### **APPENDIX 3: KEMESS CENTRE**

- 1. Geological Drill Logs KC-00-01 to KC-00-04
- 2. Drill Hole Assay Results for KC-00-01 to KC-00-04
- 3. Assay Certificates for Drill Holes KC-00-01 to KC-00-04
- 4. Figures 19 to 22: 1:1,000 Drill Hole Sections KC-00-01 to KC-00-04



TROLOGICAL SURVEY BRANCH

#### SYNOPTIC DRILL LOG NORTHGATE EXPLORATION LTD. KEMESS PROJECT

D.D.H. NO. <u>46-00-01</u>

 $^{1}$  PAGE 1 OF <u>2</u>

|              | GRID   SHRVEY    |                |               |
|--------------|------------------|----------------|---------------|
| NORTHING     | 10 800N 10724.47 | N TOTAL DEPTH  | 300.84        |
| EASTING      | 9200E 9181.18    | E TOATL CASING | 3.05m (10')   |
| ELEVATION    | 418.28           | DATE START     | JUNE 18.2000  |
| PROJECT/AREA | KENESS CENTRE    | DATE END       | JUNE 25, 2000 |
| AZIMUTH      | · 045°           | CORE DIAMETER  | NQI           |
| INCLINATION  | -47°             | GEOLOGIST      | BRETT LAPEARE |

SAMPLE SERIES: 19102 TO 19125

TARGET/PURPOSE: To test potessic anomaly as defined by DEITA GEOBELENCE and mag frend along south flank of magnetic high COMMENTS (target intersected? / describe): Patessic anomaly due to moderale to well developed biblite within stliceous / silicited seeds. Top of hole exhibits magnetic made / int flows. Fault @ 95-106 m possibly explaining mag trend.

Downhole Survey

| Depth    | Туре        | Azimuth   | Dip           |
|----------|-------------|-----------|---------------|
| 0.00     | SHEVEY CREW | 45"31'46" | - 47° 46' 34" |
| 99.65 m  | EASTMAN     | 450       | - 44.7°       |
| 185.10 m | 4           | 45.5°     | - 48.5°       |
| 300.84 m | jt -        | 51.0°     | - 55.0°       |
| E.O. H   |             |           |               |

| From  | То     | Rock Type                                 | Alteration     | Mineralization                         | Comments                             |
|-------|--------|-------------------------------------------|----------------|----------------------------------------|--------------------------------------|
| 0.0   | 3.05 m | OVERBLADEN                                |                |                                        | · · · ·                              |
| 3.05  | 18.28  | INT/MAFIC FLOW                            | chl.ser.carb   | etr py                                 | ukturud maseel<br>2-33, calsstringen |
| 18:28 | 32.35  | INTERCALATED FLOW/THFF                    | chl+1-biu      | to py                                  | why magnetic                         |
| 32.35 | 49.25  | DIORITIC DYKE/SILL                        | ser rilay      | to py                                  | non-magnetic                         |
| 49.25 | 88.62  | INT/MAFIC FLOW                            | chl, ser, carb | ++++++++++++++++++++++++++++++++++++++ | uktonical magnetic                   |
| 88.62 | 88 87  | FANLT GONGE                               |                |                                        |                                      |
| 88 82 | 91.30  | TNTIMAFIL FLOW<br>(SLb.n. + V) inc musing | chl+ser+bio    | -17. py                                |                                      |
| 91.30 | 99.65  | JUNIMAFIC FLOW                            | chliser        | 7. p.                                  | non - magnetic                       |

PAGE 2 OF \_\_\_\_\_

| From           | To        | Rock Type                                      | Alteration                                                                                                      | Mineralization                           | Comments                              |
|----------------|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|
| 99.65          | 102.00    | FALLT ZONE                                     | 114.                                                                                                            |                                          | 60.70° C.A                            |
|                |           |                                                |                                                                                                                 |                                          |                                       |
| 10200          | 105 40    | INTIMATIC FLOW                                 | chl                                                                                                             | <19. p.                                  | oun-machetic                          |
| /              |           | <i>y</i> , , , , , , , , , , , , , , , , , , , |                                                                                                                 |                                          | <u> </u>                              |
| 105 40         | 111 95    | FALLT PONE                                     | c la                                                                                                            |                                          | 70-80° C.A                            |
| 100.10         | 100.12    |                                                |                                                                                                                 |                                          |                                       |
| 10/ 95         | 110 80    | INTIMATIC FLOW                                 | 1 b l                                                                                                           | 2.49.                                    | non-meenchie                          |
| 100.13         |           |                                                |                                                                                                                 | 1 de co                                  | ·                                     |
|                |           | ······································         |                                                                                                                 | <i>cy ii cpy</i>                         |                                       |
| 110 00         | 111 CA.   | FALLE ZALLE                                    | d. the                                                                                                          | 413. 11                                  | here which are the tree               |
| 110.00         | 111.57    | TALLI LONC                                     | UK, L/ 670                                                                                                      |                                          | Le La localt                          |
|                |           | -                                              |                                                                                                                 |                                          | reyran intent                         |
| w.ra           | 1.1.22    | Terlander Clai                                 |                                                                                                                 | 12                                       |                                       |
| <u> ///.57</u> | 114.25    | JUI MAFIC FLOW                                 | Chit 510                                                                                                        | 10 py                                    |                                       |
|                | 125 00    |                                                | 1 . 1                                                                                                           |                                          | a service has                         |
| 114 23         | 155.00    | SILICEOUS SILTSFONE                            | SIDICIAL                                                                                                        | - r. py                                  | MESSIVE FO                            |
|                |           | (not cherty)                                   |                                                                                                                 | ·                                        | hell staden                           |
|                | 12/00     |                                                |                                                                                                                 |                                          | 1 1 1 F                               |
| 135.00         | 126:88    | FIAFIC SILC                                    | IDEAL CALL                                                                                                      | te cy                                    | ISCET VIMAN 1                         |
|                |           |                                                |                                                                                                                 | <u></u>                                  | CAYS                                  |
| <u> </u>       |           |                                                |                                                                                                                 |                                          |                                       |
| 136.88         | 189.40    | SILICEONS SILTSIONE NI                         | sertch I teley                                                                                                  | = 170 py                                 | Iscal pervesive                       |
|                |           | INTERBIE ODED MUDITONE                         | well developed                                                                                                  | ·                                        | at flooding                           |
|                |           |                                                | locally                                                                                                         |                                          | silicities tion                       |
|                |           | · · · · · · · · · · · · · · · · · · ·          |                                                                                                                 | l                                        |                                       |
| 189,90         | 219,23    | MAFIL TLEFS MITHIN FLOWS                       | chic upper                                                                                                      | trpy 5 one                               | locally with,                         |
|                |           |                                                | contact                                                                                                         | py veinlet                               | magnetic                              |
|                |           |                                                |                                                                                                                 |                                          |                                       |
| 211.23         | 235.50    | SILICEONS SILICIFIED                           | clay Eservite                                                                                                   | 2170 PY                                  | protolith mostly                      |
|                | 1949 - A. | SILTSTONE                                      | and the second secon | an a | destroyed                             |
|                |           |                                                |                                                                                                                 |                                          | · · · · · · · · · · · · · · · · · · · |
| 235.50         | 242.2.4   | MAFIC DYKE                                     | ax J. chi                                                                                                       |                                          | - Hon-magnetic                        |
|                |           |                                                |                                                                                                                 |                                          |                                       |
| 242.24         | 252.83    | SILICEOUS SILICIFIED                           | carstelay + ell                                                                                                 | 2170 py                                  | nell preserved                        |
|                |           | SILTSTONE                                      | on local fr's                                                                                                   | ·                                        | building locally                      |
|                |           |                                                |                                                                                                                 |                                          |                                       |
| 252.83         | 255.07    | MAFIL DYKE (poss Flow)                         | articly biox                                                                                                    | 4190 py.                                 | -tine gr thin out                     |
| · ·            |           |                                                | chl                                                                                                             |                                          | · · · · · · · · · · · · · · · · · · · |
| 255.07         | 259.10    | SILICEONS SILTSFONE                            |                                                                                                                 |                                          |                                       |
| 257.10         | 261.50    | MAFIC DYKE                                     |                                                                                                                 |                                          |                                       |
| 261.50         | 289.53    | SILICEOUS SILTSTONE                            |                                                                                                                 |                                          |                                       |
| 289.53         | 293.90    | MAFIL DYKE                                     |                                                                                                                 |                                          |                                       |
| 293 90         | 300.84    | SILICFOLS SILTSTONE                            |                                                                                                                 |                                          | -                                     |
| ļ. · · · · · · | EO.H      |                                                | · · · · · · · · · · · · · · · · · · ·                                                                           |                                          |                                       |

Ç

 $\left( \right)$ 

#### KEMESS »XPLORATION CORE LOGGING FORM

D.D.H. NO. <u>KC-00-01</u>

#### Page 1 of 12

| From        | To    | DECRIPTION                                                                                                       | Sample # | From     | To .                                    | %Cu | Ач <u>е</u> л | Agen |
|-------------|-------|------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------------------------------|-----|---------------|------|
| 0.00        | 3.05  | CASING/OVERBLEDEN                                                                                                |          |          |                                         |     |               | -    |
|             |       |                                                                                                                  | ·····    | 1        | -                                       |     |               |      |
| 305         | 18.28 | INT/MAFIC FLOW                                                                                                   |          |          |                                         |     | <b> </b> -    |      |
|             |       |                                                                                                                  |          |          |                                         |     |               |      |
|             |       | - ot aremistigree fine grained massive                                                                           | ·        |          |                                         |     |               |      |
|             |       | plant of 2 + chi + service + man                                                                                 |          |          | • [ · • · · · · · · · · · · · · · · · · |     |               |      |
|             |       | - unit exhibits locally, will developed med to coarse crained, anhedrali grains of                               |          |          |                                         |     |               |      |
|             |       | chlorite (19.7-11.0+) and/or sericite (6.0-7.0 m) = altered phenoenists (?)                                      |          |          |                                         |     | 1. A. A.      |      |
|             | · · · | - From 7.25m the writ is utily to moderately magnetic throughout                                                 | ALA      |          |                                         | · · |               |      |
| · · · ·     |       | - magnetile is not visible to very fine or / driver meter                                                        | JV.A     |          |                                         |     |               |      |
|             | :     | - altin is doingrade chiltser -> cilorite increases on fractures                                                 |          |          |                                         |     |               |      |
| •           | · · · | · carbonite occurs as then (1-4mm) inequilar strongers to various angles                                         |          |          |                                         |     |               |      |
|             |       | (2-390) - very common on fractures assoc which lorde > local ant and/or siderite                                 |          |          |                                         |     |               |      |
|             |       | and the second |          |          |                                         |     |               |      |
|             |       | · mineralization occurs as A fince pipele associal carb on fy's or                                               |          |          |                                         |     |               |      |
|             |       | stragers                                                                                                         | ••.      |          |                                         |     |               |      |
| · · · · · · |       |                                                                                                                  |          |          |                                         | - · |               | i i  |
|             |       | -structure ? and is massive but moderately, to highly, frectured (Robe                                           |          |          |                                         |     |               |      |
|             |       | 20-6020) + fractures are providen angles but predominantly 40-75° CA.                                            |          |          |                                         |     |               |      |
|             |       | - lower contail district and 70° CA                                                                              |          |          |                                         |     |               | •*   |
| 8.28        | 32,35 | INTER (ALATED ANDESITIC FLOW/INFF                                                                                | 23       |          |                                         |     |               |      |
|             |       |                                                                                                                  | · •.     | · · ·    | · .                                     |     |               |      |
|             |       | -sub-units vary from 41 to 13 m in Alvickiness                                                                   | <u> </u> |          | ·                                       |     |               |      |
| ·           |       | - 1 lon subunts are same as 3.05-18.2.8                                                                          |          |          |                                         |     |               |      |
|             |       | - testecrous sub with exhibit diffuse beneling @ 60-70° 7 testine is                                             |          | <u>:</u> |                                         |     |               |      |
|             |       | commonly mottled -> local bands of coarse, counded fragments                                                     |          |          |                                         |     | · · ·         |      |
|             |       | - top O.S.n. of which moderalely to well dowelop out fine grained                                                | 5        |          |                                         |     |               |      |
|             |       | 1010+ite (1) -7 bandmy is also commonly reculinear around larger fragments                                       | · · ·    | 4, .     |                                         |     |               |      |

()

Page 2 of

| From  | To       | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample #     | From                                  | To       | SCu<br>Dom | Augh | Asst  |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|----------|------------|------|-------|
|       |          | exhibiting a specific acclomente texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                       |          |            | PPIL | - PP- |
|       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                       |          | 1          |      |       |
|       |          | Taltin same as 3.05 - 18.28 : uk provesive chi to well developed chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1                                     |          |            |      |       |
|       | 1        | alting on fractions and of prising principality to carbon fractares +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1                                     |          |            |      |       |
|       |          | yeary local highly +/ cle, on Freethouses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                       |          |            |      |       |
|       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                       |          |            | · ·  |       |
|       |          | Turning is more i thin energilier stringers of earb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 1                                     |          |            |      |       |
|       |          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                       | 1        | •          |      |       |
|       |          | -> trace printe assoc w1 - raib stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1                                     |          |            |      | · ·   |
|       |          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | · · · · · · · · · · · · · · · · · · · |          |            |      |       |
|       |          | - structure : local banding / bedding \$ 60-70° => find then out (POD2 50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 1                                     |          |            |      |       |
|       |          | @ random \$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19102        | 30.90                                 | 32.35    | 25         | 25   | 40.2  |
|       | <u> </u> | The first of the particular of the experimental second products and the second s | and an and a | 1                                     |          |            |      |       |
| 32.35 | 4925     | SABUOLEANIL DIORITIC DYKE/SILL ( 1/- voleanics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                       |          |            |      |       |
|       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                       |          |            |      |       |
|       | ļ        | - mottled lite ( dk. gray al local dall pink overprinting, massive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19103        | 32.35                                 | 34.45    |            |      |       |
|       |          | - lite or in the matrix of plagrochistserreite the atta of medion arth-clase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19104        | 34.45                                 | 36.20    |            |      |       |
|       |          | + hble (endlor prilovene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19105        | 36.20                                 | 38.10    |            |      |       |
|       | -        | - intrustive texture is mottled to lovelly dittuse (more five gr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19106        | 38.10                                 | 40.00    |            |      |       |
| 197.  | ļ        | - non - magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 107       | 40.00                                 | 41.75    |            | •    |       |
|       |          | - Local fragments ( remnants beds??) of anderity flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 108       | 41.75                                 | 43.50    |            |      |       |
|       | <u> </u> | -altin is minor -> with servicia altin of plas & with alling altin of coarsis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19109        | 43.50                                 | 45.00    |            |      |       |
|       | 1        | arthoclese => orthoclese mais be secondary K'eltin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19110        | 45.00                                 | 46.75    |            |      |       |
|       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19111        | 46.75                                 | 49.25    |            |      |       |
|       |          | -vening reconfined to thim (2)-2n-1 more rest stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                       |          |            |      |       |
|       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                       | ļ ·      |            |      | I     |
| ·     | • · · ·  | - immeralization of EC to ho moistly absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·            |                                       | <u> </u> | ·          |      |       |
| · · · | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ļ                                     |          |            |      | l     |
|       |          | highly to moderately ty d - poor ROD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                       | <u> </u> | ļ          |      |       |
| L     |          | - IOnce contact @ 80° L.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L            |                                       | 1        | <u> </u>   |      | ·     |

D.D.H. NO. KC-00-01

Page <u>3</u> of 12

| From  | То         | DECRIPTION                                                                      | Sample # | From        | Ta         | %Cu | Au gA | A2 51   |
|-------|------------|---------------------------------------------------------------------------------|----------|-------------|------------|-----|-------|---------|
| 49.25 | 88.62      | INT/MAFIC FLOW                                                                  |          |             |            |     |       |         |
|       |            |                                                                                 |          |             |            |     |       |         |
|       |            | - Same as 305-18-28                                                             |          |             |            |     |       |         |
|       |            | - IK auguishouse fine or massive => local mottled / natchin texture             |          |             |            |     |       |         |
|       |            | - mod more to a 75m to belay 75m inorth non-meanety to locally a k more life    |          |             |            |     |       |         |
|       |            | - local mothled texture due to smill (0.2.0.5 cm) enhedred on takes of          |          |             |            |     |       |         |
|       |            | chlorite alter averene (ansite) + Hs -> +/- made mannetite                      |          |             |            |     |       |         |
|       | <b>1</b> . | - From 77.80 to 79.30 local surveyles stringers at well onk Fet cab (ankerite?) |          |             |            |     | 1     |         |
| ···   |            |                                                                                 | •        |             |            | -   |       |         |
|       |            | -vinnitical etime are a condom angles & of 2 reads veiblets +1- and             |          |             |            |     | ,     |         |
|       | 1          | P. Lest developed @ 75.85 within at 2+ (as hemlet - 2 local succession          |          |             |            |     |       |         |
|       |            | -tr 0 \$3.15 to \$3.80 t/- or                                                   |          |             |            |     |       |         |
|       |            | -alta is nervesive chlorite throughout, all on tris & essoe ul stringers        | • • • •  |             |            |     |       |         |
|       |            | and ventets & altin at charge our arent -> chlorite + machetic                  |          |             |            |     |       |         |
|       |            | decreases even frently below 75 m                                               |          |             | · <u> </u> |     |       |         |
|       | <u> </u>   | - monerplication - trace my best developed in states verifieds                  |          |             |            | · · |       |         |
|       |            | (very local) -7@ 83.80 - 83.95 or occurs within them Fres / 41mm wide)          | ۰.       |             |            |     |       |         |
|       | 1          |                                                                                 |          |             |            |     |       |         |
|       |            | -lower contract @ 70-80° Cil                                                    |          | ,           |            |     |       |         |
|       |            |                                                                                 |          |             |            |     |       |         |
| 88.62 | 88.42      | FAULT GONCE                                                                     |          |             |            |     |       |         |
|       | 1          |                                                                                 |          |             |            |     |       | <b></b> |
|       |            | -dull aron fine to med or messive                                               |          |             |            |     |       |         |
|       | -          | - 780% class + carbonates of medic + its rock frequents                         |          | · · · · · · |            |     |       |         |
|       |            | - lower contact 0.65°                                                           |          |             |            |     |       |         |
|       |            |                                                                                 |          |             |            |     |       |         |
| 88.82 | 91.30      | INTIMATIC FLOW (Shb-hmit)                                                       | 19112    | 88.80       | 89.90      |     |       |         |
|       |            |                                                                                 | 19113    | 8990        | 9130       | l   |       |         |
|       |            | - as 49.25 - 88.62 but w/ me in local at a attend vemlete and brutitet          |          |             |            |     |       |         |
|       |            | serieitre + chlorite altin                                                      |          |             |            |     |       |         |

Page \_4\_\_\_of \_\_\_\_\_

| From   | То       | DECRIPTION                                                              | Sample # | From  | То    | %Cu | Au gA | A: :/ |
|--------|----------|-------------------------------------------------------------------------|----------|-------|-------|-----|-------|-------|
|        |          | - moderatch, mottled due to patch, dull brown biolite altin +1- service |          |       |       |     |       |       |
|        |          | - ventets = 5-770 of sub unit -> ventets very from 5-15 mm under        |          |       |       |     |       |       |
|        |          | 50-60° (A -> one ventet @ 91.20 = 70 mm @ 65° of well wet fragments     |          |       |       |     |       |       |
|        |          | - 2190 pr, assoc w/ local ventets                                       |          |       |       |     |       |       |
|        | <u> </u> | -lower contact marked by 70 mm nick veinlet                             |          |       |       |     |       |       |
|        | <u> </u> |                                                                         |          |       |       |     |       |       |
| 91.30  | 99.65    | INT/MAFIC FLOW                                                          | 19114    | 95.90 | 18.00 |     |       |       |
|        |          |                                                                         |          |       |       |     |       |       |
|        | Ļ        | - similar to 49.25-8862 except no magnetite                             |          |       |       |     |       |       |
|        |          | - altgrey to black, fine gr, massive                                    |          |       |       |     |       | •     |
|        |          | - plag + matics (pyx +1- ch1)                                           |          |       |       |     |       |       |
|        |          | - 3-470 gtz as fracture Fill 1/- carb                                   |          |       |       |     |       |       |
|        |          | - trace py on selvages of local gitz stringers                          |          |       |       |     |       |       |
|        |          |                                                                         |          | · .   |       |     |       |       |
| 99.65  | 102.00   | FALLT ZONE                                                              |          |       |       |     |       |       |
|        | <u> </u> |                                                                         |          |       |       |     |       | L     |
|        | ļ        | - matic flow characterized by broten rubbly core & fault gouse @        |          | ļ     |       |     |       |       |
|        | ļ        | 100,30-100.50 / 101,20-101.30 / 101.45 - 101.60 / 101.90-102.00         |          | ļ     |       |     |       |       |
|        |          | - 0 99.75 - 99.90 9 gtz + Earl flooding w/ uk chi alter and breecration |          |       |       |     |       |       |
|        |          | : Songe zones occur & steep angles to C.A                               |          | ļ     |       |     |       |       |
|        | ļ        |                                                                         |          |       |       |     |       |       |
| 102.00 | 105.40   | INT/MAFIC FLOW                                                          |          |       |       |     |       |       |
|        |          |                                                                         |          |       |       |     |       |       |
|        |          | -same as 91.50 - 17.65                                                  |          |       |       |     |       |       |
|        | 1.1.00   |                                                                         |          |       |       |     |       |       |
| 105.40 | 106.95   | TAULI ZONE                                                              |          |       |       |     |       |       |
|        |          |                                                                         |          |       |       |     |       |       |
|        | +        | well developed clay goage of lock tragments @ 105.65 - 106.10 => @ 80"  | +        | +     | - · · |     |       |       |
|        |          | A T remaindle at unit is blocky in 1 10 KQV - gonce is dull greenish    |          |       |       |     |       | · .   |
| L      |          | 1. 9/(                                                                  | 1        | 1     |       | l   | L     | 1     |

\_\_\_\_\_l\_



# Page <u>5</u> of \_\_\_\_

| From   | To     | DECRIPTION                                                                   | Sample # | From                                  | To     | ‰Cu | Augh                                         | A2 2/1 |
|--------|--------|------------------------------------------------------------------------------|----------|---------------------------------------|--------|-----|----------------------------------------------|--------|
|        |        | - local bandme o 80-90° -> chasi mulantic? Fixture -> exhibits att+          |          |                                       |        |     |                                              |        |
|        |        | bion servicitie alter up locally well developed prote (esp. @ 106.25         |          |                                       |        |     |                                              |        |
|        |        | to 106,95) ->.purile occurs along bands and is one ve atting ventet          |          |                                       |        |     |                                              |        |
|        |        | (\$106.70) -> lower contact at white 80°                                     |          |                                       |        |     |                                              |        |
|        |        |                                                                              |          |                                       | -      |     |                                              |        |
| 106.95 | 116.80 | INT/MARIL FLOW                                                               | 19115    | 106.90                                | 109.10 |     |                                              |        |
|        |        |                                                                              | 19116    | 109.10                                | 110.80 |     |                                              |        |
|        |        | - similar to 88.82-91.30 and 49.25 - 88.62                                   |          |                                       |        |     |                                              |        |
|        | · ·    | - attesses. Fine to medium assumed massive actual mottled texture            |          |                                       | ·      |     |                                              |        |
|        |        | -trained Finese flow unit w/ more or antical chlorite evens ('elots')        |          |                                       |        |     |                                              |        |
|        |        | throughout (althe encite??) = 30% at unit                                    |          |                                       |        |     |                                              |        |
|        |        | - stregular ata + atalcarb stimues a 5-670 of unit                           |          |                                       |        |     |                                              |        |
|        |        | - increase in privite to 2-490 -> accus within with this tyis, within        |          |                                       |        |     | • • •                                        |        |
|        |        | ate stringers and locally disseminated                                       |          |                                       |        |     |                                              |        |
|        |        | -lower contact @ 80°                                                         |          |                                       |        |     |                                              |        |
|        |        |                                                                              |          |                                       |        |     |                                              |        |
| 110.80 | 111.54 | FAULT ZONE                                                                   |          |                                       |        |     |                                              |        |
|        |        | · · · · · · · · · · · · · · · · · · ·                                        |          |                                       |        |     |                                              |        |
|        |        | - same as 105.40 - 106.95 => bundled, butte rich mylow the texture of        |          |                                       |        |     |                                              |        |
|        |        | alay source and very mulbly core @ 110.95 - 111.10 -> gouge @ 600 C.A        |          |                                       |        |     |                                              |        |
|        |        | =>local py as petiting fx filling -> local gtz stringers and one verifiete   |          | · · · · ·                             |        |     |                                              |        |
|        |        | 05° C.A -> lower contact @ gradational                                       |          |                                       |        |     |                                              |        |
| ļ      |        |                                                                              |          | · · · · ·                             |        |     |                                              |        |
| 111.54 | 114.23 | JNT / MAFIC FLOW                                                             |          | ļ <u>_</u>                            |        |     |                                              |        |
| L      | 1      |                                                                              | ļ        |                                       |        |     |                                              |        |
| ļ      | ļ      | - Fine Sr, dt brownish gray, massive                                         |          |                                       |        |     |                                              |        |
| · ·    |        | isinilar to above FLOW units & evcept ? increase in patch, to semi pervasive | ·        | ļ                                     |        |     | <u>.                                    </u> |        |
|        |        | very fine gramed biotite AND no chi grams / patches -> non-magnetic          |          | · · · · · · · · · · · · · · · · · · · |        |     | ļ                                            |        |
|        |        | - lower contact observed by rubbly /broken core                              |          | <u> </u>                              |        |     |                                              |        |
| L      |        | · · · · · · · · · · · · · · · · · · ·                                        |          |                                       |        |     |                                              | · ·    |

na 1. Maximin and an anna 1. Na taona anna an taona

Page \_6\_\_\_ of \_\_\_\_

| From   | T٥     | DECRIPTION                                                                        | Sample # | From     | To     | %Cu | Au g/t | NE EU   |
|--------|--------|-----------------------------------------------------------------------------------|----------|----------|--------|-----|--------|---------|
| 114.23 | 135.00 | SILICIONS SILTSTONE (60%) / MUDSTONE (20%)                                        |          |          |        |     |        |         |
|        |        |                                                                                   | 19117    | 126.90   | 127.70 |     |        |         |
| -      |        | - dull gree to brownish every fine to very fine grained, massive to well be deted | 19118    | 127.70   | 129.90 |     |        |         |
|        |        | - unit is predominantly att up local patch, secondar, biotite allin               |          |          |        |     |        |         |
|        |        | - approx 10-159 at wit is at and/or attract ventels + at filling                  |          |          |        |     |        |         |
|        |        | of hairline fy                                                                    |          |          |        |     |        |         |
|        |        | - majority of bighte all'a assuid as well suck alth of veinless fty fill          |          |          |        |     |        |         |
|        |        | - privite occurs locally within heirline firs assoc w/ chl altin -> best          |          |          |        |     |        |         |
|        |        | developed @ 115.40 - 116.00                                                       |          |          |        |     |        |         |
|        |        | ·@ 116.25-116.45 7 very well developed broth to the dell presents servicite (?)   |          |          |        |     |        |         |
|        |        | alty                                                                              |          |          |        |     |        |         |
|        |        | -@ 119.25 - 119.35 -> Siecerchion From very inegular gtz+ cars verilet            |          |          |        |     |        |         |
|        |        | - brokite altin eshibits quest energionoring texture in the internet              |          |          | -      |     |        |         |
|        |        | - top of the unit is predominantly messive from 114.23                            |          |          |        |     |        |         |
|        |        | - messive texture of biolite eitin persists to 125.55 -> below this               |          |          |        |     |        |         |
|        |        | depth alto is minor beige coloured clay alton (but locally, well developed)       |          |          |        |     |        |         |
|        |        | along rendomly oriented freetures                                                 |          |          |        |     |        |         |
|        |        | - 2-3% p. @ 125.85 - 129.85 essoe v/ secondary of 2 ventete                       |          |          |        |     |        |         |
|        |        |                                                                                   |          | ļ        |        |     |        |         |
|        |        | =7 moderately developed badding @ 125.55 - 131.20 : plener to repulsion           |          |          |        |     |        |         |
|        |        | diffuse clay rich beds are 41-3 cm mide @ 60-45° C.A                              | ļ        | <u> </u> |        |     |        |         |
|        |        | = Twell developed bedding @ 131.20-135.00 : very planar, dtgen, /black            |          |          |        |     |        |         |
|        |        | mudstone bade within fine / ving fine grained at rich siltstone - nidth of        |          |          |        |     |        |         |
|        |        | beds varies from 41 cm to 20 cm wide @ 40-50° CA                                  |          |          |        |     |        |         |
|        |        |                                                                                   |          |          |        |     |        |         |
|        |        | -lower netre prosent to lover context exhibits greench has due to                 | 1        |          |        |     | ļ      | I       |
| ·•     |        | chloritic alto From lover dy Ke                                                   |          |          |        |     |        |         |
|        |        |                                                                                   |          | <u> </u> |        |     |        |         |
|        |        | Flower contact @ 50° C.A - parallell n/ bedding                                   |          |          |        |     |        |         |
|        |        |                                                                                   |          |          |        |     |        | ( · . ] |

\_\_\_\_\_

•

D.D.H. 1.J. 1/2-00-01

Page \_\_\_\_\_\_ of \_\_\_\_\_

| From   | То     | DECRIPTION                                                                     | Sample # | From   | To                                    | %Cu                                   | Augh | A2 2/1 |
|--------|--------|--------------------------------------------------------------------------------|----------|--------|---------------------------------------|---------------------------------------|------|--------|
| 135.00 | 136.88 | MAFIC SILL                                                                     |          |        |                                       |                                       |      |        |
|        |        |                                                                                |          |        |                                       |                                       |      |        |
|        | _      | - dkgreen fine to medge massive                                                |          | 1      |                                       |                                       |      |        |
|        |        | - fine or matrix at plag+ matrice supports 3000 medium grained subhadral       |          |        |                                       |                                       |      |        |
|        |        | crystels of pyroxene alted to chlorite                                         |          |        |                                       |                                       |      |        |
|        |        | - local venilets at early -> most prevelent provinal to contects .> y -retting |          |        |                                       |                                       |      |        |
|        |        | relationships show 2 phases of cars ventiles of to province to confecti        |          | ļ      |                                       |                                       |      |        |
| ·      |        | - well developed clay, eltin po 136.70-136.88                                  |          |        |                                       |                                       |      |        |
|        |        | -lower contact & 35°CA                                                         |          |        |                                       |                                       |      |        |
|        |        |                                                                                |          |        | · · · · · · · · · · · · · · · · · · · |                                       |      |        |
| 136.88 | 189.40 | SILICEOUS SILFSTONE / MUDSTONE                                                 | 19119    | 157.00 | 158.25                                |                                       |      |        |
|        |        |                                                                                | 19120    | 158.25 | 159.45                                |                                       |      |        |
|        |        | - Same as 114.23 - 135.00 w/ various changes / differences throughout          |          |        |                                       |                                       |      |        |
|        |        |                                                                                | 19121    | 184.15 | 185 55                                |                                       |      |        |
|        |        | 0135.00-145.55 => very well bedded i 15-209. dkgray / that, very finegr        |          |        |                                       |                                       |      |        |
|        |        | muditione beds -> 41cm to 10 cm mide -> @ 40-55 C.A -> interbedded with        |          |        |                                       |                                       |      |        |
|        |        | thicker ato 1ich beds => graded badding is very poorly developed to mostly     |          |        |                                       |                                       |      |        |
|        |        | absent possible younging express to be uphole (- midstones +/- carbonche)      |          |        |                                       | · · · · · · · · · · · · · · · · · · · |      |        |
|        |        |                                                                                | ,        |        |                                       |                                       |      |        |
|        |        | 3145.55 - 148.50 => as above except muddling mercuses giving a much more       |          |        |                                       |                                       |      |        |
|        |        | "striped appearance AND , to /s, Historic approaches constantine / chiefy      |          |        |                                       |                                       |      |        |
|        |        | texture PLLS bedding ander mercage to SS to \$5°C.A                            |          | L      |                                       |                                       |      |        |
|        |        |                                                                                |          | 1      |                                       |                                       |      |        |
|        |        | 3) 14850 - 157.00 =7 same as (1) except beds @ 30°C. A@ 155.50-156.20          |          |        |                                       |                                       |      |        |
|        |        |                                                                                |          |        |                                       |                                       |      |        |
|        |        | (\$157.00 - 159.45 => acruative at = flooding -> top 1 metre at ind-unit       |          |        |                                       |                                       |      |        |
|        |        | exhibits perversive dull beice at a serieste alter of more herrilite -/- pr    | ļ        |        |                                       |                                       |      | ļ      |
|        |        | also locally dull green chloring ally - relact budding is more DZ0-30°C.A      |          |        |                                       |                                       |      |        |
|        |        | -lower 1.5 m is very patients sent pervasive secondary of I within highly      |          |        |                                       |                                       |      |        |
|        | 1      | deformed irrenter hedding                                                      |          |        |                                       |                                       |      | · ·    |

i save as D

Page 8 of i

| From   | То     | DECRIPTION                                                                      | Sampje # | From | То       | %Cu | Augri     | A1 8/1   |
|--------|--------|---------------------------------------------------------------------------------|----------|------|----------|-----|-----------|----------|
|        |        | (5) 159.95 - 166.33 -> bidded sub-unit similar to ( except black                |          |      |          |     |           |          |
|        |        | mudilone beds while + thinked of class and bedding encles discreese to 15° (top |          |      |          |     | [         | [        |
|        |        | half) to 30° (lower half)                                                       |          |      |          |     |           |          |
|        |        |                                                                                 |          |      |          |     |           |          |
|        |        | \$ 166.33-185.60 7 altid & averagented: sultatione / mudatione avulality        |          |      |          |     |           |          |
|        | ŀ      | thas been nervesuely overainted by secondary at + flooding / site Sicotion      |          |      |          |     |           |          |
|        |        | Ind essociated antichy local clay and/or seriestic eltin -> unit                |          |      |          |     | <u> </u>  |          |
|        |        | exhibits highly motified texture of clocal reliet mudulous backs @ 40.          |          |      |          | ļ   |           | ļ        |
|        | 1      | 55° are convelly herder due to silicitication -> texture veries                 |          |      | · · · ·  | ļ   | <u> </u>  |          |
|        |        | From bedded to messive to breesated -> breesated @ 183.90                       |          |      |          |     |           | <u> </u> |
|        |        | to 185.60; brecciptor consists it alice - to matrix with angular to sub-        |          |      |          |     |           |          |
|        |        | anonly Fragments ( a 2 1cm ) of selections selfslove and douter selected        |          |      |          |     | <u> </u>  |          |
|        |        | mudstone - possible FALLY BRECCIA                                               | - 1 ·    |      |          |     |           |          |
|        |        | ļ ţ                                                                             |          |      |          |     |           |          |
|        |        | \$ 185.60 - 187.45 -> ot = w/ well developed sericite + clay altin > possible   |          |      |          |     |           |          |
|        |        | Furth course po 185.60- 185.80 - ult reliet bedding within lower 25 cm of seb-  |          |      |          |     |           |          |
|        |        | unit & 50-55° C.A -> buds are back from sericity lata, altin                    |          |      | <u> </u> |     |           |          |
|        |        | ,                                                                               |          |      |          |     |           |          |
|        |        | \$7187.45 - 189.40 -> predominantly at sing /black mudstone - not collectioned  |          |      |          |     |           | 1        |
|        |        | I notate clay +1- service altin 7 contains high digice of clay (1)+1-           |          |      |          |     | $\square$ |          |
| [      |        | carb stringers @ highly random angles                                           |          |      |          |     | ļ         | ļ        |
|        |        |                                                                                 |          | . •  | 1        |     |           |          |
|        |        | HENTIRE HUIT & 42% to trace pay                                                 |          |      |          |     |           |          |
|        |        | -7 nod to good Rad of franching tran 30-70°CA                                   | ,        | 1    | ļ        |     | <u> </u>  |          |
|        |        |                                                                                 |          |      |          | -   | 1         |          |
| 189.40 | 219.23 | MAFIC VOLCANIC - noticealated talts/ Flow                                       |          |      |          |     | <u> </u>  | <u> </u> |
|        |        |                                                                                 |          |      |          |     | <u> </u>  | ·        |
|        |        | - dKgreenich srey, fine sr. mass ive                                            |          |      | <u> </u> |     |           |          |
|        |        | - non-magnetic to locally with magnetic                                         | ļ        |      | ļ        |     |           | <u> </u> |
|        |        | 1- Jan 130 moles at cut exhibit chit his often - possible oredetioned           |          |      |          |     | i         | •        |

٠,

Page \_ ?\_\_\_ of \_\_\_\_

| From   | To       | DECRIPTION                                                                         | Sample # | From   | To       | % Cu        | Augh     | Ag gA    |
|--------|----------|------------------------------------------------------------------------------------|----------|--------|----------|-------------|----------|----------|
|        |          | zone between upper sedments and lover volcanic unit                                |          |        |          |             |          |          |
|        |          | -@196.40 to 219.13 : with developed bunding (local) @ 75-55° C.A                   |          |        |          |             |          |          |
|        |          | representing possible to Hereins sub unit -> moderatchy developed fragments        |          |        |          |             |          |          |
|        |          | \$ 204,85 10 208,10 -Degelomeratic territore => local bands 1-2 cm wide exhibit    |          |        |          |             |          |          |
|        |          | clay w/ rock fragments - pussible small scale failting -> histly forde 202.4-208:9 | - M2+    |        |          |             |          |          |
|        |          | => 2-+ 2. at unit carb + clay (?) stringers @ random angles - vergular             |          |        |          |             |          |          |
|        |          | => +, py but one py + carb venlet @ 152.46; 3cm wide \$ 30° C.A                    |          |        |          |             | ļ        |          |
|        |          |                                                                                    |          |        |          |             |          |          |
|        |          | - unit appress to be needermently a metric full w/ local this flows ?              |          |        |          |             | ļ        |          |
|        |          | bunding @ 50-80"                                                                   |          |        |          | <b>.</b>    |          |          |
|        |          | - low - context diffuse p 65° C.A                                                  |          |        |          |             | <u> </u> |          |
|        |          |                                                                                    |          |        |          |             |          |          |
| 219.23 | 235.50   | SILICIFIED SEDIMENT (SILTSTONE?)                                                   | 19122    | 223,90 | 225.15   |             |          |          |
|        |          |                                                                                    |          |        |          |             |          |          |
|        |          | - Simlar to 166.33 - 185.60 (sel-wait at 136.88-189.40)                            |          |        |          |             |          |          |
|        |          | - probalisth completely overprinted                                                | · · ·    |        |          |             | <u> </u> |          |
|        |          | - fine to very fine gramed, highly multied light lak gray to patchy beige          | · ·      |        |          |             |          |          |
|        |          | massive to local reliest buds to locally breesinted                                |          |        |          |             |          |          |
| ļ      |          | - from 219.23 - 220.90 & alt gray, soft mudstone beds within massive fine gr       |          |        |          |             | 1        |          |
| L      | ļ        | qtz - bolding@ 60-70° C.A + local biotite altin                                    |          | -      |          |             | +        |          |
| L      | <u> </u> | - From 22390-225.15 => finese, highly silveous metric w/ 4070, conse               |          |        |          | <del></del> |          |          |
|        | <u> </u> | angular to subrounded very time sr q+2 clests                                      |          |        | · · ·    |             |          | 1        |
|        | ļ        | - remander of unit is notflod u/ seni perusive secondary at 2 + patchy             |          |        |          |             | -        | ·        |
| ļ      |          | dull berge clay +1- cerieste altin 7 @ Z31.90 e Zem mide dull green                |          | 1      |          |             | 1        |          |
|        |          | clay altin                                                                         |          |        |          |             |          |          |
|        |          |                                                                                    | · ·      |        | <b> </b> |             |          |          |
|        | ·        | 12 High to moderate degree of highly rendom, heirling tractares                    |          |        |          |             |          |          |
|        |          | T' mov stringers / veinters of milely white give                                   |          |        |          |             |          |          |
|        | +        | -Diversity to 20°                                                                  |          |        | 1        |             | -        | <u> </u> |
| 1      |          | T IST CONTRACTOR AND                                                               |          |        |          |             |          |          |

£.,

Page 10 of \_\_\_\_\_

| From      | To       | DECRIPTION                                                                | Sample # | From  | Τ٥            | %Cu      | Augh         | AE EA      |
|-----------|----------|---------------------------------------------------------------------------|----------|-------|---------------|----------|--------------|------------|
| 235.50    | Z42.24   | MAFIL DYKE                                                                |          |       |               |          |              |            |
|           |          |                                                                           |          |       |               |          |              |            |
| <u> </u>  |          | - dk even -> chlastic fine to meder -> fine er alsormatics where chighted |          |       |               |          |              |            |
|           |          | - lue SScm - will developed chi+cley +1- cab altin pyroyma                |          |       |               |          |              |            |
|           |          | - 3-590 -7 random carb stringers / usulats                                |          |       |               |          |              |            |
|           | 1        | - non-meshatic                                                            |          |       |               |          |              |            |
|           |          | - messive                                                                 |          |       |               |          |              |            |
|           |          | -lower contect @ (5° -) sharp                                             |          |       |               |          |              |            |
|           | 1        |                                                                           |          |       |               |          |              |            |
| 247.24    | 252.83   | SILICEOLS SILTSTONE                                                       |          |       |               |          |              |            |
| <b>Be</b> | 1        |                                                                           |          |       |               |          |              |            |
|           |          | - notfled to ukly bundled life smake, gray to brown => gray, from time to |          |       |               |          |              |            |
|           |          | very fine crained ate interhedded if brokite alted bands => bandine p     |          |       |               |          |              |            |
|           |          | 60-80° C.A -> bandy (beds) rance from very planer to locally offset       |          |       |               |          |              |            |
|           |          | to Hierar -> beds Jocally well preserved (298-250m)                       |          |       |               |          |              |            |
|           |          | - weak to moderately developed heated microductures & random, anych.      |          |       |               | ļ        | ļ            |            |
|           |          | angles & locally, fractures may contern carb and/or chitely               |          |       |               |          | <br>         |            |
|           |          | - 6190 py as locally dissemmented and on fractures                        |          |       |               | <u> </u> |              |            |
|           | <u> </u> | -lover contact @ 60° C.A                                                  |          |       |               | ļ        | <b>_</b>     |            |
|           |          |                                                                           |          |       | ļ             | <b> </b> |              | ļ          |
| 252.83    | 255.07   | MAFIC OYKE (possible Flow)                                                |          |       | <u> </u>      | <b> </b> | ļ            |            |
| ·······   |          |                                                                           |          | · · · |               | ]        | 1            |            |
| L         |          | - similar to 235.50-242.24 = more fine granth no alter pyrowine           |          | ļ     | ļ             |          |              |            |
|           |          | cleats 37 colour is mottled seen / brown due to semi perusius , very fine |          | 1     |               |          |              | <b> </b>   |
| L         | <u> </u> | sr biotile (homich altin??)                                               |          |       | · · · · · · · | <u> </u> |              | <u> </u> ! |
|           |          | -2-4% local at veintets w/ 2190 py (+1- carbonch)                         |          |       |               |          |              | <b> </b>   |
| · · ·     |          | - @254.40-254.65 -> nick or porphysiche texture                           |          |       |               | ļ        | <del> </del> | <u> </u>   |
|           |          | -lower contact @ stadetrine 1                                             |          |       | <u> </u>      | <u> </u> | <u> </u>     | <u> </u>   |
|           |          |                                                                           |          |       |               |          |              | <u> </u>   |
| 1         | 1        |                                                                           |          |       | 1             | 1        | I            |            |

#### D.D.H. NO. KC-00-01

## Page 11 of 12

. .

| From   | To              | DECRIPTION                                                                   | Sample # | From     | T¢     | % Cu      | Au g/t | AE 2/1 |
|--------|-----------------|------------------------------------------------------------------------------|----------|----------|--------|-----------|--------|--------|
| 255.07 | 259.10          | SILTSTONE - HIGHLT ALTERED                                                   | 19123    | 255.05   | 256.10 |           |        |        |
|        |                 |                                                                              | 19124    | 256.10   | 257.45 |           |        |        |
|        |                 | - highly mattled from local wall developed after to locally bedded           | 19125    | 257.45   | 259.10 |           |        |        |
|        |                 | @ 255.07 - 255.93 => occursive clay alth > colour is dell base w/ arrest     |          |          |        |           |        |        |
| [      |                 | first -> hereled microfrectures exhill + 2-390 musite -> local remnent at >> |          |          |        |           |        |        |
|        |                 | local carbonate verilete al chiltion                                         |          |          |        |           |        |        |
|        |                 | @ 255.93 - 257.04 => gtz u/ irresules but he rich bunding & microstructure   |          |          |        |           |        |        |
|        |                 | exhibit very well developed clay, eltin                                      |          |          |        |           |        |        |
|        |                 | \$257.04 - 257.50 > provisive, well developed class + service +              |          |          |        |           |        |        |
|        |                 | enridole (??) altin - dull beie even w/ small ( & lin) watches at diffue     |          |          |        |           |        |        |
|        |                 | apple green alter of one gta verilet al well developed pyrile @ 257.10 ->    |          |          |        |           |        |        |
|        |                 | alter contects are very shere to 80° + 10° (Upper flower)                    |          |          |        |           |        |        |
|        |                 | @257.50-258.00 => will bidded @ 45° C.A - Sedicare 1- Acmurde                |          |          |        |           |        |        |
|        |                 | of the s dk erry muditure -> top 15 cm ayhibit minor at charkmark            |          |          |        |           |        |        |
|        |                 | @258.00 - 259.10 => nessue to the bundar fine to very counce ate             |          |          |        |           |        |        |
|        |                 | information the local microfracture - the verificity of ghe milky while to   |          |          |        |           |        |        |
|        |                 | Smoky gray                                                                   |          |          |        |           |        |        |
|        |                 |                                                                              |          |          |        |           | L      |        |
|        |                 | - lower contact @ 30°                                                        |          |          |        |           |        |        |
|        |                 |                                                                              |          |          |        |           |        |        |
| 259.10 | Z61.50          | MARIC DYKE                                                                   |          | <u> </u> |        |           |        |        |
|        |                 | · · · · · · · · · · · · · · · · · · ·                                        |          |          |        |           |        |        |
| L      |                 | - + vact same as 235.50 - 292.24 => lower contact @ 65°C.A                   |          |          |        |           |        |        |
|        |                 |                                                                              |          |          |        |           |        |        |
| 261.50 | 2 <i>85.5</i> 3 | SILICEOLS SILTSTONE                                                          |          |          |        | . <u></u> |        |        |
|        |                 |                                                                              |          |          |        |           |        |        |
|        | ļ               | -macsive to locally bundled, silvecons it semi pervasive silvection !!       |          | ļ        |        |           |        |        |
|        | ļ               | -tayture is highly mottled lite gray to local patch, beise from minor        | -        | ļ        |        |           |        |        |
| ļ      |                 | cla, altin                                                                   |          |          |        |           |        |        |
|        | ł               | - time to very fine craned throughout                                        |          | · ·      |        |           |        | 1 ·    |

D.D.H. NU. KC-00-01

Page 12 of \_\_\_\_

| From   | To     | DECRIPTION                                                                                                                                                                                                                        | Sample #         | From       | T٥  | %Cu | Au gA                | A2 2/1 |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----|-----|----------------------|--------|
|        |        | reliet beddine is 1- Sem unde @ 60-80° CA                                                                                                                                                                                         |                  |            |     |     |                      |        |
|        |        | @ 272.90-282.00 => ancitumosing healed micro fractions ut chi                                                                                                                                                                     |                  |            |     |     |                      |        |
|        |        | altin ? within sub with 277.90 . 278.20 svery well developed.                                                                                                                                                                     |                  |            |     |     |                      |        |
|        |        | creenish plan altin vot relief alter microtractures                                                                                                                                                                               |                  |            |     |     |                      |        |
|        |        | -> above anastoriousing texture also occurs locally this out outies unit                                                                                                                                                          |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        | -7 Joner 40 in of unit is chlorlic due to altin from lower dyte                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        | is frace to 21% on local microductores                                                                                                                                                                                            |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            | -   |     |                      |        |
|        |        | > lower contact @ 65° CA.                                                                                                                                                                                                         |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
| 289.53 | 293.90 | MAFIL DYKE                                                                                                                                                                                                                        |                  |            |     |     |                      |        |
|        |        | na sense en la sense en la sense en la sense de la sense de la seña de la seña de la sense en la sense de la s<br>La sense en la sense en la seña de | All and a second |            | • . |     | 1997)<br>1997 - Star | · .    |
|        |        | - event sum as 235.50-242.24 & 259:10-261.50                                                                                                                                                                                      |                  |            |     |     |                      |        |
|        |        | - lower contact @ 80° => very nkly magnetic throughout                                                                                                                                                                            | ·                |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
| 293.90 | 300.84 | SILICFOUS SILISFONE                                                                                                                                                                                                               |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        | - Same as 261.50 - 289.53                                                                                                                                                                                                         | -                |            |     |     |                      |        |
|        |        | - reliet budding a 50°-60° C.A                                                                                                                                                                                                    |                  |            |     |     |                      |        |
|        |        | - 6190 pr, essor of local + 12 stringers                                                                                                                                                                                          |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            | -   |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  | . <b>.</b> |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   |                  |            | ·   |     | ·····                |        |
|        |        |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |
|        |        |                                                                                                                                                                                                                                   | ````             |            |     |     |                      |        |
|        | L      |                                                                                                                                                                                                                                   |                  |            |     |     |                      |        |

### KEMESS CENTRE DRILL HOLE ASSAY RESULTS FOR KC-00-01

| Hole ID  | Sam ID | From   | То     | Width | Cu_ppm | Au_ppb | Ag_ppm   |
|----------|--------|--------|--------|-------|--------|--------|----------|
| KC-00-01 | 19102  | 30.90  | 32.35  | 1.45  | 25     | 2.5    | 0.1      |
| KC-00-01 | 19103  | 32.35  | 34.45  | 2.10  | 27     | 2.5    | 0.1      |
| KC-00-01 | 19104  | 34.45  | 36.20  | 1.75  | 15     | 2.5    | 0.1      |
| KC-00-01 | 19105  | 36.20  | 38.10  | 1.90  | 27     | 2.5    | 0.1      |
| KC-00-01 | 19106  | 38.10  | 40.00  | 1.90  | 24     | 2.5    | 0.1      |
| KC-00-01 | 19107  | 40.00  | 41.75  | 1.75  | 31     | 10     | <u> </u> |
| KC-00-01 | 19108  | 41.75  | 43.50  | 1.75  | 16     | 2.5    | 0.1      |
| KC-00-01 | 19109  | 43.50  | 45.00  | 1.50  | 20     | 2.5    | 0.1      |
| KC-00-01 | 19110  | 45.00  | 46.75  | 1.75  | 31     | 2.5    | 0.1      |
| KC-00-01 | 19111  | 46.75  | 49.25  | 2.50  | 14     | 2.5    | 0.1      |
| KC-00-01 | 19112  | 88.80  | 89.90  | 1.10  | 21     | 5      | 0.1      |
| KC-00-01 | 19113  | 89.90  | 91.30  | 1.40  | 207    | 15     | 0.2      |
| KC-00-01 | 19114  | 95.90  | 98.00  | 2.10  | 37     | 2.5    | 0.1      |
| KC-00-01 | 19115  | 106.90 | 109.10 | 2.20  | 65     | 45     | 0.1      |
| KC-00-01 | 19116  | 109.10 | 110.80 | 1.70  | 79     | 60     | 0.1      |
| KC-00-01 | 19117  | 126.90 | 127.70 | 0.80  | 67     | 20     | 0.1      |
| KC-00-01 | 19118  | 127.70 | 129.90 | 2.20  | 412    | 2.5    | 0.2      |
| KC-00-01 | 19119  | 157.00 | 158.25 | 1.25  | 96     | 10     | 0.1      |
| KC-00-01 | 19120  | 158.25 | 159.45 | 1.20  | 17     | 2.5    | 0.1      |
| KC-00-01 | 19121  | 184.15 | 185.55 | 1.40  | 26     | 5      | 0.1      |
| KC-00-01 | 19122  | 223.90 | 225.15 | 1.25  | 57     | 2.5    | 0.1      |
| KC-00-01 | 19123  | 255.05 | 256.10 | 1.05  | 209    | 2.5    | 0.2      |
| KC-00-01 | 19124  | 256.10 | 257.45 | 1.35  | 95     | 2.5    |          |
| KC-00-01 | 19125  | 257.45 | 259.10 | 1.65  | 145    | 2.5    | 0.2      |



#### **ALS Chemex** Aurora Laboratory Sorvicos Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver Billish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| 0000000 |  |  |  |
|---------|--|--|--|

t

io: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VOJ 2NO

Commonts: ATTN: BRETT LAPEARE

A0023510

#### CERTIFICATE.

A0023510

#### (PIL) - KEMESS MINE

KEMESS CENTER Project 200950 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-JUL-2000.

|                   | SAMPLE PREPARATION |                                                                             |  |  |  |  |  |  |  |  |
|-------------------|--------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CHEMEX            | NUMBER             | DESCRIPTION                                                                 |  |  |  |  |  |  |  |  |
| 225<br>238<br>229 | 101<br>20<br>20    | Run as received<br>Nitric-aqua-regia digestion<br>ICP - AQ Digestion charge |  |  |  |  |  |  |  |  |
| * NOTE            | 1.                 |                                                                             |  |  |  |  |  |  |  |  |

The 32 element ICP package is suitable for trace motals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ca, K, La, Mg, Na, Sr, Ti, T1, W.

