APPENDICES

II Assay Procedures - ACME Analytical Laboratories Ltd.
(a) Group IF - Ultratrace by ICP-MS
(b) Group 4A - Whole Rock Analysis by ICP
(c) Group 4B - Whole Rock Trace Elements by ICP-MS

IV Assay Certificates
V Surficial Geology, Eureka property by Roger C. Paulen; June 19, 2000
VI Ice Flow Patterns \& Copper Dispersal Trains, Eureka Property by R. C. Paulen; Oct 1, 2000 - contains details of the trenching program

VIII Petrographic Reports
IX Drill Logs
X Expenditures \& Assessment Data
XI Author's Qualifications

Appendix II

ASSAY PROCEDURES

852 East Hastings Street - Vancouver, British Columbia - CANADA - V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 - Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

Methods and Specifications for Analytical Package Group 1F-MS - Ultratrace by ICP-MS • Anglo Option

Analytical Process

Comments

Sample Collection

Samples may consist of soil, sediment, plant or rock. A minimum field sample weight of 200 gm is recommended.

Sample Preparation

Soils and sediments are dried $\left(60^{\circ} \mathrm{C}\right)$ and sieved to -80 mesh (177 microns). Moss-mat samples are dried $\left(60^{\circ} \mathrm{C}\right)$, pounded to loosen trapped sediment, then sieved to -80 mesh. Rocks are dried ($60^{\circ} \mathrm{C}$) crushed ($>75 \%-10$ mesh) and pulverized ($>95 \%$. 150 mesh). Splits weighing 1 to 30 g (Optional packages) are placed in bottles. Each batch (34 samples) contains a duplicate pulp split for monitoring precision and reference material DS2 for monitoring accuracy.

Sample Digestion

Aqua Regia is added to each bottle ($3 \mathrm{~mL} / \mathrm{gm}$ of sample). Aqua Regia is a 2:2:2 mixture of ACS grade concentrated HCl , concentrated HNO_{3} and distilled $\mathrm{H}_{2} \mathrm{O}$. Sample solutions are heated for 1 hr in a boiling hot water bath $\left(95^{\circ} \mathrm{C}\right)$. The solutions are then diluted to $20: 1 \mathrm{~mL} / \mathrm{gm}$ ratio. A reagent blank is carried in parallel through leaching and analysis.

Sample Analysis

Analysis is by an Elan 6000 ICP Mass Spec. For the Anglo Option, 51 elements are determined comprising: Au, Ag, Al, As, $\mathrm{B}, \mathrm{Ba}, \mathrm{Be}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Ce}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cs}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Ge}, \mathrm{Hf}, \mathrm{Hg}, \mathrm{In}$, $\mathrm{K}, \mathrm{La}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Nb}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Rb}, \mathrm{Re}, \mathrm{S}, \mathrm{Sb}, \mathrm{Sc}, \mathrm{Se}$, $\mathrm{Sn}, \mathrm{Sr}, \mathrm{Ta}, \mathrm{Te}, \mathrm{Th}, \mathrm{Ti}, \mathrm{Tl}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Y}, \mathrm{Zn}$ and Zr . Other optional elements include the REE suite, Pt and Pd . Sample volumes of 10 to 30 gm are recommended when the determination of Au or other elements subject to the nugget effect are of impoitance.

Data Evaluation

Raw data are reviewed by the instrument operator and by the laboratory information management system. The data is subsequently reviewed and adjusted by the Data Verification Technician. Finally all documents and data undergo a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Methods and Specifications for Analytical Package Group 4A: Whole Rock Analysis by ICP

Analytical Process

Comments

Sample Preparation

Soils and sediments are rarely analysed by Grour 4A, however method of sample preparation is provide for completeress. Soil and sediment samples are dried $\left(60^{\circ} \mathrm{C}\right)$ and sieved to -80 mesh ASTM $1-$ 177 microns). Moss-mat samples are dried ($60^{\circ} \mathrm{C}$), rnacerated then sieved to recover - 80 mesh sediment or ashed at $650^{\circ} \mathrm{C}$ (upon a client's request). Rocks and drill core are crushed and pulverizec to 150 mesh ASTM (-100 microns). Sample splits (0.2 gnin) are placed in graphite crucibles and a LiBO_{2} flux is added. Dur.licate splits; of crushed (rejects duplicate) and pulverized (pulps dupicate) fracions are included with every 34 drill core or trench samples to define sample homogeneity (reject duplicate) and analytical precision (pulp duplicate). Duplicate pulp splits (only) are included in every batcin of soil, sediment and routine rock samples. A blank and in-hous: standard reference material STD SO-15 are carried through weighing, digestion and analytical stages to monitor accuracy. STD SO-15 has been certified in-house against USGS CRMs AGV-1, BCR-2, (G-i, GSP-2 and W-2.

Sample Digestion

Crucibles are placed in an oven and heated to $1025^{\circ} \mathrm{C}$ for 25 minutes: The molten sample is dissolved in $5 \% \mathrm{HNO}_{3}$ (ACS grade nitric acid diluted in demineralised water). Calibration standards and reegent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP emission spectrocraph (Jarel Ash AtomComp Model 975) for the determination of the basic package consisting of the following 17 major oxides and elements: $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{Na} 2 \mathrm{O}, \mathrm{K} 2 \mathrm{O}, \mathrm{MnO}, \mathrm{TiO} 2, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{3}$, $\mathrm{Ba}, \mathrm{Ni}, \mathrm{Sr}, \mathrm{Sc}, \mathrm{Y}$ and Zr . The extended package also includes: Ce, CO, $\mathrm{Cu}, \mathrm{Nb}, \mathrm{Ta}$ and Zn . Loss on ignition (LOI) is determined for both packages by igniting a 1 g sample spit at $950^{\circ} \mathrm{C}$ for 90 minutes then measuring the weight loss. Total Carbon and Sulphur are determined by the Leco method (Group 2A).

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical repcrt before release to the client. Chief assayer is Clarense Leong, other certified assayers are Dean Toye and Jacky Wang.

852 East Hastings Street * Vancouver, British Columbia © CANADA © V6A 1R6
Telephone: (604) 253-3158 FFax: (604) 253-1716 © Toll free: 1-800-990-ACME (2263) © e-mail: info@acmelab.com

Document: Methods and Specifications for Group 4A.DOC

Methods and Specifications for Analytical Package Group 4B: W/Rock Trace Elements by ICP-MS • ANglo Option

Arralytical Process

Comments

Sample Preparation

Soils and sediments are rarely analysed by Group 4B, however method of sample preparation is provide for completeness. Soil and sedimerit samples are dried $\left(60^{\circ} \mathrm{C}\right)$ and sieved to -80 mesin ASTM $(-177$ microns). Moss-mat samples are dried $\left(60^{\circ} \mathrm{C}\right)$, macerated then siive d to recover - 80 mesh sediment or ashed at $550^{\circ} \mathrm{C}$ (upon a client's request). Rocks and drill core are crushed and pulverized to - 151 mesh ASTM (- 100 microns). Sample splits (0.2 gm ; are placed in graphite crucibles and a LiBO_{2} flux is added. Durficate splits of crushed (rejects duplicate) and pulverized (pulps duplicate) fraction: are included with every 34 drill core or trench samples to define samploz homogeneity (reject duplicate) and analytical precision (oulp duplicate). Duplicate pulp splits (only) are included in every batch of soil, sedirent and routine rock samples. A blank and in-house star dard referenice material STD SO-15 are carried through weighing, digestion and analytical stages to monitor accuracy. STO SO-15 has been certitied in-house against USGS CRMs AGV-1, BCR-2, G-2, G§P-2 and $\mathrm{W}-2$.

Sample Digestion

Crucibles are placed in an oven and heated to $1025^{\circ} \mathrm{C}$ ior 25 minutes. The molten sample is dissolved in $5 \% \mathrm{HNO}_{3}$ (ACS grade nitric zcich diluted in demineralised water). Calibration standards, verficication standards and reagent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP mass spectrometer (Perkin. Elmer Elan 6000) for the determination of the basic package consisting of the following 34 elements: $\mathrm{Co}, \mathrm{Cs}, \mathrm{Ga}, \mathrm{Hf}, \mathrm{Nb}, \mathrm{Rb}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{Ta}, \mathrm{Th}, \mathrm{Tl}$, $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Y}, \mathrm{Zr}, \mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$ and Lu. A second sample split is analyzed by Group 1 EX to determine the concentrations of: $\mathrm{As}, \mathrm{Bi}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Sb}$ and Zn .

Data Evaluation

Raw and final data undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical report be ore release to the client. Chief assayer is Clarence Leong, other cerifified assayers are Dean Toye and Jacky Wang.

Document: Methods and Specifications for Group 4B for Anglo.DOC	Date: May, 2000	Prepared by: j Gravel

HBED Quality Control Procedures: Unconsolidated Surficial Materials

The following standard HBED quality control procedures were used over the course of sample collection and analysis:

- 1 field duplicate sample pair collected in every block of 20 samples as a measure of combined sampling, preparation and analytical variation. In all, a total of 5 field duplicate pairs were collected in each 100 -sample sequence.
- 3 control standards were inserted in each 100 -sample sequence to monitor analytical accuracy

Overall, each complete 100 -sample sequence contains 92 routine field samples, 5 field duplicate samples and 3 control standards.

HBED Quality Control Procedures: Rock and Drill Core

The following standard HBED quality control procedures were used over the course of sample collection and analysis:

- 1 field duplicate sample pair collected in every block of 20 samples (5\%), as a measure of combined sampling, preparation and analytical variation. In all, a total of 5 field duplicate pairs were collected in each 100 -sample sequence.
- 1 preparation duplicate sample in every block of 20 samples (5%), as a measure of combined sample preparation and analytical variation. A total of 5 prep duplicate pairs were prepared in each 100 -sample sequence. These were split, where possible, from the first samples of each field duplicate pair.
- 3 control standards were inserted in each 100 -sample sequence (3\%) to monitor analytical accuracy.

Overall, each complete 100 -sample sequence contains 87 routine field samples, 5 field duplicate samples, 5 prep duplicate samples and 3 control standards.

Standards Report

Hudson Bay Exploration and Dev. Co. Ltd.
Project: Eureka Project - Till Geochemistry
Scientist: Gerry Bidwell
Project date: 2000/12/19
Batch:
Standard: TILL3
Report date: 2000/12/19

Standards Report

*Hudson Bay Exploration and Dev. Co. Ltd.
Project: Eureka Project - Till Geochemistry Scientist: Gerry Bidwell hide Project date: 2000/12/19

Batch:
Standard: TILL4
Report date: 2000/12/19

Fail: +/-2 sto. cev.
Pass: 0
Historic: -

Standards Report

Hudson Bay Exploration and Dev. Co. Ltd.
Project: Eureka Project - Till Geochemistry Scientist: Gerry Bidwell
Project date: 2000/12/19

Batch:
Standard: S1
Report date: 2000/12/19

Fail: $+/-2$ std. dev.
Pass:
Historic:

Standards Report Hudson Bay Exploration and Dev. Co. Ltd.

$f \\| x \text { max: }$			c
L-	1	1	,
0	500	1000	1500
CU			

Histogram and box piot showing iog distribution of $\widehat{C u}(\mathrm{ppm})$ and $\widetilde{\mathrm{Co}}(\mathrm{ppm})$ in tiil (<6́3 micron fraction)

Histogram and box plot showing log distribution of Zin (ppin) and Pb (ppm) in till (<< 63 micron fraction)

Histogram and boxplot showing \log distribution of $\mathrm{Ag}(\mathrm{ppb})$ and $\mathrm{Cd}(\mathrm{ppm})$ in till (<63 micron fraction)

Appendix IV

ASSAY CERTIFICATES

EUREKA ASSAYS -LAB REPORTS \& TURN AROUND TIME

Lab No.	Type	Samples Sent	Lab Received	Confirm Request	$\begin{gathered} \text { Group 1EX } \\ \text { Results } \end{gathered}$	Group 1F Results	Group 4A Results	Group 4B Results	Group 7AR Results	LOI	from lab to results	rom field to resulis
$\begin{gathered} \hline 2291 \\ 2291 R \end{gathered}$	moss moss	7-Jul 7-.Jul	$\begin{aligned} & \text { 10-Jul } \\ & 22-\mathrm{Nov} \end{aligned}$	13-Jul		31-Jul				8-Dec	21 16	24
2374	moss	11-Jul	13-Jul	15-Jul		28-Jul					15	17
2374R	moss	11-Jul	22-Nov							8-Dec	16	
2512	moss	18.Jul	20-Jul			8-Aug					19	21
2512R	moss	18-Jul	22-Nov							4-Dec	12	
2627	moss	25.Jul	26-Jul			13-Aug					18	19
2627R	moss	25.Jul	22-Nov							4-Dec	12	
3057	moss	15-Aug	16-Aug			5-Sep					20	21
3057 R	moss	15-Aug	22-Nov							4-Dec	12	
3304	moss	29,aug	30-Aug			12-Sep					13	14
3304R	moss	29-Aug	22-Nov							4-Dec	12	
4181	moss	10-Oct	13-Oct			30-Oct					17	20
4181R	moss	10-Oct	22-Nov							4-Dec	12	
4332	moss	10-Oct	24-Oct			15-Nov					22	36
4332R	moss	10-Oct	22-Nov							4-Dec	12	
4333	moss	$23-\mathrm{Oct}$	24-Oct			15-Nov					22	23
4333 R	moss	23-Oct	22-Nov							4-Dec	12	

$\begin{gathered} 1847 \\ 1847 R \end{gathered}$	rocks rocks	$\begin{aligned} & \text { 13-Jun } \\ & \text { 13-Jun } \end{aligned}$	$\begin{aligned} & 14 \text {-Jun } \\ & 22-\text { Nov } \end{aligned}$		13-Dec	5-Jul	5-Jul	13-Dec		21 21	22
2202	rocks	4.Jul	5-Jul			20-Jul	20-Jul			15	16
2202R	rocks	4-Jul	22-Nov		18-Dec			18-Dec		26.	
2513	rocks	18.Jul	20 -Jul			4-Aug				15	17
2513R	rocks	18. Jui	22-Nov		14-Dec		14-Dec	14-Dec		22	
3058	rocks	15-Aug	16-Aug			31-Aug	31-Aug			15	16
3058R	rocks	15-Aug	22-Nov		15-Dec			15-Dec		23	
3305	rocks	29-Aug	30-Aug			14-Sep				15	16
3305R	rocks	29-Aug	20-Sep						26-Sep	6	
3305R2	rocks	29-Aug	22-Nov		8-Dec		8-Dec	8-Dec		16	
4335	rocks	$23 . \mathrm{Oct}$	24 -Oct		22-Nov	22-Nov	22-Nov	22-Nov		29	30
4396	rocks	31-Oct	31-Oct		23-Nov	23-Nov	23-Nov	23-Nov		23	23
4396R	rocks	31-Oct	1-Dec	1-Dec					8-Dec	7	
5002	rocks	13-Dec	14-Dec		5-Jan	5-Jan	5-Jan	5-Jan		22	23

1848	till	13-Jun	14-Jun			5-Jul	5-Jul				21	22
2057	till	23-Jun	23-Jun			14-Jul	14-Jul				21	21
2201	till	4-Jul	5-Jul			23-Jul					18	19
2201R	till	4-Jul	31-Jul		26-Aug		26-Aug	26-Aug			26	
2373	till	11.Jul	13-Jul	15-Jul		28-Jul					15	17
2373R	till	11.Jul	22-Nov				7-Dec				15	
2511	till	$18 . \mathrm{Jul}$	20-Jul			8-Aug					19	21
2511R	till	18.Jul	31-Jul		28-Aug		28-Aug	28-Aug			28	
2626	till	$25 . J$ Jul	26-Jul			10-Aug					15	16
2626R	till	25.Jul	22-Nov				7-Dec				15	
3056	till	15-Aug	16-Aug			2-Sep					17	18
3056R	till	15-Aug	22-Nov				7-Dec				15	
3303	till	29-Aug	30-Aug			12-Sep					13	14
3303R	till	29-Aug	22-Nov				7-Dec				15	
3480	till	5-Sep	7-Sep	12-Sep		21-Sep					14	16
3480R	till	5-Sep	22-Nov				7-Dec				15	
3741	tili	18-Sep	19-Sep			5-Oct					16	17
3741R	till	18-Sep	22-Nov				7-Dec				15	
4334	till	23.Oct	$24-\mathrm{Oct}$		10-Nov	10-Nov	$10-\mathrm{Nov}$	10-Nov			17	18

Group 1EX - ICP by total digestion
Group 1F - Ultratrace by ICP MS
Group 4A - Whole Rock by ICP
Group 4B - Whole Rock Trace Elements by ICP MS
Group 7AR - Multi-Element Assay by ICP (high grade)
LOI - loss on ignition

GROUP AA - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL C \& S BY LEGO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 142000 DATE REPORT MAILED:
$=(\hat{k}$
TOME, C.LEONG, J. WANG; CERTIFIED 8.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-h20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 142000 DATE REPORT MAILED: 2 aeq $5 / 00$

Al! results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

[^0]

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR, DILUTED TO $600 \mathrm{ML}, \mathrm{ANAL} Y S E D$ BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 142000 DATE REPORT MAILED: T NeV $5 / 00$
SIGNED BY.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A001847

Sample type: Rock. Samples beginning 'RE' are Reruns and RRE' are Reject Reruns.

