

Bor Project 2000

Prospecting & Geochem Report

Omineca Mining Division 93N – 3E 125deg. 04.264min. West Long. 55deg. 13.630min. North Lat.

Author: Lorne B. Warren

CEOLOGICAL SURVEY BRANCH

Table of Contents

Subject	Page #
Project Location and Project Summary	1
Location Map	2
Assessment Report Index Map	3
Min File Map	4
Min File Map Legend	5
History	6
Claims and Ownership	7
Regional and Property Geology	9
Project Objectives and Prospecting Results	13
Daily Reports	14
Mineral Occurrences	15
Rock Assays	17
Soil Geochem Results	18
Bor Property Exams	23
Expenditures (Grant Purposes)	25
Expenditures (Assessment Purposes)	26
Statement of Qualifications	27-29
List of References	30

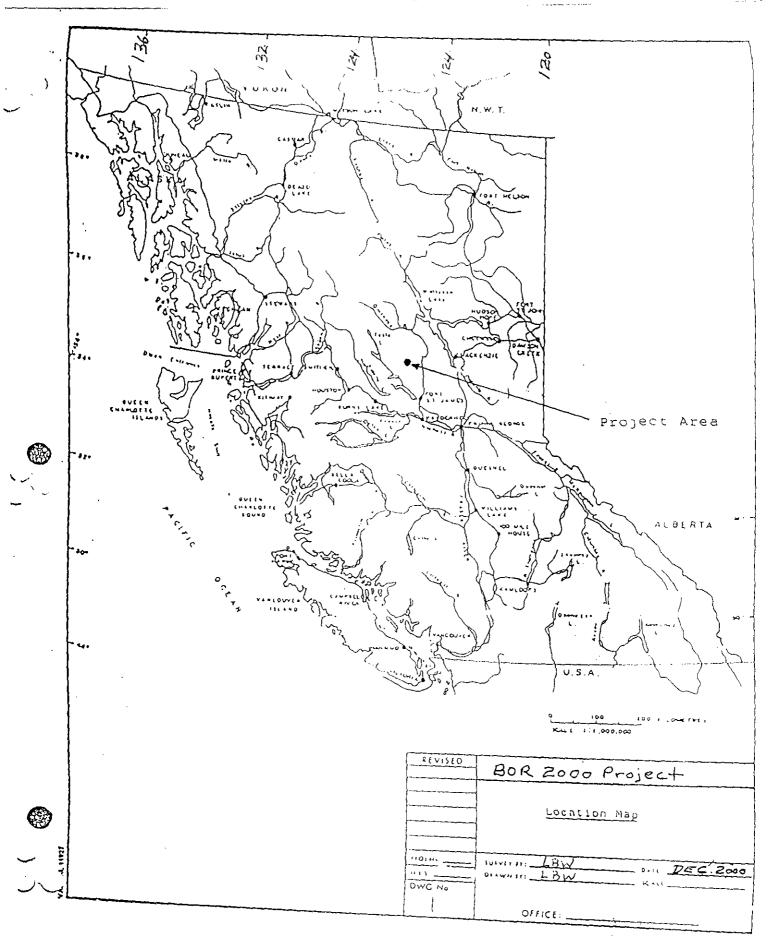
Figures -	Page #
Fig. #2 –Claim Map	2
Fig. # 3 – Regional Geology	10
Fig. # 4 – Compilation Map	11
Fig. # 5 – Aeromagnetic Survey	12
Fig. #8 – Outcrops on Samples	16
Fig. #7 – Bor Soil Copper Results	19
Fig. # 7A-Bor Mag Survey	20
Fig. #6 – Tbor Soil Copper Results	21
Fig. #6A-Tbor Mag Survey	22
Fig. #9 – Phelps Dodge Soil Line	24

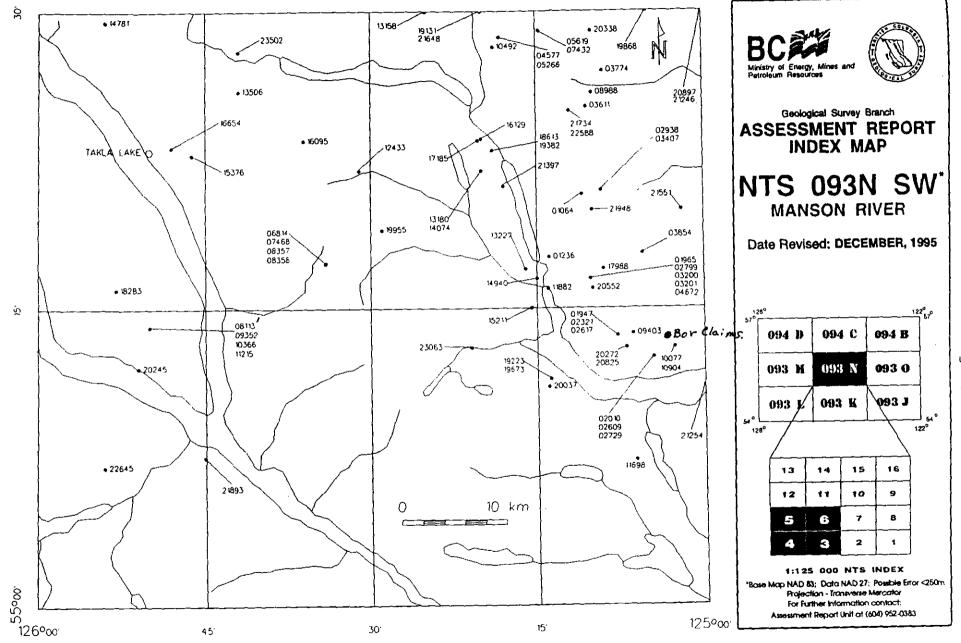
Appendix #1
Analytical Results 2000

Appendix #2 Major Receipts

Project Location

Map Sheet # 93N/3E

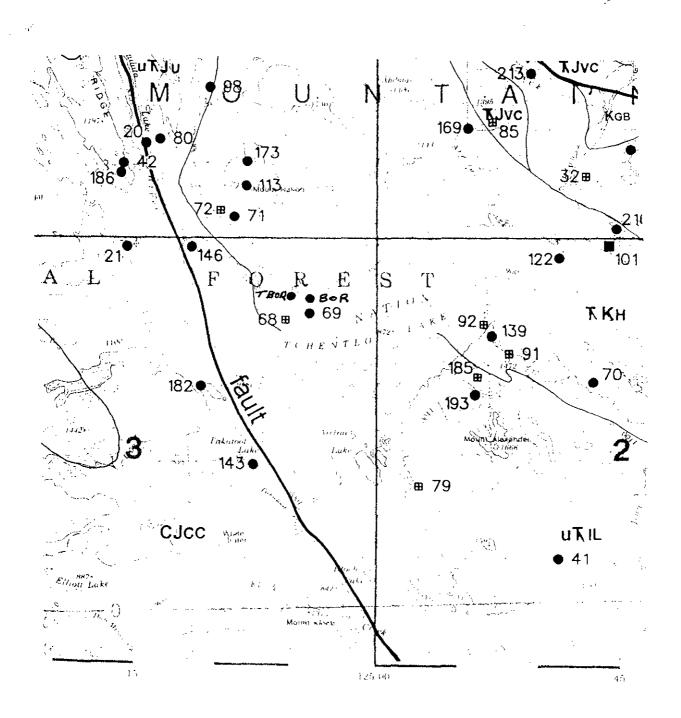

The original BOR 5-8 claims are located two and one half kilometers North of the midpoint of Tchentlo Lake. Access is by Forest Service Roads from Fort St. James B.C. The main BOR showing is located at twenty and one half kilometer on the T-Road which travels south east along Tchentlo lake. (See Fig. #)


G.P.S. Locations	<u>Zone</u>	<u>UTM East</u>	<u>UTM North</u>
BOR Pit	10 U	3 683 71	61 218 27
T-BOR Pit	10 U	3 639 21	61 234 84

(All G.P.S. readings were using a Trimble Scout Master using 200 readings in Acu-Lock)

Project Summary

A total of 45 mandays were spent in the field for the Bor project. Starting in July of 2000 and completion in late October of 2000. The main objective of the program was to ground proof the historical showings and old geochem results reported in assessment reports (#'s 2617, 2729, 10 077, 20 272, 20 575). All logging slashes were prospected for outcrop via drivable roads using a quad and four by four for transportation. A helicopter was utilized for three days for reconnaissance of the Tchentlo area and access to showing and outcrops not accessible by road. The Bor pit area was prospected in detail and a soil mag grid was established over the showing area (Fig. 7, 7a). The Tbor pit at 15.5 km was prospected in detail and a recon mag soil grid was established (Fig. 6, 6a).


MINFILE MAP NTS 093N MANSON RIVER

This MINFILE release researched and compiled by: D.M. Melville, D.M. Nelles, G.J. Payie, K. Bellefontaine and F. Ferri

