ASSESSMENT REPORT- 2000 EXPLORATION PROGRAM

KEMESS PROPERTY:

DIAMOND DRILL AND GEOPHYSICAL PROGRAMS

OMENICA MINING DIVISION BRITISH COLUMIA

CENTERED ON:

LATITUDE: 57' 00' North LONGITUDE: 126' 50' WEST

NTS 94E/2 & 94D/15

RECEIVED GOVERNMENT AGENT SMITHERS	ľ
FEB 10 2001	
NOT AN OFFICIAL RECEIPT	
TRANS #	

-By-

Northgate Exploration Ltd. #9-3167 Tatlow Road P.O. Box 3519 Smithers, B.C. V0J-2N0

FEBRUARY 2001 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

26

Adrian D. Bray B.Sc.H.

Brett Lapeare B.Sc.

1.0 EXECUTIVE SUMMARY

The Kemess property is located approximately 250 kilometres north of Smithers in northcentral British Columbia, in the South Toodoggone mining camp of the Omineca Mining Division. This report highlights the diamond drilling and geophysical programs on the Kemess property for the period of May 1st to December 7th, 2000.

A total of 5,433.91 metres of diamond drilling were perforated in seventeen holes; four holes were drilled on the Kemess Centre target area, one stratigraphic hole in the Kemess South Mine and twelve holes on the Kemess North deposit. A total of 2,373 samples were collected for fire assay gold and ore grade copper analyses. Seventy-five samples were submitted for 32-element ICP. Six and one-half line kilometers of induced polarization, resistivity, magnetic field strength and gamma ray spectrometry surveys were conducted on the Kemess Centre target.

Diamond drilling and geophysics were employed to test for new areas of porphyry-type mineralization at the Kemess Centre target. At the Kemess South Mine, a diamond drill hole was perforated on the western extremity of the open pit in order to provide a better understanding of the stratigraphy and structure in an area that has received only limited historical drilling. The objectives of the diamond drilling on the Kemess North deposit were:

- a) to infill significant gaps in the previous drilling in order to enable a more precise ore resource calculation
- b) to define and test for higher grade zones
- c) to gain intersections at various depths for specific gravity and metallurgical testing

A detailed description of the Kemess South Mine and Kemess North deposit by Rebagliati et. al., 1995 is provided as an overview to the reader. The year 2000 diamond drilling exploration program outlined a new high-grade porphyry system to the east of the known Kemess North deposit, at 200 m below surface. Together with previous exploration data, the year 2000 exploration program has defined a geological resources of 360 million tonnes grading 0.154% Cu and 0.299 gAut. Further diamond drilling and

geophysical program are recommended in order to test the newly discovered porphyry system and to evaluate the mineralization potential at northeast edge of the Kemess North deposit.

Diamond drilling at the Kemess Centre target intersected lithologies, alteration and mineralization, which may be indicative of a proximal intrusive body and fluid source. One diamond drill hole is recommended to evaluate a previously defined IP anomaly.

×,

TABLE OF CONTENTS

C

(

Ċ

1.0	EXECUTIVE SUMMARY
2.0	INTRODUCTION
3.0	LOCATION AND ACCESS
4.0	CLAIM DATA9
5.0	DISTRICT EXPLORATION AND MINING HISTORY 16
6.0	REGIONAL GEOLOGY18
7.0	STRUCTURAL SETTING
8.0	STRATIGRAPHY
8.1 8.2 8.3 8.4	ASITKA GROUP (MID-PENNSYLVANIAN TO LOWER PERMIAN) 20 TAKLA GROUP (UPPER TRIASSIC)
9.0	PROPERTY GEOLOGY
9.1 9.2 9.3	KEMESS SOUTH MINE22KEMESS NORTH DEPOSIT27KEMESS CENTRE31
10.0	2000 KEMESS SOUTH MINE EXPLORATION
10.1	
11.0	2000 KEMESS NORTH DEPOSIT EXPLORATION
12.0	2000 KEMESS CENTRE EXPLORATION 40
12.1 12.2	
13.0	CONCLUSIONS AND RECOMMENDATIONS
14.0	STATEMENT OF COSTS
15.0	STATEMENT OF QUALIFICATIONS
1 6.0	REFERENCES
17.0	LIST OF APPENDICES

LIST OF FIGURES

- - -

 $\left(\right)$

(

FIGURE 1: KEMESS PROPERTY LOCATION MAP	
FIGURE 2: GENERALIZED CLAIM BOUNDARIES AND PROPERTY GRID	
FIGURE 3: CLAIM MAP	
FIGURE 4: REGIONAL GEOLOGY	
FIGURE 5: KEMESS PROPERTY GEOLOGY	
FIGURE 6: GEOLOGY OF THE KEMESS SOUTH MINE	
FIGURE 7: KEMESS NORTH DEPOSIT GEOLOGY	
FIGURE 8: KEMESS SOUTH MINE 2000 EXPLORATION DRILL HOLE PLAN,	
FIGURE 9: KEMESS NORTH DEPOSIT 2000 EXPLORATION DRILL HOLE PLAN	
FIGURE 10: KEMESS CENTRE 2000 EXPLORATION DRILL HOLE PLAN	41
FIGURE 11: KEMESS SOUTH MINE SECTION 9500	APPENDIX 1
FIRGUE 12: KEMESS NORTH DEPOSIT SECTION 9660	APPENDIX 2
FIGURE 13: KEMESS NORTH DEPOSIT SECTION 9860	APPENDIX 2
FIGURE 14: KEMESS NORTH DEPOSIT SECTION 9960	APPENDIX 2
FIGURE 15: KEMESS NORTH DEPOSIT SECTION 10060	APPENDIX 2
FIGURE 16: KEMESS NORTH DEPOSIT SECTION 10160	APPENDIX 2
FIGURE 17: KEMESS NORTH DEPOSIT SECTION 10260	APPENDIX 2
FIGURE 18: KEMESS NORTH DEPOSIT SECTION 10360	APPENDIX 2
FIGURE 19: KEMESS CENTRE SECTION 9260	APPENDIX 3
FIGURE 20: KEMESS CENTRE SECTION 8800	
FIGURE 21: KEMESS CENTRE SECTION 9600	APPENDIX 3
FIGURE 22: KEMESS CENTRE SECTION 8600	APPENDIX 3

LIST OF TABLES

TABLE 1: CLAIM INFORMATION	9
TABLE 2: SIGNIFICANT ASSAYS DDH 2000-06	32
TABLE 3: KEMESS NORTH DRILL HOLE LOCATION SUMMARY	34
TABLE 4: SIGNIFICANT ASSAYS KEMESS NORTH DEPOSIT PHASE 1 DRILLING	37
TABLE 5: SIGNIFICANT ASSAYS KEMESS NORTH DEPOSIT PHASE 2 DRILLING	
TABLE 6: KEMESS CENTRE DRILL HOLE LOCATION SUMMARY	40
TABLE 7: ASSAY RESULTS FOR KC-00-01	43
TABLE 8: SUMMARY OF ANOMALOUS ASSAYS FOR KC-00-02	44
TABLE 9: SUMMARY OF ANOMALOUS ASSAYS FOR KC-00-03	45
TABLE 10: SIGNIFICANT ASSAY SUMMARY FOR KC-00-04	
TABLE 11: EXPLORATION COSTS BY CATEGORY	

۰.

2.0 INTRODUCTION

The Kemess property, owned by Northgate Exploration Ltd., is located approximately 250 kilometres north of Smithers in north-central British Columbia. The 77,000-acre property is comprised of 185-staked mineral claims and 1 mining lease, and is in the Southern Toodoggone mining camp of the Omineca Mining Division.

Vehicle access to the property is via the Omineca Resource Access Road. A 1,600 metre airstrip, located approximately 1,600 metres southwest of the main Kerness South Mine site, provides fixed-wing commuter air access from Prince George and Smithers.

The property is situated in a mineral rich area with extensive overburden. Several regional lineaments suggest promising exploration potential. However, due to thick overburden the area has received only minimal exploration work. Rebagliati et al., 1995, have suggested that the area has the potential to host any one of the following styles of mineralization:

- shear-hosted Au deposits
- Sustut copper deposit style Cu mineralization
- stockwork and replacement Au-Cu deposits in Sustut Group sediments related to Eocene Katsberg felsic intrusions
- porphyry Cu, Cu-Au-Mo plugs related to Jurassic, Cretaceous and Tertiary felsic plutons
- volcanogenic deposits related to subaqueous Triassic/Jurassic volcanics

The exploration program on the Kemess Centre prospect consisted of 6.5 kilometres of magnetic, radiometric, induced polarization and resistivity geophysical surveys by Delta Geoscience Ltd., and a four-hole diamond drill program totaling 1,015 metres. Grids and trails were established to access this prospect. Twelve HQ/NQ diamond drill holes totaling 4,104.50 metres were drilled on the Kemess North deposit. One stratigraphic drill hole totaling 314.46 metres was drilled at Kemess South, on the western pit of the mine. Drill core is stored on site at the Kemess South Mine. A total of 2,373 drill hole samples were submitted to ASL Chemex and Assayers Canada for fire assay gold and ore grade copper analyses. ASL Chemex conducted ICP analyses on 75 drill hole samples.

3.0 LOCATION AND ACCESS

The Kemess property is located in the Quesnel Trough of north-central British Columbia, approximately 250 kilometres north of Smithers, and is centered on latitude 57° 00' north, longitude 126°50' west in the Omineca Mining Division, NTS sheet 94E/2 and 94D/15 (Figure 1). Access to the property is from Fort St. James or Mackenzie via the Omineca Resources Access Road, or via fixed-wing commuter aircraft to the Kemess South Mine airstrip.

The Kemess property lies in the Artic drainage system on the western margin of the Swannell Range of the Omineca Mountains, at the transition to the more gentle terrain of the Bowser Basin and Spatsizi Plateau. Topography within the property ranges from very moderate rounded terrain to steep rocky bluffs. Elevations range from 1,200 to 1,900 metres. At the Kemess South Mine the topography is gentle with 5[•] to 15[•] southsouthwest facing slopes. The Kemess North deposit lies within a broad cirque, open to the north, and bound by moderate ridges to the east and west, and is confined by a steep headwall to the south. A mixed subalpine coniferous forest of spruce, fir and lodgepole pine covers most of the claims. Above 1,500 m in elevation the subalpine forest gives way to alpine vegetation. A 1 to 2 m thick peat layer, supporting willow and alder bushes and scattered stunted spruce trees, characterizes local areas of poor drainage.

The climate is generally moderate, although highly changeable. Temperatures range from $+30^{\circ}$ to -35° Celsius. Precipitation, at 890 mm per year, is also moderate and is more or less uniformly distributed throughout the year.

The Kemess properties consists of 185 staked mineral claims and 1 mining lease on Crown Lands covering an area of approximately 26,075 hectares. The claims are situated in the Omineca Mining Division of British Columbia on NTS map sheets 94E2W, 94E2E, 94D15W and 94D15E.

Pertinent claim information is outlined in Table 1, with the generalized claim boundaries and property grid illustrated in Figure 2. Individual claims are shown more specifically in Figure 3.

CLAIM	TENURE #	TAG #	MAP NUMBER	STATUS	UNITS	HECTARES	ACRES
Aero 1	343151	665841M	094E02W	15-Dec-01	1	25	61.78
Aero 10	343160	665850M	094E02W	15-Dec-01	1	25	61.78
Aero 2	343152	665842M	094E02W	15-Dec-01		25	61.78
Aero 3	343153	665843M	094E02W	15-Dec-01	1	25	61.78
Aero 4	343154	665844M	094E02W	15-Dec-01	1	25	61.78
Aero 5	343155	665845M	094E02W	15-Dec-01	1	25	61.78
Aero 6	343156	665846M	094E02W	15-Dec-01	1	25	61.78
Aero 7	<u>34</u> 3157	665847M	094E02W	15-Dec-01	1	25	61.78
Aero 8	343158	665848M	094E02W	15-Dec-01	1	25	61.78
Aero 9	<u>34</u> 3159	665849M	094E02W	15-Dec-01	1	25	61.78
Air 1	315248	635301M	094E02W	15-Dec-01	1	25	61.78
Air 10	315257	635310M	094E02W	15-Dec-01	1	25	61.78
Air 11	315258	635311M	094E02W	15-Dec-01	1	25	61.78
Air 12	315259	635312M	094E02W	15-Dec-01	1	25	61.78
Air 13	315260	635313M	094E02W	15-Dec-01	1	25	61.78
<u>Air 14</u>	315261	635314M	094E02W	15-Dec-01	1	25	61.78
Air 15	315262	635315M	094E02W	15-Dec-01	1	25	61.78
<u>Air 16</u>	315263	635316M	094E02W	15-Dec-01	1	25	61.78
<u>Air 17</u>	315264	635317M	094E02W	15-Dec-01	1	25	61.78
Air 18	315265	635318M	094E02W	15-Dec-01	1	25	61.78
<u>Air 19</u>	315266	635319M	094E02W	15-Dec-01		25	61.78
<u>Air</u> 2	315249	635302M	094E02W	15-Dec-01	1	25	61.78
Air 20	315267	635320M	094E02W	15-Dec-01	1	25	61.78
Air 21	315268	635321M	094E02W	15-Dec-01	1	25	61.78
Air 22	315269	635322M	094E02W	15-Dec-01	1	25	61.78
Air 23	315270	635323M	094E02W	15-Dec-01	1	25	61.78
Air 24	315271	635324M	094E02W	15-Dec-01	1	25	61.78
Air 25	315272	635325M	094E02W	15-Dec-01	1	25	61.78
Air 26	315273	635326M	094E02W	15-Dec-01	1	25	61.78
<u>Air 27</u>	315274	635327M	094E02W	15-Dec-01	1	25	61.78
Air 28	315275	635328M	094E02W	15-Dec-01	1	25	61.78

 Table 1: Claim Information

CLAIM	TENURE #	TAG #	MAP NUMBER	STATUS	UNITS	HECTARES	ACRES
Air 3	315250	635303M	_ 094E02W	15-Dec-01	1	25	61.78
Air 4	315251	635304M	094E02W	15-Dec-01	1	25	61.78
Air 5	<u>315252</u>	635305M	094E02W	15-Dec-01	1	25	61.78
Air 6	315253	635306M	094E02W	15-Dec-01	1	25	61.78
Air 7	315254	635307M	094E02W	15-Dec-01	1	25	61.78
Air 8	315255	635308M	094E02W	15-Dec-01	<u>-</u>	25	61.78
Air 9	315256	635309M	094E02W	15-Dec-01	1	25	61.78
Alison 1	243440	204491	094E02E	15-Dec-02	20	500	1235.52
Alison 2	243441	204472	094E02E	15-Dec-02	20	500	1235.52
Atty 1	343143	232741	094E02W	15-Dec-01	20	500	1235.52
Atty 2	343144	232742	094E02W	15-Dec-01	20	500	1235.52
Atty 3	343145	232743	094E02W	15-Dec-01	20	500	1235.52
Atty 4	343146	232744	094E02W	15-Dec-01	20	500	1235.52
Atty 5	343147	232745	094E02W	15-Dec-01	15	375	
Atty 6	343148	232746	094E02W	15-Dec-01	15	375	926.64
Atty 7	343149	232747	094E02W	15-Dec-01	20	500	926.64
Atty 8	343150	232748	094E02W	15-Dec-01	20	500	1235.52
Can 1	243063	220263	094E02W	15-Dec-01	20	500	1235.52
Chika 1	243074	220274	094D15E	15-Dec-01	20	500	1235.52
Chika 2	243075	220275	094D15E	15-Dec-01	8	200	1235.52
Creek	243067	220267	094E02E	15-Dec-01	12	300	494.21
D.C. 1	304015	635270M	094E02W	15-Dec-02	- <u>'</u>	25	
D.C. 2	304016	635271M	094É02W	15-Dec-02		25	61.78
D.C. 3	304017	635272M	094E02W	15-Dec-02		25	61.78
D.C. 4	304018	635273M	094E02W	15-Dec-02	1	25	61.78
D.C. 5	304019	635274M	094E02W	15-Dec-02		25	61.78
Dam 1	355413	665857M	094D15E	15-Dec-02		25	61.78
Dam 2	355414	665858M	094D15E	15-Dec-01	- <u> </u>		61.78
Dam 3	355415	665859M	094E02E	15-Dec-01		25	61.78
Dam 4	355416	665860M	094É02E	15-Dec-01	<u>+</u> +	25	61.78
Du	238819	97170	094E02E	15-Dec-01	20	25	61.78
Du 2	242573	210087		15-Dec-02	20	500	1235.52
Due 5		612759M		15-Dec-02		500	1235.52
Due 6		612760M		15-Dec-01		25	61.78
Dun 1	310076	223627			-1	25	61.78
Dun 2	310077	223628		15-Dec-01	9	225	555.99
Dun 3	310078	223629		15-Dec-01	9	225	555.99
Dunc 1	243064	220264		15-Dec-01	9	225	555.99
Dunc 2	243065	220265		15-Dec-01	4	100	247.10
Dunc 3	243066	220266		15-Dec-01	4	100	247.10
Fork 1		665893M		15-Dec-01	6	150	370.66
Fork 2		665897M		15-Dec-01		25	61.78
Fork 3		665898M		15-Dec-01		25	61.78
Fork 4		665899M		15-Dec-01	-1-1-	25	61.78
Fred	243070	220270		15-Dec-01	1	25	<u>61.78</u>
Freddy 1		the second s		15-Dec-01	_6	150	370.66
Freddy 2		635261M		15-Dec-02	_1	25	61.78
Freddy 3		635262M		15 Dec-02	1		61.78
Freddy 3		635263M		15-Dec-02		25	61.78
Freddy 5		635264M		15-Dec-02	-!	25	61.78
		635265M	094E02E 1	15-Dec-02	1	25	61.78

(

	TENURE #	TAG #	MAP NUMBER	STATUS	UNITS	HECTARES	ACRES
Freddy 6	304013	635266M	094E02E	15-Dec-02	1	25	61.78
Freddy 7	304014	635267M	094E02E	15-Dec-02	1	25	61.78
Gold 1	305548	634705M	094E02E	15-Dec-00	1	25	61.78
Gold 2	305549	634706M	094E02E	15-Dec-00	1	25	61.78
Gold 3	305550	634707M	094E02E	15-Dec-00	1	25	61.78
Gold 4	305551	634708M	094E02E	15-Dec-00	1	25	61.78
Gold 5	305552	634709M	094E02E	15-Dec-00	1	25	61.78
Gold 6	305553	634710M	094E02E	15-Dec-00	1	25	61.78
Gold 7	305554	634711M	094E02E	15-Dec-00	1	25	61.78
Gold 8	305555	634712M	094E02E	15-Dec-00	1	25	61.78
Goz 1	304706	634702M	094E02E	15-Dec-02	1	25	61.78
Goz 2	304707	634703M	094E02E	15-Dec-02	1	25	61.78
Hena 10	311294	634568M	094E02E	15-Dec-01	i	25	61.78
Hena 33	311261	634575M	094E02E	15-Dec-01	1	25	61.78
Hena 34	311262	634576M	094E02E	15-Dec-01	1	25	61.78
Hena 35	311263	634577M	094E02E	15-Dec-01	1	25	61.78
Hena 36	311264	634578M	094E02E	15-Dec-01	1	25	61.78
Hena 37	311265	634579M	094E02E	15-Dec-01	1	25	61.78
Hena 38	311266	634586M	094E02E	15-Dec-01	1	25	61.78
Hena 39	311267	648194M	094E02E	15-Dec-01	1	25	61.78
Hena 40	311268	648195M	094E02E	15-Dec-01	1	25	61.78
Hena 7	311291	633946M	094E02E	15-Dec-01	1	25	61.78
Hena 8	311292	633940M	094E02E	15-Dec-01	1	25	61.78
Hena 9	311293	634567M	094E02E	15-Dec-01	1	25	61.78
KC 1	309045	224244	094E02E	15-Dec-01	20	500	1235.52
KC 10	309054	635258M	094D15E	15-Dec-01	1	25	61.78
KC 11	309055	635259M	094D15E	15-Dec-01	1	25	61.78
KC 12	309056	635275M	094D15E	15-Dec-01	1	25	61.78
KC 13	309057	635276M		15-Dec-01	1	25	61.78
KC 14	310032	635253M	094D15E	15-Dec-01	1	25	61.78
KC 15	310033	635252M	094D15E	15-Dec-01	1	25	61.78
KC 16	310034	635250M	094D15E	15-Dec-01	1	25	61.78
KC 17	310035	635249M		15-Dec-01	1	25	61.78
KC 18	310036	635251M	094D15E	15-Dec-01	1	25	61.78
KC 19	310037	635248M	094D15E	15-Dec-01	1	25	61.78
KC 2	309046	634584M	094E02E	15-Dec-01	1	25	61.78
KC 3	309047	634585M		15-Dec-01	1	25	61.78
KC 4	309048	634587M		15-Dec-01	1	25	61.78
KC 5	309049	634588M		15-Dec-01		25	61.78
KC 6	309050	634589M		15-Dec-01	1	25	61.78
KC 7		634590M		15-Dec-01	1	25	61.78
KC 8		635268M		15-Dec-01	1	25	61.78
KC 9		635269M		15-Dec-01		25	61.78
LA 1		633950M		15-Dec-01		25	61.78
LA 2		607769M		15-Dec-01	1	25	61.78
LA 3		607770M		15-Dec-01	1	25	61.78
LA 4		607771M		15-Dec-01	1	25	61.78
LA 5		607772M		15-Dec-01		25	61.78
LAG		607773M		15-Dec-01		25	61.78
LA 7		607774M		15-Dec-01	1	25	61.78

