Mare	CRAL TITLES BRANCH
ke	oʻd.
	MAR 0 2 2001
ti '	an a
File.	MANCOUVER B.C.

DIAMOND DRILLING AND GEOCHEMICAL SOIL SAMPLING REPORT ON

A PORTION OF **THE IGM GROUP OF MINERAL CLAIMS** (Notice to Group Event Number 3158507)

Cariboo Mining Division British Columbia, Canada

N.T.S. Map Area 93H/04E Lat. 53° 06' N Long. 121° 35' W

Property Owned by: Mosquito Consolidated Gold Mines Limited 301-455 Granville Street Vancouver, British Columbia V6C 1T1

Optioned by Operators: International Wayside Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Island Mountain Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Author: J. Wayne Pickett, M.Sc., CEOEOGICAL SURVEY BRANCH 8256 McIntyre Street Mission, B.C. Canada V2V 6T3 SSESSMENT REPORT

Date: February 26, 20

DIAMOND DRILLING AND GEOCHEMICAL SOIL SAMPLING REPORT ON

A PORTION OF THE IGM GROUP OF MINERAL CLAIMS (Notice to Group Event Number 3158507)

> **Cariboo Mining Division** British Columbia, Canada

N.T.S. Map Area 93H/04E Lat. 53° 06' N Long. 121° 35' W

Property Owned by: Mosquito Consolidated Gold Mines Limited 301-455 Granville Street Vancouver, British Columbia V6C 1T1

Optioned by Operators: International Wayside Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Island Mountain Gold Mines Ltd. 305-455 Granville Street Vancouver, British Columbia V6C 1T1

Author: J. Wayne Pickett, M.Sc., P.Geo. (NF, BC) 8256 McIntyre Street Mission, B.C. Canada V2V 6T3

> Date: February 26, 2001

TABLE OF CONTENTS

••• •••

, .

e---

ъ и рала с

۲. .

بينير -م. ج

<u>,</u>

. .

....

 $\underline{\mathbf{x}} \geq$

77 1. -

<u>ب</u>ب

ب۔

i i L.

<u>___</u>

. 1 •

1.0	Summary.	1
1.0	Summary	2
2.0	Introduction	2
3.0	Location and Access	3
4.0	Previous Work	4
5.0	Regional Geology	5
6.0	Geomorphology	6
7.0	Local Geology	6
7.1	Local Structure	7
8.0	Gold Mineralization	8
8.1	Carbonate-hosted Semi-massive to Massive Pyrite Gold Mineralization	8
8.2	Quartz Vein Hosted Mineralization	9
8.3	Bonanza Ledge Zone	10
9.0	Year 2000 Drilling Program	12
10.0	Year 2000 Line Cutting and Soil Sampling Program	13
11.0	Year 2000 Aerial Photography	4
12.0	Statement of Expenditures	4
13.0	Recommendations	15
14.0	References	16
15.0	Certificate of Qualifications	21

•

.

-

LIST OF TABLES

, .

-

.....

-

ي. ۳

,....

ς.

سیبر : :

•** • •

Г С.

ί. ..

¥

· · · ·

. .

-

s. .

**--

٠

٣

۷.,

Tabl	le After	Page
I	List of Mineral Claims and Crown Grants	3
Π	Summary of Production at Wells, B.C.	4
III	Drill hole locations and significant intercepts for 1999 and selected 1984 holes	5
IV	Year 2000 Drill Hole Locations	12
V	Year 2000 drill hole locations and significant intercepts	12
VI	Colour code and percentile values used to generate image maps	13
VII	Statement of Expenditures	14

LIST OF ILLUSTRATIONS

Figu	re	After Page
1	IGM Group mineral claims and crown grants	3
2	Mosquito Creek and Island Mountain crown-granted mineral claims	3
3	Geology of the Wells area	3
4	Regional Geology	4
5	Vertical longitudinal projection Aurum and Mosquito Creek Gold Mine.	4
6	Compilation Map - Local Geology.	In pocket
7	Stratigraphy Mosquito Creek and Island Mountain mines	7
8	Idealized cross section - Mosquito Creek Gold Mine	9
9	Diamond drill hole locations	12
10	Section 36+00W, looking northwest.	12
11	Section 36+00W, looking northwest	12
12	Section 42+00W, looking northwest	12
13	Compilation - including gold (ppb) in soils	In pocket
14	Gold (ppb) in soils	In pocket
15	Compilation - including arsenic (ppm) in soils	In pocket
16	Arsenic (ppm) in soils	In pocket
17	Air Photo Index Map	In pocket

LIST OF APPENDICES

Appendix A	Outline of the history of the Mosquito Creek Group and Mosquito Consolidated Gold Mines Limited (after Hall, 1991)
Appendix B	Outline Description of Map Units - Mosquito Creek Gold Mine (after Hall, 1991)
Appendix C	Description of Analytical Methods Drill Logs IMG2K-01 to IMG2K-10
Appendix E	Drill Core and Sludge Sample Analyses
Appendix F Appendix G	Soil Sample Analyses

· · · .

1.0 SUMMARY

Between July 18, 2000 and October 30, 2000. Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd. carried out diamond drilling on Crown-Granted Mineral Claim Red Gulch No. 1. In addition, soil sampling was carried between October 19 and October 30, 2000 on the Red Gulch No. 1 claim and other Crown-Granted Mineral Claims included in the Mosquito Creek Claim Group, which is now part of the larger IGM Group. The Mosquito Creek group of crown-granted mineral claims is located about 1.5 km northwest of Wells, British Columbia within NTS map area 93H/04E at latitude 53° 06' north and longitude 121° 35' west.

Island Mountain Gold Mines Ltd. is, at the time of writing, earning a 50% interest from International Wayside Gold Mines Ltd. in the Island Mountain and Mosquito Creek claim groups, now part of the IGM Group. The groups are subject further to an option to purchase agreement announced Dec. 16, 1998 between Mosquito Consolidated Gold Mines Limited and International Wayside Gold Mines Ltd. The Estate of Cameron J. McFeely retains a 10% net profits interest in the groups.

Three past producing gold mines, the Island Mountain, Aurum, and Mosquito Creek Gold Mines occur on the property, which is included in the Cariboo gold belt, a world-class producer of gold that has had a history of mining dating from the 1860's.

Rocks underlying the property are included in the Kootenay (Barkerville) Terrane, one of four that make up the Omineca morphogeological belt of the Canadian Cordillera. The Barkerville Subterrane consists of a Late Proterozoic and Paleozoic sequence of continental shelf and slope deposits developed adjacent to the craton of Ancestral North America. The sequence includes siliceous clastic sedimentary rocks along with lesser amounts of volcanic rocks and carbonates.

Siliceous greywackes and grits, impure quartzite, black and green pelite, lesser limestone and volcaniclastic rocks in the Wells area have been included in the Snowshoe Group, which has been correlated with the Eagle Bay Formation near Adams Lake and the Lardeau Group near Kootenay Lake as well as with rocks of the Yukon-Tanana Terrane. Rocks of the Snowshoe Group in the Wells area have been metamorphosed to lower greenschist facies, generally of lower metamorphic grade than other sequences in the Barkerville Terrane.

Rocks of the Barkerville Terrane were subjected to an early period of ductile deformation that resulted in westward directed, asymmetrical folds plunging shallowly to the northwest. Post metamorphic open folds with upright cleavage are superposed on earlier structures. During Late Cretaceous to Early Tertiary time, the terrane was disrupted by northwest and north-striking dextral strike-slip faults with an important normal component. The faults record extension probably associated with transcurrent movement. The north-striking cross-faults are an important control for the gold vein mineralization at Wells.

The Island Mountain and Mosquito Creek claim groups are underlain by a northwest striking, moderately northeast dipping sequence of rocks on the steep, overturned limb of a southwest-verging antiform, which is on the northeast flank of the Island Mountain Anticlinorium of Sutherland Brown (1957). Symmetry in the stratigraphy at Island Mountain and local variations noted in stratigraphic tops noted in drill core suggest that the sequence has been internally folded and is not a simple overturned monoclinal sequence. A prominent lineation, plunging 20-22 degrees to the northwest, is the most persistent fabric developed and corresponds to axes of asymmetrical fold structures and the intersections of cleavages.

Local stratigraphy consists of interlayered carbonate-rich rocks, mafic tuffs and dark grey silicic turbidites. The carbonate-rich rocks include white to grey sandy limestones, calcareous mudstones and dolomitic, micaceous siltstones. The calcareous rocks typically have graphitic partings and/or interlayered calcareous graphitic argillite. The volcanic rocks are medium to pale green and consist mostly of mafic tuff and tuffaceous epiclastic. A few amygdaloidal volcanic flows are also present. The silicic turbidites comprise siliceous siltstone, silicic greywacke, quartz grit and silicic conglomerate interlayered with dark grey to black graphitic argillite. The turbidites are rhythmically bedded and exhibit partial Bouma sequences locally. The units are variably altered and bleached. Dolomitization, as represented by 1-3 mm dolomite porphyroblasts and presence of finer dolomite in the matrix, is widespread. Sericitization accompanies dolomitization in several places. Where intense, the combination of dolomitization and sericitization obscures the original lithology and results in a pale olive green to tan rock that may have been developed from alteration of dolomite-rich carbonate rocks, mafic tuff or finer grained turbidites. Less altered mafic tuffs typically contain abundant calcite veins and amygdules. Fine grained partial to

pervasive silicification is present locally. In places, silicified zones within the mafic tuffs contain 5 to 10 % pyrite accompanied by lesser arsenopyrite. These zones are locally auriferous. Carbonate-rich hosts to semi-massive pyrite mineralization, are locally bleached, dolomitized and silicified.

Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area. The mineralization is stratabound in that each style is confined for the most part to a particular section of the local stratigraphy. Historical production has been from mesothermal pyrite-bearing quartz vein systems that cut siliceous turbiditic rocks and from semi-massive to massive pyrite bodies that occur in carbonate-rich rocks structurally higher but stratigraphically lower in the sequence. The recently discovered Bonanza Ledge Zone of International Wayside Gold Mines Ltd. occurs as discrete areas of massive, banded and stringer pyrite developed in strongly carbonate-muscovite-pyrite altered pelitic rocks structurally lower but stratigraphically higher than the siliceous turbiditic rocks hosting the mesothermal pyrite-bearing quartz veins.

During 2000, ten diamond drill holes totalling 5743 ft (1750 m) were completed to test for pyritetype gold mineralization to the northwest of the Mosquito Creek gold mine. The drill holes intersected a folded northeast dipping sequence of carbonate rocks and interlayered turbiditic sedimentary rocks and mafic tuff; all of which form part of the Downey Succession. Drill hole SK2K-02 intersected black graphitic argillite at the bottom of the hole probably marking the contact with structurally underlying pelitic rocks of the Hardscrabble Mountain Succession.

Significant mineralized intercepts include intersections of pyrite-type mineralization in drill hole IMG 2K 07, which returned an assay of 15.07 g/t gold (0.44 oz./ton) over 2 ft. (0.6m), and in IMG 2K 03, which returned 13.25 g/t gold (0.39 oz./ton) over 2 ft. (0.6m). The mineralization is typically associated with pyrite-bearing dolomitized or silicified zones within or proximal to limestone. A highly siliceous (possibly intensely silicified) unit interlayered with mafic tuff in drill hole IMG 2K 08 returned 2.62 g/t gold (0.08 oz./ton) over 8.5 ft. (2.6 m). Widths are approximately true. Dolomite/ankerite-bearing quartz veins typically containing some combination of pyrite, arsenopyrite and galena, returned assays of 4.5 to 6.7 g/t gold (0.13 to 0.20 oz./ton) in several of the drill holes over widths up to 7.6 ft. (2.6 m). True widths are estimated to be 50% of drill hole intercepts.

During 2000, part of a pre-existing grid was re-established. About 1.2 km of baseline and 18.6 km of crosslines spaced at 200 ft (61 m) were cleared and picketed. Extension of the crosslines to the south required about 4.7 km of cutting. Soil sampling was conducted over the re-established and newly cut lines. Analytical results from the soil sampling indicate a positive correlation between gold and arsenic. An area underlain by elevated to anomalous concentrations of these elements in the central and eastern parts of the area sampled outline a roughly wedge-shaped area. Anomalies of particular interest are two untested soil anomalies uphill to the west of the Mosquito Creek Mines Shaft (3170 ppb Au at 22+00W, 5+00S and 1009 ppb Au at 28+00W, 6+00S). These gold-in-soil anomalies have potentially been derived from rocks included within or close to the contact with rocks of the Hardscrabble Mountain Succession. This is potentially significant since the Bonanza Ledge deposit occurs proximal to this contact, which structurally underlie the carbonates and turbiditic rocks containing the mineralized zones previously mined.

Total expenditures for the 2000 work program amounted to \$174,253. A program of work compilation, additional line cutting, geological mapping, prospecting, soil sampling, VLF-EM, magnetic and IP geophysical surveys, and diamond drilling is recommended for 2001.

٤.

ί.

Between July 18, 2000 and October 30, 2000, Island Mountain Gold Mines Ltd. and International Wayside Gold Mines Ltd. carried out diamond drilling on Crown-Granted Mineral Claim Red Gulch No. 1 (Table I, Figures 1 and 2). In addition, soil sampling was conducted between October 19 and October 30, 2000 on the Red Gulch No. 1 claim and other Crown-Granted Mineral Claims included in the Mosquito Creek Claim Group, which is now part of the larger IGM Group (Table I, Figures 1 and 2). The Mosquito Creek group of crown-granted mineral claims is located about 1.5 km northwest of Wells, British Columbia (Figures 1 and 2).

Island Mountain Gold Mines Ltd. is, at the time of writing, earning a 50% interest from International Wayside Gold Mines Ltd. in the Island Mountain and Mosquito Creek claim groups, now part of the IGM Group. Island Mountain Gold Mines Ltd. (IGM) is earning the 50% interest under an option agreement with International Wayside Gold Mines Ltd. (IWA) dated May 10, 1999 that required an initial payment of CDN \$150,000 and additional payments of CDN \$50,000 per year plus 500,000 shares of IGM (at a deemed price of \$0.20 per share) as well as incurring CDN \$4 million in exploration expenditures over the 5-year term of the option. The groups are subject further to an option to purchase agreement announced Dec. 16, 1998 between Mosquito Consolidated Gold Mines Limited and International Wayside Gold Mines Ltd. The Estate of Cameron J. McFeely retains a 10% net profits interest in the groups.

The Mosquito Creek and Island Mountain claim groups comprise a total of 63 Crown-granted contiguous mineral claims and fractions consisting of 850 hectares (2100 acres) (Table I, Figure 2). The Island Mountain Claim group consists of 34 Crown-granted mineral claims and fractions comprising 446 hectares (1102 acres) on Island Mountain, northwest of Jack of Clubs Lake (Table I, Figure 2). The Mosquito Creek claim group comprises 29 Crown-granted mineral claims consisting of 404 hectares (998 acres) contiguous with and to the northwest of the Island Mountain group (Table I, Figure 2).

Three past producing gold mines, the Island Mountain, Aurum, and Mosquito Creek Gold Mines are included on the property (Figure 3).

3.0 LOCATION AND ACCESS

The Island Mountain and Mosquito Creek claim groups are located near Wells, British Columbia within NTS map area 93H/04E at latitude 53° 06' north and longitude 121° 35' west (Figures 1 and 2). The town of Wells, situated in the Quesnel Highlands on the edge of the Interior Plateau, can be reached via Highway 26 that branches off Provincial Highway 97 at Quesnel, 85 km to the west. Gravel roads established during placer and lode mining activity in the area provide access to the property from Wells.

Access to the old mine workings is restricted below an elevation of 4,000 feet due to flooding and access to underground workings at higher elevations is limited (Hall, 1999a). The 4,000 level adit to the Island Mountain mine is caved at the portal. Access to the Mosquito Creek Gold mine is possible through manways in the shaft and the 4400 level adit. The main drift in the Jukes adit contains several small caves and the Jukes drift east is caved at the Burnett fault.

Table I: IGM Group - List of Mineral Claims

. i

Mosquito Creek Group of Crown-granted Mineral Claims (now included in IGM Group)

Claims on which work was performed between July 18, 2000 and Oct. 30, 2000 - Work Permit 2000-1101587-9205

NTS: 93H/04					Line Cutting &	
	Grant				Soil Sampling	Diamond Drilling
Grant Name	No.	Acres	Hectares	Date Granted	Oct. 19 - Oct. 30, 2000	July 18 to Oct. 30, 2000
OLIVER	20F	23.52	9.52	Sep 02, 1875		
ALABAMA CO.	30F	5.00	2.02	May 16, 1875		· · · · · · · · · · · · · · · · · · ·
FARMER CO.	38F	3.00	1.21	May 17, 1876		
NEVER SWEAT CO.	39F	3.00	1.21	May 17, 1876	Line Cutting & Soil Sampling	
BROOKFORD NO.4	5901	42.37	17.15	Feb 01, 1936		:
BROOKFORD NO.5	5902	41.32	16.72	Feb 01, 1936		
RED FRACTION	5924	9.52	3.85	Oct 30, 1939	Line Cutting & Soil Sampling	· · · · · · · · · · · · · · · · · · ·
BROOKFORD NO.6	10352	35.94	14.54	Feb 01, 1936	Line Cutting & Soil Sampling	· · · · · · · · · · · · · · · · · · ·
BROOKFORD NO.7	10353	43.95	17.79	Feb 01, 1936		· · · · · · · · · · · · · · · · · · ·
MOSQUITO	10355	31.67	12.82	Feb 01, 1936		
VANCOUVER	10356	51.65	20.90	Feb 01, 1936		
PORT HOPE	10357	51.65	20.90	Feb 01, 1936	Line Cutting & Soil Sampling	· · · · · · · · · · · · · · · · · · ·
SEATTLE	10358	51.36	20.79	Feb 01, 1936	Line Cutting & Soil Sampling	
MOSQUITO FRACTION	10359	38.89	15.74	Jul 13, 1936		4 · · ·
RED GULCH NO.1	10360	40.89	16.55	Oct 30, 1939	Line Cutting & Soil Sampling	IMG2K-01 to IMG2K-10
RED GULCH NO.2	10361	51.65	20.90	Oct 30, 1939	Line Cutting & Soil Sampling	
RED GULCH NO.3	10362	51.65	20.90	Oct 30, 1939	Line Cutting & Soil Sampling	- · ·
RED GULCH NO.4	10363	26.04	10.54	Nov 11, 1939	Line Cutting & Soil Sampling	
RED GULCH NO.5	10364	51.64	20.90	Oct 30, 1939	Line Cutting & Soil Sampling	• • • • • • • • • • • • • • • • • • •
RED GULCH NO.6	10365	42.15	17.06	Oct 30, 1939	Line Cutting & Soil Sampling	· · · · · · ·
RED GULCH NO.7	10366	31.99	12.95	Oct 27, 1939	Line Cutting & Soil Sampling	
RED GULCH EXT. NO.1	10368	43.41	17.57	Oct 27, 1939	Line Cutting & Soil Sampling	•
RED GULCH EXT. NO.2	10369	25.33	10.25	Oct 27, 1939	Line Cutting & Soil Sampling	· .
WILLOW NO.7	10717	38.07	15.41	Feb 19, 1951		· · · ·
WILLOW NO.8	10718	47.13	19.07	Feb 19, 1951	· · · · · · · · · · · · · · · · · · ·	·· ·
WILLOW NO.9	10719	19.38	7.84	Feb 19, 1951	Line Cutting & Soil Sampling	· · · · ·
WILLOW NO.10	10720	33.63	13.61	Feb 19, 1951	Line Cutting & Soil Sampling	
DAWNE NO.4 FRACTION	10722	27.08	10.96	Feb 19, 1951		• •
MOHAWK NO.3	11072	35.14	14.22	Apr 30, 1935		
<u></u>	Totals	998.02	403.90			

Table I: IGM Group - List of Mineral Claims (continued)

Island Mountain Group of Crown-granted Mineral Claims (now included in IGM Group)

NTS: 93H/04

)

۳۲ ا

0

-

•.. [•]

.

	Grant	
Grant Name	No.	Date Granted
BROOKFORD NO.3	5900	Feb 01, 1935
BROOKFORD FRACTION	5903	Feb 01, 1936
GOLDBRICK FRACTION	7807	May 29, 1935
AUSTIN FRACTION	9470	Dec 09, 1937
BROOKFORD NO.8	10354	Feb 01, 1936
AURUM	10517	Apr 30, 1935
AURUM N.E.	10518	Aug 20, 1935
PAYSTREAK NO.5	10586	Nov 02, 1935
PAYSTREAK NO.6	10587	Nov 02, 1935
PAYSTREAK NO.7	10588	Nov 02, 1935
PAYSTREAK NO.8	10589	Nov 02, 1935
AURUM WEST	11066	Арг 30, 1935
AURUM SOUTH	11067	Apr 30, 1935
MOHAWK NO.1	11068	Apr 30, 1935
MOHAWK NO.2	11069	Apr 30, 1935
PAYSTREAK NO.1	11070	Apr 30, 1935
TRIANGLE FRACTION	11071	Apr 30, 1935
MOHAWK NO.4	11073	Apr 30, 1935
V. FRACTION	11074	Apr 30, 1935
OKAY FRACTION	11081	Apr <u>30, 1935</u>
MOHAWK NO.5	11082	Nov 02, 1935
MOHAWK NO.6	11083	Nov 04, 1935
NORTH STAR NO.1	11084	Nov 02, 1935
NORTH STAR NO.2	11085	Nov 02, 1935
NORTH STAR NO.3	11086	Nov 02, 1935
NORTH STAR NO.4	11087	Nov 02, 1935
NORTH STAR NO.9	11088	Nov 02, 1935
MOHAWK NO.8	11089	Nov 02, 1935
MOHAWK NO.7	11090	Nov 02, 1935
JIM FRACTION	11091	Nov 02, 1935
ART FRACTION	11092	Nov 02, 1935
IVAN FRACTION	11093	Nov 02, 1935
N.M. NO.9 FRACTION	11094	Nov 02, 1935
PAY FRACTION	11095	Nov 02, 1935

· '-

Table I: IGM Group - List of Mineral Claims (continued)

Mineral Claims

NTS: 93H/04

	1491101	011100	1 144	Expirit Baco
204931		1	25	February 7, 2002
204930	; ;	1	25	February 7, 2002
373358	207958	20	500	December 2, 2001
373359	675025M	1	25	December 2, 2001
373360	675030M	1	25	December 2, 2001
373361	675031M	1	25	December 2, 2001
343837	203699	20	500	December 2, 2001
343575	203640	20	500	December 2, 2001
373362	675032M	1	25	December 2, 2001
343838	203639	12	300	December 2, 2001
375098	231082	20	500	April 5, 2002
375440	237810	15	375	April 15, 2002
343642	203642	20	500	December 2, 2001
343833	668944M	1	25	December 2, 2001
343834	668927M	1	25	December 2, 2001
375441	237805	20	500	April 15, 2002
375442	237806	20	500	April 14, 2002
333038	213572	6	150	June 15, 2002
333039	208192	3	75	June 15, 2002
342687	665639M	1	25	June 15, 2002
342688	665640M	1	25	June 15, 2002
342689	665641M	1	25	June 15, 2002
342690	665642M	1	25	June 15, 2002
342691	665643M	1	25	June 15, 2002
342692	665644M	1	25	June 15, 2002
342693	665645M	1	25	June 15, 2002
342694	665646M	1	25	June 15, 2002
337601	203601	20	500	June 15, 2002
337602	203602	20	500	June 15, 2002
337603	214699	20	500	June 15, 2002
337604	214700	20	500	June 15, 2002
337605	614935M	1	25	June 15, 2002
337606	618459M	1	25	June 15, 2002
337607	614704M	1	25	June 15, 2002
337608	618458M	1	25	June 15, 2002
375097	231081	9	225	April 5, 2002
375274	237803	18	450	April 11, 2002
375275	237804	20	500	April 12, 2002
368577	682891M	1	25	April 17, 2002
368579	682893M	1	25	April 17, 2002
376962	237839	20	500	May 10, 2002
376963	697728M	1	25	May 5, 2002
376964	697729M	1	25	May 5, 2002
376965	697730M	1	25	May 5, 2002
	00770411	. ·	. or	May 5, 2002
	204931 204930 373358 373359 373360 373361 343837 343575 373362 343838 375098 375098 375440 343642 343833 343834 375441 375441 375442 333038 333039 342687 342687 342688 342689 342690 342691 342692 342691 342692 342693 342694 337601 337602 337603 337605 337605 337606 337607 3375274 375275 368579 375963 376964 376965	204931 204930 373358 207958 373359 675025M 373360 675030M 373361 675031M 343837 203699 343575 203640 373362 675032M 343838 203639 375098 231082 375440 237810 343833 668944M 343834 668927M 375441 237806 333038 213572 333039 208192 342687 665639M 342688 665640M 342689 665641M 342691 665643M 342692 665644M 342693 665645M 342694 665644M 342693 665644M 342694 665644M 342693 665644M 342694 665644M 342695 614935M 337605 614935M 337606 618459M <	204931 1 204930 1 373358 207958 20 373359 675025M 1 373360 675030M 1 373361 675031M 1 373362 675032M 1 343837 203699 20 343575 203640 20 373362 675032M 1 343838 203639 12 375098 231082 20 375440 237810 15 343843 668927M 1 375442 237805 20 375442 237806 20 333038 213572 6 333039 208192 3 342687 665639M 1 342688 665641M 1 342690 665642M 1 342692 665643M 1 342693 665643M 1 342694 665644M 1	204931 1 25 204930 1 25 373358 207958 20 500 373359 675025M 1 25 373360 675030M 1 25 373361 675031M 1 25 373362 675032M 1 25 343837 203699 20 500 343838 203639 12 300 375098 231082 20 500 375440 237810 15 375 343642 203642 20 500 343833 668944M 1 25 343834 668927M 1 25 343834 668947M 1 25 343834 668947M 1 25 343834 668640M 1 25 342687 665639M 1 25 342687 665643M 1 25 342689 665644M

Table I: (continued)

Claim Name	Tenure No.	Tag No.	Units	Ha	Expiry Date
MONSTER 6	376967	697732M	1	25	May 5, 2002
MONSTER 7	376987	697719M	1	25	May 10, 2002
RTC 1	376586	695661M	1	25	May 7, 2002
RTC 2	376587	695662M	1	25	May 7, 2002
RTC 3	376588	695663M	1	25	May 7, 2002
RTC 4	376589	695664M	1	25	May 7, 2002
RTC 5	376590	695665M	1	25	May 7, 2002
RTC 6	376591	695666M	1	25	May 7, 2002
RTC 7	376592	695667M	1	25	May 7, 2002
RTC 8	376593	695668M	1	25	May 7, 2002
RTC 9	376594	695669M	1	25	May 7, 2002
RTC 10	376595	695670M	1	25	May 7, 2002
RTC 11	376572	695671M	1	25	May 7, 2002
RTC 12	376573	695672M	1	25	May 7, 2002
RTC 13	376574	695673M	1	25	May 7, 2002
RTC 14	376575	695674M	1	25	May 7, 2002
RTC 15	376576	695675M	1	25	May 7, 2002
RTC 16	376577	695676M	1	25	May 7, 2002
RTC 17	376578	695677M	1	25	May 7, 2002
RTC 18	376579	695678M	1	25	May 7, 2002
RTC 19	376580	695679M	1	25	May 7, 2002
RTC 20	376581	695680M	1	25	May 7, 2002
RTC 21	376582	695681M	1	25	May 7, 2002
RTC 22	376583	695682M	1	25	May 7, 2002
RTC 23	376584	695683M	1	25	May 7, 2002
RTC 24	376585	695684M	1	25	May 7, 2002
RTC 25	376596	695701M	1	25	May 7, 2002
RTC 26	376597	695702M	1	25	May 7, 2002
RTC 27	376598	695703M	1	25	May 7, 2002
RTC 28	376599	695704M	1	25	May 7, 2002
RTC 29	376600	695705M	1	25	May 7, 2002
RTC 30	376601	695706M	1	25	May 7, 2002
RTC 31	376602	695707M	1	25	May 7, 2002
RTC 32	376603	695708M	1	25	May 7, 2002
RTC 33	376604	695709M	1	25	May 7, 2002
RTC 34	376605	695710M	1	25	May 7, 2002
L	·····	Totals	385	9.625	· · · · · · · · · · · · · · · · · · ·

r-.... ----Ľ. ~-<u>.</u>__ _ ı ► -. . ς. • <u>.</u> ____

4.0 **PREVIOUS WORK**

The property is included within the Cariboo gold belt, a world-class producer of gold that has had a history of mining dating from the 1860's (Figure 4). Total production of placer gold from the Cariboo goldfields is estimated to be approximately 3 million ounces (93.3 tonnes), 90% of which was recovered from Tertiary and Quaternary preglacial and interglacial gravels in buried paleochannels of modern stream valleys (Hall, 1999a). Production from the Mosquito Creek drainage on Island Mountain is estimated to be in excess of 100,000 ounces (3.1 tonnes) of placer gold (Eyles and Kocsis, 1989). The creek was worked by drift miners as early as 1874 and was later hydraulicked to an elevation of 4,200 feet (Hall, 1999b).

Veins on Island Mountain were worked since the 1870's. Between 1925 and 1932, C.J. Seymour Baker established a property position on Island Mountain and worked vein structures in the Johns adits (Hall, 1999b). The 1932 discovery of pyrite-type ore on the 4480 Level (Lower Johns Adit) led Newmont Mining Corporation to acquire the properties in the area through a subsidiary called Island Mountain Mines Company Limited. The Island Mountain Mine was developed on 11 levels to a lower elevation of 2,500 feet (760 m) via an internal shaft collared on the 4000 Level. Development of the Island Mountain Mine to the northwest was limited to the boundary with the Mosquito Creek Group, held at the time by the Cariboo Gold Quartz Mining Limited (CGQM). As a result of the limitations, Newmont sold the Island Mountain Mine to CGQM in 1954.

Subsequent development by CGQM of extensions to the Island Mountain Mine into the Mosquito Creek Claim Group at depth was called the Aurum Mine (Figure 5). Five levels, between elevations of 3,250 and 2,700 feet (990 m and 823 m), and over a strike length of 1,000 feet (305 m) were developed between the Burnett and Mosquito faults (Hall, 1999a).

The Mosquito Creek Gold Mine was a small mine located 230 m (750 feet) above upper workings of the Aurum Mine (Figure 5). The mine was developed in the early 1980's by Mosquito Creek Gold Mines Ltd., which acquired the Mosquito Creek Claim Group in 1971. Underground development included a vertical shaft to a depth of 516 feet (157 m) and levels at elevations of 4400, 4300, 4200 and 4100 feet (Hall, 1999b) (Figure 5). Additional underground development and exploration were carried out through joint ventures of Mosquito Creek Gold Mines Ltd. with Hudson Bay Exploration and Development Company Limited (1984 second and third level programs), Hecla Mining Company of Canada Limited (1986 second and fourth level programs) and Lyon Lake Mines Limited (1983-89 fifth level, Jukes Adit and Island Mountain Adit programs) (Hall, 1999b). The Hecla program found the 2-185 ore body (4,068 tons (3690 tonnes))) grading 0.62 ounces gold per ton (21.2 g/t), which was mined and milled as a salvage operation in 1986 and 1987 (Hall, 1999b).

The Island Mountain/Aurum Mine (1934-1967) and the Mosquito Creek Mine (1980-1983) produced 603,800 ounces (18.8 tonnes) of gold from approximately 1.35 million tons (1.22 million tonnes) of ore (Table II) (Hall, 1999c). Quartz-type ore with an average grade of 0.35 ounces of gold per ton (12.0 g/t) and pyrite-type ("replacement") ore with an average grade of 0.67 ounces of gold per ton (23.0 g/t) were mined. Pyrite-type ore was higher quality ore accounting for about 40% of tonnage mined and about 60% of the gold produced. The underground mines at Island Mountain together with the

Table II: Summary of Production at Wells, B.C. (1933-1987) (after Hall, 1999b)

,

nportal onto	Ye	are	Quartz Ore		Pyrite Ore		Total Ore	Recovered	Total Recovered	
lina	From	То	Tons	Grade oz./ton	Tons	Grade oz. Топ	Tons	Grade oz./ton	Gold oz	Silver oz
and Mountain and Aurum Mines	1934	1967	761,646	0.35	483,649	0.67	1,245,295	0.46	569,528	81,658
	1980	1983	7,969	0.14	78,279	0.45	86,248	0.32	27,384	7,747
Iosquito Creek Gold Mine	1984	1987			16,900	0.44	16,900	0.41	6,897	2,134
otals - Island Mountain and Aurum Mines										
Total (tons) & Weighted Average (Grade)			769,615	0.35	578,828	0.63	1,348,443	0.45	603,809	91,539
	1 1 0 0 0		4 000 000	0.00	55 252	0.60	1 681 951	0.37	626 755	56 092
Cariboo Gold Quartz Mine	1933	1959	1,626,699	0.39	55,252	0.00	1,001,951	0.07	020,100	00,001
Cotale - island Mountain, Aurum and Cariboo	o Gold	Quartz	Mines							
Total (tons) & Weighted Average (Grade			2,396,314	0.38	634,080	0.63	3,030,394	0.41	1,230,564	147,631

Metric Units

÷

-

•

÷

	Years		Quartz Ore		Pyrite Ore		Total Ore	Recovered	Total Rec	overed
841	From	То	tonnes	Grade g/t	tonnes	Grade g/t	tonnes	Grade g/t	Gold tonnes	Silver tonnes
Island Mountain and Aurum Mines	1934	1967	690,954	12.0	438,759	23.0	1,129,713	15.7	17.7	2.5
	1980	1983	7,229	4.8	71,014	15.4	78,243	10.9	0.9	0.2
Mosquito Creek Gold Mine		1987			15,331	15.1	15,331	14.0	0.2	0.1
Totals - Island Mountain and Aurum Mines Total (tonnes) Weighted Average (Grade)			698,183	11.9	525,104	21.7	1,223,287	15.3	18.8	2.8
Cariboo Gold Quartz Mine	1933	1959	1,475,717	13.37	50,124	20.57	1,525,840	12.79	19	2
Totais - Island Mountain, Aurum and Cariboo	Gold	Quartz	Mines					42.01	20.2	46
Total (tonnes) Weighted Average (Grade)			2,173,899	12.9	575,228	21.6	2,749,127	13.9	30.3	4.0

Cariboo Gold Quartz (No. 1) mine (1933-1959) to the southeast produced a total of 1.23 million ounces (38.2 tonnes) of gold along a strike length of 5.6 km (Table II) (Hall, 1999a).

Additional work on Island Mountain has included trenching, surface gridding, surface geophysics including magnetic, SP, VLF and IP surveys, soil geochemistry, and surface and underground drilling (Beacon Hill Consultants Ltd., 1987; Bolin, 1984; Campbell, 1966 and 1969; Cannon and Guiget, 1973; Cochrane, 1971; 1972; Dussell, 1984; Eckman, 1986; Guiget, 1973a and b, 1975, 1978, 1979; Guiget and Cannon, 1972; Hayward, 1989; Hicks, 1973; Jukes, 1971; Kelley, 1983; Krom, 1988; Laird, 1988, 1990; Magee, 1981; Makinen, 1981; Mason, 1973; Mason and Guiget, 1980; McFeely, 1983; Mitchell, 1978; Smellie, 1962; Starck, 1983; and Sutherland, 1986, 1989). A detailed outline of the exploration and production history of Mosquito Creek Claim Group was presented by Hall, 1991 and is reproduced as Appendix A.

During 1999, ten drill holes totalling 2960 feet (902.2 m) of BQ-sized core were completed to test for pyrite-type gold mineralization in the Main Band Limestone Unit in the footwall of the "West fault" (see Figure 5) near the Red Gulch drainage northwest of the Mosquito Creek Gold Mine shaft (Figure 9). The drilling overlapped the northwest end of the 4400 level of the Mosquito Creek Mine and extended from there about 700 feet (213 m) to the northwest. Pyrite-bearing quartz veins including some in splays of the "West fault" carried significant gold grades including 0.52 oz./ton (17.8 g/t) Au over 20 feet (6.1 m) in drill hole IMG-99-09. Sections of limestone and altered tuff show enrichments over background levels but no pyrite-type gold mineralization was found. Significant intercepts from the 1999 drilling and two holes in the same area drilled during 1984 are presented in Table III.

5.0 REGIONAL GEOLOGY

The geology of the Cariboo gold mining district has been presented in reports and maps by Bowman (1889, 1895), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988) and Levson and Giles (1993).

Rocks underlying the property are included in the Kootenay (Barkerville) Terrane, one of four that make up the Omineca morphogeological belt of the Canadian Cordillera (cf. Struik, 1986; 1988) (Figure 4). The Barkerville Subterrane consists of a Late Proterozoic and Paleozoic sequence of continental shelf and slope deposits developed adjacent to the craton of Ancestral North America. The sequence includes siliceous clastic sedimentary rocks along with lesser amounts of volcanic rocks and carbonates. It is structurally the lowest exposed stratigraphic sequence in the area and is more deformed and metamorphosed than adjacent terranes. Late Proterozoic and Paleozoic continental shelf clastics and carbonates of the Cassiar (Cariboo) terrane have been structurally emplaced over rocks of the Barkerville Subterrane along the Pleasant Valley Thrust. The Cariboo and Barkerville subterranes were amalgamated by westwarddirected thrusting prior to the eastward-directed emplacement of the Slide Mountain Terrane along the Pundata Thrust in Post-Permian time. The Slide Mountain Terrane is a rift-related oceanic assemblage of submarine pillowed basalt, diorite and chert including some blueschist metamorphic remnants. Klippe of Island Mountain Amphibolite, similar to the Crooked Amphibolite of the Slide Mountain Terrane, cap Island Mountain at Wells (Figure 3). The Quesnel Terrane, an Early Mesozoic island arc assemblage of basaltic Table III: Drill hole locations and significant intercepts for 1999 and selected 1984 drill holes

DDH	Northing	Easting	Elevation	Azimuth	Inci.	Length
SD84-11	19158 ft.	9495 ft.	4547 ft.	219 deg.	-50 deg.	363 ft. (110.6m)
_	Inte	rval	_		Go	old
From		1		Length	(g/t)	(oz./ton) Core Rec.
152.0 ft	(46.3m)	<u>160.0 ft</u>	(48.8m)	<u>8.0 π (2.4m)</u>	1.00	
238.0 ft	(72.5m)	240.0 ft	(73.2m)	2.0 ft (0.6m)	1.69	
<u>290.0 ft</u>	(88.4m)	293.0 π	(89.3m) j	<u>3.0 π (0.9m)</u>	1.10	0.03 100%
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length
SD84-12	18946 ft.	9611 ft.	4623 ft.	218 deg.	-48 deg.	505 ft. (153.9m)
	Inte	rval			Go	bld
From		1	Го	Length	(g/t)	(oz./ton) Core Rec.
403.0 ft	(122.8m)	405.0 ft	(123.4m)	2.0 ft (0.6m)	1.02	0.03 100%
			Claure Attern	A _ two 4 h		
DDH	Northing	Easting		Azimuth	INCI.	Length 445 ft (425 Gm)
IMG99-01	18840 ft.	9398 ft.	4657 π .	222 deg.	-49 deg.	445 ft. (155.6m)
	inte	rval _	_	• ••	Go	010 (an Kan) - 0 De -
From		[[<u>0</u>	Length	(g/t)	(oz.non) Core Rec.
<u>50.0 ft</u>	(15.2m)	<u>55.0 ft</u>	(16.8m)	<u>5.0 ft (1.5m)</u>	8.19	0.24 22%
22 <u>3.7</u> ft	(68.2m)	225.0 ft	(68.6m)	1.3 ft (0.4m)	1.53	0.04 100%
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length
IMG99-02	19010 ft	9344 ft.	4595 ft.	220 deg.	-45 deg.	300 ft. (91.4m)
	Inte	rval		Ŭ	Ğ	old
From	1110	, ,	Го	Lenath	(g/t)	(oz./ton)
145.0 ft	(44.2m)	150.0 ft	(45.7m)	5.0 ft (1.5m)	2.61	0.08 28%
<u></u>	<u></u>					
DDH	Northing	Easting	Elevation	Azimuth	incl.	
IMG99-03	19050 ft.	9256 ft.	4592 ft.	215 deg.	-48 deg.	235 π. (/1.6m)
No Significa	ant Assays					
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length
IMG99-04	19069 ft	9264 ft	4593 ft.	35 dea.	-60 dea.	110 ft. (33.5m)
No Significa	ant Assavs	9291 (0				
die organite						
DDH	Northing	Easting	Elevation	Azimuth	inci.	Length
IMG99-05	19065 ft.	9260 ft.	4593 ft.	n/a	-90 deg.	170 ft. (51.8m)
No Significa	ant Assays					
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length
IMG99-06	18875 ft.	9682 ft.	4626 ft.	222 deg.	-45 deg.	335 ft. (102.1m)
	Inte	rval		Ŭ	Ğ	old
Erom	1110		Γο	Lenath	(a/t) –	(oz./ton) Core Rec.
125.0.#	(38.1m)	135.0 ft	(41.1m)	10.0 ft (3.0m)	0,82	0.02 17%
120.011	<u></u>	L				

•

•

846 C - - -

С

С

 \Box

С

 \Box

C

 \square

Table III: 1999 drill hole locations and significant intercepts (continued)

ĺ.,

2

.

DDH IMG99-07	Northing 18751 ft.	Easting 9836 ft.	Elevation 4629 ft.	Azimuth 220 deg.	Incl. -85 deg.	Ler 345 ft.	igth (105.2m)	
	inte	rval			Gold			
From	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	To		Lenath	(a/t)	(oz./ton) Core Rec.		
260.0 ft	(79.2m)	265.0 ft	(80.8m)	5.0 ft (1.5m)	4.76	0.14	40%	
280.0 ft	(85.3m)	285.0 ft	(86.9m)	5.0 ft (1.5m)	5.01	0.15	34%	
285.0 ft	(86.9m)	295.0 ft	(89.9m)	10.0 ft (3.0m)	0,56	0.02	35%	
295.0 ft	(89.9m)	300.0 ft	(91.4m)	5.0 ft (1.5m)	1.40	0.04	80%	
300.0 ft	(91.4m)	305.0 ft	(93.0m)	5.0 ft (1.5m)	0.46	0.01	56%	
Composite								
280.0 ft	(85.3m)		(93.0m)	25.0 ft (7.6m)	1.46	0.04	56%	
004	Northing	Facting	Elevation	Azimuth	Inci		ath	
IMC99-08	18749 ft		/620 ft	220 deg	-45 dea	355 ft	(108.2m)	
101033-00	ior-join.		4023 IL	220 dog.	C		(100.2.11)	
From	mie	rvai	F a	Longth				
			<u> </u>	Lengui	(9/1/	(02.1011)	COLE NEC.	
21600	(65.5m)	220 0 8	(67.1m)	50ft(15m)	6 65	0.20	100%	
215.0 ft	(65.5m)	220.0 ft	(67.1m)	5.0 ft (1.5m)	6.95	0.20	100%	
215.0 ft DDH	(65.5m) Northing	220.0 ft Easting	(67.1m) Elevation	5.0 ft (1.5m) Azimuth	6.95 Incl.	0.20	100%	
215.0 ft DDH IMG99-09	(65.5m) Northing 18807 ft.	220.0 ft Easting 9760 ft	(67.1m) Elevation 4629 ft	5.0 ft (1.5m) Azimuth 220 deg.	6.95 Incl. -45 deg.	0.20 Ler 365 ft.	100% 19th (111.3m)	
215.0 ft DDH IMG99-09	(65.5m) Northing 18807 ft. Inte	220.0 ft Easting 9760 ft. rval	(67.1m) Elevation 4629 ft	5.0 ft (1.5m) Azimuth 220 deg.	6.95 Inci. -45 deg. Ge	0.20 Ler 365 ft. old	100% 19th (111.3m)	
215.0 ft DDH IMG99-09 From	(65.5m) Northing 18807 ft. Inte	220.0 ft Easting 9760 ft. rval	(67.1m) Elevation 4629 ft.	5.0 ft (1.5m) Azimuth 220 deg. Length	6.95 Incl. -45 deg. Ge (g/t)	0.20 Ler 365 ft. old (oz./ton)	100% ingth (111.3m) Core Rec.	
215.0 ft DDH IMG99-09 From 270.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m)	220.0 ft Easting 9760 ft rval 280.0 ft	(67.1m) Elevation 4629 ft. (85.3m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m)	6.95 Incl. -45 deg. Ge (g/t) 0.32	0.20 Ler 365 ft. old (oz./ton) 0.01	100% igth (111.3m) Core Rec. 100%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft	(65.5m) Northing 18807 ft. inte (82.3m) (85.3m)	220.0 ft Easting 9760 ft rval 280.0 ft 283.7 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60	0.20 Ler 365 ft. old (oz./ton) 0.01 0.34	100% igth (111.3m) Core Rec. 100% 100%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (86.5m)	220.0 ft Easting 9760 ft rval 280.0 ft 283.7 ft 285.0 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m) (86.9m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90	0.20 Ler 365 ft. old (oz./ton) 0.01 0.34 1.89	100% gth (111.3m) Core Rec. 100% 100% 62%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (86.5m) (86.9m)	220.0 ft Easting 9760 ft. rval 280.0 ft 283.7 ft 285.0 ft 290.0 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m) (86.5m) (86.9m) (88.4m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75	0.20 Ler 365 ft (oz./ton) 0.01 0.34 1.89 0.78	100% ingth (111.3m) Core Rec. 100% 100% 62% 68%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 290.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (86.5m) (86.9m) (86.9m) (88.4m)	220.0 ft Easting 9760 ft rval 280.0 ft 283.7 ft 285.0 ft 290.0 ft 295.0 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m) (86.5m) (88.4m) (88.4m) (89.9m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56	0.20 Ler 365 ft. old (oz./ton) 0.01 0.34 1.89 0.78 0.42	100% ingth (111.3m) Core Rec. 100% 100% 62% 68% 94%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 290.0 ft 295.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (85.3m) (86.5m) (86.9m) (88.4m) (89.9m)	220.0 ft Easting 9760 ft rval 280.0 ft 283.7 ft 285.0 ft 295.0 ft 300.0 ft	(67.1m) Elevation 4629 ft. (85.3m) (86.5m) (86.9m) (88.4m) (89.9m) (91.4m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56 4.44	0.20 Ler 365 ft (oz./ton) 0.01 0.34 1.89 0.78 0.42 0.13	100% ngth (111.3m) Core Rec. 100% 100% 62% 68% 94% 84%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 295.0 ft 300.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (85.3m) (86.5m) (86.9m) (88.4m) (89.9m) (91.4m)	220.0 ft Easting 9760 ft rval 280.0 ft 283.7 ft 285.0 ft 290.0 ft 300.0 ft 305.0 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m) (86.9m) (88.4m) (88.4m) (89.9m) (91.4m) (93.0m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56 4.44 0.02	0.20 Ler 365 ft (oz./ton) 0.01 0.34 1.89 0.78 0.42 0.13 0.00	100% gth (111.3m) Core Rec. 100% 62% 68% 94% 84% 68%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 290.0 ft 300.0 ft 305.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (85.3m) (86.5m) (86.9m) (86.9m) (88.4m) (89.9m) (91.4m) (93.0m)	220.0 ft Easting 9760 ft. rval 280.0 ft 283.7 ft 285.0 ft 290.0 ft 300.0 ft 305.0 ft 307.0 ft	(67.1m) Elevation 4629 ft (85.3m) (86.5m) (86.5m) (86.9m) (88.4m) (89.9m) (91.4m) (93.0m) (93.6m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 2.0 ft (0.6m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56 4.44 0.02 17.80	0.20 Ler 365 ft (oz./ton) 0.01 0.34 1.89 0.78 0.42 0.13 0.00 0.52	100% ingth (111.3m) Core Rec. 100% 100% 62% 68% 94% 84% 68% 100%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 290.0 ft 300.0 ft 305.0 ft Composite	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (86.5m) (86.9m) (86.9m) (88.4m) (89.9m) (91.4m) (93.0m)	220.0 ft Easting 9760 ft. rval 280.0 ft 285.0 ft 290.0 ft 295.0 ft 300.0 ft 305.0 ft	(67.1m) Elevation 4629 ft. (85.3m) (85.3m) (86.5m) (86.5m) (88.4m) (88.4m) (89.9m) (91.4m) (93.0m) (93.6m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 2.0 ft (0.6m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56 4.44 0.02 17.80	0.20 Ler 365 ft. old (oz./ton) 0.01 0.34 1.89 0.78 0.42 0.13 0.00 0.52	100% ingth (111.3m) Core Rec. 100% 100% 62% 68% 94% 84% 68% 100%	
215.0 ft DDH IMG99-09 From 270.0 ft 280.0 ft 283.7 ft 285.0 ft 290.0 ft 300.0 ft 305.0 ft Composite 280.0 ft	(65.5m) Northing 18807 ft. Inte (82.3m) (85.3m) (86.5m) (86.9m) (86.9m) (86.9m) (86.9m) (86.9m) (86.9m) (86.9m) (86.9m) (85.3m) (85.3m)	220.0 ft Easting 9760 ft. rval 280.0 ft 285.0 ft 290.0 ft 295.0 ft 300.0 ft 307.0 ft 300.0 ft	(67.1m) Elevation 4629 ft. (85.3m) (86.5m) (86.5m) (88.4m) (89.9m) (91.4m) (93.6m) (91.4m)	5.0 ft (1.5m) Azimuth 220 deg. Length 10.0 ft (3.0m) 3.7 ft (1.1m) 1.3 ft (0.4m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 5.0 ft (1.5m) 2.0 ft (0.6m) 20.0 ft (6.1m)	6.95 Incl. -45 deg. Ge (g/t) 0.32 11.60 64.90 26.75 14.56 4.44 0.02 17.80	0.20 Ler 365 ft (oz./ton) 0.01 0.34 1.89 0.78 0.42 0.13 0.00 0.52	100% ingth (111.3m) Core Rec. 100% 62% 68% 94% 84% 68% 100% 84%	

and andesitic pyroclastics, volcaniclastics, greywacke and other sedimentary rocks, is emplaced over the Barker Subterrane along the Eureka Thrust.

Siliceous greywackes and grits, impure quartzite, black and green pelite, lesser limestone and volcaniclastic rocks in the Wells area have been included in the Snowshoe Group, which has been correlated with the Eagle Bay Formation near Adams Lake and the Lardeau Group near Kootenay Lake as well as with rocks of the Yukon-Tanana Terrane (Sutherland Brown, 1957; Struik, 1986; Hall, 1999a). Rocks of the Snowshoe Group in the Wells area have been metamorphosed to lower greenschist facies, generally of lower metamorphic grade than other sequences in the Barkerville Terrane.

Rocks of the Barkerville Terrane werc subjected to an early period of ductile deformation that resulted in westward directed, asymmetrical folds plunging shallowly to the northwest. Post metamorphic open folds with upright cleavage are superposed on earlier structures. During Late Cretaceous to Early Tertiary time, the terrane was disrupted by northwest trending dextral strike-slip faults such as the Willow Fault, a major strike-slip fault of unknown displacement that has been mapped through Mount Tom, Island Mountain, Cow Mountain and Richfield Mountain in the Wells area (Struik, 1988) (Figure 3). Northwest- and north-trending faults with an important normal component and generally apparent right lateral displacements record extension probably associated with transcurrent movement. The north-striking cross-faults are an important control for the gold vein mineralization at Wells (cf. Hall, 1999a).

6.0 GEOMORPHOLOGY

Deep erosion and weathering during Tertiary time contributed to extensive alluvial deposits in the Wells area. Glacial sediments deposited during two phases of advance of the Wisconsinan Cordilleran Ice Sheet include an older, brown-weathered till identified locally and a late widespread grey-coloured till associated with the late Wisconsinan glacial period. Near Wells, ice movement was generally to the northwest. Tertiary alluvium and gravels deposited during Pleistocene glaciation are both important sources of placer gold in the Wells area.

7.0 LOCAL GEOLOGY

The Island Mountain and Mosquito Creek claim groups are underlain by a northwest striking, moderately northeast dipping sequence of rocks on the steep, overturned limb of a southwest-verging antiform, which is on the northeast flank of the Island Mountain Anticlinorium of Sutherland Brown (1957). Symmetry in the stratigraphy at Island Mountain (cf. Hall, 1991) and local variations noted in stratigraphic tops noted in drill core suggest that the sequence has been internally folded and is not a simple overturned monoclinal sequence. A prominent lineation, plunging 20-22 degrees to the northwest, is the most persistent fabric developed and corresponds to axes of asymmetrical fold structures and the intersections of cleavages (Hall, 1999a).

Stratigraphic nomenclature for the sequence of rocks at the Island Mountain, Aurum and Mosquito Mines has been modified several times. Hanson (1935) included the sequence in two members, a structurally upper carbonate-dominated sequence of lighter coloured rocks comprising the "Baker Member" and a lower sequence of darker

ISLAND MOUNTAIN SECTION

 D_1 is associated with a bedding-parallel foliation (S₁) that strikes northwest/southeast and dips moderately to the northeast. The second deformation (D₂), the dominant deformation event in the area, is represented by a well-developed schistosity (S₂), which strikes easterly and dips about 22 degrees to the north. It is axial planar to asymmetric, zshaped F₂ folds that plunge about 20 degrees to the northwest (average plunge 22 degrees toward 310 degrees) (Robert and Taylor, 1989). Bedding and the earlier foliation are transposed into the later S₂ foliation in several areas. A well-developed lineation (L₂), parallel to the plunge of the F₂ fold axes, is present in most rocks at the intersection of S₁ and S₂. The third deformation event (D₃) is associated with a steeply dipping, northwest striking crenulation cleavage that is weakly developed in places. It is associated with open, upright folds of S₁ and S₂ (Rhys and Ross, 2000). An associated shallow westnorthwest plunging crenulation lineation (L₃) developed locally on S₂ surfaces trends 5-40° anticlockwise to L₂ (Rhys and Ross, 2000).

The mine section is repeatedly offset by a series of northerly striking and moderately east dipping fault zones that postdate the folding (Hall, 1991; Robert and Taylor, 1989). The faults have an important normal component and apparent right lateral displacements that dextrally offset units of the Baker and Rainbow Members (including the contact between them) several hundred metres. The faults include from northwest to southeast the Mosquito, Burnett and Aurum faults (Hall, 1991). Minor apparent normal left lateral offsets of a few metres occur along a subsidiary network of shallow northwesterly dipping faults.

The Willow Fault, a major strike-slip fault of unknown displacement passes through the southern portion of the property (cf. Struik, 1988).

8.0 GOLD MINERALIZATION

G. Hanson (1935), P.C. Benedict (1945), A.C. Skerl (1948), F. Richards (1948), M.R. Keys (1954), M. Guiget (1961), D.D. Campbell (1966), E.E. Mason (1973) R.D. Hall (1991) and others have made significant contributions to the mine geology and description of gold deposits at Wells.

Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area. The mineralization is stratabound in that each style is confined for the most part to a particular section of the local stratigraphy. Historical production has been from mesothermal pyrite-bearing quartz vein systems that cut siliceous turbiditic rocks and from semi-massive to massive pyrite bodies that occur in carbonate-rich rocks structurally higher but stratigraphically lower in the sequence. The recently discovered Bonanza Ledge Zone of International Wayside Gold Mines Ltd. occurs as discrete areas of massive, banded and stringer pyrite developed in strongly carbonate-muscovite-pyrite altered pelitic rocks structurally lower but stratigraphically higher than the siliceous turbiditic rocks hosting the mesothermal pyrite-bearing quartz veins.

8.1 CARBONATE-HOSTED SEMI-MASSIVE TO MASSIVE PYRITE GOLD MINERALIZATION

Gold mineralization in semi-massive to massive pyrite is developed within calcareous and dolomitic rocks of the "Baker Member" proximal to its contact with structurally underlying siliceous meta-turbiditic rocks of the "Rainbow Member". In the Island Mountain and Aurum mines a bleached limestone unit called the Aurum or 339 Limestone marks the Baker/Rainbow contact and it is within or adjacent to this limestone unit that the pyrite-rich gold mineralization occurred (Figure 6). In the Mosquito Creek Mine, the pyrite-rich gold mineralization occurs close to the footwall or hangingwall of the "Main Band Limestone" that is structurally higher than the Aurum Limestone (Figure 8). The lower contact of the Main Band Limestone has been interpreted as an unconformity as it cuts structurally downward at an acute angle through stratigraphy to the northwest (Minspec Mining Specialists Ltd.; 1991) or alternatively as a fold-repetition of the Aurum Limestone (Hall, 1991). The Main Band Limestone is about 45 m thick and is bounded by units of green mafic tuff.

The pyrite-rich mineralization consists of fine grained semi-massive to massive individual or stacked pyrite lenses individually up to 50 cm thick that carry gold grades often in excess of 50 g/t. Edges of the lenses are marked by very coarse-grained pyrite and/or arsenopyrite, very thin bands of disseminated pyrite and thin bands of mottled dolomite and fuchsite (Hall, 1999a). Lower grade gold mineralization is associated with the coarse-grained pyrite, some or all of which is probably porphyroblastic (Robert and Taylor, 1989).

The pyrite occurs in a matrix of calcite, mottled and bladed coarse-grained dolomite, and minor blue-grey silica (Hall, 1999a). Enrichments in manganese, silver, antimony and lead are indicated, and gold content of the pyrite-rich mineralization is positively correlated with pyrite content and inversely correlated with the grain size of the pyrite (Hall, 1999a). The gold occurs as individual grains along the boundaries of pyrite and in fractures in the pyrite (Hall, 1999a). Analyses of gold in pyrite-type ore suggest that the gold is 850-869 fine (Knight and McTaggart, 1989), enriched in silver relative to gold in vein-type ore.

The carbonate-hosted pyrite-type mineralization occurs mainly as northwestplunging pencil-like ore shoots parallel to L_2 in the F_2 fold hinges or as tabular bodies on the long limbs of the F_2 folds (Robert and Taylor, 1999; Hall, 1999b) (Figures 5 and 8). Faulting oblique to the ore shoots typically causes gaps and apparent discontinuities (Hall, 1991). The northwest-plunging pipes, thought to be fold mullion structures representing segmented hinges of minor folds, have a remarkable persistent plunge at minus 21 degrees and are slightly oblique to the strike of 300-310 degrees for the host unit (Hall, 1999b). Robert and Taylor (1989) note that, in some areas, the tabular pyrite lenses are parallel to bedding and along with bedding have been transposed by S_2 and folded. In other areas however they noted that the pyrite layers are parallel to the strongly developed S_2 foliation in the limestone.

8.2 QUARTZ VEIN HOSTED MINERALIZATION

Mineralized quartz-pyrite veins in the Island Mountain and Mosquito Creek area have been classified into four groups on the basis of spatial orientation. The earliest of the veins, the strike veins, strike parallel to bedding and dip 45-70° to the NE, generally more steeply than bedding (Richards, 1948; Robert and Taylor, 1989). The second group, the northerly veins, occupy north-striking faults. Locally, the veins have been crushed and brecciated by subsequent movement along the faults. The two other groups, diagonal (or oblique) and orthogonal (or transverse) veins, describe the orientation of vein sets with respect to compositional layering of strata (Hall, 1999a). Diagonal veins, which are oblique to L_2 (the regional lineation plunging -21 degrees), strike 70-90° and

are subvertical. In the Island Mountain mine the diagonal veins are regularly spaced at intervals of approximately 30 m (Hall, 1999b). The orthogonal veins, which are perpendicular to L_2 , strike 30-40° and dip 70° southeast. The diagonal and orthogonal veins are the most important hosts for vein-hosted gold mineralization near Wells. Both orthogonal and diagonal veins were mined in the Cariboo Gold Quartz mine but diagonal veins only were mined at Island Mountain (Hall, 1991). Hall (1999a) notes that the northerly and diagonal vein are a conjugate set possibly occupying brittle shear zones. Robert and Taylor (1989) suggest that the northerly, diagonal and orthogonal veins are "broadly contemporaneous and formed progressively during continued deformation (mostly extension along L_2) related to the F_2 folding".

Individual veins are arranged en echelon due to minor displacements across cleavages and flat faults in less competent beds and showed better continuity down dip than along strike (Hall, 1999a). Stopes developed on the quartz veins averaged 3 to 6 feet (0.9-1.8 m) in width, 100 to 125 feet (30-38 m) in length and about 100 feet (30 m) on the dip of the veins (Hall, 1999b).

The gold-bearing quartz-pyrite veins typically occur in siliceous turbiditic rocks of the Rainbow Member generally within 100 m of its contact with the structurally overlying Baker Member. Graphitic gouge typically occurs along contacts of the larger veins with the host rock. Proximity to north striking fault zones, density of quartz veining and pyrite content proved to be important guides to ore within the Rainbow sequence of strata (Hall, 1999a).

Higher grade veins i.e. those carrying 0.2 to 1 oz./ton gold (6.8-34.3 g/t Au) consist mainly of blocky-fractured white quartz containing 15-25% pyrite and variable amounts of dolomite, ankerite, sericite, clear crystalline quartz and minor mariposite (Hall, 1999a). Minor phases include arsenopyrite, galena, sphalerite and scheelite; accessory minerals included pyrrhotite, chalcopyrite, cosalite, bismuthinite and free gold (Hall, 1999a). The pyrite is irregularly distributed and can occur as coarse aggregates, seams in the selvages or central part of the veins and as disseminations in the alteration haloes. The gold occurs in association with pyrite and also as coarser free gold in fractures in the quartz (Hall, 1999a). Cosalite, (2(PbS).Bi₂S₃), and bismuthinite (Bi₂S₃) are reliable indicators of visible gold and high grade mineralization (Hall, 1999a). The gold is free milling, about 945 in fineness (Hall, 1999b).

The vein-gold mineralization at Wells is mesothermal in character. Potassiumargon dating of sericite from quartz veins in the Cariboo Gold Quartz mine, Mosquito Creek Gold mine and Cariboo Hudson mine cluster near the Jurassic/Cretaceous boundary at about 140 million years before present (Andrew et al., 1983; Hall, 1999b).

8.3 BONANZA LEDGE ZONE

The following description of the Bonanza Ledge Zone contains direct excerpts from and summarized portions of a report by D. Rhys and K. Ross (Rhys and Ross, 2000).

The Bonanza Ledge zone is located about 3 km southeast of Wells on the Cariboo Group of claims, which are under option by International Wayside Gold Mines Ltd. The zone, discovered in the spring of 2000, comprises gold-bearing massive, banded and stringer pyrite in the footwall of the B.C. vein/fault system, which is a northwest trending and steeply northeast-dipping quartz vein from which several pyritic ore shoots were historically mined from the Cariboo Gold quartz workings. The mineralization occurs near the stratigraphic base (structural top) of a northeast-dipping, overturned sequence of clastic metasedimentary rocks within the Paleozoic Hardscrabble Mountain Succession of Struik (1988). The zone is structurally lower (stratigraphically higher) than the quartz vein hosted mineralization of the Rainbow and pyrite-rich replacement mineralization of the Baker and Rainbow units, both included within the Downey Succession of Struik (1988). Local lithologies comprise: magnetite-bearing, pale green to tan sericite-chlorite phyllite, which occurs structurally above the B.C. vein; laminated, carbonaceous pelitic phyllite, which occurs structurally beneath the B.C. vein and is the main host to mineralization; and a sequence of psammitic metaturbiditic rocks dominated by metagreywacke and quartzite that structurally underlie the pelitic phyllite,.

Extensive carbonate-muscovite-pyrite alteration affects lithologies in the vicinity of the gold mineralization and imparts a tan to yellow colour to the units. Alteration is zoned from an upper area of intense muscovite alteration containing auriferous pyrite mineralization with grey-blue quartz-dolomite/ankerite stringers, to lower zone of mauve-grey, weak muscovite-chlorite-albite alteration with yellow siderite/magnesite stringers. Pyrite mineralization occurs in both zones, but is best developed in discrete areas locally more than 100 feet (30 m) thick in the upper alteration zone. The pyrite occurs as stringers, concordant laminations and massive bands that together comprise 10-70% of the rock. Muscovite, dolomite/ankerite and quartz form gangue to the pyrite. Gold occurs as 2.5-60 µm grains encapsulated within pyrite or along grain boundaries between pyrite and chalcopyrite, galena or other grains of pyrite. Grades range from 5 to 80 g/t Au.

Veinlets and pyrite bands are folded and thickened parallel to the northwest plunging L_2 elongation lineation. This suggests that the mineralized zones may have a component of plunge in that direction also, similar to pyritic "sulphide replacement" bodies historically mined at the Island Mountain mine, which are elongate parallel to L_2 and often tightly folded. The early structural timing, mineralogy and associated alteration of pyritic mineralized zones at Bonanza Ledge are similar to the limestone-hosted Island Mountain orebodies, although the host rock differs. Mineralization may represent either early pre- or syn-D₂ replacement/vein mineralization or possibly a syn-sedimentary type of mineralization.

Comments by the author:

٤.

٤.

The Bonanza Ledge Zone represents a previously undiscovered style of mineralization in the Wells area, although the possible occurrence of a third style of mineralization was inferred from a study of placer gold grains in the Wells area by Knight and McTaggart (1989). The study distinguished the previously known varieties of lode gold based on the bimodal distribution of gold fineness and identified a third population showing enrichments in mercury content.

The discovery of the zone also has implications for future exploration on the Island Mountain and Mosquito Claims Groups. Stratigraphy similar to that hosting the Bonanza Ledge zone occurs structurally below the metaturbiditic Rainbow sequence on Island Mountain and represents a viable and previously unexplored exploration target.

12

9.0 YEAR 2000 DRILLING PROGRAM

During 2000, additional drilling northwest of the 1999 drill holes continued to test for pyrite-type gold mineralization to the northwest of the Mosquito Creek gold mine. Ten holes were completed totalling 5743 ft (1750 m) (Table IV, Figure 9). Sludge samples were collected at 10 ft (3 m) intervals from most of the holes. Sections of core thought to have potential for gold mineralization were split for analysis. Guidelines used to choose areas for sampling included the presence of pyrite-bearing quartz veins, sections containing heavily disseminated pyrite and/or arsenopyrite, and sections having favourable alteration. The 404 sludge samples and 271 core samples collected were shipped to Acme labs of Vancouver, where, after preparation, they were assayed for gold. The sludge samples were assayed by silver inquart, lead-collection fire-assay fusion and ICP-ES finish (See Appendix C). The drill core samples were assayed by lead-collection fire assay on a 1 assay-ton sample (29.2 gm) with an ICP finish (Appendix C). Drill logs for the ten drill holes (IMG2K-01 to 10) are presented in Appendix D. Analytical results for the core and sludge samples are included on the drill logs. Copies of the assay certificates for the core and sludge samples are presented in Appendix E. The core is stored on the property near the Mosquito Creek Mine shaft (Figures 6 and 9).

As indicated on Figures 10, 11 and 12, the drill holes intersected a northeast dipping sequence of carbonate rocks and structurally underlying interlayered turbiditic sedimentary rocks and mafic tuff; all of which form part of the Downey Succession. Drill hole SK2K-02 intersected black graphitic argillite at the bottom of the hole probably marking the contact with structurally underlying pelitic rocks of the Hardscrabble Mountain Succession. Several zones of breccia, gouge and quartz veining were intersected by drill hole SK2K-01. The abrupt termination of the carbonate sequence down dip and a left lateral offset of the carbonate units indicated by their relative position in drill holes to the east suggest a normal fault, probably one of the less typical westerly dipping normal faults associated with block faulting in the area. Reversals in facing direction, as determined by graded bedding in the turbidite units, indicate small scale folding of the units. A larger scale local fold closure is suggested by the thinning of the mafic tuff unit down dip to the northeast (Figures 10 and 11). The occurrence of a thin limestone unit beneath the tuff in drill hole SK2K-01 and 10 supports this interpretation and suggests that the carbonate units thin considerably on the lower limb of the fold.

Significant mineralized intercepts, as presented in Table V, include intersections of pyrite-type mineralization in drill hole IMG 2K 07, which returned an assay of 15.07 g/t gold (0.44 oz./ton) over 2 ft. (0.6m), and in IMG 2K 03, which returned 13.25 g/t gold (0.39 oz./ton) over 2 ft. (0.6m). The mineralization is typically associated with pyrite-bearing dolomitized or silicified zones within or proximal to limestone (Figures 10 and 11). A highly siliceous (possibly silicified) unit interlayered with mafic tuff in drill hole IMG 2K 08 returned 2.62 g/t gold (0.08 oz./ton) over 8.5 ft. (2.6 m). Widths are approximately true.

Dolomite/ankerite-bearing quartz veins typically containing some combination of pyrite, arsenopyrite and galena, returned assays of 4.5 to 6.7 g/t gold (0.13 to 0.20 oz./ton) in several of the drill holes over widths up to 7.6 ft. (2.3 m). True widths are estimated to be 50% of drill hole intercepts.

Table IV: Year 2000 Drill Hole Locations

.

.

	Mine Grid Co	oordinates	1983 Grid Coordinates		Elevation	Elevation	Azimuth	Angle	Length	
Drill Hole	Northing (feet)	Easting (feet)	Westing	Northing	feet	metres	Deg.	Deg.	feet	metres
IMG2K-01	19,285 N	9,375 E	35+03 W	1+06N	4499.5	1371.5	220	-45	905	275.8
IMG2K-02	18,951 N	9,110 E	34+99 W	3+208	4662.2	1421.1	220	-45	900	274.3
IMG2K-03	19,142 N	9,130 E	36+04 W	1+595	4589.9	1399.0	220	-45	405	123.4
IMG2K-04	19,143 N	9,131 E	36+03 W	1+58S	4589.9	1399.0	220	-57	588	179.2
IMG2K-05	19,144 N	9,131 E	36+04 W	1+57S	4589.9	1399.0	220	-69	515	157.0
IMG2K-06	19,265 N	8,913 E	38+49 W	2+005	4590.4	1399.1	220	-45	665	202.7
IMG2K-07	19,266 N	8,914 E	38+49 W	1+99S	4590.3	1399.1	225	-70	430	131.1
IMG2K-08	19,266 N	8,914 E	38 +49 W	1+995	4590.2	1399.1	225	-58	435	132.6
IMG2K-09	19,463 N	8,601 E	42+16 W	2+43\$	4593.1	1400.0	216	-45	440	134.1
IMG2K-10	19,463 N	8,602 E	42+16 W	2+42S	4592.6	1399.8	216	-70	460	140.2

Table V: Year 2000 Drill Hole Locations and significant intercepts

		Northing	Fasting	Elevation	Azimuth	Incl.	Leng	gth	
	IMG2K-01	19285 ft	9375 ft	4500 ft.	220 deg.	-45 deg.	905 ft. (275.8m)	
	INIG2R-01	Inter	val			Gold			
	From	inter	T	` 0	Length	(g/t)	(oz./ton)	Core Rec.	
Г	147.6 ft	(45.0m)	149 9 ft	(45.7m)	2.3 ft (0.7m)	6.08	0.18	96%	
⊦	147.0 ft	(47.2m)	160.0 ft	(48.8m)	5.0 ft (1.5m)	3.56	0.10	74%	
┝	175.0 ft	(47.2m)	180.0 ft	(54.9m)	5.0 ft (1.5m)	6.13	0.18	26%	
┝	545.0 ft	(166 1m)	550.0 ft	(167.6m)	5.0 ft (1.5m)	1.21	0.04	100%	
L	545.0 IL	(100.111)	000.01	(101.011)]	0.0 10 (11011)				
	DDH	Northing	Easting	Elevation	Azimuth	Incl.	Len	gth	
	IMG2K-02	18951 ft.	9110 ft.	4662 ft.	220 deg.	-45 deg.	900 ft. ((274.3m)	
		Inter	val			Go	ld		
	From			Го	Length	(g/t)	(oz./ton)	Core Rec.	
ſ	30.0 ft	(9.1m)	35.0 f	t (10.7m)	5.0 ft (1.5m)	1.19	0.03	96%	
l	00.0 11	(0.111)			, , , , , , , , , , , , , , , , , , , ,				
							1.00	ath	
	DDH	Northing	Easting	Elevation	Azimuth	Incl.	Len	gtn (400 4m)	
	IMG2K-03	191 42 ft.	9130 ft.	4590 ft.	220 deg.	-45 deg.	405 π.	(123.4m)	
	Interval				Gold				
	From			То	Length	(g/t)	(oz./ton)	Core Rec.	
	124.0 ft	(37.8m)	125.0 f	t (38.1m)	1.0 ft (0.3m)	3.40	0.10	90%	
	136.0 ft	(41.5m)	138.0 f	t (42.1m)	2.0 ft (0.6m)	13.25	0.39	100%	
		<u> </u>							
					A	Incl	Lon	ath	
	DDH	Northing	Easting	Elevation	Azimuth	FZ dog	588 ft	(170.2m)	
	IMG2K-04	19143 ft.	9131 ft.	4590 π.	220 deg.	-57 ueg.		(175.211)	
		Inte	rval			Go	DId		
	From			То	Length	(g/t)	(oz./ton)	I	
	214.5 ft	: (65.4m)	219.51	ft (66.9m)	5.0 ft (1.5m)	1.96	0.06		
	223.5 ft	(68.1m)	224.5	ft (68.4m)	1.0 ft (0.3m)	4.89	0.14		
	270.0 ft	(82.3m)	280.0	ft (85.3m)	10.0 ft (3.0m)	1.91	0.06		
	295.0 ft	t (89.9m)	302.6	ft (92.2m)	7.6 ft (2.3m)	4.89	0.14		
	312.0 f	t (95.1m)	318.0	ft (96.9m)	6.0 ft (1.8m)	1.03	0.03		
	411.2 f	t (125.3m)	412.0	ft (125.6m)	0.8 ft (0.2m)	1.49	0.04	1	
	DDH	Northing	Easting	Elevation	Azimuth	Incl.	Lei	ngth	
	IMG2K-05	19144 ft.	9131 ft.	4590 ft.	220 deg.	-69 deg.	515 ft.	(157.0m)	
1	Interval				-	G	old		
	From	inte		То	Lenath	(g/t)	(oz./ton)	Core Rec.	
	342 4 f	t (104 4m)	343.8	ft (104.8m)	1.4 ft (0.4m)	6.71	0.20	93%	
1	A55.7 f	t (138 Qm)	463.6	ft (141.3m)	7.9 ft (2.4m)	1.61	0.05	100%	
$455.7 \pi (138.9 \text{m})$ $465.0 \pi (141.3 \text{m})$			1			the second se			

 Table V: Year 2000 Drill Hole Locations and significant intercepts (continued)

0

DDH IMG2K-06	Northing 19265 ft.	Easting 8913 ft.	Elevation 4590 ft.	Azimuth 220 deg.	Incl. -45 deg.	Length 665 ft. (202.7m)	
No Significa	nt Assays						
DDH IMG2K-07	Northing 19266 ft. Inter	Easting 8914 ft. val	Elevation 4590 ft.	Azimuth 225 deg.	Incl. -70 deg. Go	Length 430 ft. (131.1m) old	
From		Т	о	Length	(oz./ton) Core Rec.		
165.2 ft	(50.4m)	167.4 ft	(51.0m)	2.2 ft (0.7m)	1.81	0.05 100%	
231.2 ft	(70.5m)	233.2 ft	(71.1m)	2.0 ft (0.6m)	15.07	0.44 95%	
DDH	Northing	Easting	Elevation	Azimuth	Incl.	Length	
IMG2K-08	19266 ft.	8914 ft.	4590 ft.	225 deg.	-57 deg.	435 ft. (132.6m)	
	Inter	val			old		
From		г	о	Length	(g/t)	(oz./ton) Core Rec.	
145.0 ft	(44.2m)	147.0 ft	(44.8m)	2.0 ft (0.6m)	4.62	0.13 100%	
380.0 ft	(115.8m)	388.5 ft	(118.4m)	8.5 ft (2.6m)	2.62	0.08 92%	
	Northing	Easting 8601 ft	Elevation 4593 ft.	Azimuth 216 deg.	Inci. -45 deg.	Length 440 ft. (134.1m)	
ING2R-09 19403 It.		nval			Gold		
From	ante	1 V A I	Го	Length	(a/t)	(oz./ton) Core Rec.	
138.0 ft	(42.1m)	142.2 ft	(43.3m)	4.2 ft (1.3m)	1.89	0.06 98%	
	(12.111)		(101011)				
DDH IMG2K-10 No Significa	Northing 19463 ft. ant Assays	Easting 8602 ft.	Elevation 4593 ft.	Azimuth 216 deg.	Incl. -70 deg.	Length 460 ft. (140.2m)	

10.0 YEAR 2000 LINE CUTTING AND SOIL SAMPLING PROGRAM

During 2000, part of a grid originally cut in 1983 was re-established from the Mosquito Creek Mine Shaft westward to the Mosquito Creek Claim Group property boundary (Figures 13 and 15). About 1.2 km of baseline and 18.6 km of crosslines spaced at 200 ft (61 m) were cleared and picketed. Extensions of the crosslines to the south required about 4.7 km of cutting. Soil sampling was conducted over the re-established and newly cut lines. Where possible, soil samples of the B-horizon were collected from shallow pits at 100 ft (30.5 m) intervals along the crosslines. The 706 soil samples collected were sent to Acme Analytical Labs, Vancouver where, after drying and preparation, they were analyzed for gold by Wet Extraction and for 34 additional elements by ICP-ES (See Appendix C). Soil sample numbers, locations and selected analyses are listed in Appendix F. Copies of the assay certificates for the soil samples are presented in Appendix G.

Utilizing the Kriging algorithm, grid files of the gold and arsenic data were created using Surfer 7, a software package from Golden Software of Golden, Colorado, U.S.A. Analytical results for gold (ppb) and arsenic (ppm) as well as colour-coded images for these elements created from the gridded data are presented on Figures 13, 14, 15 and 16. Percentiles and the corresponding colour codes used for the image files are presented in Table VI.

As shown on Figures 13 to 16, there is a positive correlation between gold and arsenic. A roughly wedge-shape area in the central and eastern part of the areas sampled is anomalous in both arsenic and gold. The boundaries of this area are for the most part defined by faults and lithological contacts (Figures 13 and 15). It is probable that the anomalous soils extending downslope toward Red Gulch were derived from mineralized carbonate-bearing rocks subcropping beneath the overburden along a dipslope. This is supported by the 1999 and 2000 drill holes, several of which collared in carbonate rocks that are locally mineralized. There may also have been some downslope creep of the soils. The sharp northerly termination of the anomaly defined by Red Gulch is probably a result of a change in topography resulting in exposure of structurally overlying unmineralized rocks to the northwest.

Anomalies of particular interest are two untested soil anomalies uphill to the west of the Mosquito Creek Mines Shaft (3170 ppb Au at 22+00W, 5+00S and 1009 ppb Au at 28+00W, 6+00S) (Figures 13 and 15, Appendix F). These gold-in-soil anomalies have potentially been derived from rocks included within or close to the contact with rocks of the Hardscrabble Mountain Succession, which structurally underlie the carbonates and turbiditic rocks containing the mineralized zones previously mined. This is potentially significant since the Bonanza Ledge deposit occurs proximal to this contact (See Section 8.3 above).

