REPORT ON TILL, SOIL, ROCK AND SILT GEOCHEMISTRY

CRAZY FOX PROPERTY FOX GROUP

MINING DIVISION: KAMLOOPS NTS MAP: 092P/9W AND 092P/9E

LATITUDE: 51° 33¢ LONGITUDE: 120° 16¢

OWNERS/OPERATORS/AUTHORS B. BOURDON & L. ADDIE

APRIL 11, 2000

TABLE OF CONTENTSCRAZY FOX PROJECT

1
2
2
2
3
4
5
5
6
6
7
7
8
9

FIGURES

1. PROPERTY LOCATION MAP	REPORT BODY
2. CLAIM MAP	REPORT BODY
3. REGIONAL GEOLOGY	REPORT BODY
4. PROPERTY GEOLOGY	REPORT BODY
5. SURFICIAL GEOLOGY	REPORT BODY
6. REGIONAL MAGNETICS	REPORT BODY
7. TILL ANOMALY MAPS BY ELEMENT	REPORT BODY
8. PROPERTY MAP	BACK POCKET

APPENDICES

l.	BIBLIOGRAPHY
II	GEOCHEM ICP ANALYSES
III	ROCK SAMPLE LOCATIONS
IV	TILL SAMPLE LOCATIONS
V	SOIL SAMPLE LOCATIONS

- VI SILT SAMPLE LOCATIONS
- VII STATEMENTS OF QUALIFICATIONS
- VIII STATEMENT OF COSTS

Summary:

The Crazy Fox Property is located about 100 km. North of Kamloops near the town of Little Fort.

Recent work by both the owners and Ministry of Mines staff has defined a linear multi-element geochemical anomaly in basal tills.

An airborne and field checked magnetic anomaly is coincident with the high geochem values.

The anomaly extends for a distance of about 10 km. and is highly anomalous in Zn, Cu, Cd, As, Sb and Co. Sampling to the North and the South of the anomaly indicates that it does not continue in either direction.

The geology of the area has not been mapped in detail. GSC Memoir 363 briefly describes the rocks as ? Mid Jurassic porphyritic augite andesite breccia & comglomerate with minor andesite, arenite, tuff, flows and argillite.

In the area of the till anomaly, rocks consist of andesite, tuff and fragmental volcanics interlayed with black argillaceous sediments.

The geology, suite of elements and coincident magnetic anomaly suggests excellent potential for a large VMS or Sedex type deposit.

Road Lake

Anomaly

1.0 INTRODUCTION:

This report has been prepared for the purpose of filing for assessment work credit and fulfilling the requirements of the Mineral Act and Regulations.

Field work on the **CRAZY FOX PROPERTY** was carried out by L. Addie and R. Bourdon from May 15,1999 to October 26, 1999. Work consisted of prospecting and sampling. A total of 29 till samples, 38 soil samples, 7 rock samples and 2 stream sediments were collected and analyzed. Also included in this report is some additional sample data which was collected prior to claim staking. This data is not being claimed for assessment work credit but is included here to ensure that all work done to date is documented.

2.0 PROJECT RATIONALE:

During the summer of 1997, the British Columbia Geological Survey Branch (Bobrowsky et al.) carried out a drift exploration program in the Louis Creek - Little Fort area. The program consisted of both surficial geology mapping and till geochemistry sampling.

The results of the project were released in April of 1998 as Open File 1998-6. The Open File maps show a large multi-element geochemical anomaly in the most Northwest corner of the survey area. Anomalous elements include Ag, As, Au, Cd, Co, Cu, Hg, Mo, Sb and Zn. There are no known mineral occurrences in this area that could explain the anomaly.

Based on the suite of anomalous elements and the lack of any known mineral occurrences, the area was visited and a number of mineral claims were staked commencing on the day of the Open File release. During the summers of 1998 and 1999, prospecting including till, soil, rock and silt sampling were carried out in an effort to locate the source of the anomaly.

3.0 LOCATION AND ACCESS:

The CRAZY FOX PROPERTY is situated in the Kamloops Mining Division approximately 100 kilometers North of Kamloops or about 15 kilometers North of the town of Little Fort. From Little Fort, good access to the property is gained by traveling Highway 24 to the Northwest for about 5 kilometers, then following a good standard logging road (Nehalliston Creek Forest Road). The property is well accessed by the main logging road and a number of branch roads. The LCP for the 4 post claims is located about 50

FIGURE 1

LOCATION MAP: CRAZY FOX PROPERTY

meters East of the Nehalliston Creek Forest Road at a point about 15 kilometers from the hiway

4.0 GENERAL SETTING:

The majority of the property is located on the plateau between Demers and Fourteen Mile Creeks. The most Southerly portion is located in the drainage of Demers Creek. Elevations range from about 3000 feet at the most Southeasterly corner of the claims to about 4700 near the centre of the property (900 to 1450 meters). The terrain is for the most part relatively flat except in the lower Demers Creek valley where slopes are up to 60%.

The Property receives an average of about 2 metres of snow but is generally snow-free from mid May to late November.

The property is covered by extensive overburden consisting mainly of basal and ablation tills, and glaciofluvial deposits. This overburden ranges in thickness from less than a meter to possibly 10 meters or more. We estimate that the average thickness of tills in areas away from valley bottoms is from 1 to 2 meters. Bedrock outcrop is rare and accounts for less than one percent of the claim area. A few new outcrops have been exposed in recent logging road cuts.

Vegetation in the area consists mainly of coniferous forest with scattered open areas of brush. There has been extensive clearcut logging and road construction which has taken place from 1988 to present.

5.0 CLAIMS INFORMATION:

The property is comprised of two groups of claims separated by the Worldstock claim owned by Christopher James Gold Corp. The property consists of a total of 47 mineral claims (103 units).

The Northerly claim block has been grouped as the **CRAZY FOX Group** and consists of 20 2-Post Mineral Claims and 4 modified grid claim as follows:

-

NAME	# OF UNITS	RECORD #	EXPIRY DATE [°]
BBB#1	1	369747	JUN 06, 2002
BBB#2	1	369748	JUN 06, 2002
BBB#3	1	369749	JUN 06, 2002
BBB#4	1	369750	JUN 06, 2002
BBB5	1	371103	AUG 08, 2002
BBB6	1	371104	AUG 08, 2002

BBB7	1	371105	AUG	08,	2002
BBB8	1	371106	AUG	08,	2002
PHASER#1	1	372349	SEP	21,	2002
PHASER#2	1	372350	SEP	21,	2002
phaser#3	1	372351	SEP	21,	2002
PHASER#4	1	372352	SEP	21,	2002
PHASER#5	1	372353	SEP	22,	2002
PHASER#6	1	372354	SEP	22,	2002
PHASER#7	1	372355	SEP	22,	2002
PHASER#8	1	372356	SEP	22,	2002
phaser#9	1	372357	SEP	22,	2002
PHASER#10	1	372358	SEP	22,	2002
PHASER#11	1	372359	SEP	22,	2002
PHASER#12	1	372360	SEP	22,	2002
CRAZY FOX	1 18	375102	APR	03,	2001
CRAZY FOX	2 12	375103	APR	03,	2001
CRAZY FOX	3 20	375104	APR	03,	2001
CRAZY FOX	4 10	375105	APR	03,	2001

The Southerly claim block has been grouped as the **Fox Group** and consists of 23 2-Post Mineral Claims as follows:

NAME	# OF	UNITS	RECORD	# EXP	IRY DATE *
COPPER	CRAZE	1	362600	MAY	12, 2001
FOX1		1	363261	APR	16, 2001
FOX2		1	363262	APR	16, 2001
FOX3		1	363263	APR	16, 2001
FOX4		1	363264	APR	16, 2001
FOX5		1	364257	APR	16, 2001
FOX6		1	364258	APR	16, 2001
FOX7		1	364259	APR	16, 2001
FOX8		1	364260	APR	16, 2001
FOX9		1	364261	APR	16, 2001
FOX10		1	364262	APR	16, 2001
FOX11		1	364696	APR	16, 2001
FOX12		1	364697	APR	16, 2001
FOX13		1	364698	APR	16, 2001
FOX14		1	364699	APR	16, 2001
FOX15		1	368538	APR	20, 2002
FOX16		1	368539	APR	20, 2002
FOX17		1	369751	JUN	19, 2001
FOX18		1	369752	JUN	19, 2001
KEG#1		1	368433	APR	16, 2001
KEG#2		1	368434	APR	16, 2001
KEG#3		1	368435	APR	16, 2001
keg#4		1	368436	APR	16, 2001

* Expiry date upon acceptance of work as detailed in this report.

The Mineral Claims are shown on the Figure 2 maps contained in this report.

CLAIM MAP CRAZY FOX PROPERTY CRAZY FOX GROUP

CLAIM MAP CRAZY FOX PROPERTY - FOX GROUP

6.0 HISTORY AND DEVELOPMENT:

Research of available literature has found no evidence of any previous mineral exploration on the ground currently held as the Crazy Fox property. There are however, two known mineral occurrences nearby.

a) Anticlimax:

Minfile#: 092P 014 Status: Showing Commodity: Mo Deposit Type: Porphyry? Mo Mineralization: Molybdenite occurs as disseminations and in quartz veins in an altered quartz feldspar porphyry stock. There are 3 documented molybdenite showings.

Location: Near Tintlhohton Lakes near the northerly boundary of the Crazy Fox property. The showings have not been visited by us and one or more of the showings may be within the Crazy Fox Group.

b) Worldstock:

Minfile#: 092P 145 Status: Showing Commodity: Cu, Au Deposit Type: Porphyry? Cu, Au Mineralization: Copper values occur in altered Nicola? volcanics. Location: A few meters East of the main

Nehalliston Creek road and about a kilometer West of the trend of the Crazy Fox till anomaly.

7.0 BEDROCK GEOLOGY:

The regional geology of the Crazy Fox property has been mapped by R.B. Campbell and H.W. Tipper during the 1964 and 1965 field seasons. The results of their work is shown on Geological Survey of Canada Map 1278A and described in G.S.C. Memoir 363.

Map 1278A shows the entire area of the Crazy Fox property to be underlain by Unit 16 described as Sinemurian to (?) Middle Jurassic volcanic rocks consisting of porphyritic augite andesite breccia and conglomerate; minor andesite, arenite, tuff, argillite and flows (may include some Nicola Group). Figures 3 and 3A show the portion of Map 1278A which covers the Crazy Fox property.

Outcrops seen while prospecting consist of volcanic and sedimentary rocks striking about 160° and dipping steeply to the West. The location and description of each outcrop can be found in Appendix III and the location of each sample is

BEDROCK GEOLOGY MAP CRAZY FOX PROPERTY

(Portion of Geological Survey of Canada Map 1278A Bonaparte Lake)

BEDROCK GEOLOGY MAP LEGEND CRAZY FOX PROPERTY

(Portion of Geological Survey of Canada Map 1278A Bonaparte Lake)

PROPERTY GEOLOGY CRAZY FOX PROPERTY

shown on the map in the back pocket of this report. Figure 4 shows the property geology based on our findings.

8.0 SURFICIAL GEOLOGY:

The surficial geology of the Crazy Fox property has been mapped by H.W. Tipper between 1954 and 1969. The results of his work are shown on GSC Map 1293A, Surficial Geology, Bonaparte Lake, British Columbia. Figure 5 shows the portion of Map 1293A which covers the Crazy Fox property.

Of particular interest from a till sampling perspective is the ice flow direction which appears to be about 160° (same as the strike of the rocks) in the area of the Crazy Fox property.

9.0 SAMPLING PROCEDURE:

9.1 Rocks: A total of 52 rock samples were collected. Samples were taken from both outcrop and float in an effort to determine the possible source of the high values in glacial tills. Samples were placed in heavy plastic bags and tagged accordingly.

9.2 Tills: A total of 71 till samples were collected. All samples were taken from basal till deposits at an average depth of 1 to 2 meters. Sample size was about 2 to 3 kilograms. Samples were placed in heavy plastic bags and tagged accordingly.

