Geochemical and Geological Assessment Report on the "025" Claim Group, Atlin Mining Division, NWBC

NTS 104M9E & W

Latitude 59°34'30''N Longitude 134°14'30''W

UTM 8V 542.4E 6602.2N

Owner/Author G.R. Thompson B.Sc. (hon)

November 21, 2000

TABLE OF CONTENTS

Introduction	Page 2
Location and access	Page 2-3
Claim information	Page 5-5
Topography and Vegetation	Page 6
Physiography, climate and glaciation	Page 6
History and previous work	Page 7-9
Regional geology	Page 10-11
Claim geology	Page 12-14
Exploration Work	Page 15
Geochemistry	Page 16-23
Mineralization / Alteration / Fluid Chemistry	Page 24-26
Discussion	Page 27
Summary	Page 27
Recommendations	Page 28
Statement of author's qualifications	Page 28
Statement of Cost	Page 29
References	Page 29
	5

•

LIST OF FIGURES

Figure 1	General Location Map of BC
Figure 2	Project area 104M9
Figure 3	025 claim group location Tagish Lake
Figure 4	Mineral titles map of claims
Figure 5	Aerial photograph of the 025 structures
Figure 6	Geological cross section
Figure 7	Geology map
Figure 8-13	Sample location maps
Figure 14-18	Geochemical results maps
Figure 19-23	Photographs- photomicrographs of petrology
Figure 24	SEM photomicrograph

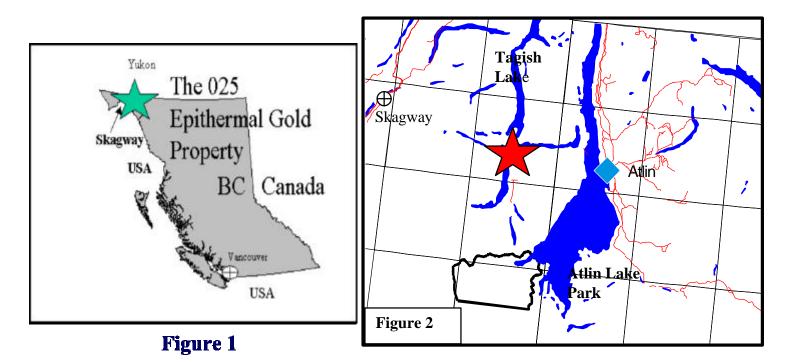
LIST OF TABLES

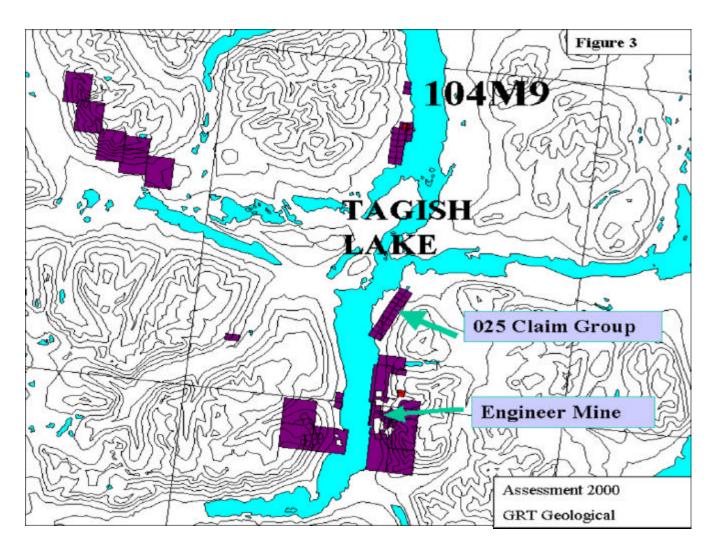
Table 1	Claim information
Table 2	Summary R ² results Bearox zone
Table 3	Geochemical results summary
Table 4	Assay results/sample descriptions

Table 5Bearox soil data R², pre-1998

LIST OF APPENDICIES

Appendix 1	Table 4
Appendix 2	Petrography and par agenesis sample 801-806
Appendix 3	Pima infrared spectroscopy results
Appendix 4	Table 5

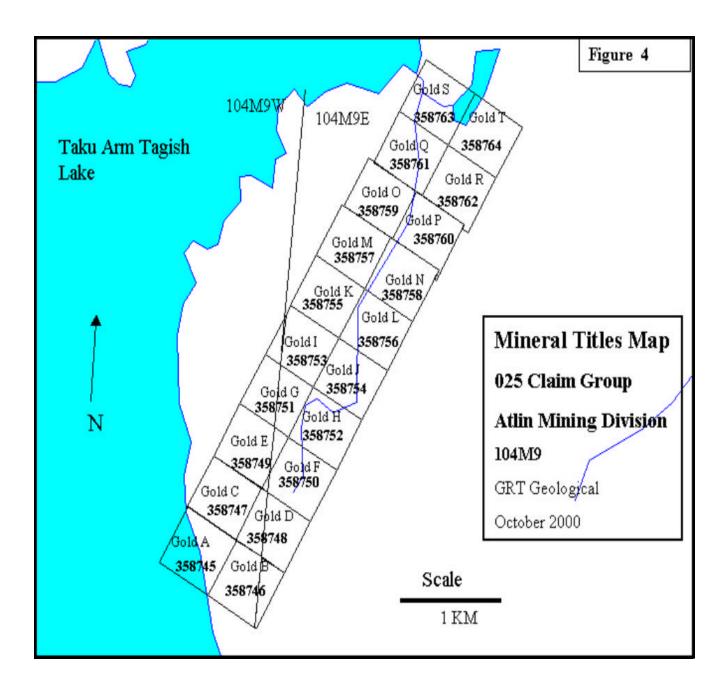

INTRODUCTION


The "025" claim group consists of 20 contiguous two post claim units along a prominent 6 km normal shear structure which trends 25°. G.R.Thompson discovered gold bearing epithermal breccia on the east shore of Tagish Lake in 1988 during a regional prospecting program. Since then, several kilometers of anomalous gold-silver-arsenic have been mapped to date.

The objective of the program this season was to gain knowledge on the character of mineralization and alteration and to obtain geochemical soil data for unexplored areas within the central and northern portions of the property. Twenty-two hand auger soils and seven rock samples were taken over a 5 km strike. Ten samples were selected from pre-1998 programs for petrology, fluid inclusion, infrared and scanning electron microscope studies.

LOCATION & ACCESS

The"**025**" claim group is located in Northwest British Columbia, Canada (Figure 1). NTS 104M9, UTM 8 V 542.3E 6602.1N, Latitude 59 degrees 34'30"N Longitude 134 degrees 14' 30"W. The property is situated in the Atlin Mining Division, approximately 35 km west from the town of Atlin (Figures 2-4). The property is accessible by boat from Atlin, west to Atlin River-Graham Inlet then to Taku Arm of Tagish Lake, which, takes about a hour. Helicopters and float planes are also available in Atlin and takes about 20 minutes.



CLAIM INFORMATION

Table 1.The 025 claim group.

Claim Name	Tag Number	Tenure Number	Number of units	Expire Date
Gold A	680251M	358745	1	Aug.29,2003
Gold B	680252M	358746	1	Aug.29,2003
Gold C	680253M	358747	1	Aug.29,2003
Gold D	680254M	358748	1	Aug.29,2003
Gold E	680255M	358749	1	Aug.29,2003
Gold F	680256M	358750	1	Aug.29,2003
Gold G	680257M	358751	1	Aug.29,2003
Gold H	680258M	358752	1	Aug.29,2003
Gold I	680259M	358753	1	Aug.30, 2003
Gold J	680260M	358754	1	Aug.30, 2003
Gold K	680261M	358755	1	Aug.30, 2003
Gold L	680262M	358756	1	Aug.30, 2003
Gold M	680263M	358757	1	Aug.30, 2003
Gold N	680264M	358758	1	Aug.30, 2003
Gold O	680265M	358759	1	Aug.30, 2003
Gold P	680266M	358760	1	Aug.30, 2003
Gold Q	680267M	358761	1	Aug.30, 2003
Gold R	680269M	358762	1	Aug.30, 2003
Gold S	680270M	358763	1	Aug.30, 2003
Gold T	680268M	358764	1	Aug.30, 2003

TOPOGRAPHY & VEGETATION

The claims lie within the flank of the Tagish Highlands. From Tagish Lake at an elevation of 650m (2151 ft.) undulating low to moderated relief rises to 840m (2700 ft.) with limited outcrop, swampy lakes, intermittent creeks and mature forest cover. Stands of Spruce, Pine, Poplar, balsam and shrubs of willow and alder are throughout the property (Figure 3 & 5).

PHYSIOGRAPHY, CLIMATE & GLACIATION

Taku Arm of Tagish Lake acts as one of the main drainage channels for the district. Two contrasting types of topography occur in the region; that of the Teslin Plateau (part of a larger physiographic region the Yukon Plateau, and roughly comparable to the Intermontane tectonic province), and the of the Tagish Highlands (part of the boundary ranges Physiographic region, and given character from the Coast Plutonic Complex). The Teslin Plateau is an extensively dissected and eroded plateau. Topography consists of irregularly distributed, rounded hill with variable elevations (local area with flat topped, uniform elevation). The valleys are wide, deep and steep walled, and typically U-shaped. The Tagish Highlands are rugged, consisting mainly of knife-like ridges, needle summits, and abruptly incising valleys where considerable snow and ice are seen through-out the entire year. The rivers and creeks generally open in may but may be as late as June. Warm summer weather is experienced for about four months, with June and July receiving almost continuous daylight. The mean daily temperature in July is no less than 14 degrees C. The month of July receives 10 to 13 days with measurable precipitation; mean annual precipitation is 60 cm. In January the mean daily temperature is -15 C., with 14 to 17 days with measurable precipitation. During the Pleistocene epoch the Tagish Highlands became extensively glaciated, while the upperland part of the Teslin Plateau was effected to a lesser extent (Figure 5).

HISTORY AND PREVIOUS WORK

The Mass and Quantity claims were staked in 1988 by G.R.Thompson upon discovery of gold bearing quartz flooded argillite breccia on the east shore of Tagish Lake. From 1989-92 the property was under option to Golden Bee Minerals Inc, whom conducted geological mapping, trenching, petrographic studies, grid w/soil and rock geochem. From 1992-97 G.R.Thompson conducted control grid, geological mapping, soil and rock geochemical surveys, S.P. geophysics, hand trenching and XRD Studies.

The Main Zone strikes for 360m having widths vary to 15m. Seventy-two rock samples returned an average of 3 g/t Au and 57 g/t Ag. Grades to date range up to 8.7 g/t Au, 1374 g/t Ag. An arsenic soil anomaly is centered within the southern portion of the main zone, which corresponds to the higher Au-Ag grades. The following are results from hand trenching and chip sampling.

- 89TR01- 5m @ 2.3g/t Au, 57 g/t Ag,
- 89TR02- 4m @ 3 g/t Au, 9g/t Ag,
- 96TR01- 4m @ 2.47g/t Au, 102g/t Ag,
- 96TR02- 3m @ 2.5 g/t Au, 11 g/t Ag,
- 96TR03- 6m @ 1.9g/tAu, 3.8g/t Ag.

The **Bear-ox Zone** displays a 700 m long by up to 100 m wide arsenic, gold soil anomaly. Gold from soils have returned up to 17 600 ppb Au, with a 15m > 1000 ppb Au from 5 m stations and 3 m of > 10000 ppb Au from 1m stations.

Trenching results are as follows:

- 91TR02- 6m @ 2.5 g/t Au, 5.0 g/t Ag.
- 97TR01- 11m @ 1.3 g/t Au, 2.0 g/t Ag.

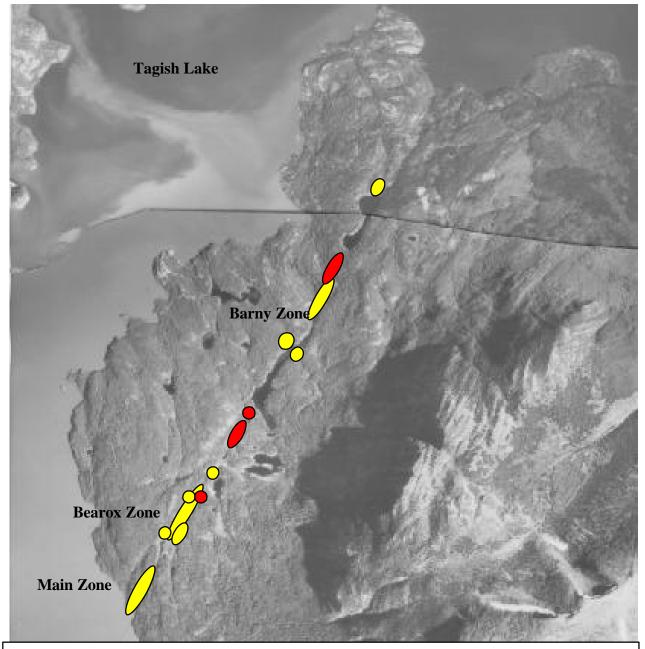
Weak S.P. geophysical anomalies correspond with some of these geochemical results and several moderated S.P anomalies were identified outside the fault zone. XRD analysis has identified Samarium Telluride from pyritic-clay associated with anomalous gold. Several drill targets have been identified.

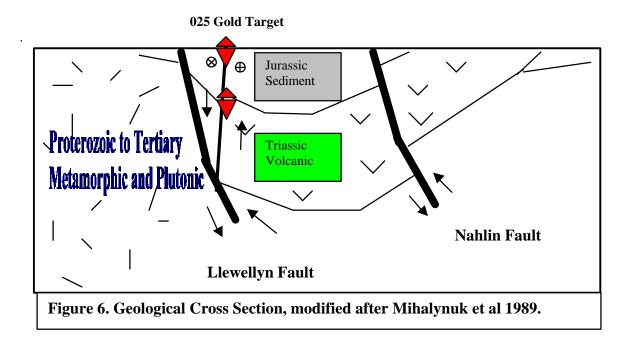
The **Barny Zone** displays anomalous Au, Ag, As, and Sb values for a strike of 1 km. Breccia and stockwork qtz-carbonate zones are associated with a high level granodiorite porphyry, cross faults and overturned folds.

Early workings on the property date back to early-mid 1900's. Many old shallow hand trenches are evident along the structure, but the operators are unknown, and no government records are available. Activity in the area dates back to 1898 when White Pass Engineer's made their way to the placer camps of Atlin and Dawson City. Visible gold was discovered of the shore of Tagish Lake, which became the Engineer Mine, located 6 km south of the 025 property. Operation of the Engineer Mine was from 1913 to 1952, which produced 18,058 oz of gold and 8,450 oz of silver from 17,157 tons

milled. T.R. Bultman, conducted a Ph.D., thesis on the geology and tectonic history of the Whitehorse Trough region (unpublished, 1979).

The BCDM conducted a 4 year (1987-90) regional geological and geochemical Program. BCDM Sample #88mm5-3 taken from the Main zone returned 5.2 g/t Au and a sample contained visible gold in quartz flooded argillite breccia.




