NOV 2 0 2000	CALLER Ó. Received	King	ter Fi	역)ED
	I¥U V	20	2000	
THE ALL CONTRACTORS AND	VICT 2			

NTS 104 B/1 E Lat. 56 12' N Long. 130 05' W

MINF	יי ח י			<u>א יי רו</u> ר	CH
Rec					
I	NOV	2	1	2000	
L.I.#					
File				R, B.C.	

GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL **REPORT ON THE SUMMIT CLAIMS,** SUMMIT LAKE, STEWART, B.C.

SKEENA MINING DIVISION

for Fundamental Resource Inc., 4083 Monarch St., Victoria, B.C.

by

Andris Kikauka, P.Geo. 1581 Rowan St., Victoria, B.C. V8P 1X401.0GICAL SURVEY BRANCH ACCEPTENT REPORT

November 15, 2000

TABLE OF CONTENTS

	P	PAGE NO.	
1.0	INTRODUCTION	1	
2.0	LOCATION, ACCESS, TOPOGRAPHY	1	
3.0	PROPERTY STATUS	1	
4.0	AREA HISTORY	2	
5.0	PROPERTY HISTORY	3	
6.0	GENERAL GEOLOGY	10	
7.0	2000 FIELD PROGRAM	11	
7.1	METHODS AND PROCEDURES	11	
7.2	GEOLOGY AND MINERALIZATION	12	
7.3	STREAM SEDIMENT SAMPLING	13	
7.4	MAGNETOMETER SURVEY	14	
8.0	DISCUSSION OF RESULTS	14	
9.0	CONCLUSION AND RECOMMENDATIO	NS 14	
	REFERENCES CERTIFICATE ITEMIZED COST STATEMENT	15	
	IST OF FIGURES 5.1 GENERAL LOCATION MAP		
FIG	5.2 CLAIM LOCATION MAP		
FIG	G. 3 GENERAL GEOLOGY		
FIG	C. 4 SUMMIT 5 MAGNETOMETER READ	INGS & PROFILES	5
FIG	G. 4b SUMMIT 5 MAGNETOMETER SURVI	EY LOCATION	

FIG. 5 SUMMIT 5 GEOLOGY & MINERALIZATION APPENDIX A GEOCHEMICAL ANALYSIS (ROCK & SOIL)

1.0 INTRODUCTION

This report describes and evaluates the economic mineral potential on the Summit 1-5 claims. Fieldwork consisted of geological mapping, magnetometer and geochemical surveys carried out between July 21-Aug 5, 2000. This work program was carried out by A. Kikauka (geologist) and K. Neill (geotechnician).

2.0 LOCATION, ACCESS, TOPOGRAPHY

The property is located on the west side of Summit Lake about 27 kilometres northwest of Stewart, B.C. Elevations on the claims range from 2,600-6,900 feet (790-2,100 metres).

The claims can be accessed by the Granduc road to the lower portal at Scottie Gold. Between the months of July-Sept. the Salmon Glacier ice is exposed and crampon and ice axe assisted crossings can be made with relative ease avoiding "gapers" (i.e. large cracks). During periods of low water (Aug.-Dec.), the gravel flats along the base of Summit Lake can be crossed to access the north portion of the claims. During high water, when the Salmon Glacier dams Summit Lake, a boat can be used to access the east portion of the claims. In the near future (possibly 10-20 years), the Salmon Glacier will have receded enough to eliminate Summit Lake entirely. At present, Summit Lake never reaches its previous high water marks due to the ablation of the Salmon Glacier.

Access to the "Nunatak Showing" (@ 5,000 foot elevation, Summit 4 claim) involves traversing along the mountain slope directly west of Summit Lake to the north edge of August Jack Glacier. Steep cliffs along the south edge of August Jack Glacier restrict access to the north side only. At 4,600 foot elevation, August Jack Glacier is crossed (approximately 500 metres distance) with running belay safety system (i.e. buddy system tied in with ropes, using crampons, ice axes, ice screws and prussiks for evacuation from crevasses) to the gain access to the "Nunatak Showing" outcrop entirely within the glacier.

Access to the newly acquired Summit 5 claim is gained via the Scottie Gold road which leads to the base of the Morris Summit Glacier. There is also a road along the bottom of the north end of Summit Lake which was constructed for the removal of glacial ice for commercial sale in 1996-97.

There are moderate to steep slopes on the west portion of the claims which is contrasted by a glacial scoured, U-shaped valley bottom along Summit Lake.

3.0 PROPERTY STATUS (FIGURE 2)

The Summit 1-5 claims consist of a contiguous 60 unit block that covers 1,500 hectares (3,600 acres). The property is registered to Mr. Andris Kikauka. By a letter of agreement, Fundamental Resources Inc has agreed to fund exploration work in return for ownership of the property,

whereby the registered property owner maintains an interest in Fundamental Resources and related exploration programs on the Summit 1-5 mineral claims.

The Summit claim group is comprised of the following staked 4 post mineral titles:

CLAIM NAME	UNITS	RECORD NO.	RECORD DATE	EXPIRY DATE
Summit 1	18	359906	Oct.15, 97	Oct.15, 02*
Summit 2	18	359907	Oct.15, 97	Oct.15, 02*
Summit 3	4	377631	June 3, 00	June 3, 03*
Summit 4	6	359908	Oct.15, 97	Oct.15, 02*
Summit 5	20	377632	June 3, 00	June 3, 03*

*A filed statement of work has extended the anniversary year on these claim..

The St. Eugene crown grant, L 4502, is maintained in good standing and lies within the Summit 1 claim. The Grey Copper reverted crown grant (L 4503) is presently covered by the newly staked Summit 3 claim.

4.0 AREA HISTORY

The well mineralized Stewart Complex extends from Alice Arm to the Iskut River. Exploration and development of major mines in the Stewart area, including Silbak-Premier, Snip, Johnny Mountain, Anyox, Alice Arm, Granduc, Scottie, Big Missourri, Porter-Idaho, Tenajon SB, and Maple Bay, and new reserves outlined at Eskay Creek, Red Mountain, Willoughby, and Sulpherets are the main reason why this area is one of Canada's most active mining camps.

The Stewart area has been exploited for minerals since 1900 when the Red Cliff deposit on Lydden Creek was mined. Since then, approximately 100 base and precious metal deposits within the Stewart Mining District have been developed. Total recorded production from the Stewart area is 1,900,000 ounces gold, 40,000,000 ounces silver, and 100,000,000 pounds copper-lead-zinc. Most of this production comes from the famous Silbak-Premier mine which operated from 1918 to 1968. This mine was reactivated in 1987 by Westmin Resources to recover near surface bulk tonnage, low-grade gold and silver. Presently the surface reserves are exhausted and Westmin is extracting ore from various underground levels. Additional ore has been produced from Big Missourri & SB deposits.

The Eskay Creek deposit contains an estimated 4,000,000 ounces gold, 45,000,000 ounces silver, and 120,000,000 pounds copper-lead-zinc. This deposit is buried and eluded discovery for some 50 years of exploration on the claims. The unique high-grade, stratiform 2-60 metre wide massive sulphide is outstanding in terms of predictability of its geology and tenor, and its relatively well defined, contact controlled assay boundary.

Scottie Gold Mine is located 1.5 kilometres north of the Summit property and produced 96,544

ounces of gold from 182,185 tons of ore. The mineralization consists of fine-grained pyrrhotite, pyrite, arsenopyrite, and chalcopyrite within silicified zones that are controlled by composite shear planes (i.e. en echelon spaced ore lenses). Scottie Gold has reserves listed @120,000 tons of 0.561 oz/t Au. Recently the Northair Group has optioned Scottie Gold to Crocodile Resources, but the agreement between the Canadian and Australian companies evaporated.

Other prospects in the Summit Lake area include Shough, Josephine, Hollywood, Troy, Outland Silver Bar, and East Gold. These base and precious metal occurrences have been periodically explored and developed over the past fifty years. East Gold produced a shipment of 44 tons of 35.244 oz/t Au, 96.74 oz/t Ag.

5.0 PROPERTY HISTORY

The Summit 1,2 claims cover old workings of the St.Eugene crown grants. Four parallel northeast striking quartz veins occur on the southern portion of Summit 2 at an elevation of approximately 4,200 feet(1,280 m.). Mineralization consists of pyrite, galena, sphalerite, and tetrahedrite. Three of the veins are 25 feet apart and the fourth is 150 feet east. The veins are 5 feet or less wide. Trenches and open cuts have been performed on these showings. A short adit and several trenches were located on the south portion of Summit 1. Three parallel northwest trending quartz-carbonate veins contain 1-15% galena, sphalerite, pyrite, and trace amounts of tetrahedrite.

In the 1950's, Silbak-Premier mapped the main sulphide showings known as the Sunrise Group of crown granted claims (presently covered by Summit 1 claim) and described 4 sub-parallel mineral zones trending NW and dipping moderately SW. Of these 4 mineral zones, the one closest to Summit Lake exhibited widths in excess of 50 feet. In addition, geological mapping outlined quartz-sulphide zones with significant base and precious metal mineralization in the area of the short adit (on Summit 1) as well as the showings on the St. Eugene and Grey Copper crown grants (5-20 foot widths of quartz-sulphide mineralization trending WNW and dipping steeply SSW.

Directly adjacent to the August Mountain Glacier, on the northwest portion of Summit 2 @ 4,600 foot elevation, is a 500 metre wide gossan zone consisting of quartz-sericite-pyrite alteration. This zone was scanned by airborne EM and mag geophysics flown in 1984 by Apex Airborne Surveys Ltd. and gave a significant total field magnetometer anomaly as well as identifying numerous EM conductors in the vicinity of the gossan.

1993- A fieldwork program consisting of geological mapping and soil, stream sediment, and rock sampling were carried out by the author and are summarized as follows: Quartz vein mineralization occurs within a major quartz-sericite -pyrite alteration zone. Sample AK-6 assayed 1.3% Cu, 2.3% Pb, 9.5% Zn, 6.8 oz/t Ag, and 0.017 oz/t Au across a width of 40 cm. This sample is located at an elevation of 1,050 metres (3,500 feet) where there is a natural bench in the slope with old workings present. Quartz-carbonate veins with sphalerite, galena, and tetrahedrite mineralization were located near the northeast portion of Summit 3 at an elevation of 1,000 metres (3,280 feet). Sample AK-12 assayed 1.1% Cu, 2.2% Pb, 8.6% Zn, 8.23 oz/t Ag, 0.119 oz/t Au across a width of 10 cm. This quartz vein varies in width from 0.5-1.1 metres, is traced for over 100 metres, and trends northwest with a 60 degree northeast dip.