9.3 Soils: A total of 48 soil samples were collected. Samples were taken from the B-horizon at an average depth of 20 to 30 centimeters. Although till is the preferred sampling material, soils were collected in areas where tills were difficult to sample. Samples were placed in kraft paper envelopes and tagged accordingly.

9.4 Silts: A total of 11 silt samples were collected. Small streams were sampled to help us focus in on the source of the till anomaly. Due to poor road access at the time, very few samples were taken in this area during the Regional Geochemical Survey Program carried out by Ministry of Mines in the 1970's. Samples were placed in kraft paper envelopes and tagged.

The UTM grid location of most samples was determined using a Trimble GeoExplorer handheld GPS. At each location, approximately 30 positions were recorded and later differentially corrected using data obtained from the US Forest Service Kettle Falls base station. All locations have an expected accuracy of better than ±10 meters.

SURFICIAL GEOLOGY MAP CRAZY FOX PROPERTY

(Portion of Geological Survey of Canada Map 1293A Bonaparte Lake)

All samples were shipped by Greyhound to Acme Analytical Labs in Vancouver for geochemical analyses.

10.0 SAMPLE PREPARATION AND ANALYSIS:

10.1 Rocks: Samples are crushed to -10 mesh, split and pulverized to -150 mesh. From this, a 0.500 gram sample is digested with 3 ml. of 2-2-2 HCl-HNO₃-H₂O at 95°C for one hour and is diluted to 10 ml. with demineralized water. Leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Tl, B, W and massive sulphide and limited for Na, K and Al. Multi-element analysis is done by Inductively Coupled Argon Plasma. Elements obtained in the ICP analysis are: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K and W.

Gold is determined by igniting a 10 gram sample overnight at 600° C and digesting it in 30 mls. of hot dilute Aqua Regia. 75 ml. of clear solution obtained is extracted with 5 ml. of Methyl Isobutyl Ketone (MIBK). Au is determined in MIBK extract by Atomic Absorption.

10.2 Soils, Tills and Silts: Samples are dried at 60°C and up to 100 gm. is sieved to -80 mesh. From this, a 15 gram sample is digested with 90 ml. 2-2-2 HCl-HNO₃-H₂O at 95°C for one hour and is diluted to 300 ml. with demineralized water. Leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Tl, B, W and limited for Na, K, Ga and Al. Multi-element analysis is done by Inductively Coupled Argon Plasma ES and MS. Elements obtained in the ICP analysis are: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, Tl, Hg, Se, Te and Ga.

11.0 DATA PRESENTATION:

The work carried out on the Crazy Fox Property is summarized on maps as follows:

- 11.1 A sketch map of the property at 1:10 000 scale is included as Figure 8 in the back pocket of this report. The map shows the location of all samples collected as well as comments on outcrops seen.
- 11.2 The Figure 4 map shows our interpretation of the geology in the area of the multi-element till anomaly. The map is based on a very limited number of outcrops and therefore it is likely that the geology is far more complex than that shown.
- 11.3 Figures 7a to 7j show the till geochem values plotted for each of the elements of interest Ag,

REGIONAL AIRBORNE MAGNETICS CRAZY FOX PROPERTY

(Portion of Geological Survey of Canada Map 5224G Chu Chua and 5229G Clearwater)

Till Geochem: Phaser Lake Project S >60 45 to 60 30 to 45 20 to 30 (ppm) × 10 to 20 < 10 Scale: 1: 50 000 res 1000 1000 2000 3000 4000 Metres

As, Ba, Cd, Co, Cu, K/Na, Se, Sb and Zn. Sample data used includes tills collected by us and also Ministry of Mines sample data from Open Files 1998-6 and 2000-17. The values used for contouring of each element are somewhat arbitrary but were chosen to clearly show the anomalies. Contour values used appear to be realistic based on a comparison of values used by Ministry of Mines staff in Open File Reports. The following table demonstrates the values used in the various till sampling programs in the Little Fort area.

	Our Dat	a	OF2000-	17	OF1998-6		OF1997-9)
Element			95th %ile	e 99th %ile	95th %ile	99th %ile	95th %ile	99th %ile
Ag	>600	>700	>668	>1393	>401	>967	>300	>700
As	>45	>60	>60.6	>147.1	>15.6	>42.7	>22	>56
Ba	>300	>400	>169	>246	>208	>323	>215	>432
Cd	>2	>2.5	>1.18	>4.52	>0.65	>1.53	>0.8	>2.7
Со	>40	>50	>39	>47	>28	>43	>39	>60
Cu	>300	>400	>245.4	>297.8	>122	>287	>135	>311
Se	>2.5	>3	>1.5	>3	>0.7	>1.6	<3	>3
Sb	>5.5	>7	>3.9	>4.7	>1.0	>2.4	>1.3	>2.3
Zn	>300	>400	>184	>222.9	>104	>173	>179	>447
			<u></u>					-
Total San	ples		17	0	332	1	496	5
	<u>.</u>							

11.4 The analysis data for soils has not been used in preparing the geochem anomaly maps. However, our data indicates that soil analysis produces results similar to tills, and would generate similar anomalies.

12.0 OBSERVATIONS:

The field examinations and geochemical reconnaissance sampling program carried out on the Crazy Fox Property indicates the following:

- 12.1 A very strong multi-element geochemical anomaly in glacial tills occurs on the Crazy Fox Property.
- 12.2 The anomaly is up to 500 meters wide and 8 to 10 kilometers long.
- 12.3 The anomalous elements present are Ag, As, Ba, Cd, Co, Cu, Se, Sb and Zn. This suite of elements may be indicative of VMS mineralization.

- 12.4 Regarding the transportation of glacial tills, Bobrowsky, Open File 1998-6, states that "...transport distances are in the order of tens of meters to a few kilometers from source area ..." The length and width of the Crazy Fox till anomaly suggests that the anomaly has been generated from a source which has a significant strike length and which strikes parallel to the ice direction. Or, there may be multiple sources along a trend which parallels the ice direction. This would be consistent with the possibility that the anomaly is indicative of VMS style mineralization.
- 12.5 There is a strong airborne magnetic anomaly which appears to be coincident with the till geochemical anomaly (see figure 6). This anomaly has been ground checked at a number of locations using a magnetometer. Backgound in the area is about 57000 gammas and our maximum reading was 59905 gammas. Near the main road at samples 73335A to C, there is a magnetic high greater than 59000 gammas over a width of about 50 meters.

12.6 Rock outcrops and float examined on the property do not explain the geochemical and magnetic anomalies. Rocks analyzed were not highly anomalous in the element suite described and all rocks tested were very weakly magnetic or displayed no magnetism at all. Minor pyhrrotite was noted in some of the argillites.

12.7 The geologic setting is typical of environments where VMS deposits are known to occur.

13.0 RECOMMENDATIONS:

- 13.1 Based on the evidence collected to date, the area must be tested to determine the source of both the geochemical and magnetic anomalies.
- 13.2 Additional work, particularly geophysics, should be employed to determine the best target area(s) for testing by trenching and/or diamond drilling.

L. Addie

R. Bourdon

Appendix II

GEOCHEM ICP ANALYSIS

	ACKE A	IALY IO S	TIC 002	ACC	ABÒR redi	LaTO	CO.	LT)	Ο,	8	152	B.	HASTI	MGS	ST.	VYNC	OUVE	RBC	7	6A	1R6	1	PH	ONE	604) 25	3 - 3	15	. 77	XX ((604)	253-	1716	
					· · ·	•			2	<u>aa</u> t	G Le ,	EO(CHEMI	PRO	ANI JECI	LYS	IS C <u>X</u> I	IRR]	CI₽ ≥ #	IC2	TE	508									·		44	
<. »	sample#	Hc DDII	o Co n ppi	u Pt 15 ppn	Zn ppr	: Ag I ppb	Ni ppm	Co ppin	Hn ppa	Fe 1	As ppm	U aqq	Au 1 ppb pp	h Si na ppr	Concern Concern	Sb pps	NELSO Bî pom	vbw A J Ar	Ca T	р 1 1	La ppm	Cr ppm	Mg 1	Ba ppm	Ti X	8 ppa	A1 ¥	Na X	 K ¥ j	W N	Ti (ppm p	Hg Se pb ppm	Te Ga	
	E139118 RE E139119 E139119 E139120 E139121	3.0 1.8 1.7 1.3 2.4	312. 191. 192. 249. 170.	7 11.3 9 8.2 4 8.3 8 6.0 4 7.7	96.6 128.4 128.0 87.2 83.3	249 202 196 383 109	65.1 65.0 65.5 53.3 61.9	30.3 22.3 22.0 24.5 29.0	681 504 500 575 617	5.57 2 5.48 1 5.48 1 1.67 1 5.47 1	5.6 8.0 7.7 1.3 4.9	.9 .7 .7 .4 .5	66.2 2, 16.4 2. 12.7 2. 36.0 2. 26.4 2.	6 52.9 6 44.2 5 43.0 8 46.8 6 45.3	.39 .37 .38 .24	2.29 1.64 1.58 1.16 1.57	.33 .25 .23 .23 .23 .24	146 133 133 103 145	.70 .67 .65 .73 .52	.113 .081 .080 .049 .054	10.0 8.6 8.2 7.6 10.0	114.1 115.7 114.9 96.1 145.0	1.43 1.24 1.24 1.29 1.85	58.0 65.4 65.5 76.4 61.8	.148 .170 .167 .159 147	1 2 1 2 1 2 1 2	2.39 2.62 2.61 2.34	.01 .01 .01 .02	.14 .25 .25 .12	.6 .3 .3 .3	.22 .22 .22 .17	44 .8 33 .6 27 .5 63 .8	.10 6.8 .08 7.4 .08 7.3 .07 6.5	;
8 6 8 8	139122 139123 139124 139125 139125	3.0 2.3 8.7 24.1 12.8	220.1 173.8 99.0 279.1 271.1	2 10.0 3 9.2 5 10.8 7 14.4 7 22.2	102.9 129.5 346.6 913.1 476.7	343 269 690 348 762	103.9 69.7 88.0 131.8 119.0	31.9 25.8 28.8 22.7 43.1	659 (589 (805 - 352 (1208 (5.47 1 5.19 2 1.67 2 7.35 5 1.30 4	3.3 2.9 6.9 2.1 8.1	.5 .4 .5 .6	29.0 2, 10.8 3, 15.4 1, 6.3 2, 25.8 2,	0 44.1 4 44.7 7 189.9 1 19.9 4 73.3	. 19 . 33 5 3.27 5 5.53 6 5.97	1.68 2.92 3.69 12.87 9.23	.22 .66 .23 .22 .31	180 166 93 57 68	.59 .74 7.75 .12 .97	.060 .050 .183 .111 .161	6.5 11.5 7.5 7.7 12.2	268.5 121.2 121.6 32.3 54.0	2.71 1.70 1.54 .49	53.8 130.9 360.4 603.2 291.9	.181 .168 .021 .010 .064		2.93 3.25 40< 49<	.01 .02 .01 .01 .01	.09 .15 .07 =	.3 .8 .2 .2 1	.19 .14 .29 2 .36 1	29 1.1 37 .5 10 2.9 58 7.8	.12 7.6 .19 9.1 .07 9.7 .11 4.0 .15 2.6	ļ
i k S	E139327 (EG3+40n (EG9+00n (TANDARD DS2	15.4 2.2 1.3 15.6	219.1 176.5 87.0 130.1	1 24.1 5 8.7 0 6.7 0 31.5	467.0 83.6 53.6 165.4	1005 245 151 266	105.7 55.1 31.5 38.2	33.0 27.2 21.1 12.9	1159 536 9 607 2 834 3	.31 3 .53 1 .80 2 .15 5	1.0 2.2 3.3 9.7	.8 .4 .3 21.5	19.2 2. 24.9 1. 6.6 . 201.2 3.	7 64.2 7 40.1 7 274.9 6 29.3	4.62 .15 .89 11.64	11.73 1.75 2.09 9.05	.37 .26 .24 11.27	76 143 58 13 82	93 .49 3.68 .56	.215 .052 .082 .081	13.0 5.6 3.7 12.5	38.7 114.2 52.2 167.0	.77 1.62 .81 .60	577.1 40.3 67.3 142.2	.049 .137 .056 .105	1 1 1 2 1 1 1 1	26< 33 08	.01 .01 .01 .01	.12 < .15 .08 .16 7	.2 .3 .7 .6 2	.45 72 .13 : .13 : .14 2!	27 4.2 35 .9 56 1.0 58 2.7	.16 3.7 .11 7.5 .09 3.2 1.91 6.2) }

