

DRILL CORE RELOGGING AND RESAMPLING REPORT ON THE CUNNINGHAM CREEK PROPERTY

Black Martin 1-3, Donna, Louise, Jim, PG 1 & 2, Sidewinder 1-3 Claims Cariboo Mining Division 93A/14W

For

Cathedral Gold Corporation 420-355 Burrard Street Vancouver, B.C. V6C 2G8

> Mark Tindall B.Sc., P.Geo. August, 2000

Tindall Geoservices Inc. Tindall Geoservices Inc. The Street FY BRANCH Burnaby, B.C. V5J2K7

TABLE OF CONTENTS

SUMMARY AND RECOMMENDATIONS	1
1.0 LOCATION AND ACCESS	2
2.0 PROPERTY DESCRIPTION	2
3.0 PHYSIOGRAPHY	3
4.0 HISTORY	3
5.0 REGIONAL GEOLOGY	4
5.1 Wells Lode Gold Deposits	4
6.0 PROPERTY GEOLOGY	5
6.1 Mineralization	5
7.0 2000 EXPLORATION PROGRAM	6
8.0 CONCLUSIONS AND RECOMMENDATIONS	6
STATEMENT OF QUALIFICATIONS	

SELECTED REFERENCES

LIST OF APPENDICES

Appendix 1	Statement of Expenditures
Appendix 2	Drill Logs
Appendix 3	Analytical Results

- -

LIST OF FIGURES

.

,

.

.

.

,

.

ï

Figure 1	Property Location Map	after page 2
Figure 2	Location and Access Map	after page 2
Figure 3	Claim Map	after page 2
Figure 4	Drillhole Location Map	after page 6

SUMMARY AND RECOMMENDATIONS

A recent discovery of strong gold mineralization over wide intervals of altered wallrock (Bonanza Ledge) of the BC vein on the Cariboo Gold Quartz property in Wells, B.C. prompted Cathedral Gold Corporation to examen the potential for similar style mineralization at their nearby Cunningham Creek property. With this objective, it was decided to re-log drillcore from selected drillholes on the property and to sample intervals of alteration, quartz stockwork veining and/or sulphide mineralization from those drillholes.

Three drillholes from three separate mineralized targets on the Cunningham Creek property were selected based on drill log descriptions of strong alteration, multiple intervals of quartz veining and sulphide mineralization. All three drillholes were relogged. Two of the holes were completely sampled with the exclusion of those intervals sampled during the original drill program. Samples were collected only from intervals of quartz veining, alteration and sulphide mineralization in the third drillhole. A total of 49 core samples were collected and analyzed for 36 elements by ICP and for gold by fire assay with an AA finish.

The strongly gold mineralized intervals of altered wallrock surrounding the BC vein at the Cariboo Gold Quartz property display strong to intense sericite-ankerite alteration, moderate to strong quartz stockwork veining and silicification, variable quantities of fuschite (mariposite) and between 5% and 25% pyrite. Higher gold values are associated with the strongest alteration and with high sulphide content.

At Cunningham creek, all of the feldspathic rocks display moderate to strong sericite alteration caused by regional, greenschist facies, metamorphism. The hydrothermal alteration observed in drillcore from the Cunningham creek property consists of strong ankerite flooding and veining with zones of quartz stockwork veining and patchy silicification. Silicification is notably weaker than at the Bonanza Ledge, even in zones of multiple quartz stockwork veining. Mariposite was not observed in the Cunningham Creek drillcore and the total sulphide content of altered and veined rock rarely exceeds 1-2%.

None of the drillcore sampled from drillholes 84-4 or 84-20 were anomalous for base or precious metals. Short intervals from 84-22, in the hangingwall and footwall of a quartz-sulphide vein zone, were anomalous for gold, silver, lead and zinc. Review of the logs from other drillholes indicates that most of the zones of alteration, veining and sulphide mineralization were thoroughly sampled. It was concluded that Bonanza Ledge style gold mineralization is absent in areas of previous drilling at Cunningham Creek.

Many hundreds of drillholes have been completed on the Wells gold properties in the past. Those drillholes failed to identify Bonanza Ledge style gold mineralization. The recent discovery of the Bonanza Ledge was a fortuitous accident while drilling the BC vein.

The style of veining, alteration and mineralization on the Cunningham Creek property is very similar to that found in the Wells gold camp. It is possible that Bonanza Ledge style, high grade gold mineralization is also present on the Cunningham Creek property. It is recommended that all of the available exploration data from the property be re-evaluated for a Bonanza Ledge type target.

1.0 LOCATION AND ACCESS

The Cunningham Creek property is located approximately 25 kilometres southeast of the town of Wells in south-central British Columbia (figure 1). Wells is located 80 kilometres east of Quesnel. Daily scheduled flights are available from Vancouver to Quesnel. The property is centred at 52°54' north latitude, 121° 21' west longitude on NTS map sheet 93A/14.

Access is by four-wheel drive vehicle from Wells (figure 2). A well maintained forestry road (line 3100) branches from the Wells-Barkerville highway at the Bowron Lakes turnoff, 1 kilometre west of Barkerville. A rough, secondary road, branches from the forestry road, 14 km from the highway, at the Yanks Peak - Keithly Creek turnoff. The right fork in the Yanks Peak road, 13.8 km from the forestry road, leads to the centre of the property. The turnoff to the camp is a further 2.4 km along the road. The road into camp is washed out approximately 350 metres above the camp and the Yanks Peak road is impassable to four wheeled vehicles south of the property boundary.

The camp is located at the junction of Pearce and Peter creeks and is comprised of two, relatively intact, wooden buildings and a third building which is derelict. Water is available in the creeks year round. All of the drill core from preceding drill programs is stored in camp. All of the 1986 drill core has been lost due to collapse of the core racks. The remainder of the core is relatively intact although some of the core boxes have been dumped and others are beginning to rot.

2.0 PROPERTY DESCRIPTION

The Cunningham Creek property consists of five reverted crown grants and five modified grid system claims totalling 65 units and covering an area of approximately 825 hectares. A table of claims is shown below and a claim map is included as figure 3.

Claim Name	Title No.	Units	Record Date	Expiry Date									
Black Martin 1 & 2	204177	1	8/14/1979	11/21/2000									
Black Martin 3	204176	1	8/14/2000	11/21/2000									
Louise	205247	20	8/19/1986	11/21/2000									
Jim	203991	3	9/7/1976	11/21/2000									
Donna	205276	12	9/18/1986	11/21/2000									
PG 1	375260	16	4/9/2000	11/21/2000									
PG 2	375259	9	4/10/2000	11/21/2000									
Sidewinder 3	204755	1	7/11/1983	11/21/2004									
Sidewinder 2	204754	1	7/11/1983	11/21/2004									
Sidewinder 1	204753	1	7/11/1983	11/21/2004									

Cunningham Creek Claims

3.0 PHYSIOGRAPHY

The claims lie on the Snowshoe plateau at an average elevation of 1,370 m above sea level. The terrain consists of moderate slopes which are covered in thick spruce forest at lower elevations and more open, alpine vegetation at the highest elevations. During the present program, logging was in progress in the Cunningham Creek valley, approximately 5 kilometres below the property.

The climate is typical for central British Columbia with mild, sometimes wet summers and cold winters. Snowfall can be heavy in the winter and accumulations on the property may exceed two metres. Most parts of the property are clear of snow by the middle of June.

Rock exposures on the property are limited and are generally confined to stream channels.

4.0 HISTORY

The Cariboo region of central British Columbia has been the site of extensive gold exploration and exploitation since the early 1860's when placer gold was discovered near present day Barkerville. Placer gold has been recovered from many creeks in the area surrounding the Cunningham creek property. Cunningham Creek itself is the source of historical and recent placer gold production.

In the vicinity of the Cunningham Creek property, lode gold has been commercially mined from the Cariboo Gold Quartz and Island Mountain mines at Wells, and the QR mine near Likely. Gold is presently being recovered as a by-product of copper mining at the Mount Polley property southwest of Likely. Limited quantities of gold and silver were recovered from quartz-sulphide veins on the Cunningham Creek property when it was known as the Cariboo-Hudson mine.

A brief history of the Cunningham Creek property is summarized below.

- Gold bearing quartz veins were discovered on the property in the early 1920's.
- Between 1937 & 1939, 2440 m of underground workings were developed on 6 levels. and 11,927 tonnes of vein material was processed to produce 161,565 grams of gold and 77,929 grams of silver.
- 1940-1947 saw extensive surface stripping and diamond drilling.
- A scheelite occurrence discovered in 1942 was intermittently exploited until 1953 by surface stripping and 170 m of underground development.
- In the early 1970's, Resourcex Ltd. carried out detailed soil geochemical and geophysical surveys and limited diamond drilling over 6 target areas.
- Since 1978, Imperial Metals Corp. or Cathedral Gold Corp. have completed extensive soil and IP surveys, rehabilitation of the 200 level of the Cariboo-Hudson mine, 1395 m of trenching and 3973 m of diamond drilling in 54 drillholes.

Exploration outlined three significant quartz-sulphide vein systems (Shasta, 605, Cariboo-Hudson) and the Moneta, Sulphide and Gossan replacement style showings.

5.0 REGIONAL GEOLOGY

Mapping by the GSC shows the geology of south-central British Columbia to be composed of four, fault bounded, terranes; from west to east they are Quesnelia, Slide Mountain, Barkerville and Cariboo.

The Wells-Barkerville gold camp and the Cunningham Creek property lie within the Downey Creek formation of the Snowshoe Group in the Barkerville Terrane. The Snowshoe Group is comprised of highly deformed metasedimentary rocks of undetermined age. The Downey Creek formation is composed of phyllites, slates, micaceous quartzites, limestone, marble and green meta-tuffs.

Regionally, the Snowshoe Group has been folded into the Lightening Creek anticline which plunges approximately 20° to the northwest. All of these rocks have been subjected to regional scale, greenschist facies metamorphism.

Within the Barkerville Terrane the most economically significant mineral deposits discovered to date are the placer and lode gold deposits of the Wells-Barkerville camp.

5.1 Wells Lode Gold Deposits

Between 1933 and 1986, approximately 1.2 million ounces of gold were recovered from the Island Mountain, Arum and Cariboo Gold Quartz mines at the town of Wells. At the Island Mountain and Arum mines, Gold mineralization is hosted in quartz-pyrite veins and within pyrite replacement bodies. At the Cariboo Gold Quartz mine, the bulk of the gold ore was hosted in quartz-pyrite veins with only minimal amounts of production from replacement style ore bodies.

The quartz-pyrite veins are hosted by shear zones with three distinct structural trends; northwesterly, northeasterly and easterly. Gold mineralization within the veins averaged between 0.35 and 0.39 oz/t and was recovered from short strike length ore shoots within the veins.

The replacement ore bodies consist of narrow, rod shaped zones of semi-massive to massive pyrite in a matrix of calcite and ankerite with minor blue silica. Replacement mineralization is concentrated along the contact of the Baker and Rainbow members of the Main Band limestone on Island Mountain. The replacement ore shoots plunge parallel to the local lineation at $20^{\circ}-22^{\circ}$ to the northwest. Gold grades from replacement ore averaged 0.63 oz/t over the life of the mines.

In the spring of 2000, International Wayside Gold Mines Ltd. intersected strong gold values over wide intervals of drillcore in the footwall of the unmined, B.C. vein on the Cariboo Gold Quartz property.

ddh BC2K-10 0.719 oz/t over 84.7 ft ddh BC2K-12 0.606 oz/t over 57.7 ft

They have named this new zone the Bonanza Ledge.

The Bonanza Ledge gold mineralization is hosted in a zone of pervasive sericite alteration which contains quartz-ankerite-pyrite stringers. The following description of the Bonanza Ledge mineralization is excerpted from a report by Panterra Geoservices Inc. (Appendix 4).

