JAN 1 9 2001
L.1.#
FILE MANICOLIVER B.C.

GEOPHYSICAL

ASSESSMENT REPORT

on the

WEDGE PROPERTY (Wedge, Wedge 1-8 claims)

Vernon Mining Division British Columbia

NTS:82L/5ELatitude:50°16'00"NLongitude:119°37'30"WOwner:K.L. DaughtryOperator:Discovery ConsultantsAuthor:W.R. Gilmour, P.Geo.Date:January 10, 2001

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

SUMMARY	Page 1
LOCATION and ACCESS	Page 2
PROPERTY	Page 3
GEOLOGY and MINERALIZATION	Page 4
GEOPHYSICAL SURVEY	Page 6
CONCLUSIONS	Page 8
REFERENCES	Page 10
STATEMENT OF COSTS	Page 11
STATEMENT OF QUALIFICATIONS	Page 12

LIST OF ILLUSTRATIONS

Figure 1	Location Map	Following Page 2
Figure 2	Claim Location Map	Following Page 3
Figure 3	Magnetometer and VLF - EM Survey, 1:5,000	Following Page 4
Figure 4	VLF – EM Profile, Line 1	Following Page 6
Figure 5	VLF – EM Profile, Line 2	Following Page 6
Figure 6	VLF – EM Profile, Line 3	Following Page 6
Figure 7	Magnetometer Profile, Line 1	Following Page 7
Figure 8	Magnetometer Profile, Line 2	Following Page 7
Figure 9	Magnetometer Profile, Line 3	Following Page 7

APPENDICES

Appendix 1	VLF – EM Survey Data
------------	----------------------

Appendix 2 Magnetometer Survey Data

SUMMARY

The Wedge property, registered in the name of K.L. Daughtry, consists of nine 2-post claim units located 25 km west of Vernon in south central British Columbia.

The property is underlain by the Jurassic Okanagan Batholith, which is overlain by and in fault contact with Eocene volcanic rocks.

The claims were staked in 1998 to cover an area of gold soil anomalies and gold-bearing quartz veins in granodiorite, discovered about 10 years previously.

This report describes the orientation geophysical survey that was carried out in September 2000, in order to evaluate the geophysical response of some air photo linears and of the main geological contact on the property. This report draws on previous reports on the property by Discovery Consultants.

LOCATION and ACCESS

The Wedge property is located 25 km west of Vernon in the Thompson Plateau of south central British Columbia (Figure 1). The claims are situated between Bouleau and Whiteman Creeks. The approximate centre of the property is 50°16' North Latitude and 119°37'30" West Longitude. The UTM coordinates are 312900 East and 5571000 North.

The property is accessible by well maintaining logging roads from Westside Road along Okanagan Lake. The property is reached via Whiteman Main for 8 km from Westside Road and then via Bouleau Main for 12 km. A recent logging road heads south for about 2 km from Bouleau Main to the northwest corner of the property.

Most of the property is located on the upland plateau between the steep valley sides of Whiteman and Bouleau Creeks. Elevations range from 1060 m above sea level on Bouleau Creek on the northeast, to 1740 m in the southwest corner of the Wedge 7 claim. A prominent feature of the central and high point of the property is a knoll of well-exposed granodiorite.

PROPERTY

The Wedge property consists of nine 2-post claims in the Vernon Mining Division,

British Columbia (Figure 2).

The Wedge claim was located on June 18, 1992. Wedge 1 to 8 claims were located on May 6, 1998. The claims are registered in the name of K. L. Daughtry. The beneficial owner of the property is the Okanagan Exploration Group. The following table lists the pertinent claim information.

<u>Claim Name</u>	Record Number	<u>Units</u>	Expiry Date *
Wedge	310565	1	September 30, 2002
Wedge 1	362427	1	September 30, 2001
Wedge 2	362428	1	September 30, 2002
Wedge 3	362429	1	September 30, 2001
Wedge 4	362430	1	September 30, 2002
Wedge 5	362431	1	September 30, 2002
Wedge 6	362432	1	September 30, 2002
Wedge 7	362433	1	September 30, 2002
Wedge 8	362434	1	September 30, 2002

* Pending acceptance of this report.

The claims are grouped as the Wedge Group.