 $\left(\cdot \right)$

CLAIM	TENURE #	TAG #	MAP NUMBER	STATUS	UNITS	HECTARES	ACRES
LA 8	243361	607775M	094E02W	15-Dec-01	1	25	61.78
Lake 1	243362	224438	094E02W	15-Dec-01	20	500	1235.52
Lake 2	243363	224439	094E02W	15-Dec-01	20	500	1235.52
Mill Creek 1	355405	677457M	094E02E	15-Dec-01	1	25	61.78
Mill Creek 2	355406	677458M	094E02E	15-Dec-01	1	25	61.78
Mill Creek 3	355407	677459M	094E02E	15-Dec-01		25	61.78
Mill Creek 4	355408	677460M	094E02E	15-Dec-01	1	25	61.78
Nek 1	241957	120209	094E02W	15-Dec-02	12	300	741.31
Nek 2	241958	120210	094E02E	15-Dec-02	10	250	617.76
<u>Nek 3</u>	241959	120226	094E02E	15-Dec-02	20	500	1235.52
Nek 4	242574	210086	094E02W	15-Dec-02	14	350	864.87
New Kerness No. 1	237800	9355	094E02W	15-Dec-02	18	450	1111.97
New Kemess No. 2	237801	9356	094E02W	15-Dec-02	20	500	1235.52
New Kemess No. 3	241960	120227	094E02E	15-Dec-02	15	375	926.64
Nor 10	303614	117180	094D15W	15-Dec-01	8	200	494.21
Nor 11	303615	117181	094D15W	15-Dec-01	4	100	247.10
Nor 12	303616	117179	094E02W	15-Dec-01	3	75	185.33
Nor 15	305630	210202	094D15W	15-Dec-01	8	200	494.21
Nor 2	239096	104647	094E02W	15-Dec-03	10	250	617.76
Nor 3	239097	104639	094E02W	15-Dec-03	9	225	555.99
Nor 4	239098	104636	094D15W	15-Dec-03	18	450	1111.97
Nor 5	242991	219880	094D15E	15-Dec-01	16	400	988.42
Nor 6	242992	219881	094D15E	15-Dec-01	16	400	988.42
Nor 7	350859	232604	094D15W	15-Dec-04	18	450	1111.97
Nor 8	301219	209384	094D15W	15-Dec-03	6	150	370.66
Pond 1	243076	607765M	094E02E	15-Dec-02	- <u>ī</u> -	25	61.78
Pond 2	243077	607766M	094E02E	15-Dec-02	1	25	61.78
Pond 3	243078	607767M	094E02E	15-Dec-02	$-\frac{1}{1}$	25	61.78
Pond 4	243079	607768M	094E02E	15-Dec-02		25	61.78
Rat 1	239994	108063	094E02W	15-Dec-02	9	225	555.99
Rat 2	243165	220305		15-Dec-02	10	250	617.76
Rat 3	243166	220306		15-Dec-02	20	500	1235.52
Rated	243069	220269		15-Dec-01	20	500	1235.52
Ridge 1	364550	233896		15-Dec-00	18	450	1111.97
Ridge 2	364551	233897		15-Dec-00	18	450	1111.97
Ridge 3	364552	233898		15-Dec-00	18	450	1111.97
Rik	243071	220271		15-Dec-01	20	500	1235.52
Ron 10	350860	232605		15-Dec-04	20	500	1235.52
Ron 11	238706	89109		15-Dec-02	10	250	617.76
Sem #1	241014	109800		15-Dec-02	16	400	988.42
Ser	243068	220268		15-Dec-01	20	500	1235.52
Son 1	243072	220272		15-Dec-01	20	500	1235.52
Son 2	243073	220273		15-Dec-01	10	250	617.76
SR 1		635280M		15-Dec-02	1	250	61.78
SR 2		635279M		15-Dec-02		25	
SR 3		635278M		15-Dec-02	╶┽╶╂	25	61.78
SR 4		635277M		15-Dec-02		25	61.78
SR 5	310075	223626	· · · · · · · · · · · · · · · · · · ·	15-Dec-02	8	200	61.78
SR 6		633948M		15-Dec-01	$-\frac{\circ}{1}$		494.21
SR 7						25	61.78
SR 7		633941M		15-Dec-01	1	25	61.78

CLAIM	TENURE #	<u>TAG #</u>	MAP NUMBER	STATUS	<u>UNITS</u>	HECTARES	ACRES
SR 8	310056	633944M	094E02E	15-Dec-01	1	25	61.78
Tiszi 1	243442	224443	094E02E	15-Dec-02	20	500	1235.52
Tiszi 2	243443	224444	094E02E	15-Dec-02	20	500	1235.52
Waste 1 Fr.	325176	223652	094E02W	15-Dec-02	1	25	61.78
Mining Lease	354991		094E02E	9-Sep-01	0	0	0.00

 $\langle \langle$

5.0 DISTRICT EXPLORATION AND MINING HISTORY

The exploration history surrounding the Kemess property dates back to the turn of the century with the discovery of placer gold, in 1889, at the mouth of McConnell Creek. The discovery of McConnell Creek, located approximately 30 kilometres north of Johanson Lake, led to a brief gold rush in 1907. Prospecting continued in the Toodoggone District early in the 1920's and resulted in the discovery of placer gold at McClair Creek. Cominco Ltd. discovered and staked lead-zinc mineralization in a skarn showing in the Toodoggone District, including the Cairn showing at Duncan Ridge, in 1931, but no significant lode gold deposits were discovered until much later.

Exploration activity in the late 1960's led to the discovery of the Chapelle epithermal gold-silver vein deposit. This deposit, located approximately 20 kilometres south of the Kemess South Mine, was discovered in 1968 by Kennco Explorations (Western) Ltd. while searching for porphyry copper-molybdenum deposits in the Toodoggone District. The discovery prompted several major mining companies to explore the region for precious and base metal occurrences. The work of these companies over the next fifteen years, following the Chapelle discovery, resulted in the discovery of several epithermal gold and silver prospects, as well as the Kemess North porphyry gold-copper deposit.

Development of many of the district's epithermal gold and silver prospects has occurred over the last fifteen years. Dupont of Canada operated the Baker (Chapelle) Mine, which had initial reserves of 91,000 tonnes grading 28 gAu/t and 560 gAg/t. It was during this period that Dupont constructed the Sturdee Valley airstrip to service the mine.

Cheni Gold Mines Inc. operated the epithermal-type Lawyers, Cliff and Al vein deposits, located approximately 44 kilometres north of the Kemess property, from 1988 to 1992. At the start of production, Cheni's reserves were reported to be 1.28 million tonnes grading 6.72 gAu/t and 243 gAg/t. Cheni extended the Omineca Resource Access Road in 1988, with the assistance of the provincial government, in order to facilitate mine development and operations.

In 1983, Pacific Ridge Resources Corp., and successor El Condor Resource Corp., began exploration work in the south Toodoggone area, including the Duncan ridge area. A strong focus on porphyry exploration culminated in the discovery of the Kerness South porphyry copper-gold deposit, which was brought into commercial production in 1998. Published reserves in 1999 are listed as 165 million tonnes grading 0.231 % Cu and 0.661 gAu/t containing approximately 3.5 million ounces of gold and 840 million pounds for a mine life of 9.4 years.

6.0 REGIONAL GEOLOGY

The Toodoggone District is underlain by a 90 km long by 15 km wide northwest-trending belt of Paleozoic to Tertiary sediments, volcanics and intrusives (Figure 4). The Sustut Group (Upper Cretaceous to Tertiary) sediments, which form the western margin of the Toodoggone belt, unconformably overlie the Toodoggone Formation volcanics (Hazelton Group, Lower Jurassic). East of the Sustut Group, occurring as fault blocks within Toodoggone volcanics, Takla Group (Upper Triassic) volcanics form a disrupted belt of faulted segments containing lesser fault blocks of Asitka (mid-Pennsylvanian to Lower Permian) volcanics and sediments, including limestone. Granitic plutons of the Omineca-related Black Lake intrusive suite (Lower Jurassic) intrude both Takla and Permian stratigraphy.

7.0 STRUCTURAL SETTING

The geological framework of the Toodoggone District is a result of co-magmatic intrusive-volcanic hydrothermal processes occurring along deep-seated north trending structural breaks during a 20 million-year period from Upper Triassic to Lower Jurassic time. These structural breaks controlled volcanism. Thick successions of Toodoggone volcanic rocks were extruded in a subaerial, perhaps partially shallow marine environment, over a basement of older Takla and Asitka volcano-sedimentary rocks. Intrusive and hydrothermal systems associated with volcanism invaded these rocks along the same deep-seated, and periodically reactivated, north-trending structural breaks. Stocks, dykes and sills of the Black Lake suite of intrusions were thereby emplaced in Toodoggone volcanics and the basement Takla-Asitka rocks. Linear zones of varied kinds and intensity of hydrothermal alteration, veining and mineralization associated with emplacement of plutons were also injected at different structural levels in Toodoggone and older rocks. Subsequently, the Toodoggone and earlier rocks were subjected to repeated and extensive normal block faulting from Jurassic to Tertiary time. Within these fault blocks, Toodoggone rocks display broad open folds, commonly with dips of less than 25°. Sustut Group sedimentary rocks unconformably overlie these earlier rocks and have a relatively low dip angle with few major structural disruptions.

8.0 STRATIGRAPHY

8.1 ASITKA GROUP (MID-PENNSYLVANIAN TO LOWER PERMIAN)

Asitka Group rocks are the oldest known in the Toodoggone District and are thought of as basement stratigraphy in the area. The Asitka Group is subdivided into two units, the lower Volcanic Unit and Upper Sedimentary Unit. The Asitka Group is unconformably overlain by Upper Triassic Takla Group, and intruded by the Early Jurassic calc-alkaline intrusions of the Black Lake suite.

The Lower Volcanic Unit of the Asitka Group is the thicker of the two units regionally, and grades from rhyolitic tuffs at the base, through porphyritic andesite, to massive basalt at the top. The Upper Sedimentary Unit of the Asitka Group consists regionally of flat to gently dipping, massive and recrystallized limestone, with local interbeds of chert or graphitic to siliceous mudstone.

8.2 TAKLA GROUP (UPPER TRIASSIC)

The Takla Group unconformably overlies the Asitka Group rocks, which are in turn unconformably overlain by the Toodoggone Formation rocks of the Lower Jurassic Hazelton Group, and intruded by the Early Jurassic calc-alkaline intrusions of the Black Lake suite. The Takla Group is sub-divided into the Lower Sedimentary Unit and the Upper Volcanic Unit.

The Lower Sedimentary Unit consists of pyritic mudstone overlain by volcanic sandstone. The friable mudstone is brown in colour, gossanous and fossiliferous. The volcanic sandstone grades from light green sandy beds at the base to dark green silty beds with local cross-laminations at the top. The Upper Volcanic Unit consists of black to dark green, massive, highly magnetic augite phyric basalt.

8.3 HAZELTON GROUP (LOWER JURASSIC)

The youngest stratigraphy exposed in the area correlates with the Toddoggone Formation of the Lower Jurassic Hazelton Group. No known exposures of the Toodoggone Formation occur within the claim group of the Kemess project.

8.4 BLACK LAKE INTRUSIVES (EARLY JURASSIC)

The Black Lake Intrusive suite consists of a series of Early Jurassic calc-alkalic intrusions of various sizes, shapes and compositions that intrude rocks of the Asitka and Takla Groups. The field relationships amongst different bodies of the Black Lake intrusions and the Toodoggone Formation have not been seen in outcrop due to the recessive nature of the intrusions and contacts, likely probably due to intense alteration, both contact metamorphic and hydrothermal. Diakow et al. suggest that they are all genetically related to the early Jurassic Hazelton island arc subduction zone.

9.0 PROPERTY GEOLOGY

Takla Group rocks underlie much of the Kemess property area and are composed of porphyritic pyroxene basalt and andesite, polylithic breccias and feldspathic crystal tuff, and a unit comprised mostly of cherty siltstone (Figure 5). A cluster of mainly felsic porphyritic stocks, sills and dykes intrude these rocks. Several large hydrothermal alteration zones that host porphyry-type gold-copper mineralization, as well as a number of skarn and vein-type mineral occurrences, are spatially and possibly genetically related to some of these intrusions.

9.1 KEMESS SOUTH MINE

The Kemess South Mine, which does not crop out, is hosted by the relatively flat-lying quartz monzodiorite Maple Leaf intrusion, which has been traced by diamond drilling for 1,700 metres east-west and 650 metres north-south (Figure 6). The intrusion is relatively fine-grained and porphyritic. Its modal proportions are 5-15% quartz, 40-65% plagioclase and 5-10% potassium feldspar. Mafic minerals are scarce. The intrusion is divisible into two phases based on magnetite content and Th/U ratios. The lower phase has a substantially lower magnetic susceptibility and lower Th/U ratios, but is otherwise similar in appearance and composition to the upper unit. Takla Group volcanic rocks underlie the Maple Leaf intrusion and form a heterogeneous series of intercalated flows, flow breccias, lapilli tuffs and crystal tuffs of andesitic composition, with a minor debris flow/lahar component. Takla Group sedimentary rocks have only been identified north of the North Block Fault in the mine area, where they consist mainly of impure chert. The stratigraphic position of this sedimentary sequence, relative to the Takla Group volcanic rocks underlying the intrusion, is unknown. Prior to, possibly synchronous with, the onset of Sustut Group sedimentation, an autochthonous sedimentary "lag horizon" formed on the surface of the subaerially exposed Maple Leaf intrusion. This unit is composed of weathered fragments of the underlying intrusive rock, and formed under arid weathering conditions without significant transport of the fragments. The horizon is discontinuous and ranges from 1 to 5 m in thickness.

FIGURE 6: GEOLOGY OF THE KEMESS SOUTH MINE

 \bigcirc

A southwest thickening wedge of Sustut Group rocks unconformably overlies the western half of the Maple Leaf intrusion. Sedimentary rocks consist mainly of a maroon to dark purple-grey, pebble to cobble conglomerate with interbeds of arkosic sandstone, siltstone, greywacke and fine-grained arkosic mudstone. Thin, laterally discontinuous mafic volcanic flows, and a coarse-grained arkose, are intercalated with the sedimentary rocks. Near the base of the unit, fragments of hematized (supergene) quartz monzodiorite containing secondary copper minerals are sometimes present.

An important high angle fault, the North Block Fault, trends at 075° and dips 65°-70° to the south. The gouge zone is between 5 and 15 metres wide and is usually filled with granular, sericitic clay-rich gouge. Parasitic, subparallel shears are common up to 30 to 40 metres on either side of the fault. The fault juxtaposes the mineralized Maple Leaf intrusion and the underlying Takla Group volcanic strata on the south side against weakly pyritic and propylitic Takla Group sedimentary rocks to the north. The sense and magnitude of displacement across the North Block Fault has not been determined due to a lack of reliable marker horizons.

A widespread quartz vein stockwork is developed within the Maple Leaf intrusion. Veins comprise on average between 5-10% of the total rock volume, but over tens of metres can locally comprise more than 40% of the rock. Several generations of vein stockworks are evident. Their intensities are highest in areas of elevated gold-copper values and they tend to diminish toward the basal sections of the intrusion. Intense vein stockwork development within the volcanic country rocks is rare.

While the gold and copper grades throughout the deposit are generally continuous, there is a decrease in grade and gold:copper ratios toward the base of the intrusion that approximates the transition form the upper to lower phase of the quartz monzodiorite.

Regional metamorphism of the supracrustal rocks in the area is of subgreenschist or zeolite faces. However, over large areas of the Kemess property hydrothermal

metasomatism appears to have overprinted the effects of the low-grade metamorphism. Adjacent to the intrusions, thermal metamorphism and recrystallization has taken place.

Sulphide content is 1-3% in the core of the intrusive, rising to 5-10% in the peripheral propylitically altered halo at the eastern end of the intrusion. Narrow lead-zinc-silver veins and arsenopyrite-gold veins occur roughly 2 km to the north and northeast of the deposit.

Hypogene mineralization, in order of decreasing abundance, consists of pyrite, chalcopyrite, magnetite-hematite, bornite, molybdenite and traces of pyrrhotite, tetrahedrite and native gold. Pyrite occurs mainly as veins or fracture coatings accompanying quartz stringers. The habit of chalcopyrite is distinctive in that it occurs predominately as totally separate, discrete grains or small anhedral clumps in the silicate matrix of the groundmass and in quartz stockwork veins. Chalcopyrite grains are physically separate from, and are only rarely associated with, pyrite or iron oxides. Magnetite, which is variably altered to martite or intergrown with hematite, has an average concentration of roughly 1% to 1.5%. Unaltered magnetite only occurs toward the base of the intrusion, mostly in the lower phase. Bornite is present in trace amounts in the hypogene zone. It appears in intimate association with chalcopyrite as fine-grained exsolution and rim textures, and as irregular intergrowths. Molybdenum is present in low concentrations. The molybdenite occurs as small, equant, accicular flakes, either as interstitial disseminations in the silicate groundmass or more commonly as disseminated grains in quartz stockwork veins. Gold grades always correlate closely to those of copper in the hypogene zone.

There is a supergene zone developed in the upper portion of the deposit, and small pods of exotic copper mineralization are present within the Sustut Group sedimentary rocks at the deposit's northwestern periphery.

Five main types of alteration have been identified within the Kemess South deposit area. They can be broadly categorized as follows:

- potassium silicate alteration
- sericitization
- silicification
- hematite-carbonate-clay-silica alteration
- propylitization

Within the intrusion, the highest gold and copper grades correlate with zones of intense quartz stockwork development accompanied by potassium feldspar alteration selvages.

9.2 KEMESS NORTH DEPOSIT

The Kemess North deposit, located roughly ten kilometres north of the Kemess South Mine, is underlain mainly by Takla Group volcanic rocks that have been intruded by porphyritic monzodiorite dykes, probably of Lower Jurassic age (Figure 7). Porphyrystyle copper, gold and minor molybdenum mineralization is centred on the dykes and mainly in Takla Group rocks. A mineralized resource has been calculated for the Kemess North deposit of approximately 74 million drill-indicated tonnes at 0.188% Cu and 0.343 gAu/t.