The abundance of stringers is highly variable and range from 0-50% of the overall rock volume. The stringers are often folded and highly contorted. The pyrite content is also highly variable. In lower grade zones (<10 g/t Au) pyrite occurs as stringers, while in the high grade zones semi-massive pyrite intervals are developed.

6.0 PROPERTY GEOLOGY

Detailed descriptions of the geology of the Cunningham Creek property are available in earlier exploration reports. The claim area is underlain by a northwest trending belt of quartzites, sericitic quartzites, sericitic schists, limestones and chloritic schists of the Snowshoe group. The rock units are often intercalated and contacts may be gradational. Ankerite veining and flooding, accompanied by minor amounts of disseminated pyrite, is often associated with the quartzites and micaceous schists.

The rock units which cross the property strike approximately 320° and dip between 70° and 80° to the northeast. Deformation has resulted in development of a strong foliation, crenulations, and small amplitude isoclinal folding. Foliation is generally at a low angle to the bedding.

6.1 Mineralization

To date, Several types of mineralization have been discovered on the property. The most heavily explored are auriferous, quartz-ankerite-sulphide veins. The veins range from a few centimetres to a few metres in width and from a few metres to several hundred metres in length. The veins display three predominant strike directions; northerly, northeasterly and easterly. The north trending veins are the most prospective for gold mineralization. They occupy faults or shears which strike northerly and dip steeply to the east. The veins pinch and swell and commonly branch. The Shasta, Hudson and 605 veins are the strongest vein systems recognized to date.

The quartz veins are comprised of a gangue of quartz with variable amounts of ankerite. The sulphide content of the veins is variable. Pyrite, and less commonly, sphalerite, galena and chalcopyrite occur as irregular masses, bands and disseminations within the veins. Gold-silver mineralization is associated with the sulphides and gold content generally increases with increasing sulphide content. Gold and sulphide mineralization is concentrated in shoots within the veins which plunge steeply and appear to be controlled by the intersection of structures.

"Replacement" style mineralization was recognized on the property in 1983. The Sulphide and IP showings on the property are found within limestone and argillites north of the junction of Pearce and Peter creeks. They are characterized by small pods and irregular masses of pyrrhotite, pyrite and galena. High but erratic gold values accompany the sulphides. Massive iron oxide float was discovered

in 1986 in a narrow valley west of the Shasta vein. Surface samples returned erratic but highly anomalous gold values. Drilling intersected semi-massive pyrite and pyrrhotite with disappointing gold values.

Tungsten mineralization is found on the property near the intersection of Pearce and Peter creeks. The tungsten occurs as scheelite in quartz veins.

7.0 2000 EXPLORATION PROGRAM

The styles of mineralization on the Cunningham Creek property are similar to those historically mined in the Wells gold deposits. Following the discovery of the Bonanza Ledge it was decided to re-evaluate the Cunningham Creek property for the potential to host Bonanza Ledge style mineralization. With this purpose, three drillholes were selected to be relogged and resampled. Drillhole selection was based on descriptions in the original drill logs of quartz-ankerite stockwork veining, pyrite mineralization and strong sericite alteration. Drillholes 84-4, 84-20 and 84-22 were chosen and represent a sampling of mineralization from the Shasta and 605 veins and the IP replacement zone respectively. A drillhole location map is shown in figure 4.

A two man crew was engaged on the program of relogging and resampling during the period of August 3 to August 7, 2000.

All three of the selected drillholes were relogged. The interval from 116.5 - 157 feet in ddh 84-4 which was missing. Drillholes 84-20 and 84-22 were completely resampled with the exception of those intervals sampled in 1984. Only intervals of sulphide mineralization, strong alteration or quartz-ankerite veining were sampled in ddh 84-4. The drillholes were logged in feet for ease of comparison between the old and new logs. The 1984 and 2000 drill logs are presented in appendix 2.

Those intervals selected for sampling were split with a core splitter and one-half was bagged for assaying. The split but unsampled half of the core was returned to the core boxes and the boxes restored in the core stacks on the property. A total of 49 samples of drill core were collected. Total expenditures were approximately \$8,250 (Appendix 1).

Drillcore samples were submitted to Bondar-Clegg in Vancouver for analysis of 36 elements by ICP and for gold by fire assay with an atomic absorption finish. Analytical results are included in this report as appendix 3.

8.0 CONCLUSIONS AND RECOMMENDATIONS

None of the core sampled from drillholes 84-4 and 84-20 was anomalous in gold, silver or base metals.

In drillhole 84-22, a one foot wide quartz-ankerite vein, from 100.0 - 101.0 feet downhole, assayed 1544 ppb (1.544 g/t) gold but was not anomalous in silver or base metals. The interval from 103.4-

110.5 feet returned strongly anomalous values for silver (6.2 ppm), lead (3557 ppm) and zinc (4567 ppm) but not for gold. From 123.0 to 128.2 feet, the analytical results were anomalous for gold (317 ppb) and silver (6.8 ppm) but not for base metals. The anomalous intercepts are in the hangingwall and footwall of a quartz-ankerite-sulphide vein zone from 110.5 to 123.0 feet which, when assayed in 1984, was strongly anomalous in gold silver, lead and zinc. The highest gold assay from this vein zone was 1.91 oz/t from 111.5-113.0 feet. The remainder of drillcore sampled from drillhole 84-22 was not anomalous in base or precious metals.

The 2000 program of resampling of old drillcore on the Cunningham Creek property failed to find indications of Bonanza Ledge style mineralization. The hydrothermal alteration observed in the drillcore consists of strong ankerite flooding with relatively narrow zones of quartz stockwork veining. Silicification of wallrock was generally weak and patchy, even in zones of quartz veining. The total sulphide content of altered rocks rarely exceeded 1-2% by volume. Mariposite is mentioned in the original drill logs, however, this was a misidentification of light green talc. Mariposite was not observed in the three drillholes which were relogged.

Review of all of the 1984 and 1986 drill logs indicate that, wide zones of strong alteration, stockwork veining and sulphide mineralization were generally thoroughly sampled. Gold values from those samples were almost always below anomalous levels. It is concluded that Bonanza Ledge style gold mineralization is absent in areas of previous drilling on the Cunningham Creek property.

Many hundreds of drillholes have been completed on the Island Mountain and Cariboo Gold Quartz properties during their history. None of those drillholes identified Bonanza Ledge style mineralization. The recent discovery of the Bonanza Ledge on the Cariboo Gold Quartz property was a fortuitous accident while drilling the BC vein. Since its discovery, additional drilling has indicated that the Bonanza Ledge mineralization is extremely variable in width and possibly discontinuous along the dip. Although the Bonanza Ledge, where drilled, is in the footwall of the BC vein, it appears that it may be oblique to the structure hosting the BC vein and may possibly be unrelated. Substantial additional drilling will be required to evaluate the nature and extent of this new type of gold mineralization.

The style of veining, alteration and mineralization on the Cunningham Creek property is very similar to that found in the Wells gold camp. It is entirely possible that high grade gold mineralization similar to the Bonanza Ledge is present on the Cunningham Creek property. It is recommended that all of the available data, including trenching and soil geochemical and geophysical surveying, be re-evaluated for a Bonanza Ledge style target.

Respectfully submitted

M. 7-Mark Tindall P.Geo.

STATEMENT OF QUALIFICATIONS

I, Mark A. Tindall, of 4658 Clinton Street, Burnaby, B.C. V5J 2K7 state that:

1) I am a 1981 graduate of Queen's University, Kingston Ontario with an Honours B.Sc. degree in Geology.

2) I am a Fellow of the Geological Association of Canada.

3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists in the Province of British Columbia.

4) I have been employed in mineral exploration prior to graduation and have practised my profession, continuously, since 1981.

5) I am a consulting geologist employed by Tindall Geoservices Inc. and am vice president of Tindall Geoservices Inc.

6) I am the author of this report which is based on private and public reports plus on-site investigations.

7) I have no interest, direct or indirect, in the property discussed in this report or in the securities of Cathedral Gold Corporation.

8) I am the owner of 146 shares of Imperial Metals Corporation, which in turn is a major shareholder in the securities of Cathedral Gold Corporation.

9) This report may be used for the development of the property, provided that no portion of it is used out of context or in such manner as to convey meanings different from that set out in the whole.

signed and sealed at Burnaby, British Columbia this 29t4 day of

File giest, 2000

SELECTED REFERENCES

DeLancey, P., 1987; Summary Report of the Cunningham Creek Gold Property; in-house report for Imperial Metals Corporation

Hawkins, T.G., 1987; Report on the Cunningham Creek Property; in-house report for Cathedral Gold Corporation

Quinn, S., 1984; Drilling Report on Cunningham Creek Claims; in-house report for Imperial Metals Corporation

Rhys, D.A. & Ross K.V., 2000; Report on Petrography, Check Sampling and Geological Interpretation of Drill core at the Bonanza Ledge Zone, Cariboo Gold Quartz Property, British Columbia; in-house report for International Wayside Gold Mines Ltd.; Appendix 4 of this report

Struick, L.C., 1981; Bedrock Geology Cariboo Lake, Spectacle Lakes, Swift River and Wells Map Areas, Cariboo District, British Columbia; GSC OF858

APPENDIX 1

STATEMENT OF EXPENDITURES

.

.

•

.

.

,

-

•

.

STATEMENT OF EXPENDITURES

•

•

*

.

.

.

.

.

,

-

.

_

•

-

.

·

.

Total Expenditures			\$8,249
Drafting, Reproduction			421
Assays & Sample Prep.		49 samples @ \$24.80	1,215
Equipment Purchase & Rental			145
Meals - 2 men	August 3-7		332
Accommodations - 2 men	August 3-7		555
Vehicle Rental & Operation	August 2-8		762
Personnel Mark Tindall - geologist Richard Ney - core splitter	August 1-8, 21-27 August 3-8	8.75 days @ \$425 5.5 days @ \$200	\$ 3,719 1,100

APPENDIX 2

~

Ŀ.

.

DRILL LOGS

TINDALL GEOSERVICES	NC. P	CROPERTY:	Cre Cre	inpharm ort	PAGE	_/_ OF <u>_5</u>	HOLE NO: 84-4
PROJECT: Relog & Resar	DIC LI	OGGED BY:	1. T	Endall	DATE:	Mug 6/00	DEPTH: 157
LOCATION: South Grid	S	URVEYED BY:			DATE:	0 /	CORE SIZE: $\mathcal{N} \mathcal{Q}$
CONTRACTOR:	D	ATE COLLARE	D:	23/7/8	4		DATE COMPLETED: 24/7/84
COORDINATES:			HÒLE	SURVEY			EQUIPMENT TYPES USED
NORTHING: 1+42 S	DEPTH	0		1	1		
EASTING: 3402 E	INCLINATIO	N -600					
ELEVATION: 1729m		2250					· · · · · · · · · · · · · · · · · · ·
METHOD:				<u>[</u>	<u> </u>	<u>!</u>	
HOLE SUMMARY / COMMENT	-s						
- Hole Was	orig	ingly de	:110	s to t	1 57	the S.	Gasta Vera
		-					
- Select inte	·vale	with	a i	treation	a.	nd qua	rtz Usialna Were
Chosen for a	eddier	onal s	Sam	nling			
				0			
Samples	271.	+3 - 27	149				
, , , , , , , , , , , , , , , , , , ,							· · · · · · · · · · · · · · · · · · ·
Con 60	Kes .	798 4	1ere	missin	2		
130× 9	the	fing k	6 ox	of the h	<u>ele, i</u>	s on s	ite
				· · · · · · · · · · · · · · · · · · ·			

n na server a server No server a s

.

