Diamond Drilling

Assessment Report

on the

IKS Property

(Mining Lease, Lot. 7166)

.

,

-

•

,

.

.

.

.

•

Skeena Mining Division

NTS: 104B/9W Latitude: 56.66° Longitude: 130.43°

Owned and Operated by:

Homestake Canada Inc. #1100-1055 West Georgia St. Vancouver, BC V6E 3P3

Submitted by:

J. Lewis, B.Sc. D. Gale, M. Sc.

December 7th, 2000 GICAL SURVEY BRANCH

the second m

Executive Summary

The Eskay Creek ore bodies are located immediately south of the IKS Property, and their trend projects northwards into the center of the property, but to date, no mineralization of significance has been intersected north of the ore bodies currently being mined. Drilling in 2000 targeted two areas on the IKS property that had received relatively sparse drilling in the past. Two holes were drilled to test for the presence of the mine stratigraphy, and for the possible presence of mineralization related to the Eskay Creek hydrothermal system that produced the various ore bodies at the mine.

One of the two holes successfully intersected the mine stratigraphy, but the contact mudstone was essentially non-existent, and no mineralization or alteration of interest was encountered. The other hole was lost high up in the hanging wall sequence due to ground conditions, and was therefore unable to test for the presence of the mine stratigraphy and possible mineralization in this area.

The property remains highly prospective for further drilling, but the extreme thickness of the Bowser Group cover rocks, and the difficult ground conditions, make further work challenging and expensive. Surface mapping may be able to outline large-scale structures (faults and folds) in the Bowser package that may continue at depth into the prospective Hazelton package. These structures may be important in any further drill hole planning.

Further drilling is definitely warranted on the property, but only in certain areas. Drilling north of the areas covered in 2000 is not suggested at this time, due to the depth of the prospective stratigraphy

Table of Contents

- 1. Introduction
 - 1.1 Location and Access
 - 1.2 Land Status
 - 1.3 Physiography
 - 1.4 Exploration History
 - 1.5 2000 Exploration Program
- 2. Geology
 - 2.1 Regional Geology
 - 2.2 Property Geology
 - 2.3 Structure
 - 2.4 Alteration
 - 2.5 Mineralization
- 3. Diamond Drilling 3.1 Overview
 - 3.2 Drilling Summary
- 4. Discussion and Conclusions
- 5. Recommendations
- 6. References

List of Figures

- Figure 1.1 Location and Access Map
- Figure 1.2 Claim Location Map
- Figure 2.1 Regional Setting
- Figure 2.2 Eskay Stratigraphic Section
- Figure 2.21 Property Geology & 2000 Drilling

List of Tables

Table 1.2	Claim Status
Table 2.1	Iskut River Area Tectonic Rock Units
Table 2.11	Iskut River Area Plutonic Rock Units
Table 2.12	Mineral Deposit Types of the Iskut River Area
Table 2.2	Stikinia Assemblage Summary
Table 3.1	2000 Drilling Summary

List of Appendices

•

,

r.

- Appendix 1: Statement of Costs
- Appendix 2: Statement of Qualifications
- Appendix 3: Drill Hole Logs
- Appendix 4: Assay Certificates

1. Introduction

This report constitutes a summary of fieldwork carried out on the IKS Property by Homestake Canada Inc. during the summer of 2000.

1.1 Location and Access

The IKS Property is situated immediately to the north of the Eskay Creek Mine, in northern BC. The mine is located approximately 83 kilometers northwest of Stewart, British Columbia, along the eastern flanks of the Coast Mountain ranges (Figure 1.1). The mine is accessible by a 58.5 kilometer, all-weather road from the Stewart Cassiar Highway (Highway 37) just south of the hamlet of Bob Quinn. The IKS Property is accessible from the Mine Site, by foot or via helicopter.

1.2 Land Status

The IKS Property is located in the Skeena Mining Division and consists of the Lot. 7166 Mining Lease and the IKS 2 mineral claim (Figure 1.2), 100% owned by Homestake Canada Inc. Work undertaken on the property in 2000 is being applied to the IKS 2 claim itself, and a series of surrounding/contiguous claims, also 100% owned by Homestake. A summary of the mineral titles and tenure of all the mining leases and claims in question is presented in Table 1.2.

1.3 Physiography

The Eskay Creek Mine is located on the Prout Plateau, a rolling sub-alpine upland along the eastern flank of the Boundary Ranges of the Coast Mountains. The plateau is characterized by moderately to strongly glaciated rock terrain along the top of the plateau, and moderate to dense forest cover off the flanks. Elevations range from 330 meters along the Iskut River to 1200 meters along the ridges.

The surficial geology of the immediate mine area is highly variable. It includes glacial till deposits, colluvium on steep slopes, organics in poorly drained depressions, alluvial deposits flanking streams, and alluvial fan deposits along shorelines.

Vegetation on the property is governed by a combination of elevation, water supply and slope. Above 950 meters elevation, the vegetation is sub-alpine in nature, consisting of stunted balsam, heather, and grasses. Below 950 meters, old growth spruce, fir, and hemlock predominate. Steep slopes commonly show evidence of avalanche scarring, such as dense growth of slide alder, devil's club, and skunk cabbage.

Figure 1.1 Location and Access Map

Table 1.2: Claim Status

٣

ы.

-

.

.

.

-

.

,

.

.

.

.

• •

•

Claim Name	Tenure No.	Units	Record Date	Expiry Date*
ML 7166	329944	1	1994.12.06	2024.12.06
IKS 2	252976	20	1989.08.02	2010.08.02
VOLC 1	320872	1	1993.08.30	2009.08.30
VOLC 2	320873	1	1993.08.30	2009.08.30
VOLC 3	320874	1	1993.08.30	2009.08.30
VOLC 4	320875	1	1993.08.30	2009.08.30
VOLC 5	320876	1	1993.08.30	2009.08.30
VOLC 6	320877	1	1993.08.30	2009.08.30
VOLC 7	320878	1	1993.09.05	2009.09.05
VOLC 8	320879	1	1993.09.05	2009.09.05
DEL 1	372182	20	1999.09.28	2009.09.28
DEL 2	372183	20	1999.09.28	2009.09.28
DEL 3	372184	20	1999.09.30	2009.09.30
DEL 4	372185	20	1999.09.29	2009.09.29
DEL 5	372186	1	1999.09.27	2002.09.27
DEL 6	372187	1	1999.09.27	2002.09.27
DEL 7	372188	1	1999.09.27	2002.09.27
DEL 8	372189	1	1999.09.27	2002.09.27
DEL 9	372190	1	1999.09.27	2002.09.27
DEL 10	372191	1	1999.09.27	2002.09.27
DEL 17	372192	1	1999.09.27	2002.09.27
DEL 18	372193	1	1999.09.27	2002.09.27
DEL 19	372194	1	1999.09.27	2002.09.27
DEL 20	372195	1	1999.09.27	2002.09.27
DEL 21	372196	1 1	1999.09.27	2002.09.27
DEL 22	372197		1999.09.27	2002.09.27
DEL 29	372198		1999.09.27	2002.09.27
DEL 30	372199	1	1999.09.27	2002.09.27
DEL 31	372200	1	1999.09.27	2002.09.27
DEL 32	372201		1999.09.27	2002.09.27
DEL 33	372202	<u>l</u>	1999.09.27	2002.09.27
DEL 34	372203	<u> </u>	1999.09.27	2002.09.27
DEL 50	372204	<u> </u>	1999.09.27	2009.09.27
DEL 51	378529	16	2000.07.02	2005.07.02
DEL 52	378530	10	2000.07.02	2005.07.02
DEL 54	3/8332	20	2000.07.02	2005.07.02
DEL 55	3/8033	1	2000.06.29	2008.06.29
DEL 50	379748	12	2000.08.11	2005.08.11
	270750	1	2000.08.12	2009.08.12
DEL 38	270751		2000.08.12	2009.08.12
	270752		2000.08.12	2009.08.12
DEL OV	379752		2000.08.12	2009.08.12
DEL 01	270754	1	2000.08.12	2009.08.12
DEL 02	270765	1	2000.08.12	2009.08.12
	319100	1	2000.08.12	2009.08.12
CAL 4	200199	4	1989.09.16	2009.09.16

*Note: Expiry dates indicated here are subject to MEM approval of this Assessment Report.

Annual precipitation at the Eskay Creek Mine site is heavy and ranges from 2000 to 3500 mm. Most of the precipitation falls as snow between November and April, resulting in thick accumulations of 10 to 20 meters. This snow pack does not fully disappear until early August. The summers are generally cool and damp.

1.4 Exploration History

The Eskay Creek property has been the focus of much exploration activity, dating from 1932 to the present. Numerous of geological mapping, geochemical sampling, geophysical surveying, trenching, and diamond drilling programs have been carried out on the property, with various base/precious metal and VMS-style targets in mind. This work culminated in discovery of the 21A and 21B Zones in 1988-89, followed by underground development of the 21B Zone in 1990-91, and the official opening of the Eskay Creek Mine in 1995. Current reserves for the Eskay Creek Mine stand at 2.41 million ounces of gold and 110 million ounces of silver, based on a tonnage of 1.61 million tons at a grade of 1.50 oz/t Au and 68.30 oz/t Ag (Homestake Mining Company 1999 Annual Report).

The bulk of the above work was completed on the TOK and KAY claims (now the 7092-7095 Mining Leases), which immediately overlie the ore bodies. The IKS claims to the north have received less vigorous exploration activity, due to a thick cover of non-prospective stratigraphy.

1.5 2000 Exploration Program

The 2000 diamond drilling program on the IKS Property included two holes, totaling 2235.71 metres. These holes were designed to test for the presence of the 'mine stratigraphy', and any forms of mineralization, in the eastern and middle sections of the property, in areas of low drilling density.

2. Geology

2.1 Regional Geology

The Iskut River Region lies near the western margin of the Intermontane Tectonic Belt within the Stikine Terrane of the Northern Cordillera (Table 2.1 and Figure 2.1). In this area, deformed and metamorphosed sedimentary and volcanic rocks of the Paleozoic Stikine Assemblage are overlain by Triassic and Jurassic volcano-sedimentary arc complexes of the Stikinia Assemblage. These, in turn, are capped by Middle to Upper Jurassic siliciclastic sediments of the Bowser Basin that formed an overlap assemblage following the amalgamation of the Stikine and Cache Creek Terranes. Plutonic rocks commonly intrude all these assemblages, with a total of six suites being recognized (Table 2.11).

PSSEMBLAGE THE		
Coast Plutonic Complex	Tertiary	Post tectonic felsic plutons.
"Bowser Overlap" Assemblage (includes Bowser Lake Group)	Middle-Upper Jurassic	Deformed siliciclastic sediments.
"Stikinia" Assemblage (includes Stuhini & Hazelton Groups)	Triassic-Jurassic	Deformed volcanics, intrusives, and basinal sediments.
Stikine Assemblage	Early Devonian to Early Permian	Highly deformed limestones and volcanics.

 Table 2.1: Iskut River Tectonic Rock Units (After Anderson, 1989)

Table 2.11: Iskut River Plutonic Rock Units (After MDRU, 1992)

Coast Plutonic Complex	Lamprophyres, Gabbro-Syenite	Tertiary
	→ Post tectonic	(18-25 Ma)
Hyder	Monzogranite, Monzonite, Granodiorite	Tertiary
	\rightarrow Post tectonic	(36-57 Ma)
Eskay Creek	Monzodiorite	Middle Jurassic
		(185 +/-2 Ma)
Sulphurets	Felsic intrusives/extrusives	Middle Jurassic
		(185.9 Ma)
Texas Creek	Calc-Alk Granodiorite, Qtz Monzodiorite,	Early Jurassic
	Commonly cut by andesite dikes	(189-195 Ma)
Stikine	Cpx-Gabbro, Diorite, Monzodiorite, Monozonite	Late Triassic
	Co-spatial with Stuhini volcanics.	(210 Ma)

Figure 2.1 Regional Setting

(Map on left illustrates the position of the property in a lithotectonic belt sense, while the two maps on the right show the generalized regional geology of the Iskut River area, taken from MacDonald et al, 1996).

The dominant structural features within the Iskut River Region consist of northnortheast plunging regional anticline and syncline pairs accompanied by strong, regionally-developed, steeply dipping, penetrative cleavage fabrics. The regional folds and cleavage fabrics are interpreted to have formed during a mid-Cretaceous orogenic shortening event centered on a northwesterly compressive axis.

The area has also been cut by numerous faults of varying orientations and interpreted ages. Those related to the regional Cretaceous shortening event include west-vergent thrust faults such as the Coulter Creek Fault. Other major faults include north, northwest, and northeast-striking sub-vertical structures, which form strong topographic lineaments and displace both stratigraphic contacts and mineralized zones. Many of these faults developed during a second period of deformation with a northeast compressive axis and include such major features as the South Unuk/Harrymel Structure, the Forrest-Kerr Fault, and the Argillite Creek Fault.

Mineralization in the Iskut River Area is varied in both age and deposit type. Examples of deposit type include the following:

- 1) porphyry, skarn, and related vein deposits
- 2) near-surface, epithermal alteration and vein systems
- 3) submarine exhalative precious and base metal mineralization systems

All of these deposits exhibit a close spatial relationship to Late Triassic to Early Jurassic sub-volcanic plutons, particularly the potassium megacrystic, plagioclase and biotite porphyritic intrusions that were emplaced between 180 Ma and 200 Ma. A list of the major mineral deposits that occur in the Iskut Area can be found in Table 2.12.

Table 2.12: Mineral Deposit Types of the Iskut I	River Area (After Edmunds & Kuran,
1993).	

Kerr	Alkaline Porphyry	66 mT @ 0.84%Cu & 0.01 Au opt	Upper Triassic
Galore Creek	Alkaline Porphyry	125 mT @ 0.011 Au opt 1.06% Cu	Lower Jurassic
Snip	Mesothermal Gold	2.4 mT @ 0.65 Au opt	Lower Jurassic (Texas Creek)
Johnny Mountain	Mesothermal Gold	0.3 mT @ 0.83 Au opt	Lower Jurassic (Texas Creek)
Premier-Silbak	Epithermal Gold	4.6 mT @ 0.39 Au opt	Lower Jurassic (Texas Creek)
Sulphurets	Mesothermal Gold	1.4 mT @ 0.35 Au opt	Lower Jurassic
Eskay Creek	Volcanic Associated Massive Sulphide		Lower-Middle Jurassic

2.2 Property Geology

The Eskay Creek deposit is hosted within the Jurassic rocks of the Stikina Assemblage (Table 2.2). It is situated near the northern margin of the Eskay Anticline, at the stratigraphic transition from marine sediments of the Bowser Lake Group to volcanic rocks of the uppermost Hazelton Group. The Hazelton Group has been further subdivided into four rock formations which (ranging from oldest to youngest) include the Unuk River Formation, Betty Creek Formation, Mt. Dilworth Formation, and the Salmon River Formation (see Table 2.2 and Figures 2.2 and 2.21).