A bladed feldspar porphyry unit, exposed in cirque headwalls, is characterized by plagioclase lath phenocrysts up to 1.5 cm long set in a fine grained, dark green groundmass. The phenocrysts, occurring as crystal aggregates, comprise 15% to 20% of the rock and are generally randomly oriented. The unit may represent a subvolcanic intrusion and in part, an extrusive dome. Brecciation of the dome has resulted in the formation of coarse proximal breccias that contain individual clasts of bladed feldspar porphyry up to 3 metres in diameter. In the deposit area, the bladed feldspar porphyry unit structurally overlies the Takla Group volcanic rocks.

The monzodiorite dykes are characterized by small subhedral phenocrysts of plagioclase, which comprise between 40-50% of the rock. Less than 10% subrounded quartz grains are present. Dyke contacts are frequently marked by breccia zones, characterized by xenolithic volcanic fragments supported by a matrix of dyke material. These dykes

appear to be offshoots of the much larger Sovereign pluton, of a similar composition, which is located about one kilometre to the south of the Kemess North deposit.

Postulated dykes, including feldspar porphyritic syenite and minor mafic varieties, outcrop locally. The mafic dykes are thought to be of Cretaceous age and related to the volcanic strata interbedded within Sustut Group sedimentary rocks.

A flat-lying zone of intensely broken rock and multiple gouge zones are collectively referred to as the "Broken Zone". This zone underlies the Kemess North deposit and extends from surface down to an average depth of about 80 metres. The base of the Broken Zone is irregular and undulating and core recoveries average about 50% throughout the zone. Immediately below the base of the Broken Zone the rock is very competent and recoveries improve to the 90-100% range. The post-mineral porphyritic syenite dykes remain solid and competent within the Broken Zone.

The cause of the Broken Zone is uncertain. It has been suggested that it may be the end product of weathering processes during which the dissolution of gypsum and/or hydration of anhydrite has resulted in extensive rock fracturing. The presence of multiple gouge zones, and a subhorizontal shear fabric, however, suggests a deformational aspect to the zone as well.

The common alteration assemblage in the Broken Zone is moderate to strong pervasive chlorite with locally moderate intense pervasive clay, particularly in and around the gouge zones, and with sericite in the groundmass. Quartz veining, locally vuggy, is common but their intensity is weak.

Structures below the Broken Zone consist of minor faults and shears, some of which are healed by chalcopyrite and pyrite-bearing quartz, purple anhydrite and rare fluorite gangue. More commonly, however, minor chloritic structures associated with zones of white carbonate and pink zeolite veining crosscut mineralized veins. In the central portion of the Kemess North deposit, a xenolithic contact breccia zone about 20 metres in

width has been hydrothermally brecciated and then overprinted with chalcopyrite-rich quartz-anhydrite veining and flooding.

The gold-copper mineralization is an inclined tabular zone that is hosted mainly by Takla Group volcanic rocks and bladed feldspar porphyry. The deposit is centred on a porphyritic monzodiorite dyke swarm which trends at 070° and dips approximately 50° to the southeast. Diamond drilling has partially outlined a 300 metre wide core of higher gold and copper concentrations within a 600 to 800 metre wide mineralized zone. The zone has been traced for 1200 metres along strike and 400 metres down dip. The ultimate strike length, full width and down dip extent of the deposit has not yet been determined.

Sulphide mineralization consists of 2-3% pyrite, with lesser amounts of chalcopyrite and molybdenite. Pyrite occurs as disseminations, fracture fillings, veins up to a few centimetres wide and in quartz-anhydrite-magnetite veins and localized zones of quartz flooding. The mode of occurrence of chalcopyrite is similar except that veinlets are rare and significant disseminations occur mainly in zones of stronger quartz stockwork development. Gold and copper grades variably diminish outward into the hanging wall and footwall. Total sulphide content in the core of the deposit averages 2-3%, rising to 3-5% in the pyrite-rich propylitic altered halo.

Below the Broken Zone, alteration associated with the core of the higher-grade goldcopper mineralization is characterized by pervasive, very fine felted hydrothermal biotite in volcanic and bladed feldspar porphyry host rocks. The biotite is accompanied by a weakly to moderately well developed stockwork of quartz and purple anhydrite veinlets that contain varying amounts of sulphides and magnetite. Potassium feldspar is also present in the biotite zones as fracture envelopes and veinlets, and in local zones of flooding, especially in and adjacent to some porphyritic monzodiorite dykes. Pervasive chlorite overprints the biotite zone in the vicinity of minor shears and faults, which is accompanied by an increase in carbonate and zeolite veining.

An intense 30 metre by 100 metre zone of silica-magnetite flooding is present within the biotite zone. The zone comprises 50-60% silica and 20-30% magnetite, with the remainder consisting of later quartz and anhydrite veins and sulphides (mainly pyrite). This zone is in contact with, and partially overlaps, monzodiorite dykes and is locally banded.

A propylitic zone of chlorite, carbonate, pyrite, pink zeolite and minor epidote envelopes the biotite zone. Chlorite is extensive and the carbonate and zeolite occur as veinlets and stockworks. Epidote is locally present in carbonate veinlets. Fracturing and faulting appear more numerous in footwall rocks, in which the propylitic alteration is more intense.

Assays indicate that copper has been leached from the upper 5 to 30 meters of the Broken Zone. Beneath the partially leached zone, minor supergene covellite and chalcocite coat chalcopyrite and pyrite grains. Digenite has been observed rimming chalcopyrite grains in polished thin sections.

9.3 KEMESS CENTRE

The Kemess Centre prospect, situated approximately 750 metres to the north of the ultimate pit limits of the Kemess South Mine, is extensively covered by glacial till and has little to no outcrop. The interpreted target area is a porphyry Cu-Au and/or skarn occurring as a separate intrusive body, or possibly a faulted off block of the Kemess South Mine. Geological and geochemical evidence for Kemess Centre is provided by a 1992 diamond drill hole which intersected a swarm of chalcopyrite-bearing Jurassic quartz-feldspar porphyry dykes in Takla volcanics that averaged 0.37 gAu/t and 0.03% Cu. Geophysical evidence for the Kemess Centre prospect is provided by ground geophysical surveys which yielded circular magnetic high features flanked by potassic highs, interpreted to represent potassium alteration associated with an intrusive plug, just to the north of the 1992 diamond drill hole.

10.0 2000 KEMESS SOUTH MINE EXPLORATION

10.1 STRATIGRAPHIC DIAMOND DRILL HOLE 2000-06

One diamond drill hole (2000-06), totaling 314.16 metres, was drilled on the western extremity of the Kemess South Mine open pit (Figure 8). The purpose of this drill hole was to provide a better understanding of the stratigraphy and structure in an area that has received only limited historical drilling. The diamond drill hole log, assay summary, assay certificates and a 1:1,000 section (Figure 11) are located in Appendix 1. Significant assays are shown in Table 2.

The upper 140 metres of the drill hole intersected a thickly bedded polymictic pebble conglomerate. The matrix is clay and hematite rich and the unit contains 25% to 30% 1-70 mm subrounded to subangular fragments. Numerous narrow clay-rich fault gouges and weak shears are scattered throughout the unit. From 140 to 183 metres, the drill hole intersected typical Kemess South Mine supergene quartz monzonite ore. This was followed by a 64.35 metre interval of hypogene quartz monzonite ore. Below the hypogene ore, a 16.95 metre fault zone, the North Boundary Fault, was intersected within the bedded Takla Sediments, at 35 to 40 degrees to the core axis. Below the structure, a 107.11 metre interval of bedded Takla sediments was intersected. The sediments are intruded by intermediate to mafic dykes varying from 1 to 6 metres in thickness.

HOLE_ID	FROM	TO	WIDTH	% Cu	gAu/t
2000-06	128.30	132.30	4.00	0.205	0.070
2000-06	138.30	207.35	69.05	0.288	1.102

Table 2: Significant Assays DDH 2000-06

11.0 2000 KEMESS NORTH DEPOSIT EXPLORATION

A two-phase, twelve-hole, helicopter assisted diamond drill program totaling 4,104.45 metres was conducted during the period of July to November 2000. Diamond drilling was contracted to Britton Brothers of Smithers, B.C. Assayers Canada analyzed samples for ore grade copper and fire assay gold. The phase one program totaled 2,565.20 metres in nine holes (KN-00-01 to KN-00-09) and was performed from July 26th to August 18th, 2000. Phase two was conducted during the period November 5th to November 27th, 2000 and totaled 1,539.25 metres in three holes (KN-00-10 to KN-00-12). Drill hole collar locations are shown in Figure 9. Table 3 summarizes drill hole locations and orientations.

÷

HOLE ID	NORTHING	EASTING	ELEVATION	AZIMUTH	INCLINATION	DEPTH
KN-00-01	15573.87	9662.98	1751.07	180	-75	131.06
KN-00-02	15960.28	9659.79	1702.54		-90	150.88
KN-00-03	15689.36	9959	1702.15		-90	399.29
KN-00-04	15808.87	10158.77	1720.12		-90	399.29
KN-00-05	15963.83	10162.22	1719.44		-90	399.29
KN-00-06	15641.1	9862.07	1715.1		-90	113.08
KN-00-07	15736.21	10062.73	1694.33	180	-60	129.54
KN-00-08	15897.93	10261.63	1776.9	340	-80	454.15
KN-00-09	16069.31	10126.67	1700.24		-90	388.62
				PHASE 1 SUBTOTAL:		2565.20
KN-00-10	15790.36	10225.93	1747.40	360	-80	521.21
KN-00-11	15944.16	10398.41	1733.80	340	-80	509.02
KN-00-12	16018.29	10282.24	1794.38	340	-80	509.02
				PHASE 2 SUBTOTAL:		1539.25
				PHASE 1 & 2 TOTAL:		4104.45

Table 3: Kemess North Drill Hole Location Summary

Holes were logged geologically as well as geotechnically, using procedures and log forms provided by Knight Piesold Consulting of Vancouver, British Columbia. Due to extremely poor RQD in the upper 60 to 100 metres of bedrock, HQ diameter drill rods were used. Once less fractured rocks were encountered, drill holes were reduced to NQ using the HQ as casing. Sampling was relatively consistent at two metre intervals, but controlled by geology in that samples generally do no cross geological contacts. In addition, sampling widths varied within areas of low to extremely low core recoveries.

Drill hole logs, assay summaries and certificates and sections at a scale of 1:1,000 (Figures 12 to 18) are located in Appendix 2. Down hole surveying was not performed on drill holes KN-00-01 to KN-00-07, as the proper equipment was not available at the time.

All drill holes were designed to infill significant gaps in the previous drilling to enable a more precise ore resource calculation, to better define and test for higher-grade zones, to attain information for pit wall optimization and to gain intersections at various depths for specific gravity and metallurgical testing.

Lithologies intersected in the drilling included andesites, sub-volcanic feldspar porphyries (bladed feldspar porphyry), quartz monzodiorites and barren postmineralization monzodioritic and/or syenitic dykes. These lithologies are consistent with the previous drilling by El Condor Resources Ltd. Takla Formation andesitic volcanics and bladed feldspar porphyries are the predominant units in the upper sections of the drill holes. They generally exhibited pervasive chlorite/pyrite propylitic alteration with varying amounts of biotite, sericite and clay. Pyrite in the Talka volcanics varied from 3-10% as disseminations, fracture fill and within quartz, k-feldspar and anhydrite +/gypsum veins, which average 1% to 3%. Chalcopyrite averages < 1% and occurs as fracture fill, associated with the pyrite in veinlets and as very fine-grained disseminations. The lower intrusive quartz monzodiorite unit is moderately to strongly potassically altered as staining associated with a weak to moderately developed quartz and/or anhydrite/gypsum stockwork veining, as well as to the matrix. These veins generally contain patchy pyrite +/- chalcopyrite. Within the intrusive, pyrite averages 2-3%, magnetite 1% and chalcopyrite < 1%. Later barren post-mineralization monzodioritic dykes crosscut the mineralized quartz monzodiorite.