Figure 5. Aerial Photograph of the 025 Structures and known areas of anomalous Au, Ag, As and Sb values in yellow, red are new areas of anomalous Au.

REGIONAL GEOLOGY

The 025 claim group lies within the Whitehorse Trough of the Northwest trending Intermontane tectonic province. This area is bounded by two major long-lived deepseated faults (Figure 6). The 025 claim group covers a splay fault off the sub-vertical Llewellyn Fault system. The Llewellyn Fault separates the Whitehorse Trough from the Coast Crystalline Complex (Nisling Assemblage). The Nisling Assemblage is a displaced continental margin package, polydeformed to four phases of deformation (Mihalynuk and Mountjoy, 1989). Probable upper Proterozoic to Paleozoic in age. Protoliths are varied, mainly pelitic but also volcanic protoliths and carbonates (Mihalynuk and Mountjoy, 1989). The Cache Creek group is an oceanic assemblage comprised of basalts, massive carbonates and imbricated altered ultramafic slices, and mantel tectonites. In parts, the Whitehorse trough blankets the Nisling and Cache Creek terranes as an overlap. The oldest rocks in the Whitehorse Trough are K-spar megacrystic hornblende granodiorite, age constraints to 212-220 Ma, accompanied by hornblende and pyroxene leucogabbro. Overlain by a thick blanket of polymictic boulder conglomerate, with clasts of the 215 Ma K-spar megacrystic granodiorite in the conglomerate and ferric-pyroxene breccia and basalt typical lithology of the Stuhini Group volcanic rocks (Mihalynuk and Mountjoy, 1989). The Whitehorse trough has under gone lateral shortening by some 45 percent (Mihalynuk et al., 1990). This has resulted in closed to open, symmetric to asymmetric folds with wave lengths ranging up to 10 km. Folding in the Laberge group is particularly well developed (Mihalynuk et al., 1990) (Figure 6 & 7).

The Stuhini Group forms a 3 km thick pile of pillow basalts, breccias, intercalated argillites and volcanic clastics, topping them forming a cap are the upper Triassic Carbonates correlated with the Sinwa Formation which sits on top of the Stuhini Group succession (Mihalynuk and Mountjoy, 1989). Unconformably overlying those in some places and structurally overlying them in most places are the rocks of the Laberge Group (Mihalynuk and Mountjoy, 1989) (Figure 6).

The Laberge group rocks are dominated by feldspathic-graywacke, argillite and conglomerate of lower to middle Jurassic. The Laberge Group sediments began the early depositional stages as evidence by intraformational angular unconformaties associated conglomerated in strata of probable Pliensbachian age (Mihalynuk et al, 1990). Slump folds are common on the hand sample scale to hillside. Later axial-surface cleavages bare no relations to these early-form slump-folds. Folds produced during this deformation have axial planer (or near Planer) surfaces that consistently trend northwest and most commonly dip steeply both east and west (Mihalynuk et al., 1990). Axial cleavages are well developed in argillites, but are rare in massive wackes. Major folds are up-right, gentle to close, and gently plunging (Mihalynuk et al., 1990). Many of the units within the Laberge Group Sediments have limited facies-dependent distribution which results from their depositional environment, interpreted as one of coalescin subaqueous turbiditic fans (Bultman, 1979).

LOCAL GEOLOGY

The 025 claim group geology is dominated by lower to middle Jurassic Laberge Group sediments, consisting of interbedded argillaceous siltstones, feldspathic-wackes, siliciclastics and conglomerates. A chloritic hornblende granodiorite porphyry intrusive outcrop is located on the east side and footwall of the 025 srtucture. The main structure within the claim group is a 6 km long N025E trending sub-vertical west dipping normal fault. The 025 fault is splay off the Llewelyn fault and has many cross faults trending north to northwest. The 025 Claim Group straddle this structure by 500m on both sides. Marsh lands cover many of the structures, but their lineaments are obvious from the air photo (Figure 5). The Laberge group rocks are underlain by Triassic Stuhini group volcanics. The contact between the Laberge and Stuhini group rocks is estimated at 500 – 800 m depth.

Legend to Figure 7, Geology

Lower Jurassic Laberge Group

- -IJL- Undivided wacke, argillite and siltstone.
- -IJLs- Siliciclastic: > 100 m thick; indurated siltstones to quartz-rich lithic wackes; cm-scale trough cross-stratification; well-layered; well-indurated; rusty weathering.
- -IJLa- Argillites undivided or mixed
- -IJLa1-Rhythmically bedded argillites; form successions 10-100 m thick; 2-5 cm beds, good normal grading; bioturbated tops and feeding trails especially prominent in < 10 cm calcareous beds; very sparce cobbles of various protoliths.
- -IJLa2-Irregularly and thinly bedded argillites; as recessive sets between wacke beds; dark brown to black 1-30 mm; may be silty; rusty weathering.
- -IJLg- Greywacke; feldspsar < lithic grains; very fine sand to granules; < 5 % mafic minerals, especially hornblende; clacareous with bulbous concretions m's long; beds massive or gradded, cm's to 10 m+ thick; grey to green and orange weathering; resistant.</p>
- -LJIC- Conglomerates; generally < 200 m thick. Clasts can include volcanic, sedimentary and intrusive rock types. Typically clast-supported with a coarse wacke matrix, or 1-30 % clasts floating in an argillite matrix. Martix-supported and intraformational conglomerates are also common.</p>
- -IJLq- Quartz subarenites; sandstones and granule conglomerates comprised largely of quartz with lesser feldspar. Altered biotie flakes are common accessories.

Figure 7. Geology Map of the 025 Project Area, Open File 1997-1, Mihalynuk et al. 1997

LITHOLOGY:

Argillites are divided into two major types, *Irregular, thinly interbeded* brown to black argillites variably millimeters to decimeters thick, which occur as sets within wacke successions. *Rhymically bedded* argillites form low in the stratigraphy, 10 - 100 meters thick. Beds are 2 to 5 cm thick and grade from silty, light-colored bases to dark argillaceous tops (Mihalynuk and Mountjoy, 1990).

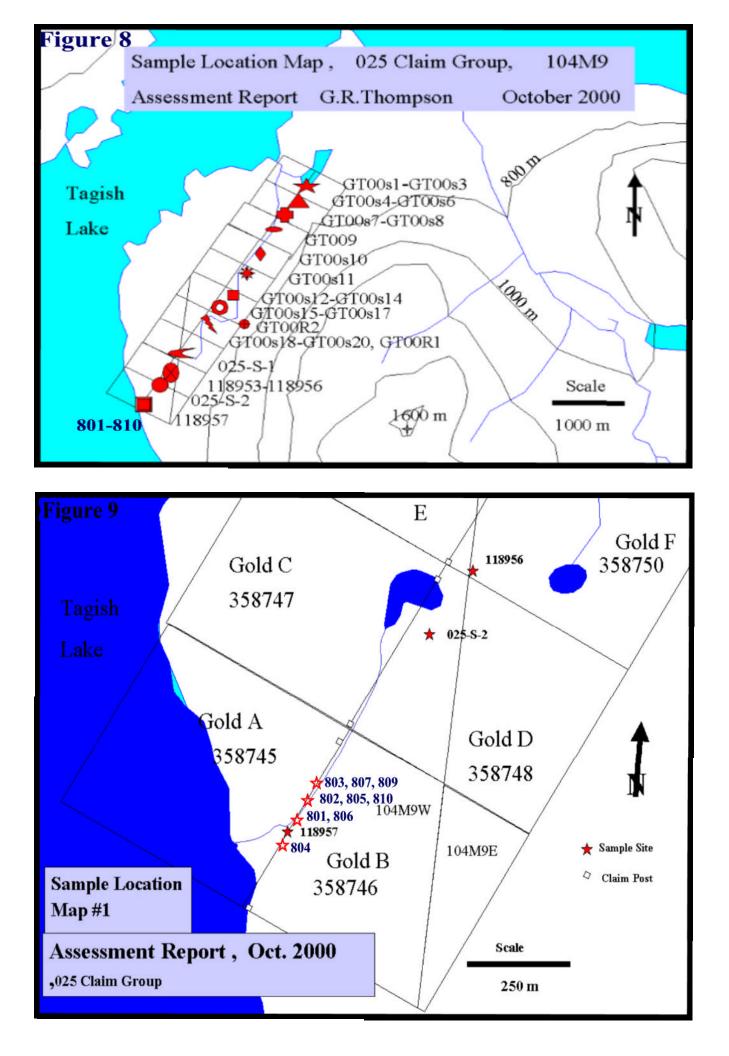
Greywackes are the dominant rock type within the Laberge group. Feldspathic wackes are the most abundant type typically in massive or well-bedded units with well defined normal grading. Beds range from 5 cm to > 10 m. The weathering color of feldspathic wackes is a greenish-gray to orange and are resistant compared to the adjacent argillite beds that are rusty-brown to black. Lithic-rich wacke beds are 10 to 100 cm thick and are interbedded with argilltes. Lithic-rich wackes are finner and less variable in grain size than the feldspathic or quartz-rich wacke (Mihalynuk and Mountjoy, 1990).

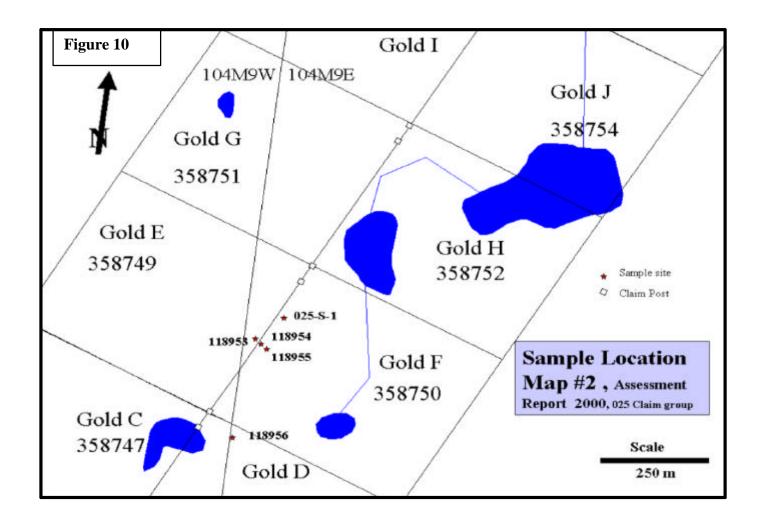
Conglomerate are 10 to > 200 meters in thickness. Volcanic and intrusive clasts domintate the lower portion whereas metamorphic fragments become more abundant upwards. Metamorphic clasts, in order of abundance, include muscovite-biotite schists and phyllites, chlorite-muscovite schists, amphibolitic gneisses and rare marble. Volcanic clasts include pyroxene and feldspar-porphyritic varieties which have a probable source from hydrothermally metamorphosed volcaniclastic succession, aphanitic mafic to felsic. Both matrix and clast-supported conclomerates are common. Intrusive boulders up to 1.2 m diameter, most commonly < 15 cm (Mihalynuk and Mountjoy, 1990)

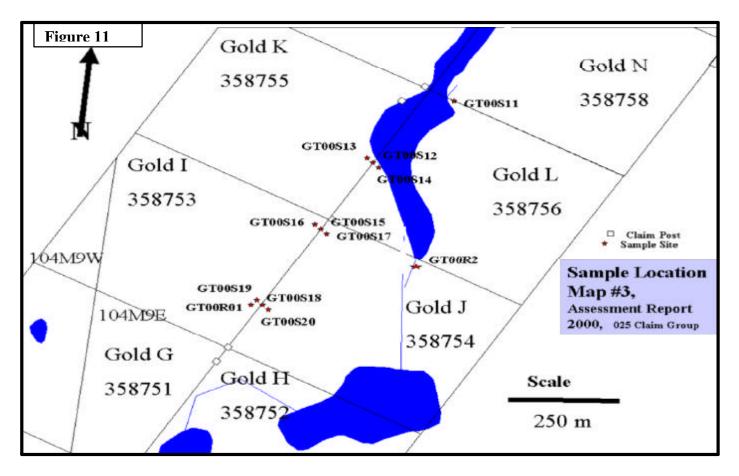
STUHINI GROUP

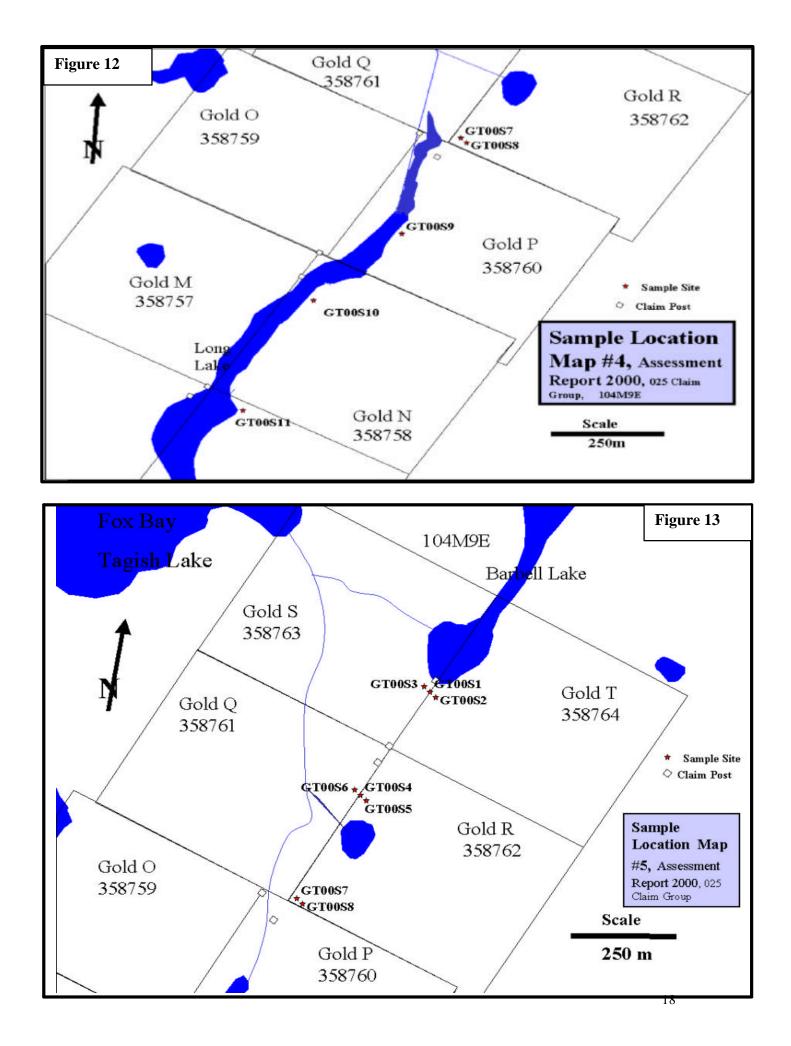
Within the southern portion of 104M8 a contiuous section of the Stuhini group sediments and volcanic rocks displays units that can be correlated for tens of kilometers. The entire package represents a transition from coarse terrigenous sediments to submarine mafic volcanics. As the volcanic piles built, they became more felsic and less voluminous. At the end of volcanism, epiclastic and reefal carbonate deposition covered and preserved the volcanic piles. The culmination of carbonate deposition marks the top of the Stuhini strata, (Mihalynuk and Mountjoy, 1990).

