MINT			RANC	-
Rec				
			DIA	MOND DRILLING ASSESSMENT REPORT
(MAR (33	2001	ON THE HORN/ BERYL CLAIMS
L.].;;		• • • •		-
Filə V	ANCO	UVER	≳, B.C.	
	2			HORN PROPERTY

Horn 146 and 147

Beryl 1,2

NTS 82F/9

Latitude 49° 34' N Longitude 116° 12'W

Owner – Chapleau Resources Ltd. 104 – 135 10th Ave. S. Cranbrook, B.C. V1C 2N1

Operator - Same as above.

Consultant – Anderson Minsearch Consultants Ltd. 3205 6th. St. South Cranbrook, B.C. V1C 6K1

Author - Douglas Anderson, Geologist

Submitted - February 23, 2001

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

Page

1.00 Introduction	1
1.10 Property Definition, History, Background Information 1.20 Summary of Work Done	1 7
2.00 Geological Setting	7
2.10 Regional Geology 2.20 Local Property Geology	7 7
3.00 Diamond Drilling	11
4.00 Summary and Conclusions	11
5.00 Itemized Cost Statement	12
6.00 Author's Qualifications	13

List of Illustrations

Ç

 $\left(\right)$

Figure 1	Horn Claims Location Map	in text		
Figure 2	Horn/Beryl Claim Map – Hole location 1:20,000 scale	in text		
Figure 3	Diamond Drill Hole Location on Claims at 1:5000	in text		
Table 1 - Sta	tistics and Correlations for Certain Elements	in text		
Appendix A - Analytical Results for HL-00-1				

CHAPLEAU RESOURCES LTD.

DIAMOND DRILLING ASSESSMENT REPORT DIAMOND DRILL HOLE HL-00-01

HORN PROPERTY

1.00 Introduction

The Horn claims subject of this report are part of a large block of claims similarly named, the report pertains to the area south and west of the Hellroaring and Angus creeks. This area is about 20 kilometres southwest of Kimberley, B.C. in the East Kootenay region of British Columbia. Other claims forming part of the immediate area of interest include the Beryl and Hell claims. Relief is moderate ranging from 1150 to 2200 metres. Forest cover is thick with a variety of conifers and moderately thick overburden. Outcrop is restricted mostly to the main hogsback that trends north-south up from Hellroaring creek. Access is excellent due to intense logging activity. Access is via two major roads, the St.Mary Lake road or the River road which is a logging access road. These roads are on the north and south sides of the St. Mary river respectively. The Angus and Hellroaring creek roads provide secondary access to tertiary logging roads which are numerous on the claims. The claims of interest herein cover the Hellroaring Creek stock mapped by the Geological Survey of Canada in the 1950's by G. Leech..

1.10 Property Definition, History, Background Information

The part of the property of concern to this report includes:

				MM/DD/YY
CLAIM	PROPERTY NAME	UNITS	RECORD #	Due Date
Tip 001	HORN	1	369371	5/16/01
Tip 002	HORN	1	369372	5/16/01
Tip 003	HORN	1	369373	5/16/01
Tip 004	HORN	1	369374	5/16/01
Tip 005	HORN	1	369375	5/16/01
Tip 006	HORN	1	369376	5/16/01
Tip 007	HORN	1	369377	5/16/01
Tip 008	HORN	1	369378	5/16/01
Tip 009	HORN	1	369379	5/16/01
Tip 010	HORN	1	369380	5/16/01
BERYL 001	HORN	1	377863	6/15/01
Tip 011	HORN	1	369961	6/23/01
Tip 012	HORN	1	369962	6/23/01
Tip 013	HORN	1	369963	6/23/01
Tip 014	HORN	1	369964	6/23/01
Tip 015	HORN	1	369965	6/23/01
Tip 016	HÖRN	1	369966	6/23/01
Tip 017	HORN	1	370309	7/3/01

					MM/DD/YY
CLAIM	PROPERTY 1	NAME	UNITS	RECORD #	Due Date
Tip 018	HORN		1	370310	7/3/01
Tip 019	HORN		1	370311	7/3/01
Tip 020	HORN		1	370312	7/3/01
Tip 021	HORN		1	370313	7/3/01
Tip 022	HORN		1	370314	7/3/01
Tip 023	HORN		1	370315	7/3/01
Tip 024	HORN		1	370316	7/3/01
BERYL 002	HORN		1	379686	8/4/01
BERYL 003	HORN		1	379687	8/4/01
Beryl 004	Horn		1	380393	9/3/01
Beryl 005	Horn		1	380394	9/3/01
Beryl 006	Horn		1	380395	9/3/01
HORN 166	Horn		1	381957	10/26/01
Horn 001	Horn		1	212445	12/1/01
Horn 002	Horn		1	212446	12/1/01
Horn 003	Horn		1	212447	12/1/01
Horn 004	Horn		1	212448	12/1/01
Horn 005	Horn		1	212449	12/1/01
Horn 006	Horn		1	212450	12/1/01
Horn 007	Horn		1	212451	12/1/01
Horn 008	Horn		1	212452	12/1/01
Horn 009	Horn		1	212453	12/1/01
Horn 010	Horn		1	212454	12/1/01
Horn 011	Horn		1	212455	12/1/01
Horn 012	Horn		1	212456	12/1/01
Horn 013	Horn		1	212457	12/1/01
Horn 014	Horn		1	212458	12/1/01
Horn 015	Horn		1	212459	12/1/01
Horn 016	Horn		12	212460	12/1/01
Horn 017	Horn		20	212461	12/1/01
Horn 018	Horn		1	212462	12/1/01
Horn 019	Horn		1	212463	12/1/01
Horn U20	Horn		+	212464	12/1/01
Horn U21	Horn		5	212405	12/1/01
Horn 022	Horn		20 10	300320	12/1/01
Horn 023	Ногп		20	300327	12/1/01
Horn 025	Horn		20 1	300323	12/1/01
HOTH 029	Norn		1	200102	12/1/01
HOIN 030	Horn		1	300185	12/1/01
Horn 032	Horn		1	300105	12/1/01
Horn 032	Horn		1	300193	12/1/01
Horn 034	Horn		-	300206	12/1/01
Horn 035	Horn		7	300208	12/1/01
Horn 036	Horn		1	300277	12/1/01
Horn 039	Horn		1	302242	12/1/01
Horn 040	Horn		1	302243	12/1/01
Horn 045	Horn		1	302045	12/1/01
Horn 046	Horn		1	302046	12/1/01
Horn 047	Horn		1	302047	12/1/01
Horn 048	Horn		1	302048	12/1/01
Horn 049	Horn		1	302049	12/1/01
Horn 050	Horn		1	302050	12/1/01
Horn 051	Horn		1	302051	12/1/01
Horn 052	Horn		1	302052	12/1/01

 $\left(\right)$

1

Ć

2

.....

				MM/DD/YY
CLAIM	PROPERTY NAME	UNITS	RECORD #	Due Date
Horn 053	Horn	1	302053	12/1/01
Horn 054	Horn	1	302054	12/1/01
Horn 055	Horn	1	302055	12/1/01
Horn 056	Horn	1	302056	12/1/01
Horn 057	Horn	1	302057	12/1/01
Horn 058	Horn	1	302058	12/1/01
Horn 059	Horn	1	302059	12/1/01
Horn 060	Horn	1	302060	12/1/01
Horn 061	Horn	1	302061	12/1/01
Horn 062	Horn	1	302062	12/1/01
Horn 063	Horn	1	302063	12/1/01
Horn 064	Horn	1	302064	12/1/01
Horn 065	Horn	1	302065	12/1/01
Horn 066	Horn	1	302066	12/1/01
Horn 067	Horn	1	302067	12/1/01
Horn 068	Horn	1	302068	12/1/01
Horn 069	Horn	1	302069	12/1/01
Horn 070	Horn	1	302070	12/1/01
Horn 071	Horn	1	302071	12/1/01
Horn 072	Horn	1	302072	12/1/01
Horn 073	Horn	1	302073	12/1/01
Horn 074	Horn	1	302074	12/1/01
Horn 075	Horn	1	302075	12/1/01
Horn 076	Horn	1	302076	12/1/01
Horn 078	Horn	1	302078	12/1/01
Horn 079	Horn	1	302079	12/1/01
Horn 080	Horn	1	302080	12/1/01
Horn 082	Horn	1	302082	12/1/01
Horn 083	Horn	1	302083	12/1/01
Horn 084	Horn	1	302084	12/1/01
Horn 085	Horn	1	302085	12/1/01
Horn 086	Horn	1	303015	12/1/01
Horn 087	Horn	1	303016	12/1/01
Horn 094	Horn	1	303023	12/1/01
Horn 096	Horn	1	303025	12/1/01
Horn 097	Horn	1	303026	12/1/01
Horn 098	Horn	1	303027	12/1/01
Horn 099	Horn	1	303028	12/1/01
Horn 100	Horn	1	303029	12/1/01
Horn 101	Horn	1	303030	12/1/01
Horn 102	Horn	1	305610	12/1/01
Horn 103	Horn	1	305611	12/1/01
Horn 104	Horn	1	305612	12/1/01
Horn 105	Horn	1	305613	12/1/01
Horn 106	Horn	1	305614	12/1/01
Horn 107	Horn	1	305615	12/1/01
Horn 108	Horn	1	305616	12/1/01
Horn 109	Horn	1	305617	12/1/01
Horn 110	Horn	T -	305618	12/1/01
Horn 111	Horn	1	305619	12/1/U1
Horn 112	Horn	1	305620	12/1/01
Horn 113	Horn	T	305621	12/1/01
Horn 114	Horn	ម -	303932	12/1/01
Horn 115	Horn	1	371211	12/1/01
Horn 116	Horn	T	371212	12/1/01

3

 $\left(\right)$

C

 \langle

					MM/DD/YY
CLAIM	PROPERTY	NAME	UNITS	RECORD #	Due Date
Horn 117	Horn		1	371213	12/1/01
Horn 118	Horn		1	371214	12/1/01
Horn 119	Horn		1	371215	12/1/01
Horn 120	Horn		1	371216	12/1/01
Horn 121	Horn		1	371217	12/1/01
Horn 122	Horn		1	371218	12/1/01
Horn 123	Horn		1	371219	12/1/01
Horn 124	Horn		1	371220	12/1/01
Horn 125	Horn		1	371221	12/1/01
Horn 126	Horn		1	371222	12/1/01
Horn 127	Horn		1	371223	12/1/01
Horn 128	Horn		1	371224	12/1/01
Horn 129	Horn		1	371225	12/1/01
Horn 130	Horn		1	371226	12/1/01
Horn 131	Horn		1	371227	12/1/01
Horn 132	Horn		1	371228	12/1/01
Horn 133	Horn		1	371229	12/1/01
Horn 134	Horn		1	371230	12/1/01
Horn 135	Horn		1	371231	12/1/01
Horn 136	Horn		1	371232	12/1/01
Horn 137	Horn		1	371233	12/1/01
Horn 138	Horn		1	371251	12/1/01
Horn 139	Horn		1	371252	12/1/01
Horn 140	Horn		1	371253	12/1/01
Horn 141	Horn		1	371254	12/1/01
Horn 142	Horn		1	371255	12/1/01
Horn 143	Horn		1	371256	12/1/01
Horn 144	Horn		1	371257	12/1/01
Horn 145	Horn		1	371258	12/1/01
Horn 146	Horn		1	371259	12/1/01
Horn 147	Horn		1	371260	12/1/01
Horn 148	Horn		1	371261	12/1/01
Horn 149	Horn		1	371262	12/1/01
Horn 150	Horn		1	371748	12/1/01
Horn 151	Horn		1	371749	12/1/01
Horn 152	Horn		1	3/1/50	12/1/01
Horn 153	Horn		1	3/1/51	12/1/01
Horn 154	Horn		1	3/1/52	12/1/01
Horn 155	Horn		⊥ ¬	371754	12/1/01
Horn 156	HOIN		1	371755 371755	12/1/01
Horn 157	HOLU		⊥ -	371756	12/1/01
Horn 158	HOIN		1 C	3/1/30	12/1/01
Horn 159	HOIN		1	3/1/4/	12/1/01
Horn 160	Horn		1 1	371004	12/1/01
Horn 161	HOIN		1 7	371805	12/1/01
Horn 162	HOIN		1	371000	12/1/01
Horn 163	HOIN		1	371007 271000	12/1/01
Horn 145	Horn		+ 1	371809	12/1/01
Recal Ani	Horn		<u>►</u> 1	339840	12/1/01
Fecal OUL	Horn		÷ 1	339841	12/1/01
Fecal 002	Horn		-	339842	12/1/01
Fecal 003	Horn		- 1	339843	12/1/01
Fecal 005	Horn		-1	339844	12/1/01
Fecal 006	Horn		1	339845	12/1/01
					· ·

 $\left(\right)$

 $\left(\right)$

4

				MM/DD/YY
CLAIM	PROPERTY NAME	UNITS	RECORD #	Due Date
Fecal 007	Horn	1	339846	12/1/01
Fecal 008	Horn	1	339847	12/1/01
Fecal 009	Horn	1	339848	12/1/01
Fecal 010	Horn	1	339849	12/1/01
Fecal 011	Horn	1	339850	12/1/01
Fecal 012	Horn	1	339851	12/1/01
Pit 001	HORN	16	363148	12/1/01
Pit 002	HORN	1	368753	12/1/01
Pit 003	HORN	15	363149	12/1/01
Pit 004	HORN	20	363150	12/1/01
Pit# 005	HORN	1	367182	12/1/01
Pit 005	HORN	1	368754	12/1/01
Pit# 006	HORN	1	367183	12/1/01
Pit 006	HORN	1	368755	12/1/01
Pit# 007	HORN	1	367184	12/1/01
Pit 007	HORN	T	368756	12/1/01
Pit# 008	HORN	1	367185	12/1/01
Pit 008	HORN	1	368757	12/1/01
Pit 009	HORN	1	368758	12/1/01
Pit 010	HORN	1	363151	12/1/01
Pit 011	HORN	1	363152	12/1/01
P1E 012	HORN	1	363153	12/1/01
PIC ULS	HORN	1	303154	12/1/01
P1C 014	HORN	1	303133	12/1/01
P1C 015	HORN	-	263120	12/1/01
P1C# 020	HORN	1	367149	12/1/01
P1C# 021	HORN	-	367150	12/1/01
P1C# V22	HORN	1	367157	12/1/01
PIC# 023 Di+# 004	NORN	1	367153	12/1/01
PIC# 024	NORN	1	367154	12/1/01
PIC# 025	HORN	1	367155	12/1/01
Pit# 020 Dit# 027	HORN	1	367156	12/1/01
Pit# 028	HORN	1	367157	12/1/01
Pit# 020	HORN	-	367158	12/1/01
Pi+# 030	HORN	1	367159	12/1/01
Pi+# 031	HORN	1	367160	12/1/01
Pit# 032	HORN	1	367161	12/1/01
Pit# 033	HORN	1	367162	12/1/01
Pit# 034	HORN	1	367163	12/1/01
Pit# 035	HORN	1	367164	12/1/01
Pit# 040	HORN	1	367300	12/1/01
Pit# 041	HORN	1	367301	12/1/01
Pit 042	HORN	1	368768	12/1/01
Pit 043	HORN	1	368769	12/1/01
Pit 044	HORN	1	368770	12/1/01
Pit 045	HORN	1	368771	12/1/01
Pit 046	HORN	1	368772	12/1/01
Pit 047	HORN	1	368773	12/1/01
Pit 048	HORN	1	368774	12/1/01
Pit 049	HORN	1	368775	12/1/01
Pit 050	HORN	1	368776	12/1/01
Pit 051	HORN	l	368777	12/1/01
Pit 052	HORN	1	368778	12/1/01
Pit 053	HORN	1	368779	12/1/01

Ć

 $\left(\right)$

5

- ---

					MM/DD/YY
CLAIM	PROPERTY NAME	UNITS	RECORD	Ħ	Due Date
Burn 015	HORN	1	360068		12/1/01
Burn 016	HORN	1	360069		12/1/01
Burn 017	HORN	1	360070		12/1/01
Burn 018	HORN	1	360071		12/1/01
Burn 019	HORN	1	360072		12/1/01
Burn 020	HORN	1	360073		12/1/01
Burn 031	HORN	1	360084		12/1/01
Burn 032	HORN	1	360085		12/1/01
Burn 033	HORN	l	360086		12/1/01
Burn 034	HORN	1	360087		12/1/01
Burn 035	HORN	l	360088		12/1/01
Burn 036	HORN	1	360089		12/1/01
Burn 037	HORN	1	360090		12/1/01
Burn 038	HORN	1	360091		12/1/01
Burn 039	HORN	1	360092		12/1/01
Burn 040	HORN	1	360093		12/1/01
Burn 041	HORN	1	360094		12/1/01
Burn 042	HORN	1	360095		12/1/01
Burn 043	HORN	1	360096		12/1/01
Burn 044	HORN	1	360097		12/1/01
Burn 057	HORN	1	360119		12/1/01
Burn 058	HORN	1	360120		12/1/01
Burn 059	HORN	1	360121		12/1/01
Burn 060	HORN	1	360122		12/1/01
Burn 061	HORN	1	360123		12/1/01
Burn 062	HORN	1	360124		12/1/01
Burn 063	HORN	1	360125		12/1/01
Burn 064	HORN	1	360126		12/1/01
Burn 065	HORN	1	360127		12/1/01
Burn 066	HORN	1	360128		12/1/01
Burn 067	HORN	1	360129		12/1/01
Burn 068	HORN	1	360130		12/1/01
Burn 069	HORN	1	360131		12/1/01
Burn 070	HORN	L -	360132		12/1/01
Burn 071	HORN	1	360133		12/1/01
Burn 072	HORN	1	370159		12/1/01
Burn 074	HORN	1	370160		12/1/01
Burn 076	HORN	L Z	370161		12/1/01
Burn 077	HORN	1	370162		12/1/01
Burn 078	HORN		370163		12/1/01
Burn 079	HORN		370164		12/1/01
Burn 080	HORN	1	370165		12/1/01
Burn 081	HORN	1	370166		12/1/01
Burn 082	HORN	1	370167		12/1/01
Burn 001	HORN	1	371180		12/1/01
Burn 002	HORN	1	3/1181		12/1/01
Burn 003	HORN	1	371182		12/1/04
Burn 004	HORN	1	371104		12/1/01
Burn 005	HORN	1	371105		12/1/01
BULTI VU6	NORN	⊥ 1	371184		12/1/01
BUTH 007	NORN	+ 7	371107		12/1/01
BULU 008	NORN		371100		12/1/01
Burn 010	NORN	1	371180		12/1/01
BUCD 011	HORN	- -	371190		12/1/01
DUTH ATT	11-24247	-			, _,

C

 $\left(\right)$

6

CLAIN	a	PROPERTY	NAME	UNITS	RECORD #	MM/DD/YY Due Date
Burn	012	HORN		1	371191	12/1/01
Burn	021	HORN		1	371192	12/1/01
Burn	022	HORN		l	371193	12/1/01
Burn	023	HORN		1	371194	12/1/01
Burn	024	HORN		1	371195	12/1/01
Burn	025	HORN		1	371196	12/1/01
Burn	026	HORN		1	371197	12/1/01
Horn	024	Horn		12	300328	12/1/04

1.20 Summary of Work Done

The work forming this report was completed in the year 2000 and was part of a larger program of diamond drilling on the property. This report discusses the drilling of one deeper diamond drill hole (HL-00-1) to a final depth of 451.5 metres to drill test the granitic pegmatite to depth for beryllium and other possible rare metals/rare earths.

2.00 Geological Setting

2.10 Regional Geology

The Horn (Burn) property covers a broad stretch of lower stratigraphy in the Aldridge Formation together with extensive Moyie intrusions, juxtaposed against the major St.Mary reverse fault. The Aldridge is the oldest formation of the Proterozoic Belt-Purcell Supergroup. The Supergroup is a thick sequence of terrigenous clastic, carbonate, and minor volcanic rocks of Middle Proterozoic age. The basal Aldridge Formation, as exposed in Canada, is siliciclastic turbidites about 4000 meters thick. It is informally divided into the Lower, Middle, and Upper members. To the north and east in the basin, the Lower Aldridge, the base of which is not exposed, is about 1500 meters of rusty weathering (due to pyrrhotite), thin to medium bedded argillite, wacke and quartzitic wacke generally interpreted as distal turbidites. The Sullivan orebody occurs at the top of this division. To the south and west in the basin in Canada, the upper part of the Lower Aldridge is dominated by grey weathering, medium to thick bedded quartz wackes considered to be proximal turbidites. The Lower Aldridge is commonly host to a proliferation of Moyie intrusions, principally as sills. The Middle Aldridge is about 2500 meters of grey to rusty weathering, dominantly medium bedded quartzitic wacke turbidites with periodic inter-turbidite intervals of thin bedded, rusty weathering argillites some of which form finely laminated marker beds (time stratigraphic units correlated over great distances within the Aldridge/Prichard basin). The Upper Aldridge is about 300 meters of thin bedded to laminated, rusty weathering, dark argillite and grey siltite often in couplet-style beds.

2.20 Property Geology

The Horn property geology around the drill hole of concern to this report is dominated by a granitic/pegmatitic stock of Proterozoic age. About 2500m by 1000m in size, the stock is erratically distributed in outcrop due to the high percentage of included country rock (Aldridge sediments and gabbro). The stock is a granite to granitic pegmatite which hosts hand-specimen scale beryl crystals in a predominantly coarse-grained quartz-feldsparmuscovite-tourmaline rock.