Significant assays are summarized in Tables 4 (Phase 1) and 5 (Phase 2).
HOLE_ID FROM TO WIDTH % Cu gAu/t KN-00-01 35.00 37.00 2.00 0.025 2.06 KN-00-01 98.00 100.00 2.00 0.041 1.16 KN-00-01 198.00 100.00 2.00 0.041 1.16 KN-00-01 112.00 120.0 0.024 1.52 KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 42.67 155.10 12.43 0.206 0.39 including 64.01 79.25 15.24 0.243 0.426 KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 186.00 188.00 2.00 0.130 0.17 KN-00-03 186.00 188.00 2.00 0.164 0.31 KN-00-03 251.65 253.22 1.97 0.105 0.26 KN-00-03 286.45 209.38 3.93 0.112 0.14 </th <th></th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · ·</th> <th></th>					· · · · · · · · · · ·	
KN-00-01 79.00 81.00 2.00 0.018 1.08 KN-00-01 198.00 100.00 2.00 0.041 1.16 KN-00-01 110.00 112.00 2.00 0.040 1.88 KN-00-01 112.00 2.00 0.024 1.52 KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 34.00 41.50 7.50 0.270 0.37 KN-00-02 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.243 0.42 including 83.39 94.00 5.61 0.187 0.37 KN-00-03 180.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 6.00 0.110 0.14	HOLE_ID	FROM	то	WIDTH	% Cu	gAu/t
KN-00-01 98.00 100.00 2.00 0.041 1.16 KN-00-01 104.00 106.00 2.00 0.040 1.88 KN-00-01 125.00 128.00 3.00 0.024 1.52 KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 42.67 150.48 108.21 0.159 0.28 including 42.67 55.10 12.43 0.206 0.39 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 184.00 146.00 2.00 0.136 0.27 KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 316.00 320.00 4.00 0.121 0.16 KN-00-03 316.00 32.00 3.93 0.112						2.06
KN-00-01 104.00 106.00 2.00 0.121 0.87 KN-00-01 110.00 112.00 2.00 0.040 1.88 KN-00-02 14.02 30.00 0.024 1.52 KN-00-02 34.00 41.50 7.50 0.270 0.37 KN-00-02 34.00 41.50 7.50 0.270 0.33 including 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.206 0.33 including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.110 0.14		79.00	81.00	2.00	0.018	1.08
KN-00-01 110.00 112.00 2.00 0.040 1.82 KN-00-01 125.00 128.00 3.00 0.024 1.52 KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 34.00 41.50 7.50 0.270 0.37 KN-00-02 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.243 0.42 including 88.33 94.00 5.61 0.187 0.37 KN-00-03 180.00 182.00 2.00 0.136 0.27 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.163 0.33 KN-00-04 76.00 84.10 8.10 0.124	KN-00-01	98.00	100.00	2.00	0.041	1.16
KN-00-01 125.00 128.00 3.00 0.024 1.52 KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 42.67 150.88 108.21 0.159 0.28 including 42.67 55.10 12.43 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 184.00 146.00 2.00 0.164 0.31 KN-00-03 180.00 182.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 27.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 336.00 320.00 6.00 0.110 0.14 KN-00-03 336.00 320.00 0.105 0.33 KN-00-04 46.00 48.00 2.00 0.124 0.30	KN-00-01	104.00	106.00	2.00	0.121	0.87
KN-00-02 14.02 30.00 15.98 0.127 0.40 KN-00-02 34.00 41.50 7.50 0.270 0.37 KN-00-02 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 180.00 182.00 2.00 0.164 0.31 KN-00-03 186.00 188.00 2.00 0.130 0.17 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.124 0.30 KN-00-04 142.00 146.00 1.00 0.132	KN-00-01	110.00		2.00	0.040	1.88
KN-00-02 34.00 41.50 7.50 0.270 0.37 KN-00-02 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 180.00 182.00 2.00 0.164 0.31 KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.82 1.97 0.105 0.26 KN-00-03 251.65 253.82 1.97 0.140 0.14 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.110 0.14 KN-00-04 46.00 48.00 2.00 0.124 0.30 KN-00-04 146.00 152.00 4.00 0.119	KN-00-01	125.00	128.00	3.00	0.024	1.52
KN-00-02 42.67 150.88 108.21 0.159 0.28 including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.266 KN-00-03 257.08 266.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 336.00 320.00 6.00 0.110 0.14 KN-00-03 386.00 320.00 6.00 0.110 0.14 KN-00-03 386.00 320.00 6.00 0.110 0.14 KN-00-04 46.00 48.00 2.00 0.103 0.133 KN-00-04 76.00 84.10 8.10 0.124 <td></td> <td></td> <td></td> <td>15.98</td> <td></td> <td></td>				15.98		
including 42.67 55.10 12.43 0.206 0.39 including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 186.00 182.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 266.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.110 0.14 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.136						
including 64.01 79.25 15.24 0.243 0.42 including 88.39 94.00 5.61 0.187 0.37 KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 180.00 182.00 2.00 0.130 0.17 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.110 0.14 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 142.00 146.00 4.00 0.119 0.11 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 280.00 4.00 0.300 <td>KN-00-02</td> <td>42.67</td> <td>150.88</td> <td>108.21</td> <td></td> <td></td>	KN-00-02	42.67	150.88	108.21		
including 88.39 94.00 5.61 0.187 0.37 KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 180.00 182.00 2.00 0.130 0.17 KN-00-03 186.00 188.00 2.00 0.136 0.26 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 146.00 4.00 0.330 0.33 KN-00-04 142.00 286.00 2.00 0.236		42.67		12.43	0.206	0.39
KN-00-03 144.00 146.00 2.00 0.164 0.31 KN-00-03 180.00 182.00 2.00 0.130 0.17 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.114 0.30 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 148.00 152.00 4.00 0.330 0.33 KN-00-04 170.00 292.61 122.61 0.158 <td></td> <td></td> <td>79.25</td> <td>15.24</td> <td>0.243</td> <td>0.42</td>			79.25	15.24	0.243	0.42
KN-00-03 180.00 182.00 2.00 0.130 0.17 KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 330.00 336.00 6.00 0.110 0.14 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 46.00 48.00 2.00 0.103 0.11 KN-00-04 142.00 146.00 4.00 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.133 0.13 KN-00-04 142.00 228.61 122.61 0.158 0.27 including 204.80 2.00 0.236 0.45 <td>including</td> <td>88.39</td> <td>94.00</td> <td>5.61</td> <td>0.187</td> <td>0.37</td>	including	88.39	94.00	5.61	0.187	0.37
KN-00-03 186.00 188.00 2.00 0.136 0.27 KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.14 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 336.00 336.00 6.00 0.110 0.14 KN-00-03 386.00 392.00 6.00 0.105 0.33 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 202.80 2.00 0.204 0.33 <td></td> <td>144.00</td> <td>146.00</td> <td>2.00</td> <td>0.164</td> <td>0.31</td>		144.00	146.00	2.00	0.164	0.31
KN-00-03 251.65 253.62 1.97 0.105 0.26 KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.119 0.11 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 228.00 4.00 0.330 0.33 including 202.80 204.80 2.00 0.236 0.45 including 260.00 270.00 10.00 0.246 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
KN-00-03 265.45 269.38 3.93 0.112 0.16 KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.119 0.19 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 224.00 250.00 8.00 0.300 0.58 including 260.00 2.00 0.242 0.41			188.00	2.00	0.136	
KN-00-03 275.08 286.85 11.77 0.140 0.14 KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 330.00 336.00 6.00 0.109 0.19 KN-00-03 386.00 392.00 6.00 0.105 0.33 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 142.00 146.00 4.00 0.119 0.19 KN-00-04 148.00 152.00 4.00 0.103 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 224.00 256.00 8.00 0.300 0.58 including 254.00 270.00 10.00 0.242 0.41 KN-00-04 298.70 359.00 60.30 0.15						
KN-00-03 294.68 300.42 5.74 0.120 0.22 KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 330.00 336.00 6.00 0.110 0.14 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 90.00 94.49 4.49 1.230 0.11 KN-00-04 142.00 146.00 0.00 0.119 0.19 KN-00-04 142.00 146.00 0.00 0.133 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 202.80 204.80 2.00 0.236 0.45 including 254.00 256.00 2.00 0.246 0.50 including 308.00 310.00 2.00 0.312 <td>KN-00-03</td> <td>265.45</td> <td>269.38</td> <td></td> <td>0.112</td> <td>0.16</td>	KN-00-03	265.45	269.38		0.112	0.16
KN-00-03 316.00 320.00 4.00 0.121 0.17 KN-00-03 330.00 336.00 6.00 0.110 0.14 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 90.00 94.49 4.49 1.230 0.11 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 148.00 152.00 4.00 0.103 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 202.80 20.40 2.00 0.236 0.45 including 242.00 250.00 8.00 0.300 0.58 including 260.00 270.00 10.00 0.242 0.41 KN-00-04 298.70 359.00 60.30 0.152 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
KN-00-03 330.00 336.00 6.00 0.110 0.14 KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 90.00 94.49 4.49 1.230 0.11 KN-00-04 142.00 146.00 4.00 0.119 0.19 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 292.61 122.61 0.158 0.27 including 202.80 204.80 2.00 0.236 0.45 including 224.00 256.00 2.00 0.246 0.50 including 264.00 270.00 10.00 0.242 0.41 KN-00-04 298.70 359.00 60.30 0.152 0.26 including 325.10 327.40 2.30 0.224					0.120	
KN-00-03 386.00 392.00 6.00 0.109 0.19 KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 90.00 94.49 4.49 1.230 0.11 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 148.00 152.00 4.00 0.330 0.33 including 202.80 204.80 2.00 0.236 0.45 including 242.00 28.00 4.00 0.330 0.33 including 242.00 250.00 8.00 0.300 0.58 including 260.00 270.00 10.00 0.242 0.41 KN-00-04 298.70 359.00 60.30 0.152 0.26 including 325.10 327.40 2.30 0.203 </td <td>KN-00-03</td> <td>316.00</td> <td>320.00</td> <td>4.00</td> <td>0.121</td> <td>0.17</td>	KN-00-03	316.00	320.00	4.00	0.121	0.17
KN-00-04 46.00 48.00 2.00 0.105 0.33 KN-00-04 76.00 84.10 8.10 0.124 0.30 KN-00-04 90.00 94.49 4.49 1.230 0.11 KN-00-04 142.00 146.00 4.00 0.119 0.19 KN-00-04 142.00 146.00 4.00 0.103 0.13 KN-00-04 170.00 292.61 122.61 0.158 0.27 including 202.80 204.80 2.00 0.236 0.45 including 242.00 250.00 8.00 0.300 0.58 including 260.00 270.00 10.00 0.246 0.50 including 308.00 310.00 2.00 0.263 0.31 including 325.10 327.40 2.30 0.203 0.22 including 329.00 333.00 4.00 0.244 0.37 including 391.00 2.00 0.312 0.52	KN-00-03	330.00	336.00	6.00	0.110	0.14
KN-00-0476.0084.108.10 0.124 0.30 KN-00-0490.0094.494.491.230 0.11 KN-00-04142.00146.004.00 0.119 0.19 KN-00-04148.00152.004.00 0.103 0.13 KN-00-04170.00292.61122.61 0.158 0.27 including202.80204.802.00 0.236 0.45 including242.00228.004.00 0.330 0.33 including242.00250.008.00 0.300 0.58 including260.00270.00 10.00 0.246 0.50 including260.00270.00 10.00 0.242 0.41 KN-00-04298.70359.0060.30 0.152 0.26 including308.00310.002.00 0.263 0.31 including325.10327.402.30 0.224 0.37 including347.00349.002.00 0.312 0.52 KN-00-04298.70399.29 10.59 0.142 0.26 including389.00399.29 10.29 0.211 0.40 including20.1238.90 18.78 0.293 0.35 including158.00204.0046.00 0.226 0.38 including158.00204.0022.00 0.256 0.41 including234.00244.00 10.00 0.298 0.43 i	KN-00-03	386.00	392.00	6.00	0.109	0.19
KN-00-0490.0094.494.491.2300.11KN-00-04142.00146.004.000.1190.19KN-00-04148.00152.004.000.1030.13KN-00-04170.00292.61122.610.1580.27including202.80204.802.000.2360.45including224.00228.004.000.3300.33including242.00250.008.000.3000.58including260.00270.0010.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.1238.9018.780.2930.35including158.00204.0046.000.2260.38including158.00204.0022.000.2560.41including28.00218.0010.000.3020.44including252.00350.0098.000.2790.41	KN-00-04	46.00	48.00	2.00	0.105	0.33
KN-00-04142.00146.004.000.1190.19KN-00-04148.00152.004.000.1030.13KN-00-04170.00292.61122.610.1580.27including202.80204.802.000.2360.45including224.00228.004.000.3300.33including242.00250.008.000.3000.58including260.00270.0010.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including391.00393.002.000.4820.87including391.00393.002.000.4820.87KN-00-0520.1239.929379.170.2170.38including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including284.00244.0010.000.3020.44including252.00350.0098.000.2790.41including252.00350.0098.000.2790.41 <td>KN-00-04</td> <td>76.00</td> <td>84.10</td> <td>8.10</td> <td>0.124</td> <td>0.30</td>	KN-00-04	76.00	84.10	8.10	0.124	0.30
KN-00-04148.00152.004.000.1030.13KN-00-04170.00292.61122.610.1580.27including202.80204.802.000.2360.45including224.00228.004.000.3300.33including242.00250.008.000.3000.58including254.00256.002.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.266including308.00310.002.000.2630.31including325.10327.402.300.2030.222including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.266including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including158.00204.0022.000.2560.41including182.00204.0022.000.2560.41including234.00244.0010.000.3020.44including252.00350.0098.000.2790.41	KN-00-04	90.00	94.49	4.49	1.230	0.11
KN-00-04170.00292.61122.610.1580.27including202.80204.802.000.2360.45including224.00228.004.000.3300.33including242.00250.008.000.3000.58including260.00270.0010.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.222including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.266including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including284.00218.0010.000.3020.44including234.00244.0010.000.2790.41including252.00350.0098.000.2790.41including296.00314.0018.000.3230.	KN-00-04	142.00	146.00	4.00	0.119	0.19
including202.80204.802.000.2360.45including224.00228.004.000.3300.33including242.00250.008.000.3000.58including254.00256.002.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.266including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.266including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including234.00244.0010.000.3020.44including252.00350.0098.000.2790.41including252.00350.0098.000.2790.41including252.00350.0098.000.2790.41including252.00350.0098.000.2790.4	KN-00-04	148.00	152.00	4.00	0.103	0.13
including224.00228.004.000.3300.33including242.00250.008.000.3000.58including254.00256.002.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including158.00204.0022.000.2560.41including182.00204.0022.000.2560.41including234.00244.0010.000.3020.44including252.00350.0098.000.2790.41including252.00350.0098.000.2790.41including296.00314.0018.000.3230.44	KN-00-04	170.00	292.61	122.61	0.158	0.27
including242.00250.008.000.3000.58including254.00256.002.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including389.00399.2910.290.2170.38including158.00204.0046.000.2260.38including158.00204.0022.000.2560.41including182.00204.0022.000.2560.41including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	including	202.80	204.80	2.00	0.236	0.45
including254.00256.002.000.2460.50including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including389.00399.2910.290.2170.38including158.00204.0046.000.2260.38including158.00204.0046.000.2260.38including182.00204.0020.000.3020.44including284.00244.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	including	224.00	228.00	4.00	0.330	0.33
including260.00270.0010.000.2420.41KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including158.00204.0022.000.2560.41including288.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	including	242.00	250.00	8.00	0.300	0.58
KN-00-04298.70359.0060.300.1520.26including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including288.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	including	254.00	256.00	2.00	0.246	0.50
including308.00310.002.000.2630.31including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including284.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	including	260.00	270.00	10.00	0.242	0.41
including325.10327.402.300.2030.22including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including28.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	KN-00-04	298.70		60.30	0.152	0.26
including329.00333.004.000.2240.37including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including280.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44		308.00			0.263	0.31
including347.00349.002.000.3120.52KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including280.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	~	325.10	327.40	2.30	0.203	0.22
KN-00-04298.70399.29100.590.1420.26including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	~					
including389.00399.2910.290.2110.40including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44		347.00	349.00			
including391.00393.002.000.4820.87KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2790.41including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	1			100.59		
KN-00-0520.12399.29379.170.2170.38including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44						
including20.1238.9018.780.2930.35including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44		391.00	393.00	2.00	0.482	0.87
including158.00204.0046.000.2260.38including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44						
including182.00204.0022.000.2560.41including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	•					
including208.00218.0010.000.3020.44including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44	-				1	
including234.00244.0010.000.2980.43including252.00350.0098.000.2790.41including275.40280.755.350.4940.64including296.00314.0018.000.3230.44		182.00				
including 252.00 350.00 98.00 0.279 0.41 including 275.40 280.75 5.35 0.494 0.64 including 296.00 314.00 18.00 0.323 0.44		208.00	218.00			
including 275.40 280.75 5.35 0.494 0.64 including 296.00 314.00 18.00 0.323 0.44	-	234.00			0.298	
including 296.00 314.00 18.00 0.323 0.44						
	*	275.40	280.75		0.494	
including 322.00 330.00 8.00 0.303 0.50	-	296.00		18.00	0.323	0.44
	including	322.00	330.00	8.00	0.303	0.50

 Table 4: Significant Assays Kemess North Deposit Phase 1 Drilling

HOLE_ID	FROM	то	WIDTH	% Cu	gAu/t
KN-00-05					
including	344.00	350.00	6.00	0.357	0.49
including	364.00	393.00	29.00	0.299	0.61
KN-00-06	77.05	79.15	2.10	0.105	0.33
KN-00-07	20.10	22.00	1.90	0.116	0.29
KN-00-07	40.00	42.00	2.00	0.173	0.27
KN-00-08	3.05	454.15	451.10	0.177	0.33
including	3.05	17.00	13.95	0.147	0.21
including	26.00	106.00	80.00	0.176	0.38
including	60.00	64.50	4.50	0.252	0.53
including	85.00	89.00	4.00	0.206	0.43
including	138.38	144.00	5.62	0.228	0.41
including	217.00	221.00	4.00	0.202	0.39
including	223.00	227.00	4.00	0.216	0.35
including	237.00	247.00	10.00	0.245	0.38
including	251.00	255.00	4.00	0.220	0.42
including	258.71	261.00	2.29	0.394	0.56
including	290.00	300.00	10.00	0.217	0.39
including	314.00	318.00	4.00	0.247	0.40
including	322.00	328.00	6.00	0.248	0.38
including	332.00	340.00	8.00	0.227	0.34
including	356.50	410.00	53.50	0.260	0.42
including	413.30	419.00	5.70	0.383	0.60
including	435.00	454.15	19.15	0.354	0.58
KN-00-09	9.14	388.62	379.48	0.194	0.33
including	19.40	27.00	7.60	0.214	0.47
including	152.00	160.00	8.00	0.249	0.40
including	166.00	170.00	4.00	0.276	0.45
including	174.00	186.00	12.00	0.258	0.43
including	196.00	200.00	4.00	0.254	0.48
including	213.47	218.00	4.53	0.209	0.31
including	236.00	244.00	8.00	0.215	0.34
including	256.00	269.20	13.20	0.298	0.48
including	277.70	284.00	6.30	0.246	0.36
including	310.00	313.10	3.10	0.215	0.31
including	319.00	349.00	30.00	0.268	0.38
including	357.00	388.62	31.62	0.317	0.48

Table 4 (cont.): Significant Assays Kemess North Deposit Phase 1 Drilling

HOLE_ID	FROM	то	WIDTH	% Cu	gAu/t
KN-00-10	77.00	81.00	4.00	0.129	0.31
KN-00-10	114.00	124.00	10.00	0.153	0.27
KN-00-10	134.00	138.00	4.00	0.135	0.21
KN-00-10	156.00	160.00	4.00	0.120	0.28
KN-00-10	189.00	195.00	6.00	0.143] 0.34]
KN-00-10	199.00	203.00	4.00	0.160	0.24
KN-00-10	211.00	259.00	48.00	0.165	0.29
KN-00-10	263.00	277.00	14.00	0.161	0.32
KN-00-10	293.00	297.00	4.00	0.134	0.22
KN-00-10	303.00	368.00	65.00	0.204	0.31
KN-00-10	376.00	408.00	32.00	0.166	0.34
KN-00-10	478.00	518.00	40.00	0.158	0.33
KN-00-11	21.34	25.20	3.86	0.141	0.39
KN-00-11	42.67	44.20	1.53	0.123	0.21
KN-00-11	56.00	60.00	4.00	0.139	0.35
KN-00-11	67.44	69.70	2.26	0.192	0.42
KN-00-11	92.24	99.60	7.36	0.159	0.25
KN-00-11	103.15	456.22	353.07	0.191	0.26
including	301.00	371.00	70.00	0.243	0.32
including	381.00	456.22	75.22	0.264	0.29
KN-00-11	474.22	494.50	20.28	0.311	0.39
KN-00-12	26.00	509.02	483.02	0.217	0.40
including	89.00	97.00	8.00	0.399	0.90
including	175.00	179.00	4.00	0.236	0.46
including	213.00	227.00	14.00	0.229	0.38
including	237.00	239.00	2.00	0.681	0.96
including	263.00	364.00	101.00	0.290	0.39
including	406.00	468.00	62.00	0.295	0.58
including	484.00	509.02	25.02	0.450	0.80

Table 5:	Significant	Assays Keme	ss North Dep	oosit Phase 2	Drilling

12.0 2000 KEMESS CENTRE EXPLORATION

12.1 GEOPHYSICAL SURVEYS

Delta Geoscience Ltd. conducted a 6.50 line kilometer magnetic, radiometric, induced polarization and resistivity geophysical program from September 25th to October 3rd, 2000. The geophysical program is discussed in a separate attached report.

12.2 DIAMOND DRILLING

A four-hole (KC-00-01 to KC-00-04) diamond drill program totaling 1,015 metres was conducted during the period of June 13th to July 19th, 2000. A D10R was used to establish access to the Kemess Centre prospect. Diamond drilling was contracted to Britton Brothers of Smithers, B.C. ASL Chemex assayed samples for copper (nitric aqua regia) and fire assay gold, with every fifth sampling being analyzed for 32-element ICP. Drill hole collar locations are illustrated in Figure 10 and summarized in Table 6. Drill hole logs, assay summaries and certificates, and sections (Figures 19 to 22), at a scale of 1:1,000, are located in Appendix 3.

HOLE ID	NORTHING	EASTING	ELEVATION	AZIMUTH	INCLINATION	TOTAL DEPTH
KC-00-01	10724.24	9181.18	1418.28	45	-47	300.84
KC-00-02	10781.51	8779.98	1413.15		-90	219.15
KC-00-03	11161.143	9619.957	1503.84		-90	175.87
KC-00-04	11500	8600	1430	78	-65	319.14
ļ					TOTAL	1015

Table 6: Kemess Centre Drill Hole Location Summary

<u>KC-00-01</u>: This hole was targeted to test an east-west orientated potassium/uranium anomaly approximately 1,600 metres in length and 300 to 500 metres in width, centered on the Kemess Mine grid at 9,000 east along line 10,900 north, as well as to test the south flank of an extensive magnetic high.

KC-00-01 was drilled to a depth of 300.84 metres. The upper 114 metres intersected intermediate to mafic volcanic flows and intercalated tuffs. A fault zone within the volcanics occurs at 99.65 to 111.54 metres. One barren dioritic dyke was intersected at

32.35 to 49.25 metres. The mafic volcanics are dark green and weakly, but pervasively, chloritic altered. Magnetite is disseminated throughout the unit and averages 2-4%.

Traces of disseminated pyrite are noted. The diorite dyke exhibits weak patchy potassic alteration and contains rare traces of disseminated pyrite. The fault zone encompasses six separate fault gouges, ranging form 0.10 to 0.45 metres in width, and is dipping at high angles to the core axis.

From 114 metres to the bottom of the hole, a highly siliceous bedded to massive siltstone occurs, which is locally cross cut by mafic dykes. Bedding is locally at 40° to 50° to the core axis, with beds ranging from <1 cm to 20 cm in width. Wispy biotite was occasionally noted within the beds. Sulphide mineralization within the siltstone averages <2% pyrite with traces of chalcopyrite associated with minor quartz +/- carbonate veinlets.

The magnetite within the upper mafic volcanic unit would explain the moderate magnetic high, while the biotite within the lower siliceous siltstone unit would explain the potassic anomaly. Quartz +/- carbonate veining with traces of chalcopyrite mineralization, as well as potassic alteration (biotite) may indicate a proximal intrusive body and fluid source. Assays for KC-00-01 are shown in Table 7.

Hole_ID	From	То	Width	Cu_ppm	Au_ppb	Ag_ppm
KC-00-01	30.90	32.35	1.45	25	2.5	0.1
KC-00-01	32.35	34.45	2.10	27	2.5	0.1
KC-00-01	34.45	36.20	1.75	15	2.5	0.1
KC-00-01	36.20	38.10	1.90	27	2.5	0.1
KC-00-01	38.10	40.00	1.90	24	2.5	0.1
KC-00-01	40.00	41.75	1.75	31	10	0.1
KC-00-01	41.75	43.50	1.75	16	2.5	0.1
KC-00-01	43.50	45.00	1.50	20	2.5	0.1
KC-00-01	45.00	46.75	1.75	31	2.5	0.1
KC-00-01	46.75	49.25	2.50	14	2.5	0.1
KC-00-01	88.80	89.90	1.10	21	5	0.1
KC-00-01	89.90	91.30	1.40	207	15	0.2
KC-00-01	95.90	98.00	2.10	37	2.5	0.1
KC-00-01	106.90	109.10	2.20	65	45	0.1
KC-00-01	109.10	110.80	1.70	79	60	0.1
KC-00-01	126.90	127.70	0.80	67	20	0.1
KC-00-01	127.70	129.90	2.20	412	2.5	0.2
KC-00-01	157.00	158.25	1.25	96	10	0.1
KC-00-01	158.25	159.45	1.20	17	2.5	0.1
KC-00-01	184.15	185.55	1.40	26	5	0.1
KC-00-01	223.90	225.15	1.25	57	2.5	0.1
KC-00-01	255.05	256.10	1.05	209	2.5	0.2
KC-00-01	256.10	257.45	1.35	95	2.5	0.1
KC-00-01	257.45	259.10	1.65	145	2.5	0.2

Table 7: Assay Results for KC-00-01

KC-00-02: This hole was designed to target the western extension of an east-west oriented potassium and uranium anomaly approximately 1,600 metres in length and 300 to 500 metres in width, located on Kemess Mine grid on line 10,900 North. Delta Geoscience Ltd. postulated in their November 1999 geophysical report (internal company report) that this anomaly may represent a faulted off section of the quartz monzonite intrusive body which hosts the Kemess South Mine. The hole was also designed to test the south end of a moderate north-south trending IP resistivity low and the northwest flank of a high to moderate IP chargeability anomaly, as defined by Lloyd Geophysics Ltd. in 1999.

KC-00-02 was drilled to a depth of 219.15 metres. The upper portion of the hole, to 76.60 metres, intersected weak clay, sericite and potassically altered quartz monzonite containing 2-4% magnetite, and <1% disseminated pyrite and traces of chalcopyrite A narrow mafic dyke cross cuts the unit between 71.25 to 73.05 metres. From 76.60 to 128.72 metres, the hole intersected a siliceous biotite siltstone unit, as in KC-00-01,

43

which is cross cut by a number of narrow quartz monzonite, andesite and mafic dykes. The siltstone unit averages 1-3% pyrite as fine irregular fracture fill and associated with thin quartz +/- carbonate stringers. Traces of chalcopyrite are also noted within this unit. Underlying the siltstone, from 128.72 to 159 metres, the drill hole intersected another quartz monzonite, identical to the upper quartz monzonite. This unit is in turn underlain by the siliceous biotite siltstone unit from 159 to 186.45 metres, intermediate volcanics from 186.45 to 205.50 meters and from 205.50 to 210.20 metres, the siliceous biotite siltstone.