STRUCTURE


The 025° structure is a prominent 6 km long, up to 100 m wide, normal strike slip dip-slip fault (Figure 5 &7). Faulting within the 025 structure is complex with many structures trending north-south to northwest and northeast. An overturned fold lies between two northwest trending vertical dipping faults, juxtaposed to the main 025 structure which is evident on geology and aerial maps. Folds are open to isoclinal with the axial plane of folds east of the 025 structure trending northwest with a steep southwest dip, while the axial plane of folds west of the 025 structure trend north to west-north-west. A shallow northeast dipping thrust fault is located near the north end of the 025 structure.


EXPLORATION

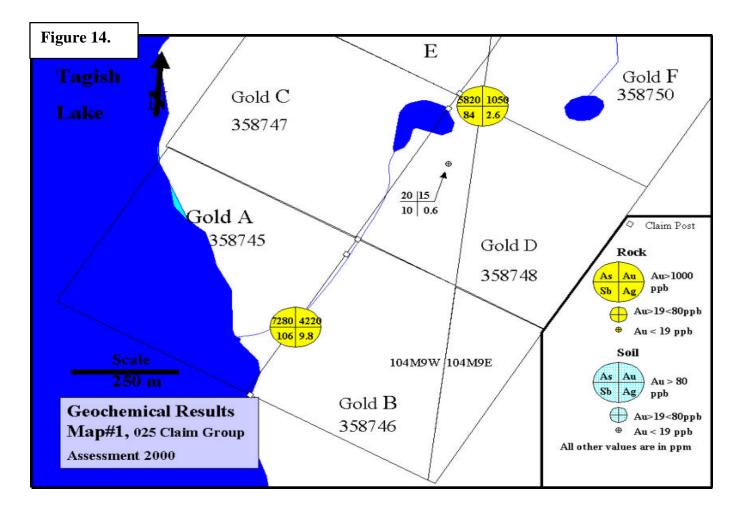

Assessment work was conducted on the 025 claim group from August 10th to August 27th. Two men accessed the property from Atlin via Jet boat (1.2hrs each way). Atlin was used for food and accommodation, since only a few days were spent on the property. Twenty-two soil and seven rock samples were taken over a 5km strike (Figures 8-13). Soils were taken by hand auger from 0.3m to 2.5 m depth, along short lines normal to the 25° trending structure. One to three soils were taken per-line at 20 m stations and 200-300m line spacing (Figures 8-13). Rock samples were taken as grab or 1-2 chips. The rocks and soils were sent to ALS Chemex Labs in North Vancouver for preparation geochemical analysis (appendix 1)

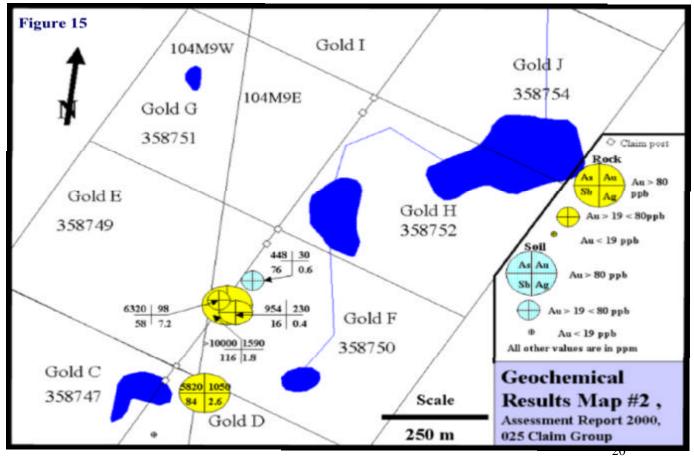

Ten rock hand samples numbered 801 - 810, were selected from samples collected on the 025 Main zone from 1988- 1997 (Figures 8 & 9). The 10 had samples were cut and made into polished thin sections for petrographic, fluid inclusion and scanning electron microscope studies. The 801 - 810 rock samples were analyzed by PIMA infrared spectroscopy and subjected to a HF-Sodium Nitrate test (K-feldspar staining)(Figure 19). A boulder sized sample from the discovery outcrop Main zone was cut into a cubic hand sample (Figure 20).

Soil geochemical data from pre-1998 (Bearox Zone) were used to determine correlation coefficients R^2 values for Au and pathfinder elements (Table 2 & 5).

GEOCHEMISTRY

Background values for gold and arsenic were determined from the BCDM's regional program in the Tagish Lake area (Mihalynuk et al.1988). Anomalous values were set to be > 19 ppb, > 117 ppm, > 30 ppm and > 0.4 ppm for Au, As, Sb and Ag respectively.


Twenty nine samples were submitted to ALS Chemex Laboratory in North Vancouver. Soil samples were prepared to -80 mesh while rock samples were prepared to -150 mesh. Samples were analyzed using 32 element ICP aqua regia digestion charge. Gold values were determined by fire assay using atomic absorption spectra (Table 3 & appendix 1).


The correlation coefficients were obtained using excel R^2 plots. Soil geochemical results from 200 samples (appendix 4) on the Bearoz Zone pre-1998 were analyzed. Positive correlations exists between Au/As (0.63), Au/Cu (0.64) and Au/Sb (0.56). The strongest correlation exists between As/Sb (0.74), (Table 2)

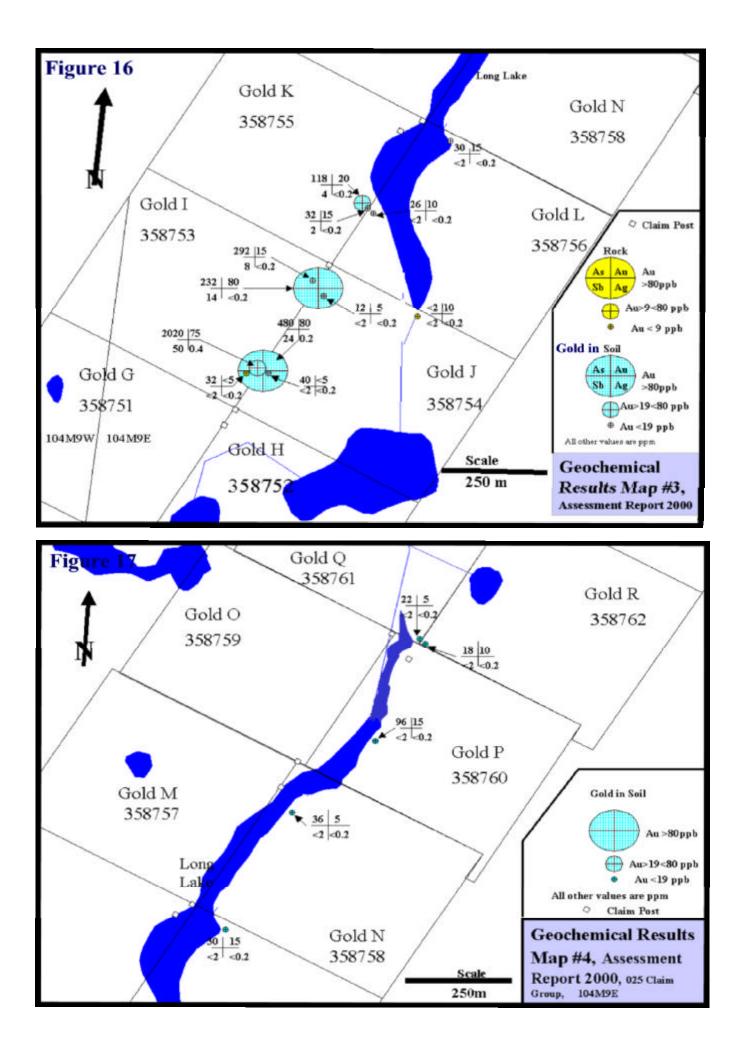

	<u>Au ppb</u>	Ag ppm	<u>As ppm</u>	<u>Sb ppm</u>	<u>Cu ppm</u>	<u>Zn ppm</u>	<u>Mo ppm</u>	Ba ppm
Au	1							
Ag	0.34	1						
As	0.63	0.30	1					
Sb	0.56	0.26	0.74	1				
Cu	0.64	0.48	0.53	0.49	1			
Zn	-0.19	-0.80	-0.031	-0.25	-0.11	1		
Мо	0.05	0.02	0.35	0.25	0.31	0	1	
Ва	-0.20	-0.09	-0.41	-0.26	-0.4	0.39	-0.33	1
Pb	0.21	0.12	0.44	0.39	0.5	0.09	0.36	-0.31
Ca%	0.44	0.45	0.47	0.39	0.41	-0.16	-0.11	-0.13

 Table 2. Correlation coefficients, n=200, Bear-ox zone.

A summary of the geochemical results for 2000 are shown in Table 3. From the 22 soils samples, 9 are considered anomalous for gold, with a high of 140 ppb Au. Four of the 22 soils were anomalous in silver with a high of 0.6 ppm, while six were anomalous in arsenic with a high of 2020 ppm. From the seven rock samples taken, 5 are anomalous in Au, Ag and As, with highs of 4220 ppb Au, 9.8 ppm Ag and >10000 ppm As. A complete list of the assay results and sample descriptions are given in Table 4. Geochemical results for (Au-Ag-As-Sb) are ploted on maps (Figures 14-18) below.

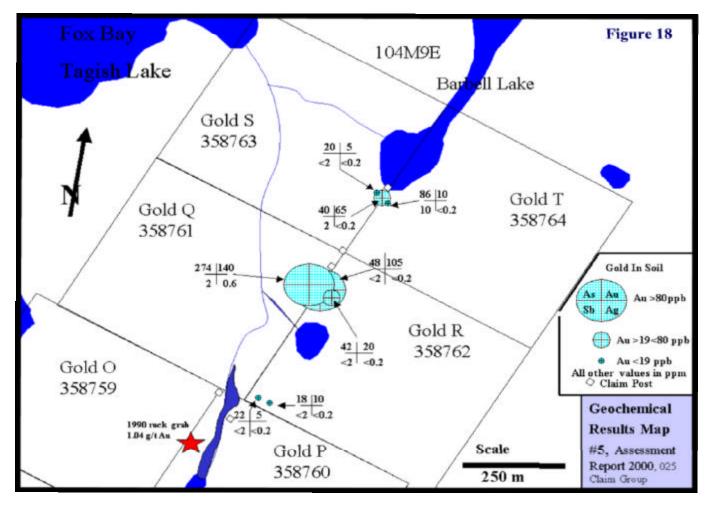
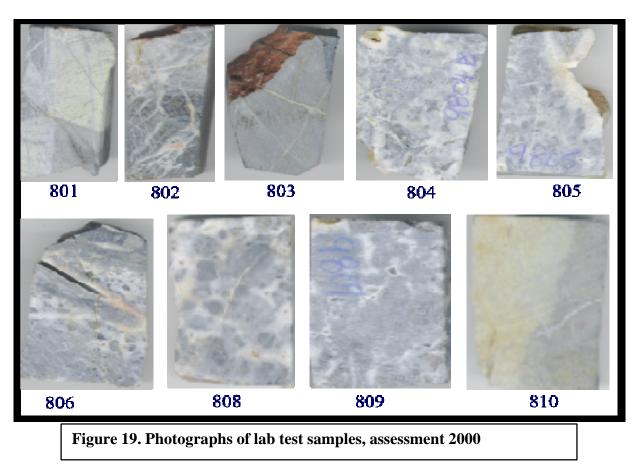
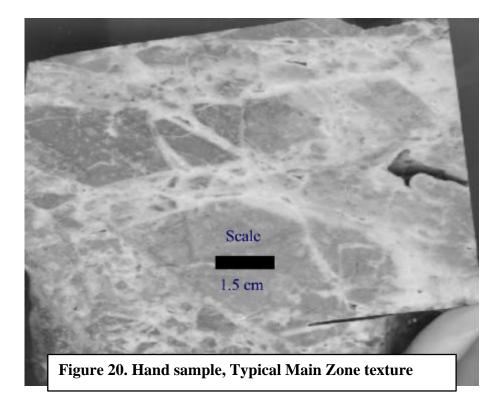


 Table 3.
 Summary of Geochemical Results


Geochen	nical Summary 025 Assess	sment 2000	
From 22	Soil Samples		
Au	<u>> 19 ppb</u>	<u>>= 80 ppb</u>	<u>High ppb</u>
	9	4	140
Ag	<u>> 0.4 ppm</u>	<u>> 2 ppm</u>	High ppm
	4	0	0.6
As	<u>> 117 ppm</u>	>240 ppm	High ppm
	6	5	2020
From 7 R	lock samples		
Au	<u>> 19 ppb</u>	<u>>= 80 ppb</u>	High ppb
	5	5	4220
Ag	<u>> 0.4 ppm</u>	<u>> 2 ppm</u>	High ppm
	5	3	9.8
As	<u>> 117 ppm</u>	<u>>240 ppm</u>	High ppm
	5	5	>10000


FLUID INCLUSIONS

Samples were investigated for fluid inclusions in an attempt to determine fluid chemistry and temperature of crystallization, however, only very small ($< 5 \mu m$) vapor rich inclusions were observed. Larger inclusions were noted to have abundant necking or leaking, thus, a fluid inclusion study was not conducted due to extensive deformation.

MINERALIZATION

Gold and silver occur in the native form and in close association with arsenopyrite – pyrite. Sulphides are commonly less than 2%, but, may range up to 4 % by volume and are partially replaced by limonite. Arsenopyrite forms as finely disseminated neddles, blebs, framboids (Figure 24) and (micro-veinlets 1.3 mm wide) (Figure 21-24). Pyrite is generally in the cubic form as fine disseminations. Gold grains in thin section range up to 100 μ m in size. Silver occurs late in the paragenesis as native and possibly as andorite-argyridite grains up to 500 μ m in size (Figure 21). Sulphides appear structurally controlled, which have undergone multiple episodes of (crack and seal) by fault activation and crystallization of mineralizing fluids.

