

1999 DIAMOND DRILL PROGRAM

REPORT

including the

Len 3, 4, 6, 7, 8 and Ful 1, 2 Mineral Tenures

Omineca Mining Division

British Columbia

NTS 093L/09, 16

Latitude: 54°44'

Longitude: 126°19'

-Prepared for-Hudson Bay Exploration and Development Co. Ltd. 800-700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8

-Prepared by-Jason K. Dunning, M.Sc., FGAC Hudson Bay Exploration and Development Co. Ltd. 800-700 West Pender Street Vancouver, British C**APEDICO MACAL SURVEY BRANCH** ASSESSMENT PEPORT

-Date of Report-

Table of Contents

Section

.0 Introduction
.1 Physiographic Location, Access, Vegetation and Climate1
.2 Mineral Tenures
.3 Owners, Operators, and Contractors
.4 Regional History
.5 Property History
.5.1 1995-1996 Reconnaissance Program
.5.2 Ground Geonhysical Survey
.5.3 Len L 2. 3. 4. 5. 6. and 7 Mineral Tenures
.5.4 Len 8, 9, 10, and 14 Mineral Tenures
.5.5 Full 1 and 2 Mineral Tenures
.5.6 Kut 1, 2, 3, 4, and 5 Mineral Tenures
.5.7 Results of HBED Exploration Activities
.6 Summary of Work Done
.7 Claims Worked On
.0 Detailed Technical Data
.) Objectives of the 1999 Diamond Drill Program
.2 Tectonic Framework
3 Geological Framework
3.1 Regional Geology
.3.2 Property Geology
3.3 Sulphide Mineralization
3.4 Hydrothermal Alteration
.4 1999 Whole-Rock and Trace Element Geochemistry
.0 Discussion
.1 Proposed Genetic Models
1.1 High Sulphidation VMS-Epithermal Deposits: 'The Eskay Creek Mine'
1.2 'The Equity Silver Mine Genetic Model'
2 Volcanogenic-hosted Massive Sulphide Deposits and Other Massive Sulphide Deposits
of theSmithers Babine Lake Area, BC
.2.1 Maior Massive Sulphide Mineralization
.2.2 Equity Silver Mine
2.3 Fireweed VMS-Epithermal Developed Prospect
3 Eskay Creek Precious Metal-rich VMS Mine
.4 Major Epithermal Mineralization
.4.1 Dome Mountain Epithermal Vein Deposits
.4.2 Duthic Epithermal Vein Deposit
.4.3 Cronin Epithermal Vein Deposit
.4.4 New Moon Epithermal Deposit
.0 Conclusions
.0 Recommendations
.0 Concluding Statement
.0 Bibliography
.0 Geologist Certification
ppendices A through C

A:

- Exploration Costs Diamond Drill Core Logs and Summary Statements B:
- Lithogeochemistry C:

1.0 Introduction

Hudson Bay Exploration and Development Co. Ltd. (herein referred to as HBED), 800-700 West Pender Street, Vancouver, BC, V6C 1G8, Canada, conducted a diamond drill program in the Babine Lake area near Granisle and Topley Landing, BC during August 1999. At the request of Ed Yarrow, President, HBED, and Gerry Bidwell, Senior Geologist, HBED, Jason Dunning, Project Geologist, HBED, undertook a review of the historical data in advance of working on the Babine Lake area. This preliminary research included an examination of assessment reports previously filed in the area, as well as Minfile occurrences in proximity to the diamond drill targets. The following report pertains to all of the exploration activities conducted between July 21st, 1999 and September 10th, 1999 and is submitted in fulfillment of the Exploration and Development Assessment Work Requirements, as outlined in the BC Mineral Act Regulations.

1.1 Physiographic Location, Access, Vegetation, and Climate

The FUL and LEN mineral tenures are located in Central British Columbia (Figure 1) with main access to the HBED mineral tenures in the Babine Lake area made via Highway 16 from the towns of Burns Lake, Houston, or Smithers, BC. In the Smithers area, the Smithers Landing-Granisle Connector leaves Highway 16 6km south of Smithers and requires traveling along 78km of seal-packed, gravely road surface to reach Granisle, BC. From the Houston area, the Granisle Highway leaves Highway 16 at Topley, BC, which is approximately 29km south of Houston, and requires traveling along 48km of paved road surface to reach Granisle, BC.

Direct access to the Len 3 and 4 mineral tenures is made off of the main Granisle Highway via the Paul Lake Recreational Road. Once on the Paul Lake Recreational Road, traffic must cross the North Main Haulage FSR and travel approximately 1.5km to an old spur road that was used originally to access the Lennac Lake area and turn left. This spur road accesses the Len 3 and 4 mineral tenures, as well as Len 5, 11, 12, and 13 mineral tenures. Access to Len 6, 7, 8, and Ful 2 mineral tenures can be made via the Granisle Highway. Len 6 is directly off the highway approximately 1.4km south of Tachek Creek. The Len 7 mineral tenure can now be accessed via a new main haulage FSR off the Granisle Highway at Tachek Creek. Len 8 is located near the BC Hydro powerline near Timber Lake, but direct access can be made off of the Granisle Highway. To get to the Ful 2 mineral tenure, traffic must take an unmarked FSR approximately 6km south of Granisle and then travel along approximately 3.5km of rough FSR. Alternatively, helicopter access can be made using either Northern Mountain or Westland Helicopters out of Houston, BC.

In the Babine Lake area, rolling hills and extensive glacial drift cover typify the area with bedrock exposure limited to the crest of small hills, along deeply incised creek beds, or along the shores of Babine or Fulton Lakes. Logging in the area has also exposed rock exposures in various road cuts and in area that were subject to soil erosion prior to reforestation (MacIntyre et al., 1996).

Figure 2

Hudson Bay Exploration and Development Co. Ltd.

Western District Office, Vancouver, BC

Project: Central BC <2318>

NTS: 093M08W, 07E (MOR) 093L16E, W (FUL) 093L09E, W 16E, W (LEN)

Mining Division: Omineca Province: British Columbia

Claim	Tenure	Tag	Units	Hectares	Expiry	Assessment	Total	Total Work	New	Cost to File	Notes
	No.	No.				Fee/Year	Work (99)	with PAC	Expiry	New Expiry	
MOR 1	356734	203330	16	400	19-Jun-02	\$160.00					No work completed on mineral tenure in 1999
FUL 1	356755	203333	12	300	19-Jun-02	\$120.00	\$22,512.05	\$29,265.67			1 DDH completed (FUL-002)
FUL 2	356766	234134	9	225	14-Jun-02	\$90.00	\$11,753.20	\$15,279.16			1 DDH completed (FUL-001)
LEN 1	356735	203331	16	400	7-Jun-02	\$160.00					No work completed on mineral tenure in 1999
LEN 2	356736	203332	16	400	7-Jun-02	\$160.00					No work completed on mineral tenure in 1999
LEN 3	356737	203322	16	400	11-Jun-01	\$160.00	\$22,512.05	\$29,265.67	11-Jun-04	\$480.00	1 DDH completed (LEN-005)
LEN 4	356738	203324	6	150	8-Jun-01	\$60.00	\$15,707.55	\$20,419.82	08-Jun-04	\$180.00	1 DDH completed (LEN-004)
LEN 5	356739	203323	9	225	9-Jun-01	\$90.00	(with LEN 3,4)		09-Jun-04	\$270.00	No work completed on mineral tenure in 1999
LEN 6	356740	203325	12	300	11-Jun-02	\$120.00	\$15,707.55	\$20,419.82			1 DDH completed (LEN-001)
LEN 7	356741	203326	6	150	12-Jun-02	\$60.00	\$15,707.55	\$20,419.82			1 DDH completed (LEN-002)
LEN 8	356742	203327	6	150	13-Jun-02	\$60.00	\$19,552.05	\$25,417.67	13-Jun-08	\$360.00	1 DDH completed (LEN-003)
LEN 9	356744	203328	12	300	13-Jun-02	\$120.00	(with LEN 8)		13-Jun-06	\$480.00	No work completed on mineral tenure in 1999
LEN 10	356745	203329	9	225	12-Jun-02	\$90.00	(with LEN 8)		12-Jun-06	\$360.00	No work completed on mineral tenure in 1999
LEN 11	356746	230442	6	150	10-Jun-01	\$60.00	(with LEN 3,4)		10-Jun-04	\$180.00	No work completed on mineral tenure in 1999
LEN 12	356747	230286	20	500	10-Jun-01	\$200.00	(with LEN 3,4)		10-Jun-04	\$600.00	No work completed on mineral tenure in 1999
LEN 13	356748	230287	15	375	9-Jun-01	\$150.00	(with LEN 3.4)		09-Jun-04	\$450.00	No work completed on mineral tenure in 1999
LEN 14	359543	230539	3	75	6-Oct-02	\$30.00			6-Oct-02	(nat filing)	No work completed on mineral tenure in 1999
h											

 Total
 17
 189
 4725
 \$1,890.00
 \$123,452.00
 \$160,487.60
 \$3,360.00

* earliest expiry (pending assessment): October 6, 2002

Notes: 1) New expiry dates are tentative pending acceptance of the 2000 AR for the 1999 Diamond Drilling Program

τ.

.

:

•

Hudson Bay Exploration and Development Co. Ltd.

.

Western District Office, Vancouver, British Columbia

Porphyry Copper Deposits of Central British Columbia

-

· · · ·

Deposits	Status	Tonnes (millions)	Au gpt	Ag gpt	Cu %	Mo %
Fulton Lake Map Sheet Area		[]			<u> </u>	
Granisle (Production)	1966 to 1982	52.7	0.20		0.47	
Granisle (Reserves)		119.0	0.15		0.41	
Bell Copper (Production)	1972 to 1992	77.2	0.26		0.47	
Bell Copper (Reserves)		296.0	0.20		0.46	
Morrison	Resource	190.0	0.20		0.40	
Nak	Resource	217.0	0.04		0,19	
Hearne Hill	Resource	60.0	0.10		0.16	
Hearne Breccia	Resource	0.1	0.80		1.73	4
Dorothy	Resource	45.0			0.25	0.01
Big Onion	Resource	94.0	0.20		0,42	0.02
Mount Thomlinson	Resource	40.8			Į	0.12
Glacier Gulch	Resource	100.0	1.20			0.29
Other						
Schaft Creek	Developed Prospect	971.5	0.14	1.2	0.30	0.03
Kemess North	Care and Maintenance	175.0	0.37		0.18	
Kemess South	Care and Maintenance	250,0	0.62		0,22	
Kerr	Resource	135.0	0.34		0.76	
Mitchell	Resource	200,0	0.86		0.20	
Copper Canyon	Resource	32.4	1.17	17.1	0.75	
Whiting Creek	Resource	300.0			0.30	
Huckleberry	1996 to Present	93.9	0.07	3.3	0,50	0.02
Galore Creek (Cental Zone)	Developed Prospect	233.9	0.35	7	0.67	
Galore Creek (Southwest Zone)	Developed Prospect	42.4	1.03	7	0,55	
Galore Creek (North Junction)	Developed Prospect	7 .7			1,50	

<u>, †</u>

:

Vegetation over the area consists dominantly of spruce, balsam, and pines that range in size from less than 10 cm in diameter to greater than 50 cm in diameter. There is abundant alder and locally devils club on slopes, while in wet, low lying areas there are huckleberry, raspberry, and salmon berry bushes.

The Babine Lake area is subject to warm summer conditions and typically has a long, cold winter with variable amounts of snow; however, at higher elevations, the snow pack can remain well into May and/or June.

1.2 Mineral Tenures

The mineral tenures for the Babine Lake area are not entirely contiguous and lie within the Omineca Mining Division. Overall, there are 14 four post, modified grid claims that encompass 141 units and cover approximately 4,725 hectares with elevations that range from 712 to greater than 1,372m. A summary of the mineral tenures is presented in Figure 2 and Table 1; however, the individual locations of the mineral tenures are presented in Figures 3 to 7.

1.3 Owners, Operators, and Contractors

The mineral tenures listed in Table 1 are owned 100% by HBED with all of the work performed by HBED, except for drilling, helicopter and analytical services. Analytical services were contracted to ACME Analytical Laboratories Ltd., 852 East Hastings Street, Vancouver, British Columbia, V6A 1R6, Canada. Diamond drilling was contracted to Britton Brothers Diamond Drilling Ltd., P.O. Box 968, Smithers, BC, V0J 2N0, Canada. Helicopter services were contracted to Highland Helicopters Ltd., 4240 Agar Drive, Vancouver, BC, V7B 1A3, Canada, which was supported out of their Smithers, BC base. Jason King Dunning, M.Sc., FGAC conducted project supervision, logging of diamond drill core, and sampling with the aid of a Geological Assistant from the University of Victoria, BC, as well as a young native person who was hired off of the local Tachek Indian Reserve.

1.4 Regional History

The Babine Lake area has been historically well known for the significant number of porphyry-style mineral occurrences and/or deposits (Table 2) associated with this 80km long belt of rocks. The most notable deposits are the Granisle and the Bell Mines, both of which are now closed and on care and maintenance. Additional mineral potential in the area has been ranked extremely high, as the Babine Lake area is the fourth most prospective in the entire Skeena-Nass mineral potential project area (MacIntyre et al., 1995). MacIntyre et al. (1996a) noted that in terms of 1986 dollars, the estimated value of known in-ground mineral resources is \$1.96 billion and the value of the past production is estimated to be \$1.13 billion.

1.5 Property History and Previous Work

1.5.1 1995-1996 Reconnaissance Program

During summer and fall of 1995 and 1996, HBED field crews spent a couple of days conducting a general orientation survey of the local geology and topography in order to determine if an airborne geophysical survey would be an effective exploration tool in the Babine Lake area (Buchanan, 2000: personal communication). The Babine Lake area was originally selected for study during 1994, as being a significant target area from an economic geology perspective.

1.5.2 Ground Geophysical Survey

The ground geophysical surveys that were successfully completed in 1997 were conducted under the guidance of Peter Walcott and Associates Ltd., Geophysical Services, 606 Rutland Court, Coquitlam, BC, Canada, V3J 3T8. Ground EM geophysical surveys were completed in 1998 by B. Koop Exploration Services Inc., PO Box 552, Flin Flon, Manitoba, R8A 1N4. Ground MAG geophysical surveys were also completed in 1998 by HBED geophysicist A. Callegarie. An accounting of the ground geophysical survey is presented in Table 3; however, 113.5 km of gridline were successfully surveyed during both 1997 an 1998. The objective of these ground geophysical surveys was to further refine and delineate the geophysical anomalies for diamond drilling.

The basic principle of any electromagnetic (EM) survey is that when conductors are subjected to primary alternating fields, secondary magnetic fields are induced in them. Measurements of these secondary fields then give indications as to the size, shape, attitude and conductivity of conductors that are present. In the absence of any conductors, no secondary fields are obtained from the survey. The EM survey was carried out using a Max-Min IIA EM unit that was manufactured by Apex Parametrics. Readings of the inphase and quadrature components of the secondary field were made with the coils in the horizontal plane, meaning the maximum coupled, every 25 meters along the picket lines at frequencies of 444, 1777 and 3555 Hz, respectively employing a coil separation of 100 meters. Additional readings were done on part of two grids with a coil separation of 50 and 150 meters respectively. Using the percentage of the slope between each tight-chained station provided by the line establishment, field crews made corrections for topography.

The magnetic surveys were carried out using an EDA Omni-Plus proton precession magnetometer that was manufactured by EDA Instruments Inc. This instrument measures variations in the earth's magnetic intensity to an accuracy of plus or minus one gamma. Corrections for diurnal variations were made through a comparison of the readings collected at each individual station with those obtained from a base magnetometer that was also manufactured by EDA. Each magnetic reading was collected at 12.5m station intervals along the gridlines.

B HUDSON BAY Hudson Bay Exploration and Development Co. Ltd.

Western District Office, Vancouver, British Columbia

Year	Claim	Grid	Ground Geophysics	Soil Geochemistry	Diamond Drilling
		(line kms)	(line kms)	(number of samples)	(proposed)
1998	Mor 1	16.60	14.00	88	2
1998	Ful 1	16,40	10.00	105	1
1997	Ful 2	8.20	7.00	31	1
1997	Len 1	17.70	15.00		
1997	Len 2				
1998	Len 3	8.00	6.50	57	1
1998	Len 4	9.40	8.00	78	1
1998	Len 5	14.10	11.00	95	
1998	Len 6	9.40	8.00	145	1
1998	Len 7	7.00	12.00	104	1
1997	Len 8	19.00	16.00	69	1
1998	Len 9	7.00	6.00	110	
1998	Len 10		1	1	
1998	Len 11				
1998	Len 12				
1998	Len 13				
1998	Len 14				
1997	Kut 1			12	
1997	Kut 2	·		21	
1997	Kut 3			9	
1997	Kut 4			10	
1997	Kut 5			9	
1997	Kut 6				1

1

Summary of Exploration Activities Conducted on the FUL, KUT, LEN, and MOR Claim Groups

1.5.3 Len 1, 2, 3, 4, 5, 6, and 7 Mineral Tenures

In the area around the Len 3, 4, and 5 mineral tenures, exploration activities date back as far as the 1960's with the discovery of Cu-Mo porphyry mineralization in Tachek Creek. The main prospect that has resulted from exploration activities occurs in the vicinity of the Lennac Lake area, where Amax Exploration Inc. discovered a Cu-Mo prospect in 1971 through a regional soil geochemistry program and was known as the Thezar Claims. Subsequent follow-up work in 1971 to 1974 included ground geophysical IP and MAG surveys and additional, more detailed soil geochemistry surveys, 44 percussion drill holes (3.462m), and 5 diamond drill holes (919m). This work confirmed the presence of a large, low-grade, Cu-Mo porphyry system in four zones over a distance of 4km. The 'west' zone is known to contain 0.2% Cu in 90,000,000m³ of host rock, whereas the 'east' zone is known to contain 0.2% Cu in 90,000,000m³ of host rock, whereas the 'east' zone is known to contain 0.2% Cu in 90,000,000m³ of host rock in the Lennac Lake area, Brinex completed 11 percussion holes and 3 diamond drill holes on the Jacob showing near Baboon Lake.

In 1990, Kennecott Explorations (Canada) (herein referred to as Kennecott) optioned the area around the main Lennac Lake Cu-Mo prospect from a Mr. L. Bourgh and conducted surface exploration activities that resulted in the discovery of several new copper showings near the 'southeast' zone of mineralization. Cominco Ltd. then optioned the property from Kennecott and completed additional prospecting, soil geochemistry, and trenching in 1993 without any significant discoveries.

From April 22nd, 1997 to June 7th, 1997, the cutting of gridline and ground EM and MAG geophysical surveys were successfully completed on the Len 3, 4, and 5 mineral tenures. This work included the cutting of 31.5km of gridline, the completion of 25.5km of ground MAG and EM geophysical surveys, and the collection of 222 soil geochemistry samples. During that same period, HBED also conducted an exploration program on the Len 6 and 7 mineral tenures that included the cutting of gridline (16.4km), ground EM and MAG geophysical surveys (14.0km), and the collection of 259 soil geochemistry samples (Bidwell, 1998a).

During the period of September 24th, 1997 to October 31st, 1997, HBED undertook exploration activities on the Len 1 and 2 mineral tenures that included the establishment of a grid through the cutting of 17.7km of gridline and the completion of 15.0km of ground EM and MAG geophysical surveys (Buchanan, 1998c).

1.5.4 Len 8, 9, 10, and 14 Mineral Tenures

In 1968 and 1969, the Noranda Exploration Company Ltd. (herein referred to as Noranda) conducted exploration activities along Tachek Creek on the mineral tenures formally known as the Gold Dust I and II, which are now called the Len 10 mineral tenure. Noranda's exploration activities included geological mapping, soil geochemistry

and ground geophysical surveys, road building, 1,725m of percussion drilling, and 1,015m of diamond drilling. The following year the ground was optioned to Taseko Mines Ltd. and they completed 3 diamond drill holes for a total of 320m of diamond drilling. The area remained inactive until 1973, when Perry, Knox, and Kaufman Inc. carried out 11km of ground IP geophysical survey and diamond drilled 300m of core. There were no significant results from any of these exploration programs.

In a period between September 24th, 1997 and October 31st, 1997, HBED successfully complete exploration activities on the Len 8, 9, 10, 14 mineral tenures that consisted of gridline cutting (19km), ground EM and MAG geophysical surveys (16km), and soil geochemistry (179 samples) (Buchanan, 1998a,b).

1.5.5 Ful 1 and 2 Mineral Tenures

In a period between September 24th, 1997 and October 31st, 1997, HBED completed exploration activities on the Ful 1 mineral tenure that included cutting 16.4km of gridline, 10km of ground EM and MAG geophysical surveys and the collection of 105 soil geochemistry samples. No final report was completed for the work on the Ful 1 mineral tenure.

The earliest recorded exploration activities in the area of the Ful 2 mineral tenure can be traced back to the early 1900's with the discovery and subsequent development of the Bell and Granisle Cu-porphyry mines in the 1960's. It was during this active period of Cu-porphyry exploration that Nittetsu Mining conducted a reconnaissance soil geochemistry and a ground, IP geophysical surveys. This exploration program resulted in the delineation of a 1,800m by 450m copper anomaly in the soil that was coincident with an IP geophysical anomaly. No further exploration activities were recorded until 1981, when Musto Exploration restaked the area as the Skin mineral tenure. Musto Exploration completed a soil geochemistry survey and 5 percussion drill holes. No other significant results have been recorded in this area.

During the same period, an exploration program was successfully completed and included a limited soil geochemistry survey (31 samples), cutting 8.2km of gridline, and 7.0km of ground EM and MAG geophysical surveys (Buchanan, 1998a).

1.5.6 Kut 1, Kut 2, Kut 3, Kut 4, and Kut 5 Mineral Tenures

Over a period between May 18th, 1998 and June 5th, 1998, HBED completed exploration activities on the Kut 1, Kut 2, Kut 3, Kut 4, and Kut 5 mineral tenures that included 29.45 km of prospecting and the collection of 63 soil geochemistry samples. All prospecting activities were carried out along traverses across previously identified

airborne EM and MAG anomalies using the numerous logging roads and trails in the area. It should be noted that the overall lack of rock exposures hindered the full examination of the area; however, sparse outcrops were located on the Kut 2 and 3 mineral tenures. There were no significant results from the examination of these outcrops.

1.5.7 Results of HBED Exploration Activities in the Babine Lake Area

Surface exploration activities on the Len 1 and 2 mineral tenures showed there to be two separate EM and MAG trends. In the NE portion of the study area, the EM and MAG conductors are oriented in a NW-SE trend with the main EM conductor being 600m in length and up to 35m in width. In the SW portion of the study area, the EM and MAG conductors are oriented just west of a N-S trend; however, there is no direct correlation between the anomalies. There are two dominant EM conductors that are 300m apart in this SW portion of the study area (Buchanan, 1998c). Results from the Len 3 mineral tenure showed a strong EM conductor along a NW trend running the length of the grid at a steep easterly dip. A weaker parallel conductor occurs 350m to the east. On the Len 4 mineral tenure, there is a well-defined vertical, linear conductor in the centre of the grid that remains open to the south. The results from the Len 5 mineral tenure reveal two weak EM conductors, but a creek and a beaver pond prevent an accurate definition of the conductors; however, the more easterly of the two conductors remains open to the south. Results from the Len 6 mineral tenure suggest a very strong conductor that is near vertical along a NNE trend; however, there does appear to be a fault offset of about 75m. On the Len 7 mineral tenure, two parallel conductors were defined at the north end of the grid with both possessing a northerly trend. It should be noted that there was not direct correlation between the EM conductors and the MAG results, except that portions of the EM anomalies are near magnetic lows (Bidwell, 1998a,b).

Results from the Ful 2 mineral tenure revealed a 600m, north-south trending conductor that was up to 40m in width. Two other conductive trends were also identified during the course of this survey. A magnetic high of 300 nanoteslas above background values was also identified alongside one of the smaller conductive trends 175m west of the main conductor (Buchanan, 1998b).

Results from the soil geochemistry and prospecting programs on Kut 1, Kut 2, Kut 3, Kut 4, and Kut 5 returned a ubiquitous background Cu and Zn values from the entire study area and local elevated Au values. One sample returned 170 ppb Au and another sample from the same area returned a value of 90 ppb Au. No bedrock source was ever located for either anomaly. In fact, there is an overall lack of rock exposures in the area because of the thick glacial overburden (Sidic, 1998). As a result of the conclusions drawn from the work completed on all of the Kut mineral tenures and that the area was covered by a thick accumulation of Eocene volcanic rocks, which masked any older rocks, no further work was undertaken.

1.6 Summary of Work Done

Prior to the arrival of the drilling contractor on site. HBED employees completed site preparation including the access trails and the drill site locations. Care was taken to mitigate the impact on the forest environment such that there was minimal falling of merchandisable lumber. When needed, a drill pad was built; however, in most cases, the drill did not require a drill pad because the entire set-up was on skids and could be easily moved around using a D-6 CAT.

During the course of the 1999 exploration program in the Babine Lake area, drilling was performed by Britton Brothers Drilling who used a BB 2500 Hydraulic drill rig that recovered 1094.50m of NQ core (40mm) from 7 diamond drill holes at 7 sites (Figures 8 to 14). Note that 70m of casing were left in specific diamond drill holes for the sole purpose of re-entry, should it be deemed appropriated to undertake downhole geophysical techniques. The core is currently being stored in a fabricated core rack on the Len 8 mineral tenure. All new diamond drill collars were tied into previous gridlines using both a hip-chain and compass. Each collar location was also located using a GPS unit. The diamond drill core was logged in the town of Granisle, BC and 246 samples were split using a core splitter. The samples were then packaged individually in twist-tied and labeled plastic bags, which were subsequently shipped in large rice bags via truck to ACME Analytical Laboratories for analysis. Geological and geochemical sections are presented in Figures 17 to 23.

Reclamation work on the mineral tenures that were diamond drilled during August 1999 in the Babine Lake area was successfully completed in accordance with the Exploration and Development Assessment Work Requirements, as outlined in the BC Mineral Act Regulations. All trees and/or shrubs that were cut-down during site preparation were bucked into small lengths and pulled across both the access trails and the drill sites. When necessary, erosion control grass seed was spread over effected area to mitigate any possible soil erosion.

1.7 Claims Worked On

The exploration activities associated with the recent diamond drill program resulted in work being done on the Ful and 2 mineral tenures, as well as the Len 3, 4, 6, 7, and 8 mineral tenures. A summary of the claims worked on and those, that will have assessment applied too, as a result of the diamond drill program, is presented in Table 3.

2.0 Detailed Technical Data

2.1 Objectives of the 1999 Diamond Drill Program

The objectives of the recently completed 1999 diamond drill program in the Babine Lake area are as follows:

- Test the highest priority geophysical anomalies identified through HBED's airborne EM and MAG surveys and then verified through follow-up ground EM and MAG geophysical surveys that were conducted in 1997 and 1998. 10 sites were selected for drilling in the summer of 1999.
- 2) Test for the volcanological, alteration and mineralization characteristics, which could be used to further delineate and/or define favourable stratigraphy that could host VMS-style mineralization similar to the Eskay Creek precious metal-rich VMS deposit and/or other massive sulphide deposits, prospects, and/or occurrences in the Smithers-Babine Lake area.

2.2 Tectonic Framework

The Babine Lake area is part of the largest terrane within the Intermontane Tectonic Belt known as Stikinia (Figure 15) (McMillan and Struik, 1996). Monger (1977) described Stikinia as being composed of Lower Devonian to Middle Jurassic volcanic and sedimentary rocks from the Asitka, Stuhini, Lewes River, and Hazelton Groups and their comagmatic intrusions.

A depositional hiatus, which occurred prior to the formation of the Late Triassic volcanic arc sequences of the mafic Stuhini Group, followed Upper Paleozoic island-arc tectonism. At the beginning of the Early Jurassic, the Central British Columbia area was part of the calc-alkaline Hazelton Group volcanic arc. The orientation of this volcanic arc remains enigmatic to this day; however, it should be noted that the current understanding of the facies relationships suggest that NW-trending island-arcs bounded a marine trough. NE-trending, dextral slip, transcurrent fault zones further complicate the paleogeography of the area, but a NE-dipping subduction zone appears to be the most likely source for the western portion of the Hazelton Group volcanic arc. Currently, the correlation between the Stuhini and Hazelton Group rocks is based on general lithologies and relative stratigraphic position (MacIntyre et al., 1996).

The formation of the Bowser Basin can be attributed to the collision of the Cache Creek Terrane with Stikinia during the Middle Jurassic resulted an apparent uplift of the Skeena Arch. Further uplift from the Late Jurassic to the Early Cretaceous caused the erosion of the Skeena Arch and the Omineca Crystalline Belt, which produced sedimentation that resulted in the formation of the sedimentary rocks of the Bowser Basin. During the Early Cretaceous, deposition of the Skeena Group sedimentary and volcanic rocks was focused along basin-related fault systems. The uplift of the Coast Mountain Complex also occurred during the Middle Cretaceous, which can be attributed to a

Location of Nechako NATMAP Project and tectonic boundaries

. . . .

NON-REPORTED TO THE P

1 1 1 3,2-6-18,588,2275

major plate collision, extensive folding, and thrust faulting. Detritus from the uplifted metamorphic and plutonic complexes filled the Sustat Basin to the east and this was followed by the formation of N-trending Andean-type volcanic arc from the Middle Cretaceous to the Eocene (MacIntyre et al., 1996).

These Andean-type arcs resulted from oblique, easterly subducting oceanic crustal material that was along the margin of the ancient North American Craton. The volcanic centers typically associated with this form of tectonic activity were most likely centered along the zones of extention within a transtensional regime. All of the calcalkaline volcanic rocks of the Upper Cretaceous Kasalka Group and the Eocene Ootsa Lake Group are the remnant portions of those volcanic arcs. The Buckley Intrusions (Middle to Late Cretaceous) and the Babine Intrusions (Eocene) are the plutonic roots of these continental volcanic arc sequences and are commonly associated with base and precious metal mineralization (MacIntyre et al., 1996).

Tectonic activity from the Middle Cretaceous to the Late Eocene resulted in typical basin and range geomorphology that appears to have a NE displacement along dextral, transcurrent fault systems, which offset earlier NW-trending horsts and grabens (MacIntryre et al., 1989). Further extension in the lithosphere from the Eocene to Miocene caused an influx of continental mafic volcanism, which produced the Endako and Chilcotim Groups (MacIntyre et al., 1996).

2.3 Geological Framework

2.3.1 Regional Geology

The geological framework of the Babine Lake area has been mapped at various scales over the years including a 1:250,000 scale compilation by the Geological Survey of Canada during the 1970's. Other more recent work has included MacIntyre et al. (1987a,b; 1989), who carried out more detailed mapping studies as part of the Nechako NATMAP project at scale of 1:50,000.

The Babine Lake area lies within Stikinia and is composed of Late Triassic to Eocene volcanic and sedimentary rocks. The Takla Group is a Late Triassic-aged succession of submarine, calc-alkaline to alkaline, island arc volcanic rocks of which, the most important formation to the study area is the Telkwa Formation (MacIntyre et al., 1989). Tipper and Richards (1976) described the rocks of the Babine Lake area to be transitional between subaerial and submarine, as there is a general lack of marine-related rocks to east and a very thick accumulation of marine-related rocks to the west. On top of the Takla Group rocks are the Hazelton Group rocks, which are the other important subdivision of the Babine Lake stratigraphic column. These rocks range from subaerial to submarine, calc-alkaline island arc volcanic and sedimentary rocks. Further up the stratigraphic column are the siliciclastic to basinal sedimentary rocks of the Late Jurassic to Early Cretaceous-aged Bowser Lake Group, which are then

covered by the post-accretionary rocks of the Lake Cretaceous-aged Skeena and Sustut Group, continental clastic sedimentary rocks. The regional stratigraphy is capped with Late Cretaceous to Early Tertiary Kasalka, Ootsa Lake and Endako Group volcanic rocks, as well as Eocene Newman Formation volcanic rocks.

In the immediate Babine Lake area, the Hazelton Group rocks are divided into the Telkwa, Nilkitkwa, and Smithers Formations. The Telkwa Formation is the stratigraphically lowest unit, as well as the aerially most extensive. Telkwa Formation rocks consist of green to maroon, submarine to subaerial volcanic rocks. These rocks have been recently age-dated using fossils at between Sinemurian to early Pleinsbachian. MacIntyre et al. (1989) recognized four distinctive units that included the following: (i) basaltic to rhyrolitic, siliceous, quartz- and feldspar-phyric, pyroclastic facies; (ii) augite-phyric, red tuff-sized facies and massive flows, as well as their related sedimentary rocks; (iii) thick-bedded, feldspar-phyric, andesite volcaniclastic facies; and (iv) a basal conglomeratic unit.

The Nilkitkwa Formation is a succession of marine sedimentary and submarine volcanic rocks that has been fossil age-dated at Pleinsbachian to Early Torcian-aged (Tipper and Richards, 1976). MacIntrye (1987) described the Nilkitkwa Formation as being composed of four principal units including (i) thinly bedded mudstones, cherts, and limestones; (ii) fine-grained to coarse-grained volcaniclastic rocks; (iii) rhyolite volcanic rocks; (iv) and amygduloidal mafic volcanic rocks with interbedded, red sedimentary rocks. Overlying the Nilkitkwa Formation are the shallow marine sedimentary rocks of the Smithers Formation, which are characterized by a strongly fossiliferous quartz arenite and siltstone.

2.3.2 Property Geology

The geological framework of the property is not well known, as no property scale mapping has been carried out on either of the Ful and Len mineral tenures. Thick giacial overburden covers most of the area in question; however, traverses along gridlines during the verification of the individual gridlines and prospecting did reveal minimal rock exposures in the vicinity of a few of the mineral tenures. A complex succession of volcanic and sedimentary rocks and several suites of intrusions dominate the geology of the Ful and Len mineral tenures (Figure 16a,b). There are a number of facies variations in the rock-types present including aphyric to crystal-rich, volcanic flows or sills, siltstones and siliceous sediments, mudstones, and graphitic to calcareous mudstones. Most of the knowledge regarding the geological framework of the Ful and Len mineral tenures is based on the geological information gleaned from prior exploration activities by other companies, as well as from the downhole geology in the recently completed diamond drill holes. The geology intercepted in the 1999 diamond drill program is presented in Appendix B and in Figures 17 to Figure 23.

Π		EBc	Endako Gp., Buck Creek Fm vesicular basalt
ocene		ENv	Newman Volcanics - lahar, debris flows, volc. breccia, hb-bt-fd porph. flows, sills
		EB	Babine intrusions - bt-fd porph. (EBp), rhyo- dacite (Ebr), qz-bt-fd porph (EBq)
	- An		conglomerate, sandstone
	A second se	uKK	Kasalka Gp hb-bt-fd porph. flows & breccia
0	LKBp	LKBp	Bulkley intrusions - bt-hb-qz porph. (LKBp)
ret.		IKS	Skeena Gp sandstone, shale, siltstone
-	JKg	JKg	diorite, granodiorite, quartz diorite
		mJS	Smithers Fm fossiliferous feldspathic sandstone, siltstone, conglomerate
ال .\		IJN	Nilkitkwa Fm siltstone, sandstone, conglomerate, minor limestone
urassic		IJ⊤	Telkwa Fm andesitic pyroclastics, and- esite, basalt and rhyolite flows, felsic pyroclastics
ļ.	EJbx	Elpx	Nose Bay intrusive breccia - breccia with Topley and Stuhini clasts
Trias		EJT	Topley intrusions - pink granite, qz. monzonite, monzonite, aplite, rhyolite (EJT)
ssic		uTrS	basaltic flows and related pyroclastic and volcaniclastic rocks; ash flow tuffs, lapilli tuffs and flow banded rhyolite.
Pe		PTrs	calcareous siltstone, chert, tuff
- PIM		PTrc	massive, thick-bedded limestone
o-Trio		PTrc	g maroon to red conglom, with clasts of mega- crystic porphyry, px-fd porph., silistone megacrystic feldspar porph. flows (PTrmp)
SS	VIOTOTOTA		banded siltstone, feldspathic sandstone
Ö		¢T P	pyroxene-feldspar porphyry
Permian?		Pc	thin-bedded limestone, marble, chert argillite, chlorite schist

÷

Mafic volcanic flows or sills are an important rock-type in the property area, but, in some instances, it was increasingly difficult to ascertain whether or not the mafic rock being described in the core was actually volcanic or plutonic in origin. Along the margins of the mafic volcanic flows or sills there is either a monomictic breccia unit or a sharp chill zone. The monomictic breccia typically consists of blocky, angular fragments in a mudstone or siltstone matrix. These monomictic breccia units are believed to be typical hydroclastic breccia having formed through autobrecciation as a result of the interaction of hot magma and wet sediments during emplacement. An interesting monomictic, tightly packed, hydroclastic, mafic volcanic breccia unit was intersected in LEN-004 that is composed entirely of augite-phyric, shard-like fragments that are intensely chlorite altered. In most of the drilling, the majority of the mafic volcanic rocks are Jurassic in age with the exception of the augite phyric mafic volcanic flows or sills in LEN-002 and possibly LEN-004, which appear to be Upper Triassic in age. These temporal interpretations are based on the regional mapping and descriptions provided in MacIntyre et al. (1996a).

The mafic volcanic flows or sills are typically pale to medium green, massive, homogeneous, inequigranular, finegrained (0.5mm < x < 1.5mm), and locally feldspar and augite phyric (LEN-001, -002, -003, -004, and FUL-001); however, one unit intersected in LEN-005 contained abundant amygdules (up to 13mm) and olivine-augite phenocrysts/xenoliths (up to 95mm). Feldspar phenocrysts are pale green to chalky white, subhedral to euhedral, rhombohedral to rectangular, fine- to medium-grained (1 to 4mm), and can constitute up to 10% of the mafic volcanic rock. Augite phenocrysts are dark green, subhedral to euhedral, square to octagonal, medium- to coarsegrained (3 to 10mm), and can constitute up to 15% of the mafic volcanic rock. It should be noted that the mafic volcanic and volcaniclastic rocks that were intersected in FUL-001 on the Ful 2 mineral tenure are extremely similar to the bimodal volcanic rocks observed south of the Clear claims northwest of Granisle, BC.

Mafic volcaniclastic rocks were intersected in FUL-001 and LEN-005. These mafic volcaniclastic rocks were the only resedimented or epiclastically reworked volcaniclastic rocks identified in the property area. The mafic volcaniclastic rocks in FUL-001 are Eocene in age and part of the Newman Formation and the mafic volcaniclastic rocks in LEN-005 are Lower Jurassic-aged and part of the Teikwa Formation. These temporal interpretations are based on the regional mapping and descriptions provided in MacIntyre et al. (1996a). In both cases, there are clearly several depositional cycles and rapid facies changes, as there are tuff-, lapilli-tuff-, and agglomerate-lapilli-tuff-sized units in each of these diamond drill holes. Volcaniclastic textures present include normal grading, gradational to sharp contact relationships between facies, monomitic to heteromictic clast content, matrix supported, poor consolidation, and ablated clasts. The clasts in the mafic volcaniclastic rocks are well rounded with a high degree of sphericity and low degree of angularity and also tend to be both feldspar- and amphibole-phyric. Although most clasts share a general mineralogical similarity, there are significant colour differences, which lead to two possible conclusions. One, the clasts are from a series of chemicality different mafic flows in stratigraphy that were from the same source regions or two, each of the flows that contributed to the mafic volcaniclastic rocks were variably altered by hydrothermal alteration.

One interesting sub-unit of the Eocene Newman Formation volcaniclastic rocks is an intercalated coal seam. This unit has an approximate thickness of 18.1m and was extremely friable and fissile. There was minor oxidation and weathering suggesting that there had been meteoric or groundwater percolation through the coal seam. MacIntyre (1999: personal communication) has noted that coal seams are very commonplace in the Eocene volcanic and volcaniclastic rocks in Central British Columbia.

A felsic volcanic flow or sill was intersected in LEN-004 and it appears to be the only felsic unit in the property area. It is currently difficult to fully ascertain whether or not this potentially key unit is a flow or a sill because the felsic unit has only been cored with one diamond drill hole and there extremely thick overburden cover in the collar area of LEN-004. The felsic volcanic flow or sill is pale grey to bleached white, massive, strongly altered, strongly foliated, homogeneous, inequigranular, quartz and feldspar phyric and possesses sharp, but irregular contact relationships with the adjacent, strongly altered mudstones. Feldspars phenocrysts are chalky white, subhedral to euhedral, rhombohedral to rectangular, fine- to medium-grained (1 to 6mm), and appear to constitute less than 5% of the felsic unit. The quartz phenocrysts are anhedral to subhedral, pale to medium-gray, fine- to medium-grained (1-3mm), and appear to constitute less than 2% of the rock unit. Note that there might be a higher percentage of phenocrysts present; however, the intense alteration might have resulted in the majority of the feldspar and quartz phenocrysts being masked or pseudomorphed by sericite, other clay minerals, and/or free quartz.

Only one type of intrusion could be definitively identified in the diamond drill core and that type of intrusion was intersected in LEN-002, and -003. The intrusions are pale gray to medium green, holocrystalline, massive, homogeneous, inequigranular, phyric, fine- to coarse-grained (1 to 8mm), and non- to weakly magnetic in an aphanitic groundmass. Feldspar phenocrysts are off-white to pink, subhedral to euhedral, rhombohedral to rectangular, medium-grained (3-8mm) and can constitute between 10 and 20% of the intrusion. Amphibole phenocrysts are dark green to black, subhedral to euhedral, rectangular to prismatic, medium-grained (3-4mm) and can constitute up to 5% of the intrusion. The intrusions do not show any great degree of fabric suggesting that they are either syn- or post-deformational in their origin: however, there are age dates on these particular intrusions. Similar intrusions have been age dated from the Topley and Buckley suites of intrusions. A Topley suite, biotite-quartz-feldspar porphyry dyke near the Tachek Porphyry Cu prospect was a K-Ar age dated at 176±7 Ma (Carter, 1981) and a Buckley suite, biotite-hornblende-feidspar dyke near the Lennac Lake Porphyry Cu prospect was K-Ar age dated at 77±2.5 Ma (Carter, 1976).

There are four sedimentary rock-types present within the property area including graphitic to calcareous mudstones, siliceous siltstones, and pelagic or fossiliferous wacke. Graphitic to calcareous mudstones were intersected in LEN-001, -002, -003, -004, and FUL-002 diamond drill holes. In general, these sedimentary rocks were medium gray to black, extremely fine-grained (<0.5mm), tightly packed, well sorted, texturally immature and indicative of a low-energy depositional environment such as an anoxic, organic-rich basin. The graphite content was extremely variable and could be greater than 40% to less than 5%. In units that were graphite-rich, it was not uncommon to see an

increase in the overall fissile nature of the core, whereas, units with a low percentage of graphite were typically more cohesive. It should also be noted that chlorite was also found in greater abundance in the graphite-rich units or rather was much easier to identify on broken surfaces. Sedimentary structures are also visible including thin to thick laminations, thin to thick bedding, and sharp contact relationships. There are small-scale folds present in the graphitic to carbonaceous mudstone units, which could be either the function of soft sediment deformation or minor isoclinal deformation. Only one example of a possible isoclinal fold was identified in the diamond drill core and that was in FUL-002 on the Ful 1 mineral tenure. This diamond drill hole cored through 176.8m of carbonaceous to graphitic mudstones of the Nilkitkwa Formation.

The siliceous siltstones were typically very similar in nature to the graphitic to calcareous mudstones except for two things. First, there was absolutely no graphite or chlorite in any of the units intersected in the diamond drill core. Second, the siliceous siltstones did not possess thin to thick laminations, but rather only thin to thick bedding. The siliceous siltstones did however possess locally weak, discrete, patchy to pervasive biotite alteration. Biotite alteration was typically identified when the siliceous siltstones were cut by an intrusion, which suggests that the biotite alteration might be in those cases part of a contact metamorphic aureole related to the emplacement of the intrusion.

The pelagic or fossiliferous wacke was only intersected in one diamond drill hole, FUL-002. This rock-type was stratigraphically beneath a subaqueous, mafic volcanic flow and hydroclastic unit and is medium gray to medium brown, very fine-grained (<0.5mm), moderately to well sorted, tightly packed, and containing minor fossils of an unknown type.

2.3.3 Sulphide and Oxide Mineralization

Four sulphide minerals have been definitively identified in the diamond drill core from the Ful and Len mineral tenures including pyrrhotite, pyrite, and sphalerite with chalcopyrite only occurring in trace quantities. Pyrrhotite and pyrite are the two most dominant sulphide minerals. In general, the sulphide mineralization is hosted within deformed and altered sedimentary rocks that are principally mudstones and graphitic to carbonaceous mudstones; however, minor quantities of sulphide mineralization were identified in one mafic volcanic flow or sill. Overall, there were three major styles of sulphide mineralization encountered in the 1999 diamond drill program including (i) lithology- controlled or syn-genetic; (ii) fracture- or vein-controlled; and (iii) disseminated sulphide mineralization.

The lithology-controlled or syn-genetic sulphide mineralization occurs principally as massive sulphide or semimassive sulphide mineralization; however, it should be noted that there is also a disseminated sulphide mineralization component. Only the sedimentary rocks from FUL-002 yielded any massive or semi-massive sulphide mineralization with the only sulphide mineral present being pyrite. Here sulphide mineralization is restricted to bedding planes or coarser-grained lithological units or layers. The massive sulphide mineralization is composed of up to 55% pyrite and is typically fine- to medium-grained (1-2mm) in size. Pyrite appears to be replacing the matrix of the coarser-grained layers, as the distribution appears directly related to the coarseness of the unit. If the unit is a very fine-grained mudstone, then the mineralization is restricted to the bedding plane or the contact between depositional cycles. This give the sulphide mineralization a disseminated distribution and with individual pyrite crystals having a flattened appearance. Sulphide mineralization resembling these flattened pyrite crystals is also present in LEN-001, -002, and -003; however, pyrite is not always the dominant sulphide mineral as pyrrhotite is also present and can occur in greater quantities. The same relationship of pyrite distribution can be applied to even the coarser-grained units, which tend to be sulphide-rich. In these units, there is often normal grading and a definite fining direction. As the sediment becomes finer-grained, the sulphide content decreases or rather there is an apparent decrease in the quantity and/or distribution of sulphide mineralization.

Fracture- or vein-controlled sulphide mineralization occurs principally as orthogonal or conjugate sets that tend to crosscut the fabric and/or lithological contacts in the rock-types. Quartz and carbonate minerals are often found in close spatial association within the mineralized structures, but they are also known to crosscut and be crosscut by the fracture- or vein-controlled sulphide mineralization. Mudstones, graphitic to calcareous mudstones, siltstones, and siliceous siltstones are the dominant host rock-types for the fracture- or vein-controlled sulphide mineralization. Nowhere in the property area were mafic volcanic flow or sill rocks crosscut by fracture or vein-controlled sulphide mineralization for this is the significant competency contrast between volcanic and sedimentary rocks. Volcanic rocks are more resilient to deformation and strain under brittle deformation conditions, whereas, sedimentary rocks will more likely fracture or break under those same conditions.

Three sulphide minerals known to occur in this manner in the study area are pyrite, pyrrhotite, and sphalerite with pyrite being the dominant sulphide mineral overall. In diamond drill hole LEN-002, pyrrhotite is the dominant sulphide mineral; however, there are locations where pyrrhotite and pyrite co-exist, as if one is replacing the other. It should also be noted that the fracture- or vein-controlled sulphide mineralization uphole is dominantly pyrite, but with increasing depth and increasing proximity to the intrusion in LEN-002, the dominant sulphide species slowly becomes pyrrhotite. For the most part though, both pyrite and pyrrhotite are anhedral in their crystal form and rarely are their any individual subhedral to euhedral crystals observed in the core. In diamond drill hole LEN-004 the sphalerite is principally hosted within quartz-carbonate veins that possess a vuggy texture. One of the veins also displayed a crack-seal texture suggesting a mutistage formational history for these sphalerite-bearing veins. Individual sphalerite crystals are cream to rose in colour, subhedral to euhedral, fine- to medium-grained (2-8mm), and often appear as crystal aggregates. Sphalerite is also present around the vein, as it was not uncommon to observe disseminated sphalerite crystals in adjacent wall rock.
Oxide mineralization was intersected in only one diamond drill hole, LEN-005, which was in proximity to the Lennac Lake Cu-Mo Porphyry prospect. The host rocks for the oxide mineralization are the deep red to maroon, subaerial volcaniclastic rocks of the Telkwa Formation. Most commonly found in the matrix of the fine-grained, tuff- or lapilli-tuff-sized units, rare specular hematite crystals were identified in various clasts within the coarser-grained units. Specular hematite occurs as metallic gray, subhedral to euhedral, platy, hexagonal, and fine- to medium-grained (1 to 2mm) crystals that could constitute less than 2% of the rock unit.

2.3.4 Hydrothermal Alteration

Corbett and Leach (1998) described kaolin group minerals as being derived from hydrothermal fluid with a pH that is approximately 4 and that can co-exist with alunite group minerals under slightly more acidic conditions. Kaolinite will form at temperatures from less than 150 to 200°C at shallow crustal levels and pyrophyllite will form lower down in the crust and at temperatures between 200 and 250°C. Dickite forms in a transitional setting between the above crustal and temperature ranges. Illite group minerals form under near neutral pH conditions (4-6) and will co-exist with kaolin group minerals depending on the temperature and salinity of the hydrothermal fluid. Temperatures of formation for illite group minerals are typically less than 250°C with smectite stable from 100 to 150°C, interlayered smectite-illite stable from 150 to 200°C, and illite stable from 200 to 250°C. Above 250°C, muscovite or sericite is the dominant phyllosilicates; however, this fine-grained muscovite can contain minor illite.

The strongest phyllosilicates and/or clay alteration observed in the diamond drill core was from LEN-004, where there was a wide interval of mudstones and possible felsic volcanic rock or an intrusion that had been moderately to intensely masked by alteration minerals. The mudstones were variably and complexly altered both parallel to and crosscutting the major fabric of the rock. The colour of the altered mudstones ranged from a pale grey to a medium, dark yellow. This variability in colour suggests that there might have been some degree of compositional banding in the mudstones; that here were multiple stages of alteration overprinting the mudstones; and/or there was evolution within the hydrothermal fluid as minerals were both created and destroyed. There were also discrete patches of a bright green alteration that is known as fuchsite alteration; however, this alteration will be discussed further later in the section. In the case of the possible felsic voicanic rock or intrusion, the entire unit had been essentially altered to a zone of massive sericite and clay minerals. The drill core was extremely friable and fissile such that individual flakes could be extracted with little effort and the drill core could be broken with out the use of mechanical coresplitter or power saw. The colour of the rock was a oright white to a pale grey and the original mineralogy had been essentially masked by hydrothermal alteration; however, close inspection revealed the faint outlines of relict and/or pseudomorphed, subhedral to euhedral, feldspar and subhedral quartz phenocrysts. The most intense phyllosilicates and/or clay alteration was apparently centered in the possible felsic volcanic rock or intrusion and gradually became less intense outward from the possible felsic volcanic rock or intrusion. This resulted in an alteration halo that extends an apparent 12.5m uphole and an apparent 10.1m downhole from the possible felsic volcanic rock or intrusion.