ROPATOPTHS
ISSO 9002 Accredrited Co.

NWRR-10160
NWRR-10150 NWRR-10150 NWRR-10007 NWRR-10117

NWRR-10112 NWRR-10141 NWRR-10014 NWRR-10001 NWRR-10116

NWRR-10009 NWRR-10103 RE NHRR-10103 PRE NWRR-10103 NWRR-10144

NWRR-10153 NWRR-10146 NWRR-10114 NWRR-10008 NWRR-10003

NWRR-10011 NWRR-10101 NWRR-10015 NWRR-10015 NWRR-10113 NWRR-10133
NHRR-10145 NWRR-10111 RE NWRR-10111 RRE NWRR-10111 NWRR-10148

NGRR-10157
NLRR-10142
NWRR-101.15 STANDARD SO-15

63	36.5	.2	15.0	3.5	3.1	1.5	<1	79.7
316	37.8	.4	12.7	2.4	2.4	5.6	<1	209.1
2039	22.1	2.8	16.8	26.6	31.4	65.1	19	404.6

GROUP $4 B$ - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Beject Reruns.

DATE RECEIVED: NOV 222000 DATE REPORT MAILED: $13 / \mathrm{OL}$

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP TEX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH} \& \mathrm{U}=4,000$ PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR $=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATILE SOME ELEMENTS, ANALYSIS BY ICP-ES.

DATE RECEIVED: NOV 222000 DATE REPORT MAILED: VeC13/00

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A001847R Page 2 (b)
41
ache arsertical

SAMPLE\#	$\begin{array}{r} \mathrm{MO} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{As} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \text { Cd } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$
NWRR-10109	1.8	97	<3	109	86	4	. 3	<1	2
NWRR-10016	6.5	19	12	116	442	200	. 2	3	1
NWRR-10010	1.2	6	13	2544	53	9	13.3	<1	1
NWRR-10151	3.3	4	9	17	33	2	$<.2$	<1	$<\frac{1}{3}$
NWRR-10143	1.2	53	4	90	56	<2	. 4	<1	3
NWRR-10120	2.0	38	4	26	15	3	$<.2$	1	1
NWRR-10019	<. 5	65	<3	58	184	79	. 4	1	1
NWRR-10002	2.0	102	<3	61	80	2	. 2	<1	1
NWRR-10105	. 5	6	<3	82	26	6	. 2	<1	2
NWRR-10110	5	51	<3	90	80	3	. 2	<1	3
NWRR-10017	1.7	18	16	36	125	5	$<.2$	1	1
NWRR-10102	. 5	56	12	106	89	<2	. 3	<1	2
NWRR-10155	1.0	39	4	65	26	<2	$<.2$	<1	<1
NWRR-10012	1.1	25	4.	30	86	18	$<.2$	<1	1
NWRR-10006	,	59	<3	64	70	<2	$<.2$	<1	1
NWRR-10107	1.2	381		70	89	<2			
NWRR-10118	3.8	145	5	86	76	48	$<.2$	17	<1
RE NWRR-10118	4.2	149	5	88	76	53 49	$<.2$	16	<1
RRE NWRR-10118 NWRR-10152	4.2 $<.5$	142 39	5 <3	87 80	77 85	49 <2	<.2	16	$<\frac{1}{2}$
NWRR-10106	1.2	10	<3	67					<1
NWRR-10004	1.0	57	<3	82	91	<2	$<.2$	<1	3
NWRR-10108	1.8	23	<3	25	60	2	$<.2$	1	<1
NWRR-10166	1.4	33	15	80	14	5	. 2	1	2
NWRR-10020	$<.5$	75	<3	60	190	100	2	3	1
NWRR-10104	12.3	705	<3	44	30	<2	$<.2$	<1	2
NWRR-10005	1.1	7	<3	43	52	<2	$<.2$	<1	2
NWRR-10119	$<.5$	68	<3	55	45	75	- 2	2	<1
NWRR-10013	26.9	24 65	10	2071 182	74 38	75 62	22.8	<2	$2 \frac{1}{3}$
STANDARD Ci3	26.9								
STANDARD G-2	1.6	3	21	51	7	<2	$<.2$	<1	1

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{array}{r} \operatorname{SiO} \\ \mathrm{AlO} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{aligned} \mathrm{TiOL} \\ \mathrm{Q} \end{aligned}$	P205	$\begin{array}{r} \mathrm{MrO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{pp} \times \mathrm{m} \end{array}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppmin} \end{gathered}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 r \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{Y} \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 101 \\ \text { \% } \end{array}$	$\begin{array}{r} \text { TOT/C } \\ \boldsymbol{z} \end{array}$	$\begin{array}{r} \text { TOT/S } \\ \% \end{array}$	$\begin{gathered} \text { SUM } \\ \% \end{gathered}$	
SJJCD-17506	58.8512 .24	7.78	3.63	3.75	1.59	1.02	1.18	. 20	. 12	. 024	527	73	118	152	25	<10	21	9.5	1.56	<. 01	99.99	
SJCD-17516	$52.70 \quad 12.75$	8.31	3.62	4.26	1.63	. 65	1.25	. 15	. 17	. 035	318	88	118	190	82	<10	64	14.3	2.53	. 03	99.93	
SJCD-17501	58.6612 .13	8.54	3.58	4.60	1.64	. 79	1.30	. 18	. 18	. 028	660	76	124	138	27	<10	25	8.5	. 59	$<.01$	100.25	
SJCD-17508	65.8912 .17	6.59	2.55	2.16	1.53	1.41	1.21	. 15	. 10	. 034	970	74	127	212	25	<10	16	6.0	. 44	<. 01	99.96	
SJCD-17514	60.6611 .48	8.16	4.15	5.10	1.87	. 66	1.34	. 12	. 15	. 029	435	81	111	175	29	<10	29	6.4	. 37	<. 01	100.22	
S.JCD-17510	66.7710 .57	6.70	3.42	3.59	1.71	. 87	1.17	. 14	. 13	. 027	619	82	117	186	29	<10	24	5.1	. 20	<. 01	100.32	
SJCD-17512	65.4612 .04	6.88	2.47	2.17	1.53	1.17	1.09	. 12	.11	. 023	533	68	108	202	23	<10	20	6.7	. 37	$<.01$	99.88	
SJCD-17517	68.2211 .92	6.33	2.27	2.20	1.69	1.35	1.09	. 12	. 13	. 017	507	58	131	272	34	<10	21	4.5	. 16	<. 01	99.96	
SJCD-17504	$63.30 \quad 9.85$	5.32	2.52	2.88	1.52	. 71	1.19	. 19	. 08	. 024	957	61	98	198	21	<10	18	12.5	3.15	. 03	100.24	
SJCD-17515	56.4511 .92	7.33	2.03	2.66	1.61	1.11	1.11	. 32	. 13	. 020	470	53	128	209	47	<10	29	15.3	3.81	$<.01$	100.10	
SJCD-17502	57.2612 .71	9.01	3.51	4.59	1.66	. 77	1.30	. 14	. 18	. 026	659	70	133	142	31	<10	29	8.7	. 28	< 01	99.98	
SJCD-17518	$68.30 \quad 10.32$	6.52	3.17	3.51	1.66	. 92	1.14	. 15	. 13	. 020	433	62	112	234	28	<10	22	4.2	. 15	$<.01$	100.15	
SJCD-17505	62.6712 .59	7.35	3.69	3.78	1.73	1.33	1.20	.15	. 14	. 026	1162	79	119	145	28	<10	25	5.6	. 38	$<.01$	100.44	
SJCD-17509	68.4010 .91	5.89	2.73	2.93	1.77	. 96	1.13	.11	. 13	. 022	643	65	112	233	26	<10	20	5.0	. 24	$<.01$	100.11	
SJCD-17513	59.5212 .23	8.31	3.90	4.36	1.85	. 77	1.22	. 07	. 15	. 024	462	85	119	163	26	<10	28	7.7	. 40	<. 01	100.21	
SJCD-17507	63.9511 .91	7.28	3.18	4.24	2.08	. 79	1.47	.12	. 15	. 023	644	69	185	251	33	<10	25	4.7	. 19	$<.01$	100.04	
SJCD-17511	62.0911 .00	8.05	3.77	3.66	1.46	. 60	1.21	. 09	. 21	. 023	1157	80	258	164	29	<10	29	7.6	. 31	$<.01$	99.96	
SJCD-17503	56.4311 .98	9.58	4.83	6.00	2.13	. 63	1.42	. 18	. 16	. 030	518	87	115	121	30	<10	32	6.7	. 10	<. 01	100.18	
GSMD-17578	62.7511 .16	4.95	2.25	6.35	1.41	1.93	. 74	. 14	. 06	. 012	529	44	295	240	26	42	12	8.1	1.49	<. 01	99.99	
RE GSMD-17578	62.7611 .22	4.92	2.27	6.34	1.47	1.83	. 74	. 14	. 06	. 012	530	48	296	242	26	15	11	8.1	1.50	$<.01$	100.00	
GSMD-17688	64.9313 .66	6.96	2.03	1.20	1.78	2.46	1.35	. 24	. 09	. 016	1301	65	110	255	33	17	16	4.9	. 35	< 01	99.83	
GSMD-17685	62.8814 .74	7.68	1.73	1.14	1.29	2.29	1.31	. 24	. 18	. 017	1710	77	86	216	37	15	18	6.2	. 57	$<.01$	99.95	
GSMD-17519	67.7911 .91	6.47	1.99	1.77	1.24	2.00	1.04	. 21	. 10	. 020	2354	67	114	191	34	14	19	5.1	. 30	<. 01	99.96	
GSMD-17580	72.229 .88	5.36	2.09	2.09	1.60	1.05	1.13	. 10	. 09	. 016	700	51	96	307	26	10	17	4.4	. 28	. 01	100.17	
GSMD-17686	60.8315 .42	8.27	2.32	. 56	1.51	2.66	, 1.27	. 21	. 12	. 016	1914	78	86	174	26	16	19	6.5	. 50	$<.01$	99.95	
GSMD-17573	69.2310 .35	6.23	2.66	2.69	1.49	1.07	1.04	. 18	. 13	. 017	1186	73	108	150	28	<10	20	4.7	. 12	$<.01$	99.97	
GSMD-17689	63.4712 .97	7.58	2.69	2.43	1.65	1.34	1.31	. 21	. 13	. 020	1385	79	111	203	29	<10	22	5.8	. 23	$<.01$	99.81	
GSMD-17566	53.8918 .35	8.71	2.22	3.88	2.99	1.24	1.37	. 15	. 13	. 008	371	24	338	183	27	<10	24	7.2	. 66	. 01	100.25	
GSMD-17576	61.3812 .21	8.32	3.52	3.38	1.75	. 98	1.25	. 14	. 21	. 024	1361	98	143	199	36	<10	30	6.9	. 30	$<.01$	100.28	
GSMD-17561	63.0610 .38	7.39	4.78	4.41	1.76	. 77	1.17	. 10	. 15	. 026	708	116	115	161	28	<10	27	5.9	. 17	<. 01	100.03	
GSMD-17570	70.609 .85	5.22	2.00	1.93	1.49	. 90	1.00	. 09	. 07	. 017	504	62	87	229	22	10	14	6.9	. 98	. 01	100.18	
GSMD-17577	73.109 .05	4.80	2.28	3.21	1.68	. 88	1.21	. 13	. 10	. 018	864	51	113	265	28	13	18	3.6	. 28	$<.01$	100.22	
GSMD-17569	62.3712 .21	6.70	3.81	3.48	1.42	1.84	. 85	. 14	. 11	. 013	856	78	109	123	25	<10	18	6.9	. 72	$<.01$	99.98	
STANDARD S0-15/CSB	49.8912 .31	7.24	7.20	5.82	2.39	1.88	1.78	2.68	1.38	1.052	2030	78	393	974	21	19	12	5.9	2.38	5.30	99.94	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beninning 'RE' are Reruns and 'RRE' are Reiect Reruns
DATE RECEIVED: JUN 142000 DATE REPORT MAILED: Guleg $5 / 00$
 p.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

[^1]

