

ASSESSMENT REPORT

SOIL AND ROCK GEOCHEMISTRY PROGRAM CENTRAL AND NORTH PAN GRIDS JASPER PROPERTY, VICTORIA M.D.

NTS: 092C 088

LAT: 48°52' LONG: 124°36'

Report for Owner

INSPIRATION MINING CORP.

Report by

Arne Birkeland, P. Eng.

ARNEX RESOURCES LTD.

January 17, 2001 A SSESSMENT REPORT

Jasdoc\jasar200001.doc

TABLE OF CONTENTS

1.	Summary	3
2.	Introduction	4
	2.1. General	4
	2.2. Property Tenure	
	2.3. Location and Access	
3.	History	8
4.	Geology	8
	4.1. Regional Geology	8
	4.2. Local Geology	
	4.3. Structure and Alteration	12
	4.4. Mineralization	13
5.	Pan Central and North Grids – Geochemistry	13
	5.1. Introduction	13
	5.2. Procedure	14
	5.3. Threshold Values – RGS 24 Survey	14
	5.4. Soil Geochemistry Results	
	5.4.1. South Anomaly	31
	5.4.2. Central Anomaly	31
	5.4.3. North Anomaly	32
	5.5. Moss Mat Results	32
	5.6. Rock Sample Results	32
6.	Conclusions and Recommendations	33
7.	Certificate of Qualification and Consent	34
8.	Bibliography, Selected Refe rences	35

TABLE OF FIGURES

Figure 1: Property Location Map - British Columbia (1:2,00,000)	5
Figure 2 : Claim and Pan Soil Grid Location Map (1:50,000)	6
Figure 3: Regional Geology (1: 2,000,000)	9
Figure 4: Central Pan Soil Grid - Sample Location Map (1:2,000)	19
Figure 5 : Central Pan Soil Grid - Zinc Values (ppm)	20
Figure 6 : Central Pan Soil Grid - Lead Values (ppm)	21
Figure 7: Central Pan Soil Grid - Copper Values (ppm)	22
Figure 8 : Central Pan Soil Grid - Silver Values (ppm)	23
Figure 9 : Central Pan Soil Grid - Gold Values (ppb)	24
Figure 10: North Pan Soil Grid - Sample Location Map (1:2,000)	25
Figure 11: North Pan Soil Grid - Zinc Values (ppm)	26
Figure 12: North Pan Soil Grid - Lead Values (ppm)	27
Figure 13: North Pan Soil Grid - Copper Values (ppm)	28
Figure 14: North Pan Soil Grid - Silver Values (ppm)	29
Figure 15 : North Pan Soil Grid - Gold Values (ppb)	30

APPENDICIES

APPENDIX A: Statement of Expenditures

APPENDIX B: Analytical Procedures and Certificates – ALS Chemex Labs

APPENDIX C: Geochemical Data Sheets

APPENDIX D: Year 2000 Field Crew Details

JASPER PROPERTY, VICTORIA MINING DIVISION

1. SUMMARY

A grid geochemical exploration program was conducted on the Central and North Pan Soil Grids on the Jasper Property by Arnex Resources Ltd. for Inspiration Mining Corp. during October, 2000. One hundred soil, four moss mat and six rock chip samples were taken over a 650 metre by 200 metre grid at a cost of \$16,911.39.

The Jasper Property lies within close proximity to tidewater on west central Vancouver Island. An extensive logging road network provides cheap access to the area.

A +four km long northward striking extensive intense alteration zone in present within lower Jurassic Bonanza volcanics that underlie the property. Poly-metallic massive sulphide showings and soil/stream sediment anomalies are present within the alteration zone. Junior and Major Mining Companies have conducted a number of exploration programs on the Jasper, Tam and Pan Showing Areas since 1970. All prospects were consolidated under one ownership in 1994 and acquired by Inspiration Mining in 1995.

In 1998, an exploration program consisted of rock chip sampling of showings and mineralized float and grid soil geochemistry was completed at the South Pan Soil Grid. The grid detected numerous poly-metallic soil geochemical anomalies that indicate base metal mineralization is present within the intense alteration zone that partly underlies the soil grid. Poly-metallic geochemical anomalies trended northward beyond the grid.

The 2000 program extended the 1998 grid 650 metres northward. As was similar to results from the 1998 South Pan Soil Grid, numerous poly-metallic soil geochemical anomalies were detected by the Pan Central and Pan North Grids, many of which were from orange coloured gossanous soils associated with the alteration zone. Three principle anomalous areas were identified. Best results are present in the South Anomaly where soil values of up to +1000 ppm Pb-Cu-Zn and rock values of 1.5% Cu are present. Both the Central and North Anomalies also contain extensive soil anomalies >99th Percentile that are open up-slope to the east.

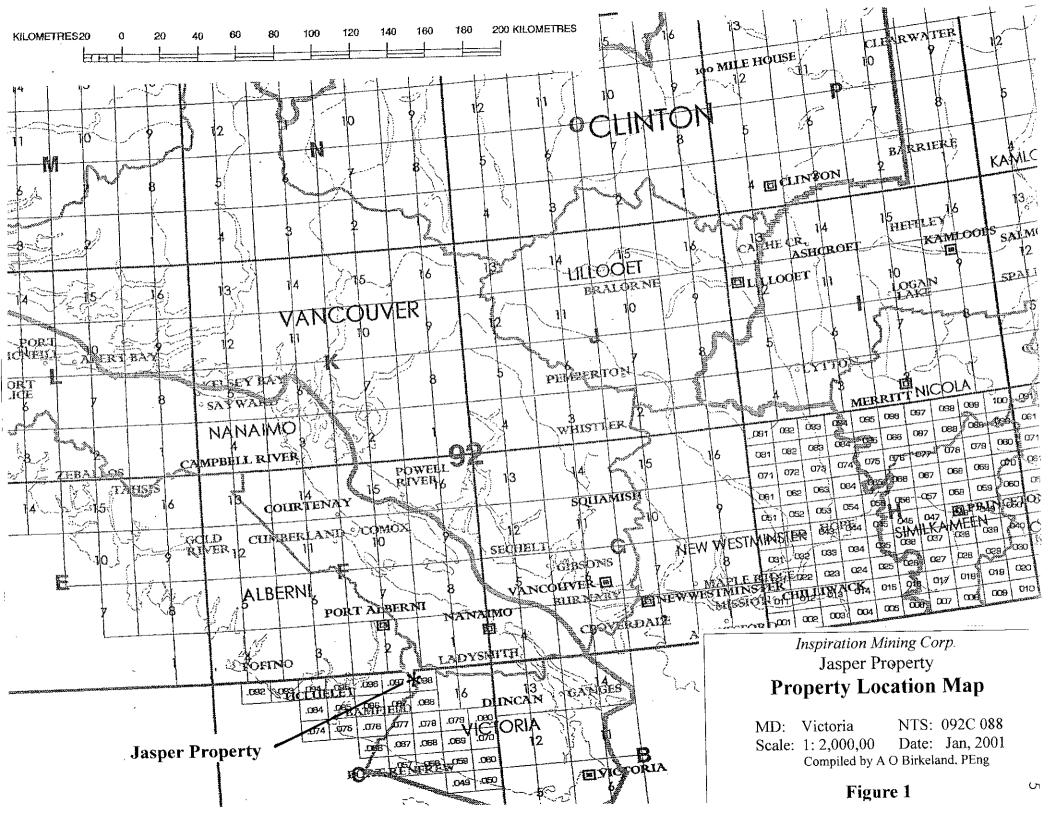
It is recommended that all anomalous soil grid lines be extended up-slope to define the eastern limit of the soil anomalies. The soil grid should also be extended northward to determine the strike extent of the anomalous alteration zone. Bedrock and surficial geology mapping should be completed accompanied by appropriate grid geophysics to define mineralized targets. Prospecting, hand and/or mechanized trenching should be carried out on the highest priority targets. Subject to results, diamond drill targets should be prioritized and drilled on a phased program basis.

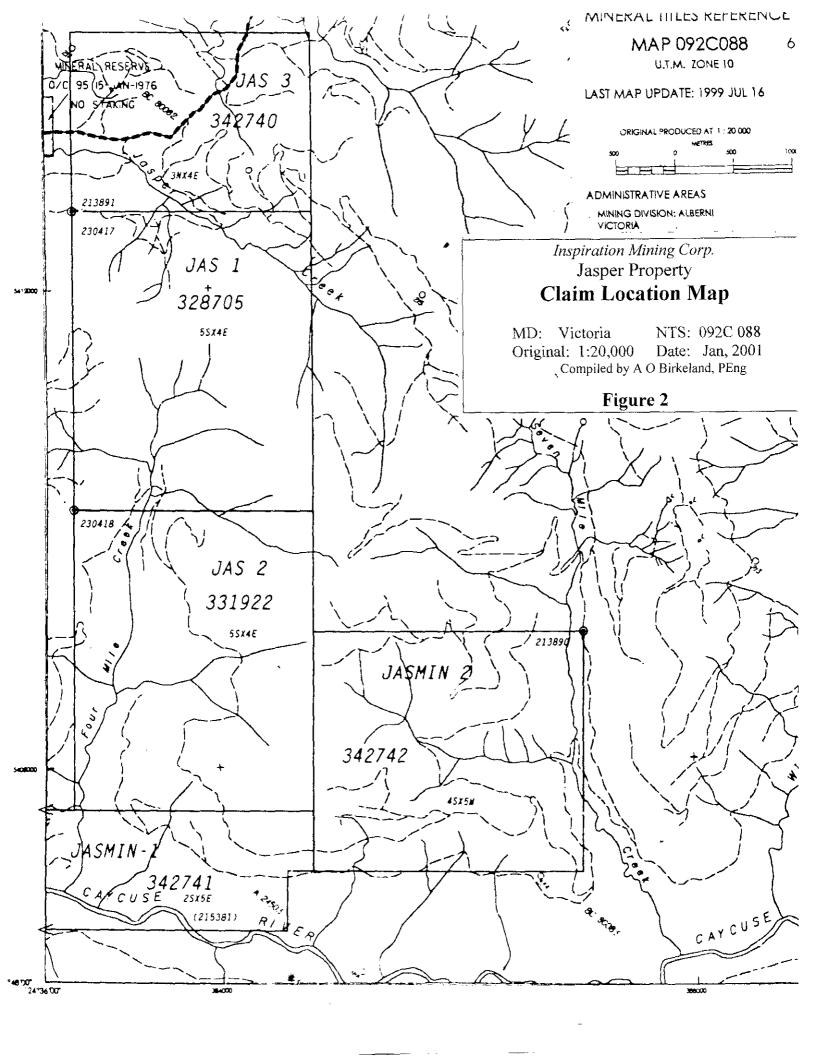
2. INTRODUCTION

2.1. General

Arnex Resources Ltd. conducted a ten person-day field exploration program for Inspiration Mining Corp. on the Jas 1-3 and Jasmin 1-2 Mineral Claims during the period September 26 2000 to January 17, 2001. The fieldwork was conducted October 9 to 14, 2000 by a two-person crew and consisted of grid soil geochemistry at the Central and North Pan Soil Grids (APPENDIX D, Field Crew Details).

One hundred and four soil samples and six rock chip samples were taken from a 650 metre by 200 metre grid. ALS Chemex Labs in North Vancouver processed the soil and rock samples as per APPENDIX B, Analytical Procedures and Certificates. A total expenditure of \$16,911.39 was incurred as per APPENDIX A, Statement of Expenditures. Assessment work was filed on October 26, 2000 as Event Number 3156403. The work was not conducted under an Annual Work Approval Number as no surface disturbance was caused.


2.2. Property Tenure


The Jasper Claim group consists of the Jas 1 to 3 and Jasmin 1 and 2 Mineral claims that total 82 units (Table 1, MEM Title Search By Owner, and Figure 2, Claim Location Map). The property is 100% owned by Inspiration Mining Corp. of Vancouver, B.C.

2.3. Location and Access

The Jasper Property is located in BCGS Map Sheet 092C 088 (NTS 92C/15, Figures 1 and 2). The Jasper property lies along Four Mile Creek and extends over the height of land to the tributaries of Jasper Creek. Logging road access is via Port Alberni or Cowichan Lake. J Branch road accesses the northern portion of the property and Caycuse Main the southern portion.

Steep incised drainages with rugged relief to approximately 300 meters (m) characterizes the physiography of the area. Much of the region has been logged in recent years and young second growth forest is present over most of the claims. Climatic conditions are temperate.

Table 1 Mineral Tenure – Jasper Property

Mineral Titles Search by Owner

The mineral tenure information at this site was last updated on the morning of November 14, 2000.

Title Search by Owner

Client Number: 138196

Tenure Type: All Standing: Good

Tenures held by INSPIRATION MINING CORPORATION:

There were 5 results.

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
328705	JAS 1	138196 100%	092C088	20011030	Good Standing 20011030	24 Victoria	20	230417
331922	JAS 2	138196 100%	092C088	20011030	Good Standing 20011030	24 Victoria	20	230418
342740	JAS 3	138196 100%	092C088	20011030	Good Standing 20011030	24 Victoria	12	213891
342741	JASMIN-1	138196 100%	092C087	20011030	Good Standing 20011030	24 Victoria	10	215381
342742	JASMIN 2	138196 100%	092C088	20011030	Good Standing 20011030	24 Victoria	20	213890

Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

Shortcuts: [Main Menu] [Free Miner] [Tenure Number] [Owner] [Locator] [Map] [Claim Name] [Tag Number] [Lot]

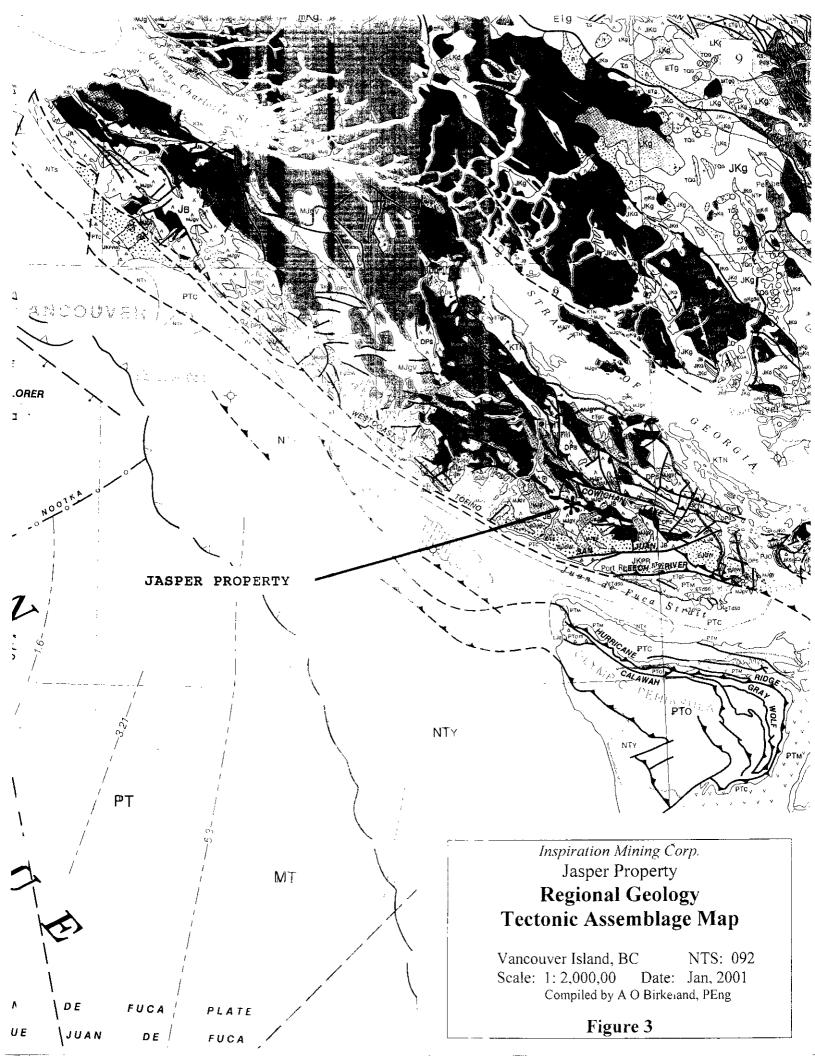
Last date page updated November 12, 1999.

•Top •Copyright •Disclaimer •Privacy •Feedback

3. HISTORY

The Jasper Property consists of three former Minfile occurrences known from north to south as the Jasper 1 (092C 080), Tam 16 (092C 081) and Pan-Easy (092C 088) prospects. The Tam and Easy properties were previously staked by Hudson Bay Mining and Smelting who conducted geological mapping, soil and rock chip geochemistry and an IP geophysical survey in 1970 and 1971. Also in 1971, Marshall Creek Copper conducted an extensive soil sampling program on the Pan, Easy and Tam properties. It is reported that Noranda conducted a regional magnetic survey during this era, but no information regarding the results were filed as a matter of public record.

The next period of exploration activity occurred in 1980 and 1981 when Malibar Mines conducted soil sampling on the Jasper property. In 1984 a prospecting program was carried out by Ron Bilquest followed by a geological, soil and VLF-EM program by Falconbridge in 1985. Asamara then conducted a brief geology, soil sampling and EM program in 1987.


The properties were then allowed to lapse and were relocated by Arne O. Birkeland in the summer and fall of 1994. A detailed geologic mapping and sampling program was carried out in August, 1994 on the J Branch Main Showing. A subsequent Geological and Geochemical Program was carried out during 1995. The property was optioned in 1995 to Consolidated Taywin Resources Inc., now Inspiration Mining Corp. who are the current owners. A Geological, Geochemical and Geophysical program was carried out between December, 1995 and June 1996 at the Jasper Main Showing area. Diamond drill targets were identified and additional work was recommended.

A rock and grid soil geochemical program was carried out in the vicinity of the Pan Road Showing by Arnex Resources Ltd for Inspiration Mining Corp during December, 1998. A poly-metallic soil anomaly was discovered trending northerly off the soil grid. Four outcrop showings were sampled that returned values ranging from 2%-4.9% Cu, 4.5%-17% Pb, 18%-32% Zn with up to 76.8 ppm Ag and 315 ppb Au over widths between 0.36 metre to 2.1 metre. It was recommended to extend the soil grid to the north and follow-up identified targets with geophysics and drilling.