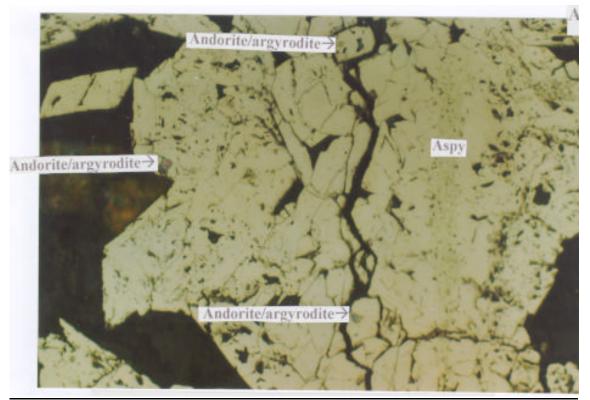


Figure 21. Photomicrograph sample # 801, FOV 0.30 mm, xpl, aspy seem

Figure 22. Photomicrograph sample #801, FOV 5.1 mm, ppl

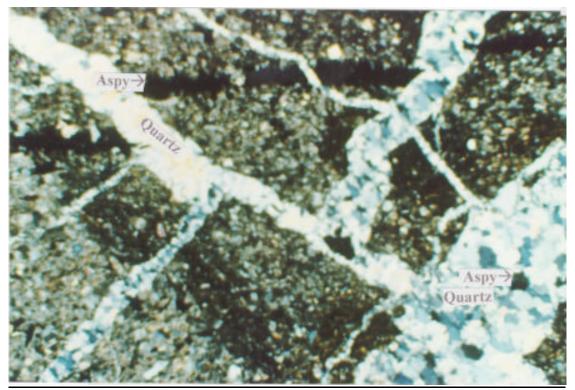


Figure 23. Photomicrograph sample #803, FOV 5.1 mm, transmitted xpl

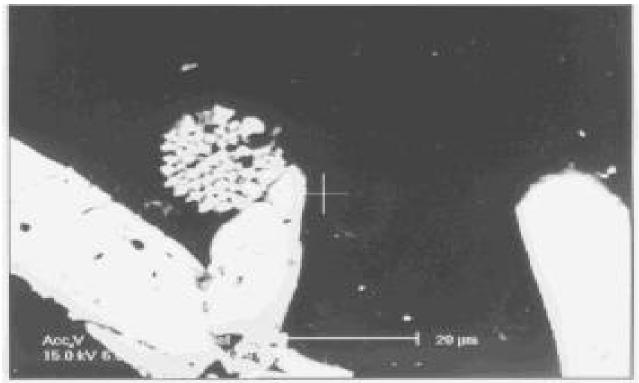


Figure 24. Photomicrograph sample #801, Scanning Electron Microscope, Aspy

ALTERATION

The dominant alteration within the main zone is phyllic (quartz-sericite-aspy-py), with K-feldspar, silicification, chalcedony and illite. Weak to moderate pervasive potassium alteration was determined from HF-Sodium cobalt nitrite staining (Sample # 9801 & 9810) (Figure 19). The PIMA Infrared spectral analysis indicates the presence of illite and muscovite with a low error margin, while the remaining samples returned null of high error (appendix 3). The presence of illite indicates a temperature range of an estimated 150-250°C. Alteration is localized to the 025 fault and related structures. The wall rocks are only weakly to moderately altered suggesting a low temperature system. **DISCUSSION**

The soil sampling program has identified two new areas of anomalous gold mineralization within the 025 structure. The first new area is located in the central portion of the structure (Figure 5 & 16), where gold ranges from ≥ 20 ppb to ≤ 80 ppb, 300-500 m strike ± 20 m wide. The second new area is located at the north end of the Barny zone (Figure 5 & 18), where gold values range from ≥ 20 ppb to ≤ 140 ppb, > 300 m strike,

and $\leq 20 \text{ m}$ to $\geq 60 \text{ m}$ wide. Rock samples failed to turn up any new areas of mineralization, however, have provided additional data for the Bearox and Main zones. Rock grab Sample #118957 from the main zone returned 4.22 g/t Au (Table3 & 4). Rock samples 118953-118955 were taken from hand trench 97HTR01 on the Bearox zone as 3 consecutive samples returned 933 ppb over 4 m. Grab sample # 118956 was taken from the southeast portion of the Bearox zone returned 1050 ppb Au (Table 4). Grab samples GT00R1 and GT00R2 contained disseminated to blebs of sulphide with qtz-breccia textures, but, failed to turn up significant values (Table 4).

Quartz is the dominant phase component with a single phase reaching 54 % quartz by volume. Quartz is seen with foam textures microscopically and as feathered net texture, coxcomb, crackle breccia, stockwork and with drusy vug textures megascopically. Phyllic alteration is localized to the fault zone however, it is present at all stages in the paragenetic sequence. Up to three phases of quartz-sulphide mineralization have been identified from petrology. Quartz and sulphides display foam textures and crosscutting relationships. Gold and silver are intimately associated with the arsenopyrite deposition. Data also suggest that the gold and silver were deposited late in the fluid phase, post-syn arsenopyrite and pyrite deposition.

SUMMARY

Soil samples taken this year have extended the strike length of anomalous Au-As values within the 025 structure by 500 m. Alteration of the main zone consists of quartz, potassium feldspar, illite, sericite, muscovite and other clays minerals. Small vapour rich fluid inclusion were identified, suggesting a low to moderate salinity, however most of the aqueous-vapour inclusions were deformed which hampered this study. Correlation coefficient (r²) values for Au/As, Au/Cu, and As/Sb are 0.63, 0.64 and 0.74 respectively. Petrology has identified multiple episodes of quartz-sulphide mineralization within the main zone. Open spaces, coxcomb and cockade texture with limited wallrock alteration and presence of illite suggest a low temperature 150-250°C epithermal system for the Main zone. Abundant slickenslides megascopically and foam texture, network fractures and leakage of fluid inclusions microscopically is evidence for a dynamic system.

RECOMMENDATIONS

- Gold is known to occur in the native form and associated with arsenopyrite and pyrite. Further studies should be conducted to determine if gold is refractory and at what ratio.
- Additional soil sampling within the central portion of the structure, Barny zone area and southern portions of the Bearox zone. Soils should be taken with a mechanized auger due bog like ground conditions.
- A Radiometric survey should be conducted along the entire 6 km structure, which would detect areas of strong potassic alteration.
- An I.P. survey in a dipole-dipole array should be conducted along the 6 km structure which would detect resistive and conductive areas.
- Geological mapping and investigation of areas where a high degree of cross faulting occurs (Figure 5).

STATEMENT OF QUALIFICATIONS

- I Gary R. Thompson of #147-6335 Thunderbird Crescent, Vancouver BC, V6T 2G9, certify that:
- I hold a B.Sc. (honours) geology degree from The University of British Columbia.
- I have been active in mineral exploration since 1984.
- I have successfully completed the Advanced Prospectors Training Program and the Petrology for Prospectors Program sponsored by the British Columbia Energy Mines and Petroleum Resources in 1989 and 1990 respectively.

August Assessment 2000

Gary R. Thompson, B.Sc.-----

Acknowledgement

Thanks to David Caulfield (Rimfire Minerals Corp.) for support on the soil-rock

geochemical program.

Cost Statement 025 Claim Group Assessment Work 2000

Labour	8 man days	\$\$250 pd	\$2,000
Travel			\$1,900
Food-Accon	nmodation		\$500
Assays			\$800
Supplies			\$300
Lab-prep-an	alysis		\$1,250
Misc			\$200
Report			<u>\$500</u>
			\$7,450
	withdrawl	-	\$550
		<u>total</u>	\$8,000

REFERENCES

- Bultman, T.R. (1979): Geology and Tectonic History of the Whitehorse Trough West of Atlin, British Columbia; unpublished Ph.D. thesis, *Yale University*, 284 pages.
- Mihalynuk, M.G., Currie, L.D. and Arsksey, R.L. (1989): The Geology of The Tagish Lake Area (Fantail Lake and Warm Creek) (104M9W and 9E); *BC Ministry of Energy Mines and Petroleum Resources*, Geological Field work 1988, Paper
- Mihalynuk, M.G., Currie, L.D. and Arsksey, R.L. Mountjoy, K.J., Smith M.T, and Rouse, J.N. (1997): Geology of The Tagish Lake Area, in; Geoscience Map 1997-1 Open File, British Columbia Geological Survey Branch, Minisitry of Employment and Investment, Energy and Minerals Division, Map.
- Mihalynuk, M.G., and Mountjoy, H.J. (1990): Geology of the Tagish Lake Area (Edgar Lake 104M8 and Fantail Lake 104M9E); *BC Minsitry of Energy Mines and Petroleum Resources*, Geological Fieldwork 1989, paper 1990-1, pages 175-179.
- Mihalynuk, M.G. and Rouse, J.N. (1988): Preliminary Geology of the Tutshi Lake Area, Northwestern British Columbia (105M15); *BC Ministry of Energy Mines* and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pages 217-231.

Monger, J.W.H. and Berg, H.C. (1987): Lithotectonic Terrane Map of Western Canada and Southeastern Alaska; US Geological Survey, Miscellaneous Field Studies Map MF-1874-B, scale 1:2 500 000.

REFERENCES

- Morgan, D.R. (1981): Geological Report of the Windarra Minerals Ltd. Property surrounding the Engineer Mine (104M9E and 9W); *BC Energy Mines and Petroleum Resources Assessment Report #9049*.
- Souther, J.G. (1971): Geology and Mineral Deposits of the Tulsequah Map Area, British Columbia (104K); Geological Survey of Canada, Memoir 362, 84 pages.
- Tempelman-Kluit, D.J. (1979): Transported Cataclasite, Ophiolite and Granodiorite in Yukon: Evidence of Arc Continent Collsion; *Geological Survey of Canada*, Paper 79-14, 27 pages.
- Thompson, G.R. (1996): Geological, Geochemical and Physical Assessment Report on The 025 Claim Group, Atlin Mining Divison (104M9E and 9W); BC Ministy of Energy Mines and Petroleum Resources Assessment Report #24645, 23 pages.
- **Thompson, G.R. (1994):** Geological, Geochemical and Geophysical Assessment Report on The 025 Claim Group, Atlin Mining Division (104M9E and 9W); *BC Minisrty* of Energy Mines and Petroleum Resources Assessment Report #23599, 55 pages.
- Thompson, G.R. and Strain, D. (1990): Geological, Geochemical and Physical Assessment Report on The GB1 Claim Group (104M9E and 9W); BC Ministry of Energy Mines and Petroleum Resources Assessment Report #21508 and #19384.

Aerial Photographic Prints: BC 5677-#050, 511, 067, 086, 177, 178, 179,

Appendix 1 Table 4. Assay and Sample descriptions.

Table 4. Assay and Sample descriptions.									
025 Soil ar	nd Rock S	Sample Da	ata		A0027233-CERTIFIED				
	UTM	UTM			Assessment Report 2000				
Sample #	Easting	Northing	zone	Туре	Sample Description				
GT00S1	543705	6605103	8 V	soil	1.2m depth, tan-gray-green clay rich sand-pebbles of altered argillite				
GT00S2	543719	6605100	8 V	soil	0.5m depth, tan brown, rocky-silt w/altered argillite				
GT00S3	543681	6605118	8 V	soil	0.5m depth, tan-orange-brown, clay-silt-pebbles, argillite				
GT00S4	543599	6604837	8 V	soil	0.5m depth, tan-gray-orange-brown, clay-sand-pebbles of altered argillite				
GT00S5	543631	6604838	8 V	soil	0.6m depth, tan-brown, clay-sand-silt w/altered argillite				
GT00S6	543579	6604853	8 V	soil	0.5m depth, rusty-orange-brown, silt-talus fines w/qtz-carb-breccia-argillite o/c				
GT00S7	543448	6604504	8 V	soil	0.3m depth, tan-gray-brown, clay-silt-sand, altered argillite				
GT00S8	543477	6604502	8 V	soil	0.3m depth, tan-gray-brown, clay-silt-sand-rock fines argillte				
GT00S9	543400	6604201	8 V	soil	0.5m depth, It brown-orange-tan, silt-rock fines of altered graywacke o/c				
GT00S10	543226	6603946	8 V	soil	0.3m depth, tan-borwn, clay w/argillte fragments, base of slope				
GT00S11	543129	6603631	8 V	soil	0.9m depth, tan-green-gray, clay				
GT00S12	542906	6603370	8 V	soil	2m depth, gray-blue-green, clay w/pebbles of altered argillte, fault center				
GT00S13	542876	6603385	8 V	soil	1.8m depth, tan-gray-brown, clay w/pebbles of altered argillite				
GT00S14	542941	6603388	8 V	soil	1.0m depth, medium brown clay w/pebbles of altered argillite				
GT00S15	542827	6603195	8 V	soil	1.3m depth, tan-brown, clay-sand w/pebbles of altered argillite				
GT00S16	542821	6603206	8 V	soil	0.4m depth, tan-brown, clay-sand w/pebbles of altered argillite				
GT00S17	542856	6603179	8 V	soil	0.5m depth, tan-gray-brown, clay-sand w/fragments of altered argillite				
GT00S18	542731	6602926	8 V	soil	2.5m depth, dark brown, organic rich clay-silt, old lake bottom w/snails, fault center				
GT00S19	542719	6602925	8 V	soil	0.6m depth, orange-brown, silt-talus fines, qtz-Fe-carb-breccia vein argillte				
GT00S20	542756	6602896	8 V	soil	0.3m depth, tan-yellow, silt-sand w/pebbles and cobbs of altered argillite				
025s1	4990E	5395N	8 V	soil	Bear-ox grid, gray-brown clay-silt w/fragments of argillite				
025s2	5050E	4900N	8 V	soil	Bear-ox grid area, 2m depth, gray-brown clay-silt				
GT00R1	542756	6602896	8 V	rock	float from soil site GT00S19, qtz-Fe-carb argillite breccia, 1% sulphide blebs+seems				
					weathers to a rusty-orange, open spaces and feather-net-texture to stockwork				
GT00R2	543088	6603131	8 V	rock	o/c, grab, weakly altered limestone-limygritstone, w/hairline qtz-sulphide (py) veinlets				
					taken near creek draining Long Lake, north-south srtike fault zone				
118953	542363	6602345	8 V	rock	taken from hand trench 97TR01, highly fractured qtz-agillite breccia, 1.3m chip-grab				
118954	542363	6602345	8V	rock	from hand trench 97TR01, fault rubble, highly friable, qtz-breccia fragments, 1.9m chip				
118955	542363	6602345	8 V	rock	from hand trench 97TR01, fault rubble, highly friable, qtz-breccia fragments, 1m chip				
Table 4									
118956			8 V	rock	O/c grab near First Lake (Bearox), qtz-argillite stockwork, feathery-bladed qtz				
118957			8 V	rock	main zone o/c grab, smoke gray qtz argillite breccia, fine diss\sulphides, aspy-py				