Anomalous gold also occurs in some of the samples collected near Red Gulch. These should be field tested to check for potential contamination due to small placer mining activity along the stream.

11.0 YEAR 2000 AERIAL PHOTOGRAPHY

During 2000, colour aerial photography of an area covering 10 km x 43 km in the Wells area was carried out by Eagle Mapping Services of Port Coquitlam, B.C. on behalf of International Wayside Gold Mines Ltd. and Island Mountain Mines Ltd. Fifty-six survey control targets provided ground control. At each target, G.P.S. equipment was used to obtain UTM NAD 83 grid coordinates and a geodetic elevation. Some of the targets were established at existing local mine control points in order to have some common points between the local mine grid and the UTM NAD 83 grid.

A large portion (about 10 km x 18.6 km) of the IGM Claim Group was included in the area flown. The photo quality and ground control is sufficient for the preparation of digital maps and orthophotos, which, it is anticipated, will be prepared for at least some of the IGM Claim Group. Meanwhile, aerial photographs at a scale of 1:16,000 have been produced for the area flown (Figure 17).

12.0 STATEMENT OF EXPENDITURES

A statement of expenses for the Year 2000 exploration program is presented in Table VII. Total expenditures amounted to \$174,253.

Table VII: Statement of Expenditures	
IGM Group of Claims, Year 2000	
As of: December 1, 2000	
Diamond Drilling	
July 26 to October 26, 2000	76,500
Diamond Drilling Assays	8,302
Geological, includes technical report costs	33,481
J. Wayne Pickett, P.Geo. 27,779	
Richard D. Hall, P. Eng., PhD. 4,280	
Ken Lord 722	
T, Cameron Scott 700	
Line Cutting & Soil Sampling	
October 19 to October 30, 2000	32,526
Soil Sampling Assays	5,207
Aerial Photography Targets & Photographs	15,629
Administration	2,608
TOTAL	\$174,253

[

Ŀ.,

21-1 1

, . .

,-----• - -

The potential for additional gold mineralization on the very prospective Island Mountain and Mosquito Creek properties is excellent. Future exploration programs should focus on targets for Bonanza Ledge style mineralization in structurally lower stratigraphy to the south of the existing mine workings and the 1999-2000 drilling. Pyrite-rich mineralization associated with the carbonate rocks and quartz-vein hosted mineralization in the turbiditic rocks remain as a lower priority target.

At least two phases of exploration are recommended.

Phase 1

- Complete the compilation of previous work on the property and normalize all data for incorporation into a geographic information system database.
- Re-establish an additional portion of the 1983 grid and extend lines southward as far as the Willow Fault to give coverage over rocks of the Hardscrabble Succession at 400-foot (122 m) intervals from Lines 40 West to 30 East.
- Conduct geological mapping and prospecting over the area covered by the grid.
- Conduct an induced polarization survey along lines spaced at 400 ft (122 m) intervals concentrating mainly south of the baseline but with selected lines at 800 ft (244 m) spacing to the north of the baseline. The survey would include portions of the grid already re-established as well as the lines proposed to be re-established above.
- Conduct VLF and ground magnetic surveys on the grid extension.
- Conduct a diamond-drilling program to test targets indicated by results of the proposed geophysical surveys, the recently conducted soil geochemical survey and from the compilation of other exploration and development work conducted previously. The program should focus on targets for potential Bonanza Ledge type mineralization and should include a series of holes to provide a stratigraphic cross section through the Hardscrabble Succession. As a secondary priority, additional drilling is recommended to test for pyrite-type mineralization proximal to the Mosquito Creek Shaft, in untested areas downplunge from the Rip and Gun, and possibly Kutney mineralized zones, as well as in the area of the 1999/2000 drilling. The latter should include testing the down plunge extension of gold mineralization intersected in drill holes IMG2K-3 and 7.
- Conduct a soil-sampling program over that portion of the grid to be re-established as well as line extensions. Soils should be collected at 100-foot (30.5-m) intervals and analyzed for gold as well as the standard suite of elements offered through multielement ICP packages, and for mercury by cold vapour AA in order to give ppb level detection. It is understood that due to snow cover, the soil sampling will probably have to be delayed until next year's summer field season.

Phase 2 of the exploration program would be mainly determined by results of Phase 1. An additional consideration for inclusion in Phase 2 is the testing of the vertical gap in exploration and mine workings between the 3250 Level of the Aurum Mine and the 4100 level of the Mosquito Creek Mine, as recommended by Hall (1999). This would require underground drilling from existing workings or deep surface drilling.

Andrew, A., Godwin, C.I. and Sinclair, A.J.

1983: Age and genesis of Cariboo gold mineralization determined by isotope methods (93H); in Geological Fieldwork 1982, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1983-1, pp. 305-313.

Beacon Hill Consultants Ltd.

1987: Mosquito Creek Property, Wells, B.C., Mine evaluation. Unpublished report for City Resources (Canada) Ltd.

Benedict, P.C.

1945: Structure at Island Mountain Mine, Wells, B.C. Transactions of the Canadian Institute of Mining and Metallurgy, v. 58, p. 755-770

Bolin, D.S.

1984: Report to Wharf Resources Ltd. on the Cariboo Gold Quartz Mine, Wells, British Columbia, Canada; 17 p. Unpublished report by Golder Associates for Wharf Resources Ltd.

Bowman, A.

1889: Report on the geology of the mining district of Cariboo, British Columbia; Geological Survey of Canada, Annual Report for 1887- 1888, v. 3, pt. 1, pp. 1-49c.

Bowman, A.

1895: Maps of the principal auriferous creeks in the Cariboo mining district, British Columbia; Geological Survey of Canada, Maps 364-372.

Campbell, D.D.

1966: Report on Potential of Ore Reserves and Production, Cariboo Gold Quartz Mine, Wells, British Columbia; 28 p. Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.

Campbell, D.D.

1969: Surface exploration and production potential of ore reserves and production, Cariboo Gold Quartz Mine, Wells, British Columbia; 28 p. Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.

Cameron, R. and Fox, P.E.

1995: Summary Report on the Welbar Gold Project, Cariboo Gold District, Wells, British Columbia; 17 p. Unpublished report by Fox Geological Consultants Ltd. for Gold City Mining Corporation.

Cannon, D.M. and Guiget, M.

1973: Progress report to October 18, 1973. Unpublished report for Mosquito Creek Gold Mining Limited.

Cochrane, D.R.

1971: Geophysical report on the Red Gulch No. 1, 2, 7, Willow No. 10, Port Hope, Seattle, Mosquito, Mosquito Fraction, Vancouver, and Brookford No. 6 and No. 7 mineral leases centered one mile cast of Wells, Cariboo Mining Division, Central British Columbia. Unpublished report for Mosquito Creek Gold Mining Limited (N.P.L.)

Cochrane, D.R.

1972: Geophysical report on the Red Gulch No. 1, 2, 7. Willow No. 10, Port Hope, Seattle, Mosquito, Mosquito Fraction, Vancouver, and Brookford No. 6 and No. 7 mineral leases centered one mile east of Wells, Cariboo Mining Division, Central British Columbia. Unpublished report by Cochrane Consultants Limited for Mosquito Creek Gold Mining Limited (N.P.L.)

Dolmage, Campbell & Associates

1969: Summary report, surface exploration, 1968 and production potential of Cariboo Gold Quartz Mine, Wells, B.C. Unpublished report prepared for Cariboo Gold Quartz Mines Ltd.

Eckman, P.

1986: The Mosquito Creek Gold Mining Co. Limited Wells, British Columbia; 7 p. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Eyles, N. and Kocsis, S.P.

1989: Sedimentological controls on gold distribution in Pleistocene placer deposits of the Cariboo mining district, British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pp. 377-385.

Guiguet, M.

1961 : Cariboo Gold Quartz; Western Miner & Oil Review, v. 34, no. 7, pp. 37-44.

Guiget, M.

1973a: Report on the Mosquito Creek Property, Wells, B.C., Revised to Dec. 1, 1972. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Limited.

Guiget, M.

1973b: Progress reports July 23 through to December 8, 1973. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Company Limited.

Guiget, M.

1975: Summary report on the 1974-1975 development program, The Mosquito Creek Project, Wells, B.C. Unpublished report by Cannon Hicks Associates Ltd. for Home Oil Company Ltd.

Guiget, M.

1978: Summary report on the 1977-1978 development program at the property of the Mosquito Creek Gold Mining Co., Wells, B.C. Unpublished report by M.G. Engineering Ltd. for Mosquito Creek Gold Mining Company Limited.

Guiget, M.

1979: Report on the mining and milling procedures at the property of the Mosquito Creek Gold Mining Company Limited near Wells, B.C. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Guiget, M. and Cannon, D.M.

1972: Progress report, July 1, 1973 to October 15, 1973. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Hall, R.D.

1991: Report on past operations and exploration proposal for the Cariboo, Island Mountain and Mosquito Creek properties at Wells, British Columbia. Unpublished report for Mosquito Consolidated Gold Mines Limited.

Hall, R.D.

×...

1999a: Cariboo Gold Project at Wells, British Columbia. Unpublished report prepared for International Wayside Gold Mines Ltd.

Hall, R.D.

1999b: Summary of gold properties on Island Mountain at Wells, British Columbia. Unpublished memoto F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hall, R.D.

1999c: Gold potential on Island Mountain at Wells, British Columbia. Unpublished memo to F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hall, R.D.

2000: Review of Surface Diamond Drill Hole Results IMG99-01 to 10. Unpublished memo to F. Callaghan, president, Island Mountain Gold Mines Ltd.

Hanson, G.

1935: Barkerville Gold Belt, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 181, 42 p.

Hayward, T.

1989: Final report for the Mosquito-Lyon Lake Project. Unpublished report for Mosquito Creek Gold Mining Company Limited

Hicks, H.B.

1973: Report on the properties of the Mosquito Creek Gold Mining Company Limited, Wells, B.C. Unpublished report by Cannon Hicks Associates Ltd. for Mosquito Creek Gold Mining Company Limited.

Johnston, W.A. and Uglow, W.L.

1926: Placer and vein gold deposits of Barkerville, Cariboo District, British Columbia; Geological Survey of Canada, Memoir 149.

Jukes, A.H.

μ.

L.

1971: Summary of current pertinent data, Barkerville-Wells Prospect, Cariboo District, British Columbia, Canada. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Kelly, J.A.

1983: Summary report on the 1983 surface exploration programs, Mosquito Creek, Wharf and Bralorne properties. Unpublished report for Mosquito Creek Gold Mining Company Limited

Keys, M.R.

1954: The geology of Island Mountain Mine. Unpublished report for Island Mountain Mines Company Limited.

Knight, J. and McTaggart, K.C.

1989: Lode and placer gold of the Coquihalla and Wells areas, British Columbia (92H,93H); British Columbia Geological Survey Branch, Exploration in British Columbia 1989, pp. 105-118.

Krom, A.S.

1988: Exploration program for the Mosquito Project, Lyon Lake Mines Limited. Unpublished report for Lyon Lake Mines Limited.

Laird, A.

1988: Cariboo Gold Quartz Property, 1988 Work Program Summary Report; 35 p. Unpublished report for Pan Orvana Resources Inc

Laird, A.

1990: Cariboo Gold Quartz Property, 1989 Work Program Summary Report; 11 p. Unpublished report for Pan Orvana Resources Inc.

Levson, V.M., and Giles, T.R.

1993: Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H); British Columbia Geological Survey Branch, Bulletin 89.

Magee, J.B.

1981: Report on Mosquito Creek Gold Mines for Perigrine Petroleum Limited. Unpublished report for Perigrine Petroleum Limited.

Makinen, R.

1981: The Mosquito Creek Gold Mining Company Limited decline study. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Mason, E.E.

1973: Wharf Resources Limited Cariboo Gold Quartz Properties; 18 p. Unpublished report by Dolmage, Mason & Stewart Ltd. for Wharf Resources Ltd.

Mason, E.E. and Guiguet, M.

1980: Properties and Operations 1933-1967 of the Cariboo Gold Quartz Mining Company Limited., Wells, B.C. Unpublished report for Wharf Resources Ltd.

McFeely, C.J.

1983: Mosquito Creek Gold Mine, Wells, B.C. Unpublished report for Mosquito Creek Gold Mining Company Limited.

Mitchell, J.B.

E.

٤.

Ĺ.,

1978: Mosquito Creek Project – Feasibility study. Unpublished report by Kilborn Engineering (B.C.) Ltd. for Mosquito Creek Gold Mining Company Limited.

Minspec Mining Specialists

1991: Mosquito Project Preliminary Report. Unpublished report for Mosquito Creek Gold Mining Company Limited and Lyon Lake Mines Ltd.

Rhys, D.A. and Ross, K.V.

2000: Report on Petrography, check sampling and geological interpretation of drill core at the Bonanza Ledge Zone, Cariboo Gold Quartz Property, British Columbia. Unpublished report by Panterra Geoservices Inc. for International Wayside Gold Mines Ltd.

Richards, F.

1948: Cariboo Gold Quartz mine. In Structural Geology of Canadian Ore Deposits, Canadian Institute of Mining and Metallurgy, p. 162-168

Robert, R. and Taylor, B.E.

1989: Structure and mineralization at the Mosquito Creek Gold Mine, Cariboo District, B.C. Unpublished paper by the Geological Survey of Canada

Skerl, A.C.

1948: Geology of the Cariboo Gold Quartz Mine, Wells, B.C. Economic Geology, v. 43, p. 571-597

Smellie, D.W.

1962: Preliminary report, underground drill-hole electromagnetic survey, Cariboo Gold Quartz Mine, Wells, B.C. Unpublished report for the Cariboo Gold Quartz Mining Company Limited.

Starck, L.P.

1983: Proposed exploration and development program for the Mosquito Creek Gold Mine. Cariboo Mining Division, Wells, B.C. Unpublished report by L.P. Starek & Associates Ltd. for the Mosquito Creek Gold Mining Company Limited and Perigrine Petroleum Limited.

Struik, L.C.

1986: Imbricated terranes of the Cariboo Gold belt with correlations and implications for tectonics in southeastern British Columbia; Canadian Journal of Earth Sciences, v. 23, pp.1047-1061.

Struik, L.C.

1988: Structural geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421, 100 p.

Sutherland, W.D.

1986: The Mosquito Creek Project. Unpublished report for Hecla Mining Company.

Sutherland, W.D.

1989: The Mosquito Lyon Lake joint venture, Cariboo Mining Division, Wells, British Columbia. Unpublished report for Mosquito Creek Gold Mining Company Limited and Lyon Lake Mines Ltd.

Sutherland Brown, A.

ω.

1957: Geology of the Antler Creek area, Cariboo District, British Columbia. British Columbia Department of Mines, Bulletin No. 38, 105 p.

15.0 CERTIFICATE OF QUALIFICATIONS

I, J. Wayne Pickett, do hereby certify that:

- 1) I am a consulting geologist with a business office at 8256 McIntyre Street, Mission, British Columbia, V2V 6T3.
- I have a B.Sc. degree in Geology from Memorial University of Newfoundland (1974) and an M.Sc. in Earth Sciences (Geology) from Memorial University of Newfoundland (1989).
- 3) I am a Registered Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of the Province of Newfoundland and Labrador, and the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I have practiced my profession as a geologist for the past 25 years during which time I have been involved in exploration for and/or evaluation of several types of mineral deposits including epithermal and mesothermal gold deposits in Canada, Ghana, Peru, Colombia and Jamaica. From this experience, I have gained sufficient expertise in the style of mineralization under consideration to fairly report on its nature and distribution.
- 5) I own no direct, indirect or contingent interest in the shares or business of Island Mountain Gold Mines Ltd., International Wayside Gold Mines Ltd. or in the subject property.
- 6) I accept express responsibility for the conclusions and recommendations contained herein.
- 7) The information, opinions, conclusions and recommendations contained herein are based on work performed and supervised by the author on the subject property from August to October of 2000; and on a review of available literature and previous records of work on the property and surrounding area. Literature reviewed comprises published articles in technical journals, reports and maps filed for assessment with the government of British Columbia, and reports supplied by the property owner.

Dated at Mission, B.C., this 26th day of February 2001.

Mayne Feels

J. Wayne Pickett, M.Sc., P.Geo.

Appendix A Outline of the history of the Mosquito Creek Group and Mosquito Consolidated Gold Mines Limited (after Hall, 1991)

.

Ĺ.

٤.

Ĺ.

μ.

.....

.....

APPENDIX II

OUTLINE OF THE HISTORY OF THE MOSQUITO CREEK GROUP AND MOSQUITO CONSOLIDATED GOLD MINES LINITED

(1860's-1960's) Barly placer mining in the Mosquito Creek drainage

* recorded production (1874-1945) for this drainage is 18,295 ounces of 906 fine gold.

* drift mining was carried out over a stream length of 3000 feet and hydraulic mining was carried out to an elevation of about 4200 feet

* the early history of placer mining is described by Johnston and Uglow (1926), p. 117-122

* the first Crown Grants of the claim group date from 1875 * the original Mosquito Creek Claim Group was held by the Cariboo Gold Quartz Mining Company Limited

(1936) 1"=300' scale reconnaissance mapping of the Mosquito Group by P.C. Benedict

(August, 1954-April 1967) Aurum Mine production period * 110,000 tons of 0.66 ounces gold per ton pyrite-type ore was mined from five levels between elvations of 3250 and 2700 feet

* these workings are reported to contain reserve of 40,000 tons of 0.70 ounces gold per ton (Guiget, 1975)

(1968) Cariboo Gold Quartz Mining Company Limited, trenching program

* 17 bulldozer trenches, 8-16 feet deep, on Island Mountain defined the Barker-Rainbow contact over a strike length of one mile and located some pyrite-type mineralisation in Trench J

(June 8, 1971) Incorporation of the Mosquito Creek Gold Mining Company Limited by A. Jukes for the purpose of exploring the Mosquito Creek Group

(1971-May 14, 1975) Home Oil Company, Mosquito Creek Exploration and Development Program

* (August 1-September 26, 1971) Gun Pit surface exploration program

- stripping and trenching on PML 5263 exposed two lenses of pyrite-type mineralisation in dark limestone: Gunn showing, 18 inches wide and 30 feet long; Rip showing, 18 inches wide and 18 feet long

- 16 line mile IP geophysical survey over the showings by D.R. Cochrane

* (August 8-September 25, 1972) Gun Pit drilling program
26 hole-2312 feet diamond drilling program
121 sample geochemical orientation survey by Cochrane Consultants Ltd.

*(1973) Surface diamond and percussion drilling program - 24 hole-13,860 feet of diamond drilling and 37 hole-10,910 feet of percussion drilling in fences across the Baker-Rainbow contact

- S73-20 intersected pyrite-type ore, grading 0.765 ounces gold per ton over 11.0 feet, between 201.5 and 212.5 feet - an adit, collared at an elevation of 4400 feet on November 13, was driven 125 feet but abandoned due to poor ground conditions

*(February 11, 1974-May 14, 1975) Shaft, 4400 and 4100 levels development project

- April 7-November 30, 1975: shaft collared at an elevation of 4573 feet on the Port Hope Crown Grant and sunk to a depth of 516 feet

- December 4, 1974-April 19, 1975: lateral development of 1147 feet on the 4400 Feet Level and 990 feet on the 4100 Feet Level

- January 24-May 10, 1975: 74 hole-6604 feet AQ underground diamond drilling program; U75-72 intersected pyrite-type ore, grading 2.04 ounces gold per ton over 12.3 feet, from 32.0 to 44.3 feet.

(July 8, 1977-June 30, 1978) Mosquito Creek Gold Mining Company Limited, 4100 Feet Level development project * September 27, 1977-June 30,1978: 1859 feet development program including 1511 feet on the 4100 Feet Level and 349 feet on the 4200 Feet Level; drifting on the 4100 Feet Level cut pyrite-type ore.

* October 18, 1977-June 30, 1978: 57 hole-5313 feet AQ underground diamond drilling program; U78-56 intersected 79.8 feet of pyrite-type ore, with an average weighted grade of 1.348 ounces gold per ton, from 103.0 to 182.8 feet. * 7 hole-1116 feet of suraface diamond drilling

(June 9, 1978) Kilborn Engineering (B.C.) Ltd., Mosquito Creek Project Feasibility Study

(1979) Mosquito Creek Gold Mine, permiting and construction period

* construction of a 100 tons per day mill and 1.3 million cubic foot capacity tailings pond *(March 15, 1979) H. Brodie Hicks, Prospectus of the Mosquito Creek Project, Wells, B.C.

48 (February 28, 1980-November, 1983) Mosquito Creek Gold Mine, main production period *Peregrine Petroleum Limited, as owner of 50% working interest, assumed management of operations following the death of A. Jukes on October 30, 1981 * 1/10 ounce gold medallion minted in 1981 * 1983, 608-sample soil geochemistry survey by Cariboo Geotechnical Services Ltd. * (June 1-October 4, 1983) surface exploration program - 56 line miles of electromagnetic and magnetic surveys over a cut grid (baseline oriented 129° and crosslines spaced at 200 feet intervals) - 45 hole-6,488 feet surface diamond drilling program (July 1,-December 14, 1984) Hudson Bay Exploration and Development Company Limited, Kutney Zone- 4300 and 4200 feet levels exploration and development project; \$1,000,000. * Peregrine Petroleum Limited sold 50% interest in the mine to Mosquito Creek Gold Mining Company Limited for 5,983,800 shares * lateral development included 633 feet of drifting on the 4300 Feet Level, 745 feet of drifting on the 4200 Feet Level and 552 feet of cross cuts and slashing; stopes in the Aurum shoot were back filled with development muck - drilling included 94 hole-8769 feet underground diamond drilling and 39 hole-3018 feet underground percussion drilling programs to test the Aurum Limestone Unit - a 12 hole-1355 feet surface diamond drilling program tested SP geophysical and soil geochemical anomalies * Hudson Bay earned 10% interest in the Mosquito Creek Group and terminated their agreement on January 14, 1985; Mosquito Creek Gold Mining Company Limited subsequently purchased this interest for 800,000 common shares valued at \$300,000. (May 1, 1985) \$750,000. financing via Bunker agreement * Mosquito Creek Gold Mining Company Limited entered into a joint venture agreement with Cormorant Resources Ltd. by selling 10% undivided interest in its properties for \$500,000.; in addition, participants purchased a private placement of 625,000 shares at \$0.40 per share (July 12, 1985) Mosquito Creek Gold Mining Company Limited purchased the Island Mountain and Cariboo groups from Wharf Resources Ltd. for 2,000,000 shares valued at \$750,000. (July 2, 1985-February 16, 1986) Mosquito Creek Gold Mine, pilot mining project * the mine was reopened to assess the use of an uphole SP geophysical technique developed by W.D. Sutherland of Calgary to discover new ore adjacent to old stopes in the Main Band Limstone Unit - R.D. HALL ~-

- 2835 ounces of gold were recovered from 9931 tons of ore mined during this period

(February 28-September 20, 1986) Hecla Mining Company Canada Limited, Main Band-4100 and 4300 feet levels exploration and development project; \$825,000. including a FAME grant of \$150,000.

* Mosquito Creek Gold Mining Company Limited entered into an option to purchase agreement, covering the Cariboo, Island Mountain, Mosquito Creek and Barkerville Groups, with Hecla on February 1, 1986; Hecla exercised its right to terminate the agreement on September 20, 1986

* lateral development of 1053 feet including 406 feet in the 4-201 West Drift on the 4100 Feet Level and 464 feet in the 2-182 drifts on the 4300 Feet Level

- 161 hole-7425 feet percussion (jack leg and long hole) drill hole testing of the Main Band Linestone Unit; T242 intersected 16 feet of pyrite-type ore, grading 0.86 ounces gold per ton, from 8 to 24 feet; Drifting exposed ore(2-184 stope) in the 2-182 East Drift

(September 21, 1986- August 24, 1987) Mosquito Creek Gold Mining Company Limited, Batch mining and milling project * a skeleton crew mined 4068 tons of ore, grading 0.62 ounces gold per ton, from the 2-184 stope and plunge extensions over a total plunge length of 490 feet - a total of 2704 ounces of gold were recovered from 4644 tons of ore mined and milled in three phases: I (September 21-November 7, 1986); II (November 15, 1986-May 15, 1987); III (May 20-August 21, 1987)

(March 31, 1987) \$400,000 flow through financing arranged with CMP Funds Management Limited

(June 26, 1987) 5:1 consolidation of shares into 5,000,000 common shares and authorised capital of the company changed to 25,000,000 common shares

(July 16-November 10, 1987) Mosquito Creek Gold Mining Company Limited, Cariboo Gold Quartz mill salvage project * 298 ounces of gold were recovered from 2,799 tons of surface material salvaged by the joint venture; the material was probably diluted by a factor of three during the cleanup

(September 14, 1987-April 1, 1988) Mosquito Creek Gold Mines Limited, Jukes Adit development project; \$972,748. * site preparation for the Jukes Adit started September 14, 1987; the adit was collared at an elevation of 4025 feet on the Alabama Crown Grant October 7, 1987 and drift advance to April 1, 1988 was 473 feet

* (November 27, 1987) Nosquito Creek Gold Mine put on maintenance

* (December 4, 1987) Name changed to Mosquito Consolidated Gold Mines Limited

* (December 29, 1987) \$1,087,000 flow through financing arranged with NIM Management Limited

(May 20, 1988-1991) Pan Orvana Resources Inc., Cow Mountain Cariboo Group surface exploration project; \$371,514.

* the program was designed to outline open pitable reserves of quartz stockworks mined underground in the Cariboo Gold Quartz mine

- established surface grade of the Sanders Zone by trenching: 4.1 grams gold per tonne over 20 metres in T-1, 5.1 grams gold per tonne over 20 metres in T-2, and 4.7 grams gold per tonne over 26 metres in T-3

(April 1, 1988-May 30, 1989) Lyon Lake Mines Limited, Jukes and Island Mountain adits exploration and development project; \$9,273,928.

* on January 7, 1988 Mosquito Consolidated Gold Mines Limited entered into an agreement with Lyon Lake Mines Ltd. of Rouyn-Moranda, Quebec whereby Lyon Lake obtained an option to acquire 50% undivided interest in the Mosquito Creek and Island Mountain Groups

- exploration from existing workings of the Mosquito Creek Gold Mine did not constitute qualifying expenditures for the flow through financing of the project

- Lyon Lake incurred expenditures of \$6,000,000. by December 31, 1988 and earned a 50% interest in the properties on Island Mountain

* lateral development included an additional 4957 feet of drifting in the Jukes Adit and 2796 feet of drifting in the Island Mountain Adit

-on November 4, 1988, the Jukes Adit intersected the 4000 Feet Level of the Island Mountain mine at an elevation of 4040.6 feet and at a distance of 3161 feet from the portal - the Island Mountain Adit was collared on the Aurum Crown Grant, at an elevation of 4006.6 feet, on May 19, 1988 and driven 2194 feet to the Aurum Fault by January 27, 1989 - drilling included a 36 hole-10712 feet diamond drilling program for stratigraphic control, a 369 hole-24224 feet long -hole percussion drilling program for testing of limestone and a 7 hole-971 feet churn drilling program in the lower Mosquito Creek drainage

(November, 1990) Lyon Lake Mines Limited becomes operator for the Mosquito Creek and Island Mountain groups -(December 31. 1991) Barkerville lease expires

(1991) Brian McClay purchases controlling interest in Mosquito Consolidated Gold Mines Limited from Cameron J. McFeely

DEVELOPMENT AND DRILLING RECORD-MOSQUITO CREEK GOLD NINE

51

YE,	AR	DRILLING			DEVELOPMENT		
	UNDERGROUND		SURFACE	╶──────	Lat	Vert	
	DDH	PDH	DDH	PDH			
	(feet)		(feet)		(fee)	et) 	
71							
72			26-2312				
73			24-13860	37-10910	125		
74							
75	74-6604				2137	516	
76 77	10-987		7- 1116				
					1859		
78	47- 4316						
79	16- 1640				0.0.00	4.00	
80	74- 8680				2603	167	
81	132-15168				3070	233	
82	75- 8890		15 6100		6409 0149	029	
83	65- 9928	00 0007	40-0400		440 1052	200	
84 85	94- 8769	39- 3037	12- 1355		1902		
86		77- 5280			1053		
87		204-11368			156		
88	18- 6251	72- 7220			6357		
89	18- 4461	297-17004		*7- 971	1821		
90 91							
Su	btotal						
<u> </u>	623-75694	689-43917	114-25131	37-10910	25770	180	
TO	 TAL	(1,463) ho	oles-155,65	52 feet	27,570 fe		

--

: . .

-

.

--- R.D. HALL -----

Appendix B Description of Map Units Mosquito Creek Gold Mine (after Hall, 1991)

.

.

1

Ĺ.

1

۴.,

No. 1

Ĺ.

ĥ. -

L

L

APPENDIX III

DESCRIPTION OF MAP UNITS

MOSQUITO CREEK GOLD MINE

F1 Footwall Limestone Unit (309 Limestone Unit of the Island Mountain mine): Overall dark grey, thin to medium bedded, sandy and carbonaceous limestone with graphitic cleavage. The unit is darker in colour, more massive in character, and more siliceous than N1. The density of quartz-carbonate stringers within the unit is much lower than N1. This is the most persistent marker unit on Island Mountain.

Vt Footwall Green Tuff Unit:

- (gt) Green, chloritic and siliceous clastic phyllite with finely disseminated ilmenite, pyrrhotite lamellae and finger nail-sized calcite nodules after dolomite porphyroblasts. The unit is mainly massive and blocky in appearance, and shows rare variation in grain size but is probably very thinly bedded. The unit is distinctly orangebrown weathering on surface and underground.
- (tt) Tan coloured, dolomitic (porphyroblastic)-talcpyrite (disseminated) schist with intervals of conformable thin pyrite-quartz-talc stringers. The unit is an alteration product of (tg).
- (bs*) Black, laminated, siliceous and argillaceous, phyllitic siltstone with graphitic cleavage. This unit is observed near the contacts of (tg).
- <u>Tb</u> Dark Coloured Gritty Quartzites (Rainbow member, No. 1 Band): Uniformly medium to dark grey, medium to thickly bedded and rythmically bedded, coarse grained, dolomitic siliceous clastic strata with graphitic cleavage.
 - (bs) Black, laminated, dolomitic (porphyroblastic) and argillaceous, phyllitic metasiltstone with graphitic cleavage and pyrite porphyroblasts.
 - (bq/bg) Dark to medium grey, gritty (blue and grey quartz eyes) quartzite and lesser quartz granule grit, both with graphitic cleavage.

54 Main Band Limestone Unit: (probably the stratigraphic N equivalent to the Aurum Limestone Unit in the Island Mountain mine) Mottled medium to light grey, very thinly banded (1)sandy limestone with stylolite-like parting and graphitic cleavage. The unit has a massive appearance. Zebra-striped, medium to dark grey, laminated, (c) calcareous, carbonaceous and argillaceous metasiltstone with graphitic cleavage and minor disseminated pyrite. The unit is laced with folded and segmented quartz-carbonate stringers. **(d)** Tiger-striped weathering, dark grey, laminated dolomitic (matrix and porphyroblasts) and argillaceous metasiltstone with both talcose and graphitic cleavage. The unit is an alteration of (c). (dq) Tan weathering, medium grey, dolomitic (matrix mainly) metaquartzite with talcose cleavage and several percent disseminated pyrite. This unit may be an alteration product of (1). **A1** Aurum Limestone Unit (339 Limestone Unit of the Island Mountain mine): Very thinly to thinly interbedded, light grey, fine to medium grained calcareous metaquartzite (or sandy limestone) and grey to green phyllite. Some medium grey colouration persists locally in the limestone component. Tw____ Light Coloured Gritty Qurtzites (Baker member): Overall light to medium grey, but orange weathering, medium to thickly bedded and rythmically bedded, medium to coarse grained, dolomitic, siliceous clastic strata with sericitic cleavage. (bs) Black, laminated, dolomitic (porphyroblastic) and argillaceous metasiltstone with graphitic cleavage and pyrite porphyroblasts. (ws/ds) Light grey to pale green, very thinly bedded to laminated, dolomitic (porphyroblastic) metasiltstone with talcose and/or graphitic cleavage. The unit can be deep orange weathering (os).

------ R.D. HALL ---

		—
		55
	(ws*)	White, laminated to very thinly bedded, dolomitic (porphyroblastic) metasiltstone with talcose parting and/or cleavage. This is a distinctive marker unit in proximity to Al.
	(g∕q)	Light grey, weakly orange weathering, dolomitic (porphyroblastic) quartz-(feldspar) granule grit with sericitic cleavage. Quartz granules are blu and grey in colour.
	(dq)	Tan to orange weathering, light to medium grey, thinly bedded dolomitic (matrix mainly), fine to medium grained metaquartzite with talcose ceavag and several percent disseminated pyrite. The uni looks massive.
	(cq)	Light grey, fine to medium grained, calcareous metaquartzite with bimodally distributed quartz grains. The unit is locally orange weathering an similar in appearance to Al.
	(fq)	Light grey to off-green coloured, massive quartz- feldspar granule grit. This may be a felsic intrusive unit and/or equivalent to the "Diorite Unit" mapped in the Island Mountain mine.
<u>Vt</u> _	Hang	ingwall Green Tuff Unit: as above
<u>H1</u>	Hang the mine deve	ingwall Limestone Unit (probably equivalent to Johns Limestone Unit in the Island Mountain): The unit is similar to Al but less well loped.
(wlg	s/ds)	Very thinly interbedded, white silty limestone and pale green to tan coloured, laminated metasiltstone with chloritic, sericitic or talcos cleavage.
<u>s</u>	Lamin shis dista the n	nated Green Siltstone Unit: This is a prominent, tose unit in the Jukes Adit at a considerable ance into the structural hangingwall relative to mine section.
(ms/	dsdq)	Orange striped weathering, very thinly interbedded, light grey, fine grained, dolomitic

κ.

₽~~ : ↓ .

κ.

i Na i

[.

•

- R.D. HALL ----

Baker member: (approximately 400 feet)

Johns Limestone-impure limestone

<u>Mainly light coloured argillite, quartzite</u>, sericite schist, in part calcareous, some grey and white limestone in footwall section of member

339 Limestone-mainly white crystalline limestone

Rainbow member: (approximately 750 feet)

No. 1 Band-dark quartzite with mostly minor interbedded black argillite (250 feet)

<u>301 Band</u>-mainly light coloured argillite, some dark argillite, dark calcareous argillite and dark impure limestone, minor light coloured quartzite (0-150 feet)

No. 3 Band-same as No. 1 band (100 feet)

309 Limestone- dark grey limestone (0-100 feet)

<u>No. 4 Band</u> (Lowhee member)-mainly light coloured argillite and quartzite (200 feet)

<u>B.C. Argillite member</u>: black slaty argillite with quartzitic bands

CARIBOO GOLD QUARTZ MINE

<u>Baker member</u>: calcareous and dolomitic argillites, limestone and tuff

Rainbow member: (approximately 620 feet)

<u>Mo. 1 Unit-dark grey to black</u>, interbedded argillite and quartzite (200 feet)

No. 2 Unit-light greenish coloured, talcose, dolomitic quartzite and sericite schist (70 feet)

· . ·

<u>No. 3 Unit-dark grey to black</u>, interbedded argillite and quartzite; identical to No. 1 Unit (200 feet)

<u>No. 4 Unit</u> (Lowhee member)-light coloured, dolomitic argillite and quartzite with dolomitic bands; commonly resembles No. 2 Unit (150 feet)

B.C. Argillite member: black argillite with quartzitic bands

L

. . . .

• •

Appendix C Description of Analytical Methods

• • • • • • • • • • • • • • • •

.

States -

. .

κ.

.

£ .

1

.

Ì.

i. Li i

.....

.

The following has been summarized mainly from information published by ACME Analytical Laboratories Ltd., Vancouver.

Sludge Sample Preparation and Analysis

Silver inquart, lead-collection fusion of a -150 mesh / 30 gram split of each sludge sample was carried out to produce a dore bead. The dore bead was then digested in aqua regia and analyzed for gold by ICP-ES (see definitions).

Core Sample Preparation and Analysis

Each core sample was crushed to -10 mesh, after which a split of the sample consisting of 250 grams was crushed to -150 mesh. Lead-collection fusion was then carried out on a 1 assay-ton sample (29.2 gm) to produce a dore bead. The dore bead was then digested in aqua regia and analyzed for gold by ICP-ES (see definitions).

Soil Sample Preparation and Analysis

Each soil sample was dried at 60°C and up to 100 grams of sample sieved to -80 mesh. A split of the sample consisting of 10 grams was digested in aqua regia and analyzed for gold by Wet Extraction and for 34 additional elements by ICP-ES (see definitions).

Definitions:

Inquart:

Inquart is a precious metal, silver being the most commonly used, that is added to the flux ingredients of a fire assay, often assisting as an additional collector for precious metals. In fire assays, lead is used as the primary collector of precious metals in a sample.

ICP or ICP-ES:

Inductively Coupled Plasma - Atomic Emission Spectrometer: An instrument capable of determining the concentrations of 40 to 70+ elements simultaneously by measuring the intensity of light given off by samples aspirated into an argon gas plasma heated to $> 10,000^{\circ}$ K. Capable of very low detection limits (ppm to ppb) with wide linear ranges (5 orders of magnitude).

Wet Extraction:

A precise and accurate method for the determination of Au in low-grade samples. Samples are digested in Aqua Regia then extracted using MIBK to concentrate Au. The MIBK fraction is analysed by GFAA down to a detection limit of 2 ppb Au.

Graphite Furnace AA (GFAA):

Atomic absorption spectrometry: sample solution is atomized in a graphite induction furnace heated to 1650°C, element concentration is measured by absorption of light passing through the furnace. Gold (Au) can be determined down to 0.2 ppb.

MIBK:

Methylbutylisoketone: an organic solution capable of extracting Au from an acid solution thereby reducing interferences. Used in the determination of Au in graphite furnace atomic absorption spectrometry analysis.

•••••

Appendix D Drill Logs IMG2K-01 to IMG2K-10

. .

.

ь.

L

Ŀ.

1

. • •

г :

D.D.H. IMG-2K-01

Page 1 of 9

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-01

Property:	Mosquito Creek	Colla	ır Grid	Coordin	iates							
Drilling Contractor:	Standard Drilling & Engineering Ltd.	Northing	Eas	ting	Elev:	ation			_	Depth .	Azimuth	Dip
Date Started:	July 26, 2000	19285.4 ft.	9374	4.9 ft.	4499).5 ft.	collar 220° -45°					
Date Completed:	August 9, 2000							Average dept	h of each 10-	foot sludge sa	mple shown	L
Final Depth:	905 feet (275.8 m)	Logged by:	: J. Wa	yne Picl	kett, P.O	Geo.		Samp Sam	ple; Rep Re	presented; Ac	t Actual	
<u> </u>						F	eet	Au	Au	Sludg	ie.	Au
From - To	Description		Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-40.0 Casi	ng						·			B171701	20	771
				:						B171702	30	241
40.0-55.0 Rubl	ble									B171703	40	104
												1

55.0-140.2 Pale green to grey tuffaceous siltstone

55.0-77.0	Pale green, some bleached sections, thin layering preserved in
	less altered sections, fine dolomite in matrix locally, 2 cm
	gouge zones at 69 and 75
77.0-139.0	Rock is bleached pale grey, dolomitic, abundant spotty 1 to 3
·	mm dolomite porphyroblasts, and abundant muscovite
89.0-106.0	Several sections of broken core
89.8-112.0	Several dolomite-bearing qz veins, few blue silica veins
112 0-139 0	Fewer quartz veins, rare marinosite

12.0-139.0 Fewer quartz veins, rare manposite 126.8-127.2 Dolomite-bearing qz vein

139.0-140.2 Mostly pale grey to buff, several siliceous sections

140.2-147.6Medium grey to black siliceous siltstone and argillite145.2Thin layering in black argillite

147.6-179.5 Mostly quartz veins, about 30% grey schistose wall rock
147.6-150.8 White to grey quartz, about 5% carbonate (dolomite or ankerite 148.2-148.5 About 15% pyrite, includes 1% coarse arsenopyrite
150.8-159.8 Grey to pale green siliceous meta siltstone and meta greywacke

1								
						B171704	50	12
· · · · ·						B171705	60	8
j						B171706	70	6
		_				B171707	80	9
						B171708	90	3
						B171709	100	18
1051	94.8	104.3	9.5	4.6	10	B171710	110	8
			i		1	B171711	120	4
						B171712	130	3
1052	135.0	140.2	5.2	4.8	20	B171713	140	39
1053	140.2	147.6	7.4	3.6	110			
						B171714	150	4306
' 				•	:			
1054	147.6	149.9	2.3	2.2	6080	0.177		
1055	149.9	155.0	5.1	2.1	30	B171715	160	2702

					Feet		Au	Au	Sludge		Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	<u>_ppb_</u>
155,4-156.0) Quartz containing about 10% pyrite and trace arsenopyrite										
156,0+159.5	Grey to pale green siliceous metasiltstone and metagreywacke	1056	155.0	160.0	5.0	3.7	3560	0.104		<u> </u>	
156.5	Foliation 50 deg. C.A.	1057	160.0	165.0	5.0	1.8	30	i-			
159,5-179.0	Quartz containing 0.5% coarse pyrite	1058	165.0	170.0	5.0	1.6	10 [†]			÷	
178.5-179.0	> Pyrite content increases to about 60%	1059	170.0	175.0	5.0	1.3	240		B171716	170	2397
		1060	175.0	180.0	5.0	1.3	6130	0.179			
179.5-205.0	Medium grey siliceous to argillaceous siltstone, contains about			;							
	10% dolomite porphyroblasts typically 1 to 2 mm across in	1061	180.0	190.0	10.0	2.6	70		B171717	180	6192
	several sections, trace pyrite	1062	190.0	200.0	10.0	3.7	10		B171718	190	3010
•		1063	200.0	210.0	10.0	3.0	10		B171719	200	3209
205.0-229.0	Pale olive green dolomitic, sericitic argillaceous siltstone										
	containing abundant dolomite porphyroblasts typically 1 to 3 mm	1064	210.0	215.0	5.0	3.0	10		B171720	210	2878
	across trace to 1% pyrite, few pale arey siliccous, silicified	1065	215.0	220.0	5.0	3.5	20				
	sections, trace mariposite locally	1066	220.0	225.0	5.0	3.2	10		B171721	220	4301
214.5	Schistosity 55 deg. C.A.	1067	225.0	229.0	4.0	1.3	10				
- 1 T.2	Connecting of the grade of the					i I	1				
229.0-276.0	Pale to dark grey interlayered argillite and sericitic						;				
	metasiltstone, few quartz veins, trace pyrite, about 10% dolomite		:						B171722	230	
	norphyrohlasts about 1 to 4 mm across. Lavering varies from 40				ĺ			1			
	to 70 deg. C.A., layering and early yeins contorted in places			1	i			:			1
229.5	Minor fold in layering										
234 6-250 0	Several gouged areas	1068	229.0	235.0	6.0	3.3	10:				
234 6.235	A Gouged	1069	235.0	240.0	5.0	3.2	10:		B171723	240	2411
234.0-233.	5 Gouged and broken core	1070	240.0	245.0	5.0	3.5	10				
242.0 215.	6 Course quartz vein containing 0.5% pyrite	1071	245.0	250.0	5.0	3.5	10				
240.0-240.	Dolomite or ankerite-bearing quartz vein	1072	250.0	257.5	7.5	3.8	10:	·	B171724	250	1695
269.9-20010	Quartz vein contact 50 deg. C A	1073	257.5	265.0	7.5	6.0	20		B171725	260	
266.5	Schietosity 45 deg. C A	1074	265.0	270.0	5.0	4.5					
260.0 276.0	About 50% of unit is bleached trace marinosite	1075	270.0	275.0	5.0	4./	10	i			
209.0-270.0	About 50% of ante is bleached, trace manpoone								B171726	270	1910
276 0 292 0	Dala grov to pale alive green dolomitic sericitic siltetone	1076	275.0	280.0	5.0	4.8	20.				
2/0.0-202.0	containing about 10% dolomite pornhytoblasts typically 1-2 mm		i						BT71727	280	
	percess schistocities at 40 and 60 deg. C A		000.0								
280 0 202 0	About 0.5% numbratite	1077	280.0	284.0	4.0	3.5	20				
200.0-262.0	Acour 0.570 pyrnome	1			}						

.

Page 2 of 9

D.D.H. IMG-2K-01

Page 3 of 9

				Feet		Au	Au	Sludge		Au	
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton_	Samp.	Depth	ppb
282 0-296 0	About 90% white quartz, locally containing dolomite or ankerite,	1078	284.0	290.0	6.0	5.0	10		B171728	290	695
202.0-290.0	few py patches 2-3 mm across, lineation noted in quartz vein							:;			
290.5	foliation at 50 deg. C.A.	1079	290.0	296.0	6.0	1.5	80	· · · · · · · · · · · · · · · · · · ·			
27010									ļ		
296 0-313.1	Interlavered bluish grey siltstone and black argillite, several								B171729	300	1466
2/010 0	dolomite porphyrblasts typically 2 to 3 mm across		İ					• •			
296.0-304.0	core is broken	1080	296.0	305.0	9.0	4,0	190				
309.7-310.1	gouge	1081	305.0	313.2	8.2	4.6	40		B 171730	310	501
20.00	0									220	604
313.1-320.3	Olive green to grey metagreywacke containing abundant	1082	313.2	320.1	6.9	6.5	70		B171731	520	054
	chloritoid porphyroblasts typically 2 mm across, several										
	dolomite- and muscovite-bearing quartz quartz veins typically at							:			
	70 to 80 deg, to core axis							ł	ļ		
318.2-319.3	ouartz vein				1						
319 8-320 1	quartz yein with pyrite yeins near contact with wallrock,										
	abundant bluish rounded quartz masses				i	1		i	:		
		1000	000.4	005.0	4.0	47	10	:	B171732	330	1127
320.3-340.0	Light to medium grey siliceous siltstone and lesser argillite,	1083	320.1	325.0	4.3	4.7	10	<u>.</u>	DITTOL		
•	calcarcous sections locally, bedding preserved in some sections,	1084	325.0	225.0	5.0	<u>4,2</u>	10	1	1		
	layering typically at 60 deg. C.A. e.g. at 321.0, unit is slightly to	1085	330.0	335.0	5.0	4.0	10	, 			
	moderately dolomitized and contains trace to 0.5% pyrite and		ļ					1	i.		
	locally trace pyrrhotite		.		1						
	ý (S							:	B171733	340	418
340.0-347.2	Rhythmitically bedded metagreywacke, metasiltstone and					 					
	argillite, graded bedding indicates tops down hole?, bedding								:		
	typically at 75 deg. C.A.										
1		1086	345.0	350.0	5.0	5.0	1()	B171734	350	1229
347.2-369.7	Light grey siliceous siltstone interlayered with about 40% dark	1087	350.0	355.0	5.0	4.7	1()			
	grey argillite and medium grey grit, laminated in places										
	typically at 70 deg. C.A. e.g. at 351.0	1088	355.0	361.0	6.0	5.0	1()	B171735	360	104
358.0-361.0	Medium grey grit	1089	361.0	365.0	4.0	4.0	10	<u>ן</u>			
		1090	365.0	370.0	5.0	4.1	30	D			

D.D.H. IMG-2K-01

Page 4 of 9

					Fe	et	Au	Au	Sludg	2	Au	
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb	
369.7-429.5	Interlayered pale greenish grey metasiltstone and lesser								B171736:	370	1495	
2	argillite, metagreywacke and minor conglomerate, trace pyrite	i i	1	Í	1			1			Í	
l l	ocally, few siliceous, silicified sections, minor dolomitization,		:		1							
	about 10% quartz veins throughout	1001	070.0	076.01		10	10		() 171 407	290	961	
373.3-384.0	Pale green, generally more dolomitic, abundant dolomite	1091	370.0	3/5.0	5.0	4.0	<u> </u>	/·····	61/1/3/			
	porphyroblasts 3 mm across	1092	395.0	400.0	5.0	50	50)	B171738	390	652	
382.5-384.6	Breccia, conglomerate	1093	400.0	406.0	6.0	6.0	10)	B171739	400	1359	
384.6-430.0	Unit is pale to medium grey								B171740	410	564	
424.0-424.3	\rightarrow couge								B171741	420	333	
424.0-423.0									B171742	430	360	
426.5	schistosity at 40 deg. C.A.		I								ĺ	
i i i i i i i i i i i i i i i i i i i			I									
429.5-443.4	Light to medium grey conglomerate with lesser					:		1				
	metagreywacke and metasiltstone, clasts are siliceous and		Ì			÷						
	typically 0.5 to 2 cm across, they occur in a grey siliceous matrix				·				B171743	440	398	
430.0-443.4	Pale grey, typically brecciated and siliceous, silicified											
430.5	layering at 45 deg. C.A.											
		1094	442.9	448.1	5.2	5.1	110)	B171744	450	567	
443.4-448.0	White quartz containing minor amounts of carbonate, rock is							:				
	bleached, dolomitized and silicified about 0.5 feet above vein	1095	448.1	451.0	2.9	2.9	20)				
447,0-447.3	Pyrite vein at 45 deg. C.A.				<u> </u>			<u> </u>				
449 0 486 0	Light gray conglomerate siliceous peoples in siliceous or	1096	451.0	455.0	4.0	3.8	3() 	····			
440.0-400.0	locally aroillaceous matrix frace nyrite	1				ļ					[
451.0-452.0	About 10% dolomite norphyroblasts, 2-3 mm across, in	1007	455.0	460.0	<u> </u>	50		i	·····			
	conglomerate where matrix is medium dark grey and more	1097	455.0	463.8	38	4 1	100)				
	argillaceous	1099	463.8	465.8	2.0	2.0	500	<u>)</u>				
451.5	Flattened clasts aligned at 50 deg. C.A.								B171745	460	1090	
457.6-458.6	Rock is bleached, sericitized and gouged	1100	465.8	470.0	4.2	4.2	290)				
463.9-465.9	Breecia, angular quartz grains typically 1 to 5 mm across occur							1				
	in a dark green argillaceous matrix	1101	470.0	475.5	5.5	5.2	11(<u>)</u>				
465.9	Lower contact faulted along plane 20 deg, C.A., slickenlides								B171746	470	1692	
	have rake 70 deg. left relative to C.A.				'							

D.D.H. IMG-2K-01

Page 5 of 9

	· · · · · · · · · · · · · · · · · · ·			<u> </u>		et	Au	Au	u Słudge		Au
From - To Description	<u>، گ</u>	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ррЪ
480.0-486.0 Medium grey coarse greywacke	or fine conglomerate, clasts	:							B171747	480	761
typically 2 to 5 mm	-				I						
			i								
486.0-523.0 Pale grey to locally pale grey-	green siliceous siltstone	1102	485.0	490.0	5.0	5.0	10		B171748	490	1346
interlayered with about 20% bla	ack argillite, approximately 20%	1103	490.0	495.0	5.0	4.9		···			
quartz veins, trace to 1% pyrite	throughout, up to 1% in	1104	495.0	500.0	5.0	5.0	40		<u></u>		
argillaceous sections, minor car	bonate in some of the quartz		1		1		i	:			
veins, few dolomite porphyrobl	asts 1 mm across	1105	500.0	505.0	5.0	5.0	180		B171749	500	3186
500.5-503.0 About 1% pyrite		1100				0.0					
502.0-502.5 Pale green brecciated zone f	flanked by quartz veins generally I			i		1					l
cm wide and oriented 5 deg.	. U.A.	i	((1	;	;				í í
503.0 Senistosity 55 deg. C.A.	r corbonate		!					<u>.</u>			
505.2 Araillite/siltstone contact 50	deg C A	1106	505.0	510.0	5.0	5.0	170		B171750	510	1819
507.0.520.0 About 70% black araillite co	ntaining thin grey siltstone laminac								B171751	520	1098
507.8-509.0 Quartz vein containing abou	at 5% chloritoid veins within.			i							
minor carbonate and musco	vite. trace pyrite	1107	510.0	515.0	5.0	5.0			·		[
510.2 Lavering in argillite at 45 de	eg. C.A.	1108	515.0	520.0	5.0	5.0	10				
521.6-523.0 Grey conglomerate, siliceous	s clasts in argillaceous matrix	1109	520,0	523.0	3.0	3.0	10			· · · · · · · · · · · · · · · · · · ·	
	-	1110	572.0	520 O	7.0	7.0	790				
523.0-533.0 Pale grey-green interlayered :	siltstone and argillite, layers	1110	023,0	530.0		<u> </u>	700		i-	· · · · · · · · · · · · · · · · · · ·	
typically 1 to 5 cm thick, 5 to 1	0% dolomite porphyroblasts 1 to 2	1		1							
mm across, about 5% carbonate	e-bearing quartz veins	1111	530.0	535.0	5.0	5.0	10		B171752	530	1169
530.0-533.0 breacciated, bleached, about	1% pyrite stringers										
	F								B171753	540	461
533.0-553.0 Medium to pale green dolomi	itic tuffaceous siltstone, about 5%										
tan carbonate-bearing quartz ve	eins, typically about 3 mm wide					:					
and oriented 5 to 10 deg. C.A.	at right angles to the schistosity	1112	<u>545</u> .0	550.0	5.0	5.0	1210	0.035	B171754	550	951
546.0-547.8 carbonate-bearing quartz ver	n, a 1.5 m, wide sincified zone			I				;			
consisting of very fille grants	aurite stringers	1									
547 6-547 8 About 5% pyrite stringers	pyrke su iligera	4440	550.0	552.0		2.0					
Jar. 6-547.6 Roott 576 pyrke su ingels		1113	0,000	553.0	3.0	3.Uj	920				
		;									

.

i

					Fe	Feet		Au Au		e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ppb
553.0-632.1	Medium green tuff, soft, few calcite veins, no dolomite			ſ		;			B171755	560	359
	porphyroblasts although dolomite possibly present in matrix, few				-		:				ļ
	argillaceous sections typically 3 cm wide, trace pyrite and/or			İ	1						Ĥ
	pyrrhotite locally								·····		
573.0-573.3	Argillite containing about 10% pyrite stringers, minor fault	1114	570.0	575.0	5.0	5.0	70		B171756	570	137
	within section is oriented 20 deg. C.A.										
575.9-580.5	Black argillite								B171757	580	
580.5	Contact at 85 deg. C.A.					····			B17174		201
589.4-590.0	Argillite, layering at 80 deg. C.A.								B171758	290	201
600.0-600.7	Argillite	-							B17170	610	109
618.0-618.6	Carbonate-bearing quartz vein, about 1% pyrite							<u> </u>	<u>B171760</u>	620	240
619.0-632.1	Pale green to tan dolomitized tuff	· · · · · · · · · · · · · · · · · · ·						<u>, , , , , , , , , , , , , , , , , , , </u>	BI/1/01	020	200
620.0-620	5 Quartz vein containing minor carbonate	Í									í
621.8-622	.8 Fault at 5 deg. C.A., gouge zone is about 1 cm wide, pyrite	į									h
	and calcite in fractures										
		1			i	1		4			
632.1-642.0	Tan, laminated dolomitized siltstone, about 1 to 5% pyrite	1115	632.0	637.0	5.0	5.0	660		B171762	630	247
632.1-632.6	Breccia, gouge zone at 40 deg. C.A., quartz and carbonate		002.0	001.0	0.0			;			
	included in breecia	1116	637.0	642.0	5.0	5.0	60		B171763	640	610
639.6	Layering 50 deg. right C.A., schistosity 40 deg. left C.A.							• • • • • • • • • • • • • • • • • • •			
· · ·		1117	642.0	648,0	6.0	5.0	10			·	
642.0-653.0	Blue-grey limestone interlayered with about 10% argillite,		-		÷						
	laminae are minor folded, abundant calcite and lesser ankerite-	i i				Ì		:			
	bearing quartz veins								B171764	650	178
642.0-642.6	Breccia zone containing quartz, carbonate, sericite and 2%	1118	648.0	653.0	5.0	5.0	100				
	pyrite										
		1119	653.0	657.0	4.0	3.9	140		B171765	660	335
653.0-704.5	Altered mafic intrusive rock?, rocks comprising unit alternate	1120	657.0	663.0	6.0	5.9	30				
	between very dark green chlorite-rich sections containing spotty										
	dolomite porphyroblasts and pale grey dolomite-bearing sections				}						
h	that are soft having a sericite and carbonate (not calcite) matrix,							÷			
	trace pyrite	1121	663.0	670.0	7.0	7.0	50		B171766	670	244
665,0-666.0	Carbonate-bearing quartz veins, contact at 50 deg. C.A.				1	•					
		1	i I			1					

Page 6 of 9

D.D.H. IMG-2K-01

Page 7 of 9

					Fe	et	Au	Au	Sludge		Au
From - To	Description	Samp.	From	То	Rep.	Act.	ррв	oz./ton	Samp.	Depth	_ppb
668.0-704.5	Trace mariposite in places			i							
672.7-673.3	Quartz vein containing about 5% carbonate and about 5%	1122	670.0	675.0	5.0	4.9	1(0	B171767	680	188
	pyrite stringers								D1717(0	600	
685.3-704.5	Medium green, medium grained, soft, chloritic, sericitic,								B1/1/08	090	
	altered marie intrusive rock, aboundant calcile stringers,		i					!			
700.8.701.2	Durk green very fine grained chlorite-rich minor mafic								B171769	700	148
700.4*701.2	intrusior					·····	· · · · · · · · · · · · · · · · · · ·	.	<u></u>		
				[
704.5-752.4 P	ale grey-green dolomitic siltstone, 5-10% dolomite								B 171770	710	148
pe	orphyroblasts 1 to 3 mm across, strongly sericitic, schistose,					- 					
fe	w carbonate-bearing quartz veins, trace pyrite and pyrrhotite		 								
714.0-718.0	Quartz-sericite gouge zone subparallel to core axis	4400	700.0	705.0	6.0	E 0	4.4	Ď	B171771	720	570
722.8-723.4	Quartz vein with carbonate near contacts, about 1% irregular	1123	720.0	720.0	9.0	5.0	11	<u> </u>	· · · · · · · · · · · · · · · · · · ·	• • •	-
	pyrite masses 1 cm across, vein contact at 45 deg. C.A.	—							B171772	730	266
730.0	Schistosity at 45 deg. U.A.								B171773	740	190
734.0-740.0	Ne delemite normhyroblasts							1			
742.0	Lavering at 50 deg. C A										
749.0-752.4	Well developed lavering								<u>B171774</u>	750	150
751.6-751.7	Gouged at 20 deg. C.A.	1124	750.0	755.0	5.0	5.0	1	0			
752.1-752.4	Brecciated near quartz vein below	1			ļ						
752.4-753.8 V	hite quartz vein, minor carbonate					i		1			
								н			
753.8-787.0 I	iterlayered pale grey dolomitic siltstone and argillite	1125	755.0	760.0	5.0	5.0	1	0	B171775	760	108
/53.8-760	Very dark green to black arguithte containing about 20% pale		1		:						
	dolomite nornhyroblasts 2 mm across trace pyrite		i l			:					
760 0-787 0	About 50% pale grev dolomitic siltstone, remainder black		!		ļ 						
	argillite, dolomite porphyroblasts throughout, few thin (<1 cm				İ	•					
	wide) carbonate-bearing quartz veins, trace pyrite throughout		┼───┤						D171774	770	U 9
766.9-767.4	Grey siliccous siltstone bed		L,						01/11/0	770	
770.0	Layering at 60 deg. C.A.	}	. 1								

.

Page 8 of 9

			···· /	Feet		Au Au		Siudge		Au
From - To Description	Samp.	From	To	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ppb
774.0-787.0 Rock is pale grey-green, strongly sericitic, several thin quartz veins parallel to foliation, dolomite porphyroblasts								B171777	780	223
throughout				:			i			
787.0-815.0 Interlayered siltstone, argillite and conglomerate, conglomerate sections consist of siliceous clasts typically 0.5 to										
I cm across in an argillite or siltstone matrix								B171778	790	101
veins parallel to foliation, dolomite porphyroblasts throughout										
794.3-815.0 Pale grey siltstone and conglomerate consisting of siliceous					i	<u> </u>	· · · · · · · · · · · · · · · · · · ·	B171779	800	160
clasts in a very dark grey to black argultaceous matrix 802.0-815.0 About 40% quartz veins containing minor carbonate and trace							·	B171780	810	220
pyrite				1			:			
811.0-813.0 Rock is brecciated, consisting of quartz fragments and veins							:			
stringers about 0.5 cm wide						:	: 			
815.0-836.0 Black graphitic argillite (no discernable layering), about 1% pyrite masses about 1 cm across typically associated with							:			
earbonate-bearing quartz								B171781	820	258
823.3 Two schistosities, one at 10 deg. to core axis and the second at								B171782	830	169
15 deg. to core axis, they have a difference in strike of 20 deg. and also dip of 20 deg.						1				
831.5-833.5 Pale grey-green dolomitic siltstone and lesser argillite 832.4 Eoliation at 60 deg. C.A.		1								
					Ì		:			
836.0-845.5 Interlayered pale grey to pale green (where more extensively		ļ				-+				
836.0-842.0 Pale green soft sericitic siltstone and greywacke, about 10%								B171783	840	146
dolomite porphyroblasts 1 to 2 mm across, trace pyrite		,			ļ		ļ			
836.0 Contact at 60 deg. C.A. 837.0 Foliation at 20 deg. C.A.		1					· ·			
840.7 Contact with thin argillite layer at 60 deg. C.A.					İ	,]				

1

Page 9 of 9

					Feet		Au	Au Au Sludge		e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ррь
842.0-842.4 842.4-845.4	Conglomerate or breccia, angular to rounded pale grey clasts in black argillite matrix Mostly argillite										
845.4-863.0 849.0-850.0 850.8-853.7	Layered grey dolomitic siltstone and argillite, trace pyrite Carbonate-bearing quartz vein Carbonate-bearing quartz vein, 1.5 cm to more than 4 cm wide	1126	850.0	853.0	3.0	3.0	370		B171784	850	243
855.3	subparallel to core axis, pyrite locally along vein contact and traces throughout, contact gouged in places Layering at 50 deg. C.A.										
859,5-863.0	Breceiated black argillite								B171785	860	278
863.0-872.5	Pale green to tan dolomitic, dolomitized siltstone, layering (typically 2 cm thick) present in most sections, abundant dolomite porphyroblasts 2 mm across, trace to 0.5% pyrite and trace pyrrhotite througout								B171786	870	219
872.5-901.9 dark grey arg	Interlayered paic green to pale grey dolomitic siltstone, sillite and lesser siliceous siltstone, about 5% tan or white										
875.5-880.6	Rock is pale grey green and more extensively sericitized and dolomitized								B171787	880	215
876.0-876. 888.6-889.3 893.0-897.0 897.2	 5 Carbonate-bearing quartz vein, trace mariposite Rock is pale grey, siliceous (pervasively silicified?) Mostly dark grey argillite and lesser siltstone Layering at 45 deg. C.A. 								B171788	890	179
901.9-905.0	Pale grey-green dolomitic, dolomitized, sericitic siltstone, about 10% dolomite porphyroblasts 2 mm across, trace pyrite				•			•••••••••••••••••••••••••••••••••••••••	B171789	900	172
905.0	END OF HOLE										

Page 1 of 6

Island Mountain Gold Mines Ltd. Diamond Drill Log

D.D.H. IMG-2K-02

Property:	Mosquito Creek	Collar						
Drilling Contractor:	Standard Drilling & Engineering Ltd.	Northing	Easting	Elevation	<u>D</u>	epth	Azimuth	Dip
Date Started:	August 14, 2000	18951.4 ft.	9109.7 ft.	4662.2 ft.	C	ollar	220°	-45°
Date Completed:	August 22, 2000				Average depth of each 10-f	oot sludge	sample sho	wn
Final Depth:	900 feet (274.3 m)	Logged by:	J. Wayne Picl	Samp Sample; Rep Rep	presented;	Act Actua	.1	

					Feet		Au	Au	u Sludge		AU
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-15.0	Overburden			i							
15.0-180.6	Grey-green mafic tuff, dolomitized in several sections, granular	1001	15,3	20.8	5.5	3.0	<10		B171790	20	164
	groundmass								· · ·		
15.0-22.0	Pale grey, granular texture about 10% dolomite porphyroblasts	1002	20.8	25.9	5.0	25	80		· · · · · · · · · · · · · · · · · · ·		
20.0	Foliation at 70 deg. C.A.	1002	20.0	20.0	4.2	3.9	240				
22.0-26.0	Core is broken and iron stained	1003	20.0	00.0	Τ, Δ	0.0	210	• •	B171791	30	584
24.5	Gouge 0.15 fect wide 70 deg. C.A.						·	· · ·			
26.0-46.0	rock is soft and, in places, pervasively dolomitized, quartz					; [
	carbonate veins in dolomitized, few pyrite stringers, locally	1004	30.0	35.0	5.0	4.8	1190	0.03			
20.0.20.4	pyrite cubes about 1 cm white α and α α α minor dark chlorite 5%	1005	35.0	40.0	5.0	2.2	70		B171792	40	237
50.0-50.0	qualiz carbonate veni, 10 deg. C.A. minor dark emorite, 570	1006	40.0	45.5	5.5	4.0	<10		B171793	50	133
46.0-74.0	about 20% of section comprises quartz, sericite, chlorite.	1007	45.5	50.0	4.5	4.5	<10		B171794	60	1576
+0.0-74.0	carbonate veins, tan dolomite alteration, locally pervasive,	İ				. 1					
	dolomite-bearing veins subparallel to the foliation occur in							1	B171795	70	982
	places, dolomite-bearing veins are cut by later calcife veins in	1008	74.0	78.0	4.0	4.0	<10		B171796	80	572
	some areas, shallow-plunging ineation, trace pyrite								B171797	90	676
71.5-73.0	5% dolomite porphyroblasis about 3-4 mm across								B171798	100	700
74.0-78.0	more pervasive dolomitization and sericitization, lew dolomite-	·····							B171799	110	474
	bearing quartz veins, pyrmotite similars, trace chalcopyrite										
90.0-110.0	pale green-grey, granular, 5-10% dolonnite porphyroblasis, life							<u></u>			
D.D.H. IMG-2K-02

· · .

Page 2 of 6

	mennie crysiais				Fe	ot	An	An	Slud		Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
107.0-107.5	dark grey argillaceous limestone and white recrystallized										
107.0-107.5	limestone										1
108.0	foliation 50 deg. C.A., looking up hole rake of lineation 80		1		5			i			
100.0	deg. left of schistosity apex		ļ			:					
110.0-118.0	about 50% dolomite-bearing quartz veins								B171800	120	450
118.0-121.6	about 70% of section is brecciated (probably not tectonic).	1009	118.0	121.6	3.6	3.5	<10				
	matrix to 1 to 2 cm wide angular fragments is chlorite rich.							i			
	trace ovrite locally	1010	129.0	130.0	1.0	1.0	100		B171801	130	407
121.6-131.6	tan dolomitized section similar to 90.0 to 110.0, lesser ilmenite					ļ					
129.4	silicified section, 2 cm wide, trace pyrite										
131.6-139.0	more pervasively dolomitized			ł							ļ
136.0-136.3	quartz-chlorite vein at 10 deg. C.A., 3 cm wide, silicified					;					
	selvage about 0.5 cm wide, trace pyrite								B171802	140	658
139,0-145.7	much less altered, less dolomitized, few quartz-calcite								B171803	150	657
	amygdules, about 2 mm wide							-	<u>B171804</u>	160	399
145.7-159.5	more pervasively dolomitized, few quartz-carbonate-sericite-	1011	155.0	160.0	5.0	4.8	<10	<u></u>	B171805	170	403
	chlorite veins, trace chalcopyrite and pyrrhotite	<u></u>							B171806	180	601
157.0	gouge zone about 3 cm wide								B171807	190	562
159.5-179.6	medium grey/green mafic tuff or flow, calcite vein locally,				 			<u>.</u>	B171808	200	4/0
	few dolomite-bearing quartz veins typically at 15 deg. C.A. and						·		B171809	210	4/7
	at high angle to foliation, trace pyrite and chalcopyrite						····		D171010	220	502
161.2-162.0	hrecciated							-	D171011	230	<u> </u>
175.5-177.0	black argillite, tuff, tuff fragments in black argillite matrix	<u></u>					<u> </u>		B171812	240	632
179.6-180.6	black argillite, few pyrite veinlets								B171813	250	718
		· · · · · ·							B171815	270	831
180.6-339.0 N	ledium green-grey mafic tuff or mafic volcanic flow, relatively								B171816	280	1015
ι	naltered, about 10% calcite and quartz veins, locally contains								B171817	290	1237
c	alcite amygdules								B171818	300	988
266.3-266.6	pyrrhotite-bearing calcite and quartz veins	1012	325.0	330.0	5.0	5.0	<10		B171819	310	738
299.0	foliation 50 deg. C.A.						<u> </u>		B171820	320	762
302.0-327.0	about 20% calcite veins, amygdules and irregular open-space		_					<u>.</u>	B171821	330	631
	fillings										
320.0-323.0	trace disseminated pyrite and thin veinlets) 						
330.0-332.5	rock is tan coloured and strongly altered, muscovite, dolomite	1									
	and quartz, about 5% disseminated pyrite		i								

Page 3 of 6

				Fee	et	Au	Au	Sluc	lge	Au	
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
331.5	semi-massive pyrite layer about 5 cm wide and 70 deg. C.A.	1013	330.0	333.0	3.0	2.0	<10)			
		1014	333.0	339.0	6.0	5.8	<10): 			
339.0-356.0	Grey to green strongly altered argillaceous siltstone, alteration	1015	339.0	345.0	6.0	4.2	<10		B171822	340	527
	includes sericitization, dolomitization and locally silicification,			i		i					1
	about 2% pyrite in most sections, layering typically 70-80 deg.				1						
	C.A.							: ;			
340.0	gouge about 8 cm wide										
340.7	minor fold and kink band, latter at 50 deg. C.A.	1016	345.0	350.0	5.0	5.0	<10). 			
347.0	late quartz-carbonate vein about 2 cm wide at high angle to								i		
	schistosity, 50 deg. C.A.	10.17	050.0								
347.6-348.8	quartz carbonate vein, contact at 348.8 at 45 deg. C.A.	1017	350.0	356.0	6.0	4.4	<10)	D171000	250	260
									B1/1823	350	350
356.0-390.3	Interlayered grey siltstone and black argillite and minor grey	4040	250.0	201.0	<u> </u>	<u> </u>	~10	,			
	siliceous, silicified siltstone and chert?	1018	356.0	301.0	5.0	5.0	~10		:		
356.0-361.7	gradational change from grey siltstone with a few 0.5 to 1 cm					<u> </u>			D171924	360	530
	wide calcarcous beds at the top to graphitic argillite at the base,	1010	261.9	267.0	5.2	4.5	<10	<u>،</u>	B1/1024		
	trace pyrite locally	1019	301.0	307.0	J.2		~ 10				
360.8-361	.0 quartz-carbonate vein							:			
361.6	minor fold			ļ	ļ	1					ĺ
361.8	gouge					i					
361.7-373.1	gradational change from grey micaceous siltstone at top to dark	1020	367.0	371.1	4 1	4 1	<10)			
	grey argillite with few grey silty layers at bottom	1021	371.1	373.1	2.0	2.0	<10)	B171825	370	326
361.7-367	.0 abundant quartz-carbonate veins, amount decreases downhole										
367.0-371	.2 fewer veins, layering not well developed	1022	373.1	379.6	6.5	5.5	<10)	· · · · · · · · · · · · · · · · · · ·		
371.2-373	.1 layering well developed, abundant argillite layers, trace to 1%			+	!			1			
	pyrite		.					_ !	B171826	380	444
372.0	layering 75 deg. C.A.			<u> </u>				:	• • • • • •		
373.1-379.7	light grey siliceous, silicified cherty? rock with argillite	Ì									
	partings, moderately sericitized in places, trace pyrite	1023	379.6	384.0	4.4	3.7	20)			
379.7-389.5	medium grey to medium grey green, well layered argillaceous										
	siltstone, trace pyrite, very fine muscovite in groundmass, soft,					1					
	pale olive green rounded grains locally										
379.7-383	0.0 more argillaceous, graphitic, well layered	1024	384.0	388.5	4.5	4.5	<1()			
383.0-388	more massive, trace pyrite throughout	,									
382.0	avering 60 deg. C.A. typical		L								

Page 4 of 6

<u></u>	ayering on deg. L.A. Tyneat				Fe	Feet		Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
288 5 200 2	duartz vein	1025	388.5	390.3	1.8	1.8	<10				
388.3-390.3	quartz veni about 25% pale vellow carbonate										
300.3-309.0	contact 40 deg. C A		İ					:			
	contact to weg, cart	:									
390 3-460.0 5	Pale grey siliceous, silicified siltstone, quartz-rich meta-	1026	390.3	399.8	9.5	5.5	<10		B171827	390	540
, 570.5 10010 I	revwacke, interlayered with lesser argillite and locally		ļ								
	rgillaceous siltstone								:		
390.3-399.6	pale grey, siliceous, silicified siltstone, very fine grained silica,	4007	200.0	405.0	E 0	40	10			· · · · · · · · · · · · · · · · · · ·	
•	pyrite stringers	1027	399.8	405.0	<u> </u>	4.0	10				
399.6-406.5	medium to pale grey more argillaceous siltstone								B171828	400	303
399,6-400.5	rock is broken and gouged	1028	405.0	410.0	5.0	33	20		51/1020	,00	
402.0-403.0	rock is bleached and sericitic	1020	405.0	-+10.0	0.0	<u> </u>				· · · · · · · · · · · · · · · · ·	
406.5-409.8	pale grey, siliceous cherty? rock, sericite partings		:					ι			
408.3-408.5	quartz-carbonate vein, patchy pyrite	1029	410.0	414.6	4.6	3.9	10		B171829	410	325
409.8-431.0	medium grey, moderately siliceous siltstone containing dark	1030	414.6	419.6	5.0	2.5	<10				
	grey argillite partings, trace pyrite	1031	419.6	425.0	5.4	5.1	40		B171830	420	210
409,9-419.7	abundant tan dolomite porphyroblasts 1-2 mm across	1032	425.0	430.0	5.0	5.0	20				
414,4-416.0	carbonate-bearing quartz vein	1033	430.0	435.0	5.0	3.2	20				
419.7-431.0) few to several siliceous, silicified cherty? sections, few	1034	435.0	440.0	5.0	4.9	<10		B171831	430	214
	dolomite porphyroblasts, not as large or prevalent as between	1035	440.0	445.0	5.0	4.9	20) :			
	409.9-419.7							!	-		
431.0-447.5	pale grey siliceous metagreywacke,								++-		
441.0-445.5	biotite in groundmass, about 20% quartz veins and irregular	1036	445.0	447.5	2.5	2.5	10)	B171832	440	403
	masses typically 0.5-2.0 cm across, trace pyrite locally	1037	447.5	450.0	2.5	2.3	70)		450	
439.4	semi-massive pyrite/pyrthotite layer about 1 cm across	1038	450.0	455.0	5.0	4.1	60	<u>}</u>	B171833	450	277
445.5-447.5	5 pervasively silicified	1039	455.0	460.0	5.0	2.4	12(<u> </u>		<u> </u>	
447.5-460.0	moderately sincified substone and graphitic arguinte					1					
447.5-450.0) about 10% pyrite				I						
450.0	gouge zone about 5 cm wide			!				:			
454.0-460.0	rock is gouged and preclated										
448.2	ionation at ou deg. U.A.										
440.0 514.0	Rale upon to pale are y strongly sericitized locally silicified			i				:			
400.0-514.8	rate green to pare grey strongly schettized, theaty should a statistical arguitte and metagreywacke							1			
	ALAIIIMCOND SUBTAIL TO SAL ALAULTO AND DOUBLOS MACKE	1		1	1						

D.D.H. IMG-2K-02

Page 5 of 6

					Feet		Au	Au	Sludg	;e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
460.0-486.0	Pale green to nale grey, strongly sericitized, locally silicified								B171834	460	213
400.0 100.0	argillaceous siltstone, bleached and contains about 5%				1						1
	dolomite porphyroblasts 1-2 mm across, disseminated pyrite	ļ	i								
	throughout	1040	460.0	465.0	5.0	3.6	120		:		
460.0-465.0	core is brecciated and gouged			170.0			240				
464.5	local change in schistosity to 20 deg. C.A.	1041	465.0	470.0	5.0	5.0	240			·	
465.5-468.0	foliation subparallel to fold axis	1040	470.0	475.0	5.0	5.0	20		B171835	470	355
469.8	schistosity 10 deg. C.A.	1042	470.0	475.0	5.0	5.0	20		<u>B171655</u>	470	
472.0-486.0	locally silicified	1043	475.0	400.0	5.0	<u> </u>	20		B171836	480	187
478.0-480.0	gouged and brecciated	1044	400.0	403.0		0.0	20		D1710501		
483.6	foliation 40 deg. C.A.					-					1
					1				:		
486.0-514.8	Pale grey to pale olive green muscovite-rich mixed argillite,	i									
	siltstone and metagreywacke, bedding preserved locally,										
	aboundant (about 10%) granular dolomite porphyroblasts	· · · · · · · · · · · · · · · · · · ·							B171837	490	388
	typically 1-2 mm across throughout, trace to 0.5% pyrite										
	porphyroblasts about 1-3 mm across		1	1	 !	i i					
487.5	bedding at 45 deg. C.A.								B171838	500	242
491.5-492.5	strongly schistose and gouged				1	i l					
493.0	contorted bedding 35 deg. C.A., foliation 40 deg. C.A., angle			1							
	between foliation and bedding 85 degrees								B171839	510	194
501.0	foliation 40 deg. C.A.				[ļ					
506.3	bedding 20 deg. C.A.	I	ļ	ļ		i :					
505.0-514.8	medium to light grey in colour		1								
512.3-514.8	strongly schistose, gouged	!				'. i					
514.8	local change in ionation to 55 deg. C.A.		1								
2140 2120	and the value of an enterity over vein walls muse ovite and			Ì							
514.8-517.0	yuanz veni, dolonne of ankenie near veni wano, orașeovite ana		:		+				B171940	520	155
F	iyine locany					<u> </u>			V17104V	520	100
		ł			i	:					
				<u> </u>			 		B171841	530	164
		·	+		+	<u></u>					
		i									
1		1									

D.D.H. IMG-2K-02

Page 6 of 6

				Feet	Au	Au	Sluc	lge	Au
From - To Description	Samp.	From	To	Rep. Act.	ppb	oz./ton	Samp.	Depth	ppb
517.0- Pale grey or pale olive green tuffaceous? siltstone and							B171842	540	103
greywacke, fine dolomite in matrix but no porphyroblasts	1045	547.0	548.0	1.0	<10		B171843	553	172
517.0-520.0 gouged	1046	559.3	560.0	0.7	<10		B171844	565	87
520.0-526.0 moderately silicified, trace disseminated pyrite		560.0	562.3	2.3	10	·	B171845	575	67
526.0-533.2 gradational colour change from pale grey to pale olive green	1048	562.3	569.0	6.7	10		B171846	585	74
526.0-527.5 biotite patches 2-3 mm across						<u> </u>	B171847	595	<u> </u>
							B171848	605	106
	· · · · ·		<u></u>	<u> </u>			B171849	615	41
Note: Demoinder of dulit both for a difer Dottell	<u> </u>	!				·	B171850	625	123
Note: Remainder of drill hole logged by R. Hall.	,	<u>+</u> ∙				· · · · · · · · · · · · · · · · · · ·	B171851	635	61
				·····-		<u> </u>	B171852	645	64
	·						B171853	655	57
	1010	000.0	001.5			<u> </u>	<u>B171854</u>	665	135
	1049	680.0	681.5	1.5	30	; <u> </u>	B171855	675	
	1050	681.5	683.3	1.8	10		B171856	685	90
	11/6	683.3	686.6	3.3	10	ļ	B171857	695	64
	11//	686.6	691.6	5.0	<10		B171858	705	52
	1178	691.6	693.6	2.0	<10	+	<u>B171859</u> .	715	53
							<u>B171860</u>	725	29
	4470	740.0	760.0	4.0			<u>B171861</u>	735	39
	1179	748.0	752.3	4.3	< 10	<u>i</u>	B1/1862	/45	35
	1180	/52.3	/ 54.1	1.6	<10		B171863	/35	<u>35</u>
	4404	774 0	775 0			<u> </u>	B171864	/65	
	1181	//1.0	775.0	3.2	<10		B1/1865	775	<u> </u>
	4490	702.0	705 4	2.0	-40		BI/1866	785	
	1102	792.2	795.4	3.2	< 10	<u> </u>	D171969	/93	/
	1103	795.4	804.0	4.0	<10	<u> </u>	B1/1868	805	14
	1104	000.0	004.0	4.0	<u><10</u>	·	B171869	815	
,	1100	604.U	600.U	2.0	<10		B1/18/0	825	88
				<u> </u>			B1/18/1	833	<u> </u>
						<u></u>	D171872	845	29
		l					D171074	835	50
	, 						D1/18/4	205	
				<u> </u>		<u> </u>	D17107C	<u> </u>	
		<u> </u>				<u>i</u>	B1/18/6	885	22

	6	ISLA		UNTAIN GOLD MINES LTD.
DIAMON	ID DRIL	<u>V. Kulu</u> L LOG	т <u> </u>	
HOLE	74		·····	DATE
IMG AZIMUTH	<u> 28-02</u>	Collar	NORTHING	EASTING ELEVATION Aug748,2000
ANGLE				LOCATION
LENGTH		Tail		Red Chulch aveg
INTE	RVAL			LITHOLOGY
FROM	TO	%	С ^	
540.0	559.3			bds
			546' 157=55°	dark gray to black & graphitic, 30% very
				coarce dolante porphare blasti < 19, coars
				Buvite probableste
				(EA7.7 - EAR 1) OR manual (A. EO
		ta se	· · · · · · · · · · · · · · · · · · ·	aut. & t. D
5 59.3	560.0	tr		gy (0.7' recoverad), cA = 20° high & to fi
				white yein quartz + 5% coarce dolomite +
				murcovite + vugo + suft vecessive pale & dark
				areen mineral (trucite?)
560.0	6760			ba da bds
·····				medium gray overall; medium interbedde
				9. component coave grained to "gritty".
				de component shows ~ 10% ton muscovite
				alteration.
		tr		9×/05 (562.5-569.0) 2.5 vecovered
				including 50% bioken wallwock & gours
				KA:0 le hich & t. P.
	1	L	1i	

i. Γ

		ISLA	ND MOL	JNTAIN G	OLD MIN	IES LTD.	
DIAMON		L LOG		1999	MG PRC	DJECT	·····
HOLE			NORTHING	EASTING A		DATE	
азімитн		Collar					
		-					
		Tail					
ENGTH.			[- <i></i>	4	
INTE	RVAL				LITHOLOG	I SY	
FROM	то	%	С^				
				(590.0-0	00.0) (l O Verove	red, broken
				coro à a			.
1210	<u>.</u>	1			Joante		
Q.QXQ.U	815.0	boybi	640	MQZ (F	<u>>627</u>		
			52= 70	light gre	ey & toni	sh, localh	move medium
			1	area. n	nedium a	imposition	Dimination.
			690	109		· · · · ·	to and under
· · · ·			22 - 15	r i	+	+ +	the purphy oblige
			, 142	W dam	rile -seri	cile -quart	c phyllike with
			73:40	good us	envitation	Janage :	1590 very th
				Segment	ied blue .	rey silica.	stringers ie
			755	1. 02 ¹	- 17 A E	04'07	1
			72-17		<u> </u>	<u>, 0, - C</u>	
				9v(681.0)-(BIS)	CA240	cub II 4
<u> </u>		pipo_		qv (683.	3-634.0)	27 Vecox	ered
		1	$\frac{190}{5} = 20^{\circ}$	94 (691.0	6 -693.6)	
				an (748)	- 149 T	$(\wedge -2 \circ^{\circ})$	
		5		91 (7-10)	۲ <u>۰۰۰۲۰۰۰ ۱</u>	<u>, c</u>	546 11- 10 91
		Py'> po		<u>av (150.0</u> V	0-751.31	C N= 50" 5.	ub 11 to f.
		ti po	·	qv (752.3	>-754.1)	(A=30° s.	-6 11 to 2
	ļ	<u>P</u>	ļ	95/94 (1	+1.8 -775	.0) 30 b v	railtock, sub 11.
				(804.0-	806.0)	50000 (ncw	s. s.bt. D.
LOGGED	BY:		.				Sheet

. . .

