

e --

h---

b....

b.

ь

F - 1

ь.

.

- -

.

÷ -

*

- -

. .

÷

- ·

- -

.

e -

L

ι.

Deer Bay Property, Alberni M.D.

NTS: 092F/4, 092/F5

Lat: 49° 14′ Long: 125° 35′

Report By

Arne O. Birkeland, P. Eng.

Arnex Resources Ltd.

January 21, 2001

GEOLOGICAL SURVEY BRANCH

C:\My Documents\dbp\dbpassrpt2000.doc

TABLE OF CONTENTS

-

⊾ ,

р. ~.

p. --

۲. ۲.

.

P - - -

Ŀ.

۰. م

۴.

<u>ب</u>

• •

.

P -

.

.

•

.

• •

.

• •

•

. .

.

. . .

1. Summary	
2. Introduction	
2.1. General2.2. Property Tenure2.3. Location, Access, Physiography, Land	4
3. History	
4. Geology	
4.1. Regional Geology4.2. Property Geology4.3. Mineralization	
5. Rock Chip Sample Program	
5.1. Rock Chip Sample Results - Main She 5.2. Property Scale Rock Chip Sampling	owing Area 13
6. Magnetometer Survey	
6.1. Introduction6.2. Procedure6.3. Magnetometer Survey Results	
7. Recommendations	
8. Certificate of Qualification and Consent.	

TABLE OF FIGURES

Figure 1 : Property Location Map - British Columbia (1:2,00,000)	6
Figure 2 : Claim and Pan Soil Grid Location Map (1:31,680)	7
Figure 3 : Regional Geologic Map (1: 1,000,000)	. 10
Figure 4 : Rock Chip Sampling - Main Showing (1:150)	. 14
Figure 5 : Magnetometer Grid and Rock Geochemistry	. 18
Figure 7 : Magnetic Line Profiles	21
Figure 8 : Magnetic Coutour Map	22
Figure 9 : Magnetic Colour Coutour Map	.23

APPENDICIES

APPENDIX	A:	Statement	of Ex	penditures
----------	----	-----------	-------	------------

e -

b...

÷.,

۰.

۳ ۲

.

•

Υ.

ы.,

.

à. I

λ.

APPENDIX B: Analytical Procedures and Certificates - ALS Chemex Labs

APPENDIX C: Geochemical Data Sheets

APPENDIX D: Magnetometer Survey

APPENDIX E: Year 2000 Field Crew Daily Reports

Magnetometer Survey and Rock Chip Sampling Deer Bay Property, Alberni Mining Division

1. SUMMARY

.....

. 1940 - J

e 10

۰.

ι.

- -

ι.

.

μ.

Arnex Resources Ltd. conducted a grid magnetometer survey and rock chip geochemical exploration program on the Deer Bay Property during June to August, 2000. Twenty six rock chip samples were analyzed. Magnetometer readings were taken from approximately a 200 metre by 400 metre grid. SJ Geophysics of Delta BC processed the magnetic data. Three days of physical work was performed by rehabilitating the access trail to the Main Showing. The total cost of the year 2000 exploration program was \$16,485.

The Deer Bay Property lies on tidewater at the head of Tofino Inlet on west central Vancouver Island. An extensive logging road network provides cheap access to the area.

The property us underlain by West Coast Complex and metamorphosed Sicker group rocks. Massive sulphide mineralization averaging one to three metres in width is exposed over a strike length of 30 metres at the Main Showing. A second massive sulfide band and disseminated sulphide mineralization is exposed over a 10 metre thickness in the footwall of the Main Showing. Two adjacent trenches sampled during the year 2000 program returned values of 3.4% Cu, 0.7% Ni, 2.4 g/t Pt, 8,3 g/t Pd over 2.7 metres and 3.1% cu, 2.1% Ni, 1.6 g/t Pt, 4.8 g/t Pd over 2.5 metres. The Main Showing is hosted in a layered amphibolite thought to be related to a large gabbro sill complex that outcrops to the west of the Main Zone.

Rock chip sampling at the Main Showing demonstrates that near surface diamond drill targets are present that would test the width and grade of the zone down dip.

Rock chip sampling of gossanous outcrop and mineralized float boulders returned anomalous values from four other locations elsewhere on the property other than at the Main Showing. Additional work is warranted in these areas to attempt to discover additional showings similar to the Main Zone.

The magnetometer survey indicates a strong magnetic high exists to the west and northwest of the Main Zone Showing. It is interpreted that the high is due to an accumulation of magnetic Ni assemblage mineralization down dip from the Main Showing. Deeper drill targets are indicated. The magnetometer survey also indicates surface projections of the Main Zone on strike to the southeast.

A phased program of additional surface exploration work followed by diamond drilling is warranted.

2. INTRODUCTION

b....

ы.

.

۰.

٠

ь.

ι.

2.1. General

A 40 person-day field exploration program was carried out during the period June 25 to August 23, 2000. The fieldwork was conducted by a one to two-person crew (APPENDIX D, Field Crew Daily Reports). At the commencement of the program, six person-days of physical work were performed. The physical work consisted of trail rehabilitation by cutting underbrush and deadfall logs from the trail and building a log ladder at a 10 metre high cliff-band at approximately the 100 m elevation. The field exploration program consisted of conducting a grid magnetometer survey and representative rock chip sampling at the Main Showing and at target locations indicated by previously conducted soil geochemical and magnetometer geophysical surveys.

Three hundred and nineteen magnetometer readings were taken from an approximately 200 metre by 400 metre grid. Twenty six rock chip samples were analyzed from the Main Showing area and from other locations on the property. The rock chip samples were delivered by Arnex Resources Ltd. to ALS Chemex Labs in North Vancouver for processing and analysis (APPENDIX B, Analytical Procedures and Certificates). A total expenditure of \$16,485 was incurred as per APPENDIX A, Statement of Expenditures. Assessment work was filed on November 9, 2000 as Event Number 3157215. The work was not conducted under an Annual Work Approval Number as no surface disturbance was caused.

2.2. Property Tenure

The Deer Bay group consists of the Super 1,2 and Nick 1,2 Mineral claims that totals 22 units (Table 1, MEM Title Search by Owner, and Figure 2, Claim Location Map). The property is 100% owned by Arne Birkeland of North Vancouver and Peter Buckland of Boat Basin, B.C.

Table 1, Tenure, Deer Bay Property

2.3. Location, Access, Physiography, Land Status

The Deer Bay Property is located in the Alberni Mining Division 25 km ENE of Tofino near the head of Tofino inlet on the west central coast of Vancouver Island (Figure 1). The center of the property is located at approximately 49° 14' north latitude and 125° 35' east longitude in NTS 092F/4,5. The Main Showing is located on a steep timbered hillside 0.5 km north of Similar Island at an elevation of approximately 295 m.

Access is by logging road (70 km from Tofino via Kennedy Lake Bridge) or by boa. (30 km from Tofino). Access for the Year 2000 program was from Tofino by boat taking approximately one hour, then by approximately a one hour hike up the hillside on the rehabilitated trail

Steep incised drainages with rugged relief to approximately 800 metres (m) characterizes the physiography of the area. The northern portions of the claims have been logged in recent years, however, the Main Showing Area and magnetometer grid are covered by old growth forest. Climatic conditions are temperate.

The Deer Bay Property lies with lands classified as "Scenic Corridor" as dictated by the Clayquot Land Use Decision. Thus, the land status is designated as Special Management Zone (SMZ). The BC Ministry of Mines has issued an information brochure dated March 2000 dealing with mineral exploration and development on SMZs, which states in part the following:

Across British Columbia, lands outside of protected areas, including all SMZs, are open to mineral development, subject to applicable legislation. ... No new regulations apply for mineral exploration in SMZs. The MX Code is used consistently across all mineral lands in British Columbia.

3. HISTORY

.

ы.,

ь.

p. -

.

٠

r -

Exploration activity on the Deer Bay property dates back to the late 1890's when hand cobbed ore was produced from shafts and adits dug on small Au-quartz veins along Tofino Creek. Between 1953 and 1984 the property was explored for its skarn and porphyry Cu-Mo potential associated with an Island Intrusive Stock at the head of Tofino Bay.

In 1984, Cominco examined the Cu-Ni-PGE Main Showing and optioned the propert in 1985. Geologic mapping, soil sampling, limited geophysics and trenching and sampling at the Main Showing was carried out. Cominco concluded that "*PGE bearing Cu-Ni* mineralization may have been emplaced as an immiscible liquid at the same time of injection of the ultrabasic host." A report by Mason, July 1986 states: "While the

isolated outcrop (Main Showing) is only 30 m by 10 m, the associated rock types (altered ultramafics and anorthosite) and the Cu-Ni sulfide bands suggest that it is part of a much larger body... the property has both demonstrated grades and potential for significant tonnage." Additional work was recommended but was not carried out by Cominco and the property was returned to the vendor.

Reconnaissance geological mapping and geochemical surveys were conducted by Stag Explorations during 1988. Soil geochemistry was somewhat effective in delineating anomalous zones around the gabbro intrusion and at the Main Showing. The program also defined Cu-Ni-PGE anomalies elsewhere on the soil grid that coincide with soil anomalies detected by Cominco. In 1992, reconnaissance soil and moss mat stream sediment sampling along new road-cuts above the Main Showing detected anomalous Cu, Ni, Co, Au and PGM extending the prospective mineralized strike length up to 2 km beyond the areas previously explored.

Orientation soil and stream sediment sampling conducted in 1995 defined geochemical anomalies up-drainage from the Main Showing. These results confirm earlier reports of anomalies up-slope and indicate additional undiscovered mineralization is present. Petrographic examination of specimens of host rock from the Main Showing indicated that the mineralization is hosted in a zoned ultramafic intrusion complex and the occurrence was classified as belonging to the economically important Gabbroid Cu-Ni-Co deposit type.

Detailed mapping and engineering geology was carried out at the Main Showing in April of 1997. It was concluded that the massive sulphide band at the Main Showing is concordant with the foliation and the contact of the host amphibolite. The massive sulphides and footwall disseminated and stockwork zone strikes northwesterly and dips moderately to the southwest. The topography will allow two relatively convenient drill site locations on 15 metre sections lines. It was recommended that a fan of holes be drilled by a light-weight helicopter portable diamond drill on each section line to test the down-dip continuation of the mineralized zone that is exposed on surface.

A recent Debris Slide Channel was geologically mapped in 1997. The Debris Slide Channel is underlain by rocks belonging to the West Coast Crystalline Complex. In the area mapped, the lithology is dominated by layered gneissic rocks containing amphibolite layers, lenses and bands. Dark green chlorite rich bands and amphibolite dykes and sills are common within the gneissic rocks where they are in proximity to a large gabbro intrusion (a zoned ultramafic intrusive complex) to the west. The regional attitude of the foliated rocks is northwesterly striking and moderately southeasterly dipping.

4. GEOLOGY

4.1. Regional Geology

Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by Paleozoic and Mesozoic strata intruded by Jurassic "Island" Intrusions and by Tertiary "Catface" Intrusions (Figure 3, Tectonic Assemblage Map).

The Deer Bay Property is underlain by rocks of the West Coast Complex ("WC3") in the western and central portion of the claims and the Paleozoic "Sicker" Group to the east. The WC3 unit (Tectonic map unit Din) is a north trending diachronous belt of high-grade metamorphic rocks consisting of metamorphosed Paleozoic and Mesozoic strata and granitic to ultramafic intrusive complexes. The WC3 is interpreted to be partially remelted subduction plate assemblage that has been uplifted and unroofed along the west coast of Vancouver Island. The WC3 hosts deformed gabbroic intrusions interpreted to be layered meta-ultramafic intrusion complexes.

4.2. Property Geology

The mineralization at the Main Showing area on the Deer Bay Property hosted in amphibolite. The country rock comprises quartzo-feldspathic gneiss interlayered with amphibolite bands. Petrography suggests that the layered mafic and felsic rocks are in part metamorphosed igneous magmatic differentiated sill (and to a lesser degree, dyke) counterparts.

All rocks in this area are metamorphosed to greenschist to amphibolite grade. The regional foliation generally strikes northwest to westerly with moderate dips to the southeast. Local outcrop scale isoclinal folding is present and tectonic stretching often form augen shaped amphibole bodies. Local slickensides indicate some fault movement is present, but the persistence of units along strike suggests fault offsets are minor in nature.

Of particular significance is a body of hornblende gabbro outcropping 400 m southwest of the Main Showing (Figure 5). The gabbro intrusion is at least approximately 500 m by 100 m in size, with additional float being found considerably further to the north and south. The gabbro intrusion has been determined to be anomalous in the Ni-Cu-Co-PGE-Ag-Au and related suite elements from previous sampling.

4.3. Mineralization

At the Main Showing, the principle zone containing semi-massive to massive sulphide mineralization is well exposed discontinuously over approximately a 30 m strike length over widths averaging 1-3 m (Figure 4). The banded Ni and Cu rich sulphides are underlain by a 10 m thick exposure of disseminated footwall mineralization containing a second 0.5 to 1 m semi-massive sulphide band. Banded sulphide layers are concordant to foliation and appear to strike northwesterly and dip moderately southeasterly conforming to the regional structural trend.

The upper semi to massive sulphide zone consists of an upper and lower violarite – millerite – pyrite band containing an interlayered semi-massive to massive pyrite-chalcopyrite band. Individual bands are approximately 1 m thick. Sulfide textures within the Ni rich amphibolite hosted upper and lower bands often occur as sulphide intergrowths, suggestive as being meta-magmatic style mineralization. The Cu rich pyrite – chalcopyrite layer is more massive with Fe content commonly 10% - 25%.