Another alteration facies that is present in LEN-004 is epidote or epidote-quartz alteration. In VMS systems, this alteration facies occurs dominantly in subaqueous mafic volcanic successions and along synvolcanic structures. Epidote-quartz alteration is typically characterized by a mineral assemblage consisting of epidote, quartz, amphibole, and carbonate, which means that there is a net enrichment of Ca and a depletion of Fe. Mg, Na with or without Cu, Mn, and Zn (Gibson, 1990). Galley (1993) noted that epidote-quartz alteration will form from 300 to 400°C under low fluid to rock ratios and typically involves chemical reactions with albite, anorthite, clinozoisite, and magnetite. In an epithermal environment, Corbett and Leach (1998) noted that calc-silicate minerals, which includes epidote, form under neutral to alkaline pH fluid conditions and include other minerals such as zeolites, chlorite, carbonate, and amphiboles. Epidote crystals tend to be granular to crystalline in habit and form between 180 and 220°C, but under slightly hotter fluid conditions up to 250°C, epidote will form subhedral to euhedral crystals.

Epidote-quartz alteration is only present in the LEN-004 diamond drill hole and does not appear to be directly associated with any forms of sulphide mineralization; however, there is very anomalous base and precious metal mineralization further downhole in the graphitic to calcareous mudstones. The epidote-quartz alteration occurs as discrete patches over an interval of 19.6m in coarse-grained, mafic volcaniclastic rocks of the Telkwa Formation and can best be described as a partial to whole-scale replacement of the matrix in the mafic volcaniclastic rocks. The discrete patches of epidote-quartz alteration vary in colour and include pale gray, pistachio green, and a greenish yellow.

One of the more interesting alteration facies identified in the study area was the fuchsite or Cr-muscovite alteration that was intersected in diamond drill hole LEN-604 on the Len 4 mineral tenure. The fuchsite alteration is a patchy, discrete alteration of the illite group alteration facies and principally alters the graphitic mudstones both parallel and crosscutting the dominant fabric and rock contacts in the drill core. The mode of the fuchsite suggests that there might be either a lithological or structural control focusing of the hydrothermal fluids responsible for the formation of the fuchsite. Corbett and Leach (1998) noted that both Cr-muscovite (fuchsite) and V-muscovite (roscoelite) are extremely commomplace when the source region of the hydrothermal fluid transgresses an ultramafic or mafic rock. Moritz and Crocket (1991), in their study of the Archean Quartz-Fuchsite Vein in the Timmins-Porcupine Gold Camp, Ontario, noted that the after an initial stage of intense carbonate alteration of the host komatile volcanic rocks, there was a second stage of intense fuchsite-pyrite alteration that was centered on the adjacent quartz-feldspar, felsic porphyry intrusion. This is also the case with the location of the fuchsite in diamond drill hole LEN-004. In proximity to the fuchsite alteration is a highly altered, quartz-feldpar, felsic unit; however it is uncertain if the unit is an intrusion or a lobe of a volcanic flow.

Around some of the minor dykes and/or sills observed in the diamond drill holes LEN-001, LEN-002, and LEN-003, there are zones of a pale to medium reddish brown coloration associated with the chill margin or contact zone of the intrusions, which intrude mudstone, graphitic mudstone and siliceous siltstones. This coloration is most likely biotite alteration, which is part of the potassic alteration facies. Potassic alteration minerals tend to form at high temperature and neutral to alkaline geochemical conditions in either proximity to or adjacent to the intrusions. Secondary biotite will form at temperatures between 300° and 325°C in active porphyry systems (Corbett and Leach, 1998). In the case of the biotite alteration in diamond drill hole LEN-002, the progressive evolution of the hydrothermal alteration from a focused, structurally controlled, vein-style of alteration to a more pervasive form has resulted in false clastic textures. McPhie et al. (1993) coined these false clastic textures pseudobreccia, as they appear to possess a matrix and clasts of differing composition; however, the only true difference is their colour. Each phase of this polyphase hydrothermai alteration commonly varies in intensity, meaning that a single, homogeneous or monomictic unit can appear polymictic or heterolithic in composition. This confusion can often result in rock-types being mis-identified in the field, thereby making correlation of stratigraphy extremely difficult. Allen (1998) noted in the Mount Lyell voicanic rocks of Tasmania that pseudobreccia units have been deformed such that they possess a lenticular shape, which is parallel to the tectonic fabric. This alignment of the alteration minerals makes the pseudobreccia mimic a volcaniclastic unit of flattened pumice fragments in a welded tuff-sized deposit.

2.4 1999 Whole-Rock and Trace Element Geochemistry

Prior to the 1999 diamond drill program completed by HBED, only a limited number of samples had been previously submitted for lithogeochemistry in the Babine Lake area. As a result, an effort was made to collect several samples from each rock-type, each of which was submitted for whole-rock (ICP) and trace element (ICP-MS) analysis at ACME Analytical Laboratories Ltd. Compilation and interpretation of the geochemical data obtained during the 1999 diamond drill program is currently underway now that all results have been received from ACME Analytical Laboratories. Both the whole-rock data and all of the trace element data are presented in Appendix C.

All of the samples collected from the diamond drill core that were submitted for lithogeochemistry have now been received and digitally compiled into a master database. Out of the 7 diamond drill holes completed in the Babine Lake area, only LEN-004 on the Len 4 mineral tenure yielded any significant and/or anomalous values base and precious metal values. From 74.68m (245 ft) to 111.46m (365.7 ft) (36.79 or 120.7 ft) there was visible sulphide mineralization, which graded 0.007% Cu, 0.052% Pb, 0.200% Zn, 0.393% Mn, 0.131% As, and 6.38 gpt Ag. This large interval also included 10.21m (33.5 ft) grading 0.009% Cu, 0.121% Pb, 0.427% Zn, 0.719% Mn, 0.329% As, and 14.39 gpt Ag. Further analysis of the lithogeochemistry is pending a full digital compilation of the historical data from the area, as well as the diamond drill program.

3.0 Discussion

3.1 **Proposed Genetic Models**

3.1.1 High Sulphidation VMS-Epithermal Transition Deposits: 'The Eskay Creek Genetic Model'

Eskay Creek is an extremely attractive target for the mining industry and only recently has there been enough study to accurately ascertain the most likely scenario for the formation of the anomalous base and precious metal mineralization that constitutes the Eskay Creek Mine. Sherlock et al. (1999) noted that the hydrothermal system that resulted in the formation of the sulphide mineralization was below 200°C and possessed an extremely high gas content. Results from detailed fluid inclusion studies revealed that the mineralization formed at approximately 150 bars that equates to roughly 1,500m BSL; however, there was significant contribution from the gas phases, which resulted in extremely variable data. Oxygen isotope data from quartz mineral separates and whole rock data indicate that seawater was the dominant fluid in the hydrothermal system and that there was a mixing of seawater with a very low temperature saline fluid that was less than 100°C. This high salinity fluid possessed high K/Na and Cl/Br ratios in comparison to seawater, but is should be noted that the exact relevance of the halogen-rich, saline fluid to the sulphide mineralization was derived from sulphate in seawater; however, one anomalous result from barite suggest an oxidized, igneous source for some of the sulphur. In conclusion, Sherlock et al. (1999) noted that the sulphide mineralization formed at or near the seafloor-seawater interface in a shallow water setting, whereby fluid boiling resulting in the precipitation of gold and silver.

3.1.2 'The Equity Silver Genetic Model'

The genetic model for the Equity Silver Mine is based on a combination of several key attributes of the geological framework including mineralogy, mode and style of mineralization, and the geological setting; however, it should be noted up front that current research has been unable to accurately assign the Equity Silver Mine to a single genetic model, as Equity Silver Mine's origin remains enigmatic. One key factor is the close spatial and age association between the advanced argillic altered zones and the quartz monzonite intrusions. Cyr et al. (1984) noted that the sericite from the advanced argillic altered zones yielded K-Ar age dates around 58 Ma. K-Ar age dates from the quartz monzonite cover a similar range from 56 to 61 Ma. This similarity in ages for the intrusions and the spatially related alteration zones are suggestive of a genetic link, whereby they are contemporaneous and part of the mineralizing process.

Cyr et al. (1984) noted that the processes associated with the intrusions in the mine area were responsible for the shattering of the host volcanic and volcaniclastic rocks, which is evident in the various brecciation-styles such as jigsaw and crackle breccia zones. Metal-rich hydrothermal fluids were then introduced into these porous and permeable breccia zones, which acted as a 'sponge' and resulted in widespread disseminated sulphide mineralization that gradually grades into either semi-massive or massive sulphide mineralization. Sulphide mineralization was precipitated and deposited primarily as disseminated crystals in the open spaces created during shattering of the host rock, which acted as low-pressure zones that allowed for the boiling of the hydrothermal fluids and formation of sulphide mineralization dykes and sills caused local remobilization and concentration of metals in the vicinity of the intrusion contact zones with the wall rock.

Shen and Sinclair (1982) noted that fluid inclusion studies supported the genetic model presented in Wetherell (1979), which stated that the a quartz monzonite stock acted as the heat engine for a hydrothermal system that resulted in periodic fracturing during the mineralizing process. Mineralization most likely formed from a single, long-lived, hydrothermal system that centered on the quartz monzonite stock with mineralization gradually progressing outward under decreasing temperature conditions. Although the high salinities within the fluid inclusions and their respective daughter minerals such as halite suggest an igneous origin, there is evidence that meteoric water was a significant component of the hydrothermal system.

3.2 Volcanogenic-hosted Massive Sulphide Deposits and Other Massive Sulphide Deposits of the Smithers-Babine Lake Area, BC

3.2.1 Major Volcanogenic-hosted Massive Sulphide Mineralization

Within the Hazelton Group rocks of the Smithers area in Central British Columbia, there are several base metal occurrences that share many affinities to VMS deposits found elsewhere in the Hazelton Group. These occurrences have seen a long exploration history with most of the work having been completed during the 1960's and 1970's; however, one reason none of these occurrences have been conclusively identified as VMS occurrences was perception that the rocks of the Hazelton Group did not conform ideally to the genetic model of those times. After the discovery of the Eskay Creek VMS mine, many workers began to reassess the depositional environments of the Hazelton Group. Most recently, Wojdak (1999) provided a general summary of the stratigraphic position of the mineralization at the possible VMS occurrences in the Smithers area; however, there are also some other massive sulphide occurrences in the area that could also be related or transitional to the VMS genetic model. These deposits, prospects, and/or occurrences include the Ascot (Figure 24), Copper Crown, Del Santo (Figure 25), Equity Silver, Fireweed, Harry Davis, Lakeview (Figure 2165), New Moon, Red, SU (Figure 27), and Trek. An overview for these possible VMS deposits, prospects, and/or occurrences is presented in Table 4, noting that only those with either a geological resource or reserve are presented in the summary.

 \mathbf{r}_{i}

Figure 26

4

Hudson Bay Exploration and Development Co. Ltd.

HUDSON BAY

Western District Office, Vancouver, British Columbia

Massive Sulphide Deposits of Mesozoic Rock, Central BC

Deposits	Host Rocks	Age	Tonnes	Au	Ag	Cu	Zn	Pb
			(Mt)	gpt	gpt	%	%	%
Anyox	Sedimentary	Hazelton	45.8	0.2	9	1.25		
Big Missouri	Volcanic	Hazelton	3.3	2.6	18			
Copper Crown	Volcanic	Hazelton	0.2		20	0,53	4.50	
Dolly Varden	Volcanic	Hazelton	0.1		1000	0.95		0.50
Double Ed	Volcanic	Hazelton	2.0			1.30	0,60	
Eagle	Volcanic	Hazelton	0.2			2.50		
Equity Silver	Volcanic	Skeena	32.4	1.0	94	0.35		
Eskay Creek	Sedimentary	Hazelton	1.9	60.2	2652	0.70	5,20	3.20
Fireweed	Sedimentary	Hazelton/Skeena	1.0		390		2.40	1.40
Granduc	Sedimentary	Hazelton	24.8	0.1	8	1,60		
Inel	Sedimentary	Hazelton/Stuhini	0,5	2.0	12	0,10	2.60	0.10
North Star	Volcanic	Hazelton	0,1		402			
Outsider	Volcanic	Hazelton	0,3	0.1	10	1.50		
Redwing	Volcanic	Hazelton	0.2	1.2	86	2.00	2.70	
Rock & Roll	Volcanic	Triassic	0.7	2.5	336	0.64	3.10	0.80
Scotia	Volcanic	Paleozoic	0,2		21		11.80	1.30
Topley Richfield	Volcanic	Hazelton	0,2	3.5	159		2.00	2.00
Torbrit	Volcanic	Hazelton	7.8		187		0.40	0.40

٠.

.

3.2.2 The Equity Silver Mine

The Equity Silver Mine is located approximately 38km southeast of Houston, BC (Figure 28) and is no longer in production. Cyr et al. (1984) described the deposit as a volcanic-hosted sulphide deposit that was associated with magmatic activity. The deposit occurs in a succession of Upper Jurassic to Late Cretaceous-aged volcanic and sedimentary rocks that have been unconformably overlain with Tertiary volcanic and volcaniclastic rocks near the midpoint of the Buck Creek Basin. Stratigraphy within the immediate mine area strikes at to the south-southwest (195°) and dip off to the east at 45°. At the base of the stratigraphic column in the mine area is a coarse-grained, chert pebble conglomerate with intercalated mudstones. Pyroclastic and reworked, tuff-sized, volcaniclastic rock conformably overlie the basal conglomeratic unit; however, it should be noted that it is this pyroclastic unit that hosts the majority of the sulphide mineralization. A succession of tuff-sized volcaniclastic rocks, sandstones, and conglomeratic units are at the top of the mine stratigraphy, but locally, there are occurrences of flat-lying to shallowly dipping Eocene mafic volcanic rocks of the Francois Group, namely the Goosly Lake and Buck Creek Formations.

Overall, there are three main zones of mineralization: (i) Main; (ii) Southern Tail; and (iii) Waterline Zones (Figure 28). The total mineralization that was extracted from the Equity Silver Mine was 33.4 Mt grading 0.46 gpt Au, 64.9 gpt Ag, and 0.4% Cu. The three zones of sulphide mineralization were parallel to known stratigraphic contacts and occurred principally in the form of veins and broad areas of replacement. Sulphide replacment ranges from fine-grained disseminations to massive, coarse-grained bodies. The Main Zone has a thickness that ranges from 60m to 120m, whereas the Southern Tail Zone is only approximately 30m in thickness. The major sulphide mineralis that compose the sulphide mineralization at the Equity Silver Mine include pyrite, chalcopyrite, pyrrhotite, and tetrahedrite with galena, sphalerite, argentite, pyrargyrite, and some miscellaneous silver sulphosalts being only minor components. Other styles of mineralization at the Equity Silver Mine include a zone of Cu-Mo stockwork that is directly adjacent to the Quartz Monzonite intrusion, as well as a large zone of tourmaline, magmatic-hydrothermal breccia to the west and northwest of the Main Zone. This breccia zone contains minor pyrite and is very similar to other magmatic-hydrothermal breccia, which are associated with both porphyry and epithermal deposits throughout the Cordillera and Andes.

Hydrothermal alteration facies are characterized by an assemblage of minerals rich in alumina, boron and phosphorous. The alumino-silicate mineral assemblage includes and alusite, corundum, pyrophyliite, and scorzalite. Boron-rich minerals are dominantly tourmaline, but dumortierite is also known to occur in the hanging wall of the deposit. The phosphorous-rich minerals include scorzalite, apatite, augelite, and svanbergite, which also occur in the hanging wall of the deposit in the vicinity of the Main and Waterline Zones. Advanced argillic alteration also occurs in the mine area, but typically as an envelope around zones of intense fracturing and veining that may possess

Figure 28

 \mathbf{h}

either chalcopyrite and/or tetrahedrite, but can be best described as a sericite and quartz replacement of the host rock.

3.2.3 Fireweed VMS-Epithermal Developed Prospect

Possibly similar to the Equity Silver Mine is Mansfield Minerals Ltd.'s Fireweed massive sulphide, developed prospect, which is located on the south side of Babine Lake approximately 54km northeast of Smithers, BC. The sulphide mineralization is hosted within a volcanic-sedimentary succession that includes the Upper Triassic to Lower Jurassic Takla Group and the Middle Jurassic to Upper Cretaceous Kitsuns Creek Formation of the Skeena Group. It should be noted that the Skeena Group sedimentary rocks appear to be the host for the sulphide mineralization and not the volcanic rocks. The common orientation of stratigraphy in the area ranges between 70° and 80° with dips off to the southeast at 20° to 30° . Eccene Babine-type intrusions have cut stratigraphy in the area; however, several diamond drill holes have also intersected strongly altered latite dykes and sills. A geological resource has been calculated for the West Zone of supphide mineralization at 584,500 tonnes grading 1.34% Pb, 2.22% Zn, and 341.77 gpt Ag (Figure 29); however, it should be noted that the geological resource is from three principal zone (West, East, and South) and does not include the 1600, 3200, Jan and Mn Zones. Overall, there are three main styles of sulphide mineralization including (i) breccia-related sulphide; (ii) disseminated sulphide; and (iii) semi-massive to massive sulphide mineralization. The semi-massive to massive sulphide mineralization is commonly very fine- to fine-grained, banded or layered, and contains abundant quartz crystals and sedimentary rock fragments or clasts. The more massive forms of sulphide mineralization are either pyrrhotite-pyrite or sphaleritegalena, which is extremely similar to the breccia-related sulphide mineralization; however, the breccia-related sulphide mineralization does also contain chalcopyrite. All of the sulphide mineralization associated with zones of brecciation are spatially related to the latite dykes and sills. In the case of the disseminated sulphide mineralization, pyrite and pyrrhotite are the dominant sulphide species; however, more detailed studies have identified the presence of marcasite, and tetrahedrite. Hydrothermal alteration facies are commonly widespread and disconformable throughout the volcanic-sedimentary succession and most commonly in the porous, course sandstones. The most common alteration minerals include quartz, ankerite, sericite, chlorite, and kaolinite.

3.3 Eskay Creek Precious Metal-rich VMS Mine

The Eskay Creek Mine is located approximately 85km northeast of Stewart, BC (Figure 30) and is currently one of the most prolific gold and silver mines in the world, even though, the mineralization is dominantly syngenetic and falls under the classification scheme of VMS deposits. During the 1980's, a junior mining company named Kerrisdale Resources Ltd. successfully completed a small diamond drill program that intersected the 21 Zone of massive sulphide mineralization. Subsequent exploration activities in 1988 with Kerrisdale Resources Ltd.'s joint venture partners Stikine Resources Ltd. and Calpine Resource Inc. confirmed the presence of significant VMS mineralization in what was to become known as the 21A Zone. Further step-out diamond drilling encountered the

٠.

Figure 29

extremely high-grade 21B and 109 Zones. More recent mine exploration programs in 1995 defined the limits of the 21B and 109 Zones; however, new results have shown that the exploration activities have been successful in identifying two new zones of mineralization that include the NEX and 21C Zones. These new discoveries have increased the current reserve base to a higher level f an what was originally calculated for the mine opening in 1995.

The geological framework for the Eskay Creek Mine is dominated by Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group that includes andesite, marine or basinal sediments, dacite to rhyolite volcanic and volcaniclastic rocks, and basaltic sills and flows. The basaltic sills and flows compose part of the hanging wall stratigraphy of the mine environment, but they are intercalated with a large succession of turbiditic mudstones that are locally very graphite-rich. It should be noted that the basaltic dykes cross cut all lithologies in the mine environment. The Eskay stratigraphic column is then overlain with the clastic sediments that comprise the Bowser Lake Group. Several younger intrusions complicate stratigraphy, as the lower portion of the stratigraphic column is cut by a monzodiorite and a felsic dyke swarm that appears to be the feeder system for the mine rhyolite sequence, which stratigraphically underlies the massive sulphide mineralization.

There are currently at least 8 mineralized subzones that compose the 21 Zone that have a collective geological reserve of 1.9 Mt grading 60.2 gpt Au, 2,652 gpt Ag, 3.2% Pb, 5.2% Zn, and 0.7% Cu (Figure 31). Each subzone has been previously distinguished from the other subzones on the basis of mineralogy, textures, ore grades, and metallurgical characteristics. Stratiform or syngenetic sulphide mineralization is primarily hosted along the contact zone between the rhyolite volcanic rocks and the overlying basinal sediments. The 21A, 21B, and NEX Zones all occur along this contact zone, whereas, the HW Zone occurs higher in the stratigraphic column within the hanging wall

3.4 Major Epithermal Vein Mineralization

3.4.1 Dome Mountain Epithermal Vein Deposits

The mineral deposits, prospects and occurrences in the Dome Mountain area are located on the eastern limb of a plunging anticline of volcanic and volcaniclastic rocks of the Nitkitkwa Formation. A geological resource was calculated in 1994 at 200,700 tonnes grading 14.9 gpt Au. The hanging wall rocks have typically undergone intense sericitization in proximity to the mineralized structures and grades outward into strong chloritization with patchy and discrete epidote-quartz, carbonate and pyrite alteration. Target-size of the alteration halo is known to extend outward several meters into the adjacent wall rock.

Mineralization occurs along vein structures that reach up to 2.7m in width and have sharp wall rock contacts, which is sometimes coincident with minor gouge and a narrow zone of bleaching. In the hanging wall, the narrow zone of bleaching grades outward into the intense sericitization. It is within this intense hydrothermal alteration that both

ъ.

barren and polymetallic veins are known to occur with quartz and/or carbonate stringers. One such vein system is the Boulder Vein that has been defined for 150m along strike and up to 60m down dip, but also cross cuts all rocktypes in the area. Most of the tonnage in the vein structures occurs in zones of brecciation that pinches and swells up to 15m in width; however sulphide mineralization varies from disseminated to zones of banded, massive sulphide mineralization within the quartz vein.

Elsewhere in the Dome Mountain area, mineralization occurring at the Dome Mountain (Forks) Occurrence was originally discovered in a creek bed as a NE-trending shear zone through the Lower to Middle Jurassic-aged mafic volcanic rocks of the Nilkitkwa Formation. A geological resource was calculated in 1985 at 20,000 tonnes grading 23.6 gpt Au; however, no values were ever ascribed to the base metal content of the system other than some rough production values.

Overall, mineralization was reported vein-style with between 5 and 10% galena, arsenopyrite, pyrite, and sphalerite. Subsequent underground development outlined two mineralized quartz veins that range up to 1.5m in width hosted within a sericite, carbonate, fuchsite (Cr-muscovite) altered volcanic, tuff-sized unit. The NW-trending vein dips to the NE and has an average grade of 42.1 gpt Au and 85.4 gpt Ag. The second vein trends to the NE and has an average grade of 15.3 gpt Au and 59.0 gpt Ag.

3.4.2 Duthie Epithermal Vein Deposits

At the Duthie Mine located on the south side of Hudson Bay Mountain outside of Smithers. BC, polymetallic, epithermal veins are hosted in spherulitic, flow-banded, felsic volcanic and volcaniclastic rocks that are cut by a Middle to Late Cretaceous Bulkley Intrusion that is composed of granodiorite and quartz monzonite. A geological resource was calculated in 1985 at 19,700 tonnes graving 5.0% Pb, 7.5% Zn, 207.0 gpt Ag, and 2.6 gpt Au. Overall, there are four main zones of mineralization that are localized within a fault zone, which generally strike to the northeast and dip between 50° and 70° to the southeast. Individual veins reach up to 2.4m in width and range in strike length from 213m to 1,067m.

Mineralization is composed primarily of galena and sphalerite with minor tetrahedrite, pyrargyite, pyrite, arsenopyrite, chalcopyrite, freibergite, silver, and gold. Pyrrhotite and marcasite are also known to occur locally. As well, many of the veins show varying degrees of faulting and brecclation. Hydrothermal alteration facies are not well known; however, there is mention that in the vicinity of the veins there is intense alteration and bleaching, but no description of individual alteration facies.

3.4.3 Cronin Epithermal Deposit

Another example of similar mineralization and hydrothermal alteration facies is located 30km east of Smithers, BC, at the Cronin Mine where mineralization is hosted in the Middle to Upper Jurassic-aged Ashman Formation and is cross cut by at least two Late Cretaceous to Tertiary felsic subvolcanic intrusions. The Ashman Formation is composed of predominantly intercalated mudstones, sandstones, wackes, and conglomerate units. These units have also been subsequently structurally modified with tight folding, which is most evident in the fine-grained sediments.

Sulphide mineralization at the Cronin Mine principally occurs in vein or stockwork structures and zones of quartz precipitation in fault zones. Most of the mineralized structures are related to two main fault zones that strike to the northeast and dip to the west. Mineralization is typicadly pod-like in nature and reaches up to 40m in length and up to 6m in width; however, there is a distinctive zonation with argentiferous galena, friebergite, boulangerite, and tetrahedrite in the core of fault zone and sphalerite increasing outward into the wall rock. Both pyrite and chalcopyrite are extremely sporadic in their dispersion throughout the vein system. Hydrothermal alteration facies associated with the sulphide vein structures include the formation of 'sericite schist' at the contact between the felsic intrusion and the sedimentary rocks and discrete silicification adjacent to quartz veins and/or stockworks. There is also local development of zoisite (epidote), calcite and chlorite.

3.4.4 New Moon Epithermal Deposit

Further examples of this style of mineralizing system have also been identified at the New Moon Property, which is located approximately 100km south of Smithers, BC. A preliminary geological resource for the prospect was calculated in 1991 at 688,700 tonnes grading 1.82% Pb, 5.51% Zn, 58.6 gpt Ag, and 0.99 gpt Au. The mineralizing system is hosted within intermediate to felsic volcanic and volcaniclastic rocks of the Lower to Middle Jurassic-aged Telkwa Formation and has been cut by numerous sills and dykes of the Topley Intrusive-suite. Stratigraphy in the area is typically flat to moderately dipping; however, structural complication has not only disrupted most of the lithological relationships, but also provided the plumbing system to localize the mineralization. The major faults occur along two dominant trends to the northwest and northeast with each set possessing moderate to steep inclinations.

At least two styles of mineralization have been identified on the property including an epithermal vein and oxide skarn system. The epithermal vein system is primarily quartz and caroonate veins that have undergone a multistage paragenetic formational history. Evidence of this complex formational history can be found in the various styles of breccia, colloform banding and/or crack-seal textures, drusy quartz, and overlapping stages of chalcedonic veinlets. Composite vein sets range between 1.0 and 25.0m in width, whereas individual veins reach up to 7.6m in width. There is also a significant degree of pinching and swelling associated with the mineralized vein system. The mineralization is composed of primarily sphalerite and galena with minor amounts of chalceopyrite, pyrite, malachite

and azurite with the gold typically associated with the pyrite in the form of electrum. It should be noted that the sulphide mineralization ranges from disseminated- to massive-styles that reach up to 10cm in width.

Hydrothermal alteration on the property is principally silicification along the major structures, clay alteration of the feldspars, chloritization of mafic components, and rare potassium feldspar rimming of quartz veins. It should be noted that the hydrothermal alteration is known to occur outward from the mineralized structures to a distance up to 50m, thereby suggesting a substantial target-size and large hydrothermal system. Epidote, prehnite, and calcite also occur as individual veins and/or stockworks; however, it should be noted that the rocks have been regionally metamorphosed to zeolite grade facies, which is further evidence of a complex. multistage, overprinting hydrothermal paragenetic history.

4.0 Conclusions

- The Central BC Project is located in an area that covers Upper Triassic to Eocene volcanic and sedimentary rocks, which are dominantly part of the Hazelton Group. The geological framework for the Hazelton Group rocks remains very prospective to host significant an 'Eskay Creek, transitional VMS-Epithermal deposit and other VMS mineralization, as well as low and high sulphidation epithermal deposits.
- 2) The extensive exploration activities in the project carried out by numerous other mining companies has resulted in a major database; however, the majority of the contained data still requires compilation, digitization, and interpretation. This includes the sizeable number of diamond drill holes that were cored to examine various Porphyry Cu targets in the area.
- 3) The Central BC Project successfully completed the objectives laid out in previous years, in that the highest rated geophysical targets were to be diamond drilled during the summer of 1999. The diamond drill program successfully completed 1694.5m of NQ-sized drill core from 7 sites in the project area.
- 4) There remains definite diamond drill targets in the Central BC Project area that were not tested in the successfully completed 1999 diamond drill program; however, there are also many other geophysical anomalies in the project area that were never followed-up with any field examination or further processing in the office. It should be noted that the remaining diamond drill targets all occur in highly conductive areas.
- 5) The geophysical anomaly that was successfully diamond drilled during the summer of 1999 on the Ful
 2 mineral tenure (DDH FUL-001) can best be explained by the presence of a coal seam hosted within the Eocene Newman Group volcanic rocks.
- 6) The geophysical anomalies that were successfully diamond drilled during the summer of 1999 on the Len 3, 4, 6, 7, and 8, and Ful 1 mineral tenures can best be explained by the presence of abundant graphitic mudstones in the immediate area of the mineral tenures. Each diamond drill hole intersected significant widths of graphite-rich sedimentary rocks. There were also numerous fault zones with

abundant clay gouge, which could have also been responsible for the presence of a geophysical anomaly.

- 7) Seafloor volcanic rocks were intersected in FUL-001 diamond drill hole on the Ful 2 mineral tenure, which strongly resemble the succession of Jurassic-aged bimodal succession of volcanic rocks in the Clear claim group area. Don MacIntyre of the BCGS U-Pb zircon age dated these volcanic rocks at 184.5 Ma. Further examination is warranted in any further exploration activities to determine the full potential being a favourable environment for hosting a VMS system.
- 8) Possible ultramafic to mafic, hydroclastic volcaniclastic units were intersected in LEN-004 diamond drill hole at three separate intervals; however, given the lack of rock exposure in the vicinity of the diamond drill hole and the fact these possible hydroclastic volcaniclastic rocks were only intersected in the one area, a more definitive origin to mains enigmatic at this time.
- 9) Only one of the diamond drill holes out of seven successfully completed in the Babine Lake area intersected any significant and/or anomalous base and precious metal values. This was the LEN-004 diamond drill hole on the Len 4 mineral tenure. It should also be noted that it was this same hole that intersected the only significant hydrothermal alteration that could be attributed to a VMS system.
- 10) The sulphide mineralization intersected in diamond drill hole LEN-004 on the Len 4 mineral tenure is principally disseminated to fracture-controlled sphalerite and pyrite; however, there was also minor galena and chalcopyrite.
- 11) The sulphide mineralization intersected in diamond drill nole LEN-004 on the Len 4 mineral tenure is hosted within a succession of graphitic mudstones, siliceous silistones, and carbonate rocks that have been structurally complicated by extensive faulting.
- 12) Weakly disseminated specular hematic mineralization was intersected in diamond drill hole LEN-005, which was successfully completed on the Len 3 mineral tenure. There were no significant trace element results from this diamond drift hole. It should be noted that the geophysical anomalies tested with LEN-003 appear to be a part of the distal alteration zone of the Lennac Lake Cu-Mo porphyry prospect.
- 13) The hydrothermal alteration facies spatially associated with the sulphide mineralization in diamond drill hole LEN-004 on the Len 4 mineral tenure include sericite, Cr-muscovite (fuchsite), silicification, epidote-quartz, chiorite, hematite, and clay alteration (sericite, illite, kaolinite, and others). Some of the clay minerals have not been positively identified because their individual grain-size is too small. Either petrographic or a PIMA study will be necessary to more precisely determine the exact alteration assemblage associated with the clay alteration. Note that there is a complex, multistage, overprinting paragenetic history to the hydrothermal alteration associated with the sulphide mineralization that appears to be in part structurally controlled by a fault zone.
- 14) Biotite alteration or potassic alteration facies is evidence of a possible porphyry influence for any alteration and mineralization found in the vicinity to the Len 6, 7, and 8 mineral tenures. It should be noted that the quartz monzonite intrusions (178 Ma) responsible for the sulphide and gold

mineralization at the Tachi showing on the Len 10 mineral tenure are also responsible for the patchy to pervasive pseudobreccia alteration, as blotite alteration is a dominant alteration mineral at the Tachi showing.

- 15) Both the sulphide mineralization and the hydrothermal alteration facies in diamond drill hole LEN-004 on the Len 4 mineral tenure are strikingly similar to the polymetallic vein mineralization in the vicinity of Dome Mountain. The area around Dome Mountain is known to host numerous Minfile occurrences that include several past producers of Ag, Au, Pb, and Zn.
- 16) The sulphide mineralization and hydrothermal alteration facies in diamond drill hole LEN-004 possess similar characteristics to both a more classical epithermal deposit model and the high-sulphidation, transitional VMS-Epithermal deposit model (Figure 32 and 33). Further work is needed to further refine the genetic model of the mineralization intersected in the diamond drill hole.
- 17) If the base and precious metal mineralization intersected in diamond drill hole LEN-004 is part of an epithermal vein system similar to others in the Babine Lake area, then the tonnage potential could be quite variable, but could still host economic mineralization.
- 18) If the base and precious metal mineralization intersected in diamond drill hole LEN-004 is part of a VMS system, then based upon the rock-types, alteration facies, and style of sulphide mineralization, the intercept could be a lateral and/or distal equivalent to the core of the mineralizing system.

5.0 Recommendations

- An exploration program has been proposed for an upcoming field season and will include further compilation of data, follow-up geological assessment in the vicinity of any diamond drill holes.
- 2) All of the geological, geochemical, and geophysical data collected in the Babine Lake area should be recompiled and reprocessed for reinterpretation based on the results and new information collected from the 1999 diamond drill program.
- 3) Digital copies of the newly revised geological maps currently being produced at the BCGS in Victoria, as a result of the Nechako NATMAP Project, should be acquired and processed to update our geological model of the Babine Lake area.
- 4) All of the lithogeochemical data snould be processed and correlated with the descriptions taken from core logging in order to properly ascenain the rock-types in the vicinity of the diamond drill holes. This will include both major and trace element binary and tertiary plots.
- 5) A selected suite of thin section should be made of the various rock-types, alteration facies, and mineralization styles in order to more precisely describe and enhance both the visual and lithogeochemical descriptions of the geology in the vicinity of the diamond drill holes. Note that a representative suite has already been collected from each diamond drill hole.

 $\mathbf{h}_{\mathbf{k}}$

7.0 Concluding Statement

Even though several airborne and ground geophysical targets were drilled during this past exploration program, the presence of massive sulphide mineralization in the Smithers-Babine Lake area remains enigmatic, albeit present in some locations, and open to further interpretation. The host rock in the area have been subjected to various phases of structural deformation and igneous activity, which combined with the scarcity of rock exposures, permits a tentative correlation of the diamond drill hole data with the surface geological framework. More follow-up work is required to further the understanding of the host rocks and depositional environment for sulphide mineralization in the Smithers-Babine Lake area; however, there still remains an excellent opportunity to identify and define new sulphide mineralization in the Hazelton Group rocks of Central British Columbia.

Respectfully submitted,

ASSOCIATION O J. K. DUNINKG F 6819 FELLOW ATON GEOLOGIQU Jasen K. Dunning, M.Sc., FGAC Project Geologist

8.0 Bibliography

Allen, R., 1988. False Pyroclastic Textures in Altered Silicic Lavas with Implications for Volcanic-Associated Mineralization. Economic Geology, vol. 83, 1988. pp. 1424-1446

Archer, C.T. and Klinkert, P.S., 1997. Airborne Electromagnetic and Magnetic Survey of Smithers A and Smithers B Areas. Unpublished internal Hudson Bay Exploration and Development Co. Ltd. document prepared by the Geophysical Services Department, Geophysical Section, Anglo American plc, South Africa; 10p.

Bidwell, G., 1998a. Line Cutting, Geochemical, and Geophysical Report on the Len 3, 4, and 5 Claims. Unpublished Hudson Bay Exploration and Development Co. Ltd. BCDM Assessment Report, 12p.

Bidwell, G., 1998b. Line Cutting, Geochemical, and Geophysical Report on the Len 6 and 7 Claims. Unpublished Hudson Bay Exploration and Development Co. Ltd. BCDM Assessment Report, 12p.

Buchanan, M., 1998a. Line Cutting, Geochemical, and Geophysical Report on the Ful 2 Claim. Unpublished Hudson Bay Exploration and Development Co. Ltd. BCDM Assessment Report, 11p.

Buchanan, M., 1998b. Line Cutting, Geochemical, and Geophysical Report on the Len 8, 9, 10, and 14 Claims. Unpublished Hudson Bay Exploration and Development Co. Ltd. BCDM Assessment Report, 11p.

Buchanan, M., 1998c. Line Cutting and Geophysical Report on the Len 1 and 2 Claims. Unpublished Hudson Bay Exploration and Development Co. Ltd. BCDM Assessment Report, 11p.

Buchanan, M., 2000. Personal Communication.

Carter, N.C., 1976. Regional Setting of Porphyry Deposits in West-Central British Columbia. In, Porphyry Deposits of the Canadian Cordillera; eds. Sultheriand Brown, A.; Canadian Institute of Mining and Metallurgy, Special Volume 15, 1976; pp. 245-263

Carter, N.C., 1981. Porphyry Copper and Molybaenum Deposits of West-Central British Columbia. In, British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch Bulletin 64; 150p.

Corbett, G.J. and Leach, T.M., 1998. Southwest Pacific Rim Gold-Copper Systems- Structure, Alteration, and Mineralization (Short Course Manual); 235p.

Cyr, J.B., Pease, R.B., and Schroeter, T.G., 1984. Geology and Mineralization at Equity Silver Mine. Economic Geology, vol. 79, 1984, pp. 947-968

Hannington, M.D., 1999. Submarine Epithermal Deposits and VMS-Epithermal Transition: A New Exploration Target. In, Eskay Creek & Subaqueous Hot-Spring Deposits Workshop; sponsored by Vancouver Mining Exploration Group (MEG), British Columbia and Yukon Chamber of Mines, and the British Columbia Geological Survey Branch; November 25th, 1999, Simon Frazer University, Harbour Front Centre, Vancouver, BC, Canada; unpublished workshop notes.

MacIntyre, D.G., 1999. Personal Communication.

MacIntyre, D.G., Webster, I.C.L., and Bellefortaine, K.A., 1996a. Babine Porphyry Belt Project: Bedrock Geology of the Fulton Lake Map Area (93L/16), British Columbia. In, Geological Fieldwork 1995 - A Summary of Field Activities and Current Research; British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch; pp. 11-36

MacIntyre, D.G., Webster, I.C.L., and Bellefontaine, K.A., 1996b. Bedrock Geology of the Fulton Lake Map Area, North-Central, BC. British Columbia, Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Geological Survey Branch, Open File Report 1996-29.

MacIntyre, D.G., Brown, D., Desjardins, P. and Mallet, P., 1987a. Babine Project. In, Geological Fieldwork 1988 - A Summary of Field Activities and Current Research; British Columbia Ministry of Employment and Investment, Energy and Minerais Division, Geological Survey Branch; pp. 201-202

MacIntyre, D.G., Desjardins, P. and Tercier, P., 1989. Jurassic Stratigraphic Relationships in the Babine and Telkwa Ranges. In, Geological Fieldwork 1988 - A Summary of Field Activities and Current Research; British Columbia Ministry of Employment and investment, Energy and Minerals Division, Geological Survey Branch; pp. 195-208

McMillan, W.J. and Struik, L.C., 1996. NATMAP: Nechako Project, Central British Columbia. In, Geological Fieldwork 1996 - A Summary of Field Activities and Current Research; eds. Lefebure, D.A., McMillan, W.J., and McArthur, J.G.; British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch; pp. 3-9

McPhie, J., Doyle, M., and Allen, R., 1993. Volcanic Textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania; 198p.

Moritz, R.P. and Crocket, J.H., 1991. Hydrothermal Wall Rock Alteration and Formation of the Gold-bearing Quartz-Fuchsite Vein at the Dome Mine, Timmins Area, Ontario, Canada. Economic Geology, vol. 86, 1991, pp. 620-643

Shen, K. and Sinclair, A.J., 1982. Preliminary Results of a fluid inclusion study of the Sam Goosly Deposit, Equity Silver Mines Limited, Houston, BC. In, British Columbia Ministry of Energy, Mines, and Petroleum Resouces, Geological Field Work, 1981, Paper 1982-1, pp.229-233

Sherlock, R.L., Roth, T., Spooner, E.T.C., and Bray, C.J., 1999. Origin of the Eskay Creek Precious Metal-rich Volcanogenic-hosted Massive Sulphide Deposit: Fluid Inclusion and Stable Isotope Evidence. Economic Geology, vol. 94, 1999, pp. 803-824

Sidic, V., 1998. Prospecting Report on Claims Kutl, Kut2, Kut3, Kut4, and Kut5. Unpublished Hudson Bay Exploration and Development Co. Ltd., BCDM Assessment Report, 3p.

Wojdak, P., 1999. Volcanogenic-hosted Massive Sulphide Deposits in the Hazelton Group, Babine Range, BC. In, British Columbia Ministry of Energy and Mines, Energy and Minerals Division, Mines Branch, Exploration and Mining in British Columbia – 1998; pp. C-1 to C-14

Geologist Certification

- I, <u>Jason King Dunning</u>, of 12041 234th Street, Maple Ridge, British Columbia, Canada, hereby state that I am a Project Geologist with Hudson Bay Exploration and Development Co. Ltd. with offices at 800-700 West Pender Street, Vancouver, British Columbia, V6C 1G8, and that:
- 2. I hold a B.Sc. (Honours Geology) from Carleton University, Ontario (1994) and a M.Sc. (Geology) from the Mineral Exploration Research Centre at Laurentian University, Ontario (1998).
- 3. I have 7 years experience with various research institutions and mining companies in Canada and the United States, not including my summer field season work during my undergraduate degree. My primary employment since 1994 has been in the field of mineral exploration.
- 4. I am a member in good standing of the Association of Geoscientists of Ontario, where registration as such, through the Government of Ontario, is pending certification.
- 5. I am the Past-National Chairman of the Mineral Deposits Division (MDD) of the Geological Association of Canada (GAC) for 1999 and 2000, as well as being a Fellow of the GAC.
- 6. I am also a member with the Canadian Institute of Mining and Metallurgy (CIM), Prospectors and Developers Association of Canada (PDAC), Geological Society of America (GSA), and the Society of Economic Geologists (SEG).
- 7. I have specialized training in the areas of volcanology, ore deposit geology and hydrothermal alteration through academic training, numerous short-courses, and exploration project experience. My experience has allowed me to become familiar with the evaluation of both regional and property geology, prospecting, geophysical surveys, geochemical analysis, diamond core drilling, and the various facets of the permitting process in Ontario and BC.
- 8. This report is based upon data collected from historical documents and journal articles, as well as field observations collected from July 12th to September 10th, 1999 over the course of the 1999 diamond drill program.

DATED at Vancouver, B.C., Wednesday, September 13, 2000

APPENDIX A

.

•

Hudson Bay Exploration and Development Co. Ltd. Western District Office, Vancouver, British Columbia

PROJECT DATE	Central British Co	olumbia			
TOTAL EXPLORATION BUDGET	\$124,480.70				
WAGES (including benefits)	No#	DAYS	RATE		COMMENT
Project Geologist: Jason Dunning	1	39	\$270.00	\$10,530.00	
Geologist: Daniel Tutt	1	6	\$160.D0	\$960.00	
Assistant: Randy Langille	1	13	\$120.00	\$1,550.00	
RENTALS	No#	DAYS	RATE		COMMENT
Apartment (Granisle)	2	39	\$15.00	\$1,170.00	Accommodation for field crew in Graniste, BC
Truck (4 x 4) (all inclusive)	1	39	\$95.00	\$3,705.00	Transport for personel and materials
Hand Held Radios	3	39	\$2.00	\$234.00	Communications equipment
SUBCONTRACTS	No#	DAYS	RATE		COMMENT
Helicopter/ Hrs. (all inclusive)	20		\$695.00	\$13,000,00	Highland Helicoptore (Smithere Roos)
Drilling (all inclusive)	1094 5		\$65.50	\$71,800.00	Ritten Brothere Drilling (Smithers Base)
	1004.0		400.00	\$11,00\$.10	Children Brochers Drining (Childrens)
MATERIAL AND SUPPLIES	No#	DAYS	RATE		COMMENT
Apartment Food	1	60	\$22.00	\$1,320.00	Supplies for kitchens in apartments
Fuel - Propane (cost / L)	60		\$0.34	\$10.95	Propane for BBQ for cooking at apartments
Helicopter - Fuel (cost / L)	820		\$0.80	\$656.00	Fuel not bought directly off helicopter company
Fuel Drum Deposit	4		\$30.00	\$120.00	Deposit against damaged fuel drums
Field - Equipment	3		\$500.00	\$1,500.00	Field equipment for three man crew
Field • Expendibles	3		\$750.00	\$2,250.00	Flagging, sample bags, ship-chain line, mylar,
Building Supplies			N/A	\$200.00	Material for core storage structure
CHEMICAL ANALYZES	No#	DAYS	RATE		COMMENT
Rock				\$7,396.00	Lithogeochemistry on drill core samples
Allenant					
SUPPORT	NOF	DATS	KAIE		COMMENT
Travel - Airfare	1	1	\$329.00	\$329.00	Flight for Daniel Tutt to Vancouver (Sept. 99)
Travel - Hotels/Motels	2	2	\$50.00	\$200.00	Hotels to and from Vancouver-Granisle
Travel - Meals	2	2	\$50.00	\$200.00	Meals to and from Vancouver-Granisle
Freight - Truck				\$1,000.00	Shipping of samples to ACME Laboratory
Freight - Courier				\$50.00	Shipping documents to Vancouver Office
Telephone (including long distance)				\$500.00	Also includes fax-email of data to Vancouver
REPORTS	No#	DAYS	RATE		COMMENT
Report (all inclusive)	1	20	\$260.00	\$5,000.00	Maps, reproduction, charts, figures, …
······································					
TOTAL				\$124,486.70	
Notes:					
1999 Drill Program cost per metre	Diamond Drilling P	rogram	(all	Inclusive) \$124,486.70	
(all inclusive)	Site Construction a	nd Reclamation	all (all	nclusive) \$15,361.00	(see site construction and reclamation budgets)
			Total	\$139,847.70	
		Total (m)	1 004 50 -	ort/m let ress	
		100201(m)	1,084.00 0	vovni +127.77	
Cost per man	(includes accommo	odation and mea	ils)	\$3,864.95	(note that does not include daily salary)
		Number of Ma	an Days	123	
	k.		6	osl/man \$31.42	(if include transporation cost rises to \$82.03)

APPENDIX B

.

General Information	Drill Hole Data				
			_	_	
Drill Site	FUL-001			Azimuth	83
NTS Sheet	093L / 16			Angle	-55
NTS Zone	9)		Depth	157.3
UTM	665933	E		Casing	7.6
UTM	6076413	N		Rods	NQ
Grid	4+00	N		Casing-size	HQ
Grid	6+00	E		Water Source	lake
Mineral Tenure	Ful 2			Distance to Water	2.2km
Site Dimensions	17x17m	(289m ²)			
Drill Trail	350x3.5m	(1,225m ²)			
Total Area Disturbed	1,514m ²				
Total Area Reclamed	1,514m ²				

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the exploration trail and drill site.

The blade on the D-6 CAT was used to smooth out the drill site after drilling.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

Comments

Only three small pine trees (<20cm) were cut in the construction of the exploration trail and drill site.

The remainder of the vegetation removed through cutting were alder, poplar and willow. All were less than 15cm. Given the length of distance from water source to drill, two pumps were run in tandem.

Note that there was an extensive length of the exploration trail that was purely tall grass with no trees to cut.

General Information	Drill Hole Data			
Drill Site NTS Sheet NTS Zone UTM UTM Grid Grid Grid Mineral Tepure	FUL-002 093L / 16 9 677311 E 6082152 N 4+00 N 4+25 E Ful 1	AzimuthAngleDepthDepth157CasingRodsNQCasing-sizeHQWater SourceIakeDistance to Water2.2km	83 -55 7.3 7.6	
Site Dimensions Drill Trail Total Area Disturbed Total Area Reclamed	50x25m (1,250m ²) (helicopter access) 1,250m ² 1,250m ²			

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

Comments

Extensive deadfall in area around the drill site.

Dominant vegetation was balsam fir, pine, and spruce with rare poplar.

All trees that were cut during the construction were bucked and cross-piled along the side of the drill site.

This drill site required the most cutting in order to facilitate a helipad on site for crew changes for drill.

General Information	Drill Hole Data
General InformationDrill SiteLEN-0NTS Sheet093L /NTS Zone093L /UTM678UTM6066Grid0+00Grid4+00Grid4+00Mineral TenureLen 6Site Dimensions20x15Drill Trail25x3.6Total Area Disturbed387.56	Drill Hole Data Azimuth Angle Depth Depth Casing Rods N E (300m²) (87.5m²)

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

Grass seed was spread over areas of disturbance along the Granisle Highway in front of exploration trail.

The blade on the D-6 CAT was used to smooth out the drill site after drilling.

Comments

The drill site is located just off of the Granisle Highway.

Only one pine tree was cut (35-40cm) during the construction of this drill site.

All remaining vegetation removed was small alder and willow.

General Information	Drill Hole Data				
Drill Site NTS Sheet NTS Zone UTM UTM Grid Grid Grid Mineral Tenure Site Dimensions Drill Trail Total Area Disturbed	LEN-002 093L / 09 680127 6068432 5+00 7+00 Len 7 17x17m (used old 1 289m ² 289m ²	E N E (289m ²) FSR)		Azimuth Angle Depth Casing Rods Casing-size Water Source Distance to Water	91 -50 146.3 7.6 NQ HQ creek 400m

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

The blade on the D-6 CAT was used to smooth out the drill site after drilling.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

Comments

No construction was required for an exploration trail, as an old Forest Service Road (FSR) passed directly through the drill site.

Only natural regenerative pine trees were removed to clean-up the old FSR to the drill site.

Between 15 to 20 pine trees (< 20cm) were cut during the construction of the drill site
Summary Information for Diamond Drilling

General Information			Drill Hole Data							
Drill Site NTS Sheet	LÉN-003 093L / 16]	Azimuth	73					
NTS Zone	604E04			Depth	158.8					
UTM	6073953	N		Rods	22.9 NQ					
Grid	6+00 4+75	N E		Casing-size Water Source	HQ lake					
Mineral Tenure	Len 8	- 2.		Distance to Water	0.9km					
Site Dimensions Drill Trail	17x20m 30x3m	(340m ⁻) (90m ²)								
Total Area Disturbed	430m ²	. ,								
l otal Area Reclamed	430m ⁻									

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

The blade on the D-6 CAT was used to smooth out the drill site after drilling.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

Comments

Drill site can be directly accessed off of BC Hydro Powerline, meaning minimal construction required for access. Large balsam and pine trees were avoided during the construction of this drill site.