λ.

.

.

. . .

C.		u	C C	
----	--	----------	-----	--

		ISLA	ND MOL	INTAIN GOLD MINES LTD.
DIAMON		L LOG		1999 IMG PROJECT
HOLE				DATE
AZIMUTH		Collar	NORTHING	EASTING ELEVATION
ANGLE		Tail		LOCATION
LENGTH		1 411		
INTE	RVAI			
FROM	TO	%	с^	LIMOLOGI
815.0	828.9			bs wa (webs)
			<u>.</u>	tronsition Quartert this history hadded
				a interfilled comments
		1	n	- time former or mpanents
		PO>P1		95 (792.2-195.4) L to P.
828.9	0.000	<1		by
				black, thinly laminated, fine grained
			830 57 = 80	siliceous quartz-graphite phy lite; some
			50= 70°	medium-coarce grained pyrite poppyroblasts,
				fine lamina & dissominated pyrite
				(849.0-850.0, 853.0-954.0, 875.0-9000).
				broken corre & gouge
		1	<u> </u>	95 0.31@ 331.2 Sub 11 cove exis, trace
		- -		Cosalite
		1		
		<u> </u>		
LOGGED E	3Y:			Sheet

•

•

, . . . 1 5 .

Page 1 of 6

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. 1MG-2K-03

.

7

[]]]

1

Property:	Mosquito Creek	Collar Grid Coordinates										
Drilling Contrac	tor: Standard Drilling & Engineering Ltd.	<u>Northing</u>	Eas	ting	Eleva	tion				Depth	Azimuth	Dip
Date Started:		19142.4 ft.	9129	.8 ft	4589.	9 ft.				collar	220°	<u>-45°</u>
Date Completed	:							Average dej	oth of each	10-foot sludg	ge sample sho	wn
Final Depth:	405 feet (123.4 m)	Logged by	: J. Wayı	ne Pick	ett, P.C	Beo.		Samp San	nple; Rep.	- Represented	l; Act Actue	ŧl
l .						Fe	et	Au	Ац	Slu	ıdge	Au
From - To	Description		Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	
0.0-22.0	Casing								:			
22.0-115.5	Interlayered limestone, calcareous siltstone and	dolomitic							 1			
	siltstone both with argillite partings, several breed	iated sections		j !								
	comprising broken carbonate beds in argillite mat	rix			:							
22.0-44.0	Pale grey dolomitic siltstone, few calcareous se	ctions, matrix is								B171877		22
	very dark grey and argillaceous, locally conglos	neratic,										
	dolomite porphyroblasts about 1mm across in s	everal places	:						:			
22.0-37.0	red, limonitic and hematitic in places due to su	irface		;			:			:		
	groundwater interraction, trace pyrite, several	sections							1	•		
	breeciated									B171878	40	3
41.2-44.0	conglomerate									B171879	50	2
44.0-64.0	calcareous, dolomitic siltstone and argillite						<u> </u>			B171880	60	4
46.0	foliation 60 deg. C.A.		1127	70.0	75.0	5.0	5.0	<10		B171881	70	1 6
64.0-80.8	pale blue-grey to white bleached limestone and	calcareous	1127	70.0			2.0			4		
	siltstone with thin argillite partings, abundant c	alcite veins,										
	trace pyrite locally, few dolomitic siltstone laye	ers below 73.0										
										B171882	80	<u>)</u> 2
/8.8-80.0	brecciated, about 60% argillite matrix	manaitra		1			!	l	1	B171883	90	ı 3
80.8-89.2	dolostone of dolomitic stitistone, medium grey l	massive,								B171884	100	<u>) 2</u>
80.0 116.6	linkt him or his hashed limestone. for orgilit	a partinus	1	!						B171885	110	<u> </u>
89.2-115.5	ingni one-grey bleacheù fillesione, lew argint	e harmiñs										
100.8-102.	o dolomitic stistone			1			1					

۰.

.

• .

Page 2 of 6

				Fee	t	Au Au		Sludge		Au
From - To Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
115.5-148.0 Pale grey to tan dolomitic siltstone, dolomite porphyroblasts 1-3	j		l		•					
num across in most sections		i		i						[]
116.4-117.0 blue silica and dolomite		100.0	104.0	4.0	4.0	20		0171006	120	2080
117.0 massive pyrite section about 1 cm wide	1128	120.0	124.0	4.0	4,0	20	0.000	51/1000	120	2000
124.4-125.0 quartz vein	1129	124.0	125.0	5.0	5.0	<u>3,400</u> 710	0.099			
124.8-125.0 pyrite with about 2% arsenopyrite occurring as grains about 2	1150	125.0	150.0				÷			
mm across				1			i			
125.0-148.0 several sections are gouged and precedence, about 1% pyrice		i		i						
froments	1131	130.0	136.0	6.0	6.0	30		B171887	130	4484
(36.8-137.0) massive pyrite layer at 45 deg. C.A.	1132	136.0	138.0	2.0	2.0	13,250	0.387			
150.0 Horac massive pyrite rayer at to dep. 50.2	1133	138.0	143.0	5.0	5.0	100		B171888	140	7139
	1134	143.0	148.0	<u>5.0</u>	5.0	90				
										1
148.0-158.5 Dark grey to black argillite interlaminated with light grey	1			;	Į.		1			ł
siltstone, abundant dolomite porphyroblasts 2-5 mm across, large		;					:			
porphyoblasts are zoned and have a greenish core	1135	148.0	151.0	3.0	3.0	190	·	B171889	150	1954
150.0-150.6 quartz-carbonate vein, 20 deg. C.A., at right angles to foliation	1136	151.0	155.0	4.0	4.0	10	* - * - ·			
and orthogonal to lineation, vein contains about 3 % pyrite	, <u> </u>	·								
mostly near vein contact		ļ		i i			i			
152.2 layering 60 deg. C.A.		1								
159 (166.0 weeks as a group grit manning bedding not preserved		· · ·		;	1		:			ļ
interlayered with laster amility and interlaminated grev										ł
siltetone argillaceous and silty layeres contain dolomite	1									
nornhyrohlasts about 3 mm across		· ·		İ.						
159.8 foliation 35 deg. C.A.							<u> </u>	B171890	160	910
162.9-163.1 argillite with siltstone laminae	,,	<u> </u>		 	<u>_</u>		<u> </u>			
164.6-165.0 siltstone			I							
			İ							
166.0-181.0 Pale to medium grey siliceous siltstone and siliceous			 	j			-			
metagreywacke, includes some very fine grained siliceous	L	 		 				·		
cherty? sections, dolomite porphyroblasts in places	1137	170.0	175.0	5.0	5.0	70		B171891	<u> </u>	372
brecciated quartz vein at 40 deg. C.A., oblique to lineation	!	1		i						
1	1			1	i i					

.

D.D.H. IMG-2K-03

Page 3 of 6

					Feet		Au	Au Sludge		2e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	րթե
175.8-177.2	quartz vein subparallel to core axis, vein is about 8 mm across		i						B171892	180	232
	and oblique to lineation		1								1
			1								
181.0-188.5	Interlaminated black argillite and lesser amounts of grey		: i		[) !			ł
-	siltstone			i							ļ
181,0-185.0	Very dark grey to black argillite interlaminated with siltstone,	l			i						
	several dolomite porphyroblasts typically 2 mm across	ļ	ļ					:			ĺ
182.8-184	1 pale green and more mucaceous and dolomitic		1								1
(84.2-185.	U silicified								B171893	190	97
185,0-188.5	mostly black arguinte internayered with lesser grey shistone,										
	about 0.5% pyrite porphyroblasis, 3 min across		ļ			1					ŀ
199 5 100 3	Polo grow to modium grov very siliceous breedis/conglomerate.		1			i		ļ			
100,0-199.2	considements is clast supported in most sections	!		5				1			
191 3-191 8	matrix-supported consionerate consisting of grey siliceous	į			i						
171.5-171.0	clasts in an argillite matrix		1								ļ
189.8	quartz vein, 30 deg. C.A., 2 cm wide, containing minor		i.								
	carbonate	1					1				
195.2	quartz vein, 30 deg. C.A., 1 cm wide, containing minor	,	1			l					
	carbonate, vein is orthogonal to lineation				ļ		:				
1	• • • • •	1129	100.0	201.0		20	570		B171894	200	212
199.2-200.0	Interlayered black argillite and grey siltstone	1150	199.0	201.0		1			17111071	200	
199.2-199	.4 black graphitic gouge, about 1% pyrite	1				ļ			1		
			1	i				:			
200.0-201.0	Carbonate-bearing quartz vein, about 5% pyrite in adjacent				1			:			1
	wallrock					}					
200.0-200.2	vein contact 20 deg. C.A.		 			!					
	n i statu de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de								B171895	210	68
201.0-253.0	Pale grey to pate green dotomitic, micaceous suisione	1					:				
	interlayered with lesser black argnine, several dolonine			ļ			1				
	purphyroomasis typicany 2 min across in most sections, nace		:		а Т						
ļ.	pyric and pyriodic		£								1
-											

D.D.H. IMG-2K-03

Page 4 of 6

					Fee	et	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	_ppb	oz./ton	Samp.	Depth	<u>ppb</u>
218 0-221.7	grever and less dolomitized]							B171896	220	69
221.7-224.0	black argillite, few thin grev mudstone layers, 0.5% pyrite				1	ł					[]
223.0	lavering 50 deg. C.A.	<u></u>					<u> </u>				
224.0-232.0	medium grey soft siltstone, abundant dolomite porphyroblasts								B171897	230	35
	2-3 mm across					1					
228.6-229.2	gouged and broken core	! 									
232.0-234.3	black argillite, few grey mudstone layers, about 5% irregular	1139	232.0	234.3	2.3	2.3	<10				
	pyrite masses					i		1			1
233.7-234.2	about 10% pyrite and pyrrhotite stringers							÷	D171808	240	25
234.3-253.0	medium grey to pale grey dolomitic siltstone, abundant	·			·				D1/1090	<u> </u>	<u> </u>
· ·	dolomite porphyroblasts 1-3 mm across				<u>_</u>	·			B171899	250	27
245.0-253.0	about 10% quartz carbonate veins subparallel to schistosity				<u> </u>				BITION		
253.0-378.0	Acdium grey to medium green mafic tuff and tuffaceous	1				:		1			1
	iltstone					1					
257.0-257.7	black argillite, trace pyrite and pyrrhotite				ļ I			1			
259.4-317.5	medium grey, granular tuff or tuffaceous siltstone, poorly		! .					1			
	bedded, slightly dolomitized in places, , fine grained ilmenite in		} .			1 					
	a few locations, also fine grained muscovite locally, few quartz-								B171900	260	20
	calcite veins, some containing chlorite, trace pyrrhotite locally	<u> </u>							B171901	270	17
267.0-269.0	brecciated, foliation at 55 deg. C.A.										
268.0	foliation 55 deg. C.A.		1						:		
273.2-273.5	gouge zone, 2 cm wide, 55 deg. C.A.	·	1								
273.0-274.0	rock is soft, chloritized and sericitized							·	<u>B171902</u>	280	7
274.2-274.5	quartz, calcite, chlorite vein, trace pyrite, vein 70 deg. C.A.								B171903	290	33
289.0	gouge zone, 2 cm wide	1140	299.3	305.0	5.7	5.5	80		B171904		25
299.0-305.0	rock is bleached, abundant veins, mostly quartz-carbonate,	1		ĺ	ļ	i i					
	trace pyrite; dark green chloride-bearing vents 2 min whe are		l	ĺ	[(
	cut by later quartz-carbonate vents, both sets of vents are		1					:			l
	subparallel to ionation, in places these two vehi types are cut		+		 -				D171005	210	22
105 0 212	by rate quartz-carbonate vents at high angle to tomation		<u>}</u>						6171903		
305.0-312.4	icss bicacieu maii 277.0-505.0				Ì	1					
						:					

1

1

1---1

Page 5 of 6

r - 1

<u>[</u>]

m

					Fe	et	Au	Au	Sluc	ige	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
312.5-317.5	abundant quartz-calcite veins; brecciated quartz-carbonate	1141	315.0	320.0	5.0	5.0	<10		l		
	veined tuff comprises fragments 1 to 2 cm thick in thin	I									
	anastomosing dark argillaceous matrix				ĺ	1					
317.5-342.6	grey-green tuff interlayered with minor amounts of black	ĺ									1
	argillite							+	D171004	320	10
317.5-327.2	grey-green tuff, about 20% quartz-carbonate veins, slightly				 				B1/1400	520	10
	sericitized and dolomitized	1147	225.0	220.0	5.0	47	<10		i 	······	
327.2-329.0	black graphitic argillite, grey siltstone; grey convoluted silty	1142	325.0	330.0	5.0	4.7	<10		:		
	layers in black argillite matrix, disseminated pyrite										i
328.5	minor fold closure					I					
329.0	gouge zone, 1 cm wide								B171907	330	3
329.0-329.3	quartz, calcite, epidote? alteration adjacent to gouge				+						
329.3-335.8	grey-green tuff, about 20% quartz-carbonate veins, slightly								:		
	sericitized and dolomitized				:						
329.5	foliation 50 deg. C.A.		:								
330.3	gouge, 2 cm wide, 70 deg. C.A.		:		:	I					
335.8-336.7	black graphitic argillite										
336.8	minor fold closure										
336.7	contact 45 deg. C.A.								B171908	340	16
336.7-341.7	medium grey-green tuff, minor alteration										
338.8-339.0	black argillite bed, 50 deg. C.A.							•			
341.7-342.6	black argillite, contact 50 deg. C.A.										
342.6-378.0	grey-green tuff, locally sericitized and dolomitized, several	1	1								
	calcite veins			1					<u>B171909</u>	350	9
345.3	gouge zone, 2 cm wide					<u> </u>					
352.4	gouge zone, I cm wide					<u> </u>			B171910	360	6
356.5-357.5	blotchy silicification and carbonalization, while charky			1							
	mineral also present	,				:					
357.5-358.5	apilli tuff?; consists of subrounded pale grey elongate								D171011	170	
2/0.0 270/	fragments in a dark green chiorite matrix					÷			B171911	370	
369.0-370.0	animatic calcule vertis and amygoules								51/1912	380	
373.0-578.0	importation in matrix										
I.	intente il likuba		I		i						

D.D.H. IMG-2K-03

Page 6 of 6

					Fe	et	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ррь
378.0-405.0	Grey-green amygdaloidal basalt, abundant calcite amygdules					:			B171913	390	10
	and irregular open-space fillings 0.2 to 2 cm across; abundant					:					
	calcite/quartz veins also present, lineation well developed, trace					:					
	pyrite										
399.0-399.2	gouge								B171914	400	9
						:					
405.0	E.O.H.					1					
								i			
			i								
			i I		:			1			
		•									
					i i						
								:			
					:	:					
			i								
					1			· · · · · ·			
			;					:			
			i		i						
]			i					
									· ·		
			1					. :			
		1				÷					
	,										
			1								
[
			1 					:			

Page 1 of 4

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-04

Property:	Mosquito Creek		Collar Grid Co	oordinates		
Drilling Contractor:	Standard Drilling & Engineering Ltd	Northi	ng Eastin	g Elev	ation	Depth Azimuth Dip
Date Started:		19143.1	ft. 9130.6	ft. 4589	9.9 ft.	collar 220° -57°
Date Completed:						Average depth of each 10-foot sludge sample shown
Final Depth:	588 feet (179.2 m)	Logge	d by: J. Wayn	e Pickett, P.	Geo.	Samp Sample; Rep Represented; Act Actual

					Fe	et	Au	Au	Sludy	<u>g</u> e	Au
From - To	Description	Samp.	<u>From</u>	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-25.0	Overburden	:							· · · · · · · · · · · · · · · · · · ·		
							i				
25.0-60.3	Pale green dolomite siltstone and argillite, argillite contains								B171915	30	366
	brecciated fragments of dolomite siltstone								B171916	40	4
									B171917	50	4
60.3-114.0	Pale blue-grey limestone containing minor argillite partings,								B171918	60	6
	few dolostone and dolomitic siltstone sections								B171919	70	2
70.4-73.6	tan dolostone								B171920	80	2
73.3	gouge 2 cm wide								B171921	90	7
95.0	foliation at 75 ° to C.A.								B171922	100	8
				÷					B171923	110	2
114.0-132.0	Calcareous siltstone and argillite, brecciated, 30% calcite veins								B171924	120	3
	,,,							····	B171925	130	2
132.0-147.0	Olive green dolomitic siltstone, sericitic, locally silicious, 5%				:				B171926	140	54
	dolomite porphyroblasts in some sections										
141 1-141 8	α and α a				i		-				
	dolomite crystals near edge of vein						:				
	dotonnie orystalisateta edge of voni				!						
147 0-151 2	Pala blue grow to blooched granular limestone few sections				•				B171927	150	2
1-1/10-1,/1/2	contain nale green sericite as matrix to breecia fragments										
	contain pare green serience as matrix to breech mightents										
					1	:					
					Ì	1	-				

Page 2 of 4

		يب عصب بعد ومرساة الالادة			Fee	et	Au	Au	Sludg	je	Au
From - Tu	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
151.2-170.0	Pale grey-green dolomite siltstone, several sections are								B171928	160	4
	brecciated, few quartz veins, several dolomite porphyroblasts			<u> </u>					B171929	170	7
· ·	about 2 mm across										
159.8-160.1	gouge										
											1
170.0-172.0	Cobble conglomerate, pale grey moderately silicious cobles in										
	dark grey argillite matrix, about 5% dolomite porphyroblasts			1							
	about 3 mm across		•								
						· · · · ·			D101000	100	
172.0-183.3	Pale grey soft siltstone interlayered with medium grey-green								B171930	180	/5
	argillite, about 15% dolomite porphyroblasts, 3 mm across								· •		
183.3-208.8	Pale green to medium grey quartz grit, silicious greywacke ad										1
	dolomitic siltstone containing about 5% dolomite porphyroblasts,	ĺ				:					
	3 mm across					<u> </u>	· · · · · ·		B171031	001	13
184.0-186.0	local change in schistosity to 30 ° to C.A.	1151	197.7	200	23				B171932	200	167
198.4-199.3	quartz vein, 5% pyrite, vein orthogonal to lineation at 45° to	1152	200	205	5	: 	<10		0111751		
	C.A.	1153	205	208.6	36		60			;	
208.0-208.8	quartz vein, oblique to lineation and 40° to C.A.		200	200.0		<u> </u>					
300.0 350.0		1154	208.6	214.5	5.9	<u> </u>	10		B171933	210	148
208.8-250.0	Pale grey silicious pebble and cobble conglomerate, overall		· · · · · · · · · · · · ·			 					
	in a negative sincious, few pale green sericite peoples, locally unit					(
3150 317 3	is a conglomerate preceta	1155	214.5	219.5	5.0		1,960	0.057			
215.0-217.3	quarz ven containing about 3% pyrite	1156	219.5	223.5	4.0		50		B171934	220	3466
218.3-219.3	quartz vein containing about 30% pyric	1157	223.5	224.5	1.0		4,890	0.143			
	quartz vem containing about 50% pyrite	1158	224.5	230.0	5.5		10		B171935	230	714
		1159	244.8	250.0	5.2		50		B171936	240	166
	ι.								B171937	250	211
											-
		i									
						· .					
			1								
		,									
L		1				:					

D.D.H. IMG-2K-04

Page 3 of 4

· ·					Fee	et	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ppb
250.0–402.0 Tuffaceous si	Itstone, mafic tuff and mafic volcanic rock, unit	1160	250.0	255.0	5.0		310				
is generally m	edium green and contains about 10% dolomite and										
calcite veins a	nd amygdules						i				
255.0-280.0 about 5% p	yrite	1161	255.0	260.0	5.0		360				
288.0 S_2 at 60 ° to	C.A.	1162	260.0	265.0	5.0		130		B171938	260	232
295.0-298.5 quartz vein	containing about 40% pyrite	1163	265.0	270.0	5.0		170		B171939	270	230
308.0-312.0 brecciated a	nd gouged	1164	270.0	275.0	5.0		1,980	0.058	B171940	280	2197
312.0-330.0 several gou	ge zones	1165	275.0	280.0	5.0		1,840	0.054	B171941	290	1267
		1166	290.0	295.0	5.0		870		B171942	300	3488
		1167	295.0	300.0	5.0		4,130	0.120	B171943	310	1253
		1168	300.0	302.6	2.6		6,340	0.185	B171944	320	1075
		1169	302.6	307.0	4.4		360		B171945	330	1598
		1170	307.0	312.0	5.0		650	:	B171946	340	665
		1171	312.0	318.0	6.0		1,030	0.030	B171947	350	851
402.0-427.8 Pale grey cor	glomerate comprising pale grey silicious cobbles	1172	411.2	412.0	0.8		1,490	0.043	B171948	360	247
and pebbles ir	a dark grey to black argillite matrix, few sericite			A		• •			B171949	370	447
pebbles	•••					1			B171950	380	735
402.0-412.0 unit is very	silicious								B171951	390	323
÷									B171952	400	566
427.8-454.2 Medium gree	n mafic tuff containing about 15% quartz and					ļ			B171953	410	331
calcite veins									B171954	420	162
								: 	B171955	430	71
454.2-455.8 Silicified tuff	?							;	B171956	440	53
									B171957	450	50
455.8-463.0 Pale green st	rongly sericitic and chloritic, brecciated altered										
tuff containin	g about 29% dolomite porphyroblasts about 1 mm				· · · · · · · · · · · · · · · · · · ·	•			B171958	460	858
across								:			
459 ()-461 () breceived						i					
15710 HULLO INCOMING											
463.0-474.5 Breeciated at	willite and siltstone locally calcareous										
472 0-474 5 quartz vein	ATTACK MILL OF BOLDING INCOMENT AND AND AND AND AND AND AND AND AND AND	1 1170	170.0	477.0	E A	i .			D171060	100	274
Trans qualizioni	containing about 20% black chlorite	1173	470.0	4/5.0	5.0		<10		B171959	470	574
	containing about 20% black chlorite	11/3	470.0	475.0	5.0		<10		B171959 B171960	470	374 89
	containing about 20% black chlorite	1173	470.0	475.0	5.0		<10		B171959 B171960	470	374 89

D.D.H. IMG-2K-04

Page 4 of 4

			<u></u>	<u></u>	Fee	et	Au	Au	Sludg	e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
474.5-480.0	Pale grey bedded granular limestone			:			:				
478.0	bedding at 45 ° to C.A.										
400.0.404.0		1174	480.0	485.0	5.0	<u> </u> -					
480.0-484.0	raic grey suicious sitistone		+00.0	405.0							
484.0-485.0	Black argillite										
	S III II B III I						1				
485.0-489.6	Pale green quartz grit, sericite in matrix										
		1175	400.0	101.5		ļ			B171961	490	52
489.6-494.5	Quartz vein	1175	489.5	494.5	5.0		<10				
494.7	gouge about 3 cm wide	1		i							
404 5 504 0	Interface and a state with the set of a set list (shout 2004)										
494.5-504.0	interlayered pale grey satistone and arginite (about 20%)					l			B171962	500	50
504.0-520.0	Pale grey-green silicious, sericite-bearing siltstone										
									B171963	510	59
520.0-558.0	Sericitie, dolomitic tuffaceous siltstone containing about 10%								B171964	520	60
	dolomite porphyroblasts, 2 mm across								B171963	530	41
									B171967	550	157
558.0-590.0	Medium to dark green chloritic diorite?										
558.0-568.0	about 50% of unit is pale grey dolomite				<u> </u>	•			B171968	560	573
568 0-590 0	yery dark green chlorite										
583.0-586.0	brecciated and gouged								B171969	570	892
586.0	pale grey talc?								B171970	580	699
						į					
588.0	Е.О.Н.		i								
		÷									
						:					
						1					
						. !					ļ

Page 1 of 8

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-05

Property:	Mosquito Creek	Collar Grid Coordinates	
Drilling Contractor:	Standard Drilling & Engineering Ltd.	Northing Easting Eleva	ation Depth Azimuth Dip
Date Started:		19143.7 ft. 9131.0 ft. 4589.	0.9 ft. collar 220° -69°
Date Completed:			Average depth of each 10-foot sludge sample shown
Final Depth:	515 feet (157.0 m)	Logged by: J. Wayne Pickett, P.C	Geo. Samp Sample; Rep Represented; Act Actual

					Fe	et	Au	Au	Sh	idge	Аu
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-40.0	Casing					l					
40.0-62.0 44.0-44.5	Pale grey dolomitic siltstone, a few sections consist of rounded angular grey fragments in an argillite matrix, trace pyrite, abundant dolomite porphyroblasts, 1 to 2 mm across ankerite-bearing quartz vein, limonite patches probably after pyrite										
49.1-50.0	ankerite-bearing limonitized quartz vein	1143	44.0	50.0	6.0	4.4	20				
50.6-50.8	gouge and quartz veins	1144	50.0	55.0	5.0	4.0:	20				
6 0.1-61.0 [×]	ankerite-bearing quartz vein, about 20 deg. C.A., oblique to prominent lineation	1145	60.0	62.0	2.0	2.0	10				
62.0-70.0 64.7	Pale grey interlaminated calcareous mudstone , siltstone and argillite, calcareous sections are typically fragmented consisting of angular fragments typically 2 to 4 mm wide in a dark grey- green argillite matrix, argillite laminations and partings comprise about 40% of unit Layering at 65 deg. C.A.										
70.0-95.5 70.0-72.7 74.6	Limestone, blue grey on cored surface but rock is dark grey due to disseminated graphite, several calcite veins tan grey dolomitic siltstone, contains mauve sericite alteration stylolite?										

D.D.H. IMG-2K-05

Page 2 of 8

	······································		•••••	*	F	eet	Au	Au	Studg	e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	քթե	oz./ton	Samp.	Depth	ppb
74.7-76.0	pale grey green sericitic, dolomitic siltstone	:									
74. 7	Contact at 55 deg. C.A., note that contact looks like original					ļ		-	1		
	lithologic contact					1		:			
0551110	Pala grave tan dalamitic siltetana brassistad some brussistion										
95.2-111.0	probably occurred during original deposition and cementation										
	abundant sericite including mauve sericite alteration few					l		:			
	calcareous sections							:			
104.6-105.0	Scricite gouge										
108.0-111.0	trace to 0.5% pyrite	1146	107.0	111.0	4.0	4.0	<10				
110.0-111.0	dark grey argillite makes up greater component of section										
								1			
111.0-156.0	Interlaminated grey, calcarcous siltstone, mudstone and				:						
	argillite interlayered with about 50% pale grey green dolomitic					1		:			
	siltstone										
111.0-117.8	interlaminated grey calcareous siltstone and dark grey argillite,							1			
117 9 119 5	precelated (probably tectoric) in several sections				:						
117.0-117.5	alteration 0.5% nyrite				:	:					
119.5	gouge, 2 cm wide, 55 deg. C.A.										
119.5-123.8	interlaminated calcareous siltstone, mudstone and argillite					İ			B171971	120	19
123.8-125.0	dolomitic siltstone as per 117.8 to 119.5										
125.0-156.0	Interlayered dolomitic siltstone and interlaminated calcareous								,		
	siltstone and argillite							:			
125.0-126	.4 mostly argillite with lesser interlaminated calcareous siltstone					:					
125.0	gouge, 1 cm wide, 60 deg. C.A.										
126.4	minor fault, 25 deg. C.A.					:			B171972	130	8
130.0	foliation, laminations at 55 deg. C.A.				<u> </u>				13171772	1.70	
131.0-131	7 brecciated and gouged	i.									
133.0-134	.5 brecciated, minor gouge		· · · · ·			•		· · · · · ·	B171973	140	560
136.0-148	opportions of calcite veins and irregular masses, few ankarite.										
	bearing quartz veins					;					
	vering quarte vens				.						
					:	,					

D.D.H. IMG-2K-05

Page 3 of 8

					Fe	et	Au	Au	Sludg	e	Au
<u>From - To</u>	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
145.0-147	0 calcite, sericite, graphitic gouge/breccias zone marking minor		:					· · .]
	fault subparallel to core axis								B171974	150	134
145.0-155	.0 about 30% calcite veins										
145.0-155	0 about 30% calcite veins										
145.0-147	0 calcite, sericite, graphite gouge/breccia zone marking minor	i									
	fault subparallell to core axis	i									
148.8	early calcife veins cut by late calcife vein, 1.5 cm wide,					•					
140.7	orthogonal to tollation										
149.0	Ioliation at 50 deg. C.A.	1147	153.0	155.0	2.0	2.0	50	_			
104.0-100	foliotion at 50 day. C. A		100.0	100.0	:	±	20	- .			
147.0	onation at 50 deg. C.A.										
104.0-100	ankente-bearing quartz vent about 1.5 cm wide										
156.0-187.0	Interlaminated calcareous mudstone, calcareous siltstone and	i					· · · ·		B171975	160	46
	dark grey argillite, about 20% calcite veins		1		:						
160.5-168.5	minor fold as marked by change in schistosity orientation										
160.5	schistosity 55 deg. C.A.										
165.0	schistosity 25 deg. C.A.				:						
168.5	schistosity 50 deg. C.A.									· · · · · · · · · · · · · · · · · · ·	
171.0-172.0	minor fault at 15 deg. C.A.				ļ				B171976	170	22
								· • · • · • · · · · · · · · · · · · · · · · ·	B171977	180	7
187.0-191.0	Pale grey dolomitic siltstone, few interlayered calcareous						·		BT/1978	190	6
	mudstone/argillite sections, about 1% pyrite, mauve sericite										
	alteration										
189.0	foliation 55 deg. C.A.				: 1						
101 0 105 0	1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 a		! i						B171979	200	4
191.0-205.0	interlayered carcareous mudstone and shistone with resser		···· +	<u>. </u>	• •		· · · · · •				
	arguine changing to very dark grey arguine with minor							÷			
	bottom of section: interlaminated calcarcous mudstone and	:									
	arguillite sections are breecisted consisting of rounded to angular					1					
	fragments 2-5 mm across in an argillite matrix										
	Augurente a contrat an englishe man a										
					ĺ						

Page 4 of 8

		•		Fe	et	Au	Au	Sludg	e	Ац
From - To Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ррв
 191.0-199.0 equal amounts of argillite and calcareous mudstone and siltstone 196.2-196.7 about 2% pyrite stringers 199.0-205.0 dark grey interlaminated black argillite and grey calcareous 				÷						
mudstone							· · ·			
200.6-200.8 - medium grey dolomitic siltstone, 0.5% pyrite grains 3 mm	1148	200.0	205.0	5.0	5.0	10				
across	1149	205.0	208.2	3.2	3.2	100				
	1150	208.2	211.9	5.7	5.0	490				
205.0-211.8 Mostly quartz veins containing millior amounts of dolomite, 5- 15% pyrite, 2% galena typically accompanying pyrite, trace arsenopyrite		211.9						B171980	210	174
205.0-208.3 half of core is quartz vein, remainder is grey argillite and siltstone wallrock							• :			
206.0 vein contact at 10 deg. C.A., vein is oblique to lineation										
211.8-220.0Very dark grey to black calcareous mudstone and argillite, mudstone layers are brecciated, few pyrite stringers218.8-219.0Pale grey siliceous section, trace pyrrhotite										
220.0-246.5 Pale grey, soft dolomitic siltstone, 10 to 15% dolomite								B171981	220	40
porphyroblasts typically 1-2 mm across, sericite partings, about 10% irregular folded quartz veins, typically containing minor dolomite										
argillite matrix										
224.0-240.5 less preclated, less arginite partings								B171982	230	28
229.5-220.7 cineral green interactors partings in places 229.5-230.0 quartz vein containing about 5% dolomite 229.5 vein contact 50 deg. C.A. oblique to lineation										
237.6-238.7 core is broken, sericite gouge, few pyrite-bearing quartz veins.	1187	237.5	242.6	5.1	4.7	130	1			
coarse dolomite porphyroblasts about 3 mm across 240.0-243.0 about 2% pyrite stringers and disseminations	1188	242.6	246.5	3.9	3.7	20		B171983	240	232
245.0-246.5 rock is more sericitic, gouged in places, large dolomite porphyroblasts about 3 mm across				i i						

D.D.H. IMG-2K-05

Page 5 of 8

					Fe	æt 👘	Au	Au	Sludş	Įe	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	րթԵ
246.5-255.6	White quartz vein, about 5% dolomite within 0.6 ft of upper	1189	246.5	252.8	6.3	6.3	<10			•	
	contact, locally contains pale green strongly sericitic to black		[:			1
	where graphitic wallrock										1
246.5	vein contact 45 deg. C.A.	1100	0.50.0								
254.0-255.0	quartz vein containing 30% pale green sericite, locally	1190	252.8	256.51	3.7	3.0	30		B171984	250	296
	graphitic, also 5% pyrite, typically as cubes 1-3 mm across				:			:			
255.6-284.5	Pale grey siliccous, silicified siltstone and chert?; unit	1191	256.5	261.5	5.0	5.0	90				
	comprises dolomitic siliceous siltstone interlayered with black		!								
	argillite layers typically 5 cm wide, 2% dolomite porphyroblasts,		:		•••••••						
	to locally 3 mm across, trace to 0.5% pyrite	1100	0/1 0	0/2.0					B171985	260	707
261.0-264.0	pale grey-green dolomitic siltstone	1192	261.5	267.2	5.7	5.3	90				
263.0	schistosity 50 deg. C.A.	1102	267.2	071.4	4.2	4 1	00		D17100/		2.20
267.2+271.5	about 0.5% arsenopyrite occurring as crystalline masses	1193	207.2	271,4	4.2	4.1	90		B1/1980	270	3/8
	typically 2-3 mm across, arsenopyrite occurs in strongly	1124	271.4	275.0	5.0	3.0	~10		•		
	siliceous, silicitied sections that also includes 0.5% pyrite						:				
284.5-307.0	Pale grey dolomitic siltstone and quartz grit interlayered with								B171987	280	59
	black argillite, about 10% dolomite porphyroblasts typically 2-3								B171988	290	10
	mm across			i		:					
290.0-295.0	few calcareous sections					İ					
290.0	laminations 70 deg. C.A.	l l									
291.6	bedding 65 deg. C.A. as defined by 3 mm wide argillite layer					i			1171090	200	
296.8-306.6	pale grey-green massive quartz grit, sericite and dolomite in								B1/1989	300	
204 4 202 0	matrix, 0.5% biotite in places					·		i			
306.6-307.0	quartz vein, trace pyrite, dolomite										
	vein contact 30 deg. C.A.										
307.0-339.5	Pale grey, strongly siliceous quartz grit, quartzite and		!						B171990	310	3
	siliceous siltstone interiavered with about 10% black argillite.							-			
	about 15% dolomite-bearing quartz veins typically 5-10 cm wide,		i		i						
	at high angle to schistosity and oblique to lineation, fractured and				i						
	brecclated in sections										
						i					
						i					

Page 6 of 8

					F	eet	Au	Au	S)uð	<u>ze</u>	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ppb
319.0-320.0	chlorite-, sericite-bearing quartz vein, trace pyrite								B171991	320	13
322.5-326.0	siliceous conglomerate comprising pale grey siliceous clasts										
	typically 0.5 to 1.0 cm across in a siliceous quartz grit matrix,	Į									l
	few blue quartz grains							i			
327.8-330.0	brecciated, tan to pale green dolomitic, dolomitized sericitic					+-			B171992	330	3
:	silttstone, abundant dolomite porphyroblasts about 2 mm										
	across, argillite partings form matrix to breccia fragments, trace										
	pyrrhotite throughout										
331.5-332.6	dolomitized						:				
332.3	gouge, 2 cm wide at 70 deg. C.A.			1							
339.5-361.0	Pale green to tan dolomitic siltstone, argillite partings, 5 to 20%										
	dolomite porphyroblasts 1-2 mm across, trace pyrite locally, few]								l
	pebbles in siltstone in upper section										
339.5-339.8	sericite gouge	1195	338.8	342.4	3.6	3.5	90		B171993	340	2243
342.4-343.7	quartz vein, contains ankerite within 7 cm of upper contact	1196	342.4	343.8	1.4	1.3	6,710	0.196			
342.8-343.	2 about 70% pyrite	1197	343.8	348.5	4.7	4.5	<10		B171994		1078
356.5-357.2	dolomite-bearing quartz vein at 35 deg. C.A.										
361.0-412.5	Pale grev green to tan very fine grained altered matic volcanic			,							
	rock, possibly pillowed locally, slightly magnetic, abundant tiny					:					
	black ilmenite or magnetite crystals, very dark grey siliceous										
Ì	cherty zones mark interflow areas, about 10 to 15% calcite		1			I.					Ì
	amygdules typically 1-3 mm across; dolomitization and										
	sericitization is strong in upper 3 feet of unit, although weaker										
	elsewhere, fine grained dolomite is present in most of unit										
361.0-364.0	gradual colour change from tan-grey to grey-green probably					i 		·····	B171995	360	69
	drom decrease in alteration								D171007	270	
361.0-361.3	sericite gouge					· · · · · · · · · · · · · · · · · · ·		+	B171990	370	
364.5	local change in schistosity to 35 deg. C.A.								D1/199/	300	23
367.0	schistosity 55 deg. C.A., typical								B171999	400	
402.2-412.5	about 20% dolomite porphyroblasts		 +		<u> </u>				3		
402.2	sericite gouge, 1 cm wide at 60 deg. C.A.										
				,							

Page 7 of 8

					Fe	et	Au	Au	Sludg	<u>ge</u>	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ррb	oz./ton	Samp.	Depth	ррь
412.5-428.2	Grey-black conglomerate breccia							:			
412.5-420.5	grey angular to rounded siliceous pebbles in an argillite								B172000	410	8
	matrix, the latter comprising about 10% of section						0.0		0170061	420	1.0
420.5-428.5	dark grey to black consisting of rounded to irregular siliceous	1198	425.0	429.2	4.2	4.2	20 .		B1/2851	420	10
1	clasts and fragments of probable brecciated siltstone beds in a				İ			÷			
	black graphitic argillite matrix, the latter comprising 40-00%										
	of section		!		:			·			
428.2-431.0	Medium grev siliceous biotite-bearing greywacke, about 10%	1		i							
,	dolomite porphyroblasts typically 2 mm across										
428.5-429.0	quartz vein at 10 deg. C.A., thin galena or cosalite? vein and								B172852	430	10
	pyrite within the quartz vein	:	. 1						1		
	O to write these multiplications at 25 day C.A. wein it	1100	430.0	434 3	34	3.4	10	•			
431.0-432.2	Quartz vein, trace pyrile, vein contacts at 55 deg. C.A., vein is		430.5	101.0	5.4						
	bolique to inteation, about 576 dolorinde					1					
432.2-460.0	Interlayered grey siliceous siltstone (about 50%) and black										
	argillite, about 5% dolomite porphyroblasts 2 mm across in most							:			ĺ
	of unit, trace pyrrhotite	1000	400.01		6.4	5.0	<10	· · ·	11172952	440	17
439.8-440.6	quartz vein, about 5% dolomite, vein at 35 deg. C.A.	1200	439.8	446.2	0.4	5.8	<10		B1/2855	440	
442.0	foliation 70 deg. C.A.	1201	453.6	455.7	2.1	2.1	390		B172854	450	13
454.7-455.7	FOCK is precutated and gouged (A_{1}) about 5% pyrite except 40% in	1202	455.7	460.0	4.3	4.3	1,760	0.051			
435.7-459.7	lower 15 cm of vein where the pyrite is accompanied by about										
	2% arsenopyrite ad trace galena				1	i		i.			
			· ·								
460.0-515.0	Medium green mafic volcanic rock, about 15% veins, dolomite		i					· · · · ·			
	and quartz in upper 9 feet and mostly calcite with a few							:			
160.0.166.0	dolomite/quartz veins below	1203	460.0	463.6	3.6	3.6	1,440	0.042	B172855	460	2011
400.0-400.0	3.5 about 5% pyrite				_						
466.0	gouge contact at 40 deg. C.A.	1204	463.6	468.0	4.4	4.4	70	-			
466.0-474.0	veins, amygdules and irregular open spaces are dolomitic or				1						
	quartz, trace pyrite		:								
16		1									

Page 8 of 8

				Fe	et	Αυ	Au	Study	je	Au
From - To Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
466.0-469.0 tan, pale grey dolomitized and sericitized, about 15%					1			B172856	470	465
dolomite-bearing quartz veins, few pyrite stringers					:					
478.7-479.2 rock is tan and dolomitized, contains about 0.5% pyrite								B172857	480	209
479.2-479.3 quartz/sericite gouge/breecia								B172858	490	182
508.6-510.0 pale grey, silicified, 2% pyrite	1205	508.6	513.0	4.4	4.4	50		B172859	500	68
510.0-512.0 tan, buff dolomitized and sericitized, 1% pyrite							• • • •	B172860	510	154
515.0 E.O.H.		1					· · · · ·			
		:					:			
					•					
			1	1						

· ·

Page 1 of 7

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-06

. *

Property:	Mosquito Creek	Colla						
Drilling Contractor:	Standard Drilling & Engineering Ltd.	Northing	Easting	Elevation		Depth	Azimuth	Dip
Date Started:		19265.2 ft.	8913.0 ft.	4590.4 ft.		collar	220°	-45°
Date Completed:					Average depth of each	h 10-foot slu	dge sample s	hown
Final Depth:	665 feet (202.7 m)	Logged by:	J. Wayne Pick	kett, P.Geo.	Samp Sample; Rep.	- Represent	ed; Act Ac	tual

					Fee	et	Au	Au	Sludy	ze	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-20.0	Casing										
20.0-147.0	Pale grey to bluish grey limestone interlayered with banded calcareous mudstone, siltstone and argillite. Few thin layers of dolomitic siltstone. Latter comprises 20-50% of rock. Trace pyrite locally typically occurring as clots 5 mm across layering 50 deg. C.A.										
32.0-34.0	limestone units are slightly dolomitized, trace pyrite										
50.5-56.5	dolomitized and scricitic, 10% dolomitic porphyroblasts about	1206	50.0	55.0	5.0	5.0	<10				
	2 mm across, disseminated pyrrhotite locally										
53.5-53.9	5-20% pyrite and lesser pyrrhotite								D470004		
62.5-65.7	argillaceous section, brecciated, calcareous fragments occur in								B1/2801	60	
	a very dark grey argillite matrix					 		1 +	D170960	70	3
65.7-68.0	dolomitized, mauve muscovite	1207	60.4	75.6	6.2	4.0	<10		D172002	70	
69.6	pyrite layer about 1 cm thick	1207	09.4	75.0	0.2	4.0	<u> </u>	<u> </u>			
73.0	sericite gouge about 1 cm wide		. 1								
73.4	scricite gouge about 1 cm wide	1									
74.3	sericite gouge about 1 cm wide								B172863	80	2
77.6	sericite gouge, 25 deg. c.a., 2 cm wide								0172000	00	
79.7	dolomitic siltstone layer about 2 cm wide										
80.2	dolomitic siltstone layer about 1 cm wide								B172864	90	2
88.0-89.0	calcite vein										
· · ·											

.

Page 2 of 7

					Fee	t	Au	Au	Sludy	ζe	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
90.0-90.6	oxidized gouge							:			
93.0-93.3	calcite vein, 35 deg. C.A.				<u>-</u>						
98.7-99.0	gouged	1208	95.0	100.0	5.0	4.4	<10				
99.2	quartz vein, 25 deg. C.A., about 1 cm wide, orthogonal to	1				:					
	dominant lineation										
120.6-129.0	slightly dolomitized in places, very minor mauve muscovite										
131.0	S1 at 50 deg. C.A., angle 40 deg. counterclockwise with				·	:		•			
	lineation looking down hole. S2 at 65 deg. C.A., angle 20 deg.							:			
	clockwise with lineation looking down hole.										
131.2-133.3	about 15% calcite veins at 45 deg. C.A.				:						
	D. 1. 11. 11. Anno 11. Anno 11. 11. Dela consta pola allan conce										
147.0-165.1	bolomitic siltstone and argilite. Pale grey to pale onve green			:							
	uolomitic sitistone interlayered with very dark grey to black			-							
1470 1475	argunate					;					
147.0-147.5	ablique to dominant lineation			i ; ;							
1475 154 0	mostly compared of breesisted angularto locally rounded	1209	145.0	150.0	5.0	5.0	20				
147.5-154.0	siliagous to dolomitic fragments in a black availlite matrix few							:			
	delemitic northwohlasts locally typically 2 mm across										
154/0 150 3	pole area silicified dolomitic silictore containing about 5%				:						
1.04.0-1.07.0	dolomitic nornhyroblasts 2 mm across										
159.2	trace areenonytite										1
159 3-160 2	quartz vein about 70% of vein material consists of Fe-	1210	158.4	161.3	2.9	2.9	10				
100.2	carbonate within 2 cm of vein contacts	1211	161.3	165.1	3.8	3.4	<10				
160.2-165.1	pale grey to bale olive green dolomitic muscovite-bearing										
	siltstone and argillite containing about 10% dolomite		:								
	porphyroblasts 3 mm across	I						1			
160.2-161.3	2 trace arsenopyrite crystals typically 3 mm across										
165.1-181.0	Pale grey to dark grey interlayered siltstone, black argillite,							н Н			
	greywacke, quartz grit and siliceous siltstone containing							:			
	dolomite porphyroblasts 1-3 mm across that comprise 1-5% of										
	rock in most sections										

.

Page 3 of 7

					Fee	t	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
166.0	S2 at 50 deg. C.A. and 60 deg. clockwise from lineation	i l									
	looking downhole						···· ···				
167.5-168.1	greywacke contains 2% pyrite as stringers	1212	165.1	169.4	4.3	4.0	<10	•			
168.5-169.2	silicified										
171.9-174.2	greywacke										
173.0	local change in S2 to 20 deg. C.A. and 5 deg. clockwise										
	relative to lineation looking down hole										
178,1-179.9	pale grey and silicified										
179.0	S2 at 55 deg. C.A. and 5 deg. clockwise relative to lineation										
	looking down hole					 					
		1		:		: !					
181.0-397.0 P	ale grey to pale green tuffaceous siltstone										
181.0-217.0	pale grey to bleached sericitic and dolomitized, line granular										
	texture, about 5% calculation and quartz veins, traces pyrite and										
	abundant tiny black limenite? crystals in places, about 5%					Ì					
101.0.000.0	calcite and/or dolomite porphyroblasts in several sections										
181.0-200.0	abundant dolomite porphyroblasts locally, typically 1 hun										
102 5 102 8	across		i			i :					
192.5-193.8	quartz vein and sericite gouge at 55 deg. C.A.										
205.5-207.5	to lineation looking doumbolo										
212.2	to intration looking downlote S_{2} at 45 day. C_{2} = 55 day, clockwise to lineation looking	ļ									
213.2	52 at 45 deg. C.A., 55 deg. clockwise to inteation tooking										
217 0 207 0	rock is pale to medium green					1		:			
217.0-397.0	10.15% calcite veins and irregular masses in several sections					•					
220.0-397.0	vorioite aquae										
240.9-241.0	guartz carbonate vein subnarallel to schistosity, oblique to										
240.7-241.0	lineation			-							
280.0-284.0	about 40% quartz-calcite veins, up to 5 cm wide										
284.0-312.0	about 5% quartz-calcite-chlorite vein, subparallel to foliation.										
20,10 0,12.0	50 deg, to C.A. and typically 0.5 to 2 cm wide; host rock is	1		1		1					
	pale grey and silicified 2-3 cm up hole from some of the veins			:		1					
285.6-287.4	about 50% black argillite interlayered with the tuff										

•

. .

Page 4 of 7

					Fee	t	Au	Au	Sludge		Au
From - To	Description	Samp.	From	To	Rep.	Aet.	ppb	oz./ton	Samp.	Depth	ppb
286.0	S2 at 50 deg. C.A., 60 deg. clockwise to lineation looking]								
	downhole	: 1			1						
310.0-315.0	local change in S2 to minimum of 20 deg. C.A. at 312.6					:					
311.0-315.0	abundant dolomite porphyroblasts, 1 mm across										
312.0	trace pyrrhotite		1								
335.3-336.0	sericite, graphite gouge	i									
336.8	sericite gouge, 2 cm wide		. i		'						
338.0	sericite gouge, 2 cm wide at 65 deg. C.A.							· .			
343.0	minor fold of S2										
345.0-350.0	about 1 foot (30 cm) core lost										
348.0	gouge, 2 cm wide	1213	355.0	360.0	5.0	5.0	180				
357.5-358.0	fault, quartz-sericite gouge at 25 deg. C.A., about 5% pyrite	12.10	000.0					· <u>·</u> ·······			
363.0	S2 at 55 deg. to C.A. ad 80 deg. clockwise to lineation looking				1			1			
	downhole	1214	380.0	385.0	5.0	4.6	20				
380.0-380.6	pale green sericite-quartz gouge at 80 deg. to C.A.	1215	385.0	389.3	4.3	4.3	30				
385.0-389.0	strongly chloritic	1216	389.3	395.0	5.7	4.0	560	0.016			
389.0-397.0	gouged and brecciated, gouge is sericitic and contains	1217	395.0	397.0	2.0	2.0	20				
	carbonate-bearing quartz veins, trace to 0.5% pyrite locally										
2020 110 0	(1.) C. J. (. (279)) is cale every and permovinely silicified					I 1		· ·			
<u> </u>	and a superson of proof activity and pervasively sinched,		!		İ						
	as alternel sections suggest that the tock is silicified tuff, trace	ļ	i								
le	ss anered sections suggest that the rock is smeared thin, thee										
P. 207 0 208 6	intensely silicified	1218	397.0	400.0	3.0	3.0	<10	<u>.</u>			
397.0-398.0	lass silicaous					: 1					
398,0-400.0	local change in \$2 to 30 deg. C A	I							- - - -		
400.0-403.5	abundant quartz vein parallel to folation at 45 deg. C.A., veins					i i					
400.0-405.5	are typically 5 mm to 1 cm wide		İ	!							
403 5-404 5	chloritic sericitic										
404 2-404 4	ankerite-bearing quartz vein							•			
408.6	gouge zone, 2 cm wide				:	: · ·			;		
408.6-408.9	siltstone and argillite, graded bedding at 80 deg. C.A. indicates	i		 •	1						
	tops downhole					1			1		
411.0-414.0	less siliceous, dark green coarse grained chloritic tuff(?)							i			

D.D.H. IMG-2K-06

Page 5 of 7

					Fe	et	Au	Au	Sludge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррђ	oz./ton	Samp. Depth	<u>ddd</u>
416.8-420.7	Very dark grey to black argillite and lesser interlaminated grey									
	siltstone containing abundant dolomite porphyroblasts about 3	i				:				
	mm across				:	:				
418.7	gouge, 1 cm wide at 40 deg. C.A.				İ	1		4		
419.2	gouge, 1 cm wide	I	i		I			1		
130 7 140.0	Interlayered quarter ant cilianous graver alta lassar silicoous	i				1		:		
420.7-440.0	site tare and your dark grey to black arrillite typically 10%		!					:		
	delemite normhurablette 1.2 mm across most common in		i I		İ			:		
	ciliatore lesser in grite: larger porphyroblasts 7-3 mm across in									
	sitistone, tesset in gitts, target por phyrobiasis, 2-3 thin across in				:					
128 0 440 0	from note oney, this eiltetone or mudetone layers					1				
438.0-440.0	tew pare grey, that subsone of and some myers		ļ			1		•		
440.0-450.0	Well foliated black argillite containing about 5% dolomite	1	:							
	porphyroblasts typically 2 mm across		İ .							
445.2-445.6	carbonate-bearing quartz vein at 40 deg. to C.A.	ļ	5							
445.6-445.8	black graphitic gouge				i i					
449.7	graded bedding indicates tops up hole, about				İ	:				
			1							
450.0-468.8	Interlaminated, pale grey siltstone, mudstone and black					I.				
· · -	argillite. Siltstone and mudstone beds typically 1-2 cm thick,				:	÷.,		:		
	graded bedding indicates tops up hole, trace pyrite and about 2%	I								
	dolomite porphyroblasts, 2 mm across throughout	Ì	:		1	ļ.,				
450.8	bedding at 50 deg. C.A. and 25 deg. clockwise to lineation		İ							
·	looking down hole			I		:				
403.0-408.8	pale grey, bleached and sentine, trace pyrite	i			į					
468.8-509.6	Pale grey to pale or medium green altered mafic intrusive		!			1. 1				
	rock? Rock is bleached and sericitic, abundant carbonate in	ĺ			!					
	matrix in most sections, other sections are silicified, abundant		ļ	į		1				
	dolomite porphyroblasts, typically 2 mm across, in most sections			 						
468.8-471.5	carbonate-bearing quartz vein about 1 cm wide and at 10 deg.	ł				i.				
Į,	C, A, oblique to lineation	ļ		ļ	:					
li -			l		1					
16			1		1					

.

.

Page 6 of 7

					Fee	et	Au	Au	Slu	dge	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
479.0-484.4	intensely silicified							:			
482.0	carbonate-bearing quartz vein about 4 cm wide, at 40 deg. to		1								
	C.A. and oblique to lineation		ļ			1					
490.0-492.0	medium green, more chloritic										
500.0-508.0	less altered, medium green, chloritic	1									
509.6-527.0	Pale olive green, strongly sericitic, dolomitic siltstone; much of										
	section is gouged and/or brecciated, 10-20% dolomite								I		
	porphyroblasts about 2 mm across								.		
509.6-510.0	scricite gouge	1219	508.2	513.3	5.1	5.0	<1()	:		
512.0-514.0	silicified	1220	513.3	518.0	4.7	4.4	<1()	•		
517.3-520.0	scricite and quartz gouge, trace pyrite	1221	518.0	522.1	4.1	4.7	4()			
520.0-527.0	section contains about 20% irregular and discontinuous quartz	1222	522.1	527.0	4.9	4.6	<1()			
	veins and irregular masses that occur within a dolomitic,										
	sericitic matrix, veins are 0.5-1.0 cm wide										
527.0-601.0	Pale grey quartz grit, siliceous greywacke and siliccous										
	siltstone interlayered with argillite; contains about 5-10%										
	dolomite porphyroblasts, 2.0-3.0 mm across, generally larger in										
	more argillaceous sections, units are locally silicified.										
	Argillaceous sections are typically 10-15 cm wide and contain		. !					I			
	trace pyrite	İ									
533.4-533.5	gouge	1223	555.0	560.0	5.0	5.0	<1(5			
555.0-551.0	grey chert containing about 2% pyrite and pyrrhotite								-		
559.0	S2 at 65 deg. C.A.	1224	567.0	573.8	6.8	6.5	<1(2	-		
567.0-568.5	quartz veins, sincified sections, about 5% chlorite, 0.5% pyric										
570.0.577.0	and pyrmonite and trace chalcopyrite				i I			1			
570.0-573.8	intensely stitcined and quartz veined	1							1		
575.0-580.0	contains about 2% black chioritoid? porphyrobiasis in places				1				:		
585.0-601.0	interlayered grey sitistone, arginite and quartz-rich greywacke,	:		i				1			
	generally less sinceous overall					÷					
					:						
				i		į ·					

D.D.H. IMG-2K-06

Page 7 of 7

				<u> </u>	Fee	et	Au	Au	Sludg	ie –	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
601.0-611.4	Pale to medium green altered mafic tuff?, sericitic, no	1									
	dolomite porphyroblasts		1	İ		I ;					
603.9-605.4	less altered, medium green, abundant tiny chloritoid?			i		<i>;</i>					
Ì	porphyroblasts							1			
			i								
611.4-645.0	Pale grey silfstone interlayered with minor greywacke, quartz			i				1			
	grit and lesser argillite		:	i				1			
611.4-615.3	brecciated siltstone, consisting of discontinuous, broken			i				:			
	siltstone layers and siltone fragments in an arginaceous matrix							i -			
613,4-613	6 grey gouge	1225	625.5	630.0	4 5	4.4	<10	+			
627.0-629.5	quartz vein containing millor dolonine and anterne, was rock	TELO	020.0								
641.0	aquine about 2 cm wide at 65 deg. C A		i i			1					
643 2.644 5	gouge about 2 cm while at 05 deg. C.A.	1	Í								
644 6-644 9	quartz vein, upper contact at 25 dog, of a		Ì					1			
	pyrrhotite and lesser pyrite as stringers	ł	ĺ								
]	, , , , , , , , , , , , , , , , , , ,					:					
645.0-665.0	Interlayered dolomitic siltstone, quartz -rich greywacke and	 	/ 								
	dark grey argillite	1226	640.8	645.0	4.2	3.5	40	<u> </u>			
645.0-652.5	tan, fine grained and soft sericitic and dolomitic siltstone,	1227	645.0	650.0	5.0	4.3	<10				
	alteration becomes less intense down hole		' 					•			
649.6	gouge zone about 1 cm wide at 45 deg. C.A., trace pyrite	1		l							
652.5-660.5	tan to pale grey sericitic quartz-rich greywacke, few quartz		1		l			I.			
[veins parallel to schistosity, veins are typically 1-3 cm wide	(I	i						
660.5-665.0	interlaminated dark grey argilite and pale grey-green silistone	į		1		I					
	containing 5-10% dolomite porphyroblasts about 2 mm wide	1228	661.0	665.0	4.0	3.8	10	 }			
661.1-661	.5 quartz vein at 50 deg. to C.A., vein contains about 5%				·	1			•		
664 7 665	$\Omega_{\rm constant}$ and $\Omega_{\rm constant}$ at $\Omega_{$		1		:						
004.7-002	dolomite norphyroblasts	ļ		;	1						
664.3	very dark green chloritoid grains about 2 mm across occur in			:							
004.1	wallrock adjacent to vein	ļ	1	1	ļ						
		1	1		:	i		:			
665.0	E.O.H.	ļ	1	1		1					
n .				1			_				

Page 1 of 7

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-07

,

•

Property:	Colla	r Grid (Coordi	nates								
Drilling Contr	ractor: Standard Drilling & Engineering Ltd.	Northing	Eas	ting	Elevation					Depth	Azimuth	Dip
Date Started:		19266.3 ft.	8914	,1 ft .	4590.3 ft.					collar	225°	-70°
Date Complet	ted:							Average de	oth of each	10-foot sl	udge sample s	shown
Final Dept	h: 430 feet (131.1 m)	Logged by:	y: J. Wayne Pickett, P.Geo.				Samp San	nple; Rep.	- Represented; Act Actual			
						Fee	et	Au	Au	SI	udge	Au
From - To	Description		Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ррь
0.0-22.0	Overburden											
22.0-105.0 25.3-25.8 30.0-40.0 40.0-72.0	 Pale grey to pale blue-grey limestone, calcareous mud and pale green argillite interlayered with blue-grey, gr limestone, unit contains about 20% calcite veins, few py patches and trace pyrrhotite locally, about 20% of unit is coloured, sericitic and dolomitic; some of the sericitic se moderately silicified; fractures and minor faults are limo composite calcite and lesser quartz veins, brecciated S2 at 55 deg. to C.A., 10 deg. clockwise to dominant f and 2 deg. counterclockwise to weaker lineation lookin downhole granular limestone and lesser calcareous mudstone and 											
55.0-53.1	brecciated, congiomeratic	s brecciated	1229	55.0	60.0	5.0	5.0	<10	:			
57.2 57.2 75.0-75.3 78.2-79.0	wall rock is limonitized adjacent to vein several pyrite stringers gouge zone, about 1 cm wide, at 55 deg. to C.A. matrix is sericitic and dolomitic	s brecchaled,										

D.D.H. IMG-2K-07

.

Page 2 of 7

					Feet		Au	Au	Sludge		Au
<u>From - To</u>	Description	Samp.	From	<u> </u>	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
87.0-91.0	most of section consists of brecciated limestone beds typically		Γ								
	2-5 mm thick that occur in a very dark grey-green argillite		i								
	matrix, contains about 1% pyrite patches about 3 mm wide. S2										
	at 60 deg. to C.A., 35 deg. clockwise from lineation looking		ţ								
	downhole			1		:					
92.0-93.8	contains about 80% calcite veins, earlier generation of veins,		!								
	angle to schistosity			1	Ì						
105.0-137.0	Interlayered limestone, calcareous mudstone and dolomitic		1		i į						
105 0 111 5	suitstone										
105.0-111.5	locally silicified	Ì			,			:			
116.3-116.8	dolomitized and sericitic, mauve muscovite alteration							:			
137.0-152.0	Sericitized dolomitic siltstone, locally silicified, brecciated		İ								
·	argillite partings	!	:		•						
152.0-157.5	Brecciated limestone, argillaceous matrix) ! :							
157.5-177.0	Interlayered pale grey to olive green sericitic dolomitic			ļ							
	siltstone, pale grey silicious siltstone and chert?, black argillite		İ								
	containing 5-10% contorted pale grey silicious cherty beds.	:									
	Dolomite porphyroblasts, 1-2 mm across occur mostly in pale	L						 			
1675 145 3	olive green sericitic sections	1230	158.0	165.2	7.2	5.3	<10				
	siltstone, contains several carbonate-bearing quartz veins 5 mm		1					1			
	wide parallel to schistosity, 0.5% pyrite			1	İ			:			
160.0-161	.0 brecciated quartz sericite gouge at 75 ° to C.A., about 5%	ł			ļ						
	dolomite porphyroblasts typically 2 mm across	÷		ł				:			
161.0-165	.2 pale green, sericitic chlorite-bearing siltstone	1231	165.2	167.4	2.2	2.4	1,810	0.053			
165.2-167.4	quartz vein, contains 1-2% dolomite crystals near vein contact			-							
167.4-174.2	pale to medium green chlorite-bearing dolomitic, sericitic							4 · · · ·			
	silisione or tuliaceous silisione?			į				:			
174.2-177.0	dolomite porphyroblasts	}	1								
·			<u> </u>	<u> </u>	!			<u>. </u>			

.

Page 3 of 7

					Fe	et	Au	Au	Sh	ıdge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ppb
177.0-226.6	interlayered black argillite containing contorted light grey		:								
	silicious chert? layers and pale grey-green, sericitic and]		į		:			
	dolomitized siltstone and argillite, much of which is probably			!				1			
	an altered version of the argillite and silicious siltstone	l	[i I				. :			
177,0-187.0	black argillite containing contorted light grey siltstone layers	1	:					Ì			
185.0-185	.7 brecciated and gouged							;			
187.0-198.5	pale grey, olive green sericitic, dolomitized siltstone containing	I	1	!		1		:			
	about 15% dolomite porphyroblasts about 2 mm across, trace	i		. 1				į į			
	disseminated pyrite and pyrrhotite		1								
198.5-204.5	less dolomitized and sericitized, mostly black argillite cotaining	1	1	(:		i		1			
	contorted silicious siltstone and chert? layers, 5-10% dolomite										
	porphyroblasts about 1 mm across										
198.8-199	.1 sericite gouge at 65 ° to C.A.	J		1		i J		:		•	
204,5-209.3	pale grey, olive green sericitic, dolomitized siltstone containing		1								
	about 15% dolomite porphyroblasts about 2 mm across, trace	!	i	! 							
	disseminated pyrite and pyrrhotite, few preserved silicious					 				:	
	sections; S2 at 65° to C.A., 25° clockwise to dominant		Į	1	I						
	lineation and 5° counter clockwise to weaker lineation looking	1			1						
	downhole							:			
209.3-226.6	pale grey olive green sericite, dolomitized, locally silicious	}	1	ļi							
	siltstone, mauve sericite in places, 5% dolomite porphyroblasts					. 1					
	about 1 mm across in portions of sections, trace disseminated			1							
	pyrite and locally pyrrhotite	1		1	ĺ	,					
	b) and 1	1	!			' i					
226.6-231.4	Pale blue-grcy granular limestone interlayered with about 20%	1232	226.0	231.2	5.2	5.2	<10	L			
	dolomitic, sericitic siltstone and argillite			1							
-		1		i		İ i		:			
231.4-236.0	Pale grey to pale olive green highly altered silicious siltstone		!					1			
	and quartz grit, rock is highly altered, most sections pervasively			Ì							
	silicified and locally sericitized) 				i					
231.4-233.1	pervasively silicified section containing three zones of semi-	1233	231.2	233.2	2.0	1.9	15,070	0.440			
	massive pyrite (about 70%), zones are 5-10 cm thick	1234	233.2	236.0	2.8	2.7	30			:	
		1	;	ł							
					i	;					
				·		:		· ····-			
the set of the set of

D.D.H. IMG-2K-07

Page 4 of 7

					F	eet	Au	Au	Sh	ıdg e	Au
From - To	Description	Samp.	From	To	_Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
236.0-286.8	Pale grey to pale green quartz grit, silicious greywacke and					1					
	silicious siltstone interlayered with sections dominated by grey		1 '		1						
	argillite containing lesser pale grey siltstone and silicious	l	!								
	greywacke, note two lineations are present in most sections,		i i			4					
	angle between lineations is about 25°		ļ			1					
236.0-245.2	pale grey to dark green-grey argillite containing several pale		Ì			i.					
	grey siltstone and lesser pale grey quartz grit and silicious	1	ļ		.	· i		:			
	greywacke layers, 5-10% dolomite porphyroblasts in most of				1						
	section	1	i								
239.0	Bedding at 70 ° to C.A.		2		i						
245.2-251.0	pale grey quartz grit and minor siltstone, in most sections	ĺ									
	containing 5-10% dolomite porphyroblasts about 2-3 mm		1								
	across, porphyroblasts are coarser in more sericitic finer	ĺ		1	1						
	grained sections										
251.0-253.8	medium grey chert?, containing 2% dolomite porphyroblasts 1-				i	1		:			
	2 mm across]			1					
253.8-275.2	pale grey-green mostly quartz grit and silicious greywacke, few argillite sections	Ì		1		i 					
263.0-263	6 quartz vein containing minor carbonate near vein contact, vein				!			:			
	at 65 ° to C.A.					ļ					
263.6-265	.0 brecciated and gouged	1									
268,7-269	.0 quartz vein containing minor carbonate near vein contact, vein										
	at 45° to C.A.					1					
275.2-286.8	gradual change from medium grey-green argillite and siltstone		1			i i					
	containing lesser quartz grit to black argillite containing a few										
	brecciated, light grey silicious siltstone layers in lower sections			I				į '			
27 5.2 - 276	2 quartz vein containing minor carbonate near vein contact,			l				•			
	lower vein contact at 30° to C.A.		i								
282,5	bedding at 60 ° to C.A.			1	i						
			1	ļ		İ		· · ·			
				:]						
•		ł	i	ļ							
						:			<u> </u>		

•

י <mark>ברות לרות לרות לרות ברות ב</mark>רות ביות ביות ביות ביות ביות ביות ברות ביות ביות ביות ביות ביות ביות ביות ליות ליות י

D.D.H. IMG-2K-07

Page 5 of 7

From - ToDescriptionSamp.FromToRep.Act.ppboz./tonSamp.286.8-305.0Medium grey-green pebble/cobble conglomerate, containing mostly silicious clasts and a few dark grey less silicious cobbles and pale green sericitic pebbles, overall unit is very silicious, it is brecciated in some sections, few beds of quartz grit interlayered with conglomerateImage: Comparison of the section of th	•
 286.8-305.0 Medium grey-green pebble/cobble conglomerate, containing mostly silicious clasts and a few dark grey less silicious cobbles and pale green sericitic pebbles, overall unit is very silicious, it is brecciated in some sections, few beds of quartz grit interlayered with conglomerate 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long bedding and S2 at 60° to C.A. and 15° clockwise to dominant 	Depth ppb
 mostly silicious clasts and a few dark grey less silicious cobbles and pale green sericitic pebbles, overall unit is very silicious, it is brecciated in some sections, few beds of quartz grit interlayered with conglomerate 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant 	
 and pale green sericitic pebbles, overall unit is very silicious, it is brecciated in some sections, few beds of quartz grit interlayered with conglomerate 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant 	
brecciated in some sections, few beds of quartz grit interlayered with conglomerate 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	
with conglomerate 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	
 305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant 	
305.0-333.0 Pale grey-green soft dolomite siltstone interlayered with lesser argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	
argillite, unit contains about 10% dolomite porphyroblasts in places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	1
places, about 5% quartz veins containing minor Fe-carbonate, veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	
veins are typically parallel to foliation 311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	1
311.6-314.0 about 5% chloritoid porphyroblasts about 2 mm long 310.3 bedding and S2 at 60 ° to C.A. and 15 ° clockwise to dominant	
310.3 bedding and S2 at 60° to C.A. and 15° clockwise to dominant	
lineation and 2° counter clockwise to lineation looking	
downhole	
315.0-315.7 quartz veins containing about 10% Fe-carbonate within 2 cm of	
vein contacts, veins are oblique to lineation and at 35 ° to C.A.	
333.0-347.4 Black graphitic argilite, lesser grey mudstone, much of section	
is gouged and contains about 30% quartz veins, 0.3% pyrice	
1235 335.0 340.3 5.3 5.0 80	
335.0-336.3 gouged	
339.3-339.5 gouged	
339.5-340.3 quartz vein, 5% dolomite crystals near vein contact, vein at 50	
1236 340.3 345.2 4.9 4.6 500 0.015	
340.9-341.6 gouged	
1237 345.2 347.4 2.2 2.2 380	
345.0.247.4 powerd wittetene and prolifite	
345.9-347.4 gouged statione and argume	
$\frac{1238}{347.4} \frac{347.4}{351.2} \frac{3.8}{3.8} \frac{3.8}{10}$	
547.4-551.1 Directiated quartz vein containing about 5% emorie and 0.3%	
pyrile, contact at 40° to C.A.	

י <mark>ברות ברות ברות בית ביות ביות ביות ביות ברות ברות ברות ברות ברות ביות ברות ברות ברות ברות ברות ברות ב</mark>יות ב

Page 6 of 7

					Fe	et	Au	Au	Stu	dge	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ррь	oz./ton	Samp.	Depth	ррб
351.1-359.8	Interlayered pale grey silicious greywacke, silicious siltstone	. <u> </u>						1			
	and lesser argillite					┿╼╾╼┝╴		:			
351.1-354.2	grey-green quartz-rich greywacke	1239	351.2	354.3	3.1	3.0	320				
353.0-353	3.2 pyrite-bearing quartz vein at 45 ° to C.A., vein contains	j	J]	j	; .		:			
	massive pyrite vein about 1.5 cm wide	i		ļ							
353.8-354	4.2 broken and gouged	i		i							
354.2-357.0	pale grey silicious, silicified siltstone							1			
357.0-359.8	medium grey-green layered siltstone and argillite, about 10% dolomite porphyroblasts							1		:	
359.2-359.8	quartz carbonate argillite shear zone at 35 ° to C.A., about 1%		{					1			
	pyrite										
			:					1			
359.8-377.0	Pale grey to pale green tuffaceous siltstone; bleached in		İ								
	sections, locally laminated, sericitic and, in places, silicious above			1				į			
	364 feet, trace pyrite, section above 367.3 feet may be altered			i				1			
	siltstone or altered tuffaceous siltstone, mauve sericite alteration		ļ		1			;			
	locally		I		1	i		-		:	
364.0-377.0	about 10% quartz-dolomite verns and amygdules, 3-4 mm										
777 0 371	across 1.2 whereas a substant pure is beauting some at 65 ° to C A zone.	1240	366.2	368.2	2.0	2.0	110				
300.8-30	7.3 sheared, quartz-pyrite-bearing zone at 05 10 C.A., zone			ł							
2777	contains about 50% pyrice		1	-				: :			
572.7	gouge zone, z em wide and at 45° to e.A.		i								
377 0-486.0	Medium grey-green matic tuff and matic volcanic rock.	T			1						
5770 10010	contains about 10-20% calcite or quartz-dolomite-bearing veins		1	İ	ļ						
	and amyedules, typically 1 cm across			ļ							
390	S_2 at 80 ° to C.A.				İ	I				1	
402.8-404.5	5 strongly foliated, locally gouged, few quartz veins at 40° to	i		•		i İ					
•	C.A.			Ì				÷			
			i					1			
					ĺ						
										:	
				1							
							.	:			

. .

.

Page 7 of 7

From - To 406.0-423.5 Pa co C. 406.5	Description le grey silicious conglomerate, mostly silicious pebbles and bbles, few pale grey sericite clasts, long axis of clasts at 45 ° to	<u>Samp.</u>	From	То	Rep.	Act.	ppb	oz./ton	Samp. Depth	
406.0-423.5 Pa co C. 406.5	Ic grey silicious conglomerate, mostly silicious pebbles and bbles, few pale grey sericite clasts, long axis of clasts at 45 ° to									
co C. 406.5	bbles, few pale grey sericite clasts, long axis of clasts at 45 ° to		l i	İ						
C. 406.5								:		
406.5	Α.					<u> </u>				
	quartz vein, 2 cm wide at 70 ° to C.A., 1% pyrite and trace	1241	406.0	408.0	2.0	2.0	20			
	galena in vein	1242	417.0	420.0	3.0	<u>. 3.0</u>	270	<u>.</u>		
418.2-418.6	5% pyrite occurring as cubes and irregular masses typically 3	1243	420.0	423.3	3.3	3.3	350			
122.0	cm across, 1% arsenopyrite							1		
423.0	10% pyrie over mervarabout 2 cm wide			I	ĺ	. !			;	
423 5-430.0 Pa	le grey quartz grit interlayered with laminated pale grey					i				
sil	tstone and argillite	I								
424.7-424.9	quartz vein containing about 2% carbonate at 75° to C.A.									
425.0	S2 at 40 ° to C.A., 25 ° clockwise to main lineation looking					: 1 :				
	down hole and 5 ° clockwise to lesser defined lineation looking					1		; · · ·		
•	downhole	1	İ	 						
	0.11		1							
430,0 E.	Ю.н.				;					
		:	1	:						
		ļ	i	ł	1					
			l							
					1					
				1						
			į.	ļ	ļ			i		
		i		1		l i				
:			ļ	ĺ	İ	į į		:		
			i	1						
				ļ						
	·	ĺ	1		:					
				ĺ						
		I			ĺ					
		ł	1	-	!					
			ļ	1	i					

D.D.H. IMG-2K-08

Page 1 of 4

Island Mountain Gold Mines Ltd.