Disseminated and vein (stockwork?) style pyrite - chalcopyrite and minor violarite – millerite mineralization is present in the footwall amphibolite (and minor gneiss) rocks. Footwall rocks contain black chlorite and mottled muscovite – talc? blebs. This texture may correlate to "Salt and Pepper Rock" footwall alteration as described in classical Ni - Cu – PGE magmatic deposits at Stillwater, Sudbury and elsewhere.

5. ROCK CHIP SAMPLE PROGRAM

5.1. Rock Chip Sample Results - Main Showing Area

Rock Chip Analytical Results, Rock Chip Assay Results and Weighted Assay Intervals are tabulated as Tables 2, 3 and 4 respectively. Analytical Procedures and Certificates are contained in APPENDIX B. Geochemical Data Sheets containing sample descriptions is appended as APPENDIX C.

Seventeen representative rock chip channel samples were taken at the Main Showing as illustrated in Figure 4. The best weighted interval from representative rock chip channeling from old hand-blasted trenching of the upper principle sulphide zone assayed 3.4% Cu, 0.7% Ni, 2.4 g/t Pt and 8.3 g/t Pd over a 2.7 m width. The next trench to the southeast returned 3.1% Cu, 2.1% Ni, 1.6 g/t Pt and 5.2 g/t Pd over 2.5 m. The furthest trench to the north carried 2.4% Ni, 1.8 g/t Pt and 4.8 g/t Pd from poorly exposed rubble. The furthest interval to the south on the faulted offset of the main band assayed 2.8% cu, 0.4% Ni, 0.9 ppb Pt and 3.4 ppb Pd from outcrop extending into the underbrush. The

Rock Chip Assay Results Main Showing Area

No.	Width	Pt	Pd	Cu	Ni	Au
	m	g/t	g/t	%	%	g/t
739101	1.2	1.82	4,76	0.14	2.42	0.12
739102	1.2	2 52	7 70	3.53	0.98	0.42
739103	1.0	3.36	12.75	4.37	0 50	0 54
739104	0.5	0.21	0.70	0.87	0.39	0.09
739105	1.0	0.98	2.80	1.79	0.48	0.21
739106	0.7	2.10	5.88	7.66	0.82	0.48
739107	0.8	1.96	7.70	0.86	5.10	0.30
739108	1.5	1.05	4 41	2.77	1.40	0.27
739109	1.0	0.84	3.08	1.03	1.79	0.12
739110	1.4	1.26	6.16	0.92	3.06	0.18
739111	0.4	<0.07	1.05	0.55	0.23	0.06
739112	0.4	0.14	0.84	0.15	0.33	<0.06
739113	0.4	0.70	5.74	7.03	0.28	0.78
739114	0.6	0.21	0.63	0.22	0.04	<0.03
739115	0.2	0.35	1.75	0.35	0.56	0.12
739116	0.9	0.98	3.78	3.35	0.34	2.46
739117	10	0.14	0.28	0.13	0.15	<0.03

Weighted Assay Intervals Main Showing Area

Table 1

14

No.	Width	Pt	Pd	Cu	Ni	Âu
	m	g/t	g/t	%	%	g/t
739102	1.2	2.52	7.70	3.53	0.98	Ú.42
739103	1.0	3.36	12.75	4.37	0.50	0.54
739104	0.5	0.21	0.70	0.87	0.39	0.09
Interval	2.7	2.40	8.27	3.35	0.69	0.40
739105	1.0	0.98	2.80	1.79	0.48	0.21
739106	0.7	2.10	5.88	7.66	0.82	0.48
739107	0.8	1.96	7.70	0.86	5.10	0.30
Interval	2.5	1.61	5.23	3.13	2.05	0.31
739108	1.5	1.05	4.41	2.77	1.40	0.27
739109	1.0	0.84	3.08	1.03	1.79	0.12
Interva l	2.5	0.97	3.88	2.07	1.56	0.21
739113	0.4	0.70	5.74	7.03	0.28	0.78
739114	0.6	0.21	0.63	0.22	0.04	<0.03
Interval	1.0	0.41	2.67	2.94	0.14	0.31
739115	0.2	0.35	1.75	0.35	0.56	0.12
739116	0.9	0.98	3.78	3.35	0.34	2.46
nterval	1.1	0.87	3.41	2.80	0.38	2.03

Arnex Resources Ltd. Deer Bay Property **Rock Chip Sampling Main Showing** MD: Alberni NTS: 092F/4,5 Scale: 1: 150 Date: Jan, 2001 Compiled by A O Birkeland, PEng

Figure 4

Table 2

μ.

. .

٣

 Rock Chip Analytical 	Results - Selected Elements
Deer Bay Property	

Zn	TI	Pb	Ni	Mn	Mg	Fe	Сu	Cr	Co	Ba	As	Ag	Au	SAMPLE
ррт	%	ppm	ррт	ppm	%	%	ppm	ррл	ppm	ppm	ppm	mgg	dqq	DESCRIPTION
35	0.04	<5	26400	1200	3.67	19.55	1285	90	1335	60	30	<1	105	739101
35	0.02	<5	11030	350	1.23	24	36500	510	1070	20	80	7	490	739102
30	0.05	<5	5330	370	2 13	20.4	44500	360	1330	<20	90	Q	535	739103
20	0.06	<5	4230	1870	5.39	18.3	9000	10	115	20	<1C	1	90	739104
25	0.12	5	5020	360	4.05	10.45	18460	630	345	<20	<10	4	200	739105
20	0.08	Ś	8720	290	2.92	20.8	>50000	580	585	<20	<18	14	550	739106
70	0.04	<5	>50000	580	2.44	24 3	8810	330	1450	<20	<10	3	320	739107
105	0.04	<5	15820	270	2.37	11.7	28700	430	38C	120	:0	5	265	739108
140	C 07	<5	20600	320	3.5	12.5	10760	570	560	<2C	30	1	1.5C	739109
65	0.06	<5	3480G	590	1.02	21.7	9370	70	580	<20	24G	2	370	739110
30	0.05	4	2320	355	2.35	4.94	5550	289	104	<10	<2	1,4	0.06	739111
46	0.05	2	3290	635	2.97	64	1515	17	95	10	<2	1	<0.06	739112
218	C 03	2	2210	540	1.36	>15.00	>10000	65	225	<10	38	14	0.76	739113
42	0.09	<2	426	465	1.39	4.53	2220	117	45	<10	2	14	<0.03	739114
30	0.36	10	5620	585	C 98	>15.00	3540	23	141	<1C	32	1.4	C 12	739115
114	0.04	8	3370	295	0.51	14.85	>10000	35	289	<10	162	7.2	2.46	739116
42	0.12	2	1515	510	0.97	4.74	1080	18	23	10	2	0.2	<0.03	739117
18	0.04	<2	25	205	0.43	4 41	583	23	5	<10	2	0.4	< 0.03	739116
20	0.03	2	ā	315	0.44	12.7	170	48	13	20	105	16	3.48	739119
46	<0.01	<2	2	2800	0.18	5.62	91	5	21	50	2	0.2	0.06	739120
72	0.05	2	ã	625	1 13	4 4 9	87	44	16	40	<2	<0.2	<0.06	739121
3.6	0.14	2	ž	465	139	5.27	74	13	19	<10	<2	<0.2	<0.06	739122
148	0.01	2	ŝ	6170	0.21	6.2	22	9	13	130	14	0.6	<0.03	739123
16	0.03	,	5	415	0.21	10.15	250	45	14	40	22	0.6	0.36	739124
20	0.05	<2	38	340	0.49	6.69	381	57	5	10	4	0.4	0.03	739125
18	2.03	2	5	715	0.25	14,15	382	42	18	30	268	1.2	0.99	739126

Table 3

Rock Chip Assay Results - Selected Elements Deer Bay Property - Main Showing Area

SAMPLE	Au	Pt	Pd	Rh	Cu	Ni	Co	S	Fe	As	Pb	Zn
DESCRIPTION	g/tonne	g/tonne	g/tonne	g/tonne	%	%	%	%	<u>~%</u>	%	%	%
739101	0,12	1.82	4.76	0.12	0 135	2.42	0.13	14.7	19.8	0.01	<0.02	<0.01
739102	0,42	2.52	7.7	0.12	3.53	0.98	0.098	18.8	25.1	<0.01	<0.02	<0.01
739103	0.54	3.36	12 75	0.18	4 37	0.5	0.126	26.1	22.2	<0.01	<0.02	<0.01
739104	0.09	0.21	0.7	<0.03	0.87	0,385	0.012	4.66	18 1	<0.01	<0.02	<0.01
739105	0.21	0.98	2.8	0.06	1.79	0.475	0.032	6.23	13	<0.01	<0.02	<0.01
739106	0.48	2.1	5.88	0.18 (7	2.69) 7.66	0.815	0.056	18 1	22.5	<0.01	<0.02	<0.01
739107	0.3	1.96	77	0.18	0.855	5.1	0.138	25.3	24.7	<0.01	<0.02	0.01
739108	C.27	1.05	4.41	0.12	2.77	1.4	0.034	9.42	13	<0.01	<0.02	0.01
739109	Q 12	0.84	3.08	0.06	1.03	1.79	0.05	8.85	14.6	<0.01	<0.82	0.01
739110	0.18	1.26	6.16	0.06	0.915	3 06	0.056	16.2	22.9	0.02	<0.02	0.01
739111	0.06	<0.07	1.05	<0.03								
739112	<0.06	0.14	0.84	<0.06				+ *				
739113	078	0.7	5 74	<c 06<="" td=""><td>7.03</td><td>0.28</td><td>0.028</td><td>21.7</td><td>23.1</td><td><0.01</td><td><0.02</td><td>0.03</td></c>	7.03	0.28	0.028	21.7	23.1	<0.01	<0.02	0.03
739114	<0.03	0.21	0.63	<0.03	·							
739115	0.12	035	1.75	< 0.03								
739116	2.46	0.98	3.78	0.06	3.35							
739117	<0.03	0.14	0.28	<0.03	0.125	0.15	0.002	0.69	5.4	<0.01	<0.02	< 0.01
739118	<0.03	<0.07	<0.07	<0.03							·	
739119	3.48	<0.07	<0.07	< 0.03			-					
739120	0.06	<0.07	<0.07	<0.03	0.015	<0.005	0.008	<0.01	15.7	<0.01	<0.02	0.01
739121	<0:06	<0.14	<0.14	<0.06								
739122	<0.06	<0.14	<0.14	<0.06							a	
739123	<0.03	< 0.07	<c.07< td=""><td><0.03</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c.07<>	<0.03								
739124	0.36	<0.07	< 9.07	<0.03	0.035	<0.005	0.002	9.06	12	<0.01	<0.02	< 0.01
739125	0.03	<0.07	<0.07	<0.03						- art. art.		
739126	0.99	<0.07	<0.07	<0.03	0 045	<0.005	<0.002	11.9	16.2	0.01	<0.02	<0.01

Table 4

L.

L.,

Weighted Assay Intervals - Selected Elements Deer Bay Property - Main Showing Area

No.	Width	Pt	Pd	Cu	Ni	Au	Pt	Pd	Cu	Ni	Au
	<u> </u>	g/t	g/t	%	%	g/t	mxg	mxg	mxg	mxg	mxg
											_
739102	1.2	2.52	7.70	3.53	0.98	0.42	3.02	9.24	4.24	1.18	0 50
739103	1.0	3.36	12.75	4.37	0.50	0.54	3.36	12.75	4.37	0.50	Ø.54
739104	C.5	0.21	0.70	0.87	0.39	0.09	0.11	0.35	0.44	0.19	0.05
interval	2.7	2.40	8.27	3.35	0.69	0.40	6.49	22.34	9.04	1.87	1.09
739105	1.0	0.98	2,80	1.79	0.48	0.21	0.98	2.80	1.79	0.48	0.21
739106	0.7	2.10	5.88	7.66	0.82	0.48	1.47	4.12	5 36	0.57	0.34
739107	0.8	1.96	7.70	0.86	5.10	0.30	1.57	6.16	0.68	4.08	0.24
Interval	2.5	1.61	5.23	3.13	2.05	0.31	4.02	13.08	7.84	5.13	0.79
739108	1,5	1.05	4.41	2.77	1.40	0.27	1.58	6.62	4.16	2.10	0.41
739109	1.0	0.84	3.08	1.03	1.79	0.12	0.84	3.08	1.03	1.79	0.12
Interval	2.5	0.97	3.88	2.07	1.56	0.21	2.42	9.70	5.19	3.89	0.53
739113	0.4	0.70	5.74	7.03	0.28	0.78	0.28	2.30	2.81	0.11	0.31
739114	0.6	0.21	0.63	0.22	0.04	<0.03	0.13	0.38	D.13	0.02	0.00
intervai	1.0	0.41	2.67	2.94	0.14	0.31	0.41	2.67	2.94	0.14	0.31
739115	0.2	0.35	1.75	0.35	0.35	0.12	0.07	0.35	0.07	0.07	0.02
739116	0.9	0.98	3.78	3.35	0.35	2.46	0.88	3.40	3.02	0.32	2.21
Interval	1.1	0.87	3.41	2.80	0.35	2.03	0.95	3.75	3.09	0.39	2.24

results from sampling from the north and south trenches indicate the Main Zone is "open" extending into the bush above and below the outcrop showing.

The best interval from the pyrite – chalcopyrite footwall sulphide layer 5 m below the upper main zone assayed 2.9 % Cu, 0.14% Ni, 0.4 g/t Pt and 2.7 g/t Pd over 1.0 m.