	TINE	OALL GEOSERVICES	INC. PAGE	_2	0F <u>5</u>	н	OLE N	10.	84-	4			
5001		oc		%	SAMPLE	ASSAYS							
FROM	то		AND STRUCTURE	5ULPH	No.	FROM	то	LENGTH	Au 776	Ag مد <i>ار د</i> ا	(4 pp2	2n ppm	
0	9'	Ouribuiden									[
2	116,5	5:125104 - / water lan Tuff	9-31 core froken huly Weathrid Scrongly limonitie										
		tine - med grained It green, matty Chloritized	Possible fault with partings & 65° to C.H. minor narrow 8×2 reinlets										
		clastic tuff andistic tuff composition	Below 31 core is 11 green Fatty chloritized w weak						· ·		 		
			- met ankerte banding along Weak - net forfation & 60° to L.A.		· ·	-							
		•	34.6-38.2 ~ 6-770 00/100 2-320 802 as 3 ARTION Unintets to relict py	<u></u>	=7143	34,6	<u>38.2</u>	3.6	<5	0.2	37	107	
			38.2-41.2 ~ 2020 922 95		27141	7.0.		30	·/ c	1 1	2 4	7 ~	
			n 10 % aniverite along talias T in Veing tr - 190 py r				41.4						

т	NDALL	. GEOSERVICI	ES INC. PAGE	3	0F <u>5</u>	H	OLE N	10. {	34-	. 4-			
FOOTAGE	LOG		ALTERATION, MINERALIZATION	%	SAMPLE	ASSAYS							
FROM TO		ROCK TYPE	AND STRUCTURE	SULPH	No.	FROM	то	LENGTH	Аи Р <i>Р</i> 6	Ag /?./?m	CU ppn	2n ppm	
			41.2 - 65.3 indely chipartizes										
			LUKIY Scricitized WAOK - 590		1								
			auxerite along foline; minor	·						<u> </u>			
			randar gez verillers										
			55.5 - 56.0 822 Vein W										
			5-720 Quikerite AD										
			Sulphides ruged										
			65.3-68.6 7.870 9+2										
			as harrow 1-3 cm, Irreg	1	27/45	65,3	68.6	3.3	16	5.2	7/	77	
			UCIULETS, 10-15 70 an reart.										
	╶┼╌╎╼┦╼╸		ho Sulparis noved	<u>s</u>			+	+	<u> </u>				
			68.6 - 74.0 10-12 20 9 +2, 15 %	-									
			ankerice narrow veins a		27146	68.6	74.0	5.4	47	5,2	100	195	
			Ineg parches 21% time	1								Ì	
			Py blebs in yeins approx					_	<u> </u>			ļ	
			8500 Fecoucix				}		-				
			14.0 - 77.0 Previousi		-		·	1					
			Sampled					-					
							<u> </u>		•				
							1						
					1		1		-		1		

÷

.

TI	NDALL	GEOSERVICE	SINC. PAGE	4	0F <u>ک</u>	н	OLE N	IO. ٤	34-	4		
FOOTAGE	LOG		ALTERATION, MINERALIZATION	%	SAMPLE		 T		ASSAYS	; ;		
FROM TO		ROCK TYPE	AND STRUCTURE	SULPH	No	FROM	то	LENGTH	Аи Р <u>р</u> ь	Ag Ppm	Ppm	Ppm
	_	.	77.0 - 104.0 mary chronicia								 	
			- WRIY serieitived wominer - 520 anneces along toliation	1								
			a 45° to C.A. minor harrow									
			37- 90 mddly Silicified WK						-			
			Sampled						·			
			Q 104.0 COR brownes abrupt	4							+	
			bleached								+	
			104,0-112,9 alternation	+	27147	104.0	08.2	4,2	15	5.2	21	50
			41 Strong ankerite along		27/48	108.2	112.9	4.7	17	<.2	24	52
			foliation and motteling									
			narrow Veinlets 1-490 PY	+			-		}		1	<u> </u>
			95 5mga bleks in veiks			-	-	1	1			<u></u>
			may be sphaledite mixed w									
			Gukerite									
		<u></u>										1
												+

PAGE 5 OF 5 HOLE NO. 84-4. **TINDALL GEOSERVICES INC.** % SAMPLE ASSAYS ALTERATION, MINERALIZATION FOOTAGE LOG No. FROM TO LENGTH 1326 PFm 12Pm 1212m ROCK TYPE AND STRUCTURE FROM TO GULPH 27149 112.9 116.5 3.6 55 6.2 33 71 112.9 - 116.5 610966/17 15 Weaker ~ 6-790 anthrite along forige and as prostilled spots 2 190 9 t 2 45 2 1 t 2 cm veinless minor disconcerter Pyrite End of Box 6 Boxes 798 Missing Box 9, the last Lox 15 on site EOHG 157'

······································									
TINDALL GEOSERVICES I	NC.	PROPI	ERTY:	: шал С 1	ingh ar	\sim	PAGE	OF	HOLE NO: 84 - 20
PROJECT: Relog + Resar	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· LOGGED BY: M. Tind & "					DATE:	Aug 5/00	DEPTH: 161 ft
LOCATION:	-	SURVE	YED BY:				DATE:	(/	CORE SIZE: NQ
CONTRACTOR:		DATE (COLLARE	D:	31/7/	84			DATE COMPLETED: 3//7/8 4
COORDINATES: Grid		·		HOLE	E SURVEY	<u> </u>			EQUIPMENT TYPES USED
NORTHING: $0 \neq 12$ S. EASTING: $3 \neq 44$ F	DEPTH INCLINA	TION	2 200	····					
ELEVATION: 1745m		H	-400					· · · · · · · · · · · · · · · · · · ·	
							<u> </u>		
HOLE SUMMARY / COMMENT	S								
- Hole object	م ب م -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>.</i>	to	drill	th	. 6	05-110	in in
- Hale latar Hil	lagar		i a d	an	Cast		~ ~ <u>~</u>	0	
	-77-	<u> </u>	(<u> </u>	· >·	a pira	7 H 178
		~~ o	aut	07	94/601	<u></u>	9 14	a gez	Uning and Strong
4/terafron			· · · · · · · · · · · · · · · · · · ·		 				
	<u></u>					<u> </u>			
Samples	<u> </u>	7113-	- 27	<u>14</u> 2	2				
								· · ·	
								·····	

			-						
					<u> . </u>				
L									

				04	SAMPLE				ASSAYS			
FOOTA		OG ROCK TYPE	ALTERATION, MINERALIZATION AND STRUCTURE	рогья	No.	FROM	то	LENGTH	۸۵ کورور	Ag Puta	2 LA 12 La	2 m 19 m
	<u></u>								,,	77		
0	1	Querburnen	1-12 nr 55% core recovery			-						
		7			27/18		/,	17	10	4,2	2	3,
[]/	61	Siltstone !	1-23,5 core server fly bloatly	ſ <u></u>	<u> ~ /// ©</u>			- ···		1		
		massine TO finaly	aussite, sericite alteration				 					
		bedded, fine - hed	With minor calc.						1.2.2	112	22	51
		grained tap to	14.3-14.B. Q+2 UFIA (4)		27/19	/2	14.8	2.8	142	<u> < . </u>	<u> </u>	<u>ř</u>
		Vit green Sandy	590 questite as unside a comme	7	27120	14.8	19.8	50	15	0.2	3	31
		Siltarane/we said	14.8-14.8 minor 0.3 (4- 952		2 11	1.1.0			<u> ` - (</u>		1	1
			19 8-23.7 3-420 922 45		27121	19.8	23.9	4.1	5	1.2	5	4
-+			harrow vernlets									
			23.5 - 25.0 gradual decrease in	_	1		-		┦───	ļ		
			Intersity of altreation									
			Below 25.0 Weak- mor aukero	<u>~</u>								
			asoup roligeron and 45 congue	<i>41</i>						1		
			altu.	+			-		1		1	-
			23.9-27.0 ~ 590 ankerite		27/22	23.7	27.0	3.1	6	14.2	.14	9
											, ,	.
	ļ		27.0-31.3 7-890 412 43		27/23	27.0	2343	4, 3	5-9	<u> {< .2</u>	$+ \frac{\langle 1 \rangle}{\langle 1 \rangle}$	
			+ 1 cm = i0 cm # +2 anterite		ļ	Ì			-			
			Vichlets, no Scippides rote	5			+		-	+	+	+

A state of the state of the

T	IND	ALL GEOSER	VICES INC. PAGE	3	OF <u>6</u>	H	OLE N	10. <i>E</i>	34	20		
FOOTAG		og l	ALTERATION, MINERALIZATION	%	SAMPLE				ASSAYS		· · · ·	
FROM T			AND STRUCTURE	SULPH	No.	FROM	7 0	LENGTH	Au P.P.L	Ag /아 P 자네	C4 Ppm	2n Ppm
					27/24	31.2	350	27	70	4.2	<1	3
			6 1Cm - 5 cm gt2 and write									
			Vienters no sulphides notice									
			35.0 - 39.9 ~ 5 - 790 ankerite		27125	35.0	37.7	4.9	4	4.2	27	49
			along mat foliation & 70°50									
			C. A. minor narrow gt > UA/T				4				· · · · · · · · · · · · · · · · · · ·	
			399-160 ~ 159, 912 0	-	27/26	29.9	46.0	6.1	23	14.2	13	4.5-
			1-8 cm gtz - ankerite vein.	<u>،</u>						1		
			and lung, watches \$170							<u> </u>		
			diss by to sphalenite ? in									
			veinlet,									
			46-51 proversity same	led								
												 、
			51-58.3 1 3 cm gtz Unla	-	27/27	51.0	58.5	7.3	123	14.4	33	1.5
			5-7% ankerite 41049 foriation	*								ļ
			5B3-660 ~ 570 952 45		27128	583	46.0	7.7	<5	4.2	24	5-7
			2 Inrequired weinters Small			_				1		1
			parches of Solification									
			5-790 galarite along foliat	100								
			and in veinlets 2 Sulpa.	<u></u>		_	_		-	-		
			noten				1					
	 _				-	1	-	-		-	+	+
	1					1						

	<u> </u>		1	<u> </u>	1							
FOOTAGE	LOG		ALTERATION, MINERALIZATION	%	SAMPLE	ļ			ASSAYS	Aa	Cul	2 11
ROM TO		ROCK TYPE	AND STRUCTURE	SULPH	No.	FROM	то	LENGTH	ppb	ppm	mage	1º Pm
			66-67 providesty sampled								 	
			Q.U. W miror galena, 3-5%				1					ŀ
			Sphalevite as lange 1000 2000	<u>د ک</u>		╂━───┤	ب ـــــــ	<u> </u>				t
ļ			670-71 M 7-890 autorite		27129	67.0	71.0	4.0	15	4,2	10	39
 		unter alfridado n	aro-g foliation minar									
			Silicified parches to py in	·				<u> </u>		·	 	
			4cm Irrog giz an Kerrite				ł			1		
	{{+}} _		Vecalet		+	,		<u>+</u>	<u> </u>	+	 	+
			71.0 - 71.0							ļ	ļ	
		<u> </u>	sampled production									
		and a start when the start way and a start when the start way and the start way and the start way and the start	76.0-86.5 7-10 70 Gukerite		27130	76.0	81.9	5.9	15	15.2	15	56
			along totration		27/31	81.9	86.5	4.6	15	1 < , 2	47	74
	_ <u> </u> _			T					0			
			86.5-96.0 2. della construction	<u>د ۽</u> س	27/32	86.5	92,2	5.7	· -~	0.5	15-5	+76
			4 17 90 12 70 922 41 5 4-18C	7	27133	92.2	96.0	3.8	15	14.2	34	7.3
	- - -		Sphelerite pa vera ets									
			96.0-100.0 WK1Y - marry	-+			+	+	0	<u> </u> ,	+	
			answitched wetly sericitis	201	27/34-	96.0	100.	<u>c 4.</u> C	<u>)</u> Ö	15.2	. 13	$\frac{133}{133}$
			100.0-102.5 previously	-			<u> </u>	-	ŀ			
			, , ,									
			- Superpled			+	+		+	+	+	+