Date Revised: January 1993

Scale 1:250 000

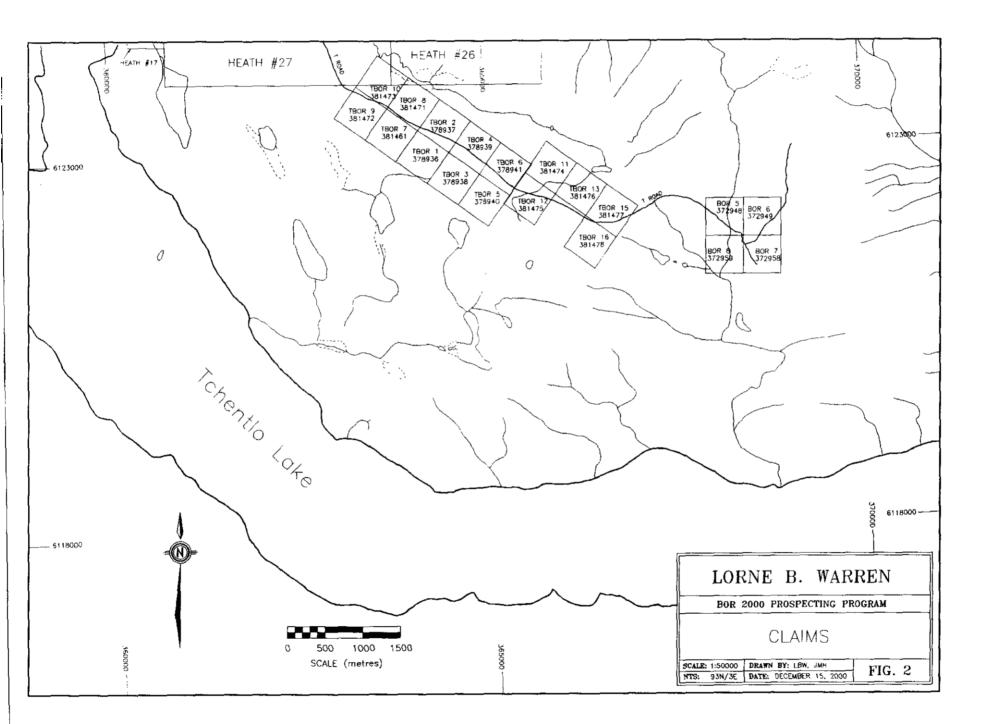
Map Legend - 093N

MINFILE Occurrences

NUMBER	NAME	COMMODITIES
20	Indata Lake Mercury	Hg
21	Tchentlo	Hg Au
42	Indata Lake Manganese	Mn
68	Falcon	Cu Mo Pb
69	Fal	Cu Zn Pb Ag As
70	Dip	Cu Fe Ma Mu
71	Heath #3	Cu Ag Au
72	Heath #1	Cu Ag Au Pb Zn
79	JW	Cu Mo
80	Indata #5	Hg
85	Aplite Creek	Cu Au
91	Knight Hawk	Cu Au Ag Fe Ma
92	Vector	Cu Au Ag
98	В	Cu Ag
101	Col	Cu Au
113	Nation Mountain	Cu
122	Gun	Cu
139	Mid	Cu Au Ag
143	Takatoot Lake	Hg Cu
169	Sooner	Mo
173	Tyger	Cu
182	Bar	Hg
185	Gibson	Au Ag Pb Zn Cu
186	Indata Lake	Ls
193	Phil 20	Au Ag Pb

History

In the fall of 1999 loggers excavating a rock pit at 20.5 km on the T-road exposed chalcopyrite, iron pyrite and magnetite mineralization. On the 21 of October Lorne and Chris Warren examined the rock pit and located four two post mineral claims (Bor 3-6) over the showing.


The N.B.C. Syndicate in 1970 had located a large copper geochem anomaly which had not been followed up (Private Files). After mapping the anomaly it measures 1.5 km in length and up to 300 m in width centered over a regional mag feature.

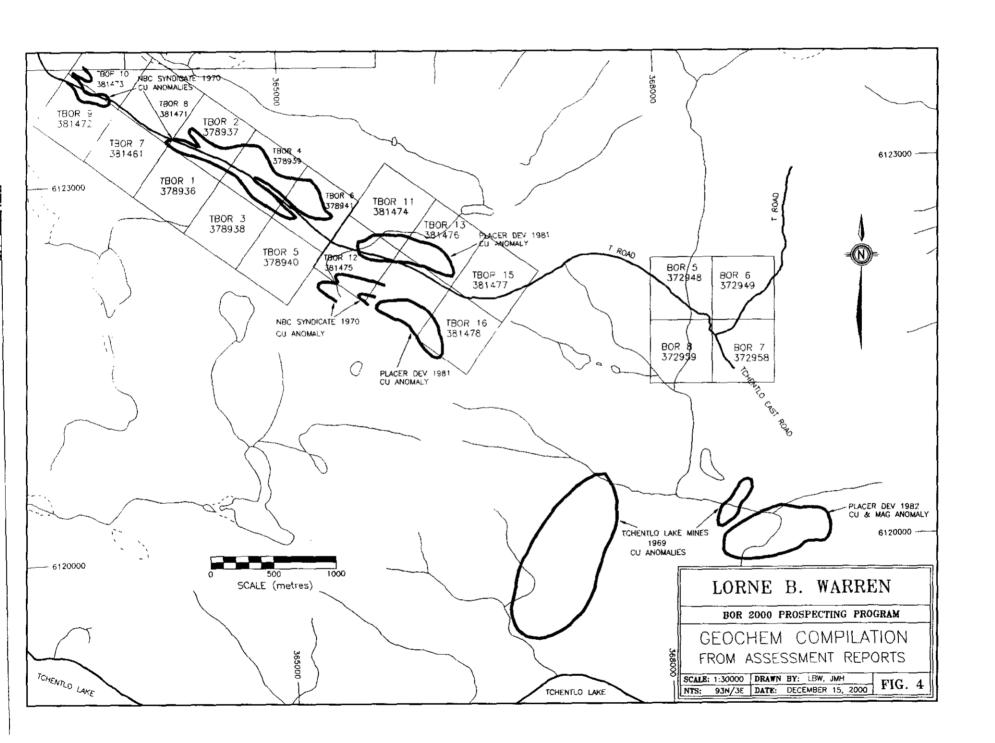
Placer Development in 1981 soil sampled and geophysically surveyed to the east of the N.B.C. Syndicate anomaly. The soils on the JP Mineral claims indicated a copper anomaly, a rock sample assayed 0.5% copper in the soil anomaly area.

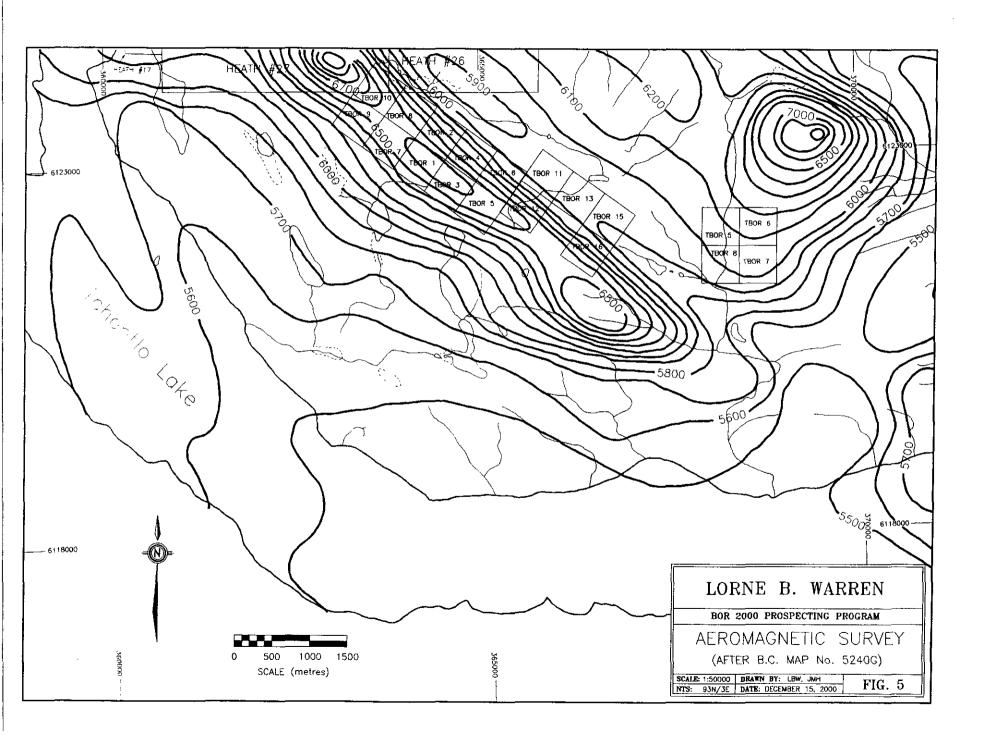
In 1989 (assessment report # 20272) Northwest Geological Consulting Ltd did work on the Falcon Property. Included in the report is a map showing previous work and copper anomalies in the general area of the Bor claims.

Claims And Ownership

Claim Name	Tenure #	Expiry Date	<u>Owner</u>				
TBOR 1	378936	20010719	L.B. Warren				
TBOR 2	378937	20010719	L.B. Warren				
TBOR 3	378938	20010719	L.B. Warren				
TBOR 4	378939	20010719	L.B. Warren				
TBOR 5	378940	20010719	L.B. Warren				
TBOR 6	378941	20010719	L.B. Warren				
TBOR 7	381461	20011004	L.B. Warren				
TBOR 8	381471	20011004	L.B. Warren				
TBOR 9	381472	20011004	L.B. Warren				
TBOR 10	381473	20011004	L.B. Warren				
TBOR 11	381474	20011004	L.B. Warren				
TBOR 12	381475	20011004	L.B. Warren				
TBOR 13	381476	20011004	L.B. Warren				
TBOR 15	381477	20011004	L.B. Warren				
TBOR 16	381478	20011004	L.B. Warren				
BOR 5	372948	20031021	C.I. Warren				
BOR 6	372949	20031021	C.I. Warren				
BOR 7	372958	20031021	L.B. Warren				
BOR 8	372959	20031021	L.B. Warren				




Regional Geology


The area of interest lies near the southern end of the southern Hogem batholith, a complex, triple-phase, composite calc-alkaline to alkalic group of plutons that range in age from Lower Jurrasic to Lower Cretaceous (Garnett 1978 – Fig. 3). Theses plutons intrude coeval volcanic and sedimentary rocks of the Takla Group which are bounded immediately west by the Pinchi fault and seventy km east by the Manson Fault. Tectonically this graben structure, including the intrusive, volcanic and sedimentary rocks is more commonly referred to as the Quesnel trough.

Property Geology

The Bor 5-8 mineral claims and the T-Bor 1-13-15,16 mineral claims have been interpreted to be underlain by Hogem Batholith presumably upper Jurrasic to lower Cretaceous age (Armstrong G.S.C. Memoir 252). The syendodiorites are generally green, medium to course grained highly magnetic rocks composing of quartz, K-feldspar, plagioclase feldspar, horneblend, biotite, chlorite and magnetite. The Gabros are course grained dark green rock consisting mainly of bytownite, orthoclase, augite and magnetite. Both rock types are mineralized with pyrite ranging from trace to five percent. (Garnett J.A. 1972-73)

Project Objectives

- 1. Stake minimum of 77 units.
- 2. Prospect all new logging roads and slashs
- 3. Establish soil grid centred on Bor rock pit (100m line spacing 50m sample intervals, approx. 212 soil samples.)
- 4. Prospect and map using the soil grid.
- 5. Check out old soil geochem anomalies in the area.
- 6. Check high tungsten heavy min sample from previous work.
- 7. Rock sample the Bor pit and other rock cuts.
- 8. Magnetometre survey of geochem grid over the Bor claims.

