47		>20000	>15.00	19.31	<1	4	3	923.3	427	666	427	' >2 0.00	539	45	5	63	4 12	268 ·	<20	2 O	.02	0.04	0.07	<.01
Duplicate			370.1																													
140559		<5	373.6	15.50	372.1	3225	>20000	4.62		>20000	9.50		<1	1	2	479.6	421	257	237	' >20.0 0	359	48	4	55	5	87 ·	<20	10	.03	0.03	0.02	<.01
Duplicate			363.5					4.54			9.40																					
140560		<5	491.8	15.94	×400.0	3148	>20000	5.87		>20000	9.40		<1	2	2	473.7	598	189	265	>20.00	342	42	5	37	6	82 ·	<20	<10	.03	0.03	0.02	: <.01
Duplicate			500.0																													
140561		5	187.9	15.92	196.6	4106	>20000	2.45		>20000	12.96		<1	2	3	633.8	262	246	122	20.00	426	17	5	63	6	789 :	331	10	.03	0.02	0.02	: <.01
Duplicate			188.5																													
140562		<5	489.9	15,19	>400.0	5159	>20000	9.61		>20000	>15.00	19.38	s <1	5	4	887.1	93	143	574	>20.00	551	28	9	74	6 1	541 ·	<20	<1 0	.03	0.05	0.13	i <.01
Duplicate			523.2																													
140563		<5			2.5	10	93			197	<0.01		1	2	<1	0.6	5	<5		0.24	288	<10	370	4	3	<20	<20	10	.13	4.17	>20.00	1 0.01
Duplicate											<0.01																					
199619		<5			1.6	36	92			273	0.02		19	65	7	1.0	- 5	71	10	2.01	335	<10	119	185	49	<20	<20	20	.48	0.42	4.02	! <.01
Prep Duplica	ate	<5			1.5	34	80			307	0.02		19	64	7	1.2	6	68	10) 1.85	340) <10	150	99 (•3	<20	<20	30	.37	0.41	4.15	<.01
199621		<5	76.7	' 15 .89	75.2	1351	1359	0.13		>20000	9.16		6	61	4	427.7	704	548	139	>20.00	268	45	58	154	10	<20	<20	<1 0	1.06	0.05	2.08	l <.01
Duplicate			72.9	,																												
Prep Duplic	ate	<5			1.5	34	80	I		307	0.02	!	19	64	7	1.2	6	68	10) 1.85	340) <10	150	99 i	43	<20	<20	30	1.37	0.41	4.15	i <.01
Duplicate					1.4	32	75	i		258			19	64	7	0.9	6	68	5	1.82	338	s <10	152	94 (46	<20	<20	30	.35	0.40	4.22	! <_01
1 996 24		<5	i		4.(5 25	117	0.01		185	<0.01		5	59	2	0.3	- 5	64	28	3 >20.00	1290) <10	28	25	29	<20	<20	2 O).07	1.27	13.18	J <.01

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

6 65 2

197 <0.01

•

•

•

CLIENT: SILVERTIP MINING CORP

۲ 3

٦

. ~ .

.

CLIENT: SILVERTI	P MINING CORP 12.0 (COMPLETE)			PROJECT: SILVER TIP
ALFORT TOO POLL		PARE RECEIVED. 10-TEB-00	DATE PRINTED: COTEBIOD	FRGC 08(12/14)
SAMPLE ELEI	MENT K Sr Y GaLi Nb Sc Ta Ti Zr			
NUMBER U	NITS PCT PPM PPM PPM PPM PPM PPM PCT PPM			
140556	<.01 2 <1 59 <1 <1 <5 <10 <.010 <1			
Duplicate				
140557	<.01 <1 <1 104 <1 <1 <5 <10 <.010 <1			
Duplicate				
140558	<.01 <1 <1 71 <1 <1 <5 <10 <.010 <1			
Duplicate				
140559	<.01 <1 <1 <2 <1 <1 <5 <10 <.010 <1			
Duplicate				
140560	<.01 <1 <1 <2 <1 <7 <5 10 <.010 <1			
Duplicate				
140561	<.01 <1 <1 29 <1 <1 <5 <10 <.010 <1			
Duplicate				
140562	<.01 <1 <1 87 <1 <1 <5 <10 <.010 <1			
Duplicate				
140563	0.04.129 2 <2 2 <1 <5 <10 <.010 <1			
Duplicate				
199619	0.04 32 4 <2 4 4 <5 <10 <.010 9			
Prep Duplicate	0.03 37 4 <2 3 3 <5 <10 <.010 8			
100621	0.01 6 2 5 41 41 45 410 4 010 41			
Duplicate				
Dran Dunissa				
Duplicate	0.03 37 4 52 3 3 57 510 5.010 8 0.03 40 5 52 4 3 55 510 5.010 8			
199624	<.01 57 5 <2 <1 <1 <5 <10 <.010 <1			
Prep Duplicate	<.07 59 4 <2 <1 <1 <5 <10 <.010 <1			

and the second second second second second second second second second second second second second second second

	TS		Into Bon	erte dar (ek Cleg	Te ^{gg}	sti	ng	Se	rv	ice	S										V					Jeo Lat Rej))))))	iem t	nca	I	
CLIENT: SI REPORT: VO	UVERTIP MIN 00-00292.0 (ning Co (Compl	RP Ete)									DATE	RECET	VED:	16-FEB-	00	DAT	E PRIN	ITED: 2	2 8 -FEB	I-00		PAGE	PR 7A	OJECI (13/1	': S 14)	ILVER	TIP				
Sample Number	ELEMENT UNITS	Wet Au PPB	AgGra PPI	v wt/Ag f GM	Ag PPM	Cu PP M	РЬ РРМ	Pb PC1	РЬ РСТ	Zn PPM	Zn PCT	Zn P PCT P	Mo Ni PM PPM	Со РРМ	Cd PPM	Bi PPM	As PPM	Sb PPM	Fe PCT	Min PPM	Те РРМ	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	
Dupl icate								0.01			<0.01																					

.

~

٦

٩

.

• • •

.

,

CLIENT: SILVERTIP MINING CORP REPORT: V00-00292.0 (COMPLETE)

.

.

DATE RECEIVED: 16-FEB-00 DATE PRI

.

DATE PRINTED: 28-FE8-00 PAGE 7

PROJECT: SILVER TIP PAGE 7B(14/14)

•

SAMPLE ELEMENT K Sr Y Ga Li No Sc Ta Ti Zr NUMBER UNITS PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PPM

•

Duplicate

.

REPORT: V00-00293.0 (COMPLETE)

CLIENT: SILVERTIP MINING CORP

PROJECT: SILVER TIP

DATE

REFERENCE:

SUBMITTED BY: R. NEY

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 29-FEB-00

		Number of	LOWER										
APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	DATE APPROVED E	I FMCHT	NUMBER OF	LOWER				
000218 1 We	t Au Partial Fyt co	da za	c					ANALYSES	DETECTION	EXTRAC	TION	METHOD	. .
000218 2 Ag	Grav Silver (Crow)		2 668	ASH/AQ REG/DIBK	ATOMIC ABSORPTION	000218 77 64					-	ne maa	
000218 3 wt	/Ag Sample Unish	8	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000210 37 30	Scandium	40	5 PPM	HCL: HNO3	(3.1)		
000218 4 44	ettere	8	0.10 GM			000210 30 Ta	Tantalum	40	10 PPM		(3.1)	INDUC. CO	UP. PLASM
000210 4 49	Silver	40	0.2 PPM	HCL:HN03 (3-1)		000218 39 Ti	Titanium	40	0.010.001			INDUC, CO	UP. PLASM
000210 2 00	Lopper	4D	1 PPM	HCL - HNO3 (3+1)	THOUC. LUDP. PLASMA	000218 40 Zr	Zirconium	40	1 004	HULTHNUS	(3:1)	INDUC. CO	UP. PLASM
000210 0 PD	Lead	40	2 PPM		INDUC. COUP. PLASMA			40	I PPH	HEL HINOS	(3:1)	INDUC. CO	UP. PLASM
				Nec. 11103 (3:1)	INDUC. COUP. PLASMA								
000218 7 Pb	Lead	16	0.01.007			SAMPLE TYPES							
000218 8 Zn	Zinc	40	1 000	HE-HNUS-HCLO4-HCL	AAS LOW LEVEL ASSAY		NUMBER	SIZE FRACI	TONS	NUMBER	SAMPLE	PREPARAT LONG	Minnes
000218 9 Zn	Zinc	70	MHH I	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							•••••••••••••	NUMBER
000218 10 Zn	Zinc	20	U.UT PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY		40	2 - 150		40	CDI ISH /S		
000218 11 Mo	Not destant as	2	0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ARSORPTION						Divico o	PELL & PULY.	40 -
000218 12 Ni	Nistant	40	1 PPM	HCL:HN03 (3:1)	INDIAC COLO DI Acest						RIVER R	UCK CLEANING	40
000210 12 141	Nickel	40	1 PPM	HCL: HNO3 (3-1)	THOUGH COUP. PLASMA						SILICA	CLEANING	40
000210 17 0				(3.1)	THOUL, CULP. PLASMA						OVERWEI	GHT/KG	71
000218 13 00	Cobalt	40	1 ppm	HCL - HNDE / Z. 15									
000218 14 Cd	Cadmium	40	0 2 PPM		INDUC. COUP. PLASMA	REMARKS: There	is carrymen to a	ha himte					
000218 15 Bi	Ðismuth	40	5 004		INDUC. COUP. PLASMA	due t	the high launt-	une Dianks a	nd Standards				-
000218 16 As	Arsenic	40	5 OPM	HLL: HNUS (3:1)	INDUC. COUP. PLASMA	in th	e enclara poo ou	ot copper,	zincand lea	d			
000218 17 Sb	Antimony	40	D PHM	HCL:HNO3 (3:1)	INDUC. COUP, PLASMA	Pleas	e samples, kku Z/1	8/00					
000218 18 Fe	lton	40	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	r teas	e note tha the Zh	over-limit	result				
		40	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COLIP PLASMA	repor	teo was determined	by AAS, PL	ease advise				
000218 19 Mp	Managana					17 (1	tration result is	required.					
000218 20 To	nanganese	40	1 PPM	HCL:HNO3 (3:1)	TNDUC COURS OF ACTVA								i i
000218 21 6-	Tellurium	40	10 PPM	HCL:HNO3 (3-1)	INDIC COUP. PLASMA								
000210 21 82	Barium	40	1 PPM	HCL: HNO3 (3-1)	THOUC, COUP PLASMA	REPORT COPIES	to: MR. Steve Robe	RTSON					
000210 22 01	Chromium	40	1 PPM		INDUC. COUP. PLASMA		MR. PAT MCANDE	FCC		INVUICE TO	D: MR. ST	eve robertso	N :
000218 23 V	Vanadium	40	1 PPM		INDUC. COUP. PLASMA								
000218 24 Sn	Tín	40	20 DDM		INDUC. COUP. PLASMA	*****	******	*****					
		10	CO FFM	HUL:HNUS (3:1)	INDUC. COUP. PLASMA	This	CODOCT must must be		**********	*******	*******	*****	***
000218 25 v	Tungsten	40	20.000			COCO:	t is presiding t	e reproduced	except in f	ull. The c	i ata pres	ented in this	
000218 26 La	Lanthanim	40	ZU PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASMA	repor	LIS SPECITIC TO	those sample	s identified	under "Sa	mole Numi	beel and 2-	*
000218 27 11		40	I PPPN	HCL:HNO3 (3:1)	INDUC, COLIP PLASMA	ahhri	capie only to the	samples as	received exp	ressed on	a dev ha		
000218 28 Mg	Magnasium	40	0.01 PCT	HCL:HN03 (3:1)	INDUC, COUP PLACMA	otner	wise indicated					sis untess	
000218 20 Ca	Hagnesium	40	0.01 PCT	HCL:HN03 (3:1)	INDUC COUR DIAGNA		***************	*********	*****	******	***		
000218 70 4	Calcium	40	0.01 PCT	HCL:HNO3 (3-1)	INDIC COUP, PLASHA						*********	*********	**
SUDE DO NA	Socium	40	0.01 PCT	HEL: HNO3 (3-1)	THEOR. COUP. PLASMA								
000016 74			•		INDUC. CULP, PLASMA								
000218 51 K	Potassium	40	0.01 PCT	401 - UNIO7 - 27 - 15									
000218 32 Sr	Strontium	<u>د ،</u>	1 004	HCL/HNU3 (3:1)	INDUC. COUP. PLASMA								
000218 33 Y	Yttrium	40	1 664	HUL: HNUS (5:1)	INDUC, COUP, PLASMÀ								
000218 34 Ga	Gallium	40	1 1111	HCL:HN03 (3:1)	INDUC. COUP. PLASMA								
000218 35 Li	lithium	40	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA								
000218 36 MH	Nichium	40	1 PPM	HCL:HNO3 (3:1)	INDUC. COLIP PLASMA								
,40	anoorum	40	1 PPM	HCL:HNO3 (3:1)	INDUC COUR DIACHA								
				· -	COUR, FLASMA								