Previous sampling (Birkeland, 1997) of disseminated and vein-stockwork sulphide mineralization from the footwall altered amphibolite host rock returned values of up to 2.6% Cu, 1380 ppb Pt and 5270 ppb Pt over 0.5 m. Sampling (Miller-Tait, 1998) of altered chlorite – muscovite – talc? footwall amphibolite containing relatively minor amounts of visible sulphides has returned values of up to 6350 ppm Cu, 1920 ppm Ni, 110 ppb Pt and 5170 ppb Pd over 2.0 m demonstrating PGE values are also present in the footwall even in areas of relatively low sulphide content.

5.2. Property Scale Rock Chip Sampling

Thirty five rock chip samples were taken from various locations around the magnetometer grid on the property other than those taken at the Main Showing area. Most rocks were cut and all were examined by binocular microscope. Only nine samples had sufficient sulphides or alteration to warrant assaying. Analytical and Assay results for selected elements for the nine samples analyzed are contained in Tables 2 and 3. Analytical Procedures and Certificates are contained in Appendix B. Results are plotted as Figure 5.

Pyrite and disseminated chalcopyrite occur in a gossanous outcrop exposure at 1150N, 1380W. Sample number 739118 from a 1.4 m channel sample contained 582 ppm Cu and elevated (25ppm) Ni. The mineralization is hosted in a green and gray meta-intrusive sill. An angular float boulder approximately 20 m downhill contained a massive pyrite band 3 cm in thickness. The pyrite is hosted in a mafic and felsic layered rock similar to that at 739118. Sample 739120 from the float boulder ran 91 ppm Cu. Based on the projection of a magnetic feature trending from the Main Showing area, and the occurrence of sulphide mineralization in host rocks similar to the Main Showing, another mineralized showing area is suspected to exist in this area. Detailed geologic mapping and additional rock chip sampling in this area is warranted.

Disseminated pyrite (5-10%) was found hosted in altered diorite at sample location 739119 at 1110N, 1850W. The pyrite occurs as coarse euhedral cubes and is probably recrystalized. The diorite was found to contain 170 ppm Cu, 3.5 ppb Au and 1.6 ppm Ag. The diorite is a phase of the gabbro sill complex that outcrops west of the Main Zone.

Sample number 739123 is from a sub-angular float boulder found approximate 50 m up slope from 739119. Rod shaped subheudral manganese crystal intergrowths are contained in massive ankerite. Sample 739123 contained 6170 ppm Mn and is considered to be a contact metamorphosed skarn occurrence at the eastern contact of the gabbro. Sample 739121 also comes from the eastern contact of the Gabbro and is

Rock Chip Analytical Results

SAMPLE	Pt g/t	Pd g/t	Rh g/t	Cu ppm	Ni ppm	Co ppm	Au ppb	Ag ppm	
739118 739119 739120 739121 739122 739123 739123 739124 739125 739126	<0.07 <0.07 <0.14 <0.14 <0.07 <0.07 <0.07 <0.07	<0.07 <0.07 <0.14 <0.14 <0.07 <0.07 <0.07 <0.07 <0.07	<0.03 <0.03 <0.06 <0.06 <0.03 <0.03 <0.03 <0.03	583 170 91 67 74 22 250 381 382	25 8 9 3 6 5 38 5	5 13 21 16 19 13 14 5 18	<0.03 3.48 0.06 <0.06 <0.03 0.36 0.03 0.99	0.4 1.6 0.2 <0.2 <0.2 0.6 0.6 0.4 1.2	Arnex Resources Ltd. Deer Bay Property Magnetometer Grid Rock Geochemist
0 50	00 	200)	300	4(20	500		MD: Alberni NTS: 0 Scale: 1: 5,000 Date: . Compiled by A O Birkelan
	-•	N.	AETRE	S					Figure 5

l and t**ry** 092F/4,5 Jan, 2001 d, PEng

located at 1350N, 1850W approximately 200 m above 739123. Sample 139121 is from an intensely skarned 0.4 m angular float boulder. The skarn contained heavy garnet, epidote and manganese staining but was not geochemically anomalous. It is inferred that a contact metamorphic skarn assemblage is present along the eastern contact of the gabbro.

Two 5 to 8 cm massive pyrite bands were found in a large angular gabbro/amphibolite float block at sample number 739124 at 910N, 1480W. Black chlorite and biotite alteration is present. Sample 739124 contained 250 ppm Cu, 0.4 ppb Au and 0.6 ppn. Ag. The host lithology and alteration are similar to that at the Main Showing located approximately 350 m uphill and indicate that another showing may be present in this area.

Two large angular "near source" mineralized float boulders were found at approximately 800N, 1520W on the west side of the Debris Slide. Sample 139125 contained 381 ppm Cu and 38 ppm Ni in a layered pyroxenite/felsite host. Concordant laminated pyrite and disseminated chalcopyrite are concentrated in the pyroxenite layers. A channel sample was taken from a second large float block found nearby. Massive pyrite and pyrrhotite bands are present in a layered amphibolite/pyroxenite altered host rock. Sample 739126 contained 382 ppm Cu, 1 ppb Au and 1.2 ppm Ag over 0.34 m. The two large float blocks indicate copper mineralization hosted in mafic intrusive rocks occurs nearby up-slope from the float blocks. Hand trenching, mapping and additional rock chip sampling are recommended for this area.

6. MAGNETOMETER SURVEY

6.1. Introduction

The Cu-Ni-PGE mineralization at the Main Showing consists of low temperature millerite-violarite Ni assemblage that has relatively low magnetic susceptibility. Pentlandite and pyrrhotite are present only in small amounts. The magnetometer survey readings on top of the massive sulphide outcrop ranged in value from approximately 55250 nT to 55350 nT, which is only moderately anomalous for the area. Readings varied depending on the day (due to magnetic diurnal) or to the exact position of the instrument.

The gabbro complex 400 m east of the Main Showing is known to be anomalous in Ni-Cu-Co-PGE-Au-Ag-Ti and a genetic link is suggested between the gabbro complex and the amphibolite hosting the Main Showing. This would be equivalent to the "off-set dykes and sills" at the Stillwater Complex. It is postulated that the low temperature nonmagnetic Ni assemblage outcropping at the Main Showing changes to a higher temperature magnetic pentlandite-pyrrhotite facies at depth as it dips to the west under the gabbro complex. The objective of the grid magnetometer survey was to see if a magnetic anomaly is present due to magnetic down-dip mineralization at depth to the west of the Main Showing. The second objective of the survey was to identify any magnetic features on surface that combined with geochemistry would provide surface exploration targets.

6.2. Procedure

A grid based total field magnetometer survey was carried out using a Geometrics G816 Mag System leased from SJ Geophysics Ltd of Delta BC. Readings were taken at 10 m intervals on 30 m line spacing. The grid was surveyed by compass and hip chain and stations were flagged and marked with typec tags. The grid was not slope corrected.

Appendix D contains the raw data from the magnetometer survey. Readings were taken with the instrument sensor mounted on a 1.5 m staff keeping the sensor head oriented in approximately the same direction relative to north for all readings taken. The grid coordinates, absolute magnetic value in nT, elevation (in feet) and time were recorded for each station. The survey was carried out along the grid lines in loops starting and closing from the base station at 1200N and 1500W.

The raw data was processed by SJ Geophysics using a computer correction for magnetic diurnal variation by using the "Close Loop" magnetic value and Time. Plots of Magnetic Line Profiles, Magnetic Contour Map and Magnetic Colour Contour Map as compiled by SJ Geophysics are illustrated in Figures 7, 8 and 9 respectively.

The magnetometer grid is located on a very steep (45°) slope containing numerous cliffs and scarps in dense old growth forest and undergrowth. A considerable number of operator days were required to complete the modestly sized grid because of the difficulty of traversing in such thick bush in such steep terrain. It was often difficult to run straight lines and to establish accurate station locations due to having to traverse around cliffs and scarps. A major scarp causes the termination of lines 1170N to 1260N at approximately 1630W.

The grid was not slope corrected and based on the crude method of laying out the grid, station positions are approximate. All magnetic values were plotted on a grid co-ordinate basis assuming station positions are all accurate.

It was observed during the survey that it was difficult to reproduce magnetic readings at times, probably due to interference by magnetic storms. The magnetic differential due to diurnal effects was also considerably large at times due to the length of time required to close the survey loop due to slow going in the bush. The magnetic diurnal also varied on a day to day basis for the base station at 1200N, 1500W and other stations located along the baseline.

Figure 7

Due to the suspect-unreliable conditions identified above, the magnetometer survey is considered to be a "reconnaissance" style survey suited only to testing for the objectives previously described. A more expensive larger scope magnetometer survey with accurately surveyed stations and better magnetic closures should be conducted to target drill holes at depth based on magnetic anomalies.

6.3. Magnetometer Survey Results

The most significant feature of the Magnetometer Survey is depicted by Anomaly A, (Figure 8) which lies between lines 1200N to 1290N and 1520W to 1600W. The strong +100 nT anomaly above the background of the Main Showing is interpreted to be a down dip magnetic facies of the Main Showing mineralization as postulated. The anomaly is open to the northwest and may represent the magnetic signature of the strike extension of the down dip projection of the Main Zone mineralization.

Anomaly B may also represent down dip magnetic mineralization, or may reflect a geologic contact of an ultramafic component of the Gabbro complex to the west of the Main Showing that contains higher magnetite content. Anomaly B is particularly strong at the western end of line 1230N. The magnetic lows between Anomaly A and Anomaly B between 1540W and 1590W may correspond to a barren geological unit of felsic gneiss, as was observed to occur in this general area.

Based on the attitude of regional and local foliation, and considering the mineralization at the Main Showing is concordant, Anomaly C between 1380W and 1470W on lines 1140N and 1170N is thought to be the surface (or near surface) strike extension of the Main Showing mineralization trend. The anomaly is weakly open to the southeast. Relatively high values are present at the eastern end of line 1170N where anomalous Cu values from rock chip sample 739118 taken from a gossanous area is in the same vicinity.

7. RECOMMMENDATIONS

.

r -

.....

μ.

b. .

i. .

.

h. ...

. .

Additional geologic mapping and rock chip sampling should be conducted in the vicinity of the mineralized float and gossanous outcrop areas found as part of the year 2000 program. More work should be done southeast of the Main Zone where a magnetic anomaly indicates the possible surface strike extension of the mineralized zone.

A detailed grid magnetometer survey with accurate surveyed stations should be conducted. The survey should extend beyond the year 2000 grid to the north and west where the anomalies are "open". The survey should also cover the mineralized float and outcrop areas described above. Two fences of shallow diamond drilling should be completed at the Main Showing. Deeper drilling on section to the west should also be done targeted on magnetic anomalies.

8. CERTIFICATE OF QUALIFICATION AND CONSENT

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 2069 Westview Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers Association of British Columbia since 1975, Registration Number 9870.
- 4. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.
- 6. I have conducted and supervised the field exploration work as reported on the subject property. I have authored this report that is based on observations and sample results obtained during the Year 2000 exploration program and consent for this report to be filed for assessment work purposes.
- 7. The author holds title to, and 50% interest in, the Deer Bay Property that is the subject of this report. The author is acting in the capacity as Professional Engineer as author of this report.

Dated at North Vancouver, British Columbia,

. .

This <u>21 st</u> day of <u>January</u>, 2001 <u>1.0. Dinkeland</u> ٥ø A O RIRKELAND SCIFICH Arne O. Birkeland, P. Eng., President, Arnex Resources Ltd.

9. BIBLIOGRAPHY, SELECTED REFERENCES

Birkeland, A.O. (1998): Report on Geological Mapping, Deer Bay Property, Alberni M.D.

Birkeland, A.O. (1997): Geological and Rock Chip Geochemical Report, Deer Bay Property, Alberni M.D.

Birkeland, A.O. (1995): Geological and Geochemical Report, Deer Bay Property, Alberni M.D.

Birkeland, A.O. (1994): Geological and Geochemical Assessment Report, Deer Bay Property, Alberni M.D.

Birkeland, A.O. (1992): Geological and Geochemical Assessment Report, Deer Bay Property, Alberni M.D.

Carsan, D.J.T. (1973) Plutonic Rocks of Vancouver Island, GSC Paper 72-44.

EMPR MINFILE, (1990): 092F - Albernie.

EMPR AR 1898, 1899, 1902, 1916, 1955, 1961, 1966, 1967

EMPR GEM 1969

b

. .

ь.

ы. .

<u>і</u>. .

Ъ.

EMPR EXPL 1972, 1973, 1974, 1980, 1986, 1987

EMPR ASS RT 8106, 8138, 13121, 14182, 14315, 14807, 15155, 15447, 16220, 17284, 18751

GSC Map 17-1968; 1386A

Matysek, P.F., Gravel, J.L. Jackanun, W., Feulgen, S., (1990): NTS 92F - Albernie, MEMPR BC RGS 25, GSC O.F. 2183.

Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463.

Muller, J.E. (1980): The Paleozoic Sicker Group of Vancouver Island, GSC Paper 79-30.

Muller, J.E., Carson, D.J.T., (1968): Geology and Mineral Deposits of Albernie Map Area, GSC Paper 68-50.

Roddick, J.A., Muller, J.E., and Okulitch, A.V. (1979): Frazer River, Sheet 92, GSC Map 1386A.

1 Ĺ. **.**.... h---**b**---r---. ь. è --**.** . p ---ι. ب م × .. · · μ., ----L -(m. - - - -<u>.</u> . **F** 7 ς. ---ь. í. : 16. u

<u>د</u> ...