Formation/Group	Lithologies	Age (Ma)
Ashman Fm.	Shale, siltstone, greywacke, sandstone, and	156-163 Ma
(Bowser Lake Group)	chert pebble conglomerate.	
Salmon River Fm.	Upper: black, siliceous to locally calcareous	163-187 Ma
(Hazelton Group)	mudstone, and occasional pale reworked tuffs.	
	Lower: thin, locally belemnite-rich, calcareous to graphitic mudstones, and a bimodal volcanic suite consisting of massive to pillowed andesite flows overlying rhyolitic volcanics and volcaniclastics.	187-193 Ma
Mount Dilworth Fm.	White-maroon-grey weathering welded to non-	~193 Ma
(Hazelton Group)	welded felsic tuff and tuff breccias.	
	Flow sequences can be massive to amygdular to	
	flow-banded, and have a dacite to rhyo-dacite	
	composition.	
Betty Creek Fm.	Maroon to green weathering volcanic siltstones,	193-196 Ma
(Hazelton Group)	greywackes, and andesitic breccias and/or	
	epiclastics (coarse monolithic conglomerates).	
Unuk River Fm.	Rusty weathering, thinly bedded, siliciclastic to	~198 Ma
(Hazelton Group)	calcareous siltstones and sandstones.	

 Table 2.2: Stikinia Assemblage Description (After Anderson & Thorkelson, 1990)

At the base of the stratigraphic package, and occupying the core of the Eskay Anticline, lies the Unuk River Formation. It is a thick sequence of coarse breccias and volcaniclastic (andesitic?) rocks topped by marine shales and clastic sediments. It is overlain by the Betty Creek Formation, which has been informally divided into upper and lower members. The upper Eskay Creek Member is dominated by sediment and epiclastic units while the lower East Ridge Member is comprised chiefly of andesitic epiclastic and volcaniclastic rocks. The next rocks in the succession are the regionally extensive, felsic pyroclastic deposits of the Mt. Dilworth Formation. This felsic package is separated from the overlying Salmon River Formation by a volcanic hiatus that allowed the accumulation of 10-15m of black mudstone. The Salmon River Formation, host to the Eskay Creek Deposit, is divided into a homogeneous upper section of mudstone and argillite, and a heterogeneous bimodal volcano-sedimentary assemblage forming the lower section. This lower bimodal volcanic package consists of an upper submarine mafic flow/dyke sequence that overlies a rhyolite flow-dome complex termed the 'Eskay Rhyolite'. Interbeds of pyrite-laminated mudstone and vitric tuffs occur intermittently throughout this package. A mudstone bed containing Aalenian fossils and termed the 'Contact Mudstone' is found at the base of the Salmon River mafic package and immediately overlying the 'Eskay Rhyolite'. This unit varies in thickness up to 50m and serves as the main host to Eskay mineralization.

Capping the entire sequence are thick accumulations of Bowser Lake Group mudstones, sandstones, and conglomerates. Bowser stratigraphy completely dominates the IKS Property geology.

Intrusives are relatively common throughout the stratigraphic sequence. The lower section (rocks stratigraphically below the Salmon River bimodal volcanics) is locally intruded by a porphyritic monzodiorite sill (known as the Eskay Creek Porphyry). Felsic and mafic sills and dykes also cut this lower stratigraphy locally, and are thought to represent the high level intrusive feeders to the Salmon River bimodal sequence. Intrusive activity in the Bowser Group stratigraphy is restricted to rare magnetic mafic dykes (post-tectonic) that generally strike NE-SW.

2.3 Structure

-

r -

The rocks around Eskay Creek have been deformed by at least two tectonic events. The earliest deformation event (D1) was a NNW compression that formed NE-trending syncline-anticline pairs (eg. the Eskay Creek Anticline), and a moderately to strongly developed spaced cleavage. The cleavage is pervasive in all the fine-grained sedimentary lithologies. Faulting late in the D1 event developed E-dipping thrust sheets south of Eskay Creek such as the Coulter Creek Thrust.

The second deformational event (D2) was a NNE compression, which locally reoriented the D1 cleavage planes and formed prominent N- and NE-trending, steeply dipping faults. Cross-cutting relations suggest that the north set is the earliest with apparently consistent sinistral displacement, while the northeast trending set displays oblique normal displacement. Some of the more significant faults include the Argillite Creek Fault, Andesite Creek Fault, Pumphouse Creek Fault, Portal Fault and East Break Fault.

Figure 2.2 Eskay Stratigraphic Section

2.4 Alteration

Three main types of alteration have been identified at Eskay Creek. These include K-feldspar, silica, and chlorite-sericite. All three occur predominantly within the Salmon River rhyolite that immediately underlies the Eskay deposits. Chlorite-sericite alteration forms pipes and halos immediately below the deposits. K-feldspar replaces primary plagioclase, in a km-scale halo around the deposits. Silica alteration is patchy throughout the rhyolite sequence. These types of alteration are not generally seen in any of the other rock types, even the mafic volcanics that immediately overlie the deposits.

Alteration in the overlying Bowser sedimentary rocks is essentially non-existent, other than minor epigenetic pyrite formation, locally.

2.5 Mineralization

Mineralization at Eskay Creek is found in two different environments:

- 1) stratiform, mudstone-hosted, clastic to massive lenses of sulphides and sulphosalts.
- 2) discordant vein and/or shear zone systems.

The stratiform mineralization is hosted in black carbonaceous of the Salmon River Formation ("Contact Mudstone") at the contact between the Eskay Rhyolite and the overlying mafic volcanic package. The main zone of mineralization, the 21B Zone, consists of stratiform clastic sulphide-sulphosalt beds, and forms a body roughly 900m long, 60 to 200m wide, and up to 15m thick. Individual clastic sulphide layers range from 1 cm to 50 cm thick. At the same stratigraphic horizon as the 21B Zone are the similar but smaller NEX and 21E Zones, the 21A Zone (characterized by As-Sb-Hg sulphides), and the barite-rich 21C Mud Zone. Stratigraphically above the 21B Zone, and usually above the first basaltic sill, the mudstones also host a local stratiform/stratabound body of base metal-rich, relatively precious metal-poor massive sulphides referred to as the Hanging Wall or HW Zone.

Stockwork and discordant mineralization at Eskay Creek is hosted in the footwall rhyolite in the Pumphouse, Pathfinder, 109 Zone, and 21C-Rhyolite Zones. The Pumphouse and Pathfinder Zones are characterized by base metal-rich veins and veinlets hosted in strongly sericitized and chloritized rhyolite. The 109 Zone comprises of gold-rich quartz-base metal associated with abundant carbonaceous material, hosted mainly in siliceous rhyolite. The 21C-Rhyolite Zone consists of very fine grained cryptic pyrite (with anomalous precious metal grades) in sericitized rhyolite shear zones.

Mineralization at surface on the IKS Property is non-existent, but the mine stratigraphy is present at depth, so potential for significant mineralization does exist. The northern-most portions of the underground workings at the Mine extends slightly onto the southern end of the 7166 Mining Lease, where the northern extent of known mineralization (NEX and HW Zones) is currently being defined.

3. Diamond Drilling

3.1 Overview

The 2000 Diamond Drilling Program on the IKS Property included two holes that were drilled between July 29th and October 4th, 2000 (see Figure 2.21 and Table 3.1 for locations and details). Drilling was completed by Hy-Tech Drilling Ltd. of Smithers, BC, using modified F-15 drill rigs that recover NQ2-sized core.

<u>DDH</u>	<u>Azimuth</u>	Dip	<u>Length</u>	Start Date	End Date
C00-1056	140°	-75°	864.41m	07/29/2000	08/21/2000
C00-1083	180°	-88°	<u>1371.30m</u>	09/07/2000	10/04/2000
		Total:	2235.71m		

The purpose of the drilling was to identify new zones of stratiform mineralization hosted in mudstone, or possibly, discordant and/or disseminated mineralization hosted in the rhyolite.

A total of 20 core samples were collected for assay from prospective horizons. These core samples were analyzed at International Plasma Laboratory Ltd. of Vancouver, BC. Samples were crushed and split at the lab, and were analyzed for gold by fire assay with an AA finish on a 30 gram sample. Samples were also analyzed using Aqua-Regia digestion for a 30 element ICP scan.

Core recovered from the top of the two holes (in the thick Bowser Group cover rock) was logged at the drill site and is stored as flat stacks at a centralized location on the IKS Property. Core boxes containing Salmon River stratigraphy was flown out to the Homestake exploration camp (at km 45 of the mine road), where it was logged, sampled, and stored at the core storage facility at km 44 of the mine road.

3.2 Drilling Summary

<u>C00-1056</u>

Hole C00-1056 was located on the surface trace of the west limb of the Eskay Creek Anticline (a large, property-scale anticlinal structure), approximately 1km northwest of the mine. No drillhole data existed for this area, and C00-1056 was simply testing for the presence of the mine stratigraphy in this area. The hole collared in a thick (~300m) sequence of Bowser pebble conglomerate, with local interbeds of sandstone and mudstone. This sequence is separated from another conglomerate-dominated sequence by a ~20m thick sandstone that commonly exhibits graded bedding (tops uphole). The lower conglomerate sequence is ~65m thick and grades downhole into a thick sequence of mudstones, siltstones, and fault zones. This 450m thick, finer grained package of Bowser sediments is characterized by relatively monotonous sequences of interbedded mud and silt, with local 1-10m thick fault zones that consist of broken/rubbly core and local gouge material. Salmon River stratigraphy was intersected at 832m downhole. Approximately 32m of interlayered mudstone and andesite flow breccias were intersected before deteriorating ground conditions further back uphole forced the abandonment of the hole.

The only mineralization of note in the hole consisted of a zone of moderate quartzpyrite veining and/or flooding, over 5-7m, in a section of Bowser conglomerate, beginning at ~53m downhole. A 50cm grab sample returned 0.4 g/t Au. Mineralization of this (or any) sort in the Bowser package is very rare, and this 'zone' is likely limited in extent.

Hole C00-1056 unfortunately did not fully test the area for the presence of the mine stratigraphy, as only the upper contact of the hanging wall package was obtained. The high cost of drilling this type of hole, and the bad ground conditions precluded follow-up drilling.

<u>C00-1083</u>

Hole C00-1083 was collared approximately 1km directly north of the mine, and is also thought to be on the west limb of the Eskay Creek Anticline. The hole targeted an area with only limited drillhole data, and was targeting the mine stratigraphy at depth for the presence of mineralization and/or prospective alteration.

The hole collared in a relatively monotonous Bowser sequence of interbedded mudstone and siltstone, to a depth of ~229m. A thick package of coarser grained sediments then continues to a depth of ~492m. This coarse sequence consists of a 45m section of conglomerate, followed by a 55m section of sandstone, and a 160m thick conglomerate-dominated basal section. Below this coarse package, another monotonous section of interbedded mudstone and siltstone was encountered to a depth of ~876m. Salmon River stratigraphy was intersected at a depth of 878m. The upper 35m consists of a massive to laminated mudstone. This grades into a very thick andesite flow breccia sequence that continues to a depth of ~1361m. This anomalously thick hanging wall package is dominated by massive to brecciated andesite flows, separated by volumetrically minor interflow mudstone horizons. Immediately underlying this flow breccia sequence is a 1m thick mudstone-rhyolite transitional breccia that quickly grades into an autobrecciated rhyolite flow unit. The hole was terminated at a depth of 1371.30m.

No mineralization of interest was encountered in any portion of the hole, but sampling was undertaken in all of the mudstone horizons (or other units) that are host to mineralization elsewhere on the property. Only two samples returned Au concentrations significantly above detection levels. One sample in an andesite breccia at ~1263m returned 0.1 g/t Au, and a section of autobrecciated rhyolite at ~1370m returned 0.2 g/t Au. Neither of these anomalies are regarded as significant.

Hole C00-1083 was successful in confirming the presence of the mine stratigraphy in this area, but unsuccessful in locating any mineralization or alteration of interest.

4. Discussion and Conclusions

•

.

The Eskay Creek ore bodies are located immediately south of the IKS Property, and the trend of the mineralization projects northwards into the center of the property, but to date, no more mineralization of significance has been intersected north of the ore bodies currently being mined. Drilling in 2000 targeted two areas on the property that had relatively sparse drilling density. Two holes were drilled to test for the presence of the mine stratigraphy, and for the possible presence of mineralization related to the Eskay Creek hydrothermal system that produced the various ore bodies at the mine.

One of the two holes successfully intersected the mine stratigraphy, but the contact mudstone was essentially non-existent, and no mineralization or alteration was encountered. The other hole was lost high up in the hanging wall sequence due to ground conditions, and was therefore unable to test for the presence of the mine stratigraphy.

5. Recommendations

The IKS Property remains moderately to highly prospective despite the lack of encouraging results in 2000. Much of the property remains essentially untested, due to the high cost of drilling 'blindly' through the extensive Bowser cover rock. Further drilling should be completed on the property, for the length of the Mine life.

Surface mapping should continue on the property in advance of more drilling, in an attempt to define major structures in the Bowser that may mimic large structures in the more prospective Hazelton stratigraphy. Large anticlinal structures should be mapped out, as they may bring the Hazelton rocks closer to surface, thereby shortening the length of holes. Large scale faults, especially NE and NW directed ones, may also be important, as they may reflect deep crustal weakenings in the Hazelton package that could potentially be fluid conduits.

Drilling to the north of the current program remains highly prospective, but depth is becoming a concern. Hole C00-1083 did not intersect the mudstone/rhyolite contact zone until a depth of 1362m (4465 ft). Holes further to the north would be even deeper, making them a lower priority due to cost and logistics.

6. References

Anderson, R.G. 1989. A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, NW BC. In: Current Research, Part E, GSC Paper 89-1E, p. 145-154.

Anderson, R.G., and Thorkelson, P.J. 1990. Mesozoic Stratigraphy and Setting of Some Mineral Deposits in the Iskut River Map Area, NW BC. In: Current Research, Part E, GSC Paper 90-1F, p. 131-139.

Cunningham-Dunlop, I., et al. 1999. Summary Report, Eskay Creek Project, 1998 Surface Exploration Program. Internal Report for Homestake Canada Inc.

Cunningham-Dunlop, I., et al. 1998. Summary Report, Eskay Creek Project, 1995-1997 Surface Exploration Program. Internal Report for Homestake Canada Inc.

Edmunds, F.C., and Kuran, D.L. 1993. Eskay Creek Project, 1992 Exploration Program, Geological and Diamond Drilling Results. Internal Report for Homestake Canada Ltd.

Edmunds, F.C., and Kuran, D.L. 1991. TOK-KAY and GNC 1991 Exploration Program, Geological and Diamond Drilling Results. Internal Report for International Corona Corporation.

Homestake Mining Company. 2000. 1999 Annual Report, Homestake Mining Company.