The potassium anomaly is explained by both the weak potassium alteration within the quartz monzodiorite, as well as by the biotite within the siliceous siltstone. The presence of weak, but pervasive sericite and clay alteration, in addition to >1% pyrite occurring within most of the lithologies, would explain the moderate IP resistivity low. Quartz +/- carbonate veining with traces of chalcopyrite mineralization, as well as potassic alteration (biotite), may indicate a proximal intrusive body and fluid source. A summary of anomalous assays for KC-00-02 is shown in Table 8.

HOLE_ID	FROM	то	WIDTH	Cu_ppm	Au_ppb	Ag_ppm	Comment
KC-00-02	4.57	10.57	6.00	323	6.7	0.4	anomalous Cu
KC-00-02	71.25	75.10	3.85	328	2.5	0.1	anomalous Cu
KC-00-02	91.50	97.00	5.50	224	5.4	0.2	anomalous Cu
KC-00-02	110.25	111.10	0.85	300	45.0	0.1	highest Au value
KC-00-02	115.80	119.05	3.25	320	11.8	0.5	anomalous Cu
KC-00-02	126.95	128.70	1.75	1120	30.0	0.8	highest Cu value
KC-00-02	137.00	144.35	7.35	307	4.8	0.1	anomalous Cu
KC-00-02	152.75	154.60	1.85	601	5.0	4.4	highest Ag value
KC-00-02	152.75	162.55	9.80	364	10.9	1.0	anomalous Cu
KC-00-02	190.50	193.10	2.60	470	2.5	0.2	anomalous Cu
KC-00-02	202.60	203.85	1.25	872	20.0	0.2	anomalous Cu

<u>KC-00-03</u>: This hole was designed to test a potassium anomaly, as well as a trailing IP chargeability high, to the northeast of KC-00-01 and KC-00-02. This chargeability high is similar to the near-surface chargeability anomaly located on line 9,900 north at 10,500

east that occurs at the contact between supergene and hypogene ore types at the Kemess South Mine.

KC-00-003 was drilled to a depth of 175.87 metres. From surface to a depth of 37.70 metres, the hole intersected fine-grained clay and sericite altered pyroclastics: lapilli and ash tuffs with local quartz/carbonate. The unit contains 2% pyrite and traces of chalcopyrite associated with patchy silicification and quartz/carbonate veining. The unit is highly fractured and oxidized to a depth of 16 metres.

Below this volcanic horizon, two apophyses of quartz monzonite occur between 37.70 to 56.24 metres and 69.00 to 83.32 metres, within a thick sequence of interbedded siltstones and massive mafic flows, which occur to the end of the hole. The apophyses are moderately clay altered with weakly developed patchy k-feldspar alteration, and contain 1% pyrite and traces of chalcopyrite.

The presence of pyrite and clay within the upper fine-grained pyroclastics, coupled with the well-developed oxidation, may explain the cause of the IP chargeability high. Weak to well developed patchy k-feldspar alteration within the monzonite apophyses may explain the potassium anomaly. The clay and k-feldspar altered monzonite aphophyses with traces of chalcopyrite may indicate a proximal intrusive body and fluid source. A summary of anomalous assays for KC-00-02 is shown in Table 9.

HOLE_ID	FROM	то	WIDTH	Cu_ppm	Au_ppb	Ag_ppm	Comment
KC-00-03	4.70	19.75	15.05	253	39.5	0.4	anomalous Au & Cu
KC-00-03	8.23	13.55	5.32	231	53.0	0.4	anomalous Cu & Au
KC-00-03	17.15	19.75	2.60	686	380.0	1.0	highest Cu value
KC-00-03	102.50	103.75	1.25	60	2.5	1.6	highest Ag value
KC-00-03	156.45	158.00	1.55	198	430.0	0.1	highest Au value

Table 9: Summary of Anomalous Assays for KC-00-03

<u>KC-00-04</u>: This hole was designed to test the center of a bulls eye potassium high, a proximal thorium high and a very well defined chargeability high anomaly within a large chargeability low background.

The hole was drilled to a depth of 319.14 metres and intersected patchy moderate kfeldspar and chlorite altered quartz monzonite throughout its entire length. The kfeldspar alteration occurs as selvages to the quartz veining, along fractures and to the matrix. A weakly developed quartz and Fe-carbonate stockwork occurs throughout. Pyrite is ubiquitous, averaging 1-3%, and occurs as fine disseminations as well as within quartz veining. The upper 200 metres of the hole contains trace to <1% chalcopyrite as very fine-grained disseminations, as well as within the quartz veins.

The bulls-eye potassium high and chargeability high are explained by the k-spar alteration and disseminated pyrite, respectively. A summary of anomalous assays for KC-00-02 is shown in Table 9.

HOLE_ID	FROM	то	WIDTH	Cu_ppm	Au_ppb	Ag_ppm	Comment
KC-00-04	29.10	34.30	5.20	308	13.2	0.2	anomalous Cu
KC-00-04	58.15	60.05	1.90	516	45.0	0.8	anomalous Cu & Au
KC-00-04	85.00	119.45	34.45	1144	57.4	1.0	0.114% Cu
KC-00-04	100.90	102.70	1.80	2470	170.0	2.6	highest Au value
KC-00-04	108.80	110.30	1.50	3040	95.0	2.2	highest Ag value
KC-00-04	136.25	139.30	3.05	460	2.5	0.2	anomalous Cu
KC-00-04	143.70	145.40	1.70	2560	10.0	5.6	highest Ag value
KC-00-04	143.70	152.50	8.80	1321	5.2	1.9	0.132% Cu
KC-00-04	171.25	179.65	8.40	361	4.4	0.2	anomalous Cu
KC-00-04	18 1 .97	194.16	12.19	341	6.1	0.4	anomalous Cu
KC-00-04	197.21	201.70	4.49	310	2.5	0.1	anomalous Cu

Table 10: Significant Assay Summary for KC-00-04

13.0 CONCLUSIONS AND RECOMMENDATIONS

The year 2000 diamond drilling exploration program, together with previous exploration results, has outlined a geological resources at the Kemess North deposit of 360 million tonnes grading 0.154 % Cu and 0.299 gAut. The deposit has been outlined over a strike length of 1,200 metres in length, 500 metres in width and extending over 500 metres at depth. The ultimate strike length, width and downdip extent of the deposit has not yet been delineated.

A systematic grid-based 5,000 diamond drill program on 100 metre centers is recommended in order to test the strike and depth extension of the newly discovered porphyry system in the Kemess North deposit. If the deposit were found to extend beyond the proposed grid-based program, additional drilling would be warranted. An induced polarization and magnetic geophysical program is recommended in order to evaluate the mineralization potential at northeast edge of the Kemess North deposit.

Diamond drilling program at Kemess Centre project intersected lithologies, alteration and mineralization, which may be indicative of a proximal intrusive body and fluid source. However, the four-hole drilling program did not intersect significant mineralization. One additional drill hole is recommended to test an induced polarization anomaly defined by a previous geophysical program.

14.0 STATEMENT OF COSTS

Exploration costs for the period of May 1st to December 7th, 2000 totaled \$755,757.22 as outlined in Table 11 below, and in pie chart format on the following page. Detailed cost accounting by category is provided in Appendix 4.

Category	Total Costs	% Of Total
Diamond Drilling	349763.20	46.28
Helicopter	137395.35	18.18
Camp Costs	73755.00	9.76
Salaries	71568.50	9.47
Fuel Costs	37663.70	4.98
Analytical Costs	22164.79	2.93
Geophysical Survey	21864.65	2.89
Vehicles	13260.00	1.75
Administration	9666.64	1.28
Sample Preparation	7617.33	1.01
Materials	5623.57	0.74
Equipment (D10R): Physical Work	3618.00	0.48
Surveying	1650.00	0.22
Report Preparation	146.49	0.02
TOTAL	755757.22	100.00

i

 Table 11: Exploration Costs by Category

15.0 STATEMENT OF QUALIFICATIONS

I, Adrian D. Bray, of 4285 Sophia St. Unit #14 of Vancouver British Columbia, do hereby certify that:

- 1. I have studied Geology at Acadia University in Wolfville, Nova Scotia and have received a Bachelor of Sciences degree with Honours in Geology and a Major in German in October of 1986.
- 2. I am an Associate Member in good standing with the Geological Association of Canada.
- I have continuously practiced by profession since graduation in Nova Scotia, Ontario, Quebec, British Columbia, Cuba and Mexico.
- 4. I co-supervised the 2000 exploration program on the Kemess Property and have reviewed all of the data.

Dated at Kemess South Mine, Omineca Mining Division, the 15th day of January, 2001

Adrian D. Bra Adrian D. Bray

STATEMENT OF QUALIFICATIONS

I, Brett R. LaPeare, of 3866 Comox St. of Smithers British Columbia, do hereby certify that:

- 1. I have studied Geology at Lakehead University in Thunder Bay, Ontario and have received a Bachelor of Sciences degree in Geology in 1990.
- I have continuously practiced by profession as an exploration and mine geologist since graduation in Ontario, Quebec, North West Territories, Nunavut, British Columbia, Alaska, Arizona, Indonesia and Australia.
- 3. I have completed courses since graduation including: a) Epithermal to Porphyry Environments- Ore Textures, Brecciation, Hydrothermal Alteration and Paragenesis; b) SW Pacific Gold/Copper Systems- Structure, Alteration and Mineralization; c) Exploration Tools for Volcanogenic Massive Sulphide Deposits
- 4. I co-supervised the 2000 exploration program on the Kemess

Dated at Bulyanhulu Mine, Tanzania, the 2nd day of February, 2001

Brett R. LaPeare

1

16.0 REFERENCES

Blanchflower, J.D., Geological, Geochemical and Geophysical Report on the Kemess Property, Omineca Mining Division, British Columbia; Private Report Prepared for El Condor Resources Ltd., 1986

Bowen, B.K., Copeland, D.J., Rebagliati, C.M, Kemess North Project, El Condor Resources Ltd., 1991 Exploration Report and Delineation Drilling Program on the Kemess North Property, Assessment Report, May 1992

Diakow, L.J., Panteleyev, A., Schroeter, T.G., Geology of the Early Jurassic Toodoggone Formation and Gold Silver Deposits in the Toodoggone River Map Area, Northern British Columbia, B.C. Geological Survey Branch Bulletin 86, 1993

Diakow, L.J., Panteleyev, A., Schroeter, T.G., Jurassic Epithermal Deposits in the Toodoggone River Area, Northern British Columbia, Economic Geology, volume 86, pp 529-554, 1991

Giroux, G.H., Geostatistical Study of Kemess South Copper-Gold Deposit, prepared for Montgomery Consultants Ltd. for El Condor Resources Ltd., 1992

Gower, S.C., Geological and Geochemical Report on the Kemess Property, Omineca Mining Division, British Columbia; private report prepared for El Condor Resources Ltd., 1988

LaPeare, B., Internal Monthly Reports for Northgate Exploration Ltd., 2000

Lloyd, J., Klit, D.A., An Assessment Report on the Induced Polarization Survey on the Kerness Property, Omineca Mining Division, British Columbia, 1991

Monger, J.W.H., The Triassic Takla Group in McConnell Creek Map Area, North Central British Columbia, Geological Survey of Canada Paper, 76-29, 1977

Rebagliati, C.M., Bowen, B.K, Copeland, D.J., Niosi, D.W.A., Kemess South and North Porphyry Gold-Copper Deposits Northern British Columbia, in Porphyry Deposits of the Northwestern Cordillera of North America, CIM Special Volume 46, pp 377-397, 1995

Rebagliati, C.M., Kemess North Project, El Condor Resources Ltd., 1992 Exploration Program on the Kemess North Property, Assessment Report, March 1993

Rebagliati, C.M., Kemess North Project, An Exploration Proposal to Increase the Mineable Reserves at the Kemess North Deposit by Diamond Drilling, March 1993

Rogers, C., Houle, J., Geological Setting of the Kemess South Au-Cu Porphyry Deposit and Local Geology Between Kemess Creek and Bicknell Lake, Royal Oak Mines Inc. Smithers Exploration Office Files, 1998

17.0 LIST OF APPENDICES

Appendix 1	Kemess South Mine: Drill Hole Log, Geotechnical Drill Hole Log, Assay Summary, Assay Certificate and 1:1,000 Section for Drill Hole 2000-06
Appendix 2	Kemess North Deposit: Drill Hole Logs, Geotechnical Drill Hole Logs, Assay Summaries, Assay Certificates and 1:1,000 Sections for KN-00-01 to KN-00-12
Appendix 3	Kemess Centre: Drill Hole Logs, Assay Summaries, Assay Certificates and 1:1,000 Sections for KC-00-01 to KC-00-04
Appendix 4	Detailed Cost Accounting

APPENDIX 1: KEMESS SOUTH MINE

- 1. Geological Drill Log 2000-06
- 2. Geotechnical Drillhole Log 2000-06
- 3. Drill Hole Assay Results for 2000-06
- 4. Assay Certificates for Drill Hole 2000-06
- 5. Figure 11: 1:1,000 Drill Hole Section 2000-06

SYNOPTIC DRILL LOG NORTHGATE EXPLORATION LTD. KEMESS PROJECT

D.D.H. NO. 2000-06

PAGE 1 OF ____

NORTHING	9898.58	TOTAL DEPTH	314.46 m	
EASTING	9426.15-1	TOATL CASING	6.10 m	
ELEVATION	1316.77	DATE START	29/10/2000	
PROJECT/AREA	Kemesel Santa mine	DATE END	02/11/2000	
AZIMUTH	0450	CORE DIAMETER	NQ	
INCLINATION	-65°	GEOLOGIST	Adrian Do Bray	
SAMPLE SERIE		TO 14852	14766-14772 (ABA Sami O 14773-14772 (ABA + Ass O 14773-14812 (ABA + Ass O 14773-14812 (ASSA) O 14813-14852 (ABA)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TARGET/PUR	POSE: Stratigraphic	the to test for	Adapticate + surfariste	
west of the	Minute pit limits	in an area that ha	5 received limited trustoric	a d
COMMENTS (target intersected? / describ	e):		

Downhole Survey

Depth	Туре	Azimuth	Dip	
100m		0452	-62.5	*Azm Suspec
		044.50	-63°	
200m 300m		048°	-639	
		-		

From	То	Rock Type	Alteration	Mineralization	Comments
0.00	6.10	Cassing			
6.10	139.00	Polymidic Petrole Conformat	clay ((nem)	no visible sulphiles	Notive corper 123.30-139160 m
139.60	143	(Q72)Marzonite: Syrengene	ser/cry trail	trace Notive Gu	
143	207-35	(Qtz) Monzanit: Hypogene	sec/cou/nem	3-49-24,3-5% mag +5-25% 6624	30-35% gitt stockwork
	224 · 30	Fault Zone	clay	trades P1	
224.30	227.83	Matic Dyke	chity-ser	traces py	
227.83	229.80	Q72 Monzanite: Hypogene	Kaprisil	fraces 24	
229-80	249.42	Takla Seds: Cherty Sistone	sil	truces Py	
249-42	25465	Int Matic Dyke	KSPT, epidak, chi	no visible	
251-65	288.15	Takka seds : cherty s.stone	4i1	traces py	
288.25	290.48	Int Matic Dyke	chi	no visible satinde	
290.48	241.08	Takla seds: chesty s.stone	oil	traces py	
80.176	292-12	matic Dyke	cul ty-ser	no visible sulphad	۹ <u>۶</u>
297-12	25.28	Takka Seds. : Chesty S. store	511	traces PH	
295.28	297.57	Int. Rayischure Dytte	sil	no visible sulphid	es
297.57	308-55	Takia Seds: Onetty Sistore	કો	fraces 2-1	·····
305.55	344-46	Int. (Anderite) Dyke	chilsil	no visible sulphide	s <u></u>

).D.H. N	10.	2000-06			Page		of	2
From	To	DESCRIPTION	Sample #	From	Τo	%Cu	Au g/t	Ag g/t
0.00	6.10	Casing						
6.10	139.60	Polymictic Pebble Conglomerate (Tertiary Sediments)						
		 patchy weak to moderately magnetic dark reddish-brown, locally greyish green, very fine grained to fine grained muddy to (sandy) matrix with 25-(30)% 1-70 mm subrounded to subangular to irregular shaped polymictic/hetrolithic fragments, largely matrix supported but locally clast supported over intervals to approximately 1.50 metres fragment compostion, in order of decreasing abundance, includes: a) whitish to light greenish sercitic/clay altered (qtz monzonite) b) dark reddish-brown very fine grained to fine grained, same composition as the matrix c) black aphanitic (mudstone) d) greenish chloritic altered andesite e) greyish aphanitic clay altered the unit is massive, or could be thickly bedded and crudely fining-up as it does appear as if the fragments coarsen somewhat down the interval; locally the long axis of the fragments appear to be weakly oriented @ 60 to 80 degrees to the core axis scattered narrow clay-rich gouges, weak shears and calcite matrix to clast supported breecias weak-(mod) clay altered, hematite? pervasive to matrix (reddish-brown colour) average 3-4% <1-25 mm calcite stringers/veinlets @ 65 to 80 degrees to the core axis no visible sulphides, traces of native copper towards the base of the unit the lower contact is marked by a 30 cm clay-rich fault gouge @ 80 degrees to the CA 	14766 14767 14768 14769	40.06 59.04 62.64 82.74	40.76 59.95 64.12 84.08			

ł

D.D.H. NO.	2000-06			Page	,2	of	2
From To	DESCRIPTION	, Sample #	From	To	%Cu	Au g/t	Ag g/t
	 8.27-8.29: clay-rich gouge @ 80 degrees to the core axis 9.18-9.22: clay-rich gouge @ 50 degrees to the core axis 11.90-11.95: clay-rich gouge @ 50 degrees to the core axis 15.06-15.08: clay-rich gouge @ 70 degrees to the core axis 20.82-20.86: clay-rich gouge @ 70 degrees to the core axis 33.02-33.08: clay-rich gouge @ approximately 80 degrees to the core axis 33.40-33.65: clay-rich gouge @ 80 degrees to the core axis 34.12-34.20: clay-rich gouge @ 80 degrees to the core axis 40.31-40.34: minor clay-rich gouge @ 75 degrees to the core axis 65.10-65.90: shear fabric @ 85 degrees to the core axis, minor clay-rich gouge 69.95-70.45: calcite matrix to fragment supported breccia 71.75-71.81: minor clay-rich gouge @ 80 degrees to the core axis 82.75-84.43: fragment supported 84.43-84.60: clay-rich gouge @ approximately 75 degrees to the core axis 91.70-92.00: blocky core 92.87-92.90: clay-rich gouge @ 45 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge 94.5 degrees to the core axis 93.88-93.90: clay-rich gouge<td>14770 14771 14772 14773 14774 14775 14776 14777</td><td>121.30 124.30 126.30 130.30 132.30 134.30 136.30</td><td>124.30 126.30 128.30 130.30 132.30 134.30 136.30</td><td></td><td></td><td></td>	14770 14771 14772 14773 14774 14775 14776 14777	121.30 124.30 126.30 130.30 132.30 134.30 136.30	124.30 126.30 128.30 130.30 132.30 134.30 136.30			
		14778	138.30				