Reddish brown to yellow coloured stain on cliffs located on the shore of Summit Lake (about 800 meters north of August Jack glacier) were investigated by detailed soil and rock chip sampling. Observed mineralization includes 1-10% disseminated and fracture filling pyrite, pyrrhotite, and traces amounts of chalcopyrite. Mineralization in this cliff area trends north and dips steeply west. Ubiquitous quartz-sericite surrounds the mineral zone.

Stream sediment samples ST-14 to ST-25 are located south of August Jack glacier and contain higher mean values in Cu-Pb-Zn-Ag-As-Sb than do the samples ST-1 to ST-13 taken north of the glacier. Mean Au values are also higher from streams south of the glacier, but the highest value (800 ppb Au) came from a creek north of the glacier where rusty, iron stained cliffs were surveyed and sampled.

Samples listed below require detailed follow up mapping and sampling:

ST-6	96	48	144	1.0	800	72	3
ST-14	160	57	142	2.1	420	201	10
ST-15	343	329	546	9.1	260	1264	32
ST-16	377	77	356	3.7	295	531	26
ST-17	302	122	220	3.2	195	298	24
ST-18	362	350	555	11.3	490	1607	35
ST-19	723	77	159	3.7	610	568	36
ST-20	517	302	374	11.6	490	2389	65
ST-21	253	285	638	5.8	205	1493	38
ST-22	287	311	526	8.8	280	1259	31
ST-23	225	389	697	3.7	190	1033	22
ST-24	235	199	297	4.9	58	572	12
ST-25	163	135	262	5.6	180	631	14

SAMPLE NO. PPM Cu PPM Pb PPM Zn PPM Ag PPB Au PPM As PPM Sb

All of the above samples (with the exception of ST-6) are taken from drainages south of August Jack glacier (elevation 3,000-3,800 feet a.s.l.) where an extensive northwest trending quartz-pyrite-sericite (potassic) alteration zone occurs. Above average Cu-Pb-Zn-Ag-Au-As-Sb geochemical values exist within and adjacent to widespread potassic alteration zones. 1995- Soil, stream sediment, and rock chip sampling are summarized as follows: Sample ST-26 returned above average Cu-Ag-Au-Mo-As-Sb values. This sample is located immediately adjacent to the north end of the soil grid where several samples gave similar anomalous values, e.g.:

SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM As 1	PPM Mo
ST-26	269	125	363	9.2	1380) 1979	24
L 0W,2+50N	2045	92	391	2.2	230) 484	453
L 1W,2+50N	385	264	315	13.1	780) 2844	102
L 1W,2+75N	315	137	348	5.9	470) 1922	79
L 1W,3+00N	391	61	244	5.2	720) 623	97

Above average Pb-Zn-Ag-Au-As values in soils were obtained from the southern portion of the grid area:

SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM As	PPM Sb
L 1W,0+75S	221	1069	610	11.7	230	1828	39
L 1W,1+00S	200	347	495	5.5	180	2079	15

A third area of the soil grid that gave above average multi-element values is located near station 0+50 N on both cross lines:

SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM As	PPM Sb
L 0W,0+50N	196	433	153	5.9	600	2726	31
L 1W,0+50N	305	113	214	3.1	360	1714	21

Stream sediment samples taken from the west portion of Summit 2 claim (north of August Jack) at approximately 4,200' elev. require further exploration:

SAMPLE NO	. PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM As	PPM Sb
ST-27	170	38	138	0.7	420	185	11
ST-28	226	142	391	3.3	620	146	15
ST-29	251	43	203	1.0	240	178	13
ST-33	204	100	203	1.4	570	300	22
ST-36	136	37	152	1.3	360	205	10
ST-37	160	53	164	1.1	240	280	8

1996- A 0.3 km.X 0.25 km. area on the east central portion of Summit 1 and a 0.2 km. X 0.1 km. area on the Summit 4 were mapped, 29 soil samples (24 from Summit 1, 5 from Summit 4) were taken and 52 rock chip samples (43 from Summit 1, 9 from Summit 4) were collected. Results from this work are summarized as follows:

In the west portion of the claims, Middle Jurassic Betty Creek and Mount Dillworth Formation felsic to intermediate pyroclastic and epiclastic volcanics unconformably overlie the Lower Jurassic Unuk River Formation. This contact is located at elevations above 1,400 meters. Approximately 90% of the bedrock mapped on the east portion of the Summit claims consists of Unuk River Formation dacitic volcanics (tuffs/flows and/or breccia) with minor inercalations and screens of clastic sediments and limestone. Alkaline early middle Jurasic K-spar porphyry intrusive rocks cut the Unuk River Fm. and appear as a 250 meter wide stock situated on a

relatively flat bench at 1,275 to 1,350 metres elevation within the centre of Summit 1 claim. Northeast trending quartz veins occur immediately north of this alkaline stock and contain sphalerite, galena, and tetrahedrite mineralization. Northwest trending fault zones with associated pyrite-chalcopyrite-arsenopyrite -sphalerite-galena and related chlorite-carbonate alteration occurs several hundred metres east of the K-spar porphyry.

1-20 meter wide Tertiary intermediate-felsic dykes trend northwest and are clustered along the lower portion of August Jack Glacier. These dykes contain 1-20% pyrite and quartz along and near their contacts with the country rock. Trace to 1% chalcopyrite and tetrahedrite occur in the quartz-pyrite zones.

There is a 200-600 metre wide, northwest trending quartz-pyrite- sericite alteration zone hosted by the Unuk River dacitic volcanics which is located in the southeast portion of Summit 1 and extends 2 kilometers northwest through to the upper August Jack glacier. Northwest and northeast trending quartz-carbonate vein mineralization occurs within this alteration zone.

The Summit 1 grid covers a 0.3 X 0.25 km. area within the east portion of this regional alteration/cataclasite zone. The Summit 4 nunatak showing occurs where the NW trending Q-S-P cataclasite intersects NE trending Scottie Gold quartz-sulphide mineralization at 1,600 metre(5,250 feet) elevation.

Summit 1 grid zone rock sampling summary is as follows:

SAMPLE NO.	WIDTH(m.)	PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au
SM-20	0.3	1237	14	67	8.3	820
SM-27	0.5	820	40908	38411	163.0	175
SM-28	0.8	708	54402	57744	194.3	58
SM-29	0.8	2396	40570	43228	139.7	120
SM-30	0.9	1270	58142	80705	212.9	95
SM-33	0.6	97	308	424	48.6	705
SM-34	0.6	96	360	414	36.4	580
SM-35	0.6	209	437	796	226.0	10 8 0
SM-36	0.6	202	750	319	234.8	1420
SM-38	0.3	1321	15317	7694	66.9	135
SM-39	0.5	1096	15654	7690	52.8	95

Summit 4 nunatak zone rock sampling summary is as follows: SAMPLE NO. WIDTH(m.) PPM Cu PPM Pb PPM Zn PPM Ag PPB Au SM-44 1.0 1405 6767 129 332 61.0 SM-45 tt. 18620 207 756 155.9 45 SM-46 R 492 23412 4449 140 186.1 Ħ SM-47 8233 116 550 74.7 52

SM-48	11	4745	124	470	50.7	51
SM-49	1 1	3055	179	578	40.5	120
SM-50	**	16382	214	1080	128.1	125
SM-51	11	30251	201	776	221.0	140
SM-52	*1	12427	206	1397	114.9	253

Above average Cu-Pb-Zn-Ag-Au-As-Mo values in soils were obtained from the Summit 1 grid area summarized as follows:

SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM As	PPM Mo
1+50W 1+50N	126	88	59	2.1	520	439	54
1+50W 1+75N	392	373	188	4.8	675	1912	52
1+50W 2+00N	406	470	236	6.0	560	4079	40
1+50W 2+25N	267	842	124	10.1	390	4284	100
1+50W 2+50N	514	1562	772	10.1	275	5902	90
1+50W 2+75N	964	1904	1587	18.4	320	3345	113
1+50W 3+00N	1303	2032	780	377.1	15850	15122	136
2+00W 4+00N	492	237	195	4.4	530	4886	49
2+00W 4+75N	283	84	285	1.6	450	1506	45
2+50W 1+75N	572	617	1082	11.3	1020	5847	28
2+50W 2+75N	282	347	344	4.9	420	3094	151
2+50W 3+75N	504	410	240	4.6	1420	7826	29

Above average Cu-Pb-Zn-Ag-Au-Bi-Mo values in soils were obtained from the Summit 4 nunatak gossan which are summarized as follows:

SAMPLE NO	. PPM Cu	PPM Pb	PPM Zn	PPM Ag	PPB Au	PPM Bi	PPM Mo
SM-S1	792	203	1095	8.6	115	8	44
SM-S2	1031	106	368	8.0	1940	162	70
SM-S3	976	127	621	10.7	920	123	88
SM-S4	1062	138	581	10.2	1060	154	110
SM-S5	1026	129	541	10.3	705	58	125

A comparison of geochemical soil analysis between the Summit 1 grid (26 samples) and Summit 4 nunatak (5 samples) are listed below:

ELEMENT	MEAN PPM VALUE OBTAINED ON- SUMMIT 1	GRID SUMMIT 4
NUNATAK		
Mo	52.4	87.4
Cu	346.0	977.4
Pb	422.4	140.6
Zn	335.8	641,2
Ag	18.9	9.6
Au (PPB)	939.8	948.0

7

There is a 200-600 metre wide, northwest trending quartz-pyrite- sericite aleration zone hosted by the Unuk River dacitic volcanics which is located in the southeast portion of Summit 1 and extends 2 kilometers northwest through to the upper August Jack glacier. Grove (1986), identifies this as a cataclasite (i.e. deformation zone) from well established fabric observed in thin section. Northwest and northeast trending quartz-carbonate vein mineralization occurs within this alteration zone.