15 GRAN SAMPLE IS DIGESTED WITH 90 ML 2-2-2 HCL-HN03-HZO AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML WITH WATER, AMALYSIS BY ICP/ES & NS. THIS LEACH IS PARTIAL FOR NW FE SR CA P LA CR NG BA TI 8 W AND LINITED FOR NA K GA AND AL. - SAMPLE TYPE: TILL <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ľ								E	Bour	<u>dor</u> 907	L, W.	<u>R.i</u> Rich	J. ard	Fi s St.,	le Neis	# ! on B	990 ic v1)17 L 51	13 13												
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U PPM	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K X	W ppm	Au* opb
E78851	190	43	117	100	.9	39	12	1378	5.08	7	<8	<2	<2	82	2.9	3	5	64	2 17	053	2	45	1 22	124	01	~7	70	~~~	77	,	
E78852	5	38	15	228	.3	28	10	1031	2.11	12	<8	~2	5	2029	1.6	7	~ 3	25	17 57	074	5	17	1.22	705 -	.01	5	. 30	.04		4	Ŷ
E78853	333	39	137	- 96	1.1	48	18	2018	7.18	0	∠Ă.	- 2	5	104	7 5	ż	11	20	12.22	.070	-	14	. 23	3935	.01	2	- 42	.02	.12	<2	4
E78854	6	22	4	287	3	42	15	417	3 84	í.	28	~	2	140	1.5	7		70	4.22	.0/1	Š	40	1.40	92<	.01	<5	.55	.03	.23	3	29
E78855	16	76	10	895	1.3	41	7	228	2.92	28	<8	<2	<2	26	15.7	9	-3 -3	32	.13	. 127	6	14	.25	237<	.01	4	.45	.02	.22	<2 <2	4 3
E78856	108	36	64	110	. 8	53	24	1856	6.93	0	< 8	~2	2	07	7 7	7	.7	101	7 5 3	117	_	74			••	_					
E78857	5	1222	11	38	9.1	<1	08	538	11 84	451	- 8	~2	. 5	5	2.1	,	14	101	3.32	. 112	2	- 1	2.45	62	.01	<3	.58	.05	.68	<2	7
E78858	1	5	< 3	3	< 3	6	1	66	1 25	-22	2 B		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2.2	-4	10	22	.08	.047			[]	53	.08	<3	1.73	.03	.09	<2	386
E78859	103	36	4	17	3	7	10	50	6 7 0	7	20	~ 7	22	2			(2)	-4	. 02	.002	2	20	.01	7<	.01	<3	.08	.01	.05	5	1
RE E78859	101	35	<3	16	<.3	3	10	50	6.30	<2	<8	<2	<2	7	.3	<3	<3	30	.01	.013	6 5	21 20	.01 .01	10 13	.01 .01	<3 <3	.07 .07	.01 .01	.03 .03	4 5	<1 <1
E78860	2	176	<3	71	.3	19	30	1158	6.55	8	<8	<2	2	78	1.6	~3	~7	203	2 05	140	7	74	1 10		25			•			_
STANDARD C3/AU-R	26	62	39	166	5.9	37	12	794	3 41	56	13	7	10	20	23 6	15	21	80	£.72 E0	. 100	10	170	1.09	21	. 25	< 2	2.86	.06	.07	<2	2
STANDARD G-2	1 1	3	<3	44	< 3	- Q	4	54.8	2 08	2	- 8	.5		72		7		20	. 20	.000	10	170	.01	120	.10	22	1.90	.04	. 16	20	946

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___

ACME	ANAL ISO	YTIC# 9002	L LA Acci	BORAT	CORI	ES L' Co.)	rD.	{	52	E. 1	IAST]	INGS	ST.	IAV	NCOUVE	R BC	v	6A 1	LR6	<u> </u>	PHO	NE (6	504)25	3-3	158 F/	LX (6)	04)25:	3-17	16	
44							Bo	<u>urd</u> 907	GI on, W. Ri	EOC: <u>R</u>	HEMI J. P is St.	CAL PROJ	AN ECT	ALY DE V1L	SIS (MERS 513 SU	ER] Fj	ITF: ile	ICA # y: R,	ТЕ 990: J. во	205 urdor	8 n							4	A	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn A ppm pp	λg ob p	Ni Co pri ppni	Mn ppm	Fe /	ks i Min ppi	υ n p	Au Th pb ppm	Sr ppm	Cd ppm	Sb ppin	Bi v ppn ppn	Ca ¥	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B A1 ppm ¥	Na	K k	/ T1	Hg Se	Te	Ga	ş
E 78862 E 78863 E 78864 E 78865 E 78866	4.78 4.53 2.61 8.53 1.37	73.19 104.82 80.06 72.20 135.75	11.26 8.34 10.23 13.43 10.90	206.8 23 158.8 12 140.9 13 404.1 47 81.1 7	32 39 27 45 35 45 71 71 71 93	.5 22.8 .0 23.3 .6 26.3 .1 23.6 .8 29.9	880 4 784 4 812 4 957 4 796 4	.69 18 .88 11 .73 8 .66 22 .55 32	0 .0 5 .1 3 .1 2 .0 6 .0	62 52 5< 94<	.4 5.1 .3 2.0 .2 1.3 .3 1.5 .2 .9	39.9 40.5 41,2 37.7 60.1	1 30 95 61 3 21 36	3.57 2.74 1.59 3.80 1.51	16 105 11 120 19 133 20 115 28 134	.41 .58 .57 .29 1.02	.136 .100 .113 .130 .096	6.0 6.2 5.5 8.0 4.4	44.6 56.0 86.1 80.7 170.3	1.00 1.38 1.52 1.27 2.16	193.6 156.8 111.8 266.4 75.2	.067 .109 .162 .073 .191	3 2.04 4 1.94 2 2.33 3 2.35 3 2.61	.039 .041 .029 .027 .047	.19 1.5 .15 1.7 .16 1.4 .22 1.8 .15 1.4	20 20 18 68 18	39 1.4 23 1.1 16 .9 30 2.2 18 .4	. 04 . 05 . 07 . 06 . 16	5.9<.0 5.6<.0 7.0.0 6.2<.0 6.8<.0	
E 78867 RE E 78867 E 78868 E 78869 E 78870	2.99 2.99 12.47 1.54 2.43	135.80 136.37 193.81 148.22 138.94	10.06 10.23 14.60 10.86 7.32	154.5 13 153.3 13 401.7 27 103.8 10 86.2 14	88 82 83 81 78 72 93 19 10 40	.1 31.1 .6 30.6 .9 28.5 .6 26.8 .0 27.5	867 5 865 5 937 5 1364 5 921 5	06 29 06 29 06 38 69 12 13 4	4 2 2 1 2 2	5 < 5 < 3 < 5 6	.2 .6 .4 .5 .2 1.4 .8 1.2 .0 .9	60.0 59.7 64.3 40.8 108.4	1.06 1.11 3.37 .33 .40	2.17 2.22 4.19 1.14 2.51	.16 137 .15 137 .24 107 .07 251 .37 192	.87 .87 .62 .56 2.25	104 105 117 133 112	6.3 6.3 12.6 12.1 6.0	131.6 137.4 54.4 37.5 92.4	2.06 2.09 1.42 2.37 2.12	108.3 109.6 227.8 106.9 128.6	.187 .194 .159 .207 .167	4 2.69 4 2.75 3 2.11 2 3.09 2 2.58	.038 .036 .028 .044 .042	.19 1.2 .18 1.2 .30 .9 1.02 .3 .17 1.2	. 18 . 18 . 47 . 58 . 13	37 .7 38 .8 36 3.6 12 1.1 28 2	.07 .05 .11 .03 04	7.1<.0 7.0<.0 4.9 .0 11.1<.0 8 7 0	1 1 2 1
E 78871 STANDARD DS2	.96 13.82	138.38 128.61	5.87 34.02	67.8 8 173.1 26	13 44. 50 37.	6 28.2	881 5 799 3	.46 5. .04 61.	6 .4 3 20.2	6. 2 201.	4 .6 5 3.7	40.1 35.1	.16 11.24	1.78 9.37	.14 220 13.11 87	.88 .53	.110 .094	6.1 14.9	110.3 162.1	2.26	43.0 171.7	.217 .117	2 2.68	.039	.10 .9	.08	8 .1 231 2.3	.03	9.7<.0 6.0	12

15 GRAM SAMPLE IS DIGESTED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML WITH WATER, ANALYSIS BY ICP/ES & MS. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. - SAMPLE TYPE: TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

ACM	E ANA (ISO	LYTI(900;	CAL I 2 Acc	LABOI	RATC	RIE	S L .)	ΓD.		85	2 E	. HAS	TING	IS ST	• v	ANCC	נעסכ	ER B	C	V6A	1R6		PH	ONE	(604)	25	3-315	58	FAX (604) 253	3-17	716	-
											GE(OCHE	MIC	AL A	NAI	'XSI	[S	CER	TI	FIC	ATE										•	A		
								Ē	3 <u>011</u> 90	<u>rdo</u> 7 W.	n, Rich	R.J ards S	. PF t., No	<u>ROJE</u> elson i	CT BC V1	<u>FOX</u> 1L 5T3	<u>{</u> 5 : 5	Fil Submi	e tted	⋕ 9 _{by:}	902 R.J. I	898 Bourd	l Ion									A		
SAMPLE#	Mo ppin	Cu ppin	Pb pjxn	Zn ppin	Ag טלונן	N 1 рряв	Co ppa	Mn ppiit	Fe z	As ppn	U IIIQQ	Au Th ppb pps	Sr ppa	Сd ppn	Sb ppiii	Bı ppin	V ppin	Ca X	р Х	La ppm	Cr ppm	Mg t	Ba opm	Tı X	6 000	41 7	Na P		W TI	Hg	Se	Te	Ga	3 S
B 51938 B 51939 B 51941 B 51944 B 51945	4.11 9.82 3.62 10.76 7.69	3.24 91.93 129.17 119.69	24.23 15.12 11.27 10.24	30.8 74.9 120.9 146.0	53 192 133 381	4.6 15.1 18.8 19.6	.9 10.4 19.9 8 5	432 253 1009 328	.53 1.83 1.33 3.03	18.2 12.0 17.5 33.0	3.2 1.3 5 9	2 7.2 <1 3.3 <1 1.7 <1 2.0	4.1 60.1 132.0 80.1	.16 1.60 .85 2.21	.23 1.72 1.21 2.54	. 53 . 28 . 14 . 21	2 70 70 85	.03 1.06 1.33 89	.005 .143 .187 .187	10.0 5.9 6.7	15.7 13.5 18.4 20.1	.01 .39 1.36	48.9 109.9 96.8	.001 .221 .244	1 .: 2 1.(4 1.9	25)9)3	090 14 033 36 027 46	6.	1 .06 4 .18 6 .26	8 24 18	.3 5.0 3.9	ppm < .02 .09 .09	ppm 1 1 3.7 5.1	 02 /9 .66
3 51947 3 51948 5 73304	561.95 11.77 9.76	58.18 146.55 81.59	138.21 10.19	10.8 144.5	455 1164 378	5.4 32.2	13.2 1.8 30.5	295 2 73 1 807 5	2 97 1.34 5.02	8.5 8.5 6.5	.8 .4 .7	<1 2.3 59 .2 <1 1.1	49.5 232.6	1.85 16 1.55	2.24 .93 3.32	.29 16.36 .50	63 7 164	1.29 .17 3.15	. 172	7.0 1.1 4.3	10.2 30.3 38.6	.18	177.4 274.0	.209	4 .9 1) .9 <] .(96 . 97 . 98 .(026 .33 019 .43 007 .10	1. 1. 22.	4 .32 0 .41 4 .07	49 27 55	9.8 9.0 2.0	. 17 . 14 61	2.9 2.8 : .5	.65 1.32 .36
73305 REE73305	10.73	137.09 140.28	2.82	192.9 193.7	309 317	48.9 55.5 56.2	16.8 20.9 20.7	763 4 4]4 4 421 4	1.84 5 1.26 1 1.34 1	57.7 14.5 14.5	.5 1.0 1.0	3 1.2 <1 1.1 <1 1.1	511.4 198.9 204.6	2 28 1 74 1 79	8.00 1.18 1.14	.35 1.68 1.72	40 322 328	5.43 1.30 1.32	. 125 . 119 . 119	3.1 4.7 4.8	22.4 128.1 129.4	.71 1.75 1.78	94.0 90.3 92.5	. 004 . 289 . 292	3 .9 <1 2.9 1 2.9	33 .(13 .(11 .: 16 .:	039 14 013 .26 351 1.32 355 1.33	1. 1. 3. 3.	7 .09 4 .33 1 1.34 2 1.36	34 45 <5 <5	7.1 9.5 9.5 9.8	10 19 .07 .07	6.5 1 2.2 2 10.5 1 10.7 1	1.92 2.43 1.83 1.85
E 73307 STANDARD D	.78 	107.22 125.90	4.61 28.96	120.1 57.7 163.4	557 77 221	32.3 58.1 35.9	25.4 31.7 12.3	233 4 950 4 803 3	.96 .28 2 .11 6	2.4 26.3 25.8 1	.6 .3 9.5	<1 1.6 <1 .6 195 3.2	73.6 467.0 29.9	.90 <_01 11.08	2.31 .49 9.75	.23 .06 10.66	44 102 79	.92 5.07 .53	.215 .135 .081	6.1 3.2 14.0	9.5 74.2 160.0	.47 2.01 .57	82.7 172.3 134.6	. 209 . 170 . 117	6 1.1 5 2.3 2 1.6	1 .(4 .(8 .(018 .50 028 .30 038 .17	1. 6.	0.54 6.32 6.1.95	20 <5 236	15.1 .4 2.5	. 13 . 07 1 . 85	2.5 2 6.6 6.0	2 34 07 02