Sutherland Brown, A., (1988): Mineral Inventory of the Albernie Region, EMPR OF 1988-24.

Wheeler, J.O., McFeely, P., (1991): Tectonic Assembledge Map, GSC Map 1712A.

Wilton, H. Paul (1989): Geology and Metallogeny, Southern Vancouver Island and Adjacent Mainland.

c:/myfiles/dbpwk3/dbpsoe2000awk3

APPENDIX A Statement of Expenditures

Year 2000 - Deer Bay Property Exploration Program

Description	1	Cost	/Unit	Units		Amount	Tota
Services	Professional Engineer, P. Eng. Geotech - Assistant Geophysical Consultant Subtotal Services	\$100.00 \$100.00 \$535.00	/day /day /day	25 12 1	day day day day	\$2,500 \$1,200 \$535	\$4,235
Rentals	F250 4X4 Camper Cope Boat Zodiac Boat ICH18 Radios (2) Field Equipment NB Computer	\$40.00 \$25.00 \$40.00 \$10.00 \$267.50 \$16.05 \$214.00	/day /day /day /day /mo /mday /mo	4 25 25 1.666667 37 0.833333	day day day day mo mday mo	\$160 \$625 \$1,000 \$250 \$446 \$594 \$178	
	Subtotal Rentais						\$3,253
GST	Services + Rentals						\$524
Expenses	Analytical - Rocks As per ea000831 As per ea000930 Geophysical Equipment Rental Report	Gas, Food, A Gas, Food, A \$150.00	Accomma Accomma /wk+GS1	37 dation, Misc dation, Misc F 7	smple wk	\$1,147 \$3,902 \$1,500 \$1,124 \$800	
	Subtotal Expenses						\$8,473
	- · · ·						\$16,485 ======
	Yr 2000 Expen Deer Bay Prop	erty			Serv Rent GST Analy Exp	\$4,235 \$3,253 \$524 \$1,147 \$7,326	
	Exp (44.44%) Analy (6.96%) GST	- Serv (25.69% Rent (19.73%)		Total	\$16,485	

. ..

ь.

····

ĥ. ..

APPENDIX B

been set

.

.....

μ.

ы. .

ы.

. .

-

د.

h. . .

. .

. .

Analytical Procedures and Certificates Chemex Labs

<u>.</u>

÷

• •

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

1

Ţ

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C	ERTIF	ICATE	A0027394
(AN) - AF Project: P.O. # :	RNEX RES DBP	BOURCES LIMIT	ED
Samples This rep	submitt port was	ed to our lab printed on 0) in Vancouver, BC. 4-SEP-2000.
· · ······	SAM	PLE PREP/	ARATION
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION
208 226 3202 233	10 10 10 10	Assay ring (0-3 Kg crus) Rock - save Assay AQ IC)	to approx 150 mesh h and split entire reject ? digestion charge
* NOTR	1:		

÷. •

.

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. To: ARNEX RESOURCES LIMITED

.

]

.

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0027394

T - 1

Comments: ATTN: ARNE BIRKELAND

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPF LIN
983	10	Au ກກ່າງ Fuse 30 ແ cample	¥2-125	ĸ	1000
4001	10	Ag ppm : A30 ICP Dackage	ICP-AES	ĩ	28
4002	10	Al %: A30 ICF package	ICP-AES	0.01	15.0
4003	10	As ppm: A30 ICP package	ICP-AES	10	5000
4004	10	Ba ppm: A30 ICP package	ICP-AES	20	2000
4005	10	Be ppm: A30 ICP package	ICP-AES	5	10
4006	10	Bi ppm: A30 ICP package	ICP-AES	10	500
4007	10	Ca %: A30 ICP package	ICP-AES	0.01	30
4008	10	Cd ppm: A30 ICP package	ICP-AES	5	10
4009	10	Co ppm: A30 ICP package	ICP-AES	5	500
4010	10	Cr ppm: A30 ICP package	ICP-AES	10	200
4011	10	Cu ppm: A30 ICF package	ICP-AES	5	500
4012	10	Fe %: ASU ICP package	ICP-AES	0.01	30
4013	10	Ng ppm: ASU ICP package	ICP-AKS	10	1000
4015	10	K N: ADV ICF DECKEGE	ICP-ASS	0.01	10.
4016	10	Mg 4: ASU ICF DACKAGO Mn prm: X30 7CP packago	TCD-ARC	10	50
4017	10	Mo num: A30 TCP package	TCP-ARC	10	500
4018	10	Na %: A30 TCP package	TCP-ARS	0 01 1	200
4019	10	Ni pom: A30 ICP package	ICP-ARS	5	500
4020	10	P DDm: A30 ICP package	TCP-ARS	100	100
4021	10	Pb ppm: A30 ICP package	ICP-AES	5	500
4022	10	Sb ppm: A30 ICP package	ICP-AES	10	100
4023	10	Sc ppm: A30 ICP package	ICP-AES	5	100
4024	10	Sr ppm: A30 ICP package	ICP-AES	5	100
4025	10	Ti %: A30 ICP package	ICP-AES	0.01	10.
4026	10	Tl ppm: A30 ICP package	ICP-ARS	20	100
4027	10	V ppm: A30 ICP package	ICP-ARS	20	100
4028	10	V ppm: A30 ICP package	ICP-AES	20	500
4029	10	W ppm: A30 ICP package	ICP-AES	20	100
1030	10	Zn ppm: A30 ICP package	ICP-AES	5	500
4030	10 10	Zn ppm: A30 ICP påckage Se ppm: HC1-KCl03 digest, ext	ICP-AES AAS-BKGD CORR	5 0.2	

.

[] 1 [

1

T

1 7 1

1 1 G emex C. ALS GNE Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : DBP Comments: ATTN: ARNE BIRKELAND

Page Number :1-A Total Pages :1 Certificate Date: 04-SEP-2000 Invoice No. : [0027394 P.O. Number : Account :AN

												CE	RTIFI	CATE	OF /	ANAL	YSIS		40027	394		
SAMPLE	PRI COI	SP DE	Ац ррb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Мо ррт	Na %	
739101 739102 739103 739104 739104 739105	208 208 208 208 208 208	226 226 226 226 226 226	105 490 535 90 200	< 1 7 9 1 4	4.60 2.16 1.75 7.08 2.92	30 80 90 < 10 < 10	60 20 < 20 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.13 0.18 0.09 0.30	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	1335 1070 1330 115 345	90 510 360 10 630	1285 36500 44500 9000 18480	19.55 24.0 20.4 18.30 10.45	< 10 < 10 < 10 < 10 < 10 10	0.12 0.01 0.01 0.04 0.01	3.67 1.23 2.13 5.39 4.05	1200 350 370 1870 360	< 5 < 5 < 5 < 5 < 5	0.05 0.05 0.05 0.04 0.06	
739106 739107 739108 739109 739110	208 208 208 208 208 208	226 226 226 226 226 226	550 320 265 150 370	14 3 5 1 2	2.23 2.78 1.93 2.24 1.98	< 10 < 10 10 30 240	< 20 < 20 120 < 20 < 20	< 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.16 0.09 0.41 0.25 0.39	< 5 < 5 < 5 5 5 5 5	585 1450 380 560 580	560 330 430 570 70	>50000 8810 28700 10760 9370	20.8 24.3 11.70 12.50 21.7	< 10 < 10 < 10 < 10 10	0.01 < 0.01 0.11 0.01 0.03	2.92 2.44 2.37 3.50 1.02	290 580 270 320 590	5 < 5 < 5 < 5 < 5	0.04 0.04 0.09 0.06 0.06	
													·									
																			,			
																	Al)				
L,	- I ł								,						CERTIEI		the			12	Į,	

]

.

1

1 .

CERTIFICATION:

-

12

ALS Chemex Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

DBP Project : Comments: ATTN: ARNE BIRKELAND

Page Number : 1-B Total Pages : 1 Certificate Date: 04-SEP-2000 Invoice No. : 10027394 P.O. Number : Account : AN

.	_					CERTIFICATE OF ANALYSIS				NALYSIS	A00	27394	-					
SAMPLE	PRE COD	:P)E	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V mgq	W Ppm	Zn pp n	Se ppm			
39101 39102 39103 39104 39105	208 208 208 208 208	226 226 226 226 226 226	26400 11030 5330 4230 5020	300 300 300 100 200	< 5 < 5 < 5 5 5 5	< 10 < 10 < 10 < 10 < 10 10	< 5 < 5 < 5 < 5 < 5	< \$ < 5 < 5 < 5 < 5	0.04 0.02 0.05 0.06 0.12	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	20 20 20 20 20 60	< 20 < 20 < 20 < 20 < 20 < 20	35 35 30 20 25	9.0 6.0 6.0 1.6 6.8			<u> </u>
39106 39107 39108 39109 39110	208 208 208 208 208 208	226 226 226 226 226 226	8720 >50000 15820 20600 34800	300 400 100 200 700	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 10 20 10 < 10 < 10	<pre> < 5 < < 5 < < 5 < < 5 </pre>	< 5 < 5 20 5 < 5	0.08 0.04 0.04 0.07 0.06	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	60 20 20 40 40	< 20 < 20 < 20 < 20 < 20 < 20	20 70 105 140 65	2.4 22.8 13.4 10.0 11.4			
			·															
													-					
																		·
																A		

Project:

P.Ó. # :

CHEMEX

208

226

3202

CODE

emex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

[]

1

1 [

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0028164

Comments: ATTN: ARNE BIRKELAND

CERTIFICATE A0028164 ANALYTICAL PROCEDURES (AN) - ARNEX RESOURCES LIMITED CHEMEX NUMBER DETECTION UPPER CODE **ISAMPLES** DESCRIPTION METHOD LIMIT LIMIT DBP 2538 10 Au g/t - part. cupel. FA-ICP FA-ICP-ARRAY 0.03 500 Samples submitted to our lab in Vancouver, BC. 2529 Pt g/t - part. cupel. FA-ICP FA-ICP-ARRAY 10 0.07 500 This report was printed on 11-SEF-2000. 2530 10 Pd g/t - part. cupel. FA-ICP FA-ICP-ARRAY 0.07 500 2539 10 Rh g/t - part. cupel. FA-ICP FA-ICP-ARRAY 0.03 500 1056 10 Cu %: Fusion - ICP-AES Fusion - ICP-AES 0.005 20.0 1057 10 Ni %: Fusion - ICP-AES Fusion - ICP-AES 0.005 20.0 1058 10 Co %: Fusion - ICP-AES Fusion - ICP-AES 0.002 10.00 1059 10 S %: Leco furnace LECO-IR DETECTOR 0.01 40.0 1060 10 Fe %: Fusion - ICP-AES Fusion - ICP-AES 0.1 60.0 SAMPLE PREPARATION 1061 10 As %: Fusion - ICP-AES Fusion - ICP-AES 0.01 10.00 8068 10 Pb %: Fusion - ICP-AES Fusion - ICF-AES 0.02 5.00 8059 10 Zn %: Fusion - ICP-AES Fusion - ICP-AES 0.01 5.00 NUMBER SAMPLES DESCRIPTION 10 Assay ring to approx 150 mesh 10 0-3 Kg crush and split 10 Rock - save entire reject

1 1 1 1 1 1 1 1 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : DBP Comments: ATTN: ARNE BIRKELAND

CEDTICICATE OF ANALVEIS

Page Number :1 Total Pages :1 Certificate Date: 11-SEP-2000 Invoice No. :10028164 P.O. Number : Account :AN

								CERTIFICATE OF ANALYSIS A0028164						64		
SAMPLE	PR CO	LEP IDE	Au g/t	Pt g/t	Pđ g/t	Rh g/t	Cu %	Ni %	Co %	S % (Leco)	Fe %	A8 %	Pb %	Zn %		
739101 739102 739103 739104 739105	208 208 208 208 208 208	226 226 226 226 226 226	0.12 0.42 0.54 0.09 0.21	1.82 2.52 3.36 0.21 0.98	4.76 7.70 12.75 0.70 2.80	0.12 0.12 0.18 < 0.03 0.06	0.135 3.53 4.37 0.870 1.790	2.42 0.980 0.500 0.385 0.475	0.130 0.098 0.126 0.012 0.032	14.70 18.80 26.1 4.66 6.23	19.8 25.1 22.2 18.1 13.0	0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01		
739106 739107 739108 739109 739110	208 208 208 208 208 208	226 226 226 226 226 226	0.48 0.30 0.27 0.12 0.18	2.10 1.96 1.05 0.84 1.26	5.88 7.70 4.41 3.08 6.16	0.18 0.18 0.12 0.06 0.06	7.66 0.855 2.77 1.030 0.915	0.815 5.10 1.400 1.790 3.06	0.056 0.138 0.034 0.050 0.056	18.10 25.3 9.42 8.85 16.20	22.5 24.7 13.0 14.6 22.9	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.01 0.01 0.01 0.01 0.01		
				5												
					-									,		
							<u>.</u>			.	CEF		N:	W/d	rhf	

*

1

1

1 P

iemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Ł

1 To: ARNEX RESOURCES LIMITED

CERTIFICATE OF ANALYSIS

1 1 1

Page Number :1 Total Pages :1 Certificate Date: 11-SEP-2000 Invoice No. :10028164 P.O. Number : : AN Account

12A

A0028164

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

AL

ריין ר

1.1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

S Chemex

1 1

1

.