| CHEMEX<br>CODE         NUMBER<br>SAMPLES         DESCRIPTION         METHOD         DETECTION<br>LIMIT         UPPER<br>LIMIT           983         99         Au ppb: Fuse 30 g sample         FA-AS         5         10000           6         99         Ag ppm: HN03-aqua regia digest<br>299         AAS-BKGD CORR         0.2         100.0           2118         20         Ag ppm: 32 element, soil & rock         ICP-AES         0.01         15.00           2119         20         Al %: 32 element, soil & rock         ICP-AES         0.01         15.00           2120         20         As ppm: 32 element, soil & rock         ICP-AES         0.01         15.00           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         0.1         10000           2122         20         Bo ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.5         500           2124         20         Ca %: 32 element, soil & rock         ICP-AES         0.1         15.00           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         1         10000           2125         20         Ca ppm:                                                                                                        |                |                   |                                                             |                 |                    |                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------------------------------------------------------------|-----------------|--------------------|----------------|--|--|--|--|--|
| 983         99         Au ppb: Fuse 30 g sample         FA-AAS         5         10000           6         99         Ag ppm: HNO3-aqua regia digest         AAS-BKOD CORR         0.2         100.0           2118         20         Ag ppm: HNO3-aqua regia digest         AAS         1         10000           2119         20         Al X: 32 element, soil & rock         ICP-AES         0.2         100.0           2119         20         Al X: 32 element, soil & rock         ICP-AES         0.01         15.00           2120         20         As ppm: 32 element, soil & rock         ICP-AES         10         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Bo ppm: 32 element, soil & rock         ICP-AES         0.5         100.00           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.5         500           2124         20         Ca X: 32 element, soil & rock         ICP-AES         1         10000           2125         20         Ca ppm: 32 element, soil & rock         ICP-AES         1         10000           2126         20         Ca X: 32 element, soil & rock                                                                                                                                  | CHEMEX<br>CODE | NUMBER<br>SAMPLES | DESCRIPTION                                                 | METHOD          | DETECTION<br>LIMIT | upper<br>Limit |  |  |  |  |  |
| 66         99         At ppm: HNO3-aqua regia digest         AAS-BKGD CORR         0.2         100.0           2         99         Cu ppm: HNO3-aqua regia digest         AAS         1         10000           2118         20         Ap ppm: 32 element, soil & rock         ICP-AES         0.2         100.0           2119         20         Al %: 32 element, soil & rock         ICP-AES         0.01         15.00           2120         20         As ppm: 32 element, soil & rock         ICP-AES         0.01         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Be ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2122         20         Be ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.5         500           2124         20         Ca ppm: 32 element, soil & rock         ICP-AES         1         10000           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         1         10000           2126         20         Fe %: 32 element, soil & r                                                                                                                       |                | 0.0               | Au much: Fuge 30 g sample                                   | Th-ANS          | 5                  | 10000          |  |  |  |  |  |
| 6         99         Cu ppm: HN03-aqua regia digest         AS         1         10000           2118         20         Ag ppm: 32 element, soil & rock         ICP-AES         0.2         100.0           2119         20         Al %: 32 element, soil & rock         ICP-AES         0.01         15.00           2120         20         As ppm: 32 element, soil & rock         ICP-AES         2         10000           557         20         B ppm: 32 element, soil & rock         ICP-AES         10         10000           2121         20         Be ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Be ppm: 32 element, soil & rock         ICP-AES         2         10000           2123         20         Be ppm: 32 element, soil & rock         ICP-AES         0.5         500           2124         20         Ca % i 32 element, soil & rock         ICP-AES         1         10000           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         1         10000           2127         20         Cr ppm: 32 element, soil & rock         ICP-AES         1         10000           2130         20         Ga ppm: 32 element, soil & rock                                                                                                                                 | 983<br>£       |                   | Au pph: Fullo St g sample<br>Marnon: HNO3-amia regia digest | AAS-BKCD CORR   | 0.2                | 100.0          |  |  |  |  |  |
| 2118         20         Ag ppm: 32 element, soil & rock         ICP-AES         0.2         100.0           2119         20         Al %: 32 element, soil & rock         ICP-AES         0.01         15.00           2120         20         As ppm: 32 element, soil & rock         ICP-AES         2         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Be ppm: 32 element, soil & rock         ICP-AES         0.5         100.00           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.01         15.00           2124         20         Ca %: 32 element, soil & rock         ICP-AES         0.01         15.00           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         1         10000           2127         20         Cr ppm: 32 element, soil & rock         ICP-AES         1         10000           2128         20         Cu ppm: 32 element, soil & rock         ICP-AES         1         10000           2130         20         F&: 32 element, soil &                                                                                                                       | 2              | 99                | Cu nom: HNO3-aqua regia digest                              | AAS             | 1                  | 10000          |  |  |  |  |  |
| 2113       20       hi %: 32 element, soil & rock       ICP-AES       0.01       15.00         2120       20       hs ppm: 32 element, soil & rock       ICP-AES       10000         557       20       B ppm: 32 element, soil & rock       ICP-AES       10       10000         2121       20       Ba ppm: 32 element, soil & rock       ICP-AES       10       10000         2122       20       Bo ppm: 32 element, soil & rock       ICP-AES       0.5       100.0         2123       20       Bi ppm: 32 element, soil & rock       ICP-AES       0.5       500         2124       20       Ca %: 32 element, soil & rock       ICP-AES       0.5       500         2125       20       Cd ppm: 32 element, soil & rock       ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       1       10000         2131       20       K %: 32 element, soil & rock       ICP-AES       10       10000         2131       20       K %: 32 element                                                                                                                                                                                             | 2118           | 20                | Ag mome 32 element. soil & rock                             | ICP-AES         | 0.2                | 100.0          |  |  |  |  |  |
| 2120         20         As ppm: 32 element, soil & rock         ICP-AES         2         10000           557         20         B ppm: 32 element, soil & rock         ICP-AES         10         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Bo ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.01         15.00           2124         20         Ca %: 32 element, soil & rock         ICP-AES         0.01         15.00           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         1         10000           2126         20         Co ppm: 32 element, soil & rock         ICP-AES         1         10000           2130         20         Fo %: 32 element, soil & rock         ICP-AES         0.01         15.00           2131         20         Fo %: 32 element, soil & rock         ICP-AES         1         10000           2134         20         Mg %: 32 element, soil & rock         ICP-AES         1         10000           2134         20         Mg %: 32 element, soil & rock </td <td>2119</td> <td>20</td> <td>Al %: 32 element. soil &amp; rock</td> <td>ICP-AES</td> <td>0.01</td> <td>15.00</td> | 2119           | 20                | Al %: 32 element. soil & rock                               | ICP-AES         | 0.01               | 15.00          |  |  |  |  |  |
| 100         B ppm: 32 element, rock & soil         ICP-AES         10         10000           2121         20         Ba ppm: 32 element, soil & rock         ICP-AES         10         10000           2122         20         Bo ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2124         20         Ca %: 32 element, soil & rock         ICP-AES         0.01         15.00           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         0.01         15.00           2126         20         Co ppm: 32 element, soil & rock         ICP-AES         1         10000           2127         20         Cr ppm: 32 element, soil & rock         ICP-AES         1         10000           2128         20         Cu ppm: 32 element, soil & rock         ICP-AES         1         10000           2130         20         Fe %: 32 element, soil & rock         ICP-AES         10         10000           2131         20         Kg %: 32 element, soil & rock         ICP-AES         10         10000           2135         20         Mg %: 32 element, soil & rock         I                                                                                                                       | 2120           | 20                | As pom: 32 element, soil & rock                             | ICP-AES         | 2                  | 10000          |  |  |  |  |  |
| 2121       20       Ba ppm: 32 element, soil £ rock       ICP-AES       10       10000         2122       20       Bo ppm: 32 element, soil £ rock       ICP-AES       0.5       100.0         2123       20       Bi ppm: 32 element, soil £ rock       ICP-AES       2       10000         2124       20       Ca %: 32 element, soil £ rock       ICP-AES       0.61       15.00         2125       20       Cd ppm: 32 element, soil £ rock       ICP-AES       0.5       500         2126       20       Co ppm: 32 element, soil £ rock       ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil £ rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil £ rock       ICP-AES       1       10000         2130       20       Ga ppm: 32 element, soil £ rock       ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil £ rock       ICP-AES       10       10000         2131       20       K %: 32 element, soil £ rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil £ rock       ICP-AES       10       10000         2135       20                                                                                                                                                                                                       | 557            | 20                | B ppm: 32 element, rock & soil                              | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
| 2122         20         Be ppm: 32 element, soil & rock         ICP-AES         0.5         100.0           2123         20         Bi ppm: 32 element, soil & rock         ICP-AES         2         10000           2124         20         Ca %: 32 element, soil & rock         ICP-AES         0.01         15.00           2125         20         Cd ppm: 32 element, soil & rock         ICP-AES         0.5         500           2126         20         Co ppm: 32 element, soil & rock         ICP-AES         1         10000           2127         20         Cr ppm: 32 element, soil & rock         ICP-AES         1         10000           2128         20         Cr ppm: 32 element, soil & rock         ICP-AES         1         10000           2130         20         Ga ppm: 32 element, soil & rock         ICP-AES         10         10000           2131         20         Hg ppm: 32 element, soil & rock         ICP-AES         10         10000           2132         20         K %: 32 element, soil & rock         ICP-AES         10         10000           2133         20         Mg %: 32 element, soil & rock         ICP-AES         0.01         15.00           2134         20         Mg %: 32 element, soil & rock<                                                                                                                       | 2121           | 20                | Ba ppm: 32 element, soil & rock                             | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
| 2123       20       Bi ppm: 32 element, soil & rock       ICP-AES       2       10000         2124       20       Ca %: 32 element, soil & rock       ICP-AES       0.01       15.00         2125       20       Cd ppm: 32 element, soil & rock       ICP-AES       0.5       500         2126       20       Cc ppm: 32 element, soil & rock       ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       1       10000         2131       20       K %: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Ms %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Ms %: 32 element, soil & rock       ICP-AES       5       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2134       20       Mg %                                                                                                                                                                                                      | 2122           | 20                | Be ppm: 32 element, soil & rock                             | ICP-AES         | 0.5                | 100.0          |  |  |  |  |  |
| 2124       20       Ca %: 32 element, soil & rock       ICP-AES       0.01       15.00         2125       20       Cd ppm: 32 element, soil & rock       ICP-AES       0.5       500         2126       20       Co ppm: 32 element, soil & rock       ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2130       20       Fe %: 32 element, soil & rock       ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock       ICP-AES       10       10000         2131       20       K %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       10       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       10       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20 <t< td=""><td>2123</td><td>20</td><td>Bi ppm: 32 element, soil &amp; rock</td><td>ICP-AES</td><td>2</td><td>10000</td></t<>                                                                               | 2123           | 20                | Bi ppm: 32 element, soil & rock                             | ICP-AES         | 2                  | 10000          |  |  |  |  |  |
| 2125       20       Cd ppm: 32 element, soil & rock ICP-AES       0.5       500         2126       20       Co ppm: 32 element, soil & rock ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil & rock ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock ICP-AES       1       10000         2130       20       Fe %: 32 element, soil & rock ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock ICP-AES       10       10000         2132       20       K %: 32 element, soil & rock ICP-AES       0.01       15.00         2131       20       Mg %: 32 element, soil & rock ICP-AES       0.01       10.000         2132       20       K %: 32 element, soil & rock ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock ICP-AES       0.01       10.000         2135       20       Mn ppm: 32 element, soil & rock ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil                                                                                                                                                        | 2124           | 20                | Ca %: 32 element, soil & rock                               | ICP-AES         | 0.01               | 15.00          |  |  |  |  |  |
| 2126       20       Co ppm: 32 element, soil & rock       ICP-AES       1       10000         2127       20       Cr ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       10       10000         2131       20       K %: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       10       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %:                                                                                                                                                                                                      | 2125           | 20                | Cd ppm: 32 element, soil & rock                             | ICP-AES         | 0.5                | 500            |  |  |  |  |  |
| 2127       20       Cr ppm: 32 element, soil & rock ICP-AES       1       10000         2128       20       Cu ppm: 32 element, soil & rock ICP-AES       1       10000         2150       20       Pe %: 32 element, soil & rock ICP-AES       0.01       15.00         2130       20       Ga ppm: 32 element, soil & rock ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock ICP-AES       0.01       10.000         2131       20       Hg ppm: 32 element, soil & rock ICP-AES       10       10000         2132       20       K %: 32 element, soil & rock ICP-AES       10       10000         2132       20       K %: 32 element, soil & rock ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock ICP-AES       10       10000         2135       20       Mn ppm: 32 element, soil & rock ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & rock ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock ICP-AES       10       10000         2138       20       P ppm: 32 element, soil & roc                                                                                                                                                        | 2126           | 20                | Co ppm: 32 element, soil & rock                             | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2128       20       Cu ppm: 32 element, soil & rock       ICP-AES       1       10000         2150       20       Fe %: 32 element, soil & rock       ICP-AES       0.01       15.00         2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       10.000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       1       10000         2139       20       Pippm: 32 element, soil & rock       ICP-AES       10       10000         2140       20                                                                                                                                                                                                     | 2127           | 20                | Cr ppm: 32 element, soil & rock                             | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2150       20       Fe %: 32 element, soil & rock       ICP-AES       0.01       15.00         2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       10       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       10       10000         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       S * 132 element, soil & rock       ICP-AES       2       10000         2141       20 <t< td=""><td>2128</td><td>20</td><td>Cu ppm: 32 element, soil &amp; rock</td><td>ICP-AES</td><td>1</td><td>10000</td></t<>                                                                               | 2128           | 20                | Cu ppm: 32 element, soil & rock                             | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2130       20       Ga ppm: 32 element, soil & rock       ICP-AES       10       10000         2131       20       Hg ppm: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.000         2132       20       La ppm: 32 element, soil & rock       ICP-AES       0.01       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       100000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       10       10.00         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       S %: 32 element, soil & rock       ICP-AES       2       10000         2141       20                                                                                                                                                                                                       | 2150           | 20                | Fe %: 32 element, soil & rock                               | ICP-AES         | 0.01               | 10000          |  |  |  |  |  |
| 2131       20       Hg ppm: 32 element, soil & rock       ICP-AES       1       10000         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10.00         2132       20       K %: 32 element, soil & rock       ICP-AES       0.01       10000         2134       20       La ppm: 32 element, soil & rock       ICP-AES       0.01       15.00         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       1       10000         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       10       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       St ppm: 32 element, soil & rock       ICP-AES       1       10000         2141       20                                                                                                                                                                                                       | 2130           | 20                | Ga ppm: 32 element, soil & rock                             | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
| 2132       20       K %: 32 element, soil & rock       ICP-AES       10.01       10.00         2151       20       La ppm: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       1       10000         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       1       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       Pb ppm: 32 element, soil & rock       ICP-AES       2       10000         2141       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20                                                                                                                                                                                                         | 2131           | 20                | Hg ppm: 32 element, soil & rock                             | ICP-AES         | 1                  | 10 00          |  |  |  |  |  |
| 2151       20       La ppm: 32 element, soil & rock       ICP-AES       10       10000         2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       15.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2135       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       No ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       0.01       10.00         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       10       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       Pb ppm: 32 element, soil & rock       ICP-AES       2       10000         2141       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20                                                                                                                                                                                                      | 2132           | 20                | K %: 32 element, soil & rock                                | ICP-AES         | 40                 | 10000          |  |  |  |  |  |
| 2134       20       Mg %: 32 element, soil & rock       ICP-AES       0.01       13.00         2135       20       Mn ppm: 32 element, soil & rock       ICP-AES       5       10000         2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       1       10000         2136       20       No ppm: 32 element, soil & rock       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & rock       ICP-AES       0.01       10.00         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       1       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       St i 32 element, soil & rock       ICP-AES       2       10000         551       20       S %: 32 element, soil & rock       ICP-AES       2       10000         2141       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Ti                                                                                                                                                                                                      | 2151           | 20                | La ppm: 32 element, soil & rock                             | ICP-AES         | 10                 | 15 00          |  |  |  |  |  |
| 2135       20       Mn ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2136       20       Mo ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2137       20       Na %: 32 element, soil & FOCK       ICP-AES       0.01       10.00         2137       20       Na %: 32 element, soil & FOCK       ICP-AES       0.01       10.00         2138       20       Ni ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2139       20       P ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2140       20       P ppm: 32 element, soil & FOCK       ICP-AES       2       10000         2141       20       St ppm: 32 element, soil & FOCK       ICP-AES       2       10000         2142       20       Sc ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & FOCK       ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & FOCK       ICP-AES       0.01       10.000         2144       20       Ti %: 32 element, soil & FOCK       ICP-AES       10       10000         2145       20                                                                                                                                                                                                         | 2134           | 20                | Mg %: 32 element, soil & rock                               | ICP-AES         | 0.01               | 10000          |  |  |  |  |  |
| 2136       20       Mo ppm: 32 element, soil & rock       ICP-AES       10.00         2137       20       Na %: 32 element, soil & rock       ICP-AES       0.01       10.00         2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       1       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10       10000         2140       20       Ph ppm: 32 element, soil & rock       ICP-AES       2       10000         551       20       S %: 32 element, soil & rock       ICP-AES       2       10000         2141       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & rock       ICP-AES       10       10000         2145       20       Tl ppm: 32 element                                                                                                                                                                                             | 2135           | 20                | Mn ppm: 32 element, soll & rock                             | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2137       20       Na %: 32 element, \$011 & FOCK       1CP-AES       1CP-AES         2138       20       Ni ppm: 32 element, \$011 & FOCK       ICP-AES       1       10000         2139       20       P ppm: 32 element, \$011 & FOCK       ICP-AES       10       10000         2139       20       P ppm: 32 element, \$011 & FOCK       ICP-AES       10       10000         2140       20       P ppm: 32 element, \$011 & FOCK       ICP-AES       2       10000         551       20       S %: 32 element, \$011 & FOCK       ICP-AES       2       10000         2141       20       Sb ppm: 32 element, \$011 & FOCK       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, \$011 & FOCK       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, \$011 & FOCK       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, \$011 & FOCK       ICP-AES       1       10000         2144       20       Tl ppm: 32 element, \$011 & FOCK       ICP-AES       10       10000         2145       20       Tl ppm: 32 element, \$011 & FOCK       ICP-AES       10       10000         2146       20       U ppm: 32 element                                                                                                                                                                                 | 2136           | 20                | Mo ppm: 32 element, soll & rock                             | TCP-AES         | 0.01               | 10.00          |  |  |  |  |  |
| 2138       20       Ni ppm: 32 element, soil & rock       ICP-AES       10         2139       20       P ppm: 32 element, soil & rock       ICP-AES       10         2140       20       Pb ppm: 32 element, soil & rock       ICP-AES       2       10000         551       20       S %: 32 element, rock & soil       ICP-AES       0.01       5.00         2141       20       Sb ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Sr ppm: 32 element, soil & rock       ICP-AES       10.01       10.00         2144       20       Ti %: 32 element, soil & rock       ICP-AES       10       10000         2145       20       Tl ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock                                                                                                                                                                                           | 2137           | 20                | Na %: 32 element, soll & rock                               | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2139       20       P ppm: 32 element, soil & rock       ICP-AES       10000         2140       20       Pb ppm: 32 element, soil & rock       ICP-AES       2       10000         551       20       S %: 32 element, rock & soil       ICP-AES       0.01       5.00         2141       20       Sb ppm: 32 element, soil & rock       ICP-AES       2       10000         2142       20       Sc ppm: 32 elements, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & rock       ICP-AES       0.01       10.00         2144       20       Ti ppm: 32 element, soil & rock       ICP-AES       10       10000         2145       20       TI ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 elem                                                                                                                                                                                             | 2138           | 20                | Ni ppm: 32 element, soll & rock                             | ICP-ABS         | 10                 | 10000          |  |  |  |  |  |
| 2140       20       Ph ppm: 32 element, soil & rock icr res       100       5.00         551       20       S %: 32 element, rock & soil ICP-AES       0.01       5.00         2141       20       Sb ppm: 32 element, soil & rock ICP-AES       2       10000         2142       20       Sc ppm: 32 element, soil & rock ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock ICP-AES       1       10000         2144       20       Sr ppm: 32 element, soil & rock ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & rock ICP-AES       0.01       10.00         2145       20       Ti %: 32 element, soil & rock ICP-AES       10       10000         2145       20       Ti ppm: 32 element, soil & rock ICP-AES       10       10000         2145       20       U ppm: 32 element, soil & rock ICP-AES       10       10000         2146       20       V ppm: 32 element, soil & rock ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock ICP-AES       10       10000         2148       20       Z element, soil & rock ICP-A                                                                                                                                                        | 2139           | 20                | p ppm: 32 element, soil & rock                              | TCP-AES         | 2                  | 10000          |  |  |  |  |  |
| 551       20       S % 7 32 element, folk & solk       100 1         2141       20       Sc ppm: 32 element, soll & rock       ICP-AES       2         2142       20       Sc ppm: 32 elements, soll & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 elements, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & rock       ICP-AES       0.01       10.000         2145       20       Tl ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       Z       Ippm: 32 element, soil & rock       ICP-AES       10       10000         2149       20       Z       Z       ICP-AES       10       10000                                                                                                                                                                                                                                                                                | 2140           | 20                | a the 22 -lement, soil a rook                               | TCP-AES         | 0.01               | 5.00           |  |  |  |  |  |
| 2141       20       SS ppm: 32 elements, soil & rock       ICP-AES       1       10000         2142       20       Sc ppm: 32 elements, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2144       20       Ti %: 32 element, soil & rock       ICP-AES       0.01       10.00         2145       20       Tl ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       10       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       Z       Ippm: 32 element, soil & rock       ICP-AES       10       10000                                                                                                                                                                                                                                                                                                                                                                                                                  | 551            | 20                | ch www. 22 element, foil & rock                             | ICP-AES         | 2                  | 10000          |  |  |  |  |  |
| 2142       20       Sr ppm: 32 element, soil & rock       ICP-AES       1       10000         2143       20       Sr ppm: 32 element, soil & rock       ICP-AES       0.01       10.00         2144       20       Ti %: 32 element, soil & rock       ICP-AES       0.01       10.00         2145       20       Tl ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       10       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000                                                                                                                                                                                                                                                                                                                                                                                                                        | 2141           | 20                | Iso pom: 32 elements, soil & rock                           | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2143       20       Ti %: 32 element, soll & rock       ICP-AES       0.01       10.00         2144       20       Ti ppm: 32 element, soll & rock       ICP-AES       10       10000         2145       20       Ti ppm: 32 element, soil & rock       ICP-AES       10       10000         2146       20       U ppm: 32 element, soil & rock       ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       Z       Z       10000       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2144           | 20                | Se ppm: 32 elements, soil & rock                            | ICP-AES         | 1                  | 10000          |  |  |  |  |  |
| 2145       20       T1 ppm: 32 element, soil & rock       ICP-AES       10       10000         2145       20       U ppm: 32 element, soil & rock       ICP-AES       10       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2147       20       V ppm: 32 element, soil & rock       ICP-AES       1       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000         2148       20       W ppm: 32 element, soil & rock       ICP-AES       10       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2143           | 20                | Ti %: 32 element. soil & rock                               | ICP-AES         | 0.01               | 10.00          |  |  |  |  |  |
| 2146         20         U ppm: 32 element, soil & rock         ICP-AES         10         10000           2147         20         V ppm: 32 element, soil & rock         ICP-AES         1         10000           2147         20         V ppm: 32 element, soil & rock         ICP-AES         1         10000           2148         20         W ppm: 32 element, soil & rock         ICP-AES         10         10000           2148         20         Z0         Zn mm: 32 element, soil & rock         ICP-AES         2         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2145           | 20                | T1 ppm: 32 element, soil & rock                             | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
| 2147         20         V ppm: 32 element, soil & rock         ICP-AES         1         10000           2147         20         W ppm: 32 element, soil & rock         ICP-AES         10         10000           2148         20         W ppm: 32 element, soil & rock         ICP-AES         10         10000           2148         20         Zn ppm: 32 element, soil & rock         ICP-AES         10         10000           2148         20         Zn ppm: 32 element, soil & rock         ICP-AES         2         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2144           | 20                | U momi 32 element, soil & rock                              | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
| 2148         20         W ppm:         32 element, soil & rock         ICP-AES         10         10000           2148         20         Zn mm:         32 element, soil & rock         ICP-AES         10         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2147           | 20                | V mmm 32 element, soil & rock                               | ICP <b>-AES</b> | 1                  | 10000          |  |  |  |  |  |
| 2149 20 Zn mm: 32 element, soil & rock ICP-AES 2 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2149           | 1 20              | W pom: 32 element, soil & rock                              | ICP-AES         | 10                 | 10000          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2149           | 20                | Zn ppm: 32 element, soil & rock                             | ICP-AES         | 2                  | 10000          |  |  |  |  |  |

#### DBAACDUDCO



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver Biltish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE **\_^**\*

Page er :1-A Total Payes :3 Certificate Date: 27-JUL-2000 Invoice No. :10023510 P.O. Number :200950 Account :PIL

100

A0023510 **CERTIFICATE OF ANALYSIS** . . . . ..... ĸ Cu Fo Ga Ilq Cr Cđ Ço 81 Ca A1. Λ# п Ba lla PHEP Au ppb Ag ppm Cu Ag ٩. ¥, ppa ppm ppm ppm ppm \* ppm ррш ppm % ppm pbw ppm pptil CODE FA+AA Aqua X ppm SAMPLE 0.78 1 3.76 10 9 49 25 0.60 < 0.5 < 10 320 2.0 < 2 < 5 < 0.2 < 0.2 2.75 2 25 225 238 19102 < 5 < 0.2 27 225 ---19103 < 0.2 15 225 --< 5 19104 < 5 < 0.2 27 19105 225 --< 5 < 0.2 24 225 ---19106 0.26 31 30 1.63 < 10 < 1 2 0.5 0.60 < 2 130 0.5 < 2 1.36 < 10 < 0.2 10 < 0.2 31 225 238 19107 225 < 5 < 0.2 16 19108 < 0.2 20 225 ----< 5 19109 Û 31 225 < 5 < 0.2 19110 --< 0.2 14 < 5 19111 225 ---0.09 15 4.90 < 10 2 111 17 < 0.5 n 480 < 0.5 12 4.91 3.77 < 10 10 < 0.2 19112 225 238 5 < 0.2 21 15 0.2 207 -----..... 225 19113 ---< 5 < 0.2 37 -----225 \_\_\_ 19114 65 ~~~~ 45 < 0.2 225 19115 ---79 60 < 0.2 225 19116 ----< 1 0.04 60 61 1.40 < 10 6.28 < 0.5 10 22 < 10 130 < 0.5 0.40 67 < 0.2 20 < 0.2 19117 225 238 < 5 0.2 412 225 ---19118 10 < 0.296 225 ---19119 < 5 < 0.2 17 225 ---19120 5 < 0.2 26 ----225 ---19121 0.09 < 1 1.80 < 10 8 67 54 < 0.5 < 2 3.20 < 0.5 42 < 10 320 57 < 0.2 0.61 < 5 < 0.2 225 238 19122 < 5 0.2 209 ----= 225 --19123 < 0.2 95 -----225 ---< 5 19124 145 -----225 < 5 0.2 - -19125 \_ \_ \_ \_ \_ \_\_\_\_ 0.2 265 -----225 < 5 19126 0.11 3.12 < 10 < 1 448 2.83 0.5 99 29 0.5 < 2 140 < 10 470 0.8 1.80 4 225 238 15 0.8 19127 \_\_\_\_\_ 233 225 --< 5 0.2 19128 104 --< 0.2 225 --< 5 19129 151 -225 --< 5 < 0.2 19130 151 --225 \_\_\_ < 5 < 0.2 19131 0.06 2.93 < 10 1 42 81 < 2 2.15 < 0.5 9 130 < 0.5 < 10 < 2 < 0.2 86 < 0.2 1.34 < 5 225 238 19132 66 10 < 0.2 225 ---19133 240 5 0.2 225 19134 --0.2 84 225 < 5 19135 ----57 < 5 < 0.2 225 19136 ---3.11 < 10 < 1 0.07 < 0.5 12 34 125 1.73 < 2 < 2 < 10 150 < 0.5 1.59 118 < 0.2 225 238 < 5 < 0.2 19137 147 225 < 5 < 0.2 ----19138 < 0.2 105 225 < 5 ----\_\_\_ 19139 62 ..... < 5 < 0.2 225 \_\_\_\_ 19140 36 -----< 5 < 0.2 225 --19141

CERTIFICATION:

+ 2

÷١



# ALS Chemex

Anniytical Chomists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PI-IONF: 604-984-0221 FAX: 604-984-0218

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE

Page er : 1-B Total Fugues :3 Certificate Dato: 27-JUL-2000 Invoice No. : 10023510 P.O. Numbor : 200950 Account : PIL

|                                                    |                                               |             |           |         |           |           |              |           |           |            | CE     | RTIF      | ICATE     | EOF       | ANAL    | YSIS      |             | A0023         | 3510     |           |   |
|----------------------------------------------------|-----------------------------------------------|-------------|-----------|---------|-----------|-----------|--------------|-----------|-----------|------------|--------|-----------|-----------|-----------|---------|-----------|-------------|---------------|----------|-----------|---|
| SAMPLE                                             | PHE<br>COD                                    | E<br>F      | ћа<br>ррш | Mg<br>% | Mn<br>ppm | Мо<br>ррш | ,<br>Na<br>% | ы1<br>ppm | ין<br>mgg | ppm<br>ppm | 8<br>% | sp<br>bbw | SC<br>ppm | Sr<br>ppm | TI<br>% | Tl<br>PPm | U<br>Mqq    | v<br>ppm      | w<br>ppm | Zn<br>ppm |   |
| 19102<br>19103<br>19104<br>19105                   | 225<br>225<br>225<br>225<br>225               | 238<br><br> | < 10      | 1.21    | 250       | 11        | 0.07         | 8         | 570       | < 2        | 0.20   | < 2       | 8         | 41        | 0.12    | < 10      | < 10        | 43            | < 10     | 146       |   |
| 19106<br>19107<br>19108<br>19109<br>19110<br>19111 | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238         | 10        | 0.40    | 335       | <br>      | 0.04         | 5         | 60<br>    | 4          | 0.07   | < 2       | 1         | 31        | < 0.01  | 10        | < 10        | 6<br>         | < 10     | 64        |   |
| 19112<br>19113<br>19114<br>19115<br>19116          | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 23B         | < 10<br>  | 2.85    | 1315      | 3         | 0.20         | 35        | 600<br>   | < 2        | 0.21   | < 2       | 15<br>    | 125       | 0.19    | < 10      | < 10        | 128           | < 10     | 114<br>   |   |
| 19117<br>19118<br>19119<br>19120<br>19121          | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238         | < 10      | 0,53    | 1815      | 8         | 0.01         | 43        | 150       | < 2        | 0.56   | 4         | 6<br>     | 74        | < 0.01  | < 10      | < 10        | 13            | < 10     | 44        | _ |
| 19122<br>19123<br>19124<br>19125<br>19125<br>19126 | 225<br>225<br>225<br>225<br>225<br>225        | 238         | < 10      | 1.35    | 1380      | 9<br><br> | 0.03         | 28<br>    | 520       | 2          | 0,30   | 2         | 6         | 183       | < 0.01  | < 10      | < 10        | 21            | < 10     | 50<br>    |   |
| 19127<br>19128<br>19129<br>19130<br>19131          | 225<br>225<br>225<br>225<br>225<br>225        | 238         | 10<br>    | 0.84    | 435       | 37        | 0.06         | ; 4<br>   | 650<br>   | 4          | 0.45   | < 2       | 6         | 120       | < 0.01  | < 10<br>  | < 10<br>    | 56            | < 10<br> | 32        |   |
| 19132<br>19133<br>19134<br>19135<br>19136          | 225<br>225<br>225<br>225<br>225<br>225        | 238         | < 10      | 0.87    | 420       |           | 0.0          | 3 5       | 660       | < 2        | 0.03   | 2         | 7         | 87        | < 0.01  |           | ) < 10<br>  | ) 67<br>      | < 10<br> | 26        |   |
| 19137<br>19138<br>19139<br>19140<br>19141          | 225<br>225<br>225<br>225<br>225               | 238         |           |         |           |           | 7 0.0        | 9 3       | <br>      |            | 0.06   |           |           | 107       |         |           | 0 < 10      |               | < 10<br> | 28        |   |
| l                                                  | <u> </u>                                      | ļ           | <u>.</u>  |         |           |           |              |           |           | <u> </u>   |        |           |           |           |         |           | <b>A</b> 1. | $\mathcal{N}$ | 100      | ,D        |   |

CERTIFICATION:

#### SYNOPTIC DRILL LOG NORTHGATE EXPLORATION LTD. KEMESS PROJECT

## PAGE 1 OF \_\_\_\_

| D.D.H. NO    | 6-00-02           |               | PAGE 1 OF     |
|--------------|-------------------|---------------|---------------|
|              | GRID SURVEY       |               |               |
| NORTHING     | 10885 N 10781.51N | TOTAL DEPTH   | 219.15        |
| FASTING      | 8800 E 8779.98E   | TOATL CASING  | 4.57          |
| FIEVATION    | 1413.15           | DATE START    | JUNE 26, 2000 |
| PROJECT/AREA | KEMESS CENTRE     | DATE END      | JUNE 30, 2000 |
| AZIMUTH      | AIG               | CORE DIAMETER | NQ            |
| INCLINATION  | -900              | GEOLOGIST     | BRETT LAPEARE |

SAMPLE SERIES: 19126 \_\_\_\_ TO \_\_\_\_\_

TARGET/PURPOSE: To test frend between resistificty low & chargesbility high up an associated potessia high COMMENTS (target intersected? / describe): Hole intersected + 110m if monzonite in the main intersections plas local dutres. Locally monzonite exhibits trace cou

| Downhole | Depth    | Туре    | Azimuth | Dip    |
|----------|----------|---------|---------|--------|
| SHEVAN   | 99.70 m  | EASTHAN | 1430    | -87    |
| Gaitey   | 215.55 m | 11      | 202.0   | - 87.5 |
|          |          |         |         |        |
|          |          |         |         |        |
|          |          |         |         |        |

| From   | То    | Rock Type               | Alteration                   | Mineralization                                                                                                        | Comments            |
|--------|-------|-------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|
| 0.00   | 4.57  | CASING/ OVB             |                              |                                                                                                                       |                     |
| 0.00   |       |                         |                              |                                                                                                                       |                     |
| 4.57   | 7125  | MONZONITE               | semilett clary               | 41% pt + tripy                                                                                                        | with, magnetic      |
|        |       |                         | <u> </u>                     |                                                                                                                       |                     |
| 71.2.5 | 73.05 | ANDESITIE DYKE          |                              | 2190 py                                                                                                               | nkh, magnetic       |
|        | 1     |                         |                              | · · · · ·                                                                                                             |                     |
| 73.05  | 76.60 | MONTONIE                |                              |                                                                                                                       | same +1 4.5-71.25   |
| 13.03  | ,     |                         | and the second second second | х.<br>1979 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — 1971 — |                     |
| 76.60  | 81.75 | QIZ + BIOTITE SILTSTONE | Sidite                       | 27. py                                                                                                                |                     |
|        |       |                         |                              | · · · · · · · · · · · · · · · · · · ·                                                                                 |                     |
| 8175   | 82.65 | ANDESITE DYKE           |                              | 2-39. py                                                                                                              |                     |
|        | :     |                         |                              |                                                                                                                       | ·····               |
| 82.65  | 84.07 | QTZ-BIDTITE SILTSTONE   |                              |                                                                                                                       |                     |
|        |       |                         |                              | 1.60                                                                                                                  |                     |
| 84.07  | 84.90 | Q.F.P                   |                              | 55%py                                                                                                                 |                     |
| 011 40 | A     | A PRODUCTS SUTSTANE     |                              | £ 470                                                                                                                 | on w/ carb stringer |
| 89.70  | 10.00 | QIEF BOTTE SICISTOPE    |                              |                                                                                                                       |                     |

KL-00-02

<u>,</u>

## PAGE 2 OF 3

| From     | То         | Rock Type                             | Alteration                            | Mineralization                        | Comments                                |
|----------|------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
| 90.00    | 93.05      | ANDESITE DYKE                         |                                       | 3-5% pr                               |                                         |
|          |            |                                       |                                       |                                       |                                         |
| 93.05    | 93.86      | GIZ-BIOTITE SILTSTONE                 | Scolite                               | 2-390 py                              |                                         |
|          |            |                                       |                                       |                                       | 127.515                                 |
|          |            |                                       |                                       | - 2 4                                 |                                         |
| 93.86    | 95.70      | SILICIFIED SILTSTONE                  |                                       | 2.57. py                              | possible skarning                       |
| <u> </u> |            |                                       |                                       |                                       | Tocally                                 |
| 80.74    | 87 40      |                                       |                                       | 47.9                                  | ,                                       |
| 75.70    | 17.00      | SEDDED SILISTONE                      |                                       |                                       |                                         |
| 97.00    | 9245       | MONDOUNE DYKE                         | service / class                       | take by                               |                                         |
| 17.00    | ,          |                                       | 7-                                    |                                       |                                         |
| 97.65    | 113.65     | SILICIFIED SILTSTONE                  |                                       | 4170 py                               | Fultellun                               |
|          | · · ·      |                                       |                                       |                                       | 2 · · · · · · · · · · · · · · · · · · · |
| 113.65   | 119.04     | MONZONITE                             |                                       | 2-39. p                               | Phil secondary gle                      |
|          |            |                                       | (2)                                   |                                       |                                         |
| 119.04   | 124.15     | SILICIFIED SILT STONE                 | clay (1)                              |                                       | HAMA COLOGICAL                          |
|          |            |                                       |                                       |                                       | alin mya                                |
| 17415    | DC 12      | M                                     |                                       | <19. 0                                |                                         |
| 127.13   | 67.10      | 1160 LONI 2                           |                                       | Fy                                    |                                         |
| 125.10   | 126.95     | SILICEOUS SILTSTONE                   |                                       | 2190 py                               |                                         |
| 10.      |            |                                       |                                       |                                       |                                         |
| 126.95   | 129.70     | MAFIC DYKE                            |                                       | 5290 py                               | · · · ·                                 |
|          |            |                                       |                                       |                                       |                                         |
| 128.70   | 159.15     | MONZONITE                             | variable from                         | EDory Hropy                           | · · · · · · · · · · · · · · · · · · ·   |
| ·        | ļ          | · · · · · · · · · · · · · · · · · · · | Repar to sericite                     |                                       |                                         |
|          | 164.05     | Come from the state                   |                                       | c19 . 1. h                            | · · · · · · · · · · · · · · · · · · ·   |
| 157.15   | 137.73     | SILICIFIED SILISTANE                  | <u> </u>                              | - rapy reey                           | ·······                                 |
| 150 45   | 167 55     | MAFIC DYKE                            |                                       | 729, p.                               |                                         |
| 137.13   | 10003      | 1                                     |                                       |                                       |                                         |
| 162.55   | 166.55     | SILICEONS MUDSTONE                    |                                       | 219, py                               |                                         |
|          | e tetar de |                                       |                                       |                                       |                                         |
| 166.55   | 167.70     | GRANDDIDRITE DYKE                     |                                       | true py                               |                                         |
|          |            | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · · |                                         |
| 167.70   | 168.90     | SILICEONS MADCTONE                    | · · · · · · · · · · · · · · · · · · · |                                       |                                         |
| 110 00   | 3.1        |                                       |                                       | 419 1.4.                              |                                         |
| 168.70   | 1+1.15     | SILICITIED SILISTONE                  |                                       |                                       |                                         |
| 211      |            | MAGIN FLAK                            |                                       |                                       | · · · · · · · · · · · · · · · · · · ·   |
| 1700     | 173.00     | There is a solo                       | 1                                     |                                       |                                         |
| 173.00   | 174.80     | SILICIFIED SILTSTONE                  |                                       |                                       |                                         |

K6-00-02

C

 $\subset$ 

# PAGE OF 3

| ſ      | From   | То       | Rock Type                                                                                                        | Alteration                                    | Mineralization                        | Comments                               |
|--------|--------|----------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------|
|        | 174.80 | 180.45   | MAFIL THEF                                                                                                       |                                               | cipp-1-diss                           |                                        |
| ·      |        |          | ···                                                                                                              |                                               |                                       |                                        |
|        | 180.45 | 182.08   | SILTSFONE                                                                                                        | glarchitchy                                   | true py                               | ······································ |
|        |        | 1.01     |                                                                                                                  |                                               |                                       |                                        |
|        | 182.08 | 184.75   | MONZONITE DYKE                                                                                                   | · <u>·</u> ·································· |                                       | minor may                              |
|        | 104 35 | 193.60   | MARY LOLCANICS                                                                                                   | . •                                           | 22% p.                                |                                        |
|        | 10013  |          |                                                                                                                  |                                               |                                       |                                        |
|        | 193.60 | 200.30   | ALTERED MAFIL LOLIC                                                                                              | clay                                          | < 2% py                               | local Syrecentron                      |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
|        | 200.30 | 202.25   | DORITE DYKE                                                                                                      |                                               |                                       |                                        |
|        |        | 242 (*   |                                                                                                                  |                                               | <u>.</u>                              |                                        |
|        | 20245  | 202,60   | TAGLT                                                                                                            | CILY SULSE                                    |                                       |                                        |
|        | 202.60 | 20535    | FALLT (?) BRECCIA                                                                                                |                                               | 6190 p 01.55                          | healed                                 |
|        | 200.00 | 20111    |                                                                                                                  |                                               |                                       |                                        |
|        | 205.35 | 219.15   | SILICEOLS SILTSTONE                                                                                              |                                               | 419. p.                               |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
| •      |        |          | -6                                                                                                               |                                               |                                       |                                        |
| ·<br>• | ·      |          | Lott.                                                                                                            | · · · · ·                                     |                                       | ······                                 |
|        |        |          | · · · · · · · · · · · · · · · · · · ·                                                                            |                                               |                                       |                                        |
|        |        |          |                                                                                                                  | ······································        |                                       |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
| :      |        | <u> </u> |                                                                                                                  |                                               |                                       |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
|        |        |          |                                                                                                                  | ·                                             | · · · · · · · · · · · · · · · · · · · |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
| ·      | . ·    |          |                                                                                                                  |                                               |                                       |                                        |
|        |        |          |                                                                                                                  |                                               |                                       | <u> </u>                               |
|        |        | · · ·    |                                                                                                                  |                                               |                                       |                                        |
|        |        | +        |                                                                                                                  |                                               |                                       |                                        |
|        |        |          | and the second |                                               |                                       |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
|        |        | 1        | -                                                                                                                |                                               |                                       |                                        |
|        |        |          | ****                                                                                                             |                                               |                                       |                                        |
|        |        | <u> </u> |                                                                                                                  |                                               |                                       |                                        |
|        | ļ      |          |                                                                                                                  |                                               |                                       |                                        |
|        |        |          |                                                                                                                  |                                               |                                       |                                        |
|        |        |          |                                                                                                                  | <u> </u>                                      |                                       |                                        |
|        |        | +        |                                                                                                                  |                                               |                                       |                                        |
|        | 1      | 1        |                                                                                                                  |                                               |                                       |                                        |

D.D.H. NO. 00-02

Page 1 of \_15

| From                                  | To         | DECRIPTION                                                                                | Sample # | From  | То     | % Çu | Augh | AZ 2/1 |
|---------------------------------------|------------|-------------------------------------------------------------------------------------------|----------|-------|--------|------|------|--------|
| 0.00                                  | 4.57       | CASING / OVERBLEDEN                                                                       |          |       |        |      |      |        |
| L                                     |            |                                                                                           |          |       |        |      |      |        |
| 4.57                                  | 71.25      | MONZONITE                                                                                 | 19126    | 4.57  | 6.57   | •    |      |        |
|                                       |            |                                                                                           | 19127    | 6.57  | 8.57   |      |      |        |
|                                       |            | - mottled , with reddich brown to life grey. Fine to med crained, massive                 | 19128    | 8.57  | 10.57  | •    |      |        |
|                                       |            | - typical intrasive taxture -> Fine grained matrix of K-spord play                        | 19129    | 10.57 | 12.57  |      |      |        |
|                                       |            | Supporting medium grained phenographs of white to ukly greenish green contracted          | 19130    | 12.57 | 14.57  |      |      | ۰.     |
|                                       |            | place AND publicled to subhedrif metic minerals -> hamblinde tootite discretiving         | 19131    | 14 57 | 16.57  |      |      |        |
|                                       | <u>.</u> . | -7 plas planningshi can yers, from 410% to 7 50% locally                                  | 19132    | 16.57 | 1857   |      |      |        |
|                                       |            | MATRIX = 60% Kiper + 30% plug + 10% at 2 + mag + day minutes =100%                        | 19133    | 18.57 | 20.57  |      |      |        |
|                                       |            | THENDERVISTS = 70% place + 20% metics +1- megnelite +1- clay/service =100%                | 11134    | 2057  | 22 50  |      |      |        |
| ļ                                     |            | + MATRY = 65% : PHENOCRESTS = 35% -7 can vary significantly                               | 19135    | 27.50 | 2950   |      |      |        |
|                                       |            | =7 unit is why to moderately megache thread majority of unit                              | 19136    | 24.50 | 26 50  |      |      |        |
|                                       |            | - phenocrysts are util, to moderitely altral -> play to service (metics to chi            | 11137    | 26.50 | 28.50  |      |      |        |
|                                       |            | - Fine ar disconneted clay minurals condent then ant - within matices & plus -> secondary | 19138    | 28.50 | 30.50  | •    |      |        |
|                                       |            | - care can be ecceptuled to a moderate degree suggesting with attin at                    | 19139    | 30.50 | 32.50  |      |      |        |
|                                       |            | fine or feldy pers to correcte the clair, in merels = Stationaliste our local training of | 19140    | 32.50 | 34.50  |      |      |        |
|                                       |            | - matic phenomenals also exhibit ocitial to complete altim to tale                        | 19141    | 34.50 | 36.50  | • •  |      |        |
|                                       |            | of 2190 py as disseminated and of variats + trace app il wainlets                         | 19142    | 36.50 | 38.50  |      |      |        |
|                                       |            | => verning is rare o = 190 at init ( up to 47m ) consisting at gtz;                       | 11 (43   | 38.50 | 40 50  |      |      |        |
|                                       |            | glereast and cash 7 occur & low angles - 0-20" sheph, dipping                             | 19144    | 40.50 | 42.50  | -    |      |        |
|                                       |            | -> local wall rock alty may or may not occur in / local verilets; @ 8:100                 | 19145    | 42.50 | 44.50  |      |      | ·      |
|                                       |            | chlorite altin is well developed as well rock altin up to Ben from verilet                | 19146    | 44 50 | 4:6.50 |      |      |        |
| · · · · · · · · · · · · · · · · · · · |            | at atzymy tahl w/ can con, -> \$7.50 a carb+all ventet u/ den alta                        | 19147    | 46.50 | 48.50  |      |      |        |
|                                       |            | and distriction of magnetite -> @ 26.75 a lew with black clay + plac                      | 19148    | 48.50 | 50.50  |      |      |        |
|                                       |            | tragments + mover does por & con occurs of no hall rock alter                             | 19149    | 50.50 | 52.50  |      |      |        |
|                                       |            |                                                                                           | 14150    | 52.50 | 54.65  |      |      |        |
|                                       |            | -> unit exhibits moderate RQD if mejority of fractives & SO-90° C.A                       | 19151    | 54 65 | 56 85  |      |      |        |

KEME XPLORATION

D.D.H

Page 2 \_\_\_\_of \_\_\_

- S

| From     | To       | DECRIPTION                                                                       | Sample #                                 | From  | To    | SCa          | Au g/t   | Azer     |
|----------|----------|----------------------------------------------------------------------------------|------------------------------------------|-------|-------|--------------|----------|----------|
|          |          | tremainder of description down as cole is received                               | 19152                                    | 56.85 | 58.60 | 37.5         |          |          |
|          | L        |                                                                                  | 19153                                    | 58.60 | 60.50 |              |          |          |
|          |          | - p 49.65 - 7 well developed churcash (Sen wide)                                 | 19154                                    | 60.50 | 62.55 |              |          |          |
|          |          | - B SI-10 = 52:50 -7 well developed cht allin assac. u/ a christmer              | 19155                                    | 62.55 | 64.50 |              |          |          |
|          | ļ        | Fracture sub puellel ul CA > local brecciation                                   | 15156                                    | 64.50 | 66.50 |              |          |          |
|          |          | - \$53,85-54.70 -> which to well developed cles alter of matrix + weak           | 19157                                    | 66.50 | 68.50 |              |          |          |
| L        |          | Sarbonate                                                                        | 19158                                    | 68.50 | 70.05 |              |          |          |
|          |          | - 0 56.60 = 57.27 - carb venter p low encle w/ cht alta                          | 19159                                    | 70.05 | 21.25 |              |          | [        |
| · ·      |          | -@ 57.27 - 71.25 > well developed clay (Keulinzetion) + cerb minutive            | '                                        |       |       |              |          |          |
|          | ·        |                                                                                  |                                          |       |       |              |          | •        |
|          | · ·      | = lower contact @ 50° C.A                                                        |                                          |       | ,     |              |          |          |
|          |          |                                                                                  |                                          |       |       |              |          |          |
| 7 25     | 73 05    | ANDECITE OYKE? 7 (possible yemmant votechine yendlith)                           | 19160                                    | 7125  | 73.05 | e de la comp | at stand | 1. S. 1. |
| <u> </u> | <u> </u> |                                                                                  | <u> </u>                                 | ļ     |       |              |          |          |
| <b> </b> | <u> </u> | - the sr, alk gray, massive                                                      |                                          |       |       |              |          |          |
|          |          | -wkly, magnetic -> wk to noclerately, carbonated throughout                      | · · ·                                    |       |       |              |          |          |
|          |          | - random carb strongers (2-3% of unit)                                           |                                          |       |       |              |          |          |
|          |          | - locally well developed my as wrong etringers to patchy -> <1%                  |                                          |       |       |              |          |          |
|          |          | - local intercepts of monzonite -> 10-20 cm across                               | *<br>*1                                  |       |       |              |          |          |
|          |          | - lower contact @ 50° CA                                                         |                                          |       |       |              |          |          |
|          | ļ        |                                                                                  |                                          |       |       |              |          |          |
| 73.05    | 76.60    | MONZONITE                                                                        | 12161                                    | 73.05 | 75.10 |              |          |          |
|          |          |                                                                                  | 19162                                    | 75,10 | 76.60 |              |          |          |
| <b></b>  | ļ        | - similar to 4.57-71.25                                                          | 1.                                       |       |       |              |          |          |
|          | <b> </b> | - mottlad farture locally due to local silverfication & mixing up local          | · ·                                      |       |       |              |          |          |
|          |          | anderstre referente ( dyke or verylithe?) or where selected doing herewhile alty | ·                                        |       |       |              |          |          |
|          |          | et magnetile along fractures ( however colour is closer to traper altin ???)     | an a |       |       |              |          |          |
|          | -        | - with megnetic                                                                  |                                          |       |       |              |          |          |
|          |          | -lower SO anot unit altic to a bet biotile of magnetite destroyed = esroc        | ·                                        |       |       |              |          |          |
|          | I        | W/ K curbonate => lower contact p 65° C.A                                        |                                          |       |       |              |          | •        |

D.D.H p. 00-02

and the second second

Page 3\_\_\_\_ of \_\_\_\_\_

| From      | To                                      | A STATE OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample #              | From             | To              | %Cu        | Au y/l | Ag g/t |
|-----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------|------------|--------|--------|
| 76.60     | 84.07                                   | Ot + BIOTITE SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19163                 | 76.60            | 78.80           |            |        |        |
|           | ļ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19164                 | 78.80            | 80.00           | ·          |        |        |
|           |                                         | - silve fread siltatione wil were well developent secondary Sighte altin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19165                 | 80.0D            | 81.75           |            |        |        |
|           | ļ                                       | - Fine to very fine an life smoth even to all brown messive mothly ter fare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11166                 | 81.75            | 82.65           |            |        |        |
|           |                                         | - at a massive east exhibits very diffuse even has due to all chloube alto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19167                 | 82.65            | 84.07           |            |        |        |
|           | ļ                                       | - bustite = 40% of whit as bropy bunds and semi pervisive putyles + bunds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                     |                  |                 | · 1        |        |        |
|           |                                         | range from 40° - 80° C.A => some bending of chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                  |                 |            |        |        |
|           |                                         | - unit is why contented due to 45% carbonate stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                  |                 |            |        |        |
|           | · ·                                     | -@ 81.75 - 82.65 -7 an anderita dy the up high to all in in highly clay altide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | •                | · · ·           |            |        |        |
|           |                                         | upper contact of dyke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                  |                 |            | •      |        |
|           |                                         | - 2-320 pyrile occurs themport is mapy patches -> well developed in alyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                  |                 |            |        |        |
| <b>.</b>  |                                         | - lower confact @ 50° CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                  |                 |            |        |        |
| eg 1999 - | 1 11 1 11 11 11 11 11 11 11 11 11 11 11 | the construction of a present the construction and the second second and characterized at the construction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | والارمح محاهد الدرازي | - and server and | مهرستين المحافظ | t dia masa |        |        |
| 9.07      | 84.90                                   | QTZ FELDSPAR PORPHYRY DYKE (QF?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19168                 | 89.07            | 84.90           |            |        |        |
|           |                                         | - English the sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | · ·              |                 |            |        | ~      |
|           |                                         | The stament , every alling will brown metry w/ 20-3070 and while i the play planewith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | ·                |                 |            |        |        |
|           | <u> </u>                                | The land to be the the stand of man so an all morried brown / gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                  | <u>.</u>        |            |        |        |
|           | 1                                       | The to the plant of the the the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                   |                  |                 |            |        |        |
|           |                                         | The second between the back of the second se |                       |                  |                 |            |        |        |
|           | 1                                       | later and to Anor A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                 |            |        |        |
|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                 |            |        |        |
| 4.90      | 90.00                                   | GT3 + BIOTITE SILT STONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19169                 | 9490             | UL CA           |            |        |        |
|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19170                 | 46.50            | 04 40           |            |        |        |
|           |                                         | - similar to 76.60- \$4.07 7 avent at 2 Dr 1. 4.65-759 - Dum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1917-1                | 99.40            | 90.00           |            |        |        |
|           |                                         | highite more localized a local freeting which rep ability the Kithite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · ·             | 00.10            | 10.00           |            |        |        |
| •         |                                         | altin " well developed carbonik ventets of \$8.30 - 68.40 - Tarel a sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - 2 - 12            |                  |                 |            |        | 1.1    |
|           |                                         | as disseminated, patches from the filling hit heat dented in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                  |                 |            |        |        |
|           |                                         | stimies (evenut \$\$30.68 to) =7 3-47. werell => lower entropy of each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                  |                 |            |        |        |
|           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                 |            |        | ł      |

K K C

|           | To             | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample #           | From         | To                                                 | %Ca         | Au g/l                                                                                                           | Ag g/t |
|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|--------|
| 10.00     | 93.05          | ANDESITIC DYKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19172              | 90.00        | 91.50                                              |             |                                                                                                                  |        |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19173              | 91.50        | 93.05                                              |             |                                                                                                                  |        |
|           | ļ              | - fincto moder d'arrenish ern, massive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | - <b>-</b> - |                                                    |             |                                                                                                                  |        |
|           |                | - util, carbonated - non magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - exhibits well developed on @ 91.75 - 92.80 as mostly [mean perullat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | · .          |                                                    |             |                                                                                                                  |        |
|           |                | stringers (7-10% in this intercept) - stringers @ 30° C.A => 3-5% py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | overall -> local hometic altin on Fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - local carb variats & 25-50" C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |              |                                                    |             |                                                                                                                  |        |
|           | · ·            | - local more medium evenese for thre - with parphysicilie & alk brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - lower contact @ 60°C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |              |                                                    |             |                                                                                                                  |        |
|           | ļ              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                  |              |                                                    |             |                                                                                                                  | · · ·  |
| 93.05     | 93. <b>8</b> 6 | OTE + BIDTITE SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19174              | 93.05        | 93.86                                              |             |                                                                                                                  |        |
| set in p  | · · · · ·      | A second by a second with the state of the open of the second | ويعريب والصغر والم |              | e san tanàn ang ang ang ang ang ang ang ang ang an | م برور در ا | and the second |        |
|           |                | - Same as 84.90- 90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - 30% bothe as hispy hands all parallel p 60-70° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - ate is mkh, chloritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | - 2-320 p - also & esser up atter attactors reliberdine / veintets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>           |              |                                                    |             |                                                                                                                  |        |
|           |                | or w/ cert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | lower contracte SO°CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |              |                                                    |             |                                                                                                                  |        |
| 12.6/     | 95 24          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | <u> </u>     |                                                    |             |                                                                                                                  |        |
| 15.86     | 15.40          | DILICIFIED SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19175              | 93 86        | 95.70                                              |             |                                                                                                                  |        |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |              |                                                    |             |                                                                                                                  |        |
|           |                | Similer to above Bur no brutite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |              |                                                    |             | · ·                                                                                                              |        |
|           |                | - Very time or, dull complex, pressive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ļ            |                                                    |             |                                                                                                                  |        |
|           |                | - nigh decree of herbid many tracteres - random angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |              |                                                    |             |                                                                                                                  |        |
|           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  | 1            |                                                    |             |                                                                                                                  | l      |
|           |                | -2-3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |              | <b>├──</b>                                         |             |                                                                                                                  |        |
| · · · · · |                | -2-3 70 py is disseniation & along truitives the chil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( )<br>( )         |              |                                                    | •           |                                                                                                                  |        |
|           |                | - 2-3 70 py is disseniated & along traitives the child                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r                  |              |                                                    |             |                                                                                                                  |        |

 $(1,1,2,\dots,N_{n-1})$ 

D.D.1 p. 00-02

of

 $(a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ 

Page 5

| From         | To            | DECRIPTION States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample #     | From          | Ťo               | %Ca          | Au g/t | Ag g/L   |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------------|--------------|--------|----------|
| 95.70        | 97.00         | BEDDED SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19176        | 95.70         | 97.00            |              |        |          |
|              |               | - Fine st, alt pres to dellareen builded to locally massive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |               |                  |              |        |          |
|              |               | - local card and hade up highly silicous hads remains from very dark gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               |                  |              |        |          |
|              |               | to derk brown (biotile?) or carb rich body also silveous - carb rich bids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | •             |                  | -            |        |          |
|              |               | exhibit py + epidate this stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |               |                  |              |        |          |
|              |               | - bedding planer well defined \$ 65-700 - beds are 5-25 em mide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |               |                  |              |        |          |
|              |               | will lem mile where building within each type at bed - practice bedding to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | <u> </u>      |                  |              |        |          |
|              |               | diffue to distinguish rounging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | · · · ·       |                  |              |        |          |
|              |               | - lower 25 cm silved al week chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | <u> </u>      |                  |              |        |          |
|              |               | - altered "stein" beds chamled be checked for forsterite and/or familite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |               |                  |              | -      |          |
|              |               | - 5270 py as described above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              |        | <u> </u> |
| navarra za n | e i segur com | <ul> <li>The second s</li> </ul> | a card and a | وهدارية ومحجو | the same time of | ng manananga | ·      |          |
| 97.00        | 17.65         | MONJONITE DYKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19177        | 97.00         | 97.65            |              |        |          |
|              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | • • •         |                  |              |        |          |
|              |               | - 65 cm made diffe of monzon to within silicous / citrified sediments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |               |                  |              |        |          |
|              |               | - fine to medge, mottled circularen, messive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              |        |          |
|              |               | - fre ge matrix is att is predominantly what + service + clay, => plus phenomysty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |               |                  |              |        |          |
|              |               | altered to mostly service - metres are dies biblile - fine crained -> metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              |        |          |
|              |               | again exhibit montalitic being coloured day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |               |                  |              |        |          |
|              |               | - truce dos ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •          |               |                  |              |        |          |
|              |               | - minor stringers of carb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            |               |                  |              |        |          |
|              |               | -lower contact p 70"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               |                  |              | •      |          |
|              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | ·             |                  |              |        |          |
| 17.65        | 113.65        | SILICIFIED SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19178        | 97.65         | 99.67            |              |        |          |
|              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19179        | 59.67         | 10115            |              |        |          |
| •            |               | - Fine go to appendice, life smoky every i messive to locilly bedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19180        | 101-15        | 103.15           | <i>0.</i>    | -      |          |
|              |               | - bedded sub-ant occurs from 97.65 to 101.15 =7 thm (0.5-2cm) wellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19141        | 103.15        | 105.00           |              |        |          |
|              |               | beise, class, rich planas backs within highly gilirous massive siltatione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19182        | 105 00        | 106.60           |              |        |          |
|              |               | (silicitized) " beds we 10-15% at subunt : @ So-60° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19163        | 106.60        | 108.40           |              |        |          |

00-02 D.D.Y Ю.

| From              | То         | DECRIPTION                                                                      | Sample #              | Fron    | Ta     | %Ca | Au g/t        | Ag g/l   |
|-------------------|------------|---------------------------------------------------------------------------------|-----------------------|---------|--------|-----|---------------|----------|
|                   |            | - remainder of unit does not exhibit bedding                                    | 19184                 | 108.40  | 110.25 |     |               | -        |
|                   |            | - from 101.15 to bottom at wit ( 113.65 the writ is charge terred by            | 19185                 | 110.25  | 111.10 | ĺ   | 1             |          |
|                   |            | massive emotion grey gots into a maderate to high decires of heated micro       | 19146                 | 114.10  | 112.60 |     |               |          |
|                   |            | Freetwoorp highly random ander - NOT PLANAR => micro fractures are the unit its | 19197                 | 112 60  | 113.65 |     |               |          |
| -                 |            | multied texture due to mfill by slack chlorite carb and must common             |                       |         |        |     |               |          |
|                   |            | dull yollow / beise clay - Keplinite AND local pysite                           |                       |         |        |     |               |          |
| -                 |            | - from 109.45 - 110.70 p steeply depend large freeture of ele, +1. carb         |                       |         |        |     |               | -        |
|                   |            | plus local unconsolidated frequents suggests a fault zone                       |                       |         |        |     |               |          |
|                   |            | - as the wait becomes proving to the long momente day alter of micro            |                       |         |        | -   |               | ·        |
|                   |            | Fractures becomes more developed                                                |                       |         |        |     |               |          |
|                   |            | - provide occurs as disseminited + fourture fill -> one weinter o lan wide      |                       |         |        |     |               |          |
|                   |            | OCCURS @ 109.70                                                                 |                       |         |        |     |               |          |
| a generative<br>A | a strategy | - lover contacto marrielle abertachaip meneralence and and and and and and      | and the second second |         |        |     | a state and a |          |
|                   |            |                                                                                 | -                     |         |        |     |               |          |
| 3.65              | 119.04     | MONZONITE                                                                       | 19188                 | 1+3.65- | 115.80 |     |               |          |
|                   |            |                                                                                 | 19189                 | 115.80  | 117.85 |     |               |          |
|                   |            | - highly altic => CLAT / KAOLINITE                                              | 19190                 | 117.85  | 119.05 |     |               |          |
|                   |            | - u.K. rach throughout the second second second                                 |                       |         | ,      |     |               |          |
|                   |            | - clay to a light beigh colour - best => porphysica texture completely.         |                       |         |        |     |               |          |
|                   |            | overprinted everpt o upper 50 cm                                                |                       |         | • .    |     |               |          |
|                   | <u>.</u>   | - 2-320 m asson up patch gordandar at2                                          |                       |         |        |     |               |          |
|                   |            | - eta, alta esp. intensity Sentened @ 116-15-117.45 W/ local carb               |                       |         |        | •   |               |          |
|                   |            | -lower contact to 50° C.A                                                       |                       | 1       |        |     |               | •        |
|                   |            |                                                                                 |                       |         |        |     |               |          |
| 1.04              | 124.15     | SILICIFIED SILTSTONE                                                            | 19191                 | 117.05  | 120.55 |     |               |          |
|                   | •          |                                                                                 | 19192                 | 120.55  | 122.50 |     |               |          |
|                   |            | - Fine to very time granned mession to bedieved, smally gray                    | 19193                 | 122.50  | 124.5  |     |               | e 1997 e |
|                   |            | - similar to 97.65 - 113.65                                                     |                       |         |        |     |               |          |
|                   |            | - tempart badding is diffuse but well preserved & 50-55° - beds are             |                       |         |        |     |               |          |
|                   |            | 41-7 m 1 de -7 some eight to denne solar and the statt                          |                       |         |        |     |               |          |

. •

. •

ć

.