Between 5 to 8 pine trees (< 20cm) were cut during the construction of the drill site.

All other vegetation cut during the construction of this drill site included alder and willow.

Temporary drill storage facility was built to store all diamond drill core from the 1999 drilling program.

Summary Information for Diamond Drilling

General Information			Drill Hole Data							
Drill Site NTS Sheet NTS Zone UTM UTM Grid Grid Grid	LEN-004 093L / 09 9 676308 6070035 3+00 3+70	E N N E		Azimuth Angle Depth Casing Rods Casing-size Water Source Distance to Water	90 -50 176.8 24.4 NQ HQ creek 0.8km					
Site Dimension Drill Trail Total Area Dist Total Area Rec	is 17x17m 20x3.5 turbed 359m ² clamed 359m ²	(289m ²) (70m ²)			L					

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

The blade on the D-6 CAT was used to smooth out the drill site after drilling.

Minor grass seed was spread over a muddy area in proximity to the entrance to the exploration trail.

Comments

The area around the drill site had undergone extensive thinning by the Ministry of Forests. Large balsam and pine trees were avoided during the construction of this drill site. Between 20 to 25 pine trees (< 20cm) were cut during the construction of the drill site. All other vegetation cut during the construction of this drill site included alder and willow.

Summary Information for Diamond Drilling

General Information		Drill Hole Data							
Drill Site NTS Sheet NTS Zone UTM UTM Grid Grid Mineral Tenure Site Dimensions Drill Trail Total Area Disturbed	LEN-005 093L / 09 9 670576 E 6068239 N 3+00 N 4+80 E Len 3 25x25m (6 (helicopter ac 900m ²	525m ²) ccess)		Azimuth Angle Depth Casing Rods Casing-size Water Source Distance to Water	60 -50 152.4 13.7 NQ HQ lake 0.4km				
Drill Trail Total Area Disturbed Total Area Reclamed	(helicopter a 900m ² 900m ²	ccess)							

Reclamation Activities

All shrubs, bushes and trees were bucked, quartered, and scattered over the drill site.

All garbage and waste materials was collected in large buckets and removed from site for later disposal.

Comments

Extensive deadfall in area around the drill site.

Dominant vegetation was pine; however, there were also spruce, balsam, and rare poplar.

All trees that were cut during the construction were bucked and cross-piled along the side of the drill site.

This drill site required no cutting in order to facilitate a helipad for crew changes for drill, as a marshy area

in proximity to the drill was solid and dry enough to facility landing of the helicopter for extended periods of time without any impact on vegetation.

North J	Face	Geological	Ltd.
---------	------	------------	------

North Face Geological Ltd. 15575 86 Avenue Surrey, B.C. V3S 5C8

Hole #: *FUL-001*

Northing:

Easting:	600.000
Elevation:	1100.000
Field Location: 4+0	0N, 6+00E (m);
Length:	157.28
Length: Start Dip:	157.28 -55.0

400.000

Logged by:	JKD
Log date:	28/10/1999
Date Started:	08/08/1999
Date Finished:	09/08/1999

DRILL HOLE	DESCRIPTION
DETAILED (GRAPHIC LOG

Comments: Subaqueous volcanic rocks possibly of Jurassic age

Ful 2

Omineca

Casing Exposed:	7.6		
Casing Size:	NQ		F
Contractor	Britton Brothers		
Assay Lab:	ACME		
Project:	2318		
Area:	Bahine		
Property:	FUL		
]	
Map Reference:	93.078, 93L.088		

Claim: Region: Dip Tests Hole # Depth Azimuth Dip

Project: Central BC

FUL-001 0.00 90.00 -55.00

Hole ID: FUL-001 North Face G	eological L	td.								Project:	Central	BC		
rom To Description	fuchsit	ser	Maf		1	From	To	Width	Sample	Pb (ppm)	Zu (ppm)	Ag (ppb)	Ba (ppm)	As (ppm
0.00 - 7.62 Casing								, , 			, .	! !	, 	
	-			CASING		, , -		· · ·] ⊢		, 	, .	' 	' 	, 1 ·
						· · 		' ' -			-1	, 		, ·
) 		1 1-		, 	, -	' 	' 	
				CASING		 		, , , ,} ,_			-l	' 	' 	
						, , L		, , .			-1	' 	' 	,
				CASING				· · ·		, ,	, -	' 		' {
.62 - 41.61 FAmphP Maf-D ALT/TLA								· · ·			' -	 	 	,
						8.84	9.45 	' 0.61 '. .i l	JKDR00083	' 4.60 ↓	' 54.10 -	' 27.00	' 83.40 	' 0.10 I ·
					1			1 I		, ,	ı 	1	' !	,
		e e e e e e e e e e e e e e e e e e e		10.00		+		, , 			-l	' 	, .	
						/ 	+				-l	' 	' 	f
						1		· · · ·		, 	-l	, 	, .	,
						 ⊨ =		·			, _	' .	' .	,
						= = =		· · · ·			-1	' .	, .	
				15.00		 		· · · ·			, -		' .	'
						 		, , 			-	' .	' .	!
					4 4 4	F 1		, , . _ ~ ŀ			' -	' .	' .	, I
						1		· · ·		· 	' -	' .	' .	•
						1	' 	· · ·		· ·			' 	
				20.00		-	' -	· · ·		, 	-	' 	.	
				- 533		21.34	' 21.95 	' 0.61 ' - - - -	JKDR00083	2.06	' 20.40 -	' 31.00 ·	' 149.80 ·	' 0.10
				_		1	' 	· · ·		, 	-l	.	.	
				-		1		· · · ·	~ ~	, 	-			
								· · · ·			-	· · • · · ·		1
				-25.00				-			-i	- · ·	.	
								-			, _	.	.	
				_				· · -		+=	-	· - ·	· 	1
						28.35	' 28.90 	5'0.61' -	JKDR00083	4.72	' 60.30 -	' 42.00 ·	· 133.60 · · ··	0.10
					l I	1		-		· 	-	.	· ·	
				50.00				-			, -	.	· -1	
							• 	·]		-+ ·· -=	, 	.	, .	
						· · • •	!	· · ·			, 		, .!	۰ ۱
2/2(000											Pa		2	

Hole ID: FUL-001 North Face Geold	ogical L	td.		_				,	Р	roject:	Central	BC]
From To Description	fuchsit	ser	Maf	I I	ļ	From	To	Width	Sample 1	РЪ (ррт)	Za (ppm)	Ag (ppb)	Ba (ppm)	As (ppm	i)
					1	· · ·		г г Г., ., Г.		I	·	т .I	I	r 	1_
					ו ז	- -		1		1 4	-	·	·!	- - - - - -	
				35.00	1	· · ·		, , F		, 	' .	' .	' .	' 	
					1	, , -		-		' i	' -	' 	' .}	, ,	
					1	, , ⊢ – – ŀ-		-		, 	-	·	, .	, .	
					ì	' 38.10 ' -	38.71	' 0.61 '. }-	IKDR00083	' 3.84 	' 59.60 -i	' 44.00 	' 72.40 ·	' 0.10 	
				40.00	İ	-		-		, 	-1		, .	, ·	
					Ì] -					-1		· .		
41.61 - 59.77 Coal					Ι	·		-					·}		
					1	⊢ – – I·		1 -			-1				- -
					I	⊢ I-		-			-		1		- -
				45.00	I	 − −		-	~	· · · ·	-				
				-	ł	-		 			-			1	
	1			-	1	!		1 1		+	-		·		
		ļ		-	I	i				+	-				
				-	I	-		-		+	-	·			- -
				50.00	l	··· ·· ·-		-		+	-	·	·		- -
				-	I	-		-					·		- -
					1	-		-		4	-				
					I	<u>}</u>				+	-		·		- -
								-		┨ - - -		·	·!		- -
				55.00	1	·		-			-	·	·		- -
						-		ŀ		4 ·		·	·		- -
					1	-		· }		┥ ━ ╰ - ╷		· ··	·	— ·	
					1	- 		- 		+ ,	·	·		· ·	·
59.77 - 62.48 (Amph)FP Maf-D ALT/TLA						{}		- 		+ ,	-	·i =	·[- ·		- -
				60.00	1			·I I·		+ ,	-	·	·{	— — ·	
								· · · · · · · ·		+ 1	-	·	·	- - ·	
62.48 - 86.65 FP Maf-D T/LT										т — — - 1	-1 -1	· .	· .	·	
					T T	1 I } I				т — — - 1					
			1		1	i		י = ר ג = ר		1 ·	-	· ·		, — — · ! <u> </u>	_ _
			1	1 65 66 1 1	-			1 [1					1 -
				05.001	I.	65.23	65.84 	0.61	JKDR00083	· 7.76 	58.40 	55,00	1224.00	' 1.40)	

): FUL-001	North Face Geological l	Ltd.			•]	Project: Ce	ntral BC		
From	To Description	fuchsi	t ser	Maf	From	To Widt	h Sample	Pb (ppm) Zn	(ppm) Ag (pp	ob) Ba (ppm) /	la (ppm)
			<u> </u>				1	т г 1 г	· · · · · · · · · · · · · · · · · · ·		
						1		-1	· ·- ·-	I I	
						 		- - 	·	-	
						 	r		·:	-	
				70.00					·	-	
						 			·	- -	
						 					
						, , 	 	···	, 	-	
						' 	' 				
						' 	' ⊨ – – –	4 -		-	
						' 	}	4!-		-	
										-	
						 		4 -		-	
				80.05		/ 	, 	4 -	·	-	
				80.00				· · · · - -	·	-	
						}	· 	· · · · · · · ·		-	
						!			·	-	
						 				-	
				85.00						-	
									 	-	
6.65 -	120,40 Amyg FP Mai-D							4 -	•	· · [· · · = · · ·]	
				_				4!-		-	
					⊨ – –		┝	+		-	
				90.00]		⊢			-	
							⊢	4 -		- !	
				_				- -		-	
								-			
									42.50 16 2	0 ⁻ 162 ⁻ 60 ⁻	- 10-
				95.00		95.10 0.01 					
					. ⊢						
					⊢		<u>⊢</u> – · . –			• • • •	
						iI	⊨	- -			
					- L - L - L		<u> </u>	┛╺╴╶╵╴	!		

Horn Face Geo	nogicai Ltu.			I	_		_			1101000	C. C			
From To Description	fuchsit ser	Maf	I		Fr	om	To	Widt	h Sample	e Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)) As (pp
			100.05	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		-	+	, 		~	' .	-
			100.00	1	 	-		-l	· 	4	-t	.	.	-}
					 ⊢ -	· – I		-i	, 	, ,	, _	·	· ·	- - ·
				ı I	i⊢ -	1		, _	, 	·	-		· 	-1
				•	′′10. 	3.02 ' · –	103.6	3'0.61 	'JKDR0008	3 2.24	· 61.00	' 14.00 ·	' 146.50 	- 0.10 -
				1	· ·	· – I		-!		·	-1	.	· ·	, -
				Ì	· · ·	· -		-1		·	-		, .	· ·
					· · ↓	· -		· 		· .↓	-	.	.[-
				1		· -					-	.	·!	
				1		· -		-			-	.	· ·]	-
			110.00			· -		-			-	-	-	-
			-	Ι		ļ		-			-	-1	· ·	-
				I		· 1		-		· †		.	-	
				I				-1	<u> </u>	· ·		·]		
			_	I				-1	⊢ – – –			-1	.j	
			115.00	1	 -			-	⊨	+	-1	-	·	·
			_	1	⊢ -			-				-		
				1	-,-	7 04	-1174	<u>-</u>		4 3 91	- -48-10-	· -, _, _, -	$- _{\overline{141}20}$	-
				ł	.	-			+	- +	-1	-	-1	-
				Ι	1				⊢ •	·ł – –		-	-1	-1
120 40 - 128 72 FP Maf-D ALT/TLA	1 I		120.00	ł		1		-	⊢	+	-[•		1
				ł		-	ļ	·		+	-1		· ·	-
					⊢ -			-	⊢ – – ·	· · • •			· ·	-
				1	- ₁₂	3.14	123.7	75 0.61	JKDROOOS	4 2.01	-1-47.30-	·1- <u></u>	113.10	+ =0.10
										· +	-1	·	}	-
			125.00	ł				-	⊢		-	•	-	1
				1	1 - 12	6.49	 [27.]	10 0.63	JKDROOOS	4 2.53	-1-57.70-	45.00	116.30	-l -o.io
				1	}			-		•	-	-	-	-
128.72 - 138.44 FP Maf-D T/LT	וו						!	-	· · -	·			-	-
	'							-	··	•	-	-	-	
			130.00					-	·	• • • • •		·¦	-	- - ·
								-		· ·		·	-	-
			1	•	· · · ·		'		'		-'	•' <i>•</i>		-'

Hole ID: FUL-001 North Fac	Geological I	.td.								Project:	Central	BC			
From To Description	fuchsit	ser	Maf		1	From	To	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb)]	Ba (ppm)	Аз (ррт)	
138.44 - 157.28 Fossiliferous Wacke/Siltstone							$\begin{vmatrix} - & - & - & - \\ - & - & - & - \\ - & - &$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 	$\begin{vmatrix} - & - & - \\ - & - & - \\ - & - & - \\ - & - &$		
157.28 - 157.28 EOH				EOH		II	t t			۔ ۔ ا			i		_

6

Rocktype

PROJECT: Central BC Hole ID: FUL-001

From	То	Rocktype	
0.00	7.62	Casing	
7.62	41.61	FAmphP Maf-D ALT/TLA	
41.61	59.77	Coal	
59.77	62.48	(Amph)FP Maf-D ALT/TLA	
62.48	86.65	FP Maf-D T/LT	
86,65	120.40	Amyg FP Maf-D	
120.40	128.72	FP Maf-D ALT/TLA	
128.72	138.44	FP Maf-D T/LT	
138.44	157.28	Fossiliferous Wacke/Siltstone	
157.28	157.28	EOH	

PROJECT: Central BC Hole ID: FUL-001

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000833	8.84	9,45	0.61	WT	4.60	54.10	27.00	83.40	0.10
JKDR000834	21.34	21.95	0.61	WΤ	2.06	20.40	31.00	149.8D	0.10
JKDR000835	28.35	28.96	0.61	WT	4.72	60.30	42.00	133.60	0.10
JKDR000836	38.10	38.71	0.61	WT	3.84	59.60	44.00	72.40	0.10
JKDR000837	65.23	65.B4	0.61	WΤ	7,76	58.40	55.00	1224.00	1.40
JKDR000838	94.49	95.10	0.61	WΤ	1.94	42.50	16.00	163,50	0.10
JKDR000839	103.02	103.63	0.61	wr	2.24	61.00	14.00	146.50	0.10
JKDR000840	117.04	117.65	0.61	wт	3.91	48.10	31.00	141.20	0.10
JKDR000841	123.14	123.75	0.61	wт	2.01	47.30	34.00	113.10	0.10
JKDR000842	126.49	127.10	0.61	wт	2.53	57.70	45.00	116.30	0.10
JKDR000843	137.16	137.77	0.61	WΤ	3.50	50.40	34.00	73.10	0.10
JKDR000844	146.00	146.61	0.61	wr	5.66	79.20	53.00	96.70	16.00
JKDR000845	153.92	154.53	0.61	WТ	7.73	58.70	61.00	67.60	19.30

North Face Geological Lt North Face Geological Lt 15575 86 Avenue Surrey, B.C. V3S 5C8	d.	DRILL HOLE DESC DETAILED GRAP	CRIPTION HIC LOG	Project	Central BC
Hole #: FUL-0	02	Comments: Entire shales	e hole remained with s	nin Nilkitkwa Fo	rmation
Northing: Easting: Elevation: Field Location: 4+(400.000 425.000 1100.000 90N, 4+25E (m);	Casing Exposed: Casing Size: Contractor J Assay Lab:	27.4 NQ Britton Brothers ACME	Hole # FUL-002	Dip Tests Depth Azimuth Dip 0.00 90.00 -55.00
Length: Start Dip: Start Azimuth:	161.54 -50.0 90	Project: Area: Property:	2318 Babine FUL		
Logged by: Log date: Date Started: Date Finished:	JKD 28/10/1999 14/08/1999 15/08/1999	Map Reference: Claim: Region:	93L.089 Ful 1 Omineca		

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

Hole ID	: FUL-002	North Face Geolo	gical L	td.	-				ру		•	F	roject:	Central	BC]
From	To Description		fuchsit	ser	Maf				From	To	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb) l	Ba (ppm)	Аз (ррш)
0.00	28.35 Casing			I				- I - T	1 1		, ,			1	T		1	4
0.00-	20,00 Casing					-					1 -		+		[— — —			
						-1'	ASING						i	-1				
							CASING						4				j	
						-49	CASING											
						പ്	CASING				-		4	·				
						C	CASING	11			· -		4	-				
							CASING	11			· ·			· ·				
			1				CASING		I		· -		, 	.			, 	
							CASING	11			· · ·		4	.				
							CASING				· · ·		4	.		!		
						10.00 C	CASING		¦		·		, 	.		, 	' 	
							CASING	; ;	, !		· · ·		, 4			, 	, 	
							CASING	, , , ,		, 	· · ·		, 4	.!	1	' 	' 	
							CASING	, , , ,			י י ו – ו		, ,	• -1	• 	' 	' 	
]	CASING	1 I I I	1 I 1 I		r 1		т — — - +	-,	1	1 - - - 1	 	
						15.00	CASING	11	1 1		·		 ;	-	1	1 – – – 1	- - - 	
							CASING	1 \$		··	· • · · • •		-+	-1	1			-
							CASING	11			-11	····	1	-				-
							CASING		⊢ − −		·i		-+ · ·- ··	·I			- - -	
											·		+	-				
						20.00	CASING				-		+	-1				
						-1.	LASING		<u></u>		-		4	-!				
						-12					• • • • •		4	-1				
									⊢		·							-
						- `			⊢		-		+	I				
						25.00			'		-!		- - +	·1·				
						-1)					·		-+	-				
						-1'	CASING		- <u>-</u> -		774	0.00000	+	$-1_{\overline{2}28}^{-1}10^{-1}$	$ _{18200}^{$		- <u></u> -	
79.75	161.54 Cumpitin Apprillito						CASING		ı		-	· ·	+	-+				
40.33 -	101.54 Orapinuc Argunte					idstone 1		1			- }		-+	-				
						30.00	Ň			- ,- ,-		IN INDODAZO	+ :	125-20	I de oc			
						-			30,48	دد.دد 	· 3.05 ·	JKDR00060		135.20	145.00	118.30	48.90	_]
										-	·			· -]	· 			
						I		1	I 			····		.•	!	!	!	
14/02/2000	report. log 2 pagesize fi	rx		!	. 									Pa	ge	2		٦

Hole I	D: FUL-002	North Face Geological Ltd.			ру		•	1	roject:	Central	BC		
From	To Description	fuchsit ser	Maf	,	From	To \	Vidth	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb)]	Ba (ppm)	As (ppm)
1					33.53	36.58	3.05	KDR00060	4,76	182.50	154.00	111.90	40.40
					- -				- ,	·			
				35.00		1					 		
					F <u>-</u> - · 36.58	39.62	3.04	KDR0006 0	⁺ 5.42	188.70	172.00	94.90	54.50
:							r L		 		 		
						י ا– – –	، ب		 _	 _		 	
				10.00	' 39.62 ' ⊢ − − ·	42.67 ' 	3.05 '.	JKDR00060	3.85 	' 146.10 -[133.00	' 101.40 	54.40
				40.00	·		F			.			
						- 1 - 2	+		+		112.00	$ _{13570}^{-} $	77.10
				-	42.07					-			
			1	-	┡ -	!	-			-			
				45.00	- <u>4</u> 5.72 ·	48.77	3.05	JKDR00060	+ - <u>-</u>	- <u>-</u>	133.00	<u>-</u>	71.60
							-			-	1		
						· · · · [-	-		-			
					48.77	51.82	3.05	IKDR00060	5.46	156.70	120.00	103.40	57.30
			:			 1				-	- :	i	
				50.00			r L				1: 1:		
					51.82	54.86	3.04	JKDR00060	5.06	165.30	132.00	123.10	36.30
					·		-	··	' 	, .			
					- <u>-</u> -	- = = =	+		+		1.5500	_, _, _, _	
				55.00	54.80 ·								49.50
					-	!	-			-		· · · -	
				-	F 57.91	60.96	3.05	JKDR00061	+ - <u>5.93</u> -	- <u>-</u>	$ _{173.00}^{-1}$		43.40
					⊢ – – I		1		+	-			
							-		-	-			
				60.00	60.96	64.01	3.05 H	JKDR00061	5.96	288.90	196.00	103.80	51.70
									 -	-	··	- - -	
						 	+ t		 	-1	 _	- - - 	
						ا - ا - - -				·	 	· ·	
					64.01 	67.06 	3.05	JKDR00061	' 5,48 -	' 264.20 -	' 208.00 	' 97.80 ⁻ 	50.20
1				1 00.00		י ا	(」	' -!	·	ا ۔ اا	' '
14/02/200	• report: log 2 pagesia	ze.frx		• <u> </u>						Pag	çe 📃	3	

Hole ID: FUL-002	North Face Geological Ltd.		ру —		Ргојесс: Сепста	BC	 }
From To Description	fuchsit ser	Maf l	From To	Width Sample	e Pb (ppm) Zn (ppm)	Ag (ppb) Ba (ppm) A	a (ppm)
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 3.04 JKDR0006 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 &$	46.70
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 3.05 1 K D R 0008 -1	1 + 5.66 - 239.40 1 + 5.66 - 239.40 1 +	$ \overline{190.00} - \overline{98.20} - $	41.30
			$ \begin{bmatrix} -& -79.25 \\ -& -82.31 \\ -& -16 \\ -$	0 3.05 JKDR0000 - - 4 3.04 JKDR0000 -	$-1 + \frac{1}{5.24} - \frac{1}{252.00}$ $+ \frac{1}{252.00}$ $+ \frac{1}{252.00}$ $+ \frac{1}{252.00}$ $+ \frac{1}{252.00}$	$ \frac{1}{225.00} \frac{1}{98.40} $	
			$ $ $ $ $ $ $ $ $ $ $ $	-]	$-\frac{1}{2}$ $-\frac{1}{5}$ $-\frac{1}{5}$ $-\frac{1}{2}$ $-\frac{1}{299.00}$ $-\frac{1}{5}$ $-\frac{1}{5}$ $-$		24.30 19.20
		90.00		-	$-\frac{1}{6}\frac{1}{6}\frac{1}{162.40}$ $-\frac{1}{6}\frac{1}{162.40}$ $-\frac{1}{6}\frac{1}{6}\frac{1}{62.40}$ $-\frac{1}{6}\frac{1}{6}\frac{1}{6}$	 + ++ ++	15.50 =
		95.00	94.49 97.5 97.54 97.54 100.5	4 3.05 JKDR0000 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$255.00 + 17.20^{+}$	20,00
14/02/2000 report: log_2_pages	ize.frx				Pa	ge 4	

1 1	D: 1)02	N	Face	logic	d.						ŀ	Protont:	Cr1	BC		<u>`</u>
From	To Description			fuchsit	Ser	Mat		From	To	Width	Sample	РЪ (ррш)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
			-				100.00	⊢ _{100.58}	- 103.63	 3.05	JKDR00062	+ -5.58 -	- 325.00	244.00	' 97.70	32.00
								}				4	-			
									 	· } . ł			-1	 		-
				1				103.63	' 106.68 	' 3.05 ' ·[[JKDR00062	- 5.38 	' 239.60 -{	' 202.00 	' 107.10 	29,50
							105.00	⊢		·		4	-	·		
								⊢ _{106.68}	109.73	3.05	JKDR00062	- 5.05 -	255.50	222.00	99.70-	28.50
									↓	·¦			·	·	- 	-
				1					l	1		-1 - <u>-</u> -	-1 -1	1-	1	
							110.00	109.73 		3.05 	JKDR00062				99.20	23.90
					1					- -		-	-	· ··		
								112.78	115.82	3.04	JKDR00062		182.40	188.00	110.20	22,40
									↓	·	_ _ _ _		-		·/	
							115.00	+115.82	- 118.87	- <u>.</u> _	JK DR00063	+	- <u>-</u> 285,30	1 - 182.00		
					ļ					·			-		·	
					Ì					·] -]]			·	·	· 	
					ļ			118.87	121.92 	' 3.05 - - -	JKDR00063		'244.30 -	137.00 - · · -	'100.40 	' 23.90
							120.00	} −	I	-]	-		-			
					ļ			⊢ _{121.92}	1-124.97	3.05	JKIJR00063	5,43	-	137.00	[†] 102.80	15.70
									 	· ·			-! -!	1	 - -	— — — —
					ļ				- <u>, -</u> , -		WDDOOG	+	-)	16500	i Torton	
					1		125.00			-		+	-			
					1					·		- 1		·	1	
									i− − −	· -1	 L	-+ -+	-) -	· ·	· ··· ··· -	-
								128.02	' 131.0 0 	5' 3.04 -	JKDR00063	- 5.42 	' 229.20 -	157.00 	' 95.10 	18.80
							130.00			-		4	-{	· · -		
								⊢ _{131.06}	- _134.11	- 	JKDR00063	H <u>−</u> 5.00 ·	- 261.50	156.00	99.90-	31,70
A // SA /- 10/0	·····	· · · - · · · · · · · · · · · · · · · ·			<u> </u>			<u> </u>	·	·' '	<u> </u>			.'	<u>'</u>	' <u> </u>

bore ff): אטב-002	North Face Geological Ltd.			 tra				C I E	BC T		
From	To Description	fuchsit ser	Maf		From	To Wid	ith Sample	ԲԵ (ppm) 🗄	Zn (ppm) A	ag (ppb) Ba	(ppm) As (p	р ш)
			135.00		⊢ ⊢ ₁ 34.11 			+ + <u>5.36</u> - + +	 $ \frac{1}{220.10} $ 		·[- · 17.70 ⁻] - 29 · - · <u></u>] -	
					137.16 + + + + + + + + + + + + + + + + + + - + - +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 'JKDR00063 	+ 5.33 + + + - <u>-</u> +	 $ \overline{162.20}^{-+}$ 	$217.00 \cdot 1$ 	17.40 + 25 - - - - $97.50^{- } - - - $ -	.30 .70 ⁻
					$ +_{143.26} $ + $ +_{146.30} $ +	$\begin{bmatrix} 146.30 & 3.0 \\ -146.30 & 3.0 \\ -146.30 & -1-4 \\ -149.35 & -3.0 \\ -149.35 & -3.0 \\ -149.49 & -1-4 \end{bmatrix}$		+ - <u>6.34</u> - + + + - <u>-</u> -	$\frac{1}{249.00}$	$\overline{179.00}^{-1}$ $\overline{1}$ - + - $\overline{122.00}^{-1}$ $\overline{1}$	$ \frac{1}{08.30} - 33 $ $ \frac{1}{08.30} - 1 $ $ \frac{1}{08.30} - 1 $ $ \frac{1}{22} $ $ \frac{1}{08.30} - 1 $ $ \frac{1}{22} $	
			150.00		 - _{149.35} 		- 5 JKDR00064 - -	+ + <u>2.43</u> - + +	 $ _{105.70}^{-1}$.20
					 	155.45 ' 3.0 	IS 'JKDR00064 -	5.35 	355.60 $ \overline{244.70}$ 	$ \begin{array}{rcrcrcr} 196.00 & & \\ - & - & - & \\ - & - & - & \\ \hline 196.00 & & \\ - & - & - & \\ - & - & - & \\ - & - & - & \\ - & - & - & \\ \end{array} $	96.80 ' 29 - - 93.00 - - 28 - -	1.50 .50
161.54 -	161.54 EOH			EOH 1	 	161.54 3.0 	- JKDR00064 - -	+ - <u>5.37</u> - + + +	<u>191.70</u> 	150.00 ⁻	99.50 ⁻ 28 - -	

14/02/2000 n	eport:	log	2	pagesize.	frx
--------------	--------	-----	---	-----------	-----

North Face G	Rockty eological Ltd	vpe d.	PROJECT: Central BC Hole ID: FUL-002
From	То	Rocktype	
0.00	28.35	Casing	
28.35	161.54	Graphitic Argillite	
161.54	161.54	ЕОН	

-

.

PROJECT: Central BC

North Face Geological Ltd.

Hole ID: FUL-002

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000601	27.74	30.48	2.74	т	7.50	228.10	182.00	99.50	40.90
JKDR000602	30.48	33.53	3.05	Т	5.97	135.20	145.00	118.30	48.90
JKDR000603	33,53	36.58	3.05	Т	4.76	182.50	154.DD	111.9D	40.40
JKDR000604	36.58	39.62	3.04	Т	5.42	188.70	172.00	94.90	54.50
JKDR000605	39.62	42.67	3.05	WT	3.85	146.10	133.00	101.40	54.40
JKDR000606	42.67	45.72	3.05	T	5.61	217.20	133.00	135.70	73.10
JKDR000607	45.72	48.77	3.D5	Ţ	5.48	153.50	133.00	109.00	71.6D
JKDR000608	48.77	51.82	3.05	Т	5.46	156.70	120.00	103.40	57.30
JKDR000609	51.82	54.86	3.04	T	5.06	165.30	132.00	123.10	36.30
JKDR000610	54.86	57.91	3.05	Т	6.27	190.80	155.00	118.30	49.30
JKDR000611	57.91	60.96	3.05	WT	5.93	167.00	173.00	116.90	43.40
JKDR000612	60.96	64.01	3.05	Ĩ	5.96	288.90	196.00	103.80	51.70
JKDR000613	64.01	67.06	3.05	Т	5.48	264.20	208.00	97.80	50.20
JKDR000614	67.06	70.10	3.04	T	5.44	170.50	136.00	95.40	46.70
JKDR000615	70.10	73.15	3.05	T	5.78	261.4D	183.00	109.20	37.20
JKDR000616	73.15	76.20	3.05	Т	5.66	239.40	190.00	98.20	41.30
JKDR000617	76.20	79.25	3.05	WT	6.41	300.60	241.00	105.90	37.50
JKDR000618	79.25	82.30	3.05	т	5.24	252.00	225.00	98.40	31.90
JKDR000619	82.30	85.34	3.04	T	5.15	381.10	275.00	103.40	31.30
JKDR000620	85,34	88.39	3.05	T	5.64	299.00	201.00	117.30	24.30
JKDR000621	88.39	91.44	3.05	Т	4.92	184.90	168.00	100.90	19.20
JKDR000622	91.44	94.49	3.05	Т	6.36	162.40	164.00	119.90	15.50
JKDR000623	94.49	97.54	3.05	ŴΤ	5.53	256.60	209.00	117.20	20.00
JKDR000624	97.54	100.58	3.04	Т	5.95	273.30	255.00	105.50	24.90
JKDR000625	100.58	103.63	3.05	Т	5.58	325.00	244.00	97.70	32.00
JKDR000626	103.63	106.68	3.05	Ţ	5.38	239.60	202.00	107.10	29.50
JKDR000627	106.68	109.73	3.05	Т	5.05	255,50	222.00	99.70	28.50
JKDR000628	109.73	112.78	3.05	Т	5.15	211.80	262.00	99.20	23.90
JKDR000629	112.78	115.82	3.04	WT	5.11	182.40	188.00	110.20	22.40
JKDR000630	115.82	118.87	3.05	Т	5.14	285.30	182.00	94.20	24.30
JKDR000631	118.87	121.92	3.05	т	5.40	244.30	137.DD	100.40	23.90

PROJECT: Central BC Hole ID: FUL-002

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000632	121.92	124.97	3.05	Ť	5.43	176.60	137.0D	102.BD	15.70
JKDR000633	124.97	128.02	3.05	Ť	5.25	259.20	165.00	106.10	31.00
JKDR000634	128.02	131.06	3.04	WT	5.42	229.20	157.00	95.10	18.80
JKDR000635	131.06	134.11	3.05	т	5.00	261.50	156.00	99.90	31.70
JKDR000636	134.11	137.16	3.05	Т	5.36	220.10	164.00	117.70	29.00
JKDR000637	137.16	140.21	3.05	Т	5.33	168.00	217.00	117.40	25.30
JKDR000638	140.21	143.26	3.05	Т	5.32	162.20	172.00	97.50	25,70
JKDR000639	143.26	146.30	3.04	Т	6.34	249.00	179.00	108.30	33.70
JKDR000640	146.30	149.35	3.05	WΤ	3.58	204.20	122.00	100.10	22,60
JKDR000641	149.35	152.40	3.05	Т	2.43	105.70	78.00	108.40	11.20
JKDR000642	152.40	155.45	3.05	Т	5.35	355.60	196.00	96.80	29.50
JKDR000643	155.45	158.50	3.05	Т	5.90	244.70	196.00	93.00	28.50
JKDR000644	158.50	161.54	3.04	т	5.37	191.70	150.00	99.50	28.10

North Face Geological Lt	North	Face	Geological	Ltd
--------------------------	-------	------	------------	-----

North Face Geological Ltd. 15575 86 Avenue Surrey, B.C. V3S 5C8

Hole #: LEN-001

0.000
400.000
1100.000
0+00N, 4+00E (m);
141.73
-50.0

JKD
28/10/1999
02/08/1999
04/08/1999

zone	extremely broken su
Casing Exposed:	25.9
Casing Size:	NQ
Contractor	Britton Brothers
Assay Lab:	ACME
Project: Area: Property:	2318 Babine LEN
Map Reference:	93L.079
Claim:	Len 6
b !	Omineen

DRILL HOLE DESCRIPTION

DETAILED GRAPHIC LOG

Project: Central BC

g large deformation

Dip Tests Hole # Depth Azimuth Dip EN-001 0.00 90.00 -55.00

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

Kar .D	; L J01	Ny Face stud	ogic	.d.		·]	Pi	Ce Ce	, BC	•	۶.
from	To Description		fuchsit	зег	Maſ		I	From	To	Width	Sample	РЬ (р	pm) Za (pp	m) Ag (pj	ъь) Вя (рр	m) As (ppm
0.00 -	36.88 Casing		1		1-1			· · · · · · · · · · · · · · · · · · ·	1	r		-			<u>1</u> .	
								1		-			1	-	-1	-
									·	-		+ -		-1	-	-
			1						J ·	-1 1				-	-	-1
							G	} } − −		-		- 1-		- - -	-1	
							G	~		-11		-1	1		-!	-1
						CASI	IG	1	· ·	. \$. _	· 	-l	_	
							iG (1	, 1	, , 		, , ,		, _l	-1	-
						CASI	G	1 i	I	. 1		۰ ۱	- 1	1	I	-1
							IG .	·	, ·				1			-1
				l			IG L	1		~!			- ·-	-1	-1	~
						10.00 CASE	IG	↓ ⊢ − −		~ - - }			· · -	-	-	· ·· - ·
										-		- -		-	-1	-
				ļ						·		4 -		-1	-	~
					1				} ·	-		4 -	~ -	-	-	~
			i				¹⁰			-1 1		4	1	-	-!	··· •
							IG			-				-		
				ł	1 1	CASI	IG	⊢	{	-1		+ -		-!		
			1	ļ			IG	 	, 	-i i				-		, ~l =
				1		CASE	ic ¦	· · · · · · · · · · · · · · · · · · ·	1	, , , , , , , , , , , , , , , , , , ,		- -1 _	- 1	1		-1
			1	i i		CAST	21	+ F 1 1	1	-11		т — 1			-1	-
							ia		·	······					-	~
						20.00 CAS			·	-1			1	-	-	- ·
							in	1		-		-	··· -	-	-	-
			1	ł	1 1					-1 1		- 1	1	-1	-{	~
										-]	···	- 1		-		·
					1 1				1	·		+ -			·· ·· =	
					1 1	25 00 CAS	16	1	Į	~		+ -		··		~]
			1	i -				· · · -		- {		4 -		-		
							ic j			· · · ·		-1 -	~ .	_\	_	,
					1 1	_ CASI	ic ;		1 1	1 1 - 1 1		1	, ,	1	1	I I
			[Í	[[CASI	ic (11	1	-,,		1.]	-1	-,	-1
				l			IG L		·			·†		-	-	-
						30.00 CAS	ig			-!		-+ -		-	-	-
										~		+ -		-	-	~
			1				<u>" </u>			- -	··· – – –	-+ -		-	-	-!
						1 CASI	ic i	I (I	.			!	_*	_!	_l
0272000	manut log 2 nageri			•			_						1			

L	1)01 N Face lo	gi	d.								P	' t: (Cr 1	BC		· 1
From	To Description	fuchsit	ser	Maf			, 1	From	To	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
	,					CASING		· · · · ·		1 1		1		T	r	
					i –	CASING		<u> </u>		·1	~ -	1	·	 	!	
		1			35.00	CASING				- ·	~ -		·	·		 1
36.88 -	51.82 Maf / FP Maf				_					-! ŀ	~ ~ -	+ ,	·	·	1	
]		-	l <u>i</u>				- ! 1		1	·	·	-	 1
										- - L		1 J		·!	 	- - - - - -
							1			-ı -		1 	.!	1	.;	
					40.00					-		, 	.	.1	' 	'
					_					· · ·		, ↓	/ 	' 	' 	
]	_			 		- ł		· 	.	' 	·	'
					-					-11		+				-, <u>-</u> , -
					45.00			44.04		-	JKDK00064	1.82		47.00 	41.50	
					-		1	⊢		-		4	·	·		
					-					-1		+	·}	· · •		
					-					-!			-			
					-		ł	~		-		+				
					50.00		I	·· ··		-		+				
51.82 -	55.78 Grauhitic Argillite				-	1 				-					!	
					-					-		· ·		·	·	
				}	-					-			-	·	·	· · ·
					- Maf Dvk	e		<u> </u>	~	-!				·		1
55.78 -	96.10 Mat / FP Maf				55.00	1				-1			·	·		
<u> </u>					-					-			·			
					-					-			·i	·		
			}] -			 ,		-1		-+ ,	·	·	· ,	
					-			 1		-		-+	·	·}		= · · 1
					60.0ō				 _	-11		1 1	-ı	·	1	-
									 	-i _l		 	-1	· ··	1 · -	1
									 	- _}		 		·		·+
										- : · · · · ·		1 · · · ·	·ı - - - -l - - -	· · · · · · ·	·	· ·
		1	[1						ہ = ، ! !		, 	,			
					65.00				·	= 			= - -	·) — — —]
		_	<u> </u>	<u> </u>			J									

CONTRACTOR STRUCTURE OF A CONTRACTOR OF A CONT

• •

In the first design of the second
From To Description rather arr Mot From To With Sample PP (yes) Zo (yes) Zo (yes) As (yes) As (yes) As (yes) 70.001 1	Hoic I	D; LEN-001	North Face Geologi	cai Ltd.			•	 • •			F	t:	Ci	BC		· · ·	7
$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	From	To Description	ĥ	whsit ser	Maf		. ł	From	To	Width	Sample	ԲԵ (թթա)	Zn (ppm)	Ag (ppb)	B2 (ppm)	As (ppm	i)
$\begin{array}{c} 1 & h & h & h & h & h & h & h & h & h &$					-					r — 1		T			· · · · · · · · · · · · · · · · · · ·	r	4
$96.10 - 125.88 \ Graphilic Argillite 96.10 - 125.88 \ Graphilic Argillite 97. 00 - 125.88 \ Graphilite Argillite 97. 00 - 10 - 10 - 10 - 10 - 10 - 10 - 10 $	ł												-l		 ,		-1 -
96.10 125.88 Graphilic Argillite 96.10 125.88 Graphilic Argillite								 		 		4 • 1	·	1 1		1	- -
70.00 1 + <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>69.34</td> <td>70.10</td> <td>0.76</td> <td>JKIDROUO64</td> <td>2.67</td> <td>66.70</td> <td>36.00</td> <td>71.80</td> <td>0.10</td> <td></td>								69.34	70.10	0.76	JKIDROUO64	2.67	66.70	36.00	71.80	0.10	
$96.10 - 125.88 \ Graphilic Argillite 96.10 - 125.88 \ Graphilite Argillite 96.10 - 125.98 \ Graphilite$						70.00				 					 	· ·	
96.10 - 125.88 Graphilic Argillite 96.10 - 125.88 Graphilic Argillite	1									/ 1		, 4	, 	' {	' 	' {	_ _
$96.10 - 125.88 \ Graphilic Argillite 96.10 - 125.88 \ Graphilic Argillite 97.00 \ 1 + 98.45 \ 101.19 \ 27.4 $, 		, 	· ~	, 			_ _
$96.10 - 125.88 \ Graphilic Argillite 96.10 - 125.88 \ Graphilic Argillite 97.00 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -$										1			-]) - -	· .]	_ _
$96.10 - 125.88 \ Graphific Argillite 96.10 - 125.88 \ Graphific Argillite 96.10 - 125.88 \ Graphific Argillite 96.10 - 125.88 \ Graphific Argillite 14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$						75.00		⊨				┥	-				- -
$\begin{array}{c} \mathbf{x} = $	Į					-						4	-				- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						_				~ -		+	·		1		- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ļ				ŀ	!- !					-		!		-
$80.00^{-1} + - $						-		-				4	-[{	(1	· -
$\begin{array}{c} \mathbf{r} = 1 \\ \mathbf{r} = -1 \\ $						80.00							-			- -· -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								 		[[{	- { ···		i - -	{	- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										{~ - 		4 1	· ~	1	 1		- -
$85.07 = \frac{1}{16} \frac{85.80}{95.07} \frac{86.47}{0.61} \frac{1}{9.67} \frac{1}{3} \frac{1}{5} \frac$					1					1 1 1 1		+ 1	-) ~ - -)) — — — I) — — - 1	- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										i 			.1	! !		1 	
90.007 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	{					85.00		85.80 	86.41	' 0.61 ' - -	JKDR00064	' 2.22 	' 75.30 	' 37,00 	1078.70	' 0.10 	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												' 	' -	' 	' 		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												{	· ·[··	(_ _
90.00							ł	1 I				+					- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1					90.00							·				_ _
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Graphit	ia Araillita					··· – – – ·	1	·			i	- -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1		Graphin		- 1						· } - - ·		} - - -	ļ — — -	
96.10 - 125.88 Graphitic Argillite $96.10 - 125.88 Graphitic Argillite$ $98.45 - 101.19 + 2.74 JKDR00065 + 18.51 - 144.60 + 606.00 + 65.00 + 50.80 + 14.44 +$							1	⊢ <u>9</u> 3.27	93.88	 0.61	JKDR00064	+ -3.70 -	56.10		250.40	- _{1.20} -	- -
$95.0\overline{0}$	}								96.10	2.22	JKDR00065	4.18 -	54.90	- _{73.00} -		- _{6.60} -	-] -
96.10 - 125.88 Graphitic Argillite $96.10 - 125.88 Graphitic Argillite$ $98.45 - 12.43 - 93.10 - 372.00 - 64.90 - 38.70 - 12.43 - 12.$						95.00						╡ <i>᠃ ∽</i> −	·			- - ·	-
Maf Dyke $Maf Dyke$	96.10 -	125.88 Graphitic Argilli	te			-	.]	96.10	98.45	2.35	JKDR00065	12.43	93.10	372.00	64.90	38.70	- -
Maf Dyke 98.45 101.19 2.74 JKDR00065 18.51 144.60 606.00 65.00 50.80 1	T	•••						 1				1 '	·	{	1	i	-[-
14/02/2000 report log 2 nouveles fix						Maf Dyke		98.45	101.19	2.74	JKI)R00065	† <u>18.5</u> 1 -	144.60	606.00	65.00	50.80	- -
pana A	14/02/200	0	[· '		·		•	 D	<u>'</u>	·	···	- - -

Lune ID: Lean-001 Noren Face Scolo	gitar Lid.	· · · · · · · · · · · · · · · · · · ·			F	t: C	1 BC	-	ر ۱
From To Description	fuchsit ser	Maf	From	To Widt	h Sample	ԲԵ(թթոռ) Z 	la (ppm) Ag	(ppb) Ba (ppm)	As (ppm)
		100.00		~1	<u> </u>		_	i	-
		-		103.63 2.44		+ 15.02 -	139.00 6	71.00 60.00	-
			1]	⊢	4	-		-
		Maf Dyke	⊢ _{103.63} -	106.68 3.05	JKDR00065	+ - <u>3.30</u> -	80.40)3.00 ^{-[-} 71.00 ⁻	- -14.10-
				~ ~	F =	+ -	- -		- = = = =
					THERE	-, -, -	- <u>.</u> -;	× 00 ⁻ -74 00-	$-\frac{1}{1} - \frac{1}{840} - \frac{1}{1}$
					\vdash	+	~ ~	1	-
						 -	~		-
			109.73	112.78 3.05	JKDR00065	+ - <u>2.94</u> -1	52.60 ⁻¹ 1	09.00 81.70	14.70
		110.00				- 	, , -	· /	' - -
				115.82 3.04		+ <u>-</u> , <u>-</u> ; -	- _{48.90} - - ₁	78.00 54.30	- - _{15.30} -
			·				-		-
		Maf Dyke				·	- - -		-
		115.00	115.82	118.87 ¹ 3.05	JKDR00065	⁺ 2.95 ⁻ +	<u>-</u> 55.50 ⁻ ī	37.00 63.40	-
			1			+	, -	• - - •	-
				$12\overline{1.92}^{\left[-3.05\right]}$	JKDR00065	H <u>−</u> 3.39 -	(- _{65.80} -) ₁	47.00 60.10	- - _{18.40} -
			1		· ⊢ − − −	·	~	·	
	1	120.00		 !		+ +	- ~ ~	·i	-
			121.92	124.97 3,05 - - - - -	i 'JKDR00066 	'4.28 -	' 58.90 ' 1 	65.00 69.30 ·	' 18.50 -
						4	-	· _ ··· ·	-1
			124.97	125.88	JKDR00066	+ - 4,94 -		12.00 62.90	-J - _{16.90} -
8 - 141.73 Siliceous/Graphitic Mudstone		125.00	125,88	128.02 2.14	JKDROOOG6	8.39	 	is3.00 31.90	50.70
				 !	· = = = = =	1 	- -	·	- -
			-, -, -, -,			, + - <u>-</u> -	, , , <u>-</u> 52 ⁻ 40 - ;	0.00 ¹	- - ₄₂ -30-
						+	-)	-
		130.00		- · -	·	- I	-	· ·	
			131.06	134.11 3.0	JKDROOOGG	1 2.73 - 1] _	i19.00 ⁻ ~46.90 ⁻	⁻¹ 16.30
2/2000 wananti lun 2 paganisa lun							Page	5	

Lun .D: L J01	N Facelogic d.			<u> </u>]	Protost:	Ce 🗥	BC		•
From To Description	fuchsit ser N	1af		From	То	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ва (ррш)	As (ppm)
				,, -		₁ — <mark></mark>					1	
				- 34.11 -	137.16	 3.05 	KDR00066	+ $ -$	-	101.00	 	- 14.80
						¦ ⊧ 		- -	-		 	-
			1	- 37.16 -	140.21	 ⊢	KDR00066	7 7.44 4	-	397.00 	84.30 	46.20
		140.00			141.73	- - <u>-</u>	KDR00066	+ ·	-			56,10
141.73 - 141.73 EOH		EOII		 	·] · ⊩			-! ~	<i></i> -	 	

Rocktype

North Face Geological Ltd.

PROJECT: Central BC Hole ID: LEN-001

From	То	Rocktype
0.00	36.88	Casing
36.88	51.82	Maf / FP Maf
51.82	55.78	Graphitic Argillite
55.78	96.10	Maf / FP Maf
96.10	125.88	Graphitic Argillite
125.88	141.73	Siliceous/Graphitic Mudstone
141.73	141.73	EOH

PROJECT: Central BC

North Face Geological Ltd.

Hole ID: LEN-001

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000646	44.04	44.81	0.77	WT	1.82	76.60	47.00	41.50	1.20
JKDR000647	69.34	70.10	0.76	WT	2.67	66.70	36.00	71.80	0.10
JKDR000648	85,80	86.41	0.61	WT	2.22	75.30	37.00	1078.70	0.10
JKDR000649	93.27	93.88	0.61	WT	3.70	56.10	47.00	250.40	1.20
JKDR000650	93.88	96,10	2.22	WΤ	4.18	54.90	73.00	177.20	6.60
JKDR000651	96.10	98,45	2.35	WT	12.43	93.10	372.00	64.90	38.70
JKDR000652	98,45	101.19	2.74	T	18.51	144.60	606.00	65.00	50.80
JKDR000653	101.19	103.63	2.44	Т	15.02	139.00	671.00	60.00	44.40
JKDR000654	103.63	106.68	3,05	Т	3.30	80.40	93.DD	71.00	14.10
JKDR000655	106.68	109.73	3.05	Т	2.71	59.10	86.00	74.90	8.40
JKDR000656	109.73	112.78	3.05	Т	2.94	52.60	109.00	81.70	14.70
JKDR000657	112.78	115.82	3.04	Т	3.31	48.90	178.00	54.30	15.30
JKDR000658	115.82	118.87	3.05	Т	2.95	55.50	137.00	63.40	23.20
JKDR000659	118.87	121.92	3,05	Т	3.39	65.80	147.00	60.10	18.40
JKDR000660	121.92	124.97	3.05	Ť	4.28	58.90	165.00	69.30	18.50
JKDR000661	124.97	125.88	0.91	Т	4.94	38.60	112.00	62.90	16.90
JKDR000662	125.88	128.02	2.14	т	8.39	26.40	153.00	31.90	50.70
JKDR000663	128.02	131.06	3.04	Т	9.60	52.40	130.00	68.60	42.30
JKDR000664	131.06	134.11	3.05	Т	2.73	63.60	119.00	46.90	16.30
JKDR000665	134.11	137.16	3.05	Т	3.94	64.70	101.00	92.90	14.80
JKDR000666	137.16	140.21	3.05	Т	7.44	127.40	397.00	84.30	46.20
JKDR000667	140.21	141.73	1.52	T	11.86	260.10	4875.00	127.60	56.10

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

na an ann a ceanairte

From To Description Note PP From To With Sample Pagen0 Zagen0 Ag (pp) Ha gen0 Ha (pp) 0.00 38.10 Casing Image: Casing Casi	Hole ID; LEN-002 North Fa	ce Geological Ltd.			P	, ,	,	I	Project: Central	BC	
0.00 - 38.10 Casing $0.00 - 38.10 Casing$ $1 + - + - + - + - + - + - + - + - + - +$	From To Description	fuchsit ser	Maf	po I	From	To	Width	Sample	Pb (ppm) Zn (ppm)	Ag (pph) Ba (p	р m) Аз (рр m)
	0.00 - 38.10 Casing		<u> </u>	· · · · ·		,	T T		1		
			-	-			-1+		4	· - ·	
			-	- CASING						· - - ·	
			-	CASING	⊢	·	· ·		4	· - • - - ·	
			.	CASING	1	· 	· · · ·			· · · ·	
3.00 CXNG 1 1 - </td <td></td> <td></td> <td></td> <td>CASING</td> <td></td> <td> </td> <td></td> <td></td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td>1 I</td> <td>1</td>				CASING		 			, , , , , , , , , , , , , , , , , , ,	1 I	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			5.00	CASING	т і 1 1	1	• •			· - · - - ·	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				CASING		1	· · · · · ·		 -	· [] - ·	
$ \begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$				CASING			· - · · ·	· – – – ·	4	· - · - - ·	
0.000 CUNR 11 1 -			-				·I ŀ		+		
$ \begin{vmatrix} 10.07 \\ CKING \\ CKING \\ 1 $			-		\$		·		-+ +	· 	
- -			10.00		 		· -		-+	· - ·	
$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $			- -				· ·				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-		⊨		· -				
CARNG 11 1 - <td></td> <td></td> <td> -</td> <td></td> <td> </td> <td> </td> <td> -</td> <td></td> <td></td> <td>· ~ </td> <td> </td>			-				-			· ~	
$ \begin{array}{c} CxSNG \\ 15.00 \\ CxSNG \\ 15.00 \\ CxSNG \\ 11 \\ 1- \\ - \\ - \\ - \\ CxSNG \\ - \\ CxSNG \\ - \\ - \\ CxSNG \\ - \\ - \\ - \\ - \\ CxSNG \\ - $			-				· ·		41	·	
$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$			15.00	CASING	[· -		-	· · - -	
$ \begin{array}{c} CASING \\ CASING $			-	CASING		· 	. ŀ		, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c} \begin{array}{c} \text{c} \text{c} \text{c} \text{sing} \\ \text{c} \text{sing} \text{c} \text{c} \text{c} \text{sing} \\ \text{c} \text{c} \text{sing} \\ \text{c} \text{c} $				CASING		·	י א		-1 1	1 1 1 - t	,
$\begin{array}{c} \text{CASING}\\ CA$				CASING		 -	.i – L		-1	· -	
$\begin{array}{c} \begin{array}{c} \text{CASING} \\ 20.00 \\ \text{CASING} \\ 1 \mid \frac{1}{1} \mid \frac{1}{2} \mid \frac{1}{2$				CASING	1	-	· -	/	-+	·	
$\begin{array}{c} 20.00^{\circ} \\ c \\ $							1	· - ·	╃ <i>╼╺╴</i> ─│ <i>─</i> -	[[
CASING IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			20.00				· -				
$\begin{array}{c} \text{CASING} \\			-				-		-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-				-				- [
$\begin{bmatrix} CASING \\ 25.00 \\ CASING \\ 30.00 \\ CASING \\ C$			-		 		-	·			
$\begin{array}{c} \text{CASING}\\ CA$			-		⊢		-				
$\begin{bmatrix} c_{ASING} \\ c_$			25.00			·	-				
$\begin{array}{c} \text{CASING} \\			-				-		·	 _ _	1
			_	CASING			-		· · ·	· · · · · · · · · · · · · · · · · · ·	1
				CASING		' 	· ·		1 1	1 - · -1	
				CASING	11	1	1 - 1-		,		
							1 1 		+ 		
			30.00				∦ -		+ - · -		
			-				-	· - ·	4	· -	
			-			·	-	• • •	+ ·		-
					<u> </u>	I	<u> </u>		I	1	!