(

Ć

. Res. S

HORN 1 212463 4. 6218171	9 HORN 18 212462 6218154	1 2 HORN 1 374212 692860	19 ¹ HORN 1 19 ¹ HORN 1 37721 M 692651 r N 8	17 ¹ HORN 1 3 3712 3M 692856	15 11 15 11 15 10 10 10 10 10 10 10 10 10 10 10 10 10
HORN 156 381957 885135M 2 2	HORN 131 692872N 7 371227 1	1 371225 MORN 129 2-69287.0M 1 1	371223 592868M 2 2 HORN 130 1	HORN 125 571221 692855M	HORN 123 371219 692864M 2 1
HORN 133 371229 892874M HORN 149	HORN 132 B 692873M HORN 148	ERYL 1 377963 89927M	692871M 371226 HORN 128 371224 692869M 371259	HORN 126 974222 692867M	HORN 124 377220 692865M 371257
6928909	37/201 692889M 2 594563N 20	37,1260 22 69288884 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8	111-026-07 373-0677 0 6945-62W 373-686 6945-62W 373-686 6945-62W 373-686 1 1 1 1 1 1 1 1	37,1258 69,2886M 2 40000 142	698885N HORN 144 2 HORN 141
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5	79 71754 0256M 1 130 201 1 130	6902544 371752 78	HORN 152 371750 6902520 - 1	971255 692883M	371254 692882M
579731 689066M 1 2 NELL 27	HORM 157 377755 590257M	610255M	HORN 153 371751 690253M	HORN 151 371749 690251M	HORN 150 371748 69082011
ST9729 689067M 1 HELL 25	HELL 36 \$79738 708662M	/ HELL 37 879739 708653M	HE14 6 579599- 694508M	HELL 4 978597 694506M	HELL ZX - 378595 694504M

 $\left(\right)$

Ć

38.2

. . . <u>.</u>

HORN PROPERTY

Claim Map – Drill Hole Location

NTS: 82	F/09
SCALE:	1:20,000

•

FIGURE: 2

3.00 Diamond Drilling

Diamond drill hole HL00-1 was positioned on the road central to the known, outcropping granite/pegmatite body. It was collared at 1680 metres in elevation and drilled at 250° azimuth at -70°. (See Figure 2) It was an attempt to test the internal variation of the granitic pegmatite to depth. Cored as NQ, the hole was not down-hole surveyed. The hole collared in a gabbro sill which can be roughly positioned within the Lower Aldridge division of the Aldridge Formation. The gabbro is altered and foliated with chloritic hornblende. At 44.5m Aldridge sediments were encountered continuing to 119m with short intervals of pegmatite within the Lower Aldridge sediments. The thin-bedded to laminated wackes are initially at 70 to 80° to core axis but this angle drops to 50° with depth. A pegmatite dyke from 93.4 to 103.2m contains weakly disseminated pyrite, galena, and sphalerite. The drill core is 98% granite/pegmatite from 119 to the end of the hole at 451.5m. There are occassional inclusions of sediment or gabbro within the main body of the pegmatite. The granite to pegmatite is variable in its textures and percentages of the various constituent minerals but overall it is consistent. It is dominantly coarse crystalline with varying amounts of microcline and albitic feldspars and quartz with lesser amounts of tourmaline and muscovite. There are occassional subhedral garnets and apatite. Attempts were made to classify/zone the pegmatite on the basis of the percentages of each of the minerals and some of the textural changes. This attempt is reflected in the log. Overall the pegmatite is remarkably similar from top to bottom. Sericite is the only consistently noted alteration. Beryllium was not visually recorded in the log. Base metal mineralization was widespread in narrow quartz veins cutting the pegmatite. Generally the veins are 1 to 3cm thick at 30 to 60° to c.a. They often contain minor amounts of pyrite, galena, sphalerite, and arsenopyrite.

The pegmatite within the drill hole was analyzed by Acme Analytical Laboratories Ltd. using Whole Rock Trace Elements by ICP MS. Also done was ICP analysis for certain base metals and thirteen selected samples were analyzed for the gold content. All analytical results are appended. The rock geochemical signature of the pegmatite was examined through minor statistical analysis – see Table 1 attached. In summary the elementary statistics are:

Element	Mean	Median Value	<u>Minimum</u>	<u>Maximum</u>
Beryllium	10.5ppm	7ppm	0ppm	297ppm
Tantalum	2.1	1.6	0.4	62
Cesium	7.35	6.8	1.3	31
Rubidium	207	204	44	439
Zirconium	43	24.5	6.9	5228
Yttrium	10.4	10.2	1.1	25

Of these elements only Cesium and Rubidium show any correlation.

4.00 SUMMARY AND CONCLUSIONS

Below the somewhat altered but otherwise normal gabbro to Lower Aldridge sediment sequence, the drill hole remained in 98% pegmatite for over two hundred metres. Mineralogically the pegmatite varies only in the percentages of the five main mineral

Columni		Stausuus anu Colligia		CerDe	Column 1	Column 3
Pubidium	· ·	Cesium		Column 1		Golunin Z
Meen	206 7003	Moon	7 354499	Column 2	0 773646	1
Standard Error	3 264752	Standard Error	n 10315		0.110040	
Median	20.00	Median	68			
Mode	319 3	Mode	4.5			
Standard Deviation	60 47202	Standard Deviation	3 471338			
Sample Variance	3656 865	Sample Variance	12 05019			
Kurtosis	0.986129	Kurtosis	10.69006			
Skewness	0.434207	Skewness	2,384029			
Range	395	Range	29.6			
Minimum	44.1	Minimum	1.3			
Maximum	439.1	Maximum	30.9			
Sum	66764.2	Sum	2375.5			
Count	323	Count	323			
				•		
Yttrium	<u></u>	Zirconium	······································		Column 1	Column 2
				Column 1	1	
Mean	10.39565	Mean	43.05652	Column 2	-0.007965	1
Standard Error	0.205158	Standard Error	16.17255			
Median	10.2	Median	24.5			
Mode	11	Mode	25.5			
Standard Deviation	3.681423	Standard Deviation	290.2061			
Sample Variance	13.55288	Sample Variance	84219.58			
Kurtosis	1.919927	Kurtosis	320.5385			
Skewness	0.771776	Skewness	17.88385			
Range	24.3	Range	5221.7			
Minimum	1.1	Minimum	6.9			
Maximum	25.4	Maximum	5228.6			
Sum	3347.4	Sum	13864.2			
Count	322	Count	322			
Beryllium		Tantalum		Ta:Be	Column 1	Column 2
Mean	10.46749	Mean	2.133127	Column 1	1	
Standard Error	1.11992	Standard Error	0.204192	Column 2	0.013578	1
Median	7	Median	1.6			
Mode	5	Mode	1.4			
Standard Deviation	20.12742	Standard Deviation	3.669784			
Sample Variance	405.1131	Sample Variance	13.46732			
Kurtosis	135.7763	Kurtosis	222.0259			
Skewness	10.59405	Skewness	13.86624			
Kange	297	Range	61.6			
Minimum	0	Minimum	0.4			
Maximum	297	Maximum	62			
Sum	3381	Sum	689			
Count	323	Count	323			

a na manana ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny fa

عمرا E1

 $\left(\right)$

components of feldspar (2), quartz, muscovite, and tourmaline. Sericite and garnet are far less abundant. Textural and crystallinity variations are continuous through the hole. The presence of gabbro and sediment inclusions to depth, suggest this is a high level intrusive environment. Mineralization is limited to narrow quartz veins carrying galena-pyritesphalerite-arsenopyrite. There are only three samples with significant Be content (>100ppm). The geology of this granite/pegmatite body has not been resolved with this hole, as it terminated in pegmatite similar to that cored by the entire hole.

5.00 ITEMIZED COST STATEMENT

TOTAL =	\$ 41,306.88
51.0 hours @ \$95/hour	<u>4,845.00</u>
- Site preparation/Build & open access	
Stillwater Excavating, Cranbrook, B.C. (235 Backhoe)	
Heavy Equipment Contractor	
Truck rental – 5 days @ \$75/day	375.00
5.0 days (0.5196) day	275.00
- Brian Comson, Labourer – naur core, prep core	000.00
Drien Collison Labourer haul core pren core	1,217.00
5.0 days @ \$330/day	1 947 00
- Douglas Anderson P Eng - log core report writing	
Super Group Holdings Ltd., Cranbrook, B.C.	
Geological Contractor	
INDIRECT	
1 note = 1,481 n.	ф <i>33</i> ,149.00
1 hole 1 491 A	¢ 22 140 00
LeClerc Drilling Ltd. Cranbrook BC	
DIRECT	

Douglas Anderson, P.Eng., B.A.Sc., FGAC Consulting Geological Engineer

6.00 AUTHOR'S QUALIFICATIONS

I, Douglas Anderson, Consulting Geological Engineer, have my office at 3205 6th. St. South in Cranbrook, B.C., V1C 6K1.

I graduated from the University of British Columbia in 1969 with a Bachelor of Applied Science in Geological Engineering.

I have practiced my profession since 1969, predominantly with one large mining company, in a number of capacities all over Western Canada.

I am a Registered Professional Engineer and member of the Association of Professional Engineers and Geoscientists of B.C., and I am authorized to use their seal which has been affixed to this report.

I am also a Fellow of the Geological Association of Canada.

Dated this 20th day of February, 2001

Douglas Anderson, P.Eng., B.A.Sc., FGAC Consulting Geological Engineer

		Lanner					· · · · ·	20.1			Ap,	0 er	dj	X	A																			
		1. 1.				1 1 1													日前 時時 武太				/	-04	が見						· .			
					فمقدة	بن المراجع المراجع					in it		Hereiter	11-12		tre la		i i i de	1.4		<u>Ne</u>	n'			12111		្រារ	11:17	y all					
	(199	pp#	pps	ppa	ppe	ppa	ppn	ppa	ppn	ppa			the	ppan p		12 00	n n n n n n n n n n n n n n n n n n n	- 14 	- Abw	PT PPB			ppe			- Na		Fr.		100 100	te ti			
8901 - 170.0 8902 51 - 52.3	6	45.1	<u>4.7</u> 15.7	19.9 15.0	3.1	7.3	<u>44.1</u> 319.3	- 27	195.) 2.6	.6	4.5	.4 1.0	1,2(<u>199</u>	•	ų7.)	6.7)17.4	37.1	4.00	Q	E A	LD	4.86	.7%	<u>.</u>).92(2		D.	36 <	1	Gables go	6
8903 8904 - <i>34 3</i>	109	<.5] .5	12.6	13.4 15.7	2.0	5.8	222.9 234.4	21	46.7	1.9	.# 1.#	.4	18.9	<5 9	7 4	35.5	7.2	2.0	4.7	55	2.0		<.05	.68 1.11	.16	1.28	.20 .30	.68	.15	1.61	22 24 1	1	52.3-5243 52.3-53.3	m
8905 61.8-62.8	112	<.5	6.8	13.8	}.3	8.4	214.7	15	57.6	3.6	8.	.6	1.7	4	9	26.2	6.9	2.6	5.7	.62	2.4	.7	.11	.75	,18	1, 19	.21	.73	-14	1.42 .	18 (6	648 - 62.8	
8906 62.8-67.2 8907 93.4-19.4	156 60	/1.2 <.5	7.0	18.5 10.6	2,3	23.9 3.5	209,3 382.8	- 11	60.6 37.1	16.0	⊧3.1 .8	.6 1.1	4.5	11 •5	8	61.4 14.5	11.4	7.7	16.3	1.94	7.0 1.9	2.0	.22 .05	1.87	.34 .13	1.97	.37 .12	1.15	. 19 . 07	1,62 . .70 .	24 1/ 10 !	0	62.5 - 69.2 93.4 - 9 9.4	
8909 75:4-75:4 8909 75:4-56.4	22	<.5	8.9 9.0 10 0	15.2	1,6	7,3 5,2 13 T	235,3 235,3	13	35.3 21,0	2.0	1.1	.7	17.4 17,8 17 5	004	5 8 1	17.3	8.5 8.3	2.6	5.9	.04	2.5	1.0 •	4.05 4.05	1,00	,24 ,23 16	1.47	.22	.76.	- 14 - 15	1.41.	19 (24		99.4-95.4 45.4-96.4	
RE 0910 52 - 160	2	<.5	9.7	13.9		10.8	240.0	18	26.0	3.4	.6	.7	15.3	ч с	1	19.6	5.5	1.5	3.1	.,45 	1.5		c.09	.97	. 12	. 74	. 15	. 19	• 1 I - 44 - 1	1.11	36 g) 17 g		96.9 - 97. +	
RRE 8910 8911 58.4-	25 18	<.5 <.5	10.1	13.5 13.1	1.0	13.1	261.7 214.1	19 11	22.3 23.6	6.6 1.6	.6	.7	14.9 14.1	44	10 3	20.2	4.8	1.6	3.1	.37	1.3		.05		,14 ,20	.95	.13	.62	.08 .17	.95	14 14 26 1		97.4 - 98.4	
8912 8913	12 16	<.5 <.5	8.1 11.6	1 3.4 12 .9	1.8 1.6	6.1 5.8	212.3 303.3	11	20.5 21.3	4.0 2.5	1.6 1.4	.7	11.4 14.9	ব ব্	ŝ	36.5 33.9	10.9 8.3	4.1 3.1	9,3 6,1	1.07	3.8 2.7	1,1 s	-05 -05	1.33 1.10	.30 .24	2.81 1.49	.31 .22	1.07	. 16	2.15 . 1.54 .	10 22 14		95;4- 99,4 99,4-100.4	
8914 9915	11	<.5	9.6	14.4	2.2	11.8	180.8	18	19.4 13 4	5.8	1.4	.6]	4.8	e i	17	44.1	7. 9	3.1	6.9	.78	2.8	1.2		1.07	.27	-61	.27	.95	. 19	.96 .	29 2		100,9-101.4	
8914 /924/63.L 8917	149	<.5	7.8	11.6	1.3	5.2	216.0	11	43.1 36.5	1.7	1.2	.9	19.2 12.9	90	9 3	27.2	8.2 7.1	1.9	4.0	.49	1.7	. <u>4</u> .8	10	.45	.21 * .17 *	,39	.23	.89 .73	. 10 . 16 . 11	.44	21 3		101.4 - 102.4 102.4 -103.2	
8918	44	<.5	9,1	13.1	1.3	6.8	156.7	13	31.9	4.1		.6	6.3	٩H	n)	23.7	6.7	2.2	4.9	. 52	2.0	.∎	.06	.94	.19	.26	. 19	.66	. 12	.8.	17 15		119-120.0 120-121.0	.
8919 8920		2.7	7,0	16.1	2.1	7.2	191.7 243.3	15 23	37.1	1.5	3.7	.6 1	7.3	15 12 1	1	64.9 61.5	11.8	10.5	22.2	2.43 2.43	9.6	2.1 2,2	.7	.89 2.00)	.55 2	. 14 . 36	.41 .第	1.37	.22	.71 .	26 2 26 3		121.0-122.0	
8922 RE 8922	15	<.5 <.5	11.5	14.7	1.4	9.0	225,4 210,2	14	23.2	4.3	1.0	.7 1	9.2	999		29.2	8.0	2.3	5.0	.55	2.2	.9	.01	.99 .99	.23	.43	.22	.00		.67 . 1.56 .	24 8 21 13 16 16		123.0 - 124.0 124.0 - 125.0	
NRE 8922	15	<.5	11.2	13.5	1.2	9.6	214.9	14	20.9	4.8	1.2	1.1 1	8.2	4	5	24.6	7.0	2.8	6.3	.69	2.4	1.0 4	.05	.91	.22		, 19	.66	. 13 1	.30	19 10 19 2		 Repeat	
8923 8924	28 32	<.5 <.5	7.3	12.4 12.1	8, 8,	5.1 9.3	194.4 252.5	10 11	26.6 26.7	2.0	1.2	-6 1.0	7.4	44	9 5	15.1 14.5	5.8	1.7	3.8	.43	1.5	,6 4 ,5 4	.05	.65 .61	, 16 1 , 14	.08	.16 .13	.57	12 07	,99 ,92	16 5 12 10		125.0-126.0	
8925	23	<.5 <.5	5.0 7.0	12.7	7.2	4.7 3.9	160.4 197.7	5 9	26.8 25.6	2.3	2.8	.51	7.7 4.8	4	9 17	29.7 26.9	9.6	3.8 2.8	7.Z 6.2	.78 .71	2.5 2.4	1.2 1.0	.09	.97 .14	.24 1 ,26 1	.40 .70	.24	.82 ,95	, 17 1 , 19 1	.34 . .84 .	24 S 27 S		127.0-128.0	
8927 8725	25 42	<.5 <.5	5.9 18.2	13,P 12.5	1.6	7.6 3.7	152.5 231.0	15 12	26.3 33.4	3.4	1.9	\$	7.6 6.0	ଏ । ଏ	3	35.2 21.6	11.6 8.1	2.5 1.9	5.5	.65	2.6	1,1 < .8 4	. 05 1 . 05	.30	.29 2 .20 1	.02	.33 1	. 17 .	.22 1	.84 .	17-12		129.6-131.0	
8929 STAKDARD 30-15	25 2071	<.5 20.7	11.6 2.7	12.8 16.8	1.2 26.8	7.8 50.0	244.1 63.0	11 17 (29.9 602.1	3.7	2.2 22.5	.8 1.1 1	4.9 9.9	-6 155 _1	9 10 10	28.7 150.8	15.7 22.1	2.7	6.1 59.2 (.65 6.23	2.6 24.0	1.1 4.4 1	.07 1	.42	.35 2 .59 3		.44 1	1.84 1.49	31 2		10 - 1 10 - 1		131.0 - 132.0 132.0 - 133.0 W	1
11 0	0	1								~	b . b	dit _			-	100 /0									•									
11.2	-	\$									E TYP beat	E: 00 anio	RE RI	150 AC	ic beru		ы ган d 100	E' er	- Ne li	eet B														
					* -						٢, .	L	,	_			1	07				-												
date reck	I VIED	F 0	CT 10	2000	DA		ur po	RT 1	* 11 A.	C	/4	12	for	Ø	JIG		BY.	L 41	3-1-6-1	7	P. 10	ME, C	LED	13, J	. 191	4 ; C	EAT!	11ED	A.C.	ABBAT	ERB			
																				I										4				
ALL results a	70 CO	nside	red t	he co	nfide	ntial	prop	rty e	of the	clie	nt. A	CIDO 8	••	ns the	110	bitit	ies f	on ac	tual c	ost (of the		lysis	anij	1.				Dete	-C FA				

....

TT

Chapleau Resources Ltd. PROJECT HC FILE # A003961

Page 2 (a)