Page

r de la secolar

| D.D.H     | ý        | <u>00-0Z</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                  | Pa        | ge <u>7</u> - | of       | $\frown$ |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-----------|---------------|----------|----------|
| From      | To       | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample #           | From             | To        | %-Cu          | Au g/l   | A2 2/1   |
|           |          | - moderate more fractures up clan or at 2 or pay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (90.11)<br>(90.11) |                  |           |               |          | 1        |
| [         |          | - 1.2% on throat within furs of dissemptied shell developed to 124.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . e.               |                  | ·····     |               |          | <u> </u> |
| <b>F</b>  |          | - lower contact @ 55°C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                  |           |               |          | 1        |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |           |               |          |          |
| 124.15    | 125.10   | MONTONITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12194              | 124.15           | 125.10    |               |          |          |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |           |               |          |          |
|           |          | T perveries well developed also alter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                  |           |               |          |          |
|           |          | - class also a brad to be accorde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                  | <u> </u>  |               | <u> </u> |          |
|           |          | - retaining the har anneal the art                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | · ·              | · · · · · |               |          |          |
|           |          | · Very light around an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                  |           |               |          | 1.       |
|           |          | - 1% des - att - abridiere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                  | · · ·     |               |          |          |
|           |          | many cash we whete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  |           |               |          | <u> </u> |
| N. N.     | · Sector | - built free least without to work to move at the second the open has a free to be and the second to be a secon | an a margar de     | the second state |           |               |          |          |
|           |          | -lower counter too 70° CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                  |           |               |          |          |
| [         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |           |               |          |          |
| 125.10    | 126.95   | SILICEOUS CILTCTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19195              | 175 10           | 17% 45    |               |          |          |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | +23.10           |           |               |          |          |
|           |          | - Simler to 119.04-12415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                  |           |               |          |          |
|           |          | - bedding well accounted on to a helt of east of CA -7 bedde and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | • •              |           |               |          |          |
|           | 1        | From eles sich to Lubb est m. + + 111 260 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                  |           |               |          |          |
| ·         |          | - 219 - Line La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |           |               | ļ        |          |
|           |          | - low come to So" CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                  |           | ······        |          | <u> </u> |
|           |          | COMP CONTUME OF CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                  | <u> </u>  | · .           |          |          |
| 17/95     | 128.20   | MACH OFFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 124.05           | 2020      |               |          | <u> </u> |
| 120.2     | 100.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19176              | 126.15           | 128.40    |               | ļ        | <u> </u> |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                  |           |               |          |          |
|           | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |           |               |          |          |
| <b></b>   |          | digrenish green time to med gr. negsive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                  |           |               | <b> </b> |          |
| ·         |          | - to prat init up fine 's chit play metary up 30% and dout med or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                  |           |               |          |          |
| · · · · · |          | " dill groutsh green time to mell gri necs ive<br>"t-point init in fine gri chit play metrix in 30% anti-dret mell gr<br>"elots" ar phenomystic of chlantic altered papevene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                  |           |               |          |          |

D.D.J 10. 00-02

Page 8 of

| From       | To            | DECRIPTION                                                                                        | Sample #           | From                         | To                    | %Cu          | Augh | Ág gA  |
|------------|---------------|---------------------------------------------------------------------------------------------------|--------------------|------------------------------|-----------------------|--------------|------|--------|
|            | · · · ·       | - unit exhibits well developed on locally assoc of 2-330 curb structures                          |                    |                              |                       |              |      |        |
|            | ·             | and vemlets -> 1-27. overall                                                                      |                    |                              |                       |              |      |        |
|            |               | - lower contact & SO° C.A                                                                         |                    |                              | -                     |              |      |        |
|            |               |                                                                                                   |                    |                              |                       |              |      |        |
| 128 70     | 159.15        | MONZONITE                                                                                         |                    |                              |                       |              |      | i      |
|            |               | It due to various alto assenblyer the overell wit will be logged as subunk                        | 1                  |                              |                       |              |      |        |
|            |               |                                                                                                   |                    |                              |                       |              |      |        |
|            |               | @ 128.70- 138.50: thought intrusive texture overprimited to very me                               | 19197              | 178.70                       | 130.95                |              |      |        |
| ·          |               | desvers by Kippy teles, t serieste altin > colour is multiled duil                                | 19198              | 130.95                       | 133 20                |              |      | •      |
|            |               | light pink my buft coloured gravish every -> phenocaute of enhadred plag                          | 19199              | 133.20                       | 135.15                |              |      |        |
|            |               | mostly alter to while clay and preside service of fine or brothe as phenory of                    | 19200              | 135.15                       | 137.00                |              |      |        |
|            |               | once throughout of 30 Do of Subite exhibits postalities with to bare                              | 19201              | 137.00                       | 138.50                |              |      |        |
| The states | •••           | colonient of Filosocs related the movement of the C? ) is a more remainder and bearing the second | an kali na kwala n | and the second second second | a di mga mana antara. | ere a source |      | Sec. 1 |
|            |               | - 1-23 of sub unit is rendom of a transver / verilets                                             |                    |                              |                       |              |      |        |
|            |               | - true dis py                                                                                     |                    |                              |                       |              |      |        |
| -          |               | - bottom metric begins to exhibit better preserved pourphyritic tay tax and                       |                    |                              |                       |              |      |        |
|            |               | decrease mattin eight spar - play phonocrusts only locally alter                                  | ·                  |                              |                       |              |      |        |
|            |               | here                                                                                              |                    |                              |                       |              |      |        |
|            |               |                                                                                                   |                    |                              |                       |              |      |        |
|            |               | @ 138.50 - 146.25; very ukly alter to fresh -> dk mothed gray up                                  | 19202              | 138.50                       | 140.30                |              |      |        |
|            | ••            | well preserved parphyentre texture - plag phoneury to white and anticeded and                     | 19203              | 140.30                       | 142.60                |              |      |        |
|            |               | medium gramed - brokite is dominant metic - enhanded and again displays                           | 19204              | 14Z.60                       | 144.35                |              |      |        |
|            |               | at but consistent postalitie alter to light coloured, fibrons chan, hype                          | 19205              | 14435                        | 146 25                |              |      |        |
|            |               | ormeral Dury will marcon hus to matrix - from eich D Keper altin is                               |                    |                              |                       |              |      |        |
| <u></u>    |               | mostly absent = @ 139.30 @ chieply dipping (5° to CA) carb veinlet                                |                    |                              |                       |              |      |        |
|            |               | w/ hematite + servente teley well ruck altin -7 one Kapper patel @ 145.70                         |                    |                              |                       |              |      |        |
|            | · · · · · · · | - tisce diss coy + = 172 diss py                                                                  |                    | • •                          |                       | ·            |      | •      |
|            |               |                                                                                                   |                    |                              |                       |              |      |        |
|            |               | heyt pase                                                                                         |                    |                              |                       |              |      |        |
|            | ·             |                                                                                                   |                    |                              |                       |              |      |        |

D.D.H V.

00-02

Page 7 of

| From             | To        | DECRIPTION                                                                                 | Sample #                         | From       | To         | %Cu         | Au g∕l          | Ag g/l                                                                                                                                                                                                                                                   |
|------------------|-----------|--------------------------------------------------------------------------------------------|----------------------------------|------------|------------|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                |           | @ 14625-14955 ; well developed by topalch, K. spece alter - alter                          | 19206                            | 146.25     | 149.55     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | is very fire generated and abliterates foregrants interspective lawsphinks texture readous |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | is dull unit formed -> local whose at early +1- et 2 airer > supplied of are               |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | trace dis pr 11 20 time co. Core crain p 149.20 " ground core locally                      | · ·                              |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           |                                                                                            | 1                                |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | @ 149.55 - 151.30: Fresh to very with allier (elegismeter) - purphysiche / placene         | 19207                            | 149.55     | 151.30     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | + eviture well preserved 7 monor gtances verifiete are planar a verious engles and         |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | are 4 lem mode of metric also exhibits very with dell pink to spen alter of 4419.          | 2                                |            | ,          |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | diss eps, noted in broken fair of care                                                     |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           |                                                                                            |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | @ 15130-152.75, substantical me, m clay + serve to altim plus with                         | 19208                            | 151.30     | 152.75     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | patuh, F-sper eltin (not as strong as 146.25-1419.55) -> clay allin                        |                                  |            |            |             | _               |                                                                                                                                                                                                                                                          |
| Reference in the | alan na s | Mercesses downhote - local settime calcite in vuge ? no cut white decerved                 | مرور مرجع <sub>ال</sub> الي مرجع | e santa an | t shtere a | المرج معركم | ر در و د مده از | ورج وفاقوها                                                                                                                                                                                                                                              |
|                  |           |                                                                                            |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | @ 152.75 - 154.60: highly seriestized mutrix exhibits a very light ground                  | 19209                            | 152.75     | 154.60     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | seen colour - play phenomysts diffuse to absent due to servertreation - brokke             |                                  |            |            |             | -               |                                                                                                                                                                                                                                                          |
|                  |           | wesible then most at submit -7 submit exhibits highly random venility of ghet              |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
| ·                |           | carb up well developed singous black chloritel fullin and very fine or service             |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | well such a this alter completely averagints intrusive tay have including chime            |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | of biofile -> wellow kells exhibits patches my repy & 4190 at submit                       |                                  |            |            | 11.4        |                 |                                                                                                                                                                                                                                                          |
|                  |           |                                                                                            |                                  |            |            |             | I               |                                                                                                                                                                                                                                                          |
|                  |           | @ 154.60 - 156.05: south metry - metrice / population ter ture dilling                     | (1210                            | 154.60     | 156-05     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | but evident thement ? this planer at stringers & 60-60° CA exhibit                         |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | ut to moderate Keper will sock altin - play phenocrysts muchly altic to                    |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | scould on they -> trace dies py                                                            |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           |                                                                                            |                                  |            |            |             |                 | _                                                                                                                                                                                                                                                        |
|                  |           | @ 156.05 - 159.15, pervesive clay torriente alter throughout - Subite                      | 14211                            | 156.05     | 157.80     |             | • • • •         | 1997 - 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
|                  |           | present only locally of utily davidged patchy K-spar's taining -> the                      | 19212                            | 153.80     | 159.15     |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | vendithe of viny att not sultatione falicified) o 15 and 40 cm hordy (buth                 |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |
|                  |           | within sample "19211) -> possibly of vine but doubtful due to bunding within               |                                  |            |            |             |                 |                                                                                                                                                                                                                                                          |

1 and

KC 00-02

D.D.Y

Page <u>10</u> of \_\_\_\_\_

Sec. Sugar Sec.

| From           | To       | DECRIPTION                                                                                                       | Sample #                | Prom            | To       | %Cu     | Au g/t | Ag g/t   |
|----------------|----------|------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|----------|---------|--------|----------|
|                | ,        | att and paucity at significant wallrock alton a provinal to lower                                                |                         |                 |          |         |        |          |
|                |          | contect coarse sub-encular fragments of ata palen across also occur                                              |                         |                 |          |         |        |          |
|                |          | - sclohides are very sever except within at 2 intercepts where cours \$190                                       | ·                       |                 |          |         |        |          |
|                |          | nithin atz => lower contact 80°                                                                                  |                         |                 |          |         |        |          |
|                |          |                                                                                                                  |                         |                 | •        |         |        |          |
| 159.15 1       | 59.95    | SILICIFIED SILTSTONE                                                                                             | 19213                   | 154.15          | 159.95   |         |        |          |
|                |          |                                                                                                                  |                         |                 |          |         |        |          |
| _              |          | - very fine or, defender, oran, massive al very nearly diffuse local banding                                     |                         |                 |          |         |        |          |
|                |          | - complete overprint at protality is secondary 9,72                                                              |                         |                 |          |         |        | 1        |
|                |          | - maderate decree of healed microfractures - filled by carb and to a ferrer                                      |                         |                 |          |         |        |          |
|                |          | degree pyrite - Picpay observed on brother fair of core of us = 190 pyreas                                       |                         | •               |          |         | -      |          |
|                |          | -lower contact 0 60°                                                                                             |                         |                 |          |         |        |          |
| and the second | ran Kang | and the second of the second burner of the second | and also represented as | station and the | Sec. 18  |         |        |          |
| 159.95 1       | 62.55    | MAAL DYKE                                                                                                        | 19214                   | 159.95          | 162.55   |         |        | l        |
|                |          |                                                                                                                  |                         |                 |          |         |        |          |
|                | ,        | - olt greenish gray fine granact massive                                                                         |                         |                 |          |         |        | l        |
|                |          | - util, carbonated then out                                                                                      | 1                       |                 | •        |         |        |          |
|                |          | - locally well developed prote essential all cart whill and verilets 232                                         |                         |                 |          |         | İ      | l        |
| •              |          | - chill mersing Q both contacts -> esp well developed Q lower contact ->                                         |                         |                 |          |         |        |          |
|                |          | anhedred to save exhedred augite phonomysts in chill musin & lower content                                       |                         |                 |          |         |        |          |
|                |          |                                                                                                                  |                         |                 |          |         |        |          |
| 162.55 1       | 6.55     | SILICEOLS MUDSTONE                                                                                               | 19215                   | 162.55          | 164.40   |         |        |          |
|                |          |                                                                                                                  | 19216                   | 164 40          | 166.55   |         |        |          |
|                |          | - very fine gry mottled black Iberge, messive                                                                    |                         |                 |          |         |        |          |
|                |          | - highly enlicenes mindstone w/ patchy moderately to well developed eler,                                        |                         |                 |          |         |        |          |
| · · · ·        |          | altin 7 also exhibits 'calmon' coloured patchy altin locally associated if                                       |                         |                 |          | ,       |        |          |
|                |          | secondary at a flooding - second phese of a to veinlate cross cuts 'salmon'                                      |                         |                 |          | • • • • | · ·    | ļ        |
|                |          | atta - local carb strongers                                                                                      |                         |                 |          | · ·     |        |          |
|                |          | - 2120 py essor il more common heise colonied alon, alto and locally as                                          |                         |                 | <u> </u> |         |        | <u> </u> |
|                |          | Franchare F.11                                                                                                   | <u> </u>                | ,               |          | · ·     |        | · ·      |

D.D.

| Z | · | 4. | <br>204              | $\mathcal{L}_{i}^{n}$ |  |
|---|---|----|----------------------|-----------------------|--|
|   |   |    | <br>A REAL PROPERTY. | <br>                  |  |

| From      | To       |                                                                                  | Sample #       | From                  | To         | %Çu                                      | Aug/t               | Ag gA     |
|-----------|----------|----------------------------------------------------------------------------------|----------------|-----------------------|------------|------------------------------------------|---------------------|-----------|
|           |          | - \$ 164.70 - 165.00 - an intersety ela cittal movembe dute ut ut carbo          | • • •          | 1.                    | · ·        |                                          |                     |           |
|           |          | contents are 10-20° C.A -> this steep to dispuns                                 |                |                       | ·. ·.      |                                          |                     |           |
|           |          |                                                                                  |                |                       | · .        |                                          | 1                   |           |
|           |          | -loner contact of unit @ 60° CA                                                  |                |                       |            |                                          |                     |           |
| 66.55     | 167.70   | GRANDOLOPITE DYKE                                                                | 19217          | 166.55                | 167.70     |                                          |                     | <u> </u>  |
|           |          |                                                                                  |                | 1                     | 1          |                                          |                     |           |
|           |          | - messare, nottled grey, light gravish green it wink fine to coarse on           |                |                       |            |                                          |                     |           |
| _         |          | - source to medium warred crustels of mosth, whe and minor trasper PLLS          | •              |                       |            | ٠.                                       |                     |           |
|           |          | bighte within ate such metric -> textbook intrusive texture                      | · ·            |                       | · ·        |                                          |                     |           |
|           |          | - touce chies py                                                                 |                |                       |            |                                          |                     |           |
|           |          | -lower contaction 'L' shaped to half of contact p for the half of 5° C.A         |                |                       |            |                                          |                     |           |
| • • • • • | ي م العر | and so moderately clay alted concernance and a concernance of moderation and     | a waarta amiya | · · · · · · · · · · · |            | e e e se s | a series and series | a sur     |
| . 7       |          |                                                                                  |                |                       |            |                                          |                     |           |
| 67.70     | 168.90   | SILICEOLS MLDSTONE                                                               | 19218          | 167.70                | 168.90     |                                          |                     | <u> </u>  |
|           |          | - same as 162.55 - 166.555                                                       |                |                       | <u>.  </u> |                                          |                     |           |
|           |          | - diffuse bedding planes @ 50-55" C.A = no selmon coloured altin                 |                | 1                     |            |                                          |                     | <u> </u>  |
|           |          | - lower contact p gradutional                                                    |                |                       | 1          |                                          |                     |           |
|           |          |                                                                                  |                |                       | 1          |                                          | · ·                 | [         |
| 68.90     | 171.15   | SILICIFIED SILTSIONE (?> (- completely overprinted make then ????)               | 19219          | 168.90                | 1771.15    |                                          |                     |           |
|           |          |                                                                                  |                |                       |            |                                          |                     | <u> </u>  |
|           |          | - very time evalued, messelve => highly motified unit                            |                | ŀ                     |            |                                          |                     |           |
|           |          | - olk smoth any ophenolic of a w/ patch, to some pervasive laise / dura coloured | <u> </u>       |                       |            |                                          |                     | <u> </u>  |
|           |          | clay altin - clay ellin is also moderately siliceous                             | · .            | ļ                     |            |                                          | 1                   | <u> </u>  |
|           |          | - protel. the tabelly, abiliterated                                              |                | <u> </u>              |            |                                          | <u> </u>            | <u> </u>  |
|           | •        | - moderate degree at rendomly oriented healed marrotractives - up gtz            |                |                       |            |                                          | [ · · ·             | <u> `</u> |
|           |          |                                                                                  | 1              | 1                     | 1          | £                                        | 1                   | 1         |
|           |          | - up to 17, diss pry                                                             |                |                       |            |                                          |                     | <u> </u>  |

Page //

D.D.H

То

171.15 173.00 MAFIC FLOW

From

 $(a_{i},\ldots,a_{i}) \in \mathbb{R}^{n}$ 

ぞん 00-02

- dkern

- no usuble sulphiles

Page 1Z of Sample # From %Cu To · Au g/L Ag g/L 10

المفار وسنا بالمراج

|        |        | - lower contact craditional                                                           | 5.               |             |   | 1                                             | t –      |          |  |
|--------|--------|---------------------------------------------------------------------------------------|------------------|-------------|---|-----------------------------------------------|----------|----------|--|
| i (    |        |                                                                                       |                  |             |   |                                               | t        |          |  |
| 73.00  | 174.80 | SILICIFIED SILTSTONE (overprinted flow ???)                                           | :                |             |   |                                               | 1        |          |  |
|        |        |                                                                                       |                  | • • •       |   |                                               | 1        | · · · ·  |  |
|        |        | - exact same as 168.40 - 171.15                                                       |                  |             |   | 1                                             | 1        |          |  |
|        |        | - lower contest crackfronal                                                           | •                |             |   |                                               | 1        |          |  |
|        |        |                                                                                       |                  |             |   |                                               |          |          |  |
| 174-80 | 180.45 | MATIC VOLCANICS TUFFICE MORE TO A MENTON AND AND AND AND AND AND AND AND AND AN       | يمريعيني ومنجدان | en andere   |   |                                               | an salar | . Carro  |  |
|        | · · ·  |                                                                                       |                  |             |   |                                               |          |          |  |
|        | ļ      | - at gray / black, Fine gr. nauser to with bundled                                    |                  |             |   | · .                                           |          |          |  |
| •      |        | - very diffuse banding o 1-3 cm vide al lovel intercepts of more messive              |                  |             |   |                                               |          |          |  |
| •      |        | texture > bending represents pourly formed to Staceous bedy > bending 0               | х                | 1           |   |                                               |          |          |  |
|        |        | 70-90° CA -> bunds are commost, line shaped on on scale                               |                  |             |   |                                               |          |          |  |
|        |        | - hunt while to 3-4% gir and girland stringers o highly variable                      |                  |             | · |                                               |          |          |  |
|        | ļ      | random orientation & storagers locally exhibit with chlorite altin                    |                  |             |   |                                               |          |          |  |
|        | ļ      | - 21% py as disseminated                                                              |                  |             |   |                                               |          |          |  |
|        |        | - lower contact sharp @ 55°CA - clair alted                                           |                  |             |   |                                               |          |          |  |
|        |        |                                                                                       | · ·              | · · · · · · |   | <u> </u>                                      |          |          |  |
| 90.45  | 182.08 | SILTSTONE - ALT'D                                                                     | 4 4 4            |             | · |                                               |          |          |  |
|        |        |                                                                                       | · · ·            |             |   | <u>                                      </u> | <u> </u> |          |  |
|        |        | - time or messive; matthad lacturity gray adult greenish gray colour                  | 9                |             |   | <u> </u>                                      |          |          |  |
|        |        | - prototilh texture completely overprinted by patchy gt + + chi +1- clay              | ** * * *         |             |   | . ·                                           |          |          |  |
|        | ļ      | altin : Behl = 70-2 => dilties fragmentel / breessa Leylusa province to later contest |                  |             |   | ļ                                             | <u> </u> |          |  |
|        | [      | - trace dus py                                                                        |                  |             |   | ļ                                             | ·        | <u> </u> |  |
|        | · ·    | T lowe conful chairs of 40°CA                                                         |                  | 1 .         |   | 1                                             |          |          |  |

DECRIPTION

1.1.1

black fine an massive

- y-cathing stringers at fy and carb

D.D.H

00-0Z

÷ 1

| From     | То          | DECRIPTION                                                                                                                                                                                 | Sample #               | From       | Te             | %Cu           | Au g/l         | AEEA                                  |
|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|----------------|---------------|----------------|---------------------------------------|
| 182.08   | 184.75      | MONJONITE OFFE                                                                                                                                                                             | 19220                  | 182.08     | 184.75         |               |                |                                       |
|          |             |                                                                                                                                                                                            | · ·                    |            |                |               |                | {                                     |
|          |             | - completely, alter to clay, -> crambles at elicity pressure at hemmer                                                                                                                     |                        |            |                |               |                | · · ·                                 |
|          |             | - histile exists completely to chil                                                                                                                                                        |                        |            |                |               |                |                                       |
|          |             | - n to pervesive to per staining through                                                                                                                                                   |                        |            |                |               |                |                                       |
|          |             | - contains one venality of lower volcanics                                                                                                                                                 | н.<br>1                |            | · ·            |               |                |                                       |
|          |             | -lower 80 cm shows less interse clar, altin wil bruthte present                                                                                                                            |                        |            |                |               |                |                                       |
|          |             | - etr diss magnetite                                                                                                                                                                       | · .                    |            |                |               |                |                                       |
|          |             | - no visible sulphides                                                                                                                                                                     |                        | · · ·      |                | ·             |                |                                       |
|          |             | - lower contacto 80°CA                                                                                                                                                                     |                        |            |                |               |                | •                                     |
| <u>_</u> |             |                                                                                                                                                                                            |                        |            |                |               |                |                                       |
| 184.75   | 193.60      | MAFIC VOLCANICS                                                                                                                                                                            | 15221                  | 190.50     | 193.10         |               |                | · · · ·                               |
| 1        | a ser a ser | n dia provide and a second a second when an an arrange and arrange and an arrange and arrange and a second provide a second and a second second and a second second second second second s | tera posta con potente | in Surgers | المراجع ومراجع | and the space | 1. A. A. 1. A. |                                       |
|          |             | - top 4 metres same as 174.80 - 180.45                                                                                                                                                     | •                      |            |                |               |                |                                       |
|          |             | - remainder at which is dark greenish grey and massive thempet representing                                                                                                                |                        |            |                |               |                |                                       |
|          |             | a flow so while chloritic                                                                                                                                                                  |                        |            |                |               |                |                                       |
|          |             | - 270 at with is card very late Q various / random privatetions the with                                                                                                                   |                        |            |                |               |                |                                       |
|          |             | developed hereitie altin                                                                                                                                                                   |                        | ·          |                |               |                |                                       |
|          |             | - weathy well developed by esson of carb or as for fill and disc of 719, ownell                                                                                                            |                        | ļ          |                |               |                |                                       |
|          |             | -lower contact of clay altor @ 40° C.A                                                                                                                                                     |                        | ·          |                |               |                |                                       |
|          | -           |                                                                                                                                                                                            |                        |            |                |               |                |                                       |
| 193.60   | 200.30      | MAFIC VOLCANICS                                                                                                                                                                            |                        |            |                |               |                |                                       |
|          |             |                                                                                                                                                                                            |                        | ļ          |                |               |                |                                       |
|          |             | - different from above due to semi pervesive altim                                                                                                                                         |                        |            |                |               |                |                                       |
|          |             | dkerey /black to dell light evenich every -> multiled texture locally                                                                                                                      |                        | <b> </b>   |                |               |                | · · · · · · · · · · · · · · · · · · · |
|          |             | - local but very well developed clay, eltim zones on to 50 en nide                                                                                                                         |                        |            |                |               |                |                                       |
|          |             | The are alter zones are usually driving the for 40-50° C.A and                                                                                                                             |                        | <u>  .</u> |                |               |                |                                       |
|          |             | Lenter carb + chi T/ pr, T carb ventits & render orientation occur                                                                                                                         |                        |            |                |               |                | [                                     |
|          |             | Throughour W = 107+ of whit = +100 py averall => local breaction of                                                                                                                        | -                      |            | <u> </u>       |               |                |                                       |
|          |             | wall rock within contraints - gize cars visuality @ 199.40 w/ associated                                                                                                                   | l                      | <u> </u>   |                |               |                |                                       |

Page <u>14</u> of 1

| From       | То       | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample I              | From          | To                      | %Cu              | Augh     | Az s/t          | ]                                                                                                               |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-------------------------|------------------|----------|-----------------|-----------------------------------------------------------------------------------------------------------------|
|            |          | petch alreitication of well rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |               |                         | <u> </u>         | <u> </u> |                 |                                                                                                                 |
|            |          | -lower contact sharp @ 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                     |               |                         |                  | •        |                 | 1                                                                                                               |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | 1                       |                  | -        |                 | 1                                                                                                               |
| 200.30     | 202.25   | DIORITE DYKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |               |                         |                  |          |                 | 1                                                                                                               |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1.            |                         |                  |          |                 |                                                                                                                 |
|            |          | - mottled litegray / este overn. Fine to mediamer, margive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1             |                         |                  |          |                 |                                                                                                                 |
|            |          | - life grey due to propertie clay ascribe altim of plas in metrix and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |               |                         |                  |          |                 | 1 .                                                                                                             |
| •          |          | phenocrysts -> metre phonocrysts to chil => patiche, mottled green from porvesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | [             |                         |                  |          |                 | 1                                                                                                               |
|            |          | secondary overgranting by chlorite ( possibly make vendille but doubt held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |               |                         | 1                |          |                 |                                                                                                                 |
|            |          | - no usible sulphides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ľ                     | 1             |                         |                  |          |                 |                                                                                                                 |
|            |          | -loner contact & 40° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [                     |               |                         |                  |          | -               | · ·                                                                                                             |
| . <u>-</u> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                         |                  |          |                 | · ·                                                                                                             |
| 202.25     | 20260    | FAULT ? 2 ONE / 6 DUGE COMPANY RECEIPTING CONTRACTOR DE MONTANTE CONTRACTOR DE LA CONTRACTO | and the second second | بر د دهمورد . | e i sur estructures est | 1.00 · · · · · · | det an d | • * • * • • • • | and the second secon |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | 1                       |                  |          |                 |                                                                                                                 |
|            |          | - oriended p 40° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |               |                         |                  |          |                 | į .                                                                                                             |
|            | <br>     | - cle, tehl tears + sub encolor rock freements ut local bends (10 cm) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |               |                         |                  |          |                 | í .                                                                                                             |
|            | ļ        | less altered volcanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | •             |                         |                  |          |                 |                                                                                                                 |
|            | L        | -louir contect of 40° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |               |                         |                  |          |                 | 1                                                                                                               |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                         |                  |          |                 | 1                                                                                                               |
| 202.60     | 20535    | FALLT (??) BRECCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19222                 | 202.60        | 203.85                  |                  |          |                 |                                                                                                                 |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19223                 | 203.45        | 205.35                  | <u> </u> .       |          | -               | 1                                                                                                               |
|            |          | - clast supported -> coarse angular-sul-angular to sub rounded tragments of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |                         |                  |          |                 | 1                                                                                                               |
|            |          | predominantly sphericlic gtz and to a much lasser degree softer dell brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |               |                         |                  |          |                 | ]                                                                                                               |
|            |          | sediment fragments =760% at wat -7 metric is very fine or, maturtaly estt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |               |                         |                  |          |                 | ] .                                                                                                             |
|            | 1        | and slightly chloritic -7 minor carb as mfill -> al 90 py as discommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·.                    |               |                         |                  |          |                 | ] .                                                                                                             |
|            |          | clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |               |                         |                  |          |                 | ]                                                                                                               |
| ···· ·     |          | - lower contact sharp @ 50° CA-> cross cuts bedding @ angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |                         |                  |          |                 | • • • •                                                                                                         |
|            | ļ        | T 44 4 46 4 AVT 11 11 11 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                     | •             |                         |                  |          |                 | ) · · · ·                                                                                                       |
|            | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                         |                  |          |                 |                                                                                                                 |
|            | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                         |                  |          |                 |                                                                                                                 |

D.D.1

KC 00-02
• • •

| as 35 27.15     Substants     19224     272.80     214.65       * Table of governels of block hadded     * Table of governels of block hadded     * Table of governels of block hadded       * Table of governels of block hadded     * Table of governels of block hadded     * Table of governels of block hadded       * Table of governels of block hadded     * Table of governels of block hadded     * Table of governels of block hadded       * Table of governels of block hadded     * Table of governels of block hadded     * Table of governels of block hadded       * 0.2 70 - 2111 87 > 5 stress hadden of the governels     * Table of governels     * Table of governels       * 6 10% governel     * Table of governels     * Table of governels       * 6 10% governels     * Table of governels     * Table of governels       * 7 0.0     * Table of governels     * Table of governels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | From To                               | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample #                              | From                         | To                  | \$Cu              | Augh       | Ag g/1   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|---------------------|-------------------|------------|----------|
| - Since, each, match bollocally badded<br>- baddees germely, the base medicine of the wede 20 diptores (2, 2)<br>- contains badd on some (and be in and matching of the 2)<br>- contains and on the badded in a second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>25.35 Z19.15</u>                   | SILICEORS SILT STONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19224                                 | 212.80                       | 214.65              | ·                 |            |          |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
| A before generally dis bener medicus 2 (1) - 4 (n mids 2 d g) + 50 (2 + 2)     Kilcen stitche, beg some (med (un k k) h) and methe     - 272 70 - 21 + 35 - 2 she first beg strong     - constrained and beg some (un k k) h and the set of the set o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | -timesr, grey, massive to locally bedded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | ļ                            |                     |                   |            |          |
| Alleres statistics for solution of the city of the solution of the solution of the city of the solution of the city of the solution o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ····                                  | - beds are generally dk brown mudaline - 21 - 4 in mide -> p 40-50°CA ->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · |                              |                     | ļ                 |            |          |
| - Statistics of the first of the first of the second of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · | Silicious siltation beds on bider (up to Im) and musike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                              |                     |                   | ļ          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | PCIC 40 - 2(7.83 -7 Silicitication w/ which they accurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·<br> -                               |                              |                     |                   | <u> </u>   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | - 210 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>                                  | ·                            |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   | <u> </u>   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   | +          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $\mathcal{V}_{\mathcal{O}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 1                            |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1/ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              | 1                   |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s an an constant                      | and a construction of the provide structure of the second structure of the structure of the second structure of t | t en la statue de la second           |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              | +                   | }                 |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   | 1          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <u>C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                              | 1                   | · · · · · · · · · |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     |                              |                     |                   | · ·        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                     |                              | <u> </u>            |                   | <u></u>    |          |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     |                              |                     |                   |            |          |
| Image: Second state sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     | •                 | ļ <u>-</u> |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            | ·        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              | <u> </u>            |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     | •                 |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | · ,                          |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            | · ·      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     | ·                            |                     | · · ·             | I          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              | · .                 |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ·                            |                     |                   |            | • • •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            | ۰.<br>۱۰ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | in in an an in indiana ana ang kana kana kana kana mana terbahanan periodo na kana kana sa sa sa sa sa sa sa s<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an an an that an art                  | · · · <u>·</u> · · · · · · · | e war general an an | with the st       | 1.11       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   | •          | •••      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                     |                              | N                   |                   | •          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                     |                   |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | •                            |                     | 1.1               |            | 1 N N N  |

## KEMESS CENTRE DRILL HOLE ASSAY RESULTS FOR KC-00-02

| Hole ID  | Sam ID                 | From  | To    | Width | Cu_ppm | Au_ppb | Ag_ppm |
|----------|------------------------|-------|-------|-------|--------|--------|--------|
| KC-00-02 | 19126                  | 4.57  | 6.57  | 2.00  | 265    | 2.5    | 0.2    |
| KC-00-02 | 19127                  | 6.57  | 8.57  | 2.00  | 470    | 15     | 0.8    |
| KC-00-02 | 19128                  | 8.57  | 10.57 | 2.00  | 233    | 2.5    | 0.2    |
| KC-00-02 | 19129                  | 10.57 | 12.57 | 2.00  | 104    | 2.5    | 0.1    |
| KC-00-02 | 19130                  | 12.57 | 14.57 | 2.00  | 151    | 2.5    | 0.1    |
| KC-00-02 | 19131                  | 14.57 | 16.57 | 2.00  | 151    | 2.5    | 0.1    |
| KC-00-02 | 19132                  | 16.57 | 18.57 | 2.00  | 86     | 2.5    | 0.1    |
| KC-00-02 | 19133                  | 18.57 | 20.57 | 2.00  | 66     | 10     | 0.1    |
| KC-00-02 | 19134                  | 20.57 | 22.50 | 1.93  | 240    | 5      | 0.2    |
| KC-00-02 | 19135                  | 22.50 | 24.50 | 2.00  | 84     | 2.5    | 0.2    |
| KC-00-02 | 19136                  | 24.50 | 26.50 | 2.00  | 57     | 2.5    | 0.1    |
| KC-00-02 | 19137                  | 26.50 | 28.50 | 2.00  | 118    | 2.5    | 0.1    |
| KC-00-02 | 19138                  | 28.50 | 30.50 | 2.00  | 147    | 2.5    | 0.1    |
| KC-00-02 | 19139                  | 30.50 | 32.50 | 2.00  | 105    | 2.5    | 0.1    |
| KC-00-02 | 19140                  | 32.50 | 34.50 | 2.00  | 62     | 2.5    | 0.1    |
| KC-00-02 | 19141                  | 34.50 | 36.50 | 2.00  | 36     | 2.5    | 0.1    |
| KC-00-02 | 19142                  | 36.50 | 38.50 | 2.00  | 21     | 2.5    | 0.1    |
| KC-00-02 | 19143                  | 38.50 | 40.50 | 2.00  | 25     | 2.5    | 0.1    |
| KC-00-02 | 19144                  | 40.50 | 42.50 | 2.00  | 14     | 2.5    | 0.1    |
| KC-00-02 | 19145                  | 42.50 | 44.50 | 2.00  | 14     | 2.5    | 0.1    |
| KC-00-02 | 19146                  | 44.50 | 46.50 | 2.00  | 12     | 2.5    | 0.1    |
| KC-00-02 | 19147                  | 46.50 | 48.50 | 2.00  | 31     | 2.5    | 0.1    |
| KC-00-02 | 19148                  | 48.50 | 50.50 | 2.00  | 12     | 2.5    | 0.1    |
| KC-00-02 | 19149                  | 50.50 | 52.50 | 2.00  | 12     | 2.5    | 0.1    |
| KC-00-02 | 19150                  | 52.50 | 54.65 | 2.15  | 30     | 2.5    | 0.1    |
| KC-00-02 | 19151                  | 54 65 | 56.85 | 2.20  | 12     | 2.5    | 0.1    |
| KC-00-02 | 19152                  | 56.85 | 58.60 | 1.75  | 9      | 2.5    | 0.1    |
| KC-00-02 | 19153                  | 58.60 | 60.50 | 1.90  | 11     | 2.5    | 0.1    |
| KC-00-02 | 19154                  | 60.50 | 62.55 | 2.05  | 64     | 2.5    | 0.1    |
| KC-00-02 | 19155                  | 62.55 | 64.50 | 1.95  | 67     | 2.5    | 0.1    |
| KC-00-02 | 19156                  | 64.50 | 66.50 | 2.00  | 85     | 2.5    | 0.1    |
| KC-00-02 | 19157                  | 66.50 | 68.50 | 2.00  | 35     | 2.5    | 0.1    |
| KC-00-02 | 19158                  | 68.50 | 70.05 | 1.55  | 74     | 2.5    | 0.1    |
| KC-00-02 | 19159                  | 70.05 | 71.25 | 1.20  | 34     | 2.5    | 0.1    |
| KC-00-02 | $-\frac{10160}{19160}$ | 71.25 | 73.05 | 1.80  | 487    | 2.5    | 0.2    |
| KC-00-02 | 19161                  | 73.05 | 75.10 | 2.05  | 189    | 2.5    | 0.1    |
| KC-00-02 | 19162                  | 75.10 | 76.60 | 1.50  | 25     | 2.5    | 0.1    |
| KC-00-02 | 19163                  | 76.60 | 78.80 | 2.20  | 73     | 2.5    | 0.1    |
| KC-00-02 | 19164                  | 78.80 | 80.00 | 1.20  | 68     | 2.5    | 0.1    |
| KC-00-02 | 19165                  | 80.00 | 81.75 | 1.75  | 66     | 2.5    | 0.1    |
| KC-00-02 | 19166                  | 81.75 | 82.65 | 0.90  | 60     | 2.5    | 0.1    |
| KC-00-02 | 19167                  | 82.65 | 84.07 | 1.42  | 63     | 2.5    | 0.1    |
| KC-00-02 | 19168                  | 84.07 | 84.90 | 0.83  | 67     | 2.5    | 0.1    |
| KC-00-02 | 19169                  | 84.90 | 86.50 | 1.60  | 91     | 2.5    | 0.1    |
| KC-00-02 | 19170                  | 86.50 | 88.40 | 1.90  | 45     | 2.5    | 0.1    |
| KC-00-02 | 19171                  | 88.40 | 90.00 | 1.60  | 64     | 2.5    | 0.1    |
| KC-00-02 | 19172                  | 90.00 | 91.50 | 1.50  | 102    | 2.5    | 0.2    |
| KC-00-02 | 19173                  | 91.50 | 93.05 | 1.55  | 217    | 2.5    | 0.2    |
| KC-00-02 | 19174                  | 93.05 | 93.86 | 0.81  | 205    | 10     | 0.2    |
| KC-00-02 | 19175                  | 93.86 | 95.70 | 1.84  | 137    | 2.5    | 0.2    |
| KC-00-02 | 19176                  | 95.70 | 97.00 | 1.30  | 368    | 10     | 0.2    |

## KEMESS CENTRE DRILL HOLE ASSAY RESULTS FOR KC-00-02

| Hole ID  | Sam ID            | From                     | То                       | Width                | Cu_ppm             | Au_ppb            | Ag_ppm             |
|----------|-------------------|--------------------------|--------------------------|----------------------|--------------------|-------------------|--------------------|
| KC-00-02 | 19177             | 97.00                    | 97.65                    | 0.65                 | 37                 | 2.5               | 0.1                |
| KC-00-02 | 19178             | 97.65                    | 99.67                    | 2.02                 | 211                | 2.5               | 0.1                |
| KC-00-02 | 19179             | 99.67                    | 101.15                   | 1.48                 | 137                | 2.5               | 0.1                |
| KC-00-02 | 19180             | 101.15                   | 103.15                   | 2.00                 | 81                 | 2.5               | 0.2                |
| KC-00-02 | 19181             | 103.15                   | 105.00                   | 1.85                 | 59                 | 5                 | 0.2                |
| KC-00-02 | 19182             | 105.00                   | 106.60                   | 1.60                 | 47                 | 2.5               | 0.2                |
| KC-00-02 | 19183             | 106.60                   | 108.40                   | 1.80                 | 51                 | 2.5               | 0.1                |
| KC-00-02 | 19184             | 108.40                   | 110.25                   | 1.85                 | <u>    175    </u> | 5                 | 0.4                |
| KC-00-02 | 19185             | 110.25                   | 111.10                   | 0.85                 | 300                | 45                | 0.1                |
| KC-00-02 | 19186             | 111.10                   | 112.60                   | 1.50                 | 92                 | 2.5               | 0.1                |
| KC-00-02 | 19187             | 112.60                   | 113.65                   | 1.05                 | 181                | 2.5               |                    |
| KC-00-02 | 19188             | 113.65                   | 115.80                   | 2.15                 | 175                | 10                | 0.2                |
| KC-00-02 | 19189             | 115.80                   | 117.85                   | 2.05                 | 332                | 10                | 0.4                |
| KC-00-02 | 19190             | 117.85                   | 119.05                   | 1.20                 | 300                | 15                | 0.6                |
| KC-00-02 | 19191             | 119.05                   | 120.55                   | 1.50                 | 112                | 15                | 0.1                |
| KC-00-02 | 19192             | 120.55                   | 122.50                   | 1.95                 | 65                 | 5                 | 0.2                |
| KC-00-02 | 19193             | 122.50                   | 124.15                   | 1.65                 | 100                | 5                 | 0.4                |
| KC-00-02 | 19194             | 124.15                   | 125.10                   | 0.95                 | 182                | 2.5               | 0.1                |
| KC-00-02 | 19195             | 125.10                   | 126.95                   | 1.85                 | 125                | 2.5               | 0.1                |
| KC-00-02 | 19196             | 126.95                   | 128.70                   | 1.75                 | 1120               | 30                | 0.8                |
| KC-00-02 | 19197             | 128.70                   | 130.95                   | 2.25                 | 172                | 2.5               |                    |
| KC-00-02 | 19198             | 130.95                   | 133.20                   | 2.25                 | 41                 | 2.5               | 0.1                |
| KC-00-02 | 19199             | 133.20                   | 135.15                   | 1.95                 | 75                 | 2.5               | 0.1                |
| KC-00-02 | 19200             | 135.15                   | 137.00                   | 1.85                 | 70                 | 2.5               | 0.1                |
| KC-00-02 | 19201             | 137.00                   | 138.50                   | 1.50                 | 322                | 10                | 0.2                |
| KC-00-02 | 19202             | 138.50                   | 140.30                   | 1.80                 | 436                | 2.5               | 0.2                |
| KC-00-02 | 19203             | 140.30                   | 142.60                   | 2.30                 | 210                | 5                 | 0.1                |
| KC-00-02 | 19204             | 142.60                   | 144.35                   | 1.75                 | 288                | 2.5               |                    |
| KC-00-02 | 19205             | 144.35                   | 146.25                   | 1.90                 | $\frac{31}{10}$    | 2.5               |                    |
| KC-00-02 | 19206             | 146.25                   | 149.55                   | 3.30                 | 143                | 2.0               | 0.1                |
| KC-00-02 | 19207             | 149.55                   | 151.30                   | 1.75                 | 35                 | 2.0               |                    |
| KC-00-02 | 19208             |                          | 152.75                   | 1.45                 | 20                 | <u> </u>          |                    |
| KC-00-02 | 19209             | 152.75                   | 154.60                   | 1.85                 | 057                |                   | 0.2                |
| KC-00-02 | 19210             | 154.60                   | 156.05                   | 1.45                 |                    | 2.5               | $\frac{0.2}{0.1}$  |
| KC-00-02 | 19211             | 156.05                   | 157.80                   | 1.75                 | 270                | - 2.5             |                    |
| KC-00-02 | 19212             | 157.80                   | 159.15                   | $-\frac{1.35}{0.00}$ | 202                | $-\frac{2.3}{10}$ | $-\frac{0.1}{0.6}$ |
| KC-00-02 | <u>   19213  </u> | 159.15                   | 159.95                   | 0.80                 | - 121              | 30                | 0.0                |
| KC-00-02 | 19214             | 159.95                   | 162.55                   | 2.60                 | 116                |                   | $\frac{0.1}{0.1}$  |
| KC-00-02 | 19215             | 162.55                   | 164.40                   |                      | 152                | 25                | 01                 |
| KC-00-02 | 19216             | 164.40                   | 166.55                   | 2.10                 | - 100<br>- 100     | 25                | 0.1                |
| KC-00-02 | 19217             | 166.55                   | 16/./0                   | <u> </u>             | - 40               | 2.5               | 1-01               |
| KC-00-02 | 19218             | $\frac{16/.70}{162.00}$  | 108.90                   | 2.25                 | 1 - 22             | 25                | 0.1                |
| KC-00-02 | 19219             | $-\frac{168.90}{466.90}$ | 1/1.15                   |                      |                    | 25                | 0.1                |
| KC-00-02 | 19220             | 182.08                   | $-\frac{104.75}{102.10}$ | 2.01                 | 470                | 25                | 0.2                |
| KC-00-02 | 19221             | -190.50                  | 193.10                   |                      | - 872 -            | 20                | 0.2                |
| KC-00-02 | 19222             | 202.60                   | 203.85                   | 1.20                 | 75                 | 2.5               | 0.1                |
| KC-00-02 | 19223             | 203.85                   | 205.35                   | 1.50                 | 129                | 2.5               | 0.1                |
| KC-00-02 | 19224             | 212.80                   | 214.00                   | 1.00                 |                    |                   |                    |



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| C                    | ERTIF                | CATE                                     | A0023510                                    |
|----------------------|----------------------|------------------------------------------|---------------------------------------------|
| (PIL ) - KE          | MESS MIN             | iE                                       |                                             |
| Project:<br>P.O. # : | KEMES:<br>200950     | SCENTER                                  |                                             |
| Samples<br>This rep  | submitte<br>port was | d to our lab<br>printed on 2             | ) in Vancouver, BC.<br>27-JUL-2000.         |
|                      |                      |                                          |                                             |
|                      |                      |                                          |                                             |
| <br>                 | SAM                  | PLE PREP                                 | ARATION                                     |
| CHEMEX<br>CODE       | NUMBER<br>SAMPLES    |                                          | DESCRIPTION                                 |
| 225<br>238<br>229    | 101<br>20<br>20      | Run as rece<br>Nitric-aqua<br>ICP - AQ D | lved<br>-regla digestion<br>igestion charge |
| * NOTE               | 4.                   |                                          |                                             |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr. Ga, K, La, Mg, Na, Sr, Ti, T1, W. o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Comments: ATTN: BRETT LAPEARE

| CODE         | NUMBER<br>SAMPLES | DESCRIPTION                          | METHOD             |           | UPPE<br>LIMF |
|--------------|-------------------|--------------------------------------|--------------------|-----------|--------------|
| 983          | 99                | Au ppb: Fuse 30 q sample             | FA-AAS             | 5         | 10000        |
| 6            | 99                | Ag ppm: HNO3-aqua regia digest       | AAS-BKGD CORR      | 0.2       | 100.0        |
| 2            | 99                | Cu ppm: HNO3-aqua regia digest       | AAS                | 1         | 10000        |
| 2118         | 20                | Ag ppm: 32 element, soil & rock      | ICP-AES            | 0.2       | 15 00        |
| 2119         | 20                | Al %: 32 element, soil & rock        | ICP-AES            | 0.VI<br>2 | 10000        |
| 2120         | 20                | As ppm: 32 element, soil & rock      | ICP-AES            | 10        | 10000        |
| 557          | 20                | B ppm: 32 element, rock & Boll       | ICP-ALS<br>ICP-AES | 10        | 10000        |
| 2121         | 20                | Ra ppm: 32 element, soil & rock      | TCP-ARS            | 0.5       | 100.0        |
| 2122         | 20                | Be ppmi 32 element, soil & Tock      | ICP-AES            | 2         | 10000        |
| 2123         | 20                | Ca kt 32 alement, soil & rock        | ICP-AES            | 0.01      | 15.00        |
| 4144<br>2125 | 20                | cd now: 32 element, soil & rock      | ICP-AES            | 0.5       | 500          |
| 2126         | 20                | Co pom: 32 element, soil & rock      | ICP-AES            | 1         | 10000        |
| 2127         | 20                | Cr ppm: 32 element, soil & rock      | ICP-AES            | 1         | 1000         |
| 2128         | 20                | Cu ppm: 32 element, soil & rock      | ICP-AES            | 1         | 1000         |
| 2150         | 20                | Fe %: 32 element, soil & rock        | ICP-AES            | 0.01      | 15.0         |
| 2130         | 20                | Ga ppm: 32 element, soil & rock      | ICP-AES            | 10        | 1000         |
| 2131         | 20                | Hg ppm: 32 element, soil & rock      | ICP-AES            |           | 10.0         |
| 2132         | 20                | K k: 32 element, soil & rock         | ICP-ARS            | 10        | 1000         |
| 2151         | 20                | La ppm: 32 element, soil & rock      | ICP-RES            | 0.01      | 15.0         |
| 2134         | 20                | Mg %: 32 element, Boll & LOCK        | TCP-ARS            | 5         | 1000         |
| 2135         | 20                | Mo ppm: 32 element, soil & rock      | ICP-AES            | 1         | 1000         |
| 2137         | 20                | Na %: 32 element, soil & rock        | ICP-AES            | 0.01      | 10.0         |
| 2138         | 20                | Ni ppm: 32 element, soil & rock      | ICP-AES            | 1         | 1000         |
| 2139         | 20                | P ppm: 32 element, soil & rock       | ICP-AES            | 10        | 1000         |
| 2140         | 20                | Pb ppm: 32 element, soil & rock      | ICP-AES            | 2         | 1000         |
| 551          | 20                | S %: 32 element, rock & soil         | ICP-AES            | 0.01      | 1000         |
| 2141         | 20                | sb ppm: 32 element, soil & rock      | ICP-AES            | 4         | 1000         |
| 2142         | 20                | sc ppm: 32 elements, soil & rock     | ICP-AES<br>ICD-NEC | 1<br>1    | 1000         |
| 2143         | 20                | sr ppm: 32 element, soil & rock      | ICF-ALS<br>ICP-AES | 0.01      | 10.0         |
| 2144         | 20                | TI 5: 32 element, soil & tock        | ICP-ARS            | 10        | 1000         |
| 2142         | 20                | U ppm: 32 element, soil & rock       | ICP-AES            | 10        | 1000         |
| 2147         | 20                | V nom: 32 element, soil & rock       | TCP-AES            | 1         | 1000         |
| 2148         | 20                | W ppmi 32 element, soll & rock       | 1CP-AES            | 10        | 1000         |
|              | 20                | With Light 12 alamant, world & touch | LCD: ARM           | .,        | 1000         |

A0023510



#### S Chemex A Aurora Laboratory Services Ltd.

Analytical Chomists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

er :1-A Page Total F-J-s :3 Certificate Date: 27-JUL-2000 Invoice No. : 10023510 P.O. Number :200950 Account : PIL