[^2]\qquad

SAMPLE\#	$\begin{array}{rr} \hline \text { SiO2 Al203 } \\ \% & \% \\ \hline \end{array}$	$\begin{array}{r} \hline \text { Fe203 } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ 6 \\ \hline \end{array}$		$\begin{gathered} 20 \mathrm{TiO2} \mathrm{P} \\ \% \quad \% \end{gathered}$	$\begin{array}{r} \text { P205 } \\ \% \end{array}$	$\begin{gathered} \mathrm{MnO} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$	$\begin{aligned} & \mathrm{Ba} \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 r \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppra} \end{gathered}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \hline 01 \mathrm{~T} \\ \hline \boldsymbol{x} \end{gathered}$	$\begin{array}{r} \text { TOT } / \mathrm{C} \\ \mathbf{x} \\ \hline \end{array}$	$\begin{gathered} \text { TOT/S } \\ \% \end{gathered}$	$\begin{gathered} \hline \hline \text { SUM } \\ \% \end{gathered}$	
LAMD-17547	62.0212 .19	7.49	3.53	4.70	2.05	. 86	361.52	. 13	. 14	. 022	695	74	143	171	32	<10	29	5.1	. 21	. 01	99.89	
LAMD-17541	65.8111 .01	6.34	3.70	3.77	1.72	1.29	291.22	. 15	. 12	. 023	963	93	124	186	29	11	24	4.5	. 40	. 02	99.82	
LAMD-17548	62.5511 .66	7.76	3.84	4.57	1.80	. 88	88 1.42	. 14	. 16	. 025	1314	76	126	143	34	<10	32	5.0	. 11	$<.01$	100.01	
LAMD-17543	63.3511 .65	6.82	3.67	4.28	1.87	. 86	861.31	. 17	. 16	. 026	1034	81	141	213	30	<10	27	5.6	. 56	. 03	99.95	
LAMD-17644	68.4412 .53	5.98	2.37	1.32	1.21	2.30	30 1.15	. 12	. 14	. 014	1786	64	63	244	35	13	21	4.0	. 13	<. 01	99.83	
LAMD-17655	65.7810 .99	6.51	3.42	3.20	1.69	1.23	231.45	. 13	. 13	. 021	1263	94	121	160	28	<10	22	5.4	. 54	<. 01	99.85	
LAMD - 17648	62.6413 .57	8.40	1.74	1.56	1.91	1.98	8 1.58	. 31	. 21	. 024	1006	121	132	251	52	35	24	5.7	. 69	. 02	99.82	
LAMD-17653	61.3610 .62	6.45	3.95	6.26	1.69	. 92	921.09	. 12	. 14	. 018	781	78	163	171	28	<10	22	7.1	. 86	<. 01	99.87	
LAMD - 17657	63.5410 .65	7.25	4.66	3.58	1.63	. 86	361.07	. 11	. 14	. 030	870	153	104	148	26	<10	24	6.3	. 17	. 03	99.98	
LAMD-17641	60.4313 .01	8.23	4.06	4.45	1.76		21.47	. 15	. 16	. 023	968	77	118	123	30	<10	29	5.2	. 26	<. 01	100.02	
LAMD - 17660	62.1612 .79	8.09	3.37	2.44	1.47	1.90	901.26	. 17	. 15	. 018	1334	83	92	156	37	43	26	5.8	. 24	. 01	99.82	
RE LAMD-17650	68.8312 .35	5.54	1.95	1.36	1.52	2.00	00 1.15	. 18	. 09	. 016	2324	65	87	256	38	15	17	4.5	. 23	< 01	99.81	
LAMD-17650	68.7612 .12	5.57	1.99	1.39	1.47	2.02	22 1.15	. 21	. 09	. 016	2268	82	87	249	37	15	17	5.0	. 23	<. 01	100.10	
LAMD-17654	56.2511 .52	7.55	7.98	6.12	1.50	. 38	38 . 95	. 07	. 14	. 060	597	207	97	99	23	<10	29	7.5	. 62	. 02	100.14	
LAMD -17554	59.8511 .89	8.48	3.95	4.56	1.79		771.41	. 14	. 16	. 022	956	73	123	130	33	<10	30	6.4	. 38	<. 01	99.58	
LAMD - 17656	62.2212 .14	7.52	4.34	3.56	1.90	1.02	21.18	. 13	. 17	. 027	974	132	152	187	29	11	25	5.4	. 11	<. 01	99.78	
LAMD-17642	61.1512 .75	7.96	3.90	4.20	1.75	1.00	01.45	. 12	. 15	. 020	943	68	115	131	29	<10	28	5.4	. 37	<. 01	100.00	
LAMD-17555	62.5612 .60	7.41	3.12	3.50	1.70	1.10	101.45	. 15	. 13	. 021	911	79	119	198	31	<10	25	5.9	. 64	<. 01	99.80	
LAMD-17647	62.5913 .15	7.57	2.84	1.77	1.76	2.09	9 1.83	. 39	. 13	. 028	1987	159	115	205	35	39	21	5.5	. 19	. 01	99.94	
LAMD-17658	66.7410 .51	5.15	2.88	4.80	1.63	1.38	881.00	. 12	. 10	. 014	750	63	182	204	27	<10	17	5.4	. 79	<. 01	99.87	
LAMD-17553	62.0811 .85						11.32	. 14	. 18	. 023	1604	89	128	132	31	<10	29	5.5	. 17	. 01	99.88	
LAMD-17546	63.4512 .03	6.74	3.57	5.06	2.00	1.05	11.54	. 10	. 13	. 026	706	60	147	194	35	<10	29	4.0	. 26	<. 01	99.84	
LAMD-17556	64.7011 .27	7.00	3.715	5.50	1.93	. 88	81.62	. 11	. 15	. 022	863	65	145	185	37	<10	33	3.1	. 09	<. 01	100.15	
LAMD-17659	62.8411 .78	7.85	3.85	3.45	1.57	. 91	11.34	. 09	. 15	. 019	742	71	140	144	31	10	25	5.9	. 57	<. 01	99.89	
LAMD-17544	63.4213 .01	7.63	2.97	2.78	1.85	1.36	31.25	. 14	. 15	. 021	1221	82	157	170	30	<10	22	5.1	. 14	<. 01	99.88	
STANDARD SO-15/CSB	49.9212 .71	7.11	7.015	5.70	2.39	1.87	71.76 2	2.64	1.36	1.040	2021	78	395	988	22	18	13	5.9	2.40	5.25	99.83	

[^3]

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HHO3}-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - . AG, $A U, H G, H, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, 2 N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: - 230 TILL 'Samples'begínning 'RE' are Reruns and' 'RRE' are Reject Reruns.

Sample type: -230 TILL. Samples beginning. 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the tiabilities for actual cost of the analysis only.
Data_fa

PPD-17538 PP0-17529 PPD-17529
PPD- 17523 PPD-17531 PPD-17524

PPD-17537 PPD-17527 PPD-17532 PPD-17526 PPO-17522

PPD-17536
LAMD-17651
LAMD-17560
AMD-17550
LAMD-17645
RE LAMD-17645
LAMD-17559
LAMO-17559
AMO-17551
AMD-17545
LAMD-17646
LAMD-17652
LAMD-17552
LAMO-17557
LAMD-17643
LAMD-17542
LAMD-17558
AMD-17649
LAMD-17549
Mo

$\begin{array}{r} \text { Mo } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Pb } \\ & \text { ppm } \end{aligned}$	$\mathrm{Zn} \quad \mathrm{Ag}$ ppm ppb	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppon} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \mathrm{pprn} \end{array}$	$\begin{aligned} & \text { Mn } \\ & \text { pprin } \end{aligned}$	Fe	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$
18	89.01	2.41	56.4	68.6	0.6	49		1.4
30	59.32	4.89	52.416	60.2	25.5			29.4

\[
$$
\begin{array}{llllllllll}
.47 & 67.64 & 11.00 & 77.9 & 13 & 49.7 & 20.1 & 926 & 3.96 & 5.6
\end{array}
$$

\] $\begin{array}{lllllllllll}48 & 161.25 & 3.72 & 68.0 & 239 & 33.8 & 48.6 & 1592 & 6.08 & 6.9\end{array}$ | 29 | 65.28 | 6.01 | 69.5 | 53 | 57.7 | 27.6 | 954 | 4.02 | 6.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}29 & 65.28 & 6.01 & 69.5 & 53 & 57.7 & 27.6 & 954 & 4.02 & 6.4\end{array}$ $\begin{array}{lllllllll}.94 & 120.27 & 10.35 & 108.1 & 67 & 64.4 & 34.4 & 876 & 3.04 \\ 9.3\end{array}$

$\begin{array}{lllllllllllllll}.32 & 96.95 & 5.91 & 74.5 & 41 & 189.7 & 45.5 & 1436 & 4.84 & 20.0\end{array}$ $\begin{array}{llllllllll}.32 & 66.96 & 4.12 & 64.2 & 10 & 59.0 & 22.4 & 959 & 4.30 & 3.3\end{array}$ $\begin{array}{rrrrrrrrrr}.41 & 41.46 & 6.10 & 55.2 & 31 & 36.7 & 15.3 & 677 & 3.08 & 3.8 \\ 46 & 77.54 & 10.35 & 87.1 & 83 & 58.1 & 25.9 & 1045 & 4.48 & 6.0\end{array}$ $\begin{array}{llrlllllllll}46 & 77.54 & 10.35 & 87.1 & 83 & 58.1 & 25.9 & 1045 & 4.48 & 6.0 \\ 40 & 53.65 & 6.60 & 55.8 & 11 & 68.6 & 20.1 & 711 & 3.06 & 5.1\end{array}$

$\underset{\text { opm }}{ }$	Au Th ppb ppm	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$
. 1	1.51 .6	25.9
. 2	6.02 .3	23.0

| | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .1 | 1.5 | 1.6 | 25.9 | .07 | .14 | |
| .2 | 6.0 | 2.3 | 23.0 | .10 | .64 | |
| .3 | 1.5 | 2.4 | 12.9 | .09 | .25 | |
| .6 | 2.7 | 3.7 | 17.2 | .08 | .28 | |
| .3 | 1.9 | 4.4 | 31.4 | .14 | .39 | |
| | .8 | | | | | |
| .3 | 2.8 | 2.8 | 26.4 | .16 | .58 | |
| .2 | 2.1 | 1.6 | 14.3 | .07 | .20 | |
| .6 | .9 | 2.8 | 47.7 | .08 | .09 | |
| .2 | 11.2 | 3.0 | 24.6 | .12 | 2.07 | |
| .3 | 5.6 | 3.7 | 25.9 | .15 | .63 | |
| | | | | | | |
| .1 | 1.6 | .9 | 15.3 | .11 | .20 | |
| .3 | 6.3 | 3.0 | 25.6 | .08 | .49 | |
| .4 | 18.9 | 4.7 | 13.1 | .12 | .26 | |
| .2 | 15.5 | 2.4 | 11.6 | .08 | .44 | |
| .4 | 6.9 | 1.7 | 40.8 | .14 | .50 | |
| | | | | | | |
| .3 | 2.8 | 2.1 | 20.9 | .13 | .33 | |
| .4 | 8.7 | 3.5 | 14.8 | .12 | .41 | |
| .2 | 4.0 | 2.0 | 34.4 | .15 | .74 | |
| .1 | 2.0 | 1.7 | 35.0 | .19 | .54 | |
| .4 | 3.4 | 3.6 | 23.0 | .12 | .68 | |
| | | | | | | |
| .4 | 3.8 | 3.8 | 23.5 | .14 | .69 | |
| .4 | 1.2 | .9 | 43.5 | .30 | .34 | |
| .2 | 3.1 | 2.5 | 22.8 | .17 | .52 | |
| .3 | 5.0 | 2.4 | 22.8 | .16 | .43 | |
| .4 | 8.5 | 3.7 | 15.9 | .17 | .85 | |
| | | | | | | |
| .2 | 6.3 | 2.3 | 32.3 | .11 | 1.18 | |
| .2 | 3.6 | 1.5 | 22.2 | .10 | .45 | |
| .3 | 2.2 | 3.0 | 21.3 | .10 | .40 | |
| .3 | 3.1 | 3.6 | 27.5 | .18 | .61 | |
| .3 | 2.6 | 3.0 | 21.3 | .11 | .44 | |
| .3 | 1.9 | 3.9 | 22.0 | | .10 | .63 |
| .7 | 4.0 | 9.3 | 23.0 | .15 | .56 | |
| .2 | 2.1 | 1.0 | 19.2 | .26 | 2.73 | |
| 19.5 | 202.0 | 3.6 | 29.3 | 10.36 | 9.91 | 11 |
| | | | | | | |

$\mathrm{Bi} V$	$\begin{gathered} \mathrm{Ca} \\ 8 \end{gathered}$	\%	$\begin{array}{r} \text { La } \\ \text { dom } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\underset{\%}{\mathrm{Mg}}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} \mathrm{Ti} \\ \% \end{aligned}$	B	$\begin{gathered} \text { Al } \\ \% \end{gathered}$	$\underset{\%}{\mathrm{Na}}$		$\begin{array}{r} \text { W } \\ \text { ppan } \end{array}$			$\begin{gathered} \mathrm{Se} \\ \mathrm{ppm} \end{gathered}$	ppn	ppm
05164	69		5.7	. 6	. 06	. 8	346	4	3.45	. 019			. 02	14	. 2	<. 02	9.9
127	22		7.5	85.5	51	106.7	301	2	2.71	. 021	. 05	< 2	. 04	28	. 3	<. 02	7.6

$\begin{array}{lllllllllll}05 & 164 & 1.69 & .070 & 5.7 & 130.6 & 2.06 & 132.8 & .346 \\ 08 & 127 & 1.22 & .024 & 7.5 & 85 & 5 & 1.51 & 106.7 & \end{array}$ $\begin{array}{llllllllll}08 & 127 & 1.22 & .024 & 7.5 & 85.5 & 1.51 & 106.7 & .301\end{array}$ $\begin{array}{lllllllllll}.06 & 76 & .77 & .040 & 8.4 & 47.1 & .77 & 160.9 & .223\end{array}$ $\begin{array}{lllllllll}08 & 71 & .83 & .059 & 11.1 & 33.2 & .74 & 160.3 & .205\end{array}$ $\begin{array}{lllllllllllll}13 & 92 & 1.18 & .058 & 12.6 & 50.9 & 1.20 & 137.7 & .239\end{array}$
$111231.06 .058 \quad 11.0 \quad 78.21 .30245 .1 \quad .295$ $\begin{array}{rrrrrrrrr}11 & 123 & 1.06 & .058 & 11.0 & 78.2 & 1.30 & 295.1 & .295\end{array}$
 $\begin{array}{llllllllll}14 & 161 & .51 & .043 & 11.5 & 43.0 & .55 & 90.6 & .374\end{array}$ $\begin{array}{llllllllll}12 & 137 & 1.16 & .057 & 9.7 & 81.5 & 1.45 & 180.6 & .251\end{array}$ $\begin{array}{lllllllllll}11 & 119 & 1.62 & .055 & 11.8 & 75.9 & 1.56 & 165.9 & .273\end{array}$ $\begin{array}{llllllll}06 & 148 & 1.64 & .062 & 4.1 & 82.9 & 1.39 & 99.7\end{array} .494$ $\begin{array}{lllllllll}07 & 105 & 1.12 & .043 & 8.9 & 62.2 & .98 & 147.7 & .281\end{array}$ $\begin{array}{lllllllllll} & 08 & 47 & .55 & .059 & 14.0 & 27.1 & .60 & 101.3 & .134\end{array}$ $\begin{array}{llllllllll}.08 & 98 & .82 & .050 & 7.1 & 53.6 & .90 & 202.7 & .261\end{array}$ $\begin{array}{llllllllll}.07 & 107 & .96 & .058 & 8.0 & 181.8 & 2.78 & 413.8 & .189\end{array}$
$\begin{array}{llllllll}08 & 129 & 1.20 & .054 & 7.8 & 72.8 & 1.39 & 172.4\end{array} .361$ $\begin{array}{lllllllll}.15 & 78 & .67 & .064 & 11.9 & 49.9 & .79 & 260.2 & .217\end{array}$ $\begin{array}{llllllllllll}.09 & 151 & 1.33 & .064 & 7.4 & 113.4 & 1.87 & 237.6 & .297\end{array}$ $\begin{array}{llllllllll}.06 & 169 & 1.26 & .040 & 6.5 & 71.8 & 1.74 & 131.8 & .386\end{array}$ $\begin{array}{llllllllllllllllllll}. & 14 & 112 & .88 & .072 & 14.5 & 74.5 & 1.13 & 496.3 & .255\end{array}$ $\begin{array}{lllllllll}14 & 111 & .88 & .071 & 15.1 & 73.0 & 1.11 & 490.2 & .256\end{array}$ $\begin{array}{llllllllll}.14 & 111 & .88 & .071 & 15.1 & 73.4 & 1.11 & 123.3 & .292\end{array}$ $\begin{array}{llllllllllll}10 & 119 & 1.26 & .058 & 8.3 & 61.7 & 1.45 & 243.2 & .291\end{array}$ $\begin{array}{lllllllllllll}.11 & 140 & 1.10 & .069 & 10.5 & 84.9 & 1.49 & 378.0 & .323\end{array}$ $\begin{array}{llllllllllll}.14 & 82 & .71 & .066 & 13.8 & 45.6 & .86 & 362.9 & .231\end{array}$
$\begin{array}{llllll}11 & 127 & 1.02 & .055 & 8.7 & 119.2 \\ 2.47 & 324.4 & .209\end{array}$ $\begin{array}{lllllllll}.07 & 155 & 1.40 & .041 & 7.0 & 81.7 & 1.48 & 262.6 & .421\end{array}$ $\begin{array}{llllllllll}09 & 91 & .88 & 070 & 10.7 & 47.7 & .83 & 187.7 & .229\end{array}$ $\begin{array}{lllllllllll}.09 & 91 & .88 & .070 & 10.7 & 47.7 & .83 & 187.7 & .229 \\ 14 & 127 & 1.19 & .069 & 11.6 & 83.2 & 1.31 & 289.3 & .285\end{array}$ $\begin{array}{rrrrrrrrr}.14 & 127 & 1.19 & .069 & 11.6 & 83.2 & 1.31 & 289.3 & .285 \\ .10 & 80 & .66 & .060 & 9.6 & 55.6 & 1.09 & 288.1 & .199\end{array}$
$\begin{array}{lllllllll}13 & 110 & .89 & .034 & 14.0 & 66.6 & 1.10 & 245.3 & .294\end{array}$ $\left.\begin{array}{rrrrrrrr}.25 & 54 & .89 & .034 & 14.0 & 66.6 & 1.10 & 245.3\end{array}\right) .294$ $\begin{array}{llllllllll}.04 & 203 & 2.01 & 070 & 5.3 & 91.3 & 1 & 94 & 76.6 & .409\end{array}$