GEOLOGY and MINERALIZATION

In the region west of the north end of Okanagan Lake, the Jurassic Okanagan Batholith intrudes folded Upper Paleozoic to Upper Triassic sedimentary and volcanic rocks. The batholith is overlain in turn by Eocene volcanic and sedimentary rocks. Both the batholith and the younger Eocene rocks are intruded by the Eocene Whiteman Creek stock. This pluton occupies about 12 km² in the canyon of Whiteman Creek immediately south of the Wedge property. The youngest rocks in the area are plateau basalt flows of Neogene age.

Except for the western portion of the property, the claims are entirely underlain by granodiorite of the Okanagan Batholith. The contact between the granodiorite and overlying Eocene volcanic rocks trends north northeasterly across the plateau onto the Wedge 1, 2 and 3 claims. West of this contact, which may be a fault in places, the Eocene rocks are predominantly andesite, with lesser basalt and dacite, and with minor mafic tuff and feldspar porphyritic andesite. The pluton comprises two varieties of granodiorite: a leucocratic, massive, medium grained aphyric to porphyritic type; and a melanocratic, medium grained, foliated type. The contacts between the two phases appear to be gradational.

Epithermal precious metal mineralization in the Whiteman Creek area appears to be spatially related to the Eocene Whiteman Creek alkali granite stock.

The exploration targets on the Wedge property are chiefly epithermal gold veins in granitic and/or volcanic rocks, similar to Fairfield Mineral's Elk deposit (092HNE096) or the Fort Knox deposit in Alaska.

4

 \rightarrow

•

Other possible targets include:

- Epithermal gold mineralization in shear/fault zones near the volcanic/granitic contact, similar to the Brett deposit (Minfile #082).

- Epithermal gold mineralization in silicified zones in tuffaceous volcanic rocks, similar to parts of the Brett deposit.

Previous exploration on the Wedge property has found auriferous quartz veins and veinlets in the granodiorite.

GEOPHYSICAL SURVEY

Purpose of VLF - EM and Magnetometer Survey

The purpose of the orientation-style survey was to evaluate the conductive (VLF - EM) and magnetic (magnetometer) responses across air photo linears. These northerly to northwesterly trending structures cut the intrusive knoll. On the ground, these structures are usually marked by two-metre to three-metre wide shallow notches or depressions. The structures are exploration targets, as they may host recessive-weathering gold-bearing zones. None of the linears on the property have been explored by trenching.

A secondary purpose was to evaluate the geophysical response across the Jurassic intrusion - Eocene volcanic rocks contact, which is believed to be a fault in the area of the traverse.

Survey Parameters

The survey was run over a portion of the Wedge property (see Figure 3). Readings were taken at 5-metre intervals along Line 1 and at 10-metres intervals along Lines 2 and 3. A total of 900 line-metres was surveyed. For the VLF - EM survey, data were collected with a Sabre Model 27 VLF – EM receiver. For the magnetic survey, data were collected using a Geometrics Unimag II proton magnetometer. The magnetometer results were occasionally checked for diurnal variation and no significant variation was measured.

VLF - EM Survey Results

The survey tested three linears on Line 1 and the contact between Jurassic and Tertiary rocks on Line 3 (see Figure 3). The dip angle readings are listed in Appendix 1 and are shown in profile in Figures 4, 5 and 6 (Lines 1, 2 and 3 respectively). There are no conductive zones

across the linears or in the vicinity of the linears, as there are no 'cross-over' anomalies. Fraser filtering of the data also did not indicate any conductive anomaly.

In contrast, the intrusive-volcanic contact is well indicated by a strong 'cross-over' anomaly (Figure 6), about 30 metres west of the edge of the intrusive knoll.

Magnetometer Survey Results

The survey tested three linears on Line 1 and the contact between Jurassic and Tertiary rocks on Line 3 (see Figure 3). The readings, in nanoteslas (nT), are listed in Appendix 2 and are shown in profile in Figures 7, 8 and 9 (Lines 1, 2 and 3 respectively). Figure 7 also shows the location of three linears (1,2,3). The magnetic readings show a range of 1001 nT, from 56,263 to 57,264 nT. The greatest relief between two stations is 864 nT, on Line 1. The Line 1 traverse is generally over outcrop and the profile is notably more erratic. On Line 1, the three lowest magnetic readings are at stations 65, 70 and 75 W. The centre of linear 1 is near 65 W. A notable magnetic high occurs adjacent to and to the west of this low. The centre of linear 2 is also marked by a magnetic low, near 130 W. Like the response to linear 1, there is a notable magnetic high adjacent to and to the west of this low. There is no significant magnetic response to linear 3.