Estimate 62 to 80 mandays to complete the above program.

Prospecting Results

As a result of the prospecting of the area it was decided that it was not necessary to stake the number of units first proposed. The logging slashes prospected had very little outcrop, extensive overburden covers majority of area resulting in less than ten percent outcrop. The prospecting of the T-Road revealed several minor mineral occurrences at 15.5km, 16.5 to 18 km and 22.7 km, all copper mineralization was associated with the Hogem intrusive suite of rocks.

The Bor pit still remains the most significant showing found to date. Although surface prospecting around the Bor pit area failed to yield any new significant occurrences of copper mineralization. Detailed examination of the Bor pit indicates that the copper mineralization at this site is occurring at a possible cupola type setting. The open fractures on the margins of the breccia fragments have been filled with chalcopyrite, magnetite, Fe-Pyrite masses up to half a metre in diameter. Very little alteration minerals occur with the mineralization indicating late stage mineralizing solutions. No significant chalcopyrite occurs in the top two metres in the pit exposure. This may explain why no copper mineralization was found during surface prospecting of the Bor pit area. Poor copper soil results over a significant copper showing indicates a unusual environment must exist at this location.

The T-road from 16.5 to 18 k traverses a sizable copper geochem anomaly discovered by N.B.C Syndicate in 1970. From the observations at the Bor pit this copper anomaly may have more exploration significance than was originally placed on it during our regional prospecting activities.

Daily Reports

Name: Lorne B. Warren Reference #00/01-P53

			Prospecting	
Pro	ject Area	Date	Days	Work performed
	entlo	July 1	2	Travel to BOR
Tch	entlo	July 2	2	BOR Prospecting
Tch	entlo	July 3	2	BOR Prospecting
Tch	entlo	July 4	2	BOR Prospecting
	entlo	July 18	3	Prospecting
	entlo	July 19	3	Prospecting/staking
Teh	entlo	July 20	3	Prospecting
	entlo	July 21	3	Prospecting
Hog		Sept.21	1	HomestakeProp.Exam
Hog		Sept.22	1	HS/B.LaneProp.Exam
Hog		Sept.23	1	Property Exam.
	entlo	Sept.26	1	Property Exam
	entlo	Sept.29	2	Travel/Prospecting
	entlo	Sept.30	2	Prospecting
	entlo	Oct. 2	2	Prospecting
	entlo	Oct. 3	2	Prospecting
Tch	entlo	Oct. 4	2	Prospecting/Staking
Tch	entlo	Oct. 5	2	Prospecting
Tch	entlo	Oct. 6	2	Prospecting
Tch	entlo	Oct. 7	2	Travel
Tch	entlo	Oct. 12	2 2	Travel/Prospecting
Tch	entlo	Oct. 13	2	Soils TBOR Area
Tch	entlo	Oct. 14	2	Prospecting
Tch	entlo	Oct. 15		Prospecting
Tch	entlo	Oct. 16	2 2	Layout Grid
Tch	entlo	Oct. 17	2	Mag. On TBOR
Tch	entlo	Oct. 18	2	Soils&Mag. BOR
Tch	entlo	Oct. 19	2	Travel
Smi	thers	Oct. 20	2	Pack samples
Smi	thers	Dec. 5-9	9	Report Writing
		Total	67	

Total 67 mandays

Mineral Occurrences

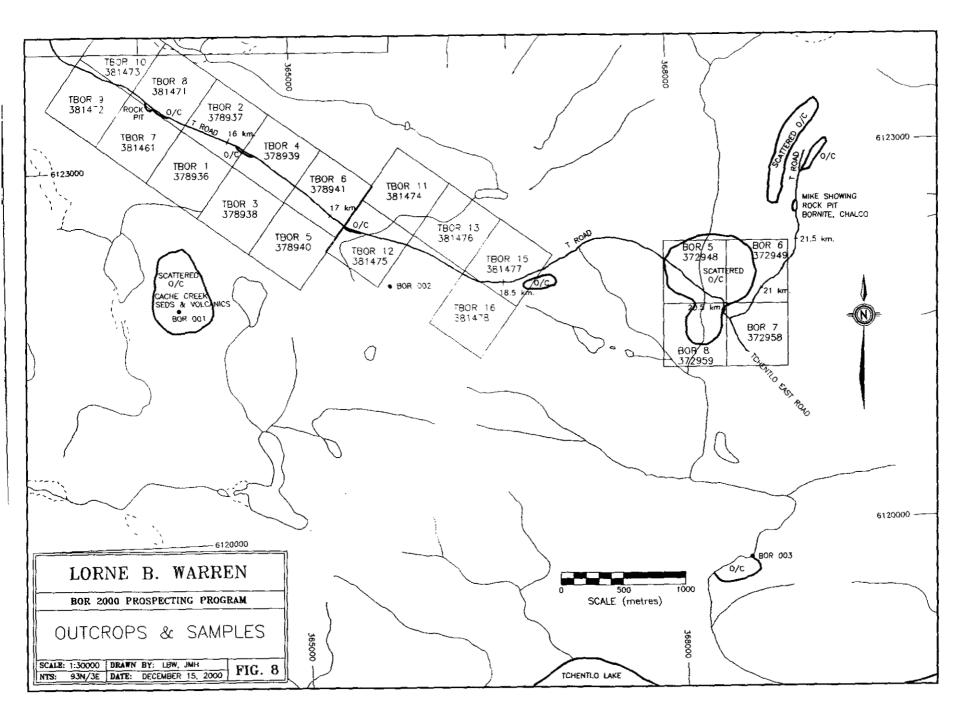
BOR Showing

New copper occurrence discovered in 1999. A road side rock pit 10 metres by 75 metres exposes a sheeted breccia zone in Monzonite/diorite/syenite intrusives. The zone contains disseminated to massive blobs of chalcopyrite/Minor Bornite/Massive blobs of FePy and Magnetite. Low copper gold values are present through out this exposure.

TBOR Showing

The rock pit at 15.5km on the T-road exposes altered syenite moderately magnetic with local K-feldspar phenocrysts and veinlets. One to three pecent Fe-pyrite-hematite and magnetite. Minor chalcocite/chalcopyrite occurs along fractures and as minor disseminations.

Road Side Samples


Float samples from minor outcrop and suboutcrop were located along the road side from 16.5km to 18 km on the T-road. Mineralization consists of pyrite/chalcopyrite and magnetite as dessemination, fracture fillings within dioritic to monzonitic intrusives. This porphyry-style mineralization is associated with propylitic and potassic alteration.

Falcon Showings

Along a major stream approximately 1.5 km south of the Bor mineral claims GPS location Zone 10 U 368451 E 6119930 N. Outcrop along the creek bank consist of intermediate to mafic intrusive; most likely dioritic in composition. Minor chalcopyrite, pyrite, magnetite and pyrrhotite occur as fracture fillings within intrusive rock.

Mike Showing

Is located at 22.7 km on the T-Road a rock pit on the north side of the road exposes monzonite to diorite brecciated intrusive moderately altered. Mineralization consists of chalcopyrite/bornite in diorite breccia fragments contained within the monzonite body. Several small suboutcrop exposures are scattered in the bottom of the rock pit.

Bor 2000 Project Rock Assays

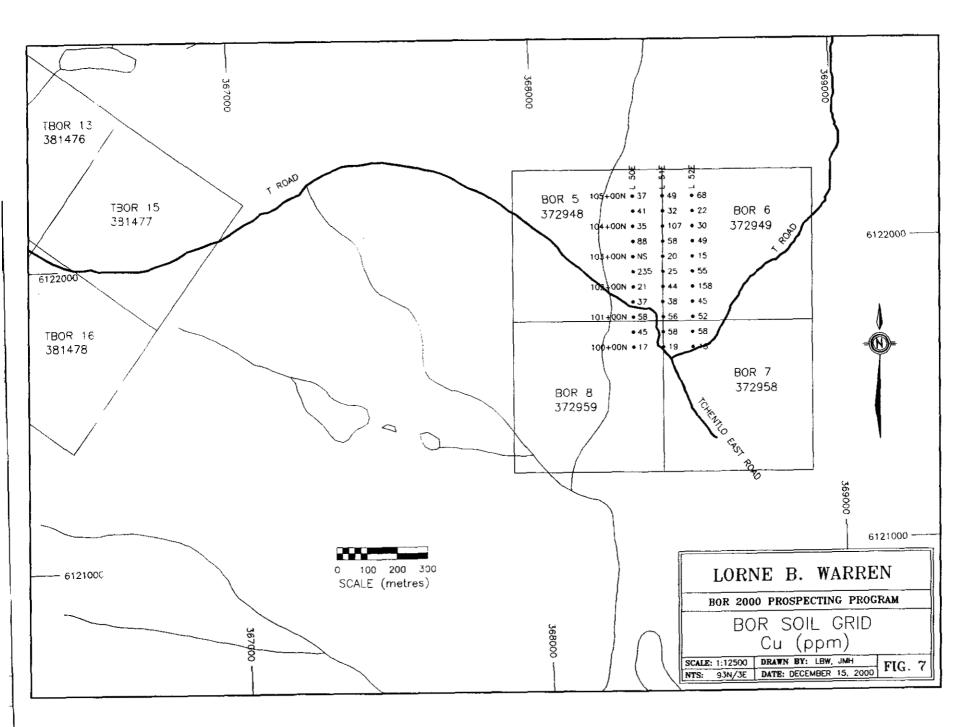
	Туре	Remarks	Location						
				ICP	ICP	ICP	ICP	ICP	ICP
Sample				Ag	As	Cu	Fe	Pb	Zn
Name				ppm	ppm	ppm	%	ppm	ppm
BOR-001	Grab	Cache creek sed.	GPS L. 363953 E 6122069 N	<0.2	25	59	4.76	6	59
BOR-003	Grab	Dark Mafic int. FePy on fractures	GPS L. 368451 E 6119930 N	<0.2	<5	427	9.47	14	38
TBOR-5	Grab	Hematite Stained Int. Min.Chalco 5% FePy		0.2	5	124	4.89	122	135
TBOR-6	Grab	Alt. Int. diss. FePy/Chalco-FePy dry frac.		<0.2	<5	97	5.52	8	46
TBOR-7	Grab	K-spar alt. Int. monzodiorite/ 5% FePy		< 0.2	<5	421	5.65	12	108
TBOR-8	Grab	Qz Carbonate Vein flt. Mass. FePy/AsPy		9.8	1615	25	>15.00	296	138
TBOR-9	Grab	Qz Carbonate Vein flt.Mass. FePy/AsPy		56.8	1175	513	13.98	1962	638
TBOR-10	Grab	Alt. Latite Dike chlorite/FePy		7	125	40	8.4	1328	1403
TBOR-11	Grab	Quartz Carbonate Alt. Vol.?	•	3.8	1080	14	12.99	138	144
TBOR-12	Grab	gabbro int. O/C 5-10% magnetite		< 0.2	<5	211	8.81	14	46
TBOR-13	Grab	Latite dike O/C		<0.2	<5	4	1.77	4	33
TBOR-14	Grab	gabbro 5-10% magnetite O/C		<0.2	<5	7	6.7	12	82
TBOR-15	Grab	5-7%Chalco in fine grain altered diorite		8.2	<5	>10000	4.71	40	76
TBOR-16	Grab	Dark Mafic int. 5% diss. Magnetite		<0.2	<5	105	12.09	22	50
TBOR-17	Grab	Dark Mafic int. Magnetite and FePy		<0.2	<5	35	9.02	16	84
TBOR-20	Grab	Bor pit 5 Metre grab		0.6	<5	1539	10.5	16	59
TBOR-21	Grab	Bor pit 5 Metre grab	•	0.4	<5	316	11.47	18	49
TBOR-22	Grab	Bor pit 5 Metre grab		<0.2	<5	195	8.22	12	72