1

Project : DBP Comments: ATTN: ARNE BIRKELAND

Pt Pđ Rh Cu Nİ 5 % PREP Au Co Fe λs Pb Zn g/t g/t g/t * * % SAMPLE CODE g/t 12 * (Leco) ٩. * 208 226 739101 0.12 1.82 4.76 0.12 0.135 2.42 0.130 14.70 19.8 0.01 < 0.02 < 0.01 739102 208 226 0.42 2.52 7.70 0.12 3.53 0.980 0.098 18.80 25.1 < 0.01 < 0.02 < 0.01 739103 208 226 0.54 3.36 12.75 0.18 4.37 0.500 0.126 26.1 22.2 < 0.01 < 0.02 < 0.01 208 226 0.21 0.70 < 0.03 0.385 0.012 739104 0.09 0.870 4.65 18.1 < 0.01 < 0.02 < 0.01 739105 208 226 0.21 0.98 2.80 0.06 1.790 0.475 0.032 6.23 13.0 < 0.01 < 0.02 < 0.01 739106 208 226 0.48 2.10 5.88 0.18 7.66 0.815 0.056 22.5 < 0.01 18.10 < 0.02 < 0.01 208 226 739107 0.30 1.96 7.70 0.18 0.855 5.10 0.138 25.3 24.7 < 0.01 < 0.02 0.01 739108 208 226 0.27 1.05 4.41 0.12 2.77 1.400 0.034 9.42 13.0 < 0.01 < 0.02 0.01 739109 208 226 0.12 0.84 3.08 0.06 1.030 1.790 0.050 8.85 14.6 < 0.01 < 0.02 0.01 739110 208 226 0.18 1.26 0.06 0.915 3.06 0.056 16.20 22.9 6.16 0.02 < 0.02 0.01 . Mic

. .

1 [Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

1 [

1 1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHC/NE: 604-984-0221 FAX: 604-984-0218

1 [] 1 . 7] To: ARNEX RESOURCES LIMITED

5

<u>۲</u>

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0028020

I 1

1

1 ľ

1 1

1

- [

Comments: ATTN: ARNE BIRKELAND

Ċ	ERTIFI	CATE A0028020	ANALYTICAL PROCEDURES										
(AN) - Al	RNEX RES	OURCES LIMITED	CHEMEX	NUMBER	DESCRIPTION	Method	DETECTION LIMIT	UPPER LIMIT					
P.O. # : Samples This rep	submitt. port was	ed to our lab in Vancouver, BC. printed on 06-SEP-2000.	301	1	Cu %; Conc. Nitric-HCl dig'n	лл	0.01	100.0					
	SAM	PLE PREPARATION											
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
212	1	Overlimit pulp, to be found											
					- -								
							,						

1.15

A Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

1

.

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : DBP Comments: ATTN: ARNE BIRKELAND

Page Number : 1 Total Pages : 1 Certificate Date: 06-SEP-2000 Invoice No. : 10028020 P.O. Number : Account AN

1 1

			 CERTIFIC	ATE OF ANALYSIS	A0028020	
SAMPLE	PREP CODE	Cu %				
739106	212	7.89				
						:
]

1 . !

1

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0;221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0029423

1

Comments: ATTN: ARNE BIRKELAND

HEMEX NUN CODE SAM	IBER PLES L6 L6 L6 L6 L6 L6 L6 L6	DESCRIPTION Au g/t - part. cupel. FA-ICP Pt g/t - part. cupel. FA-ICP Pd g/t - part. cupel. FA-ICP Rh g/t - part. cupel. FA-ICP Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock	METHOD FA-ICP-ARRAY FA-ICP-ARRAY FA-ICP-ARRAY FA-ICP-ARRAY ICP-ARS	DETECTION LIMIT 0.03 0.07 0.07 0.03	UPPER LIMIT 500 500 500
2538 2529 2530 2539 2118 2119 2120 557 2121 2122 2123	L6 L6 L6 L6 L6 L6 L6 L6	Au g/t - part. cupel. FA-ICP Pt g/t - part. cupel. FA-ICP Pd g/t - part. cupel. FA-ICP Rh g/t - part. cupel. FA-ICP Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock	FA-ICP-ARRAY FA-ICP-ARRAY FA-ICP-ARRAY FA-ICP-ARRAY ICP-AES	0.03 0.07 0.07 0.03	500 500 500
2529 2530 2539 2118 2119 2120 557 2121 2122 2123	L6 L6 L6 L6 L6 L6 L6	Pt g/t - part. cupel. FA-ICP Pd g/t - part. cupel. FA-ICP Rh g/t - part. cupel. FA-ICP Ag ppm: 32 #lement, soil & rock Al %: 32 element, soil & rock	FA-ICP-ARRAY FA-ICP-ARRAY FA-ICP-ARRAY ICP-AES	0.07 0.07 0.03	500 500
2530 2539 2118 2119 2120 557 2121 2122 2123	L6 L6 L6 L6 L6 L6	På g/t - part. cupel. FA-ICP Rh g/t - part. cupel. FA-ICP Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock	FA-ICP-ARRAY FA-ICP-ARRAY ICP-AES	0.07 0.03	500
2539 2118 2119 2120 557 2121 2122 2123	L6 L6 L6 L6 L6	Rh g/t - part. cupel. FA-ICP Ag ppm: 32 #lement, soil & rock Al %: 32 element, soil & rock	FA- ICP-ARRAY ICP-AES	0.03	
2118 2119 2120 557 2121 2122 2123	L6 L6 L6 L6	Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock	ICP-AES		500
2119 2120 557 2121 2122 2123	L6 L6 L6	Al %: 32 element, soil & rock		0.2	100.0
2120 557 2121 2122 2123	L6 L6		ICP-AES	0.01	15.00
557 2121 2122 2123		As ppm: 32 element, soli & rock	ICP-ARS	2	10000
2121 2122 2123		B ppm: 32 element, rock & soll	ICP-ARS	10	10000
2123		Ba ppm: 32 element, soll & rock	ICP-AES	10	10000
		Be ppar 32 element, soli & rock	ICP-AKS	0.5	100.0
2124 '		At <u>prat</u> 32 element, soll & rock	ICP-ALS	a a ⁴	10000
2125	is	Cá mune 32 alement soil & rock	TCD_1PC	0.01	15.00
2126	ić	Co pum: 32 element, soil & rock	TCP-ARS	1	10000
2127		Cr pom: 32 element, soil & rock	ICP-ARS	1	10000
2128	6	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150 3	16	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130 1	L6	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131 1	L6	Hg ppm: 32 element, soil & rock	ICP-ARS	1	10000
2132 1	L6	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151 1	16	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	16	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135 1	16	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136		No ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	10- 1-	Na %: 32 element, soil & reck	ICP-AES	0.01	10.00
4120		Ni ppm: 32 element, soil & rock	ICP-AKS	1	10000
2140		P ppm: 34 element, soll & rock	ICP-AES	10	10000
551 1		f to 22 alement reak a sail	ICP-ARS	2 01	10000
2141		ch pope 22 alamant soil t work	ICP-ABS	0.01	5.00
2142	6	Sc num: 32 alements soil & rock	ICD_NEG	2	10000
2143	6	ST DOM: 32 element. soil 5 rock	TCD-NFC	1	10000
2144	6	Ti %: 32 element, soil & rock	TCP-ARS	0 01	10 00
2145	6	T1 pum: 32 element. soil & rock	ICP-ARS	10	10000
2146	6	U ppm: 32 element, soil & rock	ICP-ARS	10	10000
2147 1	6	V ppm: 32 element, soil & rock	ICP-AES		10000
	2127 1 2128 1 2130 1 2131 1 2132 1 2131 1 2132 1 2131 1 2132 1 2135 1 2136 1 2137 1 2138 1 2140 1 2140 1 2141 1 2142 1 2143 1 2144 1 2145 1 2146 1 2147 1	2127 16 2128 16 2130 16 2131 16 2132 16 2131 16 2132 16 2131 16 2132 16 2131 16 2132 16 2133 16 2134 16 2135 16 2136 16 2137 16 2138 16 2140 16 2140 16 2141 16 2142 16 2143 16 2144 16 2145 16 2144 16 2145 16 2146 16 2147 16	 2127 16 Cr ppm: 32 element, soll & rock 2128 16 Cu ppm: 32 element, soll & rock 2130 16 Ga ppm: 32 element, soll & rock 2131 16 Hg ppm: 32 element, soll & rock 2132 16 K %: 32 element, soll & rock 2131 16 Hg ppm: 32 element, soll & rock 2132 16 K %: 32 element, soll & rock 2134 16 Mn ppm: 32 element, soll & rock 2135 16 Mn ppm: 32 element, soll & rock 2135 16 Mn ppm: 32 element, soll & rock 2136 16 Mn ppm: 32 element, soll & rock 2137 16 Mn ppm: 32 element, soll & rock 2138 16 Mi ppm: 32 element, soll & rock 2139 16 P ppm: 32 element, soll & rock 2140 16 Pb ppm: 32 element, soll & rock 2141 16 Sb ppm: 32 element, soll & rock 2141 16 Sr ppm: 32 element, soll & rock 2143 16 Sr ppm: 32 element, soll & rock 2144 16 Ti v: 32 element, soll & rock 2145 16 V ppm: 32 element, soll & rock 	212716Cr ppm: 32 element, soil & rockICP-AES212816Cu ppm: 32 element, soil & rockICP-AES213016Ga ppm: 32 element, soil & rockICP-AES213116Hg ppm: 32 element, soil & rockICP-AES213216K %: 32 element, soil & rockICP-AES213316La ppm: 32 element, soil & rockICP-AES213416Mg %: 32 element, soil & rockICP-AES213516Mn ppm: 32 element, soil & rockICP-AES213416Mg %: 32 element, soil & rockICP-AES213516Mn ppm: 32 element, soil & rockICP-AES213616Mn ppm: 32 element, soil & rockICP-AES213716Na %: 32 element, soil & rockICP-AES213816Ni ppm: 32 element, soil & rockICP-AES214016Pp ppm: 32 element, soil & rockICP-AES214016Pp ppm: 32 element, soil & rockICP-AES214116Sb ppm: 32 element, soil & rockICP-AES214216Sc ppm: 32 element, soil & rockICP-AES214316Sr ppm: 32 element, soil & rockICP-AES214416Sr ppm: 32 element, soil & rockICP-AES214316Sr ppm: 32 element, soil & rockICP-AES214416Sr ppm: 32 element, soil & rockICP-AES214316Sr ppm: 32 element, soil & rockICP-AES214416T1 ppm: 32 element, soil & rockICP-AES	212716Cr ppm: 32 element, soil & rockICP-AES1212816Cu ppm: 32 element, soil & rockICP-AES1215016Fe %: 32 element, soil & rockICP-AES0.01213016Ge ppm: 32 element, soil & rockICP-AES10213116Hg ppm: 32 element, soil & rockICP-AES0.01213216K %: 32 element, soil & rockICP-AES0.01213116Lg ppm: 32 element, soil & rockICP-AES0.01213416Mg %: 32 element, soil & rockICP-AES0.01213516Kn ppm: 32 element, soil & rockICP-AES0.01213516Kn ppm: 32 element, soil & rockICP-AES1213516Kn ppm: 32 element, soil & rockICP-AES0.01213816Ni ppm: 32 element, soil & rockICP-AES1213916P ppm: 32 element, soil & rockICP-AES1214016Pb ppm: 32 element, soil & rockICP-AES255116Sc ppm: 32 element, soil & rockICP-AES1214116Sc ppm: 32 element, soil & rockICP-AES1214316Sr ppm: 32 element, soil & rockICP-AES1214416Sr ppm: 32 element, soil & rockICP-AES1214316Sr ppm: 32 element, soil & rockICP-AES1214416Ti %: 32 element, soil & rockICP-AES1214416Ti %: 32 elemen

(AN.) - ARNEX RESOURCES LIMITED

CERTIFICATE

Project: DBP P.O. # :

4

Samples submitted to our lab in Vancouver, BC. This report was printed on 29-SEP-2000.

	SAMPLE PREPARATION							
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION						
208 226 3202 229	16 16 16 16	Assay ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge						

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, BA, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

LS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0029423

(AN.) - ARNEX RESOURCES LIMITED

Project: DBP P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 29-SEP-2000.

