

 $l \propto$

4

PROSPECTING REPORT ON ELISIR ALBERNI M.D. MAP 92E/16 LAT 49' 45' 25" N LONG 126' 15' 60"W

BY EFREM SPECOGNA

1. Introduction

This report describes the work carried out on the Elisir Mineral Claim. Situated in the Alberni Mining Division. It also includes some unreported assay results obtained by the author in previous years without asking for credit, as it might become useful at some time in the future to someone.

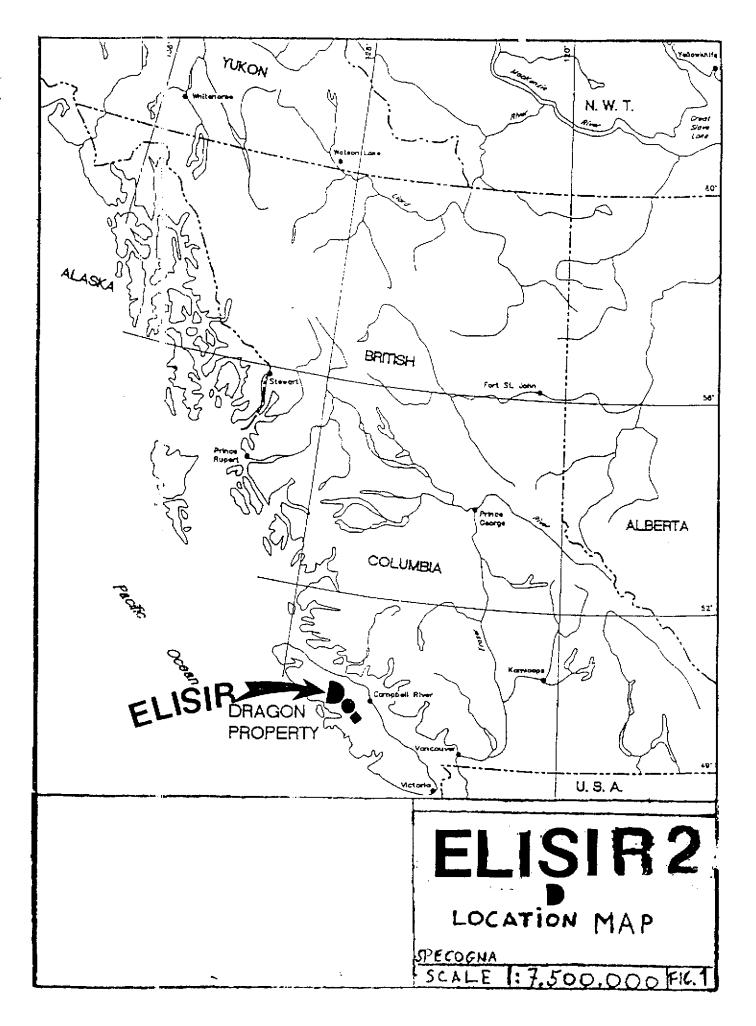
2. Location and Access

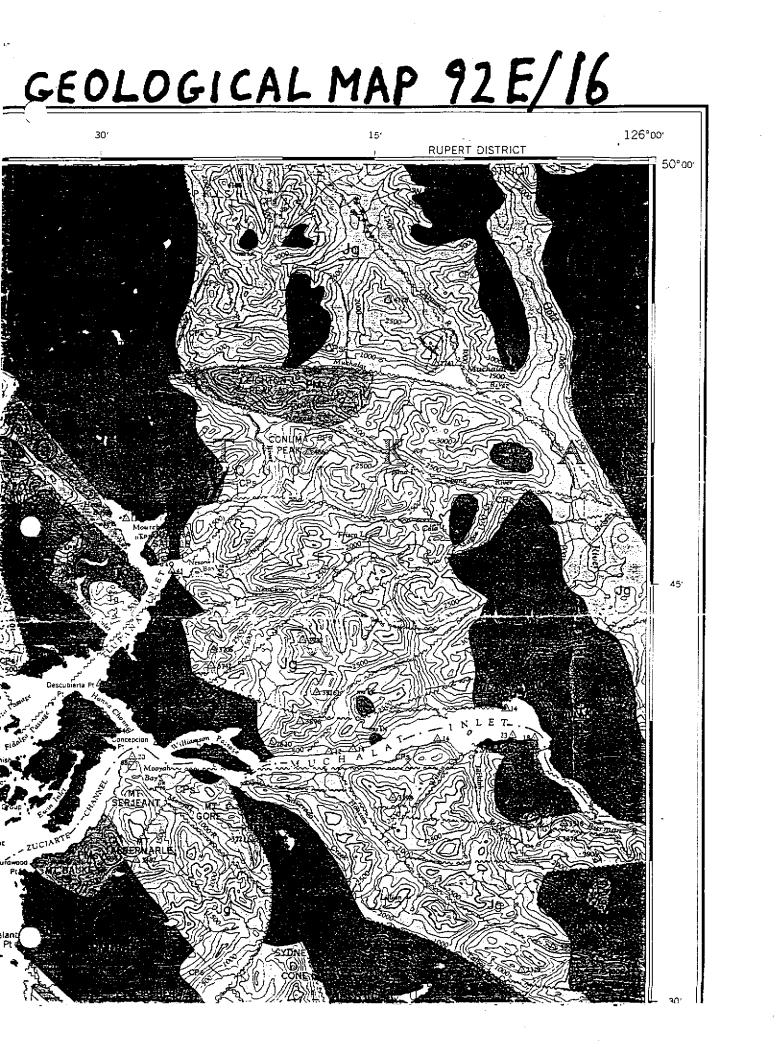
The Elisir is located at the spring of the Muchalat West River a confluent of Muchalat North, and Diamond Cr. draining into the Conuma Valley.

3. History

There is no record of any work done on the Elisir except for an airborne electromagnetic profile by Aerodat for Noranda, following an option agreement with the author on the Dragon prospect.

The author has been prospecting the general area since 1985 (accompanied by daughter Tania and her friend Tiera Punt), while checking paleozoic limestone areas reported by the C.G.S., and located a massive sulphide float north of Leighton Mountain in the Muchalat Valley.


Huge amounts of snow at high elevation and lack of road access to the south of the range prevented serious prospecting until 1992 when the logging company, active in the area, disclosed its' five year logging and road building plan. Following the Specogna staking, the Dragon showings, and an option agreement with Norex (a Noranada subsiduary) more ground was acquired by Norex. Norex dropped the option in 1994. Westmin took over only to leave for greener ground in 1996.


4. Work

After Westmin left, a new road was built in 1998 that exposed rocks never reported on Vancouver Island. These rocks are now being explored. Petrographic, rock identification of five samples, microanalysis of spinels, and several rock chip samples were analyzed multi-elements and P.G.E.

5. Geology

The area covered by the Elisir mineral claim was mapped as Karmutsen. In fact it covers a very complex geology that consists of laprophyric dikes, layered mafic and multiinstrusive including silicic, quartz fespatic dikes from a width of 50 meters to 20 centimeters and in the Cu. Ni. Co. area silicic dike as small as 1 centimeter. Also basaltic round and oblong pyroclast with a few accidentals (silicic) are exposed in a smll bluff.

 \equiv

S

Within the intrusive complex an area one hundred meters wide (probably a pipe) is decomposed, cut to a depth of ten meters bythe Rd. builders, the end is not in site, boulders of mafic and silicic are embedded in it. Another area at a higher elevation is also decomposed with fist sized clast embedded in it that appear to be of the same composition. A several tonne's float boulder near by is saturated with five centimeter feldspare crystals. On the eastern site of the exposed layered rocks, saprolitic weathering is well expoded. To the west of Elisir in another walley Mo. occurs in Karmutsen volcanic, the main sulphide in quartz veins is pyrrhotite the which is rimed by molybdenite.

6. Results

Petrographyc and Photomicrographs analyses positively indentified the Lamprophyres.

Electron-Probe Microanalyses of Spinels with 50% Cr. indicate origin from deep of the mantle, their Cr. content compares close to world diamond deposits.

It is of note that in Germany recently microdiamonds were found in quartz feldspatic rocks.

The lamprophyric dikes and layered mafic after limited assays seem to be depleted of Cu. and PGE , whereas the rocks to the south of the intrusion are depleted of Cr. but enriched in Cu. Ni. and anomalous in PGE.

To the west and northwest of the above area several E.M.anomalies were detected by Aerodat and have not yet been investigated. C.S.G. considers the area north west of Gold River to be the back bone of Vancouver Island. It is of note that rocks mapped by Westmin on the Dragon compare with the Kambalda geology of Australia.

Loring Laboratories Ltd.

629 Besverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE #: 41561

COMPANY: Mr. E. Specogna Nanaimo, B.C.