FOOT	AGE	LOG		ALTERATION, MINERALIZATION	%	SAMPLE		1		ASSAYS	Aq	Čų	Zn
FROM	то		HOCK TYPE	AND STRUCTURE	SULPH	No.	FROM	то	LENGTH	pp6	ppm	ppm	ppm
						1	10.7			1c	1, 2	21	132
			·	102,5- 110.0 WKIY - 21dth	2 1	27135	102,5	<u> </u>	7.2	12	5.2		
			•	ankeritized, adding scorpy serica	- - ,	0-1-1-1		1.1.0-	~ >	15	12	9	74
				menos spring patches of		<u>2-(/36</u>	111.1	118.0	<u><u>v.</u></u>				
		┥╸┧╶╎		118.0 - 123.0 previous (4)		-	-	-				r	
						27/27	1220	128.9	5.7	15	12.2	17	54
<u>.</u>		+		123.0 - 128.4 Strought Service				1 20.7		<u> </u>			1
				Raisson 1590 autorite AD									
		┥╌┞┈╎─		Salpines Roved	-					1			
	1			12# 2= 135.3 minor # 12 95		27138	128.9	135	56.4	15	5.2	23	79
			· · · · · · · · · · · · · · · · · · ·	harrow verniets 6 390 euken	74				-				
				Strongly Sericitized	1	1							
			· · · · · · · · · · · · · · · · · · ·								,		
	1			135, 3- 139.3 1090 412 45		27129	135.	2 1.32	<u>; 4. C</u>	15	2,2	17	5
				4 3cm - 20 cm gez anterie	-								
				Veralets no Sulphides Moted								. <u> </u>	<u> </u>
							1				-		
				139.3 - 142.0 Strongly sericit	20	27140	139.	3 142.	<u>q 2. 7</u>	15	14.2	13_	56
				L 290 Untressie no gez 40									ţ
				Sulphides				-			+	<u> </u>	
ļ				142.0- 146.0 20 70 82 10 40		0				1		1.0	, سے 📔
				Galkenits as Multip's haven	₽	27/4/	1/12.0	0146	<u>.4 4.c</u>	15	15.2	12	1 36
l				veinlets to PY									
L		_											
	4						1						ļ
<u> </u>			····										+

.

γ.

	GE	LOG		ALTERATION, MINERALIZATION	%	SAMPLE				ASSAYS	5	1	
FROM	то		ROCK TYPE	AND STRUCTURE	SULPH	No	FROM	то	LENGTH	Au PPG	Ag Mag	C4 PP2	2n Ppm
											''	ľ.	
			αν, − μ, − τ, 	Sampled				/					
						27142	1560	1110	70	15	122	16	4.5
				+ chloritized 570 gtz 95			<u></u>		1				
				verylers and preg patches			_ _		l 				
				5 20 ankerite in viens ,					1				
				along tolige as superi	<u>(55</u>							<u> </u>	-
				4.2584							1		1
			···	IGLO ERH				-					
			1										
											-		
		╋╋										-	
					I		L						

n service and the service of the ser

TINDALL GEOSERVICES	NC.	PROP	ERTY:	Cre	nghan ek	1	PAGE	L OF <u>5</u>	HOLE NO: 84-22
PROJECT: Resample		LOGGE	D BY: M	. Ti	ndall		DATE: B		DEPTH: 151
LOCATION: Central Grid		SURVE	YED BY:				DATE:		CORE SIZE: NG
CONTRACTOR:		DATE	COLLARI	ED:					DATE COMPLETED: 2/8/84
COORDINATES:				HOLE	E SURV	ΈY			EQUIPMENT TYPES USED
NORTHING: OT 96 N	DEPTH		0						
EASTING: 11 + OD W	INCLINA	TION	-50						
METHOD:	INSTRU	MÊNÎ	0650						
HOLE SUMMARY / COMMEN	TS	·		£	+1		111 - [-	1.165	to Test an area
- The Original	611	<u>, ec (</u>	our our	<u>01</u> 100	e d	6.1	an I	TP se	712 1
- The balle big	e 1	re la a	ard	a	nd a	11 0	cove y	at s	plit in 1984
					<u> </u>		C C C C C	1 mul	tinle intervals of
h)as spirit and		mp (e		<u>0 1</u>	<u> </u>			<u></u>	
guarte Weining	<u> </u>	<u>a' - 7</u>	16580	_ <u></u>	منه (
Sam ples	2	7/01	- 2 -	7/1	7				
	·								
·			•					···	

HOLE NO. 84-22 PAGE 2 OF 5 TINDALL GEOSERVICES INC. ASSAYS SAMPLE % ALTERATION, MINERALIZATION FOOTAGE LOG Au Ag Cu 20 ROCK TYPE LENGTH adapt LENGTH man FROM TO ppm No. · AND STRUCTURE **EULPH** FROM TO 0 40 Casing Sericite schist minor ankerite bands glows 27101 40 50.5 10.5 65 4.2 36 10 40 50.5 Dark silver-gray foliation Sericite Schist 48.9-49.6 Quartz vein W fol & 20°toch 30 TO ankenite NO Sulphides 45 0.2 67 12 27/02 505 55 50.5 56.5 sillstone bik f. gr. strager foliates & 200 to C. A. W. ~ 35% and s Glong foligion 55 - 61.5 Quartzucia prev. Sampled mass. where gtz 565 60 minor ling Stain on fracts to py 60 61.5 Serieite Schist 95 9600C

the term of the second se

	TIND	ALL GEOSERVICES	INC. PAGE	3	0F <u>5</u>	н	DLE N	0. E	34-	22		
		og l	ALTERATION, MINERALIZATION	%	SAMPLE			/	ASSAYS	- • · · · · · · · · · · · · · · · · · ·		- -
FROM	то	ROCK TYPE	AND STRUCTURE	5ULPH	No	FROM	то	LENGTH	Au dagy	Ag	ppm	24 19/m
61.5	76.0	Sandy walkse	61.5-68.7 trace dissay	<i>T-</i>	27103	61.5	687	7,2	<5	<,2	23	74-
		Green med grains WR 17 Folia tels an Variable guastomo	68.7-76.0 15-2070 Zing Ankerice 1-270 1mm, diss	/-2	27/04	68.7	76.0	7.3	<5	<.2	2.3	50
		WARY SICTA W minor gez verns	py cru des									
76.0	106.5	Siltstone/ Sericite Schist blk to GK Silvery	Moderein to Stronging foliario Stronging foligred is scaliston - W 75070 Sericite, foli@ 209	* * *								
		grey V. Cyr	To C.A. 76.0- 82.5 7-8 70 Autorite along foliation L190 diss PY 45 cabes	<u> </u>	27/05	76.0	87.5	6.5	1.5	- 4.2	50	47
			82.5- 86.0 prov sampled									
			86.0 - 86.9 same 95 76.0 - 82.5	K	1 27/06	86.0	86.9	0,9	B	4.2	.39	19
\$6.9	88.1	Quartz Ankerite V	n 86,9-88,1 407, ankarite 1-23.	, /-,	3 27/0 7	8G.9	88.1	1.2	43	5,2	30	3.3
			88.1-93.8 scrongly foliates @		27108	88.[93.8	<u>5.7</u>	-6	<.2	52	42
			Sogo to C.A W ~ 1-3 20 gez University 5-720 anterity Geon foriation 6 120 diss py.	8	(

•

HOLE NO. 84-22 PAGE 4 OF 5 TINDALL GEOSERVICES INC. ASSAYS % SAMPLE ALTERATION, MINERALIZATION FOOTAGE LOG P6 64 2h Au Âg ROCK TYPE LENGTH 126 10 mg PRA PRA PPS FROM то No. БИСРН AND STRUCTURE FROM TO 93,8-100.0 Strongly follared Siltsmon 0 minor 912 Veining KI 27109 93.8 100.0 612 2-320 & akerice 9104 forige 7 0.3 45 47 LIZO diss py 27110 100,0 101.0 1.0 15,44 6.2 57 26 Qt2 · Aukerite Vein 100.0 - 101.0 ~ 10% anterite no Salpaides hored 100.0 101.0 101.0-103.4 Stronply forrates 27/11 101.0 103.4 2.4 45 0.2 22 32 Soltstone was 20% fine Qukenie Sandy WACKL 1065 15-1.0 bands It grey. green med grained wery-mothy foliated; @ 103.4 core algoupery becomes mdtly Schloitized mdtly - Stongly anneritized mdtly - Intersely w large Inegalar Sections of Strong anterice replacement Gukeritized 103.4 - 110.5 Met - 5+-0+8 9+4 3557 456 K190 27112 1034 1105 7.1 21 6.121 Veining Firsegulas masses ~ 1570 gt 2 + 1592 anscentte 6/ 9. diss py 11015 - 123.0 previously 123.0 - 123.2 Intensely ankeritized 27/13 1230 1282 5-2 317 6.8 70 92 W fine laminas & laugt ling, parches 60-7090 antrovers 5-790 gez as narrow Valts & Irrag. Parches. 1-570 MY as dissmas 1.5 7 large 1000 Clars

e a e a e a como e

Т	FINE	DALL	GEOSERVICE	SINC. PAGE	5	OF <u>5</u>	н	DLE N	0. &	84	z 2		
			<u> </u>	ALTERATION, MINERALIZATION	%	SAMPLE				ASSAYS		Cer	
FOUTAG	╚┝╏		ROCK TYPE		5ULPH	No	FROM	то	LENGTH	Au PM	Ag MGAA	1'Br	12 104
FROM T		++		(28.2-132.2 Intensely (8090) (28.2-132.2 Intensely (8090)	4/	27114	128.2	132.2	4.0	39	0.3	97	20
				as 3 narrow veins and a few lurg, masses 6 190 disspy	/			ļ			 	 	
				G 132.2 degree of Rukowitizat	rbur_			 					
				core 2 dely (~ 2070) ankerician	<u>«</u>	 		 			<u> </u>	 	
				as minder torrac an small leng parches giving core sportes appearance.	-			 		+	<u> </u>		
				132, 2-138.0 Judtly Gukenitized	; TV	27115-	/32.2	138.0	\$ 5.8	50	0.3	37	4 8
				2 Sericitizes, 21 inder gtz + tr py									
				138.0 - 140.5 Same 95 96000	_	27116	1380	1405	- 2.5	- 31	0.3	<1	49
				140,5 - 146,0 previously Squipled			_						-
				146.0-15% O as 96000		27/17	146.0	151.0	25.0	, 19	0.5	32	4.3
				151.0 EOH									-
												-	
1						1	1						

F. S. F. S. P.

.