•

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00293.0 (COMPLETE)

5 1 The 1 A State

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 29-FEB-00

PAGE 1A(1/12)

NUMBER UNITS PPB PPM OM PPM PCT PPM PCT PCT PCT PCT PPM PPM PPM PPM PPM PCT PCT PCT PPM PPM	V Sn W La Al Mg Ca Na K Sr PM PPM PPM PCT PCT PCT PCT PCT PCT PPM PPM 3 <20 <20 2 <.01 0.27 >20.00 <.01 <.01 85 2 <20 <20 1 <.01 0.14 13.65 <.01 <.01 49 2 337 <20 <1 0.02 0.06 3.33 <.01 <.01 11 3 253 <20 <1 0.01 0.12 4.98 <.01 <.01 17 6 113 <20 2 0.01 3.07 >20.00 <.01 <.01 77 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 </th
140524 <5	PM PPM PPM PPM PCT PCT PCT PCT PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PCT
140524<5	3 <20 <2 <.01 0.27 >20.00 <.01 <.01 85 2 <20 <20 1 <.01 0.14 13.65 <.01 <.01 49 2 337 <20 <1 0.02 0.06 3.33 <.01 <.01 11 3 253 <20 <1 0.01 0.12 4.98 <.01 <.01 17 6 113 <20 2 0.01 3.07 >20.00 <.01 <.01 77 3 <20 <20 1 0.06 4.86 >20.00 <.01 0.02 121 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <1 0.02 0.63 18.88 <.01 <.01 77
140525 <5	3 <20
140526 11 247.0 15.32 246.7 1937 10975 1.04 >20000 12.11 1 5 2 61.3 685 5384 389 >20.00 715 79 9 59 9 59 9 59 11 267.0 715.31 308.7 1551 13267 1.28 >20000 11.72 <1 4 2 578.6 1032 5499 408 >20.00 832 43 12 27 140528 31 38.1 526 2428 0.24 >20000 2.47 7 6 <1	2 <20 <20 1 <.01 0.14 13.65 <.01 <.01 49 2 337 <20 <1 0.02 0.06 3.33 <.01 <.01 49 2 337 <20 <1 0.02 0.06 3.33 <.01 <.01 11 3 253 <20 <1 0.01 0.12 4.98 <.01 <.01 17 6 113 <20 2 0.01 3.07 >20.00 <.01 <.01 77 3 <20 <20 1 0.06 4.86 >20.00 <.01 0.02 121 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77
140527 <5	2 337 <20 <1 0.02 0.06 3.33 <.01 <.01 11 3 253 <20 <1 0.01 0.12 4.98 <.01 <.01 11 6 113 <20 2 0.01 3.07 >20.00 <.01 <.01 77 3 <20 <20 1 0.06 4.86 >20.00 <.01 0.02 121 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77 3 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20
140528 31 38.1 526 2428 0.24 >20000 2.47 7 6 <1	3 253 <20
	6 113 <20 2 0.01 3.07 >20.00 <.01 <.01 77 3 <20 <20 1 0.06 4.86 >20.00 <.01 0.02 121 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <20 <1 0.02 0.63 0.888 <.01 <.01 77
- · · · · · · · · · · · · · · · · · · ·	3 <20 <20 1 0.06 4.86 >20.00 <.01 0.02 121 3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <20 <1 0.02 0.63 18.88 <.01 <.01 77
140529 <5 2.2 7 37 270 0.00	3 <20
140530 <5 1.5 1/ 83 55/ 0.02 2 <1 <1 0.7 <5 24 <5 0.22 326 <10 129 13	3 <20 <20 1 0.02 0.63 18.88 <.01 <.01 77 2 <20 <21 0.02 0.63 18.88 <.01 <.01 77
140531 <5 2.6 (20 4)	2 <20 <20 <1 0.2 0.2 0.0 100 c 01 c 01 77
140532 <5 491.2 15.78 >600 0 677 >20000 7 95 >20000 ((a) -	
140533 <5 4.9 9 631.0 0 97 2000 4.40 5 6 2 213.7 248 1384 429 >20.00 620 14 10 171	5 255 <20 1 0 02 0 13 11 51 < 01 < 01 70
4.7 7 431 0.00 874 0.07 4 1 <1 3.9 6 65 11 0.45 2659 <10 11 11	1 <20 <20 1 0.02 0 33 >20 00 < 01 < 01 100
140534 <5 23 3 23 24	
140535 89 34.1 477 3106 0 31 50000 4 50 7 4 1 40.2 45 10 45 0.10 637 410 64 7 4	1 <20 <20 <1 0.02 0.37 >20 00 < 01 < 01 214
140536 <5 2.6 5 63 271 0.03 3 7 <1 258.2 45 5178 134 14.13 3290 30 12 131	3 47 <20 9 0.02 0.14 13.91 < 01 < 01 53
140537 <5 2.0 3 28 66 2 2 <1 1.1 <5 33 <5 0.33 1417 <10 335 9	2 <20 <20 1 0.03 0.88 >20.00 < 01 < 01 162
140538 11 95.6 16.17 95.8 1338 12270 1.15 >2000 5.43 (22 <5 12 <5 0.41 304 <10 60 7	2 <20 <20 2 0.18 1.20 >20.00 < 01 0 03 176
4 4 4 2 3 394.6 94 >20000 381 >20.00 698 11 14 28	5 129 <20 7 0.20 0.25 8.09 <.01 0.03 35
140540 121 92.2 15.51 94.9 1167 14111 1.38 17979 1.86 111 3 106 0 201 31541 619 >20.00 805 25 7 39	2 353 <20 4 0.03 0.13 4.62 <.01 <.01 13
	138 <20 4 0.08 0.18 >20.00 <.01 0.02 83
	<20 <20 2 0.03 0.18 >20.00 <.01 0.01 128
140543 <5 8.0 5289 41 233 0.01 4 10 1 10 4 514 5010 01 24 2 1	<20 <20 1 0.02 0.19 >20.00 <.01 <.01 117
4 10 1 10.6 514 5912 367 >20.00 698 16 13 28 <1	<20 <20 <1 0.06 0.06 12.70 <.01 <.01 31
	- -
140545 <5 1.8 10 27 92 1 1 c1 c0 2 s th s and 20 9 25 <1	<20 <20 <1 0.03 0.07 13.68 <.01 <.01 49
140546 11 6.5 4336 28 195 0.01 <1 7 1 2 6 80 1771 1750 <10 22 6 <1	<20 <20 <1 0.02 0.17 >20.00 <.01 <.01 103
140547 28 5.2 2050 58 181 0.01 1 5 41 14 50 77 16.84 1145 410 22 25 1	<20 <20 2 0.05 0.11 >20.00 <.01 0.01 71
140548 <5 2.0 8 35 89 2 3 <1 <0 2 5 796 91 13.77 1431 <10 20 28 1	<20 <20 2 0.03 0.14 >20.00 <.01 <.01 82
	<20 <20 1 0.09 5.67 >20.00 0.01 0.02 122
140550 <5 2.3 4 26 60 4 6 <1 <0.2 <5 10 <5 0.17 2690 <10 1135 2 <1	<20 <20 <1 0.02 0.20 >20.00 <.01 <.01 121
140566 <5 2.6 7 124 0.01 167 0.01 9 11 c1 c0 2 c5 7 c5 0.44 430 <10 912 8 14	<20 <20 1 0.02 0.24 >20.00 <.01 <.01 136
140567 <5 2.4 11 30 127 <0.01 11 5 c1 c0 3 c5 7 <5 3.34 366 <10 137 2 7	<20 <20 1 0.01 0.98 >20.00 <.01 <.01 193
140568 <5 16.0 1564 36 9431 0.98 3 2 3 43 4 45 45 45 4	<20 <20 2 0.02 0.63 >20.00 <.01 <.01 131
	1221 <20 4 0.02 0 81 520 00 0 01 < 01 4/5

•

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00293.0 (COMPLETE)

5 F 5

-

DATE RECEIVED; 16-FEB-00

DATE PRINTED: 29-FEB-00

PROJECT: SILVER TIP PAGE 1B(2/12)

Geochemical

Lab Report

SAMPLE	ELEMENT	Y	Ga	Li	NЬ	Sc	Ta	Ti	Zг
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
140524		2	<2	<1	<1	<5	<10	<.010	<1
140525		Z	2	<1	<1	<5	<10	<.010	<1
140576		<1	37	<1	<1	<5	<10	<.010	<1
140527		<1	35	<1	<1	<5	<10	<.010	<1
140528		4	<2	<1	<1	<5	<10	<.010	<1
									•
140529		2	<2	z	<1	<5	<10	<.010	<1
140530		2	<2	<1	<1	<5	<10	<.010	<1
140531		<1	<2	<1	<1	<5	<10	<.010	<1
140532		1	11	<1	<1	ج	<10	<.010	<1
140533		4	~ Z	<1	<1	-5	<10	< 010	<1
						-			
140534		S	<2	<1	<1	<5	<10	<.010	<1
140535		3	5	<1	<1	<5	<10	<.010	<1
1405 36		z	<2	<1	<1	- 	<10	<.010	<1
140537		2	2	2	<1	<5	<10	<.010	<1
140538		Z	3	1	<1	<5	<10	< 010	<1
					·	-			
140539		2	8	<1	<1	<5	<10	<.010	<1
140540		4	<2	<1	<1	ر ج	<10	<.010	<1
140541		2	~2	<1	<1	<5	<10	<.010	<1
140542		1	<2	<1	<1	ক	<10	<.010	<1
140543		1	<2	<1	<1	<5	<10	< 010	<1
						-			
140544		<1	~2	<1	<1	<5 -	<10	<.010	<1
140545		1	2	<1	<1	< <u>5</u> -	<10	<.010	<1
140546		2	<2	<1	<1	<5	<10	<.010	<1
140547		z	<2	<1	<1	Ś	<10	<.010	<†
140548		2	~	2	<1	<5	<10	< 010	<1
			-	~		-			
140549		2	<i>~</i> 2	<1	<1	<5 -	d0 -	<.010	<1
140550		3	\$	<1	<1	5.	c10 4	<.010	<1
140566		3	~2	<1	<1	<u>ج</u>	<10	<_010	<1
140567		- 3	<2	<1	<1	5		< 010	-
140568		8	<2	<1	<1	<5 -	<10 -	<.010	<1

· · · · · ·

CLIENT: SILVERTIP MINING CORP REPORT: V00-00293.0 (COMPLETE)

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 29-FEB-00 PAGE 2A(3/12)

sample Number	ELEMENT Wet Au UNITS PPB	AgGrav PPM	/wt/Ag I GM	Ag PPM	Cu PPM	Pb PPM	Pb PCT	Zn PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	o Cd I PPM	Bi PPM	As PP M	Sb PPM	Fe PCT	Min Te PPM PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM
140569	<5			2.3	6	16		//R			-	-1				-	_		_												
140570	<5			37	c			-+0			<u>د</u>	×1	< I	<0.2	<2	\$	\$	0.14	317 <10	Z45	6	4	<20	<20	2 ().OZ	1.67	>20.00	0.01	<.01	103
140571	·5	-						27			1	2	<1	<0.2	<5	<5	<5	0.47	243 <10	113	4	4	<20	<20	1 (3.05	0.84	>20.00	<.01	0.03	171
140577	<2	212.2	15.16	204.2	693	1934	0.20	>20000	>15.00	17.65	<1	3	<1	749.3	2011	43	71	9.07	665 68	49	11	2	<20	<20	1 (a na	0.54	>20.00	× 01	0.02	07
140572	<5			32.6	2763	195	0.02	>20000	>15.00	16.36	<1	6	<1	820.Z	467	467	157	>20.00	492 <10	76	40	-	~20	-20).00	0.37	7 67	01	0.04	Υ 3
140573	ব			2.3	4	7		157	<0.01		1	<1	<1	<0.2	5	5	<5	0.18	205 <10	47	40	2	<20 <20	<20 <20	2 t <1 ().02	0.25	20.00<	<.01 <.01	0.03	21 127
140574	<5			22	8	10		75			4	7	-1		-		_														
140575	-5	<u> </u>	15 77	. / 00. 0	7/00 .	20000	0.70					3	<1	<0.2	<>	18	ক	0.48	316 <10	63	2	2	<20	<20	<1 ().04	0.43	>20.00	<.01	0.02	211
1/0574	· ·	410.0	13.76	2400.0	348A >	20000	8.78	>20000	9.80		<1	2	Z	463.1	160	447	444	>20.00	329 32	8	39	4	646	<20	6 ().03	0.16	1.67	< 01	0.01	7
140370	\$			2.5	6	93		104	0.02		2	<1	<1	<0.2	<5	<5	<5	D.18	243 <10	45	2	2	<20	c20	et r	3 07.	1 07	50 00	~ 01	0.07	150
140601	<5			12.5	61	649	0.07	441	0.04		21	121	3	1.9	-5	740	55	50 00	7/5 -10	175	- -,		-20	-20			1.03	~20.00	5.01	0.02	158
140602	<5			2.7	4	74		111	0.01		1	1	-1	~0.2				~20.00	145 KIU	132	24	14	27 .	c20	2.0	1.05	0,42	10.44	<.01	<.01	80
					•			• • •	0.01		1	4	1	×0.2	<2	8	<5	0.36	525 <10	831	2	14	<20 -	<20	2 <	.01	0.19	>Z0.00	<.01	<.01	114

(-1) = (-1) +

CLIENT: SILVERTIP MINING CORP REPORT: V00-00293.0 (COMPLETE)

.