Standard is STANDARD DS2.

1 GRAM SAMPLE IS DIGESTED WITH 6 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 20 ML WITH WATER, ANALYSIS BY ICP/ES & MS.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. - SAMPLE TYPE: ROCK

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: Ang 27 39 DATE RECEIVED: AUG 16 1999

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data ZFA

ACMI	ANA	LYTI		ц.	BOI	RATO		ESI	TD.	<u></u>	85	2 E.	HA	STI	NGS	ŚT.	VANC	τουν	ER	BC	V6	A 11	R6		PHO	NE (6	04)2	53-	315	8 F2	X (6	04)	253	_ 171	1.6
								.,				GEC	CHI	EMI	CAL	ANZ	ALYS	SIS	CE	RT	FI	CAT	E								(-	,		A	
										Boi	irdo	<u>n,</u>	R. (<u>,</u>	PRO	JEC.	<u>r f</u> c	<u>xc</u>	Fi	le	#	990	289	99										A /	A
						2		en e		۷ ۲	07 W.	Rich	ards	St.,	Nels	on BC	V1L 5	T3	Subr	nitte	d by:	R.J	. 80	urdon) 									L.	Ľ.
5AUFLC#	pen ppn	ppi	n bi	P0 pm	Zn ppm	Ag ppb	N1 ppa	і Сс прря) Miri Ni pipir	i Fe រ រ	As ppm	U opin	AL ppt	i Th pom	Sr DDm	Cd MOD	Sb	Bi	V I DOM	Ca	P	La	C	r M	g 8	a Ti	B	A]	Na	K	W T	1 н	g Se	Te	Ga S
51940	. 95	143.36	i 8.4	43	92.4	 58	75.1	L 38. I	828	\$ 4.47	5ú.7	.3	11.9		47 B	42	2 02		: 140	 		- Dour	, oc	· - · · ·	* pp · · · ·	400 - 2	ppm	ĩ	ł	τpp	m pp	m ppi	b ppm	ppm :	ppna X
61940A 61940B	5.27	64.62	8.1	795 115	74.8	648 226	90.6	5 30.8	633	4.33	27.2	.7	2.8	.6	30.7	3.73	2.03	. 22	2 129	. 25	.099	3.5 4,4	135. 100.	92.0 01.1	4 81. 8 199.	5.193 3.086	32	2.49	.013	.10.	8.1 23	0 1	5.6 118	.02	6.7<.01
51940C	1.35	53.64	6.0	63 5	48.2	643	34.2	2 23.5	601	. 4.46	13.9	.5 .4	2.0	1.4	- 33.4 - 33.3	1.41 3.53	1.72	.22	? 99 153	.31	.111	3.6	24. 46	5.6 715	5 105.	0.102	22	2 79	.014	.08	3.2	3 50	0 1.6	.07	8.1 .02
	2.24	38.00	1 9.3	54 1	.78.5	416	23.5	5 16.1	456	5 3.34	67.7	. 4	5.8	1.4	32.0	1.24	4.58	. 27	76	.33	.173	4.6	32	3 .4	8 103.	0.083	11	 1.56	.016	. 19 .	4.1 5.0	7 3 9 4	2.8 1.7	.02 .08	9.6<.01 7.5.01
51942 51943	15.85 12.36	238.69) 15.1 5 18.8	125 845	64.8 28.8	368 181	138.4 102 P	40.5 5469	5 983 1 1 2 2 6	6.77	48.0	.9	7.4	2.3	70.3	3.90	7.27	. 30	111	.71	. 128	12.7	82.	5 1.3	0 175.	1.084	2 2	2.02	.016	.13 .	3.4	2 8/	533	14	5 4 01
51946A 51946B	1.99	56.98	3 17.3	35 1	91.0	311	58.6	5 26.8	638	3.82	11.0	.5	4.4	1.8	28.5	2.89	5.77	. 39	109	.55	.135	22.9	60.1 76.	01.30 7.81	6 113. 3 125	1.154 7.147	12	2.42	.015	. 19 .	5.2	9 60	0 4.0	.15	5.8 .03
51946C	7.34	160.43	3 23.4	48 1	30.6 49.6	147	62.5	5 21.9	s 448) 373	1 2 51 1 4 63	13-0 12.6	.5	29-2 11.7	1.5 1.8	21-6 33.7	. 35	.66 3.03	.17 87	65 114	. 24	.066	44	59.3	3.5	3 113.	7 .128	1 1	.95	.020	.10 <.	2 .0	9 32	2 4	.07	10.0< 01 6.6<.01
51946D	4.22	42.83	3 12.6	62 1	82.0	138	43.8	3 17.3	596	3.70	9.3	2	2.6	+ 2	12.6	96	2 06			. 70	.000	0.4	117.4	4 1.13	, vo.	4.101	11	. 66	.010	. 14 <.	2.2	0 31	11.7	. 17	5.9.03
61946E 51946F	4.31	103.85	9.5 10 1	542 17	22.9 91.4	211 180	40.1	22.5	082	4.07	26.1	.3	2.5	ΙŪ	45.0	.90	3.05	. 14	51 90	.32 .47	.087 .186	4.8 3.7	47.9	9.49 3.64	9 337. 4 233.	6 .049 0 .067	21	. 51 . 39	.014 .008	.13 <. .09	2.10 2.10	0 18 R 36	3 1 H	. 08	4 6 .01
51949 519494	2.25	60.55	7.9	96 2	67.6	182	55.9	21.1	365	3.34	14.3	.5 .4	5.2 1.4	3.4 1.8	34.1 34.5	. 61 . 88	2.13 2.13	.15 .33	85 66	.50	.066	10.0	45.9	9 1.04 5 61	4 151.	4.126	11	. 61	.013	.21	2.1	2 69	.6	.04	5.0 .01
	2.07	221.00	0.L	U/ 1	44.0	122	73.9	1 32.9	530	4.77	25.6	.3	33.1	1.7	48.3	. 79	5.46	. 12	113	. 55	.079	7.2	124.	5 1.53	3 93.	6 .130	2 2	2.08	.010	.10 <. .11 <.	2.1	0 20 3 53	3 1.0	. 03 . 05	5.8.01
519498 51949C	1.46	17.31 37.00	6.6 7.4	55 1: 47 1:	89.2 66.1	91 81	25.1	13.3	407	2.37	5.8 0.2	.2	2.2	1.2	21.7	. 44	.87	. 16	54	.22	135	3.3	33.2	2.42	2 182.3	2.084	11	. 69 .	.012	.07 <.;	2.1	1 25	. 4	. 02	5 9< 01
519490 51949F	3.41	52.25	8.3	38 1	13.6	65	44.1	18.0	378	3.34	7.1	.2	2.5	1.4	25.9	.21	2.04	. 16 . 21	73 78	.31	.114	4.0	50.4 64.6	4.65 5.73	5 208. 3 131	1.104 5.099	12	. 30 58	.013	.10 <.:	2.12	2 14	.4	.03	7.0<.01
51949F	2.47	120.57	9.8	30 1	28.3	83 158	75.0) 24.8) 31.5	379 737	3.92	12.1 15.1	.3 .4	3.8	1.6	34.6 45.7	.18	1.54 2.00	. 19	109 134	.41	.030	5.5	121.2	2 1.20	71.	2 .150	1 2	.12	.012	.09 <	2 .12	2 13	.7	.04	5.0 .01 6.9 .01
RE 51949F	2.50	121.70	9.9	99-1:	31.6	160	76.3	32.0	749	4 69	15 Å	A	6 0	1 6	46.0		1.04		104		.047	0.1	144.0	0 1.01	121.	1 .168	22	.45 .	.013	.16 <.:	2.15	5 18	. 8	. 06	8.1<.01
51950 788824	5.85	49.06	7.7	74 52	24.4	541	62.2	19.8	468	3.76	17.0	.4	.3	1.6	24.3	. 34 4. 14	2.07	. 19	134 80	. 55 . 20	.048 .212	6.1 4.3	144.5	51.63 7.55	3 123.; 5 269.	2.169 1.063	12	.50. 88	013	16 <.2	2.15	18	8.	. 09	8.3<.01
788828	5.39	145.56	11.2	26 24	49.1	75	98.2	31.1	828 1054	5.54 5.04	90.9 40.6	.7 .6	4.8 4.5	2.0	65.4 76.6	1.83 1.68	6.03 3.03	. 48 58	102 145	.49 74	105	10.4	110.6	5 1.32	92.	3 .126	11	.84 .	019	.19 .	3.34	25	3.3	.12	5.0 .01
00020	6.43	172.12	13.4	11 40	65.2	181	128.9	42.3	1139	6.36	46.0	.7	17	1.8	122.1	3.27	3.40	. 58	214	.76	104	7.6	181.8	3 2.60	113.0	.151	13	.20. .19.	037	27 .4	5.54 1.76	i 29 5 43	1.4 2.2	.07 .09	6.7<.01 9.7 .01
78882D 78882E	1.15	238.77	14.7	9 14 0 4	43.0	185	42.0	58.9	1516	6.00	122.8	.3	13.1	1.1	110.7	. 67	3.46	. 49	200	. 97	. 134	4.2	68.3	3 2.14	128.6	5.207	42	. 65 .	025	39 f	5 17	28	ς	11	Q 1= 01
78883A	11.23	183.45	8.9	1 82	23.1	412	149.1	29.0	621	5.85 5.95	20.1 42.1	. 3 . 8	1.4	.9 1.8	89.0 105.8	.04 3.51	.40 3.81	.11	149 214	.94	.113	2.2 7 8	524.0 180 9	6.43	129.6	3.187	13	.97	011	61 <.2	.20	8	.2	.03 1	0.0<.01
/8884	13.28	236.49	3.9 14.7	11 10 18 63	35.2	99 552 1	42.4 (32.6	50.4 36.1	973 983	6.91 7.34	33.8 62.9	.3	6.8 7.2	.8. 19	122.3	.24 3.89	.85	. 34	210	1.00	.114	2.0	43.9	2.47	251.4	217	13	.06 .	031	42 .8 90 .4	5 .97 I .33	33	4.4 .0	.08 .04	8.9 .01 9.6<.01
8885	15.90	207.33	11 8	13 68	45 G	621 1	10.7	79 A	212	6 19	27.0				50.0	0.00	/.JI	.20	119	. 51	. 132	9.7	95.7	1.32	112.1	. 082	21	.90.	013 .	13 .3	.40	127	4.0	. 11	5.5<.01
8886	5.44	222.44	11.3	4 31	10.7	125	61.6	34.7	1351	6.20	42.8	. 5	2.2	2.0	50.3 54.3	4.70 1.63	9.91 2.07	.22	63 206	.46 .84	.118 .168	79 69	64.5 63.4	2 26	104.6	045	11	. 32 .	011 .	13 <.2		105	4.5	.09	3.3 .02
	14.00	132.45	33.0	U 1/	4,9	250	39.1	14.7	856	3.36	67.5	22.0 2	219.9	3.7	32.6	11.70	10.57	11.21	86	.58	.087	13.8	181.8	65	153.3	.119	31	89	038	16 7.8	2.05	262	2.7.1	.07 I .90	6.5.03
	15	GRAM S	SAMPL	.E I	S DI	GEST	ED W	1TH 9	20 ML	2-2-	2 801	- HNUS	- H2M	AT 0	5 DEC	C 60																			
	THI - S	S LEAG	CH IS	S PA		L FO	R MN Samo	FE S	SR CA	P LA	CR M	G BA	TIB	WAN		ITED P	OR NA	K GA	A AND) AL.	DIEUI	IED T	U 30	UML	WITH	WATER	, ANA	LYSI	S BY	ICP/E	S & M	IS.			
	-			0			<u>a anita</u>	ica L	259111	<u></u>	KC. 6	ле К	eruns /	ianc 1	<u>'RRE</u>	<u>' are</u>	Rejec	t Rer	uns.	<u>،</u>	11	ρ													
DATE	RECE	IVED	:	AUG	16	1999	D.	ATE	REF	ORT	MAI	LED	H	in	27/	99	SI	IGNF	DF	_{зу.} (\sim		ъ,	OVE	C 1 5 C	NC 1								ſ
													.,		-//	• /	2.				• • •	•••	•••	.p. 1	UIE,	U.LEO	NG, J	. WA	NG; I	CERTIA	IED	8.C.	ASSA	YERS	
														-												•									

