

JAN 2 9 2001

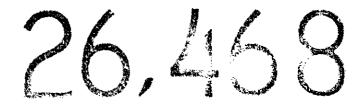
Gold Commissioner's Office VANCOUVER, B.C.

Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT

ON THE

HOW CLAIM GROUP


Merritt Area, British Columbia Nicola Mining Division NTS: 092 I 07 E & W

Latitude:	50 ⁰ 17' 00" N
Longitude:	120 ⁰ 42' 00" W

FOR

Owners: Ahura Mining Ltd. Mr. Bill Petrie Operator: Ahura Mining Ltd.

GEOLOGICAL SURVEY BRANCH

By Marthe Archambault, P. Geo January 23, 2001

TABLE OF CONTENTS

- i. LIST OF FIGURES
- ii. LIST OF TABLES

iii. LIST OF APPENDICES

SUMMARY

1	INTRODUCTION	1
2	LOCATION, ACCESS AND TOPOGRAPHY	1
3	PROPERTY OWNERSHIP AND MINERAL TENURE	1
4	EXPLORATION HISTORY	5
5	REGIONAL GEOLOGY	8
6	PROPERTY GEOLOGY	8
7	2000 FIELD WORK	17
	7.1 Work Program	17
	7.2 Grid Establishment	17
	7.3 Soil Geochemistry	17
	7.5 Mapping, Prospecting and Rock Sampling	19
8	CONCLUSIONS	24
9	RECOMMENDED WORK PROGRAM	25
10	COST STATEMENT	27
11	CERTIFICATE OF QUALIFICATIONS	28
12	BIBLIOGRAPHY	29

Page

LIST OF FIGURES

		Page
1	GENERAL LOCATION MAP	2
2	CLAIM LOCATION MAP	3
3	REGIONAL GEOLOGY	9
4	MINERAL OCCURENCES LOCATION MAP	11
5	GRID LOCATION MAP	18
6	SOIL GEOCHEMISTRY - COPPER AND GOLD RESULTS - 1:5,000	pocket
7 a	TOPOGRAPHICAL SECTION - LINES 99N, 95N, 90N, 85N, 80N - 1:2,500	pocket
7 b	TOPOGRAPHICAL SECTION - LINES 75N, 70N, 65N, 60N - 1:2,500	pocket
8	GEOLOGY, MAPPING STATIONS, AND ROCK SAMPLING	
	LOCATION MAP – 1:5,000	pocket

LIST OF TABLES

1	PROPERTY OWNERSHIP AND CLAIM TENURE	4
2	HISTORY OF EXPLORATION WORK	5
3	MINERAL OCCURENCES	12
4	SAMPLE DESCRIPTION	22
5	SAMPLE RESULTS	23

LIST OF APPENDICES

_. .

I ANALYTICAL RESULTS LABORATORY CERTIFICATE

SUMMARY

The HOW property is located approximately 21 km north of the town of Merritt, on NTS map sheet 921 07E/W. The claim group is part of the Nicola Mining Division, and consists of 27 claims for a total of 211 units.

The property is underlain by volcanic rocks consisting mainly of andesitic flows and tuffs, agglomerates with interbedded sedimentary units of the Upper Triassic Nicola Group. In the property area, the Nicola Group forms a band approximately fifteen kilometres wide and 60 kilometres long. It is bound on its east side by the Triassic/Jurassic Nicola Batholith and on its west side by the large Triassic/Jurassic Guichon Creek Batholith. Both grade in composition from granodiorite to quartz-monzonite, and were emplaced during the late stages of volcanic activity. The compression caused by their intrusion is responsible for the folding and fracturing in the Nicola Group. This deformation provided access to the mineralizing fluids.

Work on the property started in 1916 with the discovery of the Lucky Mike showing and was soon followed by the sinking of a shaft. Since then the property has a long history of work which led to a total of eighteen (18) BC Government MINFILE mineral occurences on the property with an additional one immediately to the north. Two of these occurences are listed as "past producers", and two as "developed prospects". These discoveries date back to the early 1900's. The mineralization types are described as polymetallic skarn-type mineralization, lead-zinc-silver bearing quartz veins and replacements, and polymetallic quartz veins. They occur in two main distinct areas: the N-S Swakum Mountain Trend and the Tolman Lake Trend with a 060degree orientation. The Sophia prospect is sub-parallel to the Tolman Lake trend.

The 2000 assessment work program consisted of the establishment of a compassed and flagged grid, the collection of 588 soil samples, prospecting, the grid mapping of approximately 2.3 sq. km and the collection of 31 grab rock samples and 7 core samples from an existing 1993 diamond drill hole. All samples were sent to Acme Analytical Laboratory Ltd. for 30 element ICP and gold by AA analysis.

In conclusion, for the first time, an exploration program covers the mineralized trends as a whole. The results obtained so far are encouraging and indicate that this initial program is the right course of action. The continuation of the line cutting, soil geochemical sampling, mapping and prospecting is essential. In addition, it is recommended to conduct a ground magnetometer survey and 20 km of induced polarization survey in order to further increase the database. This work program has for main objective to tie in the geology and define the controls of the mineralization, to explore for all mineralization types and commodities including gold, base metals and tungsten. Follow-up work is contingent on the results of this initial work phase.

1 INTRODUCTION

This report was written in order to fulfill the assessment work requirements.

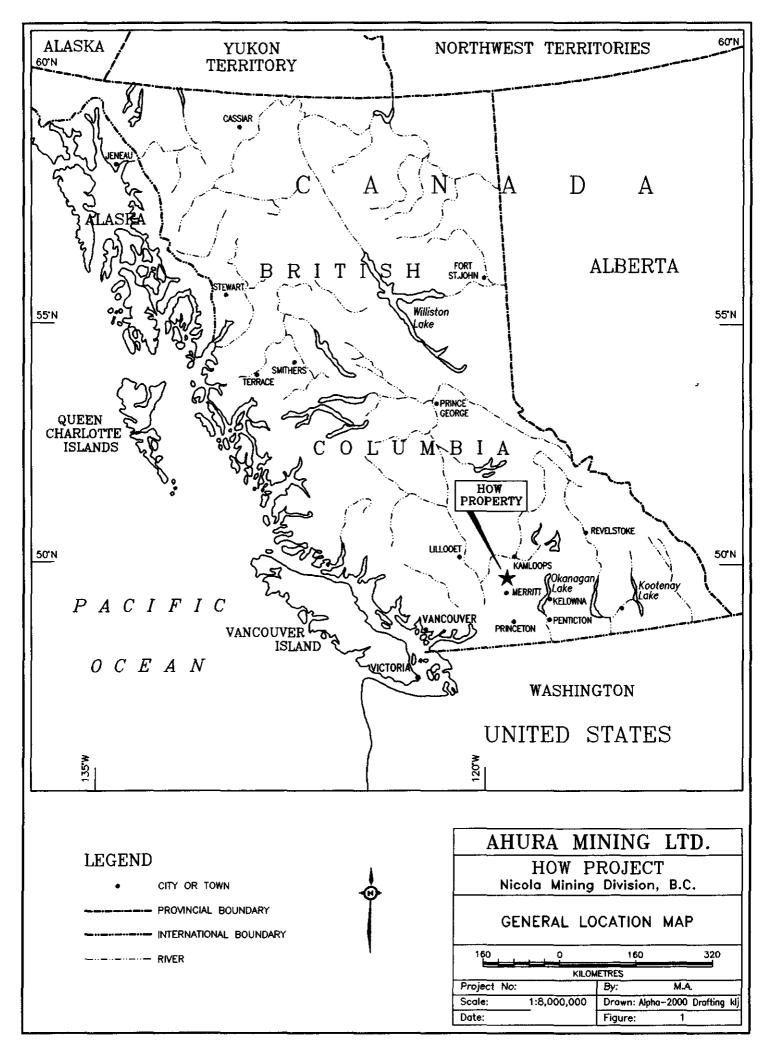
Field work, consisting of grid establishment, soil geochemistry, mapping and prospecting was conducted between May 29th and October 26th 2000.

2 LOCATION, ACCESS AND TOPOGRAPHY

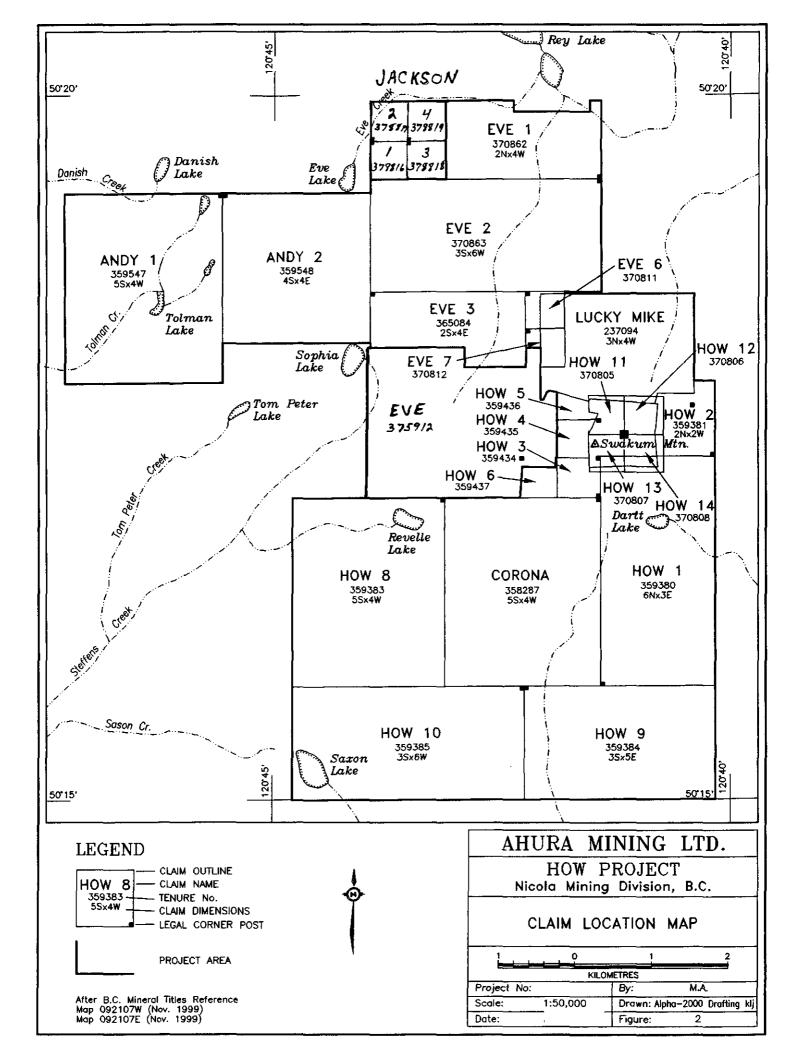
The HOW group of claims, located approximately 21 km north of the town of Merritt, is centered at 50° 17' 00"N and 120° 42' 00"W, NTS map sheet 92I 07E/W (Figures 1 and 2).

The property is accessible from three different directions. The southern part of the claim group is accessible by an 18.5 km drive gravel road starting from Highway 5a at 1.4 km north of the Highway 5 and 5a junction. At the 18.5 km mark, a spur road (Old Swakum road) heads north for 1 km where it enters the HOW 9 claim near identification post 3S2E. Access through the claim group is gained via four-wheel drive logging roads.

The northern part of the property can be accessed via the 97C highway for approximately 32 kilometres from Merritt, then by following the Rey Lake road for approximately 6 kilometres where it leaves the power line one kilometre before reaching Rey Lake and heads south-southeast and enters the Eve 1 claim after 2 kilometres.


The Tolman Lake area access is gained by following a logging road for about 4 kilometres. Its turn off is located on the 97C highway, approximately 23.5 kilometres from Merritt.

The property is located within the Thompson Plateau, a physiographic division of the Interior Plateau System. Topography is typically gently rolling terrain with elevation relief averaging 200 metres from elevations of 1350 metres to 1550 metres. The east-central area of the property is dominated by Swakum Mountain with a peak elevation of 1858 metres.


3 PROPERTY OWNERSHIP AND MINERAL TENURE

The property is part of the Nicola Mining Division. The claim group comprises twentyseven claims composed of two hundred and eleven (211) units. The CORONA and LUCKY MIKE claims are owned by Mr. Bill Petrie of Merritt, B.C. All remaining claims are owned by Ahura Mining Ltd.

A more detailed description of the mineral tenures is presented in Table 1.

- - -----

TABLE 1 PROPERTY OWNERSHIP AND CLAIM TENURE

Tenure	Claim	Owner		Мар	Work	Units	Tag
Number	Name	Number	%	Number	Recorded to		Number
237094	LUCKY MIKE	121284	100	092107E	November 1, 2005	12	79667
358287	CORONA	121284	100	092107E	November 1, 2005	20	208682
359380	HOW 1	140388	100	092107E	November 1, 2005	18	235294
359381	HOW 2	140388	100	092107E	November 1, 2005	4	235295
359434	HOW 3	140388	100	092107E	November 1, 2005	1	675551 M
359435	HOW 4	140388	100	092107E	November 1, 2005	1	675552M
359436	HOW 5	140388	100	092107E	November 1, 2005	1	675553M
359437	HOW 6	140388	100	092107E	November 1, 2005	1	675554M
359383	HOW 8	140388	100	092107E	November 1, 2005	20	235297
359384	HOW 9	140388	100	092107E	November 1, 2005	15	235299
359385	HOW 10	140388	100	092107E	November 1, 2005	18	235300
370805	HOW 11	140388	100	092107E	November 1, 2005	1	675549M
370806	HOW 12	140388	100	092107E	November 1, 2005	i	675548M
370807	HOW 13	140388	100	092107E	November 1, 2005	1	675547M
370808	HOW 14	140388	100	092107E	November 1, 2005	1	675546M
375912	EVE	140388	100	092107E	November 1, 2005	20	222467
370862	EVE 1	140388	100	092107E	November 1, 2005	8	222465
370863	EVE 2	140388	100	092107E	November 1, 2005	18	222466
365084	EVE 3	140388	100	092107E	November 1, 2005	8	231257
370811	EVE 6	140388	100	092107E	November 1, 2005	1	651464M
370812	EVE 7	140388	100	092107E	November 1, 2005	1	651465M
359547	ANDY 1	140388	100	092107W	November 1, 2005	20	236101
359548	ANDY 2	140388	100	092107W	November 1, 2005	16	236102
378816	JACKSON 1	140388	100	092107E	November 1, 2005	1	639831M
378817	JACKSON 2	140388	100	092107E	November 1, 2005	1	639832M
378818	JACKSON 3	140388	100	092107E	November 1, 2005	1	639833M
378819	JACKSON 4	140388	100	092107E	November 1, 2005	1	639834M
						211	

_

___ -

_

4 **EXPLORATION HISTORY**

The history of exploration on the HOW claim group is summarized in Table 2.

YEAR	COMPANY	LOCATION	TYPE OF WORK	PRODUCTION
1916	Oscar Schmidt and Associates.		Discovery	
1917	Oscar Schmidt and Associates.	Lucky Mike	Sinking of an incline and a shaft (15.2 m). Shipment of 22 tons.	22 tons of ore at 4.6% Cu
1918- 1924		Alameada	Sinking of a shaft (23.1 m). Shipment of 36 sacks.	Shipment assayed: 130.3 g/t Ag, minor Au, 22% Pb, 36% Zn
1925- 1928		Lucky Mike, Alameada	Continued work on Lucky Mike, Alameada and immediately south of Alameada	
1929		Thelma	Sinking of one shaft (76 m)	
1929		Bernice	Sinking of one shaft (18.6 m). One shipment	
1930			Shut down due to financial difficulties	
1934	Sheffield Gold and Silver Mines Ltd.		Acquisition of the Thelma, Alameada and Corona groups of claims. No progress due to a fire destruction of the facilities	
1942- 1943		Lucky Mike	Surface stripping and excavating of open cuts, limited amounts of drilling 14 Diamond Drill Holes	
1956	Jacson Mines Ltd.	Mac group includes Alameada, Lucky Mike and surrounding ground.	Geological Study. Drilling and rock sampling. Digging of 2 trenches along strike.	
1958	Torwest Resources Ltd.	176 claims and 2 mineral leases covering Lucky Mike, Thelma, Alameada, and Gold Gossan.	Self Potential survey followed by trenching and diamond drilling.	
1965-66	Vastlode Mining Co.	Tolman Lake area	Stripping, trenching, 17 holes of diamond drilling and limited magnetometer survey	
1967-68	San Doh Mines Ltd.	Tolman Lake area	Trenching, 34 holes of diamond drilling	
1969	Highland Lode	Tolman Lake area	Geological mapping	

TABLE 2 HISTORY OF EXPLORATION WORK

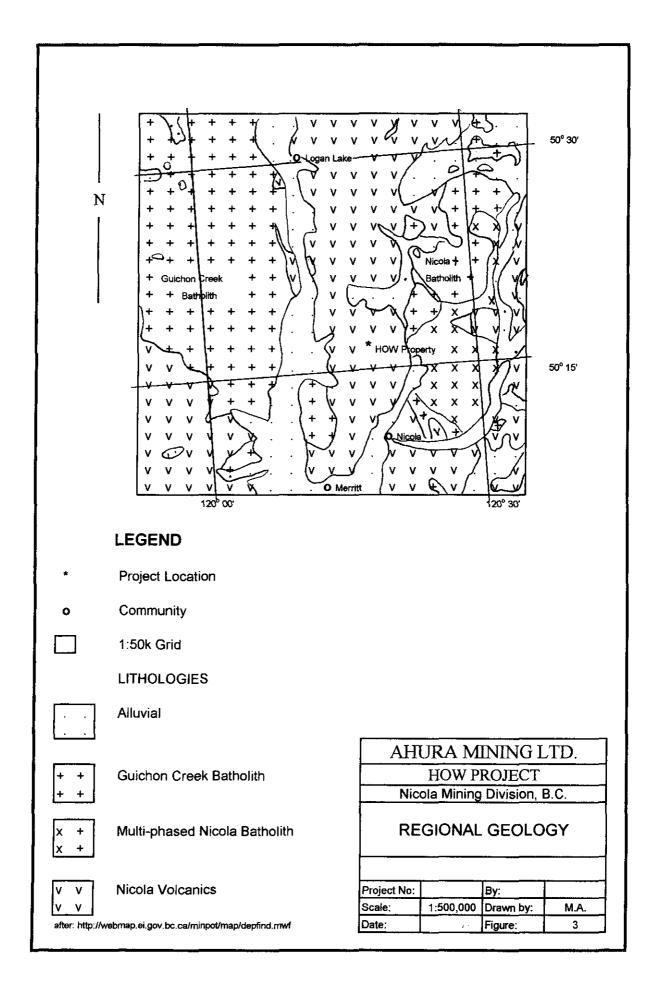
YEAR	COMPANY	LOCATION	TYPE OF WORK	PRODUCTION		
	Mines	······	····	<u> </u>		
1969	Zulco Explorations Ltd.	On a portion of the Old Alameada property	Induced Polarization survey			
1970	Pomona Developments Ltd.	Dart Lake area	200 soil samples analyzed for Cu, Zn and Mo.			
1971	Highland Lode Mines	Tolman Lake area	Resource calculation for Zone No. 3 by Mr. Elwell, P. Eng.	The arithmetic average grade of the zone was 0.36 oz Ag/ton; 1.69% Pb; 4.80% Zn; and 0.18% Cu.		
1971-72	Highland Lode Mines	Tolman Lake area	Geological mapping, 6 holes of diamond drilling and road building			
1972	Adar Resources Ltd.	Lucky Mike, Old Alameada, Alameada No.1	 14.5 km Magnetometer and VLF-EM survey 16.5 km or 576 soil samples analysed for Cu, WO3, Pb and Zn. One 36.5 percussion drill hole, Two 76 m deep diamond drill holes 			
1972	Gomara Resources Ltd.	Property Evaluation				
1972-73	Asarco	Rey Lake	86 percussion drill holes and 17 diamond drill holes. Resource estimation	Indicated Resources of: 31,250,000 tons at 0.20% Cu and 0.021% Mo in a zone 150 m wide by 450 m long and 150 m deep.		
1973	Asarco	Gold Gossan area	52 soil samples analysed for Copper.			
1976	Cominco Ltd.	N-E of the Lucky Mike	16 km Induced Polarization			
1976	Ruskin Developments Ltd	Tolman Lake area	VLF-EM survey, geochemical survey			
1977	Highland Lode Mines	Tolman Lake area	stripping, trenching, 900 metres of diamond drilling in 16 holes, adit driving for 325 m.			
1977	Ruskin Developments Ltd.	Tolman Lake, Zone 3	Diamond Drilling, 210.3m in 4 holes			
1977-78	Mr. C. Boitard and Lakewood Mining Co. Ltd.	Sophia Lake	14 km of Magnetometer, VLF surveys 11.8 km of IP and soil sampling for Pb, Zn, Cu, Ag, WO3			
1979			3 shallow Diamond Drill Holes 548.6 metres of percussion drilling in 6 holes			
1978	Cominco Ltd.	Portions of Eve 2	7.2 km Induced Polarization			

- ----

	COMPANY	LOCATION	TYPE OF WORK	PRODUCTION
		and of Lucky Mike claims		
1979-	C.D.R. Resources	Tolman Lake area	587metres of diamond drilling	· · · · · · · · · · · · · · · · · · ·
1979-	Inc.	TOIMan Lake area	in 12 holes	
1981 to	Mr. Sherwin F.	West of Lucky	Soil geochemical surveys on	
1985	Kelly	Mike, west and	several small grids in order to	
1705	Reny	south-west of	fulfill assessment work	
		Swakum Mtn	requirements. The samples	
			were generally analyzed for	
			Cu, Pb, Zn, Ag	
1981	Cominco Ltd.	Lucky Mike	Percussion Drilling – 146.3m	<u></u>
			in two holes	
			3.04 m samples were analyzed	
			for Cu, Mo.	
			15.24 m composite samples	
		1	were analyzed for Ag, Au, &	
			WO3	
1983	Mr H. Kruse	Dartt Lake	61.27 m of diamond drilling in	
		<u> </u>	3 DDH	
1983	Lakewood Mining	Sophia Lake	170 m. of percussion drilling	
	Co. Ltd.	Í	in two holes	
1984-	Mr. J. Georgilas,	South of Corona	Geological mapping and	
85-86	Decade	showing	magnetometer survey	
	International	ſ	Two lines of soil geochemical	
	development Ltd.		survey with 82 samples	
			analysed for Cu, Pb, Zn, Ag	
		West of Corona	&As	
			VLF-EM survey	
1986	Atlar Resources	Corona-Thelma	29.1 km, magnetometer, VLF-	
	Ltd		EM, geological mapping, soil	
			geo- chemical survey with 424 samples analyzed for 29	
			elements plus silver and gold.	
1986-	Lakewood Mining	Sophia	4.2 km of magnetometer and	
1980-	Co. Ltd.	Sobing	VLF-EM survey and	
1707	CO. LIU.		5.1 km of induced polarization	
1987-	Corona	Lucky Mike, Old	34 km line cutting,	······································
1988	Corporation	Alameada	magnetometer, VLF-EM,	
	p		Max-Min II, airborne	
			geophysic, detailed geological	
			mapping, soil geochemical	
			survey with samples analyzed	
1		ļ	for Au, Ag, Cu, Pb and Zn,	
			800 m of diamond drilling,	
			175 linear metres of excavator	
			175 linear metres of excavator trenching.	
1993	Hera Resources Inc.	Gossan Zone - Eve 3	175 linear metres of excavator	
1993			175 linear metres of excavator trenching. induced polarization.	
	Inc.	Eve 3	175 linear metres of excavator trenching.	
	Inc. Hera Resources	Eve 3 Gossan Zone -	175 linear metres of excavator trenching.induced polarization.4 diamond drill holes totaling	
	Inc. Hera Resources	Eve 3 Gossan Zone -	 175 linear metres of excavator trenching. induced polarization. 4 diamond drill holes totaling 616.31 metres with 262 core 	

.

5 **REGIONAL GEOLOGY**


The property is located within the Nicola Belt, a terrain approximately 40 kilometres wide and 180 kilometres long, extending from the International Boundary to the south to Kamloops Lake to the north. It consists mainly of Upper Triassic volcanic, sedimentary, and intrusive rocks of the Nicola Group.

In the property area, the Nicola Group forms a band approximately fifteen kilometres wide and sixty kilometres long (Figure 3). It is bound on its east side by the granodioritic rocks of the Early Jurassic Nicola Batholith and the dioritic rocks of a smaller intrusion. On its west side, it is flanked by the large Triassic Jurassic Guichon Creek Batholith. The Guichon and Nicola Batholiths were emplaced during the late stages of volcanic activity. They show evidence of having been intruded at shallow depth. Both are phased bodies and grade in composition from granodiorite to quartz-monzonite. The adjacent Nicola Group hosts numerous dykes and small plugs of similar composition.

6 **PROPERTY GEOLOGY**

The Nicola Group rocks on Swakum Mountain strike north to northeast with generally steep dips. For a large part they consist of andesitic flows and tuffs, agglomerates, and occasional basalts and rhyolites. A break occurs in the volcanic stratigraphy and is comprised of a mixed volcanicsedimentary unit consisting of a thick sequence of felsic volcanic flows, lithic and crystal tuffs, limy sediments and a prominent limestone. This unit has a northeast strike and a 2.5 kilometre strike length. It crosses Swakum Mountain and has been historically used as a marker horizon in interpreting a large, asymmetrical, south plunging anticline with its north trending axis near Swakum Mountain summit. Narrow quartz porphyry dykes locally intrude the Nicola Group sequence. To the east of this marker unit occurs a thick, unconformable wedge of immature sediments, predominantly coarse polymictic conglomerates (fan-type) and grits with minor cherty units. Most of the old workings on the mountain occur in close proximity to or within this volcanic-sedimentary unit. The Swakum Mountain deposits consist of polymetallic skarn-type mineralization, lead-zincsilver bearing quartz veins and replacements, and polymetallic quartz veins. (after MINFILE #092ISE027)

Numerous mineral occurrences occur on the property and its surrounding. A short description of these occurrences, extracted from the government MINFILES, is given below. The location of each occurrence is listed in Table 3 and shown on Figure 4.

SWAKUM MOUNTAIN TREND

LUCKY MIKE (LAST CHANCE) - Past Producer

COMMODITIES: Silver, Gold, Copper, Lead, Tungsten, Zinc

On the Lucky Mike property, polymetallic skarn mineralization is associated with altered sections of the marker horizon unit of the Nicola Group. Limy volcanics, tuffs and limestone of this marker unit have been in part, converted to garnet-epidote-calcite skarn with associated copper, tungsten, silver and minor gold and zinc mineralization. Drilling has indicated that tungsten mineralization is widespread in the garnet skarn. A drill hole intersection across 14.1 metres of skarn mineralization assayed 0.152 per cent tungsten (Assessment Report 18583).

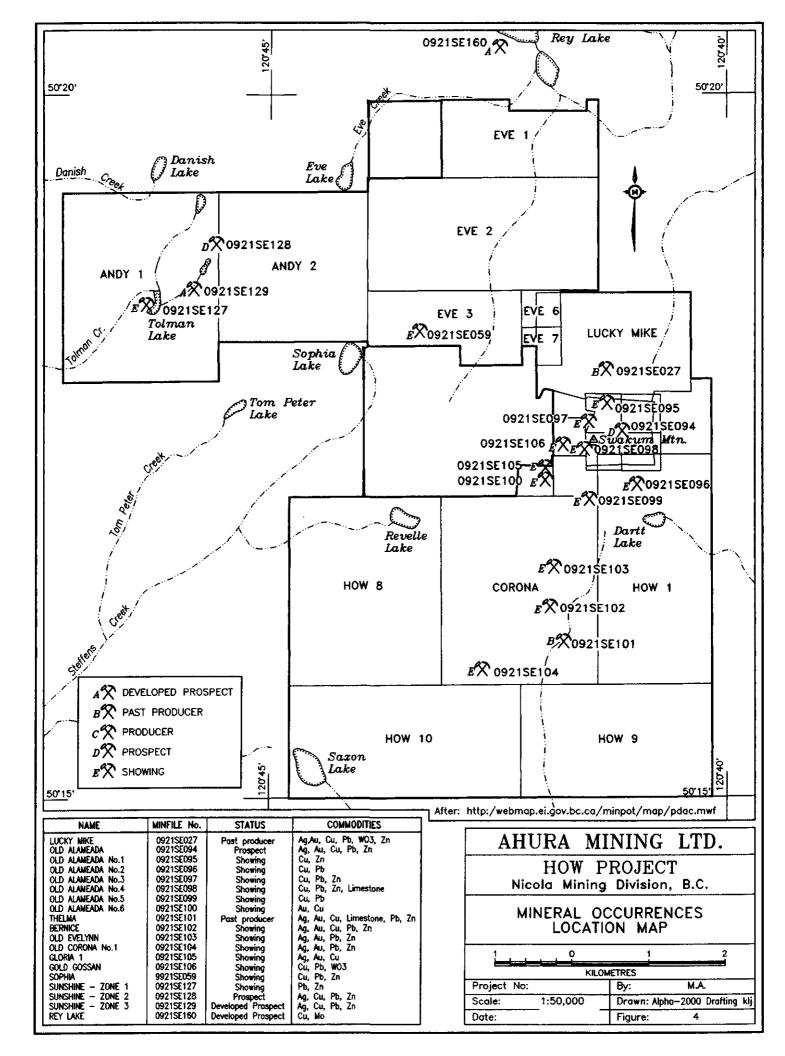
Copper-zinc-gold-silver values tend to be restricted to late (post-skarn) crosscutting structures. Sulphides consist of chalcopyrite, pyrrhotite and pyrite with lesser galena and sphalerite. A diamond-drill hole intersection across 3.6 metres of skarn mineralization assayed 0.18 per cent copper and 38.39 grams per tonne silver (Assessment Report 18583). Tungsten values occur with the copper and silver where the structures cut through the skarn.