SMPLE#	iten pipete	Co ppsi	Ca gra	4.s 999	af ppa	alla ppm	it) ICA	3m ppm	intari i Su	te : Vie pi	th Ti	ij Marti	hini t A	14 498	2r #ptt	Y (gain	Le	Ca ppa	Pr Spain	Nd 1	in Li I più	a Bd R (Spii	Th: paper	by PP		Er Ti ppe pp	i Yi	, Lu I gen	şle He	
8930 8951 8952 8933 8934	23 30 27 18 27	<.5 <.5 <.5 <.5 <.5	10.9 9.8 7.1 7.2 9.5	9.7 12.3 12.2 12.9 12.9	.8 1.3 1.2 1.5 1.6	2.4 4.6 6.3 5.0 6.5	223.3 241.0 188.8 184.5 214.3	9 16 9 9 12	23.2 1 25.2 1 25.6 4 24.9 3 28.5 2		4 .8 9 .8 9 .6 5 .5 4 .7	3.6 18.5 8.6 6.5 17.1	25 21 13 45 45	4 9 2 9 2	15.4 26.1 23.9 27.7 28.3	9.5 10.5 12.6 10.9 9.4	1.7 1.7 2.8 3.0 2.3	3.7 3.5 6.8 6.4 4.8	.43 .41 .72 .73	1.3 1.4 2.5 1/ 2.6 1. 2.2	6 - 01 6 - 01 9 - 01 9 - 01	3 .77 5 .02 7 1.18 5 1.22 5 .97	.22 .55 .51 .22	1.36 1.57 1.93 1.93 1.71	.27 1 .34 1 .39 1 .32 1 .27	.00 .14 .09 .24 .51 .24 .10 .21	1.54 1.72 1.91 1.91 1.91	.25747	10 2 2 8 9	1350-134,0 134,0-135,6 135,0-135,6 136,0-137,0 137,0-137,0
8935 8936 8936 8938 8938 8939	21 13 13 5 12	<.5 <.5 <.5 <.5	11.6 9,0 7.8 6.2 7.0	12.6 12.3 11.6 12.3 13.0	1.6 1.8 1.0 1.1 1.1	5.6 6.6 4.4 5.5 5.5	279.0 262.3 257.1 194.4 217.0	12 12 9 10	27.7 1 28.0 2 22.3 1 17.1 2 18.3 2	1.8 1. 1.8 1. 1.7 1. 1.3 1.	.1 .6 .3 .7 .8 .5 .5 .5 .1 .6	17.6 12.0 10.2 19.3 17.3	47 15 27	8 3 9 2 8	28.3 25.5 19.5 24.4 22.9	9.2 10.6 7.8 10.2 8.6	2.4 3.5 2.4 3.5 2.9	5.0 7.2 4.9 7.3 6.2	.60 .67 .68 .72	2.2 2.8 1. 2.8 1. 2.8 1. 2.3 1.	18.> 8 10. 8 10. 5 10. 0	3 .97 9 1.32 6 .99 1 1.28 6 1.10	.88 .31 .12 .12	1.62 1.75 1.52 1.65 1.45	.5. .7. .7.	.83 .1 .99 .1 .72 .1 .99 .1 .99 .1	7 1.44 5 1.7; 5 1.5; 7 1.5; 7 1.5;	.22 .26 .17 1.27	8 2 11 6 17	1380 - 139.0 137.0 - 140.0 140.0 - 141.0 141.0 - 142.0 142.0 - 142.0 142.0 - 143.0
8040 82 8040 8741 8942	13 13 12 39 45	*.5.5.5 *.*.*.	8.1 8.1 8.2 10.2 10.4	13.6 13.9 13.4 12.4 13.7	1.2 1.4 1.4 1.1 1.6	8.1 8.2 9.1 3.5 8.0	249.3 244.3 254.1 239.8 248.7	13 14 13 10 16	29.2 3 25.3 3 26.0 5 54.0 1 33.9 2	1.9 1. 1.8 1. 1.8 1. 1.3 1. 1.9 2.	.\$.5 .4 .6 .4 .5 .1 .5 .1 .5	20,2 19.0 18.6 19.0 26,1	27 28 26 21 17	3 3 8 3 10	24.9 29.2 23.6 31.1	7.9 8.0 7.4 9.5 11.8	3.1 3.3 3.0 2.9 4.2	6.1 6.3 6.6 6.6 8.6	72	2.5 2.5 2.5 2.6 1. 3.5 1,	9.01 9.01 9.01 9.01 3.01	1.00 .91 .94 1.25 1,44	22222	1.45 1.27 1.32 1.59 2.13	85. 44. 15. 16.	.80 .11 .81 .11 .72 .14 .90 .11	5 1.3 5 1.4 5 1.5 5 1.5 6 1.5 1 8.0	21 20 5 .20 5 .20 1 .24 2 .25	8 19 19 29 14	143.0 - 144. Report Report 144.0 - 145. 145.0 - 146.
8943 8944 8945 8946 8947	21 17 17 10	<.5 <.5 <.5 5 5 5	6.2 10.8 25.0 10.2 14.5	12.6 17.1 14.8 15.2 16.8	1.1 1.7 2.7 2.6 2.7	5.5 13.9 11.7 15.2 12.7	169.0 225.5 584.6 186.6 285.6	10 23 26 24 21	30.4 2 21.4 3 14.1 4 31.1 3 14.8 5	.1 1. .6 1. .6 1. .6 1.	.6 ,3 .3 .5 .1 1,2 .6 ,7 .5 ,4	20.7 27.2 11.2 27.0	13 6 6	39 37 2	21.0 27.6 43.0 44.6 42.8	10.6 9.7 7.6 8.4 9.0	4.0 4.2 2.5 1.3 3.0	8.0 9.7 5.7 2.8 7.1	.88 .67 .31 .84	3.0 1. 3.3 1. 2.5 1. 1.1 . 3.0 1.	3 .0 4 <.0 0 <.0 4 <.0 4 <.0	1.20 1.30 5 .09 5 .63 5 1.05	.11 12 12 12 12 12 12 12 12 12 12 12 12 1	1.44 1.78 1.62 1.42 1.72	.27.27.27.27.27.27.27.27.27.27.27.27.27.	.96 .11 .75 .14 .57 .14 .64 .11 .65 .11	5 1.70 1 1.30 9 .91 2 1.00 2 1.20	2.19 2.19 5.12 5.12 5.12 5.15	8 12 18 18	146.0-1970 147.0-1970 1450-1970 1450-1970 149.0-150 150.0-1510
8948 8949 8950 8951 8952	5 12 7 16 17	<.5 <.5 <.5 <.5 2.0	8.6 17.4 12.2 10.1 8.6	13.2 13.9 13.3 14.6 11.8	2.2 2.0 .9 2.3 2.5	5,3 8,0 6,8 9,8 3,7	111.3 133.3 159.0 139.4 175.3	11 17 17 17 9	9.3 1 11.1 2 11.7 1 15.2 2 19.5 1	.5 1. .4 1. .8 . .9 3.	4 .6 7 .8 6 .6 0 .6 2 .4	21.9 15.0 14.9 27.6 23.1	77000	6 2 6 3 6	37.3 29.0 17.9 41.8 42.8	10.6 6.8 6.5 12.3 10.5	2.9 1.8 1.7 3.0 2.5	4,3 4,0 3,6 4,3 5,8	.76 .51 .42 .73 .69	2.6 1. 1.8 1. 1.4 2.6 1. 2.5 1.	2 <.0 9 <.0 7 <.9 1 .0 0 <.9	i 1.35 .97 i .64 i 1.13 i 1.23	.12 .23 .23 .31	1.95 1.48 1.09 2.25 1.90	.29 .18 .19 .31 .30	.90 .1 .90 .0 .99 .1 .96 .1 .88 .3	7 1.4 8 .8 1 1.0 9 1.5 5 1.4	1.23 2.08 1.13 5.22 4.19	7 3 9 5 13	1510 - 152.0 152.0 - 153.0 153.0 - 154.0 154.2 - 155.0 155.0 - 156.0
RE 8952 REE 8952 8953 8954 8955	16 20 23 12 12	.5 .5 .5 .5 .6	8.6 5.8 5.0 3.4 5.9	11.0 11.3 14.0 13.7 13.8	1.9 1.9 3.8 1.6 1.5	3.5 4.0 5.8 5.8 5.0	175.3 182.3 150.9 100.9 52.1	8 10 12 11 9	21.8 1 22.0 1 22.0 2 22.0 2 22.0 3	.2 1. .2 1. .1 1. .2 1.	1 .5 0 .8 3 .3 1 .6 5 .1	23.7 22.6 29.7 19.3 20.1	04040	628 27	36.3 34.3 61.6 29.0 28.7	11.1 10.9 13.8 8.4 7.4	2.3 2.4 3.3 2.5 2.9	5.3 5.2 7.3 5.7 5.2	.62.64	2.1 1. 2.1 1. 3.0 1. 2.2 1. 2.0 1.	0 <.00 1 <.00 5 .00 0 <.01	i 1.23 i 1.09 i 1.54 i 1.05 i 1.05	****	2.62 1.66 2.66 1.53 1.48	.31 .35 .27 .21	.93 .11 .86 .11 .99 .11 .70 .11	/ 1.66 / 1.51 5 1.52 5 1.31 5 1.31	19 2.20 3.25 .19 .20	13 15 11 9 11	Repeat Repeat 156.0-157.0 157.0-158.0 158.0-158.0
8956 8957 8958 8959 81ANDÁRD 80-13	26 12 13 13 2012	<.5 <.5 <.5 <.5	7.1 2.9 4.8 10.9 3.0	11.6 12.8 12.7 13.1 16.9	1.1 2.5 1.5 1.9 6.9	4.3 2 6.6 3.5 1 6.3 2 90,6	12.7 81.9 39.1 57.8 64.7	11 11 10 12 17 4	22.2 1 17.5 1 20.0 1 21.5 1 45.2 1	.8 1. .5 2. .4 1. .4 .	0.6 9.2 9.4 9.5 6.7	23.2 19.8 26.5 29.6 20.2	8000X	2 6 2 7 18 1	21.5 35.7 24.7 52.5 072.7	8.2 13.4 9.3 10.4 21.8	2.9 2.6 2.5 2.0 29.2	5.9 6.1 5.5 4.2 6.2 (.64 .75 .66 .52 .16	2.2 2.4 1. 2.4 1. 1.9 22.5 4,	8 <.00 2 .00 8 <.00 5 1.01	.95 1.18 1.17 1.05 3.97	.23 .57 .26 .29 .60	1.53 2.31 1.60 1.90 3.81	.24 .38 1 .26 .76 2	.72 .11 .20 .2 .00 .1 .91 .11 .44 .3	5 1.3 5 1.7 7 1.5 6 1.5 6 2.5	1 2 2 2 2 2	4 9 6 13 V	159.0-160,0 160.0-161.0 161.0-162.0 162.0-163.0 5+d.

. .

...

Sample type: CORE R150 60C. Samples beginning 'RE' are Rentre and 'RRE' are Relact Berune.

All results are considered the confidential property of the client. Acme assumes the limbilities for actual cost of the analysis only.

Data

Chapleau Resources Ltd. PROJECT HO._. FILE # A003961

Page 3 (a)

	Ba	Ç,) Çi	• 4	. III	N İ		s Sri	\$r	Ta	Th	TL	U.	¥	N	Že	Ţ		Co.	<u></u> Be			6 .				and the second secon	8	Ť.				4
*** •**	(APPA	ppi	, tabu	- pipe		PP	pp	t ppm	pp	ppe	ADM		and in the second s	H HR		p p us	(ppm)	99	- ppm		ppul			. Ppm	ppe	ppa	pp#	pçan	i W			199. 199	ĺ
8940 8961 8962 8963 8964	13 12 14 14 15	<.5 <.5 <.5	10.1 5.7 6.4 3.5	15.2 12.1 14.4 12.0	1.1 .7 1.9 .8 1.0	10.2 6.7 6.7 7.1	204.0 135.9 170.8 163.7 265.4) 19 9 9 1 15 7 8 12	23.3 22.0 20.6 22.9 23.1	2.8 2.1 1.6 1.6 1.8	1,5 2,1 2,3 2,9 2.0	.8 1 .4 1 .5 1 .4 1 .7 1	5.8 4.6 5.4 2.6 2.4	213000	54655	18,4 15,2 35,3 16,6 19,5	9.0 8.7 20.8 21.7 8.4	2.3 2.6 2.5 1.8 2.3	5,0 5,9 5,3 4,2 5,3	.43 .57 .43 .53 .43 .53 .43 .53	2.0 2.3 2.2 1.7 1.9	1.0 .9 .9 .8 .8	.09 .08 .10 .12 .10	.94 .81 1.15 1.21 .81	.24 .19 .34 .40 .22	1.43 1.37 2.75 2.94 1.44	.24 .24 .55 .64 .25	.42 .46 2.10 2.54 .79	,14 ,13 ,33 ,39 ,12	1.22 1.34 2.40 2.43 1.13	.18 .19 .37 .41 .16	69 6 24 10 12	1650 - 164,0 169,0 - 165,0 165,0 - 166,0 166,0 - 166,0 166,0 - 167,0
8945 8946 8948 8948 8948 8948	11 18 11 13 12	<.5 <.5 <.5 <.5	6.6 10.2 7.9 9.3 8.5	12.8 14.8 13.9 12.9 14.2	1.4 .9 1.6 1.2 1.1	5.5 9.8 8.0 7.0 10.0	202.6 319.3 247.8 294.0 249.6	10 14 10 12 16	19.6 22.5 23.4 20.8 10.4	1.5 2.5 2.2 2.2 2.2	1.9 1.8 1.8 1.8	.5 1 .4 1 .4 1 .6 1 .5 1	9.1 3.2 9.1 6.9 5.3	00000	66556	30.3 19.1 54.5 24.7 20.9	11.6 16.3 14.1 16.3 5.4	3.5 1.8 3.7 3.2 1.3	8.1 4.4 8.0 7.3 3.2	.95 .45 .91 .82 .37	3.2 2.0 3.0 2.9 1.2	1.2 .8 1.2 1.3 .6	.06 .96 .10 .07 <.95	1.15 1.14 1.26 1.35 .54		1.79 2.34 2.29 2.48 1.08	-30 -45 -39 -47 -13	.98 1.65 1.43 1.78 .44	.17 .27 .24 .26 .26	1.53 2.21 1.44 2.16 .40	4. 2. 2. 2. 2. 2. 3. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10 4 12 14	168.0 - 169.0 169.0 - 170.0 170.0 - 171.0 171.0 - 172.0 172.6 - 173.0
8970 RE 8970 RRE 8970 8971 8972	11 11 12 18	<,5 <,5 <,5 <,5 <,5	6.9 6.9 6.5 3.6 8.4	14.8 14.6 14.3 15.1 10.7	3.1 2.9 1.4 1.0 .6	9.4 9.4 8.4 5.5 3.6	196.4 195.9 181.0 116.4 302.4	18 19 17 6 10	13.7 14.1 15.1 22.8 23.3	2.0 2.1 2.6 1.6	1.3 1.2 .9 1.5	.4 1 .4 1 .3 1 .3 1 .7 1	2.4 2.4 1.9 2.3 3.9	44444	26545	42,0 41.0 20,5 19.0 12.3	5.8 5.8 5.7 7.3 5.1	1,5 1,9 1,4 2,7 1,5	3.5 4.5 3.2 6.5 4.2	.4.5.5.85	1.5 1.8 1.3 2.3 1.5	.7 .9 .7 .9 .7	<.05 <.05 <.05 <.05	.67 .76 .54 .66 .51	,17 ,19 ,16 ,21 ,13	1.03 1.07 1.09 1.31 1.00	.15 .16 .15 .20 .14	84448	.06 .09 .08 .11	.60 .61 .75 1.61 .73	.11 .15 .10 .14 .10	8 14 14 14 12	175.0 174.0 Repeat 174a = 175.0 175.0 - 176.0
8973 8974 8975 8976 8977	11 8 13 13	<.5 <.5 <.5 <.5	8.4 4,1 8,6 9,1 9,1	13.7 14.6 14.3 13.9 13.1	.8 .9 1.9 1.6 1.1	5.8 6.9 5.7 9.4 6.0	278.8 164.1 291.1 246.2 273.2	· 特 行 特 行	15.6 16.2 9.6 16.2 21.1	1.3 1.3 1.2 2.5 1.8	1.0	.3 2 .4 1 .9 2 .9 1 .7 1	2.0 2.7 1.4 8.2 9.3	0000 1	56696	14,1 18,5 30,0 24,1 18,9	4.6 8.4 8.1 6.8 6.1	1.7 2.0 2.5 2.5 2.5	4.2 4.8 5.9 3.6 4.6	.48 .55 .72 .65 .51	1.5 1.9 2.4 2.2 1.9	.8 .7 1.0 .9	<.05 <.05 .05 .07 <.05	.64 .74 .81 .86 .61	.14 .22 .20 .21 .17	.90 1.48 1.47 1.29 1.12	.12 .24 .22 .19 .16	37.227.493	.87 .14 1 .13 1 .09	.40 1.47 2.85	.09 .21 .18 .11 .13	4 8 16 6	176.0 - 177.0 177.0 - 175.0 178:0 - 175.0 178:0 - 180.0
8978 8979 8960 8961 8962	9 10 8 10 15	<.5 <.5 <.5 5 5 5 5	9.1 6.8 6.1 6.3 10.9	15.5 12.6 15.5 15,0 15.7	2.9 1.3 1.4 1.1 7.8	8.6 5.7 7.5 6.7 7.3	254.5 196.6 199.2 170.8 299.6	15 9 15 11 14	14.5 18.9 11.4 19.2 13.5	1.8 1.8 2.0 1.6 1.5	1.5 1.3 1.9 1.1	.6 2 .6 1 .4 2 .5 2 .3 2	9.0 9.7 8.6 1.7 4.3	99999	4 5 6 5	46.6 24.1 24.3 24.2 32.9	11.8 12.6 8.6 13.3 19.2	3,4 2,9 2,3 4,9 2,2	7.6 6.9 5.9 18.5 5.2	.90 .74 .70 1.19 .62	2.9 2.4 2.3 4.2 2.0	1.3	<.05 <.05 <.07 <.05	1.08 1.10 .95 1.46 .73	.30.5.5.2	2.11 2.06 1.63 2.27 1.73	.30 .32 .24 .37 .27	.00 .19 .38 .38	.16 1 .19 1 .16 1 .22 2	1.47 1.82 1.45 1.45 1.45	22452 2	8	181.0 -182.0 182.0 -183.0 183.0 -189.0 184.0 -185.0 184.0 -185.0
nt 9962 Krt 8962 8963 8964 8965	12 12 20 22 11	<.5 <.5 <.5 <.5	11.3 10.3 8.1 10.6 7.7	14.6 14.3 11.5 11.9 14.9	1.8 2.1 1.4 .8 1.5	7.3 6.7 6.3 5.1 6.7	298.5 293.3 223.3 351.1 196.7	14 15 12 11 13	13.1 14.4 21.4 21.6 14.6	1.5 1.3 1.2 2.6 2.5	1.0 1.0 1.1 .5 1.6	.7 1 .7 1 .4 1 .7 1 .7 1	5.0 7.0 7.6 5.7	4444	5 d 5 d 7	31.5 35.8 25.9 15.5 30.4	9.5 9.5 7.8 6.0	2.7 2.3 2.3 1.3 3.4	5.1 5.4 5.6 2.7 6.6	.59 .66 .61 .72	1,9 2.0 2.0 .9 2.5	1.0 .8 1.0 .5 1.0		.84 .80 .80 .55 1.07	.22 .25 .21 .14 .27	1.62 1.76 1.66 1.66 1.62	.24 .27 .23 .16 .31 1	.87 .89 .73 .59	.17 1 .19 1 .15 1 .12 1 .24 2	1.47 1.43 1.54 1.10 1.05	.共 .以 .注	0 6 10 4	Bipant Report 186.0 - 13725 181.0 - 184.0 188.0 - 189.0
8766 8987 8088 8789 87880 80-13	13 30 20 45 2046 (<.5 <.5 1.0 <.5 21.0	10.1 13.5 1.6 2.9 2.9	12,7 11,0 11,3 12,8 17,6	2.2 1.8 1.3 1.1 25.5	4.4 2.1 3.1 5.2 51.5	215.3 277.9 50.1 126.2 63.9	12 10 4 11 19 3	14.4 22.9 20.2 17.3 95.3	2.6 1.1 1.0 1.4 1.8 (1.1 .9 1.1 2.3	.5[34 .8 11 .2 24 .4 11 .8 21	.9 1.9 1.7 1.2 1.8 1	5 5 6 5 Z	5 4 6 9 1 1	41.2 31.2 22.1 19.4 55.2	10.2 4.3 8.6 9.4 12.7 1	2.2 1. <u>1</u> 2.9 2.9	4.6 2.3 6.3 6.6 39,4 (.55 .77 .77 .13	1.9 2.3 2.5 23.2	.5 .9 1.1 4.6	05 05 .12 .12 .12	.80 .44 .86 .90 3.97	.24 .12 .20 .24 .59	1.79 .72 1.52 1.72 3.64	.27 .11 .26 .26 .74	.87 .37 .91 .97 .47	.16 1 .06 .19 1 .17 1 .34 2	.45 .54 .48 .62	.22 2 .09 4 .21 1 .24 1	1. 7 8 8 8 8	189.0 - 190.0 190.0 - 191.0 191.0 - 192.0 192.0 - 193.0 544.
famis type		.R150	600.	148	ples i	estin	nina (127 (ice Re		and !	<u>hre</u> t	<u>ere </u>	telec	t.R	<u> - 1115.</u>																	

All results are considered the confidential property of the client. Acre assumes the Liabliftics for actual cost of the analysis only.

Chapleau Resources Ltd. PROJECT HOMAN FILE # A003961

					-							, (, , , , , , , , , , , , , , , , , , ,			-				-	~~														1
2A-TLEF	64 Fipta	С 	0 Q 19 PB		Cia Picala	#f pp#	dii ppa	AL Pipe	t Sn I ppe	\$ PP	r ta Nyapit	(11) 100	h Tî. Ngan	U Apre	i ¥ ⊧ppm	ب ی مورود	Zr	Y DEN	Le Doe	Çe DOB	Pr	Nd Cite		50	id nate	76	87	lie	Er	12	٧b	Lu	i.	1
8990 8991 8992 8993 8994	78 36 27 22 18	1.1 1.4 2.1 9.1	7. 53. 26. 7. 56.	2 13 7 1' 7 1' 9 19 0 13	3.4 1.9 1.6 3.7 3.2	1.3 1.2 1.1 1.2 1.1 2.2 1.0	6,4 6,5 3,2 12,5 6,0	184,4 107.6 170,7 148.0 176.0	5 11 5 11 7 8 5 59	26. 19. 24. 19. 27.	1 2.1 5 2.7 5 1.1 5 3.8 7 1.4	1.3 1.3 1.3 1.6	.7	23.7 21.4 22.8 13.3 24.5	44444	6 5 3 10 7	27.4 24.5 25.5 26.9 23.0	12.7 7.3 9.4 6.3 11.2	4.0 3,1 2,8 2,4 4,2	8.5 6.9 6.2 5.4 8,5	1.67 .85/ .77 .66 1.63	3.2 2.6 2.3 2.0 3.2	1.4 1.1 1.0 .8 1.2	10 12 08 00	1.45 .91 1.00 .70	20212	2.14	.37 .21 .28 .18	1.16	.22 .13 .14 .11	1.85 1.10 1.44 .96	.18 .18 .15	7 10 14 7	193.u - 194; 194,o -195.o 195.o -196,o 196.o -197,o
8995 8996 NE 8996 RE 8996 RE 8996 8997	21 31 33 29 27		1 4 2 1 7 2 1 7 2 1 4 2 1 7 2	5 11 5 14 7 14 13 5 13	3.5 1.3 1.7 1.9 1.1	2.2 1.1 1.1 1.8 1.2	8,9 6,3 6,5 6,3 6,3	129.5 245.8 253.5 249.2 171.4	12 14 12 9	22.4 24.1 25.1 21.2	5 1.9 1 1.3 1 1.3 1 1.1 5 1.5	2.7 1.4 1.4 .9	.4 .5 .4	15.4 17.6 14.9 15.3 21.4	00000	6 7 7 6 7	42,8 23,1 19,9 32,2 24,3	12,7 8,3 8,1 8,3 19,7	2.3 2.0 2.0 1.5 3.6	4.8 4.5 4.6 3.3 7.7	,59 .57 .59 .41 .65	1.8 1.9 2.0 1.3 2.8	9 1.0 1.0 1.0 1.2	.08 .07 .08 .09 .10	.90 .90 .76	122123	1.78 1.36 1.33 1.31 1.62		1.19 .71 .50 .72 1.05	.21 .13 .13 .15 .18	1.81 1.22 1.24 1.24		8 14 9 3	197.0 -198.0 198.0 -198.0 198.0 -198.0 199.0 - 200.0 Repeat
8998 8999 STANDARD 80-15	26 16 2036	.1 <.5 <u>20.4</u>	8. 8. 2.1	7 11 1 13 1 16	.8 .4 .∎ :	2.0 1.3 5.3	4.0 7.4 29.6	225,4 238,9 45,3	12 12 17	25.2 21.2 392.3	1.1	1.7 1.3 25.6	.6 .5 .9	36.4 18.8 20.5	45 45 156	6 6 19	41.8 24,2 1035,6	11.0 7.3 22.9	3.5 2.6 2.8	7.2 1.9 33.5	.90 .71 6.05	2.8 2.2 22.5	1.3 .9 4 4.3 1	.08 05	1.25	.29 1 .22 1 .58 3	.75	.31 .19 .71	.96 .51	. 16 . 10	1.79 .99	.28 .14	4	201.0-207.0

Sample type: CORE #150 600. Bambles beginning /RE! are Beruns and (RME! are Belect Beruns.

Too - 600 ft in Hole 14-001

Ville

Alt results are considered the confidential property of the client. Acue assumes the liabilities for actual cost of the analysis only.