The lowest magnetic reading on Line 3 is at 190 NW, 10 metres southeast of the base of slope of the intrusive knoll, which is the approximate location of the Jurassic – Tertiary contact.

CONCLUSIONS

The VLF – EM orientation survey indicates that the air photo linears are not conductive. This means that significantly abundant clay alteration minerals are not present and hence neither are clay-rich shear zones. However, the commonly recessive nature of the linears indicates that the structures have locally changed the nature of the rock. Causes of the linears may be only slightly altered fracture/fault zones, possibly containing quartz or basaltic dyke filled fractures/faults.

The strong conductor at the Jurassic – Tertiary contact is likely a water-saturated clay-rich fault zone.

The increased magnetic variability on Line 1, when compared to Lines 2 and 3, is likely caused by three factors:

- There is abundant outcrop on Line 1, with more overburden on Lines 2 and 3.
- The increase of reading density on Line 1, 5-metre intervals compared to 10metre intervals
- More alteration on Line 1, as it crosses three linears

The orientation magnetometer survey on Line 1 indicates that two air photo linears are associated with local magnetic lows and associated magnetic highs to the west. This magnetic response is associated with the northerly trending linears, but not with the northwesterly trending one. The most likely cause of these lows is the destruction of magnetite due to alteration along fracture/fault zones. However, as indicated by the VLF – EM survey, the non-conductivity of the linears shows that the alteration is relatively weak.

If one assumes that Tertiary basaltic dykes are more magnetic than the Jurassic intrusion, then the option of dyke-filled fractures is not valid. Therefore, the conductive and magnetic

8

geophysical orientation surveys indicate that the air photo linears are most likely slightly altered fracture/fault zones.

The magnetic survey does not show a significant change when traversing from the granodiorite knoll to the volcanic rocks, except for a subtle low near the contact.

Recessive-weathering fracture/fault zones, within the Jurassic granodiorite and at the granodiorite – Tertiary volcanic rock contact, remain valid exploration targets for gold on the Wedge Property.

Respectfully submitted, DISCOVERY CONSULTANTS

ditte W.R. Gilmour, P.Geo.

January 10, 2001 Vernon, BC

REFERENCES

Carpenter, T.H., 1999, Geophysical Assessment Report on the Wedge Report

- Daughtry, K.L. and Gilmour, W.R., 1989, Geochemical and Geophysical Assessment Report on the Whiteboul property.
- Daughtry, K.L. and Gilmour, W.R., 1989, Geochemical Assessment Report on the Boul property.
- Gilmour, W.R., 1991, Review of Soil Geochemistry on the Bouleau property for Inco Exploration and Technical Services Inc.

Slauenwhite, M., 1991, Mapping and Prospecting Assessment Report on the Bouleau property

STATEMENT OF COSTS

1.	Professional Services W.R. Gilmour, P. Geo.		
	Field work (September 27, 2000) 1 day \$ 450/day	450.00	
	Data compilation / report writing 1 day \$ 450/day	450.00	
	K.L. Daughtry, P. Eng.		
	Field work (September 27, 2000) 1 day \$ 450/day	<u>450.00</u> 1350.0	0
		1330.0	υ
2	Office Personnel		
-	Drafting, data compilation	75.0	ю
3.	Expenses		
	Geophysical equipment rental	50.0	Ю
4.	Transportation		
	4 x 4 truck	<u>80.0</u>	<u>10</u>

Total \$ 1555.00

STATEMENT OF QUALIFICATIONS

I, WILLIAM R. GILMOUR of 13511 Sumac Lane, Coldstream, British Columbia, V1B 1A1, HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, BC
- 2. I have been practicing my profession since university graduation in 1970.
- 3. I am a graduate of the University of British Columbia with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based on fieldwork carried out by K.L. Daughtry and myself.
- 6. I hold an indirect beneficial interest in the Wedge property.

W.R. Gilmour, P.Geo.