MacDonald A.J., et al. 1996. Metallogeny of an Early to Middle Jurassic Arc, Iskut River Area, Northwestern British Columbia. Economic Geology, v. 91, p. 1098-1114.

MDRU. 1992. Metallogenesis of the Iskut River Area, Northwestern BC. Annual Technical Report – Year 2, June 1991-May 1992, Mineral Deposit Research Unit, University of British Columbia.

Appendix 1:

. -

.

•

•

•

`

•

Statement of Costs

HOMESTAKE CANADA INC

e 1

.

-

-

.

-

•

•

•

.

-

-

.

.

.

۰ ۲

.

۳

p- --

-

P 3

p. ..

.

IKS Property Expenditures

Drill Hole C00-1056 (July 29th to September 15th, 2000)

PROJECT#	<u>90702</u>	TOTAL	<u>\$144,456.36</u>		
DESCRIPTION		AMOUNT	RATE (\$)	<u>NET(\$)</u>	
SALARIES					
	Technical (core logging,	field work, etc)			
	I. Dunlop	2	350	700	
	D. Gale	6	260	1560	
	J.Lewis	1	235	235	
	Technical (report writing,	, in Vancouver)			
	J. Lewis	5	190	950	
			Sub	ototal	\$3,445.00
DRILLING					
	Drilling			54739.18	
	Materials			36374.53	
	Services (OFC)			24040.75	
	Services (NOFC)			4575.00	
			Sut	ototal	\$119,729.46
HELICOPTER					
	Helicopter-full fare	7.3	850	6205	
	Helicopter-discount rate	18.2	387.5	7053	
	Fuel	3264	0.85	2774	
			Sub	ototal	\$16,031.90
FIELD/CAMP					
	Lodging (geologists, 9 day	s 9	50	450	
	Lodging (4 drillers, 24 days	96	50	4800	
			Sut	ototal	\$5,250.00
			то	TAL	\$144,456.36

HOMESTAKE CANADA INC IKS Property Expenditures Drill Hole C00-1083 (September 7th to October 4th, 2000) <u>90702</u> TOTAL <u>\$186.770.05</u> PROJECT# <u>AMOUNT</u> RATE (\$) NET(\$)DESCRIPTION **SALARIES** Technical (core logging, field work, etc) 7 D. Gale 260 1820 Technical (report writing, in Vancouver) 2 380 190 J. Lewis Subtotal \$2,200.00 DRILLING 99536.50 Drilling 27366.90 Materials 18726.31 Services (OFC) 4012.50 Services (NOFC) Subtotal \$149,642.21 **HELICOPTER** 33.4 758.8 25344 Helicopter-full fare 3634 Fuel 4275.2 0.85 Subtotal \$28,977.84 FIELD/CAMP. 350 Lodging (geologists, 9 day 7 50 5600 Lodging (4 drillers, 28 days 112 50 \$5,950.00 Subtotal TOTAL \$186,770.05 NOTE:

Total IKS Property expenditures total \$331,226.41.

der 1

٠

٠ .

.

.

.

-

.

•

\$186,700.00 to be applied as assessment work to the claims, and the balance to Homestake Canada Inc account (P.A.C. No 141657)

Appendix 2:

. .

....

.

.

. .

•

•

Statement of Qualifications

Statement of Qualifications

r

,

I, Jeffrey David William Lewis, of 3671 Pleasant Street, Richmond, BC, do hereby certify that:

- 1. I am a graduate of the University of British Columbia (1997), and hold a B.Sc. in Geology.
- 2. I have been practicing as a geologist for 10 years, in Canada and Europe.
- 3. I am presently employed by Homestake Canada Inc. of 1100-1055 West Georgia Street, Vancouver, British Columbia, as a geologist.
- 4. Portions of the work described in this report were undertaken by the author.
- 5. I do not have any direct or indirect interest in the IKS/SKI Property, nor do I expect to receive any in return for conducting the work or preparing this report.

Signed at Vancouver, British Columbia, on this, the 7th day of December, 2000.

1 D. Lewis, B.Sc.

STATEMENT OF QUALIFICATIONS

I, David Gale, of 216 West 13th Ave, Vancouver, British Columbia, do hereby certify that:

- 1. I am presently employed by Homestake Canada Inc. of 1100-1055 West Georgia Street, Vancouver, British Columbia as a Geologist.
- 2. I graduated from Memorial University of Newfoundland, St. John's, Newfoundland (1994) and hold a B.Sc. (Honours) in geology.
- 3. I graduated from Queen's University, Kingston, Ontario (1997) and hold a M.Sc. in geology.
- 4. I have been employed in my profession as an Exploration Geologist since my graduation.
- 5. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Signed at Vancouver, British Columbia, this 7th day of December, 2000.

a) pl

David F.G. Gale, M.Sc.

Appendix 3:

e

Drill Hole Logs

HOMESTAKE CANADA

DIAMOND DRILL HOLE LOG

`

• • •

3 I S / A

· ·

· · · ·

. .

C001056

,

*

,

.

•

`

PROJECT: Eskay Creek Project Date		te Commenced: 07/29/2000	Contractor: HY-TECH		Logged	Logged by: IDDG				
DRILL HOLE;	C001056	Da	te Completed: 08/21/2000					Geotech	by: MCKD	
LENGTH :	864.41	. co	re Diam: NQ2	-1				 		
	Collar Location	JL		/(<u></u>		
B	xploration Grid	Mine (023) Gri							·	
Northing:	20221.49	11216.64								
Easting,	21138 64	8967 16								
Elevation:	1096.57	1096.57								
		SUMMA	R Y			DOWN HOLE	SURVEYS			
					Depth	Azim	Inclin	Mine Az	Method	
	0.00-3.66	Casing								
	3.66-294.90	Bowser Co	nglomerate		0.00	140.00	-75.00	117.00	ESTIMATE	
	294.90-316.5	0 Bowser Sa	ndstone		91.44	148.00	-76.00	125.00	SPERRY SUN	
	316.50-383.1	3 Bowser Co	nglomerate		182.88	154.00	-76.50	131.00	SPERRY SUN	
	383.13-472.0	6 Bowser La	minated Mudstone		274.32	159.50	-76.50	136.50	SPERRY SUN	
	472.06-473.9	6 Mudstone	Fault Zone		365.76	171.00	-75.00	148.00	SPERRY SUN	
473.96-482.50 Bowser Lam:			minated Mudstone		457.20	186.50	-76,00	163.50	SPERRY SUN	
	482.50-483.7	2 Mudstone	Fault Zone		548.64	184.50	-76.00	161.50	SPERRI SUN	
	483.72-560.8	D Bowser La	minated Mudstone		040.08 333 53	182.90	-74.50	159.50	CODDDV CDN	
	200.00-201.0 561 80-666 0) Mudetope	Cerbedded MudySiit		132.32	193.00	-76.50	165.00	COFDRY SUN	
	566 A1-570 B	1 Rouscone 7 Rowger In	fault some		022.90	192.00	-70.50	159.00	SPERKI SOM	
	570 87-581 4	6 Mudstone	Fault Zone							
	581 46-589 5	2 Bowser La	minated Mudstone							
	589.52-600.1	5 Mudstone	Fault Zone							
	600.15-608.3	4 Bowser La	minated Mudstone							
	608.34-621.8	8 Bowser In	terbedded Mud/Silt							
	621.88-703.6	9 Bowser La	minated Mudstone							
	703.69-713.3	2 Mudstone	Fault Zone							
	713.32-798.1	0 Bowser La	minated Mudstone							
	798.10-808.2	5 Bowser In	terbedded Mud/Silt							
	808.25-820.2	2 Bowser La	minated Mudstone							
	820,22-826.4	3 Mudstone	Fault Zone							
	826.43-829.0	3 Bowser La	minated Mudstone							
	829.03-832.0	0 Mudstone	Fault Zone							
	832.00-851.7	2 HW Lamina	ted Mudstone							
	851.72-855.1	5 HW Andesi	te Breccia							
	855.15-857.7	3 HW Lamina	ted Mudstone							
	857.73-864.4	l HW Andesi	te Breccia							

HOLE: C001056

HOMESTAKE CANADA - Eskay Creek Project

PAGE 1 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb ¥	Zn %	Cu 🕯	As 1	Hg ppm	Sb %
									ļ	į			1
10.00	3.60	Casing The bole was going so well]					}		1	{	}
1		The hole was going so well				ł		1	i		1	1	•
		Aug 14, 10:00am: Trying to cement the hole at	Ì	1	i	i	i	i	i	i	i	i	i
i		548.64-618.74 and 300 feet from bottom which	i		i	i	i	i	í	1	İ	Í	Ì
ļ		translates to 772.97-864.41.		Ì	ļ	ļ .		ļ	!	ţ	[ļ	
1		Aug 14. after day shift. Rods are completely stuck in		1					1	i	1	{	1
		the drill hole. Here is an account of what happened.			Ì	Ì	i	Ì	i	Í	1	i	1
i			i		i	i	i	í	i	i	i	i	İ
ĺ		Aug 13 day shift hit a void/vug that occured within a	ĺ		Ì	Ì	1	1	Ì	1	1	1	1
1		qtz vein, lost water pressure, and got the core tube	ļ	l	1		ļ	ļ	Į.		1	ļ	
		stuck. Larry was forced to pull rods to get the core		[ļ	ļ	ļ	ļ	ļ			
ļ		tube unstuck. Larry returned back down the hole and					ļ	ļ	ļ				1
ļ		had to ream to bottom.						t 1					1
I I		Night shift took over on 13th and when returning to				1		1		1	1	1	1
		same area, again lost water pressure and tube was	i i			1	ł	1 1	1	i	i	i	ĺ
		stuck in rods a second time. Rods were pulled and	i		i	i	i	i	i	i	i	i	i
		then, apon returning to bottom, driller encountered	i i		ĺ.	i	i		İ	İ	i	i	Ì
İ		sand and rubble app, 400 feet from bottom.	i i		i	İ	i i	i	1	Ì	l l	Ì	
						1	1	1		!	ļ	l	
ļ		Day shift took over and managed to ream to about 3				1	ļ	1	ļ	ļ	ļ	ļ	
!		feet off bottom and then the entire drill string got				1	!	ļ	ļ			ļ	
		stuck! That's where we stand now and the plan is to				ł	1						1
1		blast at the bottom of the hole and hopefully free-up					1	1 1	1				
r I		Che 1005.				i	ł	ь 	Ì	1	Ì		
İ		Aug 17th: Blasting took place on Aug 15th and they			i	i	i	i	i	i	i	i	
İ		could not blast at the very bottom because the	i i		i	i	i	İ	i	İ	İ	i	l
ĺ		detenator could not get a current down to the very	i i		Ì	Ì	1	ĺ	1				
		bottom. They ended up blasting at 280 feet from			1		ļ	ļ	ļ	ļ	ļ		
		bottom which translates to 779m.				1					ļ		
1						1				!			
1		They demended an upper fault system; demended from $548, 64-616, 74$. The top $6-9$ metres were much but the			1			1	1	1	1	1	
•		rest was solid. The night driller on the 16th then				i		1	Ì	i	Ì		
Í		greased the hole in preparation for placing the wedge	i		1	i	i	i	i	i	i	i	
İ		down at 762 m (250Dft). The wedge is expected to be	i		i	i	İ	i	İ	i	i	1	
ļ		in place by late afternoon (Aug 17th).	1		1	1	ļ	ļ	l	ļ	ļ	ļ	ļ
					!			ļ		1			l
1		Aug 18th: First attemp at placing the wedge, it got			1	ł		ļ	1	1			
		stuck at 140 feet. They removed it and then reamed			l l	t I		1		1			
		down. Kods got stuck again close to bottom and they ware tring to pull them out when they broke off helow			l t	1		1	1	1	ł		
1		the fact clamp. While trying to tap the rade the tap							i	1	ł		
		the toot cramp. while crying to tap the rous, the tap	1		!	!	!	!	!	!	1	!	

HOLE: C001056

PAGE 2 of 11

FROM TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb t	Zn ł	Cu ¥	As t	Hg ppm	Sb ł
	broke loose and the drill string crashed a few hundred feet to the bottom. They were then able to re-tap the core string and pull all the rods out. They then went back down with the wedge and placed it at 2386 feet, which was only 114 feet above where we wanted it. Then they proceeded down into the hole with a bullnose bit on to get passed the wedge. Close to bottom the entire sting got stuck once again. The rods then broke off again close to the top of the hole and numerous days were spent retrieving the rods. They were eventually retrieved and it was then realized that the bullnose bit had broken off and was in the hole somewhere above the wedge. At that point, the alternative was to place a second wedge above the bullnose bit and attempt the entire procedure once again or walk away. Due to the hole not being in very good shape it was decided that similar problems would be encountered if the former possibility was attempted. The hole was then pronounced dead.											
 3.66 294. 	90 Bowser Conglomerate Fine-coarse grained, gray, bedded, graded bedding 45° Frs=10/m :Vns =5/m 10% silica alteration - pervasive 10% qz-carb veining - macroveins 2% pyrite - coatings Interbedded sequence of conglomerate, f to cg sandstones, and local mudstones - 70/20/10 ratio; conglomerates are generally polymitic with mud clasts to 10 cm in size; often show good grading from sandstones to conlgomerates with tops uphole; local zones of blocky and broken core with minor sections of gouge; weak iron staining over top meter; scattered quartz-carbonate veins at 30-60 degrees to the core axis - average 5-10 per meter to 21.00 m with % dropping downhole; local pyrite to 2% found mainly on fractures in zones of broken core - typically at a low angle to the core axis.	514747	59.50-60.00	0.50 			0.01	0.01	0.01	0.01	3	0.01