Deta f

PROME (604) 283-2258 FAX (614) FAX (
HL-00-1	
pons com nom pon	
30 .6 4.7 12.2 1.5 3.0 177.6 9 28.2 .8 1.1 .7 33.4 <5	>-204,0 m 0 - 205.1 55-207.0 ⁴ -245.0
9006 21 4.5 7.2 12.0 1.6 4.8 231.5 9 26.0 1.7 1.7 7 21.7 c5 6 19.7 13.0 2.6 5.8 .67 2.2 1.0 .07 1.10 .28 2.9 .24 1.06 .27 12 2.05 .40 1.23 .24 1.06 .27 12 2.05 .01 1.23 .24 1.06 .27 12 2.05 .01 1.0 2.0 1.06 .27 12 2.05 .01 1.0 2.0 1.06 .27 12 2.05 .01 1.0 2.0 1.06 .27 12 2.05 .01 1.0 2.0 1.06 .27 12 2.05 .01 1.0 2.0 1.06 .27 12 2.05 .01 .01 .01 1.01 .01 1.01 .20 2.06 .40 1.23 .24 1.06 .27 12 2.07 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01<	
9009 7 <.5 6.9 12.8 1.2 2.7 182.3 8 12.5 1.0 1.7 .7 26.8 <5 6 26.4 11.7 3.9 8.9 1.02 3.4 1.2	213 214 215 215 216
9014 18<	17. <u>0</u> 48.0 m 49 20 -226.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	127.0 - 228.8 2.31.0
9022 10 <.5	33.0 37.0 -35 3 <u>6</u>
9027 26 <.5 5.4 12.3 1.5 6.4 160.8 9 33.8 1.8 1.5 .3 26.9 <5 6 32.0 13.8 3.6 8.1 .87 3.2 1.3 .09 1.28 .32 2.21 .39 1.25 .26 2.21 .36 5 256 - 23 9028 22 <.5 5.7 12.2 .8 6.1 181.8 6 34.5 1.9 1.5 .4 23.2 <5 6 19.9 12.5 3.9 6.9 .94 3.2 1.2 .10 1.22 .30 2.15 .38 1.11 .22 1.87 .29 5 257 - 23 9029 40 <.5 6.3 11.9 1.1 2.8 182.1 5 32.6 .9 3.4 .4 11.2 <5 5 23.7 14.6 2.3 4.9 .57 2.0 .7 .10 .65 .24 2.18 .41 1.41 .28 2.32 .36 5 237 - 23 817410348 30-15 2093 19.6 3.0 16.8 25.3 29.8 65.7 17 307.0 1.7 23.7 .9 80.8 154 20 1030.3 23.5 29.5 38.0 6.01 23.4 4.4 .99 3.82 .59 3.79 .77 2.40 .36 2.47 .39 1 54/2	17 F S B
GROUP 48 - REE - LIBOZ FUELOR, ICP/MS FINISHED. - MODIE TYPE: CORE RISG 60 Respire bealtoning /RE' and ARE' ARE	
DATH RECRIVED: OCT 13 2000 DATE REPORT MAILED: () & 27/00 SIGNED BY. (: 1) TOTE, C.LEONG, J. HANG; CERTIFIED B.C. ASSAYERS * Subject to reassay checks	
All results are considered the confidential property of the climit. Acme assumes the limbilities for actual cost of the analysis only. Detail FA	

•

L	

					<u> </u>	Ch	m l	•41	Re	isou	ir¢	• 2	Ltć	l. I	PRO.	JEC	T H	IORI	N	FIL	-B #	AO	040	48				1	? a gi	e 2	(a	,			
		e pp	6	pe		ppe	- PP			n 9 - P	87 <u>PP (</u>	Tas April pi	Th pit p	ti PM p	en be	v p N	V N	21 20	Y ppm	L s ppm	Ce ppm	Pr	Hici Pipe		Eu		The second	Dy	No	Er	t .	Yb	14 (
9031 9031 9052 9053 9054	41 22 32 32 15		57530 597 597	.5 1 .9 1 .4 1	2.8 3.8 1.8 1.6 3.2	1,1 .9 1.4 .7 1.7	7.3 8.4 5.1 3.5 2.5	231 153 2301 232 107	.1 14 .0 14 .4 21 .9 14 .1 1	i 37 i 32 i 30 j 34 7 25	.4 2 .4 2 .5 3 .1 1 .1	.] 1 .2 1 .3 1 .1 .1	,2 .3 .0 .4	.9 21 .5 24 .9 17 .7 12 .3 33	.8 1 .6 < .0 < .6 <	10 4 5 10 5 4 5 9 5 3		5.5 9.5 1.3 2.8 1.8	9.4 10.4 11.7 5.8 14.0	3.1 3.5 2.6 2.1 5.2	6.4 7.2 5.9 6.6 17.2	.75 .81 .67 .54 1.28	2.2 2.8 2.1 1.6 4.2	1,0 1.0 1.1 .B 1.7	.09 .10 .11 .09 <.05	.93 1,14 1.17 .54 1.66	.25 .25 .31 .17	1.50 1.45 1.92 1.07 2.47	.27 .28 .33 .18 .42	.91 .97 1.09 .53	.20 1 .20 1 .23 1 .13 1 .30 2	.58 .55 .91 .11	.23 .25 .28 .18	211 7 6 7 3 7	240 - 241.0m 241 - 242 242 - 243 243 - 243
9035 9034 9037 9038 9039	16		5 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	.01 .31 .51 .51	2.4 1.0 2.2 3.8 2.8	1.4 1.7 1.4 2.0 1.2	7.3 3.6 4.4 7.4 6.8	250. 166. 197. 202. 132.	4 12 8 6 1 9 8 13 8 7	21. 14. 15. 15. 21.	.11 .51 .11 .11	.8 1 .0 1 .2 1 .8 1 .6 1	.0 . .4 . .5 . .6 .	7 25 4 20 5 21 4 22 4 39	,3,0,1,4,0 9,7,7,7,7	5 10 5 3 5 10 5 4 5 11	2	6.7 1.8 5.7 1 6.0 1	12.1 11.6 10.6 12.0 12.4	2.3 3.9 2.7 3.6 4.0	5.2 8.5 5.9 7.9 8.2	.57 .99 .67 .89 .97	1.8 3.3 2.1 2.8 2.8	8. 1.2 9. 1.0 1.3	<.05 <.05 <.05 <.05 <.05	.80 1.18 .99 1.06 1.33	.26 .30 .26 .32 .32	1.96 1.87 1.85 2.02 1.98	.34 .34 .31 .35	1.21 1.11 1.10 1.21 1.18	.27 2 .24 1 .23 1 .28 2 .24 1	.40 .45 .97 .48	.36 .30 .32 .93	7 8 3 6 2	244-245 245-246 246-247 247-248 249-249
9040 RE 9040 RRI 9040 9041 9042	17 16 19 13 17	<.5 <.5 <.5	7.	.7 1: .6 1 .2 1: .5 1: .5 1:	2.4 1.9 2.9 2.4 1.4	1.2 1.0 1.4 1.3 1.4	4.6 4.5 4.4 5.0 3.3	219. 210. 211. 135. 296.	1 10 1 10 7 10 5 9 9 8	25. 26. 27. 29. 25.	9 1. 3 1. 5 1. 3	8 1. 7 1. 4 1. 4 1. 9 1.	1	5 17. 4 16. 4 21. 3 22. 5 28.	4 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 3 11 39	24 11 24 24	1.7 1 1.6 1 1.9 1 1.9 1	1.0 0.9 0.9 3.1 2.4	3.2 2.8 3.8 4.1 3.8	7.0 5.7 8.3 8.5 7.6	.78 .67 .97 .99 .89	2.6 2.2 3.1 3.1 2.9	1.0 .9 1.1 1.3 1.2	<.05 <.05 <.95 .06 .06	1.07 1.00 1.15 1.42 1.22	.26 .27 .27 .34 .50	1.72 1.87 1.78 2.12 1.93	.51 .31 .32 .37	1.02 1.06 1.03 1.21	.23 1 .23 2 .21 1 .24 1 .27 2	.92 .00 .82 .92	30 31 29 31 21 31 21	6	250-251.0 Rpt: Rpt: 251-252.0
9043 9044 9045 9046 9046	43 32 31 8 16	<,5 <,5 <,5 <,5	6. 3. 5. 7.	1 11 5 11 5 11 8 10 6 12	.6 .8 .4 .9	1.4 1.5 1.2 1.8 1.6	3.1 2,4 3.3 2.2 4.3	192./ 128.9 250.(105.1 190.(i 10 i 10 i 12 i 7 i 11	42. 30. 29. 22. 22.	71. 9. 81. 0. 61.	1 1. 9 2. 3 . 9 2. 3 2.	6 . 0 . 0 .	4 25.) 3 34. 7 16. 4 27.4 5 23.1	9 41 2 43 4 43 6 43 6 43 6 43 6 43	5 11 5 10 4	21 33 21 33 31	.5 1 .7 1 .7 .0 1 .7 1	0.0 3.7 7.1 3.9 2.1	4.1 4.9 1.8 5.5 4.8	8.7 10.7 3.9 11.8 10.4	1.03 1.20 .44 1.33 1.21	5.4 3.9 1.4 3.9 3.7	1.4	.14 .15 .08 <.05	1.29 1.58 .42 1.51 1.34	.27 .37 : .15 .34 :	1.70 2.30 1.14 2.34 2.10	.30 .39 1 .20 .38 1	.97	.21 1. .26 2. .17 1. .28 2.	.77 . .29 . .63 . .43 .	27 34 25 37	7 2 5 5	252 - 252.6 252.6 - 254 254 - 254 254 - 255 255 - 256 256 - 257
9048 9049 9050 9051 9052	2022245	<,5 <,5 <,5 <,5	5. 4. 13. 5.	7 10 9 11 8 10 8 17 5 17	.3 .0 .5 .3 .7	1.1 1.6 1.1 2. 0 7.3	2.4 4.0 3.2 1.4 4.5	766.8 153.1 246.8 159.4 159.4	11 9 11 9	29,1 34,1 21,1 13,1 17,1	1 . 0 1. 8 1. 9 1.	6 1. 0 1.1 2 .1 4 1.1 3 1.1	5 .9	26. 27. 16. 24. 26.	44444	10 6 9 2 10	22 32 20 40 26	· 0 · 9 · 2 · 6 · 2 · 5 · 6 · 5 · 5 · 12	9.2 8.5 0.4 2.4 2.4	3.3 2.6 2.3 3.7 4.4	7.5 5.2 5.0 8.2 8.8	.86 .60 .52 .91 .98	3.3 2.0 1.8 3.1 3.2	1.2 .8 .7 1.3	<.05 .16 .05 .05 .07	.96 .64 .74 1.20 1.37	.24 .22 .26 .32 .34	1.47 1.37 1.66 2.00	.28 .24 .24 .36 1 .55	.97 .79 .04 .24	.21 1, .18 1, .23 1, .29 2, .21 1,	76 .; 53 .; 91 .; 25 .;	20 / 20 5 24 5 26 9 26 12		257-258 258-259 257-240 260-261 261-261
9053 9954 RE 9054 RRE 9054 9055	27 33 30 30 14	<.5 <.5 <.5 <.5	6. 5. 5. 5.	1 10 1 12 0 12 0 12 5 11	.0.3.4	1.3 1.6 1.3 1.2 1.2	2.9 5.3 5.7 4.3 5.7	149.7 165.4 172.8 167.1 164.7	6 12 13 13	26.1 49.1 50.4 47.4 25.1	7 1.0 1 1.0 1 1.0 2 2.0 7 2.0	9 1.1 5 .5 5 .1 7 1.3	.4 .6 .5 .5	22.1 19.1 17.2 17.9 22.4	00000	5 248 258 247 15	24 27 24 23 24	1 9 3 13 7 12 5 13 9 11	2.0 2.9 5.3 5.3	3,8 3,0 2,8 2,7 3,9	8.0 6.3 6.2 5.7 7.4	.87 .74 .72 .67	2.8 2.5 (2.5 (2.4 (3.0 (.9 .2 .1 .0	.34 .23 .22 .20 .07 1	1.06 1.19 1.32 1.28	.24 1 .31 2 .33 2 .33 2 .31 1	.53 .10 .16 .17 .89	.28 .37 1. 37 1. 38 1. 31 1.	.90 .28 .23 .24 .04	19 1. 26 2. 29 2. 30 2. 21 1.	46 .2 31 .3 41 .3 54 .4 65 .2			242 -263 263 - 264.0 264 - 265.0 Rpt. Rpt.
9056 9057 9058 9059 87.460ARD 80-15	5 8 6 11 2063	<.5 <.5 <.5 <.5 20.0	6.1 6.1 7.2 4.0 3.0	3 12 9 10 5 10 5 10 5 10	5 7 5 7 2	1.1 1.0 1.2 1.1 6.6 5	5.1 2.6 2.6 4.1 0.8	178.6 235.9 230.3 127.8 67.7	11 7 9 10 18	12.1 20.7 17.2 17.3 388.0	1.	1.0 1.1 1.7 .9	.7 .4 .7 .3	15.9 20.0 20.3 17.8 20.6	5 5 5 55	5 9 4 10 20	18. 29. 21. 21. 21. 21.	.7 12 .6 9 .8 9 .2 11 .7 22	.9 .8 .2 .8 3	2.7 3.1 4.4 2.9 0.3 5	5.9 6.4 9.4 1 6.3 <u>6.8 6</u>	. 71 . 73 . 04 . 49 . 26 Z	2.4 1 2.2 3.3 1 2.2 1 3.1 4	.0 < .8 < .4 < .0 < .4 1	.05 1 .05 1 .05 1 .05 1 .05 1	. 13 . 05 . 27 . 01 . 91	30 2 26 1 28 1 29 1 61 3	.10 . .66 . .57 . .72 . .74 .	37 1. 28 . 27 . 29 1. 77 2.	.30 .91 .05 .01 .48	32 2.1 19 1.1 17 1.1 22 1.7 37 2.1		8 6 2 6 2 4 9 7 2		246-267 267-268 268-265 269-265 261-270 m

Samis type: CORE #150 40. Semies beginning 'RE' are Reputs and 'ARE' are Reject Rename.

1

All results are considered the confidential property of the client. Acme assume the itabilities for actual cost of the analysis only.

Dates

						¢ł	lep)	leau	t R	\$50 U	ECA	e L	tđ.	PR	(0 .73	501	г ноі	RN	FIL	店 業	AO	040)48				1	₽ a g	e 3	(8)	4	4	
	P	• • p	Co pa		Qe pps						r 14	7	1	U	¥	¥	24	• 1	t La	Ce	P†	ik:	in the	 Ee						#Case			LYTICA	11.12
9060 9063 9062 9062 9063 9064	1		.5 .5 .5 .5	6.6 4.1 6.8 4.7 5.0	10.8 11.4 10.6 11.6 12.6	9.0 1.2 .4 1.4	2.4 3.1 2.4 3.5 4.2	200,- 141,- 235,- 151,- 168,-		23,4 20,1 20,1 11,1 12,4	5 1.0 7 7.0 5 .5 7 .0	1.0 1.7 1.1 1.0	.9 .7 .8 .7	14.5 24.0 14.3 22.7 19.5	00000	29293	19.9 25.5 14.9 30.2	5,4 11.7 8.0	2.8 3.1 2.7 2.7	5.6 10.7 5.7 6.0	,61 1,19 .65 .67	2,3 4,5 2,5 2,6	.9 1.5 .9 1.0	*.05 .07 <.05 <.05	.91 .91 1.38 .85	.25 .34 .20	ppm 1.41 1.95 1.34 1.65	.24 .33 .24 .31	.77 1.10 .83	-16 -20 -18	1.45 1.45 1.69 1.75	23 25 25	90 <u>ppm</u> 3 4 7	270 - 271.0 27 1272. 272 -273.
RE 9064 RRE 9064 9065 9066 9067	35 25 12		55555	4.8 5.2 5.9 5.0	12.5 12.3 11.7 10.6 10.6	1.0 1.1 .6 1.3 1.1	4,4 4,5 5,9 2,3 3,5	167,4 172,4 279,7 171,6 232,5	13 6 9	12.1 12.5 26.7 24.5 19.1	1.1 1.6 1.0 1.1	1.0 1.0 .4 2.4 1.1	1.2 1.0 1.3 1.8 .9	16,7 18.0 8.1 16.8 10.4	44444	49315	21.9 25.1 9.3 26.0 18.2	8,2 8,2 5,4 15,3 5,8	2.7 2.4 1.2 7.2 2.1	0.1 5.7 5.1 2.6 15.5 4.7	.65 .65 .31 1.78	2,5 2,3 2,2 1,1 6,6	9. 9. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	<.05 <.05 <.05 <.05	.97 .92 .87 .54 1.75	.24 .24 .25 .14 .43	1.63 1.38 1.35 .90 2.79	25 .25 .46 .7	.79 .81 .81 .52 1.45	.15 .15 .15 .10	1.44 1.41 1.04 2.65	.23_ .23_ .23 .15 .37	12 1 5 7 12	273-274.1 274-275.1 Rot. 275-276.0
9068 9070 9071 9072 9073	3 11 5 7	4. 4. 4. 4.	5 7 5 6 5 4 5 6	42942	10.0 10.7 11.7 11.3 11.6	.8 .8 1.4 1.4 1.3	3.3 4.0 4.3 2.7 5.0	254,3 263,2 136,2 131,7 184,3	8 10 9 8 11	10.2 15.8 11.1 10.1 13.6	9 1.1 1.6 .0 1.2	.6 1.1 1.4 1.7 1.0	1.5	17.4 13.7 22.7 27.5 17.0	55555	7 2 11 2 8	13.5 15.6 27.7 28.2 23.2	5.5 7.9 9.6 12.0 10.3	1.9 3.1 3.5 4.6 2.3	4.0 6.7 7.6 9.7 1 5.0	.47 .75 .81 .09	1.7 3.1 3.2 4.4 2.0	.6 × .9 × 1.1 × 1.6 ×	4.05 4.05 4.05 4.05	.73 .54 .90 1.06	.17 .15 .21 .25 .36 2	91 1.39 1.66 2.17	.17 .17 .22 .30 .36	.50 .48 .71 .97 .19	.11 1 .10 .15 1 .19 1 .24 2	.96 .43 .75 .11	.14 .15 .22 .25 .34	3 20 8 12 6	277-278 271-278 271-277 275-280 280-281 281-281
9076 9075 9076 9076 9078	4 9 4 3 9		5 7 8 5 8 5 5 5 5	.1 1 .1 1 .0 1 .5 1	1.0 9.9 2.4 1.3 1.9	1.4 1.2 1.9 1.5 1.4	5.3 4.5 9.1 2.6 5.9	201.3 261.6 204.1 179.4 200.7	9 10 6 5 6	11.6 16.9 21.6 14.5 21.6	1.9 1.4 1.5 .8 3.2	1.1 1.3 1.8 2.0 1.7	.6 1 .6 1 .7 1 .6 4	14.6 19.4 13.7 10.1 17.1	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	39394	25_4 23.6 56.5 32.7 26.9	9.1 9.5 13.1 14.0 12.2	2.9 3.4 4.8 5.1 5 4.7 1	6.4 7.0 9.9 1 1.5 1	.74 .74 .12 .29 .18	2.9 2.9 3.9 4.3	.9 « 1.1 « 1.4 1.5	.05 .05 .12 1 .06 1	.98 .90 .45 .59	. 23 1 . 23 1 . 25 1 . 37 2 . 68 2	.52	.31 1 .25 .25 .43 1 .43 1	.86 . .96 . .29 . .34 .	23 2 18 1 20 1 25 2 25 2	.04 . .63 . .80 . .22 . .30 .	31 23 27 32 34	3 8 7 5	283-289 283-289 289-285 285-286 285-286 285-286
9054 9062 9063 9064	13 12 13 48 195	<.5 <.5 .5	7. 5. 5. 22.	4134131	2.2 1.7 1.3 2.1 5.6	1.6 2.0 2.2 3.5 7	6.0 4.1 3.2 4.3 0.3 3	240.3 204.0 194.6 181.9 159.2	12 9 7 13 29	19.7 19.4 22.4 27.9 30.6	1,4 1,7 1,0 2,3 2,3	.7 1.3 1.7 3.1 2.3	.6 1 .5 1 .5 8 .4 3 .6 1	6,4 8.2 8.5 6,3 9,4	5 5 5 5 5 5 5 5	72717	13.8 30.9 40.5 52.1 41.6	6,5 11,5 13,9 14,3 5,2	1.7 3.6 4.2 8.1 1 3.7	3.6 7.5 9.3 1 7.7 1 7.9	.42 .87 .01 .98 .35	1_4 3_2 1 4_0 1 7.6 2 5_3	.6 < .1 .2 < .9	05 04 1 05 1 12 1 08	.53 .16 .24 .87 .78	17 1 30 2 39 2 44 2	.07 . .12 . .33 . .51 .	19 31 43 1 45 1	.58 . .98 .1 .45 .1 .38 .2	13 2. 14 1. 19 1. 10 2. 13 2.	.23 . .61 . .64 . .14 .3	31 20 12 15 15	5 14 7 2 3	287-288 289-289 289-290 290-291 291-292
NE 9084 NE 9084 9085 9086 9087	76 79 12 18 19	ہ۔ 5، 5 ک 2 ک	12. 12. 12. 12. 6. 15.	• 1) • 1) • 1) • 1) • 1) • 1)		7.6 1 1.6 1 1.8 2 2.4 1 1.5	6.3 3 6.6 3 9.7 3 9.7 1 7.9 1 7.9 3	44.2 44.8 51.2 63.9 70.7	28 27 27 14 17	27.4 27.6 27.6 20.4 21.1	73 73 09 23 21	1.8 1.7 1.8 1:6 1.4	.6 1: .6 1: .7 1: .7 1: .7 4: .7 4:	1.6 0.7 0.0 1.0	5 1 5 1 5 1 5 1 5	09	33.9 36.0 35.9 39.6 1 25.2	6.5 6.5 7.5 2.5 <u>6.8</u>	5.0 11 5.0 11 5.0 10 5.0 10 5.0 10 5.0 10	9.8 1. 9.7 1. 9.9 1. 5.5 .	21 4 18 5 24 4 73 3 72 2	9 5 6 1 5 1 1 1		71 1, 12 1, 13 1, 05 1, 05 1,	26 . 24 . 24 .	24 1. 23 1. 26 1. 36 1. 34 2.	.31 .29 .42 .10	21 . 21 . 23 . 37 1.	62 .1 66 .1 76 .1 20 .2	0 1 3 1 4 2.: 6	80 .1 80 .1 93 .1 34 .3			92-293 193-294 Rot. Rot. 194-295
9068 9089 9090 TANDARD \$0-15	73 20 38 22 2094 2	<.5 <.5 <.5 .8 !1.5	4. 4. 7. 2.		.5 .3 .7 .1 2	1.7 1.1 1.5 1.5 1.5 1.5 1.5 1.5	5.92 2.51 5.62 5.61 1.91	22_3 83,4 04,4 61.5 64,7	1) 7 1) 14 17 4	17.8 29.6 44.0 25.1 05.3	1.2 .8 1.7 2.0 1.7 2	1.5 1.3 1.2 1.0 1.7 1	.5 31 .3 21 .4 20 .3 14 .3 14	.4 .2 .2 .9 15		3 6 7 10	32.8 1 23.0 1 23.7 (23.2 1 44.5 2	0.0 8.9 9.8 7.2 5.1 2	3.8 1 3.4 6 2.6 5 2.4 5 3.8 57	.4 .9 .5 .3 6.	92 3 74 3 62 2 63 2 05 24	.3 1. .2 1. .5 1. .6 1. .4 4.	.3 <. .0 .1 .1 .1 .1 <.1 5 1.6	05 1. 06 . 06 . 05 .	25 . 99 . 99 .	20 1. 23 1. 26 1. N 1. 59 3.	63 .3 50 .1 63 .2 39 .1 60 .7	50 17 18 19	98 .21 84 .14 92 .14 51 .11	2	96 .3 19 .2 19 .2 11 .2 11 .1		2 2 2 2	295-296 14-297 97-298 58-299 59-300 m
																														_		נ י		Ы.

Sample type: CORS 8150 40. temples bestming "RE" are Beruns and "RRB" are Reject Jeruns.

1

All results are considered the confidencial property of the client. Acus assumes the limbilities for sctual cost of the analysis only.