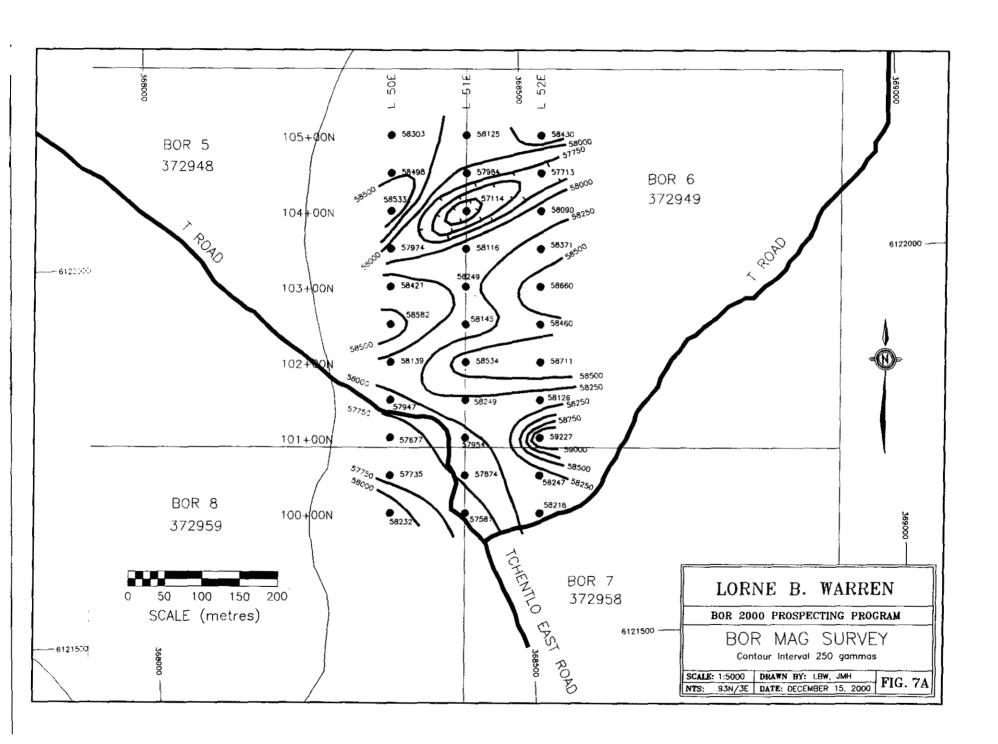
Soil Geochem Results

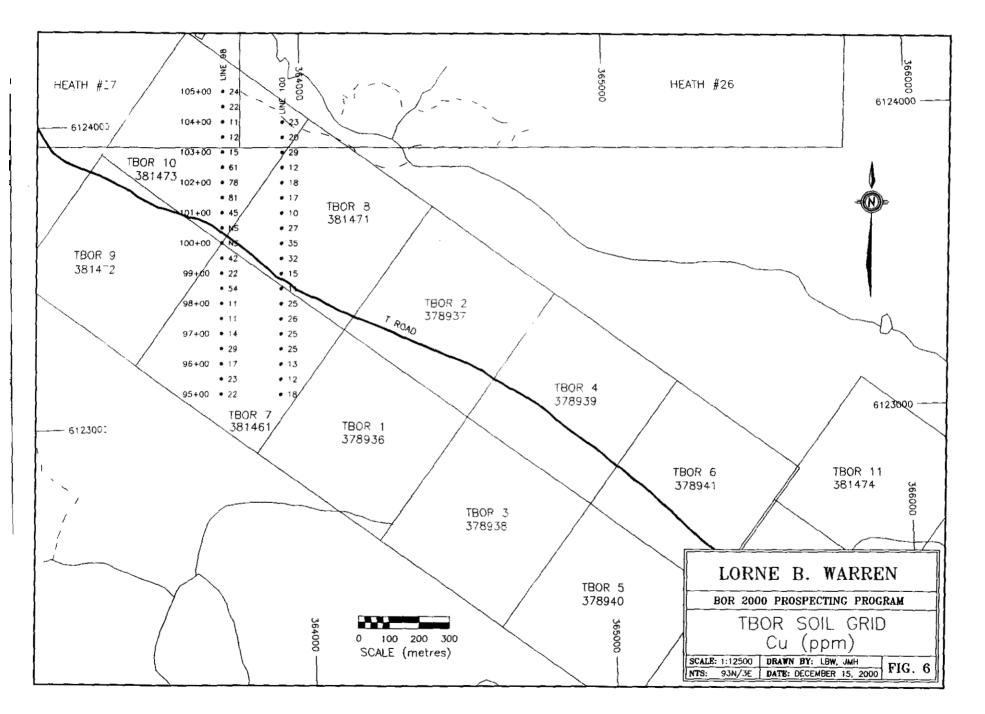
Bor soil grid:

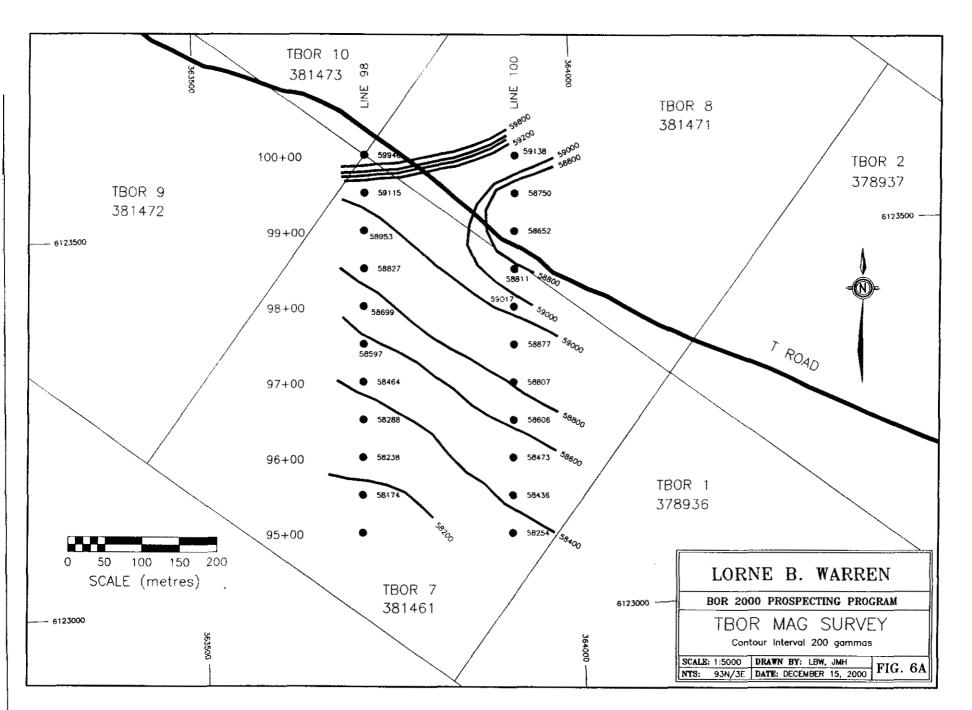
Established over the Bor pit area this consisted of three lines oriented north, south with the center line over the Bor showing. These lines were one hundred metres apart and five hundred metres in length with soil and mag readings at fifty metre intervals on the lines. A total of 33 samples were obtained. The soils averaged 15-20cm in depth to the "B" horizon, placed in kraft bags and shipped to Assayer Canada Vancouver B.C.. Standard 32 multi-element analysis was performed on these samples.