HOLE: C001056

PAGE 3 of 11

Bedding: poorly to moderately developed - well defined within the mudstone sections. 28.30 m: 65 degrees to the core axis 51.50 m: 60 degrees to the core axis 87.78 m: 64 degrees to the core axis 135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
Bedding: poorly to moderately developed - well defined within the mudstone sections. 28.30 m: 65 degrees to the core axis 51.50 m: 60 degrees to the core axis 87.78 m: 64 degrees to the core axis 135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
28.30 m: 65 degrees to the core axis 51.50 m: 60 degrees to the core axis 87.78 m: 64 degrees to the core axis 135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
28.30 m:65 degrees to the core axis51.50 m:60 degrees to the core axis87.78 m:64 degrees to the core axis135.94 m:58 degrees to the core axis161.24 m:30 degrees to the core axis181.05 m:45 degrees to the core axis265.08 m:30 degrees to the core axis274.44 m:30 degrees to the core axis			
51.50 m: 60 degrees to the core axis 87.78 m: 64 degrees to the core axis 135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
87.78 m: 64 degrees to the core axis 135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
135.94 m: 58 degrees to the core axis 161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
161.24 m: 30 degrees to the core axis 181.05 m: 45 degrees to the core axis 265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			
181.05 m: 45 degrees to the core axis			
265.08 m: 30 degrees to the core axis 274.44 m: 30 degrees to the core axis			i i
274.44 m: 30 degrees to the core axis		i i	
Zones of interest:			
3.66-4.57 m: section of rubby core with weak iron			
staining.		ļļ	
21.34-24.23 m: moderately to strongly broken core with		l l	
local grey gouge at 60 degrees to the core axis;			
scattered anhedral pyrite grains to 1 cm in size along		1 I	
with fracture-controlled veins.	I [
28.35-40,54 m: numerous mudstone layers.	ļļ	1	
34.75-40.84 m: strongly broken core with grey muddy			
fault gouge and local pyrite coating on fractures.	!!	l l	ļ ļ
46.94-53.04 m; moderately to strongly broken core with	ļļ	i i	
local seams of grey/black fault gouge: scattered	! !		
quartz-carbonate veins with % increasing towards the			
bottom of the unit; occasional thin pyrite fractures			
and veins - very strong over bottom 30 cm (20-30%).			
70.87-75.44 m: numerous mudstone beds.			
71.48-72.85 m: moderately to strongly broken core; no	4		
gouge; scattered pyrite veins.	1 1		
//.42-190.96 m; Cransition into interpedded sandscone			
and conglomerate - ratio now ev/du; good grading			
acompose with occasional large musicine clases to 20			
additional and the straight of			
100.29-101.90 m, weak to moderately broken core, 20 cm			
central zone of grey/black gouge at 50 degrees to the			
	i i		i i
weak pyrite.			i i
111.67-112.59 m; shattered core.	i i		i i
156 36-163 83 m; local zones of broken core and gouge	i i		i i
170, 38-173, 13 m; moderately to strongly broken core;	i i		i i
very minor gouge.	i i	i i	i i

HOLE: C001056

PAGE 4 of 11

FROM	TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb t	Zn %	Cu %	As t	Hg ppm	Sb %
		190.96-261.82 m: transition into interbedded conglomerate and sandstone - ratio 80/20 with very			1	1		 	• 		•	İ	
i		rare mudstone beds up to 1.0 m in size; numerous large	i i		i	İ	i	Ì	Ì	Ì	j	1	1
i		laminated mudstone clasts up to 20.0 cm in size	i i		1	1			l	ł	1		1
ł		throughout the unit; grades from f to cg sandstone at			ļ	1	ļ		ļ	ł	l	ļ	1
1		the start of the unit with very poorly defined bedding			1	1	!		ļ	l	ļ	ļ	
l		throughout the remainder of the section; weak				ļ	ļ		ļ	[1	ļ	
ļ		quartz-carbonate veining associated with the intervals				1	1		ļ	1	1		
1		of mud - minor in the rest of the unit; trace pyrite.			1	1		1	1	1	1	1	4
-		238.51-239.27 m; strongly broken mudscone with grey				ł		1	1	1	4 	1	! [
ł		muddy fault gouge; no verning; occasional fine						1		1	1	1	
		261.38-262.75 m: strongly broken mudstone as above: no			i	1	ì	1			ŧ	1	1
1		veining.	i i		1	i	i	i	i	i	i	i	İ
i		268,45-278.59m; broadly graded cgr sandstone, with	i i		i	i	i	İ	i	i	Ì	i	ĺ
j		angular mudstone shards. Unit is weakly graded from	i i		i	İ	i	İ	i	Ì	ĺ	ĺ	ĺ
Ì		bottom to top, indicating tops uphole.	j i		1	i i	ĺ				ŀ		l
					1	1					l		
294.90	316.50	Bowser Sandstone					ļ				ł		ļ
		Gray, bedded, graded				ļ		Į	ļ	Į			
		bedding 30°;bedding 40°	1		ļ		1		ļ	1			ļ
ļ		Fre=4/m :Vns =2/m	1 1		ļ	ļ	!		ļ	ļ			
ļ		2% silica alteration - patches					1		ļ	1			
1		1% qz veining - macroveins				1	1		ļ	1	1		
		4% qz-carb veining - macroveins				1		1		[]	ļ
l		.1% pyrite - clasts					1	1			1	4	
		Sandstone-dominated interval, with lesser amounts of					1	1		1	1	•	
1		congromerate and rare mudstone norizons.				1	1	4 1	ł	1	1	۱ ۲	1
		Sandstone is locally for to cor. and roughly graded			ł		ł	1			1	i	İ
		(toos uphole).			i	i	Ì		1	i	i	i	i
i		Conglomerate is mgr, and hosts rare by clasts.	1		i	Ì	i	İ	i	i	İ	i	
i		Mudstone beds, where present, define bedding (between	i i		i	i	i	İ	i	i	i	j j	
Ì		30-40 deg to CA).	i i		i	İ	į.	l	Ì	i	1	1	
1			1		1		1	1	1		1	1	
ļ		Minor (3-4%) qtz and qtz-cb veining is present			1		1	l			Į		
		throughout the sequence, especially in the				ļ		ļ					
!		conglomerate and sandstone units.					ļ	ļ	ł	ļ	ļ		
							1		ļ	1			
1910-20	383.13	Bowser Conglomerate					1	1	l I				
		Fine-coarse grained, gray, bedded, heterolithic					-	 	l 1	1			
		Bedding 55°: Bedding 50° Fra-6 (m Man, - 4 (m.			1	1	1	1	1	1	1		
1		rrs=6/m ;vns =4/m E% adliga alteration patcher				1		1	ł	1	 		
1		1% stille alteration - patones				1	1	L 1	1	1	1		
l I		1) yé verning - macroveing				1	1	1			 		
i		1% nurite - clasts			i	í	i	i	i	i	i		

HOLE: C001056

HOMESTAKE CANADA - Eskay Creek Project

PAGE 5 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn ł	Cu %	As 🕯	Hg ppm	Sb t
		Bowser conglomerate, with volumetrically minor mudstone and sandstone horizons.				 							
1		Cgl is generally cgr, with clasts ranging from granule			 						' 		
1		Clasts are dominated by subangular to rounded	1 1			1	i	1	ļ	i	i	i	İ
1		chert/ α tz (55-60%) peoples and cobbles up to 4-5cm in	1 1		i		i	Ì	i	i	İ		Ì
Ì		diam. Mud clasts (30-35%) are angular to subrounded.	i i		i	i	i	İ	ĺ	İ	i	j i	ĺ
i		and can be up to 10-12cm in diam. Minor (5%)	i í		i	i	i	İ	ĺ	Ì	ĺ	İ	1
i		buff/tan/green/pink cherts and/or volcanic clast are	i i		İ	i	1	1	l	l		 	1
į		also present, and can be up to 5cm in diam.	į į		ļ		ļ			 			1
l l		Bedding in the mud and sand horizons ranges between								ι 			
ļ		35-50 deg to CA.			 	1	ł]		
		3-4% qtz-cb and qtz veining is present throughout the	i 1		i	i	i	İ	İ	İ	İ	i	i i
i		interval.	i i		i	ì	ĺ	İ		İ	1	1	l
					1		l						1
							ļ						
383.13 4	72.06	Bowser Laminated Mudstone				!	1				ļ		
ļ		Dark black, bedded, laminated					ļ	l		1		1	
1		bedding 45°:bedding 37°	[1	1			1	1	1	1
ļ		Frs=2/m :Vns =0.2/m				1]	1	1	1			
1		1% silica alteration - vein				1	1	1	l	 1	1	1	
		0.5% dz veining - macroveins					1	1		1	! 	 	
		Vila pyrice - Vern Siliceous mudstone with 15-20% siltstone hads that are					Ì	l I	1	1	1		
1		typically 0.5-3 cm thick Bedding is constant thr/out				1	í Í		1	1	1		
i		interval and numerous examples of fining unwards are	¦ ¦		1	1		1		•	Ì	ĺ	i
ĺ		observed.				l	l	ĺ		l	ļ	i	
1		416-425: siltstone beds increase to 50-60%.					[!	 		
İ			i i		Í	1	1			1			
1		408.27: bedding 45 degrees to core axis					ł			l		•	
		433.85: bedding 37 degrees to core axis					l 1	1			 		
1 		441.80: 1 cm wide pyrite yein. Coarse grained			1		1	1		i			
Ì		euhedral pyrite xtls in the vein. Vein cross-cuts	i i		Ì	i	i	i	i		i	ł	i i
		bedding.	i i			ļ	ļ	Í		İ	Ì		
 		441.25-468.95: Zone of broken core and qtz veining.] 		F 6 8	 	1	
		456.29-468.17: Qtz veining increases to 1-1.5 % of			 		 			l	 		
]		interval and core is weakly to moderately broken.				1		l		l			
1		Veining ends abruptly at 468.17 and veins average			1			!		!		!	
		0.2-0.4 cm thick.						1		ļ	1		

HOLE: C001056

HOMESTAKE CANADA - Eskay Creek Project

the second second second second second second second second second second second second second second second se

PAGE 6 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb 🐐	Zn %	Cu %	As t	Hg ppm	Sb %
	473 94	Mudetone Pault Zana								1		1	
1472.00	4/3.70	Muscone Fault zone			1	1	{		1 1	1	1		
		badding (CP			ł	1	¦ .		1 F	ł	1	1	
		$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \sum_{n=1}^{\infty} \frac{1}{n}$			1	1	1		1 }	1	1		
		2% silis alteration wain			1	1	1		1	1	ł	i i	
1		1 5% og veining - gegreveing			C C	E 			1	1	1		
1		Padly broken gove with 20% gaven			i i	ł	1			i	Ì		
		badiy bioken cole with 20% gouge.								ļ	ļ		
 473 96	482 50	Bowser Laminated Mudstone			[l			1	1			
1	••••••	Dark black, bedded, graded	i i		i	i -	1		i	1	İ	i	ĺ
i		bedding 45°			i	i	i		1	i	1	i i	
ł		Frs=4/m :Vns =0 3/m	i i		i	i	i		i	i	i	i i	
i		0.3% gz veining - macroveins	i i		Ì	i	i		i	i.	ĺ	i i	
i		Same as BMLM above but rock consists of only 10%	i i		i	i	i		ł	i	İ	i i	
ł		siltstone.	i i		i	i -			i	1	İ	i i	
i			i i		i	i			i	i	i	i i	
, 482.50	483.72	Mudstone Fault Zone	i i		í	i	i		i	i	i	i i	
1		Dark black, broken, gouge	i i		i	i	i		Ì	i	j	i i	
		Frs=15/m	i i		1	i	i		i	i	Ì	i i	
i		0.2% oz veining - macroveins	i i		i	i	i i		i	i	i	i i	i i
i		Fractured and broken core with 5-10% gouge. Rock is	i i		i	i	i i		İ	Ì	1		
i		laminated mudstone, same as above with minor siltstone	i i		i	İ	i i		i	i	Ì	i i	
i		beds.	i i		i	i	i i		İ	Ì	İ	i i	
i			i i		Ì	İ	i i		Ī	ĺ	ĺ		
483.72	560.80	Bowser Laminated Mudstone	i i		i i	İ	i i		İ	İ	ļ	i I	
i		Dark black, laminated, graded	i i		Ì	Ì	Í		t		t		
i		bedding 40°	i i		İ	İ	i i		ĺ	ĺ	ĺ	İ I	
i		0.1% pyrite - laminations	i i		ĺ .	İ.	i i		Ì	1	1		
i		Laminated mudstone with siltstone horizons comprising	i i		1	ĺ.	1 1						
Í.		20% of the rock. Silstone beds are typically 0.5 cm	1		1	1	1				1		
		thick.			ļ	F			1				
1		Very monotonous sequence of mudstones.											
1		537 $0m$, 1.5 cm thick pyrite bed. Pyrite is very fine										 	
i		grained and is parallel to bedding throut interval.	i i		i	i	i i		1	i	İ	i i	
i		Juined and 15 paralles to southing the two shouther.	í i		i	i	i i		i	i	ĺ	i i	
560.80	561.89	Bowser Interbedded Mud/Silt	i i		i	İ	j i		ĺ	Í	Ì	j i	
i		Black, bedded, graded	i i		i	i	į i		ĺ	Ì	Ì	i i	
i		bedding 45°	i i		İ	İ	į i		ĺ	İ	l	1 İ	
i		Frs=2/m; $Vns=1/m$	i i		i	İ	i i		I	j	1	i i	
i		0.3% gz veining - macroveins	i i		i	i	j i		Ì	1		j i	
i		Intercalculated mudstone and siltstone. alternation on	i i		i	i	į i		İ	j	Ì	j i	
i		the 1.2 cm scale. It almost has the appearence of a	i i		i	i	į i		ĺ	İ	ĺ	j	
İ		rhythmically laminated turbidite.	i i		Ì	İ	į i		1			İ	
:					:	1	: :		:				

HOLE: C001056

(F) The first f

PAGE 7 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb *	2n t	Cu ¥	As t	Hg ppm	Sb ¥
 561.09 	566.01	Mudstone Fault Zone Dark black, broken, veined Prs=20/m :Vns =2/m 2% qz veining - macroveins Broken core without fault gouge. Qtz veining increases to 1-1.5%.			- 					1 			
566.01	570.87	Bowser Interbedded Mud/Silt Black, bedded, graded bedding 45° Frs=2/m :Vns =1/m 0.3% qz veining - macroveins BSIB same as above.											
570.67	581.46	Mudstone Fault Zone Black, broken, gouge Frs=20/m :Vns =6/m 0.3% qz veining - macroveins Badly broken core with 5% gouge. 0.3% qtz vein flooding.											
581.46	589.52	Bowser Laminated Mudstone Black, bedded, graded bedding 55° Laminated siliceous mudstone, same as above.											
 589.52 	600.15	Mudstone Fault Zone Black, broken, gouge bedding 50° Frs=20/m :Vns =6/m 0.5% qz veining - macroveins Zone of badly broken core with 5-10% of gouge. 20% of faulted interval consists of small 0.2-0.4 rounded mudstone grains.											
600.15	608.34	Interval of faulting is not continuous; 20-30% of zone is comprised of unfaulted BMLM. Bowser Laminated Mudstone Dark black laminated			 			} 			 		
608.34	621 AP	bedding 55° Bowser Interbedded Mud/Silt					• 				 		
	Ver, U0	Fine-coarse grained, grayish-black, laminated, graded bedding 50° Frs=2/m :Vns -1/m											