DATE : Nov 9, 1999

····	ORIGINAL		SCREEN		TABLE		LINGS				LIEAVIE			····	
SAMPLE		+35	35 x 80	-80	CONC.	2.8 -	3.3 SG	MAG.	+28	n travégy (name name (name (name (name name (name (name name (name	Р.м.			<u>/.Р.М</u> .	
ID.	(Kg)	mesh (kg)	mesh (kg)	-ou mesh (kg)	+80 mesh (g)	MAG. (9)	NON - MAG. (g)	(9)	Mesh (g)	0.5	0.6	0.7	1.2	2.0	N.K 2.0
#1	9.6	1.4	3.1	5.1	459	3.97	408.63	0.30	0.10	(g) 0.27	(g) 0.01	(g) 0.01	(9) 0.23	<u>(9)</u> 0.01	(g) 0.0t
								·							0.01
·····											 				
<u> </u>		· /							·····						

TE : P.M. = PARAMAGNETIC

W.P.M. = WEAKLY PARAMAGNETIC

N.M. = NON-MAGNETIC

ASSAYER

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
TiO ₂	0.08	0.13	0.27	0.15	0.23	0.22	0.10	0.18	0.20	0.23	0.16	0.24	0.24	0.09	0.18	0.22	0.1
AI_2O_3	15.52	9.32	10.07	9.35	12.69	7.83	13.03	10.54	16.21	8.12	13.94	8.56	11.00	13.03	12.82	10.33	12.7
Cr_2O_3	40.04	54.70	52.19	53.84	48.43	53.89	45.02	48.92	42.85	53.78	44.75	53.29	47.15	45.54	47.58	49.01	45.6'
Fe ₂ O ₃	11.79	4.02	4,95	4.39	5.87	5.95	9.73	7.84	8.02	6.15	8.78	5.76	9.10	8.67	6.78	7.94	8.6. g
MnO	0.25	0.23	0.26	0.21	0.22	0.17	0.22	0.29	0.23	0.18	0.20	0.27	0.20	0.25	0.27	0.20	0.2
FeO	27.93	27.77	28.33	28.21	28.34	29.57	27.98	28.43	27.36	29.00	28.79	28.44	28.96	28.97	28.82	28.46	28.9: ²
MgO	<u>4.05</u>	<u>3.83</u>	<u>3.41</u>	<u>3.40</u>	<u>3.65</u>	<u>2.50</u>	<u>3.91</u>	<u>3.30</u>	4.59	<u>2.96</u>	<u>3.57</u>	<u>3.23</u>	<u>3.11</u>	<u>3.17</u>	<u>3.39</u>	<u>3.34</u>	<u>3.1</u> a
Fotal	99.66	100.00	99.48	99.55	99.43	100.13	99.99	99.50	99.46	100.42	100.19	99.79	99.76	99. 72	99.84	99.50	99.5 <mark>-</mark>
					Nu	mbers of	cations t	based on	32 oxyg	ens per f	òrmula u	nit					c
Ti	0.02	0.03	0.06	0.03	0.05	0.05	0.02	0.04	0.04	0.05	6.03	0.05	0.05	0.02	0.04	0.05	0.0
Al	4.95	3.04	3.30	3.08	4.11	2.60	4.19	3.46	5.14	2.68	4.47	' 2.82	3.60	4.22	4.14	3.39	41
Cr	8.57	11.97	J1.48	11.88	10.52	32.01	9.71	10.77	9.11	11.90	9.62	(1.79	10.36	9.89	10.32	10.79	9.9) ş
Fe ³⁺	<u>2.40</u>	<u>0.84</u>	<u>1.04</u>	<u>0.92</u>	<u>1.21</u>	<u>1.26</u>	<u>2.00</u>	<u>1.64</u>	<u>1.62</u>	<u>1.30</u>	1.80	<u>1.2</u>]	<u>1.90</u>	<u>1.79</u>	<u>1.40</u>	<u>1.66</u>	<u>1.7:</u>
$\Sigma^{3+,4+}$	15.94	15.88	15.88	15.91	15.90	15.92	15.92	15.91	15.91	15.92	15.92	15.88	15.91	15.93	15.90	15.89	15.9:
Mn	0.06	0.05	0.06	0.05	0.05	0.04	0.05	0.07	0.05	0.04	0.05	0.06	0.05	0.06	0.06	0.05	0.0!
Fe ²⁺	6.32	6.43	6,59	6.59	6.51	6.97	6.39	6.62	6.15	6.79	6.55	6.66	6.73	6.66	6.61	6.63	6.6
Mg	<u>1.64</u>	<u>1.58</u>	<u>1.42</u>	<u>1.42</u>	<u>1.50</u>	<u>1.05</u>	<u>1.59</u>	<u>1.37</u>	<u>1.84</u>	<u>1.24</u>	<u>1.45</u>	1.35	<u>1.29</u>	<u>1.30</u>	<u>1.39</u>	<u>1.39</u>	<u>1.3(</u> -
Σ^{2+}	8.02	8.06	8.07	8.05	8.06	8.06	8.03	8.06	8.05	8.06	8.04	8.07	8.06	8.02	8.06	8.06	ية 10.8

TABLE 1. Electron-probe microanalyses of select grains of spinel-group minerals (Fe₂O₃ calculated from stoichiometry).

Note: Si, Ca, Ni, V analyzed for but not detected.

1 3

P.002/002 F-204

ΪŊ

Exploration Research Labornovy Nanaimo, B.C. V9X 1A3

22 April, 1999

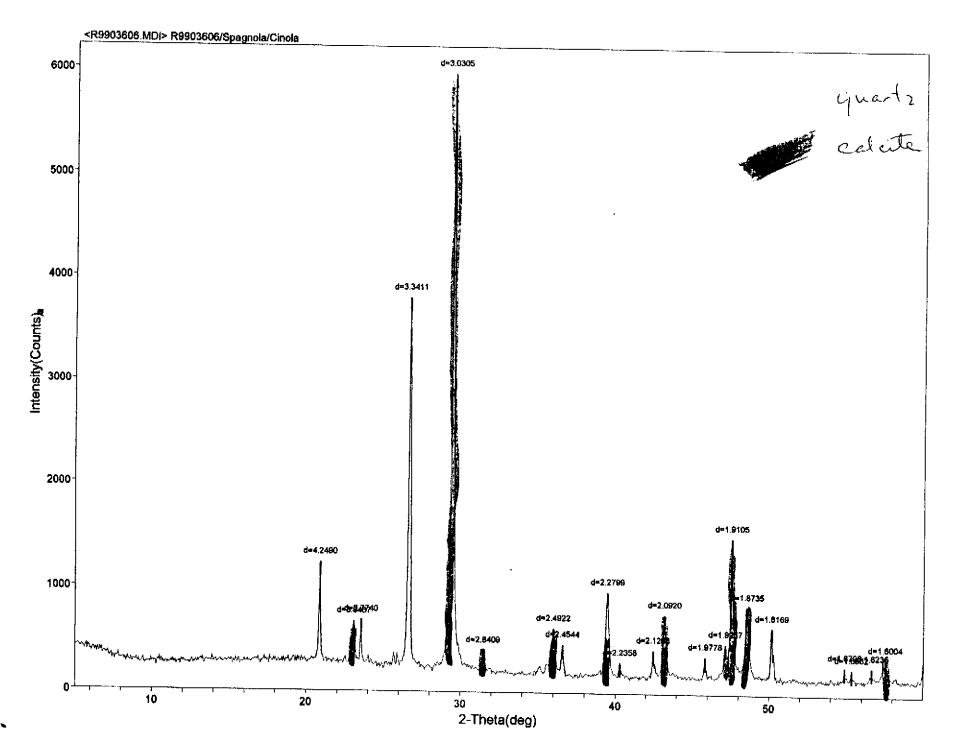
Dear Sir:

RE: White Mineral I.D. / E.R.L. Job V990232R

Three pieces of dense, black, fine grained rock which react vigorously to 10% HCl are cut by thin veinlets of white calcite. Fine grained disseminated Fe-sulfides are disseminated through the rock. On some surfaces a white coating is developed which is seen to react only mildly to 10% HCl.

The white coating was scraped off the rocks and x-rayed. The two minerals identified in the x-ray chart are quartz and calcite.

The white coatings are seen to be quite hard when scrapped with a needle so it is believed they are largely quartz.


Attached is the x-ray diffractogram.

Yours truly,

C 22. 22

J.A. McLeod, M.A.Sc., P.Eng. E.R.L. Manager

JAM/skw App. (X-ray diffratograms)

Materials Data, Inc.

Ν

<R9903606.MDI> R9903606/Spagnola/Cinola

je s v

Scan Parameters: Range = 5.0-59.95/0.05, Dwell = 1(sec), Max-I = 5924, Anode = CU

.1

JADE - Peak List Report] Date: 04-20-99@10:22

*									spacing = 1				1 -
	2-Theta	<u>d(A)</u>	h	k		BG	Peak	P%	Агеа	A%	FWHM	Size(A)	1
1	20.889	4.2490				276	913	16.1	133	9.9	0.116	>1000	1
2	23.090	3.8487				282	336	5.9	61	4.5	0.145	>1000	2
3	23.554	3.7740		····		340	295	52	28	2.0	0.074	>1000	
4	26.659	3.3411				268	3492	61.6	655	48.6	0.150	>1000	4
5	29.450	3.0305		···		255	5669	100.0	1348	100.0	0.190	840	
6	31.464	2.8409			·····	205	140	2.5	23	1.7	0.130	>1000	e
7	36.008	2.4922				232	334	5.9	67	4.9	0,159	>1000	7
8	36.581	2.4544				234	175	3.1	26	1.9	0.115	>1000	8
9	39.492	2.2799				173	749	13.2	194	14,4	0.207	565	9
0	40.305	2.2358				172	67	1.2	9	0.6	0.097	>1000	
1	42.469	2.1268				171	192	3.4	27	2.0	0.111	>1000	1
2	43.210	2.0920				185	523	9.2	116	8.6	0.177	767	1:
3	45.841	1.9778				144	162	2.9	30	2.2	0.144	>1000	1:
4	47.157	1.9257				151	278	4.9	89	6.5	0.254	400	14
5	47,555	1,9105				202	1251	22.1	308	22.8	0.197	594	1:
6	48,555	1,8735	· · · · ·			212	581	10.2	156	11.6	0.215	510	1
7	50.168	1.8169				151	436	7.7	74	5.5	0.135	>1000	1
8	54.908	1.6708				132	91	1.6	15	1.1	0.131	>1000	11
9	55.358	1.6582				131	71	1.3	13	0.9	0,137	>1000	1
Ö	56.646	1.6236				147	72	1.3	13	0.9	0.138	>1000	20
1	57.542	1.6004				154	148	2.6	45	3.3	0.242	433	21
-													

Cominco Ltd. / Exploration Research Laboratory / 1486 East Pender Street / Vancouver, B.C. / Canada VSL IV8 Phone: (604) 685-3032 / Fax: (604) 844-2686

Mr. Efrem Specogna 1704 Centenary Drive Nanaimo, B.C. V9X 1A3

21 January, 2000

Dear Sir:

RE: Mineralogical Identification / E.R.L. Job V000008R

Five rock samples were submitted for identification. A thin section was made of each and a quick description is given. The samples are referenced as follows:

LAB NO. FIELD NO.