	SAMPLE PREPARATION								
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION							
208 226 3202 229	16 16 16 16	Assay ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge							
* Nicome	1.								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A0029423

1

Comments: ATTN: ARNE BIRKELAND

ANALYTICAL PROCEDURES 2 of 2 ÷. CHEMEX NUMBER CODE DETECTION UPPER SAMPLES DESCRIPTION METHOD LIMIT LIMIT 2148 W ppm: 32 element, soil & rock 16 ICP-AES 10 2149 10000 16 Zn ppm: 32 element, soil & rock ICP-AES 2 1056 10000 5 Cu %: Fusion - ICP-AES Fusion - ICP-MES 0.005 Ni %: Fusion - ICP-AES Co %: Fusion - ICP-AES 1057 20.0 5 Fusion - ICP-AES 0.005 1058 20.0 5 Fusion - ICP-AES 0.002 1059 10,00 5 S %: Leco furnace LECO-IR DETECTOR 0.01 1060 40.0 5 Fe %: Fusion - ICP-AES Fusion - ICP-AES 0.1 1061 5 60.0 As %: Fusion - ICP-AES Fusion - ICP-ARS 0.01 8068 10.00 5 Pb %: Fusion - ICP-AES Fusion - ICP-AES 0.02 8069 5.00 5 Zn %: Fusion - ICP-ARS Fusion - ICP-AES 0.01 5.00

ALS)

11

mex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ARNEX RESOURCES LIMITED

ŗ

1 1 1 1 1

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : DBP Comments: ATTN: ARNE BIRKELAND

Page Number : 1-A Total Pages : 1 Certificate Date: 29-SEP-2000 Invoice No. : 10029423 P.O. Number : Account : AN

ſ

						<u></u>					RTIF	CATE		ANAL	/SIS		A002	9423		
SAMPLE	PREP CODE	Au g/t	Pt g/t	Pđ g/t	Rh g/t	Ag ppm	Al %	As ppm	B Pipm	Ba ppm	Ве ррп	Bi pom	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Eg
739111 739112 739113 739114 739115 739115 739116 739117	208 226 208 226 208 226 208 226 208 226 208 226 208 226 208 226 208 226	0.06 < 0.06 0.78 < 0.03 0.12 2.46 < 0.03	< 0.07 0.14 0.70 0.21 0.35 0.98 0.14	1.05 0.84 5.74 0.63 1.75 3.78	< 0.03 < 0.06 < 0.06 < 0.03 < 0.03 < 0.03	1.4 1.0 14.0 1.4 1.4 7.2	1.92 3.22 2.16 1.48 3.01	< 2 < 2 38 2 32 102	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 6	1.07 1.26 0.14 0.56 0.11	< 0.5 < 0.5 6.0 < 0.5 0.5 0.5	104 95 225 45 141	289 17 65 117 23	5550 1515 >10000 2220 3540	4.94 6.40 ≻15.00 4.53 ≻15.00	<pre>ppm < 10 < 10 < 10 < 10 10</pre>	ppm < 1 < 1 < 1 < 1 < 1 < 1
739118 739119 739120 739121	208 226 208 226 208 226 208 226	< 0.03 3.48 0.06	< 0.07 < 0.07 < 0.07	< 0.07 < < 0.07 < < 0.07 <	0.03	0.4 1.6 0.2	0.80 0.77 0.24	2 2 106 2	< 10 < 10 < 10 < 10	10 < 10 20 50	0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2	0.90 0.17 0.12 4.75	< 0.5 < 0.5 < 0.5 0.5	23 5 13 21	35 18 23 48 5	>10000 1080 583 170 91	14.85 4.74 4.41 12.70 5.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1
739122 739123 739124 739125	208 226 208 226 208 226 208 226 208 226	< 0.06 < 0.03 0.36 0.03	< 0.14 < 0.07 < 0.07 < 0.07	< 0.14 < < 0.14 < < 0.07 < < 0.07 <	0.06 0.03 0.03 0.03 0.03	< 0.2 < 0.2 0.6 0.6 0.4	2.12 2.38 0.41 1.05 1.01	< 2 < 2 14 22 4	< 10 < 10 10 < 10 < 10	40 < 10 130 40 10	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 < 2 < 2	0.11 1.15 4.63 0.12 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 19 13 14 5	44 13 9 45 57	67 74 22 250	4.49 5.27 6.20 10.15	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1
	208 226	0.99 4	: 0.07	< 0.07 <	0.03	1,2	1.63	268	< 10	30	0.5	< 2	0.16	< 0.5	18	42	382	14.15	< 10	< 1

CERTIFICATION:____2

ALS

1

1

11

_____[

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1 Page Number : 1-B Total Pages : 1 Certificate Date: 29-SEP-2000 Invoice No. : 10029423 P.O. Number : Account : AN

ľ

A0029423

Project : DBP Comments: ATTN: ARNE BIRKELAND

CERTIFICATE OF ANALYSIS

															•,					
SAMPLE	PREP CODE	K %	La ppm	Mg %	Min ppm	Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppn	Ti %	T1 ppm	U DDw	V ppm	¥ ppm	Zn ppn
739111 739112 739113 739114 739114 739115	208 226 208 226 208 226 208 226 208 226 208 226	0.02 0.02 0.01 0.03 0.01	< 10 < 10 < 10 < 10 < 10	2.35 2.97 1.36 1.39 0.98	355 635 540 465 585	3 < 1 12 1 2	0.04 0.03 0.01 0.03 0.02	2320 3290 2210 426 5620	180 140 690 770 210	4 2 ~ 2 10	2.77 2.24 >5.00 2.05 >5.00	< 2 < 2 < 2 < 2 < 2	2 < 1 4 2 1	13 24 6 19 5	0.05 0.05 0.03 0.09 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 10 33 17 19	< 10 < 10 10 < 10 10	30 46 218 42 30
739116 739117 739118 739119 739119 739120	208 226 208 226 208 226 208 226 208 226 208 226	0.02 0.03 0.03 0.08 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.51 0.97 0.43 0.44 0.18	295 510 205 315 2900	10 < 1 4 18 < 1 <	0.05 0.03 0.04 < 0.01 < 0.01	3370 1515 25 8 2	550 540 180 180 10	8 2 < 2 2 < 2	>5.00 0.69 3.09 >5.00 0.03	< 2 < 2 < 2 < 2 < 2 < 4	1 7 < 1 < 1 < 1	17 7 12 16 3	0.04 0.12 0.04 0.03 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 33 4 3 1	10 < 10 < 10 30 < 10	114 42 18 20 46
739121 739122 739123 739124 739124 739125	208 226 208 226 208 226 208 226 208 226 208 226	0.17 0.03 0.01 0.20 0.10	< 10 < 10 < 10 < 10 < 10 < 10	1.13 1.39 0.21 0.21 0.49	625 465 6170 415 340	1 3 1 - 10 - 7	0.02 0.05 0.01 0.01 0.01 0.04	9 3 5 38	320 990 110 410 470	2 2 2 2 2 2 < 2	1.20 1.85 0.02 >5.00 >5.00	< 2 < 2 2 < 2 < 2	8 7 < 1 < 1 1	6 7 10 6 18	0.05 0.14 0.01 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	90 135 10 6 9	< 10 < 10 < 10 10 10	72 34 148 16 20
739126	208 226	0.25	< 10	0.25	715	12 .	< 0.01	5	770	2	>5.00	< 2	1	5	0.03	< 10	< 10	9	20	18
														·					·.	

1

CERTIFICATION:

ALS	Auro Analy 212 Britis PHC	LS Chemex ra Laboratory Services Ltd. ytical Chemists * Geochemists * Registered Assayers Brooksbank Ave., North Vancouver sh Columbia, Canada V7J 2C1 DNE: 604-984-0221 EAX: 604-984-0218	To: Al 20 N V Project	RNEX RESOURCES LIMITED * 069 WESTVIEW DR. ORTH VANCOUVER, BC 7M 3B1 : DBP : DBP	Page Number :1-C Total Pages :1 Certificate Date: 29-SE Invoice No. :10029 P.O. Number : Account :AN
/ /			Comme		A0029423
SAMPLE	PREP CODE	Cu Ni Co S% Fe As Pb % % % (Leco) % % %	Zn %		
39111 39112 39113 39114 39115	208 226 208 226 208 226 208 226 208 226 208 226	7.03 0.280 0.028 21.7 23.1 < 0.01	0.03		
739116 739117 739118 739119 739120	208 226 208 226 208 226 208 226 208 226 208 226	0.125 0.150 0.002 0.69 5.4 < 0.01 < 0.02 < 0.015< 0.005 0.008 < 0.01 15.7 < 0.01 < 0.02	0.01	<u>~</u>	
/39121 /39122 /39123 /39124 /39124 /39125	208 226 208 226 208 226 208 226 208 226 208 226 208 226	0.035< 0.005 0.002 9.06 12.0 < 0.01 < 0.02 <	 0.01	~~~~~	
/39126	208 226	0.045< 0.005< 0.002 11.90 16.2 0.01 < 0.02 <	0.01		
				, ,	
					λ

1

ALS Chemex To: ARNEX RESOURCES LIMITED 2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 381 Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

AL.

S)

1

A0030092

ľ

Comments: ATTN: ARNE BIRKELAND

-

CERTIFICATE A0030092				ANALYTICAL PROCEDURES							
(AN) - A Project:	RNEX RES	OURCES LIMITED	CHEMEX CODE	NUMBER		DESCRIPTION	METHOD	DETECTION LIMIT	Upper Limit		
P.O. # : Samples This re	Project: DBP P.O.#: Samples submitted to our lab in Vancouver, BC. This report was printed on 03-OCT-2000.			1	Cu %: Conc.	Nitric-HCl dig'n	ЛЛ З	0.01	100.0		
	SAM	PLE PREPARATION									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION									
212	1	Cverlimit pulp, to be found									
						·					
L											
								۸			
							· .				
			<u> </u>					****			

1	1		3
	a l	.5)

LS Chemex

Aurora Laboratory Services Ltd.

Anatytical Chemists * Geochemists * Registered Assayers

] [

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : DBP Commente: ATTN: ARNE BIRKELAND

Page Number :1 Total Pages :1 Certificate Date: 03-OCT-2000 Invoice No. :10030092 P.O. Number : Account :AN

APPENDIX C

ROCK CHIP GEOCHEMICAL DATA SHEET - DEER BAY PROPERTY - YEAR 2000

PROJECT: DBP

. C.F.

NTS: 092F/04,05

C:\myfiles\dbp\gcds2000rx.xis

<u>،</u> ۱.

Sample Number	Location Northing Westing	Rock Type	Sample Width Type	Alteration	Weathering	Minearalization	Observations Remarks
739101	Main Showing Main Massive Sulphide Zone Trench 1	Amphibolite	Chip Channe 1.2 m	Minor Chlorite	Mod +	Disseminated sulphides and 5 cm mass sulphide layers	Millerite, Violante, minor Chalcopyrite, Pyrite Ni rich layer
739102	Main Showing Main Massive Sulphide Zone Trench 2	Amphibolite:	Chip Channe 1 2 m	Black Chlorite Blebs	Mod	Disseminated sulphides and mass sulphide layers	Millerite, Violarite, Chalcopyrite, Pyrite Ni rich layer
739103	Main Showing Main Massive Sulphide Zone Trench 2	Amphibolite	Chip Channe 1.0 m	Black Chlorite Pyritic	Mod Gaod	Massive sulphides, mass Cpy to 8 cm, mass Py to 15 cm	Chalcopyrite, Pyrite Millerite. Violarite, Cu rich layer 050/-70W
739104	Main Showing Main Massive Sulphide Zone Trench 2	Amphibotite	Chip Channe 0.5 m	Black Chlorite Pyritic	Mod Good	Massive sulphides, disseminated sulphides to 20%	Millerite, Violante, Chalcopyrite, Pyrite Ni rich layer
739105	Main Showing Main Massive Sulphide Zone Trench 3	Amphibolite	Chip Channe 1.0 m	Black Chlorite	Good	Dessiminated and mass sulphides, 35 cm mass Millerite, Violarite layer, cpy clots to 2 cm,	Millerite, Violarite, Chalcopyrite, Pyrite Ni rich layer 110/-85W
739106	Main Showing Main Massive Sulphide Zone Trench 3	Amphibolite	Chip Channe 0.7 m	Black Chlorite	Good .	Dessiminated and mass sulphides, 35 cm mass Chalocpyrite layer	Chalcopyrite, Pyrite Millerite, Violarite, Cu rich layer 075/-55W
739107	Main Showing Main Massive Sulphide Zone Trench 3	Amphibolite	Chip Channe 0.7 m	Black Chlorite, Intense Green Chlorite	Mod	Massive, semi-mass and disseminated sulphides	Millerite, Violarite, Chalcopyrite, Pyrite Ni rich łayer
739108	Main Showing Main Massive Sulphide Zone Trench 4	Black Amphibolite with Felsic Gneiss layers	Chip Channe 1.5 m	Intense Black Chlorite, Biotite	Good	Massive, semi-mass and disseminated sulphides	Millerite, Violarite, Chalcopyrite, Pyrite Cu and Ni rich layers
739109	Main Showing Main Massive Sulphide Zone Trench 4	Fe [:] c Gneiss with Black Amphibolite layers	Chip Channe 1.0 m	Chlorite, Biotite	Good	Semi-mass and disseminated sulphides	Millerite, Vici , ite, Chalcopyrite, Pyrite Ni rich layers