1

IMPERIAL METALS CORPORATION

L'A

												•				
PROPER	TY Cun	ningh:	am Creek LOC.	ATION	South Grid	CORRECT	DIP	-60°			PAGE	٦	OF	3		
HOLE	NO.	84-	-4 LAT.		3+02E, 1+42S	TRUE BRG	ì	225*			LOGGE	DBY	S.P.	Quin		
COMME	INCED	23	/7/84 DEP	•		SURVEY A	Ţ	157'	- 72°		DATE		25/7/	'84		
COMPL	ETED	24,	<u>/7/84 ele</u>	v	+1729m	% RECOVE	ERY				CORE	STORE	o Cam	קו		
OBJECT	TIVE	Sha	s'ta Vein COR	E SIZE	N.Q.	LENGTH		157'		•	UNUSU	IAL FE	AT.			
					· · · · · · · · · · · · · · · · · · ·											
		SYLLEON					SAMPLE	500 44	10		AN.	ALYSIS -	in opn	ı. Au	_าำ อ	
FROM	10	JIMBOL	DESCRIPTION			·····	NO.	FRUM		LENGIA	Cu	Pb	Zn	Aa	As	Au
0	9'		Casing. No co	pre,										_		
			*													
9	32	s	Coarse, poorly	<u>_ sor</u>	ted. dirty sands	tone_mostly										
			heavily weat	here	d and iron stain	ed to 30'.										
			30-32' fair]	y pa	le grey sandston	e with 10-15%										
			lmm quartz c	raqm	ents.											··· ··································
						· · · · · · · · · · · · · · · · · · ·										
			20-27 core br	oken	and possible fa	ult @ 23'.				1		}				
		1								1						
321	102'	M	Mudstone, seri	citio	with alternati	ng bands of	A38	74'	77'	3'	19	43	68	-1	24	5
			mudstone and	l coai	rser poorly sort	ed sericitic	A39	871	901	21	20	22	60	1	20	
			sandstone.	Loca,	lly heavily sili	cified. 1-2%		¥7								
			disseminated	l pyr:	ite especially a	ssociated										
			with sericit	ic m	udstone bands.			· · · · ·								
·					•				ļ			<u> </u>				
		1	Heavily silici	ficat	10055' - 56'	65''- 68'6"			:	1		<u> </u>				
			73' - 74', 7	5'6"	- 76'.	<u> </u>										
									<u> </u>							
102'	122'	S	Dirty sericiti	c sai	ndstone with 20-	30% 1mm bluc-	 	· · ·					<u> </u>			
		1	orev quartz	ara:	ins in fine sand	v-matin with						<u> </u>				<u> </u>
- -			sericitic p	arti	ngs.	y moduli niteli		· ····					<u> </u>			<u> </u>
·	<u> </u>	1											÷			
·		1	2-3% pyrite bl	.ebs,	fine grained di	sseminated										
			throughout	but 1	with local bands	of less than										
			lmm thick t	vrite	e often along mi	nor sericitic						<u> </u>			<u> </u>	
	1		partings.	Also	1-2' bands of m	udstone with	A43	119	122'	3'	22	4.	38	_1	65	100
		1			· · · · · · · · · · · · · · · · · · ·											
							A		A							

!--

IMPERIAL METALS CORPORATION

PROPER	ry Cuni	ningha	IN Creek LOCATION	South Grid	CORRECT	DIP	-60			AGE	2 ()F	3		
HOLE N	0.	84-4	LAT.	3+02E. 1+42S	TRUE BRG		225*		_	LOGGE	D BY	S.1	?, Qui	<u>س</u>]
COMME	NCED	23/7	/84 DEP.		SURVEY A	r	157'	= 72*		DATE		25,	/7/84		
COMPLE	TED	24/7	/84 ELEV.	+1729m	% RECOVI	ERY				CORE_	STORE	<u> </u>	.mp		
OBJECT	IVE	Shas	ta Vein <u>c</u> ome siz	εN.Q.	LENGTH		157'			UNUSU	AL FE	AT.			
					1	SAMPLE	68014	10	LENCTH	AN.	ALYSIS				
FROM	10	STMBUL	DESCRIPTION			1.0.				Cu.	Pb	Zn	Ag	_As_	<u>Au</u>
			dolomitic rhombs]	14-116', 117'6"-1	19'	A43		122	3'	-22	4	38		65	_100
1221	1201		Na antina adaita ana				100				110		20		7020
122	120		<u>massive white qua</u> grained pyrite	<u>in large (3-4cm)</u>	<u>blebs</u> 1%	A40 A41	124	<u></u>	2'	4	3	1	0.2	286	1490
			arconomite a	$\frac{1}{1000}$		<u>م</u> 42	126	128	21	10	25	12	1 7	655	1260
				<u>100,2000 01211 18 90</u>								<u> </u>			
			126'6" 3" mudstone	e parting	•										
			128' heavily shea	red and deformed :	For 6"										
128'	149	S	Medium to coarse	grained sandstone	with 5-10%	A44	128	130'6"	2'6"	16	6	29	.2	79	15
			mudstone parti	ngs (sericitic) i	n 1-5cm bands	A45	130'6"	134'	3'6"	29	65	42	.7	135	225
			Locally heavil	y silicified and (<u>wartz veined</u>								 		
			Less than 1% pyri	te especially_alor	ng mudstone										
			bands. 137' -	mariposite rich m	udstane?										
			147' = 6'' very	coarse grains of	quartz										
			0.5 - 1cm and	mud partings defo	rmed around			<u> </u>			<u> </u>				
			them. Possibl	y in graded bed i	ndicating	-	ļ	 		1			<u> </u>	Ļ	↓
			right way up.			<u> </u>	ļ	 					<u> </u>	<u> </u>	
		_	· · · · · · · · · · · · · · · · · · ·				 			1	<u> </u>	<u> </u>		└───	
149'	1-7'	<u>M</u>	Talcose limey mud	stone possibly wi	th 10-15%			 					<u> </u>		
		_	bolomite rhomb	s. Brownish colo	ur. Quartz -	-	ļ 			<u> </u>	·		┼──	┼───	
 			carponate vein	eu ana zam vein a	LOSS CUTS								<u> </u>		
	[foliation @ 15	<u>2 - 154' clearly</u>	shows	-{	<u></u>	+				-{	┼──-	—	
┣			carbonate prec	ates quartz. Loca	TTA DesATTA			 							
L	l		L			<u> </u>	1			1		1		1.	L

IMPERIAL METALS CORPORATION

PROPERTY Cumpingham Creek LOGATION South Grid COMMENCED 23/7/84 DEP. Survey at 157* TODE NO. BASE NO. Survey at 157* TODE NO. BASE NO. Survey at 157* TODE NO. Survey at TODE NO. Survey at Survey at TODE NO. Survey at Survey at Survey at TODE NO. Survey at Sur																	
INDE NO. 0.9-4 LAT. 3H02E, 1H425 THUE BRG 225' LOGGED BY S.P. Quin COMMENCED 23/7/84 ELEV. H172gn % RECOVERY CORE STORED Camp OBJECTIVE Shasta Yein CORE STZE N.Q. LENGTH 157' UNUSUAL FEAT. INDEM Discrimentary Shasta Yein Core Struct Inform Analysis INDM Discrimentary Shasta Yein Core Struct Inform Inform INDM Discrimentary Discrimentary Shasta Yein Inform Analysis INDM Discrimentary Discrimentary Inform Inform Inform INDM Discrimentary Discrimentary Inform Inform Inform INDM Discrimentary Discrimentary Inform Inform Inform IND Discrimentary Inform Inform Inform Inform IND Discrimentary Inform Inform Inform Inform IND <td< th=""><th>PROPER</th><th>TY Çi</th><th>ming</th><th>han Creek</th><th>LOCATION</th><th>South Grid</th><th>CORRECT</th><th>DIP</th><th>-<u>60</u></th><th>•</th><th></th><th>PAGE 3</th><th><u>, (</u></th><th>)F</th><th>3</th><th></th><th></th></td<>	PROPER	TY Çi	ming	han Creek	LOCATION	South Grid	CORRECT	DIP	- <u>60</u>	•		PAGE 3	<u>, (</u>)F	3		
COMMENCE 23/7/84 DEF. SURVEY AT 157 DATE 257/74 COMMENSE 24/7/84 ELEW. 41729m. % RECOVERY CORE STORE Camp CORE STORE Camp OBJECTIVE Shasta Vein CORE STORE CAMP LENGTH 157 UNUBUAL FEAT. INOM 10 State field State field State field State field INOM 10 State field State field State field State field INOM 10 State field State field State field State field INOM 10 State field Inom State field State field INOM 10 State field Inom Inom State field INOM 10 State field Inom Inom Inom INOM 10 State field Inom Inom Inom Inom 10 Inom Inom Inom Inom Inom 10 Inom Inom Inom Inom Inom 10 Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom Inom In	HOLE	10.	84-4	.	LAT.	3+02E, 1+425	TRUE BRO	3	225	- 	1	LOGGEI) BY	S.E	2. Qu	in	
COMPLETED 24/7/34 ELEV. +1/2 dm % RECOVERY CORE STORED Cone Store Camp OBJECTIVE Shasta Vein CORE SIZE N.O. LENGTH 157" UNUSUAL FEAT.	COMME	NCED	23/7	7/84	DEP,		SURVEY A	T	157	$\cdot = 72^{\circ}$	1	DATE		25/	7/84		
OBJECTIVE Shasta Vein CORE SIZE N.Q. LENGTH 157' UNUSUAL FEAT. INAME BISCRIPTION SAMRE PROM PO IFNOR ANALYSIS SIMED BISCRIPTION SAMRE PROM PO IFNOR ANALYSIS SIMED SILICIFIED SAMRE PROM PO IFNOR ANALYSIS SILICIFIED Centry bands in post Centry ANALYSIS CENTRY SAMRE PROM PO IFNOR ANALYSIS CENTRY SIZE Centry bands in post Centry <	COMPLI	ETED	24/7	/84	ELEV,	<u>+1729m</u>	% RECOV	ERY				CORE	STORED	Carr	р		
FROM TO SWARD DESCRIPTION SAMPLE TO INVENT ANALYSIS Silicified - remains of cherty bands in post -	OBJECT	IVE	Shast	a_Vein	CORE SIZE	N.Q	LENGTH		157	1		UNUSU	AL FEA	т.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
HOM IO JOM Descarrion IO JOM IO JOM IO JOM IO JOM IO JOM JOM <thj< th=""><th></th><th></th><th>EV.</th><th></th><th></th><th></th><th></th><th>SAMPLE</th><th>600 H</th><th>70</th><th></th><th>AN/</th><th>LYSIS</th><th></th><th></th><th></th><th></th></thj<>			EV.					SAMPLE	600 H	70		AN/	LYSIS				
silicified - remains of cherty bands in post	FROM	10	SIMBOL	DESCRIPTION	• • • • • • • • •				r 700777	,, ,,	L'ENGIN						
dpositional?				silicified	- remains	of cherty bands ir	n post										
Image: Sector				dposit:	ional?												
Image: Sector of the sector			i														
Image: state stat					-												
Image: Sector						· · · · · · · · · · · · · · · · · · ·											
Image: Sector of the sector																	
Image: State of the state							•										
Image: Sector of the sector																	
								· · ·									
									•		}						
																	ĺ
Image: Section of the sec						•											
					-,												
							· } !										
			-			<u></u>											
	[_											1	1		
			-					-									
			1	1										<u> </u> .			+
				1							1	1		1	1		1

							<u>````</u>		<u> </u>	· · · · ·	· ·	;	:]	, t	<u>)</u> (
DR	ILL	RE	CORD			IMPE	RIA	LM	ET4	NLS	C	DRI	POF	RA ⁻	<u> [10]</u>	N
PROPE	RTY CI	unningh	am Creek		South Grid	CORRECT		-40			PAGE	1	<u>ÔF</u>	2		<u> </u>
HOLE	NO,	84–20		LAT.	3+44E 0+12S	TRUE BRG	i	250	5 0 '	- 201	LOGGE	DBY	<u>S.P</u>	<u>, Ού</u>	in	
СОММ	ENCED	31/7/8	4	DEP,		SURVEY A	T	101	= -50	30	DATE		./0/04			
COMPL	.ETED	31/7/8		ELEV.	+1745m	% RECOVE	ERY				CORE	STORE	<u>D_Car</u>	np		
OBJEC				CORE SIZE	NO	LENGTH		16 <u>1'</u>			UNUSU	JAL FE	AT.			
		<u> </u>			······································											
					<u></u>		SAMPLE				AN	ALYSIS	in %;	Ag,	Au ir	1 oz/t
FROM	τO	SYMBOL	DESCRIPTION				NO.	FROM	10	LENGTH	Cu	Pb	Zn	Ag	As	Au
0'	1'	S	Casing -	core recov	ered HQ size.	Massive						Ĺ				
			pale	grey sligh	tly sericitic	sandstone.										
												i				
	1611	M_C	Gradedub	dding of m	udstone - loca	llu brownich										
ļ *.		- <u></u>	<u>colo</u>	ur and fine	sandstone.	<u>, </u>										
┝────					- builde bollot						1			1		-
		-	Iocally	maggive eil	tetono to fina	condetono					1		1		-	
	+		@ 16	'-20' verv	similar to the	t in bole	†				1			<u> </u>	-	1
			<u> </u>	20 0 151 20							1	1	1			1
	1	1	#84~	TA 6 T2:-TA	•						. 		_			

30'-32'

5'

71

51

.01

01

.01

.01

14

.01

.01

58

.01

.02

03

.01_

.01 .001

กา ไ

.01

007

נמס_

51'

67'

76'

B38

B40_

B41

46'

66'

71'

.