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

Data FA

ACN	E AN	ALYTI 0 900	CAL	LAI	BORA	TOR	IES Co.	3 Ľ'	TD	•		852	E.	HA	ST	ING	SS	Τ. γ	ANC	τουν	ER	BC	V6	A 1	LR6		PH	ONE	(604	4)2	53-3	315	8 FJ	XX (6	504) 253	3-17	716	
	A	·						•				C	JEC	CH	EMI	IC#	ль :	ANA	LYS	SIS	CE	RT:	ÍFI	CA	TE												A	A	
	Γ									Bo	<u>our</u> 907	dor W. F	l, Rich	R. ards	<u>J.</u> St.	PF	2OJ	ECT BC V	FC	<u>) X</u> 513	Fi Subr	le mitte	# d by	99 : R.	039 J. Bo	98 ourd	on										Ĩ		
AMPLE#	Мо	Cu	Pb	 Zi	n Ag	N	i (Co 1	<u></u> . Mn	۶e	As	<u> </u>		Au T	h	Sr	Cd	Sb	·	Bi V	1 0	a	ρ	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	W	<u>11</u>	Ha	Se	Te	Ga	<u></u>
	ppm	ppm	ppm	ppi	m ppb	ppi	n pp	om pr	pm	*	ppm	ppm	pq	ob pp	m p	ppm	ppm	ppm) p(pm ppn	Ŗ	r	\$ pp	pm	ppm	2	ppm	x	ppm	X	r	ĩ	ppm	ppm i	ppb	ppm	ppm	ppm	_
73308	6.87	108.63	5.65	148.1	2 239 8 241 4 296	29.4 34.(2 19	.1 40	65 3 79 5 04 9	5.46 5.31	8.5	.5	4	.71.	3 117 7 80	7.7 0.5	.62 1.08	2.10		22 33 39 198	8 1.5 8 .8	58 .16 58 .15	25. 24.	.01 .36	8.2 51.4 2	. 88 . 26	195.1 71.6	.175 .230	5 2	1.13 2.51	.030 .053	. 36 . 69	.8 1.0	.42 .49	26 15	77 53	.15 .20	2.5 1 7.8	7
73316	56.08	401.14	18.83	18.4	4 200 4 296 6 255	31.	5 53	.9 20 .6 19	50 3 50 7 20 4	2.15	1.9 5.0	.2	11	.2 .	4 90 6 51 9 33	0.6 7.3	.24	1.2/		21 81 43 86	1 1.0 5 .5	13 .14 57 .15	91. 43.	.5 18 .7 2	95.5 20.3	.92 .40	99.0 60.1	.168 .214	<1 3	1.18 .84	.110 .029	. 59 . 42	1.7 2.4	.22 .11	30 25	3.8 4.8	. 53 . 48	3.01 3.04	.3 .6
73318	10.70	240.15	6.89	54.3	3 363	57 1	5 20	43	53 4	i 99	10.7	כ. פ	6	.0	0 23. 1 194	3.8 6.5	2.20	.83 : 95	. ا د	30 28:	5 Z.U	16 .12	55. 107	.2.13	32.71	. 84	88.6	.272	<1 (3.20	. 352	1.45	1.6	1.46	18	6.5	. 47	11.5 2	. 0
73326 73327	6.83 10.03	124.56	9.26	147.	7 487 9 295	28.0	6 20 8 22	.9 6	17 5 65 4	5.58	1.5	.8	3	.32.	2 78	8.1 3 3	1.02	3.47	. 5	72 300 66 144 15 403) 1.0 .7 1.7	6.12 6.13	87. 07. 76	.1 13 .3 5 1 30	51.22 59.71	. 27	137.0 75.9	.2/8	1	3.44	.374	.78 .92	3.0	.91 .87	19 10	4.5	. 32 . 37	11.62 7.93	.0
E E 73327 73328	9.30 6.99	168.60 85.58	3.67 11.33	86. 42.1	2 276 8 239	68. 6.	1 21 4 6	.2 3	66 4 10 2	51	22.5	.9	4	.41	0 129	9.8 7.1	.67	.81	5.(07 383 43 59	9 1.5 9 1.5	8.11 5.12	15.	.0 18	12.41 14.21	. 55	151.3 142.3 120 4	.239	<1 / 1 / 2 1	2.27	.270	1.19	4.3	1.51	<5 1 6 1	10.7	.23	9.02	.1 .0
73329	9.63	371.06	9.85	19.	5 232	33.3	7 57	.6 1	20 7	.03	4.9	.1	17.	.6	7 64	4.9	.13	6.14	.4	49 49).e	6.19	03.	.5 1	3.8	.32	68.0	.199	4	85	012	. 32	1.4	.27	40	5.0 17	.21	2.5	./
ANDARD D	13.47	125.06	29.61	157.	5 264	35.3	7 12	.3 79	96 3	3.06	60.3	19.8	189	5 3.	3 23	7.7	11.27	10.59	11.1	18 77	.5	2 .07	7 16.	.8 16	5.5	. 58	137.3	.115	1	1.66	.030	.15	7.2	1.94	243	2.3	79	5.7	.0
tandard	is STA	IDARD D	s2.																																				
	GR UPI	DUP 1F1 PER LIM	15 - 1 11ts -	5.00 AG,	GM S AU	AMPLI HG, 1	E, 9 W, S	Ю МІ ЗЕ,	L 2. TE,	-2-2 TL,	HCL GA	-HNO3 SN =	5-H20 = 10	O AT O PPI	95 (M: M	DEG. O. C	. C F	OR ON	E HO	UR AN		S DIL R =		TO	300 k	۱L,	ANALY R 7N	SIS I	BY IC	P/ES	6 & M	S.	co -	10.0	00 0	-			
	-	SAMPLE	TYPE:	ROCI	ĸ	Sam	ples	ber	gin	ning	<u>'RE</u>	<u>' are</u>	e Re	runs	and	'RR	E'a	re Re	ject	Reru	ins.	-	\sim	P		., .	0, II	,	, 1914 ,		•,	LR,	UR -	10,0	00 P				
DAT	E RE	CEIVE	D:	OCT	18 1	999	DA	\TE	RI	EPO	RT	MAT	LED	»: (\mathcal{D}_{ι}	Ł	251	199	2	SIGN	ED	ву.		h			. TO	έ. C	.LEO	NG.	J. WA	NG:	CERT	IFIEC) В.(C. AS	SAYE	25	
														-			/	• /										•		,									
																										J													
																													•										
																																				/	,		
All	resul	ts are	consi	dered	d the	cont	fide	ntia	et p	qon	erty	of t	he d	lier	nt. /	Acme	assi	umes (the	liabi	liti	es fo	or ad	ctua	i cos	to	f the	anal	vsis	onl	v.				Da	ta 🕅	-FA		