Diamond Drill Log

D.D.H. IMG-2K-08

Property:	Mosquito	Creek	Colla	r Grid	Coordi	inates							
Drilling Cont	ractor: Standard D	rilling & Engineering Ltd.	Northing	Eas	rting	Eleva	ation				Depth	Azimuth	Dip
Date Started:			<u>19266.0 ft.</u>	8913	3.8 ft.	4590	.2 ft.				collar	225°	-58°
Date Complet	ted:								Average d	lepth of eac	h 10-foot slu	dge sample sl	hown
Final Dept	th: 435 feet	(132.6 m)	Logged by:	J. Way	yne Pic	kett, P	.Geo.		Samp, - Sa	ample; Rep	- Represente	ed; Act Act	ual
·							Fee	et	Au	Au	Slue	dge	Au
From - To		Description		Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	
0.0-22.0	Casing				1								
22.0-24.0	Rubble								:		'		
24.0-145.2	Pale blue calcare	ous siltstone and argillite	consisting of								B172865	30	5
	brecciated calcare with granular lin siltstone, locally	eous beds with thin argillite mestone and tan grey serici with mauve sericite alteration	partings interlayered tic dolomitic on, few pyrite								1		
	porphyroblasts ab	out 3 mm across, some trac	ture zones are						ĺ		B172866	40	3
42.5	S2 at 60 ° to C	A.									B172867	50	< 2
53.0-60.0	strongly breccia	ated, contorted limy beds			i						B172868	60	2
69.3-70.2	ouartz vein at 4	5° to C.A.									B172869	70	6
84,0-84,3	brecciated and	gouged									B172870	80	3
89,5-90.0	gouged	• •		1011	400 0	104.0	4.0				•		
100.0-101.0	local change in	schistosity to 45 ° to C.A.		1244	100.0	104.0	4.0	3.1	<10		-	I I	
100.2-100	.4 quartz vein co pyrrhotite and lineation	ntaining 2% carbonate, 2% galena, vein at 40 ° to C.A.	pyrite, trace and orthogonal to							-	: :		
103.6	gouge zone 1 c. 5 cm wide	m wide adjacent to quartz c	arbonate vein about	1245	104.0	107.9	3.9	3.9	<10		-		
105.6	foliation at 70 °	o to C.A.											
106.0-106.4	quartz vein abo lineation, vein	out 1.5 cm wide, at 25 ° to C contains about 5% calcite, 3	A. and orthogonal to. % pyrite and galena			:	!						

Page 2 of 4

					Fe	et	Au	Au	Sludg	e	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	րրե
107.7-112.8	rock is tan to pale grey, sericitized, dolomitized and silicified			İ				<u> </u>			
112.8-145.2	most of unit consists of brecciated calcareous siltstone beds										
	containing 1-5 cm wide argillite partings, few dolomitized,	1246	140.0	145.0	5.0	4.2	<10		1		
	scricitized sections		ļ				-				
128.9	I cm wide gouge at 60 ° to C.A.			l.							
145.2-161.8	Pale grey-tan dolomitic, sericitic, siltstone containing about				į						
	20% dolomite porphyroblasts about 1 mm across	1247	445.0	147.0	20	20	4.600	A 135	:		
145.2-145.6	quartz vein containing 2% dolomite, 20% pyrite, 20% arsenopyrite, vein at 45 ° to C.A. and orthogonal to lineation	1247	145.0	147.0	3.0	3.0	4,620 <10	0.135			
		i									
161.8-188.2	Interlayered locally sericitized grey siltstone and black argillite								:		
	and strongly sericitized dolomitic siltstone with mariposite, unit		ļ								
	contains about 50% Fe-carbonate-bearing quartz veins	!		ļ							
161.8-170.0	grey siltstone and black argillite	1249	164.7	169.6	49	32	20				
164.7-165	.5 silicified and quartz veined	1250	169.6	175.0	5.4	1.8	<10				
170.0-175.0	emerald green sericitic dolomitic siltstone, strongly altered,							·····-			
	about 1.4 feet core returned	1251	175.0	180.8	5.8	5.0	<10				
175.0-180.8	about 90% quartz veins and Fe-carbonate-bearing quartz veins	1252	180.8	185.0	4.2	4.2	<10				
·	within silicitied siltstone	1253	185.0	188.1	3.1	3.1	<10				
188.2-200. 0	Mixed pale grey siltstone, silicified, dolomitic siltstone and		ļ					:	ï		
	black argillite, trace pyrite	-					:				
200.0-289.4	Palc grey dolomitic, tuffaceous? siltstone containing about 10%					İ	1		i		
	dolomite porphyroblasts 1 mm across in most sections; thin pale	i									
	green sericitic argillite partings in brecciated sections, about 5%	:						:	4		
	calcite and quartz veins; unit is locally calcareous in upper 20 feet										
200.0-206.0	rock is pale green and contains about 5% chloritoid?	i				-					
	porphyroblasts about 1 mm across	j		i			ĺ				
204,6	gouge at 40 ° to C.A.	i	i								
212.3	S2 at 60 ° to C.A.	1254	239.5	245.0	5.5	5.5	<10				
239.7	quartz-calcite vein about 1 cm wide and containing 10% pyrite			ī	· · · · · ·						
240.5-250.6	about 20% quartz-calcite veins typically 1-3 cm wide	i i									
243.5-244.2	quartz vein at 35 ° to C.A.			ļ							
247.8-250.6	about 90% quartz-calcite veins			!					:		
	······································					i	····		·····		

. .

•

Page 3 of 4

F	N				Fe	et	Au	Ац	Sludge	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp. Depth	ppb
250.6-289,4	about 15% dolomite porphyroblasts 2 mm across			:		,				
250.6-257.0	rock is strongly bleached and dolomitic, about 5% quartz-		:							
	calcite veins			!						
259.6	gouge zone at 70 ° to C.A. and about 1 cm wide					i				
2 7 0.0-277.0	trace pyrite and pyrrhotite, few stringers of pyrite and	1255	275.0	280.0	5.0	5.0	<10		:	
	pyrrhotite e.g. at 276.6									
				İ		1				
289.4-290.0	Black argillite					ļ				
345 6 435 6		İ					j		!	
290.0-435.0	ale grey to pale or medium green tuff						i	1		
290.0-308.0	unit is pale grey tuffaceous siltstone?, few quartz-calcite veins,						:		i	
	rare amygdules, unit is generally massive; below 308.0 several								:	
30/ 3 300 0	quartz calcite veins					i				
- 326.3-327.0 st	licious, cherty section, argillite partings						-			
329.0-329.5	gouge at 60° to C.A.					!		i		:
340.6	gouge 2 cm wide at 60 ° to C.A.	1256	341 7	347.6	5.8	5.9	100	· '		
341.7-347.5	core is broken, locally brecciated and gouged, contains	1200	541.7	047.0	5.0	0.0	100		,	
	dolomite-quartz vein about 5 mm wide subparallel to core axis,									
	argulite in matrix to brecciated fragments, trace pyrite	i								
360.5-365.0	broken core									
367.0	local change in schistosity to 40 ° to C.A.		:	,			i			
368.3-369.1	brecciated quartz carbonate veins, minor fault at 25 ° to C.A.	1257	380.0	384.0	4 0	4.0	2 860	0.092		
380.0-387.2	tuff contains sections of interlayered chert and argillite, about			004.0	7.0		2,000	0.003		
202.0	2% pyrite stringers	i							e de la construcción de la construcción de la construcción de la construcción de la construcción de la constru	
382.0	minor-told closure	1258	384.0	388.5	4.5	3.8	2 410	0.070		
384.5	gouge zone about 2 cm wide at 70 ° to C.A.						_,	0.070		
385.0-387.2	rock is brecciated and locally gouged e.g. 386.6-387.2	1259	388.5	392.0	3.5	3.5	140			
369.3	gouge zone about 2 cm wide at 80° to C.A.	1			:					
390.0-391.4	quartz carbonate veins									
395.3-395.8	shear zone about 6 cm wide and at 30 ° to C.A.									
399.5-400.0	brecciated and gouged		i			i				
400.0-414.0	most of rock is medium to dark green and contains about 20%			:						
100 0	white dolomite porphyroblasts typically 2 mm across		ļ							
409.8	gouge zone, 1 cm wide and at 75 ° to C.A.			i	· I					
413.7	gouge zone, 1 cm wide and at 75 ° to C.A.			İ						

.

Page 4 of 4

From - To	Description	S	Enner	1 17 .	Fe	et	Au	Au	Sludge	Au
415.0-421.0	unit contains about 60% quartz-carbonate vains vains are	3amp. 1260	<u> </u>	419.2	<u>кер.</u> 5 1	Act.		oz./ton	Samp. Depth	ррь
	typically brecciated and subparallel to foliation	1261	419.2	423.4	4.2	4.0	220	i		
422,5-423.3	pale grey silicified, cherty section						······			
431.0-435.0	brccciated	1262	430.0	435.0	5.0	4.5	180			
435.0 E.O.H	L					:	ĺ		i	
	-									
		i		:			!			
					į					
			1							
								:		
		:								
		i					1			
·			•							
					İ		1		i	
							!			
							:		:	
		i			İ					
:				:	ļ			:		
						ĺ				
•					÷		:			
									:	
				1				,	:	
			i				:			

Page 1 of 7

Island Mountain Gold Mines Ltd. Diamond Drill Log

D.D.H. IMG-2K-09

Property:	Mosquito Creek	Collar Grid	Coordin	ates						
Drilling Contractor:	Standard Drilling & Engineering Ltd.	Northing Ea	sting	Elevation			_	Depth	Azimuth	Dip
Date Started:		19462.9 ft. 860	1.4 ft.	4593.1 ft.				collar	216°	-45°
Date Completed:						Average de	epth of each	0-foot sluc	ige sample sho	nwn
Final Depth:	440 feet (134.1 m)	Logged by: J. Way	me Pick	ett, P.Geo.		Samp Sa	mple; Rep	Represente	ed; Act Actu	al
		· · · · · · · · · · · · · · · · · · ·]	Feet	Au	Au	SI	ludge	Au
From - To	Description	Samp	From	To Rej	b. Act.	ppb	oz./ton	Samp.	Depth	ppb
0.0-27.0 Casi	ng									

27.0-30.0	Rubble							B172871	30	4
30.0-39.0	Pale grey silicious or dolomitic siltstone interlayered with dark							• •		
	olive green argillite containing about 10% dolomite porphyroblasts 2 mm across		;							
34.0-35.0	quartz vein containing about 10% carbonate and trace pyrite						·····	B172872	40	3
39.0-69.0	Grey calcareous siltstone with argillite partings interlayered	i								
	with dolostone and sericitic dolomitic siltstone, calcareous									
	siltstone beds are brecciated in some sections	:					•			
44.0-45.0	sericitic dolomitic siltstone									
45.1	2 cm gouge					i		B172873	50	5
48.0-50.1	dolostone and dolomitic siltstone									
50.3	S_2 at 60 ° to C.A.									
59.1-60.0	unit contains about 15% pyrrhotite and pyrite stringers	1263	59.0	61.0	2.0	2.0	10	B172874	60	2
4	subparallel to schistosity and irregularly distributed in matrix to		1							
	calcarcous breccia fragments									
64.0-65.0	core is broken					:				
64.6	2 cm of gouge							D170077		- 2
66.0	2 cm of gouge							B1/28/5	/0	< 1
						1				
		i								

Page 2 of 7

					Fee	et	Au	Au	Slud	lge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ррв	oz./ton	Samp.	Depth	ppb
69.0-110.0	Grey-blue limestone interlayered with lesser calcareous			,				1			
-	siltstone and argillite (brecciated typically) and sericitic		i		:			1			
	dolomitic siltstone										
71.6-71.8	calcite-quartz vein containing about 10% pyrrhotite and pyrite	1264	71.4	75.5	4.1	3.3	10				
	stringers in wallrock adjacent to vein					i 		i • • • • • • • • • • • • • • • • • • •	D170077		
75.5-77.5	quartz vein orthogonal to lineation and at 15° to C.A., trace								B172870		
	pyrite and galena	4066	76.6	00.0	4.5	4.5	10				
78.4-78.7	irregular quartz-calcite vein containing about 20% granular	1265	75.5	<u>00.0</u>	4.5	4.5	10			· · · · · · · · · · · · · · · · · · ·	
	masses of pyrite					++		i	B172877	90	24
85.0	S_2 at 65 ° to C.A.								B1/201/		
90.5	S_2 at 40 ° to C.A.							<u></u>	B172878	100	< 2
96.7	foliation at 45 ° to C.A.	·						:	Dificito		
99.0	foliation at 25 ° to C.A.							ļ			
103.5	S_2 at 50 ° to C.A.								B172879	110	9
109.5-110.0	core is broken, brecciated and gouged		· · · · · · · · · · · · · · · · · · ·					1			
110.0-130.0	Medium grey dolomite conglomerate breccia, pebbles and fragments of dolomitic siltstone and broken dolomitic siltstone beds in medium grey-green argillite matrix (matrix comprises about 50% of unit), about 15% dolomite porphyroblasts 1 mm across									120	
1191-1195	core is broken	1266	115.0	120.0	5.0	3.0	10	•	BT72880	120	29
119 5-120.1	quartz vein, minor carbonate	1267	120.0	125.0	5.0	3.5	10		D172991	130	6
129.0-130.0	core is broken and gouged, minor emerald green sericite and	1200	125.0	130.0	5.0	2.4				1.50	
	mariposite					i					
								i			
130.0-140.0	Pale grey silicious dolomitic siltstone, bleached limestone and					i		i i			
	pale green sericitic dolomitic siltstone with few quartz layers	1269	130.0	135.2	5.2	2.6	10	:			
130.0-131.6	silicious dolomitic siltstone										
131.6-134.3	lost core										
134.3-134.7	gouge								1		
134.7-135.3	quartz vein	1270	135.2	138.0	2.8	2.8	10		B172882	140	282
135.3-137.0	bleached limestone										
		1				1					
					: 						

1

Page 3 of 7

					Fee	t	Ац	Au	Sluc	lge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	րթե
137.0-140.0	sericitie dolomitic siltstone										
138.7-138.	irregular quartz vein	1271	138.0	142.2	4.2	4.1	1,890	0.055			
138.9-139.	3 gouge at 50 ° to C.A.	:									
140.0-164.5	Pale grey to pale green bleached silicious siltstone, quartzite,	i									
	quartz grit and silicious greywacke interlayered with										
	interlaminated dolomitic siltstone and black argillite, latter				. 1			:			
	typically contains about 15% dolomite porphyroblasts 3 mm										
	across					i.					
140.8	massive pyrite layer about 1.5 cm wide at 70 ° to C.A.	1070	142.2	146.0	2.8	3.8	10				
143.0-145.0	quartz vein containing about 5% carbonate, vein is about 1.5	12/2	142.2	140.0	0.0	9.0		ii			
	cm wide and subparallel to core axis	1273	146.0	151.0	5.0	48	10		B172883	150	258
148.3-148.8	quartz vein containing about 10% dolomite porphyroblasts 3	1210	140.0	101.0	0.0						
	mm across				i						
148.8-149.1	gouge										
150.0	bedding at 80 ° to C.A.	1274	151.0	154.0	3.0	3.0	460				
151.1-151.9	quartz vem containing about 5% carbonate										
152.9-154.0	quartz vein containing about 15% pyrite, 1% arsenopyrite	1	!	:	ļ	:					
1510 1550	occurring as veins and granular masses										
154.0-155.0	gouge				1						
154.0	trace arsenopyrite in arginite section	1275	154.0	158.2	4.2	3.9	20		B172884	160	212
150.0-158.2	pare grey intensely sincidus section $\frac{10\%}{10\%}$ carbonate, vein is at 40 ° to	1276	158.2	160.0	1.8	1.8	20	: i			
156.5-156.5						 					
158 5-164 5	Unit is note green and pervasively silicified, note green sericite	1277	160.0	164.5	4.5	3.8	20				
108.0-104.0	partings, about 2% disseminated pyrite, trace disseminated		İ	ļ							
	arsenopyrite throughout					i					
		ļ		I		;					
164.5-185.0	Pale grey to pale green dolomitic siltstone, several quartz and					1					
	quartz-chlorite veins containing coarse muscovite, core is gouged			I							
	in places, dolomite siltstone is interlayered with argillite, 5-10%										
l.	2-3 mm dolomite porphyroblasts throughout			, 							
l					-						

i

۰.

.

÷.

Page 4 of 7

					Fee	et	Au	Au	u Sludge		Ац
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
164.5-165.4	argillite containing about 10% dolomite porphyroblasts 3 mm	1278	164.5	170.0	5.5	3.1	10				
	across										
165.4-166.4	quartz vein at 50 ° to C.A.								B172885	170	31
174.0	2 cm wide sericite gouge	1279	170.0	175.0	5.0	4.0	10		:		
174.3-179.0	about 95% chlorite- and muscovite-bearing quartz veins										
176.7-177.2	no chlorite, about 10% carbonate and trace pyrite and galena	1280	175.0	180.0	5.0	3.7	150				
	in quartz					+			D.18000/		
179.0-180.0	gouged	4004	400.0	100.0	40.0	5.0	40		B172886	180	
180.0-185.0	dark argillite and irregular masses of dolomite siltstone, about 3	1281	180.0	190.0	10.0	5.Z	10				
•.	feet lost core in this section, much of recovered section is										
	gouged										
									D17007	100	
185.0-190.0 I	Pale to medium green silicious siltstone, several quartz veins								D1/2007	170	- 231
				:							
190.0-275.0 I	ale grey to pale green to tan highly altered siltstone, possibly										
ť	uffaceous, abundant sericite and dolomite, quartz and quartz-										
ι	arbonate veins and 1-2% disseminated pyrite throughout	1282	190.0	195 0 i	5.0	33	160				
194.0	2-cm wide carbonate-bearing quartz vein at 55 ° to C.A., vein		100.0		Q. U	0.0	100				
	contains about 5% arsenopyrite and is subparallel to foliation			i							
194.5	1-cm wide carbonate-bearing quartz vein at 55 ° to C.A., vein				-			. :			
	contains about 5% arsenopyrite and is subparallel to foliation	1283	195.0	200.0	5.0	3.1	320	1	B172888	200	509
199.0	two pyrite stringers each about 5 mm wide and subparallel to	1284	200.0	202.0	2.0	2.0	540				
•	schistosity	1285	202.0	205.0	3.0	3.6	40				
200.0-202.0	gouge containing about 5% pyrite	1286	205.0	210.0	5.0	4.9	30		B172889	210	390
209.7	1-cm gouge	1287	210.0	215.0	5.0	4.1	80				
210.0-211.0	unit is silicified and contains about 50% quartz veins, about 5%										
	pyrite				-	:					
214.5-214:7	kink fold at 10° to C.A., axial plane 50 ° clockwise to lineation										
	looking down hole	1288	215.0	220.0	5.0	3.0	10		B172890	220	516
218.0	two 5 mm wide less altered green sections suggesting unit is										
	altered tuff	1289	220.0	225.0	5.0	4.0	40				
221.0+223.0	about 5% pyrite occurring as stringers										
423.6-225.0	quartz vein containing carbonate and scricite										
		1				1					

.

.

Page 5 of 7

					Fee	et	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
228.0-230.0	pale grey silicious cherty section containing about 1% pyrite	1290	225.0	230.0	5.0	4.2	90		B172891	230	442
230.0-232.0	about 20% 2-3 mm wide dolomite veins containing lesser					!		:			
	quartz, veins are subparallel to schistosity										
232.0-234.0	chlorite shear zone about 3 mm wide parallel to core axis and										
	orthogonal to lineation	····-							D130000	240	
235.0-245.0	few 5-15 cm wide zones that are less altered and green again							! • · · · · · · · ·	B1/2892	240	394
	suggesting unit is tuffaceous siltstone								D173802	250	76.9
245.0-253.0	rock is pale grey and containing about 10% dolomite								01/2095	250	700
	porphyroblasts 2 mm across	1291	245.0	247 7	27	27	690		· · · · · · · · · · · · · · · · · · ·	<u></u> .	
245.2-245.7	gouge at 40 ° to C.A., about 5% pyrite	12.01	240.0	2.47.1	6	2.1					
245.7-247.7	abundant pyrite stringers, trace arsenopyrite, motiled texture,							:			
240 5 251 0	dolomitized and strongly altered, about 10% pyrite	1292	247.7	251.7	4.0	3.3	70	•			
249.5-251.0	pale grey and sincified, about 5% pyrite stringers	1293	257.0	260.0	3.0	2.2	100		B172894	260	302
200.0-200.0	nock is medium grey, gouged in places and contains 1-5%										
260.0-270.5	pyinc pale area to pale green to medium great well lawered and	1294	260.0	265.0	5.0	3.7	50	:	B172895	270	194
20070-27073	contains some arguillite sections										
270 0-275 0	about 1.8 fort of core recovered										
261.0	$S_{\rm r}$ at 55 ° to C A and 85 ° counter clockwise to lineation										ł
_01.0	looking downhole					1					1
273.8-275.0	rouge										
27510 27010	For when	1									
275.0-285.5 P	ale grey calcareous siltstone and limestone interlayered with										
p	ale green dolomitic, sericitic siltstone and argillite, argillite										1
e e	enerally occurs as partings between the calcareous siltstone					:					
· 12	iyers	1205	274 0	280.0	60	54	10		B172806	280	150
275.0-278.0	calcareous siltstone, argillite partings, lesser limestone	1200	214.0	200.0	0.0		10	<u> </u>	D172090	200	150
278.0-280.6	mostly pale green argillaceous sericitic dolomitic siltstone,										
	0.5% pyrite throughout										
279.9	1-cm wide sericite gouge containing about 5% pyrite	1296	280.0	285.5	5.5	5.5	10			• •	
283.0-285.5	pale grey-green sericite argillaceous dolomitic siltstone							• • • • • • •			
•						:					
		İ									
								·			

.

.

• •

Page 6 of 7

					Fe	et	Au	Au	u Sludge		Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
285.5-290.0	Black graphitic argillite										
288.5-289.5	quartz veins containing about 5% carbonate	1297	288.4	291.0	2.6	2.2	10		B172897	290	160
289.5-290.0	graphitic gouge including 1-cm wide pyrite seam							ļ			
								;			1.0
290.0-345.0	Pale grey quartz siltstone, quartz grit and quartzite								B172898	300	
	interlayered with pale grey silicious siltstone interlaminated										
	with grey argillite, 5-10% dolomite porphyroblasts typically 2							· ·			
205.0	mm across								B172899	310	161
305.0	bedding at 65° to C.A., typical								DINEO		
309.0	graded bedding in stitutone indicates tops up note, bedding at $75.9 \text{ tr} (2.4 \text{ and } 70.8 \text{ algorithmics to lineation looking down hole})$										
2100 2200	75 "to C.A.and 70 " clockwise to finearion looking down note	1298	318.8	325.0	6.2	5.0	10		B172900	320	149
320.0-323.0	rock is pale green sericitized locally gauged and quartz veined										
322.0	3-cm wide sericite gouge		1								
323 0-345 0	Quartz orit and silicious greywacke interlayered with black								B172901	330	140
	argillite										
337,8-338.	4 graded bedding in greywacke/grit indicates tops up hole										
338.3	bedding at 80 ° to C.A.							:			
341.0-345.	0 coarser grained quartz grit, very quartz rich, quartz veined,							<u> </u> ;	BT72902		276
	locally brecciated, matrix to breccia fragments is chlorite rich										
									B172003	350	216
345.0-433.5	Grey-green greywacke, tuffaceous siltstone and lesser grit							:	D172705	530	
	interlayered with grey siltstone and argillite, in general unit is					Ì					
	less silicious than that above				·	•••••••••			B172904	360	974
360.0-361.2	mostly quartz veins					iiiiii					
363.3	bedding at 60° to C.A. and 30° clockwise to lineation looking										
	down hole				1						
363.3	S_2 at 60 ° to C.A. and 45 ° clockwise to lineation looking down										
264.0 400.5	hole										
364.0-433.5	unit contains several dolomite porphyroblasts about 2 min	,,									
366 3 363	across 0 unit is pale arow very fine grained and silicious, about 0.594	·			-				B172905	370	224
500.5-507	chlorite										
	cinvite -										

D.D.H. IMG-2K-09

Page 7 of 7

From - ToDescriptionSamp.From ToRep. Act.ppboz./tonSamp.Depthppb370.0-373.5minor fold axis as indicated by bedding subparallel to core axis375.0-375.8quartz veined very silicious about 2% chlorite core is broken, locally gougedB17290638023338.0-385.0core is broken, locally gougedB17290739034538.4-388.8quartz veine dtuffaceous siltstoneB17290739034538.4-388.8quartz veine ortatining about 15% dolomite porphyroblasts 3-4 mm acrossB172907390345392.0-396.0quartz-veined tuffaceous siltstone 392.0B172908400287399.6-399.8gougeB172908400287405.4-404.0quartz veined, sericite and chlorite partings win. about 3% pyrite win. about 3% pyrite win. about 3% pyrite uffaceous siltstone and grit1299409.5412.02.52.510410.0quartz veina dout 2 cm wide, Fe-carbonate on margins of win. about 3% pyrite uffaceous siltstone and grit1300422.5428.05.55.610B172910420171423.2.423.5pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone interlayered with tuffaceous siltstone interlayered with tuffaceous siltstone interlayered with tuffaceous siltstone1300422.5428.05.55.610B172911430148			······································			Feet		Au	Au	Slud	ge	Au
370.0-373.5 minor fold axis as indicated by bedding subparallel to core axis 370.0-373.5 quartz veined very silicious about 2% chlorite 383.0-385.0 core is broken, locally gouged 384.9 2-cm wide gouge zone 387.0-376.8 quartz veined tuffaceous siltstone 388.4-388.8 quartz veine containing about 15% dolomite porphyroblasts 392.0-396.0 patertz veined tuffaceous siltstone 392.0-396.0 bedding in argillaceous section at 85° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 400.2-400.40 quartz veined, sericite and chlorite partings 400.2-400.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 411.0 2-cm wide getter to pale green, unit is probably tuffaceous siltstone and grit 412.2-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 423.2-420 0	From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
axis 375.0-375.8 quartz veined very silicious about 2% chlorite 382.0-385.0 core is broken, locally gouged 384.9 2-cm wide gouge zone 387.8-388.4 quartz veined tuffaceous silistone 382.0-396.0 quartz-veined tuffaceous silistone 392.0-396.0 quartz-veined tuffaceous silistone 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 399.6-399.8 gouge 399.6-399.8 gouge zone 399.6-399.8 gouge zone 399.6-399.8 gouge zone 399.6-399.8 core is broken 400.2-409.8 core is broken 410.0 quartz veined, sericite and chlorite partings 410.0 412.0 about 3% pyrite 410.0-412.0 about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, more sericite and dolomite siltstone interlayered with tuffaceous silitstone 423.2-433.5 pake grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous silitstone	370.0-373.5	minor fold axis as indicated by bedding subparallel to core										
375.0-375.8 quarz veined very silicious about 2% chlorite B172906 380 233 383.0-385.0 core is broken, locally gouged B172907 390 345 384.4-388.8 quartz veine duffaceous silistone B172907 390 345 388.4-388.8 quartz veine containing about 15% dolomite porphyroblasts B172907 390 345 392.0-396.0 quartz-veined tuffaceous silistone B172908 345 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole B172908 400 287 398.5 2-cm wide gouge zone B172908 400 287 405.0-405.5 sericitic B172909 410 214 410.0 quartz veina bout 2 cm wide, Fe-carbonate on margins of vein about 3% pyrite B172910 420 1140 411.0 2-cm wide section containing about 50% pyrite B172910 420 171 411.0 2-cm wide section containing about 50% pyrite B172910 420 171 412.8-423.2 stongly silicious, pale grey to pale green, unit is probably tuffaceous silistone interlayered with tuffaceous silistone 1300 422.5 428.0 5.5		axis										
383.0-385.0 core is broken, locally gouged 384.9 2-cm wide gouge zone 387.8-389.4 quartz veined tuffaceous siltstone 388.4-388.8 quartz veined tuffaceous siltstone 392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-40.4.0 quartz veined, sericite and chlorite partings 402.4-40.4.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 400.2-2409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein about 30% pyrite 410.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone interlayered with tuffaceous siltstone 1300 422.5 428.0 5.5 5.6 10 B172911 430 148	375.0-375.8	quartz veined very silicious about 2% chlorite	<u></u>		..			<u> </u>	· · · · · · · · · · · · · · · · · · ·	B172906	380	233
384.9 2-cm wide gouge zone 387.8-389.4 quartz veined tuffaceous siltstone 388.4-388.8 quartz vein containing about 15% dolomite porphyroblasts 3-4 mm across 392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitie 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone interlayered with tuffaceous siltstone 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone 424.3 436.0 more with spile gouge suilstone	383.0-385.0	core is broken, locally gouged										
387.8-389.4 quartz veined tuffaceous siltstone B172907 390 345 388.4-388.8 quartz vein containing about 15% dolomite porphyroblasts 3-4 mm across 392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 8172908 400 287 398.6-399.8 gouge B172908 400 287 405.0-405.5 sericitic 400 287 402.4-404.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein. about 3% pyrite 8172909 410 214 410.0 quartz veins 411.0. 2-cm wide section containing about 50% pyrite 1299 409.5 412.0 2.5 2.5 10 214 410.0 guartz veins 411.0. 2-cm wide section containing about 50% pyrite 1300 422.5 428.0 5.5 5.6 10 B172910 420 171 412.8-423.2 strongly silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 1300 422.5 428.0 5.5 5.6 10 B172911 430 148 424.3 426.0	384.9	2-cm wide gouge zone							••••••••••			
388.4-388.8 quartz vein containing about 15% dolomite porphyroblasts 3-4 mm across 392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85° to C.A., grading indicates tops down hole indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 corc is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 1299 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably utifaceous siltstone 1300 423.2-433.5 pale grey, less silicious, more scricit and dolomite siltstone 1424.3.425.0 uttz vein	387.8-389.4	quartz veined tuffaceous siltstone					ļ 		·	B172907	390	345
3-4 mm across 392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gougc 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 corc is broken quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite B172909 410 410.0 quartz veins about 3% pyrite B172910 420 410.0 2-cm wide section containing about 50% pyrite B172910 420 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 1300 422.5 428.0 5.5 5.6 10 B172911 430 148 423.425.0 mart wing mart win	388.4-388.8	quartz vein containing about 15% dolomite porphyroblasts										
392.0-396.0 quartz-veined tuffaceous siltstone 392.0 bedding in argillaceous section at 85 ° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein. about 3% pyrite 410.0		3-4 mm across										
392.0 bedding in argillaceous section at 85° to C.A., grading indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 424.3 436 0 ound zuine	392.0-396.0	quartz-veined tuffaceous siltstone										
indicates tops down hole 398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 424.3 425.0 unatt avinin	392.0	bedding in argillaceous section at 85° to C.A., grading										
398.5 2-cm wide gouge zone 399.6-399.8 gouge 402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 4243.4250 countz with		indicates tops down hole										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	398.5	2-cm wide gouge zone										
402.4-404.0 quartz veined, sericite and chlorite partings 405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 424.3.43250 ourgetz vein	399.6-399.8	gouge	····							B172908:	400	287
405.0-405.5 sericitic 409.2-409.8 core is broken 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 424.3.425.0 cm siltstone	402.4-404.0	quartz veined, sericite and chlorite partings							. :			
409.2-409.8 core is broken B172909 410 214 410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 1299 409.5 412.0 2.5 2.5 10 410.0-412.0 about 80% irregular quartz veins 11.0 2-cm wide section containing about 50% pyrite 1299 409.5 412.0 2.5 2.5 10 10 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 1300 422.5 428.0 5.5 5.6 10 B172911 430 148 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 1300 422.5 428.0 5.5 5.6 10 B172911 430 148	405.0-405.5	sericitic										
410.0 quartz vein about 2 cm wide, Fe-carbonate on margins of vein, about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 424.3.425.0 cmuntz unip	409.2-409.8	core is broken								B172909	410	214
vein. about 3% pyrite 410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 1300 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone 424.2.425.0 cmmtra wip	410.0	quartz vein about 2 cm wide, Fe-carbonate on margins of	1299	409.5	412.0	2.5	2.5	10				
410.0-412.0 about 80% irregular quartz veins 411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 1300 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 1300 424.3.425.0 cmmtrz win		vein. about 3% pyrite										
411.0 2-cm wide section containing about 50% pyrite 412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit 423.2-433.5 pale grey, less silicious, more scricite and dolomite siltstone interlayered with tuffaceous siltstone 424.3.425.0 cmmtra win	410.0-412.0	about 80% irregular quartz veins										
412.8-423.2 strongly silicious, pale grey to pale green, unit is probably tuffaceous siltstone and grit B172910 420 171 423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone B172911 430 148	411.0 -	2-cm wide section containing about 50% pyrite										
423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone 424.3-425.0 current zurin	412.8-423.2	strongly silicious, pale grey to pale green, unit is probably					•••••			B172910	420	171
423.2-433.5 pale grey, less silicious, more sericite and dolomite siltstone interlayered with tuffaceous siltstone 424.3 425.0 current a win		tuffaceous siltstone and grit	4000	400 E	400.0			10		D170011		
interlayered with tuffaceous siltstone	423.2-433.5	pale grey, less silicious, more scricite and dolomite siltstone	1300	422.5	428.0	0.0	5.5	10	ļ	B1/2911	430	148
424 3 425 0		interlayered with tuffaceous siltstone					. İ		: · · · ·			
424742.0.77 quark von	424.3-425.0	quartz vein										
425.0-425.3 gouged	425.0-425.3	gouged										
425.0-427.0 unit contains about 2% pyrite	425.0-427.0	unit contains about 2% pyrite	i				: :					
430.0-430.5 sandy gouge	430.0-430.5	sandy gouge										
433.5-440.7 Pale grey silicious, silicified siltstone and quartzite	433.5-440.7 F	ale grey silicious, silicified siltstone and quartzite										
containing about 30% interlayered black argillite	c	ontaining about 30% interlayered black argillite								D172012	440	120
438.2-438.8 quartz vein breccia	438.2-438.8	quartz vein breccia							:	D172712	440	129
									:			
440.7 E.O.II.	440.7 E.O.II	,										

Page 1 of 4

Island Mountain Gold Mines Ltd. Diamond Drill Log

D.D.H. IMG-2K-10

Property: Drilling Contra	Mosquito Creek actor: Standard Drilling & Engineering Ltd.	Coll: Northing	ar Grid C East	Coordinating	ates Eleva	ation				Depth	Azimuth	Dip
Date Started:		19463.4 ft.	8601	.9 ft.	4592	.6 ft.]		[collar	216°	-70°
Date Complete	ed:							Average de	oth of each	10-foot sludg	ge sample sho	wn
Final Depth	n: 460 feet (140.2 m)	Logged by	: J. Wayı	ne Pick	ett, P.0	Geo.	5	Samp, - San	nple; Rep. ·	 Represented 	i; Act Actua	.1
						Fe	et	Au	Au	Stu	dge	Au
From - To	Description		Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	<u>ppb</u>
0.0-30.0	Casing					a L L						
30.0-32.7	Rubbie											
32.7-47.5	Interlayered pale grey siltstone, argillite and lesser (lolomitic		•	····					B172913	40	5
	siltstone											
47.0	S_2 at 70 ° to C.A. and 35 ° clockwise to lineation loc hole	oking down		: 						B172914	50	5
47.5-79.0	Pale grey calcareous siltstone and black argillite in	terlayered										
j	calcareous siltstone and argillite beds are brecciated	mnated			····					B172915	60	2
65.0-70.0	limestone is bleached and locally sericitized and do	lomitizeđ	1302	65.0	68.0	3.0	3.0	10	· · · · · · · · · · · · · · · · · · ·	B172916	70	4
	or silicified, about 2% pyrite and lesser pyrrhotite, l	avering at	1303	68.0	70.0	2.0	2.0	10				
	60 ° to C.A. typically		1304	70.0	75.0	5.0	3.0	10				
79.0-99.2	Pale grey dolomitic, sericitic siltstone and dolomitic conglomerate/breccia, minor mauve or emerald greet places four dolomite porphyroblasts typically 2 mm at	e n sericite in		 - - -								
	narticularly in argillite sections	01093								B172917	80	5
90.0-99.2	mostly brecointed beds and conglomerate									B172918	90	3
94.7	I-cm wide gouge											

D.D.H. IMG-2K-10

Page 2 of 4

					Fe	et	Au	Au	Slud	gc	Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ppb
99.2-106.0	Pale grey brecciated limestone, few pyrite stringers	1305	99.2	105.6	6.4	5.7	10		B172919	100	4
106.0-136.2	Pale grey dolomitic breccia/conglomerate, sericite partings										
	between fragments, about 1% pyrite locally, minor sericite in								<u> </u>		
	places	1306	109.5	114.0	4.5	3.5	20				
114.0-115.0	mostly grey limestone	1307	114.0	120.0	6.0	4.8	10		B172920	110	34
114.2	1-cm wide gouge	·····							D100001	120	
115.0	1-cm wide gouge								B1/2921	120	
119.0-119.4	grey limestone								B172922	130	
136.2-151.7	Pale grey dolomitic, sericitic siltstone								B172023	140	4
131.5-132.6	about 20% yellow-green sericite	1308	146.2	151.7	5.5	5.0	10		B172924	140	
146.1-146.8	carbonate-bearing quartz vein at about 20° to C.A. and	1000	1-0.6	191.1	0.0	0.0			0172724	1.50	
	orthogonal to lineation										ľ
147.0-147.2	about 2% disseminated pyrite and pyrrhotite							• •			-
147.8-148.3	quartz vem		!								
150,4-151.5	carbonate-bearing quartz vein containing about 5% pyrne as										
	coarse-grained granular masses, also contains about 5% coarse							•			
140 2 150	muscovite										
149.5-150	.0 about 2% disseminated pyrite and pyritotite										Ì
151 7-166 5	Pale grey blue limestone interlayered with lesser granular							• • •			
10117-10010	calcareous sandstone and greywacke. few argillaceous	,							B172925	160	4
	sections, about 10-15% calcite veins, minor dolomitic sandstone										
						i				·······	
166.5-175.0	Pale grey dolomitic and silicious greywacke and grit							ļ,	B172926	170	4
	interlayered with dark grev argillite and silicious siltstone										
166.7	S_2 at 70 ° to C.A. and 35 ° clockwise to lineation looking down					:					
	hole					:					
171.5-172.2	carbonate-muscovite-bearing quartz vein at 10 ° to C.A.,										
contains abou	it 0.5% pyrite							:			
						:					[
				i	i .						
											-

Page 3 of 4

					Feet		Au	Au	u Sludge		Au
From - To	Description	Samp.	From	To	Rep.	Act.	ppb	oz./ton	Samp.	Depth	ррв
175.0-210.0	Pale olive green strongly sericitized, dolomitized and locally							:			
	silicified tuffaceous siltstone										
175.0-193.0	about 10% dolomite porphyroblasts typically 2-3 mm across								B172927	180	5
180.0-185	0 about 1 ft core recovered				<u></u>						
185.0-190	.0 quartz vein and pale yellow gouge				:				B172928	190	8
193.0-195.0	broken core and gouge, quartz veins										
195.0-205.0	about 2 feet of core recovered, rock is silicified and includes				· · ·	ļ			B172929	200	223
	quartz vein material			<u></u>		<u> </u>			:		
209.4-210.0	gouged, broken core, several quartz veins				ļ				B172930	210	240
									D170011		100
210.0-245.0	Pale green to medium green tuff interlayered with about 20%		1						B172931	220	125
	black argillite		ļ				•••••		B172932	230	106
			i						B172933	240	
245.0-250.0	Black argillite interlayered with lesser grey siltstone			• • • • •		i		· · · · · · · · · · · · · · · · · · ·	BT72934	250	- 90
246.0	local change in bedding to 45 ° to C.A.				į.						
											1
250.0-	Pale to medium green mafic tuff containing about 20% calcite								0172025	260	
	veins, few quartz veins, darker green less altered sections have					! !			B172935	260	70
	finely disseminated ilmenite		-		1	·			B172930	200	653
269.5	2-cm wide gouge zone	<u></u>			:				B172938	280	127
280.0	3-cm wide gouge zone				+	**. **** ** **	 		0172736	200	127
282.7	2-cm wide gouge zone at 70 ° to C.A.				1		1				
283.4-	medium green mafic tuff containing about 5% calcite and				1						
	quartz veins, about 10% calcite amygdules typically 1-2 mm		:								
	across in sections								B172939	290	167
289.2-289	4 chlorite-bearing quartz/carbonate vein at 70 ° to C.A.		<u></u>		····		<u></u>		B172940	300	123
295.5	S_2 at 65 ° to C.A.	1309	297.0	299.5	2.5	2.5	10	··· ·············			
298.1-298	4 brecciated, calcite/dolomite matrix, about 3% pyrite								B172941	310	254
306.7-307	.5 3-cm wide carbonate-bearing quartz vein, trace pyrite and										
	pyrrhotite	1310	306.8	313.2	6.4	:	10				
307.5-312	.3 about 40% irregular calcite and quartz masses and veins, about				1	i-	* .*.*	•••			
212.2.2.2.2	2% pyrite and lesser pyrrhotite					1					
312,3-313,1	sericite/graphitic gouge	1311	313.2	315.0	1.8		40				
			1		1		:		B172942	320	221

Page 4 of 4

					Fe	et	Au	Au	Slud	ge	Au
From - To	Description	Samp.	From	То	Rep.	Act.	ppb	oz./ton	Samp.	Depth	թթե
321.0	schistosity at 55 ° to C.A. and 30 ° counter clockwise to										a A
	lineation looking downhole								1		
325.2-326.2	about 90% calcite and quartz veins					ļļ		: • • • • • • • •	B172943	330	186
327.3-327.7	1-cm wide carbonate-bearing quartz vein at 5 ° to C.A., trace	1312	327.3	335.0	7.7		30		• • • • • • • • • • •		
<u>,</u> *	pyrite and galena							ļ			
32 8.8- 335.0	pale green, bleached, sericitic section, trace pyrite, locally							i			
	silicified		:								
329.5-330.0	gouged	!									
		1212	274 6	277 C	2.0		10		0172044	240	110
		1010	3/4.0	205.9	3.U 0.9		20		B172944	250	190
		1310	395.0	395.0	0.0	•+	10	•····	D172945	360	169
		1314	405.0	400.5	1.0		10		B172947	370	107
		.							B172948	380	121
Note: Remain	nder of drill hole logged by T.C. Scott.							······	B172949	390	164
						<u> </u>			B172950	400	159
			<u> </u>						B172951	420	141
						<u> </u>		•••••	B172952	430	167
									B172953	440	123
						+			B172954	450	94
				†		+		••••••	<u> </u>		
					1						
					:						
								1			
								1			
						1					
				:							
						1					
					1						

.

•	DIAMO	ND DRI		<u>j</u> G		CARIBOO GOLD PROJECT 2000	····		
	СЛИ Но	ole; /M	<u>3-2</u>	K 10		Date: 26 Oct 2000 Sheet / of	2,		
i	Azimut	h:	÷ .			Northing Easting Elevation Location:			:
	Angle:	· · ·			Collar:				•.
					Tali:				
	Logger	d by: -	<u>1</u> C	5.00	Η.	Graphic Scale : 1" =	, , ,	• ,	
	Main Interval		Lith. code	S - C^	% pyrite	Description	Notes	<u> </u>	
N	<u>i mont</u>	to				an a bhí an an tha an an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an th Tha an a dadh a n tha an tha an tha an tha an tha an 1888 an tha an tha an tha an tha an tha an tha an tha an tha		<u> </u>	┢
-	<u>.338</u>	368.5				Mal grey/green Sorreite Phyllite: prominent gla/carb ragen and		-	
						vein Frigmants dipansion feel 11 S2@ 70°, dark lamina dw. to chlorife	<u> </u>	-	
				}		= grephite; delam the throughout I speckle at lesture interested from	ļ. <u> </u>	-	
-						364 10 368.5	[
							 .	-	ļ
	1)						ļ		
	348.5	395		 		Brey Serioite Phillite fine candy testure, may be blenched veriction of	· .	ľ	
					· · ·	above 5107000 prominant fransposal at fearly vein from 373 to 377 and			
						390 to 381.5 spectling of 1-2 mm dal pbs summiner thum 380 to 306 datam lized			
ŀ						throughout section.	dolph		
	<u> </u>			· •		Mineralization: irregular whips and a to acm bands of some macine			
Ĺ			· ·			pyraholite/pyrile #fok2 hom 374.5/0 31.7.5 (~5%); miner whips of	ļ		
				. ·		oyrite (>28.) at 381.			
-							ļ		1
	39 6	410				Lominated grey and block Phyllits 11-3mm lomins 11/61 @ 55%EB; servitic.			្ម
						dolomitic throughout well rock blooched to pale grean with a live sericite			
					0 - C E	Algeont to 4:0 at period served vern 1 for @ 400' and similar 3cm vern.			
					2	et yoke which crossents for a 20/22 pr 5= respectful with the coverne			,
Ľ	(二) 译书 [N.				405 to 406 - 1-2 cm at 2 vein @ 10% ca is nearly normal to fil? Prominiant aparse			
					į.	detsed pyrite in vein no blezofim of woelrock			

. ſ

]

7

r ...

7

1 Ţ ۳.

r

)

1

1

5

-

۳.

.

DIAMOND DRILL LOG Drill Hole: <u>IMG - 24 10</u> Azimuth: Angle: C	CARIBOO GOLD PROJECT 2000 Date: Sheet 2 of 3 Northing Easting Elevation Location:
Drill Hole: <u>IMG - 24 10</u> Azimuth: Angle: C	Date: Sheet 2 of 3 Northing Easting Elevation
Azimuth: Angle: C	Northing Easting Elevation Location:
Azimedi. Angle: C	
	coller in the last state in the second state in the second state in the second state in the second state in the
	Tab. Graphic Scale : 1" = '
Main Lith: S - C^	% Description Notes
from to to to	
395 441	395-39518 0.5 to 1.0cm bends purile/pyrch in gd2/carls veintale
(cont)	11 ht Q 60 /cz troy of 407 to 409; 5 ruck brec 12 tel @ 409;
	3 cm ats/cents vain 11 for at 409.8 tr my
AII 429:5	Mixed breezested black 1st and phyllipic grey/green midstome tehric
	drivet of strong strong strong of no 50°/c2; H13-414 - 10m creamy dolom h
	mile stavies 15 lee (ma 5=) prushed zour ataldol veras at 420.542.0,
	azis energy all auguro. Section pericitic and dolomitic thomas hout; 71%
	po though on the second s
426 57 444 0	Alexant Eleber 40% tomaposed at veine with pile green sericite
	will she king to a normanity at a suger and very diffuser
	431 Jem sta V 0 10 102 - ek av wellrock; 437 1600 3 & 10 mm 2051/110-
	brids to her to bollo Alle mor conse on ~3%
	440 to atta miller the and the mile of with inregitive retrientate puditone pose
	officers will different diffused price of service + chlorite
	Findbregment sto erson, 442 storace bright areas soriede

]

DIAMO		LL LC	G					
DrillHo	ole:	. <u> </u>	4. 4		Date:	Sneet 3 of 2	<u></u>	
Azimut	h:		. ·	•	Northing	Easting Elevation		
Angle:		•	3	Collar:				
				Tall	1			
Londer	1.bv:	. .	,			Graphic Scale : 1" = 1	-'11	
Main		Liih.	S - C^	%	Cescription	Notes		
from	to	coue			- MERISELAC		· .	(
40/20	440				RIL EI	that medistance where a late bonding to creamy dollatalsor		ļ
	E O L					mullet as iclesiver & 60° cs #44 to 446: 446: 1cm	_	
:		· · ·				122 44915657 atoroug with as in delemiti grains	_	
<u> </u>	<u> </u>					12 With a children when in prior tetoin vouging druckiely		_
					2	Il lea to to ver anot develored kink band shows clearage	-	_
4					LOAD -	+ 1 - All off 31. Overell on contact ~ 7.		
					- 11) - 1	and the ship hit stalezop bruine ~1-3mm		
					1051-11 25 04	LI LECALE		
				, s'				
	•		ж.: Т.					
					and the second second second second second second second second second second second second second second second			
		<u></u>		<u>V</u> 12 - 3 -	王王公 派 (1971年4月) 王公司(1971年4月)			:
		'. 						4
ن			1. 1					
<u>) ()</u> 11 () () () () () () () () () () () () ()	¥11.5	آهي. د	<u></u>	2. 19 (2. 1) 2. 19 (2. 1)				
1 (1997) 7 (1997)					- 700-303-5-5 			1
ter and the second								
			No.				1829) 201	1 (Å
1、1380			á.	<u> </u>	Carlot Villa	AND THE REPORT OF THE REPORT OF THE REPORT OF THE ADDRESS OF THE REPORT OF		

Appendix E Drill Core and Sludge Sample Analyses

.

: : •

Γ.

.

<u>.</u>

ю. -

Ļ

.

ы.,

L .

[.

Drill Core Analyses

.

.

-

í |-----

r -

μ.,

.

÷.,

L

L.

L...

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

Г

1

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data____FA

I

ASSAY CERTIFICATE

Int'1 Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold File # A003831 Page 1 P.O. Box 247, 2422 Barker, Wells BC VOK 280 Submitted by: W. Pickett

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES.

SIGNED BY

- SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

t 5/00

DATE RECEIVED: SEP 28 2000 DATE REPORT MAILED:

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

All results are considered the confidential property of the client. Acma assumes the liabilities for actual cost of the analysis only.

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003831 Page 2

Data / - FA

ADE ANALYHOU	SAMPLE#	Au**
		gm/mt
	1031 1032 1033 1034 1035	.04 .02 .02 <.01 .02
	1036 1037 1038 1039 1051	.01 .07 .06 .12 .01
	1052 1053 1054 RE 1054 RRE 1054	.02 .11 6.08 5.95 6.08
	1055 1056 1057 1058 1059	.03 3.56 .03 .01 .24
	1060 1061 1062 1063 1064	6.13 .07 <.01 <.01 <.01
	1065 1066 RE 1066 RRE 1066 1067	.02 <.01 <.01 <.01 <.01
·	1068 1069 1070 1071 1072	<.01 <.01 <.01 <.01 <.01
	STANDARD AU-1	3.65

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES (ISO 9002 Accredited Co.	iltd. 952 B. HASTINGS ST. VAN) ASSAY CERT:	FICATE	
Int'l Wayside	Gold Mines Ltd. PROJECT Isl: P.O. Box 247, 2422 Barker, Welis BC W	<u>nd Mon. Gold</u> File # A003878 Page (200 Submitted by: L. Phinney	€ ⊥ €
	SAMPLE#	Au** gm/mt	
	1040 1041 1042 1043 1044	.12 .24 .02 .02 .02	
· ·	1045 1046 1047 1048 1049	<.01 <.01 .01 .01 .03	
	1050 RE 1050 RRE 1050 1081 1082	.01 .01 <.01 .04 .07	
	1083 1084 1085 1086 1087	<.01 .01 <.01 <.01 <.01	

RE 1092 RRE 1092 1093 1094 1095

		1096 1097 1097 1098 10 1126 STANDARD AU-1 3.57	
		GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C <u>Samples beginning 'RE' are Rerung and 'RRE' are Reject Reruns.</u>	
DATE RECEIVED:	OCT 2 2000	DATE REPORT MAILED: Out 12/00 SIGNED BY	TIFIED B.C. ASSAYERS
All results are consi	dered the con	fidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	DataFA

.01 <.01 .03 <.01 .05

.04 .04 <.01 .11 .02

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003831 Page 3

SAMPLE#	Au** gm/mt
 1073 1074 1075 1076 1077	.02 <.01 <.01 .02 .02
 1078 1079 1080 1099 1100	<.01 .08 .19 .60 .29
1101 1102 RE 1102 RRE 1102 1103	.11 .01 .02 .01 .02
1104 1105 1106 1107 1108	.04 .18 .17 .03 <.01
1109 1110 1111 1112 1113	<.01 .78 .01 1.21 .92
1114 RE 1114 RRE 1114 1115 1116	.07 .05 .10 .66 .06
1117 1118 1119 1120 1121	.01 .10 .14 .03 .05
STANDARD AU-1	3.65

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA__

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003831 Page 4

ΔΔ	
	- 14
	- 13
	- 11
CONT. AMALYTICS	- 5
ACAS AMALTIKAL	

	1100	<u> </u>		
	1122 1123 1124 1125 RE 1125	<.01 .11 <.01 <.01 <.01		
Sample type: CORE R150 60C	. Samples beginning	'RE' are Reruns and	'RRE' are Reject	Reruns.
•			L. sulvais opt:	Data í f

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003878 Page 2

	SAMPLE#	Au** gm/mt
	1127 1128 1129 1130 1131	<.01 .02 3.40 .71 .03
• •	1132 1133 1134 1135 1136	13.25 .10 .09 .19 .01
	1137 1138 RE 1138 RRE 1138 1139	.07 .52 .59 .59 <.01
, ·	1140 1141 1142 1151 1152	.08 <.01 <.01 .07 <.01
	1153 1154 1155 1156 1157	.06 .01 1.96 .05 4.89
	1158 RE 1158 RRE 1158 1159 1160	<.01 <.01 .02 .05 .31
	1161 1162 1163 1164 1165	.36 .13 .17 1.98 1.84
	STANDARD AU-1	3.56

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003878 Page 3

	SAMPLE#	Au** gm/mt
	1166 1167 1168 1169 1170	.87 4.13 6.34 .36 .65
	1171 1172 1173 1174 1175	1.03 1.49 <.01 .01 <.01
	1176 1177 1178 1179 1180	.01 <.01 <.01 <.01 <.01 <.01
• • • •	RE 1180 RRE 1180 1181 1182 1183	<.01 <.01 <.01 <.01 <.01 <.01
	1184 1185 STANDARD AU-1	<.01 <.01 3.57
Sample type: CORE	R150 60C. Samples beginning 'R	E' are Reruns and 'RRE' are Reject Reruns.
-		

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

ASSAY CERTIFICATE

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold File # A003982 P.O. Box 247, 2422 Barker, Wells BC VOK 2R0 Submitted by: L. Phinney

852 B.

SAMI	PLE# Au** gm/mt
114 114 114 114 114 114	3 .02 4 .02 5 .01 6 <.01 7 .05
114 114 115 115 118 118	8 .01 9 .10 0 .49 6 .04 7 .13
118 119 RE RRE 119	8 .02 0 .03 1190 .03 1190 .03 1190 .03
119 119 119 119 119	22 .09 .09 .44 <.01 .09 .66 6.71
119 119 120 120	97 <.01 98 .02 99 .01 00 <.01 01 .39
120 120 120 120 STA	1.76 1.44 1.44 04 05 05 05 05 05 05 05 05 05 05

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

14/00

DATE REPORT MAILED: DATE RECEIVED: OCT 10 2000

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

PHONE (604) 253-3158 FAX (604) 253-1716 HASTINGS ST. VANCOUVER BC V6A 1R6 852 E. ACME ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold File # A003981 P.G. Box 247, 2422 Barker, Wells BC VOK 2RG Submitted by: L. Phinney Au** SAMPLE# gm/mt <.01 $1206 \\ 1207$. <.01 < 01 02 1208 1209 .01 1210 <.01 $1211 \\ 1212$ <.01 .18 1213 1214 . ōž .ŏ3 1215 .56 1216 RE 1216 RRE 1216 1217 <.01 1218 <.01 $1219 \\ 1220$ <.01 .04 1221 1222 1223 <.01 <.01 <.01 1224 <.01 1225

Ľ

المسير الم

Data

FA

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Oct 14/10 SIGNED BY ...

STANDARD AU-1

.04 <.01 .01 3.65

DATE REPORT MAILED DATE RECEIVED: OCT 10 2000

1226 1227 1228

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD

(ISO 9002 Accredited Co.)

.10 $2.86 \\ 2.41$

3.66

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

STANDARD AU-1

t 17/00 OCT 12 2000 DATE REPORT MAILED: DATE RECEIVED:

. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS SIGNED BY.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1257 1258

> 1 Data 🥇 🗛

PHONE (604) 253-3158 FAX (604) 253-1716

-

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A004027 Page 2

SAMPLE#	Au** gm/mt		······································
1259 1260 1261 1262 RE 1262	.14 <.01 .22 .18 .19		
STANDARD AU-1	3.60		
	SAMPLE# 1259 1260 1261 1262 RE 1262 STANDARD AU-1	SAMPLE# Au** gm/mt 1259 .14 1260 <.01 1261 .22 1262 .18 RE 1262 STANDARD Au**	SAMPLE# Au** gm/mt 1259 .14 1260 <.01 1261 .22 1262 .18 RE 1262 STANDARD AU-1 3.60

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANALYTICAL

ALL MALYTICAL

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A004276 Page 2

r 1

	SAMPLE#	Au** gm/mt
	1293 1294 1295 1296 1297	.10 .05 <.01 <.01 <.01
·	1298 RE 1298 RRE 1298 1299 1300	<.01 <.01 <.01 <.01 <.01

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA
· []	1 1	1	[]	5	· · · · · · · · · · · · · · · · · · ·							1					
ACME ANAL (ISO	YTICAL 9002 Ac	LABORA credit	IORIES ed Co.	LTD.) <u>Isla</u> 3	852 <u>nd Mo</u> 1 05 - 455 (B. HA <u>intali</u> iranvilie	STINGS S ASSAY <u>1 Gold</u> St., Vance	ET. VAN CERT. <u>Mines</u> Duver BC V	COUVER IFICAT <u>Ltd.</u> 65 171	BC V6A E File Submitted	1R6 # A004 by: L. Phi	PHONE 1380 Inney	(604) 2	;3-3158 P	AX (604) 253-	
							SAMPLE	2#	Agm	u** /mt							

1301 1302 1303 1304 1305	1.07 <.01 .01 <.01 <.01
1306 1307 1308 1309 1310	.02 <.01 <.01 <.01 <.01
RE 1310 RRE 1310 1311 1312 1313	.01 .01 .04 .03 <.01
1314 1315 STANDARD AU-1	<.01 .02 3.52

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

t.

. •

.

Sludge Sample Analyses

. . . .

ANME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

Page 1

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. File # A003151 305 - 455 Granville St., Vancouver BC V6C 111 Submitted by: R. Hall

· · · · · · · · · · · · · · · · · · ·		SAMPLE#	Au** ppb
· · · · · · · · · · · · · · · · · · ·		B 171701 B 171702 B 171703 B 171703 B 171704 B 171705	771 241 104 12 8
•.		B 171706 B 171707 B 171708 B 171709 B 171709 B 171710	6 9 3 18 8
		RE B 171710 RRE B 171710 B 171711 B 171712 B 171713 B 171713	5 5 4 3 39
		B 171714 B 171715 B 171716 B 171716 B 171717 B 171718	4306 2702 2397 6192 3010
		B 171719 B 171720 B 171721 B 171722 RE B 171722 RE B 171722	3209 2878 4301 3636 3431
		RRE B 171722 B 171723 B 171724 B 171725 B 171725 B 171726	3286 2411 1695 1393 1916
	,	B 171727 B 171728 B 171729 B 171730 STANDARD AU-R	691 695 1466 561 476

GROUP 38 - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: SLUDGE R150 + \wedge

DATE RECEIVED:	AUG 22 2000	DATE REPO	ORT MAILEI	: Ang 30/	n N	SIGNED BY	····· ··· ··· ··· ··· ··· ··· ··· ···· ··· ····	TOYE, C.LEONG,	J. WANG; CERTIFI	ED B.C. ASSAYERS
itsom recon	mended	for 9	101d 7 1	-1 gg 000						Dere SA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

II

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. FILE # A003151 Page 2

 SAMPLE#	Au** ppb	
 B 171731 B 171732 B 171733 B 171733 B 171734 B 171735	684 1127 418 1229 1043	
B 171736 B 171737 B 171738 B 171739 B 171739 B 171740	1495 862 652 1359 564	
B 171741 B 171742 RE B 171742 RRE B 171742 B 171743	333 360 363 428 398	
B 171744 B 171745 B 171746 B 171747 B 171747 B 171748	567 1090 1692 761 1346	
B 171749 B 171750 B 171751 B 171752 B 171753	3186 1819 1098 1169 461	
B 171754 RE B 171754 RRE B 171754 B 171755 B 171756	951 908 1037 359 137	
B 171757 B 171758 B 171759 B 171760 B 171761	187 201 159 121 260	
STANDARD AU-R	465	

Sample type: SLUDGE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. FILE # A003151 Page 3

	SAMPLE#	Au** ppb
	B 171762 B 171763 B 171764 B 171765 B 171766	247 610 178 335 244
	B 171767 B 171768 B 171769 B 171770 B 171771	188 113 148 148 570
	B 171772 RE B 171772 RRE B 171772 B 171773 B 171774	268 273 290 190 150
	B 171775 B 171776 B 171777 B 171777 B 171778 B 171779	108 98 223 101 160
· .	B 171780 B 171781 B 171782 B 171783 B 171783 B 171784	220 258 169 146 243
	RE B 171784 RRE B 171784 B 171785 B 171786 B 171787	242 237 278 219 215
	B 171788 B 171789 STANDARD AU-R	179 172 487

Sample type: SLUDGE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

	305 455 Granville Sty Vencouver Bd V6C 111	GOLD 2000 FLIE # A003267 Page 1
- 		ppb
- -	B 171790 B 171791 B 171792 B 171793 B 171794	164 584 237 133 1576
- -	B 171795 B 171796 B 171797 B 171798 B 171799	982 572 676 700 474
5 5 7 7 7 8 8 8	B 171800 RE B 171800 RRE B 171800 B 171801 B 171802	450 370 434 407 658
S F	B 171803 B 171804 B 171805 B 171806 B 171807	657 399 403 601 562
¥	B 171808 B 171809 B 171810 B 171811 B 171812	476 477 502 592 602
	RE B 171812 RRE B 171812 B 171813 B 171814 B 171815	662 590 632 718 831
	B 171816 B 171817 B 171818 B 171818 B 171819 STANDARD AU-R	1015 1237 988 738 475
GRC - S	UP 38 - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN A AMPLE TYPE: SLUDGE R150 60C <u>Samples beginning (RE' are Reruns</u>	QUA - REGIA, ICP ANALYSIS. UPPER LINITS = 10 PPH. And 'RRE' arg.Reject Reruns.
- DATE RECEIVED: AUG	29 2000 DATE REPORT MAILED: Sept 6/00 SIGNE	D BY

ſ

Int'l Wayside Gold Mines Ltd. PROJECT CARIBOO GOLD 2000 FILE # A003267 Page 2

н Ł 1

	SAMPLE# B 171820 B 171821 B 171822 B 171823 B 171824 B 171825 B 171826 B 171826 B 171827 B 171828 B 171828 B 171829 B 171830 RE B 171830	Au** ppb 762 631 527 350 530 326 444 540 303 325 210
	B 171820 B 171821 B 171822 B 171823 B 171824 B 171825 B 171826 B 171826 B 171828 B 171828 B 171828 B 171829 B 171830 RE B 171830	762 631 527 350 530 326 444 540 303 303 325 210
	B 171825 B 171826 B 171827 B 171828 B 171829 B 171830 RE B 171830	326 444 540 303 325 210
	B 171830 RE B 171830	210
	RRE B 171830 B 171831 B 171832	202 217 214 403
	B 171833 B 171834 B 171835 B 171836 B 171837	277 213 355 187 388
	B 171838 B 171839 B 171840 B 171841 B 171842	242 194 155 164 103
	RE B 171842 RRE B 171842 B 171843 B 171844 B 171844 B 171845	168 101 172 87 67
,	B 171846 B 171847 B 171848 B 171848 B 171849 B 171850	74 53 106 41 123
	STANDARD AU-R	479
	pe: SLUDGE_R150 60C.	B 171833 B 171834 B 171835 B 171836 B 171837 B 171838 B 171837 B 171838 B 171839 B 171840 B 171840 B 171842 RE B 171842 RRE B 171842 B 171843 B 171844 B 171844 B 171845 B 171846 B 171846 B 171847 B 171848 B 171848 B 171848 B 171849 B 171850 STANDARD AU-R

All results are considered the confidential property of the client. Acme essumes the liabilities for actual cost of the analysis only.

Date____FA

-

1

Int'l Wayside Gold Mines Ltd. PROJECT CARIBOO GOLD 2000 FILE # A003267 Page 3

[]

	ACHE AVALYTICAL		ACHE ARM, YTICAL
- 533		SAMPLE#	Au** ppb
P.004/004	· · · · · · · · · · · · · · · · · · ·	B 171851 B 171852 B 171853 B 171854 B 171855	61 64 57 135 107
T-276		B 171856 B 171857 B 171858 B 171858 B 171859 B 171860	90 64 52 53 29
984 3338		RE B 171860 RRE B 171860 B 171861 B 171862 B 171863	44 22 39 35 35
+250		B 171864 B 171865 B 171866 B 171866 B 171867 B 171868	73 46 16 7 14
		B 171869 B 171870 B 171871 B 171872 RE B 171872	19 88 60 29 79
SHIR STIBH-30		RRE B 171872 B 171873 B 171874 B 171875 B 171875 B 171876	26 50 193 37 22
YSII		STANDARD AU-R	491
ROM-INT SE	Sample type: SLUDGB R150 60C.	Samples beginning 'RE	<u>' are Reruns and 'RRE' are Reject Reruns.</u>
u.			
16:17			
100			
FEB-2			
27-	All results are considered the confidential property of	the client. Acme assumes the light	iti cs for actual cost of the analysis only. Data <u>(</u> FA)

•	SAMPLE#	Au** ppb
- <u>-</u> · · · · · · · · · · · · · · · · ·	B 171877 B 171878 B 171878 B 171879 B 171880 B 171881	22 3 <2 4 6
·	B 171882 B 171883 B 171884 B 171885 B 171885 B 171886	<2 3 <2 4 2138
	RE B 171886 RRE B 171886 B 171887 B 171888 B 171888 B 171889	1917 2080 4484 7139 1954
	B 171890 B 171891 B 171892 B 171893 B 171893 B 171894	910 372 232 97 212
	B 171895 B 171896 B 171897 B 171897 B 171898 RE B 171898	68 69 35 28 25
	RRE B 171898 B 171899 B 171900 B 171901 B 171902	25 27 20 17 7
	B 171903 B 171904 B 171905 B 171906 STANDARD AU-R	33 25 32 10 475

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA ////

ADE AVALYTICAL

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003307 Page 2

SAMPLE#	Au** ppb
B 171907 B 171908 B 171909 B 171910 B 171911 B 171911	3 16 9 6 13
B 171912 RE B 171912 RRE B 171912 B 171913 B 171914	8 7 5 10 9
 STANDARD AU-R	477

Sample type: SLUDGE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the limbilities for actual cost of the analysis only.

Data 1-FA 111

	SAMPLE#	Au** opb
····	B 171915 B 171916 B 171917 B 171917 B 171918 B 171919	366 4 4 6 <2
	B 171920 B 171921 B 171922 B 171923 B 171923 B 171924	<2 7 8 2 3
	RE B 171924 RRE B 171924 B 171925 B 171926 B 171927	<2 5 <2 54 2
	B 171928 B 171929 B 171930 B 171931 B 171932	4 7 75 43 167
	B 171933 B 171934 B 171935 B 171935 B 171936 RE B 171936	148 3466 714 166 137
	RRE B 171936 B 171937 B 171938 B 171939 B 171939 B 171940	190 211 232 230 2197
	B 171941 B 171942 B 171943 B 171944 STANDARD AU-R	1267 3488 1253 1075 490

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Int'l Wayside Gold Mines Ltd. PROJECT Island Mtn. Gold FILE # A003585 Page 2

	SAMPLE#	Au** ppb
:	B 171945 B 171946 B 171947 B 171948 B 171949	1598 665 851 247 447
	B 171950 B 171951 B 171952 B 171953 B 171953 B 171954	735 323 566 331 162
	RE B 171954 RRE B 171954 B 171955 B 171956 B 171957	173 342 71 53 50
	B 171958 B 171959 B 171960 B 171961 B 171962	858 374 89 52 50
	B 171963 B 171964 RE B 171964 RRE B 171964 B 171965	59 60 61 64 41
	B 171966 B 171967 B 171968 B 171969 B 171970	58 157 573 892 699
	STANDARD AU-R	481
Sample type: SLUDGE R150. Samples	beginning 'RE' a	are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

	SAMPLE# Au** ppb
	B 171971 19 B 171972 8 B 171973 560 B 171974 134 B 171975 46
	B 171976 B 171977 B 171977 B 171978 B 171979 B 171979 B 171980 211
·	REB171980174RREB171980146B17198140B17198228B171983232
	B 171984 296 B 171985 707 B 171986 378 B 171987 59 B 171988 10
	B 171989 B 171990 B 171990 B 171991 B 171992 B 171992 RE B 171992 2
	RREB1719923B1719932243B1719941078B17199569B17199637
	B 171997 25 B 171998 13 B 171999 8 B 172000 8 STANDARD AU-R 471

Data___

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/</u>FA

	Tnt'l Wayeide Gold Mines Ltd. PROJECT Tsland Mtn. Gold File # A003832 P.O. Box 247, Z422 Barker, Wells BC VOK 280 Submitted by: W. Pickett
	SAMPLE# Au** ppb
	B 172361 41 B 172362 3 B 172363 <2 B 172364 <2 RE B 172364 2
	GROUP 38 - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: SLUDGE R150 <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u> PT
ATE RECEIVED:	SEP 28 2000 DATE REPORT MAILED: Out 10/00 SIGNED BY
•	
:	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

:

.

Data / FA

· · ·			daa	
		B 172865 B 172866 B 172867 B 172868 B 172868 B 172869	5 3 <2 2 6	
		B 172870 RE B 172870	3 2	
	GROUP 3B - FIRE GEOCHEM AU - 30 GM SAMP - SAMPLE TYPE: SLUDGE R150 60C Same	PLE FUSION, DORE DISSOLVED	IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 1 uns and 'RRE' are Reject Reruns.	D PPM.
ATE RECEIVED:	OCT 20 2000 DATE REPORT MAILED	: Oct 27/00 SI	GNED BY	WANG; CERTIFIED B.C. ASSAYERS
		·····		
•				
•				

	SAMPLE#	Au** ppb
	B 172871 B 172872 B 172873 B 172873 B 172874 B 172875	4 5 <2 <2
	B 172876 B 172877 B 172878 B 172878 B 172879 B 172880	4 24 <2 9 29
	B 172881 B 172882 RE B 172882 RRE B 172882 B 172882 B 172883	282 273 260 258
	B 172884 B 172885 B 172886 B 172886 B 172887 B 172888	212 31 72 251 509
	B 172889 B 172890 B 172891 B 172892 B 172893	390 516 442 3 94 768
	B 172894 RE B 172894 RRE B 172894 B 172895 B 172896	302 296 306 194 150
	B 172897 B 172898 B 172899 B 172900 STANDARD AU-1	160 162 161 149 R 468
GROUP 3B - FIRE GI	EOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED 1	N AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.

	SAMPLE#	Au** ppb	
	B 172901 B 172902 B 172903 B 172904 B 172904 B 172905	140 276 316 974 224	
·	B 172906 B 172907 B 172908 RE B 172908 RE B 172908 RRE B 172908	233 345 287 299 290	
	B 172909 B 172910 STANDARD AU-F	214 171 458	
Sample type: SLUDGE R15	0 60C. Samples beginning 'H	RE' are Reruns and 'RRE' are Reject Rer	runs.
•			

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/</u>/FA

ጌ---

(ISO 9002 Accredited Co.	GEOCHEM PRECIOUS MET	TALS ANALYSIS
	Land Mountain Gold Mines Ltd. 305 - 455 Granville St., Vancouver BC V6C 1	File # A004379 Page 1 IT1 Submitted by: L. Phinney
	SAMPLE#	Au** ppb
	B 172911 B 172912 B 172913 B 172913 B 172914 B 172915	148 129 5 5 2
	B 172916 B 172917 B 172918 B 172919 B 172919 B 172920	4 5 3 4 34
	RE B 172920 RRE B 172920 B 172921 B 172922 B 172922 B 172923	47 45 2 <2 4
	B 172924 B 172925 B 172926 B 172927 B 172927 B 172928	<2 4 5 8
	B 172929 B 172930 B 172931 B 172931 B 172932 RE B 172932	223 240 125 106 105
•	RRE B 172932 B 172933 B 172934 B 172935 B 172935 B 172936	116 116 90 60 70
	B 172937 B 172938 B 172939 B 172940 STANDARD AU-H	653 127 167 123 8 463

GROUP 3B - FIRE GEOCHEM AU - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: SLUDGE R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE REPORT MAILED: NOV 10/00 . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS SIGNED BY DATE RECEIVED: OCT 30 2000 Ŋ

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Island Mountain Gold Mines Ltd. FILE # A004379

Page 2

Data<u>'</u>FA

SAMPLE#	Au** ppb
B 172941 B 172942 B 172943 B 172944 B 172944 B 172945	254 221 186 110 189
B 172946 B 172947 B 172948 B 172948 B 172949 B 172950	169 121 130 164 159
RE B 172950 RRE B 172950 B 172951 B 172952 B 172953	149 162 141 167 123
B 172954 STANDARD AU-R	94 471

Sample type: SLUDGE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

-

....

Appendix F: Soil sample locations and selected analyses	1	· · · ·	, <u> </u>	2000 - 19 4 2007 - 19	r 1		1 61 23	
•								

SAMPLE #	Grid Coor	dinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2779	60+00 WI	0+00N	20,774 N	7,367 E	52.8	98	135	40	115	1.7	0.5	1.8	858
2780.	60+00 W	1+00S	20,697 N	7,303 E	42.7	107	68	29	63	1.5	< .5	1.0	2450
2781	60+00 W	2+00S	20,621 N	7,239 E	11.6	49	204	26	113	0.8	< .5	2.0	2282
2782	60 +00 W	3+00S	20,544 N	7,174 E	12.7	87	71	32	98	0.3	< .5	2.7	426
2783	60+00 W	4+00S	20,468 N	7,110 E	15.2	32	59	41	81	0.3	0.6	1.2	292
2784	60+00 W	5+00S	20,391 N	7,046 E	9.5	40	63	48	64	0.3	< .5	1.6	434
27.85	60+00 W	6+00S	20,314 N	6,981 E	4.8	86	53	24	66	0.6	0.7	4.8	205
2786	60+00 W	7+00S	20,238 N	6,917 E	N/S								
2787	60+00 W	8+00S	20,161 N	6,853 E	N/S								
2788	60+00 W	9+00S	20,084 N	6,789 E	8.0	62	82	53	98	0.7	< .5	3.1	587
2789	60+00 W	10+00S	20,008 N	6,724 E	0.7	28	40	15	46	0.7	0.5	2.4	319
2790	60+00 W	11+00S	19,931 N	6,660 E	5.1	31	36	37	85	0.4	< .5	2.0	248
2791	60+00 W	12+00S	19,855 N	6,596 E	N/S								4 4 2 2
2792	60 +00 W	13+00S	19,778 N	6,532 E	4.3	35	94	54	123	1.0	< .5	1.3	1432
2793	60+00 W	14+00S	19,701 N	6,467 E	1.0	14	86	29	94	0.1	0.6	1.4	595
2794	60+00 W	15+00S	19,625 N	6,403 E	1.0	9	56	30	92	0.7	< 5	0.9	862
2795	60+00 W	16+00S	19,548 N	6,339 E	0.7	S	18	12	55	0.1	< .5	1.0	414
2796	60+00 W	17+00S	19,472 N	6,274 E	1.1	17	25	21	67	0.7	0.5	1.1	389
2797	60+00 W	18+00S	19,395 N	6,210 E	0.3	12	29	16	52	0.7	< 5	1.0	220
2798	60+00 W	19+00S	19,318 N	6,146 E	2.4	9	16	19	52	0.8	3 < 5	0.9	322
2799	60+00 W	20+00\$	19,242 N	6,082 E	2.1	9	17	20	48	3.0.8	3 < .5		283
2883	58+00 W	0+00N	20,648 N	7,523 E	52.8	77	92	23	46	6 0,4	0.6	3 1.3	198
2882	58+00 W	1+00S	20,570 N	7,460 E	90.7	114	79	30	97	0.2	2 < .:	1.6	618
2881	58+00 W	2+00\$	20,493 N	7,397 E	N/S								070
2880	58+00 W	3+005	20,415 N	7 334 E	21.6	106	6 133	26	57	0.4	3.0	3 2.2	2/
2879	58+00 W	4+005	20,337 N	1 7,271 E	5.4	73	3 56	23	43	3 0.6	S] < .;		340
2878	58+00 W	5+005	20,259 N	7,208 E	6.1	22	2 24	<u>ع</u> ا	15	5 0.3	3 < .	0.8	99
2877	58+00 W	6+00\$	20,182 N	7,145 E	3.0	63	3 48	3 32	2 57	7 0.1	0.6	<u> </u>	498
2876	58+00 W	7+005	20,104 N	7,082 E	4.0	6	5 48	3 29	42	2 0.3	3 0.6	3 1.6	28
2875	58+00 W	8+005	20,026 N	7,019 E	3.2	8	1 57	' 37	50	0.2	2 < .	<u> </u>	36
2874	58+00 W	9+005	5 19,949 N	6,956 E	2.9	6	3 54	4 30) <u>4</u> 6	3 0.6	<u> </u>		<u> </u>
2873	58+00 W	10+005	19,871 N	6,893 E	3.7	3	4 42	2 24	4 60	0.4	4 < .	b <u>2.3</u>	3 230
2872	58+00 W	11+008	19,793 N	6,830 E	2.7	30	3 27	7 35	5 62	2 0.4	4 < :	5 - 2.0	기 <u>19</u>
2871	58+00 W	12+005	19,715 N	6,767 E	1.5	6 4	2 2	3 62	2 7	5 0.0	5 < 3	52	al <u> </u>

.