× -

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 29-FEB-00

PROJECT: SILVER TIP PAGE 2B(4/12)

SAMPLE	ELEMENT	¥	Ga	Li	NÞ	\$c	Ta	Ti	Ζr	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
140569		3	<2	<1	<1	<5	<10	<.010	<1	
140570		3	<۲	<1	<1	<5	<10	<.010	<1	
140571		2	7	Z	<1	<5	<10	<.010	<1	
140572		Z	22	4	<1	<5	<10	<.010	<1	
140573		2	<2	<1	<1	<5	<10	<.010	<1	
140574		2	<2	<1	<1	< 5	<10	<.010	<1	
140575		1	28	<1	<1	<5	<10	<.010	<1	
140576		Z	<2	<1	<1	<5	<10	<.010	<1	
140601		2	×۲	<1	<1	<5	<10	<.010	<1	
140602		4	<2	<1	1	<5	<10	<.010	<1	
. ٦ . • ۰.

CLIENT: SILVERTIP MINING CORP. REPORT

PROJECT: SILVER TIP

REPORT: VOO-	00293.0 (COMPLE	TE)										DA	TER	eceiver): 16-1	FEB-00		DATE P	RINTE	D: 2	9-FE8	-00	F	PAGE	3A(5/12)					
STANDARD	ELEMENT	Wet Au	AgGrav (vt/Ag	Ag	Cu	Pb	РЬ	Zn	Zn	Zn	Mo	Nī	Co	Cơi	Bi	Ås	Sh	Fe	Mari	To	Ū.a	. Cr	v	5n	ц	10		Ma	F •	ti a		•
NAME	UNITS	PP B	PPM	GM	PPM	PPM	PPN	PCT	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPN	PPM	I PPM	PPM	PPM	PPM	PPN	PCT	PCT	PCT	PCT	R PCT	Sr PPM
0X11 Oxide		2738	22.8	-	-	-	-	-	-	_	-	-	-	-	-	_	_		_	_	_												
Number of An	alyses	1	1		-	-		-	-		-	-		-	-	-		_		-	•	•	-	-	-	•	•	-	-	-	-	-	-
Mean Value		2738	22.8	-	-		-	-	-	-	-	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Dev	viation	-	-	-	-	-	-	-	•	_	-	_		_	_	_			-	-	•	-	-	-	-	•	-	-	-	-	-	-	•
Accepted Vai	ue	-	25.0	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
GS91-2		-	-	-	<0.2	163	23	_	166	-	-	,	145	70	n 4	-5	145	-5	7 / 2	1664	-10		770	67	-00						.		_
Number of An	alyses	-	-	-	1	1	1		1	_		1	1	1	1	4	145	•	7.42	1001	< 10	ž	239	23	<20	<20	4	1.98	2.59	5.78	0.02	0.05	72
Mean Value		-	-	-	0.1	163	23	-	166	_	-	י כ	145	, סד	n /	י ד	145	1	7/3	1664	ן ד	1	۲ محد	1	1	1	1	1	1	1	1	1	1
Standard Dev	iation	-	-	•		-			-	-	-						144.3	3	1.42	וככו	2	Ŷ	239	53	10	10	4	1.98	2.59	3.78	0.02	0.05	72
Accepted Val	ue	-	-	-	0.2	148	20	-	14 8	-	-	4	135	35	0.2	1	145	1	7.20	- 1450	<1	6	- 251	50	5	12	-	- 1. 8 0	2.70	- 4.00	• 0.01	- 0.04	- 70
OX12 Oxide		6474	-	-	-	-	-	· _	-	-	-	-	_	-	•	_	-	-	_	_	-	_	_	_									
Number of Ani	alyses	1	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	_	-	-	_				_		-	-	-	-	-	-	-
Mean Value		6474	-	-	-	-	-	-	-	-		-	-	-	-	-		-				_	_	-		-	•	-	-	•	-	-	-
Standard Dev	iation	-	-	-	-	-	-	-	-	-	-	-		-	-		_	-	-	_	_	-		_	_		-	•	-	-	-	-	-
Accepted Val	Ulé	-	10.4	-	-	-	-	•	-	-	-	-	-	-	-	-		•	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-
ANALYTICAL BI	LANK	-	-		<0.2	3	4	-	45	-	-	<1	<1	د1	-0 2	~	Æ	~	-0.01	-1	~10	-4		_	-05					:			
ANALYTICAL B	LANK		-	-	<0.2	3	3	-	23	_	-	<1	- 1		-0.2	~		- -	<0.01	1	<10	< 	< } 	<1	<20	<20	<1 ·	<.01	<.01	<0.01	<.01	<.01	<1
Number of Ana	alyses	-	-	_	z	z	2	-	2	-	_	2	2	2	·v.c	ر. د	· · ·	5	ru.ui م	< -	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<0.01	<.01	<.01	<1
Mean Value	×	-	-	-	0.1	3	3		34	-	-	<1	1	r1	01	2	د ۲	2	~ ~ ~ ~	2	۲ ج	2	2	2	2	2	Z	Z	2	2	2	2	2
Standard Dev	iation		-	-	•	<1	<1	-	16	_	-		- 1	-	v. i			د .	-0.01	۲1	2	<1	<	<1	10	10	<1 ·	<.01	<.01	<0.01	<.01	<.01	<1

Accepted Value 1 <0.1 <0.01 <0.1 <1 <1 <.01 <1 <0.01 <0.01 <1 <1 <1 <0.1 <1 <1 <1 <0.01 <1 <1

CANMET ST\$D-4	-	-	-	0.Z	69	15	-	100	-	-	1	25	11	0.3	<5	12	~ 5	2 82 1253	10.1	220	7/	EO	-20								
Number of Analyses	-	-	-	1	1	1	-	1	-	-	1	1	1	1	1	1	1	1 1	1 21	230		50	~20	<2U	12	1.16 U	.64	1.15 (J.04 0	.09	54
Mean Value	-	-	-	0.2	69	15	-	100		-	1	25	11	03	- z	12	,			1	-	-	1	1	1	1	1	1	1	1	1
Standard Deviation	-	-	-	_	-		-	-	-	-				0.9	J	14	2	2.02 1255	2.1	250	54	50	10	10	12	1.16 0	.64	1.13 ().04 0	1.09	54
Accepted Value	-	-	-	0.3	66	13	-	82		-	z	23	11	0.6	-	- 11	4	2 60 1200	-	-	70	-	-	-	-	-	•	-	-	-	-
																•••		L100 1200			20	21		-	-	•	-	-	-	-	-

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

.

Vercever Branch Geochemical Lab Report

PROJECT: SILVER TIP PAGE 38(6/12)

STANDARD	ELEMENT	Y	Ga	Li	Nb	Sc	Ta	Ti	Ž٢	
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPH	PCT	ррм	
0x11 Oxide		-	-	-	-	•	-	-		
Number of An	alyses	-		-	-	-	-	-	-	
Mean Value		-	-		-	-	-	-	-	
Standard Dev	iation	-	-	-	-	-	~	-	-	
Accepted Val	ue	-	-	-	-	-	-	-	-	
GS91-2		3	<2	20	2	8	<10	<.010	3	
Number of An	al yses	1	1	1	1	1	1	1	1	
Mean Value		3	1	20	Z	8	5	0.005	3	
Standard Dev	iation	-	-	-	-	-	-	-	-	
Accepted Val	ue	3	-	24	2	6	1	0.006	5	
0X12 Oxide		-	-	•	•	•	-	-	-	
Number of An	alyses	-	-	-	-	-	-	-	-	
Mean Value		-	-	•	•	-	-	-	-	
Standard Dev	iation	-	-	-	-	-	-	-	-	
Accepted Val	ue	-	-	-	-	-	-	-	-	
ANALYTICAL B	LANK	<1	<2	<1	<1	<5	<10	<.010	<1	
ANALYTICAL B	LANK	<1	<2	<1	<1	<5	<10	<.010	<1	
Number of An	alyses	2	2	2	Ş	2	Z	2	Z	
Mean Value		<1	1	<1	<1	3	5	0.005	<1	
Standard Dev	iation	-	-	-	•	•	-	-	-	
Accepted Val	ue	<1	<1	<1	<1	<1	<1	<.001	<1	

CANMET STSD-4	10	<2	8	4	<5 ·	<10_0	.077	2	
Number of Analyses	1	1	1	1	1	1	1	1	
Mean Value	10	1	8	4	3	5 0	.077	2	
Standard Deviation	-	-	-	-	-	-	•	-	
Accepted Value	-	-	-	-	-	-	-	-	

DATE RECEIVED: 16-FEB-00

DATE PRINTED: 29-FEB-00

and the second second second second second second second second second second second second second second second

CLIENT: SILVERTIP MINING CORP.

REPORT: V00-00293.0 (COMPLETE)

PROJECT: SILVER TIP

DATE RECEIVED: 16-FEB-00 DATE PRINTED: 29-FEB-00 PAGE 4A(7/12)

STANDARD	ELEMENT	Wet Au	i AgGr	rav w	it/Ag	Ag	Cu	РЬ	Pb	Zn	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	SЬ	Fe	Mm	n Te	Ba	Cr	v	Sn	ų	La	AL	Ma	Ca	Na	ĸ	Śr
NAME	UNITS	PPE	5 F	PM	GM	PPM	PPM	PPN	PCT	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	РРМ	PCT	PCT	PCT	PCT	PCT	PPM
BCC standard	ME89-2			-	-	-	-		1.34	-	6.90	-	-	-	-	-		-	-	-		-	-	-	_	_	-	-	-	-	_	_		_
Number of An	alyses	-		-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	_	-		-	_
Mean Value		-		-	-	-	-	-	1.34	-	6.90	-	-	-	-	-		-	-		-	-	-	_	-	_	-	-	-	_	_	-		_
Standard Dev	iation	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	-	-	_	_	_
Accepted Val	ue	-		-	-	-	-	-	1.32	•	6.73	6.73	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
CANMET CERTI	FIED STD	-			-	-	-	-	-	-	- 1	9.06	-	-	-	-	-	-	-	-	-	-	-		-	_	_	-	-	-		_	_	_
Number of Ana	alyses	-		-	-	•	•	-	-	-	-	1	-	-	-		-	-	-	-	_	-	-	_	-	-	-	-	_	_	_		_	_
Mean Value		-		-	-	-	-	-		-	- 1	9.06	-	-	-	-	-	-	-	-	-			-	_	-	_	-	-		_	_		
Standard Dev	iation	-		-		-	-	-	-	-	-	-	-	-		-	-	-	-	•	_	-	_	_	-	-	_	_	_	_	_			-
Accepted Vale	ue	-		-	-	-	-	-	4.33	-	19.02 1	9.02	-	-	-	-	-	-	-	-	-				_	_	-	-	-	_	-	-		-

ς.