APPENDIX C

1. 14

ROCK CHIP GEOCHEMICAL DATA SHEET - DEER BAY PROPERTY - YEAR 2000

PROJECT: DBP				NTS: 092F/04,05			C /myfiles/dbp/gcds2000rx.xis	• .	
Sample Number	Location Northing	Westing	Rock Type	Sample Type	Width	Alteration	Weathering	Minearalization	Observations Remarks
739110	Main Showing Main Massive Sulph Trench 5	iide Zone	Black Amphibolite layer hosted in Felsic Gneiss layers	Chip Channe	1.4 m	Intense, massive Black Chlorite - Blotite	Good	Massive and semi- massive Millerite, Violarite layer with disseminated Chalcopyrite - Pyrite layers	Predominantly Ni rich layers
739111	Main Showing Footwali Massive Sulphide Band		Contact between HW Amphibolite and FW Felsic Gneiss	Chip Channe	0.45 m	Muscovite - Saricite minor Black Chlorite, Talc? Clots	Very Poor Rusty rubbly outcrop, leached	Disseminated and massive concordant Pyrite layers with disseminated Chalcopyrite - Millerite - Violarite	Massive Pyrite mineralization underlying Black Amphibolite layer
739112	Main Showing Footwall Massive Sulphide Band		Amphibolite with minor Gaelss	Chip Channe	0.4 m	Propyllitic, Epidote, Enstatile Green Chlorite Talc? Clots	Poor, weathered and leached outcrop	Disseminated and massive concordant Pyrite layer with disseminated Chalcopyrite - Millerite - Violarite	Massive Sulphide in contact between Black Amphibolite and Felsic Gneiss layers :
739113	Main Showing Footwall Massive Sulphide Band		Black Amphibolite	Chip Channe	0.4 m	lotense Black Cholrite, minor Propyllitic, Epidote, Enstatite	Mod- Good	Massive concordant Chalcopyrite - Pyrite layer with disseminated Millerite - Violarite	Massive Sulphide in contact between Black Amphibolite and Felsic Gneiss layers
739114	Main Showing Footwall Massive Sulphide Band		Felsic Gneiss	Chip Channe	0.6 m	Dark Green Cholrite, Sericite - Muscovite, Talc? Clots	Mod	Dessiminated Pyrite locally to 40% over 2 cm	Sulphide Rich Footwall Gneiss
739115	Main Showing Fault Offset of Main Sulphide Band	I	Black Amphibolite	Chip Channe	0.2 m	Intense, massive Black Chlorite - Biotite	Mod	Mássive and Disseminated Sulphide Band	Mineralized Amphibolite Band, Pyrite and minor Cu - Ni Sulphides concordant to contact and fotiation
739116	Main Showing Fault Offset of Main Sulphide Band	I	Felsic Gneiss	Chip Channe	0.9 m	Minor Green Chlorite - Epidote	Poor, leached	Dessiminated Pyrite < 1%	Unmineralized Footwalł Gneiss
739117	Main Showing Main Sulphide Zone Trench 5		Blæ. Amphibolite	Chip Channe	1.0 m	Intense, massive Black Chlorite - Biotite, minor Epidote	P∽ır, leached	Pyrite + Cu - Ni Sulphide Bands + Dessiminated Sulphides	Massive Sulphide Banchi >60% sulphide over 2 cm, Sulphides concordant to contact and foliation

APPENDIX C

ROCK CHIP GEOCHEMICAL DATA SHEET - DEER BAY PROPERTY - YEAR 2000

PROJECT: DBP						2F/04,05		C./myfiles/dbp/gcds20D0rx.xis		
Sample Number	Location	Westing	Rock Type	Sample Type	Width	Alteration	Weathering	Minearalization	Observations Remarks	
739118	1150N	1380W	Green - Grey Meta-Intrusive Sill	Chip Channel	1.4 m AW	Silicification, Light Green Chlorite	Good except fractures	Massive Pyrite Dessiminated Chalcopyrite Veinltes along hairline fractures	Layered Sill with Sulphide Veinlets	
739119	1110N	1850W	Light Grey - Green Fine - Med Grained Subhedral Diorite	Chip Channel	1.3 m AW	Moderate - Intense Propylitic, Dark Green Chlorite	Good	Disseminated Pyrite, 5% - 10%, Coarse grained euhedral cubes, Pyrite re-crystalized	Meta Diorite phase of Gabbro intrusive Complex	
739120	1140N	1390W	Layered Dark - Light Green Felsic - Mafic Layered Meta-sill	Angular Float	0.4 m AW	Silicification, Weak Propylitic "Cooked" and Re-crystalized	Good	Massive Pyrite >60% Band. 3 cm thick, Layered coarse and fine grained sulphides	Massive sulphide lamini concordant to contact of mafic - felsic layered sill	
739121	1350N Elev	1850W 1580'	Skarn, Dark Green, Euhedral, Very Coarse Grained, Foliated	Sub-angular Float	0.4 m AW	Massive Manganese Garnet Skarn Assemblage	Poor, Leached Boxworks	Pyrolusite - Manganese 50% - 75%	Very altered and re-crystalized Intrusive (Sill?) related Skarn and Wad	
739122	1330N Elev	1550W 1290'	Dark Grey, Fine Graine Amphibolite	t Angular Float	0 2 m AW	Re-crystalized Dark Chlorite Clots	Mod, Rusty Weathering	Disseminated and laminated Pyrite <5%	Sulphide Mineralized Amphibolite Sill?	
739123	1170N Elev	1850W 1040'	Banded Ankerite - Epidote Skarn	Sub-angular Float	0.2 m AW	Intense Skam - Manganese	Weathered, Leached	Very minor Pyrite	Rod shaped euhedral manganese (Tremolite) crystal intergrowths in Ankerite	
739124	910N	1480W	Banded Massive Sulphides in Amphibolite - Olivine "Sheeted" Gabbro Sill?	Angular Float "Near Source"	0.3m AW x 1m	Black Chlorite, Biotite	Good	Pyrite Bands >80%, massive and coarse crystaline	Two 5-8cm Massive Sulphide Bands in large Gabbro - Amphibolite Float Block	
739125	800N	1520W	Light Grey Felsic Gneis Interlayered with Dark Green Pyroxenite Layers	s Angular Float in Till, "Near Source"	0 [°] 3m AW	Silicification, Pyrite	Good	Concordant Laminated Pyrite and minor Chalcopyrite	Sulphides concentrated in Pyroxent Layers	
731 (26	820N	1540W	Layered Amphibolit- Pyroxenite	Angular Float in Till, "Near Source"	0.34m AW	Black Chlorite - Amphibole - Biotite	Good	Massive Pyrite - Pyrrhotite Bands to 2 cm. Sulphides = 50% over 34 cm	Sulphides in Layered Amphib ^{er (} Pyroxenite Sill? Complex	

.

Magnetometer Survey Deer Bay Property

Operator: A. O. Birkeland Dates: August 9 to September 15, 2000

Notes Time Base Station Station Reading Elevation Co-ordinates (feet) (gammas) (gammas) Northing Westing 4:07 Base Line Base Line 4:13 Base Line 4:16 Base Line 4:19 Base Line 4:23 Close Loop 4:30 Base Line 4:37 4:52 Base Line Base Line 4:57 Base Line 5:05 Base Line 5:12 Base Line 5:18 Base Line 5:22 Close Loop 5:50 11:11 Base Line Base Line 11:14 11:17 Base Line Base Line 11:21 Base Line 11:25 Base Line 11:28 Base Line 11:31 Base Line 11:34 Base Line 11:53 11:59 Base Line 12:03 Base Line 12:09 Base Line 12:15 Base Line 12:29 Close Loop Line 1200N 1:42 Line 1200N 1:51 Line 1200N 1:58 Line 1200N 2:01 Line 1200N 2:04 2:09 Line 1200N 2:14 Line 1200N 2:20 Line 1200N Line 1200N 2:23 2:29 Line 1200N 2:34 Line 1200N 2:38 Line 1200N Line 1200N 162Q 2:43 2:55 Line 1200N Close Loop 3:17

Page 1 of 5

× --٤... **b** -

Magnetometer Survey Deer Bay Property

Operator: Dates:	A O Birketar August 9 to S	id eptemper 15, 2000	Page 2 of 5			
Co-ordinates Northing	Westing	Base Station (gammas)	Station Reading (gammas)	Elevation (feel)	Time	Notes
	1500	55330		96()	10:20	
200	1000	00000	55190	1050	10:44	Line 123
200	1610		55361	1050	11:02	Line 123
230	1510		66226	1040	11:10	Line 123
230	1320		65284	1060	11:15	Line 120
230	1330		55415	1060	11:10	Line 12
230	1340		33410 66696	1060	11:29	Line 120
230	1530		55100	1040	11-23	Line 12:
230	1560		33499	1040	11.00 41.49	Line 12
230	1570		33413	1000	11.44	Line 12
230	1580		55498	1080	11.00	
230	1590		55423	1080	11.00	Line 12
230	1600		55350	1060	12.03	Luie 12
230	1610		55383	1080	12:10	Line 12
230	1620		55398	1060	12:18	Line 12
230	1630		55411	1080	12:36	Line 12.
200	1500	55256		980	1:03	Close L
200	1500	55265			1000 1:20	11
260	1500		55304	1140	1:38	Line 12
260	1510		55363	1155	1:33	Line 12
260	1520		55376	1160	1:42	Line 12
260	1530		55386	1165	1:50	Line 12
260	1540		55375	1160	1:58	Line 12
260	1550		55408	1140	2:10	Line 12
260	1560		55477	1145	2:18	Line 12
260	1570		55403	1140	2:27	Line 12
260	1580		55325	1125	2:36	Line 12
260	1590		55282	1140	2:46	Line 12
260	1600		55358	1160	2:51	Line 12
260	1610		55465	1165	3:00	Line 12
260	1620		55482	1160	3:06	Line 12
260	1630		55440	1175	3:15	Line 12
260	1640		55491	1180	3:22	Line 12
200	1500	55331	00101	960	3:48	Close L
200	1500	55349		960	3:55	Line 12
290	1500	00010	55226	1220	4:25	Line 12
290	1510		55247	1240	4:33	Line 12
200	1520		55223	1255	4:30	Line 12
200	1520		55240	1260	4:46	Line 12
200	1540		55078	1266	4:54	Line 12
1290	1540		55261	1260	4.54	Line 12
290	1500		33361	1260	5:01	Line 12
290	1060		00390	1200	5.10	Line 12
290	1570		35377	1200	5.10	Line 12
290	1580		55369	1265	5:28	Line 12
290	1590		55370	1260	5:33	Line 12
290	1600		55324	1260	5:38	Line 12
290	1610		55276	1280	5:48	Line 12
290	1620		55358	1285	5:55	Line 12
290	1630		55283	1280	5:59	Line 12
290	1640		55270	1280	6:0B	Line 12
290	1650		55274	1290	6:14	Line 12
290	1660		55299	1295	6:22	Line 12
290	1670		55304	1280	6:31	Line 12
290	1680		5533B	1285	6:37	Line 12
290	1690		55302	1295	6:43	Line 12
290	1700		55259	1290	6:49	Line 12
290	1710		55274	1300	6:56	Line 12
290	1720		55341	1315	7:06	Line 12
290	1730		55330	1320	7:13	Line 12
1290	1740		55325	1320	7:18	Line 12
290	1750		55394	1325	7.95	Line 12
290	1760		66414	1320	7.21	Line 10
290	1770		55402	1340	7.01	Line 12
290	1780		66299	1040/	7.41	
290	1700	`	00000 66010	1343	7:47	
200	100		50319	1320	7:55	Line 12
200	1000		00327	1340	6:03	Line 12
280	1610		55361	1320	B:10	Line 12
200	1000	55372		1000	B:33	Close 1

.

· · · · · · · · · · · · · · · · · · ·
Γ
Γ
Γ
L
Γ
Γ
Γ
L
-
. .
.
44
-
ь.
i
الاست
-
b #
Γ
-
_

[

<u>.</u>

b. ____

ы. ... ---

÷....

-

b-----

-

_ **.**....

-

-. ••••••

1

. .

Magnetometer Survey Deer Bay Property

A. O. Birkeland August 9 to September 15, 2000

Page 3 of 5

.

Oales:	August 9 to S	aplember 15, 2000				
Co-ordinales Northing	Westing	Base Station (gammas)	Station Reading (gammas)	Elevation (feel)	Time	Noles
1200	1500	55246		980	9:45	
1470	1500	002-10	55228	915	9.49	Line 117
1170	1550		66333	230	9.55	Lune 117
1170	1510		00022	035	10:02	L no 117
1170	1520		55341	930	+0.05	Line 111
1170	1530		55328	940	10:U9	Line 17
1170	1540		55306	94C	10:15	Lice TV
1170	1550		55288	945	10.23	Line 11
1170	1560		55265	955	10:30	Line 11
1170	1570		55229	960	10 37	Line 11
1170	1680		55214	970	10:47	Line 11
1170	1560		00219	076	10.67	tine 11
11/0	1590		00206	970	10.52	Line 11
1170	1600		55275	965	10:55	
1170	1610		55242	985	11:04	Line 11
1170	1620		55290	980	11:11	Line 11
1200	1500	55225		1000	11:20	Close L
1200	1500	55245		990	11:26	
1140	1500		55276	915	11:40	Line 11-
1140	1510		55314	920	11:49	Line 114
1140	1520		55287	935	11.55	Line 11
1.140	1.520		55207	005	12 32	Line 11
1140	1530		00240	920	10.40	Line II
1140	1540		55232	325	12.50	Line 11
1140	1550		65255	920	12:18	Line 11
1140	1560		55287	930	12.25	Line 11
1140	1570		55361	935	12:32	Line 11
1140	*580		55383	935	12:37	Line 11
1140	1500		66242	040	12:44	Line 11
1140	1590		00042	050	10.50	Line 11
1140	1600		55338	920	12:52	Line H
1140	1610		55350	970	1:08	Line 11
1140	1620		55358	965	1:12	Line 11
1140	1630		55283	970	1:18	Line 11
1140	1640		55275	965	1:23	Line 11
1140	1650		93301	980	1:33	Line 11
1140	1000		56007	075	1:30	Line 11
1140	1660		55327	973	1.58	
1140	1670		55364	980	1:45	Line 11
1140	1680		55338	980	1:53	Line 11
1140	1690		55302	970	2 00	Line 11
1140	1700		55349	990	2 08	Line 11
1140	1710		55375	98C	2:14	Line 11
1200	1500	55248	360. G	965	3:00	Close L
1200	1500	55245		990	3:05	
1110	1600	50210	55794	835	3.21	Line 11
1110	1500		55224	000 000	2.24	Lion 17
1110	1510		553 (4	030	3.20	Line 12
1110	1520		55267	840	3:34	Line 12
1110	1530		55246	850	3:42	Line 12
1110	1540		55232	855	3:50	Line 12
1110	1550		55255	850	3:54	Line 12
1110	1560		55287	845	4:00	Line 12
1110	1570		55361	860	4:14	Line 12
1110	1500		CEOOD	000 820	4.14 4.00	Line 12
1110	1580		55385	030	4:20	Line 12
1110	1590		5534Z	535	4:27	Line 12
1110	<u>,</u> 1600		55379	565	4;35	Line 12
1110	1610		55343	876	4:44	Line 12
1110	1620		55350	880	4:50	Line 12
1110	1630		55364	890	5.00	Line 17
1110	1030		333QM	000	0.00	Litter 12
100	040		00346	683	5:07	Line 12
1110	1650		55309	895	5:15	Line 12
1110	1660		55276	905	5:24	Line 12
1110	1670		55283	915	5:29	Line 12
1110	1680		55303	910	5.95	Line 17
1110	1000		55003	016	0.00 F.44	Line 14
1110	1030		30340	915	3.44	Line 12
1110	1700		55326	915	5:50	Line 12
1110	1710		55312	905	5:57	Line 12
1110	1720		55336	920	6:06	Line 12
1110	1730		55316	915	6:14	(ine 12
1110	1740		55946	920	6:10	Line 12
1110	1750		00340	320	0.19	Line 12
1110	1750		55325	925	6:26	Line 12
1110	1760		55312	930	6:35	tine 12
1110	1770		55306	935	6:41	Line 12
1110	1780		55329	945	6:50	1 ina 12
1110	1700		55254	04E	0.00	Line 12
	17.50		00304	940	0,05	Line 12
1200	1500	ECO.		1015	701	

Magnetometer Survey Deer Bay Property

A. O. Birkeland August 9 to September 15, 2000

Γ

İ...