The Summit 1 grid (1997) covers a 0.3×0.25 km. area within the east portion of this regional alteration/cataclasite zone. Within this zone of deformation there are 5 distinct NW trending bands of quartz-sulphide.

The Summit 4 nunatak showing occurs where the NW trending quartz-sericite-pyrite alteration zone intersects NE trending fault structures which contain significant base and precious metal bearing sulphide mineralization. The two areas of detailed mapping and sampling include the "Glacier Edge" and "Nunatak" zones which are both exposed at 1,550 m. (5,084 ft.) elevation (Fig. 4). Geological mapping shows a dominant NW trend for fracturing and faulting with a sulphide enriched NE trend that is localized near the major NW trending structures. Typical sulphide mineralization occurs as pods and lenses of massive pyrrhotite (10-50%) with minor amounts of sphalerite, chalcopyrite, arsenopyrite and galena hosted in indurated and hornfels, chloritized and carbonate altered Lower Jurassic tuffs/flows.

Summit 4 nunatak zone rock sampling summary is as follows:

SUMMIT 4 (Nunatak and Clacier Edge Showing) ROCK CHIP SAMPLES

		tax and Gracher Edge Showing) NOCK CHII SAMI LES
		(m.)- Description, % Cu, % Pb, % Zn, g/t Ag, g/t Au
Glacie	r Edge Show	ing:
101-	1.5 m.	20-35% pyrrhotite, 1-3% chalcopyrite, 0.1-3% sphalerite, 3% pyrite,
		Quartz-calcite gangue, hornfels and indurated altered volcanic host
		(060 trend, 65 N dip)elev. 1,520 m. 0.06, 0.13, 1.38, 13.2, 0.16
102-	1.0 m.	Same as above.elev.1,526 m. 0.44, 0.61, 0.49, 42.2, 0.56
103-	1.2 m.	Same as above.elev. 1,530 m. 0.45, 0.30, 2.55, 45.5, 0.52
104-	1.5 m.	Same as above.elev.1,537 m. 0.38, 0.58, 1.17, 41.4, 0.59
105-	1.0 m.	Vuggy quartz vein with 5-8% pyrite, 3-5% chlorite, trending ENE dip 70
N.		
		Elev.1,590 m. 0.03, 0.08, 0.12, 8.6, 0.05
106-	1.2 m.	3-5% sphalerite, 8-10% pyrite, hornfels and bleached volcanic host.
		Elev.1,475 m. 0.09, 0.01, 3.54, 5.0, 0.07
107-	1.5 m.	20-35% pyrrhotite, 1-3% chalcopyrite, 2-3% sphalerite, 3% pyrite,
		Quartz-calcite gangue, hornfels and indurated altered volcanic host
		Rock. Elev.1,545 m. 0.50, 0.31, 1.53, 41.1, 0.43
Nunata	ak Showing:	
108-	3.0 m.	Hornfels volcanic, 5% pyrrhotite, 3% quartz, trace sphalerite.
		Elev.1,540 m. 0.01, 0.01, 0.11, 0.9, 0.02

8

109-	1.0 m.	20-35% pyrrhotite, 3% chalcopyrite, 3% chlorite. Elev.1,570 m.
		3.63, 0.03, 0.21, 179.0, 0.12
110-	1.2 m.	Mass.pyo., 3-5% chlorite, Elev. 1, 585 m. 0.10, 0.01, 0.22, 4.7, 0.20
111-	0.7 m	Quartz vein, 15% pyrrhotite, minor chalcopyrite and sphalerite.
		Elev. 1,590 m. 0.18, 0.01, 0.04, 6.2, 0.07
112-	0.8 m.	Same as above. Elev.1,600 m. 0.18, 0.01, 0.06, 5.9, 0.06
113-	1.0 m.	Same as above. Elev. 1,605 m. 0.12, 0.01, 0.02, 4.8, 0.08
114-	0.8 m.	Same as above. Elev.1,610 m. 0.08, 0.01, 0.04, 4.2, 0.06
115-	1.0 m.	Quartz vein, 1% chalcopyrite, trace malachite Elev.1,565 m.
		0.17, 0.81, 0.82, 403.6, 0.08
116-	1.3 m.	30% pyrrhotite, trace chalcopyrite, minor chlorite. Elev.1,550 m.
		0.09, 0.01, 0.01, 7.0, 3.78

Summit 1 "Gossan Zone" rock sampling summary is as follows:

SUMMIT 1 (Lower Gossan Showing) ROCK CHIP SAMPLES SAMP.# WIDTH (m.)- Description, % Cu, % Pb, % Zn, g/t Ag, g/t Au

117-	0.6 m.	3% galena, trace tetrahedrite, 3% sphalerite in quartz-calcite gangue.
		Elev.1,135 m. 0.03, 1.23, 2.79, 51.7, 0.07
118-	0.7 m.	3% galena, 3-5% sphalerite, 2% tetrahedrite in quartz-calcite gangue.
		Elev. 1,137 m. 0.91, 1.30, 6.61, 378.8, 1.09
119-	1.0 m.	3% galena, 3-5% sphalerite, 2% tetrahedrite in quartz-calcite gangue.
		Elev. 1,130 m. 1.00, 1.24, 4.33, 408.8, 1.01
120-	SOIL	Soil sample repeated from 1996 194 ppm Cu, 170 ppm Pb, 563 ppm Zn,
		6.1 ppm Ag, 175 ppb Au

NUNATAK MAGNETOMETER SURVEY

A total of 112 magnetometer readings were taken along four, 350 m long, E-W trending survey lines covering the "Nunatak" and "Glacier Edge" Zones. Magnetometer readings range from 57,830 to 58,780 nT. A repeatable 800 nT increase is recorded at the east edge of the nunatak (rock island surrounded by ice). This ground mag survey anomaly roughly correlates with a strong airborne total field magnetic response from the Apex survey flown in 1986. The ground survey suffers from fragmented continuity and the grid data serves mainly as a reconnaissance tool. The results suggest that geophysical penetration below the ice would be beneficial to locate drill targets at the margins of the ice. A Deep-EM (aka Pulse EM) survey covering the area between the "Glacier Edge" and "Nunatak" zones are recommended.

SUMMIT 4 NUNATAK GOSSAN (1,550 m. elevation):

The receding glacial ice on the higher portions of the claims are exposing new mineral zones. A compilation of geological, geochemical and geophysical data suggests there may be a lens(es) of massive pyrrhotite with potential to contain high grade gold, copper and silver values. This

zone is located in the northeast edge of the August Jack icefield. An alteration assemblage of quartz-chlorite-carbonate is hosted by Unuk River Formation which is immediately below the projected unconformable contact with Betty Creek Formation. The importance of this geological setting is important with respect to comparing it to local deposits such as Silbak-Premier.

Interpretation of the geochemical and geophysical data indicates there are multiple NW and NE trending quartz-sulphide zones with elevated Cu-Pb-Zn-Ag-Au-As-Bi-Sb-Cd in rock chip samples and a 450 nT increase in total field magnetics at the east end of the nunatak. The combination of ground and airborne geophysical data suggests that the main mag anomaly is buried under the glcial ice immidiately NE of the nunatak. The presence of massive pyrrhotite could account for this mag anomaly. Since some of the sulphide mineralization carries significant gold and silver values (e.g. AR-116 @ 3.78 g/t Au and AR 115 @ 403.6 g/t Ag) diamond drilling of the nunatak zone is recommended. Prior to locating a drill hole on the Nunatak Zone, a program of Pulse-EM geophysics is recommended to assess the presence of massive sulphide bodies. The reason for this type of survey is its ability to penetrate through the glacier to evaluate conductivity below the ice sheet.

SUMMIT 1 GRID ZONE (1,200 m. elevation):

Elevated Cu-Pb-Zn-Ag-Au-Mo-As-Sb-Cd geochemical values in soil and rock chip samples are spatially related to widespread quartz-carbonate-chlorite and adjacent Q-S-P alteration, hosted by deformed Unuk R.Fm. volcanics/sediments. Distribution of fracture filling and disseminated sulphides suggests potential for a bulk tonnage target. Of particular interest is the 20-50 m wide zone of sulphides and silicification that shows good continuity along strike.

6.0 GENERAL GEOLOGY (FIG. 3)

The Stewart Complex includes a thick sequence of Late Triassic to Middle Jurassic volcanic, sedimentary, and metamorphic rocks. These have been intruded and cut by a mainly granitic to syenitic suite of Lower Jurassic through Tertiary plutons which together form part of the Coast Plutonic Complex. Deformation, in part related to intrusive activity, has produced complex fold structures along the main intrusive contacts with simple open folds and warps dominant along the east side of the complex. Cataclasis, marked by strong north-south structures, are prominent features that cut this sequence.

Country rocks in the Stewart area comprise mainly Hazleton Group strata which includes the Lower Jurassic Unuk River Formation, and the Middle Jurassic Betty Creek (and Mt.Dillworth) Formations. This sequence is unconformably overlain by Salmon River Formation, and the Nass River Formation (Grove, 1971,1986). Unuk River strata includes mainly fragmental andesitic volcanics, epiclastic volcanics, and minor volcanic flows. Widespread Aalenian uplift and erosion was followed by deposition of the partly marine volcaniclastic Betty Creek Formation, the mixed Salmon River Formation, and the dominantly shallow marine Nass River Formation.

Intrusive activity in the Stewart area has been marked by the Lower and Middle Jurassic Texas Creek granodiorite with which the Big Missourri, Silbak Premier, SB, and many other mineral deposits in the district are associated. Younger intrusions include the Hyder Quartz Monzonite and many Tertiary stocks, dykes, and sills which form a large part of the Coast Range Plutonic Complex. Mineral deposits such as B.C. Molybdenum at Alice Arm, Porter-Idaho near Stewart, and a host of other deposits are related to 48 to 52 Ma (Eocene) plutons. These intrusives also form the regionally extensive Portland Canal Dyke Swarm.