Diamond drilling has tested the skarn for 110 metres strike length and at a variety of elevations 40 to 80 metres below the old surface workings. Based on present and past drilling, indicated resources of skarn available for tungsten mineralization is less than 100,000 tons (Assessment Report 18583).

Geological resources at the Lucky Mike copper-tungsten skarn deposit are estimated at 317,485 tonnes grading 0.56 per cent copper, 0.30 per cent WO3 (0.23 per cent W) and 20.5 grams per tonne silver (Assessment Report 24600).

OLD ALAMEADA (L. 4507) - Prospect

COMMODITIES: Silver, Gold, Copper, Lead, Zinc


Minor historic underground workings have exploited a main vein, 0.6 metres wide, striking north and dipping west (30-40 degrees). The vein is significantly mineralized with pyrite, sphalerite, galena and chalcopyrite. The vein is hosted by felsic to intermediate porphyritic volcanics.

Diamond drilling intersected the main quartz vein within a clayey fracture zone. Drill intersections across 0.68 metres (true width) assayed 167.97 grams per tonne silver, 1.09 per cent copper, 5.25 per cent lead, 20.9 per cent zinc and 0.34 grams per tonne gold (Assessment Report 18583).

OLD ALAMEADA NO. 1 (L.4506) - Showing

COMMODITIES: Copper, Zinc

A vertical shaft is sunk near the northwest corner of the Old Alameada No. 1 claim (L.4506). The showing lies at the contact between the limestone and volcanic rock and forms a zone 7 to 22 centimetres wide. The skarn zone consists of altered limestone with epidote, calcite, pyrrhotite, chalcopyrite and minor sphalerite.

TABLE 3MINERAL OCCURENCES

.

NAME	MINFILE #	STATUS	NORTHING	EASTING	LATITUDE	LONGITUDE	COMMODITIES
LUCKY MIKE	092ISE027	Past Producer	5574375	664475	50o 18' 02" N	1200 41' 26" W	Ag, Au, Cu, Pb, WO3, Zn
OLD ALAMEADA	092ISE094	Prospect	5573580	664700	50o 17' 36" N	120o 41' 16" W	Ag, Au, Cu, Pb,Zn
OLD ALAMEADA No 1	092ISE095	Showing	5573950	664500	50o 17' 48" N	1200 41' 25" W	Cu, Zn
OLD ALAMEADA No 2	092ISE096	Showing	5572874	664900	50o 17' 13" N	1200 41' 07" W	Cu, Pb
OLD ALAMEADA No 3	092ISE097	Showing	5573687	664300	50o 17' 40" N	1200 41' 36 " W	Cu, Pb, Zn
OLD ALAMEADA No 4	092ISE098	Showing	5573360	664218	50o 17' 29" N	1200 41' 41" W	Cu, Pb, Zn, Limestone
OLD ALAMEADA No 5	092ISE099	Showing	5572675	664280	50o 17' 07" N	1200 41' 38" W	Cu, Pb
OLD ALAMEADA No 6	092ISE100	Showing	5572950	663730	50o 17' 16" N	120o 42' 06" W	Au, Cu
THELMA	092ISE101	Past Producer	5570780	664011	50o 16' 06" N	1200 41' 55" W	Ag, Au, Cu, Limestone, Pb, Zn
BERNICE	092ISE102	Showing	5571225	663825	500 16' 21" N	1200 42' 04" W	Ag, Au, Cu, Pb, Zn
OLD EVELYNN	092ISE103	Showing	5571750	663860	50o 16' 38" N	120o 42' 01" W	Ag, Au, Pb, Zn
OLD CORONA NO 1	092ISE104	Showing	5570400	662973	50o 15' 55" N	1200 42' 48" W	Ag, Au, Pb, Zn
GLORIA 1	092ISE105	Showing	5573030	663730	50o 17' 19" N	120o 42' 06" W	Ag, Au, Cu
GOLD GOSSAN	092ISE106	Showing	5573375	663950	50o 17' 30" N	120o 41' 54" W	Cu, Pb, WO3
SOPHIA	092ISE059	Showing	5574822	662062	50o 18' 19" N	1200 43' 27" W	Cu, Pb, Zn
TOLMAN LAKE - ZONE1	092ISE127	Showing	5575158	658501	50o 18' 33" N	120o 46' 27" W	Pb, Zn
TOLMAN LAKE - ZONE2	0921SE128	Prospect	5575971	659359	50o 18' 58" N	120o 45' 42" W	Ag, Cu, Pb, Zn
TOLMAN LAKE - ZONE3	092ISE129	Developed Prospect	5575385	659100	50o 18' 40" N	120o 45' 56" W	Ag, Cu, Pb, Zn
REY LAKE	092ISE160	Developed Prospect	5578550	663000	50o 20' 18" N	1200 42' 34" W	Cu, Mo

OLD ALAMEADA NO. 2 (L.4508) - Showing

COMMODITIES: Copper, Lead

A shallow shaft was sunk in the west-central portion of the Old Alameada No. 2 claim (L.4508). The shaft follows a mineralized zone consisting of a quartz vein ranging in width from 15 to 60 centimetres and a number of quartz stringers 5 centimetres wide within crushed and sheared andesite. The veins are sparsely mineralized with pyrite and lesser amounts of chalcopyrite and galena.

OLD ALAMEADA NO. 3 (L.4505) - Showing

COMMODITIES: Copper, Lead, Zinc

A shallow shaft was sunk in the northeast corner of the Old Alameada No. 3 claim (L.4505). The shaft intersects an unmineralized 2 metre wide quartz vein striking 030 degrees and dipping steeply northwest within andesite. On the hangingwall side of the vein there is a narrow sulphide streak; masses of copper sulphides also occur across 60 centimetres near the footwall.

OLD ALAMEADA NO. 4 (L.4504) - Showing

COMMODITIES: Copper, Lead, Zinc, Limestone

Open cuts on the Alameada No. 4 claim (L.4504) expose numerous stringers and bunches of quartz and calcite hosted in limestone. The vein zone is 1.8 to 2.4 metres wide and carries sparse chalcopyrite, galena, sphalerite and pyrite. The footwall of the zone strikes approximately 050 and dips 80 degrees southeast.

A lens of limestone at the 1706 metre elevation averages 45 metres wide and is exposed for 402 metres along a line trending 020 degrees. The rock is light buff to grey with brown grains of dolomite, white calcite stringers and some thin shaly interbeds. A shallow pit exposes sulphide mineralization near the centre of the lens.

OLD ALAMEADA NO. 5 (L. 4503) - Showing

COMMODITIES: Copper, Lead

A 2.4 metre deep pit in the northeast portion of the Old Alameada No. 5 claim (L.4503) exposes a breccia consisting largely of limestone fragments in a tuffaceous matrix. Sparse pyrite with tetrahedrite and galena occurs in the breccia.

ALAMEADA NO. 6 (L.4501) - Showing

COMMODITIES: Gold, Copper

A shaft was sunk near the northern boundary of the Alameada No. 6 claim (L.4501) approximately 46 metres south of the Gloria 1 shaft (092ISE105). The shaft intersects a vein zone 20 to 35 centimetres wide consisting of narrow quartz stringers 2.5 to 15 centimetres wide within highly sheared andesite. The quartz carries pyrite, chalcopyrite and gold telluride.

GOLD GOSSAN - Showing

COMMODITIES: Copper, Lead, Tungsten

At the northern end of the Gold Gossan 2 occurrence, a 15 to 35 centimetre wide zone of narrow quartz stringers is exposed on a small bluff of silicified and epidotized andesite. The vein strikes west, dips 17 degrees to the north and carries masses of pyrite, chalcopyrite, galena and minor amounts of scheelite. Approximately 100 metres to the south, underground workings intersect narrow stringers within sheared, pyritic andesitic country rock in a zone up to 60 centimetres wide.

THELMA (L.4510) - Past Producer

COMMODITIES: Silver, Gold, Copper, Limestone, Lead, Zinc

The property covers the contact zone between the volcanic and sedimentary sequences of the Nicola Group. Limestone and conglomerate beds strike north and dip steeply to the east.

The Thelma occurrence consists of one shaft, underground workings and a number of surface trenches, all of which have collapsed and filled in since work ceased in 1940. Silver-leadzinc mineralization is exposed in tabular and lenticular garnet-epidote skarn zones up to 5 metres wide within the limestone. Pyrite, galena and sphalerite, with gold and silver values, occur as metasomatic replacements along bedding planes and as disseminations throughout the limestone. Minor copper values are also associated with the skarn. Quartz veins 10 to 15 centimetres wide are hosted by Nicola Group andesitic rocks near the volcanic-sedimentary contact. These veins carry galena and sphalerite with minor gold and silver values.

BERNICE (L. 4502) - Showing COMMODITIES: Silver, Gold, Copper, Lead, Zinc

The Bernice occurrence lies in the contact zone between volcanic and sedimentary sequences of the Nicola Group. Precious metal mineralization occurs in garnet-epidote skarn zones. Pyrite, sphalerite and galena are the most common minerals, with minor amounts of tetrahedrite and chalcopyrite. As shown by ore in the dump, the deposit consists in part of narrow quartz veins within andesite. The wallrock is partially altered to ankerite along the veins. Pyrite, galena, sphalerite and hydrozincite are present.

OLD EVELYNN (L.4511) - Showing

COMMODITIES: Silver, Gold, Lead, Zinc

The Old Evelynn occurrence lies on the contact zone between volcanic and sedimentary sequences of the Nicola Group. An adit was driven on a garnet-epidote skarn zone approximately 2.5 metres in width near the portal. Low grade mineralization occurs as narrow streaks of galena in andesite adjacent to a limestone band. Pyrite and sphalerite are also present. Near the end of the adit is a 2 to 5 centimetre wide quartz vein in highly sheared andesitic country rock. The vein strikes north and dips at a very low angle to the west; very minor sulphide mineralization is evident.

OLD CORONA NO. 1 (L.4512) - Showing

COMMODITIES: Silver, Gold, Lead, Zinc

The Old Corona No. 1 occurrence is located within folded, fine to medium-grained interbedded basalt flows, tuffs and agglomerates of the Nicola Group. Vein-type mineralization occurs in a 25 to 70 metre wide zone of limonitic, ankeritic volcanics occurs in a distinct depression between prominent north-northwest trending ridges of unaltered volcanics.

In the collapsed Corona shaft and in several trenches, quartz-carbonate veins are 5 to 10 centimetres wide with a northwest strike and steep westward dip. Mineralization includes galena, sphalerite, pyrite and tetrahedrite. Samples from the Corona shaft assayed up to 2442.1 grams per tonne silver and 0.1 grams per tonne gold (Assessment Report 15312).

GLORIA 1 - Showing

COMMODITIES: Silver, Gold, Copper

On the Gloria 1 showing near the Alameada No. 6 (092ISE110), a shallow shaft exposes narrow quartz stringers ranging from 12 to 30 centimetres in width in Nicola Group andesite. The stringer veins strike 010 degrees and dip 75 degrees west and contain widely scattered pyrite and chalcopyrite grains. Bismuth telluride(?) with high gold and silver content is reported. Dump material shows limonite staining.

REY LAKE - Developed Prospect

COMMODITIES: Copper, Molybdenum

The Rey Lake Prospect is located immediately to the north of the HOW Group property, along strike of the Swakum Mountain mineralization. Local geology consists of north striking, steeply dipping volcanic, conglomerates and limestone units of the Nicola Group. A small biotite quartz monzonite stock (Upper Cretaceous) is emplaced subparallel to bedding. A breccia zone consisting of volcanic and some granitic fragments occurs adjacent to the stock. Drill core (1973) indicates contact metamorphism of the albite-epidote-hornfels facies.

Mineralization consists mainly of pyrite, with lesser chalcopyrite and molybdenite. The quartz monzonite stock is mineralized with disseminated pyrite and lesser chalcopyrite and molybdenite. The sulphides also occur in veinlets in the stock and host rocks, as disseminations in the breccia fragments and on fracture surfaces. Quartz, calcite, potassium feldspar and zeolite are the dominant non-metallic minerals.

Total postulated geological resources of the Rey Lake porphyry copper zone and related skarn zone are 46,862,600 tonnes grading 0.17 per cent copper and 0.018 per cent molybdenum (Assessment Report 24600).

SOPHIA LAKE AREA

SOPHIA -- Showing

COMMODITIES: Copper, Lead, Zinc

At the Sophia showing, mineralization occurs in a shear zone exposed in a trench. The zone is 8 metres wide, strikes 220 degrees and dips 30 to 60 degrees south. Pyrite, sphalerite, galena and chalcopyrite are associated with quartz and calcite which occur as narrow stringers in andesitic porphyry and as cement in brecciated volcanics.

TOLMAN LAKE AREA

The Tolman Lake area is underlain by intermediate volcaniclastic and flow rocks of the Nicola Group. A strongly brecciated shear zone strikes 045 degrees and dips steeply to the northwest and is apparently continuous over a strike length of 2000 metres. This structure hosts 3 zones of mineralization.

SUNSHINE ZONE 1- Showing

COMMODITIES: Lead, Zinc

Zone 1 is located on the west side of Tolman Lake. Open cuts expose a shear striking 085 degrees and dipping 65 degrees to the north within andesitic tuffs. The shear varies in width from 3 to 8 metres and contains steeply dipping quartz stringers which coalesce downward into a 30 to 60 centimetre wide vein. The vein is fractured and in places brecciated. The fractures are mineralized with sphalerite and minor galena.

SUNSHINE ZONE 2 - Prospect

COMMODITIES: Silver, Copper, Lead, Zinc

For 46 metres along the strike of the zone, four trenches expose brecciated andesitic tuffs mineralized with quartz, sphalerite, pyrite, chalcopyrite and galena. The quartz stringers and sulphides lie in two principal directions; one strikes east and dips 75 degrees north and the second strikes 045 degrees and dips 80 degrees southeast. The mineralized brecciated andesitic tuffs are cut by several unmineralized steep faults trending east and northwest.

Combined average assay results from diamond drilling were 0.157 per cent lead, 4.10 per cent zinc, 2.4 grams per tonne silver and 0.17 per cent copper over 3.25 metres; gold averaged less than 0.1 grams per tonne (Assessment Report 8036). Inferred resources are 45,359 to 54,431 tonnes based on a width of 8 metres, length of 50 metres and depth of 30 metres (Assessment Report 6742).

SUNSHINE ZONE 3 – Developed Prospect

COMMODITIES: Silver, Copper, Lead, Zinc

In Zone 3, galena, sphalerite, chalcopyrite, pyrite and pyrrhotite occur in a brecciated zone with a quartz-calcite matrix. The hangingwall consists of bleached and pyritic andesite which grades into numerous quartz and calcite veins carrying sphalerite and galena. The footwall consists of highly silicified andesite containing unmineralized quartz and calcite veins. The mineralized brecciated zone varies in width up to 6.5 metres and is cut and slightly offset by several near-vertical, north trending faults.

Zone 3 has been tested by diamond drilling and underground development to a depth of 50 metres over a length of 165 metres. In 1971, unclassified resources are 258,523 tonnes averaging 1.69 per cent lead, 4.8 per cent zinc, 0.18 per cent copper and 12.34 grams per tonne silver. The grade is difficult to determine due to very poor drill core recovery. The grade is based on drill core and adit sampling (Elwell, 1971).

7 2000 FIELD WORK

7.1 Work Program

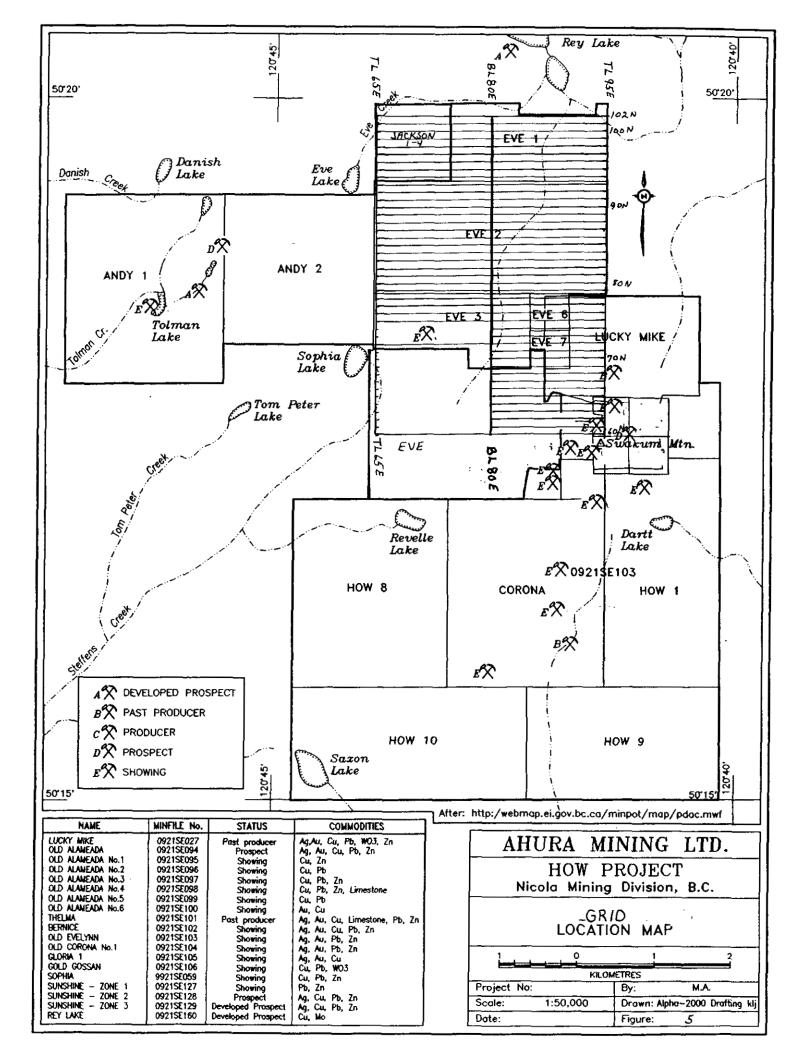
A 151day field program, including mobilization/demobilization time, was conducted during the period of May 29th to October 26th, 2000. All field work was performed on the established grid covering all or portions of the following claims: Jackson 1 to 4, Eve, Eve 1, 2, 3, 6 and 7, Lucky Mike, How 4, 5, and 11(Figure 5). The party consisted of two prospectors / technicians / line cutters: Larry Crittenden and Jack Zackodnik. One geologist, Marthe Archambault, joined the party during the summer, once the grid was partly established. Supervisor, Mr. Ted Hayes, came to the field area for several short visits to overview the work in progress. The program was performed in order to fulfill the assessment work requirements, and as preliminary assessment for future work programs.

7.2 Grid Establishment

The 2000 field program involved the establishment of a flagged grid. The grid was located in relation to the topography and claim posts using government maps, compass and belt-chains. The grid lines were located and established by compass and belt-chain.

The point of origin, 80+00N / 80+00E, was established at the junction of two logging roads, next to the RL-95-03 diamond drill hole collar. The 4.2 km long baseline runs in a north-south orientation. The line spacing is 100 metres and the east-west lines extend for 1.5km on each side of the baseline for a total of 3 km. A tie-line was put in at each end to provide control (Figures 5 and 6). A station is marked every 50 m. Where the topography varies, a length correction was estimated by the line-cutter. A total of 123.1 km has been put-in so far (Figure 5).

Once most of the grid was in place, the debrushing and cleaning of the lines was started. 27.7 km of line cleaning has been completed so far. They include, on the west side of the baseline, lines 95N to 102N. On the east side of the baseline, lines 65N and lines 85N to 93N.


7.3 Soil Geochemistry

Due to the time constraints, it was decided to sample a line every 500 m in order to get a wide coverage before the end of the field season. The technician measured the 25 m stations with a belt-chain and the slope inclination with his compass. The inclinations were then plotted into profiles in order to give a visual understanding of the location of the anomalies. These profiles are presented in figures 7 a, and b. Samples were also collected along a fence line in the vicinity of L65N, near the tie-line 95E (Figure 6).

The soils were collected from the B-horizon, at a 25 m spacing, and sent to Acme Analytical Laboratories Ltd. for 30 element ICP and gold by AA analysis.

The sample numbers are the grid coordinates with the exception of the fence line for which an insert map on figure 6 shows the sample location. Gold and copper results are plotted on figure 6. Based on the statistics completed by Acme Laboratories on the current soil sample population, a threshold of 109ppm for copper and 28ppb for gold are considered anomalous.

A 500 m line spacing is to wide to obtain a meaningful contouring. The results show several single sample anomalies. In this case, they all have to be investigated because they could coincide with a narrow structure. Anomalies of several continuous samples generally coincide with a valley caused by a structural break, in particular those oriented at 30° to 40° .

7.4 Mapping, Prospecting, and Rock Sampling

MAPPING AND PROSPECTING

Prospecting was conducted in most of the clearcut logged areas prior to mapping. Mapping at a scale of 1:5,000 was conducted on most of the cut lines, on some of the roads and in areas of interest determined by prospecting. Mapping stations, outcrop locations, rock types, as well as rock sample locations are plotted on figure 8.

The property is underlain by rocks of the Nicola Group which consist mainly of mafic volcanic flows, tuffs and breccias with lesser thin sedimentary lenses of limestone, conglomerate and sandstone. The Nicola package has been intruded by younger plugs and dykes. Detailed mapping has permitted to distinguish the following sub-units:

VOLCANICS

l Aphanitic to very fine grained: Generally dark green to dark grey and massive with no distinctive features.

2 Feldspar Porphyries: The porphyritic feldspar grains, hosted in a dark green aphanitic matrix, are generally euhedral and vary from 0.5 to 2 mm in diameter. Their density varies anywhere from 5 to 40%.

a- With two distinct feldspars.

3 Mafic Porphyries: The matrix is usually dark green to dark grey. It can be aphanitic or fine grained and it is frequently magnetic. The mafic porphyries are generally 0.5 to 1mm in diameter. Their composition is pyroxene in places, or magnetite in others.

4 Feldspar and Mafic Porphyries : Massive, medium grey to greenish grey aphanitic matrix with up to 25% subhedral feldspar porphyries generally less than 2mm in diameter, and with up to 20% black coloured amphibole or pyroxene porphyries, anhedral to euhedral, with a grains size generally less than 2mm in diameter.

a- Fine grained.

b- Medium to coarse grained.

5 Equigranular, Fine to Medium Grained: The fine grained phase is dark green to dark grey. As it becomes coarser, the feldspar and magnetite grains can be distinguished taking on a salt and pepper texture. It resembles a gabbroic intrusive in places, but it is kept within the volcanic package for the time being because, in the core from hole RL 95-3, it shows gradational contacts rather than intrusive contacts.

6 Breccias and Agglomerates: Angular fragments 1-5cm in diameter in an aphanitic calcareous volcanic matrix with reddish hematite alteration.

7 *Tuffs*: Fine grained, of various colour, pale grey to pale greenish grey, with small black shards. May also show small crystals of feldspar in places. Generally altered to clay. Weathers plain beige.

The Nicola Volcanics form the most widespread rock type on the property. On Swakum Mountain, the contact between flows could be observed in a few places and is sub-horizontal. With the difference in topography, this explains why the different compositional units vary so wildly and do not form distinct zones. They will show to be more continuous in cross-section.

SEDIMENTS

l Conglomerate: The conglomerate units vary in composition with the locality.

a- the unit is immature, polymictic with round pebbles and boulders of andesite, diorite, monzonite and gabbro composition varying in size from 1 cm up to 30cm, but generally less than 10cm in diameter. The matrix appears gritty and is highly calcareous and occurs immediately west of the limestone bed. The matrix appears gritty although usually highly altered.

b- dominated by volcanic pebbles and generally shows a more rusty, crumbly weathering than 1-c.

c- dominated by monzonite pebbles

2 Sandstone and Siltstone: On the property, this unit is usually host to intense carbonate alteration destroying the original texture.

3 Limestone: Generally occurring as lenses. In the exposed outcrops, it is medium grey and unaltered.

a- generally massive.

b- with either limestone pebbles or nodules in a massive matrix.

c- fossiliferous, with shells, not yet identified.

The sediments tend to form more continuous units than the volcanics. They usually occur next to important structures and are likely wedged in place by these structures. The conglomerates of the polymictic or volcanic pebble type are the most common, but a wedge of the monzonite pebble one forms a prominent ridge on line 95N at 85E. The limestones generally occur next to the clastic sediments, and in outcrop, are amazingly fresh for a "skarn" type deposit area. One limestone unit occurs in the north-west corner of the grid. Some blocks taken from the root system of a fallen tree in a flat, swampy area (line 99N / 70+50 E) show large shell fossils. These fossils still need to be investigated.

INTRUSIVE

l Monzonite: Massive, equigranular, pinkish beige, composed of approximately 50% of a pinkish beige feldspar, 30% of a waxy grey feldspar and 20% of biotite.

- a- medium to coarse grained: grains greater than 2mm.
- b- fine grained: grains generally 1mm in diameter.

2 Quartz Monzonite: Coarse grained, massive, with 3-5% of euhedral to subhedral quartz eyes varying from 0.5 to 3mm in diameter in a grey feldspar matrix (70%) with lesser (25-27%) pinkish coloured feldspar. Mafic minerals are rare. This rock type usually forms dykes 3-4 metres wide, and is generally altered.

3 Diorite (Gabbro): Fine grained, massive, equigranular, medium grey to medium green, plagioclase groundmass with up to 20% of fine, platy biotite grains in some outcrops. Weathers medium grey, or greenish grey to dull brown.

With the systematic coverage of the ground, several small outcrops of various intrusives can be found. There are 3-4 metre wide dykes, and a few $1m \times 1m$ outcrops which could represent small plugs which are mostly covered. Further exploration will be needed to make that assessment. However, there is a larger intrusion of coarse grained monzonite. It extends over 100m x 100m in the line 89N area, near 85-86E.

ALTERATION

Although numerous types of alteration occur throughout the property, most of them occur on a small scale. The carbonate and magnetite alterations, however, are prominent, wide-spread and are spatially related to known zone of mineralization.

Carbonate: Usually bleaches the original rock to a pale grey or beige colour, accompanied by fine disseminations of pyrite varying from 1 to 5%. Its pervasive mode destroys the original texture as the intensity increases. The iron content of both the iron-carbonate and of the pyrite is responsible for its rusty orange weathering. It tends to occur in the sedimentary packages (although not exclusively). Because of this, it tends to form narrow, elongated zones, in the order of tens of metres, in or next to some fault structures.

Magnetite: This alteration occurs as disseminations at lower intensity, but can totally replace the original rock into a black, hard, aphanitic rock at high intensity. It tends to affect mainly the volcanic units, but has also been observed in a conglomeratic unit. It also occurs as veins. Zones of magnetite alteration may extend over areas of several hundred metres.

Epidote: This alteration generally occurs in veins and fractures. It is found mainly in the general vicinity of the Lucky Mike Deposit.

STRUCTURE, MINERALIZATION AND ROCK SAMPLING

In the northwest area of the grid, the structural orientation is prominently 160° . In the northeast area of the grid, in addition to the 160° orientation, there is a N-S orientation and a 030° to 40° orientation. As we move towards the south this latter orientation becomes predominant, with the N-S direction. The 160° orientation becomes weaker. Some flatter structures can be observed where the outcrops form small cliffs.

Grab samples were collected from outcrops showing either sulphide mineralization, or intense alteration or brecciation and veining. In total, 31 rock samples were collected and sent to Acme Analytical Laboratories Ltd. for 30 element ICP and gold by AA analysis.

The sample locations are plotted on figure 8. A sample description is provided in Table 4. Results for some of the more common elements are presented in Table 5 with the complete Laboratory Certificate included in Appendix I.