4. GEOLOGY

4.1. Regional Geology

Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by

TECTONIC ASSEMBLAGE MAP LEGEND

UPPER CRETACEOUS - OLIGOCENE

NANAIMO fault-trough clastic wedge

BRAZEAU foredeep clastic wedge

UPPER UPPER CRETACEOUS

CARMACKS transferisional are volcanies

YAKUTAT accretionary prism

UPPER CRETACEOUS

MIDNIGHT PEAK transpressional arc volcanics

HONNA easterly derived clastic wedge

VIRGINIAN RIDGE westerly derived clastic wedge

TREVOR southwesterly derived clastic wedge

SMOKY foredeep marine shales

CRETACEOUS

Κv

VALDEZ accretionary prism

SKEENA easterly derived back-arc clastics

MID-CRETACEOUS

<u>m</u>Ks

SOUTH FORK transtensional cauldron-subsidence and arc volcanics

BLAIRMORE foredeep clastic wedge

LOWER CRETACEOUS

LONGARM clastic wedge

UPPER JURASSIC - LOWER CRETACEOUS

PACIFIC RIM mélange and chert-volcanic assemblage on Upper Triassic calc-alkaline arc volcanics

SAN JUAN imbricate, amalgamated mélange terrane

GAMBIER are and locally, lift volcanics

RELAY MOUNTAIN easterly derived clastics

KOOTENAY foredeep clastic wedge

PARSONS continental margin clastics, JKPA in Arctic Alaska Terrane, JKPP in Porcupine Terrane

MIDDLE AND UPPER JURASSIC

JBL

BOWSER LAKE back-arc (?) and foredeep clastic wedge on Stikinia

LOWER AND MIDDLE JURASSIC

BONANZA arc volcanics and near-shore clastics in Wrangellia

HARRISON LAKE are volcanies

SHUKSAN near-arc oceanic marginal basin crust and sediments

JL

LADNER are clastics and volcanics

јн

HAZELTON volcanic arc complexes in Stikinia

JT

TAKWAHONI Stikinia arc-derived clastics

JI

INKLIN arc clastics above Cache Creek Terrane

JHA

HALL Quesnellia arc-derived clastics

TRIASSIC - JURASSIC

SPRAY RIVER continental margin prism: TJSA in Arctic Alaska Terrane; TJSP in Porcupine Terrane TJSC in Cassiar Terrane. TJSCA in Cariboo Subterrane

UPPER TRIASSIC - LOWER JURASSIC

SETTLER oceanic crust and oceanic sediments

CULTUS arc clastics in Chilliwack Terrane

NICOLA arc volcanics in Quesnellia

UPPER TRIASSIC

KARMUTSEN rift volcanics in Wrangellia

HYD bimodal rift volcanics in Alexander Terrane

CADWALLADER arc clastics and volcanics

STUHINI arc volcanics in Stikinia

LEWES RIVER arc clastics, in part in Cache Creek Terrane

KUTCHO arc volcanics in Cache Creek Terrane

undivided TAKU assemblage

PERMIAN - TRIASSIC

Undivided Alexander Terrane sediments and volcanics

TECTONIC ASSEMBLAGE MAP LEGEND

PERMIAN - JURASSIC

BRIDGE RIVER accretionary prism and oceanic crust

ORCAS oceanic volcanics and sediments

PERMIAN

PYBUS platform sediments and volcanics

HALLECK sediments and volcanics

JUNGLE CREEK clastics mainly derived from uplift of ancestral Aklavik Arch, PJP in Poicupine Terrane

CARBONIFEROUS - JURASSIC

TOZITNA oceanic volcanics and sediments

SHEENJEK oceanic volcanics and sediments

PENNSYLVANIAN - PERMIAN

SKOLAI arc volcanics and sediments in Wrangellia

ISHBEL faulted passive continental margin sediments; PPICA in Cariboo Subterrane

MISSISSIPPIAN - UPPER TRIASSIC

CACHE CREEK oceanic volcanics and sediments and local accretionary prism mélange

DEVONIAN - TRIASSIC

DΤH

HARPER RANCH arc clastics; basement of Quesnellia

SLIDE MOUNTAIN oceanic marginal basin volcanics and sediments

DEVONIAN - PERMIAN

DPc

CANNERY offshelt clastics

CHILLIWACK arc volcanies and clastics

ASITKA arc volcanics and platform carbonates; basement of Stikinia

SICKER are volcanies clastics and platform carbonates; basement of Wrangellia

CARBONIFEROUS - PERMIAN

ANARCHIST oceanic volcanics and sediments, basement of Quesnellia

Outer detrital clastics, CPOP in Porcupine Terrane

CARBONIFEROUS

IYOUKEEN platform carbonate

DORSEY marginal basin chert and clastics

DEVONIAN - MISSISSIPPIAN

EARN fault-trough clastic wedge: DMEP in Porcupine Terrane: DMEC in Cassiar Terrane; DMECA in Cariboo Subterrane

IMPERIAL distal northerly derived clastic wedge.
DMIA Arctic Alaska Terrane

BESA RIVER most distal part of northerly derived Imperial Assemblage and westerly derived Earn Assemblage; upper Devonian shale partly derived from craton

DEVONIAN - CARBONIFEROUS

RUNDLE continental shelf carbonate and shale; DCRC in Cassiar Terrane

DEVONIAN - CRETACEOUS

WHITE RIVER mixed assemblage of Paleozoic-lower Mesozoic oceanic rocks including undated clastics like those in the Gambier Assemblage

DEVONIAN

CEDAR COVE platform carbonate and rift volcanics

KARHEEN post-Klakas Orogeny clastic wedge

ORDOVICIAN - TRIASSIC

Undivided phyllite in Alexander Terrane, OTAD includes Devonian to Triassic rocks in Duncan Canal Shear Zone

SHOEMAKER enigmatic assemblage of Paleozoic oceanic tuffs and sediments and Triassic arc (?) volcanics and sediments in Okanagan subterrane of Quesnel Terrane

ORDOVICIAN - DEVONIAN

ODK

KASKAWULSH back-arc carbonate and pelite

DONJEK back-arc volcanic clastics

ORDOVICIAN - SILURIAN

DESCON oceanic arc volcanics and sediments

UPPER PROTEROZOIC - PALEOZOIC

₽₽EK

EAGLE BAY clastics and volcanics of pericratonic Kootenay Terrane and Devonian and older magmatic arc rocks in Yukon-Tanana Terrane

UPPER PROTEROZOIC - TRIASSIC

PINK

NISUTLIN cataclastic sediments and volcanics of pericratonic Kootenay Terrane

CAMBRIAN - DEVONIAN

€DN

NASINA partly metamorphosed carbonaceous and siliceous offshelf sediments

€DR

ROCKY MOUNTAINS passive continental margin sediments; EDRA in Arctic Alaska Terrane: EDRP in Porcupine Terrane; EDRC in Cassiar displaced passive margin terrane; EDRCA in Cariboo displaced offshelf passive margin terrane

MIDDLE CAMBRIAN

Rift assemblage

UPPER PROTEROZOIC - LOWER CAMBRIAN

WALES metamorphosed oceanic arc volcanics

NISLING metamorphosed passive continental margin assemblage Paleozoic and Mesozoic strata intruded by Jurassic and Tertiary Intrusions (Figure 3, Tectonic Assemblage Map).

The Jasper property is hosted in a belt of rocks mapped as lower Jurassic Bonanza group which trends southeasterly from Nitinat Lake through Gordon River, south of Cowichan Lake.

The Bonanza Group in this vicinity consists of a variety of maroon to grey-green, feldspar phyric basalt and andesite flows, dacite and felsic lapilli tuff containing various minor gabbro, andesite and dacite dykes. There is a lack of lithologic continuity and distinct marker beds are absent. In the basal part of the sequence, sedimentary rocks are found interbedded with lapilli and crystal tuffs and a sub-aqueous environment is indicated.

Several granodiorite Island Intrusion stocks occur in the area. The coeval stocks are regular to elongated in shape with steep sides. The major lithology is granodiorite to quartz-diorite and most of the stocks are rich in mafic inclusions, particularly in marginal zones where magmatic intrusive breccias are developed. Stocks are rounded in outcrop shape.

Numerous RGS anomalies and Minfile occurrences are present in the general Nitinat - Cowichan area and both porphyry and VMS style mineralization has been reported by BCGS geologists. Porphyry style Cu-Mo occurrences are commonly associated with high level sub-volcanic dykes and sills. The Debbie - Lizzard - Thistle VMS belt occurs in the northern portion of the region hosted in rocks mapped as Sicker Group. Massey and Friday note VMS stratigraphic mineral potential where reported "sulfidic argillites are found interbedded with tuffs" in the basal part of the Bonanza sequence in the Alberni - Cowichan area.

4.2. Local Geology

The Jasper property is underlain by mafic to felsic volcanic rocks that have been previously mapped as Bonanza group. The central part of the property is underlain by a north-south trending sequence of intermediate flows and flow breccias that are flanked to the east by mafic flows. A wedge shaped body of felsic flows overlies the mafic rocks to the east. Felsite dykes intrude the intermediate and mafic volcanics and are likely feeders to the younger felsic flows. Often the intermediate and mafic flows and flow breccias are massive and bedding orientation is impossible to determine. Local foliation is oriented north-south.

4.3. Structure and Alteration

A late major fault suture cuts Vancouver Island from the mouth of the Carmanah River on the West Coast to Qualicum Beach on the East Coast. Four Mile Creek and the J Branch Main Showing on Jasper Ridge occur along the major fault structure. A north

trending gossanous alteration zone with a strike length greater than 4 km underlies the Jasper Property along the fault from the Caycuse Creek drainage in the south to the Nitinat Valley in the north. The alteration zone is characterized by moderate to intense argillization and silicification accompanied by ubiquitous pyrite flooding. Coincidental narrow fault and fracture zones often emanate as a conjugate set at right angles to the main north trending fault system.

The Pan Soil Grid area is partially underlain by the intense alteration zone. Ferrocrete and Till commonly overlie the alteration zone and have the effect of "masking" residual soil anomalies.

4.4. Mineralization

At least six high-grade Cu, Zn +/- Pb sulphide showing areas have been identified on the property to date (Birkeland, July, 1996).

At the Pan Road Showings, previous sampling encountered a weighted average interval over 1.99 m width that returned values of 4.59% Cu, 17.37% Zn and 0.89% Pb with precious metal credits from a road-cut outcrop. A showing approximately 100 m to the south returned 2.13% Cu, 22.3% Zn and 17.2% Pb over 1.86 m. Two narrow massive pyrite - chalcopyrite lenses occur at the 465 m elevation level on the spur road 100 m east of the Pan Road Showing and probably represent the strike extension of the Pan zone.

PAN CENTRAL AND NORTH GRIDS – GEOCHEMISTRY

5.1. Introduction

Over 4,000 soil samples located on four principle grids are reported to have been taken historically on the property, including recent soil sampling on the J-Branch Main Showing and Pan Showing areas. Previous soil sampling has established that coincident anomalous Cu-Zn +\- Ag-Au values occur over a considerable portion of a +4 km strike length of the main Four Mile Alteration Zone.

High-grade massive sulphide showings are know to be present in a highly altered volcanic host rock at the Pan Road Showing area. The objective of the 1998 Assessment work program was to establish a soil grid at the Pan Road Showing to define the extent of the mineralized zones and related anomalies. The soil anomaly was found to trend to the north off the 1998 grid. The objective of the 2000 field program was to continue the soil grids to the north to determine the size and nature of the poly-metallic soil anomalies.

5.2. Procedure

Conventional B horizon soil samples were taken on a flagged soil geochemical grid from alteration zone trending northerly beyond the 1998 grid in the vicinity of the Pan Road Showings. A 650 metre by approximately 200 metre grid was sampled at 25 m sample intervals with 50 m line spacings (See Figures 4 and 10, Sample Location Maps). Four moss mat and six rock chip samples from mineralized float occurrences and showings were taken and are also plotted on Figures 4 and 10.

Sample descriptions and observations were recorded and are reported in APPENDIX C, Geochemical Data Sheets.

Arnex Resources Ltd delivered all samples to ALS Chemex Labs. Soil and Moss Mat Samples were dried and sieved to -80 mesh and analyzed by ICP-32 and Au 983 analytical techniques (See Sample Preparation, Analytical Techniques and Certificates of Analysis, APPENDIX B). Rock Chip samples were crushed screened and pulverized and analyzed by geochemical or assay means depending on the sulphide content of the samples.

Analytical Procedures and Analytical Certificates are appended as APPENDIX B and values for selected elements are contained in Table 2, Soil Sample Analytical Results, Table 3, Moss Mat Analytical Results and Table 4, Rock Sample Analytical and Assay Results. Soil Grid anomalies for selected elements are presented as symbol maps in Figures 5 to 15.

5.3. Threshold Values - RGS 24 Survey

Table 5 is a Statistical Summary of Sediment Samples taken as part of the BC MEMPR RGS 24 Survey conducted in 1988. Extensive soil and sediment sampling from western Vancouver Island has demonstrated continuity between hydromorphically transported sediment and soil sample mediums. Thus Threshold Values for soil sampling at the Pan Grids can be established as defined by the regional sediment values listed in Table 5.

5.4. Soil Geochemistry Results

As was similar to results from the 1998 South Pan Soil Grid, numerous poly-metallic soil geochemical anomalies were detected by the Pan Central and Pan North Grids, many of which were from orange coloured gossanous soils associated with the alteration zone.

Table 2
Soil Sample Analytical Results - Pan Soil Grid - Year 2000
Selected Elements

c;\myfiles\yas\2000sxresults.xls

A0031544 - CERTIFIED
CLIENT . "ARNEX RESOURCES LIMITED
of SAMPLES : 98
DATE RECEIVED : 16-OCT-2000
PROJECT : "JAS "

CODE	983	2118	2120	2121	2125	2126	2127	2128	2150	2135	2136	2138	2140	214
SAMPLE	Au	Ag	As	Ва	Cd	Co	Cr	Cu	Fe	Mn	Мо	Ni	Pb	Z
DESCRIPTION	ppb	ppm	ppm	ppm	ppm	ppm_	ppm	ppm	<u>%</u>	ppm	ppm	ppm	ppm	ppr
00306	<5	<0.2	<2	90	<0.5	33	9	371	5,3	1510	3	9	44	24
00307	35	0.4	<2	110	5.5	60	4	2 4 1	6.5	2810	16	5	164	109
00308	10	<0.2	2	130	5.5 8	309	<1	1505	7.41	>10000	9	11	1735	107
00309	10 <5	0.2					8		4.85	2010	4	7	200	45
00309	-	<0.2	4	140	1	31		345	5.03		1	10	22	11
	15		6	100	0.5	45	8	153		1475	1	3	20	
00311	<5	1.8	<2	30	< 0.5	5	8	68	3.31	310	-	8	18	10
00312	<5	0.4	<2	100	<0.5	24	12	126	5.37	1160	3			
00313	<5	<0.2	<2	190	<0.5	45	9	106	5 41	1440	1	13	22	11
00314	<5	0.2	<2	40	< 0.5	8	12	50	5.24	670	<1	3	10	
00315	<5	0.4	<2	80	<0.5	17	12	116	4.39	850	1	7	14	1
00316	<5	<0.2	2	50	<0.5	14	15	104	5.22	1610	<1	6	10	1
00317	<5	0.2	<2	80	<0.5	9	8	76	4.93	570	<1	5	8	- 1
00318	40	<0.2	<2	50	<0.5	8	8	51	4.86	640	<1	3	14	
00319	<5	<0.2	<2	80	< 0.5	10	6	69	4.74	730	1	3	32	
.00320	5	0.6	<2	90	<0.5	26	5	343	6.08	1225	5	3	88	11
00321	10	0.6	6	170	< 0.5	27	3	1055	5.67	1595	8	3	148	2
.00322	<5	< 0.2	<2	220	<0.5	29	6	365	3.64	2530	3	5	36	2
00323	10	< 0.2	12	70	< 0.5	26	10	307	5.19	1410	2	10	40	1
100324	<5	<0.2	<2	140	0.5	26	12	178	4.31	1395	<1	9	14	1
00325	<5	0.2	<2	80	<0.5	6	11	85	5 62	340	i	3	18	1
00326	35	0.4	<2	60	<0.5	7	16	188	7.34	475	5	4	22	1
00327	< 5	0.2	<2	40	0.5	7	14	66	6.61	475	3	3	14	1
00328	15	0.2	<2	50	0.5	12	12	90	4.9	785	ر <1	6	6	1
00329	<5	<0.2									•			
100329			<2	70	<0.5	15	14	146	5.8	755	2	9	12	3
100330	<5	0.2	<2	100	<0.5	17	11	180	5.21	945	4	7	20	2
	<5	0.6	<2	90	0.5	22	16	373	6.15	980	5	9	26	3
00332	<5	<0.2	<2	80	0.5	20	13	150	4.81	1065	<1	11	18	1
100333	<5	<0.2	<2	50	<0.5	16	11	370	5.61	1110	1	9	12	1
100334	165	0.4	<2	70	0.5	7	13	34	6 4 1	320	4	3	8	
00335	<5	0.2	<2	50	<0.5	7	10	33	5 94	360	2	1	8	
100336	<5	0.6	<2	60	<0.5	15	16	77	5.69	695	4	6	18	1
00337	<5	0.4	<2	100	<0.5	21	5	161	5.27	1835	3	3	284	3
100338	5	0.2	<2	120	0.5	30	4	216	4.86	2010	4	2	162	1
00339	10	0.2	<2	120	0.5	24	3	189	5.1	1565	3	1	114	1
00340	130	7	50	80	1	7	3	759	11	950	74	<1	484	1
00341	<5	0.2	<2	70	<0.5	14	5	78	3 85	850	3	1	50	•
00342	<5	0.2	<2	50	0.5	16	8	141	5.1	1305	1	7	8	2
00343	<5	0.2	<2 4	40	<0.5	4	5				1	1	10	2
00344	<5	0.2	<2	60				32	4.56	705	•	3		
00345	<5	0.2			0.5	10	6	184	4.72	1260	1	_	18	1
00346			<2	90	<0.5	16	6	214	4.86	865	4	1	104	2
00347	<5	<0.2	<2	80	0.5	10	8	99	4.74	1910	1	3	62	1
	<5	0.2	<2	50	<0.5	6	10	75	4.82	575	<1	3	8	_
00348	<5	0.2	<2	70	<0.5	13	16	179	6.09	725	< 1	7	16	2
00349	25	<0.2	<2	160	<0.5	31	8	129	4.05	2440	2	5	18	1
00350	25	0.2	<2	60	<0.5	5	9	66	6.07	355	<1	1	8	1
00351 .	<5	02	<2	110	< 0.5	8	5	120	5.46	980	1	1	10	1
00352	<5	0.2	<2	70	< 0.5	11	6	116	5,52	1305	<1	1	18	1
100353	<5	0.4	<2	130	< 0.5	13	2	138	4.7	1475	1	1	44	1
100354	<5	0.2	2	90	0.5	6	3	60	5.66	1385	<1	<1	18	
00355	10	0.8	<2	50	0.5	4	4	166	5.5	520	3	<1	20	