44

					Ch	apl	eau	Re	sou	rçei	r Li	td.	PR	OJE	C	' HOI	N	FII	LE (⊭ A	004	04e	3			Ē	,age	54	(a					
SAMPLES	Bia ppart	i Ci i pipi	a (a pp	a c N pp	n 39: N 2924					ir Tai	Th	11	Ų	Y	H	Zı		/ Li) C(•	r 1		W E1		t Tb	0v	He	1 +	Tex	<u></u>		TTKAL	With:	
9091 9092 9093 9094 9095	7 7 9 10 8		14 5. 5. 6. 9.	2 15,1 1 13,1 6 12,1 0 13,1 6 12,1		9.6 2.4 3.6 3.1	257, 166, 212, 219, 250,	6 10 9 11 6 9 1 19	10. 12. 17. 17. 10.	<u>5 2.6</u> 5 .7 1 1.4 7 1.3 1 3.0	.4 .9 1.4 1.5 1.1	1.0 .8 .7 .7 .7	3.4 12.5 21.4 27.8 17.5	22022	2 0 3 10 3	8.9 24.3 29.5 31.3 18.1	FP 1.1 13.2 11.1 7.2	2.3 2.3 3.7 4.0 2.3	2.3 5.1 8.5 9.1	.2	PP 6 2 1 7 3 8 2	8 (1) 8 (1) 9 (1) 9 (1) 9 (1) 8 (1)	5 < 0	.4 .4 1.4	1 000 1 19 .35 .36 .30	ppm 1.57 2.24 1.68	40 05 24 11 13	.05 < .72 1.15 1.06	90 14 25 22	<u>ppm</u> <u><.05</u> <u><.05</u> 1.05 1.72	.01 2 .14 .33	97 4 97 4 9 5 12	D 306 301-30; 30230 303-31	
0096 9097 9098 9099 9099 9099 9190	11		9. 7. 9. 5.	6 11.6 2 12.1 6 12.1 1 12.4 6 11.4	1.0 1.4 1.1 .7 1.3	7.3 3.8 2.4 6.8 2.0	245.3 222.2 196.1 211.8 168.3	12 9 7 15 7	14.0 17.0 14.0 9.0	6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.2 1.7 1.6 .7 2.5	.7 1.1 .8 .6 .7	29.2 26.1 10.0 10.8	00000	8 2 8 2 10	18.7 28.3 24.1 13.3 28.1	6.7 11.3 14.4 6.1 12.4	2.8 4.4 4.2 1,7 5.8	4.6 9,9 9.8 3.9 13.2	.55 T.07 1.13 .44 1.46	1 1.1 3.4 1.4	7 .0 1 1.4 9 1.7 1 _7 5 1_9	.05 .05 .07 .07 .07	.89 1.32 1.69 .61 1.67	.20 .31 .42 .16 .38	1.35 1.11 1.66 2.52 1.09 2.17	.19 .20 .32 .42 .18 .35 1	.56 .97 .34 .58	.12 .11 .22 1 .30 2 .13 1 .23 2	.99 .93 .89 .35 .09	15 14 27 38 16	12 18 4 9 15	304-305 305-30 306-30 307-30 308-30	3 >6 >7 >9
9101 RE 9101 9182 9183 8164	9 11 7 18	.5 <.5 1.1 <.5	4.9 5.1 4.8 6.6 3.6	12,2 12,3 12,4 14,0 12,5	1.5 1.7 2.0 1.6 1.7	1,5 1,8 1,7 7,5 4,3	194.3 158.7 155.3 196.7 122.3	7 7 71 10	17.3 17.4 17.0 17.9 18.5	.8 .9 .9 2.1 1.8	1.8 1.7 1.9 1.7 2.2	.5 .9 .4 .5 .4 .5 .4	19,9 15,1 13,5 17,6 15,2	44444	2 3 9 3 10	31.1 32.4 46.4 29.1 37.6	13.7 14.0 19.1 15.8 22.0	4.6 4.8 4.6 4.4 5.7	10.4 10.5 10.2 9.6 12,5	1.22 1.19 1.19 1.09 1.41	4.0 3.9 3.7 3.5 4.7	1.6 1.6 1.6 1.4	<,05 .07 <.05 .08 .07	1.52 1.63 1.67 1.44 1.90	.38 ,49 ,42 ,37 ,54	2.30 1.45 2.55 2.57	.40 1 .41 1 .42 1 .43 1 .43 1	.20 .30 .30 .37 .96	26 2 27 2 28 2 27 2 28 2 27 2 27 2	. 12 . . 14 . . 25 . . 09 .		0 7 4 5	310-31 Rpt. Rpt. 311-312	<u>-</u>
9196 9196 9107 9108	15 16 22 4 6	<,5 ,4 <,5 <,5 <,5 <,5	5.9 5.1 9.6 5.9 6.9	12,7 10.8 11,8 12,7 12,3	1.5 .9 1.1 1.0 1.6	5.6 3.7 6.6 7.5 3.7	207.5 185.9 311.1 197.1 225.7	11 7 11 9 7	20.5 20.7 24.5 20.2 16.9	1.8 1.1 4.1 2.3 1.0	1.5 1.3 1.4 1.8 1.2	.5 2 .6 1 .9 2 .4 2	0.3 7.4 8.0 8.9 1.4	44444	39565	29.8 19.8 25.4 24.4 22.8	10.2 8.1 11.0 12.2 10.7	4,0 3,3 3,4 4,7 3,1	8.9 7.4 7.7 10.1 6.6	.96 .80 .86 1.12 .74	3.1 2.8 2.8 3.6 2.5	1.2 .9 1.1 1.4 .9	.06 .06 .11 .12 .05	1.24 .96 1.15 1.38 1.08	.30 1 .25 1 .31 1 .34 7 .27 1	-75 -47 -80 -12 -77	.29 .23 .31 1 .36 1 .31	.95 .73 .02 .23	19 1 15 1 19 1 19 1 23 1	.54 .14 .50 .85	23 19 29	9 2 2 9	312 -313 313 -314 314-31 315 -316 315 - 316	י 4 ג ז
9110 9110 9111 9112 RE 9112	5 9 8 9	<.5 <.5 <.5 <.5	13.7 6.5 11.5 6.5 4.5	13.3 12,4 12,5 10,9 10,8	.9 .8 1.3 1.1 .9	5.7 2.5 3.0 2.8 2.4	308.9 196.3 259.2 299.4 292.0	15 7 10 7 7	14.8 15.7 17,5 18.8 19,6	1.8 .7 1.0 .8	.9 1.8 1.3 1.3 1.6	.7 2 .4 2 .6 2 .5 1 .5 2	7.9 6.6 7.7 8.7	4 4 4 4 4 5 5	53544	20,6 18.8 27,4 24.5 19,6	10.3 8.5 8.5 11.3 11.6	2.3 4.3 2.9 3.6 4.2	5.2 9.8 6.6 8.1 9.3	.59 1.11 .71 .91 1.03	2.1 3.6 2.2 2.8 3.3	_9 1.3 1.0 1.2 1.3	4.05 .06 .07 .08 .09	1.08 1.14 .87 F.24 F.38	.28 1 .29 1 .24 1 .31 1 .34 1	.69 .48 .39 .99 .94	31 1. 28 . 33 1. 32 1.	.02 .2 .79 .1 .77 .1 .04 .2	22 1. 15 1. 15 1. 15 1.	.B4 .3 .25 .2 .19 .2 .73 .2			317-318 318-319 315-320 320-321 321-322	, , ,
9113 9114 9115 9116 9117	6234	<.5 <.5 <.5 <.5	8.4 5.6 7.2 7.5	10.5 12.1 13.1 11.7 12.6	.9 1.5 .8 .9 3.2	2.8 : 5.7 : 5.7 : 5.6 : 5	208.2 275.1 175.4 219.2 223.7	7 11 9 11 15	19.5 12.4 11.8 12.9 9.8	.9 1.5 1.3 1.7 2.0	1.5 .9 1.3	4 21	1.1 5.5 5.8 1.9	5555 ·	3 3 9 2 9	21.4 1 30,1 1 16.5 21.3 23.6	1.5 6.9 9.2 8.0	4.4 3.5 2.5 3.3 2.7	9.8 1 7.6 5.4 7.5 6.3	. 10 . 43 . 60 . 84 . 75	3.6 2.9 1.9 2.6 2.3	1.3 1.1 .7 1.1 .8	.08 <.05 .06 <.05 <.05	1.31 1.00 1.05 1.05	.33 1 .29 1 .20 1 .27 1 .27 1	.96 .63 .16 .70 .37	34 1. 32 1. 21 . 29 .	05 .2 02 .2 43 .1 85 .1	1 1. 2 1. 3 1. 8 1. 4 1.	.81 .2 96 .3 26 .1 41 .2 43 .2	9 4 2 8 5 10 3 5 2 4	R 2 3 3	pt: 22-323 23-324 24-325 14-325	<u> </u>
9118 9119 9120 97ANDARD 80-15	2 7 6 2011 2	<.5 <.5 <.5 0.3	3.4 5.7 4.3 3.0	14,4 11,5 10,5 17,3 (1.2 1.0 1.9 16.9 3	8.1 2.4 3.5 2.5	65.2 65.2	9 8 9 18 3	12.J 13.3 13.5 11.6 98.6	1.3 2.2 .6 1.4 1.6 24	.3 .5 .0 .9 .7 1	.5 31 .3 22 .4 17 .4 13 .0 20	.4 .2 .9 15	13 15 15 15 15 15 15 15 15 15 15 15 15 15	3 1 2 9 0 10	22.9 24.7 1 72.9 19.4 23.5 2	6.9 1.1 8.8 5,7 3.3 2	2.7 3.8 2.5 2.2 9.4 5	5.9 8.5 5.6 4.8 9.7 6	.45 .91 .44 .52 .12	2.1 3.0 1.9 1.6 2.6	.7 1.1 • .7 • .8 •	.06 (.05 1 (.05 (.05	.73 .15 .60 .56 .95	20 1. 30 1. 21 1. 17 1. 59 3.	19 84 .3 44 .4 02 .1 76 .7	21 . 13 1. 16 . 17 2.	67 .1: 03 .2: 69 .2: 51 .1: 44 .3:	1 1.1 2 1.1 3 2.1 1 .1 7 2.7	21 . 14 05 .21 02 .31 98 .14 55 .41	2 8 11 7 2	3333	27-329 29-329 29-329 29-330	

Data A.A.

Sample type: CORE 2150 60. Samples beginning the are Returns and (RRE) are Reject Returns.

1

All results are considered the confidential property of the client. Acms assumes the lightifties for actual cost of the analysis only.

		Chapleau Resources Ltd. PROJECT HORN FILE # A004048 Pag		
SAPLES	Be Co Ca G ppe ppe ppe	HF No Ro Sn Se Ta Ya ∕1) V V V Zr ¥ Le Ca Pr Rd Sm Eu Gd To Gy Ho pom ppni ppni ppni ppni ppni ppni ppni ppn	Er Till Yb (Lu) Ba prom pom pom pom pom	
9121 9122 9123 9123 9124 9125	12 <.5 10.2 11. 14 <.5 9.1 11. 14 .3 7.9 12. 12 <.5 4.6 12. 11 <.5 7.3 12.	.9 3.3 335.4 9 20.7 .8 .9 1.5 17.9 11 5 20.8 9.8 2.4 5.5 .42 2.2 .9 <.05 1.02 .25 1.70 .29 1.1 2.2 275.7 8 21.1 .9 1.5 1.3 26.7 6 6 20.7 9.9 3.6 8.1 .87 3.3 1.2 .06 1.16 .25 1.62 .26 .8 6.5 271.7 9 23.8 2.6 1.3 1.1 17.5 <5 5 17.7 11.0 3.4 7.4 .87 2.6 1.0 .09 1.21 .28 1.83 .32 1.0 3.0 174.5 7 20.4 1.0 1.6 .9 21.6 <5 5 18.7 14.2 3.5 7.8 .87 3.1 1.4 .07 1.38 .30 2.22 .38 1.9 4.3 241.9 10 19.9 1.2 1.3 1.0 26.3 <5 5 38.2 11.9 2.9 6.4 .78 2.6 1.1 .06 1.01 .25 1.68 .31	.95 .19 1.69 .24 1 350 - 1 .90 .19 1.75 .25 7 331 - 5 1.06 .20 1.74 .25 5 332 - 1.34 .30 2.56 .37 5 332 - 1.13 .20 2.03 .29 5 334 -	331.0 m 532 333 359 -5755
9126 9127 9129 9129 9130	19 <.5 8.1 13. 10 <.5 5.0 12. 23 <.5 3.3 12. 14 <.5 2.6 14. 11 <.5 2.5 12.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.05 .17 1.51 .23 11 335.5. .74 .15 1.45 .21 7 337~ 1.58 .27 2.24 .35 7 337~ 1.53 .32 3.18 .45 7 335- 1.03 .22 1.95 .29 7 375~	-337 352 -359 340 -341
AE 9130 ARE 9150 9151 9152 9133	11 <.5 2.6 12.1 12 .6 2.6 12.1 17 <.5 6.5 12.1 12 <.5 5.8 11.1 7 <.5 11.0 15.1	1.5 2.2 71.1 5 23.6 .7 1.3 .4 19.4 <5	.86 .19 1.76 .25 6 Rpt .88 .18 1.76 .23 3 Rpt .62 .14 1.33 .20 11 341-3 .98 .19 1.87 .27 5 341-3 .41 .08 .79 .11 7 343-	342 343 344
9134 9135 9136 9137 9138	6 <.5 3.0 14.1 5 <.5 3.8 13.4 2 <.5 2.7 33.4 14 1.4 5.9 12.3 6 <.5 6.4 11.1	1.0 6.8 102.3 8 14.8 1.3 1.6 .2 30.4 <5 20.0 11.4 4.0 8.7 .93 3.4 1.2 .07 1.16 .26 1.76 .32 .9 6.8 165.2 8 17.9 1.4 1.9 .4 21.0 .5 6 18.9 12.0 5.9 1.4 1.7 .33 2.09 .36 1.6 4.9 88.1 8 15.3 1.4 1.7 .4 23.2 .5 3 35.1 14.6 5.1 11.1 1.25 4.4 1.6 .06 1.50 .33 2.42 .42 4.1 3.7 195.4 11 21.5 1.2 1.0 .5 25.9 .5 3 35.1 14.6 5.1 11.1 1.25 4.4 1.6 .06 1.50 .33 2.42 .42 4.1 3.7 195.4 11 21.5 1.2 1.0 .5 25.9 .6 154.7 10.9 2.2 4.9 .57<	1.17.23 2.15.34 3 344- 1.16.21 1.91.29 8 345- 1.48.30 2.72 43 9 345- 1.11.21 2.14 31 11 344- 83.17 1.59 .25 5 34.4-	3 4 5 346 347 - 34 8 -348
9139 9140 9141 9142 9143	7 .5 6.6 13.1 18 .9 4.5 15.1 97 1.0 6.2 13.7 76 .5 9.0 12.7 93 3.0 8.8 15.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.19.25 2.21 .34 4 345	350.2 352.05 357.2 357.0 357.0m
ETAIDAND 10-13	2055 21.1 2.8 17.1	26.1 30.8 65.0 17 401.7 1.7 23.8 .7 20.4 156 19 1050.5 23.5 29.5 58.9 6.21 23.6 4.6 1.01 4.02 .58 3.74 .74	2.50 .36 2.54 .41 1 .Stol.	

to 356-357 meters . Hole H.L. OU-1.

All results are considered the confidential property of the client. Acme semines the limbflities for actual cost of the energy is only.

1

									Ċ	hapl	.eau	Re	# 01	17CO	# L	td.		FILE	: #)0A	04182	}			<u>H</u>	· •		Page	> 3	(a	, í					
SA.	MPLES	Ba		Ci ppe	s Ge s pipa	i iii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	alk Indici (R1 PPP) \$n r ppn	sr ppn	Ta ppn	Th ppn	Ti ppa	U PPW	V ppm p	· Vi Spane · · ·	Zr Ppm	Y ppa	La pper	Cie ppie	7 7	Nici Pĝini		U\$ PPM	Gd ppm	Tb ppm	Dy ppM	He He	۲# 1000	Te ppo	Yb pps	ц. ура	94 998			
914	4352.0	36	.6	8.0	13.1	1.6	5.0	223.1	Ŷ	23.7	2.2	1.9	.6	27.0	4	3 3	6.9	13.9 3	5.4	12.5	42.1	4/2 1	, 6	.11 1	. 38	.97	2.68	.65 1	.63	,34 J	.22	.51	8	ŀ	<u>357–35</u>	18.0n
1 914 2 914 2 914 2 914	5 6 7 NDARD	290 8 6 2010	3.2 <.5 <.5 21.2	11.1 9.4 7.9 3.0	18.2 14.1 14.0 17.6	2.7 1,1 1,4 25.6	12.6 6.2 4.3 33.4	258.4 310.4 235.7 64.0	16 10 10 19	65.3 17.7 15.0 405.0	3.6 1.4 1.5 1.9	6.0 .9 1.9 25.3	.5 .7 .6 1.1	14.7 18.9 27.0 20.3	23 47 45 148	10 7: 3 2: 10 34 20 1071	5.4 3.9 9.0 0.2	17.9 17 7.5 2 14.5 5 22.5 20	7.8 7.5 1.7 1.8	36.5 5.5 13.0 58.7	4.07 1 .59 1.39 6.25 2	4.83 2.1 5.11 4.04	.4 .8 .8	.69 3 .07 .06 1 .05 3	.04 .86 .71 .90	.55 .23 .42 .61	3,65 1,39 2,78 3,82	.63 2 .24 .48 1 .76 2	.03 .59 .43	31 2 16 1 31 2 36 2	.34 .26 .57	.36 .19 .41	8 6 1	i i	358 - 35 159 - 360 760 - 361	ሻኝ ፦ *

!

.

.

44

FI. Chapleau Resources Ltd.

A004182

Page 4 (a)

ADK METTER														 													-		-				4
SWPLEY	ge ppm	03 1100	Ça ppa	64 ppm	ərf Şəha	NP NP	dil Naja	\$n ppn	Şr pipeli	Te ppn	th pps	ti. ppa	U ppni (ktav til A	N) pilli	Zr ppm	۲ ppm	La ppar	Ce ppn	Pr ppm	bii Niqq	Sin pps		8 <u>8</u> . 100	dT) Mang	ppm	ji na ji na katala na katal na katala na	fr ppn	Till P ^{END}			Be pps:	
9148 9149 9150 9151 9152	54475	<.5 <.5 <.5 <.5 <.5	7.7 4.4 6.9 8.7 3.3	13.1 13.1 11.3 13.1 13.1 12.9	2.2 1.1 1.2 1.0 1.1	3.5 5.3 4.1 5.9 4.5	242.0 181.6 214.7 230.7 125.2	11 7 15 7	10.9 16.9 10.3 13.5 17.5	1 4 1 1 1 2 1 6 1 3	1.6 2.3 .9 .5 1.5	.9 2 .7 2 .7 1 .7 1 .7 1 .4 3	9.0 6.9 7.2 1.0 0.4	88855 8885 88	10 3 8 3 8	47.8 29.4 24.6 20.2 27.0	9.9 14.0 14.2 9.9 11.9	4.0 6.6 2.7 1.6 4.5	8,6 14.2 5,7 3,3 9,2	1.06 1.66 .65 .62 1.05	3.3 5.8 2.1 1.2 3.9	1.1 2.1 .9 .6 1.3	<.05 .05 .05 .05 .06	1.00 1.80 1.09 .59 1.30	.26 17 .25 .37 .12 .25 .26 .27	1.55 2.40 2.34 1.51 1.97	. 27 .40 .41 .27 .35	.99 1.35 1.59 1.10 1.19	,21 ,24 ,32 ,22 ,22	1.95 2.15 3.14 2.29 2.05	333934	7 9 11 7 6	361-362.0. 362-363 363-364 364-365 365-366
9153 9154 9155 9156 9157	16 25 17 15 9	<.5 1.0 <.5 <.5 <.5	3.9 4.7 3.9 4.6 4.4	12.9 8.8 12.8 12.8 13.4	1.0 .5 .6 .9	5.1 2,5 6.4 6.9 6.7	154.9 170.3 150.5 178.9 157.1	10 7 11 10 12	16.8 23.4 13.5 37.7 16.4	1.4 .7 1.8 2.4 1.4	,8 ,5 ,8 ,9	.5 1 .5 .5 1 .7 1	2.5 7.5 4.3 5.5 9.3	4444	3 8 3 9 5	20.9 11.0 15.8 12.0 19.9	8.2 10.6 8.7 6.7 7.3	2,4 1,6 2,3 1,7 2,6	5.2 3.9 5.1 3.4 5.2	.63 .68 .62 .41 .60	2,1 2,2 2,2 1,6 2,3	.7 .9 .8 .7 .8	.09 .47 .11 .06 .08	.82 1.14 .63 .65	22.28.25.19.19	1.34 1.52 1.13 1,33	.22 .29 .23 .18 .20	.85 1.03 .55 .75	.14 .21 .15 .11 .15	1.35 1.87 1.45 .95 1.57	.21 .27 .22 .16	10 6 7 7 4	344 - 367.4 367.6 - 370 370 - 371 371 - 372 372 - 373.0
9158 RE 9158 RRE 9158 9159 9160	9 7 8 15 8	4.5 4.5 4.5 4.5 4.5	6.5 6.8 6.6 3.5 3.6	11.0 11.0 11.1 11.4 11.6	8. 8. 9. 5.> 6.	4.7 4.6 5.4 3.3	197.9 199.3 201.3 144.8 138.0	8 9 9 10 9	15.2 15.8 15.4 15.2 13.0	1.7 1.3 1.1 1.4	.7 .7 .8 .9	.8 1 1.0 1 .6 1 .5	5.4 5.6 7.9 7.9 7.3	00000	9 8 3 9 3	21.7 20.1 20.4 14.0 13.0	6.0 6.9 10.2 9.0	1.7 2.1 1.7 2.2 3.0	3.6 4.6 3.6 6.8 6.5	.44 .55 .456 .75	1.3 1.5 1.7 2.3 2.9	6. 6. 6. 8. 5.1	4.05 .06 .05 .11 .12	.68 .68 .69 .99	. 15 . 17 . 16 . 28 . 25	1.10 1.05 1.10 1.69 1.65	.16 .17 .19 .20 .26	.57 .60 .69 .93 .91	.12 .13 .14 .20 .16	1.30 1.30 1.61	. 19 . 18 . 20 . 27 . 24	4 9 9	373-374 Rpt Rpt 374-325 375-376
9161 9162 9163 9164 9165	3 2 4 3 2	<.5 <.5 <.5 <.5 <.5	8.9 10.3 10.4 7.1 5.3	14.6 16.8 11.8 12.1 12.8	.9 1.2 .5 .7 .8	7.8 12.0 4.8 4.3 4.7	284.4 167.8 304.5 224.0 207.6	15 15 12 8 7	17,4 28,3 9,8 19,5 20,4	2.0 3.7 1.6 1.5 1.2	1.0 2.7 .4 1.4 1.2	.6 1 .6 2 .7 .6 1 .4 2	4.2 2.6 6,4 7.1 0.5	99995	9 5 8 3 9	20.6 27.1 12.1 17.4 21.8	11.0 18.9 5.2 12.8 10.0	3.3 8,3 1.5 4.3 3.9	7,0 17,4 3,0 9,1 7,8	.75 1.99 .35 1.04 .89	3.1 7.6 1.1 3.5 3,2	1.1 2.3 .0 1.4 1.1	.11 .21 <.05 .11 .16	1.36 2.18 .55 1.35 1.17	.33 .55 .13 .31 .29	1.90 3.41 .64 2.11 1.65	.30 .55 .15 .36 .28	1.00 1.84 .50 1.25 1.08	.17 .52 .11 .23 .19	1.69 2.55 .99 1.99 1.66	.21 .40 .15 .32 .24	13 11 6 5 8	374-377.75 377.75-379.0 377-384 340-342 382-383
9166 9167 9168 9169 9169 9170	43055	<.5 <.5 <.5 <.5 <.5	6.0 4.5 4.8 4.5 4.9	15.4 13.8 13.1 13.8 14.7	.6 .7 .6 .5	9.1 5.2 6.4 6.5 8.6	211.6 172.2 181.5 180.7 158.7	95 65 6	19.7 18.7 18.7 25.9 28.0	2,8 1,2 2,2 1,8 2,5	1.5 1.0 2.1 2.2 1.7	.4 1 .2 1 .3 1 .2 1 .2 1	3.1 3.2 5.0 4.5 4.1	00000 1	4 4 10 5	15.1 20.5 14-3 19-4 12.6	10.8 10.7 13.4 15.1 15.4	4.6 3.4 6.5 6.5 5.5	10,2 7,4 13.5 13.8 11.8	1.14 .86 1.54 1.61 1.33	4.1 2.7 5.6 5.6 4.9	1.4 1.0 1.9 1,8 1.9	. 15 . 13 . 12 . 19 . 19	1.52 1.26 1.64 1.99 1.94	.34 .43 .43	2.09 2.05 2.41 2.65 2.51	.52 .30 .37 .43 .47	1.14 1.30 1.26 1.50 1.51	.19 .18 .21 .25 .26	1.57 1.33 1.95 1.97 1.99	227.22	5 5 4 5	383-384 384-355 385-35575 385-355757 385-75-387 35-7-388.3
RE 9170 RRE 9170 9171 9172 9173	54234	.6 <.5 <.5 <.5	4.8 4.9 4.1 4.9 3.6	15.3 15.0 14.3 12.3 15.2	.6 <.5 .5 .6 .7	9.2 8.8 5.3 3.0 6.3	145.6 158.6 166.5 230.8 154.4	76658	27.8 26.3 22.7 19.1 15.3	2.7 2.6 1.3 1.0 1.7	1.7 1.5 1.3 1.6 1.3	.2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1	4.5 3.2 0.8 4.4 7.3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	594 84	15.3 12.5 15.1 15.4 21.3	15.8 15.5 12.8 10.9 12.8	5.9 5.0 4.1 4.5 3.7	12.3 10.7 8.6 10.1 7.6	1.42 1.25 1.01 1.10 1.10	4.8 4.5 3.3 4.2 3,1	1.7 1.6 1.3 1.4 1.0	.20 .18 .15 .13 .11	1.83 1.71 1.34 1.36 1.34	.45 .43 .38 .32 .35	2.71 2.61 2.24 1.81 2.22	.45 .43 .36 .29 .35	1.51 1.49 1.25 1.66 1.18	.27 .26 .21 .17 .21	2.08 1.97 1.75 1.58 1.95		6 5 6 2 7	Rpt Rpt 755,3-389,3 309,3-391 371-392
9174 9175 9176 Standard 50-15	3 2 7 2037	4.5 4.5 4.5 20.7	5.5 10.1 8.2 2.8	14.8 15.4 13.4 17.2	.9 .8 127.9 24.9	4,9 8,) 6,8 29,7	204.9 353.8 311.2 65.7	7 14 10 17	13,6 7,9 18.5 406.8	1.0 1.7 1.4 1.9	1.5 1.2 1.2 24_0	.2 1 .3 2 .5 1.1 2	6.9 0.1 9.8 0.7	5 5 52	9 3 8 5 20 1	23.6 17.6 5228.6 1089.5	10.9 7.3 8.4 23.0	4.4 3.5 3.0 28.7	9.5 7.2 6.3 55.5	1.07 .82 .71 5.95	3.7 2.9 2.5 23,6	1.3 1.2 .9 4.3	.10 .05 .09	1.15 .84 .99 3.91	.31 .19 .24 .58	1.70 1.34 1.47 3.84	. 31 . 18 . 24 . 76	1.09 .67 .85 2.58	.22 .13 .13 .34	1.60 1.23 1.16 2.54	.28 .17 .18 .41	7 8 5 3	712-393 393-794 399-795.0 54d
Sampla type	<u>1 CO</u>	<u>e at</u>	<u>10.60</u>	<u>c. </u>		beg (<u>mina.</u>	'RE'	<u>are R</u> i		Lend,	<u>'RRE</u> !	<u>. 619</u>	<u>Re]ø</u>	<u>çt</u>	lenne,	•						,	-1		t							