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00293.0 (COMPLETE) Geochemical Lab

,

Report

PROJECT: SILVER TIP

٠

STANDARD	ELEMENT	Y	Ga	Li	Nb	Sc	Ta	Τi	Ź٢
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
BEC atopdate									
BLL SLANDARC	1 1107-2	-	-	-	-	-	-	•	-
Number of Ar	nal yses	-	-	-	-	-	•	-	-
Mean Value		-	-	-	-	-	-	-	-
Standard Dev	viation	-	~	-	-		-	-	-
Accepted Val	Ue .	-	-	-	-	-	-	-	-
CANMET CERTI	FIED STD	-	-	-	-	-	-	-	-
Number of An	val yses	-	-	•	-	-	-	-	-
Mean Value		-	-	-	-	-	-	-	-
Standard Dev	iation	-	-	-	-	-	-	-	-
Accepted Val	ue	-	-	-			-	-	-

DATE RECEIVED: 16-FE0-00 DATE PRINTED: 29-FEB-00

PAGE 48(8/12)

the second second second second second second second second second second second second second second second se

CLIENT: SILVERTIP MINING CORP REPORT: V00-00293.0 (COMPLETE)

PROJECT: SILVER TIP PAGE 5A(9/12)

SAMPLE	ELEMENT We	et Au	AgGrav	/ wt/Ag	Ag	Cu	Pb	Рb	Zn	Zn	Zn	Ma	Ní	Co	Cd	Ri	Åc.	٢h	fe	Mo	To	Ba	Cr	м	50	ш	1.0		Ma	c -	41-		0
NUMBER	UNITS	PPB	PP	I GM	PPM	PPM	PPM	РСТ	PPM	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM I	PPM	PCT	PPM	PPM	PPM	PPM I	PPM	PPM	DDN	DDM	PCT	DU1	Ld Dri	ла рст	5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	SE
																				, , , ,		• • • •			1111	r e e	F F F			FUI	F 6 1	FUI	Prm
140524		<5			3.9	9	518	0.06	1062	0.11		3	3	<1	6.2	<5	32	<5	0.25	1806	<10	63	32	3	<20	<20	2	<.01	0.27	>20.00	< 01	< 01	85
Duplicate								0.06		0.11														-	~~	-20	-		0121	. 20.00	01		60
140526		11	247.0	15,32	246.7	1937	10975	1.04	>20000	12.11		1	5	2	610.3	685	5384	389	> 20 .00	715	59	9	59	2	337	<20	<1	0.02	0.06	3.33	<.01	<.01	11
Duplicate			245.6	5																													
		_																															
140527		<5	305.3	5 15.31	308.7	1551	13267	1.28	>20000	11.72		<1	4	2	578.6	1032	5499 4	408	> 2 0.00	832	43	12	27	3	253	<20	<1	0.01	0.12	4.98	<.01	<.01	17
vuplicate		<5	334.6	0	294.6	1547	13253		>20000			<1	4	2	577.5	1020	5518 4	410	>20.00	827	58	14	31	<1	255	<20	<1	0.01	0.12	4.99	<.01	<.01	18
160530		~5	/01 1	15 70			- 20000	7 05				_																					
Dublicate		9	471.2	. 13.76	>4UU.U	0//	>20000	7.85	>20000	4.40		5	6	Z	213.7	248	1384 4	429	>20.00	620	14	10	171	5	255	<20	1	0.02	0.13	11.51	<.01	<.01	39
oupricoce			404.0	r																													
140534		<5			23	7	73		7/			1	.4	-1	-0.2	~	*0				.4.5		_										
Prep Duplica	te	<5			2.1	2	21		_~4 28			4	~1	~1		ده ح	10	<) ~5	0.10	977	<10	64	(F	<1	<20	<20	<1	0.02	0.37	>20.00	<_01	<.01	214
						-			2.5				- 1		40.2	~>	11	5	0.12	000	\$10	22	2	<	<20	<20	<1	0.01	0.54	>20.00	<.01	<.01	186
140535		89			34.1	477	3106	0.31	>20000	4.59		3	7	<1	258.2	45	5178 1	134	14, 13	3290	30	12	131	7	1.7	~ 20	0	<u>ი ი</u> ,	0.16	17 01	< 01	- 01	= 7
Duplicate								0.30		4.57															1	NLO	,	0.02	0,14	13.71	101	101	22
140538		11	95.6	16.17	95.8	1338	12270	1.15	>20000	5.43		4	22	3	394.6	94	>20000 3	581	>20.00	698	11	14	28	5	129	<20	7	0.20	0.25	8.09	<.01	0.03	35
Duplicate			98.6	•																													
1/0570																																	
140559 Dem Linner		437	380.0	15.55	374.5	657	>20000	8.89	>20000	7.19		7	12	2	498.4	25	13541 6	519	>20.00	805	25	7	39	2	353	<20	4	0.03	0.13	4.62	<.01	<.01	13
Duplicate			391.8	5																													
140540		121	07.2	15 54	D/ O	11/7		4 70	4 300-300					_																			
Duniirate		121	01 0	1,1,1	74.7	1107	14111	1.00	11717	1.00		<1	11	2	106.0	205	3675 2	201	16.09	747	16	18	16	3	138	<20	4	0.08	0.18	>20.00	<.01	0.02	83
			11.0																														
140541		<5			2.4	5	68		166	0.03		1	7	-1	n 4	~	57	.e	0.75	~~7	.40		•		-		_						
Duplicate		-				-			100	0.02			1		0.0	10	76	\$ 2	0.35	907	<1U	21	Z	1	<20	<20	2	0.03	0.18	>20.00	<.01	0.01	128
										0.02																							
140544		11			11.5	5103	79		207	0,01		<1	S	1	1.2	421	614 1	22	»20.00	260	<1∩	٥	25	-1	~20	-20		0.07	0.07	17 /0			
Duplicate					11.8	5044	75		238			<1	2	1	1.4	439	615 1	84	>20.00	266	12	7 0	دی 24	>। ∠1	~20	~20	<) 21	0.02	0.07	12.00	<.V1	<.01	49
																,			20100	200		,	24	- 1	٠cv	~20	N	0.03	0.07	14.07	s.ui	\$.01	42
140547		28			5.2	2050	58		181	0.01		1	5	<1	1.6	52	796	9 1	13.77	1431	<10	20	28	1	<20	<20	,	70 N	n 14	520 AA	r 61	c 01	# 2
Duplicate										0.01											• •			•			-		~+	-20.00	-,01	01	UC.

DATE RECEIVED: 16-FEB-DO

DATE PRINTED: 29-FE8-00

CLIENT: SILVERTIP MINING CORP REPORT: V00-00293.0 (COMPLETE

i

-

Geochemical Lab Report

PROJECT: SILVER TIP

REPORT: VOO-	00293.0 (COMPLETE)	DATE RECEIVED: 16-FEB-00	DATE PRINTED: 29-FEB-00	PAGE 58(10/12)
SAMPLE	ELEMENT Y Ga Li No Sc ta Ti Zr			
NUMBER	UNITS PPH PPM PPM PPM PPM PPT PCT PPM			
140524	2 <2 <1 <1 <5 <10 <.010 <1			
Duplicate				
140526	<1 37 <1 <1 <5 <10 <.010 <1			
Duplicate				
140527	<1 35 <1 <1 <5 <10 <.010 <1			
Dupl icate	<1 38 <1 <1 <5 <10 <.010 <1			
140532	1 11 <1 <1 <5 <10 <,010 <1			
Duplicate				
140534	2 <2 <1 <1 <5 <10 < 010 <1			
Prep Duplica	ete 2 <2 <1 <1 <5 <10 <.010 <1			
140535	3 5 <1 <1 <5 <10 < 010 <1			
Duplicate				
140538	2 3 1 41 45 410 4 010 41			
Duplicate				
1/0570				
Duplicate	2 8 <1 <1 <5 <10 <,010 <1			
140540 Duplicate	4 <2 <1 <1 <5 <10 <.010 <1			
140541 Duclicate	2 <2 <1 <1 <5 <10 <.010 <1			
140544 Dimitión	<1 <2 <1 <1 <5 <10 <.010 <1			
Duplicate	<1 <2 <1 <1 <5 <10 <.010 <1			
140547	2 <2 <1 <1 <5 <10 <.010 <1			
Duplicate				

.

.

.

•

7

r v r s r v

CLIENT: SILVERTIP MINING CORP. REDORT- VOD-00293 0 / COMPLETE

3 # 4 7 5 7 5

.

REPORT: VOO-	00293.0 ((COMPLE	TE)										DA1	te ri	eceive	D: 16-	FEB-00		DATE P	RINTED): 29	- FEB-	-00	₽	AGE	PROJ 6A(1	ECT:	SILV }	/ER T	P			
sample Number	ELEMENT W Units	etAu PPB	AgGrav PPM	wt/Ag GM	Ag PPN	Cu PPM	Pb PPM	РЬ РСТ	Zn PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	SID PPM	Fe PCT	Min PPM	Te PPN	Ba PPM	Cr PPN I	V PP M	Sn PPN	W PPM	La PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM
140550 Duplicate		<5 <5			2.3	4	26		60			4	6	<1	⊲0.2	<5	7	<5	0.44	430	<10	912	8	14	<20	<20	1 (0.02	0.24	>20.00	<.01	<.01	136
140571 Duplicate		< 5	212.2 208.4	15.16	204.2	693	1934	0.20	>20000	>15.00	17.65	<1	3	≺1	749.3	2011	43	71	9.07	665	68	49	11	z	<20	<20	1 (0.06	0.54	>20.00	<.01	0.04	93
140572 Duplicate		<5			32.6	2763	195	0.02 0.02	>20000	>15.00 >15.00	16. 3 6 16.26	<1	6	<1	82 0.2	467	467	157	>20.00	492	≺10	24	40	2	<20	<20	2 (0.05	0.23	7.03	<.01	0.03	21
140602 Prep Duplica	te	<5 <5			2.7 2.4	4 5	74 96		111 147	0.01 0.01		1 2	4 5	<1 <1	<0.2 0.3	ণ্ট গ	8 14	ণ থ	0.36 0.37	525 531	<10 <10	831 991	2 3	14 15	<20 <20	<20 <20	2 · 2 ·	<.01 <.01	0.19 0.19	>20.00 >20.00	<.01 <.01	<.01 <.01	114 113
Duplicate					2.3	5	67		117	<0.01		2	4	<1	<0.2	ব	10	ব	0.37	545 ·	<10	872	Z	15	<50	<20	2 •	<.01	0.20	>20.00	<.01	<.01	118

CLIENT: SILVERTIP MINING CORP REPORT: V00-00293.0 (COMPLETE)

A / A

•

PROJECT: SILVER TIP

۰ r

۰ ۱

'n

REPURT. VOU U	U275.0 (COMPLETE)	DATE RECEIVED: 16-FEB-00	DATE PRINTED: 29-FEB-00 PAGE 6B(12/12)
SAMPLE	ELEMENT Y Galli No Sc Ta Ti Zr		
NUMBER	UNITS PPM PPM PPM PPM PPM PCT PPM		
140550	3 <2 <1 <1 <5 <10 <.010 <1		
Duplicate			
140571	2 7 2 <1 <5 <10 <.010 <1		
Duplicate			
140572	2 22 4 <1 <5 <10 <.010 <1		
Duplicate			
140602	4 <2 <1 1 <5 <10 <,010 <1		
Prep Duplicate	e 4 <2 <1 1 <5 <10 <.010 <1		
Duplicate	4 <2 <1 1 <5 <10 <.010 <1		

NUMBER OF

LOWER

REPORT: VOD-00338.0 (COMPLETE)

REFERENCE:

SUBMITTED BY: R. NEG

DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00

LOWER

NUMBER OF

CLIENT:	SILVERTIP	MINING	CORP
PROJECT	SILVER T	IP	

DATE

APPROV	ED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	APPROVED ELEMENT		ANAL YS	ES DETECTION	EXTRAC	TION	METHO	D C
000301	1 W	et Au Partial Ext. Go	old 62	5 PPB	ASH/AQ REG/D1BK	ATOMIC ABSORPTION	000301 37 Sn Tin			62 20 PPM	HF-HNO3-	HCLO4-HCL	INDUC. C	JOUP. PLASM
000301	2 A	g Silver	62	0.7 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	000301 38 Li Lithium	l -		62 2 PPM	HF-HNO3-	HCLO4-HCL	INDUC. C	JUP. PLASH
000301	3 A	gGrav Silver (Grav.)	8	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000301 39 8a 🛛 Barium			62 5 PPM	HF-HNO3-	HCLO4-HCL	INDUC. C	OUP. PLASH
000301	4 Cu	u Copper	62	0.01 PCT	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA								
000301	5 Pt	b Lead	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000301	6 Pt	b Lead	2	0.01 PCT		TITRIMETRIC	SAMPLE TYPES	NUMBER	SIZE (RACTIONS	NUMBER	SAMPLE P	REPARATION	IS NUMBER
000301	7 Zr	n Zinc	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	D DRILL CORE	62	2	150	62	CRUSH/SP	LIT & PULV	<i>i</i> . 62 [:]
000301	8 Zr	n Zinc	7	0.01 PCT	HF-HNO3-HCLO4-HCL	ATOMIC ABSORPTION						RIVER RC	CK CLEANIN	IG 62
000301	9 Mo	o Molybdenum	62	0.001 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA						SILICA C	LEANING	62
000301	10 Ni	i Nickel	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ						OVERVETO	HT/KG	106
000301	11 Co	o Cobalt	62	0.005 PC1	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ								
000301	12 Co	d Cadmium	62	0.005 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ								
							REMARKS: Please note th	at the fo	ollowing	a elements were				
000301	13 B ³	i Bismuth	62	0.005 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	analyzed using	IC50 dia	e stion [°]	method instead				
000301	14 A:	s Arsenic	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	of the standar	d 1C30/10	31 dige	stion method: C	г.			
000301	15 Sł	5 Antimorry	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÁ	Ti, Ba, Ga, La	. Li. Nb.	. Sc. Ši	. Ta. Y. Zr. In	• •			
000301	16 Fe	e Iron	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	Sn, Te and W,	The dete	ction	imits for these				:
000301	17 Mr	n Manganese	62	0.005 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASNÁ	elements are h	igher tha	an the :	standard method.				
000301	18 V	Vanadium	62	0.005 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	Due to solubli above mentione	ty and di	igestion	limitation the	•			
000301	19 A	l Aluminum	62	0.01 PCT	HE-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	considered our	ntative	-ndr Ma	arch 1/2000				
000301	20 M	a Magnesium	62	0.01 PCT	HE-HNO3-HCLO4-HCL	ENDUC, COUP, PLASMA		intative.	por m	1 GIT 172000				
000301	21 C	a Calcium	62	0.01 PCT	HE-HNO3-HCLO4-HCL	INDUC COUP PLASMA								
000301	22 Na	a Socium	62	0.01 PCT	HE-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COPIES TO ME S	TEVE DODE	DTCM		INVATOR	TO. NO 61		
000301	23 K	Potassium	62	0.01 PCT	HE-HNO3-HCLO4-HCL	INDUC COUP PLASMA		AT MCANDI	FCC		INVOICE	IV: MK. 31	CVC RUDERI	SOM .
000301	24 S	r Strontium	62	1 PPM	HE-HNO3-HCLO4-HCI	INDUC, COUP PLASMA	rm. r							
							******	********	******	*****	*****	*********	*******	
000301	25 In	n Indium	62	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	This report m	ust not b	e repro	xduced except in	full. The	data pres	ented in t	this
000301	26 T	i Titanium	62	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC, COUP, PLASMÀ	report is spe	cific to	those :	amples identifi	ed under "	Sample Num	ber" and i	5
000301	27 G	a Ge llium	62	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	applicable on	ly to the	e samoli	s as received e	xpressed o	n a dry ba	sis unless	
000301	28 M	b Niobium	62	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	otherwise ind	icated	•			,		
000301	-29 La	a Lanthanum	62	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	*********	*****	******	*****	******	********	*****	*****
000301	30 W	Tungsten	62	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								: :
000301	31 C	r Chrome	62	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000301	32 T	e Tellurium	62	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000301	33 S	c Scandium	62	5 PPM	HF - HNO3 - HCLO4 - HCL	INDUC. COUP. PLASMA								
000301	34 T	a Tantalum	62	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000301	35 Y	Yttrium	62	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP, PLASMÀ								
000301	36 Z	r Zirconium	62	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COLP. PLASMA								

DATE

PROJECT: SILVER TIP

CLIENT: SILVERTIP MINING CORP REPORT: V00-00338.0 (COMPLETE)

• •

DATE	RECEIVED:	23-FEB-00	DATE PRINTED:	3-MAR-00	PAGE	1A(1/14)

SAMPLE	ELEMENT	Wet Au	Ag	AgGrav	Cu	Pb	Pb	Zn	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	v	Al	Mg	Ca	Na	к	Sε	In	Ti	Ga	Nb	La
VLIMBER	UNITS	PPB	PPH	PPM	PCT	PCT	PÇT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PCT	PPM I	ppm i	PPM
140577		<5	6.3		<.01	0.01		0.02		0 004	< 01	<0.005	<0.005	<0.005	< 01	< 01	7 46	0 130	n n74	2 33	2 00	×20.00	0.07	0.72	4.40	c100	0 12	<5D	-50	~ 50
140578		<5	79.3		0.02	1.54		2.92		0.001	< .01	<0.005	0.014	0.008	0.58	0.01	>20.00	0.176	<0.024	n no	0 37	0.25	0.04	0.72	106	<100	< 01	<50	<50	<50
140579		6	>500.0	596.3	0.02	11 06		4 78		< 001	< 01	<0.005	0.020	0.000	0.25	0.01	>20.00	0 020	<0.005	0.07	0.07	0.80	0.00	0.04	<50	<100	< 01	<50	<50	-50 <50
140580		<5	6.5		<.01	0.02		0.04		0.002	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.75	0.063	<0.005	0.10	0.21	>20.00	0.06	0.06	212	<100	<.01	<50	<50	<50
140581		<5	59.1		0.10	0.14	3	>15.00	26.51	<.001	<.01	<0.005	0.121	0.026	0.05	0.03	14.87	0.092	<0.005	0.06	0.12	6.91	0.06	0.05	73	297	<.01	87	<50	<50
140582		6	73.1		0.07	0.29	:	>15.00	33.03	<.001	<.01	<0.005	0.142	0.024	0.06	0.02	16.79	0.097	<0.005	0.12	0.24	4.03	0.06	0.06	66	431	<.01	98	<50	<50
140583		<5	5.8		<.01	<0.01		0.06		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.17	0.024	<0.005	0.13	2.85	>20.00	0.06	0.07	185	<100	<.01	<50	<50	<50
1405 8 4		<5	9.4		<.01	0.04		0.61		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.71	0.103	<0.005	0.10	0.31	>20.00	0.06	0.07	170	<100	<.01	<50	<50	<50
140585		50	19.6		<.01	0.24		2.16		0.001	<.01	<0.005	0.008	<0.005	0.06	<.01	4.64	0.149	0.012	1.14	1.25	17.70	0.07	0,43	103	<100	0.06	<50	<\$0	<50
140586		<5	3.9		<.01	0.01		0.01		0.003	<.01	<0.005	⊲0.005	<0.005	<.01	<.01	0.19	0.054	<0.005	0.06	1.26	>20.00	0.06	0.03	162	<100	<.01	<50	<50	<50
140587		<5	2.7		<.01	<0.01		0.01		0.002	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.18	0.071	<0.005	0.07	1.04	>20.00	0.06	0.04	187	<100	<.01	<50	<50	<50
140588		-5	184.2		0.02	Z.49		3.35		0.002	<.01	<0.005	0.013	0.027	0.18	<.01	>20.00	0.034	<0.005	0.02	0.14	6.01	0.06	0.05	59	<100	<.01	<50	< 50	<50
140589		12	227.9		0.05	1.10		7.16		0.002	<.01	<0.005	0.029	0.068	0.17	<.01	>20.00	0.054	<0.005	0.04	0.14	4.38	0.05	0.04	57	<100	<.01	<50	~ 50	<50
140590		<5	308.3		0.02	1.27		5.26		0.001	<.01	<0.005	0.022	0.139	0.17	0.02	>20.00	0.036	<0.005	0.04	0.06	3.45	0.05	0.03	64	<100	<.01	<50	<50	<50
140591		<5	4.8		<.01	<0.01		0.04		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.38	0.125	<0.005	0.08	0.33	>20.00	0.05	0.06	165	<100	<.01	<50	<50	<50
140592		<5	8.1		<.01	0.03		0.07		0.002	<.01	<0.005	<0.005	<0.005	0.01	<.01	1.01	0.122	<0.005	0.15	0.64	>20.00	0 . 11	0.02	199	<100	<.01	<50	<50	<50
140593		<5	483.1		0.09	7.50		6.42		0.001	<.01	<0.005	0.0 28	0.025	0.20	0.05	>20.00	0.114	<0.005	0.09	0.44	13.74	0.05	0.03	97	<100	<.01	<50	<50	<50
140594		-5	>500.0	983.8	0.16	10.75		12.91		<.001	<.01	<0.005	0.065	0.075	0.16	0,07	17.43	0.094	<0.005	0.04	0.34	9.35	0.06	0.05	75	1 8 0	<.01	54	<50	<50
140595		12	89.0		0.09	1.07		2.63		<.001	<.01	<0.005	0.013	0.011	0.24	<.01	>20.00	0.021	<0.005	<.01	0.05	1.94	0.06	0.03	<50	<100	<.01	<50	<50	<50
140596		6	163.9		0.09	3.09		9.30		0.001	<.01	<0.005	0.047	<0.005	0.42	0.04	>20.00	0.069	<0.005	0.02	0.05	3.93	0.06	0.04	65	110	<.01	<50	<50	<50
140597		119	27.7		0.04	0.20		12.78		<.001	<.01	<0.005	0.074	<0.005	0.67	0.01	>20.00	0.061	<0.005	0.03	0.02	2.82	0.06	0.03	62	<100	<.01	<50	<50	<5(
140598		-5	39.3		0.05	0.38		5.16		0.001	<.01	<0.005	0.028	<0.005	0.57	0.02	>20.00	0.087	<0.005	0.02	0.06	9.43	0.06	0.03	68	<100	<.01	<50	<50	<50
140599		<5	6.2		<.01	<0.01		0.02		<.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.29	0.034	<0.005	0.15	4.81	>20.00	0.06	0.07	192	<100	<.01	<50	<50	<50
140600		6	320.1		0,17	5.49	;	>15.00	15.45	0.001	<.01	<0.005	0.083	0.006	0.41	0.05	>20.00	0.058	<0.005	0.02	0.04	2.08	0.05	0.02	52	106	<.01	55	<50	<50
140603		ক	6.3		<.01	<0.01		0.02		0.001	<.01	<0.005	<0.005	<0.005	<.01	<_01	0.26	0.032	<0.005	0.02	0.23	>20.00	0.05	0.02	205	<100	<.01	<50	<50	<50
140604		<5	>500.0	714.2	0.22	9.85	3	>15.00	15.00	<.001	<.01	<0.005	0.075	0.097	0.06	0.04	>20.00	0.054	<0.005	0.01	0.08	10.83	0.06	0.03	99	163	<.01	<50	<50	<50
140605		<5	6.1		<.81	D.01		0.02		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.29	0.039	<0.005	0.03	0.91	>20.00	0.06	0.03	197	<100	<.01	<50	<50	<50
140651		9	454.7		0.21	7.89	:	>15.00	18.61	<.001	<.01	<0.005	0.092	0.008	0.21	0.07	>20.00	0.056	<0.005	0.02	0.04	0.47	0.05	0.03	50	<100	<.01	71	<50	<50
140652		<5	180.3		0,09	2.79		9.75		<.001	<.01	<0.005	0.045	<0.005	0.36	0.02	>20.00	0.048	<0.005	0.02	0.03	3.78	0.06	0.03	56	143	<.01	<50	<50	<50
140653		<5	376.3		0.10	6.75		12.65		<.001	<.01	<0.005	0.061	0.007	0.32	0.03	>20.00	0.062	<0.005	0.03	0.05	2.65	0.05	0.03	<50	<100	<.01	74	<50	<50

. . .

ELEMENT W Cr Te Sc Ta Y Zr So Li Ba

CLIENT: SILVERTIP MINING CORP. REPORT: VOD-D0338.0 (COMPLETE)

SAMDI F

State of CC		-	.		~~		•				
NUMBER	UNITS	PPM	PPM	PPM	ppm	PPM	PPM	PPM	PPM	PPM	PPM
140577		<200	56	<200	<50	<50	<50	<50	<200	<50	>2000
140578		<200	70	<200	<50	<50	<50	<50	<200	<50	565
140579		<200	153	<200	<50	<50	<50	<50	<200	<50	<50
140580		<200	<50	<200	<50	<50	<50	<50	<200	<\$0	158
140581		<200	<50	298	<50	<50	<50	<50	<200	<50	<50
140582		<200	<50	283	<50	52	<50	<50	<200	<50	50
1405 83		<200	<50	<200	<50	<50	<50	<50	<200	<50	146
140584		<200	<50	<200	<50	<50	<50	<50	<200	<50	421
140585		<\$00	61	<200	<\$0	<50	<50	<50	<200	<50	1513
140586		<200	<50	<200	<50	<50	<50	<50	<200	<50	361
140587		<200	<50	<200	<50	<50	<50	<50	<200	<50	254
140588		<200	131	<200	<50	~5 0	<50	<50	<200	<50	<50
140589		<200	153	<200	<50	<50	<50	<50	<200	<50	<50
140590		<200	148	<200	<50	ব্য	<50	<50	<200	<50	<50
140591		<200	<50	<200	<50	71	<50	<50	<200	<50	80
140592		<200	59	<200	<50	<\$0	4 50	<50	<200	<50	247
140593		<200	65	<200	<50	54	<50	<50	388	<50	62
140594		<200	80	<200	<50	<50	<50	<50	1126	<50	<50
140595		<200	108	<200	<50	<50	<50	<50	<200	<50	<50
140596		<200	136	<200	<50	-50	<50	<50	347	<50	<50
140597		<200	154	<200	<50	<50	<50	<50	<500	<50	<50
140598		<200	76	<200	<50	<50	<50	<50	<200	<50	<50
140599		<200	<50	<200	<50	52	<50	<50	<200	<50	324
140600		<200	146	<200	<50	<50	<50	<50	1105	<50	<50
140603		<200	<50	<200	<50	<50	<50	<50	<\$00	<50	220
140604		<200	54	269	<50	<50	<50	<50	<200	<50	56
140605		<200	<50	<200	<50	<50	<50	<50	<200	<50	126
140651		<200	124	<200	<50) <50	<50	<50	1495	<50	<50
140652		<200	195	<200	<50) <50	<50	<50	431	<50	<50
140653		<200	179	<200) < 5 0	<50	<50	I <50	792	<50	<50

PROJECT: SILVER TIP

. . 4 .