Table 2
Soil Sample Analytical Results - Pan Soil Grid - Year 2000
Selected Elements

c:\myfiles\jas\2000sxresults.xls

A0031544 - CERTIFIED
CLIENT: "ARNEX RESOURCES LIMITED
of SAMPLES: 98
DATE RECEIVED: 16-OCT-2000
PROJECT: "JAS: "

CODE	983	2118	2120	2121	2125	2126	2127	2128	2150	2135	2136	2138	2140	2149
SAMPLE	Au	Ag	As	Ba	Cd	Co	Cr	Cu	Fe	Mn	Мо	Ni	Pb	Zn
DESCRIPTION	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
100501	<5	0.2	<2	70	1	11	16	90	6.01	645	<1	6	10	114
100501	<5	0.2	<2	140	<0.5	18	7	81	5.99	1735	1	4	10	102
100502	<5	0.2	<2	60	0.5	8	7	64	5.02	1160	<1	3	4	94
100504	< 5	<0.2		360	<0.5	13	4	26	2.45	5990	<1	4	16	56
100505	<5	<0.2	<2 2	170		4	4	12	2.43	550	<1	4	6	26
100506	245	<0.2		170	<0.5 <0.5		9	78	4.67	3930	2	4	10	106
100507	<10		<2			16	-				<1	4	10	66
100507	<5	0.2 <0.2	2 <2	160	< 0.5	9	5	25 25	2.36	1450 8780	<1	11	22	92
100508				370	<0.5	16	11		2.87			5	10	88
	<5	0.2	<2	70	0.5	14	13	97	5 73	1275	<1			
100510	<5	0.2	<2	60	_ 1	15	10	80	7.17	1645	2	3	8	72
100511	<5	<0.2	2	110	< 0.5	15	6	47	3 92	1445	1	6	18	54
100512	<5	0.4	4	50	<0.5	6	11	29	5.43	690	<1	3	6	56
100513	<5	0.2	<2	60	0.5	9	10	74	5.06	910	<1	4	10	132
100516	5	0.2	2	210	1.5	89	8	228	6.57	3570	4	6	36	212
100517	<5	<0.2	6	440	3.5	57	8	185	4.67	5600	1	13	84	708
100518	<5	<0.2	6	440	1	32	6	95	5.03	1675	2	4	40	302
100519	35	0.2	18	380	1.5	31	10	244	6,96	1565	5	13	50	624
100520	35	0.6	34	200	1.5	16	9	239	6.53	1250	3	20	46	568
100521	<5	< 0.2	<2	770	3	51	4	66	2.66	6470	<1	9	314	202
100522	15	0.2	10	180	1	22	9	252	6 68	1100	4	6	26	254
100523	<5	0.2	4	50	< 0.5	5	12	100	5 72	355	<1	2	14	70
100524	<5	0.2	<2	50	0.5	7	14	104	6.54	425	<1	4	16	114
100525	<5	0.2	2	70	0.5	5	12	46	5.9	230	1	1	10	46
100526	<5	0.2	<2	90	1	17	12	323	5.64	1190	2	7	22	264
100527	<5	0.4	<2	80	0.5	10	12	93	5.71	880	<1	4	6	108
100529	<5	0.2	<2	190	0.5	17	19	157	5.46	1025	<1	10	6	182
100530	10	0.2	8	250	<0.5	22	12	78	4.72	2890	4	9	18	156
100531	<5	<0.2	6	150	< 0.5	14	9		4.64	1515	3	6	16	144
100532	<5	<0.2	6	150	<0.5	16	10	55	4.62	780	5	4	22	162
100533	<5	0.2	4					54						
100534	<5			60	<0.5	7	8	33	4.73	300	3	3	18	76
100535	-	0.4	10	90	<0.5	11	13	310	5.83	560	8	7	42	308
100536	<5	0.2	8	250	< 0.5	22	10	118	5 17	1895	7	5	58	158
	<5	0.2	4	100	<0.5	5	5	31	4.14	300	3	2	18	34
100537	<10	0.2	6	90	<0.5	7	8	20	3.02	620	2	4	12	34
100538	<5	0.2	2	220	<0.5	17	15	49	3.84	2560	4	8	16	70
100539	<5	0.4	8	60	<0.5	5	7	30	4.09	290	1	3	14	50
100540	<5	06	6	60	<0.5	11	11	196	6.33	675	4	6	28	130
100541	<5	0.2	6 `	110	< 0.5	15	12	278	4.67	590	7	8	54	244
100542	<5	0.2	6	50	< 0.5	9	12	101	5.46	500	3	4	22	148
100543	<5	0.2	8	60	< 0.5	11	16	94	5.76	860	7	7	28	202
100544	<5	0.2	8	100	< 0.5	7	10	35	4.5	705	5	4	20	82
100545	10	0.2	8	40	< 0.5	6	12	52	5.64	365	4	3	36	60
100546	<5	0.4	4	80	0.5	16	17	75	6.67	760	3	9	22	140
100547	<5	< 0.2	4	50	< 0.5	9	20	20	5.92	310	1	8	24	60
100548	<5	0.4	6	110	< 0.5	74	12	1245	5.15	3290	6	7	40	166
100549	<5	< 0.2	8	210	0.5	20	16	43	6.21	1295	2	9	32	120
100550	<5	<0.2	8	120	0.5	20	18	80	6.78	1495	3	10	26	176
100551	<5	0.2	2	110	<0.5	15	12	57	5.67	1005	4	6	18	144

Table 3

Moss Mat Sample Analytical Results - Pan Soil Grid - Year 2000 Selected Elements

c:\rnyfiles\jas\2000mmsxresults.xls

A0031545 - CERTIFIED
CLIENT: "ARNEX RESOURCES LIMITED
of SAMPLES: 4
DATE RECEIVED: 16-OCT-2000
PROJECT: "JAS"

Code	983	2118	2120	2121	2125	2126	2127	2128	2150	2135	2136	2138	2140	2149
SAMPLE	Au	Ag	As	Ва	Cd	Co	Cr	Cu	Fe	Mn	Mo	Ni	Pb	Zn
DESCRIPTION	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm						
100356	<5	<0.2	12	80	<0.5	18	18	52	4 93	865	1	10	12	102
100514	20	1.2	16	290	1.5	38	12	392	4.39	2750	5	10	50	398
100515	<5	<0.2	16	210	1	27	13	182	4.65	1530	3	11	32	208
100528	10	0.2	30	430	1.5	32	10	157	3 45	2920	5	10	34	210

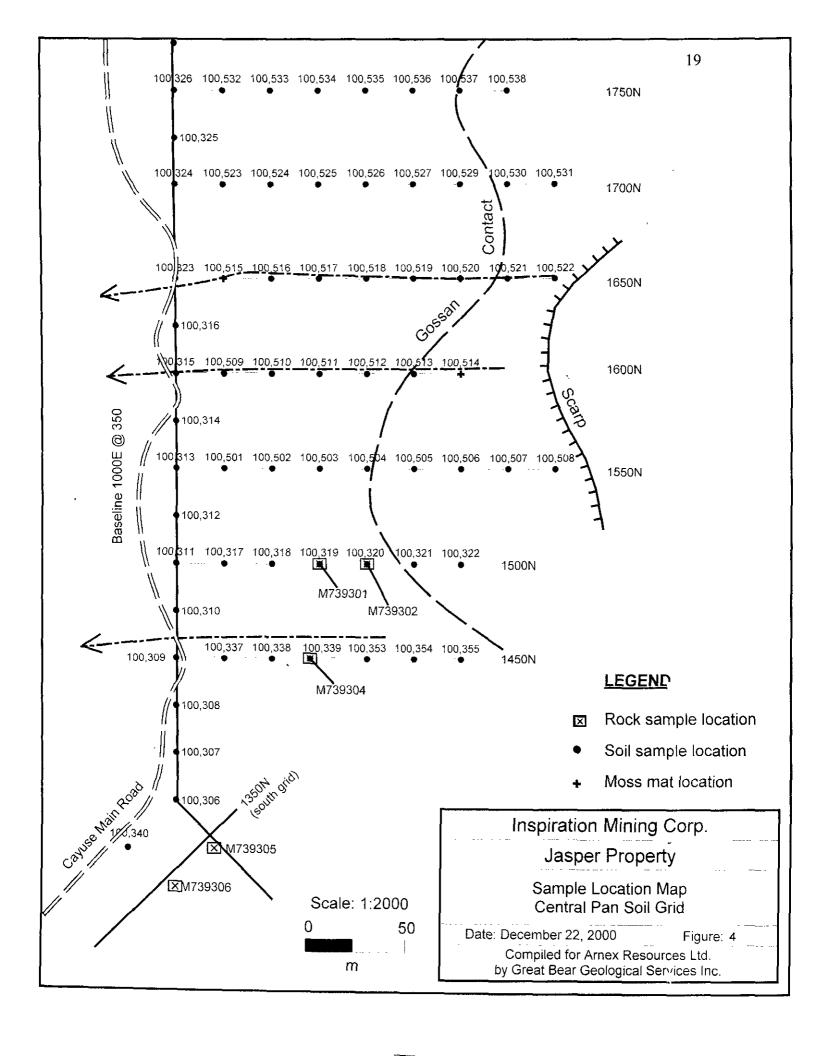
Table 4 Rock Sample Analytical Results - Pan Soil Grid - Year 2000 Selected Elements

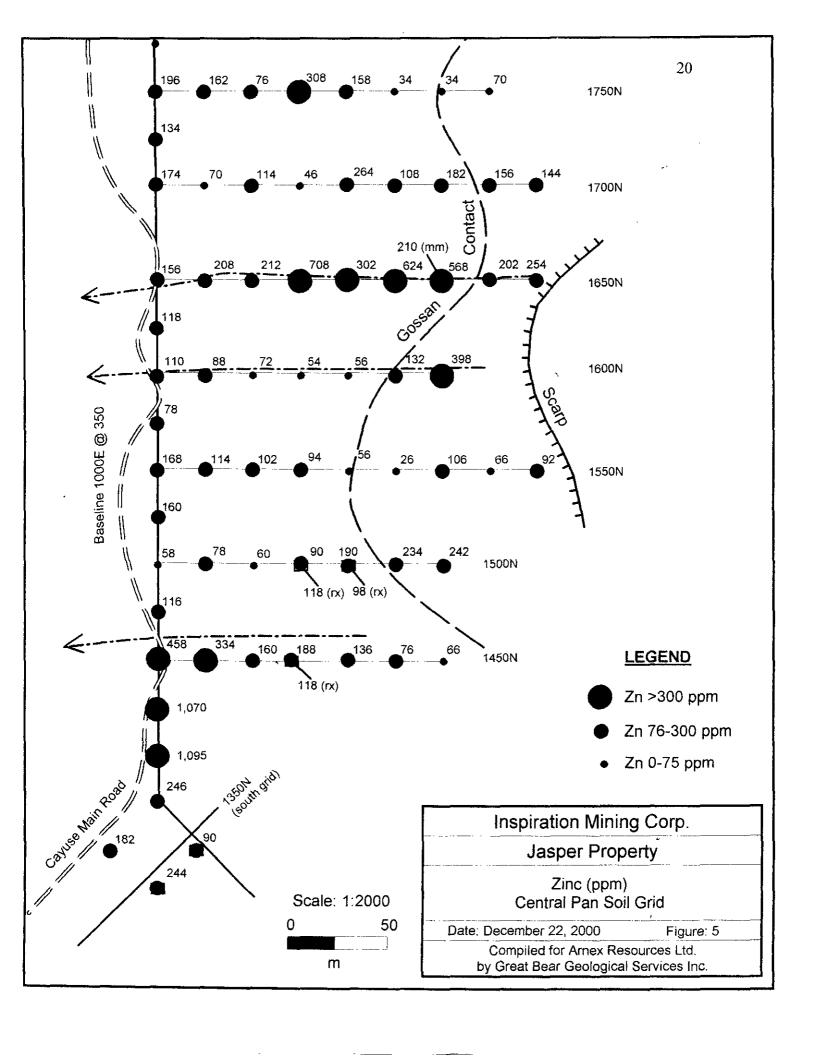
A0031546 - CERTIFIED
CLIENT: "ARNEX RESOURCES LIMITED
of SAMPLES: 6
DATE RECEIVED: 16-OCT-2000
PROJECT: "JAS "

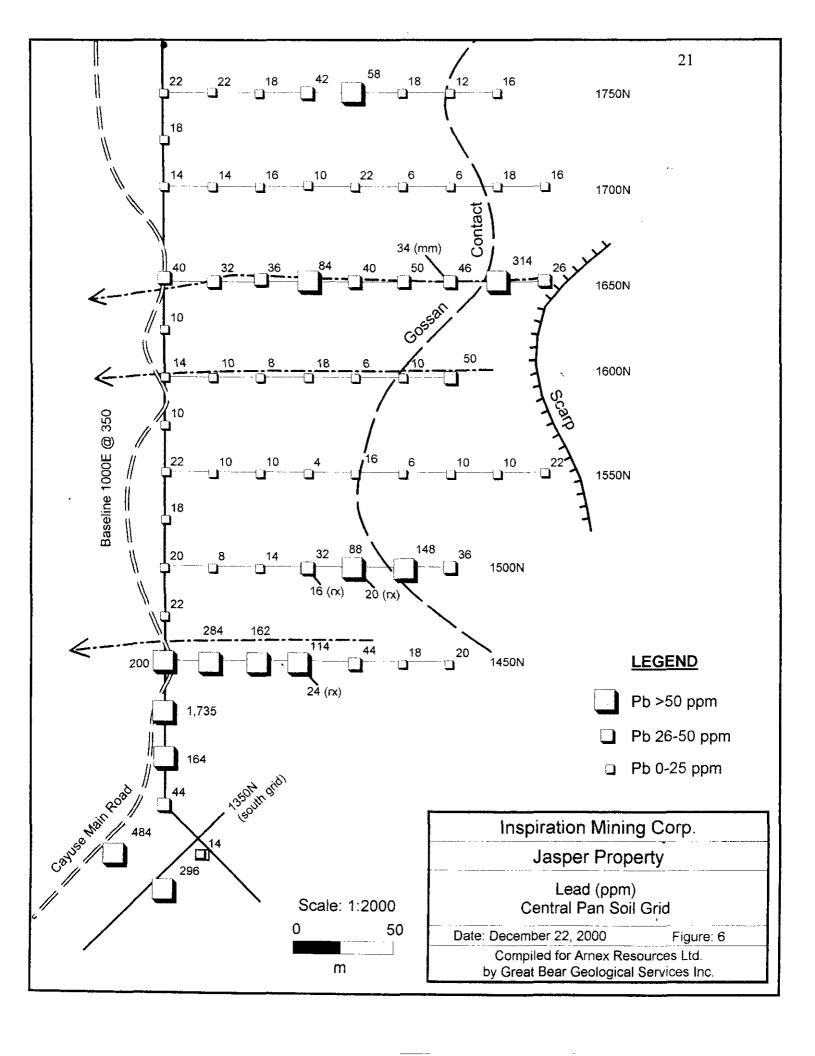
Code	983	2118	2120	2121	2125	2126	2127	2128	2150	2135	2136	2138	2140	2149
SAMPLE	Au	Ag	As	Ba	Cd	Co	Cr	Cu	Fe	Mn	Mo	Ni	Pb	Zn
DESCRIPTION	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm						
M739301	5	0.2	4	30	<0.5	17	10	70	5.17	2200	1	10	16	118
M739302	<5	<0.2	8	30	<0.5	15	12	43	4.94	2100	3	9	20	98
M739303	NotRed	NotRed	NotRed	NotRcd	NotRed	NotRed	NotRed	NotRcd	NotRed	NotRed	NotRed	NotRcd	NotRcd	NotRed
M739304	5	0 2	10	30	< 0.5	18	13	22	5.48	2450	1	10	24	118
M739305	10	0.2	4	70	< 0.5	7	11	103	4.98	855	5	4	14	90
M739306	65	6.4	46	10	< 0.5	43	52	>10000	9.89	870	23	5	296	244

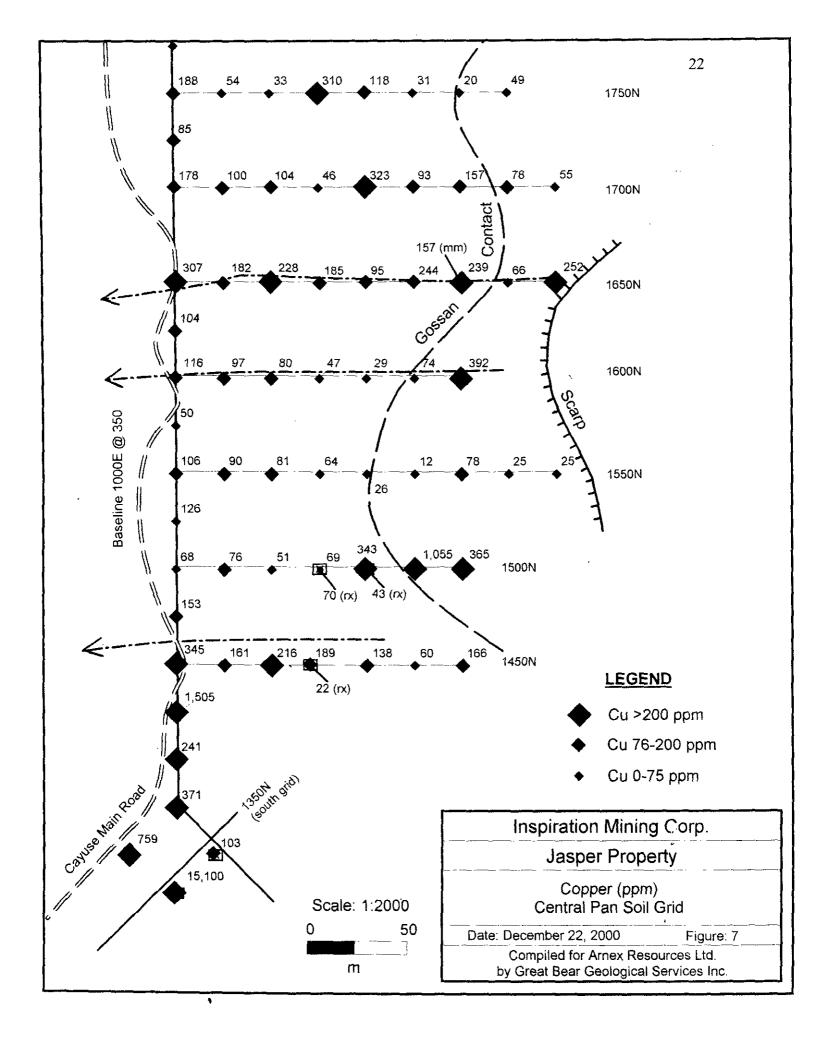
Rock Sample Assay Results - Pan Soil Grid - Year 2000