HOLE: C001056

PAGE 8 of 11

FROM	TO	DESCRIPTIÓN	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn 🕯	Cu t	As t	Hg ppm	Sb ¥
		0.2% qz veining - microveins Rythmically laminated siltstone and mudstone, alternating on the 2-3 cm scale. 45-50% siltstone; typically sharp contacts.			 								
		Cross bedding observed within hole that suggests tops up.											
621.8B	703.69	Bowser Laminated Mudstone Dark black, laminated, graded Same as above units. Sst app. 20% and forms 0.5-1cm thick beds.											
		624.23-632.5: Qtz veining increases to 3-4%.					1	 				1	1
		635.62-646.42: Qtz veining, up to 15-20% of rock and forms stockwork. It has 5% gouge.						1		 			1 1
		646.85: Py bed 1 cm thick.				ļ	1				Ì		1
		663.46-664.52: Gouge Zone with mudstone; only 15% solid core.								 			
		Locally, the siltstone component increases to 40% over 5-7 m long intervals.										■ 	,
		682.62-684.23: Fault zone with 4-7% qtz veining.			1					 	1	1 1	, 1
		694.68: Py bed.								 	 		
703.69	713,32	Mudstone Fault Zone Dark black, broken, gouge				 			 	 			
ļ		Frs=20/m :Vns =20/m 15% qz veining - microveins						1					1
		2% carbonate veining - microveins Badly broken zone of qtz flooding, gouge and minor Fe-Carb veining.								 			
		10% fault gouge.			ļ			1			1	1	
713.32	798.10	Bowser Laminated Mudstone Dark black, graded, bedded bedding 40° Frs=3/m :Vns =2/m									 		

HOLE: C001056

PAGE 9 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	2л 🕯	Çu ¥	As %	Hg ppm	Sb %
 		10% siltstone.											
 		735.0-743.72: 2% spidery qtz veins networking through the core.			 !] 		 		 		
		743.72: bedding is 13 degrees to core axis.								ļ			
		767.17: 4 pyrite beds 15 cm apart and parallel to bedding			•] 	1							
		794.98-798.10: Qtz flooding increases to 25-30%			 					 		Ì	
 798.10 	808.25	Bowser Interbedded Mud/Silt Grayish-black, bedded, graded bedding 75° Frs=2/m :Vns =12/m 2% qz veining - macroveins Alternating beds of siltstone and mudstone. Sst comprises app. 70-80% of rock and consists of alternating light and dark bands mixed with mudstone.											
 808.25 	820.22	Bowser Laminated Mudstone Dark black, graded, laminated bedding 27° Frs=4/m :Vns =2/m 0.3% qz veining - microveins 0.1% pyrite - laminations 817.58-818.53: GMFZ:Broken core and fault gouge without qtz veining.											
 620.22 	826.43	Mudstone Fault Zone Dark black, broken, gouge bedding 85° :Vns =3/m 1% gz-carb veining - macroveins Badly broken core and fault gouge. 30-40% fault gouge thr'out interval. Extensive graphite on broken surfaces.											
Ì		Recognizable pieces of core contain rare pyrite beds.			† 1	l		ł	 				
826.43	829.03	Bowser Laminated Mudstone Dark black, graded, laminated bedding 65° Frs=10/m :Vns =3/m 0.5% gz veining - microveins 0.5% pyrite - laminations							- 				

HOLE: C001056

PAGE 10 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb 🕯	Zn %	Cu ¥	As ¥	Hg ppm	Sb 1
 		Siltstone beds 0.5-1 cm thick, interbedded with siliceous mudstone. Interval is moderately broken. Only rare pyrite beds within this interval.											1
 629.03 	832.00	Mudstone Fault Zone Dark black, broken, gouge bedding 65° Frs=30/m :Vns =4/m 1% qz veining - microveins 0.4% pyrite - laminations Same as above unit. Extensively broken core with gouge present throughout											
 832.00 	851.72	HW Laminated Mudstone Dark black, laminated, graded bedding 70° Frs=2/m :Vns =2/m 0.3% qz-carb veining - microveins 3% pyrite - laminations Well laminated siliceous mudstone. Abundent py. beds,0.5-1 cm thick.										 	
		B35.63-836.50: Massive fluorescent-light-bulb coloured calcite vein. Sections with hydrothermally brecciated mudstone fragments within calcite occur surrounding the massive vein.					 	 			 		
851.72 	855.15	HW Andesite Breccia Fine-coarse grained, dark green, fragmental Frs=1/m :Vns =3/m 0.3% carbonate veining - macroveins 0.5% pyrite - matrix Angular andesite fragments within a calcareous mudstone matrix. Frag's average 1-10 cm in size and comprise 75-85% of interval. Frag's are all aphanitic.											
 855.15 	857.73	<pre>HW Laminated Mudstone Whiteish-black, veined, brecciated bedding 75° Frs=2/m :Vns =15/m 15% carbonate veining - macroveins 3% pyrite - laminations Hydrothermally brecciated hanging-wall mudstone. Pyrite laminated mudstone fragments within a calcite matrix. Frag's are 1-4 cm in size</pre>	 513849 	 856.51-857.73 	1.22 	0.1 	4 	0.01		0.D1	 	3 	0.01

HOLE: C001056

(a) A start to be a start to be start to be a start to be a start to be sta

PAGE 11 of 11

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn ¥	Cu î	As t	Hg ppm	Sb %
	-						+ 		1		ĺ		
İ		70% of interval is brecciated. Remainder of unit is	i i		1	1	ļ	1	ļ	ļ		1	1
ļ		same as HMLM above. Upper 50cm is all fault gouge.						1	1		 		1
 857.73	864.41	HW Andesite Breccia					ļ	į	į	ļ	İ	1	1
İ		Fine-coarse grained, dark green, brecciated	1 1						ļ			1	
1		Brecciated to locally massive andesite. Andesite						1	1		1	1	1
1		clasts occur within a black mudstone matrix. Clasts						ł		1		-	
!		are angular and highly variable in size; ranging from					1	ł	1	1	1	1	l I
1		sup-mm to 12 cm, interval consists of 50-50% large				1	1	1	i	i	i	i	Í
1		angular fragments, suffounded by 1-4 cm fragments in a					1	í	i	i	i	i	Í
1			i i		i	i	i	i	Ì	Ì	1	1	1
Ì		Interval is moderately broken but without fault gouge.	i i		i	i	1	Ì	1	1		ļ	1
i			1		1	1	1	1	ļ	ļ	!	ļ	1
i		860.75-861.80: broken vuggy quartz. Upper and lower				ļ			ļ	1	ļ		
İ		contacts are broken. This is the interval that caused						ļ	ļ	1	ļ	}	l
		the core tube to get stuck.					1	1	!	1	ļ	1	t
1									!				
		EÓH.	!!!					1	1	1		6 1	ł 1
(eoh)								1	1	1		i 	l

HOMESTA	KE CANADA		DIAMOND DR	ILL HOLE LOG					C001083
ROJECT: Eskay	y Creek Project	ية م	ate Commenced: 09/07/2000) Contractor: H	iy - TECH			∬ ∥ Logged	by: DG
LL NOLE, CO	001003		the Completed, 10/04/2000					 Geotech	by, SC
, ND HOUN: CO	001065	<u>∥</u> ⊔	ace compieced: 10/04/2000	" 11					цу: 30
LENGTH: 1	1371.30	i c	pre Diam: NQ2					Ű.	
<u></u>	Collar Location								
Expl	loration Grid Mi	ine (023) Gr	id						<u></u>
lorthing: 2	20759,47	12040.00							
Easting: 2	21978.45	9530.00							
evation:	854.00	854.00	l						
		<u>SUMMA</u>	R Y	*****	D	OWN HOLE	SURVEYS		
				Dep	th	Azim	Inclin	Mine Az	Method
	0.00-4.57	Casing							
	4,57-138.99	Bowser I:	nterbedded Mud/Silt	0.	00	180.00	~ BB.00	157.00	ESTIMATE
	138.99-206.65	Bowser L	aminated Mudstone	6,	10	204.00	-85.60	181.00	SPERRY SUN
	206.65-212.17	Mudstone	Fault Zone	91.	44	215.50	-86.00	192.50	SPERRY SUN
	212.17-227.23	Sowser I	nterbedded Mud/Silt	182.	66	219.50	-86.50	196.50	SPERRY SUN
	227.23-229.02	Mudstone	Fault Zone	274.	32	223.00	-86,50	200,00	SPERRY SUN
	229.02-246.75	Bowser C	onglomerate	365.	76	223.00	-85.00	200.00	SPERRY SUN
	246,75-255.26	Bowser I	nterbedded Mud/Silt	457.	20	223.00	-86.00	200,00	SPERRY SUN
	255.26-257,97	Bowser C	onglomerate	548,	64	231.00	-84,50	208.00	SPERRY SUN
	257.97-276.58	Mudstone	Fault Zone	640.	08	236.50	-85.00	213.50	SPERRY SUN
	276.58-279.77	Bowser S	andstone	731.	52	244.00	-83,00	221,00	SPERRY SUN
	279.77-281,61	Mudstone	Fault Zone	822,	96	238.00	-84.00	215.00	SPERRY SUN
	281.61-300.40	Bowser S	andstone	914.	40	223.00	-81.50	200.00	SPERRY SUN
	300,40-307.95	Mudstone	Fault Zone	1005.	84	224.00	-82.00	201.00	SPERRY SUN
	307.95-332.99	Bowser S	andstone	1097.	28	225.50	-83,50	202.50	SPERRY SUN
	117 00-357 51	omalomerate	1188	77	226 50	-82 00	203.50	SPERRY SUN	

357.53-359.28

359,28-368.34

368.34-373,90

373,90-390.02

390.02-396.49 396.49-483.26

483.26-487.31

487.31-491.82

491.82-551.57 551.57-875.78

875,78-878.00

878,00-912,27

912.27-962.24

962.24-980.84

980.84-999.44

999.44-1108.18

Fault Gouge

Bowser Conglomerate

Mudstone Fault Zone

Bowser Conglomerate Mudstone Fault Zone

Bowser Conglomerate

Bowser Conglomerate Bowser Interbedded Mud/Silt

Mudstone Pault Zone

HW Andesite Flow

1108.18-1123.03 HW Pillowed Andesite Flow 1123.03-1147.70 HW Andesite Breccia 1147.70-1158.78 HW Pillowed Andesite Flow 1158.78-1210.50 HW Andesite Breccia

HW Andesite Breccia

HW Laminated Mudstone

Bowser Laminated Mudstone

Bowser Laminated Mudstone

HW Pillowed Andesite Flow

HW Pillowed Andesite Flow

•

.

1280,16

1371.30

249.50

240.00

-83.50

-83.00

226.50

217.00

SPERRY SUN

SPERRY SUN

``

5 **3** F

.

HOMESTAKE CANADA

DIAMOND DRILL HOLE LOG

C001083

1210.50-1237.31	HW Andesite Flow
1237.31-1251.83	HW Andesite Breccia
1251.83-1260.73	HW Andesite Flow
1260.73-1262.64	HW Laminated Mudstone
1262.64-1270.93	HW Andesite Breccia
1270.93-1271.95	HW Laminated Mudstone
1271.95-1309.68	HW Andesite Breccia
1309.68-1318.20	HW Andesite Flow
1318.20-1357.82	HW Andesite Breccia
1357.82-1361.45	HW Andesite Flow
1361.45-1362.35	Contact Mud Matrix Rhy Breccia
1362,35-1371.30	Autobrecciated Rhyolite Flow

HOLE: C001083

PAGE 1 of 13

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn %	Cu *	As %	Hg ppm Sb %
0.00	4,57	Casing Cemented 170,38-200.86m to stablize lost bit. Cemented 179,53-225.24m due to bad ground.						 	 		 	
 4.57 	138.99	Bowser Interbedded Mud/Silt Gray Frs=8/m 60% sandstone or siltstone 40% laminated mudstone. Sandstone coarse, locally grading into fine pebble conglomerate with sandstone matrix. Few mudstone clasts in coarser beds. Few fract zones. Locally randomly oriented quartz veins, up to 5%. Rare 5cm fractured with quartz infill. 12.59-14.50m Fracture zone, up to 20 fract/m, 2~5cm rubbly zone. 37.51-38.01m Graphtic, crumbly core. 50 fract/m. 47.25m Scm rubble. 70.03-74.11m Fracture zone, 15-30 fract/m. Rubble zone <50cm. 78.00-86.95m Broken, 5-15 fract/m. Minor gravel. 5cm of weak clay and sericite alteration. 105.87m 50 cm zone graphitic, 5% carbonate veining, 10 fract/m, minor (2mm) graphitic gouge. 122.41m Load structures indicate tops up. 127.81 Bedding 50 deg to ca. 127.81-129.53m Broken rubbly 10-40 fract/m. 138.98m 20% siltstone. 6-10 fract/m.										
138.99 	206.65	Bowser Laminated Mudstone Dark gray 20% siltstone. 153.49m Bedding 40 deg to ca. Cross-bedding indicates tops uphole and down hole - wave base. 148.91m pyritic belemnite. 154.82-171.78m 10-20 fract/m, 60% sandstone. 162.79m Scm clayey rubble in sandstone. 169.20m 25cm broken angular core, rubbly. 171.13m 1cm gouge. 174.41-176.31m Matrix supported, poorly sorted pebble conglomerate. Pebbles <1cm-4cm, quartz and mudstone										

HOLE: C001083

PAGE 2 of 13

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	PD %	Zn %	Cu % 	As t	Hg ppm]	
	-	pebbles, rounded to sub-rounded.			i	1	į	ĺ	1	1		 1	
		188.59m Bedding 50 deg to ca.					ļ			1		i	
		189.88-190.78m Rubbly, broken mudstone. 30cm of					1	1	1 1	1		ł	
		gouge.	. I I					1	1	1		i i	
		195.11m Broken angular core, 30 fract/m.	ļ ļ					1		1		í	Ì
		196.00m Bedding 55 deg to ca.			1			1	1	ł		i	İ
		Local beds of coarse grained sandstone.	}			1	 	ļ			i	ĺ	ļ
1		203.55-203.70: mixture of badly broken core and fault	i i		1	į		1	ļ	ļ		ļ	
ĺ		gouge.						 	\$ 			ł	1
1 206.65	212.17	Mudstone Fault Zone			Í	į		1	[
		Black, broken, gouge				ļ	1	1	I I	ł	1	1	1
		Badly broken core with fault gouge and 5% sand. No				1	-			-		1	1 1
l		significant veining.			ļ					ł		ł	ĺ
1212 17	227.23	Bowser Interbedded Mud/Silt	1		i	1	Ì	Ì	ļ	Ì	Ì		l
1010111		Grav. laminated, graded					ļ	!			ļ		1
		bedding 52°			1			l .	1	ļ	+		1
4		Frs≤6/m :Vns =1/m	1		1		1				-	1	1
; {		0 3% gz veining - microveins		ļ		1		ļ		1			
1		Poorly bedded siltstone mixed with laminated mudstone.	1	ŧ		1	ļ		ļ	ļ	-		1
i		Siltstone forms 1-3m long intervals.	ļ					1		1		1	ł
i				1					1		Ì	i	Ì
227.23	229.02	Mudstone Fault Zone	ł	1	1		1	i	i	í	i	Í.	1
		Dark gray, broken, gouge	1	1	i		i	i	i	i	Ì	Í	1
		Broken siltstone and 10-15% fault gouge.		1	i	i	i	į	į	1	Ì		ţ
229.02	246.75	Bowser Conglomerate	1				ļ	1	ļ	1		 	
1		Fine-coarse grained, gray, massive, heterolithic				1		1	i	i	1	i	i
1		bedding 45°					1		ł		i	i	i
		Fra=5/m :Vns =10/m					1	1	1	1	i	i	i
1		1.5% qz veining - macroveins					1	í	i	1	i	1	i
		Matrix supported, unbedded conglomerate. Clasts are		1			1	i -	i	i	Í	i	Í
1		typically 0.5-1 cm in dia., comprise 20-40% of the	l	1	1	ł	1	i	i	i	i	i	i
		rock and are well rounded.	1	1				1	i	ĺ		ĺ	
1		Clasts: 55% mudstone; 40% qtz; 3% beige fine grained	i	İ	ļ.	1	ļ	ļ	1				
i		volcanic fragments.	i		1		1				ļ	ļ	
1				1		1]	Ì	i		Ì
246.75	255.26	Bowser Interbedged Mud/Sill	ł	i	í	i	i	İ	1	1	1	1	
1		Gray, laminated, graded	i i	1	i	í	i	1	1 I	ł	ļ	1	1
1		bedding 39"		1	ì	i	i	i	1			1	1
1		Frs=2/m :Vns =1/m	l I			i	i	İ	i	1			1
!		0.3% gz veining - microveins	1	1	i	i	i	i	i i	Ì	1	1	1
1		Same as BSIB above. Sillstone mud changes on the	i i	i	i	i	i	1	1	1			
1		0.50-1 metre scale.	i.	1		1		i	1	1	1	1	. I