R00:00223	Diamonds #1
R00:00224	Diamonds #2
R00:00225	Kukutka
R00:00226	Ni Cr Anomaly
R00:00227	Associated Cr,Ni,Co

Following are the descriptions:

SAMPLE R00:00223 (Diamonds #1).

Large plagioclase crystals to 5 mm in length with interstitial laths of chlorite, in patches and aggregates of 2 - 4 mm, are noted. Some fine grained epidote, sphene, carbonate and iron-oxides are widely disseminated. The rock appears to be some sort of chloritized diorite.

SAMPLE R00:00224 (Diamonds #2).

This rock is cut by several calcite veins and veinlets and is comprised of relatively fine grained chlorite and tremolite. It appears to be an altered volcanic.

SAMPLE R00:00225 (Kukutka).

Large, poikilitic grains of amphibole are seen to be up to several cm's in size. They incorporate or engulf grains of plagioclase and pyroxene that are in the 0.5 - 1.0 mm size range. Some large crystals of plagioclase are also present and these appear to be corroded. The rock has been altered in an interstitial to intergranular manner with the development of secondary amphiboles, chlorite and sulfides.

The rock is some sort of basic to ultrabasic megacryst bearing lamprophyre.

SAMPLE R00:00226 (Ni Cr Anomaly).

An extensively altered rock has what appears to be crystals of amphibole developed throughout. The rock is a fine grained mixture of tremolite and chlorite with the possibility of talc. The rock is thought to be an altered ultramafic.

SAMPLE R00:00227 (Associated Cr, Ni, Co).

This sample is comprised of fresh, fine grained amphibole grains of a granular nature in the 0.25 - 0.5 mm size range. These grains are intergrown with plagioclase. The plagioclase grains vary from 0.5 mm to aggregates of grains up to 2 - 3 mm in size.

The rock is an amphibolite and may in fact be a metamorphic rock derived from a pre-existing basic volcanic or igneous material.

Mr. E. Specogna 1704 Centennary Drive Nanaimo, B.C. V9X 1A3

2 September, 1999

Dear Sir:

RE: Lamprophyre Sample / E.R.L. Job V990602R

A large, black, crystalline rock sample was submitted for identification. A thin section was made and examined microscopically.

In transmitted light the rock is seen to contain the following visually estimated mode:

Amphibole (hornblende):	60%
Biotite:	20%
Olivine:	10%
Pyroxene:	8-9%
Opaques:	1%

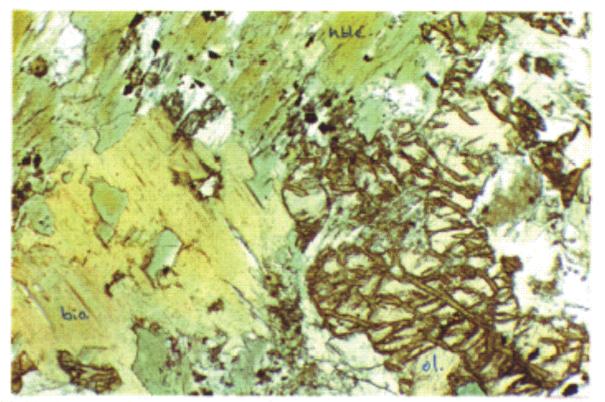
Large grains of hornblende to a cm are anhedral and often contain small, euhedral grains of pyroxene (0.5 mm) as inclusions. As well, intergrown with hornblende are larger, ragged laths of pyroxene and even larger grains of biotite. This biotite may be up to several mm's in length.

Corroded, granular olivine up to 2 mm are included in hornblende and biotite. Some disseminated, very fine grained iron sulfide opaques are present in the rock.

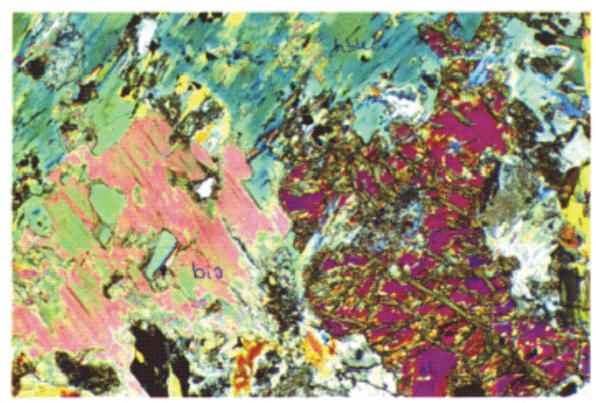
The rock is an unusual basic/ultrabasic material and is a hornblende rich, feldspar poor lamprophyre. Based on field descriptions it is a lamprophyre dyke.

A few photomicrographs have been taken and these are captioned and appended. They are meant to illustrate mineralogy and texture.

Yours truly,


males

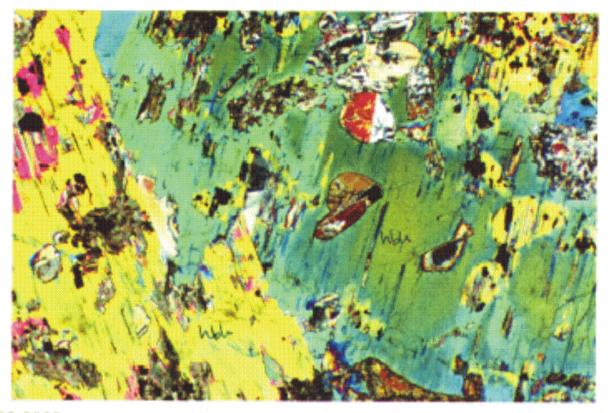
J.A. McLeod, M.A.Sc., P.Eng. E.R.L. Manager


JAM/skw

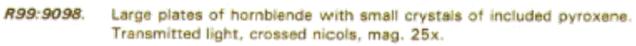
App. (photos) Encl. (section)

PHOTOMICROGRAPHS - SPECOGNA (V990602R)

R99:9098. Corroded olivine grains, plates of anhedral biotite and hornblende. Transmitted light, mag. 25x.



280 pm


280 pm

R99:9098.

As above but crossed nicols.

280 407

COST

٠

LORING 9.6 Kg. sample proceesing	\$	278.00
UBC ELECTRON-PROBE MICROANALYSES		300.00
Assay's 25 saples at \$35.00 per sample		875.00
Mineralogical ID		324.00
Travel I0.000 Km. at .40¢ per Km.	4	.000.00
Labor 15 days two men \$350.00 per day	4	• 50 0•00
	 I0	.277.00

STATEMENT of QUALIFICATION

I Efrem Specogna certyfy that I beenProspecting for over thirty years and had mining claims optioned to most mayor Canadian Mining Company.

2 _____ ap Efrem Specogna

Assays	
B48636	Breccia boulder in road rubble
48637	Pyritized volcanic in road cut
38	Very coarse lamprophyre
318	Skarn bellow miara rocks west of diamond Gr.
319	Altered volcancic bettwin lanprophytes
320	As above – also R00:0022 and 23
48642	Pyritized quart veins
43	As above
44	As above
45	As above on south side of small fault
46	Eight feet sample north of 48637 altered volcanic
47	Veins in rock rubble across diamond gr.
48	Same place quart mira
49	Mira cert
50	Quartz stainen dark
Lamp 1	Coarse lamprophyre
Lamp 2	Evenly grained boulder withing decayed rock
48200	Decayed rock near layered mafic
48600	Moss in Cr. To the west of layered rock
324	Thin layered silicified boulder in road rubble
325	Chip sample along east west fault R00:0027
326	Five hundred m. south of above in road cut
327	Gabbro floats from Cr. In the Muchalal valleys
328	Gabbro floats from Cr. In the Muchalal valleys
2010	Gabbro
2011	Gabbro pyritezed
2012	Gabbro pyritezed
2013	Gabbro pyritezed

.

 $\langle \rangle$

Assays of previous years.

48060	Small float in Northgate Valley
B48323	Mo in quarts veins in Karmutsen volcanics
B48324	Mo in quarts veins in Karmutsen volcanics
B48325	Mo in quarts veins in Karmutsen volcanics
B48326	Mo in quarts veins in Karmutsen volcanics
B48327	Mo in quarts veins in Karmutsen volcanics
48099	Ni Cu amomaly in Northgate Valley also R00:00226
48550	Black ultra basic in big rock pit Conuma Valley
48163	Cu mineralized gabbro South West of Muchlat Lake
48378	Gabbro main showing
48379	Partially bleached
48380	Totally bleached
48381	Totally bleached
48382	Fresh and hard Gabbro
48383	Coarse horblend Gabbro
48640	Graphitized Dike with floreshent white veinlets V990232R
48641	Karmutsen with pyrrhotite
48388	From 48163 paned over flow (tailing)
48389	Same concentrated with magnetics removed
48390	Same mostly magnetic
48317	Graphitized as 48640

							6	~~~							, i				ΓIF:														
<u>L</u>							<u>Spe</u> 1704	4 Cent	enna	ry D	rive,	Nan	aimo	BC	ora v9x	1A3	<u>on</u> \$u	E': bmitt	ile ied by	# /: Ef	98(rém) 4 9 Spece	60 Igna										Ľ
SAMPLE#	Мо ррп				-		Co Mn ppm ppm		≥ A: Kpp	s U n ppm	Au ppm							Ca %	-	La ppm			Ba ppm		B ppm	Al %					Pt** ppb		
в 48636 В 48637	1 '	3863 3564					63 360 220 411												.045	-		.56 1.32	_	. 19			.01<			95	4	V 1	
B 48638 RE B 48638	6	31 30	- 6	49	<.3	283	59 610 59 612	4.5	5 `≺i	2 <8	<2	<2	42	.4	<3	<3	24	-65	.049	5	381	5.60	21	.05	<3.3	.67	.06	.02	3	13 1 1	1	10 3 3	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

and the second second

DATE RECEIVED:	NGV 9 1998	DATE REPORT MAILED:	V 16/98 SIGNI	ы ву	TOYE, C.LEDNG, J. WANG; CERTIFIED B.C. ASSAYERS
				/	•

/1/1

, 7

Dati

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SPECOGNA, EFREM

1704 CENTENARY NANAIMO, BC V9R 5K1

Page Number : 1-A Total Pages : 1 Certificate Date: 24-NOV-1998 Invoice No. : 19836370 P.O. Number : Account : PEO

Project :

Comments: ATTN:EFREM SPECOGNA

~"

r										CE	RTIFI	CATE	OF A	NAL	YSIS		A9836370	
SAMPLE	PREP CODE	Au ppb AFS	Pt ppb AFS	2d ppb AFS	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Hg P ppm %	Mn ppm
48639	205 226	146	< 5	110	8	2.24	270	< 20		< 10		< 5	60	100	6820	9.84	< 10 < 0.01	370
									•							· , . •••		
~.																		