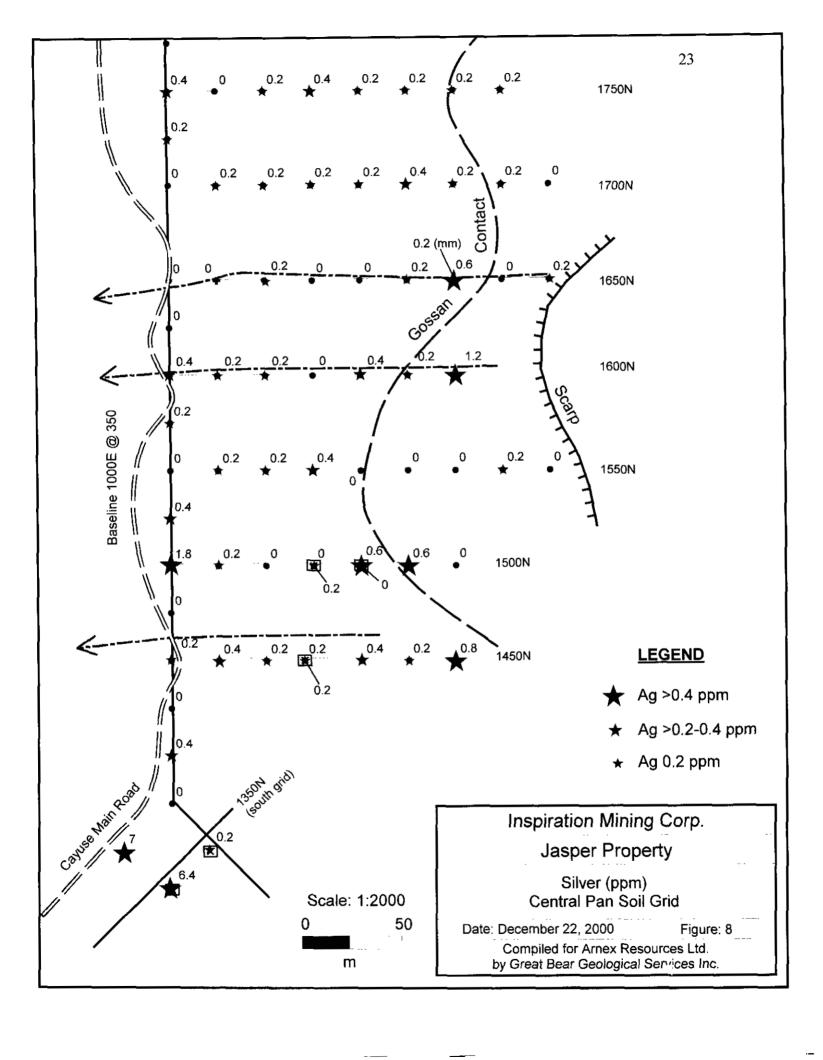
A0032223 - CERTIFIED
CLIENT: "ARNEX RESOURCES LIMITED
of SAMPLES: 1
DATE RECEIVED: 24-OCT-2000
PROJECT: "JAS . "
" OVERLIMITS from A0031546"

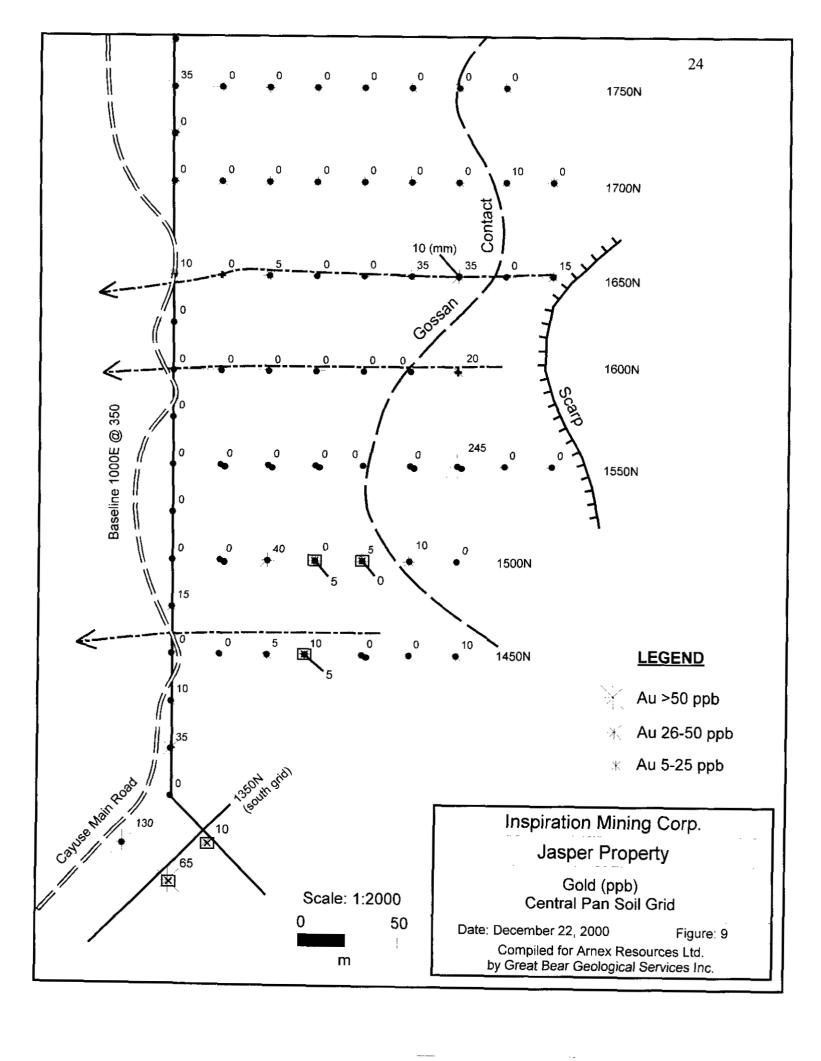

Code	301	
SAMPLE	Cu	
DESCRIPTION	%	
M739306	1.51	

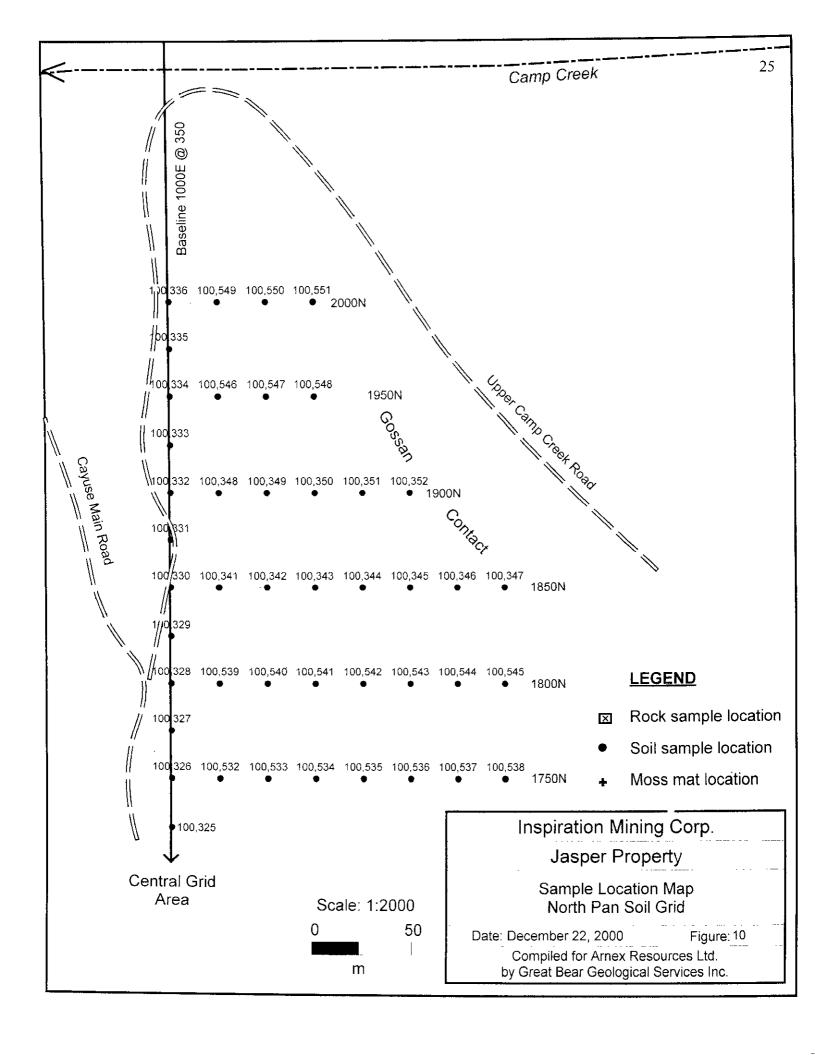

Table 5
Threshold Values

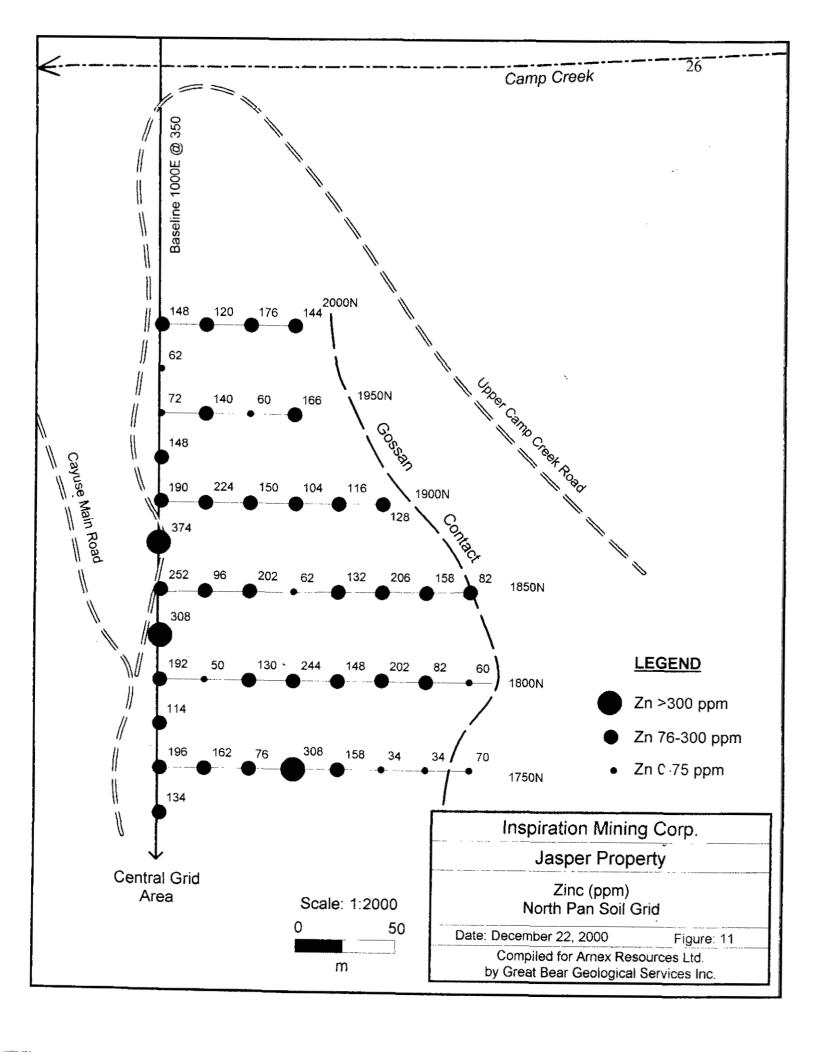

Statistical Summary of Sediment Samples - 599 Samples BC MEMPR RGS 24 GSC OF 2182

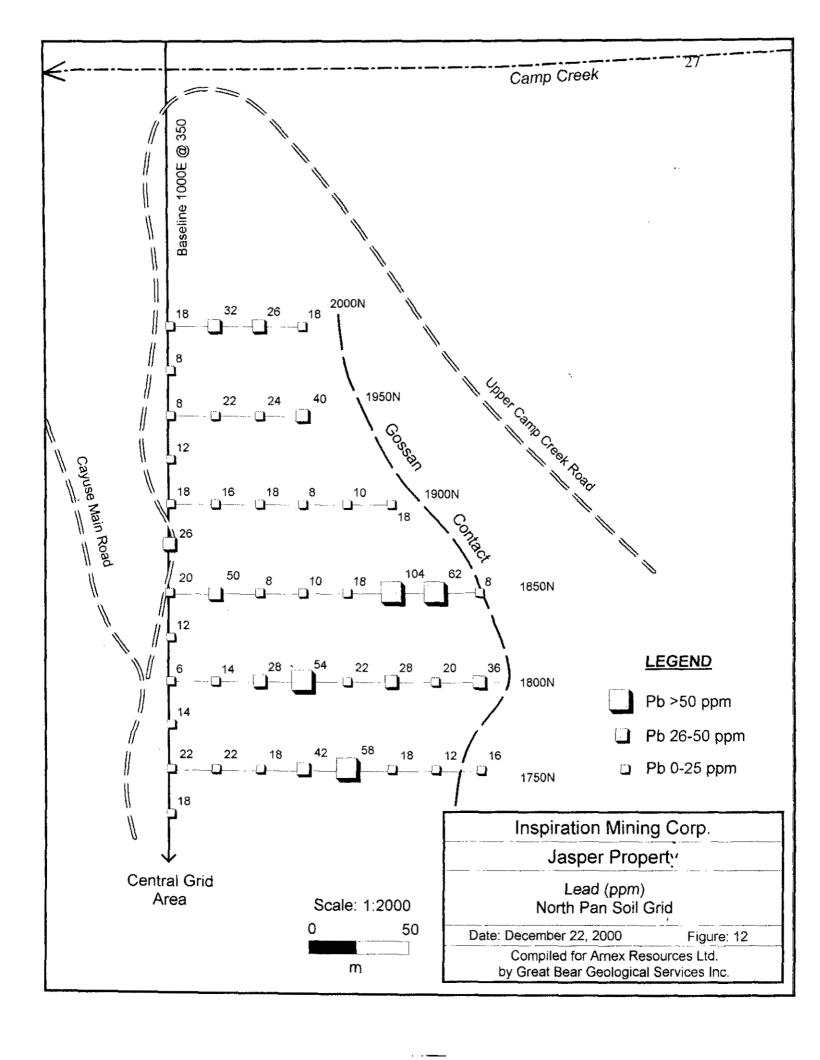

Anomalous values for lower Jurassic Bonanza Group

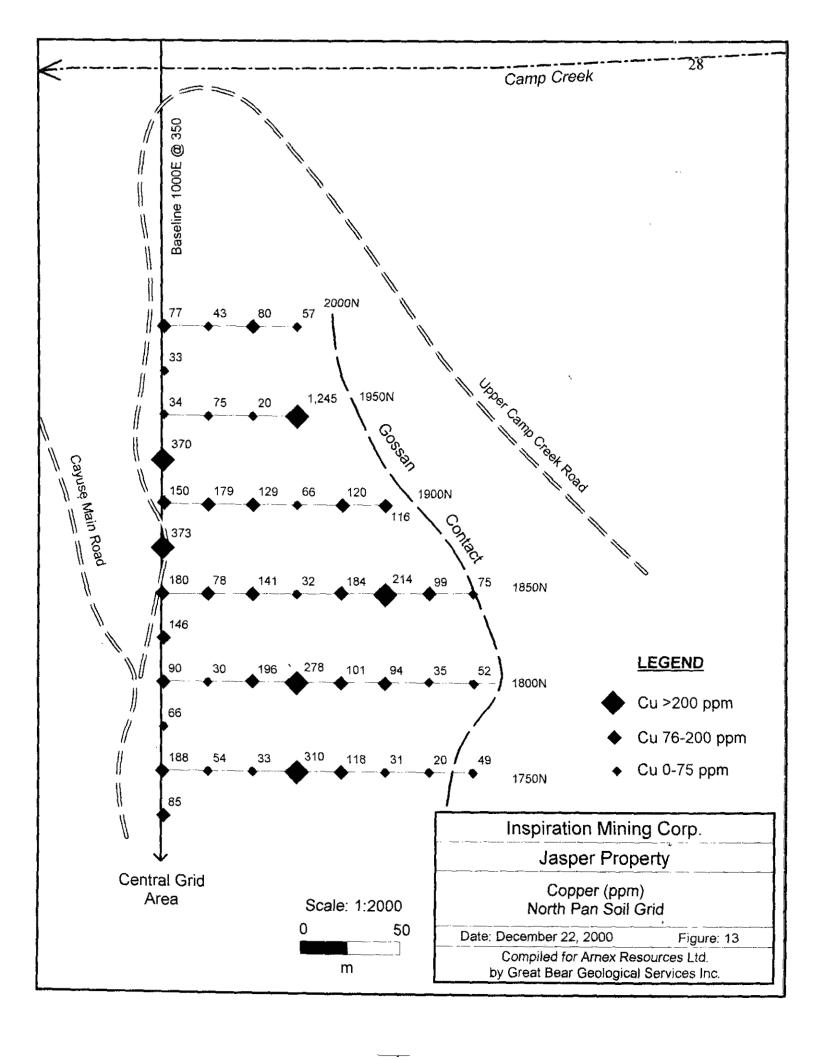

Ore Element	90th percentile	95th percentile	99th percentile
Gold	70 ppb	200 ppb	680 ppb
Copper	74 ppm	111 ppm	129 ppm
Lead	9 ppm	11 ppm	41 ppm
Silver	0.1 ppm	0.2 ppm	0.3 ppm
Zinc	124 ppm	170 ppm	215 ppm
Indicator Element	90th percentile	95th percentile	99th percentile
Arsnic	6 ppm	7 ppm	9 ppm
Iron	5.7 %	6.2 %	6.8 %
Manganese	1140 ppm	1360 ppm	2355 ppm
Molybdemun	4 ppm	5 ppm	23 ppm