зŅ

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE

~\*

|                |              |                               |               |             |         |           |          |           | CE        | RTIF      | ICATE   | OF /      | NAL        | YSIS      | ·         | A0023    | 3510         |           |        |
|----------------|--------------|-------------------------------|---------------|-------------|---------|-----------|----------|-----------|-----------|-----------|---------|-----------|------------|-----------|-----------|----------|--------------|-----------|--------|
| SAMPLE         | PREP<br>CODE | Au ppb Ag ppm<br>FA+AA Aqua F | n Cu<br>3 ppm | Ag<br>ppm   | A1<br>% | As<br>ppm | B<br>ppm | Ba<br>ppm | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cđ<br>ppm | Ço<br>ppm  | Cr<br>ppm | Cu<br>ppm | Fe<br>%  | Ga<br>ppm    | Hg<br>ppm | R<br>% |
| 19102          | 225 238      | < 5 < 0.2                     | 2 25          | < 0.2       | 2.75    | 2         | < 10     | 320       | 2.0       | < 2       | 0.60    | < 0.5     | 9          | 49        | 25        | 3.76     | 10           | 1         | 0.78   |
| 19103          | 225          | < 5 < 0.2                     | 2 27          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| .9104          | 225          | < 5 < 0.2                     | 2 15          |             |         |           |          |           |           |           |         |           |            |           |           | <b>-</b> |              |           |        |
| .9105<br>.9106 | 225          | < 5 < 0.2                     | 2 24          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 91.07          | 225 238      | 10 < 0.2                      | 2 31          | < 0.2       | 1.36    | < 2       | < 10     | 130       | 0.5       | < 2       | 0.60    | 0.5       | 2          | 31        | 30        | 1.63     | < 10         | < 1       | 0.26   |
| 9108           | 225          | < 5 < 0.2                     | 2 16          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| .9109          | 225          | < 5 < 0.2                     | 2 20          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19110<br>19111 | 225          | < 5 < 0.2                     | 2 31<br>2 14  |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 9112           | 225 238      | 5 < 0.                        | 2 21          | < 0.2       | 3.77    | 10        | < 10     | 480       | < 0.5     | 12        | 4.91    | < 0.5     | 17         | 111       | 15        | 4.90     | < 10         | 2         | 0.0    |
| .9113          | 225          | 15 0.3                        | 2 207         |             |         |           |          |           |           | *****     |         |           |            |           |           |          |              |           |        |
| L9114          | 225          | < 5 < 0.                      | 2 37          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| L9115<br>L9116 | 225          | 45 < U.<br>60 < 0.            | 2 79          |             |         |           |          |           |           |           |         |           |            |           |           |          | <b></b>      |           |        |
| 9117           | 225 238      | 20 < 0.                       | 2 67          | < 0.2       | 0.40    | 22        | < 10     | 130       | < 0.5     | 4         | 6.28    | < 0.5     | 10         | 60        | 61        | 1.40     | < 10         | < 1       | 0.0    |
| 9118           | 225          | < 5 0,                        | 2 412         |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 9119           | 225          | 10 < 0.                       | 2 96          |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19120<br>19121 | 225          | 5 < 0.                        | 2 26          |             |         |           |          |           |           |           |         |           | <b></b>    |           |           | *        |              |           |        |
| 9122           | 225 238      | 3 < 5 < 0.                    | 2 57          | < 0.2       | 2 0.61  | 42        | < 10     | 320       | < 0.5     | < 2       | 3.20    | < 0.5     | 8          | 67        | 54        | 1.BO     | < <u>1</u> 0 | · < 1     | 0.0    |
| 19123          | 225          | < 5 0.                        | 2 209         |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19124          | 225          |                               | 2 145         |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19126          | 225          | < 5 0.                        | 2 265         | ; <b>-</b>  |         |           |          |           |           |           |         |           |            |           |           | <b>-</b> |              |           |        |
| 19127          | 225 238      | 3 15 0.                       | 8 470         | ) 0,1       | 8 1.80  | ) 4       | < 10     | 140       | 0,5       | < 2       | 2.83    | 0.5       | 99         | 29        | 448       | 3.12     | : < 10       | · < 1     | 0.1    |
| 19128          | 225          | < 5 0.                        | 2 233         |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19129          | 225 ~~       |                               | 2 104         |             |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19131          | 225          | < 5 < 0.                      | 2 151         | [           |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19132          | 225 23       | 8 < 5 < 0.                    | .2 80         | 5 < 0.2     | 2 1.34  | < x 2     | 2 < 10   | 130       | < 0.5     | < 2       | 2.15    | < 0.5     | ; <u>ç</u> | 42        | 82 82     | 1 2.93   | 3 < 14       | ז ל<br>1  | 0.0    |
| 19133          | 225          | 10 < 0.                       | .2 60         | 5           |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19134          | 225          | 5 0.                          | .2 24(        | ()          |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19136          | 225          | < 5 < 0.                      | .a 51         | 7           |         |           |          |           |           | ··· - ·   |         |           |            |           |           |          |              |           |        |
| 19137          | 225 23       | 8 < 5 < 0.                    | .2 11:        | 8 < 0.      | 2 1.5   | 9 < 2     | 2 < 10   | ) 15(     | ) < Q.9   | <b>,</b>  | 1.73    |           | 12         | 4 3-      | 4 12      | 5 3.1    | 1 < 1        | u < :     | 1 U.C  |
| 19130          | 225          | < 5 < 0.                      | .2 14         | 7 <b></b> - |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19139          | 225          |                               | . 10.<br>7 fi | ,<br>,      |         |           |          |           |           |           |         |           |            |           |           |          |              |           |        |
| 19141          | 225          | < 5 < 0                       | .2 3          | 6           |         |           |          |           |           |           |         |           | <b></b>    |           |           | {`       | \            |           |        |
| L              |              |                               |               | <u> </u>    |         |           |          |           |           |           |         |           | <u>.</u>   |           |           | /\       | 1 77         | $\pm n$   |        |
|                |              |                               |               |             |         |           |          |           |           |           |         |           | CEDTI      | FICATIO   | NI        | +2       | 1,           | 1.1       |        |

CERTIFICATION:\_\_



## **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists - Goochemists - Registered Assayers

North Vancouver 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE

1

-\*

Page 9r :1-8 Total F. :3 Certificate Date: 27-JUL-2000 Invoice No. :10023510 P.O. Number :200950 Account : P1L

|        |       |     |            |          |               |           |         |           |          |           | ÇE         | ERTIF     | ICATE        | EOF       | ANAL     | YSIS        |          | A0023         | 510<br>  |                     |
|--------|-------|-----|------------|----------|---------------|-----------|---------|-----------|----------|-----------|------------|-----------|--------------|-----------|----------|-------------|----------|---------------|----------|---------------------|
| SAMPLE | PREI  | 2   | La<br>ppm  | Mg<br>%  | Mn<br>ppm     | Мо<br>ррш | Na<br>% | Ni<br>ppm | P<br>ppm | Pb<br>ppm | S<br>%     | Sb<br>ppm | Sc<br>ppm    | Sr<br>ppm | Ti<br>%  | Tl<br>ppm   | U<br>ppm | V<br>ppm      | W<br>ppm | Zn<br>ppm           |
| 9102   | 225   | 238 | < 10       | 1.21     | 250           | 11        | 0.07    | 8         | 570      | < 2       | 0.20       | < 2       | 8            | 41        | 0.12     | < 10        | < 10     | 43            | < 10     | 146                 |
| 103    | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9104   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9105   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9106   | 225   |     |            |          |               |           |         |           |          |           |            |           | _            |           |          |             |          |               | . 10     |                     |
| 9107   | 225   | 238 | 10         | 0.40     | 335           | 6         | 0.04    | 5         | 60       | 4         | 0.07       | < 2       | 1            | 31        | < 0.01   | 10          | < 10     | 6             | < 10     | 54                  |
| 9108   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9109   | 225   | 1   |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9110   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9111   | 445   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          | 1.0.0         | < 10     | 114                 |
| 9112   | 225   | 238 | < 10       | 2.85     | 1315          | 3         | 0.20    | 35        | 600      | < 2       | 0.21       | < 2       | 15           | 125       | 0.19     | < 10        | < 10     | 148           | < 10     |                     |
| 9113   | 225   | [   |            | <b>-</b> |               |           |         |           |          | <b>.</b>  |            |           |              |           |          |             |          |               |          |                     |
| 9114   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| .9115  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9116   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9117   | 225   | 238 | < 10       | 0.53     | 1815          | 8         | 0.01    | 43        | 150      | < 2       | 0.56       | 4         | 6            | 74        | < 0.01   | < 10        | < 10     | 13            | < 10     | 44                  |
| 9118   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 9119   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             | <b></b>  |               |          |                     |
| 19120  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| .91.21 | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           | <u>-</u> |             |          |               |          | F.A.                |
| 9122   | 225   | 238 | < 10       | 1.35     | 1380          | 9         | 0.03    | 28        | 520      | 2         | 0.30       | 2         | 6            | 183       | < 0.01   | < 10        | < 10     | 21            | < 10     | 50                  |
| 19123  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19124  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19125  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19126  | 225   |     |            |          |               |           |         |           | _        |           |            |           |              |           |          |             |          |               |          |                     |
| 9127   | 225   | 238 | 10         | 0.84     | 435           | 37        | 0.06    | 4         | 650      | 4         | 0.45       | < 2       | 2 6          | 120       | < 0.01   | < 10        | ) < 10   |               | < 14     |                     |
| 9128   | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19129  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| L9130  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19131  | 443   |     |            |          |               |           |         | _         |          |           |            |           |              |           |          |             | 10       |               | ~ 10     | 25                  |
| 19132  | 225   | 238 | < 10       | 0.87     | 420           | 9         | 0.08    | 5         | 660      | ) < 2     | 0.03       |           | 2 .          | 87        | < 0.01   |             | ) < I(   | ·             |          | ·                   |
| 19133  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19134  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          | ·····         |          |                     |
| 19135  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
|        |       |     |            |          |               |           |         |           |          |           | <b>.</b> . |           |              |           |          |             | n , 14   |               |          | 1 29                |
| 19137  | 225   | 238 | 10         | 1.00     | ) <b>41</b> 0 | ) 7       | 7 0.09  | ) 3       | 700      | ) < 2     | 2 0.01     | 8         | ×            | 107       | r « U.Q. | L <u>41</u> | v • 10   | • • • • • • • |          |                     |
| 19138  | 225   |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               |          |                     |
| 19139  | 225   |     |            |          |               |           |         |           |          |           |            |           | ~~~ <b>~</b> |           |          |             |          | -2375         |          |                     |
| 19140  | 225   | [   |            |          |               |           |         |           |          |           |            |           |              |           |          | <b>-</b>    |          | -/-\-         |          | , <del>-</del>      |
| TATØT  | ** 3' |     | l <b>-</b> |          |               |           |         |           |          |           |            |           |              |           |          |             |          |               | -        | 1                   |
| L      |       | L   | l          |          |               |           |         |           |          |           |            |           |              |           |          |             |          | <u></u>       | 0        | $\overline{\Gamma}$ |
|        |       |     |            |          |               |           |         |           |          |           |            |           |              |           |          |             |          | V.            | , V      | $\mathcal{A}$       |

CERTIFICATION:\_\_

| CERTIFICATE OF ANALYSIS         A0023510           SAMPLE         PSEP<br>PDAAD AguaR         An ppD Ag ppm<br>ppm         Cu<br>ppm         All<br>As<br>ppm         As<br>ppm         B<br>ppm         Bs         Bs         Bs         Bs         Bs         Cu<br>ppm         Cu<br>ppm | ALS)                                          | A<br>A<br>B<br>F                                   | A<br>urora<br>nalyti<br>12 B<br>tritish<br>HON | Laboratory<br>cal Chemis<br>rooksban<br>Columbia<br>IE: 604-90     | Service<br>ts - Geo<br>( Ave.,<br>a, Cana<br>34-022 | nen<br>s Ltd.<br>chemists *<br>Nort<br>uda<br>I FAX: 6 | Pegistere<br>h Vancou<br>V7J :<br>04-984-0 | d Assayers<br>Iver<br>2C1<br>1218 | 3           |          | To:<br>Proje<br>Com | KEMES:<br>P.O. BO<br>SMITHE<br>VoJ 2NC<br>ect :<br>ments: | S MINE<br>X 3519<br>RS, BC<br>KEMESS<br>ATTN: B | S CENTE<br>RETT LA | R<br>PEARE | <b>_</b> • |           |           |         | Page<br>Total +<br>Certifica<br>Invoice<br>P.O. Nu<br>Account | )er ::<br>,es<br>ite Date:<br>No. :<br>mber :<br>t | 2-A<br>3<br>27-JUL-2000<br>10023510<br>200950<br>PIL |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------|----------|---------------------|-----------------------------------------------------------|-------------------------------------------------|--------------------|------------|------------|-----------|-----------|---------|---------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| SAMPLE         PEEP<br>CODE         Ai ppb Ag ppm<br>PPAAA Aque R         Cu<br>ppm         Ag<br>ppm         Ai         As<br>ppm         Ba                                                                                                                                                                                                                                                                                                                                          |                                               |                                                    |                                                | KC                                                                 | -03                                                 | > ~≎2                                                  |                                            |                                   |             |          |                     | CE                                                        | RTIF                                            | ICATE              | OF A       | NAL        | YSIS      |           | A0023   | 3510                                                          |                                                    | <u> </u>                                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE                                        | PREP                                               |                                                | Au ppb .<br>FA+AA                                                  | Ag ppm<br>Aqua F                                    | Cu<br>ppm                                              | Ag<br>ppm                                  | Al<br>%                           | Ав<br>ррт   | B<br>ppm | Ba<br>ppm           | Be<br>ppm                                                 | Bi<br>ppm                                       | Ca<br>%            | Cđ<br>ppm  | Co<br>ppm  | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Ga<br>ppm                                                     | Eg<br>mgq                                          | K<br>%                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19142<br>19143<br>19144<br>19145<br>19146     | 225<br>225<br>225<br>225<br>225<br>225<br>225      | 38                                             | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5                             | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2           | 21<br>25<br>14<br>14<br>12                             | < 0.2                                      | 1.51                              | 2           | < 10     | 180                 | < 0.5                                                     | < 2                                             | 2.30               | 0.5        | 10         | 42        | 24        | 2.88    | < 10                                                          | < 1                                                | 0.10                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19147<br>19148<br>19149<br>19150<br>19151     | 225 2<br>225 -<br>225 -<br>225 -<br>225 -<br>225 - | 238                                            | <pre>&lt; 5 &lt; 5</pre> | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2           | 31<br>12<br>12<br>30<br>12                             | < 0.2                                      | 1.41                              | < 2         | < 10     | 140                 | < 0.5                                                     | < 2                                             | 1.79               | < 0.5      | و<br>      | 46        | 31        | 3.40    | < 10                                                          | < 1                                                | 0.14                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19152<br>19153<br>19154<br>19155<br>19156     | 225<br>225<br>225<br>225                           | 238                                            | < 5<br>< 5<br>< 5<br>< 5<br>NotRcd                                 | < 0.<br>< 0.<br>< 0.<br>< 0.<br>NotRe               | 2 9<br>2 11<br>2 64<br>2 67<br>1 NotRed                | < 0.2                                      | 1.88<br>NotRed                    | 2<br>NotRcd | < 10     | 360                 | 0.5                                                       | < 1<br>NotRcd                                   | 3.24<br>NotRcd     | < 0.5      | NotRed     | NotRed    | NotRed    | NotRed  | NotRed                                                        | NotRed                                             | i NotRed                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19157<br>19158<br>19159<br>19160<br>19161     | 225<br>225<br>225<br>225<br>225<br>225             | 238                                            | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>       | < 0.<br>< 0.<br>< 0.<br>< 0.<br>< 0.                | 2 35<br>2 74<br>2 34<br>2 487<br>2 189                 | < 0.2                                      | 1.58                              | < 2         | < 10     | 440                 |                                                           | < 2<br>                                         | 3.00               | < 0.5      |            | 45        |           |         |                                                               |                                                    |                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19162<br>19163<br>19164<br>19165 A<br>19165 B | 225<br>225<br>225<br>225<br>225<br>225<br>225      | 238<br><br><br>                                | < 5<br>< 5<br>< 5                                                  | < 0.<br>< 0.<br>< 0.                                | 2 29<br>2 72<br>2 61                                   | < 0.2                                      | 1.85                              | 6           | < 10<br> | 390                 | ) < 0.5                                                   | < 2                                             | 1.32               | < 0.5      | 10         | 87        |           | 3.58    |                                                               |                                                    |                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19166<br>19167<br>19168<br>19169<br>19170     | 225<br>225<br>225<br>225<br>225<br>225             | 238<br><br>                                    | * * * 5<br>* * * 5<br>* *                                          | < 0.<br>< 0.<br>< 0.<br>< 0.<br>< 0.                | 2 60<br>2 61<br>2 61<br>2 91<br>2 91                   | )<br>3 < 0.2<br>7<br>1<br>5                | 2.17                              | 62          | < 10     | 70                  | 0 0.5                                                     | 8                                               | 5.10               | 0.5        | 14         | 117       |           | 2.98    | 3 < 10                                                        | ) < :                                              | 1 0.20                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19171<br>19172<br>19173<br>19174<br>19175     | 225<br>225<br>225<br>225<br>225<br>225             | 238                                            | < 5<br>< 5<br>< 5<br>10<br>< 5                                     | < 0.<br>0.<br>0.<br>0.<br>0.                        | 2 6<br>2 10<br>2 21<br>2 20<br>2 13                    | 4<br>2 < 0.2<br>7<br>7                     | 2 2.43                            | 36          | < 10<br> | 3                   | 0 < 0.5                                                   | 5 4 2                                           | 4.94               | < 0.5      | 19         | 217       | , 9(<br>  | 5 4.4   | 5 < 1                                                         | 0 <<br>                                            | 1 0.28                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19176<br>19177<br>19178<br>19179<br>19180     | 225<br>225<br>225<br>225<br>225<br>225             | 238<br><br>                                    | 10<br>< 5<br>< 5<br>< 5<br>< 5                                     | 0<br>< 0<br>< 0<br>< 0                              | 2 36<br>2 3<br>2 21<br>2 13<br>2 8                     | 8<br>7 < 0.<br>1<br>7<br>1                 | 2 1.10                            |             | 2 < 10   | R3                  | 0 0.                                                      | 5 < 2                                           | 2 5.50             | ) < 0.5    | <br>       | r 5:      | n         | 4 2.n   | 1 < 1                                                         | 0 *                                                | 1 0.19                                               |

CERTIFICATION:\_



CERTIFICATION:



ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

J.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VOJ 2NO

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE <u>\_</u>\*

Page =r :3-A Total F. J. s :3 Certificate Date: 27-JUL-2000 Invoice No. : 10023510 P.O. Number : 200950 Account : PIL

A0023510 **CERTIFICATE OF ANALYSIS** KC-00-02 ĸ Cu Fe Ga Ħg Cđ Co Cr Ca Bi В Ba Be A1 Χø Сu λq PREP Au ppb Ag ppm % % ppm ppm % ppm ppm ppm ppm ppm ppm % ppm ppm FA+AA Aqua R ppm ppm SAMPLE CODE ррш 225 5 0.2 59 0.05 < 1 19181 --60 1.49 < 10 126 2.97 2.5 6 50 < 0.5 < 2 < 10 47 0.22 42 225 238 < S 0.2 0.2 19182 -----.... 51 --225 --< 5 < 0.2 19183 175 -----5 0.4 225 --19184 300 -----45 < 0.2 225 --19185 92 19186 225 < 5 < 0.2 < 10 1 0.07 -----165 184 1.82 6 2.42 < 0.5 < 0.5 < 2 160 104 < 10 181 0.2 0.48 225 238 < 5 0.2 19187 175 0.2 225 --10 19188 332 -----225 ---10 0.4 19189 300 -----225 ---15 0.6 19190 ----15 < 0.2 112 225 \_\_\_\_ < 1 0.05 19191 --2.05 < 10 15 183 66 < 0.5 < 2 2.33 0.5 40 0.38 226 < 10 225 238 5 0.2 65 0.2 19192 0.4 100 5 19193 225 --< 5 < 0.2 182 19194 225 --< 5 < 0.2 125 19195 225 ---0,8 1120 225 30 19196 ---172 < 5 1.0 225 --19197 41 < 5 < 0.2 19198 225 --0.17 2.30 < 10 < 1 6 34 70 < 0.5 5.34 410 0.5 < 2 0.62 < 2 < 10 75 < 0.2 225 238 < 5 < 0.2 19199 ----\_\_\_\_ 70 < 5 < 0.2 225 19200 -------------10 0.2 322 19201 225 ---\_\_\_\_ < 5 0.2 436 -----19202 225 \_\_\_

CERTIFICATION:\_

\* /

. v.



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| <b>`</b> ^` | KEMESS MINE    |
|-------------|----------------|
| · · ·       | ILCHICOO MILLE |

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Project : KEMESS CENTER Comments: ATTN: BRETT LAPEARE

**CERTIFICATE OF ANALYSIS** 

...\*

Page ar :3-B Total F. :3 Certificate Date: 27-JUL-2000 Invoice No. :10023510 P.O. Number :200950 Account :PIL

A0023510

KC-00-02

| SAMPLE                                             | PRI<br>COI                                    | SP<br>DE        | La<br>ppm  | Mg<br>% | Ma<br>ppm | Мо<br>ррд | Na<br>% | Ni<br>ppm | P<br>mgg | Pb<br>ppm | S<br>% | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Ti<br>% | T1<br>ppm | U<br>mqq | V<br>ppm  | W<br>ppm  | Zn<br>ppm |
|----------------------------------------------------|-----------------------------------------------|-----------------|------------|---------|-----------|-----------|---------|-----------|----------|-----------|--------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|
| 19181<br>19182<br>19183<br>19184<br>19185          | 225<br>225<br>225<br>225<br>225<br>225        | 238<br><br>     | < 10<br>   | 0.48    | 475<br>   | 18<br>    | 0.01    | <u>41</u> | 80<br>   | 44<br>    | 0.90   | < 2       | 3         | 40        | < 0.01  | < 10      | < 10     | 8<br><br> | < 10      | 270       |
| 19186<br>19187<br>19188<br>19189<br>19189<br>19190 | 225<br>225<br>225<br>225<br>225<br>225        | <br>238<br><br> | < 10       | 0.22    | 400       | 35        | 0.02    | 31        | 1940     | < 2       | 0.38   | 6         | 3         | 38        | < 0.01  | < 10      | < 10     | 101       | < 10      | 32        |
| 19191<br>19192<br>19193<br>19194<br>19194<br>19195 | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238<br><br>     | < 10<br>   | 0.80    | 530       | 26        | 0.02    | 86<br>    | 370      | 20        | 1.20   | 4         | , 5       | 66        | < 0.01  | < 10      | < 10     | 14<br>    | < 10      | 142<br>   |
| 19196<br>19197<br>19198<br>19199<br>19199<br>19200 | 225<br>225<br>225<br>225<br>225<br>225        | <br><br>23B     | <br><br>10 | 0.32    | 560       | 5         | 0.07    | 5         | 650      | 2         | 0.03   | < 2       | 6         | 163       | < 0.01  | < 10      | < 10     | 41        | < 10      | 24        |
| 19201<br>19202                                     | 225                                           |                 |            |         |           |           |         |           |          |           |        |           |           |           |         |           |          |           |           |           |
|                                                    |                                               |                 |            |         |           |           |         |           |          |           |        |           |           |           |         |           |          |           |           |           |
|                                                    |                                               |                 |            |         |           |           |         |           |          |           |        |           |           |           |         |           |          |           |           |           |
|                                                    |                                               | 1               |            |         |           |           |         |           |          |           |        |           |           |           |         |           |          | ,         |           |           |
|                                                    |                                               |                 |            |         | •••       | <u></u>   |         |           |          |           |        |           |           |           | CEPTU   | FICATIO   |          |           | )<br>Xard | 1.0       |



## **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Comments: ATTN: BRETT LAPEARE

| CE                                                               | ERTIFIC                                             | CATE A0024183                                                                                                                                      |        |        | ANALYTICAL                     | PROCEDURES | 5 2 of 2           |                |
|------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------|------------|--------------------|----------------|
| (PIL) - KEI                                                      | MESS MIN                                            | E<br>S CENTRE                                                                                                                                      | CHEMEX | NUMBER | DESCRIPTION                    | METHOD     | DETECTION<br>LIMIT | UPPER<br>LIMIT |
| P.O. #:<br>Samples<br>This rep                                   | 200950<br>submitte                                  | d to our lab in Vancouver, BC.<br>printed on 07-AUG-2000.                                                                                          | 3      | 32     | Mo ppm: HNO3-aqua regia digest | 244        | 1                  | 1000           |
|                                                                  | SAM                                                 | PLE PREPARATION                                                                                                                                    |        |        |                                |            |                    |                |
| CHEMEX<br>CODE                                                   | NUMBER<br>SAMPLES                                   | DESCRIPTION                                                                                                                                        |        |        |                                |            |                    |                |
| 214<br>238<br>229                                                | 119<br>119<br>23                                    | Revd as pulp; mesh size checked<br>Nitric-aqua-regia digestion<br>ICP - AQ Digestion charge                                                        |        |        | , , ,                          |            |                    |                |
| * NOTE                                                           | 1:                                                  |                                                                                                                                                    |        |        |                                |            |                    |                |
| The 32 (<br>trace s<br>Elements<br>digestic<br>Na, Re,<br>T1, W. | element<br>metals<br>s for w<br>on is po<br>Ca, Cr, | ICP package is suitable for<br>in soil and rock samples.<br>hich the nitric-aqua regia<br>ssibly incomplete are: Al,<br>Ga, K. La, Mg, Na, Gr, Ti, |        |        |                                |            |                    |                |
|                                                                  |                                                     |                                                                                                                                                    |        |        |                                |            |                    |                |

A0024183



CERTIFICATION:\_

i

A



i

#### SYNOPTIC DRILL LOG NORTHGATE EXPLORATION LTD. KEMESS PROJECT

## D.D.H. NO. KC - 00 - 03

## PAGE 1 OF \_\_\_\_

|              | GRID          | SLRVET    |       |                |               |
|--------------|---------------|-----------|-------|----------------|---------------|
| NORTHING     | 11200         | 11161.143 | TOTAI | DEPTH          | 175.87m       |
| EASTING      | 9650          | 9619,957  | TOATI | CASING         | 4.70 m        |
| ELEVATION    | 150           | 23.840    | DATE  | START          | July 1, 2000  |
| PROJECT/AREA | KEMESS        | CENTRE    | DATE  | END            | Jul, 3, 2000  |
| AZIMUTH      | NU            | 4         | CORE  | DIAMETER       | NQT           |
| INCLINATION  | - 90          | •         | GEOLO | OGIST          | BRETT LAPEARE |
| SAMPLE SERIE | /12<br>S: Z31 | 26<br>51  | то    | 19250<br>23179 | · · ·         |

TARGET/PURPOSE: To test trailing chargedulity high similar to the onomety, over the surface supersone / hypogene contact COMMENTS (target intersected? / describe): highly overliped factures of full from scoundlater to depth of 16.60 m caused similar anomaly. Honever, monpointe was intersected up trace diss apy

Downhole Survey

| Depth   | Туре    | Azimuth | Dip   |
|---------|---------|---------|-------|
| 99.70m  | EASTMAN | 1890    | - 87° |
| 175.87m | EASTMAN | 242°    | - 87° |
|         |         |         |       |
|         |         |         |       |
|         |         |         |       |

| From  | То     | Rock Type             | Alteration        | Mineralization   | Comments                              |
|-------|--------|-----------------------|-------------------|------------------|---------------------------------------|
| 0.00  | 4.70   | CASING / OVIS         |                   |                  |                                       |
|       |        |                       |                   |                  |                                       |
| 4.70  | 22.65  | CRYSTAL ILAPILLI THEF | Ovidation         | to py            |                                       |
| 22.65 | 37.70  | ASNI THEF             |                   | (290p., + t, epy | ep, elete contels                     |
| 37.70 | 56.24  | MONZONITE             | 52 biot K spar    | 170 diss py      | · · · · · · · · · · · · · · · · · · · |
| 56.24 | 60.70  | SILICIFIED SILTSTONE  | che, alto of beds | <130 p.          |                                       |
| 60.70 | 62.75  | O.F.P.                |                   | 19 op., + to cpy | poply the lexture                     |
| 62.75 | 69.00  | BEDDED SILT/MLD STONE |                   | 219, p.          | Ly " by vern lets                     |
| 69.00 | 83.32  | MONZONITE             | patchy K-spar     | =29 op + trep    |                                       |
| 83.32 | 105.45 | MUD/SILT STONE        |                   | ti py            | gtz/glz-aistin                        |
| 1     | 1      |                       |                   | I                | l                                     |

KC-00-03

PAGE 2 OF \_\_\_\_

| From    | То      | Rock Type                             | Alteration                            | Mineralization       | Comments                              |
|---------|---------|---------------------------------------|---------------------------------------|----------------------|---------------------------------------|
| 105.45  | 1613,60 | MARIC FLOW                            |                                       |                      |                                       |
| 1       | 11-14   |                                       |                                       |                      |                                       |
| 142 10  | 14877   | EALLE POWE                            | che anna                              | 12                   | healt sheared?)                       |
| 117.60  | 170.17  | ·//+L/ CONE                           | ETAY SULSE                            | 100                  | Jocani, manali                        |
|         | 1000    |                                       |                                       |                      |                                       |
| 148.7 H | 121.82  | MAFIL FLOW                            |                                       | 4 170 per            | <u> </u>                              |
|         |         |                                       |                                       |                      |                                       |
| 151.85  | 155.30  | OHARIZ PORPHYRY                       | cht + bist clay                       | E190 py              |                                       |
|         |         |                                       |                                       |                      |                                       |
| 155.30  | 175.87  | MAFIC FLOW                            | · · · · · ·                           |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         | _                                     |                                       |                      |                                       |
| r       |         | FO. H                                 |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       | <u> </u>                              |                      |                                       |
| · · ·   |         |                                       |                                       |                      |                                       |
|         |         |                                       | · · · · · · · · · · · · · · · · · · · |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         | <u></u>                               |                                       |                      |                                       |
|         |         | · · · · · · · · · · · · · · · · · · · |                                       |                      |                                       |
|         |         |                                       |                                       | · · ·                | · · · · · · · · · · · · · · · · · · · |
|         |         | · · · · · · · · · · · · · · · · · · · | 1                                     | ··· <del>_</del> ··· |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       | <u></u>              |                                       |
|         | · · · · |                                       | -                                     | <u> </u>             |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       | <u>}</u>             |                                       |
|         |         |                                       |                                       | ····                 |                                       |
|         |         |                                       |                                       | ļ                    |                                       |
|         |         |                                       |                                       | ļ                    |                                       |
|         |         |                                       | 1                                     |                      |                                       |
|         |         |                                       | 1                                     |                      |                                       |
|         |         | - <u></u>                             | 1                                     |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       | +                                     |                      | <u> </u>                              |
|         |         |                                       |                                       |                      | ·······                               |
|         |         |                                       | 4                                     |                      |                                       |
|         | ļ       |                                       |                                       | <u> </u>             |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |
|         |         |                                       |                                       |                      |                                       |

 $\left( \right)$ 

C

(

Y-<-D.D.H. NO. <u>00-03</u>

#### KEME XPLORATION CORE LOGGING FORM

## Page 1 of <u>7</u>

| From    | То       | DECRIPTION                                                                      | Sample #             | From  | To       | %Cu | Au g/t | Ag g/t |
|---------|----------|---------------------------------------------------------------------------------|----------------------|-------|----------|-----|--------|--------|
| 0.00    | 4.70     | OVERGLEDEN -> CASENG                                                            |                      |       |          |     |        |        |
|         |          |                                                                                 |                      |       |          |     |        |        |
| 4.70    | 22.65    | CRYSTAL / LAPILLI THEF                                                          | 19226                | 4.70  | 823      |     |        |        |
|         |          |                                                                                 | 19227                | 8.23  | 10.40    |     |        | 1      |
|         | <u>.</u> | - light beige , time or , marsing                                               | 19228                | 1040  | 13.55    |     |        |        |
| ļ.      | <u> </u> | @ 4.70 - 16.65 -> highly avedized from groundwater -> ovide from = 80%          | 19229                | 13.55 | 16.55    |     |        |        |
|         | <u> </u> | at sul unit of where freehroute dues occur the rock is generally messive        | 19230                | 16.55 | 17.15    |     |        |        |
|         | <u> </u> | light beige going -7 I.D. is ditualt due to neathering -7 local, jounded        | 1923)                | 17.15 | 19.75    |     |        |        |
| ·       | -        | coarse (1-1.5 cm) elests at plag mode alter to white clay or smiller (41-3mm)   | 19232                | 19.75 | 21.25    |     |        |        |
| ·       |          | round lapillis @ 14.00 m                                                        | 19233                | 21.25 | 22.65    |     |        |        |
|         |          | 01665-22.65 7 ovidation decreases but shill well developed on freehores 3       |                      |       | ļ        |     |        |        |
|         |          | this subunit exhibits extensive give exclosing veinlets a highly                |                      |       |          |     |        |        |
| <b></b> |          | random privatetions - creesher - > very neak / dillase this (Elen) building /   |                      |       |          |     |        | L      |
|         |          | Sedding @ 20.00m @ 55.60°CA                                                     |                      |       |          |     |        |        |
|         |          |                                                                                 | · ·                  |       |          |     |        |        |
|         | ļ        | =1 altin throughout unit is predominantly elargation of play the ult servicitie | · · · ·              |       |          |     |        | -      |
|         |          | alt's -> silicitication icens at att tears beining => trace diss py             |                      |       | ļ        |     |        |        |
| 77/5    | 2770     |                                                                                 | 1. 1. 1. 1. 1.<br>1. |       | <u> </u> | ·   |        |        |
| (2.6)   | 54.70    | ASH INFF                                                                        | 19234                | ZZ.65 | Z4.90    |     |        |        |
|         |          |                                                                                 | 19235                | Z4.90 | 27.65    | ;   |        |        |
|         |          | - light beige lover, time or, messive to locally well bedded                    | 19236                | 27.65 | Z9.55    |     |        |        |
|         |          | -rbedding is thin 1-10mm (leminae) @ 55 CA -> very well preserved Q             | 11237                | 29.55 | 31.50    |     |        |        |
|         |          | top at unit ? mejority at wait is measure from overprinting by silveitreation.  | 19238                | 31.50 | 33.50    |     |        |        |
| <b></b> |          | and associated alto to light being cla, it service -> very diffuse banding      | 19237                | 3.50  | 35.65    |     |        |        |
|         |          | province to the to the to the second                                            | 19240                | 35.65 | 37.70    |     |        | ļ      |
|         |          | -r moderate degree of gitt + carb verilete o highly random ovientations tubere  | ļ                    |       |          |     |        |        |
|         |          | silvertim occurs unt is ilk smoth green, aphenetic up noclerate microfractures  |                      |       |          |     |        |        |
| L       | ļ        | silled of the with a to H- carb ( ovidehim of five p 25.75 - , 27.50)           | L                    |       |          |     |        |        |

 $2 \cdot \frac{1}{2}$ 

;

D.D.I D. 00-03

|      | - |    |
|------|---|----|
| Page | 2 | of |

|               | 10            | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample # | From                                  | To      | %Cu      | Augh      | Ag g/t    |
|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|---------|----------|-----------|-----------|
|               |               | - pyrite occurs of stancementer / stringers, disseminited and on frectories of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       |         |          |           |           |
|               |               | trace epoy escol inf pry -7 +27+ + vace epoy (epo, @ 31.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       | i       |          |           |           |
| <b>TR.1</b>   |               | · lower contact diffuse due to estimation + pry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -                                     |         |          |           |           |
| 37-20         | 61 211        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                       |         | 1        |           |           |
| <u>37. 70</u> | 26.24         | MouzoVite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19241    | 37.70                                 | 39.45   |          |           |           |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19242    | 39.45                                 | 41.75   |          |           |           |
|               |               | 1- light gree to light beige grey, medium to fine evanued, messive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19243    | 41.75                                 | 43.30   |          |           |           |
|               |               | - typical purphyr, til - intrusive texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11244    | 43:30                                 | 44.80   |          |           |           |
|               | - <u>-</u> ,  | - time to very time grained intriviation plastelay + service up = 25-40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19245    | 44.80                                 | 46 85   |          |           |           |
|               |               | annound, white, med or play phenocrysts -> play phenocrysts are soft due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19246    | 46.85                                 | 48.25   |          |           |           |
| -             |               | all's to clay 3 no biolite andler K-spar occurs with after sometics ->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19247    | 48.25                                 | 49.72   |          |           |           |
| n an an an    |               | 170m 30.00. 56.24 the unit becomes more muttled up minor me in gtz 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19248    | 49 72                                 | 51.67   |          |           |           |
|               |               | Atteart venters in end this to a decrease in sericitie + cley alter a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19249    | 51.67                                 | 53.80   | ere de c | an an tar | • • • • • |
|               |               | presence of 3 to disseminated enhadred brokite -> presence of ute to open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19250    | 53.80                                 | 56.24   |          |           |           |
|               | • <u>•</u> •• | citin as well route eltin of gtz ventures & and very while eltid matery to K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | · · · · · · · · · · · · · · · · · · · |         |          |           |           |
|               |               | spar - p 55:50 so in while in herept of plennings to the ellin to K-span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                       |         |          |           |           |
|               |               | 10 diss pyrite - elso within fructures up etz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                       |         |          |           |           |
|               |               | $=$ $100 \times 70^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · ·  |                                       |         |          |           |           |
|               |               | iower contact as ~ 25 - juligalar was planar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ        | · · · · ·                             | 1       |          |           |           |
| 6.Z4          | 60.70         | Survey of Surgeright                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                       |         |          |           |           |
|               |               | SICISIONE - SILLISFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23151    | 56-24                                 | 57.80   |          |           |           |
|               |               | - 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23152    | 57.80                                 | 59.15   |          |           |           |
|               | -             | - > 80% at the back of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z3153    | 59.15                                 | 60.70   |          |           |           |
|               |               | che that have said by the music interbudded of this (41-3 cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | <u> </u>                              |         | •        |           |           |
|               |               | @ 10-75°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·    |                                       |         | ч.<br>Т  |           |           |
|               |               | at the hard hard and a first and the state of the state o | <b></b>  |                                       |         |          |           |           |
|               |               | essee of local intervalue of the local breezewhich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u> | ·                                     |         |          |           | ÷.        |
| i             |               | - 41% provin mentione in the 1 1 11. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                       | · · · · |          |           |           |
|               |               | - labor contact 0 = 75° CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u> | ·                                     |         |          | · .       |           |

D.D.J D. 00-03

Page 3 of

| From            | То        | DECRIPTION                                                                      | Sample #                              | From     | To       | %Ca | Aug/t | Ag g/t   |
|-----------------|-----------|---------------------------------------------------------------------------------|---------------------------------------|----------|----------|-----|-------|----------|
| 60.70           | 62.75     | OLARIZ FELDSRAR PORPHYRT                                                        | 23154                                 | 60.70    | 62.75    |     |       |          |
|                 |           |                                                                                 |                                       |          |          |     |       |          |
|                 |           | · very well developed porphystic texture -> 40-50% enhalted medge               |                                       |          |          |     |       |          |
|                 |           | white plagioclese xtls within fine or matrix - phenoerysis are white and        |                                       |          |          |     | 1     |          |
|                 |           | altered to white clay scoresers, unattered anticided phenousysts of g ta 2159-  |                                       |          |          |     |       |          |
|                 |           | matrix is ally to Kapar + service within 60% of intersection ->                 |                                       |          |          |     |       |          |
|                 | <u> </u>  | Dect this stringers exhibit well developed 'bleck' eith at phenocrypts          |                                       |          |          |     |       |          |
|                 |           | provimal to salvages -> some phone usis exhibit poitality texture to black      |                                       |          |          |     |       |          |
| ļ               |           | macral -> possibly very time grained aggregates of brother but doubtful => this |                                       |          |          |     |       |          |
|                 | <b></b> _ | Verture occurs @ 61.25 & 61.55 -> trace diss ever observed proving to eith      |                                       |          |          |     |       |          |
|                 | ļ         | -lower 60 cm of unit does not exhibit K-speralty but plus phenomysts are        |                                       | 1        |          |     |       |          |
|                 |           | shit heal, all a day                                                            |                                       |          |          |     |       |          |
| 1997 - 1994<br> |           | - 1 30 diss py + trace cpy the same second and a second second second           |                                       |          |          |     | 1.1.1 |          |
|                 | ·         | -loner contacto 70°                                                             |                                       | 1        |          |     |       |          |
| <u> </u>        | <u> </u>  |                                                                                 | · · ·                                 | 1        |          |     |       | ·        |
| 62.75           | 69.00     | FUTERBEDUED WACKE/SILTSTONE/ MLDSTONE                                           | 23155                                 | 62.75    | 64.60    |     |       | ·        |
|                 |           |                                                                                 | 23156                                 | 64.60    | 66.55    |     |       |          |
|                 |           | - fine to very fine gr, durn beise to black, bedded - beds p Bu-Sem nick        | 23157                                 | 66 55    | 69.00    |     |       |          |
|                 |           | - due to usuble rounded grains in some bails - sweeke                           |                                       | -        |          |     | -     |          |
|                 |           | - whit his been with to moderately else altic overpriviting remnant             |                                       |          |          |     |       |          |
|                 |           | textures to various degrees -> attin predominently, within pervertee.           |                                       |          |          |     |       |          |
|                 |           | moderately developed many fractures - local silvestion from atz & ob + consum   | e le                                  |          | <u> </u> |     |       |          |
|                 |           | - bedding planes p 70-80°CA > diffuse temination within local beds Their        |                                       | 1        |          |     |       |          |
|                 | ļ         | Weak graded bedding shows vouncing is uphole                                    |                                       | <u> </u> |          |     |       |          |
|                 |           | - minur local bracention from sty veinlate of uk quarte momentization           |                                       | -        | ·        |     |       |          |
|                 |           | -lower contact & 80° CA                                                         | · · · · · · · · · · · · · · · · · · · |          |          |     |       |          |
| • • •           |           |                                                                                 |                                       |          |          |     |       |          |
| 69.00           | 83.32     | HOUTONITE                                                                       | 23158                                 | 69.00    | 2102     |     |       |          |
|                 | ļ         |                                                                                 | 23159                                 | 71.07    | 72.90    |     |       | ·        |
|                 | ļ         | - Fine to mader patch, ever, I dellow to message                                | 23160                                 | 22 90    | 75 03    |     |       | <u> </u> |

D.D.I D. <u>00-03</u>

Page <u>4</u> of \_\_\_\_\_

| From                                    | То            | DECRIPTION                                                                                                      | Sample # | From   | To        | %Cu    | Au g/t         | Ag g/t  |
|-----------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------|----------------|---------|
|                                         |               | - typical texture of medium or, anticided white play planourysts within                                         | Z3141    | 75.03  | 76.95     |        |                |         |
| ļ                                       |               | fine so metrix of plus + service+1- clay > local enhedral crusts of                                             | 23162    | 76.95  | 78.95     |        |                |         |
| ļ                                       | ļ             | med state 2 3.5% at wait                                                                                        | 23163    | 78.95  | 80.40     |        |                |         |
|                                         |               | - whit while to very petchy appearance due to patchy/semi pervesive                                             | 23164    | 80.40  | 81.95     |        |                |         |
| ļ                                       |               | mod / well developed K-spor altin which overprints original plas rich.                                          | 23165    | 81.95  | 83.82     |        |                |         |
| · ·                                     |               | mottled grey clayt serieste altid unit of Two - three phases of elling                                          |          |        |           |        |                |         |
| ļ                                       |               | -> 290 of whit exhibits planes at yeinless commonly w/ py +/- trace                                             | ··- ··   | 1      |           |        |                |         |
|                                         |               | cpy -7 py to hemetite locally -7 py is also disseminated = = 230 py                                             | 1        |        | -         |        | <u> </u>       |         |
|                                         |               | overall                                                                                                         |          |        |           |        |                |         |
|                                         |               | -Placed black clay (ch1??) elting Prare                                                                         |          | · ·    | · · · · · | ···· · |                |         |
|                                         |               | -> primary bistite absent -> minor secondary bis inf verilets                                                   |          |        |           |        | 1.1            |         |
|                                         | · · ·         | -> long contact @ 90° C.A                                                                                       |          |        |           |        |                |         |
| No. 19                                  | in the second | and a second provide the second providence and the second second second second providence and the second second |          | · ·    |           | - 1    | and the second | and the |
| 83.32                                   | 105.45        | HUDSTONE/SILTSTONE                                                                                              | 23166    | 88.32  | 85.00     |        |                | [       |
| ļ <u>.</u>                              |               |                                                                                                                 | 23167    | 88.25  | 89.25     |        |                |         |
|                                         |               | - intervedded unit, predominantly discurrent day coloured day allin                                             | 23168    | 100.95 | 102.50    |        |                |         |
|                                         |               | of Lids & health, y-catting headding                                                                            | 23169    | 102.50 | 103.75    |        | 1 A.           |         |
|                                         |               | - beds are diffuse to well preserved up highly variable this kness of 41 cm                                     | 23170    | 103.75 | 105.45    |        |                | ·       |
|                                         |               | to 750 cm - local bods exhibit with lamination within - 2 attitude of                                           |          | _      |           |        |                | ·       |
|                                         | · .           | bidding p 60° C.A                                                                                               |          |        |           |        |                |         |
|                                         | · ·           | - bait is x- out by numerous, gtz and/or could strongers & ventets -> may                                       |          |        | ·         |        |                |         |
|                                         | · · ·         | or may not exhibit alt , hlorilice altin                                                                        |          |        |           |        |                |         |
|                                         |               | + truce by 7 seen of one carb verilet                                                                           |          |        |           |        |                |         |
|                                         |               | \$ 102.50 to 103.75 => extensive gtz flooding of local precention of <190                                       |          |        |           |        |                |         |
|                                         |               | patchy py                                                                                                       |          |        |           | •      |                |         |
| . `                                     | · ·           |                                                                                                                 |          |        |           |        |                |         |
|                                         | · ·           | => lower confect @ 10°C.A >> possible mixing of upper seds with                                                 |          |        |           | · · ·  |                |         |
| v                                       | ļ             | lower mater flow                                                                                                |          |        |           |        | · · ·          |         |
| · • • • • • • • • • • • • • • • • • • • |               |                                                                                                                 |          |        |           |        |                |         |
|                                         | L             |                                                                                                                 |          | · ·    |           |        |                | • •     |

| <u> </u> |   | KC    |
|----------|---|-------|
| D.D.Í    | b | 00-03 |



# Page 5 of

| From   | To        | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample # | From                                    | To               | %Cu     | Augh    | Ag g/t      |
|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|------------------|---------|---------|-------------|
| 105.45 | 143.60    | MAFIC FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23171    | 105.93                                  | 107.80           |         |         |             |
|        | ļ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23172    | 107.80                                  | 109.40           |         |         |             |
|        |           | - fine gr, black, messive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                         | μ <u>- · · ·</u> |         |         |             |
|        |           | - typical, non-descript massive flow -> @ 115.40 - 116.75 -> local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                         |                  | ·····   |         |             |
|        |           | dissempated medice provene crans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1                                       |                  |         |         |             |
|        |           | - unit is x- cut by 2-490 carb stringers/verning the purite of vernich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                         |                  |         |         |             |
|        |           | are rejecular to planar po 45-60° CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | i                                       | · · · · ·        |         |         |             |
|        |           | - modestely to highly Frid \$ 129.00 - 135.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |                                         |                  |         |         | <u> </u>    |
| Ŀ      |           | - \$ 132-60 - 134.60 -7 Jocelly well daveloped while 1th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | <u> </u>                                |                  |         |         | •           |
|        |           | - low contact o 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                         |                  |         |         |             |
|        | · ·       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1                                       | <u> </u>         |         |         |             |
| 143.60 | 144.30    | SHIEAR ZONE (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23173    | 142.60                                  | 144 30           |         |         |             |
| 1      | ومار ماند | - the part of the assessment of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                         |                  |         |         | · .         |
| L      | · ·       | - Fine to very fine grained alk bronnish ever have to mergin culture which handled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |                                         |                  |         |         |             |
|        |           | I uk to mod microfractures filled al ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | +                                       |                  |         |         |             |
|        |           | - uk bunding & 45° CA -> 5 lim unde -> year althus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | +                                       |                  |         | []      |             |
|        |           | . well developed as on lovel factures -7 = 12 merchil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | +                                       |                  |         |         |             |
|        |           | It this wait may represent a while developed shear Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | · · ···                                 |                  |         |         | <b></b>     |
|        |           | -lower contact p 60° C.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | + · · · · · · · · · · · · · · · · · · · |                  | · · · · |         |             |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |                  |         | · .     |             |
| 144.30 | 144.55    | MAGE FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                         |                  |         |         | · · · · · · |
|        |           | - Same 41 105.45- 143.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                         |                  |         |         |             |
|        |           | -lower complet & 74° CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                         |                  |         | []      |             |
| 1      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                         |                  |         |         |             |
| 144.55 | 149.77    | FAULT ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72174    | 14590                                   | 141.90           |         |         | ·           |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1 1-11                                  |                  |         |         |             |
|        |           | - altered meta flow w/ 7 severale ale ance interacte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.00 M                                  | ·····            | · .     |         |             |
|        |           | - the Flow exhibits notfleet dealer dea to called all he had a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                         | <u> </u>         |         |         |             |
|        |           | setts of provenelly setty are bust developed where the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                         |                  |         |         |             |
|        |           | The second secon |          | <u> </u>                                |                  |         | · · · · |             |

| 0     | <b>`</b> | KC    |
|-------|----------|-------|
| D.D.F | b        | 00-03 |

Page \_\_\_\_\_ of \_\_\_\_\_

| From           | To          | DECRIPTION                                                                                                       | Sample #  | From         | Το     | % Cu     | Augh      | Age/     |
|----------------|-------------|------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------|----------|-----------|----------|
|                |             | - souse zones are predominently along take thereas or will the at points very                                    | -         | †** <b>-</b> |        |          |           |          |
| ·              |             | from 5. 40 cm -7 zones renge from 40-70° (A -> best developed gouge                                              |           | 1            |        |          | -         |          |
|                |             | Zone @ 146.95-147.35                                                                                             |           |              | +      |          |           |          |
|                |             | - local carb 1/2 pry vertets = 3-49. I ent 7 pry £ 19.                                                           |           |              | 1      |          | <u> </u>  |          |
|                |             | · lower contract @ 65"CA                                                                                         |           | · ·          | 1      |          |           |          |
|                |             |                                                                                                                  |           |              |        |          |           |          |
| 148.77         | 151.85      | MAFIC FLOW                                                                                                       | 23175     | 149.90       | 151.85 | ·····    | 1         |          |
|                | ļ           |                                                                                                                  |           | · · · ·      |        | -        |           | h        |
|                |             | - massive dt gray fine gr                                                                                        |           |              |        |          | · · · · · |          |
|                | · ·         | -local carb vemilels @ 50-55° to highly usegeter => + 5% of must " +1-                                           | 1         |              |        |          | <u> </u>  |          |
|                |             | p.y. with ventets                                                                                                |           | 1            | 1      |          |           |          |
|                |             | - 0151.80-152.36 -> well developed chil altin of local petche, provide ->                                        |           |              |        |          |           |          |
| till and the s | · · · · · · | essue a) carts merodractures of a considered as a merodial and a second and a second and a second as a second as |           |              |        |          |           |          |
|                |             | -lower contact of 45° and highly clay altich due to fault content - rates,                                       |           |              |        |          |           |          |
|                |             | altin is only. Sen nide                                                                                          |           | ·            |        |          | •••••     |          |
| 151.85         | 155.30      | GUARIZ PORPHYRY                                                                                                  | 23176     | 151.85       | 153 30 |          |           | <u>-</u> |
|                |             |                                                                                                                  | 73177     | 153.30       | 155.30 |          |           |          |
|                |             | - Fine to med ar, alt bronnich ern, to the light willouish area institled                                        |           |              | 100.0  |          |           |          |
| ·              |             | tenture, massive                                                                                                 |           |              |        |          |           |          |
|                |             | - alled intensive dyke -> medium or (4.8mm) unheurit of phenoenicts                                              |           |              |        |          |           |          |
| <u> </u>       | ļ           | in an altich matery -> matery whiles versions evolvers from altim remains from                                   |           |              |        |          |           |          |
|                |             | chloritic to alar to brittle is unit is locally moderately determine                                             | -]        |              |        |          |           |          |
|                |             | - locally (@ 154.50) entered erecte at chi occur                                                                 |           |              |        | <u> </u> |           |          |
|                |             | - unit yuhibits = 170 dive py                                                                                    |           |              | .      |          |           |          |
|                |             | -lower contact p 70°61                                                                                           |           |              |        |          |           | ·        |
|                |             |                                                                                                                  |           |              |        | • • •    |           |          |
| 155.30         | 175.87      | MAFIC FLOW                                                                                                       | 23178     | 155.30       | 156.45 |          |           |          |
|                |             |                                                                                                                  | 23179     | 156.45       | 158.00 |          |           |          |
| · · ·          |             | Same as 105,45-143.60                                                                                            | - · · · · |              |        |          |           |          |

| ~     | ~ | KC    |
|-------|---|-------|
| D.D.I | b | 00-03 |

Page 7\_ of

| 11014    | 10           | DECRIPTION                                                                                                                                                 | Sample # | From         | To            | %Cu        | Aug/t                                 | AREA         |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---------------|------------|---------------------------------------|--------------|
|          |              | - upper I make exhibits local mod clay alling all                                                                                                          |          |              | -             | +          | <del> </del>                          |              |
|          |              | - Childen common timetures throught                                                                                                                        |          | <u> </u>     |               |            | · · · · · · · · · · · · · · · · · · · |              |
| ··       |              | - local mottled fixture @ 0.50 to 1.5m of patchy secondary                                                                                                 |          |              |               |            | <u> </u>                              | <u> </u>     |
|          |              | cht altin +1- well developent pyrite                                                                                                                       |          | <u> </u>     | <u> </u>      | +          |                                       | <u>├</u> ──- |
|          |              |                                                                                                                                                            |          | <u> </u>     |               | <u> </u>   |                                       |              |
|          |              | <u><u><u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u> |          | +            |               |            | ł                                     |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            | 1        | <u>├─</u> ─  | <u> </u>      |            |                                       |              |
| -        |              |                                                                                                                                                            |          | <u> </u>     | ╈╍╌──         | <u> </u>   |                                       |              |
|          |              |                                                                                                                                                            |          |              | +             |            |                                       | <u> </u>     |
| .        |              |                                                                                                                                                            | }        | <u> </u>     | <del> -</del> |            |                                       | I            |
|          |              |                                                                                                                                                            |          | <u> </u>     | +             | ┼          | <u> </u>                              |              |
| <u> </u> | 2 · · · · ·  | and the second secon                                            |          |              | +             |            | <u> </u>                              |              |
|          |              |                                                                                                                                                            |          |              | <u> </u>      |            |                                       | • •          |
|          | <del>.</del> |                                                                                                                                                            | <u>+</u> | ·            | ┦             | <u> </u>   |                                       |              |
|          |              |                                                                                                                                                            | <u> </u> |              |               | <b> </b>   |                                       |              |
|          |              |                                                                                                                                                            | +        |              |               | <b>.</b> . |                                       |              |
|          |              |                                                                                                                                                            | ÷        |              | ļ             | · ·        |                                       |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            | ·        |              | ļ             |            |                                       |              |
|          |              |                                                                                                                                                            |          |              |               | · · ·      |                                       |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            |          |              |               |            |                                       | _            |
|          |              |                                                                                                                                                            |          |              |               |            |                                       |              |
|          | · · ·        |                                                                                                                                                            |          |              |               |            |                                       |              |
|          |              |                                                                                                                                                            |          | . ,<br>      |               | •          |                                       |              |
|          |              |                                                                                                                                                            | L        | <del>.</del> | !<br>         |            |                                       |              |
|          |              |                                                                                                                                                            |          | · · · · ·    |               |            |                                       |              |
|          | h            |                                                                                                                                                            |          |              |               |            |                                       | •            |

# KEMESS CENTRE DRILL HOLE ASSAY RESULTS FOR KC-00-03

| 5        | 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5                | ۲<br>۲         | 11:11:1          | [ <u>)</u>                 | 7: 225           | 22 2200  |
|----------|-----------------------------------------|------------------|----------------|------------------|----------------------------|------------------|----------|
|          |                                         | 4 70             | R 23           | 3 53             | 129<br>129                 | 25<br>25         | 0 1      |
| KC-00-03 | 19227                                   | 8.23             | 10.40          | 2,17             | 230                        | ខ                | 0.1      |
| KC-00-03 | 19228                                   | 10.40            | 13.55          | 3.15             | 231                        | 55               | 0.6      |
| KC-00-03 | 19229                                   | 13.55            | 16.55          | 3.00             |                            | 10               | 2.0.1    |
| KC-00-03 | 19231                                   | 17.15            | 19.75          | 2.60             | 686                        | 380              |          |
| KC-00-03 | 19232                                   | 19.75            | 21.25          | 1.50             | 61                         | <del>1</del> ភ   | 0.1      |
| KC-00-03 | 19233                                   | 21.25            | 22.65          | 1.40             | 106                        | 20               | 0.1      |
| KC-00-03 | 19234                                   | 22.65            | 24.90          | 2.25             | 196                        | ;20              | .1       |
| KC-00-03 | 10230                                   | 24.90            | 20.72<br>C0.72 | 1 00             | 3 2                        | ა_<br>"<         |          |
| KC-00-03 | 19237                                   | 29.55            | 31.50          | 1.95             | 31                         | <u>р</u><br>57 с | <u>9</u> |
| KC-00-03 | 19238                                   | 31.50            | 33.50          | 2.00             | 38                         | 2.5              | 0.1      |
| KC-00-03 | 19239                                   | 33.50            | 35.65          | 2.15             | 25                         | 2.5              | 0.1      |
| KC-00-03 | 19240                                   | 35.65            | 37.70          | 2.05             | 24                         | 2.<br>G          | 0.1      |
| KC-00-03 | 19241                                   | 37.70            | 39.45          | 1.75             | 20                         | א<br>יט<br>יט    | 0.1      |
| KC-00-03 | 19242                                   | 39.45            | 41.75          | 12.30            | \$ «                       | s N<br>n U       |          |
| KC-00-03 | 19243                                   | 43.30            | 43.30<br>44 BD | 1.50             | 5 15                       | 20.5             | 0        |
| KC-00-03 | 19245                                   | 44.80            | 46.85          | 2.05             | 21                         | 2.5              | 0.1      |
| KC-00-03 | 19246                                   | 46.85            | 48.25          | 1.40             | 14                         | 2.5<br>5         | 0.1      |
| KC-00-03 | 19247                                   | 48.25            | 49.72          | 1.47             | 8<br>18                    | о<br>л<br>U      |          |
| KC-00-03 | 19249                                   | 51.67            | 53.80          | 2.13             | 38                         | א<br>ס ני        | 0        |
| KC-00-03 | 19250                                   | 53.80            | 56.24          | 2.44             | 29                         | 2.5              | 0.1      |
| KC-00-03 | 23151                                   | 56.24            | 57.80          | 1.56             | 34                         | 2.5<br>5         | 0.1      |
| KC-00-03 | 23152                                   | 57.80            | 59.15<br>en 70 | - <u>- 1</u> -35 | 30                         | о N<br>Л С       |          |
| KC-00-03 | 23154                                   | 60.70            | 62.75          | 2.05             | 14                         | 2.5              | 2        |
| KC-00-03 | 23155                                   | 62.75            | 64.60          | 1.85             | 23                         | 2.5              | 0.1      |
| KC-00-03 | 23156                                   | 64.60            | 66.55          | 1.95             | 2<br>2<br>2<br>3<br>2<br>3 | ა<br>ი<br>ო<br>ლ | 0.1      |
| KG-00-03 | 23158                                   | 00.69            | 71.07          | 2.07             | 20                         | р<br>Сл (        | 01       |
| KC-00-03 | 23159                                   | 71.07            | 72.90          | 1.83             | 29                         | 2.5              | 0.1      |
| KC-00-03 | 23160                                   | 72.90            | 75.03          | 2.13             | 129                        | 2.5              | 0.1      |
| KC-00-03 | 23161                                   | 75.03            | 76.95          | 1.92             | 3 28                       | 2 N<br>1 O       | 0.1      |
|          | 23162                                   | 78 05            | 07.08          | 1 45             | 20                         | <u>л</u> о<br>ло |          |
| KC-00-03 | 23164                                   | 80.40            | 81,95          | 1.55             | ¥                          | 2.5              | 0.1      |
| KC-00-03 | 23165                                   | 81.95            | 83.32          | 1,37             | 66                         | 2.5              | 0.1      |
| KC-00-03 | 23166                                   | 83.32            | 85,00          | 1.68             | 19                         | 2.5              | 0.1      |
| KC-00-03 | 23167                                   | 400 DE           | 89.25          | 1.00             | 121                        | o N<br>n U       |          |
| KC-00-03 | 23169                                   | 102.50           | 103.75         | 1.25             | 60                         | 2.5              | 1.6      |
| KC-00-03 | 23170                                   | 103.75           | 105.45         | 1.70             | 65                         | 2.5              | 0.1      |
| KC-00-03 | 23171                                   | 105.93           | 107.80         | 1.87             | 120                        | ີ<br>ເ           | 0.1      |
| KC-00-03 | 23172                                   | 107.80           | 109.40         | 1.60             | 701                        | 2.5              | 0,1      |
| KC-00-03 | 23173                                   | 143.60           | 144.30         | 1 00             | 53                         | 80               |          |
| KC-00-03 | 23175                                   | 149.90           | 151.85         | 1.95             | 272                        | 15               | 0.1      |
| KC-00-03 | 23176                                   | 151.85           | 153.30         | 1.45             | 45                         | 12               | 0.1      |
| KC-00-03 | 23177                                   | 153.30           | 155,30         | 2.00             | 72                         |                  | 0.1      |
| KC-00-03 | 23178                                   | 155.30<br>156.45 | 158.00         | 1.10             | 198                        | 430              | 0.1      |
|          |                                         | 00000            |                |                  |                            |                  |          |

· 1

· .