Observations and Conclusions:

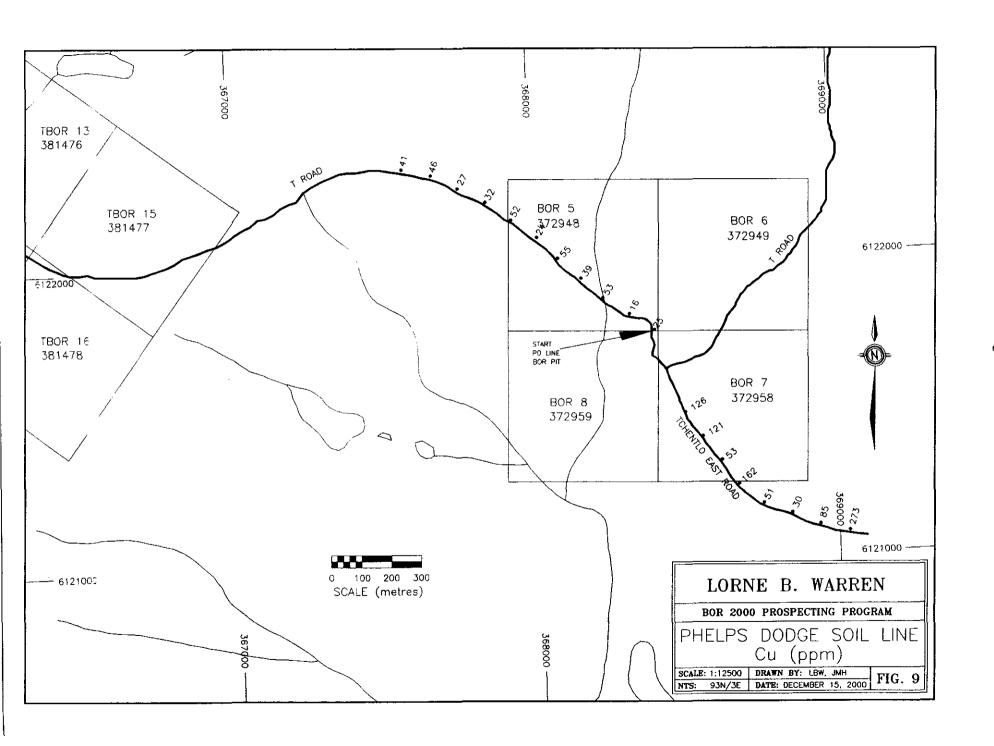

A well developed "B" horizon occurred at the majority of the soil sample sites. Overall results were poor for copper ranging from 17 ppm to a high of 235 ppm. Contouring of these results was not deemed possible because the highs occurred as isolated points on the grid. The soil results in the immediate area of the Bor pit were poor indicating poor mobilization of copper in the soil profile. No other contourable elements were indicated by the results obtained (see fig. 7).


Thor recon soil lines:


The soil lines were established one east and one west of the Tbor pit at 15.5 km on the T-road. The initial post for Tbor 9-10 was used as 100+00N – 98+00 E starting point. Line 98+00E ran 500 m north and 500 m south of the starting point, the other line was established 100 m east of the starting point also running 500 m north and 500 m south. 40 samples were taken at 50 m intervals along the lines from the "B" horizon averaging 20 cm in depth. Then placed in kraft bags and shipped to Assayers Canada Vancouver B.C. standard 32 multi-element analysis was performed.


Observations and Conclusions:

Results for copper indicate no anomalous sites on this grid. Review of the 1970 N.B.C. Syndicate soil results indicated that the recon lines were placed between two of their significant soil anomalies (see fig. 4a). The alteration and mineralization observed in the Tbor pit was the reason for establishing these lines but results from the pits rock samples were also poor.



Bor Property Exams

Phelps Dodge Corp. Steve Wetherup Geologist & 3 helpers examined the Bor pit and ran a one km recon soil line along the T-road 500 m east and west of the Bor Pit on Aug. 14/00

Rio Algom Explorations Inc. John McClintock Exploration Manager examined the Bor pit and sample ran 1.3% cu and 90 ppb gold took a random grab at 15.5 km ran 209ppm cu and no gold. Visited the property on Oct. 26/00

B.C.D.M. Bob Lane Geologist P.G. office visited on Oct. 23/00 examined the Mike showing, Bor Pit and the Tbor pit at 15.5 km on the T-road.

Expenditures Bor 2000 Project

Name:Lorne B. Warren	Refe	erence # 00/01-P53			
Wages, food and accommod	ation				
Workers Name	# Days Worked	Wages	Food/Accom.		
Lorne B. Warren	31	\$3100.00	\$1860.00		
Chris I. Warren	21	\$2100.00	\$1260.00		
Mike Middleton	8	\$ 800.00	\$ 480.00		
SubTotal	60	\$6000.00	\$3620.00		
	Total Wages,Food	and Accom.	\$ <u>9620.00</u>		
Vehicle Costs					
T1 20001 /ft0 20		Cost			
Truck 2000km/\$0.38		\$760.00			
Quad 4 days/\$100.00/day	1 : 1 (1	\$400.00			
Helicopter 6 hrs./\$800.00 al	i inclusive/nour	\$4800.00			
	Total Vehicle Cost	ts	<u>\$1160.00</u>		
Analyses/Assay Costs			\$989.22		
Second Party Assay Costs	Phelps Dodge	\$225.40			
Equipment Rentals-Supplies	;				
Soil and Rock Bags			<u>\$ 317.00</u>		
Recording Fees	17 2Post Claims		<u>\$ 170.00</u>		
Report Cost			\$ 400.00		
Technical Report			\$ 400.00		
Digitizing Maps			\$ 600.00		
			<u> </u>		
	Tota	al Expenses	<u>\$17456.22</u>		

Expenditures Bor 2000 Project Assessment Purposes

Labour L.B. Warren C.I. Warren Mike Middleton	31days@ \$350.00/day 21days@ \$260.00/day 8days@ \$260.00/day	\$10 850.00 \$ 5 460.00 \$ 2 080.00
Additional Helpers	9days@ \$150.00/day	<u>\$ 1 350.00</u>
	Total Wages	\$19 740.00
Vehicle 4X4 Truck Mileage Quad	30days@ \$75.00/day 2400km @ \$0.25/km 8days @ 100/day Total Vehicle	\$ 2 250.00 \$ 600.00 \$ 800.00 \$ 3 650.00
Room And Board	69days @ \$60.00/day	\$ 4 140.00
Room / Ma Board	ordays (e. 500.00/day	φ + 1+0,00
Helicopter	8hrs @ \$800.00/hour all inclusive	\$ 6 400.00
Supplies	Sample bags, Flagging Ect.	\$ 550.00
Assay Costs		\$ 1 214.62
	Total Expenses	\$35 694.62

Lorne B. Warren

Statement of Qualifications

1963 – Geological Assistant – Mastodon Highland Bell - Gordon Hilchey – Geologist - Dome Mountain Area.

1964 - Geological Assistant - Phelps Dodge Corp. Stikine area.

1965 - Prospector/Geological Assistant Native Mines.

1966 – 1971 – Full time field tech / line cutter/ Prospector Manex Mining Ltd. –M.J. Beley – Manager

1971 –1979 – Granby Mining Corp. – Field Supervisor, Office manager, Supervised Drill programs- Logged drill core and percussion drill cuttings.

1979 – Present – President and Manager of CJL Ent. Ltd., Kengold Mines Ltd. And Angel Jade Mines Ltd. – Placer mining/contract exploration work/Full time prospecting.

Chris Warren

Statement of Qualifications

- 1990 Completed the Smithers Exploration Group's Bush Skills course. Worked at Duckling Creek as a Geological assistant.
- 1991 Assisted in the instruction of the Smithers Exploration Bush Skills course. Worked in Johanson Lake as a line cutter.
- 1992 Assisted in the instruction of the Smithers Exploration Bush Skills course. Misc. claim staking jobs/ field assistant.
- 1993 Worked at a placer operation as a loader operator and did misc. claim staking jobs/prospecting assistant.
- 1994 Worked in Manson Creek area doing placer testing, running magnetometer/computer work/claimstaking/Prospector's Assistant.
- 1995 Present Worked full time for CJL Enterprises Ltd. Claim staker/line cutter/camp construction/prospector.

Mike Middleton

Statement of Qualifications

1990 - Completed the Smithers Exploration Bush skills course

1994-99 - Full time field assistant for CJL Ent. Ltd.

1999-2000- Worked for CJL Ent. Ltd, and as a independent prospector

List Of References

Armstrong J.E. (1949) Fort St. James Map-Area, Cassiar and Coast Districts, British Columbia, Geol. Surv. Canada. Mem. 252 Campbell R.B. and Geology and mineral exploration potential of the Quesnel Tipper H.W. (1970) Trough, B.C. Vol. 63, No 699 pp 785-790 Geology and Mineral Occurrences of the Ft. St. James Area Armstrong J.E. Garnett J.A. (1978) Geology and Mineral Occurrences of the Southern Hogem Batholith B.C. Ministry of Mines and Petroleum Resourses Bulletin #70 Monger J.W.H.(1977b) Revises Stratigraphy of the Takla Group, North Central British Columbia, Canadian Journel of Earth Science Vol. 14, pp318-326. Paterson I.A. (1974) Geology of Cache Creek Group and Mesozonic Rocks at The North end of the Stuart Lake Belt, Central British Columbia, Geol. Surv. Canada Paper 74-1 Pt. A

Appendix #1

Bor Property

Phelps Dodge Prop. Exam Results

Sample	Property	Type	Material	Colour	Тото	Demonstra	Cu	Ag	Au
77359		soil			Торо	Remarks	(ppm)	(ppb)	(ppb)
11339	100	2011	colluvium	brown	flat	subcrop/talus boulders of diorite; soil line			
77360	Dor	40.11	an Heredona	h		on n. side of road; 1000 m west	41.17	75	2.7
77300	וטכו	soil	colluvium	brown	flat	diorite o/c, soil line from w. to e. 100m			
77361	Bor	noil	aalluuium	h	α.	spacing, sample # 77369 is at rock pit	46.37	62	21.2
77362		soil soil	colluvium colluvium	brown	flat	diorite o/c; 800 m W	26.53	107	9
77363		soil		brown	gulley	near creek, w. bank; 700 m W	31.78	103	2.6
77303	100	5011	colluvium	brown-	hillside	500 W			
77364	Ror	soil	a a lleurium	orange		600 m W	52.31	91	8.1
77365		soil	colluvium	brown	hillside	500 m W	23.69	100	3.3
77366		soil	colluvium	brown	hillside	diorite o/c; 400 m W	54.8	62	2.3
77300	DOI	SOH	colluvium	brown	hillside				
77367	D _{or}	aa:1		L		subcrop/talus boulders of diorite; 300 m W	39.11	204	2.4
77368		soil soil		brown	hillside	close to showing; 200 m W	52.69	198	4
//306 1	DU	2011	colluvium	brown	flat	rocky - diorite, close to showing; 100 m			
77369 1	Por	انمه	and the street	1	•	west	15.85	133	6.8
77309	300	soil	colluvium	brown	flat	at showing, line/road turns from ~ s. to ~			
77370 1	200	aa:1				w.; 0 m west	25.09	124	5.6
77371 1		soil		brown	hillside	east	125.7	248	2.8
77371 1		soil soil			hillside	east	52.9	212	3.2
77372 I					hillside	east	161.8	1198	5.1
773731	100	soil	colluvium	yellow-brown	hillside				
77374 E	200	:1	11			few small pebbles; east	50.8	150	4
773741	301	soil	colluvium	yellow-brown	hillside				
77375 E	200	!1				east	29.69	81	3.3
77373 E	201	soil	colluvium	yellow-brown	hillside				
77376 E	١	- 21				east	85.1	324	13.5
	90F S	soil	colluvium	brown	hillside	small rock fragments; 1000m east	273	451	4.3
Rocks									
75597							5925	3082	124
75598							249.8	145	3.6
75599							1480	674	7.5
76400							11253	7880	268.6
							11233	/00U	200.0

952 B. BABTINGS BT WANCOWER BC V6X 1R6 GEOCHEMICAL ANALYS

CERTIFICATE

Phelps Dodge Corp. File # A003008 1409 - 109 Grammille St., Vencouver BC V67 112 Stemifted by: Rob Cameron Bor Property

AGE

C.