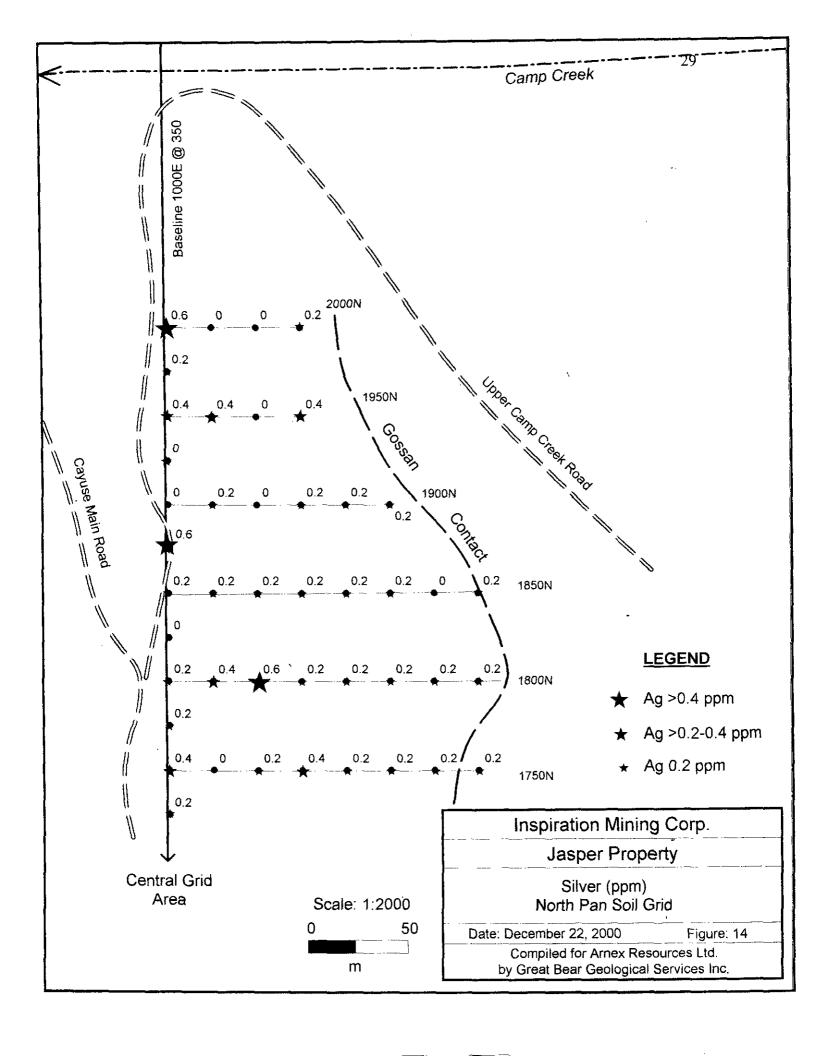


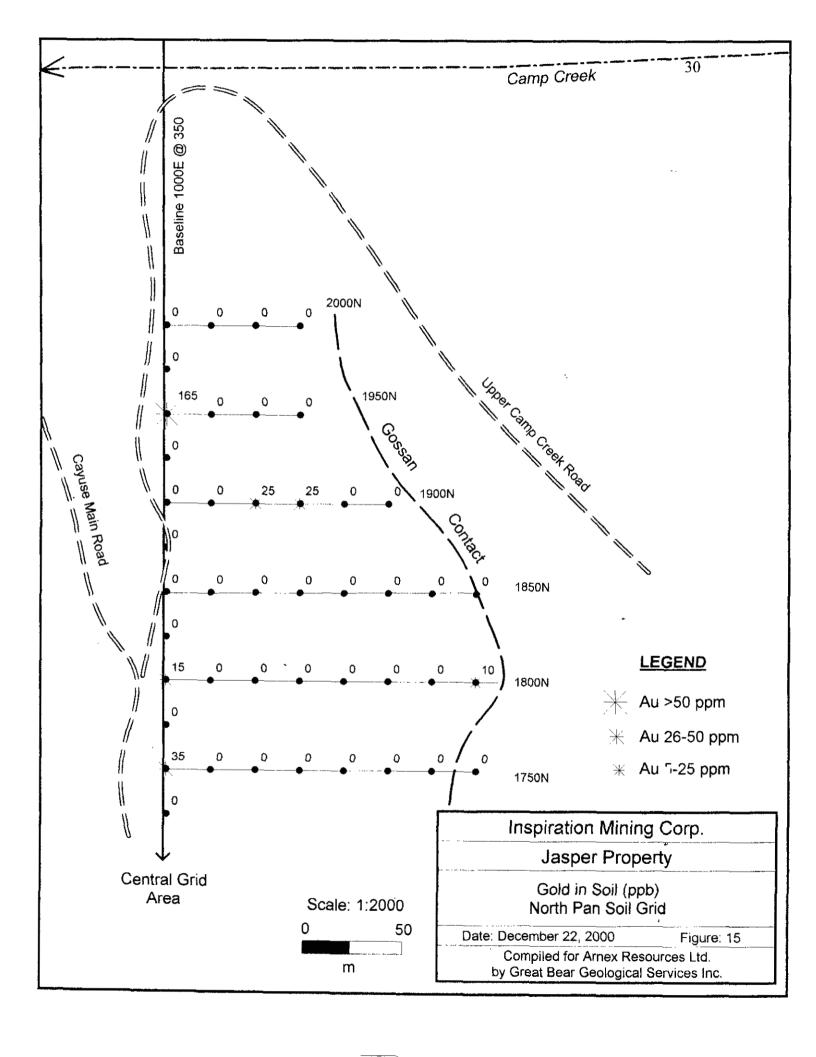












The number of soil and moss mat samples from a total of 104 with results greater than the 99th percentile for selected elements are as follows:

Element	Number of Samples > 99th Percentile	Highest Values
Zinc	19	1095, 1070 ppm
Copper	38	1505, 1245 ppm
Lead	16	1735 ppm
Gold	0	245 ppb
Silver	21	7 ppm

There are three prominent broad poly-metallic base metal anomalies that occur in the south ("South Anomaly") and middle part on the Central Pan Grid ("Middle Anomaly") and in the middle of the Pan North Grid ("North Anomaly").

5.4.1. South Anomaly

The strongest anomaly with the highest values in the south part of the Central Grid is the northerly extension of the 1998 Grid anomaly. The anomaly trends northeasterly upslope to line 1500N.

Highest soil values of 1735 ppm Pb, 1505 ppm Cu and 1070 ppm Zn occur at 100331 on the Baseline at 1425N. The soil sample is up-slope from a Massive Sulphide stringer zone (Sphalerite rich) that outcrops in the logging road-cut.

At sample 100340 at 1350N, 975E, soil values were 759 ppm Cu, 484 ppm Pb and 182 ppm Zn. This is interpreted to be a proximal near-source anomaly with Zn depleted due to low pH and distal dispersion. This sample is directly below Rx 739306 (Cu=1.5%) from location 1350N, 975E where a very high poly-metallic anomaly was found by the 1998 Survey. The combination of a proximal soil anomaly and near source float indicates that a mineralized poly-metallic zone underlies this area.

A strong coincident anomaly occurs at soil sample 100321 on the up-slope end of Line 1500N. Values of 1055 ppm Cu and Pb-Zn > 99th Percentile indicate a proximal up-slope source to the anomaly.

5.4.2. Central Anomaly

A poly-metallic soil anomaly strongly anomalous in Zn (708 ppm, 624 ppm, 568 ppm) but moderate in Cu and Pb trends up-slope and up-drainage along a creek centered on Line 1650N. The western down-slope portion of the anomaly is considered to be distal

while the up-slope portion with values of 624 and 568 ppm Zn, 314 ppm Pb and 392 and 252 ppm Cu are considered proximal and are "open" up-slope to the east.

It is suspected that Till and Ferricrete deposits in the center part of the Central Grid mask sub-surface residual anomalies in that the impervious Ferricrete sheets do not allow hydromorphic dispersion of base metal ions at surface. It is suspected that the creek along Line 1650N has eroded beneath the Ferricrete layers and contains anomalous subsurface residual base metal values much higher than Lines to the north and south.

5.4.3. North Anomaly

A broad Cu, moderate Zn and restricted Pb soil anomaly occurs between Lines 1750N to 1950N. The anomaly shows classic transported down-slope distal values for Zn and Cu with a restricted proximal near-source up-slope Pb anomaly. Highest values occur on the Baseline at 1875 N at sample 100331 which ran 374 ppm Zn and 373 ppm Cu.

From field surface and road-cut observations it is suspected that thick Till-Ferricrete deposits overly the northern portion of the North Grid. Anomalous Ag and elevated base metal values indicate the anomalous trend is "open" to the north of the North Grid.

5.5. Moss Mat Results

Moss mat sediment sample results from the small creek draining Line 1600N in the Central Anomaly were strongly anomalous (>99th Percentile) in Zn and Cu +/- Pb. Values of up to 398 ppm Zn and 395 ppm Cu are present at sample 100514.

Moss mat samples from the major drainage along Line 1650 are also anomalous in Zn and Cu. At sample 100528, anomalous values of 210 ppm Zn and 182 ppm Cu are present. Values of 206 ppm Zn and 182 ppm Cu are present up-stream at sample 100515. The stream sediment anomaly is "open" up-slope to the east.

Base metal values from moss mat sample 100356 taken from Camp Creek (not plotted, off map), were not anomalous even though the creek cuts malachite stained intensely altered felsic volcanics. The creek is very acid (pH<4) and thick Ferricrete deposits are present. Base metal ions cannot be deposited in such an acid environment and therefore no sediment anomalies were generated even though the mineralized host was observed to be present. It is indicated that the mineralized alteration zone continues to the north of the North Grid.

5.6. Rock Sample Results

Only a very restricted number of rock samples were taken as the focus of the Year 2000 program was to conduct grid soil sampling.

The most significant rock sample taken was Rx 739306 from location 1350N, 975E where a very high poly-metallic soil anomaly was found by the 1998 Survey. Rx 730306 assayed 1.5% Cu from several large 0.5 m near-source angular boulders found in an upturned tree root.

6. CONCLUSIONS AND RECOMMENDATIONS

Coincident extensive poly-metallic soil geochemical anomalies detected by the soil grids indicate base metal mineralization is present proximal to, or up-slope from the anomalies within the intense alteration zone that partly underlies the soil grids.

Highest soil and rock values are present between Lines 1350N to 1500N in the South Anomaly. Soil samples should be taken along Line 1400N of the Central Grid. It is recommended that all anomalous soil lines be extended up-slope to determine the eastern extent of the anomaly. Future work should include surficial and bedrock geology mapping to interpret soil anomalies accompanying by grid geophysics. Mechanized and/or hand trenching should then be carried out on the best targets prior to drilling. Mechanized trenching should be carried out in the area of Rx 739306. Prospecting and hand trenching should bed done up-slope at soil sample 100321.

In the Central Anomaly, soil Lines 1600N and 1650N should be extended to the east to close-off the anomaly. Pending results from mapping and geophysics, prospecting and hand trenching is recommended in the area of the scarp at soil sample 100522 on line 1650N.

At the North Anomaly, all Lines between 1850N to 2000N should be extended up-slope. Prospecting and trenching should be carried out above the Baseline at 1875N in the vicinity of soil sample 100331. The North Grid should be extended to the north across Camp Creek to determine the northern extent of the alteration zone and coincident anomalies.

Surficial and bedrock geology mapping, geophysical surveys and trenching should be carried out within the anomalous alteration zone on all grids to define highest priority drill targets for follow-up drilling.

7. CERTIFICATE OF QUALIFICATION AND CONSENT

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 2069 Westview Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers Association of British Columbia since 1975, Registration Number 9870.
- 4. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.
- 6. I have conducted and supervised the field exploration work as reported on the subject property. I have authored this report that is based on observations and sample results obtained during the Year 2000 exploration program.
- 7. The author holds no interest in the Jasper Property that is the subject of this report. The author does not own any equity shares of have any options in Inspiration Mining Corp. ("Inspiration") and is acting as an independent Qualified Person as geological consultant for Inspiration.
- 8. I consent for Inspiration to use this technical report to file as an assessment report and also for use as required by regulatory authorities.

Dated at North Vancouver, British Columbia,

This

day of January

2001ع و

Arne O. Birkeland, P. Eng.

President, Arnex Resources Ltd.

8. BIBLIOGRAPHY, SELECTED REFERENCES

Birkeland, A.O. (1995): Geological and Geochemical Report, Jas 1 Mineral Claim, Victoria M.D.

Birkeland, A.O. (1996): Geological and Geochemical Report, Jasper Property, Victoria M.D.

Birkeland, A.O. (1999): Rock and Soil Geochemistry Program, Jasper Property, Victoria M.D.

Fyles, James T. (1955): Geology of the Cowichan Lake Area, Vancouver Island, British Columbia, BCDM Bulletin No. 37.

Gravel, J.L. and Matysek, P.F. (1989): 1988 Regional Geochemical Survey, MEMPR Paper 1981-1.

Massey, N.W.D. and Friday, S.J. (1987): Geology of the Chemainus River-Duncan Area, Vancouver Island, 92C/16; 92B/13.

Massey, N.W.D., Friday, S.J., Tercier, P.E., Rublee, V.J. and Potter, T.E. (1986-87):

Geology of the Cowichan Lake Area, NTS 092C/16, Geoscience Map 1991-2.

Massey, N.W.D., Friday, S.J., Tercier, P.E., and Potter, T.E. (1987): Geology of the Duncan Area, NTS 092B/13, Geoscience Map 1991-3.

Massey, S.J., Friday, J.M., Riddell and S.E. Dumais (1988): Geology of the Port Alberni - Nanaimo Lakes Area, NTS 92F/1W, 2E and Part of 92F/7E, Geoscience Map 1991-1.

Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Victoria/Cape Flattery - NTS 92B, 92C, RGS 24, GSC O.F. 2182.

Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Alberni - NTS 92F, RGS 25, GSC O.F. 2183.

MEMPR MINFILE, (1990): 092F - Alberni.

MEMPR MINFILE, (1991): 092C - Cape Flattery.

Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463.

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Possibilities of Vancouver Island, Canadian Mining Journal (May).

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Deposits of Alberni Map-Area British Columbia (92F), Geological Survey of Canada, Paper 68-50.

Northcote, K.E., (1972): The Geology of the Nitinat Triangle.

Sutherland Brown, A. (1989): Mineral Inventory of the Alberni Region Vancouver Island, British Columbia (092C, 092F).

Wheeler, J.O. and McFeely, P. (1991): Tectonic Assemblage Map of the Canadian Cordillera and Adjacent Parts of the United States of America; Geological Survey of Canada, Map 1712A, Scale 1:2,000,000.

Wilton, P. (1980): Sicker Group Workshop and Personal Communication, B.S.G.S. Wilton, H. Paul (1989): Geology and Metallogeny, Southern Vancouver Island and Adjacent Mainland.

APPENDIX A Statement of Expenditures

2000 Geochemical Survey Jasper Claim Group, Victoria M,D.

Prepared for: Inspiration Mining Corp.

Prepared by: Arnex Resources Ltd.

For the Period: Oct 1, 2000 to Oct 20, 2000

Description		Cost	/unit	number	units	Amount
Services	P. Eng.	\$550.00	/day	8.00	dav	\$4,400.00
COLVICES	Soil Sampler	\$350.00	/day	5.00	day	\$1,750.00
	Soil Sampler - Mob	\$350.00	/day	1.00	day	\$350.00
	Subtotal Services		•		,	\$6,500.00
Rentals	Ford F250 4x4	ድዕለ ዕና	44	F 00	d -	\$401,25
TO ILAIS	Camper	\$80.25 \$32.10	/day /day	5.00 5.00	day	\$160.50
	Chain Saws (1)	\$35.00	/day /wk	0.71	ر day wk	\$25.00
	ICH 18 Radios (2)	\$10.00	/wk /day	10.00	day	\$100.00
	Motorola Radios (2)	\$5.00	/day /day	10.00	day	\$50.00
	Field Equipment	\$16 05	/day /day	10.00	day	\$160.50
	Subtotal Rentals		•			\$897 25
GST - Services, Rentals						
GS1 - Services, Rentals						\$517.81
Expenses	Board	\$48.15	/day	10.00	day .	\$481.50
	Room	\$58.85	/day	10.00	day	\$588,50
	Field supplies	\$23.54	/day	10.00	day	\$235.40
	Analytical, soil samples	\$15.97	/smpl	104	smpl	\$1,660.88
	Rock Geochem	\$18.34	/smpl	6	smpl	\$110.04
	Rock Assay	\$19.86	/smpl	2	smpl	\$39.72
	Digitizing data	\$428.00	/day	3.00	day	\$1,284.00
	Expense Report imgea0	01020			•	\$422.86
	Report					\$3,000.00
	Subtotal Expenses					\$7,822.90
Admin Fee (Expenses @15%)						\$1,173.44
•	Subtotal					\$16,014.14
Contingency						\$0.00
TOTAL	•					\$16,911.39
						
	-	1	Serv	\$€	5,500	
Cont			Rentals		\$897	
0%	lm e l		GST		\$518	
•	■ Serv		Exp	\$7	,823	
Admin	Serv ■ Rentals	1	Admin		,173	
7%	^{38%} □GST		Cont		\$0	
Ехр	entals 🗆 Exp		-			
47%	5% ■Admin		Total	\$16	,911	

APPENDIX B

Analytical Procedures and Certificates Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0031544

Comments: ATTN: ARNE BIRKELAND

CERTIFICATE

A0031544

(AN) - ARNEX RESOURCES LIMITED

Project: P.O. #:

JAS

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-OCT-2000.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 229	98 98 98	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
* NOTE	1 .	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