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

io: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Commonts: ATTN: BRETT LAPEARE

A0024183

UPPER

LIMIT

1000

DETECTION

LIMIT

1

CERTIFICATE A0024183 ANALYTICAL PROCEDURES 2 of 2 (PIL) - KEMESS MINE NUMBER SAMPLES CHEMEX CODE DESCRIPTION METHOD Project: KEMESS CENTRE P.Ó. # : 200950 3 32 Mo ppm: HNO3-aqua regia digest AAS Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2000. SAMPLE PREPARATION NUMBER SAMPLES CHEMEX DESCRIPTION 214 119 Revd as pulp; mesh size checked 238 119 Nitric-aqua-regia digestion 229 23 ICP - AQ Digestion charge NOTE The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Bo, Ca, Cr, Ca, K, La, Mg, Na, Sr, Ti, T1, W.



## **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemiata \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-9221 FAX: 604-984-9218

>: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

·----

...\*

Page N Jr : 1-A Total Payos :3 Certificate Date: 01-AUG-2000 Invoice No. : 10024183 P.O. Number :200950 Account : PIL

Project : KEMESS CENTRE Commente: ATTN: DRETT LAPEARE

|       |                                                    |                                                                           |                                                                                                                                                             |                                  |                  |           |          |             | CI        | ERTIF     |         | EOF       | ANAL      | YSIS      |           | A0024   | 4183      |           |        |
|-------|----------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-----------|----------|-------------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|--------|
|       | SAMPLE                                             | PREP<br>CODE                                                              | Au ppb Ag ppm<br>FA+AA Agua R                                                                                                                               | Cu<br>ppm                        | אט אנ<br>אין שעכ | uu<br>maa | ß<br>ppm | Ba<br>ppm   | Be<br>ppm | Bi<br>ppm | Ca<br>% | cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fo<br>X | Ca<br>ppm | ug<br>Ppm | К<br>Х |
|       | 19203<br>19204<br>19205<br>19206<br>19207          | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238            | 5 < 0.2<br>< 5 < 0.2                                                                                    | 210 <<br>288<br>31<br>143<br>35  | 0.2 0.94         | < 2<br>   | < 10     | 190<br>     | < 0.5     | < 2       | 2.66    | < 0.5     | 9<br>     | 72        | 212       | 3.09    | < 10      | < 1       | 0.12   |
|       | 19208<br>19209<br>19210<br>19211<br>19212          | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238 | <pre>&lt; 5 &lt; 0.2 5 4.4 &lt; 5 0.2 &lt; 5 &lt; 0.2 &lt; 5 &lt; 0.2 &lt; 5 &lt; 0.2 &lt; 5 &lt; 0.2</pre>                                                 | 20 <<br>601<br>257<br>270<br>262 | 0.2 0.73         | 2         | < 10     | <b>4</b> 70 | 0.5       | < 2       | 5.49    | < 0.5     | 7         | 28        | 17        | 2.70    | < 10      | < 1       | 0.18   |
|       | 19213<br>19214<br>19215<br>19216<br>19217          | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238 | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                       | 727<br>258<br>116<br>153<br>43   | 0.4 0.30         | 12        | < 10     | 230         | < 0.5     | < 2       | 2.74    | < 0.5     | 15        | 172       | 687<br>   | 1.49    | < 10      | < 1       | 0.03   |
|       | 19218<br>19219<br>19220<br>19221<br>19221<br>19222 | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238            | <pre>&lt; 5 &lt; 0.2 &lt; 5 0.2 &lt; 20 0.2</pre>                                           | 22 <<br>41<br>88<br>470<br>872   |                  | 10        | < 10     | 600         | < 0.5     | < 2       | 2.15    | < 0.5     | 9         | 105       | 18<br>    | 2.78    | < 10<br>  | < 1       | 0.67   |
| I     | 19223<br>19224<br>19225                            | 214 238<br>214 238<br>214 238                                             | < 5 < 0.2<br>< 5 < 0.2<br>< 5 < 0.2<br>< 5 < 0.2                                                                                                            | 75 <<br>139<br>24                | 0.2 1.40         | 5 30<br>  | < 10     | 250         | < 0.5     | < 2       | 1.94    | < 0.5     | 8         | 113       | 66        | 2.66    | < 10      | < 1       | 0.09   |
|       | 19226<br>19227                                     | 214 238<br>214 238                                                        | 25 < 0.2<br>50 < 0.2                                                                                                                                        | 129                              |                  |           |          | ****        |           |           |         |           |           |           | *****     |         |           |           |        |
|       | 19228<br>19229<br>19230<br>19231<br>19231          | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238            | 55       0.6         10          75          80       1.0         15                                                                                        | 231<br>91<br>113<br>686<br>61    | 0.6 0.7          | 3 32      | < 10     | 720         | < 0.5     | < 2<br>   | 8.50    | 0.5       | 12        | 14        | 237       | 2.57    | < 10      | < 1<br>   | 0.09   |
| 20-03 | 19233<br>19234<br>19235<br>19236<br>19237          | 214 239<br>214 239<br>214 239<br>214 239<br>214 239<br>214 239            | 20 < 0.2<br>20 < 0.2<br>10 < 0.2<br>< 5 < 0.2<br>< 5 < 0.2                                                                                                  | 106<br>96<br>51<br>20<br>31      | 0.6 0.5          | 34        | < 10     | 60<br>      | < 0.5     | < 2       | 10.15   | 0.5       | 19<br>    | 40        | 98        | 3.42    | < 10      | < 1<br>   | 0.06   |
| 174   | 19238<br>19239<br>19240<br>19241<br>19242          | 214 238<br>214 238<br>214 238<br>214 238<br>214 238<br>214 238            | <pre>&lt; 5 &lt; 0.2 &lt; 5 &lt; 0.2 </pre> | 38<br>25<br>24<br>20<br>9        | 0.2 0.7          |           | < 10     | 30          | < 0.5     | < 2<br>   | 5.85    |           | 19        | 84<br>    | 38        | 3.37    | < 10      | < 1       | 0.09   |
|       | L                                                  |                                                                           | <u> </u>                                                                                                                                                    |                                  |                  |           |          | <u> </u>    | -         |           |         |           | 050715    |           | <u> </u>  | वज्य    | 1.2       | 119-0     | 2      |

1

CERTIFICATION:\_



ì

## **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 804-984-0221 FAX: 804-984-0218

o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VOJ 2N0

. .

Projoct : KEMESS CENTRE Comments: ATTN: BRETT LAPEARE

-\*

Page N 3r :1-B Total Pages :3 Certificate Date: 01-AUG-2000 Invoice No. : 10024183 P.O. Number :200950 Account PIL

 $\sim 1 \sqrt{1}$ 

|      |                                                    |                                        |                                        |           |         |           |           |             |           |          |           | CI            | RTIF      | ICATI     | EOF       | ANAL     | YSIS      |           | A0024    | 1183     |           |           |
|------|----------------------------------------------------|----------------------------------------|----------------------------------------|-----------|---------|-----------|-----------|-------------|-----------|----------|-----------|---------------|-----------|-----------|-----------|----------|-----------|-----------|----------|----------|-----------|-----------|
|      | SAMPLE                                             | rns<br>COI                             | er<br>DE                               | La<br>ppm | Mg<br>% | Mn<br>ppm | Мо<br>ррш | Na<br>%     | Ni<br>ppm | P<br>ppm | Pb<br>ppm | 8<br><b>%</b> | Sb<br>ppm | Яс<br>ррт | 8r<br>ppm | Ti<br>%  | Tl<br>ppm | u<br>madā | V<br>mqq | W<br>ppm | Zn<br>ppm | Mo<br>ppm |
|      | 19203<br>19204<br>19205<br>19206<br>19207          | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | 10        | 0.67    | 450       | 9         | 0.08        | 6<br>     | 680      | < 2<br>   | 0.03          | < 2       | 7         | 96        | < 0.01   | < 10      | < 10      | 64<br>   | < 10     | 22        |           |
|      | 19208<br>19209<br>19210<br>19211<br>19212          | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | 10        | 0,37    | 725       | 2         | 0.07        | 4         | 680<br>  | < 2       | 0.01          | < 2       | 6<br>     | 190       | < 0.01   | < 10      | < 10      | 41       | < 10<br> | 26        |           |
|      | 19213<br>19214<br>19215<br>19216<br>19216<br>19217 | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10      | 0.19    | 755       | 126       | 0.01        | 27        | 750      | < 2       | 0.50          | < 2       | 4         | 33        | < 0.01   | < 10      | < 10      | 24       | < 10     | 54        |           |
|      | 19218<br>19219<br>19220<br>19221<br>19222          | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10<br>  | 0.81    | 1205      | 8         | 0.05        | 22        | 140      | 2         | 0.14          | < 2       | 10        | 60<br>    | 0.10     | < 10      | < 10      | 36       | < 10     | 70        |           |
|      | 19223<br>19224<br>19225                            | 214<br>214<br>214                      | 238<br>238<br>238                      | < 10      | 0.57    | 570       | 18        | 0.03        | 28        | 240      | 6         | 0.25          | < 2       | 6<br>     | 47        | 0.01     | < 10      | < 10      | 17       | < 10     | 58<br>    |           |
|      | 19226<br>19227<br>19228<br>19229                   | 214<br>214<br>214<br>214               | 238                                    | 10        | 0.35    | 1145      | 2         | 0.01        | 7         | 1030     | 106       | 0.21          | < 2       | B         | 59        |          | < 10      | < 10      | 75       | < 10     | 82        |           |
| ŝ    | 19230<br>19231<br>19232<br>19233                   | 214<br>214<br>214<br>214               | 238                                    | < 10      | 0.95    | 2230      |           | 0.01        | . 27      | 360      |           | 1.20          |           |           |           | < 0.01   | < 10      |           | 62       | < 10     | 122       |           |
| 100  | 19234<br>19235<br>19236<br>19237                   | 214<br>214<br>214<br>214               | 239<br>238<br>238<br>238<br>238        |           |         |           |           |             |           |          |           |               |           |           |           |          |           |           |          |          |           |           |
| , XC | 19238<br>19239<br>19240<br>19241<br>19242          | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10<br>  | 0.61    | 540       |           | 3 0.01<br>' | 52        | 440      | ~ 2       | 1.74          |           |           | ) 8!      | 5 < 0.01 | . < 10    | < 10      | ) 77     | < 10     | <br><br>  |           |
|      | L.,                                                |                                        | .1                                     | <b>.</b>  |         |           |           |             |           |          |           |               |           |           | _         | CERTIE   |           | * 2       | 210      | Le 1     | 1.0.6     | 22        |

CERTIFICATION:\_\_



ł

1

60

ŧ

8

1

J

23178

23179

23180

23181

23182

#### **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Avo., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

KEMESS MINE 0:

> P.O. BOX 3519 SMITHERS, BC VOJ 2NO

**KEMESS CENTRE** Project : ATTN: BRETT LAPEARE Commonts:

\* م

**CERTIFICATE OF ANALYSIS** 

ər :2-A Page 1 Total Payes :3 Certificate Date: 01-AUG-2000 Invoice No. :10024183 P.O. Number : 200950 Account : PIL

Κ

Χ.

0.15

\_\_\_\_

0.19

\_\_\_\_

----

----

----

0.22

0.30

\_\_\_\_

0.08

----

1.20

0.33

0.29

\_ \_ \_ \_

A0024183

Вİ Ca Cđ Co Ċr Cu Fe Ga Ľg λ1 В Ba Bo λs PREP Au pph Ag ppm Ċu λg x ppm ۶ ppm ррш ppm nom ppm 2 ppm ppm DDT DDW CODE FA+AA Aqua R ppm SAMPLE ppm ppm 31 2.63 < 10 < 1 < 2 4.66 < 0.5 5 9 0.65 < 10 30 0.5 0.2 < 2 214 238 < 5 < 0.2 12 19243 ---------\_\_\_\_ < 5 < 0.2 15 ..... 19244 214 238 \_\_\_\_ 214 238 21 19245 < 5 < 0.2 214 238 < 5 < 0.2 14 19246 \_\_\_\_ 214 238 < 5 < 0.2 1 R 19247 27 14 2.51 < 10 < 1 < 10 260 0.5 < 2 6.19 < 0.5 5 < 0.2 0.85 2 214 238 < 5 16 < 0.2 19248 ----214 238 < 5 < 0.2 38 --------\_\_\_\_ 19249 214 238 19250 < 5 < 0.2 29 214 238 < 5 < 0.2 34 23151 214 238 < 5 < 0.2 64 23152 214 238 < 5 < 0.2 30 \_\_\_\_ 23153 214 238 < 0.2 23154 < 5 14 < 1 2.78 < 0.5 39 20 3.40 < 10 0.5 < 2 6 240 214 238 < 0.2 23 < 0.2 1.06 < 10 23155 < 5 ---23156 214 238 < S < 0.2 25 ..... 238 < 0.2 26 23157 214 < 5 20 23158 214 238 < 5 < 0.2 29 23159 214 238 < 5 < 0.2 < 10 2.51 < 0.5 16 123 126 2.43 < 1 6 < 10 30 < 0.5 < 2 0.36 214 238 < 5 < 0.2 129 0.2 23160 \_\_\_\_ 28 23161 214 238 < 5 < 0.2 214 238 < 5 < 0.2 57 23162 214 238 < 5 < 0.2 23 \_\_\_\_ 23163 . . . . . 214 238 < 5 < 0.2 34 23164 81 62 2.28 < 10 < 1 2.56 < 0.5 70 < 0.5 < 2 R < 5 < 0.2 66 0.2 0.60 ß < 10 214 238 23165 < 5 < 0.2 19 . ... 214 238 23166 121 214 238 × 5 < 0.2 \_\_\_\_ ----23167 23168 23169 214 238 < 5 < 0.2 28 214 238 < 5 1.6 60 \_\_\_\_ ----5.57 < 0.5 33 44 57 6.92 < 10 < 1 < 10 130 0.5 < 2 1.06 86 65 < 0.2 23170 214 238 < 5 < 0.2 --------214 238 5 < 0.2 120 23171 214 238 < 5 < 0.2 107 ----23172 17 214 238 5 < 0.2 23173 ----62 23174 214 238 20 < 0.2 2.78 239 253 6.37 10 < 1 50 0.5 < 2 < 0.5 43 0.2 24 < 10 272 2.99 23175 214 238 15 < 0.2 ---------\_\_\_\_ \_\_\_\_ ----45 23176 214 238 < 5 < 0.2 72 ----\_\_\_\_ 214 238 < 5 < 0.2 23177 ----\_\_\_\_ ------------\_\_\_\_

----214 238 < 5 < 0.2 81 ~--------\_\_\_\_ \_\_\_\_ ------------198 214 238 430 < 0.2 0.13 84 126 3.17 < 10 < 1 1.35 8 < 0.2 < 10 180 < 0.5 < 2 < 0.5 < 0.2 120 1.34 2 214 238 10 .... ~ ~ ~ ~ ~ = ----- ----- \*\*\*\*\*\* ----214 238 < 5 < 0.2 130 ----- ----------\_\_\_\_ \_\_\_\_ ..... --------43 ---------< 5 < 0.2 214 238 Λ .~ --

CERTIFICATION:

くろん



į ;

> ĉ Ţ 0 0 1 ل كر

# ALS Chemex

Analytical Chomists \* Geochemists \* Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604 984 0221 FAX: 604-984-0218

b: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Page I. ar :2-B Total Payes :3 Certificate Date: 01-AUG-2000 Invoice No. :10024183 P.O. Number :200950 Account :PIL

١

Project : KEMESS CENTRE Comments: ATTN: DRETT LAPEARE

\_\*

|                                       |                                        |                                        |           |         |           |           |         |              |          |               | Cl            | ERTIF     | ICAT      | EOF              | ANAL    | YSIS      |          | A002      | 4183                | <u> </u>  |           |
|---------------------------------------|----------------------------------------|----------------------------------------|-----------|---------|-----------|-----------|---------|--------------|----------|---------------|---------------|-----------|-----------|------------------|---------|-----------|----------|-----------|---------------------|-----------|-----------|
| SAMPLE                                | рян<br>COI                             | SP<br>DE                               | La<br>ppm | Mg<br>X | Mn<br>ppm | ppm<br>mo | Na<br>X | Ni<br>ppm    | ų<br>mgą | ष्ट्र<br>वर्ष | 8<br><b>X</b> | яр<br>ррш | Sc<br>ppm | 8r<br><b>ppm</b> | Tİ<br>X | Tl<br>ppm | ט<br>בקק | v<br>ppm  | W<br>ppm            | Zn<br>ppm | мо<br>шqq |
| 9243<br>9244<br>9245<br>9246<br>9247  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | 10        | 0.95    | 600<br>   | 2<br>     | 0.02    | <b>4</b><br> | 600<br>  | 16<br>        | 2.25          | < 2<br>   | 5<br>     | 111<br>          | < 0.01  | < 10      | < 10     | 26<br>    | < 10                | 52<br>    |           |
| 9248<br>9249<br>9250<br>8151<br>8152  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | 10        | 0.96    | 720       | 2         | 0.01    | 4            | 610<br>  | < 2           | 0.52          | < 2       | 6<br>     | 105              | < 0.01  | < 10      | < 10     | 41<br>    | < 10                | 38        |           |
| 3153<br>3154<br>3155<br>3156<br>3157  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | <br>< 10  | 1.40    | 1430      | <br>3<br> | 0.02    | 12<br>       | 230      | < 2           | 0.16          | < 2       | <br>9     | 115              | 0.01    | < 10      | < 10     | 55<br>    | < 10                | <br>86    |           |
| 3158<br>3159<br>3160<br>3161<br>3162  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10      | 0.48    | 955<br>   | <br>16    | 0.02    | 11<br>       | 250      | 4             | 1.62          | < 2       | < 1       | <br>             | < 0.01  | < 10      | < 10     | <br>5<br> | < 10                | 42        |           |
| 3163<br>3164<br>3165<br>3166<br>3167  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10      | 0.91    | 1405      | <br>6<br> | 0.02    | <br>9<br>    | 250      | 2<br>2        | 1.31          | <br>< 2   | 1<br>1    | 57               | < 0.01  | < 10      | < 10     | <br>9<br> | < 10                | 54        |           |
| 3168<br>3169<br>3170<br>3171<br>3172  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>239<br>239<br>239<br>238 | < 10      | 1.78    | 1755      | 1         | 0.03    | 41           | 1220     | < 2           | 0.90          | 2         | 29        | 101              | 0.01    | < 10      | < 10     | 180       | < 10                | 68        |           |
| 3173<br>3174<br>3175<br>3176<br>3177  | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10      | 2.10    | 605       | <br>7<br> | 0.07    | 44           | 980      | < 2           | 1.96          | 2         | 17        | 65               | 0.08    | < 10      | < 10     | 159       | < 10                | 54        |           |
| 3178<br>3179<br>3180<br>3181<br>(3182 | 214<br>214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238<br>238 | < 10      | 1.01    | 425       | 9<br>     | 0.07    | <br>7<br>    | 680      | ~ 2           | 0.30          | < 2       | 6         | 37               | 0.03    | < 10      | < 10<br> | 74        | < 10<br>7<br>7<br>7 | 30        |           |

CERTIFICATION:\_\_

## SYNOPTIC DRILL LOG NORTHGATE EXPLORATION LTD. KEMESS PROJECT

D.D.H. NO. 00-04

## PAGE 1 OF \_\_\_\_

| NORTHING                        | 11500                                       | TOTAL DEPTH                   | 319.19                   |
|---------------------------------|---------------------------------------------|-------------------------------|--------------------------|
| FASTING                         | <b>B</b> 1 00                               | TOATL CASING                  | 15'                      |
| PLEVATION                       | 1420                                        | DATE START                    | July 14, 2000            |
| DECTATION                       | KENNELL CENTRE                              | DATE END                      | July 19 2000             |
| PROJECTIAREA                    | Azet Colkit                                 | CORE DIAMETER                 | <u> </u>                 |
| AZIMUTH                         | UTE SILA LASI                               | GEOLOGIST                     | BREIT LAPEARE            |
| SAMPLE SERIE                    | 23180<br>S: 23251<br>23401                  | 23200<br>-TO 23300<br>- 23500 | 23651 - 23677            |
| TARGET/PURJ                     | POSE: To fuit                               | chargeal. 1. Ky high          | enomely, provinced to    |
| ructionation<br>COMMENTS (1     | polassiz high<br>arget intersected? / descr | ibe): 1+3% p. +L              | epsy ->disseminated,     |
| Fricture contro<br>Kingar altin | Hell, and w/ st                             | ockhork locally =             | parin, to semi-pervision |

| Downhole | Depth    | Туре                                  | Azimuth | Dip    |
|----------|----------|---------------------------------------|---------|--------|
| Survey   | 9970m    | EASTMAN                               | 081°    | - 62°  |
| Buivey   | 700.30m  | EASTMAN                               | 084*    | -62*   |
|          | 300.91 m | EASIMAN                               | 0890    | -60.5° |
|          | 5000     |                                       |         |        |
|          |          | · · · · · · · · · · · · · · · · · · · |         |        |

| From     | То     | Rock Type                  | Alteration | Mineralization | Comments                              |
|----------|--------|----------------------------|------------|----------------|---------------------------------------|
| A 00     | 4 52   | CANING / Over burden       | •          |                |                                       |
| 0.00     |        |                            |            |                | ·                                     |
| 1107     | 319 14 | QHADTZ MONZONITE           |            |                |                                       |
| <u> </u> |        | Shints had no ?o at        |            |                |                                       |
|          |        | la dans from               |            |                |                                       |
|          |        | git stays and from the     |            |                | · · · · · · · · · · · · · · · · · · · |
| ·        |        | m 67790410- M 1- Svenser   | · · ·      |                | · · · · · · · · · · · · · · · · · · · |
|          |        | -2 11 Januar Degularing    | - · ·      |                |                                       |
| · · · ·  | +      | Y Il Il                    |            |                |                                       |
|          |        | k-spar elin bocrarios      |            |                |                                       |
| ·        | ┢────  | and is interculation wi    |            |                |                                       |
| <br>     |        | ver, wit to moderately     |            |                |                                       |
|          |        | developed prop. 1. Fi elta |            |                |                                       |
| ļ        |        |                            |            |                | <br>                                  |
| L        |        | beet well developed        |            |                |                                       |
|          |        | (cp), as dissemmated and   |            |                |                                       |
| ļ        |        | Int gta 11- Early veintets |            |                |                                       |
| L        |        |                            |            |                |                                       |
|          |        | I newtpace                 |            |                |                                       |

KC-00-04

 $\left( \right)$ 

PAGE 2 OF \_2\_\_\_

| From         | To | Rock Type                             | Alteration                            | Mineralization                        | Comments   |
|--------------|----|---------------------------------------|---------------------------------------|---------------------------------------|------------|
|              |    | Les best abcervent from               |                                       |                                       |            |
| <u> </u>     |    | LUN ANTISC ADM DESA                   |                                       |                                       |            |
|              |    | 100,00 to 154 50 5 0                  |                                       |                                       |            |
|              | ļ  |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       | ·                                     |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    | · · · · · · · · · · · · · · · · · · · |                                       |                                       |            |
|              | -  |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       | 1                                     |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       | · · · · · · · · · · · · · · · · · · · |                                       |            |
|              | T  |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              | 1  |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
| ·            |    |                                       |                                       |                                       |            |
| <u>.,</u>    |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              | 1  | -                                     |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       | <u></u>                               |                                       |            |
|              |    |                                       |                                       |                                       | <u> </u>   |
| · .          |    |                                       |                                       |                                       |            |
|              |    |                                       | _ <b>_</b>                            |                                       | <u> </u>   |
|              |    |                                       |                                       |                                       | <u> </u>   |
|              | 1  |                                       |                                       |                                       | ļ          |
| <del>_</del> | +  |                                       |                                       |                                       | <u> </u>   |
| ·            | +  |                                       |                                       |                                       |            |
|              | +  |                                       |                                       |                                       |            |
| r            |    | · · · · · · · · · · · · · · · · · · · |                                       |                                       |            |
| L            |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       | · · · · · · · · · · · · · · · · · · · |            |
|              |    |                                       |                                       |                                       | _ <u> </u> |
| [            |    |                                       |                                       |                                       | _ <u></u>  |
|              |    |                                       |                                       |                                       |            |
|              |    |                                       |                                       | · ·                                   |            |

| 6        | 7 | KC    |
|----------|---|-------|
| <b>D</b> |   | 08-04 |

#### KEMESS EXPLORATION CORE LY SING FORM



| From                                  | To   | DECRIPTION                                                                     | Sample # | From    | To .   | %Cu         | Aug/t    | A2 27                                   |
|---------------------------------------|------|--------------------------------------------------------------------------------|----------|---------|--------|-------------|----------|-----------------------------------------|
| 0.00                                  | 4.57 | CASENG · OVERBURDEN                                                            |          |         |        |             |          | 1                                       |
|                                       |      |                                                                                |          |         |        |             | ļ        |                                         |
| 4.57                                  |      | QUARTZ MONTONITE                                                               | Z 3180   | 4.57    | §.23   |             | <u> </u> |                                         |
|                                       | 1    |                                                                                | 23181    | 8.23 .  | 10.60  |             |          | ļ                                       |
|                                       | 1    | - Fine/med/coarse crained, mottled alkeren - dell pinkisheren, massive         | 23182    | 10.60   | 12.80  |             | ļ        | <u>·</u>                                |
|                                       | 1    | - medium to coarse anbedral/subhedral folacioclese w/ medium to Fine           | 23183    | 12.80   | 1470   |             |          | <u> </u>                                |
|                                       |      | clained K-sport atz + med / coarse motics (homblende +/- biotite)              | 23154    | 14.70   | 17.00  | · · · · · · |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                       |      | Home metite +1- onlite =7 the unit also exhibity local well developed          | 23185    | 17.00   | 18.90  | · ·         |          |                                         |
|                                       | 1    | monorther alteration 2 ones w/ place + chil + er = thus 2 shyles at eltim      | 23156    | 18.90 . | 20.90  |             | ļ        | <u> </u>                                |
|                                       |      | Patassic                                                                       | 23187    | 20.90   | 22.70  |             |          |                                         |
|                                       |      | - 50% alwarders + 15% Keper + 10-15% quarte + 15-20% metrics +1.5%             | 23188    | 2270    | Z 5.15 |             |          |                                         |
|                                       |      | meanships the mether the energy (true)                                         | 23189    | 25.15   | Z7.45  |             |          | · · · · · · · · · · · · · · · · · · ·   |
|                                       |      | PROPRIATIC .                                                                   | 23190    | 27.45   | 29.10  |             |          | <u> </u>                                |
|                                       | 1    | 4074 alexander + 5-107 kinar + 3070 chlorite + 10-152 servite +1-52            | 23191    | 29.10   | 30.75  | <u> </u>    |          | ·                                       |
|                                       |      | a durate the Ale of Aree)                                                      | 23192    | 30.75   | 32.55  |             | ··       | <u> </u>                                |
|                                       |      |                                                                                | 23193    | 32.55   | 34.30  |             |          |                                         |
|                                       |      | - the K-case is mulath from secondary alteration -> the probalith was          | 23194    | 34.30   | 36.50  | · ·         |          | 1.12                                    |
| 1                                     |      |                                                                                | 23195    | 36.50   | 38.70  | 1 A 1       | · .      |                                         |
| · · · ·                               |      | Day, ar marte stores                                                           | 23196    | 38.70   | 40.25  |             |          |                                         |
|                                       |      | much as = = 2-22 that and a south quarter though at read                       | 23197    | 40.25   | 42.06  | 1           |          | _//                                     |
|                                       |      | 1 as here the arrive of health of yearless is = 1 cm w/ thin / E lmm)          | 23198    | 42.06   | 44.05  | -           |          | <u>.</u>                                |
| <u> </u>                              |      | and carry being any or and the second of the                                   | 23197    | 44.05   | 46.15  |             |          |                                         |
|                                       |      | singles wing nore common with alter and up convert = also common               | 23200    | 46.15   | 47.85  |             |          |                                         |
|                                       | -    | the fat case that I where a this on some half alter Front scenes               |          |         | -      |             |          |                                         |
| · · ·                                 |      | The same even destination of the survey between a brief & anality              | 23251    | 47.85   | 50.20  |             |          |                                         |
| · · · · · · · · · · · · · · · · · · · |      | ALTERATION - 63 minitian 2000, and Others Scinity preside propriet             | 23252    | 50.20   | 52.10  |             |          |                                         |
|                                       | ┥╴┈╴ | The other the second contract the tends of porcess and the alter               | 23253    | 52.10   | 53.95  | 1           |          |                                         |
|                                       |      | Trans differe but pervasive to well prove and an antipation of proportion with | 23254    | 53.95   | 56.15  |             |          |                                         |

| 0.D      | 10       | 50-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        | Pa     | ge <u>~</u>              | °¥    | <u> </u>      |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|--------------------------|-------|---------------|
| From     | To       | DECRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample # | From   | To     | %-Cu                     | Au gA | Ag g/t        |
|          |          | absent within propulsive alton => Timine at alton appears to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23255    | 56.15  | 58.15  |                          |       |               |
|          |          | area liter -7 potessie : sood evidence of this p 149 m where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23256    | 58.15  | 60.05  |                          |       |               |
|          |          | the to stand a low par schit well developed offissie (K-spir)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23257    | 60.05  | 61.95  |                          |       |               |
|          |          | willing to start by 2-4 cm from ventet -> where alter stops whit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23258    | 61.95  | 63.30  |                          |       |               |
|          |          | and the second star the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23259    | 63.30  | 85.15  |                          |       |               |
| · • • •  |          | 15 an erren une prapy inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23260    | 65.15  | 66.75  |                          |       |               |
|          |          | So a mapping a time - considerate of chalconverte -> outite occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23261    | 66.75  | 68.75  |                          |       |               |
|          |          | themiles to essential and atoreast veinlets, on Fracture planes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23262    | 68 75  | 70.10  |                          | ·     |               |
|          |          | product concentration of out the most company subshill a 41-320 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23263    | 70.10  | 72.25  |                          |       |               |
| ••••••   |          | and Riseminated - pyrice is not content of accurs as you, fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23264    | 72.25  | 74.00  |                          |       |               |
|          |          | (charlopyrice is five but been difficult to see) -> however it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23265    | 74.00  | 76.10  |                          |       |               |
|          |          | a men assemble beath with a sto weakly asterness and a clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23266    | 76.10  | 77.35  |                          |       |               |
|          |          | The early recompetition (De-in), Hirden are very recompetition of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 23267    | 7735   | 79.40  | 101 1000                 |       | e a ser e est |
|          |          | provinal to vermining stringers they also accurates as proving the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23268    | 79.40  | 81.85  |                          | 1     |               |
|          |          | The filling is allow to device think at various all massemblaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23269    | 81.85  | 83.25  |                          | · -   |               |
|          |          | The relievent is a sab unit matching of contrast of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23270    | 83.25  | 85.00  |                          |       |               |
|          |          | CPY MINCALLERTION CAN RAY TAKIT BOOGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23271    | 85.00  | 86.15  |                          |       |               |
|          | }        | 4 53. 1300 : where alter a diffuse but nervesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23272    | 86.15  | 89.05  |                          |       |               |
|          |          | 12 00 - 72.30 - 1 the allow we well developed up lare petules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23273    | 88.05. | 90.20  | 1.19                     |       |               |
|          |          | if Kinnedling + Demacrais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25274    | 10.20  | 92.05  |                          |       |               |
|          |          | 2270-2515 ' where a serie accurate will developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23275    | 92.05  | 93.55  | 1 - 1 - 1 - <del>-</del> |       | 1             |
|          | <u> </u> | 22.16 - 22.15 : pornis - state performance, with accounting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23276    | 93.55  | 95.70  |                          |       | · · · ·       |
|          |          | 20,15 - J-155; alternations, participation of health mean like although                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23277    | 95.70  | 97.60  |                          |       |               |
|          | <b></b>  | 37 CC - 40.75 there is a little by the deall deally as well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23278    | 17.60  | 99:10  |                          | ł     |               |
|          |          | 22.35 - 10-23, porcevic althers defined ber men never the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23279    | 99.10  | 100.90 |                          |       |               |
|          |          | Den all of group in provide and and the all in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 3280   | 100.90 | 102.70 |                          |       |               |
| ·        | <b> </b> | TOLES "Sours . Middle to very well developed propulate eller of mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z3281    | 102 70 | 103.30 | 1.00                     |       | 1. S. 40      |
| <u> </u> | <u> </u> | patchy R'spor Allin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23282    | 103.30 | 105.75 |                          | 1     |               |
|          | · · · ·  | 136.15 - 65.15, patiesric altin m/ more pering proprious were allin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23283    | 105.75 | 107.30 | -                        |       | 10.1          |
|          | <u> </u> | 103.10 - PU.IV, moderately developed inclosed in the Up city of which for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23284    | 107.30 | 108.80 |                          |       |               |

-

Frequents - PAULT ZONE - Entry parallel m/ C.A - discontinuous

| ~   |     | Kc    |  |
|-----|-----|-------|--|
| D.D | NO. | 00-04 |  |

Page \_\_\_\_\_ of

| From              | To       | DECRIPTION                                                                      | Sample # | From   | Ta     | 54Cu            | Au <u>s</u> A                         | Ag gA                 |
|-------------------|----------|---------------------------------------------------------------------------------|----------|--------|--------|-----------------|---------------------------------------|-----------------------|
|                   |          | 2010 - 81.85; weakly alter monzonite (monzodiupite???) w/ local moderately,     | 23285    | 108.80 | 110.30 |                 |                                       |                       |
|                   |          | developed propulities alter 7 unit exhibits moderateridensity                   | 23286    | 110.30 | 111.85 |                 |                                       |                       |
|                   |          | of exacts veinless -> veinless exhibit well developed                           | 23287    | 14.85  | 113.55 |                 |                                       | Í                     |
|                   |          | subjects or your columnes - I rare than strangers of punts                      | 23288    | 113.35 | 114.90 |                 |                                       |                       |
|                   |          | +1- 4 +144 6 001                                                                | 23289    | 114.90 | 115.65 |                 |                                       | ļ                     |
|                   | 1        | 81.85-83.25; FALLT PONE - very well developed clayt chitcast pock               | 23290    | 115.65 | 117.95 |                 |                                       |                       |
|                   |          | Freements -7 mule enpers to be 30-40° C.A.                                      | 23291    | 117.95 | 119.45 |                 |                                       |                       |
| -                 | 1        | 83.25 - 86.15: neverne locally well developed potassic altin 7 only             | 23292    | 119.45 | 121.00 | _               |                                       |                       |
|                   |          | move at verning of Z19, py tapy, is digremented                                 | 23293    | 121 00 | 122.70 |                 | <u> </u>                              |                       |
|                   |          | aroms and care clusters                                                         | 23294    | 122.70 | 124-05 |                 |                                       | · · ·                 |
|                   | 1        | 86-15 - 99.10; when alcher promitive alteration to unaltered monzodionite (???) | 23215    | 124.05 | 125.55 | · ·             | · · · · · · · · · · · · · · · · · · · | ļ                     |
|                   | 1        | -> cigo att stringers w/ mosth, maduately, Developed                            | 23216    | 125.55 | 127.10 |                 |                                       | <u> </u>              |
| St. 191. 191. 191 | i sere i | an and the second of the second to the Tesser decrea the deck i selvages and    | 23217    | 127.10 | 128.60 |                 | 1.5.42                                | and the second second |
|                   |          | 4190 company as disseminiched of clusters provincel to sodersta                 | 23298    | 128.60 | 130.15 | · · · · ·       | ļ                                     |                       |
|                   |          | tach its atomatics -> one out can verilet @ 98.40 is                            | 23219    | 130.15 | 131.65 |                 |                                       |                       |
|                   |          | mostly my of year time as one disseminated within your let                      | 23300    | 131.45 | 133.20 |                 | .                                     |                       |
|                   | 1        | 99.10-100.90 : - with developed discontinuous full your up local iter + chlaste |          |        |        |                 | ļ                                     | <u></u>               |
|                   | 1        |                                                                                 | 23401    | 133 20 | 134.70 | Ŀ               |                                       | 4                     |
|                   |          | 100 90-143.70: monzonite to monzodiorite -> dull cremisticity w/                | 23402    | 134.70 | 136.25 |                 |                                       | -                     |
| 2                 |          | Khove 19-21 entrue to some negative to entry. K-sper altin assoc.               | 23403    | 134.25 | 137.75 |                 | · ·                                   |                       |
|                   |          | 12 11 7 11 2-470 atz / atz + carb ventets stringers                             | 2340L    | 137.75 | 139.30 |                 | ļ                                     |                       |
| 7                 | -        | = Tron 101 - 112 m to to 29. diss cm, > the re                                  | 234105 S | 131.30 | 140.85 | <u>.</u>        | 1                                     |                       |
|                   | 1 .      | and the visible con -7 from 117-143.70 con 15 still                             | 23406    | 140.85 | 142.35 |                 |                                       |                       |
|                   |          | while a disseminated bit shirth decreased to                                    | 23407    | 142.35 | 14370  |                 |                                       |                       |
|                   |          | 4170                                                                            | 23408    | 143.70 | 145.40 | <br>            | <u> </u>                              |                       |
|                   |          | => Jenor of Kispor altin increases down hole                                    | 23409    | 145.40 | 146.95 | <u> </u>        | <u> </u>                              |                       |
|                   |          | 143.70 -147.65 : dill creentheren it only very minur, dillise K-gpas            | 23410    | 146.95 | 148.45 | 1990 - S. S. S. |                                       |                       |
|                   | · ·      | box-26-27 altin esson of rave local at vembers / stringers -> dramatre          | 23411    | 148.45 | 149.65 | <u></u>         |                                       | _ <b>_</b>            |
|                   |          | decresse on Kinger alton relative to 100.90 - 143.70-7                          | 23412    | 149.65 | 150-95 | <b>_</b>        | ·                                     |                       |
|                   |          | however the sub unit which is very well developed local                         | 23413    | 150.95 | 152.50 |                 |                                       |                       |

tor cher

D.I NO. 00-04

Page 4\_of

| From  | To        | DECRIPTION                                                                       | Sample # | From    | Te              | %iCu  | Au g't    | Az z/t     |
|-------|-----------|----------------------------------------------------------------------------------|----------|---------|-----------------|-------|-----------|------------|
|       |           | cont                                                                             | 23414    | 152.50  | 154.53          |       |           | <u> </u>   |
|       |           | - notchy chalemantite -> the most visible every that Far observed                | Z3415    | 154.53  | 156.05          |       |           | <u> </u>   |
|       |           | my the hole ever 143.80 - 144.50 -7 cov is also common as                        | 23416    | 20.321  | 157.58          |       |           |            |
|       |           | local clusters and is disseminated -> 2% throat                                  | 23417    | 157.58  | 154.10          |       |           | ļ          |
|       |           | 149.65 - 152.50; pervesive, well developed antish K-spar altin => two            | 23418    | 159.10  | 160.63          |       |           | ļ          |
| -     |           | verilets w/ m. + co. 10 150-60-150.15 10 30° 15° CA                              | 23411    | 160.63  | 162.20          |       |           | <u> </u>   |
|       |           | 1/ black chlorite (?) selvaces ->also@ 151.09 f very                             | 23420    | 162.20  | 163.68          | -     |           | ļ          |
|       |           | thin @ 152.40                                                                    | 23421    | 163.68  | 165.30          |       | .*        | <u></u>    |
|       |           | 15250-173.40: orometile alter at to well developed locally -> dell greenish      | 23422    | 165.30  | 146 5530        |       | -         |            |
| :     |           | sien, this out - patessic alter ABJENT -7 p 155, 50-160.10                       | 23 423   | 166 73  | 168 55 -        | 795   | 1 - S. P  |            |
|       |           | fault souce 2.370 sty / 17 + cobb beinteds exhibit                               | 23424    | 168.55  | 169797          |       |           | ··· ·      |
|       |           | well developed Fi cat altin = 219, disseminated musite                           | Z3425    | 169.77  | 171-202-        |       | · · ·     | <u> </u>   |
| ·     |           | + frie con sputt- con also lacult of with white comby (55mm)                     | 23426    | 17125   | 172.97          | -     | - 14 J 14 | Sec. er er |
|       |           | which which then K Kinger wall rock alter Avery similar to                       | 23427    | 172.82  | 173,40          | -     |           |            |
|       |           | 143.80 - 144.50 -7 0 116.25 local wispy, heretite altin                          | 23428    | 173.40  | 174,25          |       |           |            |
|       |           | 173.40 - 174.25 : Finer or version of above a possible mayne mixing [???) -> and | 23429    | 17425   | 175.87          | ·     |           |            |
|       |           | sty ventet -1 3-4 cm at K-spor well such altin exhibits                          | 23430    | 175.87  | 177-25          | 4     | L         | <u> </u>   |
|       |           | des a within ostesia altin - 120 diss prioverall.                                | 23431    | 177.25  | 17875           |       |           | 1.0        |
|       | · ·       | 17425-177.25 : en la to 152.50 -173.40 but tenor at propulsie allin is           | 23 432   | 178.15  | 1 <b>3</b> 476€ |       |           |            |
|       |           | torrend ' lovel diss over m' mater with setting to ce 120                        | 23433    | 139.65  | 181.00          | 10.20 |           |            |
|       |           | 17775 - 17915 - oran like altim is using outing when mante at invitation         | 23434    | 181.00* | 181.97          |       | · · · · · |            |
|       |           | directe > chi +/- class +/- here tite -> altin is well developed.                | 23 435   | 141.99  | 183.40          | 1.00  | · .       |            |
|       |           | sale whit is used soft                                                           | 23436    | 183.40  | 185.01          |       |           |            |
|       | 1999 - A. | 179.65 - 191.55 . while another to conthered monzon to / monzodiorite 72/2:      | 23437    | 185.01  | 186.50          |       |           |            |
|       | 1         | milk, while at a thread vienters' stometre of Kosper salwers (1-2 mm             | 23434    | 186.50  | 188 06          | /     |           |            |
|       |           | - hundrike common Freichures                                                     | 23439    | 188.06  | 189.55          | 5 - S | <u> </u>  |            |
|       |           | - K-saw on local Fondures                                                        | 23440    | 189.55  | 191.55          |       | 1.5.2     | _          |
|       | 1         | - trace due and a - metric are artegred eites                                    | 23441    | 191.55  | 1192.75         | ·     |           |            |
|       | ·····     |                                                                                  | 23442    | 192.75  | 194 11          |       |           |            |
| ····· |           |                                                                                  | 23443    | 194.16  | 195.70          |       |           |            |

D.D NO. 00-04

## Page <u>5</u> of

| From         | To          | DECRIPTION                                                                                                      | Sample # | From   |        | 30 C G         | AU 2/1   | ~~       |
|--------------|-------------|-----------------------------------------------------------------------------------------------------------------|----------|--------|--------|----------------|----------|----------|
|              |             | 19155 - 714 DD & unaltered to ut h providing / 30-40% overprinting                                              | Z3444    | 195.70 | 197.21 |                |          |          |
|              |             | by K-sner elter - increase is due to mercase in                                                                 | 23445    | 197.21 | 198.80 |                |          |          |
|              |             | atte ventets -7 ventets = 10-15 Do at sub-unit                                                                  | 23446    | 198.80 | 200.25 |                |          |          |
| • •• •••     | · · · · · · | O readon oncles, averaging E low in width - ran                                                                 | 23447    | 200-25 | 201.70 |                |          |          |
|              |             | usulats are uncer as well developed at a this - very                                                            | 23448    | 201.70 | 203.30 |                |          |          |
|              | <u> </u>    | race card visitudes (\$ 197.05) -7 cidente altim w/                                                             | 23449    | 203.30 | 204.00 |                |          | į        |
| -            |             | went yestels -> freed dis control proviso                                                                       | 23450    | 204.80 | 206.35 |                |          |          |
|              |             | - land' - to use they be a white sale + makes - adorite                                                         | 23451    | 206.35 | 267.90 |                |          | · ·      |
|              |             | - ideal in many for the former of the former -> see 200.20                                                      | 23452    | 207.90 | 209.40 |                |          |          |
|              |             | 7141 no - 730 66 - and the alter work to moderately charactered this out                                        | 23453    | Z09.40 | 210.95 |                |          | 1        |
|              | ╎───        | 77.29 to et anno de de alta the autoris                                                                         | 23454    | 210.95 | 212.45 |                |          |          |
|              | <u>-</u>    | In a ? menute mene? ander the drike insected                                                                    | 23455    | 212.45 | 214.00 |                |          |          |
|              |             | The second second second second second second second second second second second second second second second se | 23456 -  | 214.00 | 215.49 | ويوج ووالا الم |          |          |
|              | · · ·       | - sch mit is scholide mar - 2 true diss visible                                                                 | 23457    | 215.49 | 217.00 |                |          |          |
|              |             |                                                                                                                 | 23458    | 217.00 | 218.54 |                |          |          |
|              |             | 230.65 - 246.65 + match do some Derussive K-sour altin is moderately                                            | 23 459   | 218.54 | 220.10 |                |          |          |
|              |             | le alered to detuse -7 only 3-5% carb 1/ 0 to                                                                   | 23460    | 220.10 | 221.51 |                |          |          |
|              | -           | we might atomers - rundom and highly discontinuous                                                              | 23 461   | 221.59 | 223.15 |                | <u> </u> | ļ        |
|              | -           | -sedecte common with men, we meets -> downtre intrusive                                                         | 23462    | 223.15 | 224.64 |                | · ·      | <u> </u> |
|              | <b> </b>    | technic will preserved then out - Kisper alter is                                                               | 23463    | 224.64 | 226.ZO |                |          | - :      |
|              |             | aver us annews but year this I discution out carbt                                                              | 23414    | 226.20 | 227.69 |                |          |          |
|              | +           | - ho deman                                                                                                      | 23 465   | 227-69 | 229.25 |                |          |          |
|              |             | 74116-258 FF and Like trease alter & darent stringers                                                           | 23466    | 221.25 | 230.65 | -              |          |          |
|              | -           | 2 10:00 U-11 6 26 above out a house to ave to a the same                                                        | 23467    | 230.65 | 232.25 |                |          |          |
| <del>-</del> |             | mercy accret -> . I have the face that which                                                                    | 23468    | 232.25 | 233.74 |                |          |          |
|              |             | 111 1 1 1 252 50 7 to stance < 19                                                                               | 23469    | 233.78 | 235,30 |                | ļ _      |          |
|              | 1           | 258 17-26 40 in which to any prevenue to environ alton escor which                                              | 23.470   | 235.30 | 236.83 |                |          | 1        |
|              | +           | and the statistic reaction to your tests are which                                                              | 23471    | 236.83 | 238.35 |                |          |          |
|              |             | Kinner Ilm ut putche promities alter Alteriner                                                                  | 27472    | 238.35 | 239.88 |                |          |          |
| <u></u>      |             | the first been a the sea of the manual state and a state with a the                                             | 23473    | 239.88 | 241 40 |                |          |          |

| ).D( )            | i0 | 00.04                                                                                                           |          |        | Pa     | ige .    |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------|----------|--------|--------|----------|
| From              | To | DECRIPTION                                                                                                      | Sample # | From   | To     | %        |
|                   |    | 265 40-276.65 ; very 1 to to you ? decrease from above                                                          | 23474    | 241.40 | 242.93 |          |
|                   |    | shiph denove                                                                                                    | 73475    | 242.93 | 244.00 |          |
|                   |    | 27665-278:10 pervisive moderate K-sper altin al local carb                                                      | 23476    | 244.00 | 245.97 |          |
|                   |    | ventula                                                                                                         | 23477    | 245.97 | Z46 65 |          |
|                   |    | 278.10 - 279.35 : weak Kasper - chitela, souse (?) & 279.20                                                     | 23478    | 246.65 | 248.15 |          |
|                   |    | 279 35 - 780.75 : same as 276.65 - 278.10                                                                       | 23479    | 248.15 | 241.02 |          |
|                   |    | 280.75 - 290.05 : includered to all acorditic alter of monzourle/morzo.                                         | 23480    | 249.02 | 250.60 |          |
|                   |    | admente                                                                                                         | 23481    | 250.60 | 252.07 |          |
|                   |    | 290.05 - 301.70 patch, t-som u/ local uk nom like alter                                                         | 23482    | 252.07 | 253.60 |          |
|                   |    | 301.70 - 362.25 : well developed into a life alto -> possible local cours                                       | e 23483  | 253.60 | 255.12 |          |
|                   |    | 302.75 - 319.14 : unaltered monzedoute/monzoute of the lo product                                               | 23484    | 255.12 | 256.65 | •        |
|                   |    | wetch. K-soer altin - rare sosille diss con,                                                                    | 23485    | 256.65 | 259.17 |          |
| 1.4.5             |    | the second prove the second second second second second second second second second second second second second | 23486    | 258.17 | 251.70 | <u> </u> |
|                   |    | I love 100 m of hole exhibits well preserved pritolity firsture of                                              | 23 287   | 259.70 | 261.2) |          |
|                   | _  | intrusive                                                                                                       | 23488    | 261.21 | 262.85 |          |
|                   |    | -                                                                                                               | 23484    | 262.85 | 264.26 | <u> </u> |
|                   |    |                                                                                                                 | 23490    | Z64.26 | 265.40 | <u> </u> |
|                   |    |                                                                                                                 | 23441    | 265.40 | 266.20 | ļ        |
|                   |    |                                                                                                                 | 23442    | 266.20 | Z67.31 |          |
|                   |    |                                                                                                                 | 23493    | 267.31 | Z68.60 |          |
| · · · · · · · · · |    |                                                                                                                 | 23494    | 264.60 | 270.26 |          |
|                   |    |                                                                                                                 | 23495    | 270.36 | 271.85 |          |
|                   |    |                                                                                                                 | 23496    | 271.15 | 273.41 | <u> </u> |
|                   |    |                                                                                                                 | 23497    | 273.4/ | Z74.95 | L        |