	Au	Ag	AI	As	в	Ва	Ве	Bi	Ca
Sample #	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%
GT00S1	65	<.2	1.8	40	<10	130	0.5	<2	1.1
GT00S2	10	<.2	2.78	86	<10	150	1	<2	0.81
GT00S3	5	<.2	2.33	20	<10	190	0.5	<2	0.42
GT00S4	105	<.2	2.19	48	<10	120	0.5	<2	0.73
GT00S5	20	<.2	2.23	42	<10	130	0.5	<2	0.78
GT00S6	140	0.6	1.12	274	<10	110	2	<2	0.56
GT00S7	5	<.2	2.03	22	<10	110	0.5	<2	0.26
GT00S8	10	<.2	2.66	18	<10	190	0.5	<2	0.38
GT00S9	15	<.2	3.7	96	<10	190	1.5	<2	0.51
GT00S10	5	<.2	2.42	36	<10	170	0.5	<2	0.81
GT00S11	15	<.2	2.73	30	<10	260	0.5	<2	0.97
GT00S12	15	<.2	2.21	32	<10	180	0.5	<2	0.74
GT00S13	20	<.2	2.29	118	<10	190	0.5	<2	0.78
GT00S14	10	0.2	2.31	26	<10	250	0.5	<2	1.12
GT00S15	80	<.2	1.76	232	<10	100	0.5	<2	1.06
GT00S16	15	<.2	2.38	292	<10	210	0.5	<2	0.77
GT00S17	5	<.2	2.46	12	<10	80	0.5	<2	0.41
GT00S18	80	0.2	0.86	480	<10	160	<.5	<2	6.24
GT00S19	75	0.4	1.07	2020	<10	100	1	<2	0.71
GT00S20	<5	<.2	1.98	40	<10	130	0.5	<2	0.28
025s1	30	0.6	1.6	448	<10	180	0.5	<2	1
025s2	15	0.6	1.54	20	<10	170	0.5	<2	1.25
GT00R1	<5	<.2	0.7	32	<10	80	0.5	<2	7.26
GT00R2	10	<.2	1.67	<2	<10	70	0.5	<2	3.93
118953	980	7.2	0.14	6320	<10	60	<.5	<2	0.04
118954	1590	1.8	0.49	>10000	<10	140	1	6	4.87
118955	230	0.4	1.55	954	<10	70	0.5	<2	0.16
118956	1050	2.6	0.33	5820	<10	60	<.5	<2	0.1
110057	1000	0 0	$\cap \mathcal{O}$	7000	-10	20	~ E	·0	- 01

APPENDIX 1												
Table 4	Cd	Со	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо

Sample #	ppm	ppm	ppm	Ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
GT00S1	<.5	15	40	77	3.28	<10	<1	0.16	10	0.88	450	11
GT00S2	<.5	25	89	162	5.09	10	<1	0.29	10	1.24	510	8
GT00S3	<.5	10	113	35	3.82	10	<1	0.27	<10	1.36	320	1
GT00S4	<.5	17	52	68	4.71	10	<1	0.09	<10	1.16	285	4
GT00S5	<.5	15	46	85	3.8	<10	<1	0.12	10	0.92	430	5
GT00S6	2	37	20	59	11.2	<10	<1	0.09	10	0.19	1105	<1
GT00S7	<.5	13	37	38	3.42	<10	<1	0.1	<10	0.96	305	<1
GT00S8	<.5	18	44	52	3.84	10	<1	0.18	10	1	475	4
GT00S9	1	74	72	238	8.64	10	<1	0.22	10	1.54	1265	4
GT00S10	<.5	17	44	66	3.98	10	<1	0.14	10	0.87	400	<1
GT00S11	<.5	19	51	149	4.35	10	<1	0.3	10	1.25	580	1
GT00S12	<.5	19	49	79	3.86	<10	<1	0.18	10	1.23	370	3
GT00S13	<.5	19	47	90	4.3	10	<1	0.19	10	1.13	500	3
GT00S14	0.5	17	42	55	3.39	10	<1	0.11	<10	0.81	575	<1
GT00S15	<.5	16	46	88	3.77	<10	<1	0.11	<10	1.07	400	3
GT00S16	0.5	15	46	67	3.98	10	<1	0.13	10	1.26	495	1
GT00S17	0.5	24	61	108	5.23	10	<1	0.1	10	1.64	600	7
GT00S18	<.5	11	16	72	1.96	<10	<1	0.06	<10	0.45	100	2
GT00S19	<.5	31	15	114	7.12	<10	<1	0.12	<10	0.33	850	<1
GT00S20	<.5	13	36	38	3.48	<10	<1	0.12	<10	0.76	415	2
025s1	0.5	19	53	158	4.62	<10	<1	0.08	<10	0.85	560	4
025s2	<.5	11	39	126	2.21	<10	<1	0.08	<10	0.81	195	3
GT00R1	<.5	11	27	40	3.82	<10	<1	0.24	<10	2.97	800	<1
GT00R2	<.5	17	75	72	3.79	10	<1	0.28	<10	1.35	470	26
118953 118954 118955	<.5 <.5 <.5	1 36 9	116 144 54	14 100 84	0.89 4.51 4.35	<10 <10 <10	<1 <1 <1	0.09 0.15 0.25	<10 <10 <10	0.01 1.77 0.54	20 1000 250	2 1 1
118956 118957	<.5 <.5 <.5	9 10 1	63 85	66 16	4.64 0.96	<10 <10 <10	<1 <1	0.19 0.12	<10 <10 <10	0.04 0.02	385 15	8 2

					APP.	ENDL	XI					
Table 4	Na	Ni	Ρ	Pb	S	Sb	Sc	Sr	Ti	TI	U	V
Sample #	£ %	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
GT00S1	0.03	39	830	2	0.04	<2	7	89	0.07	<10	<10	55
GT00S2	0.03	117	380	10	0.03	10	16	81	0.07	<10	<10	91

DDDDDDZZ

33

070000	0.04	04	040	0	. 04	0	7	07	0.40	10	10	400
GT00S3	0.01	24	340	<2	<.01	<2	7	37	0.18	<10	<10	122
GT00S4	0.03	44	710	6	0.01	<2	10	74	0.05	<10	<10	69
GT00S5	0.02	39	340	10	0.02	<2	8	80	0.06	<10	<10	66
GT00S6	<.01	43	760	22	0.05	2	20	78	<.01	<10	<10	60
GT00S7	0.01	33	420	<2	<.01	<2	4	23	0.02	<10	<10	51
GT00S8	0.02	45	270	6	<.01	<2	7	35	0.08	<10	<10	66
GT00S9	0.06	139	630	<2	0.05	<2	15	75	0.06	<10	<10	112
GT00S10	0.02	41	400	6	0.02	<2	8	100	0.04	<10	<10	69
GT00S11	0.03	74	600	12	0.02	<2	10	106	0.1	<10	<10	69
GT00S12	0.02	47	570	8	0.2	2	9	96	0.07	<10	<10	66
GT00S13	0.02	49	620	2	0.04	4	10	120	0.07	<10	<10	64
GT00S14	0.01	35	560	8	0.04	<2	6	107	0.03	<10	<10	64
GT00S15	0.03	44	990	6	0.07	14	9	136	0.05	<10	<10	53
GT00S16	0.03	42	680	8	0.02	8	8	120	0.05	<10	<10	61
GT00S17	0.01	62	520	6	0.02	<2	8	41	<.01	<10	<10	82
GT00S18	0.01	27	490	6	1.88	24	6	352	<.01	<10	<10	22
GT00S19	0.01	63	730	20	0.07	50	18	94	<.01	<10	<10	33
GT00S20	0.01	30	390	2	<.01	<2	5	29	0.02	<10	<10	58
025s1	0.01	88	1380	8	0.08	76	11	116	0.01	<10	<10	52
025s2	0.01	44	550	8	0.77	10	6	128	0.01	<10	<10	42
GT00R1	0.01	25	980	<2	0.15	8	6	848	<.01	<10	<10	26
GT00R2	0.02	43	800	<2	1.53	<2	8	232	0.03	<10	<10	69
118953	<.01	9	120	2	0.12	58	<1	55	<.01	<10	<10	6
118954	<.01	300	2520	2	0.09	116	17	351	<.01	<10	<10	57
118955	0.02	27	1070	12	0.04	16	6	20	<.01	<10	<10	51
118956	<.01	60	410	6	0.07	84	7	52	<.01	<10	<10	26
118957	<.01	4	100	4	0.33	106	<1	13	<.01	<10	<10	4

Table 4 con't.

	W	Zn
Sample #	ppm	ppm
GT00S1	<10	102
GT00S2	<10	80
GT00S3	<10	58
GT00S4	<10	84

<10	74
<10	108
<10	68
<10	114
<10	96
<10	90
<10	114
<10	118
<10	106
<10	80
<10	104
<10	92
<10	120
<10	86
<10	100
<10	64
<10	138
<10	114
<10	58
<10	74
<10	4
<10	52
<10	60
<10	62
<10	6
	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10

hemex ALS Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0026738

(EIA) - EQUITY ENGINEERING LTD.

Project: P.O. #: **RMC00-06**

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-AUG-2000.

	SAM	PLE PREPARATION	
CHEMEX	NUMBER SAMPLES	DESCRIPTION	
205 226 3202 229	9 9 9 9	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge	
* NOTE	1:_	· · · · · · · · · · · · · · · · · · ·	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-agus regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, **T1**, W.

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Comments: ATTN: DAVID CAULFIELD

ANALYTICAL PROCEDURES							
XHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	Method	DETECTION LIMIT	UPPER		
983	9	Au ppb: Fuse 30 g sample	7 λ- λλ5	5	10000		
2118	9	Ag pum: 32 element, soil & rock	ICP-AES	0.2	100.0		
2119	9	Al %: 32 element, soil & rock	ICP-ARS	0.01	15.00		
2120	9	As ppm: 32 element, soil & rock	ICP-ARS	2	10000		
557	9	B ppm: 32 element, rock & soil	ICP-ARS	10	10000		
2121	9	Ba ppm: 32 element, soil & rock	ICP-ARS	10	10000		
2122	9	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0		
2123	. 9	Bi ppm: 32 element, soil & rock	ICP-ARS	2	10000		
2124	9	Ca %: 32 element, soil & rock	ICP-ARS	0.01	15.00		
2125	9	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	500		
2126	9	Co ppm: 32 element, soil & rock	ICP-AES	1	10000		
2127	9.	Cr ppm: 32 element, soil & rock	ICP-AES	ī	10000		
2128	9	Cu ppm: 32 element, soil & rock	ICP-AES	ī	10000		
2150	9	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00		
2130	9	Ga ppm: 32 element, soil & rock	ICP-ARS	10	10000		
2131	9	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000		
2132	9.	K %: 32 element, soil & rock	ICP-ARS	0.01	10.00		
2151	9 .	La ppa: 32 element, soil & rock	ICP-AES	10	10000		
2134	9	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00		
2135	- 9	Mn pom: 32 element, soil & rock	ICP-AES	5	10000		
2136	9	No ppm: 32 element, soil & rock	ICP-AES	1	10000		
2137	و	Na %: 32 element, soil & rock	ICP-ARS	0.01	10.00		
2138	9	Ni pom: 32 element, soil & rock	ICP-ARS	1	10000		
2139	ا و	P ppm: 32 element, soil & rock	ICP-ARS	10	10000		
2140	9.	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000		
551	9.	S %: 32 element, rock & soil	ICP-ARS	0.01	5.00		
2141	9	Sb ppm: 32 element, soil & rock	ICP-ARS	2	10000		
2142	9	So ppm: 32 elements, soil & rock	ICP-AES	ī	10000		
2143	9	Sr ppm: 32 element, soil & rock	ICP-ARS	ī	10000		
2144	ا و ا	Ti %: 32 element, soil & rock	ICP-ARS	0.01	10.00		
2145	9	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000		
2146	9	U ppm: 32 element, soil & rock	ICP-ARS	10	10000		
2147	9	V ppm: 32 element, soil & rock	ICP-AES	1	10000		
2148		W ppm: 32 element, soil & rock	ICP-ARS	10	10000		
2149	9	In pom: 32 element, soil & rock	ICP-ARS	2	10000		

A0026738

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC00-06 Comments: ATTN: DAVID CAULFIELD

Page Number :1-A Total Pages :1 Certificate Date: 30-AUG-2000 Invoice No. P.O. Number :10026738 ٠ Account EIA

<u> </u>	- <u> </u>		<u> </u>		·					CE	RTIFI	CATE	OF A	NAL	YSIS	1	40026	5738		
Sample	PREP CODE	λu ppb Fλ+λλ	Ag ppm	A1 *	As ppa	B ppm	Ba ppm	Be ppn	Bi ppm	Ca %	Cđ	Co	Cr ppm	Cu ppm	Pa X	Ga. ppm	Hg ppm	K *	La ppa	Ng %
18953 18954 18955	205 22 205 22 205 22	6 980 6 1590 6 230	7.2 1.8 0.4	0.14 0.49 1.55	6320 >10000 954	< 10 < 10 < 10	60 140 70	< 0.5 1.0 0.5	< 2 6 < 2	0.04 4.87 0.16	< 0.5 < 0.5 < 0.5	1 36 9	116 144 54	14 100 84	0.89 4.51 4.35	< 10 < 10 < 10	< 1 < 1 < 1	0.09 0.15 0.25	< 10 < 10 < 10	0.01
18956 18957	205 22 205 22	6 1050 6 4220	2.6 9.8	0.33 0.20	5820 7280	< 10 < 10	60 30	< 0.5 < 0.5	< 2 < 2	0.10	< 0.5 < 0.5	10 1	63 85	66 16	4.64 0.96	< 10 < 10	< 1 < 1	0.19 0.12	< 10 < 10	0.04
									. '	-									·	
· · ·					•				·				·							
												·	•					-		
					•			-												
			· ·	•																
						•				- - - -		• .	1 	-						

		5)		A A 2 8	urora nalyti 12 B Iritish	Laboratory cal Chemis rooksbani Columbia IE: 604-96	Services Is * Geoch (Ave.,) Capada	Lid. emists * f North	Registered Vancou	l Assayers Ver			Projec	700 - 70 VANCO V6C 1G	' ENGINE o W. PEI UVER, B B RMC00-0 ATTN: D	NDER S' C 26	г.	D				Page Number Total Pages Certificate Dat Invoice No. P.O. Number Account	:1-B :1 :30-AUG-2 :10026738 : : :EIA
		<u> </u>										· · · · ·		CE	RTIFI	CATE	OF /	ANAL	YSIS	1	10026	5738	
L.	SAMP			PREP		Min ppm	No ppa	Na X	Ni ppm	P PPM	Pb ppm	8	Sb ppa	Sc ppm	Sr ppm	Ti *	T1 ppm	U ppm	V ppa	W. ppm	2n ppa		
1189 1189 1189	54 55	4.	20	05 22 05 22 05 22	26	20 1000 250	2 < 1 < 1	0.01 0.01 0.02	9 300 27	120 2520 1070	2 2 12	0.12 0.09 0.04	58 116 16	< 1 17: 6	351 <	< 0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	6 57 51	< 10 < 10 < 10	4 52 60	-	
1189 1189	56 57	-	20)5 22)5 22	26	385 15		0.01 0.01	60 4	410 100	6	0.07 0.33	84 106	7 ` < 1	52 < 13 <	¢ 0.01	< 10 < 10	< 10 < 10	26 4	< 10 < 10	62 6	*	
F	•				I								÷ .										
	÷						. •	•															
																							· .
								· .								·							
									·					·	· .							·	
							н 1		•				<u>`.</u>				·						
		·										• • •		•					•				
							· .		÷									·					•
		n				• • • • •				* - 1 1. - 1 1. - 1 1.				•								· • •	
				<u> </u>	J	······································										•	C	ERTIFIC	ATION:	•2	Lauch	If	•••••••

والمراجع والمراجع

L

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

- C	ERTIF	ICATE A0027232
	QUITY EN RMC-00	GINEERING LTD. >-06
umples his re	submitt port was	ed to our lab in Vancouver, BC. printed on 05-SEP-2000.
	SAM	PLE PREPARATION
	SAM	
CODE	NUMBER SAMPLES	DESCRIPTION
201	20 20	Dry, sieve to -80 mesh
229	20	ICP - AQ Digestion charge
	1	
		· · ·

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Ma, Sr, Ti, Tl, W. To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Comments: ATTN: DAVID CAULFIELD

A0027232

2 4 - 1 - 1	····	ANALYTICAL P	ROCEDURES		
HEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	20	Au ppb: Fuse 30 g sample	Γλ-λλ5		10000
2118	20 -	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	20	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	20	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	20	B ppm: 32 element, rock & soil	ICP-ARS	10	10000
2121	20	Ba ppm: 32 element, soil & rock	ICP-ARS	10	10000
2122	20	Be ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2123	20	Bi ppm: 32 element, soil & rock	ICP- NES	2	10000
2124	20	Ca %: 32 element, soil & rock	ICP- NES	0.01	15.00
2125	20	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	20	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	20	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	20	Cu ppm: 32 element, soil & rock	ICP-AES	. 1	10000
2150	20	Ye %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2130	20	Ga ppm: 32 element, soil & rock	ICP-ARS	10	10000
2131	20	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	20	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	20	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	20	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	20	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	20	No ppm: 32 element, soil & rock	ICP-ARS	1	10000
2137	20	Na %: 32 element, soil & rock	ICP-ARS	0.01	10.00
2138 2139		Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	20	P ppm: 32 element, soil & rock	ICP-AES	10	10000
551	20 20	Pb ppm: 32 element, soil & rock	ICP-ARS	2	10000
2141	20	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	1	ab ppm: 32 element, soil & rock	ICP-AES	2	10000
2143		So ppm: 32 elements, soil & rock	ICP-ARS	. 1	10000
2144		Sr ppm: 32 element, soil & rock	ICP-NES	1	10000
2145		Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2146		T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	20	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2148	20	V ppm: 32 element, soil & rock	ICP-ARS	1	10000
2149	20	W ppm: 32 element, soil & rock	ICP-AES	10	10000
A167	. ∡u	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

•

.