ACME	ANAI (ISO	YTIC 9002	AL AC	LAB	ORA dite	rori ad (LES	; L1)	'n.		85	2 E.	HA	STI	NGS	ST.	VAN	ະດູນາ	VER	BC	V 6	A 1	R6	. 1	PHON	E (60	04)	253	-31	58 1	FAX	(60	4)25	3-1	716
AA									3	Bou	rdc	GEC	CHE	EMI J.	CAL PRC	AN.	ALYS T F(SIS DX	CE Fi	RTI le	CFI #	CAT	.E 1390	10										Å	A
			<u></u>			<u>.</u>			-	90)7 W.	Rich	ards	St.,	Nels	son BC	V1L 5	13	Subr	itte	d by	: R.J	. Bou	rdon		· ·									
MPLE#	Mo ppan	Cu ppm	Pt ppr	n pp	Zn A om ppl	g D p	Ni pm	Со ррт	Mn ppm	Fe *	As ppm	U mqq	Au ppt	i Th >ppm	Sr ppr	° Co п ppr	Sb 1 ppm	8 PP	ii V mippna	Ca %	P X	La ppm	Cr ppm	Mg t	Ва ррт	Ti X	B ppm	A1 \$	Na X	Κ	W M	T1 ppm (Hg Si DOD DD	e Te	Ga
/3309 /3310 /3311 /3313 /3315	5.06 3.22 20.09 1.69 3.09	210.71 64.04 253.14 79.96 92.21	9,76 8,91 12,55 6,05 6,95	5 344 626 5 629 5 217 5 176	.1 94 .4 829 .8 17 .6 129 .2 16	5 83 9 41 2 100 5 99 4 69	.73 .82 .71 .63 .82	32.4 20.4 .9.8 31.3 26.6	774 1239 565 4594 847	5.22 2.87 6.63 5.12 4.69	36.4 13.2 45.2 155.7 27.3	.7 .5 1.2 .3 .6	7.3 3.0 5.8 8.6 5.4	1.8 1.2 2.3 1.4	43.7 30.6 42.1 89.(85.2	7 1.37 5 5.69 3 2.76 5 1.41 2 1.24	2.84 1.64 8.66 2.03 2.13	.3 .2 .3 .5	5 138 9 55 8 81 3 154 1 179	.44 .25 .37 .99 .78	.114 .113 .131 .108 .114	10.0 6.9 20.6 3.6 7.6	76.4 28.3 57.9 237.3 192.2	1.58 .43 .87 2.42 2.72	114.3 193.3 132.7 165.2 130.5	. 157 . 062 . 038 . 154 . 208	2 2 2 1 1 1 1 2 <1 2	2.59 1.70 1.46 2.56 2.93	.010 .008 .005 .013 .031	.14 .09 .12 .27 .30	.6 .3 .4 .3 .4	.28 .23 .35 .26 .60	31 2.3 50 1.3 85 3.4 25 2. 27 1.	2 .07 2 .05 1 .13 7 .09 3 .04	6.6 5.4 3.6 7.5 8.9
3319 3320 3321 3322 E 73322	9.79 2.59 1.34 3.34 3.44	198.69 82.99 83.22 132.24 132.71	13.32 9.71 8.67 10.26 10.10	2 564 515 7 189 5 372 375	.7 48 .5 47(.8 43) .0 38 .4 38	4 104 0 164 2 137 7 86 8 87	.8 2 7 4 .8 3 .6 2 .0 3	22.0 13.4 32.8 29.9 30.2	460 972 803 649 649	6 62 4 78 4 45 4 98 4 98	23_0 50_1 87_7 28_3 28_3	6 7 4 5 5	3.5 2.7 7.3 3.8 3.5) 1.9 1.5] 1.5] 1.9] 2.0	257.1 75.6 62.3 78.7 79.3	1 3.06 5 3.16 3 1.77 7 2.48 3 2.57	6.83 2.11 3.87 2.28 2.22	1.0 .5 1.0 .6	3 98 4 153 6 158 2 182 2 183	. 62 . 59 . 49 . 44 . 44	.095 .157 .154 .120 .119	9.3 7.4 7.1 7.5 7.5	60.8 284.4 186.8 90.7 86.9	1.13 2.00 2.26 1.90 1.91	87.0 172.2 233.4 114.5 114.8	. 117 . 190 . 186 . 217 . 220	<1 2 <1 2 1 3 1 4 1 4	2.44 4.35 3.63 4.11 4.13	.011 .046 .023 .038 .038	.21 .18 .22 < .21 .21	.5 .4 .2 .4 .4	. 63 . 44 . 43 . 54 . 53	27 4 9 65 1.4 34 1 1 37 2.1 34 2.1) .19 .07 .19 .19 .07 .07 .08	5.4 10.7 9.8 9.8
3323 3324 3325 NDARD DS2	9.55 1.85 1.72 13.67	164.99 139.48 164.55 126.60	6.74 8.21 7.38 29.61	423 183 106 160	.6 66 .6 13 .0 14 .9 26	5 216 2 50 1 39 5 35	.0 6 .6 4 .4 4 .5 1	4.5 7.8 0.2 2.9	1930 1018 735 802	7.25 6.63 6.60 3.10	37.0 32.0 16.8 61.5	.8 .4 .3 20.8	6.9 4.0 2.2 196.4	1.3 1.0 1.3 3.3	37.7 90.6 208.1 28.3	/ 3.88 5 .85 1 .13 3 11.11	5.69 .89 1.08 10.70	1.5 1.3 .6 11.4	5 101 1 217 8 218 7 79	. 24 . 38 . 34 . 52	.245 .106 .094 .082	7.0 3.0 4.0 16.6	90.6 75.6 65.4 162.8	1.36 2.24 2.46 .59	166.3 170.7 194.9 139.7	.046 .248 .288 .117	1 3 2 4 1 4 2 1	3.63 4.29 4.30 1.71	.004 .012 .009 .030	.07 .53 .49 .16 7	.3 .5 .5 .9 1	.73 .24 .19 .81	67 4.(28 24 242 2.)) .07 7 .05 5 .06 5 1.77	5.! 10. 11. 5.
	GROUP UPPER ~ SAM	P 1F15 LIMIT IPLE TY	- 15 IS (PE:	.00 (AG, / SOIL	GM SA AU, H	MPLE IG, W <u>Samp</u>	, 9 , SI	0 ML E, TI beg	2-2- Ξ, Τι <u>ίοηί</u> ς	·2 HC ., GA <u>19 'R</u>	L-HNC , SN <u>E' ar</u>)3-H2(= 10(<u>e Re</u> i	D AT D PPM runs_	95 D ; MO and	EG. C , CO, <u>'RRE'</u>	; FOR (, CD, ! are	DNE HO SB, BI <u>Reject</u>	UR A , TH <u>Rer</u>	ND IS , U, <u>uns.</u>	DILU B = 2	JTED 2,000	TO 3 PPM	00 ML ; CU,	, ANA PB,	LYSIS Zn, n	8Y I 1, mn	CP/E	ES & S, V,	MS. LA,	CR	= 10	,000) PPM.		
DATE	RECE	IVED	: (DCT 1	18 19	99	DA	TE	REP	ORT	MAI	LED	())£	- 2	5/99	، ٤	SIGN	IED :	вч.(つ :	hr).D. 1	ſOYE,	C.LEC	ONG,	J. 1	WANG;	CER	TIFI	ED E	3.C. A	SSAYE	RS
;																•																			

ļ,

Data_/___FA

•

ACME	ANA	LYTIC	AL 1	LABC	RAT	ORIE	SL	TD.		85	2 E	. H2	ST	NGS	ST.	VAN	COUV	/ER	BC	V6	A 1	R6		PHON	E (6	04)	253	-31	58 F7	X (6)	04)25	3-17	16
	(150	9002	AC	cred	lite	d Co).)		11 111	·	GEO	Сн.	EMI	CAL	ΔN	AT.V	are	CT	יייים	TBT	مەرب	275 - 431 4	1. F	÷ .						· - ·	,		
		:		-	· .									.CAL	- 1 11	UNT (oro	U.	SRI.	TGT	CA.	. E.		· ·			1. J					A	A
		na Tarihi			•			:	Bou	rdc	<u>, n</u>	<u>R</u>	<u>J.</u>	PRC	JEC	TF	<u>0X</u>	Fi	ile	#	990)418	88										· /
		·							. y	J/ W,	Rich	ards	St.	, Nels	on BC	V1L !	513	Sub	mitte	ed by	: R	l. Bou	Irdon									بكل .	
SAMPLE#	Mo	Cu	Pb	Z	n Ag	Ni	Со	Mn	Fe	As	υ	Au	Th	Sr	Cđ	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K I	I T1	Hq Se	Te	Ga S
	ppm	ppm	- ppr	pp	m ppp	ppm	ppn	ppm	¥	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*	<u> </u>	ppm	ppm	*	ppm	1	ppm	1	ĩ	¥ ppr	а фрт	ppb ppm	ppm	ppn t
E 73334-A	7.62	144.89	10.51	502.	8 392	119.3	32.3	591	6.04	45.9	.6	3.2	1.6	22.8	2.25	4.39	. 34	145	. 25	. 152	6.3	106.8	1.54	207.1	108	2	3 12	005	12 (1 32	45 3 2	05	6 94 01
E 73334-8	7.34	90.13	9.87	327.	4 509	115.8	28.3	354	5.20	32.9	1.3	2.7	1.1	112.3	2.84	2.85	.31	140	1.42	.070	14.5	94.7	1.09	212.3	.061	3	3.82	010	.05 .4	29	83 3.1	.07	8.0.04
E 73334-L	5.04	37.50	8.04	337.	0 220	43.7	13.5	307	4.34	23.8	.4	2.0	1.1	27.1	1.49	2.08	. 37	160	. 28	.110	5.2	78.8	. 78	135.7	. 133	3	2.33	.009	.09 .4	.26	36 1.3	.05	8.5<.01
E 73335-8	4.00	160 63	9.02	204.	2 15/	55.3	25./	622	5.41	23.0	.8	/.9	2.2	67.4	1.15	2.44	. 28	171	.70	.108	13.6	60.2	1.78	124.4	.210	1	2.59	.012	.49 .3	51	27 1.6	. 07	8.6<.01
- 75555-0	7.00	105.33	9.03	552.	0 134	07.0	23.3	022	4.04	30.1	./	5.1	2.0	35.1	2.10	3.76	. 28	118	.40	. 091	7.5	53.2	1.27	109.1	. 168	1	2.02	.006	.26 .3	.28	23 2.5	.07	5.5<.01
E 73335-C	4.47	159.11	8.37	373.	4 207	57.9	23.7	770	4.76	21.8	.6	3.5	1.8	41.7	1.84	2.06	. 34	139	.42	106	77	48 5	1 43	158 1	176	1	2 20	012	20	1 22	36 1 9	07	7 7- 01
E 73336-A	1.47	65.63	9.72	2 175.	3 248	49.6	26.1	644	3.48	14.4	.4	.9	1.2	29.7	.82	.94	.67	97	.28	.105	5.4	57.9	79	132.2	114	1	2 92	002	. c> . 4	2 24	64 6	. 07	7.25.01 A.A. 01
E 73336-B	3.16	44.65	11.24	514.	8 508	56.2	27.5	949	4.40	17.5	. 4	1.1	1.1	30.8	5.29	1.54	.40	128	.23	. 206	5.4	89.7	1.04	221.4	.146	i	2.71	009	12	25	5211	08	10.6< 01
E 73336-C	3.27	72.15	9.33	692.	4 546	86.3	29.2	775	4.68	34.8	.7	3.9	2.0	30.2	6.43	2.00	. 38	119	. 29	. 251	7.6	87.3	1.09	251.1	.141	3	3.90	.009	.11 .4	30	71 1 3	05	9 2< 01
E 73336-D	2.44	69.06	10.42	2 334.	8 274	54.9	26.5	559	4.57	33.9	.5	2.7	1.7	18.6	2.38	1.47	1.01	120	. 17	. 194	5.0	61.2	.80	138.4	.138	1	3.57	.010	.09 <.7	29	41 .8	. 19	10.5<.01
E 73336-E	4.87	58.33	9 44	542	0 825	95.8	27.2	1276	4 40	21.8	A	21	0	5 4 4	C C C	2 41	20	116	.	220		~~ ~											
E 73336-F	4.88	83,43	10.30	313.	4 617	63.5	22.5	394	4 46	28 1	. 4	2.1	.0	24.4 23 E	2.05	2.41	. 29	121	.41	. 318	4.5	92.0	.95	401.2	.052	1	2.62	.008	.09 .2	. 33	31 1.7	.05	7.4<.01
RE E 73336-G	2.66	121.01	10.07	172.	7 280	60.6	27.6	535	6.30	34.2	.4	3.6		32.9	56	2 35	. 55	107	- 23	130	5.5	100 0	1.00	102 1	. 155	4	5.25	.010	.07 .3	24	80 1.5	.0/	9.8 .02
E 73336-G	2.89	126.00	10.89	9 179.	3 292	61.5	28.3	550	6.48	37.3	.4	2.2	1.0	34.9	.60	2.49	.29	204	.32	135	5 1	112.8	1 72	102.1	101	å	3.15	000	.07 1.3	10	31.5	.00	10.9<.01
Е 73336-Н	1.47	27.96	9.29	9 114.	1 120	22.3	11.4	401	3.21	23.1	.3	1.7	.8	20.1	.77	1.06	.27	104	.18	121	3.6	42.0	.53	65.2	.151	2	1.33	.008	.05 .4	.08	18 .3	.08	8.3<.01
E 73336-1	1.55	52.55	10.53	133	2 236	26.7	18.5	301	1 50	21 Q	4	4.1	12	22 6	62	1 04	27	110	10	100		co 1		<i></i>									
E 73336-J	1.67	3760	9.53	3 167.	5 417	31.4	21.3	369	4.52	27.3	.4	1.6	1.5	18.6	.03	1.00	.27	107	- 19	210	4.0	54.1	.61	69.9	. 189	2	2.23	.010	.06 .6	.10	35.3	. 05	9.2 .01
Е 73336-К	4.14	91.17	12.80	268.	6 713	76.3	28.5	555	5.82	42.2	.6	2.2	1.5	37.0	1.11	2.56	.49	189	.15	081	63	141 5	1 76	142 1	.1/9	2	3.80	.011	.05 ./	.11	0, 1/	.05	11.8 .02
STANDARD DS2	14.27	129.17	30.77	/ 163.	6 253	37.8	12.8	829	3.18	62.6	20.0	202.1	3.6	29.7	11.70	10.53	11.06	79	.55	.089	17.0	170.7	.60	143.9	.117	2	1.78	.030	.16 7.4	1.83	254 2.4	1.87	6.1 .02
1																													R				

GROUP 1F15 - 15.00 GM SAMPLE, 90 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: OCT 28 1999 DATE REPORT MAILED: NOV 5/99

13

٠.