AL

50

SUMMER 25 43.17 133 30.2 35 23 3 33 165 2.29 5.2 3 3.1 3.3 10.5 32 .64 ".25 34 36 56 3.5 25.4 25 36.4 630 1.3.4 .607 .62 2 21 65 .63 66 .2 4.32 4.5 31765 15 44.10 6.06 36.5 62 36.5 6.2 (1) 2 60 6.5 (3) 13.7 (4.06.5 (1) A6 .19 55 (1) (1) (6.07.4 (3) 96.2 86. (1) (6) 60 60 62 (4.5 66.6 6) (6) A 16 (4.1 17368 22061 20362 ार इंट्रिक के अपने सामाहित हो है। इस इस के अपने 31361 3 12 22.46 1 34 51 1 366 36.4 5.4 22 2 17 6.9 2 3 2 .6 26.6 21 .69 00 133 11 .333 1 0 34 2 10 141 4 146 3 .12 667 62 *1 7.4 .06 .11 12 1 12 (1) 4 2 77364 3.50 \$4.50 1.29 15.2 \$2.30 £.4 25.0 £.4 25.0 £.6 25.0 £.6 25.0 £.6 3 25.0 £.6 25.0 £.6 25.0 £.6 25.0 £.6 25.0 £.6 25.0 £.6 25.0 £.6 25.0 £.6 25 177 (2.68 (), 67 (2.98 (2.13 A) (187 (2.88 (3.3 A) (3.44 (3.13 (2.14 (3. A PM 1.21 25.59 केंग्रेस में मिलाई प्रकार के 1.69 की र 3.4 (1.44 के ए. ए. स. स. स. स. स. मिलाई प्रकार के मिलाई प्रकार 77745 \bar{S}_{mn} ा प्रतिक के कि तर की तीत है। इस का का की सीत के साम के मान की तीत की के स्वतिक के का मान की तीत की की मान की ती AL 20234 25.04 $\int_{\Omega} \mu \, dx$ nothermitelt transmissioner de stelle neut bei leiche der bei bei bei bei der bei beite bei beite bei beite bei bei bei bei bei bei beite bei beite bei beite beit 1 44 11 THE THE STEEL BOTH AND A TRUE AND THE RESERVE OF A STREET OF THE CONTRACT OF THE STREET OF THE 173.4 17525 2202 NUMBERS OF USERS STEELS HE WERE HERELEDGE IN STRUKERE FOR A HERELEDGE MICH. SHE FIRE AS A STRUKE OF A DECISION OF A DECISION OF A STRUKE OF A DECISION OF A DECISI

DAGGE 1915 - 15.00 CM SAMPLE, 90 HE 3-3-2 HOL-HHOS-NZO ET 95 DEN C 754 OM KOOK AND 15 DICUTED TO 300 ML, AMALYONS BY 159/ES & MS. UPPER LENGTS - EG. AU. EG. N. SE. JE. TE. DA. SN - SOO PPE: NO. TO. ID. SB, Dr. TH. H. B - 2,000 PPM; CU. PR. YH. NO. HR. AS. V. EA. CR = 19,000 PPM. Samples beginning (RE) are Returns and 'RRE' are Reject Refuse. SASPLE TYPE (/SOID) SSM0 600

unite see considered the enerthermist prosents of the client. Acom assumes

POTENTIER TOYE, CLEENE, J. WANG: CERTIFIED S.C. ASSAIERS

lamale.	<i>V 18</i> 41	s) (nom)	1 741.	TI Avenus	· 13	Hg (anh)	Se (nom)	i'e (pom)	Ga 'ppm)	Sample (gm) B
	K (/0)	(Man)	, ***	Alm.		(hbo)	(Man)	(Pp)	Granes .	107
Soils		•						fr T		
76838								în je		
77359										
	0.02	0.2	2.1	930	0.01	80	0.2	$\sim .02$	4.5	15
77360						100				
	0.03	0.2	2.5		<.01	89		0.02	455.7	
77361	0.02	0.2	2	0.04	< .01		ムーラ からなかかり	< .02	and the second of	6 15 h (15 h) 17 h (16 h)
77362	0.04	< 2			0.01		0.2		3.8	
77363	0.04				0.01			0.02		No. 20 1 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
77364	0.03	<2∵						0.02		
77365	0.03	0.2	2.5	0.05	< .01	62	0.2	0.13	5.8	15)
77366										
	0.04							0.06		15 ·
77367	0.03	0.2	1.6	0.03	< .01	36	0.2	0.03	5.1	15
77368			•					. :		
	0.03	0.2	3.5	0.03	< 0!	24	0.1	0.02	4.6	15
77369	11. 14. (4)				Artist J.					
	0.03			0.03 .		50	0.1	0.1.2		
7,43746		<.2	4		< 01	70	0.2			15
77371	0.04		3.5		< .01	65	0.2			-
77372	9.07	0.2	7.5		< .91	[49]	0.5			
77373	0.03	0.2			: 01	74				
17374		≤.2	1.8		< .01		<.∫ 			
17375	0.02		2.9		0.02					
77376	0.05	0.3	5,8	0.08	0.05	93	(0.4	0.03	3.2	· 15
locks					***					
78597	0.17	1.2	3.6	0.07	1.13	17	11	9.54	7.5	
25598	0.41	0,5		(14)		< 5		ij.(r)	1.3	
75599		1.4	4.6	0.05	1.55	: 10.	. 1	0.17	7.9	
	0.55	22			2.57	13	4.5	1,27	8.8	

Phelps Dodge Assay Results Aug 2000

S 1	Lu r	(*111		As	U	Αu	Th	Sr	Cd	Sb	Bi	^{1}V			Ļa	Ci	Mg	Ва		\mathbf{B}_{i}		Na
Sample	: (pp://	(bbar)	Fe (%)	(bbur)	(bbus)	(ppb)	(ppin)	(bbm)	(bbin)	(ppm)	(bpHf)	(ppm)	Ca (%)	P (%	(ppm)	(ppm)	(%) :.	(ppm)	Ti (%)	(ppm)	Al (%)	(%)
Soifs				., .				, A			٠.					·	is.			1, 1995	7	elt .
7683	8						-	1					٠.		1							* *
										-				•								
7733)																					
	5.1	149	2.29	5.8	0.3	2.7	1.3	11.9	0.12	0.56	0.09	78	0.1	0.095	3.9	j		6	0.032	1	1.48	0.007
77360)														ē				·,2.	•	7.10	93,01.7
***	8.2			6.5	0.3	21.2	1.4	14.5	0.11	0.65	0.09	85	0.13	0.117	4.6	47.4	609	30.2	0.043	2	1.69	0.007
77361			1. 1.	Ó	0.2		1.2	13.9	0.14	0.58	0.09	84	0:14	0.157	4.2	40.7	0.27	- 84	0.037	2		0.006
77362		A		6.1	0.3	2.6	i.2	19.5	0.22	0.62	0.06	82	0.24	0.091	5.2	47	0.52	111.4	0.048	1	- 176 Per 140	0.007
77363			!•	, 12.8	0.3	8.1	1.4	16.6	0.28	0.85	0.1	. 132.	0.17	0.241	4.7	53.5	-0.41	172.2	0.038	. 2		0.007
77364			2.72	6	0.2	:	0.6	20.6	0.24	0.69	0.08	119	0.17	9.033	4	34.2		141.8	the first of the first			0.007
77365	- 11-1 · ~ .	213	2.66	6.3	0.3	2.3	1.3	14.7	0.11	0.57	0.22	90	0.13	0.144	5.2	40.8		93.5	4001	1		0.008
77366																						
	7.9	·	2.99	1957	0.3		1.4	1. Carlotte 197	-1.	0.8	0.47		A	0.149	5.3	43.6	0.35	105.2	0.042		1.53	0.006
77368	4.7	149	2.6	3.9	0.3	4	0.9	18.2	0.11	0.47	0.26	92	0.15	0.037	4.6	29.4	0.15	98.4	0.04	1	111	0.006
CORA	1					:	in twi	Tarres de la companya														
. 77169	5	164	2.22	3.5	0.2	6.8	F. J.	14.2	0.4	0.38	0 Jó	87	0.12	0.097	4.6	29.2	0.19	70.6	0.045	1	1.04	0.005
1000	10.1	218	2.40																			
77870	8	487	3.09	6.7	0.2	5.6		18	0.23	0.63	0.1	102		The second second	4.8			127.9	0.044	1	1.5	0.007
77.7]	12.5	568	2,12 2.33	4.8	0.7	2.8			0.13	0.52	0.24	71		0.033	- 11	38.3		144.0	0.038	i	1-14-	0.008
77372	12.8	672	3.75	4.9 7.8	0.3	3,3	0.7	30.3	0.2	0.49	0.12	77		0.054	6.8	37.5	0.48	(61.9]	-	0.008
77373	6.5	237	2.06	4.8	4.1	5.1	. 2	46.4	0.81	0.9	0.22	100		0.037	12.1			368.6		- 1		0.011
77374	0.3	217	1.84	4	0.3	3.3	0.7	23.7 19.4	0.21	10.46 0.39	0.08	71				30.4	, 19 of 19	* * 5	0.05	1		9.009
77578	11	618	2,53	4.8	0.9	3.3 13.5	0.5	29.2	0.22	0.39	0.08 0.14	64 85		0.041	C.C.	33.5	'	160.1		ì		0.008
77376	14.1	1129	3.54	8.1	7.1	4.3		78.9	0.22	0.49		ده : د 121د		0.039					0.026 <			0.008
Rocks			7,21			75.5		. 10.7	9.71	U.60	1,02	124	1,07	0.088	_13,1	. 40.8	0.62	628	9:022	. 2	2.46	0.01
										1. 		100	٠.:								·	·
75597	14.6	1158	4.39	1.7	0.3			109.5	0.17	0.49			3,34		3.7	8.5	1 75	62.6	0.06%	1	1.65	0.025
75598 75599	41.9	3627	3.8	2.3	0.3	3.6 . -	:	82.9	0.06	0.14				0.225	3.2		a ₂₄ 1,	63.1	0.002	5	9.54 =	9.016 _;
76400	19.6	819	4.5	1.7	0.4		0.5		011	0.25	in the contract of the contrac		0.79		2.3	7.3	- 1 m	69.9	0.164	~ 1	1.84	0.047
7.57HAS	56:3	689	6.29	i	0.5	268.6	0.4	32.1	1	0.2	0.61	188	0,63	0.179	1.7	11.4	1.74	55.7	0,207 <	1	1 87	0.043;
																		·	-			