$4 \begin{array}{llllllll}4 & 3.45 & .019 & .03<2 & .02 & 14 & .2<.02 & 9.9\end{array}$ $\begin{array}{lllllll}2 & 2.71 & .021 & .05 & <.2 & .04 & 28 \\ .0 & .3 & <.02 & 7.6\end{array}$ | | 2.08 | .015 | .04 | $<.2$ | .02 | 31 | .3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | .02 | .02 | 5.2 | | | | | $41.60 .014 .05<.2$ $32.22 .028 .14<.2$ | | 1 |
| :--- | :--- | $1<.027 .2$

 22.97 . $029.04<.2$. $02 \quad 15$. $3<.028 .5$ $\begin{array}{lllllllll}1 & 4.24 & .106 & .06 & .2 & .13 & 31 & .3 & .03 \\ 10.7\end{array}$ $\begin{array}{llllllllll} & 2 & 2.56 & .019 & .08 & <.2 & .05 & 66 & .3 & .03 \\ 8.5\end{array}$ $\begin{array}{lllllllll}3 & 2.56 & .019 & .08 & <.2 & .05 & 66 & .3 & .03 \\ 4 & 2.52 & .030 & .10<2 & .05 & 36 & .2 & .02 & 8.1\end{array}$

$\begin{array}{llllllllll}3 & 3.12 & .026 & .03<.2 & <.02 & 15 & .3 & .02 & 8.2 \\ 4 & 2.21 & .019 & .06 & <.2 & .04 & 38 & .2 & <.02 & 6.4\end{array}$ $\begin{array}{lllllllll}4 & 2.21 & .019 & .06 & <.2 & .04 & 38 & .2 & <.02 \\ 2 & 6.4\end{array}$ | 2 | 1.24 | .015 | $.06<.2$ | .04 | 9 | $<.1<02$ | 3.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 2 | 39 | 012 | 04 | <2 | 02 | 23 | $\begin{array}{lllllllll}3 & 2.39 & .012 & .04 & <.2 & .02 & 23 & .3 & <.02 \\ 2 & 3.31 & .015 & .06 & <.2 & .04 & 30 & .3 & .03 \\ 8.4\end{array}$ $.015 .06<2$. 0430.3

22.64 . 045 . $08<.2$. $03 \quad 15 \quad .4<.02 \quad 7.5$ $\begin{array}{rlllllll}1 & 1.74 & .013 & .05 & <.2 & .04 & 14 & .3 \\ .04 & 5.0\end{array}$ $\begin{array}{llllllll}3 & 3.00 & .029 & .09 & <.2 & .04 & 27 & .2 \\ .04 & .04 & 10.1\end{array}$

 $\begin{array}{lllllllllll}1 & 2.36 & .022 & .10 & <.2 & .05 & 51 & .3 & .04 & 7.3\end{array}$ | 2 | 2.34 | .021 | $.08<.2$ | .05 | 53 | .3 | .04 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $\begin{array}{rlllllll}<1 & 3.43 & .006 & .03<.2 & .04 & 88 & .9 & .05 \\ 4 & 2.47 & .049 .3 \\ .10 & <.2 & .04 & 28 & .1 & .02 & 8.7\end{array}$ $\begin{array}{lllllllll}4 & 2.47 & .049 & .10 & <.2 & .04 & 28 & .1 & .02 \\ 2 & 2.74 & .032 & .09 & <.2 & .04 & 34 & .4 & .03 \\ 8.6\end{array}$ $\begin{array}{llllllllll}2 & 2.74 & .032 & .09 & <.2 & .04 & 34 & .4 & .03 & 8.6 \\ 1 & 1.95 & .009 & .04 & <.2 & .05 & 33 & .7 & .03 & 5.3\end{array}$ $22.81 .027 \quad .07<.2 \quad .04 \quad 47 \quad .2<.02 \quad 9.1$ $\begin{array}{llllllll} & 3 & 3.01 & .030 & .05 & <.2 & .02 & 22 \\ .2 & .2 & 02 & 8.7\end{array}$ $\begin{array}{lllllllll}3 & 1.68 & .022 & .04 & <2 & .02 & 35 & .2 & .02 \\ 5.4\end{array}$ $\begin{array}{lllllllll}3 & 2.67 & .034 & .11<2 & .05 & 45 & .3 & .04 & 8.7\end{array}$ $\begin{array}{lllllllll}3 & 2.67 & .034 & .11 & <.2 & .05 & 45 & .3 & .04 \\ 2 & 1.91 & .007 & .03 & <.2 & .03 & 19 & .3 & .03 \\ 5.5\end{array}$ $\begin{array}{llllllllllll}51 & 91.47 & 6.91 & 57.1 & 15 & 49.2 & 21.9 & 741 & 3.57 & 4.8 & .3 & 1.9\end{array}$ $\begin{array}{llllllllllllllll}55 & 49.38 & 23.42 & 81.6 & 29 & 66.5 & 21.6 & 983 & 3.64 & 7.1 & .7 & 4.0 & 9.3 & 23.0 & & 10\end{array}$

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

IPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM ; MO, $C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, 2 N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabitities for actual cast of the analysis only.

SAMPLE\#	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{ppm} \end{array}$	Ge ppm	$\begin{gathered} \text { Hf } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{p} p \mathrm{~m} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{pprn} \end{array}$	$\begin{array}{r} \text { Sn } \\ \text { ppm } \end{array}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{Z} \end{aligned}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppom} \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ p p r n \end{array}$	$\begin{array}{r} \text { Ce } \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { In } \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{pprn} \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \end{array}$	Sample gm
GSMD-17697	1.97	<. 1	. 28	.17	8.0	3.7	. 4	. 02	$<.05$	15.8	11.63	60.0	. 03	<1	. 4	18.8	30.0
GSMD-17563	. 66	<. 1	. 07	1.46	3.4	4.2	. 7	. 02	<. 05	3.8	6.45	14.7	. 02	2	. 4	9.9	30.0
GSMD-17568	1.29	<. 1	. 28	. 93	3.8	7.3	1.0	<. 01	<. 05	11.5	10.61	23.0	. 04	<1	. 5	11.7	30.0
GSMD-17693	. 80	<. 1	. 18	. 26	5.1	6.3	. 4	. 01	<. 05	10.2	12.46	32.3	. 03	<1	. 4	17.4	30.0
GSMD-17579	. 40	. 1	.14	. 60	5.0	5.3	. 5	<. 01	<. 05	8.0	8.87	29.7	. 02	<1	. 3	18.9	30.0
GSMD-17696	1.02	$<.1$. 15	. 28	7.1	4.6	. 3	<. 01	<. 05	9.7	6.53	50.2	. 02	<1	. 4	20.3	30.0
GSMD-17700	1.18	<. 1	. 15	. 64	11.3	3.9	. 4	<. 01	<. 05	9.0	9.62	66.7	. 03	<1	. 4	17.8	30.0
GSMD-17687	2.73	. 1	. 18	. 23	9.9	7.0	. 3	<. 01	<. 05	11.7	13.11	57.5	. 05	1	. 4	32.0	30.0
GSMD-17564	. 66	. 2	. 34	. 22	1.9	8.4	. 8	<. 01	$<.05$	12.1	15.38	13.4	. 05	1	. 4	7.6	30.0
GSMD-17698	1.20	$<.1$. 31	. 19	9.2	5.8	. 4	<. 01	<. 05	14.9	12.04	53.7	. 04	<1	. 6	24.8	30.0
GSMD-17575	. 83	. 1	. 33	.10	4.2	7.5	. 6	< 01	<. 05	12.4	12.31	22.6	. 06	2	. 3	15.0	30.0
GSMD-17520	1.01	$<.1$. 06	. 46	9.0	4.1	. 4	< 01	<. 05	5.2	12.09	60.3	. 07	<1	. 5	17.6	30.0
GSMD-17565	. 46	. 2	. 39	. 51	1.0	5.4	. 8	<. 01	<. 05	14.7	12.61	15.9	. 08	<1	. 4	7.3	30.0
GSMD-17574	. 41	. 1	. 25	. 20	2.6	5.4	. 5	<. 01	<. 05	11.3	9.45	22.9	. 07	<1	.3	11.4	30.0
GSMD-17562	. 91 -	. 1	. 30	. 08	3.7	8.7	. 7	<. 01	<. 05	11.7	14.15	20.8	. 09	<1	. 4	15.8	30.0
GSMD-17683	2.68	. 1	. 08	. 40	12.1	6.4	. 5	<. 01	$<.05$	7.1	8.45	58.4	. 09	<1	. 4	26.3	30.0
GSMD-17567	. 86	. 2	. 33	. 67	3.4	8.8	. 9	<. 01	<. 05	13.6	16.81	24.1	. 10	<1	. 5	12.5	30.0
GSMD-17695	. 77	. 1	. 13	. 26	6.9	4.1	. 4	<. 01	<. 05	9.0	8.16	71.9	. 09	<1	. 4	15.4	30.0
GSMD-17571	. 81	. 1	. 38	. 15	2.9	10.5	. 6	<. 01	<. 05	17.7	23.01	33.0	. 11	<1	. 5	18.1	30.0
GSMD-17692	. 61	. 1	. 36	. 15	4.9	9.6	. 6	<. 01	<. 05	15.9	14.38	27.7	. 09	<1	. 4	14.8	30.0
GSMD-17681	1.23	. 1	. 18	. 31	7.5	6.3	. 4	$<.01$	<. 05	10.2	10.97	51.4	. 08	<1		20.2	30.0
GSMD-17690	. 58	<. 1	. 14	. 23	4.6	3.7	. 4	<. 01	<. 05	8.1	8.09	72.1	. 08	<1		22.8	30.0
RE GSMD-17690	. 57	<. 1	. 13	. 31	4.7	3.6	. 3	<. 01	<. 05	8.4	8.15	76.4	. 07	<1	. 4	22.9	30.0
GSMD-17572	1.10	. 1	. 02	. 92	4.5	5.8	. 4	. 05	$<.05$	2.5	24.70	43.2	. 09	<1	. 6	15.9	30.0
GSMD-17684	2.78	. 1	. 17	. 36	13.0	5.5	. 4	<. 01	<. 05	10.0	7.02	60.2	. 07	<1	. 4	24.8	30.0
GSMD-17694	. 35	<. 1	. 10	. 27	2.6	2.7	. 3	. 02	<. 05	6.3	23.50	21.2	. 04	2	. 3	7.5	30.0
GSMD-17691	. 69	. 1	. 37	. 15	5.0	7.9	. 5	<. 01	$<.05$	13.9	13.74	24.8	. 06	<1	. 3	14.8	30.0
GSMD-17682	1.10	$<.1$. 16	. 30	7.6	6.1	. 3	<. 01	<. 05	9.3	10.59	50.8	. 04	<1	. 4	18.6	30.0
GSMD-17699	. 73	<. 1	. 04	. 70	7.6	2.7	1.9	. 01	< 05	2.3	5.90	28.9	. 03	<1	. 3	19.4	7.5
PPD-17521	2.39	. 1	. 34	. 13	3.8	10.2	. 6	<. 01	<. 05	13.8	13.17	18.4	. 04	<1	. 4	15.7	30.0
PPD-17539	. 83	. 1	. 40	.12	4.1	8.7	. 8	< 01	<. 05	13.5	13.64	20.0	. 04	<1	. 4	15.8	30.0
PPD-17530	. 66	. 1	. 29	. 12	4.3	7.7	. 4	<. 01	<. 05	13.3	10.18	27.1	. 03	<1	. 4	19.4	30.0
PPD-17534	1.18	<. 1	. 16	1.07	3.3	8.5	. 6	. 01	<. 05	6.0	21.19	31.1	. 04	1	. 9	17.5	30.0
STANDARD DS2	3.27	<. 1	. 04	1.49	12.9	2.9	26.3	. 01	$<.05$	3.1	7.65	28.9	5.42	<1	. 5	14.8	30.0

[^4]