Local silicification @ 28'-29', 33'-33'6", 41'6"-42'6"

up to 0.5mm.

in mudstone.

OV

QV

46'-51 mudstone with 2-3% pyrite in bands

66'-67' massive white quartz vein with

red-brown sulphide possibly weathered pyrite? Still has sulphide appearance.

pyrite in fine bands along foliation.

86'-87' quartz vein with less than 1% galena

71'-76' mudstone with 1-2% fine grained

90'6"-91'6" quartz carbonate vein NVM

sulphides: less than 1% galena and 4-5%

IMPERIAL METALS CORPORATION

PROPER	і ту (Cunning	nham Creek	LOCATION	South	Grid	CORRECT I	DIP	-40°		1	PAGE	.2 .	OF :	2		
HOLE	10.	84-	-20	LAT.	3+44F	0+125	TRUE BRG		250*		1	LOGGE	DBY	S.P	. Quii	ז	
COMME	NCED		7/84	DEP.			SURVEY AT	Γ	161'	= 50'30)'	DATE		1/8/8	34		
COMPLI	ETED	31/	7/84	ELEV.	+1745m	··	% RECOVE	RY				CORE	STORE	Cam	n		
OBJECT	IVE D	rill 60	5 Vein	CORE SIZE	N.Q.		LENGTH		161'			บทบรบ	AL FE	AT.			
			· ·		الالكاك بسبع علي جريبي			SAMPLE				AN,	ALYSIS	in %:	Aa.	Au in	oz/
FROM	10	SYMBOL	DESCRIPTION	·				NO.		.0	LENGIN	Cu	Pb	Zn	Ag	As	Au
			Possible	e minor she	ear zone	94' - 96' c	core				ļ	!		[:
			block	ry and mind	or quart	z veining.	-										
								B42	100'	101'	1'	.01	.09	,32	.02	01	.001
			101'-102	'6" quartz	veined	mudstone	with 50%	B43	101'	102 <u>'6</u> '	1.6"	.01	1.02	.77	.23	-01	.186
			quart	z vein and	l vein h	as 1-2% ea	ach of										الصريقية عليه
			pyrit	e and gale	ena.												
																	i
			118'-118	'6" quart:	z vein i	n brown se	ericite mud-	- B44	118'	118'6"	6"	3.07	.01	.12	.37	.01	.029
			stone	e with 2-39	ł pyrite	•		B45	118'6"	121'6'	123	2'	.01	.01	.01	.01	.001
								B46	121'6"	123'	1'6'	01	-01	<u></u>	01	01	
			118'6"-1	23' mudsto	one loca	lly silici	ified with		•								·
			quart	z ankerite	e veins	and minor	pyrite.						<u> </u>	ļ			
												ļ					
			146'-150)' quartz v	zeined m	udstonewi	ith_95%	B47	146'	150'	41	1_01	. 01	.01	.02	.01	001
			quart	z ankerite	e veins	<u>ending</u> in	possible										
			fault	zone with	n 1-2% d	lissem. py	rite.				ļ	ļ					l
									ļ						ļ		
			150'-154	4' mudstone	e with 2	-3% disser	m. pyrite	<u>B48</u>	150'	154'	4'	.01	.01	.01	.01	.01	<u>+</u> 01
			assoc	c. with min	nor sili	clined zon	nes.	.	 						1	ļ	
									ļ	ļ				_	<u> </u>		
		_							-				_				
									1	ļ		1			ļ	<u> </u>	
_																 	ļ
														_			
								-	ļ			┥		_		<u> </u>	
									<u> </u>					_		ļ	
							A				1		1],	

IMPERIAL METALS CORPORATION

والبين المسور والبي

PROPER	TY Cur	nninal	nam Creek	LOCATION	Central	l Grid	CORRECT	DIP	-50		F	AGE		OF			
HOLE N	10,	<u></u> {	34-22	LAT.	11+00W	0+96N	TRUE BRG		065		ι	OGGE	DBY	S.P.	Quin		
COMME	NCED		278/84	DEP.			SURVEY A	r				DATE		3/8/8	4		
COMPLE	ETED	2	2/8/84	ELEV.	+1505m		% RECOVE	RY			(CORE	STORE	<mark>> Ca</mark> m	<u>ıp</u>		
OBJECT	IVE Dri		P Anomaly	CORE SIZE	N.Q.		LENGTH		151'		1	UNUSU	AL FE	AT			
											·						
			· · ·					SAMPLE	FROM	τĊ	LENGTH	AN.	ALYSIS 1	n 8,	Ag, A	<u>u in</u>	<u>oz/t</u>
FROM	01	STMBUL	DESCRIPTION	·								Cu	PD	Zn	Ag	AS	Au
0	40'		Casing.	No core.											<u>(</u>		
40'	45'	M	Mudstone	- fairly d	lark qrey	sericiti	<u>c mudstone</u>								+		
			str	ongly weath	ierea. Li	cally ta	ucose.							<u> </u>		 i	<u> </u>
	<u></u>		Rojele -	ande maar te	- datale more	an chlor	ita cohict	<u>├</u>			+		ļ		+		
45	63.		Farrty d	ark grey to	Juark gre	sen chior	The schise	<u>/</u>									<u> </u>
				ally quartz	veined a	and has m 47! and 6	<u>inor</u>		<u> </u>						+		<u>†</u>
		 	1-2	& dissemina	ated pyrit	te in ver	v dark					<u> </u>			<u>+</u>		
					ione		1			[
			CIII	OLICIC Sect	<u> </u>								1	1			<u> </u>
		}	Quartz c	arbonte ve	in 48'6"-4	49'											
								C1	55'	56'6"	1'6"	.01	.01	.01	.02	.01	.001
			Quartz v	rein 56'6-60)' with m	inor carb	onate and	02	56'6"	60'	316"	.01	_01	.01	02	01	300-
			NV	M except le	ess than 1	1% pyrite	e at	C3	60'	61'6"	1'6"	.01	.01	.01	.04	.01	.001
		1	co	ntact with	mudstone	•	1			; i						<u> </u>	<u></u>
																<u></u>	
63'		S	Medium t	o pale gre	v_sandsto	ne, local	lly_silici-	-	 			.				·-	
			fi	ed @ 65 6"	-66' 25% (quartz ve	ein chlorit	<u>e</u>				.	_			<u> </u>	
			se	ections 70'	<u>-72' - mi</u>	nor_mudst	tone_bands.	- <u> </u>									-
			ar	nd has 1-2%	pyrite a	ssociated	1									<u> </u>	
												┥──		┣━━		+	
76'	106'6"	Cs	Dark gre	en chlorit	<u>e schist</u>	<u>with 1-2</u>	<u>pyrite</u>										
	<u> </u>				тосатту	nave 1-4	pare drey						-				
			Se se	ectionsof m	<u>ore seric</u> mo/condo	itic mude	<u>stone and .</u> Ac								-	+	
				HOL SIITSU	une/sands	cone band		-								-	
1	i	1	1					1				<u> </u>		·	_ <u></u>		

.

IMPERIAL METALS CORPORATION

Ţ

}- `

}_

PROPER	тү (lunningha	m CreekLOCATIO	N Central Grid	CORRECT		<u>-50</u>		F	AGE	2	OF 3	3			
HOLE N	0.	84	1-22 LAT.	 11+00⊌ 0+96N	TRUE BAG	i	065		l	OGGE	D BY 2	<u>.p. (</u>	<u>luin</u>			
COMMÉI	NCED	2/	8/84 DEP.		Т	DATE 3/8/84					1					
COMPLE	TED	2/	/8/84 ELEV.	+1505m	% RECOVE	ERY			CORE STORED Camp							
OBJECT	IVE	Drill TI	Anomaly CORE S		LENGTH		151	1		มพบรม	AL FE	AT.	••••			
		<u>غيف به به به بن بن بن .</u>														
						SAMPLE				AN/	ALYSIS -	n %,	Aq, A	lu in	oz/	
FROM	10	SYMBOL	DESCRIPTION			NO.	FROM		ENGTH	Cu	Pb	Zn	Ag	As	Au	
			84'-85' guartz	vein minor calcite	and 2-3%	C4	82'6"	84'	1'6"	.01	.01	.01	.01	_01	-00	
			pyrite	hroughout.		C5	84'	85'	1'	.01	.01	.01	.03	.01	.00	
			1			<u>C6</u>	85 '	86'	1'	.01	-01	.01	-03	_01_	0	
			87'-88'2" miar	z calcite vein with	1-28											
			pyrite I	nostly @ contact wit	h mudstone											
			50% each	n calcite and quartz	•							{				
			· · · · · · · · · · · · · · · · · · ·												1	
			90'-90'6" calc:	ite - quartz vein wi	th about											
			75% calo	cite												
									_				<u> </u>		,	
			90'6"-95' chlo	rite schist banded w	1ith 30-40%							<u> </u>	· · ·			
			siltsto	ne stringers appear	to be	<u> </u>										
			bandinad	red along foliation	into lenses.									 	ļ	
			bands u	o to l.cm.											 	
				•												
			97'-101' quart	z veining about 50%	of rock.						<u> </u>					
										}					<u> </u>	
			102'-105' light	ter grev mudstone wi	th 30-40%											
			dark ch	loritic bands.												
} (<u> </u>	
	i		105' quartz ca	lcite vein approx. 2	cm wide with	n									<u> </u>	
			galena	along contact with r	nudstone.										1	
	·															
106'6"			Wormy limeston	e with minor chlorit	ic mudstone											
]			band @	111'-112' with 4-5%	pyrite-	C7	110'6"	111'6"	1'	.01	1.01	.01	.01	.01	.01	
			coarse	and euhedral.		C8	111'6"	113'	1'6"	.01	1.25	1.24	2.14	0.51	1.9	
							34.0	34.4								

IMPERIAL METALS CORPORATION

PROPE	TY C	unninaha	m Creek	LOCATION	Central	Grid	CORRECT	DIP				PAGE	3	0F	_3			
HOLE	NO.	-84	-22	LAT.	11+00W	0+96N	TRUE BRG	ì	065			LOGGE	D BY	S.P	. Qui	<u>n</u>		
COMM	INCED	2/8	/84	DEP.			SURVEY A	т				DATE 3/8/84						
ÇOMPL	ETED	2/8	/84	ELEV.	ELEV. +1505m % RECOV			ERY				CORE STORED Camp						
OBJEC	TIVE	Drill I	P Anomaly	CORE SIZE	N.Q		LENGTH		151'	UNUSUAL FEAT.								
			······································					SAMPLE				ANALYSISIN 8, Ag, Au in oz/1						
FRQM	TO	SYMBOL	DESCRIPTION					NO.	FROM	10	LENGIH	Cu	Ph	.Zn	Ъά	As_	Au	
			112'6"-1	13' quartz	vein 609	tovrite "	saelsn %	C9	113'	116'6"	3'6"	.01	.01	.01	.01	.01	.00	
		Ov	116'6"-1	22' heavily	v quartz	veined sec	tion	C10	116'6"	117'6"	1'	.01	5.96	.01	4.71	.03	.10	
			thou	gh recovery	7 poor 11	17'6"-120'	possible	C11	117'6"	120'	216"	01	2.04	.01	1.53	.01	.02	
			faul	t zone. Ve	ein mater	cial heavil	ly mineral	C12	120'	122'	2'	.01	6.55	1.71	7.45	.04	14.	
			ized	with pyrit	e (up to	o <u>30%</u> local	lly) and	C13	122'	123'	11	.01	.08	.01	.08	.01	.00	
<u> </u>			gale	na up to 10)% local1	ly.				37h	1							
							•	C14	140'6"	141'6"	(l'.	-01	01	.01	-03		_00	
			141'6"-1	45' quartz	carbonte	e veined se	ection	C15_	141'6"	145'	3'6"	.01	.01	.01	.01	.01	.00:	
<u></u>			(70-	80%) vein)	Calcit	te comprise	°S	C16	145'	146'	1'	.01	.01	.01	.01	.01	.00	
			30-4	0% of vein	Minor	pyrite 1-2	2% of vein											
									•									
			N.B. L	imestone is	s locally	<u>v pyritize</u>	<u>less tha</u>	<u>h</u>	 						<u> </u>			
			1% w	ith coarse	(12mm)	euhedral p	oyrite.					[<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	
																<u> </u>		
												<u> </u>				<u> </u>		
	1															<u> </u>		
							·	<u> </u>	 	<u> </u>		<u> </u>		1	<u> </u>			
												<u> </u>						
									 					_				
								-	ļ						<u> </u>	<u> </u>		
												<u> </u>			<u></u>	<u> </u>		
															ļ	<u> </u>	-	
			 					_						<u> </u>	ļ	<u> </u>		
	<u>-</u>						•	_	ļ						1			
							····							_	· .			