-

D.D.H. NO).	2000-06			Page	3	of	2
From	To	DESCRIPTION	Sample #	From	То	%Cu	Au g/t	Ag g/t
	143.00	(Quartz) Monzonite: Supergene	14779 14780	139.60 141.30	141.30 143.00			
		 strong fine irregular micro fractured to brecciated with 10-12% hematite as fracture fill much of the original texture is obscured by the intense fracturing and brecciation patchy sericite and clay altered +/- silicified no visible sulphides, rare trace native copper within 50 cm of the upper contact the lower contact is gradational over 10 cm, marked by a drop in hematite and the appearance of magnetite 						
143.00	207.35	 (Quartz) Monzonite: Hypogene patchy tannish to yellowish to orangy greyish in colour 40-(50)% whitish to whitish green to whitish orange 1-4 mm subhedral to euhedral feldspar in a very fine grained matrix, (fine-grained) to medium-grained porphyritic; rare traces of mafic minerals the upper and lower sections of the unit are weak to moderately sericite and clay altered, while the core of the unit is moderately to stronly potassic altered well developed quartz stockwork averaging 30-35% veining from 1-40 mm in width; no consistent oreintation of the veining; rare clay-rich gouge to 5 cm average 3-(4)% pyrite predominately as fracture fill, rare stringers/veinlets, and as fine disseminations; 3-5% magnetite as fine irregular fracture fill, within qtz veining and as irregular 1-10 mm clots; trace to <0.5% chalcopyrite as 1-4 mm blebs largely confined to the quartz veining the lower contact is sharp and sheared at 40 degrees to the core axis 	14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794	143.00 145.00 147.00 151.00 153.00 155.00 157.00 161.00 163.00 165.00 167.00 169.00	147.00 149.00 151.00 153.00 155.00 157.00 159.00 161.00 163.00 165.00 167.00 169.00			

-

1 *

-

1

D.D.H. NO	0.	2000-06			Page	4	of	2
From	To	DESCRIPTION	Sample #	From	To	%Cu	Au g/t	Ag g/t
FIOI	10	 143.00-166.00: largely sericite/clay altered with very minor potassic alteration 152.95-153.00: vuggy coarse-grained pyrite/talc/clay/chl gouge @ 55 degrees to the core axis 158.05-158.17: clay-rich pyritic gouge @ 45 degrees to the core axis 159.26: 2-3 mm clay-rich gouge @ 45 degrees to the core axis 159.90-159.96: clay-rich gouge @ 45 degrees to the core axis 166.53: 10 mm clay-rich gouge @ 60 degrees to the core axis 166.00: 198.00: dominately potassic altered with lesser scricite and clay alteration 173.57-173.62: pitted to vuggy very fine grained pyrite +/- black clay/chlorite @ 50 degrees to the core axis 176.50-176.80: strongly brecciated, clay-rich matrix to fragment supported with sharp 2 cm lower clay-rich gouge contact @ 65 degrees to the core axis 181.51: 1-2 mm clay-rich gouge @ 30 degrees to the core axis 185.12-185.19: clay/(pyrite)-rich breccia with clay-rich upper and lower gouge contacts @ 35 and 55 degrees to the core axis, respectively 198.00-207.35: largely sericite/clay altered with minor potassic alteration 207.25-207.35: strongly sheared @ 40 degrees to the core axis; 8-10% 1-6 mm subrounded to clongate milled rock fragmen in a dark black chlorite?/pyrite? matrix 	14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808	171.00 173.00 175.00 177.00 179.00 181.00 183.00 185.00 185.00 187.00 189.00	173.00 175.00 175.00 177.00 181.00 183.00 185.00 185.00 189.00 191.00 193.00 195.00 195.00 195.00 201.00 203.00 205.00			

.

-

.

).D.H. N	NO.	2000-06			Page	5	of	<u>9</u>
From	To T	DESCRIPTION	Sample #	From	То	%Cu	Au g/t	
207.35	224.30	Fault Zone	14813	207.35	209.40	70Cu	Augh	Agg
			14814		212.45			
		207.35-211.80: 35-40% subrounded to subangular 2-100 mm (quartz) monzonite and quartz veining milled fragments	14815	212.45	215.49			
		in a pervasively clay-rich gouge matrix, matrix to fragment supported; traces of pyrite to the fragments,	14816	215.49	218.54			
		as fine irregular fracture fill and as fine disseminations	14817	218.54	221.59			
			14818	221.59	224.30			
		211.80-222.90: faulted to strongly brecciated light grey to black siltstone and mudstone; strong clay alteration to the						
		siltstone/mudstone and pervasive clay-rich gouge matrix; scattered brecciated quartz veins and rare (quartz						
		monzonite fragments, largely fragment supported; average <1% pyrite and fine disseminations: 6-8%						
		calcite as fine irregular fracture fill @ all angles to the core axis						
	·							
		222.90-227.30: brecciated black clay altered mudstone and greyish-green silicified/cherty siltstone						
		the lower contact is sharp @ 35 degrees to the core axis			·			
					· ···			
24.30	227.83	Mafic Dyke	-					
24.30		wranc Dyke	14819	224.30	226.00			
· · · -		- massive, bleached/mottled light to dark greenish; non-magnetic	14820	226.00	227.83			
		- very fine grained matrix with 25-30% euhedral to subhedral 1-4 mm black to whitish chlorite +/- sericite altered pyroxene						
	······	- moderately chlorite +/- very weak sericite altered						
		-2-(3)% 1-15 mm carbonate/(quartz) stringers and veins @ variable angles to the core axis				·· ··· ·······························		
		the lower contact is sharp but irregular @ approximately 60 degrees to the core axis						
	····				· · · - · · · · · · · · · · · · · · · ·			
			-1				· -· · ·	l
			·	····•				l
			1		· ·			
			1					
	·		1					1.
		Ψ			· · · · · · ·		· ·	

3 1

-

•

-

-

).D.H. N	10.	2000-06			Page	6	of	<u>9</u>
From	To	DESCRIPTION	Sample #	From	To	%Cu	Aug/t	Ag g/t
227.83	229.80	Quartz Monzonite: Hypogene	14821	227.83	229.80			
		- description as per 143.00 to 207.35 metres		-				
		- patchy weak-moderate potassically altered and silicified						·
		- 1-2% 1-(3) mm subrounded guartz			· • · · · · · · · · · · · · · · · · · ·			
		- trace pyrite as fine irregular fracture fill						
		- unit lacks quartz veining						
		- sharp lower fault contact @ 25 degrees to the core axis						
				l				
229.80	249.42	Takla Sediments: Cherty Siltstone	14822	229.80	230.73			
		- (90)-95% bleached light greyish to greyish-(greeny) aphanitic cherty siltstone with 5-(10)% tannish to beigy to greyish	14823		233.71			
		clay altered +/- very weak silicified silty/muddy interbeds 0.1-17 cm in width, ranging from 20 to 80 degrees to the core	14824	233.71	236.76			
		axis, but predominately @ 50 to 70 degrees to the core axis; core typically breaks along these interbeds	14825		239.80			
		- (weak to moderately fine irregular micro fractured throughout, core is generally blocky	14826	- I wanted and a second second	242.55			
		- <1% 1-4 mm calcite stringers @ variable angles to the core axis	14827		242.55			
		- rare traces of pyrite as fine irregular fracture fill	14828		244.08			····
		- the lower contact is sharp @ 55 degrees to the core axis	14829		249.42			
	· - · · · · · · · · · · · · · · · · · ·	- the fower contact is sharp (a) 55 degrees to the core axis	14029	247.03	249.42			
							·	
		······		I				.
	·· ·							
			· · · · · · · · · · · · · · · · · · ·				-	
							-	

-

D.D.H. N	IO .	2000-06				1	Page	7,	of	2
						i	1		!	
From	To	DESCRIPTION		S	mple #	From	To	%Cu	Au g/t	Ag g/t
249.42	251.65	Intermediate to Mafic Dyke			4830	249.42	251.65			
		- massive, fine irregular micro fractured; patchy weak to moderately magnetic								
		- medium greyish to weak (greenish), very fine grained matrix with 8-10% 1-4 mm		ish to						
		orangy to yellowish green potassic and epidote altered feldspar and mafic phenocr	ysts							
	· · · · · · · · · · · · · · · · · · ·	- fine irregular micro fractures typically infilled by epidote							· ··· ··-	
		- no visible sulphides								···
		- the lower contact is sharp @ 60 degrees to the core axis	;							
									1	
			3						····	
251.65	288.25	Takla Sediments: Cherty Siltstone	:		4831	251.65	255.04			
					4832	255.04	258.09			
		- 90-95% bleached light greyish to greyish-(greeny) aphanitic cherty siltstone with 5			4833	258.09	261.13			
		clay altered +/- very weak silicified silty/muddy interbeds 0.1-17 cm in width, range		the core	4834	261.13	262.96			
		axis, but predominately @ 50 to 70 degrees to the core axis; core typically breaks			4835	262.96	267.23			
		- (weak to moderately fine irregular micro fractured throughout, core is generally t	olocky		4836	267.23	270.27			
		- <1% 1-4 mm calcite stringers @ variable angles to the core axis			4837	270.27	273.32			
		- rare traces of pyrite as fine irregular fracture fill			4838	273.32	276.37			
		- the lower contact is obsucred by rubbly core			4839	276.37	279.42			
					4840	279.42	282.46			
		279.00-285.00: cherty sediments are a darker greyish to black in colour and become			4841	282.46	285.51			
		aphanitic; the sediments are also patchy moderately magnetic; a nur			4842	285.51	288.25			
		contain angular 1-10 mm dark black magnetic mudstone? rip-up cla	sts?; this could be an interva	lof	4843	288.25	290.48			
		intermixed cherty siltstone and intermediate to mafic dyke material								
			·							
288.25	290.48	Intermediate to Mafic Dyke								
200.25	270.40									
		- description as per 249.42 to 251.65 metres, but lacks the epidote alteration				· [·				
		- the lower contact is sharp @ 60 degrees to the core axis								
										I

D.D.H. N	NO.	2000-06			Page	8	of	<u>9</u>
From	To To	DESCRIPTION	Sample #	From	То	%Cu	Au g/t	Ag g/t
290.48	291.08	Takla Sediments: Cherty Siltstone	14844	290.48	292.12			
470.10								
		- description as per 229.80 to 249.42 metres						
		- the lower contact is obscured by rubbly core						
						<u>-</u>		·
								·
291.08	292.12	Mafic Dyke						
		- description as per 224.30 to 227.83 metres, but moderately magnetic and no visible sulphides						
	····	- description as per 224.50 to 227.85 metres, but indeclately magnetic and no visible surplices						
		- the lower contact si irregular at approximately 40 degrees to the core axis						
292.12	295.28	Takla Sediments: Cherty Siltstone	14845	292.12	295.28			
	·	- description as per 279 to 285 metres						
		- the lower contact is irregular at approximately 30 degrees to the core axis						
						·		
295.28	297.57	Intermediate Plagioclase Dyke	14486	295.28	297.57			
		- massive, non-magnetic						
		- light greyish, very fine grained matrix with 15-(20)% 1-8 mm whitish subhedral to euhedral feldspars						
		- no visible sulphides						
		- the lower contact is a bit irregular, but sharp @ 65 degrees to the core axis						
	· · ·							
				i	L	L		1

D.D.H. N	(O .)	2000-06					Page	ſ	of	2
From	То		DESCRIPTION		Sample #	From	То	%Cu	Au g/t	Ag g/t
297.57	308.55	Takla Sediments: Cherty Siltstone			14847	297.57				
	1				14848				[······	
	1	- description as per 229.80 to 249.92 metres, but <	<2% clay +/- epidote altered interbeds: core is	more competant and not	14849					
	1/	blocky; interval is also chloritic altered	,,,		14850	306.53			1 '	
	1	- the lower contact is sharp @ 50 degrees to the co	ore axis						1'	
	1	1			'			I	1'	
,	1/	1 ; i]			·'	1'	1	1	('	
	1				-1'	(·····································	f	1	1 '	
308.55	314.46	Intermediate (Andesitic) Dyke			14851	308.55	312.32	l	('	
	1				14852		314.46		('	
	1	- massive, moderately magnetic				[]		1		· ·
,	1	- light greyish, very fine grained matrix w/ very fir	ne grained to fine grained whitish ghosted sub	hedral to anhedral <1 mm				l		
	1	feldspars						1	1	
	1	- 1% clacite/epidote as fine irregular fracture fill				(,			1	
	1	- core is blocky throughout							1	-
,	1	- moderately chloritic +/- silicified								
)	í′	- no visible sulphides						1		
	<u>ا</u> '	- the lower contact is the end of the hole								
/	í'									
	I'									
314.46	314.46	ЕОН					'			
!	1'	1								
!	I′									_
!	í'	1								
/	I'	1						<u>[</u>		<u> </u>
/	. ′									
!	I						<u> </u>			
!	í									
!	('								·	<u> </u>
!	I′									
!	1′									
<u> </u>	Í′									
	1							1		
	í								1	
	1	1								1

. .

--

 250 Very strong rock Spectment redunds many blows or nameno and/or geological pick to facture il
 250 Extremely strong rock Spectmen can only be chipped with geological pick

Project: Location:

Estimated UCS, MPa

0.25 - 1.0

1.0 - 5.0

5.0 - 25

25 - 50

50 - 100

100 - 250

Hardness

0

2

3

.4

5

6

-

-

- ----

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

t: on:	Kemess 10312.043 N 10165.227 E		Logged by	Paarup				Date	Oct. 30, 2	2000	Hole No. ₂₀₀₀₋₆ Hole Dia		imuth Ination	045 -65 Sheet
	Intact Roo	k Hardness		Jo	int Condi	tion			1		Joint Weathering	ר ר		Joint Roughness
		E .440.4	PERSISTENCE	< 1 m	1 - 3m	3 - 10m	10 - 20	m > 20m	1	Rating	Description] [Rating	Description
1	Description	Field Performance	Rating	6	4	2	1	. 0		. 0	Completely weathered - original fabric and relict		0	Polished or Slickensided
Extr	emely weak rock	indented by thumbnail	APERTURE	None	< 0.1 mm	0.1 1.0) 1-5	5 - 10]	1.00	structures remain but, rock is decomposed and	1 1		1
v	ory woak rock	Crumbles under firm blows with the point of a	Rating	6	5	4	1	0		1.1	<u> </u>	1 1		
1		geological pick; can be peeled with a pocket knife	ROUGHNESS	V Rough	Rough	SL Roug	h Smoo	th Slicks		1.1	Highly weathered - rock is discolored and strength	1 1	1	Smooth, Planar
	Weak rock	Can be peeled with a pocket knife with difficulty;	Rating	6	344 5 an 1	·** 25 3	× 1.	* . 0]	1	is significantly reduced by weathering			
		shallow indentations made by firm blow of geological	INFILLING	None	Hard I	ntilling	So	ft Infilling		3	Moderately weathered - rock is discolored, but		3	Slightly Rough, Undulating
		pick			< 5 mm	> 5 mm	n < 5m	m > 5 mm			strength is only stightly affected, discontinuities weathered	1		
Mec		Cannot be scrapped or peeled with a pocket knife;	Rating	6	4	19 × 3 =	ial that 2 g	0		1		1 1		
		specimen can be fractured with a single blow of	WEATHERING	Unweathered	SW_	MW	HW	Decompose	4	5	Slightly weathered - rock strength unchanged,	1 1	5	Rough Undulating/Stepped
		geological pick	Rating	- 6 · · · ·	- 5	3 -	A REPORT	· · · · · · · · · · · · · · · · · · ·	i.	36 8 8 8 M	weathering on joints only			
	Strong rock	Specimen requires more than one blow with hammer							-	. 6 km	Fresh and Unweathered] [6	Very Rough, Stepped
1		and/or geological pick to fracture it												
V	ary strong rock	Specimen requires many blows of hammer and/or												

BOX	IN	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST			T CONDI			Geological Description
-	FROM	то	LENGTH	ft	%	ft	%	ft		UCS	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
	0	6.1	6.1		0		0											Casing Tertiary Seds - matrix supported, granular to pebble conglomerate, massive, subrounded to subangular sericited green to black clasts in a grey to black, primarily muddy to sandy matrix,
1	6.1	8.23	2.13	1.62	76.1%	1.4	65.7%		2-3	<1	6	6.78		5	3	6		heterolithic, polymictic.
1	8.23	11.28	3.05	2.76	90.5%	2.51	82.3%	1	2-3	2.5	5	10.85		1	3	6/0	5	as above. Fault gouge 8.27-8.29, 9.18-9.22
1/2	11.28	14.33	3.05	3	98.4%	2.7	88.5%		2-3	1.5	10	12.3		1	3	6/0	6	as above. Gouge/clay 11.8-11.85, 12.25-12.3, 12.5
2	14.33	17.38	3.05	3.02	99.0%	2.63	86.2%		0-3	0	8	16.67		5	3	5	5-6	as above. Soft argillite gouge 15.02-15.04
2/3	17.38	20.42	3.04	3.03	99.7%	2.7	88.8%		3	0	9	18.97		5	3	6	_6	as above. Minor wispy gt/cal stockworks <1cm.
3	20.42	23.47	3.05	3.01	98,7%	2.62	85.9%		2-3	0	8	22.38		5	3	4	6	as above. Gouge 20.82-20.86
3/4	23.47	26.52	3.05	3.07	100.7%	3.03	99.3%		2-3	3	9	25.64		5	3	6	6	as above. Massive granular polmictic conglomerate.
4	26.52	29.57	3.05	2.95	96.7%	2.59	84.9%		2-3	4	4	28.1		5	3	3	6	minor gouge 29.1-29.11
4/5	29.57	32.61	3.04	3	98.7%	2.74	90.1%		2-3	0	9	30.13		5	3	6	6	pebble conglomerate - white subangular lelsic clasts supported in brownish-red mud matrix
5	32.61	35.66	3.05	3.08	101.0%	2.62	85.9%		1-2	0	15	33.25		_4	3	0	6	granular pebble conglomerate - increased sericitic alteration adjacent to frequent gouge - 33.02-33.08 and 33.4-33.65 and 34.12-34.20.
6	35.66	38.71	3.05	3.08	101.0%	2.67	87.5%		2	0	16	38.04		4	3	2	6	granular peoble conglomerate - weakly bedded at 75-80 degrees to core axis, accentuated b subangular elongate sericited clasts.
6/7	38.71	41.76	3.05	3.08	101.0%	2.67	87.5%		2	<1	13	40.81		4	3	2	6	as above, minor bedding, minor gouge 40.31-40.34
7	41.76	44.81	3.05	3.01	98.7%	2.81	92.1%		2	<1	8	43.66		5	1	4	6	massive granular conglomerate, minor calcite stockwork.
7/8	44.81	47.85	3.04	2.98	98.0%	2.65	87.2%	Ţ	2	<1	11	46.55		5	3	4	6-5	as above granular conglomerate - grey muddy matrix.
							<u> </u>						<u> </u>				<u> </u>	
	+		<u> </u>															
										<u> </u>		ļ			<u> </u>		╞───	
										<u> </u>								
ļ		<u> </u>		<u> </u>	 	1	┥───		<u> </u>								╆───	·····
		1			I	1	1			1								

Specimen requires many blows of hammer and/or

geological pick to fracture it > 250 Extremely strong rock Specimen can only be chipped with geological pick

Project:

Estimated

UCS MPa

1.0 - 5.0

50.25

25 - 50

50 - 100

100 - 250

Very strong rock

Hardness

0

2

3

. 4-

5

6

Location:

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

BOX	INI	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST		JOIN	T CONDI	TION		Geological Description
	FROM	TO	LENGTH	ft	%	ft	%	ft		UCS	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
8	47.85	50.9	3.05	3.03	0.99344	2.68	87.9%			<1	7	50.08		4	3	3	6_	as above. Granular conglomerate
			_						· .						}			
8/9	50.9	53.95	3.05	3.05	100.0%	2.45	80.3%		2/1	0	13	52.45		4	3	3	6	conglomerate. Minor shear at 51.00
9	53.95	57	3.05	2.93	96.1%	2.8	91.8%		2	<1	5	55.99		4	3	5	6	zones of pebbly conglomerate
9/10	57	60.05	3.05	2.99	98.0%	2.68	87.9%		2/3	3	8	58.9		4	3	5	6	pebble sized clasts, subrounded-subangular
10	60.05	63.09	3.04	3.07	101.0%	2.8	92.1%		3/2	3	5	60.65		4	3	5	6	granular-pebble conglomerate - clast supported, sandy matrix
10/11	63.09	65.14	2.05	2.9	141.5%	2.6	126.8%		1/2	0	10	64.82		4	3	4	6	as above. Seritization, weak bedding at 75 degrees to core axis.
11	66.14	69.19	3.05	3.08	101.0%	2.77	90.8%		2/1	_<1	10	68.04		4	3	4	6	granular conglomerate, massive 69,95-70,45 - bx zone, recemented by qtz; 71,75-71,81 - minor gouge; 71,0 grading into
11/12	69.19	72.24	3.05	2.81	92.1%	2.12	69.5%		2/1	<1	16	70.6	1	4	3/0	4	6	brown mudstone - softer - low RQD.
12	72.24	75.29	3.05	2.8	91.8%	2.1	68.9%		2/1	<1	12	73.56		4	3/0	4	6	72.24-73.5 brownish mudstone, low RQD, weakly bedded at 75 degrees to core axis
12/13	75,29	78.33	3.04	3.1	102.0%	2.84	93.4%		2	<1	6	76.52		4	3	5	6	granular to pebble conglomerate - mainly grey mud matrix - massive
															-			
13	78.33	81.38	3.05	2.88	94.4%	2.83	92.8%		_ 2	<1		79.5		4	3	6	6	as above, weakly bedded at 55 degrees to core axis. 82.75-84.43 pebble-cobble conglomerate - clast supported, subrounded to subangular clas
13/14	81.38	84.43	3.05	2.7	88.5%	2.17	71.1%		2	<1	10	82.56		4	3	6	6	of volcanic and lithic origin.
14	84.43	87,48	3.05	3.01	98.7%	1.68	55.1%		2/0	<1	25	85.41		1	3	0	6	granular conglomerate - weakly bedded to massive. Fault gouge 84 43-84 6; 84 72-84 88, 86 3-89 62
14/15	87.48	89.31	1.83	2.46	134.4%	1.18	64.5%		2/0	1	15	89	[4	3	0	6	as above, fault gouge 89.30-89.62.
15	89.31	90.51	1.2	0.76	63.3%	0.76	63.3%		2	<1	1	90.35		6	1	5	6	as above
	03.51	30.31		0.70	1		1			1			1		1	1		matrix supported granular-pebble conglomerate 91.70-92-blocky ground due to jointing.
15	90.51	93.57	3.06	3.05	99 <u>.7%</u>	2.01	65.7%		2/1	<1	17	82.47	┢────	4	3/0	5	6	92.87-fault gouge.
15/16	93.57	96.62	3.05	0.47	15.4%	0	0.0%	ļ	1/0	0	8	no lest		1	3	1	6	friable soft (argillic?) gouge - 93.88; 96.55 - lost 2.58 m
16	96.62	97.84	1.22	0.28	23.0%	0	0.0%	 	1	<1	•	 		<u> </u>			-{	conglomerate - poor recovery, very rubbly
	ļ				<u> </u>		ļ						 			 		
	<u> </u>	L		 	ļ		<u> </u>		<u> </u>			┨						
	ļ			ļ		l	ļ			<u> </u>		L	<u> </u>	┫────	+	 	-	

m 10010 & new tield manual Appendix B Forms PockLog _2000-6

Specimen requires many blows of hammer and/or

geological pick to fracture it > 250 Extremely strong rock Specimen can only be chipped with geological pick

.

Project:

Estimated

UCS, MP

1.0 - 5.0

5.0 - 25

25 - 50

50 - 100

100 - 250

Very strong rock

Hardness

0

2

3

. 4

5

6

Location:

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

BOX	IN	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST		JOIN	T CONDI	TION		Geological Description
	FROM		LENGTH	ft	%	ft	%	ft		ucs	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
16	97.89	99.67	1.78	1.65	92.7%	1.48	83.1%		0/2	<1	2	visual		4	3	6	6	conglomerate: clast supported, very solt, hematite/clay rich matrix
16	99.67	102.11	2.44	2.6	106.6%	1.08	44.3%		0/2	<1	3	visual		4	3	6	6	as above, w/shear at 99.95-100.1
16	102.11	102.72	0.61	0.49	80.3%	0.37	60.7%		0/2	<1	0	visual	L					as above, one clast ~6cm
16/17	102.72	105.77	3.05	2.63	86.2%	0.68	22.3%		0/2	<1	2	visual		4	3	6	6	as above, clasts are generally <1cm, matrix supported
17	105.77	108.81	3.04	3.1	102.0%	0.71	23.4%		0/2	<1	7	visual		4	3	6	6	as above, same as previous intersection
17/18	108.81	111.86	3.05	2.58	84.6%	1.44	47.2%		0/2	<1	2	visual		4	3	6	6	as above, locally 100% clay (110.3 m)
18	111.86	114.91	3.05	2.64	86.6%	1.93	63.3%		1/2	<1	3	visual		4	3	6	6	as above, inc. in clasts, matrix is slightly harder
18/19	114.91	117.96	3.05	3.05	100.0%	2.72	89.2%		2	1	0	115.33						as above
19	117.96	121.01	3.05	2.92	95.7%	2.92	95.7%		2	4	0	119.5						as above, harder, iron rich matrix, 20-25% clasts
19/20	121.01	124.05	3.04	3.06	100.7%	2.96	97.4%		2	1	0	122.2				-		as above, mostlry clast supported, clasts < 5cm
20/21	124.05	127.1	3.05	3.13	102.6%	3.13	102.6%		2	<1	0	125.55						pebble conglomerate, clasts <1cm at 15% at intersection
21	127,1	130.15	3.05	3.06	100.3%	2.98	97.7%		2	4	0	128.6						pebble conglomerate, local clasts 2-5 cm but rare
21/22	130.15	133.2	3.05	3.1	101.6%	2.99	98.0%		2	5	1	132.4		4	3	6	6	pebble conglomerate, clasts < 3mm, matrix slightly more Fe rich
22	133.2	136.25	3.05	2.97	97.4%	2.97	97.4%		2	3	0	134 65						pebble conglomerate, more polymictic
22/23	136.25	139.29	3.04	3.26	107.2%	3.13	103.0%		2	4.5	0	137.75	<u> </u>					pebble conglomerate, Fe depletion at lower 75 cm of unit
23	139.29	1	3.05	3.12	102.3%	2.34	76.7%		0/3	<1	3	140.85		4	3	6	6	Shear/Fault at 139.25 to 139.60/Conglomerate at 139.60-140.00/Monzodiorite
23/24	142.34	145.39	3.05	3	98.4%	2.64	86.6%		3/4	<1	3	143.85		4	3	6	6	Qtz Monzonite - upper 1 m is oxidized, rest is argillic/sericite alteration
24	145.39	148.44	3.05	3.15	103.3%	2.73	89.5%		3/4	<1	5	147.1		4	3	6	6	as above, 35-50% gtz unit stockwork (also above)
24/25	148.44	151.49	3.05	3.05	100.0%	2.78	91.1%		3/4	<1	3	149.8		4	3	6	6	as above, alteration is mostly sericitic
															<u> </u>	ļ		
•			1			1				_	1				1	1	1	

Specimen requires many blows of hammer and/or geological pick to fracture it

......

> 250 Extremely strong rock Specimen can only be chipped with geological pick

100 - 250

Very strong rock

Hardness

0

1

2

3

- 4

5

6

Internet and an and a second second second

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

1

1

	Project: Location:	Kemess 10312.043 N 10165.227 E		Logged by	Paarup/Ma				Date	Oct. 30, 2	000	Hole No. 2000-6 Hole Dia	1	zimuth lination	045 -65	Sheet
		Intact Ro	ck Hardness		Jo	int Condi	tion					Joint Weathering	_		Joint Roughness	
- T	Estimated			PERSISTENCE	< 1 m	1 - 3m	3 • 10m	10 - 20 m	> 20m		Rating	Description		Rating	Description	
ss	UCS, MPa	Description	Field Performance	Rating	6	4	2	1	0]	0	Completely weathered - original fabric and relict		. 0	Polished or Slickensi	ded
-+	0.25 - 1.0 E	stremely weak rock	Indented by thumbnail	APERTURE	None	< 0.1 mm	0.1 - 1.0	1-5	5 - 10			structures remain but, rock is decomposed and friable		1	1	
		Very weak rock	Crumbles under firm blows with the point of a	Rating	6	5	4	. 1	0				_			
	1		geological pick; can be peeled with a pocket knife	ROUGHNESS	V Rough	Rough	SL Rough	Smooth	Slicks]	1	Highly weathered - rock is discolored and streng	տ	1	Smooth, Planar	1
+	5.0 - 25	Weak rock	Can be peeled with a pocket knile with difficulty;	Rating	6	5 .	3	- M. 1.1	0		1.1	is significantly reduced by weathering	_			
- 1			shallow indentations made by firm blow of geological	INFILLING	None	Hard I	nfilling	Soft I	nfilling	1	3	Moderately weathered - rock is discolored, but	1	3	Slightly Rough, Undul	ating
			pick			< 5 mm	> 5 mm	< 5mm	> 5 mm]	1.1	strength is only slightly affected, discontinuities weathered				ļ
-	25 - 50 M	ledium Strong rock	Cannot be scrapped or peeled with a pocket knife,	Rating	6	. 4	3	2	0							
ser.		-	specimen can be fractured with a single blow of	WEATHERING	Unweathered	SW	MW	HW	Decompose	4	5	Slightly weathered - rock strength unchanged,		5	Rough Undulating/Ste	pped
÷.,			geological pick	Rating	6	5	2/12 -3 10:44	1.081 088	0	1		weathering on joints only				
	50 - 100	Strong rock	Specimen requires more than one blow with hammer	L							6	Fresh and Unweathered		6	Very Rough, Stepp	ed
ιć.	300 /000	Guiding reen	and/or geological pick to fracture it													

BOX	INT	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST		JOIN	T CONDI	TION		Geological Description
DOR	FROM	TO	LENGTH	ft	%	ft	%	ft		ucs	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
25	151.49	154,53	3.04	2.97	97.7%	2.83	0.930921		4		5			5	3	2	6	tractured at top 20 cm - qtz monzonite veins x-cutting
	1							•										
25/26	154.53	157.58	3.05	3.07	100.7%	2.87	94.1%		4		5			5	3	_2	6	as above, gtz monzonite x-cutting
26	157.58	160.63	3.05	2.98	97.7%	2.8	91.8%		4		3			5	3	2	6	as above, fault at 158.16 w/pyrite in gouge
26/27	160.63	163.07	2.44	2.47	101.2%	2.4	98.4%		4		4			5	2/3	2	6	as above
27	163.07	163.68	0.61	0.49	80.3%	0.34	55.7%		4		0			4	2	6	6	top of run fractured - hematite rick mudstone? - remainder as above
27-Jan	163.68	166.73	3.05	3.1	101.6%	3.1	101.6%		4		3		ļ	5	3	2	6	as above, mild red alteration spots around 166
27/28	166.73	169,77	3.04	3.1	102.0%	3.1	102.0%		4		7			5	3	4	6	as above
28/29	169.77	172.82	3.05	3.02	99.0%	3.02	99.0%		4		5			5	3	6	6	as above, red alteration spots around 171.6
29	172.82	175.87	3.05	2.98	97.7%	2.9	95.1%		4		5			5	3	6/0	6	as above, fault at 173.6, red alteration spots
29/30	175.87	178.92	3.05	3.08	101.0%	2.85	93.4%		4		4			5	3	6/0	6	as above, fault at 176.7, 176.84
30	178.92	181.97	3.05	2.95	96,7%	2.82	92.5%		4		5			5	з	2	6	as above, shears at 181.24 and 181.49
30/31	181.97		3.04	3.1	102.0%	3.1	102.0%		6/4		3			5	3	6	6	Monzodiorite - (as above), massive, potassic alteration, mod density at gtz veinlets
31	185.01	188.06	3.05	3.07	100.7%	2.67	87.5%		6/4		9			5	3	6	6	as above, slight increase in gtz stringers- very random stockwork
31/32	188.06	191.11	3.05	2.96	97.0%	2.77	90.8%	1	6/4/2		5	1		5	3	6/4	6	as above, clay altered/ possible fault at 190.68-190.83
32	191.11	194.16	3.05	2.95	96.7%	2.95	96.7%	1	6/3		7			5	3	6	6	Monzodiorite - massive, K-alteration w/local pervasive sericite alteration
32/33	194.16		3.05	3.09	101.3%	2.98	97.7%		6/3		3			5	3	6	6	as above but no sericite alteration
33	197.21	200.25	3.04	3.08	101.3%	3.06	100.7%	1	6/3		2			5	з	6/2	6	as above, increase in gtz veinlets and sericitic/argillitic alteration
33/34	200.25	203.3	3.05	3.14	103.0%	3.14	103.0%	1	6/3		5			5	3	6/2	6	as above
34	203.3	206.35	3.05	3.09	101.3%	3.09	101.3%		6/3		1			5	3	6	6	as above, units very random and irregular
34/35	206.35	209.4	3.05	3.09	101.3%	3.09	101.3%	1	6/3/2		0							Monzo-Fault Breccia-Fault - Weakly developed BY-diorite
35	209.4	212.45	3.05	3.03	99.3%	3.03	99.3%		1/2/3		0							Fault BY - continued from above - clay rich matrix w/altered dio and sed clasts
35/36	212.45		3.04	3.07	101.0%	2.87	94.4%		1/2/3		0							as above w/slight increase in sed clasts.

· · · · _ · ·

m 10010/8/new liekt manual Appendix B Forms RockLog _200-8

100 - 250

Very strong rock

Specimen requires many blows of hammer and/or geological pick to fracture it

> 250 Extremely strong rock Specimen can only be chipped with geological pick

Hardness

0

1

2

3

5

6

.

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

1

	Project: Location:	Kemess 10312.043 N 10165.227 E		Logged by	Paarup				Date	Oct. 30, 2000		Hole No. ₂₀₀₀₋₆ Hole Dia		imuth ination	045 -65	Sheet 5
		Intact Roo	ck Hardness		Jo	oint Cond	ition					Joint Weathering	1 1		Joint Roughness	
-	Estimated			PERSISTENCE	< 1 m	1 - 3m	3 - 10m	10 - 20 m	> 20m	R	ating	Description	1 1	Rating	Description	
15	UCS, MPa	Description	Field Performance	Rating	6	4	2	1	0] []	0	Completely weathered - original fabric and relict	1	0	Polished or Slickensi	ded
	0.25 - 1.0 Ex	tremely weak rock	Indented by thumbnail	APERTURE	None	< 0.1 mm	0.1 - 1.0	1-5	5 - 10		1.	structures remain but, rock is decomposed and Iriable			1	1
		Very weak rock	Crumbles under firm blows with the point of a	Rating	6	5	4	1	0.0		1.11		1 1			
1			geological pick; can be peeled with a pocket knile	ROUGHNESS	V Rough	Rough	SL Rough	Smooth	Slicks] [.	1	Highly weathered - rock is discolored and strength		1	Smooth, Planar	1
	5.0 - 25	Weak rock	Can be peeled with a pocket knile with difficulty;	Bating	6	5	3	1.1.	0	1 1	27	is significantly reduced by weathering				
1			shallow indentations made by firm blow of geological	INFILLING	None	Hard	Intilling	Soft I	nfilling	1 [3	Moderately weathered - rock is discolored, but	11	3	Slightly Rough, Undul	ating
			pick			< 5 mm	> 5 mm	< 5mm	> 5 mm	1 13		strength is only slightly affected, discontinuities				
	25 · 50 Me	edium Strong rock	Cannot be scrapped or peeled with a pocket knife;	Rating	6.5	1 1	3 S	10 - 2 - 	يې ^ر ه 0 دغوقو	1 🐶	18	weathered	1			
2		,	specimen can be fractured with a single blow of	WEATHERING	Unweathered	SW	MW	HW	Decompose	1 E	5	Slightly weathered - rock strength unchanged,	1 1	5	Rough Undulating/Ste	pped
14			geological pick	Rating	6	5	3	Sec. 1.28 %		1 [문		weathering on joints only				
	50 - 100	Strong rock	Specimen requires more than one blow with hammer				1				8	Fresh and Unweathered	1 1	6	Very Rough, Stepp	ed
ĊĽ.	50 - 100		and/or geological pick to fracture it													

DOV	IN THE	TEDVAL	(4+)	RECO	VERY		QD	IONG	HARD	PLST	No.	PLST		JOIN	T CONDI	TION		Geological Description
BOX	FROM	TERVAL TO	(IT) LENGTH	ft	VERT %	n	8	ft		UCS	Joints		PERSIS	APER	ROUGH	INFILL	WTHR	
36/37	215.49		3.05	3.07	100.7%	3.03	0.993443		1/2/3		0							Takla sediments - Fault Zone-clay rich, black/grey w/local gouge
30/37	213.43	2.10.54	0.00															
37	218.54	221.59	3.05	3.08	101.0%	3.08	101.0%		2/3/6		1			5	3	2	6	Fault/Takla mudstone; gouge rare below 219.0/quasi throughout
37/38	221.59	224.64	3.05	3.07	100.7%	3.07	100.7%		1/2/3		0							Fault to 222.88/mudstone to 223.32/malic volcanic to 224.64 (end of run)
38	224.04	227.69	3.65	3.07	84.1%	2.96	81.1%_		4		2			6	1	4	6	subvolcanic - frequent qtz veins with PY stringers
38/39	227.69	230.73	3.04	3.1	102.0%	2.23	73.4%		5/2		13			4	3/0	0	6	hypogene 230.0 - Takla sub 229.86-230.35-fault zone
39	230.73	233.71	2.98	2.95	99.0%	2.7	90.6%		_5		7	L		4	1	3	6	interbedded Takla sediments - mudstone/chery siltstone
39/40	233.71	236.76	3.05	3.08	101.0%	2.22	72.8%		3/1			L	ļ		L		<u> </u>	
											1					1		
							1											
		 			<u> </u>		┼					+	<u> </u>		┼───			
										L		L		ļ	ļ		<u> </u>	
								[ĺ	{	ĺ			Í	[{	
						<u> </u>	+	 				+			<u> </u>		<u> </u>	
	<u> </u>				+		+					<u>+</u>	<u> </u>				1	
					<u>+</u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	
					<u> </u>			<u> </u>		L	L	ļ	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	
				L		ļ		·		ļ	 	<u> </u>				<u> </u>		
		ļ	L			<u> </u>		ļ	ļ		ļ	<u> </u>		ļ	ļ	↓		<u> </u>
		L	L		<u> </u>	<u> </u>				ļ	 	-l	<u> </u>	 	<u> </u>		–−−	ļ
			L	L			ļ	<u> </u>	<u> </u>	ļ				 				<u> </u>
						<u> </u>	- 								<u> </u>			
	1					1	1	1	<u> </u>	<u> </u>	1	1	1	<u> </u>	<u> </u>	1		<u> </u>

• ••••••

m -10010 8 new field manual Appendix B Forms RockLog _2000-8

......