Γ T Г Т Г 1

r-

f. 1

t 1

SAMPLE #

F: Soil s	sample l	locations a	and selecte	d analysi	es							30/23
Grid Coor	dinates	Mine Grid	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
54+00 W	5+00S	20.008 N	7,519 E	21.4	115	50	25	54	0.2	0.7	2.1	273
54+00 W	6+005	19 930 N	7,456 E	80.6	47	30	18	58	0.4	< .5	1.2	246
54+00 W	7+005	19.852 N	7,393 E	8.4	104	50	15	39	0.9	0.8	1.9	222
54+00 W	8+00S	19 775 N	7.330 E	1.9	28	18	5	11	0.7	< .5	0.9	28
54+00 W	9+005	19 697 N	7 267 E	2.2	30	27	16	37	0.9	< 5	2.4	73
54+00 W	10+005	19,619 N	7 204 E	4.6	33	29	18	41	0.8	< .5	2.5	88
54+00 W	11+005	19.541 N	7 141 F	02	50	16	15	39	0.4	< .5	24.7	46
54TUU VV	117003	10,0411					10	47	3.5	< 5	12	118

r-

Т

r

Л

	2910	54+00 WI	5+00S	20,008 N	7,519 E	21.4	115	50	25	- 34	0.2	0.7	<u></u>	
	2911	54+00 W	6+00S	19,930 N	7,456 E	80.6	47	30	18	58	0.4	< .5	1.2	246
	2912	54+00 W	7+00S	19,852 N	7,393 E	8.4	104	50	15	39	0.9	0.8	1.9	222
	2913	54+00 W	8+00S	19,775 N	7,330 E	1.9	28	18	5	11	0.7	< 5	0.9	
	2914	54+00 W	9+00S	19,697 N	7,267 E	2.2	30	27	16	37	0.9	< 5	2.4	73
	2915	54+00 W	10+00S	19,619 N	7,204 E	4.6	33	29	18	41	0.8	< 5	2.5	88
	2916	54+00 W	11+00S	19,541 N	7,141 E	0.2	50	16	15	39	0.4	< .5	24.7	46
•	2917	54+00 W	12+00S	19,464 N	7,078 E	3.5	21	33	18	47	3.5	< .5	1.2	118
	2918	54 +00 W	13+00S	19,386 N	7,015 E	N/S								4505
	2919	54+00 W	14+00S	19,308 N	6,952 E	3.2	26	30	81	81	1.3	< 5	1.4	1505
_	2920	54+00 W	15+00S	19,231 N	6,889 E	12.5	27	32	85	84	1.2	< .5	- 1.5	1597
	2921	54+00 W	16+00S	19,153 N	6,826 E	0.5	11	17	18	103	0.2	< .5	0.6	2/16
	2922	54 +00 W	17+00S	19,075 N	6,764 E	2.1	16	20	25	67	0.2	< .5	0.7	641
	2923	54+00 W	18+00S	18,997 N	6,701 E	0.3	9	18	9	41	0.3	< .5	1.2	159
-	2924	54+00 W	19+00S	18,920 N	6,638 E	1.6	15	19	30	137	0.3	< .5	1.5	440
-	2925	54+00 W	20+00S	18,842 N	6,575 E	0.8	15	19	29	130	0.3	< .5	1.4	409
	2843	52+00 W	0+00N	20,270 N	7,989 E	31.5	70	57	15	36	0.4	1.5	3.3	160
	2844	52+00 W	1+00S	20,193 N	7,926 E	70.2	199	81	29	53	0.5	2.5	4.7	128
-	2845	52+00 W	2+00S	20,115 N	7, 8 62 E	117.8	179	81	27	53	0.3	2.2	4.2	140
۲	2846	52+00 W	3+00S	20,038 N	7,799 E	75.4	185	59	13	26	< .1	3.0	5.2	193
ŀ	2847	52+00 W	4+00S	19,960 N	7,736 E	11.1	59	44	13	40	1.2	1.3	2.5	110
ŀ	2848	52+00 W	5+00S	19,883 N	7,673 E	52.9	135	38	28	91	0.2	1.1	9.1	155
ŀ	2849	52+00 W	6+00S	19,805 N	7,610 E	3.1	66	42	12	33	0.2	1.2	1.9	/5
┞	2850	52+00 W	7+00S	19,728 N	7,546 E	3.5	70	81	29	81	0.2	0.7	3.6	265
ŀ	2851	52+00 W	8+00S	19,651 N	7,483 E	3.5	33	75	24	84	0.7	< .5	2.6	202
ŀ	2852	52+00 W	9+00S	19,573 N	7,420 E	1.4	35	43	20	48	0.2	0.7	1.5	11/
ŀ	2853	52+00 W	10+00S	19,496 N	7,357 E	1.7	28	27	12	32	2.2	< .5	2.0	65
ŀ	2854	52+00 W	11+00S	19,418 N	7,294 E	1.6	31	37	23	66	0.6	i < .5	2.4	
ŀ	2855	52+00 W	/ 12+00S	19,341 N	7,230 E	2.4	38	39	35	86	0.3	<u> < .5</u>	2.3	269
ł	2856	52+00 W	/ 13+00S	19,263 N	7,167 E	16.5	195	181	86	349	0.2	1.5	7.5	834
ł	2857	52+00 W	14+005	19,186 N	7,104 E	3.0	95	5 107	75	224	0.3	1.0	4./	/68
ł	2858	52+00 W	/ 15+00\$	19,108 N	7,041 E	1.1	20) 23	33	82	0.2	< .5	1.3	415
1	2859	52+00 W	/ 16+00S	19,031 N	6,978 E	1.5	28	30	78	97	0.3	< .5		1134
	2860	52+00 W	/ 17+00\$	18,953 N	6,914 E	1.5	26	31	82	108	0.4	0.6	1.3	1155
				1	A CONTRACTOR OF A CONTRACTOR O	A construction of the second se								

and a second second second second second second second second second second second second second second second

•

4 of 23

SAMPLE #	Grid Coor	dinates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2861	52+00 W	18+00\$	18,876 N	6,851 E	1.3	13	24	30	65	< .1	< .5	1.2	931
2862	52+00 W	19+00S	18,798 N	6,788 E	0.5	10	20	34	62	0.2	< .5	0.8	355
2863	52+00 W	20+00S	18,721 N	6,725 E	0.2	14	20	28	64	< .1	< .5	1.1	409
2842	50 +00 W	20+00N	21,703 N	9,397 E	11.9	17	28	77	100	0.8	< 5	1.1	796
2841	50 +00 W	19+00N	21,625 N	9,335 E	10.1	18	28	68	113	< .1	< .5	1.1	931
2840	50+00 W	18+00N	21,547 N	9,272 E	10.6	19	26	51	94	< .1	< .5	1.3	411
2839	50 +00 W	17+00N	21,469 N	9,209 E	23.6	31	41	99	102	0.4	<.5	1.5	1362
2838	50+00 W	16 + 00N	21,392 N	9,147 E	12.0	31	54	77	115	Q.4	0.8	1.2	1209
2837	50 +00 W	15+00N	21,314 N	9,084 E	15.1	40	70	76	129	0.3	0.5	1.1	1356
2836	50 +00 W	14+00N	21,236 N	9,022 E	6.9	42	52	50	107	< .1	0.9	1.1	652
2835	50 +00 W	13+00N	21,158 N	8,959 E	4.1	34	32	29	54	0.5	< .5	0.8	414
2834	50+00 W	12+00N	21,080 N	8,896 E	20.4	52	47	36	78	0.9	< .5	0.5	1141
2833	50+00 W	11+00N	21,002 N	8,834 E	6.5	128	28	17	37	0.1	0.6	0.4	160
2832	50 +00 W	10+00N	20,924 N	8,771 E	57.8	79	54	29	81	< .1	< .5	0.6	259
2831	50+00 W	9+00N	20,846 N	8,708 E	21.7	67	53	42	86	< .1	0.8	0.5	533
2830	50+00 W	8+00N	20,768 N	8,646 E	10.0	57	39	31	104	0.2	< .5	0.5	439
2829	50+00 W	7+00N	20,690 N	8,583 E	5.1	44	85	55	89	1.5	0.5	1.1	2149
2828	50+00 W	6+00N	20,612 N	8,520 E	12.2	58	22	12	33	.1 >	< .5	0.4	101
2827	50 +00 W	5+00N	20,534 N	8,458 E	21.1	105	81	18	66	1.2	0.7	1.2	300
2826	50+00 W	4+00N	20,456 N	8,395 E	45.1	83	176	21	158	0.7	1.4	1.0	197
2825	50+00 W	3+00N	20,378 N	8,332 E	23.6	129	20	16	58	0.1	< .5	0.7	198
2824	50 +00 W	2+00N	20,300 N	8,270 E	36.3	81	62	29	74	< .1	0.9	2.6	484
2823	50+00 W	1+00N	20,223 N	8,207 E	100.1	119	72	29	52	0.6	1.7	4.0	120
2822	50+00 W	0+00N	20,145 N	8,144 E	12.7	92	88	28	68	0.2	1.7	3.6	316
2566	50+00 W	1+00S	20,066 N	8,083 E	82.0	89	95	26	44	0.1	1.6	4.5	95
2567	50 +00 W	2+00S	19,987 N	I 8,021 E	76.8	77	12	94	63	0.2	< .5	1.9	118
2568	50+00 W	3+00S	19,908 N	I 7,960 E	20.9	74	13	14	30	0.1	< .5	1.1	47
2569	50 +00 W	4+00S	19,829 N	I 7,898 E	23.3	162	44	71	111	1.0	0.6	4.8	150
2570	50+00 W	5+00S	19,751 N	l 7,836 E	62.4	113	35	30	51	1.3	1.0	2.3	98
2571	50+00 W	6+00S	19,672 N	I 7,775 E	31.2	132	21	20	36	< .1	1.2	2.1	122
2572	50 +00 W	7+005	19,593 N	7,713 E	16.3	62	32	2 20	59	0.1	0.6	2.0	118
2573	50+00 W	8+00S	19,514 N	1 7,652 E	27.8	68	48	25	50	0.8	8.0	2.3	115
2574	50+00 W	9+00S	19,435 N	I 7,590 E	9.9	60	62	41	87	1.1	< .5	5.3	107
2575	50+00 W	10+005	19,357 N	1 7,529 E	8.5	40	68	57	121	2.4	< .5	4.8	166

. -

ŗ Appendix F: Soil sample locations and selected analyses

۰.

SAMPLE #

48+00 W

48+00 W

48+00 W

2+00S

3+00S

Grid Coordinates		Mine Grid Coordinates		Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
50+00 W	11+00S	19,278 N	7,467 E	58.4	75	50	45	82	2.4	0.5	2.5	245
50+00 W	12+00S	19,199 N	7,405 E	2.2	32	37	20	36	0.6	5	2.3	08
50+00 W	13+00S	19,120 N	7,344 E	29.2	50	39	27	48	1.0	< .5	3.0	138
50+00 W	14+00S	19,041 N	7,282 E	4.9	23	39	42	82	1.4	< 5	1.6	1237
50+00 W	15+00S	18,963 N	7,221 E	0.6	24	23	23	48	0.5	< .5	1.1	199
50+00 W	16+00S	18,884 N	7,159 E	0.7	21	30	19	42	0.2	< .5	1.3	151
50+00 W	17+00S	18,805 N	7,098 E	0.8	29	37	30	74	0.1	< .5	- 1.4	609
50+00 W	18+00S	18,726 N	7, 036 E	0.7	11	20	16	49	0.1	< .5	1.1	506
50+00 W	19+00S	18,647 N	6,975 E	0.6	16	20	17	52	0.7	0.5	0.8	267
50+00 W	20+00S	18,569 N	6,913 E	• 0.7	25	27	23	62	< 1	0.5	1./	521
48+00 W	20+00N	21,571 N	9,561 E	4.4	8	28	104	105	0.4	< .5	2.6	228
48+00 W	19+00N	21,493 N	9,498 E	13.5	10	42	152	129	0.3	< .5	2.1	392
48+00 W	18+00N	21,416 N	9,435 E	2.1	15	43	42	94	0.5	< .5	0.9	3954
48+00 W	17+00N	21,338 N	9,372 E	5.3	16	39	52	96	0.3	< 5	1.0	456
48+00 W	16+00N	21,260 N	9,309 E	26.6	24	52	42	98	0.5	0.8	1.1	444
48+00 W	15+00N	21,183 N	9,246 E	7.3	20	24	34	51	0.5	< 5	0.7	197
48+00 W	14+00N	21,105 N	9,183 E	18.3	43	79	47	121	0.9	< .5	0.9	1298
48+00 W	13+00N	21,028 N	9,120 E	11.1	29	80	43	128	0.7	< .5	0.4	1987
48+00 W	12+00N	20,950 N	9,057 E	9.6	33	60	38	114	0.7	0.5	0.7	2183
48+00 W	11+00N	20,872 N	8,993 E	4.1	39	42	40	67	1.1	< .5	0.7	1338
48+00 W	10+00N	20,795 N	8,930 E	5.8	47	35	58	61	0.5	< .5	0,7	484
48+00 W	9+00N	20,717 N	8,867 E	5.8	37	36	55	95	0.2	0.7	0.6	324
48+00 W	8+00N	20,640 N	8,804 E	8.7	68	65	21	80	0.3	< .5	0.3	218
48+00 W	7+00N	20,562 N	8,741 E	5.1	30	37	23	88	0.3	< .5	0.8	255
48+00 W	6+00N	20,484 N	8,678 E	18.1	175	182	31	125	0.2	0.7	0.8	161/
48+00 W	5+00N	20,407 N	8,615 E	8.9	49	33	16	5 54	0.2	< 5	0.5	137
48+00 W	4+00N	20,329 N	8,552 E	3.8	42	41	17	61	2.0) < .5	0.5	368
48+00 W	3+00N	20,252 N	8,489 E	19.0	77	38	3 19	47	0.9	1.3	0.8	
48+00 W	2+00N	20,174 N	8,426 E	8.4	35	678	3 13	3 54	u <u>0.9</u>	1.0	0.6	15/
48+00 W	1+00N	20,096 N	8,363 E	13.4	110	31	36	60	0.5	2.2	2 1.6	160
48+00 W	0+00N	20,019 N	8,300 E	3.3	32	2 26	36 36	63 63	8 0.3	3 < .5	0.9	167
48+00 W	1+005	19,942 N	8,235 E	6.0	20) 22	2 259	82	2 < .1	< .5	1.6	450

7.2

9.0

8,171 E

8,106 E

19,866 N

19,790 N

< .5

0.5

< .1

< .1

1.0

1.1

ັ]

~ 1

 *******]

.

SAMPLE #	Grid Coor	dinates	Mine Grid C	oordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2562	48+00 WI	4+00S	19,713 N	8,042 E	11.8	117	29	59	105	0.2	0.6	3.7	142
2561	48+00 W	5+00S	19,637 N	7,977 E	5.4	123	46	18	26	0.3	1.8	0.9	161
2560	48+00 W	6+00S	19,560 N	7,912 E	158.7	118	35	17	39	0.2	0.6	1.1	613
2559	48+00 W	7+00S	19,484 N	7,848 E	4.5	45	44	15	37	< .1	1.0	1.5	94
2558	48+00 W	8+00S	19,408 N	7,783 E	9.2	53	111	31	97	0.7	< .5	4.8	117
2557	48+00 W	9+00S	19,331 N	7,719 E	23.3	43	117	43	114	1.8	0.6	2.9	248
2556	48+00 W	10+00S	19,255 N	7,654 E	16.3	48	107	43	103	2.3	0.9	3.1	264
2555	48+00 W	11+00S	19,179 N	7,590 E	18.4	83	77	32	73	1.1	1.2	4.6	117
2554	48+00 W	12+00S	19,102 N	7,525 E	36.2	80	45	26	60	1.4	8.0	4.3	98
2553	48+00 W	13+00S	19,026 N	7,461 E	49.4	93	52	26	47	0.2	2.0	3.0	177
2552	48+00 W	14+00S	18,949 N	7,396 E	2.0	23	35	47	105	< .1	< .5	1.2	000
2551	48+00 W	15+00S	18,873 N	7,332 E	3.1	33	47	69	122	0.5	0.7	1./	1621
2550	48+00 W	16+00S	18,797 N	7,267 E	0.9	12	20	25	45	0,5	< .5	0.7	335
2549	48+00 W	17+00S	18,720 N	7,202 E	4.0	32	30	36	73	0.8	0.6	1.3	4/6
2548	48+00 W	18+00S	18,644 N	7,138 E	3.0	27	26	28	59	0.8	< .5	1.4	525
2547	48+00 W	19+00S	18,568 N	7,073 E	1.1	16	23	28	67	0.9	< .5	0.9	885
2546	48+00 W	20+00S	18,491 N	7,009 E	1.0	13	21	23	64	0.7	< .5	0.9	1165
2142	46+00 W	20+00N	21,429 N	9,735 E	5.7	5	31	45	73	0.3	< .5	1.2	450
2141	46+00 W	19+00N	21,353 N	9,671 E	8.5	12	43	41	108	0,1	< .5	1.2	//3
2140	46+00 W	18+00N	21,276 N	9,607 E	7.2	11	48	84	124	0.8	3 < .5	0.8	4846
2139	46+00 W	17+00N	21,199 N	9,543 E	6.8	30	70	37	83	s < .1	< .5	1.2	330
2138	46+00 W	16+00N	21,122 N	9,479 E	12.3	28	98 98	3 23	73	0.1	0.5	0.9	353
2137	46+00 W	15+00N	21,045 N	9,415 E	42.6	51	180	42	153	1.1	0.6	0.7	11/1
2136	46+00 W	14+00N	20,968 N	9,351 E	85.1	34	1 99) 26	87	< .1	0.5	0.5	704
2135	46+00 W	13+00N	20,892 N	9,287 E	78.4	68	3 121	27	109	0.3	3 1.2	0.7	565
2134	46+00 W	12+00N	20,815 N	9,223 E	93.9	75	5 128	3 23	90	0.3	3 1.5	0.8	423
2133	46+00 W	11+00N	20,738 N	9,159 E	54.4	42	2 169) 16	84	0.9	0.9	0.4	991
2132	46+00 W	10+00N	20,661 N	9,095 E	115.9	52	2 76	3 18	90	0.8	5 1.0	0.5	555
2131	46+00 W	9+00N	20,584 N	9,031 E	16.3	20) 5	7 18	51	0.4	4 < .5	0.5	269
2130	46+00 W	8+00N	20,508 N	8,967 E	125.5	31	1 6	7 22	68	3 0.5	5 0.5	0.7	403
2129	46+00 W	7+00N	20,431 N	8,903 E	6.7	78	3 3	3 21	67	7 0.4	4 0.5		5/6
2128	46+00 W	6+00N	20,354 N	8,839 E	8.6	7.	1 9:	2 20) 79	<u> 0.9</u>	9 0.6		216
2127	46+00 W	5+00N	20,277 N	I 8,775 E	9.2	210	B 10	3 18	3 65	5 < .'	1 < .5	0.2	15/
2126	46+00 W	4+00N	1 20,200 N	8,711 E	3.9	3	1 3	2 30	7:	3 0.2	2 < .5	0.9	236

7	of	23
---	----	----

SAMPLE #	Grid Cool	rdinates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Ph (npm)	Cu (ppm)	Zit (nom)	A - (
2125	46+00 W	3+00N	20,123 N	8,647 E	12.2	51	35	46 (ppin)		Ag (ppm)	BI (ppm)	Mo (ppm)	Mn (ppm)
2124	46+00 W	2+00N	20,047 N	8,583 E	9.6	27	13	10		0.4	< .5	0.5	263
2123	46+00 W	1+00N	19,970 N	8,519 E	3.3	45	22	3	38	<.1	< .5	0.5	74
2122	46+00 W	0+00N	19,893 N	8,455 E	4.6	44	10	20	42	<u> </u>	< .5	0.5	137
2526	46+00 W	1+00S	19,816 N	8,392 E	6.2	32	53	20	42	U.	< .5	0.5	123
2527	46+00 W	2+00S	19,739 N	8,328 E	37	60	20	<u></u>	70	< .1	< .5	0.3	247
2528	46+00 W	3+00S	19,661 N	8,264 E	74.3	102	77	106	32	0.3	0.5	0.4	145
2529	46 +00 W	4+00S	19,584 N	8,201 E	42.3	68	50	20		0.5	< .5	3.7	1050
2530	46+00 W	5+00S	19,507 N	8,137 E	53.4	50	123		59	0.2	< .5	0.9	447
2531	46+00 W	6+00S	19,430 N	8,073 E	22.1	32	67	21	53	- 1.2	0.8	2.0	295
2532	46+00 W	7+00S	19,353 N	8.010 E	23.9	26	30	42		0.9	< .5	1.3	304
2533	46+00 W	8+005	19,276 N	7.946 F	63.2	46	03	13	23	1.1	< .5	1.0	96
2534	46+00 W	9+005	19,198 N	7.883 E	203.1	45		25 40	30	1.0	0.9	1.4	96
2535	46+00 W	10+00S	19 121 N	7.819 F	N/S			18		0.3	0.6	2.6	929
2536	46+00 W	11+00S	19,044 N	7.755 E	84			5.4					
2537	46+00 W	12+00S	18,967 N	7.692 E	N/S	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>			82	1.8	2.3	1.6	562
2538	46+00 W	13+00S	18,890 N	7.628 F	N/S								
2539	46+00 W	14+00S	18,813 N	7.565 F	18.5	56	76						
2540	46+00 W	15+00S	18,735 N	7.501 E	N/S				222	3.5	< .5	8.8	754
2541	46+00 W	16+00S	18,658 N	7.437 E	N/S								
2542	46+00 W	17+00S	18,581 N	7.374 E	87		22		400				
2543	46+00 W	18+00S	18,504 N	7.310 F	4.0	20	20		122	0.3	< .5	1.1	881
2544	46+00 W	19+00S	18,427 N	7.247 E	1.5	15			85	0.1	< .5	1.2	728
2545	46+00 W 2	20+00S	18,350 N	7.183 F	0.5	16	- 22		55	0.2	< .5	1.3	434
2163	44+00 W 2	20+00N	21,304 N	9.891 F	3.0		22	19	53	0.2	< .5	1.4	491
2162	44+00 W 1	9+00N	21,227 N	9.827 F	2.6				110	0.4	< .5	1.0	2255
2161	44+00 W 1	8+00N	21.150 N	9.763 E	2.0				89	< 1	< .5	1.2	371
2160	44+00 W 1	7+00N	21,073 N	9 699 F	1 7	- 14	35	43	98	< 1	< .5	1.3	416
2159	44+00 W 1	6+00N	20,996 N	9.635 F	13.7	18	40	38	96	< .1	< .5	1.0	437
2158	44+00 W 1	5+00N	20,919 N	9.571 F	6.7	17	/0	23	/1	< 1	< .5	0.6	480
2157	44+00 W 1	4+00N	20,843 N	9.507 F	34.5		34	53	92	1.6	< .5	1.1	434
2156	44+00 W 1	3+00N	20,766 N	9,443 F	39.7	<u>57</u>	40		27	0,1	0.6	0.6	176
2155	44+00 W 1	2+00N	20,689 N	9.379 F	27		74	26	148	0.4	0.8	0.6	643
2154	44+00 W 1	1+00N	20,612 N	9 315 E	9.1	10	/ I 55	23	77	0.4	0.7	0.7	777
				0,010 L	<u> </u>	19	55	14	63	0.4	0.5	0.4	422

SAMPLE #	Grid Coord	dinates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2153	44+00 W	10+00N	20,535 N	9,251 E	7.2	44	88	19	57	0.4	0.8	0.8	247
2152	44+00 W	9+00N	20,458 N	9,187 E	1.5	19	28	30	89	0.3	< .5	1.0	729
2151	44+00 W	8+00N	20,382 N	9,123 E	0.8	42	17	10	52	0.3	< .5	0.3	288
2150	44+00 W	7+00N	20,305 N	9,059 E	6.8	21	44	22	72	0.1	< .5	0.4	305
2149	44+00 W	6+00N	20,228 N	8,995 E	1.7	49	31	34	91	< .1	0.7	1.0	205
2148	44+00 W	5+00N	20,151 N	8,931 E	5.6	29	32	19	78	< .1	< .5	0.9	169
2147	44+00 W	4+00N	20,074 N	8,867 E	1.9	11	47	31	87	< .1	0.5	0.9	190
2146	44+00 W	3+00N	19,997 N	8,803 E	1.5	15	38	26	66	0.1	< .5	0.3	173
2145	44+00 W	2+00N	19,921 N	8,739 E	0.4	7	21	11	53	0.2	< .5	0.3	76
2144	44+00 W	1+00N	19,844 N	8,675 E	4.0	81	226	26	52	1.0	3.3	0.8	168
2143	44+00 W	0+00N	19,767 N	8,611 E	11.4	37	101	21	86	0.7	0.5	0.4	1397
2525	44+00 W	1+00S	19,690 N	8,546 E	28.0	110	85	52	86	1.7	1.1	1.1	809
2524	44+00 W	2+00S	19,614 N	8,482 E	15.3	73	64	29	59	0.8	< .5	1.3	395
2523	44+00 W	3+00S	19,537 N	8,418 E	19.5	68	65	27	54	0.9	1.0	2.2	822
2522	44 + 00 W	4+00S	19, 4 60 N	8,354 E	20.6	70	57	30	54	0.8	0.5	1.3	1163
2521	44+00 W	5+00S	19,383 N	8,290 E	5.6	118	41	23	50	0.2	< .5	1.1	303
2520	44+00 W	6+00S	19,307 N	8,226 E	68.9	87	70	17	35	0.6	1.5	1.8	243
2519	44+00 W	7+00S	19,230 N	8,162 E	6.0	60	53	13	37	2.9	0.5	2.3	193
2518	44+00 W	8+00S	19,153 N	8,097 E	29.8	32	25	6	12	0.4	< .5	1.3	41
2517	44+00 W	9+00S	19,077 N	8,033 E	11.9	51	41	10	24	0.8	< .5	1.6	118
2516	44+00 W	10+00S	19,000 N	7,969 E	3.0	65	30	8	17	0.5	0.5	1.1	54
2515	44+00 W	11+00\$	18,923 N	7,905 E	69.5	54	20	13	19	0.6	0.7	1.9	55
2514	44+00 W	12+00S	18,846 N	7,841 E	30.1	64	39	26	59	0.5	0.6	2.5	231
2513	44+00 W	13+00S	18,770 N	7,777 E	N/S								
2512	44+00 W	14+00S	18,693 N	7,713 E	N/S						-		
2511	44+00 W	15+00S	18,616 N	7,648 E	6.4	41	51	57	89	0.5	< .5	1.7	850
2510	44+00 W	16+00S	18,540 N	7,584 E	2.2	20	24	16	43	1.3	< .5	1.3	438
2509	44+00 W '	17+00\$	18,463 N	7,520 E	68.0	61	55	29	132	0.6	< .5	2.6	481
2508	44+00 W	18+00S	18,386 N	7, 456 E	4.8	38	54	17	73	< .1	< .5	2.1	377
2507	44+00 W	19+00S	18,309 N	7,392 E	4.9	45	24	23	43	0.6	< .5	2.0	260
2506	44 + 00 W 2	20+00S	18,233 N	7,328 E	5.5	28	34	29	54	1.2	< .5	1.6	308
2336	42+00 W 2	20+00N	21,193 N	10,027 E	2.8	8	45	23	58	Q.4	< .5	0.5	235
2335	42+00 W	19+00N	21,116 N	9,964 E	1.1	7	41	21	51	0.5	< .5	0.5	233
2334	42+00 W	18+00N	21,038 N	9,901 E	4.5	13	63	44	102	< .1	0.8	0.7	352

9	of	23
---	----	----

SAMPLE #	Grid Coordinates	Mine Grid Co	pordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mrt (ppm)
2333	42+00 W 17+00N	20,960 N	9,838 E	2.5	13	98	31	77	0.5	< 5	0.5	1111
2332	42+00 W 16+00N	20,883 N	9,775 E	2.5	11	69	39	148	1.1	0.5	0.5	4072
2331	42+00 W 15+00N	20,805 N	9,712 E	4.7	25	120	25	143	02	0.8	0.4	1280
2330	42+00 W 14+00N	20,728 N	9,649 E	98.6	14	99	42	235	1.2	0.7	1.0	7827
2329	42+00 W 13+00N	20,650 N	9,586 E	18.4	38	50	19	65	< 1	< 5	0.9	346
2328	42+00 W 12+00N	20,572 N	9,523 E	3.0	17	52	23	61	0.5	< 5	0.7	401
2327	42+00 W 11+00N	20,495 N	9,460 E	7.7	24	19	15	62	< 1	0.5	0.5	301
2326	42+00 W 10+00N	20,417 N	9,397 E	3.1	15	85	13	43	0.5	16.3	0.0 0.0	279
2325	42+00 W 9+00N	20,340 N	9,334 E	2.7	25	31	19	56	< 1	< 5	0.0	366
2324	42+00 W 8+00N	20,262 N	9,271 E	19.7	10	10	14	45	< 1	< 5	< 2	303
2323	42+00 W 7+00N	20,184 N	9,207 E	3.7	21	36	23	65	< 1	< 5	0.4	138
2322	42+00 W 6+00N	20,107 N	9,144 E	1.8	15	44	14	47	0.1	< 5	0.5	87
2321	42+00 W 5+00N	20,029 N	9,081 E	0.7	15	12	10	32	< 1	< 5	0.0	53
2320	42+00 W 4+00N	19,952 N	9,018 E	240.6	551	33	39	96	0.5	< 5	0.0	113
2319	42+00 W 3+00N	19,87 4 N	8,955 E	7.7	41	26	14	37	< 1	1.0	1 9	130
2318	42+00 W 2+00N	19,796 N	8,892 E	4.0	22	26	11	35	0.2	< 5	0.7	83
2317	42+00 W 1+00N	19,719 N	8 829 E	N/S								
2316	42+00 W 0+00N	19,641 N	8,766 E	32.6	186	91	50	79	0.5	1 4	1.0	027
2315	42+00 W 1+00S	19,566 N	8,701 E	111.0	184	75	92	88	0.6	1 3	1 1	1125
2314	42+00 W 2+00S	19,490 N	8,635 E	N/S	- In						····	
2313	42+00 W 3+00S	19,414 N	8,570 E	1.8	46	46	21	51	0.5	< 5	1.6	202
2312	42+00 W 4+00S	19,339 N	8,504 E	8.4	50	31	18	41	0.0	0.5	n.o	167
2311	42+00 W 5+00S	19,263 N	8,439 E	50.7	17	22	8	15	1 1	< 5	0.9	- 107
2310	42+00 W 6+00S	19,188 N	8,373 E	128.9	167	87	47	93	0.4	1 3		
2309	42+00 W 7+00S	19,112 N	8,308 E	46.6	33	41	26	34	0.9	< 5	1.9	296
2308	42+00 W 8+00S	19,036 N	8,242 E	45.5	56	52	14	30	0.0	< 5	1.0	200
2307	42+00 W 9+00S	18,961 N	8,177 E	84.3	69	62	23	56	2.3	5	26	255
2306	42+00 W 10+00S	18,885 N	8,111 E	10.7	35	36	10	18	1.5	< 5	1.4	200
2305	42+00 W 11+00S	18,810 N	8,046 E	32.9	50	48	10	31	0.5	< 5	2.4	
2304	42+00 W 12+00S	18,734 N	7,980 E	N/S				'			<u> </u>	
2303	42+00 W 13+00S	18,659 N	7,915 E	7.8	45	36	14	35	0.2	< F	20	110
2302	42+00 W 14+00S	18,583 N	7,849 E	7.1	30	44	19	57	1 0			220
2301	42+00 W 15+00S	18,507 N	7,784 E	N/S							Z.3	220
2501	42+00 W 16+00S	18,432 N	7,718 E	4.8	32	35	18	49	1.3	< .5	1.8	135

Appendix F: Soil sample locations and selected	analyses
--	----------

.

SAMPL 2 Grad Cost of the c		0.10		Mine Grid Cr	ordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2902 42400 W 17403 18.301 N 7.667 E 10.2 35 54 18 126 19 <.5	SAMPLE #	Grid Coord	dinates	19 256 N	7 653 F	14 1	39	48	22	48	1.1	< .5	1.9	193
2803 42+00 W 18+00S 16,281 M 7,592 E 125 48 53 21 109 0.3 <.5	2502	42+00 W	17+005	10,000 N	7,000 E	10.2	35	54	18	125	1.9	< .5	2.7	348
2504 42+00 W 19+005 16,205 N 7,427 E 3.7 25 38 14 55 1.2 <.5	2503	42+00 W	18+005	10,201 N	7 522 E	12.5	48	53	21	109	0.3	< .5	2.0	269
2205 42+00 W 20+00S 10:129 N 10:09 E 2:1 14 85 40 79 0.5 <.5	2504	42+00 W	19+005	10,200 N	7,522 L	37	25	38	14	55	1.2	< .5	1.8	170
2337 40+00 W 21,005 N 10,005 E 2.5 10 50 32 54 0.2 <.5	2505	42+00 W	20+005	01 095 N	10 161 E	5.3	14	85	40	79	0.5	< .5	0.5	301
2338 40+00 W 19+00N 21,000 F 10,000 T 2 35 18 59 31 59 0.2 < 5	2337	40+00 W	20+00N	21,005 N	10,101 E	2.5	10	50	32	54	0.2	< .5	0.5	170
2339 40+00 10 10,50+1 10,50+1 10,50+1 10,50+1 251 10,50+1 251 10,50+1 251 11,50+1 251 11,50+1 254 251 254 260 254 260 254 260 254 260 254 260 254 260 254 260 254 260 254 260 254 260 254 260 254 260 261 261 261 261 261 261 261 261 261 </td <td>2338</td> <td>40+00 VV</td> <td>19+00N</td> <td>21,000 N</td> <td>10,037 E</td> <td>3.5</td> <td>18</td> <td>59</td> <td>31</td> <td>59</td> <td>Q.2</td> <td>< .5</td> <td>0.6</td> <td>422</td>	2338	40+00 VV	19+00N	21,000 N	10,037 E	3.5	18	59	31	59	Q.2	< .5	0.6	422
2340 40+00 W 14+00N 20.049 N 9,913 E 2.9 14 77 33 70 0.3 <.5	2339	40+00 W	17+00N	20,920 N	9 975 F	17.6	16	83	31	65	0.2	< .5	0.8	251
2341 40+00 W 16+00N 20,771N 20,871 28 89 29 87 0.8 0.7 0.4 131 2342 40+00 W 15+00N 20,682 N 9,851 E 4.2 28 89 29 87 0.8 0.7 0.4 131 2343 40+00 W 14+00N 20,614 N 9,789 E 2.4 21 48 17 67 0.1 0.5 0.5 541 2343 40+00 W 13+00N 20,535 N 9,727 E 11.9 53 120 15 75 0.3 1.0 1.0 840 2347 40+00 W 12+00N 20,377 N 9,603 E 4.6 44 60 20 101 0.3 0.8 0.8 117 2347 40+00 W 10+00N 20,300 N 9,641 E 290.7 59 106 19 88 0.5 1.3 1.0 155 2348 40+00 W 8+00N 20.05 N 9,355 E 59.3 102 33 9 36 0.3 1.1 0.	2340	40+00 W	17+00N	20,849 N	9,010 E	2.9	14	77	33	70	0.3	< .5	0.5	254
2342 40400 W 15400X 20027 0.789 E 2.4 21 48 17 67 0.1 0.5 0.5 541 2343 40+00 W 13+00N 20.535 N 9.727 E 11.9 53 120 15 75 0.3 1.0 1.0 840 2344 40+00 W 12+00N 20.457 N 9.665 E 6.6 31 40 8 49 0.4 <.5	2341	40+00 W	16+00N	20,771 N	9,910 E	42	28	89	29	87	0.8	0.7	0.4	131
2333 40000 W 14+00N 20.014 N 5.705 L 15 75 0.3 1.0 1.0 840 2344 40+00 W 12+00N 20.535 N 9.665 E 6.6 31 40 8 49 0.4 <.5	2342	40+00 W	15+00N	20,692 N	9,001 E	24	21	48	17	67	0.1	0.5	0.5	541
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2343	40+00 W	14+00N	20,014 N	9.703 E	11.9	53	120	15	75	0.3	1.0	1.0	840
2345 40+00 W 12000 20.437 N 9.603 E 46 44 60 20 101 0.3 0.8 0.8 117 2346 40+00 W 10+00N 20.379 N 9.603 E 46 44 60 20 101 0.3 0.8 0.8 117 2347 40+00 W 10+00N 20.300 N 9.541 E 290.7 59 106 19 88 0.5 1.3 1.0 155 2348 40+00 W 9+00N 20.222 N 9.479 E 14.1 67 45 19 67 0.6 1.1 1.1 1.276 2349 40+00 W 8+00N 20.43 N 9.417 E 21.3 42 69 16 83 0.3 0.8 0.8 157 2349 40+00 W 7+00N 20.65 N 9.293 E 4.2 36 36 18 57 0.2 0.5 0.6 151 2351 40+00 W 5+00N 19.986 N 9.293 E 7.3 26 48 29 71 0.3 4.5 </td <td>2344</td> <td>40+00 W</td> <td>13+00N</td> <td>20,333 N</td> <td>9,727 E</td> <td>6.6</td> <td>31</td> <td>40</td> <td>8</td> <td>49</td> <td>0.4</td> <td>< .5</td> <td>0.5</td> <td>118</td>	2344	40+00 W	13+00N	20,333 N	9,727 E	6.6	31	40	8	49	0.4	< .5	0.5	118
2346 40+00 W 11+00N 20,303 N 9,504 E 290.7 59 106 19 88 0.5 1.3 1.0 155 2347 40+00 W 9+00N 20,300 N 9,544 E 290.7 59 106 19 67 0.6 1.1 1.1 276 2348 40+00 W 9+00N 20,222 N 9,479 E 14.1 67 45 19 67 0.6 1.1 1.1 276 2349 40+00 W 8+00N 20,143 N 9,417 E 21.3 42 69 16 83 0.3 0.8 0.8 157 2350 40+00 W 7+00N 20,065 N 9,355 E 59.3 102 33 9 36 0.3 1.1 0.5 380 2351 40+00 W 6+00N 19,908 N 9,231 E 1.5 29 23 19 54 <.1	2345	40+00 W	12+00N	20,457 N	9,000 E	4.6	44	60	20	101	0.3	0.8	0.8	117
2347 40+00 W 10+00 N 20,300 N 9,479 E 14.1 67 45 19 67 0.6 1.1 1.1 276 2348 40+00 W 9+00N 20,143 N 9,417 E 21.3 42 69 16 83 0.3 0.8 0.8 157 2349 40+00 W 7+00N 20,065 N 9,355 E 59.3 102 33 9 36 0.3 1.1 0.5 380 2350 40+00 W 7+00N 20,065 N 9,233 E 4.2 36 36 18 57 0.2 0.5 0.6 151 2351 40+00 W 6+00N 19,908 N 9,231 E 1.5 29 23 19 54 <.1	2346	40+00 VV	11+00N	20,379 N	9,000 E	290.7	59	106	19	88	0.5	1.3	1.0	155
2348 40+00 W 9+00N 20,222 N 5,413 E 21.3 42 69 16 83 0.3 0.8 0.8 157 2349 40+00 W 8+00N 20,143 N 9,355 E 59.3 102 33 9 36 0.3 1.1 0.5 380 2350 40+00 W 7+00N 20,065 N 9,355 E 59.3 102 33 9 36 0.3 1.1 0.5 380 2351 40+00 W 6+00N 19,986 N 9,293 E 4.2 36 36 18 57 0.2 0.5 0.6 151 2352 40+00 W 5+00N 19,908 N 9,231 E 1.5 29 23 19 54 <.1	2347	40+00 VV	10+00N	20,300 N	9,041 E	14.1	67	45	19	67	0.6	1.1	1.1	276
2349 40+00 W 8+00N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 9, HS N 20, HS N 11 0.5 380 2351 40+00 W 6+00N 19,986 N 9,293 E 4.2 36 36 18 57 0.2 0.5 0.6 151 2352 40+00 W 5+00N 19,986 N 9,231 E 1.5 29 23 19 54 <.1	2348	40+00 W	9+00N	20,222 N	9.417 E	21.3	42	69	16	83	0.3	0.8	0.8	157
2350 40400 W 7400N 20,005 N 3,305 E 000 3,005 E 000 151 2351 40+00 W 6+00N 19,986 N 9,293 E 4.2 36 36 18 57 0.2 0.5 0.6 151 2351 40+00 W 5+00N 19,986 N 9,293 E 1.5 29 23 19 54 <.1	2349	40+00 VV	8+00N	20,143 N	9 355 E	59.3	102	33	9	36	S 0.3	3 1.1	0.5	380
2351 40+00 W 6+00N 19,968 N 9,230 E 1.5 29 23 19 54 <.1	2350	40+00 W	7+00N	20,000 N	0,000 E	4 2	36	3	18	57	0.2	2 0.5	5 0.6	151
2352 40+00 W 3+00N 13,508 N 3,205 E 10 26 48 29 71 0.3 <.5 0.3 287 2353 40+00 W 4+00N 19,829 N 9,169 E 7.3 26 48 29 71 0.3 <.5	2351	40+00 W	6+00N	10,009 N	0.230 E	1.5	29	23	19	54	· < . `	< .	5 0.4	134
2353 40+00 W 4+00 N 19,23 N 3,103 L 1.0 21 26 17 61 0.1 0.9 0.5 255 2354 40+00 W 3+00N 19,751 N 9,107 E 4.9 67 26 17 61 0.1 0.9 0.5 255 2355 40+00 W 2+00N 19,672 N 9,045 E 2024.5 92 212 36 121 2.3 1.6 0.6 1764 2355 40+00 W 1+00N 19,594 N 8,983 E N/S	2352	40+00 VV	5+00N	19,900 N	0 160 E	7.3	26	48	29	71	0.3	3 < .5	5 0.3	287
2354 40+00 W 3+00N 19,73 N 9,045 E 100 100 121 2.3 1.6 0.6 1764 2355 40+00 W 2+00N 19,672 N 9,045 E 2024.5 92 212 36 121 2.3 1.6 0.6 1764 2355 40+00 W 1+00N 19,594 N 8,983 E N/S	2353	40+00 W	4+00N	19,029 N	9,103 L	49	6	7 26	5 17	61	I 0.1	0.9	9 0.5	5 255
2355 40+00 W 2+00N 19,672 N 3,030 E 2000 1 1 1 1 1 8 <	2354	40+00 W	3+00N	19,731 N	9,107 E	2024.5	92	2 21:	2 36	<u>12'</u>	1 2.3	3 1.6	3 0.€	1764
2356 40+00 W 1+00N 19,394 N 0,000 E 100 0.9 1.2 1.0 855 2801 40+00 W 0+00N 19,515 N 8,921 E 17.9 133 97 31 100 0.9 1.2 1.0 855 2802 40+00 W 1+00S 19,439 N 8,857 E 45.1 149 97 50 67 1.3 1.1 1.1 856 2802 40+00 W 2+00S 19,362 N 8,793 E N/S	2355	40+00 W		19,072 N	8 082 F	N/S			-					
2801 40+00 W 0+00N 19,315 N 0,321 E 11.3 1.4 1.1	2356	40+00 W		19,594 N	8,000 E	17.9	13	3 9	7 34	1 100	0.9	9 1.:	2 1.0	855
2802 40+00 W 1+00S 19,439 N 0,037 E 10.1	2801	40+00 W		19,515 N	8,857 F	45.1	14	9 9	7 50) 6	7 1.	3 1.	1 1.1	1 856
2803 40+00 W 2+00S 19,352 N 0,755 E 110 110 1.4 235 2804 40+00 W 3+00S 19,285 N 8,729 E 23.6 236 45 36 44 0.8 1.0 1.4 235 2804 40+00 W 3+00S 19,285 N 8,729 E 23.6 236 45 36 44 0.8 1.0 1.4 235 2805 40+00 W 4+00S 19,209 N 8,664 E 35.6 187 74 51 78 0.2 1.6 3.1 881 2806 40+00 W 5+00S 19,132 N 8,600 E 23.2 49 46 21 38 0.4 <.5	2802	40+00 W		10 262 N	8 793 6	N/S			-					
2804 40+00 W 3+005 19,205 N 0,725 E 20.0	2803	40+00 W		10,302 N	8 729 F	236	23	6 4	5 30	3 4	4 0.	8 1.	0 1	4 235
2805 40+00 W 4+005 19,205 N 0,004 E 000 V 19,205 N 0,004 E 000 V 19,000 V 19,132 N 8,600 E 23.2 49 46 21 38 0.4 <.5	2804	40+00 W	1 3+000	19,200 N	8,723 L	35.6	18	7 7	4 5	1 7	8 0.	2 1.	6 <u>3</u> .	1 881
2806 40+00 W 5+005 19,132 N 0,000 E 20.2 57 63 34 95 1.7 0.7 2.7 888 2807 40+00 W 6+00S 19,056 N 8,536 E 55.8 57 63 34 95 1.7 0.7 2.7 888 2807 40+00 W 6+00S 19,056 N 8,536 E 55.8 57 63 34 95 1.7 0.7 2.7 888 2808 40+00 W 7+00S 18,979 N 8,471 E 37.2 35 40 14 37 1.0 0.7 1.9 157 2808 40+00 W 7+00S 18,979 N 8,471 E 37.2 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 8+00S 18,902 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 9+00S 18,826 N 8,343 E 38.0 87 57 19 44 0.	2805	40+00 W	1 4+000	10 132 VS	8 600 F	23 2	4	9 4	6 2	1 3	8 0.	4 <	5 1.	7 561
2807 40+00 W 6+003 19,000 L 0.00 L 0.00 L 0.00 L 14 37 1.0 0.7 1.9 157 2808 40+00 W 7+00S 18,979 N 8,471 E 37.2 35 40 14 37 1.0 0.7 1.9 157 2808 40+00 W 7+00S 18,979 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 8+00S 18,902 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 8+00S 18,902 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 9+00S 18,826 N 8,343 E 38.0 87 57 19 44 0.3 1.0 3.3 131	2806	40+00 W		19,102 N	1 8 536 1	55.8	5	7 6	3 3	4 9	5 1.	7 0.	7 2.	7 888
2808 40+00 W 7+005 16,373 N 0,47 E 31.2 2809 40+00 W 8+005 18,902 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 8+005 18,902 N 8,407 E 35.8 48 86 16 54 3.0 0.8 1.9 1724 2809 40+00 W 8+005 18,826 N 8,343 E 38.0 87 57 19 44 0.3 1.0 3.3 131	2807	40+00 W		19,000 N	8 471 6	37 2	3	5 4	0 1	4 3	7 1.	0 0.	7 1.	9 157
2809 40+00 W 8+005 18,302 N 8,302 E 38.0 87 57 19 44 0.3 1.0 3.3 131	2808	40+00 W		2 18 002 N	8 407	35.8	3 4	8 8	6 1	6 5	4 3.	0 0.	8 1.	9 1724
	2809	40+00 M		C 18.826 M	8 343	38 (8	7 5	7 1	9 4	4 0.	3 1.	0 3.	3 131

11	of	23
----	----	----

SAMPLE #	Grid Coordi	nates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2811	40+00 W 10	0+00\$	18,749 N	8,279 E	9.3	101	69	9	19	1.2	1.2	1.8	33
2812	40+00 W 11	1+00S	18,673 N	8,214 E	4.3	15	22	4	8	0.1	< .5	1.0	17
2813	40+00 W 12	2+00S	18,596 N	8,150 E	10.4	41	53	14	35	5.5	0.6	2.6	77
2814	40+00 W 1:	3+00S	18,519 N	8,086 E	19.0	21	26	6	13	0.4	< .5	1.4	35
2815	40+00 W 14	4+00S	18,443 N	8,022 E	19.0	24	30	10	27	2.3	0.5	1.4	121
2816	40+00 W 15	5+00S	18,366 N	7,957 E	15.5	43	43	6	15	1.3	0.5	1.4	29
2817	40+00 W 18	6+00S	18,290 N	7,893 E	5.6	37	42	20	50	3.3	< 5	3.6	164
2818	40+00 W 17	7 + 00S	18,213 N	7,829 E	7.2	5	29	5	10	1.0	< .5	0.9	21
2819	40+00 W 18	8+00S	18,136 N	7,764 E	8.9	22	20	10	29	0.5	< .5	2.4	49
2820	40+00 W 19	9+00S	18,060 N	7,700 E	27.0	41	- 50	18	39	0.7	< .5	2.4	194
2821	40+00 W 20	0+00\$	17,983 N	7,636 E	15.5	44	47	15	37	1.0	0.5	2.3	145
2184	38+00 W 20	0+00N	20,946 N	10,333 E	4.6	15	49	62	138	0.1	< .5	0.7	875
2183	38+00 W 19	9+00N	20,868 N	10,270 E	9.2	19	46	35	60	< .1	< .5	0.5	332
2182	38+00 W 18	8+00N	20,790 N	10,207 E	10,5	17	62	29	59	< ,1	< .5	0.6	423
2181	38+00 W 17	7+00 N	20,712 N	10,144 E	1.3	8	23	21	52	0.7	< .5	0.4	199
2180	38+00 W 16	5+00N	20,635 N	10,082 E	1.6	10	40	20	64	0.5	< .5	0.2	177
2179	38+00 W 15	5+00N	20,557 N	10,019 E	2.9	16	17	92	92	0.9	< .5	0.5	312
2178	38+00 W 14	4+00N	20,479 N	9,956 E	3.4	19	35	16	102	0.3	< 5	0.3	869
2177	38+00 W 13	3+00N	20,401 N	9,893 E	15.6	12	16	14	63	0.1	< .5	0.3	343
2176	38+00 W 12	2+00N	20,323 N	9,830 E	4.1	22	29	14	69	< .1	< .5	0.4	147
2175	38+00 W 11	1+00N	20,245 N	9,768 E	1.8	16	21	15	68	< .1	< .5	0.3	255
2174	38+00 W 10	0+00N	20,168 N	9,705 E	0.9	1	< 2	1	5	< .1	< 5	< .2	17
2173	38+00 W 9	9+00N	20,090 N	9,642 E	3.1	9	10	5	24	< .1	< 5	< .2	58
2172	38+00 W 8	3+00N	20,012 N	9,579 E	12.5	21	20	15	47	< .1	< .5	0.4	105
2171	38+00 W 7	7+00N	19,934 N	9,516 E	11.5	58	23	30	64	0.2	< .5	0.3	138
2170	38+00 W 6	3+00N	19,856 N	9,454 E	5.8	77	23	24	48	< 1	< .5	0.3	156
2169	38+00 W 5	5+00N	19,779 N	9,391 E	3.7	65	32	29	67	< .1	0.5	0.3	179
2168	38+00 W 4	4+00N	19,701 N	9,328 E	6.4	37	28	20	55	< .1	< .5	0.5	236
2167	38+00 W 3	3+00N	19,623 N	9,265 E	N/S								
2166	38+00 W 2	2+00N	19,545 N	9,202 E	41.5	133	43	23	34	0.4	1.5	1.0	168
2165	38+00 W 1	1+00N	19,467 N	9,140 E	105.5	138	123	35	88	0.2	1.1	1.9	1045
2164	38+00 W C	0+00N	19,389 N	9,077 E	86.2	179	74	29	68	0.5	1.0	1.3	645
2201	38+00 W 1	1 +00S	19,313 N	9,013 E	27.2	86	37	27	39	0.2	1.5	1.1	208
2202	38+00 W 2	2+00 S	19,236 N	8,948 E	N/S								

.

SAMPLE #	Grid Coo	rdinates	Mine Grid C	oordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2203	38+00 W	3+00S	19,160 N	8,884 E	63.4	148	63	29	49	0.1	1.2	2.1	220
2204	38+00 W	4+00S	19,083 N	8,820 E	28.4	131	91	52	80	4.2	1.0	2.2	2990
2205	38+00 W	5+00S	19,006 N	8,755 E	68.5	45	60	24	57	0.6	< .5	1.8	732
2206	38+00 W	6+00S	18,930 N	8,691 E	45.6	26	60	13	29	1.1	< .5	1.7	314
2207	38+00 W	7+00S	18,853 N	8,627 E	14.5	116	151	54	99	5.3	0.6	4.2	1997
2208	38+00 W	8+00\$	18,777 N	8,563 E	24.2	100	74	12	26	1.1	0.8	3.5	51
2209	38+00 W	9+00S	18,700 N	8,498 E	48,4	120	43	20	31	0.6	0.6	2.5	71
2210	38+00 W	10+00S	18,623 N	8,434 E	108.6	97	82	15	28	2.2	1.0	2.7	89
2211	38+00 W	11+00S	18,547 N	8,370 E	9,5	56	52	15	35	1.3	0.5	4.0	137
2212	38+00 W	12+00S	18,470 N	8,306 E	22.1	44	53	18	41	2.4	< .5	2.5	106
2213	38+00 W	13+00S	18,394 N	8,241 E	24.8	36	44	15	39	1.7	< .5	2.5	108
2214	38+00 W	14+00S	18,317 N	8,177 E	1.9	16	44	8	23	1.7	< .5	1.3	58
2215	38+00 W	15+00S	18,240 N	8,113 E	12.6	16	38	12	34	1.6	< .5	1.7	86
2216	38+00 W	16+00S	18,164 N	8,048 E	5.9	31	39	15	46	1.1	< .5	2.3	131
2217	38+00 W	17+00S	18,087 N	7,984 E	11.7	30	41	15	57	0.2	0.5	2.5	176
2218	38 +00 W	18+00S	18,011 N	7,920 E	4.4	30	36	11	34	3.1	< .5	2.4	79
2219	38+00 W	19+00S	17,934 N	7,856 E	11.9	39	53	10	24	0.5	< .5	3.4	85
2220	38+00 W	20+00S	17,857 N	7,791 E	5.6	36	56	10	28	0.6	< .5	4.0	99
2376	36 +00 W	20+00N	20,820 N	10,4 88 E	1.1	12	30	15	64	0.3	< .5	0.6	192
2375	36+00 W	19+00N	20,742 N	10,425 E	0.9	10	22	14	50	0.2	< .5	0.5	178
2374	36+00 W	18+00N	20,664 N	10,363 E	2.7	12	15	14	54	0.1	< .5	0.3	105
2373	36+00 W	17+00N	20,587 N	10,300 E	2.6	13	16	14	57	< .1	< .5	0.3	112
2372	36 +00 W	16+00N	20,509 N	10,237 E	1.0	14	14	14	57	< 1	< .5	0.3	123
2371	36+00 W	15+00N	20,431 N	10,174 E	3.0	25	12	16	48	0.1	< .5	0.2	98
2370	36+00 W	14+00N	20,353 N	10,111 E	2.9	22	8	13	36	0.1	< .5	0.3	77
2369	36+00 W	13+00N	20,275 N	10,049 E	35.8	24	9	16	41	0.1	< .5	0.4	82
2368	36 +00 W	12+00N	20,197 N	9,986 E	2.6	16	28	23	68	0.2	0.7	0.6	140
2367	36 +00 W	11+00N	20,120 N	9,923 E	1.8	16	28	24	69	0.2	< .5	0.7	143
2366	36+00 W	10+00N	20,042 N	9,860 E	1.5	10	13	10	50	0.1	< .5	0.4	194
2365	36 +00 W	9+00N	19,964 N	9,797 E	2.3	11	11	10	45	0.1	< .5	0.4	151
2364	36+00 W	8+00N	19,886 N	9,735 E	1.1	14	17	16	49	0.1	< .5	0.4	260
2363	36 +00 W	7+00N	19,808 N	9,672 E	2.9	14	15	16	52	0.1	< .5	0.4	198
2362	36 +00 W	6+00N	19,730 N	9,609 E	2.7	16	24	10	67	0.3	< .5	0.4	200
2361	36+00 W	5+00N	19,653 N	9,546 E	5.0	16	26	9	75	0.4	0.5	0.5	174

SAMPLE #	Grid Cool	rdinates	Mine Grid C	oordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2360	36+00 W	4+00N	19,575 N	9,483 E	N/S								
2359	36+00 W	3+00N	19,497 N	9,421 E	41.1	144	87	29	51	0.6	0.9	1.2	281
2358	36+00 W	2+00N	19,419 N	9,358 E	165.2	308	181	78	93	1.2	2.7	1.2	1297
2357	36+00 W	1+00N	19,341 N	9,295 E	17.1	81	37	27	51	1.0	0.6	1.3	500
2946	36+00 W	0+00N	19,264 N	9,232 E	122.9	208	53	51	77	0.1	0.9	1.5	806
2240	36 +00 W	1+00\$	19,186 N	9,169 E	105.7	126	63	52	66	0.8	0.5	1.5	484
2239	36+00 W	2+00S	19,109 N	9,106 E	508.8	300	134	79	90	0.8	2.1	2.2	413
2238	36+00 W	3+00S	19,031 N	9,043 E	36,9	143	45	25	44	< .1	1.4	2.5	106
2237	36 +00 W	4+00\$	18,954 N	8,979 E	22.5	67	60.	. 39	77	2.8	0.6	2.1	3358
2236	36+00 W	5+00S	18,876 N	8,916 E	17.1	56	68	13	28	1.7	0.6	2.4	58
2235	36+00 W	6+00\$	18,799 N	8,853 E	15.3	50	68	15	43	2.2	0.7	2.3	274
2234	36 +00 W	7+00S	18,721 N	8,790 E	47.8	51	68	15	44	2.6	0.8	2.3	295
2233	36+00 W	8+00S	18,644 N	8,727 E	51.2	40	59	12	40	2.1	0.5	1.9	198
2232	36+00 W	9+00S	18,566 N	8,663 E	32.7	42	60	12	34	1.8	0.6	2.0	240
2231	36+00 W	10+00S	18,489 N	8,600 E	27.9	115	140	19	36	1.2	0.7	2.9	146
2230	36+00 W	11+00S	18,411 N	8,537 E	88.6	38	62	7	20	1.0	0.6	1.8	81
2229	36+00 W	12+00S	18,334 N	8,474 E	17.8	36	47	8	17	1.2	0.5	1.8	51
2228	36+00 W	13+00S	18,256 N	8,411 E	5.4	28	91	10	18	0.7	0.9	2.0	66
2227	36 +00 W	14+00S	18,179 N	8,347 E	6.1	33	44	12	29	3.0	< .5	2.6	81
2226	36+00 W	15+00S	18,101 N	8,284 E	8.3	48	49	13	35	2.3	< .5	3.5	98
2225	36+00 W	16+00S	18,024 N	8,221 E.	16.2	20	44	19	46	1.4	< .5	2.0	149
2224	36 +00 W	17+00S	17,946 N	8,158 E	5.5	40	56	17	40	0.5	5	4.3	129
2223	36+00 W	18+00S	17,869 N	8,095 E	9.6	37	39	14	31	0.4	< .5	3.2	93
2222	36+00 W	19+00S	17,791 N	8,031 E	13.1	23	57	10	22	2.2	< .5	2.4	57
2221	36+00 W	20+00S	17,714 N	7,968 E	63.9	27	62	12	24	2.6	< .5	2.6	62
2605	34+00 W	20+00N	20,681 N	10,660 E	6.9	14	32	26	84	< .1	< .5	0.6	286
2604	34+00 W	19+00N	20,604 N	10,596 E	13.1	34	55	51	141	0.6	< .5	0.7	1264
2603	34+00 W	18+00N	20,527 N	10,533 E	36.6	43	75	52	97	< .1	0.5	0.9	698
2602	34+00 W	17+00N	20,449 N	10,469 E	20.7	32	24	34	61	0.2	< .5	0.6	355
2601	34+00 W	16+00N	20,372 N	10,405 E	5.2	20	38	22	52	0.3	< .5	0.5	223
2200	34+00 W	15+00N	20,295 N	10,342 E	2.7	15	20	23	76	0.2	< .5	0.2	330
2199	34+00 W	14+00N	20,218 N	10,278 E	6.3	15	19	12	59	< .1	< .5	0.4	130
2198	34+00 W	13+00N	20,141 N	10,215 E	14.6	14	45	60	70	1.2	< .5	0.8	877
2197	34+00 W	12 + 00N	20,064 N	10,151 E	2.0	11	24	28	57	< 1	< .5	0.5	137

.

SAMPLE #	Grid Coordina	ites	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2196	34+00 W 11+	+00N	19,986 N	10,087 E	2.2	6	20	25	58	0.1	< .5	0.2	240
2195	34+00 W 10+	-00N	19,909 N	10,024 E	4.0	14	21	54	69	<.1	< .5	0.4	234
2194	34+00 W 9+	+00N	19,832 N	9,960 E	8.0	17	30	23	70	< .1	< .5	0.3	326
2193	34+00 W 8+	-00N	19,755 N	9,897 E	4.6	38	19	19	65	< .1	< .5	0.3	366
2192	34+00 W 7+	-00N	19,678 N	9,833 E	205.6	197	92	49	85	0.1	1.0	0.9	810
2191	34+00 W 6+	-00N	19,601 N	9,769 E	1009.0	59	40	19	46	0.3	0.5	0.9	605
2190	34+00 W 5+	-00N	19,524 N	9,706 E	18.0	98	55	24	84	0.2	< .5	1.6	467
2189	34+00 W 4+	+00N	19,446 N	9,642 E	106.7	172	135	52	88	0.5	5.7	1.4	901
2188	34+00 W 3+	-00N	19,369 N	9,579 E	N/S								
2187	34+00 W 2+	-00N	19,292 N	9,515 E	426.7	433	181	57	91	1.2	2.2	1.9	499
2186	34+00 W 1+	-00N	19,215 N	9,451 E	148.9	383	119	39	92	1.2	1.2	1.9	1946
2185	34+00 W 0+	-00N	19,138 N	9,388 E	374.3	291	106	40	105	0.8	1.2	2.6	866
2241	34+00 W 1+	-00S	19,061 N	9,324 E	N/S								
2242	34+00 W 2+	-00S	18,983 N	9,260 E	91.4	271	88	39	142	0.4	0.7	4.4	884
2243	34+00 W 3+	+00S	18,906 N	9,197 E	N/S								
2244	34+00 W 4+	-00S	18,829 N	9,133 E	21.1	114	100	45	100	1.3	1.1	2.6	1475
2245	34+00 W 5+	+00S	18,752 N	9,070 E	24.5	36	63	30	34	0.4	< .5	1.8	80
2246	34+00 W 6+	-00S	18,675 N	9,006 E	41.9	112	132	29	89	0.7	0.5	1.6	626
2247	34+00 W 7+	+00S	18,598 N	8,942 E	88.2	119	164	33	102	1.0	0.7	1.7	924
2248	34+00 W 8+	-00S	18,520 N	8,879 E	22.7	74	81	13	22	1.1	0.6	1.6	67
2249	34+00 W 9+	-00S	18,443 N	8,815 E	44.9	32	52	10	19	1.4	< .5	1.5	81
2250	34+00 W 10+	-00S	18,366 N	8,752 E	28.1	45	62	12	20	4.6	0.7	1.1	98
2251	34+00 W 11+	-00S	18,289 N	8,688 E	11.6	63	123	20	47	1.3	0.5	3.2	176
2252	34+00 W 12+0	-005	18,212 N	8,624 E	36.5	40	171	17	37	2.3	0.9	2.1	150
2253	34+00 W 13+	-00S	18,135 N	8,561 E	25.5	56	72	28	42	3.5	< .5	4.2	150
2254	34+00 W 14+0	-00S	18,057 N	8,497 E	8.3	16	53	9	28	1,1	< .5	1.9	75
2255	34+00 W 15+	-00S	17,980 N	8,434 E	6.4	24	23	7	14	3.8	< .5	1.5	47
2256	34+00 W 16+0	-00S	17,903 N	8,370 E	4.0	30	31	14	16	1.1	< .5	3.1	29
2257	34+00 W 17+0	-00S	17,826 N	8,306 E	5.0	37	39	13	26	1.3	< 5	4.2	53
2258	34+00 W 18+0	-00S	17,749 N	8,243 E	20.3	45	60	18	34	5.7	0.5	5.8	100
2259	34+00 W 19+0	-00S	17,672 N	8,179 E	11.8	37	58	15	31	5.0	< .5	4.7	76
2260	34+00 W 20+1	-005	17,594 N	8,116 E	60.3	48	76	22	43	7.1	< .5	5.5	111
2606	32+00 W 20+0	00N	20,564 N	10,804 E	16.8	22	42	31	100	0.2	< .5	0.4	611
2607	32+00 W 19+0	00N	20,486 N	10,741 E	4.8	17	49	31	89	0.2	< .5	0.3	548

.

SAMPLE #	Grid Coo	rdinates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2608	32+00 W	18+00N	20,409 N	10,678 E	1.8	15	25	17	52	<.1	< .5	0.6	195
2609	32+00 W	17+00N	20,331 N	10,615 E	12.7	20	38	27	64	<.1	< .5	0.5	274
2610	32+00 W	16+00N	20,253 N	10,552 E	8.1	30	35	21	62	< .1	< .5	1.0	231
2611	32+00 W	15+00N	20,176 N	10,489 E	22.9	27	39	14	48	0.4	0.7	0.8	132
2612	32 +00 W	14+00N	20,098 N	10,426 E	7.4	23	33	22	57	0.3	< .5	0.7	168
2613	32+00 W	13+00N	20,021 N	10,363 E	5.1	18	37	20	55	0.6	< .5	0.7	113
2614	32+00 W	12+00N	19,943 N	10,300 E	23.6	19	42	46	76	0.3	< .5	0.6	723
2615	32+00 W	11+00N	19,865 N	10,237 E	4.5	10	19	19	68	< .1	< .5	0.7	153
2616	32+00 W	10+00N	19,788 N	10,174 E	N/S								
2617	32+00 W	9+00N	19,710 N	10,111 E	73.2	139	98	55	86	1.2	0.8	1.0	1405
2618	32+00 W	8+00N	19,633 N	10,048 E	34.5	157	63	49	92	0.9	< .5	1.8	1022
2619	32+00 W	7 + 00N	19,555 N	9,985 E	92.2	432	195	36	77	0.1	5.6	1.6	1065
2620	32+00 W	6+00N	19,477 N	9,922 E	5.8	99	62	27	81	< .1	< .5	1.1	1804
2621	32+00 W	5+00N	19,400 N	9,858 E	89.9	209	119	28	56	0.5	1.1	1.1	544
2622	32+00 W	4+00N	19,322 N	9,795 E	N/S								
2623	32+00 W	3+00N	19,245 N	9,732 E	N/S								
2624	32+00 W	2+00N	19,167 N	9,669 E	100.9	463	86	34	44	0.6	0.8	0.8	1001
2625	32+00 W	1+00N	19,089 N	9,606 E	N/S								
2493	32+00 W	0+00N	19,012 N	9,543 E	N/S								
2261	32 +00 W	1+00S	18,935 N	9,479 E	425.9	397	156	39	101	0.7	1.5	2.2	984
2262	32+00 W	2+00S	18,859 N	9,415 E	N/S								
2263	32+00 W	3+00\$	18,782 N	9,350 E	159.4	367	72	50	63	1.3	0.8	2.2	322
2264	32+00 W	4+00S	18,705 N	9,286 E	6.2	276	79	33	82	0.8	< .5	3.2	1636
2265	32+00 W	5+00\$	18,629 N	9,222 E	43.0	141	108	29	57	0.4	0.5	3.4	218
2266	32+00 W	6+0 0S	18,552 N	9,157 E	30.2	166	112	29	55	0.5	1.0	3.5	163
2267	32+00 W	7 +00S	18,476 N	9,093 E	83.4	119	78	21	45	2.1	0.6	3.4	356
2268	32+00 W	8+00S	18,399 N	9,029 E	22.0	78	81	16	44	1.2	0.7	4.5	191
2269	32+00 W	9+00S	18,322 N	8,965 E	7.5	85	68	14	43	1.1	1.2	2.2	156
2270	32+00 W	10+00S	18,246 N	8,900 E	15.8	44	54	22	57	1.1	< .5	3.3	289
2271	32+00 W	11+00S	18,169 N	8,836 E	22.2	26	45	5	11	0.6	< .5	0.9	56
2272	32+00 W	12+00S	18,093 N	8,772 E	55.9	26	118	13	26	1.2	< .5	1.8	193
2273	32+00 W	13+00S	18,016 N	8,708 E	8.3	27	88	7	10	0.7	< .5	1.2	59
2274	32+00 W	14+00S	17,939 N	8,643 E	N/S								
2275	32+00 W	15+00S	17,863 N	8,579 E	N/S								

SAMPLE #	Grid Coo	rdinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2276	32+00 W	16+00S	17,786 N	8,515 E	2.3	12	27	11	10	0.1	< .5	2.5	13
2277	32+00 W	17+00S	17,710 N	8,450 E	11.6	28	36	19	18	0.1	< .5	4.0	18
2278	32 +00 W	18+00S	17,633 N	8,386 E	27.5	45	61	26	59	1.9	< .5	4.6	98
2279	32+00 W	19+00S	17,556 N	8,322 E	12.2	45	51	24	57	2.0	< .5	4.8	92
2280	32+00 W	20+00S	17,480 N	8,258 E	11.1	35	49	21	51	1.1	< .5	4.0	80
2645	30+00 W	20+00N	20,429 N	10,971 E	5.6	18	38	30	105	0.3	< .5	0.4	751
2644	30+00 W	19 +00N	20,352 N	10,907 E	29.4	15	25	17	64	< .1	< .5	0.5	337
2643	30 +00 W	18+00N	20,275 N	10,844 E	8.7	23	35	24	124	0.4	<.5	0.7	3445
2642	30+00 W	17+00N	20,198 N	10,780 E	32.4	20	28	36	90	0.3	< .5	0.7	3963
2641	30+00 W	16+00N	20,121 N	10,716 E	11.6	38	49	32	62	< .1	< .5	0.6	397
2640	30+00 W	15+00N	20,043 N	10,653 E	9.3	19	10	8	19	< .1	< .5	0.4	114
2639	30 +00 W	14+00N	19,966 N	10,5 89 E	7.5	32	37	19	50	< .1	< .5	0.4	125
2638	30 +00 W	13+00N	19,889 N	10,525 E	5.9	18	66	17	48	0.3	0.5	0.3	170
2637	30 +00 W	12+00N	19,812 N	10,462 E	N/S								
2636	30+00 W	11+00N	19,735 N	10,398 E	56.3	129	115	41	64	0.2	1.1	0.9	374
2635	30 +00 W	10+00N	19,658 N	10,335 E	134.8	70	46	14	33	0.3	0.7	0.7	323
2634	30 +00 W	9+00N	19,580 N	10,271 E	74.9	129	101	17	52	0.3	1.1	1.2	152
2633	30+00 W	8+00N	19,503 N	10,207 E	89.5	168	141	34	54	1.8	1.4	1.0	545
2632	30+00 W	7+00N	19,426 N	10,144 E	51.4	38	36	7	9	0.6	0.5	0.7	135
2631	30+00 W	6+00N	19,349 N	10,080 E	22.3	63	44	11	36	4.9	0.6	1.0	330
2630	30 +00 W	5+00N	19,272 N	10,017 E	90.9	109	25	8	12	1.0	0.8	0.4	102
2629	30 +00 W	4+00N	19,195 N	9,953 E	48.4	24	14	4	9	0.9	< .5	0.5	200
2628	30+00 W	3+00N	19,117 N	9,889 E	N/S								
2627	30 +00 W	2+00N	19,040 N	9,826 E	55.3	138	73	17	31	1.5	2.3	1.6	136
2626	30 +00 W	1+00N	18,963 N	9,762 E	56.2	159	72	29	56	0.5	0.7	2.8	369
2494	30+00 W	0+00N	18,886 N	9,699 E	N/S								
2281	30 +00 W	1+00\$	18,808 N	9,635 E	109.9	239	224	26	43	0.6	0.9	2.1	126
2282	30 +00 W	2+00S	18,731 N	9,572 E	43.6	69	33	24	29	0.2	0.6	2.1	62
2283	30 +00 W	3+00S	18,653 N	9,509 E	33.6	184	69	29	72	0.6	0.8	8.0	147
2284	30 +00 W	4+00\$	18,576 N	9,446 E	78.5	1049	52	15	28	0.4	0.5	1.8	80
2285	30+00 W	5+00S	18,498 N	9,383 E	60.4	131	60	19	55	1.4	1.0	2.3	467
2286	30 + 00 W	6+00S	18,421 N	9,319 E	237.1	130	49	14	29	1.2	1.0	2.9	141
2287	30 +00 W	7+00S	18,344 N	9,256 E	28.0	90	40	17	30	0.3	2.3	3.9	80
2288	30 +00 W	8+00S	18,266 N	9,193 E	43.8	71	41	11	26	0.3	1.8	3.2	109

.

ł

SAMPLE #	Grid Coord	dinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2289	30+00 W	9+00S	18,189 N	9,130 E	72.4	19	18	9	22	0.2	< .5	1.9	60
2290	30+00 W	10+00\$	18,111 N	9,067 E	10.2	30	28	10	26	0.8	0.6	1.5	229
2291	30 +00 W	11+00S	18,034 N	9,003 E	10.2	33	17	14	43	0.9	< .5	2.4	114
2292	30 +00 W	12+00S	17,956 N	8,940 E	28.4	33	24	9	23	0.5	0.6	1.9	73
2293	30+00 W	13+00S	17,879 N	8,877 E	8.3	17	43	5	11	1.4	0.7	1.3	65
2294	30+00 W	14 + 00S	17,801 N	8,814 E	4.5	30	37	19	37	0.1	< .5	3.4	133
2295	30+00 W	15+00S	17,724 N	8,751 E	44.5	9	18	5	12	0.2	< .5	2.0	14
2296	30+00 W	16+00S	17,646 N	8,687 E	3.8	2	10	2	3	0.1	< .5	0.8	3
2297	30 +00 W	17 + 00\$	17,569 N	8,624 E	10.8	17	29	12	36	8.8	< .5	2.6	77
2298	30+00 W	18+00S	17,491 N	8,561 E	11.0	14	27	13	38	6.8	< .5	2.4	78
2299	30+00 W	19+00S	17,414 N	8,498 E	10.0	16	27	18	53	5.3	< .5	2.3	113
2300	30+00 W	20 + 00S	17.336 N	8,435 E	18.8	16	25	16	48	5.0	< .5	2.3	105
2437	30+00 W	21+00S	17,259 N	8,371 E	5.1	17	34	7	29	0.2	0.5	5.9	17
2438	30+00 W	22+00S	17,181 N	8,308 E	N/S								
2439	30+00 W	23+00S	17,104 N	8,245 E	10.0	107	148	25	42	3.6	0.5	4.6	119
2440	30+00 W 3	24+00\$	17,026 N	8,182 E	15.3	43	88	26	83	0.7	< .5	2.1	196
2441	30+00 W 3	25 +0 0S	16,949 N	8 118 E	20.0	17	33	17	24	0.6	0.5	1.3	53
2396	28+00 W 2	20+00N	20,336 N	11,085 E	26.2	18	25	14	59	< .1	< .5	0.6	161
2395	28+00 W	19+00N	20,257 N	11,024 E	2.4	11	24	12	58	< .1	< .5	0.6	134
2394	28+00 W	18+00N	20,179 N	10,962 E	11.4	15	27	17	74	< .1	< .5	0.7	180
2393	28+00 W	17+00N	20,100 N	10,901 E	4.0	11	20	10	31	< .1	< .5	0.4	79
2392	28+00 W	16+00N	20,021 N	10,839 E	9.7	21	32	22	67	< .1	< .5	0.5	165
2391	28+00 W	15+00N	19,942 N	10,777 E	67.9	36	43	30	66	0.4	< .5	0.8	215
2390	28+00 W	14+00N	19,863 N	10,716 E	13.3	52	133	33	69	0.3	0.8	0.8	311
2389	28+00 W	13+00N	19,785 N	10,654 E	73,0	123	112	39	99	0.4	0.9	0.7	901
2388	28+00 W	12+00N	19,706 N	10,593 E	51.8	112	139	33	78	0.9	0.5	0.8	936
2387	28+00 W	11+00N	19,627 N	10,531 E	143.1	96	83	32	64	< .1	Q.8	0.9	266
2386	28+00 W	10+00 N	19,548 N	10,470 E	52.9	179	92	46	88	< .1	1.1	1.2	649
2385	28+00 W	9+00N	19,469 N	10,408 E	40.2	92	61	48	91	1.0	< .5	0.7	2277
2384	28+00 W	8+00N	19,391 N	10,347 E	12.5	102	61	41	62	0.2	< .5	1.2	536
2383	28+00 W	7+00N	19,312 N	10,285 E	39.8	132	65	42	72	1.3	0.5	2.0	460
2382	28+00 W	6+00N	19,233 N	10,223 E	62.2	240	95	40	72	0.3	1.2	1.9	521
2381	28+00 W	5+00N	19,154 N	10,162 E	161.6	280	139	56	93	1.1	1.3	1.8	689
2380	28+00 W	4+00N	19,075 N	10,100 E	N/S								
Appendix F: Soil sample locations and selected analyses													

18 of 23

SAMPLE #	Grid Coo	rdinates	Mine Grid C	oordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2379	28+00 W	3+00N	18,997 N	10,039 E	75.4	249	44	29	49	0.4	1.0	1.1	606
2378	28+00 W	2+00N	18,918 N	9,977 E	73.1	123	50	16	26	1.9	0.7	1.6	243
2377	28+00 W	1+00N	18,839 N	9,916 E	46.9	117	54	18	33	0.7	0.7	1.8	140
2495	28+00 W	0+00N	18,760 N	9,854 E	N/S								
2720	28+00 W	1+00S	18,683 N	9,790 E	30.2	100	39	17	23	1.0	0.9	1.9	217
2719	28+00 W	2+00\$	18,606 N	9,726 E	160.7	120	45	20	39	1.2	0.6	2.0	616
2718	28+00 W	3+00\$	18,530 N	9,662 E	76.4	144	73	50	69	0.8	< .5	3.0	315
2717	28+00 W	4+00S	18,453 N	9,598 E	58.4	185	45	24	34	0.8	1.3	2.8	137
2716	28 + 00 W	5+00S	18,376 N	9,534 E	25.6	194	48	55	66	< .1	< .5	2.9	286
2715	28 +00 W	6+00S	18,299 N	9,470 E	1009.3	759	81	56	52	1.1	0.9	2.7	411
2714	28+00 W	7+00S	18,222 N	9,406 E	79.9	121	56	19	37	0.8	0.9	2.6	220
2713	28+00 W	8+00S	18,145 N	9,342 E	102.3	82	33	13	22	0.1	0.9	1.6	402
2712	28 + 00 W	9+00S	18,069 N	9,278 E	54.9	132	48	15	38	0.4	1.3	2.6	223
2711	28 +00 W	10+00S	17,992 N	9,214 E	17.7	17	17	7	20	0.7	0.8	1.3	57
2710	28+00 W	11+00S	17,915 N	9,150 E	19.9	30	26	12	26	0.9	0.6	2.7	61
2709	28 + 00 W	12 + 00\$	17,838 N	9,086 E	48.6	34	31	13	28	1.2	0.9	2.8	66
2708	28 +00 W	13+00S	17,761 N	9,022 E	42.4	26	18	8	17	0.2	< .5	1.3	58
2707	28+00 W	14+00\$	17,685 N	8,958 E	6.5	31	14	9	21	0.3	< .5	1.3	71
2706	28 +00 W	15+00S	17,608 N	8,894 E	69.7	29	29	12	24	0.2	< .5	4.3	33
2705	28 + 00 W	16 + 00\$	17,531 N	8,830 E	35.8	31	23	15	29	1.0	< .5	3.5	48
2704	28+00 W	17+00S	17,454 N	8,766 E	2.9	5	18	3	5	0.4	< .5	1.1	10
2703	28 +00 W	18+00S	17,377 N	8,702 E	7.3	20	33	6	10	4.5	< .5	2.4	39
2702	28 + 00 W	19+00S	17,300 N	8,638 E	3.9	24	31	12	19	1.1	< .5	6.1	58
2701	28+00 W	20+00S	17,224 N	8,574 E	5.2	26	34	13	20	1.4	< .5	6.4	56
2442	28+00 W	21+00S	17,147 N	8,510 E	10.4	21	35	11	21	0.2	0.5	3.9	30
2443	28+00 W	22+00S	17,070 N	8,446 E	5.7	5	26	3	9	0.2	< .5	0.8	29
2444	28+00 W	23+00S	16,993 N	8,382 E	19.7	12	7	7	21	0.4	< .5	0.9	34
2,445	28+00 W	24+00S	16,916 N	8,318 E	3.0	39	32	12	49	< .1	< .5	7.9	45
2446	28 + 00 W	25+00S	16,839 N	8,254 E	25.3	29	32	22	70	0.2	0.5	1.5	160
2397	26 +00 W	20+00N	20,186 N	11,271 E	10.5	19	27	24	70	< .1	< .5	0.8	200
2398	26+00 W	19 + 00N	20,109 N	11,208 E	17.1	22	29	17	77	< .1	< .5	0.7	150
2399	26+00 W	18+00N	20,031 N	11,145 E	5.5	14	30	8	33	< .1	< .5	0.4	114
2400	26+00 W	17+00N	19,954 N	11,082 E	13.8	27	41	15	62	0.1	< .5	1.1	141
2401	26+00 W	16+00N	19,876 N	11,019 E	N/S								

.