HOLE: C001083

PAGE 3 of 13

FROM	то	DESCRIPTION	Sample	Interval	Width .	Au gpt	Ag gpt	Pb ł	Zn ¥	Cu %	As 1	Hỹ ppm	SD %
255.26	257.97	Bowser Conglomerate Fine-coarse grained, dark gray, massive, heterolithic Same as above but slightly more clasts; 50-60% clasts so weakly clast supported.			1 								
 257,97 	276.58	Mudstone Fault Zone Broken, gouge	1 					, 	 	1 	 		
 276.58 	279.77	Bowser Sandstone Fine-coarse grained, gray, massive Frs=10/m :Vns =2/m Unbedded sandstone.								 			
 279.77 	281.61	Mudstone Fault Zone Dark black, broken, gouge Broken zone of core with only 1 cm rock chips preserved.											
 281.61 	300.40	Bowser Sandstone Fine-medium grained, gray, massive bedding 40° Frs=5/m BSSS same as above. Bedding is absent within sandstone. Bedding observed within 5-10 cm thick mudstone beds that comprise 0.5% of the rock.											
İ		290.52~294.00: Badly broken zone.		1	1	ļ			ļ		1	9]
300.40 	307.95	Mudstone Fault Zone Dark gray, broken, gouge 30-40% gouge, very badly broken core. Rock was originally 50% sandstone, 40% mudstone, and 10% conglomerate.						 			 	L 	
307.95 	332.99	Bowser Sandstone Fine-medium grained, gray, massive bedding 41° Prs=3/m :Vns =8/m 0.4% qz veining - microveins No internal bedding. Mudstone horizons appear to take up the strain and are spatially associated with the deformation zones.											
		313.10-314.64; 322.11-322.78: Badly broken and gouged.		1	i				i	i I	i I	i	1
 332,99	357.53	Bowser Conglomerate				Ì		į	İ	ļ	İ	Ì	

HOLE: C001083

PAGE 4 of 13

FROM	TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn %	Cu ¥	As %	Hg ppm	sb %
		Fine-Coarse grained, gray, graded, bedded bedding 35° Well rounded gtz and mudstone clasts averaging 0.5-1			 		 		 	 	1 		
		cm in size and comprising 70-90% of the rock. Clasts occur within a sandstone matrix.							 		1		
		10-40cm thick mudstone beds occur randomly thr'out BDCG and are well laminated. These beds typically are deformed to broken core +/- gouge.											
		at 344 the conglomerate fines to 0.3-0.5 cm size clasts, mixed with sandstone and mudstone.							l				
		378.79-340.63: Broken and gouged.			ļ					1			
(357.53	359.28	Fault Gouge Dark gray, gouge, broken Gouge zone within BDCG. 80% of interval is gouge, rest is broken core.											
 359.28 	368.34	Bowser Conglomerate Fine-coarse grained, gray, bedded, graded Frs=15/m				1 	• • •			 			
1		Mixture of BDCG and sandstone, same as lower portion of cong. above.							 	1	 		i I
• 1 		10-20 cm thick gouge zones comrise 3-5% of interval.				 	1		5] 	 			
Ì		This entire zone is moderately broken.				1	 		l l	1	; [i i	
368.34 	373.90	Mudstone Fault Zone Dark gray, broken, gouge Badly broken and 10% gouge. Mostly BDCG as the original protolith.							 				
 373.90 	390.02	Bowser Conglomerate Fine-Coarse grained, gray, heterolithic, graded Highly variable unit that consists of 60-70% conglomerate with 1-2 m thick BMLM, BSIB, and BSSS.])] 		 				
		BDCG: Clasts are 0.3-0.6 cm in dia, 50/50% mudstone and qtz with trace andesite and emerald green fragments. Clasts comprise 80% of rock.			/ 	/ 							
1 1 1		Numerous examples of grading thr'out,			 	1 	1			4 			
390.0z	396.49	Mudstone Fault Zone					ļ		• 				

HOLE: C001083

PAGE 5 of 13

FROM	TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	₽b %	2n ¥	Cu %	As ¥	Hg ppm	Sb %
1		Fine-coarse grained, gray, broken, gouge					• 		ĺ			1	İ
		FIS=15/m lvns ±5/m			1						1	ł	i
		18 gz-carb veining - macroveins			1	i t		i	l	1	i	i	[
1		Fault within congromerace, 10-154 rault gouge.			1	1		Ì		1	i İ		1
396.49	483.26	Bowser Conglomerate				i	Ì	1	ł		Ì		į
i		Fine-coarse grained, gray, heterolithic, graded			1	ł	1	1		Ì	1		
Ì		bedding 31°:bedding 47°	1 1			1		ļ			ļ	ļ	
1		Clasts coarsen to 1-2.5 cm., are well rounded and	JJ		ļ	J	J	}		!	!		ļ
		comprise 70-80% of the rock. Mudstone to sandstone					ļ		ļ	ļ			
1		forms 1-2 m long sections. Interval is 65% cong., 25%						ļ		ļ			
ļ		sand, and remainder mud.									1	1	1
		471.14-478.11: 10 frac and 20 gtz veins/m.								1			
1 1483.26	487.31	Bowser Laminated Mudstone			ł	í	i	í	í	j	í	í	Í
1		Fine-coarse grained, gray, laminated, graded	i i		i	İ	i	i	i	į –		İ	1
i		bedding 42°	i i		i	i	i i	İ	Ì	1	1	1	1
i		BMLM with 5% slst defining bedding.	ii		i	i	1	Ì	Ì	Ì	ļ	1	
1								ļ	1	ļ	1	ļ	!
487.31	491.82	Bowser Conglomerate			1	ļ	1	ļ	1	ļ	ļ	ł	!
1		Fine-coarse grained, gray, heterolithic, graded				ļ	ļ		!		l	ļ	1
		BDCG, same as above.									1		1
 491.82	551 57	Bowger Interhedded Mud/Silt				1			l İ	1	1	1	
1424.01	331.37	Fine-coarse grained gray graded laminated	i i			1	i	i	i	i	i	ì	i
ł		hedding 42°:bedding 38°			i	i	1	i	i	i	İ	į	Ì
i		Siltstone +/- sandstone is forming 10 cm to 1 m long	i i		i	í	i	Ì	ì	1	i i	i	Ì
i		intervals and comprises 40-50% of the core. Sist beds	i i		ļ	i	Ì	i	i	ì	Ì	İ	ĺ
i		average 10 cm thick	i i		i		i	i	i	í	i	i	Ì
İ			i i		i	i	i	ì	i	i	İ	Ì	Ì
Í			- E - É			1	1		1		ļ		
551.57	875.78	Bowser Laminated Mudstone	1 ([ļ	[(!	[ļ	ļ	1
		Black, bedded, graded				1	1	ļ	1	l	ļ	ļ	
]		bedding 40°:bedding 60°			ļ	ļ	1			1	1		
		Frs≖3/m ;Vns =1/m				!		ļ	1	!	1	ļ	
ļ		1-3 cm thick siltstone horizons comprising 20-30% of	!!!				1					ļ	
		the core.			l í		l í	1	!	{ (ł	4 (1 1
1		605.94-607.35m: Broken core - 25 fract/m			ì	1		Ì	Ì		ĺ	ĺ	ĺ
i		638.89-640.08m; Broken core - 20 fract/m	i i		i	í	i	İ	1	i	1	1	1
i		654 19-656.23m; Broken core plus minor gouge ~ 20	i i		í	i	i	Ĩ	1	İ	İ	1	
i		fract/m	i i		İ	i	1	İ	1	İ	1	Ì	
i		658.15-659.29m: Broken core - 15 fract/m	i i		i	İ	İ	1	İ	1	1	1	
i		758.95-778.50m; Broken core with trace gouge ~ 25	i i		i	i	İ	Í	Í	i	1	Í	
i		fract/m	i i		1	Ì	i		İ	1		1	
İ		811,94-929.76m; Broken with trace gouged sections. 8	i i		Ì	Ì	İ	1	l	l	1	1	
÷					1	1	i	1	,	•	1	1	1

HOLE: C001083

PAGE 6 of 13

FROM TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn 🕏	Cu %	As %	Hg ppm	Sb %
	qtz/m and 10 frac/m.				ł			i	Ì	Ì	į į	
	839.50-841.61m: 20 frac/m and 3-4% gouge.			ł	1]		ļ	ļ	ļ		
	843.50-847.53m; Broken core with 12 frac/m.			1	1	ļ				1		
				1			1	1	1	1		
	868.41-875.78: This lowermost zone is flooded with gtz				ł	1	1	1		1		}
	veins; app. 30/m. Core is broken into 5-10 cm long			1	1	1	 	1	1	l		
	peices but overall, the transition zone is unfaulted					Į.	1	1	1			
	with only trace gouge.			}	}	1	ì	}	1	;	j .	1
	Bedding core angles:			 	 			• 		 	1	
	552.00m: 39 degrees	1		į –		1	ļ	ļ		[
	655.18m; 40 degrees				1	1		ł	!	1		
[584.99m: 38 degrees				1	1	1	1		1		
1	612.34m; 40 degrees	ł l		1	ļ	1	[1	1
1	630.14m: 34 degrees				ł	1		1	-	1	1	l
	669.25m: 36 degrees	1 1		i	ſ	ſ	ſ	ſ	(í t	1	ſ
	691.52m: 40 degrees				1	1	1	1		;		
	745.79m: 40 degrees				1	l t	 		1			
	767.86m: 50 degrees				1	1 	1		1			
	795.71m: 60 degrees					1	1	1	ł	i		
	804.46m: 39 degrees						l	; 1	i i	i	1	i
1	Aly. Sym: 29 degrees			ł	1	1	1	i İ	i	i	1	İ
ł	863.31m; JU degrees	- i - i		ł	Ì	i	i	i	i	i	i :	ł
 875.78 - 878.00	Mudstone Fault Zone	i i		1	j	ĺ	i	i	i	1	i	
}	Whiteish-black, broken, veined	i i		i	Í	Ì	ĺ	1	1	1		
, I	Frs≠20/m :Vns =30/m	i i		i	1	i	1	Ì	1		1	
	20% gz veining - macroveins			i	Ì	1]	1				
l I	Broken mudstone with qtz veins flooding the interval.	Í		1	1					ł		
ľ	Almost no gouge within this transition zone.	i i		Ì	1				l]	1	
	• •			1		ļ		1				
1	Trace pyrite beds occur within the rock.	[[!	!	1	ļ	ļ	ļ	ł	{	
				-			l J	1	1	1		
878.00 912.27	NW Laminated Mudscone	1			l l	1	1	1	1	l l		
1	bidding COR			1		i i	1	1	i	i	i	
5	Erel/m .Vog -1/m			1	4 	i	i	ì	i	,	i	ļ
1	$r_1 = -1/m$; $r_1 = -1/m$ 0.1% az veining - microveins			i	i	i	i	í	i	i	i	Ì
1	2% pyrite - laminations			i	i	i	í	i	i	İ	İ	Í
í	Pyrite laminated siliceous mudstone. Pyrite beds are	i i		i	i	i	1	i	ł	1	1	}
İ	0.2-1 cm thick and vary from 0.5-3% of interval.	ii		İ	Ì	l	ļ	ļ	1	ļ		l
l					1	1		ļ	ļ	1		
ł	878.89-880.23; Qtz flooding associated with the					1	1	1	1	1		
Į	Bowser-Salmon River contact.						[1	1	1		1
ł	and co has so the Stealed and while to waith the				1	ł	1	1	-	1		1
]	883.62-885.76: Grz riooded and akty to modity proken.	l		1	1	1	1	1	1	4	1	1 I

HOLE: C001083

HOMESTAKE CANADA - Eskay Creek Project

PAGE 7 of 13

FROM	TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb t	Zn %	Cu %	As t	Ng ppm	Sb %
 912.27 	962.24	HW Fillowed Andesite Flow Grayish-green, flow-brecciated, amygdaloidal Frs=2/m :Vns =3/m 0.3% carbonate veining - macroveins 0.2% pyrrhotite - interstitial Pillows are typically 20-100 cm in size (average: 20-30cm) and have fine grd amygdaloidal selvages. Mudstone horizons occur every 1-3 m and mark interflow regions. These mudstone sections are only 20-40 cm thick and have broken to ameoboid andesite.											
		924.14-931.12: Brecciated andesite consisting of hyalclasite and flow brecciated fragments.				(ĺ					
		Min: Trace pyrr. occurs at the pillow contacts.						1	1	1			
962.24	980.B4	HW Andesite Flow Fine-coarse grained, grayish-green, flow-brecciated Frs=2/m :Vns ~3/m 0.4% carbonate veining - macroveins Medium to coarse grained andesite flows with 20-40cm thick intervening flow brecciated intervals.				/ 							
 		The brecciated sections occur within a mudstone to andesite hyaloclastite matrix.				 					• 		
1		70% massive andesite - 30% broken and brecciated andesite.											
 980.84 	999.44	HW Pillowed Andesite Flow Fine-coarse grained, dark green, flow-brecciated, pillowed Frs=1/m :Vns =2/m 0.2% carbonate veining - macroveins 0.2% pyrrhotite - disseminated 10-20 cm sized pillows with brecciated andesite and massive mudstone. Interval consists of 50-60% of pillows, with the rest a mixture of broken andesite and massive mudstone.											
		Brecciated andesite is typically angular and 1-5 cm sized fragments.											
		Min: Trace pyrr needles occurs within the mudstone.									1		
999,44	1108.18) HW Andesite Breccia Fine-coarse grained, grayish-green, brecciated, fragmental					ļ						