APPENDIX 3

-

•

.

.

.

•

•

.

.

•

.

.

•

•

.

•

.

ANALYTICAL RESULTS

TITLE 14-08-00 13:17:14 V00-01543.0 M. TINDALL 0	9/08/00		
CLIENT CATHEDRAL GOLD CORPORATION			
PROJECT CUNNINGHAM CRK #SAMPLES: 49			
SPECIAL VALUES			
IS Insufficient Sample			
-9 No Value Recorded			
Values above the upper limit are shown as +uplimt			
Values below the lower limit are shown as -lolmt (ie not detected))		
DETERMINATIONS			
ELNAME METHO ECO UNI #SAM LOLMT UPLIMT COMMENT	S		
01 Au30 FA-30 EH3 PPB 49 5 10000 Results Reported			
02 Ag ICP EA1 PPM 49 0.2 200.0 Results Reported			
03 Cu ICP EA1 PPM 49 1 10000 Results Reported			
04 Pb ICP EA1 PPM 49 2 10000 Results Reported			
05 Zn ICP EA1 PPM 49 1 10000 Results Reported			
06 Mo ICP EA1 PPM 49 1 10000 Results Reported			
07 Ni ICP EA1 PPM 49 1 20000 Results Reported			
08 Co ICP EA1 PPM 49 1 20000 Results Reported			
09 Cd ICP EA1 PPM 49 0.2 2000.0 Results Reported			
10 Bi ICP EA1 PPM 49 5 2000 Results Reported			
11 As ICP EA1 PPM 49 5 10000 Results Reported			
12 Sb ICP EA1 PPM 49 5 2000 Results Reported			
13 Hg CV AA EA1 PPM 49 0.010 50.000 Results Reported			
14 Fe ICP EA1 PCT 49 0.01 10.00 Results Reported			
15 Mn ICP EA1 PPM 49 1 20000 Results Reported			
16 Te ICP EA1 PPM 49 10 2000 Results Reported			
17 Ba ICP EA1 PPM 49 1 2000 Results Reported			
18 Cr ICP EA1 PPM 49 1 20000 Results Reported			
19 V ICP EA1 PPM 49 1 20000 Results Reported			
20 Sn ICP EA1 PPM 49 20 2000 Results Reported			
21 W ICP EA1 PPM 49 20 2000 Results Reported			
22 La ICP EA1 PPM 49 1 2000 Results Reported			
23 AI ICP EA1 PCT 49 0.01 10.00 Results Reported			
24 Mg ICP EA1 PCT 49 0.01 10.00 Results Reported			
25 Ca ICP EA1 PCT 49 0.01 10.00 Results Reported	-		
26 Na ICP EA1 PCT 49 0.01 10.00 Results Reported			
27 K ICP EA1 PCT 49 0.01 10.00 Results Reported			
28 Sr ICP EA1 PPM 49 1 2000 Results Reported			
29 Y ICP EA1 PPM 49 1 2000 Results Reported			
30 Ga ICP EA1 PPM 49 2 10000 Results Reported			
31 Li ICP EA1 PPM 49 1 20000 Results Reported			
32 Nb ICP EA1 PPM 49 1 10000 Results Reported			
33 Sc ICP EA1 PPM 49 5 2000 Results Reported			
34 Ta ICP EA1 PPM 49 10 1000 Results Reported			
35 Ti ICP EA1 PCT 49 0.010 5.000 Results Reported			
36 Zr ICP EA1 PPM 49 1 5000 Results Reported			

								[
Sample ID	Au30	Âg	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi
	ppb	ppm	ppm	ppm	ppm	ppm	ppm	mag	ppm	ppm
27101	-5	-0.2	36	10	62	2	37	17	0.5	-5
27102	-5	0.2	67	12	84	7	52	20	0.6	-5
27103	-5	-0.2	23	4	74	2	40	13	0.3	-5
27104	-5	-0.2	23	7	50	2	40	12	0.2	-5
27105	-5	-0.2	50	9	47	7	43	16	0.3	-5
27106	8	-0.2	39	4	19	7	39	10	0.2	-5
27107	43	-0.2	30	77	33	-1	5	7	0.3	-5
27108	6	-0.2	52	22	42	6	47	16	0.3	-5
27109	7	0.3	45	19	47	8	45	18	0.3	-5
27110	1544	-0.2	9	3	26	10	19	4	-0.2	-5
27111	-5	0.2	22	2	32	2	32	14	0.3	-5
27112	21	6.1	21	4567	3557	-1	12	15	37.8	-5
27113	317	0.8	70	114	92	2	15	33	0.9	-5
27114	39	0.3	97	92	202	-1	14	28	2.1	-5
27115	50	0.3	37	14	48	-1	13	21	0.4	-5
27116	31	0.3		3	49	2	19	30	0.1	-5
27117	19	0.5	32	27	43	-1	15	19	0.2	-5
27118	10	-0.2	2		31	3	14	5	0.2	-5
27119	22	-0.2	22	8	51	-1	31	12	-02	
27120		0.2		14		2	21	8		
27121	-5	-0.2	5	7		2	21	7	0.4	
27122	6	_0.2	14	6	<u></u>		50	16	0.4	5
27123		-0.2					30	10	0.0	
27124	70	02				````	22	7		-5
27124		2	27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			44	14	0.2	-5
27126	23	-0.2	13		45		46	14	0.2	
27127	-5	_0.2	35	7	73	2	47	16	0.2	
27128	-5	-0,2	24	20			54	16	_0.7	-5
27120	-5	2	10	23	30		37	13	-0.2	-5
27130	-5	-0.2	15	2	55	2	45	14	-0.2	-5
27131	-5	-0.2		<u>۲-</u>	74		52	21	-0.2	-5
27132	0	0.5	33	205		_1	33	13	-0.2	-5
27132	5	0.0	30		73	-1	33	15	0.2	
27134	-5	-0.2	13	8		-1	34	13	-0.2	-5
27135	-5	-0.2		8	82		62	22	0.2	
27136	6	_0.2	o	5	74	-1	80	22	Ω.2	-5
27137		_0.2		7	5A		42	17		-5
27138	-5	_0.2	22		70		42	15	-0.2	-5
27130	5	0.2	17	F		-1	42	14		-5
27140	-5	-0.2	12		56	-1			-0.2	
27140	-5		10		56	<u> </u>	25	14	-0.2	
27141	-5	-0.2	16	-2	30		45	12	0.3	-0
27142	-0 E	-0.2		3	0 0 407	-1	40	12	-0.2	-0
27143	-0	0.2	<u> </u>	4	107	2	0Z		-0.2	
2/ 144	-0	-0.2	<u>- చర</u> ⊸∡	14	() 	-1	20	19	-0.2	-5
27145	10	-0.2	/1	44		-1	25	19	0.2	-5
2/146)	4/	-0.2	100	49	195	-1	16	38	0.4	-5
	-5	-0.2	21	15	50	-1	38	13	-0.2	-5
2/148		-0.2	24	8	52		45	19	0.2	-5
27149	-5	-0.2	33	14	71	2	51	18	0.2	-5

÷

.

Sample ID	Au30	Aa	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi
· · · ·	ppb	ppm	ppm	ppm	maa	ppm	DOM	ppm	nom	DDm
27101	-5	-0.2	36	10	62	2	37	17	0.5	-5
27102	-5	0.2	67	12	84	7	52	20	0.6	
27103	-5	-0.2	23	4	74	2	40	13	0.3	
27104	-5	-0.2	23	7	50	2	40	12	0.2	-5
27105	-5	-0.2	50	9	47		43	16	0.3	-5
27106	8	-0.2	39	4	19	7	39	10	0.2	
27107	43	-0.2	30	77	33	-1	5	7	0.3	-5
27108	6	-0.2	52	22	42	- 6	47	16	0.3	-5
27109	7	0.3	45	19	47	8	45	18	0.3	
27110	1544	-0.2	9	3	26	10	19	4	-0.2	-5
27111	-5	0.2	22	2	32	2	32	14	0.3	-5
27112	21	6.1	21	4567	3557		12	15	37.8	-5
27113	317	0.8	70	114	92	2	15	33	0.9	-5
27114	39	0.3	97	92	202		14	28	2 1	
27115	50	0.3	37	14	48		13	21	0.4	-5
27116	31	0.3	-1	3	49		10	30	0.4	
27117	19	0.5	32	27			15	10	0.2	۷- اه_
27118	10	-0.2	2	8			14	5	0.3	
27119	22	_0.2		8	51			12	-0.2	5
27120	-5	0.2		14	38		21	8	0.2	
27121	-5	-0.2	5	7		- 2	21	7	-0.2	-5
27122	6	-0.2	14	6	90		50	16	0.4	-5
27122	50	-0.2					20	10	0.0	
27124	70	-0.2							0.3	
27125	6	-0.2	27					14	-0.2	-0
27126	23	-0.2	12	ں۔ ام	45				0.2	 5
27120		-0.2	25	7			40	14		
27128	-5	-0.2		20	13		47	10	0.4	 -
27120	-5	-0.2	10	23		-1	27	10	-0.2	
27120		-0.2	15	2				13	-0.2	
27131	-5	-0.2	47	-2		<u>-</u>	40	24	-0.2	
27131	-0	-0.2	4/	205			52		-0.2	
27132	9	0.0		202	30			13		- <u>-</u>
27133	 0	-0.2	10	<u> </u>		-1		10	-0.2	-5
27134	0 E	-0.2	13	0	30	- 3		11	0.2	-5
27130	-0 	-0.2	-1			-1			0.2	-5
27130		-0.2	9		/4		00	21	0.2	-5
2/13/		-0.2				- 3	42	1/	-0.2	-5
2/138	-5	-0.2	23	7	79	;	42	15	-0.2	-5
27139	-5	-0.2	1/	5	59		42	14	-0.2	-5
2/140	-5	-0.2	13	3	56	2	33	11	-0.2	5
2/141	-5	-0.2	12	-2	56	-1	35	14	0.3	-5
2/142	-5	-0.2	16	3	45	-1	45	12	-0.2	-5
27143	-5	0.2	37	4	107	2	62	22	-0.2	-5
27144	-5	0.2	38	14	75	-1	55	19	-0.2	-5
27145	16	-0.2	71	44	77	-1	25	19	0.2	-5
27146	47	0.2	100	49	195	-1	16	38	0.4	-5
27147	-5	-0.2	21	15	50	-1	38	13	-0.2	-5
27148	17	-0.2	24	8	52	-1	45	19	0.2	-5
27149	-5	-0.2	33	14	71	2	51	18	-0.2	-5