[^5]| SAMPLE\# | $\underset{\text { ppr }}{\text { ch }}$ | $\begin{array}{r} \text { Ge } \\ \text { ppom } \end{array}$ | $\begin{array}{r} \mathrm{Hf} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Nb} \\ \mathrm{pprn} \end{array}$ | $\begin{array}{r} \mathrm{Rb} \\ \mathrm{p} \mathrm{pm} \\ \hline \end{array}$ | $\begin{array}{r} \text { Sc } \\ \text { ppon } \end{array}$ | $\begin{gathered} \text { Sn } \\ \text { ppom } \end{gathered}$ | $\begin{aligned} & \hline \mathbf{s} \\ & \mathbf{z} \end{aligned}$ | $\begin{array}{r} \mathrm{Ta} \\ \text { pom } \end{array}$ | $\begin{array}{r} 2 r \\ \mathrm{ppm} \\ \hline \end{array}$ | $\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Ce} \\ \mathrm{pp} \times \mathrm{m} \end{array}$ | $\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$ | $\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$ | $\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \\ \hline \end{array}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAMD-17547 | . 48 | . 1 | . 47 | . 30 | 3.0 | 9.7 | . 8 | . 02 | < 05 | 16.3 | 14.24 | 17.9 | . 04 | <1 | | 12.7 | 30 |
| LAMD-17541 | . 66 | <. 1 | . 21 | . 34 | 2.3 | 4.1 | . 5 | . 02 | <. 05 | 9.3 | 9.00 | 23.7 | . 02 | <1 | . 2 | 14.1 | 30 |
| LAMD-17548 | . 68 | . 1 | . 37 | . 18 | 4.1 | 11.2 | . 7 | . 01 | <. 05 | 12.0 | 16.36 | 17.4 | . 04 | <1 | . 3 | 13.3 | 30 |
| LAMD-17543 | . 97 | . 2 | . 18 | . 46 | 3.4 | 5.9 | . 7 | . 01 | <. 05 | 9.6 | 11.30 | 26.3 | . 03 | <1 | . 5 | 13.3 | 30 |
| LAMD-17644 | . 80 | . 1 | . 22 | . 38 | 7.2 | 6.5 | . 4 | . 01 | <. 05 | 11.1 | 12.31 | 55.2 | . 03 | <1 | . 4 | 21.6 | 30 |
| LAMD - 17655 | . 81 | . 1 | . 19 | . 40 | 4.7 | 7.2 | . 6 | . 01 | <. 05 | 10.5 | 11.63 | 24.5 | . 04 | <1 | | 15.2 | 30 |
| LAMD-17648 | . 73 | <. 1 | . 07 | . 85 | 4.1 | 9.2 | . 3 | . 02 | <. 05 | 4.9 | 25.41 | 108.4 | . 06 | <1 | | 20.7 | 30 |
| LAMD-17653 | 1.08 | . 1 | . 31 | . 13 | 4.7 | 7.7 | . 6 | . 02 | <. 05 | 11.2 | 12.03 | 20.3 | . 06 | <1 | | 20.0 | 30 |
| LAMD-17657 | . 80 | . 1 | . 20 | . 12 | 4.7 | 9.5 | . 5 | <. 01 | <. 05 | 9.8 | 13.22 | 21.1 | . 05 | 1 | | 15.4 | 30 |
| LAMD-17641 | . 96 | . 2 | . 29 | . 24 | 3.8 | 8.6 | . 7 | <. 01 | <. 05 | 10.8 | 12.25 | 22.2 | . 06 | 1 | . 5 | 16.3 | 30 |
| LAMD-17660 | 1.09 | <. 1 | . 39 | . 37 | 7.1 | 10.4 | . 6 | <. 01 | <. 05 | 14.3 | 17.71 | 35.5 | . 06 | 2 | | 24.3 | 30 |
| RE LAMD-17650 | . 94 | < 1 | . 15 | . 57 | 7.6 | 5.9 | . 4 | <. 01 | <. 05 | 10.1 | 13.15 | 61.4 | . 04 | 3 | . 3 | 19.5 | 30 |
| LAMD-17650 | . 95 | <. 1 | . 14 | . 37 | 7.5 | 5.8 | . 4 | < 01 | . 07 | 8.3 | 14.14 | 62.9 | . 04 | <1 | | 20.5 | 30 |
| LAMD - 17654 | . 65 | . 1 | . 12 | . 24 | 2.3 | 5.4 | . 4 | <. 01 | <. 05 | 5.4 | 6.83 | 12.6 | . 03 | 2 | . 2 | 9.4 | 30 |
| LAMD-17554 | . 75 | .1 | . 34 | . 24 | 3.6 | 11.0 | . 9 | <. 01 | <. 05 | 13.7 | 16.00 | 16.2 | . 04 | <1 | . 5 | 15.8 | 30 |
| LAMD-17656 | 1.07 | . 1 | . 21 | . 10 | 3.7 | 8.2 | . 5 | <. 01 | <. 05 | 8.2 | 11.67 | 20.2 | . 04 | <1 | | 19.4 | 30 |
| LAMD-17642 | 1.01 | . 1 | . 25 | . 29 | 3.7 | 7.3 | . 6 | <. 01 | <. 05 | 8.7 | 11.45 | 23.4 | . 03 | 2 | . 4 | 17.0 | 30 |
| LAMD-17555 | 1.08 | <.1 | . 22 | . 32 | 3.4 | 6.3 | . 6 | . 01 | <. 05 | 11.0 | 10.22 | 32.1 | . 04 | <1 | | 16.3 | 30 |
| LAMD-17647 | 1.98 | <. 1 | . 15 | . 63 | 6.5 | 7.6 | . 5 | . 01 | <. 05 | 8.0 | 15.28 | 62.4 | . 04 | <1 | | 25.2 | 30 |
| LAMD-17658 | . 60 | . 1 | . 17 | . 20 | 4.4 | 4.4 | .4 | <. 01 | <. 05 | 5.9 | 8.10 | 24.9 | . 02 | <1 | | 17.6 | 30 |
| LAMD-17553 | . 86 | . 1 | . 30 | . 13 | 4.2 | 10.9 | . 7 | <. 01 | <. 05 | 11.3 | 14.31 | 19.3 | . 03 | 2 | | 14.1 | 30 |
| LAMD-17546 | . 46 | . 1 | . 22 | . 25 | 2.4 | 5.5 | . 5 | <. 01 | <. 05 | 8.5 | 10.80 | 17.8 | . 02 | 1 | . 2 | 10.5 | 30 |
| LAMD-17556 | . 32 | . 1 | . 32 | . 25 | 1.8 | 7.6 | . 5 | . 01 | <. 05 | 10.7 | 12.80 | 14.5 | . 02 | <1 | . 2 | 9.5 | 30 |
| LAMD-17659 | . 78 | <. 1 | . 16 | . 63 | 4.0 | 7.2 | . 7 | <. 01 | <. 05 | 7.0 | 11.74 | 26.5 | . 03 | 3 | | 21.3 | 30 |
| Lamd-17544 | 1.11 | . 1 | . 26 | . 17 | 6.6 | 8.6 | . 5 | <, 01 | <. 05 | 10.5 | 12.64 | 32.8 | . 03 | <1 | | 22.3 | 30 |
| STANDARD DS2 | 3.34 | <. 1 | . 04 | 1.44 | 13.0 | 3.1 | 26.2 | . 04 | <. 05 | 2.9 | 7.77 | 31.5 | 5.31 | <1 | . 5 | 14.4 | 30 |

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP LA - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL $C \& S$ BY ECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Sam! es pointing 'RE' are porting and RRE' gre Robert ports

[^6]| SAMPLE\# | $\begin{array}{rr} \operatorname{sio2} & \mathrm{Al} 203 \\ \% & \% \end{array}$ | $\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$ | $\begin{gathered} \text { Mgo } \\ \% \end{gathered}$ | $\begin{gathered} \mathrm{CaO} \\ \% \end{gathered}$ | $\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{TiO2} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$ | $\begin{gathered} \mathrm{MnO} \\ \% \end{gathered}$ | $\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$ | $\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$ | $\begin{array}{r} \mathbf{2 r} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} Y \\ p p m \end{array}$ | $\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \\ \hline \end{array}$ | $\underset{\mathrm{ppma}}{\mathrm{Sc}}$ | $\begin{array}{r} 101 \\ \% \end{array}$ | | $\begin{array}{r} \text { TOT/S } \\ \% \end{array}$ | SUM
 \% | |
| :---: |
| LAMD-17674 | 67.6011 .11 | 5.41 | 2.17 | 2.49 | 1.77 | 1.42 | 1.38 | . 07 | . 09 | . 025 | 758 | 43 | 118 | 317 | 30 | <10 | 16 | 6.3 | 1.05 | $<.01$ | 99.99 | |
| LAMD-17676 | 61.5711 .12 | 7.01 | 4.11 | 3.97 | 1.46 | . 93 | 1.17 | . 13 | . 20 | . 032 | 1100 | 72 | 110 | 156 | 24 | <10 | 23 | 8.2 | 1.20 | <. 01 | 100.08 | |
| LAMD-17667 | 46.4210 .07 | 7.47 | 1.67 | 1.37 | . 77 | . 99 | 1.01 | . 28 | . 07 | . 020 | 1081 | 45 | 79 | 151 | 29 | <10 | 15 | 29.8 | 8.06 | <. 01 | 100.10 | |
| LAMD-17664 | 56.7811 .19 | 5.07 | 1.99 | 8.93 | . 54 | 2.36 | 1.00 | . 20 | . 11 | . 028 | 6506 | 85 | 116 | 236 | 35 | <10 | 19 | 11.0 | 1.83 | . 04 | 99.99 | |
| LAMD-17679 | 53.6112 .53 | 8.12 | 4.00 | 4.37 | 1.64 | . 68 | 1.25 | . 13 | . 14 | . 033 | 554 | 78 | 115 | 139 | 29 | <10 | 26 | 13.5 | 2.48 | . 01 | 100.11 | |
| LAMD-17672 | 57.4811 .61 | 7.89 | 4.60 | 4.37 | 1.37 | . 72 | 1.11 | . 40 | . 15 | . 040 | 878 | 87 | 97 | 148 | 33 | <10 | 26 | 10.2 | 1.55 | <. 01 | 100.09 | |
| LAMD-17663 | 66.7513 .04 | 5.74 | 2.20 | . 99 | 1.36 | 2.19 | 1.16 | . 13 | . 06 | . 025 | 2448 | 63 | 78 | 233 | 27 | 11 | 15 | 6.0 | . 07 | . 01 | 99.97 | |
| LAMD-17677 | 60.4411 .54 | 7.50 | 3.08 | 2.92 | 1.48 | . 99 | 1.19 | . 10 | . 15 | . 029 | 782 | 69 | 100 | 187 | 25 | <10 | 21 | 10.6 | 1.92 | $<.01$ | 100.16 | |
| LAMD-17668 | 65.0110 .60 | 5.96 | 2.26 | 1.74 | 1.08 | 1.02 | 1.05 | . 19 | . 12 | . 023 | 1525 | 65 | 80 | 175 | 23 | <10 | 15 | 10.8 | 1.81 | <. 01 | 100.07 | |
| LAMD-17673 | 55.9810 .66 | 7.11 | 1.87 | . 89 | . 90 | 1.19 | . 90 | . 39 | . 08 | . 014 | 2010 | 51 | 68 | 202 | 21 | 11 | 11 | 19.7 | 5.32 | . 02 | 99.96 | |
| LAMD-17665 | 66.6011 .06 | 7.09 | 3.45 | 2.69 | 1.46 | 1.35 | 1.35 | . 22 | . 16 | . 024 | 1412 | 56 | 92 | 240 | 41 | <10 | 23 | 4.3 | . 15 | . 01 | 99.97 | |
| LAMD - 17671 | 65.6312 .40 | 6.24 | 2.86 | 2.75 | 2.08 | 1.49 | 1.23 | . 14 | . 09 | . 021 | 1002 | 44 | 119 | 251 | 30 | <10 | 19 | 4.8 | . 22 | <. 01 | 99.90 | |
| LAMD-17666 | 54.1817 .59 | 8.64 | 2.49 | 4.16 | 2.69 | 1.07 | 1.34 | . 15 | . 13 | . 015 | 321 | 20 | 311 | 191 | 26 | <10 | 22 | 7.3 | . 68 | . 01 | 99.86 | |
| LAMD-17662 | 63.4611 .40 | 7.85 | 3.34 | 3.05 | 1.71 | 1.14 | 1.22 | . 15 | . 28 | . 029 | 979 | 64 | 131 | 184 | 37 | <10 | 32 | 6.3 | . 29 | . 01 | 100.10 | |
| LAMD-17669 | 66.349 .79 | 6.78 | 3.30 | 3.08 | 1.28 | 1.00 | 1.06 | . 20 | . 19 | . 027 | 1959 | 67 | 97 | 162 | 27 | <10 | 20 | 6.6 | . 89 | . 01 | 99.91 | |
| LAMD-17680 | 63.089 .80 | 7.09 | 1.78 | 1.61 | 1.23 | 1.05 | 1.22 | . 18 | .13 | . 029 | 979 | 34 | 94 | 168 | 23 | <10 | 14 | 13.0 | 3.01 | . 01 | 100.35 | |
| PPD-17624 | 70.529 .97 | 6.26 | 1.94 | 1.43 | 1.28 | 1.59 | . 89 | . 27 | . 23 | . 014 | 2881 | 57 | 69 | 237 | 64 | <10 | 18 | 5.2 | . 42 | . 02 | 99.97 | |
| PPD-17640 | 62.4612 .26 | 7.67 | 3.24 | 3.10 | 1.73 | . 98 | 1.23 | . 07 | .13 | . 025 | 443 | 64 | 126 | 201 | 31 | <10 | 26 | 7.0 | . 28 | <. 01 | 100.00 | |
| PPD-17626 | 57.1913 .10 | 9.36 | 5.04 | 5.28 | 1.55 | 1.26 | 1.32 | . 15 | . 17 | . 028 | 1387 | 71 | 111 | 141 | 33 | <10 | 35 | 5.2 | . 16 | $<.01$ | 99.85 | |
| PPD-17634 | 62.8310 .92 | 7.69 | 4.41 | 4.19 | 1.62 | . 66 | 1.34 | . 10 | . 23 | . 036 | 498 | 72 | 92 | 196 | 30 | <10 | 30 | 6.0 | . 41 | <. 01 | 100.14 | |
| PPD-17631 | 58.3611 .21 | 6.69 | 2.64 | 2.79 | 1.51 | . 94 | 1.19 | . 15 | . 09 | . 024 | 917 | 53 | 114 | 202 | 28 | <10 | 18 | 14.3 | 3.34 | . 01 | 100.05 | |
| PPD-17638 | 54.1312 .89 | 8.85 | 5.18 | 5.56 | 2.10 | . 40 | 1.51 | . 12 | . 20 | . 036 | 298 | 76 | 118 | 121 | 29 | <10 | 34 | 9.0 | . 81 | < 01 | 100.06 | |
| RE PPD-17638 | 54.5013 .21 | 8.71 | 5.10 | 5.43 | 2.17 | . 40 | 1.51 | . 11 | . 20 | . 037 | 307 | 61 | 120 | 137 | 27 | <10 | 33 | 8.5 | . 82 | <. 01 | 99.96 | |
| PPD-17635 | 61.4311 .55 | 8.29 | 4.20 | 3.69 | 2.00 | . 58 | 1.38 | . 11 | . 20 | . 034 | 426 | 85 | 93 | 147 | 33 | <10 | 36 | 6.5 | . 42 | <. 01 | 100.06 | |
| PPD-17627 | 59.1311 .51 | 7.75 | 3.38 | 4.29 | 1.62 | . 71 | 1.44 | . 23 | .11 | . 027 | 510 | 49 | 120 | 185 | 27 | <10 | 23 | 9.7 | 1.57 | . 01 | 100.01 | |
| PPD-17632 | 58.5912 .74 | 8.72 | 4.06 | 3.14 | 1.68 | . 72 | 1.28 | . 20 | . 17 | . 027 | 492 | 56 | 224 | 163 | 35 | <10 | 33 | 8.5 | . 40 | < 01 | 99.95 | |
| PPD-17625 | 69.87 11.81 | 5.14 | 1.62 | 1.24 | 1.22 | 2.08 | . 95 | . 13 | . 08 | . 019 | 2168 | 48 | 94 | 228 | 35 | 13 | 13 | 5.4 | . 77 | <. 01 | 99.86 | |
| PPD-17628 | 68.7611 .09 | 5.27 | 2.77 | 3.52 | 2.22 | 1.14 | 1.35 | . 09 | . 09 | . 025 | 914 | 42 | 129 | 250 | 30 | <10 | 20 | 3.5 | . 14 | < 01 | 99.99 | |
| PPD-17636 | 59.6712 .80 | 9.28 | 3.64 | 3.14 | 1.60 | . 87 | 1.41 | . 12 | . 23 | . 037 | 500 | 77 | 103 | 171 | 33 | <10 | 38 | 7.0 | . 44 | < 01 | 99.91 | |
| PPD-17621 | 55.5313 .02 | 7.63 | 2.26 | 6.85 | 1.12 | 2.51 | 1.31 | . 32 | . 13 | . 025 | 976 | 329 | 173 | 211 | 31 | 20 | 17 | 8.9 | 1.51 | <. 01 | 99.81 | |
| PPD-17630 | 68.6012 .07 | 5.54 | 2.49 | 1.85 | 1.86 | 2.03 | 1.27 | . 01 | . 08 | . 018 | 832 | 41 | 89 | 281 | 26 | 10 | 15 | 3.9 | . 46 | $<.01$ | 99.87 | |
| PPD-17639 | 59.9612 .40 | 8.30 | 4.03 | 3.74 | 1.67 | . 80 | 1.29 | . 09 | . 15 | . 029 | 430 | 67 | 110 | 162 | 27 | <10 | 27 | 7.6 | . 41 | $<.01$ | 100.16 | |
| PPD-17622 | 56.9713 .15 | 7.65 | 2.55 | 5.94 | 1.11 | 2.37 | 1.30 | . 27 | . 13 | . 029 | 987 | 892 | 169 | 197 | 31 | 20 | 17 | 8.1 | 1.29 | . 03 | 99.85 | |
| STANDARD S0-15/CsB | 49.9312 .41 | 7.20 | 7.16 | 5.79 | 2.38 | 1.85 | 1.78 | 2.66 | 1.37 | 1.045 | 1968 | 75 | 391 | 962 | 22 | 18 | 12 | 5.9 | 2.41 | 5.29 | 99.89 | |