HOLE: C001083

 $\frac{\partial r}{\partial t} = \frac{\partial r}{\partial t} +$

PAGE 8 of 13

FROM TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb ¥	Zn %	Cu ł	As %	Hg ppm	SD %
 	Frs=1/m :Vns =2/m			1	1			1	ļ			ĺ
	0.2% carbonate veining - macroveins						ļ	ļ		ļ		ļ
	0.5% pyrrhotite - matrix			!	1	ļ	ļ		!	1		1
	Poorly sorted andesite breccia. Fragments are	1			ļ	ļ		1	!	1		
	angular, are 0.3-8 cm in size but average 1-3cm,	1 1		1	1	-	-					1
	comprise 20-70% of interval but average 55-65% and			ļ		1	-		-	1	1	i i
	exhibit no grading thr'out interval. They occur					-	1	1	1		1	1
1	within a fine calcute to andesitic ash to mudsione			{		{	{	1	1	í	1	1
1	matrix. Fragments are typically fine grained, some			L i	1	ł	ł		ł	1 1	1	1
1	nave amygits on the margins and rate clasts have a				1	1	ł	i i	1		1	i
	porphylicic texture. Rare iv-isch dia. pittows occur					1	ł		i	í		i
1	fandonity chibughout the breccia				1	i	i	Ì	i	i	i	i
1	Breccia is essentially monolithic, very rare mudstone	i i		i	i	i	i	i	i	i	i	Ì
	clasts occur randomly.	i i		i	i	i	i	j.	Í	Ì	1	
	.	i i		i	ĺ	1	Ì	Ì	1	Ì	1	
Ì	1078-1108.07; Fillows become more abundent,	i i		l l	Ì	1	1	1		1	1	
1	comprising 30-40% of the core. Pillows are typicaly	1				1	ļ.	1		1		1
Ì	broken and some have a jigsaw piece texture.			1	1	1	1	1	ļ	ļ	1	ļ
				ļ	ļ		ļ		1			
1	Min: Trace pyrr occurs within the matrix.								1	t I	1	I 1
1108.18 1123	.03 HW Pillowed Andesite Flow	i i		i	i.	i	i	i	i	İ	į –	I
1	Fine-coarse grained, grayish-green, auto-brecciated, fragmental					1			1	ļ		ļ
	Frs=2/m :Vns =3/m					l	1			l	1	
	0.4% carbonate veining - macroveins			ļ		ļ	1	1	-			
	Pillowed andesite with pillow breccia. 60-70% of					!	!	ļ	!	ļ	ļ	1
	this interval consists of cohesive to wk'ly broken							1				1
	pillows that have amygdaloidal selvages. Pillows are											1
{	typically 10-30 cm in dia. Jigsaw-piece puzzle			1	1	{	{	-		1	1	ł F
1	texture within some of the pillows that grades into an				1	L L	-		-			1
	andesite precia with 0.5-4 cm sized angular						-		l l	Ì	1	i
1	IIaguetica.					i	i		i	i	i	Ì
1	No alt'n or min'n.	i i		i		i	i	i	i	i	i	i
1		i í		i	Í	i	i	i	i	İ	i	Í
1123.03 1147	.70 HW Andesite Breccia	i i		1	İ	İ	l	i		1	1	1
	Fine-coarse grained, grayish-green, brecciated, fragmental	i i		İ	i	1 I	Ì	1	İ]		!
1	Same as HABR at 999.44.	1 1		ļ	1		1				1	
1	No mineralization or alteration.			1					1		Ì	
1 1147.70 1158	.78 HW Pillowed Andesite Flow				1	1		1	1	1		1
1	Fine-coarse grained, gravish-green, auto-brecciated, fragmental	i i		i	İ	į.	1	1	1	1	1	
	Same rock that was intersected starting at 1108.18.	į į		į		ļ.	Ì	1		ļ	1	
	Pillows are 20-60 cm in dia and comprise 70% of the									1		I
-	Freeze are by or an are any demander of the			1	ì	i		1	i	i	i	1

HOLE: C001083

the second second second second second second second second second second second second second second second se

PAGE 9 of 13

۲

FROM	TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb 5	[2n %	Cu ¥	As t	Hg ppm	≇ α2]
		interval.	- 		+ 		† 	† 	 				[
		Contact with overlying brecciated andesite is gradational.			 	 [1	1 1	 	 	1 			
1158.78 	3 12 10.50) HW Andesite Breccia Fine-coarse grained, grayish-green, brecciated, fragmental Frs=1/m :Vns =3/m 0.5% carbonate veining - macroveins Same as the andesite breccia intersected at 999.44.				- - - - - - -							
		Clasts occur with a calcite rich, hyaloclastite matrix, are angular, and are 0.3-6 cm in dia.							 			 	
		No mineralization or alteration.			1	 			1 []		с 	1 [, (
1210.50) 1237.31	 HW Andesite Flow Fine-coarse grained, grayish-green, flow-brecciated, hyaloclastic Frs=1/m :Vns =4/m 0.4t carbonate veining - macroveins Mainly massive andesitic flows with pillows and interflow hyaloclastite. The massive flows are typically 20-70 cm thick and are interlayered with pillows with similar dia that have amyg'al selvages. These massive andesite sections 											
		have 10-20 cm thick preculated andesite mixed with hyaloclastite separeting individual flows and pillows.			L 1	1	1	i 1 1		 	 		ļ
ļ		No mineralization and no alteration.						}]	1	l l	1		
1237.31 	1251.83	 HW Andesite Breccia Fine-coarse grained, grayish-green, hyaloclastic, fragmental Frs=2/m :Vns =2/m 0.2% pyrrhotite - clasts Very similar to overlying brecciated andesite units but the angular clasts are typically smaller, averaging 1-2.5 cm with abundent sections of hyaloclastite. 											
 		5-10% of the interval consists of 5-10 cm dia pillows with amygdaloidal selvages.			 		 	1 	 	 			
ļ		No grading or sorting evident within this interval.			1	1] 1	1	 		 	1		1
		Pyrr occurs in trace amounts within some of the hyaloclastite breccia material.				 		: 		 	! 		

HOLE: C001083

PAGE 10 of 13

FROM	TÔ	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	ļ₽b%	Zn t	Cu ¥	Aa %	Hg ppm	Sb ∜
1251.83	1260.7	3 HW Andesite Flow Grayish-green, flow-brecciated, amygdaloidal Frs=1/m :Vns =4/m 0.4% carbonate veining - macroveins Massive andesite with minor flow breccia separating the individual flows. Brecciated sections extend for no more than 20-40 cm. 6-7 individual flows can be observed within the interval.	120077	 1259.13-1260.73 	 1.60 			0.01 	0.01	0.01 	 0.01 	3	0.01
 1260.73 	1262.6	4 HW Laminated Mudstone Black, laminated bedding 50° Frs=2/m :Vns =2/m 0.2% carbonate veining - macroveins Poorly laminated siliceous mudstone. Bedding defined by 4-6, 0.5-1 cm thick pyrite beds. Pyrite also occurs as sub-mm anhedral xtls, diss. thr'out the mudstone.	 120078 120079 	 1260.73-1261.61 1261.61-1262.64 	 0.88 1.03 			0.01 0.01		0.01 0.01	0.01 0.01 	 	0,01 0.01
 1262.64 	1270.9	3 HW Andesite Breccia Grayish-green, fragmental Angular to sub-rounded andesite clasts within a mudstone to calcite rich matrix. Clasts are typically 1-3cm dia but range up to 6 cm. Percentage of clasts also variable, ranges from 30% to 90% of the rock.	 120080 120081 120082 120083 	/ 1262.64-1264.00 1266.75-1268.14 1268.14-1269.50 1269.50-1270.93 	 1.36 1.39 1.36 1.43 	0.1 		0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	3 3 3 3	0.01 0.01 0.01 0.01
 1270.93 	1271.9	5 HW Laminated Mudstone Black, laminated bedding 50° 0.8% pyrite - laminations Siliceous mudstone with rare fine grained pyrite bands defining bedding.	 1200B4 	 1270.93-1271.95 	 1.02 		1	0.01 	0,06 	 0.01 	 	3	0.01
1271.95 	1309.6	8 HW Andesite Breccia Fine-coarse grained, green, fragmental, amygdaloidal Brecciated andesite, similar to above units. Interval also contains thin flows and fragments with pipe vesicles that are now filled with chlorite and calcite (pipe amygdules). Pipe vesicles only observed in upper 6 m of interval. Clasts are all aphanitic, angular, comprise 70-90% of rock and occur within a calcite-rich, andesitic mud matrix.	120085	1271.95-1273.51	1.56 				0.01		0.01	3	0,01

HOLE: C001083

PAGE 11 of 13

FROM	то	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb ¥	2n ł	Cu ¥	As 1	нд ррт	50 %
1309.68	1318.20	HW Andesite Flow	1			Ì							
		Green, massive	!				1 · · ·				ĺ	i	
		Massive to weakly brecciated andesite flow with			1		1						
		calcite-filled amygdules.	ļ	1	ļ							Ì	i
		Brecciated sections between flows still proves that it			1	ļ	į			1			1
		is a flow and not a dyke.	1	1	1	1			1			ł	1
1318.20	1357.82	HW Andesite Breccia		İ	İ	i.	i					ļ	
		Fine-coarse grained, green, fragmental, amygdaloidal	1	l .			1			1		1	1
		Frs=1/m :Vns =1/m]	ļ	1	1		1		1	1	1
		0.1% carbonate veining - microveins					ļ			1	l I	1	1
Í		Amygdule-rich andesite fragments within a fine			1			1	l I	í 1	1		1
ļ		andesitic ash matrix.		1			1	 	1	1	1		1
		10-15% of interval consists of 10-30cm wide sections	l		i i		i	i	į	Ì	1	ĺ	ļ
1		of flow or pillowed flow with amygdules concentrated	1	1	1	1			ļ	ļ			1
		at the margins of the flows. All amygdules are	1		1	1		i		Į.			
		typically filled with chlorite.	ļ	1		1		1	L 1	1 1	1	 	1
ļ		Given density is extremely variable, changing from	i I		i		l	Ì	1	i	ł	ł	į
1		in the summer loop with sub-mu thick black scaus.	i	i	i	Ì	1		1		1	1	1
1		soundering around the fragments	i	i	i	Í.	Ì					1	1
1		Weathering Broand the radiance.	j		1	1	ļ		ļ		 1	1	
			120086	 1360.00-1361.45	1.45		1	0.01	 0.D1	0.01	0,01	ј э	0.01
1357.82	1361.49	5 HW ANDERITE FLOW	1		1	i	i	i	i	1	1		
		Fine-coarse grained, daik khaki, amyydaloidai, bicceided			ì	i	i	i	Ì	1			
ļ		FTS=2/m :VNB =3/m	ł		i	i	i	İ	Ì	Í	1		1
1		0.2% carbonate veining - microveins	ł		i	i	i	i	i	Ì		1	
ļ		Variable unit consisting of a single pillow with	i	1	i	i	i	i	i	ĺ	Ì	1	1
ļ		ameobold pillow precela above, massive fibes of	ł	i	i	i	i	Ì	i	1		1	1
l		andesite and fragments of andesite.		1	i	i	Í	i	Ì		1	ļ	i -
l		The fragmented andesite comprises 10% of interval,		1	ļ	ļ			1		ł	i I	
İ		clasts are 0.5–2 cm in size and occur within a	1		1		ł		-		1	-	ł
į		calcified andesitic ash matrix.		1		1				1		1	
		Fillow has amygdules on the fine grained margins.			Ì				İ			Ì	
 1361 44	5 1362 3	5 Contact Mud Matrix Rhy Breccia	120087	/ 1361.45-1361.80	0.35	i	j 1	0.01	0.01	0.01	0.01	3	0.0
1-201.93	1304.3	Fine-coarse grained, blackish-vellow, fragmental	120088	1361.80-1362.35	0.55	1	1	0,01	0.01	0.01	0.01	. 3	0.0
1		cleavere foliation 60°	i	Ì	1	1	1	ł		l I			1
1		$r_{r_{2}}$. Une =70/m	i	i	1	1	1	1	1	ļ	1	1	1
1		216-2/m (VH3 -20/m 23 oz veining - macroveing	i	i	1	l	1		1	1	ł	1	1
		Two separate sections of transitional rock.	į		1	1			1		!		
ļ		and it estably the two half is dominated by hlast		1		1	l I						i
1		1361,45-1361.80: This top hair is dominated by black		1	1		i	i .	i	1	1	1	1 .

HOLE: C001083

HOMESTAKE CANADA - Eskay Creek Project

PAGE 12 of 13

FROM TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn t	- Cu %	As t	Hg ppm	Sb 🕯
	to dark grey rhyolitic siltstone-sandstone fragments that have been networked by a stockwork of qtz veins. Unknown if the stockworking resulted in the brecciated texture. Within this interval there is also a 5 cm wide band of brecciated andesite flow. Near base there is also rare angular rhyolite fragments within the mudetone/cilterine matrix			 								
• •	The upper contact with the overlying flow is sharp.						1					
	1361.80-1362.35: This lower unit is greenish yellow in colour and consist of flattened rhyolite fragments within a medium grey to black rhyolite ash matrix. Fragments appear to be angular to sub-rounded (difficult to tell due to flattening), ranged from 0.5-5 cm in size, are poorly sorted, and comprise 70-80% of the rock. 0.5-1 cm thick qtz veins occur and were there pre-fabric because they are parallel to foliation. Also a set of spidery veinlets that are 0.5-1 mm thick and cross-cut foliation and fragments.											
	Alt: Weak sericite/chlorite, yellowish-green 0.2-0.4 cm thick folia between the fragments. Yellowish colouration could also be caused by a subtle sericite overprint.											
	Min: No mineralization.			1							 	
 1362.35 1371.30 	Autobrecciated Rhyolite Flow Greenish-gray, auto-brecciated cleavage, foliation 45* Frs=2/m :Vns -3/m 1% chlorite alteration - vein 0.1% gz veining - microveins 0.1% pyrite - clasts Massive to autobrecciated rhyolite. Very subtle layering (a single parting, spaced every 10-20cm) that defines the cleavage. These partings occur rarely where rhyolite becomes weakly brecciated and there is black, rhyolite ash/mud forming sub-mm thick partings.	120089 120090 120091 120092 120093 120094 	1362.35-1364.00 1364.00-1365.50 1365.50-1366.50 1366.50-1368.00 1368.00-1369.50 1369.50-1371.30	 1.65 1.50 1.00 1.50 1.50 1.80 1.80 1.80	 		0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	C.C1 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01		0.01 0.01 0.01 0.01 0.01 0.01
 	Green colouration is strongest surrounding the fine black partings that separate the weakly autobrecciated rhyolite. The green staining is very weak chlorite that forms subtle halos around the black partings.											