134

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Appendix III

ROCK SAMPLE LOCATIONS

	GPS				
SAMPLE#	FILENAME	ZONE	NORTH	EAST	LOCATION
B 51938	Z080819C	10	5714011	688709	RHYOLITE, FOLDED, FLOW-BANDED?, MINOR FE OXIDES elev 1299m
B 51939	Z080821A	10	5715245	688574	Black argillite strike 340 elev 1374m
B 51941		10	5714958	688640	ARGILLITE AT FP BBB5, 5% PY
B 51944		10	5713478	689248	ARGILLITE ON ROAD JUST W OF 78868
B 51945		10	5713483	689221	ARGILLITE 25M W OF 51944
B 51947		10	5709905	690500	QTZ FLOAT BETWEEN 51947C & D SOME PY
B 51948	Z080918B	10	5709938	690715	Arg 5% Py E side cr Str 345 Dip V Z080918B is about 10m N of B 51948 elev 926m
E 73304	Z080922A	10	5711100	690197	CALC SEDS NEAR TILL 139125 DISSEM PY CRUDELY BANDED elev 1112m
E 73305		10	5717861	688048	BLACK SEDS+PY BANDS @ END OF MOST N ROAD PHASER L.
E 73306	R102320A	10	5714612	688857	South of IP BBB5, 6 Black argillite
E 73307		10	5714580	688875	South of IP BBB5, 6 Rhyolite?
E 73308		10	5713485	689224	Silicified Argillite near B 51945 just West of disseminate Po and Po on fractures
E 73312		10	5717593	688807	50m E of Phaser Cr - S side of road - silic seds+ py+calcite on fractures Str 330 dip 70W
E 73314		10	5717737	688747	Sediments + Po just below Phaser Creek road and near Phaser Creek
E 73316	R102421B	10	5716826	688386	Altered silic boulder with minor Cpy? Bornite? near N end of Phaser L. on N side of road
E 73317		10	5717918	688099	"Banded" pyrite in sediments at North of Phaser Lake and at end of most North road
E 73318		10	5717846	688031	Cherty hornfelsed? O/C at end of most Northerly road North of Phaser Lake
E 73326		10	5717919	688101	Banded sediment O/C at contact with volcanics and about 20 meters West of E 78883B
E 73327		10	5717908	688093	Chert O/C about 12 meters Southwest of E 73326
E 73328	Z070120E	10	5713494	689183	Argillite O/C in road cut just North of CJ ground same location as E 78861
E 73329	R102421B	10	5716826	688386	Altered silic boulder on edge of road just N of Phaser L minor Py + Cpy? + Bornite?
E 73330	R102319C	10	5714342	688936	Seds + Po about 25 meters South of R102319A
E 73331	R102321A	10	5714852	688684	Silicified black fine-grained sediments with Py
E 73332	R100923A	10	5715254	688583	Limonitic material from small hand trench
E 73333	R102316A	10	5713465	689276	Gneissic intrusive? boulder at mag high on main road at CJ bdy.
E 78802		10	5706282	691551	Same location as E 78801 - float rhyolite + mariposite?
E 78803		10	5706282	691551	Same location as E 78801 & E 78802 - float silicified rx + dissem py
E 78804		10	5706282	691551	Same location as E 78801-03 - outcrop black cherty rx
E 78813	R051301A,B	10	5707725	690536	Float with heavy py = minor Cpy?
E 78814	R051317A	10	5705645	692112	silic volcanics + hornblende? + augite phenos + 5 to 10% py
E 78822	R051321A	10	5707880	690485	About 100 meters up skid trail sulphide boulder
E 78823		10	5706275	691545	North end of "Chert breccia" O/C - this is grey-green volcanic O/C
E 78833		10	5710530	690223	"Oxide Zone" decomposed resembles red dirt - about 75 meters South of till E 78829
E 78834	R080119A	10	5710530	690223	Decomposed clay altered rock + qtz near E78833
E 78835	R080119C	10	5710605	690226	
E 78836	R080121A	10	5710530	690223	OXIDE ZONE Silic rx with qtz + Py
E 78837	R080122A	10	5710535	690225	TALC SERICITE SCHIST + QTZ CALCITE STRINGERS
E 78838	R080200B	10	5711041	690185	ARG? SHALE? STR 180 DIP VERT
E 78839	R080121A	10	5710530	690223	OXIDE ZONE Hemlo style silic volcanics
E 78840		10	5709515	690817	120m E of IP FOX11/12 on E side Cr. Rhyolite with qtz eyes
E 78851		10	5710530	690223	OXIDE ZONE QTZ+CALCITE VEINS
E 78852	R080119C	10	5710605	690226	SAME PLACE AS 78835 about 5 meters West of R080119C - appears to be bedrock
E 78853	R080121A	10	5710530	690223	SAME PLACE AS 78836 OXIDE SHOW QTZ, PY
E 78854	R080122A	10	5710535	690225	SAME PLACE AS 78837 Rusty weathering talc sericite schist with qtz-calcite stringers
E 78855	R080200B	10	5711041	690185	SAME PLACE AS 78838 SHALE? ARGILLITE? Strike 180 Dip V
E 78856		10	5710530	690223	SAME PLACE AS 78839 SILIC VOLC+PY Oxide showing
E 78860		10	5709325	689582	Between switchbacks about 100m W of 139101 -float - bleached pyritized rock
139109		10	5710420	690220	Near culvert at dead tree near South bdy of CJ claim about 100m S of Oxide Zone
139112		10	5715120	688835	Argillite North of CJ ground on road to hand trench
139113		10	5710220	690230	Sediments in road cut about 200m S of dead tree or about 300m S of Oxide Zone
139115		10	4709450	690855	Cherty black sediments with disseminated Py - float in Demers Creek
139116		10	5709450	690855	Below rhyolite - sediments with calcite veining about 25 meters SE of E78840

Appendix IV

TILL SAMPLE LOCATIONS

	GPS				
SAMPLE#	FILENAME	ZONE	NORTH	EAST	LOCATION
D 54040		10	5740407		
B 51942		10	5/1349/	689323	50M E OF 78868
B 51943		10	5713493	689196	50M W OF 78868
D 63329		10	5707901	690864	Along main Nehalliston Creek Road
D 63330		10	5707806	690857	Along main Nehalliston Creek Road
D 63331		10	5707704	690786	Along main Nehalliston Creek Road
D 63332		10	5707622	600604	Along main Nehalliston Creek Road
D 63333		10	5707662	600625	Along main Nehalliston Creek Road
D 63335		10	5708050	690537	Along main Nehalliston Creek Road
D 63336		10	5708010	690544	Along main Nehalliston Creek Road
D 63337		10	5707947	690519	Along main Nehalliston Creek Road
D 63338		10	5707824	690481	Along main Nehalliston Creek Road
D 63339		10	5707799	690410	Along main Nehalliston Creek Road
D 63340		10	5707848	690340	Along main Nehalliston Creek Road
D 63341		10	5708495	690291	Along main Nehalliston Creek Road
D 63342		10	5708453	690168	Along main Nehalliston Creek Road
E 73309	R100923A	10	5715254	688583	At mag high 58500 where we tried hand trench. Ferrocrete in sample hole elev 1368m
E 73310		10	5713480	689258	About 10 meters East of till B 51944
E 73311		10	5713481	689268	About 20 meters East of E 73310
E 73315	R102421C	10	5716747	688173	At fragmental boulder on Phaser Lake road
E 73319	R101021A	10	5717853	688004	About 50 meters West of end of most Northerly road North of Phaser Lake
E 78801		10	5706282	691551	About 10 meters North of "Chert breccia", O/C on West side of road
E 78805	R051223A	10	5706600	691382	About 200 meters North of E 78804
E 78806	R051223B	10	5706750	691275	About 200 meters North of E 78805
E 78807	R051223C	10	5706836	691189	About 300 meters North of E 78806
E 78808	R051223D	10	5707017	691092	About 300 meters North of E 78807
E 78810	R051300A	10	5707351	690912	Same location as Gov't sample
E 78811	R051300B	10	5707534	690782	Loose basal till
E 78812	R051300C	10	5707734	690539	Loose basal till
E 78817	R051318E	10	5707461	691509	Just North of barn on Demers road - good basal till
E 78818	R051319A	10	5706840	691919	Just South of small lake along road to Demers Lake
E 78821	R051320B	10	5707967	690872	Just North of IP Crazy 1 - good basal till - same Icn as 63307
E 78828		10	5709589	689824	75 Meters East of new road junction
E 78829	R070802A	10	5710552	690224	Near IP FOX 9, 10 and about 10m South of "Oxide Zone"
E 78830	R070802B	10	5710346	690242	250 meters South of "Oxide Zone" along road
E 78831	R070803B	10	5709937	690190	Approx 600 meters South of "Oxide Zone"
E 78832	R070803C	10	5709672	690039	Just East of logging on new road
E 78862		10	5/11110	690260	NEAR 10
E 78863		10	5/11130	690349	NEAR 11
E 78864		10	5711128	690427	NEAR 12
E 78866		10	5714159	689616	Near road junction on road NE of CJ ground
E 78867		10	5713850	689520	Road North of CJ ground
E 78868	70704005	10	5713489	689275	Road North of CJ ground
E 78869	Z070120F	10	5/1359/	688902	Road North of CJ ground
E 78870	Z070121A	10	5713389	688527	Road North of CJ ground
E 78871	20/01218	10	5/131/1	607045	
E 70002A		10	5710797	600000	MOST W POINT ON RD W OF PHASER L
E 788800		10	5716920	688337	About 200 maters East of E 78882P
E 78882D		10	5716005	688/120	About 200 meters East of F 788820 on West side of Creek
F 78882F	70810200	10	5716017	688706	About 300 meters East of F 78882D on East side of Creek elev 1340m
E 788834	Z0810200	10	5717872	688053	N OF PHASER L AT END OF RD elev 1291m
E 78883B	Z081020A	10	5717921	688120	50M N OF 78883A AT CONTACT elev 1288m
E 78884	Z081020E	10	5713551	689394	100M F OF 78868 elev 1285m
E 78885	Z081020E	10	5713664	689390	200M E OF 78868 elev 1276m
E 78886	Z081021A	10	5713534	689074	100M W OF 78868 elev 1289m
139101		10	5709300	689680	On main road between switchbacks
139102		10	5709475	689303	On main road between switchbacks
139103		10	5708523	690045	On main road about 200m below creek 90392
139118		10	5708545	690490	NF of D63342
139119		10	5708718	690395	NE of D63342
139120		10	5708627	690190	NE of D63342
139121		10	5709920	689450	North of switchbacks
139122		10	5709920	689175	North of switchbacks
139123		10	5709920	688890	North of switchbacks
139124		10	5711162	690110	Corner at most North portion of new road
139125	Z063023A	10	5711103	690212	Near sample E 73304
139126		10	5710920	690165	About 400 meters North of oxide zone

	GPS				
SAMPLE#	FILENAME	ZONE	NORTH	EAST	LOCATION
139127	Z063023B	10	5710795	690193	About 250 meters North of oxide zone
KEG340W		10	5709700	689430	North of switchbacks
KEG900W		10	5709700	688900	North of switchbacks