Hole ID: LEN-002 North Face Geolo	gical L	t d .			00		ру		1		Project:	Central	BC		
From To Description	fuchsit	ser	Mal				From	То	Widt	h Sample	Ph (ppm)	Zu (ppm)	Ag (ppb)	Вя (ррт)	As (ppn
								i			, , ,	r _	, 		
					CASING			, 1	_!		, ,	ı _[, 		
			1	.35.00	CASING			, 1	, _i		, 	, _	' 	' 	
						11-		, 	, _	· 	· · · · · · ·	, _l	, !	' 	
			1			 		, 	-l		, , , , , ,	' -	, 1 - - -	' 	-
38.10 - 51.18 (Amyg) Augute FP Mat ALT-TLA				† _1				, 	_		· 	-			
				Maf Dykë Laonō I		<u>ا</u>			-1			-		!	· · · - · - ·
						H	40.39	41.0 	0 0.61		2 2.81		92.00	· 12.70 	1.00
					1	-			-		4	-		··	1
				Maf Dyke	1	-			-	 -	+	-			
				_	1	-			-			-			
				45.00	1				-	 -	+	-			
				-i	1	⊢			-	┣	4	-			
				-	1		- •		-	⊢		-			
				-		-	48.46	49.0	$\bar{7}^{ -}_{0.61}$	JKDR0007;	2 - 2.37	- - _{48.30} -	116.00	26.40	- 1.80
					11	-			~ ~ -		-+	-			
				50.00		-									
51.18 - 54.89 FP Maf Dyke						-	51.82	- <u>5</u> 2.4	3 0.61	LIKDROOO7	2 + 1.85 -	- - _{58.20} -	- _{45.00} -	- _{21.00} -	- _{0.70}
				1 -1		-			-	··		-1	·		
				1							4	-			
54.89 - 72.69 Graphitic Siltstone			F	I — — I ault Zone,	AA/ ¦				-		4	-			
				ss on li Mar Dyke		-	55.78	56.3	9 0.61	JKDR00072	8.41	- 91.60	217.00	27.90	10.40
			F	ault Zone	$\Lambda\Lambda$				-		4	- <i>ì</i>	 		
					AA4:					F		-!			··
					AA ¦				_	F		-1	 1	-	·
					ant at 1				_		ч — — - Ц	-1	- - 	-	
				Ann Dyke			60.96	61.7	2'0.76	'JKDR00072 └─────	2.92	1 78.80	92.00	19.40	23.70
						-			, -	· 	· · · · · ·		 		
					× × . †	-			··	, -	· - ·	, -1	' !	 	, – . (
			F	ault Zone≀ ⊟é	$\Delta \Delta I$	-	63.70	64.3 	0.61 	'JKDR00073 	3.80 - ···-	' 76.50 -	251.00	' 19.90 - 	39.10 -
				Maf Dyke 65 on 1		-					, ,	· ·			
				05.00		■ · _	1000 - 100		_!	L		.!	י י ו1	·	·
JZ/2000 report: log 2 pagesize frx	A			•	P								e	3	

.

Hole ID	D: LEN-002 North Face Geole	ogical Ltd.		ру		P	roject: Cer	tral BC		
From	To Description	fuchsit ser	Maf J	From	To Widtl	n Sample	Pb (ppm) Zn (ppm) Ag (ppb)) Ba (ppm) As (p	ւրայ
				 	 	∙ -	+ - + -	 	-	
				 	 	├ · ┣ ·	+ - +!- +!-	 	- -	
72.69 -	109.97 Graphitic Mudstone		Fault Zone	- _{72.24} - _{72.85} 	72.85 0.61 75.90 3.05	JKDR00073	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00 ⁻ 126.00 19.20 ⁻ 186.00	- - _{20.60} - - ₃₂₇ - - _{80.00} - - ₆₈	7.80 .70
			75.00	 - <u>-</u> - - <u>-</u> -	 - 78.944 	⊢ – – – – 	$\frac{1}{4} = - $ $\frac{1}{4} = \frac{1}{3.74} = - = \frac{1}{12}$		 - 56.70 - -	 .60
				⊢ ⊢ _{78.94} ⊢	 81.99 3.05 	⊢ – – – · JKDR00073 ·	+ - + - <u>4.58</u> - - + -		- - _{56.00} - - - -	 .90 ⁻
			80.00	 - <u>-</u> - 	 85.04 3.05		+ - + - <u>5.52</u> - <u>-</u> 23 + -	 0.60 ⁻ 216.00 	- - ~ - -	 9.40
			85.00	 - _{85.04}	 ⁻ 88.09 - 3.05		+ - + - + - <u>5.26</u> - + <u>1</u> 8	 	- - [[· - - - <u>91.00</u> - - <u>36</u>	
				 - <u>-</u> -		 - JKDR00073	$\frac{1}{1} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$		- - 181.60 ⁻ 17	
			90.00	 	$\begin{array}{c} -91.44 \\ -91.44 \\ -97.96 \\ -97.9$	JKDR00073	+	5.10 ⁻¹ ~61.00 1	$ \overline{434.50} - 3.7$ 	20
				- <u>-</u> -	94.49 1.53 	JKDR00073	+ - <u>1.56</u> - - <u>8</u> + -	7.60 43.00 7.60 - 89.00 	$ \frac{1}{490.90} - - \frac{1}{1.7}$	10 40 -
			95.00	94.49 - <u>-</u> - 96.01	96.01 1.52	'JKDR00074 JKDR00074	$\begin{vmatrix} 3.22 \\ + \end{vmatrix} = \begin{vmatrix} 8 \\ - \end{vmatrix}$	7.40 + 61.00 - + - 2.90 + 39.00	160.20 1.8 	30 50 ⁻
14/02/2000	manual line 2 manual - Con			● 97.54 ! _~	99.06 1.52	'JKDR00074	' 3.19 ⁻ 8 1'-	1.70 47.00		

om To Description	fuchsit ser	Maf	po 	From	То	Width	Sample I	Pb (ppm) 7	(ppm)	4g (ppb) I	3a (ppm) /	\s (ppm)
				⊢ <u>,</u> ,,,,,	100.58		JKIJR00074	+ - <u>3.83</u> -	68.30	62.00	 72.20	2.50
			100.00 	⊢100.58 ⊢101.86 ⊢		1.28 3.30 	JKDR00074 JKDR00074	4.99 	112.10 92.80 	48.00 108.00	83.50 - <u>62.60</u> - 	16.30 8.20
			- - 105.00	⊢ ⊢ ⊢	 	 ¹ 	⊢ – – – – ⊢ – – – – – 'KDR00074	+ + + _{31.44} -	 <u>-</u>	' <u>-</u> - <u>-</u>	 - _{68.90} -	 4.60
				 	 	 	· ·	+ + +	 	- + - 	 	
.97 – 115.12 FAmphP Maf Dyke			110.00	108.20 109.97 	' 109.97 - 110.58 	1.77 0.61 	'JKDR00074 	+ 8.98 + <u>8.56</u> - +	91.00	' 157.00 -91.00 	63.50 	25.30 102.30
				 	 	 	⊦ · ·	+ + +	- ··· - { - ·	 	 	
.12 - 146.30 Graphitic Argillite			115.00	- 114.51 - 115.12	-115.12 -118.26	0.61	JKDROOO75	+ <u>6.04</u>	-63.60- 190.90-	- _{30.00} - - _{186.00} -	$ _{66.00}^{-}$ $ _{41.30}^{-}$	4.30
				⊢ – – ⊢ – – ⊢ <u>– –</u>	 $ {12\overline{1},3\overline{1}}$	· - - 3.05	 	-+ + - <u>-</u> + - <u>5.17</u> -	 <u>-</u>	 	 	 <u>-</u> 239.30
			120.00	 	 	 	 	+ + +		∮ - - - - - - - - -	 	
				121.31 	124.36 	- 3.05 	'JKDR00075 ├ ├	9.97 + +	' 192.30 	245.00 	 	· 9.30
			125.00	 	- ₁₂ 7.41 		_JKDR00075 	- - -	+ 118.30 +	146.00 	<u>82.60</u> - 	
				⊢ 127.4ī ⊢ – –	- 130.45 	-	IJĸIJĸŌ0075 ├	+ <u>6.3</u> 2 -	456.70 -	<u>155.00</u> 	- -	_407.10 -
			130.00		 	-		+ +	- - - _{59.40} -	· - - <u>-</u>	 	· - _{11.40}

Hole ID: LEN-002	Norm Face Geologica atd.	,,,,,,				F	r i sta	C 1	BC			i -
From To Description	fuchsit ser Maf	po 	From	To	Wìdth	Sample	Рb (рр m)	Zn (ppm)	Ag (ppb) l	3a (ppm) /	As (ppm)	
	fuchetit ser Mai		From $ _{133.50} $ $ _{136.55} $ $ _{139.60} $ $ _{139.60} $ $ _{142.65} $ $ _{144.23} $	10 136.55 - $ -139.60 -142.65 -142.65 --142.65 -- -- -- -- --- --- ---- --------$	$\begin{vmatrix} - & - & - & - \\ 3 & 0.05 & - & - & - \\ - & - & - & - & - \\ - & - &$	JKDR00075	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= - = -	$\begin{vmatrix} - & - & - \\ \hline 1 \\ \hline 1 \\ 5 \\ 4 \\ - & - \\ - \\ \hline 3 \\ 8 \\ 0 \\ 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{vmatrix} - & - & - \\ \hline 123.10^{-1} \\ \hline 123.10^{-1} \\ \hline 123.10^{-1} \\ \hline 123.10^{-1} \\ \hline 104.00^{-1} \\ \hline 105.20^{-1} \\ \hline 155.20^{-1} $	368.50 	
146.30 - 146.30 EOH		145.00 ЕОН	' 145.39 ~	' 146.30 !	0.91 ' !	JKDR00076	6.71 +	49.50 -	261.00 	23.70 	' 11,80 	

6

Rocktype

PROJECT: Central BC Hole ID: LEN-002

From	То	Rocktype
0,00	38.10	Casing
38.10	51.1B	(Amyg) Augite FP Maf ALT-TLA
51.18	54.89	FP Maf Dyke
54.89	72.69	Graphitic Siltstone
72.69	109.97	Graphitic Mudstone
109.97	115.12	FAmphP Maf Dyke
115.12	146.30	Graphitic Argillite
146.30	146.30	ЕОН

PROJECT: Central BC Hole ID: LEN-002

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000725	40.39	41.00	0.61	WT	2.81	77.60	92.00	12.70	1.00
JKDR000726	48.46	49.07	0.61	WT	2.37	48.30	116.00	26.40	1.80
JKDR000727	51.82	52.43	0.61	WT	1.85	58.20	45.00	21.00	0.70
JKDR000728	55.78	56.39	0.61	WT	8.41	91.60	217.00	27.90	10.40
JKDR000729	60.96	61.72	0.76	WΤ	2.92	78.80	92.00	19.40	23.70
JKDR000730	63.70	64.31	0.61	WT	3.80	76.50	251.00	19.90	39.10
JKDR000731	72.24	72.85	0,61	WT	6.43	68.00	126.00	20.60	327.80
JKDR000732	72.85	75.90	3.05	WT	5.79	109.20	186.00	80.00	68.70
JKDR000733	75.90	78.94	3.04	T	3.74	127.10	105.00	56.70	11.60
JKDR000734	78.94	81.99	3.05	T	4.58	100.10	150.00	56.00	14.90
JKDR000735	81.99	85.04	3.05	T	5.52	230.60	216.00	41.00	1589.40
JKDR000736	85.04	88.09	3.05	T	5.26	181.90	189.00	91.00	36.20
JKDR000737	88.09	89.76	1.67	WT	3.63	226.10	221.00	181.60	17.10
JKDR000738	89.76	91.44	1.68	WT	1.44	93.10	61.00	434.50	3.20
JKDR000739	91.44	92.96	1.52	WT	1.16	86.40	45.00	573.00	2.80
JKDR000740	92.96	94.49	1.53	WΤ	1.56	89.60	89.00	490.90	1.40
JKDR000741	94.49	96.01	1.52	WT	3.22	87.40	61.00	160.20	1.80
JKDR000742	96.01	97.54	1.53	WT	3.56	112.90	39.00	195.60	2.50
JKDR000743	97.54	99.06	1.52	WT	3.19	84.70	47.00	118.00	2.10
JKDR000744	99.06	100.58	1.52	WT	3.83	68.30	62.00	72.20	2.50
JKDR000745	100.58	101.86	1.28	WΤ	4.99	112.10	48.00	83.50	16.30
JKDR000746	101.86	105.16	3.30	Т	3.05	92.80	108.00	62.60	8.20
JKDR000747	105.16	108.20	3.04	Т	31.44	125.70	129.00	68.90	4.60
JKDR000748	108.20	109.97	1.77	Т	8.98	91.00	157.00	63.50	25.30
JKDR000749	109.97	110.58	0.61	WT	8.56	204.90	91.00	42.30	102.30
JKDR000750	114.51	115.12	0.61	WT	6.04	63.60	30.00	66.00	4.30
JKDR000751	115.12	118.26	3.14	Т	6.80	190.90	186.00	41.30	554.80
JKDR000752	118.26	121.31	3.05	т	5.17	189.00	170.00	69.50	239.30
JKDR000753	121.31	124.36	3.05	WT	9.97	192.30	245.00	100.20	9.30
JKDR000754	124.36	127.41	3.05	Т	4.84	118.30	146.00	82.60	79.00
JKDR000755	127.41	130.45	3.04	Т	6.32	456.70	155.00	64.80	407.10
Sample logical Ltd.	Summa	PROJ H							
------------------------	--	---	---	--	--	---	---	--	
From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)	
130.45	133.50	3.05	Т	3.18	59.40	92.00	74.30	11.40	
133.50	136.55	3.05	Т	5.07	46.20	154.00	123.10	368.50	
136.55	139.60	3.D5	Т	10.08	81.90	380.00	104.00	678.8D	
139.60	142.65	3.05	WT	13,93	208.10	258.00	71.70	14.90	
142.65	144.23	1.58	т	15.53	187.60	246.00	55.20	11.80	
144.23	145.39	1.16	т	2.71	32.40	166.00	15.40	3.50	
145.39	146.30	0.91	Т	6.71	49.50	261.00	23.70	11.80	
	Sample logical Ltd. From 130.45 133.50 136.55 139.60 142.65 144.23 145.39	Sample Summa logical Ltd. From To 130.45 133.50 133.50 136.55 136.55 139.60 139.60 142.65 142.65 144.23 144.23 145.39 145.39 146.30	Sample Summary with Iogical Ltd. From To Width 130.45 133.50 3.05 133.50 136.55 3.05 136.55 139.60 3.05 139.60 142.65 3.05 142.65 144.23 1.58 144.23 145.39 1.16 145.39 146.30 0.91	Sample Summary with Assay Iogical Ltd. From To Width Type 130.45 133.50 3.05 T 133.50 136.55 3.05 T 138.55 139.60 3.05 T 139.60 142.65 3.05 T 142.65 144.23 1.58 T 144.23 145.39 1.16 T 145.39 146.30 0.91 T	Sample Summary with Assays Iogical Ltd. From To Width Type Pb (ppm) 130.45 133.50 3.05 T 3.18 130.45 133.50 3.05 T 5.07 133.50 136.55 3.05 T 10.08 139.60 142.65 3.05 T 13.93 142.65 144.23 1.58 T 15.53 144.23 145.39 1.16 T 2.71 145.39 146.30 0.91 T 6.71	Sample Summary with Assays PROJ logical Ltd. H From To Width Type Pb (ppm) Zn (ppm) 130.45 133.50 3.05 T 3.18 59.40 130.45 133.50 3.05 T 5.07 46.20 133.50 136.55 3.05 T 10.08 81.90 133.60 142.65 3.05 T 10.08 81.90 139.60 142.65 3.05 T 13.93 208.10 144.23 145.39 1.16 T 2.71 32.40 145.39 146.30 0.91 T 6.71 49.50	Sample Summary with Assays PROJECT: Centre logical Ltd. To Width Type Pb (ppm) Zn (ppm) Ag (ppb) From To Width Type Pb (ppm) Zn (ppm) Ag (ppb) 130.45 133.50 3.05 T 3.18 59.40 92.00 133.50 136.55 3.05 T 5.07 46.20 154.00 138.55 139.60 3.05 T 10.08 81.90 380.00 139.60 142.65 3.05 T 13.93 208.10 258.00 142.65 144.23 1.58 T 15.53 187.60 246.00 144.23 145.39 1.16 T 2.71 32.40 166.00 145.39 146.30 0.91 T 6.71 49.50 261.00	Sample Summary with Assays PROJECT: Central BC Hole ID: LEN-002 Iogical Ltd. To Width Type Pb (ppm) Zn (ppm) Ag (ppb) Ba (ppm) I 30.45 1 33.50 3.05 T 3.18 59.40 92.00 74.30 I 130.45 1 33.50 3.05 T 5.07 46.20 154.00 123.10 I 130.55 1 39.60 3.05 T 10.08 81.90 380.00 104.00 I 139.60 142.65 3.05 T 15.53 187.60 246.00 55.20 I 142.35 144.23 1.16 T 2.71 32.40 166.00 15.40 I 145.39 146.30 0.91 T 6.71 49.50 261.00 23.70	

.

-

North	Face	Geological	Ltd.
-------	------	------------	------

North Face Geological Ltd. 15575 86 Avenue Surrey, B.C. V38 5C8

Hole #: *LEN-003*

475.000	
1100.000	
Elevation: 1100.000 Field Location: 6+00N, 4+75E (m); Length: 158.80	
158.80	
-55.0	

JKD
28/10/1999
06/08/1999
07/08/1999

DRILL HOLE DESCRIPTION
DETAILED GRAPHIC LOG

Comments: Poor core angles suggestion some folding complications

22.9
NQ
Britton Brothers
ACME

Project:	2318
Area:	Babine
Property:	LEN

L.068	Map Reference:
Len 8	Claim:
nineca	Region:
1	Region:

Dip Tests Hole # Depth Azimuth Dip LEN-003 0.00 90.00 -55.00

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

Project: Central BC

Hole IE	D: LEN-003	North Face Geolo	gical L	td.			<u></u>						Project:	Central I	BC	-	- I
From	To Description		fuchsit	ser	Maf		ſ		From	То	Width	Sample	Рь (ррш)	Zn (ppm) A	ig (ppb) Ba (p	pm) As (pp	m)
0.00 -	22.86 Casing				1 1	·	, 	τT	· · · · · ·		T		1	· . ·	I		
						-4	CATTRIC				-		4 •	-1			
					1	-	CASING				-		·+ ·	-			~ =
						_		11			1 H		+	-			
						_	CASING		I		¦ ⊦		4	- !			
						5.00	CASING	1	<u> </u>		i		·+	-			
							CASING	11	⊢ – –		-		, 	· · · ·			
						_	CASING		· · · ·	··			· 	, , , , , , , , , , , , , , , , , , ,	[1	
							CASING				/ F		, ,	י י 	l	، ا	
							CASING	• • • •	· · · ·		, ,] L		, ,	י י וי - ו	1	1	
							CASING	• • • •	· · ·		, , , , , , , , , , , , , , , , , , ,		1 I	11			
						10.00	CASING	 			·				· ·		
							CASING	 					+ ·· - ·				- -
							CASING				- 		•1 - ·- ·	-	!	• -•	
						1	CASING	 			<u> </u> -			!			
						1	CASING		⊢		-		4				
						15.00	CASING				-		4	- - · · -		!	·
						_	CASING				-		4		···	1	
						-	CACINIC				-	• -					
						-					-		4	·		·	
					1	- '	CASING				-		4	· ·			
						20.00	CASING				-		+	· - ·· -			
							CASING				 		4	·[]	-]	· -	
22.07	22.92. ()						CASING			·· ·	} -	_	-	·		!	
22.86 -	33.83 Overburden					'	CASING				· -		, 		l	, 	
						'	CASING		i i		 		, ,	· · ·	ا ا	-1	
							CASING	· ·	· ·	_			1 1	 			- -
						25.00	CASING	1 1	1 I		·· - 		- - ·		· · -		- -
						,	CASING				·· → -						- -
							CASING		·		-		4			-	- -
						-	CASING				-		+			-	
						-	CASING				-	· · · ·		·		· ·	- -
						30.00			⊢ – –		⊩		1			·	
			fuebsit ser Maf	CASING		⊨ -		-		4 - • -			· - ·	-			
				LASING		┣ ╄		-		4			· -				
<u> </u>						10	CASING	t I	· (J		!_ =	_!	_ _
14/02/2000	report: lug_2_pagesize.fi	x												Page	2		

Hole ID: LEN-003	North Face Geo	logical Ltd.								P , t: +	<u>C</u> ī	BC			, 1
From To Description	n	fuchsit ser	Maf			From	То	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)	,
33.83 - 58.40 Graphiti	c Mudstone/Siltstone				, 	33.83	36.88	3.05	JKDR00068	3.08	139.40	158.00	117.20	1.70	1
						 	i− − −	 1		- 1	·	1			1-
				35.00		 		 .			.	 	 		
						36,88	39.93	3.05	JKDR00068	2.97	164.10	208.00	145.80	1.50	
						، ا		; 			' -	' 	 	-	
				_			, 	, 			.		1		
				40.00		39.93 	· 42.98	3,05 	JKDR00068 	· 3.80	- 133.30 -{	· 164.00	164.70 	2.10	
				-						+			[
				-		- <u>-</u> -	- <u>-</u> _	-, -		+ -3.65 -	$-1_{-146.90}$		$\left \frac{-}{132.40}\right $	- <u>-</u>	
										+	-				
		ľ.									-			¦ − − −	- -
				45.00		 -					-		- ·	·	-
						46.02	49.07	3.05	JKDR00068	+ 3.52	-	209.00	109.70	0.30	
						- - - 				+	·				-
						- - - 		 				 	- - - 		
						49.07	52.12	3.05	JKDR00068	7 <u>3.11</u> 	117.30	196.00	135.00 	_ 0.50 _ 	
				50.00		,, ┣-	, 			, 	' -	i	' 	' 	. _
						- = =	. . .			+	-		:	, 	
				_		52.12		3.05	\vdash	+			105.90	0.50	
						{~				+	-				- -
				55.00	I		- _{58.40}	 3.23	JKDROOOGS	+ -3.67 -	101.00	111.00		- _{1.80} -	· -
										4					- -
				-		- - -			⊢ – – –	4	• •			··	
58.40 - 61.69 Maf-D							 			4	-				
						59.59	60.20	0.61	JKDRÖOOG8	+ 3.06 -	63.60	1-15.00-	129.90	0.10	-
				60.00		- - - 	} 	 	 		- 		 '	 	. –
61.69 - 131.67 Graphiti	c Mudstone						I	 		-1 ···	-	 	 	 !	
													, = 	! = !	[_
						63.70	64.31	0.61	JKDR00068	' 3.57 	' 315.50 - 	149.00	122.60	' 18.20 =	
				65.00		64.31 	68.15	3.84	JKDR00069	- 3.16 -	175.90 -	· 176.00	122.10	2.70	-
)	· -	<u>ا</u>	' '	<u> </u>	J	_1	·	<u>'</u> -	۰ <u>ـــ</u>	. _
14/02/2000 report: log	2_pagesize.frx										Pa	ge	3		1

Hole ID: LEN-003 Nor	th Face Geological Ltd.	h roject: Central BC
From 10 Description	fuchsit ser Maf	From To Width Sample Pb (ppm) Zn (ppm) Ag (ppb) Ba (ppm) Ag (ppm)
		$ - \frac{1}{68.88} - \frac{1}{70.41} - \frac{1}{1.53} \frac{1}{JKDR00069} - \frac{1}{3.08} - \frac{1}{217.90} - \frac{1}{146.00} - \frac{1}{114.40} - \frac{1}{13.40} - 1$
	70.00	1 1 - 70.41 - 73.00 2.59 JKDR00069 - 3.45 - 169.50 141.00 115.30 - 11.90
		73.00 73.73 0.73 JKDR00069 5.04 92.20 176.00 90.20 0.10
	75.00	
		!
	80.00	1 80.83 82.51 1.68 JKDR00069 3.76 87.30 120.00 105.60 1.80
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	85.00	- 85.34 - 88.39 - 3.05 JKDR00070 + 3.42 - 131.50 + 137.00 + 86.50 - 1 - 1.10 -
		1 = 88.39 = 91.44 = 3.05 JK DR00070 = 3.97 = 144.70 = 147.00 = 98.80 = -2.10 =
	90.00	
		91.44 94.49 3.05 JKDR00070 3.52 104.50 107.00 96.30 1.80 $ $
		+ +
		- 94.49 - 97.54 - 3.05 + 100070 + -3.51 - 100070 - 1000070 + -3.51 - 1000070 - 1000070 - 1000070 - 10000000 - 10000000 - 100000000 - 100000000
	95.00	
		1 97.54 100.58 3.04 JKDR00070 4.15 94.80 164.00 51.30 349.40
2/2000 report low 2 namesing for		

Hole ID: LEN-003	North Face Geological L	td.						P	_ t: (C 118	iC . (b) B	• () /	
rom To Description	fuchsit	ser Mal			From	To '	Width	Sample	י) (ppm) לי 	Co (ppm) A	е (рро) в 	a (bhm) v	73 (Ърш)
			100.00				3.57	JKDR00070	5.41 -	1-98.30-1	175.00 ⁻¹	42.40	134.70
				l					↓ - ·	 1	 	 	
					-		 		+ +	· ·			
							 		+ -,	- - <u>62 60</u> -	195.00	-36.20-	1195.50
			105.00	i i	- 104.15	105.00	0.85		4.90 - <u>4.29</u> -	-	-94.00	-40.30-1	10.60
			-	ł	$ - \frac{103,00}{106.68}$	- 109.73	1.00 3.05	JKDR00070	4.37		140.00	59.70	⁻ 0.20 ⁻
]			- -			
						 	 	} 	┓ ┥= -	-		-1-20	
						' 112.78]	3.05	'JKDR00070 ├	' 4.06 	-		42.50	
			110.00		 		1	 −	+				- -
					1 - 112.78	- 115.82	1-3.04		4 4.88	126.30	175.00	36.70	- 1.30 -
							·	⊢ − − −		- -!	 -	! 1	
					 -		-	 		-	1		·
			115.00		115.82	' 118.87 	1' 3.05 -	'JKDR00071	- <u>3,68</u> -	-		43.20	·
					⊢	<u> </u>	-	⊢		-			
					118.87	- _{121.92}	2 3.05	JKDR00071	- 3.99	- 101.90	108.00	42,60	4.60
						ļ. - -	-	·	4	- -	 	· -	- -
			120.00			·	- ~ - -		н – – – Н – , –	-	1	40.20	$- -1\overline{40}-$
				, i ' i	121.92 	123.2°	9' 1.37 -	JKDR0007	4.15	-	·		· ·
				1	$++_{1\bar{2}3,\bar{2}9}$	$\frac{1}{24.9}$	7	JKDR0007	+ 3.34	-	· <u>107.00</u>	149.60	- - _{8.20} -
					- 124.9	125.5	<u>-</u> 8 0.6	JKDR0007	1 1.93	- -41.30	52.00	112.40	⁻ _20.60
			125.00		125,5	R 129.3	6 3.78	JKDR0007	1^{+} $\overline{3.18}$	-1	1 158.00	- <u>-</u>	- - 2.70 -
					-	-	-	·	, 	_	- ·	-	- ·
					 	-	-\	·	4	-1	-!	-1	
					$ _{1293}$	$\frac{1}{6}$ $\frac{1}{131.6}$			1 ⁺ 3.21	- <u>-</u> 149.90	- <u>.</u> 173.00	- 96.30	1.60
			130.00			-	-	-	4	-	-1	-	-
121 67 138 74 Maf Dyke (Complex				 131.6	7 132.2	28 0.6	1 JKDR0007	1 ⁻¹	- -76.60 	- _44.00 _ !	- 49.40 _!	=1 = 1.30 =1 = -=
151.0/ - 150./4 mai 29ke 4										P	10P	5	

		Invest Face unolog	الد يوند	td.							1	Paniast: (5C ·		· · ·	1
From	To Description		fuchsit	ser	Maf		I	From	То	Width	Sample	Pb (ppm)	/л (ррт) А	.g (ppb) B	a (ppm) A	s (ppm)	
138.74 -	To Description	.vi Face 0.010	gican حا	td. ser	Maf			From	To	Width - -	Sample	Pb (ppm) 2 +	$ \begin{bmatrix} \mathbf{P} \\ \mathbf{P} \\ $	$\begin{array}{c} \mathbf{g} (\mathbf{ppb}) \mathbf{B} \\ - & - & - \\ - & - & - \\ - & - & - \\ - & - &$	$\begin{array}{c} (ppm) A \\ \hline \\ - & - & -1 \\ - & - & -1 \\ - & - & -1 \\ - & - & -1 \\ \hline \\ - & - & -1 \\ \hline \\ - & - & -1 \\ - $	s (ppm) 	
						155.00 	↓	 · - 1.58. 	- - - - 19 ⁻ 158. - 	- - - 80 -0.6 -	· · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - 	- - - - <u>100.00</u> -	- - - - <u>172.20</u> -	- - - - - _{1.90} -	-

Rocktype

PROJECT: Central BC Hole ID: LEN-003

From	То	Rocktype	
0.00	22.86	Casing	
22.86	33.83	Overburden	
33.83	58,40	Graphitic Mudstone/Siltstone	
58.40	61.69	Maf-D	
61.69	131.67	Graphitic Mudstone	<u></u>
131.67	138.74	Maf Dyke Complex	
138.74	158.80	Siltstone	<u>. </u>
158.80	158.80	ЕОН	

PROJECT: Central BC

North Face Geological Ltd.

Hole ID: LEN-003

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000680	33.83	36.88	3.05	WT	3.08	139.40	158.00	117.20	1.70
	36.88	39.93	3.05	т	2.97	164.10	208.00	145.80	1.50
	39.93	42.98	3.05	Т	3.8D	133.30	164.00	164.70	2.10
	42.98	46.02	3.04	T	3.65	146.90	179.00	132.40	0.70
	46.02	49.07	3.05	τ	3.52	110.00	209.00	109.70	D.30
	49.07	52.12	3.05	Ť	3.11	117.30	196.00	135.00	0.50
JKDR000686	52.12	55.17	3.05	WT	2.97	86.80	149.00	105.90	0.5D
JKDR000687	55.17	58.40	3.23	т	3.67	101.00	111.00	89.50	1.80
	59.59	60.20	0.61	WT	3.06	63.60	15.00	129.90	0.10
	63.70	64.31	0.61	WT	3.57	315.50	149.00	122.60	18.20
IKDR000692	64.31	68.15	3.84	т	3.16	175.90	176.00	122.10	2.70
	68.15	68.88	0.73	Т	1.93	82.20	108.00	61.40	12.90
IKDR000692	68.88	70.41	1.53	Т	3.08	217.90	146.00	114.40	13.40
	70.41	73.00	2.59	Ť	3.45	169.50	141.00	115.30	11,90
	73.00	73.73	0.73	Т	5.04	92.20	176.00	90.20	0.10
	73.73	75.77	2.04	т	2.22	126.30	33.00	65.00	1.40
KDR000696	75.77	77.78	2.01	Т	2.73	77.80	113.00	131.30	2.80
	77.78	80.83	3.05	WΤ	3.33	127.80	141.00	98.60	13.30
	80.83	82.51	1.68	т	3.76	87.30	120.00	105.60	1.80
IKDR000699	82.51	85.34	2.83	T	4.10	144.70	141.00	62.00	3.90
	85.34	88.39	3.05	Τ	3.42	131.50	137.00	86.50	1.10
JKDR000701	88.39	91.44	3.05	Т	3.97	144.70	147.00	98.80	2.10
	91,44	94.49	3.05	т	3.52	104.50	107.00	96.3D	1.80
IKDR000703	94,49	97.54	3.05	WΤ	3.51	134.60	148.00	69.80	0.70
IKDR000704	97.54	100.58	3.04	Т	4.15	94.80	164.00	51.30	349,40
	100,58	104.15	3.57	Т	5.41	98.30	175.00	42.40	134.70
JKDR000706	104.15	105.00	0.85	Т	4.90	62.60	195.00	36.20	1195.50
	105.00	105.68	1.68	T	4.29	66.20	94.00	40.30	10.60
	106.68	3 109.73	3.05	Т	4.37	124.40	140.00	59.70	0.20
IKDR000709	109 73	3 112.78	3.05	WT	4.06	112.20	123.00	42.30	0.80
	112.7	8 115.82	3.04		4.88	126.30	175.00	36.70	1.30

North Face Ge	Sample ological Ltd.	Summa	ry with	Assay	7S	PROJ Ho	ECT: <i>Centr</i> ole ID: LEN:	<i>al BC</i> 003	
Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000711	115.82	118.87	3.05	Т	3.68	92.80	153.00	43.20	2.20
JKDR000712	118.87	121.92	3.05	T	3.99	101.90	108.00	42.60	4.60
JKDR000713	121.92	123.29	1.37	Ť	4.15	79.20	148.00	49.20	1.40
JKDR000714	123.29	124.97	1.68	Т	3.34	63.20	107.00	149.60	8.20
JKDR000715	124.97	125.58	0.61	wr	1.93	41.30	52.00	112.40	20.60
JKDR000716	125.58	129.36	3.78	Т	3.18	106.20	158.00	138.40	2.70
JKDR000717	129.36	131.67	2.31	т	3.21	149.90	173.00	96.30	1.60
IKDR000718	131.67	132.28	0.61	WT	4.27	76.60	44.00	49.40	1.30
IKDR000719	137.16	137.77	0.61	WΤ	1.80	69.80	43.00	30.10	34.80
	142.04	142,65	0.61	WT	4.62	60.30	66.00	85.20	2.10
	149.35	149.96	0,61	WT	3.65	67.70	64.00	97.60	4.40
JKDR000721	158.19	158.80	0.61	wт	3.14	90.00	100.00	172.20	1.90

Project: Central BC North Face Geological Ltd. DRILL HOLE DESCRIPTION DETAILED GRAPHIC LOG North Face Geological Ltd. 15575 86 Avenue Surrey, B.C. V3S 5C8 Comments: Very strong hydrothermal alteration and minor *Hole #: LEN-004* sphalerite **Dip Tests** 24.4 Casing Exposed: 300.000 Depth Azimuth Dip Hole # Northing: NO **Casing Size:** 370.000 0.00 90.00 -50.00 Easting: LEN-004 Britton Brothers Contractor 1100.000 Elevation: ACME Assay Lab: Field Location: 3+00N, 3+70E (m); 2318 176.78 Project: Length: Babine -50.0 Area: Start Dip: LEN Property: 90 Start Azimuth: 93L.079 Map Reference: JKD Logged by: Len 4 28/10/1999 Claim: Log date: Omineca **Region:** 10/08/1999 Date Started: 11/08/1999 Date Finished:

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

										I	Project:	Contral	BC		· .
HOLE ID: LILIN-004	North Fact scolo	gi	205			 F1	om	To	Width	Sample	Рь (ррт)	Zn (ppm)	Ag (ppb) B	ia (ppm) A	s (ppm)
rom To Description		fuchsit ser	Mai		1		- T		T		1		T		
0.00 - 27.13 Casing						1 -	-		↓ -			-1			
					CASING		-					-	1	1	
					CASING		-				4	-1		1	
					CASING	11-	-		1 1			-		- - -	
					CASING	14-	-							l – – – l	
				5.00	CASING	11-	l-								
					CASING		{·		·						
					CASING	 	·		-						
				-	CASING	 	\		-1			-1		1	
				-	CASING		ا ا ـــــــــــــــــــــــــــــــــــ		-1			-	-1		
				10.00		1 1 1	ł		-1	' ∳ → =		-	.	11	
				-	CASING	= 			-1	, 		-	-1		
					CASING	1 -			• •	' 		_!	-	·i	- -
				-	CASING			I	, _ •	· 	· ·	···		.	
				-	CASING	-) 		· 		-l	-1	-	
				15.0Ō	CASING	1 -	··· -		_1	·	, , , , , , , , , , , , , , , , , , , ,	_	-1	-	
				-	CASING			I 1 _		۱ ـ ـ	, , , , , , , , , , , , , , , , , , , ,	-1	-	- i	
				-	CASING			1	-l	L	, .	-1	_\	-	
				-	CASING			ι ι	-1		, , , , , , , , , , , , , , , , , , ,	1	_]		
					CASING				-	г 1 – – –	י 	-i	-l	· 	
				20.00	CASING			 	-1	I	, , , , , ,		- ·	_ _	·
					CASING			- ··	-1			I		' -1	-
					CASING				-1	 I		· _l	-1	-l	-
					CASING				-		1		_1	, _	-
					CASING		·			- ·		_1	_	_l	_}
				25.0	CASING		- -	1			 1	· -	1 	, _ ·	' -l
					CASING	-	-		-1			-	····		1
				Me		1		ļ	-	· ·				-1	
27.13 - 31.39 Maf T		J I	I	I	"i				-1	· }		,	-		· · ·
					-	11	29.57	; - <u>30</u> .	.18 0.6	I JKDROOG	76 4.2		0 33.00) ⁻ 96.30	-I - 0.8
				30.0	0				-1	-	1	!	-	-1	-i
		,		ł	-			- ļ_ –	-	-			-	-	- - ~
31.39 - 32.31 Fault Zone							32.6	1 - 33	.22 0.6	I JKDROO		īi [—] 61.6	0 22.00) - 1 - 88.70	- - 0.7
22.21 51.01 (Amuh)FP Ma	f T/LT	111			LIPE	1 Ī 1			_1			!	·!		-'

fuchsit ser Maf		From	To Wic	ith Sample	РЬ (ррш) Z	n (ppm) Ag	(ppb) Ba (j	ppm) As ((ррт)
		·							
			- ·	- -			-	 - -	
		- 	-	- -	+ +	-	· - · -	- -	
		 	!- !-	- -		- -	· - -	- -	
		-	- -	- -	-+	- - 1 ·	= - -	- - -	
		 	- 45.11 - 0. - -	61 JKDR00076 	;+ - <u>1.59</u> - + +	_ _{59.10} - - - -	- 9.00 - 1 T2 - -	23,10 ⁻¹ - , 1 - 1 -	0.60 -
		 	- - -	- - - -	-+ -+ -+	- ·	· - -	- - 1 - 1	·
	50.00 ⁻ 	- 50.90 - 51.91 	- 51.51 0 - 53.64 - -	.61 JKDR0007 .73 JKDR0007	6 +	-94.10 -182.20 	10.00 ⁻ 8 254.00 ⁻ 4 -	34.10 - 59.00 - · -	0.90 8.90
		- <u>53.64</u> 	- 55.47 - -		$6 + \overline{16.52} - + $	$\frac{1}{103.10} + \frac{1}{103.10} + \frac{1}$	$-64.00 - \frac{1}{3}$ 	54.70 ⁻ - - 30.50 ⁻ -	25.10
	55.0	55.47	- -	 	+ +	· -	= = = = = = = =	· – –i – · – –i – - – –i –	
		 - <u>59.44</u> 	- $ - \frac{1}{62.76} - \frac{1}{2}$ - -	-	+ 17 + <u>5.22</u> - 	- - <u>-</u> 91.80 ⁻ -	- 250.00 ^{- -}	- 26.10 - - -	30.10
		 - <u>-</u> 	- - <u>-</u> - - -	-	- + 77 ⁻ + - <u>-</u>	- - _{79.90} - -			 16.40
			- _{65.75} -	1.74 JKDR000	77 ⁺ ~ 4.77	- - _{86.70} - _! !]94.00	44.50 - '	29.20
			40.00 40.00 $1 - - - - - $	$\begin{array}{c} 1 & $	$\begin{array}{c} 1 & $	$\begin{array}{c} 1 & $	$\begin{array}{c} 40.00 \\ 40.00 \\ \hline \\ 1 \\ 1 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 1 & $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Hole ID: LEN-004 North Fa	acc Geological Ltd				т. 1	v:	Samula P	h (nnm) Z	п (ррт) А	g (pph) B:	i (ppm) A	(ppm)
From To Description	fuchsit s	er Maf	<u> </u>	From			WDB00077	0.97	35.10	23.00	138,90	2.20
65.75 - 69.31 Amyg FAugiteP Maf ALT/TL	A		A -1	65.75		+	+		!		1	
				∎	·	- - ł	- · ł		1			
					- <u>-</u> -	0.73	JKIJR00077	ī.12 -	36.50	27.00	368.00	- 1.60 -
					$ -\frac{1}{70.62} $	1.31	JKDR00077	6.98 -	59.60	97.00	89.30	36.80
69.31 - 70.62 Graphitic Argillite			70.00	1- 70.6	2 - 71.29	0.67	JKDR00077	1.54	85.80	-60.00 ⁻¹	43,30	14.30
70.62 - 71.29 Amyg FAugiteP Maf ALT/TI	<u>A</u>		-	$ - \frac{1}{71.2}$	9 - <u>-</u> 74.68	3.39	JKDR00077	9.08	104.90	240.00	70.00	36.00
71.29 - 77.72 Graphitic Argillite					-				1		I	
				· ·	-				i – – I i – I			
				74.6	8 77.72	3.04	JKDR00077	† 62.93 T	335.20	2360.00	43.10	59.10
			75.00	· ·	-			1	1]	
				·	-	! !	·	 	<u>-</u>	5767.00		1006 30
77 72 80 10 Fault Zone				77.7	72 80.10	2.38	'JKDR00078 └─────	' 587.01 -	· 2837.40	8268.00	94.40 	
//./2 - 00.10 + ματ. 2011				'∎'' 	_ ···	1		· -	·l			
				, , , \		.	1	17500	651.30	2593.00	- _{93.00} -1	60.40
80.10 - 80.65 Graphitic Argillite				80. 	10 · 80.65	0.55 		+ 256.95	-1 <u>3511.90</u>	1706.00	- 51.00	56.30
80.65 - 81.17 Graphitic Argillite			80.00		$\frac{12}{12} = \frac{1}{12} = \frac{1}{2156}$	0.52 		+ 1162.98	-1 5568.40	3841.00	- <u>97.70</u> -	205.80
81.17 - 81.56 Graphitic Argillite				- <u>-</u>	$\frac{1}{56}$ $\frac{1}{8730}$		JKDR00078	+ 824.53	- 1942.10	ا 4579.00	48.90	68.60
81.56 - 82.30 Graphitic Argillite				$ + \frac{1}{82}$	$\overline{30}^{ -} 8\overline{3}.36$		JKDR00078	1 731.83	2235.50	4841.00	112.20	74.80
82.30 - 83.36 Graphitic Argillite				$ \vdash \frac{1}{83}$	36 - 85.53	- 2.17	JKDR00078	+ 84.69	330.40	692.00	58.20	= 8.40
83.36 - 85.53 Limestone				1		-					1) — — t
			85.00	85	.53 86.87	7 1.34	I JKDRO078	H 278.68	1204.10	4566.00	100.20	' 67.30
85.53 - 111.47 Graphitic Arginite				86	.87 87.7	s [0.9]	I JKDR00078	់	⁻¹ 2207.00	14114.00	68.20	' 41.70
				87	.78 7 88.3	0.6	L DR00078	□ 585.61 ↓	' 2792.70 	4492.00	95.30	· 49.90
				88	.39 90.2	2 1.8	5 JKDR00079	- 14424.85 	- 13172.60 - 1)'12910.0' -	0'109.70 -	- 08,80 -]
					-		-	+=	- =			
			90.00	1 1 90 1 1	.22 ' 92.0 ·	5 1.8 -	3 'IKDR00079 -) 323.85 -		-	-	-
				¦∎⊨ -	,			+ 13450	- 341630	5 3 1 1 7 7 0	õ 67.10	- 10571.
					2.05 93.5 ここ ー こう	د. ب راج		45230	-122.28.20	, 11802.0	0 74.30	- 3963.3
				-	-		-	+		- -	-	-
			95.00		-	-!	-				-1	-1
			A Start I Start		'	_1_				_!	.	<u></u>
									P	ige	4	

	D:								T	'' ^ct:	<u>C</u> ′ 'al	BC		•
From	To Description		chsit ser	Maſ	1	From	То	Width	Sample	Pb (ppm)	Zn (ppm)	Ag (ppb) i	Ba (ppm)	∧я (ррт)
				T	· · · · · · · · · · · · · · · · · · ·	96.01	97.08	3 1.07	JKI)R00079	434.17	3364.90	14952.00	37.30	6727.40
						F 97.08	⊢ <u>,</u>	5 1.98	JKDR00079	236.48	1488.10	7589.00	89.80	2380.10
					-	⊢ − −		-1	⊢ – – –		-		-	
					-	+ 99.06	100.5	3 1.52	JKDR00079	204.72	⁻¹ ī18ī.9õ	1965.00	139.40	¹ 87.30
			1		100.00	+ 100.58	102.1	ī ¹ _1.53	JKDR00079	1 162.10	663.10	1915.00	94.90	135.80
								-1	⊢ 1	+ ·	-			- - - - -
		1	ĺ			⊢102.11	103.6	3 1.52	JKDR00079	1 157.16	793.60	2150.00	99.40	238.90
						103.63	105.1	6 1.53	JKDR00079	⁴ 177.41	1 1201.30	3290.00	75.40	513.10
							 	_!			-1	' .	· – -	
					105.00	□ 105.10	106.6	8 1.52	JKDR00080	¹ 252.99 ↓	'485.20 	2637.00	' 105.20	' 1172.50 דעד הי
						° 106.68 − − −	' 108.2	0'1.52	'JKDR00080 ⊢ – – –	245.36	'632.80 -	' 2229.00 · ~ – –	· 98.00 ·	614.80
							- - -			+	-	· 1778 00		1 - 142 80
						108.20) 109.7	3 1.53	JKDR00080	+ 5, 5	-+ 503.20	1328.00	57.40	142.00
					110.00	109.7. 	5 111.4 ·	-	JKT3K00080 	+	-	·		
						⊢. <u> </u>	; <u> -</u>			+ -5 50	- -, -, -, -	·	-	$-1_{405.1}$
111.47 -	123.99 FP Maf T+Graphtic M	udstone		bec	Ided T-LT =		$\frac{ -1127}{ -127}$		LKDB00080	+ 12.06	-i -70.70-	$1_{\overline{128.00}}$	- 103.10	- - <u>-</u> 292.7
						$ +_{1127}$		$\frac{-}{2}$ $\frac{-}{1.34}$	LIKDR00080	+ 54.07	- 342.20	256.00	131.20	1 108.7
						-	2	2 0.70	JKDR00080	+ 6.76	-1-89.80-	- 214.00	- _{184.20}	- - _{41.30}
					115.00		2 1-117.5	0 2.68	JKDR00080	+ 12.26	- 147.20	- 401.00	- - _{76.20} -	- - _{95.51}
							-	-		4		-	-	-
		1				+117.5	0 -1 20.5	5 3.05	5,00080	⁺ ī7. <u>7</u> 2	- <u>ï</u> 41.20	486.00	87.70	88.5
							-	-1	⊢ − − −	-1	~!	·	-	-
							-	-	⊢	-1	-		- ·	·
					120.00	120.5	5 123.0	50 3.05	JKDR00081	1 15.86	1 168.00	392.00	168.80	^{-}} 127.0
						·	- - -	-		1	-	-	-1	-
							- i	-!		F	_	-	-1	_
						123.6	0 123.9	>9 0.39	JKDR0008	1 <u>11.3</u> 3	-1 ·	613.00	80.80	' 93.8 -1
23.99 -	- 138.38 FP Maf-D			be	dded T-L		9 [†] 124.0	56 0.67	JKDR0008	7.06	100.20	61.00	' 225.60 -	' 10.1 -
						124.6	6 ¹ 125.: -	27 ' 0.61	JKDR0008	1 4.30	' 31.80	84.00 - -	180.60 '	13.0
					125.00	' ' 125.2 	7 ' 127.' - - -	71'2.44 -	'JKDR0008	1 ' 3.19 	· 7.80	· 49.00	_1640.10 ∝	- 5.60
						, , , , , , , , , , , , , , , , , , ,		!						-l - , , ,
						'∎'127.7 !!!	1 128.	32 0.61	JKDR0008	1.25	4.40	65.00 !	183.30 	
/02/20	00 manuti lan 2 magazina (m		1								Pa	ige	5	

10.4	N East	logi	'n			pv			Pr	oject: C	entral f	iC i		. Ј
hon aD: Lass 304	р гасс	10gn		Maf		From	To	Width	Sample P	o (ppm) Z	n (ppm) ۸	g (ppn) n	ія (ррш) д	, (ppm) (mqq) v
From To Description		Incusit	361		<u>1</u>		121.06	2 74	1KDR00081	6.03	21.50	107.00	553.30	7.80
								·	⊢ +			1		
			l											
					130.00	 	, 		<u> </u>			-75.00-1	113.40-1	-10 <u>.</u> 30
		1				131.06	i' 131.67 1	0,61	'JKDR00081	4.50	1 707 70-1	126.00	-9670-	-16.60
						131.6	134.11 	2.44	'JKDR00081	6.84 				
			ł			1	1-	, , , , , , , , , , , , , , , , , , , ,	· L 4				177-0-1	-10-30
			1			134.1	136.8	5 2.75	'JKDR00081 '	4.00	22.30	/8.00		
					135.00		· ·	-			, 	' 	1 -	
			1			136.8	6 ⁻ 137.4	6 0.60	JKDR00082	7,88	' 50.10 1	'28.00	36.20	12.40
						137.4	6 138.3	8 0.92	JKDR00082	12.21	47.50	'86.00	' 32.00 ' ! =]	129,80
	Trib Br didamo		1			138.3	8 40.2	1 1.83	JKDR00082	42.26	478.60	569.00	' 28.10 ' 	' 142.30
138.38 - 148.53 Maf T/(L)T+G	raphilic Munstone			1		·	-	-	⊢ ·		·	1	I	· •
			Į		140.00		i -143.2	6 3.05	JKIDR00082	26.26	452.40	448.00	1 39.00 T	97.20
						1 	-	-		↓ _ - -	-1		-1	1
							-	-!		ŧ	-	- - -	·!	
						$ \vdash_{\overline{143}}$	- - <u>-</u>	$\frac{-1}{3.04}$	IKDROOO82	18.79	-1 <u>215.30</u>	688.00	85.70	81.70
							-		·	∔ ·	-1		-1	·
						↓ ⊢ −		-l	-	1	-	-1	-	· ·
								14 - 15	4 TK DR00082	1 15.84	-1 231.00	1 558.00	40.30	115.70
							-	-	-		-	-	-	
						-	-	-ļ- ·		-	-1	-	-	-
148.53 - 150.97 AugiteFP Mat	FT/LT							<u>_</u>		+ 1.19	-l - <u>32.90</u>	27.00] - _{40.90} -	- _{2.30}
						∎ 149.	14 151. -	18 2.0 - - ·	-	4	-	-!	-	-
150.97 - 152.25 Fault Zone						111	-	- -	-		-1	-	-	-1
10007						1 b b -	-	-1-	_	4	-	-1	-	-
152 25 - 176 78 Maf (L)T / Fx	d Maf (L)T					1 1	-	- -	-	-+	-1	-	-1	-
							~	-1-	-	+		0	-1-0-70	$- {7\overline{20}}$
		1				154	.99 ' 155 	.60 ' 0.6 _ _	51 'JKDR00082 -	ं 1.41 चे = -		- -	-!	-1
					155.00		۱ ۱		_		I	-1	-	-1
							-	.1_	, _ l		_l = _	- 		
							-	1				-i	_	-i
							-	· - -	-	1 - -		-1		
							-	- 1-	-	+	-	_1_		- 1
					160.00),54 16	.15 ⁻ 0.	61 JKDROOOS	2 7 2.92	76.00	171.0	D 387.50	2 ¹ 7.8
		l l				I []	!	!_	_ !=					
4702/2000											P	age	Q	_

From To Description for last ser Mat From To Width Sample Pb (ppm) Za (ppm) Ag (ppb) Ba (ppb) <th>ID: 004 1</th> <th>Fac)logi td.</th> <th>py</th> <th>Project: Central BC</th>	ID: 004 1	Fac)logi td.	py	Project: Central BC
165.00 165.00 166.00 1	From To Description	fuchsit ser Maf	From To Wi	dth Sample Pb (ppm) Zn (ppm) Ag (ppb) Ba (ppm) As (ppm)
	From To Description	fuchsit ser Mat	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

7

	Rocktyp)e	PROJECT: Central BC
North Face Geo	ological Ltd.		Hole ID: LEN-004
From	To	Rocktype	
0.00	27.13	Casing	
27.13	31.39	Maf T	
31.39	32.31	Fault Zone	
32.31	51.91	(Amph)FP Maf T/LT	
51.91	55.47	Maf-D LT	
55.47	55.78	Fault Zone	
55.78	62.76	Graphitic Argillite	
62.76	65.75	Maf T	
65.75	69.31	Amyg FAugiteP Maf ALT/TLA	
69.31	70.62	Graphitic Argiilite	
70.62	71.29	Amyg FAugiteP Maf ALT/TLA	
71.29	77.72	Graphitic Argillite	
77.72	80.10	Fault Zone	
80.10	80.65	Graphitic Argillite	
B0.65	81.17	Graphitic Argillite	
81.17	81.56	Graphitic Argillite	
81.56	82.30	Graphitic Argillite	
82.30	83.36	Graphitic Argillite	
83.36	85.53	Limestone	
85.53	111.47	Graphitic Argillite	
111.47	123.99	FP Maf T+Graphtic Mudstone	
123.99	138.38	FP Maf-D	
138.38	148.53	Maf T/(L)T+Graphitic Mudstone	
148.53	150.97	AugiteFP Maf T/LT	
150.97	152.25	Fault Zone	
152.25	176.78	Maf (L)T / Fxl Maf (L)T	
176.78	176.78	EOH	

PROJECT: Central BC

North Face Geological Ltd.