More than 700 mineral deposits and showings have been discovered in a large variety of rocks and structures in the Stewart Complex. The Silbak-Premier represents a telescoped (transitional), epithermal gold-silver base metal deposit localized along complex, steep fracture systems, in Lower Jurassic volcaniclastics unconformably overlain by shallow dipping Middle Jurassic Salmon River Formation sedimentary rocks. In this example, the overlying sedimentary units form a barrier or dam, trapping bonanza type gold-silver mineralization at a relatively shallow depth. Metallogeny of the Silbak-Premier, Big Missourri, SB, and a number of other deposits in the Stewart area are related to early Middle Jurassic plutonic-volcanic events. Overall, at least four major episodes of mineralization involving gold-silver, base metals, molybdenum, and tungsten dating from early Lower Middle Jurassic through to Tertiary have been recorded throughout the Stewart Complex.

7.0 2000 FIELD PROGRAM

7.1 METHODS AND PROCEDURES

A 1.2 km.X 0.7 km. area on the north central portion of Summit 5 was mapped and rock/silt sampled. Modified contour grids within a 0.3 X 0.5 km area were established in the north portion of Summit 5 to take magnetometer readings. A Unimag g-836 proton procession magnetometer was used to take readings at 12.5 meter spacing along a distance of 500 m. Hip chains and compasses were used to survey grid area, outcrop, and sample locations. Geological mapping of Summit 5 was carried out at a scale of 1:5,000.

28 silt samples was taken on Summit 5 with a shovel at a depth of 10-15 cm and screened through a -80 mesh screen, and then placed into marked kraft envelopes and dried. Samples were shipped to Pioneer Labs, New Westminster, B.C. for 30 element ICP & Au geochemical analysis.

31 rock chip samples (from Summit 5) were collected with hammers and chisels across widths of 0.2 to 2.0 metre. Samples were shipped to Pioneer Labs, New Westminster, B.C. for 30 element ICP & Au geochemical analysis.

A total of 2.0 km line kilometres were surveyed using hip chains and compasses. Four 500 m long, 040 trending survey lines were used for a magnetometer survey. Stations are marked at 25 metre intervals with orange flagging. A Unimag G-836 proton procession magnetometer was

used to take readings at 12.5 metre intervals (Fig. 4). Diurnal variations were corrected by looping grid lines.

7.2 GEOLOGY AND MINERALIZATION (Figure 5)

Property bedrock geology consists mainly of three distinct rock units summarized as follows: INTRUSIVE ROCKS

Tertiary and Older

- 3 Quartz monzonite dykes
 - Early Middle Jurassic (Texas Creek granodiorite suite)
- 2 Orthoclase porphyry, granodiorite groundmass, 1-8 mm euhedral K-spar phenocrysts VOLCANIC AND SEDIMENTARY ROCKS

Lower Jurassic (Unuk River Formation)

1 Lithic and crystal tuff, dacitic composition, minor conglomerate, sandstone, siltstone, tuff breccia

The above rock units have been mapped in the east portion of the Summit claims. In the southwest portion of the claims, Middle Jurassic Betty Creek and Mount Dillworth Formation felsic to intermediate pyroclastic and epiclastic volcanics unconformably overlie the Lower Jurassic Unuk River Formation. This contact is located at elevations above 1,500 metres.

Approximately 98% of the bedrock mapped on the east portion of the Summit claims consists of Unuk River Formation dacitic volcanics (tuffs/flows and/or breccia) with minor inercalations and screens of clastic sediments and limestone. Alkaline early middle Jurasic K-spar porphyry intrusive rocks cut the Unuk River Fm. and appear as a 250 metre wide stock situated on a relatively flat bench at 1,275 to 1,350 metres elevation within the centre of Summit 1 claim. Northeast trending quartz veins occur immediately north of this alkaline stock and contain sphalerite, galena, and tetrahedrite mineralization. Northwest trending fault zones with associated pyrite-chalcopyrite-arsenopyrite -sphalerite-galena and related chlorite-carbonate alteration occurs several hundred metres east of the K-spar porphyry.

1-20 metre wide Tertiary intermediate-felsic dykes trend northwest and are clustered along the lower portion of August Jack Glacier and extend in a NNW trend to the north end of the Summit 5 claim. The Tertiary dykes are emplaced along major NNW trending shear zones. These dykes contain 1-20% pyrite and quartz along and near their contacts with the country rock. Trace to 1% chalcopyrite and tetrahedrite occur in the quartz-pyrite zones.

Geological mapping and geochemical sampling (rock chip and stream sediment) advanced several new raw prospects on the Summit 5 claim. The most significant areas of economic mineral potential are as follows:

Claim Name	Sample Number	Width	% Cu	% Pb	% Zn	g/t Ag	g/t Au
Summit 5	S-254	1.0 m	0.24	2.11	5.07	270.3	15.80
Summit 5	S-255	1.0 m	0.84	2.45	2.30	397.9	13.50
Summit 5	S-279	0.8 m	0.10	2.08	2.03	197.7	1.35
Summit 5	S-257	1.0 m	0.02	0.01	0.02	1.3	1.28
Summit 5	S-278	0.3 m	0.05	0.28	9.05	46.7	1.31
Summit 5	S-280	1.0 m	0.01	0.01	0.04	1.7	4.25

These newly discovered quartz-sulphide fissure veins are situated between the Scottie Gold ore zones 0.6 km to the northeast and the August Jack Glacier Cu-Ag-Au mineral Zone 1.3 km to the southwest (Fig.5).

7.3 STREAM SEDIMENT SAMPLING

Of the 28 samples taken, the following results are considered highest priority for follow up:

Sample #	ppm Cu	ppm Pb	ppm Zn	ppm Ag	ppb Au
S-102	108	30	141	0.4	480
S-109	166	38	132	0.9	1180
S-114	446	127	301	1.6	240
S-122	252	62	227	1.0	690
S-125	293	514	304	3.3	140
S-126	232	1113	226	1.9	580

Although most elevated gold values contain above average base metal and silver values there is no direct correlation between gold and base metals, suggesting that gold is associated with base metal rich and base metal poor zones of mineralization.

7.4 MAGNETOMETER SURVEY

From a total of 164 readings taken within the 300 X 500 m grid area (located in the NW corner of Summit 5), values range from 56,816 to 58,527 gammas (Fig. 4). The 040 trending grid lines are intended to aid in the definition of NW trending structures and/or mineralization-alteration (Fig. 4b). A poorly defined 200-300 gamma low is located in the SW end of the grid. A sharp, poorly defined 600-800 gamma high was located in the NE end of the grid, but only on L 2+00 N and 4+00 N. On L 1+00 N and 3+00 N there is no sharp increase in the NE end of the lines. It is postulated that the low in the SW end of the grid may be related to alteration and the high at the NW end of the grid represents magnetite-rich intrusive rocks (Tertiary dyke?). The area of the grid has little outcrop, thus it would be useful to survey the lower portion of the Morris Summit Glacier where there is nearly 100% outcrop in order to correlate magnetometer values with visual intrusions and mineral/alteration zones.

8.0 DISCUSSION OF RESULTS

There has been success in finding polymetallic quartz-sulphide veins and/or vein swarms on the Summit claims. Stream sediment and soil geochemical values indicate there is a widespread distribution of polymetallic mineralization. Since the property is a raw prospect (no drill holes), it would be advantageous to trench and core drill At least four of the best targets.

9.0 CONCLUSIONS AND RECOMMENDATIONS

The main targets that have been outlined by fieldwork programs are as follows:

1) "Summit Mountain" polymetallic vein, Summit 5 (e.g. samples S-254 and S-255 see Fig. 5) UTM co-ordinates 6229650 N, 432450 E

2)"Nunatak Zone" on upper August Jack glacier, Summit 4.

UTM co-ordinates 6228300 N, 430400 E

3) Broad quartz-pyrite-sericite alteration zone, referred to as "Lower Gossan Zone" Summit 1. UTM co-ordinates 6227425 N, 432500 E

4) Polymetallic mineralization related to a major NW trending fault zone at the north end of Summit 5 (e.g. samples S-278 and S-279 see Fig. 5). UTM co-ordinates 6230450 N, 431850 E

A program of detailed geological mapping, trenching and core drilling (approximately 5,000 ft) is recommended. The fieldwork would have to be carried out in July, August or September and would require helicopter support. This would require a budget of at least \$200,000 to complete a comprehensive testing of the targets.

REFERENCES

Alldrick, D.J., (1983), Geological Setting of Precious Metal Deposits, Stewart, B.C., B.C. Min. of E.M.& P. Res., Geological Fieldwork.

Grove, E.W., (1971), Geology and Mineral Deposits of the Stewart Area, BCDM Bulletin No. 58.

Grove, E.W., (1986), Geology and Mineral Deposits of the Unuk River- Salmon River- Anyox Area, Min. of E.M.& P.Res. Bulletin No. 63.

Hanson,G., (1935), GSC Memoir # 175, Portland Canal Area, B.C., Can. Dept.of Mines

Kikauka, A., (1993): Geological and geochemical Report on the Summit Claims, Stewart, B.C., B.C.Min.of E.M.& P.Res. Assessment Report.

Apex Airborne Surveys Ltd., Assessment Report # 12,345, B.C. Govt. File.