Most of the mineralized samples were collected from the north and west slopes of Swakum Mountain. The anomalous samples in base and precious metal come mainly from a series of fracture valleys oriented 030° . At least one sample(SK-96) with high precious metal values occurs in a different series of veins usually narrow, in average 15 cm, but very continuous, oriented 255° and dipping 27° to the north. Further detailed work is needed in this area in order to determine the different structures and generations of the mineralization.

The area to the north of line 80N is also very fractured and has great potential, but most of the area is covered by thick overburden and generally flatter and swampy.

In addition to the surface mapping and sampling, a diamond drill holes from the 1993 drilling campaign (93-5) was summarily examined. This hole was drilled down a continuous shear zone with some pyritic intervals. Very little sampling had been done, so seven core samples were taken to test whether or not the shear zone carried some mineralization. Although some values are slightly elevated, there were no economical values. The results are also presented in Table 5.

TABLE 4SAMPLE DESCRIPTION

COORI	DINATES	SAMPLES	DESCRIPTION
LINE	STATION	NUMBER	
78 30 N	95 00 E	SK-02	Vuggy quartz vein, 2cm thick, hosted in volcanics. Diss. Pyrite patches
62 20 N	89 15 E	SK-20	Rusted shear-zone, 1m wide, oriented 028°, dip unknown, hosted in volcanics with sugary texture, silicification, and epidote. Sample is of high-grade weathered pyrite, chalcopyrite and arsenopyrite. There are 2 generations of quartz veinlets (mm size).
69 03 N	86 94 E	SK-24	Several small parallel shears 028°/sub-vertical in volcanics. Epidote-quartz with small patches of sulphide with malachite staining.
68 94 N	8 6 94 E	SK-25	Hosted in volcanics. Rusty patches with malachite staining.
68 88 N	86 94 E	SK-26	Hosted in volcanics. Rusty patches with malachite staining.
78 25 N	94 75 E	SK-27	Rusty Zone on road-cut. Rusty pyrite vein is 8cm wide, 060° / sub-vertical with additional rusty fractures. Weak carbonate alteration.
83 80 N	9145E	SK-28	Silicified and bleached breccia zone on road cut. Approximately 3 m wide.
68 59 N	86 95 E	SK-33	Spotty rusty pyrite patches with malachite staining, hosted in volcanics.
68 40 N	85 00 E	SK-37	Hosted in volcanics. Rusty patches with malachite staining.
6 <u>5</u> 00 N	85 50 E	SK-38	Rusty pyrite veinlet, hosted in volcanics with magnetite, hematite and traces of malachite in patches of calcite-chlorite.
87 10 N	83 59 E	SK-44	Volcanics with moderate carbonate alteration and with disseminated pyrite along intense fracturing. Shows rusty weathering.
86 88 N	82 40 E	SK-45	Volcanics with moderate carbonate alteration and strong finely disseminated pyrite alteration.
87 00 N	80 80 E	SK-48	Volcanics with moderate carbonate alteration and pyrite along fractures. Shows rusty weathering,
70 03 N	85 48 E	SK-53	Two parallel shear-zones approx. 30cm wide, hosted in volcanics. Sample from the quartz-sulphide lenses in the middle of the shear. Pyrite is irregularly distributed. Minor epidote.
83 90 N	83 63 E	SK-55	Hosted in volcanics. Totally fractured into pieces less than 10cm in size with very rusty fractures. Previously cut by a bulldozer.
101 07 N	81 97 E	SK-61	Hosted in volcanics. Im wide zone of carbonate alteration with disseminated pyrite on fractures.
62 60 N	97 35 E	SK-92	Quartz-monzonite dyke, 4 m wide bleached, with minor disseminated pyrite.
63 20 N	86 30 E	SK-95A	From the tailings of the Gold Gossan Adit (S). Massive pyrite with minor quartz. Hosted in volcanics.
63 20 N	86 30 E	SK-95B	From the tailings of the Gold Gossan Adit (S). Massive Chalcopyrite-pyrite in quartz-calcite veining/shear. Hosted in volcanics.
63 30 N	86 30 E	SK-96	From the 10-20cm continuous vein at the entrance of the Gold Gossan Adit (N) located approximately 25 m north of the previous adit. This quartz vein hosts pyrite, chalcopyrite and galena. It is very continuous and oriented $255^{\circ} / 27^{\circ}$ N. Hosted in volcanics.
63 95 N	90 70 E	SK-99	Hosted in volcanics. Numerous rusty fractures and pyrite pods in a 3m radius area.
65 75 N	93 75 E	SK-102	Intense rusty fracturing at the contact between sandstone and siltstone.86 85 N
86 85 N	63 65 E	SK-106	Hosted in volcanics. Pyritic fractures up to 2 cm thick.
65 30 N	87 55 E	SK-109	Hosted in volcanics. Cut by a mm wide quartz veinlet containing abundant pyrite and chalcopyrite.
65 50 N	87 65 E	SK-110	Hosted in volcanics. Up to 5cm pods of carbonate-epidote-pyrite replacement. Also rusty fracturing with pyrite patches.
65 10 N	93 50 E	SK-114	Hosted in sandstone. Pyrite alteration of the matrix. Rusty fracturing.
63 80 N	91 80 E	SK-119	Hosted in volcanics. Near a bulldozer trench, a fracture contains sulphides.
67 20 N	85 45 E	20711	Hosted in volcanics. Rusty patches with malachite staining.
67 15 N	85 25 E	20712	Hosted in volcanics. Rusty patches with malachite staining.
67 05 N	85 75 E	20713	Hosted in volcanics. Rusty patches with malachite staining.
66 95 N	85 85 E	20714	Hosted in volcanics. Rusty patches with malachite staining.

TABLE 5SAMPLE RESULTS

COO	RDINATES	ELEMENT	Mo	Cu	Pb	Zn	Ag	W	Au*
LINE (N)	STATION (E)	SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ррь
78 30 N	95 00 E	SK-02	3	49	179	53	4.2	3	14.90
62 20 N	89 15 E	SK-20	51	2622	8	63	16.4	34	327.80
69 03 N	86 94 E	SK-24	607	4845	5	200	29.5	2	177.40
68 94 N	86 94 E	SK-25	52	1754	< 3	148	22.4	16	158.00
68 88 N	86 94 E	SK-26	1579	5315	< 3	143	26.2	2	176.70
78 25 N	94 75 E	SK-27	7	930	7	57	1.5	21	5.30
83 80 N	91 45 E	SK-28	8	22	< 3	31	< .3	2	2.60
68 59 N	86 95 E	SK-33	370	4245	4	110	12.1	<2	163.30
68 40 N	85 00 E	SK-37	57	4898	< 3	96	11.2	5	145,90
65 00 N	85 50 E	SK-38	15	492	< 3	21	10.3	2	103.00
87 10 N	83 59 E	SK-44	3	111	4	22	< .3	< 2	2.40
86 88 N	82 40 E	SK-45	3	1257	11	45	2.3	< 2	0.80
87 00 N	80 80 E	SK-48	1	39	< 3	31	< .3	2	0.20
70 03 N	85 48 E	SK-53	332	990	< 3	37	5.7	2	68.80
83 90 N	83 63 E	SK-55	2	257	< 3	32	0.4	< 2	1.60
101 07 N	81 97 E	SK-61	3	74	13	77	0.5	<2	4.10
62 60 N	97 35 E	SK- 9 2	16	17	4	53	< .3	5	2.80
63 20 N	86 30 E	SK-95A	59	4560	20	30	20.7	57	224.60
63 20 N	86 30 E	SK-95B	48	39686	15	93	130.2	119	972.20
63 30 N	86 30 E	SK-96	12	5743	18874	3176	125.4	14	50828.80
63 95 N	90 70 E	SK-99	2	273	175	44	0.4	3	36,40
65 75 N	93 75 E	SK-102	3	95	270	105	<.3	3	26.20
86 85 N	63 65 E	SK-106	6	450	22	44	3.0	4	32.80
65 30 N	87 55 E	SK-109	4	1192	64	147	2.0	4	16,80
65 50 N	87 65 E	SK-110	2	156	16	95	0.3	4	7.20
65 10 N	93 50 E	SK-114	5	51	39	75	1.2	2	6.20
63 80 N	91 80 E	SK-119	< 1	3	3	31	< .3	3	2.20
67 20 N	85 45 E	20711	135	2607	5	113	17.0	171	91.10
67 15 N	85 25 E	20712	28	116	7	96	0.5	3	12.00
67 05 N	85 75 E	20713	62	1809	< 3	71	4.2	<2	41.70
66 95 N	85 85 E	20714	45	1185	< 3	43	2.4	23	44.40
7080 N	89 25 E	935-54-57	14	885	37	83	0.4	3	2.90
70 80 N	89 25 E	935-106-108	6	445	< 3	78	< .3	4	1.70
70 80 N	89 25 E	935-243.5-245.5	49	537	10	83	0.7	< 2	5.50
70 80 N	89 25 E	935-303.5-306.5	68	1220	4	76	1.9	16	20.20
70 80 N	89 25 E	935-325-28	497	197	4	59	< .3	2	7.60
70 80 N	89 25 E	935-328-31	206	262	7	63	0.3	3	4.50
70 <u>80</u> N	89 25 E	935-331-34	182	87	6	76	< .3	3	2.00

8 CONCLUSIONS

The HOW property lies within a favourable geological environment where the volcanic package of the Triassic Nicola Group has been compressed on both sides by two granodioritic batholiths causing regional folding and fracturing of the Nicola sequence. This prepared the ground for hydrothermal activity and mineral deposition.

Exploration/Mining activity within the HOW Group dates back to the 1900's. Work to date has shown that several of the historical workings contain small deposits of high-grade silver, copper, lead, zinc and tungsten.

Historical work has been confined to the MINFILE occurrences, and the property remains open for reconnaissance exploration.

Significant gold and base metal results were returned from the property's exploration activities and warrant to be followed up.

Magnetite alteration occurs a short distance away from the mineralized zones. Carbonate alteration is associated with important structures.

All fault structures constitute important exploration targets.

Exploration on the HOW property is warranted and a CDN\$500,000 work program is recommended.

9 RECOMMENDED WORK PROGRAM

The on-going exploration program is following the recommendations made during last year's assessment report. The objectives remain the same and are:

- to look at the property as a whole and to tie in the geology of the different zones
- to explore for all mineralization types and commodities including gold, base metals and tungsten
- to define the controls of the mineralization
- to confirm and increase the size and grade of the known mineralization zones
- to explore for new zones of mineralization

The exploration work performed during the 2000 field season was stopped due to weather constraints. Therefore, the recommendations for the next exploration phase are to complete the work already in progress on the current grid. The completion time is estimated at 150 days.

The soil geochemical survey should be infilled to a 100 metre spacing. The soil samples will be taken from the B horizon and analyzed by the 30 element ICP method and gold geochemistry Atomic Absorption method. Geological mapping, prospecting and rock sampling should continue, and a ground magnetometer survey should cover the whole grid in order to help in mapping, in particular, the magnetite alteration.

An induced polarization survey is recommended (20 km) to test for sulphide mineralization at depth, in particular where the large fracture systems are coincident with soil geochemical anomalies and surface mineralization. For example, the malachite-chalcopyrite bearing structures occurring between lines 60N and 70N and stations 85E and 89E would be an excellent target. The targets are to be finalized upon the completion of the geological and the soil geochemical surveys.

Further work will be contingent on the results of this initial work phase.

PROPOSED BUDGET FOR THE PHASE I EXPLORATION PROGRAM

The cost of the proposed work program is summarized below in Canadian Funds.

Mobilization/Demobilization	\$	2,500
Camp and Support	\$	97,500
Truck Rental	\$	90,000
Grid Preparation (Compassed, Flagged and Chained)	\$	1,950
Line Cutting (Dead-falls, Debrushing and Cleaning)	\$	60,000
Soil Geochemical Survey	\$	69,795
Geological Mapping	\$	45,000
Prospecting	\$	9,100
Rock Sampling	\$	5,000
Ground Magnetic Survey	\$	11,200
Induced Polarization Survey	\$	40,000
Project Direction and Supervision	\$	9,000
Expendables	\$	2,500
Communication	\$	1,000
Technical Report	\$	10,000
Contingency	<u>\$</u>	45,455
	¢	500 000

TOTAL

\$ 500,000

10 COST STATEMENT

The 2000 fieldwork program was carried out between May 29th and October 26th, 2000. The cost is detailed as follows:

Mobilization/Demobilization		\$ 2,500
Kitchen Trailer Rental, fully eq	11	
	21 weeks @ \$410/week	\$ 8,610
Tent Camp: Sleeping & Office	-	
	21 weeks @ \$490/week	\$ 10,290
Generator Rental:	21 weeks @ \$40/week	\$ 840
Water Pump Rental:	21 weeks @ \$60/week	\$ 1,260
Off-Road 4x4 Truck Rental, in	cl. Unlimited km and insurance,	
	147 days @ \$150/day	\$ 22,050
Camp vehicle Rental, incl. Unli		
1	147 days @ \$75/day	\$ 11,025
Food & Supplies:	610 days @ \$50/man/day	\$ 30,500
Grid Preparation: Compassed,	flogged and Chained	
Ond Preparation. Compassed,	123.1 km @ \$100/km	\$ 12,310
Line Cutting Deed falls dehm	÷	\$ 12,510
Line Cutting: Dead-falls, debru	· · ·	¢ 12.950
Soil Combanying Comme	27.7 km @ \$500/km	\$ 13,850
Soil Geochemical Survey	588 samples @ \$15/sample	\$ 8,820
Supervisor, Ted Hayes	15 days @ \$600/day	\$ 9,000
Camp Cook, C. Bell	147 days @ \$225/day	\$ 33,075
During the period between July Geologist (1), Marthe Archamb	8 th to October 26 th , for a total of 54 days ault 54 days @ \$500/day	\$ 27,000
	5 Tuly S (2) 45 00 ally	¢ 27,000
During the period between July Prospector(1), Jack Zackodnick	1^{st} to October 1^{st} , for a total of 30 days	
	30 days @ \$350/day	\$ 10,500
Rock Sampling	38 rock samples @ \$25/sample	\$ 950
Communications		\$ 1,000
Miscellaneous & Consumables		\$ 940
Report		\$ 8,000
- I		<u> </u>

TOTAL

\$212,520

11 CERTIFICATE OF QUALIFICATIONS

I, Marthe Archambault, of Surrey, British Columbia, hereby certify that:

- I am a Consulting Geologist with an office at #1601 13880 101st Avenue, Surrey, British Columbia.
- I graduated with a Bachelor's degree in Geology from the University of Montreal, Montreal, Quebec (1980) and a Master's degree in Geology from the University of British Columbia, Vancouver, British Columbia (1985).
- I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, Registration No. 19226.
- I have practiced my profession as an exploration geologist for the past 20 years.
- I have visited the HOW property between July 8th and October 26th, 2000.
- I have no interest, direct or indirect, nor do I expect to receive any interest, in the HOW property or Ahura Mining Ltd.

Dated at Surrey, British Columbia this 23rd day of January 2000.

Auchundran II

Marthe Archambault, P. Geo.

12 **BIBLIOGRAPHY**

- Cockfield, W.E., 1961, Geology and Mineral Deposits of Nicola Map-Area, British Columbia, Geological Survey of Canada (G.S.C.) Memoir 249, pp. 59-65.
- Preto, V.A., 1979, Geology of the Nicola Group between Merritt and Princeton, B.C. Ministry of Energy, Mines and Petroleum Resources (MEMPR) Bulletin 69
- B.C. Ministry of Energy and Mines Assessment Reports: 25854, 25744, 24600, 24133, 22900, 21770, 18583, 16625, 15318, 15312, 15075, 15003, 14841, 141117, 14089, 12964, 12960, 12897, 12598, 12386, 12321, 11483, 11482, 10024, 9880, 9612, 9430, 9330, 8036, 7488, 7031, 7016, 6742, 6441, 6119, 4409, 4223, 3936, 136.
- B.C. Ministry of Energy and Mines MINFILE Database: 092ISE 027, 059, 094, 095, 096, 097, 098, 099, 100, 101, 102, 103, 104, 105, 106, 127, 128, 129, 160.

APPENDIX I ANALYTICAL RESULT LABORATORY CERTIFICATE

··· - ·

ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Hayes, T. PROJECT SNK File # A004415 1704 : 555 Austin Ave, Coquitiam BC V3K 6R8 Submitted by: Ted Hayes

SAMPLE#		Cu ppm			Ag ppm		Co ppm	Mņ ppm		As ppm		Au ppm	Th ppn)		Cd ppm	-	Bi ppm	V ppm	Ca %		La ppm		Mg X	Ba ppm	ті %	B ppm	Al %	Na %	K X	PPm W	Au* opb	
L99+00N 85+25E	1	20	5	76	<.3	15	10	524	2.69	4	- <8	<2	<2	22	.2	<3	<3	79	.40	.117	4	30	.56	107	.10	_		.02	-		6.4	
L99+00N 85+50E	1	40	12	73	<.3	20	12	662	2.99	5	<8	<2	<2	71	.5	<3	<3	95	.81	.043	10						2.04		-		.9	
199+00N 85+75E	2	36	9	55	<.3	17	9	514		<2	<8	<2	2	86	.2	<3	3	80			7			101			1.87				1.3 1.0	
L99+00N 86+00E	2	55	10		<.3	20	11	1175		4	<8	<2	<2	87	.8	<3	<3				, s			153	.13		2.14	.02		<2	2.0	
199+00N 86+25E	1	20	6	52	<.3	14	10	600	2.52	3	<8	<2	<2	33	.5	<3	<3	84	.59	.073	4	32	.54	90	. 15	2	1	.02	.07	~6	2.0	
L99+00N 86+50E	0	83	5	65	्र	21	14	1695	3.44	6	<8	<2	<2	81	.4	3	<3	86	2.13	.108	9	33	.88	189	.08	5	2.50	.05	.17	<2	2.6	
L99+00N 86+75E	9		6	62		23	•••	1962		8	<8		<2	91	.5	<3	<3	94	1.83	.104	10	35	.94	184	.08		2.46				.8	
L99+00N 87+00E	1	29	6	65	<.3	21	11	431	2.83	6	<8	<2	<2	41	.5	<3	<3	87	.66	.088	6				• • -		1.85				4.1	
L99+00N 87+25E	<1	18	5	43	<.3	14	9	349	2.57	4	<8	<2	<2	30		<3	_	84								-	1.58		-	-	37.1	
L99+00N 87+50E	1	20	- 4	52	<.3	16	10	392	2.54	3	<8	<2	<2	27	.3	<3	<3	85	.49	.093	4	35	.55	91	.14	3	1.58	.02	.09	<2	1.4	
L99+00N 87+75E		33	6	72	<.3	25	13	648	3 07	0	<8	<2	2	37	.6	<3	<3	95	.62	.080	7	40	.78	125	.14	4	2.05	.02	.14	<2	2.3	
L99+00N 87+73E		22	6	76		25	11	524		~	<8	<2	$\sqrt{2}$	24	.4	3	<3	77	.39		5			134	.11	3	2.11	.02	.11	<2	.7	
RE L99+00N 88+00E	1	22	6	78		24	11	525		Š	<8	<2	~2	24	.2	<3	3	77	.39	.098	- 4	33	.61	135	.11	3	2.14	.02	.11	<2	2.4	
STANDARD DS2	14	126	32	155		34	11	800	3.00	55	21	<2	<u> </u>	28	10.0	9	10	73	.52	.089	16	160	.58	145	.09	3	1.67	.04	.16	8	207.9	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 1 2000

DATE REPORT MAILED: NOV-9/00 SIGNED BY JA. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data

PHONE (604) 253-3158 FAX (604) 2

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACMB ANA ICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST.

PHONE (604) 253-3158 FAX (604' DUVER BC V6A 1R6

3-1716

SAMPLE#	Mo (ppm pj			Zn A oprnpp	-						U Au mippm								P X										W ppm	Au* ppb	
L99+00N 80+00E L99+00N 80+25E L99+00N 80+50E L99+00N 80+75E L99+00N 80+75E		37 21 19	9 4 9	46 <. 47 <. 42 <. 47 <. 62 <.	3 3 3	23 17 17 12 14 9	7 5: 2 5: 2 4:	50 3. 24 2. 25 2.	49 8 56 3 14 4	8 < 3 < 4 <	:8 <2 :8 <2 :8 <2 :8 <2 :8 <2 :8 <2	<2 <2 <2	43 33 21	<.2 .2 <.2	ব্য ব্য ব্য	ব্য ব্য ব্য	97 77 61	.64 .65 .38	.038 .041	7 4 5	45 35 29	.92 .66 .54	90 86 89	.12 .12 .10	<3 <3 3	1.76 1.42 1.35	.02 .02 .02	.13 .14 .09	2 <2 <2	.4 13.0 2.1 .5 1.0	
L99+00N 81+25E L99+00N 81+50E L99+00N 81+75E L99+00N 82+00E L99+00N 82+25E	<1 / <1 /	30 5 48 1 23	53 ′ 17 7	69 <. 167 . 79 . 57 <. 59 <.	3 3 3	25 13 23 12 17 11	5 5 2 8 1 5	76 2. 13 2. 20 2.	90 13 62 9 37 3	3 < 9 < 3 <	:8 <2 :8 <2 :8 <2	<2 <2 <2	35 40 31	.4 .3 .2	⊲ ⊲ ⊲	<3 <3 <3	85 74 70	.59 .71 .59	.063	6 10 4	39 36 35	.83 .73 .57	135 135 103	.14 .12 .11	3 3 3	1.89	.02 .02 .02	.22 .17 .11	6 ~2 ~2	1.4 27.1 2.0 2.4 1.8	
L99+00N 82+50E L99+00N 82+75E L99+00N 83+00E L99+00N 83+25E L99+00N 83+50E	<1 1	36 18 21 1	3 5 10	88 <. 50 . 35 <. 58 <. 59 <.	3 3 3	21 13 16 10 17 12	5 50 1 41 2 61	553. 532. 702.	01 3 50 3 68 4	31 2 < 4 <	:8 <2 3 <2 :8 <2 :8 <2 :8 <2	<2 <2 <2	30 27 30	<.2 <.2 <.2	<3 <3 <3	≺3 ≺3 ≺3	92 83 80	.61 .56 .56	.057 .048	5 3 4	52 41 34	.77 .57 .62	107 89 138	.14 .14 .13	5 <उ <उ	1.50 1.28 1.73	.02 .02 .02	.15 .16 .10	~ ~ ~	.4 1.8 1.3 .5 2.0	
199+00N 83+75E 199+00N 84+00E 199+00N 84+25E 199+00N 84+50E 199+00N 84+75E	<1 1 1 1 <1 2 3 2	18 23 19	4 7 3	59 <. 51 <. 56 <, 50 <. 77 .	3 3 3	17 9 16 10 15 10	7 5 7 9 7 6	362. 792. 292.	19 < 30 < 30 7	2 < 2 < 2 <	:8 <2 :8 <2 :8 <2	<2 <2 <2	27 33 28	<.2 <.2 <.2	<3 <3 <3	≺3 ≺3 ≺3	67 69 72	.52 .65 .56	.058 .067	4 4 4	30 28 35	.55 .58 .52	94 124 93	.12 .11 .13	ふ ふ ふ	1.43	02. 02, 02.	.10 .14 .10	~2 ~2 ~2	1.0 .4 1.6 .6 1.6	
L99+00N 85+00E RE L99+00N 85+00E L95+00N 80+00E L95+00N 80+25E L95+00N 80+25E	1 <1	51 52 16	8 7 3	80 <. 81 . 63 <. 45 <. 51 <.	3 3 3	16 10 20 13 15 10) 6! 5 7:) 4:	50 2. 70 2. 01 2.	18 4 87 9 23 4	4 < 7 < 4 <	:8 <2 :8 <2 :8 <2 :8 <2 :8 <2 :8 <2	<2 <2 <2	29 34 26	.2 <.2 <.2	<3 <3 <3	<3 <3 <3	54 79 70	.51 .72 .48	.045	4 6 4	23 40 30	.48 .77 .53	130 105 94	.08 .10 .11	<3 4 3		.02 .02 .02	.09 .11 .08	2 2 2 2 2 2	3.0 .6 .8 3.7 14.0	
L95+00N 80+75E L95+00N 81+00E L95+00N 81+25E L95+00N 81+50E L95+00N 81+75E	<1 <1 <1 <1 <1	33 35 23	3 8 4	51 <. 48 <. 45 <. 40 <. 43 <.	3 3 3	21 12 19 10 15 8	2 3/ 3 3! 3 2:	48 2.	90 9 77 4 10 4	5 <	:8 <2 :8 <2 :8 <2 :8 <2 :8 <2 :8 <2	<2 <2 <2	40 50 28	<.2 <.2 <.2	<3 <3 <3	⊲ ⊲ ⊲	79 68 58	.79 1.09 .48	.031 .024 .019	7 8 5	39 35 29	.82 .76 .58	122 136 117	.13 .11 .11	4 3 <3	2.08 2.34 1.65	.02 .03 .02	.12 .09 .08	<2 <2 <2	1.7 .6 .8 1.6 1.1	
L95+00N 82+00E L95+00N 82+25E L95+00N 82+50E Standard DS2	1 1	19 « 26	دع 7	51 <. 58 . 53 <. 157 <.	3 3	16 12 18 10	2 79 5 51	17 2.	49 . 36 4	3 < 4 <	8 <2	<2 <2	27 29	<.2 <.2	<3 <3	<3 <3	70 65	.48 .51	.046 .039	4 6	29 32	.59 .66	110 101	.11 .11	4 <3	1.64 1.59	.02 .02	.11 .14	<2 <2	2. 1.2	

Data_

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

20

1

i.

÷

1

Hayes, T. FILE # A003963

CONTRACTOR AND ADDRESS OF TAXABLE PARTY.

SAMPLE#					Ag pom				Fe X	As ppm									Ca X		La ppm				Ti X	B ppm		Na %		W ppm	Au* ppb	
L95+00N 82+75E	1	26	9	57	<.3	18	12	443	2.78											.037											3.6	
L95+00N 83+00E	1	28			<.3				Z.79											.033							2.10				.8	
L95+00N 83+25E	1 ·	- 31							2.61											.032							2.21				.2	
L95+00N 83+50E	1								3.10											.053							2.10				3.2	
L95+00N 83+75E	<1	35	8	77	<.3	20	11	527	2.54	5	<8	<2	<2	36	.2	<3	<3	73	.62	.035	7	32	.59	129	.13	<3	1.99	.03	.12	<z< td=""><td>1.6</td><td></td></z<>	1.6	
L95+00N 84+00E	1	30	23	122	<.3	23	15	394	2.70	13	<8	<2	<2	27	.4	<3	<3	64	.46	.101	4	29	.55	132	.10	<3	2.27	.02	.10	<2	1.7	
L95+00N 84+25E	1																			.093			.53				2.27				1.3	
L95+00N 84+50E	1								2.60											.049											1.1	
L95+00N 84+75E																				.096											4.1	
L95+00N 85+00E	<1	19	3	47	′ <.3	18	13	348	3.06	6	<8	<2	<2	31	<.2	<3	<3	101	.58	.053	5	38	.67	92	.17	4	1.87	.02	.08	<2	.9	
L95+00N 85+25E	1	26	5	76	<.3	23	13	511	z.49	4	<8	<2	<2	22	.2	<3	<3	62	.35	. 157	5	28	.53	134	.10	<3	2.28	.02	.08	<2	1.5	
195+00N 85+50E	<1	23	8	74	<.3	17	10	487	2.07											. 181		22	.33	81	.08	3	1.71	.02	.06	<2	6.1	
L95+00N 85+75E	2	62	7	- 59	<.3	24	12	516	2.39	4	<8	<2	<2	40	.2	<3	<3	59	.79	.043	8	26	.50	135	.11	<3	2.42	.03	.09	<2	.6	
L95+00N 86+00E	1	42	- 4	58	<.3	24	11	485	2.54	<2	<8	<2	<2	34	.2	<3	<3	67	.71	.027	5	34	.60	108	.13	3	2.18	.03	.07	<2	.9	
L95+00N 86+25E	2	60	4	56	<.3	22	10	511	2.64	3	<8	<2	<2	38	.3	<3	<3	65	.85	.026	9	31	.56	148	.11	3	2.65	.03	.08	<2	.9	
L95+00N 86+50E	1	70	5	76	<.3	27	13	978	2.95	5	<8	<2	<2	42	.2	<3	<3	66	1.05	.057	10	35	.67	187	. 09	4	2.90	.03	. 11	<2	.8	
L95+00N 86+75E									3.21											.103			.86				2.43				1.4	
RE L95+00N 86+75E		63							3.36											.108			.89				2.53				3.1	
L95+00N 87+00E	<1	17	5	40	<.3	15	11	328	2.68											.059											1.2	
L95+00N 87+25E	1	35	6	63	<.3	25	13	409	3.02											.070											2.1	
L95+00N 87+50E	1 <1	39	6	79	<.3	29	15	540	2.87	4	<8	0	<2	20	< 2	<3	<3	74	30	.073	4	30	70	101	. 11	4	2.34	02	07	~2	1.0	
L95+00N 87+75E		35							2.56											.121							2.01				.3	
L95+00N 88+00E		23	-						2.28											.160											2.4	
L95+00N 88+25E	1 1		-																	.119							1.72				.8	
L95+00N 88+50E	1	30																		.114							2.20				.9	
195+00N 88+75E	1,2	31	7	40		31	13	284	3.04	9	~R	~2	~2	10		~7	~7	00	71	.091	7	77	70	127	15	~7	2.34	02	00	~?	.5	
L95+00N 89+00E	• •	31			<.3				3.02											.094							2.10				3.0	
L95+00N 89+25E	1																			.131											1.0	
L95+00N 89+50E	1	77							2.80											.078							1.77				1.9	
L95+00N 89+75E	2		-																	.077	5	35	.64	120	. 14	4	1.71	.03	.10	<2		
L95+00N 90+00E		62	7	10		16	12	610	2.57	2	~P	~2	7 2	70		~7	.7	97	52	. 103	5	76	40	ت 0	17	.7	1 70	02	10	~2	1.7	
L95+00N 90+00E		43							2.71											.067							1.39				<.2	
L95+00N 90+25E	1 1	33			<.3				2.26											.051											.2	
STANDARD DS2	1 14		-																	.085											198.0	
	1	120							2.70			14		20	7.0			10		.005	- 10			100	,		1.72	.04	. 12		170.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

- FA

Data

ACHE ANALYTICAL

. . .