All results are considered the confidential property of the client. Age assumes the liabilities for actual cost of the analysis only.

(

Chapleau Resources Ltd. FII # A004192

APR METRIAL																											_					-	
Sampley	ĉ. Pipe	Co ppm	Cs. ppn	88 pp#	H ppa	No ppe	At, ppm	; \$11 ; 51013	3+r (ACIC)	7.4 (2014)	7h pipin	TL ppin	U ppm	V V	¥ ¥	2r ppm) T	La ppm	Ce ppm	Pr ppia	Ned piper (\$u pps	Êu ppo	ûd Spie	Tb ppn	0y pp#	iio ppe	tr ppn	Tat papal	Yb spa	Lu P r m p	lle pa	
9177 9178 9179 9180 9180 9181	5 4 3 5 6	1.2	6.1 5.9 6.8 7.8 6.1	12.6 12.8 13.6 13.2 15,6	1.2 .8 .7 .5 1.1	5.9 4.9 8.5 11.1 15.6	194.9 193.9 156.5 208.9 201.1	7 6 7 9 12	27.1 24.6 28.3 32.4 23.8	1.4 1.0 2.1 3.4 4.3	1.0 1.8 1.9 1.4 1.6	.7 1 .8 1 .6 1 .8 1 .5 1	2.1 9.0 6.4 0.6 8.8	4444	9 3 9 4	68.2 21.3 20.3 13.5 27.9	10.0 12.6 15.1 11.0 12.9	3.3 5.4 6.0 4.5 4.8	7.3 12.2 13.0 9.7 10.5	.78 1.31 1.40 1.04 1.17	2.7 5.0 5.0 3.7 4.0	1.0 1.6 1.5 1.3	.16 .17 .21 .24 .14	1.19 1.76 1.98 1.35 1.55	.28 .37 .45 .92 .55	1.77 2.37 2.61 1.99 2.27	.33 .44 .52 .59 .43	1.02 1.39 1.55 1.16 1.25	.19 .23 .27 .20 .23	1.59 1.75 2.19 1.63 1.64	.25 .27 .34 .25 .31	8 5 6 7	395-396.01 396-397 397-395 395-397 395-397 375-900
9182 9183 9184 9185 9185 9186	5 6 12 12	<.5 <.5 <.5 <.5	5.0 4.3 4.9 5.4 4.7	14.9 13.9 13.1 13.9 13.4	.8 .8 .5 .5 1.0	11,2 5,9 6,3 8,8 4,3	138.1 163.0 176.6 201.5 205.2	9 7 9 8	33,9 25.7 31.6 39.4 22.5	3.2 1.6 1.5 2.4 .9	1.8 1.6 1.5 1.6 1.8	.7 1 .5 2 .6 1 1.1 1 .6 2	8.1 1.6 3.5 5.8 5.9	00000 1	5 4 10 3	19,0 25,7 14.0 20.9 24.4	13.7 11.2 12.7 13.3 8.2	5.5 4.5 4.9 5.7 4.7	11.9 9.4 10.0 11.9 10.9	1.25 1.04 1.09 1.30 1.19	4.5 3.8 3.9 4.9 4.0	1.6 1.3 1.4 1.6	.26 .16 .24 .25 .09	1.87 1.39 1.68 1.68	.40 .33 .55 .36 .26	2.35 2.02 2.19 2.40 1.54	.45 .43 .44 .27	1.41 1.16 1.29 1.29 .82	.22 .21 .22 .23 .15	1.83 1.60 1.73 1.86 1.26	.29 .26 .27 .28	8 8 5 5 4	900-901.2 901.2-90 902-903. 903.2-90. 905.2-90
9187 9188 RE 9188 RRE 9188 9189	8 1 4 1 5	4,5 4,5 4,5 4,5 4,5	3,1 6.6 6.5 10,3	13.9 14.3 13.7 13.5 11.7	<.5 <.5 <.5 <.5 .8	4.6 6.8 6.7 6.2 2.7	115.4 235.1 221.9 217.6 315.0	11 14 12 13 10	13.1 7.7 7.6 8.8	1.1 1.9 1:8 1:6 .0	8. 5. 6.	.5 1 .6 .7 .8 .8	1.9 3.3 2.1 3.1 9.7	00400	9 6 5 1 2	10,6 9,9 7,4 8,1 19,9	7.6 3.7 2.9 3.0 6.5	2.4 1.0 1.0 	5.5 2.2 2.0 1;8 4.0	.59 .23 .21 .19 .44	2.1 .8 .7 1.6	.4 .	.05 .05 .05 .05	.74 .45 .40 .40 .71	.19 .11 .09 .10 .19	1.30 .67 .53 .65 1.11	.24 .12 .09 .10 .21	.84 .34 .26 .33 .67	. 17 .06 .05 .05 .11	.64 .58 .48 .19	.25 .06 1 .07 .07	14 39 09 55	406-407 407-407.6 Ryt Rot: 407.6-405
9190 9191 9192 9193 9194	6 <1 1 1	<.5 <.5 <.5 <.5	15.2 6.5 5.6 6.9 8.4	15.1 14.0 15.7 15.2 16.5	1.6 1.5 .9 1.8 5.1	8.7 5.5 6.5 6.3 13.3	349.6 217.4 201.1 189.6 167.4	17 10 10 11 17	6.8 5.7 6.3 5.3 5.4	1.8 1.3 1.6 1.7 2.8	.6 1.2 8 1.1 2.2	.9 1 .6 2 .7 1 .5 2 .4 3	6.5 0.3 3.4 0.3 3.7	4444 1	B 3 11 3 9	30_1 34.0 21.9 39.5 82.5	5.5 8.5 7.1 9.5 21.9	1.2 3.5 2.2 2.9 4.7	2.9 7,7 5.0 6.8 11.2	.53 .88 .54 .75 1.25	1.3 3.1 1.9 2.5 4.7	.5 (.7 (1.2 (.05	.69 .96 .79 .99 1.74	16 22 20 24	1.01 1.46 1.28 1.70 3.63	.16 .27 .23 .31 .69	.94 .74 1.05 2.14	.13 .20 .17 .22 .47	1.12 2.03 1.67 2.21 4.44	. 18 . 33 . 25 . 35 . 62	29 9 4 7 9	405; 6-410 910 - 411 411 - 912- 412-413 413 -414
9195 9195 9197 9198 9198 9199	4 4 3 4 1	<.5 <.5 <.5 <.5	12.0 10.6 13.7 10.3 9.3	16.7 12.7 15.6 12.5 14.5	6.7 .8 .7 1.1 1.1	11.0 17.0 17.1 3.4 8.1	245.1 211.3 229.9 212.3 200.1	16 10 21 9 13	4,3 7,1 5,8 5,6 4,4	2.7 3.8 2.9 .6 1.8	2.8 1.3 .4 .8 .9	,7 4 ,5 1 ,6 ,5 1	2.5 6.9 9.3 4.8 4.6	00000	4 1 8 6 5 3	13.3 18.7 14.5 24.7 29.1	25.1 7.8 3.1 6.6 4.9	4.4 3.2 1.0 1.8 1.6	11.3 7.2 2.1 4.4 3.7	1.26 .60 .24 .46 .40	4.5 2.9 .9 1.6 1.4	2.1		2.25 1.02 .38 .69 .59	.75 .26 .10 .19 .16	4.87 1.59 .59 1.14 1.00	.74 .25 .10 .20 .16	1.91 .73 .33 .65 .43	.33 .14 .07 .13 .09	2.64 1.29 .70 1.57 .82	.55 .20 .11 .20 .12	13 14 10 9	919_ 415 915- 916 916 - 417 916 - 417 917- 918 918- 419
9200 RE 9200 RE 9200 9201 9201 9202	2 2 7 7 7	<5 <5 <5 <5 <5	14.7 14.7 17.6 4.1 3.9	11.6 14.1 14.1 13.9 13.7	.9 .9 1.1 1.5	7.3 7.6 7.0 4.9 4.0	348.1 356.3 351.1 124.4 138.7	15 16 14 8 12	4.1 4.3 5.1 5.6 6.1	1.5 1.6 2.1 1.0 1.3	.6 .8 .8 1.3	,6-1 7-1 7-1 7-1 ,2-1 ,2-1 ,3-1	3.4 4.3 4.2 9.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 9 8 5	16.9 15.2 26.4 33.1	4.7 5.0 4.0 5.6 11.0	1.0 1.1 1.5 2.1 3.7	2.5 2.4 3.7 4.8 8.8	.29 .28 .41 .51 .96	1.2 1.1 1.8 1.8 3.6	5 7 7	.05 .05 .05	.59 .61 .63 1,17	16 15 16 26	.96 .94 .99 .99	14 14 12 19 .37	.55 .37 .59 1.37	.06 .05 .12 .30	.59 .59 .42 .29 2.90	.08 .08 .05 .19 .42	6 7 8 8	419-420 Rot Rot 420-421 421-422
9203 (9204 9205	353	<,5 <,5 <,5	6,0 2,5 3,0	13.4 14.1 13.4	.9 1.6 1.4	7.2 4.4 2.1	238.9 79.9 99.0	12	9.6 13.9 12.1	2.3 2.3 1.3	.5 1,4 1.5	.4 1 .1 2 .3 2	1.6	5 5 5 1	9 3 1	16.9 33.9 29,5	5,8 10.4 18.6	1.4	3.0 8.9 11.1	.33 .97 1.15	1.2	.6 < 1.4 < 1.7 <	.05	.61 1.32 1,71	.15 .31 .46	1.01 2.09 3.24	.19 .34 .63	.60 1.15 2.17	. 13 . 23 . 48 . 48		.19 .34 .60	3 9 9	422- 423 423- 4 24 424-425

imple type: CORE R150 60C. Semples beninning /RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme ensures the liabilities for actual cost of the analysis only.

Data C. FA

															منيا																_		
	.						Cha	Dje	au :	Res	our	d 4 3	Lt	:d.		FIL	ıs #	AO	041	.82	~~~~~					P	age	6	(a)			
SAMPLEN	Ba cpm	Co p pm	Ca Note	Qe bbu	#f japin	Sila Pipan	itt ppi	fan Formi	12 12	Ta ppn	lh ppn	T L piput	u Imaqa	V Pipela	날 P바	Zr Hann	Y (1210)	La pou	Ca Capa	Pr ppm	ikt Begg	\$ 75 1750	ftu pipena	God SPDB	Th pps	0y pps	No Repa	£∩ appin	The ppa	Yb ppm	Lu ppn p	ile pper	
9206 9207 9208 9209 9210	3 1 4 2 5	<,5 <,5 <,5 <,5 <,5	7.1 5.3 25.3 16.4 6.4	14.1 16.3 20.7 13.0 14.2	.8 .6 .5 <.5 1.8	6.1 8.0 15.2 4.8 7.0	246.6 137.7 439.1 367.7 232.1	9 11 25 11 8	12.2 4.6 5.5 6.1 18.6	1.0 1.2 2.9 1.2 1.5	1.1 1.2 .3 .5 2.7	1.0 1 .5 1 1.4 1.0 1 .9 4	4.3 2.2 2.6 1.7 9.5	55000	3 10 4 7 3	17.3 13.1 9.5 6.9 37.3	14,0 3,9 1,1 2,7 18,5	3.2 2.5 .7 1.2 6,3	5.9 5.7 3.5 2.5 13.3	,60 .72 .18 .33 1,54	2.6 2.5 .6 1.1 5.7	1.0 1.1 .3 .5 2.0	<.05 <.05 <.05 <.05 <.05	.92 .80 .25 .38 1.72	.31 .18 .05 .10 .45	2.29 .63 .25 .52 3,09	.41 .10 .05 .07 .53	1,40 ,27 ,07 ,19 1,82	.05 .05 .05 .32	3.08 .41 .11 .25 3.02	.48 .05 .61 .03 .46	7 9 6 3	425-426.0m 426-427 427-428 428-429 429-430
9211 9212 9213 9214 9215	3 32 39 4	<.5 <.5 <.5 <.5 <.5	5,8 5,3 4,1 5,1 4,3	13.9 13.4 15.3 14.5 16.0	1.0 .8 1.0 .7	6.0 2.2 9.6 8.8 9.8	219.1 214.2 175.6 208.1 117.4	8 6 8 6	20.7 16.7 39.9 44.2 37.4	1.4 .5 1.9 2.1 1.9	3.1 1.2 2.2 2.1 2.4	5 8. 2 0.1 5 5.1 1 6. 1 6.	2.0 1.0 7.4 7.1 6.0	00000	10 2 10 4 10	26.4 19.4 20.3 24.6 17.6	12.3 9.0 13.6 15.7 17.2	8.1 3.1 6.0 6.0 7,4	17.0 6.5 12.7 12.7 15.5	1.91 .77 1.43 1.41 1.83	6.9 2.5 4.7 5.0 6.5	2.1 .9 1.7 1.6 1.9	. 14 . 08 . 18 . 26 . 27	1.73 .64 1.55 1.79 2.00	.38 .22 .35 .41 .43	2.32 1.50 2.36 2.62 3.01	.38 .27 .46 .47 .52	1.24 .96 1.30 1.56 1.62	.21 .20 .21 .26 .27	1.85 2.12 1.85 2.39 2.41	22.22.53.53	5 11 4 5 4	430 - 431 431 - 432.15 132.15 - 433.6 134.4 - 436 436 - 437.4
9216 9217 9218 9219 9220	5 11 10 6 10	<.5 <.5 <.5 56.5 <.5	4.9 6.0 5.6 3.5 4.6	15.3 14.0 12.1 14.3 14.1	.6 .6 .5 3.1 .7	9,9 8.0 6.1 5,4 7.5	214_0 254.7 284.4 167.8 192.5	9 9 8	28.6 36.5 28.0 21.0 36.5	1.9 1.6 1.3 .8 1.3	1.1 1.7 .8 1.2 1.6	.9 1 .9 1 .9 1 .4 1 .6 7	1.7 1.3 1.7 9.4 2.0	00020 	4 9 3 12 4	13.2 36.8 11.4 22.5 19.5	8.5 12.1 7.0 9.8 31.4	3.3 5.1 2.4 5.0 4.8	6.6 19.5 4.5 6.2 9.9	.77 1.29 .54 .70 1,16	2.6 4.0 1.9 2.5 4.0	9. 1.2 7 8. 1.3	.20 .30 .16 .10 .28	.93 1.38 .76 .97 1.30	.21 .33 .18 .26 .32	1.47 2.06 1.14 1.55 1.99	23.22.23.39	,82 1.15 .60 .94 1.16	.14 .19 .10 .16 .18	1.46 1.63 .98 1.42 1.59	.21	7 5 5 4 4	437.4-439.0 439-440.75 440.75-442.55 442.55-443.55 443.55 443.55-443.55
RE 9220 RRE 9220 9221 9222 9223	9 9 59 15 29	<.5 <.5 <.5 <.5	4.6 4.5 5.3 4.8 4.9	13.5 13.7 14.1 13.7 13.7	6. 6. 1.2 .7 .8	7.1 7.4 9.7 7.9 9.3	192.7 186.1 168.2 192.3 177.5	5 5 7 6 6	38.3 36.6 43.8 40.0 45.9	1.3 1.4 2.3 1.6 2.1	1,8 2,1 2,2 3,4 2,4	.61 .41 .41 .43	3.1 2.2 1.8 9.7 9.7	00000	4 9 4 9 4	14.9 14.9 36.4 18.7 20.7	13.4 12.8 13.0 16.7 16.5	5.6 6.7 7.5 10.8 7.5	11.2 13.6 15.2 23.3 15.7	1,28 7,53 1,71 2,65 1,80	4.4 5.2 6.1 8.9 6.3	1.4 1.6 1.6 2,7 1,9	.28 .27 .31 .27 .26	1.50 1.65 1.64 2.22 1.98	.34 .35 .34 .51 .45	2.29 2.22 2.29 3.04 2.76	.40 .38 .40 .51 .50	7.29 1.19 1.29 1.58 1.58	.20 .19 .19 .25 .26	1.78 1.78 1.62 2.11 2.25	.27 .28 .27 .32 .35	3 5 6 3	Rpt. Rpt. 445-446 446-447.2 447.2-449.3
9224 9225 Standard SO-15	55 38 2089	<.5 .5 22.0	1.3 4.7 2.9	14.3 13.8 17.3	.7 .9 25.9	7.0 9.0 29.6	60.4 198.6 64.5	5 7 16	43.5 51.1 615.9	1.5 2.0 1.6 (1.6 2.0 25.4	.11 .31 .22	5.0 5.4 1.8	<5 <5 146 (7 4 20 10	17.5 21.8 17,8	10.5 14.1 23.6	5.2 6.3 30.1	10.4 13.2 58.0	1.20 1.52 6.31	4.4 5.2 24.1	1.2 1.7 4.6	.17 .23 1.05	1.25 1.65 3.96	.27 .39 .64	1.82 2.46 3.64	.30 .43 .76	1.03 1.39 2.55	, 15 .23 .34	1.40	. 21 . 31 . 30	2 4 2	4493-450 450-451.5 Eo, Itd.
<u>Stande a Synce i</u>	CORE	<u>R15</u>	<u>) 60</u> C	<u>. 3a</u>		<u>. beş i</u>	on log	* 22 *	<u>074 R</u> 4	<u>truna</u>	end -	* <u>R485</u> *	<u>879</u>	<u>Ro i e</u>	<u>et R</u> a		L		:														
•	· • '	4																															