DATE RECEIVED: 23-FEB-00

DATE PRINTED: 3-MAR-00

PAGE 1B(2/14)

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00338.0 (COMPLETE)

140683

12

3.4

0.03 < 0.01

PROJECT: SILVER TIP

PAGE 2A(3/14) DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00

K Sr In Ti Ga Nb La sb AL Mq Ca Na Ni Co Cd Bi As Fe Mn ٧ ELEMENT Wet Au ΡЬ РЬ Zn. Zn Mo SAMPLE Ag AgGrav Cu PCT PCT PCT PPM PPM PCT PPM PPM PPM PCT PCT PC1 PP8 PPM PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT NUMBER UNITS PPM 4.83 0.06 0.04 76 132 <.01 58 <50 <50 <.001 <.01 <0.005 0.046 0.028 0.31 0.04 >20.00 0.056 <0.005 0.04 1.37 <5 >500.0 577.8 0.15 9.16 11.50 140654 3,42 0,06 0.03 78 107 <.01 <50 <50 <50 <.001 <.01 <0.005 0.044 0.058 0.29 0.04 >20.00 0.051 <0.005 0.07 0.23 140655 <5 327.3 0.09 4.66 11.59 6.73 0.05 0.04 86 <100 <.01 <50 <50 <50 <.001 <.01 <0.005 0.048 0.060 0.31 0.04 >20.00 0.064 <0.005 0.02 0.29 <5 >500.0 599.8 0.14 7.84 11.71 140656 0.001 <.01 <0.005 0.019 <0.005 0.07 <.01 4.27 0.113 <0.005 0.05 4.18 >20.00 0.06 0.03 139 <100 <.01 <50 <50 <50 4.26 140657 <5 94.7 0.04 1.37 0.002 <.01 <0.005 0.031 0.014 0.22 0.03 >20.00 0.074 <0.005 0.07 0.82 11.36 0.06 0.05 75 131 <.01 <50 <50 <50 <5 453.2 0.087.34 7.24 140658 2.81 0.112 <0.005 0.07 0.58 >20.00 0.06 0.04 138 <100 <.01 <50 <50 <50 <.001 <.01 <0.005 <0.005 0.005 0.02 <.01 34.2 0.36 0.68 140659 <5 <.01 0,19 0.393 <0.005 0.07 0.85 >20.00 0.06 0.04 150 <100 <.01 <50 <50 <50 0.001 <.01 <0.005 <0.005 <0.005 <.01 <.01 0.02 0.02 140660 <u>ح</u>> 5.6 <.01 0.53 0.251 <0.005 0.09 0.77 >20.00 0.05 0.05 176 <100 <.01 <50 <50 <50 0.002 <.01 <0.005 <0.005 <0.005 0.01 <.01 5.1 0.01 0.02 140661 <5 <.01 0.26 0.483 <0.005 0.08 0.55 >20.00 0.05 0.04 184 <100 <.01 <50 <50 <50 <.001 <.01 <0.005 <0.005 <0.005 <.01 <.01 140662 <5 5.6 <.01 0.02 0.03 <5 >500.0 1166.0 0.03 >15.00 23.49 13.77 140663 <.001 <.01 <0.005 0.040 0.079 0.05 0.03 >20.00 0.047 <0.005 0.02 0.16 0.31 0.05 0.03 <50 <100 <.01 <50 <50 <50 <5 >500.0 567.8 0.06 7.65 9.22 140664 0.24 0.06 0.03 <50 <100 <.01 <50 <50 <50 0.001 <.01 <0.005 0.028 0.097 0.05 0.02 >20.00 0.037 <0.005 0.01 0.14 4.09 140665 <5 473.6 0.07 6.71 0.001 <.01 <0.005 0.063 0.026 0.14 0.05 >20.00 0.060 <0.005 0.05 0.20 1,48,0.05,0.05,68,115 <.01 <50 <50 <50 <5 >500.0 757.2 0.02 >15.00 16.29 14.21 140666 0.66 0.261 <0.005 0.18 0.76 >20.00 0.06 0.08 203 <100 <.01 <50 <50 <50 0.17 0.001 <.01 <0.005 <0.005 <0.005 <.01 <.01 140667 <5 16.5 <.01 0.21 0.51 0.097 <0.005 0.03 1.37 >20.00 0.06 0.02 215 <100 <.01 <50 <50 <50 0.02 0.03 0.001 <.01 <0.005 <0.005 <0.005 <.01 <.01 <5 3.6 <.01 140668 0.002 <.01 <0.005 0.021 <0.005 0.13 <.01 5.23 0.097 <0.005 0.12 6.29 >20.00 0.05 0.06 253 <100 <.01 <50 <50 <50 0.04 1.17 4.27 140669 141 68.2 0.001 <.01 <0.005 0.013 0.269 0.20 0.03 >20.00 0.075 <0.005 0.11 3.83 12.87 0.05 0.03 134 <100 <.01 <50 <50 <50 0.27 3.21 140670 <5 219.8 0.80 0.001 <.01 <0.005 <0.005 <0.005 0.04 <.01 6.66 0.120 <0.005 0.04 9.25 >20.00 0.05 0.02 204 <100 <.01 <50 <50 <50 140671 <5 10.0 0.03 0.05 0.54 0.002 <.01 <0.005 0.037 0.167 0.23 0.04 >20.00 0.058 <0.005 0.08 0.71 6.04 0.05 0.03 67 144 <.01 <50 <50 <50 0.50 2.96 9.30 140672 <5 184.0 >15.00 18.73 <.001 <.01 <0.005 0.087 0.219 0.13 0.04 >20.00 0.054 <0.005 0.01 0.03 2.93 0.04 0.02 <50 <100 <.01 79 <50 <50 0.63 0.22 140673 78.4 <5 0.002 <.01 <0.005 <0.005 0.117 0.19 0.03 >20.00 0.079 <0.005 0.10 6.42 12.64 0.06 0.02 146 <100 <.01 <50 <50 <50 0.33 0.10 1.13 140674 <5 29.5 >15.00 17.05 <.001 <.01 <0.005 0.063 0.062 0.15 0.04 16.07 0.109 <0.005 0.09 3.92 11.83 0.05 0.03 108 319 <.01 56 <50 <50 140675 74.5 0.99 0.04 <5 <.001 <.01 <0.005 0.011 0.016 0.23 0.03 >20.00 0.039 <0.005 0.05 1.94 5.78 0.06 0.02 85 <100 <.01 <50 <50 <50</p> 0.02 2.97 140676 35.0 0.80 <5 0.002 <.01 <0.005 <0.005 <0.005 0.01 <.01 0.71 0.098 <0.005 0.04 0.96 >20.00 0.05 0.02 207 <100 <.01 <50 <50 <50 <0.01 0.04 140677 <5 5.6 <.01 0,002 <,01 <0.005 <0.005 0.007 0.06 <,01 3.84 0.128 <0.005 0.07 3.22 >20.00 0.06 0.03 197 <100 <.01 <50 <50 <50 0.03 0.11 0.46 140678 9.8 24 0.005 <.01 <0.005 0.033 0.165 0.73 0.03 >20.00 0.047 <0.005 0.15 0.39 4.62 0.05 0.03 54 116 <.01 <50 <50 <50 140679 57.8 0.50 0.13 7.67 6 0.003 <.01 <0.005 0.011 0.020 0.09 <.01 8.91 0.081 <0.005 0.10 0.38 >20.00 0.05 0.02 171 <100 <.01 <50 <50 <50 0.09 2.78 140680 12.2 0.11 15 <.001 <.01 <0.005 0.026 0.092 0.17 0.02 >20.00 0.031 <0.005 0.07 0.08 4.37 0.05 0.02 <50 <100 <.01 <50 <50 <50 140681 <5 21.1 0.37 0.05 6.70 <.001 <.01 <0.005 0.019 0.055 0.09 <.01 >20.00 0.053 <0.005 0.10 0.24 8.33 0.05 0.02 88 115 <.01 <50 <50 <50</p> 4.92 140682 <5 19.6 0.37 0.21 <.001 <.01 <0.005 <0.005 <0.005 <0.005 <.01 < 4.00 0.140 <0.005 0.07 1.61 >20.00 0.05 0.03 156 <100 <.01 <50 <50 <50</p>

0.45

1

Lab Report

PROJECT: SILVER TIP

Geochemical

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00338.0 (COMPLETE)

DATE RECEIVED: 23-FEB-00

00 DATE PRINTED: 3-MAR-00

-00 PAGE 2B(4/14)

Vancouver Branch

SAMPLE	ELEMENT	W	Cr	Te	\$c	Тa	Y	Zr	Sn	Li	Ba
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
140654		<200	149	<200	<50	<50	<50	<50	1234	<50	<50
140655		<200	155	<200	<\$0	<50	<50	<50	528	<50	<50
140656		<200	148	<200	<50	59	<50	<50	1176	<50	<50
140657		<200	<50	<200	~ 50	<50	<50	<50	355	<50	65
140658		<200	120	<200	<50	<50	<50	<50	619	<50	<50
140659		<200	<50	<200	<50	<50	<50	<50	<200	<50	50
140660		<200	<50	<200	<50	<50	<50	<50	<200	<50	53
140661		<200	<50	<200	<50	<50	<50	<50	<200	<50	58
140662		<200	<50	<200	<50	64	<50	<50	<200	<50	55
140663		<200	<50	<200	<50	<50	~5 0	<50	<200	<50	<50
140664		<200	<50	<200	<50	<50	<50	<50	<200	<50	<50
140665		<200	73	<200	<50	<50	<50	<50	<200	<50	<50
140 666		<200	99	<200	<50	<50	<50	<50	<200	<50	<50
140667		<200	51	<200	<50	<50	<50	<50	<200	<50	81
14 0668		<200	<50	<200	<50	<50	<50	<50	<200	<50	83
140669		<200	<50	<200	<50	56	<50	<50	303	<50	160
140670		<200	62	<200	<50	<50	<50	<50	<200	<50	67
140671		<200) <50	<200	<50	<50	<50	<50	<200	<50	86
140672		<200	95	<200	<50	<50	<50	<50	942	<50	<50
140673		<200) <50	<200	<50	<50	<50	<50	1251	<50	<50
140674		<200	63	<200	<50	<50) <50	i <50	<500	<50	50
140675		<200) <50	<200) ~ 50	<50) <50	I <50	<200) <50	<50
140676		<200	69	<200	<50	<50) <50) <50	<200) <50	<50
140677		<200) <50	<200) <50	<50) <50) <50	<200) <50	70
140678		<200) <50	<200) <50	83	\$ <50) <50	<200) <50	62
140679		<20	0 101	<200) <50	1 <50) <5() <50	<200) <50	<50
140680		<20	0 <50) <200) <50) <50) <50) <50) <200) <50	<50
140681		<20	0 10	3 <200) <50) <5(0 <50) <50) <200) <50	<50
140682		<20	0 10	9 <so< td=""><td>0 <51</td><td>) <50</td><td>0 <50</td><td>) <50</td><td>) <20</td><td>0 <50</td><td><50</td></so<>	0 <51) <50	0 <50) <50) <20	0 <50	<50
140683		<20	0 <50) <200	0 <51) <50	0 <50	0 <50) <20	D <50	50

		nte: onda	rtek ' ar Cleg	Tes	stir	ng	Se	rv	ic	es										Vancouver	Branch		Geo Lab Rep	och))or	nen t	nica	1
CLIENT: SI REPORT: VO	LVERTLP MINING CORP 0-00338.0 (COMPLETE	Ξ)						a.		D	ATE REC	EIVED:	23-FE	B-00	DAT	PRIN	TED:	3-MAR	-00	PAGE	PROJ 3A(ECT: S 5/14)	ILVER	ΤſΡ			
Sample Number	ELEMENT Wet Au UNITS PPB	Ag A PPM	AgGrav Cu PPM PCT	РЪ РСТ	Pb PCT	Zn PCT	Zn PCŤ	Mo PCT	N Î PCT	Co PCT	Cd PCT	BÎ PCT	As PCT	Sb PCT	Fe PCT	Min PCT	V PCT	Al PCT	Mg PCT	Са РСТ	Na PCT	k Pct P	Sr PH P	in PM P	TI C CTPF	Ga Nib Mi PPM I	La ?PM
140 68 4 140685	<5 18	7.3 8.3	0.10 0.02	0.09 0.03		0.74 0.26	1	0.003 0.004	<.01 <.01	<0.005 <0.005	<0.005 <0.005	0.013 <0.005	0.24 0.04	<.01 <.01	12.12 2.64	D.112 D.120	0.007 <0.005	0.99 0.41	2.19 2.08	15.69 >20.00	0.05 0.05	0.32 1 0.13 1	07 <1 67 <1	00 0. 00 0.	.07 <5 .03 <5	50 <50 50 <50	<50 <50

.

and the second second second second second second second second second second second second second second second

and the second second second second second second second second second second second second second second second

.