GODE SAMPLES DESCRIPTION METHOD 983 98 Au ppb: Fuse 30 g sample FA-AAS 2118 98 Ag ppm: 32 element, soil & rock ICP-AES 2119 98 Al %: 32 element, soil & rock ICP-AES 2120 98 As ppm: 32 element, soil & rock ICP-AES 557 98 B ppm: 32 element, rock & soil ICP-AES 2121 98 Ba ppm: 32 element, soil & rock ICP-AES	0.2 0.01 2	UPPER LIMIT 10000 100.0 15.00
2118 98 Ag ppm: 32 element, soil & rock ICP-AES 2119 98 Al %: 32 element, soil & rock ICP-AES 2120 98 As ppm: 32 element, soil & rock ICP-AES 557 98 B ppm: 32 element, rock & soil ICP-AES 2121 98 Ba ppm: 32 element, soil & rock ICP-AES	0.2 0.01 2	100.0
2125 98 Cd ppm: 32 element, soil & rock ICP-AES 2126 98 Co ppm: 32 element, soil & rock ICP-AES 2127 98 Cr ppm: 32 element, soil & rock ICP-AES 2128 98 Cu ppm: 32 element, soil & rock ICP-AES 2150 98 Fe %: 32 element, soil & rock ICP-AES 2130 98 Ga ppm: 32 element, soil & rock ICP-AES 2131 98 Hg ppm: 32 element, soil & rock ICP-AES 2132 98 K %: 32 element, soil & rock ICP-AES 2134 98 Hg ppm: 32 element, soil & rock ICP-AES 2151 98 La ppm: 32 element, soil & rock ICP-AES 2134 98 Mg %: 32 element, soil & rock ICP-AES 2135 98 Mn ppm: 32 element, soil & rock ICP-AES 2136 98 Mo ppm: 32 element, soil & rock ICP-AES 2137 98 Na %: 32 element, soil & rock ICP-AES 2138 98 Ni ppm: 32 element, soil & rock ICP-AES 2139 98 P ppm: 32 element, soil & rock ICP-AES 2140 98 Pb ppm: 32 element, soil & rock ICP-AES 2141 98 Sc ppm: 32 element, soil & rock ICP-AES 2142 98 Sc ppm: 32 element, soil & rock ICP-AES 2143 98 Sc ppm: 32 element, soil & rock ICP-AES 2144 98 Sc ppm: 32 element, soil & rock ICP-AES 2143 98 Sc ppm: 32 element, soil & rock ICP-AES 2144 98 Sc ppm: 32 element, soil & rock ICP-AES 2143 98 Sc ppm: 32 element, soil & rock ICP-AES 2144 98 Sc ppm: 32 element, soil & rock ICP-AES 2143 98 Sc ppm: 32 element, soil & rock ICP-AES 2144 98 Sc ppm: 32 element, soil & rock ICP-AES 2143 98 Sc ppm: 32 element, soil & rock ICP-AES	10 0.5 2 2.0.01 0.5 1 1 1.0.01 10 10 10 10 10 10 10 10 10	10000 10000 10000 10000 15.00 500 10000

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

Page Number : 1-A
Total Pages :3
Certificate Date: 25-OCT-200
Invoice No. : I 0031544
P.O. Number :

Account

:AN

;									CERTIFICATE OF ANALYSIS			rsis	•	10031						
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
100306	201 202	< 5	< 0.2	5.24	< 2	< 10	90	0.5	< 2	0.49	< 0.5	33	9	371	5.30	< 10	< 1	0.06	< 10	0.94
100307	201 202		0.4	2.85	< 2	< 10	110	< 0.5	< 2	0.06	5.5	60	4	241	6.50	< 10 < 10	< 1 < 1	0.13	< 10 < 10	0.96
100308	201 202		< 0.2	4.17	2	< 10	130	1.0	< 2 < 2	0.22	8.0 1.0	309 31	< 1 8	1505 3 4 5	7.41 4.85	< 10	< 1	0.07	< 10	0.95
100309	201 202		0.2	4.45	. 4 6	< 10 < 10	140 100	0.5	< 2	0.19	0.5	45	8	153	5.03	< 10	< 1	0.07	< 10	1.31
100310	201 202	15	< 0.2	4.04			100													
100311	201 202		1.8	7.32	< 2	< 10	30	< 0.5	< 2	0.06	< 0.5	5	8	68	3.31 5.37	< 10 < 10	< 1 < 1	0.01	< 10 < 10	0.29 0.71
100312	201 202		0.4	5.53	< 2	< 10	100	0.5	< 2	0.10	< 0.5 < 0.5	24 45	12 9	126 106	5.41	< 10	< 1	0.06	< 10	1.20
100313	201 202	E .	< 0.2	5.26	< 2	< 10 < 10	190 4 0	< 0.5 < 0.5	< 2 < 2	0.19	< 0.5	8	12	50	5.24	< 10	< 1	0.03	< 10	0.24
100314	201 202		0.2	5.03 4.88	< 2 < 2	10	80	< 0.5	< 2	0.11	< 0.5	17	12	116	4.39	< 10	< 1	0.04	< 10	1.10
100315	201 202	1 ` 1	0.4	4.00																
100316	201 202	< 5	< 0.2	5.16	2	10	50	< 0.5	< 2	0.08	< 0.5	14	15	104	5.22 4.93	< 10 10	< 1 < 1	0.04	< 10 < 10	0.81
100317	201 202	< 5	0.2	4.23	< 2	< 10	80	< 0.5	< 2	0.19	< 0.5	9	8 8	76 51	4.86	< 10	< 1	0.03	< 10	0.61
100318	201 202		< 0.2	2.71	< 2	10	50	< 0.5	< 2	0.13	< 0.5 < 0.5	8 10	6	69	4.74	< 10	< 1	0.03	< 10	0.38
100319	201 202		< 0.2	2.86	< 2 < 2	< 10 < 10	80 90	< 0.5 0.5	< 2 < 2	0.09	< 0.5	26	5	343	6.08	< 10	< 1	0.05	< 10	0.40
100320	201 202	5	0.6	4.29		\ 10														
100321	201 202	10	0.6	4.94	6	< 10	170	0.5	< 2	0.11	< 0.5	27	3	1055	5.67	< 10 < 10	< 1 < 1	$0.10 \\ 0.07$	< 10 < 10	0.48 0.39
100322	201 202		< 0.2	3.71	< 2	< 10	220	0.5	< 2	0.20	< 0.5	29 26	6 10	365 307	3.64 5.19	< 10	< 1	0.08	< 10	1.72
100323	201 202		< 0.2	3.83	12	10 10	70 14 0	0.5 < 0.5	2 < 2	0.30	< 0.5 0.5	26	12	178	4.31	< 10	< 1	0.08	< 10	1.82
100324	201 202		< 0.2 0.2	3.34 3.80	< 2 < 2	< 10	80	< 0.5	< 2	0.11	< 0.5	6	11	85	5.62	< 10	< 1	0.04	< 10	0.48
100325	201 202	< 5	0.2	3.60																
100326	201 202	3.5	0.4	6.58	< 2	< 10	60	0.5	< 2	0.07	< 0.5	7	16	188 66	7.34 6.61	10 10	< 1 < 1	0.05	< 10 < 10	0.70
100327	201 202		0.2	4.98	< 2	< 10	40	< 0.5	< 2	0.10	0.5 0.5	7 12	14 12	90	4.90	< 10	< 1	0.04	< 10	1.10
100328	201 202		0.2	3.92	< 2	< 10	50 70	< 0.5 < 0.5	< 2 2	0.16	< 0.5	15	14	146	5.80	< 10	< 1	0.04	< 10	1.09
100329	201 202		< 0.2 0.2	5.43 3.70	< 2 < 2	< 10 < 10	100	0.5	< 2	0.23	< 0.5	17	11	180	5.21	< 10	< 1	0.05	< 10	0.92
100330	201 202	1	V.2	3.70	· · · ·								_							
100331	201 202	< 5	0.6	6.63	< 2	< 10	90	1.0	< 2	0.10	0.5	22	16 13	373 150	6.15 4.81	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.83 1.22
100332	201 202		< 0.2	4.45	< 2	< 10	80	< 0.5	< 2	0.36	0.5 < 0.5	20 16	11	370	5.61	< 10	< 1	0.06	< 10	1.64
100333	201 202	1	< 0.2	3.75	< 2	< 10 < 10	50 70	< 0.5 < 0.5	< 2 < 2	0.23	0.5	7	13	34	6.41	10	< 1	0.02	< 10	0.44
100334	201 202		0.4	3.49 3.52	< 2 < 2	< 10	50	< 0.5	< 2	0.11	< 0.5	7	10	33	5.94	10	< 1	0.02	< 10	0.42
100335	201 202	1	0.2	3.34																
100336	201 202	< 5	0.6	5.59	< 2	< 10	60	< 0.5	< 2	0.09	< 0.5	15	16	77	5.69	< 10	< 1	0.04	< 10	0.71
100337	201 202	•	0.4	3.67	< 2	< 10	100	0.5	< 2	0.17	< 0.5	21	5	161	5.27 4.86	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.37
100338	201 202		0.2	4.03	< 2	< 10	120	0.5	< 2	0.14	0.5 0.5	30 24	4	216 189	5.10	< 10	< 1	0.06	< 10	0.55
100339	201 202		0.2	5.37	< 2	< 10 < 10	120 80	0.5 0.5	2 < 2	0.13	1.0	7	3	759	11.00	< 10	< 1	0.70	< 10	1.12
100340	201 202	130	7.0	2.11	50	< 10	80	0.5	` ^	0.04										
100341	201 202	₹ < 5	0.2	2.44	< 2	< 10	70	< 0.5	< 2	0.16	< 0.5	14	5	78	3.85	< 10	< 1	0.05	< 10	0.46
100342	201 202		0.2	5.49	< 2	< 10	50	< 0.5	< 2	0.19	0.5	16	8	141	5.10	< 10	< 1 < 1	0.03	< 10 < 10	1.15 0.42
100343	201 202	2 < 5	0.2	2.88	< 2	< 10	40	< 0.5	< 2	0.15	< 0.5	10	5 6	32 184	4.56 4.72	< 10 < 10	< 1 < 1	0.04	< 10	0.42
100344	201 202		0.2	4.51	< 2	< 10	60 90	< 0.5 0.5	< 2 < 2	0.15	0.5 < 0.5	10 16	6	214	4.86	< 10	(< L	0.05	< 10 × 10 ×	0.54
100345	201 202	₹ < 5	0.2	5.28	< 2	< 10	30	0.3	` 4	0.10	. 0.5		•			,	1 1	1.		
		1						<u>-</u> .									- / 		<u> </u>	
																	3/.1	see,	2	

CERTIFICATION:_

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

Page Number :1-B
Total Pages :3
Certificate Date: 25-OCT-200
Invoice No. : 10031544
P.O. Number :

Account :AN

ï										<u> </u>	CF.	RTIFI	CATE	OF A	NALY	/SIS	/	A0031544	
SAMPLE	PRE		Mn ppm	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D Dom	V ppm	₩ mqq	Zn ppm	
100306	201	202	1510	3	0.01	9	1180	44	0.09	< 2	9	28	0.10	< 10	< 10	93	< 10	246	
100307	201		2810		0.01	5	1750	164	0.38	< 2	7	5	0.07	< 10	< 10	65	< 10	1095	
100308		202	>10000	_	0.01	11	1720	1735	0.07	< 2	15	25	0.09	< 10	< 10	53	< 10	1070	
100309	201		2010	4	0.01	. 7	850	200	0.04	< 2	8	12	0.08	< 10	< 10	101	< 10	458	
100310	201	202	1475	1	0.01	10	1100	22	0.02	< 2	12	33	0.19	< 10	< 10	104	< 10	116	
100311		202	310		0.01	. 3	1710	20	0.06	< 2	10	5 9	0.09	< 10 < 10	< 10 < 10	63 107	10 < 10	58 160	
100312	5	202	1160		0.01	. 8 13	1000	18 22	0.04	< 2 < 2	6 9	16	0.10	< 10	< 10	110	< 10	168	
100313	201		1440 670	1 < 1	0.01 0.01	3	1110 1670	10	0.02	< 2	5	- 6	0.09	< 10	< 10	103	< 10	78	
100314 100315	201		850	` 1	0.01	7	1110	14	0.03	< 2	11	12	0.13	< 10	< 10	98	< 10	110	
	\bot		1610		0.01	6	1380	10	0.06	< 2	10		0.09	< 10	< 10	124	< 10	118	
100316		202	1610 570	< 1 < 1	0.01	5	1570	8	0.03	< 2	5	15	0.11	< 10	< 10	128	< 10	78	
100317 100318	201	202	640	< 1	0.01	3	950	14	0.03	< 2	4	9	0.12	< 10	< 10	121	< 10	60	
100318	201		730	1	0.01	3	670	32	0.03	< 2	4	10	0.06	< 10	< 10	108	< 10	90	
100320	201		1225	5	0.01	3	900	88	0.04	< 2	6	6	0.04	< 10	< 10	117	< 10	190	
100321	201	202	1595	8	0.01	3	1140	148	0.06	< 2	5		0.02	< 10	< 10	70	< 10	234	
100322		202	2530	3	0.01	5	770	36	0.04	< 2	4	11	0.03	< 10	< 10	61	< 10	242	
100323	201		1410	2	0.01	10	1250	40	0.01	< 2	8	15	0.12	< 10	< 10	89	< 10	156	
100324	201		1395	< 1	0.01	9	810	14	0.01	< 2	9	34	0.15	< 10	< 10	107	< 10	174	
100325	201	202	340	1	0.01	3	520	18	0.02	< 2	4	8	0.05	< 10	< 10	137	< 10	134	
100326	201	202	475	5 -	< 0.01	4	890	22	0.05	< 2	9	10	0.07	< 10	< 10	153	< 10	196	
100327		202	475	-	0.01	3	860	14	0.04	< 2	6	11	0.09	< 10	< 10	164	< 10	114	
100328		202	785		0.01	6	650	6	0.02	4	9	12	0.16	< 10	< 10	127	< 10	192	
100329	201		755	2	0.01	9	920	12	0.04	2	10	13	0.16	< 10	< 10	130	< 10	308	
100330	201	202	945	4	0.01	7	780	20	0.04	< 2	6	17	0.11	< 10	< 10	118	< 10	252	
100331		202	980		0.01	9	920	26	0.05	< 2	9	13	0.13	< 10	< 10	127	< 10	374	
100332		202	1065	< 1	0.01	11	1180	18	0.05	< 2	8	19	0.18	< 10	< 10 < 10	102 107	< 10 < 10	190 148	
100333		202	1110		0.01	9 3	1010 470	12 8	0.06	2 < 2	8 5	19 15	0.20	< 10 < 10	< 10	198	< 10 < 10	148 72	
100334 100335	201	202 202	320 360	4 2	0.01 0.01	3 1	590	8	0.02	< 2	5	18	0.15	< 10	< 10	162	< 10	62	
	\perp	_			0.01		940	10	0.05	2	7	13	0.18	< 10	< 10	120	< 10	148	
100336	.	202	695 1835	4 3	0.01	6 3	940 1090	18 284	0.05	< 2	3	14	0.06	< 10	< 10	106	< 10	334	
100337 100338		2021 202	2010	4	0.01	2	1360	162	0.10	2	5	12	0.06	< 10	< 10	75	< 10	160	
100338 100339	201		1565		< 0.01	1	1160	114	0.05	< 2	7	13	0.07	< 10	< 10	84	< 10	188	
100340	201		950	74	0.01	< î	790	484	2.35	< 2	4	10	0.03	< 10	< 10	70	< 10	182	
100341	201	202	850	3 4	0.01	1	590	50	0.06	< 2	3	14	0.05	< 10	< 10	8.5	< 10	96	
100342	201		1305	_	0.01	7	900	8	0.04	< 2	9	35	0.15	< 10	< 10	122	< 10	202	
100343	201		705	1 .	0.01	1	840	10	0.03	< 2	3	15	0.06	< 10	< 10	110	< 10	62	ř
100344	201		1260	1	0.01	3	1030	18	0.04	< 2	5	22	0.08	< 10	< 10	97	< 10	132	1 3
100345	201		865	4	0.01	1	810	104	0.04	< 2	5	11	0.04	< 10	< 10	93	< 10	1 200	
		_													 -				1.1

CERTIFICATION:		
CERTIFICATION	 	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