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Þ

Date A-FA

P.06/13

SAMPLE#	MO ppm	ppm	aq mqq	2n ppm	ppm	A8 ppm	Cd ppm	SD ppm	B1 ppm	Internal Sampled.
8901 8902 8903 8904 8905	2 4 2 3 3	28 4 5 7 7	6 5648	45 3 3 7	40 1 7 1	<pre><2 5 8 4 19</pre>	N0000	<pre></pre>	<.5 1.5 1.0 <.5 .6	Not 4100-1 51.3-52.3.4 52.3-53.3 53.3-54.3 61.8-62.8m
8906 8907 8908 8909 8910	32 32 32 4	10 4 5 5 5	4 53 34 40 423	3 28 22 15 66	7 1 4 1 6	7 129 277 119 138	<.2 .28 .25 1.4	<	<.5 .7 .5 1.2 .8	625C4;2 93,4-94,4 97,4-95,4 15:4-96,4 96,9-97,4
RE 8910 RRE 8910 8911 8912 8913	4117777777	5 4 3 2 3	423 583 37 80 13	64 42 45 4	6 1 6 1 5	123 127 264 68 159	1.4 1.0 .5 .3 .6	<.5 <.5 <.5 <.5	,8 1.1 .9 .6 1.3	Reports 97.4-98.4 m 98.4-99.9 98.4-100.4
8914 8915 8916 8917 8918		11 9 6 3	14 230 38 10 77	3 139 19 6 33	1 1 5 1 5 1	233 579 401 193 182	V.2 1.52 1.08	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.0 1.6 <.5 <.8	100.9-101,9 101.9-102,9 102.9-103,2 119-120
8919 8920 8921 <u>8922</u> RE 8922	400000	11 5 3 1	545 18 10 15 15	262 16 171 5 4	10 4 5 1	233 198 17 141 141	1.7 .7 1.9 .5	v v v v v v	<.5 <.5 .9 1.8 1.5	$\frac{121 - 122.0}{122 - 123.0}$ $\frac{122 - 123.0}{123 - 124.0}$
RRB 8922 8923 8924 8925 8925 8926	<u>ມ</u> ພາມ ພາມ ພາມ	2000	15 60 363 403 22	25 65 325 25	5 1 5 1 5	155 89 377 144 92	.6 .7 4.9 .4	く、555555 くくくく、	1.5 .8 1.3 .9 .6	Kepent 125-126.0 126127.0 127128.0 128128.0
9927 8928 8929 STANDARD C3 STANDARD G-2	33337 272	2 3 69 3	44 16 136 36	96 63 66 165 17	1 5 1 39 8	199 56 58 <	1.7 .7 25.1 <.2	<.5 <.5 16.0 <.5	.5 .5 23.2 <.5	129,6-131,0 131-132,0 132-133,0m Stds,
GROUP 1D - 0.50 GN SANPLE LEACHED WITH 3 Upper L10315 - AG, AU, HG, W = 100 PPM; W Assay Recommended for Rock and Core Sampl • Sample Type: Core R150 60C <u>Samples</u>	ML 2-2-2 IO, CO, CO ES IF CU beginning	HCL-HNO3 , SB, BI P8 ZN AS L.'RE' AF	- H20 AT , TH, U : > 1%, A : = Reruns	95 DEG. () & B * 2,() G > 30 PF end /ARE	; FOR ONE 100 PPM; M & ALI > :' are Re	HOUR, O CU, PB, 1000 PP	ILUTED T ZN, NI, B MOS.	0 10 ML, MN, AS,	ANALYSED Y, LA, CR	BY ICP+ES. • 10,000 PPM.
DATE RECEIVED1 OCT 10 2000 DATE REPORT MAT	1.8D1 ()	lt 2	26/00	SIGNE	1D BY.	:h-	j D.	TOYE, C	.LEONG, J	. WANG; CERTIFIED B.C. ASSAYERS

P.07/13

	Chapleau Resou	urces	Ltd.	PROJE	L. HO	RN F	'ILE #	A0 03	961		Page 2 (b)
	SAMPLE#	MO PPM	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cđ mqq	Sb ppm	B1 ppm	Sangolal Takaral
	8930 8931 8932 8933 8933 8934	4000 000	7553 4	38 16 28 9 34	73 60 9 18 12	6 1 5 1 5	198 268 144 24 140	1.3 5 4 <.2	500000	55575 < < < <	133-134,0 m 134-135 135-136 136-137
	8935 8936 8937 8938 8939	34939	2 3 2 2 1	13 8 6 7	45622	1 5 1 5 1	37 44 20 12	× × × × × × × × × × × × × × × × × × ×	<pre> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	< < <	131-134 134-134 134-1340 136-1341 136-1342 142-133
	8940 RE 8940 RE 8940 8941 8942		3 3 2 7 12	8 8 49 812	5 7 7 84 308	5 5 4 1	17 18 18 222 651	<.2 <.2 <.2 .6 3.2	v v v v v v v v	<.5 <.5 <.5 1.2	143-144 m Repeats 144-145 145-146
	8943 8944 8945 8946 8947	43322	68324	1199 47 13 5 7	168 7 5 8 4	6 15 15	119 12 11 3	1.6 <.2 <.2 <.2	х v v v v 	0555555 2 V V V V	145 -147 147 -145 148149 m 149 -150 157 - 151
	8948 8949 8950 8951 8952	NUNUN	1 3 2 8 2	5 4 280 19	5 4 10 547 20	15 15 1	759 199 493	<	5550550 	1.4 1.4 1.8 .5	157-152 152-153 153-154 154-155 154-155
	RE 8952 RRE 8952 8953 8954 8955	Nawan	24	19 19 15 34 14	19 24 20 9 4	1 5 1 5 1	3 4 5 6 48	<.2 <.2 <.2 <.2 <.2 <.2	<	<	Reports 156-157 157-155 158-189,014
	8956 8957 8958 8959 STANDARD C3	32 32 32 26	5362 72	10 5 6 7 36	3 2 1 169	5 1 5 1 38	127 14 21 69 57 2	.3 <.2 <.2 <.2	<	1.3	159-160 160-161 161-162 162-163 m
	STANDARD G-2	2	2	<3	44	8	<2	<.2	<.5	<.5	
<u>Sample type:</u>	CORE R150 60C. S	amples	beqi	<u>nnin</u> g	<u>1 'RE'</u>	are	Rerun	is ang	I 'RRE	l' are	Reject Reruns.
All results are considered	the confidential property of th	e client.	Acme as:	sumes the	: limbili	tles for	ectual c	ost of t	he analy	sis only.	Data + FA

ADE ANE TICA

Chapleau Resources Ltd. PROJECT HORN FILE # A003961

Page 3 (b)

C & MDT	-4				ant a ang	verheieren				KHE MALTICAL
SAMPL.	≊# Mo ppm	Cu ppm	Pb ppm	Zn ppm	N1 ppm	As ppm	DD ppm	Sb ppm	Bi ppm	Sampled Interel
8960 8961 8962 8963 8964	1 1 2 1 2	9 6 12 12 3	9 19 8 7 5	18 2 2 1	1 2 1 2 1	234 472 3140 52 14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~ ~~~~~~	<.5 1.8 <.5	163-164 m 164 -165 165-166 166 -167 161 -167
8965 8966 8967 8968 8968 8969	1 2 1 2 1	44222	11 17 5 6 4	25223	2 1 1 2	45 102 12 <2 11	NUNUS NUNUS	5 < < < < < < < < < < < < < < < < < < <	<.56 .77 .6	165-164 m 164-170 170-171 171-172 172-173
8970 RE 89 RRE 89 8971 8972	70 2 970 1 1	22322	4 4 19 6	2 5 6 3 4	1	37 38 43 89 17	<.2 <.2 <.2	v v v v v	.5 .8 .8 1.3	173-174 m 174-175
8973 8974 8975 8976 8976	2-12-12	03173	7 4 3 405 7	5 32 411 2	12121	12 21 4 16	< < < < 5 <		.6 <.55 <.57 <.5	175 -172 176 -117 177 -178 179 -179 179 -170
8978 8979 8980 8981 8982	1 2 1 2 1	N-NNO	664 264 4	332 12 2	NHNNN	96223	< . 22 <	555555 • • • • • •	,6 <.5 <.1 1.1 .7	150 1873 bm 187 1872 1872 1873 1873 184 1845 1866 bm
RE 896 RRE 89 8983	2 82 2	21	4	2 1 4	22	32	<.2	<.5 <.5	.9	
8984 8985	2	3 4	43 16	7 5	1 2	<2 13	<.2	<.5 <.5	1.3	186 - 18-7 187 - 1889 1851897
8986 8987 8988 8989 878NDA	PD (12 27	3 23 14	7 133 2404 953	32 32 2454 1001	11112	28 7 237 221	<.2 .4 26.1 14.3	5535 VVHV	<.5 4.2 1.6	167 - 170 190 - 171 191 - 192 192 - 192
STANDA	RD G-2 27	70 ->		173	37	59	24.8	16.0	23.7	5 td.
Sample type: CORB R150	60C. Sample	a ped:	Inning	40 1 'RE'	are	 Reru	ns and	<.5	<u><.5</u> E' are	Reject Reruns.

÷Ý

All results are considered the confidential property of the client. Acme assumes the limbilities for actual cost of the analysis only.

Data F PA

Chapleau Resources Ltd. PROJECT HORN FILE # A003961

Page 4 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Sampled Interal
8990 8991 6992 8993 8994	2 1 2 1 2	26 4 13 8	15 209 11 51 16	7 107 5 41 10	1 2 1 2 1	51 51 37 4	V1. V1. V. V.	555555		193-194 m 194-195 195-196 196-197 197-198
8995 <u>8996</u> RE 8996 - RRE 8996 8997 8997 8998 8999 STANDARD 62		12 6 6 7 4 7	18 104 110 88 154 36 13	52 51 64 41 74 5	2 1 2 1 2 1 2	36 53 13 24	<	v v v v v v v v v v v v v v v v v v v	1.1 <u>v.5</u> <u>v.5</u> .7 v.55	198-199 198-200 m Repeats 200-201 201-202
STANDARD G-2	<u>1</u>	2	35 <3	43	38	59 <2	25.0 <.2	16,0 <.5	22.8 <.5	Stors.

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

 $(\cdot \cdot _{j})$

Ail results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data Fra

1716 TO 12504890430

253

604

P.07/11

	(*))))))))))))))))))))))))))))))))))))			n bo derriti f:14	VA 1 FICAT	4048	PHOM Pac	(604)2 (e 1	51-31-36 FAL (604) 25-3 (714 (5)
SAMPLE#	Mo C ppm pr	Cu Pb cm ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Sungled Interval
9000 9001 9003 9004 9005	3 1 22 1 3 1 1	10 38 2 10 5 7 14 5 6	24 32 23 22 3	1 2 2 2 2	8 4 64 96 16	~~~~~	505055	2 < 55 2 < 56	203 - 204 m 204 - 2051 205155 - 2051 205155 - 2070 205 - 205
9006 9007 RE 9007 RRE 9007 9008	3 1 3 1	12255 22255 2222 2222 2222 2225 255 255	1 2 9 1	2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<.2 <.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 .5 .5	.5 <.5 <.5 <.5 <.5	209-210 210-211 m Reports 211-22
9009 9010 9011 9012 9013	312	1 5 2 4 3 14 7 58 2 7	1 1 12 2	22222	32 11 13 4	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.8 .6 1.0 .7 .8	212-235 m 213-214 214-15 215-216 215-216 216-217
9014 9015 9016 9017 9018		4 22 8 197 0 228 1 28 4 60	40 164 12 8	2 1 2 1 2	11 10 20 8 5	<.2 1.7 <.2 <.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.997 .55	217-215 215-219 219-220 224.4-226 224.4-227
9019 9020 RE 9020 RRE 9020 9021	3 1 3 3 1	$\begin{array}{cccc} 6 & 20 \\ 4 & 12 \\ 4 & 12 \\ 4 & 13 \\ 3 & 19 \\ \end{array}$	17 6 6 7	1 1 2 2 2 2	46 12 11 11 25	<.2 <.2 <.2 <.2 <.2 <.2	v v v v v v v v	<.5 1.1 1.3 1.0 .6	227-220,8 m 230-231,0 Reports. 231-232.0
9022 9023 9024 9025 9026	2 1 2 1 2	$\begin{array}{ccc} 2 & 6 \\ 2 & 5 \\ 1 & 21 \\ 2 & 23 \\ 1 & 8 \end{array}$	1 25 11 5	1 1 2 1	16 24 10 6 20	< < < < < < < < < < < < < < < < < < <	555555 	<	236-233 233-234 235-235 235-236 236-277
9027 9028 9029 STANDARD C3 STANDARD G-2	2 2 1 28 7 1	3 24 3 11 8 53 70 35 3 3	6 4 9 166 45	1 1 2 36 7	50 16 138 58 <2	<.2 <.2 <.2 22.3 <.2	<.5 <.5 <.5 17.8 <.5	.7 .6 .8 23.3 <.5	237-235 235-239 237-249 Str .
GROUP 1D - 0.50 GN SAMPLE LEACHED WITH 3 UPPER LIMITS - AG, AU, HG, W = 100 PGM; P ASSAY RECOMMENDED FOR ROCK AND CORE SAMPL - SAMPLE TYPE: CORE R150 60 <u>Samples b</u> DATE RECEIVED. OCT 13 2000 DATE REPORT MAT	ML 2-2-2 HCL- NG, CO, CD, SB ES IF CU PB Z Perinning (RE)	HNO3-H2O AT , BI, TH, U N AS > 12, A are Reguma	95 DE0. (& B ≠ 2,) G > 30 Pl and 'RRE STORM	C FOR DHE DOG PPH; PM & AU > C ECO ROJ	HOUR, D CU, PB, 1000 PP	tluted to ZH, Nt, S Dal	O 10 ML, NN, AS, N	ANALYSE(/, LA, C) LEONG	9 BY ICP-ES, ≥ = 10,000 PPM.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

1992 1992

······································	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		ACX
	9060 9061 9062 9063 9064	3 7 4 7 4	21312	12 16 10 7	92 22 1	41515	35 25 21 21 21	<.?? <.?? <.??	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v v v v v v v v v v v v v v v v v v v	270-271m 271-272 272-273 272-273 273-274 271-280m	
	RB 9064 RRE 9064 9065 9066 9066 9067	4 3 4 3 4	3 1 3 2 3	7 7 11 25 8	1 1 7 11 7	5 1 6 1 5	28 15 26 232 15	× × × × × × × × × × × × × × × × × × ×	<	211 1 V V	Repeats 275-276 276-271 277-278	
	9068 9070 9071 9072 9073	34343	1 2 1 2 1	45000	1 2 1 <1 1	151 16 1	58 58 183	<.2 <.2 <.2 <.2	555555 	.59 	278-279 279-252 su 250-259 259-252	
	9074 9075 9076 9077 9078	ND4 MM	21212	67 687	1 <1 <1	51515	11 31 4 5 39	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<.59 .99 .53	442-243 243-244 254-255 245-256 255-256	
	9079 9080 9081 9082 9083	Nm344	2 3 1 4	4 8 9 10 8	1 1 2 1 2	15115	101 63 24 131 129	<.2 <.2 <.2 <.2	< 		247-285 285-289 285-289 285-291 290-291 291-291	
	9084 RE 9084 RRE 9084 9085 9086	1 1 1 1 1 1 1 1	1 3 2 2	6 6 11 9	1 1 1 2	1 5 1	154 164 184 405 983	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	v v v v v 	<	2,52-293 293-254 m Repets 254-255	
	9087 9088 9089 9090 STANDARD C3	4 3 3 27	4 1 3 2 68	11 8 7 8 35	2 1 2 3 169	5 1 4 35	161 45 39 49 57	<.2 <.2 <.2 <.2 2.0	<.5 <.5 <.5	<.55 <.55 <.55 <.55	-13-476 296-259 298-259 	1
	STANDARD G-2	2	3	3	44	6	<2	<.2	<.5	<.5	Stds.	

P.09/11

All results are considered the confidential property of the client. Acme assumes the liebilities for actual cost of the analysis only.

DATA AA

Ż

An Chapleau Resou	rces	Ltd.	PROJE	ст нс	RN F	ILE 4	# A 004	1048		Page 2 (b)
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Ĉđ ppm	Sb ppm	Bi ppm	Samphol Interval
9030 9031 9032 9033 9033 9034	43434 3434	95645	93 108 295 186 19	14 11 20 20 6	41516	275 300 211 137 88	<	<pre></pre>	<	241-241.0 m 241-242 292-243 243-244 244-245
9035 9036 9037 9038 9039	ന്ന ന്നു.	341133	16 10 12 7 13	52 <1 1 3	1 6 1 6 1	126 97 44 23 306	4999999 V V V V V V	0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0,0,0,0	.75755 4,55	245-246 246-247 247-248 248-249 248-249 219-250
9040 RE 9040 RRE 9040 9041 9042	4	4 	13 14 17 22 30	4 4 4 5 41	6 1 5 1	168 171 152 59 163	.2 <.2 <.2 <.2	v v v v v v v v v v v v	<.5 <.5 <.5 1.1	238-257.0 Repeats 257-252.0 252-252.6 m
9043 9044 9045 9046 9047	434 434	63526	111 500 118 101 27	33 10 104 5	51516	214 799 469 132 633	522092 V V V	v v v v v v	v v v v	212.6-254 254 - 255 255 - 255 255 - 257 257 - 255
9048 9049 9050 9051 9052	うちょう	200000	60 109 19 8 8	142 142 1	16 16 1	679 204 190 11 496	<.22 1.22 1.22 2	< - - - - - - - - - - - - -	<.5 1.9 <.3	258-254 257-240 261-241 261-262 262-263
9053 9054 RE 9054 RE 9054 9055	57 457	143 7 10 2	944 288 296 353 20	112 91 92 92 8	7 1 6 1	255 538 561 543 50	.99.99	.9 .5 .5 .5 .5 .5 .5	.5 1.4 1.5 1.8 .5	263-264 264-265,0m Reports 265-266
9056 9057 9058 <u>9059</u> STANDARD C3	4 3 3 28	52258 68	591 12 11 335 35	1 1 245 166	5 1 4 1 35	30 122 112 63 58	<.2 <.2 <.2 1.8 22.4	<.5 <.55 <.55 <.55 18.6	2.8 .6 .5 .5 22.9	266 - 26 7 26 7 - 26 8 267 - 263 269 - 27 0
STANDARD G-2 Sample type: CORE R150 60. Sa	1 mples	3 begj	3 nning	43 'RE'	7 are	<2 Rerur	<.2 Ng and	<.5	<.5	Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the light Etties for actual cost of the analysis only.

2

Data ATA

	Chap]

Chapleau Resources Ltd. PROJECT HORN FILE # A004048

Page 4 (b)

Dete A

Also Belleville

SAMPLE#	Mo	Cu	PĎ	Zn	Ni	As	Ēđ	Šb	Bl	
0001	ppm	mqq	<u>mqq</u>	ppm	mqq	ppm	ppm	ppm	ppm	Interval Sampled
9092	43	3	35	32	5 1	$178 \\ 19$	<.2 <.2	<.5	<.5 1.4	Buo -3- im Bot -3- i
9093 9094	43	4	777	2	5		< 2	< .5ౖ	<`.ś	3-2-303
9095	4	$\overline{4}$	4	2	5	4	< 2	<.5	<.5	303 -304 314-315™
9096	3	1	12	2	1	103	<.2	<.5	- 5	305-301.
9098	Ĕ	ī	é	i	1	Ğ	<.2	<.5	.7	306-307
9100	3	2	د 8	1	5 1	23	<.2 <.2	<.5 <.5	<.5 2.2	308-309
9101	4	3	7	2	5	<2	<.2	<.5	<.5	310-20
	3	1	8 7	2	5	<2 <2	<.2 <.2	<.5	1.3	Reports
9102 9103	44	2	7	1	5	12	<.2	5.5	<u> </u>	311-512
9104	4	2	8	1	- с	24		E	. 0	512313
9105 9106	3	Ē	4055	138	ĭ	66	1.9	2.6	2.2	515-514 314-315
9107	ą	ĩ	iğ	1	1	10	<.2	<.5 <.5	4.7	315-316 M
9109	1	4	-	1	1	13	<.2	<.5	1.5	317-318
9110	1	ļ	56	1	1	20 79	<.2 <.2	<.5	<.5	315-319
9112	$\frac{2}{1}$	1	6 5	1	1	36 22	<.2	< 5	5.5	322 -321
RE 9112	1	1	4	<u> </u>	Ī	ŽŠ	<.2	<.5	.8	54-512
<u> </u>	2	- 1-			1-	16	<.2	<.5	.6	Reports
9114	ž	ĩ	13	į	1	23	<.2	<.5 <.5	<.5 <.5	322-323 333-524
911ē	3	· 1	42 42	1	1	18	<.2 <.2	<.5	<.5 <.5	324-325
9117	3	2	<u>6</u>	1	5	3	<.2	<.5	<.5	210-222
9118	34	1 3	7 5	1	1 5	10 <2	<.2 <.2	<.5	1.2	327-325
9120 STANDARD C3	28	<u>1</u> 69	- 4	169	$-\frac{1}{35}$	<2	2.2	$\frac{3}{5}, \frac{5}{5}$	$\frac{\tilde{z}}{\tilde{z}}$	321-330 jm
STANDARD G-2	1	3	3	44	7		~ 7	- E	- 5	Stds.
						<u> </u>		~		
Sample type: CORE R150 60, Sam	nples	<u>begi</u>	nning	<u>'RE'</u>	are l	Rerune	and	' RRE	<u>' arę</u>	Reject Reruns.
,										

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

10

P.10/11

ACHE MALL TETCA

YCNE 'YTICAL LABORATORIES LTD. 852 K. HABTINGS ST. VA WVER BC VOA 1R6 PHONE (604) 25345188 744 9002 Accreditid Co.) GEOCHEMICAL ANALLOIS CERTIFICATE Page (4) Chapleau Rescurces Ltd. PROSECT FORM File # A003961:jir Submitted by: 0.1; PigSin SAMPLE# Au* Sampled Inford ppb 1.0 93,4 - 44,4m 8907 8908 99.4~9574 8909 9514-96,1 96,1-47,4 8910 1.7 RE 8910 1.7 Repeats <u>RRE 8910</u> 8911 1 9 3.7 97.7-18,7m 8912 8913 1,7 98: 4-49.4 $\hat{2}.\hat{4}$ 9974 - 101,4 8914 1.9 100.9-101.7 8915 11.21.7101,4-142.4 8916 102,4-103,2-8923 1.5 125-126. On 8924 22.2 126 -127.0 8925 6.8 127-128.0 m STANDARD DS2 199.4 540% AU* BY ACID LEACHED, ANALYSIS BY ICP/MS. (10 gm) - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'SRE' are Reject Reruns. DATE RECEIVED: 007 10 2000 DATE REPORT MAILED: Out 26 /00 SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS All results are considered the confidential property of the client. Acre assumes the liabilities for actual cost of the analysis only. Date Nº FA

АСМЕ Ľ LL. N 4 . . łΩ. - \Box S • φ S I 001

ΩΩ, ĤВ 1

e

⊠ /]: .