,

•

,

> Ba PPM

> > 79

CLIENT: SILVERTIP MINING CORP REPORT: VOO-00338.0 (COMPLETE

ELEMENT

· ·

SAMPLE

NUMBER

140684

140685

• ·

.

00 DATE PRINTED: 3-MAR-00

PROJECT: SILVER TIP

MPIETE	•			

UNITS PPM PPM PPM PPM PPM PPM PPM PPM PPM

W Cr Te Sc Ta Y Zr Sn Li

<200 75 <200 <50 <50 <50 <50 <200 <50

<200 58 <200 <50 <50 <50 <50 <200 <50 137

DATE RECEIVED: 23-F	EB-OD DAT	ΕF
---------------------	-----------	----

R-00 PAGE 3B(6/14)

PAGE 4A(7/14)

.

•

CLIENT: SILVERTIP MINING CORP pepage V00-00338 0 (COMPLETE)

and the second second second second second second second second second second second second second second second

PROJECT: SILVER TIP

N 6 N 6 N

REPORT: VOO-	00338.0 (COMPLE	TE)									0	ATE REC	E I VED :	23-FE	8-00	DA	TE PRIN	ITED: 3	3-MAR	-00	PAGE	4A(7/14)					
STANDARD	ELEMENT W	let Au	Ag	AgGrav	Cu	Pb	Pb	Zn	Zn	Mo	Ni	Ço	Cd	Bi	As	Sb	Fe	Mn	v	AL	Mg	Ca	Na	κ	\$r	In	Ţi	Ga	Nb	La
NAME	UNITS	PPB	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PPM	PPH	PCT	PPM	PPM I	PPM
MISC STD		-	154.5	-	1.53	1.61	-	1.61	-	>.400	1.52	×1,000	>1.000	>1.000	1.63	1.87	1.64	1.606	>1.000	1.71	1.53	1.70	1.61	1.63	301	•	2.31	<50	<50	<50
MISC STD		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	303	-	2.34	<50	<50	<50
Number of Ar	nalyses	-	1	-	1	1	-	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	-	2	2	2	S
Mean Value		-	154.5	-	1,53	1.61	-	1.61	-	0.400	1.52	1.000	1,000	1.000	1.63	1.87	1.64	1.606	1.000	1.71	1.53	1.70	1.61	1.63	302	-	2.33	25	25	25
Standard Dev	viation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	1	-	0.02	-	-	-
Accepted Val	lue	-	-	-	-	•	-	-	-	•	-	-	-	-	-	-	-	-		-	-	-	-	-	-	٠	-	-	-	-

0X9 Oxide	432	-	-	-	-	-	-			•		-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-
Number of Analyses	1	-	-	-	•	-	-			•		-	-	•	-	÷	-	•	-	-	-	-	-	-	-	-	•	-	-
Mean Value	432	-	-	-	-	-	•					-	-	-	-	•	-	-	-	•	-	-	-	-	•	-	-	-	-
Standard Deviation	-	-	-	-	-	-	-		- ·	•		-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-	-
Accepted Value	-	-	-	-	-	-	-		-	-		•	-	-	-	-	•	-	-	-	•	-	-	-	•	•		-	-
CANNET CERTIFIED STD		68.9	- 1	.44	4.42	-	>15.00	18.	78 0.03	0 <.0	1 <0.005	0.063	0.037	0.80	0.01	6.19	0.054	<0.005	1.77	0.02	1.49	0.05	0.12	-	-	-	-	-	-
CANMET CERTIFIED STD	-	70.0	- 1	.45	4.36	-	>15.00		- 0.03	0 <.0	1 <0.005	0.066	0.028	0.83	0.01	6.33	0.055	<0.005	1.77	0.02	1.48	0.05	0,12	-	-	-	-	-	-
Number of Analyses	-	Z	-	2	2	-	2		1	2	z 2	2	2	2	2	2	2	2	2	2 2	2	2	2	-	·	-	-	-	-
Mean Value	-	69.5	- 1	.45	4.39	-	15.00	18.	78 0.03	o <.0	1 0.003	0.064	0.032	0.81	0.01	6.26	0.054	0.003	1.77	0.02	1.49	0.05	0.12	-	-	-	-	-	-
Standard Deviation	-	0.8	~ (0.01	0.04	-	-		- 0.00	1		0.002	0.006	0.02	<.01	0.10	0.001			<.01	0.01	<.01	<.01	-	-	-	•	-	-
Accepted Value	•	69.6	- *	1.44	4.33	4.33	19.02	19.	02 0.02	9		-	0.030	-	-	6.20	-		• •	0.02	-	-	-	-		-	-	-	-

CANNET Cert. Std.	-	4.1	- 0.94	<0.01		0.05	- <.	.001	1.21	0.039	<0.005	<0.005	<.01	<.01	>20.00	0.104	0.012 5	.57 2.51	3.50	1.47 0.	.86	-	-	-	-	-	-
CANMET Cert, Std.	-	4.3	- 0.94	0.01	-	0.05	- <.	.001	1.23	0.040	<0.005	<0.005	<.01	<.01	>20.00	0.104	0.012 5	.49 2.66	3.39	1.35 0	.85	-	-	-	-	-	-
Number of Analyses	-	2	· 2	2	-	2	-	2	2	2	2	2	2	2	2	2	2	Z 2	2	2	2	-	•	-	-	-	-
Mean Value	-	4.2	- 0.94	0.01	-	0.05	- Ò.	001	1.22	0.040	0.003	0.003	<.01	<.01	20.00	0.104	0.012 5	.53 2.58	3.45	1.41 0	.85	-	-	-	-	-	-
Standard Deviation	-	0.1		<0.01	-	<0.01	•	- (0.01	0.001	-	•	-	-	-	<.001	<0.001 (.06 0.11	0.08	0.09 0	.01	-	-	-	·	-	-

2 X

CLIENT: SILVERTIP MINING CORP. REPORT: V00-00338.0 (COMPLETE) Geochemical Lab Report

PROJECT: SILVER TIP

.

× 1

,

. .

.

DATE PRINTED: 3-MAR-00 DATE RECEIVED: 23-FEB-00

PAGE 4B(8/14)

STANDARD	ELEMENT	. u	C۲	Te	Sċ	Ta	۲	Zr	Sn	Li	8a
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
MISC STD		<200	379	< 20 0	- 55	<50	<50	<50	<200	<50	62
MISC STD		<200	380	<200	54	<50	<50	50	<200	<50	63
Number of A	nalyses	Z	2	Z	Z	2	2	2	2	2	2
Mean Value		100	380	100	55	25	25	38	100	25	63
Standard De	viation	•	<1	-	<1	-	-	18	-	-	<1
Accepted Va	lue	-	-	-	-	-	-	-	-	-	-

0X9 Oxide	-	•	-	-	-	-	-	-	-	-
Number of Analyses	-	-	-	•	•	-	-	-	-	•
Mean Value	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	•	-	-	-	-	-	•
Accepted Value	-	•	-	-	-	-	-	-	-	-
CANMET CERTIFIED STD	-	-	-		-	-	-	-	-	-
CANNET CERTIFIED STD	•	•	-	-	-	-	-	-	-	-
Number of Analyses	-	-	-	-	•	-	-	-	-	•
Mean Value	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	-	-	-	-	-	-	-		-

CANMET Cert. Std.	-	-	-	-	-	-	•	-	-	•
CANMET Cert. Std.	-	-	•	-	-	-	-	-	-	-
Number of Analyses	-	-	-	-	-	-	-	-	-	-
Mean Value	-	-	-	-	•	-	-	-	-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-

CLIENT: SILVERTIP MIN		nte	rtek ar Cl	t T egg	es.	tir	ng	Se	rv	ic	es			77. FCD	- 00	DATE	CBINI	-cn, 3	-MAD-1	(Vancouve	Branch PROJE	CT: 5		ocl b poi	ner rt	nic	al	
REPORT: V00-00338.0 (COMPLET	re)									U	ATE REU	EIVED;	23-168	1-00	UAIC	; PRINU	ED: J			FROL	24(-	,,						
STANDARD ELEMENT NAME UNITS	Wet Au PPB	Ag / PPM	AgGrav PPM P	Cu CT	Pb PCT	Pb PCT	Zn PCT	Zn PCT	Mo PCT	NÎ PCT	Co PCT	Cd PCT	Bi PCT	As PCT	Sb PCT	Fe PCT	Mn PCT	V PCT	Al PCT	Mg PCT	Са РСТ	Na PCT	K PCT I	Sr PPM 1	In PPM	TI PCT P	Ga N 1914 PP	id Li Mi PPI	a M
Accepted Value	-	4.1	• 0.	97 0	0.01	0.01	-	-	-	1.23	0.041	-	-	-	-	20.00	-	-	-	-	-	-	÷	-	-	-	-	-	-
OX11 Oxide	3003	-	26.0	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	٠	-	-	-	•	-	-	-	•	-	-
Number of Analyses	1	-	1	-	-	-	-	•	-	-	-	-	-	-	-	-	•	-	-	-	•	-	-	-	•	-	-	-	-
Mean Value	3003	-	26.0	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	•	-	-	-	^	-	-	-		-	-	-
Accepted Value	-	-	25.0	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
CANMET MRG-1 REF STD	-	<0.7	- 0.	02 <0	0.01	-	0.03		<.001	0.02	0.008	<0.005	<0.005	<.01	<.01	13.81	0.139	0.055	4.48	8.13	10.48	0.60	0.19	-	-	-	-	-	-
CANNET MRG-1 REF STD	-	<0.7	- 0.	02 <0	0.01	-	0.03	-	<.001	0.03	0.008	<0.005	<0.005	<.01	<.01	14.00	0.140	0.053	4.46	8.22	10.57	0.55	0.19	•	-	-	-	-	-
Number of Analyses	-	2	-	2	z	-	2		2	2	2	2	2	5	2	2	2	2	5	2	2	2	2	-	-	-	-	-	-
Mean Value	-	0.4	- 0.	02 <(0.01	•	0.03	-	0.001	0.02	0.008	0.003	0.003	<.01	<.01	13.91	0.140	0.054	4.47	8.17	10.53	0.57	0.19	•	•	-	-	-	-
Standard Deviation	-	-	- <.	01	-	-	<0.01	-	•	<.01	<0.001	-	•	-	-	0.13	0.001	0.001	0.01	0,06	0.06	0.03	<.01	-	-	-	-	•	-
Accepted Value	-	-	- 0.	.01 <(0.01 <	<0.01	0.02	0.02	-		-	-	-	•	<.01	-	-	-	4.48	8.17	-	-	-	-	-	-	-	-	-
CANMET CERTIFIED STD		<0.7	- <	.01	0.01	•	0.01	-	<.001	<.01	<0.005	⊲0.005	<0.005	0.64	3.60	3.00	0.024	0.009	5.21	0.59	0.93	0.12	1.76	-	-	-	-	•	-
Number of Analyses	-	1	-	1	1	-	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	•	-	-	-
Mean Value	-	0.4	- <	.01	0.01	-	0.01	-	0.001	<.01	0.003	0.003	0.003	0.64	3.60	3.00	0.024	0.009	9 5.21	0.59	0.93	0.12	1.76	-	-	-	-	-	-
Standard Deviation	-		-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-		-	-	•	-	-	-	-	-	-	-
Accepted Value	-	-	- <	.01	0.02	0.02	-	-		-	-	-	-	0.66	3.57	2.80	-	-	5.55	0.60	•	-	-	-	-	-	-	-	•
0V12 A.C.A.	/ ** *				_	_	_	-	-	_	_	-	-	-	_	-		-			-	-		-		-	-	-	-
	6572	-	•	-	-	-	-	-	-	-	_		_	_	-	-	-	-		-	-	-	-	-	-	-	-	-	-
NURDER OF ANALYSES	ן ריד די ג	•	-	-	-	-	-	_				_		_		-	-	-		-	-	-	-	-	-	-	-		
Rean Value	03/2	-	-		-	-	-	-	_						_	-	-			-	_	-	-	-			-	-	-
standard Deviation	-	•	10.7	-	-	-	-	-	-			-			-		-	-		-	-	-	-	-	-	-	-	-	
Accepted Value	-	-	10.4	-	-	-	-	-	-	-		-	-	-	-	_													

N P N

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

CLIENT: SILVERTIP MINING CORP REPORT: V00-00338.0 (COMPLETE)

.

· · ·

. .