Page Number :2-A Total Pages :3 Certificate Date: 25-OCT-200

Invoice No. : 10031544
P.O. Number :
Account : AN

pr										CERTIFICATE OF ANALYSIS						10031		· · · · · · · · · · · · · · · · · · ·		
	REP ODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi p pm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	M g %
100346 201	1 202	< 5	< 0.2	3.92	< 2	< 10	80	< 0.5	< 2	0.15	0.5	10	8	99	4.74	< 10	< 1	0.06	< 10	0.62
100347 201			0.2	3.44	< 2	< 10	50	< 0.5	< 2	0.10	< 0.5	6	10	75	4.82	10	< 1	0.04	< 10	0.41
100348 201			0.2	5.68	< 2	< 10	70	0.5	2	0.12	< 0.5	13	16	179	6.09	< 10	< 1	0.04	< 10	0.7B
100349 201			< 0.2	3.24	≤ 2	< 10	160	0.5	< 2	0.14	< 0.5	31 5	8 9	129 66	4.05 6.07	< 10 10	< 1 < 1	0.05 0.03	< 10 < 10	0.52 0.45
100350 201	1 202	25	0.2	4.78	< 2	< 10	60	< 0.5	< 2	0.10	< 0.5				9.07				- 10	V.45
100351 201			0.2	4.54	< 2	< 10	110	< 0.5	< 2	0.19	< 0.5	8	5 6	120 116	5.46 5.52	< 10 10	< 1 < 1	0.06	< 10 < 10	0.77 0.81
	202		0.2	5.02	< 2	< 10	70 130	< 0.5	< 2	0.25 0.21	< 0.5 < 0.5	11 13	2	138	4.70	< 10	< 1	0.07	< 10	0.44
100353 201			0.4	4.74	< 2 2	< 10 < 10	90	< 0.5 < 0.5	< 2 < 2	0.23	0.5	6	3	60	5.66	< 10	< 1	0.06	< 10	0.48
100354 201	1 202 1 202		0.2	3.53 7.77	< 2	< 10	50	< 0.5	< 2	0.17	0.5	4	4	166	5.50	< 10	< 1	0.03	< 10	0.28
100355 201	202	10	0.8	, , , , ,																
100501 201	1 202	< 5	0.2	5.90	< 2	< 10	70	< 0.5	< 2	0.09	1.0	11	16	90	6.01	< 10	< 1	0.03	< 10	0.82
100502 201	1 202		0.2	4.10	< 2	< 10	140	0.5	< 2	0.16	< 0.5	18	7	81	5.99	< 10	< 1	0.04	< 10	0.72
	1 202		0.4	5.43	< 2	< 10	60	< 0.5	< 2	0.09	0.5	. 8	7	64	5.02	10	< 1	0.03	< 10	0.49
100504 201			< 0.2	1.82	< 2	< 10	360	< 0.5	< 2	0.37	< 0.5	13	4	26	2.45	< 10	< 1 < 1	0.08 0.08	< 10	0.42
100505 201	1 202	< 5	< 0.2	1.30	2	< 10	170	< 0.5	< 2	0.12	< 0.5	4	4	12	2.14	< 10		0.08	< 10	0.21
100506 201	1 202	245	< 0.2	3.08	< 2	< 10	170	0.5	< 2	0.24	< 0.5	16	9	78	4.67	< 10	< 1	0.08	< 10	0.46
100507 201	1 202	< 10	0.2	1.45	2	< 10	160	< 0.5	< 2	0.42	< 0.5	9	5	25	2.36	< 10	< 1	0.08	< 10	0.40
100508 201			< 0.2	1.66	< 2	< 10	370	< 0.5	< 2	0.48	< 0.5	16	11	25	2.87	< 10	1	0.14	< 10	0.50
100509 201	1	E .	0.2	4.27	< 2	< 10	70	< 0.5	< 2	0.12	0.5 1.0	14 15	13 10	97 80	5.73 7.17	10 10	< 1 < 1	0.03	< 10 < 10	0.79 0.66
100510 201	1 202	< 5	0.2	4.51	< 2	< 10	60	< 0.5	< 2	0.11		12	10		, . I i			0.03	· 10	
100511 201			< 0.2	1.83	2	< 10	110	< 0.5	< 2	0.23	< 0.5	15	6	47	3.92	< 10	< 1	0.04	< 10	0.59
100512 201			0.4	4.09	4	< 10	50	< 0.5	< 2	0.09	< 0.5	6 9	11	29 7 4	5.43 5.06	10 < 10	< 1 < 1	0.04	< 10 < 10	0.41 0.53
100513 201			0.2	5.16	< 2	< 10	60 210	0.5	< 2	$0.07 \\ 0.24$	0.5 1.5	89	10 8	228	6.57	10	< 1	0.03	< 10	0.83
100516 201			0.2	5.15 5.43	2 6	< 10 < 10	440	1.5 2.5	< 2 2	0.32	3.5	57	8	185	4.67	< 10	< 1	0.07	< 10	0.87
100517 201	1 202		< 0.2	3.43		\ 1V	440													
100518 201			< 0.2	4.18	6	< 10	440	1.5	< 2	0.28	1.0	32	6	95	5.03	< 10	< 1	0.09	10	0.85
100519 201			0.2	6.06	18	< 10	380	2.0	4	0.17	1.5	31	10	244 239	6.96 6.53	< 10 < 10	< 1 < 1	0.07 0.10	< 10 < 10	1.18
100520 201			0.6	4.28	34	< 10	200 770	2.0 3.5	2	0.23	1.5 3.0	16 51	9 4	66	2.66	< 10	< 1	0.09	10	1.50 0.73
100521 201			< 0.2	2.79	< 2 10	< 10 < 10	180	0.5	< 2 2	0.13	1.0	22	9	252	6.68	10	< 1	0.03	< 10	1.16
100522 201	1 202	15	0.2	4.71	10	V 10	180			0.13	1.0			AJ2						
100523 201	1 202	< 5	0.2	3.65	4	< 10	50	< 0.5	< 2	0.08	< 0.5	5	12	100	5.72	10	< 1.	0.03	< 10	0.50
100524 201			0.2	4.23	< 2	< 10	50	< 0.5	< 2	0.09	0.5	7	14	104	6.54	10	< 1	0.03	< 10	0.63
100525 201			0.2	2.11	2	< 10	70	< 0.5	< 2	0.11	0.5	5	1.2	46	5.90	10	< 1 < 1	0.03	< 10	0.43
100526 201			0.2	7.30	< 2	< 10 < 10	90 80	0.5 0.5	< 2	0.14 0.10	1.0 0.5	17 10	12 12	323 93	5.64 5.71	< 10 10	< 1	0.04	< 10 < 10	1.23
100527 201	1 202	< 5	0.4	4.88	< 2	< 10	80	U.5	< 4 	0.10		10	14		3.11		` _	J. 03	` 10	
100529 201	1 202		0.2	6.57	< 2	< 10	190	1.0	2	0.19	0.5	17	19	157	5.46	10	< 1	0.08	< 10	1.06
100530 201			0.2	3.90	8	< 10	250	0.5	< 2	0.25	< 0.5	22	12	78	4.72	10	< 1	0.06	< 10	0.78
100531 201	-1	1	< 0.2	3.71	6	< 10	150	< 0.5	< 2	0.27	< 0.5	14	9	55	4.64	10	< 1	0.06	< 10	0.87
100532 201			< 0.2	2.75	6	< 10	150	0.5	< 2	0.19	< 0.5	16 7	10 8	54 33	4.62	10 10	- < 1 - ₹1	0.03	< 10 < 10	0.41
100533 201	1 202	< 5	0.2	2.70	4	< 10	60	< 0.5	< 2	0.13	< 0.5	,	•	33	2.13	Τ.0	- · ·	0.03	7, 10	0.40
																	· · ·			

SAMPLE

100346

100347

100348

100349

100350

100351

100352

100353

100354

100355

100501

100502

100503

100504

100505

100506

100507

100508

100509

100510

100511

100512

100513

100516

100517

100518

100519

100520

100521

100522

100523

100524

100525

100526

100527

100529

100530

100531

100532

1100533

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave... British Columbia, Canada

North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC

V7M 3B1

Project: JAS

Comments: ATTN: ARNE BIRKELAND

Page Number :2-B Total Pages

Certificate Date: 25-OCT-201

Invoice No. :10031544 P.O. Number Account :AN

CERTIFICATE OF ANALYSIS A0031544 S Тi U V Ρ Pb Sb Tl Zn PREP Mn Мо Na Νi SC Sr % % % ppm CODE ppm ppm ppm ppm DDE ppm ppm ppm ppm ppm ppm ppm 0.04 0.05 104 < 10 158 201 202 1910 1 0.01 3 1140 62 13 < 10 < 10 575 < 1 < 0.01 730 8 0.03 < 2 5 11 0.05 < 10 < 10 129 < 10 82 201 202 725 < 1 < 0.011080 16 0.04 < 2 14 0.12 < 10 < 10 139 < 10 224 201 202 13 91 201 202 2440 2 0.01 1010 18 0.07 < 2 3 0.07 < 10 < 10 < 10 150 0.05 1 8 0.03 < 2 6 11 < 10 < 10 142 < 10 104 201 202 355 < 1 < 0.01 680 2 5 116 0.01 1 840 10 0.04 18 0.05 < 10 < 10 111 < 10 201 202 980 1 6 770 18 0.03 < 2 25 0.08 < 10 < 10 120 < 10 128 201 202 1305 < 1 < 0.01 1 2540 44 0.07 < 2 5 20 0.09 < 10 < 10 75 < 10 136 201 202 1475 0.01 1 1 < 1 < 0.01 1330 18 0.04 < 2 4 20 0.12 < 10 < 10 102 < 10 76 201 202 1385 < 1 2120 20 0.09 < 2 9 18 0.11 < 10 < 10 60 < 10 66 201 202 520 0.01 < 1 3 < 2 7 12 0.11 < 10 < 10 149 < 10 114 201 202 645 < 1 < 0.016 1480 10 0.04 201 202 1735 1 < 0.014 1380 10 0.04 < 2 5 17 0.10 < 10 < 10 138 < 10 102 1840 0.04 < 2 7 13 0.12 < 10 < 10 119 < 10 94 201 202 1160 < 1 < 0.013 4 56 1260 16 0.08 < 2 1 23 0.05 < 10 < 10 49 < 10 201 202 5990 < 1 0.01 1 0.01 < 10 43 < 10 26 201 202 550 < 1 < 0.01790 6 0.06 2 7 < 10 13 0.03 < 10 75 < 10 106 0.07 2 3 < 10 201 202 3930 0.01 1910 10 21 0.03 < 10 < 10 0.09 6 < 10 45 66 201 202 1450 < 1 0.01 1070 10 1 0.03 < 10 41 < 10 92 201 202 8780 < 1 0.01 11 1680 22 0.12 2 1 22 < 10 0.01 5 1330 10 0.04 < 2 6 13 0.08 < 10 < 10 139 < 10 88 201 202 1275 < 1 1950 0.04 < 2 7 14 0.15 < 10 < 10 154 < 10 72 1645 0.01 3 8 201 202 2 19 0.17 < 10 110 < 10 54 1445 0.01 6 1330 18 0.08 < 2 4 < 10 201 202 1 5 0.04 < 10 < 10 134 < 10 56 690 < 1 < 0.01 3 1830 6 0.04 < 2 201 202 < 1 < 0.01 1450 10 0.06 < 2 5 0.05 < 10 < 10 117 < 10 132 201 202 910 4 3570 4 < 0.016 1570 36 0.08 2 8 23 0.07 < 10 < 10 111 < 10 212 201 202 5600 0.01 13 1490 84 0.07 4 7 29 0.02 20 < 10 82 < 10 708 201 202 1 2 6 27 0'.01 < 10 109 < 10 302 0.01 570 40 0.03 < 10 201 202 1675 2 4 20 0.01 < 10 < 10 112 < 10 624 0.01 13 990 50 0.05 2 8 201 202 1565 5 19 0.02 10 < 10 85 < 10 568 3 < 0.0120 1700 46 0.06 2 7 201 202 1250 0.01 202 0.12 2 63 10 < 10 46 < 10 201 202 6470 < 1 0.02 1390 314 1 15 < 0.01< 10 134 < 10 254 201 202 1100 4 < 0.01530 26 0.02 < 2 7 < 10 < 2 5 10 0.05 < 10 < 10 151 < 10 70 201 202 < 1 < 0.01 2 840 14 0.03 355 0.05 < 10 175 6 12 < 10 < 10 114 < 1 0.01 4 860 16 0.03 < 2 201 202 425 188 0.02 < 2 11 0.10 < 10 < 10 < 10 46 1 < 0.01 1 570 10 201 202 230 < 10 121 22 0.04 2 11 21 0.08 < 10 < 10 264 201 202 1190 2 0.01 1150 0.03 2 6 14 0.01 < 10 < 10 131 < 10 108 880 0.01 1020 6 201 202 < 1 0.03 < 2 7 24 0.01 < 10 < 10 113 < 10 182 201 202 770 1025 < 1 0.01 10 < 2 24 0.02 < 10 < 10 120 < 10 156 0.03 7 4 0.01 9 660 18 201 202 2890 < 2 28 0.01 < 10 < 10 107 < 10 144 0.02 3 0.01 490 16 201 202 1515 < 2 15 0.06 < 10 < 10 126 < 10 162 490 22 0.03 201 202 780 0.01 0.01 < 2 13 0.05 < 10 < 10 116 < 10 77% 201 202 300 0.01 3 520 18

CERTIFICATION:	•	,
CHRIDHICATION,		

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : JAS Comments: ATTN: ARNE BIRKELAND

Page Number : 3-A
Total Pages : 3
Certificate Date: 25-OCT-20(Invoice No. : 10031544
P.O. Number :
Account : AN

	;									CE	RTIFI	CATE	OF A	NAL	/SIS		0031	544		
SAMPLE	PREP	Au ppb FA+AA	Ag ppm	A1 %	As As	ppm B	Ba ppm	Be	Bi ppm	Ca %	ppm.	Co ppm	Cr ppm	DD ar Ca	Fe %	Ga ppm	Hg ppm	K %	ppa ra	Mg %
100534 100535 100536 100537 100538 100539 100540 100541 100542	201 202 201 203 201 203 201 203 201 203 201 203 201 203 201 203 201 203 201 203	2	0.4 0.2 0.2 0.2 0.2 0.2	5.22 2.99 2.50 2.21 3.06 2.28 4.51 5.98 4.01	10 8 4 6 2 8 6 6 6	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	90 250 100 90 220 60 60 110 50	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.05 0.11 0.27 0.16 0.13 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 22 5 7 17 5 11 15 9	13 10 5 8 15 7 11 12	310 118 31 20 49 30 196 278 101	5.83 5.17 4.14 3.02 3.84 4.09 6.33 4.67 5.46	10 10 < 10 < 10 10 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.04 0.05 0.11	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	0.52 0.74 0.36 0.43 1.01 0.30 0.87 0.67 0.46
100543 100544 100545 100546 100547 100548	201 202 201 203 201 203 201 203 201 203 201 203	2 < 5 2 < 5 2 10 2 < 5 2 < 5	0.2 0.2 0.2 0.4 < 0.2 0.4	2.24 2.81 5.31 2.55 4.32	8 8 4 4 6	< 10 < 10 < 10 < 10 < 10 < 10	100 40 80 50 110	0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.22 0.08 0.15 0.08	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	11 7 6 16 9 74	16 10 12 17 20 12	94 35 52 75 20 1245	4.50 5.64 6.67 5.92 5.15	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.05 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.65 0.41 0.38 0.83 0.61 0.45
100549 100550 100551	201 201 201 201 201 201	2 < 5	< 0.2 < 0.2 0.2	3.06 4.36 4.82	8 8 2	< 10 < 10 < 10	210 120 110	1.0 0.5 0.5	< 2 < 2 < 2	0.25 0.18 0.13	0.5 0.5 < 0.5	20 20 15	16 18 12	43 80 57	6.21 6.78 5.67	10 10 10	< 1 < 1 < 1	0.04 0.05 0.04	< 10 < 10 < 10	0.76 1.07 0.56
												,								
																		,		
		:																	0	

CERTIFICATION:__

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : JAS Comments: ATTN: ARNE BIRKELAND

Page Number :3-B
Total Pages :3
Certificate Date: 25-OCT-20
Invoice No. : I 0031544
P.O. Number :

Account : AN

											CE	RTIF	CATE	OF A	NAL	/SIS	, <i>F</i>	1003154	4
SAMPLE	PR CO	EP De	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	sr ppm	Ti %	T1 ppm	U Dpm	V ppm	W ppm	Zn ppm	
100534 100535		202 202	560 1895	8	0.01	7	1020	42	0.04	< 2	6	10	0.05	< 10	< 10	119	< 10	308	
100536		202	300	7	0.01	5 2	710 420	58 18	0.04	< 2 < 2	4 3	16 8	0.05	< 10 < 10	< 10 < 10	111 74	< 10 < 10	158 34	
100537	201	202	620		< 0.01	: 4	460	12	0.02	< 2	4	8	0.01	< 10	< 10	67	< 10	34	
100538	201	202	2560	4	0.01	8	680	16	0.03	< 2	5		0.01	< 10	< 10	68	< 10	70	
100539	201	202	290	1	0.01	3	710	14	0.05	< 2	3	14	0.11	< 10	< 10	110	< 10	50	
100540 100541		202	675 590	4 7	0.01	6	660	28	0.03	< 2	6	17	0.10	< 10	< 10	132	< 10	130	
100542		202	500	3	0.01 0.01	8 4	770 840	54 22	0.11 0.03	< 2 < 2	8 4	11 11	0.05 0.04	< 10 < 10	< 10 < 10	93 124	< 10 < 10	244	
100543		202	860	7	0.01	7	1050	28	0.03	< 2	6	9	0.04	< 10	< 10	120	< 10	148 202	
100544		202	705	5	0.01	4	500	20	0.01	< 2	4	14	0.04	< 10	< 10	111	< 10	82	
100545 100546		202	365 760		0.01	3	570	36	0.01	< 2	4	8	0.03	< 10	< 10	136	< 10	60	
100547		202	310	3 1	0.01 0.01	9 8	850 460	22 24	0.03	< 2 < 2	11 4	16 9	0.20 0.11	< 10 < 10	< 10 < 10	167 174	< 10 < 10	140	
100548	201	202	3290	6	0.01	7	700	40	0.08	< 2	5	12	0.05	< 10	< 10	107	< 10	60 166	
100549		202	1295	2	0.01	9	570	32	0.03	< 2	5	19	0.14	< 10	< 10	151	< 10	120	
100550		202 202	1495 1005	3 4	0.01 0.01	10 6	1080 1030	26 18	0.04	< 2 < 2	6 5	17 15	0.15	< 10 < 10	< 10 < 10	136 101	< 10 < 10	176 144	
													,						

CERTIFICATION:	 	*+

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A003154:

Comments: ATTN: ARNE BIRKELAND

CERTIFICATE

A0031545

(AN) - ARNEX RESOURCES LIMITED

Project: P.O. # :

JAS

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-OCT-2000.

	SAMI	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 202 229	4 4	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ANALYTICAL PROCEDURES

HEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
983	4	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	4	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	4	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	4	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	4	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	4	Ba ppm: 32 element, soil & rock	ICP- AE S	10	10000
2122	4	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	4	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	4	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	4	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	4	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	4	Cr ppm: 32 element, soil & rock	ICP-AES	1 1	10000
2128	4	Cu ppm: 32 element, soil & rock	ICP-AES	0.01	10000 15.00
2150	4	Fe %: 32 element, soil & rock	ICP-AES ICP-AES	10	10000
2130 2131	4	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	4	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	4	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	4	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	4	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	4	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	4	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
2138	4	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	4	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	4	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
551	4.	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	4	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	4	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	4	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	4	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	4	T1 ppm: 32 element, soil & rock	ICP-AKS	10	10000
2146	4	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	4	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	4	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	4	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
			,		

SAMPLE

100356

100514

100515

100528

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Au ppb

FA+AA

< 5 <

< 5 <

20

10

PREP

CODE

201 202 201 202

201 202

201 202

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project :

JAS ATTN: ARNE BIRKELAND

Page Number : 1-A Total Pages :1 Certificate Date: 25-OCT-200 Invoice No. : I0031545 P.O. Number :

Account : AN

-0221	FAX: 60	4-984-02	218			Comn	nents:	ATTN: AF	RNE BIRI	KELAND —							
							CE	RTIF	CATE	OF A	NAL	YSIS		0031	545		
Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	ppm Cd	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
0.2 1.2 0.2 0.2	2.26 5.68 2.75 3.24	12 16 16 30	< 10 < 10 < 10 < 10	80 290 210 430	0.5 2.5 0.5 1.5	< 2 < 2 < 2 < 2	0.55 0.50 0.42 0.71	< 0.5 1.5 1.0 1.5	18 38 27 32	18 12 13 10	52 392 182 157	4.93 4.39 4.65 3.45	< 10 10 < 10 < 10	< 1 < 1 < 1 < 1	0.05 0.07 0.12 0.14	< 10 10 < 10 10	1.53 0.76 1.45 0.68

CERTIFICATION:

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : JAS Comments: ATTN: ARNE BIRKELAND

Page Number : 1-B Total Pages : 1 Certificate Date: 25-OCT-2000 Invoice No. : I0031545 Invoice No. P.O. Number

:AN

Account

	PHONE: 604-984-0221 FAX: 604-984-0216								Comments: ATTN: ARNE BIRKELAND										
	;									CE	RTIFI	CATE	OF A	NALY	/SIS	, F	10031	545	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	ppm W	Zn ppm		
100356 100514 100515 100528	201 202 201 202 201 202 201 202	865 2750 1530 2920	1 5 3 5	0.01 0.01 0.01 0.01	10 10 11 11 10	660 3230 910 1430	12 50 32 34	0.12 0.20 0.18 0.16	< 2 < 2 < 2 < 2	9 7 6 3	20 28 24 37	0.16 0.02 0.06 0.01	< 10 10 < 10 < 10	< 10 < 10 < 10 < 10	130 64 88 55	< 10 < 10 < 10 < 10	102 398 208 210		
														·					

CERTIFICATION:_

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A003154

Comments: ATTN: ARNE BIRKELAND

CERTIFICATE

A0031546

(AN) - ARNEX RESOURCES LIMITED

Project: P.O. # :

JAS

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-OCT-2000.