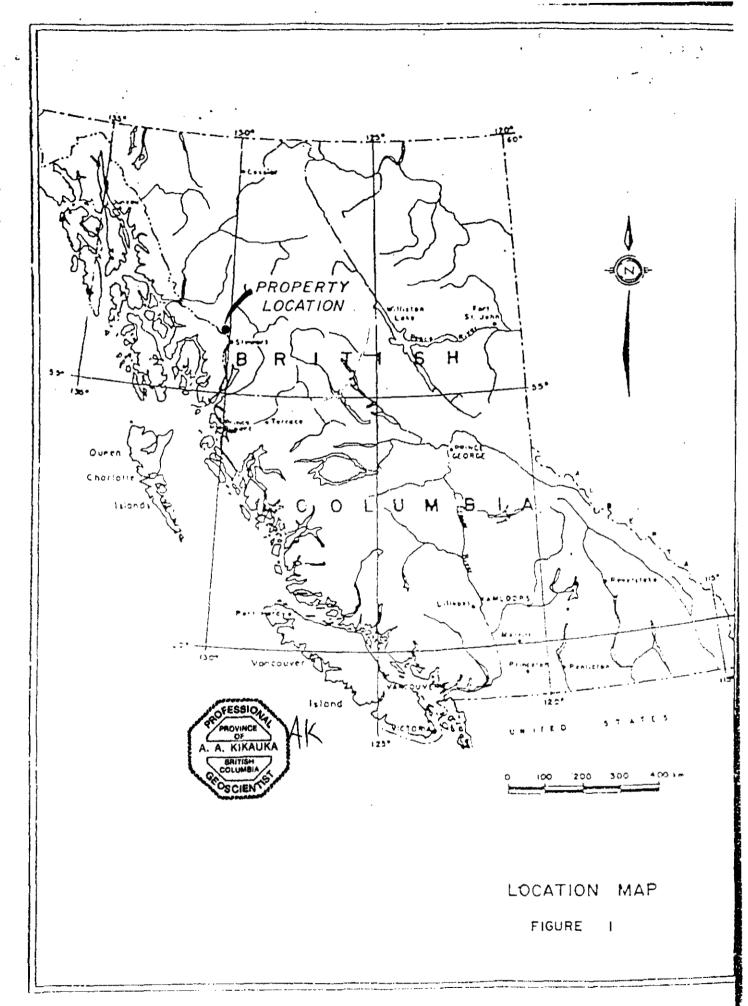
CERTIFICATE

- I, Andris Kikauka, of Vancouver, B.C., hereby certify that;
- 1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I am registered in the Province of British Columbia as a Professional Geoscientist.
- 4. I have practised my profession for eighteen years in precious and base metal exploration in the Cordillera of Western Canada and South America, and for three years in uranium exploration in the Canadian Shield.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties and on published and unpublished literature and maps.
- 6. I have a direct interest with Fundamental Resources Corp & the subject property.

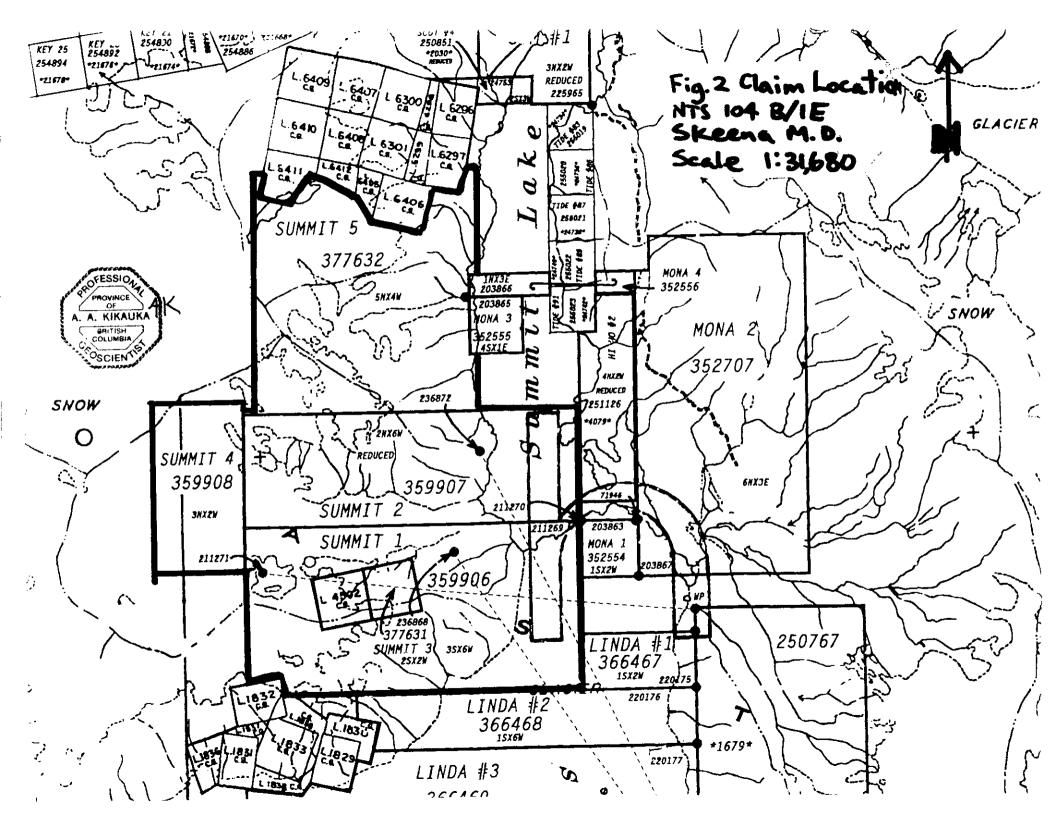
7. This report is intended for the purpose of filing a statement of work and is not intended for purposes of public financing.