-

۵.

2504890430

-

 \odot \vdash

ഥ

—

 \sim

-

 $^{\circ}$

ഗ Ň 4

ß

P.11/11

ACHE A

A.	cnapieau .	Resources	Ltd.	PROJE	тст но	RN F	TLE #	# A00-	4048		Page 5 (,	ъ)
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi	Saulti	^
	9121 9122 9123 9124 9125	13121	12122	46676	1 1 5 2 2	222212	<2 2 2 8 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	<		330-331,00m 331-332- 332-333 333-344 357-345	<u>``</u>
	9126 9127 9128 9129 9130	15 1 2 1 2	38 19 3 5	20 <3 10 7 18	94 3 5 1175	19 1 1 1	33 <22 <22 <22	12.1 .5 <.2 15.2	10.1 .955 	11.7 <.5 <.5 <.5	3355-331m 337-334 338-335 338-355 331-340 34741	
-	RE 9130 RRE 9130	2	57	19 21	1183 1111	12	<2 <2	15.5 14.1	<.5	<.5	Pere fr	<u> </u>
	9132 9133	1 2	221	4 10 3	12 8 2	1 1 1	<22 <22 <2	<.2 <.2 <.2	<.5 <.5 <.5	1.0 1.0 <.5	391-342 m 391-383 392-383	
	9134 9135 9136 9137 9138	1 2 1 2 1	21 1222	9 8 30 6	2 1 2 1	2 1 2 2	<22 <22 <22 <22 <22 <22	22222 22222 22222 22222 22222 22222 2222	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		- 13 - 177 349-315 375 ~ 346 m 346 - 347 346 - 747 347 - 348 3484- 348	
	9139 9140 9141 9142	2 1 2 1	1422	33 7 7	10	1122	3 4 12	<	v v v v v v	<.5 1.7 <.5	349 -350,2 m 349 -350,2 m 358,2 - 352,0 5 357,05- 853 2	

S.

9143 $\frac{1}{2}$ 8 <2 144 <.2 <.2 <.5 <.5 34 <.5 <.5 ŝ 4 3575-356.0 352 -357.0m STANDARD C3 STANDARD G-2 27 2 71 2 34 <3 $\begin{smallmatrix}168\\44\end{smallmatrix}$ 36 61 23.0 17.3 23.7 <2 <.2 <.5 <.5 Stels.

Sample type: CORE R150 60. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1

All results are considered the confidential property of the client. Acme essumes the liabilities for actual cost of the analysis only.

 \Box

тотац рабЕ

× ×

Data KA

CHAPLEAU RESOURCES LTD.

PAGE 1 OF 11

PROPERTY: PAKK/HORN			HORI COMP: ~110m	HOLE #: HL00-1			
LOCATION: Hellroaring Creek Stock			VERT. COMP: ~440m	LENGTH: 451.5 m			
COMMENCED: Sept 29, 2000	COMPLETED: Oct 7	, 2000	CORR. DIP:				
COORDS: (long)	(lat)		TRUE BEARING:	DRILL CONTRACTOR: LeClerc Drilling			
COORDS: (UTM) (E) 559780	(N) 5490960	(EL)	% RECOVERY: Excellent	CORE SIZE: NQ			
COORDS: (grid) (E)	(N)	(EL)	LOGGED DATE: Sept 30, 2000	CASING: 0 – 3.05 m			
ELEVATION: 1680 m	COLLAR: (dip) -75°	(Azi) 250°	LOGGED BY: D. Anderson & D. Pighin	CORE STORAGE: Vine Property			
OBJECTIVE: To test the granitic pegmatit and associated sediments and gabbro to d SURVEYS: (depth)	e epth Dip:	Azi:	Тура:	Additional Surveys: none Depth Dip Azi			
From To LITHOLOGY: Fo TEXTURE: fine quartz-tourmaline	liated, altered gabbro, W to medium crystalline but e-feldspar dyke? Contact	Veathering locally to a t tectonically overprint ts with the last meter	about 30m. 18.25-19.40m – sheared, altere ted; 19.4-20.55m – coarser crystalline gabb of gabbro is sheared/altered. Foliation at 8	d (micas) gabbro with sediments included. ro then 20.55-22.80m – coarse crystalline 0° to c/a.			
3.05-44.55 COLOR: Dark g	ray						
COMPOSITION:	COMPOSITION: uniform for bulk of gabbro - near shears and quartz vein, more variable with texture/composition extremes.						
TECTONIC STR	TECTONIC STRUCTURE: Foliation is moderate at 75-80° to c/a. Sheared section 18.25-19.4m at 30-45° to c/a.						
GENERAL ALTE chloritized.	GENERAL ALTERATION: Biotite replacing most homblende to at least 12.0m. Below the shear and quartz vein i.e. >22.8m the homblende is chloritized.						
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Overall weak disseminated po (~1%). Some po in a few fractures. 22.80m – somewhat pegmatitic quartz vein with some feldspar included. Coarse crystalline schorl.							
ADDITIONAL OI	SERVATIONS:						

CHAPLEAU RESOURCES LTD.

PAGE 2 OF 11

From To	LITHOLOGY: Aldridge sediments – bedding not obvious, some lams at 80° to c/a. 45.85-46.10m – pegmatite sill.
	TEXTURE: Fine grained, altered sediment. Upper contact appears at -80° to c/a. Lower contact is cross-cut by pegmatite.
44.55-51.3	COLOR: pale brownish gray
	COMPOSITION: not typical lower Aldridge
	TECTONIC STRUCTURE: bedding at 80° to c/a but by ~49.5m down to 50° to c/a. There is a weak foliation (particularly in argillaceous units).
	GENERAL ALTERATION: Sediments are altered/silicified. Chloritic along fractures. Bedding to core at 87.5m = 61°.
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Pegmatite sill – contacts with bedding @ 80°. Peg is quartz-feldspar-tourmaline with tourmaline-rich margins. Small shear 49.2-49.6m with included 8cm quartz vein with po. 87.3m – 1cm thick bedding parallel quartz-ZnS vein.
From To	LITHOLOGY: Pegmatite – coarser along contacts. TEXTURE: _quite coarsely crystalline with silvery or greenish mica flakes
51.3-54.3	COLOR: greenish-gray
	COMPOSITION: quartz-feldspar-muscovite-tourmaline-garnet. Overall 30% quartz; 60% feldspar; 5-7% muscovite; 1-2% tourmaline + garnet + ? May be some albite/microline intergrowths.
	TECTONIC STRUCTURE: cross-cutting to bedding at top. Base is with bedding at 30° to c/a.
	GENERAL ALTERATION: Some feldspar greenish (altered)
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: muscovite – some looks greenish
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Aldridge sediments TEXTURE: fine-grained wacke to quartzitic wacke
54.3-61.1	COLOR: Brownish-gray
	COMPOSITION: some similarities to lower Aldridge style
	TECTONIC STRUCTURE: thin bedded to medium bedded. At 40° to c/a, deeper to 80° to c/a. Fractured with bleaching. Foliation with the bedding.
	GENERAL ALTERATION: Weakly silicified chloritized biotitic in argillaceous units.
•	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Minor po (not unusual).

From To	LITHOLOGY: Pegmatite – upper contact at ? Lower contact appears cross-cutting
	TEXTURE: Coarse crystalline
61.1-64.15	COLOR: buff
	COMPOSITION: quartz-feldspar-tourmaline-muscovite. 65% feldspar; 25% quartz; 2-3% tourmaline; 5-8% muscovite
	TECTONIC STRUCTURE: quartz appears as the cement holding the rock together
	GENERAL ALTERATION: feldspars are buff coloured. Some high % tourmaline bands.
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE:
From To	LITHOLOGY: Aldridge sediments
	TEXTURE: Uniform fine-grained siliclastic sediments.
64,15-93.4	COLOR: brownish-gray
	COMPOSITION: fine-grained sediment - wacke to quartzitic wacke (m.b.)
	TECTONIC STRUCTURE: bedding at 80° to c/a at top; at 50° by 69.0m; at 60° around 75.0m; at 85° by 80.0m. Mostly thin-bedded. Some foliation of
	the argillaceous units.
	GENERAL ALTERATION: weak silicification; biotite+sericite – looks a bit hornfelsic (spotted quartzitic rocks).
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 65.5-66.0m - quartz vein and sheared, altered sediment with po. At 25° to c/a.
	66.4-67.0m – quartz vein + slightly pegmatitic at 15° to c/a. Chloritic.
	71.4-72.1m – quartz vein with high f.c. tourmaline margins.
From To	LITHOLOGY: Tourmaline-muscovite pegmatite dyke
93.4-103.2	COLOR: mottled white and gray
	COMPOSITION: Generally 45% microline-albite, 45% clear quartz, 3% tourmaline, 7% muscovite. Some light greenish feldspar, and some light
	greenish-yellowish muscovite, rare sericitic subhedral to euhedral pink gamets.
	TECTONIC STRUCTURE: dyke cuts core axis at 80°.
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Very weakly disseminated py, ZnS, PbS is widely scattered throughout dyke. PbS and ZnS
	is best developed 93.4-94.0m.
L	At 107.0m – 10cm band of abundant py with weak ZnS.

CHAPLEAU RESOURCES LTD.

PAGE 4 OF 11

From To	LITHOLOGY: mainly lower Aldridge meta sediments
	104.1-105.6m – tourmalinitic-muscovitic. Pegmatite dyke cuts core axis at 70°, 114.7-115.2m – thin pegmatite sill
103.0-119.0	COLOR:
	COMPOSITION: medium to thin bedded argillite and argillaceous siltstone, commonly finely parallel laminated. Bedding to core at 109.0m = 50°, at 116.0m = 45°
	TECTONIC STRUCTURE:
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 105.6m - pegmatitic contact marked by 1.5cm vein hosting abundant py, PbS and scheelite.
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Tourmalinitic-muscovitic pegmatite, contact top at 60°. TEXTURE: Coarsely crystalline to very coarsely crystalline.
119.0-129.6	COLOR: white to greenish white with light gray mottling, abundantly speckled black.
	COMPOSITION: 55% albite and microline, white to greenish-white, 35% clear quartz, 5% tourmaline, 5% greenish muscovite, rare sericitic pink garnets, tourmaline crystals generally 1mm or less in x.c., rarely 3mm x.c.
	TECTONIC STRUCTURE:
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: rare and widely scattered thin quartz veins (2mm to 10mm) cut core at angles of 60° to 11°, commonly contain abundant py, minor po, PbS and ZnS.
From To	LITHOLOGY: Muscovitic pegmatite TEXTURE: Coarsely crystalline
129.6-137.0	COLOR: yellowish white to brownish white with gray mottling, speckled brown
	COMPOSITION: 50% yellowish white to greenish white feldspar, 45% light gray quartz, 5% greenish muscovite
· · · · · · · · · · · · · · · · · · ·	TECTONIC STRUCTURE:
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE:

CHAPLEAU RESOURCES LTD.

PAGE 5 OF 11

From To	LITHOLOGY: Minor tourmaline-muscovite pegmatite
137 0 176 0	COLOR: white light green and grav motiling with widely costsered grav speakling
137.0-170.0	COLOR. White, light green and gray mothing was widely scattered gray speckling
	COMPOSITION: 60% albite-microcline, white and whitish green, 33% clear quartz, 2% tourmaline, 5% greenish muscovite. Thin bands and widety
	scattered sericitized pink subhedral gamets.
	TECTONIC STRUCTURE:
	GENERAL ALTERATION: scattered late quartz vein rarely more thin 1cm thick are associated with abundant late finely crystalline light green
	mineralized by py, PbS, ZnS, aspy and lesser po. Finely crystalline muscovite alteration commonly host weakly disseminated py, po, aspy, PbS and ZnS. Best Pb-Zn mineralization from 125.0-128.0m
	Best aspy from 164.0-169.0m
From To	LITHOLOGY: Tourmaline-muscovite pegmatite TEXTURE: spotted coarsely crystalline overall – the tourmaline ranges from fine spotting to coarse patchwork. Muscovite often fine, ubiquitous over short intervals but also locally coarse flakes.
176.0-252.5	COLOR: greenish-gray with variable black spotting
	COMPOSITION: feldspars-quartz-tourmaline-muscovite pegmatite (garnet in minor localized patches). F:65;Q:25;T:overall 4%; M:overall 5%. There are 1to2cm intervals where the tourmaline content drops to low levels but temporarily
	TECTONIC STRUCTURE: None – Note: inclusions of gabbro: 205.1-205.55m – contacts at 60° to c/a with narrow chill zones – gabbro is chloritic green with magnetite near fr/veins; 219.9-224.4m – green to grayish green, chloritic hbde/epidote on fractures – albitization of pegmatite along footwall; 228.8-230.0m – gabbro, contacts at 65° to c/a; sometimes the tourmaline long-axis crystals are oriented at ~45° to c/a.
	GENERAL ALTERATION: feldspar greenish or white – assume the greenish feldspar may be more albitic and is weakly sericitized. Some finer intense sericite may be altered feldspar.
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Narrow quartz veins cut the pegmatite - contain py, po, PbS, ZnS, aspy. Quartz vein 1-3cm
	thick at 30-60° to c/a.
	191.7-194.7m – quartz vein with sulfides and green altered feldspar (?) Minor scattered sulfides in the pegmatite.
	200.6m – disseminated (weakly) ZnS and PbS
	Around 207.85m – minor py and aspy near fractures/small veins.
·	218.6m – 1cm quartz vein with py-po-PbS.
	ADDITIONAL OBSERVATIONS:

From To	LITHOLOGY: Tourmaline-muscovite pegmatite – only change from above is far less greenish coloration to some of the feldspar.
	TEXTURE: still coarsely crystalline with sporadic short intervals not as coarse, with more sencite. Lourmaline is tine needles to roos or several cm's.
	Feldspars and quartz intergrown; locally high quartz zones. Some sugary zones with more muscovite but only over 1-2m intervals.
252.5-305.5	COLUR: spotted light gray to white
······································	COMPOSITION: feldspars 55%; Quartz 44%; tourmaline 6%; muscovite 4%. Tourmaline and muscovite vary with short intervals lower/higher in each independently. Gamets only very locally as small inclusions.
	TECTONIC STRUCTURE: none. Note: 291.8-292.1m banded due to tourmaline concentrations - at 75° to c/a could be remnants of sediments and
	bedding? Are zones of fine sericite reflecting relict sedimentary layering? At times suggestion of a relict fabric – quartz + T in bands? At 40-60° to c/a.
	GENERAL ALTERATION: Some muscovite could be late stage alteration of feldspar but most feldspars white in contrast to above section. Large
	(12cm) wedge of tourmaline at 308.2m. Muscovite - can be quite green but also silvery-gray.
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 256.4m - 2.5cm quartz vein with PbS and ZnS. Quartz vein at 15° to c/a. Scheelite spot in
	quartz vein nearby.
	At 263.8m – 5cm of coarse crystalline py with PbS and ZnS. W?
1	269.6m – 1cm quartz vein with po, PbS and ZnS.
	304.6-305.5m fine grained quartz-rich interval.
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Tourmaline-muscovite pegmatite (higher T content). Minor garnets (<1%).
	TEXTURE: coarse crystalline with large tourmaline crystals, also more abundant. Some quartz-rich separates over few cm's to 20cm. Minor graphic
	texture.
305.5-335.50	COLOR: white and creamy-white – spotted black.
	COMPOSITION: quartz 40%; feldspar 45%; 8-10% tourmaline; muscovite 5-7%
	TECTONIC STRUCTURE: None
	GENERAL ALTERATION: small percentage of feldspar is greenish. Seems quartz concentrations-T-M gr together spatially
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 314.05m – 6cm quartz vein at 70° with py, ZnS and PbS
	ADDITIONAL OBSERVATIONS:

From To	LITHOLOGY: Tournaline-muscovite permatite
_	
	Exiting the standard standar
	altered seds get coarse sugary peg 350.2-352.1m.
335.50-367.60	COLOR: gray spotted – greenish tinge
	COMPOSITION: feldeper 55%; quartz 35%; tournaling 5%; museouite 3.5%. Misselenct and the
	comi corriera. Telospal 55 %, dual 2 55 %, tournaine 5%, muscovile 3-5%. Minor local gamets.
	TECTONIC STRUCTURE: None. Note: altered (353,15-354.5m) blackish sediments - sericite, tournaline, quartz - still f q / still primary no "lams"
	within, Relict bedding $@60^\circ$ to c/a most commonly 356 8-357 0m - bedding @ 50.60° to c/a. Some chose close of cod some in
	GENERAL ALTERATION: some work satisfie diamine consiste federation of the federation
	Service Activity and a service
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 340,15m – fracture with quartz vein at 55° to c/a with no and ZnS
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Altered zone along a fault with veining
	TEXTURE: some coarse textured vein material
367 6-370 0	COLOR: dark dray and greenish
	COMPOSITION:
···-	
	IECTONIC STRUCTURE: fault at 10-20° to c/a from 369.1-369.8m with gouge
	GENERAL ALTERATION: Along margin of dolomitic vein is green - sericite pseudo after feldspar (2)
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: dark dolomitic calcite along axis of core - brecciated in the fault zone.
From To	LITHOLOGY: Tourmaline-muscovite pegmatite. Tourmaline content higher than above.
·	TEXTURE: coarse crystalline to very coarse crystalline
370.0-377.95	COLOR: blotchy gray – black irregular tourmaline patchwork
	COMPOSITION: fetdspar 50%; quartz 40%; tourmaline 7%; muscovite 3-4%. Quartz - gray but also a smoky guartz.
	IECTORIC STRUCTORE: None. Note: short zones of graphic texture – apparently with microcline (white) and albitic feldspar.
	GENERAL ALTERATION: greenish alteration of albitic feldspars.
- · · · · · · · · · · · · · · · · · · ·	
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: None to note

From To	LITHOLOGY: madium constalling muccovite tournaling permeting
	TEXTURE: uniform textured, more "granitic" in style. Coarse sugary phase.
377.95-379.0	COLOR: greenish gray, mottled
	COMPOSITION: feldspars 60%; quartz 30%; muscovite 10-12%; tourmaline 3-4%.
	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: Sericitization (?)
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Tournaline-muscovite pegmatite. Garnet spotting locally. TEXTURE: coarse crystalline – coarser crystalline components with color variation emphasizing. Tournaline is generally coarser
379.0-385.75	COLOR: gray with black/white patchwork
	COMPOSITION: feldspar 45%; guartz (2 colours) 55%; tourmaline 7%; muscovite 4-6%.
	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: some local sericitization
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none
······································	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Muscovite-tourmalinite, uniform pegmatite dominant (same as 377.95-379.0m). TEXTURE: Uniform crystalline – medium crystalline – fine tourmaline and muscovite (more intrusive looking). One interval of graphic texture
385.75-388.3	COLOR: mottled gray
	COMPOSITION: feldspar 60%; quartz 30%; muscovite 10-15%; tourmaline 3%
· · · · · · · · · · · · · · · · · · ·	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: sericitization (musc) seems more ubiquitous.
· · · · · · · · · · · · · · · · · · ·	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none - no sulphides to note

From To	LITHOLOGY: Tourmalinite-muscovite pegmatite. Minor pink garnet locally.
	TEXTURE: Coarsely crystalline - get quartz separates over a few cm's at a time
388.3-397.0	COLOR: gray and black mottled
	COMPOSITION: feldspar 45%; quartz 45%; tourmaline 7%; muscovite 5-7%. Two quartz types - gray and smokey. Tourmaline medium crystalline.
	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: some sericite (musc.) could be late stage alteration
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: no sulfides
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Muscovite-tourmaline pegmatite (similar to two intervals above). Pink garnets minor.
307.0 401.2	IEXTORE: dominantly medium crystalline – uniform excepting a few quartz separates (minor graphic texture). One coarse zone 398.9-399.2m.
J37.0-401.2	COLOR. Moteo greenish-gray
	COMPOSITION: feldspar 50%; quartz 35%; muscovite 10-12%; tourmaline 3%
	TECTONIC STRUCTURE: none
·	GENERAL ALTERATION: sericitization - looks like late injection of gray quartz
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: no sulphides
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Tourmaline-muscovite pegmatite
101.0.00	TEXTURE: coarser crystalline mottled pegmatite; minor graphic texture
401.2-403.2	COLOR: mottled gray – white
	COMPOSITION: feldspar 45%; quartz 45%; tourmaline 3-4%; muscovite 5-7%.
	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: sericitic alteration
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none – there are quartz rich separates

From To	LITHOLOGY: Muscovite-tourmaline pegmatite
	TEXTURE: again a uniform, medium crystalline phase – quartz rich phases; some graphic texture
403.2-405.0	COLOR: greenish-gray
	COMPOSITION: feldspar 45%; quartz 45%; muscovite 10%; tourmaline 3%
	TECTONIC STRUCTURE: none
	GENERAL ALTERATION: sericitic – more pervasive
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: Tourmaline-muscovite pegmatite (minor pink garnets)
	TEXTURE: very coarse crystalline with mineral separation more prevalent. Minor perthitic and some coarse graphic texturing. Coarse tourmaline crystals >425.6m.
405.0-432.15	COLOR: mottled black/black
	COMPOSITION: feldspar 60%; quartz 25%; tourmaline 10-12%; muscovite 5%
	TECTONIC STRUCTURE: none. Note: 406.45-407.4m - medium crystalline interval with graphic texture (too short to separate out)
	GENERAL ALTERATION: sericitic
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: no quartz veining
	ADDITIONAL OBSERVATIONS:
From To	LITHOLOGY: uniform textured pegmatite with included altered sediments.
432.15-437.4	COLOR: speckled to dark gray (due to sediments)
	COMPOSITION: feldspar 50%; guartz 40%; sericite 8-10%; tournalige 2-3%
	TECTONIC STRUCTURE: none. Note: dark altered sodiment at 50° to c/o enotted by small quarte langes in he de
	GENERAL ALTERATION, application
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: none

CHAPLEAU RESOURCES LTD.

PAGE 11 OF 11

LITHOLOGY: dominantly muscovite pegmatite (tourmaline) TEXTURE: Coarse crystalline with Q-F phases – more medium crystalline material towards base of hole and 10cm of included sediment at 445.7m. Some patches of graphic and perthitic textures?
COLOR: patchy gray and white
COMPOSITION: feldspar 55%; quartz 40%; sericite 4-5%; tourmaline 1-2%
TECTONIC STRUCTURE: none
GENERAL ALTERATION: local sericite
MINERALIZATION & ASSOCIATED, HOST STRUCTURE: None except 449.3-450.0m. Quartz and greenish feldspar (?) very minor flecking with dark mineral.
ADDITIONAL OBSERVATIONS:

-