CERTIFICATION:_

Kust !!

achles

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SPECOGNA, EFREM

~*

1704 CENTENARY NANAIMO, BC V9R 5K1

Page Number :1-B Total Pages :1 Certificate Date: 24-NOV-1998 Invoice`No. :19836370 P.O. Number : Account : PEO -

Project : Comments: ATTN:EFREM SPECOGNA

									arran and	· ·							
				<u>-</u>	W					CE	RTIF	CATE	OF A	NAL	/SIS	A9836370	
SAMPLE	Prep Code	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V Maqq	W ppm	Zn ppm		
8639	205 226	< 5	0.01	430	400	70	< 10	< 5	10	0.10	< 20	< 20	60	20	220		
												٠					

. ٠. . .

CERTIFICATION: 1. 1223 1 R. QO

٠

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, EFREM

-*

.

1704 CENTENARY NANAIMO, BC V9R 5K1 Page Number :1 Total Pages :1 Certificate Date: 10-FEB-199 Invoice No. :19911527 P.O. Number : Account :PEO

Project	:
Comme	ants:

			1										* ***				ÇE	RTIF	ICAT	EOF	ANAL	YSIS		A9911527	'	
SAMPLE		EP DE	At	ірр Аг	b P S	t p λ	pb : FS	Pđ j j	ppb NFS	A1203 % XRF	Ca %XR	0 F	Cr2O3 % XRF	Fe203 % XRF	K20 % XRF	5 * * 2	Mgû XRF	MnO % XRF	Na20	P205 % XRF	sio2 * XRF	Tio2 % XRF	LOI % XRF	TOTAL		
48640 48641	205 205	226 226		< 1	42	< <	10 10		< 4 < 4	8.28 15.46	30.2 10.2	9	< 0.01 < 0.01	3.81 24.80	(1.98 1.10	1	.70 .70	0.03 0.14	1.21 0.45	· 0.04 0.23	40.13	0.40	11.02 7.27	98.89 99.10		
											• .															
											•															

1

CERTIFICATION

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, EFREM

~*

CERTIFICATION:

1704 CENTENARY NANAIMO, BC V9R 5K1 Page Number :1-A Total Pages :1 Certificate Date: 08-FEB-1999 Invoice No. :19911528 P.O. Number : Account :PEO

Project :	
Comments:	

	<u> </u>					<u></u>	_ .				CE	RTIFI	CATE	OF		/SIS		49911	528		
SAMPLE	PRE COD	E	Ba ppm	Ce ppm	Cs ppm	Со ррт	Cu ppm	Dy ppm	Er ppm	Eu ppm	Gđ ppm	Ga ppm	Hf ppm	Но рра	La ppm	Pb DDm	Lu ppm	Nđ	Ni	Nb	Pr
48640 48641	299 299		270 338	20.5 27.0		4.5 137.0	5 850	ppm 3.3 4.5	ppm 2.1 2.5	ppm 1.2 1.7	ppm 3.7 4.4	9 23	<u>ppm</u> 1 2	ppm 0.7 0.9	ppm 14.0 11.5	25 5	ppm 0.3 0.4	ppm 15.5 17.0	ppm 20 80	ppm 3 3	ppm 3.7 4.0

• •

 $\langle \langle \rangle$

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, EFREM

~*

1704 CENTENARY NANAIMO, BC V9R 5K1 Page Number :1-B Total Pages :1 Certificate Date: 08-FEB-1999 Invoice No. :19911528 P.O. Number ; Account :PEO

Project : Comments:

	- <u></u>	1						<u> </u>		CE	RTIFI	CATE	OFA	NALY	/SIS	ļ.	\9911	528	•
SAMPLE	PREP CODE	Rb ppm	9m ppm	Ag ppm	Sr ppm	Ta ppm	Tb ppm	Tl ppm	Th ppm	Tm ppm	Sn ppm	W Mqq	U ppm	V ppm	Yb ppm	ү ррш	Zn ppm	Zr ppm	
8640 8641	299 297 299 297	27.8 36.2	3.4 4.1	< 1 < 1	359 319	< 0.5 < 0.5	0.7	< 0.5 < 0.5	1	0.3	< 1 1	< 1 < 1	18.0 0.5	70 245	2.1 2.3	22.0	90 185	76.5	
							91 993 Lin a g									A	1		

× 1

()

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SPECOGNA, EFREM

_*

1704 CENTENARY NANAIMO, BC V9R 5K1

Page Number :1 Total Pages :1 Certificate Date: 11-MAR-1999 Invoice No. :19912677 P.O. Number : Account :PEO

....

Project ;	
Comments:	

	- **		T	1		CERTIFIC	ATE OF A	NALYSIS	A99	912677	
SAMPLE	F	REP	Graphit %						19		
640	244		2.83								
	ĺ										
						1					
									÷		
]				
	1					1					
				1							
							r.	FRTIFICATION	K2L	16.4.4.2	}.
RU from A9911527							C	ERTIFICATION:	101-	ting	<u>/</u>

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, EFREM

1704 CENTENARY ROAD NANAIMO, BC V9R 5K1 **_***

CERTIFICATION:_

.

dle

Page Number :1-A Total Pages :1 Certificate Date: 19-JUL-1999 Invoice No. :19922048 P.O. Number : Account :PEO

Project : Comments: ATTN: EFREM SPECOGNA

			T				 _						C	ERTIF	ICAT	EOF	ANAL	YSIS		A992	2048		·= ·
SAMPLE	PR CO		Au) ppb AFS	Pt	ppb AFS	ppb AFS	Ag ppm			-		Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm				Ga ppm	Hg ppm	
318 319 320 48642 48643	205 205 205	226 226 226 226 226 226		10 < 2 < 2 < 2 6		< 5 < 5 < 5 < 5 < 5 < 5	14 < 2 < 2 < 2 4	 0.6 1.6		 8 12	<pre></pre>		< 0.5 < 0.5	< 2 < 2 < 2	1.83	< 0.5 < 0.5	52 109		1070	4.54	<pre></pre>	<pre></pre>	0.05
48644 48645 48646 48647 48648	205 205 205	226 226 226 226 226 226		< 2 18 < 2 10 < 2		< 5 < 5 < 5 < 5 < 5 < 5	6 2 < 2 < 2 < 2	0.8 1.8 0.2 < 0.2	4.61	24 24	< 10 < 10 < 10 < 10 < 10	< 10 30	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.14	< 0.5 < 0.5 < 0.5 < 0.5	66 115 69 5	172 163	1910 4320 968	3.91 7.55 9.24	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1	0.04
48649 48650	205	226		< 2 14		< 5 5	< 2																
																				\cap	1	,	

÷

くり

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, EFREM

1704 CENTENARY ROAD NANAIMO, BC V9R 5K1

CERTIFICATION:

Page Number :1-B Total Pages :1 Certificate Date: 19-JUL-1999 Invoice No. :19922048 P.O. Number : Account :PEO

Project : Comments: ATTN: EFREM SPECOGNA

CERTIFICATE OF ANALYSIS A9922048 PREP La Mg Mn Mo Na Ni ₽ Pb S Sb \$c тi Sr T1 σ ۷ W Zn SAMPLE CODE ppm ۰. ppm ppm * ppm ppm ppm ۶, ppm ppm ۶. ppm pp**n pp**≊ ppm ppm ppm 918 319 205 226 ----205 226 ------------320 205 226 ----____ ---48642 ----205 226 < 10 0.51 230 0.19 а 41 560 < 2 1.77 48643 < 2 3 25 0.11 < 10 205 226 < 10 39 < 10 < 10 34 0.30 190 4 0.05 4.47 83 180 2 < 2 2 11 0.06 < 10 < 10 39 < 10 34 48644 205 226 < 10 0.30 190 27 0.08 56 320 < 2 2.06 < 2 48645 4 7 0.12 < 10 205 226 < 10 55 < 10 26 < 10 0.41 210 5 0.01 71 360 < 2 >5.00 < 2 3 14 48646 0.06 < 10 < 10 55 205 226 < 10 1.55 < 10 42 440 3 0.09 42 780 < 2 2.48 48647 < 2 8 70 0.20 < 10 < 10 175 205 226 < 10 < 10 158 0.14 50 1 < 0.01 8 20 2 0.16 < 2 < 1 48648 2 0.01 205 226 < 10 < 10 19 < 10 12 ----**--------------**** ----48649 205 226 ***** --------48650 205 226 ----*****

1 1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SPECOGNA, EFREM

1704 CENTENARY ROAD NANAIMO, BC V9R 5K1

Project : Comments: ATTN: EFREM SPECOGNA

__*

Page Number : 1-A Total Pages : 1 Certificate Date: 21-SEP-1999 Invoice No. : 19926889 P.O. Number : Account :PEO