, .

.

19 of 23

SAMPLE #	Grid Coo	rdinates	Mine Grid Co	oordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2402	26+00 W	15+00N	19,798 N	10,955 E	N/S								
2403	26+00 W	14+00N	19,721 N	10,892 E	120.7	70	61	40	83	0.7	< .5	0.5	1255
2404	26+00 W	13+00N	19,643 N	10,829 E	157.8	106	89	24	67	0.2	1.5	0.7	294
2405	26+00 W	12+00N	19,565 N	10,766 E	144.3	121	48	44	66	0.1	1.0	0.7	348
2406	26+00 W	11+00N	19,488 N	10,703 E	108.1	125	57	45	84	1.1	0.7	0.7	1475
2407	26 +00 W	10+00N	19,410 N	10,640 E	50.3	148	65	38	67	0.5	1.1	1.2	571
2408	26 +0 0 W	9+00N	19,333 N	10,577 E	52.2	156	55	44	99	0.5	0.9	0.7	1813
2409	26+00 W	8+00N	19,255 N	10,514 E	127.4	197	76	58	147	0.6	1.3	0.7	2836
2410	26+00 W	7 + 00N	19,177 N	10,451 E	122.3	274	108	61	75	0.1	2.6	1.4	979
2411	26+00 W	6+00N	19,100 N	10,388 E	109.7	346	493	67	83	0.1	1.0	1.0	623
2412	26+00 W	5+00N	19,022 N	10,325 E	40.8	295	63	53	81	0.3	1.3	0.9	671
2413	26+00 W	4+00N	18,945 N	10,262 E	N/S								
2414	26+00 W	3+00N	18,867 N	10,199 E	N/S								
2415	26+00 W	2+00N	18,789 N	10,136 E	83.3	509	82	85	86	0.3	1.8	1.9	573
2416	26+00 W	1+00N	18,712 N	10,072 E	362.1	356	144	21	56	0.2	2.5	1.3	378
2496	26 +0 0 W	0+00N	18,634 N	10,009 E	166.6	181	67	24	40	0.9	1.3	2.1	343
2471	26+00 W	1+00S	18,557 N	9,946 E	N/S								
2470	26+00 W	2+00S	18,479 N	9,884 E	N/S								
2469	26+00 W	3+00S	18,401 N	9,821 E	67.2	101	40	17	33	0.6	0.8	2.0	222
2468	26+00 W	4+00\$	18,323 N	9,758 E	52.6	109	51	22	37	2.2	0.7	2.9	154
2467	26+00 W	5+00S	18,246 N	9,695 E	20.2	. 54	42	16	33	0.2	< .5	2.2	232
2466	26+00 W	6+00S	18,168 N	9,632 E	34.4	59	31	21	35	0.3	1.4	3.0	252
2465	26+00 W	7+00S	18,090 N	9,569 E	20.2	172	318	30	62	0.7	3.7	2.2	1783
2464	26+00 W	8+00S	18,013 N	9,506 E	18.0	135	162	47	90	2.3	3.8	4.7	1020
2463	26+00 W	9+00S	17,935 N	9,443 E	42.3	100	66	25	49	0.4	2.5	3.7	324
2462	26+00 W	10+00S	17,857 N	9,380 E	48.5	46	36	12	23	<.1	1.4	2.0	106
2461	26+00 W	11+00S	17,779 N	9,317 E	24.6	81	88	23	61	2.6	< .5	3.9	283
2460	26+00 W	12+00S	17,702 N	9,254 E	15.8	50	97	14	40	2.5	0.8	3.9	255
2459	26+00 W	13+00S	17,624 N	9,191 E	69.3	58	53	13	29	0.9	0.7	2.7	77
2458	26+00 W	14+00S	17,546 N	9,128 E	11.6	52	37	18	36	0.8	1.0	1.9	118
2457	26+00 W	15+00S	17,469 N	9,065 E	104.7	18	16	11	30	0.7	< .5	1.5	22
2456	26+00 W	16+00S	17,391 N	9,003 E	58.6	7	14	3	7	0.4	< .5	1.3	43
2455	26+00 W	17+00S	17,313 N	8,940 E	19.8	54	18	17	36	1.1	< .5	4.2	77
2454	26+00 W	18+00S	17,235 N	8,877 E	7.5	7	7	7	9	0.8	< .5	4.1	36

20 of 23

SAMPLE #	Grid Coor	rdinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2453	26+00 W	19+00S	17,158 N	8,814 E	6.1	37	26	13	27	1.7	0.5	6,9	47
2452	26+00 W	20+00\$	17,080 N	8,751 E	8.4	30	92	11	36	0.6	< .5	5.7	32
2447	26+00 W	21+00S	17,002 N	8,688 E	3.5	3	8	1	5	0.3	< .5	0.8	12
2448	26+00 W	22+00S	16,925 N	8,625 E	3.1	24	77	24	74	0.3	< .5	1.2	61
2449	26+00 W	23+00S	16,847 N	8,562 E	39.2	12	50	18	78	<.1	< .5	2.0	64
2450	26+00 W	24 + 00\$	16,769 N	8,499 E	6.6	20	62	14	68	1.4	< .5	0.8	72
2451	26 +00 W	25+00S	16,691 N	8,436 E	4.4	51	44	19	57	< .1	0.5	1.9	191
2757	24+00 W	20+00N	20,040 N	11,450 E	20.3	13	27	53	115	< .1	< .5	0.7	329
2756	24+00 W	19+00N	19,964 N	11,386 E	2.8	< 1	7	10	31	0.1	< .5	0,6	95
2755	24+00 W	18+00N	19,887 N	11,322 E	N/S								
2754	24+00 W	17+00N	19,811 N	11,258 E	N/S								
2753	24+00 W	16+00 N	19,734 N	11,193 E	74.3	123	109	63	175	0.3	0.6	2.3	625
2752	24+00 W	15+00N	19,657 N	11,129 E	648.8	114	82	60	102	0.5	0.7	1.2	1056
2751	24+00 W	14+00N	19,581 N	11,065 E	36.8	57	139	32	171	0.8	0.6	0.7	1477
2750	24+00 W	13+00N	19,504 N	11,000 E	92.2	157	64	52	91	0.8	1.0	0.9	2011
2749	24 +00 W	12+00N	19,428 N	10,936 E	45.8	85	48	20	64	0.4	0.6	0.9	415
2748	24+00 W	11+00N	19,351 N	10,872 E	33.9	96	43	41	142	1.2	1.0	0.7	5492
2747	24 +00 W	10+00N	19,274 N	10,808 E	269.3	184	58	31	57	0.2	0.9	0.8	563
2746	24+00 W	9+00N	19,198 N	10,743 E	147.4	164	42	17	36	0.4	0.7	0.5	714
2745	24 + 00 W	8+00N	19,121 N	10,679 E	142.7	69	13	11	17	0.3	0.9	0.6	125
2744	24+00 W	7+00N	19,045 N	10,615 E	76.0	218	126	52	86	1.0	0.9	1.0	1896
2743	24+00 W	6+00N	18,968 N	10,551 E	67.6	238	71	46	62	< .1	0.6	1.2	459
2742	24+00 W	5+00N	18,891 N	10,486 E	213.0	385	104	101	83	0.7	2.1	1.2	1238
2741	24+00 W	4+00N	18,815 N	10,422 E	562.5	320	76	142	100	0.7	2.0	1.7	1276
2740	24+00 W	3+00N	18,738 N	10,358 E	148.5	469	125	125	110	0.4	0.8	1.5	1678
2739	24+00 W	2+00N	18,662 N	10,293 E	N/S								
2738	24+00 W	1+00N	18,585 N	10,229 E	305.8	533	178	118	123	0.3	2.3	2.9	1575
2497	24+00 W	0+00N	18,508 N	10,165 E	N/S								
2417	24+00 W	1+00S	18,431 N	10,102 E	N/S								
2418	24+00 W	2+00\$	18,353 N	10,039 E	N/S								·····
2419	24+00 W	3+00S	18,275 N	9,976 E	209.0	563	107	57	77	0.3	2.7	1.2	351
2420	24+00 W	4+00S	18,198 N	9,913 E	186.4	331	83	57	63	1.1	1.9	1.3	561
2421	24+00 W	5+00S	18,120 N	9,850 E	98.7	161	47	38	40	0.2	1.0	1.4	334
2422	24+00 W	6+00S	18,042 N	9,787 E	26.6	218	82	39	53	1.1	1.1	2.3	296

210123	- 21	ot	23	
--------	------	----	----	--

SAMPLE #	Grid Cool	rdinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2423	24+00 W	7+00S	17,964 N	9,724 E	35.9	85	51	24	48	0.5	1.5	3.5	180
2424	24+00 W	8+00S	17,887 N	9,661 E	30.0	115	145	58	128	1.4	2.1	5.8	2208
2425	24+00 W	9+00S	17,809 N	9,598 E	25.6	45	43	13	25	0.1	0.8	2.9	38
2426	24+00 Ŵ	10+00\$	17,731 N	9,536 E	44.7	56	82	18	28	1.6	1.1	3.6	59
2427	24+00 W	11+00S	17,654 N	9,473 E	61.9	83	54	26	87	0.9	5.2	4.5	308
2428	24+00 W	12+00S	17,576 N	9,410 E	62.6	113	85	39	74	0.8	1.4	6.6	218
2429	24+00 W	13+00\$	17,498 N	9,347 E	21.3	65	38	22	45	1.1	< .5	9,6	28
2430	24+00 W	14+00S	17,420 N	9,284 E	19.4	43	43	13	27	0.7	0.9	2.8	71
2431	24+00 W	15+00S	17,343 N	9,221 E	6.6	13	60	4	7	2.6	< .5	1.6	15
2432	24+00 W	16+00S	17,265 N	9,158 E	35.4	64	70	12	24	2.9	0.7	5.8	47
2433	24+00 W	17+00S	17,187 N	9,095 E	68.7	45	83	15	22	0.6	< .5	5,4	58
2434	24+00 W	18+00S	17,110 N	9,032 E	29.4	53	35	14	32	0.3	< .5	5.6	46
24,35	24+00 W	19+00S	17,032 N	8,969 E	64.1	83	102	18	47	0.7	0.6	8.7	62
2436	24+00 W	20+00S	16,954 N	8,906 E	10.1	59	96	16	40	0.4	1.1	3.9	59
2945	22+00 W	20+00N	19,919 N	11,600 E	71.2	129	125	61	89	0.4	2.0	1.0	707
2944	22+00 W	19 + 00N	19,842 N	11,536 E	66.5	132	134	66	90	0.4	1.9	1.0	915
2943	22+00 W	18+00N	19,765 N	11,472 E	N/S								
2942	22+00 W	17+00 N	19,689 N	11,408 E	156.7	156	69	58	88	0.2	1.0	1.0	835
2941	22 + 00 W	16+00 N	19,612 N	11,344 E	122.9	95	89	48	90	0.4	1.5	0.8	1031
2940	22+00 W	15+00N	19,535 N	11,280 E	N/S								
2939	22+00 W	14+00N	19,458 N	11,216 E	119.6	133	69	71	99	0.3	0.8	1.0	1233
2938	22+00 W	13+00N	19,381 N	11,152 E	52.6	116	58	37	81	0.1	0.8	1.2	812
2937	22+00 W	12+00N	19,304 N	11,088 E	72.2	113	54	35	79	0.1	0.9	1.2	647
2936	22+00 W	11+00N	19,228 N	11,024 E	101.4	83	41	11	22	0.3	1.6	0.6	289
2935	22+00 W	10+00N	19,151 N	10,960 E	106.8	158	45	48	79	0.1	0.8	0.6	1436
2934	22+00 W	9+00N	19,074 N	10,896 E	159.2	152	46	48	82	0.1	0.6	0.5	1470
2933	22+00 W	8+00N	18,997 N	10,832 E	50.0	105	46	49	138	0.8	< .5	0.6	3355
2932	22+00 W	7+00N	18,920 N	10,76 8 E	110.6	170	51	58	91	0.9	0.7	0.8	3276
2931	22 +00 W	6+00N	18,843 N	10,704 E	69.9	116	27	34	49	1,1	1.0	0.6	498
2930	22+00 W	5+00N	18,767 N	10,640 E	78.3	141	28	50	57	0.5	1.8	0.7	414
2929	22+00 W	4+00N	18,690 N	10,576 E	319.2	174	36	124	87	0.5	1.1	1.1	1015
2928	22+00 W	3+00N	18,613 N	10,512 E	289.5	315	58	90	87	0.2	1.6	1.1	1467
2927	22+00 W	2+00N	18,536 N	10,448 E	N/S			_					
2926	22 +00 W	1+00N	18,459 N	10,384 E	N/S								

Appendix F: Soil sample locations and selected analyses

.

22 of 23

1

SAMPLE #	Grid Coo	rdinates	Mine Grid C	Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2492	22+00 W	0+00N	18,383 N	10,320 E	N/S								
2491	22+00 W	1+00S	18,306 N	10,256 E	N/S						-		
2490	22+00 W	2+00S	18,229 N	10,192 E	N/S								
2489	22+00 W	3+00Ś	18,153 N	10,127 E	395.8	1394	95	129	103	0.6	1.5	1.3	1327
2488	22+00 W	4+00S	18,076 N	10,063 E	43.2	465	87	66	73	3.6	1.5	2.0	1198
2487	22+00 W	5+00S	17,999 N	9,999 E	3170.1	1810	157	205	98	1.3	4.6	1.9	1985
2486	22+00 W	6+00S	17,923 N	9,935 E	19.8	88	79	32	73	1.1	0.7	3.6	568
2485	22+00 W	7+00\$	17,846 N	9,870 E	10.4	229	43	35	35	1.6	1.0	1.7	198
2484	22+00 W	8+00S	17,770 N	9,806 E	30.6	105	89	16	38	1.5	1.1	4.1	424
2483	22+00 W	9+00S	17,693 N	9,742 E	18.8	54	62	30	30	0.8	1.0	2.5	70
2482	22+00 W	10+00S	17,616 N	9,677 E	52.9	23	29	8	15	1.1	< .5	1.5	35
2481	22+00 W	11+00S	17,540 N	9,613 E	33.6	74	118	136	76	63.7	0,8	4.5	383
2480	22+00 W	12 + 00\$	17,463 N	9,549 E	35.5	174	60	26	50	1.6	1.4	5.4	104
2479	22+00 W	13+00S	17,387 N	9,485 E	37.8	128	124	39	69	2.9	2.3	6.5	118
2478	22+00 W	14+00S	17,310 N	9,420 E	31.3	30	33	11	26	0.5	< .5	3.7	37
2477	22+00 W	15+00S	17,233 N	9,356 E	21.9	36	73	35	60	4.2	< 5	5,2	81
2476	22+00 W	16+00\$	17,157 N	9,292 E	113,3	63	52	20	45	1.5	< .5	6.1	88
2475	22+00 W	17+00S	17,080 N	9,228 E	6.9	26	13	8	11	1.9	< .5	4.9	48
2474	22+00 Ŵ	18+00\$	17,004 N	9,163 E	22.2	56	54	28	57	0.6	< .5	6.0	107
2473	22+00 W	19+00S	16,927 N	9,099 E	36.3	51	60	13	40	0.9	0.5	4.6	57
2472	22+00 W	20+00S	16,850 N	9,035 E	20.6	68	66	11	41	0.4	0.5	4.1	57
2758	20 +00 W	20+00N	19,821 N	11,721 E	100.4	75	52	58	89	0.2	< .5	1.5	725
2759	20 +00 W	19+00N	19,743 N	11,659 E	N/S								
2760	20+00 W	18+00N	19,665 N	11,596 E	246.2	102	54	52	91	0.3	0.7	1.2	739
2761	20 +00 W	17 + 00N	19,587 N	11,534 E	131.4	80	50	57	96	0.4	1.2	1.0	915
2762	20 +00 W	16+00N	19,509 N	11,471 E	N/S								
2763	20 +00 W	15+00N	19,431 N	11,409 E	N/S								
2764	20 +00 W	14+00N	19,353 N	11,346 E	113.6	86	58	25	56	0.5	1.2	0.7	488
2765	20+00 W	13+00N	19,275 N	11,284 E	77.4	116	222	36	102	1.0	0.6	1.0	532
2766	20+00 W	12+00 N	19,196 N	11,221 E	533.0	106	60	13	64	0.8	2.1	0.7	289
2767	20+00 W	11+00N	19,118 N	11,159 E	82.1	94	144	43	86	0.6	1.1	0.8	489
27.68	20+00 W	10+00N	19,040 N	11,096 E	N/S								
2769	20 +00 W	9+00N	18,962 N	11,034 E	157.2	151	44	104	100	0.5	1.2	1.3	1514
2770	20 +00 W	8+00N	18,884 N	10,971 E	44.5	106	39	39	62	0.2	1.1	1.0	456

Appendix F: Soil sample locations and selected analyses

23 of 23

SAMPLE #	Grid Cool	rdinates	Mine Grid (Coordinates	Au (pbb)	As (ppm)	Pb (ppm)	Cu (ppm)	Zn (ppm)	Ag (ppm)	Bi (ppm)	Mo (ppm)	Mn (ppm)
2771	20+00 W	7+00N	18,806 N	10,909 E	N/S								
2772	20+00 W	6+00N	18,728 N	10,846 E	77.8	105	63	67	124	1.0	0.9	0.8	4604
2773	20+00 W	5+00N	18,650 N	10,784 E	84.3	94	55	39	65	0.2	1.3	0.9	492
2774	20 +00 W	4+00N	18,572 N	10,721 E	207.5	145	56	73	105	1.1	1.4	1.1	1005
2775	20 +00 W	3+00N	18,494 N	10,659 E	100.3	124	212	31	69	1.0	2.4	1.5	658
2776	20+00 W	2+00N	18,416 N	10,596 E	N/S								in the state of the second second second second second second second second second second second second second
2777	20 +00 W	1+00N	18,338 N	10,533 E	N/S								
2778	20+00 W	0+00N	18,260 N	10,471 E	N/S								
2498	20 +00 W	1+00S	18,180 N	10,411 E	N/S								
2499	20+00 W	2+00S	18,100 N	10,351 E	N/S								
2500	20+00 W	3+00S	18,020 N	10,290 E	N/S								
2721	20+00 W	4+00S	17,941 N	10,230 E	76.0	252	37	41	55	0.6	1.1	1.4	283
2722	20 +00 W	5+00S	17,861 N	10,170 E	543.0	926	127	82	74	1.4	1.4	1.3	1073
2723	20+00 W	6+00\$	17,781 N	10,110 E	57,3	107	124	35	75	0.2	2.6	2.9	644
2724	20 +00 W	7 + 00S	17,701 N	10,050 E	132.7	83	112	31	83	0,9	2.5	2.7	3699
2725	20 +00 W	8+00S	17,621 N	9,989 E	14.6	69	52	21	42	0.1	1.1	2.6	99
2726	20 +00 W	9+00S	17,541 N	9,929 E	21.3	69	66	20	54	0.5	2.0	3.3	192
2727	20+00 W	10+00S	17,461 N	9,869 E	26.0	62	62	30	51	1.3	1.4	2.2	160
2728	20 +00 W	11+00S	17,381 N	9,809 E	46.7	89	84	62	54	12.1	1.6	3.5	261
2729	20 +00 W	12+00S	17,302 N	9,749 E	46.1	84	93	26	56	1.5	< .5	4.9	119
2730	20+00 W	13+00S	17,222 N	9,689 E	84.2	35	41	16	34	0.7	0.8	3.3	61
2731	20 +00 W	14+00S	17,142 N	9,628 E	11.6	77	69	25	51	1.3	1.0	4.9	139
2732	20+00 W	15+00S	17,062 N	9,568 E	45.5	63	74	30	66	4.5	0.8	5.6	145
2733	20 +00 W	16+00S	16,982 N	9,508 E	67.0	26	40	19	45	0.4	< .5	4.8	51
2734	20+00 W	17+00S	16,902 N	9,448 E	12.3	- 39	30	12	24	0.3	< .5	3.1	73
2735	20 +00 W	18+00S	16,822 N	9,388 E	61.1	24	38	7	12	0.9	0.7	1.9	42
2736	20 +00 W	19+00S	16,743 N	9,327 E	96.8	81	74	12	39	1.2	0.6	7.9	57
2737	20 +00 W	20+00\$	16,663 N	9,267 E	140.8	36	143	20	47	1.0	< .5	4.9	68

Appendix G Soil Sample Analyses

•

ACME ANALYTICAL LABORATORIES LTI (ISO 9002 Accredited Co.)	GEOCHEMICAL ANALYSI	OUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604 IS CERTIFICATE	AA
Telance Internet in the second	l Mountain Gold Mines Ltd. P.Q. Box 247, Weils BC VOK 2R0	File # A004469R Page 1 Submitted by: T.C. Scott	
	SAMPLE#	Au* ppb	
	02101 02102 02103 02104 02105	3.3 13.4 8.4 19.0 3.8	
	02106 02107 02108 02109 02110	8.9 18.1 5.1 8.7 5.8	
	02111 02112 02113 02114 02115	5.8 4.1 9.6 11.1 18.3	
	02116 02117 02118 02119 02120	7.3 26.5 5.3 2.1 13.5	
	02121 02122 02123 02124 02125	4.4 4.6 3.3 9.6 12.2	
- <u>.</u>	RE 02125 02126 02127 02128 02129	5.6 3.9 9.2 8.6 6.7	
•	02130 02131 02132 02133 STANDARD DS	125.5 16.3 115.9 54.4 196.8	

AU* BY ACID LEACHED, ANALYSIS BY ICP/MS. (10 gm) - SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: NOV 23 2000 DATE REPORT MAILED: NOV 27/VO SIGNED BY....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data____FA _____

;

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 2

Ŧ

1 1 1

.

Data___FA

1

	SAMPLE#	Au*
		ppb
· · ·	02134 02135 02136 02137 02138	93.9 78.4 85.1 42.6 12.3
	02139 02140 02141 02142 02143	6.8 7.2 8.5 5.7 11.4
	02144 02145 02146 02147 02148	4.0 .4 1.5 1.9 5.6
	02149 02150 02151 02152 02153	1.7 6.8 .8 1.5 7.2
	02154 02155 RE 02155 02156 02157	9.0 2.7 11.4 39.7 34.5
	02158 02159 02160 02161 02162	6.7 13.7 1.7 2.9 2.6
	02163 02164 02165 02165 02166 STANDARD DS2	3.0 86.2 105.5 41.5 195.6

• • •

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

£ŧ

Page 3

[]

	SAMPLE#	Au* ppb	
	02168 02169 02170 02171 02171	6.4 3.7 5.8 11.5 12.5	
•.	02173 02174 02175 02176 02177	3.1 .9 1.8 4.1 15.6	
	02178 02179 02180 RE 02180 02181	3.4 2.9 1.6 .8 1.3	
	02182 02183 02184 02185 02185 02186	10.5 9.2 4.6 374.3 148.9	
	02187 02189 02190 02191 02192	426.7 106.7 18.0 1009.0 205.6	
	02193 02194 02195 02196 02197	4.6 8.0 4.0 2.2 2.0	
	02198 02199 02200 02201 STANDARD DS2	14.6 6.3 2.7 27.2 204.4	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/_FA

ATHE ANALYTTEA

Page 4

ACHE ANALYTICA

	SAMPLE#	Au* ppb
	02203 02204 02205 02206 02206 02207	63.4 28.4 68.5 45.6 14.5
	02208 02209 02210 02211 02212	24.2 48.4 108.6 9.5 22.1
	02213 02214 02215 02216 02217	24.8 1.9 12.6 5.9 11.7
· · · · · · · · · · · · · · · · · · ·	02218 02219 02220 02221 02221 02222	4.4 11.9 5.6 63.9 13.1
	02223 02224 02225 RE 02225 02226	9.6 5.5 16.2 16.9 8.3
	02227 02228 02229 02230 02231	6.1 5.4 17.8 88.6 27.9
	02232 02233 02234 02235 STANDARD DS2	32.7 51.2 47.8 15.3 202.6

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data /~FA

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

5.0 20.3 11.8 60.3 425.9

159.4 6.2 43.0 30.2

83.4

22.07.5 15.8 201.0

i

ŠTANDARD DS2

ALL NOTE ANALYTICAL

FILE # A004469R

1

· · · · ·

Page 6

()

7

ACHE ANALYTICA

7

Data

[]

	SAMPLE#	Au* ppb
	02272 02273 02276 02277 02277 02278	55.9 8.3 2.3 11.6 27.5
	02279 02280 02281 02282 02282 02283	12.2 11.1 109.9 43.6 38.6
	02284 02285 02286 02287 02288	78.5 60.4 237.1 28.0 43.8
	02289 02290 02291 02292 02292 02293	72.4 10.2 10.2 28.4 8.3
	02294 02295 RE 02295 02296 02297	4.5 44.5 31.4 3.8 10.8
· ·	02298 02299 02300 02302 02303	11.0 10.0 18.8 7.1 7.8
	02305 02306 02307 02308 STANDARD DS2	32.9 10.7 84.3 45.5 195.2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 7

111111

and a second of the second of	ממק
0230 0231 0231 0231 0231	46.6 128.9 50.7 8.4
0231 0231 0231 0231 0231 0231 0232	111.0 32.6 4.0 7.7 240.6
RE 0 0232 0232 0232 0232 0232	320 221.3 .7 1.8 3.7 19.7
0232 0232 0232 0232 0232 0232	2.7 3.1 7.7 3.0 18.4
0233 0233 0233 0233 0233 0233	98.6 4.7 2.5 2.5 4.5
0233 0233 0233 0233 0233 0233	1.1 2.8 5.3 2.5 3.5
0234 0234 0234 0234 0234 STAN	ARD DS2 197.7

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data<u>/</u>-FA

AA

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 8

	SAMPLE#	Au* ppb
	02344 02345 02346 02347 02348	11.9 6.6 4.6 290.7 14.1
	02349 02350 02351 02352 02353	21.3 59.3 4.2 1.5 7.3
	02354 02355 02357 02358 02359	4.9 2024.5 17.1 165.2 41.1
· · · · · · · · · · · · · · · · · · ·	02361 02362 02363 02364 02365	5.0 2.7 2.9 1.1 2.3
	RE 02367 02366 02367 02368 02369	2.2 1.5 1.8 2.6 35.8
	02370 02371 02372 02373 02373 02374	2.9 3.0 1.0 2.6 2.7
,	02375 02376 02377 02378 STANDARD DS2	.9 1.1 46.9 73.1 193.2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 9

ACXY ANALYTICA

	SAMPLE#	Au* ppb
·	02379 02381 02382 02383 02383 02384	75.4 161.6 62.2 39.8 12.5
	02385 02386 02387 02388 02388 02389	40.2 52.9 143.1 51.8 73.0
	02390 02391 02392 02393 02393 02394	13.3 67.9 9.7 4.0 11.4
	02395 02396 02397 02398 02398 02399	2.4 26.2 10.5 17.1 5.5
	02400 02403 02404 02405 RE 02405	13.8 120.7 157.8 144.3 78.2
	02406 02407 02408 02409 02410	108.1 50.3 52.2 127.4 122.3
·	02411 02412 02415 02416 STANDARD DS2	109.7 40.8 83.3 362.1 194.6

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 2-FA

ACHE ANALYTICAL

Page 10

ACHE ANALYTICA

	SAMPLE#	Au* ppb
	02419 02420 02421 02422 02423	209.0 186.4 98.7 26.6 35.9
	02424 02425 02426 02427 02428	30.0 25.6 44.7 61.9 62.6
·	02429 02430 02431 02432 02433	21.3 19.4 6.6 35.4 68.7
<u>:</u>	02434 02435 02436 02437 02439	29.4 64.1 10.1 5.1 10.0
	02440 RE 02440 02441 02442 02443	15.3 12.7 20.0 10.4 5.7
	02444 02445 02446 02447 02448	19.7 3.0 25.3 3.5 3.1
· · · ·	02449 02450 02451 02452 STANDARD DS2	39.2 6.6 4.4 8.4 195.2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AA LL

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 11

	V	A		
1		L	-	
of.	لمالم	a	ICAL	

ACTE AMELTICA		
	SAMPLE#	Au*
······································		
	02453	<u>6.1</u>
	02454	19.8
	02456	58.6
	02457	
	02458	11.6
	02459	
	02461	24.6
	02462	48.5
	02463	42.3
	02464	
	02466	34.4
	02467	20.2
	02468	52.6
	02469	67.2
	02472	36.3
	02474	22.2
	02475	6.9
	ŘĚ 02475	3.1
	02476	
	02478	31.3
	00470	37 8
	02480	35.5
	02481	33.6
	02482	
	00404	20.6
	02484 02485	
	02486	19.8
	UZ487 STANDARD DS2	191.7

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / - FA

Page 12

[]]

1

[]

Data /~ FA

	SAMPLE#	Au* ppb
	02488 02489 02496 02501 02502	43.2 395.8 166.6 4.8 14.1
	02503 02504 02505 02506 02507	10.2 12.5 3.7 5.5 4.9
	02508 02509 02510 02511 02514	4.8 68.0 2.2 6.4 30.1
	02515 RE 02515 02516 02517 02518	69.5 62.3 3.0 11.9 29.8
	02519 02520 02521 02522 02523	6.0 68.9 5.6 20.6 19.5
	02524 02525 02526 02527 02528	15.3 28.0 6.2 3.7 74.3
۰.	02529 02530 02531 02532 STANDARD DS2	42.3 53.4 22.1 23.9 199.1

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 13

	SAMPLE#	Au* ppb
	02533 02534 02536 02539 02542	63.2 203.1 8.4 18.5 8.7
	02543 02544 02545 02546 02547	4.0 1.5 .5 1.0 1.1
· ·	02548 02549 02550 02551 02552	3.0 4.0 .9 3.1 2.0
	02553 02554 02555 02556 02557	49.4 36.2 18.4 16.3 23.3
	02558 02559 02560 RE 02560 02561	9.2 4.5 158.7- 3.4- 5.4
	02562 02563 02564 02565 02565 02566	11.8 9.0 7.2 6.0 82.0
	02567 02568 02569 02570 STANDARD DS2	76.8 20.9 23.3 62.4 204.2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AA

1 1

[^[]]

1

Page 14

ACHE ANALYTICAL

	SAMPLE#	Au*
	02571 02572 02573 02574 02575	31.2 16.3 27.8 9.9 8.5
	02576 02577 02578 02579 02580	58.4 2.2 29.2 4.9 .6
	02581 02582 02583 02584 02585	.7 .8 .7 .6 64.7
:	02601 02602 02603 02604 02605	5.2 20.7 36.6 13.1 6.9
	RE 02605 02606 02607 02608 02609	3.0 16.8 4.8 1.8 12.7
	02610 02611 02612 02613 02614	8.1 22.9 7.4 5.1 23.6
	02615 02617 02618 02619 STANDARD DS2	4.5 73.2 34.5 92.2 198.5

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data<u>/</u>~FA

Island Mountain Gold Mines Ltd. FILE # A004469R

17

[]

.

ŗ

Page 15

1

	SAMPLE#	Au* ppb
	02620 02621 02624 02626 02627	5.8 89.9 100.9 56.2 55.3
	02629 02630 02631 02632 02633	48.4 90.9 22.3 51.4 89.5
	02634 02635 02636 02638 02638 02639	74.9 134.8 56.3 5.9 7.5
	02640 RE 02640 02641 02642 02643	9.3 7.0 11.6 32.4 8.7
	02644 02645 02701 02702 02703	29.4 5.6 5.2 3.9 7.3
	02704 02705 02706 02707 02707 02708	2.9 35.8 69.7 6.5 42.4
· · · · · · · · · · · · · · · · · · ·	02709 02710 02711 02712 STANDARD DS2	48.6 19.9 17.7 54.9 193.4

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/_FA

Island Mountain Gold Mines Ltd. FILE # A004469R

ACHE ANALYTICAL

,	SAMPLE#	Au* ppb
	02713 02714 02715 02716 02716 02717	102.3 79.9 1009.3 25.6 58.4
	02718 02719 02720 02721 02722	76.4 160.7 30.2 76.0 543.0
	02723 02724 02725 02726 02727	57.3 132.7 14.6 21.3 26.0
	02728 02729 02730 RE 02730 02731	46.7 46.1 84.2 62.0 11.6
	02732 02733 02734 02735 02735	45.5 67.0 12.3 61.1 96.8
	02737 02738 02740 02741 02741 02742	140.8 305.8 148.5 562.5 213.0
	02743 02744 02745 02746 STANDARD DS2	67.6 76.0 142.7 147.4 195.8

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/-</u> FA

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 17

ΔΔ	
ACHE ANALYTICAL	

	SAMPLE#	Au
•.	1	ppb
	02747 02748 02749 02750 02751	269.3 33.9 45.8 92.2 36.8
•	02752 02753 02756 02757 02758	648.8 74.3 2.8 20.3 100.4
	02760 02761 02764 02765 02765	246.2 131.4 113.6 77.4 533.0
	02767 02769 02770 02772 02773	82.1 157.2 44.5 77.8 84.3
	02774 02775 RE 02775 02779 02780	207.5 100.3 135.7 52.8 42.7
	02781 02782 02783 02784 02785	11.6 12.7 15.2 9.5 4.8
. '	02788 02789 02790 02792 STANDARD DS2	8.0 .7 5.1 4.3 192.2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/_-FA

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 18

ADE ANNETTICAL	CAMDI E#	Διι*
	SAMPLE#	ppb
	02793 02794 02795 02796 02797	1.0 1.0 1.1 .3
	02798 02799 02800 02801 02802	2.4 2.1 2.2 17.9 45.1
 	02804 02805 RE 02805 02806 02807	23.6 35.6 38.5 23.2 55.8
	02808 02809 02810 02811 02812	37.2 35.8 38.0 9.3 4.3
	02813 02814 02815 02816 02817	10.4 19.0 19.0 15.5 5.6
	02818 02819 02820 02821 02822	7.2 8.9 27.0 15.5 12.7
	02823 02824 02825 02826 STANDARD DS2	100.1 36.3 23.6 45.1 193.5

Sample type: SOIL PULP, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data<u>i</u> - FA

AA L

רית רית רית י

Island Mountain Gold Mines Ltd. FILE # A004469R

[

]

(1)

A	
ACHE N	

ſ

[**`**]

Page 19

	SAMPLE#	Au*
	02827 02828 02829 02830 02831	21.1 12.2 5.1 10.0 21.7
	02832 02833 02834 02835 02836	57.8 6.5 20.4 4.1 6.9
• •	02837 02838 02839 02840 RE 02840	15.1 12.0 23.6 10.6 7.1
	02841 02842 02843 02844 02844 02845	10.1 11.9 31.5 70.2 117.8
:	02846 . 02847 02848 02849 02849 02850	75.4 11.1 52.9 3.1 3.5
•	02851 02852 02853 02854 02855	3.5 1.4 1.7 1.6 2.4
1	02856 02857 02858 02859 STANDARD DS2	16.5 3.0 1.1 1.5 205.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/_FA

ACTE ANNI VITICAL

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 20

ACHE ANALYTICAI

 SAMPLE#	Au* ppb	
 02860 02861 02862 02863 02863 02864	1.5 1.3 .5 <.2 2.6	
02865 02866 02868 02869 02870	2.3 .9 1.3 1.0 .8	
02871 02872 02873 02874 02875	1.5 2.7 3.7 2.9 3.2	
RE 02875 02876 02877 02878 02878 02879	8.0 4.0 3.0 6.1 5.4	
 02880 02882 02883 02884 02885	21.6 90.7 52.8 62.8 458.0	
02886 02887 02888 02888 02889 02890	21.1 8.9 5.0 7.0 2.5	
02891 02892 02893 02894 STANDARD DS2	17.3 9.9 16.8 2.4 2 193.2	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acma assumes the liabilities for actual cost of the analysis only.

Data / FA

Island Mountain Gold Mines Ltd. FILE # A004469R

Page 21

۳.

.

1

Γ

7

ADE ANALYTICAL			ALAR ANALTITLAL
	SAMPLE#	Au* ppb	
· · · · · · · · · · · · · · · · · · ·	02895 02896 02897 02898 02898 02899	9.0 9 1.4 2.6	
	02901 02902 02903 02904 02904 02905	.9 1.0 .5 9 68.7	
	02906 02907 02908 02909 02909 02910	11.6 51.4 13.5 13.4 21.4	
	RE 02910 02911 02912 02913 02914	23.8 80.6 8.4 1.9 2.2	
	02915 02916 02917 02919 02920	4.6 <.2 3.5 3.2 12.5	
	02921 02922 02923 02924 02924 02925	2.1 3 1.6 .8	
	02928 02929 02930 02931 STANDARD DS2	289.5 319.2 78.3 69.9 198.2	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data [/]-FA

Island	Mountain Gold Mines Ltd.	FILE # A004469R	Page 22
	SAMPLE#	Au* ppb	
	02932 02933 02934 02935 02936	110.6 50.0 159.2 106.8 101.4	
	02937 02938 02939 02941 RE 02941	72.2 52.6 119.6 122.9 110.4	
:	02942 02944 02945 02946	156.7 66.5 71.2 122.9	
	SIANDARD DSZ	194.4	
Sample type: SOIL PU	LP. Samples beginning 'RE	' are Reruns and 'RRE'	are Reject Reruns.
Sample type: SOIL PU	LP. Samples beginning 'RE	' are Reruns and 'RRE'	are Reject Reruns.
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	' are Reruns and 'RRE'	are Reject Reruns.
Sample type: SOIL PU	LP. Samples beginning 'RE	194.4	<u>are Reject Reruns</u> .
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	' are Reruns and 'RRE'	<u>are Reject Reruns</u> .
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	' are Reruns and 'RRE'	<u>are Reject Reruns</u>
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	194.4	<u>are Reject Reruns</u>
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	194.4 Y are Reruns and 'RRE'	<u>are Reject Reruns</u> .
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	Y are Reruns and 'RRE'	<u>are Reject Reruns</u> .
<u>Sample type: SOIL PU</u>	LP. Samples beginning 'RE	Y are Reruns and 'RRE'	<u>are Reject Reruns</u> .

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/</u>-FA

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1

Island Mountain Gold Mines Ltd.File # A004469P.O. Box 247, Wells BC VOK 2R0Submitted by: T.C. Scott

SAMPLE#	Mo ppn	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppon p	Co Spm	Mn ppm	Fe X	As ppm	U ppm į	Au opm	Th ppm p	Sr	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti % p	B ppm	Al %	Na %	K %	W ppm p	Hg Spm p	Sc ppm_p	Tl IPM	s G %pp	อ สา
02101 02102 02103 02104 02104	.9 1.6 .6 .8 .5	36 36 13 19 17	26 31 678 38 41	63 60 54 47 61	.3 .5 .9 .9 2.0	15 14 10 10 12	8 6 7 4 6	167 160 157 108 368	4.27 5.63 2.76 4.68 4.47	32 110 35 77 42	<1 <1 <1 <1 <1	<2 <2 <2 <2 <4	8 8 5 8 3	3 4 37 3 3	<.2 .2 <.2 <.2 <.2	.8 .7 ≺.5 1.1 .6	<.5 2.2 1.0 1.3 <.5	27 22 28 23 16	.04 .02 .63 .03 .03	.068 .109 .049 .061 .063	28 32 24 27 31	14 13 13 12 12	.17 .12 .11 .12 .10	60 37 170 42 49	.005 .004 .003 .005 .005	3 * <1 * 2 * 1 * 2	1.17 1.04 1.83 1.03 .90	.003 .003 .004 .003 .002	.03 .04 .04 .04 .04	<1 <1 <1 <1 <1	<1 / <1 / <1 / <1 / <1	1,6 1.3 2.1 .9 .6	<1 .0 2 .0 <1 .0 <1 .0 <1 .0)1)2)2)2)2)1	3 M 5 M 5
02106 02107 02108 02109 02110	.5 -8 .8 .3 .6	16 31 23 21 55	33 182 37 65 36	54 125 88 80 95	.2 .2 .3 .3 .2	12 18 20 14 12	13 9 7 8	137 1617 255 218 324	4.66 4.73 6.72 3.97 5.32	49 175 30 68 37	<1 1 1 1	<2 <2 <2 <2 <2 <2	4 6 8 6 1	3 3 7 6 16	<.2 .6 .2 .2	<.5 2.6 1.0 1.5 .5	<.5 .7 <.5 <.5 .7	13 14 14 15 13	.02 .07 .10 .07 .34	.088 .166 .091 .047 .124	33 33 32 39 25	10 10 20 13 9	.11 .09 .34 .16 .14	49 74 89 69 108	.003 .002 .002 .004 .004	1 3 <1 2 1	.84 .87 1.54 .95 .95	.003 .002 .003 .002 .003	04 05 09 05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.6 1.1 1.1 1.1 1.1	<1 .0 <1 .0 2 .0 <1 .0 <1 .0)2)2)3)1)2	2 2 5 2 2
02111 02112 02113 02114 02115	.7 .7 .4 .9	58 40 38 43 47	35 42 60 80 79	61 67 114 128 121	.5 1.1 .7 .7 .9	8 15 18 22 26	7 9 16 19 32	484 1338 2183 1987 1298	4.99 2.81 3.13 3.72 5.17	47 39 33 29 43	1 3 9 4 1	<2 <2 <2 <2 <2 <2 <2	1 1 3 5	10 73 62 54 25	<.2 .5 .6 .7	.9 <.5 <.5 <.5 1.4	<.5 <.5 <.5 <.5	17 20 16 20 27	.15 1.33 1.19 1.18 .49	.390 .195 .218 .180 .108	26 24 16 19 27	8 11 14 13 20	.07 .11 .19 .24 .24	143 91 82 68 63	.005 .007 .009 .008 .008	2 <1 1 2 2	.69 .90 1.18 1.13 2.12	.003 .006 .005 .005 .005	.05 .06 .05 .05 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	.7 1.5 2.1 2.4 3.1	<1 .0 <1 .0 <1 .1 <1 .1 <1 .0)2)9 11)7)3	2 2 1 3
02116 02117 02118 02119 02120	.7 1.1 1.0 .9 2.1	34 42 52 42 152	24 52 39 43 42	51 98 96 94 129	.5 .5 .3 .5 .3	6 11 10 10 8	6 11 13 17 18	197 444 456 3954 392	4.01 5.78 5.65 4.48 7.85	20 24 16 15 10	1 1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1 3 1 1 6	6 7 23 14	.2 <.2 .2 .6	.7 .7 1.1 <.5 2.4	<.5 .8 <.5 <.5 <.5	36 36 47 41 32	.08 .11 .11 .72 .15	.203 .098 .112 .145 .175	18 20 24 19 16	8 12 9 12 7	.13 .24 .19 .17 .21	65 136 79 118 61	.006 .005 .005 .008 .008	2 <1 2 <1 <1	1.05 1.36 1.25 1.31 1.45	.003 .003 .003 .006 .006	.04 .03 .03 .03 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 1	.7 1.6 1.6 2.2 2.2	<1 .0 1 .0 <1 .0 5 .0 4 .0	03 02 0 3 06 05	3 5 2 4
02121 02122 02123 02124 02125	2.6 .5 .5 .5	104 20 25 9 15	28 19 22 13 35	105 42 62 38 64	.4 .1 .1 <.1 .4	10 15 17 7 21	11 6 3 10	228 123 137 74 263	5.14 3.38 4.60 3.16 3.32	8 44 45 27 51	1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 11 13 12 12	7 2 3 4 12	.2 <.2 <.2 <.2 <.2	1.2 .8 1.2 .6 <.5	<.5 <.5 <.5 <.5	28 13 15 20 21	.09 .02 .02 .03 .17	.113 .037 .034 .027 .024	20 37 42 57 48	8 6 10 9 18	.15 .03 .08 .12 .42	53 2 3 40 37 102	.003 .005 .007 .005 .003	1 3 2 <1 <1	1.27 .54 .75 .94 1.70	.003 .003 .003 .002 .002	.02 .03 .04 .04 .06	<1 <1 <1 <1 <1	1 <1 <1 <1 1	1.6 .8 1.3 .7 1.7	<1 .(<1<.(<1<.(<1<.(<1<.)	02 01 01 01 01	2 <1 1 4 4
RE 02125 02126 02127 02128 02128 02129	.4 .9 .2 .9	16 30 18 20 21	35 32 16 92 38	65 73 65 79 67	.4 .2 <.1 .9 .4	21 12 13 14 16	10 9 5 8 7	265 236 157 216 576	3.37 5.85 2.30 3.64 4.47	52 31 218 71 78	<1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	12 . 6 . 6 . 4 . 7	12 2 7 3	<.2 <.2 <.2 .4 <.2	.9 1.6 .9 1.5 2.7	<.5 <.5 <.5 .6	21 34 8 24 23	.18 .05 .02 .14 .03	.025 .072 .085 .054 .082	48 25 45 30 38	19 15 4 13 11	.42 .20 .07 .15 .09	104 52 36< 86 53	.003 .008 .001 .004 .006	<1 <1 <1 1 <1	1.70 1.31 .93 1.28 .85	.004 .004 .002 .003 .002	.06 .04 .04 .06 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.8 2.2 .7 1.2 .9	<1<.(<1 .(<1<.(<1.) <1 .)	01 01 01 02 01	3 4 1 1
02130 02131 02132 02133 021 33 STANDARD C3	.7 5 5 4 26.0	22 18 18 16 66	67 57 76 169 35	68 51 90 84 168	.5 .4 .5 .9 5.5	13 8 10 8 35	7 5 7 8 11	403 269 555 991 765	5.19 3.12 3.69 4.06 3.20	31 20 52 42 56	1 1 1 23	<2 <2 <2 <2 <2 <2 <2	9 3 4 21	2 3 4 28	<.2 <.2 .3 .3 24.0	1.5 <.5 <.5 1.2 15.2	.5 <.5 1.0 .9 22.3	18 19 20 15 80	.05 .05 .05 .06 .59	.073 .091 .119 .125 .091	33 25 31 20 18	14 9 11 11 172	.10 .11 .11 .06 .61	32 52 86 62 152	.010 .004 .005 .003 .090	4 2 1 <1 22	.92 .85 .92 1.03 1.87	.003 .003 .003 .003 .003 .041	.04 .04 .05 .04 .17	<1 <1 <1 <1 16	<1 <1 <1 <1 2	1.0 .7 .9 .9 4.4	<1 .(<1 .(<1<.(<1<.(<1 .) 1 .	01 01 02 02	1 <1 <1 <1
STANDARD G-2	1.5	4	2	46	<.1	7	4	534	2.03	<1	2	<2	4	73	<.2	<.5	<,5	41	.65	.098	8	79	.60	223	.130	3	.98	.084	,50	2	1	2.5	<1<.	01	4

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 KCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Refuns and 'RRE' are Reject Refuns</u>.

Island Mountain Gold Mines Ltd. FILE # A004469

ľ

]

[

.

1

Page 2

1 1

SAMPLE#	Mo	Cu	Pb	Źn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr Sr	Cd	\$b	Bi	V	Ca %	P %	La	Cr	Mg %	Ba	ті % I	B	Al %	Na %	K %	W ppm	Hg Ppm	Sc ppm p	TL: pon:	S Ga % ppn) 1
02134 02135 02136 02137 02138	.8 .7 .5 .7	23 27 26 42 23	ppm 128 121 99 180 98	90 109 87 153 73	.3 .3 <.1 1.1 .1	12 15 12 28 12	7 11 8 22 6	423 565 704 1171 353	4.34 4.13 3.91 4.72 4.78	75 68 34 51 28	1 1 1 2 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 6 5 6 4	7 6 8 19 6	.3 .3 <.2 .7 .4	.8 <.5 <.5 <.5 <.5	1.5 1.2 .5 .6	19 16 23 20 29	.08 .09 .13 .42 .08	.099 .069 .074 .098 .070	25 31 30 29 30	10 11 8 13 14	.08 .09 .08 .21 .11	56 60 113 65 45	.005 .004 .007 .008 .013	2 <1 1 <1 <1	.73 .92 .62 1.02 .77	.004 .003 .004 .004 .004	.04 .04 .04 .04 .04	<1 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	.7 1.1 1.3 3.9 .8	<1 .01 <1 .01 <1 .01 <1 .01 2 .01 <1 .01	2 <1 2 <1 2 <1 3 <1 3 <1 2 2	
02139 02140 02141 02142 02143	1.2 .8 1.2 1.2 .4	37 84 41 45 21	70 48 43 31 101	83 124 108 73 86	<.1 .8 .1 .3 .7	15 31 13 11 22	11 23 24 13 13	336 4846 773 450 1397	5.99 3.56 6.36 4.90 2.86	30 11 12 5 37	1 7 2 1 2	<2 <2 <2 <2 <2 <2	3 1 2 1 7	16 67 26 26 46	.3 1.4 .3 .2 .6	.8 <.5 .6 <.5 <.5	<.5 <.5 <.5 <.5	46 30 45 52 14	.28 1.85 .66 .68 .74	.078 .243 .130 .100 .055	20 15 19 17 24	12 17 15 11 12	.09 .22 .17 .12 .16	54 112 48 48 96	.014 .014 .012 .009 .003	<1 3 <1 <1 1	.79 1.34 1.54 1.18 .99	.004 .008 .005 .005 .005	.03 .04 .03 .03 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 2.3 2.1 1.9 2.3	<pre><1 .0 6 .1 </pre> <pre><1 .0 </pre> <pre><1 .0 </pre> <pre><1 .0 2 .0</pre>	3 5 < 4 9 4 3	; ; ; ; ; ;
02144 02145 02146 02147 02148	.8 .3 .9 .9	26 11 26 31 19	226 21 38 47 32	52 53 66 87 78	1.0 .2 .1 <.1 <.1	15 11 17 14 15	5 5 7 8 7	168 76 173 190 169	2.75 3.58 5.08 5.45 5.28	81 7 15 11 29	1 <1 <1 <1 1	<2 <2 <2 <2 <2 <2	7 13 13 9 9	6 8 5 4 5	3 < 2 < 2 < 2 < 2	.9 .8 .6 .7 1.3	3.3 <.5 <.5 .5 <.5	15 15 15 31 31	.07 .09 .03 .05 .05	.053 .028 .040 .059 .060	32 47 49 28 27	7 11 13 18 20	.07 .20 .18 .19 .25	68 60 50 58 51	.004 .002 .002 .010 .008	1 <1 <1 <1 <1	.65 1.24 1.20 1.32 1.29	.004 .002 .002 .003 .003	.04 .06 .06 .05 .05	<1 <1 <1 <1 <1	<1 1 <1 <1 <1	.9 .8 1.0 1.7 1.5	<1 .0 <1 .0 <1 .0 <1 .0 <1 .0 <1 .0	1 1 2 2	13343
02149 02150 02151 02152 02153	1.0 .4 .3 1.0 .8	34 22 10 30 19	31 44 17 28 88	91 72 52 89 57	<.1 .1 .3 .3 .4	27 14 7 16 13	8 7 2 10 6	205 305 288 729 247	7.35 4.38 2.91 5.48 3.98	49 21 42 19 44	<1 <1 <1 <1 1	<2 <2 <2 <2 <2 <2	12 7 15 10 4	3 3 3 3 3 3	.2 <.2 <.2 .2 .3	1.9 .6 <.5 <.5 .6	.7 <.5 <.5 <.8	25 19 12 11 14	.03 .02 .01 .03 .05	.095 .150 .072 .087 .068	35 33 56 40 31	25 12 6 10 12	.35 .12 .03 .06 .12	46 37 23 44 43	.004 .005 .003 .002 .003	<1 <1 <1 <1 1	1.80 .75 .48 .84 .95	.003 .004 .002 .004 .003	.05 .05 .05 .04 .04	<1 <1 <1 <1 <1	1 <1 <1 <1 <1	1.6 1.1 .7 .7 .8	<1 .0 <1 .0 <1<.0 <1<.0 <1 .0 <1 .0)2)1)1 <)1 <)2 <	7 1 1 1
02154 02155 RE 02155 02156 02157	.4 .7 .6 .6	14 23 24 26 10	55 71 76 172 48	63 77 81 148 27	_4 _4 _4 _4 _4	12 8 20 5	6 8 9 10 2	422 777 833 643 176	3.85 4.28 4.50 4.29 2.03	19 17 18 57 21	1 1 1 <1	<2 <2 <2 <2 <2 <2	4 3 4 3 2	4 5 5 18 4	<.2 .3 .2 .4 <.2	.6 <.5 <.5 <.5 <.5	.5 .7 .8 .6	24 23 23 23 18	.05 .07 .08 .32 .04	.092 .096 .100 .113 .124	30 26 27 27 33	14 10 10 16 6	.18 .08 .08 .17 .05	50 59 61 82 41	.015 .008 .009 .008 .005	<1 <1 <1 <1 <1	.94 .82 .86 1.05 .64	.003 .004 .003 .004 .003	.04 .05 .05 .04 .04	<1 <1 <1 <1 <1	<1 1 <1 <1	1.0 .8 1.0 1.3 .6	<1 .0 1 .0 <1 .0 <1 .0 <1 .0)1)2)2)2)2	22223
02158 02159 02160 02161 02162	1.1 .6 1.0 1.3 1.2	53 23 38 43 32	34 76 40 35 44	92 71 96 98	1.6 <.1 <.1 <.1	15 11 11 12 16	19 7 11 14 12	434 480 437 416 371	6.61 4.91 5.72 6.11 5.80	17 18 14 11 17	1 1 1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 3 4 4 2	5 5 5 4 9	.2 .2 .3 .2	.5 .5 <.5 1.0 .6	<.5 <.5 <.5 <.5	57 22 35 41 39	.07 .07 .04 .07 .22	.181 .189 .135 .100 .074	16 24 23 19 25	14 10 10 9 19	.39 .13 .20 .22 .23	41 54 62 41 63	.007 .004 .005 .005 .012	1 <1 <1 <1 <1	1.83 .86 1.33 1.36 1.57	.003 .003 .003 .003 .003	.03 .04 .03 .04 .03	<1 <1 <1 <1 <1	1 <1 <1 <1 1	2.2 .7 1.6 2.0 1.8	<1 .0 <1 .0 1 .0 <1 .0 <1 .0)3)2)2)2)2)2	7 2 4 5 5
02163 02164 02165 02166 STANDARD C3	1.0 1.3 1.9 1.0 26.1	61 29 35 23 66	39 74 123 43 35	110 68 88 34 177	.4 .5 .2 .4	17 14 16 8 37	22 8 13 4 12	2255 645 1045 168 783	5.10 4.51 7.28 2.73 3.26	11 179 138 133 53	4 1 1 23	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1 4 1 22	34 8 8 31	.5 .6 .7 .4 24.1	<.5 .6 1.8 .7 15.3	<.5 1.0 1.1 1.5 22.5	38 38 37 35 83	1.02 .08 .09 .07 .60	.160 .082 .134 .047 .098	27 20 23 19	15 20 26 13 178	.26 .20 .21 .12 .63	74 56 96 111 162	.008 .027 .035 .017 .095	<1 <1 <1 20	1.58 .90 1.24 .62 1.82	.004 .003 .003 .003 .043	.04 .03 .04 .03 .18	<1 <1 1 16	<1 <1 <1 <1 2	3.6 1.4 2.9 1.1 4.6	<1 .0 <1 .0 <1 .0 <1 .0 <1 .0 3 .0	06 02 02 02 02 03	3 3 5 4 6
STANDARD G-2	1.5	4	3	47	' <.1	7	4	540	2.03	<1	2	<2	6	74	<.2	<.5	<.5	45	.67	.104	8	82	.62	234	.133	<1	.94	.081	.51	Z	1	2.7	<1<.(J1	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1/ FA

ACME ANALYTICAL

Island Mountain Gold Mines Ltd. FILE # A004469

T

Data 1 FA

.

"

A	CHE ANALYTICAL								•																									<u>Å.</u>
	SAMPLE#	Мо ррп	Cu ppm	Pb ppm	2n ppm	Ag ppm	Nî ppm (Co ppm	Mn. ppm	Fe X	As ppm	u ppm	Au ppni p	Th ⊃pm p	Sr opm	Cd ppm	Sb PPM	Bí ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ті %	B ppm	Al %	Na %	К %	ppin p	Hg Sc opm ppm	rt s ppm %	ба ррп
_	02168 02169 02170 02171 02172	.5 .3 .3 .3 .4	20 29 24 30 15	28 32 23 23 20	55 67 48 64 47	<.1 <.1 <.1 .2 <.1	17 22 17 36 14	7 10 7 24 6	236 179 156 138 105	3.52 4.68 3.34 4.17 3.83	37 65 77 58 21	1 <1 1 1 <1	<2 <2 <2 <2 <2 <2 <2	7 12 11 14 10	7 3 4 12 4	.2 .2 .2 .2 .2 .2	.7 .8 1.1 .8 .7	<.5 .5 <.5 <.5 <.5	41 18 23 20 27	.10 .03 .03 .13 .05	.036 .049 .031 .025 .053	30 38 41 35 35	20 11 9 18 15	.20 .10 .08 .20 .12	91 43 40 89 32	.025 .009 .011 .002 .013	1 <1 1 <1	1.18 .81 .73 2.07 1.04	.004 .003 .003 .004 .002	.05 .04 .05 .05 .05	<1 <1 <1 <1 <1	<1 2.0 <1 1.4 <1 1.3 1 1.8 <1 1.0	<1<.01 <1<.01 <1<.01 <1<.01 <1.02 <1<.01	4 2 3 2 3
	021 73 02174 02175 02176 02177	<.2 <.2 .3 .4 .3	5 1 15 14 14	10 <2 21 29 16	24 5 68 69 63	<.1 <.1 <.1 <.1	4 1 18 17 14	2 <1 11 7 7	58 17 255 147 343	2.69 .15 4.10 3.76 2.67	9 1 16 22 12	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2	9 8 5 6 5	4 3 8 8 12	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	34 21 26 21	.05 .03 .18 .13 .19	.061 .011 .052 .032 .056	41 39 25 30 30	10 2 17 19 16	.11 .01 .26 .35 .26	40 17 121 56 96	.005 .002 .005 .015 .004	<1 2 <1 <1 2	1.22 .56 1.43 1.20 1.44	.002 .003 .004 .003 .004	.04 .03 .05 .04 .04	<1 <1 <1 <1 <1	<1 .7 <1 .3 <1 1.5 <1 1.4 <1 1.7	<1 .01 1<.01 <1 .02 <1<.01 1 .01	6 5 3 3 4
	02178 02179 02180 RE 02180 02181	.3 .5 .2 .2 .2	16 92 20 21 21	35 17 40 42 23	102 92 64 66 52	.3 .9 .5 .5 .7	16 15 12 12 7	10 17 5 6 5	869 312 177 180 199	4.20 5.23 3.41 3.48 3.67	19 16 10 10 8	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	2 6 2 3 3	29 6 4 5 6	2 .4 .3 .2	<.5 .6 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	35 31 19 19 25	.47 .10 .06 .06 .07	.064 .083 .071 .074 .084	23 16 24 24 22	22 10 9 9	.21 .23 .12 .12 .17	105 52 60 62 101	.012 .006 .004 .004 .005	<1 2 <1 <1 <1	1.40 1.53 .87 .87 1.00	.005 .004 .003 .003 .004	.05 .03 .03 .03 .03	<1 <1 <1 <1 <1	<1 1.4 <1 2.1 <1 .7 <1 .7 <1 1.1	<1 .02 <1 .02 <1 .02 <1 .02 <1 .02 <1 .01	4 3 1 1 2
	02182 02183 02184 02185 02185	.6 .5 .7 2.6 1.9	29 35 62 40 39	62 46 49 106 119	59 60 138 105 92	<.1 <.1 .1 .8 1.2	10 13 22 27 28	9 8 19 15 14	423 332 875 866 1946	4.94 5.73 5.41 3.31 3.47	17 19 15 291 383	<1 1 2 3 5	<2 <2 <2 <2 <2 <2	<1 2 4 3 1	15 5 32 29 45	.3 .5 .5	<.5 .7 <.5 <.5	<.5 <.5 <.5 1.2 1.2	33 29 20 20 19	.24 .06 .64 .55 .96	.074 .065 .105 .088 .117	20 23 29 20 12	13 14 14 12 13	.10 .16 .26 .16 .16	72 33 54 77 95	.009 .008 .005 .009 .008	<1 <1 <1 <1 <1	1.05 1.17 1.44 .76 .73	.003 .003 .004 .004 .004	.04 .04 .04 .05 .04	<1 <1 <1 <1 <1 1	<1 1.0 <1 1.2 <1 3.4 <1 2.0 <1 1.9	<1 .03 <1 .02 1 .03 <1 .03 <1 .09	3 2 <1 <1
	02187 02189 02190 02191 02192	1.9 1.4 1.6 .9 .9	57 52 24 19 49	181 135 55 40 92	91 88 84 46 85	1.2 .5 .2 .3 .1	25 29 20 9 27	13 21 9 6 18	499 901 467 605 810	4.73 4.87 5.10 3.47 3.93	433 172 98 59 197	1 1 1 1	<2 <2 <2 <2 <2 <2	4 7 3 5 8	13 8 9 6 10	<.2 .7 .4 .8	1.3 2.1 1.2 .5 1.2	2.2 5.7 <.5 .5 1.0	25 27 35 30 26	.24 .13 .13 .06 .14	.053 .088 .117 .082 .059	24 24 20 22 36	15 24 33 20 16	.23 .39 .35 .18 .31	69 47 57 76 56	.008 .026 .036 .028 .023	<1 <1 <1 <1 2	.93 1.30 1.36 1.05 .88	.003 .003 .004 .003 .003	.05 .05 .04 .03 .04	1 <1 <1 <1	<1 2.0 <1 2.5 1 1.6 <1 1.3 <1 2.9	<1 .01 1 .02 <1 .02 <1<.01 1 .02	1 2 3 3 <1
	02193 02194 02195 02196 02197	.3 .3 .4 .2 .5	19 23 54 25 28	19 30 21 20 24	65 70 69 58 57	<.1 <.1 <.1 .1 <.1	16 22 30 27 28	7 12 15 13 10	366 326 234 240 137	3.04 3.88 4.65 3.63 4.63	38 17 14 6 11	<1 <1 1 1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 10 11 8 9	8 12 4 32 9	.2 2 .2 < .2 < .2	<.5 <.5 <.5 <.5 .7	<.5 <.5 <.5 <.5	27 35 25 14 43	.16 .21 .05 .60 .16	.044 .054 .037 .042 .031	35 33 26 20 27	15 24 22 20 23	.23 .38 .29 .46 .24	106 134 54 65 88	.024 .025 .011 .002 .019	<1 <1 <1 <1 1	.81 1.39 1.42 1.84 1.59	.003 .004 .003 .003 .003	.04 .04 .04 .04 .05	<1 <1 <1 <1 <1	<1 1.4 <1 2.3 <1 1.7 1 1.7 <1 1.6	2<.01 <1<.01 <1 .01 1 .03 <1 .01	2 2 2 4
	02198 02199 02200 02201 STANDARD C3	.8 .4 .2 1.1 26.2	60 12 23 27 65	45 19 20 37 34	70 59 76 39 168	1.2 <.1 .2 5.5	61 11 25 9 35	20 5 10 5 11	877 130 330 208 754	4.24 4.87 3.36 2.51 3.25	14 15 15 86 58	5 <1 <1 23	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7 9 8 <1 21	58 4 16 7 29	.2 <.2 <.2 24.4	<.5 .5 <.5 .5 15.7	<.5 <.5 <.5 1.5 23.0	29 33 20 37 79	1.07 .07 .26 .08 .58	.081 .049 .053 .156 .092	70 28 39 20 18	34 17 19 11 169	.36 .13 .41 .10 .60	131 57 115 54 153	.015 .026 .006 .012 .091	<1 <1 <1 <1 20	2.24 1.03 1.59 .65 1.83	.007 .003 .004 .004 .041	.08 .04 .05 .04 .17	<1 <1 <1 15	1 7.5 <1 1.1 1 2.1 <1 .5 2 4.3	1 .05 <1 .01 <1 .01 <1 .01 <1 .03	2 2 4 6
	STANDARD G-2	1.4	4	2	47	<.1	7	4	533	2.03	1	2	<2	4	72	<.2	<.5	<.5	42	.65	. 102	7	76	.61	227	.130	2	.96	.080	.51	2	1 2.6	<1<.01	4

Sample type: SOLL \$\$80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ADE ANALYTICA SAMPLE#

Island Mountain Gold Mines Ltd. FILE # A004469

Г

Γ

Page 4

ACHE ANALYTICAL

Data _ FA

٦

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Çd	Sb	Bí	V	Ca %	P %	La ppm	Cr ppm	Mg % p	Ba opmi	Ti %p	B Sprin	Al %	Na %	K X p	W Umqa	Hg Spm	Sc ppm p	דן 100	\$0 %pp	.a ហា
02203 02204 02205 02206 02206	2.1 2.2 1.8 1.7 4.2	29 52 24 13 54	63 91 60 60 151	49 80 57 29 99	.1 4.2 .6 1.1 5.3	13 26 18 8 51	5 16 10 4 18	220 2990 732 314 1997	3.61 3.36 3.25 1.53 3.66	148 131 45 26 116	<1 2 1 <1 2	<2 <2 <2 <2 <2 <2 <2 <2	2 1 2 <1 1	8 31 19 14 43	.5 1.2 .3 <.2 1.5	1.1 .6 .8 <.5 1.8	1.2 1.0 <.5 <.5 .6	41 37 43 34 55	.07 .55 .28 .20 .66	.113 .167 .087 .051 .110	23 25 29 25 21	16 29 27 15 39	.11 .24 .27 .11 .31	96 228 237 266 624	.022 .012 .028 .034 .023	3 4 1 1 <1	.62 1.49 1.05 .66 1.64	.003 .007 .005 .004 .007	.04 .07 .06 .05 .13	<1 <1 <1 <1 <1	<1 <1 1 <1 <1	1.3 2.0 1.8 1.1 3.4	<1 . 2 . <1 . <1 . <1 .	.02 .06 .02 .01 .04	2 1 4 3
02208 02209 02210 02211 02212	3.5 2.5 2.7 4.0 2.5	12 20 15 15 18	74 43 82 52 53	26 31 28 35 41	1.1 .6 2.2 1.3 2.4	10 11 10 9 14	1 3 2 3	51 71 89 137 106	3.07 1.49 3.39 3.43 3.43	100 120 97 56 44	1 <1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	1 2 1 3 1	13 9 13 10 8	.3 .2 .2 .2	1.7 1.0 2.7 1.7 1.5	.8 .6 1.0 .5 <.5	60 22 48 71 53	.09 .02 .04 .06 .07	.183 .034 .090 .172 .054	14 32 18 21 21	22 6 20 27 33	.09 .01 .08 .10 .21	123 66 94 101 81	.018 .005 .014 .035 .029	<1 <1 <1 <1 <1	.56 .22 .54 .71 .99	.003 .002 .003 .004 .004	.04 .02 .03 .03 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.7 .6 .8 1.0 1.1	<1 . <1<. <1 . <1 . <1	.03 .01 .03 .02 .02	2 2 1 4 2
02213 02214 02215 02216 02217	2.5 1.3 1.7 2.3 2.5	15 8 12 15 15	44 44 38 39 41	39 27 34 40 57	1.7 1.7 1.6 1.6	13 6 11 16 18	3 1 2 4 4	108 58 86 131 176	3.59 3.57 3.72 3.38 5.43	36 16 16 31 30	1 <1 1 1 <1	<2 <2 <2 <2 <2 <2 <2	2 2 3 5 4	9 7 6 8 7	<.2 .3 <.2 <.2 .2	1.4 1.0 1.1 1.4 1.8	<.5 <.5 <.5 <.5	55 76 46 51 44	.10 .07 .09 .09 .09	.054 .041 .046 .069 .060	20 22 18 21 28	30 22 41 31 40	.20 .13 .21 .30 .36	82 39 53 89 77	.032 .032 .031 .052 .024	1 <1 <1 <1 <1	.90 1.06 1.41 1.04 1.56	.004 .004 .004 .005 .005	.03 .02 .03 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.1 1.0 1.4 1.6 1.4	<1 <1 <1 <1 <1 <1	.03 .02 .03 .02 .02	2 4 3 5
02218 02219 02220 02221 02221	2.4 3.4 4.0 2.6 2.4	11 10 10 12 10	36 53 56 62 57	34 24 21 21 21 21	3.1 55 36 4.2.6 2.2.2	10 8 8 7 6	2 1 2 2	79 85 99 61	2 3.10 5 3.3 2 3.7 2 1.9 7 1.6) 30 7 39 5 36 9 27 5 23	<1 <1 1 <1 <1	<2 <2 <2 <2 <2 <2 <2	2 2 1 3 2	7 12 11 8 7	.2 <.2 <.2 .2 <.2	1.3 1.4 1.6 .5 .7	<.5 <.5 <.5 <.5	55 62 55 49 45	.05 .07 .07 .05 .04	.061 .085 .074 .034 .030	22 16 16 23 2 3	23 23 24 23 21	.16 .10 .11 .09 .08	63 119 109 90 86	.023 .025 .026 .024 .024	<1 1 <1 3 <1	1.02 .70 .68 1.01 .96	.004 .003 .003 .004 .003	.03 .04 .03 .02 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.9 .8 .7 1.1 1.0	<1 <1 <1 <1 <1	.03 .03 .02 .02 .02	4 3 2 5 5
02223 02224 02225 RE 02225	3.2 4.3 2.0 2.3 3.5	14 17 19 20	35 56 44 46	0 3 5 4 5 4 5 3	1 .4 0 .5 6 1.4 7 1.5 5 2.5	5 12 5 12 5 16 5 17 5 13		9 12 14 15 9	3 3.4 9 3.9 9 4.2 4 4.3 8 5.0	0 37 8 40 2 20 7 22 6 48	≺1 2 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 3 4 5 3	8 11 7 7 8	.2 <.2 .3 .2	1.1 2.2 1.6 1.4 1.6	<.5 <.5 <.5 <.5	89 69 44 43 93	05 07 09 09	.065 .086 .039 .041 .131	25 21 19 20 18	25 31 48 50 32	.08 .16 .31 .32 .21	63 86 78 80 83	.052 .049 .045 .046 .043	<1 3 <1 2 <1	.80 .89 1.51 1.56 .92	.004 .005 .005 .005 .005	.03 .04 .03 .03 .03	<1 <1 <1 <1 <1	<1 <1 1 <1	1.1 1.3 1.7 1.8 1.0	<1 <1 <1 <1 <1	.01 .02 .03 .03 .03	7 4 3 5
02227 02228 02229 02230 02231	2.6 2.0 1.8 1.8	12 10 10 10	2 44 5 9 3 4 7 6 7 14	4 2 1 1 7 1 2 2 0 3	93. 8. 71. 01. 61.	0 10 7 8 2 0 0 0		2 8 6 5 8 8 14	1 4.1 6 3.5 1 2.9 1 2.3 6 4.2	3 33 3 28 1 36 2 38 7 115	1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 2 4 2 2	9 8 7 7 9	<.2 <.2 <.2 <.2	1.4 1.7 1.2 .5 1.9	<.5 .9 .5 .6	73 59 89 48 28	.07 .05 .06 .06	.072 .111 .127 .107 .084	23 19 25 26 18	29 24 19 20 19	.16 .10 .08 .11 .07	76 68 50 60 87	.035 .021 .047 .023 .008	<1 2 <1 2 2	.80 .68 .69 .89 .52	.004 .007 .003 .003 .002	.03 .02 .02 .03 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.9 .9 .9 .9 .7	<1 <1 <1 <1+ <1	.02 .02 .02 .01 .02	4 3 6 5 1
02232 02233 02234 02235 STANDARD C3	2.0 1.9 2.3 2.3) 11 2 12 5 19 5 19	2 6 5 6 5 6 3		4 1. 0 2. 4 2. 3 2. 7 5.	8 9 1 19 6 17 7 3	9 0 2 2 8 1	3 24 3 19 4 29 4 27 3 79	0 1.9 8 1.8 5 2.3 4 2.3 4 3.3	1 42 9 40 7 51 7 50 1 59	<pre>< <1 < <1 < 1 < 1 < 1 < <1 < <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1 < > <1</pre>	<> <> <> <> <> <> <> <> <> <> <> <> <> <	1 1 2 24	20 20 21 19 30	< .2 .2 .2 .2 25.5	.5 .6 1.1 .7 15.2	.6 .5 .8 .7 23.5	5 29 5 27 3 35 7 33 5 83	.26 .26 .29 .27	6 .047 5 .047 9 .060 7 .053 9 .097	7 24 7 23 0 21 3 21 7 19	14 15 18 18 184	.10 .13 .13 .13 .14 .63	181 181 194 182 163	.019 .018 .020 .020 .093	1 <1 <1 21	.60 .63 .73 .75 1.84	.006 .005 .004 .003 .043	.04 .04 .04 .04 .18	<1 <1 <1 <1 15	<1 <1 <1 <1 2	.8 .9 1.0 .9 4.6	<1 <1 <1 <1 2	.01 .01 .01 .01 .03	3 4 4 6
STANDARD G-2	1.5	5	4	34	7 <.	1	8	4 55	i4 2.0	6 <	2	<2	4	76	<,2	<.5	<.5	5 45	.68	3.100	5 8	3 84	.63	237	.137	3	.96	.084	.52	2	1	2.8	<1	<.01	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

LOVE ANALYTICAL

Island Mountain Gold Mines Ltd. FILE # A004469

Page 5

T I T

Data FA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe گ	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B	Al %	Na %	K %	u ppm	Hg ppm	Sc	Τί ppm	Si %pr	ja pm
02236 02237 02238 02239 02239 02240	2.4 2.1 2.5 2.2 1.5	13 39 25 79 52	68 60 45 134 63	28 77 44 90 66	1.7 2.8 <.1 .8 .8	8 29 12 25 16	1 12 4 13 9	58 3358 106 413 484	1.98 2.49 2.02 5.87 5.07	56 67 143 300 126	1 3 1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	<1 <1 2 3 1	13 47 15 9 6	.2 2.3 .4 <.2 .4	1.0 1.1 1.1 3.0 1.4	.6 .6 1.4 2.1 .5	37 33 30 36 39	.06 .98 .17 .10 .07	.205 .196 .042 .193 .084	20 17 30 19 18	17 26 7 20 24	.06 .18 .04 .33 .30	209 278 93 80 59	.018 .016 .020 .008 .022	4 2 1 3 2	.51 1.56 .30 1.14 1.15	.003 .007 .003 .004 .004	.04 .05 .03 .03 .03	<1 <1 <1 6 <1	<1 <1 <1 1 1	.8 1.9 1.1 1.7 1.4	<1 2 <1<, <1 1	02 08 01 03 03	3 2 2 3 3
02242 02244 02245 02246 02246 02247	4.4 2.6 1.8 1.6 1.7	39 45 30 29 33	88 100 63 132 164	142 100 34 89 102	.4 1.3 .4 .7 1.0	33 32 11 24 27	15 16 2 15 20	884 1475 80 626 924	3.63 3.33 1.74 3.24 3.61	271 114 36 112 119	3 3 1 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 2 <1 <1 2	16 26 13 22 27	1.1 2.1 .6 .5	1.3 .7 <.5 1.1 .5	.7 1.1 <.5 .5 .7	24 34 26 31 39	.26 .55 .17 .53 .64	.075 .133 .043 .073 .092	25 18 21 19 20	15 26 15 26 31	.12 .16 .05 .27 .29	98 173 97 112 132	.009 .016 .021 .016 .018	5 3 <1 4 1 <1 1	.70 1.22 .46 1.09 1.27	.004 .006 .004 .005 .005	.05 .07 .03 .05 .06	<1 <1 <1 <1 <1	1 <1 <1 1 1	1.9 2.2 1.1 2.4 2.6	2 . 1 . <1 . <1 . 1 .	02 05 02 02 03	41 2 3 2 3
0224 8 02249 02250 02251 02252	1.6 1.5 1.1 3.2 2.1	13 10 12 20 17	81 52 62 123 171	22 19 20 47 37	1.1 1.4 4.6 1.3 2.3	8 6 8 17 12	2 1 1 4 3	67 81 98 176 150	2.38 1.72 2.71 4.58 3.16	74 32 45 63 40	1 1 2 2	<2 <2 <2 <2 <2 <2 <2	3 1 1 3 2	7 8 6 9 9	.3 <.2 .2 .3 .2	.7 .5 .8 1.4 1.8	.6 <.5 .7 .5	78 41 49 108 46	.12 .07 .08 .10 .07	.104 .094 .116 .151 .058	23 24 23 21 20	20 16 21 35 26	.08 .06 .08 .22 .15	68 65 47 79 72	.047 .027 .024 .042 .022	1 2 <1 1 1 1	.68 .64 .86 1.09 .84	.004 .004 .003 .004 .003	.03 .02 .02 .04 .03	<1 1 <1 <1 <1	<1 <1 <1 <1 <1	.9 .8 .7 1.7 1.2	<1 . <1 . <1 . <1 . <1 .	02 01 02 02 02	6 4 5 3
02253 02254 02255 RE 02255 02256	4.2 1.9 1.5 1.5 3.1	28 9 7 7 14	72 53 23 23 31	42 28 14 14 16	3.5 1.1 3.8 3.7 1.1	12 9 4 4	3 2 <1 1 1	150 75 47 47 29	3.50 3.56 2.31 2.31 1.22	56 16 24 24 30	2 1 1 2	<2 <2 <2 <2 <2 <2 <2 <2	2 2 3 3	9 5 5 9	.2 <.2 <.2 <.2 <.2 <.2	3.2 .9 1.3 1.7 2.7	<.5 <.5 <.5 <.5 <.5	67 54 71 70 65	.06 .08 .04 .04 .04	.111 .088 .035 .035 .026	19 19 20 20 26	24 36 16 16 11	.11 .19 .06 .06 .03	68 53 40 40 65	.035 .033 .035 .035 .035 .017	<1 <1 1 <1 <1 <1 2	.61 .12 .65 .65	.004 .003 .003 .003 .002	.03 .02 .02 .02 .02	<1 <1 <1 <1 <1	<1 / <1 / <1 <1 /	1.3 1.1 .7 .8	<1 . <1 . <1 . <1 . <1<.	02 03 02 02 01	4 6 5 7
02257 02258 02259 02260 02261	4.2 5.8 4.7 5.5 2.2	13 18 15 22 39	39 60 58 76 156	26 34 31 43 101	1.3 5.7 5.0 7.1 .7	7 9 7 13 24	1 2 3 16	53 100 76 111 984	3.76 2.84 2.74 3.98 3.64	37 45 37 48 397	2 1 2 2	<2 <2 <2 <2 <2 <2 <2 <2	5 2 2 3 3	8 9 9 20	<.2 <.2 <.2	3.0 2.6 2.1 2.7 .8	<.5 .5 <.5 <.5 1.5	100 75 60 79 18	.04 .04 .03 .06 .41	.037 .059 .056 .056 .067	20 17 18 17 19	24 22 19 31 11	.10 .07 .06 .15 .15	64 86 86 97 105	.043 .036 .028 .041 .007	2 <1 1 1 <1	.96 .58 .56 .93 .64	.004 .003 .003 .004 .003	.03 .03 .03 .04 .04	<1 <1 <1 <1	<1 · <1 <1 1 <1 2	.9 .9 .3 2.3	<1 . <1 . <1 . <1 . <1 .	02 02 02 03 03 <	5 5 5 4
02263 02264 02265 02266 02266 02267	2.2 3.2 3.4 3.5 3.4	50 33 29 29 29 21	72 79 108 112 78	63 82 57 55 45	1.3 .8 .4 .5 2.1	26 23 17 17 17	9 17 5 4 4	322 1636 218 163 356	2.90 3.21 4.14 4.05 4.20	367 276 141 166 119	1 2 1 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 3 2 1	20 24 10 10 10	.5 .6 .5 .3	.6 <.5 1.4 1.8 1.7	.8 <.5 .5 1.0 .6	29 44 45 46 73	.35 .49 .13 .12 .06	.045 .096 .116 .128 .313	26 18 22 22 16	10 29 17 16 23	.06 .23 .12 .09 .16	68 146 96 99 83	.019 .026 .026 .023 .019	<1 2 1 <1 <1 3	40 07 64 58 75	.003 .005 .003 .004 .003	.03 .06 .04 .04 .04	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 1	.8 .9 .2 .1	<1 . 1 . <1 . <1 . 1 .	02 03 02 02 02 03	1 4 2 3 3
02268 02269 02270 02271 STANDARD C3	4.5 2.2 3.3 .9 26.8	16 14 22 5 67	81 68 54 45 37	44 43 57 11 170	1.2 1.1 1.1 5.3	13 12 20 3 35	3 6 1 12	191 156 289 56 776	5.02 3.75 4.37 1.48 3.20	78 85 44 26 55	1 1 <1 <1 24	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 6 5 23	10 8 9 6 29	.2 .2 .2 <.2 <.2	1.4 1.0 .8 <.5 15.1	.7 1.2 <.5 <.5 22.7	76 120 53 35 80	.13 .12 .10 .04 .59	. 157 . 116 . 185 . 096 . 092	20 22 24 27 18	35 27 40 11 174	.20 .16 .28 .06 .61	92 63 76 65 154	.064 .093 .046 .018 .091	1 1 2 1 2 1 1 18 1	.08 .00 .02 .59 .80	.004 .004 .005 .002 .002	.04 .04 .04 .02 .17	<1 2 <1 <1 16	<1 1 <1 1 <1 1 <1 2	.8 .9 .9 .9	<1 .1 1 .8 <1 .1 <1<.1 2 .1)2)1)2)1)2	6 8 4 5 6
STANDARD G-2	1.6	4	4	47	<.1	8	4	540	2.05	<1	3	<2	4	71	<.2	<.5	<.5	42	. 66	. 103	8	81	.61	231	. 133	1	.93	.078	.5 0	2	12	.5	1<.()1	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469