Hole ID: LEN-004

Pb (ppm) Zn (ppm) Ag (ppb) Ba (ppm) As (ppm) Width Туре То From Sample 0.80 96.30 33,00 116,80 WΤ 4.20 0.61 30.18 29.57 JKDR000764 0.70 88.70 22.00 61 60 3.91 0.61 WT 33.22 32.61 JKDR000765 0.60 123.10 9.00 1,59 59.10 0.61 WT 45.11 44,50 JKDR000766 0.90 84.10 10.00 4.85 94,10 WT 51.51 0.61 50.90 JKDR000767 8.90 459.00 254.00 862.04 182.20 1.73 WT 53.64 51.91 JKDR000768 25.10 54.70 64.00 16.52 103.10 WT 1.83 53.64 55.47 JKDR000769 31.10 3D.50 74.00 103.30 5.16 Т 3.97 59.44 55.47 JKDR000770 30.10 26.10 250.00 291.80 5.22 WT 3.32 62.76 59,44 JKDR000771 16.40 28.40 101.00 79,90 3.42 WT 1.25 64.01 62.76 JKDR000772 29.20 44.50 194.00 86.70 WT 4.77 1.74 65.75 64.01 JKDR000773 2.20 138.90 23.00 35.10 0.97 WT 66,45 0.70 65.75 JKDR000774 1.60 368.00 27.00 36.50 1.12 WT 0.73 69.31 68.58 JKDR000775 36.80 89.30 97.00 6.98 59.60 WT 1.31 70.62 69.31 JKDR000776 14.30 43.30 60.00 85.80 1.54 WT 0,67 71.29 70.62 JKDR000777 36.00 70.00 240.00 9.08 104.90 T 3.39 74.68 71.29 JKDR000778 59.10 43.10 2360.00 335.20 62.93 Т 3.04 77.72 74.68 JKDR000779 1996.30 54.40 8268.00 2837.40 587.01 Т 2.38 80.10 77.72 JKDR000780 60.40 93.00 2593.00 651.30 175.90 WT 0.55 80,65 80.10 JKDR000781 56.30 51.00 1706.00 3511.90 256.95 Т 0.52 81.17 8D.65 JKDR000782 205.80 97.70 3841.00 5568.40 т 1162.98 0.39 81.56 81.17 JKDR0007B3 68.60 48.90 4579.00 1942.10 824.53 Т D.74 B2.30 81.56 JKDR000784 74.80 112.20 4841.00 2235.50 731.83 Т 1.06 83.36 82.30 JKDR000785 8.40 58,20 692.00 330.40 84.69 Т 2.17 85.53 83.36 JKDR000786 67.30 100.20 4566.00 278.68 1204.10 Т 1.34 86.87 85.53 JKDR000787 41.70 4114.00 68.20 2207.00 1187.54 0.91 Т 87.78 86.87 JKDR000788 49.90 95.30 4492.00 2792.70 585.61 Т 0.61 88.39 87.78 JKDR000789 68.80 109.70 12910.00 13172.60 Т 4424.85 1.83 90.22 88.39 JKDR000790 259.60 13425.00 64.80 323.85 872.60 т 1.B3 92.05 90.22 JKDR000791 10571.50 67.10 31177.00 3416.30 434.76 Т 1.52 93.57 92.05 JKDR000792 3963.30 74.30 11802.00 2228.20 WΤ 452.35 2.44 96.01 93,57 JKDR000793 6727.40 37.30 14952.00 3364.90 434.17 Ť 1.07 97.08 96.01 JKDR000794

PROJECT: Central BC Hole ID: LEN-004

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
UKD0000705	97.08	99.06	1.98	т	236.48	148B.10	7589.00	89.80	2380.10
	99.06	100.58	1.52	т	204.72	1181.90	1965.00	139.40	87.30
JKDK000/96	100.58	102.11	1.53	τ	162.10	663.10	1915.00	94.90	135.80
JKDR000797	100.30	103 63	1.52	T	157.16	793.60	2150.00	99.40	238.90
JKDR000798	102.11	105.16	1.53		177.41	1201.30	3290.00	75.40	513.10
JKDR000799	103.63	100.10	1.52	т	252.99	485.20	2637.00	105.20	1172.50
JKDR000800	105.16	100.00	1.52	<u>т</u>	245.36	632.80	2229.00	98.00	614.BD
JKDR000801	106.68	108.20	1.52	- <u></u> -	144 10	563.20	1328.00	50.50	142.80
JKDR000802	108.20	109.73	1.53		81.22	294.90	1376.00	57.40	141.30
JKDR000803	109.73	111.47	1.74		5.50	91.50	74.00	50.20	405.10
JKDR000804	111.47	111.98	0.51	WT	5.50	70.70	128.00	103.10	292.70
JKDR000805	111.98	112.78	0.80	WT	12.06	10.70	256.00	131,20	108.70
JKDR000806	112.78	114.12	1.34	Т	54.07	342.20	200.00	184 20	41.30
JKDR000807	114.12	114.82	0.70	WΤ	6.76	89.80	214.00	76.20	95.50
JKDR000808	114.82	117.50	2.68	Т	12.26	147.20	401.00	70.20	88.50
JKDR000809	117.50	120.55	3.05	Т	17.22	141.20	486.00	87.70	127.00
JKDR000810	120.55	123.60	3.05	Ť	15.86	168.00	392.00	168.80	121.00
JKDR000811	123.60	123.99	0.39	WΤ	11.33	93.00	613.00	80.80	93.80
	123.99	124.66	0.67	WT	7.06	100.20	61.00	225.60	10.10
JKDR000012	124,66	125.27	D.61	wr	4.30	31.80	84.00	180.60	13.00
JKDR000813	125.27	127.71	2.44	T	3.19	7.80	49.00	640.10	5.60
JKDR0D0814	407.74	128.32	0.61	WT	1.25	4.4D	65.00	183.30	1.90
JKDR000815	121.1	120.02	2.74		6.03	21.50	107.00	553.30	7.80
JKDR000B16	128.3	494.67	0.61	WT	4.56	28.60	75.00	113.40	10.30
JKDR000817	131.00	3 131.6/			6.84	107.70	126.00	96.70	16.6D
JKDR000818	131.6	7 134.11	2.44		4 00	22.30	78.00	131.80	10.30
JKDR000819	134.1	1 136.86	2.7		7.00	50.10	28.00	36.20	12.40
JKDR000820	136.8	6 137.46	5 D.60		/.00	47.50	86.00	32.00	129.80
JKDR000821	137.4	6 138.38	3 0.9	2 1	12.21	47.00	569.00	2B.10	142.30
JKDR000822	138.3	140.2	1 1.B	3 WT	42.26	470.00	448.0D	39.00	97.20
JKDR000823	140.2	143.20	6 3.0	5 T	26.26	452.40	200 AA	85.70	81.70
JKDR000824	143.	26 146.3	0 3.0	4 T	18.79	215.30	000.VV	40.30	115.70
JKDR000825	146.	30 149.1	4 2.8	14 T	15.84	231.00	558.00		

PROJECT: Central BC Hole ID: LEN-004

Sample	From	То	Width	Туре	Pb (ppm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
JKDR000826	149.14	151.18	2.04	WT	1.19	32.90	27.00	40.90	2.30
JKDR000827	154.99	155.60	0.61	WT	1.71	84.30	95.00	90.70	2.20
JKDR000828	160.54	161.15	0.61	WΤ	2.92	76.00	71.00	387.50	7.80
JKDR000829	168.86	169.47	0.61	WT	3.82	60.10	895.00	284.90	133.10
JKDR000830	172.58	173.19	0.61	WT	2.79	60.70	10.00	39.30	2.70
JKDR000831	176.17	176.78	0.61	WT	2.55	89.40	10.00	295.90	2.90

Face Geological Ltd. Face Geological Ltd. 86 Avenue y, B.C. V3S 5C8	D] I	RILL HOLE DESCR DETAILED GRAPHI	IPTION C LOG		
le #: LEN-005		Comments: Subaerial	l volcanic rocks o	f the Telkwa For	mation
Northing: 3(Easting: 4 Elevation: 11(Field Location: 3+00N, 4+80)	00.000 80.000 10.000 € (m);	Casing Exposed: Casing Size: Contractor Brit Assay Lab:	13.7 NQ ton Brothers ACME	Hole # LEN-005	Dip Tests Depth Azimuth Dip 0.00 90.00 -50.00
Length: Start Dip: Start Azimuth:	152.40 -50.0 90	Project: Area: Property:	2318 Babine LEN		
Logged by: Log date: 28/ Date Started: 12/ Date Finished: 13/	JKD 10/1999 08/1999 08/1999	Map Reference: Claim: Region:	93L.079 Len 3 Omineca		

Report created using LAGGER software © 1995-1997 North Face Software Ltd.

ID:		🞦 🗥 Fac 🖓 tolog	!*** !	d.			.	From	1 TO	Width	sample	ro (ppm) Հուզբր	nn) Ag	. _{гг} ., В	a (p _{ir} , ,	ы (рр
om T	o Description		fuchsit	ser	Mai			,							T	r	
.00 - 1	3.72 Casing					-			-	-		4	-	1-	1		
				1		- CASING	1	11	-	-11		4	-1	1-	·		_
								1	• - - ·			+	- - ·	-			~ -
						CASING			-				- - ·	-			
						CASTING	Í	1	-	-1			-l - ·	-			
						5.00 CASING		 				4	-1-	-			ļ
						CASING		11	, I	- 	' 	·	-1-	-			
						CASING		1			1 	, , _	· _1 _	1-			
						CASING			·- i		I I	1	, _ _	·	1		
						CASING	1	↓⊢ -	-	-1	 		1	L		- - -	
]		10.00			-	-	⊢ ·	1		1		 	'
							1		-		·	1		1		I _	.)
				ļ					-	-	⊢ ·		-	1		 	-1
							1		-								·
.72	31.85 (FP) Maf T/(L)T			ļ				I ⊢ −	-	- !		. 4 -	1 -	1			-
						15.00		1 H -	-	-]	 − − −	- + -	1 -			i	-
							5 5		-	-l			-	!			-
					ļ		2		-	-1	┡	- + -	-			•	- -
							2001 A	 	-	-			-				-1 -
								1	, _	_			1 -				- -
									- l	_ _ =		+] -				-1 -
						20.00) i= -		-1	، ا						-1 ··
									-	-1	1		l _				- -
								1 ⊨ - 	-		1. – –	- i				· ·	-1 -
									-				· I	_		-1	_l _
				1					- [-1	·		-			-i	_1 _
				1		25.00			-		·		-		. – – –	-1 -	1
						-		¦ ⊢ -	-		-	+	1-		·	-	-1-
							1948 I.	$ + \cdot$	-		- k] -		ι – – ·	-1	-1 -
				1	ł		S.	1	- 1			+ -	-	·		-	- -
						_		<u> </u> − -	-	1	- 1		-			.	-
				1					-				- -	72.50	1 155.00	- 200.7	o ^{- -} 9
						.30.00		3	- ·	0.78 0.6 -					1	-	-1 -
21 85 -	47 28 (Amyg) F-Ol Xeno	Maf						· • ·	, _ 1_	· - -	_	- + -	1-			-	- -
				l				1 1 1	, _ I_		، ا	_ با	!_		I	_1	_!
			1		1	1	- 1			_				_			

005	N Fac	Jogi	t d .						Project: C	entral D	L		J
rom To Description	р рас	fucbait	ser	Maf	1	From	To Widt	th Sample	Pb (ppm) Z	n (ppm) A	יע (מקק) א ייע (מקק) א	а (ррш <i>) А</i> .	v (bbw)
			1				 			1-	1		
						·· · · · · · · · · · · · · · · · · · ·	1	.	+				
		1		1	35.00	1 E a al			$-\frac{1}{2.38}$ -1	90.10	51.00-1	1018.10 ¹	3.50
						.,,6.12					1		
			1]	-	+				
				Į		1			4		1	1	
			1		40.00			-	+			1	
			ł		40.00			-		↓			
				1	-		-						
42.28 - 68.88 (FP) Maf T/(L)T						↓ 	-			·! !		- - -	
							l− − − l −	-				 	- - -
					45.00	11 E 45.11	45.72 0.4	G JKDROOO	57 - 8.70 -	62.40	86.00	266.00	6.80
						111	-			-1		 	, ·
]!-	- \ ·		-1	। ↓	' 	
						1]	-		·	-, _1	' 	' 	
					-	<u> </u>	·}= -				' 1	·	.
					50.00		· -		 l	' -1			-1
								- F -	, 	, _		.	
						 		- 		_[-1	
							- I I-			-		-	-
			l				-		- +	-	·i	-1	
					55.00	1	- ! ! -			-	-	-	-
						116	· -	- 1		-1	-	-	-
				1		11	- -	~ - - ~		-	-1	-	-
						111	- [] -	-		-1	-1		-1
						111-	- -	· - 	- +	-1	-	-1	-1
				Ì	60.00	111	- -	-	- +		-1	-	-
					-	11	- -		- +	-1	-1	-]	
						 	- 11-		- + - ··		-	-1	
							- -			-		-	-
						11	- -		- +	-1	-	-1	-1
					1 65 00 19								

E D; L)05	N	Face	iogic	u.	Maf		1 1	rom	То	Width	Sample	ԲԵ (ppm)	Zn (ppm)	Ag (ppu)	ыя (рръц	л» (рр і
From To Description			Incluit	ger	IAFar		╷┯┯					1		1		r · ·
			-		ļ	150.00	-			-1		4		-1		
4			1	}			-	1				+ 3.77 -	-	- - _{50.00} -	- - _{72.30} -	4.10
							111	132.59		-		+	-	-	·	
				1				1		-11		-	-	-	-	-
				1			 		l	-		4 ~ -	-	-	-	-1
						135.00	114	_ ~		-				-	-	-1
							111		, 1	-l		4	-		-1	-1
				1					' !	, _	⊾	4	-1	-1	-	-1
				1				_	۱ ا	-1	, 	·		-	-1	-1
				1					I- I	_	⊾	· +		-	-1	-1
						140.00	111		I	-1- 	L – – –		-1			
							1 1 1		1		• 1	- 	-		-1	-1
										- - -	r - 1	, ,	-1	- \- -	-1	-1
									1	-		, , , , , , ,		-1	-1	-
							11			-1	F	· · · · · · · · · · · · · · · · · ·		-1	_	-1
						145.00			·	-1			1		, _	, _
									·	-		·	-		-1	-1 -
				1			11		- 	-1	i	1	-	-1-	, 	_1 _
							11		·	-	·		-1	-(-1	
								⊢	-	-1	┝			-	-1	
			l l			150.00		├	-			1	-1		-1	-1-
								1- 151.7	- ⁻ 152	.40 0.61	JKDR000	- 67 ⁺ -4.91	-1-54.8	0 56.0	0 1 143.9	10 ⁻¹ -7
								}		-	<u> </u>			-	-!	-1
152.40 - 152.40 EOH						EOH EOH	1	L	_ !	_1	· · ·		_!	_!	_'	_' -

Rocktype

JANE THE PACE OF	8	
From	То	Rocktype
0.00	13.72	Casing
13.72	31.85	(FP) Maf T/(L)T
31.85	42.28	(Amyg) F-OI Xeno Maf
42.28	68.88	(FP) Maf T/(L)T
68.88	73.30	FP Maf LT
73.30	82.20	(FP) Maf T/(L)T
82.20	82.54	FP Maf LT
82.54	90.34	(FP) Maf T
90.34	94.09	(FP) Maf (L)T/LT
94.09	96.41	(FP) Maf T
96,41	129.11	Fault Zone
129.11	152.40	(Amph)FP Maf ALT/TLA
460.40	152.40	EOH
152.40	102.10	

PROJECT: Central BC Hole ID: LEN-005

ogical Ltd.			Tunc	Ph (npm)	Zn (ppm)	Ag (ppb)	Ba (ppm)	As (ppm)
From	То	Width	туре	г w (ррпл)				5.60
				11 76	72.50	155.00	200.70	5.00
30.18	30.78	0.60	991		00.10	51.00	1018.10	3.50
36.12	36.73	0.61	WΤ	2.38	90.10		266.00	6.80
	45.70	D 61	WT	8.70	62.40	86.00		6 70
45.11	45.72			5.84	66.50	61.00	185.50	0.70
74.52	75.13	0.61	VV 1		50.20	54.00	256.60	9.70
76.20	77.11	0.91	WΤ	5.89	59.20		287.70	12.20
/0.20		0.61	WT	7.84	57.60	68.00	201.10	
77.11	77.72	0.01			45.40	43.00	229.80	16.10
91.44	92.05	0.61	WT	5,03		80.00	182.10	7.00
	96.62	0.61	WT	6.59	71,90	00.00		4 10
96.01	50.02		WT	3.77	57.20	50.00	72.30	
132.59	133.20	0.61			54.80	56.00	143.90	7,40
151.79	152.40	0,61	WT	4.91	04,00			
	ogical Ltd. From 30.18 36.12 45.11 74.52 76.20 77.11 91.44 96.01 132.59 151.79	From To 30.18 30.78 36.12 36.73 45.11 45.72 74.52 75.13 76.20 77.11 77.11 77.72 91.44 92.05 96.01 96.62 132.59 133.20 151.79 152.40	From To Width 30.18 30.78 0.60 36.12 36.73 0.61 45.11 45.72 0.61 74.52 75.13 0.61 76.20 77.11 0.91 77.11 77.72 0.61 91.44 92.05 0.61 96.01 96.62 0.61 132.59 133.20 0.61 151.79 152.40 0.61	From To Width Type 30.18 30.78 0.60 WT 36.12 36.73 0.61 WT 45.11 45.72 0.61 WT 74.52 75.13 0.61 WT 76.20 77.11 0.91 WT 91.44 92.05 0.61 WT 96.01 96.62 0.61 WT 132.59 133.20 0.61 WT	From To Width Type Pb (ppm) 30.18 30.78 0.60 WT 11.76 36.12 36.73 0.61 WT 2.38 45.11 45.72 0.61 WT 8.70 74.52 75.13 0.61 WT 5.84 76.20 77.11 0.91 WT 5.89 91.44 92.05 0.61 WT 5.03 96.01 96.62 0.61 WT 6.59 132.59 133.20 0.61 WT 3.77 151.79 152.40 0.61 WT 4.91	From To Width Type Pb (ppm) Zn (ppm) 30.18 30.78 0.60 WT 11.76 72.50 36.12 36.73 0.61 WT 2.38 90.10 45.11 45.72 0.61 WT 8.70 62.40 74.52 75.13 0.61 WT 5.84 66.50 76.20 77.11 0.91 WT 5.89 59.20 77.11 77.72 0.61 WT 5.89 59.20 91.44 92.05 0.61 WT 5.03 45.40 96.01 96.62 0.61 WT 6.59 71.90 132.59 133.20 0.61 WT 3.77 57.20 151.79 152.40 0.61 WT 4.91 54.80	From To Width Type Pb (ppm) Zn (ppm) Ag (ppb) 30.18 30.78 0.60 WT 11.76 72.50 155.00 36.12 36.73 0.61 WT 2.38 90.10 51.00 45.11 45.72 0.61 WT 8.70 62.40 86.00 74.52 75.13 0.61 WT 5.84 66.50 61.00 76.20 77.11 0.91 WT 5.89 59.20 54.00 91.44 92.05 0.61 WT 5.03 45.40 43.00 96.01 96.62 0.61 WT 5.09 71.90 60.00 132.59 133.20 0.61 WT 3.77 57.20 50.00 151.79 152.40 0.61 WT 4.91 54.80 56.00	From To Width Type Pb (ppm) Zn (ppm) Ag (ppb) Ba (ppm) 30.18 30.78 0.60 WT 11.76 72.50 155.00 200.70 36.12 36.73 0.61 WT 2.38 90.10 51.00 1018.10 45.11 45.72 0.61 WT 8.70 62.40 86.00 266.00 74.52 75.13 0.61 WT 5.84 66.50 61.00 185.50 76.20 77.11 0.91 WT 5.89 59.20 54.00 266.00 91.44 92.05 0.61 WT 5.03 45.40 43.00 229.80 96.01 96.62 0.61 WT 5.03 45.40 43.00 229.80 132.59 133.20 0.61 WT 3.77 57.20 50.00 72.30 151.79 152.40 0.61 WT 4.91 54.80 56.00 143.90

APPENDIX C

ACME ANALYTICAL LABORATORIES LTD.) 9(Acc: ted) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE PHONE (604) 253-3158 FAX (604) 253-1716

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 File # 9903261 Page 1 (a)

							40	5 -	470	Gran	ville	st.,	Van	couve	r 8C	V6C 1	V5	Subm	itted	by:	1850	n K. ()unn i	ng									-	
SAMPLE#	Мо ррт	Си ррл	Pb ppm	 Z pp	in Ac Maippl	a hi epr	ΟΟ τρα	» Ио пррт	Fe t	As ppm	U IIRIQ	ւ ու ու	Th ppm	Sr ppm	Cd ppm	Sb ppm	B) ppm	مراط الراط	Ca X	P X	La ppn	Cr ppm	Mg 1	Ba ppm	I I ž	B ppm	A) E	tia &	K ≹j	W	F) ppm	Hg Se ppb ppm	ן י דר י	le Ga om ppm
99.IKDR000601 99.JKDR0D0602 99.JKDR000603 99.JKDR000604 99.JKDR000605	12 12 8 41 11 29 13 57 8 78	47 54 33 99 38,16 38 46 32,35	7,50 5,97 4,76 5,42 3,85	228 135 182 188 146	1 18. 2 14 5 15 7 17. 4 13	* 76 1 5 47 4 1 47 7 7 67 0 3 43 8	95 86 76 80 80 80	5 450 5 414 5 534 5 485 9 558	2 85 2 47 2 60 2 66 2 46	40 9 48 9 40.4 54 5 54 4	3 3 3 3 3	1 0 1 3 9 9 8	8 1.0 .8 .9 6	446 0 473 0 622.0 530 0 588 3	1.02 1.26 2.24 2.18 1.58	2 52 1.77 1 98 2.30 1.23	. 14 . 15 . 11 . 12 . 08	55 37 36 42 40	8 00 8.21 11 30 10 13 12.41	072 .071 .098 .078 .056	8 2 8.4 8.8 8.2 6.5	27.1 17.5 20.0 19.1 16.3	30 23 .37 .22 59	97-5 118-3 111-9 94-9 101-4	001 .001 .001 .001 .001 001	4 4 4 4 4	. 34 - 38 - 33 - 29 - 35	.0.30 .021 .020 .020 .020 .017	11 14 11 10 07	2 4 2 2 1 6 2 8 1	58 15 63 04 01	66 6 9 44 4 1 44 5.1 54 5.7 34 3 9) .] / .	16 1 0 14 9 15 9 16 8 13 8
99JKDR000606 99JKDR000607 99JKDR000608 99JKDR000609 99JKDR000610	18.85 24.35 20.59 11.72 14.95	39,34 38,35 42,39 41,63 41,45	5-64 5-40 5-40 5.06 6.27	217 153 156. 165. 190.	2 13 5 13 7 12 3 13 8 15	1 91 (3 99 () 79.9 2 54 8 5 62.2) 817) 817) 9.8) 9.8) 9.8 ? 9.2	(572 (479 3 452 5 566 2 529	2.83 2.73 2.63 2.61 2.79	73.1 71.6 57.3 36.3 49.3	н .5 .3 .3 .3	5 7 2 7	1 1 8 .8 .7 1.0	676-0 612-3 623.2 779.1 545.8	2.51 1.76 1.70 2.03 2.32	1.30 .98 1.93 1.80 2.12	. 10 . 10 . 24 . 13	45 45 53 62 58	10.63 9 51 10.03 10.12 8.31	.125 .080 .067 .076 .080	8 9 7.1 7.9 7.6 7 1	13-5 16.1 15.7 18.6 19.0	. 33 . 34 . 28 . 43 . 54	1357 1090 10314 12311 11813	.001 001 .001 .001 .001	5 4 5 5	.43 .33 .32 .57 .45	.019 021 .020 021 .024	12 11 .09 .10 .11	1 5 1 1.4 2 1 3 1 1.8 1	13 15 32 25 45	44 3 6 38 3.) 48 4 5 36 4.0 47 4 5	1 1 1 .1 5 .1 1 .2	14 1 0 15 .8 14 9 20 1.6 14 1.2
RE 99JKUR000610 RRE 99JKUR000610 99JKDR000611 99JKDR00D612 99JKDR000613	14.20 15.00 15.66 18.81 21.86	39.63 41.45 41.39 47.61 50.37	6.11 5.96 5.93 5.96 5.48	183. 188. 167. 288 264	6 15 2 14 0 17 9 19 2 20	1 59 8 2 61 0 3 63.9 5 67.1 3 79.6	8.8 9.5 8.5 8.3 8.3	8 508 5 531 5 462 8 416 8 437	2.70 2.75 2.67 2.67 2.79	46.7 46.3 43.4 51.7 50.2	.3 .3 .3 .4	8 7 < 2 6 4	1.0 .9 .9 1.0 .8	506.3 528.4 518.4 629.9 599.6	2.24 2.33 1.85 3.78 3.17	2.07 2.02 2.11 3.06 2.46	, 12 , 11 , 12 , 14 , 11	56 57 54 63 73	7.97 8.31 8.42 9.74 9.54	.078 .080 .080 .081 .093	6.8 7.2 7.8 8.6 8.6	17.1 17.6 20.2 22.2 19.9	.51 1 .54 1 .47 1 .37 1 .33	13.6 16.9 16.9 103 8 97 8	.001 .001 .001 .001 .001	5 5 4 3	42 .45 .43 .48 .56	023 . 023 . 023 . 023 . 020 . 020	11 11 10 10	1.9-1 1.3-1 1.4-1 1.3-2 1.5-1	.67 58 .63 .16 78	40 4.4 39 4 4 50 4 8 65 6.3 49 6 3	.1 .3 .1 .1	16 1.2 33 1.2 13 1.1 18 1.3 13 1 6
99JKDR000614 99JKDR000615 99JKDR000616 99JKDR000617 99JKDR000618	25.52 24.98 24.83 20.82 10.73	46, 36 48, 22 49, 36 44, 52 53, 42	5.44 5.78 5.66 6.41 5.24	170. 261. 239. 300. 252.	5 13) 4 18: 4 19) 6 24) 0 22;	5 91 9 3 78.7 91.8 1 66.1 5 61 0) 89 8.7 9.4 9.0 99	427 557 466 534 482	2 61 2.73 2.89 3 01 2.88	46.7 37.2 41.3 37.5 31.9	.4 .4 .4 .2	.2 < 2 <.2 .4 <.2	.9 .8 1.0 1.1 .9	560.3 597.0 638.9 655.6 517.5	2.10 3.34 3.21 4.47 2.43	2.05 2.49 2.52 3.53 3.26	13 .12 .12 .13 11	73 73 72 61 55	9 32 9.93 8.82 8.83 9.13	072 .097 .080 .085 .086	7 1 8.2 9.8 11.8 10.1	19.6 19.8 24.6 23.2 22.9	.35 .42] .48 .60] .46	95-4 109.2 98.2 .05.9 98.4	.001 .001 .001 .001 .001	1 4 3 4	.65 .73 81 .94 85	.019 .020 .018 .020 .020	10 10 09 11 10	L 3 2 L 5 2 L 3 2 L 6 2 L 0 1	51 20 63 16 55	61 4.9 58 6 (61 6.3 66 7 6 59 5.8	1 1 1 1 1	13 1.7 16 1 9 14 2.0 16 2 5 14 2.2
99JKDR000619 99JKDR000620 99JKDR000621 99JKDR000622 RE 99JKDRD00622	12.70 14.48 12.57 13.96 14.56	50.70 41.98 40.51 38.01 38.47	5 45 5.64 4.92 6.36 6.39	381 299. 184. 162 166	1 279 0 200 9 169 4 169 0 169	n 54-1 1 58-7 3 48.6 1 49.3 1 49.4	8.6 8.5 8.5 7.9 8.0	i 443 i 453 i 426 i 512 i 523	2.84 2.66 2.55 2.34 2.39	31.3 24.3 19.2 15.5 15.5	.3 .3 .5 .5	.2 .2 <.2 .7 .7	.9 1.0 9 1.7 1.7	633.9 549-1 473-6 676.3 661-6	5.11 4.41 2.24 2.08 2.04	4 07 3.41 1.92 1.66 1.66	12 .12 .36 .16 .14	58 76 49 46 4B	10.14 8.00 7.47 8.91 9.03	. 096 . 106 . 085 . 070 . 072	12 2 13.0 11.0 13 2 13.2	24.8 25.7 20.7 14.7 18.1	.45 1 .53 1 .43 1 .44 1 .44 1	.03.4 .17.3 .00.9 .19.9 .23.5	.001 .001 .001 .001 .001 .001	4 4 3 4	. 85 . 99 . 87 . 86 . 86	.018 .019 .020 .017 .017	.09 11 10 10 10 10	.3 1 2 1 .7 1 6 1 6 1	22 68 .40 31 40	48 7.4 52 5 9 42 3.9 38 3 7 33 3 5	.1 	16 2.1 11 2 4 17 2.2 13 2 2 13 2.3
RRE 99JKDR000622 99JKDR000623 99JKDR000624 99JKDR000625 99JKDR000626	12.97 15.58 18.65 19.54 18.65	37 14 47,23 47,18 51,26 45 36	6 -14 5 53 5,95 5,58 5 38	162. 256. 273. 325. 2.19.	6 17. 6 205 3 255 0 244 6 207	9 98.0 9 71.7 5 67 7 9 75 5 9 61.1) 7.7 99 85 85 99	524 452 503 489 564	2 35 2,77 2,74 2 85 3 12	15-0 20.0 24.9 32-0 29-5	4 .4 .4 .4	<.2 .6 <.2 8 1 1.8	17 1.0 1.1 .9 1.0	642 9 506.5 565.3 554 9 605.7	1 99 3 23 4.25 4 57 3 30	1.66 2.96 2.31 3.54 3.08	. 13 12 . 12 . 12 . 12 11	46 68 74 73 69	9.15 8.06 8.62 8.13 8.31	. 072 074 . 087 . 060 073	13.4 12.6 14.0 12.4 13.6	13.4 26.6 24.9 27.0 26.3	43 1 55 1 52 1 50 49 1	.14 -1 .17.2 .05.5 97.7 07.1	001 001 .001 .001 .001	3 4 1 3 4 4	. 83 . 03 . 98 . 88 . 98	016 020 .017 .015 .021	10 11 10 09 11	9 1 2 2 3 1 0 2 5 1	. 40 - 26 . 71 - 51 - 20	33 3.6 51 5 2 47 6.1 65 7 7 55 5 8	. 1 . 1 . 1 . 1	2 2.2 1 2 7 4 2.5 3 2 3 4 2 6
99JKDR000627 99JKDR000628 99JKDR000629 99JKDR000630 STANDARD DS2	13.34 10.25 13.27 14.66 14.01	53.66 42.37 40.76 45.88 129.23	5.05 5.15 5.11 5.14 30.96	255. 211 182. 285. 163.	5 227 8 267 4 189 3 187 8 25	2 64 3 2 41.9 3 50 0 2 52.2 1 36 5	10.7 6.9 8 1 7.7 13.2	418 469 487 440 828	2 81 2.45 2 80 2.64 3.16	28 5 23.9 22 4 24 3 66.2	.3 .3 .4 .3 20.9) .6 .2 < 2 [98-6	9 .8 .8 8 3.4	516.9 627.2 577.7 599.5 28.2	2.97 2.73 2.19 3.70 11.64	3 23 2.88 2.42 3.42 9.33	. 11 . 11 . 10 . 11 . 17	57 44 61 52 81	7.70 9.89 9.03 9.04 .56	.075 .102 .094 .065 081	12.7 13.1 11.5 9.7 16 7	27.6 22.8 23.4 15.0 172 3	.45 .40 .51 1 .40 .60 1	99.7 99.2 10.2 94.2 43.6	002 .001 .001 .001 .114	3 3 3 3 2 2	88 .81 .01 .87 .77	021 .017 . 017 .015 . .039 .	09 1 10 1 10 1 11 1 17 7	11 341 61 21	47 63 24 53 89 2	70 5 9 53 6 1 49 1 8 49 6.1 248 2.4	1 1 1 1.8	1 2 2 5 2.2 1 2 5 1 2 1 7 6.3

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: CORE <u>Samples beginning (RE' are Reruns and (RRE' are Reject Reruns.</u>

Data 🗲 FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

££			н	uds	on	Вау	Ex	rpl	. 6	È D	ev.	Co	•	Ltd.	PR	OJE	CT	23	18	FΙ	LE	#`S	990:	3261	•		Pa	ge	2	(a)		L 41 y11r 41	
ache analyficat SAMPLE#	 No	Cu nom	Pb ppu		Ag L DDD	NT DING	Co ppu	Min ppm	le L	As ppm	 ррш	Au ppb	Th ppos	Sr ppn	C.d ppm		81 ppm p	V N	Ca 1	P X	La ppm	Cr ppm	Mg X	Ва ррл	۲1 ل	B ppm	Al 4	tta i K	c W Kippar	17 nkg (Hg Se ppb ppm	le C ppm pt	ja Jm
99JKUR000631 99JKUR000632 99JKUR000633 99JKUR000634 99JKUR000635	22.84 12.76 24.74 17.13 26.15	43.70 49.31 49.60 35.41 43.29	5 40 5 43 5 25 5 42 5 00	244 .3 170 6 259 2 229 2 261 5	137 137 165 157 156	63 47.8 64.9 60.4 73 4	79 116 87 57 7.8	434 2 678 3 505 2 423 2 425 2	2 53 3 3 01 2.76 3 2.01 2.58 3	23.9 15.7 31.0 18.8 31.7	4 4 5 6 6	1.5 1.2 1.1 .8 <.2	.9 .8 .7 6	574 7 740.6 636 5 991.0 791.5	2.55 1.77 2.95 2.68 2.91	3.25 1.42 3.14 2.39 3.38	. 18 . 13 . 12 . 11 . 27	50 66 69 85 56	9.43 7.57 8.24 9.96 9.00	082 080 066 067 072	10.2 94 80 52 46	15-8 39.9 19.5 18.7 14-1	31 80 .47 1.41 .97	100.4 102.8 105.1 95.1 99.9	001 .001 .001 .001 .001 .001	3 31. 21. 21. 2	79 0 39 0 94 0 62 0 88 0)13 17)18 11)24 11)18 04)18 04	2 2 2 2 2 0 1.6 8 1.8 9 1.4	2 1,40 2 .57 5 1,49 9 1 35 1 1 61	39 5 6 33 3.2 58 5 1 44 4.2 54 5.5	.13 1 13 3 .12 2 17 2 .19 2	9 .4 .7 .3
99JKDR000636 99JKDR000637 99JKDR000638 99JKDR000639 99JKDR000640	24.79 12.25 20.55 38.06 25.14	40.16 44.05 46.20 50.74 43.71	5 36 5 33 5 32 6 34 3 58	220.1 168.0 162.2 249.0 204.2	164 217 217 2172 2172 179 2122	56.6 56.1 90.2 104.6 87.5	7.7 9.5 8.4 9.2 7.4	411 7 495 7 476 7 386 7 498 7	2,76 2,63 2,76 2,89 2,73	29 0 25.3 25.7 33.7 22.6	.5 .5 .6 7 .7	8 1 1 ~.2 .5 4	.9 6 .6 .5	685 4 802.5 665.0 550.6 834 1	2.84 1 86 1 33 2.37 2.17	3.08 2.72 2.66 2.53 1.67	. 13 . 10 . 39 . 15 . 10	58 61 75 72 113	7.88 9.14 9.35 7.85 10.80	078 .138 .102 .067 .067	52 70 60 46 46	16.3 26-1 22.0 18.3 16.4	.76 .62 .65 .64 2.08	117 7 117 4 97.5 108.3 100 1	.001 .001 .001 .001 .001	3 1 3 1 3 1 3 1 3 1 2 1	17 .0 08 .0 06 .0 27 .0 27 .0	019 1 018 1 018 0 020 0 015 0	1 1.3 0 1 3 8 1 4 9 1.3 6 1	7 1.36 3 84 3 1.38 2 1 76 1 1 06	51 5.0 49 5 0 55 4 7 52 6.5 30 5 1	14 2 .11 2 .23 2 13 2 14 3	.9 8 9 .7 2
RE 99JKDR000640 RRE 99JKDR000640 99JKDR000641 99JKDR000642 99JKDR000643	25.90 25.04 11.58 61.28 67.52	43.31 44.16 34.52 60.20 63.26	3.75 3.69 2.43 5.35 5.90	205.9 202.2 105.2 355.6 244.5) 125 2 122 7 78 5 196 7 196	87 9 86.1 55.6 124.2 119.4	7.5 7.4 5.4 8.9 10.2	504 514 849 343 392	2 77 2 77 2.98 2.47 3.16	22.6 23.1 11.2 29.5 28.5	. 7 . 7 . 6 . 9 . 8	<.2 <.2 <.2 <.2 6.5	.5 .5 .4 .8 .8	817.9 823.6 1111.2 595.2 598.9	2.17 2.18 1.10 4.01 2.49	1.73 1.68 .91 2.95 2.40	.10 .10 .07 .11 .10	114 113 116 82 121	10.90 10.89 14.70 7.83 7.08	.068 .068 .056 .083 .073	4 8 4.6 4.3 5.4 4.9	19.4 20.6 13.4 18.9 22.5	2.08 2.15 4.13 .56 .98	99.5 99.7 108.4 96.8 93.0	.001 .001 .001 .001 .001	2 1 2 1 1 1 2 1 2 1	.29 .0 .27 .0 28 .0 .90 .0 .34 .0	016 0 015 .0 012 .0 019 .0 019 .0	61. 61. 4. 81. 71.	1 1 11 1 1.13 7 .59 2 1 54 3 1.54	34 5.1 33 5.2 19 3 8 51 7.8 53 6.5	14 3 .13 3 .14 3 .13 2 .14 3	.3 .3 .4 .5
99JKDR000644 STANDARD D52	18.02 14.49	47.67 131.68	5.37 29.64	191.) 167.0	7 150 7 239	83-4 37.2	$\begin{array}{c} 10.3\\ 13.1 \end{array}$	447 840	2.52 3.24	28.1 66.4	.5 21.0	.4 202.6	.5 3.5	575.4 30.0	1.54 11.69	1.94 8.98	.10 10.98	55 83	8.03	.058 .083	3.8 15.8	13.4 173.5	. 53 . 62	99.5 147-6	.001 116	3 2 1	.86 .0 .82 (017 0 040 .1	81.0 76'	0 1.35 9 1.87	52 4.5 232 2.5	1 81 6	2

Sample type: CORE Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

.CME		Ε.	ľ1	NC D	. 1	נעטכ	c	' 1R	6	PH	6	04		- "A	K (^ ^ ^ 2	53, 171
(ISO 9002 Accredited Co.)		GEO	CHEMI	CAL A	NALYS	SIS CH	ERTI	FICAT	E	'n						
Hudson Bay Exp	<u>1. & 1</u>	Dev. (<u>Co. L</u>	td. P	ROJEC	T 231	L <u>8</u> I	File '	# 9 son	9032) K. Dunn	51. Ing	Pag	le 1	(b)		
SAMPLE#	Cs ppm	Ge	ND ppm	Rb	Sc ppm	Sn ppm		s z s pp	r m	Y ppm	 qq	le om p	In pm	Re ppb	Li ppm	:
99JKDR000601 99JKDR000602 99JKDR000603 99JKDR000604 99JKDR000605	,32 .50 .29 .32 .31	<.1 <.1 <.1 <.1 <.1	.04 .03 .03 .02 .02	3.6 4.8 3.5 3.2 3.3	2.7 2.5 2.4 2.6 2.6	.3 .2 .2 .1	$ \begin{array}{c} 2.3\\ 1.9\\ 1.8\\ 2.0\\ 1.3 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} 6 & 1 \\ 2 & 1 \\ 7 & 1 \\ 7 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	3.36 4.63 4.38 5.78 8.44	13.15.14.15.14.13.10.13.10.10.10.10.10.10.10.10.10.10.10.10.10.	8 . 8 . 3 . 7 . 6 .	$ \begin{array}{c} 04 \\ 04 \\ 03 \\ 04 \\ 03 \\ 03 \end{array} $	19 17 13 16 9	4.1 2.9 3.5 3.1 5.0	
99JKDR000606 99JKDR000607 99JKDR000608 99JKDR000609 99JKDR000610	.42 .35 .29 .33 .36	<.1 <.1 <.1 <.1 <.1	.02 .03 .04 .06 .02	4.3 3.5 3.0 3.4 3.5	3.1 2.8 2.9 3.1 2.6	.2 .2 .1 .3 .2	1.7 1.7 1.8 1.3 1.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} 1 & 2 \\ 2 & 1 \\ 7 & 1 \\ 1 & 1 \\ 8 & 1 \\ \end{array} $	1.10 7.50 6.28 6.10 6.27	14. 12. 14. 13. 12.	2 - 5 - 1 - 8 -	04 04 04 04 04	$15 \\ 19 \\ 19 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	5.5 4.2 3.9 7.8 5.5	
RE 99JKDR000610 RRE 99JKDR000610 99JKDR000611 99JKDR000612 99JKDR000613	.34 .35 .40 .35 .33	<.1 <.1 <.1 <.1 <.1	.02 .02 .03 .02 .02	3.4 3.5 3.6 3.4 3.1	2.5 2.5 2.4 2.7 3.1	.3 .2 .2 .2	$1.5 \\ 1.4 \\ 1.7 \\ 1.9 \\ 2.1$	5 2. 4 2. 2 2. 0 3. 1 2.	8 1 8 1 5 1 0 1 9 1	5.44 6.18 7.93 8.17 7.79	12. 13. 13. 14. 14.	4 1 7 8 3	04 04 04 04 05	13 14 13 18 16	5.7 6.0 4.3 5.4 5.1	
99JKDR000614 99JKDR000615 99JKDR000616 99JKDR000617 99JKDR000618	.35 .34 .35 .36 .34	<.1 <.1 <.1 <.1 <.1	.02 .03 .02 .02 .02	3.3 3.3 3.2 3.3 3.1	2.8 2.9 2.5 3.1 3.1	.2 .3 .3 .3 .3	1.8 1.8 1.8 2.5 2.0	2 3. 9 3. 7 3. 6 3. 0 2.	$ \begin{array}{ccc} 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 0 & 2 \\ 3 & 1 \end{array} $.6.69 .9.04 .8.17 .0.54 .7.12	13. 14. 16. 20. 16.	3.7	05 05 05 05 05	27 24 21 21 11	6.9 6.9 8.9 9.5 8.5	
99JKDR000619 99JKDR000620 99JKDR000621 99JKDR000622 RE 99JKDR000622	.34 .38 .33 .35 .36	<.1 <.1 <.1 <.1 <.1 <.1	.02 .02 .05 .03 .03	3.2 3.5 3.3 3.3 3.4	3.3 2.9 2.5 2.7 2.8	. 3 . 4 . 5 . 3 . 4	1.9 1.4 1.4 1.3 1.3	3 2. 8 2. 8 2. 9 2. 6 2.	$\begin{array}{ccc} 6 & 1 \\ 8 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1 \end{array}$	9.47 9.28 5.16 4.84 4.70	17. 21. 17. 20. 20.	9 3 3 5	05 05 03 04 04	16 15 18 12 15	9.0 9.7 8.4 8.2 8.7	
RRE 99JKDR000622 99JKDR000623 99JKDR000624 99JKDR000625 99JKDR000625 99JKDR000626	.34 .36 .33 .33 .36	<1 <.1 <.1 <.1	.02 .02 .02 .07 .03	3.0 3.3 3.1 3.1 3.5	2.6 3.2 3.2 3.1 3.5	.3 .4 .5 .5	$ \begin{array}{c} 1 & . \\ 1 & . \\ 1 & . \\ 1 & . \\ 1 & . \\ 2 & . \\ 0 \end{array} $	8 2. 1 2. 0 2. 2 2. 9 2.	$egin{array}{ccc} 6 & 1 \ 8 & 1 \ 8 & 1 \ 9 & 1 \ 7 & 1 \ 7 & 1 \end{array}$	4.07 6.06 7.72 7.42 9.05	20. 19. 22. 19. 22.	6 8 3 8 2	04 04 05 05 05	12 17 19 19 21	7.9 9.7 8.9 9.9 10.1	
99JKDR000627 99JKDR000628 99JKDR000629 99JKDR000630 STANDARD DS2	.32 .31 .31 .31 2.81	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .02 2.14	$3.1 \\ 2.9 \\ 3.0 \\ 3.1 \\ 15.5$	3.4 3.3 3.2 3.3 2.9	.4 .3 .3 25.8	1.8 1.7 1.5 1.6 .0	8 2. 1 2. 3 3. 6 3. 3 4.	4 1 1 1 9 1 0 1 4	6,39 7,60 4,42 2,66 7,77	19 17 17 15 32	2 0 5 0 3 5	04 04 04 04 28	16 14 19 14 2	8.3 7.4 9.5 7.4 13.3	
GROUP 1F30 - 30.00 GM SAMPLE LEACHED UPPER LIMITS - AG, AU, HG, W, SE, TE - SAMPLE TYPE: CORE <u>Samples begi</u> DATE RECEIVED, SEP 3 1999 DATE	WITH 180 , TL, GA, nning 'RE REPORT	ML 2-2-; SN = 100 ' are Re MAILEI	2 HCL-HN 0 PPM; M runs and	03-H20 A 0, CO, CI <u>'RRE' a</u> T 23	7 95 DEG. 5, SB, B; <u>5e Rejec</u>	. C FOR C I, TH, U, <u>t Reruns</u> . SIGNED	DNE HOU , B ∓ 2 - - (D BY.	IR, DILUT	ED TO ; CU,	0 600 ML PB, ZM	, ANAL I, NI, YE, C.	YSED BY MN, AS, LEONG,	Y ICP/E , V, LA J. WAN	S & MS. , CR = G; CERT	10,000 PPI IF1ED B.C.	1. Assayer
All opendite are considered the confidential		of the r	client.	Acme assi	///	liabilit	ties fo	er actual	cost	; of the	analy	sis onl	ly.	-	Data	<u>+</u> FA

ACHE ANALYTICA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903261

	-\/-	Ц	
Ψ.	相同	чЦŕ	AL
<u> </u>			: <u></u> .

SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S %	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Li ppm	
99JKDR000631 99JKDR000632 99JKDR000633 99JKDR000634 99JKDR000635	.41 .40 .34 .27 .33	<.1 <.1 <.1 <.1 <.1	.03 .02 .03 .02 .04	3.2 3.4 3.2 2.3 2.7	3.1 3.4 3.6 3.6 3.1	.4 .3 .3 .3	1.80 1.26 1.81 1.28 1.97	3.2 2.6 2.6 3.0 3.3	13.0811.0711.849.699.55	$17.0\\16.0\\13.3\\8.7\\7.9$.05 .04 .04 .04 .04	13 14 23 18 25	6.2 13.0 8.3 8.4 6.4	
99JKDR000636 99JKDR000637 99JKDR000638 99JKDR000639 99JKDR000640	.36 .41 .32 .29 .21	- 1 - 1 - 1 - 1 - 1	.04 .02 .08 .05 .04	3.6 3.4 2.8 2.9 2.1	3.4 3.7 3.5 3.2 4.2	.2 .2 .3 .2 .1	1.72 1.64 1.56 1.90 1.43	3.0 2.4 3.3 3.5 3.4	11.0214.1812.0310.549.91	9.1 11.5 9.8 7.9 7.3	.04 .04 .04 .05 .04	20 21 29 30 27	$ 8.9 \\ 8.2 \\ 9.1 \\ 8.2 \\ 9.9 \\ 9.9 \\ 9.9 \\ $	
RE 99JKDR000640 RRE 99JKDR000640 99JKDR000641 99JKDR000642 99JKDR000643	.21 .20 .15 .27 .29	<.1 .1 .1 <.1 .1	.03 .04 .04 .02 .04	$2.0 \\ 2.0 \\ 1.4 \\ 2.6 \\ 2.4$	4.1 4.1 4.5 3.7	. 2 . 2 . 2 . 2 . 2	1.44 1.47 1.28 1.80 1.66	3.4 3.3 3.0 3.8 3.6	9.63 9.62 7.64 12.17 10.92	7.6 7.3 6.9 8.8 8.4	.04 .04 .03 .05 .05	26 23 18 31 25	$9.7 \\ 9.6 \\ 9.4 \\ 7.1 \\ 12.1$	
99JKDR000644 STANDARD DS2	.29 2.74	<.1 <.1	.02 2.03	2.8 15.7	3.2 3.2	.1 27.1	1.64 .03	$\begin{array}{c} 2.7\\ 4.5\end{array}$	9.58 7.73	6.9 31.2	.04 5.39	29 1	6.9 13.4	

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

							W1	HOL	E R	ocĸ	ICP	AN	YALY	SIS	3									, A
A4	Hudse	on B	ay E	Expl	<u>. &</u>	Dev	. Co	, 1	Ltd	. PR	OJE	CT	231	8	Fil	.e #	99	032	61	P	age	1		4
la lla La constanta				405 -	470 G	ranvil	le St	., Vai	ncouv	er 8C	V6C 11	V5	Submit	tted	by: .	lason 1	K. Du	inning			·			
	SAMPLE#	sioz %	Al 203 %	Fe203 %	MgQ %	CaO %	N a 20 %	K20 %	1102 %	P205 %	MnO C: %	r 203 X	Ba ppm	Ni ppm	sr ppm	Zr ppm	Ppm	ND ppm	Sc ppm	LO1 %	101/C X	10175 %	SUP 7	1 <u>-</u>
	99JKDR000605 99JKDR000611 99JKDR000617 99JKDR000623	44.56 51.62 51.15 53.51	7.49 9.57 9.95 9.64	4.17 4.58 5.05 4.76	1.35 1.15 1.21 1.11	21.12 13.88 14.51 13.76	.38 1.35 1.52 1.61	.71 .99 1.02 .93	.35 .47 .47 .44	.17 .21 .20 .18	.08 .06 .06 .07	.015 .005 .006 .005	689 1107 1028 919	73 69 69 74	714 905 890 720	46 61 66 55	28 27 29 24	<20 <20 <20 <20	11 13 13 13	19.4 14.6 13.6 13.0	6.30 5.23 4.99 4.87	1.63 2,10 2.56 1.98	99.97 98.71 98.99 98.99	,
	99JKDR000629	51.45	9.14	4.76	1.07	15.34	1.34	.94	.40	.22	.06	.004	788	55	729	53	23	<20	11	13.9	4.89	1.78	98.81	
	STANDARD SO-15/CSB	48.92	12,78	7.78	7.24	5.85	2.40	1.85	1.66	2.69 1	.39 1	.057	2232	89	395	997	21	29	11	5.9	2.38	5.32	99.46	
			GROUP / TOTAL (- SAMPI	4A - 0. C & S & LE TYP&	.200 G BY LEC E: COR	M SAMP O. (NC E	YLE BY OT INC	L 1 BOA	2 FUS IN T	LON, A HE SUM	NALYS: I)	IS BY	109-6	ES.L	.01 ВҮ	LOSS	on i	GNITJ	ON.					
		~ ~					C)	トゥ	2/01	a		n	0								a		
DATE REC	CEIVED: SEP 3 19	99 D	ATE H	REPOR	IT MA	ILED	1: D	epi	, 2:	5/4	1 ⁵¹	GNEI	D BY		~.rv)	.0.1	TOYE,	C.LEC	ONG, .	J. WANI	G; CERI	TIFIED	B.C. ASSAVE
								•		1														

ŤŤ	Hu	ıdaoı	n Ba	уЕ	xpl	. &	Dev	. Co	. 1	Ltd	. PF	SOJE	СТ	2318	3	FIL	E #	99	032	61		Pag	ge 2	
ACPE ANALYTICS	SAMPLE#	\$i02 %	A1203 %	Fc203 ۶	Mgû %	Ca0 %	Na20 %	к20 %	rioz %	P205 %	Mn0 (%	Cr203 %	Ba ppm	N i ppm	Sr ppm	Zr ppm	۲ ppm	Nb ppm	Sc ppm	L01 X	101/C %	TOT/S %	5UM %	
	99JKDR000634 99JKDR000640	48.90	8.01 8.01	3.49	3.00	16.55 18.26	1.32 1.26	.67 .53	.33 .37	.16 .17	.04 .03	.005 .003	656 594	75 1 100 1	210 1071	59 41	22 17	<20 <20	9 11	16.3 18.6	5.69 6.66	1.46 1.62	99.00 99.20	

ι

Sample type: CORE.

Г

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

11
ACME ANALYTICAL LABOR (ISO 9002 Accredi	RATORIES LTD.	852 E. HASTINGS	ST. VANCOUVER DC VOA 1R6	PHUNE (604, 23-31, ZAX (
44	Hudson Bay E	whole f xpl. & Dev. Co. 470 Granville St. Vapon	Ltd. PROJECT 2318 Fil	le # 9903262 K. Dunning	#
SAMPLE#	SiO2 Al2O3 Fe2O3	MgO CaO Na20 K20 1102 P7 X X X X X X	205 MnO Cr2O3 Ba Ni Sr Zr % % % ppm ppm ppm ppm p	Y ND SC LOITOT/CTOT/S SUM pm ppm ppm % % % %	· · · · · · · · · · · · · · · · · · ·
99JKDR000645	70,74 15.27 2.09	.57 1.72 4.57 3.21 .21	.08 .04 .011 1212 226 667 104	10 <10 1 .9 .04 <.01 99.66	
DATE RECEIVED: SEP 3	GROUP 4A · O IOTAL C & S - SAMPLE TYP 1999 DATE REPOI	.200 GM SAMPLE BY LIBO2 FU BY LECO. (NOT INCLUDED IN E; ROCK RT MAILED: SPOT 2	USION, ANALYSIS BY ICP-ES. LOI BY LOST THE SUM) 21/99 SIGNED BY	5 ON IGNITION.	D B.C. ASSAYERS
			•		
All results are considered th	he confidential prope	rty of the client. Acme as	ssumes the liabilities for actual cost	of the analysis only.	/ Data <u>· · ·</u> FA

. .

PHUME (604, 200-31-0 - 'AX (000, 253 . . . 6 854 E. HASTINGS SF. VANCOUVER DC VON 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 File # 9903262 (a)405 - 470 Granville St., Vancouver BC V6C 1V5 Submitted by: Jason K. Dunning Na K W TI Hg Se Te Ga Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th. Sr. Cd. Sb Bi V Ca P La Cr Mg 8a Ti B Al SAMPLE# Мо % % ppm ppm ppb ppm ppm ppm рра рра рра рра рра раз % рра рра рра рра рра рра рра рра раз рра ура % % ppin %, ррп – %, % ppm ppm ppm. 2.35 31.36 2.89 39.9 22 6.5 2.9 158 1.12 <.1 3.6 1.5 4.9 37.9 .04 .05<.02 12 .26 .030 17.9 18.1 .29 61.3 .048 8 .47 .056 .27 7.3 .10 5 .1 .04 2.8 99JKDR000645 GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, AMALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK

	9002 Accredited Co.)		G	GEOCHI	EMICAL	ANAL	YSIS (CERTI	FICAT	ſΕ					ÅÅ
tt	Hudson Ba	<u>ay Exp</u> 405 -	<u>1. &</u> 470 Gra	Dev.	CO. L	td. P	ROJEC' V6C 1V5	<u>F 231</u> Submit	<u>L8</u> Fi ted by:、	lle # Jason K.	99032 Dunning	62	(b)		T T
i e e estati e en itali	SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	5.%	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Li ppn	
	99JKDR000645	.43	< . 1	1.16	15.1	1.0	1.0 .	<.01	14.7	6.33	42.5	<.02	<2	18.1	

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2·2·2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML WITH WATER, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, B1, TH, U, B = 2000 PPM; CU, PB, ZN, NT, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK

ACM ALY LL	LATC 3 L	1	B.	TIN	т.	iC	א עעכ	1	18	E	Þi.	~(60		3-3-21	'AX'(^^\)	251 1716
(ISO 9002 Accre	dited Co.)		ĩ	WHOLE :	ROCK	ICI	P ANAL	YSI	3	,						
	idson Bay	Expl. &	Dev. (Co. Lto St., Vancou	d. P uver BC	ROJI Véc	<u>ECT 23</u> 1V5 Subm	<u>18</u> itted	Fil by: Ja	e # 9 ason K. [9034 Junning	34 	P	age l		TT
SAMPLE#	SID2 A120	3 Fe203 Mg0 % X %	CaO NaZO X X	K20 TiO2 % %	P205 %	MnO Cr %	r203 Ba % ppm	N i ppm	5r ppm p	Żr Y opmi pipmi	NЬ ррп	Sc ppm	LO1 C. %	/TOT S/TOT	SUM %	
99JKDR000646 99JKDR000647 99JKDR000648 99JKDR000649 99JKDR000650 99JKDR000651 99JKDR000655	54.67 16.2 76.72 7.8 64.88 15.0 76.92 8.9 71.92 10.4 69.77 6.1 66.03 11.0	5 7.64 3.69 4 3.97 1.21 9 5.14 2.55 6 3.80 1.99 4 4.23 2.37 9 4.28 2.28 15 6.19 2.16	4.37 3.18 2.95 2.71 1.65 3.75 1.71 1.15 2.98 1.20 5.54 .52 4.31 1.20	4.33 .83 .38 .36 1.81 .69 1.28 .42 1.49 .49 1.04 .31 1.70 .67	.21 .05 .15 .07 .10 .26 .12	.13 .29 .35 .11 .11 .12 .10	.012 1112 .012 231 .009 2350 .014 1327 .015 1074 .019 637 .016 577	24 20 21 <20 26 41 51	664 183 212 108 191 164 130 237	79 23 90 27 153 48 77 29 72 25 51 26 62 30 70 30	<10 <10 <10 <10 <10 <10 <10	15 8 12 8 9 6 14	4.3 3.3 3.6 3.4 4.5 9.4 6.2	.57 .10 .70 .03 .48 .06 .48 .77 .78 .83 3.91 2.43 1.82 2.07 2.84 2.75	99.83 99.86 99.99 100.00 100.00 99.84 99.85 99.87	
99JKDR000661 99JKDR000667 99JKDR000668	76.24 7.4	2 4.22 1.67	1.94 .95 1.68 4.60	1.20 .35 3.41 .19	.30 .04	.03	.016 1101 .011 1025	62 <20	91 700	75 29 88 11	<10 <10	8 2	5.3	2.73 2.93	99.79 99.88	
RE 99JKDR000666 RRE 99JKDR00066 99JKDR000669 99JKDR000670 99JKDR000671	3 71.13 15.3 58 70.76 15.3 60.69 17.1 47.96 18.2 59.11 17.2	9 2.02 .56 2 2.09 .55 3 6.27 1.94 7 10.97 5.17 8 6.50 2.38	1.67 4.62 1.66 4.50 2.84 3.42 5.23 5.07 3.13 2.93	3.53 .20 3.74 .19 2.89 .70 .97 1.14 2.69 .75	.03 .03 .14 .20 .11	.03 .03 .12 .25 .13	.014 1024 .013 1027 .010 1101 .006 4661 .009 1033	20 <20 37 <20 <20	700 695 376 1598 429	100 10 85 10 131 28 45 20 115 25	<10 <10 <10 <10 <10	2 2 12 10 11	,5 .8 3.5 4.0 4.8	06 .01 20. 06 10. 11 10.> 01 .22 <.01	99.91 99.90 99.84 99.96 100.01	
99JKDR000672 99JKDR000673 99JKDR000674 99JKDR000675 STANDARD SO-15/	60.06 15.6 57.19 16.4 57.33 16.9 59.93 16.7 7CSB 48.67 12.9	7.95 3.67 7 6.95 3.02 7 7.08 2.29 1 7.01 2.20 7 7.39 7.35	2.04 4.10 5.17 2.84 4.38 2.70 2.70 4.01 5.94 2.44	.93 .93 1.48 .87 2.34 .80 1.82 .90 1.87 1.62	.14 .21 .19 .16 2.73 1	.19 .18 .14 .12 .41 1	.010 671 .009 898 .011 1055 .011 1146 .073 1938	20 32 <20 <20 75	432 410 408 470 401	102 22 221 24 103 25 98 20 825 27	<10 <10 <10 <10 <10	14 14 12 14 9	4.0 5.4 5.4 4.1 5.9	.12 <.01 .50 <.01 .39 <.01 .19 .02 2.38 5.33	99.84 99.98 99.82 99.87 99.75	

GROUP 4A - 0.200 GM SAMPLE BY LIBOZ FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: CORE Samples beginning 'RE' are Recurs and 'RRE' are Reject Recurs.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

------ (i

Page 2

NONE ANALY INCOM																									_
	SAMPLE#	Sioz	A1203	Fe2O3	MgO	CaO	Na2O	K20	TIOZ	P205	MriO	Cr203	Ba	Ni	\$ г	Z٢	Y	ΝЬ	Sc	101		\$/101	SUM		
		2	. %	7	%	×.	74	X	%	7.	χ,	7,	ррт	ppm	ppm	ppm	ppm	ppm	ppm			/ •	/a	 	
			14 01	7.07	7 00			0	05	10	15	012	057	20	202	05	16	~10	17	/. B	n7	01	00 84		
	99JKDR000676	128.26	10.91	(.93	3.09	1.94	3.31	1.90	.02	. 10	. 15	-012	3 7 1	20	373	7.7	10	210	16	4.0			77.00		
	99.JK08000677	153.64	16.18	5.86	1.12	7.59	3.24	.93	.68	, 13	. 13	.012	624	25	315	- 77	18	<10	9	10.2	1.73	.04	99 84		
	99JKDR000678	54.80	17.04	6.26	1.90	6.22	3,86	1.25	.68	.12	.13	.010	956	20	440	80	18	<10	11	7,5	,40	<.01	99.95		
	00 (666000670	69.78	15.63	2.15	.57	1.83	4.62	5.82	.20	.07	.03	.012	1062	<20	742	101	11	<10	2	.9	.06	<.01	99.84		
	77JKDR000680	73.63	9.35	4.59	1.68	3,19	1.67	1.00	.43	.08	.06	.014	666	30	143	68	29	<10	9	4.0	.83	1.87	99.80		
	,																								
	00 IK08000686	67.59	9.06	4,19	2.34	6.90	1.40	1.70	.39	.20	.16	.012	881	32	172	71	34	<10	9	5.8	1.86	1.57	99.84		
		61.87	15.85	3.98	1.07	5.36	4 17	1.90	.33	.18	.11	,011	753	<20	297	112	24	<10	3	5.0	1.03	. 33	99.97		
	99.1608000000	69.98	10.52	4.62	1.28	4.23	2.37	1.04	.53	.12	.09	.010	741	29	248	84	35	<10	11	4.9	1.51	1.62	99.82		
	99.160000007	66 43	13.14	6.86	2.01	2.26	4.10	.68	.68	. 16	. 12	.014	516	24	195	55	27	<10	12	3.3	.46	2.74	99.85		
	99JKDR000703	66.39	10.75	5.13	1.54	6.02	3.03	.76	.52	.09	.23	.013	547	30	211	50	23	<10	9	5.3	1,37	1.95	99.87		
				7 70	7 75				1 / 2	3 77	1 / 1	1 077	1070	75	4.0.1	0.25	37	<i>~</i> 10	o	5 0	2 7 8	5 77	00 75		
	STANDARD SO-15/CSB	48.67	12.97	(.39	1.55	5.94	2.44	1.67	1.02	2.13	1.41	1.073	1730	. 75	401	022	21	× 10	У	2.7	2.30	2.22	77.13		

Sample type: CORE.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903434 Page 3

Data____FA

CHE ANALYTICAL													. . .										_	ACHE ANALYTICAL
	SAMPLE#	sio2 %	A1203 %	Fe203 %	MgO %	CaO %	NaZO %	к20 %	tioz X	P205 %	M⊓0 %	Сг203 %	Ba ppm	N i ppm	Sr ppm	Zr ppm	Ppm	ир шdd	Sc ppm	LOI %	C/TOT X	\$/101 %	SUM %	
	99JKDR000709	75.41	9.17	4.29	1.09	Z.36	2.55	1.03	.48	.02	.09	.012	421	29	183	50	21	<10	9	3.4	.77	1.61	99.98	
	99JKDR000715	49.74	13.88	10.21	9.37	9.90	1.98	1.12	.79	.25	. 25	.040	550	89	351	37	19	<10	27	2.3	.23	.23	99.96	
	99JKOR000718	64.48	16.97	3.73	1.05	3.28	5.73	1.73	.39	.13	.11	.014	1000	23	340	56	10	<10	3	2.2	. 13	.32	99.98	
	RE 99JKDR000718	64.29	16.94	3.66	1.03	3.26	5.76	1.63	41	. 12	. 10	.009	3737	<20	341	57	<10	<10	3	2.3	. 14	.30	99.98	
	RRE 99JKDR000718	64.67	16.94	3.66	1.04	3.28	5.70	1.72	.39	. 12	.10	.012	998	<20	341	60	10	<10	3	2.2	. 13	.31	100.00	
	99JKDR000719	44.29	14.49	8.96	9.74	8.07	1.24	1.69	. 95	. 19	. 19	.095	649	209	177	65	20	<10	20	9.9	1,59	.03	99.94	
	99JKDR000720	80.93	7.20	3.35	1.54	1.60	1.46	1.07	.31	<.01	.13	.016	1171	35	86	105	21	<10	6	2.2	.31	.01	99.97	
	99JKDR000721	79.32	7.79	3.51	1.74	1.85	1.50	1.08	.34	.02	. 13	.017	1319	41	123	61	19	<10	6	2.4	.32	.03	99.88	
	99JKDR000722	76.74	9.19	4.24	1.34	1.86	2,55	.87	.49	.09	.07	.012	794	31	168	53	20	<10	9	2.3	.40	.83	99.88	
	99JKDR000723	71.14	15.02	1.90	.55	1.79	4.69	3.55	.21	.01	.03	.012	1033	<20	689	94	12	<10	2	.9	. 10	<.01	100.02	
	99JKDR000724	46.68	15.09	9.73	5.45	9.20	2.25	1.56	.74	, 18	.21	,014	617	39	451	31	15	<10	23	8.7	1.51	.33	99.94	
	99JKDR000725	49.13	16.12	9.69	5.86	8.93	3.56	1.01	.75	.23	.20	.017	364	47	723	29	16	<10	24	4.2	.43	.07	99.84	
	99JKDR000726	48.88	15.81	9.22	5.60	10.55	3.25	1.03	.73	.20	. 18	.015	563	44	703	27	14	<10	23	4.3	.36	.06	99.93	
	99JKDR000727	48.30	17.22	9.16	5.36	7.57	3.85	.88	.75	.24	- 17	.012	359	53	691	36	15	<10	18	6.3	-88	. 15	99.95	
	99JKDR000728	73.04	10.41	4.03	1.97	2.58	2.25	.93	.44	.07	.14	.018	414	52	234	114	19	<10	6	3.9	.27	<.01	99.88	
	99JKDR000729	47.06	17.33	10.32	4.84	9.29	1.84	2.68	1.00	. 19	.21	.006	899	34	600	52	20	<10	21	5.0	.49	.01	99.95	
	99JKDR000730	64.36	12.33	6.84	2.55	3.56	2.50	2.10	.64	- 14	. 18	.016	819	39	234	67	21	<10	12	4.6	.60	.01	99.95	
	RE 99JKDR000730	64.41	12.21	6.88	2.57	3.57	Z.53	z.11	.64	.10	, 18	.017	802	43	232	68	20	<10	12	4.6	.62	.01	99,95	
	RRE 99JKDR000730	64.52	12.16	6.83	2.55	3.55	2.48	2.11	.64	. 10	. 18	.016	803	42	230	66	21	<10	12	4.7	.59	.01	99.97	
	99JKDR000731	74.72	8.95	4.01	1.43	3.42	1.97	1.29	.46	.05	. 14	.015	625	31	172	61	21	<10	9	3.4	.64	.37	99.96	
	99JKDR000732	68.41	12.56	5.57	1.97	2.13	2.71	1.85	.67	.11	.09	.011	953	34	211	115	38	<10	12	3.7	.59	1,39	99.94	
	99JKDR000737	73.92	8.57	5.51	1.66	4.09	1.64	.74	.51	.07	. 18	.018	561	54	176	64	26	<10	11	2.9	1.06	1.69	99.91	
	STANDARD SO-15/CSB	49.17	12.81	7.30	7.26	5.87	2.41	1.85	1.61	z.70	1.39	1.060	1912	84	396	946	23	<10	9	5.9	2.40	5.34	99.73	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

Page 4

ACPE AND TILL/K						.					_													
	SAMPLE#	SiO2	AL203	Fe2O3 %	MgO X	CaO %	Nə2O %	К20 %	TiOZ I %	PZ05 X	M⊓0 (%	Cr203 %	Ba ppm	ii Maga	Şг ppm	Zr ppm	ү ррпі	ИЪ ррт	Sc ppm	LOI X	C/TOT X	S/TOT X	SUM X	
		- <u> </u>																						
	99JKDR000738	72.54	11.56	4.75	Z.86	1.76	1.90	1.82	.60	.09	. 14	.014	1064	24	138	103	36	<10	11	2.0	. 17	.28	100,19	
	99JKDR000739	74.60	11.00	4.60	2.73	1.09	1.36	1.96	.58	.11	.08	.015	1111	<20	113	98	35	<10	11	2.0	.06	. 13	100.28	
	99.1KDR000740	74.25	11.22	4.65	2.41	1.48	1.37	1.98	.54	.16	,10	.013	1439	25	122	103	39	<10	11	1.9	. 17	.42	100.27	
	99JKDR000741	73.61	11.21	4.57	2.63	1.17	1.86	1.71	.61	,10	.11	.014	1255	<20	144	100	29	<10	11	2.7	, 08	.42	100.47	
	99JKDR000742	69.39	13.55	5.12	3.43	1.44	2.05	1.98	.66	.12	.13	,014	1365	22	167	125	46	<10	12	2.2	. 08	.27	100.28	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	}																						
	99.IKDR000743	74.70	11.41	4.15	2.56	-85	1.40	1.97	.51	.04	.07	.017	1445	<20	107	112	35	<10	9	2.4	.02	.34	100.27	
	99.100000744	78.70	8.69	3.52	1.88	1.47	1.54	1.38	.38	.06	.07	.015	883	28	133	78	29	<10	8	2.4	.07	.32	100,24	
	99.1608000745	77.40	11.23	4.20	2.34	1.89	2.38	1.76	.59	.13	.11	.012	1361	<20	178	96	35	<10	11	3.0	. 29	.65	100.24	
	99.1150000749	59.60	16.47	5.79	2.58	4.66	5.05	1.88	56.	.21	. 16	.011	1005	<20	415	85	18	<10	9	3.2	.43	. 29	100.41	
		50 01	16.28	5.87	2.61	4.12	5.15	1.93	.63	.20	.15	.013	1010	27	408	85	18	<10	9	3.2	. 34	.23	100.24	
	J J J K D K O O O I J O			5.01																				
	PE 00 (KDP000750	50 72	16.52	5.82	2.59	4.11	5.33	1.94	.63	.22	. 15	.007	1030	<20	412	102	19	<10	11	3.1	.35	.21	100.32	
		59.63	16.50	5.81	2.57	4.07	5.33	1.93	.63	.20	. 15	.013	1023	<20	413	105	18	<10	9	3.2	.33	. 22	100.22	
	00.IKDR000753	65.58	12.24	6.79	2.89	3.02	2.57	1.24	.68	.12	. 15	.015	857	25	257	149	29	<10	14	4.7	1.19	2.97	100.15	
		71 41	6.65	5.10	1.07	4.57	1.00	2.09	.36	.68	.04	.021	906	76	142	65	33	<10	6	7.0	4.16	2.05	100.15	
	99110000756	50.40	16.64	8.07	3.00	7.02	2.97	2.20	.81	.25	. 16	.009	772	<20	273	56	19	<10	15	8.4	1.64	.01	100.06	
	773RDR000104	1.0.00		••••																				
	00.1650000765	55.35	17.60	6.71	1.63	5.98	3.80	2.26	.59	.13	. 15	.009	1128	<20	40Z	71	15	<10	9	5.8	1.02	.01	100.20	
		56 63	18 27	6.90	2.16	8.05	3.95	1.42	.64	17	.15	.011	815	<20	B24	55	15	<10	8	4.0	.66	.01	100.35	
		51 36	18 07	7 97	3 60	6.10	4.13	1.40	.69	.17	. 16	.010	533	<20	467	39	11	<10	12	6.3	.99	< 01	100.21	
	00 1kh000707	28 85	15 85	7 07	3.85	8.77	3.40	1.17	.80	.20	. 16	.012	676	37	355	53	17	<10	15	9.0	1.77	.11	100.13	
	779KUKUUUTUU 67ANDADD 50,15/009	1/A A7	12 QA	7 40	7 36	5 05	2 66	2.13	1.62	2.74	1.41	1.074	2063	71	401	921	23	<10	9	5.9	2.40	5.33	100.05	
	STANDARD 50-137630	40.05	12.70	1.40	1.00			2.12						· · · ·					· ·	- • /				u

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903434 Page 5

To be been a second as																						÷ · ·		the second s
SAMPLE#		5102	A1203	Fe2O3	MgO	CaC) Na20	K20	Ti02	P205	Mn0	Cr203	Ba	Ni	Sr	Žr	Y	Nb	Sc.	LOI X	c/tot %	5/101 %	SUM X	
							. /	/a	"7					Phan										· ·· —
	1769	47.85	16.47	9.06	4.44	7.30	3.69	1.01	.91	.23	. 17	.013	355	47	294	61	20	<10	18	8.6	1,48	.06	99.84	
	771	49.30	14.27	7.62	3.42	10.28	3.24	1.67	.72	.28	.13	.016	353	58	720	65	23	<10	14	8.7	2.70	1.67	99.79	
99.IKDR00	777	49.46	17.97	7.90	3.29	5.81	5.80	2.42	,84	.31	. 18	.009	723	22	380	60	20	<10	12	5.7	1,19	. 59	99.83	
99.JKDR00	773	52.50	17.45	6.16	3.16	4.73	4.60	4.77	.56	.42	.13	.015	1547	39	477	56	17	<10	8	5.1	1.01	.24	99.84	
99JKDR00	0774	36.90	5.39	8.60	27.21	6.20	.06	. 16	.32	.17	- 14	.202	164	883	234	<10	<10	<10	12	14.4	2.08	.07	99.91	
ספ ונ הפ חצו פס	775	33.66	4.88	8.20	23.55	9.23	.05	.21	.29	.13	. 15	. 199	384	855	436	11	<10	<10	12	19.3	3.58	.05	100.06	
99.160800	1776	49.75	8.81	6.37	5.76	10.93	.80	1.61	.45	.10	.10	.015	933	102	299	45	19	<10	9	15.0	5 44	2.65	99.86	
	777	32.61	6.55	9.79	20.04	9.51	.07	.32	.41	.17	. 14	.259	51	1092	397	14	<10	<10	15	19.9	3.73	.24	99.97	
99.140800	781	53.38	12.66	7.26	3.38	9.31	. 15	3.21	. 86	.09	.37	.012	2442	41	112	76	27	<10	14	8.8	3.25	4 05	99.79	
99JKDR00	0793	55.80	11.68	7.59	2.52	6.42	2 .10	2.84	.59	.14	.67	.013	1035	88	108	58	23	<10	12	10,8	4.05	3.72	99.31	
STANDARD	SO-15/CSB	48.63	12.98	7.40	7.36	5.95	5 2.44	2.13	1.62	2.74	1.41	1.074	2063	71	401	921	23	<10	9	5.9	7 40	5.33	100.05	

Sample type: CORE.

Page 6

SAMPLE#	\$i02 %	A1203 %	Fe203 %	MgO %	CaO X	NaZO %	k20 %	tioz %	P205 %	MnO %	Cr203 %	Ba ppn	N i ppm	Sr ppm	Zr ppm	Y ppm	Nb ррт	Sc ppm	LOI %	101/C X	101/S %	SUM X	
99.IKDR000804	28.47	3.38	6.31	10.70	19.93	.01	.74	. 18	. 10	.24	.130	65	614	243	<10	<10	<10	5 2	29.7	8.32	.20	99.96	
99.1608000000	71 97	7.76	6.78	8.38	16.66	.09	1.56	.40	.29	24	.082	128	370	184	33	12	<10	6 3	25.7	6.83	.57	99.96	
99.1608000807	41.71	12.83	7.61	4.97	9.97	. 59	3.61	.58	.33	.16	.023	922	53	250	41	19	<10	8	17,4	4,60	.56	99.93	
29.K08000811	50.33	15.58	6.15	3.24	6.70	.55	3.94	.68	.31	11	.011	682	46	185	53	22	<10	7	12.2	3.16	1.25	99.92	
99.JKDR000812	67.13	18.11	1.16	1.02	1.65	.86	4.86	.11	.01	.03	.009	844	<20	71	65	<10	<10	1	4.9	.58	. 19	99.96	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																							
77JK0R000813	67.28	17.21	1.34	1.22	1.99	.12	5.03	.10	.02	.05	.011	956	<20	57	62	<10	<10	1	5.5	, 79	.20	99.99	
99JKDR000815	66.40	16.93	.94	.34	3.89	2.83	3.37	.11	.01	.04	.012	637	<20	228	57	<10	<10	<1	5.0	94	14	99.98	
99JK0R000817	66.55	17.13	.95	.34	3,42	3.62	3.04	.10	<.01	.04	.012	552	<20	200	58	<10	<10	1	4.7	.84	. 15	100.00	
99JKDR000820	65.43	17.30	1.07	.44	3,43	3,38	3.31	.10	.01	.04	.011	371	<20	172	56	<10	<10	1	5.4	.95	.05	99.99	
99.IKD8000822	55.03	13.62	7.06	2.33	6.51	.88	2.75	.70	.27	.12	.019	298	51	197	52	25	<10	7	10.5	3.23	2.19	99.86	
· · · · · · · · · · · · · · · · · · ·																							
RE 99JK08000822	54.82	13.76	7.0Z	2.36	6.55	.87	2.84	.69	.27	.12	.020	302	55	200	54	26	<10	7 '	10.5	3.31	2.28	99.90	
BRE 99.1K0R000822	55.08	13.72	7.02	2.36	6.56	.87	2.72	.72	.30	.12	.019	298	47	199	52	26	<10	7	10.3	3.74	2.24	99.86	
79JKDR000826	36.72	4.64	7.95	21.10	7.89	.11	.23	.26	.10	.12	.211	44	884	241	<10	<10	<10	7 2	20.5	4.38	.03	99.98	
99.IKDR000827	44 32	13.07	9.41	8.06	6.77	3.48	.Z7	.66	.34	.17	.035	155	70	210	36	16	<10	13	13.3	2.77	.01	99.94	
99.JKDR000828	46.31	16.82	9.90	4.33	4.44	5.37	1.34	.82	.18	. 15	.012	485	29	155	35	18	<10	11 1	10.2	2.41	.01	99.96	
,,																							
99JK0R000829	41.16	16.18	8.26	4.41	8.17	1.25	3.78	.66	.13	.25	.012	490	41	180	29	14	<10	12	15.6	3.88	.36	99.95	
99JKDR000830	47.36	16.94	9,90	2.89	4.87	5.33	1.02	.74	. 18	. 14	.006	309	<20	213	37	18	<10	10 1	10.5	2.18	<.01	99.95	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 7

NINE MERITICAL														• • • • •										
	SAMPLE#	SiO2	A1203 %	Fe203 %	MgO X	CaO %	Na20 %	к20 %	T102 %	P205 %	MnO X	Cr203 X	Ва ррп	Ni ppmr	Sr ppm	Zr ppm	Y ppm	NЬ ррт	Sc ppm	LD1 %	tot/C %	101/S X	SUM X	
	99JKDR000831	49.57	18.04	8.36	3.83	5.59	4.43	2.14	,72	.18	. 14	.005	569	<20	193	34	18	<10	13	7.3	1.18	<.01	100.40	
	99JKDR000832	70.56	15.64	1.87	.60	1,86	4.70	2.97	.20	.01	.03	.012	916	<20	700	89	11	<10	1	.8	.05	<.01	99.47	
	99JKDR000833	58.04	16.92	5.47	3.29	5.45	3.55	2.18	.82	.30	.07	.015	985	38	1098	94	15	<10	7	4.0	.07	<.01	100.37	
	99JKDR000834	41.91	13.12	5.24	3.34	16.72	2,86	1,70	.60	.27	.22	.009	855	31	1028	79	12	<10	5	13.8	3.02	.01	100.02	
	99JKDR000835	60.0Z	16.95	5,06	2,50	5.05	3.58	2.70	.80	.29	.07	.017	1049	39	1055	102	15	<10	7	Z.3	.06	. 05	99.60	
					7 00	- 10	7 00	2 57	07	75	0.0	01/	1105	(7	1144	00	10	~10	•	2 6	10	01	00 03	
	99JKDR000836	57.90	17.02	5.11	3.08	2.60	3.92	2.34	.0/	. 55	.00	,014	1017	47	1100	77	12	<10	2	2.2	. 10	.03	00 76	
	99JKDR000837	64.41	17.08	2.68	1.15	5.62	3.68	2.72	.6)	. ! !	.03	.015	1013	.20	1100	07	1.7	<10	4	3.3	.03	.01	99.10	
	99JKDR000B38	52.99	19.41	5.98	1.63	5.10	3.25	2.57	.48	. 25	.10	.008	703	<20	370	63	17	<10	Ş	8.0	. (0	. 01	99.90	
	99JKDR000839	55.09	18.00	6.78	2.06	4.17	7.94	2.60	.44	.25	.08	.008	690	<20	518	64	17	<10	4	(.)	. / 2	<.01	100.05	
	99JKDR000840	54.14	18.19	5.68	1.72	5.57	3.17	2.42	.47	.21	.09	-008	547	<20	420	62	17	<10	4	8.2	1.05	<,01	99.99	
	RE 99.1K02000860	54.06	18.27	5.56	1.73	5.61	3.29	2.42	.42	.21	.09	.007	545	21	422	59	18	<10	4	8.2	1.08	<.01	99.99	
		56 05	18.21	5.58	1.73	5.62	3.23	2 38	. 46	24	.09	.008	544	<20	421	63	18	<10	4	8.2	1.10	.01	99.92	
	00 100000000000000000000000000000000000	55 24	16.73	5.74	2.09	6.49	2.48	2.19	39	19	.12	.007	679	<20	403	64	17	<10	4	8.6	1.14	<.01	100,40	
	00 1666000047	56 61	18 22	6 38	2 27	5 67	2 61	2 36	41	21	12	007	850	<20	402	63	18	<10	4	7.6	89	01	100.20	
	00 IVD900092	51 7/	14 02	A 01	2 09	8 73	2 16	1 68	57	21	18	009	300	<20	352	55	17	<10	7	11.3	1.96	04	100.37	
	AATKOKOOO47	51.54	10.00	0.01	2.07	0.75	L . / 7	1.00				,	200		335				•			•••	140101	
	99JKDR000844	57.97	16.44	5.87	1.28	4.96	1.96	1.79	.73	.17	.10	.014	286	25	225	78	27	<10	12	9.2	1.48	1.11	100.56	
	99JKDR000845	62.47	10.90	4.23	1.54	7.78	.87	1.61	.48	.12	.21	.010	252	20	198	76	28	<10	7	10.2	2.13	. 95	100.49	
	99JKDR000846	71.03	15.51	1.95	.57	1.58	4.38	3.17	.20	.04	.03	.009	905	<20	632	86	12	<10	1	.8	.03	.02	99.46	
	STANDARD SD-15/CSB	49.26	13.39	7.31	7.36	5.88	2.40	2,02	1.66	2.72	1.38	1.083	1920	72	391	835	23	<10	8	5.9	2.38	5.29	100.75	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACM TALY	AL I RA	TC _ :	ຮູມ			E	•	TI	I	Τ.		.00		зC		1R		P	'	(60)	- ī	3-3		fa?	 4	.17
(ISO 9002	Accredit	ed Co.	.)			GEC	осня	MIC	AL	AN	ALYS	SIS	CEI	RTI	FIC	ATE	с ·									
						0.00	/		_								-				-	-	,	、		М
	Hudson	Bay	Exp	<u>,1.</u>	& D	ev.	<u>Co</u> ,	Lt	.d.	PR	<u>OJE(</u>	<u>. TT</u>	<u>231</u>	8	Fil	e t	ŧ 99	034	434	F	?ag	9 I	()	a)		
n Bur				405 -	470	Granvi	lle S	t., V	ancou	iver f	BC V60	105	Sub	mitt	ed by	: Ja	son K.	Dun	ning							
		11- (4	. 0.	Ze 65		a Ha	1.e. 45	712 (Li Ib	\$r	Cd SU	1 (1)		 4 [*	14 0		<u>1</u> Ва	TI F	1 43 1	1) Y	ъ I	1 163	Se	le Gu		•
	301 U F I #	110 000		1997 1999	୧୯୩ ମ	pa ppa	, bla		ত চাপ	0170	017 111	PP	ppm -		(1)*** (A		[1]***	1 IX-	• •		nom re	а <u>р</u> ар	1177 1			
•																						~				
	<u>ցու յի քիրումին 15</u>	7 33 40 93) 1.62 2	5 6 37	20 / 24	3 000 4	26 1 2	4	9 10	112.1	05 6°	25 0	101/2/16	6 000 1	0 6 .17	6 29	11 5 0	<i>31</i> ,	ب زبيا ا	13 11	7 < 0	· · ·	1	η, τ. 		
	ወን ነፃ ውስባብላ ነ ፖ	1 51 42 71	1 2 57 6	55.7 35	877	0 2185 2	55 < 1	1 1	6 5	113.2	07 1	i .1.)	29 1 83	4 025 1	94 16	1 61	71.9 0	10 0 :	7] N S P4	- <u>-</u>		2 - 5	1	03 6 7		
	20 8 0000618	1 32 41 83	1 2 72 3	5337	100	7 2575 3	01 < 1	<	4 P,	70 7	05 1	5 12	45 1 07	0 051	ра <u>а</u>	6 (2) 3 - 51	10 4 : F	12	 	11 71 11 12	ητ ο •• Δ	•	< 1	0- 14		
	on 14 (ICONAL SO	1 00 08 85	1 3 10 1	5 17	78.7	n ele 2	21-12	- 1	3 1	15	02 7 4	5 17 1 17	11 1 7	1 0 %	13 12			111		14 14	1. 0	· · · ·	,	10 11		
	20 <u>ዓ</u> («ግንሳሳሳለ	1 20 53 41	1 12 1	(1 ° 1)	15 0 12	5 911 2	55 6 5	4	ο,	80.8	98 (N	1 1	11 J -	7 0 FS	1.1.1.1	~ 1			1 1 1					(
	30 JR 19200000 L	33 37 47 19	5 12 11 2	11 12	1770	2 859 7	73, 33, 7	5 g <	2 1 0	139 7	sa e p	1 11	12 3 16	6 177	, n . n	2 3 MA	61 20 1	101	י ור כ	1 17 1	11 1	2 J2	4 -	11 10		
	22 N DE900652	46 20 71 61	19 51 15	11.6 674	59 11	a 795 3	24 50 8	7 1	3 1 2	1137.1	1 55 10 6	L 15	P5 3 5	3 7 %	1.5 50	1 1 21	65 O C	n) i	5 n	2 12 1	iu S. J.	1 51	n 3	22 I O		
	00.h ()R000453	12 05 65 32	15 02 1.	19 0 571	56 0	1 649 3	00 11 1	6 2	111	111 2 1	1 86 11 2	5 51	76 3 8 3	5 191	3.1.75	÷ •1	երը ((<u>)</u>	1 25 0	ויו יי	13	1 60 I	11.5	37 1.0		
	an 11 (100000464	4 03 73.78	1 3.30 E	30 1 93	28 2 21	1 1001 4	05 14 1	13	3 5	100 1	JI 15	3 . 15	0.3.25	e pun	2 9 59	9.1.69	19.0	ing i	י ייו	ון ייי	25 0	n 1	12	A4 5 1		
	sa triponok55	6 42 71 87	271 9	59 86	12.2.15	1 773 3	75 8 4	6 <	.2 .4	72 4	17 1 2	. 12	45 Z 7/	1 051	23 22	ותזן	28 9 J	י ומי	1 1 10 0	YE 13	80.0	1 10	13	11 1 6		
																								<u>.</u>		
	ogjirtinninass	B 40 44 20	2 94 5	52 6 10°	23 3 13	4 851 3	59 14 7	8 <	2 1	93 J	21 1 2	5 C3	52 3 3:	3 015	23 17	1.1.42	817.5	91 3	1 90 U	15 Iŭ 14 Iŭ	. 3 "	1 	21	07 7 0		
	st as huedoogse	0 15 43 53	1 1 4 1 5	51 1 109	22.3 13	2 811 3	50 14 J	8 ·	2 4	90 4 06 5	2.1 1 1	.⊔.+ 7 nm-	52 3 77	n (13) n nia	20 40	0 1 60	() () () () ()	01	1 1 00 0	11 04	73 0	 5 6	2.6	10 3 2		
	PPT 92,010000655	6 85 45.41		237 190 19 0 170	20 3 14	2 758 3	76 15 3	۰ ه ۱۹ «	2 6	177 7	24 1 2) IN	95 1 21	1 0*0	4 4 . 97	8 1 80	51.1 (07	1 26 04	51 17	1 0	ч в	3 0	05 5 1		
	91 MDED00658	15 92 47 04	5 2 95 4	5 5 137	21 7 15	2 822 3.	43 23 2	32 -	2 6	14 3	51 1 3	7 11	49 4 11	0 049	3 0 12	51.01	63.4 0	01	97 0	25 12	4 2 0	2 13	4.4	11 2 4		
	2 To short in the state																									
	97 IF (16030659	12 01 80.00	5 3 39 6	5.5 147	77 3 24	9 907 4	72 <u>18</u> 4	1.1 <	215	80 9	.25 1.0	5 11	93 0 24	5 151	6 5 5 5	0.2.07	FD 1 (102 - Zî	1211-0	11 11	15 0	9 9	30	11 6 1		
	99.)KDE000660	13 68 71 31	4 28 5	8.9 165	27.4-15	2 1258 3	21 28 5	19 🦿	Z 6	110 6	.32 1.6	\$ 12	41.3. <i>V</i>	6 11:0	3 0 29.	2 1.27	6 <u>9</u> 30	01 3	Z 66 Q.	78 11	o 2 0	2 12	30	45 20		
	97.1608000461	8 37 47 41	4,94 2	96 112	13 9 14	2 - 887-3	53 16 9	5 e	5 6	123 3	.05 1 8	3 .71	<u>]</u>] i a	9 D-5	3 9 16	11.13	67 7 (07	1120.0	n I.	3 8 0	з қ	1.5	. 19 1 1		
	99.0F0P000662	7 89 30 01	B 32 2	25 1 153	32 3 10	4 1185 2	97 50 7	5 ×	Z 3	78 D	Q6 13	1 50	81 3 18	8 05	17 25	3 1 91	ن ه از	22) és bi	55 9 7	.3 0	2 •5	15	10 3 5		
	99)r(#000663	4 57 51 73	9 60 5	2 4 130	16 1 12	8 1370 3	31 42 3	5	.6.2.	141.9	17 1 6	- 15	4] 2 7]	I 015	2 2 20	5 1 09	69 A (01	ית הון ו	51 13	17 0	1 4	14	10 1 8		
		2 76 61 99		14 119	14 1 13	0 924 2	92 IK 3	ς.	2 1	74 A	ZD 53	, po	51 1 53	7 011	רן פי	1 51	11. a r	01	1 16 0	14 D	6 n n	1 -5	5	n: s.o		
	22.000300665	1 59 32.61	3 91 4	51 2 INT	11 0 12	1 082 7	62 14 8		2 4	57.0	10 4	D D7	311 97	ןיח ח	14 17	2 21	a, a ji	רח	1.50.0	et 12	6 A - 11	1 -5	4	05 1.6		
	92 Jr (1200666	10 31 44 26	7 84 12	2 1 302	333 / 30	9 761 7	91 16 2	31 <	2 5	1.30 6 I	1 17 3 3	2 09	51 1 16	A10 A	11177	0.2.51	71 J J	ns - P	1 1 1 2 2	tu us	5 a - 1	. N	1.9	82 J. I.		
	ap h Dedadvet	53 53 74 75	11 85 25	97 1 48°S	61 2 12	3 257 7	71 55 I	\$4 <	2 1 1	27.6 1	123 89	יו ו	75 L F	7 H.	17-31	7 67	121.6	n) - (קר	· 14 -	rņ r	1.15	ותי	15 2.0		
	anî kêrêdeveş	1.5 €úé	3.3. (1 1 .30	13 2	8 150 1	7 <	73 <	7 \$ 7	.4 6	03 I	1 .0?	12 24	n 20-2	1.6 17	5 32	45 Z (152 I I	1 . . n		9 L P	י יק	I	01 1.7		
	PL 22 H DP000669	1 74 5 41	1 1 15 3	11 16	137	7 156 1	15 < 1	23	3 3 1	33-4	01 10	3 D.C	13 25	5 021 7	17 15	n x	ьў I Л	51 D	52.00	21	2 G P	• .4	1 -	n; ; ; ;		
	EFE 01111000568	2 20 7 01		1 7 6 4 0	713	0 154 1	11 1	7 2 .	7 4 7	21.6	05 1	s er	14 29	6 172 2	1 2 19	a 11	(o o - (51 Ir	ח ני ו	·1 ·5	9 I C	• - 5	Ł.	07 B P		
	פטייטטלפט וו ביי	79 21 12	11 75 7	2 5 155	1 2 12	0 795 3	03 5 6	123	0 2 2	113 7	יז ו ר0	N 15	L 0 (95	3 p⊷n (1 + 9	4 '!	jes 2 j	12 17	ד ורדי	12 - 21	1.2 0	· 1)	- 1	(a. 1.6		
	ሰን በተበቀለባበት በ	77 131 93	7.14 S	an 1, SI	8 3 31	3 1551 5	79 3 5	5 1	5 8 (5.12 5	45 s r	n 03	256 53	: 028 L	an s	6 ? 11	1419 4	06 D	1.1.1	27 P.O	ח ר	• •	- 1	76 J I K		
	ן (4000-04 נפר	56 15 13	1 8 70 A	52 1 85	4713	a 610-2.	90 6 B	10 Z	2 1 8	145 6	07 1 2	i 11	F4 04	9 DIZ 1	11 6	2 00	Jee b 3	28 D	, i , i i	<u>ور</u> ۱.	10 0	15	11	07 I Z		
	02 16 00 00 C	1 ** 6 14			7 1 19	י ביו ב	on 6 ?	a •	2 1 6	102.6	14 0	; 07	17) 41	I D40 I	1 6 10	1 7 01	195 5 7	ו הכו		5 11	170	, 76	< 1	03.15		
	924F18000623	71 76 47 71 76 47	· 26+ 5 · 592 •	27 C 17 27 C 4	6 1 10	2 1225 3	≕v 0./ 14 9.7	9 0 9 11	6 I 6	176 7	74 D	,	اه ندر	,	17 11	0 1 HL	245.5		n ti n	a p	а п	5 12 5 12	-	12 11		
	- 10 000 000 3	21 27 17 21 19 19	7 01 5 1 7 84 5	(/r ⊐* (76 AR	5 R 15	0 891 7	75 12 2	6 1	1 18	151.9	.02 1.0	5 11	67 1 42	2 0-6 1	24 4	a 75	287.7	17 1	1171 1	.л. 79	1 1	n 12	• 1	12 1 1		
	00 jr (10000575	76 6 61	5 97 1	នេះ ស	3111	9 791 3	J7 16 1	8 1	3 2 3	1.17 7	05 .5	5 17	67 .83	9 058 1	1 8 19	A 00	222.5 0	64 7		55 21	5 0	1 22	i	21 1 5		
	STANDARD US2	11 70 129 31	31 44 16	53 R 256	37 1 14	5 820 3	18 65 0	21 0 200	3 3 1	32 3 11	1 84 9 9	1 11 18	81 55	5 0811	6 9 147	5 50	1.17 0 1	14	7 L 71 N	17 5	1317	6 757	771	91 6 3		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: CORE <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: SEP 13 1999 DATE REPORT MAILED: Out 1/99 SIGNED BY	RTIFIED B.C. ASSAYERS
Not suitable tor An it samples contain graphite/suctide	a.
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	Data T FA