· · · · · · · · · · · · · · · · · · ·					1	,-		CE	RTIFI	CATE	OF A	NALY	'SIS	A	9926	889		
SAMPLE CODE	opb Pt ppb MPS AFS	Pd ppb AFS	Ba ppm	Ce ppm	Cs ppm	Co	Cu ppa	Dy ppm	Er ppm	Eu ppm	Gđ ppa	Ga ppm	Hf ppm	Hoppan	La ppn	Pb ppm	Lu ppm	Nd ppn
LAMP 1 208 226 LAMP 2 208 226	2 < 5 4 < 5	2 4	259 110.5	16.0 9.0	0.6	72.5 95.0	30 10	1.4 1.4	0.8 0.8	0.5	1.7 1.5	10 7	< 1 < 1	0.2	8.0 4.5	< 5 < 5	0.1	7.5
										·								
															$\left(\right)$	- ^ -	1,	

1 1

1

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SPECOGNA, EFREM

1704 CENTENARY ROAD NANAIMO, BC V9R 5K1

Page Number :1-8 Total Pages 1 Certificate Date: 21-SEP-1999 Invoice No. : 19926889 P.O. Number : Account PEO

· Nave

CERTIFICATION:

Г

Project : Comments: ATTN: EFREM SPECOGNA

~*

<u> </u>		····	<u> </u>							CE	RTIF	CATE	OF A	NAL	/SIS	/	\9926	889		
SAMPLE	PREP CODE	Ni ppm	Nb ppm	Pr ppm	Rb ppm	Sm ppm	λg ppm	Sr ppm	Та ррв	Tb ppm	T1 ppm	Th ppm	Tm ppm	Sn ppm	W ppm	U ppm	V ppm	Yb ppm	Y ppm	Zn ppm
JAMP 1 Jamp 2	208 226 208 226	370 790	2 < 1	1.9 1.1	24.0 9.8	1.6 1.2	< 1 < 1	263 137.5	< 0.5 < 0.5	0.2	< 0.5 < 0.5	1 < 1	0.1 0.1	< 1 < 1	< 1	0.5 < 0.5	80 80	0.7	8.0 8.0	60 75
																	~			
																	\cap	-07	1	

1

١, 1

ACME	ANA (ISO	LYI 90	ICA 02	L I Acc	AB	ORA dit	TO: ed	RIE Co	S_1)	TI).		8	52	Е		HAS	STI	NG	s	ŚΤ.	V	NCO	UV	ER BO	1	V6A	11	R.6		PH	ONI	(6	04)	253	-3:	158	FA	X (6 ()4)2	53-	171	.6
ΔΔ														C	ΞE()C	HE	MI	CZ	۱	AN	IAL	YSI	S	CER	FI	FIC	AT	E			·				•				n in the second se		Ä	A
TT	8						SI	ec	og	na	<u>.</u> M	(<u>i</u> r 170	<u>4 c</u>	a ent	L (enn	<u>Co</u> ary	rp Dr	ive	<u>at</u> , N	<u>tic</u> ana	on imo	PR BC V	OJE 7X 14	CT 3	<u>LAI</u> Submi	MPF ttea	<u>ROF</u> d by	Ξ Ε.	Fi Spe	le cogr	# าล	99	034	458	}				-			Ľ	Ľ
AMPLE#	Mo ppm p	Cu opm p	Pb pm p	Zn pm p	Ag pm	N i opm	Co ppm	Mr ppn	1 	°e %⊧	As opm	U ppm	A ppr	u bi	íh xm p	Sr opm	Co ppr	n pp	sp an t	Bi opm	V mqq	C			.a Cr om ppm				Ti %											c Au* n pp			
48600	z	10	<5	37 _<	.5	135	24	918	4	74	9	<10	<4		2 2	203	1.1	7 -	:5	<5	117	2.7	2.04	6	15 474	3.7	5 24	1.	28 4	.76	1.25	.66	<.	4 1	9 <	2 1	11	4	1 1	7	1	12	3

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS. - SAMPLE TYPE: MOSS MAT AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm)

DATE RECEIVED: SEP 16 1999 DATE REPORT MAILED: Sept 27/99

FA

ACMÉ	AN (IS	IALY SO 9	TIC. 002	AL Ac	LAB	ORA dit	TOR ed	IES Co.	ĹT: }	ο.΄							1 d 1						V6A			P	HON	E(6(04)	253	-31	58	FAX	(604) 253	-171	6
													GE	OCH	IEM	IC.	AL	AN?	ALY:	SIS	CE	RTI	FIC	ATE			. ·							1		A	A
TI					4		<u>Sp</u>	ecc	gna	<u>a M</u>	<u>in</u> 1704	era Cen	<u>l (</u> tenna	С <u>о</u> 1 агу	<u>po</u> Driv	ra e, N	tio Ianai	ino BC	PROU C V9X	JEC' 1a3	<u>r L</u> Sub	<u>AMP</u> mitte	ROP ed by:	F. :	il. Speco	∋ # gna	99	034	157						•••	L	
AMPLE#	1		Pb ppm															V mqq	Ca %			Cr ppm		Ba ppm												Pt**	
																						2116													<u></u>		<u> </u>

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS. - SAMPLE TYPE: ROCK AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm)

DATE REPORT MAILED: Sept 27/99 DATE RECEIVED: SEP 16 1999

Dat

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

OCT 5 1999

DATE RECEIVED:

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 PAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Specogna Mineral Corporation PROJECT LAMPROP File # 9903457R

1704 Centennary Drive, Nanaimo BC V9X 1A3 Submitted by: E. Specogna

														_										
SAMPLE#	Si02	AL 203	Fe203	MgO	CaO Na	20 K.	20 Ti	02 P205	MnQ	Cr203	ßa	Ni	Sr.				С <i>г</i> .	1.01	с /тот	C / TAT	SIM	<u></u>	 ·····	·
	76	X	7,	7	26	X	%	X %	%	ኤ	DOM	DOM	hom	 DD00	000	0.000	35	COI V	L/101 ¥	37101	SUM			
																								Ì
 B 48200	38.93	9.36	14.46	24.45	3.90 .	73.	11 .3	36 .09	.20	.322	31	550	96	26	~10	×10	12	7 0	75		100.00		 	1
 													,0	<u>2</u> 4	210	< 10	13	1.0	. 37	<.01	100.00			1.1

GROUP 4A - 0.200 GM SAMPLE BY LIBOZ FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NUL INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK PULP

DATE REPORT MAILED: Oct 16/99

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Date

ACME ANALY (ISO 9	TIC 002	AL I Acc	ABC	RA	TOR] ed ((ES 20.)		Spe		a l	OCH Min	EM er	IC F al	L J Coi	rpo	LYS <u>rat</u>	SIS		SRT Fi	IFI le	# 9	FE 990		1	ONE	(604)25	3-3	158	FA	X (6	04)	253	-171	
AMPLE#	Mo ppm	Cu ppm			Ag	i N maga	Co ppm	Mri ppm	· · · ·	As ppm	-		Th	5r	Cd ppm	\$b		V	Ca %	· · ·	La ppm	Cr		Ba ppm		В	Al	Na	K			-		Pt**	
	PP	Phil	Ppin	ppm	PPm	PP	Ppm		····· ···	PPi		ppin	PP0	ppii	ppn	PMII		ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/0	pp.	ppin	/ <u>^</u>	phu		ppm			/	ppiii	ppii	ppn	ppb	ppp	- pho
23	15	8736	13	88	6.4	507	1463	325	8.65	133	<8	<5	<2	62	3.9	<3	3	51	.97	.022	<1	126	.93	15	. 13	4	.29	.07	.01	8	<5	<1	39	5	14
24	4	4119	11	33	.9	368	398	134	18.43	6	9	<2	<2	173	1.5	<3	<3	31	2.92	.012	1	18	.18	59	.06	<3 4	.36	.62	.09	4	<5	1	29	6	19
25	5	2353	6	26	.4	1333	337	86	15.67	<5	≺8	<2	<2	23	.4	<3	<3	10	1.46	.018	1	43	.33	15	.01	<3	1.55	.03	.09	2	<5	<1	19	5	12
26	2	1109	<3	53	<.3	57	57	324	5.62	10	<8	<2	2	11	.4	<3	<3	154	1.54	.063	6	77	.37	17	.13	3 '	.87	.07	.02	4	<5	1	3	3	8
27	2	137	3	74	<.3	10	16	204	4.99	2	<8	<5	3	6	.3	<3	<3	183	.04	.001	15	24	. 15	83	.31	<3 2	2.19	. 02	1.24	2	<5	1	2	<1	<1
28	<1	222	3	89	.3	13	60	1065	11.09	<2	<8	<2	<2	66	.9	<3	<3	242	2.16	.558	6	8	4.46	42	.17	34	.59	.01	.04	<2	<5	1	7	<1	1
E 328	<1	220	4	88	<.3	12	61	1049	10.89	<2	<8	<2	<2	65	1.0	<3	<3	238	2.12	.545	6	10	4.38	41	.17	34	.54	.01	.04	2	<5	<1	6	<1	<1
TANDARD C3/FA100	26	69	39	188	6.1	37	13	843	3.53	56	23	3	22	31	26.4	20	23	82	.62	.095	19	172	.65	155	.09	22 2	2.05	.04	.17	17	<5	2	48	48	48
TANDARD G-2	1	4	4	44	<.3	7	4	548	2.02	4	<8	<2	4	70	.7	<3	<3	39	.64	.096	8	79	.60	221	.12	4	.95	.07	.49	2	<5	1	-	-	-

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY 1CP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. Samples beginning <u>'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: OCT 15 1999 DATE REPORT MAILED:

\$21/99

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE ROO: 12015 (Dragon).

Phenocrysts and microphenocrysts of plagioclase in the 1 - 3 mm size range are composed of plagioclase feldspars. They tend to be lath shaped. Also, phenocrysts of quartz of the same size are equant in outline. These crystals are set in a matrix of extremely fine grained sutured silicates (quartz and potash? feldspar) that demonstrate some flow like textures as demonstrated by semi-continuous trails of green-brown biotite.

The rock is a flowed quartz-feldspar microporphyry of rhyolitic to dacitic composition.

Yours truly,

Q. C. Jr. Las

J.A. McLeod, M.A.Sc., P.Eng. Manager, Exploration Technical Services E.R.L.