Page 6

Data_FA

 																															_			LAC ANAL	nų
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a opm	Ті % р	8 Apm	A1 %	Na %	К %	W ppm	Hg ppm	Sc ppm	Ti opm	S Ga % ppm	
02272 02273 02276 02277 02277 02278	1.8 1.2 2.5 4.0 4.6	13 7 11 19 26	118 88 27 36 61	26 10 10 18 59	1.2 .7 .1 .1 1.9	7 4 2 3 16	1 <1 <1 <1 3	193 59 13 18 98	3.54 1.63 .59 1.09 4.09	26 27 12 28 45	1 <1 2 2 1	<2 <2 <2 <2 <2 <2 <2 <2	5 2 2 1 3	8 7 34 47 12	<.2 <.2 <.2 <.2	1.5 .7 2.4 5.0 1.4	<.5 <.5 <.5 <.5 <.5	33 22 23 40 42	.06 .02 .01 .01 .04	.072 .109 .022 .032 .074	27 24 19 18 25	21 8 6< 9 27	.12 .03 .01 .01 .01	51 .0 60 .0 147 .0 192 .0 89 .0)16)06)07)07)07	<1 . 1 . <1 . 1 . <1 .	84 39 15 19 78	.003 .003 .002 .002 .002	.03 .02 .01 .01 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.0 .6 .8 1.3 1.4	<1 .0 1 .0 1<.0 1<.0 <1 .0	1 1 1 2 1 3 1 3 2 1	
02279 02280 02281 02282 02282 02283	4.8 4.0 2.1 2.1 8.0	24 21 26 24 29	51 49 224 33 69	57 51 43 29 72	2.0 1.1 .6 .2 .6	15 14 9 7 17	3 3 2 4	92 80 126 62 147	3.30 2.54 2.02 1.42 3.42	45 35 239 69 184	1 <1 <1 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 <1 2 <1	14 14 9 6 11	.2 <.2 <.2 .2	1.4 .7 <.5 .8 1.8	<.5 <.5 .9 .6	44 36 17 22 35	.03 .02 .10 .03 .10	.076 .048 .039 .035 .315	27 29 25 29 20	20 17 7 6 12	.05 .05 .03 .01 .06 1	90 .(81 .(80 .(50 .(122 .()32)22)05)12)09	2. 1. <1. 2.	63 51 42 17 47	.004 .003 .003 .002 .002	.03 .02 .03 .02 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 1.1 .8 .6 .9	<1 .0 <1<.0 <1 .0 <1 .0 <1<.0	1 2 1 2 1 1 1 2 2 <1	
02284 02285 02286 02287 02287 02288	1.8 2.3 2.9 3.9 3.2	15 19 14 17 11	52 60 49 40 41	28 55 29 30 26	.4 1.4 1.2 .3 .3	6 12 8 11 9	1 7 3 2	80 467 141 80 109	2.16 3.18 2.40 1.56 1.52	1049 131 130 90 71	1 1 1 1 1	<2 <2 <2 <2 <2 <2	<1 2 2 3	7 14 9 14 13	<.2 .6 .4 .3 .2	<.5 .5 1.0 1.6 .9	.5 1.0 1.0 2.3 1.8	15 33 35 34 38	.07 .29 .04 .03 .04	.225 .065 .062 .046 .053	25 27 23 26 24	7 14 13 9 9	.02 .09 .07 .03 .03	70 .0 87 .0 84 .0 96 .0 86 .0)09)17)16)14)22	2 . <1 . <1 . <1 . <1 .	33 67 49 31 34	. 003 . 004 . 003 . 003 . 003	.03 .04 .03 .02 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.4 1.0 .9 1.1 1.0	<1 .02 <1 .02 <1 .01 <1<.01 1<.01	2 1 2 2 1 2 1 4 1 4	
02289 02290 02291 02292 02292 02293	1.9 1.5 2.4 1.9 1.3	9 10 14 9 5	18 28 17 24 43	22 26 43 23 11	.2 .8 .9 .5 1.4	6 8 14 7 4	1 2 6 2 1	60 229 114 73 65	.96 2.22 1.87 1.01 .86	19 30 33 33 17	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 2 1 1 1	8 6 7 8 8	<.2 <.2 <.2 <.2 <.2	.6 .5 <.5 <.5 .7	<.5 .6 <.5 .6 .7	25 33 54 30 20	.01 .04 .03 .04 .03	.018 .079 .048 .026 .037	31 28 23 32 26	8 15 15 10 6	.01 .07 .08 .02 .02	57 .0 62 .0 49 .0 56 .0 65 .0	16 19 19 11 11	1. <1. <1. <1. Z.	24 55 36 40 36	. 003 . 003 . 004 . 003 . 004	.01 .03 .02 .02 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.6 .9 2.4 .6	1<.01 <1<.01 <1<.01 1<.01 1<.01	5 5 6 4	
02294 02295 RE 02295 02296 02297	3.4 2.0 1.9 .8 2.6	19 5 6 2 12	37 18 18 10 29	37 12 11 3 36	.1 .2 .1 8.8	15 3 1 9	5 1 <1 <1 2	133 14 14 3 77	1.94 .48 .48 .15 4.58	30 9 10 2 17	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 3 4 2 6	10 7 8 16 6	<.2 <.2 <.2 <.2 <.2 <.2	1.7 1.1 .8 .6 1.9	<.5 <.5 <.5 <.5 <.5	30 18 18 3 57	.01 .01 .01 .01 .05	.037 .014 .015 .012 .041	32 26 26 10 26	5 5 3< 37	.01 .01 .01 .01 1 .01 1	78 .0 78 .0 80 .0 39 .0 63 .0	04 09 09 03 27	<1 . <1 . <1 . 2 . <1 1.	17 . 11 . 11 . 07 .	.002 .002 .002 .002 .002 .004	.02 .01 .01 .01 .01	<1 <1 <1 <1 <1	<1 <1 <1 <1 1	.8 .3 .4 .3 1.6	<1<.01 1<.01 1<.01 1<.01 1<.01	2 3 3 1 4	
02298 02299 02300 02302 02303	2.4 2.3 2.3 2.3 2.0	13 18 16 19 14	27 27 25 44 36	38 53 48 57 35	6.8 5.3 5.0 1.9 .2	9 13 13 17 10	2 3 3 5 2	78 113 105 220 118	3.89 4.48 4.01 4.96 3.69	14 16 16 30 45	1 1 1 1 1	<2 <2 <2 <2 <2 <2	6 7 6 4 1	6 5 7 7	<.2 <.2 <.2 <.2 <.2	1.3 1.3 1.3 1.7 1.2	<.5 <.5 <.5 <.5	51 53 49 50 65	.05 .06 .06 .07 .05	.039 .043 .041 .062 .070	25 26 25 22 23	37 47 41 38 23	. 19 . 28 . 24 . 32 . 15	64 .0 74 .0 71 .0 66 .0 71 .0	21 32 28 55 35	<1 1.4 <1 1.4 <1 1.7 <1 1.4 <1 1.4	64 . 99 . 74 . 44 . 86 .	003 003 003 004 003	.02 .03 .03 .04 .03	<1 <1 <1 <1 <1	<1 12 1 1 <1	1.6 2.0 1.8 1.9 1.2	<1 .01 <1 .01 <1 .01 <1 .02 <1 .02	4 5 5 5 5 5	
02305 02306 02307 02308 STANDARD C3	2.2 1.4 2.6 1.8 26.8	10 10 23 14 66	48 36 62 52 35	31 18 56 30 175	.5 1.5 2.3 .7 5.6	9 5 18 8 37	2 1 6 2 12	89 56 255 163 797	3.39 2.29 5.33 2.61 3.24	50 35 69 56 52	1 1 1 24	<2 <2 <2 <2 <2 <2	2 <1 3 2 22	8 12 8 31	.2 .2 .2 .3 25.0	1.3 .7 1.7 .7 16.5	<.5 <.5 <.5 <.5 23.0	62 44 52 44 83	.05 .04 .09 .09 .61	.059 .051 .085 .038 .096	22 21 19 27 20	24 18 34 17 181	.16 .08 .29 .10 1 .64 1	87 .0 71 .0 71 .0 25 .0 60 .0	22 · 14 · 39 · 46 · 94 ·	<1 .; <1 .; <1 1. <1 .; 19 1.;	85 . 86 . 19 . 56 . 87 .	003 002 004 003 043	.03 .03 .04 .04 .18	<1 <1 <1 <1	<1 <1 1 <1 <1 2 4	1.1 .6 1.7 1.0 4.5	<1 .01 <1 .01 <1 .02 <1 .02 <1 .01 1 .02	4 4 5 6	
STANDARD G-2	1.6	4	3	48	<.1	8	4	565	2.11	<1	2	<2	5	78	<.2	<.5	<.5	43	.70	. 105	9	80.	.64 Z	36.1	41 •	<1.9	· · ·	088	.52	2	1 2	2.7	<1<.01	4	

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469

Page 7

Ţ

1 1

Data 7 FA

7

1

۳

1 1 1 1

-																																			<u>.</u>		ALL AN	
	SAMPLE#-		; P	4o ⊃πip	Cu pm	РЬ ррп	Zn. ppm	Ag ppm	Ni ppm	Co PPM	Mr ppn	n Fe 1 X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	ті %	B ppm	Al %	Na %	K %	W PPM	Kg ppm (Sc opm	T L ppm	\$ % P	Ga pm
	02309 02310 02311 02312 02313		1 2 1	8 .9 .9 .9 .6	26 47 8 18 21	41 87 22 31 46	34 93 15 41 51	.9 .4 1.1 .6 .5	14 39 4 11 17	5 14 1 3 6	286 716 33 167 393	2.52 3.59 .64 2.38 5.16	33 167 17 50 46	1 1 <1 1 1	<2 <2 <2 <2 <2	2 5 3 1 3	22 22 10 7 15	.3 .9 4.2 .2	<.5 2.7 .6 1.0	<.5 1.3 <.5 .5 <.5	44 23 16 40 73	.28 .25 .09 .07 .26	.048 .072 .019 .088 .240	25 28 30 17 14	21 18 6 16 33	. 13 . 16 . 03 . 17 . 32	228 216 63 96 147	.053 .010 .020 .024 .065	1 <1 <1 <1 <1	.72 .64 .21 .80 .91	.005 .004 .002 .004 .005	.04 .05 .02 .04 .06	<) <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	1.4 2.6 .5 1.1 1.5	<1 1 1< <1 <1	.02 .02 .01 .02 .02	6 2 3 6 6
	02315 02316 02318 02319 02320		1 1 1	.1 .0 .7 .7 .9 .8 .3	72 50 11 14 39	75 91 26 26 33	88 79 35 37 96	.6 .5 .2 <.1 .5	24 20 8 11 32	25 18 3 4 10	1125 937 83 139 113	5.28 4.46 1.43 2.24 5.15	184 186 22 41 551	1 <1 <1 <1	<2 <2 <2 <2 <2 <2	5 2 9 8 14	11 20 5 4 6	.8 .8 <.2 .2 <.2	2.0 1.1 <.5 <.5 1.2	1.3 1.4 <.5 1.0 <.5	32 34 16 16 11	.18 .39 .06 .04 .03	.090 .102 .025 .025 .037	28 24 41 36 60	14 19 5 6 9	.30 .31 .04 .04 .06	59 109 54 25 52	.014 .010 .003 .006 .001	<1 <1 2 1 <1	1.01 1.23 .63 .53 .90	.004 .005 .003 .002 .003	.04 .05 .04 .04 .05	<1 <1 <1 <1 <1	<1 2 <1 2 <1 <1 <1 2	3.2 3.2 .7 .8 2.2	1 2 1< <1< <1	.01 .03 .01 .01	3 3 4 3 2
	RE 02320 02321 02322 02323 02323 02324		×.	8 6 5 4 2	40 10 14 23 14	34 12 44 36 10	100 32 47 65 45	.6 <.1 <.1 <.1 <.1	31 5 8 16 10	9 2 4 7 5	113 53 87 138 303	5.07 1.72 3.59 4.40 2.75	548 15 15 21 10	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	13 11 8 10 9	6 2 3 3 3	<.2 <.2 <.2 <.2 <.2	1.0 <.5 .6 <.5	.7 <.5 <.5 <.5 <.5	13 22 35 24 10	.03 .02 .03 .04 .03	.037 .018 .065 .045 .065	57 40 34 30 47	9 3 9 15 5	.06 .02 .14 .21 .04	53 14 38 40 29	.001 .014 .006 .006 .003	1 <1 <1 <1 <1	.90 .30 .90 1.07 .56	.002 .002 .003 .002 .002	.05 .04 .04 .05 .05	<1 <1 <1 <1 <1	<1 2 <1 <1 1 <1 1 <1 1	2.2 .6 1.1 1.5 .7	<1 . <1<, <1<, <1 . <1 .	01 01 01 01 01	3 3 2 2 2
	02325 02326 02327 02328 02329			7 1 9 1 5 1 7 2 9 1	19 13 15 23	31 85 19 52 50	56 43 62 61 65	<.1 .5 <.1 .5 <.1	13 8 13 14 13	5 4 6 6 6	366 279 301 401 346	4.42 3.55 3.85 3.64 4.86	25 15 24 17 38	1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2	8 10 7 5 5	4 3 3 7	<.2 <.2 <.2 <.2	<.5 .8 <.5 <.5 1.0	<.5 16.3 .5 <.5 <.5	26 17 17 11 26	.04 .03 .03 .04 .07	.119 .065 .075 .074 .051	41 37 44 29 29	11 9 10 9 18	.07 .05 .08 .07 .15	30 28 33 46 44	.009 .006 .007 .003 .011	<1 2 <1 <1 <1	.76 .83 .66 .78 .88	.004 .003 .002 .002 .002	.04 .03 .04 .05 .04	<1 <1 <1 <1 <1	<1 1 <1 <1 <1 <1 <1	.1 .8 .9 .6	1 . <1 . 1<. <1 . <1 .	01 01 01 01 02	3 1 1 1 2
	02330 02331 02332 - 02333 02333 02334		1.	0 4 4 2 5 3 5 3 7 4	2 25 1 39 31 4	99 20 69 98 63	235 143 148 77 102	1.2 .2 1.1 .5 <,1	27 18 27 16 12	21 15 17 9 10	7827 1280 4072 1111 352	2.68 3.48 3.16 2.78 5.44	14 25 11 13 13	12 2 6 2 1	<2 <2 <2 <2 <2 <2 <2 <2	3 3 2 1 3	105 28 82 41 7	2.2 .5 1.6 .5 <.2	<.5 <.5 <.5 <.5 <.5	.7 .8 .5 <.5 .8	19 15 17 17 28	1.77 .53 1.41 .72 .09	.254 .114 .156 .114 .090	9 19 13 19 22	16 11 12 9 10	.20 .13 .14 .06 .19	237 57 116 54 58	.013 .006 .009 .008 .005	<1 1 3 3 1 <1 <1 1	.12 .75 .01 .66 .20	.007 .004 .006 .005 .003	.05 .04 .05 .04 .04	<1 <1 <1 <1 <1	1 1 <1 1 <1 1 <1 1 <1 1	.7 .4 .7 .2	15 . <1 . 2 . 1 . <1 ,	16 < 04 < 09 < 04 02	:1 :1 :1 3
	02335 02336 02337 02338 02339			52 52 54 53 63	1 3 0 2	41 45 85 50 59	51 58 79 54 59	.5 .4 .5 .2	6 6 12 9 11	4 5 8 6 8	233 235 301 170 422	3.69 4.10 3.66 4.10 3.99	7 8 14 10 18	1 1 2 1 1	<2 <2 <2 <2 <2 <2 <2	1 3 2 2 2	5 5 32 6 15	.2 <.2 .3 <.2	<.5 .6 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	23 21 28 25 30	.05 .05 .67 .06 .19	.075 .101 .076 .062 .071	20 20 25 19 26	7 8 11 8 9	.09 .12 .11 .09 .08	91 55 51 41 43	.004 .004 .007 .005 .008	<1 <1 1 <1 <1 1	.84 .04 .95 .89 .77	.003 .003 .010 .003 .004	04 03 04 03 03	<1 <1 <1 <1 <1	<1 <1 <1 1 <1 <1	.6 .8 .5 .9	<1 . <1 . <1 . <1 . <1 .	02 02 03 02 02	2 1 1 2 1
	02340 02341 02342 02343 Standard C.	3	26.	8 3 5 3 4 2 5 1 4 6	1 3 9 7 7	83 77 89 48 36 1	65 70 87 67 76	.2 .3 .8 .1 5.4	9 11 15 7 37	6 6 5 12	251 254 131 541 759	5.20 4.64 4.46 3.49 3.28	16 14 28 21 54	1 1 <1 <1 24	<2 <2 <2 <2 <2 <2 <2	2 3 6 20	8 4 4 30	.4 <.2 <.2 <.2 24.8	.6 <.5 <.5 <.5 17.0	<.5 <.5 .7 .5 22.7	30 13 9 23 80	.13 .03 .04 .03 .59	.060 .169 .063 .106 .096	22 27 30 35 19	9 9 9 9 182	.07 .06 .12 .07 .62	59 33 53 42 160	009 007 002 009 093	<1 1 2 <1 20 1	.73 .59 .74 .71 .80	003 003 003 002 042	.04 .03 .04 .04 .18	<1 <1 <1 <1 15	<1 <1 <1 <1 <1 2 4	.9 .6 .8 .8	<1 . <1 . <1 . <1<. 2 .	02 02 < 02 < 01 03	3 1 1 1 6
	STANDARD G	i- 2	1.	5	4	3	47	<.1	7	4	535	2.01	<1	2	<2	5	76	<.2	<.5	<.5	42	.66	.098	8	77	.61	224 .	133	2	.94	086	50	2	<1 2	.7	<1<.	01	5

Sample type: SOIL \$580 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
ATE MALTICA

Island Mountain Gold Mines Ltd. FILE # A004469

• ** *

,

1

· · · · ·

Page 8

Data _ FA

· · · •

 					·							**		_								**** *****													<u> </u>
SANPLE#	Ma ppm	Cu ppn	Pb ppm	Zn. ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B PPm	Al %	Na %	к %	W ppm	Hg ppm p	Sc. pm p	⊺l S xpm %	Ga ppm	-
02344 02345 02346 02347 02348	1.0 .5 .8 1.0 1.1	15 8 20 19 19	120 40 60 106 45	75 49 101 88 67	.3 .4 .3 .5 .6	11 7 13 14 15	5 3 4 5 7	840 118 117 155 276	4.10 1.91 3.72 4.89 5.84	53 31 44 59 67	1 <1 1 <1	<2 <2 <2 <2 <2 <2	4 3 8 9 8	3 8 3 3 3 3	<.2 .3 .2 .2	.5 <.5 <.5 .5	1.0 <.5 .8 1.3 1.1	24 12 10 20 33	.05 .12 .03 .03 .04	.156 .036 .068 .055 .133	36 33 39 36 31	10 6 8 13 20	.06 .05 .08 .09 .16	50 89 29 29 31	.005 .004 .002 .005 .021	1 2 1 4 <1	.66 .57 .62 .93 .91	.004 .003 .003 .003 .003	.05 .05 .04 .04 .04	<1 <1 <1 <1 <1 <1	1 <1 <1 <1 1 <1 1	.6 .4 .7 .0 .2	2 .01 <1<.01 <1 .01 <1 .01 <1 .01 2 .01	<1 2 <1 2 3	
02349 02350 02351 02352 02353	.8 .5 .6 .3	16 9 18 19 29	69 33 36 23 48	83 36 57 54 71	.3 .3 .2 <.1 .3	18 10 16 15 27	7 4 7 6 14	157 380 151 134 287	4.40 3.26 3.90 4.16 3.25	42 102 36 29 26	1 <1 1 1	<2 <2 <2 <2 <2 <2	11 7 11 11 11	5 4 3 13	.2 .4 <.2 <.3	.7 <.5 .6 .8 <.5	.8 1.1 .5 <.5 <.5	28 29 32 28 28	.06 .05 .06 .06 .22	.041 .054 .087 .0 38 .039	30 34 35 37 34	22 9 18 15 20	.20 .05 .17 .16 .27	56 22 31 60 78	.012 .009 .020 .013 .018	<1 2 1 2	1.35 .65 1.02 .93 1.14	.003 .003 .004 .003 .005	.04 .03 .04 .05 .07	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 2	.4 .0 .4 .2 .9	<1 .02 <1<.01 <1<.01 1<.01 <1 .01	2 2 1 2	
02354 02355 02357 02358 02359	.5 .6 1.3 1.2 1.2	17 36 27 78 29	26 212 37 181 87	61 121 51 93 51	.1 2.3 1.0 1.2 .6	33 68 16 39 16	7 18 7 28 6	255 1764 500 1297 281	3.75 4.23 3.21 4.80 3.66	67 92 81 308 144	<1 1 1 1	<2 <2 <2 <2 <2 <2 <2	10 3 1 7 2	6 15 10 14 7	<.2 .7 .3 <.2 .5	.7 1.1 .7 2.0 1.1	.9 1.6 .6 2.7 .9	19 27 36 23 25	.06 .23 .17 .31 .10	.036 .097 .168 .087 .055	43 26 19 37 20	11 42 24 19 18	.06 .22 .32 .38 .17	56 176 48 69 52	.005 .011 .018 .020 .019	1 2 1 <1	.70 1.03 .75 .97 .76	.003 .005 .004 .004 .004	.05 .07 .06 .06 .03	<1 <1 1 1 3	<1 1 <1 2 <1 <1 4 <1 1	.1 .1 .8 .3 .0	<1<.01 1 .02 <1 .03 <1 .02 1 .03	1 1 3 1 1	
02361 02362 02363 02364 02365	.5 .4 .4 .4	9 10 16 16 10	26 24 15 17 11	75 67 52 49 45	.4 .3 .1 .1 .1	12 13 12 12 11	5 5 7 5	174 200 198 260 151	3.61 3.56 4.17 3.53 3.11	16 16 14 14 11	1 1 1 <1	< < < < < < < < < < < < < < < < < < <	8 8 10 9 8	13 11 4 5 6	.3 .2 <.2 <.2 <.2	<.5 <.5 .6 <.5 <.5	.5 <.5 <.5 <.5 <.5	26 26 48 41 30	.21 .17 .05 .05 .10	.031 .035 .033 .035 .035	34 34 37 40 35	18 19 14 13 14	.31 .31 .27 .25 .23	78 89 60 53 56	.012 .010 .007 .007 .007	<1 <1 <1 <1 <1	1.19 1.24 1.43 1.33 1.06	.003 .004 .003 .003 .002	.06 .05 .03 .04 .05	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 1 <1 1	.2 .2 .7 .8 .0	<1 .01 <1 .01 <1<.01 <1<.01 <1<.01 <1 .01	4 4 6 6 6	
RE 02365 02366 02367 02368 02369	-3 -4 -7 -6 -4	10 10 24 23 16	11 13 28 28 9	43 50 69 68 41	.1 .1 .2 .2	11 13 23 23 12	5 6 9 9 5	154 194 143 140 82	3.08 3.35 5.84 5.63 3.20	11 10 16 16 24	1 1 1 <1	<2 <2 <2 <2 <2 <2	8 7 14 14 13	6 7 6 3	<.2 <.2 <.2 <.2 <.2	<.5 <.5 .7 1.3 <.5	<.5 <.5 <.5 .7 <.5	29 28 20 19 15	.11 .12 .09 .08 .03	.033 .033 .029 .030 .024	37 34 36 36 56	14 16 25 26 8	.23 .26 .39 .38 .11	56 53 34 35 43	.007 .006 .003 .003 .002	<1 2 <1 <1 <1	1.07 1.10 1.82 1.88 1.00	.002 .003 .003 .003 .003	.05 .05 .03 .04 .04	<1 <1 <1 <1 <1	<1 1 <1 <1 1 <1 1 <1 1 <1 1	.0 .9 .3 .3	<1 .01 <1 .02 <1 .02 <1 .02 <1 .02 <1<.01	6 5 6 4	
02370 02371 02372 02373 02374	.3 .2 .3 .3 .3	13 16 14 14 14	8 12 14 16 15	36 48 57 57 54	.1 .1 <.1 <.1	11 13 15 14 14	4 5 6 6	77 98 123 112 105	2.64 3.95 4.49 4.02 3.79	22 25 14 13 12	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	12 14 12 12 13	3 4 4 4 4	<.2 <.2 <.2 <.2 <.2	.6 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	15 16 18 20 20	.03 .03 .04 .03 .03	024 028 029 027 027	59 59 55 53 51	7 11 17 16 16	.09 .14 .25 .24 .23	41 51 48 39 40	.002 .002 .003 .003 .002	1 <1 * 2 * <1 *	.95 1.10 1.33 1.33 1.41	.003 .002 .002 .002 .002	.04 .04 .04 .04 .04	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 1	.0 .0 .0 .1	<1<.01 <1 .01 <1 .01 <1 .01 <1 .01 <1 .01	5 4 5 4 5	
02375 02376 02377 02378 STANDARD C3	.5 .6 1.8 1.6 26.9	14 15 18 16 65	22 30 54 50 35	50 64 33 26 174	.2 .3 .7 1.9 5.5	12 15 6 37	6 8 2 2 12	178 192 140 243 791	3.30 4.30 2.35 2.44 3.38	10 12 117 123 58	1 1 1 25	<2 <2 <2 <2 <2 <2 <2 <2	7 6 <1 1 22	8 12 11 7 30	<.2 <.2 .4 .3 24.6	<.5 <.5 .9 .5 16.5	<.5 <.5 .7 .7 23.2	45 49 28 23 81	.16 .23 .10 .04 .60	.023 .028 .155 .165 .095	30 28 22 22 19	19 26 11 13 180	.17 .23 .04 .09 .64	117 164 77 75 158	.021 .022 .013 .009 .095	2 1 <1 1 3 3 21 1	1.23 1.59 .40 .57 1.86	.004 .004 .003 .003 .003	.04 .04 .03 .03 .18	<1 <1 <1 <1 15	<1 1 <1 2 <1 <1 <1 2 4	9 .4 .5 .5 .7	<1<.01 <1<.01 <1 .01 <1 .02 2 .03	5 6 3 5	
STANDARD G-2	1.5	4	2	46	<.1	7	4	536	2.01	1	2	<2	4	75	<.2	<.5	<.5	44	. 66	101	8	79	.60 2	225	134	2	.94	.085	.50	2	1 2	.7	1<.01	4	

Sample type: SOIL \$580,600. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ADE ANALYTICAL

02379

02381

02382

02383

02384

02385

02386

02387

02388

02389

02390

02391

02392

02393

02394

SAMPLE#

1 N 1

11 (1)

- · · •

*

						I	sla	and	Mo	unt	ai	n G	lol	d N	∮ine	es I	itd.	•	FI	LE	# 2	A00)44	69					Pā	i de	a 9	·····		AC/AC	MALYTICAL
Mo	Cu	i P	b Z	in 2011	Ag	Ni	Co	Mn	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	Р %	La ppm	Cr Mqq	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	К % р	W	Нg ppm	\$¢ ppm	тł ppm	\$ %	Ga ppm
1.1 1.8 1.9 2.0	29 56 40 42	9 4 5 13 9 9 2 6 1 6	4 4 9 9 5 7 5 7	49 72 72 72	.4 1.1 .3 1.3 .2	9 26 20 19 20	6 14 9 8 8	606 689 521 460 536	3.18 5.39 6.33 7.37 4.97	249 280 240 132 102	<1 1 <1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	<1 3 6 2	8 18 5 6 7	.3 .4 .3 .6	.7 1.6 2.6 2.1 1.6	1.0 1.3 1.2 .5 <.5	24 34 24 50 38	.13 .43 .06 .06 .09	.101 .105 .108 .115 .095	24 18 24 17 18	11 32 20 33 31	.09 .40 .25 .32 .38	80 73 52 71 89	.009 .026 .014 .066 .031	<1 2 3 <1 1	.68 1.67 1.02 1.45 1.32	.004 .005 .005 .004 .004	.04 .06 .04 .04 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.1 2.7 1.7 2.4 1.6	<1 <1 1 <1	.01 .02 .02 .03 .03	1 3 3 7 4
1.2 1.2 .2	48 2 40 3 33 3 35 7 39	3 6 5 9 2 8 3 13 9 11	51 (12 (13 (19 (12 (91 88 64 78 99	1.0 <.1 <.1 .9 .4	34 25 23 20 28	15 16 9 11 19	2277 649 266 936 901	3.29 4.62 5.30 3.38 4.23	92 179 96 112 123	5 1 <1 3 2	<2 <2 <2 <2 <2 <2	<1 5 4 3 3	48 7 12 29 23	1.0 1.0 .5 .7	<.5 1.8 1.0 <.5 .9	<.5 1.1 .8 .5 .9	24 31 26 21 26	1.12 .10 .22 .60 .38	.117 .054 .078 .085 .082	21 25 23 28 28	21 25 24 16 21	.31 .32 .35 .23 .29	64 41 58 53 59	.018 .026 .012 .010 .013	2 2 <1 <1 1	1.13 1.39 1.41 1.05 1.23	.010 .005 .004 .004 .004	.05 .04 .04 .04 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.9 2.3 1.9 2.1 2.5	<1 <1 <1 <1 <1	.07 .02 .02 .03 .03	1 2 3 1 2
	3 3 3 3 5 2 4 1 7 1	3 13 0 4 2 1 0 7	33 52 20	69 66 67 31 74	.3 .4 <.1 <.1 <.1	25 29 21 9 15	12 10 9 3 7	311 215 165 79 180	4.34 5.40 4.52 3.43 5.57	52 36 21 11 15	1 <1 1 <1 <1	<2 <2 <2 <2 <2 <2	7 8 15 8 7	20 6 5 4 6	.4 .2 <.2 <.2	1.3 1.2 .7 .7	.8 <.5 <.5 <.5	33 43 22 35 29	.34 .11 .04 .04 .07	.045 .031 .046 .033 .073	22 26 31 34 28	29 41 29 19 22	,32 .45 .52 .21 .28	118 90 73 42 134	.012 .042 .007 .007 .008	1 <1 <1 <1 <1	1.78 1.92 2.20 1.68 1.45	.008 .006 .006 .003 .005	.05 .04 .05 .03 .04	1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2.6 2.7 1.7 1.3 1.3	<1 <1 <1 <1· <1	.02 .01 .02 <.01 .01	2 5 4 5 5
•	51	2	24	58	<.1	13	6	134	4.56	5 11 7 19	<1	<2 <2	9 8	45	<.2	1.0	<.5 <.5	28 37	.04	.023 .045	30 26	22 21	.29 .26	70 60	.009 .027	<1 1	1.59 1.23	.003	.04 .04	<1 <1	<1 <1	1.4	<1 <1	.01 .01	5 6 5

.

02395 02396 02397 02398 02398	.6 .6 .8 .7	12 14 24 17 8	24 25 27 29 30	58 59 70 77 33	<.1 <.1 <.1 <.1 <.1	13 12 21 18 10	5 8 8 4	161 200 150 114	3.67 5.34 5.28 4.34	18 19 22 14	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2	8 9 8 4	5 7 5 9	.2 .2 <.2 <.2	.5 <.5 .8 .6	<.5 <.5 <.5 <,5	37 29 26 37	.06 .045 .10 .047 .06 .055 .09 .033	26 29 30 24	21 .2 30 .4 26 .4 27 .2	26 6 45 10 41 7 23 7	0 .027 4 .011 3 .007 0 .026	1 1.23 <1 1.71 <1 1.88 <1 1.35	.004 . .004 . .004 . .004 .	04 < 05 < 04 < 03 <	1 1 1	<1 1.3 <1 1.9 <1 1.6 <1 1.6	<1 .01 <1 .01 <1 .01 <1 .01	5 6 5
02400 02403 02404 02405 85 02405	1.1 .5 .7 .7	15 40 24 44 44	41 61 89 48 48	62 83 67 66 67	.1 .7 .2 .1	16 31 21 24 23	6 16 9 11 11	141 1255 294 348 341	5.40 3.66 4.08 4.98 4.93	27 70 106 121 123	<1 2 1 <1 <1	<2 <2 <2 <2 <2 <2 <2	8 2 3 4 4	5 49 9 7 6	2 7 5 5 5	.7 <.5 1.2 1.2 .9	<.5 <.5 1.5 1.0 1.3	40 24 32 26 26	.07 .043 1.07 .088 .16 .048 .12 .045 .11 .045	27 21 21 23 2 3	33 .3 20 .3 27 .2 17 .4 16 .4	33 6 35 8 28 6 42 4 41 4	4 .027 2 .019 6 .021 2 .006 2 .006	<1 1.83 1 .98 3 1.32 <1 1.27 <1 1.26	.007 . .008 . .006 . .004 .	04 < 05 < 04 < .03 < .03 <	:1 :1 :1 :1	<1 1.9 <1 3.4 <1 1.8 <1 2.2 <1 2.0	<1 .02 <1 .05 <1 .02 <1 .02 <1 .02 <1 .02	7 1 3 3 3
02406 02407 02408 02409 02410	.7 1.2 .7 .7 1.4	45 38 44 58 61	57 65 55 76 108	84 67 99 147 75	1.1 .5 .5 .6 .1	23 14 17 27 17	18 10 18 25 22	1475 571 1813 2836 979	3.46 4.74 4.15 4.76 6.88	125 148 156 197 274	4 1 5 5 1	<2 <2 <2 <2 <2 <2 <2 <2	2 <1 <1 2 2	30 9 10 33 9	.7 .6 .8 1.4 .6	<.5 .9 .8 .5 2.3	.7 1.1 .9 1.3 2.6	24 31 26 25 31	.77 .108 .11 .059 .18 .129 .73 .165 .19 .084	18 21 19 16 16	17 . 19 . 16 . 14 . 14 .	24 4 14 4 18 4 25 12 14 4	50 .010 59 .016 53 .009 21 .007 58 .010	<1 1.14 <1 1.04 3 1.29 <1 1.22 <1 1.01	.005 .005 .007 .007 .005	.04 < .03 < .04 < .04 < .03	<1 <1 <1 <1 <1	<1 2.6 <1 1.4 <1 2.4 <1 3.2 <1 1.6	<1 .05 <1 .02 <1 .05 <1 .06 Z .04	1 3 2 4
02411 02412 02415 02416 STANDARD C3	1.0 ,9 1.9 1.3 27.1	67 53 85 21 67	493 63 82 144 35	83 81 86 56 163	.1 .3 .3 .2 5.4	37 14 13 9 35	22 15 12 4 11	623 671 573 378 757	5.08 4.80 6.46 2.90 3.31	346 295 509 356 57	2 <1 <1 25	<2 <2 <2 <2 <2 <2	6 1 4 2 21	12 23 10 8 29	.4 .3 .3 <.2 24.9	2.1 .8 1.9 1.5 17.2	1.0 1.3 1.8 2.5 23.0	27 31 41 21 78	.21 .115 .66 .099 .15 .144 .09 .078 .58 .094	26 16 21 24 18	21 . 10 . 11 . 11 . 170 .	38 09 38 07 60 1	55 .009 47 .007 73 .004 97 .009 56 .087	1 1.55 1 1.08 <1 1.58 2 .70 17 1.83	004 004 003 003 004 004 004 0043	.04 .03 .03 .04 .17	1 1 1 15	<1 4.4 <1 1.9 <1 2.3 <1 1.2 1 4.4	1 .03 <1 .04 1 .01 <1 .01 <1 .02	3 3 5 2 6
STANDARD G-2	1.5	4	3	46	<.1	8	4	549	2.07	<1	2	<2	4	77	<.2	<.5	<.5	42	.68 .112	8	83.	.63 2	52 .132	1 1.03	3 .098	.53	2	<1 2.7	1<.01	5

۰.

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

••••

ŗ

• • •

*

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

`~**`**}

Data FA

Island Mountain Gold Mines Ltd. FILE # A004469

- A (A
	÷A.
	•
ACME ANAL	YTTCAL

Data_FA

Page 10

[⁻⁻⁻]

X?	NE ANALYTICAL							-													<i>``</i>					T i	0	01	L o	¥	U.	Ka 9	se r	1 5	Ga	
	SAMPLE#	Ho DOM /	Cu	Pb	Zn	Ag	Ni xxm ⊭	Co xpm	Mn ppm	Fe X	As pom	U mqq	Au ppm (Th ppm p	Sr opmi	Cdi ppm	Sb ppm	Bī pprni	V ppm	Ca %	P %	La ppn p	Cr opm	Mg %	8a ppm	۱۱ % ۲	ы рпі	жі %	ма %	х́р	pm p	pu pi	pm pp	m %	ppm	
	02419 02420 02421 02422 02422 02423	1.2 1.3 1.4 2.3 3.5	57 57 38 39 24	107 83 47 82 51	77 63 40 53 48	.3 1.1 .2 1.1 .5	18 26 9 18 16	10 14 5 7 4	351 561 334 296 180	5.51 3.79 2.33 2.86 1.95	563 331 161 218 85	<1 <1 <1 1 1	<2 <2 <2 <2 <2 <2	3 3 <1 <1 2	9 13 13 16 25	.9 .6 .7 .9 .5	1.8 .8 1.0 .8	2.7 1.9 1.0 1.1 1.5	30 25 25 29 27	.18 .23 .18 .19 .26	.072 .058 .066 .051 .049	21 32 27 21 17	15 15 9 15 13	.20 .19 .05 .15 .08	128 111 119 119 200	.011 .008 .013 .016 .018	<1 1 <1 3 3	.88 .99 .43 .68 .36	.003 .003 .002 .003 .005	.04 .05 .03 .04 .04	1 <1 <1 <1 <1	<1 1 <1 3 <1 1 <1 1 <1 1 <1 1	.7 .7 .3 .6 .3	1 .02 1 .01 1 .01 1 .01 1 .01	2 <1 2 1 2	
	02424 02425 02426 02427 02428	5.8 2.9 3.6 4.5 6.6	58 13 18 26 39	145 43 82 54 85	128 25 28 87 74	1.4 1 1.6 9 8	55 7 8 36 21	17 1 5 4	2208 38 59 308 218	4.34 .95 2.22 3.66 3.12	115 45 56 83 113	2 <1 <1 <1 1	<2 <2 <2 <2 <2 <2	1 2 2 1 <1	38 12 14 13 27	1.3 .2 .3 .6	2.4 1.1 .9 1.1 1.3	2.1 .8 1.1 5.2 1.4	53 27 40 33 78	.44 .03 .06 .04 .09	.166 .025 .116 .085 .151	15 22 20 30 18	44 7 17 14 22	.30 .01 .06 .04 .12	673 76 143 146 108	.016 .018 .022 .009 .019	2 1 <1 <1 <1 <1 2	.59 .15 .50 .61 .56	.007 .001 .001 .002 .004	.14 .02 .03 .04 .02	<1 <1 <1 <1 <1	<1 4 <1 <1 <1 1 <1 2	.1 .6 .9 .2 .0	1 .05 1<.01 1 .02 1 .01 1 .02	3 3 2 2 4	
	02429 02430 02431 02432 02433	9.6 2.8 1.6 5.8 5.4	22 13 4 12 15	38 43 60 70 83	45 27 7 24 22	1.1 .7 2.6 2.9 .6	8 7 2 8 7	1 2 <1 1 1	28 71 15 47 58	1.44 1.90 .71 3.19 2.42	65 43 13 64 45	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 3 <1 3 3	9 11 14 11 24	.3 .2 <.2 .2 <.2	4.1 .7 1.2 4.6 4.9	<.5 .9 <.5 .7 <.5	26 29 14 79 41	.01 .04 .03 .04 .03	.035 .049 .020 .081 .053	25 22 20 16 20	8 11 7 19 19	.01 .05 .02 .05 .06	73 199 209 119 166	.008 .014 .013 .034 .018	<1 <1 <1 1 2	.09 .41 .48 .54 .43	.001 .002 .002 .003 .001	.01 .02 .01 .02 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 1 <1 1	.8 .8 .8 .1 .6	<1<.01 <1<.01 <1<.01 <1<.01 <1.02 <1.01	1 3 3 4	,
	02434 02435 02436 02437 02439	5.6 8.7 3.9 5.9 4.6	14 18 16 7 25	35 102 96 34 148	32 47 40 29 42	.3 .7 .4 .2 3.6	10 15 12 6 11	2 2 2 1 2	46 62 59 17 119	1.42 3.50 3.03 .73 4.62	53 83 59 17 107	<1 1 <1 1	<2 <2 <2 <2 <2 <2 <2	3 2 <1 3 3	10 14 12 26 9	.3 .5 .4 <.2 .7	1.2 2.3 .9 .9 1.7	<.5 .6 1.1 .5 .5	34 44 38 12 52	.02 .04 .04 .01 .05	.038 .074 .065 .026 .173	26 23 23 44 21	8 23 20 6 36	.02 .05 .08 .01 .14	58 100 70 152 86	.014 .020 .017 .006 .017	1 2 1 2 <1	.32 .55 .76 .17 1.48	.001 .002 .002 .001 .007	.02 .02 .03 .02 .02	<1 <1 <1 <1 <1	<1 <1 1 <1 <1 <1 2	.8 .1 .9 .5	<1<.01 <1 .02 <1 .02 <1 .02 1<.01 <1 .03	5 3 4 3 4	, , ,
	02440 RE 02440 02441 D2442 02443	2.1 2.2 1.3 3.9	26 25 17 11 3	88 88 33 35 26	83 80 24 21 9	.7 .6 .2 .2	22 22 7 6 3	6 6 1 1	196 193 53 30 29	5.15 5.00 2.00 .87 .39	43 44 17 21	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	2 3 3 2 1 <1	6 6 8 19 11	.6 .5 <.2 <.2	.9 1.1 .5 .8 <.5	<.5 <.5 .5 <.5	35 35 25 21- 8	.07 .07 .03 <.01 .01	.076 .076 .031 .028 .018	23 22 24 34 34	39 39 17 6 5	.25 .25 .05 .01 .01	65 65 38 146 58	.023 .023 .014 .011 .006	<1 <1 <1 1 3	1.25 1.23 .79 .20 .27	002. 002. 002. 002. 001.	.03 .03 .02 .02 .02	<1 <1 <1 <1 <1	<1 1 <1 1 <1 <1 <1	.4 .8 .5 .2	1 .02 1 .02 <1 .01 1 .01 <1<.01	4	+
	02444 02445 02446 02447 02448	.9 7.9 1.5 .8 1.2	- 7 12 22 1 24	7 32 32 8 77	21 49 70 5 74	.4 <.1 .2 .3	7 11 21 25	1 1 <1 3	34 45 160 12 61	.68 1.23 5.37 .19 1.62	3 12 5 39 7 29 9 <u>3</u> 2 24	<1 <1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	2 3 2 1 3	6 14 7 13 10	<.2 <.2 <.2 <.2 <.2	<.5 <.5 .7 <.5 <.5	<.5 <.5 <.5 <.5	16 19 45 7 19	.01 .03 .05 .01 .01	.019 .043 .130 .015 .054	33 55 23 37 36	5 8 32 4 5	.01 .02 .23 .01 .01	62 112 52 64 102	.008 .007 .030 .007 .006	<1 <1 2 1	.19 .22 1.32 .29 .21	001 001 002 002 001 001	.01 .03 .03 .01 .01	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.3 .6 1.4 .3 1.0	1<.0 1 .0 <1 .0 1<.0 1<.0		753
	02449 02450 02451 02452 STANDARD C3	2.0 .8 1.9 5.7 27.1	18 14 19 11 67	50 62 44 92 36	78 68 57 36 178	<.1 1.4 <.1 .6 5.4	17 13 17 9 37	3 3 4 1 12	64 72 191 32 799	1.37 2.74 3.42 1.16 3.30	7 12 4 20 2 51 5 30 5 50	2 <1) <1 <1) <1 5 23	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1 4 1 2 22	5 5 21 30	.2 .2 .3 <.2 24.4	<.5 .5 <.5 4.9 15.9	<.5 <.5 .5 23.6	31 27 51 33 81	.02 .03 .06 .01 .60	.030 .035 .126 .028 .097	31 29 26 28 18	8 14 21 8 177	.01 .08 .09 .01 .61	62 70 68 104 162	.013 .011 .015 .010 .092	5 2 1 <1 22	.19 .83 .86 .15 1.81	002. 001. 001. 001. 042.	.01 .02 .04 .01 .17	<1 <1 <1 <1 15	<1 <1 ⁻ <1 ⁻ <1 2 4	.6 1.0 1.3 .4 4.5	1<.0 <1 .0 <1 .0 1<.0 3 .0		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	STANDARD G-2	1.5	3	2	43	<.1	7	4	523	1.98	8 <'	. 2	<2	4	72	<.2	<.5	<.5	39	.64	.103	8	77	.59	233	.129	1	.91	.080	.49	2	<1 2	2.5	1<.0	1	5

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

Island Mountain Gold Mines Ltd. FILE # A004469

ICHE ANALYTICAL

Data 1 FA

ADE ANALYTICAL						- -									1		X II Ha So TI S Ca
SAMPLE#	Mo Cu Pb ppm ppm ppm	Zn Ag ppm ppm	Ni Co ppm ppm	Mn Fe ppm %	As U ppn ppn	Au T ppm pp	h Sr mippm	Cd S ppm pr	sb Bi xm ppm	V Ca ppm %	PLa % pppr	a Cr Mg mppm ን	3; Ba ≰ppm	Ti % pp	BAL	Na %	K w Kg Sc It S ua % ppm ppm ppm ppm % ppm
02453 02454 02455 02456 02456 02457	6.9 13 26 4.1 7 7 4.2 17 18 1.3 3 14 1.5 11 16	27 1.7 9 .8 36 1.1 7 .4 30 .7	10 1 7 1 11 2 2 <1 7 <1	47 2.95 36 .87 77 2.21 43 .30 22 .99	37 <1 7 <1 54 <1 7 <1 18 <1	<2 <2 <2 <2 <2 <2 <2	26 45 47 18 39	<.2 5. <.2 1. .2 . <.2 . <.2 .	.1 .5 .8 <.5 .8 <.5 .5 <.5 .7 <.5	60 .02 21 .02 44 .03 11 .04 23 .01	.071 2 .015 2 .050 2 .019 2 .027 2	1 23 .03 3 16 .01 9 13 .03 6 7 .01 5 9 .01	5 61 1 77 5 61 1 87 1 92	.023 < .020 < .021 < .007 < .009 <	1 .49 1 .08 1 .40 1 .21 1 .19	.004 . .005 . .004 . .004 . .003 .	.02 <1
02458 02459 02460 02461 02462	1.9 18 37 2.7 13 53 3.9 14 97 3.9 23 88 2.0 12 36	36 .8 29 .9 40 2.5 61 2.6 23 <.1	11 3 9 2 11 3 20 5 8 2	118 1.71 77 1.46 255 4.47 283 4.77 106 1.31	52 <1 58 1 50 <1 81 <1 46 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 8 1 12 5 11 2 11 3 13	.2 1. .4 1. .2 2. .6 1. .2	.0 1.0 .3 .7 .3 .8 .8 <.5 .6 1.4	30 .03 26 .05 52 .11 49 .14 19 .10	.034 2 .025 1 .127 1 .228 1 .028 2	7 9.04 8 12.07 9 32.19 7 37.24 6 8.0	4 129 7 186 9 111 4 93 3 144	.016 < .017 < .043 < .037 < .016 <	1 .44 1 .46 1 1.06 1 1.11 1 .26	.004 .004 .004 .006 .003	.03 <1 <1 1.1 <1<.01 3 .05 <1 <1 1.0 <1<.01 2 .04 <1 <1 1.7 3 .02 1 .04 <1 <1 1.9 1 .02 1 .03 <1 <1 .8 <1<.01 2
02463 02464 02465 02466 02466	3.7 25 66 4.7 47 162 2.2 30 318 3.0 21 31 2.2 16 42	49 .4 90 2.3 62 .7 35 .3 33 .2	22 6 36 14 28 20 11 3 9 3	324 2.73 1020 3.74 1783 4.63 252 1.50 232 1.68	100 1 135 2 172 <1 59 1 54 <1	<2 <2 <2 <2 <2 <2	3 18 1 34 2 13 1 19 1 13	.4 1 .8 1 .7 1 .4 < .3	.0 2.5 .1 3.8 .7 3.7 .5 1.4 .8 <.5	23 .16 42 .45 15 .22 20 .18 24 .12	.044 2 .090 1 .091 2 .041 2 .038 2	3 16 .1 8 29 .1 2 12 .0 0 11 .0 5 11 .0	2 230 9 328 6 109 3 147 7 126	.011 < .015 < .006 < .017 < .018 <	1 ,53 1 1.21 1 ,56 1 ,23 1 ,38	.003 .005 .004 .003 .003	.05 <1 <1 1.5 1<.01 <1 .09 <1 <1 2.7 2 .02 <1 .04 <1 <1 1.1 2 .02 <1 .03 <1 <1 1.2 <1 .01 2 .04 <1 <1 .9 <1<.01 2
02468 02469 02472 02473 02474	2.9 22 5 ⁴ 2.0 17 40 4.1 11 60 4.6 13 60 6.0 28 54	37 2.2 33 .4 5 41 .4 9 40 .9 57 .4	2 11 3 5 8 3 5 10 1 5 10 2 5 20 4	154 3.07 222 2.32 57 1.77 57 2.62 107 4.93	109 <1 101 <1 68 1 51 1 56 1	<2 <2 <2 <2 <2 <2	2 11 2 8 3 21 3 26 6 19	.4 1 .4 .3 1 .2 1 .3 1	.2 .7 .5 .8 .3 .5 .3 .5 .9 <.5	27 .06 22 .04 28 .04 38 .04 54 .05	.125 1 .089 2 .066 2 .055 2 .081 2	9 16 .1. (3 12 .0) (4 12 .0) (4 18 .0) (2 35 .1)	2 93 9 75 3 115 6 101 6 87	.014 < .008 < .009 .016 < .043 <	1 .68 1 .60 2 .38 1 .60 1 .98	.003 .003 .002 .003 .003	.04 <1 <1 1.0 <1 .01 1 .04 <1 <1 .7 <1 .01 2 .03 <1 <1 .7 <1 .01 4 .02 <1 <1 .9 <1 .01 3 .04 <1 <1 1.6 3 .02 5
02475 RE 02475 02476 02477 02478	4.9 8 1 4.8 8 1 6.1 20 5 5.2 35 7 3.7 11 3	5 11 1.5 5 12 1.5 2 45 1.5 3 60 4.5 3 26 .5	2 4 1 3 3 1 5 13 3 2 18 3 5 7 7	48 .94 50 .97 88 4.05 81 2.91 37 1.07	26 <1 26 <1 63 1 36 2 30 <1	<2 <2 <2 <2 <2	2 9 3 9 5 12 3 16 1 14	<.2 1 <.2 1 .3 1 .3 2 <.2 1	.7 <.5 .4 <.5 .9 <.5 .8 <.5 .1 <.5	45 .01 45 .01 80 .05 33 .05 34 .04	.031 2 .032 2 .113 2 .056 1 .030 2	23 8 .0 24 8 .0 22 25 .0 15 36 .1 23 9 .0	1 99 1 98 8 84 4 137 2 98	.019 .020 .046 .022 .014	1 .18 1 .18 1 .76 1 .76 1 1.52 1 .31	.002 .003 .003 .004 .002	.02 <1 <1 .3 <1<.01 5 .02 <1 <1 .4 <1<.01 5 .03 <1 <1 1.3 1 .02 5 .03 <1 1 2.1 <1 .03 2 .02 <1 <1 .8 <1<.01 4
02479 02480 02481 02482 02483	6.5 39 124 5.4 26 64 4.5 136 114 1.5 8 24 2.5 30 6	4 69 2.0 50 1.0 8 76 63.0 9 15 1. 2 30 .0	24 / 6 15 3 7 39 20 1 4 < 8 11 3	4 118 5.96 5 104 2.96 5 383 1.95 1 35 .55 2 70 1.73	128 1 174 1 74 17 23 <1 54 1	<2 <2 <2 <2 <2 <2	2 15 3 12 2 18 1 13 1 14	.6 1 .7 1 1.1 2 <.2 < .5	.8 2.3 .4 1.4 .1 .8 .5 <.9 .5 1.0	64 .05 65 .06 19 .15 11 .05 24 .06	.153 1 .106 2 .273 4 .027 2 .034 2	13 41 .1 20 19 .0 33 63 .1 22 7 .0 24 15 .0	2 100 8 85 1 466 2 99 6 163	.020 .041 .010 .012 .014	1 1.01 1 .49 1 2.64 1 .17 2 .55	.005 .004 .006 .003 .004	.03 <1 <1 1.4 1 .04 5 .03 <1 <1 1.3 <1 .02 6 .06 <1 1 8.7 <1 .11 2 .02 <1 <1 .4 <1<.01 3 .04 <1 <1 1.3 <1 .01 2
02484 02485 02486 02487 Standard C3	4.1 16 8 1.7 35 4 3.6 32 7 1.9 205 15 27.0 67 3	9 38 1. 3 35 1. 9 73 1. 7 98 1. 5 171 5.	5 13 10 6 27 9 1 24 9 3 35 40 3 37 12	0 424 2.85 9 198 3.11 9 568 3.14 6 1985 6.79 2 777 3.26	i 105 1 229 <1 88 1 1810 <1 5 56 23	<2 <2 <2 3 <2	2 25 4 11 2 19 8 17 22 30	.8 1 <.2 3 .4 1 .4 8 24.1 16	.4 1.4 1.7 1.0 1.5 .7 1.0 4.6 1.6 22.4	35 .26 12 .12 7 28 .17 5 21 .28 8 81 .59	.058 1 .041 2 .063 2 .091 3 .093 1	15 21 .1 25 7 .0 20 19 .1 32 11 .1 19 175 .6	4 335 15 106 1 175 9 114 52 156	.011 .008 .014 .011 .089	<1 .66 <1 .37 <1 .74 2 .76 17 1.82	.006 .003 .004 .008 .045	.07 <1 <1 1.4 2 .02 3 .04 <1 <1 .8 2 .01 1 .07 <1 <1 1.6 1 .02 3 .07 1 <1 6.2 1 .01 4 .18 15 2 4.4 1 .02 5
STANDARD G-2	1.6 4	3 44 <.	18	4 539 2.02	2 <1 2	<2	4 85	<.2 <	.5 <.5	5 42 .68	.100	7 80 .6	2 250	.128	<1 1.06	.135	.56 2 1 2.6 1<.01 5

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469

Page 1	12
--------	----

Data____FA__

SAMPLEP Mo Cu Pis As U U U Th So Pis	DE ANALYTICA.																																marta di Li				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 SAMPLE#	Жо ррл р	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppn p	Co xpm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	ĩh ⊃pm p	Sr opm	Çd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Ćr ppm	Mg %	Ba ppm	ti %	B ppm	Al %	Na %	К %	₩ ppm	Hg ₽₽₩	Ş⊂ pprn	TL ppm	\$ _% p	Ga pm	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 02488 02489 02496 02501 02502	2.0 1.3 2.1 1.8 1.9	66 129 24 18 22	87 95 67 35 48	73 103 40 49 48	3.6 .6 .9 1.3 1.1	29 23 9 14 16	14 31 4 4 4	1198 1327 343 135 193	3.33 5.03 3.27 4.48 3.53	465 1394 181 32 39	2 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	1 1 3 3	31 19 8 6 8	1.2 2.3 .9 .4 .5	1.2 2.3 1.3 1.3 .8	1.5 1.5 1.3 <.5 <.5	27 23 28 49 37	.52 .45 .06 .06 .07	.154 .097 .087 .045 .058	21 27 21 20 18	19 12 15 39 26	.09 .17 .10 .30 .21	162 97 67 70 146	.010 .007 .009 .047 .024	1 2 1 2 <1	.96 .79 .69< .46	.004 .001 .001 .003 .003	.07 .04 .03 .04 .04	<1 1 <1 <1 <1	<1 <1 <1 <1 <1	2.1 3.7 .7 1.6 1.3	<1 <1 <1 <1 <1	.05 .02 .01 .02 .02	1 <1 1 3 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02503 02504 02505 02506 02506	2.7 2.0 1.8 1.6 2.0	18 21 14 29 23	54 53 38 34 24	125 109 55 54 43	1.9 .3 1.2 1.2 .6	27 23 17 19 20	8 7 4 5	348 269 170 308 260	2.33 2.63 4.18 3.09 3.25	35 48 25 28 45	1 <1 <1 1 1	<2 <2 <2 <2 <2 <2 <2	<1 1 4 2 <1	34 18 15 7 7	1.0 .5 .3 .5 .3	<.5 <.5 <.5 .5	<.5 <,5 <.5 <.5 <.5	29 31 37 30 26	.16 .11 .15 .08 .05	.071 .063 .091 .086 .099	19 22 19 19 18	23 24 31 33 26	.24 .27 .29 .33 .22	390 254 92 63 53	.010 .014 .035 .020 .008	2 1 - 1 - 2 - 1	.92 1.02 1.12 1.12 1.93	.002 .002 .002 .002 .002 .001	.07 .07 .04 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.4 1.3 1.2 1.0	<1 <1 <1 <1	.02 .02 .03 .03 .02	3 3 3 2 2	
02515 1.9 13 20 19 .6 6 1 55 1.0 54 .4 .2 1 8 .3 .5 .7 21 .03 .030 24 7 .02 63 .011 1 .18 .001 .02 1 .1 4 1 .1 8 .01 .1 1 .1 1 .1 1 .1 1 .1 1 .1 <	02508 02509 02510 02511 02514	2.1 2.6 1.3 1.7 2.5	17 29 16 57 26	54 55 24 51 39	73 132 43 89 59	<.1 .6 1.3 .5	18 31 14 44 20	8 10 5 24 6	377 481 438 850 231	2.90 2.69 2.97 4.71 5.77	38 61 20 41 64	<1 1 <1 1 <1	<2 <2 <2 <2 <2 <2 <2	1 1 7 5	18 32 12 8 8	.4 .9 .5 .4	1.0 1.0 .5 1.4 1.7	<.5 <.5 <.5 <.5	34 29 37 41 45	.11 .16 .11 .10 .05	.056 .069 .062 .068 .083	26 21 24 37 20	25 23 28 41 43	.22 .28 .25 .69 .28	151 282 419 79 105	.020 .013 .036 .045 .039	<1 2 <1 1 <1	.90 .90 .92 1.75 1.26	.002 .003 .003 .003 .003	.05 .07 .05 .07 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.2 2.0 1.3 3.2 1.7	<1 1 <1 1 2	.01 .02 .02 .02 .02	4 2 5 5 4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02515 RE 02515 02516 02517 02518	1.9 1.7 1.1 1.6 1.3	13 12 8 10 6	20 18 30 41 25	19 17 17 24 12	6 6 5 8 4	6 6 6 4	1 1 2 1	55 55 54 118 41	1.04 1.04 1.73 2.82 .78	54 51 65 51 32	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	1 1 ~1 ~1	8 9 6 7 9	.3 .2 .3 .2 <.2	.5 .5 <.5 1.1 <.5	.7 .7 .5 <.5 <.5	21 23 60 49 21	.03 .03 .06 .05 .05	.030 .029 .071 .089 .029	24 24 26 21 26	7 7 15 18 7	.02 .02 .08 .10 .04	63 61 41 93 61	.011 .011 .039 .021 .015	1 <1 <1 <1	.18 .17 .68 .74 .33<	.001 .001 .001 .001 .001	.02 .02 .03 .03 .02	1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.4 .4 .9 .8 .4	1, 1, <1 <1 <1	- 01 - 01 - 01 - 01 - 01	4 8 5 5	
02524 1.3 29 64 59 .8 18 7 395 4.46 73 1 <2	<.5	02519 02520 02521 02522 02522 02523	2.3 1.8 1.1 1.3 2.7	13 17 23 30 27	53 70 41 57 65	37 35 50 54 54	2.9 .6 .2 .8	12 14 19 22 23	3 3 6 13 10	193 243 303 1163 822	5.05 3.13 5.16 3.13 3.22	60 87 118 70 68	<1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2	2 <1 2 <1 2	7 9 10 22 17	.5 .4 .7 .7	.8 .7 .9 <.5 <.5	.5 1.5 <.5 .5 1.0	67 30 67 36 38	.06 .07 .10 .33 .20	.196 .180 .116 .108 .084	17 19 19 26 25	32 16 33 24 26	.23 .12 .40 .23 .33	75 78 108 205 189	.036 .012 .086 .017 .025	2 <1 2 <1 1	1.10 .57 1.16 1.04 1.15	.002 .001 .003 .002 .002	.03 .03 .06 .05 .06	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.1 .6 1.8 1.3 2.5	<1 <1 <1 1 <1	.03 .02 .04 .03 .01	5 3 7 4 4
02529 .9 38 50 59 .2 21 11 447 3.56 68 1 <2	02523 02525 02525 02526 02527 02528	1.3 1.1 .3 .4 3.7	29 52 25 13 106	64 85 53 20 77	59 86 70 32 284	.8 1.7 <.1 .3	18 26 20 7 70	7 11 9 3 20	395 809 247 145 1050	4.46 3.81 3.39 1.84 4.63	73 110 32 60 102	1 <1 <1 30	<2 <2 <2 <2 <2 <2 <2	3 1 12 4 2	8 30 3 4 31	.5 .8 .2 .3 7.2	<.5 <.5 <.5 <.5 7.0	<.5 1.1 <.5 .5 <.5	39 35 13 7 61	.11 .60 .04 .03 .30	.098 .116 .042 .039 .131	20 25 32 29 22	32 28 10 4 51	.35 .26 .09 .04 .33	89 166 76 59 112	.035 .018 .001 .002 .021	<1 1 <1 <1 1	1.29 1.23 1.13 .54 1.15	.002 .002 .001 .001 .004	.05 .06 .03 .04 .05	<1 <1 <1 <1 <1	<1 <1 <1 <1 1	1.5 3.3 1.2 .5 2.9	<1 <1 <1 <1 <1	.03 .04 .01 <.01 .04	4 2 1 2	
STANDARD 6-2 2.6 5 2 44 <.1 8 4 517 1.95 <1 2 <2 4 72 <.2 <.5 <.5 41 .63 .104 7 78 .58 233 .127 1 .91 .081 .49 2 1 2.6 1<.01 5	02529 02530 02531 02532 STANDARD 53	.9 2.0 1.3 1.0 27.4	38 21 22 13 66	50 123 67 39 36	59 53 54 23	.2 1.2 .9 1.1	21 21 19 9 37	11 6 6 2 11	447 295 304 96 764	3.56 4.31 3.82 2.32 3.26	68 50 32 26 60	1 1 <1 24	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 <1 <1 21	6 11 7 7 29	.5 .4 .3 .2 24.4	1.5 1.1 .8 <.5 15.6	<.5 .8 <.5 <.5 24.0	21 48 38 23 82	.10 .11 .11 .08 .58	.051 .099 .071 .065 .097	26 19 21 17 18	14 36 35 20 176	.20 .40 .27 .14 .60	50 75 58 41 160	.016 .031 .030 .017 .090	<1 <1 <1 <1 20	.72 1.30 1.59 .81 1.78	.001 .002 .002 .002 .002	.03 .06 .03 .03 .17	<1 <1 <1 <1 15	1 <1 <1 <1 2	1.6 1.4 1.6 .6	1 <1 <1 <1 1	.02 .04 .02 .02 .03	1 5 4 6	
	STANDARD C-2	2.6		7	44	. <.1	8	4	517	1.95	<1	2	<2	4	72	<.2	<.5	<.5	41	.63	. 104	7	78	.58	233	. 127	1	.91	.081	.49	2	1	2.6	1	<.01	5	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA

Island Mountain Gold Mines Ltd. FILE # A004469

Page 13

ACHE ANALYTICAL

Date FA

ADE AND TICAL																														V	شــــــــــــــــــــــــــــــــــــ		en in	TI.	¢	Ga
SAMPLE#	Mo Dom	Č.	I ₽	b m b	Zni comin	Ag	Ni	CO MCC	Mn DOM	Fe %	As ppm	U ppm	Au ppm	Th ppm p	Sr opmu	Cdi ppm	Sb ppm	Bi ppm	v norq	Ca %	P %	La ppm p	Cr opm	Mg %	Ba ppm	Ti %	в ppm	AL %	Na %	к %	ppm w	ну ppm	ppm p	pm	<u>% p</u>	pm
02533 02534 02536 02539 02542	2.6 1.6 6.8	25 18 51 78	6 5 3 7	6 8 3 6 2 3 1	30 65 82 22 22	1.0 .3 1.8 3.5 .3	9 18 31 88 100	2 13 15 37 41	96 929 562 754 881	2.70 2.98 3.11 4.13 4.01	46 45 27 56 20	<1 1 6 9 2	<2 <2 <2 <2 <2 <2 <2	2 <1 3 4 17	9 14 9 17 12	.4 .4 .6 1.7 .4	.8 1.0 .8 3.2 1.6	.9 .6 2.3 <.5 <.5	39 33 26 35 30	.07 .16 .08 .11 .18	.031 .072 .058 .090 .064	25 22 23 20 47	19 28 24 57 39	.14 .28 .41 .40 .82	96 207 59 289 90	.034 .017 .031 .030 .074	3 2 5 1 <1	.79 1.24 1.11 3.09 2.06	.003 .004 .003 .005 .004	.04 .05 .06 .08 .11	<1 <1 <1 <1 <1	<1 1 <1 1 1	1.1 1.5 2.4 2.8 6.1	<1 . 1 . <1 . <1 . 2 .	01 02 04 05 03	2 2 <1 1 <1
02542 02544 02545 02546 02546	1 Z 1 3 1 4 9	61 2(19 2) 21		3 2 2 1 3	85 55 53 64 67	.1 .2 .2 .7	47 15 15 32 37	22 6 7 10 9	728 434 491 1165 885	3.98 3.14 3.20 3.27 3.46	33 15 16 13 16	2 1 <1 1 1	<2 <2 <2 <2 <2 <2	6 1 1 2 1	21 31 30 33 36	.5 ≺.2 .7 .6	1.0 <.5 .7 <.5	<.5 <.5 <.5 <.5	37 51 49 30 32	.41 .47 .46 .55 .58	.074 .062 .063 .103 .107	31 20 21 21 26	35 32 33 29 35	.78 .41 .40 .45 .50	76 80 81 180 159	.063 .036 .036 .020 .021	2 <1 2 1 2	1.48 1.27 1.28 1.51 1.63	.003 .004 .003 .004 .004	.09 .05 .05 .06 .07	<1 <1 <1 <1 <1	1 <1 <1 <1 1	3.9 1.9 1.8 1.4 1.7	<1 . <1 . <1 . 1 . <1 .	02 02 02 02 04	<1 4 3 3
02548 02549 02550 02551 02552	1.4 1.3 7 1.7	23 32 6 4	3 2 5 3 5 2 7 3	6 10 17 11 15 1	59 73 45 22	.8 .8 .5 .5 <.1	28 25 17 61 43	9 8 26 18	525 476 335 1621 566	3.52 4.23 3.25 4.48 4.34	27 32 12 33 23	1 1 <1 2 1	<2 <2 <2 <2 <2 <2 <2	<1 <1 1 3 5	29 6 29 34 13	.3 .3 .6 1.2 .6	<.5 1.6 <.5 <.5 1.2	<.5 .6 <.5 .7 <.5	40 45 53 35 43	.54 .08 .66 .67 .21	.083 .158 .105 .147 .083	24 21 16 43 25	29 36 25 39 43	.29 .44 .24 .57 .77	130 105 171 228 115	.019 .019 .050 .016 .034	3 <1 1 3 4	1.30 1.36 .95 1.67 1.88	.003 .002 .004 .005 .003	.05 .04 .05 .09 .07	<1 <1 <1 <1 <1	<1 1 <1 <1 1	1.8 1.4 1.5 5.3 3.1	<1 . <1 . <1 . <1 .	.03 .03 .04 .05 .03	3 3 4 3 3
02553 02554 02555 02556 02557	3.0 4.2 4.6 3.1 2.9	2 2 3 4 4 4 4	5 5 6 4 2 7 3 10 3 11	52 57 57 17 1	47 60 73 103	.2 1.4 1.1 2.3 1.8	16 17 22 33 37	4 3 4 8 9	177 98 117 264 248	4.37 2.22 2.95 4.90 3.96	93 80 83 48 43	1 1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 3 4 8 7	13 11 16 8 9	.6 .5 .7 .6	2.1 2.2 1.7 2.1 2.5	2.0 .8 1.2 .9	36 40 35 37 32	.05 .04 .05 .08 .08	.067 .043 .048 .067 .062	14 20 19 18 17	33 14 19 34 36	.19 .06 .11 .25 .23	104 72 103 96 103	.075 .023 .023 .030 .030	3 <1 <1 1 2	.82 .56 .73 1.50 1.90	.003 .001 .002 .003 .003	.03 .02 .03 .05 .05	<1 <1 <1 <1 1	<1 <1 <1 1 1	2.0 1.5 1.9 2.8 3.0	<1 . <1 . <1 . <1 . <1	.03 .01 .02 .02 .03	1 4 2 2 1
02558 02559 02560 RE 02560 02561	4.8 1.5 1.1	3 3 5 1 1 1 1 1 2 1	1 1 ¹ 5 4 7 3 6 3 8 4	11 44 35 34 46	97 37 39 37 26	.7 <.1 .2 .3	28 10 14 14 17	5 2 5 5 5	117 94 613 601 161	7 3.08 2.65 3 3.14 3.04 3.32	53 45 118 119 123	2 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	4 2 7 6 7	9 7 5 4	.4 .2 .5 .5	2.6 .9 1.7 1.6 1.7	<.5 1.0 .6 1.1 1.8	24 41 23 20 16	.05 .05 .02 .02 .02	.054 .031 .061 .061 .082	19 22 38 36 41	16 15 10 10 9	.14 .05 .04 .04 .06	66 43 45 45 32	.012 .022 .011 .011 .005	<1 <1 <1 <1 1	.70 .66 .51 .50 .56	001. 001. 001. 001. 001.	.03 .02 .03 .03 .03	<1 <1 1 1 <1	<1 <1 <1 <1 <1	1.5 1.3 .9 1.0 1.0	<1 <1 2< <1< <1<	.02 .01 .01 .01 .01	1 3 1 1
02562 02563 02564 02565 02565	3.1 1.1 1.0 1.0 4.1	7 5 1 15 0 14 5 25 5 2	9 5 5 9 6	29 13 13 22 95	105 94 87 82 44	.2 <.1 <.1 <.1	31 18 17 20 14	10 24 24 36 3	142 338 332 450 95	2 3.94 3 6.88 2 6.54 0 7.74 5 3.04	117 25 23 20 89	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2	6 8 7 11 6	5 5 5 15	.9 .3 .2 <.2	2.3 1.5 1.2 1.3 1.7	.6 .5 <.5 <.5 1.6	14 87 87 76 35	.08 .05 .04 .04 .03	.066 .088 .079 .099 .137	33 24 22 22 34 7 18	6 14 14 14 17	.08 .70 .66 .60 .07	38 91 78 51 102	.002 .004 .004 .003 .015	1 1 2 <1	.56 2.76 2.65 2.75 .46	<.001 .002 .002 .002 <.001	.03 .02 .02 .02 .01	<1 <1 <1 <1 <1 <1	<1 1 1 1 <1	1.3 5.1 4.8 6.4 1.7	<1 <1 1 <1	.01 .01 .01 .01 .01	<1 8 8 2
02567 02568 02569 02570 STANDARD C3	1.9 1. 4.8 2.	99 11 87 33	4 1 10 7	12 13 44 35 35	63 30 111 51 165	2 1 1.0 1.3 5.4	13 11 31 16 37	15 3 10 5 12	114 41 154 96 764	8 4.63 7 1.21 0 4.86 8 2.79 6 3.18	77 74 162 113 58	1 <1 1 23	<2 <2 <2 <2 <2 <2	7 12 9 9	4 5 4 29	.4 .3 1.3 .5 25.0	2.0 .6 3.8 2.2 15.5	<.5 <.5 .6 1.0 23.3	23 14 23 27 81	.02 .01 .05 .02 .58	.093 .029 .089 .038	3 25 9 43 9 30 3 30 7 18	4 9 9 174	.06 .02 .12 .06 .61	36 39 38 48 160	.002 .002 .003 .006 .089	<1 <1 <1 <1 <1 Z2	.58 .34 .74 .86 1.82	.003 <.001 <.001 <.001 <.001	.02 .02 .04 .02 .17	<1 <1 <1 <1 <1 15	<1 <1 <1 <1 Z	3.9 .8 2.1 1.4 4.5	<1< <1< <1 <1< <1< <1	.01 .01 .02 .01 .03	1 2 1 2 6
		5		τ	42	< 1	8	4	54	0 2.06	5 1	2	<2	5	76	<.2	<.5	<.5	42	,67	.107	79	80	.61	241	, 133	<1	. 98	. 085	.52	2	1	2.6		.01	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469