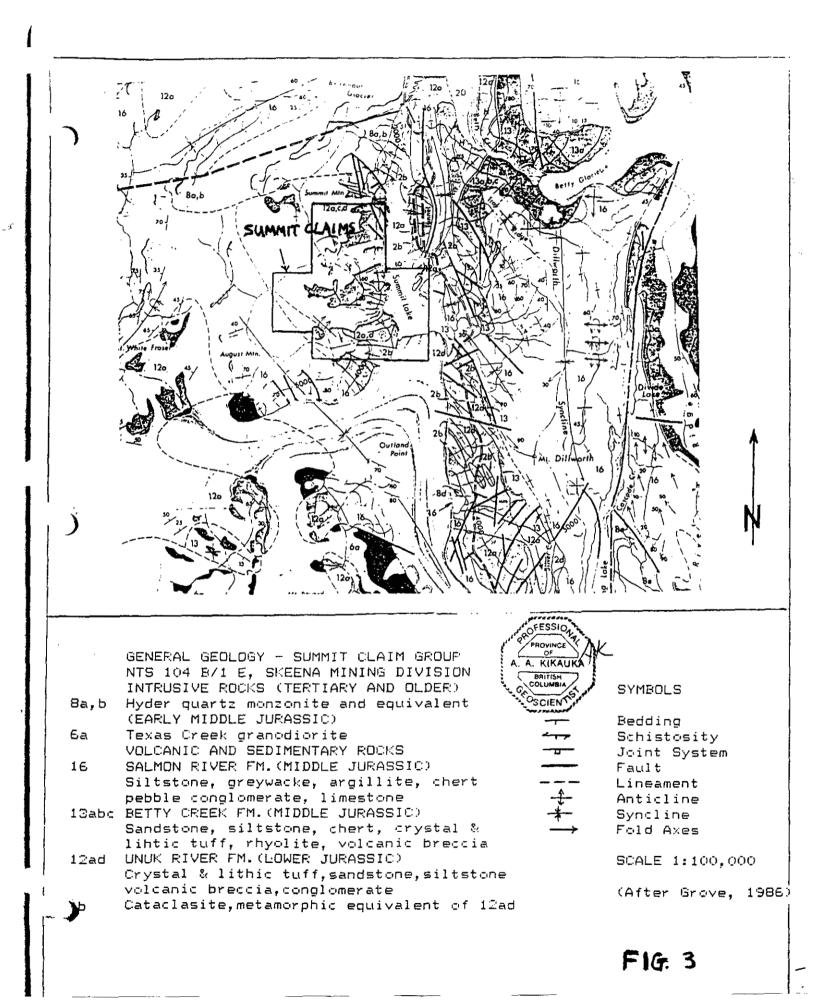
Andris Kikauka, P. Geo.,

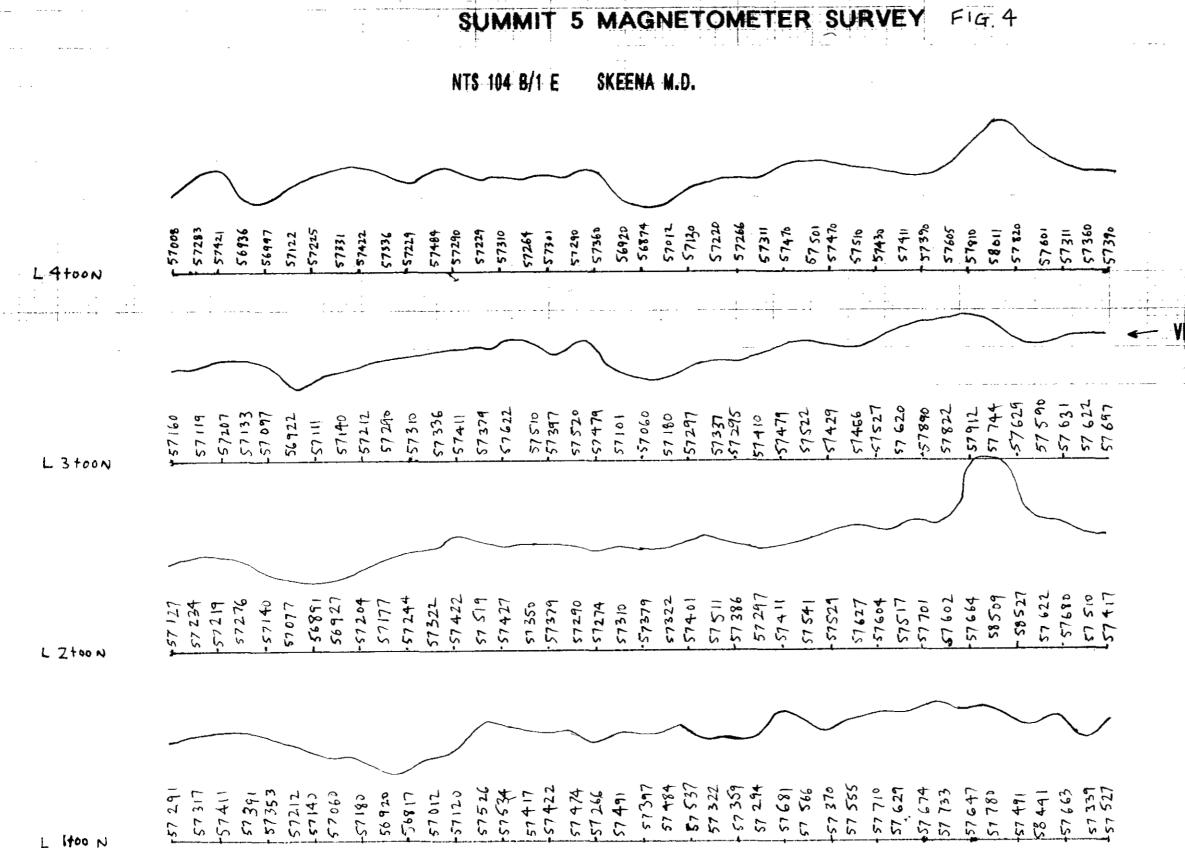
A. Kile ander


November 15, 2000

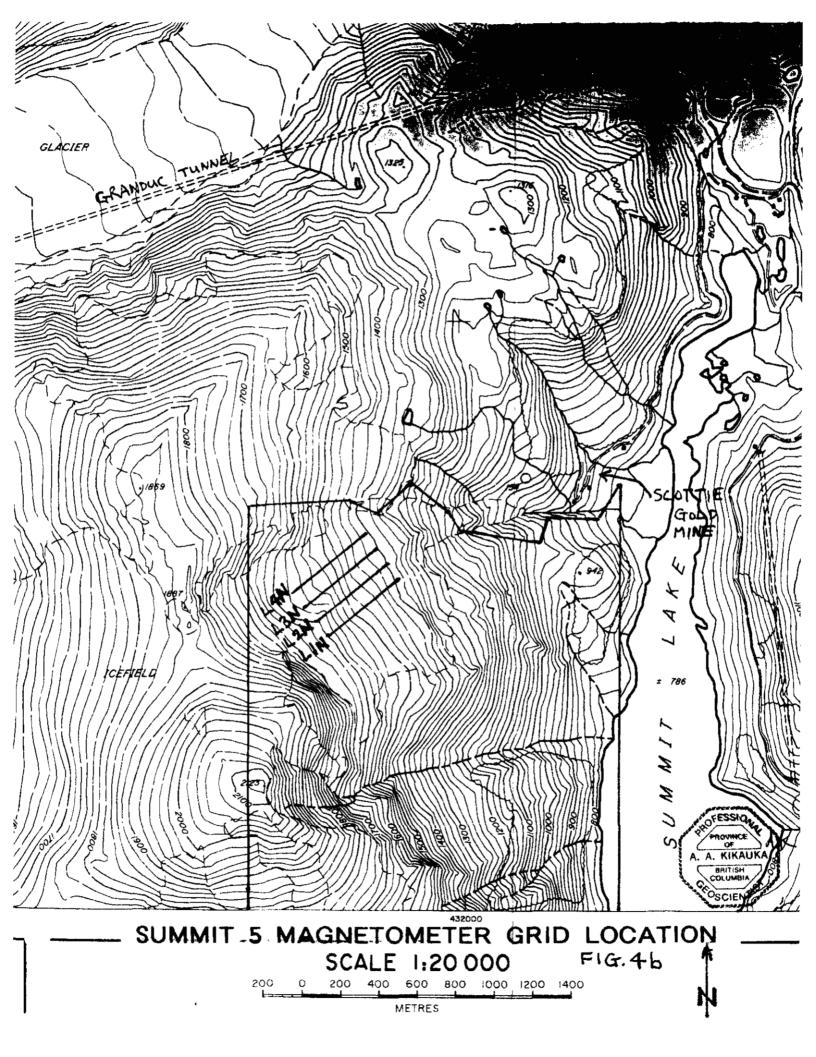
ITEMIZED COST STATEMENT- SUMMIT 5, July 21-August 5, 2000 SKEENA MINING DIVISION, NTS 104 B/1 E


FIELD CREW:


A.Kikauka (Geologist) 16 days K. Neill (Geotechnician) 16 days	\$ 4,400.00 4,000.00
FIELD COSTS:	
Meals and accommodations	1,382.23
Magnetometer rental	315.00
Truck rental	1,120.00
Assays (31 rock, 28 silt)	1,127.50
Mob/demob	700.00
Communication (radio rental)	270.00
Report	600.00
	Total= \$ 13,914.73



. . . .


2.5 Km to Summit 5 LCP VERTICAL SCALE OF PROFILE 1 Cm EQUALS 500 GAMMAS

READINGS IN GAMMAS CORRECTED BY LOOPING

50 100 m O

SCALE 1:2,000

PIONEER LABORATORIES INC.

MR. ANDRIS KIKAUKA Project: Summit Sample Type: Stream seds./Rocks GEOCHEMICAL ANALYSIS CERTIFICATE

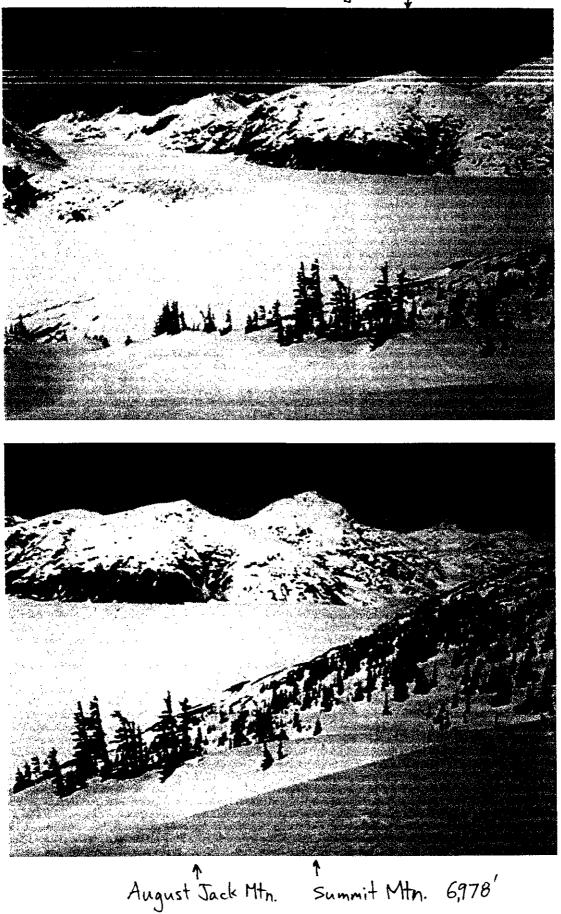
Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection. Analyst <u>CSUN1</u> Report No. 2003331 Date: August 15, 2000

ELEMENT		Mo	Cu	Pb	Zn	Ag	Ni	Co	۸n	Fe	As	U	Au	Th	Sr	Cd		Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K	W	Au*
SAMPLE		ppm	bbw	ppm	ppm	pb <i>u</i>	bbw	bbw	ppm.	%	bbw	bbw b	indx	bbu	ppm	ppm	ppm	bbu	ppm	%	%	ppm	ppm	X	ppm	X	bbw	%	*	%	bbw	ppb
S-101		2	140	32	134	.5	15	28	1068	5.92	64	8	ND	2	18	1.2	3	3	140	.55	- 149	3	29	1.73	21	.05	3	2.15	.01	.01	4	30
s-102		2	108	30	141	.4	15	23	1054	5.66	79	8	ND	2	17	1.1	4	3	132	.50	.130	4	28	1.75	22	.05	3	2.08	.01	.01	3	480
s-103		3	253	63	159	.9	20	43	2505	7.25	152	8	ND	2	23	2.6	5	3	144	.68	.131	8	32	1.65	63	.05	8	2.24	.01	.03	4	215
S-104		5	181	134	217	1.4	15	29	1053	6.37	155	8	ND	2	20	2.3	4	3	117	.42	.111	4	37	1.64	35	.06	3	2.03	.01	.02	2	130
s-105		3	161	28	157	-4	15	42	27 99	8.33	271	8	ND	2	27	1.4	4	3	203	.57	.125	9	38	1,72	57	.06	10	2.75	.01	.03	3	70
s-106		3	161	182	272	1.5	14	28	1007	6.42	149	8	ND	2	16	2.8	6	3	115	.42	.115	3	36	1.62	27	.05	3	1.91	.01	.01	2	205
s-107		2	36	12	77	.3	8	26	1251	5.90	60	8	ND	2	5	.2	3	3	145	. 15	.052	2	25	1.61	35	.04	3	2.23	.01	.03	3	15
s-108		3	87	45	152	.7	13	40	1938	6.35	243	8	ND	2	22	.8	3	3	185	.51	. 108	10	35	1.43	39	.05	5	3.24	.02	.03	8	35
s-109		3	166	38	132	.9	14	33	1247	6.67	108	8	ND	2	12	1.2	3	3	117	.28	.092	3	32	1.74	26	.07	3	2.22	.01	.02	2	1180
s-110		4	182	78	112	1.0	15	27	848	6.87	264	8	ND	2	19	.7	6	4	114	.41	.131	3	25	1.62	19	.05	3	1.91	.01	.01	2	210
s-1 11		- 3	196	284	251	1.3	14	25	679	4.91	261	8	ND	2	24	3.7	17	3	106	.72	.150	3	20	1,37	19	.05	3	1.72	.01	.01	4	70
S-112	•	2	175	52	105	1.2	18	29	663	6.44	582	8	ND	2	23	1.3	8	3	98	.54	. 133	4	21	1.40	23	.04	3	1.57	.02	.02	2	215
s-113		4	98	322	131	2.0	9	11	559	5.36	596	8	ND	2	18	1.0	3	5	96	. 14	.080	7	16	.72	29	.09	3	2.76	.02	.04	2	135
s-114		6	446	127	301	1.6	20	161	3017	8.81	543	8	ND	2	33	2.2	6	4	122	.50	. 125	8	25	1,12	48	.08	11	4.49	.01	.03	2	240
s-115		3	319	142	411	1.7	24	64	2515	9.19	517	8	ND	2	49	5.5	6	3	159	.59	. 140	8	32	2.11	45	.06	7	3.24	.01	.05	2	210
s-116	•	6	229	66	153	.8	20	49	1805	7.76	135	8	ND	2	19	1.9	4	5	130	.33	.123	5	34	1.72	47	.06	5	2.38	.01	.03	2	320
S-117		2	109	25	152	.3	14	35	1547	7.12	163	8	ND	2	21	.8	6	3	136	.63	.093	4	33	1.70	49	.08	5	2.44	.01	.02	2	65
S-118		5	237	69	197	1.2	18	47	1694	7.75	170	8	ND	2	18	1.9	6	3	132	.28	.106	12	26	1.71	38	.06	8	2.38	.01	.04	2	70
S-119		11	292	52	147	.9	26	69	2531	10.00	242	8	ND	2	18	1.2	4	3	164	.37	. 145	7	41	2,12	37	.04	7	2.65	.01	.03	2	270
s-120	•	15	248	46	109	.4	20	55	1747	10.23	124	8	ND	2	27	.5	5	4	155	.25	.134	4	30	1,68	36	.07	6	2.74	.01	.04	2	125
s-121		8	237	43	151	.6	18	41	1465	7.93	89	8	ND	2	13	1.7	7	3	103	.25	.104	6	26	1,45	40	.03	4	1.83	.01	.04	2	205
s-122		14	252	62	227	1.0	17	45	2666	8.97	99	8	ND	2	23	4.1	5	3	116	.35	.123	10	30	1.48	50	.04	8	2.01	.01	.03	5	690
S-123		13	289	44	212	.9	20	54	3199	9.05	204	8	ND	2	18	1.8	5	3	158	.34	.112	8	36	2.12	48	.05	10	2.73	.01	.03	2	210
s-124		2	245	139	444	1.3	40	73	2507	11.44	188	8	ND	2	17	3.9	10	3	212	.54	. 142	4	129	2.97	47	.05	8	3.12	.01	.03	2	45
s-125		20	293	514	304	3.3	17	40	1137	7.49	317	8	ND	2	22	3.1	33	3	126	.56	.138	4	33	1.68	29	.05	4	1.99	.01	.02	5	140
s-126		13	232	1113	226	1.9	14	26	606	5.21	349	8	ND	2	35	3.3	18	3	91	.62	.129	3	26	1.27	30	.05	3	1.57	.01	.03	1 1	580
s-127		4	85	38	136	.5	11	34	1523	7.22	104	8	ND	2	22	.7	4	3	140	.56	.120	4	27	1.73	59	.02	6	2.48	.01	.03	2	9 0
s-128		2	153	23	110	.5	12	29	956	5.49	41	8	ND	2	10	.7	4	3	103	.26	.075	2	29	1.63	21	.07	3	2.06	.01	.02	2	105
s-251		9	1596	31	212	3,4	20	89	192	13.39	19	8	ND	2	11	2.6	4	6	11	.24	.050	1	103	.49	10	.03	3	1.00	.03	.12	2	30
s-252		7	74	18	107	.3	11	25	1440	8.01	18	8	ND	2	27	.2	3	3	206	1.54	. 159	4	54	1.69	29	.12	6	1.65	.03	.05	2	10