According to letterature similar rocks are associeted with most of the Major massive sulphides deposits in eastern Canada. A road recently build exposed this formation over a length of five hundred meters but can be seen intermittently over two thousand meters along the east west fault.

It is now evident that SEVERAL mafic and felsic sequences occured on the DRAGON RANGE.

							ape				704 0	enter	nnary	Drive,	Nanaii	no BC	: V9X	# 9' 1A3	/ <u> </u>			. 12100/		227 - 13 			1000	· · · · · · · · ·	
SAMPLE#			ls 8a PM PPM				Cr (PPM PI				Ir PPB			NI RĐ PM PPM	Sb PPM	Sc PPM	Se PPM	Sn Sr %%	Ta PPM P	Th PM PP	U W M PPM	Zn PPM P	La PPM P	Ce Nd PM PPM				YD I Pm Pi	
B 48378 B 48379 B 48380 B 48381 B 48382	18 18 <2	<5 <5 <5	24 <50 56 <50 38 <50	<1 <1 <1	<1 <1 <1	30 30 28	<5 14 <5	1 11.8	30 30 00	8 14 8 39 8 37	<5 <5 <5	<1 <1 <1	.53 < .16 < .88 <	20 55 20 <15	.3 54.0 170.0 100.0 4.7	33 33 33	<3<. 6<. <3<.	01<.05 01<.05	2 2 2 2 1 2	2.4 <. 2.3 <. 2.9 <.	53 5<1 5<1	119 217 138	26 25 24	54 29 53 28 51 27	9 9.9 3 10.1 7 9.1	92.7 03.2 52.8	1.8 6 2.4 6 2.1 6	.2 .9 .7 1.1 .0 .9	94 10 95
8 48383	11	<5	5 <5	<1	6	30	12	<1 11.0	00	6 <	<5	<1 ′	1.29 <	20 <15	1.6	27	<3<.	01<.05	2 2	2.2 <.	5 <1	186	21	43 22	2 8.	1 2.4	1.4 5	.1 .	78
											S. C.			• /	SIG				1										
													,																
													,																
													,																

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, E.

1704 CENTENARY NANAIMO, BC V9X 1A3 Page Number :1-B Total Pages :1 Certificate Date: 10-MAR-9 Invoice No. : 19813670 P.O. Number : Account :PEO

Project : Comments: ATTN: EFREM SPECOGNA

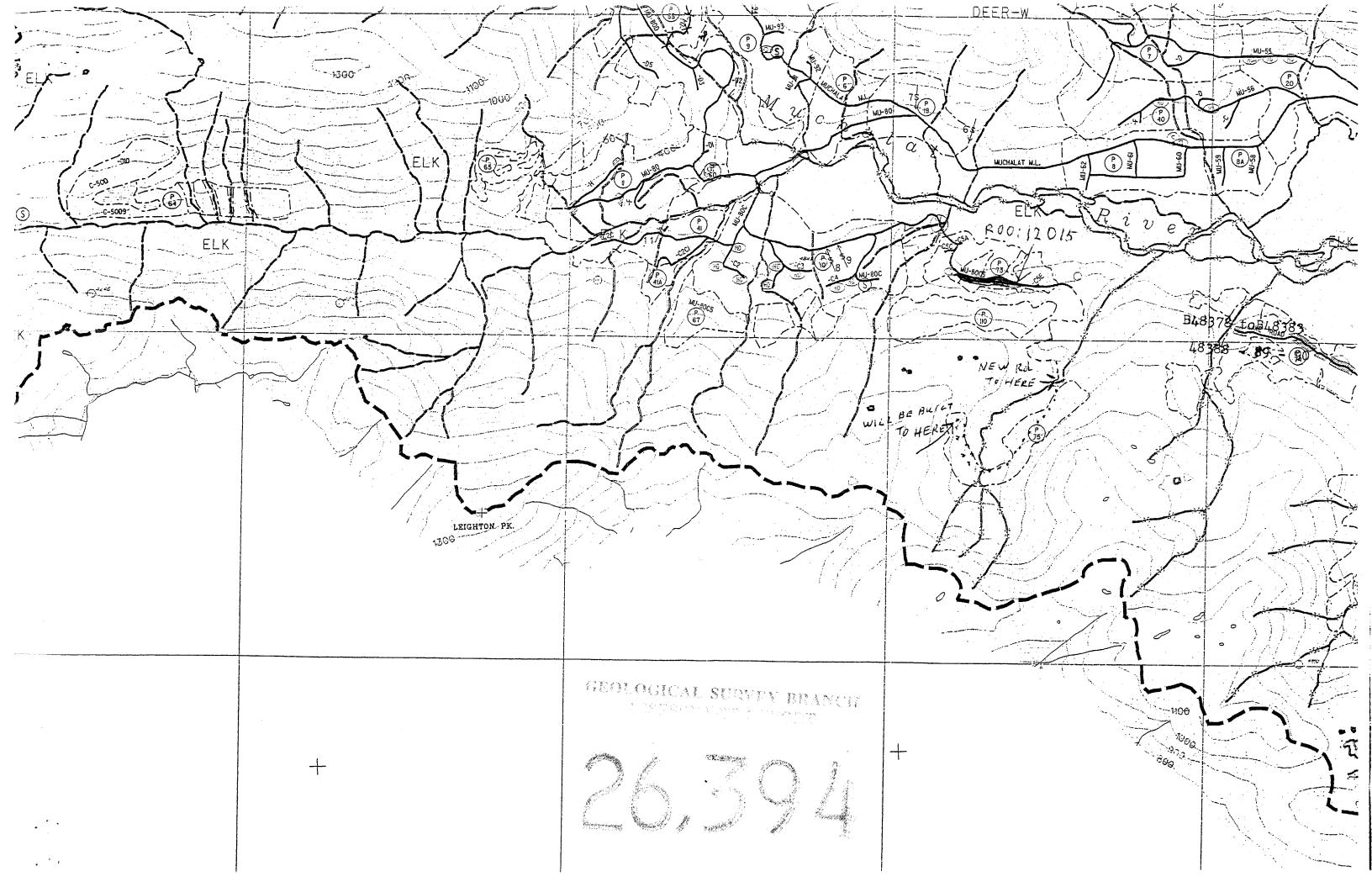
**

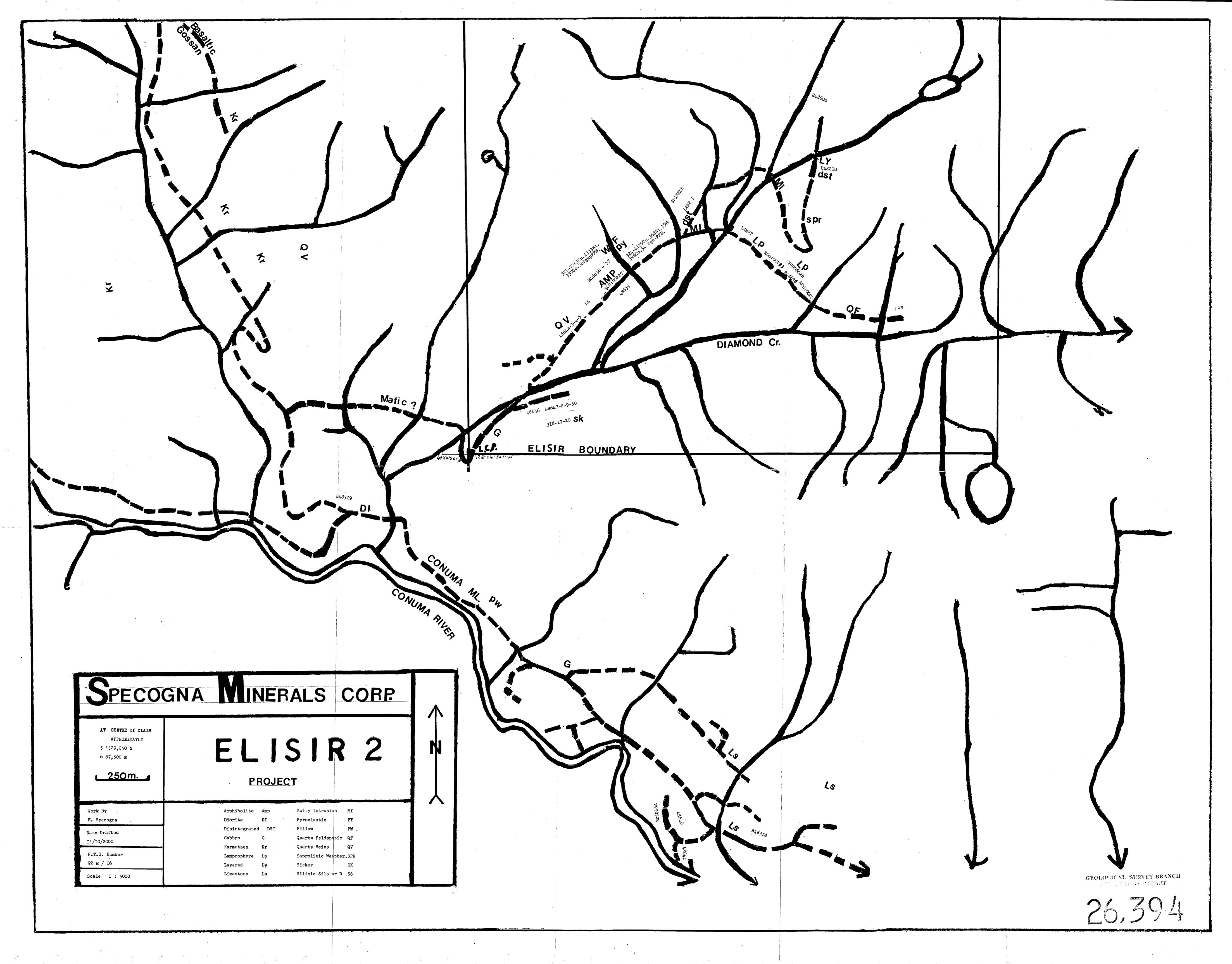
*			1								CE	RTIFI	CATE	OF		rsis		A9813670	
1-	BAMPLE	PREP CODE	M	i Ma Spm		Na.	Ni ppm	q mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	7i %	T1 ppm	U ppm	V Ppm	W	Zn ppm	
	48388 48389 48390	225 22 225 22 225 22		1535 1365 1045	< 1 1 1	0.03 0.04 0.02	7 9 7	1340 2390 920	8 8 < 2	< 2 < 2 2	27 22 19	71 65 48	0.05 0.05 0.06	< 10 < 10 < 10	< 10 < 10 < 10	96 113 278	< 10 < 10 < 10	130 124 98	
-																			
													,						
																	•		
L							-											_	