[^7]| SAMPLE\# | $\begin{gathered} \mathrm{SiO} 2 \\ \% \end{gathered}$ | $\begin{array}{r} \mathrm{Al} 203 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{TiO} \\ \% \\ \hline \end{array}$ | $\begin{array}{r} P 205 \\ \hline \end{array}$ | $\begin{gathered} \mathrm{MnO} \\ \% \end{gathered}$ | $\begin{array}{r} \mathrm{r} 203 \\ \% \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Ba} \\ \mathrm{pprn} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Sr} \\ \mathrm{pppm} \end{array}$ | $\begin{array}{r} 2 r \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} Y \\ \mathrm{ppm} \end{gathered}$ | $\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{LOI} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{OT} / \mathrm{c} \\ \% \end{array}$ | $\begin{array}{r} 3 / 5 \\ \% \end{array}$ | $\begin{array}{r} \text { SUM } \\ \% \end{array}$ | | |
| :---: |
| PPD-17629 | 64.66 | 14.84 | 6.07 | 2.33 | . 90 | 1.75 | 2.27 | 1.14 | . 21 | . 07 | . 008 | 1058 | 52 | 83 | 244 | 30 | <10 | 16 | 5.5 | . 38 | . 01 | 99.92 100.29 | | |
| | 62.98 | 10.92 | 5.94 | 2.99 | 3.98 | 1.89 | . 52 | 1.39 | . 15 | . 12 | . 021 | 277 | 87 | 105 | 179 | 27 | <10 | 24 | 9.3 | 1.91 | 01 | 100.29 | | |
| PPD-17623 | 61.82 | 12.31 | 7.97 | 1.88 | 1.67 | 1.18 | 1.94 | . 92 | . 34 | . 29 | . 018 | 2736 | 111 | 95 | 188 | 92 | <10 | 30 | 9.3 | 析 | , | 100 | | |
| PPD-17633 | 54.41 | 18.28 | 8.25 | 2.20 | 3.78 | 2.91 | 1.15 | 1.41 | . 20 | . 13 | . 008 | 350 | <20 | 324 | 179 | 30 | <10 | 23 | 7.5 | . 1.68 | . 01 | 99.92 | | |
| GSMD-17705 | 61.00 | 13.64 | 8.79 | 1.66 | . 88 | 1.57 | 1.84 | 1.55 | . 31 | . 12 | . 031 | 1407 | 150 | 97 | 229 | 37 | <10 | 20 | 8. | 1.26 | | | | |
| | | | | 3.32 | 2.15 | 1.36 | 2.44 | 1.29 | . 24 | . 16 | . 023 | 1206 | 101 | 99 | 184 | 35 | <10 | 24 | 6.6 | . 30 | . 01 | 99.99 | | |
| GSMD-17711 | 59.44 70.05 | 14.47 11.33 | 8.30 | 3.32 | 2.15 | 1.36 | 1.43 | 1.06 | . 16 | . 05 | . 016 | 2542 | 42 | 64 | 264 | 32 | <10 | 14 | 7.9 | 1.46 | . 01 | 100.12 | | |
| GSMD-17717 | 70.05 64.78 | 11.33 13.61 | 6.43 | 2.66 | 2.87 | 1.65 | 2.16 | 1.14 | . 21 | . 11 | . 018 | 1252 | 57 | 145 | 159 | 32 | <10 | 21 | 4.1 | . 16 | . 01 | 99.93 100.49 | | |
| GSMD-17718 | 62.98 | 12.05 | 7.36 | 3.38 | 3.92 | 1.69 | 1.28 | 1.38 | . 20 | . 15 | . 024 | 1069 | 76 | 130 | 154 | 34 | <10 | 27 | 5.9 6.3 | . 21 | . 01 | 100.37 | | |
| GSMD-17713 | 62.87 | 12.25 | 7.85 | 3.21 | 3.28 | 1.91 | . 90 | 1.34 | . 13 | . 17 | . 022 | 4 | 74 | 150 | 179 | 37 | < 10 | 2 | 6.3 | . | | | | |
| | | | | 4.15 | 3.46 | 1.48 | 1.17 | 1.43 | . 17 | . 17 | . 025 | 1118 | 127 | 106 | 132 | 36 | <10 | 30 | 6.9 | . 28 | . 01 | 100.32 | | |
| GSMD-17709 | 59.54 46.74 | 12.48 | 8.65 | 4.15 5.78 | 3.46 7.61 | 1.48 .74 | . 34 | . 95 | . 20 | . 14 | . 041 | 259 | 110 | 141 | 74 | 26 | <10 | 33 | 14.6 | 1.98 .28 | . 01 | 100.33 100.13 | | |
| GSMD-17714 | 62.61 | 12.73 | 7.45 | 3.32 | 2.74 | 1.81 | 1.10 | 1.29 | . 16 | .14 | . 026 | 804 | 88 | 139 | 191 | 31 | <10 | 18 | 6.6 3.6 | . 28 | . 03 | 100.13 100.11 | | |
| GSMD-17703 | 70.54 | 10.99 | 5.69 | 2.15 | 2.16 | 1.47 | 1.74 | 1.16 | . 21 | . 15 | . 018 | 1511 1130 | 71 | 121 | 279 | 42 | <10 | 22 | 3.9 | . 44 | . 02 | 100.19 | | |
| GSMD-17707 | 70.64 | 10.11 | 5.39 | 2.27 | 3.10 | 1.64 | 1.18 | 1.40 | . 24 | . 10 | . 019 | 1130 | 68 | 126 | 27 | 42. | | | | | | | | |
| | | | | | 2.64 | 1.75 | 2.13 | 1.19 | . 22 | . 11 | . 016 | 1408 | 55 | 144 | 178 | 34 | <10 | 22 | 4.3 | . 15 | . 01 | 99.94 | | |
| GSMD-17702 | 64.27 62.15 | 14.23 15.19 | 7.54 | 2.38 | 1.51 | 1.51 | 2.67 | 1.54 | . 14 | . 12 | . 019 | 1232 | 101 | 76 | 213 | 40 | 11 | 22 | 5.0 | . 28 | . 01 | 99.87 100.25 | | |
| GSMD-17715 | 53.58 | 13.98 | 9.46 | 4.25 | 5.19 | 2.07 | . 64 | 1.62 | . 17 | .16 | . 022 | 445 | 75 | 147 | 148 | 35 | <10 | 35 25 | 9.0 | . 1.16 | . 01 | 100.12 | | |
| GSMD-17720 | 63.45 | 11.81 | 6.73 | 2.85 | 3.54 | 1.69 | 1.03 | 1.34 | . 19 | . 12 | . 017 | 834 | 60 | 126 | 190 | 38 | <10 | 26 | 7.0 | 1.19 | . 01 | 100.16 | | |
| RE GSMD-17720 | 63.55 | 11.93 | 6.77 | 2.78 | 3.51 | 1.71 | 1.03 | 1.36 | . 23 | . 12 | . 019 | 852 | 63 | 124 | 190 | 38 | < | | | | | | | |
| GSMD-17708 | 63.84 | 12.46 | 6.96 | 3.07 | 3.16 | 1.83 | 1.37 | 1.49 | . 14 | . 13 | . 021 | 898 | 64 | 107 | 181 | 32 | <10 | 25 | 5.4 | . 52 | . 02 | 100.02 | | |
| GSMD-17708 | 64.55 | 11.92 | 6.72 | 3.23 | 3.50 | 2.10 | . 81 | 1.38 | . 15 | . 11 | . 022 | 675 | 556 | 126 | 190 | 31 | <10 | 29 | 5.4 | . 17 | . 01 | 100.89 | | |
| GSMD-17704 | 60.12 | 15.09 | 8.24 | 1.77 | . 69 | 1.27 | 2.33 | 1.57 | . 28 | .11 | . 026 | 1232 | 782 | 90 | 192 | 33 37 | - 23 | 25 | 8.1 5.5 | 1.05 .16 | . 01 | 100.13 | | |
| GSMD-17719 | 64.21 | 12.92 | 7.35 | 2.67 | 2.45 | 1.56 | 1.57 | 1.37 | . 16 | . 13 | . 014 | 1493 | 82 | 184 | 200 | 31 | <10 | 13 | 14.9 | 3.68 | . 01 | 100.21 | | |
| GSMD-17706 | 51.13 | 7.71 | 4.54 | 1.47 | 16.44 | 1.19 | 1.02 | 1.22 | . 30 | . 09 | . 014 | 1073 | 79 | 184 | 200 | 31 | | | | | | | | |
| | | | | | 4.40 | 1.85 | 2.03 | . 87 | . 48 | . 14 | . 014 | 3027 | 97 | 352 | 86 | 35 | <10 | 22 | 9.2 | 1.14 | . 04 | 99.82 | | |
| SJCD-10403 | 51.43 | 14.99 | 11.74 | 4.27 | 2.69 | 2.12 | 1.50 | . 83 | . 35 | . 16 | . 026 | 1227 | 130 | 481 | 80 | 24 | <10 | 27 | 8.4 | . 46 | . 01 | 99.93 | | |
| SJCD-10406 | 50.50 | 12.11 | 9.41 | 1.38 | 9.53 | 1.53 | 1.70 | . 81 | . 47 | . 13 | . 012 | 2980 | 95 | 460 | 89 | 32 | <10 | 19 | 11.9 | 2.14 | . 05 | 99.90 | | |
| SJJCD-10401 | 53.75 | 15.35 | 13.20 | 1.07 | 1.07 | 1.62 | 2.30 | . 96 | . 35 | . 10 | . 024 | 2370 | 171 | 96 | 97 | 29 | <10 | 28 | 9.5 10.8 | . 58 | . 01 | 99.89 | | |
| SJCD-10405 | 47.12 | 12.74 | 20.29 | 2.90 | 1.24 | 1.46 | 1.70 | . 63 | . 43 | . 31 | . 022 | 1396 | 295 | 287 | 59 | 39 | <10 | 24 | | | | | | |
| SJCD-10402 | 50.62 | 15.22 | 15.43 | 1.13 | 1.41 | 1.51 | 2.10 | 1.10 | . 32 | . 10 | . 024 | 2378 | 170 | 103 | 106 | 32 | <10 | 28 | 10.3 | .61 .42 | $\begin{array}{r} .01 \\ 5.32 \end{array}$ | $\begin{aligned} & 99.59 \\ & 99.95 \end{aligned}$ | | |
| STANDARD S0-15/CSB | 50.33 | 12.40 | 7.09 | 7.05 | 5.70 | 2.34 | 1.90 | 1.82 | 2.62 | 1.35 | 1.030 | 2017 | 80 | 385 | 991 | 23 | 18 | | 5.9 | | | | | |

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page. I..(a)