HOLE: C001083

the the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of term o

HOMESTAKE CANADA - Eskay Creek Project

•

PAGE 13 of 13

FROM TO	DESCRIPTION	Sample	Interval	Width	Au gpt	Ag gpt	Pb %	Zn %	Cu 🕯	As t	Hg ppm	Sb %
1					1			1		1		
	Alt: Absent.			ļ] 	1]] E	1	ļ	 	ļ
i	Min: Rare, isolated anhedral pyrite clots scattered	i i		l l	1	1	Ì	1	1			1
1	thr'out the rock. Present in very (1) trace amounts.	1 1		1			1		1	ļ		
(eoh)		!!		ļ	!	ł	ļ		1			

A 1

11/02/00

F	lole: CO01	E80.	GEOTECHI	NICAL DATA		Page:					
	From	то	Measured Width	Recovery	RQD	Hardness					
1	0.00	0.00	0.00	0	0						

P - 1

~

×.

·

. .

.

.

.

÷ .

-

.

.

•

.

•

۲ ۲

.

.

Appendix 4:

....

.

.

.

,

.....

.

r -

•

Assay Certificates

Ø			•
1 Lister	Nig .	1 . 11. 11. 11. 11. 11. 11. 11. 11. 11.	

N 4

-

.

r

۰

CERTIFICATE OF ANALYSIS iPL 00H0917

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 [091716:47:10:00081500

1

1

1

.

INTERNATIONAL PLASMA LABORATORY LTD.			~ I		10 0000	TAX (004) 015-1050 F001714.47.10.000915001
Homestake Canada Inc		110	Sample	S Out: Aug 11, 2000 In: A	AUG IV, 2000	
Project : 90702 Eskay Creek		AMOUNT	TYDE			PULP REJECT
Shipper : Percy Pacor	000E	AMOUNI 110	Coro	fruch colit & pulverize to -150 Me	sh	12M/Dis 03M/Dis
Shipment: PO#:	0221	110	core	Grush, spirie & parverize to iso ne	NS=No Sample	Rep=Replicate M=Month Dis=Discard
Analysis:	_Ana	lvtical	Summar	·v		
Au/Ag(g/mi) As So Cu ro Zii ng(ppii)	# Code	Method	Units	Description	Element	Limit Limit
Comment:						Low High
01	1 0368	FA/AAS	g/mt	Au (FA/AAS 30g) g/mt	Gold	0.01 9999.00
02	2 0364	FAGrav	g/mt	Au FA/Grav in g/mt	Gold	0.07 9999.00
03	3 0354	FAGrav	g/mt	Ag FA/Grav in g/mt	Silver	
Document Distribution	4 0113	AsyMuA	X	CU Assay by AA/ICP in %	Load	0.01 100.00
1 Homestake Canada Inc EN RI CC IN FX 05	5 0118	Asymua	4	PD ASSAY DY AAVIER IN &	Leau	0.01 200.00
PO Box 11115 1100-1055 Georgia St. 1 2 1 2 1	6 0140	AcyMuA	¥	7n Assav by AA/FCP in X	Zinc	0.01 100.00
	710103	AsvMuA	î	As Assay by AA/ICP in X	Arsenic	0.01 100.00
Canada IO	8 0102	AsvMuA	ž	Sb Assay by AA/ICP in X	Antimony	0.01 100.00
Att Ann Rippon Ph:604/684-2345 0	9 0732	AsyMuA	ppm	Hg assay by ICP in ppm	Mercury	3 99999
Fx:604/684-9831			• •	• • • •		
2 Homestake Canada Inc CAMP KM 45 EN RT CC IN FX						
Box 3908 1 2 0 0 1						
	1					
Canada						
Att: Percy Pacor (Eskay Creek) Ph:1-600/700-4029						
Fx:1-600/700-9225						
Em:ppacor@homestake.com						
	1					
	1					
	1					
						<u> </u>
						(`
ENERGIA A DE-De-energy (Maile Contraction For Earlier)	Vec (h=N	a) Total	e l=Conv	2≖Invoice 0=3½ Disk		
DL=Download 3D=31/2 Disk EM=E-Mail BT=BBS Type BL=BBS(1=)	Yes 0=No	(D=C0)	3432216			1×41/

* Our liability is limited solely to the analytical cost of these analyses.

BC Certified Assayer: David Chiu

1

i P						Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898									
ient : Homestake Ca oject: 90702 Eskay	anada Inc Creek	11	0 Samp 110=Core	oles					[091	.716:47:10:00081500	Out: Aug 11] In : Aug 10	. 2000 . 2000	Page Section	3 of 1 of	
ample Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Çu X	Pb X	Zn X	As X	Sb X	Hg ppm		<u></u>			
					-										
						-									
14747	Core	0.36		<0.3	<0.01	<0.01	0.01	0.01	0.02	36					
inimum Detection		0.01 9999.00	0.07	0.3	0.01	0.01	0.01	0.01 100.00	0.01 100.00	3 99999 Asymua	<u> </u>				

Ô	
Ĭ	
	at in

CERTIFICATE OF ANALYSIS iPL 00H0986

1 [] 2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

,

۲

٦

۲

INTERNATIONAL PLASMA LABORATORY LTD	63	Samples	Aut - Aug 24 2000 In: Aug 3	8 2000	[098615:18:47:00082500]
Homestake Canada Inc	04	Samples			
Project : 90/02 Eskay Crk. Ship #10	CODE AMOUNT	TYPE PF	REPARATION DESCRIPTION		PULP REJECT
Shipper: #16 PO#:	B221 62	Core Ci	rush, split & pulverize to -150 Mesh.	NS-No Sample	Repercenticate M=Month Dis=Discard
Analysis:	Analytian	Summers			
Au/Ag(g/mt) As Sb Cu Pb Zn Hg(ppm)	Hany Code Method	Units Da	escription	Element	Limit Limit
Comment		011100	· · · · · · · · · · · · · · · · ·		
Comment.	01 0368 FA/AAS	g/mt A	u (FA/AAS 30g) g/mt	Gold	0.01 9999.00
	02 0364 FAGrav	g/mt Al	u FA/Grav in g/mt a FA/Grav in g/mt	Silver	0.3 1000.0
Decument Distribution	0310354 FAGrav	9700 A	u Assay by AA/ICP in %	Copper	0.01 100.00
1 Homestake Canada Inc EN RT CC IN FX	05 0118 AsyMuA	* P	b Assay by AA/ICP in X	Lead	0.01 100.00
PO Box 11115 1100-1055 Georgia St. 1 2 1 2 1		N 7		Zinc	0.01 100.00
Vancouver DL 3D EM BT BL	06 0140 ASYMUA	, <u> </u>	s Assay by AA/ICP in #	Arsentc	0.01 100.00
B.C. V6E 3P3 U U U U U	0810102 AsyMuA	x S	b Assay by AA/ICP in ¥	Antimony	0.01 100.00
Att: Ann Rippon Ph:604/684-2345	09 0732 AsyMuA	. ррт Н	g assay by ICP in ppm	Mercury	3 33333
Fx:604/684-9831					
2 Homestake Canada Inc. CAMP KM 45 EN RT CC IN FX					
Box 3908 1 2 0 0 1	.				
Smithers DL 3D EM BT BL					
B.C. VUJ 2NU U U U U U U U U U U U U U U U U U U	'				
Att: Percy Pacor (Eskay Creek) Ph:1-600/700-4029					
Fx:1-600/700-9225					
Em: ppacorenomestake.com	a				
	11				
	1				
					<u> </u>
EN#Envelope # PT#Penort Style CC=Conies IN#Invoices Fx#Faxi	(1=Yes 0=No) Tot	als: 1=Copy 2=	Invoice 0=3½ Disk		Xatz.
DL=Download 3D=3% Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=0	03432216	BC Cartified A	scover: David Ch	in TSK

BC Certified Assayer: David Chiu_

2036 Communda Strees Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Eax - (604) 879-7898								IS		iBl									
1 of n 1 of	je stion	(004) 87946 Page Secti	2000 2000	Out: Aug 24. 2000 In : Aug 18, 2000			[098615:18:47:00082500]							les	2 Samp 62=Core	6	da Inc k. Ship #16	: Homestake Canad : 90702 Eskay Crk	lient oject
								Hg ppm	Sb ¥	As X	Zn X	Pb X	Cu X	Ag g/mt	Au g/mt	Au g/mt	Туре	Name	Sample
								<3	<0.01	0.01	Q.10	0.01	<0.01	3.7	_	0.09	Core		513849
													-	·					
												-							
	<u></u>							3 99999 АзуМиА	0.01 10.00 syMuA	0.01 00.00	0.01 00.00 1 symuA A	0.01 00.00	0.01 100.00	0.3 1000.0 FAGrav	0.07 999.00 FAGrav	0.01 9999.00 9 FA/AAS		Detection Detection	inimu aximu ethod

CERTIFICATE OF ANALYSIS iPL 00J1373

.

•

,

203 | mond Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Email ipl@direct.ca [137310:47:45:00102400 1

INTERNATIONAL PLASMA LABORATORY LTD.						Email ipl@direct.ca
Homestake Canada Inc		89	Sample	s Out: Oct 17, 2000 In: Oct 12	. 2000	[137310:47:45:00102400]
Project : 90702 Eskay Creek				· · · · · · · · · · · · · · · · · · ·		
Shipper : Percy Pacor	CODE	AMOUNT	TYPE	PREPARATION DESCRIPTION		
Shipment: PO#:	B221	89	Core	trush, split & pulverize to -150 Mesn.	NC-No Samala	Pon-Donligate MeMonth Diseand
Analysis:	Ano	lutical	Summar	·V	No-No Sampre	Repricate renontin Dis-Discard
Au/Ag(g/mt) As So Cu Po Zh Ag(ppm)		Method	Units	Description	Element	Limit Limit
Comment:	<i>nn</i> 00000	nç en oa	011100	beschiperon		Low High
Common.	01 0368	FA/AAS	g/mt	Au (FA/AAS 30g) g/mt	Gold	0.01 9999.00
	02 0364	FAGrav	g/mt	Au FA/Grav in g/mt	Gold	0.07 9999.00
	03 0354	FAGrav	g/mt	Ag FA/Grav in g/mt	Silver	0.3 1000.0
Document Distribution	04 0113	AsyMuA	X	Cu Assay by AA/ICP in X	Copper	
1 Homestake Canada Inc EN RI CC IN FX	02/0118	Asymua	*	PD Assay by AA/ICP in X	Lead	0.01 100.00
PU BOX IIII5 IIUU-1055 Georgia St. I 2 I 2 I Vanagunop	06 0140	AcuMuA	*	7n Accay by AA/ICD in Y	7inc	0 01 100 00
	07 0103	ΔενΜιτά	1 ¥	As Assav by AA/ICP in X	Arsenic	0.01 100.00
Canada	08 0102	AsvMuA	ž	Sb Assav by AA/ICP in X	Antimony	0.01 100.00
Att: Ann Rippon Ph:604/684-2345	09 0732	AsyMuA	DDM	Hg assay by ICP in ppm	Mercury	3 99999
Fx:604/684-9831			F F		•	
2 Homestake Canada Inc. CAMP KM 45 EN RI UL IN FX						
Smithars DI 3D FM RT RI						
B.C. V0.1 2N0 0 0 0 0						
Canada						
Att: Percy Pacor (Eskay Creek) Ph:1-600/700-4029						
Fx:1-600/700-9225						
Em:ppacor@homestake.com						
				· · ·		
					-	
						Ω
EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax()	I=Yes 0=N	o) Totals	: 1=Copy 2	2=Invoice 0=3½ Disk		X-t-2
DL=Download 3D=31/2 Disk EM=E-Mail BT=BBS Type BL=BBS(1	=Yes 0=No) ID=C03	3432216			1241/ -

* Our liability is limited solely to the analytical cost of these analyses.

BC Certified Assayer: David Chiu_

	ip					Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898								
Client : Homestake Canada Inc Project: 90702 Eskay Creek		ada Inc reek	8						37310:47:45:	:00102400]	Out: Oct 17, 2000 In : Oct 12, 2000	Page 2 of 3 Section 1 of 1		
Sample	Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Cu X	. Pb *	Zn X	As ¥	Sb ¥	Hg ppm			
	· · · · · · · · · · · · · · · · · · ·													
120077		Core Core	0.02 0.01		<0.3 0.8	<0.01 0.01	<0.01 <0.01	0.01 0.04	<0.01 0.01	<0.01 <0.01	- <3 <3			
120079 120080		Core Core	0.01 0.05		0.8 <0.3	0.01 <0.01	<0.01 <0.01	0.02 0.01	<0.01 <0.01	<0.01 <0.01	<3 <3			
120081 120082 120083		Core Core Core	0.02 0.01 <0.01		0.3 0.3 <0.3	0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.02 0.02 0.01	0.01 0.01 0.01	<0.01 <0.01 <0.01	<3 <3 <3			
120084 120085		Core Core	0.01 <0.01		0.6	0.01 <0.01	<0.01 <0.01	0.06	<0.01 <0.01	<0.01 <0.01	<3 <3			
120086 120087 120088		Core Core Core	<0.01 <0.01 <0.01		0.4 0.5 <0.3	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.01 0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<3 <3			
120089		Core Core	<0.01 <0.01		<0.3 <0.3	<0.01 <0.01	<0.01 <0.01	0.01	<0.01 <0.01	<0.01 <0.01	<3 <3			
120091		Core	0.01	_	<0.3	<0.01	<0.01	0.01	<0.01	<0.01	~3			
	Detection		0.01	0.07	0.2	0.01	0.01	0.01	0.01	0.01	· · · · · · · · · · · · · · · · · · ·			

WARDWATIONAL PLACEAGE LABORATORY LTD.

CERTIFICATE OF ANALYSIS iPL 00J1373

٠

1

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Email ipl@direct.ca Page 3 of .

Client : Homestake Canada Inc Project: 90702 Eskay Creek		8	9 Samp 89 - Core	oles					[13]	7310:47:4	5:00102400]	Out: Oct 17, 2000 In : Oct 12, 2000	Page Section	3 of 1 of	3 1
Sample Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Cu X	· Pb ች	Zn ¥	As X	Sb ¥	Hg ppm					
120093 120094	Core Core	<0.01 0.15		<0.3 <0.3	<0.01 <0.01	<0.01 <0.01	0.01 0.01	<0.01 <0.01	<0.01 <0.01	<3 <3					

 Minimum Detection
 0.01
 0.07
 0.3
 0.01
 0.01
 0.01
 0.01
 3

 Maximum Detection
 9999.00
 9999.00
 1000.0
 100.00
 100.00
 100.00
 100.00
 100.00
 100.00
 99999

 Mathematical Detection
 9999.00
 9999.00
 1000.0
 100.00
 100.00
 100.00
 99999

 Method
 FA/AAS
 FAGrav
 FASMUA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 AsyMuA
 As