SEE NEVT PARE FOR REMAINDER OF SAMPLES

23443 274.15 276.65 23444 276.65 278.10 23500 278.10 279.35

23651 279.35 280.75 23652 280.75 282.55

Augh

Cu

Ag gA

12

. . . . . . .
D.D 10. 00-04

Page <u>7</u> of

|       | + 1        |                                                                                                                 |       |        |          |     |          |          |
|-------|------------|-----------------------------------------------------------------------------------------------------------------|-------|--------|----------|-----|----------|----------|
|       |            |                                                                                                                 | 23653 | 282.55 | 2.84.05  |     |          |          |
|       |            |                                                                                                                 | 23654 | 284.05 | 285.60   |     |          |          |
|       | <u> </u>   |                                                                                                                 | 23655 | 295 60 | 287.15   |     |          |          |
|       | 1          |                                                                                                                 | 73656 | 287.15 | 288.65   |     |          |          |
|       | 1          |                                                                                                                 | 23657 | 288.65 | 290.05   |     |          |          |
|       | 1          |                                                                                                                 | 23658 | 290.05 | 291.69   |     |          | r<br>    |
|       |            |                                                                                                                 | 23659 | 291.69 | 293.15   |     |          |          |
|       |            |                                                                                                                 | 23660 | 293.15 | 294.74   |     |          |          |
|       |            |                                                                                                                 | 23661 | 294.74 | 296.25   |     |          |          |
|       | - <u> </u> |                                                                                                                 | 23662 | 296.25 | 297.79   |     |          |          |
|       |            |                                                                                                                 | 23663 | 297.79 | 299.30   |     |          |          |
|       |            |                                                                                                                 | 23664 | 299.30 | 300.84   |     |          |          |
| 8 1 1 | 1.1        | والمحمول العراقة فالمراجع والمروح ومحور والمحمول والمروح والمروح والمروح والمحمول والمحمول والمروح والمروح والم | 23665 | 300.84 | 301.70   | 1   |          |          |
|       | 1          | ·                                                                                                               | 23666 | 301.70 | 302.25   |     |          |          |
|       |            |                                                                                                                 | 23667 | 302.25 | 303 64   |     |          |          |
|       | ╉────      |                                                                                                                 | 2366  | 303.84 | 305.40   |     |          |          |
|       | 1          |                                                                                                                 | 23669 | 305.40 | 306.93   |     |          | L        |
| ·     | +          |                                                                                                                 | 23670 | 306.93 | 308.45   |     |          |          |
|       | +          |                                                                                                                 | 23671 | 308.45 | 309.98   |     |          | <u> </u> |
|       |            |                                                                                                                 | 23672 | 309.98 | 311.50   | L : | L        | ļ        |
|       |            |                                                                                                                 | 23673 | 311.50 | 313.03   | l   |          | <u> </u> |
|       | 1          |                                                                                                                 | 23674 | 313.07 | 314.55   |     | <u> </u> |          |
|       | -          |                                                                                                                 | 23675 | 314 55 | 316.08   | · · | <b></b>  | <u> </u> |
|       | -          |                                                                                                                 | 23676 | 316.08 | 317.60   | ļ   | <b></b>  | 1        |
|       |            |                                                                                                                 | 23677 | 317.60 | 319.14   | L   | <u> </u> | <b></b>  |
|       |            |                                                                                                                 | 1.    | ,      |          | ļ   | •        | <u> </u> |
|       |            |                                                                                                                 | L.O.F | ·      | <u> </u> | ļ   | <u> </u> |          |
| 1     |            |                                                                                                                 |       | 1      | <u> </u> | L   | <u> </u> |          |
|       |            |                                                                                                                 |       |        |          |     |          |          |
| •     |            |                                                                                                                 |       |        |          | L   | 1        | <u> </u> |

| Hole ID  | Sam ID | From   | To     | Width | Cu_ppm | Au_ppb | Ag_ppm |
|----------|--------|--------|--------|-------|--------|--------|--------|
| KC-00-04 | 23180  | 4.57   | 8.23   | 3.66  | 120    | 10     | 0.1    |
| KC-00-04 | 23181  | 8.23   | 10.60  | 2.37  | 130    | 2.5    | 0.1    |
| KC-00-04 | 23182  | 10.60  | 12.80  | 2.20  | 43     | 2.5    | 0.1    |
| KC-00-04 | 23183  | 12.80  | 14.70  | 1.90  | 54     | 2.5    | 0.1    |
| KC-00-04 | 23184  | 14.70  | 17.00  | 2.30  | 169    | 5      | 0.1    |
| KC-00-04 | 23185  | 17.00  | 18.90  | 1.90  | 235    | 15     | 0.2    |
| KC-00-04 | 23186  | 18.90  | 20.90  | 2.00  | 151    | 10     | 0.1    |
| KC-00-04 | 23187  | 20.90  | 22.70  | 1.80  | 108    | 2.5    | 0.1    |
| KC-00-04 | 23188  | 22.70  | 25.15  | 2.45  | 82     | 2.5    | 0.1    |
| KC-00-04 | 23189  | 25.15  | 27.45  | 2.30  | 61     | 2.5    | 0.1    |
| KC-00-04 | 23190  | 27.45  | 29,10  | 1.65  | 147    | 10     | 0.1    |
| KC-00-04 | 23191  | 29.10  | 30.75  | 1.65  | 308    | 20     | 0.4    |
| KC-00-04 | 23192  | 30.75  | 32.55  | 1.80  | 372    | 10     | 0.1    |
| KC-00-04 | 23193  | 32.55  | 34.30  | 1.75  | 243    | 10     | 0.1    |
| KC-00-04 | 23194  | 34.30  | 36.50  | 2.20  | 94     | 2.5    | 0.1    |
| KC-00-04 | 23195  | 36.50  | 38.70  | 2.20  | 116    | 10     | 0.1    |
| KC-00-04 | 23196  | 38.70  | 40.25  | 1.55  | 237    | 20     | 0.2    |
| KC-00-04 | 23107  | 40.25  | 42.06  | 1.81  | 142    | 5      | 0.1    |
| KC-00-04 | 23108  | 42.06  | 44.05  | 1.99  | 196    | 10     | 0.1    |
| KC-00-04 | 23130  | 44.05  | 46.15  | 2.10  | 99     | 2.5    | 0.1    |
| KC-00-04 | 23733  | 46.15  | 47.85  | 1.70  | 153    | 5      | 0.1    |
| KC-00-04 | 23200  | 47.85  | 50 20  | 2.35  | 100    | 2.5    | 0.1    |
| KC-00-04 | 23257  | 50.20  | 52 10  | 1.90  | 228    | 5      | 0.1    |
| KC-00-04 | 20252  | 52.10  | 53.95  | 1.85  | 333    | 2.5    | 0.2    |
| KC-00-04 | 20200  | 53.95  | 56.15  | 2.20  | 257    | 25     | 2.2    |
| KC-00-04 | 23234  | 56 15  | 58 15  | 2.00  | 78     | 2.5    | 1      |
| KC-00-04 | 23255  | 58 15  | 60.05  | 1.90  | 516    | 45     | 0.8    |
| KC-00-04 | 23250  | 60.05  | 61.95  | 1.90  | 37     | 2.5    | 0.1    |
| KC-00-04 | 23259  | 61.95  | 63.30  | 1.35  | 113    | 2.5    | 1      |
| KC-00-04 | 23250  | 63 30  | 65 15  | 1.85  | 302    | 20     | 0.2    |
| KC-00-04 | 23260  | 65.15  | 66.75  | 1.60  | 195    | 15     | 0.6    |
| KC-00-04 | 23261  | 66 75  | 68.75  | 2.00  | 182    | 15     | 0.6    |
| KC-00-04 | 23201  | 68.75  | 70.10  | 1.35  | 196    | 5      | 0.2    |
| KC-00-04 | 23202  | 70.10  | 72.25  | 2.15  | 186    | 2.5    | 0.2    |
| KC-00-04 | 23203  | 72.25  | 74 00  | 1.75  | 128    | 10     | 0.1    |
| KC-00-04 | 23265  | 74.00  | 76.10  | 2.10  | 261    | 55     | 0.1    |
| KC-00-04 | 23266  | 76.10  | 77.35  | 1.25  | 173    | 15     | 0.1    |
| KC 00 04 | 23267  | 77 35  | 79.40  | 2.05  | 181    | 2.5    | 0.1    |
| KC-00-04 | 23268  | 79.40  | 81.85  | 2.45  | 187    | 10     | 0.8    |
| KC 00-04 | 23269  | 81.85  | 83.25  | 1.40  | 259    | 25     | 0.8    |
| KC 00-04 | 23270  | 83.25  | 85.00  | 1.75  | 417    | 15     | 0.4    |
| KC-00-04 | 23271  | 85.00  | 86.15  | 1.15  | 487    | 45     | 1      |
| KC 00 04 | 23272  | 86 15  | 88.05  | 1.90  | 1015   | 35     | 0.2    |
| KC-00-04 | 23273  | 88.05  | 90.20  | 2.15  | 690    | 40     | 0.6    |
| KC 00-04 | 23274  | 90.20  | 92.05  | 1.85  | 356    | 5      | 0.2    |
| KC 00-04 | 23275  | 92.05  | 93.55  | 1.50  | 785    | 25     | 0.6    |
| KC-00-04 | 23276  | 93.55  | 95.70  | 2.15  | 592    | 70     | 0.6    |
| KC-00-04 | 23277  | 95.70  | 97.60  | 1.90  | 684    | 25     | 0.2    |
| KC-00-0/ | 23278  | 97.60  | 99.10  | 1.50  | 1110   | 75     | 11     |
| KC-00-04 | 23279  | 99.10  | 100.90 | 1.80  | 670    | 35     | 4      |
| KC-00-04 | 23280  | 100.90 | 102.70 | 1.80  | 2470   | 170    | 2.6    |

×.

| Hole ID  | Sam ID | From   | То     | Width | Cu_ppm | Au_ppb | Ag_ppm |
|----------|--------|--------|--------|-------|--------|--------|--------|
| KC-00-04 | 23281  | 102 70 | 103.30 | 0.60  | 1195   | 110    | 1.2    |
| KC-00-04 | 23282  | 103.30 | 105.75 | 2.45  | 1750   | 70     | 1.2    |
| KC-00-04 | 23283  | 105.75 | 107.30 | 1.55  | 1300   | 80     | 1.2    |
| KC-00-04 | 23284  | 107.30 | 108.80 | 1.50  | 2960   | 85     | 1.8    |
| KC-00-04 | 23285  | 108.80 | 110.30 | 1.50  | 3040   | 95     | 2.2    |
| KC-00-04 | 23286  | 110.30 | 111.85 | 1.55  | 1210   | 55     | 0.8    |
| KC-00-04 | 23287  | 111 85 | 113.35 | 1.50  | 816    | 40     | 0.6    |
| KC-00-04 | 23288  | 113 35 | 114.90 | 1.55  | 1120   | 55     | 0.6    |
| KC-00-04 | 23280  | 114.90 | 115.65 | 0.75  | 1025   | 50     | 0.8    |
| KC-00-04 | 23200  | 115.65 | 117.95 | 2.30  | 506    | 35     | 0.2    |
| KC-00-04 | 23290  | 117.95 | 119.45 | 1.50  | 619    | 45     | 0.2    |
| KC 00-04 | 23201  | 119.45 | 121.00 | 1.55  | 318    | 40     | 0.2    |
| KC 00 04 | 23292  | 121.00 | 122.70 | 1.70  | 238    | 15     | 0.2    |
| KC-00-04 | 23204  | 122 70 | 124.05 | 1.35  | 236    | 55     | 0.2    |
| KC-00-04 | 23205  | 124.05 | 125.55 | 1.50  | 243    | 10     | 0.1    |
| KC 00-04 | 23296  | 125.55 | 127.10 | 1.55  | 131    | 2.5    | 0.1    |
| KC-00-04 | 23297  | 127.10 | 128.60 | 1.50  | 186    | 2.5    | 0.1    |
| KC-00-04 | 23297  | 128.60 | 130.15 | 1.55  | 89     | 2.5    | 0.1    |
| KC 00 04 | 23230  | 130.15 | 131.65 | 1.50  | 180    | 10     | 0.1    |
| KC 00-04 | 23200  | 131.65 | 133.20 | 1.55  | 22     | 2.5    | 0.1    |
| KC 00-04 | 23401  | 133.20 | 134.70 | 1.50  | 28     | 2.5    | 0.1    |
| KC-00-04 | 23402  | 134 70 | 136.25 | 1.55  | 88     | 10     | 0.1    |
| KC 00-04 | 23403  | 136.25 | 137.75 | 1.50  | 448    | 2.5    | 0.2    |
| KC 00 04 | 23400  | 137 75 | 139.30 | 1.55  | 472    | 2.5    | 0.2    |
| KC-00-04 | 23405  | 139.30 | 140.85 | 1.55  | 145    | 2.5    | 0.1    |
| KC-00-04 | 23406  | 140.85 | 142.35 | 1.50  | 370    | 2.5    | 0.4    |
| KC-00-04 | 23407  | 142.35 | 143.70 | 1.35  | 175    | 2.5    | 0.1    |
| KC-00-04 | 23408  | 143.70 | 145.40 | 1.70  | 2560   | 10     | 5.6    |
| KC-00-04 | 23409  | 145.40 | 146.95 | 1.55  | 564    | 2.5    | 0.6    |
| KC-00-04 | 23410  | 146.95 | 148.45 | 1.50  | 1100   | 10     | 1.2    |
| KC-00-04 | 23411  | 148.45 | 149.65 | 1.20  | 689    | 2.5    | 0.8    |
| KC-00-04 | 23412  | 149.65 | 150.95 | 1.30  | 2180   | 2.5    | 1.6    |
| KC-00-04 | 23413  | 150.95 | 152.50 | 1.55  | 700    | 2.5    | 0.8    |
| KC-00-04 | 23414  | 152.50 | 154.53 | 2.03  | 174    | 2.5    | 0.1    |
| KC-00-04 | 23415  | 154.53 | 156.05 | 1.52  | 80     | 2.5    | 0.1    |
| KC-00-04 | 23416  | 156.05 | 157.58 | 1.53  | 242    | 5      | 0.2    |
| KC-00-04 | 23417  | 157.58 | 159.10 | 1.52  | 74     | 2.5    | 0.1    |
| KC-00-04 | 23418  | 159.10 | 160.63 | 1.53  | 95     | 2.5    | 0.1    |
| KC-00-04 | 23419  | 160.63 | 162.20 | 1.57  | 38     | 2.5    | 0.1    |
| KC-00-04 | 23420  | 162,20 | 163.68 | 1.48  | 33     | 2.5    | 0.1    |
| KC-00-04 | 23421  | 163.68 | 165.30 | 1.62  | 824    | 10     | 1.2    |
| KC-00-04 | 23422  | 165.30 | 166.73 | 1.43  | 125    | 2.5    | 0.1    |
| KC-00-04 | 23423  | 166.73 | 168.55 | 1.82  | 359    | 2.5    | 0.2    |
| KC-00-04 | 23424  | 168.55 | 169.77 | 1.22  | 105    | 2.5    | 0.2    |
| KC-00-04 | 23425  | 169.77 | 171.25 | 1.48  | 96     | 2.5    | 0.1    |
| KC-00-04 | 23426  | 171.25 | 172.82 | 1.57  | 466    | 5      | 0.2    |
| KC-00-04 | 23427  | 172.82 | 173.40 | 0.58  | 130    | 2.5    | 0.1    |
| KC-00-04 | 23428  | 173.40 | 174.25 | 0.85  | 536    | 10     |        |
| KC-00-04 | 23429  | 174.25 | 175.87 | 1.62  | 323    | 2.5    | 0.2    |
| KC-00-04 | 23430  | 175.87 | 177.25 | 1.38  | 183    | 2.5    | 0.1    |
| KC-00-04 | 23431  | 177.25 | 178.15 | 0.90  | 299    | 5      | 0.1    |

| Hole ID  | Sam ID  | From   | To     | Width | Cu_ppm | Au_ppb | Ag_ppm |
|----------|---------|--------|--------|-------|--------|--------|--------|
| KC-00-04 | 23432   | 178.15 | 179.65 | 1.50  | 481    | 5      | 0.2    |
| KC-00-04 | 23433   | 179.65 | 181.00 | 1.35  | 87     | 2.5    | 0.1    |
| KC-00-04 | 23434   | 181.00 | 181.97 | 0.97  | 65     | 2.5    | 0.1    |
| KC-00-04 | 23435   | 181.97 | 183.40 | 1.43  | 407    | 5      | 0.4    |
| KC-00-04 | 23436   | 183.40 | 185.01 | 1.61  | 443    | 25     | 0.2    |
| KC-00-04 | 23437   | 185.01 | 186.50 | 1.49  | 371    | 5      | 0.2    |
| KC-00-04 | 23438   | 186.50 | 188.06 | 1.56  | 264    | 2.5    | 0.2    |
| KC-00-04 | 23439   | 188.06 | 189.55 | 1.49  | 497    | 2.5    | 0.6    |
| KC-00-04 | 23440   | 189.55 | 191.55 | 2.00  | 231    | 2.5    | 0.4    |
| KC 00-04 | 23440   | 191 55 | 192.75 | 1.20  | 259    | 2.5    | 0.6    |
| KC-00-04 | 23442   | 192.75 | 194.16 | 1.41  | 270    | 2.5    | 0.6    |
| KC-00-04 | 23442   | 194 16 | 195.70 | 1.54  | 84     | 2.5    | 0.1    |
| KC-00-04 | 23445   | 195 70 | 197.21 | 1.51  | 22     | 2.5    | 0.1    |
| KC-00-04 | 23445   | 197.21 | 198.80 | 1.59  | 180    | 2.5    | 0.1    |
| KC 00-04 | 23446   | 198.80 | 200.25 | 1.45  | 360    | 2.5    | 0.1    |
| KC-00-04 | 23440   | 200.25 | 201.70 | 1.45  | 404    | 2.5    | 0.2    |
| KC-00-04 | 23448   | 201.70 | 203.30 | 1.60  | 178    | 2.5    | 0.6    |
| KC-00-04 | 23440   | 203 30 | 204.80 | 1.50  | 18     | 2.5    | 0.1    |
| KC-00-04 | 23443   | 204.80 | 206.35 | 1.55  | 35     | 5      | 0.1    |
| KC-00-04 | 23450   | 206.35 | 207.90 | 1.55  | 23     | 2.5    | 0.1    |
| KC-00-04 | 23451   | 200.00 | 209.40 | 1.50  | 18     | 2.5    | 0.1    |
| KC-00-04 | 23452   | 207.00 | 210.95 | 1.55  | 46     | 2.5    | 0.2    |
| KC-00-04 | 23455   | 210.95 | 212.45 | 1.50  | 19     | 2.5    | 0.1    |
| KC-00-04 | 20404   | 210.35 | 214.00 | 1.55  | 40     | 2.5    | 0.1    |
| KC-00-04 | 23435   | 212.40 | 215.49 | 1.49  | 14     | 2.5    | 0.1    |
| KC-00-04 | 23450   | 214.00 | 217.00 | 1.51  | 11     | 2.5    | 0.1    |
| KC-00-04 | 23457   | 217.00 | 218.54 | 1.54  | 14     | 2.5    | 0.1    |
| KC-00-04 | 23450   | 218.54 | 220.10 | 1.56  | 11     | 2.5    | 0.2    |
| KC-00-04 | 23455   | 220.04 | 221 59 | 1.49  | 13     | 2.5    | 0.1    |
| KC-00-04 | 23400   | 220.10 | 223 15 | 1.56  | 15     | 2.5    | 0.1    |
| KC-00-04 | 23401   | 223.55 | 224 64 | 1.49  | 9      | 2.5    | 0.1    |
| KC-00-04 | 23402   | 220.10 | 226 20 | 1.56  | 8      | 2.5    | 0.2    |
| KC-00-04 | 23403   | 226.20 | 227 69 | 1.49  | 11     | 2.5    | 0.1    |
| KC-00-04 | 23465   | 227.69 | 229 25 | 1.56  | 16     | 2.5    | 0.6    |
| KC-00-04 | 23465   | 229.25 | 230.65 | 1.40  | 99     | 2.5    | 0.4    |
| KC-00-04 | 23467   | 230.65 | 232.25 | 1.60  | 45     | 2.5    | 0.1    |
| KC-00-04 | 23468   | 232.25 | 233.78 | 1.53  | 32     | 2.5    | 0.1    |
| KC-00-04 | 23460   | 233.78 | 235.30 | 1.52  | 50     | 2.5    | 0.1    |
| KC-00-04 | 23400   | 235.30 | 236.83 | 1.53  | 29     | 2.5    | 0.1    |
| KC-00-04 | 23470   | 236.83 | 238.35 | 1.52  | 14     | 2.5    | 0.1    |
| KC-00-04 | 23471   | 238.35 | 239.88 | 1.53  | 16     | 2.5    | 0.1    |
| KC-00-04 | 23472   | 239.88 | 241.40 | 1.52  | 18     | 2.5    | 0.1    |
|          | 23474   | 241 40 | 242.93 | 1.53  | 19     | 2.5    | 0.1    |
|          | 20474   | 242.93 | 244.00 | 1.07  | 17     | 2.5    | 0.1    |
|          | 23475   | 244 00 | 245.97 | 1.97  | 18     | 2.5    | 0.1    |
| KC.00.04 | 23470   | 245.97 | 246.65 | 0.68  | 13     | 2.5    | 0.1    |
| KC 00.04 | 23478   | 246.65 | 248.15 | 1.50  | 22     | 2.5    | 0.1    |
| KC-00-04 | 23470   | 248 15 | 249.02 | 0.87  | 17     | 2.5    | 0.1    |
| KC-00-04 | 23/80   | 249.02 | 250.60 | 1.58  | 67     | 2.5    | 0.2    |
| KC-00-0  | 1 23481 | 250.60 | 252.07 | 1.47  | 36     | 2.5    | 0.1    |
| KC-00-04 | 23482   | 252.07 | 253.60 | 1.53  | 36     | 2.5    | 0.1    |

. . . . . . . . . . .

| Hole ID  | Sam ID | From   | To     | Width | Cu_ppm | Au_ppb | Ag_ppm             |
|----------|--------|--------|--------|-------|--------|--------|--------------------|
| KC-00-04 | 23483  | 253.60 | 255.12 | 1.52  | 28     | 2.5    | 0.1                |
| KC-00-04 | 23484  | 255.12 | 256.65 | 1.53  | 33     | 2.5    | 0.1                |
| KC-00-04 | 23485  | 256.65 | 258.17 | 1.52  | 31     | 2.5    | 0.1                |
| KC-00-04 | 23486  | 258.17 | 259.70 | 1.53  | 23     | 2.5    | 0.1                |
| KC-00-04 | 23487  | 259.70 | 261.21 | 1.51  | 13     | 2.5    | 0.1                |
| KC-00-04 | 23488  | 261.21 | 262.85 | 1.64  | 12     | 2.5    | 0.1                |
| KC-00-04 | 23489  | 262.85 | 264,26 | 1.41  | 22     | 2.5    | 0.1                |
| KC-00-04 | 23490  | 264.26 | 265.40 | 1.14  | 45     | 2.5    | 0.1                |
| KC-00-04 | 23491  | 265.40 | 266.20 | 0.80  | 35     | 2.5    | 0.1                |
| KC-00-04 | 23492  | 266.20 | 267.31 | 1.11  | 24     | 2.5    | 0.1                |
| KC-00-04 | 23493  | 267.31 | 268.60 | 1.29  | 42     | 2.5    | 0.1                |
| KC-00-04 | 23494  | 268.60 | 270.36 | 1.76  | 73     | 2.5    | 0.2                |
| KC-00-04 | 23495  | 270.36 | 271.85 | 1.49  | 15     | 2.5    | 0.1                |
| KC-00-04 | 23496  | 271.85 | 273.41 | 1.56  | 56     | 2.5    | 0.1                |
| KC-00-04 | 23497  | 273.41 | 274.95 | 1.54  | 20     | 2.5    | 0.1                |
| KC-00-04 | 23498  | 274.95 | 276.65 | 1.70  | 26     | 2.5    | 0.1                |
| KC-00-04 | 23499  | 276.65 | 278.10 | 1.45  | 39     | 2.5    | 0.1                |
| KC-00-04 | 23500  | 278.10 | 279.35 | 1.25  | 26     | 2.5    | 0.1                |
| KC-00-04 | 23651  | 279.35 | 280.75 | 1.40  | 88     | 2.5    | 0.2                |
| KC-00-04 | 23652  | 280.75 | 282.55 | 1.80  | 14     | 2.5    | 0.1                |
| KC-00-04 | 23653  | 282.55 | 284.05 | 1.50  | 46     | 2.5    | 0.2                |
| KC-00-04 | 23654  | 284.05 | 285.60 | 1.55  | 98     | 2.5    | 0.2                |
| KC-00-04 | 23655  | 285.60 | 287.15 | 1.55  | 97     | 2.5    | 0.2                |
| KC-00-04 | 23656  | 287.15 | 288.65 | 1.50  | 219    | 2.5    | 0.1                |
| KC-00-04 | 23657  | 288.65 | 290.05 | 1.40  | 58     | 2.5    | 0.1                |
| KC-00-04 | 23658  | 290.05 | 291.69 | 1.64  | 36     | 2.5    | 0.2                |
| KC-00-04 | 23659  | 291.69 | 293.15 | 1.46  | 62     | 2.5    | 0.1                |
| KC-00-04 | 23660  | 293.15 | 294.74 | 1.59  | 45     | 2.5    | 0.2                |
| KC-00-04 | 23661  | 294.74 | 296.25 | 1.51  | 88     | 2.5    | 0.6                |
| KC-00-04 | 23662  | 296.25 | 297.79 | 1.54  | 69     | 2.5    | 0.1                |
| KC-00-04 | 23663  | 297.79 | 299.30 | 1.51  | 79     | 2.5    | 0.1                |
| KC-00-04 | 23664  | 299.30 | 300.84 | 1.54  | 41     | 2.5    | 0.1                |
| KC-00-04 | 23665  | 300.84 | 301.70 | 0.86  | 17     | 2.5    | 0.2                |
| KC-00-04 | 23666  | 301.70 | 302.25 | 0.55  | 29     | 2.5    | 0.1                |
| KC-00-04 | 23667  | 302.25 | 303.89 | 1.64  | 25     | 2.5    | 0.1                |
| KC-00-04 | 23668  | 303.89 | 305.40 | 1.51  | 95     | 2.5    |                    |
| KC-00-04 | 23669  | 305.40 | 306.93 | 1.53  | 14     | 2.5    | 0.1                |
| KC-00-04 | 23670  | 306.93 | 308.45 | 1.52  | 22     | 2.5    | 1 - 0.1            |
| KC-00-04 | 23671  | 308.45 | 309.98 | 1.53  | 40     | 2.5    | 0.1                |
| KC-00-04 | 23672  | 309.98 | 311.50 | 1.52  | 346    | 2.5    | 0.4                |
| KC-00-04 | 23673  | 311.50 | 313.03 | 1.53  | 31     | 2.5    | 0.1                |
| KC-00-04 | 23674  | 313.03 | 314.55 | 1.52  | 28     | 2.5    | 0.1                |
| KC-00-04 | 23675  | 314.55 | 316.08 | 1.53  | 21     | 2.5    | $-\frac{0.1}{0.1}$ |
| KC-00-04 | 23676  | 316.08 | 317.60 | 1.52  | 20     | 2.5    |                    |
| KC-00-04 | 23677  | 317.60 | 319.14 | 1.54  | 23     | 2.5    | 0.1                |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver Unitish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

#### CERTIFICATE

A0024183

#### (PIL) - KEMESS MINE

Project: KEMESS CENTRE P.O. # : 200950

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2000.

|                   | SAM               | PLE PREPARATION                                                                             |
|-------------------|-------------------|---------------------------------------------------------------------------------------------|
| CHEMEX            | NUMBER<br>SAMPLES | DESCRIPTION                                                                                 |
| 214<br>238<br>229 | 119<br>119<br>23  | Rovd as pulp; mesh size checked<br>Nitric-aqua-regia digestion<br>ICP - AQ Digestion charge |
| * NOTT            | 1.                |                                                                                             |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. ) fo: KEMESS MINE

> P.O. BOX 3519 SMITHERS, BC V0J 2N0

Comments: ATTN: BRETT LAPEARE

#### UPPER DETECTION CHEMEX NUMBER LIMIT LIMIT CODE SAMPLES DESCRIPTION METHOD 10000 FA-AAS 5 Au ppb: Fuse 30 g sample 983 119 AAS-EKGD CORR 0.2 100.0 119 Ag ppm: HN03-aqua regia digest 6 10000 1 AAS Cu ppm: HNO3-aqua regia digest 2 119 0.2 100.0 ICP-AES 2118 23 Ag ppm: 32 element, soil & rock ICP-AES 0.01 15.00 Al %: 32 element, soil & rock 2119 23 10000 2 As ppm: 32 element, soil & rock ICP-AES 2120 23 10000 ICP-AES 10 B ppm: 32 element, rock & soil 557 23 ICP-AES 10 10000 Ba ppm: 32 element, soil & rock 2121 23 0.5 100.0 ICP-AES Be ppm: 32 element, soil & rock 2122 23 10000 2 ICP-AES Bi ppm: 32 element, soil & rock 2123 23 15.00 0.01 Ca %: 32 element, soil & rock ICP-AES 2124 23 500 0.5 Cd ppm: 32 element, soil & rock ICP-AES 2125 23 10000 1 23 Co ppm: 32 element, soil & rock ICP-YES 2126 1 10000 23 Cr ppm: 32 element, soil & rock ICP-AES 2127 10000 Cu ppm: 32 element, soil & rock ICP-AES 1 23 2128 0.01 15.00 ICP-AES 23 Fe %: 32 element, soil & rock 2150 ICP-AES 10 10000 Ga ppm: 32 element, soil & rock 2130 23 10000 ICP-AES 1 Hg ppm: 32 element, soil & rock 2131 23 10.00 0.01 ICP-AES K %: 32 element, soil & rock 2132 23 10000 10 ICP-AES 2151 23 La ppm: 32 element, soil & rock 15.00 0.01 Mg %: 32 element, soil & rock ICP-AES 2134 23 10000 5 Mn ppm: 32 element, soil & rock ICP-AES 2135 23 1 10000 ICP-AES Mo ppm: 32 element, soil & rock 2136 23 10.00 ICP-AES 0.01 23 Na %: 32 element, soil & rock 2137 10000 1 ICP-AES Ni ppm: 32 element, soil & rock 2138 23 10000 10 P pom: 32 element, soil & rock ICP-NES 2139 23 10000 2 Pb ppm: 32 element, soil & rock ICP-AES 2140 23 5.00 ICP-AES 0.01 s %: 32 element, rock & soil 551 23 ICP-AES 2 10000 sb ppm: 32 element, soil & rock 2141 23 10000 ICP-AES 1 Sc ppm: 32 elements, soil & rock 2142 23 10000 Sr ppm: 32 element, soil & rock ICP-AES 1 2143 23 10.00 Ti %: 32 element, soil & rock 0.01 ICP-AES 2144 23 10000 10 ICP-AES 23 T1 ppm: 32 element, soil & rock 2145 10 10000 U ppm: 32 element, soil & rock ICP-AES 2146 23 10000 1 V ppm: 32 element, soil & rock ICP-AES 2147 23 10 10000 W ppm: 32 element, soil & rock ICP-AES 2148 23 10000 Zn ppm: 32 element, soil & rock ICP-AES 2 2149 23

ANALYTICAL PROCEDURES 1 of 2

A0024183

 $\cap$ 

12-00

# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 to: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VOJ 2N0

Project : KEMESS CENTRE Comments: ATTN: BRETT LAPEARE ...\*

Page er :2-A Total F. J.s :3 Certificale Date: 01-AUG-2000 Invoice No. :10024183 P.O. Number :200950 Account :PIL

|                |                    |         |                 |                |            |           |                |         |           |           | <br> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | CE        | RTIF       | ICATE   | E OF A    | ANAL      | YSIS      |                | A0024      | 1183                                    |          |        |
|----------------|--------------------|---------|-----------------|----------------|------------|-----------|----------------|---------|-----------|-----------|------------------------------------------|-----------|------------|---------|-----------|-----------|-----------|----------------|------------|-----------------------------------------|----------|--------|
| Samele         | PRE<br>COD         | ir<br>E | λα ppb<br>Γλ+λλ | ydna<br>Vdna   | yon<br>K R | Ըս<br>թթա | ភិកិដ្<br>ស្រុ | ۸1<br>% | As<br>ppm | ងកំថ<br>ព | Ba<br>ppm                                | ou<br>mqq | н1<br>Мада | Ca<br>X | cđ<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm      | ۴o<br>۶    | Ca<br>ppm                               | DD<br>DD | K<br>% |
| 19243          | 214                | 238     | < 5             | < (            | .2         | 12        | 0.2            | 0.65    | < 2       | < 10      | 30                                       | 0.5       | < 2        | 4.66    | < 0.5     | 5         | 31        | 9              | 2.63       | < 10                                    | < 1      | 0.15   |
| 19244          | 214                | 238     | < 5             | < 0            | 3.2        | 15        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 19245          | 214                | 238     | < 5<br>< 5      | < (            | ).2        | 14        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 19247          | 214                | 238     | < 5             | < (            | 2.2        | 18        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 19248          | 214                | 23B     | < 5             | < (            | 2.2        | 16        | < 0.2          | 0.85    | 2         | < 10      | 260                                      | 0.5       | < 2        | 6.19    | < 0.5     | 5         | 27        | 14             | 2.51       | < 10                                    | < 1      | 0.19   |
| 19249          | 214                | 238     | < \$            | - < (<br>- / I | 0.2<br>n 7 | 38        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 19250<br>27153 | 214                | 238     | < 5             | ~ (            | 0.2        | 34        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23152          | 214                | 238     | < 5             | < (            | 0.2        | 64        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23153          | 214                | 238     | < 5             | < (            | 0.2        | 30        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23154          | 214                | 238     | < 5             | < 1            | 0.2        | 14        |                | 1 06    |           | < 10      | 240                                      | 0.5       | < 2        | 2.78    | < 0.5     | 9         | 39        | 20             | 3.40       | < 10                                    | < 1      | 0.29   |
| 23155          | 214                | 238     | < 5             | <              | 0.2        | 25        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23157          | 214                | 238     | < 5             | <              | 0.2        | 26        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23158          | 214                | 238     | < 5             | <              | 0.2        | 20        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23159          | 214                | 238     | < 5<br>2 - 5    | <u> </u>       | 0.2        | 129       |                | 0.36    | 6         | < 10      | 30                                       | < 0.5     | < 2        | 2.51    | < 0.5     | 16        | 123       | 126            | 2.43       | < 10                                    | < 1      | 0.22   |
| 23160          | 214                | 238     | < 5             | è              | 0.2        | 28        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23162          | 214                | 238     | < 5             | <              | 0.2        | 57        |                |         |           | *****     |                                          |           |            |         |           |           | ******    |                |            |                                         |          |        |
| 23163          | 214                | 238     | < 5             | ۲.             | 0.2        | 23        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23164          | 214                | 238     |                 | Ś              | 0.2        | 34<br>66  | 0.1            | 2 0.60  | 8         | < 10      | 70                                       | < 0.5     | < 2        | 2.56    | < 0.5     | 8         | 81        | 62             | 2.28       | < 10                                    | < 1      | 0,30   |
| 23166          | 214                | 238     | < 5             | è              | 0.2        | 19        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23167          | 214                | 238     | < 5             | ~              | 0.2        | 121       |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23168          | 214                | 238     | < 5             | <              | 0.2        | 28        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23169          | 214                | 238     |                 |                | 1.6        | 60<br>60  |                | 2 1.De  | <br>R6    | < 10      | 130                                      | 0.5       | < 2        | 5.57    | < 0.5     | 33        |           | 57             | 6.92       | < 10                                    | ) <1     | 0.08   |
| 231/0          | 214                | 238     | ĺ               | è              | 0.2        | 120       | )              |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23172          | 214                | 238     | < 5             | <              | 0.2        | 107       | /              |         |           |           |                                          |           |            |         |           | ******    |           |                |            |                                         |          |        |
| 23173          | 214                | 238     | 5               | <              | 0.2        | 17        |                |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23174          | 214                | 238     | 20              | <              | 0.2        | 62        | 2              |         |           | 10        | <br>זי 50                                | 0.5       | < 2        | 2.78    | < 0.5     | 43        | 239       | 253            | 6.37       | 10                                      | ) < t    | 0.33   |
| 23175          | 224                | 238     |                 | <br><          | 0.2        | 49        | 5              | · ····  |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23177          | 214                | 238     | < 5             | <              | 0.2        | 72        | 2              |         |           |           |                                          |           |            |         |           |           | *         |                |            |                                         |          |        |
| 23178          | 214                | 238     | < 5             | <              | 0.2        | 8         | 1              |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         | ~~~~~    |        |
| 23179          | $-\frac{214}{377}$ | 238     | 430             | · <            | 0.2        | 121       |                | 2 1.3   | 4 3       | 2 < 10    | 180                                      | ) < 0.5   | < 2        | 1.35    | < 0.5     | 5 (       | 3 84      | 120            | 5 3.17     | 7 < 10                                  | o < :    | L 0.13 |
| 23180          | 214                | 23      |                 | i è            | 0.2        | 13        | 0              |         |           |           |                                          |           |            |         |           |           |           |                |            |                                         |          |        |
| 23182          | 214                | 238     |                 | 5 <            | 0.2        | 4         | 3              |         |           |           |                                          |           |            |         |           |           |           |                | <u>-</u> - | <br>,                                   |          |        |
|                |                    |         | <u> </u>        |                |            |           |                |         |           |           |                                          |           |            |         |           |           |           | $\overline{>}$ | 1          | 101                                     | NOA      | 2      |
|                |                    |         |                 |                |            |           |                |         |           |           |                                          |           |            |         |           | CERTI     | FICATIO   | N:             | ···· /     | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <u> </u> |        |

S

### **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

io: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTRE Comments: ATTN: BRETT LAPEARE

Page ver :2-B Total F. Js :3 Certificate Date: 01-AUG-2000 Invoice No. : 10024183 P.O. Number :200950 Account :PIL

CEDTIEICATE OF ANALYSIS

|                                           |                                 |                                 |                   |         |           |            |         |            |          |           | CE     | RTIF      | ICATE        | E OF /    | ANAL'   | YSIS      |          | A0024    | 183           |            | ····     |
|-------------------------------------------|---------------------------------|---------------------------------|-------------------|---------|-----------|------------|---------|------------|----------|-----------|--------|-----------|--------------|-----------|---------|-----------|----------|----------|---------------|------------|----------|
| SANYLE                                    | PRE<br>COD                      | r<br>E                          | рћ <u>т</u><br>Гч | My<br>% | Mu<br>mqq | Mo,<br>ppm | Na<br>X | ррш<br>Ти  | P<br>Ppm | чь<br>ppm | ឋ<br>% | sp<br>Bbw | ве<br>ррщ    | Br<br>ppm | Tİ<br>X | T1<br>ppm | U<br>ppm | v<br>ppm | W<br>ppm      | Zn<br>ppm  | Mo<br>Mo |
| 19243<br>19244                            | 214<br>214                      | 238<br>238                      | 10                | 0.95    | 600       | 2          | 0.02    | 4          | 600      | 16        | 2.25   | < 2       | 5            | 111       | < 0.01  | < 10      | < 10     | 26       | < 10          | 52         |          |
| 19245<br>19246<br>19247                   | 214<br>214<br>214               | 238<br>238<br>238               |                   |         |           |            |         |            |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 19248<br>19249                            | 214<br>214<br>214               | 238<br>238<br>238               | 10                | 0.96    | 720       | 2          | 0.01    | 4<br>      | 610      | < 2       | 0.52   | < 2       | <sup>6</sup> | 105       | < 0.01  | < 10      | < 10     | 41<br>   | < 10          | 38<br>     |          |
| 23151<br>23152                            | 214<br>214<br>214               | 238<br>238                      |                   |         |           |            |         |            |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 23153<br>23154<br>23155                   | 214<br>214<br>214               | 238<br>238<br>238               | <br><br>< 10      | 1.40    | 1430      |            | 0.02    | 12         | 230      | <br>< 2   | 0.16   | <br>< 2   | <br><br>9    | <br>115   | 0.01    | < 10      | < 10     | 55       | < 10          | <br>B6     |          |
| 23156<br>23157                            | 214<br>214                      | 238<br>238                      |                   |         |           |            |         | **         |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 23158<br>23159<br>23160                   | 214<br>214<br>214               | 238<br>238<br>238               | < 10              | 0,48    | 955       | 16         | 0.02    |            | 250      | 4         | 1.62   | < 2       | < 1          | 44        | < 0.01  | < 10      | < 10     | 5        | < 10          | 42         |          |
| 23161<br>23162                            | 214<br>214                      | 23 B<br>23 8                    |                   |         |           |            |         |            |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 23163<br>23164<br>23165<br>23166<br>23166 | 214<br>214<br>214<br>214<br>214 | 238<br>238<br>238<br>238<br>238 | < 10              | 0.91    | 1405      | 6          | 0.02    | و<br>      | 250      | 2         | 1.31   | < 2       | 1            | 57<br>    | < 0.01  | < 10      | < 10     | 9<br>9   | < 10          | 54         |          |
| 23168<br>23169                            | 21.4<br>21.4                    | 238<br>238                      |                   |         |           |            |         |            |          |           | 0.90   |           |              | 101       | 0.01    |           | < 10     | 180      | < 10          |            |          |
| 23170<br>23171<br>23172                   | 214<br>214<br>214               | 238<br>238<br>238               | < 10<br>          | 1.78    |           |            |         |            |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 23173<br>23174<br>23175                   | 214<br>214<br>214               | 238<br>238<br>238               | < 10              | 2.10    | 605       | 7          | 0.07    | <br><br>44 | 980      |           | 1.86   |           | 17           | 65        | 0.08    | < 10      | < 10     | 159      | < 10          | <br><br>54 | <br>     |
| 23176<br>23177                            | 214<br>214                      | 238<br>238                      |                   |         |           |            |         |            |          |           |        |           |              |           |         |           |          |          |               |            |          |
| 23178<br>23179<br>23180                   | 214<br>214<br>214               | 238<br>238<br>238               | < 10              | 1.01    | 425       |            | 0.02    |            | 680      | <         | 2 0.30 | <         | 2 6          | 37        | 0.03    | < 10      | ) < 10   | 74       | < 10          | 3          | 0 8      |
| 23182<br>23182                            | 214                             | 238                             |                   |         |           |            | ~       |            |          |           |        |           |              |           |         |           |          |          |               | <u></u>    | <u>k</u> |
| ×                                         | •• <b>•</b>                     |                                 |                   |         |           |            |         |            |          |           |        |           |              |           | CERTI   | FICATIO   | N:       |          | $\frac{1}{2}$ | 1.00       | <u>}</u> |



101

() 0

# ALS Chemex Aurora Laboratory Sorvices Ltd. Analytical Chemista \* Deglatered Assayers

212 Brooksbank Ave. North Vancouver Dilliah Columbia, Canada V7J,2C1 PHONE: 604-984-0221 FAX: 604-984-0218

fo: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Page '107 :3-A Total H. J.s. :3 Certificate Date: 01-AUG-2000 Invoice No. : 10024183 P.O. Number : 200950 Account : Pil

Project : KEMESS CENTHE Gomments: ATTN: BRETT I APFARE

|                                                    |                                                             |                                        | K                                     | <u> </u>                        | -00                             | ⊃~ c                            | 54        |         |                   |          |                   | CE        | RTIF      | IÇATE   | E OF A    | INAL      | YSIS      |           | A0024   | 183       |           | _      |
|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------|---------|-------------------|----------|-------------------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|--------|
| SAMPLE                                             | PHEP                                                        |                                        | ла ррБ 2<br>ГА+ХА 3                   | Ad pi<br>Aqua                   | nı<br>R                         | Ca<br>PPM                       | htu<br>Vî | ۸1<br>گ | рђ <i>ш</i><br>уп | ח<br>שלל | Ba<br>P <b>pm</b> | ne<br>bhu | 11<br>ppm | Ca<br>% | ca<br>ppm | Co<br>ppm | Cr<br>ppm | Çu<br>ppm | ro<br>X | Ua<br>ppm | uu<br>PDm | к<br>% |
| 23183<br>23184<br>23185<br>23186<br>23187          | 214 2<br>214 2<br>214 2<br>214 2<br>214 2<br>214 2          | 238<br>238<br>238<br>238<br>238<br>238 | < 5<br>5<br>15<br>10<br>< 5           | < 0<br>< 0<br>< 0<br>< 0        | .2<br>.2<br>.2<br>.2            | 54<br>169<br>235<br>151<br>108  | < 0.2     | 1.22    | 2                 | < 10     | 130               | 0.5       | < 2<br>   | 3.05    | < 0.5     | 9<br>     | 40        | 218       | 2.23    | < 10      | < 1       | 0.26   |
| 23188<br>23189<br>23190<br>23191<br>23192          | 214 2<br>214 2<br>214 2<br>214 2<br>214 2<br>214 2<br>214 3 | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; 5 &lt; 5 10 20 10</pre>     | < 0<br>< 0<br>< 0<br>< 0        | .2<br>.2<br>.2<br>.4            | 82<br>61<br>147<br>308<br>372   | < 0.2     | 1.85    | < 2<br>           | < 10     | 540               | < 0.5     | < 2       | 1.89    | < 0.5     | 9<br>     | 53        | 140       | 2.46    | < 10      | < 1<br>   | 0.13   |
| 23193<br>23194<br>23195<br>23196<br>23196<br>23197 | 214<br>214<br>214<br>214<br>214<br>214<br>214               | 238<br>238<br>238<br>238<br>238<br>238 | 10<br>< 5<br>10<br>20<br>5            | < 0<br>< 0<br>< 0<br>< 0<br>< 0 | 1.2<br>1.2<br>1.2               | 243<br>94<br>116<br>237<br>142  | < 0.2     | 1.60    | < 2               | < 10     | <br>150           | < 0.5     | < 2<br>   | 1.25    | < 0.5     | 15        | 104       | 116       | 3.21    | < 10      | < 1<br>   | 0.15   |
| 23196<br>23199<br>23200<br>23251<br>23252          | 214<br>214<br>214<br>214<br>214<br>214                      | 238<br>238<br>238<br>238<br>238<br>238 | 10<br>< 5<br>5<br>< 5<br>5            | < 0<br>< 0<br>< 0<br>< 0<br>< 0 | ).2<br>).2<br>).2<br>).2<br>).2 | 196<br>99<br>153<br>100<br>228  | < 0.2     | 1.25    | < 2               | < 10     | 140               | < 0.5     | < 2       | 1.52    | < 0.5     | <br>8<br> | 74        | 147       | 2.66    | < 10      | < 1       | 0.21   |
| 23253<br>23254<br>23255<br>23256<br>23256<br>23257 | 214<br>214<br>214<br>214<br>214<br>214                      | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; 5 25 &lt; 5 45 &lt; 5</pre> | 0<br>2<br>1<br>0<br>< 0         | 0.2<br>2.2<br>1.0<br>0.8<br>0.2 | 333<br>257<br>78<br>516<br>37   | 0.2       | 1.28    | < 2               | < 10     | 170               | < 0.5     | < 2<br>   | 1.61    | < 0.5     | 7         | 70        | 76        | 3.06    | < 10      | t >       | 0.14   |
| 23258<br>23259<br>23260<br>23261<br>23261<br>23262 | 214<br>214<br>214<br>214<br>214<br>214                      | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; 5 20 15 15 5</pre>          |                                 | 1.0<br>0.2<br>0.6<br>0.6<br>0.2 | 113<br>302<br>195<br>182<br>196 | 0.4       | 1.93    | <br>              | 2 < 10   | 320               | 0.5       | < 2       | 3.46    | 5 < 0.5   | 9         | 33        | 190       | 2.56    | < 10      | <         | 0.19   |
| 23263<br>23264<br>23265<br>23266<br>23266<br>23267 | 214<br>214<br>214<br>214<br>214<br>214                      | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; \$ 10 55 15 &lt; 5</pre>    | ()<br>                          | 0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 186<br>128<br>261<br>173<br>181 | 0.2       | 2 1.9   | 5 < 2             | 2 < 10   | ) 13(             | 0.5       | <         | 2.97    | 7 < 0.5   | <br>      | 29        | 283       | 2.77    | / < 1(    | ) < ;     | 1 0.11 |
| 23268<br>23269<br>19156<br>19165                   | 214<br>214<br>214<br>214<br>214                             | 238<br>238<br>238<br>238               | 10<br>25<br>< 5<br>< 5                | <<br><<br><                     | 0.8<br>0.8<br>0.2<br>0.2        | 187<br>259<br>85<br>66          |           |         |                   |          |                   |           |           |         |           |           |           |           |         |           |           |        |



#### **ALS Chemex** Autom Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

North Voncouver 212 Brooksbonk Ave... Billioh Columbia, Canada VAL2C1 PHONE: 604-984-0221 FAX: 604-984-0218

KEMESS MINE To:

> P.O. BOX 3519 SMITHERS, BC VoJ 2No

KEMESS CENTRE Profect : ATTN: BRETT LAPFARE Comments:

\_\*

vor :3-B Pago :3 Cortificato Dato: 01-AUG-2000 Invoice No. 10024183 P.O. Number : 200950 : PII Account

÷

A0024183 **CERTIFICATE OF ANALYSIS** Μο Ζu **T**1 U V N1. ĿЬ в Вh Ц¢ ШĿ. T1 Ľ PREF  $M_{\rm P}$ Na 1.0 Mg Mit ppm ppm ppm ¥ ppn ×. ppm ppm ppm CODE ¥ ٩, pym ppm ppm ppm SAMPLE ບັນຫຼ ppa ppu DDW 6 23183 214 238 36 23184 214 238 38 24 ----• €. 0.36 214 238 23185 10 0.43 305 12 214 238 23186 13 214 238 23187 7 23188 214 231 6 214 238 23189 32 \_\_\_\_ 54 < 10 0.01 < 10 Ο. 168 214 238 1.03 0.11 < 10 410 23190 6 214 238 23191 6 214 238 23192 10 23193 214 238 10 214 238 23194 75 < 10 28 \_ \_ < 10 59 0.10 < 10 0 47 < 2 < 2 23195 214 238 < 10 1.18 435 15 23196 214 238 5 214 238 23197 19 23198 214 238 10 23199 214 238 24 < 10 49 < 10 \_ \_ \_ 65 0.01 < 10 < 2 0.37 214 238 290 ~ 7 23200 0.61 < 10 7 214 238 23251 13 214 238 23252 Т 13 0 23253 214 238 10 23254 214 238 ſ < 10 26 69 0.03 < 10 < 10 68 < 2 6 < 2 0.12 600 214 238 23255 ۵. 6 Q 23256 214 238 5 0 23257 214 238 6 214 238 23258 6 Y 214 238 23259 26 51 < 0.01 < 10 < 10 < 10 -630 0.34 < 2 S. 147 e 2 0.09 214 238 570 23260 10 0.84 4 23261 214 238 5 214 238 23262 7 214 23B 23263 9 23264 214 238 < 10 < 10 61 2 5 130 < 0.01 < 10 620 < 2 0.18 0.10 23265 720 214 238 10 0.93 10 214 238 23266 10 23267 214 238 8 2326B 214 238 ----214 238 23269 19156 214 238 \_\_\_\_ \_\_\_\_ \_\_\_\_ -----214 238 19165 <u>, ,,,</u>, A. Carlo and

CERTIFICATION:

くえん



ながたわたい しょうしょう しょうかい たいしょう

# ALS Chemex

Annivitat Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| C.                   | FRTIFI            |                                                 | A0024500                             |
|----------------------|-------------------|-------------------------------------------------|--------------------------------------|
| PIL) - KE            | MESS MIN          | E                                               |                                      |
| Project:<br>P.O. # : | KEMESS<br>200950  | CENTRE                                          |                                      |
| Samples              | submitte          | d to our lab i:<br>printed on 07-1              | n Vancouver, BC.<br>AUG-2000.        |
| 1110 IAT             |                   | prantin 01 07 1                                 |                                      |
|                      |                   |                                                 |                                      |
|                      | SAM               | PLE PREPAR                                      | RATION                               |
| CHEMEX<br>CODE       | NUMBER<br>SAMPLES |                                                 | DESCRIPTION                          |
| 225<br>238<br>229    | 89<br>89<br>18    | Run as receiv<br>Nitric-aqua-r<br>ICP - AQ Dige | ed<br>egia digestion<br>stion charge |
|                      |                   |                                                 |                                      |
| * NOTE               | 1:                | <u>.</u>                                        |                                      |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digostion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ca, K, La, Mg, Na, Sr, Ti, Tl, W. 01

P.O. BOX 3519 SMITHERS, BC VOJ 2N0

Comments: ATTN: BRETT LAPEARE

#### UPPER DETECTION NUMBER CHEMEX LIMIT LIMIT METHOD SAMPLES DESCRIPTION CODE 10000 5 Au ppb: Fuse 30 g sample FA-AAS 983 89 100.0 AAS-BKGD CORR 0.2 Ag ppm: HNO3-aqua regia digest 89 6 10000 AAS 1 Cu ppm: HN03-aqua regia digest 2 89 1 1000 AAS Mo ppm: HNO3-aqua regia digest 3 71 0.2 100.0 Ag ppm: 32 element, soil & rock ICP-AES 2118 18 0.01 15.00 ICP-AES 2119 A1 %: 32 element, soil & rock 18 2 10000 ICP-AES As pom: 32 element, soil & rock 2120 18 10000 10 ICP-AES B ppm: 32 element, rock & soil 557 18 10000 10 ICP-AES Ba ppm: 32 element, soil & rock 2121 18 100.0 0.5 ICP-AES Be pom: 32 element, soil & rock 18 2122 10000 ICP-AES 2 Bi ppm: 32 element, soil & rock 18 2123 0.01 15.00 ICP-AES 18 Ca %: 32 element, soil & rock 2124 0.5 500 Cd ppm: 32 element, soil & rock ICP-AES 2125 18 10000 1 ICP-AES Co ppm: 32 element, soil & rock 2126 18 10000 ICP-AES 1 Cr ppm: 32 element, soil & rock 2127 18 10000 1. Cu ppm: 32 element, soil & rock ICP-AES 18 2128 0.01 15.00 ICP-AES Fo %: 32 element, soil & rock 2150 18 10000 ICP-AES 10 Ga ppm: 32 element, soil & rock 18 2130 10000 1 Hg ppm: 32 element, soil & rock ICP-AES 2131 18 0.01 10.00 ICP-AES K %: 32 element, soil & rock 2132 18 10000 10 ICP-AES La ppm: 32 element, soil & rock 2151 18 15.00 0.01 ICP-AES Mg %: 32 element, soil & rock 2134 18 10000 5 Mn ppm: 32 element, soil & rock ICP-AES 18 2135 10000 ICP-AES 1 Mo ppm: 32 element, soil & rock 2136 18 10.00 ICP-AES 0.01 Na %: 32 element, soil & rock 18 2137 10000 ICP-AES 1 Ni ppm: 32 element, soil & rock 2138 18 10000 10 ICP-AES P ppm: 32 element, soil & rock 2139 18 10000 2 ICP-AES Pb ppm: 32 element, soil & rock 2140 18 0.01 5.00 ICP-AES s %: 32 element, rock & soil 551 18 10000 2 ICP-AES sb ppm: 32 element, soil & rock 2141 18 10000 1 ICP-AES Sc ppm: 32 elements, soil & rock 2142 18 10000 ICP-AES 1 sr ppm: 32 element, soil & rock 18 2143 10.00 0.01 Ti %: 32 element, soil & rock ICP-AES 2144 18 10000 ICP-AES 10 2145 18 T1 ppm: 32 element, soil & rock 10000 10 ICP-AES U ppm: 32 element, soil & rock 2146 18 10000 ICP-AES 1 V ppm: 32 element, soil & rock 18 2147 10000 ICP-AES 10 W ppm: 32 element, soil & rock 2148 18

ANALYTICAL PROCEDURES 1 of 2

A0024500



#### **ALS Chemex** Aurora Laboratory Sorvices Ltd.

Analytical Chomista \* Geochemista \* Registered Assayers

212 Brooksbank Ave. North Vancouver Billish Columbia, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| 1   |             |
|-----|-------------|
| "o: | KEMESS MINE |

P.O. BOX 3519 SMITHERS, BC VOJ 2NO

Comments: ATTN: DRCTT LAPEARE

#### A0024500

#### CERTIFICATE

#### A0024500

- L

#### (PIL) - KEMESS MINE

Plan a vehic is so a ----

KEMESS CENTRE 200950 Project: P.Ó. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2000.

|                   | SAM               | PLE PREPARATION                                                             |  |
|-------------------|-------------------|-----------------------------------------------------------------------------|--|
| CHEMEX            | NUMBER<br>SAMPLES | DESCRIPTION                                                                 |  |
| 225<br>238<br>229 | 89<br>89<br>18    | Run as received<br>Nítric-aqua-regia digestion<br>ICP - AQ Digestion charge |  |
| * NOTT            | 1.                |                                                                             |  |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

|                |                   |         | ANA         | LYTICAL     | PROCEDURE       | ES 2 of 2 |                |
|----------------|-------------------|---------|-------------|-------------|-----------------|-----------|----------------|
| CHEMEX<br>CODE | NUMBER<br>SAMPLES |         | DESCRI      | IPTION      | METHOD          | DETECTION | UPPER<br>LIMIT |
| 2149           | 18                | Zn ppm: | 32 element, | soil & rock | ICP <b>-AES</b> | 2         | 10000          |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   | ł       |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
| 1              |                   |         |             |             |                 |           |                |
|                |                   |         |             |             |                 |           |                |
| 1              |                   |         |             |             |                 |           |                |



#### **ALS Chemex** Autora Laboratory Services Ltd.

Analytical Coemista \* Geochemista \* Registered Assuyera

212 Brockabank Ave., North Vancouver Bittlah Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-084-0218

11 -~ · i

To: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTRE Commente: ATTN: DRFTT LAPEADE

bor :1-A Pago Total F\_\_ss :3 Certificate Date: 07-AUG-2000 Invoice No. : 10024500 P.O. Number :200950 Account : Pll.