SAMPLE\#	$\begin{gathered} \mathrm{Mo} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{rr} \mathrm{Zn} \\ \mathrm{n} & \mathrm{p} 日 \mathrm{~m} \end{array}$	Ag	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{rr} \mathrm{i} & \mathrm{Co} \\ \mathrm{~m} & \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \text { ppon } \end{array}$	$\begin{array}{cc} \mathrm{n} & \mathrm{Fe} \\ \% & \% \end{array}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{lr} s & U \\ n & \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppm } \end{aligned}$	$\begin{array}{cc} h & \mathrm{Sr} \\ \mathrm{~m} & \mathrm{ppm} \end{array}$	$\begin{array}{rr} \mathrm{Cd} \\ \mathrm{n} & \mathrm{ppm} \end{array}$	$\begin{array}{ll} \mathrm{d} & \mathrm{Sb} \\ \mathrm{~m} & \mathrm{ppm} \end{array}$		$\begin{array}{lr} B i & V \\ \text { pm ppm } \end{array}$	Ca	$\begin{aligned} & P \\ & q \end{aligned}$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	Mg	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ti} \\ \% \end{array}$	$\begin{array}{r} 8 \\ 8 \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{cc} B & A l \\ m & \% \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \% \end{aligned}$	$\begin{array}{r} \text { W } \\ \mathrm{ppm} \end{array}$		$\begin{array}{r} \mathrm{Hg} \\ \mathrm{ppb} \end{array}$		Te ppm	$\begin{gathered} \text { Ga } \\ \text { ppm } \end{gathered}$
TCH0-17767	. 24	58.84	4.12	43.3	18	46.6	620.1	719	3.49	2.3	3.2	1.6	1.6	618.2	. 10	. 21		07116	1.41	. 046	5.8	53.0	1.19	129.3	. 331		2.77	. 028	. 04	$<.2$	< 02	15	. 4	. 03	7.1
TCHD-17760	. 42	117.91	4.37	72.3	61	102.6	644.5	1367	5.59	18.9	. 2	4.2	1.3	31.5	. 14	4 . 53	. 08	08168	1.29	. 053	6.8	106.1	2.06	286.3	297		3.57	028	03	<. 2	< 02	35	6	03	0.0
TCHD-17754	. 38	56.83	9:46	55.8	68	51.3	32.1	1077	3.97	29.7	. 3	47.2	2.1	121.1	. 18	81.34		06110	. 96	053	9.4	81.5	1.13	257.8	212		12.11	015	05	< 2	< 02	65	4	03	5.9
TCHD-17596	. 61	100.00	14.42	83.7	58	67.1	120.0	1387	3.83	8.2	. 4	9.0	3.9	23.3	. 14	4.72		1893	. 78	. 049	14.3	68.8	1.08	760.0	198		22.16	020	11	. 3	. 03	133	. 3	. 11	6.2
TCUD-17765	. 21	58.05	2.30	44.4	26	53.6	630.7	8 90	3.81	1.9	. 1	2.4	1.0	26.7	7.13	3.14	4.03	03129	. 64	050	4.0	51.2	1.36	61.5	. 394		13.26	032	04	<2	<. 02	31	. 5	. 02	7.9
TCHD-17771	. 27	16.44	5.83	32.7	25	27.8	8.5	371	2.30	3.3	3.3	3.9	3.0	017.2	2.09	9.33	. 06	0670	. 81	053	11.6	43.0	. 61	159.0	210		11.37	028	. 07	<.2	<. 02	15		< 02	4.4
TCH0-17776	. 21	34.04	5.15	39.9	25	34.1	113.9	552	2.84	5.2	2	1.9	3.2	220.6	. 08	8 . 32		0787	. 88	. 048	10.7	51.4	. 79	138.2	227		21.89	028	. 07	<. 2	<. 02	15	. 2	< 02	5.4
TCHD-17741	. 45	45.67	12.32	63.4	28	43.2	216.6	704	3.45	6.7	. 4	6.4	3.6	621.9	. 17	7.72		12102	. 97	. 062	13.0	71.0	. 84	298.6	244		32.18	024	08	<. 2	< 02	50	. 3	. 02	6.0
TCH0-17772	. 22	27.96	3.48	29.5	46	31.3	312.7	437	2.65	3.5	. 2	1.0	1.6	610.7	. 08	. 23		0388	. 89	. 038	5.8	47.0	. 67	90.0	267		32.02	013	02	<. 2	<. 02	37	3	02	5.4
TCHD-17748	. 35	45.47	7.58	49.9	52	31.3	312.9	590	2.55	4.5	. 3	4.0	2.7	723.1	1.15	5 . 53		0772	. 95	. 064	11.0	35.8	. 70	266.1	209		11.36	025	. 05		<. 02	36	. 1	. 02	4.5
TCHD-17586	. 29	63.41	7.18	56.4	41	65.5	519.1	841	3.29	4.0	. 2	5.1	2.7	723.2	2.09	9.33	. 09	0990	1.01	048	11.1	66.	1.17	503.9	233		42.16	. 026	. 08	<	< 02	42	2	. 04	6.2
TCHD-17588	. 18	40.87	5.06	46.4	27	85.2	20.5		3.29	4.3	. 3	6.2	2.7	725.1	1 . 10	0 . 31		0687	. 80	. 045	10.7	70.8	1.25	200.3	. 214		12.39	033	. 05	< 2	<. 02	31	2	02	6.5
TCHD-17761	. 25	55.69	3.90	45.3	31	53.1	125.0	820	3.81	2.5	. 3	1.7	1.9	925.4	4 . 11	1.19		05135	1.61	. 043	6.7	55.2	1.30	154.2	403		23.05	034	. 03	<. 2	<. 02	20	3	. 02	8.4
TCH0-17755	. 46	40.49	10.66	57.8	48	41.5	517.5	640	3.52	7.9	. 4	4.4	3.1	121.0	. 15	. 60		09102	. 82	. 047	13.2	71.5	. 93	270.4	. 217		12.18	. 018	. 06	< 2	< 02	36	3	<. 02	6.1
TCHD-17592	. 19	49.64	3.84	39.9	18	158.7	26.0	587	3.07	2.0	. 2	14.2	2.3	317.7	. 09	- . 19		0763	. 81	. 046	8.8	81.5	1.88	273.1	. 178		22.15	025	. 05	<. 2	<. 02	21	. 1	. 03	5.1
TCHD-17595	. 27	50.43	5.87	49.0	23	104.7	22.2	701	3.55	3.6	. 3	3.4	2.6	618.4	4.09	. 31	. 08	0893	. 88	. 030	9.8	88.6	1.48	329.5	. 222		22.36	. 029	. 06	<. 2	<. 02	30	2	. 02	6.5
TCHD-17773	. 17	26.66	3.36	30.7	14	27.3	310.8	393	2.26	5.4	. 2	3.4	2.4	413.0	. 09	. 24		0575	. 85	. 033	8.4	39.6	. 64	86.0	. 238		41.68	. 018	. 02	<. 2	<. 02	22	. 2	< 02	4.7
TCHD-17599	16.13	243.27	44.31	63.7	188	15.9	96.7	304	3.57	115.8	2.4	5.4	11.9	9 10.7	. 16	6.68	48.33	3341	. 11	. 074	27.1	25.6	. 53	71.2	102	30	1.84	. 026	. 29	44.7	. 31	7	8	. 21	6.5
TCHD-17778	. 22	43.53	2.68	40.8	15	41.6	19.1	614	3.68	3.3	. 2	3.4	1.5	522.9	. 10	. 25		09133	1.36	. 034	5.4	64.3	1.06	65.9	. 382		13.03	. 035	. 03	1.0	<. 02	29		< 02	8.4
TCHD-17762	. 28	56.35	4.97	46.7	64	52.9	25.7	821	3.82	2.8	. 3	1.7	2.3	322.7	7.13	3.25		08129	1.54	. 046	7.9	54.4	1.27	160.1	. 384		23.10	. 034	. 04	. 3	<. 02	21	. 5	. 02	8.3
RE TCHD-17762	. 29	56.73	4.94	46.4	59	52.8	825.6	820	3.82	3.0	. 3	2.6	2.2	22.1	. 13	3 . 24		07127	1.52	. 046	7.8	53.9	1.26	160.0	. 380		23.08	. 032	. 03	<.2	<. 02	27	5	. 02	8.5
TCHD-17769	. 25	55.96	4.17	38.8	25	59.2	218.6	683	3.00	3.0	. 2	3.0	1.7	717.6	. 08	. 29		0697	1.23	. 039	7.1	48.2	1.10	185.9	. 288		2.30	. 027	. 03		<. 02	19	. 3	. 02	6.0
TCHD-17777	. 28	36.50	4.20	44.4	26	39.4	. 17.4	583	3.53	5.3	. 2	4.8	2.4	419.4	. 09	. 31		06112	. 96	. 032	8.1	62.9	. 93	89.5	. 282		12.74	. 024	. 05	<. 2	<. 02	23	3	. 02	7.4
TCHD-17591	. 13	72.05	2.81	45.1	35	282.5	39.6	618	3.41	2.0	. 1	2.1	1.6	635.8	. 09	. 14	4.04	0454	2.08	. 037	6.4	96.4	3.47	233.1	. 168		12.27	. 025	. 06	< 2	<. 02	22	. 2	. 02	5.4
TCHD-17587	. 24	91.93	4.57	63.7	29	265.4	442.0	1182	5.73	9.6	. 2	5.5	1.9	42.2	. 12	. 52		06150	1.37	. 020	9.0	129.6	2.21	328.5	. 330		33.68	. 024	. 04	$<.2$	<.02	44	. 5	< 02	0.4
TCHD-17747	. 44	26.44	10.59	65.5	83	42.5	14.5	537	2.91	8.1	. 5	3.1	2.2	217.8	. 36	. 67		1180	. 83	. 034	10.1	53.7	. 78	230.2	211		21.64	. 009	. 03		< 02	26		<. 02	5.2
TCHD-17742	. 47	44.76	13.16	66.5	23	43.5	16.3	720	3.46	7.5	. 4	4.2	3.6	620.5	. 19	. 74		13102	. 90	. 058	13.4	69.9	. 83	296.7	. 242		12.24	. 018	. 06	< 2	<. 02	51	. 3	. 02	6.3
TCHD-17779	. 42	19.82	7.20	56.2	63	30.3	312.7	439	2.68	4.8	. 3	3.2	3.4	49.5	. 16	. 35	. 09	10970	. 40	044	13.8	45.4	. 52	123.0	. 150		11.78	. 006	. 02	< 2	. 02	37	. 4	<. 02	5.4
TCHO-17597	. 63	56.69	12.77	72.3	109	43.2	217.4		3.50	6.6	. 3	4.2	2.8	817.3	. 22	. 62	2.10	1098	. 68	. 052	12.7	62.7	. 87	311.6	. 227		2.10	. 010	. 05	<. 2	<. 02	63	. 5	. 03	6.6
TCHD-17757	. 93	52.48	26.15	127.9	228	44.3	16.0	601	4.25	36.1	1.1	6.6	7.0	24.9	. 36	2.84		3281	. 78	. 072	24.0	74.5	. 77	298.9	. 137	<1	1.94	. 008	. 10	<. 2		486	. 5	. 02	5.6
TCHD-17589	. 21	71.03	4.66	42.7	27	112.7	27.2	869	3.68	2.3	. 2	3.0	2.2	221.0	. 06	. 21		0698	. 91		8.3	92.1	2.03	358.2	208		2.78	030	. 06		<. 02	25	. 2	. 02	7.6
TCHD-17768	. 36	52.99	4.94	41.3	85	48.1	21.8	591	3.25	3.6	. 3	2.7	2.0	15.7	. 12	. 31		06107	. 99	035	7.0	59.4	. 87	144.8	. 290		2.51	. 012	. 03	<. 2	<. 02	45	5	<. 02	6.6
TCHO-17594	. 49	107.55	11.36	95.4	133	146.4	38.2	1339	4.63	22.0	. 2	11.6	2.3	356.9	. 18	1.69	. 11	1199	3.01	. 049	10.7	87.6	2.50	1052.1	. 199		2.52	. 017	10	$<.2$	< 02	145	. 4	. 05	8.1
STANDARD DS2	13.75	123.95	32.40	158.9	275	34.5	512.2	808	3.26	58.4	17.9	212.3	3.4	428.6	9.78	9.13	10.64	6473	. 56	085	15.3	153.7	. 57	137.8	. 087		21.68	. 031	16	6.7	1.85	230	2.2	1.90	6.0

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N 1, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^8]

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

- pon

PP0-1763 PP0. 17623 PPQ- 17633 GSNO. 17705

GSNO. 17711

 GS40-17717 ustio-1770: $6550-17718$ GS50-17713 GSVP. 17709 GS40-17716 CSHO-17716 GSFD-17714 CSTMD-17703 CSSRO-17707
SSTO-17

 CSSNO-17 GSid 17715 GSi0. 17720$\begin{array}{llllllllllllllllllllllllllllll}48 & 34.05 & 34.42 & 89.2 & 28 & 33.6 & 15.8 & 538 & 3.84 & 5.7 & .8 & 2.5 & 9.8 & 13.8 & .11 & .46 & .30 & 46 & .38 & .076 & 30.1 & 38.7 & 1.08 & 189.5 & .065\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}40 & 70.81 & 4.77 & 42.2 & 35 & 42.0 & 19.2 & 652 & 3.17 & 8.3 & .2 & 5.2 & 1.9 & 11.8 & .13 & .40 & .09 & 116 & .95 & .043 & 5.4 & 49.8 & .89 & 75.9 & 344\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}1.01 & 32.13 & 8.67 & 51.0 & 49 & 12.6 & 12.6 & 478 & 4.29 & 2.5 & .5 & 3.2 & 2.9 & 49.1 & .09 & .09 & .14 & 163 & .51 & .042 & 10.9 & 38.2 & .52 & 86.1 & 375\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}.60 & 56.82 & 16.80 & 86.4 & 113 & 44.7 & 19.7 & 714 & 3.48 & 7.8 & .5 & 4.0 & 6.5 & 32.8 & .26 & .61 & .23 & 58 & .85 & .083 & 19.3 & 41.2 & .84 & 165.2 & 128\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllllll}28 & 78.17 & 5.79 & 67.4 & 20 & 56.3 & 26.6 & 1128 & 4.39 & 11.1 & .3 & 6.0 & 2.9 & 29.4 & .14 & .69 & .09 & 126 & .96 & 050 & 10.1 & 67.3 & 1.25 & 283.1 & 262\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllll}23 & 73.41 & 1.30 & 52.0 & 69 & 80.8 & 29.6 & 733 & 4.46 & 3.3 & .1 & 3.2 & .8 & 76.5 & .08 & .22 & .03 & 99 & 2.39 & .058 & 3.3 & 77.2 & 1.74 & 142.1 & 238\end{array}$

 $\begin{array}{llllllllllllllllllllllllllllllllllll}.32 & 82.92 & 6.46 & 54.0 & 54 & 51.7 & 24.5 & 725 & 3.59 & 6.7 & .3 & 2.3 & 2.9 & 23.3 & .14 & .50 & .09 & 98 & .88 & 066 & 10.3 & 57.7 & .95 & 157.9 & .236\end{array}$

6S50. 17708
$6540-17712$ $6540-17712$ OST40-17704 CSSP. 1719 CSCD-17706

 $\begin{array}{lllllllllllllllllllllllllllllllllll}.16 & 59.58 & 4.18 & 48.7 & 7 & 59.9 & 19.1 & 635 & 3.65 & 9.1 & .2 & 3.9 & 2.5 & 21.8 & .08 & .44 & .07 & 114 & 1.04 & .038 & 8.3 & 72.3 & 1.33 & 223.8 & .249\end{array}$

 $39.19616 .0926 .151032 .6 \quad 206308.467 .1228010 .90 \quad 37.01 .6$

$$
\begin{array}{llllllll}
& 12 & .90 & 149 & 11.6 & 21.5 & .22 & 157.2
\end{array}
$$

$\begin{array}{llllllll}2.21 & 018 & .15 & <2 & .09 & 22 & 4 & 03\end{array}$ $\begin{array}{llllllll} & 3.58 & .015 & .03 & <.2<.02 & 32 & .5 & .04 \\ 7.0\end{array}$ $\begin{array}{lllllllll}2 & 1.96 & 008 & .11 & <.2 & .04 & 459 & 1.1 & \text {. } 10\end{array} 4_{4} 3$ | 2 | 4.14 | 133 | .07 | $<$ | 2 | .09 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}2 & 4.24 & .007 & .06 & <.2 & .03 & 117 & .9 & .10\end{array} 4_{4} 7$

$\begin{array}{llllllll} & 2.56 & 014 & .16 & <.2 & .04 & 52 & .6\end{array} .05 \quad 7.8$ $\begin{array}{llllllll}2 & 1.78 & .002 & .10 & <.2 & .08 & 54 & .3\end{array} .07 \quad 7.2$ $\begin{array}{lllllllll}4 & 1.50 & .018 & .10 & <.2 & .07 & 54 & .5 & .08 \\ 5.2\end{array}$ $\begin{array}{llllllll}4 & 2.34 & .023 & .10 & <.2<.02 & 45 & .4 & .06 \\ 7.0\end{array}$ $\begin{array}{llllllll}2 & 2.58 & 024 & .08 & <.2 & <.02 & 37 & .3\end{array} .057 .9$
$22.87 .025 .10<2<.02 \quad 53 \quad .6 \quad .07 \quad 9.2$ $15.35 .017 \quad .08<.2<.02 \quad 40 \quad .9 \quad .0310 .0$ $\begin{array}{lllllll}4 & 2.60 & .027 & .08 & <.2<.02 & 39 & .6\end{array} .03 \quad 7.7$ $\begin{array}{lllllllllll}1 & 1.19 .019 & .08 & <.2<.02 & 88 & .7 & .04 & 3.9\end{array}$ $\begin{array}{lllllllll}3 & 1.34 & .010 & .04 & <.2 & <.02 & 59 & .7 & .04 \\ 4.2\end{array}$
$\begin{array}{llllllll}4 & 1.50 & .021 & .11 & <.2 & .06 & 42 & .3\end{array} .05 \quad 5.1$ $\begin{array}{lllllllll}4 & 2.07 & 011 & .11 & <.2 & .04 & 40 & .4 & .04 \\ 6.1\end{array}$

 | 3 | 2.41 | .019 | .04 | $<.2$ | $<.02$ | 45 | .7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 046.4 $\begin{array}{lllllll}2 & 2.39 & .011 & .04 & <.2<.02 & 46 & .6\end{array} .06 \quad 6.2$ $\begin{array}{lllllll}32.26 .027 & .08 & <.2<.02 & 25 & .4 & .03 & 6.8\end{array}$ $\begin{array}{lllllll}22.29 .024 & .06 & <.2<.02 & 32 & .4 & .04 & 7.3\end{array}$ $\begin{array}{lllllllll}52.10 & .008 & .08 & <.2 & .04 & 126 & .8 & .06 & 5.3\end{array}$ $\begin{array}{lllllllll}5 & 2.27 & .030 & .11 & <.2 & .03 & 71 & .5 & .03 \\ 7.2\end{array}$ $\begin{array}{lllllllllll}1 & .95 & .007 & .04 & <.2 & .05 & 47 & .6 & .05 & 2.9\end{array}$

$\begin{array}{llllllll}4 & 1.40 & 014 & 12 & <.2 & .44 & 348 & 8.5\end{array} .13 \quad 3.9$ | 3 | 2.92 | .055 | .20 | .6 | .71 | 42 | 2.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | .158 .9 $\begin{array}{lllllllll}3 & .73 & .008 & .11 & <.2 & .60 & 269 & 5.2 & .20 \\ 1 & 76.1\end{array}$

 $\begin{array}{lllllllll}1 & 2.17 & .014 & \text {. } 13 & .4 & .42 & 160 & 6.9 & .26\end{array} 4.0$

Sample type: 230 IILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GEOCHEMICAL ANALYSIS CFRITFICATE

pagenllyn!
$4 \uparrow$ $800 \% 700$ W. Fender St, , Vancouver $8 C$ VC 168 , Submitted by Gerry B dwell

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: - 230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^9]