....

Hayes, T. FILE # A003963

Page 3

ACHE ANALYTICAL		
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au* ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm	
L95+00N 90+75E		
L95+00N 91+00E	<1 27 <3 39 <.3 16 7 229 2.07 2 <8 <2 <2 26 .2 <3 <3 54 .51 .027 4 28 .50 81 .11 <3 1.45 .02 .08 <2 1.1	
L95+00N 91+25E	1 35 4 46 < 3 19 9 431 2.40 <2 <8 <2 <2 25 <.2 <3 <3 66 .41 .029 6 34 .62 106 .13 4 1.66 .02 .08 <2 .9	
L95+00N 91+50E	2 20 <3 69 .3 15 8 411 2.20 3 <8 <2 2 12 <.2 <3 <3 53 .24 .185 2 20 .35 97 .08 3 1.74 .01 .09 <2 .3	
L95+00N 91+75E	2 30 4 62 <.3 19 11 398 2.29 3 <8 <2 <2 18 <.2 <3 <3 54 .31 .130 4 27 .49 119 .07 <3 1.74 .02 .08 <2 .4	
195+00N 92+00E	2 37 3 66 <.3 31 15 348 3.00 3 <8 <2 <2 22 <.2 <3 <3 73 .32 .090 5 44 .72 125 .12 <3 2.01 .02 .08 <2 .9	
L95+00N 92+25E	3 17 8 50 <.3 11 7 191 1.88 2 <8 <2 <2 17 <.2 <3 <3 49 .27 .104 3 20 .29 98 .08 <3 1.44 .01 .05 <2 .3	
195+00N 92+50E	3 22 8 64 < 3 13 9 394 2.31 3 <8 <2 <2 15 < 2 <3 <3 61 .25 .124 3 23 .32 102 .10 3 1.84 .02 .04 <2 1.3	
L95+00N 92+75E	2 21 3 51 <.3 15 9 240 2.24 <2 <8 <2 2 11 <.2 <3 <3 58 .20 .110 2 21 .35 71 .11 4 2.00 .02 .05 <2 1.0	
L95+00N 93+00E	3 15 6 58 <.3 10 6 314 1.99 3 <8 <2 <2 11 <.2 <3 <3 57 .18 .096 2 17 .25 70 .10 <3 1.47 .02 .03 <2 .6	
L95+00N 93+25E	3 18 <3 55 <.3 11 7 336 1.99 2 <8 <2 <2 15 <.2 <3 <3 55 .29 .121 2 20 .29 87 .09 <3 1.66 .02 .06 <2 .3	
L95+00N 93+50E	4 32 5 69 < 3 14 9 402 2.27 6 <8 <2 <2 20 .2 <3 <3 59 .38 .187 4 25 .39 126 .09 <3 2.07 .02 .07 <2 .9	
L95+00N 93+75E	6 52 7 55 <.3 16 9 640 2.20 4 <8 <2 <2 39 .2 <3 <3 61 .79 .055 6 27 .50 131 .10 <3 1.93 .02 .09 <2 .8	
L95+00N 94+00E	6 118 6 48 .5 18 8 706 1.92 4 <8 <2 2 55 .3 <3 <3 51 1.19 .038 14 22 .44 136 .09 3 2.11 .03 .06 <2 1.0	
L95+00N 94+25E	3 55 6 41 <.3 14 7 324 1.71 2 <8 <2 <2 52 .2 <3 <3 43 1.21 .036 7 20 .36 128 .08 3 1.94 .03 .06 <2 .5	
L95+00N 94+50E	4 38 5 49 .4 14 10 342 2.39 5 <8 <2 <2 22 .2 <3 <3 69 .42 .112 4 26 .44 111 .09 <3 1.73 .02 .06 <2 328.8 🤻	
L95+00N 94+75E	3 26 5 48 < 3 15 10 482 2.36 3 <8 <2 <2 15 <.2 <3 <3 67 .28 .124 4 28 .40 104 .10 <3 1.82 .02 .05 <2 <.2	
L95+00N 95+00E	5 40 <3 40 < 3 14 9 508 2.26 4 <8 <2 <2 38 <.2 <3 <3 64 .78 .048 5 26 .46 146 .09 3 1.72 .02 .07 <2 1.3	
L90+00N 80+00E	1 38 3 56 4 3 14 11 383 2 27 4 48 42 42 45 4 2 3 43 61 .91 .071 5 24 .63 142 .07 4 1.99 .03 .08 42 1.6	
L90+00N 80+25E	2 23 <3 29 <.3 4 1 238 1.34 2 <8 <2 <2 95 <.2 <3 <3 24 2.88 .131 1 6 .15 90 .01 10 .18 .02 .03 <2 3.0	
L90+00N 80+50E	1 14 3 36 <.3 4 3 823 4.43 13 12 <2 <2 138 .2 <3 <3 23 3.67 .176 <1 3 .24 167 .01 5 .19 .02 .03 <2 1.5	
L90+00N 80+75E	7 26 <3 61 <.3 9 30 21187 4.96 7 10 <2 2 142 .2 <3 <3 16 3.24 .145 1 7 .23 746 .01 8 .41 .02 .04 <2 3.2	
L90+00N 81+00E	2 46 <3 46 <.3 7 7 1642 1.30 3 <8 <2 <2 123 .3 <3 <3 27 4.36 .119 2 7 .20 179 .01 14 .47 .01 .03 <2 2.4	
RE L90+00N 81+25E	E 1 23 4 52 <.3 14 8 318 1.96 3 <8 <2 <2 43 .3 <3 <3 50 .79 .060 5 28 .44 116 .08 <3 1.53 .02 .07 <2 22.6	
L90+00N 81+25E	1 24 4 53 <.3 14 8 318 1.99 3 <8 <2 <2 43 .3 <3 <3 53 .81 .062 5 25 .45 118 .08 3 1.57 .02 .07 <2 .7	
190+00N 81+50E	1 19 3 37 <.3 13 7 202 2.04 4 <8 <2 <2 23 .2 <3 <3 59 .42 .029 5 27 .51 94 .10 <3 1.61 .02 .05 <2 3.3	
L90+00N 81+75E	1 17 4 51 <.3 16 10 454 2.26 5 <8 <2 <2 20 <.2 <3 <3 59 .39 .100 3 23 .46 115 .08 <3 1.71 .01 .07 <2 .2	
L90+00N 82+00E	1 21 4 47 <.3 16 11 380 2.53 5 <8 <2 <2 23 .2 <3 <3 69 .41 .070 4 29 .54 116 .09 <3 1.99 .02 .07 <2 1.4	
190+00N 82+25E	<1 14 4 37 <.3 12 7 274 2.01 3 <8 <2 <2 21 .2 <3 <3 58 .39 .050 3 23 .43 78 .09 <3 1.43 .01 .06 <2 1.0	
L90+00N 82+50E	<1 13 5 35 <.3 12 8 169 2.28 2 <8 <2 <2 17 <.2 <3 <3 66 .31 .060 2 26 .44 78 .09 <3 1.51 .01 .06 <2 1.4	
100,000,82,755	1 16 5 33 <.3 13 8 350 2.13 2 <8 <2 <2 22 <.2 <3 <3 65 .41 .044 4 26 .48 84 .11 <3 1.38 .02 .06 <2 1.3	
L90+00N 82+75E		
L90+00N 83+00E		
L90+00N 83+25E	<1 18 3 51 <.3 16 12 510 2.52 3 <8 <2 <2 21 <.2 <3 <3 76 .42 .093 4 51 .55 85 .10 <3 1.52 .01 .07 <2 .5 14 122 33 154 <.3 34 12 815 3.05 57 13 <2 4 28 10.2 11 9 71 .53 .088 16 157 .59 166 .09 <3 1.70 .04 .16 8 197.2	
STANDARD DS2		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

* Subject to reassay check for gold

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

. . . .

ACHE AMALYTICAL		Hayes, T. F	'ILE # A003963	Page 4	ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb 2n Ag Ni Co ppm ppm ppm ppm ppm ppm ppm			P La Cr Mg Ba Ti B. Al Na K Xippmippmi Xippmi Xippmi Xi XiX	(WAu*) (ppm ppb
L90+00N 83+50E L90+00N 83+75E L90+00N 84+00E L90+00N 84+25E L90+00N 84+50E	<1 18 8 48 <.3 15 10 <1 38 8 73 <.3 23 12 <1 26 6 97 <.3 17 12	273 2.38 2 <8	<pre><2 21 <.2 <3 <3 74 .37 .056 <2 38 .2 <3 <3 71 .69 .046 <2 19 .2 <3 <3 65 .30 .138</pre>	6 4 30 .53 95 .11 <3 1.69 .02 .07 0 8 38 .83 135 .13 <3 2.46 .03 .11 8 4 27 .49 122 .09 <3 2.18 .02 .07	/ <2 <.2 <2 2.1 / 2 1.0
L90+00N 84+75E L90+00N 85+00E L90+00N 85+25E L90+00N 85+50E L90+00N 85+75E		367 2.13 7 <8 <2 4076 3.55 5 <8 <2 568 2.91 6 <8 <2	<pre><2 67 .3 <3 <3 80 1.74 .092 <2 22 .2 <3 <3 79 .40 .108</pre>	9 3 24 .50 96 .11 3 1.19 .01 .12 2 7 31 .88 247 .09 3 2.43 .06 .22 8 5 31 .64 128 .10 <3 2.13 .02 .09	2 <2 .9 2 2 .8 9 <2 .3
L90+00N 86+00E L90+00N 86+25E L90+00N 86+50E L90+00N 86+75E L90+00N 87+00E	<pre><1 20 6 81 <.3 17 11 2 26 7 74 <.3 18 12 <1 34 9 74 <.3 20 12</pre>	281 2.71 5 <8 <2	<pre><2 18 <.2 <3 <3 67 .32 .144 <2 19 <.2 <3 <3 72 .36 .081 <2 28 <.2 <3 <3 66 .65 .089</pre>	4 4 25 .48 109 .10 3 2.13 .02 .10 1 4 28 .56 103 .10 <3 2.03 .02 .07 9 4 26 .56 137 .10 <3 2.17 .02 .10) 2 <.2 / <2 <.2) 2 .6
L90+00N 87+25E L90+00N 87+50E L90+00N 87+75E L90+00N 88+00E L90+00N 88+25E	<pre><1 17 6 38 <.3 14 8 <1 23 5 49 <.3 19 12 1 22 6 40 <.3 15 8</pre>	227 2.44 3 <8 <2 557 2.77 6 <8 <2 236 2.10 3 <8 <2	<pre><2 20 <.2 <3 <3 72 .30 .116 <2 22 <.2 <3 <3 74 .34 .036 <2 23 <.2 <3 <3 78 .43 .103 <2 23 <.2 <3 <3 78 .43 .103 <2 25 <.2 <3 <3 56 .44 .050 <2 50 <.2 <3 <3 57 1.01 .036</pre>	4 3 29 .52 68 .12 3 1.52 .02 .06 3 4 32 .58 116 .11 <3 1.89 .02 .13 0 3 25 .48 78 .09 <3 1.62 .02 .09	5 <2 1.3 5 <2 .4 7 <2 2.1
L90+00N 88+50E L90+00N 88+75E L90+00N 89+00E L90+00N 89+25E L90+00N 89+50E	1 23 5 62 <.3 21 12	374 2.68 2 10 <2 289 2.51 3 <8 <2 842 2.37 2 <8 <2	<pre><2 28 <.2 <3 <3 85 .53 .018 <2 26 <.2 <3 <3 88 .48 .058 <2 23 <.2 <3 <3 76 .40 .033 <2 18 <.2 <3 <3 58 .27 .089 <2 15 <.2 <3 <3 58 .23 .03</pre>	8 3 37 .63 72 .13 3 1.32 .02 .07 3 3 36 .51 95 .13 <3 1.46 .02 .10 9 3 25 .48 134 .08 <3 1.91 .02 .08	7 <2 2.4) <2 1.5 3 <2 .7
RE L90+00N 89+50E L90+00N 89+75E L90+00N 90+00E L90+00N 90+25E L90+00N 90+50E	<pre><1 16 5 33 <.3 15 9 <1 16 6 44 <.3 18 9 <1 24 8 49 <.3 26 9</pre>	238 2.67 2 8 <2 297 2.19 <2 9 <2 396 2.29 2 <8 <2	<pre><2 14 <.2 <3 <3 55 .23 .030 <2 24 <.2 <3 <3 86 .48 .033 <2 20 <.2 <3 <3 59 .34 .033 <2 26 <.2 <3 <3 59 .34 .033 <2 26 <.2 <3 <3 58 .39 .020 <2 20 <.2 <3 <3 53 .27 .033</pre>	9 3 36 .57 68 .15 <3 1.33 .02 .13 9 4 34 .46 92 .12 <3 1.43 .02 .08 6 7 39 .55 109 .13 <3 1.58 .02 .11	3 <2 1.0 3 <2 .8 2 1.7
L90+00N 90+75E L90+00N 91+00E L90+00N 91+25E Standard DS2	<pre><1 31 <3 52 <.3 29 11 <1 23 <3 47 <.3 20 11</pre>	379 2.80 5 <8 <2 275 2.87 3 <8 <2	<2 25 <.2 <3 <3 88 .41 .049	5 7 47 .72 131 .14 <3 1.87 .02 .11	<2 1.1 3 <2 1.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data /~ FA

Hayes, T. FILE # A003963

Page 5

ACHE ANALYTICAL

							_																		-							
SAMPLE#	Mo	- Cu	Pb	Zr	n Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ		Au*	
	ppm	ppm	ppm	ppn	n ppm	ppm	ppm	ррт	*	ppm	ppm	ppm	ppn	ppm	ррп	ppm	ppm	ppm	Χ.	*	ppn j	ppm	ž	ppm	X	ppm	*	Χ.	X	ppm	ppb	
·	 ``	<u> </u>			<u> </u>		<u> </u>	<u> </u>		- <u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		· · ·			<u></u>					<u> </u>				· · · ·		
L90+00N 91+50E	2	15	7	- 47	' <.3	22	8	165	2.35	3	<8	<2	<2	21	.2	<3	<3	61	.30	.018	4	35	.46	87	.14	<3	1.47	.02	.08	<2	.6	
L90+00N 91+75E	<1	25	10	- 54	i <,3	27	10	359	2.54	3	<8	<2	<2	31	<.2	<3	<3	64	.49	.020	5	39	.58	126	,14	<3	1.97	.03	,09	<2	<.2	
L90+00N 92+00E	2	15	6	43	5 <.3	Z2	8	194	2.27	2	<8	<2	<2	18	.2	<3	<3	51	.29	.018	3	30	.38	122	.10	3	1.84	.03	.06	4	.5	
L90+00N 92+25E	2	13	7	40) <.3	19			2.29						<.2													.02		<2	.9	
L90+00N 92+50E	1 <1	21			5 <.3				2.28																			.03		3	.3	
			-				Ū		E .(D)					6.7				05		.0.4		LV		00								
190+00N 92+75E	2	40	7	39	2 <.3	15	10	202	2.71	4	<r< td=""><td><2</td><td>12</td><td>26</td><td>< 2</td><td><3</td><td>~3</td><td>84</td><td>49</td><td>.036</td><td>3</td><td>31</td><td>63</td><td>72</td><td>14</td><td>~3</td><td>1 /6</td><td>.02</td><td>12</td><td>0</td><td>2</td><td></td></r<>	<2	12	26	< 2	<3	~3	84	49	.036	3	31	63	72	14	~3	1 /6	.02	12	0	2	
L90+00N 93+00E									2.69											.047								.02			1.0	
L90+00N 93+25E									2.41	7	-8	<2	~2	10						.060								.02			<.2	
L90+00N 93+50E		16			2 <.3				2.26											.058								.02			1.4	
L90+00N 93+75E		72			<.3				3.85					41						.072										-	3.7	
290.000 93.752	1 -	16	J	•		04	17	267	J.07	'	~ 0	14	4	41		~ 2	13	07		.072	14	Q I	1.20	190	. 10	< <u>></u>	2.44	.05	. 10	2	2.1	
190+00N 94+00E	1 2	20	5	52		17	0	280	2,41	7	-8	<2	-2	18	2	~	~7	48	72	.055	2	74	24	97	11	~7	1 20	.02	ΩÛ	2	.7	
L90+00N 94+25E	1 1	35			> <.3				2.10						.2													.02		<2	.2	
L90+00N 94+50E	-								3.89											.063											2.5	
190+00N 94+75E									3.88	-					.2													.02		-		
L90+00N 95+00E) <.3				2.66											.024								.04		3	2.6	
EVOID SON SON SOUDE	1 3	102	12	40	,	13	y	222	2.00	4	\$ 0	<u>۲</u> ۲	~2	31	`. c	13	د>	/0	. 20	.024	'	20	.00	123	. 12	0	2.17	.04	.00	<2	1.0	
L85+00N 80+00E	1 19	75	17	51		17	14	201	3.29	7	-0	~7	-2	20	- 2	.7	-7	07	67	.057	,	75	97	474	40	,	1 00	.02	17	- 2	.9	
L85+00N 80+25E									3.44																	-			-	<2	-	
185+00N 80+50E									2.80											.046								.03		4	2.1	
RE L85+00N 80+50E									2.00						<.2											_		.02	-	2	.9	
L85+00N 80+75E		156													<.2									91				.02		3	.6	
EGJTUUN BUTTSE	1	100	0	70	, .,	20	21	341	1.89	0	<0	<2	<2	49	.8	<2	<5	48	1.75	.100	Ŷ	24	.52	138	.00	5	5.60	.03	80.	4	2.1	
L85+00N 81+00E	11	14	7	61		17	11	209	2.57	z	~9	~2	12	10	12	~7	-7	70	75	044	7	74	67	77	44	-7	4 40	.01	07	~2	.3	
L85+00N 81+25E									2.60						<.2													.01			1.7	
185+00N 81+50E									2.73																							
L85+00N 81+75E		37							3.25						<.2													.02			48.1	
L85+00N 82+00E	1 .														<.2															-	1.8	
LOJTOON DETUUE	1	41	41	77		16	21	1341	3.36	4	<0	<۷	<2	22	۲.2	د>	د>	74	,20	.107	د	11	•0	138	.13	4	3.32	.03	.12	<2	1.6	
L85+00N 82+25E	1	15	7	41		13	11	384	2.45	र	- 9	-2	12	10	~ 2	~7	~7	7/.	77	,050	7	25	55	80	11	~7	1 /0	.02	07	-2	2.1	
L85+00N 82+50E		24							3.06											.037								.02			.9	
L85+00N 82+75E		_							3.08						<.2													.02		5	.7	
L85+00N 83+00E		26							2.94						<.2													.02		5	.7	
L85+00N 83+25E		14			<,3				2.36																			.02			.8	
LOTTON GTTE	1	14	J	4		13	У	251	2.30	2	o	12	~2	10	~. 2	13	5	OY	. 29	.043	2	24	.49	74	. 10	2	1.50	.02	.00	<2	.0	
L85+00N 83+50E	1 1	57	R	57		27	13	501	3 30	4	<₽	<2	-2	30	< 2	<3	٦	70	1 11	.032	10	30	75	142	00	4	2 54	02	11	2	1.0	
L85+00N 83+75E	· ·								3.38						<.2													.02			.7	
L85+00N 84+00E									3.38						<.2																28.2	
LUJ VUN DATUUC																				.090												
STANDARD DS2	1 1/4																															

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

ł

Hayes, T. FILE # A003963

Page 6

ACHE ANALYTICAL											_				=													·					
SAMPLE#	Mo	Cu	Pl	b 7	In /	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	SP	Bi	v	Ca		La					8		Na		W	Au*	
								pm									ppm ;			*	X	ppm	ppm	X	ppm	_ %	ppm	*	*	X	ppm_	ppb	
	1							<u> </u>																			_			4.5		,	
185+00N 84+25E	2	62		56	54 <	.3	16	17	741	3.93	3	<8	<2	<2	22	<.2	<3	<3	98	.32	.053	3	25	.83	161	. 15	<3	3.02	.02	.12	~2	.6	
L85+00N 84+50E	1	20								3.00		<8	<2	<2	21	<.2	<3	<3	84	.33	.056	3	25	.72	110	.13	<3	1.96	.02	. 14	~2	.7	
L85+00N 84+75E	1	22			54 <					2.44	2	<8	<2	<2	25	<.2	<3	<3	71	.41	.036	4	27	.60	94	.11	<3	1.67	.02	.13	<2	3.3	
L85+00N 85+00E	· ·	32		5 5	55 <	.3	21	15	540	3.33	6	<8	<2	<2	35	<.2	<3	<3	93	.49	.052	5	36	.89	131	.15	<3	2.11	.02	.14	<2	1.3	
L85+00N 85+25E	· ·	66								2.71	7	<8	<2	<2	41	.2	<3	<3	68	1.02	.033	10	29	.75	120	.10	<3	2.36	.04	.17	<2	1.2	
	ſ				-	• •		•••																									
185+00N 85+50E	2	21		78	33 <	.3	11	10	382	2.78	3	<8	<2	<2	17	.2	<3	<3	71	.24	.029	3		.63				1.91				3.3	
L85+00N 85+75E		22						13	707	2.95	5	<8	<2	<2	23	<.2	<3	<3	81	.37	.053	- 4	26	.74	111	.12	<3	1.90	.02	.16	<2	1.1	
L85+00N 86+00E	1	20	-	•	48 <					2.25	5	<8	<2	<2	24	<.2	<3	<3	66	.38	.043	- 4	27	.56	87	.11	<3	1.41	.02	.10	<2	1.2	
185+00N 86+25E	1	18	ج	3 /	50 <	3	16	ò	362	2.50	5	<8	<2	<2	25	<.2	<3	<3	70	.41	.077	4	28	.57	- 87	.11	<3	1.50	.02	.12	<2	1.2	
L85+00N 86+50E		118	1	3	78	.7	35	14	1003	3.47	14	<8	<2	<2	119	.6	<3	<3	74	2.14	.056	16	43	1.06	246	.08	<3	3.15	.03	.20	<2	2.2	
	1 -			-	, Ç	•••																											
L85+00N 86+75E	4	120		3 9	50	.5	16	7	679	1.58	3	<8	<2	<2	168	.5	3	<3	35	4.36	. 102		19	.46	162	.03		1.57				1.7	
L85+00N 87+00E	1 .	12		-						1.89	2	<8	<2	<2	18	<.2	<3	<3	58	.30	.058	3						1.17				.8	
L85+00N 87+25E	1 .	17			45 <			-		2.06	<2	<8	<2	<2	15	<.2	<3	<3	54	.23	.078	3	22	.44	86	.10	<3	1.59	.01	.06	<2	1.5	
L85+00N 87+50E	1 .	19		-	46 <					2.45		<8	<2	<2	19	<.2	<3	<3	70	.32	.063	3	27	.53	115	.12	<3	1.89	.02	.07	<2	1.2	
L85+00N 87+75E		17		6 1	45 c	ž	16	11	282	2.63	<2	<8	<2	<2	23	<.2	<3	<3	80	.39	.051	3	28	.56	97	.13	<3	1.77	.02	.07	<2	1.5	
	'			•				••	202				-	-			-																
L85+00N 88+00E	1 1	30	t A	4 3	38 <	3	14	10	255	2.69	2	<8	<2	<2	30	<.2	<3	<3	88	.47	.044	4	33	.66	80	.15	<3	1.30	.02	. 15	<2	1.8	
L85+00N 88+25E	1 .	37								3,20		<8	- 2	<2	42	<.2	<3	3	109	.66	.074	6	48	.81	86	.18	<3	1.38	.03	.14	<2	2.7	
L85+00N 88+50E	· ·	35								2.58	4	<8	<2	<2	26	.2	<3	<3	78	.45	.035	4	31	.61	92	.11	<3	1.72	.02	.07	<2	1.2	
RE 185+00N 88+50E		37		7	17 2	· 7	10	11	265	2.67		<8	<2	<2	28	.2	<3	<3	82	.49	.037	4	33	.63	95	.13	<3	1.84	.02	.08	<2	.5	
L85+00N 88+75E	1	98			50	5	25	10	375	2.75			<2			.2	<3	<3	59	1.52	.036	10	32	.70	190	.10	<3	2.93	.03	.12	<2	1.5	
LOSTOON DOTTOE	1 '	,,,	, .	• •	,,			10	272		-		-	-		•	-	_															
L85+00N 89+00E		32	,	5	42 <	٦	17	0	325	2.30	3	<8	</td <td><2</td> <td>30</td> <td>.2</td> <td><3</td> <td><3</td> <td>70</td> <td>.51</td> <td>.017</td> <td>6</td> <td>34</td> <td>.63</td> <td>97</td> <td>.13</td> <td><3</td> <td>1.58</td> <td>.03</td> <td>.08</td> <td><2</td> <td>1.5</td> <td></td>	<2	30	.2	<3	<3	70	.51	.017	6	34	.63	97	.13	<3	1.58	.03	.08	<2	1.5	
L85+00N 89+25E	- F	23			59 <			-		2.38	2	<8	<2	<2	21	.2	<3	<3	67	.34	.046	4	31	.66	95	.12	<3	1.68	.02	.08	<2	1.0	
L85+00N 89+50E		24								2.97		<8	~	<2	29	<.2	<3	<3	92	.49	.072		39	.75	85	.15	<3	1.63	.02	.14	<2	1.2	
L85+00N 89+75E										2.66		<8	~2	<2	29	<.2	<3	<3	82	.49	.071	3	37	.62	100	.14	<3	1.46	.02	.12	<2	1.8	
L85+00N 90+00E		10	5 2	ž	45 2	<u>۲</u> .	15	10	270	2.52	~2	<8	<2	<2	24	.2	<3	<3	78	.41	.050	3	31	.55	94	.14	<3	1.42	.02	.12	<2	.5	
LASTOON SOTOLE	1							10		L. JL							-																
L85+00N 90+25E	1 4	24		4	48 <	٦	18	13	402	2.81	3	<8	<2	<2	25	<.2	<3	<3	83	.46	.068	- 4	36	.65	104	.14	<3	1.61	.02	.11	<2	1.6	
L85+00N 90+20E		20		-	48 <					2.23	3	<8	ō	<2	25	<.2	<3	<3	68	.42	.040	- 5	35	.53	83	.13	<3	1.40	.02	.07	<2	.9	
L85+00N 90+75E	1	21								2.74			<2			.3	<3	<3	83	.47	.083	4	36	.60	88	.14	<3	1.50	.02	.11	<2	1.2	
L85+00N 90+75E				x 1	17 -		11	12	572	3.61		<8	~ ~ ~	~2	14	.2	3	<3	69	.26	.050	2	18	1.49	149	.26	<3	2.54	.02	.58	2	.6	
185+00N 91+00E		14			,,, , 73 <			4	150	1.83		<8	~2	<2	13	.2	<3	<3	44	.23	.116		7	.22	50	.10	<3	1.31	.02	.06	2	1.0	
LOJTUUN FITZJE	1	14				• •	,	-			-							-															
L85+00N 91+50E		40		5 14	ng -	3	10	12	365	2.99	4	<8	</td <td><2</td> <td>16</td> <td>.3</td> <td><3</td> <td>3</td> <td>74</td> <td>.24</td> <td>.078</td> <td>4</td> <td>27</td> <td>.63</td> <td>125</td> <td>. 14</td> <td><3</td> <td>2.59</td> <td>.02</td> <td>.07</td> <td>3</td> <td>9.2</td> <td></td>	<2	16	.3	<3	3	74	.24	.078	4	27	.63	125	. 14	<3	2.59	.02	.07	3	9.2	
L85+00N 91+75E	-	22	5	5 7	šn -	1	17	10	366	2.54		<8	- 2	<2	21	.2	<3	<3	70	.39	.085							1.58				.3	
L85+00N 91+75E		27			66 d	z	18	11	582	2.65	3	<8	<2	<2	22	.2	<3	<3	77	.43	.068	4	34	.59	104	.12	<3	1.62	.02	.09	<2	5.2	
STANDARD DS2	1 10) 123	, , ,		58 -		37.	12	701	2 09	56	13	õ	3	28	9.8	, Š	11	70	.51	.086	16	159	.58	159	.09	<3	1.66	.04	.16	8	200.6	
STANDARD 052		122		0_1	<u>, , , , , , , , , , , , , , , , , , , </u>		54																										·····