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD

Page Number : 1-A Total Pages :1 Certificate Date: 05-SEP-2000 Invoice No. :10027232 P.O. Number : Account EIA

PREP										- "	_						-		
CODE	ли ррб Гл+лл) Jg ppm	11 *	As ppa	B ppm	Ba ppa	Be ppn	Bi ppm	Ca %	Cđ ppm	Со ррж	Cr ppa	Cu ppm	70 *	Ga ppm	Hg ppa	K %	La ppn	Mg
201 202 201 202 201 202 201 202 201 202 201 202	65 10 5 105 20	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.80 2.78 2.33 2.19 2.23	40 86 20 48 42	< 10 < 10 < 10 < 10 < 10 < 10	130 150 190 120 130	0.5 1.0 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.10 0.81 0.42 0.73 0.78	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 25 10 17 15	40 89 113 52 46	77 162 35 68 85	3.28 5.09 3.82 4.71 3.80	< 10 10 10 10 < 10	<1 <1 <1 <1 <1 <1	0.16 0.29 0.27 0.09 0.12	10 10 < 10 < 10 10	0.88 1.24 1.36 1.16 0.92
101 202 101 202 101 202 101 202 101 202 101 202 101 202	140 5 10 15 5	0.6 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.12 2.03 2.66 3.70 2.42	274 22 18 96 36	< 10 < 10 < 10 < 10 < 10 < 10	110 110 190 190 170	2.0 0.5 0.5 1.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.56 0.26 0.38 0.51 0.81	2.0 < 0.5 < 0.5 1.0 < 0.5	37 13 18 74 17	20 37 44 72 44	59 38 52 238 66	11.20 3.42 3.84 8.64 3.98	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.10 0.18 0.22 0.14	10 < 10 10 10 10	0.19 0.96 1.00 1.54 0.87
1 202 1 202 1 202 1 202 1 202 1 202 1 202 1 202	15 15 20 10 80	< 0.2 < 0.2 < 0.2 0.2 0.2 < 0.2	2.73 2.21 2.29 2.31 1.76	30 32 118 26 232	< 10 < 10 < 10 < 10 < 10 < 10	260 180 190 250 100	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.97 0.74 0.78 1.12 1.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 19 19 17 16	51 49 47 42 46	149 79 90 55 88	4.35 3.86 4.30 3.39 3.77	10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.30 0.18 0.19 0.11 0.11	10 10 10 < 10 < 10	1.25 1.23 1.13 0.81 1.07
01 202 01 202 01 202 01 202 01 202 01 202	15 5 80 75 < 5	< 0.2 < 0.2 0.2 0.4 < 0.2	2.38 2.46 0.86 1.07 1.98	292 12 480 2020 40	< 10 < 10 < 10 < 10 < 10 < 10	210 80 160 100 130	0.5 0.5 < 0.5 1.0 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.77 0.41 6.24 0.71 0.28	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 24 11 31 13	46 61 16 15 36	67 108 72 114 38	3.98 5.23 1.96 7.12 3.48	10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.10 0.06 0.12 0.12	10 10 < 10 < 10 < 10	1.26 1.64 0.45 0.33 0.76
	· · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · ·					· · ·	. ·					
	01 202 01 202 00	01 202 65 01 202 10 01 202 5 01 202 105 01 202 105 01 202 105 01 202 100 01 202 100 01 202 100 01 202 100 01 202 15 01 202 15 01 202 15 01 202 15 01 202 15 01 202 15 01 202 15 01 202 10 01 202 10 01 202 15 01 202 15 01 202 15 01 202 5 01 202 5 01 202 5 01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 202 65 < 0.2 1.80 40 < 10 130 0.5 01 202 10 < 0.2 2.78 86 < 10 130 0.5 01 202 10 < 0.2 2.78 86 < 10 150 1.0 01 202 5 < 0.2 2.33 20 < 10 190 0.5 01 202 105 < 0.2 2.33 20 < 10 190 0.5 01 202 105 < 0.2 2.33 42 < 10 190 0.5 01 202 105 < 0.2 2.33 42 < 10 110 2.0 01 202 140 0.6 1.12 274 < 10 110 2.0 01 202 10 < 0.2 2.03 22 < 10 110 2.0 1202 10 < 0.2 2.03 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								

.

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD Page Number :1-B Total Pages :1 Certificate Date: 05-SEP-2000 Invoice No. :10027232 P.O. Number : Account :EIA

							<u> </u>		·	CE	RTIF	CATE	OF /	NAL	/SIS	ł	002723	2	<u> </u>
Sample	PREP CODE	Ma ppa	No ppe	Na X	ni p pm	P ppm	Pb ppm	s *	SD ppa	Sc ppm	Sr ppa	Ti %	T1 ppm	U ppa	V ppm	W ppm	Zn ppn		
r0081 r0082 r0083 r0084 r0085	201 202 201 202 201 202 201 202 201 202 201 202	450 510 320 285 430	11 8 1 4 5	0.03 0.03 0.01 0.03 0.02	39 117 24 44 39	830 380 340 710 340	2 10 < 2 6 10	0.04 0.03 < 0.01 0.01 0.02	< 2 10 < 2 < 2 < 2 < 2	7 16 7 10 8	89 81 37 74 80	0.07 0.07 0.18 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 91 122 69 66	< 10 < 10 < 10 < 10 < 10 < 10	102 80 58 84 74		
0086 0087 0088 0089 00810	201 202 201 202 201 202 201 202 201 202 201 202	1105 305 475 1265 400	< 1 < 1 4 4 < 1	C 0.01 0.01 0.02 0.06 0.02	43 33 45 139 41	760 420 270 630 400		0.05 < 0.01 < 0.01 0.05 0.02	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	20 4 7 15 8	78 - 23 35 75 100	<pre> 0.01 0.02 0.08 0.06 0.04 0.</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 51 66 112 69	< 10 < 10 < 10 < 10 < 10 < 10	108 68 114 96 90		
000811 000812 000813 000814 000815	201 202 201 202 201 202 201 202 201 202 201 202	580 370 500 575 400	1 3 3 < 1 3	0.03 0.02 0.02 0.01 0.03	74 47 49 35 44	600 570 620 560 990	12 8 2 8 6	0.02 0.20 0.04 0.04 0.07	< 2 2 4 < 2 14	10 9 10 6 9	106 96 120 107 136	0.10 0.07 0.07 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 66 64 64 53	< 10 < 10 < 10 < 10 < 10 < 10	114 118 106 80 104		
F00816 F00817 F00818 F00819 F00820	201 202 201 202 201 202 201 202 201 202 201 202	495 600 100 850 415	1 7 2 < 1 2	0.03 0.01 0.01 0.01 0.01	42 62 27 63 30	680 520 490 730 390	8 6 20 2	0.02 0.02 1.88 0.07 < 0.01	8 < 2 24 50 < 2	8 8 6 18 5	352 <	0.05 0.01 0.01 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 82 22 33 58	< 10 < 10 < 10 < 10 < 10 < 10	92 120 86 100 64		
				• • •									- <u>*</u>	······································	<u> </u>	<u> </u>		· ·	
			·				``											·	
						•						۰ ۱.	·			•			
,																. /			
•													c	ERTIFIC	ATION:_	1	WU	iad	

hemex Δ Aurona Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE A0027233 (EIA) - EQUITY ENGINEERING LTD. Project: P.O. # : **RMC-00-06** Samples submitted to our lab in Vancouver, BC. This report was printed on 04-SEP-2000. **SAMPLE PREPARATION** NUMBER SAMPLES CHEMEX CODE DESCRIPTION 205 2 Geochem ring to approx 150 mesh 226 2 0-3 Kg crush and split Rock - save entire reject 3202 2 229 2 ICP - AQ Digestion charge MOTO

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-agus regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Ma, Sr, Ti, 71, W.

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC **V6C 1G8**

Comments: ATTN: DAVID CAULFIELD

A0027233

		ANALYTICAL P	ROCEDURES	6	
CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPER Limit
983	2	Au ppb: Fuse 30 g sample	72-225	5	10000
2118	2	Ag ppm: 32 element, soil & rock	ICP-ARS	0.2	100.0
2119	2	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	2	As ppm: 32 element, soil & rock	ICP-ARS	2	10000
557	2	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	2	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	2	Be ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2123	2	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124 2125	2.	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	2	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	500
2127		Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	2	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	2	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2130	2	Fe %: 32 element, soil & rock	ICP-XES	0.01	15.00
2131	2	Ga ppm: 32 element, soil & rock Hy ppm: 32 element, soil & rock	ICP-ARS	10	10000
2132		K %: 32 element, soll & rock	ICP -ARS ICP -ARS	1	10000
2151	2	La ppm: 32 element, soil & rock	ICP-ARS ICP-ARS	0.01	10.00
2134		Mg %: 32 element, soil & rock	ICP-ARS	10	10000
2135		Mn ppm: 32 element, soil & rock	ICP-ARS	0.01	15.00
2136		No ppm: 32 element, soil & rock	ICP-ARA	5	10000
2137		Na %: 32 element, soil & rock	ICP-ARS	1 0.01	10000
2138	2	Ni ppm: 32 element, soil & rock	ICP-ARS	0.01	10.00
2139	2	P ppm: 32 element, soil & rock	ICP-ARS	10	10000
2140	2	Pb ppm: 32 element, soil & rock	ICP-ARS	2	10000
551	2	5 %: 32 element, rock & soil	ICP-ARS	0.01	10000 5.00
2141	2	ab ppm: 32 element, soil & rock	ICP-ARE	2.01	10000
2142	2	So ppm: 32 elements, soil & rock	ICP-ARS	1	10000
2143	2	ST ppm: 32 element, soil & rock	ICP-AES	. 1	10000
2144	2	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	2	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	2	U ppu: 32 element, soil & rock	ICP-ARS	10	10000
2147	2	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	2	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	2	In ppm: 32 element, soil & rock	ICP-AES	2	10000

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD Page Number : 1-A Total Pages : 1 Certificate Date: 04-SEP-2000 Invoice No. : 10027233 P.O. Number : Account : EIA

AMPLE CODE FA+AA ppm % ppm ppm ppm ppm ppm % ppm ppm ppm			233	0272	A0	SIS	.Y	NAL)F A	ΈC	CAT	RTIFI	CE				<u></u>					1					
	La : ppa	La ppa																			ppb +XX	Au Fl	ep De	PR CO	ł	smpl	
		< 10 < 10	0.24 0.28	< 1		3.82 3.79		40 72	27 75	, ,	11 17	0.5	7.26 3.93	< 2 < 2	0.5 0.5	80 70	< 10 < 10	32 < 2	0.70 1.67	0.2	< 5 10		226 226	205 205		12	1001 1001
																										-	
		-					•			•							•		,								
															•												
																									•		
			-								• .																
			•																	•					•		
		÷			• .	·	÷					·	•			.			•	ч.			-				
					·									÷								-					
			· .			. *				•		·			•					·							
					~						-														-		

Г

....

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD Page Number :1-B Total Pages :1 Certificate Date:04-SEP-2000 Invoice No. :10027233 P.O. Number : Account :EIA

	T	·····				<u>.</u>				CE	RTIFI	CATE	OF A	NALY	SIS	<u> </u>	00272	233	
SAMPLE	PREP CODE	Mn ppa	Mo ppm	Na X	Ni ppn	P ppm	Pb ppm	5 %	Sb ppm	Sc ppn	Sr ppm	Tİ X	T1 ppm	U ppn	V ppm	W ppm	Zn. ppn		
00R1 00R2	205 226 205 226	800 470	< 1 26	0.01 0.02	25 43	980 800	< 2 < 2	0.15 1.53	* 8 < 2	6 8	848 < 232	0.01 0.03	< 10 < 10	< 10 < 10	26 69	< 10 < 10	58 74	 	<u></u>
•						•			• .										
							•		' .										
								· .	4										-
			· .											·			•		
								• •	•		·		•			,			
			·				•	•			·								
								· •.	•								· · ·		
				·												•		· .	
																Ń)	\sim	
													c	ERTIFIC	ATION:_	the		-a	TU -

hemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Ċ	ERTIF	ICATE	A0030031
EIA) - E	QUITY EN	GINEERING LTI).
Project: P.O. # :	RMC-0	0-06	
tamples this re	submitt port was	ed to our la printed on	b in Vancouver, BC. 29-smp-2000.
		•	
<u>.</u>			
	SAM	PLE PREP	ARATION
CHEMEX	NUMBER SAMPLES	4	DECORPORTION
	SAMPLES	·	DESCRIPTION
201	2	Dry, sieve save reject	to -80 mesh
229	2		gestion charge
	· [
		· -	
	!!!		
			· .

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

'n.