ALL ALLA VICA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903434

Page 2 (a)

Data FA

AT ME ANALYTICAL						 _ • • ·										·						· ·· ·	· •						·····:				
SAMPLE#	Mo ppm	Cu ppm	РЬ грл	Zn ppr	Ag ippb	иі ррт	Со ррл	Mo ppitt	Fe X,	۸s شرو	U ppm	Λu ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca x	P 2	ta ppm	Cr ppm	Mų T	Ba ppm	li X	B PDM	۸) ر	Ha 1	к W Хррт	11 ppm	hàp bày Hà 20	i ppm n ppm	са ррт
99JKDR000676 99JKDR000677 99JKDR000678 99JKDR000679 99JKDR000680	1.18 .69 .77 1.61 8.58	14.89 77.81 65.76 5.33 58.20	6.59 3.77 4.91 3.09 3.08	71.9 57.2 54.6 39.9 139.4	60 50 56 19 158	7 2 6 3 7 0 3 3 22 1	16.8 14.1 14.0 3.0 10.1	1102 986 887 216 420	4.00 3.16 3.03 1.13 2.89	7.0 4.1 7.4 1.6 1.7	.8 .4 .9 2.0 1.8	2.6 2.0 3.0 <.2	1.8 1.3 1.6 3.7 .9	119.3 108.3 224.1 72.8 82.6	.03 .07 .10 .03 1.19	.82 .59 .33 .07 .53	.39 .17 .13 .10 08	91 94 110 15 303	.50 4.62 3.71 .43 1.82	.051 .062 .051 .031 .037	8.8 14.3 9.8 23.0 4.0	15.4 14.3 9.9 15.6 19.2	1.46 .52 1.05 .34 .86	182.1 72.3 143.9 77.2 117.2	067 .027 .297 .065 .091	81 81 63 91	57 .03 .94 .77 .97	140 .071 .290 .129 075	.28 .5 .13 9 .08 .7 .21 8.3 .21 4.3	06. 03.> 02.> 04. 21.	7 9 <5 <. <5 . 10 3	2 .05 L .03 L .06 L .02 9 .06	5.5 60 13.7 3.5 6.6
99JKDR000681 99JKDR000682 99JKDR000683 99JKDR000684 99JKDR000684	17.89 8.77 15.55 11.65 12.53	56.65 51 23 49.08 58.62 47 29	2.97 3.80 3.65 3.52 3.11	164.1 133.3 146.9 110.0	208 3 164 9 179 9 209 3 196	45 1 26 6 34 9 22 1 27 4	8.9 10.9 8.6 12.4 8.4	572 729 522 536 456	3.02 3.05 2.79 3.53 3.08	1.5 21 .7 .3 .5	2.7 1.5 2.2 2.1 2.5	< 2 6 2 < 2 < 2	1.0 1.0 .8 .7 .7	66.5 207.2 149.8 127.7 250.8	1.30 .94 1.01 .66 .79	.41 .67 .68 1.03 .82	46 .13 .11 .12 .10	146 124 107 88 83	1.62 2.43 2.69 2.14 1.48	.059 047 .046 .045 .051	4 1 3.7 3 1 3.4 3.1	26.5 25.8 21.8 17-1 23.4	1.02 1.18 .91 1.02 .92	145 8 164.7 132 4 109.7 135 0	. 044 078 020 . 037 . 028	1 1 1 1 < 1 - 3 < 1	47 84 41 77 1.54	.073 .117 .059 .061 .077	.39 4.4 .29 5.1 .18 3.2 .21 3.8 .26 4.0	38 . 32 . 21 . 46 . 40	<54 83 73 72 <52	1 .21 7 .10 3 .12 6 .09 9 .11	5.4 6.4 4.6 5.9 4.9
RE 99JKDR000685 RRE 99JKDR000685 P9JKDR000686 P9JKDR000687 P9JKDR000687	11.34 12.68 14.34 8.06 2.01	45.49 46.78 38.20 44.41 2.52	3.15 3.20 2.97 3.67 3.06	116.9 118.0 86.6 101.0 63.6) 197) 198 3 149) 111 5 15	27.0 25.0 20.8 10.8 1.9	8.5 8.7 7.0 8.1 4.4	462 459 862 1083 797	3.08 3.16 2.47 2.67 2.32	.5 .6 .5 1.8 <,1	2.5 2.6 3.3 1.7 .3	< 2 < 2 < 2 < 2 < 2 < 2	.7 .8 .7 .7 1.4	247.5 258.9 77.5 77.8 109.8	.82 .82 .58 .50 .06	.80 .83 .78 .87 .16	.09 .09 .07 .11 .05	83 86 64 51 9	1.48 1.46 3.54 3.62 3.23	.050 .051 .077 .051 .087	3.2 3.2 2.9 3.4 16.4	21-5 16.6 22.9 14.8 5.8	.93 .98 .93 1.16 .51	141.7 144.6 105.9 89.5 129.9	.028 .029 .062 .097 .015	<1 1 <1 1 <1 1 <1 1 <1 1 2 1	1.56 1.62 1.39 1.56 1.38	.077 .074 .052 .086 .090	.25 3.8 .25 4.5 .21 4.1 .17 5.0 .23 1.9	.40 .40 .24 .22 .08	7 2 3 5 3 0 5 2 0 <5 1. <5 1.	3 .08 9 .11 4 .07 2 .06 1 .02	4.8 4.9 4.9 5.8 4.3
99JKDR000689 99JKDR0006690 99JKDR000691 99JKDR000692 99JKDR000693	6.70 11.54 1.85 9.27 8.24	51.75 53.93 72.51 58.08 78.45	3.57 3.16 1.93 3.08 3.45	315.3 175.9 82.2 217.9 169.5	5 149 9 176 2 108 9 146 5 141	19.2 26.6 42.5 22.3 21.6	8.2 10.8 25.3 9.0 14.4	663 676 982 530 912	2.96 3.27 3.55 3.03 3.85	18.2 2.7 12.9 13.4 11.9	1.6 1.6 4 1.5 1.4	< 2 .3 1.2 < 2 .4	.7 .9 .8 .9 .7	124.4 49.7 95.8 21.1 50.7	2.69 2.69 .28 1.78 1.09	1.02 .69 .37 .60 .44	.85 .19 .08 .17 .12	55 92 141 70 103	2.40 1.91 2.32 .83 2.23	054 051 111 042 051	6.1 5.5 5.5 4.3 4.2	15.6 24.3 81.9 20.6 18.0	66 .92 1.83 .83 1.00	122.6 122.1 61.4 114.4 115.3	.012 .051 122 .068 068	2 1 2 1 2 2 1 1 1 1	1.24 1.26 2.35 1.32 1.43	.063 .064 .178 .109 .074	.16 4.6 .21 3 9 .13 4.2 .23 5.3 .37 5.1	.22 .17 .08 .19 .28	15 2. 7 3. <5 1. 5 3. <5 2.	7 .37 4 .16 2 .10 0 .09 8 .12	4.2 5.0 7.7 4.9 5.9
99JKDR000694 99JKDR000695 99JKDR000696 99JKDR000697 99JKDR000698	3.25 .47 2.91 6.58 4.47	118.59 9.73 94.96 115.99 74.56	5.04 2.22 2.73 3.33 3.76	92.2 126.3 77.8 127.8 87.3	2 176 3 33 3 113 3 141 3 120	11.7 2.7 11.0 19.1 19.6	17.8 23.9 16.7 19.1 13.6	1266 1541 1882 901 730	4 97 5 25 4 41 4 46 3 26	.1 1.4 2.8 13.3 1.8	.8 .2 .7 1.3 1.8	5 < 2 5 3 < 2	.9 .7 .8 .7	81.4 57.9 60.0 22.3 32.9	. 23 . 09 . 19 . 68 . 34	.44 .17 .45 .71 .68	.14 .07 .09 .12 .11	124 205 146 162 59	1.89 4.09 3.11 .51 .59	. 100 . 087 . 097 . 068 . 019	5.3 5.0 4.4 3.4 2.0	14.4 3.9 15.6 24.4 23.1	1 82 2.26 1.80 1.26 .93	90.2 65.0 131-3 98.6 105.6	.192 .224 192 .119 .074	1 . 1 . 1 . 1 .	3.05 3.06 2.20 1.53 1.40	. 068 . 108 . 151 . 156 . 107	.15 1.7 .17 1.1 .27 1.7 .54 4.8 .38 5.2	.14 .08 .20 .42 .38	<5 1. 5 <5 1. <5 2. <5 1.	7 .12 7 .02 1 .05 1 .15 7 .09	11.7 12.7 9.7 7.0 5.6
RE 99JKDR000698 RE 99JKDR000698 99JKDR000699 99JKDR000700 99JKDR000701	4.16 3.53 10.89 4.56 13.03	75.11 74.81 111.58 116.06 80.00	3.68 3.84 4.10 3.42 3.97	87.3 87.3 144.3 131.4 144.3	3 115 2 116 7 141 5 137 7 147	20.1 16.7 26.0 24.5 38.7	12.7 13.0 14.8 19.3 15.0	738 718 1066 750 643	3.27 3.10 3.53 3.51 3.46	1.4 1.2 3.9 1.1 2.1	1.8 1.7 1.9 1.2 2.0	< 2 < 2 < 2 < 2 7.6	.7 .7 .8 .9	31.0 30.3 49.1 33.3 44.4	.33 .35 1.16 .74 1.03	. 66 . 56 . 92 . 49 . 57	.11 .11 .12 .13 .13	59 58 141 140 109	.59 .51 2.17 1.04 1.02	.019 .019 .050 .060 .044	2.0 2.0 3.5 4,4 3.6	23 2 20.5 29.1 31.5 35.4	.89 .93 .79 .94 .85	102.7 102.3 62.0 86.5 98.8	.072 .073 .094 121 .099	1 1 1 1	1 34 1.36 1.14 1.39 1.35	. 103 . 105 . 102 . 148 . 118	.41 4.8 40 6.8 .34 5 7 34 6.8 40 7.2	. 36 . 38 . 44 . 32 .33	<5 1. <5 1. 5 3. <5 1. <5 3.	5 .11 5 .10 4 .10 9 .14 2 .12	5.4 5.4 4.9 5.3 5.4
99JKDR000702 99JKDR000703 99JKDR000704 99JKDR000705 99JKDR000706	10.74 8.20 6.54 10.02 4.74	67.60 84.58 92.56 93.15 115.77	3.52 3.51 4.15 5.41 4.90	104.9 134.0 94.0 98.0 62.0	5 107 5 148 8 164 3 175 6 195	24 9 19 4 17 4 22 7 17 1	14.3 12.4 14.9 14.0 15.2	811 1587 2275 1621 1586	3.41 3.09 3.01 3.43 3.20	1.8 .7 349.4 134.7 1195.5	1.9 1.4 1.8 1.8 1.5	2.5 <.2 <.2 <.2 2.9	.8 .8 .7 .9 .6	62.3 60.3 78.1 79.6 74.9	. 74 . 91 . 62 . 68 . 47	39 .50 1.10 1.11 3.03	.11 .12 .12 .15 .13	137 96 111 112 91	1.76 3.24 4.74 4.33 7.17	.050 .044 .059 .055 .072	3 1 3.6 3 1 5.2 4.3	32.2 22.5 22.9 27.1 16.6	1.07 .82 .75 .77 .69	96-3 69-8 51.3 42.4 36.2	.149 .127 .118 .148 .148	l 1 1 1	1 64 1.29 1.15 1.42 1.26	.068 .099 .090 .064 .042	.41 7.9 .21 5.4 .18 6.9 .16 5.7 .10 5.9	. 32 . 19 . 18 . 25 . 21	7 2. <5 1. <5 2. 8 2. 8 2.	5 .08 9 .07 3 .13 7 .11 9 .21	6.6 5.8 5.0 5.7 5.7 1 5.2
STANDARD DS2	14.80	130.02	32.69	165.	2 256	36.8	13.3	829	3.17	67.5	21.3	211.6	3.7	30.7	11.46	10.18	11.64	83	.55	.082	16.8	168_6	61	144.6	.115	3	1.78	.041	.17.7.9	1.92	267 2.	4 1.90) 6.4

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Huc	d٤	10	n	в	ay	7	E	Υp	1	•	8	: 1	De	v	•	Co).	I	t	d.	Ρ	RO	JE	εC	Т	2	31	18		F	'II	LE	Ξ	#	9	90	34	34	ł			I	Pa	.ge	e 1	3	(a _: -)		KALTI	
	 1	 Mi	 (4]	.N	ता सम्बद्	<u>ر</u> بنا	 	 Ag (h	<u></u> א דיוח	 	(0 17	nu Nu	fe /		אז ריויז	nbul U	A TPI	w v	lh የማ	Sr pp#	C d peva	Sto ppm	r	R I FVT	V pum	(.) (.)		, l. L	י ב זיין אייז	۰۱ ۱۱۳	μ γ	•1 •	111 1111	f) /	ء 	P .	, , ,	11		د ۲۰۰۱ ا	۲۲ ۱۳	יי ריזי ו ייזי	יי ייני ייניו	יין יין וויין	Ба 1879				 		
			E.0.		1.73	66	,	91	15	1 9	6	676	2.19		06	11	ł	ī	,7	63-1	35	18		10	51	Z.59	0)	1 2	, à	15 0	; 7	'n	10 3	141		213	ò ù	11 1	. בי)	10	-5	15	09	5.3						
windon the		10	70 1			128	I I	40	31	7 15	5	621	3 02		2	21		7	9	54.2	P)	51		22	115	1.53	.08	2 4	1	21 E	. :	8	ça 7	112	2	513	η P.	ς ο ,	21 3	2	77	,	30	<u>(</u> 9	55						
n Debug (d) M Debug (d)	, a	13	94	ю. К. 4	1 06	112	- • 2 1	23	21	3 12	7	550	2.60)	8	14	1	0	.6	36.9	89	49		12	123	07	0.1	1 2	2.5	20 5	56	\$7	12.3	ans	•	110	ŋ r	15	15	5	U.	. 5	75	In	4.5						
P DE 1999 11 P	,	44	EDR	, ,	4 AX	126	יי יי	25	21	3 14	4	682	3.01	,	13	12	Т	5	я	45 2	90	Z 42		15	119	1.03	07	91 2	2.3	21.0	5 (°	te -	16 T) 11	1	111	1 0	51		5	11	11	2.5	11	5 9						
b Bebag (]]	\$	25	105.	14	3 69	n7	5 I 8	53	15	6 15	6	1859	3 40	į	2 Z	18	1	2	9	FD 0	41	12		15	115	4 71	ps.	. 2	9	18 1		1	11.7	113	1	יוו	- P	11	յւ		i.	4	- 1	łu	¢ ¢						
n DEB03212	4	4.9	62	11	רכן	101	•]	03	וי	1 17	1	619	34	,	15	3	1	ł	2	21.5	oŋ	90		12	130	7 3	01	n 3	31	17	310	11	17 4	140		יוו	19 F		n :	· ·	1.	11	וי	05	<u>9</u> 3						
100000711	Í	1	83	Lg .	- 4 15	29	2 1	48	15	• 1	7	530	32	ş.	11	1.0	1	6	8	36-7	30	87		14	142	1.3	Πζ		ŧ I	1×	117	14	12.2	774		114	1 0	. A	2		г.	-5	2.1	03	• •						
D0000711	,	 52	112	77	3.34	63	2 1	107	47	5.13	13	815	3.6	7	8.2	6	ł	7	0	107.0	. 19	21	1	0n	136	3.25	43	<u>ه</u>	5 0	7 6 I	n 1 5	ר יא	171-5	111	I	121	1	51	0	17	н	1	3	u	• 5						
₩ D©000715		87	50	62	1 93	41	3	52	13	Z 26	; ;	492	2 1	2 2	0 6	3	1	3	8	91 Z	15	19	1	0S	73	1.84	- 11	12 1	1 6	oč	115	57-1	וין	11.	•	יזו	ا زه	03	•		01	.5	1	66	51						
JKOPPOD/15	7	n	57	47	3 19	105	Z 1	158	21	e 13	2	577	36	1	2.7	13	1	5	8	52.5	B 5	. 46	5	47	134	oi	05	55	11	71 3	81(ן יינ	39.1	189	۲	111	i∹ ()	r.•	-7	~ 6	2.	ζ	5 0	16	; a						
HERRORD (11)	,	,,	57	.	3 21	149	۱ ۵	17.1	17	6 12	1	678	3 9	7	16	.9		5	11	ai 3	1.29	31		11	125	.9	05	;e ;	11	26.1	013	31	26 J	266	6	11.	ei e	53	ic	31	11	6	79	10	87						
K (M1910717	د ا		14	x	A 27	75	 F	44	3	8 6	6 G	565	24	1	13	7		6	5	31.9	20	. D	<u>ا</u>	66	59	1.3	07	70 8	4.3	10	о :	70	17 4	175	5	113	ю (î	77	08	1.1	01	5	6	07	. J]						
7 (MUUUU220		56	17	79	a 16	75	q	0	3	8 5	.9	562	24	ı	1.4	. 2		8	5	39.4	. 19	16	5	D4	59	13	0.02	70 /	11	à	3 4	57	17 7	1éa	2	117	2 0	14	ng.	33	61	۲ ۹	4	< 02	. 4 2						
00 1×0000710		. 50 EE	17	04	10 A 70		9	4.2	4	1 6	. 2	571	2.4	5	15	.7		8	.5	30 8	23	19		04	60	1.3	i 02	1	11	12	6	70	45.4	163		2 1.7	ri ()	77	63] 1	61	~S	6	03	61						
- 990718000710	. 1	50	17.	,, 61	1 80	60	, a		21A	9 61	19	1338	5.7	5 3	34.8	<.1	ł	2	3	56 5	.03	.95	5	п	188	4 8	05	34	37	318	058	a a	30 L	. 323	à	113	77 P	76	07	6	01	-5	3	02	11.2						
(#1#UD/0119		50	30										• -																																						
17 0000720	,	16	87	12	4.67	6 0	3	66	28.	1 10	5 2	6.35	2.1	2	Z 1	. 4		3	1.5	25 .2	14	ī	7	09	47	.?	5 03	27 1	54	41	4 3 4	92	85 Z	192	7	115	1 0	ςn	Οī	6 ()	ΩZ	< 5	٢	05	55						
WD0004721	ì	67	64	хл АЛ	3 65	67	7	61	30	2.13	2.2	629	2.1	9	4 4	. 4		.2	1.6	28.6	.07	. 24	9	07	58	ġ	7 02	24	\$ 8	43	510	05	97 F	1.51	1	111	10 N	31	P٩	57	п к	~5	4	09	64						
16 10 10 10 10 10 10 10 10 10 10 10 10 10		76	57	na.	2 14	90	a 1	100	20	- 6 13	3.1	357	2.5	1	1.9	, 1		.9	1	30 4	42	. 7	s	.09	118	7	7 Oʻ	16 .	29	24	8	73 I	72.2	1/7	, ,	443	3) N	15	l,	15	r	-	25	05	5 7						
1818-000777 1818-0662233	•	97	,c #	n2	3 77	46	۰. ۱	52	3	2 3	3.0	707	10	5	1.9	3.8		4	3.B	39.5	.07	10	3	64	1ª	J	3 03	32.2	23	14	1	31	61.)	063	3	6 9	51 N	52	20	4.2	63	< 5	I	- 02	20						
W D000773	,	11	80	41	1 19	20	ň	7R	30	л э. 1	1.2	1478	5 5	8	34	I	1	ş	.3	102 2	. D7	ł	2	87	214	4 9	n p	77	1.6	57	53.	27	la I	202	7	133	17 Q	23	úο	Ģ≺	N 2	•5	1	03	10 1						
14 DH 0 00 1 C +	1	. 31	00	••	1.47	174								-																																					
1# DR000 725		ЪA	142	67	2 81	n	4	97	24	9 20	53	742	31	8	10	< 1	1	.6	Z	122.5	.13	.)'	9	05	16	2.2	5 P'	J 4,	?	50	61	90	12.3	10.	1	12	10 0	50	~ 4	7.4	n.2	~5	Ş	r 0.7	77						
100000776		20	IAL	25	2 37	42	3	116	21	6 15	86	635	2.7	5	18	< 1		נ	2	124 2	07	4	1	22	142	9 3 0	5 01	וי	7	11	51	55	76	712	2 31	15 2 .	<i>v</i> , 1	n j	F 6	5	61	-5	3	. 15	1.1						
8109009727		57	86	65	1.85	59	7	45	35	4 2)	34	1013	, d A	L	7	1		5	;	115 4	9 8		ņ	l a	25	11	2 1	I3	14	44	5.2.	96	21 [10	1 1	10.2.	13 1	MI -		4	с ·	;	1	Ú4	11.1						
Koroan 228	,	10	57	59	8 11	91	6 3	717	45	2 11	1 2	781	2.1	a	10 1	3		5	J 5	8 5 (25	18	8	12	2	15	7 P	<u>ا ۲</u>	2-4	12	71	25	21	18	9	5 7 3		.,	55	23	Λ1	Ĩ	12	15	91						
Jr (10000-22		12	41	71	7.97	e	ß	92	17	6.34	1 2	1122	4.6	ņ	73.7	. 1		8	1	117.2	.02	0.0	;	11	15	177	7 D1	·,-	6.5	0	67	-1	17	jr.	6	631	ן יח		"		η,	. '.	6	በዓ	11.2	•					
pr. march (* 3.5	4	16	110	12	3 80	76	5	75 E	33	2.23	3 0	1234	1 4 2	1	22.1	4	4	. 3	21	8 03	te	33	3	27	14	2.2) ()	, D	9 B	63	51	40	lo d	e i pe	n	174	4.7 T	H.,	P 4	10	۳n 	• 5	;	ין 	· 17 •						
77.Jr()r(0007.30	J	74	141	6-)	3 11	76	5 2	240	33	1 27	2.5	1733	4 4 2	3	37.7	4	3	3	79	76 2	. 11	1 3 7	2	77	١ħ	22	3 N	. •	36	47	61	41	15	1	7	1.7	51 1	ir I	<u>01</u>	• -	P.)	5	۴	15	12.5						
r 99 11 (1eg 90 7 39	•	01	135	90	3 51	- 74	0	242	32	1 72	2.3	1204	41	6	3 4	. 4	2	7	Z 0)¶ (17	33	1	24	15)	77	р Л	4.	ъ.	к3	6 }	61	יו	. 1		37				, ,											
0.06000131	3	61	60	89	6 43	AR	n	125	20	t p	14	819	25	0 3	Z7 B	.3		6	11	50	٦2	17.7	3	. 13	5	170	• •	15	15	<i>7</i> 13	;	95	0	13		211	(* 1		#1% • •	5.7	Р.,			11							
0608040315	,	43	15	1	5 ta	109	Z	185	16	2 13	11	613	35	2	())	7	2	0	i	18 1	- 11	82	3	11	2	11	: 0	()	5.4	16	וח	71	en (1.9	*	, 1,	a, t	/	I.º	/ 5	11	п	11	ψ.							
MINEO00223	12	27	42	(e	3 74	1 [27	1	105	27	1 1	e i	5 .74	. , ;	ç	11.6	9	F	- 1	ĥ	17	99	; (1)	5	I0	1L	11	5 0	20	16	13	8	7 7	44	96	!	74	n e	15 2	15	2.8	65	:	23	01	60	,					
1/10/00/171		. 86	34	13	4 56	100	.1	150	17	8 8	R 6	653	1 2 3	1	14 9	8	5	7	6	61 9	. T2	· 6.3)	. 10	U	12.9	7 D	17	5 N	12	41	ሰና	54.6	11	2	11	1.0	u. `	ţ,	2.0	١.	п	77	P6	• • •						
0.0000735	, c	i n	60	67	5.52	2 2 1 9	6	216	23	6.1	43	55)		0 15	99 A	1 9	15	4	7	61	3 25	5 27 .1	ŋ	76	р	121	\$ Q	.)	17	פן	6-1	17	11) (n	5	11	MJ (44.)	15	.15	15	15	10	۱ŋ	1 7 1						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۰- حر	. 67	60	09	5.24	191	 D	189	21	6 1	2.6	61	332	6	36.2	2.5		5	13	36 9	1.43	8 2	e	13	12	8 9	1 1	12	18	'n	5	97	21) 10	r	11	11 (15.6	12	3 9	17	٥	17	19	5 5 8	,					
2 HE LAND'S 25 JUL	· • •		1.1				e .																												-				-		2.2										

13 71 128 98 20 75 [64 1 271 37.2 13 0 873 3 13 65.2 21 2 199 7 3 4 30 3 13.67 10.43 11 02 83 55 032 16 9 16 9 1 59 140 3 117 3 1 7 3 019 16 7 4 1 87 752 7 5 1 57 5 7 7 STARARD IG2

25 58 72 96 3 53 226 1 221 46 9 13 5 653 3 22 17 1 1 9 < 2 1.0 40 5 3 21 7 33 27 311 0 9 011 1 7 33 5 73 191 6 135 1 1 15 111 70 5 9 71 9 6 9 15 1 5

Sample type: CORE Samples beginning "RF" are Peruns and "RRE" are Reject Peruns

92.0r 00000 137

Data_4 FA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903434 Page 4 (a)

ADE ANALYTICAL												<u></u>	•											·						<u> </u>						
	SAMPLE	Мо	Ću	Pb	In	Ag	NI Ce	Mn	Fe	Aş	U	Au	Th	Sr	£đ	Sb	B1	۷	C9	P 1	La	٢r	Нg	Aa	τι –	8 A1	Na	ĸ	v	п	Hg	54	ie 	68		
		00m	pp=	po#	007	ppb p	çın p(ri	pp m	1	ppm p	¢1	ppo p	in the second	ppm	p;m	pon	pp#	pp#	t	1 0	pri -	Diam.	t	pem	1 00				PDM			C(177)	12.00		 	-
																																•		• •		
	99.3K.DP0007.38	2.J5	35.45	1.44	93.L	61 19	1 1 8.9	725	2 88 5	32 -	:.1	1.1	.5 7	12.0	. 32	1.31	.40	67	. 55 .1	034 2	.6 1	15 4 1	77 43	4.5.1	72	2 2 76	110	51		21	-5	.,	.00 .00	• •		
	99,000007.39	1.39	38.35	L 16	85.4	45 9	94 9.0	464	2.BL	28	.1	.7	.5 3	78.3	.13	.89	14	67	79 J	D36 4	.2 1	13.3 1	45 57	30.1	63	2 2 29	035	. 72	3.8	. 29			.09	2 A		
	99JIT0R000740	2.86	\$7.88	1.55	89.6	89 LI	1.5 9 9	502	2.84	14	ł	1.1	.4 .	26.4	. 34	. 64	.18	47	.44 .1	053 2	9 1	12.8 1	46 49	093	37	L Z.15	.041	54	31		• •	2	1.5			
	99JK0A000741	1 17	33.32	3.22	87.4	61	1.3 7.3	684 .	2.76	1.0	1.1	.7	.4 :	33.5	.12	. 80	. 12	52	. 56 . 1	034 2	6	10 5 1	. 57 - 16	021	159	1 2.10	.053	21	29	10		č	07 64	0.7		
	99.JKOR000742	1 47	27 50	3.56	112.9	39	8.5 7.9	870	3 17	2.5	.1	1.0	.6	31.9	. 19	.76	. 08	55	. 67 . 1	013 4	.0	987	15 19	15.6.1	182	1 7 59	.046	. 28	18	14	~ 5	•	. 05			
	99.00000743	1 00	32.QS	3.19	84.7	47	2.9 5 1	515	254	2.1	r 1	.1	.6	28.9	. 05	. 95	. 06	32	.43	021 3	1	9.91	48 11	801	34	1 1.9/	.097	.18	24	64	< <u>,</u>	. 9	05	6.3		
	99.JKDR000744	1.81	35.30	3.83	68.3	62-1	1.9 6.1	487	2 1Z	2.5 ·	c.1	B	.8	43.9	.12	2.20	05	42	.18 .	026 3	.4	21 6 1	11 7	2.2 1	107 <	1 1 82	016	. 10	1.7	05	- 5	.8	.09	0.0		
	99.JKORD00745	2.04	34,64	4.99	112.1	48	977.	1 210	2.55	16 3	. E	.8	.5	41.5	64	1.66	.10	55	98	048 2	6	7.5 1	34 A	951	129 4	1.88	.051	15	37	.09	5	1.0	.04	1.2		
	99JILDR000746	13.02	40.57	3.05	97.8	108 2	3.8 8.	6 360	2.52	8.2	L.0	3	.4	15.6	.58	Z 29	.43	59	.28 .	025 l	, ,	18 D	.67 6	52.6 .(538 -	1 87	. 039	.14	52	.19	,	2.1	. 21	2.8		
	99.JK0R000747	16.03	51.29	31.44	125.7	129 2	4.1 9.	425	2.68	46	1.2	< 2	.5	Z3.3	L.09	2.00	.15	77	61	033 2		14.0	.78 E	589 (056 <	1 1.13	.037	.14	4 7	21	6	2.1	,09	3 H		
	99.00DR0D0748	7.69	65.4Z	8 98	91.Q	157-1	J. Z 15	2 870	3.70	25.3	.4	.6	.7	58,7	. 25	2.47	.15	101 2	.33 .	D64 7	3	17.0 1	07 E	51.5 .1	134 <	1 2.01	.070	.11	36	15	B	2.0	.09	71		
	99 1008000749	1.08	17.17	6.56	204 9	91	5.0 11.	9 881	7 98 1	02.3	.6	7.6	1.8	56.6	.12	9.31	.17	96 1	.86 .	072 6	5.4	1501	25	12 3 .1	189	1 2 03	067	05	2.6	03	,	.3	07	10 0		
	99 R D2000250	2 06	17 33	6.04	63.6	30	7.3 12.	8 908	3.26	4.3	.9	- 2	Z.Q	46 D	. 07	1.26	.11	105 1	,74 .	073 7	r.7	20.4	.47 6	55.0 a	217	1 2.13	.184	09	32	07	<5	. 4 <	. 02	10.3		
	PF 03 tr 02000750	1.98	16.92	5.65	63 1	31	7.2 12.	8 913	3.24	4.3	.8	< 2	1.9	45.4	. 07	1.15	. 09	109 L	.74 .	.074 7	.3	2031	39 6	52.0 1	198	L Z.DZ	. 174	03	30	.02	₹5	.4	. 07	98		
	REF 99 100000150	1 96	17.27	5.81	63.5	27	7.4 12.	5 909	3.26	4.5	.8	< .Z	1.9	43.8	. 09	1.13	. 09	108 L	.71	a75 7	1.2	19.4 1	. 39 - 5	57.9 1	194	1 2.01	.163	09	30	03	<\$.4	. 02	98		
	RFC ())580/000150	·. /9																																		
	on monana titi	6 71	73 58	6.80	190.9	186 I	3 5 12.	6 1613	3.20	54.8	.1	1.2	.5	53.8	1 85	8.71	. 16	81.4	1.67 .	074 2	2 2	13.8	.19 8	t1 3 .(079	1 1 24	. D14	. 08	52	.12	5	20	D\$	4.1		
	00 m 00000751	7 69	39 64	5 12	199.0	120 1	4 9 13	3 697	3 19 2	219.3	.5	.6	7	41.1	1.83	¢. 19	.12	42 1	57.	037 3	3.6	11.2	74 6	595 (070	1 1.30	.018	.14	30	11	~5	20	. 07	40		
	79JKDR0707 52	6 3C	20 48	9 97	192.1	245 1	5 1 14	D 878	4.25	9.J	.6	.6	.9	56.6	1.60	3.70	. 11	107	. 95 .	.050 Z	2.2	18 0 1	73-10	0020	075 ·	1 1 93	. 194	17	38	14	10	1.6	.09	6.5		
	990KDR000733	6.00	04.57	4 64	110.1	146.1	6 2 11	6 491	3 B4	79.0	.8	.3	1.0	21.6	1 09	2.53	.27	42	.62	057 2	7.0	14.9	28-6	92.6 .0	075	1 1 19	013	15	46	10	۰5	18	08	3.2		
	yy,jii 19(00/07/54	9.90	70.27	4.01	456.7	166 1	1 6 12	7 695	3 28 1	107.1	5	4	7	43.5	4.61	5.54	93	50 1	33.	.052 2	2.4	12 8	95 e	548 (081	1.1.77	046	.11	48	11	5	28	80	4,4		
	A41WDK000122	1.17	G).00	0.32	4,00.7	1.00 1	3.0 16.	• •/•	•••			-																								
			or 14	4 10	50.4	a7 7	2 6 10	1 421	7 92	11.4	3	< 7	6	18.9	.46	2.01	1.06	36	.59	037 2	2.3	16.1	.89	74 3 (919	2 1.12	. 032	. 13	4.7	17	<5	25	.34	J.1		
	V1.0.0R000756	7,43	73.74	J.10	46.5	164 1	2.5 10. 8 7 11	4 490	1 17	168 5	,	1.1	7	50.4	. 33	4.27	. 31	60 2	2.44	043 Z	7 B	8.3	.92 17	231 (017	7 1 76	. 050	. 14	3.9	11	•5	77	. 16	3.6		
	99.JKO2000757	0.99	09.37	3.07	•0.6 a1 à	127 1	0.2 LI. 14 N LA	5 5AZ	4 10 4	57A R	2 B	.6	1.0	36.5	.74	26 59	. 55	169-1	. 85 .	.070 3	3 4	76 3	88-10	04.0 0	065	111	095	14	69	13	•5	6.9	09	4.3		
	99JT0R000758	29.61	20.10	11 61	208 1	258 1	1 1 1	יייי דחיר ר	1 11	14.9.1	2.5	.4	2.1	43.9	2.52	7.17	.73	463 2	2.64 .	290 5	5 5	49 5	5D 🔾	1.7.0	065	1.81	050	15 1	0 0	. 12	9	9.1	. 06	33		
	99.00000759	HL./5	12.05	13.90	101.5	746 2	1.0.10	A 400	3 19	12.01	1.0	- 7	16	35.5	2.31	6.51	.93	448 2	2.03 .	.255 d	1.9	46.1	72	55 2 (076	1 1.06	.051	. 15	9.0	11	7	9.1	.10	4.3		
	99.JK0H000760	Q3 90	03.93	15.33	107.0	[40)	1.0 13.	• •••																												
	of 00 incode0.150	44	61 94	16 07	A 601	260 3	9.1.13	4 425	1 26	12 5 1	14	<.2	1.7	36.4	2.42	6 58	1.01	465 2	2.10 .	.263 5	5 0	57 0	78 !	57.4 (081	1 1.09	055	17	9 a	17	8	9.3	07	45		
		61 72	86.96	15 60	191 1	244.2	1 2 13	9 421	3.26	12.0 1	17	<.Z	1.6	35.6	2.37	5.57	E DL	458 2	2.07 .	.259 4	8 8	47.9	73	547	078	1 08	055	17	94	17	8	9.2	08	4.2		
	00 200000261	21 67	116.38	2 71	12.4	166 1	9 2 2	7 fi50	1.73	3.5	2.8	· 7	5	39.7	. 24	7.72	. 47	115 4	. 29 .	. 051 - 3	3.6	21-3	J0 1	154 (028 🔸	1 76	017	03	88.	59.2	• 5	13	.07	2.5		
	99.0×04000001	1 41	171 91	6 71	49.5	261 3	10 9 10	2 615	2.88	11.8	1 3	<.2	1.1	23.3	47	12.61	.41	105 1	. 191 .	.041 3	3.5	23-1	.78 - 2	23.7 .0	030	1111	. 080	05	6 0	03	< <u>5</u>	60	.03	4-6		
	97,1K1#000707	0.41	141.11	0.71												-																				
	99 <u>J</u> KOROUUTOJ M 1.																																			
	00 1: 00000364	IJ	14 05	4 20	1 116 B	33	7,3,21	5 1175	3.88	.8	. 3	4 9	.9.1	28.Z	.14	. 70	.04	98 4	1.39.	. 102 12	2 1	48	. 6 7 - 9	963 (015	3 2.21	.039	. 16	. B	03	~5	<.1 <	. 02	6.9		
		R4	11 61	1 01	61.6	72	3 0 11	0 961	7 31	.7	.3	.2	1.2.1	Z9 Q	. 07	1.05	.03	44 (3.19 .	.067 9	91	5.8	.85 (88.7 .(013	7 1.34	080	11	13	02	~ 5	.1	. Q2	37		
	77.01.0000703	73	1 55	1 44	, 49 1	9	3 5 12	2 698	1 72	.6	.7	- 2	.6 1	30.9	.04	41	<.02	34 .	2.44 .	.071 4	4.2	93	20 13	23 1 .4	091	2 1.64	.098	07	25.	¢ 07	~5	.4	. QŹ	4,2		
	5 7 JK 10007 100	67	1 19	4 85	5 94 1	10	5.9.19	3 1094	3.41	.9	.3	+ Z	1.0 1	80.4	. 07	1 46	07	87	14.	.072 7	7.7	64	2.11	64 Z .H	019	4 7 58	095	07	104	02	*5	.3	.06	74		
	P3 IT 000000	20 9 98	659.34	862 04	182.2	254	28 7 25	2 1114	4.73	8.9	. 2	+.2	101	90.7	3.81	. 46	.02	115 3	5.30	072 7	7.7	49.7	2.35 49	59 0 .1	015	3 3 13	069	0B	9	02	41	1.2	.03	89		
	359×0×9444 00	2.30																																		
	STREAM OF 2	11.78	179 87	10 64	6 163 5	244	35 9 13	0 830	3.14	61.3 (0 6 7	05.1	3.4	29.9	11.38	30,10	10 92	83	. 55 .	.082.16	5.4 1	67.0	58 1.	19-1	116	2 1.71	039	16	25	1.94	251	2 G I	91	6 0		

Page	5	(a)
------	---	-----

ATHE AHALYTICAL

Data 4 FA

ACHE ANALYTICAL																	:	· • · •	• • •	· •'			1.1	•		-							
		11.5	r.	сњ	 2n	Aa) И Н	fe.	As	U	Αu	th S	r Ço	Sp.	Bi	۲	11	r.	14	11	мт	D.	fi P	÷1	¥11		0				_	
	(001117)		008	7776	nom.	peb (007 00	n µ(m	2	Etan.	(1)14	Sbp	pon po	n por	Li Ma	PO ^M	PP ^m		,	PPM	רייו	*		· 11**	, 	· ·	·		199 11	. 10	- 1144	, 	
			- "-						· —											-										, .		د	
	THE 16 (10) 000 7 6 7	1.56	67 72	16 52	103 1	63	35 9 26 1	6 1173 5	5 30	25.1	5	1	8 155	9 n	20	19	123	1 - 5	641	9 L	GT 0	2 15	51 2 0	י וי	9 - P - P	··· i · ·				л н а 1		4	
	DO DE 00003350	A 00	21 13	5 15	103.3		32 9 15	1 797 3	1.86	J1	4	1	4 761	5 9'	1 87	01	49	8 17	п.,	5.1	11 1	1 12	30 5 1	107 2	Lab. u	1.1		. pr.	A 4	· ·		,	
		10.16	170 64	C 77	211 B	250	46 7 13	, 032 4	1 17	30.1	8	2	8 405	6 5 2	1 76	06	119	r 13	101	57	tn 2	1 81	75 I Y	י וויי	, 04, C	VI I	· I ·	, ,,	- Z - 19 -	ч I. 	2 H 4	-	
	93 JF16100 J 7 1	17.30	183.00	3 42	79.0	101	13 1 20	6 1015 4	1 69	16.4	6	17	1.1.114.	4 1	1 23	· 02	150	• 23	151	8.6	11.6	1 91	28 I I	י ארח	י יו י	197	17	15				,	
			208.32	4 77	e 1	191	- 15 2 15	8 1019 3	1 82	29 Z	5	5	15.02	5).	1 13	< D.7	136	· ··	1	10 <u>3</u>	46 J	ייו	11 5	6°0	- 11 -	P	- ;	, n.,	5 1	1 9		1	
	20 Briteman 1	201	215-02	• ·				• • • • •																								•	
	1.0 is up and 114		c2 22	97	<u>к</u> . 1	73	671 9 55	1 211	1 16	77	- 1	8	2 727	1 0	5 61	~ 12	। भ	٦-٢	n 15	2.1.1	100.3	0.0	ں اثنا	niv -	7 11 1	1 .	17	. ú.		1 11			
	er in herden i st		56 26	1 17	16.5	21	665 7 55	2 1074 -	1 61	16	1 1	11	.1.414	4 0	3 1.86	- 07	1 "	v 11	017	7.6	11.6 %	2.51	124 0	903 A.	- 11 - i	ו זייי	1	יחי					
	10 WORDS 11	11	21 53	6.08	52.6	97	81 2 12	8 728.	3 57	35 8	1.8	< 7	8 272	Q 7	5 19 22	21	14	F 33	012	53	6 0	3.97	60 J	ւմ յ	יוי	n	EL 5	, ga	11 *	1 /			
	09)F(#2000775	24 53	67 17	1 4 1	85.8	60	1077 1 75	4 1055	5 92	11.3	8	8	3 429	8 1	n 8,45	50 - 1	113	6 53	n's s	0.5	195 F	۱ ٬ ۱	13-3	poj s	10	011	P4 .	. <u>(</u> ,	-9	- ^ ^		:	
	as))(#000775	16 (1)	97 12	0.09	101.9	240	64 5 15	5 Z38 .	3 57	36 0	23	3	1 3 206	0 1.2	0 31 27) 13	9 0	5 19	057	28	56	56.4	70-0	001 1	, nr	n 'fi	is di	7 D7	118 9	<u>ب</u>		•	
	hafu fikonn y a	(2.91	20 31	7 -70	144.7	1.0		•																								_	
				E3 01	115.7	2360	29 8 12	6 2580	3 62	59 1	1.6	.5	.8 91	2 3.3	5 53 44	L 0/	10	1 67	15	35	55	24	13-1	001 5	32 -	n ŋo	21 T	P 34	73 3	3 0	io i	5	
	da(1606000)74	V 997	91 39 cn. ec	67 30 687 61	7932 4	8268	25 6 12	9 5367	3 30	1996.3	13	5.6	.6 78	7 36 7	6 101.03) IZ	r 10	5 31	049	16	1 հ	1 63	51.4	ant 5	21 -	eu	17 5	0 .27	\$10 2	3 7	71 .# 	6	
	99.)V (IRU(40780	5 79	na oa 65 77	507.01	2724 9	2890	24 7 17	D 5747	3.15	1773.1	1.3	4,7	5 76	1 35.3	3 98 61	1 17	/ 10	511	055	13	58	1.60	\$2.3	001 1	71	010	11 1	7 76	ang 2.	.* Z	21 1	4	
	RF 99.1K1R000780	3 62	05 21	301 07 CC7 DD	2121 /	1892	73 7 12	2 5740	3 12	1921 4	13	62	.5 75	7 35 8	2 100.06	5 16	j 9	5 10	065	14	17	1.57	51 0	(0) ž	22	nļņ	11 7	\$.25	395 2	3 1	، دا	ć,	
	RRE 99JICTROAD/80	3 00	10.20	307.90	651.7	7603	23 R 14	a 25.18	4.02	60.4	1.9	21	.4 92	8 8.5	0 33 58	9 .09) 3	5 57	050	19	< 5	1 62	¤3 0	001 2	29	hua -	11 2	1 15	73 1	0 1	1. ·	1	
	490KD#000481	2.15	32 13	115 70	001.0	1.1.22																											
				2010	3611 B	1704	11.6.5	5 2879	1.45	56.3	.4	1.7	.2 41	2 43.9	9 9.9	5 11	1 2	2 81	02B	5	10.1	1 14	51.04	bul i	07	nns	חן גמ	2 OD	376	6 0	<u>14</u>	2	
	430KD4000782		8 19	200 90	.1511 7	200	26 2 10	6 6851	A 64	205 A	5.2	12.9	.4 78	0 69.4	5 30 4	1.16	57	5 91	[FS 2	17	34	2 21	977.	007 2	73	C11	13 2	1 16	100 I	1 1	11 1	5	
	60.)r(38000.283	7.62	51 45	821.53	0000	39.1	77 8 6	9 2521	2 36	68 6	4.4	3	.9 64	0 71 9	9 41 O	7.11	1 22	3.81	004	11	10 <u>9</u>	1 22	1R Q	601 9	15	007	Ú2 1	3 31	252 5	2 1	15	1	
	92.J/DR000781	35 21	11.31	5K9.3J	1736 6	4241	17 6 6	2 2115	2 52	74 8	2.3	1.1	4 35	8 28.6	8 40 3	/ 02	a 7	2 12	0.51	8	10.7	<u>80</u>	112-2	001 3	15	003 C	0 7 5	1 11	213 Z	1 7	ηa	I	
	49.JF0R000785	7.17	33 42	/51.03	2235.5	4041		* 1163	59	8.4	5	4	1 264	2 36	2 5 0	6 02	2 </th <th>25 8</th> <th>021</th> <th>Z 1</th> <th>78</th> <th>5)</th> <th>59 Zr</th> <th>0<u>7)</u> - 1</th> <th>63</th> <th>CÓ 1</th> <th>02 Z</th> <th>2 01</th> <th>60</th> <th>1 1</th> <th>96</th> <th>I .</th> <th></th>	25 8	021	Z 1	78	5)	59 Zr	0 <u>7)</u> - 1	63	CÓ 1	02 Z	2 01	60	1 1	96	I .	
	99JKDR000785	1 26	3.52	81.64	.1.30 a	076	<u> </u>	. 1791		• •	-																						
					1764 1	47.4.4	72 C C	A 1460	1.76	62.3	63	• 2	1 1 100	1 13 1	1 52 4	9 U) 45	5.12	, Joid	20	111	60	100 27	001 2	, je	009	η η .	n 74	\$10. 0	л I	11 .	4	
	03.)r P0000787	61 10	45 AU)	2/8.64	1203 1	4000	10 5 5	6 6120	2.43	417	19	17	3 75	6 31 9	o 71.6	я 1	1 5	1.77	t nit	12	51	1 45	19.2-	A01 2	· • •	ព្រហារៀ	64. K	7 16	70 I I	3 (n -	1	
	99.00000288	617	17 00	11851	2207 0	4107	17 2 4	0 7127	2 00	49 9	19	,	4 63	0 35 (2 42 2	2 6	5 23		. con	8	21-0	tú.	n5. J	691 ·	1 17	UD4	<u>рс и</u>	دا ،	215 2	• •	ο.	1	
	69/000311.cp	15 55	30 08	555 61	19175	12110	17 0 1	4 17014	2 10	6 A A	1.8	12	4 52	7 151 9	45 1	e pi	6 70	· · ·	a pas	10	19 6	1 27	103 7	P01 -	· ^1	001	01.5	9 <u>7</u> 0	1031 5	n (6 9	•	
	so)+ Deutod vaŭ	00	16 93	1127 65	077 6	49425	37 0 5	1 1612	3.71	259 6	1.6	< 7	.e ei	5 11 3	13 152.2	2 Z	o 71	יי, נ- ה	115	5.3	7 0	1.27	61 8	633 15	1 12	r n=	75 P	n 55	123 8	8	7 Ģ	a	
	án DKDeúrni va S		118, 33	323 35	011 0	1,123	J		9.1																								
				438 34	1416-1	31177	આ ૬ 18	6 19577	a 88	10571-5	1	11.3	5 71	5 48 .	155 8	1 0	o 12	5.52) (PP3	11	5.2	1 56	67.1	071 5	· 7*	630	21 7	z 33	164 §	1	17	•	
	650006000735	3.05	111 17	401.00	1 1 1 1 1	10697	197214	0 10510	4 85	10177 2	1	12.6	6 72	[48 I	1 154.8	0 0	6 12	5.2	· ŋ*>	18	7 F	1.55	66 g	በጉተ	. Г.	010	23 . 2	1 14	Sea 1	n 1	ηų	•	
	et såsthednig i A	7 91	122 (4	123 12	1111	10557		2 10110	4.81	10385-0	1	12 "	4 22	5 \$7 3	95 156 2	1 0	6 12	, 5, 71	1 05%	38	30	1.57	kr v	- 100	· 1.	6.6.3	н с	1 33	2:0 1	1	19	•	
	ESE SAIN(ROMAAA	7 *5	111 0	463.12	3009.7	11502	81 5 17	6 481/	4.58	3763 3	15	.6	.8 76	7 2: 1	91 165 Z	S ()	5 11	1.23	1 079	11	10.2	1 26	71.3	001 I	רי, י	110	14 1	2 91	212 15	۴	11	4	
	an Introduce ?	11 15	128 05	136.37	1761 2	14952	27 1 16	6 78.17	4 78	5727 4	14	25 O	6 82	9 13	1 151 2	6 0	1 1+	5.1.7	i luč	19	יו	1.5	37, 3	001 8		690	ר וי	- 32	- ,	• •	<i>г</i> н.	•	
	as hinanit az	5 20	- Eñal va	- J. I.	3.04	1	c .																										
			111 01	736 BP	1100 1	25.89	26 1 12	5 5178	3 63	2390 1	7	10 1	.7 80	3 15	5 1.32 4	1 0	7 19	5.3	1.15	3.5	7 5	1 63	90 R	POZ 1	יי ן,	0 þa	י חי,	· 1.	144 3	n i	67	•	
	an'ikima)deal	1 51	17 195	2.50 15	1192 1	1964	2015	3 121	1.75	87.3	3.6	6	5 58	6 13	55 35 7	1 1	0 I	2.26	6 221	¢] ا	1.1.9	50 64	ו יון	(1)	17	004	n n 9	1 31	105 1	7	tu		
	ליייג מימ אן יי יפ	19.25	35 20 - 16 - 21	14.1 10	1191 ¹	1015	190 A	1 1711	2 61	135.8	1.5	• 2	.3 51	3 7	71 46 3	15 D	· 16	3.6	2 019	1 0	75	מין -	01.0	E-01	אַן ו	614	60 I		191 7	1 /	<i>с</i> .,	1	
	sé (klicupé) (a)	11 11	37 21	102 10	791 4	2160		2 1200	2 11	239.9	2.2	6	4 59		61 517	3 0	e 11	3 7 61	יפו מ	13	12.0	25	- ma - 4	P41	20	(nho	nn f	2 21	15: 1	. 7	ng .	1	
	22 JK(10) 100	3 95	, 34.90 	154.15	דיועי קומכו	1700	56 5 11	n 2028	1 39	513-1	1.6	5	7 56	IR 15	10 109 0	11 0	19 Ž	1.0.6	า (17	14	17.0	1 14	75.4	eo1	5 .23	nin	11 5	1 .19	[19]]1	13	н	5	
	9.2 16 06 000 / 9.3	1. 51	01.54	177.91	1551.3																												
		11 70		10 94	. 161 3	247	37.1.11	6 843	3 28	61.2	21-3	200 /	3.5 3	u n	7.1 9 0	3 10 9	1 7	1 5	a .e36	5175	341 \$	60	1114	116	7 J 73	611	16 7	6 7 07	213 - 7	<u>' 6 I</u>	89 6	2	
	51AN0480 052 -	- U, CB	0/	QV 70			*				_																						

Sample type COPE. Samples beginning "RF" are Peruns and "RRE" are Reject Reruns.