- h

-

N 16 N

DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00

AR-00 PAGE 5B(10/14)

STANDARD	ELEMENT	W	Cr	Ie	Sc	Ta	Y	Ζr	Sn	Li	Ba
NAME	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM P	PM	PPN

Accepted Value	-	-	-	-	-	-	-	-	٠	-
----------------	---	---	---	---	---	---	---	---	---	---

OX11 Oxide	*	-	-	·	-	-	-	-	-	-
Number of Analyses	-	-	-	-	-	•	-	-	-	•
Mean Value	-	-	-	•	-	-	-	-	-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	-	-	-	•	-	-	-	-	-
CANNET MOC.1 DEE STD	-	_	_			-	_	-	-	-
CAMMET MRG-1 REF STD	-	-	-	-	-	-	-	-	-	-
Number of Analyses	-	-	-	-	-	-	-	-	-	~
Mean Value	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	-	•	•	-	-	-	•
Accepted Value	-	-	-	-	-		-	-	-	-

CANMET CERTIFIED STD	-	-	-	-	-	•	-	-	-	-
Number of Analyses	-	-	-	-	-	-	-	-	٠	-
Mean Value	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-
Accepted Value		-	-	-	-	-	-	-	-	•
OX12 Oxide	-	-	-	-	-	-	-	-	-	-
Number of Analyses	•	-	-	-	-	-	·	-	-	-
Mean Value	-	-	-	•	-	-	-	-	-	-
Standard Deviation	-	٠	-	-	-	-	-	-	•	-
Accepted Value	-	-	-	-	-	-	-	-	-	-

1

CLIENT: SILVERTIP MINING CORP

REPORT: V00-00338.0 (COMPLETE)

, . . .

DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00 PAGE 6A(11/14)

SAMPLE	ELEMENT V	let Au	Aq	AqGrav	Cu	Pb	РЪ	Ζn	Zn	Мо	Ni	Co	Cd	Bi	As	SЬ	Fe	Mn	۷	AL	Mg	Ca	Na	ĸ	SΓ	ln	Ťi	Ga	Nb	La
NUMBER	UNITS	PPB	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	РСТ	PCT	PCT	PCT	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PCT	PPM	PPM i	PPM
																				0.07	0.07		~ ~	0.0/	-50	~100	- 01	~50	~5 0	~50
1405 79		6	>500.0	596.3	0.02	11.06	4	. 78		<.001	<.01	<0.005	0.020	0.040	0.25	0.04	>20.00	0.029	<0.005	0.02	0.07	0.80	0.00	0.04	<00 ·	<100	~. 01	~)Q	V 0	~JU
Duplicate				576.8	I																									
*****		Æ	o /		< 01	0.04	n	1 61		0.001	< 01	<0.005	<0.005	<0.005	<_01	<.01	0.71	0.103	<0.005	0.10	0.31	>20.00	0.06	0.07	170	<100	<.01	<50	<50	<50
140584		0	9.4 O R		<.01	0.04	о С	1 61		0.001	<.01	<0.005	<0.005	<0.005	<.01	<_01	0.72	0.101	<0.005	0.10	0.33	>20.00	0.05	0.06	194	<100	<.01	<50	<50	<50
Dupitcate			7.0		5.01	0.05	Ň			0.001					•••															
140585		50	19.6		<.01	0.24	2	2.16		0.001	<_01	<0.005	0.008	<0.005	0.06	<.01	4.64	0.149	0.012	1,14	1.25	17.70	0.07	0.43	103	<100	0.06	<50	<50	<50
Duplicate		36																												
140591		<5	4.8		<,01	<0.01	(0.04		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.38	0.125	<0.005	0.08	0.33	>20.00	0.05	0.06	165	<100	<.01	-50	<50	<50
Duplicate			4.8		<.01	<0.01	C	0.03		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.36	0.124	<0.005	0.08	0.36	>20.00	0.06	0.05	174	<100	<.01	<50	<50	<50
																- 01	• 64	0 433	-0.005	0 15		500.00	0 11	0 02	100	~100	< O1	-50	<u>حم</u>	~50
140592		<5	8.1		<.01	0.03	(0.07		0.002	<.01	<0.005	<0.005	<0,005	0.01	<.UI	1.00	0,122	<0.005	0.13	0.04	5 20.00 5 20.00	0.11	20.02	201	118	< 01	~50	-50	~50
Prep Duplica	ate	<5	7.0		<.01	0.03	(0.07		0.002	<.01	<0.005	<0.005	<0.005	0.02	<.UI	1.09	0.130	×0.005	0.10	u./(· ~20.00	0.01	0.02	LVI	110		-20	-50	
1/0598		-5	र 0 र	l.	0.05	0.38		5.16		0.001	<.01	<0.005	0.028	<0.005	0.57	0.02	>20.00	0.087	<0.005	0.02	0.0	5 9.43	0.0	0.03	68	<100	<.01	<50	<50	<50
Dunlicate			42.1		0.05	0.39		5.15		0.001	<.01	<0.005	0.028	<0.005	0.58	0.03	>20.00	0.088	<0.005	0.03	0.0	5 9.41	0.06	6 O.OZ						
Daptioute																														
140604		<5	>500.0	714.2	2 0.22	9.85	>1	5.00	15.00	<.001	<.01	<0.005	0.075	0.097	0.06	6 0.04	>20.00	0.054	<0.005	i 0.01	0.0	3 10.83	0.0	5 0.03	9 9	163	<.01	<50	<50	<50
Duplicate				716.2	2																									
																											- 4			
140654		<5	>500.0) 577.8	8 0.15	9.16	1	1.50		<.001	<.01	<0.005	0.046	0.028	0.31	0.04	>20.00	0.056	<0.005	6 O.04	1.3	7 4.83	0.0	5 0.04	/6	152	<.01	58	SU	<50
Duplicate				565.8	8																									
449455			307 3		0.00			1 50		~ 001	- 01	<0.005	0.044	0.050	0.20	0 0 0		0.051	<0.005	. n n	7 በ ፓ	3 3 42	0.0	5 0 03	78	107	<.01	<50	<50	<50
140655 Re-1 ((> عر	327.2)	0.09	4.00	1	1.37		<.001	1 1.01	10.003	0.044	0.00		. 0.04	-20.00		-0100.	. 0.0	V.L	3 3.74								
vupricate		< >																												
140656		<5	>500.0) 599.1	8 0.14	7.84	1	1.71		<.001	<.01	<0.005	0.048	0.060	0.31	1 0.04	>20.00	0.064	<0.00	5 0.03	2 0.2	9 6.73	0.0	5 0.04	86	<100	<.01	<50	<50) <50
Duplicate			,	586.	5																									
					-																									
140663		<5	i >500.0	0 1166.	0 0.03	>15.00	23.49 1	3.77	,	<.001	1 <.01	<0.005	0.066	0.024	0.07	7 0.09	15.3	5 0.091	<0.00	5 0.0	7 0.2	4 7.60	0.0	5 0.04	74	346	<.01	<50	<50	1 <50
Duplicate			>500.1	0 1155.	2 0.03	>15.00	23.49 1	3.71		<.00	1 <.01	<0.005	0.066	0.018	8 0.07	7 0.10	15.17	7 0.090	<0.00	5 0.0	5 0.2	0 7.49	0.0	5 0.03	66	<100	<.01	<50	<50	ı <50
																						•								,
140664		<5	5 >500 .	0 567.	8 0.06	7.65		9.22	2	<.00	1 <.0'	<0.005	6,040	0.075	0.0	5 0.03	3 >20.0	0 0.047	7 <0.00	5 0.0	2 0.1	6 0.3	0.0	5 0.03	5 <50	<100	<.01	<50) <50	1 <50
Duplicate				567.	0																									

, , , , , ,

Geochemical Intertek Testing Services _ab **Bondar Clegg** Report PROJECT: SILVER TIP CLIENT: SILVERTIP MINING CORP. PAGE 6B(12/14) DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00 REPORT: VOO-00338.0 (COMPLETE) W Cr Te Sc Ta Y Zr Sn Li 6a SAMPLE ELEMENT UNITS PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM NUMBER <200 153 <200 <50 <50 <50 <50 <200 <50 <50 140579 Duplicate <200 <50 <200 <50 <50 <50 <50 <200 <50 421 140584 <200 <50 <200 <50 54 <50 <200 <50 442 Duplicate <200 61 <200 <50 <50 <50 <50 <200 <50 1513 140585 Duplicate <200 <50 <200 <50 71 <50 <50 <200 <50 80 140591 78 Duplicate <200 <50 <200 <50 <50 <50 <50 <200 <50 <200 59 <200 <50 <50 <50 <200 <50 247 140592 235 <200 <50 <200 <50 <50 <50 <50 <200 <50 Prep Duplicate <50 140598 <200 76 <200 <50 <50 <50 <50 <200 <50 Duplicate 56 140604 <200 54 269 <50 <50 <50 <50 <200 <50 Duplicate 140654 <200 149 <200 <50 <50 <50 <50 1234 <50 <50 Duplicate 140655 <200 155 <200 <50 <50 <50 <50 528 <50 <50 Duplicate <200 148 <200 <50 59 <50 <50 1176 <50 <50 140656 Duplicate <50 140663 <200 <50 <200 <50 <50 <50 <50 <200 <50 Duplicate <200 <50 218 <50 <50 <50 <50 <200 <50 <50 140664 <200 <50 <200 <50 <50 <50 <50 <200 <50 <50 Duplicate

N

. .

· ·

•

.

CLIENT: SILVERTIP MINING CORP.

S #

.

• •

•

PROJECT: SILVER TIP

REPORT: VOO	-00338.0 (COMPLE	TE)									I	DATE REC	CE LVED :	23-FI	EB-00	DA	TE PRI	NTED:	3-MAR	-00	PAGE	7A(13/14)					
SAMPLE	ELEMENT W	let Au	Ag	AgGrav	Cu	Pb	РЬ	Zn	Zn	Mo	Ni	Co	Cd	Bi	As	. Sb	Fe	- Mn	١	/ Al	Mg	Ca	Na	ĸ	Sr	In	Ti	Ga	Nb	La
NUMBER	UNITS	PPB	PPM	PPM	PCT	PCT	PĊŤ	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PC1	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PCT	PPM	PPM	PPM
140667		4	16.5		<.01	0.21		0.17		0.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.66	0.261	<0.00	5 0.18	8 0.76	>20.00	0.06	0.08	203	<100	<.01	<50	<50	<50
Prep Duplic	ate	<5	13.5		<.01	0.21		0.17		<.001	<.01	<0.005	<0.005	<0.005	<.01	<.01	0.66	0.295	<0.00	5 0.12	2 0.62	>20.00	0.05	0.07	205	<100	∢.01	<50	<50	<50
140670		<5	219.8		0.80	0.27		3.21		0.001	<.01	<0.005	0.013	0.269	0.20	0.03	>20.00	0.075	<0.00	5 0.11	3.83	12.87	0.05	0.03	134	<100	<.01	<50	<50	<50
Duplicate			218.7		0.81	0.31		3.27		0.003	<.01	<0.005	0.012	0.270	0.18	8 0.04	>20.00	0.074	<0.00	5 0.10	3.74	12.87	0.05	i 0.04	129	<100	<.01	<50	<50	<50
140677		<5	5.6		<.01	<0.01		0.04		0.002	<.01	<0.005	<0.005	⊲0.005	0.01	<.01	0.71	0.098	<0.00	5 0.04	0.96	>20.00	0.05	i 0.02	207	<100	<.01	<50	<50	1 <50
Duplicate		<5	4.7		<.01	0.01		0.04		<,001	<.01	<0.005	<0.005	<0.005	0.01	<.01	0.74	0.098	<0.00	5 0.04	0.9	>20.00	0.05	5 0.0 3	5					

A 6 A 8

CLIENT: SILVERTIP MINING CORP. REPORT: VOD-00338.0 (COMPLETE)

•

.

DATE RECEIVED: 23-FEB-00 DATE PRINTED: 3-MAR-00

. .

.

PAGE 7B(14/14)

SAMPLE	ELEMENT	W	C۲	Te	Sc	Ta	۲	Zr	Sn	Li	Ba
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
140667		<200	51	<200	<50	<50	<50	<50	<200	<50	81
Prep Duplica	ate	<200	<50	<200	<50	<50	<50	<50	<200	<50	71
140670		<200	62	<200	<50	<50	<50	<50	<200	<50	67
Duplicate		<200	72	<200	<50	<50	<50	<50	<200	<50	6 0
140677		<200	<50	<200	<50	<50	<50	<50	<200	<50	70
Duplicate											

SILVERTIP MINI	NG COR	PORATION
Silverti	p Prop	erty
Clai	m Maj)
M	ap 1	
SCALE 1 : 20000 0	800m	1600m
FILE: midcomp_20000.dwg	PLOT FILE:	Mid20.plt
DRAWN BY: C. Croig	DATE:	December 14, 1998