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Comments: ATTN: DAVID CAULFIELD

		ANALYTICAL P	ROCEDURES	5	
CHEMEX CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF
983	2	Au ppb: Fuse 30 g sample	ምአ-እእያ	5	10000
2118	2	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	2	Al %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2120	2	As ppm: 32 element, soil & rock	ICP-ARS	2	10000
557	2	B ppm: 32 element, rock & soil	ICP-ARS	10	10000
2121	2	Ba ppm: 32 element, soil & rock	ICP-ARS	10	10000
2122	2	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	2	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	2	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	2	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	2	Co ppm: 32 element, soil & rock	ICP-ARS	- 1	10000
2127	2	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	2	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150 2130	2	Ye %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	2	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	22	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2151	2	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2134	2	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2135	2	Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-ARS	0.01	15.00
2136	2	No ppm: 32 element, soil & rock	ICP-ARS	5	10000
2137	2	Na %: 32 element, soil & rock	ICP-AES	1	10000
2138		Ni ppm: 32 element, soil & rock	ICP-ARS	0.01	10.00
2139	2	P ppm: 32 element, soil & rock	ICP-ARS	1	10000
2140	2	Pb ppm: 32 element, soil & rock	ICP-AES ICP-AES	10	10000
551	2	8 %: 32 element, rock & soil	ICP-AES ICP-AES	2	10000
2141	2	Sb ppm: 32 element, soil & rock	ICP-ARS	0.01	5.00
2142	2	Sc ppm: 32 elements, soil & rock	ICP-ARS	2	10000
2143	2	Sr ppm: 32 element, soil & rock	ICP-ARS	1	10000
2144	2	Ti %: 32 element, soil & rock	ICP-AES	0.01	10000
2145		TI ppm: 32 element, soil & rock	ICP-AES	10	10.00
2146	2	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	2	V ppm: 32 element, soil & rock	ICP-AES	1 1	10000
2148	2	W ppm: 32 element, soil & rock	ICP-ARS	10	10000
2149	2	Zn ppm: 32 element, soil & rock	ICP-ARS	2	10000

A0030031

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD

Page Number :1-A Total Pages :1 Certificate Date: 29-SEP-2000 Invoice No. : 10030031 Invoice No. P.O. Number 1 Account :EIA

											CATE				, r	0030	031		
PREP CODE	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	B ppa	Ba ppn	Be pp n	Bi ppm	Ca %	Cđ ppm	Со ррж	Cr ppm	Cu ppm	Fe X	Ga ppm	Hg ppm	K.	La DDE	Ж
201 202 201 202	30 15	0.6 0.6	1.60 1.54	448 20	< 10 < 10	180 170	0.5 0.5	< 2 < 2	1.00 1.25	0.5 < 0.5	19 11	53 39	158 126	4.62 2.21	< 10 < 10	< 1	0.08	< 10 < 10	0.8 0.8
· .					÷ .					-					•				a.
															·				· ·
		· ·									•								
														÷					
						·											•		
											. .								
	•																		
											•		·	•					
															·		. •		
									А							·			
																	:		
															(1			
														and and a set of the s	201 202 30 0.6 1.60 448 < 10 180 0.5 < 2 1.00 0.5 19 53 158 4.62		201 202 20 0.5 1.50 100 100 100 100 000 000 000 000 000 0	201 202 20 0.5 1.50 the	

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RMC-00-06 Comments: ATTN: DAVID CAULFIELD

Page Number : 1-B Total Pages : 1 Certificate Date: 29-SEP-2000 Invoice No. P.O. Number :10030031 : EIA Account

			<u></u>		·							CERTIFICATE OF ANALYSIS						A0030031			
SANPLE		REP		Mn ppm	Mo ppm	Na X	Ni ppm	P Ppm	Pb ppa	s *	Sb ppa	Sc ppn	Sr ppn	Tİ %	T1 ppm	U ppm	V ppa	W ppm	Zn ppn	<u></u>	<u>0</u>
5-8-1 5-8-2	20 20	1 20	2	560 195	4	0.01 0.01	88 44	1380 550	8	0.08 0.77	76 10	11 6	116 128	0.01 0.01	< 10 < 10	< 10 < 10	52 42	< 10 < 10	138 114	•.	
												·									
														·							
						•										. •			1.		
						· .													·		
					·																·
										• .					•						
									•												
•						-									•						
																		(

APPENDIX 2

SAMPLE DATA

801

Major Phase Quartz 1 quartz 2 quartz 3	% 30 50 9	Assay g/t 6.47 Au 181 Ag	Hand Sample Description quartz stockwork argillite/graywacke veinlets 1cm - <1mm, mosaic breccia open space, coxcomb, and cockade texture rusty weathering
minor phase arsenopyrite 1 arsenopyrite 2 +-py sericite andorite/argyrodite	% rite 2 6 <u><1</u> 10		Thin section description polyphase breccia to micro-breccia foam texture quartz, coxcomb, open space arsenopyrite; euhedral neddle, rombic, star like, framboidal to anhedral recrystalized w/120 deg. angles, +- pyrite , argyrodite/andorite phyllic alteration, aspy partly and in some placed completely replaced by limonite

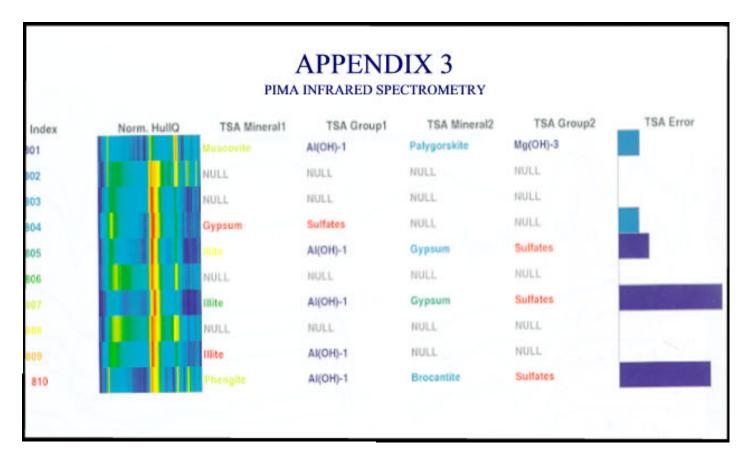
Paragenesis:	early	late
Quartz 1		
Quartz 2		
Quartz 3		
Arsenopyrite 1		
Arsenopyrite 2+-py	rite	
Sericite		
Andorite/argyrodite		

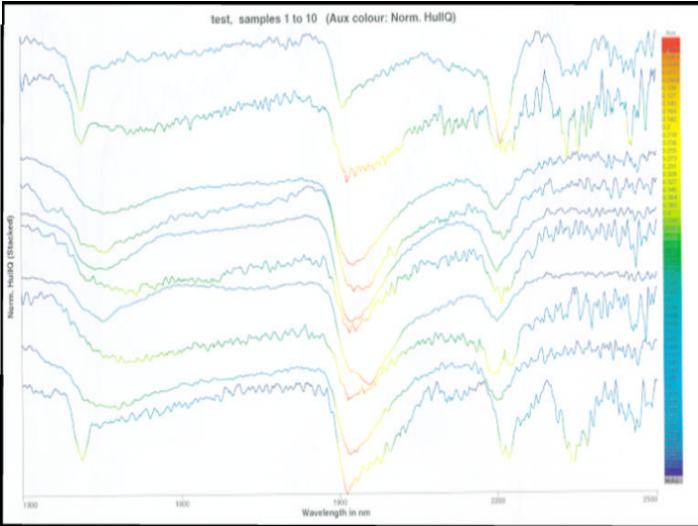
802

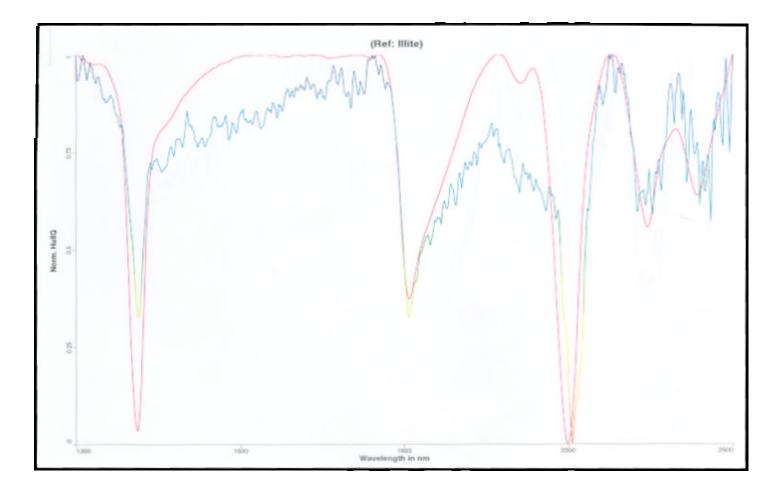
Major Phase Quartz 1 Quartz 2 Quartz 3	% 30 50 7	Assay results g/t 3.66 Au 6.9 Ag	Hand Sample Description Moderately altered argillite with quartz and sulphide veinlet (< or = 1mm) stockwork, as fracture fillings sulphides also occur as disseminations, 2 % arsenopyrite +- pyrite, weathers rusty-red
minor phases Arsenopyrite 1 Sericite Arsenopyrite-py Andorite/argyroo			Thin Section Description dominated by sericite, arsenopyrite fracture infill coxcomb quartz veinlets, phyllic alteration disseminated aspy +-py and andorite/argyrodite < 3% combined sulphides
Paragenesis Quartz 1 Quartz 2 Quartz 3 Sericite Arsenopyrite 1 Arsenopyrite-pyri Andorite-argyrodi			

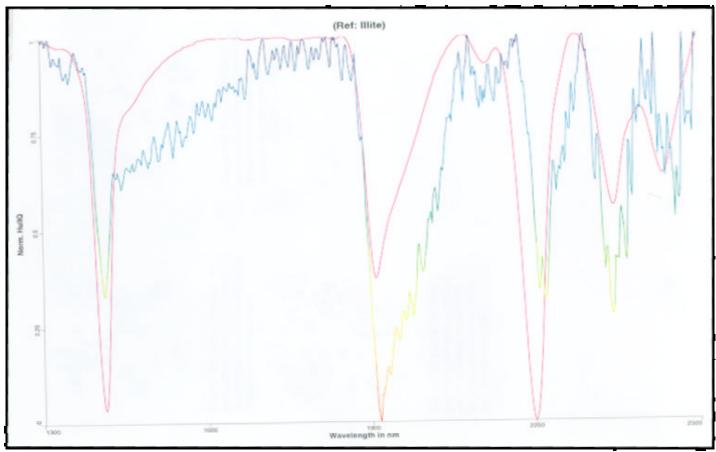
803

Major Phase	%	Assay g/t	Hand Sample Description
Quartz 1	37	2.5 Au	Quartz flooded argillite crackle breccia stockwork, quartz veinlets
Quartz 2 minor phase	51	1374 Ag	1cm to <1mm, polyphase, coxcomb, cockade and drusy vugs <0.5cm open space, arsenopyrite+-pyrite 4% as fine disseminations
Sericite	8		and fracture filling, appears dominant within sediment, sample
Arsenopyrite 1	3		weathers gray to rusty.
Arsenopyrite 2	1		
			Thin Section Description
	100		Quartz ranges from euhedral to equigranular annealing foam texture 120° triple junctions, cockade and coxcomb textures. euhedral aspy andorite/argyrodite (gry-white/pinkish ppl, xpl Lt blue-cream/orange) arsenopyrite veinlets up to 1.3mm wide., aspy partly limonite replaced
Paragenesis	early		late
Quartz 1 Quartz 2 Sericite Arsenopyrite 1 Arsenopyrite 2 Silver - Gold			


804


Major Phase Quartz 1	% 40	Assay g/t 8.7 Au	Rock Sample Description Quartz flooded argillite breccia and stockwork, clasts
Quartz 2	54	10 Ag	are sub-rounded to angular 3cm and smaller, open spaces up to 1x2cm, drusy vugs, coxcomb qtz
minor phase			<2% disseminated arsenopyrite, smoke-gray weathering
Arsenopyrite 1	< 1		
Arsenopyrite 2	< 1		Thin Section Description
pyrite	< 1		Quartz dominated, foam texture quartz to veinlets
Sericite	3		Aspy as fracture controlled veinlets and disseminations
		100	euhedral rombic, neddles and blebs, aspy commonly replaced in part by limonite
Paragenesis	early		late
Quartz 1			
Quartz 2			
Arsenopyrite 1			
Arsenopyrite 2			
pyrite Sericite Gold Silver			


APPENDIX 2



Major Phases Quartz 1 Quartz 2	40	3.6 Au 3.7 Ag	Hand Sample Description Quartz flooded argillite breccia, drusy qtz open spaces, < 1% sulphides, gray-yellow to rusty weathering
Minor Phase Sericite Arsenopyrite <	9 <u>1</u> 100		Thin Section Description dominated by foam texture quartz and veinlets, cockade and coxcomb with open space textures, <1% sulphides phyllic alteration, limonite partially and in some places completely replaces aspy
Paragenesis Quartz 1 Quartz 2 Sericite Arsenopyrite Gold – Silver 806		early 	late
Major Phases Quartz 1 Quartz 2 Quartz 3	% 25 30 33	Assay g/ 5 Au 583 Ag	At Hand Sample Description quartz flooded argillite, rubble breccia and veinlet stockwork, sulphides as veinlets and fine disseminations ≤ 4%, gray-rusty weathering
Minor Phase Sericite Arsenopyrite 1 Arsenopyrite 2	8 2 2 100)	Thin Section Description polyphase quartz-aspy, quartz and aspy also show recrystalization foam texture, highly fractured, limonite partially replaces aspy

APPENDIX 4 Table 5. Soil Geochemical data from The Bearox zone Pre-1998, used in R² values.