	SAMI	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	5 5 5 5	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

			-
ANAL	YTICAL	PROCED	URES

		ANALTHOALF			
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	5	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	5	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	5	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	5	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	5	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	5	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	5	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	5	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	5	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	5	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	5	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	5	Cr ppm: 32 element, soil & rock	ICP-AES	1 1	10000 10000
2128	5	Cu ppm: 32 element, soil & rock	ICP-AES	0.01	15.00
2150	5	Fe %: 32 element, soil & rock	ICP-AES ICP-AES	10	10000
2130	5	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2131	5 5	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2132 2151	5	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	5	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	5	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	5	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	5	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
2138	5	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	5	P pom: 32 element, soil & rock	ICP-AES	10	10000
2140	5	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
551	5	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	5	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	5	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	5	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	5	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	5	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000 10000
2146	5	U ppm: 32 element, soil & rock	ICP-AES ICP-AES	10	10000
2147	5	V ppm: 32 element, soil & rock	ICP-AES	10	10000
2148	5	W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
2149	5	An ppm: 32 Stement, soll & lock	ICE -NUM	_	2000
					1
					İ
					I
	-				İ
1					
<u></u>	1	L			

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

CERTIFICATION:

Page Number : 1-A
Total Pages : 1
Certificate Date: 26-OCT-2000
Invoice No. : I 0031546
P.O. Number :

Account

: AN

:											CE	RTIF	CATE	OF A	NAL	YSIS		A0031	1546		. :
SAMPLE	PREF		Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со рр в	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La: ppm	M g %
M739301 M739302 M739303 M739304 M739305	205 2 205 2 205 2 205 2	226 226 226	5 < 5 NotRed No. 5 10	0.2 < 0.2 otRed 0.2 0.2	3.28 2.92 NotRed P 2.48 2.43	, 10 4	< 10 < 10 NotRed 1 < 10 < 10	30 NotRcd 1 30 70	< 0.5 < 0.5 NotRed 1 < 0.5 < 0.5	< 2 < 2 WotRed 1 < 2 < 2	0.36 NotRed 0.13 0.19	< 0.5 < 0.5 NotRed < 0.5 < 0.5	17 15 NotRcd: 18 7	11	70 43 NotRcd 22 103	5.17 4.94 NotRcd 5.48 4.98	10 10 NotRed < 10 < 10	< 1 < 1 NotRcd < 1 < 1	0.07 0.08 NotRed 0.18 0.16	< 10	3.09 2.74 NotRed 2.33 1.56
																	11	7		···.	,

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

Page Number :1-B
Total Pages :1
Certificate Date: 26-OCT-2000 Invoice No. : I 0031546
P.O. Number :

Account : AN

——		FIIO	116.004-30	J4-0221	, , , , , ,					Com	nents.	A I 118. A	TINE OIL	INCLANC	,					
											CE	RTIF	CATE	OF A	NAL	YSIS	,	A0031	546	
SAMPLE	PR CO		Mn ppm	Mo ppm	Na %		ppm P	Pb	S . %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mgq	ppm W	Zn ppm		
739301 739302 739303	205	226 226	2200 2100 NotRed I		NotRed		NotRcd	16 20 NotRed	NotRcd	< 2 < 2 NotRed	8 9 NotRed	9 12 Notred	0.16 0.14 NotRcd	< 10 < 10 NotRcd	< 10 < 10 NotRcd	106 106 NotRed	< 10 < 10 NotRed < 10	118 98 NotRed		
73930 4 739305	205 205	226 226	2450 855	1 5		√10 4	760 780	24 14		< 2 < 2	6 9	5 14	0.06 0.15	< 10 < 10	< 10 < 10	7 4 73	< 10	118 90		
739306	205	226	870	23	< 0.01	5	280	296	>5.00	< 2	2	4	0.01	< 10	< 10	35	< 10	244	•	
													•							
																	:	_		
			-														-//	7_		4

ALS Chemex

Aurora Laboratory Services Ltd.
Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0032223

Comments: ATTN: ARNE BIRKELAND

CERTIFICATE

A0032223

(AN) - ARNEX RESOURCES LIMITED

Project: P.O.# JAS

samples submitted to our lab in Vancouver, BC. This report was printed on 25-OCT-2000.

SAM	PLE PREPARATION	
NUMBER SAMPLES	DESCRIPTION	
1	Overlimit pulp, to be found	
	NUMBER SAMPLES	SAMPLES DESCRIPTION

METHOD AAS	DETECTION LIMIT	UPPER LIMIT
AAS	0.01	100.0

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project: JAS Comments: ATTN: ARNE BIRKELAND

Page Number :1
Total Pages :1
Certificate Date: 25-OCT-2000
Invoice No. : I0032223
P.O. Number :

Account :AN

•			CERTIFIC	ATE OF ANALYSIS	, A0032223	
SAMPLE	PREP CODE	Cu %				
м739306	212	1.51				
						And we can have been a second or sec
						al laboration of the state of t
						,

CERTIFICATION:	

APPENDIX C

SOIL SAMPLE GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - Year 2000

PROJECT: JAS

NTS: 092C/080

C:\myfiles\jas\jasgcds2000sx.wb3

Sample	Locat		-	lorizon	Colour	Particle	% Organic	•	Observations
Number	Northing	Easting	(cm)			Size		Gradient	Remarks
100306	1375	1000	5	В	or br	med soil	v low	mod	At road, rusty float, JBv
100307	1400	1000	0	В	pr	med soil	mod	mod st	Roadcut, Rx J45117, rusty oc
100308	1425	1000	0	В	br or	med soil	mod low	mod st	Roadcut, JBv, gossan oc
100309	1450	1000	6	В	tan br	med soil	mod	mod st	Roadcut, JBv. gossan oc
100310	1475	1000	0	В	br or	med soil	low	st	Roadcut, JBv, gossan oc
100311	1500	1000	5	В	or br	med soil	low	st	Roadcut, JBv, gossan oc
100312	1525	1000	10	В	or br	med soil, gravel	mod	mod fl	Roadcut, JBv, gossan fl
100313	1550	1000	5	В	or	fine soil	mod	mod	Roadcut, JBv, gossan oc
100314	1575	1000	8	В	br or	fine soil	mod	mod	Roadcut, JBv, bleached oc
100315	1600	1000	12	В	tan br	fine soil, gravel	mod	mod	No oc
100316	1625	1000	8	В	br or	fine soil, gravel	mod	mod	No oc
100317	1500	1025	15	В	br	fine soil	mod	mod	No oc, unalt JBv fl
100318	1500	1050	16	В	br	fine soil	mod	mod	No oc, unalt J∂v fl
(00319	1500	1075	18	В	br red	med soil, rubble	mod	mod	Rusty talus, near oc, Rx 739301
100320	1500	1100	10	В	br red or	med soil	mod	mod	JBv, gossan oc band, Rx 739302
100321	1500	1125	2	В	br	med soil	mod	mod	Thick bush
100322	1500	1150	10	В	br gr	med soil	mod	mod	Above gossan zone
100323	1650	1000	0	В	br	coarse soil	low	mod st	Roadcut, no oc, unaît rubble
00324	1700	1000	5	B-C	gr	gravel, talus fines	low	st	Unalt JBv, calcite veins
100325	1725	1000	10	В	or br	med soil	low	st	25 m up roadcut bank
100326	1750	1000	5	В	or	med soil	low	mod	Gossan soil, 15 m up roadcut bank
00327	1775	1000	5	В	or	med soil	low	mod	Gossan soil, roadcut bank
00328	1800	1000	4	В	tab br	med soil	mod high	mod fl	Gossan soil, 5 m up roadcut bank
00329	1825	1000	10	В	OΓ	med soil	mod	mod	Gossan soil, @ Upper Camp Ck Rd
100330	1850	1000	10	В	br	med soil	mod high	mod fl 20 de	Camp Ck Rd, gossan fl w/py
100331	1875	1000	5	В	red br	med soil	mod low	mod fl	Camp Ck Rd, gossan fl w/py, Fecret
100332	1900	1000	8	A-B-C	br or	coarse soil	mod high	mod fl	Gossan Jbv fl, mafic vol
100333	1925	1000	5	B-C	gr br	coarse soil	mod	mod fl	Unalt JBv fl
100334	1950	1000	10	В	br or	med soil	mod low	mod fl	Unatt JBv fl
100335	1975	1000	15	В	br or	med soil	mod low	mod fl	JBv oc, mass andesite
100336	2000	1000	10	В	br or	med soil	mod low	mod fl	JBv oc. mass andesite
100337	1450	1025	10	В	br or	med coarse soil	low	mod st 45de	Rusty JBv fl
100338	1450	1050	10	В	br or	rubble soil	mod high	mod st	Rusty, highly alt talus, argillic
100339	1450	1070	5	В	br or	med coarse soil	low	mod st	Arg altn, Rx 739304, Sx 98908
100340	1350	975	0	В	yellow or	med coarse soil	low	mod 30deg	Arg altn, under tree root, Sx 98913
100341	1850	1025	10	B-A	dk gr br	med soil	mod high	mod 20 deg	Unait JBv fl
100342	1850	1050	8	В	or br	fine soil	fow	mod	Rusty JBv fl, cossan soil
100343	1850	1075	30	В	or br	fine soil	low	mod	Rusty JBv fl, gossan soil
100344	1850	1100	10	В	or	mod coarse soil	mod high	mod	Gossan soil, Ferrocrete blocks
100345	1850	1125	10	В	or	med soil	mod	mod	Gossan soil
100346	1850	1150	8	В	br or	coarse rubble	low	mod	Upslope contact of gossan
100347	1850	1175	30	В	br	coarse rubble	low	mod	Above gossan contact, unalt JBv fl
100348	1900	1025	10	В	br or	coarse rubble	mod		Semi gossan soil
100349	1900	1050	35	B-A	dk br	coarse rubble	mod	mod fl	Unalt soil
100350	1900	1075	5	В	br or	coarse rubble	mod	mod fl	Unalt JBv, semi gossan soil
100351	1900	1100	20	B	med br	med fine soil	mod low	mod 20deg	Unalt JBv, mafic vol fl
100352	1900	1125	3	8	med br	med fine soil	mod low	mod	JBv oc, lapilli tuff, minor py
100353	1450	2000	10	В	med br or	coarse rubble soil	mod	st 55 deg	Rusty JBv oc, lap tuff, intense arg, p
00354	1450	2025	15	В	med br or	coarse rubble soil	mod	st 55 deg	Gossan soil, rusty JBv, near oc
100355	1450	2050	12	В	br or red	coarse rubble soil	mod	st	Gossan soil, alt JBv fl

APPENDIX C

SOIL SAMPLE GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - Year 2000

PROJECT: JAS

NTS: 092C/080

C:\myfiles\jas\jasgcds2000sx wb3

Sample	Locat	ion	Depth H	orizon	Colour	Particle	% Organic	Slope	Observations
Number	Northing	Easting	(cm)			Size	· · · · · · · · · · · · · · · · · · ·	Gradient	Remarks
100501	1550	1025	20	В	rusty	med soil	mod	mod fl	Gossan
100502	1550	1050	40	В	br red	med soil	high	mod	Thick A, gossan B
100503	1550	1075	30	В	br or	coarse soil	high	mod	Gossan
100504	1550	1100	25	Α	dk br	fine soil	high	mod	Thick A, gossan B
100505	1550	1125	25	Α	dk br	gravel	mod	mod	Base of scree slide
100506	1550	1150	20	В	dk br	coarse soil	mod	mod	Base of scree slide
100507	1550	1175	25	В	dk br	med soil	high	st	Base of scree slide
100508	1550	1200	20	Α	dk br	med soil	high	st	JBv oc
100509	1600	1025	15	В	rusty	çoarse soil	mod	mod	Gossan
100510	1600	1050	10	В	rusty	med soil	mod	mod	Gossan
100511	1600	1075	10	Α	dk br	med soil	high	mod	Gossan, JBv oc
100512	1600	1100	10	В	rusty	med soil	low	mod	
100513	1600	1125	20	В	dk or	med soil	mod	mod	
100514									Moss Mat
100515									Moss Mat
100516	1650	1050	2	В	or br	med soil	low	st	Gossan, N side of dry ck
100517	1650	1075	4	В	br rust	med soil	low	st	Gossan, N side of dry ck
100518	1650	1100	3	В	br rust	med soil	low	st	Gossan, N side of dry ck
100519	1650	1125	1	В	or rust	med soil	low	st	Gossan, N side of dry ck, Fecrete
100520	1650	1150	10	В	rust red	med soil	low	st	JBv oc
100521	1650	1175	10	Α	bl	med soil	mod	st	JBv oc
100522	1650	1200	1	В	yellow or	med soil	low	mod	Gossan, S side of ck
100523	1700	1025	10	В	rust or	med soil	mod	mod	Gossan
100524	1700	1050	10	В	rust or	med soil	mod	mod	Gossan
100525	1700	1075	15	В	rust or	med soil	mod	mod	Gossan
100526	1700	1100	20	В	rust yellow	med soil	mod	mod	Gossan
100527	1700	1125	20	В	rust or	med soil	mod	mod	Gossan
100528									Moss Mat
100529	1700	1150	20	В	rust or	med soil	mod	mod	Gossan
100530	1700	1175	20	В	rust br	med soil, gravel	mod	st	Gossan
100531	1700	1200	20	В	rust	med soil, gravel	mod	st	Gossan
100532	1750	1025	20	В	rust	med soil	low	mod	Gossan
100533	1750	1050	20	В	rust red	med soil	low	mod	Gossan
100534	1750	1075	10	В	rust br	med soil	low	mod	Gossan
100535	1750	1100	25	В	rust gr	med soil	low	mod	JBv talus
100536	1750	1125	25	В	rust	med soil	low	mod	Gossan
100537	1750	1150	25	В	rust	med soil	low	st	Gossan
100538	1750	1175	25	Ā	gr	med soil	low	st	T ill
100539	1800	1025	5	В	rust	coarse sand	mod	mod	Gossan
100540	1800	1050	5	В	rust	coarse sand	mod	mod	Gossan
100541	1800	1075	5	В	rust	coarse sand	mod	mod	Gossan
100542	1800	1100	10	В	rust	coarse sand	mod	mod	Gossan
100543	1800	1125	3	В	rust	coarse sand	mod	mod	Gossan
100544	1800	1150	5	В	gr br	fine sand	mod	mod	
100545	1800	1175	3	В	rust	fine sand	mod	mod	Gossan
100546	1950	1025	3	В	rust	sand	low	mod	Gossan
100547	1950	1050	15	В	rust	sand	low	mod	Gossan
100548	1950	1075	30	В	br	sand	low	mod	
100549	2000	1025	25	В	red rust	sand	low	mod	Gossan
100550	2000	1050	25	B	rust	sand	low	mod	Gossan
	00	54	25	В			· - · ·	mod	Gossan

APPENDIX C

GEOCHEMICAL DATA SHEET - PAN SOIL GRID - YEAR 2000

STREAM SEDIMENT GEOCHEMISTRY

PROJECT: JAS

NTS: 092C/080

C:\myfiles\jas\jasgcds2000ss.xls

Sample	Volun	ne (m)	Drainage	Type of Co Sample	Colour	Texture	% Organic	Petrography Bedrock/Float	Observations Remarks
Number	Width	Depth	Gradient						
100356	2	1	Mod	ММ	Rust Or Yel	Fine silt	Low	JBv	Camp Creek, rusty ferrocrete Alt JBv, pyrite and oxidized base metal stringer veins
100514	Dry		Mod	ММ	Br	Silt	Mod	JBv	1600N 1100E
100515	Dry		Mod	MM	Rust	Silt	Mod	JBv	1650N 1025E
100528	Dry		Mod	MM	Rust	Silt, sand	Mod	JBv	1650N 1150E

APPENDIX C

ROCK CHIP GEOCHEMICAL DATA SHEET - PAN SOIL SAMPLE GRID - YEAR 2000

PROJECT: JAS NTS: 092C/080 C \text{\text{try/files/jasj/asgods/2000/rx x/s}}

Sample	ample Location		Rock	Sample	Width	Alteration	Weathering	Minearalization	Observations
lumber	ber Northing Easting Type	Туре	Туре					Remarks	
39301	1500	1075	JBv	Float Grab	15 cm AW	Rusty Gossan	Mod Weathered	Py to 50% over 2 cm layers	Pyritic Lapilli Tuff "Country Rock"
739302	1500	1100	JBv	Angular Float Subcrop	15 cm AW	Rusty Gossan	Mod Weathered	Py < 1%	Rusty Pyritic Andesite "Country Rock"
739303	1675	1000	JBv	Chip	20 m AW	Rusty Pyntic	Poor	Minor PY	Gossan Outcrop "Country Rock" Sample Not Analyzed
739304	1450	1070	JBv	Grab of Talus Fines	10 cm AW	Rusty Argillic Pyritic	Poor	Minor PY	Altered Gossan Fines
739305	1350	1000	JBv	Angular Float Grab	30 cm AW	Light Green Chlorite, Pyritic	Poor	Pyrite < 1%	Rusty weathering dark green pyritic lapilli tuff, andesite
739306	1350	975	JBv Sulphide Lens	Grab, Angular Float in tree root, Near Source	50 cm AVV	Argillic, Sencite, Intense Black Chlorite	Very Poor	Pyrite to 20%, Chalcopyrite, Minor Galena, Sphalerite	Several mineralized blocks in tree roots

APPENDIX D

Jasper Property - Year 2000 Field Crew Details

Date	Name	Title	Description
09-Oct-00	Arne O. Birkeland	P. Eng., Geological	Base maps, equipment mobilization, travel
10-Oct-00	Arne O. Birkeland	P. Eng., Geological	Travel, grid soil sampling
11-Oct-00	Arne O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling
12-Oct-00	Arne O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling
13-Oct-00	Arne O. Birkeland	P. Eng., Geological	Rock chip and grid soil sampling
14-Oct-00	Arne O. Birkeland	P. Eng., Geological	Grid soil sampling, Travel
15-Oct-00	Arne O. Birkeland	P. Eng., Geological	Demob, sample prep and delivery, petrography
11-Dec-00	Arne O. Birkeland	P. Eng., Geological	Database input
09-Oct-00	Paul Beaupre	Field Assistant	Base maps, equipment mobilization, travel
10-Oct-00	Paul Beaupre	Field Assistant	Travel, grid soil sampling
11-Oct-00	Paul Beaupre	Field Assistant	Grid soil sampling
12-Oct-00	Paul Beaupre	Field Assistant	Grid soil sampling
13-Oct-00	Paul Beaupre	Field Assistant	Grid soil sampling
14-Oct-00	Paul Beaupre	Field Assistant	Grid soil sampling, Travel

jascrew2000.xls