Sample type: SOIL SSBO 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Hayes, T. FILE # A003963

Page 7

ACHE ANALYTICAL	T																									
SAMPLE#					Co Mn					Th Sr						La			Ba ti							
	bbu bbu	bbw b	pour bour	ppm p	pm ppm	<u>×</u>	bbu b	pur b	bus b	pm ppm	ppm	ppm	ppm pp	n %	%	ppm p	pm	7 p	ک mc	ppm	7	*	% F	ppm .	ррь	
L85+00N 92+25E	1 04		100 7	27	15 436	7 1/	7	-9	-2	~7 20	4	~7	49	n 40	0/2	8	17	0/ 1	20 15	~7	2 35	۵۵	18	4	1.8	
L85+00N 92+25E	3 21				13 430								<3 7						03.12					2	.9	
L85+00N 92+75E					12 508								3 7						10 .11						1.0	
L85+00N 93+00E	3 25				14 442								<3 8						17 .13					_	1.2	
L85+00N 93+25E	1 52	7	x 01	23	15 593	3 37	ŝ	<8	~2	2 40			<3 9												2.2	
	' "	-				5.50	,	-0	-	L 40	••					0			••••••	-	2.10		• • •		~	
L85+00N 93+50E	2 29	9	87 < 3	26	13 828	2.61	3	<8	<2	<2 33	.5	<3	<36	7.57	. 104	5	37	.57 1	47.11	<3	1.86	.02	- 10	2	1.0	
L85+00N 93+75E					13 852					<2 29			<38						40 .12						1.5	
L85+00N 94+00E					12 941		-	-					<3 7						24 .12					2	.3	
L85+00N 94+25E					14 917								<3 8						59 .13					4	.8	
L85+00N 94+50E					10 392								<3 5											<2	1.0	
							-	-			-															
L85+00N 94+75E	2 52	5	62 .4	25	10 535	2.33	2	<8	<2	<2 42	.4	<3	<35	5 1.13	.047	12	34	.50 1	46 .08	3	2.01	.03	.08	2	1.2	
L85+00N 95+00E	2 157				18 587								<3 11						62.16					3	3.2	
L80+00N 80+00E	2 75	4	87 <.3	25	32 1388	4.46	6	<8	<2	<2 65	.3	<3	<3 11	8.75	.066	6	29 1	.26 2	06.16	5 <3	3.65	.06	.21	2	3.0	
L80+00N 80+25E	4 52	6	46 <.3	9	6 791	11.04	5	13	<2	<2 323	<.2	<3	3 12	2.32	.104	7	21 1.	.31 13	37.22	<3	1.81	.53	.75	<2	4.9	
L80+00N 80+50E	1 17	7	44 <.3	12	10 712	3.46	<2	<8	<2	<2 80	<.2	<3	<3 10	5.54	.049	4	24	.87 2	07.14	<3	2.32	.05	.29	<2	1.0	
																									_	
L80+00N 80+75E					20 743		5	<8	<2	<2 39	.2	<3	<3 12	2.36	.052	6	42 1	.25 1	49 .14	<3	3.31	.02	.09	<2	.7	
L80+00N 81+00E					10 390		3	<8	<2	<2 104	<.2	<3	<3 10	2.26	.080	5	30	.76 1	85.10) <3	2.56	.08	.10	<2	.9	
L80+00N 81+25E	6 69	<3	56 .4	7	5 765	8.95	6	10	<2	<2 292	<.2	<3	<3 20	8.14	.095	4	14 1	.85 3	18 .13	s <3	4.28	.12	.50		9.6	
L80+00N 81+50E					19 835							<3	<3 10	B .41	.071	5	36	.77 1	60.13	s <3	3.02	.02	.08	2	.8	
L80+00N 81+75E	1 62	6 1	.3	18	16 2209	3.96	6	<8	<2	<2 90	.4	<3	<39	6 2.44	.104	5	30	.99 1	59.09	9	2.50	.06	. 15	3	2.9	
		-					-				-	-7	.7 0	/ 70	0/2	,	77	10.1	77 47		2 45	02	12	-3	.9	
RE L80+00N 82+00E					16 655								<39 <39						40.13						.9	
L80+00N 82+00E					16 667 17 635								<3 11						27.14					2	.8	
L80+00N 82+25E L80+00N 82+50E					13 578								<3 9						43.14						1.0	
L80+00N 82+30E	4 70	7	43 3.3	10	15 492	2 15	-2	~0	~2	~ 32	۲. ۲		<38						33.14						1.6	
LOUTUUN OZTIJE	1 30	34	c. co	10	13 472	2.12	14	-0		-			-3 0	.40		-	5.				2.04					
180+00N 83+00E	<1 50	<3	43 5	26	12 391	3.42	7	<8	<2	2 46	.2	<3	<39	3 1.17	.028	10	47	.76 1	59.14	<3	2,96	.03	.10	<2	1.8	
L80+00N 83+25E					12 301								<3 8						93.12						1.8	
L80+00N 83+50E	1 25				14 690						.3	<3	<3 8	4 .56	.067	5										
L80+00N 83+75E					16 4539														90 .09					3	2.4	
L80+00N 84+00E	1 76	10 1	103 .6	23	16 491	3.82	8	<8	<2	<2 35	.4	<3	<3 10	3.48	.127									3	4.0	
		•					_	-																		
L80+00N 84+25E	1 37	5	62.3	20	15 625	3.13	5	<8	<2	<2 42	.3	<3	<38	9.58	.039	5	37 .	.72 1	37.15	<3	2.47	.03	.16	<2	1.3	
L80+00N 84+50E	1 34				16 634							<3	<3 10	1.45	.064	6	41 .	.81 1	91 .14	<3	3.14	.02	.17	<2	.9	
L80+00N 84+75E	1 40	<3	57 <.3	21	14 586	2.94	3	<8	<2	2 46	.2	<3	39	0.86	.064	7	40	.87 14	41 .14	. 4	2.17	.04	.25	<2		
STANDARD DS2	15 127	32 1	55 <.3	36	12 824	3.09	57	22	<2	4 28	10.5	11	12 7	2.53	.085	17 1	63	.60 1	67.09) 3	1.71	.04	.16	81	99.9	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACE ANU YTICA		Hayes, T.	FILE # A003963	Page	
SAMPLE#	Mo Cu Pb Zn Ag Ni Co ppm ppm ppm ppm ppm ppm ppm		Au Th Sr Cd Sb Bi V Ca pan ppan ppan ppan ppan ppan %	a P La Cr Mg Ba Ti B Al Na X X ppm ppm X ppm X ppm X X	K W Au* % ppm ppb
L80+00N 85+00E L80+00N 85+25E L80+00N 85+50E L80+00N 85+75E L80+00N 85+75E L80+00N 86+00E	2 83 4 62 <.3 23 17 2 107 6 65 <.3 29 21 2 64 9 67 <.3 22 18 1 43 3 55 <.3 20 14 2 91 <3 56 <.3 29 17	823 4.24 8 <8 3 784 3.65 9 <8 5 507 3.39 6 8	<2 <2 56 <.2 <3 <3 121 1.10 <2 2 70 <.2 <3 <3 135 1.09 <2 <2 36 .2 <3 <3 110 .64 <2 <2 40 <.2 <3 <3 106 .62 <2 <2 58 .2 <3 <3 108 1.30	9 .093 8 55 1.48 218 .16 <3 2.90 .08 4 .108 6 37 .99 172 .15 <3 3.23 .03 2 .060 6 40 .97 140 .15 5 2.35 .03	.36 2 2.9 .20 3 2.4 .19 <2 3.5
L80+00N 86+25E L80+00N 86+50E L80+00N 86+75E L80+00N 87+00E L80+00N 87+25E	3 69 3 52 <.3 23 13 2 33 4 47 <.3 18 11	659 4.15 9 <8 678 3.45 7 <8 330 2.96 7 <8	<2 <2 26 <.2 <3 <3 86 .42	· · · · · · · · · · · · · · · · · · ·	.40 3 3.6 .25 3 2.0 .14 2 3.2
L80+00N 87+50E L80+00N 87+75E L80+00N 88+00E L80+00N 88+25E L80+00N 88+50E	1 120 4 76 .6 39 15 1 33 4 49 <.3 19 1	398 2.72 3 <8 459 2.70 2 <8	<pre><2 <2 90 .4 3 <3 89 1.68</pre> <2 <2 33 .2 <3 <3 86 .58<2 <2 30 <.2 <3 <3 80 .53	8 .070 19 50 1.20 275 .08 <3 3.94 .03 8 .031 6 37 .70 103 .15 3 1.67 .02	.25 2 3.0 .13 <2 3.1 .11 <2 2.5
L80+00N 88+75E L80+00N 89+00E L80+00N 89+25E L80+00N 89+50E L80+00N 89+75E	1 47 <3 70 <.3 26 16	3 467 3.27 5 <8 3 934 2.51 3 <8 5 737 3.85 <2 <8	<pre><2 <2 31 .2 3 <3 92 .46 <2 <2 14 .2 <3 <3 70 .21 <2 2 35 <.2 <3 3 116 .44</pre>	7.103 5 22 1.27 180 .19 <3	.09 <2 .3 .05 <2 1.1 .10 2 2.2
L80+00N 90+00E L80+00N 90+25E L80+00N 90+50E RE L80+00N 90+50E L80+00N 90+50E L80+00N 90+75E	1 149 4 66 .5 27 13 1 27 4 56 <.3 20 13 <1 33 11 61 <.3 22 19 1 30 7 60 <.3 21 19 <1 49 6 68 <.3 29 13	2 426 2.92 5 <8		7 .038 5 35 .66 109 .13 <3 1.94 .02 1 .048 5 39 .77 124 .15 <3 2.34 .02	.16 2 .7 .12 3 .9 .11 2 .5
L80+00N 91+00E L80+00N 91+25E L80+00N 91+50E L80+00N 91+75E L80+00N 92+00E	1 37 15 80 <.3 27 1	1 416 2.74 3 <8 1 692 2.65 3 <8	<pre><2 <2 28 .2 <3 <3 78 .44 <2 <2 34 .3 <3 <3 78 .53 <2 <2 26 .4 3 <3 90 .44</pre>	1 .148 4 39 .64 116 .13 <3	.12 2 1.0 .14 <2 .2 .15 2 .8
180+00N 92+25E 180+00N 92+50E 180+00N 92+75E STANDARD DS2	<pre><1 26 4 63 <.3 32 14 1 127 7 76 .7 38 1 1 36 9 70 <.3 46 1 14 127 30 156 <.3 34 1</pre>	1 706 3.17 6 <8 5 364 3.54 4 <8	<pre><2 2 30 .2 <3 <3 89 .43 <2 <2 74 .4 3 <3 74 1.52 <2 2 33 .2 <3 <3 95 .46 <2 4 28 9.8 10 10 70 .51</pre>	2 .058 12 47 .75 262 .10 3 3.14 .04 6 .047 7 66 .91 140 .16 4 2.16 .02	.11 2 1.6 .10 2 1.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

and the second s

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 👘 FA

. .

. ____

Hayes, T. FILE # A003963

Page 9

ACHE ANALYTICAL

SAMPLE#	Mo Cu pprn ppr				•			Mn pm		As pom									Ca X		La ppm			Ba ppm		B ppm		Na X		W ppm	Au* ppb	
L80+00N 93+00E	1 40	0 0		. 0	3 2	3 1	4 7	01 2	AR	4	<8	~	<2	51	.3	<3	<3	81	.90	.093	6	38	.64	189	.12	9	2.24	.06	.23	3	.7	
L80+00N 93+25E	<1 4	-		s4 <.			3 6													.050	-		-	131			2.33			3	1.3	
L80+00N 93+50E	<1 3			63 <.																.057							2.45			2	.7	
L80+00N 93+75E	1 3	-		S5 <.			-													.055							2.34			3	8.3	
L80+00N 94+00E	<1 2			59 <.																.051							2.73			3	.7	
180+00N 94+25E	<1 2	6	3 (50 <.	32		35				<8	<2	<2	28	<.2	<3	<3	75	.48	.055	4	33	.64	125	. 14		2.15			3	.6	
L80+00N 94+50E	1 2	4	76	67 <.	31	91	2 12	76 2	2.79	2										.070				126			2.17		-	3	1.9	
L80+00N 94+75E	<1 4	4	7 7	79 <.	32		66			3	<8	<2	<2	31	.3	<3	<3	90	.51	.068	- 4	32	.85	151	.15	<3	3.11	.03	.20	4	.9	
L80+00N 95+00E	1 2	4 <	3 5	59 <.	3 1	9 1	1 4	18 2	2.58	<2	<8	<2	<2	29	.2	<3	<3	72	.51	.058	4						1.85			2	.8	
L75+00N 80+00E	<1 2	6 1	a 1	75 <.	31	7 1	5 17	97 3	5.48	4	<8	<2	<2	29	.3	<3	<3	100	.48	.040	6	28	.81	176	.11	<3	3.08	.02	.09	3	5.3	
L75+00N 80+25E	<1	4	6 '	18 <.	3	3	33	50	.89	<2	<8	<2	<2	10	<.2	<3	<3	25	. 15	.045							.71				<.2	
L75+00N 80+50E	1 1	91	0 9	98 <.	31	51	2 22	67 2	2.65	5	<8	<2	<2	14	.3	<3	<3	64	.25	.124							2.83			4	.8	
L75+00N 80+75E	<1 3	5 1	08	87 <.	31	61	6 33	18 3	5,30	2	<8	<2	<2	23	.3	<3	<3	86	.59	.054				206			3.32			3	.9	
L75+00N 81+00E	<1 2										<8	<2	<2	22	.2	<3	<3	77	.48	.031	4	29	.71	117	-11	<3	2.47	.02	.10	4	.2	
L75+00N 81+25E	1 5	2 Z	9 7	70.	7 1	8 1	57	13 3	5.27	7	<8	<2	<2	36	.6	<3	<3	84	.98	.040	9	31	.69	159	.12	<3	3.08	.05	.09	3	1.6	
L75+00N 81+50E	<1 2	2	4 3	38 <.	3 1					<2	<8	<2	<2	47	<.2	<3	<3	69	1.47	.027	5			98			1.91			2	.8	
L75+00N 81+75E	<1 2	0	74	47 <.	3 1	61	2 3	32 2	2.78											.015	6			112			2.13				3.6	
L75+00N 82+00E	<1 2			34 <.			0 1													.026							2.09			2	1.0	
L75+00N 82+25E	<1 1	-		38 <.						2	<8	<2	<2	25	<.2	<3	<3	90	.38	.032	3	31	.59	81	.13	3	1.80	.02	.07	2	1.1	
L75+00N 82+50E	<1 3	5	8 3	39 <.	3 1	9	8 1	98 2	2.12	5	<8	<2	<2	64	.3	<3	<3	53	2.23	.043	8	24	.37	137	.06	<3	2.08	.02	.05	2	2.4	
L75+00N 82+75E	1 2	9 1	0 0	64 <.	3 2					-				29	.3	<3	<3	87	.59	.051							2.32			2	1.7	
RE 175+00N 82+75E	<1 2			60 <.			6 7			6	<8	<2	<2	28	.3	<3	<3	83	.55	.048	4	36	.68	107	-11	<3	2.20	.02	.10		.5	
L75+00N 83+00E	<1 5									6	<8	<2	<2	34	.3	<3	<3	64	1.21	.029	11	34	.54	125	•11	<5	3.04	.03	.00	4	1.4 .5	
L75+00N 83+25E	<1 3														.2	<3	<3	90	.41	.038	5	38	.78	169	.14	< 2	3.02	.02	.09	3	<.2	
L75+00N 83+50E	1 2	3 1	0 (65 <.	3 1	8 1	3 10	121 2	2.53	3	<8	<2	<2	17	.2	<3	<3	55	.50	.031	4	23	. 35	145	.09	5	2.34	.02	. 10	2	1.2	
L75+00N 83+75E	<1 3									6	<8	<2	<2	17	.3	<3	<3	89	.31	.088							3.59			3	1.3	
L75+00N 84+00E	1 2	8 1	1	70 <.	3 2	7 1	15 12	207 3	3.04	3	<8	<2	<2	27	.2	<3	ব্র	72	.53	.058				224			2.77			2	3.9	
L75+00N 84+25E	1 1										12	<2	<2	26	.2	<3	ব্র	62	.43	.039	3			139			1.67				.4 1.8	
175+00N 84+50E	<1 8			95 <.						-										.061							2.93				.2	
L75+00N 84+75E	1 4	3	9 !	58 <.	3 1	6 1	58	82 3	5.40	4	<8	<2	<2	25	.3	<3	<3	90	.52	.045	2	28	.08	119	•13	<3	2.75	+02	• 14	~2	.2	
175+00N 85+00E	1 2			65 <.							9	<2	<2	19	.2	<3	<3	94	.29	.042		29	.67	158	.13	<3	3.24	.02	.07		-4	
L75+00N 85+25E	<1 2			62 <.						4	<8	<2	<2	29	.3	<3	<3	84	.44	.038	4	28	.12	152	.11	<3	2.53	.02	. 12	2	.6 1.0	
L75+00N 85+50E	2 3	5 1	1 9	93 <.	3 1	91	5 13	588 3	3.34	6	<8	<2	<2	18	.3	<3	<3	76	.33	.084	5	24	.60	202	.11	<5				3	197.1	
STANDARD DS2	13 12	5 3	3 1	57 <.	33	4 1	12 7	77 2	2.94	55	19	<2	3	27	9.9	10	11	_69	.51	.086	15	152	.57	154	.09	4	1.74	.04	. 10		197.1	

Sample type: SOIL SS80 60C, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚣 FA

· -----

Hayes, T. FILE # A003963

Page 10

Data____ FA

ADIE MALYTICAL SAMPLE#	Mo										Fe X	As ppm	U mqq	Ai ppr	n lu aldau	h mp	Sr pm	Cd ppm				Ca %		La ppm		Mg %	Ba ppm			Al X	Na X			Au* ppb	
L75+00N 85+75E L75+00N 86+00E L75+00N 86+25E L75+00N 86+25E L75+00N 86+50E L75+00N 86+75E	1 2 <1	10 4 8 4 5	5 6 3	3 6 6	53 80 68	<.3 <.3	17 24 21	7 1 6 1 1 1	10 18 1 17	368 159 601	3.67 2.48 3.94 3.74 3.80	3 7 3	<8 <8 <8 <8 <8		2 < 2 2	2 2	47 28 42	.2 .4 .2	≺3 ≺3 ≺3	<3 4 <3	76 94 108	.83 .51 .69	.035 .032 .053 .046 .081	6 7 9	33 31 35	.62. 70. 1.01	137 208 223	.12 .14 .17	<3 3 4	1.95 4.20 3.06	.03 .03 .04	.09 .18 .28	<2 2 ~2	3.4 1.7 4.9 8.8 .4	
L75+00N 87+00E L75+00N 87+25E L75+00N 87+50E L75+00N 87+75E L75+00N 88+00E	26	2	9 6 9	434	48 50 57	<.3 .6	20	7 1	10 14 2 14	335 077 374	3.46 2.73 2.97 3.15 2.86	4	<8 <8 <8		2 < 2 < 2 <	<2 <2 <2	29 86 31	.2 .3 <.2	3 3 3	⊲ ⊲ ⊲	87 66 94	.44 2.41 52.	.057 .035 .074 .072 .066	4 9 5	33 34 34	.63 .70 .76	97 200 139	.15 .08 .14	3 6 5	3.02 1.98 2.46 2.43 2.07	.03 .04 .03	.07 .12 .11	<2 <2 <2		
L75+00N 88+25E L75+00N 88+50E L75+00N 88+75E L75+00N 89+00E L75+00N 89+25E	1 2	4 2 2 5	3777	475	49 49 50	<.3 .3	22	2	10 10 12	407 290 355	2.79 2.90 2.60 2.82 3.51	5	8 <8> 8> 8> 8>		2 4	<2 <2 <2	42 30 30	.2 .2 .2	থ্য থ্য থ্য	থ থ থ	86 77 86	.79 .62 .56	.019 .023 .029 .042 .053	10 4 6	36 29 32	.67 .52 .60	138 113 113	.15 .14 .15	3 <3 <3	2,38	.05 .04 .03	.13 .11 .17	<2 2 2	1.0 5.	
L75+00N 89+50E L75+00N 89+75E RE L75+00N 89+75E L75+00N 90+00E L75+00N 90+25E	22	: 6	5 6 4	<3 4 7	80 83 71	<.3 <.3	i 1) i 1)	5 ⁻ 7 ⁻ 7 ⁻	16 1 16 1 13 1	801 876 580	2.63 3.82 3.94 2.83 3.20	54	<8>	5 < 5 < 5 <	2 •	<2 <2 <2	22 22 31	.2 .3 <.2	र र र	८ ८ ८ ८	120 120 80	.52 .53 .51	.030 .065 .068 .101 .060	3 3 3	26 24 29	1.07	118 122 162	.08 .07 .11	<3 3 <3	1.95 3.31 3.32 2.24 2.75	.02 .02 .02	.09 .09 .13	2 2 2	1.0 1.1 <.2	
L75+00N 90+50E L75+00N 90+75E L75+00N 91+00E L75+00N 91+25E L75+00N 91+50E	1	3	6 4 5	5 6	63 89 95	<.3	2	1 2 3	13 14 1 14 1	822 984 763	2.52 2.85 3.14 3.68 3.52	4		5 < 5 < 5 <	2 •	<2 <2 <2	30 26 22	.3 .3 .5	<3 <3 <3	3 <3 4	82 89 101	.49 .46 .51	.052 .052 .093 .069 .039	7 4 4	32 35 32	.77	192 212 179	.11 .14 .12	<3 <3 3	2.23 2.38 2.73 3.54 2.95	.02 .02 .02	.09 .20 .09	<2 2 3	3.6 1.1 .2	
L75+00N 91+75E L75+00N 92+00E L75+00N 92+25E L75+00N 92+50E L75+00N 92+75E		2	8 0 2	12 9 5	69 76 67	<.? <.?	5 11 5 11 5 2	B 7 1	12 11 13	512 613 688	3.77 2.90 2.57 3.04 3.38			3 < 3 < 3 <	2 - 2 - 2	<2 <2 <2	21 22 28	.3 .4 .4	ব্য ব্য ব্য	থ থ থ	89 77 88	.41 .41 .54	.091 .054 .059 .065 .047	3 3 4	33 31 38	.64 .64 .73	96 116 135	.14 .14 .12	3 4 <3	3,14 2,10 1,83 2,30 2,75	02.02 02.02	.08 .10 .11	<2 2 2	.5 8. 1.4	
L75+00N 93+00E L75+00N 93+25E L75+00N 93+50E STANDARD DS2		1 2	5	6	77	<	5 3	7	14	302	3.08 3.04 2.75 3.00		<u>د</u> ک	3 <	2	<2 <2	26 44	<.2 .3	<3 <3	<3 <3	81 70	.30	.086 .048 .038 .087	6 8	46 40	.66 .62	194 201	.13	4 <3	2.02	.03	.07	<2 <2	.6 1.2 1.0 190.4	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

and a state of the second s

10110

ADE ANU VIICU		Hayes, T. FILE # A003963	Page 11
SAMPLE#	Mo Cu Pb Zn Ag Ni Co ppm ppm ppm ppm ppm ppm		Mg Ba Ti B Al Na K W Au* % ppm % ppm % % % ppm ppb
L75+00N 93+75E L75+00N 94+00E L75+00N 94+25E L75+00N 94+50E L75+00N 94+50E L75+00N 94+75E	1 37 8 77 <.3 18 13 1 28 8 67 <.3 22 12 1 26 5 73 <.3 24 13	1731 3.01 3 <8 <2 <2 21 .2 <3 <3 75 .61 .061 6 23 . 519 2.88 <2 <8 <2 2 27 .2 <3 <3 67 .58 .061 7 31 . 455 2.83 3 <8 <2 <2 24 .4 <3 <3 75 .33 .043 6 36 .4	90 157 .11 3 2.33 .01 .08 <2
L75+00N 95+00E L70+00N 85+75E L70+00N 86+0DE L70+00N 86+25E L70+00N 86+50E	14 81 6 63 <.3 22 16 31 155 4 74 <.3 25 19 27 53 14 110 <.3 22 15	543 3.37 4 <8 <2 <2 26 <.2 <3 <3 102 .40 .091 5 40 .1 658 3.54 4 <8 <2 <2 24 .3 3 <3 100 .30 .069 5 33 .1 818 3.60 4 <8 <2 <2 17 .4 <3 <3 90 .27 .098 4 26 .1	63 91 .11 <3
L70+00N 86+75E L70+00N 87+00E L70+00N 87+25E L70+00N 87+50E L70+00N 87+75E	10 34 4 60 <.3 20 14 13 43 6 74 .3 18 12 8 28 <3 50 <.3 18 12	410 3.05 3 <8 <2 <2 27 <.2 <3 <3 88 .40 .080 5 34 . 269 3.17 2 <8 <2 <2 23 <.2 <3 <3 92 .28 .090 4 28 . 463 2.94 2 <8 <2 <2 26 <.2 <3 <3 84 .39 .077 4 34 .4	76 125 .13 <3 2.14 .02 .13 <2 2.8 75 119 .14 <3 2.34 .02 .13 <2 2.1 62 88 .14 3 2.61 .02 .07 <2 11.7 69 111 .14 <3 2.36 .02 .09 <2 1.4 78 121 .15 3 2.93 .02 .09 6 5.9
L70+00N 88+00E L70+00N 88+25E L70+00N 88+50E L70+00N 88+75E L70+00N 89+00E	18 95 8 42 <.3 15 1 14 51 6 49 <.3 17 1 12 33 4 36 <.3 21 10	549 2.48 4 <8 <2 <2 36 .2 <3 <3 74 .63 .038 8 26 .0 650 2.40 4 <8 <2 <2 37 <.2 <3 <3 69 .61 .043 7 29 .0 300 2.50 2 <8 <2 <2 35 <.2 <3 <3 74 .54 .032 6 35 .0	73 96 .15 3 1.95 .02 .12 <2 4.6 67 99 .12 <3 1.86 .03 .09 <2 1.3 65 112 .11 3 1.85 .03 .11 2 2.5 69 100 .14 4 2.09 .03 .08 <2 1.0 24 117 .02 <3 1.20 .02 .02 <2 2.1
L70+00N 89+25E L70+00N 89+50E L70+00N 89+75E RE L70+00N 89+75E L70+00N 90+00E	2 16 6 44 <.3 17 8 2 16 7 42 <.3 18 9	229 2.32 3 <8	11 89<.01 10 .08 .01 .03 6 .4 47 96 .13 3 1.49 .02 .07 <2 .9 49 92 .14 3 1.55 .02 .08 3 .4 49 91 .14 <3 1.54 .02 .08 <2 .7 09 54 .01 8 .17 .01 .02 <2 1.1
L70+00N 90+25E L70+00N 90+50E L70+00N 90+75E L70+00N 91+00E L70+00N 91+25E	59 34 <3 35 <.3 5 4 35 <3 40 <.3 15 10 3 36 <3 44 .3 16 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 75 .01 6 .30 .01 .01 5 1.6 10 59 .01 4 .30 .02 .01 <2 1.6 70 105 .12 <3 2.05 .03 .07 <2 1.3 72 117 .10 4 1.96 .03 .07 4 1.2 79 233 .07 4 3.50 .03 .14 2 2.9
L70+00N 91+50E L70+00N 91+75E L70+00N 92+00E Standard DS2	1 20 5 49 .4 17 11	302 2.55 2 8 <2 <2 21 <.2 <3 <3 76 .38 .070 4 31 .	54 59 .12 <3 1.57 .02 .05 <2 1.7 57 84 .12 4 1.81 .02 .08 <2 .3 55 70 .13 3 1.73 .02 .05 <2 .6 59 146 .10 <3 1.71 .04 .16 8 203.6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🔨 FA