Phelps Dodge Assay Results Aug. 2000

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

MULTI-ELEMENT ICP ANALYSIS

Report No

: 0V0505 RJ

Date

Nov-28-00

Project: TBOR Sample: Rock

CJL Enterprises

Attention: Lorne Warren

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
BOR-001	<0.2	2.67	25	40	<0.5	<5	2.09	<1	26	40	59	4.76	0.03	2.47	780	<2	0.04	16	570	6	<5	8	<10	31	0.20	122		_		
BOR-003	<0.2	1.40	<5	30	<0.5	<5	0.83	1	37	31	427	9.47	0.04	1.55	315			38		14	<5	7	<10		0.28	132	<10	6	59	16
TBOR-5	0.2	1.12	5	90	1.0	<5	5.50	1	16	9	124	4.89		0.63	3915		0.02	6	1	122	5	9		38	0.21	620	<10	1	38	8
TBOR-6	<0.2	1.46	<5	170	<0.5	<5	1.62	<1	20	25	97	5.52		1.40	790			9		122 R	~5	4	<10	138	0.01	69	<10	15	135	5
TBOR-7	<0.2	1.44	<5	70	<0.5	<5	3.02	<1	29	20	421	5.65	_	1.42	2055	-	0.04	9		12	<5	12	<10	76	0.19	249	<10	7	46	5
															2000		0.04	•	2010	12	~3	12	<10	72	0.04	172	<10	11	108	5
TBOR-8	9.8	0.56	1615	10	<0.5	15	1.44	<1	15	80	25	>15.00	0.18	0.14	2510	<2	0.01	10	1130	296	15	3	-10	25		2.5				
TBOR-9	56.8	0.43	1175	10	<0.5	10	0.29	<1	36	114	513	13.98	0.22	0.25	7195			11		1962	30	3	<10 <10	35	0.01	36	<10	4	138	14
TBOR-10	7.0	0.76	125	70	0.5	<5	0.87	14	18	40	40	8.40	0.39	0.72	>10000		0.01		2160	1328	.50	10		12	< 0.01	23	<10	3	638	13
TBOR-11	3.8	0.26	1080	20	<0.5	10	1.17	<1	6	151	14	12.99		0.64	>10000		0.01	8	640	138	10	10	<10	28	<0.01	62	<10	11	1403	8
TBOR-12	< 0.2	1.22	<5	140	<0.5	<5	2.30	1	23	126	211	8.81	0.32	1.61	965		0.05	20		14	10	10	<10	22	<0.01	20	<10	1	144	10
															,,,,		0.02		2030	14	3	10	<10	60	0.15	457	<10	9	46	9
TBOR-13	<0.2	0.33	· <5	230	< 0.5	<5	0.19	<1	3	70	4	1.77	0.30	0.03	1345	2	0.03	3	630	4	<5		<10	,	.0.0.					
TBOR-14	<0.2	1.53	<5	210	<0.5	<5	1.76	1	23	29	7	6.70		1.57	875			11	3690	12	<5	5			< 0.01	- 4	<10	4	33	22
TBOR-15	8.2	1.54	<5	60	< 0.5	<5	0.81	<1	31	31	>10000		0.11	1.47	465	_	0.07		2320	40	<5	3	<10	42	0.19	289	<10	9	82	7
TBOR-16	<0.2	0.39	<5	30	< 0.5	<5	0.24	1	104	441	105	12.09	0.04	12.46	1105		0.01	442	210	22	10	5	<10 <10	51	0.03	28	<10	4	76	3
TBOR-17	<0.2	1.18	<5	60	<0.5	<5	1.29	1	33	226	35	9.02	0.10	1.59	565		0.07	54	1580	16	70	5			0.05	270	<10	1	50	9
															243	·	0.07	34	1300	10	3	3	<10	51	0.10	471	<10	3	84	8
TBOR-20	0.6	1.72	<5	50	<0.5	<5	0.77	<1	110	83	1539	10.50	0.77	1.34	580	8	0.10	19	1490	16	5	5	-10	45	0.35					1
TBOR-21	0.4	1.15	<5	50	<0.5	<5	0.62	<1	39	77	316		0.16	0.99	445		0.05			18	5		<10 <10	43 54	0.22	144	<10	5	59	В
TBOR-22	<0.2	1.77	<5	90	<0.5	<5	0.66	<1	61	66	195		0.32	1.60	710		0.05		1640	12	<5	6	_	-	0.19	111	<10	4	49	9
															,		0.00	13	1040	12	~3	0	<10	40	0.20	153	<10	5	72	6

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:______

Assayers Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0505 SJ

Date : Nov-28-00

Attention: Lorne Warren Project: TBOR

CJL Enterprises

Sample: Soil

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ρρπ	Mo ppm	Na %	Ni ppm	P. ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
L52E 100+50N	<0.2	1.41	5	140	<0.5	<5	0.32	<1	10	57	58	3.50	0.05	0.59	405	<2	0.01	45	900	10	<5	4	<10	29	0.07	97	<10	4	55	3
L52E 101+00N	<0.2	1.57	5	110	<0.5	<5	0.25	<1	10	53	52	3.43	0.04	0.54	205	2	0.01	40	1360	10	<5	3	<10	22	0.07	87	<10	3	76	5
L52E 101+50N	<0.2	2.43	10	260	<0.5	<5	0.33	<1	11	76	45	5.57	0.06	0.63	240	<2	0.01	55	2140	14	<5	4	<10	31	0.06	133	<10	3	141	4
L52E 102+00N	<0.2	2.40	10	320	0.5	<5	0.90	<1	11	69	158	4.45	0.07	0.65	780	6	0.01	60	920	12	<5	8	<10	86	0.04	101	<10	15	87	4
LS2E 102+50N	<0.2	1.86	5	120	<0.5	<5	0.19	<1	10	49	55	3.68	0.03	0.41	195	<2	0.01	32	8 80	10	<5	3	<10	24	0.06	98	<10	3	53	3
L52E 103+00N	<0.2	1.18	5	80	<0.5	<5	0.16	<1	5	46	15	3.67	0.03	0.23	150	<2	0.01	21	780	10	<5	2	<10	19	0.07	116	<10	1	36	3
L52E 103+50N	< 0.2	1.68	5	180	< 0.5	<5	0.38	<1	8	49	49	2.86	0.05	0.71	330	4	0.01	41	410	8	<5	4	<10	35	0.08	74	<10	3	64	2
L52E 104+00N	<0.2	1.77	10	110	<0.5	<5	0.22	<1	8	55	30	4.53	0.04	0.45	230	<2	0.01	32	2180	12	<\$	3	<10	23	0.07	123	<10	2	86	4
L52E 104+50N	<0.2	1.48	5	120	< 0.5	<5	0.21	<1	6	42	22	3.73	0.05	0.36	190	<2	0.01	19	1910	12	<5	3	<10	24	0.08	109	<10	2	43	3
L52E 105+00N	<0.2	2.60	<5	150	<0.5	<5	0.17	<1	10	53	68	3.60	0.05	0.50	290	<2	0.01	40	760	10	<5	3	<10	23	0.07	91	<10	2	92	4