|        |            |          | ٩                   | KC              | -0       | 3-0      | 54       |         |           |          | CE        | RTIF      | CATE      | OF A    | ANAL      | YSIS      |             | A0024     | 500     |                                       |           |
|--------|------------|----------|---------------------|-----------------|----------|----------|----------|---------|-----------|----------|-----------|-----------|-----------|---------|-----------|-----------|-------------|-----------|---------|---------------------------------------|-----------|
| SAMPLE | PRE<br>COD | P<br>E   | Au ppb A<br>FA+AA A | g ppm<br>.gua R | Са<br>Са | MD<br>MO | nd<br>Tu | л1<br>% | An<br>Phu | ndd<br>D | Ba<br>Pŷm | bbw<br>Re | ui<br>ppm | Ca<br>% | ca<br>ppm | co<br>ppm | Cr<br>ppm   | Cu<br>ppn | Fa<br>X | Ca<br>ppm                             | ppm<br>Ng |
| 3270   | 225        | 238      | 15                  | 0.4             | 417 -    |          | 0.6      | 2.36    | < 2       | < 10     | 120       | < 0.5     | < 2       | 2.27    | < 0.5     | 13        | 31          | 447       | 2.82    | < 10                                  | < 1       |
| 3271   | 225        | 238      | 45                  | 1.0             | 487      | 12 -     |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 3272   | 225        | 23 B j   | 35                  | 0.2             | 1015     | 30 -     |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 3273   | 225        | 238      | 40                  | 0.6             | 690      | 29 -     |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| :3274  | 225        | 238      | 5                   | 0.2             |          |          |          |         |           |          |           |           |           |         |           |           | 2.0         | 020       | 2 91    | < 10                                  | < 1       |
| 3275   | 225        | 238      | 25                  | 0.6             | 785      |          | 0.8      | 2.08    | < 2       | < 10     | 210       | < 0.5     | < 2       | 2.05    | < 0.5     | 9         |             | 010       | 4.31    |                                       |           |
| 3276   | 225        | 238]     | 70                  | 0.6             | 592      | 6.       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       | <b>-</b>  |
| 3277   | 225        | 238      | 25                  | 0.2             | 684      | 9.       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23278  | 225        | 238      | 75                  | 1.0             | 1110     | 10 1     |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 13279  | 225        | 238      | 35                  | 4U              | 870      |          |          |         |           |          |           |           |           |         |           |           | 40          | 2420      | 2 76    | < 10                                  | < 1       |
| 23280  | 225        | 238      | 170                 | 2.6             | 2470     |          | 1.8      | 1.57    | < 2       | < 10     | 70        | < 0.5     | < 2       | 1.55    | 0.5       |           |             | V4#4      |         |                                       |           |
| 23281  | 225        | 238      | 110                 | 1.2             | 1195     | 15       |          |         |           |          | *****     |           |           |         |           |           |             |           |         |                                       |           |
| 23282  | 225        | 238      | 70                  | 1.2             | 1750     | 28       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23283  | 225        | 238      | 80                  | 1.2             | 1300     | 36       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23284  | 225        | 23 B     | 85                  | 7.0             | 720A     | 04       |          |         |           | -        |           |           |           |         |           |           | 10          |           | 2 24    | < 10                                  | <u> </u>  |
| 23285  | 225        | 238      | 95                  | 2.2             | 3040     |          | 2.4      | 1.73    | < 2       | < 10     | 70        | < 0.5     | < 2       | 1.58    | < 0.5     | '         | 40          | 2020      | 4.34    |                                       |           |
| 23286  | 225        | 238      | 55                  | 0.8             | 1210     | 9        |          |         |           |          |           | *         |           |         |           |           |             |           |         |                                       |           |
| 23287  | 225        | 238      | 40                  | 0.6             | 816      | 22       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23288  | 225        | 238      | 55                  | 0.6             | 1120     | 10       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23289  | 225        | 238      | 50                  | 0.0             | TOZƏ     |          |          |         |           |          |           |           |           |         |           |           |             |           | 7 73    | < 10                                  | < 1       |
| 23290  | 225        | 238      | 35                  | 0.2             | 506      |          | 0.6      | 2.11    | < 2       | < 10     | 110       | < 0.5     | < 2       | 1.66    | < 0.5     | (         |             |           |         |                                       |           |
| 23291  | 225        | 238      | 45                  | 0.2             | 619      | 10       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23292  | 225        | 238      | 40                  | 0.2             | 318      | 12       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23293  | 225        | 238      | 15                  | 0.2             | 238      | 5        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23294  | 225        | 238      | 55                  | 0.2             | 236      | 8        |          |         |           |          |           |           |           | · · ·   |           |           |             |           |         |                                       |           |
| 23295  | 225        | 238      | 10                  | < 0.2           | 243      |          | 0.2      | 2.19    | < 2       | < 10     | 670       | < 0.5     | < 2       | 2.23    | < 0.5     | 7         | 49          | 280       | 2.65    | < 10                                  | < 1       |
| 23296  | 225        | 238      | < 5                 | < 0.2           | 131      | 5        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23297  | 225        | 23B      | < 5                 | < 0.2           | 186      | 5        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23298  | 225        | 238      | < 5                 | < 0.2           | 89       | 8        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23299  | 225        | 238      | 10                  | ₹ 0.Z           | 180      |          |          |         |           |          | <u> </u>  |           |           |         |           |           |             |           | 1 20    | × 10                                  | 21        |
| 23300  | 225        | 238      | < 5                 | < 0.2           | 22       |          | < 0.2    | 2 2.43  | 3 < 2     | 2 < 10   | ) 130     | < 0.5     | < 2       | 2.26    | • < •••   | > :<br>   | , 33        |           |         |                                       |           |
| 23401  | 225        | 238      | s - 5               | < 0.2           | 28       | 6        | ~~~~~    |         |           |          |           |           |           |         |           |           |             |           |         |                                       | *         |
| 23402  | 225        | 238      | 10                  | < 0.2           | 88       | 7        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23403  | 225        | 238      | < 5                 | 0.2             | 448      | 9        |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23404  | 225        | 238      | 3 < 5               | 0.2             | 4/2      | 11       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23405  | 225        | 238      | 3 < 5               | < 0.2           | 145      |          | 0.       | 2 2.94  | 4 < 2     | 2 < 10   | 370       | ) 0.5     | ; < 2     | 2.34    | l < 0.!   | 5 1       | B 38        | 3 182     | 2.71    | / < 10                                | , «1<br>  |
| 23406  | 225        | 238      | 3 < 5               | 0.4             | 370      | 57       |          |         | ~~~~      |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23407  | 225        | 238      | 3 < 5               | < 0.2           | 175      | 13       |          |         |           |          |           |           |           |         |           |           |             |           |         |                                       |           |
| 23408  | 225        | 238      | 10                  | 5.6             | 2560     | 28       |          |         |           |          |           |           |           |         |           |           | *           |           |         |                                       |           |
| 23409  | 225        | 1 231    | 5 < 5               | V.6             | 204      | 19       |          |         |           |          |           |           |           |         |           |           | _           | •         | 1       | · ·                                   | 4         |
|        |            | <u> </u> |                     |                 |          |          |          | ···-    |           |          |           |           |           |         |           |           |             | ~         | 47      | ····· · · · · · · · · · · · · · · · · | 5         |
|        |            |          |                     |                 |          |          |          |         |           |          |           |           |           |         | ocotti    |           | м. <u>с</u> | ふくつ       | 1/e     | 110-1                                 | ÷ .       |

CERTIFICATION:\_



#### **ALS Chemex** Aurona Laboratory Services Ltd.

Analytical Chemista \* Geochemista \* Degistered Assayers

212 Brookshank Ave., North Vancouver Billish Columbia, Canada V/J 201 PHONE: 604-984-0221 FAX: 604-984-0218

o: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VOJ 2NO

Project : KEMESS CENTRE Commonis: ATTN: BRETT LAPFARE

\_\*

or :1-B Pago Total F. \_s :3 Cortificato Dato: 07-AUG-2000 Invoice No. :10024500 P.O. Number :200950 Account PIL

OATE OF ANALVER

|                |            |            |        | ¥          | - <i>ت</i> - | - 95                | 0- c      | 4        |                   |          | CE        | RTIF    | CATE      | OF A      | ANAL      | YSIS    |           | A0024    | 1500             | <u>-</u>   |           |
|----------------|------------|------------|--------|------------|--------------|---------------------|-----------|----------|-------------------|----------|-----------|---------|-----------|-----------|-----------|---------|-----------|----------|------------------|------------|-----------|
| SAMPLE         | PRE<br>COD | 1.<br>E    | K.     | ndā<br>Per | Mu<br>R      | ភិវា <i>ធ</i><br>ហម | мо<br>мо  | Na.<br>% | NI<br><b>P</b> PM | r<br>PVm | рр<br>ррщ | 13<br>% | ndd<br>Ar | ppm<br>BQ | иг<br>ррв | ті<br>қ | TI<br>ppm | u<br>ppm | v<br>ppa         | w<br>mqq   | Zn<br>ppm |
| 3270           | 225        | 238        | 0.20   | 10         | 1.03         | 450                 | 32        | 0.09     | 5                 | 670      | 6         | 0.60    | < 2       | 4         | 127       | < 0.01  | < 10      | < 10     | 47               | < 10       | 42        |
| 3271           | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 3272           | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23273          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23274          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           | <u></u>   |           |         |           |          |                  |            |           |
| 7775           | 225        | 238        | 0.13   | < 10       | 1.12         | 450                 | 18        | 0.10     | 5                 | 700      | < 2       | 0.36    | < 2       | 5         | 149       | < 0.01  | < 10      | < 10     | 58               | < 10       |           |
| 23276          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23277          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23278          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23279          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 40.000         | 1228       | 220        | 0 13   | < 10       | 0.99         | 380                 | 10        | 0.07     | 5                 | 620      | 12        | 0.74    | < 2       | 3         | 76        | < 0.01  | < 10      | < 10     | 48               | < 10       | 44        |
| 23280          | 225        | 230        |        |            |              |                     |           |          |                   |          |           |         |           |           | ~~~       |         |           |          |                  |            |           |
| 43481<br>77172 | 225        | 238        |        |            |              | <b>_</b>            |           | =        |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23283          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23284          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
|                | 1.00       | 22.0       | 0.14   | < 10       | 1 02         | 340                 | 13        | 0.08     | 6                 | 620      | < 2       | 0.53    | < 2       | 4         | 76        | 0.01    | < 10      | < 10     | 44               | < 10       | 34        |
| 23285          | 225        | 230        | 0.14   |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23280          | 223        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23207          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23289          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           | _        |                  |            |           |
|                | 1 2 2 5    | 220        | 0.12   | 10         | 1_02         | 325                 | 16        | 0.11     | 6                 | 650      | < 2       | 0.35    | < 2       | 4         | 90        | 0.09    | < 10      | < 10     | 52               | < 10       | 28        |
| 23290          | 225        | 230<br>238 |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 22227          | 225        | 23.9       |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 22222          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23294          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           | _       |           |          |                  |            |           |
|                | 1          | 0.7.0      | 0.17   |            | 0.85         | 37                  |           | 5 0.10   | 6                 | 650      | ) 6       | 0.12    | < 2       | 4         | 233       | 0+04    | i < 10    | < 10     | ) 53             | < 10       | 36        |
| 23295          | 225        | 1230       |        |            |              | ,                   | , <b></b> |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23296          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 22227          | 225        | 238        |        |            |              | ~                   |           |          | *****             |          |           |         | *         |           |           |         |           |          |                  |            |           |
| 23299          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
|                | -          |            |        |            | 0.01         | 1 / 2               |           | 4 0 11   |                   | 5 560    | ) < 2     | 0.08    | < 2       | 4         | 10:       | 1 0.07  | 7 < 10    | ) < 10   | ) 46             | 5 < 10     | 24        |
| 23300          | 225        | 238        | 9.12   | 4 < 14     | 0.91         | L 44.3:             |           |          |                   |          |           |         |           |           |           |         |           |          |                  | ~~~~       |           |
| 23401          | 225        | 238        |        |            |              |                     |           |          |                   |          |           |         |           | ~~~~      |           |         |           |          |                  |            |           |
| 23402          | 222        | 230        |        |            |              |                     | ,         |          |                   |          |           |         |           | **===     |           |         |           |          |                  |            |           |
| 23403          | 225        | 238        | 3      |            |              |                     |           |          |                   |          |           |         |           |           |           | *****   |           |          |                  |            |           |
|                | 1          |            |        |            |              |                     |           | 0 0 11   |                   | 6 6A     | 0         | 2 0.29  |           | 4         | 1 12      | 4 0.0   | 5 < 1     | 0 < 1    | 0 5              | 5 < 10     | ) 36      |
| 23405          | 225        | 231        | 3 0.10 | 6 < 1      | 0 Q.B        | 6 J9                | y 1)<br>  | o V.1.   |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23406          | 225        | 236        | 5      |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23407          | 225        | 2 2 2 2 2  | 8      |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          |                  |            |           |
| 23408          | 22         | 231        | š      |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           | 4        |                  |            | 1         |
|                | 1          | 1          |        |            |              |                     |           |          |                   |          |           |         |           |           |           |         |           |          | A                | <u> </u>   | \         |
|                |            |            |        |            |              |                     |           |          |                   |          |           |         |           |           |           | —       |           | 2        | $\Lambda \times$ | Tab- 8 # 1 | 1         |

CERTIFICATION:



23448

23449

225 238

< 5

< 0.2

## **ALS Chemex**

Aurora Laboratory Services Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

KC-00-04

18

KEMESS MINE

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

`o:

KEMESS CENTRE Project : Commonts: ATTN: BRETT LAPEARE \_\*

Page or :2-A Total F. \_ .s :3 Certificate Date: 07-AUG-2000 : 10024500 Invoice No. P.O. Number :200950 : PIL Account

**CERTIFICATE OF ANALYSIS** A0024500 ľo. Qα lig Ca cđ Co Ċr Cu 61 Bn ßσ ٨ø U Au ppb Ag ppm Cu No Λg ЛA PROP ppm ۴. ppm ppm 2 ppm ppm DDE ppm 2 ppm ppm ppm ppm ppm SAMPLE CODE FA+AA Aqua R ບບກ UDM < 1 1080 2.53 < 10 0.5 17 76 130 < 0.5 < 2 2.66 < 10 1.2 1.44 < 2 1100 225 238 10 1.2 23410 225 238 < 5 0.8 689 33 23411 15 238 < 5 1.6 2180 225 23412 225 238 0.8 700 16 23413 × 5 27 174 225 238 < 5 < 0.2 ~ ~ ~ ~ ~ ~ 23414 2.45 < 10 < 1 81 33 2.0 < 2 2.90 < 0.2 1.53 < 2 < 10 130 < 0.5 < 0.2 80 -----23415 225 238 < 5 27 225 238 5 0.2 242 23416 74 17 225 238 < 5 < 0.2 23417 95 16 225 238 < 5 < 0.2 2341B 38 < 0.2 2 225 238 < 5 23419 32 2.67 < 10 < 1 55 < 0.5 160 < 0.5 2.28 < 2 < 10 < 2 < 0.2 1.71 225 238 < 5 < 0.2 33 23420 225 238 10 1.2 824 36 23421 < 0.2 125 5 225 238 < 5 23422 535 -----0.2 359 225 238 < 5 23423 >1000 105 < 5 0.2 23424 225 238 < 1 109 2.56 < 10 63 7 < 0.5 2.28 ٠ 0.5 < 10 110 < 2 < 2 0.2 1.64 225 238 < 5 < 0.2 96 €. 23425 225 238 5 0.2 466 44 23426 130 19 225 238 < 5 < 0.2 23427 536 45 225 238 10 0.4 23428 323 68 225 238 < 5 0.2 23429 56 189 2.61 < 10 < 1 7 2.43 0.5 < 10 400 < 0.5 < 2 183 < 0.2 1.48 < 2 \_\_\_\_ < 5 < 0.2 23430 225 238 299 17 < 0.2 225 238 5 23431 481 29 225 23B 5 0.2 23432 225 238 < 0.2 87 9 < 5 23433 < 0.2 65 225 238 < 5 6 23434 48 436 2.66 < 10 < 1 1.93 0.5 9 < 2 200 < 0.5 ..... 1.44 < 2 < 10 407 225 238 5 0.4 0.4 23435 221 -443 225 238 25 0.2 23436 371 22 -225 238 5 0.2 23437 225 238 < 5 0.2 264 20 23438 < 5 497 29 225 238 0.6 23439 53 241 2.59 < 10 < 1 8 < 0.5 1.72 < 0.5 < 2 < 10 160 1.46 < 2 231 0.8 225 238 < 5 0.4 \_\_\_\_ 23440 19 225 238 < 5 0.6 259 23441 13 270 225 238 < 5 0.6 23442 84 225 238 < 5 < 0.2 6 23443 < 0.2 22 225 238 < 5 23444 < 1 51 177 2.64 < 10 1.72 < 0.5 190 < 2 < 10 < 0.5 1.86 < 2 < 5 < 0.2 180 ----< 0.2 225 238 23445 < 0.2 360 26 225 238 < 5 23446 0.2 404 25 225 238 < 5 23447 178 32 225 238 < 5 0.6

CERTIFICATION: CUTO

. ..

140

1.1



na the state of the second second second

2

Real Property lies

### **ALS Chemex** Autom Luboratory Services Ltd.

Anniylical Chemists \* Geochemists \* Registered Assayers

212 Brookshank Ave., North Vancouver British Columbia, Cariada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

KEMESS MINE **'**٥;

P.O. BOX 3519 SMITHERS, BC VoJ 2NO

Project : KEMESS CENTRE Comments: ATTN: BRETT LAPEARE

er :2-B Page Total F. 29 :3 Contificato Dato: 07-AUG-2000 Invoice No. :10024500 P.O. Number :200950 PIL Account

26

|                                                    |                                               |                                               |                       | Kc         | 0       | 5-1      | 24       |         |           |          | CE                | RTIF   | ICATE     | E OF /    | ANAL      | YSIS       |           | A0024      | 500      |            |               |
|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------|------------|---------|----------|----------|---------|-----------|----------|-------------------|--------|-----------|-----------|-----------|------------|-----------|------------|----------|------------|---------------|
| SANPLE                                             | Plus<br>COD                                   | r<br>E                                        | K<br>*                | hôu<br>t'a | My<br>% | ми<br>ми | Mo<br>Wo | N¤<br>% | IN<br>MUQ | p<br>ppm | ւր<br>ք <b>նա</b> | 8<br>X | зь<br>ррп | ве<br>ppm | ис<br>ррт | ті<br>%    | TI<br>ppm | U<br>ppm   | v<br>ppm | м<br>ррш   | Zn<br>ppm     |
| 23410<br>23411<br>23412<br>23413<br>23414          | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238        | 0.21                  | < 10       | 0.75    | 830      | 23       | 0.05    | 7         | 600<br>  | 14                | 0.81   | < 2       | 3         | 77        | < 0.01     | < 10      | < 10       | 40<br>   | < 10       | 86            |
| 23415<br>23416<br>23417<br>23418<br>23419          | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238        | 0,20                  | < 10       | 0.52    | 425      | 21       | 0.07    | 5         | 660<br>  | 32                | 0.33   | < 2       | 3         | 90        | < 0.01     | < 10      | < 10       | 41       | < 10       | 190<br>       |
| 23420<br>23421<br>23422<br>23423<br>23423<br>23424 | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238        | 0.12                  | < 10       | 0.74    | 360      | 10       | 0.08    | 7         | 600      | 4                 | 0.06   | < 2       | 4         | 88<br>    | < 0.01     | < 10      | < 10<br>   | 44       | < 10       | 30            |
| 23425<br>23426<br>23427<br>23427<br>23428<br>23428 | 225<br>225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238<br>238 | 0.15                  | < 10       | 0.87    | 365      | 29       | 0.08    | <br>      | 620      | 2                 | 0.01   | < 2       | 4         | 84        | < 0.01     | < 10      | < 10       | 50       | < 10       | 26            |
| 23430<br>23431<br>23432<br>23433<br>23433<br>23434 | 225<br>225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238<br>238<br>238        | 0.18                  | 10         | 0.67    | 375      | 23       | 0.06    | 6         | 620<br>  | 2                 | 0.24   | < 2<br>   | 4         | 92        | < 0.01     | < 10<br>  | ) < 10<br> | 48       | < 10       | 32            |
| 23435<br>23436<br>23437<br>23438<br>23438<br>23439 | 225<br>225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238<br>238<br>238        | 0.16                  | ; 20<br>   | 0.79    | 335      | 40       | 0.07    | 6         | 650<br>  |                   | 0.13   |           |           |           | < 0.01     | < 10<br>  | ) < 10     | 57       | < 10       | 26            |
| 23440<br>23441<br>23442<br>23443<br>23443<br>23444 | 225<br>225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238<br>238<br>238        | 0.08                  | 3 < 10     | 0.88    | 425      | 22       | 0.10    |           | 620<br>  | ) < 2<br>         | 2 0.04 |           |           | 5 7:      | 9 0.03<br> |           | 0 < 10     | ) 54     | < 10       | 24            |
| 23445<br>23446<br>23447<br>23448<br>23448<br>23449 | 225<br>225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238<br>238<br>238        | 3 0.09<br>3<br>3<br>3 | 9 < 10     | 1.01    | 445      | 5 10     | 5 0.12  |           | 5 63(    |                   | 2 0.0  | • • • • • | 2         | 5 7       | 8 0.0      | B < 1     | 0 < 1      | 0 5      | • < 10<br> | , 26<br><br>λ |

CERTIFICATION:

ごわ



55

# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

KEMESS MINE .o:

P.O. BOX 3519 SMITHERS, BC VoJ 2N0

Project : KEMESS CENTRE Comments: ATTN: BRETT LAPFARF

CERTIFICATION:

Page ier :3-A Total F. Js :3 Contificate Date: 07-AUG-2000 Invoice No. : 10024500 P.O. Number : 200950 Account : PIL

A0024500 **CERTIFICATE OF ANALYSIS** KC-00-04 llg ¥۵ Qa Cr Cu Çđ Co 61 Ca λl ٨đ 11 Шa 80 PREP Au ppb Ay ppm Cu MO Λg ٩, ppmppm ٩. ppm ppm ppm DDM DDH 2 ppm ppm ppm ppm CODE FA+AA Aqua R ppm UUM SAMPLE ppm 39 41 2.71 10 < 1 7 240 < 0.5 < 2 2.20 < 0.5 2.95 < 2 < 10 35 -----< 0.2 225 23B 5 < 0.2 23450 < 5 < 0.2 23 12 23451 225 238 225 238 < 5 < 0.2 18 23452 46 225 238 < 5 0.2 23453 19 225 238 < 5 < 0.2 23454 < 1 2.61 < 10 47 46 < 2 2.37 0.5 6 < 2 < 10 570 < 0.5 2.64 225 238 < 5 < 0.2 40 -----< 0.2 23455 11 23456 225 238 < 5 < 0.2 14 13 23457 23458 225 238 < 5 < 0.2 11 \_\_\_\_\_ < 5 < 0.2 14 15 225 238



#### **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Bronkshank Ave., North Vancouver Billish Columbia, Canada V7J 2Ct PHONE: 604-984-0221 FAX: 604-984-0218

KC-00-04

KEMESS MINE 0:

> P.O. BOX 3519 SMITHERS, BC VoJ 2N0

or :3-8 Pagol Total F\_\_\_s :3 Certificato Date: 07-AUG-2000 Invoice No. :10024500 P.O. Number : 200950 :PIL Account

A0024500

Project : KEMESS CENTHE Comments: ATTN: BRETT LAPPARE

**CERTIFICATE OF ANALYSIS** 

| SAMPLE                                   | PR<br>CO                               | ne<br>De                                      | K.<br>% | בנו<br>בנו   | M(J<br>% | Mo<br>ppm | MO<br>PPM | Na<br>% | лт<br>mqq | ь<br>Брш | tep<br>ppm | <b>*</b><br>R | ap<br>Mada | Bo<br>ppm | Br<br>Bom | Tİ<br>% | T1<br>ppm | U<br>Ppm | v<br>ppm | w<br>ppm | Zn<br>ppm |
|------------------------------------------|----------------------------------------|-----------------------------------------------|---------|--------------|----------|-----------|-----------|---------|-----------|----------|------------|---------------|------------|-----------|-----------|---------|-----------|----------|----------|----------|-----------|
| 3450<br>33451<br>33452<br>33453<br>33453 | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238<br>238 | 0.11    | < 10         | 1.01     | 440       | 6         | 0.13    | 5         | 620      | < 2        | 0.02          | < 2<br>    | 5         | 113<br>   | 0.08    | < 10<br>  | < 10     | 54<br>   | < 10     | 28        |
| 23455<br>23456<br>23457<br>23458         | 225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238                      | 0.14    | < 10<br><br> | 0.78     | 390       | 7         | 0.15    |           | 640<br>  |            | < 0.01        |            |           | 335       | 0.02    | < 10      | < 10<br> | 55       | < 10<br> | 26        |
|                                          |                                        |                                               |         |              |          |           | •         |         |           |          |            |               |            |           |           |         |           |          |          |          |           |
|                                          |                                        |                                               |         |              |          |           |           |         |           |          |            |               |            |           |           |         |           |          |          |          |           |

CERTIFICATION:



A0024976

Aurora Laboratory Services Ltd. Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218



P.O. BOX 3519 SMITHERS, BC V0J 2N0

A0024976 Comments: ATTN: BRETT LAPEARE ANALYTICAL PROCEDURES 2 of 2 DETECTION UPPER NUMBER SAMPLES CHEMEX LIMIT LIMIT METHOD DESCRIPTION CODE 10000 2 Zn ppm: 32 element, soil & rock ICP-AES 2149 14

(PIL) - KEMESS MINE

Project: P.O. # : KEMESS CENTRE 200950

CERTIFICATE

Samples submitted to our lab in Vancouver, BC. This report was printed on 11-AUG-2000.

|                   | SAM               | PLE PREPARATION                                                             |  |
|-------------------|-------------------|-----------------------------------------------------------------------------|--|
| CHEMEX            | NUMBER<br>SAMPLES | DESCRIPTION                                                                 |  |
| 225<br>238<br>229 | 69<br>69<br>14    | Run as received<br>Nitric-aqua-regia digestion<br>ICP - AQ Digestion charge |  |
| * NOTE            | 1.                |                                                                             |  |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digostion is possibly incomplete area. Al, Ba, Ba, Ca, Cr, Ga, K, La, My, Na, Hr, T1, TL, W.



Aurora Laboratory Services Ltd.

Analytical Chemista \* Geochemiats \* Registered Assnyore 212 Brooksbank Ave North Vancouver British Colombia, Canada V/J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTRE Comments: ATTN: BRETT LAPEARE

Pago ber :1-A Total } \_s :2 Certificate Date: 11-AUG 2000 Invoice No. :10024976 P.O. Number :200950 PI Account

|                                                    |                                                             |                                        | ١                                                                   | 4                                     |                                        | - 0                        | 2 -7                 | 24        |          |             |          | CE         | RTIF      | CATE      | OF A    | NAL       | rsis      |           | 40024      | 976      |                             |           |
|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------|----------------------|-----------|----------|-------------|----------|------------|-----------|-----------|---------|-----------|-----------|-----------|------------|----------|-----------------------------|-----------|
| SAMPLE                                             | PUEP<br>CODE                                                |                                        | Au ppb A<br>FA+AA I                                                 | la bi<br>Idna                         | m<br>R                                 | Ca<br>Ca                   | Mo<br>MQ             | րիա<br>Նվ | ۸I<br>۱۸ | hħw<br>Vu   | n<br>u   | lia<br>PPM | bbw<br>ne | ьБа<br>пл | Ca<br>¥ | cd<br>ppn | Co<br>ppm | bħæ<br>Ci | Cu<br>PPm  | re:<br>B | Cu<br>Da                    | nd<br>bbw |
| 3459<br>3460<br>3461<br>3462<br>3463               | 225 23<br>225 23<br>225 23<br>225 23<br>225 23<br>225 23    | 38<br>38<br>38<br>38<br>38             | <pre>&lt; 5 &lt; > | 0.<br>< 0.<br>< 0.<br>< 0.            | ,2<br>,2<br>,2<br>,2<br>,2             | 11<br>13 -<br>15<br>9<br>8 | 9<br>9<br>7<br>6     | 0.2       | 1.53     | <pre></pre> | < 10<br> | 160        | < 0.5     | < 2       | 1.93    | < 0.5     | 7         | 84        | 11         | 2.91     | < 10<br>                    | < 1       |
| 3464<br>3465<br>3466<br>3467<br>3468               | 225 23<br>225 23<br>225 23<br>225 23<br>225 23<br>225 23    | 38<br>38<br>38<br>38<br>38<br>38       | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>         | < 0.<br>0<br>0<br>< 0<br>< 0          | .2<br>.6<br>.4<br>.2<br>.2             | 11<br>16<br>99<br>45<br>32 | 9<br>5<br>52<br>22   | 0.2       | 1.49     | < 2<br>     | < 10<br> | 80<br>     | < 0,5<br> | < 2<br>   | 2.12    | < 0.5     | 6<br>6    | 55        | 13         | 2.54     | < 10<br>                    | < 1<br>   |
| 23469<br>23470<br>23471<br>23472<br>23473          | 225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2          | 38<br>38<br>38<br>38<br>38<br>38<br>38 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>        | < 0<br>< 0<br>< 0<br>< 0<br>< 0       | .2<br>.2<br>.2<br>.2<br>.2<br>.2       | 50<br>29<br>14<br>16<br>18 | 12<br>6<br>7<br>9    | 0.2       | 1.37     | <pre></pre> | < 10<br> | 160        | < 0.5     | < 2<br>   | 2.10    | < 0.5     | б<br>б    | 55        | 27         | 2,36     | < 10<br>                    | < 1<br>   |
| 23474<br>23475<br>23476<br>23477<br>23478          | 225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2 | 38<br>38<br>38<br>38<br>38<br>38       | <pre>&lt; 5 &lt; 5</pre>  | < 0<br>< 0<br>< 0<br>< 0<br>< 0       | .2<br>.2<br>.2<br>.2<br>.2             | 19<br>17<br>18<br>13<br>22 | -8<br>10<br>6<br>6   | < 0.2     | 1.71<br> | < 2<br>     | < 10<br> | 170        | 0.5       | < 2<br>   | 1.78    | < 0.5     | 7         | 95<br>    | 16         | 2.95     | < 10                        | 1<br>     |
| 23479<br>23480<br>23481<br>23482<br>23483          | 225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2 | 38<br>38<br>38<br>38<br>38<br>38       | <pre>&lt; 5 &lt; 5</pre>  | < 0<br>< 0<br>< 0<br>< 0<br>< 0       | ).2<br>).2<br>).2<br>).2<br>).2        | 17<br>67<br>36<br>36<br>28 | 7<br><br>7<br>6<br>7 | < 0.2     | 1.29     | < 2<br>     | 2 < 10   | 200        | 0.5       | 2         | 1.45    | < 0.5     | 8         | 107<br>   | 64<br>     | 2.83     | < 10                        | < 1<br>   |
| 23484<br>23485<br>23406<br>23487<br>23488          | 225 2<br>225 2<br>225 2<br>225 2<br>225 2<br>225 2          | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>         |                                       | ).2<br>).2<br>).2<br>).2<br>).2<br>).2 | 33<br>31<br>23<br>13<br>12 | 7<br><br>8<br>4<br>5 | < 0.2     | 2 1.99   |             | 2 < 10   | 180        | 0,5       | < 2<br>   | 2.03    | < 0.5     | 8<br><br> | 79        | 30         | 2.96     | < 10<br>                    | < 1<br>   |
| 23489<br>23490<br>23491<br>23492<br>23492<br>23493 | 225<br>225<br>225<br>225<br>225<br>225<br>225               | 238<br>238<br>238<br>238<br>238<br>238 | <pre>&lt; 5 &lt; 5</pre>  | < < < < < < < < < < < < < < < < < < < | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 22<br>45<br>35<br>24<br>42 | 6<br>6<br>6<br>1     | 0.3       | 2 3.32   | 2 < 2       | 2 < 10   | 290        | 1.0       | < 2<br>   | 3,50    | < 0.5     | 15        | 89        | 46         | 2.47     | < 10                        | · < 1     |
| 23494<br>23495<br>23496<br>23497<br>23498          | 225<br>225<br>225<br>225<br>225<br>225                      | 238<br>238<br>238<br>238<br>238<br>238 | <pre></pre>                                                         | <<br><<br><<br><                      | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 73<br>15<br>56<br>20<br>26 | 5                    | 0.        | 2 1.8    | 7           | 2 < 10   | 180        | ) 0.5     |           | 2.44    | < 0.5     | 16<br>    | 94        | 12<br><br> | 2.43     | <pre>/ ( 10<br/><br/></pre> | ) < 1<br> |
|                                                    |                                                             |                                        | <u> </u>                                                            |                                       | -                                      |                            |                      |           |          |             |          |            |           |           |         | CERTI     |           | N:        | X          | 3W       | tu                          |           |



Auntytical Chemista \* Geochemista \* Registered Asseyera

212 Dimekabank Ave , North Vancouver British Colombia, Canada V7J 2C1 PHONE: 604 084 0221 FAX: 604-984-0218

To: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Project : KEMESS CENTRE Commonis: ATTN: BRETT LAPPARE Page per :1-8 Total) .s :2 Confilcate Date: 11-AUG-2000 Invoice No. :10024976 P.O. Number :200950 Account : Pfl

|                                                    |                                        |                                                    |         | KC         | e        | $\sim$    | 04         |          |              | L        | CE        | ERTIF   | CATE        | OFA       | ANAL       | YSIS     |            | A0024                 | 976      |          |           |
|----------------------------------------------------|----------------------------------------|----------------------------------------------------|---------|------------|----------|-----------|------------|----------|--------------|----------|-----------|---------|-------------|-----------|------------|----------|------------|-----------------------|----------|----------|-----------|
| SAMPLE                                             | ряк<br>Сор                             | r<br>E                                             | K<br>Pi | ppa<br>ru  | Нg<br>Ъ  | Mu<br>PPm | भूम<br>भूत | Na<br>Z  | рђш<br>И I   | ր<br>ուր | ar<br>mgg | ;;<br>% | pp <b>a</b> | bbw<br>ac | րրա<br>թթա | ግL<br>ቴ  | T.I<br>Dbw | Tilw<br>A             | v<br>PDm | m<br>M   | Zn<br>PPm |
| 23459<br>23460<br>23461<br>23462<br>23463          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238             | 0.12    | < 10       | 0.81     | 400       | 22         | 0.07<br> | 8            | 650<br>  | 2         | < 0.01  | < 2<br>     | 4         | 117        | < 0.01   | < 10       | < 10<br>              | 53       | < 10<br> | 24        |
| 23464<br>23465<br>23466<br>23467<br>23468          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238             | 0.17    | < 10       | 0.63     | 330<br>   | 5          | 0.07     | 7            | 590<br>  | 6         | < 0.01  | < 2<br>     | 3         | 100        | < 0.01   | < 10       | < 10<br>              | 44<br>   | < 10<br> | 24<br>    |
| 23469<br>23470<br>23471<br>23472<br>23473          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238             | 0.12    | 10         | 0,68<br> | 445       | 5<br>      | 0.07     | <b>5</b><br> | 570      | 2         | < 0.01  | < 2<br>     | 5<br>     | 98         | < 0.01   | < 10<br>   | < 10                  | 50<br>   | < 10<br> | 20        |
| 23474<br>23475<br>23476<br>23477<br>23478          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238             | 0.13    | < 10       | 0,90     | 380       | 13         | 0.08     | 8            | 620      | 8         | 0.03    | < 2<br>     | 5         | 97<br><br> | 0.04     | < 10<br>   | < 10<br>              | 59<br>   | < 10<br> | 20        |
| 23479<br>23480<br>23481<br>23482<br>23483          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238<br>238      | 0.13    | < 10<br>   | 0,90     | 345       | 9          | 0.07     | 9<br>        | 670<br>  | 4         | 0.01    | < 2<br>     | 6<br>     | 83         | 0.03     | < 10       | < 10<br>              | 61<br>   | < 10<br> | 22<br>    |
| 23484<br>23485<br>23486<br>23487<br>23487<br>23488 | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238<br>238      | 0.15    | < 10       | 0.99     | 400       | 7          | 0.08     | 8            | 610<br>  |           | 0.02    | < 2<br>     | 6         | 95         | 0.04     | < 10<br>   | < 10<br>              | 59<br>   | < 10     | 20        |
| 23489<br>23490<br>23491<br>23492<br>23493          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238             | 0,11    | < 10       | 0.76     | 305       |            | 0.11     |              | 610      |           | 3 0.14  | < 2         | 6         | 138        | 3 0.08   | < 10       | < 10                  | 56       | < 10<br> | 18        |
| 23494<br>23495<br>23496<br>23497<br>23498          | 225<br>225<br>225<br>225<br>225<br>225 | 5 238<br>5 238<br>5 238<br>5 238<br>5 238<br>5 238 | 0.14    | ; < 1)<br> | 0 0.73   | 3 280     | )          | B 0.08   | 3 1          | B 550    |           | B 0.12  |             | 2 5<br>   | 12(<br>    | 0 < 0.01 | L ( 1(     | , ζ 10<br><br><br>. Λ | 50       | < 10<br> | ) 20      |
|                                                    |                                        | <u> </u>                                           | 1       |            |          |           |            |          |              |          |           |         |             |           | CERTI      | FICATIO  | N:         | ٦X                    | BW       | 1m       |           |



A

₩



Analytical Chaminin \* Geoclaminin \* Registered Ananyem

1

212 Drockebank Ave North Vancouver British Columbia, Ganada V7J 2C1 PHONE: 604-984-9221 FAX: 604-984-0218

TO: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0

Pago <sup>1</sup> for :2 A Total + s :2 Confilicato Dato: 11-AUG 2000 Invoice No. : 10024976 P.O. Number :200950 Account : PII Account

Project : KEMESS CENTHE Commonia: ATTN: DDI'TT LAPEADE

| PREP<br>CUDE<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                               | Λιι         μμb         Λιζ         β           FΛ+ΛΛ         Λιζι         ζ         5         ζ         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ         5         ζ | ppm         Cu           a k         ppm           0.2         39           0.2         26           0.2         88           0.2         14           0.2         46           0.2         98           0.2         98 | мо<br>урт<br>9<br><br>7<br>9 | ∧у<br>ррт<br>< 0.2                                    | ∧ <br>∜:<br>                                          | лн<br>ррт<br>2                                        | ו<br>ער<br>ג וס                                       | 8a<br>ppm<br>150                                      | ие<br>ррт<br>                                         | ույ<br>թիա<br>                                       | Ca<br>%<br>                                          | (:d<br>ppm<br>< 0.5                                  | со<br>рры<br>                                        | ('r<br>1919m<br>                                     | Cu<br>PPm<br>                                        | Fr:<br>3                                             | Co<br>ppm                                            | <br>bha<br>11d                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238           225         238 | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 39<br>0.2 26<br>0.2 88<br>0.2 14<br>0.2 46<br>0.2 98<br>0.2 97                                                                                                                                                      | 9<br><br>7<br>9              | <u>&lt; 0.2</u>                                       | 1.70                                                  | 2                                                     | < 10_                                                 | 150                                                   | 0.5                                                   | 2                                                    | 2.00                                                 | < 0.5                                                | 6                                                    | <u>-</u><br>89                                       |                                                      | 2.45                                                 |                                                      |                                                      |
| 225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                | < 5 <<br>< 5 <<br>< 5 <<br>< 5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 14<br>0.2 46<br>0.2 98<br>0.2 97                                                                                                                                                                                    | 7 9                          |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      | <u></u>                                              |                                                      |                                                      |
| 225     238       225     238       225     238       225     238       225     238       225     238       225     238       225     238       225     238                                                                                                                                                                                                                                                                                                               | < 5<br>< 5<br>< 5 <<br>< 5 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2 98                                                                                                                                                                                                                  |                              |                                                       |                                                       | <b>-</b>                                              |                                                       | <br>                                                  |                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      | <br>                                                 |
| 225 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 219<br>0.2 58<br>0.2 36                                                                                                                                                                                             | 6<br>7<br>7<br>6             | 0.2                                                   | 1,26                                                  | < 2<br>                                               | < 10<br>                                              | 120                                                   | < 0.5                                                 | < 2<br>                                              | 2.10                                                 | < 0.5                                                | 7                                                    | 109                                                  | 91<br>                                               | 2.60                                                 | < 10<br>                                             | 1                                                    |
| 225 230<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre> &lt; 5 &lt; &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 62<br>0.2 45<br>0.6 18<br>0.2 69<br>0.2 79                                                                                                                                                                          | 7<br>7<br>6<br>0             | 0.2                                                   | 2,46                                                  | 2                                                     | < 10                                                  | 130                                                   | 0.5                                                   | < 2<br>                                              | 2.72                                                 | ( 0.5<br>                                            | 8                                                    | 92<br>                                               | 54                                                   | 2,83                                                 | < 10<br>                                             | < 1<br>                                              |
| 225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                                                 | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 41<br>0.2 17<br>0.2 29<br>0.2 25<br>0.2 95                                                                                                                                                                          | 5<br><br>8<br>6              | 0.2                                                   | 1.67                                                  | < 2<br>                                               | < 10<br>                                              | 120                                                   | < 0.5                                                 | < 2<br>                                              | 2.41                                                 | < 0.5                                                | 7                                                    | 74                                                   | 14                                                   | 2,46                                                 | < 10<br>                                             | <                                                    |
| 225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                                                            | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 14<br>0.2 22<br>0.2 40<br>0.4 346<br>0.2 31                                                                                                                                                                         | ל<br>6<br>5<br>8             | < 0.2                                                 | 1.20                                                  | 2                                                     | < 10                                                  | 80<br>                                                | < 0.5                                                 | < 2<br>                                              | 1.81                                                 | < 0.5                                                | 6<br>                                                | 94                                                   | 19<br>                                               | 2.44                                                 | < 10<br>                                             | <<br>                                                |
| 225 238<br>225 238<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 28<br>0.2 21<br>0.2 20<br>0.2 23                                                                                                                                                                                    | 5<br><br>5<br>6              | < 0.2<br>                                             | 1.43<br>                                              | < 2<br>                                               | < 10<br>                                              | 150                                                   | 0,5                                                   | < 2<br>                                              | 1.70                                                 | < 0.5                                                | 7<br>                                                | 95<br>                                               | 20                                                   | 2.64                                                 | < 10                                                 | ·····                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                              |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                              |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238<br>225 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 225       238       <                                                                                                                                                                                                   | 1225       238       < 5     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |





Analytical Chemists \* Occulentists \* Heidstored Assayors

212 Brookebasik Ave , North Vancouver British Columbia, Canada V7J 2C1 PLIONF: 604-984-0221 FAX\* 604-984-0218 to: KEMESS MINE

P.O. BOX 3519 SMITHERS, BC V0J 2N0 Page bor :2 B Total : .s :2 Certificate Date: 11-AUG-2000 Invoice No. : 10024976 P.O. Numbor :200950 Account Pli

Project : KEMESS CENTRE Commente: ATTN: RDFTT LAPFARE

| 50-      |                                                    |                                        |                                        |        |               |         |          |                |         |            |         | CE       | RTIF      | ICATE     | E OF A       | NAL       | YSIS           |           | ۹0024     | 976      |                  |                   |
|----------|----------------------------------------------------|----------------------------------------|----------------------------------------|--------|---------------|---------|----------|----------------|---------|------------|---------|----------|-----------|-----------|--------------|-----------|----------------|-----------|-----------|----------|------------------|-------------------|
| 8<br>5   | Sample                                             | PRE<br>COL                             | ar<br>DE                               | K<br>B | प्रतेत<br>१.५ | Mg<br>K | Mn<br>My | ក្រភា<br>ស្រុក | Na<br>¥ | рђи<br>IN  | т<br>Ч  | րե<br>հե | 11<br>% - | bba<br>up | भूतत्<br>भूत | ar<br>ppm | т1<br><b>Х</b> | тı<br>ppm | hīm<br>ti | PDm<br>V | рр <b>и</b><br>м | хн<br>рр <b>т</b> |
| Ľ        | 23499<br>23500<br>23651                            | 225<br>225<br>225                      | 238<br>238<br>238                      | 0.15   | <pre></pre>   | 0.83    | 320      | <u>8</u>       | 0.07    | <br>7      | 570     | 6        | < 0.01    | <         | <br>4        | 100       | < 0,01         | <u> </u>  | < 10      | 49       | < 10             | <u>14</u>         |
|          | 23652<br>23653                                     | 225<br>225                             | 238<br>238                             |        | *****         |         |          |                |         |            | •••••   |          |           |           |              |           |                |           |           |          |                  |                   |
| -        | 23654<br>23655<br>23656<br>23657<br>23658          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238 | 0.11   | 10            | 0.68    | 325      | 9<br>          | 0.06    | 10         | 580     | 6<br>    | 0.06      | < 2<br>   | 5<br>        | 83<br>    | < 0.01         | < 10<br>  | < 10      | 53<br>   | < 10<br>         | 16                |
| Ho       | 23659<br>23660<br>23661<br>23662<br>23663          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238 | 0.11   | 10            | 0.82    | 335<br>  | 7              | 0.10    | 9          | 640     | 6<br>    | 0,01      | < 2<br>   | 5            | 114       | < 0.01         | < 10<br>  | < 10      | 59<br>   | < 10             | 16                |
|          | 23664<br>23665<br>23666<br>23666<br>23667<br>23668 | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238 | 0.09   | 10<br>        | 0.70    | 330      | G              | 0.08    | 7<br>      | 580     | 4        | < 0.01    | < 2<br>   | 4            | 127<br>   | < 0.01         | < 10      | < 10<br>  | 54<br>   | < 10<br>         | 16<br>            |
| ¥د<br>لا | 23669<br>23670<br>23671<br>23672<br>23673          | 225<br>225<br>225<br>225<br>225<br>225 | 238<br>238<br>238<br>238<br>238<br>238 | 0.10   | ) < 10<br>    | 0.81    | 340      | 8<br>          | 0.07    | 7<br>7<br> | 610<br> | < 2<br>  | < 0.01    | < 2<br>   | 5            | 64<br>    | < 0.01         | < 10<br>  | < 10      | 53<br>   | < 10<br>         | 14                |
|          | 23674<br>23675<br>23676<br>23677                   | 225<br>225<br>225<br>225<br>225        | 238<br>238<br>238<br>238<br>238        | 0.11   | L < 10        | 0.88    | 350      | 8<br>          | 0.08    | <br>       | 580     | 2<br>2   | < 0.01    | < 2<br>   | <br>         | 96<br>    | 0.02           | < 10      | < 10<br>  | 63<br>   | < 10             | 16<br>            |
|          |                                                    |                                        |                                        |        |               |         |          |                |         |            |         |          |           |           |              |           |                |           |           |          |                  |                   |
|          |                                                    |                                        |                                        |        |               |         |          |                |         |            |         |          |           |           |              |           |                | ,         | ~ II      |          | 0                |                   |

CERTIFICATION:



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | *****       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | Berton M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                  |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | ini ini ini ini ini ini ini ini ini ini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis and indexis an                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | 1997 - 1997 -<br>Jacket - Jacket                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | 21 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | 444444      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 5.95<br>                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 1 1 1 1           | 2/                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | 1997<br>Line - Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 72                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | <i>[</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | La Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Car                                                                                                                                                                                                                                   | u Nov 7 - 12 Nov Nov | Provide the Arg                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | :********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>.</u> 9           | ika samilar safi - 16 Maali tikada di Salari - 14 Maali Salari - 15 Maali - 14 Maali - 14 Maali - 14 Maali - 14<br>Maali                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |             | Harris Antoines:<br>Harris Antoi | O<br>THE             | nini<br>Se anger et anger et anger et anger<br>Man anger et anger et anger et anger et anger et anger et anger et anger et<br>anger et anger 
|  | A                                      |
|--|----------------------------------------|
|  | 26 1986 B                              |
|  |                                        |
|  | •••••••••••••••••••••••••••••••••••••• |
|  |                                        |

|  |  |                  |  |  |                    | ****** |
|--|--|------------------|--|--|--------------------|--------|
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  | 27 <b>1</b> 1963 |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  | -<br>              | 1.<br> |
|  |  |                  |  |  | 26486              | - 72   |
|  |  |                  |  |  | Ð                  |        |
|  |  |                  |  |  |                    |        |
|  |  |                  |  |  | e samti<br>pi kaya | •••••• |

## **APPENDIX 4: DETAILED COST ACCOUNTING**

### SUMMARY OF 2000 EXPLORATION DIAMOND DRILLING COSTS

| Date                                  | ltem                                  | Cost      | Invoice #                             | Comments                               |
|---------------------------------------|---------------------------------------|-----------|---------------------------------------|----------------------------------------|
| 4-Jul-00                              | Diamond Drilling                      | 30579.83  | 00-445                                | KC-00-01, KC-00-02                     |
| 1-Aug-00                              | Diamond Drilling                      | 28736.41  | 00-447                                | KC-00-03, KC-00-04                     |
| 2-Aug-00                              | Diamond Drilling                      | 27425.01  | 00-449                                | KN-00-05                               |
| 22-Aug-00                             | Diamond Drilling                      | 82568.58  | 00-453                                | KN-00-04/3/6/7/2/1                     |
| 5-Oct-00                              | Diamond Drilling                      | 23532.18  | 00-460                                | KN-00-08                               |
| 18-Oct-00                             | Diamond Drilling                      | 29910.24  | 00-462                                | KN-00-08/9                             |
| 27-Jul-00                             | Diamond Drilling                      | 1254.00   | 648768                                | Eastman Camera Rental                  |
| 27-Aug-00                             | Diamond Drilling                      | 1254.00   | 648769                                | Eastman Camera Rental                  |
| 20-Oct-00                             | Diamond Drilling                      | 1525,20   | 648770                                | DDH Survey Tool Rental & Repairs       |
| 7-Nov-00                              | Diamond Drilling                      | 566.31    | 648771                                | DDH Survey Tool Rental                 |
| 8-Nov-00                              | Diamond Drilling                      | 17663.40  | 00-469                                | 2000-06                                |
| 20-Nov-00                             | Diamond Drilling                      | 3010.98   | 00-469-A                              | Core Boxes                             |
| 20-Nov-00                             | Diamond Drilling                      | 68472.41  | 00-471                                | KN-00-10/12                            |
| 5-Dec-00                              | Diamond Drilling                      | 34748.78  | 00-472                                | KN-00-11                               |
| 6-Dec-00                              | Diamond Drilling                      | 1254,00   | 648772                                | DDH Survey Tool Rental                 |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       | :         |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           | · · · · · · · · · · · · · · · · · · · |                                        |
|                                       |                                       | :         |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       | ·         |                                       |                                        |
|                                       |                                       |           |                                       | · · · · · · · · · · · · · · · · · · ·  |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       | ······································ |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           | -                                     |                                        |
|                                       |                                       |           |                                       |                                        |
| · · · · · · · · · · · · · · · · · · · |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       | · <u></u>                             |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
| <del>_</del>                          | · · · · · · · · · · · · · · · · · · · |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
| ·                                     |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
|                                       |                                       |           |                                       |                                        |
| ·                                     |                                       |           | •                                     |                                        |
| 25-Aua-00                             | Credit                                | 2738.13   | ADJ-447/449                           | Credit Inv. #00-447, 00-449            |
|                                       |                                       |           |                                       |                                        |
|                                       | TOTAL                                 | 349763.20 |                                       |                                        |

Ţ

#### SUMMARY OF 2000 EXPLORATION HELICOPTER COSTS

| Date       | Hours | Cost   | Subtotal | Feul     | Tax    | Total   | Invoice/P.O. # | Comments                              |
|------------|-------|--------|----------|----------|--------|---------|----------------|---------------------------------------|
| 4-Jul-00   | 0.30  | 658.00 | 197.40   |          | 13.82  | 211.22  | 216832         |                                       |
| 12-Jul-00  | 0.30  | 658.00 | 197.40   | 41.04    | 16.69  |         | 216820         |                                       |
| 26-10-00   | 7.70  | 658.00 | 5066.60  | 223.44   | 370.30 | 5660.34 | 206783         |                                       |
| 27-10-00   | 4 60  | 658.00 | 3026.80  |          | 211.88 | 3238.68 | 206784         |                                       |
| 28.10-00   | 2 20  | 658.00 | 1447.60  |          | 101.33 | 1548.93 | 206785         |                                       |
| 29- Jul-00 | 1.60  | 658.00 | 1052.80  |          | 73 70  | 1126.50 | 206788         |                                       |
| 29-14-00   | 0.70  | 658.00 | 460.60   |          | 32.24  | 492.84  | 216688         |                                       |
| 20- Jul-00 | 1.40  | 658.00 | 921 20   |          | 64.48  | 985.68  | 216689         |                                       |
| 31-14-00   | 1 70  | 658.00 | 1118.60  |          | 119.76 | 1238.36 | 216692         | less 0.9 hrs for photographer         |
| 1-Aug-00   | 3.70  | 658.00 | 2434 60  |          | 170.42 | 2605.02 | 216695         |                                       |
| 2-Aug-00   | 3 30  | 658.00 | 2171 40  |          | 193.45 | 2364.85 | 216699         | less 0.9 hrs for environmental        |
| 2-Aug-00   | 1 10  | 658.00 | 723.80   |          | 50.67  | 774.47  | 216902         |                                       |
| 4 Aug-00   | 1.10  | 658.00 | 658.00   |          | 46.06  | 704.06  | 216907         |                                       |
| 4-Aug-00   | 1.00  | 658.00 | 723.80   |          | 50.67  | 774.47  | 216910         |                                       |
| 5-Aug-00   | 3.30  | 658.00 | 2171 40  |          | 152.00 | 2323.40 | 216915         |                                       |
| 7 Aug-00   | 1 00  | 658.00 | 1250.20  |          | 87.51  | 1337.71 | 216919         |                                       |
| 7-Aug-00   | 1.50  | 658.00 | 723.80   |          | 50.67  | 774 47  | 216920         |                                       |
| 0-Aug-00   | 2 20  | 658.00 | 1447 60  |          | 101.33 | 1548.93 | 216922         |                                       |
| 10-Aug-00  | 270   | 659.00 | 1776.60  |          | 124.36 | 1900.96 | 216925         |                                       |
| 10-Aug-00  | 1 30  | 658.00 | 855.40   |          | 59.88  | 915.28  | 216778         |                                       |
| 10 Aug 00  | 2.00  | 658.00 | 1908 20  | <b>.</b> | 133.57 | 2041 77 | 216780         |                                       |
| 12-Aug-00  | 1.60  | 659.00 | 1052.80  |          | 73.70  | 1126 50 | 216783         |                                       |
| 13-Aug-00  | 2.20  | 658.00 | 2105.60  |          | 147.39 | 2252.99 | 216785         |                                       |
| 14-Aug-00  | 3.20  | 00.000 | 955.40   |          | 59.88  | 915.28  | 216788         |                                       |
| 15-Aug-00  | 1.00  | 658.00 | 2368.80  |          | 165.82 | 2534.62 | 216790         | · · · · · · · · · · · · · · · · · · · |
| 17 Aug 00  | 3.00  | 658.00 | 723.80   |          | 50.67  | 774 47  | 216794         |                                       |
| 17-Aug-00  | 610   | 658.00 | 4013.80  |          | 280.97 | 4294.77 | 216797         |                                       |
| 10 Aug-00  | 2 70  | 658.00 | 1776.60  |          | 124.36 | 1900.96 | 216926         | · · · · · · · · · · · · · · · · · · · |
| 19-Aug-00  | 0.30  | 658.00 | 107 40   |          | 13.82  | 211.22  | 216929         |                                       |
| 20-Aug-00  | 0.00  | 658.00 | 394.80   |          | 27.64  | 422.44  | 216933         |                                       |
| 22-Aug-00  | 2.00  | 658.00 | 1776.60  |          | 124.36 | 1900.96 | 216939         |                                       |
| 20 Aug-00  | 1.50  | 658.00 | 987.00   | 222.30   | 84.65  | 1293.95 | 207262         |                                       |
| 21-Sep-00  | 4.30  | 658.00 | 2829.40  | 445.74   | 229.26 | 3504.40 | 207155         |                                       |
| 25-Sep-00  | 7.60  | 851.00 | 6467.60  | 197 40   | 466.55 | 7131.55 | 207160         |                                       |
| 26-Sep-00  | 140   | 851.00 | 1191 40  |          | 83.40  | 1274.80 | 207161         |                                       |
| 27-Sep-00  | 1.40  | 658.00 | 1250.20  | 119.70   | 95.89  | 1465.79 | 207166         |                                       |
| 27-Sep-00  | 1.60  | 870.00 | 1392.00  |          | 97.44  | 1489.44 | 207163         |                                       |
| 28-Sep-00  | 1 10  | 658.00 | 723.80   |          | 50.67  | 774.47  | 207167         |                                       |
| 29-Sep-00  | 140   | 658.00 | 921.20   |          | 64.48  | 985.68  | 207169         |                                       |
| 30-Sep-00  | 1.20  | 658.00 | 789.60   |          | 55.27  | 844.87  | 207171         |                                       |
| 1-Oct-00   | 1.60  | 658,00 | 1052.80  |          | 73.70  | 1126.50 | 207173         |                                       |
| 2-Oct-00   | 1.70  | 658.00 | 1118.60  |          | 78.30  | 1196.90 | 207174         |                                       |
| 3-Oct-00   | 2.10  | 658.00 | 1381.80  |          | 96.73  | 1478.53 | 220451         |                                       |
| 4-Oct-00   | 3.20  | 658.00 | 2105.60  |          | 147.39 | 2252.99 | 220452         |                                       |
| 5-Oct-00   | 1.50  | 658,00 | 987.00   |          | 69.09  | 1056.09 | 220454         |                                       |
| 6-Oct-00   | 1.40  | 658.00 | 921.20   |          | 64.48  | 985.68  | 220456         |                                       |
| 7-Oct-00   | 1.60  | 658.00 | 1052.80  |          | 73.70  | 1126.50 | 220458         |                                       |
| 8-Oct-00   | 2.30  | 658.00 | 1513.40  |          | 105.94 | 1619.34 | 220459         |                                       |
| 9-Oct-00   | 1.90  | 658.00 | 1250.20  |          | 87.51  | 1337.71 | 220460         |                                       |
| 26-Oct-00  | 4.50  | 658.00 | 2961.00  | 215.46   | 222.35 | 3398.81 | 160170         |                                       |
| 3-Nov-00   | 2.60  | 700.00 | 1820.00  | 218.88   | 142.72 | 2181.60 | 4056           | Interior Helicopters                  |
| 4-Nov-00   | 5.80  | 700.00 | 4060.00  |          | 284.20 | 4344.20 | 4057           | Interior Helicopters                  |
| 4-Nov-00   | 3.60  | 690.00 | 2484.00  | 131.25   | 183.07 | 2798.32 | 213095         |                                       |
| 5-Nov-00   | 1.00  | 690.00 | 690.00   |          | 48.30  | 738.30  | 213096         |                                       |
| 6-Nov-00   | 2.30  | 690.00 | 1587.00  | ··       | 111.09 | 1698.09 | 213097         |                                       |
| 7-Nov-00   | 0.60  | 690.00 | 414.00   |          | 28.98  | 442.98  | 213098         |                                       |
| 7-Nov-00   | 1.10  | 690.00 | 759.00   |          | 53.13  | 812.13  | 218962         |                                       |