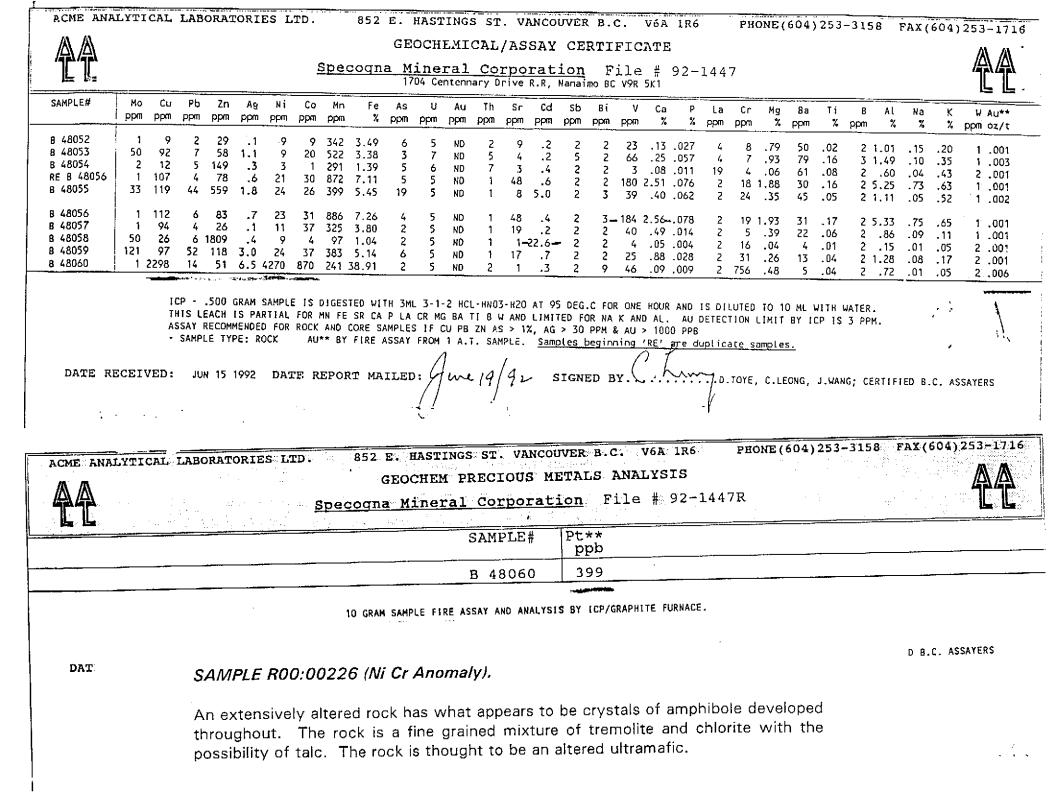
•

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, E.


1704 CENTENARY NANAIMO, BC V9X 1A3 Page Number : 1-A Total Pages : 1 Certificate Date: 10-MAR-98 Invoice No. : 19813670 P.O. Number : Account : PEO


Project : Comments: ATTN: EFREM SPECOGNA


**

•		1	t								CE	RTIF		OF A	NAL	rsis	4	49813	670		
	SAMPLE	PREP CODE	Au ppb 1 AFS	Pt ppb I AFS	2d ppb AFS	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bİ ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Си ррп	Fe %	Ga ppm	Hg ppb	K %	La ppm
	48388 48389 48390	225 229 225 229 225 229	28 52 34	< 5 < 5 < 5	72 74 100	0.4 0.4 0.6	1.92 1.82 1.39	< 2 4 < 2	40 40 20	0.5 0.5 0.5	< 2 < 2 < 2	2.73 2.69 1.71	< 0.5 < 0.5 < 0.5	30 28 22	14 33 84	1035 1215 788	8.24 8.59 14.85	10 10 10	80 100 50	0.06 0.07 0.04	10 10 < 10
					:	·															

				GEOC	HEMIC	AL IC	P ANZ	LYSI	S					A 1
		<u>Speco</u>	<u>gna M</u>	<u>inera</u> 1704 Ce	il Cor entennary	porat	ion Nanaimo	File BC V9X 1	# 97 A3	-6960				4
	SAMPLE#	As ppm	Sb ppm	Bi ppm	Ge ppm	Se ppm	Te	Au**	Pt**	Pd** ppb	Rh** ppb	SAMPLE gm	· · · · · · · · · · · · · · · · · · ·	
	B 48163	1.1	1.5	.2	<.1		<.2	22	2	86	<1	1350		<u> </u>
DATE RECEIVED:	- SAMPLE TYPE: ROCK NOV 28 1997 DATE	AU** P	MAILE	• & RH** / D: <u>D</u>	analysis RES	8Y ULTRI	SIGNEI	ж 30 GM Э ву.,	SAMPLE	, .јр.то	DYE, C.LE	ONG, J.WANG; CI	ERTIFIED B.C.	ASSAYERS

r

and Second and

i

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, E.

1704 CENTENARY NANAIMO, BC V9X 1A3 Page Number : 1-A Total Pages :1 Certificate Date: 22-AUG-Invoice No. : 1982807: P.O. Number : Account - : PEO

Project : Comments: ATTN: EFREM SPECOGNA

-*

												CE	RTIF	ICATE	OF A	NAL	YSIS		A9828	073		
SAMPLE		LEP DE	ppb AFS	Pt ppt AFS	Pd pp AH		Ag ppm	Al %	As ppm	Ba ppm	Ba ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	70 %	Ga ppm	Eg ppb	K %	La ppi
48049 48099 48100	205 205 205	226 226 226	4 < 2 < 2	5 30 10) 5	24	< 0.2 < 0.2 < 0.2	4.88 2.59 5.35	6 < 2 8	20	< 0.5 < 0.5 < 0.\$	< 2 < 2 < 2	0.35	< 0.5 < 0.5 < 0.5	81 68 16	33 1275 47	984 187 184	4.21 4.74 1.82	< 10 < 10 < 10	< 10 < 10 < 10	0.10 0.04 0.07	< 10 < 10 < 10
									.													
				-						·												
													-									
												-										

NR. DD. CERTIFICATION:

*----

ъ.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: SPECOGNA, E.

1704 CENTENARY NANAIMO, BC V9X 1A3 Page Number : 1-B . Total Pages : 1 Certificate Date: 22-AUG Invoice No. : 1982807 P.O. Number : Account : PEO

Project : Comments: ATTN: EFREM SPECOGNA

					,,					CE	RTIF	ICATE	OF /	ANAL	/SIS	ļ	\9828073	
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm P	Pb mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 PPM	U ppm	V mqq	W mqq	Zn ррш	
48049 48099 48100	205 226 205 226 205 226	1.63 5.22 0.36	145 190 95	4 1 2	0.37 0.01 0.76	243 744 40	230 120 510	< 2 < 2 < 2	4 < 2 < 2	3 4 1	201 5 171	0.10 0.06 0.15	< 10 < 10 < 10	< 10 < 10 < 10	42 65 36	< 10 < 10 < 10	22 52 20	
		······																

CERTIFICATION: 1 Haut Euglo.

ACME ANALYTICAL	LABORATO	RIES LTD.	852 E.	HASTING	S ST. VAN	ICOUVER	BC V6	A 1R6	PH	ONE (604	1)253-3	158 FA	x(604)2	53-1716
ΑΛ				WHOLE	ROCK I	CP ANA	LYSIS	· . ·			÷.,			AA
		Specog	na Miner	al Corp 1704 Cente	oration	File Nanaimo I	: # 97 BC V9X 1A	-0893 3	Pag	ge 2				TC
	SAMPLE#	SiO2 Al2O3 Fe % %		a0 Na20 K20 % % %	TiO2 P2O5 % %	Mn0 Cr203 % %	Ba N ppm ppr		Zr Y span ppan	Nb Sc ppm ppm	LOI	SUM %		
	B 48549 B 48550 RE B 48550	75.95 14.01 35.29 18.24 18 35.48 18.24 18	3.47 14.97 6.9	70 .77 .40	1.05 .13	.36 .025	41 574	4 143	48 15 88 25 62 24	<10 38	2.1 9	8.41 8.82 8.93		
DATE RECEIVED:	- SAMPLE TYP	MPLES ARE FUSEC E: ROCK <u>Sam</u> 7 DATE REE	nples beginnin	re 'RE' are	and are dissinant \mathcal{M} and \mathcal{M} and \mathcal{M} \mathcal{M}	RRE' are R	Reject Rei	runs.	1				ED B.C. AS	SAYERS
						1								
											,	Y		
All results are consi	dered the cor	nfidential prop	erty of the c	lient. Acme	assumes the	liabiliti	es for ac	tual cos	t of the a	enalysis	only.		Data	FA