Assa, .'s Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

CJL Enterprises

Attention: Lorne Warren Project: TBOR

Sample: Soil

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Мо ррт	Na %	Ni ppm	P Ppm	Pb ppm	• •	Sc ppm	Sn ppm	Sr ppm	Ti % 0.07	V ppm 54	W ppm <10	Y ppm 5	Zn ppm	Zr ppm
•••						_		-1	11	79	27	2.61	0.05	0.66	320	<2	0.01	71	690	4	<5	4	<10	22		73	<10	2	49	
L100E 100+50N	<0.2	1.07	5	140	<0.5	<5	0.35	<1	5	46		2.53	0.04	0.19	220	<2	0.01	18	580	6	<5	2	<10	15	0.06		<10	3	68	_
L100E 101+00N	< 0.2	0.78	<5	100	<0.5	<5	0.20	<1	8	73			0.03	0.58	190	<2	0.01	55	1210	6	<5	3	<10	19	0.06	64		2	83	
L100E 101+50N	< 0.2	1.42	. 5	120	<0.5	<5	0.25	<1	•	94		4.46	0.07	0.50	360	<2	0.01	55	1250	12	<5	3	<10	22	0.08	118 55		3		_
L100E 102+00N	< 0.2	1.22	. 5	170	<0.5	<5	0.28	<1	11				0.03	0.49		<2	0.01	30	640	2	<5	2	<10	18	0.07	33	<10	,	43	-
L100E 102+50N	< 0.2	0.98	. 5	90	<0.5	<5	0.23	<1	6	53	12	2.20	0.03	•										_			-10	3	76	2
											- 70	3.17	0.05	0.56	425	<2	0.01	54	530	6	<5	3	<10	24	0.05	73			35	
L100E 103+00N	< 0.2	1.38	. 5	150	<0.5	<5			9	67			0.03	0.59		<2	0.01	40	830	4	<5	2	<10	25	0.06	55		4	33 37	
L100E 103+50N	<0.2	0.77	. 5	100	< 0.5	<5	0.33	<1	8	55			0.03	0.46		<2	0.01	30	780	4	<5	2	<10	29	0.05	63				_
L100E 104+00N	<0.2	0.74		130	<0.5	<5	0.45	<1	6	49			0.11	0.48		<2	0.01	23	2330	12	<5	2	<10	30	0.07	107	<10			_
L50E 100+00N	<0.2	1.19	, ,	130	<0.5	< 5	0.35	<1	8	45			0.03	0.38		<2		21	310	6	<5	. 3	<10	28	0.06	68	<10	4	49	2
LSOE 100+50N	<0.2	1.08	<:	110	<0.5	< 5	0.28	<1	7	37	45	2.35	0.03	0.50	. 203															2
2502 200 000												2.26	0.04	0.31	225	2	0.01	18	270	6	< 5	. 2	<10	26		70				
L50E 101+00N	<0.2	1.07	, </td <td>5 120</td> <td><0.5</td> <td>< 5</td> <td>0.25</td> <td>< 1</td> <td></td> <td></td> <td></td> <td></td> <td>0.04</td> <td>0.46</td> <td></td> <td><2</td> <td></td> <td>33</td> <td>1080</td> <td>10</td> <td><5</td> <td>; 3</td> <td><10</td> <td>29</td> <td>0.06</td> <td></td> <td></td> <td></td> <td></td> <td>•</td>	5 120	<0.5	< 5	0.25	< 1					0.04	0.46		<2		33	1080	10	<5	; 3	<10	29	0.06					•
L50E 101+50N		1.43	3 !	5 150	<0.5	< 5	0.32	? <1	. 8				0.04	0.30		6		13	240	16	< 5	2	<10	32	0.12		_			_
L50E 102+00N	<0.2	1.26	5	5 130	<0.9	< 5	0.25	< 1				4.85	0.04	0.43	_	_		21	3880	36	. <5	4	<10	16	0.05					
L50E 102+50N	0.4	4.55	5	5 150	1.0	} 5	0.16	5 < 1					0.05	0.63		_		30	3920	14	< 5	4	<10	22	0.07	135	<10	2	110	, ,
L50E 103+50N		2.97		5 270	<0.5	< 5	0.21	L <1	12	39	9 88	5.89	0.06	0.03	, ,,,,	-	0.00												,	. ,
E30E 103+30H													0.04	0.45	5 225	<2	0.01	18	580) 8	< 5	, 2	<10	29	0.07		_			
L50E 104+00N	<0.2	1.36	5 <	5 150	<0.5	5 <5	0.29	9 <1	. 8	_			0.04							16	< !	5 3	<10	21	0.07	131	<10			
L50E 104+50N		2.08		0 150	<0.5	5 <5	0.23	3 <	. 9	5			0.05							10	> </td <td>5 3</td> <td><10</td> <td>36</td> <td>0.06</td> <td>100</td> <td></td> <td></td> <td></td> <td>_</td>	5 3	<10	36	0.06	100				_
L50E 105+00N		1.4		5 200	<0.	5 <5	0.32	2 <	1 11	. 4			0.05			_			1010) 8	3 </td <td>5 2</td> <td><10</td> <td>25</td> <td>0.07</td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	5 2	<10	25	0.07					_
L51E 100+00N		1.4		5 100	<0.	5 <5	0.25	5 <	1 7	4			0.05			_				10) <:	5 3	<10	23	0.06	101	<10) 2	76	5 5
L51E 100+50N		2.30		5 100	<0.5	s <5	0.20) <:	. 9	5.	3 58	4.15	0.04	0.43	3 200	, .	0.02		1											
C31E 100+3014	10.2														4 339	5 2	0.01	. 37	7 1000) 17	2 </td <td>5 3</td> <td><10</td> <td>) 24</td> <td>0.07</td> <td>95</td> <td><10</td> <td></td> <td></td> <td></td>	5 3	<10) 24	0.07	95	<10			
L51E 101+00N	<0.2	1.8	2	5 160	<0.	5 <5	0.20	0 <	t 8				0.05		-) </td <td>5 3</td> <td><10</td> <td>25</td> <td>0.08</td> <td>97</td> <td><10</td> <td></td> <td></td> <td></td>	5 3	<10	25	0.08	97	<10			
		1.4		5 10	o <0.	5 <5	0.2	9 <	1 9				0.04		•		0.0		1.		2 <	5 3	<10	23	0.08	94	<10		_	
L51E 101+50N		1.5	-	5 12	0 <0.	5 <5	0.2	2 <	1 1:	1 5			0.04			-	0.0		. 43		4 <	5 3	<10	22	0.08	3 124	<10			
L51E 102+00N		1.6	-	0 9		5 <9	0.1	8 <	1 1	3 6			0.04				0.0					5 2	<10	26	0.08	3 96	<10	0 2	2 6:	1 2
L51E 102+50N		1.2	-	5 13	;	_	0.2	4 <	1	5 4	0 20	3.02	0.04	0.3	3 14	5 4	. 0.0.		,	_	-									
L51E 103+00N	~0.2	1.2		J 15		_								_				1 20	95	0 1	2 <	5 4	<10	36	0.10	164	<10	0 3	3 69	
	-0.3	2.3		5 18	0 <0.	5 <5	0.3	1 <	1 1:	1 3	0 58	5.51	0.04								8 <		<10	36	0.08	3 84	< 10	0 8	8 64	
L51E 103+50N			-	5 18				8 <	1	9 4	7 10	7 2.83	0.04						1	_	B <		3 <10	0 27	0.0	7 67	7 <10	0 3	3 89	
L51E 104+00N		1.5	•	5 16				1 <	1	6 3	19 37	2.61	0.06			_		_		_	-		1 <10	0 20	0.0	5 106	5 <1 0	o 7	3 11	
LS1E 104+50N		1.4		5 18					1 1	0 5	4 49	4.38	0.05	0.5				-		_	_		2 <1	0 22	0.0	5 108	3 <10	o 1	1 4	5 3
L51E 105+00N	<0.2			5 10 5 11		_			1	7 3	34 1	3.43	0.03	0.1	.8 35	5 <7	2 0.0	1 1	4 4/	0 1	•	-	_							
L52E 100+00N	<0.2	1.0	JU <		0 ~0.																									

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:______

: 0V0505 SJ

: Nov-28-00

Report No

Date

TSL Assayers Vancouver 8282 Sherbrooke St.

Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

9V-0436-RA1

Nov-17-99

Company:

CJL Enterprises Ltd

Project:

BOR

Assay Certificate

Attn:

L. B. Warren

We *hereby certify* the following assay of 4 rock samples submitted Nov-05-99 by L. B. Warren.

Sample Name	Au g/tonne	Au g/tonne	Ag g/tonne	Cu %	
BOR 1 #5513 A	0.03		5.4	0.629	Grale - Maticint. Diss. Co Grat - Gz Carb Alted Int. Matic Int. Hishgrade Graba cross 15 ft.
BOR 2 #5514 A	0.01		2.1	0.387	Grab - Qz Carb Alted, Int.
BOR 3 #5515 A	0.33	0.31	15.2	3.130	Matic Int Higherent
BOR 4 #5516 A	0.01		1.8	0.031	Graba Crass 15 15
*DUP BOR 1 #5513 A			5.2	0.630	
*MP-1a			14.0	0.287	Labo Check Samples.
*97 - 3	1.36				> CROCK DIT
*Blank	0.01		<0.1	<0.001	

Certified by

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario POK 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

TSL Assa; s Vancouver

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 9V0436 RJ

Date : Nov-17-99

Project: BOR Sample: rock

CJL Enterprises Ltd

Attention: L. B. Warren

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm		Cr ppm	Cu ppm		K %				Na %		P ppm	. ~	Sb ppm			Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
BOR 1 #S513 A	3.6	2.36	<5	90	<0.9	< 5	1.05	<1	130	100	6292	7.59	0.78	1.85	785	52	0.08	20	2360	1.4	<5	•								
BOR 2 #5514 A	1.0	0.89	<5	90	0.5		7.14	-1	• • •											_	< 5	9	<10	41	0.29	195	<10	7	128	6
			-		0.5	< >	7.14	<1	15	24	3776	9.23	0.41	1.86	5275	<2	0.02	12	1690	16	5	15	<10	117	< 0.01	55	<10	0		
BOR 3 #5515 A	14.8	2.60	< 5	10	< 0.5	< 5	0.52	1	319	46	>10000	>15.00	0.38	1 99	850	-2	0.02	61	2780	54								•		0
BOR 4 #5516 A	8.2	1 00	<5	150	40.5				4-							~2	0.02	01	2/60	34)	12	<10	12	0.23	213	<10	5	149	15
55K - #3315 K	0.2	1.70	< 3	150	<0.5	< >	1.46	<1	17	74	288	5.48	0.40	1.73	885	8	0.10	12	2270	6	<5	8	<10	64	0.24	177	<10	8	71	

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Assay Certificate

9V-0436-RA1

Company:

CJL Enterprises Ltd

Nov-17-99

Project:

BOR

Attn: L. B. Warren

We *hereby certify* the following assay of 4 rock samples submitted Nov-05-99 by L. B. Warren.

Sample Name	Au g/tonne	Au g/tonne	Ag g/tonne	Cu %
BOR 1 #5513 A	0.03		5.4	0.629
BOR 2 #5514 A	0.01		2.1	0.387
BOR 3 #5515 A	0.33	0.31	15.2	3.130
BOR 4 #5516 A	0.01		1.8	0.031
*DUP BOR 1 #5513 A			5.2	0.630
*MP-1a			14.0	0.287
* 97-3	1.36			
*Blank	0.01		<0.1	<0.001

Certified by

2

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario POK 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

Tel: (306) 931-1033 Fax: (306) 242-4717

Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Vancouver

8282 Sherbrooke St.

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

INVOICE

To: CJL Enterprises

Box 662

Smithers, BC Canada, VOJ 2NO

Attention: Lorne Warren

Invoice No.

41094

Invoice Date:

28-Nov-00

Account Number: 0096 File:

0V0505

Project: TBOR

Item Qnty. Unit Price Description Amount)-----1 70 Sample Prep:Soil 1.80 126.00 2 Sample Prep:Rock 18 5.25 94.50 3 8.00 704.00 88 ICP: Aqua Regia Leach 924.50 Sub-Total: Notes: GST: (R100294743) 64.72 Total: \$989.22