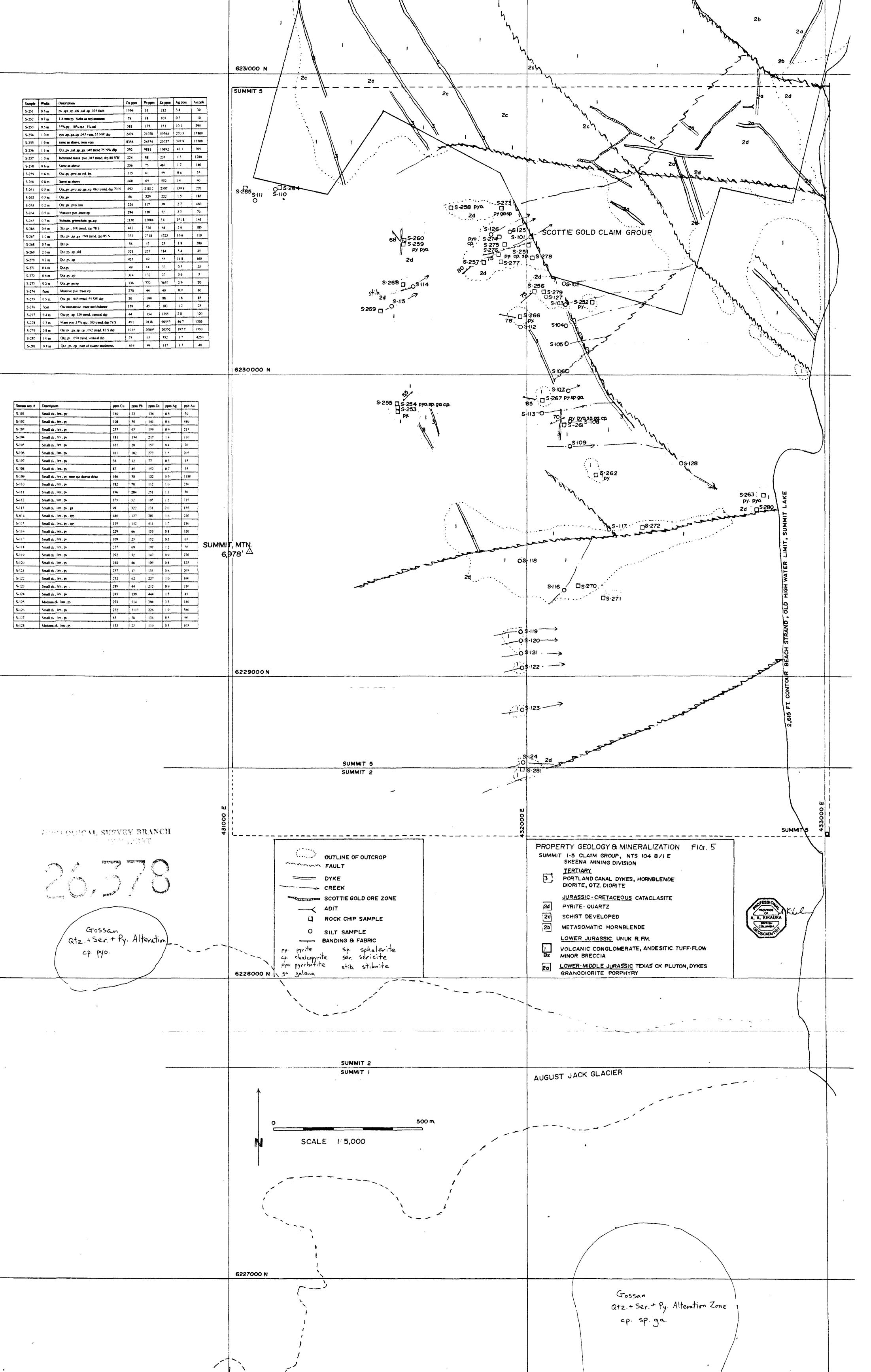
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	B	AL	Na	K	W	Au
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	% p	pm	%	%	%	ppm	ppb
s-253	8	581	175	151	10.1	14	76	589	16.55	572	8	ND	2	20	.7	10	3	37	1.68	.047	1	123	.48	12	.03	4	.60	.01	.01	7	295
S-254	5	2424	21078	50764	270.3	14	46	589	15.60	50630	8	16	2	23	717.8	851	3	9	.42	.007	1	184	.16	8,	.01	10	.21	.01	.01		15800
s-255	6	8358	24534	23037	397.9	14	37	309	14.00	80826	8	15	2	19	318.2	1225	3	27	.31	.027	1	167	.12	11	.01	3	.21	.01	.03	2	13500
S-256	4	292	988 1	10692	43.1	4	13	1561	5.03	70	8	ND	2	66	128.9	187	6	7	10.43	.017	1	75	. 18	12	.01	3	.25	.01	.10	2	205
s-257	3	224	88	237	1.3	17	120	718	11.03	22	8	ND	2	26	4.1	3	3	118	1.23	. 147	1	73	2.02	7	.06	3	2.62	.02	.01	2	1280
S-258	3	256	75	487	1.7	19	50	396	8.74	10	8	ND	2	8	6.5	3	4	104	1.37	.133	1	91	.93	14	.07	5	1.70	.02	.02	2	140
S-259	6	115	61	59	.6	14	30	207	4.97	14	8	ND	2	8	1.1	9	4	75	2.83	.107	1	130	.40	2	.08	5	1.59	.01	.01	2	35
S-260	14	660	69	552	1.4	18	65	496	11.91	24	8	ND	2	8	9.8	7	7	133	.55	.134	1	45	1.45	7	.07	7	1.81	.02	.01	2	40
S-261	6	692	21812	2507	139.8	6	9	989	1.69	121	8	ND	2	37	34.0	122	3	24	2.55	.033	1	129	.25	19	.01	3	.43	_01	.10	2	230
S-262	17	66	329	222	1.5	12	19	744	4.59	109	8	ND	2	11	2.3	19	3	24	.46	.079	1	135	.15	52	.05	7	.52	.01	.19	2	185
S-263	4	224	117	39	2.7	17	47	398	8.89	97	8	ND	2	19	.4	10	5	42	.84	.075	1	52	.87	25	.03	4	.98	.01	.06	2	460
S-264	2	284	338	52	2.3	56	68	1564	8.80	77	8	ND	2	37	.7	28	3	135	.87	. 158	2	58	1.40	34	.07	7	1.70	.03	.08	2	70
S-265	5	2130	22088	231	151.8	10	12	29	5.58	1353	8	ND	2	5	23.92	21000	5	3	.02	.001	1	115	.01	11	.01	3	.01	.01	.01	2	145
s-266	10	412	376	64	2.6	21	105	1361	10,55	41	8	ND	2	41	1.2	27	5	134	3.42	.094	1	64	1.43	19	.04	7	1.63	.02	.11	2	105
s-267	4	332	2718	4723	16.6	7	15	1242	5.29	330	8	ND	2	18	63.2	42	6	27	1.95	.069	1	76	.44	25	.03	4	.63	.01	.16	2	110
s-268	10	54	47	23	1.8	3	2	76	3.50	11	8	ND	2	8	.2	6	7	33	.16	.072	1	127	.14	74	.05	3	.28	.02	.07	2	280
s-269	. 88	321	257	184	5.4	14	75	226	12.83	310	8	ND	2	7	1.9	16	3	60	. 16	.071	1	144	.25	12	.12	5	.53	.01	.07	2	45
s-270	7	455	49	55	11.8	61	263	115	31.20	2	8	ND	2	5	.2	3	18	12	.21	.014	1	63	.21	14	.01	3	.37	.01	.01	2	160
s-271	4	49	14	32	.3	5	7	327	9.55	31	8	ND	2	5	.2	7	3	107	.05	.072	1	13	.43	34	.12	4	.69	.01	.04	4	25
s-272	7	314	132	22	.6	8	22	293	6.01	9	8	ND	2	87	.5	10	3	11	4.02	-007	1	94	.09	4	.01	6	.18	.01	.01	2	5
s-273	5	136	772	3657	2.9	5	4	1681	5.07	26	32	ND	4	1078	47.5	7	8	26	11.53	.004	5	92	.69	10	.01	3	.45	.01	.01	2	20
s-274	4	270	44	40	.9	11	45	845	10.51	368	8	ND	2	26	.6	3	3	61	1.90	.036	1	76	.76	19	.02	3	1.09	.01	.09	2	80
s-275 /	8	30	199	88	1.8	6	2	229	.98	210	8	ND	2	37	1.6	6	3	12	1.03	.015	1	154	.28	4	.01	3	.29	.01	.02	2	85
s-276	92	178	45	103	1.2	3	4	402	2.06	25	8	ND	4	35	1.0	3	3	52	2.56	.100	4	86	.74	101	.02	3	1.16	.02	.16	2	25
s-277	12	44	154	1355	2.8	5	5	576	1.51	40	8	ND	2	48	26.2	8	3	10	4.71	.034	1	77	.27	24	.01	3	.39	.01	.13	2	120
s-278	4	491	2838	90553	46.7	29	119	568	22.75	949	8	ND	2	16	1272.8	48	65	14	2.53	.009	1	131	.46	4	.01	3	.50	.01	.01	2	1305
s-279	10	1015	20805	20332	197.7	23	72	1503	11.59	5684	8	ND	2	6	276.0	502	159	64	. 15	.028	3	204	1.57	9	.01	5	1.56	.01	.05	9	1350
s-280	34	78	63	352	1.7	8	7	297	6.29	5050	8	5	2	13	5.8	106	3	36	.69	.065	1	83	.29	35	.08	3	.38	.01	.10	2	4250
s-281	4	616	99	117	1.7	7	10	365	2.71	27	8	ND	2	25	1.8	3	3	52	.76	.073	1	81	.71	8	.06	3	1.18	.02	.01	2	40