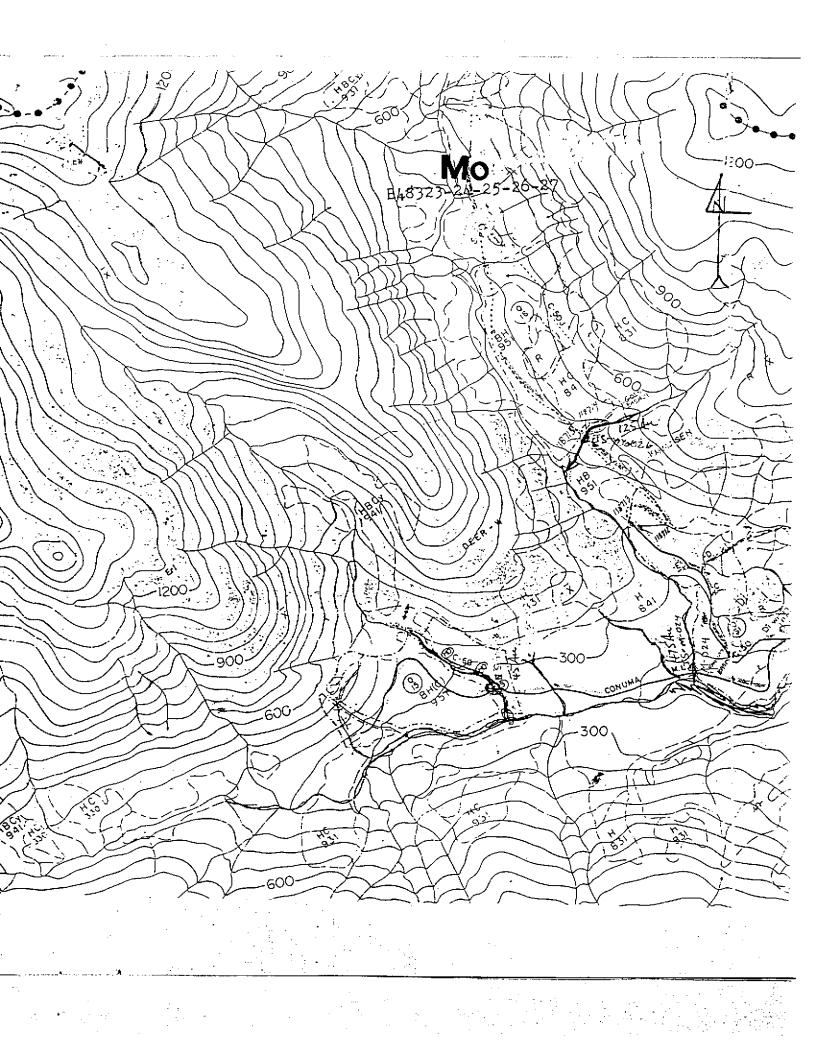
ACME AN	ALYT	ICAL	AIT I	BORA	TOR:	(ES	LTD.		85	2 B	. Ha	STIN	tGS :	ST.	VAN	νυος	er i	3C	V6A	1R6	ė pas	PHO	NE (6	04)2	53 -	3158	• Fž	X (6	04)2	53-1716
AA								Ino		89.67 Q									CATE		200	¢.								
LL								<u>, be</u> ,	-091	10.1	170	91 Ger	ntenna	ry Di	ive,	Naria i	mo B	C V9X	= # 1A3	J 1 4	200	D								▐▖▐▖
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Ŝ۲	Cd	\$b	Βī	۷	Ca	P	La	Сг	Mg	Ba	Τi	8	AL	Na	ĸ	W Au**
	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Ppm	ppm	%	%	ppm	ppm	74	ppm	7	ppm	%	<u> </u>	%	ppm oz/t
B 48318	<1	7	6	46	<.3	4	1	254	1.32	<z< td=""><td><5</td><td><2</td><td><2</td><td>60</td><td>.2</td><td><2</td><td><2</td><td>15</td><td>4.26</td><td>.030</td><td>4</td><td>8</td><td>.10</td><td>10</td><td>. 10</td><td>10 3</td><td>3.31</td><td>.08</td><td>.04</td><td>215<.001</td></z<>	<5	<2	<2	60	.2	<2	<2	15	4.26	.030	4	8	.10	10	. 10	10 3	3.31	.08	.04	215<.001
в 48319	<1	13	3	23	.3	10	7	248	1.66	2053	<5	<2	2	231	.2	6	<2	13	14.69	.027	4	10	.25	14	.04	75 1	.62	.03	.07	6.008
в 48320	7	14	<3	38	<.3	18	4	288	2.35	4	<5	<2	<2	103	1.2	<2	<2	8	20.19	.013	3	8	.02	7	.05	6	.66	.04	.02	2<.001
B 48321	1	173	<3	53	<.3	45	21	399	3.77	7	<5	<2	<2	16	.3	<2	<2	124	3.11	.062	4	48	1.16	15	.35	<3.2	2.80	.10	.04	2<.001
B 48322	2	368	<3	81	.4	38	31	537	5.58	6	<5	<2	2	36	.5	<2	4	108	.88	.036	4	62	.92	45	.28		.90	.11	.14	3<.001
в 48323	967	361	4	8	<.3	26	33	38	2.87	<2	<5	<2	<2	3	<.2	2	<2	5	.11	.001	1	17	.04	11	.01	5	.13	.01	<.01	5<.001
B 48324	408	791	<3	49	.6	20	15	72	2.10	<2	<5	<2	<2	4	1.0	<2	<2	12	.68	.004	<1	29	.08	15	.03	3	.55		.01	8<.001
в 48325	100	696	<3	31	.4	76	59	158	7.24	3	<5	<2	<2	4	.3	2	<2	43	1.21	.029	1	35	.33	12	.09	<3	.99	.02	.02	6<.001
RE B 48325	102	698	<3	32	-4	80	58	155	7.20	4	<5	<2	<2	4	<.2	<2	7	43	1.19	.030	1	36	.32	9	.09	<3	.99	.02	.02	5<.001
B 48326	839	672	<3	32	.4	76	54	274	5.29	<2	<5	<2	<2	34	<.2	<2	3	85	1.97	.039	2	39	74	13	.28	_	2.31		.04	3<.001
		837	<3	56	.6	58	52	237	7.42	<2	<5	<2	<2	21	<.2	<2	4	70	1.04	.025	1	49	.63	6	.17	<3 1	1.52	. 13	.02	4<.001
в 48328	20	831	3	25	.5	29	24	164	3.41	2	<5	<2	<2	5	.2	2	<2	36	1.50	.013	1	30	.43	6	. 14	<3 1	1.18	.01		6<.001

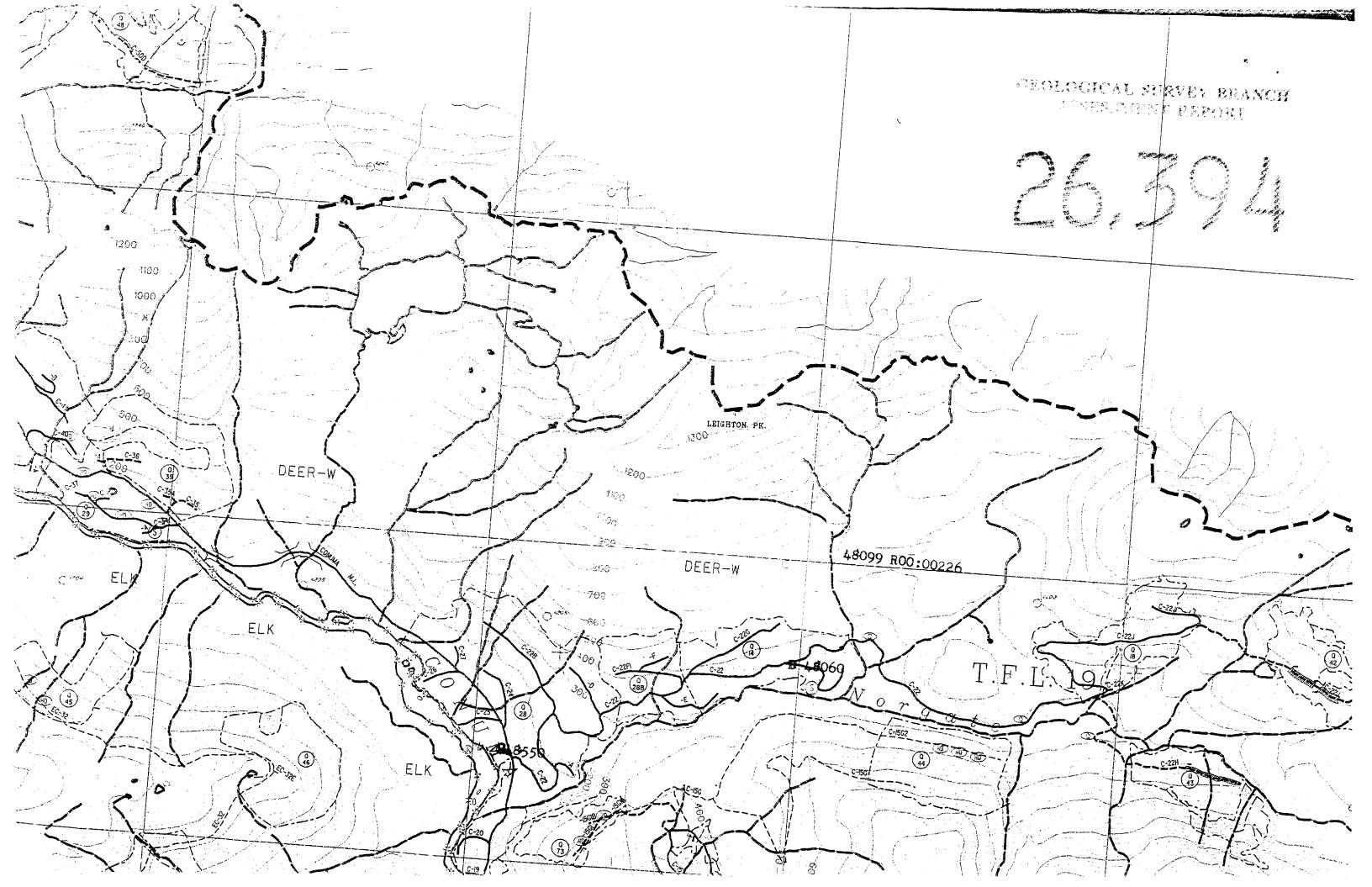
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

197

DATE RECEIVED: JUN 6 1997 DATE REPORT MAILED: 16

.


1


化现金转变 BERGAL SURVEY BRANCH . Ale in the Meroper

Data

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