Table 5. Soil Geoc	Au	ata from	As	rox zone	Pre-199	98, usea	in K	values.		
sample #	ppb	ppm	ppm	ppm	Cu	Zn	Мо	Ва	Pb	Ca (%)
5225n 4995e	1019	1	6870	85	92	93	2	130	14	0.4
5225n 4996e	567	1	6585	100	97	84	8	90	12	0.34
5225n 4997e	1289	1.6	8400	100	87	90	4	90	12	0.38
5225n 4998e	884	1.6	8185	125	93	108	2	110	14	0.56
5225n 4999e	1528	1.6	10000	125	72	80	2	110	10	1.55
5225n 5000e	1099	1	9970	105	80	39	2	120	8	3.62
5225n 5001e	1553	1.4	10000	165	128	52	2	70	8	4.3
5225n 5002e	2919	4.4	10000	175	67	57	2	60	10	4.14
5225n 5003e	1729	1.4	9865	105	11	19	4	70	4	0.05
5225n 5004e	655	1.6	3180	65	27	27	10	40	8	0.06
5225n 50053	691	5	3665	65	63	66	6	60	14	0.14
5010n 5000e	43	0.2	625	80	59	115	2	230	14	0.58
5020n 4960e	35	0.4	695	35	73	154	2	180	16	0.24
5020n 4965e	43	0.2	1690	100	43	119	2	170	14	0.23
5020n 4970e	3	0.2	200	20	10	105	2	240	10	0.33
5020n 4975e	6	0.2	185	10	33	80	2	190	8	0.28
5020n 4980e	7	0.2	395	20	32	123	2	180	10	0.23
5020n 4985e	126	0.6	2070	50	50	111	2	90	16	0.2
5020n 4990e	57	0.2	1790	65	34	90	2	140	14	0.47
5020n 4995e	49	0.2	660	70	54	84	2	170	6	1.02
5020n 5010e	34	0.4	615	20	113	108	2	140	10	1.51
5020n 5015e	39	0.2	435	15	44	115	2	120	10	0.78
5020n 5020e	14	0.4	205	5	17	201	2	250	10	0.32
5050n 5025e	9	0.2	135	5	25	140	2	240	10	0.27
5020n 5030e	12	0.2	140	5	53	128	2	160	8	0.23
5020n 5035e	4	0.2	80	5	23	173	2	340	8	0.48
5020n 5040e	6	0.2	50	5	38	115	2	170	8	0.3
5080n 4970e	7	0.8	370	145	34	204	2	280	12	0.42
5080n 4975e	6	0.2	255	95	26	161	2	230	12	0.31
5080n 4980e	8	0.4	245	45	9	108	2	210	12	0.3
5080n 4985e	1739	0.2	5365	150	87	109	2	120	22	0.18
5080n 4990e	53	0.2	680	100	48	88	2	160	10	0.66
5080n 4995e	32	0.2	620	10	32	159	2	220	12	0.6
5080n 5000e	13	0.2	770	15	34	136	2	100	14	0.24
5080n 5005e	13	0.2	215	15	48	84	2	140	12	0.39
5080n 5010e	5	0.2	375	20	25	101	2	200	16	0.25
5080n 5015e	14	0.6	180	5	22	166	2	460	10	0.38
5080n 5020e	4	0.2	85	10	31	105	4	200	12	0.27
5080n 5025e	3	0.4	100	10	47	209	2	190	14	0.15
5100n 4985e	11	0.2	545	50	20	96	2	180	12	0.26
5100n 4990e	1070	1.6	5620	585	89	76	2	230	14	0.45
5100n 4995e	103	1	1900	30	63	136	2	130	20	0.69
5100n 5005e	51	0.4	1910	25	33	155	2	150	20	0.39
5100n 5010e	6	0.2	200	5	26	120	2	140	6	0.21
5100n 5015e	43	0.2	1055	15	35	144	2	160	12	0.34

5180n 4985e	2	0.2	435	50	13	121	2	120	10	0.53
Table 5:										
sample #	Au ppb	Ag ppm	As ppm	Sb ppm	Cu	Zn	Мо	Ва	Pb	Ca (%)
5180n 4990e	52	0.2	2310	295	103	86	2	160	8	1.63
5180n 5000e	7	0.2	110	10	87	98	4	210	10	1.39
5180n 5005e	3	0.2	50	5	58	118	10	170	10	0.42
5180n 5010e	1	0.2	15	5	42	214	8	120	14	0.15
5225n 4990e	33	0.2	205	15	68	64	2	240	14	0.6
5225n 4991e	56	0.4	760	15	56	77	2	200	12	0.57
5225n 4992e	574	0.8	3775	75	86	134	2	160	10	0.54
5225n 4993e	656	1.2	3675	65	98	86	4	140	16	0.46
5225n 4994e	1578	2.6	9405	130	153	119	8	120	28	0.49
5225n 4995e	1193	1.6	7575	95	175	105	10	80	24	0.38
5225n 4996e	1164	1.2	8450	95	128	112	14	110	22	0.37
5225n 4997e	1465	1.8	10000	270	117	96	10	100	20	0.47
5225n 4998e	3139	3.2	10000	220	127	141	4	150	28	0.77
5225n 4998e dup	968	2.4	10000	165	119	108	12	110	24	0.55
5225n 4999e	4584	5.8	10000	225	143	131	2	140	26	1.19
5225n 5000e	4839	147.2	10000	205	346	93	2	120	18	4.02
5225n 5001e	10000	7.8	10000	175	185	66	2	70	16	1.9
5225n 5001e dup	10000	7.8	10000	280	218	116	2	160	26	2
5225n 5002e	10000	9.6	10000	350	271	84	2	80	26	1.98
5225n 5004e	4617	7.2	10000	185	97	75	2	180	14	0.7
5240n 4985e	13	0.2	260	5	37	73	2	140	10	0.4
5240n 4990e	106	0.4	1410	10	26	166	2	140	10	0.2
5240n 4995e	535	1	5520	95	138	250	4	80	20	0.21
5240n 5000e	658	4.2	4290	110	118	113	14	80	20	0.11
5240n 5005e	13	0.2	510	10	15	153	2	230	12	0.2
5240n 5010e	1	0.2	95	5	28	161	2	210	16	0.24
5260n 4980e	36	0.2	2155	30	31	182	2	290	18	0.5
5260n 4985e	30	0.2	1890	25	58	89	2	50	14	0.28
5260n 4990e	60	0.4	2190	40	23	158	2	140	14	0.19
5260n 4995e	6	0.4	420	10	18	176	2	230	12	0.29
5260n 5000e	27	1	635	15	44	156	4	170	14	0.28
5260n 5005e	3	0.2	65	5	27	226	2	160	16	0.41
5340n 4970e	304	0.4	5125	90	29	115	2	220	18	0.64
5340n 4975e	1004	0.6	8115	85	57	105	2	110	18	0.44
5340n 4980e	115	0.2	2810	50	59	151	2	170	14	1.25
5340n 4985e	41	0.2	790	20	49	59	2	120	8	0.54
5340n 4990e	747	0.4	8500	80	87	73	2	110	12	0.35
5340n 4995e	541	1.4	3575	45	70	75	2	130	12	0.59
5340n 5000e	733	1.6	6275	70	103	95	2	140	14	1.03
5340n 5010e	6	0.2	60	5	81	67	2	150	8	0.19
5380n 4980e	23	0.2	495	10	66	96	2	160	8	0.61
5380n 4980e dup	15	0.4	555	10	50	111	2	140	8	0.48
5380n 4985e	14	0.2	545	10	56	79	2	180	10	0.83
5380n 4990e	39	0.4	695	15	77	86	2	170	10	0.93
5380n 4995e	172	0.2	1610	35	98	101	2	140	10	0.51

5180n 5015e	7	0.2	15	5	44	106	4	110	12	0.3
Table 5		0.2	10			100	- ·	110	12	0.0
sample #	Au ppb	Ag ppm	As ppm	Sb ppm	Cu	Zn	Мо	Ва	Pb	Ca (%)
5000n 4860e	5	0.2	38	6	29	196	1	280	6	1.05
5000n 4880e	5	0.2	26	4	42	180	2	290	14	0.52
5000n 4900e	5	0.2	228	6	37	318	5	280	6	0.34
5000n 4920e	5	0.2	96	2	35	178	1	310	8	0.61
5000n 4940e	30	0.2	1370	58	26	122	1	420	8	0.32
5000n 4950e	1200	3	5580	68	10	88	1	310	14	0.02
5000n 4960e	5	0.2	566	12	38	82	1	190	6	0.39
5000n 4980e	310	0.2	3150	54	14	86	1	120	16	2.12
5000n 5040e	660	2	3890	34	25	46	1	310	18	0.75
5000n 5080e	5	0.2	38	2	54	80	1	120	6	0.42
5000n 5100e	5	0.2	30	2	41	190	1	390	12	1.96
5040n 4950e	205	0.2	1820	26	26	142	1	270	6	0.6
5050n 4940e	5	1.2	146	20	30	226	1	160	14	1.25
5050n 4950e	5	0.2	534	6	35	206	1	240	4	0.6
5050n 4960e	10	0.2	414	32	34	130	1	240	12	1.25
5050n 4970e	5	0.2	204	6	34	122	1	220	6	0.6
5050n 4980e	5	0.2	1395	20	30	84	1	150	6	0.49
5050n 4990e	5	0.2	124	20	38	132	1	230	4	0.78
5100n 4880e	5	0.2	30	2	48	178	1	230	4	0.70
5100n 4900e	5	0.2	202	6	47	114	1	90	2	0.37
5100n 4940e	5	0.2	38	2	39	196	1	270	8	0.34
5100n 4980e	5	0.2	396	24	35	110	1	160	4	0.32
5100n 5000e	5	2.4	6600	32	54	176	2	70	38	0.37
5100n 5020e	5	0.2	766	8	35	130	1	180	4	0.18
5150n 4940e	5	0.2	122	2	40	206	1	190	4	1.55
5150n 4950e	5	0.2	292	4	40	108	1	200	8	1.00
5150n 4970e	5	0.2	408	10	43	124	1	190	6	1.13
5150n 4980e	205	0.8	2410	24	58	62	1	110	6	1.14
5150n 5000e	5	0.2	86	2	37	84	1	160	4	0.2
5200n 4820e	5	0.2	20	2	42	286	1	270	6	0.48
5200n 4900e	5	0.2	24	2	34	306	3	210	14	0.51
5200n 4920e	5	0.2	32	2	34	180	1	200	6	0.53
5200n 4940e	5	0.2	44	2	66	222	1	140	12	0.6
5200n 4980e	5	0.2	450	4	53	248	1	160	12	0.59
5200n 4990e	760	0.2	3800	86	63	64	1	120	4	0.74
5200n 5020e	5	0.2	40	2	35	316	5	370	4	0.58
5200n 5080e	5	0.2	14	2	33	262	2	380	6	0.5
5200n 5120e	5	0.2	12	2	29	154	1	260	6	0.53
5300n 4920e	5	0.2	40	2	45	159	2	220	12	0.61
5300n 4940e	5	0.4	50	6	25	194	1	200	10	0.66
5300n 4960e	2610	1.6	10000	82	22	74	1	170	6	0.58
5300n 4980e	5	0.2	510	10	39	106	1	110	14	0.46
5300n 5010e	5	0.2	108	2	62	102	1	180	8	0.65
5300n 5020e	5	0.2	110	2	27	114	1	230	2	0.4
5300n 5040e	5	0.2	24	2	14	86	1	170	6	0.34

5300n 5060e	5	0.2	30	2	31	104	1	180	2	0.17
Table 5		0.2			01	101	•		_	0.111
sample #	Au ppb	Ag ppm	As ppm	Sb ppm	Cu	Zn	Мо	Ва	Pb	Ca (%)
5300n 5080e	5	0.2	28	2	35	82	1	190	4	0.27
5300n 5100e	5	0.2	24	2	91	120	2	230	6	0.4
5400n 4840e	5	0.6	116	6	62	178	1	220	4	0.3
5400n 4900e	5	0.0	66	2	82	86	1	210	6	0.66
5400n 4920e	5	0.2	78	6	33	162	1	180	8	0.58
5400n 4940e	5	0.2	50	2	54	244	1	190	18	0.76
5400n 4940e	5	0.2	200	12	32	184	1	170	10	0.76
5400n 4980e	80	0.2	1060	12	83	132	4	110	12	0.4
5400n 5020e	5	0.4	30	2	36	86	3	250	4	0.33
5400n 5100e	5	0.2	30	2	54	56	1	140	4	0.34
5400n 5120e	5	0.2	14	2	108	106	1	140	6	0.59
5500n 4840e	5	0.2	68	2	34	86	1	230	2	0.32
5500n 4920e	5	0.2	58	2	33	92	1	290	8	0.27
5500n 4920e	5	0.2	62	4	50	92 190	1	190	10	0.47
5500n 4940e	5	0.2	196	2	23	134	1	180	4	0.51
5500n 4980e	5	0.2	1430	14	74	166	1	130	8	0.51
5500n 5000e	5	0.2	68	2	27	90	1	150	4	0.01
5500n 5020e	5	0.2	34	2	186	120	3		4	0.47
5500n 5020e	5	0.2	14	2	23	98	1	110 340	2	0.24
5500n 5100e	5	0.2	32	2	31	118	1	280	6	0.3
5500n 5120e	5	0.2	14	2	57	118	3	210	8	0.44
5500n 5140e	5	0.2	14	2	70	110	1	350	6	0.32
5550n 4960e	5	0.2	86	4	18	162	1	180	8	0.20
5550n 4980e	5	0.2	128	2	36	116	1	160	4	0.42
5550n 5010e	5	0.2	328	10	42	110	1	160	8	0.20
5550n 5030e	5	0.2	50	2	48	96	1	130	14	0.45
5550n 5050e	5	0.2	22	2	70	230	1	210	12	0.29
5550n 5070e	5	0.2	90	2	24	122	1	210	8	0.29
5600n 4880e	5	0.2	90 66	2	32	146	4	220	4	0.49
5600n 4980e	5	0.2	40	2	28	202	1	240	6	0.24
5600n 5000e	5	0.2	380	6	30	134	1	250	4	0.46
5600n 5020e	5	0.2	36	2	362	208	5	60	46	0.40
5600n 5040e	5	0.2	166	2	146	98	3	90	30	0.58
5600n 5060e	5	0.2	40	2	24	88	1	210	2	0.33
5600n 5080e	5	0.2	42	2	51	92	1	160	6	0.35
5650n 4960e	5	0.2	70	2	33	88	1	200	4	0.20
5650n 4980e	5	0.2	176	2	41	164	1	140	4	0.34
5650n 5000e	5	0.2	1150	12	41	216	1	210	12	0.36
5650n 5060e	5	0.2	1140	144	83	116	1	160	14	0.30
5700n 4900e	5	0.2	120	2	36	150	1	260	4	0.54
5700n 4920e	5	0.2	42	2	24	76	1	140	6	0.34
5700n 4940e	5	0.2	110	2	21	80	1	230	4	0.25
5700n 4960e	5	0.2	22	2	10	78	1	130	4	0.19
5700n 5020e	5	0.2	124	4	82	110	1	140	10	0.13
5700n 5040e	5	0.2	76	2	26	126	1	160	4	0.39
57001130408	Ü	0.2	10	۷	20	120		100	4	0.39

5700n 5060e	5	0.2	28	2	33	84	1	130	4	0.23
Table 5										
Sample #	Au ppb	Ag ppm	As ppm	Sb ppm	Cu	Zn	Мо	Ва	Pb	Ca (%)
5700n 5080e	5	0.2	42	2	44	76	1	120	2	0.23
5800n 4860e	5	0.2	52	2	30	94	1	230	8	0.29
5800n 4920e	5	0.2	144	2	42	64	2	150	2	0.58
5800n 4980e	5	0.2	52	2	59	108	1	160	2	0.5
5800n 5000e	5	0.2	40	8	73	86	1	170	18	0.59
5900n 4840e	5	0.2	76	2	40	240	1	320	8	0.3
5900n 4880e	5	0.2	34	2	79	166	2	200	14	0.67
5900n 4900e	5	0.2	46	2	69	108	1	170	14	0.35
5900n 4980e	5	0.2	106	6	109	148	1	210	6	0.36
5900n 5000e	5	0.2	56	2	25	162	1	250	8	0.47
5900n 5020e	5	0.2	64	2	32	92	1	200	6	0.39
5900n 5040e	5	0.2	390	6	100	94	1	110	14	0.32
6550n 5020e	60	0.2	338	6	107	90	1	150	10	0.42
5125n 5000e	5	0.2	482	4	38	126	1	150	6	0.2
5225n 5000e	17800	22	10000	174	325	86	1	150	2	2.02
5250n 5000e	210	0.4	2510	44	158	198	13	50	4	0.19
5750n 5000e	5	0.2	216	2	43	134	1	260	8	0.35