January 9, 2001 Vernon, BC

APPENDIX 1

VLF - EM Survey Data

Station m		<u>Dip angle</u>	<u>Station m</u>		<u>Dip angle</u>
0	W	10	205	W	-2
5	W	8	210	W	-3
10	W	11	215	W	-3
15	W	12	220	W	0
20	W	9	225	W	-1
25	W	10	230	W	-2
30	W	8	235	W	-4
35	W	9	240	W	-3
40	W	10	245	W	-3
45	W	8	250	W	-2
50	W	8	255	W	-3
55	W	8	260	W	-6
60	W	7	265	W	-5
65	W	7	270	W	-4
70	W	6	275	W	-3
75	W	3			
80	W	5			
85	W	5			
90	W	5			
95	W	5			
100	W	6			
105	W	4			
110	W	4			
115	W	3			
120	W	0			
125	W	0			
130	W	0			
135	W	-1			
140	W	-1			
145	W	-4			
150	W	-1			
155	W	-3			
160	W	-2			
165	W	-2			
170	W	-1			
175	W	0			
180	W	-1			
185	W				
190	W	-2			
195	W	-2			
200	W	-2			

Station m		Dip angle
0	N	
10	Ν	-3
20	Ν	-2
30	Ν	0
40	N	-2
50	Ν	-2
60	Ν	-3
70	Ν	-3
80	N	-5
90	N	-2
100	Ν	-2
110	Ν	-2
120	Ν	-4
130	N	-4
140	N	-7
150	Ν	-6
160	Ν	-8
170	Ν	-7
180	N	-9
190	Ν	-7
200	Ν	-7
210	Ν	-7
220	N	-4
230	Ν	-7
240	Ν	-5
250	N	-5
260	Ν	-7
270	Ν	-8
280	Ν	-7

station m		Dip angle
0	NW	-6
10	NW	-7
20	NW	-4
30	NW	-5
40	NW	-3
50	NW	-4
60	NW	-3
70	NW	-4
80	NW	-2
90	NW	-2
100	NW	-1
110	NW	4
120	NW	4
130	NW	4
140	NW	3
150	NW	4
160	NW	8
170	NW	6
180	NW	11
190	NW	16
200	NW	20
210	NW	18
220	NW	. 10
230	NW	3
240	NW	-6
250	NW	-11
260	NW	-10
270	NW	-6
280	NW	-1
290	NW	0
300	NW	-2
310	NW	-3
320	NW	-1
330	NW	0
340	NW	2

APPENDIX 2

Magnetometer Survey Data

Line 1					
Station m		<u>nT</u>	Station m		<u>nT</u>
0	W	57011	205	W	56727
5	W	56895	210	W	56599
10	W	56845	215	W	56592
15	W	56782	220	W	56581
20	W	56752	225	W	56760
25	W	56698	230	W	56717
30	W	56700	235	W	57035
35	W	56800	240	W	56915
40	W	56743	245	W	56847
45	W	56781	250	W	57048
50	W	56701	255	W	56842
55	W	56885	260	W	56802
60	W	56753	265	W	56663
65	W	56557	270	W	56869
70	W	56555	275	W	56703
75	W	56388	280	W	56725
80	W	57252			
85	W	57127			
90	W	56742			
95	W	56884			
100	W	56876			
105	W	56731			
110	W	56637			
115	W	56625			
120	W	57025			
125	W	57030			
130	W	56605			
135	W	56740			
140	W	56833			
145	W	56735			
150	W	57054			
155	W	57264			
160	W	56878			
165	W	56909			
170	W	56818			
175	W	56845			
180	W	56908			
185	W	57038			
190	W	56978			
195	W	56720			
200	W	56558			

ţ

Line 2 <u>Stati</u>

tation m		<u>nT</u>
0	Ν	57036
10	N	56852
20	Ν	56584
30	Ν	56577
40	Ν	56614
50	Ν	56633
60	N	56839
70	Ν	56778
80	Ν	56767
90	Ν	56802
100	Ν	56935
110	N	56670
120	N	56660
130	N	56788
140	N	56690
150	N	56763
160	N	56851
170	Ν	56708
180	Ν	56856
190	N	56929
200	N	56852
210	N	56805
220	Ν	56694
230	Ν	56790
240	N	56857
250	N	56896
260	Ν	56668
270	Ν	56706
280	N	56658

Station m		nT
0	NW	56658
10	NW	56867
20	NW	56720
30	NW	56792
40	NW	56877
50	NW	56684
60	NW	56770
70	NW	56718
80	NW	56674
90	NW	56675
100	NW	56830
110	NW	56715
120	NW	56797
130	NW	56695
140	NW	56753
150	NW	56849
160	NW	56719
170	NW	56412
180	NW	56494
190	NW	56263
200	NW	56366
210	NW	56410
220	NW	56408
230	NW	56650
240	NW	56640
250	NW	56510
260	NW	56683
270	NW	56660
280	NW	56565
290	NW	56551
300	NW	56451
310	NW	56454
320	NW	56462
330	NW	56681
340	NW	56490