F				-			· · · · · ·			
Sample ID	As	Sb	Ha	Fe	 Mn	Те	Ba	Čr	v	Sn
	ppm	ppm	ppm	%	ppm	ppm	maa	ppm	mag	ppm
27101	19	-5	-0.01	5.28	1663	-10	46	62	13	-20
27102	18	-5	-0.01	4.52	788	-10	77	71	7	-20
27103	15	-5	-0.01	3.25	463	-10	33	39	4	-20
27104	13	-5	-0.01	3.49	706	-10	34	42	5	-20
27105	10	-5	-0.01	4.31	703	-10	45	18	4	-20
27106	16	-5	-0.01	3.64	2409	-10	39	27	5	-20
27107	15	-5	-0.01	5.38	4572	-10	13	70	2	-20
27108	8	-5	-0.01	4.72	1817	-10	36	35	4	-20
27109	9	-5	-0.01	4.22	812	-10	41	37	5	-20
27110	5	-5	-0.01	4.65	3058	-10	52	67	8	-20
27111	15	-5	-0.01	4.5	1383	-10	42	35	7	-20
27112	26	-5	0.052	9.59	5094	-10	36	18	6	-20
27113	63	-5	-0.01	8.66	2639	-10	37	24	11	-20
27114	47	-5	-0.01	10	4340	-10	38	9	13	-20
27115	24	-5	-0.01	7.35	2002	-10	49	12	11	-20
27116	43	-5	-0.01	6.92	1290	-10	101	139	19	-20
27117	30	-5	-0.01	5.9	1823	-10	50	14		-20
27118	-5	-5	-0.01	1.66	550	-10	20	81	5	-20
27119	10	-5	-0.01	3.47	832	-10	- 24	40	4	-20
27120	15	-5	-0.01	2.38	801	-10	21	51		-20
27121	21	-5	-0.01	2.69	843	-10	27	55	5	-20
27122	56	-5	-0.01	4.65	862	-10	40	29		-20
27123	38	-5	-0.01	5.38	1849	-10	32	42	6	-20
27124	27	-5	-0.01	4.11	1343	-10	46	69	8	-20
27125	18	-5	-0.01	4.12	741	-10	46	33	- 5	-20
27126	27	-5	-0.01	3.95	1041	-10	42	43	4	-20
27127	11	-5	-0.01	4.51	1284	-10	58	52	5	-20
27128	12	-5	-0.01	4.58	891	-10	45	43	4	-20
27129	17	-5	-0.01	3.71	1068	-10	31	34	3	-20
27130	14	-5	-0.01	4.09	1300	-10		53	6	-20
27131	24	-5	-0.01	4.49	1177	-10	42	26		-20
27132	20	-5	-0.01	4.27	1892	-10	45		3	-20
27133	18	-5	-0.01	5.08	1570	-10	- 36	46	3	-20
27134	16	-5	-0.01	3.34	952	-10	41	88	5	-20
27135	31	-5	-0.01	4.81	2095	-10	49	27	4	-20
27136	15	-5	-0.01	4.6	1849	-10	52	26	4	-20
27137	20	-5	-0.01	4.4	953	-10	41	68	5	-20
27138	14	-5	-0.01	4.58	628	-10	48	40	4	-20
27139	11	-5	-0.01	4.11	908	-10	40	60		-20
27140	9	-5	-0.01	3.24	534	-10	36	87	13	-20
27141	32	-5	-0.01	3.41	876	-10	32	52	5	-20
27142	14	-51	-0.01	3.81	649	-10	38	63	12	-20
27143	17	-5	-0.01	5.48	588	-10	45	46	6	-20
27144	17	-5	-0.01	5.24	721	-10	99	49		-20
27145	18	-5	-0.01	5.79	1195	-10	51	45	27	-20
27146	29	-5	-0.01	9.65	1532	-10	78	- 24	79	-20
27147	21	-5	-0.01	3.77	869	-10	31	38	<u> </u>	-20
27148	54	-5	-0.01	47	682	-10	32	36	4	-20
27149	51	-5	-0.01	4.58	570	-10	37	42	5	-20

										<u> </u>	
Sample ID	W	La	Al	Mg	<u> </u>	Na	<u> </u>	Sr .	1	0a nom	
	ppm	ppm	%	%	<u>%</u>	%	<u>%</u>	ppm	<u>ppm</u>	phu 2	<u>. phu</u>
27101	-20	8	0.5	2.11	5.01	-0.01	0.15	62		-2	
27102	-20	8	0.55	1.28	2.33	0.01	0.21	22	<u> </u>	-2	
27103	-20	10	0.33	0.94	1.28	-0.01	0.14	55		-2	
27104	-20	10	0.34	1.23	1.91	-0.01	0.14	00	<u> </u>	-2	
27105	-20	8	0.33	1.4/	2.23	-0.01	0.14	57		-2	
27106	-20	10	0.34	1.09	3.45	-0.01	0.15			-2	<u> </u>
27107	-20		0.05	1.61	5.82	-0.01	0.02	70		-2	
27108	-20	6	0.3	1.46	3.41	-0.01	0.13	70 EA		-2	
27109	-20	7	0.3	1.29	1.97	-0.01	0.13	106	G	.2	
27110	-20	4	0.23	1.79	5.86	-0.01	0.09	100		-2	
27111	-20	6	0.39	1.81	5.17	-0.01	0.16	472			
27112	471	3	0.3	2.65	10	-0.01	0.11	173		-2	
27113	-20	1	0.36	2.12	7.89	-0.01	0.13	001		-2	
27114	887	2	0.37	2.85	10	-0.01	0.13	202	1	-2	
27115	-20	3	0.39	2.13	6.18	-0.01	0.15	120	5		2
27116	-20	9	0.75	2.27	5.67	0.02	0.26	122	5		
27117	-20	4	0.38	2.29	7.29	-0.01	0,14	163	0	-2	
27118	-20	9	0.33	0.63	1.65	-0.01	0.07	37	2	-2	4
27119	-20	9	0.28	1.38	3.65	-0.01	0.11	83	3		
27120	-20	11	0.27	1.25	3.5	-0.01	0.1	88	3	-2	
27121	-20	11	0.29	1.34	3.53	-0.01	0.12	85	3	-2	
27122	-20	21	0.41	1.69	2.49	-0.01	0.19	61	3	-2	2
27123	-20	12	0.38	2.04	3.92	-0.01	0.15	108	6	-2	1
27124	-20	15	0.46	1.38	2.44	-0.01	0.2	75	3	-2	2
27125	-20	13	0.45	1.31	2.02	-0.01	0.18	57	3	-2	2
27126	-20	11	0.35	1.17	1.58	-0.01	0.16	47	3	-2	1
27127	-20	13	0.42	1.21	0.75	-0.01	0.18	28	3	-2	2
27128	-20	12	0.4	1.21	0.82	-0.01	0.16	25	2	-2	2
27129	-20	12	0.29	1.09	1.34	-0.01	0.12	36	2	-2	1
27130	-20	15	0.4	1.13	0.92	0.01	0.17	28	2	-2	2
27131	-20	18	0.42	1.22	0.9	-0.01	0.16	26	3	-2	2
27132	-20	19	0.36	1.19	1.16	-0.01	0.15	39	2	-2	2
27133	-20	17	0.35	1.39	1.08	-0.01	0.14	29	2	-2	3
27134	-20	15	0.4	0.81	0.75	-0.01	0.17	21	2	-2	2
27135	-20	17	0.4	1.85	2.43	-0.01	0.17	65	3	-2	2
27136	-20	16	0.4	1.61	2.07	0.02	0.15	50	3	-2	2
27137	-20	15	0.38	1.23	0.76	0.02	0.13	24	2	-2	3
27138	-20	20	0.48	1.24	0.45	0.02	0.15	16	2	-2	4
27139	-20	12	0.71	1.29	1.34	0.02	0.1	37	2	-2	11
27140	-20	16	1.08	1	0.75	0.01	0.09	20	1	-2	19
27141	-20	11	0.39	1.06	1.3	0.01	0.1	37	2	-2	5
27142	-20	12	1.14	1.13	0.95	0.01	0.11	27	2	-2	17
27143	-20	10	0.42	1.16	2.2	-0.01	0.15	54	2	-2	3
27144	-20		0.52	1.23	2.57	0.01	0.15	66	3	-2	5
27145	_20	i e	1 16	1 35	3.06	-0.01	0.1	100	3	-2	14
27140			2 66	2.05	4.14	-0.01	0.12	144	5	i -2	31
27140		13	0 37	1.00	1.56	-0.01	0.15	51	2	-2	2
27147	-20	16	0.34	1 34	1.05	-0.01	0.15	36	3	-2	1
27140	.20		0.04	1 22	0.78	-0.01	0.19	25	1 2	-2	2
1 47	n -∠∪		ri 0,40	1		1	1		1	5	•

			[1	· · · · · ·	·	T	T
Sample ID		<u> </u>					<u> </u>	ļ	<u> </u>	
		00	0000	0000			<u> </u>	}	<u> </u>	↓
27101		-5		0_01	ppm a	70		<u> </u>		
27102			-10	-0.01		0.27		<u> </u>	<u> </u>	
27103			-10	-0.01		0.00		{ -	<u> </u>	
27104	<u>-</u>			-0.01		0.3		<u> </u>		
27105			-10	-0.01	5	0.39		<u> </u>	<u> </u> -	
27106		-5	-10	-0.01		0.00		<u> </u>		↓
27107		-5		-0.01	1	0.0		<u> </u>		
27108		-5	-10	-0.01	3	0.82		<u> </u>		╀────┥
27109	-1	-5	-10	-0.01		0.02		<u> </u>		
27110		-5	-10	-0.01	2	0.73		<u> </u>		├
27111		-5	-10	-0.01	2	0.46				
27112			-10	-0.01		0.40				├ ────┤
27113		5	-10	-0.01		1 38			<u> </u>	┟╼═╸╴┨
27114		5	-10	-0.01		0.27				↓
27115			-10	-0.01	1	0.55				<u> </u>
27116		6			1	0.00				
27117		5	-10	-0.01		0.03				
27118			-10			0.22				├───┤
27119			10	-0.01		0.02		<u> </u>		
27120		5	-10	-0.01		0.05	··			<u>├</u> ────┤
27121		-5	-10	-0.01		0.00				┝╍╾────┤
27122				-0.01	<u>_</u>	0.00				
27123		-5		-0.01		0.00				├
27124		-5	-10	-0.01		0.17				
27125	-1	-5	-10	-0.01	6	0.14				┟┩
27126	-1	-5	-10	-0.01		0.00				
27127	-1		-10	-0.01	<u>-</u> 6	0.25				┢━─────┤
27128	-1	-5	-10	-0.01		0.40				┟╌━─╴┤
27129	-1	-5	-10	-0.01		0.00				
27130	-1	-5	-10	-0.01		0.09				
27131		-5	-10	-0.01	<u>-</u>	0.00				┍━━━━┫
27132	-1	-5	-10	-0.01	ž	0.09				l
27133	-1	-5	-10	-0.01		0.00			———— í	<u>├</u>
27134	-1	-5	-10	-0.01	3	0.17				
27135	-1	-5	-10	-0.01	3	0.11				
27136	-1	-5	-10	-0.01	<u> </u>	0.2				I
27137	-1	-5	-10	-0.01		0.12				
27138	-1	5	-10	-0.01		0.05				{
27139			-10	-0.01	<u> </u>	0.07		·		
27140	-1	-5	-10	-0.01	└ <u>,</u>	0.03				
27141	-1	-5	-10	-0.01		0 13				
27142	-1	-5	-10	-0.01		0.14				
27143	-1	-5	-10	-0.01		0.31				{
27144	-1		-10	-0.01	3	0.29				{
27145		-5	-10	-0.01		0.34				Į
27146	4	6	-10	-0.01	<u>_</u>	<u></u>				
27147		-5	-10	-0.01		0 17				
27148			-10	-0.01		0 22				
27149	-1		-10	-0.01		0.26				
	· · · ·		· •			~~~~~		1		