For Au greater than 10,000 ppb, fire assay is recommended. For Pb, Zn greater than 10,000 ppm, assay digestion is required for correct data. For Ag greater than 35 ppm, assay digestion is required for correct data.

PAGE 2


	S-128	S-127	S-126	S-125	S-124	S-123	S-122	S-121	S-120	S-119	S-118	S-117	S-116	S-115	S-114	S-113	S-112	S-111	S-110	S-109	S-108	S-107	S-106	S-105	S-104	S-103	S-102	S-101	Stream sed. #	
· · · · · · · · · · · · · · · · · · ·	Medium ck., lim., py.	Small ck., lim., py.	Small ck., lim., py.	Medium ck., lim., py.	Small ck., lim., py., cpy.	Small ck., lim., py., cpy.	Small ck., lim., py., ga.	Small ck., lim., py. near qtz.diorite dyke	Small ck., lim., py.	Description																				
	153	85	232	293	245	289	252	237	248	292	237	109	229	319	446	86	175	196	182	166	87	36	161	161	181	253	108	140	ppm Cu	
	23	38	1113	514	139	44	62	43	46	52	69	25	66	142	127	322	52	284	78	38	45	12	182	28	134	63	30	32	ppm Pb	
	110	136	226	304	444	212	227	151	109	147	197	152	153	411	301	131	105	251	112	132	152	77	272	157	217	159	141	134	ppm Zn	
	0.5	0.5	1.9	3.3	1.3	0.9	1.0	0.6	0.4	0.9	1.2	0.3	0.8	1.7	1.6	2.0	1.2	1,3	1.0	0.9	0.7	0.3	1.5	0,4	1.4	0.9	0.4	0.5	ppm Ag	
	105	96	580	140	45	210	690	205	125	270	70	65	320	210	240	135	215	70	210	1180	35	15	205	70	130	215	480	30	ppb Au	

i.


	117	8	616	Otz., py., cp., part of quartz stockwork	0.8 m	S-281
1.7	352	63	78	Qtz.,py., 050 trend, vertical dip	1.0 m	S-280
197.7	20332	20805	1015	Qtz.py.,ga.,sp.,cp., 092 trend, 82 S dip	0.8 m	S-279
46.7	90553	2838	491	Mass.pyo.,15% qtz.,100 trend, dip 78 S	0.3 m	S-278
2.8	1355	154	44	Qtz.py.,sp. 120 trend, vertical dip	0.4 m	S-277
1.2	103	45	178	Qtz monzonite, trace molybdenite	float	S-276
1.8	88	199	30	Qtz.,py., 045 trend, 55 SW dip	0.5 m	S-275
6'0	8	4	270	Massive pyo. trace cp.	float	S-274
2.9	3657	772	136	Qtz.,py.ga.sp.	0.2 m	S-273
0.6	22	132	314	Qtz.,py.,cp.	0.6 m	S-272
0.3	32	14	49	Qtz.py.	0.4 m	S-271
11.8	55	49	455	Qtz.,py.,cp.	0.3 m	S-270
5.4	184	257	321	Qtz.,py.,chl.	2.0 m	S-269
1.8	23	47	54	Qtz.py.	0.7 m	S-268
16,6	4723	2718	332	Qtz.,py.,sp.,ga., 098 trend, dip 85 N	1.0 m	S-267
2.6	6 4	376	412	Qtz.,py., 100 trend, dip 78 S	0.6 m	S-266
151.8	231	22088	2130	Stibnite, greenoleite, ga.,cp.	0.7 m	S-265
2.3	52	338	284	Massive pyo.,trace cp.	0.5 m	S-264
2.7	39	117	224	Qtz.,py.,pyo.,lim.	0.2 m	S-263
1.5	222	329	66	Qtz.,py.	0.5 m	S-262
139.8	2507	21812	692	Qtz.,py,,pyo.,sp.,ga.,cp. 063 trend, dip 70 N	0.5 m	S-261
1.4	552	69	660	Same as above	0.8 m	S-260
0.6	59	61	115	Qtz.,py.,pyo.,in vol. bx.	0.6 m	S-259
1.7	487	75	256	Same as above	0,6 m	S-258
1.3	237	88	224	Indurated mass. pyo.,045 trend, dip 80 NW	1.0 m	S-257
43.1	10692	9881	292	Qtz.,py,cal.,sp.,ga. 040 trend 75 NW dip	1.3 m	S-256
397.9 13500	23037	24534	8358	same as above, twin vein	1.0 m	S-255
270.3 15800	50764	21078	2424	pyo.,sp.,ga.,cp.,045 vein, 55 NW dip	1,0 m	S-254
10.1	151	175	581	35% py., 10% qtz., 1% cal	0.5 m	S-253
0.3	107	18	74	1-4 mm py. blebs as replacement	0,7 m	S-252
3.4	212	31	1596	py.,qtz.,cp.,chl.,cal.,cp.,075 fault	0.5 m	S-251
Ag ppm Au ppb	Zn ppm	Pb ppm	Cu ppm	Description	Width	Sample

August Jack Mtn. 5,900'

Sample	Wadth	Description	c	u ppm	Popen	Za ppca	Ag ppm	Au ppt
\$-251	0.5 m	py .qtz,.cpchicalap.,075 fault		596	31	212	34	30
S-252	07 ma	1-4 mm py blobs as replacement		74	18	107	03	10
\$-253	0.5 m	35% py , 10% quz , 1% cal		581	175	151	101	295
5-254	10 m	pyospgal.cp.045 veas. 55 NW dap		424	21078	50764	270 3	15800
S-255	10 m	same as above, twin your		358	24534	23037	397.9	13500
\$-256	13 ma	Qtz.,py.,cal.,sp.,ga. 040 trend 75 NW dip		292	9881	10692	43 1	205
\$-257	10 ma	Indurated mass pvo. 045 trend, dip 80 NW		224	88	237	13	1280
\$-258	06.00	Same as above		256	75	487	17	140
S-259	96 m	Quz ,py ,pvo ,in vol. bx		115	61	49	06	35
S-260	0 8 m	Same as above		660	69	552	14	40
5-261	0.5 m	Qtz.,py, pyo .sp. ga. cp. 063 trend, dip. 70 N		692	21812	2507	139.8	230
\$-262	0.5 m	Quz.p.		66	329	222	15	185
\$-263	02m	Otz. pv. pvo .lum		224	117	,39	27	460
S-264	0.5 m	Massive pyo.,trace cp		284	338	52	2.3	70
5-265	0.7 m	Subase, groonokste, gacp		2130	22088	231	151.8	145
S-266	06 m	Qtz.,py., 100 trend, dip 78 S		412	176	64	2.6	105
S-267	10 ma	Qtz.psspga 098 trend, dip \$5 N		332	2718	4723	16.6	110
5-268	07 m	Qiz pi		54	47	23	18	280
S-269	20 m	Ouz.pycpchl		321	257	184	54	45
5-270	03 m.	Qtz.pscp		455	49	.55	118	160
S-271	04m	Quz pi		49	14	32	03	25
S-272	0.6 m	Otz.,pycp		314	132	22	06	5
5-273	02 m	Qtz.pv ga.sp		136	772	3657	29	20
S-274	flom	Massive pyo trace cp		270	44	40	0.9	80
5-275	05 m	Ouz.ps., 045 trend, 55 SW dap		30	199	88	18	85
S-276	float	Qtz monaonate, trace molvibdonite		17#	45	103	12	25
\$-277	04 m	Qtz py .sp 120 trend. vertical dip		44	154	1355	2.8	120
S-278	03 m	Mass pvo ,15% qtz.,100 trend, dip 78 S		491	2838	90553	467	1305
5-279	08 m	Our psgalspop., 092 tread, 82 5 d	up	1015	20804	20332	197 7	1350
S-280	10 m	Qtz.pv., 040 trend, vertical dip		78	63	352	17	4250
S-281	08m	Qtz., pscp., part of quartz stockwor	ri	616	99	117	17	40
								
cata ned. #			ppm Cu	ppm Pb	ppen Zr	i ppes/	As ppb	Au
101 Senali ck., hra., py 140		140	32	134	0.5	30		
102 Senail ck., late, py 208		108	30	141	04	480		
63	Smallick, fam., py 23		253	63	159	04	215	
							1	
04	Small ck .	hm, py	181	124	217	14	130	
	Small ck . Small ck .		181 161	134 28	217	0.4	130 70	