Appendix V

SOIL SAMPLE LOCATIONS

	GPS				
SAMPLER	FILENAME	ZONE	NORTH	EAST	LOCATION
<u> </u>					
10	<u> </u>	10	5711113	690287	About 75 meters Feet of #139125
11	<u> </u>	10	571110	800260	About 150 motors East of #130125
40	20204008	10	5711125	600407	About 150 millions Long of #150125
14	20101004	10	3711138	000427	About 200 History Charles 1 20120
102		10	5/14123	0000040	Adola 350 meters at bearing or 70 degrees from 10.5
103	2070120A	10	5/140/5	689709	ZU/0120A is N5/140/5 E689699 and is 10 meters west of #103
B 51940		10	5714958	689140	NEAR IP BBB5, 6
B 51940A		10	5714958	688890	250M W OF 51940
B 51940B		10	5714958	688640	AT FP BBB5, 6
B 51940C		10	5714958	688390	250 meters West of FP BBB5, 6 = 250 meters West of IP BBB7, 8
B 51940D		10	5714958	688140	At FP BBB7, 8
B 51946A	7080917A	10	5709888	690298	About 100 meters Fast of 78831 elev 1102m
B 510488		10	5700005	800387	About 200 meters East of 78831
B 51048C		10	5700000	000001	About 200 meters Line of 70021
0 510400	70000404	10	5700002	000-00	ALANE SAN INTERSTORE OF 10051
D 519400	ZUCUBIOA	10	5709910	090047	ADDLE 4UJ INTERNE EASE OF 70031 ENCY SOOM
51840E		30	3/06914	090049	About 300 meters East of 78831 and about 30 meters west of Creek
8 51946F		10	5709917	690750	About 600meters East of 78831
B 51949		10	5709506	690850	35M E OF RHYOLITE NEAR E78841
B 51949A		10	5709503	690825	10M E OF RHYOLITE NEAR E78841
B 51949B		10	5709503	690725	100M W OF B 51949A
B 51949C		10	5709508	690625	200M W OF B 51949A
B 51949D	• · • · • · · · · · · · · · · · · · · ·	10	5709516	690525	300M W OF B 51949A
B 51940F	<u> </u>	10	5700516	800425	400M W OF 8 51949A
R 51040E	<u> </u>	10	5700540	BONSOE	500m W of R 510/04 (anniomorphy with an alaste in anal man Oil) shout 5/hm M of P 540/05
D 51848-	··· ··· ·	10	5708010	000323	
00810 0		10	3/11205	000212	100M N OF 130125
E 73320	R101021B	10	5717851	687923	About 100 meters West of E 73319 on edge of low lying area elev 12/8m
E 73321	R101021C	10	5717830	687862	About 250 meters West of E 73319 elev 1268m
E 73322	R101022A	10	5717736	688020	About 200 meters South of E 73319 massive philogophile? in hole elev 1298m
E 73323	R101022B	10	5717735	688079	About 200 meters @ 150 degrees from E 73319 black argilitie in hole elev 1330m
E 73324	R101022C	10	5717708	688154	About 100 meters East of E 73323 - volcanics with dissern py in hole elev 1324m
E 73325	R101023A	10	5717749	668195	Volcanics in hole elev 1340
F 73334-A	R1024238	10	5715790	699677	
F 73334_B	R102423C	10	5715808	699790	About 20 meters East of P102423C
E 73334_C	R102500A	10	5715724	699026	
E 79996 A	R 102500A	10	57 15231	000320	About 50 methods Marth of motion and a construction between 0 methods at 0 to measured
E 73330-A	R102021A	10	3/13042	009222	About 30 meters North of main role near North boy of C3 ground
E /3330-B	R1025218	10	5/1354/	689244	About 20 meters East of E 73335A
E 73335-C	R102521C	10	5713548	669252	About 10 meters East of E 73335B
E 73336-A	R102523A	10	5715887	686384	About 150 meters W of FP Pheser9 is 20 cm vein with minor Cpy etr 60 dip 70W in voicenics
E 73336-B		10	5715887	688430	About 100 meters West of FP Phaser 9 claim
E 73336-C		10	5715887	688485	About 50 meters West of FP Phaser 9 claim
E 73336-D	R102523B	10	5715888	688541	At FP Phaser 9 claim
E 73336-E		10	5715888	688590	About 50 meters East of FP Phaser 9 claim
E 73336-F	R102523C	10	5715891	688620	About 100 meters Fast of FP Phaser 9 claim
F 73336-G		10	5715901	699670	About 150 meters East of FD Phaser 9 claim
E 79398-H		40	5745003	699747	About 50 meters Last of ED Disnard 0 claim
E 79290 -		10	5745005	000/1/	Alex & 250 meters East of 50 Shares & claim
L / 3330-1	DAGGERGE	10	0110000	000/02	ADOUL 200 METER EARL OF PP PTRIBET 9 CIBITS
E /3336-J	K102523D	10	o/15698	666610	About 300 meters Lest of HP Phaser 9 claim
E /3336-K		10	0/15898	6668660	About 3bu meters East of FP Phaser 9 claim
E 78842	L	10	5709477	690804	On FOX 11 claim on West side of Demens Creek near rhyolite/sediment contact near E 78841
80AS106		10	5718090	687120	From previous Assessment Report on Anticilmax Property
80AS107		10	5718115	687250	From previous Assessment Report on Anticlimax Property
80AS108		10	5718150	687570	From previous Assessment Report on Anticimex Property
80AS109		10	5718175	687670	From previous Assessment Report on Anticianax Property
80AS110		10	5718170	687700	From previous Assessment Report on Anticlimax Property
8045111		10	5719195	697700	From provinue Assessment Report on Anticiting Property
0040111		10	5749470	607020	I IVIII province interest in interest on Antickman Property
0040440		10	JI 101/U	00/820	r ivin provide research i i reput of Articles Placety
0040113	·	10	0/161/0	000040	Prom previous Assessment Report on Anticamax Property
0093114		10	0/18650	66/390	From previous Assessment Report on Anschmax Property
80AS115	L	10	5718650	687500	From previous Assessment Report on Anticlimax Property
80AS116		10	5718650	687810	From previous Assessment Report on Anticlimax Property
80AS117		10	5718650	687710	From previous Assessment Report on Anticlimax Property
80AS118		10	5718650	687810	From previous Assessment Report on Anticianax Property
80AS119		10	5718650	687920	From previous Assessment Report on Anticiamax Property
80AS120		10	5718850	688050	From previous Assessment Report on Anticimax Property
80AS121	{	10	5718850	688130	From annyous Assessment Report on Anticliman Property
8045122		10	5712850	899730	From previous Assessment Report on Anticlimay Departy
8045129		40	5740740	699200	n non provide resources in the second se
004C425	· · · · · · · · · · · · · · · · · · ·	10	51 10/40	000320	From provide Assessment Depart of Astelling Property
10470120		10	ເວ/18/ 3 0	0100000	From previous Assessment report on Articlement Property

Appendix VI

SILT SAMPLE LOCATIONS

	GPS				
SAMPLE#	FILENAME	ZONE	NORTH	EAST	LOCATION
D 90389	Z070120B	10	5713806	689431	About 400 meters Southerly from road junction where sample E78866
D 90390	Z070120F	10	5713626	688720	About 50m W of jcn of main Nehalliston road and spur road to banded rhyolite
D 90391		10	5709498	689866	About 50m NE of jcn of new road with main Nehallistion Creek road
D 90392		10	5708681	689929	Creek below switchback
D 90393		10	5706295	691340	Nehalliston Creek West of chert breccia
E 73313		10	5717610	688762	Phaser Cr. S of road - arg in this area appears to have thin layers of tuff
E 78815	R051318A	10	5707044	692175	About 3 meters above bridge on powerline road
E 78816	R051318C	10	5706070	691978	Small stream on powerline road
E 78820	R051320A	10	5706517	691259	Nehalliston Creek
E 78841		10	5709502	690815	About 100 meters East of IP FOX 11,12
139110		10	5710486	690575	On FOX 13 claim near North end on Demers Creek

Appendix VII

PROSPECTOR QUALIFICATIONS

PROSPECTOR QUALIFICATIONS

- 1. I have been actively prospecting continuously since 1977 and have been successful at discovering new mineral prospects and at optioning numerous mineral properties and generating significant economic activity.
- 2. In 1977 I attended and completed the prospecting course sponsored by the Chamber of Mines of Eastern B.C. and the B.C. Ministry of Mines and instructed by Mr. George Addie, Ministry of Mines District Geologist, Nelson, B.C.
- 3. In 1978 I attended and completed the prospecting course sponsored by the Chamber of Mines of Eastern B.C. and the B.C. Ministry of Mines and instructed by Mr.George Addie, Ministry of Mines District Geologist, Nelson, B.C.
- 4. In 1979 I attended and completed the "Advanced Mineral Exploration for Prospectors" course held at Selkirk College and sponsored by the B.C. Ministry of Energy, Mines & Petroleum Resources.
- 5. In 1991 I attended the "Rock Alteration" course held in Nelson and sponsored by the Ministry of Energy, Mines & Petroleum Resources and the Chamber of Mines of Eastern B.C.
- 6. In 1996 I attended the "Industrial Minerals" course held in Nelson and sponsored by the Ministry of Employment & Investment and the Chamber of Mines of Eastern B.C.
- 7. In 1998 I attended the "Gemstone" course held in Nelson and sponsored by the Chamber of Mines of Eastern B.C.
- 8. I regularly attend both the Cordilleran Roundup and the Kamloops KEG Conference and have attended numerous lectures on topics related to mineral exploration and have attended numerous short courses, the most recent of which was the "Intrusive Hosted Gold Deposits" course held at the 1999 KEG Conference.

R.J. Bourdon

April 2000

PROSPECTOR QUALIFICATIONS

- 1. I graduated from high school in 1982.
- 2. In 1982 I attended the Chamber of Mines of Eastern B.C./ B.C. Ministry of Mines "Basic Prospecting Course".
- 3. In 1983 I completed the "Advanced Prospector's Course" sponsored by EMPR.
- 4. In 1992 I attended the "Petrology for Prospectors" course sponsored by EMPR and the Chamber of Mines of Eastern B.C.
- 5. In 1996 I attended the "Industrial Minerals" course sponsored by the Ministry of Employment & Investment and the Chamber of Mines of Eastern B.C.
- 6. I have been prospecting and working in the mineral exploration industry since 1982 and have successfully optioned mineral claims to exploration companies.
- 7. In 1998 I attended the "Gemstone" course held in Nelson and sponsored by the Chamber of Mines of Eastern B.C.
- 8. I regularly attend both the Cordilleran Roundup and the Kamloops KEG Conference and have attended numerous lectures on topics related to mineral exploration and have attended numerous short courses, the most recent of which was the "Intrusive Hosted Gold Deposits" course held at the 1999 KEG Conference.

L.Addie

April 2000

Appendix VIII

STATEMENT OF COSTS

STATEMENT OF COSTS CRAZY FOX PROJECT

WAGES:

B. Bourdon, prosp 18 days @	pecting/sar \$200/day	npling,		\$ 3	3600.00
L. Addie, prospec 18 days @	ting/sampl \$200/day	ing,		\$ 2	3600.00
TRANSPORTA	ΓΙΟΝ:				
4 X 4 including f	uel,			¢	1 = 2 = 0.0
23 days @	\$75/day			\$	1725.00
5 days @	s50			\$	250.00
FOOD & LODG	ING:				
36 days @	\$ 57.50/d	ay		\$ 2	2070.00
FIELD EQUIPM	IENT:				
Flagging tape, san GPS rental 14 day	nple bags, vs @ \$25	hip chain thre	ead etc.	\$ \$	80.00 350.00
LAB ANALYSIS	5:				
35 element ultratr	ace ICP:				
Tills,	29 @	\$ 22.36		\$	648.44
Soils,	38 @	\$ 19.26		\$	731.88
Silts,	2 @	\$ 19.26		\$	38.52
Rocks,	7 @	\$ 17.92		\$	125.44
Shipping, Greyho	und Nelson	n to Vancouv	er	\$	77.50
REPORT:					
Report preparatio	n			\$	800.00
Secretarial				\$	144.00
			TOTAL	\$1	4240.78