- -

Hayes, T. FILE # A003963

Page 12

																	_														^	CHE ANALTITUAL
SAMPLE#	No	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	sь	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Au*	
	ppm	pm	ppm	ppm	ррп	ppm	ppm	ppm	<u>×</u>	bbш	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	<u>×</u>	x	ppm 1	ppm	× 1	opm	*	ppm	<u>×</u>	<u>×</u>	X	ppm	ppb	
L70+00N 92+25E	10	227	13	67	.9	37	12	726	3.18	4	<8	<2	z	85	1.0	<3	<3	68	1.77	.097	15	46	.84	277	.08	<3	4.02	.03	.14	2	2.9	
170+00N 92+50E	1	67	.9	66			11		3.00	_		<2			.2	_				.036	7	33	.78 2		. 10	<3	2.75	.03	. 10	3	.6	
L70+00N 92+75E L70+00N 93+00E	14	36	11		<.3	~	4		1.70	<2		<2		16	.2	<3		38		.170	Ş	10				-	2.13			-	.4	
L70+00N 93+25E	4	46			<.3 <.3	17 23	10 14		2.65 3.07	4		<2 <2	-	11 21	<.2 .6	-	-			.073 .077	4 4	26 34	.55 .75	101 . 129 .		-	2.73 2.36			_	9.8 7.	
L70+00N 93+50E	<1	50	13	72	<.3	30	16	523	3.80	4	<8	<2	<2	32	.3	<3	<3	114	.56	.048	5	46	1.21	148	.14	<3	2.52	.02	.16	3	2.5	
L70+00N 93+75E		500						1119		14	<8		-		2.6	<3	<3	84	.66	.063	7	32		154	.11	<3	2.64	.02	.11	5	165.0	
L70+00N 94+00E		197	. –					1131					<5	_, ,		<3	-			.061	5	33				-				14	17.2	
L70+00N 94+258 L70+00N 94+508	1	80 658		78 116	• •			1566 3777		-	<8 <8	<2 <2	<5 2	25 22	.7 1.1	<3 <3		82 99		.044 .081	4 9	39 34	.69 .74			-	2.18 2.73				16.8 177.6	
L70+00N 94+75E	6	50	9	61	1.0	12	9	2191	1.05	99	13	<2	<2	139	1.2	<3	⊲	16	29.27	.082	2	8	.25	39	.01	3	.41	.01	.05	7	3.3	
RE L70+00N 93+00E	7	- 38	. –	÷.			10	347		2	<8	<2	<2	12	.2	<3	<3	73	. 18	.073	4	24	.57	104 .	.13	4	2.79	.02	.05	<2	1.6	
STANDARD DS2	13	121	_ <u>34</u>	156	<.3	34	11	780	2.92	56	18	<2	_4	_27	10.1	10	10	70	.50	.085	16	153	.57 1	168 .	.09	6	1.65	.04	.15	8	196.4	
																				_												

Sample type: SOIL \$580 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Hayes, T. FILE # A003749

Page 2

ACHE ANALYTICAL

ACHE ANALYTICAL	ALTE: AVAILTE UNL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au* pom pom pom pom pom pom pom pom pom pom
L70+00N 97+50E L70+00N 97+75E L70+00N 98+00E L70+00N 98+25E L70+00N 98+50E	1 25 8 62 <.3
L70+00N 98+75E L70+00N 99+00E L70+00N 99+25E L70+00N 99+50E L70+00N 99+75E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
L70+00N 100+00E L60+00N 80+00E L60+00N 80+25E L60+00N 80+50E L60+00N 80+75E	2 43 5 48 .3 14 10 369 2.40 3 <8
L60+00N 81+00E L60+00N 81+25E L60+00N 81+50E L60+00N 81+75E L60+00N 82+00E	<1 23 7 51 <.3 16 14 562 3.32 5 <8 <2 <2 29 .3 <3 5 98 .56 .027 4 28 .77 109 .10 4 1.83 .02 .08 <2 3.4 1 79 8 158 <.3 19 16 874 3.40 5 <8 <2 <2 37 1.1 <3 <3 72 1.47 .025 7 26 .65 129 .09 5 2.53 .03 .06 <2 1.8 <1 40 11 59 <.3 18 15 1071 3.56 2 <8 <2 <2 34 .4 <3 <3 75 1.38 .024 7 25 .63 155 .09 5 2.68 .04 .07 <2 1.9 1 62 8 91 <.3 17 44 1945 4.84 9 <8 <2 <2 16 .4 <3 3 99 .43 .064 5 19 .53 162 .07 5 2.44 .01 .06 <2 1.7 <1 35 11 64 <.3 25 19 771 3.56 <2 <8 <2 <2 19 .2 <3 <3 91 .42 .045 6 34 .71 144 .09 3 2.97 .01 .07 <2 1.0
RE L60+00N 82+00E L60+00N 82+25E L60+00N 82+50E L60+00N 82+75E L60+00N 83+00E	<1 37 9 66 <.3 26 20 797 3.70 6 <8 <2 <2 19 .2 <3 <3 98 .43 .046 6 35 .74 149 .10 3 3.05 .01 .08 <2 1.4 1 25 9 55 <.3 17 14 637 2.81 2 <8 <2 <2 25 .3 <3 <77 .65 .030 4 25 .55 166 .08 <3 2.06 .01 .09 <2 .6 1 29 7 74 <.3 19 21 896 3.25 3 <8 <2 <2 14 <.2 <3 <3 86 .27 .060 4 23 .55 135 .08 <3 2.67 .01 .06 <2 2.9 1 25 9 92 <.3 10 14 1269 2.31 6 <8 <2 <2 17 .2 <3 <3 52 .60 .052 3 10 .26 85 .08 <3 1.95 .02 .07 <2 3.6 1 40 10 71 <.3 23 18 1205 3.35 7 <8 <2 <2 30 .2 <3 3 86 .55 .049 6 33 .78 196 .09 <3 2.30 .01 .14 <2 2.5
L60+00N 83+25E L60+00N 83+50E L60+00N 83+75E L60+00N 84+00E L60+00N 84+25E	1 57 11 80 <.3
L60+00N 84+50E L60+00N 84+75E L60+00N 85+00E STANDARD DS2	1 85 11 77 <.3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

1

. ____ ...

Hayes, T. FILE # A003749

Page 3

SAMPLE#	1				Ag										Cd							Cr					AL				Au*	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	*		ppm	ppm	*	ppm,		ppm	 X	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppb	
L60+00N 85+25E	1 7	60	17	70	~ 3	17	16	1312	3 /3	2	-8	-7	12	27	.3	-3	~7	100	5.8	055	4	20	88	15R	13	5	2 64	07	15	<2	21.9	
L60+00N 85+50E		36							3.19	- L	<8	2	~2	20	<.2	<3	<3	00	46	.034	5	34	.82	151	12	á	2,29				1.0	
L60+00N 85+75E		85							1.94						.2	<3	<3	53	.27	.057	3		.21				1.78			_	2.5	
L60+00N 86+00E															<.2												2.27				2.7	
160+00N 86+25E															<.2																11.7	
	{ -		• •			•				-	-	_	_																			
L60+00N 86+50E	2	31	7	68	<.3	23	16	637	3.24	3	<8	<2	<2	26	<.2	<3	<3	99	.41	.035	4	32	.77	150	.14	3	2.39	.02	.09	<2	.5	
L60+00N 86+75E	3	27	4	65	<.3	19	14	667	2.95	<2	<8	<2	<2	27	<.2	<3	<3	89	.42	.073	4	27	.75	134	.12	<3	2.32	.02	.11	<2	.4	
160+00N 87+00E	3	27													<.2												1.99				4.7	
L60+00N 87+25E	2	40	8	54	<.3	- 15	9	419	2.46						<.2												2.14				3.9	
L60+00N 87+50E	1	28	9	59	<.3	24	14	467	2.86	3	<8	<2	<2	22	<.2	<3	<3	83	.38	.075	- 4	32	.65	140	.12	<3	2.24	-02	.13	<2	5.8	
																						_				_						
L60+00N 87+75E									3.17											.030			.82				3.07				1.9	
L60+00N 88+00E									2.34	2	<8	<2	<2	19	<.2	<3	<3	60	.47	.019	4						1.83				3.4	
L60+00N 88+25E		43							3.23						<.2												2.54				1.7	
L60+00N 88+50E															.3												2.53				4.8	
L60+00N 88+75E	2	48	16	68	<.3	20	18	1867	3.55	6	<8	<2	<2	22	.2	<3	<3	86	.34	.103	6	28	.74	155	.12	<3	2.68	.02	-09	<2	5.9	
					-					-				~ ~	-					~~~	,	25	.,	4/8	17	.7	a 77		0.0	~ 7	12.2	
L60+00N 89+00E									3.48			<2								.068		25					2.85				12.2	
L60+00N 89+25E									3.39			<2								.074							2.07				2.3	
L60+00N 89+50E									3.07			<2 <2								.004		_					3.04				2.6	
L60+00N 89+75E L60+00N 90+00E									3.49			<2						104		.077							3.20				1.2	
LOOTOON JUTUOE	'	45	10	101	~. 5	20	10	+101	3.49	0	~0	12	14	24				104	.40	.0//	0	5,		100	• • •		2.20	.01				
L60+00N 90+25E	2	52	20	121	<.3	24	19	1221	3.65	11	<8	<2	<2	34	.6	<3	<3	104	.62	.050	7	35	.90	154	.15	<3	3.11	.02	.12	<2	3.8	
L60+00N 90+50E															1.5	<3	<3	89	.97	.069							2.53				9.8	
L60+00N 90+75E	li	32	11	94	<.3	26	17	779	3.47	7	<8	<2	<2	34	.3	<3	<3	103	.47	.087	6	36	.82	176	.13	<3	3.14	.02	.09	<2	1.1	
RE L60+00N 90+75E									3.26			<2				<3	<3	95	.44	.081	6	33	.76	166	.12	<3	2.81	.0Z	.09	<2	3.1	
L60+00N 91+00E	1 1	54	11	77	<.3	18	12	694	2.70	2	<8	<2	<2	45	.5	<3	<3	- 77	1.25	.047	8	28	.73	165	.10	3	2.70	.03	.07	<2	1.9	
																														_		
L60+00N 91+25E	1	38	10	- 77	<.3	15	11	874	3.50	10	<8	<2	<2	19	<.2	<3	<3	94	.39	.045							2.25				1.9	
L60+00N 91+50E	2	46	10	60	<.3	18	13	618	2.91	- 3	<8	<2	<2	27						.032							2.20				-9	
160+00N 91+75E	1	27	15	81	<.3	9	14	1917	2.89	20	<8	<2	<2	26						.067							1.57				1.4	
L60+00N 92+00E	1	43	11	102	<.3	19	13	612	2.82	22	<8	<2	<2	31	.5					.032							2.78				1.3	
L60+00N 92+25E	1	49	27	125	<.3	24	19	1480	3.72	12	<8	<2	<2	33	.9	<3	<3	118	.48	.060	6	36	1.07	161	. 16	<3	3.12	.01	.20	<2	1.3	
					_												-				40	- 7	4 07	100	40	-7	2.01		75	-	4.4	
L60+00N 92+50E	ί 2	90	30	139	.6	26	22	1589	3.69	37	<8	<2	<2	42	1.5	<3	<3	106	.58	.084	10	55	1.02	120	.12	<5	2.90	-02	. 35	2		
L60+00N 92+75E	1	74	19	120	<.3	23	20	1359	3.57	55	<8	<2	<2	36	1.0	<5	<5	105	.58	.072	9	33	. 99	1/0	.12	<5	2.10	.02	.24	~2	2.4	
L60+00N 93+00E	2	57	20	179	<.3	21	19	1337	3.35	67	<8	<2	~2	51	2.4	10	<3	99	.5/	.087	15	154	.00	101	.11	<3 ~7	1 45	.02	.29	<u>ک</u>	2.6 203.6	
STANDARD DS2	15	126	33	155	<.3	- 55	12	817	5.05	- 60	21	<2		20	10.5	10	12	11	.50	.090		120		104	.09		1.03	.04	.15			

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>P</u>FA

						_		Ha	уев	, I	•	E	FIL	E 1	# A(003	74	9									Pa	ige	4			ACHE AI
SAMPLE#		Cu ppm			-			Mn ppm		As ppm		Au ppm			Cd ppm	Sb ppm			Ca X		La ppm		Mg %	Ba ppm		B ppm		Na %		W ppm	Au* ppb	
L60+00N 93+25E	6	72	12	166	<.3	18	16	790	3.09	54	<8	<2	<2	28	1.0	4	<3	86	.38	.040	4	22	.78	132	.06	<3	2.03	.01	-08	5	28.2	
L60+00N 93+50E	2	101	28	154	<.3	27			3.53		-	<2	_	17	.6					.041	4	36	• · · ·					.01	•	-	1.8	
L60+00N 93+75E	5	71	26	187	<.3	22	17	918	3.21	95	<8	<2	<2	17	.5	5				.032	4		.75			-		.01			.9	
L60+00N 94+00E	3	62	21	199	<.3	32	19	849	3.53	39	<8	<2	-		1.0	<3	<3	93	.38	.042			1.16			-		.02		•	1.4	
L60+00N 94+25E	3	39	33	196	.4	20	13	285	2.68	33	<8	<2	<2	31	.7			76	.59	.027		34	.69		.09			.02			14.6	
L60+00N 94+50E	3	22	161	667	.6	15	10	229	2.73	6	<8	<2	<2	17	1.0	3	<3	77	.33	.025	5	28	.61	89	11	<3	2.08	.02	.06	<2	4.2	
L60+00N 94+75E	1 1	27	18	120	<.3	19	14	780	2.97	3	<8	<2	<2			-				.047	5	36				_		.01		2	.2	
L60+00N 95+00E	2	30	11	101	<.3	20	15	989	2.98	6			<2		. –	_	_			.063	-	29						.01		<2	.8	
RE 160+00N 95+00E	2	32	11	102	<.3	21	15	993	3.03		<8		<2	19	.3				.28	.063	4	32				-		.01	-	3	<.2	
STANDARD DS2	14	125				34	17		2.98		-	<2	-		10.1		_			.088		155						•	.15		205.7	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.

ACME ANAL __CAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hayes, T. File # A003628 Page 1 1704 - 555 Austin Ave, Coquitian BC V3K 6R8 Submitted by: Ted Hayes

· · · —									335				•																				
SAMPLE#		Cu ppm							Mn ppm	Fe %						Cd ppm				Ca %		La (ppm pp		Mg E %pp							W ppm		
L65+00N 80+00E	<1	38	7	74	. <.	3 1	17	11	957	2.88	4	<8	<2	2	32	.5	<3	<3	61	.99	.035	8 3	23.	.56 12	28.0	08 <	32	.56	.03	.08	<2	.6	
L65+00N 80+25E	1 1																					4 3										-8	
L65+00N 80+50E																						14										2.7	
L65+00N 80+75E	1	29								3.46																						.4	
L65+00N 81+00E	11	35																				6										1.0	
L65+00N 81+25E	<1	35	6	86	5.	3 2	21	16	1780	3.58	5	<8	<2	<2	42	.3	<3	<3	92	. 79	.088	5	33.	.76 23	35.	10 •	<33	.11	.02	.13	<2	.8	
L65+00N 81+50E	1 7	57								1.98											.056			.43 27								1.6	
L65+00N 81+75E	1 1	27								2.95												6										.3	
L65+00N 82+00E	<1	53																			.059			.37 10								3.6	
L65+00N 82+25E	1	25	7	80) <.	3 2	21	16	800	3.28	6	<8	<2	<2	22	.2	<3	<3	80	.51	-029	5	31.	.59 1	57.0	09 •	<32	.29	.02	.07	<2	-8	
L65+00N 82+50E		33																				6											
L65+00N 82+75E																						10 2											
L65+00N 83+00E	1	57														.7	<3	3	90	.82		9										.9	
L65+00N 83+25E		46								3.82						.3	<3	<3	94	.60	.058	7 :											
L65+00N 83+50E	2	34	8	72	2 <.	3 2	22	20	1049	3,44	9	<8	<2	< 2	25	.3	<3	<3	80	.60	.052	5	30	.63 1	55.0	09 •	<32	.57	.02	. 13	<2	1.3	
L65+00N 83+75E																						7											
L65+00N 84+00E										3.18												5											
L65+00N 84+25E										3.84											.081				-							2.7	
L65+00N 84+50E	2	46	9							3.32											.099											16.0	
RE L65+00N 84+50E	2	45	7	76	5 <	32	22	18	795	3.30	6	<8	<2	2	23	.4	<3	3	84	.41	.097	6 3	31.	.74 18	33 .1	12 <	<33	.07	.02	.11	<2	2.3	
L65+00N 84+75E		131								3.78												4											
L65+00N 85+00E										2.29											.028	2										4.4	
L65+00N 85+25E	1									2.09			<2								.061			.37 11								.7	
L65+00N 85+50E	· ·									3.12											.063												
L65+00N 85+75E	5	142	5	121	11.	2 2	25	11	870	2.94	8	<8	<2	<2	57	2.7	5	<3	69	1.35	.090	10	30.	.65 17	70.0	08	32	.92	.04	.08	<2	5.7	
L65+00N 86+00E	15	31	17	86	5.	3 2	29	20	676	4.37	5	<8	<2	2	23	,2	<3	3	130	.31	,053	4	37 1.	.13 13	58 .	16 <	33	. 19	.03	.09	<2	1.0	
L65+00N 86+25E										3.97											.075			.95 14								.7	
L65+00N 86+50E										3.69			<5																			-8	
165+00N 86+75E	7	52	8	109		32	20	15	761	3,14	5	<8	<2	<2	20	.6	<3	<3	75	.30	.106			.62 1								.7	
L65+00N 87+00E	6	31	39	215	5.	91	19	14	632	3.04	2	<8	<2	2	16	1.2	<3	<3	81	.23	.092	3 3	26.	.58 13	32 .1	12 <	:32	.66	.02	.08	<2	.6	
L65+00N 87+25E	6	71	24	238	3.	3 1	17	16	535	3.38	7	<8	<2	<2	26	1.5	<3	<3	97	.41	.060	4	30.	.82 11	15 .*	13 🔹	3 2	.40	.02	.12	<2	10.6	
L65+00N 87+50E	4	150	14	100) .	4 1	16	15	649	3.33	2	<8	<2	<2	64	1.3	<3	<3	99	1.43	,087	5	28 1.	.00 11	17 _1	11	32	.07	.06	.18	<2	3.8	
L65+00N 87+75E	29	290	3	71		4 1	9	17	413	3.45	3	<8	<2	<2	28	.3	<3	<3	100	.52	.037	5 3	30.	.89 12	26 .1	14 <	32	.71	.03	.09	<2	2.4	
STANDARD DS2	14	126	72	158	۰ ۱	3 3	56	12	836	3.10	57	18	<2	4	30	10.3	10	10	76	.55	.091	17 10	57.	.61 15	57.1	10	31	.76	.04	.18	8 '	191.6	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 18 2000 DATE REPORT MAILED:

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS ept 28/00

Data_(___FA___

ACME ANALYTICAL

Hayes, T. FILE # A003628

44	
ACHE ANALYTICAL	

SAMPLE#	Mo (ppm p	Cu om r	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As DOM	U	Au	Th	Sr	Cd	Sb	Bi DDM	V	Ca %	P X	La DDM I	Cr DDM	Mg %	Ba ppm	11 %	8 maa	Al %	Na %	K X	W mag	Au* ppb	
						PP4	Phan	- ppa		- ppii	ppin	Ppan		ppin .		PP.				-				P.P		FP	'					
L65+00N 88+00E	31 4	95	7	79	<.3	22	39	479	3.81											.052												
L65+00N 88+25E	22 1								-											.061												
L65+00N 88+50E			-						3.52											.063												
L65+00N 88+75E																				.038												
L65+00N 89+00E	9	34	4	67	<.3	19	14	459	3.23	3	<8	<2	<2 _	24	.2	<3	<3	100	.38	.056	4	33	.80	114	.15	<3	2.46	.03	-08	<2	1.1	
L65+00N 89+25E	14 3	62	4	139	.8	26	13	539	3.25	5	<8	<2	2	58	1.3	<3	3	79	1.61	.046	12	34	.72	167	. 10	<3	3.41	.04	.10	<2	18.8	
L65+00N 89+50E	19 3	30	14	92	.4	19	34	684	3.68	<2	<8	<2	<2	18	<.2	<3	3	86	.32	.034	3	18	.59	130	.11	<3	3.42	.03	.12	3	7.7	
L65+00N 89+75E																				.042												
L65+00N 90+00E	2	40	5	62	<.3	22	13	435	2.96	2	<8	<2	2	28	<.2	<3	<3	88	.42	.067	5	36	.72	127	.15	<3	2.29	.03	. 14	<2	3.9	
L65+00N 90+25E	2	43	7	81	<.3	23	15	1088	3.24	- 4	<8	<2	<2	20	<.2	<3	<3	89	.32	.093	5	34	.69	150	.13	<3	2.86	.02	.09	<2	2.0	
L65+00N 90+50E	2	50	9	78	<.3	22	16	808	3.28	5	<8	<2	<2	24	<.2	<3	3	93	.36	.077	5	34	.75	136	. 13	<3	2.81	.02	.11	<2	1.6	
L65+00N 90+75E	2	44	4	57	<.3	18	14	454	3.45	6	<8	<2	<2	35	.2	<3	- 4	111	.56	.048	4	36	.98	106	.17	<3	2.20	.03	.15	<2	1.5	
165+00N 91+00E	2	20	5	48	<.3	16	10	295	2.64	- 3	<8	<2	<2	24	<.2	<3	3	87	.41	.074	4	31	.58	82	.14	<3	1.75	.03	.08	<2	.9	
L65+00N 91+25E									2.73											.099											.5	
L65+00N 91+50E	1	21	4	50	<.3	19	12	326	2.96	6	<8	<2	2	25	<.2	<3	<3	94	. 39	.066	4	32	.62	103	.13	<3	1.98	.03	.07	<2	.7	
L65+00N 91+75E	1 :	35	5	53	<.3	19	12	391	2.98	4	<8	<2	<2	29	<.2	<3	3	95	.45	.065	6	36	.73	103	. 14	<3	2.16	.03	.09	<2	1.7	
L65+00N 92+00E	2	27	7	70	<.3	17	11	257	2.91											.028											.9	
L65+00N 92+25E	1 :	33	8	61	<.3	20	14	358	3.24											.084												
RE L65+00N 92+25E	1 :	32	9	61	<.3	20	14	355	3.23											.084											.8	
L65+00N 92+50E	2	43	4	89	<.3	24	15	444	3.53	6	<8	<2	<2	31	.3	<3	3	107	.54	.035	5	38	.83	128	.14	<3	2.87	.04	.07	<2	.4	
L65+00N 92+75E	1	33	3	79	<.3	22	16	478	3.46	4	<8	<2	<2	28	<.2	<3	<3	103	.45	.087	5	37	.85	120	.13	<3	2.56	.03	.09	<2	1.6	
L65+00N 93+00E																															.6	
L65+00N 93+25E																															4.5	
L65+00N 93+50E																				.086											.8	
L65+00N 93+75E	1	68	7	108	.3	29	17	743	3.48	8	<8	<2	<2	31	-4	<3	<3	105	.73	.052	4	45	-96	120	.14	<3	3.15	.03	.12	<2	.8	
L65+00N 94+00E									3.47											.048												
L65+00N 94+25E																				.031												
L65+00N 94+50E	1 1	96	5	59	.5	- 24	11	301	2.97	10	<8	<2	2	58	.3	<3	<3	68	1.09	.037	10	37	.75	188	.12	<3	3.03	.04	.09	<2	3.9	
L65+00N 94+75E																															1.7	
L65+00N 95+00E	<1 1	08	4	58	.7	19	7	284	2.28	7	<8	<2	<2	88	.4	<3	<3	56	1.89	.068	11	25	.51	161	.08	<3	2.25	.04	.06	<2	1.3	
STANDARD DS2	14 1	20	30	152	<.3	34	12	797	2.98	55	21	<2	4	28	9.8	10	10	73	.53	.086	16	159	.58	158	.09	3	1.69	.04	.16	7	193.2	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME AN !ICAL LABORATORIES LTD. (ISC :002 Accredited Co.)

-

i

852 E. HASTINGS ST. ' OUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604' 53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hayes, T. File # A003749 Page 1 1704 - 555 Austin Ave, Coquitlem BC V3K 6R8 Submitted by: Ted Hayes

								<u></u>					·····													_							
	SAMPLE#	MO MOO	Cu	Pb	Zn	Ag	Ni	Co	Mn ppm		As	U	Au	Th	Sr	Cd	sъ	8 i	v	Ca	P	La	Cr			Ti		AL	Na	ĸ		Au*	
		<u> </u>	FF		PP	PP:	PP-11	PPm	-PPm		Pipu	Phil	phil	Phu.	phu	ppm	ppn	ppm	ppm	%		ppm	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	*	bbu	×	X	*	ppm	ppb	
	L70+00N 80+00E	<1	55	8	60	<.3	17	13	571	3.34	6	<8	~7	~2	38	<.2	~7	.7	90	1 00	077	•	75				,				-		
	L70+00N 80+25E	5	24	4	26	<.3	3	1	122	.34	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<r< td=""><td>~2</td><td>2</td><td>101</td><td>`.<u></u></td><td>~~</td><td>~~</td><td>00</td><td>F (/</td><td>.023</td><td>8</td><td>35</td><td>.00</td><td>101</td><td>.12</td><td></td><td>2.66</td><td></td><td></td><td></td><td>2.3</td><td></td></r<>	~2	2	101	`. <u></u>	~~	~~	00	F (/	.023	8	35	.00	101	.12		2.66				2.3	
ł	L70+00N 80+50E	5	16	4	23	<.3	3	3	449	.67	2	<r< td=""><td>~2</td><td>2</td><td>102</td><td>.,</td><td>~7</td><td>~~</td><td>14</td><td>5.44</td><td>.072</td><td></td><td>< I</td><td>.04</td><td>214</td><td>.01</td><td></td><td>.11</td><td>.01</td><td>.01</td><td><2</td><td>1.6</td><td></td></r<>	~2	2	102	.,	~7	~~	14	5.44	.072		< I	.04	214	.01		.11	.01	.01	<2	1.6	
1	L70+00N 81+00E	3	67	<3	31	<.3	7	ž	1288	60	2	-8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	112	1.1	7	-7	14	5.19	.079	< <u>1</u>	2	.07	894	.01	8	.20	-01	.02	<2	1.5	
	170+00N 81+25E	1	28	7	85	<.3	21	14	503	3.19	7	~9	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	1.1	<2 7	<3	18	5.42	.103	2		.12	68	.01	9	.50	.01	.03	<2	.6	
	_			•				1.4		3.17		-0	72	~	20	. 4	• 5	\$	00	.38	.040	4	29	.55	121	.09	6	2.40	.02	.06	<2	<.2	
	L70+00N 81+50E	<1	46	5	102	<.3	30	16	ወጓስ	3 31	2	<r< td=""><td>-2</td><td>0</td><td>41</td><td>1.2</td><td>-7</td><td>-7</td><td>oc</td><td>• • •</td><td>07/</td><td></td><td>70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></r<>	-2	0	41	1.2	-7	-7	oc	• • •	07/		70										
	L70+00N 81+75E	1	24	6	95	<.3	30	14	318	3.39	ŝ	~R	~2	.5	24	1.6	~7	-7	105	.40	.034			.74				2.55				1.6	
	L70+00N 82+00E	1	48	3	50	<.3	29	12	280	2.99	4	~8	~2	~2	52	.,	~7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	103	1,40	.032			.74				2.39				2.5	
	170+00N 82+25E	<1	19	5	55	<.3	28	12	237	2.83		~R	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23									.60				2.63				2.0	
	L70+00N 82+50E		54	7	60	< 3	32	18	561	3.93	9				39		- 7	5	84	.33	.073		39	.57	121	-12		1.97				.4	
		•••		•	0,		2	10	501	3.93	0	10	12	۲	28	.2	<2	<3	117	.74	.038	9	46	1.12	137	.16	- 7	2.75	.02	.18	<2	4.4	
	L70+00N 82+75E	<1	32	7	88	4	25	15	667	3.13	1	~ 2	~	~	27	2	.7		70	75		-		**			-				_	_	
	L70+00N 83+00E	<1	44	11	67	.ب ۲ ۲	24	17	476	3.13		20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22	.2	<3	<3	78	.35	.051							2.54				<.2	
	170+00N 83+25E	2	523	2	110	`.J *	1.2	10	4/0	3.38	4	<0 -0	<2	~2	21	.5	<5	<3	78	.41	.025	3	34	.59				2.05				.4	
	170+00N 83+50E	2	323	10	04		31	10	740	3.25	2	<0	<2	~2	41	1.5	<3	<5	92	1.64	.015							3.35				.8	
	L70+00N 83+75E		30	8	77	~ 7	2/	10	200	3.25	3	<ð	<2	~2	17	.2	<5	<3	91	.25	.058	4		.73				2.84				.9	
		~	10	0	~		£4	10	434	3.22	14	٥>	<2	<2	18	.4	<5	<5	102	.40	.023	3	34	. 69	111	.14	7	2.39	.02	.13	<2	.2	
	L70+00N 84+00E	6	63	<3	55		10	10	037	1.99	2	-0		-7	.,										_		_						
	L70+00N 84+25E	1	36			<.3			1181		<u>د</u>	<u><0</u>	~~	~~	14	<.2	<3	<2	55	.15	.085		8	.15	76	.11		1.96			4	.4	
	L70+00N 84+50E	2						10	688	2.41			<2			و.	<5	<3	115	.38	.054		31	.89	145	. 15		2.85				.5	
	L70+00N 84+75E	5	57	~	77	2.2	25	14	74/	3.96			<2			.2	<3	<5	92	.39	.057		31	.74	126	.13		2.44				<.2	
	L70+00N 85+00E	8	67	11	70	~ 7	22	15	716	2.70	5	< B	<2	~2	21	.2	<5	<3	127	.35	.079			1.09				3.64				.3	
			0,	••	10	·	26	15	110	5.20	C	<8	<2	<2	28	.2	د>	<3	93	.39	.082	5	28	.82	189	.14	3	3.06	.02	.12	<2	- 4	
	RE L70+00N 85+00E	8	66	11	68	< 3	22	15	701	3 16	5	~9	<2	~2	27	7	-7	.7		70	~70	-	••	-						_	_		
	L70+00N 85+25E	4	41	8	75	< 3	31	18	551	3.57					30	<.2	2	<3 -7	107	.39	.079			.79				3.00				.4	
	L70+00N 85+50E	3	42	<3	60	< 3	21	16	525	3.29	~2	~8	~2	22	21									.88				3.43				1.3	
	L70+00N 95+00E	4	183	4	62	< 3	28	14	773	3.27	3	28	~2	~	70					.39				.84				2.93				2.5	
	L70+00N 95+25E		36	5	59	< 3	21	12	553	2 82			~2			.0	~7	<3 -7	81	1.54	.070			.96				2.51				.7	
				-				12		E.02	•	-0	16	12	24	- 4	5	0	90	.94	.002	>	55	.71	165	.12	4	2.02	-03	.14	<2	.5	
	L70+00N 95+50E	3	39	4	48	<.3	20	12	569	2 72	7	<8	<2	~2	53	2	~7	.7	0/	.95	042	F	7/	70	477		,					•	
	L70+00N 95+75E		37	Ř	62	< 3	23	11	494	2 51			~2							.76				.79				1.94				.8	
	L70+00N 96+00E				43	< 3	19	6	206	2.68	~	28	~2	2	45	.5	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	1.19	.000		20	.29	147			2.07				1.9	
	L70+00N 96+25E		25	5	56	< 3	10	12	262	3 02	2	28	<2	2	22					.37				.52				2.39				1.6	
	L70+00N 96+50E	<1		õ	82	< 3	22	16	652	3.06			<z< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>.46</td><td></td><td>2</td><td>32</td><td>-64</td><td>89</td><td>.12</td><td></td><td>2.10</td><td></td><td></td><td></td><td>1.3</td><td></td></z<>							.46		2	32	-64	89	.12		2.10				1.3	
		•••	2.	,	01			1.4	0.72			10	12	10	20	.4	0	0	90	.40	.092	4	54	.73	135	. 17	>	2.24	.02	.11	<2	-4	
	L70+00N 96+75E	13	90	8	59	<.3	39	17 1	158	5.53	10	<8	~2	2	82	z	~7	~	02	1.49	045	-	E 4	07 .	200	~		7 07				•	
	L70+00N 97+00E			4	72	< 3	26	14	317	3 23	Ä	28	<2	~2										.83				3.93				.9	
	L70+00N 97+25E	<1				<.3					~2	~0	~2	~2	21		~7	<3 ~7	90	.44	.073	2	40	.78	137	.13	4	2.20	.02	.09	<2	1.1	
	STANDARD DS2							13	878	x 11	50	10	~2	*	27 4	10 7	10	10	22	.32	.020	15	32	.49	145	.10	<3	1.86	.02	.05		1.2	
													<u>``</u>				10	10	()	,56	.091	15	100	.00	100	.09	3	1.67	.04	.15	8 21	5.4	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 25 2000 DATE REPORT MAILED: Out 4/00