Strong rock

Very strong rock

and/or geological pick to fracture it Specimen requires many blows of harmmer and/or

geological pick to tracture it > 250 Extremely strong rock Specimen can only be chipped with geological pick

Project:

Estimated UCS, MPa

0.25 - 1.0

1.0 - 5.0

5.0 - 25

25 - 50

50 - 100

100 - 250

Hardness

0

1

2

3

4

5

6

Location:

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET (NON-ORIENTED DRILLCORE)

ct: ion:	Kemess 10312.043 N 10165.227 E		Logged by	Paarup/Ma/	Lam/Lapea	are		Date	Oct. 30, 2	000	Hole No. ₂₀₀₀₋₆ Hole Dia		zimuth lination	045 -65	Sheet	6
	Intact Ro	ck Hardness		Jo	int Condi	tion					Joint Weathering			Joint Roughness		
		T	PERSISTENCE	<1 m	1 - 3m	3 - 10m	10 - 20 п	> 20m	1	Rating	Description	5	Rating	Description		
a	Description	Field Performance	Bating	6	4	2	1	0	1	0	Completely weathered - original fabric and relict		0	Polished or Slickensic	led	
hΕ	xtremely weak rock	Indented by thumbnail	APERTURE	None	< 0.1 mm	0.1 - 1.0	1-5	5 - 10]		structures remain but, rock is decomposed and	}	1			
ř 🕇 🗖	Very weak rock	Crumbles under firm blows with the point of a	Bating	6	5	4	<u>⊡1</u>	0]							
		geological pick; can be peeled with a pocket knife	ROUGHNESS	V Rough	Rough	SL Rough	Smooth	Slicks		1	Highly weathered - rock is discolored and strength	1	1	Smooth, Planar		
-	Woak rock	Can be peeled with a pecket knife with difficulty;	Rating	6	5	3	1	0]		is significantly reduced by weathering	1				
		shallow indentations made by firm blow of geological	INFILLING	None	Hard I	nfilling	Soft	Infilling]	3	Moderately weathered - rock is discolored, but	1	3	Slightly Rough, Undula	ting	
		pick			< 5 mm	> 5 mm	< 5mm	> 5 mm		s i dang	strength is only slightly affected, discontinuities	1				
	Aedium Strong rock	Cannot be scrapped or peeled with a pocket knile;	Rating	5 6 6	. d. -4 a dec	998 3 0 mil	2	0		1. Fr & Sugar		-				
		specimen can be fractured with a single blow of	WEATHERING	Unweathered	SW	MW	нw	Decompose	d.		Slightly weathered - rock strength unchanged,		5	Rough Undulating/Step	ped	
		geological pick	Rating	16 A 6 19 5	 5 	* 3 Jose	86 N 98.	0		84.44	weathering on joints only					
51	Strong rock	Specimen requires more than one blow with hammer								. 3 % 6 % a.	Fresh and Unweathered	L	6	Very Rough, Steppe	<u>a</u>	

BOX	IN	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST			T CONDI			Geological Description
004	FROM	TO	LENGTH	ft	%	ft	%	ft		UCS	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
39/40	233.71	236.76	3.05	3.06	100.3%	2.17	71.1%		2/3		9			5	3	2	6	bedded, light green-grey cherty sittstone w/brown mudstone - fault gouge
40	236.76	239.8	3.04	2.97	97.7%	2.75	90.5%		3		7			5	3	2	6	as above
40/41	239.8	242.55	2.75	2.83	102.9%	2.53	92.0%		2/3		6		L	5	3	_2	6	as above, localized layers of mudstone
41	242.55	244.68	2.13	2.05	96.2%	1.76	82.6%		2/3		2			4	3	2	6	as above, 80% siliceous siltstone/20% thinly bedded mudstone
41	244.68	245.9	1.22	1.15	94.3%	0.84	68.9%		3/4		1			4	3	6/2	6	as above
41/42	245.9	248.94	3.04	3.13	103.0%	3	98.7%		3/4		1	l		4	3	6/2	6	as above
42	248.94	251.99	3.05	3.1	101.6%	2.38	78.0%		3/4		7		L	4	3/1	6/2	6	siltstone to 249.40, matic dyke to 251.65 - siltstone to 251.99
42/43	251.99	255.04	3.05	3.09	101.3%	2.75	90.2%		3/4		5			4/1	3/1	6	6	siltstone/mudstone - 80% siliceous siltstone w/ thin softer mudstone beds
43	255.04	258.09	3.05	3.03	99.3%	3.03	99.3%		3/4		3			4	3/1	6	6	as above - 100 percent RQD
43/44	258.09		3.04	3.08	101.3%	2.78	91.4%		3/4		1			4	3/1	6	6	as above - good RQD
44			1.83	1.63	89.1%	1,45	79.2%		3/4		3]		4	3/1	6	6	as above - blocked at end of 6' run
44	-		1.22	1.22	100.0%	1.03	84.4%	1	3/4		2			4	3/1	6	6	as above
			3.05	3.07	100.7%	2.92	95.7%		3/4		,			4	3/1	6	6	as above
45		267.23	3.05	3.07	98.7%	2.92	96.4%	<u> </u>	3/4		4	<u> </u>		4	3/1	6/2	6	as above
45/46 46	267.23	273.32	3.04	3.05	100.0%	3.05	100.0%	+	3/4	1	3	<u> </u>	<u> </u>	4/0	3/1	6/2	6	mudstone/siltstone - increase to 40-50% mudstone and thicker beds
40	210.21	210.02	0.03							†	·	1	1					
46/47	273.32		3.05	3.06	100.3%	2.92	95.7%		3/4		<u> 1</u>		+	4	3	6/2	-0	siltstone w/minor mudstone beds - 90%/10% mudstone/siltstone
47	276.37		1.83	1.8	98.4%	1.44	78.7%		3/4		3	<u> </u>	+	4	3	6 6/2	6	as above - broken rock in joint at 278.4
47	278.2	279.42	1.22	1.23	100.8%	1.14	93.4%		1/3	┼──	3	╀		5	3	1	0	
47	279.42		1.21	1.2	99.2%	1.01	83.5%		3/4		5	┨────		5	1/3	6/2	6	mudstone/siltstone
47/48	280.63		1.83	1.78	97.3%	1.57	85.8%		3/4			+		5	1/3	6/2	6	
48	282.46		0.61	0.52	85.2%	0.38	62.3%		3/4		2		+	5	1/3	6/2	+ <u>°</u>	as above - 50%/50% alternating layers, highly fractured top 30 cm as above - highly fractured
48	283.07	283.68	0.61	0.65	106.6%	0.2	32.8%		2/3	1	2	1	1	4	1/3	6/2	6	las above - nighty tractured

· · · · · · · · · · · · ·

Very strong rock

> 250 Extremely strong rock Specimen can only be chipped with geological pick

Specimen requires many blows of hammer and/or geological pick to fracture it

100 - 250

Hardness

0

1

2

3

4

5

6

2

GEOTECHNICAL DRILLHOLE LOGGING DATA SH	IEET
(NON-ORIENTED DRILLCORE)	

	roject: ocation:	Kemess 10312.043 N 10165.227 E		Logged by	Ma/Lam/La	peare			Date	Oct. 30, 2000	Hole No. 2000-6 Hole Dia	Azim Inclin		045 -65	Sheet 7
		Intact Roo	k Hardness		Jo	int Condi	tion				Joint Weathering			Joint Roughness	
	timéted			PERSISTENCE	< 1 m	1 - 3m	3 - 10m	10 - 20 m	> 20m	Rating	Description	1	Rating	Description	
	S, MPa	Description	Field Performance	Rating	6	4 - 21	2	- 1	0	0	Completely weathered - original fabric and relict	1	0	Polished or Slickensi	ded
0.	25 - 1.0 Extr	remely weak rock	Indented by thumbnail	APERTURE	None	< 0.1 mm	0.1 - 1.0	1 - 5	5 - 10		structures remain but, rock is decomposed and Irriable	1 1			
		Very weak rock	Crumbles under firm blows with the point of a	Rating	6	5	4 .	1	0						
ŧ			geological pick; can be peeled with a pocket knife	ROUGHNESS	V Rough	Rough	SL Rough	Smooth	Slicks	1	Highly weathered - rock is discolored and strength		1	Smooth, Planar	
5	0 - 25	Weak rock	Can be peoled with a pocket knile with difficulty;	Rating	6	5	3	1	0		is significantly reduced by weathering				
			shallow indentations made by firm blow of geological	INFILLING	None	Hard I	nfilling	Solt	Infilling	3	Moderately weathered - rock is discolored, but	1 [3	Slightly Rough, Undul	ating
			pick			< 5 mm	> 5 mm	< 5mm	> 5 mm	1 .	strength is only slightly affected, discontinuities				
1 2	5 - 50 Me	dium Strong rock	Cannot be scrapped or peeled with a pocket knile;	Rating	6.44	1.4. A	202.3-52	1 ma 2	O		weathered				
		-	specimen can be fractured with a single blow of	WEATHERING	Unweathered	SW	MW	HW	Decomposed		Slightly weathered - rock strength unchanged,		5 .	Rough Undulating/Ste	pped
1.8			geological pick	Rating	Sec. 6 34.	28/5 A.	i≫ (3 786)	Parte 63	0.0		weathering on joints only	1 L	4.1		
5	0 - 100	Strong rock	Specimen requires more than one blow with hammer							16-16 M	Fresh and Unweathered	1 []	6	Very Rough, Stepp	ed
		-	and/or geological pick to fracture it									_			

вох	IN	TERVAL	(ft)	RECO	VERY	R	QD	LONG	HARD	PLST	No.	PLST		JOIN	T CONDI	TION		Geological Description
	FROM		LENGTH	n	%	ft	%	ft		UCS	Joints	Depth	PERSIS	APER	ROUGH	INFILL	WTHR	(Rock Type, Colour, Texture, Alteration, Structure)
48	283.68	285.51	1.83	1.7_	92.9%	0.75	41.0%		3/4		5			5	3/1	6/2	6	as above - at 284.45: disseminated epidote alteration (yellowish and greenish)
48/49	285.51	288.25	2,74	2.87	104.7%	1.8	_65.7%		3/4		8			4	3	6/2	6	as above - chlorite altered from 285.9
49	288.25	291.3	3.05	3.03	99.3%	2.67	87.5%		4		8			5	3	6/4	6	as above - trace pyrite locally along core
49/50	291.3	292.82	1,52	1.74	114.5%	1.36	89.5%		3/4		5			5	3	6	6	plag - elongated crystals - dyke
50	292.82	294.35	1.53	1	65.4%	0.55	35.9%		3		3			5	3	6/2	6	as above
50	294.35	297.39	3.04	3.07	101.0%	2.49	81.9%		3/4		9			5	3	2	6	as above
50/51	297.39	300.44	3.05	3.05	100.0%	2.94	96.4%		4		7			5	3	6	6	plag crystals up to 297.53 - rest Takla sediments
51		303.49	3.05	3.1	101.6%	2.5	82.0%		4		6			5	2/3	6/2	6	Takla sediments - highly fractured zone (1-2mm Ch) and 302.5-302.9
51/52	303.49	306.53	3.04	3.08	101.3%	2.26	74.3%		3/4		2			4	3	6/2	6	mafic dyke to 306.07 - mudstone/siltstone to end of run
52		308.36	1.83	1.67	91.3%	1.23	67.2%		3/4		4			4	3	6	6	interbedded siltstone/mudstone - chlorite alteration on fy's
52		309.58	1.22	1.38	113.1%	0.94	77.0%		3/4		3			4	3/1	6	6	siltstone/mudstone to 308.64 - andesitic/dacitic dyke to end of run
53	309.58		0.92	0.95	103.3%	0.36	39.1%		4/5		7			4	3/1	6	6	andestitic/dacitic dyke - hard, siliceous, massive, chlorite, fine grained
53	310.5	312.32	1.82	1.53	84.1%_	1.05	57.7%		4/5		4			4	3/1	6	6	as above
53	312.32	313.54	1.22	1.37	112.3%	0.63	51.6%		4/5		5			4	3/1	6	6	as above
53	313.54	314.46	0.92	0.7	76.1%	0	0.0%		4/5		5			4	3/1	6	6	as above
								T						}				EOH
	+											1						
	+				1		<u> </u>											
			1		1		1											
			1		1					1	1	1						
		<u> </u>	<u> </u>		<u> </u>	<u> </u>	1	1		<u> </u>			1	1	1	<u> </u>		
	+								<u> </u>			+	1		1		1	

.

m 11001016 new field manual Appendix 8 Forms RockLog , 2001-6

- -- --

Hole ID	Sam ID	from	to	interval	% Cu	gAu/t
2000-06	14766	40.06	40.76	0.70	0.005	0.03
2000-06	14767	59.04	59.95	0.91	0.004	0.04
2000-06	14768	62.64	64.12	1.48	0.005	0.05
2000-06	14769	82.74	84.08	1.34	0.008	0.06
2000-06	14770	121.30	124.30	3.00	0.014	0.05
2000-06	14771	124.30	126.30	2.00	0.008	0.06
2000-06	14772	126.30	128.30	2.00	0.014	0.05
2000-06	14773	128.30	130.30	2.00	0.263	0.09
2000-06	14774	130.30	132.30	2.00	0.147	0.04
2000-06	14775	132.30	134.30	2.00	0.044	0.02
2000-06	14776	134.30	136.30	2.00	0.086	0.02
2000-06	14777	136.30	138.30	2.00	0.029	0.02
2000-06	14778	138.30	139.60	1.30	0.323	0.03
2000-06	14779	139.60	141.30	1.70	0.049	0.67
2000-06	14780	141.30	143.00	1.70	0.085	1.87
2000-06	14781	143.00	145.00	2.00	0.840	1.80
2000-06	14782	145.00	147.00	2.00	0.263	0.92
2000-06	14783	147.00	149.00	2.00	0.340	1.01
2000-06	14784	149.00	151.00	2.00	0.247	0.32
2000-06	14785	151.00	153.00	2.00	0.057	0.06
2000-06	14786	153.00	155.00	2.00	0.318	0.87
2000-06	14787	155.00	157.00	2.00	0.430	1.82
2000-06	14788	157.00	159.00	2.00	0.210	0.72
2000-06	14789	159.00	161.00	2.00	0.246	0.92
2000-06	14790	161.00	163.00	2.00	0.220	0.86
2000-06	14791	163.00	165.00	2.00	0.289	1.23
2000-06	14792	165.00	167.00	2.00	0.298	1.67
2000-06	14793	167.00	169.00	2.00	0.330	1.36
2000-06	14794	169.00	171.00	2.00	0.430	1.83
2000-06	14795	171.00	173.00	2.00	0.440	1.59
2000-06	14796	173.00	175.00	2.00	0.304	1.27
2000-06	14797	175.00	177.00	2.00	0.282	0.87
2000-06	14798	177.00	179.00	2.00	0.255	0.87
2000-06	14799	179.00	181.00	2.00	0.255	0.94
2000-06	14800	181.00	183.00	2.00	0.296	0.97
2000-06	14801	183.00	185.00	2.00	0.294	1.14
2000-06	14802	185.00	187.00	2.00	0.309	1.08
2000-06	14803	187.00	189.00	2.00	0.380	1.50
2000-06	14804	189.00	191.00	2.00	0.302	1.10
2000-06	14805	191.00	193.00	2.00	0.247	0.71
2000-06	14806	193.00	195.00	2.00	0.280	0.80
2000-06	14807	195.00	197.00	2.00	0.252	0.71
2000-06	14808	197.00	199.00	2.00	0.210	0.66
2000-06	14809	199.00	201.00	2.00	0.266	0.85
2000-06	14810	201.00	203.00	2.00	0.215	0.89
2000-06	14811	203.00	205.00	2.00	0.213	0.80
2000-06	14812	205.00	207.35	2.35	0.269	0.88

.

KEMESS CENTRE DRILL HOLE ASSAY RESULTS FOR KC-2000-06

KEMESS MINE Pit Samples Assay Certificate

Certificate: 000107a3

Date: Jan.7/01

Assayer: CT/CJ

	Sample No	(D)uplicate	Cu %	Sulphur	MPA	Au	Au
		(S)tandard	%	%		ppm	oz/ton
1	14786		0.318			0.87	0.025
2	14787		0.430			1.82	0.053
3	14788		0.210			0.72	0.021
4	14789		0.246			0.92	0.027
5	14790		0.220			0.86	0.025
6	14791		0.289			1.23	0.036
7	14792		0.298			1.67	0.049
8	14793		0.330	T		1.36	0.040
9	14794		0.430			1.83	0.053
10	14795		0.440			1.59	0.046
11	14798		0.255	•		0.87	0.025
12	14799		0.255			0.94	0.027
13	14799	D	0.253			0.92	0.027
14	PM-170	S			_	1.24	0.036
15	Blank	S				0.01	0.000
16	RTS-1	S	0.059				
17							
18							
19							
20							
21							
22							-
23							
24							
25							
26							
27							

14		15	
TOTAL	ASSAYS SHEET =	29	

KEMESS MINE

1

-

Pit Samples Assay Certificate

Certificate: 010107a4

Date: Jan.7/01

Assayer: <u>CT/CJ</u>

	Sample No	(D)uplicate	Cu %	Sulphur	MPA	Au	Au
		(S)tandard	%	%		ppm	oz/ton
1	14801		0.294	ŢŢ		1.14	0.033
2	14803		0.380			1.50	0.044
3	14804		0.302			1.10	0.032
4	14805		0.247	1 1		0.71	0.021
5	14806		0.280			0.80	0.023
6	14807		0.252			0.71	0.021
7	14808		0.210			0.66	0.019
8	14809		0.266			0.85	0.025
9	14810		0.215			0.89	0.026
10	14811		0.213			0.80	0.023
11	14812		0.269			0.88	0.026
12	14812	D	0.270			0.90	0.026
13	GTS-2	S				0.27	0.008
14	Blank	S				0.00	0.000
15	RTS-3	S	0.283				
16							
17				_			
18							
19							
20							
21							
22	;						-
23							
24							
25					{		
26							
27							

 13	14	
TOTAL ASSAYS SHEET =	27	

2/3/01

KEMESS MINE Pit Samples Assay Certificate

Certificate: 010108a2

Date: Jan.8/01

Assayer: Jm/MF

	Sample No	(D)uplicate	Cu %	Sulphur	MPA	Au	Au
		(S)tandard	%	%		ppm	oz/ton
1	14766		0.005			0.03	0.001
2	14767		0.004			0.04	0.001
3	14768		0.005			0.05	0.001
4	14769		0.008			0.06	0.002
5	14770		0.014			0.05	0.001
6	14771		0.008			0.06	0.002
7	14772		0.014			0.05	0.001
8	14773		0.263			0.09	0.003
9	14774		0.147			0.04	0.001
10	14775		0.044			0.02	0.001
11	14776		0.086			0.02	0.001
12	14777		0.029			0.02	0.001
13	14778		0.323			0.03	0.001
14	14779		0.049			0.67	0.020
15	14780		0.085			1.87	0.055
16	14781		0.840			1.80	0.052
17	14782		0.263			0.92	0.027
18	14783		0.340			1.01	0.029
19	14784		0.247			0.32	0.009
20	14785		0.057			0.06	0.002
21	14775	D	0.044			0.03	0.001
22	14785	D	0.056	······		0.07 -	0.002
23	PM-170	S				1.21	0.035
24	RTS-1	S	0.059				
25	BLANK	S	· · · · · · · · · · · · · · · · · · ·			0.01	0.000
26							
27							[

23	24	
TOTAL ASSAYS SHEET =	47	ĺ

KEMESS MINE

,

1. J.

Pit Samples Assay Certificate

Certificate: 010108a3

Date: Jan.8/01

Assayer: Jm/CT

	Sample No	(D)uplicate	Cu %	Sulphur	MPA	Au	Au
		(S)tandard	%	%		ppm	oz/ton
1	14796	1	0.304	1 1		1.27	0.037
2	14797		0.282			0.87	0.025
3	14800		0.296			0.97	0.028
4	14802		0.309			1.08	0.031
5	14802	D	0.315			1.01	0.029
6	GTS-2	S				0.24	0.007
7	BLANK	S				0.00	0.000
8	RTS-3	S	0.282				
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19				·			
20							
21	· · · · · · · · · · · · · · · · · · ·						
22	-						
23							
24							
25							
26							
27							

الشكاف فستكفأ والمتعاد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتح	
6	7
TOTAL ASSAYS SHEET	= 13

1111	and the second second second second