Page 14

Data ____ FA __

SAMPLE#	No	Cu	Pb DOM	Zn	Ag pom 1	NÎ DOM D	Co xxm	Mri ppm	Fe X	As ppm	U ppm p	Au pm p	Th opm p	sr pm	Cdi ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm p	Сr орп	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %_р	y mga	Hg S Spon pi	sc I pm pp	l S xm %	Ga Ga	1
02571 02572 02573 02574 02575	2.1 2.0 2.3 5.3 4.8	20 20 25 41 57	21 32 48 62 68	36 59 50 87 121	<.1 .1 .8 1.1 2.4	12 17 16 21 36	3 4 4 4 4	122 118 115 107 166	2.01 3.53 3.38 4.46 4.39	132 62 68 60 40	<1 1 1 2 3	<2 <2 <2 <2 <2 <2 <2 <2 <2	7 7 7 7 3	7 6 8 7 13	.6 .3 .4 .4 .4	1.0 1.0 1.2 2.0 2.3	1.2 .6 .8 <.5 <.5	34 47 35 38 23	.05 .05 .05 .03 .03	.029 .039 .080 .059 .071	28 27 21 20 17	9 19 18 24 38	.03 .13 .13 .12 .24	47 74 69 71 65	.017 .035 .028 .023 .022	<1 <1 <1 <1 <1	.32 .89 .71 .95 1.80	.002 .001 .002 .002 .002	.02 .03 .03 .03 .03	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 2	.1 .6 .5 .7	:1<.01 1<.01 <1 .01 <1 .01 <1 .04	3 3 1 1	+
02576 02577 02578 02579 02580	2.5 2.3 3.0 1.6 1.1	45 20 27 42 23	50 37 39 39 23	82 36 48 82 48	2.4 .6 1.0 1.4 .5	12 10 18 40 15	4 2 3 13 5	245 80 138 1237 199	1.92 2.17 4.30 2.92 3.51	75 32 50 23 24	<1 <1 1 1 <1	<2 <2 <2 <2 <2 <2 <2	4 1 3 1 1	18 16 14 50 26	.6 .3 .3 2.2 .3	1.3 .6 1.4 <.5 <.5	.5 <.5 <.5 <.5 <.5	41 43 34 32 66	.21 .15 .04 .95 .47	.034 .062 .118 .083 .087	22 21 19 25 22	13 18 27 23 29	.02 .14 .18 .30 .32	181 147 111 217 113	.025 .025 .016 .012 .058	3 <1 <1 <1 <1	.17 .74 1.01 1.11 .99	.001 .002 .002 .003 .003	.01 .04 .04 .06 .05	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 1 <1 1	.1 .1 .7 .8 .9	<1 .01 <1 .02 <1 .04 2 .03 <1 .02	1 <' 2 4 3 3 2 4	234
02581 02582 02583 02584 02585	1.3 1.4 1.1 .8 1.7	19 30 16 17 23	30 37 20 20 27	42 74 49 52 62	.2 .1 .1 .7 <.1	15 25 15 16 19	4 10 6 5 6	151 609 506 267 521	3.33 5.30 3.94 5.09 4.60	21 29 11 16 25	1 1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 4 5 4 4	16 8 6 8	.2 .4 .2 .3	<.5 .7 <.5 1.2 .7	<.5 <.5 <.5 .5	55 53 64 81 78	23 15 10 07 06	.044 .070 .052 .167 .178	23 19 18 22 19	26 38 33 39 36	.25 .41 .39 .39 .37	122 149 97 69 201	.059 .068 .094 .048 .069	2 <1 <1 <1 <1	.91 1.34 1.26 1.41 1.10	.004 .003 .003 .003 .002	.04 .04 .05 .03 .05	<1 <1 <1 <1 <1	<1 1 <1 2 <1 2 <1 2 <1 2 <1 2	.8 .5 .1 .3	<1 .02 2 .03 <1 .03 <1 .03 2 .03	2 2 3 2 3 4 2 3 4 2 4 2 4 2 4 2 4 2 4 2	5 5 7 6
02601 02602 02603 02604 02605	.5 .6 .9 .7	22 34 52 51 26	38 24 75 55 32	52 61 97 141 84	.3 .2 <.1 .6 <.1	12 15 27 29 14	5 8 16 15 7	223 355 698 1264 286	3.87 3.80 5.19 3.73 4.03	20 32 43 34 14	1 1 3 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 1 5 2 4	4 5 17 34 5	.4 .3 .5 .8	<.5 <.5 .8 <.5 <.5	<.5 <.5 <.5 <.5	36 39 26 29 20	.07 .07 .25 .68 .07	.046 .075 .103 .120 .062	22 22 28 19 28	22 16 20 26 15	.16 .33 .30 .32 .15	101 75 95 135 110	.019 .010 .011 .014 .006	<1 <1 2 1 <1	1.21 1.19 1.22 1.38 .98	.002 .001 .002 .003 .001	.04 .03 .04 .06 .04	<1 <1 <1 <1 <1	<1 1 <1 1 <1 2 <1 3 <1 1	.5 .4 .1 .2	<1 .02 1 .07 2 .07 2 .04 2 .0	2 2 4 1	5 3 2 1
RE 02605 02606 02607 02608 02608	.6	24 31 31 17 27	 32 42 49 25 38	80 100 89 52 64	<.1 .2 .2 <.1	13 32 25 15 26	7 17 17 6 11	288 611 548 195 274	4.05 3.66 4.06 3.51 4.67	14 22 17 15 20	1 1 2 <1 1	<2 <2 <2 <2 <2 <2 <2	3 6 6 3 8	4 22 23 19 4	.2 .3 .2 .3	<.5 <.5 <.5 <.5 1.0	<.5 <.5 <.5 <.5	18 28 21 22 21	.07 .39 .32 .32 .06	.061 .046 .064 .048 .048	28 25 28 24 29	15 25 21 17 20	.14 .41 .29 .24 .29	109 69 93 141 77	.007 .026 .009 .005 .010	3 5 3 <1 1	.98 1.20 1.39 1.31 1.19	.001 .004 .003 .002 .001	.04 .05 .05 .05 .04	<1 <1 <1 <1 <1	<1 1 <1 3 <1 3 <1 1 <1 1	.1 .7 .2 .4	<1 .0 1 .0 3 .0 <1 .0 <1 .0	1 1 2 1 1	2 3 2 3 3
02610 02611 02612 02613 02614	1.0 .8 .7 .7	21 14 22 20 46	35 39 33 37 42	62 48 57 55 76	<.1 .4 .3 .6	22 10 19 17 48	9 5 8 6 20	231 132 168 113 723	5.71 4.85 5.39 4.53 4.24	30 27 23 18 19	<1 <1 <1 <1 <1 4	\$\$\$\$\$ \$	6 6 7 7	6 5 6 5 28	.3 <.2 .3 .3 .2	.8 9 1.1 .6 <.5	<.5 .7 <.5 <.5 <.5	48 46 56 41 33	.11 .08 .15 .07 .46	.044 .054 .045 .030 .062	20 27 23 26 31	37 18 34 26 31	.33 .12 .30 .22 .36	106 77 90 78 131	.040 .034 .043 .020 .016	1 2 3 4	1.80 1.08 1.53 1.45 1.98	.003 .002 .003 .002 .005	.04 .03 .04 .03 .06	1 <1 <1 <1 <1	<1 2 <1 1 <1 2 <1 1 1 5	2.6 1.2 2.1 1.8 5.7	1 .0 <1<.0 1 .0 2 .0 2 .0	2 1 1 1 2	6 5 6 5 5
02615 02617 02618 02619 STANDARD 03	.7 1.0 1.8 1.6 27.2	19 55 49 36	19 98 63 195 36	68 86 92 77 150	<.1 1.2 .9 .1 5.7	18 33 26 24 37	8 18 17 13 12	153 1405 1022 1065 761	5.46 4.37 6.76 6.54 3.28	10 139 157 432 58	<1 7 1 1 24	<2 <2 <2 <2 <2 <2 <2 <2 <2	8 4 3 4 23	6 27 7 9 29	.2 .9 .9 .5 24.5	<.5 .9 1.2 1.6 15.1	<.5 .8 <.5 5.6 23.5	18 21 35 35 78	.10 .62 .10 .14 .57	.052 .103 .097 .219 .099	27 26 21 22 17	22 15 36 26 176	.37 .28 .47 .33 .60	92 42 61 108 163	.010 .015 .034 .021 .085	5 4 5 3 21	1.40 .86 1.60 1.02 1.84	.002 .004 .003 .002 .040	.04 .04 .04 .04 .17	<1 2 1 1 15	<1 2 <1 3 <1 2 <1 2 2 4	1.2 3.5 2.4 1.8 4.6	1 .0 2 .0 2 .0 2 .0 3 .0	12 14 13 13	5 2 5 6 6
STANDARD G-2	1.6	4	2	48	<.1	8	4	559	2.12	<1	2	<2	6	79	<.2	<.5	<.5	44	.68	.111	8	84	.64	251	.135	<1	1.02	.087	.54	2	1 2	2.9	2<.0	1	5

ACHE ANALYTICAL

SANPLE#

Th the train

1

Mo Cu Pò Zn Ag Ni Co Mn Fe As U Au Th Sr

۲

Island Mountain Gold M

1

۳

Mine	es l	Ltd	•	F	ILE	; #	AO	04	469	9					Pag	le	15		ACI	AE ANALY	TICAL
Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Hg ppm	Sc ppm	Tl ppm	S %	Ga ppm	
4	4	~ 6	57	17	085	24	77	28	73	.033	2	1.50	.004	.04	<1	<1	1.6	<1	.02	4	
.0	1 0	1 1	20	06	157	21	18	.16	53	.013	4	.86	.002	.03	<1	< 1	1.0	<1	.02	1	
.7	1.0	1.1	13	.00	076	26	7	07	45	.004	<1	.43	.002	.04	<1	<1	.9	<1	.02	<1	
.0	1.4	.0	21	-0-	.002	21	12	.10	88	.009	<1	.56	.001	.03	<1	<1	1.0	<1	.01	<1	
.8	.7	2.3	21	.09	.075	15	12	.09	88	.005	<1	.60	.003	.03	<1	<1	.4	<1	.02	1	
< 2	< 5	< 5	10	.04	.036	29	4	,02	42	.009	<1	.25	.001	.02	<1	<1	.3	1.	<.01	4	
··• 5	< 5		12	.04	.053	18	4	.03	52	.003	<1	.47	.003	.02	<1	<1	.4	1	.01	2	
•	<u> </u>	.9	12	07	173	10	19	17	50	020	<1	. 98	-004	.03	<1	<1	1.2	<1	. 02	- 4	

,

· · · •

AΛ

1 1

3MALET #	nom	DOM	DDD		n c	xom r	i mac	mac	ppm	X	ррг	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	%	ppm_	76	pm	76	<u>/</u>	A	ppii	PPin	Phil			
02620 02621 02624 02626 02626 02627	1.1 1.1 .8 2.8 1.6	27 28 34 29 17	62 119 80 72 73	2 8 5 5 5 4 5 3	51 < 66 64 66 61 1	<.1 .5 .6 .5 1.5	18 14 24 14 9	, 7 15 6 3	1804 544 1001 369 136	4.57 4.90 2.77 2.90 2.90	99 209 463 159 138		<2 <2 <2 <2 <2 <2 <2	2 2 2 <1 1	10 6 8 9 8	.6 .9 .6 .8 .8	.6 1.0 1.4 1.0 .7	<.5 1.1 .8 .7 2.3	54 29 13 21 21	.17 .06 .13 .06 .09	.085 .157 .076 .092 .075	24 21 26 21 15	33 18 7 12 12	.28 .16 .07 .10 .09	73 53 45 88 88	.033 .013 .004 .009 .005	2 4 <1 <1 <1	1.50 .86 .43 .56 .60	.004 .002 .002 .001 .003	.04 .03 .04 .03 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.6 1.0 .9 1.0 .4	<1 <1 <1 <1 <1	.02 .02 .02 .01 .01	4 1 <1 <1 1
02629 02630 02631 02632 02632 02633	.5 .4 1.0 .7 1.0	4 8 11 7 34	14 25 44 34 14	5 1 5 3 5 3	9 12 1 36 4 9	.9 1.0 4.9 .6 1.8	2 3 9 3 16	<1 1 3 <1 7	200 102 330 135 545	.44 1.28 3.10 1.05 4.00	24 109 63 38 168	• <1 • <1 5 <1 5 <1 3 <1 3 1	<2 <2 <2 <2 <2 <2	1 2 <1 2	6 4 5 5	<.2 .5 .3 <.2 .8	<.5 <.5 <.5 .9	<.5 .8 .6 .5 1.4	10 12 46 10 24	.04 .04 .07 .14 .07	.036 .053 .132 .050 .119	29 18 18 15 22	4 4 18 5 16	.02 .03 .17 .02 .15	42 52 50 29 56	.009 .003 .029 .004 .011	<1 <1 <1 <1 2	.25 .47 .98 .38 .79	.001 .003 .004 .003 .002	.02 .02 .03 .02 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.3 .4 1.2 .2	1< 1 <1 <1 <1 <1	.01 .01 .02 .02 .02	4 2 4 2 1
02634 02635 02636 02638 02638 02639	1.2 .7 .9 .3 .4	17 14 41 17 19	10 44 11 6 3	1 5 5 6 5 4 7 5	52 53 54 48	.3 .2 .3 .3 <.1	8 9 18 10 13	3 3 8 5 6	152 323 374 170 125	3.57 2.86 3.55 3.35 4.23	7 129 7 70 1 129 1 14 3 3	2 1 2 1 2 1 3 1 3 1 2 1	<2 <2 <2 <2 <2 <2	<1 <1 3 6 8	24 5 7 4 4	.6 .4 .6 <.2 <.2	<.5 .9 1.1 <.5	1.1 .7 1.1 .5 <.5	21 30 22 15 24	.53 .07 .10 .09 .03	.047 .048 .088 .037 .030	16 19 21 23 25	8 14 13 9 12	.08 .10 .24 .05 .08	32 43 34 51 44	.008 .015 .010 .007 .012	<1 <1 4 1 4	.65 .67 .82 .68 .87	.003 .002 .002 .002 .002	.02 .03 .04 .03 .03	<1 <1 1 <1 <1	<1 <1 <1 <1 <1	.7 .7 1.4 .9 1.1	<1 <1 <1 <1 <1	.02 .02 .03 <.01 .01	1 3 1 <1 2
02640 RE 02640 02641 02642 02643	.4 _4 _6 .7 .7	8 10 32 36 24	1 1 4 2 3	0 1 0 1 9 (8 1 5 1	19 21 62 90 24	<.1 <.1 <.1 .3 .4	7 8 25 33 18	3 3 9 17 13	114 120 397 3963 3445	2.05 2.16 6.99 3.60 3.20	5 14 5 19 3 7 20 5 21	9 <1 9 <1 8 1 0 4 3 2		7 7 10 2 2	7 7 4 48 39	<.2 <.2 .3 .8 .7	<.5 <.5 .7 <.5	<.5 <.5 <.5 <.5	32 33 26 38 37	.12 .13 .07 .76 .57	.024 .024 .060 .077 .062	28 33 23 18 16	8 36 30 21	.04 .05 .25 .28 .18	43 45 72 181 186	.022 .022 .013 .019 .018	<1 <1 1 <1	.56 .61 1.66 2.04 1.29	.001 .002 .002 .005 .005	.03 .03 .04 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.8 .7 2.2 4.6 2.6	<1 <1 2 5 3	<.01 <.01 .02 .04 .03	3 3 4 3 2
02644 02645 02701 02702 02703	.5 .4 6.4 6.1 2.4	17 30 13 12	2 3 3 3 3	5 (8 1) 4 : 1 3	64 05 20 19 10	<.1 .3 1.4 1.1 4.5	15 26 8 7 3	7 14 1 1 <1	33 75 50 50 39	3.34 3.59 5 1.13 3 1.03 9 1.29	4 1 7 2 3 2 9 2	5 1 8 1 6 1 4 1		2 3 2 2 2 2 2	29 40 6 5	<.2 .4 <.2 <.2 <.2	<.5 <.5 1.0 1.2 1.4	<.5 <.5 <.5 <.5	23 25 32 32 49	.41 .60 .01 .01	.057 .080 .027 .023 .029	20 21 21 21 18	17 22 8 7 10	.21 .33 .01 .01 .02	97 111 51 44 105	.008 .008 .016 .016 .021	<1 2 1 <1 <1	1.13 1.45 .20 .17 .38	.003 .003 .001 .001 .002	.03 .05 .01 .01 .01	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 2.5 .6 .6	<1 2 <1 <1 <1	.02 .02 <.01 <.01 <.01	3 4 3 3 6
02704 02705 02706 02707 02707 02708	1.1 3.5 4.3 1.3 1.3	3 15 12 5	5 1 5 2 2 2 7 1 3 1	8 3 9 4 8	5 29 24 21 17	.4 1.0 .2 .3 .2	2 8 6 7 5	<1 2 1 1	1 4 3 7 5) _24 3 1.14 5 _9 1 _8 3 _7	4 6 3 1 2 8 3 7 2	5 <' 1 <' 9 < 1 < 6 <		2 3 2 4 2 2 2 2 2 2	11 9 9 7 7	<.2 <.2 <.2 <.2 <.2	.6 1.6 1.7 <.5 <.5	<.5 <.5 <.5 <.5	i 10 i 47 i 26 i 26 i 26 i 18	.01 .01 .01 .03 .03	.011 .019 .020 .024 .026	24 26 20 29 29	3 7 5 6 5	<.01 .01 .01 .02 .01	105 54 71 46 52	.005 .010 .009 .012 .009	<1 <1 2 <1 <1	.09 .18 .12 .24 .19	<.001 <.001 <.001 .001 .001	.01 .01 .01 .02	<1 <1 <1 2 <1 1 <1		.4 .7 .5 1 .5 1 .5	<1 <1 <1 <1 <1	<.01 <.01 <.01 <.01 <.01	
02709 02710 02711 02712 STANDARD C3	2.8 2.7 1.3 2.6 26.4	12	5 3 2 2 7 1 5 3	1 67 84 1	28 26 20 38 57	1.2 .9 .7 4 5.4	8 7 6 15 36	2 2 1 4	6 5 22 77	5 1.1 1 1.0 7 .8 3 3.3 0 3.1	4 3 4 3 9 1 6 13 5 5	4 0 < 7 < 2 7 2	1 < 1 < 1 < 1 < 4 <	2 4 2 3 2 3 2 2 2 2 2 22	10 10 6 29	<.2 <.2 <.2 24.7	2		9 37 5 32 3 32 5 45 5 79	01 2 .03 2 .02 2 .02 5 .05 0 .56	.027 .027 .023 .023 .090	23 21 22 19 17	7 6 8 20 170	.01 .02 .02 .14 .60	60 61 36 93 158	.025 .021 .017 .030 .085	<1 <1 <1 <1 20	.20 .20 .41 .68 1.82	.002 .002 .004 .004	2 .01 2 .01 1 .01 1 .02 2 .17	<1 <1 <1 5 <1 7 15	< < <	1 .8 1 .7 1 .5 1 1.3 1 4.4	1 <1 <1 1 1	<.01 <.01 <.01 .02 .03	
STANDARD G-2	1.3	; 4	4	2	41	≺.1	7	4	52	7 1.9	5 <	:1	2 <	2 4	69		2 <.5	<.	5 40	.61	, 102	2 7	75	.58	230	. 124	<1	.92	.078	3.48	3 2	2	1 2.6	<1	<.01	

Sample type: SOLL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA LL.

Island Mountain Gold Mines Ltd. FILE # A004469

Data _ FA _

(⁻⁻⁻)

<u> </u>	DIE ANALYTICAL																				-				D	+:		61	No		U	Ил	Sr	T1 S	Ga
	SANPLE#	Mo	Cu ppm	Pb pom	Zn	Ag ppm	Ni ppm p	Ço pm	Mn ppm	Fe %	As ppm	U Imqq	Au opm p	Th ppnrp	Sr Sprn	Cd ppm	sb ppm	Bi ppm	V ppm	Ça %	P % (La pom p	Cr Spm	Mg %	Ba ppm	13 7 F	pni B	лі %	ка %	% r	pon p	ing ng	ppm p	pm %	ppm
	02713 02714 02715 02716 02717	1.6 2.6 2.7 2.9 2.8	13 19 56 55 24	33 56 81 48 45	22 37 52 66 34	.1 .8 1.1 <.1 .8	7 10 9 13 9	3 3 6 8 3	402 220 411 286 137	1.36 3.20 4.02 4.04 2.14	82 121 759 194 185	<1 <1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	3 3 <1 <1 1	9 9 7 8 10	.3 .5 .9 .9	1.1 .8 1.2 1.5 .7	.9 .9 <.5 1.3	29 40 23 27 31	.04 .05 .05 .11 .04	.034 .107 .272 .062 .109	27 24 19 21 18	8 14 10 12 10	.05 .08 .05 .07 .05	53 68 72 82 81	.022 .021 .007 .009 .009	3 1 5 1 2	.29 .61 .55 .67 .34	.003 .001 .002 .002 .003	.02 .02 .03 .03 .04	<1 <1 <1 <1 <1	<1 <1 1 <1 <1 <1	.7 .2 .8 1.4 .8	1<.01 <1 .01 1 .02 1<.01 <1 .01	5 1 <1 <1 3
	02718 02719 02720 02721 02722	3.0 2.0 1.9 1.4 1.3	50 20 17 41 82	73 45 39 37 127	69 39 23 55 74	.8 1.2 1.0 .6 1.4	19 9 6 11 23	8 5 2 5 18	315 616 217 283 1073	3.89 3.22 2.40 2.75 4.23	144 120 100 252 926	1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	2 <1 <1 2 3	9 9 7 8 13	.8 .7 .5 .2 1.2	2.1 _9 1.0 _8 1.8	<.5 .6 .9 1.1 1.4	26 25 28 34 24	.06 .05 .03 .09 .21	.099 .123 .125 .065 .092	18 18 19 23 25	15 13 11 8 13	.18 .08 .04 .05 .16	86 81 54 55 107	.007 .013 .012 .023 .009	2 1 1 <1 1	.94 .49 .47 .33 .67	.002 .004 .001 .002 .002	.04 .03 .02 .03 .05	<1 <1 <1 <1 <1	<1 / <1 <1 <1 / <1 /	1.7 .6 .6 1.4 2.8	1 .01 1 .01 <1 .01 <1 .01 <1 .01 <1 .01	<1 <1 3 2 <1
	02723 02724 02725 02726 02727	2.9 2.7 2.6 3.3 2.2	35 31 21 20 30	124 112 52 66 62	75 83 42 54 51	.2 .9 .1 .5 1.3	21 47 11 15 27	11 21 2 3 4	644 3699 99 192 160	3.97 3.19 2.18 2.14 1.81	107 83 69 69 62	1 <1 <1 2	<2 <2 <2 <2 <2 <2	2 1 2 1 <1	16 24 13 15 21	.5 1.2 .4 1.1	1.3 1.0 .7 .8 .6	2.6 2.5 1.1 2.0 1.4	33 34 29 31 26	.15 .31 .06 .09 .19	.064 .062 .036 .037 .037	19 18 22 20 25	21 2 3 11 17 17	. 14 . 20 . 03 . 09 . 12	127 402 172 270 1007	.016 .016 .020 .020 .020	3 2 2 3 4	.77 .95 .32 .56 .59	.003 .003 .001 .002 .003	.05 .07 .03 .04 .04	<1 <1 <1 <1 <1	<1 : <1 : <1 : <1 : <1 :	2.5 3.1 .9 1.1 2.0	<1 .01 6 .02 <1<.01 <1 .01 <1 .01	<1 1 3 3
	02728 02729 02730 RE 02730 02731	3.5 4.9 3.3 3.3 4.9	62 26 16 15 25	84 93 41 41 69	54 56 34 33 51	12.1 1.5 .7 .7 1.3	29 18 10 9 16	8 3 2 4	261 119 61 60 139	2.15 4.58 1.15 1.15 2.46	89 84 35 34 77	8 1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 2 2 2 2	18 19 13 13 19	1.8 .6 .2 <.2	1.1 1.5 1.0 .8 1.3	1.6 <.5 .8 1.0 1.0	31 64 29 29 41	.13 .15 .03 .03 .09	.056 .081 .033 .033 .119	31 18 21 21 19	22 31 8 8 18	. 10 . 15 . 02 . 01 . 08	809 130 88 87 226	.021 .035 .015 .015 .025	3 4 1 4 2	.83 .79 .20 .19 .51	.002 .002 .002 .002 .002	.04 .04 .02 .02 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	3.3 1.4 .8 .7 1.2	<1 .03 <1 .02 <1 .01 <1 .01 <1 .01 <1 .02	4 1 5 3
	02732 02733 02734 02735 02736	5.6 4.8 3.1 1.9 7.9	30 19 12 7 12	74 40 30 38 74	66 45 24 12 39	4.5 .4 .3 .9 1.2	21 11 9 4 13	4 2 <1 1	145 51 73 42 57	2.07 1.15 1.50 1.34 1.58	63 26 39 24 81	2 <1 <1 <1 <1	< < 2 < 2 < 2 < 2 < 2 < 2	2 2 4 3 1	26 14 10 7 19	.7 <.2 <.2 <.3	2.3 .7 .9 1.0 1.7	.8 <.5 <.7 .6	36 23 54 28 26	.09 .01 .03 .02 .01	.046 .032 .053 .028 .045	21 30 26 23 21	24 6 11 11 10	.19 .01 .04 .02 .01	635 94 63 50 92	.019 .008 .022 .018 .008	4 4 1 1 <1	.85 .16 .47 .54 .22<	.003 .002 .001 .001	.08 .01 .02 .01 .01	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2.6 .6 .8 .5 .7	<1 .02 1<.01 <1<.01 <1 .01 <1 .01 <1<.01	3 4 7 5 3
	02737 02738 02740 02741 02742	4.9 2.9 1.5 1.7 1.2	20 118 125 142 101	143 178 125 76 104	47 123 110 100 83	1.0 .3 .4 .7 .7	11 45 39 31 33	2 32 37 38 27	68 1575 1678 1276 1238	1.52 5.52 6.07 6.31 5.57	36 533 469 320 385	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 8 8 3	11 8 28 21 16	<.2 .9 .8 .8	1.4 1.7 1.1 2.1 1.3	<.5 2.3 .8 2.0 2.1	39 21 30 35 27	.01 .16 .75 .41 .34	.030 .066 .098 .123 .073	34 31 27 32 26	9 14 12 12 11	.01 .22 .32 .31 .21	67 65 70 72 63	.016 .007 .009 .006 .006	<1 4 6 1	.13 1.07 1.00 1.20 1.01	001 002 002 003 003	.01 .05 .05 .04 .03	<1 1 <1 1 1	<1 <1 <1 <1 <1	.5 3.4 5.2 6.8 3.9	<1<.01 1 .01 <1 .02 1 .02 <1 .02	2 1 2 2 2 1
	02743 02744 02745 02746 STANDARD C3	1.2 1.0 .6 .5 27.1	46 52 11 17 62	71 126 13 42 36	62 86 17 36 152	<.1 1.0 .3 .4 5.5	13 22 6 12 37	9 19 2 6 12	459 1896 125 714 792	4.91 5.33 1.20 3.44 3.23	238 218 69 164 59	<1 <1 <1 <1 24	<2 <2 <2 <2 <2 <2	<1 2 <1 20	11 10 3 5 29	.4 1.3 .2 .8 24.9	1.1 1.0 <.5 <.5 14.5	.6 .9 .9 .7 22.9	32 30 11 17 80	.22 .18 .03 .06 .58	.129 .131 .035 .097 .097	20 21 25 21 18	11 20 5 11 171	.09 .18 .02 .07 .61	69 65 25 51 159	.009 .010 .003 .007 .087	3 2 2 3 25	.63 1.34 .37 .55 1.77	.001 .003 .002 .001 .042	.03 .04 .02 .04 .17	1 <1 <1 16	<1 <1 <1 <1 1	1.1 2.2 .3 .5 4.4	<1 .02 1 .03 <1<.01 <1 .02 2 .02	1 2 3 2 3 1 2 6
	STANDARD G-2	1.4	. 4	. 2	42	<.1	7	4	536	1.95	<1	2	<2	4	72	<.2	<.5	<.5	41	.63	.106	7	76	.58	233	.125	<1	.90	.082	.49	2	<1	2.7	<1<.01	16

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Island Mountain Gold Mines Ltd. FILE # A004469

· · •

· ···

577

[]

.

1

Data FA

SAMPLE#	Mo ppm	Cu ppr	i P i P P	b np;	Zn pm p	Ag ppm	Ni ppm	Co ppm	M	ר ח	Fe %p	As prni	U Inqo	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K X	W ppm	Hg ppm p	Sc pm pg	ີໄ \$ ກາ %	Ga ppm
02747 02748 02749 02750 02751	.8 .7 .9 .9	31 41 20 52 32	5 4 4 2 6 2 13	8 ! 3 14 8 6 4 9 9 17	57 42 64 91 71	.2 1.2 .4 .8 .8	21 31 17 29 27	12 16 14 21 14	56 549 41 201 147	34. 22. 53. 14. 73.	16 1 61 93 13 1 13	84 96 85 57 57	1 6 3 4 6	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	6 <1 2 2 2	4 81 35 33 50	1.0 2.1 .8 1.1 1.5	1.0 <.5 <.5 <.5 <.5	.9 1.0 .6 1.0 .6	14 15 31 27 17	.04 2.28 .86 .84 1.17	.049 .178 .074 .131 .094	27 8 19 20 15	12 14 26 20 14	. 15 . 20 . 27 . 26 . 26	47 105 55 75 87	.004 .008 .015 .011 .008	<1 4 <1 <1 1	.81 .86 1.50 1.23 .86	.005 .005 .004 .005 .005	.03 .04 .03 .04 .04	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 3 <1 2	.4 .2 .8 .0	<1 .01 4 .14 1 .03 1 .05 1 .07	<1 <1 <1 <1 <1
02752 02753 02756 02757 02758	1.2 2.3 .6 .7 1.5	60 63 10 53 58) 8 5 10 5 2 5 5	2 10 19 11 7 1 17 1 12 1	02 75 31 15 89	.5 .3 .1 <.1 .2	40 47 8 45 40	21 19 4 18 18	105 62 9 32 72	64. 54. 52. 94. 53.	45 1 55 1 57 28 88	14 23 <1 13 75	1 10 <1 4 2	<2 <2 <2 <2 <2 <2	7 6 7 14 7	21 15 7 6 17	.9 2.1 <.2 .5 .6	1.1 3.5 <.5 1.3 1.2	.7 .6 <.5 <.5	29 52 35 24 29	.41 .23 .15 .07 .29	.086 .107 .061 .049 .075	33 27 33 40 32	25 32 11 29 38	.49 .36 .20 .66 .50	73 66 48 62 74	.029 .029 .005 .007 .040	2 1 1 2 5	1.16 1.11 1.06 2.03 1.11	.004 .003 .001 .001 .001	.06 .04 .04 .04 .05	<1 <1 <1 <1 <1	<1 3 <1 2 <1 1 1 2 1 3	.8 .9 .0 .1	<1 .02 2 .03 <1<.01 <1<.01 <1<.01 1 .02	1 <1 6 3
02760 02761 02764 02765 02765	1.2 1.0 .7 1.0 .7	52 57 25 30 13	2 5 5 5 5 22 5 6	4 10 18 12 11	91 96 56 02 64	.3 .4 .5 1.0 .8	37 37 17 28 9	20 20 8 16 4	73 91 48 53 28	93. 53. 83. 25. 93.	93 1 99 16 81 1 68 1	02 80 86 16	1 2 1 1 <1	<2 <2 <2 <2 <2 <2 <2	10 7 2 13 3	21 23 30 14 12	.7 .7 .5 .9	.8 8. 2.> 1.2 <.5	.7 1.2 1.2 .6 2.1	30 27 19 20 23	.40 .42 .70 .18 .25	.076 .085 .054 .064 .078	32 32 26 33 26	23 25 11 21 10	.43 .44 .23 .21 .09	76 65 57 101 91	.043 .036 .007 .006 .009	<1 <1 <1 <1 <1	1.01 1.03 .72 1.47 .68	.004 .004 .002 .003 .001	.06 .05 .05 .04 .05	<1 <1 <1 <1 <1	<1 3 <1 3 <1 1 1 2 <1	.5 .6 .3 .2 .8	<1 .03 1 .03 <1 .03 1 .01 <1 .02	1 1 3 1
02767 02769 02770 02772 02773	.8 1.3 1.0 .8 .9	43 104 39 63 39	5 14 4 4 7 6 7 6	4 1 9 3 1 5	86 00 62 24 65	.6 .5 .2 1.0	20 38 12 35 11	9 35 11 26 10	48 151 45 460 49	95. 45. 65. 44. 24.	19 81 1 16 1 30 1 66	94 151 106 105 94	<1 1 1 4 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	9 7 2 1 3	19 14 8 64 6	.6 1.2 .7 1.5 .6	.9 1.6 .8 <.5 1.0	1.1 1.2 1.1 .9 1.3	15 32 45 27 30	.44 .28 .10 1.64 .08	.075 .093 .061 .202 .073	26 36 19 13 23	14 14 16 16 11	.22 .34 .21 .19 .11	66 63 118 128 103	.004 .011 .010 .011 .007	<1 <1 <1 <1 2	1.01 1.42 1.27 1.36 .92	001. 001. 002. 006.	.03 .04 .03 .04 .03	<1 <1 <1 <1 <1	<1 2 <1 4 <1 2 <1 2 <1 1	.0 .8 .2 .4	<1 .01 <1 .01 1 .02 <1 .11 <1 .01	1 3 5 1 2
02774 02775 RE 02775 02779 02780	1.1 1.5 1.3 1.8 1.0	7: 3 2 4 2 2	3 5 1 21 7 20 7 13 7 6	6 1 2 4 5 1 8	05 69 66 15 63	1.1 1.0 .9 1.7 1.5	16 17 16 33 22	17 12 12 15 18	100 65 63 85 245	55. 84. 54. 84. 03.	52 ⁻ 97 ⁻ 87 ⁻ 35 24 ⁻	145 124 117 98 107	<1 1 4 8	<2 <2 <2 <2 <2 <2 <2	1 2 1 2 <1	15 18 18 25 107	1.1 .8 .7 1.0 1.5	<.5 <.5 .5 1.6 <.5	1.4 2.4 2.1 .5 <.5	36 27 26 25 14	.30 .47 .45 .48 2.36	.119 .086 .082 .076 .211	20 17 18 22 8	15 17 16 22 12	.23 .14 .14 .23 .20	173 73 70 81 129	.006 .006 .006 .012 .006	<1 <1 <1 <1 2	1.45 1.17 1.13 1.13 .68	.002 .003 .002 .002 .002	.03 .04 .04 .04 .03	<1 1 <1 <1 <1	<12 11 <11 <13 <11	.1 .7 .8 .9 .6	1 .02 1 .02 1 .02 1 .03 (1 .03	3 2 2 1 <1
02781 02782 02783 02784 02785	2.0 2.7 1.2 1.6 4.8	20 30 40 20	5 20 2 7 1 5 6 6 4 5	04 1 71 59 53 53	13 98 81 64 66	.8 .3 .3 .3	21 28 25 25 20	29 13 9 11 5	228 42 29 43 20	24. 63. 24. 45.	58 23 23 05 81	49 87 32 40 86	4 2 1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<1 3 6 2 3	15 11 5 7 9	.8 .8 .4 .7 .7	1.1 1.9 1.1 1.8 2.7	<.5 <.5 .6 <.5	31 17 17 19 117	.20 .12 .04 .06 .07	.111 .058 .045 .068 .215	22 22 32 21 17	29 15 17 15 32	. 19 . 16 . 33 . 13 . 21	123 87 54 78 93	.012 .004 .003 .004 .041	1 2 <1 <1 <1	1.40 .68 1.21 .92 1.23	.002 .001 .001 .001 .003	.04 .04 .04 .04 .03	<1 <1 <1 <1 <1	<1 1 <1 1 <1 1 <1 1 <1 1	.8 .6 .6 .5 .9	<1 .03 <1 .02 <1 .01 <1 .02 <1 .03	3 2 2 1 8
02788 02789 02790 02792 STANDARD C3	3.1 2.4 2.0 1.3 25.9	5; 1; 3; 6;	3 8 5 4 7 3 4 9 5 3	32 60 36 24 1 34 1	98 46 85 23 75	.7 .7 .4 1.0 5.5	31 11 25 43 37	13 3 23 12	58 31 24 143 76	74. 92. 83. 24. 73.	52 93 49 09 23	62 28 31 35 52	2 1 1 4 24	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<1 1 3 21	12 7 19 23 29	-8 -4 -9 -7 24-3	1.0 .5 <.5 .5 16.1	<.5 ,5 <.5 <.5 22,5	31 36 31 32 79	.08 .05 .30 .53 .59	. 102 . 166 . 084 . 094 . 095	19 20 18 22 18	28 18 18 30 179	.30 .14 .12 .53 .61	93 65 146 97 157	.019 .024 .012 .015 .092	<1 <1 1 21	1.21 .62 .72 1.32 1.86	.002 .002 .002 .004 .041	.03 .04 .04 .05 .17	<1 <1 <1 <1 15	<1 1 <1 <1 1 <1 3 2 4	.3 .8 .3 .8 .8	<1 .03 <1 .02 <1 .02 <1 .02 <1 .02	2 4 2 6
STANDARD G-2	1.6		4	3	48	<.1	8	4	55	2 2.	10	<1	2	<2	3	74	<.2	<.5	<.5	43	.70	. 105	8	81	.63	236	.137	<1	1.00	.085	.50	2	1 2	2.8	1<.01	5

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA

Island Mountain Gold Mines Ltd. FILE # A004469

1

1

Page 18

Data 1 FA

SAMPLE#	No Cui Pib Zn Ag pom pom pom pom pom	jNîCo M∩ Fe As nppπippπippπi %ippπ	UAUTh Sr Col St ppm ppm ppm ppm ppm ppm	o Bi V Ca P La Cr Mg Ba n ppm ppm % % ppm ppm % ppm	Tỉ B. AL Na. K. W. Hg. Sc. TL. S. Ga. % ppm % % % ppm ppm ppm ppm % ppm
02793 02794 02795 02796 02797	1.4 29 86 94 . .9 30 56 92 . 1.0 12 18 55 . 1.1 21 25 67 . 1.0 16 29 52 .	1 22 9 595 4.49 14 7 24 16 862 3.79 9 1 15 6 414 3.60 9 7 23 7 389 5.13 17 7 14 5 225 4.28 12	2 <2 3 9 .3 1.2 2 <2 3 19 .6 .9 1 <2 3 7 .2 1.1 <1 <2 5 7 <.2 1.2 1 <2 5 8 .2 1.1	.6 59 .09 .092 21 44 .36 90 <.5	.049 3 1.45 .004 .04 <1
02798 02799 02800 02801 02802	.9 19 16 52 .0 .9 20 17 48 .0 1.2 157 46 122 .0 1.0 31 97 100 .0 1.1 50 97 67 1.0	3 18 6 322. 3.57 9 3 18 6 283 3.26 9 3 54 21 971 3.83 22 9 17 10 855 3.92 133 3 31 20 856 4.21 149	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<.5	.072 3 1.43 .005 .04 <1
02804 02805 RE 02805 02806 02807	1.4 36 45 44 .4 3.1 51 74 78 .4 2.9 50 75 77 .4 1.7 21 46 38 .4 2.7 34 63 95 1.4	3 11 5 235 3.37 236 2 19 13 881 6.00 187 2 19 13 862 5.94 185 4 12 6 561 1.91 49 7 32 12 888 3.24 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.015 1 .62 .002 .04 1 <1
02808 02809 02810 02811 02812	1.9 14 40 37 1.1 1.9 16 86 54 3.1 3.3 19 57 44 .1 1.8 9 69 19 1.1 1.0 4 22 8 .1	0 11 3 157 2.97 35 0 18 6 1724 1.66 48 3 13 3 131 2.33 87 2 6 1 33 2.01 101 1 2 1 17 .48 15	1 <2 4 8 .2 <.1 1 <2 1 38 .7 <.1 1 <2 1 13 .4 1.1 1 <2 3 13 .4 .0 <1 <2 2 8 <.2 .1	i .7 42 .07 .062 22 23 .18 96 i .8 22 .57 .100 14 12 .11 207 i 1.0 42 .05 .073 21 15 .04 108 i 1.2 48 .04 .152 19 15 .04 127 i <.5	.043 <1
02813 02814 02815 02816 02817	2.6 14 53 35 5.1 1.4 6 26 13 1.4 10 30 27 2.1 1.4 6 43 15 1.1 3.6 20 42 50 3.1	5 11 2 77 4.50 41 4 4 1 35 .94 21 3 9 2 121 3. 45 24 3 4 1 29 2.11 43 3 15 4 164 4.49 37	1 <2	.6 69 .06 .101 21 37 .19 82 .5 .38 .04 .044 28 10 .05 71 .5 .54 .05 .087 21 24 .16 57 .5 .69 .05 .065 19 22 .10 72 .5 .53 .06 .080 16 31 .18 87	.033 <1
02818 02819 02820 02821 02822	.9 5 29 10 1. 2.4 10 20 29 . 2.4 18 50 39 . 2.3 15 47 37 1. 3.6 28 88 68 .	0 3 1 21 .46 5 5 8 2 49 1.18 22 7 11 3 194 2.35 41 0 11 2 145 2.36 44 2 16 5 316 5.90 92	<pre><1 <2 <1 10 <.2 <.! <1 <2 1 7 <.2 .! 1 <2 2 8 .3 <.! 1 <2 <1 8 .3 .! 1 <2 <1 8 .3 .! 1 <2 6 9 .5 1.!</pre>	i <.5	.018 <1
02823 02824 02825 02826 Standard C3	4.0 29 72 52 2.6 29 62 74 <. .7 16 20 58 . 1.0 21 176 158 . 27.1 66 36 174 5.	6 17 4 120 3.72 119 1 16 7 484 5.54 81 1 15 6 198 3.55 129 7 15 5 197 4.65 83 7 37 12 802 3.36 56	1 <2 8 13 .5 1.4 1 <2 6 8 .3 1.4 <1 <2 7 4 .6 <.4 1 <2 6 4 .4 1.4 26 <2 22 31 24.5 15.5	1.7 41 .03 .115 23 17 .11 81 5 .9 51 .07 .089 28 18 .18 95 5 <.5	.014 1 .66 .001 .02 <1
STANDARD G-2	1.5 4 2 48 <.	1 7 4 533 2.01 <1	4 <2 4 76 <.2 <.	s <.5 44 .66 .103 7 80 .61 233	.134 1 .95 .086 .50 2 <1 2.6 <1<.01 5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA LL ADE ANKLYTICU

ì

Island Mountain Gold Mines Ltd. FILE # A004469

1 - C N

.

٢

٦

1 3 3 1

1

۳.

Page 19

1

1

Data FA

1-1

ACHE ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppn	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Kg ppm	Sc ppm p	TL : ppm :	S Ga Kippm
02827 02828 02829 02830 02831	1.2 .4 1.1 .5 .5	18 12 55 31 42	81 22 85 39 53	66 33 89 104 86	1.2 <.1 1.5 .2 <.1	13 9 33 27 21	5 2 29 14 14	300 101 2149 439 533	5.52 2.60 5.00 3.62 4.04	105 58 44 57 67	<1 <1 4 3 1	<2 <2 <2 <2 <2 <2 <2 <2	2 3 2 8 10	4 50 23 14	.5 .3 1.1 .4 .3	.9 <.5 <.5 <.5 <.5	.7 <.5 .5 <.5	31 10 25 13 18	.04 .04 1.09 .48 .26	.099 .070 .127 .060 .066	24 31 19 35 39	15 6 21 12 10	.08 .05 .13 .30 .26	37 47 98 57 48	.011 .002 .008 .002 .002	4 3 1 5 7 3	.85 .59 .85 .14 .10	.002 .002 .004 .002 .002	.03 .04 .03 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	.7 .4 2.0 2.1 1.8	1 .0; <1 .0; <1 .0; 1 .0; 1<.0	2 6 1 2 5 5 2 3 1 3
02832 02833 02834 02835 02835	.6 .4 .5 .8 1.1	29 17 36 29 50	54 28 47 32 52	81 37 78 54 107	<.1 .1 .9 .5 <.1	20 6 19 7 13	9 3 13 6 16	259 160 1141 414 652	3.79 2.20 3.19 3.77 5.94	79 128 52 34 42	1 <1 4 1 1	<2 <2 <2 <2 <2 <2 <2	10 4 3 <1 3	6 4 24 6 11	.3 .6 .4 .2	.9 1.1 <.5 .5 <.5	<.5 .6 <.5 <.5 .9	14 15 16 22 29	.06 .03 .39 .07 .19	.052 .040 .114 .1 3 2 .151	41 36 27 23 24	12 5 10 9 13	.27 .03 .16 .09 .21	39 45 74 65 83	.002 .002 .004 .005 .006	2 ^ <1 3 2 3	. 14 . 59 . 97 . 69 1. 41	.001 .001 .002 .001 .002	.04 .04 .04 .04 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 .5 2.5 .6 1.9	1<.0 <1<.0 2 .0 1 .0 <1 .0	1 3 1 2 3 2 2 2 3 5
02837 02838 02839 02840 RE 02840	1.1 1.2 1.5 1.3 1.5	76 77 99 51 53	70 54 41 26 27	129 115 102 94 96	.3 .4 .4 <.1 <.1	19 19 22 9 9	29 30 32 11 11	1356 1209 1362 411 423	6.11 5.76 6.55 6.63 6.89	40 31 31 19 19	2 3 <1 <1	<2 <2 <2 <2 <2 <2	5 3 6 2 1	29 19 18 9 10	.5 .6 .5 <.2	<.5 <.5 .6 .6	.5 .8 <.5 <.5 <.5	36 38 41 52 52	.70 .39 .31 .11 .12	. 136 . 148 . 127 . 122 . 124	30 33 42 19 20	13 15 13 11 11	.33 .25 .31 .22 .23	50 63 56 87 89	.004 .008 .007 .007 .007	2 * 7 * 1 * <1 * 4 *	1.65 1.97 1.87 1.28 1.31	.002 .003 .002 .001 .002	.03 .03 .02 .02 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1	5.1 4.9 5.5 1.6 1.7	2 .04 2 .04 2 .01 1 .01 1 .01	4 5 4 5 3 6 2 7 2 8
02841 02842 02843 02844 02845	1.1 1.1 3.3 4.7 4.2	68 77 15 29 27	28 28 57 81 81	113 100 36 53 53	≺.1 .8 .4 .5 .3	20 18 11 16 16	27 20 2 4 4	931 796 160 128 140	6.48 5.67 2.16 3.62 3.66	18 17 70 199 179	1 1 2 2	<2 <2 <2 <2 <2 <2	4 3 5 5 5	15 17 15 18 16	.2 .3 .4 1.0 .8	<.5 <.5 .6 1.5 1.6	<.5 <.5 1.5 2.5 2.2	46 43 37 32 28	.40 .53 .04 .03 .03	.125 .128 .080 .065 .063	24 37 22 17 19	15 13 13 18 21	.40 .29 .09 .08 .10	53 46 103 112 112	.008 .008 .015 .023 .020	3 1 1 1 <1 <1 1	.85 .63 .53 .53< .60	.002 .002 .001 .001 .001	.03 .02 .02 .02 .02	<1 <1 <1 <1	1 - 1 - <1 <1 <1 <1	4.1 4.0 1.3 1.5 1.7	2 .02 1 .03 1 .03 <1 .03 <1 .03	2 7 3 5 1 4 1 1 1 <1
02846 02847 02848 02849 02850	5.2 2.5 9.1 1.9 3.6	13 13 28 12 29	59 44 38 42 81	26 40 91 33 81	<.1 1.2 .2 .2	7 8 20 7 20	1 2 4 2 5	193 110 155 75 265	2.77 4.17 3.62 4.11 7.11	185 59 135 66 70	2 1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	3 5 7 8 6	23 10 9 5 8	.9 .3 1.0 .2 .5	1.9 1.5 3.4 .9 3.3	3.0 1.3 1.1 1.2 .7	40 35 34 42 58	.03 .03 .03 .05 .04	.155 .054 .039 .058 .198	18 23 25 27 18	13 16 12 14 29	.04 .10 .07 .06 .10	147 72 61 41 58	.014 .011 .019 .032 .046	<1 <1 <1 <1 1	.37< .84 .54 .61 .88	.001 .001 .001 .001 .003	.02 .03 .02 .02 .02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.0 1.1 1.3 1.0 1.7	<1<.01 <1 .01 1<.01 1<.01 1<.01	1 <1 1 1 1 <1 1 1 2 7
02851 02852 02853 02854 02855	2.6 1.5 2.0 2.4 2.3	24 20 12 23 35	75 43 27 37 39	84 48 32 66 86	.7 .2 2.2 .6 .3	18 12 9 19 31	5 4 2 5 9	202 117 65 179 269	5.41 3.64 2.38 4.37 4.69	33 35 28 31 38	<1 <1 <1 1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2	6 7 3 4 6	9 4 6 9 9	.2 <.2 .3 .3 .4	1.3 .5 <.5 1.1 1.0	<.5 .7 <.5 <.5 <.5	43 40 44 36 32	.08 .04 .05 .09 .10	.075 .159 .074 .052 .051	18 28 24 21 25	48 13 15 26 26	.27 .10 .07 .29 .32	65 45 88 141 129	.040 .019 .015 .029 .019	1 1 1 2 2 1 4 1	.68 .82 .81 .06 .20	.003 .002 .002 .002 .002	.04 .04 .03 .04 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	2.1 1.3 1.2 1.7 2.1	1 .02 <1 .01 <1 .01 <1 .02 2 .02 1 .02	2 3 1 1 1 4 2 <1 2 <1
02856 02857 02858 02859 STANDARD C3	7.5 4.7 1.3 1.8 26.2	86 75 33 78 65	181 107 23 30 35	349 224 82 97 167	.2 .3 .2 .3 5.4	69 56 28 36 37	32 27 12 22 12	834 768 415 1134 779	6.61 5.18 3.63 4.45 3.32	195 95 20 28 57	1 <1 4 25	<2 <2 <2 <2 <2 <2	2 3 3 1 22	17 20 24 32 30	2.3 1.3 .2 .5 25.1	1.6 .6 <.5 <.5 14.4	1.5 1.0 <.5 <.5 22.4	22 25 39 55 82	.21 .28 .36 .66 .59	.132 .115 .087 .114 .097	17 19 22 43 19	18 21 29 45 181	. 16 . 25 . 46 . 58 . 62	98 80 94 112 161	.005 .010 .024 .030 .089	3 2 1 2 1 20 1	.69 .86 .17 .84 .81	.001 .001 .002 .004 .041	.04 .04 .04 .05 .17	<1 <1 <1 <1 16	<1 2 <1 2 <1 2 <1 2	2.0 1.9 2.0 3.7 4.4	2 .02 2 .02 <1 .02 2 .04 2 .02	2 1 2 <1 2 1 4 1 2 6
STANDARD G-2	1.5	3	2	44	≺.1	7	4	528	2.00	<1	2	<2	3	75	<.2	<.5	<.5	44	.65	.099	8	76	.60	225	.130	5	. 93	.086	.49	2	1 2	2.5	<1<.01	1 5_

ALL ANE ANALYTIC

Island Mountain Gold Mines Ltd. FILE # A004469

٠

٦

N

• * *

																																		ALC A	MACT 111/4
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	ĩh ppm	\$r ppm	Cd ppm	sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	AL %	Na %	К %	W ppm	Hg ppm	Sc ppm ;	ľl ppns	s % p	Ga Xpm
02860 02861 02862 02863 02863 02864	1.3 1.2 .8 1.1 1.0	82 30 34 28 145	31 24 20 20 74	108 65 62 64 117	.4 <.1 .2 <.1 .7	49 22 20 21 53	23 10 8 8 22	1155 931 355 409 1288	4.37 4.49 3.55 4.95 3.57	26 13 10 14 26	3 2 1 1 2	<2 <2 <2 <2 <2 <2	4 1 2 4 ≺1	29 9 7 5 34	.5 <.2 <.2 <.2	<.5 .5 <.5 1.0 <.5	.6 <.5 <.5 <.5 <.5	53 74 73 113 66	.60 .11 .11 .08 1.17	.097 .082 .077 .062 .102	39 16 21 20 30	47 48 40 53 48	.77 .54 .47 .51 .71	133 98 87 126 183	.032 .089 .061 .150 .031	3 2 <1 <1 <1	1.90 1.40 1.43 1.52 1.77	.007 .007 .006 .006 .006	.07 .06 .04 .04 .07	<1 <1 <1 <1 <1	1 1 1 1	4.3 2.4 2.3 3.7 5.9	<1 <1 <1 <1 <1 <1	.04 .03 .02 .02 .02	7 10 9 12 6
02865 02866 02868 02869 02870	2.2 1.4 .7 1.6 2.3	184 123 41 43 37	31 24 30 31 27	100 87 73 54 70	1.0 .7 .4 .6 .2	46 31 32 17 20	25 19 15 8 7	2401 719 657 561 522	4.11 3.79 4.05 2.97 3.24	21 13 16 21 33	8 12 8 2 2	<2 <2 <2 <2 <2 <2 <2 <2	2 1 <1 <1 <1	39 34 33 10 6	.9 9 1.3 2 <.2	<.5 <.5 <.5 <.5	.8 <.5 <.5 .5	54 48 64 28 29	1.30 .87 .77 .12 .06	.182 .134 .092 .199 .228	48 30 30 17 20	52 48 45 20 19	.63 .64 .47 .18 .17	209 138 82 78 68	.026 .022 .067 .007 .006	<1 1 <1 <1 1	2.07 2.03 1.85 .76 .69	.008 .007 .008 .004 .003	.09 .06 .05 .04 .05	<1 <1 <1 <1 <1	<1 1 <1 <1	6.3 3.8 3.4 .5 .5	<1 <1 <1 <1 <1	.09 .06 .05 .03 .02	7 7 7 4 4
02871 02872 02873 02874 02875	2.9 2.0 2.3 1.6 1.8	62 35 24 30 37	23 27 42 54 57	75 62 60 46 50	.6 .4 .4 .6	18 14 16 20 24	3 6 5 6 8	81 197 236 357 361	3.37 3.93 5.11 4.26 4.54	42 36 34 68 81	1 1 1 1	<2 <2 <2 <2 <2 <2	1 2 4 7 8	9 6 7 6 6	.3 .2 .2	.9 1.3 .7 1.7 2.2	<.5 <.5 <.5 <.5	29 36 58 34 30	.03 .04 .06 .04 .03	.057 .077 .128 .100 .099	16 21 21 29 32	20 18 32 14 14	.08 .14 .27 .13 .12	116 48 73 42 38	.015 .017 .036 .025 .017	1 <1 3 <1 3	.67 .96 1.15 .64 .60	.004 .004 .005 .003 .003	.02 .04 .04 .03 .03	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.9 1.5 1.6 1.6 1.7	<1 <1 <1 <1 <1	.03 .03 .02 .01 .01	2 4 7 4 4
RE 02875 02876 02877 02878 02879	1.8 1.6 2.1 .9 1.5	38 29 32 8 23	57 48 48 24 56	50 42 57 15 43	.2 .3 .1 .3 .6	24 19 19 4 11	8 6 8 1 5	354 283 498 99 340	4.64 3.92 3.88 1.51 3.86	82 65 63 22 73	<1 <1 <1 <1 1	<2 <2 <2 <2 <2 <2	7 7 4 2 3	6 6 5 5 3	.2 <.2 <.2 <.2	2.3 1.8 1.7 <.5 1.2	<.5 .6 <.5 <.5	30 31 23 22 28	.03 .04 .02 .03 .02	.099 .088 .103 .076 .095	31 29 29 29 29	14 14 11 8 17	12 14 07 04 11	38 39 49 33 41	.017 .024 .006 .008 .009	<1 <1 <1 <1	.61 .62 .66 .50 .78	.003 .004 .003 .023 .003	.03 .03 .03 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.7 1.5 1.3 .4 1.0	<1 <1 1< <1< <1	.01 .01 .01 .01 .01	3 3 2 4 3
02880 02882 02883 02884 02885	2.2 1.6 1.3 3.1 1.0	26 30 23 42 46	133 79 92 88 40	57 97 46 71 83	.4 .2 .4 1.4 .2	17 25 10 27 21	6 14 5 16 16	275 618 198 806 469	4.42 3.44 2.75 3.85 3.70	106 114 77 111 181	1 1 <1 2 1	<2 <2 <2 <2 <2 <2 <2	1 3 √1 1 6	6 20 22 19 17	5 .4 .5 .6	1.8 .8 <.5 1.2 .7	.8 <.5 .6 1.5 <.5	28 21 27 30 24	.04 .35 .44 .24 .30	.064 .071 .051 .075 .062	26 26 22 24 29	22 19 12 25 18	. 14 . 25 . 11 . 26 . 29	57 88 85 114 94	.013 .009 .008 .014 .002	<1 <1 <1 <1 <1	.79 .87 .75 1.18 1.10	.003 .004 .004 .004 .004	.04 .04 .03 .05 .04	<1 1 <1 <1 <1	<1 <1 <1 1 <1	1.1 2.2 1.2 2.1 2.8	<1 <1 <1 <1 <1	.01 .02 .02 .02 .02	3 2 3 2 2
02886 02887 02888 02889 02889 02890	1.4 1.8 2.7 2.2 1.2	23 20 25 15 10	43 37 47 41 23	98 50 100 37 24	.2 .4 .8 .5 .8	27 16 26 12 6	11 6 9 3 2	453 403 466 272 360	2.69 2.62 4.94 3.18 1.73	66 40 53 39 18	1 <1 <1 1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 1 2 4 3	14 21 12 7 6	.4 .2 .5 .2 <.2	.9 <.5 1.4 1.5 <.5	<.5 .5 .5 .5 <.5	25 31 32 32 20	.21 .34 .14 .05 .03	.043 .059 .106 .191 .076	29 26 25 23 30	28 20 39 21 13	.37 .15 .39 .16 .11	84 107 130 76 66	.009 .011 .013 .009 .008	1 <1 4 3 <1	.97 .69 1.28 .88 .79	.004 .004 .004 .005 .003	.04 .04 .04 .05 .04	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2.2 1.1 1.4 1.1 .9	1 <1 2 <1 <1	.01 .02 .02 .02 .02	3 4 3 5
02891 02892 02893 02894 STANDARD C3	2.0 3.5 1.8 6.5 25.9	19 25 20 10 65	32 51 29 87 35	42 70 46 33 168	.2 .2 .3 .1 5.3	13 25 17 8 36	4 6 4 2 12	252 196 167 161 769	3.80 5.12 4.10 2.46 3.27	51 43 50 28 55	<1 <1 <1 1 23	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 6 3 21	7 7 6 8 29	.2 .3 .2 .2 24.0	1.3 1.6 1.6 1.5 14.0	<.5 .5 <.5 <.5 22.3	46 28 72 36 83	.05 .04 .07 .04 .60	.225 .091 .222 .049 .095	26 23 23 14 19	18 33 20 16 177	.13 .22 .12 .11 .62	68 82 52 50 157	.013 .007 .054 .026 .092	4 2 <1 2 21	.85 1.23 .78 .56 1.80	.003 .004 .004 .003 .042	.05 .05 .04 .03 .17	<1 <1 <1 <1 15	<1 <1 <1 <1 2	9 1.4 1.5 9 4.6	<1 <1 <1 <1 3	.02 .02 .02 .01 .03	2 3 4 6
STANDARD G-2	1.5	4	3	47	<.1	7	4	545	2.04	1	4	<2	5	75	<.2	<.5	<.5	43	.67	.106	8	81	.62	237	. 135	<1	.95	.085	.51	2	1	2.7	<1<	.01	6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1 FA

Page 20

1 1

C T I T T

Island Mountain Gold Mines Ltd. FILE # A004469

Page 21

7

ŗ.

7 1

1.1

SAMPL	.E#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag ppm	N İ ppm	Со ррт	Hn ppm	Fe %	As ppm	U ppm	Au ppm j	ĩh ppring	\$r opm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к % р	u Abur 1	Hg S Spm pp	c Ti mippon	\$ 1 %	Ga ppm
02895 02896 02897 02898 02898 02899	3	2.7 1.3 1.0 1.3 1.3	50 15 33 30 32	73 21 28 32 31	117 46 119 75 77	.1 <.1 1.2 <.1 .1	43 13 29 25 25	13 4 19 7 10	356 151 2250 287 322	3.31 2.62 3.51 3.86 4.54	47 19 21 30 28	2 1 3 1 2	<2 <2 <2 <2 <2 <2 <2 <2	7 4 2 3	11 8 37 12 12	.3 .2 2.3 .7 .3	1.0 _9 <.5 _9 _5	<,5 <,5 <,5 <,5 <,5	22 91 41 70 60	.07 .14 .73 .18 .27	.059 .050 .171 .076 .054	28 20 21 20 21	27 26 34 38 39	.29 .22 .43 .32 .41	91 119 145 133 120	.013 .100 .016 .052 .069	<1 <1 3 1 <1	1.26 1.04 1.70 1.18 1.34	.004 .005 .006 .006 .005	.07 .04 .06 .05 .04	<1 <1 <1 <1 <1	<1 2. <1 2. <1 2. <1 2. <1 2. <1 2. <1 2.	5 <1 0 <1 6 <1 3 <1 5 <1	.01 .01 .05 .02 .03	2 8 4 7 6
02901 02902 02903 02904 02905		1.2 1.3 1.0 1.6 2.3	27 33 16 22 15	25 32 22 27 60	56 83 51 66 33	.1 .7 .8 .6 .4	18 34 16 21 7	7 18 6 8 3	349 1054 384 412 265	4.87 6.11 4.26 5.92 3.30	19 28 15 17 84	1 1 1 1	< 2 2 2 2 2 2 2 2 2 2 2 2	4 4 2 3	8 7 5 6 11	.4 .3 <.2 .2	.7 1.2 1.3 1.0 1.0	<.5 <.5 <.5 <.5	88 82 85 92 37	.14 .14 .09 .08 .03	.051 .218 .078 .094 .093	16 15 15 15 21	41 53 38 50 13	.37 .87 .40 .51 .09	113 72 48 52 84	.163 .065 .114 .114 .009	3 <1 <1 <1 <1 1	1.15 1.76 1.22 1.57 .76	.007 .006 .006 .006 .003	.05 .07 .05 .05 .03	<1 <1 <1 <1 <1	1 2. 1 2. <1 2. 1 2. 1 2. <1 .	4 <1 9 2 2 <1 6 <1 8 <1	.03 .03 .02 .03 .02	8 7 7 9 3
02906 02907 02908 02909 02909 02910	3	1.3 1.2 1.6 1.8 2.1	61 39 29 24 25	25 52 56 41 50	73 75 89 48 54	.2 1.2 .9 .2	9 13 21 13 15	11 10 10 4 5	358 637 858 184 273	4.92 4.21 3.14 3.61 4.04	37 142 59 70 115	<1 1 2 1	<2 <2 <2 <2 <2 <2 <2 <2	6 3 2 3 6	6 8 20 7 7	.2 .5 .4 .3	1.3 1.8 <.5 1.2 1.5	<.5 .7 <.5 .7	60 34 24 26 22	.03 .11 .28 .06 .06	.101 .178 .092 .059 .100	26 26 24 28 31	9 12 18 14 15	.42 .25 .23 .09 .12	69 84 127 90 122	.003 .005 .006 .010 .003	<1 <1 <1 <1 <1 <1	1.66 1.13 1.17 .63 .75	.004 .004 .005 .004 .003	.03 .05 .05 .04 .05	<1 <1 <1 <1 <1	<1 2. <1 1. 1 2. <1 . <1 . <1 1.	3 <1 5 <1 4 1 9 <1 1 <1	.02 .02 .02 .01 .01	7 4 2 2 1
RE 02 02911 02912 02913 02914	2910 2	2.1 1.2 1.9 _9 2.4	24 18 15 5 16	48 30 50 18 27	52 58 39 11 37	.2 .4 .9 .7	15 18 13 4 10	5 5 4 1 2	265 246 222 28 73	3.92 3.33 4.03 1.52 2.88	112 47 104 28 30	1 1 <1 <1 1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8 7 4 5	6 6 7 4 6	.3 .2 .3 <.2 .2	1.4 .5 1.4 <.5 .8	.6 < 5 < 5 < 5 < 5	20 30 50 33 39	.05 .05 .05 .02 .03	.096 .118 .247 .034 .054	31 26 22 27 23	15 22 18 9 16	.12 .27 .12 .05 .09	119 47 55 43 55	.003 .020 .013 .008 .016	<1 <1 <1 <1 <1	.73 .90 .67 .70 .85	.003 .004 .004 .003 .003	.05 .04 .04 .02 .03	<1 <1 <1 <1 <1	<1 1. <1 1. <1 . <1 . <1 . <1 1.	0 <1 6 <1 9 <1 7 <1 1 <1	.01 .01 .02 .01 .01	1 3 2 5 3
02915 02916 02917 02919 02919 02920		2.5 24.7 1.2 1.4 1.5	18 15 18 81 85	29 16 33 30 32	41 39 47 81 84	.8 _4 3.5 1.3 1.2	12 13 14 45 46	3 2 4 16 17	88 46 118 1505 1597	3.18 1.37 3.41 3.35 3.57	33 50 21 26 27	1 <1 1 4 4	<2 <2 <2 <2 <2 <2 <2	6 2 4 3 1	5 8 7 34 33	<.2 <.2 .3 1.2 1.2	1.2 3.7 1.1 <.5 <.5	<.5 <.5 <.5 <.5 <.5	38 26 50 32 3 1	.03 .01 .10 .95 .91	.048 .028 .037 .133 .141	26 18 17 25 26	17 5 30 31 32	.12 .01 .30 .41 .40	58 46 86 140 1 3 9	.017 .009 .072 .018 .018	<1 <1 <1 1 *1	.95 .15 1.23 1.28 1.32	.003 .002 .006 .007 .007	.03 .02 .04 .06 .07	<1 <1 <1 <1 <1	<1 1. <1 . <1 2. <1 2. <1 2. <1 2.	4 <1 4 <1 1 <1 5 <1 6 <1	<.01 <.01 .02 .06 .06	3 2 4 2 2
02921 02922 02923 02923 02924 02925		.6 .7 1.2 1.5 1.4	18 25 9 30 29	17 20 18 19 19	103 67 41 137 130	.2 .2 .3 .3 .3	16 20 9 31 28	8 7 3 14 14	2716 641 159 440 409	2.80 4.08 2.33 4.37 4.37	11 16 9 15 15	1 <1 <1 4 4	<2 <2 <2 <2 <2 <2 <2	2 <1 <1 <1 2	28 8 35 35	.2 .2 <.2 .2	<.5 .5 .6 <.5 <.5	<.5 <.5 <.5 <.5 <.5	51 62 60 54 49	.51 .12 .09 .73 .74	.076 .133 .032 .091 .088	15 16 21 19 20	27 41 25 51 46	.32 .47 .29 .78 .68	282 82 63 106 99	.067 .049 .070 .030 .031	<1 <1 <1 <1 <1 <1	.93 1.22 1.18 1.95 1.91	.007 .006 .008 .006 .006	.06 .05 .04 .05 .04	<1 <1 <1 <1 <1	<1 1. 1 1. <1 1. <1 3. 1 3.	B <1 3 1 8 <1 3 <1 3 <1 1 <1	.03 .03 .01 .04 .04	3 4 6 4 3
02928 02929 02930 02931 \$TAND	ARD C3	1.1 1.1 .7 .6 27.8	90 124 50 34 67	58 36 28 27 38	87 87 57 49 175	.2 .5 .5 1.1 5.6	33 20 14 9 37	34 37 10 6 12	1467 1015 414 498 807	5.17 6.00 4.79 3.90 3.40	315 174 141 116 61	1 1 1 25	<2 <2 <2 <2 <2 <2 <2	9 6 2 2 21	27 6 5 11 30 2	<.2 .5 .3 .3 24.3	1.2 2.6 1.6 <.5 14.9	1.6 1.1 1.8 1.0 24.3	19 30 18 26 82	.80 .10 .08 .28 .62	.099 .085 .168 .116 .098	25 27 22 20 19	10 10 8 12 181	.26 .24 .11 .12 .65	61 60 47 82 164	.007 .003 .004 .007 .093	<1 <1 <1 <1 22	.76 1.34 .66 .79 1.87	.005 .003 .003 .003 .003	.06 .03 .03 .04 .18	1 <1 <1 <1 15	<1 4. 1 4. <1 1. <1 . 2 4.	5 1 1 3 0 <1 6 <1 7 1	.03 .02 .02 .02 .03	<1 2 <1 <1 6
STAND	ARD G-2	1.6	4	3	46	<.1	7	4	531	2.04	1	2	<2	5	74	<.2	<.5	<.5	40	.66	. 102	8	80	.60	230	.133	<1	.93	.08 4	.50	2	12.	7 <1	<.01	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A	4
Τ	
ADE AN	CITICAL

I

Island Mountain Gold Mines Ltd. FILE # A004469

The second second second second second second second second second second second second second second second se

53 53 53

1

Page 22

SAMPLE#	Мо ррп;	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe X	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Ĉr ppm	Mg %	Ba ppm	Ti X	В ррт	Al %	Na %	к %	W M	Hg ppm	Sc ppm	Ϊί ppm	\$ %р	Ga pm
02932	.8	58	51	91	.9	30	22	3276	4.66	170	4	<2	z	37	1.2	.6	.7	27	.95	.140	13	15	.22	103	.010	<1	1.01	.005	.04	2	1	2.7	6.0	6	1
02933	-6	49	46	138	.8	27	21	3355	4.01	105	3	<2	1	42	.7	<.5	<.5	29	1.09	.168	13	20	.34	125	.012	1	1.28	.005	.05	<1	1	2.4	5.0	8	<1
02935	.5	40	40	79	.1	41	20	1470	4.30	152	<1	<2	15	12	7	.7	-8	17	.21	.067	30	11	.25	40 51	.011	<1	.00	.004	.06	<1	<1	2.8	2.0	12	<1 <1
02936	.6	11	41	22	.3	8	4	289	2.19	83	<1	<2	1	15	.2	< 5	1.6	22	.37	.047	23	6	.04	46	.010	1	.38	.004	.04	<1	<1	.5	<1.0	2	1
02937	1.2	35	54	79	.1	20	18	647	5.80	113	1	<2	1	22	.6	1.4	.9	31	.42	.050	18	22	.28	55	.022	<1	1.31	.003	.03	<1	<1	1.7	<1.0	2	3
02938	1.2	37	58	81	.1	21	21	812	5.90	116	1	<2	4	19	.6	1.7	.8	31	.35	.052	19	23	.27	60	.027	2	1.35	.003	.03	<1	<1	1.8	<1 (2	3
02939	1.0	71	69	99	.3	48	31	1233	4.91	133	1	<2	8	18	1.1	1.6	.8	31	.34	.089	28	26	.44	94	.038	4	1.04	.005	.05	<1	<1	4.1	<1.0	3	3
02941	.8	48	89	90	.4	37	19	1031	3.72	95	1	<2	7	21	.7	.6	1.5	25	.41	.090	23	20	.42	72	.015	<1	.96	.004	.07	1	<1	3.0	<1.0	2	2
RE 02941	8.	48	89	88	.4	36	19	1018	5.68	75	1	<2	0	20	•	.0	1.5	24	.40	.084	24	19	•41	69	.015	<]	.95	.004	.07	<1	<1	2.9	<1.1	2	1
02942	1.0	58	69	88	.2	34	20	835	4.06	156	1	<2	10	20	.7	1.1	1.0	25	.37	.074	29	17	.40	54	.030	1	.91	.004	.06	<1	<1	3.3	<1.0	2	1
02944	1.0	66	134	90	.4	41	24	915	4.36	132	1	<2	10	10	.9	1.3	1.9	32	.18	.065	28	27	.47	55	.045	2	1.35	.004	.06	1	<1 .	3.5	<1.0	1	2
02945	1.0	61	125	89	.4	37	20	707	4.40	129	1	<2	9	10	.8	1.1	2.0	36	. 19	.062	26	26	.45	57	.047	<1	1.32	.004	.06	1	<1	3.4	<1.0	2	3
02946	1.5	51	53	77	.1	19	12	806	4.24	208	- 2	<2	1	12	1.0	1.7	.9	32	.19	.056	19	19	.27	74	.020	<1	.96	.004	.03	1	<1	1.5	2.0	2	1
STANDARD C3	25.0	65	33	165	5.2	37	12	737	3.14	55	22	<2	19	26	23.3	15.2	22.1	75	.55	.093	16	175	.58	150	.083	19	1.76	.039	.16	15	1 -	4.0	1.0	3	6
STANDARD G-2	1.6	4	2	44	<.1	7	4	515	1.94	<1	2	<2	4	72	<.2	<.5	<.5	40	.63	.094	7	73	,58	207	.126	<1	.95	.080	.49	2	1	2.5	<1<.0	1	4

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

		~~				× _	\sum		_						2	
		Ba	rkerville	e Mosq	uito Cr	eek g	\wedge				M00			\backslash	Wet	
	Gold	Cla	im Grou	ip Clai	m Grou	40 H di		\backslash		~	30+1				0+00	
	(ppb)		12	4 6	3	3	5 5	1	, 7	17	6	26) 11	20	71	100
	- 3000 ppb		10	14 9	> 3		3 9	1	13	5	29	2	17	3	67	X
	- 2800 ppb		+ 11	2 /	3	5	4 + 11	3	37	2	9	11	6	X	B	246
	- 2600 ppb		24	5	2	3	18 1	3	21	13	32	4	14	1_	157	<mark>1</mark> 31
	- 2400 ppb		15	7 43	7	2 +	2 <u>4</u> 2		5	23	12	60	/	14	123	/
	– 2200 ppb		1/2 1	18 85	35	99	2 3	3	6	7	8	13	121	37	120	114
	- 2000 ppb		4	11 78	40	18	12 16	36	15	5	6	73	158	92	53	77
	- 1800 ppb		20	10 94	3	3	7 4	3	2	24		52	144	46	72	533
	- 1600 ppb		7	4 54	9	8	5 2	2	2	5	56	143	108	34	101	82
	- 1400 ppb		58	6 116	7	3 _ 2	291 1	2	4		135	53	50	269	_ 107	X
	- 1200 ppb		22	6 16	2	3	14 1 3	1. 2/	8	73	75	40	52	147	159	157
	- 800 ppb	and the second se		9 120		20	21 13 59 12	1 A	206	02	90	13	127	143	50	45
	- 600 ppb		12	18 9	2	12 ¢	4 6	53/	1009	6	22	62	110	68	70	78
	- 400 ppb	X	21	9 9	6	E	2	5	18	90	91	162	41	213	78	84
	- 200 ppb		45	4 4	2	241	7 00		107	DAL.	48			563	319	208
	dqq 0 -		24	19 + 12	2	8 🕎	5-2-	41	12		4-1	75		149	290	100
			36	8 10	0	4 2	025 42	165	427	101	55	73	83			
- 52	F2 62 6	0	100	13 3	+ 4	-	106	17	149		56	47	362	306	6	
43	91 458 1	9 32	13	3 5	28	111	18 86	123	374	126	110	20	167			
12	21 5	1 118	77	4	15		Tot S	509	91	420	44	161				
13	22 9 1	4 75	21	9 74	20	2	24 63	37	T	159	34	76	67	209	396	
15	5 5 1	3 11	23	12 42	21	8	36 28	23	21	6	79	58	53	186	43	76
10	6 7 2	1 53	62	5 53	6	-51	23 69	17	25	43	60	-26	20	99	3170	543
5 +	3 3 + 8	1 3	31 1	59 22	69	129	56 46	15	42	30	237	1009	34	27	20	57
		3 4		5/ 24	6	47	37 15	48	88	83	-28	80	20	36	10	133
	3 10 2 3 17 5	2 4 2 1 1 1	10	23 203	12	40	38 48	1 51	23	22	44	102	18	30	31	15
1	4 2 4	5 2	9	16	3	19	9 109	28	28	16	10	18	42	45	19	20
-5	3 9 0	2	58 1	18 8	70	33	4 10	89	12	22	10	20	25	62	34	47
	2 _ 1 _ 4	1 2	2_3	36	30		10 22	18	37	56	28	49	16	63	36	46
4	1 1	17	29 4	19	17 -	8	19 25	5	26	8	-8	42	69	21	38	84
+ 1 -+		3 3	5 2	2 19	$\bigcup_{i \in I}$	7 1	2	6	8	-	5	7	12	19	31	12
+ +	1 + 3 1	3 1	+ + + +		6	41	6 13	8	+ 6		45	70	105	7	22	46
T	1 1 4	2 2 2			68	14	7 12	+ 10	+ + +	12	4	30	+ 59	F 35 +	113	-67-
0.4	2 1 0			3 4	+ 5	10 +	9 4	+ 0 **	20	28	11	7	20	+ 29	22-1	61
12	3 1 2	2 1	1.	2	5	13 / 2	7 12	13	12	12	10	4	6	64	36	-97
2-2-	2 . 1 1	0	1 1		6	4 1	6 6	64	60	11	19	5	8	10	21	141
		N N	>					-			5	10	4			/
	//	\rangle	MOO			No		(5001-		•	6	3			3
		\setminus (+09			0+0		([+	10	20	39			00+
X								\backslash		-	15	3	- 1			- 20

	Barkerv Claim Gr	rille	Mosqui Claim	to Cree Group	k			4	K			K		\searrow		
		TV	X^{\sim}		~ ~	~			/		z	X				
	Arsenic		-1		\sim	₽́ /		\searrow	T I		100					3
	(ppm)			\times _		40	_	\backslash	A		30+) (
	1800 ppm	17	8	A	11 8	14	15	12	14	22		18	19	13	129	75
	- 1700 ppm	18	10	12	17 7	10	19	10	34	17	15	11	22	< 1	132	Y
	- 1600 ppm	_ 19) 15	11	11 13	_ 18	_ 17	12	43	5	23	15	14		T	102
	– 1500 ppm	31	16	30	14 13	16	8	13	32	20	20	11	27	P	156	80
	- 1400 ppm	31	24	_ 28 1	18 11	_ 14	10	14	20	30	38	21		123	95	-
	- 1300 ppm	40	20	+ 51 +	17 25	_ 28	_ 16	25	15	27	19	36		114		1
	- 1200 ppm	42	43	34	21 _ 14	+ 21	+ 19	+ 22	15	23	32	52	70	57	133	86
	- 1100 ppm	- 34	29	- 68 +	57 _ 38	+ 53	1 ²	+ 24	+ 14	18/	18	123	106	157	_ 116 _	116
	- 900 ppm	02	33 8 20	15	1/ 1/	+ 31	22	16	11	19	100	112	121	85	113	106
$ \land$	- 800 ppm		47	42 +	19 24	+ 44	16	- 10 -	- 0 14	10	129	96	125	96	- 83	94
	– 700 ppm	67	37	+ 32 +	19 25	+ 67	+ 4	1-11	17	130	120	02	148	184	158	151
	-600 ppm	57	68	++	42 10	42	1 21	14	38	157	168	102	197	69	105	106
	– 500 ppm	+ 44	30	78	21 21	102	58	+ 14	197	432	38	132	274	+ 218	170	100
	-400 ppm	58	175	71	49 15	+ 36	77	016	59	99	63	240	346	238	116	105
	- 300 ppm	10	5 49	218 2	29 15	29	Tes	16	98	209	109	280	295	385	141	94
	- 200 ppm	83	42	-31	11 551	26	07	P	172	m	24	Transa and a state of the state		320	174	145
		12	9 _ 77	51	15 41	GR		144			M.	249		469	315	124
		21	35	27	7 22	92	133	308	433	463	138	123_	509			
		11	110	45 8	31		138	81	383	Section of the sectio	159	117	356	533		
98	8 77 111 84	70 92	32	44 3	186	133	179	208	291	$ \land$	-	and the second second	181			\rightarrow
10	07 114 181 37		1 29	32 1	10 184	149	86	126		.397	239	100				
4:	7 100 50	195 7	25		3	200		300	271	007	- 69	120	100			
30	73 53 70	59 16	D 117	68 7		200	148	67		367	184	144	101	563	1394	
40	22 39 115	135 11	3 123	50 11	18 17	49	45	56	36	-141	121	100	54	161	465	252
86	63 18 47	66 13	2 118	32 8	7 167	57	26	50	112	166	130	759	54	218	88	107
	65 51 104	70 62	2 45	26 6	0 33	35	116	51	119	119	90	121	172	85	229	83
-	81 43 28	_3368	3 53	46 3	2 56	48	100	40	74	78	71	82	135	115	105	69
62	68 50 30	35 60	43	45 5	1 69	87	120	42	32	85	19	132	100	45	54	69
28	34 _ 28 _ 33 _	28 40	0 48	6	5 35	101	97	115	45	44	30	17	46	56	23	62
31	36 47 50	31 7	5 83	27 5	4 _ 50	15	56	38	63	26	33	30	81	83	74	89
	+ 42 + 19 + 21 +	38 3	2 80	64	4	44	44	36	40	26	33 _	34	50 👩	113	174	84
+ 35	+ 33 + 21	195 5	0_93		45	+ 21	36	28	56 +	27	17	26	58	65	128	35
14	+ 21 + 30 + 26 +	95 2:	3 23	56	30	24	16	33	16	t	30 _	31	52	43	30	77
9		20 + 2	4_ 33 4	4	1	# 43	16	48	24	-	9 -	29	18	13	36	63
9	13 10 Dig/	26 + 2	12	20 20	$+ \frac{32}{20}$	3/	31	20 +	30	12	2	31		64	63	
12	21 - 28 + 0 +	13 1	1 27	33 20	+ 39		30	40 + 27 - 500.00	ST	28	1/	12 4	54	+ 45 +	26	39
9	26 15 15	10	6 16	15 45	48	1 22	30	1 23-+	40 +	45	14	20	37	53	96 54	24
- 9	22 17 15	14 2	5 13	16 28	25	44	36	27	48	35	16	26	30	+ 00 + 50	68	+01
				-1		1		Att			17 +	21	3		-	~
K				V		1	1	/		1	1					