SIGNED BY.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/</u>_ FA ___

AA	900	4 A(CT.	11 00		4• <u>1</u>			Ç	EOC	HE	NIC.	AL J	ANA	L¥S:	נא (ER.	riş:	ICA	TE									Δ	A
ĽĽ								170		1765 555 Au	istin.	Γ. Ave,	Fi Coqu	le Itlan	# A BC V	003: 5K 6RI	321 S		Pag ted t		Haye	S 177		n Nganan Nganang	e i A					
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ті %	BAL ppm %	Na X	к %	W Ppm	Au* ppb
825 850 875 1900 1925	4 2 2 2 6	38 21 41 43 179	8 13 3 6 536	53 74 47 41 887	<.3 <.3 <.3 <.3 2.4	18 18 22 18 21	12	268 416 432 414 996	2.75 5.36 5.23	<2 4 5 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	20 19 38 40 38	.3 .4 .3 .2 12.3	उ उ उ 7	<3 <3 <3 3 3	83 82 112 110 103	.31 .58 .65	.059 .067 .076 .078 .091	3 3 6 8	38	.67 .67 1.04 .98 1.03	96 91 131 102 118	. 13 . 13 . 18 . 19 . 14	<3 2.01 3 1.87 3 1.99 4 1.83 3 2.08	.02 .02 .03 .05 .04	.14 .15 .24 .22 .23	<2	5.4 2.2 13.0 3.0 310.7
950 975 000 025 050	5 2 3 1 <1	183 75 65 45 28	401 7 14 <3 5	855 51 65 51 33	2.0 .4 .3 <.3 <.3	23 19 22 19 15	22 9 16 13 10	941 388 631 455 309	2.78	11 3 10 5 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	52 74 54 36 29	14.6 .6 .3 .2 <.2	7 <3 <3 <3 <3	<3 <3 14 <3 <3	78		.032	8 13 9 6 4	26	1.21 .55 1.17 .99 .75	186	.17 .10 .19 .19 .18	3 2.48 3 2.50 3 2.78 5 2.38 4 1.50	.06 .03 .04 .04 .03	.27 .06 .22 .20 .14		223.3 26.0 1.0 .8
075 100 125 150 175	1 1 1 1	25 29 33 26 25	4 4 3 5 6	46 56 61 47 52	<.3 <.3 <.3 <.3 <.3	17 18 18 17 16	12 12 12 11 10	336 400 332 309 268	2.90 2.94 2.87	<2 5 2 3 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< < < < < < < < < < < < < < < < < < <	26 23 26 23 19	<.2 .2 .2 .2	ব্য ব্য ব্য ব্য ব্য	<3 <3 <3 <3 4	96 91 93 93 81	.40 .46 .39	.051 .060 .066 .074 .067	3 4 5 4 3	31 29 31 30 26	.78 .74 .76 .70 .60	99 96 107 94 84	.16 .13 .13 .14 .12	5 1.90 3 2.00 4 2.24 5 1.90 4 1.83	.03 .02 .03 .02 .02	.12 .09 .07 .10 .06	~? ~? ~? ~?	2. 1. 8.
200 225 250 275 300	2 1 2 2 2	35 36 45 42 56	6 5 6 10 9	52 52 82 74 166	<.3 <.3 <.3 .3 .3	18 19 20 26 37	12 12 14 14 12	354 366 619 596 612	2.89 5.08 5.49	2 5 7 39 18	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	27 30 25 39 35	<.2 .2 .5 .3	<3 <3 <3 <3 <3	ও ও ও ও	94 91 93 113 94	.60 .46 .53	.050 .051 .096 .064 .071	5 5 6 8		.75 .71 .78 1.05 1.02	110 126 116 155 149	.14 .13 .13 .16 .11	3 2.14 3 2.10 3 2.42 4 2.50 3 2.86	.02 .03 .02 .04 .04	.07 .09 .08 .14 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2	1. 8. 1. 1. 2.
F9300 325 350 375 400	3 3 <1 1	56 66 52 59 44	6 12 10 4 7	168 130 104 130 77	.3 <.3 <.3 <.3	37 28 25 38 28	13 14 15 20 14	623 944 813 595 515	4.27 3.34 3.85	20 16 12 6 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	35 58 23 25 30	.9 .9 .6 .3	उ उ उ उ उ	<3 <3 <3 <3 <3	95 131 104 126 101	1.48 .46 .43	.072 .148 .068 .048 .036	8 11 4 5	49 40	1.02 1.51 .93 1.36 .98	153 135 131 120 130	.10 .08 .11 .16 .16	4 3.01 3 3.81 3 2.83 3 3.06 3 2.51	.04 .16 .02 .02 .03	.11 .14 .14 .10 .17	<2 <2 <2 <2 <2 <2	8. 4. 1. 2. 7.
425 450 475 500 525	<1 1 1 2	60 170 162 97 44	<3 4 7 7 3	100 43 45 45 48	<.3 .7 .4 .5 <.3	48 12 26 16 15	21 5 10 7 9	438 613 633 234 267	.99 2.21 2.04	<2 4 8 6 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	55 149 84 82 41	.4 .8 .5 .4 <.2	उ उ उ उ	3 3 3 3 3 3 3 3 3	28 59	1.81		3 5 16 11 5	81 16 35 21 26	1.81 .29 .58 .47 .60	102 115 142 138 109	.17 .03 .07 .07 .11	4 3.89 6 1.10 <3 2.32 3 2.08 <3 1.81	.11 .03 .05 .03 .03	. 15 . 03 . 06 . 05 . 05	<2 <2 <2 <2 <2 <2	2. 2. 1. 1.
550 575 600 ANDARD DS2	2 1 5 14	28 30 157 122	5 5 8 30	57 54 87 151	<.3 <.3 .3 <.3	20 20 32 34	10 14 8 11	268 565 244 794	3.12 2.06	<2 2 6 55	<8 <8 17 20	<2 <2 <2 <2	<2 <2 <2 3		<.2 <.2 2.2 10.0	ব্য ব্য ব্য 11	<3 <3 <3 10		.43 2.30	.065 .063 .088 .086	4 4 11 15	32 34 26 146	.68 .84 .51 .57	105 109 286 149	.11 .13 .07 .09	3 1.79 5 1.87 3 2.53 4 1.60	.02 .02 .03 .04	.07 .10 .06 .15		1. 3. 5. 191.

UPPER LIMITS - AG, AU, NG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

DATE RECEIVED: AUG 31 2000 DATE REPORT MAILED:

1

:.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ALL ACTE MALYTICAL									Ha	aye	s, '	r.	F	ILE	# 1	A00 2	332:	1								Page 2			ACHE /	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni popra	Co ppm	Mn ppm	Fe X	As pom	U ppm	Au ppm	Th ppm	Sr ppm	Cd. ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	BAL ppm %	Na %	K X	W ppm	Au* ppb
50425	15	475		4.77		50	• •	/ 774 7		40				97	3.9	.7	<3	86	1.36	.051	16	48	.84	325	.11	<3 3.01	.04	.11	τ	3.6
F9625 F9650	15	135 32	6	173 98	.5 <.3	50 36		4331 3		18 6	<8 <8	<2 <2	<2 <2	87 35	3.7	<3 <3	<3	89		.049	6	53	.83	144	.13	4 2.17	.02	.09	<2	2.1
F9675				238			12	415 3		5			-	97	3.4		3	84	1.40		12	42	.78	203	.11	4 3.07	.03	.11	<2	2.8
F9700		61 42	6	230 487	.3 <.3	29 24	12			2	<8	<2	<2	33	2.6	<3 <3	3	90		.029	8	41	.76	136	.15	<3 2.07	.03	.07	<2	1.5
F9725		34	5	407 92	<.3 <.3	32	16	458 3		3	<8	<2	<2 -2	31	2.0	<3	<3	101			6	50	.91	148	.15	5 2.43		.07	<2	1.1
19125	'	34	2	92	د.>	32	10	476 3		4	<8	<2	<2	21	.,	<3	<2	101	.42	.086	D	50	.91	140	. 15	5 2.45	.05	.09	~2	1.1
· F9750	1	40	<3	81	<.3	25	16	525 3	5.56	3	<8	<2	<2	32	.3	<3	<3	100	.45	.058	5	36	.87	141	. 13	<3 2.67	.02	.10	<2	3.3
F9775	<1	50	6	98	.3	20	15	592 3		5	<8	<2	<2	22	.4	<3	<3	95		.086	6	32	.85	146	.14	3 3.03		.08	<2	1.5
F9800	3	161	6	81	.8	41	13	1394 3	5.53	9	<8	<2	<2	77	.8	<3	<3	78	1.52		18	43	.68	344	.09	<3 3.80		.11	<2	2.9
F9825	1	51	3	95	<.3	35	19	828 4		10	<8	<2	2	55	.5	<3	<3	109		.107	8		1.30		.20	3 2.92		.29	<2	1.3
F9850	1	29	5	62	<.3	18	12	481 2		4	<8	<2	<2	27	.3	<3	<3	86		.068	5	31	.70	94	.10	3 1.96		.08	<2	3.3
	} .		-							•	•	-					-				-	- ·					•		-	
F9875	1	33	5	39	<.3	17	11	415 3	5.12	4	<8	<2	<2	41	<.2	<3	<3	102	.62	.065	5	39	.93	103	.19	4 1.70	.04	.18	<2	16.8
RE F9875	1	32	<3	39	<.3	16	11	409 3		5	<8	<2	<2	41	<.2	<3	<3	101		.064	5	39	.92	102	.19	3 1.69	.05	. 19	<2	7.5
F9900	2	43	4	76	<.3	18	13	493 3		4	<8	<2	<2	44	.5	<3	<3	86		.045	7	31	.89	146	.14	3 2.33	-	. 16	<2	15.4
F9925	2	40	3	99	<.3	18	13	385 3		6	<8	<2	<2	15	3	<3	<3	86		.120	Ś	29	.63	116	.13	<3 3.12		.06	<2	1.8
F9950	3	40	10	117	.3	23	14	424 3		6	<8	<2	<2	22	.6	<3	<3	88		.050	5	33	.65	136	.13	3 3.09	.02	.07	<2	1.2
	, [,]						.4	464 2			-0		- 44							- 050				1.50		2 3.07				
F9975	2	62	7	75	<.3	24	14	462 3	5.30	6	<8	<2	2	20	.3	<3	<3	88	.26	.073	5	34	.82	274	.14	4 3.15	.02	.08	<2	3.7
F10000	5	59	3	82	<.3	29	17	758 3		10	<8	<2	2	20	.4	<3	<3	85		.124	8	38	.81	150	.13	4 3.25	.02	.07	<2	3.5
STANDARD DS2	15	126	34	157	.3	35	11	824 3		57	18	<2	4		10.5	12	10	73		.089	16	158	.59	151	.09	4 1.66		. 15		194.1

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

i

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

FA

ACME ANA. (ISO AAA					RIES Co.		ο.	1704	G	E. H EOCI Hay S Aus	iem] /eb/	(CAI	נג ג <u>ו</u>	V AL I Fild	YSI: e #	IVER S CI AO(6R8	SRT]	(Fi 75					(604)25	3-31	58. P	AX ((504		-171 A /	6 A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppon	o3 ppm	Mra ppm	Fe %	As ppm	U ppm	Au ppm	⊺հ ppm	Sr ppm	Cd ppm	sb ppm	B i ppm	V ppm	Ca X	р Х	1.a ppm	Cr ppm	Mg X	Ва ррп	Ti X	B ppm	Al %	Na X	K X	W ppm	Au* ppb
SK-02	3	49	179	53	4.2	8	12	473	2.93	3	<8	<2	<2	80	.5	3	5		2.06		1	21	.60	79	. 13	<3 2		.22	.23	_	14.9
SK-24	607	4845	5	200	29.5	14	41	711	9.67	6	<8	<2	<2	14	3.3	<3	<3	299		.041	1	17	.71	15	.13		.18	.05	.04		177.4
SK-25		1754	<3		22.4	11	35		6.94	<2	<8	<2	<2	73	4.5	<3	<3		3.36		2		1.02	47	.23		.04		- 13	. –	158.0
\$K-26	1579		<3		26.2	17	54		8.32	<2	<8	<2	<2	43	4.3	<3	<3			.051	1	12	.89	18	. 15		.71	.06	.07	_	176.7
SK-27	7	930	7	57	1.5	10	50	798	9.41	23	<8	<2	<2	100	.4	7	<3	179	3.66	.051	1	17	.55	69	.17	84	.97	.24	.31	21	5.3
SK-28	8	22	<3	31	<.3	4	1	316	1.40	<2	<8	<2	<2	7	<.2	3	<3	3	. 18	.036	4	11	.32	26	.05	<3	.83	.08	.26	2	2.6
20711	135	2607	5	113	17.0	3	18	634	5.52	6	<8	<2	<5	34	3.6	<3	<3	76	1.56	.089	3	12	.79	32	.22	<3 2	.02	. 14	.13	171	91.1
20712	28	116	7	- 96	.5	10	27	816	7.66	5	<8	<2	<2	46	<.2	6	<3	300	1.91	.097	3	12	1.45	230	.37	63	.62	.36	1.00	3	12.0
RE 20712	30	118	6	- 98	.4	11	28	842	7.83	6	<8	<2	<2	47	.2	<3	<3	306	1.95	.098	3	13	1.50	242	.39	53	.72	.36	1.01	3	3.5
STANDARD C3/DS2	26	61	37	163	5.4	34	11	741	3.31	56	_23	3	18	27	22.8	15	21	77	.55	.088	17	157	.55	146	.09	23 1	.75	.03	.16	15	220.6

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, H = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED:

ICAL LABORATORIES LTD. ACME AN (ISO 1002 Accredited Co.)

852 E. HASTINGS ST. V OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) -53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Data

Hayes, T. File # A003467 1704 - 555 Austin Ave, Coquitiam BC V3K 6R8 Submitted by: Ted Hayes

SAMPLE#	Mo	նո	Pb	Zn	٨g	Ni	Co	Mri	Fe	As	U	Au	Th	Sr	Cđ	SÞ	Bi	v	Ca	₽	La	Сr	Mg	8a	Ti	B	AL	Na	K	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		*	ppm	ppm	%	ррп	%	ppm	7	7	×	ppm	ppb
SK-20	51	2622	8	63	16.4	20	366	541	26.29	49	<8	<2	<2	10	2.2	<3	9	64	.34	.040	2	14	.64	8	.06	<3 1	1.63	.02	.02	34	327.8
SK-92	16	17	4	53	<.3	5	3	585	1.75	<2	<8	<2	8	87	.3	<3	ও	11	1.55	.067	23	14	.52	59	.01	<3	.66	.07	.35	5	2.8
SK-95A	59	4560	20	30	20.7	9	306	486	28.76	11	<8	<2	<2	18	2.3	<3	61	30	.82	.001	6	16	.24	8<	.01	3	.26	.01	.06	57	224.6
SK-95B	48	39686	15	93	130.2	8	229	2096	13.98	15	11	3	<2	66	17.5	4	43	88	5.67	.001	8	13	.54	9<	.01	<3	.65	.01	.03	119	972.2
SK-96	12	5743	18874	3176	125.4	10	7	1847	5.48	1259	<8	49	<2	11	68.4	293	107	2	.51	.004	2	24	.05	4<	.01	<3	.03	<.01	.04	14	50828.8
200819	37	5431	83	231	14.7	34	123	1822	10.92	23	13	<2	<2	43	7.8	<3	<3	68	3.69	.240	2	45	1.47	28	. 15	<3 2	2.18	.01	.02	6	242.0
935-325-28	497	197	4	59	<.3	7	18	981	4.47	4	<8	<2	<2	52	.2	<3	<3	159	3.77	.114	3	3	1.75	358	.10	<3 4	4.16	.08	.96	2	7.6
935-328-31	206	262	7	63	.3	8	26	1039	5.30	2	<8	<2	<2	51	.4	<3	4	153	3.82	.096	3	7	1.73	320	.13	44	4.06	.09	.98	3	4.5
935-331-34	182	87	6	76	<.3	12	28	1229	6.68	4	<8	<2	<2	57	.4	<3	<3	552	4.20	.060	2	17	2.19	327	.16	<3 4	4.75	.14	1.17	3	2.0
RE 935-331-34	177	90	<3	75	<.3	12	27	1217	6.60	3	<8	<2	<2	57	.4	<3	4	223	4.18	.059	2	19	2.16	324	.16	54	.74	.14	1.16	3	2.2
STANDARD C3/DS2	27	65	37	165	5.3	40	12	787	3.46	60	22	<2	21	30	23.6	16	23	78	.59	.097	19	170	.63	152	.09	25 1	1.81	.04	.18	15	194.0

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1716 PHONE (604) 253-3158 FAX (604). 852 E. HASTINGS ST. VANLOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE File # A002514 Hayes, T. 1704 - 555 Austin Ave, Coquitian BC V3K 6R8 Submitted by: T. Hayes Mg Ba Τi В AL Na κ ¥. Au* SAMPLE# Cu Pb Zn Ni Co Mn Fe As U Au Th S٢ Cđ Sb Bi Са P La Cr Mo Ag % x x noq ppb x * ppm ppn % x PDM ppm DDU1 ppm ppm ppm ppm ppm ppm ppm ppm ppm x ppm ppm ppm ppm ppm ppm ppm 16 1.33 167 .21 4 3.49 .36 .49 <2 163.3 SK-33 <2 82 1.9 <3 <3 140 1.80 .070 <1 370 4245 4 110 12.1 9 29 532 4.21 <2 <8 <2 5 145.9 9 1.03 .17 6 1.88 .15 .23 57 4898 114 1.15 .100 <1 54 SK-37 <3 96 11.2 1 24 624 7.35 7 <8 <2 <2 41 1.1 3 4 2 103.0 5 .81 .01 .04 SK-38 15 492 <3 21 10.3 50 199 9.67 <8 <2 <2 15 .3 <3 3 122 .38 .033 <1 12 .26 13 .21 8 105 <2 29 .2 <3 <3 30 .89 .100 7.25 38 .05 6 1.68 .31 .29 <2 2.4 SK-44 <2 4 3 111 4 22 <.3 2 7 165 2.44 <2 <8 <2 5 4.67 .38 .03 2.3 <2 <2 140 .9 <3 7 43 3.31 .018 <1 44 .53 16 .08 .8 SK-45 3 1257 11 45 91 105 299 7.38 10 <8 4 1.33 .14 .38 2 .2 SK-48 9 <2 53 <.2 <3 <3 65 .80 .094 8 .71 78 .20 - 39 <3 31 3 407 4.03 2 <8 <2 1 1 <.3 .25 <3 1.34 .09 .20 2 68.8 .2 98 .95 .035 16 .40 44 37 5.7 <2 <2 31 <3 3 <1 SK-53 332 990 <3 7 19 286 6.24 <2 <8 . 14 <2 41.7 9 <3 2.24 <.01 <.01 20713 62 1809 <3 71 4.2 96 1691 8.67 15 <8 <2 2 40 1.6 <3 7 76 4.79 .103 <1 13 1.56 6 <3 62 3.93 .088 <1 8.98 7.15 <3 1.48 .01 <.01 23 44.4 20714 43 <2 <2 34 .8 4 45 1185 <3 2.4 3 23 985 5.55 3 <8 21 35.1 7.15 4 1.49 .01 <.01 34 <3 60 3.94 .088 11 .98 43 2 <8 <2 <2 .8 <3 <1 RE 20714 46 1183 <3 2.5 23 983 5.53 4 85 .63 .097 18 175 .65 162 .09 28 1.95 .04 .17 17 196.7 24 STANDARD C3/DS2 27 67 37 166 6.0 38 13 825 3.63 62 17 4 21 31 25.2 16 GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPN; MO, CO, CD. SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE REPORT MAILED: Hug 2/00 DATE RECEIVED: JUL 24 2000

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

. .

.

,

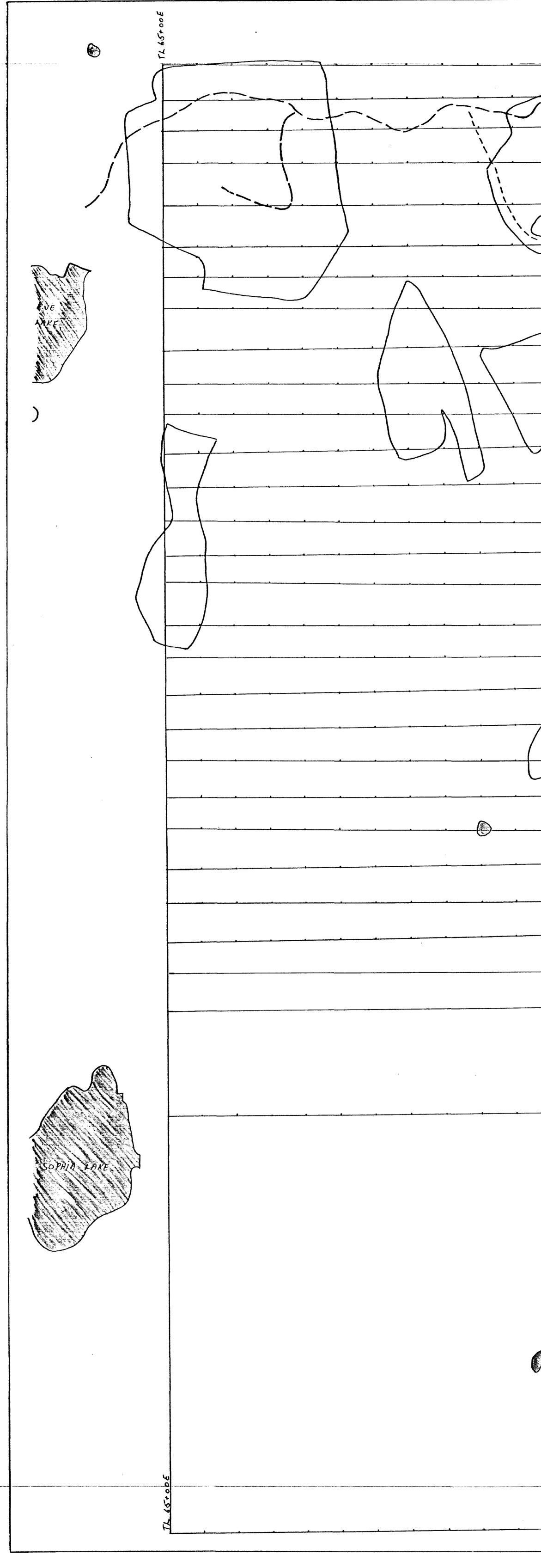
ACMB ANAL (ISO							rD.	170		eoci	IEM] /eb	ICAI T	L AI	VALY File	e #	8 CI A0(SRT:	CFIC	'TAT	2		UNE	1003			58 1	- 41-4 - 5			-171 A /	£
SAMPLE#	Мо ррл	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	nM nqg	Fe X	As ppm	U ppm	uA Inqq	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na %	к %	W ppm	Au* ppb
200815	4	- 8	3	43	<.3	5	6	433	2.11	- <2	<8	<2	5	30	<.2	<3	<3	20	.61	.069	18	16	.54	121	.05	4	1.06	.06	.52	2	.9
200816	7	8	5	54	<.3	3	5	348	2.25	2	<8	<2	5	52	<.2	<3	<3	26		.074	10	16	.84	45	.13	4		.14	.20	4	1.6
200817	32	3228	27		26.9	4	27		11.85	19	<8	<2	<2	36	2.3	<3	5		2.66		3	12	.60	17	.02		1.16	.02	. 14	250	102.6
200818	2	82		70	<.3	6		1195	2.80	3	<8	<2	2	39	<.2	6	<3		1.96		6	6	.51		<.01	6	.63	.02	.35	2	1.8
sK-55	2	257	<3	32	.4	5	17	524	5.93	6	<8	<2	<2	59	<.2	<3	<3	115	.78	.065	2	>	1.01	138	.23	<3	2.57	.25	.55	<2	1.6
sK-61	3	74	13	77	.5	9	19	922	5.73	37	<8	<2	<2	93	.3	3	<3	173	1.67	.113	5	20	1.29	148	. 15	6 4	4.17	.28	.70	<2	4.1
RE SK-61	3	74	10	75	.4	8	18	898	5.59	34	<8	<2	<2	92	.4	3	<3	170	1.63	.111	4	21	1.25	147	.15	4	4.07	.28	.69	<2	4.8
TANDARD C3/DS2	28	68	40	170	5.8	39	12	835	3.64	60	21	4	22	-	24.7	19	24				18	173	.64	157	.08	25		.04	.18	14	191.3
STANDARD G-2	2	4	5	43	<.3	8	4	571	2.20	<2	<8	<2	4	82	<.2	<3	<3	41		.109	7	75	.63	252	.13		1.07	.10	.52	2	-