#### SUMMARY OF 2000 EXPLORATION HELICOPTER COSTS

| Date      | Hours  | Cost     | Subtotal  | Feul    | Tax     | Total     | Invoice/P.O. # | Comments |
|-----------|--------|----------|-----------|---------|---------|-----------|----------------|----------|
| 8-Nov-00  | 2.60   | 690.00   | 1794.00   |         | 125.58  | 1919.58   | 218963         |          |
| 9-Nov-00  | 2.50   | 690.00   | 1725.00   |         | 120.75  | 1845.75   | 218964         |          |
| 10-Nov-00 | 2.40   | 690.00   | 1656.00   |         | 115.92  | 1771.92   | 218965         |          |
| 11-Nov-00 | 3.70   | 690.00   | 2553.00   |         | 178.71  | 2731.71   | 218966         |          |
| 12-Nov-00 | 3.30   | 690.00   | 2277.00   |         | 159.39  | 2436.39   | 218967         |          |
| 13-Nov-00 | 3.40   | 690.00   | 2346.00   |         | 164.22  | 2510.22   | 218968         |          |
| 14-Nov-00 | 2.50   | 690.00   | 1725.00   |         | 120.75  | 1845.75   | 218969         |          |
| 15-Nov-00 | 2.40   | 690.00   | 1656.00   |         | 115.92  | 1771.92   | 218970         |          |
| 16-Nov-00 | 2.10   | 690.00   | 1449.00   |         | 101.43  | 1550.43   | 218971         |          |
| 17-Nov-00 | 1.10   | 690.00   | 759.00    |         | 53.13   | 812.13    | 218972         |          |
| 18-Nov-00 | 2.50   | 690.00   | 1725.00   |         | 120.75  | 1845.75   | 218973         |          |
| 19-Nov-00 | 1.10   | 690.00   | 759.00    |         | 53.13   | 812.13    | 218974         |          |
| 20-Nov-00 | 3.70   | 690.00   | 2553.00   |         | 178.71  | 2731.71   | 218975         |          |
| 21-Nov-00 | 2.60   | 690.00   | 1794.00   |         | 125.58  | 1919.58   | 220626         | ·        |
| 22-Nov-00 | 2.00   | 690.00   | 1380.00   |         | 96.60   | 1476.60   | 220627         |          |
| 23-Nov-00 | 0.40   | 690.00   | 276.00    |         | 19.32   | 295.32    | 220628         |          |
| 23-Nov-00 | 1.40   | 690.00   | 966.00    |         | 67.62   | 1033.62   | 220610         |          |
| 24-Nov-00 | 2.20   | 690.00   | 1518.00   |         | 106.26  | 1624.26   | 220611         |          |
| 25-Nov-00 | 3.40   | 690.00   | 2346.00   |         | 164.22  | 2510.22   | 220614         |          |
| 26-Nov-00 | 7.30   | 690.00   | 5037.00   |         | 352.59  | 5389.59   | 220616         |          |
| 27-Nov-00 | 3.40   | 690.00   | 2346.00   |         | 164.22  | 2510.22   | 220617         |          |
|           |        |          |           |         |         |           |                |          |
|           |        |          |           |         |         |           |                |          |
|           | 185.50 | 51522.00 | 126555.20 | 1774.17 | 9065.98 | 137395,35 |                |          |

#### SUMMARY OF 2000 EXPLORATION CAMP COSTS

| Name                                  | Dates          | # of Days                               | Cost/Day | Total   | Comments                               |
|---------------------------------------|----------------|-----------------------------------------|----------|---------|----------------------------------------|
| GEOLGOGISTS                           |                |                                         |          | · · · · |                                        |
| Karen Lam                             | May 9-23       | 14                                      | - 85     | 1190    |                                        |
|                                       | June 7-21      | 14                                      | 85       | 1190    |                                        |
|                                       | July 5-19      | 14                                      | 85       | 1190    |                                        |
|                                       | Aug 2-16       | 14                                      | 85       | 1190    |                                        |
|                                       | Aug 30-Sept 13 | 14                                      | 85       | 1190    |                                        |
| ······                                | Sept 27-Oct 11 | 14                                      | 85       | 1190    |                                        |
|                                       | Oct 25-Nov 8   | 14                                      | 85       | 1190    |                                        |
| ·                                     | Nov 22-Dec 6   | 14                                      | 85       | 1190    |                                        |
|                                       | May-Dec        | 8                                       | 210      | 1680    | 8 return flights, P.G. to Kemess       |
|                                       |                |                                         | SUBTOTAL | 11200   |                                        |
|                                       |                |                                         |          |         |                                        |
| Melanie MacKay                        | May 24-June 6  | 14                                      | 85       | 1190    |                                        |
|                                       | June 20-July 3 | 14                                      | 85       | 1190    |                                        |
|                                       | July 17-31     | 14                                      | 85       | 1190    |                                        |
|                                       | Aug 14-28      | _14                                     | 85       | 1190    |                                        |
|                                       | Oct 10-23      | 14                                      | 85       | 1190    |                                        |
|                                       | Nov 8-22       | 14                                      | 85       | 1190    |                                        |
|                                       | Dec 5-15       | 11                                      | 85       | 935     |                                        |
|                                       | May-Dec        | 7                                       | 210      | 1470    |                                        |
|                                       |                |                                         | SUBTOTAL | 9545    | 7 return flights, P.G. to Kemess       |
|                                       |                | l                                       |          |         |                                        |
| Adrian Bray                           | Nov 8-28       | 21                                      | 85       | 1785    |                                        |
|                                       | Dec 6-13       | 8                                       | 85       | _680    |                                        |
|                                       | Nov -Dec       | 2                                       | 210      | 420     | 2 return flights, P.G. to Kerness      |
|                                       | Nov-Dec        | ]                                       | SUBTOTAL | 2885    |                                        |
|                                       |                |                                         |          |         |                                        |
| Brett Lapeare                         | June 13-30     | 18                                      | 85       | 1530    |                                        |
|                                       | July 1-18      | 18                                      | 85       | 1530    |                                        |
|                                       | July 19-31     | 10                                      | 85       | 850     |                                        |
|                                       | Aug 1-8        | 5                                       | 85       | 425     |                                        |
|                                       | Aug 11-15      | 5                                       | 85       | 425     | ······································ |
|                                       | Aug 16-30      | 15                                      | 85       | 1275    |                                        |
|                                       | June-August    | 2                                       | 210      | 420     | 2 return flights, P.G. to Kemess       |
|                                       |                |                                         | SUBTOTAL | 6455    |                                        |
|                                       |                |                                         |          |         |                                        |
| GEOPHYSICS                            | Sept 24-30     | 21                                      | 85       | 1785    | 3 men @ -/ days                        |
|                                       |                | 3                                       | 210      | 630     | 3 return flights, P.G. to Kemess       |
|                                       |                | I                                       | SUBTOTAL | 2415    |                                        |
| <u></u>                               |                |                                         |          |         |                                        |
| DIAMOND DRILLERS                      | June 12-July 4 | 92                                      | 85       | 7820    | KC-01-01 to -03 (23 days)              |
| (4 men)                               | July 12-19     | 32                                      | 85       | 2720    | KC-00-04 (8 days)                      |
|                                       | July 27-Aug 19 | 88                                      | 85       | 7480    | KN-00-01 to -07 (22 days)              |
|                                       | Sept 25-Oct 8  | 56                                      | 85       | 4760    | KN-00-08 to -09 (14 days)              |
|                                       | Oct 29-Nov 2   | 20                                      | 85       | 1700    | 2000-06 (5 days)                       |
|                                       | Oct 30-Nov 26  | 112                                     | 85       | 9520    | drillers helpers Smithers to Komess    |
|                                       | June-Dec       | <u>5</u>                                |          | 05050   | uniers helpers, Shinners to Kerness    |
| · · · · · · · · · · · · · · · · · · · |                |                                         | SUBIUIAL | 35050   | · ·                                    |
|                                       | Luly of al     |                                         | <br>0 F  | 505     |                                        |
|                                       | July 20-31     |                                         | 00<br>95 | 1055    |                                        |
|                                       | Sant 21-Oct 9  | 10                                      | 85       | 1615    | · · ·                                  |
|                                       | Nov 2.26       | 24                                      | <u> </u> | 2040    | · · · · · · · · · · · · · · · ·        |
| ······                                | 1107 3-20      |                                         | SUBTOTAL | 6205    | · · · · · · · · · · · · · · · · · · ·  |
|                                       |                | - · · · · · · · · · · · · · · · · · · · | JUDIUIAL |         | ······································ |
| · · · ·                               |                |                                         |          |         | ······································ |
|                                       |                |                                         |          | ·- · —  | · · · · · · · · · · · · · · · · · · ·  |
|                                       | TOTALS         |                                         |          | 73755   | · · · · · · · · · · · · · ·            |
|                                       | I IVIALO       | 1                                       | I        | L       |                                        |

#### SUMMARY OF 2000 EXPLORATION SALARIES

| Person                                 | Total To Date | Comments            |
|----------------------------------------|---------------|---------------------|
| Karen Lam                              | 19919.98      | to November 15th    |
| Melanie MacKay                         | 11533.76      | to November 15th    |
| Brett LaPeare                          | 26608.36      | to November 6th     |
| Adrian D. Bray                         | 10860.50      | Nov 8-Dec 7         |
| Karen Lam                              | 1538,46       | Nov 16-Dec 7        |
| Melanie MacKay                         | 1107.69       | Nov 16-Dec 7        |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               | ··- ··- ··- ··- ··- |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
| ······                                 |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        | ·             |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
| · · · · · · · · · · · · · · · · · · ·  |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
| ······································ |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
|                                        |               |                     |
| TOTAL                                  | 71500 75      |                     |
| IOTAL                                  | /1008.70      |                     |

#### SUMMARY OF 2000 EXPLORATION FUEL COSTS

| Date                                  | Item     | Cost                                  | Invoice #/P.O. # | Comments                               |
|---------------------------------------|----------|---------------------------------------|------------------|----------------------------------------|
| 19-Jul-00                             | Jet B    | 12179.54                              | 825303           | Gary Youny Agencies Ltd.               |
| 20-Sep-00                             | Jet B    | 4951.24                               | 250294           | Imperial Oil                           |
| 5-Oct-00                              | Jet B    | 2947.85                               | 250617           | Petro Canada Lubricants                |
| 25-Oct-00                             | Jet B    | 4421.78                               | 251065           | Petro Canada Lubricants                |
| 15-Nov-00                             | Jet B    | 2816.24                               | 251522           | Imperial Oil                           |
|                                       | 0012     |                                       |                  |                                        |
| lune 12, July 24 (23 days)            | Diesel   | 1932 74                               | stocked item     | 23 drums (4714 litres)                 |
| July 12-10 (8 days)                   | Diesel   | 672.40                                | stocked item     | 8 drums (1640 litres)                  |
| July 27 Aug 10 (22 days)              | Diesel   | 1849 10                               | stocked item     | 22 drums (4510 litres)                 |
| Sont 25 Oct 8 (14 days)               | Diosol   | 1176 70                               | stocked item     | 14 drums (2870 litres)                 |
| Oct 20 Nov 2 (5 days)                 | Diesel   | 120.25                                | stocked item     | 5 drums (1025 litres)                  |
| Oct 29-Nov 2 (5 days)                 | Diesel   | 2186.30                               | stocked item     | 26 drums (5330 litres)                 |
| Oct 30-140V 24 (20 days)              | Dieser   | 2103.30                               | Stocked item     |                                        |
| Cost 25 Oct 8 (14 dours)              | Propana  | 656 62                                | stocked item     | 2100 pounds of propage                 |
| Sept 23- Oct 8 (14 days)              | Propage  | 224.61                                | stocked item     | 750 pounds of propage                  |
| Oct 29-Nov 2 (5 days)                 | Propane  | 234.51                                | stocked item     | 3000 pounds of propane                 |
| Oct 30-100V 24 (26 days)              | Propane  | 1219.43                               | Stocked item     | about pounds of proparie               |
|                                       |          | · · · · · · · · · · · · · · · · · · · |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          | <b> </b>                              | ·                |                                        |
|                                       |          |                                       | ·                |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
| ·······                               |          |                                       |                  |                                        |
|                                       |          |                                       |                  | ······································ |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       | ·····            |                                        |
|                                       |          |                                       |                  | i                                      |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
| ·                                     |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
| · · · · · · · · · · · · · · · · · · · | 1        |                                       |                  |                                        |
|                                       |          |                                       |                  |                                        |
|                                       | 1        |                                       |                  |                                        |
|                                       | · [      | · · · · · · · · · · · · · · · · · · · |                  |                                        |
|                                       |          | 1                                     |                  |                                        |
|                                       | <b> </b> | 1                                     |                  |                                        |
|                                       | TOTAL    | 37663.70                              |                  |                                        |
|                                       |          |                                       |                  |                                        |

#### SUMMARY OF 2000 EXPLORATION ANALYTICAL COSTS

| Date      | Item                                  | Cost     | Invoice # | Comments                              |
|-----------|---------------------------------------|----------|-----------|---------------------------------------|
| 27 10-00  | Chemey Analytical Coste               | 1290.76  | 10022510  | KC 00 01/2                            |
| 7 Aug 00  | Chemex Analytical Costs               | 1303.70  | 10023510  | KC 00 04                              |
| 7-Aug-00  | Chemex Analytical Costs               | 1760 50  | 10024500  | KC 00 00/0/                           |
| 7-Aug-00  | Chemex Analytical Costs               | 1/00.36  | 10024163  | KC-00-02/3/4                          |
| 11 Aug-00 | Chemex Analytical Costs               | 1071.84  | 10024976  | KU-00-04                              |
| 17-Aug-00 | Chemex Analytical Costs               | 2825.06  | 10025694  | KN-00-05                              |
| 1-Sep-00  | Assayers Canada Costs                 | 1284.00  | 40/76     | KN-00-04/5                            |
| 14-Sep-00 | Assayers Canada Costs                 | 2593.68  | 40846     | KN-00-03/4                            |
| 23-Sep-00 | Assayers Canada Costs                 | 1951.68  | 40990     | KN-00-08/9                            |
| 25-Sep-00 | Assayers Canada Costs                 | 963.00   | 40884     | KN-00-03                              |
| 27-Sep-00 | Assayers Canada Costs                 | 963.00   | 40997     | KN-00-09                              |
| 29-Sep-00 | Assayers Canada Costs                 | 2349.72  | 40909     | KN-00-01/2/3/6/7                      |
| 29-Sep-00 | Assayers Canada Costs                 | 642.00   | 40911     | KN-00-01                              |
| 13-Oct-00 | Assayers Canada Costs                 | 963.00   | 40966     | KN-00-08                              |
| 30-Oct-00 | Assayers Canada Costs                 | 1425.24  | 41020     | KN-00-09                              |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          | ····      |                                       |
|           |                                       |          |           |                                       |
| May-Dec   | Sample Shipment to Lab                | 600.00   |           | 2500 samples @ \$0,25/sample          |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
| ·         |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           | · ·                                   |          | · _ ·     |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           | · · · · · · · · · · · · · · · · · · · |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
| ·         |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
| ···       |                                       |          |           |                                       |
|           | ······                                |          |           | ····                                  |
|           |                                       |          |           |                                       |
|           | ·                                     |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           | · · · · · · · · · · · · · · · · · · · |
|           | . <u></u>                             |          |           |                                       |
|           |                                       |          |           | · · · · · · · · · · · · · · · · · · · |
|           | · · · · · · · · · · · · · · · · · · · |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          | ]         |                                       |
|           |                                       |          |           |                                       |
|           | · · · · · · · · · · · · · · · · · · · |          |           |                                       |
|           |                                       |          |           |                                       |
|           |                                       |          |           |                                       |
|           | TOTAL                                 | 22164.79 |           |                                       |

#### SUMMARY OF 2000 EXPLORATION GEOPHYSICAL COSTS

| Date                                   | Item                                   | Cost     | Invoice # | Comments                               |
|----------------------------------------|----------------------------------------|----------|-----------|----------------------------------------|
| Sept/Oct.                              | Delta Geophysics                       | 20693.80 | Q.011     | 6.55 line kilometres                   |
| Nov. 26, 2000                          | Delta Geophysics                       | 1170.85  | Q.016     | Geophysical Report                     |
|                                        |                                        |          |           | ······································ |
|                                        | ······································ |          |           | ·····                                  |
|                                        |                                        |          |           |                                        |
|                                        | ·····                                  |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        | ::       |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        | ······                                 |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           | · · · · · · · · · · · · · · · · · · ·  |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           | ÷                                      |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        | · ·      |           |                                        |
|                                        |                                        |          |           |                                        |
| ······································ | · · · · · · · · · · · · · · · · · · ·  |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
| · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · ·        |          |           |                                        |
| I                                      |                                        |          |           |                                        |
|                                        | ·                                      | ·····    |           | ·                                      |
|                                        |                                        |          |           |                                        |
|                                        | <u></u>                                | ·        |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        |                                        |          |           |                                        |
|                                        | TOTAL                                  | 21864.65 |           |                                        |
## SUMMARY OF 2000 EXPLORATION ADMINISTRATION COSTS

| Date      | ltem          | Cost     | Comments |
|-----------|---------------|----------|----------|
| May       | Administraton | 1333.33  | 1        |
| June      | Administraton | 1333,33  |          |
| July      | Administraton | 1333.33  |          |
| August    | Administraton | 1333.33  |          |
| September | Administraton | 1333.33  |          |
| October   | Administraton | 1333.33  |          |
| November  | Administraton | 1333.33  |          |
| December  | Administraton | 333.33   |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          | · · · ·  |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               | <u></u>  |          |
|           | · ···         |          |          |
| <b> </b>  |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
| · · · ·   |               |          |          |
|           |               |          |          |
|           |               |          |          |
| ľ         |               |          |          |
|           |               | <u>.</u> |          |
|           |               | ······   | ·        |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
| ····      |               |          |          |
|           |               |          |          |
|           |               |          |          |
|           |               |          |          |
| L         | TOTAL         | 9666.64  |          |

1.0

-

# SUMMARY OF 2000 EXPLORATION VEHICLE COSTS

| Date                                  | Days                                  | Cost/Day                              | Gas/Day | <b>Total Daily Cost</b>               | Total                                 |
|---------------------------------------|---------------------------------------|---------------------------------------|---------|---------------------------------------|---------------------------------------|
| May                                   | 31                                    | 50.00                                 | 10      | 60.00                                 | 1860                                  |
| June                                  | 30                                    | 50.00                                 | 10      | 60.00                                 | 1800                                  |
| Juiv                                  | 31                                    | 50.00                                 | 10      | 60.00                                 | 1860                                  |
| August                                | 31                                    | 50.00                                 | 10      | 60.00                                 | 1860                                  |
| Sentember                             | 30                                    | 50.00                                 | 10      | 60.00                                 | 1800                                  |
| October                               | 31                                    | 50.00                                 | 10      | 60.00                                 | 1860                                  |
| November                              | 20                                    | 50.00                                 | 10      | 60.00                                 | 1800                                  |
| December                              | 15                                    | 50,00                                 | 10      | 60.00                                 | 900                                   |
| December                              | 15                                    | 30,00                                 |         | 00.00                                 |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         | ······                                |                                       |
|                                       |                                       |                                       | ·       |                                       |                                       |
|                                       |                                       |                                       |         | · · · · · · · · · · · · · · · · · · · |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       | ·       |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
| · · · · · · · · · · · · · · · · · · · |                                       |                                       | ·       |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       | · · · · · · · · · · · · · · · · · · · |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       | ··                                    |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       | ·                                     |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         | . <u> </u>                            |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       | · · · · · · · · · · · · · · · · · · · |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
| ·                                     |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         | · · · · · · · · · · · · · · · · · · · |                                       |
|                                       |                                       | · · · · · · · · · · · · · · · · · · · |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       |                                       |
|                                       |                                       |                                       |         |                                       | 10740                                 |
|                                       |                                       |                                       |         | Iotal                                 | 13/40                                 |

# SUMMARY OF 2000 EXPLORATION SAMPLE PREPARATION COSTS

| Number of Samples                                                       | Cost/Sample                           | Subtotal  | GST                                   | Total                                 | Comments                               |
|-------------------------------------------------------------------------|---------------------------------------|-----------|---------------------------------------|---------------------------------------|----------------------------------------|
| 24                                                                      | 3.00                                  | 72.00     | 5.04                                  | 77.04                                 | KC-00-01                               |
| 99                                                                      | 3.00                                  | 297.00    | 20.79                                 | 317.79                                | KC-00-02                               |
| 54                                                                      | 3.00                                  | 162.00    | 11.34                                 | 173.34                                | KC-00-03                               |
| 198                                                                     | 3.00                                  | 594.00    | 41.58                                 | 635.58                                | KC-00-04                               |
| 62                                                                      | 3.00                                  | 186.00    | 13.02                                 | 199.02                                | KN-00-01                               |
| 52                                                                      | 3.00                                  | 156.00    | 10.92                                 | 166.92                                | KN-00-02                               |
| 201                                                                     | 3.00                                  | 603.00    | 42.21                                 | 645.21                                | KN-00-03                               |
|                                                                         | 3.00                                  | 501.00    | 35.07                                 | 536.07                                | KN-00-04                               |
| 181                                                                     | 3.00                                  | 543.00    | 38.01                                 | 581.01                                | KN-00-05                               |
| 56                                                                      | 3.00                                  | 168.00    | 11.76                                 | 179.76                                | KN-00-06                               |
| 61                                                                      | 3.00                                  | 183.00    | 12.81                                 | 195.81                                | KN-00-07                               |
| 226                                                                     | 3.00                                  | 678.00    | 47,46                                 | 725.46                                | KN-00-08                               |
| 187                                                                     | 3.00                                  | 561.00    | 39.27                                 | 600.27                                | KN-00-09                               |
| 257                                                                     | 3.00                                  | 771.00    | 53.97                                 | 824.97                                | KN-00-10                               |
| 254                                                                     | 3.00                                  | 762.00    | 53.34                                 | 815.34                                | KN-00-11                               |
| 254                                                                     | 3.00                                  | 762.00    | 53.34                                 | 815.34                                | KN-00-12                               |
| <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | 3.00                                  | 120.00    | 6.40                                  | 128.40                                | 2000-06                                |
|                                                                         | 0.00                                  | 120.00    |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
| ·····                                                                   | · · · · · · · · · · · · · · · · · · · |           |                                       | · · · · · · · · · · · · · · · · · · · |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
| ··                                                                      |                                       | - <u></u> |                                       |                                       |                                        |
| · · · · · · · · · · · · · · · · · · ·                                   |                                       |           | ·                                     |                                       |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
|                                                                         |                                       | ·         |                                       |                                       | · · · · · · · · · · · · · · · · · · ·  |
|                                                                         |                                       |           |                                       |                                       | ······                                 |
| ·                                                                       |                                       |           |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
| ··                                                                      |                                       |           | <b></b>                               | · · · · · · · · · · · · · · · · · · · |                                        |
| · · ·                                                                   |                                       |           | · · · · · · · · · · · · · · · · · · · |                                       | ······································ |
|                                                                         |                                       |           |                                       |                                       |                                        |
| ·                                                                       |                                       |           |                                       | ·                                     |                                        |
|                                                                         | · · ·                                 |           |                                       |                                       | ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·     |
|                                                                         |                                       |           |                                       |                                       | · · · · · · · · · · · · · · · · ·      |
| <b>_</b>                                                                |                                       |           |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       | ·                                     |                                        |
|                                                                         |                                       |           | ·                                     |                                       | · · · · · · · · · · · · · · · · · · ·  |
|                                                                         |                                       | ·         |                                       |                                       | · · · · · · · · · · · · · · · · · · ·  |
| - <u> </u>                                                              |                                       | ·         |                                       | ··                                    | · · · · · · ·                          |
|                                                                         | <b></b>                               | · · · ·   |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       |                                       | · ·                                    |
|                                                                         | =                                     |           |                                       | <u> </u>                              |                                        |
| l                                                                       | - <b> </b>                            |           | <b></b>                               | <b> </b>                              | ·                                      |
|                                                                         |                                       |           | I                                     |                                       | · · _ · _ · ·                          |
|                                                                         |                                       |           |                                       | · · · · · ·                           |                                        |
|                                                                         | · ·                                   |           |                                       | · · · ·                               | · · · · · · · · · · · · · · · · ·      |
|                                                                         |                                       |           |                                       |                                       | · · · · · · · · · · · · · · · · · · ·  |
|                                                                         |                                       |           |                                       | · · · · · ·                           |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       |                                       |                                        |
|                                                                         |                                       |           |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · ·            |
|                                                                         |                                       |           |                                       | <b></b>                               | · · · ·                                |
| 2373                                                                    | 51                                    | 7119      | 498.33                                | 7617.33                               | 1                                      |

## SUMMARY OF 2000 EXPLORATION MATERIALS COSTS

| Date      | Supplier                  | Cost    | Invoice # | Comments                               |
|-----------|---------------------------|---------|-----------|----------------------------------------|
| 7-Jun-00  | Neville Crosby            | 1341.71 | 0092102   | Geological Supplies                    |
| 11-Jul-00 | Neville Crosby            | 119.43  | 0092710   | Geological Supplies                    |
| 17-Jul-00 | Forest Power?             | 45.55   | 004764    | Shifter Pedal for Quad                 |
| 15-Aug-00 | Neville Crosby            | 75.12   | 0103088   | Geological Supplies                    |
| 24-Aug-00 | Neville Crosby            | 1720.93 | 0099646   | Geological Supplies                    |
| 17-Oct-00 | Neville Crosby            | 980.28  | 0107586   | Rock Saw Blades                        |
| May-Dec   | 2.500 Plastic Sample Bags | 997.55  |           | reference NCI Invoice # 0096904        |
|           | 50 pails @ 6.86           | 343.00  |           | Plastic Sample Pails                   |
|           |                           |         |           | ······································ |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           | ·       |           |                                        |
| }         |                           |         |           |                                        |
| <b> </b>  |                           |         |           | ······································ |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           | ······                                 |
|           |                           | ·       |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
| }         |                           |         | <b>-</b>  |                                        |
|           |                           |         | <b>_</b>  |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           | ······                                 |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           | <del>_</del>                           |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
| ·         |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           |                           | ·       |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         |           |                                        |
|           | ·                         |         |           |                                        |
|           |                           | ~       |           |                                        |
|           |                           |         |           |                                        |
|           |                           |         | ·         |                                        |
|           |                           |         |           |                                        |
|           | TOTAL                     | 5623.57 |           | · · · · · ·                            |

## SUMMARY OF 2000 EXPLORATION EQUIPMENT COSTS

| Date        | ltem       | Cost/Hr   | Hours   | Total     |
|-------------|------------|-----------|---------|-----------|
| July-August | D10R       | 301.5     | 12      | 3618      |
|             |            |           | ·       |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             | <u> </u>   |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
| ]           |            |           |         | ·         |
|             |            | ,         |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            | ······    |         |           |
|             | ·····      |           |         |           |
|             |            |           |         |           |
|             |            |           |         | └ <u></u> |
|             |            |           | ·····   |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           | ·       |           |
|             |            |           |         |           |
|             |            |           | <b></b> |           |
|             | <u> </u>   |           |         |           |
|             |            | ·         |         |           |
|             |            | . <b></b> |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             | -          |           |         |           |
| l           |            |           |         |           |
|             |            | <b>_</b>  |         |           |
| <b>_</b> _  |            |           |         |           |
|             |            | ······    |         |           |
| <b>_</b>    |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
| ļ           |            |           |         |           |
|             |            |           |         | . <u></u> |
|             |            |           |         |           |
|             |            |           |         | ·         |
|             | · · · ·- · | ·         |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             |            |           |         |           |
|             | Total      |           |         | 3618      |

## SUMMARY OF 2000 EXPLORATION ASSESSMENT REPORT COSTS

| Date              | Item Cost                                |          | Comments                                   |  |
|-------------------|------------------------------------------|----------|--------------------------------------------|--|
| 20-Nov-00         | Photocopy Geophysical Maps               | 32.94    |                                            |  |
| Nov-Dec           | Set of 5 Plotter Cartridges for Sections | 113.55   | reference Neville Crosby Invoice # 0073626 |  |
|                   | Cot of of local analysis for coolising   |          |                                            |  |
|                   |                                          |          | · · · · · · · · · · · · · · · · · · ·      |  |
| ····              |                                          | ·        | ······································     |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   | ,                                        |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   | ······································   |          |                                            |  |
| •                 |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
| ł                 |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          | • #      |                                            |  |
|                   |                                          |          | · · · · · · · · · · · · · · · · · · ·      |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          | ·        |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
|                   | ······································   |          |                                            |  |
| <b>1</b>          |                                          |          |                                            |  |
| <b>]</b>          |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
| <u>├</u> <b>}</b> |                                          |          |                                            |  |
| <b>ł</b>          |                                          |          |                                            |  |
| <b> </b>          |                                          |          |                                            |  |
| L                 |                                          |          |                                            |  |
|                   |                                          |          |                                            |  |
| I                 |                                          |          |                                            |  |
|                   |                                          | <u> </u> | ·······                                    |  |
|                   |                                          |          |                                            |  |
|                   | TOTAL                                    | 146.49   |                                            |  |

## SUMMARY OF 2000 EXPLORATION SURVEYING COSTS

ĺ

Ę

| Date                                   | Item                                   | Days                                   | Cost/Day        | Total         |
|----------------------------------------|----------------------------------------|----------------------------------------|-----------------|---------------|
| July-Nov                               | Kemess Diamond Drill Surveying         | 5.00                                   | 330             | 1650          |
| ······································ |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 | <u> </u>      |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        | 1.4 -           |               |
|                                        |                                        |                                        |                 |               |
|                                        | · · · · · · · · · · · · · · · · · · ·  |                                        |                 | <u> </u>      |
|                                        |                                        |                                        |                 | · · · ·       |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 | <u> </u>      |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 | <b>.</b> _    |
|                                        |                                        |                                        |                 | <u>.</u>      |
|                                        |                                        |                                        |                 | <u>78</u>     |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        | ·               |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        | ·               |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
| · · · · · · · · · · · · · · · · · · ·  |                                        | ······································ |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        | ······································ |                                        |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        | ·               |               |
| ··                                     |                                        |                                        |                 | •• <b>=</b> • |
|                                        |                                        | ·                                      |                 |               |
|                                        |                                        |                                        |                 | · ·           |
|                                        |                                        | ·                                      |                 |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        | · · · · · · · · |               |
|                                        |                                        |                                        |                 |               |
|                                        |                                        |                                        |                 | ·             |
|                                        |                                        |                                        |                 | 1050          |
|                                        | TOTAL                                  |                                        |                 | 1650          |

GEOPHYSICAL REPORT KEMESS CENTRE PROPERTY OMINECA MINING DIVISION NTS 94E/2 FOR NORTHGATE EXPLORATION LTD BY DELTA GEOSCIENCE LTD

NOV. 26, 2000.

C

Ċ

C

GRANT A. HENDRICKSON, P.GEO.

### **GEOPHYSICAL REPORT**

## KEMESS CENTRE PROPERTY LAT. 57° 02' NORTH, LONG. 126° 47' WEST

### OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 94E/2

FOR

## NORTHGATE EXPLORATION LTD

BY

DELTA GEOSCIENCE LTD GEOLOGICAL SURVEY BRANCH

G.A. HENDRICKSON, P.GEO.

NOVEMBER 26, 2000.

C

 $\langle$ 

C

## **TABLE OF CONTENTS**

|       | Introduction                                       |           | ••        | ••                |         | ••       | ••     | •• | Pages 1-2. |
|-------|----------------------------------------------------|-----------|-----------|-------------------|---------|----------|--------|----|------------|
|       | Location Map                                       |           |           | ••                | ••      |          | ••     | •• | Fig. #1.   |
|       | Personnel                                          | ••        |           | 4 <b>.</b>        |         | ••       | ••     | •• | Page 3.    |
|       | Equipment                                          |           |           | ۰.                |         | ••       | ••     | •• | Page 3.    |
|       | Data Presentat                                     | ion       |           | •-                | ••      |          |        |    | Page 4.    |
|       | Survey Proced                                      | ure       |           | ••                | ••      |          |        | •• | Page 5.    |
|       | Discussion of                                      | the Data  | a         | ••                | ••      | -,       | ••     | •• | Pages 6-7. |
|       | Conclusion an                                      | d Recor   | nmenda    | ations            | ••      |          | ••     | •• | Page 8.    |
|       | References                                         |           |           |                   |         | ••       | ••     | •• | Page 9.    |
|       | Statement of (                                     | Jualifica | ations    | ••                | ••      | ••       | ••     | •• | Page 10.   |
| APPEI | NDIX:                                              |           |           |                   |         |          |        |    |            |
|       | Induced Polari                                     | zation I  | Plan (fil | tered)            |         |          | ••     |    | Fig. #3.   |
|       | <b>Resistivity Pla</b>                             | n (filter | ed)       |                   | * •     | ••       |        | •• | Fig. #4.   |
|       | Magnetic Field                                     | 1 Streng  | th Plan   |                   |         |          |        |    | Fig. #5.   |
|       | Radiometrics -                                     | - Total   | Count F   | lan               |         |          |        |    | Fig. #6.   |
|       | Radiometrics -                                     | - Potass  | ium Pla   | m                 |         |          |        | •• | Fig. #7.   |
|       | Radiometrics -                                     | – Uranin  | um Plan   | 1                 |         |          |        |    | Fig. #8.   |
|       | Radiometrics -                                     | - Thoriu  | ım Plan   | l                 | ••      | ••       |        | •• | Fig. #9.   |
|       | Pseudosection                                      | s, L.121  | .00N      | ••                |         |          |        |    | Fig. #10.  |
|       | Pseudosection                                      | s, L.118  | 300N      |                   | ••      |          | ••     |    | Fig. #11.  |
|       | Pseudosection                                      | s, L.115  | 500N      | <i>~</i> <b>.</b> |         |          | ••     |    | Fig. #12.  |
|       | Pseudosection                                      | s, L.112  | 200N      |                   |         |          | ••     |    | Fig. #13.  |
|       | Pseudosection                                      | s, L.109  | 000N      |                   |         |          |        |    | Fig. #14.  |
|       | Pseudosection                                      | s, L.106  | 600N      |                   |         |          |        |    | Fig. #15.  |
|       | Induced Polarization/Resistivity Plan, Posted Data |           |           |                   |         |          |        | •• | Fig. #16.  |
|       | Magnetic Field Strength Plan, Posted Data          |           |           |                   |         |          |        | •• | Fig. #17.  |
|       | Radiometrics,                                      | Total C   | ount &    | Potassi           | um Plar | ı, Poste | d Data | •• | Fig. #18.  |
|       | Radiometrics,                                      | Uraniu    | m and T   | horium            | Plan, F | osted I  | Data   |    | Fig. #19.  |

С

 $\langle \rangle$ 

 $\langle \cdot \rangle$ 

Ċ

### **INTRODUCTION**

 $\mathbf{C}$ 

C

С

At the request of Northgate Exploration, Delta Geoscience Ltd has conducted Induced Polarization, Resistivity, Magnetic Field Strength and Gamma Ray Spectrometry surveys on an area 2 km northwest of the large Kemess South open pit gold/copper deposit.

These surveys (6.5 line kilometers) were completed during the period September  $25^{th}$  to October 3, 2000. This geophysical program was a significant western extension of six lines surveyed by Lloyd Geophysics in 1991 and by Delta Geoscience Ltd in 1999. These previous surveys have been reported on separately. The topography of the grid extension area is very moderate. A large north-south trending swamp (likely a major fault structure) is centered in the grid extension area at approx. 8200E.

Access to the survey area is possible by 4x4 trucks utilising a series of old drill roads just north of the pit. Access to these roads is through the Kemess South open pit, thus is strictly controlled.

Detailed discussions regarding the scope of this project were initiated by Kemess Mine's Chief Geologist, Mike Hibbitts, who also liased with Delta Geoscience on a day-to-day basis during the course of the survey.

The surveys were conducted to assist with the ongoing evaluation of the area (Kemess Center) for additional sources of porphyry gold/copper ore for the high capacity Kemess concentrator.

The Kemess South gold/copper deposit (lateral dimensions 1700m east-west and 650m north-south) is hosted in a highly altered flat lying Jurassic-age Monzodiorite body. Intense alteration by hydrothermal fluids and by subsequent arid weathering processes has resulted in numerous changes to the physical properties of the mineralised Monzodiorite. These physical property changes and their possible geophysical signatures are as follows:

- a) fracture controlled disseminated sulphide mineralization can increase the Induced Polarization response over a very large area. Concurrent silica flooding can increase the rock's resistivity significantly, which locally improves the signal to noise ratio.
- b) Extensive alteration of Magnetite mineralization to Limonite/Hematite by hydrothermal fluids can result in localised magnetic lows. Magnetite mineralization can also be enhanced in the peripheral parts of the intrusion, which results in strong magnetic anomalies.
- c) dramatic lowering of the resistivity due to the development of hydrothermal clay minerals, in conjunction with deep surficial weathering can mask the true I.P. response and seriously lower the signal to noise ratio for I.P. surveys, which will offset the depth of investigation.

- d) potassic alteration, i.e. the introduction of potassium feldspar, causes an increased K40 gamma ray response. Frequently, the best grades in a porphyry deposit occur within the Potassic core.
- e) hydrothermally altered intrusives can often be differentiated by elevated Uranium and Thorium levels (in the ppm range).

The geophysical survey has been designed to search for mineralization within altered Monzodiorite. Clearly, a correlation between the various geophysical techniques employed that can be related to the alteration processes discussed above, would help select and establish a priority to drill targets.

C

۲,

С

C



¢

C

C



### PERSONNEL

C

...

Ċ

C

| Grant Hendrickson | - Senior Geophysicist |
|-------------------|-----------------------|
| Ladislav Zabo     | - Geographer          |
| Eric Mackenzie    | - Senior Technician   |
| Marika Zabo       | - Field Assistant     |
| Ellen Thompson    | - Field Assistant     |

### **EQUIPMENT**

- Iris Instruments IP-10 Receiver. ł -
- -Iris Instruments VIP 4000 Transmitter. 1
- GEM GSM19 Portable Magnetometer. 1 -
- 1 -
- GEM GSP19 Base Station Magnetometer. Exploranium GR320 Spectrometer with 21cu.in detection (0.35 litre). Toshiba Field Computer. 4x4 Vehicle (Ford Excursion). 1 ----
- 1 -
- 1 -

### **DATA PRESENTATION**

C

C

C

All the maps that accompany this report are at a scale of 1:5000.

The I.P/Resistivity data (pole-dipole, a=50m, N=1-6) is presented in the standard pseudosection format (Figs. #10 to 15) and as contoured grid plans of the filtered I.P/Resistivity data (Figs. #3 and 4). The filtering algorithm is designed to remove the geometric effects of the electrode array geometry. This very valid filtering procedure (especially for porphyry exploration) produces a value that can be contoured line-to-line. The filtering process does however reduce the spatial resolution. The I.P/Resistivity filtered data is also presented as a posted raw data plan (Fig. #6).

The magnetic field strength data is presented in contoured plan format (Fig. #5) and as a posted raw data plan (Fig. #17).

The gamma ray data (in counts/minute) is background corrected and Compton effect stripped. The R.O.I. (region of interest) or windows in the gamma ray spectrum) are as follows:

| Total Count | 817 – 2842 KeV  |
|-------------|-----------------|
| K40         | 1324 – 1500 KeV |
| U           | 1663 – 1833 KeV |
| Th.         | 2330 – 2842 KeV |

This data is presented as contoured plans (Figs. #6 to 9) and as posted raw data plans (Figs. #18 and 19).

A random gridding algorithm was used to produce all the contour plans. This procedure minimises any unnecessary line-to-line bias that often occurs with widely spaced lines.

Note – as this report is to be appended to Kemess geological reports, no claim maps are provided.

#### SURVEY PROCEDURE

C

(

Ċ

The old E-W bearing grid lines were found to be in excellent shape due to the good linecutting job done in 1991. Almost all of the station pickets (25m intervals) were found. Most of these pickets had fallen down, however were in place with their aluminium tags still quite readable.

Magnetic field strength data was acquired at 12.5m intervals on lines spaced 300 meters apart. A base station magnetometer monitored the magnetic field every 30 seconds. This data was used to remove the diurnal changes from the magnetic survey data. Many repeat or overlapping readings were taken to verify the operation of the magnetometer.

Gamma Ray Spectrometer data (Radiometrics) was acquired over 25m intervals, wit the centre of the interval used as the plotting point. The Spectrometer acquired data for one minute (the approximate time it took to slowly walk the 25 meter distance between survey stations). The instrument was adjusted to acquire counts from four regions of interest (R.O.I's), spread over the gamma ray spectrum. These R.O.I's are listed in the previous section on data presentation. Again, many overlapping readings were taken to ensure the instrument was operating correctly.

All of the induced polarization/resistivity pole-dipole surveying was set up so that the moving current electrode was to the east of the array (a = 50m, N = 1 to 6) as the array moved down slope to the west. The infinite current electrode was placed out to the northeast side of the survey area, approx. 1km from the east end of line 12100N. The previous I.P. survey (1991) was also pole dipole, a = 50m, however only N = 1 to 4 were recorded.

The dry soil conditions, plus rocky overburden, created some problems for the current electrodes. To transmit sufficient power into the ground generally required deep electrode holes and copious amounts of salt water. Water was also required on the potential electrodes to ensure the electrode contacts were well below the input impedance of the I.P. receiver.

Current electrodes were stainless steel bars (usually 3) wired together and buried in a shallow salt water soaked trench.

Potential electrodes were porous ceramic pots filled with a solution of copper sulphate surrounding a centre copper electrode.

The Induced Polarization signal was stacked in the receiver (multiple recordings) until the standard deviations were acceptable (generally well below 1%).

Survey data was transferred to the field computer each evenings, whereupon it was further processed and available for viewing by the senior explorationist to ensure everything was satisfactory and to assist with day-to-day exploration planning.

#### **DISCUSSION OF THE DATA**

 $\langle \rangle$ 

C

Horizontal resolution of geological features is controlled largely by the 300m line separation, despite the high density of readings along the lines. This large line separation is just adequate for mapping out the larger geological features of porphyry deposits. The effectiveness of the gamma ray spectrometry survey in particular suffers from the widespread lines. A tighter grid would produce a better map, however the important feature is the recognition of alteration.

The Magnetic Field Strength and Induced Polarisation/Resistivity data provides important information from various depths (10m-300m) over the survey area, whereas the Gamma Ray Spectrometry data originates from the very near-surface material, thus is indicative of the composition of the overburden, outcropping rock and the glacial history. Water saturated areas (swamps) significantly attenuate the gamma ray response. Large areas of outcrop will tend to enhance the gamma ray response.

Overall, the geophysical data indicates two very significant structural zones. The first is a very broad north-trending zone centered at approx. 8200E. The second is a narrower northwest trending zone crossing through the grid at approx. 11200N, 8600E. The intersection of these two zones has produced a significant NW trending I.P. and Resistivity low. Extensive weathering and/or alteration along these two postulated structures may be obscuring or severely attenuating the geophysical response.

Three significant I.P. anomalies have been detected and are listed below in order of significance:

<u>Anomaly 1</u> – a partially defined, near surface complex response of good amplitude and width. This anomaly, centered at 11800N, 8450E, is flat lying or dipping very shallowly to the east. The anomaly quickly becomes deeply buried to the east since the topography rises to the northeast. To the north, the anomaly remains open, however appears combined with the response of a weakly pyritic cover rock, i.e. the Talka group. To the south, this anomaly has an excellent correlation with a very significant Potassium 40 and Uranium anomaly. There is also a good correlation with a strong increase in magnetic field strength. This magnetic anomaly is indicative of a large body containing disseminated magnetite mineralization. There is also a partial correlation with high resistivity, possibly indicative of silicification. This anomaly is an excellent target for porphyry gold/copper mineralization.

<u>Anomaly 2</u> – centered at 10600N, 8600E. This partially defined, but significant anomaly does not correlate with a Potassium 40 gamma ray response, however the area (which has been clearcut) was observed to have a relatively thick overburden cover which may account for a reduced gamma ray response. In addition, this shallow, broad I.P. response does not correlate directly with an increase in magnetic field strength. It does however correlate with a relatively low resistivity response. The above two features may indicate that the anomaly is within an area of extensive alteration, like Kemess South, thus it remains a good target for porphyry copper/gold mineralization.

<u>Anomaly 3</u> – centered at 10750N, 7500E. These modest, narrow, near surface I.P. responses correlate with a very broad area of higher resistivity that has a relatively low magnetic expression. The higher resistivity appears, in part, to be due to silica flooding above narrow sulphide rich veins. There are some modest flanking narrow Potassium 40 responses, particularly on the northern extension of these postulated veins, but overall the gamma ray responses reflect increased outcrop. In all, this I.P. anomaly appears derived mainly from near surface veins of relatively limited tonnage potential. The precious metal content of these postulated veins could be significant. The I.P. anomaly does extend further north than illustrated by Fig. #3, however the number of vein-like responses diminishes and appears narrower. Centered around 7750E, 11500N there is a significant dense cluster of these postulated sulphide vein anomalies occurring at a depth below the surface of approx. 80m.

C

C

C

### CONCLUSION AND RECOMMENDATIONS

C

Ċ

Ċ

Integration of the geophysical results with the detailed geology and geochemistry is the next step. This important step will provide further insight into the economic significance of the geophysical anomalies.

Anomaly #1 (centered at 11800N, 8450E) is a very significant target that would benefit from more detailed study. A deeper looking, very focused I.P/Resistivity survey may be able to define the deep eastern extension of this anomaly. This anomaly can be related to outcrops of mineralised Monzodiorite.

Anomalies 2 and 3 do not appear to outcrop, but are near surface targets, thus their significance may be further revealed by the soil geochemistry results. The tonnage potential of Anomaly 2 could be very significant, whereas Anomaly 3 has limited tonnage potential.

At some point in the future, this geophysical survey should be integrated with the previous year's surveys.



#### **REFERENCES**

0

C

C

- Battacharya, B.B., and Dutta, I., 1982: Depth of Investigation Studies for Gradient Arrays over Homogeneous Isotropic Half-Space: Geophysics, Vol. 47, 1198-1203.
- Coggon, J.H., 1973: A Comparison of I.P. Electrode Arrays: Geophysics, Vol. 38, 737-761.
- Malmqvist, L., 1978: Some Applications of I.P. Technique for Different Geophysical Prospecting Purposes: Geophysical Prospecting 26, 97-121.
- Ward, Stanley H., 1990: Resistivity and Induced Polarization Methods: Geotechnical and Environmental Geophysics, Vol. 1, Investigations in Geophysics 5, 147-190.
- Paper 23 of "Porphyry Deposits of the Northwestern Cordillera of North America", special volume 46, Canadian Institute of Mining, Metallurgy and Petroleum.

Exploranium GR-320 Users Manual, August 1996.

Applied Geophysics, Telford, Geldart, Sheriff and Keys. Cambridge University Press, 1976.

### STATEMENT OF QUALIFICATIONS

Grant A. Hendrickson

C

(

C

- B.Science, University of British Columbia, Canada, 1971. Geophysics option.
- For the past 28 years, I have been actively involved in mineral exploration projects throughout Canada, the United States, Europe, Central and South America and Asia.
- Registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada.
- Registered as a Professional Geophysicist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta, Canada.
- Active member of the Society of Exploration Geophysicists, European Association of Geoscientists and Engineers, and the British Columbia Geophysical Society.

Dated at Delta, British Columbia, Canada, this 27 day of 100, 2000.

Grant A. Hendricksons PoSeo. PROVINCE A. HENDRICKSON MOLTINH OSCIEN









ć









Geosoft Software for the Earth Sciences









Geosoft Software for the Earth Sciences



Geosoft Software for the Earth Sciences




| 7200E      | 7400E                                                                                                    | 7600E                                                                                                         | 7800E 8000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8200E                                                                                                        | 8400E 86                                                                               |
|------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 12200N - + | +                                                                                                        | <u></u>                                                                                                       | ÷ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                            | ÷                                                                                      |
|            | 827 210<br>950 249<br>887 217<br>834 198<br>872 222                                                      | 1002 296<br>795 194<br>779 170<br>634 128<br>683 154<br>707 148<br>715 170<br>742 181                         | 900 239<br>800 239<br>1027 235<br>1009 280<br>761 209<br>903 236<br>903 254<br>905 255<br>905 | 1134 287<br>898 203<br>943 232<br>976 228<br>976 228<br>976 228<br>976 228<br>975 237<br>853 210<br>1199 295 | 876 185<br>1066 235                                                                    |
| 12000N - + | +                                                                                                        | ÷                                                                                                             | <u>+</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              | +                                                                                      |
| 11800N - + | 1715 411<br>976 251                                                                                      | 918 255<br>943 216<br>1013 244<br>1058 270<br>933 222<br>1128 324<br>1091 287<br>1283 328                     | 8009 1177<br>756 174<br>835 194<br>994 860<br>1058 274<br>796 183<br>459 86<br>861 147<br>865 1147<br>865 1177<br>865 1188<br>750 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 912 202<br>1389 358<br>942 229<br>784 106<br>952 129<br>765 179<br>765 181<br>741 156                        | 062 123<br>701 159                                                                     |
| 11600N - + |                                                                                                          | $\perp$                                                                                                       | ± +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>–</b>                                                                                                     | + 729                                                                                  |
|            | 1038 254<br>974 235<br>494 83<br>582 138<br>770 182                                                      | 909 244<br>899 220<br>853 192<br>940 215<br>1019 217<br>904 244<br>933 218<br>933 218                         | 949 258<br>1132 252<br>963 229<br>963 229<br>9640 268<br>9640 275<br>9640 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 931 226<br>631 134<br>462 94<br>343 59<br>467 110<br>950 208<br>946 232<br>1060 284                          | 960 230<br>1124 281<br>984 236<br>962 229<br>962 229<br>962 229<br>962 229<br>962 2276 |
| 11400N - + | - <del>-</del> -                                                                                         | +                                                                                                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                                            | - <u>-</u>                                                                             |
| 11200N - + | 1017 200<br>1083 292<br>1229 282<br>1223 311<br>1178 320<br>1593 440<br>1496 879<br>1395 316<br>1490 401 | Beng 2019   10034 284   966 289   10053 271   1046 281   1062 283   1062 283   1062 283   1062 283   1053 331 | 483 94<br>882 196<br>923 234<br>916 232<br>916 232<br>915 243<br>965 225<br>966 225<br>1026 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 505 105<br>304 53<br>219 30<br>229 30<br>229 27<br>519 91                                                    | 1006 - 238<br>897   199<br>806   192<br>573   117<br>724   160<br>552   131            |
| 11000N - + | ÷                                                                                                        | +                                                                                                             | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | ÷ .                                                                                    |
|            | 711 185<br>838 206<br>965 223<br>946 223<br>1093 279<br>1093 279                                         | 1054 281<br>987 245<br>988 245<br>914 225<br>946 225<br>946 225                                               | 947 231<br>926 214<br>903 222<br>956 245<br>1007 239<br>1114 239<br>1114 239<br>1114 239<br>957 239<br>967 239<br>967 239<br>967 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 839 185<br>785 185<br>532 114<br>539 104<br>719 151<br>894 221                                               | 871 231<br>858 204<br>727 162<br>742 160<br>768 197<br>765 194                         |
| 10800N - + | <u>+</u>                                                                                                 | <b>-</b>                                                                                                      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                                                            | + -                                                                                    |
| 10600N - + | 11037 (2017)<br>8739 182<br>754 175<br>11174 289<br>11183 285<br>11183 285                               | 925 206<br>1028 272<br>962 209<br>933 200<br>872 209<br>767 161<br>761 166                                    | 665 150<br>876 203<br>984 263<br>986 197<br>906 218<br>962 204<br>982 248<br>982 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 619 122<br>538 117<br>549 95<br>864 204<br>1007 242<br>484 89<br>610 117<br>900 191<br>755 196               | 973 57<br>318 57<br>358 60<br>556 131<br>491 99<br>690 171                             |
| 7200E      | 7400E                                                                                                    | 7600E                                                                                                         | 7800E 8000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8200E                                                                                                        | 8400E 860                                                                              |



•

1

| 7200E       | 7400E                                                                                                                                                                                                                            | 7600E                                                                            | 7800E                                                                                                | 8000E                                                                                                                                                                                  | 8200E                                                                         | 8400E 86                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 12200N - +  |                                                                                                                                                                                                                                  |                                                                                  | +                                                                                                    | <b>-</b>                                                                                                                                                                               | <u></u>                                                                       | ÷ -                                                                                                                  |
|             | 20<br>21<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                               | 27 34 31 28 28 28 23<br>24 28 28 28 28<br>21 29 29 17 28 28 25                   | 23 41 18 28 38 44 18 28 31<br>23 42 28 28 28 28 31<br>36 31 31 31                                    | 42 14 11 27 16 27 28 30 27 28 30 27 28 30 27 28 27 30 30 27 27 28 27 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                            | 5 28 4 28 4 38 28 28 28 28 28 28 28 28 28 28 28 28 28                         | <b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b><br><b>5</b> |
| 12000N - +  | -                                                                                                                                                                                                                                | ÷                                                                                | +                                                                                                    | -                                                                                                                                                                                      |                                                                               | ·                                                                                                                    |
| 11800N - +  | 31                                                                                                                                                                                                                               | 84 55 50 58 58 55 <u>58</u><br>84 55 50 58 58 55 <u>54</u> 58                    | 2 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1                                                              | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                  | 1 2 8 3 7 7 8 4 1<br>8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                  | 5 5 <b>8 3</b><br>3 8 5 5                                                                                            |
| 11600N - +  |                                                                                                                                                                                                                                  | -4-                                                                              | - <del>1</del> -                                                                                     | <u>_</u>                                                                                                                                                                               | ÷.                                                                            | + 2<br>2                                                                                                             |
| <b>_ _</b>  | 8 8 8 1<br>8 8 8 1<br>8 8 8 1                                                                                                                                                                                                    | <u>8 8 8 6 8 8 8 8</u><br>7 8 8 8 8 8 7                                          | 8 2 3 2 3 3 3<br>8 2 3 3 4 3 3<br>8 3 4 4 5 8 8<br>8 8 4 4 8 4 8 8<br>8 8 4 4 8 4 8 8 8<br>8 8 4 8 4 | 2 X = X X Z X X X X X X X X X X X X X X X                                                                                                                                              | 46 28 28 13 18 28 28 28 28 28 28 28 28 28 28 28 28 28                         |                                                                                                                      |
| 11400N - +- | +                                                                                                                                                                                                                                | +                                                                                | - <del>-</del>                                                                                       | +                                                                                                                                                                                      | -                                                                             | - <del>-</del>                                                                                                       |
| 11200N - +  | 39<br>34<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>40<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 | 88 88 89 88 88 88 88 88<br>89 89 89 89 89 88 88<br>89 89 89 89 89 89 89 89       | 8 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                              | 22<br>23<br>26<br>26<br>26<br>27<br>26<br>28<br>27<br>28<br>28<br>27<br>28<br>28<br>27<br>28<br>28<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 13 16<br>13 11<br>13 11<br>13 10<br>19 15<br>24 17                            | 23 28 28 28 28 28 28 28 28 28 28 28 28 28                                                                            |
| 11000N - +  | +                                                                                                                                                                                                                                | -                                                                                | +                                                                                                    | - <b>L</b>                                                                                                                                                                             | *                                                                             | +                                                                                                                    |
|             | 29<br>27<br>27<br>28<br>28<br>29<br>29<br>28<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29                                                                                                       | 88 88 88 88 88 88<br>88 88 88 88 88 82<br>88 88 88 88 88 82<br>89 88 88 88 88 88 | 88 88 88 88 88 45 58 45<br>88 88 88 88 58 45 58 45                                                   | 88 28 28 28 44<br>28 28 28 28 44<br>29 28 28 28 28 28<br>29 28 28 28 28 28 28<br>29 28 28 28 28 28 28 28 28 28 28 28 28 28                                                             | 26 27 16 16 27 28 25 28 28 27 26 16 27 28 28 28 28 28 28 28 28 28 28 28 28 28 | 37<br>37<br>38<br>37<br>38<br>38<br>39<br>39<br>39                                                                   |
| 10800N - +  | +                                                                                                                                                                                                                                | -                                                                                | ÷                                                                                                    | -                                                                                                                                                                                      |                                                                               | ـــــــــــــــــــــــــــــــــــــ                                                                                |
| 10600N - +  | ¥ ¥ 4 2 3 8 2 3<br>8 4 6 8 8 2 2 3                                                                                                                                                                                               | 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                          | 46 38 38 38 28 38 28 38 28 38 28 38 28 38 28 38 28 38 38 28 38 38 38 38 38 38 38 38 38 38 38 38 38   | 8 8 7 8 8 8 8<br>8 7 8 8 8 8<br>8 7 8 8 8 8                                                                                                                                            | 22 27 28 28 8<br>28 27 28 28 5<br>21 28 77 7 28 28 55<br>21 28 77 7 28 28 55  | 27<br>28<br>27<br>28<br>29<br>29<br>29<br>20<br>27<br>20                                                             |
| 7200E       | 7400E                                                                                                                                                                                                                            | 7600E                                                                            | 7800E                                                                                                | 8000E                                                                                                                                                                                  | 8200E                                                                         | 8400E 86                                                                                                             |
|             |                                                                                                                                                                                                                                  |                                                                                  |                                                                                                      |                                                                                                                                                                                        |                                                                               |                                                                                                                      |