Data Y FA

. Cu 15g Zn Ag 10a Cu Ma Le As U Au Da Se Ca Sb Cu V ≤a L La ta Ba Ba La ⊔ At Ba s is tj Da Se te Ga -----------5899110 14:41 11:11 DOW DOD DOW DOW DOW DO 001 DOM: 1 35 109 03 752 93 485 2 2637 47 7 17 5 3513 3 62 1172 5 7 2.9 1 2 117 6 5.29 177 76 .21 25 5 56 111 1 9 11 5 7 79 105 7 031 9 7 10 619 15 7 6 16 65 1 1 1 6 - is bit le ri le 66.4.7.0). A იი კულიგივზე 14 33 5 79 652 1 9 77 3 2 32 98 9 191 3 02 46 18 215 36 632 8 2224 66 3 16 1 2493 2.94 614 8 4 1 1 7 105 4 6 40 146.68 32 37 105 23 141 10 563 2 1328 81 6 19 4 1290 3 91 142 8 2 0 .5 7 28 5 6 06 131 20 .09 58 4 26 031 1 1 6 8 1 53 50 5 001 7 21 000 15 3 1 36 72 23 3 11 6 v> is 00000001 33 21 104 60 81 22 294 9 1376 66 3 13 5 874 3 24 14L 3 1 5 4 7 1 3 67 4 3 33 89 43 17 25 3 63 17 2 7 18 0 1 15 57 3 60 1 5 37 4 3 7 59 16 17 5 55 U DE000902 . 10 . 12 52 5 59 91 5 74 613 9 59 1 1417 3 67 105 1 2 1 1 259 9 44 22 50 03 19 11 14 no 14 1 4 61 44 1 no 35 100000091 201 pr (10000201 75 61.67 12 66 70 7 125 385 9 11 4 1700 3 93 292 7 5 1 2 5 209.9 16 37 01 01 36 5.77 135 a 1 9 9 9 5 /4 10 2 01 1 1 1 2 71 10 1 05 1 01 124 88 51.07 312 2 755 76.7 27 3 1942 4 43 198 7 3 3 .8 142.9 3 60 46 30 05 58 5 9 119 6 1 2 1 5 13 7 00 0 3 35 0 3 10 9 11 1 0 0 0 0 30 N D0000805 2 75 105 39 6 76 89 8 214 31 4 23 2 1080 4 35 41 3 3 .5 8 221 0 .43 17 72 .03 18 5 71 12 7 5 1 1 5 2 6 10 2 00 2 10 17 70 2 17 11 5 06 7 22 W DE000896 1 63 154 93 12 25 147 2 401 30 8 19 5 1295 3 64 95.5 6 .3 8 130 4 1.05 92.92 .05 2* 4 67 132 1 5 3 1 96 76 7 .002 10 31 P15 2* 1 5 10 2 5 00 9 920006000007 8 06 167 41 17 22 111 2 486 32.1 20 3 1007 1.90 88 5 .6 K.2 9 90 1 97 79.27 20 31 1 63 117 4 0 6 5 1 25 91 7 017 10 20 019 73 1 2 25 77 3 2 1 3 3 22,18(¥:09090908 42.Jf ()R0005011 3 69 100 84 15.86 168 0 .392 23 9 16 8 1756 3.20 177 0 .5 8 1.1 110 1 1 59 50 82 05 23 5 05 137 4.2 7 1 1 89 145 8 001 11 32 079 17 16 17 41 1 07 8 3 77 99.45 15 47 165 7 375 23.5 16 3 1239 3.15 126 5 .5 .7 1 0 107.6 1.55 47.91 .03 77 # 95 136 4 7 4 8 1 85 154 4 005 11 45 015 31 1 5 16 69 1 1 62 8 93 IV DR000910 1.72 99 00 15.48 165 4 388 23 6 16.4 1241 3 16 127.3 5 .8 1 1 108.3 1.59 51.34 .03 23 4 93.136 4 5 6 6 1.87 161 0 005 12 43 921 30 1 7 17 66 1 2 01 8 RL 92,000800810 2 08 176.50 11.33 93.0 613 32.6 19 5 838 3.52 93 8 .5 <.2 1 0 107.3 93 98.26 .07 24 4 22 175 4.0 2 3 1 78 80 8 00 2 17 35 .77 1 1 77 1 2 4 0 6 7 RFE 993*DR000810 .80 7 48 7.05 100 2 61 1 0 1.4 265 .49 10 1 * 1 1.5 .1 38 1 1.11 3 67 .02 <2 °9 .016 1 3 4.8 49 225 6<.094 8 2* n 1* 2* 0 2 o n* 2* n2* * 99,0X09000831 93.0K09000812 118 957 4.30 318 84 7.5 1.2 350 .63 13.0 <.1 7.5 .1 33.1 .27 4.67 02 <2 1.35 014 1.0 1.3 .62 190 64 001 5 .26 011 20 2.4 07 9 2 02 6 1.91 4.88 J.19 7.8 49 L1 1.1 29L .37 5.6 < 1 L5 < 1.60 7 .11 J.80 < 07 < 2 7.7 012 8 5.5 .15.610 1< 001 7 72 0.10 15 3.5 09 🐮 L 07 5 99JKDR020913 181 421 125 4.4 65 L8 .9 332 .33 1.9 < 1 1.1 <.1 52.1 .13 147 <.02 <2 2.51.008 L0 .3.3 08 183.3×001 5 21 027 15 2.7 05 5 1 02 45 21.000600814 1 14 5.43 6 03 21.5 307 .7 1 2 279 46 7 8 «.1 «.2 « 1 68 1 32 2.30 .30 «2 2 52 011 1 0 2 0 to \$53.3.001 5 72 022 15 3 5 09 13 2 22 99.0¢0R900815 L 3 6 29 4 55 28 6 75 2 5 1 4 300 50 10.3 < 1 1 5 < L 63 3 .30 2 62 05 2 2 7 013 1 1 2 L 11 113 4 00 50 12 3 4 0 1 2 1 2 1 2 1 1 113 4 0 1 7 93 If ORODOA 16 93.00000817 .71 16 64 6 81 107 7 126 3 3 2 6 307 .76 16 6 • 1 1 4 1 49 0 1 00 6 37 06 2 1 85 070 1 1 5 0 70 96 7-001 7 21 079 18 7 9 09 75 ± 01 6 1.27 5.75 4.00 22.3 78 2.3 1.3 258 .60 40.0 L + 2 1.45 1. 27 1.8L 03 +2 1.66 011 10 3 1.31 3 0.001 4. 2L 0.7 19.3 L 90,1802000218 49 2.51 7.84 50 1 28 .3 9 318 55 12.4 1 < 2 1 54.6 .34 1 03 02 <2 2 2 51 FIN 35 2 00 16 35 2 00 1 5 1 n,51 1 2 3 0 16 35 2 00 1 5 1 n,51 1 2 0 5 6 91 1/10000813 1 42 18 60 12 21 57 5 56 1.8 2 6 477 1 08 129.8 1 .7 1 83 6 .35 10 57 16 2 1 9 02 1 1 < 5 31 32 0× 001 7 2 0.27 10 1 1 1 3 92 5 21 yr P6900520 20 04 262 07 42.25 175 6 569 42 4 18 4 890 4 35 142.3 9 < 2 1 9 121 8 7 85 58 25 73 62 1 14 111 3 2 31 5 1 30 28 1 001 31 37 025 18 15 23 136 18 7 14 22.0 (1R500871 02 0 0E000822 18 05 163 68 30 28 466 5 558 41 5 17 0 857 4 24 141 0 9 × 2 1 6 120 9 7,73 50 10 21 50 4 05 131 3 2 05 28 29 29 29 29 10 11 10 9 11 12 8 21 7 27.0*DE000423 22 ji penne21 02 IN DR000975 25 46.42 1 19 32 9 27 742 9 63.7 856 4.15 2 3 x.1 2 9 2 255 7 n5 15 + 92 98 4 01 927 1 591 19 93 30 4 907 1 1 1 1 1 1 2 9 1 0 - 2 95 3 1 97 1 1 19 130 26 | 7] 813 95 69 3 35 0 1232 5 70 2 2 2 .4 6 149 3 05 11 03 216 1 31 122 9 3 [:n 2 1 7 n 7 pn 1 7 ki ns n 2 3 ps - k op ir pengag26 33 21 81 2 92 76 0 71 22 9 30 8 3155 4 84 7 A .1 8 8 6 85 3 0m 1 63 03 310 2 85 075 6 1 10 9 2 39 35 5 012 3 92 155 13 5 0% -5 2 < 07 3 5 57 JK (#009827 .13 50 95 3 82 60.1 895 19 0 7/ R 1853 4 26 133 1 × 1 42 1 .3 138 7 .22 10 41 .02 54 4 85 055 L 8 7 6 2 37 231 5 097 6 10 019 75 3 15 19 2 57 L 0 SO INTEGRATOR OF 45] 45 2.79 60 7 10] 7 19 8 10.15 4.30 2 7 2 4 8 107 8 D5 L 39 < D7 86 3 05 D75 7 2 4 8] 47 39 5 022 3 13 041 D9 6 D3 -5 .3 4 D2 1 8 22 IX 08000923 93.Jr 06000830 14 08 131.81 31 14 166.8 252 37 4 17.6 840 3 71 68 0 21 Z 198.5 3.5 29 6 11.37 9 58 10.99 83 56 092 16 3 176 1 63 148 0 117 2 1 81 017 16 7 2 1 82 242 2.1 1 97 6 L

Sample type: CORE. Samples beginning 'PE are Reruns and 'PRE' are Reject Reruns.

STAMDARD DSZ

_
· · · ·
. .
- A M
ACHE ANALYTTLAL

ACHE ANALYTICAL		.																			<u></u>				· . · . · · · · · · · · · · · · · · · ·	 17	= A 1		<u>к</u> 1.)	TI	Ha Ca	Te l	 Ga
	No	Cu	Pb	Zn	Ag	NI	Со	Mn	fe	٨s	U	Aυ	1h	Sr	Cd	Sb	Bi	V	Ça	P	La	Ur.	ng	15-3 0.000	ו י	000	741 1	na Y	7. DOM	00111	ну ре пар пал	מ המכוו	om
SMILLE	ррл	ppm	ррт	ppm	ppb	ррт	ppni	ррт	X	ppm	ррт	ppb	ppm	ppm	ррл	ррт	ppm p	ppm -		1	ppm -	ppm	<i>.</i> .	քվոս					in Press		NING INFO		
													~	02.0	07	1 46	12	บกา	36	п / Я	7 B	34	1 84	295.9	.010	4	2.11	.077	. 14 . 3	.05	<5 . I	<.02.6	. 7
99JKDR000831	. 19	6.58	2.55	89.4	10	1.3	21.6	997	3.96	2.9	. 3	<.2 2	.0. 7.1	93.0	02	1.45	09	110 0	27	030	21.0	20 1	35	62.7	.057	1	. 39	.040	.27 4.7	. 11	<5 .1	<.02 Z	.7
99JKDR000832	1.70	5.76	2.47	41.6	24	5.1	3.0	201	. 99		2.7		3./ 77	21.J C 1 0	.0.0	.12	20.	50	77	128	21 1	18.9	.69	83.4	.082	1	.88	.098	.15 .2	.03	<s 1<="" <="" td=""><td>. <.02-3</td><td>.4</td></s>	. <.02-3	.4
99JKDR000833	. 50	38.51	4.60	54.1	27	10.0	7.5	260	1.78	< 1	.9	.0 2	J.2	27.0	.03	.03	02	70.8	13	103	9.7	4 6	67	149.8	061	<1	.53	.098	.11 .5	.03	<5 <.	02 Z	. 0
99.JKDR000834	. 45	22,65	2.06	20.4	31	2.4	4.1	1217	1.60	<.1	 		1.1	61.0	02	.00 NG	08	46	25	125	21.8	15.6	.54	133.6	.092	- }	.63	. 100	17 .3	.06	-5 < 1	. <.02.2	.6
99JKDR000835	. 64	24.32	4.72	60.3	42	16.8	14.3	303	1.54	< J	2.3	1.0	J.U	01.0	00	. 11 2	.00	40			.												
				/		10.0		424	1 07	~ 1	15	< 2	2 9	76 1	05	06	25	53	.92	.148	22.2	31.4	75	72.4	108	<1	.64	115	. 15 3	.04	<5 <.1	08 2	:.9
99JKDR000836	.56	29.41	3.84	59.6	44	10.0	8.0	424	1.0/	1 4	1.3	2	27	212 0	06	16	18	31	.35	053	15-8	13.2	. 35	1224.0	.086	1	.90	.312	.49 Z	. 17	8.	L 03-3	i. 2
99JKDR000837	.45	14.16	7.76	584	55	1.1	4.9	100	2 02	2.1	2	4	1.2	130.9	04	< 02	.03	41 2	76	109	14.9	<.5	. 57	163 5	. 004	3	1.81	.214	.28 <.2	<.02	<5 <.	1 <.02 3	:.6
99JKDR000838	.41	10.10	1.94	42.5	10	1.3	0.0	560	2.20	< 1	1	< 2	1.2	151.4	.05	.03	.33	24 2	.43	.103	17.5	3.8	87	146.5	. 002	4	2.37	. 188	. 27 < 2	.03	7	10 4	5
99JKDR000839	.14	7.08	2.24	01.0	14	1.1	7 5	602	2 71	< 1	5	< 2	12	194 5	.09	.02	.05	26 3	25	. 101	16.7	< 5	. 66	141 2	. 002	' 3	1.96	. 186	.27 .2	.03	6 <.	L.033).7
99JKDR000840	. 34	H1.50	3.91	40.1	31	1.0	1.0	094	2.11	··· •			*																				
	~ 1	10.00	5 10	46 E	77	10	75	679	2 67	< 1	5	< 2	12	185.4	.09	<.02	.03	26-3	3.20	099	16.1	3.1	. 65	138.2	001	3	1.94	. 181	. 262	.02	-5 -	.02.2	1.6
RE 99JKDR000840		10.90	3.78	42.0	34	9.V 0	15	691	2.66	< 1	5	3	12	191.6	.08	<.02	.02	Z6 3	1.22	. 098	16.8	3.6	. 67	144.0	.002	: 3	2 O L	. 189	. 27 . 2	. 02	6 <.	1 .0Z 3). <u>7</u>
RRE 99JKDRUUU840	. 52	11.20	3.90	17.0	24	. 7	9.9 9.9	953	3 05	< 1	ž	< 7	1.6	171.7	.06	<.02	.02	31 3	1. A	. 087	15.8	<.5	.96	113.1	. 001	2	2.15	.170	.19 .2	< 02	<5 <.	1 .02 4	.5
99JKOROU0841	. 11	8.31	2.01	677		1 0	11 1	300	3 43	< 1	2	< 2	17	140.5	.06	<.02	. 02	38-2	2.97	. 093	16.6	<.5	1.04	116.3	. 002	3	2.43	.171	. 18 Z	< .02	<5 <.	1 <.02 5). 0
99JKDR000842	. 21	9.52	2.00	57.7 EQ 1		1.0	12.9	1278	7 51	< 1	2	4.1	1.2	260.7	.07	.03	.03	60 5	5.24	. 087	12.6	3.8	1.01	73.1	.001	. 2	2.44	149	.14 <.2	.03	-5	2 .02 5).Z
99JKDR000843	. 17	14.21	3.50	50.4	54	1.,	12.0	1670	0.01				•																				
55 W05600044	1.42	77 34	6 66	70.7	63	14 5	13.9	813	3 77	16.0	.4	1.4	1.6	159.3	.14	.27	. 09	44 3	3.30	. 098	14.2	7.1	. 49	96.7	.001	. 4	1.80	. 227	16 < .2	. 15	38 .	4 .06 4	1.5
99JKUR000844	1.43	10 12	5.00	F9.2	61	7 3	55	1525	2 48	19.3	5	.6	1.1	159.3	. 25	. 68	. 09	22-4	1.74	. 048	10.4	8.0	. 63	67.6	.001	. 2	1.47	.155	.12 .2	14	22	/ .03.	j,4
99JKUR000845	3.01	10.47	2.04	10.7	26	5.0	27	165	1.06	4	2.3	< 2	3.9	46.0	.03	. 11	.08	11	. 29	. 030	20.4	16.3	. 33	42.5	.040) 9	. 48	.048	.16 4.7	04	<5 <.	1 <.02	1.0
AATYEKKKOOR4P	1.95	121 14	20 86	166.9	260	36.8	12.4	832	3.17	64.8	20.2	198-3	3.3	29.8	11.52	9.11	10.79	82	. 54	. 082	16.3	177.3	. 62	148-6	118	3 2	1.85	.042	.16 7.1	1.80	246 Z.	3 1.94 1	1.9

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_1 FA

the ADALYTICAL

Page 7 (a)

SAMPLE#	Cs	Ge	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S %	Zr ppm	Y ppm	 Се ррт	In ppm	Re ppb	Li ppm	
99JKDR000646 99JKDR000647 99JKDR000648 99JKDR000649 99JKDR000649 99JKDR000650	.20 .16 .25 .18 .37	.1 <.1 <.1 <.1 <.1	.07 .03 .03 .02 .06	5.2 2.1 4.2 2.7 3.5	8.7 3.1 3.5 2.3 3.7	.8 .4 .4 .3 .2	.11 .05 .05 .74 .86	5.1 1.2 6.3 2.1 2.0	10.97 8.01 9.34 5.17 6.64	21.5 18.6 21.2 9.2 11.5	.03 .02 .03 .03 .03	<1 <1 <1 <1 <1	12.9 7.2 10.4 7.2 12.0	
99JKDR000651 99JKDR000652 99JKDR000653 99JKDR000654 99JKDR000655	.68 .35 .43 .40 .36	, 1 , 1 < , 1 < , 1	.05 <.02 .02 <.02 <.02	3.7 3.7 3.9 3.1 2.9	2.6 3.5 1.6 5.3 3.3	.6 .7 .9 .3 <.1	2.12 2.89 2.76 1.52 1.76	14.6 17.2 17.5 2.7 3.2	11.7612.1412.206.695.75	7.0 7.4 6.5 6.4 5.9	.03 .05 .04 .04 .05	35 56 71 9 10	2.8 5.8 1.9 22.6 19.2	
99JKDR000656 .28 <.1														
99JKDR000657 .51 <.1														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
RE 99JKDR000668 RRE 99JKDR000668 99JKDR000669 99JKDR000670 99JKDR000671	.34 .33 2.77 3.33 3.13	<.1 <.1 <.1 .2 <.1	.40 .36 .24 .13 .18	$10.8 \\ 11.1 \\ 8.6 \\ 2.6 \\ 9.0$.7 .7 5.4 5.7 5.4	.7 .7 1.1 .9 1.0	<.01 <.01 <.01 <.01 <.01 <.01	19.0 18.2 20.5 19.5 16.8	$5.89 \\ 5.92 \\ 13.21 \\ 11.76 \\ 11.89 $	42.6 41.9 30.0 21.0 27.6	<.02 <.02 .04 .04 .03	<1 <1 <1 <1	16.8 18.1 13.4 59.7 14.1	
RRE 99JKDR0000668 .33 <.1														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														

21

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2318 FILE # 9903434

Data _ FA

ACHE ANALYLICAL				Dh		Sn	S	Zr	Y	Ce	Τn	Re	Li	
SAMPLE#	Cs mqg	Ge ppm	аи ppm	ppm	ppm	_ <u>mq</u> q	8	ppm	ppm	_ ppm	ppm	ppp	ppm	
99JKDR000676 99JKDR000677 99JKDR000678 99JKDR000679 99JKDR000679	3.82 2.46 2.29 .29 .94	<.1 <.1 .2 <.1	.04 .07 .08 .50 .06	10.6 4.4 2.3 8.2 5.3	4.6 5.6 6.1 1.3 4.3	1.1 .8 1.0 .9 .6	<.01 .02 .01 <.01 1.75	$5.9 \\ 2.9 \\ 11.5 \\ 18.2 \\ 7.1$	7.1110.099.025.5612.80	$ \begin{array}{r} 18.6 \\ 26.7 \\ 19.7 \\ 45.5 \\ 8.2 \\ \end{array} $.03 .04 .03 <.02 .04	2 1 2 <1 16	$21.8 \\ 13.9 \\ 10.1 \\ 16.6 \\ 11.3$	
99JKDR000681 99JKDR000682 99JKDR000683 99JKDR000683 99JKDR000684 99JKDR000685	$ \begin{array}{c} 1.03\\ 1.17\\ .94\\ 1.34\\ 1.34\\ 1.34 \end{array} $.1 .1 <.1 .1 .1	.07 .08 .04 .03 .03	11.0 9.2 5.8 6.7 7.6	4.4 5.7 3.5 5.4 4.7	.9 .65 .94 	$1.70 \\ 1.80 \\ 1.77 \\ 2.44 \\ 2.09$	15.4 8.5 14.8 11.4 12.7	10.00 12.81 13.76 14.18 12.53	8.4 7.6 8.6 7.0 6.9	.05 .05 .04 .05 .04	40 25 32 14 18	12.514.812.612.911.0	
RE 99JKDR000685 RRE 99JKDR000685 99JKDR000686 99JKDR000687 99JKDR000688	1.33 1.36 .77 .73 1.28	.1 <.1 <.1 <.1	.03 .02 .06 .07 .22	7.5 7.5 7.1 5.8 7.1	$4.7 \\ 4.8 \\ 3.1 \\ 5.1 \\ 1.3 \\$.54.55 .55 .57	2.12 2.28 1.40 1.37 .35	12.5 12.8 13.8 7.9 6.5	13.9912.6313.0812.3311.94	7.0 7.0 6.8 7.5 31.3	.04 .04 .04 .05 .02	19 26 20 7 2	$ \begin{array}{r} 11.7 \\ 10.8 \\ 9.2 \\ 12.3 \\ 9.0 \\ \end{array} $	
99JKDR000689 99JKDR000690 99JKDR000691 99JKDR000692 99JKDR000693	1.23 1.02 .53 .76 1.42	<.1 .1 .1 .1	.10 .06 .11 .07 .04	4.8 6.3 3.6 5.9 8.7	3.4 4.9 8.2 4.9 6.4	1.0 .6 .4 .3	$1.61 \\ 1.52 \\ .58 \\ 1.51 \\ 2.36$	9.2 8.1 1.4 8.0 7.5	$14.36 \\ 13.09 \\ 6.50 \\ 11.76 \\ 11.06$	$13.3 \\ 11.5 \\ 11.1 \\ 10.6 \\ 9.0$.06 .06 .05 .06 .07	13 41 <1 16 12	9.911.120.810.511.7	
99JKDR000694 99JKDR000695 99JKDR000696 99JKDR000696 99JKDR000697 99JKDR000698	1.72 1.18 .85 .94 1.01	. 1 . 1 . 2 . 1 . 1	.05 .19 .14 .09 .05	3.9 4.9 6.1 11.0 10.6	$7.8 \\ 11.2 \\ 12.1 \\ 10.5 \\ 5.1$.54.54.5	3.03 .29 2.31 2.75 2.12	2.3 3.3 4.2 11.9 11.2	$17.84 \\ 10.60 \\ 14.46 \\ 8.88 \\ 6.33$	$ \begin{array}{r} 12.5 \\ 11.7 \\ 9.7 \\ 7.6 \\ 4.6 \\ \end{array} $.06 .05 .06 .07 .05	4 <1 5 14 4	21.5 26.9 20.9 14.3 10.9	
RE 99JKDR000698 RRE 99JKDR000698 99JKDR000699 99JKDR000700 99JKDR000701	.95 .97 .90 .73 .92	<.1 .1 .1 .1 .1	.07 .07 .08 .07 .07	10.3 11.0 9.1 9.2 10.6	5.0 5.0 7.5 8.5 6.2	.5 .4 .5 .5	2.09 1.93 2.50 2.12 2.23	9.7 11.7 13.5 9.7 13.8	$\begin{array}{r} 6.03 \\ 6.20 \\ 9.62 \\ 10.82 \\ 10.36 \end{array}$	4.8 4.7 6.9 8.8 7.1	.05 .05 .07 .07 .07	3 29 15 26	$ \begin{array}{c} 10.7 \\ 11.6 \\ 9.1 \\ 12.0 \\ 9.9 \end{array} $	
99JKDR000702 99JKDR000703 99JKDR000704 99JKDR000705 99JKDR000705 99JKDR000706	1.53 .69 .68 1.11 .79	.1 .1 .1 .1	.05 .11 .08 .09 .09	10.2 5.9 5.0 4.9 3.3	7.3 6.4 7.0 6.9 5.0	.6 .5 .65 .5	1.75 1.99 2.21 2.66 2.61	7.8 7.7 8.1 10.6 6.9	$\begin{array}{c} 8.86\\ 9.79\\ 9.48\\ 12.66\\ 9.81\end{array}$	6.2 7.2 6.6 10.8 8.0	.05 .08 .06 .06 .04	31 17 22	$\begin{array}{c} 14.0 \\ 12.5 \\ 10.7 \\ 13.3 \\ 12.7 \\ 13.3 \\ 12.7 \\ \end{array}$	
STANDARD DS2	2.75	<.1	2.04	15.6	3.0	25.4	.01	4.2	2 7,50) 32.1	. 5.31	7	2 14.1	
Sample type: COR	<u>E. Sa</u>	mples	beqi	nning	'RE'	are	Rerur	ns and	<u>'RRE</u>	are	Rejec	t Rei	<u>cuns.</u>	

Page 3 (b)

E APIALYTICAL

Data_FA

SAMPLE#	Cs mqq	Ge mqq	Nb ppm	Rb ppm	Sc ppm	Sn ppm	55 24	Zr ppm	Y ppm	Ce ppm	In ppm	Re Li ppb ppm	
99JKDR000707 99JKDR000708 99JKDR000709 99JKDR000710 99JKDR000711	.91 1.23 .84 .90 .80	.1 .1 .1 .1 .1	.10 .09 .09 .07 .07	2.8 6.7 4.6 3.5 4.4	4.3 5.5 5.7 6.5 7.0	.9 .7 .5 .6 .5	1.36 1.69 1.39 1.71 2.11	5.3 11.1 7.7 8.0 3.7	$10.68 \\ 13.12 \\ 7.00 \\ 8.62 \\ 7.46$	5.87.7 5.36.2 5.8	.04 .06 .05 .06 .05	$\begin{array}{c} 9 & 11.8 \\ 25 & 10.6 \\ 23 & 7.2 \\ 15 & 10.9 \\ 11 & 13.8 \end{array}$	
99JKDR000712 99JKDR000713 99JKDR000714 99JKDR000715 99JKDR000716	1.27 .57 .73 .45 1.02	. 1 . 1 . 1 . 1	.05 .15 .13 .10 .17	2.4 1.9 5.9 2.7 7.2	$7.7 \\ 10.9 \\ 7.9 \\ 5.8 \\ 10.1$		1.56 1.48 .54 .21 1.69	4.6 2.4 .9 1.0 3.6	$10.81 \\ 14.73 \\ 6.51 \\ 4.20 \\ 10.28$	7.1 9.1 10.6 9.2 7.8	.05 .06 .03 .03 .06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
99JKDR000717 99JKDR000718 RE 99JKDR000718 RRE 99JKDR000718 8000718 99JKDR000719	.89 .57 .54 .56 .51	.1 .2 .2 .2	.16 .26 .28 .28 .18	3.8 2.8 2.6 2.6 2.9	10.4 3.1 3.1 3.0 15.8	.7 .3 .5 .4 .3	1.57 .32 .32 .32 .32 .03	2.0 .7 .6 2.6 2.5	14.925.855.615.637.83	8.8 8.8 8.6 8.5 8.6	.06 .03 .04 .04 .05	$\begin{array}{cccc} 7 & 20.1 \\ <1 & 14.1 \\ 2 & 14.3 \\ 1 & 14.8 \\ 2 & 48.9 \end{array}$	
99JKDR000720 99JKDR000721 99JKDR000722 99JKDR000723 99JKDR000724	.56 .72 .98 .37 .66	.1 .1 <.1 .1	.38 .32 .18 .87 .07	2.3 2.9 5.2 11.5 3.7	4.7 5.2 7.8 .9 10.3	.8 .6 .8 .2	.04 .04 .76 .02 .34	.9 2.7 2.2 20.8 1.6	10.029.667.707.414.82	10.6 9.5 6.7 44.2 3.4	.04 .04 .05 <.02 .02	2 16.0 4 18.1 5 13.2 3 16.9 <1 10.8	
99JKDR000725 99JKDR000726 99JKDR000727 99JKDR000728 99JKDR000728 99JKDR000729	.80 .39 .76 1.12 .48	.1 .3 .1 .1 .2	.05 .14 .10 .14 .11	1.8 1.9 3.2 2.0 1.5	5.6 5.1 10.2 4.3 11.5	.1 .6 .9 .4	.10 .09 .15 .02 .04	1.2 1.7 1.4 1.4 1.4 15.2	2.69 2.90 6.61 10.92 8.93	1.6 1.8 6.9 24.3 12.8	<.02 <.02 .03 .04 .04	2 5.5 <1 7.6 1 11.2 4 13.2 1 18.5	
99JKDR000730 RE 99JKDR000730 RRE 99JKDR000730 99JKDR000731 99JKDR000732	.69 .66 .67 .63 1.24	. 2 . 1 . 1 . 1	.08 .07 .08 .07 .05	$1.2 \\ 1.1 \\ 1.2 \\ 2.1 \\ 6.5$	9.1 8.9 9.0 4.9 5.8	.7 .7 .8 .5 .7	.04 .05 .04 .35 1.42	1.3 1.1 1.3 1.1 3.9	12.8412.6012.7810.2116.67	18.1 17.8 17.9 9.1 13.6	.06 .07 .06 .03 .04	$5 17.4 \\ 4 17.4 \\ 2 16.8 \\ 4 10.4 \\ 17 12.8$	
99JKDR000733 99JKDR000734 99JKDR000735 99JKDR000736 99JKDR000737	.72 .87 .99 .87 .87 .89	<.1 .1 .1 .2	.05 .07 .09 .09 .11	3.4 3.1 6.4 6.2 9.2	4.6 7.2 6.6 5.7 6.7	.58696 .96	.77 1.15 1.31 1.53 1.59	3.8 4.4 4.2 5.3 5.3	$11.58 \\ 14.01 \\ 14.18 \\ 12.52 \\ 9.24$	10.1 9.7 7.9 9.1 8.9	.04 .07 .07 .06 .05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
STANDARD DS2	2.98	. 1	2.14	15.5	3.0	23.6	.02	4.1	7.50	32.3	5.75	1 14.0	,
Sample type: CORE	: <u>. Sa</u> j	nples	begin	nning	'RE'	are F	<u>lerun</u>	s and	'RRE'	are	<u>Reject</u>	<u>. Reruns.</u>	

Page 4 (b)

Data____FA

ACHE ANALYSICAL	SAMPLE#	Cs	Ge	Nb	Rb	Sc DDM	Sn	of Cl	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Li ppm	
	99JKDR000738 99JKDR000739 99JKDR000740 99JKDR000741 99JKDR000742	1.66 2.54 2.10 1.16 1.62	.2 .1 .1 .1 .1	.16 .14 .13 .06 .04	14.8 20.8 17.7 6.4 9.4	8.5 8.0 7.1 6.0 7.1	1.3 1.1 .9 .6 .7	.29 .13 .39 .45 .30	5.1 1.1 1.9 .7 .5	6.58 4.61 6.36 10.89 16.10	$6.8 \\ 10.1 \\ 6.7 \\ 6.9 \\ 10.1$.07 .07 .07 .07 .07	5 3 6 4 5	22.3 24.3 22.7 23.2 32.8	
	99JKDR000743 99JKDR000744 99JKDR000745 99JKDR000746 99JKDR000747	1.06 .70 .72 .51 .57	.1 .1 <.1 .1	.06 .04 .03 .06 .05	$6.2 \\ 3.6 \\ 4.8 \\ 4.9 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 4.8 \\ 1.8 $	3.5 4.3 5.7 2.6 3.0	. 4 . 4 . 5 . 3	.34 .35 .75 1.62 1.77	.7 .7 1.4 7.5 10.2	11.9010.6512.617.527.97	8.8 7.7 6.6 4.0 5.3	.04 .04 .06 .04 .04	2 2 18 19	24.9 15.9 14.9 7.9 9.4	
	99JKDR000748 99JKDR000749 99JKDR000750 RE 99JKDR000750 RRE 99JKDR000750	.77 .70 .71 .67 .68	<.1 .2 .2 .2 .2	.05 .22 .54 .52 .47	4.9 2.5 3.4 3.2 3.2	6.9 5.4 8.3 7.8 7.6	.5 .56 .7 .6	2.42 .33 .24 .23 .23	4.9 5.7 8.2 6.5 8.9	11.906.127.507.296.94	$5.8 \\ 13.0 \\ 15.4 \\ 14.7 \\ 14.1 $.04 .03 .03 .03 .03	7 2 <1 2 1	13.5 23.7 14.0 14.6 14.3	
	99JKDR000751 99JKDR000752 99JKDR000753 99JKDR000754 99JKDR000755	.51 1.28 .57 .61 1.07	<.1 <.1 <.1 <.1 <.1	.09 .02 .11 .16 .04	3.4 6.0 5.0 5.6 4.6	3.3 2.4 6.7 2.2 2.5	.3 .2 .3 .3 .2	2.49 2.35 2.93 2.74 2.07	4.5 6.2 5.5 10.9 5.4	$10.77 \\ 12.08 \\ 8.09 \\ 10.65 \\ 10.50 \\$	4.9 8.2 5.3 4.9 5.8	.08 .06 .07 .04 .09	14 12 11 11 10	$9.2 \\ 7.8 \\ 11.1 \\ 7.1 \\ 8.8 \\ $	
	99JKDR000756 99JKDR000757 99JKDR000758 99JKDR000759 99JKDR000760	.76 .89 .57 .73 .74	<.1 <.1 .1 .1	.12 .05 .14 .25 .21	4.2 5.1 5.6 9.5 9.6	1.8 2.6 5.4 3.5 4.6	.7 .4 .7 1.1 1.0	1.76 2.18 2.81 2.14 1.70	5.9 4.4 8.8 10.0 9.6	7.35 9.67 13.34 16.14 13.82	5.0 6.0 7.2 10.2 9.0	<.02 .04 .04 .07 .07	18 25 30 121 99	6.9 7.9 6.2 4.9 6.1	
	RE 99JKDR000760 RRE 99JKDR000760 99JKDR000761 99JKDR000762 99JKDR000763 not rec.	.77 .75 .25 .41 <.02	.1 .1 <.1 .1 <.1	.22 .21 .11 .10 <.02	10.1 9.8 1.4 2.6 <.1	4.7 4.6 1.6 4.8 <.1	1.3 1.0 .3 .4 <.1	1.75 1.71 .13 1.29 <.01	9.8 9.6 6.3 6.5 <.1	14.59 14.32 9.42 11.07 <.01	9.3 8.9 7.1 7.3 <.1	.06 .06 .04 .04 <.02	95 94 21 18 <1	6.4 6.3 2.8 6.3 <.1	
	99JKDR000764 99JKDR000765 99JKDR000766 99JKDR000767 99JKDR000768	1.90 1.36 .58 2.21 2.22	.1 <.1 <.1 .1 .1	.11 .02 .06 .03 .04	5.0 3.4 2.2 2.8 2.8	7.8 4.0 2.2 6.4 8.8	.2 .3 .1 .2 .3	.03 .01 <.01 <.01 <.01 .15	3.8 2.0 3.0 1.8 3.0	7.69 5.98 4.20 5.89 8.78	24.4 19.1 8.9 15.4 15.8	.04 .02 <.02 .03 .04	<1 <1 <1 22	21.1 7.1 7.8 18.3 18.7	
	STANDARD D52	2.97	<.1	2.09	15.3	3.1	24.5	.02	4.3	7.35	30.8	5.95	3	14.8	
									.						

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 5 (b)

Data KA

NCHE ANALYTICA		·							7 r	· v	Ce	Tn	Re	Li	
	SAMPLE#	Cs mqq	Ge ppm	dИ mqq	ая ppm	ppm	ppm	2 0 0	ppm	ppm	_mqq	ppm	ppb	ppm	
	99JKDR000769 99JKDR000770 99JKDR000771 99JKDR000772 99JKDR000773	1.08 1.06 1.14 .79 1.05	<.1 <.1 <.1 .1 .1	.06 .03 .04 .05 .06	2.9 3.3 4.0 3.2 3.9	11.3 6.5 5.8 9.3 6.5		.08 1.04 1.64 .61 .23	1.0 1.0 2.7 3.7 3.9	12.2111.729.5612.9010.01	16.2 10.1 9.2 15.2 16.8	.03 .04 .05 .03 .03	4 8 18 3 4	17.4 16.5 19.0 15.1 21.3	
	99JKDR000774 99JKDR000775 99JKDR000776 99JKDR000777 99JKDR000778	4.49 5.61 6.05 6.12 3.90	.1 <.1 <.1 <.1	.03 .02 .06 .05 .03	3.4 7.3 8.5 9.4 8.4	$12.1 \\ 13.5 \\ 4.0 \\ 20.3 \\ 2.9$.2 .2 .2 .2	.06 .06 2.68 .24 3.39	1.5 1.3 3.5 3.1 4.9	4.53 5.06 8.74 6.55 8.05	4.7 4.9 4.2 6.1 4.9	.02 .02 .02 .03 .03	<1 <1 <1 <1 66	41.0 33.0 .7 32.1 .8	
	99JKDR000779 99JKDR000780 RE 99JKDR000780 RRE 99JKDR000780 99JKDR000781	3.87 2.97 2.88 2.84 1.31	<.1 <.1 <.1 <.1	.02 .02 .03 .05 .03	9.9 6.3 6.3 5.1	3.0 6.7 6.4 6.5 7.2	.1 .2 .2 .2 .1	2.01 2.15 2.07 2.05 3.62	$\begin{array}{c} 4.6 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.0 \end{array}$	$10.13 \\ 14.24 \\ 13.68 \\ 13.86 \\ 9.02$	7.3 3.5 3.4 3.4 3.7	.03 .04 .04 .04 .03	15 6 3 5 <1	.3 .2 .2 .2 .2 <.1	
	99JKDR000782 99JKDR000783 99JKDR000784 99JKDR000785 99JKDR000786	.43 1.43 1.24 1.14 .19	<.1 <.1 <.1 <.1 <.1	.02 .04 .04 .02 .07	$ \begin{array}{c} 1.8 \\ 5.8 \\ 3.8 \\ 4.3 \\ .7 \\ .7 \end{array} $	2.6 9.5 3.8 3.8 .8	.1 .3 .4 .2 <.1	1.03 4.04 1.93 2.20 .36	1.5 1.9 5.9 1.8 .6	5.31 14.58 9.79 6.00 7.40	1.6 3.6 2.8 2.3 2.2	.02 .04 .02 .02 .02	2 <1 32 7 1	<.1 .2 <.1 <.1 <.1	
	99JKDR000787 99JKDR000788 99JKDR000789 99JKDR000790 99JKDR000791	1.66 .55 1.11 .78 5.80	,1 <.1 <.1 <.1 <.1	.03 .02 .03 .02 .06	4.6 2.4 2.9 2.3 18.9	2.5 2.7 3.9 2.0 6.1	.4 .2 .3 .3 .3	1.58 1.93 1.29 1.55 1.15	9.1 2.4 3.3 3.4 1.2	$10.31 \\ 7.97 \\ 6.87 \\ 9.11 \\ 13.45$	$\begin{array}{r} 4.0\\ 3.3\\ 2.1\\ 2.0\\ 11.1 \end{array}$.02 .02 .03 .03 .03	59 22 16 17 9	<.1 <.1 <.1 <.6	
	99JKDR000792 RE 99JKDR000792 RRE 99JKDR000792 99JKDR000793 99JKDR000794	4.29 4.13 4.09 3.90 5.60	<.1 <.1 <.1 <.1	.05 .04 .04 .04 .03	13.012.412.28.413.8	6.5 6.4 6.2 4.7 7.2	.1 <.1 <.1 .2 .1	3.35 3.34 3.27 3.51 2.34	1.0 .9 .9 4.9 1.0	$14.69 \\ 14.38 \\ 14.16 \\ 9.92 \\ 14.39$	8.6 8.3 8.4 3.4 8.8	.04 .04 .05 .04 .04	7 6 5 64 9	.3 .3 .2 .3 .3	
	99JKDR000795 99JKDR000796 99JKDR000797 99JKDR000798 99JKDR000799	6.43 .89 1.56 1.91 2.64	<.1 <.1 <.1 <.1	.02 .02 .02 .02 .02 .02	12.1 4.2 4.1 4.8 5.5	4.4 2.3 3.5 4.2	.1 .3 .2 .2	1.90 1.64 1.91 1.65 2.33	2592 892 892 892 892 892 892 892 892 892 8	12.308.006.018.4110.09	6.7 3.6 2.3 2.9 3.7	.03 .03 .02 .03	7 21 13 25 26	.4 .2 .1 .2 .2	
	STANDARD DS2	2.66	<.1	2.02	15.3	4.3	25.3	.03	4.4	8.09	30.0	5.40	1	14.2	
	Sample type: CORE	. <u>Sar</u>	nples	begi	nninq	<u>'RE'</u>	are_	Reruns	s_and	'RRE'	are	<u>Reject</u>	Rer	uns.	

Page 6 (b)

ANALYTICAL									v	. Co	Tn	Ρe	T.i	
SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	5	zr ppm	ppm	ppm	ppm	ppb	ppm	
99JKDR000800 99JKDR000801 99JKDR000802 99JKDR000803 99JKDR000804	3.33 4.17 3.30 2.41 5.07	<.1 <.1 .1 .1 <.1	.05 .02 .03 .02 .05	6.9 7.4 7.6 6.6 9.1	3.9 5.0 4.0 3.1 7.6	.2 .2 .3 .3 <.1	1.45 .80 2.58 2.31 .18	2.2 1.6 4.7 5.8 .8	9.93 8.33 8.28 8.31 4.58	4.6 4.3 2.9 5.0 4.0	.03 .03 .03 .02 .02	7 8 50 49 <1	.3 .4 .3 .3 2.1	
99JKDR000805 99JKDR000806 99JKDR000807 99JKDR000808 99JKDR000809	7.52 7.93 8.88 8.14 6.62	<.1 <.1 <.1 <.1	.05 .03 .02 .02 <.02	16.1 16.8 12.8 15.2 13.6	$9.8 \\ 10.4 \\ 10.4 \\ 3.6 \\ 3.4$.1 <.1 <.1 <.1 .2	.57 .78 .48 .99 1.41	1.7 1.3 1.6 3.7 3.6	$9.71 \\ 11.12 \\ 10.12 \\ 10.70 \\ 8.17$	12.012.210.99.18.1	.03 .04 .04 .03 .02	<1 6 2 6 7	3.1 1.8 1.1 1.0 1.5	
99JKDR000810 RE 99JKDR000810 RRE 99JKDR000810 99JKDR000811 99JKDR000812	7.76 7.49 7.72 9.72 5.49	<.1 <.1 <.1 <.1 <.1	<.02 .02 <.02 <.02 <.02 <.02	15.0 14.6 14.8 15.7 10.1	3.4 3.2 3.3 2.8 .2	.2 .2 <.1 <.1 <.1	1.02 1.01 1.03 1.10 .16	3.7 3.4 3.7 2.6 1.6	9.10 8.96 9.03 7.44 .83	10.1 9.7 9.7 8.4 2.6	.02 .02 .02 .02 .02 <.02	2 1 <1 7 <1	.9 .9 .7 3.0 1.3	
99JKDR000813 99JKDR000814 99JKDR000815 99JKDR000816 99JKDR000817	3.46 3.06 2.21 2.83 2.70	<.1 <.1 <.1 <.1	<.02 <.02 <.02 <.02 <.02 <.02	7.1 6.8 5.8 6.5 6.6	.2 .1 .1 .2	<.1 <.1 <.1 .3 .2	.17 .21 .11 .19 .13	1.6 1.2 1.1 1.7 1.6	$1.06 \\ 1.43 \\ 1.10 \\ .99 \\ .82$	1.9 1.8 2.0 1.9 2.2	<.02 <.02 <.02 <.02 <.02 <.02	<1 <1 <1 <1 <1	.2 .3 .2 .3 .3	
99JKDR000818 99JKDR000819 99JKDR000820 99JKDR000821 99JKDR000822	3.37 3.25 3.17 5.09 8.53	<.1 <.1 <.1 <.1 .1	<.02 <.02 <.02 <.02 <.02 <.02	7.5 7.4 7.0 9.8 12.1	.3 .1 .3 3.4	.2 .2 <.1 .1 .1	.19 .22 .06 .21 1.93	1.2 1.7 1.1 .7 3.1	1.07 .60 .54 1.52 7.32	2.4 2.0 2.3 2.8 6.7	<.02 <.02 <.02 <.02 <.02 .04	<1 <1 <1 55	.7 .4 .9 1.1 5.9	
RE 99JKDR000822 RRE 99JKDR000822 99JKDR000823 99JKDR000824 99JKDR000825	8.39 8.75 7.33 4.57 5.04	.1 <.1 <.1 <.1	<.02 <.02 <.02 <.02 <.02 <.02	$12.1 \\ 12.3 \\ 12.7 \\ 12.4 \\ 10.0 $	3.3 3.4 3.1 1.6 2.0	. 2 . 1 . 1 . 2 . 2	$\begin{array}{c} 1.88 \\ 1.95 \\ 1.40 \\ 2.01 \\ 1.74 \end{array}$	3.0 3.4 3.2 4.3 4.0	7.29 7.56 6.93 8.68 7.10	6.5 6.8 6.7 9.8 7.5	.03 .03 .03 .02 .03	$51 \\ 54 \\ 10 \\ 8 \\ 13$	5.9 6.4 7.5 5.8 3.9	
99JKDR000826 99JKDR000827 99JKDR000828 99JKDR000829 99JKDR000830	$ \begin{array}{r} 6.88 \\ 5.10 \\ 6.71 \\ 10.34 \\ 4.01 \end{array} $.1 <.1 <.1 <.1	<.02 <.02 <.02 <.02 <.02 <.02	13.44.08.014.23.6	10.8 12.8 7.7 11.6 7.3	. 1 . 2 . 1 . 2	.02 .01 .01 .32 .01	1.1 1.0 .5 .2 1.2	4.77 7.37 7.03 7.26 7.86	$3.8 \\ 16.8 \\ 14.0 \\ 5.0 \\ 15.8 $.02 .04 .03 .04 .03	<1 <1 <1 <1 <1	35.2 30.2 10.4 3.2 9.1	
STANDARD DS2	2.74	<.1	2.06	14.8	3.0	25.8	.02	4.3	8.14	31.1	5.38	2	14.2	

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _ FA

Page 7 (b)

ATSH ANALYTICAL															
	SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	5 *	Zr ppm	Y Ppm	Ce ppin	In ppm	Re ppb	Li ppm	
	99JKDR000831 99JKDR000832 99JKDR000833 99JKDR000834 99JKDR000835	5.87 .50 .13 .64 .11	<.1 <.1 <.1 <.1 <.1	<.02 .51 <.02 .03 <.02	5.9 17.0 6.1 6.8 6.9	6.0 .8 2.5 .9 2.2	.3 1.3 .5 .2 .5	.01 <.01 <.01 <.01 .04 .07	$ \begin{array}{r} .7\\ 19.6\\ 2.4\\ 4.1\\ 5.4 \end{array} $	9.29 6.44 7.63 3.62 9.22	16.6 41.9 41.7 19.2 42.4	.03 <.02 .02 <.02 <.02 .02	<1 <1 <1 <1	19.2 22.3 6.9 5.2 4.6	
	99JKDR000836 99JKDR000837 99JKDR000838 99JKDR000839 99JKDR000840	.05 .47 .40 .43 .39	<.1 <.1 <.1 <.1 <.1	.02 .04 .02 .05 <.02	6.2 18.3 9.9 9.7 10.0	2.8 1.9 2.4 2.0 2.1	.6 .2 .2 .2	.02 <.01 <.01 <.01 <.01 .01	$\begin{array}{r} 4.6 \\ 16.5 \\ 1.5 \\ .9 \\ 1.0 \end{array}$	9.54 6.72 12.59 11.94 13.07	$\begin{array}{r} 43.7 \\ 30.1 \\ 28.8 \\ 31.8 \\ 31.2 \end{array}$.02 .03 .02 <.02 <.02	<1 <1 <1 <1 <1	4.4 5.3 9.6 9.4 6.7	
	RE 99JKDR000840 RRE 99JKDR000840 99JKDR000841 99JKDR000842 99JKDR000843	.37 .37 .32 .32 .32 .13	<.1 <.1 <.1 <.1 <.1	<.02 <.02 <.02 <.02 <.02 .02	9.8 9.9 7.2 7.4 4.0	2.0 2.2 2.2 1.9 4.2	.2 .3 .3 .4	.01 .02 .02 .01 .05	.8 .8 .7 .6 .5	12.5712.7211.2310.9211.10	30.7 31.3 29.2 30.8 24.8	.02 .02 .02 .02 .02 .03	1 <1 <1 <1 2	6.1 6.4 5.7 6.6 6.5	
	99JKDR000844 99JKDR000845 99JKDR000846 STANDARD DS2	.18 .11 .21 2.71	<.1 <.1 <.1 <.1	.02 .02 .46 2.06	$4.8 \\ 3.2 \\ 6.6 \\ 15.0$	7.9 3.9 .8 2.9	.7 .5 1.0 26.1	1.11 .92 .02 .03	2.0 1.4 14.5 4.2	$17.77 \\ 16.06 \\ 6.01 \\ 8.02$	27.3 21.2 40.8 31.0	.06 .04 <.02 5.28	3 9 <1 3	$11.2 \\ 6.4 \\ 20.6 \\ 13.6$	
! ;	Sample type: CORE	. Sam	ples	begir	ning	'RE'	are H	<u>lerun</u>	s and	'RRE'	are l	<u>Reject</u>	Reru	uns.	