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; NO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

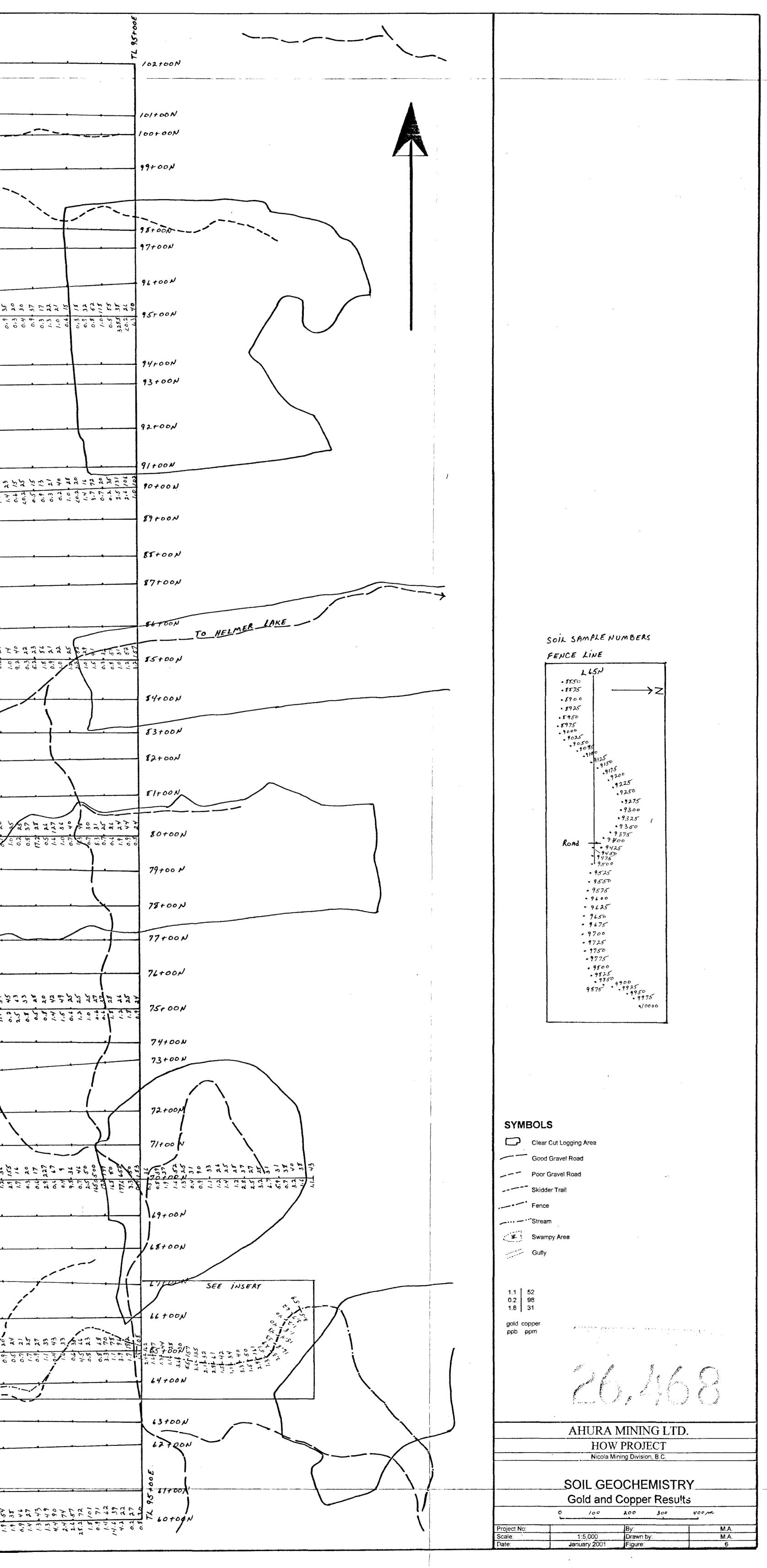
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

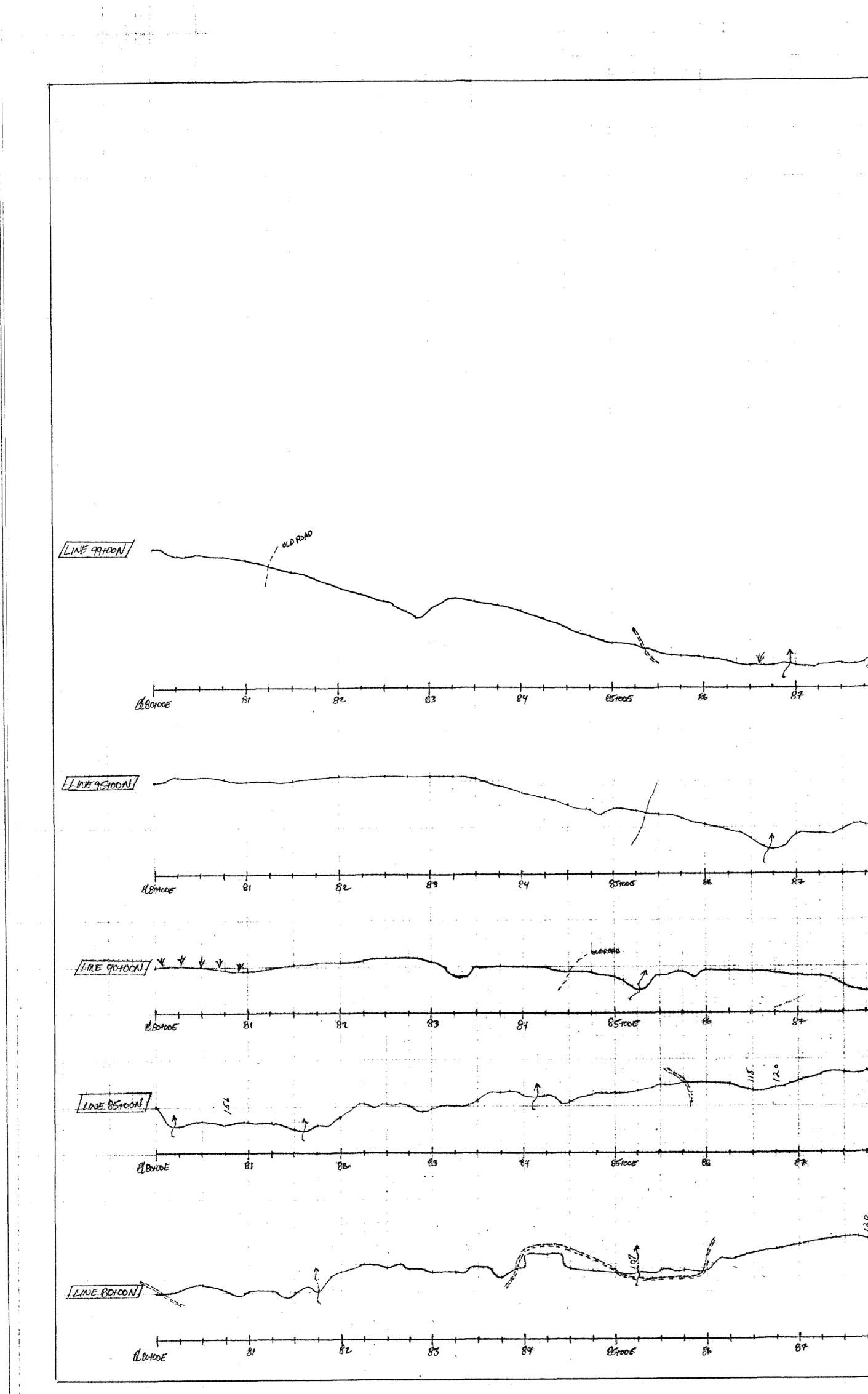
			- :			17	04 -	555					Fil Lam BC						y: Té	d Ha	yes							•		
SAMPLE#	1	Cu ppm	Pb ppm	Zn ppm	~	Ni ppm j		Mn ppm					ſh Տո շութթո		Sb ppm			Ca %		La ppm		-	Ba ppm				Na %	к %	W ppm	Au* ppb
200820	2	126	6	30	<.3	32	35	645	6.02	14	<8 <	<2 ·	<2 62	<.2	<3	<3	129 1	1.84	.079	4	53	1.89	38	.10	<3	3.19	.20	.13	z	5.6
200821	1		24261										<2 6									.03						.06		30993.2
SK-99	1	273	175	44	.4			418					<2 35						.100			.36						.03	3	36.4
SK-102 SK-106	3	95 450	270 22	105 44	<.5 3.0								<2 45 ×2 57						.079			2.18					.13	.30	3	26.2 32.8
		420		~~	5.0	•		201	,																				•	
SK-109		1192	64	147	2.0			1023					<2 77						.127								.43		- 4	16.8
SK-110		156	16	95	.3			743					<2 27														.09	.13	- 4	7.2
SK-114	5	51	39	75		14							<2 137						.190			2.51						.93	2	6.2
SK-119	<1	3	3			27							<2 67									2.58						.11	3	2.2
RE SK-119	<1	3	4	31	د.>	27	29	556	4.95	5	<8 <	<2	<2 66	.2	<\$ _.	<5	115	1.57	.108	1	59	2,55	14	. 14	<5	2.80	.05	.10	2	1.6
CTANDARD 07 (002	1		70	165	55	70																								
UP AS - Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES.)0 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES.)0 PP	м.		200.8 C. Assay
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS - <u>Sa</u>	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мn,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES. 00 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мN,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES.)0 PP	м.		
GR UP AS Sa DATE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мN,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES.)0 PP	м.		
GR UP AS Sa TE RECEIVED	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi EP 15	.50 GM - AG, ENDED E: ROC nning 2000	I SAMP AU, FOR R K R15 <u>'RE'</u> DA1	LE LEA HG, W OCK AI O 60C are Ra FE R	ACHED = 100 ND COI eruns BPOR	WITH O PPI RE SA AU* 1 and CT M	H 3 M M; MO AMPLE BY AC <u>'RRE</u> IAIL	L 2-2 , CO, S IF ID LE ' are ED:	2-2 HC CD, CU PE EACHED Reje	CL-HNC SB, E 3 ZN A 0, ANA ect Re	03-H2 31, 1 AS > ALYZE	20 AT TH, U 1%, A E BY 1	95 DE(& B = G > 3(CP-MS)	i. C 2,00 PPM (10	FOR O PPI & All am)	ONE M; CL U > 1	HOUR, J, P8 1000	, DIL 3, ZN PPB	UTED , NI,	ТО ' , мN,	IO ML , as,	, ANA V, L	ALYSE _A, (ED 8Y CR =	ICP- 10,00	-ES.)0 PP	м.		

Data FA


· ••

	ORATORIES LTD.	852 E.	HASTINGS ST	r. V. V. Vyb	R BC V6A	1R6	PHONE	604)25	3-3158	FAX (6)	04) 753	-1716
(ISO y002 Accre	dited Co.)	GEOC	CHEMICAL A	NALYSIS (CERTIFIC	ATE						AA
**			ayes, T.									77
	<u></u>		tin Ave, Coquit						<u> </u>			
SAMPLE#	Mo Cu Pb Zn Ag ppm ppm ppm ppm ppm					а Р.La К. Хррл		Ba Ti ppm % p	BAL		*uA W ppm ppb	
935~54-57 935~106-108	14 885 37 83 .4 6 445 <3 78 <.3	11 42 982 7.	.91 8 <8 <2	<2 488 .7 <	3 6 196 4.74 3 7 232 5 03	4.076 1 3.067 2	9 1.03	94.19 134.21	7 5.77	.46 .45	3 2.9 4 1.7	
935-243.5-245.5	49 537 10 83 .7 68 1220 4 76 1.9	11 35 1010 7.	.44 <2 <8 <2	<2 119 .5 <	3 32494.35	5.074 2	12 1.47 10 1.74	85.29	7 5.93	.35 1.12	<2 5.5	
935-303.5-306.5 RE 935-303.5-306.5	68 1217 <3 76 1.9	8 62 1148 8.	.70 8 <8 <2 .63 7 <8 <2	< <u>2</u> 26 .1 < < <u>2</u> 26 .6 <	3 13 136 3.02	z .030 1	10 1.74					
GROUP 1D -	0.50 GM SAMPLE LEAC	HED WITH 3 ML 2-	-2-2 HCL-HN03-K2	20 AT 95 DEG. C	FOR ONE HOUR.	DILUTED	TO 10 ML.	ANALYSED	BY ICP-E	s.		
UPPER LIMI	ITS - AG, AU, HG, W =	100 PPM; MO, CO), CD, SB, BI, T	1H, U & B = 2,0	00 PPM; CU, PB	B, ZN, N1,						
- SAMPLE T	TYPE: CORE R150 60C	AU* BY ACID L	EACHED, ANALYZE	BY ICP-MS. (1								
			~		nt)						
ATE RECEIVED: SEP	18 2000 DATE REP	ORT MAILED:	Sept 28/0	D SIGNE	d by C. K	×	. TOYE, C	LEONG, J	. WANG; C	ERTIFIED	B.C. ASS	AYERS
			I - j	•		1	-					
			<i>,</i>			1						
			,			/						
						/						
						/						
						/						
						/						
						1						
						1						
						1						
						1						
						1						
						1						
						1						
						1						
						1						
				·		1						
				·								


All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

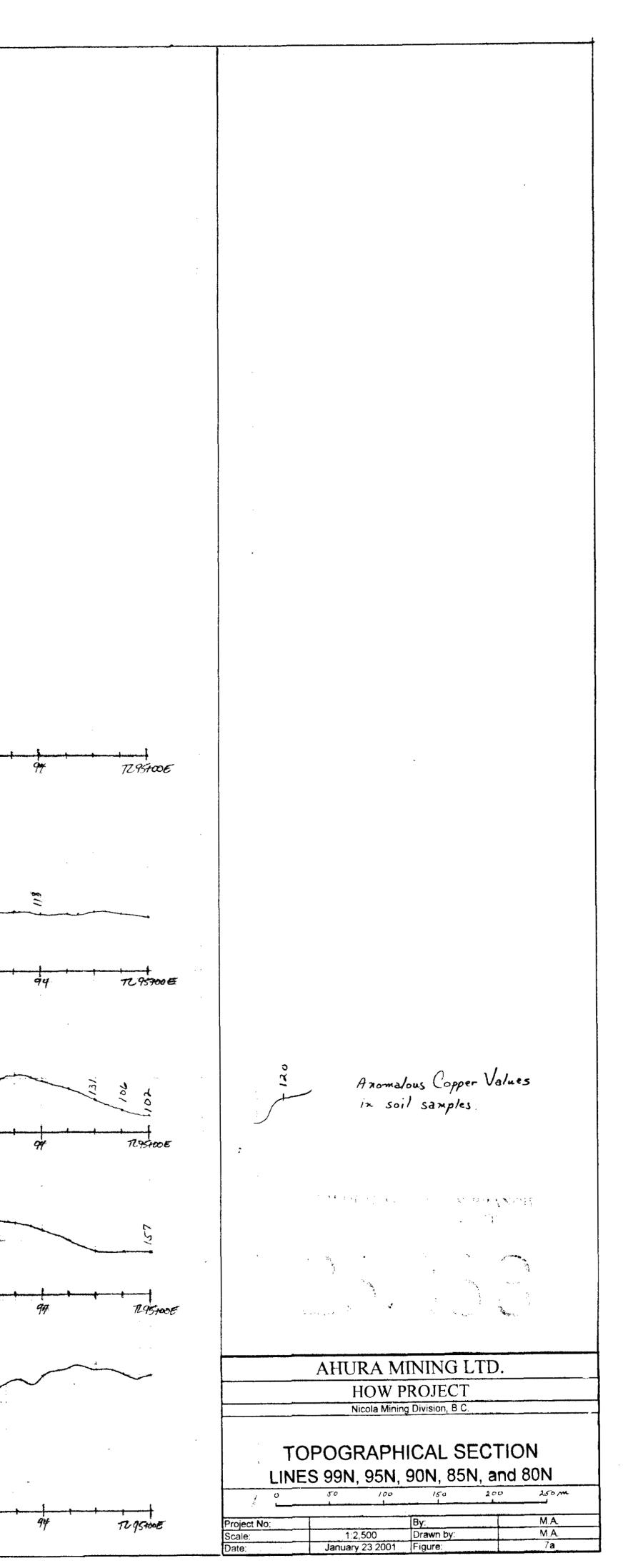

1

Þ

__ ~_ ~ 0.40 North File of the state of the 1----/

a construction of the second se

. . [


,

.

90HOOE 93

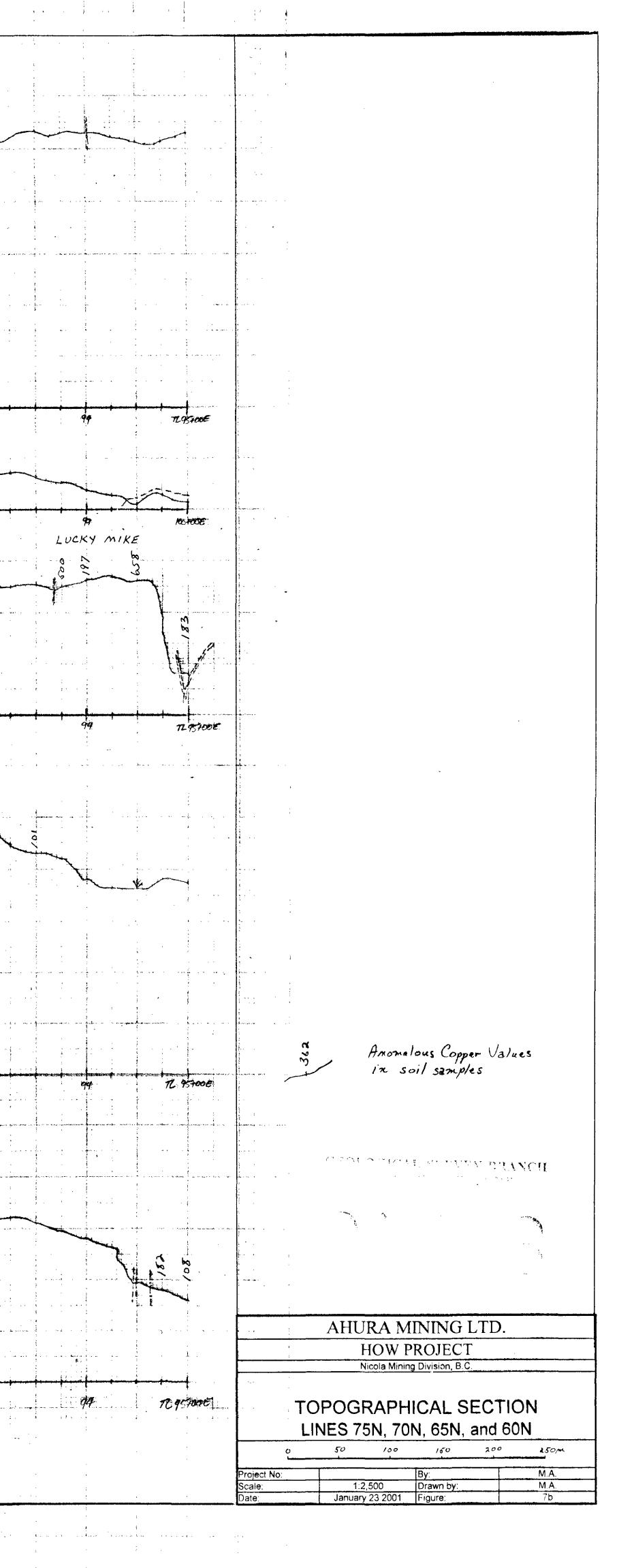
90700E

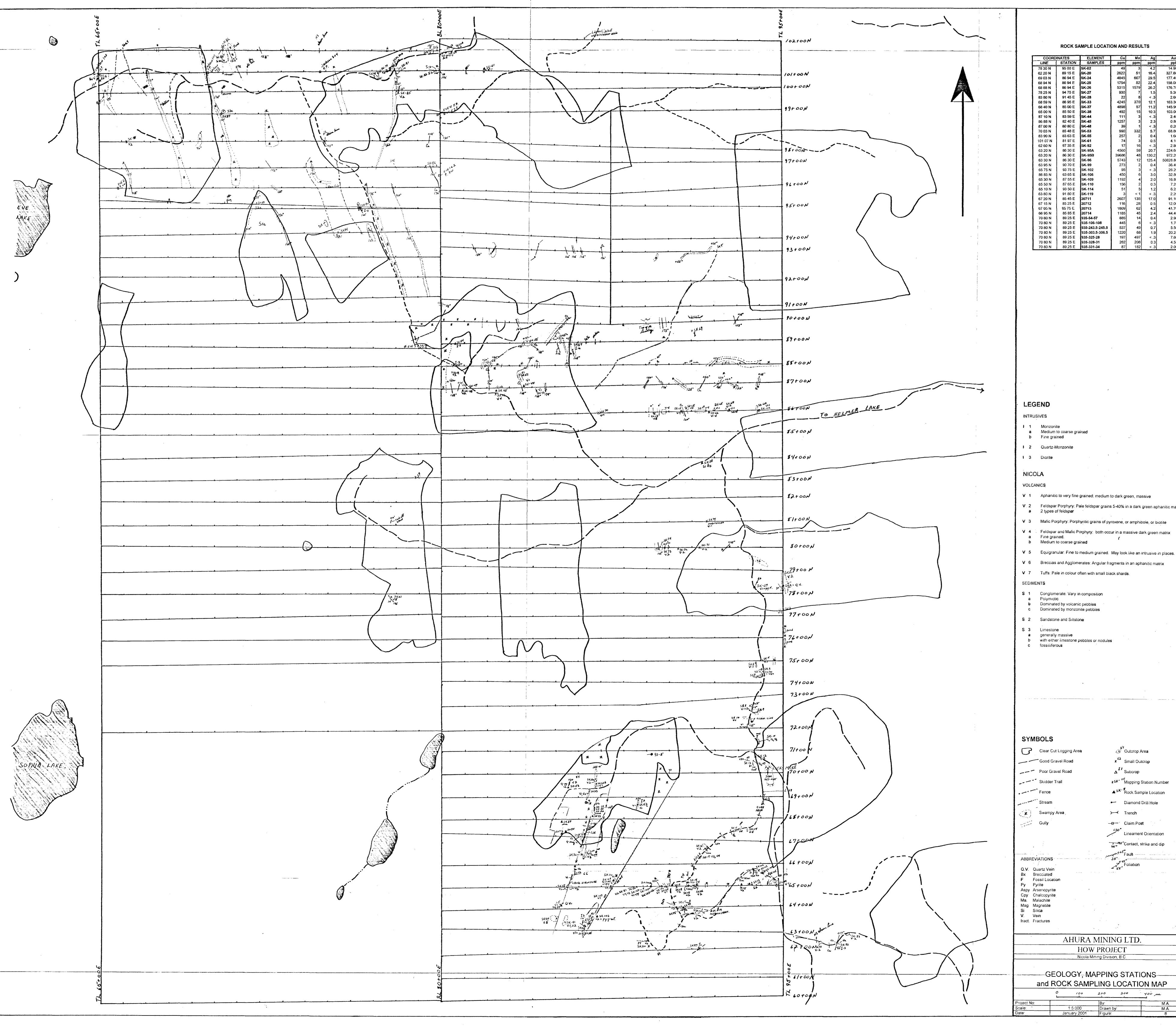
92 **4**2 hiaz.

			 A sec σ δ δ				
	* The DNA AND TO SERVE S SERVER S - Derivative (p. 1), user and the complexity of the DNA AND TO SERVER AND TO SERVE AND TO SERVER AND TO SER AND TO SERVER AND TO SERV						
					,		201
	RAUE 75100NJ						
			81	53		BSFicoet	
	A Borrook						
No stracts of a			- 1 - -				ۍ بې
				233			A second and a sec
	The forcent -						
	(proce	Na ser se alle ser ser ser ser ser ser ser ser ser se	82	83	84	857000	86
			· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·		4 4 4 4			
	TIME COTON						
	10, SOHOQC						80
				\$		131	
	[LINE 65700N]						
	£ 801006		62	63	Bata	errooet.	e e e e e e e e e e e e e e e e e e e
		1 è				· · · · · · · · · · · · · · · · · · ·	
	, ''''''''''''''''''''''''''''''''''''				:	1 - I Anno I - I - I Anno I - I Anno I - I	· · · · · · · · · · · · · · · · · · ·

i de de de • و د و ه ور و ۱ and the second process of the second s بالمصافحات أأمر للجار المحتور والجادر الرواد والإرار الراان and the second a and ere og som en er Allow the second and the second , 3 and the production production and the second s المؤاجد المالية المالية المحاد والمالية المراجع المالية · ; and the second s . 4.... ۰ L . . . , ı *.* 63 87-[LINE FOTOON] ¥ | and the second a grand commence and a set of the second را الجار الديارة لولمجار كالعمولية يستحلونها الراويونيس ا and a second 1 • يحصر حارجا الاج الانكي البيتي تفسي مستحديات أتصبح ساليت حالي and a second second • • 90 HODE 67.1 923 80 we had a farmer · ÷ • يحاله لحاجه الحادات . a una ser la companya da companya da companya da companya da ser estas da companya da ser estas de companya da .Қ ~9 <u>b</u>d." มและ - ระกะเน และสี่แนวระก با مولية ما ت والمرابق والمراجب والمريد ومنافعتهم مراجعهم ومناور والمستوعدون الميان مريسة بالعادية المراجع ا المراجع 901006 67 99. 73 , x 1 4 : ; . ١. 4 4 ing in a second se , generalise and a second consistence of the second s

4


. . .


4.1.1.1.1

.

11

the second se

ROCK SAMPLE LOCATION AND RESULTS

s	ELEMENT	Cu	Мо	Ag	Au*
TION	SAMPLES	ppm	ppm	ppm	ppb
00 E	SK-02	49	3	4.2	14.90
15 E	SK-20	2622	51	16.4	327.80
94 E	SK-24	4845	607	29.5	177.40
94 E	SK-25	1754	52	22.4	158.00
94 E	SK-26	5315	1579	26.2	176.70
75 E	SK-27	930	7	1.5	5.30
45 E	SK-28	22	8	< .3	2.60
95 E	SK-33	4245	370	12.1	163.30
00 E	SK-37	4898	57	11.2	145.90
50 E	SK-38	492	15	10.3	103.00
59 E	SK-44	111	3	< .3	2.40
40 E	SK-45	1257	3	2.3	0.80
80 E	SK-48	39	1	< .3	0.20
48 E	SK-53	990	332	5.7	68.80
63 E	SK-55	257	2	0.4	1.60
97 E	SK-61	74	3	0.5	4.10
35 E	SK-92	17	16	< .3	2.80
30 E	SK-95A	4560	59	20.7	224,60
30 E	SK-95B	39686	48	130.2	972.20
30 E	SK-96	5743	12	125.4	50828. 8 0
70 E	SK-99	273	2	0.4	36.40
75 E	SK-102	95	3	< .3	26.20
65 E	SK-106	450	6	3.0	32.80
55 E	SK-109	1192	4	2.0	16.80
65 E	SK-110	156	2	0.3	7.20
50 E	SK-114	51	5	1.2	6.20
80 E	SK-119	3	< 1	< .3	2.20
45 E	20711	2607	135	17.0	91.10
25 E	20712	116	28	0.5	12.00
75 E	20713	1809	62	4.2	41.70
85 E	20714	1185	45	2.4	44.40
25 E	935-54-57	885	14	0.4	2.90
25 E	935-106-108	445	6	< .3	1.70
25 E	935-243.5-245.5	537	49	0.7	5.50
25 E	935-303.5-306.5	1220	68	1.9	20.20
25 E	935-325-28	197	497	< .3	7.60
25 E	935-328-31	262	206	0.3	4.50
25 E	935-331-34	87	182	< .3	2.00

V 1 Aphanitic to very fine grained: medium to dark green, massive V 2 Feldspar Porphyry: Pale feldspar grains 5-40% in a dark green aphanitic matrix

V 3 Mafic Porphyry: Porphyritic grains of pyroxene, or amphibole, or biotite

V 5 Equigranular: Fine to medium grained. May look like an intrusive in places. V 6 Breccias and Agglomerates: Angular fragments in an aphanitic matrix V 7 Tuffs: Pale in colour often with small black shards.

VI ⊘s Outcrop Area x Small Outcrop ∆^{II} Subcrop xsk⁻ ^{III} Mapping Station Number ▲ SK- ^g Rock Sample Location Diamond Drill Hole → Trench 230 Lineament Orientation Fault -

Foliation

AHURA MINING LTD. HOW PROJECT Nicola Mining Division, B.C.

--GEOLOGY, MAPPING STATIONSand ROCK SAMPLING LOCATION MAP 100 200 300 400 m

	By:	M.A.
1:5.000	Drawn by:	M.A.
nuary 2001	Figure:	8