L

• -*.....*

۰. ____

b.

: |-----

_

<u>.</u>__

÷....

- -

Page 4 of 5

perator: ates:	A O Birkelas August 9 to Se	d antember 15, 2000			Page 4 or 5	
o-ordinales	7.4gut 0 10 0	Base Station	Station Reading	Elevator	Time	Notes
arthing	Westing	(gammas)	(gairimas)	(feet)		
200	150D	55378		960	9.05	
200	1490		55369	940	9 09	Line 1200N
200	1480		55287	960	9:28	Line 1200N
200	1470		56394	960	9 35	Line 1200N
:00	1460		55303	965	9:41	Line 1200N
200	1450		55289	960	9:44	Line 1200N
00	1440		56277	965	9:51	Line 1200N
00	1430		55341	970	9:59	Line 1200N
200	1420		55228	975	10 07	Line 1200N
:00	1410		65206	980	10 15	Line 1200N
00	1400		55202	975	10.21	Line 1200N
:00	1390		55186	990	10.33	Lina 1200N
Da	1380		55216	985	10:39	Line 1200N
DO	1370		55235	990	10:45	Line 1200N
00	1360		55235	990	10:51	Line 1200N
00	1350		55204	995	10;59	Line 1200N
ap	1340		55234	1000	11:08	Line 1200N
αρ	1330		55245	1000	11:15	Line 1200N
ñ	1320		55239	1005	11:22	Line 1200N
- n	1910		55222	1010	1.:25	_ine 1200N
ň	1500	56303	UVELE		12.22	Cipse Loor
	1000	40442			1 E E	0.000 2.000
a		65370		980	9.05	
ບ ທ	1500	00070	55298	940	9-09	Line 1230N
м Ю	1/00		55273	940	9/28	Line 17200
N	1430		6 (100 Argaa	300 080	0.20	Line 1200N
u a	1480		00340	900	5.33	LING 1230N
<u>, </u>	14/0		05372	900	5:41	LING 12,30N
5U	1460		55335	900	8:44 5:54	LINE 1230N
30	1450		33302	955	9:01	Line 1230N
30	144D		55349	970	9:59	Line 1230N
30	1430		55334	975	10:07	Line 12306
30	1420		55298	960	10:15	Line 1230N
30	1410		56267	975	10.21	Line 1230N
30	1400		55224	990	10:33	Line 1230h
30	1390		55259	985	10:39	Line 1230N
30	1380		55275	990	10:45	Line 1230N
30	1370		55303	99G	10:51	Line 1230N
10	1360		55324	995	10:59	Line 1230N
30	1350		56339	1000	11:08	Line 1230N
30	1340		55313	1000	11:14	Line 1230N
00	1500	55392		985	11:28	Close Loop
no	1500	55379		960	11:51	
20	1500	00010	55344	1075	10.01	L ma 10004
50 DO	1300		20244	.220	12,14	
10	1490		55326	1215	12:20	LINE 12905
U N	14BU		5527B	1210	12:25	Line 1290
10 10	7470		55265	1230	12:45	Line 12905
JU OD	-460		55280	1235	12:51	Line 129D/
U.	1450		55304	1230	12:56	Line 12905
JD.	1440		55278	1235	1 07	Line 12905
90-	1430		55297	1240	1:15	Line 1290ስ
10	1420		55269	5240	1.22	Line 1290*
0	1410		55309	1235	1.28	Line 1290*
10	1400		55277	1245	1:38	Line 12901
0	1390		55221	1250	1:46	Cine 12901
)	1380		55258	1255	1:52	Line 1290N
Û	1370		55264	1260	2:00	Line 1290)
0	1360		55296	1265	2:07	Line 1290h
iû	1350		55276	1270	2:16	Line 1290
30	1340		55263	1260	2.25	Line 1290M
ō	1500	55404	*****	985	2.52	Cipse Loor
-				***		0.000 240
)	1500	55390		960	3.00	
)	1500		55376	920	3.10	Line 11704
د	1490		55359	910	3 15	Lne 1170
)	1480		55367	900	3 2 1	Lne 11704
5	1470		55356	905	3.33	Line 11704
70	1460		66394	910	3:45	Line 1*70#
70	1450		56410	010	3.51	Line 14704
70	1440		56382	970	3.51	Line 11700 Line 11705
ñ	1/30		3030£ 56267	320 025	3.00	
70	1430		0030/ 56400	923	4:05	Line 1170N
20	1420		00429	930	4:15	Line 11/0N
70 70	1410	×	55398	930	4:22	Line 1170N
0	1400		55375	935	4:29	Line 1170N
115	1390		55324	945	4:36	Line 1170N
U .						
0	1380		55198	955	4:50	Line 11/UN

Magnetometer Survey Deer Bay Property

Operator. A. O. Birketand Dates. August 9 to September 15, 2000

Page 5 of 5

.

Co-ordinates Northing	Westing	Base Station (gammas)	Station Reading (gammas)	Elevation (fect)	Lime	NOCES
1200		1500 55340		960	9:33	
1140	1500	:000 000 :-	55302	850	9:47	Line 1140
1140	1/90		55287	845	9:53	Line 1140
1140	1480		55260	835	18:00	Line 1140
1140	1470		55234	825	10:10	Line 1140
1140	1460		55268	835	10:24	Line 1140
1140	1450		55275	840	10:32	Line 1140
1140	1440		55316	835	10:40	Line 1140
1140	1430		55328	830	10:46	Line 1140
1140	1420		55300	835	10:53	Line 1140
1140	1410		55295	835	11.00	Line 1140
1140	1400		55327	845	11:08	Line 1140
1140	1390		55351	850	11:16	Line 1140
1140	1390		55383	855	11:25	Line 1140
1140	1370		55555	860	11:20	Line 1140
1140	13/0		55250	966	11:46	
1140	1360		50552	000	11.40	Line 1140
1140	1350		55310	870	11:52	
1140	1340		55293	865	11:59	Line 1140
1140	1330		55267	860	12:06	Line 1140
1140	1320		55275	865	12:13	Line 1140
1140	1310		55261	875	12:22	Line 1140
140	1500	55328		945	12:44	Close Lo
1200	1500	55353		960	1:20	
1110	1500		55259	805	1:42	Line 1110
1110	1490		55230	7 9 5	1:50	Line 111(
1110	1480		55216	790	1.59	Line 1110
1110	1470		55206	780	2:08	Line 1110
1110	1460		55228	765	2:19	Line 1110
1110	1450		55216	755	2:28	Line 1110
1110	1440		55251	760	2:34	Line 1110
1110	1430		55240	770	2:44	Line 1110
1110	1420		55220	770	2:50	Line 1110
1110	1410		55247	760	2.59	Line 1110
1110	1400		55278	765	3:10	Line 1110
1110	1300		20276	770	9:18	Line 111(
1440	1390		55290	775	3.24	Line 1110
1110	1970		55260	776	3.23	Une 111
1110	1370		55267	770	3.33	111 توادات 1116 موزا
1110	1360		00200	770	3.39	Liog 1110
1110	1350		55250	770	3.52	
1110	1040		00201	700	4.00	
1110	1330		55240	770	4:14	Line 110
1110	1320		00207	760	4.20	
1110	1310		55240	785	4:31	EINE 111
1110	1300		55243	785	4:43	Line 1110
1110	1500	55394		985	5:24	Close Lo
1200	1500	55339		960	10:25	
1260	1500		55318	1120	10:47	Line 126
1260	1490		55294	1105	10:55	Line 1260
1260	1480		55310	1110	11:05	Line 1260
1260	1470		55323	1110	11:11	Line 126
1260	1460		55291	1115	11:16	Line 126
1260	1450		55308	1110	11:24	Line 1260
260	1440		55326	1120	11:35	Line 1260
1260	1430		55339	1125	11.43	Line 126/
260	1420		55311	1130	11.50	j ina 126/
260	1410		55287	1120	11.58	ana 196/
1260	1400		55260	1120	10.45	1 100 1200
1260	1390		66246	1140	12.12	
1260	1390		00240	1140	12.20	
1260	1300		55260	1140	12:26	Line 1260
1200	1370		55298	1150	12:34	Line 1260
200	1360		55303	1145	12:41	Line 1260
1260	1350		55294	1150	12:52	Line 1260
260	1340		55318	1155	12:59	Line 1260

h----_ **6**..... ____ **N** --<u>ب</u> 1 --٢ **b**rand **.**.... **—** --

ŗ

- -

APPENDIX E

[

-

۴.

h - 4

Ĺ.,

Deer Bay Property - Year 2000 Field Crew Daily Reports

Date	Name	Title	Description
25-Jun-00	Ame O. Birkeland	P. Eng., Geological	Travel, build camp
26-Jun-00	Arne O. Birkeland	P. Eng., Geological	Trail Re-Habilitation
27-Jun-00	Ame O, Birkeland	P. Eng., Geological	Prospecting, rock chip sampling
28-Jun-00	Ame O. Birkeland	P. Eng., Geological	Trail Re-Habilitation
29-Jun-00	Ame O. Birkeland	P. Eng., Geological	Trail Re-Habilitation, log ladder construction
30-Jun-00	Arne O. Birkeland	P. Eng., Geological	Prospecting, rock chip sampling
01-Jul-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, prospecting, rock chip sampling
02-Jul-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, prospecting, rock chip sampling
03-Jul-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, prospecting, rock chip sampling
04-Jul-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, break camp, Travel
08-Aug-00	Arne O. Birkeland	P. Eng., Geological	Mobilize, Travel
09-Aug-00	Arne O. Birkeland	P. Eng., Geological	Travel, build camp
10-Aug-00	Arne O. Birkeland	P. Eng., Geological	Prospecting, rock chip sampling
11-Aug-00	Arne O, Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
12-Aug-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
13-Aug-00	Ame O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
1 4 -Aug-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
15-Aug-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey, J Houle tour
16-Àug-00	Arne O. Birkeland	P. Eng., Geological	Mapping, rock chip sampling
17-Aug-00	Arne O. Birkeland	P. Eng., Geological	Prospecting, rock chip sampling
18-Aug-00	Ame O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
19-Aug-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
20-Aug-00	Arne O. Birkeland	P. Eng., Geological	Grid lay-out, magnetometer survey
21-Aug-00	Arne O. Birkeland	P. Eng., Geological	Prospecting, rock chip sampling, mag survey
22-Aug-00	Arne O. Birkeland	P. Eng., Geological	Prospecting, rock chip sampling, mag survey
23-Aug-00	Arne O, Birkeland	P. Eng., Geological	Break camp, Travel
25. Jun-00	Daul Require	Field Accistont	Travel, build camp
26- Jun-00	Paul Beaupre	Field Acsistant	Trail Re-Habilitation
27-Jun-00	Paul Resume	Field Assistant	Prospecting, rock chip sampling
28-Jun-00	Paul Beaupre	Field Assistant	Trail Re-Habilitation
29-34n-00	Paul Beaunre	Field Accietant	Trail Re-Habilitation log ladder construction
30-Jun-00	Paul Resurre	Field Assistant	Prospecting rack chin sampling
01101-00	Paul Beaupre	Field Assistant	Grid lay-out prospecting, rock chin sampling.
02-44-00	Paul Beaupre	Field Assistant	Grid lay-out, prospecting, rock chip sampling
03. Jul-00	Paul Resurre	Field Assistant	Crid lay-out, prospecting, rock chip sampling
04101-00	Paul Beaupre	Field Accietant	Grid lay-out, prospecting, rock chip sampling
o∓ vur vu	r aar ocaupie	neiu Assistant	Shunay-but, break bamp, Haver
10-Aug-00	Sonia Vergottini	Field Assistant	Prospecting, rock chip sampling
16-Aug-00	Sonia Vergottini	Field Assistant	Mapping, rock chip sampling
17-Aug-00	Sonia Vergottini	Field Assistant	Prospecting, rock chip sampling