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G ; W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: - 230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

are multicas																																			
SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppb} \end{array}$	$\begin{array}{cc} \mathrm{g} & \mathrm{Ni} \\ \mathrm{~b} & \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} C 0 \\ \mathrm{p} p \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Mn} \\ & \text { ppm } \end{aligned}$	$\begin{array}{cc} n & \mathrm{Fe} \\ \mathrm{n} & \mathrm{~F} \end{array}$	$\begin{array}{r} \mathrm{AS} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} u \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { b ppm } \\ & \hline \end{aligned}$	$\begin{array}{cc} \mathrm{Sr} \\ \mathrm{n} & \mathrm{ppra} \end{array}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} V \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & P \\ & q \end{aligned}$		$\begin{gathered} \hline \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Mg} \\ \% \end{array}$	$\begin{aligned} & \text { Ba } \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathrm{Ti} \\ \% \\ \hline \end{gathered}$		$\begin{array}{\|cc} B & A l \\ B & b \\ \hline \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{K} \\ \mathrm{~S} \\ \mathrm{ppm} \\ \hline \end{array}$	Tl ppm			$\begin{array}{r} \mathrm{Te} \\ \mathrm{ppmin} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ga} \\ \mathrm{ppm} \end{array}$
GSMO-17890	. 15	31.81	2.54	29.5		49.3	16.7	508	2.77	1.3	. 3	1.0	3.4	18.0	. 07	. 17	. 04	97	. 96	012	7.5	52.3	1.19	152.4	. 350		2.51	. 015		< 2	. 03	17		< 02	7.1
GSMO-17729	. 28	19.26	18.15	56.3	23	28.8	11.9	514	3.03	3.7	. 7	1.3	8.3	12.6	. 08	. 29	. 18	49	. 41	. 059	31.2	39.9	. 95	139.2	. 110		31.85	. 005	14	< 2	06	14	. 2	< 02	5.5
GSMO-17893	. 43	55.82	8.24	70.6		34.7	17.0	821	3.05	5.5	. 3	2.8	3.9	35.8	. 19	. 50	. 13	77	1.25	057	12.6	42.8	1.23	664.3	187		42.02	013	10	< 2	05	58		. 02	6.0
GSMD-17881	. 50	45.10	6.03	59.6	64	42.1	18.8	682	3.39	4.6	. 3	1.7	72.1	14.5	. 14	. 47	. 10	101	. 66	. 043	10.7	62.3	. 95	191.9	. 245		2.48	: 012	03	< 2	. 04	44	4	. 02	6.9
GSMD-17806	. 17	23.24	5.26	32.7	15	25.9	9.5	449	2.24	3.8	. 3	3.3	33.2	213.7	. 11	. 33	. 06	67	. 67	. 050	10.2	40.3	. 59	126.5	191		21.45	010		< 2	. 02	19	1	<. 02	4.3
GSME-17816	. 19	55.35	3.65	43.2		938.6	17.2	612	2.84	4.3	. 2	1.7	72.1	19.9	. 10	. 38	. 05	104	1.14	033	7.9	54.8	. 95	120.1	. 328		32.18	. 022		<. 2	. $\hat{0}$ 亿	23		< $\hat{0} 2$	6.5
GSMD-17882	. 55	42.77	5.19	58.1		40.9	19.3	679	3.50	4.5	. 3	1.8	81.8	814.4	. 15	. 41	. 08	103	. 66	048	9.4	65.6	. 90	183.8	. 249		32.63	. 012	03	< 2	. 03	45	3	. 02	7.1
GSMO-17892	. 42	20.71	5.08	58.3	103	37.8	10.5	541	2.81	3.1	. 3	1.3	31.7	711.1	. 15	. 17	. 09	89	. 48	. 038	9.1	53.9	. 52	156.2	. 206		42.11	006		< 2	. 03	69	. 3	< 02	6.2
GSMD-17740	. 18	21.90	4.20	26.7	23	32.8	10.9	390	2.10	12.6	. 2	1.6	62.3	310.8	. 08	. 30	. 05	72	. 66	041	7.5	44.3	. 61	100.9	. 227		31.70	. 009		<. 2	. 02	35	2	< 02	4.5
GSMD-17725	. 39	71.27	10.62	63.4	29	44.1	16.5	706	2.46	5.4	. 3	4.2	23.4	410.6	. 12	. 56	. 18	73	. 67	. 060	10.3	47.4	. 87	507.1	. 218		31.54	. 009	03	< 2	. 04	59	3	. 05	4.5
GSMD-17807	. 20	29.52	4.92	40.5	14	430.9	11.3	468	2.49	6.3	. 2	3.1	13.0	. 15.7	. 08	. 38	. 07	74	. 78	. 050	9.1	44.2	. 72	108.2	. 223		31.58	. 011		<, 2	. 02	30		. 02	4.9
GSMO-17885	. 17	105.60	1.04	54.8	56	72.8	40.3	1150	6.35	1.0	<. 1	. 8	8.5	529.4	. 07	. 18	. 03	188	1.40	. 046	3.5	88.0	2.73	55.2	. 359		15.66	. 007		<. 2	. 02	36		. 02	15.5
GSMD-17722	. 59	68.90	9.34	64.9	27	66.2	19.1	786	3.14	5.4	1.0	4.3	33.6	620.5	. 12	. 51	. 13	87	. 75	053	13.9	90.6	1.27	645.7	. 230		3.20	. 010		< 2	. 05	42	2	. 02	6.1
GSMD-17817	. 25	41.72	3.72	36.1		341.0	17.8	680	2.55	5.4	. 2	2.9	91.9	14.9	. 09	. 45	. 04	92	. 99	. 048	6.9	48.5	. 82	130.3	. 285		32.03	. 015	03	< 2	. 02	28	. 2	<. 02	5.8
GSMD-17894	. 23	54.34	5.39	42.1	18	832.2	213.5	651	12.52	4.0	. 2	2.9	92.3	327.0	. 08	. 31	. 10	76	. 77	. 048	7.8	36.9	. 79	345.7	. 235		31.55	. 010		<,2	. 02	40	<. 1	. 03	5.2
GSMD-17884	. 53	17.12	5.08	53.8		31.	13.1	300	3.27	3.8	. 3	3.0	01.6	67.2	.10	. 21	. 10	92	. 37	053	7.4	54.2	. 62	106.9	. 250		12.18	. 007		< 2	. 03	50		< 02	6.3
GSMD-17723	. 29	28.55	7.08	35.2	19	35.3	12.1	551	2.29	3.2	. 4	2.6	63.3	39.7	. 12	. 34	. 10	74	. 66	. 028	11.5	45.2	. 80	298.1	. 241		21.63	. 010		< 2	. 03	12		< 02	4.7
GSMD-17735	. 44	31.25	9.92	56.6	44	442.2	15.4	616	2.75	6.5	. 5	6.3	34.7	713.4	. 19	. 65	. 14	73	. 50	. 063	16.6	54.3	. 77	318.8	. 177		31.73	. 007	05	< 2	. 04	32		<. 02	4.9
GSM0-17811	. 31	110.27	10.65	64.1	17	739.6	16.0	630	2.68	6.6	. 3	5.1	13.2	225.1	. 08	. 54	. 14	82	. 64	. 036	12.3	51.3	. 88	623.9	. 221		31.81	. 011		<.2	. 03	11	. 2	. 05	5.4
GSMD-17738	. 21	27.76	3.93	28.5	18	825.3	9.9	450	1.81	3.5	. 2	2.9	92.3	312.4	. 07	. 43	. 05	53	. 57	. 055	7.9	28.5	. 56	213.1	. 168		11.05	. 006		< 2	. 02			<. 02	3.3
RE GSMD-17738	. 20	27.44	3.86	28.6		25.2	9.4		1.80	3.6	. 2	16.5		11.8	. 07	. 42	. 05	54	. 56	. 054	7.8	27.1	. 55	213.6	. 168		11.03	. 005		<. 2	. 02	10	< 1	< 02	3.3
GSMD-17818	. 35	38.67	4.66	42.6		741.9	14.4	488	2.75	4.6	. 2	2.4	42.2	12.8	. 10	. 34	. 07	91	. 64	. 041	9.3	59.0	. 85	190.4	. 244		2.21	. 012		< 2	. 03	56		< 02	6.2
GSMD-17886	. 51	92.93	7.30	70.5	196	84.8	20.2	320	3.21	7.1	. 3	12.1	13.9	7.5	. 07	. 47	. 16	64	. 23	. 028	15.3	61.2	. 96	870.8	. 108		32.31	. 006		< 2	. 04	49	. 3	. 03	5.3
GSMD-17731	. 56	44.84	13.04	61.5	111	150.3	17.6	715	2.99	22.1	. 5	3.7	74.1	14.5	. 22	. 84	. 13	87	. 63	. 049	15.1	63.5	. 93	377.1	. 207		32.04	. 009	. 05	<.2	. 06	29	. 3	. 02	5.6
GSM0-17899	. 61	21.67	18.21	37.4	1225	30.7	9.9	325	1.81	77.5	1.0	2.9	2.8	17.1	. 11	. 64	. 31	30	. 45	. 043	14.4	59.8	. 58	42.2	. 060	5	5.98	. 016	. 07	7 <. 2	. 05	111	. 1	<. 02	3.6
GSMD-17812	. 26	34.88	4.19	36.4		83.8	13.0		2.48	4.0	. 2		52.6	616.7	. 09	. 39	. 06	84	. 77	046	9.8	49.8	. 77	166.7	. 252		21.83	. 013			. 02	24		$<.02$	5.3
GSMD-17732	. 27	27.92	10.29	44.5	12	335.7	11.9	526	2.54	5.1	. 5	4.3	35.0	(14.9	. 10	. 45	. 10	64	. 52	057	18.7	46.5	. 81	269.5	. 160		21.58	. 009		< 2	. 03	34		<. 02	4.7
GSMD-17810	. 86	42.09	6.75	73.7	115	58.4	16.1	482	4.24	20.4	. 3	5.0	01.9	9.3	. 17	. 66	. 12	136	. 41	. 049	6.7	80.8	. 81	101.8	. 344		2.94	. 005		< 2	. 04	50	. 2	. 02	8.5
GSMD-17730	. 22	21.79	9.14	31.8		30.3	10.5	420	2.11	3.7	. 4	14.3	34.4	410.5	. 08	. 32	. 10	60	. 61	. 060	15.5	35.4	. 68	140.7	. 174		21.51	. 007		< 2	. 03	10	. 3	<, 02	4.2
TCHD-17828	. 40	31.82	6.12	41.9	12	34.0	15.6	603	2.85	3.9	. 3	3.0	3.4	422.3	. 10	. 33	. 08	92	. 74	. 047	11.4	60.2	. 75	99.9	. 248		11.95	. 014		< 2	. 03	23	2	<. 02	5.7
TCHD-17823	. 39	21.10	5.27	40.7		30.6	13.5	445	2.71	4.9	. 3	1.9	2.1	9.9	. 15	. 28	. 08	87	. 53	040	9.0	50.1	. 60	126.0	. 240		2.07	009		< 2	. 03	52		< 02	5.9
TCHD-17825	. 26	41.18	5.39	50.4	44	41.8	19.6	755	3.13	3.8	. 2	1.9	2.8	39.5	. 15	. 31	. 08	96	1.47	053	9.8	47.3	1.14	116.4	. 284		2.18	. 024		< 2	. 03	32		< 02	6.9
TCHD-17839	. 52	68.45	6.38	70.4	23	50.8	32.3	1005	4.25	5.0	. 3	2.1	12.4	421.1	. 17	. 38	. 10	126	1.05	. 057	9.7	76.9	1.46	126.0	. 300		3.45	. 021	. 05	<. 2	. 04	25		. 02	9.5
STANDARD DS2	14.27	131.54	33.05	160.1	247	35.1	12.1	823	3.08	58.2	19.6	204.6	63.6	629.1	10.27	9.72	10.74	73	. 53	. 088	16.5	164.8	. 60	154.4	. 098		1.72	. 030	. 16	6.9	1.85	233	2.3	. 90	6.0

[^10]	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb

[^11]

GROUP 1F30-30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.

- SAMPLE TYPE: -230 TILL Samples beginning' RE' are Reruns and'RRE' are Reject Reruns.

All resutts are considered the confidential property, of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE\#	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Ge } \\ \text { ppon } \end{array}$	$\begin{gathered} H f \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Rb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	Sn ppm	$\begin{aligned} & S \\ & \mathcal{Z} \end{aligned}$	Ta ppin	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ p p n \end{array}$	$\begin{array}{r} \text { ce } \\ \text { ppon } \end{array}$	$\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Li} \\ \mathrm{ppm} \end{gathered}$	Sample gm
GSMD-17890	1.81	<. 1	. 23	1.00	3.2	4.7	. 8	<. 01	< 205	11.0	9.58	38.3	. 03	<1		11.1	30.0
GSMD-17729	. 58	<. 1	. 10	. 14	6.3	3.4	. 4	<. 01	<. 05	6.8	9.19	65.1	. 02	<1	. 4	27.3	30.0
GSMD-17893	. 93	< 1	. 26	. 08	4.7	6.0	. 4	. 01	<. 05	11.8	10.75	25.9	. 03	<1	. 3	18.3	30.0
GSMD-17881	. 87	<. 1	. 10	. 77	3.7	5.2	. 6	<. 01	<. 05	6.6	9.19	24.7	. 03	<1.	. 2	16.2	30.0
GSMD-17806	. 31	<1	. 34	. 07	2.1	6.0	.4	<. 01	<. 05	14.0	10.83	20.9	. 02	<1	. 2	10.7	30.0
GSMD-17816	. 54	$<.1$. 54	.12	1.5	8.9	. 5	<. 01	<. 05	22.0	13.10	17.3	. 03	<1	. 3	12.4	30.0
GSMD-17882	. 89	<. 1	. 12	. 80	3.9	5.5	. 5	. 02	<. 05	6.9	9.63	21.6	. 04	<1	. 3	15.1	30.0
GSMD-17892	. 71	<. 1	. 05	. 93	5.6	3.5	. 6	<. 01	<. 05	3.7	6.74	20.3	. 03	<1	. 5	13.7	30.0
GSMD-17740	. 40	<. 1	. 12	. 40	2.4	4.4	.4	<. 01	<. 05	6.8	8.85	20.1	. 03	<1	. 3	10.4	30.0
GSMD-17725	. 40	<. 1	. 16	. 55	1.9	4.0	.3	<. 01	<. 05	8.6	10.12	28.4	. 05	<1	. 4	11.8	30.0
GSMD - 17807	. 39	<. 1	. 39	. 07	2.3	6.3	. 4	<. 01	<. 05	15.2	11.63	17.3	. 03	<1	. 4	13.7	30.0
GSMD-17885	. 61	<. 1	. 14	. 23	. 9	13.9	. 6	. 02	<. 05	7.0	14.66	21.7	. 07	<1	. 3	10.2	30.0
GSMD-17722	. 79	<. 1	. 22	. 23	3.5	6.7	.4	. 01	<. 05	11.5	11.76	26.4	. 05	<1	.3	15.6	30.0
GSMD-17817	. 60	<. 1	. 31	. 39	1.5	6.1	. 5	. 01	<. 05	14.9	11.99	18.5	. 04	<1	. 3	12.4	30.0
GSMD-17894	. 77	<. 1	. 28	. 07	1.9	6.5	. 6	. 01	<. 05	11.2	11.98	16.2	. 05	<1	. 2	9.9	30.0
GSMD-17884	. 69	$<.1$. 11	1.03	4.1	3.5	. 6	. 03	<. 05	6.0	6.34	16.3	. 05	<1	.3	14.3	30.0
GSMD-17723	. 31	<. 1	. 18	. 48	3.1	3.5	.4	. 01	<. 05	9.0	8.54	27.6	. 04	<1	. 2	12.3	30.0
GSMD-17735	. 55	<. 1	. 09	. 35	4.5	4.2	.4	< 01	<. 05	5.9	7.82	34.4	. 05	<1	. 4	15.5	30.0
GSMD-17811	. 86	<. 1	. 26	. 13	2.1	5.0	. 5	<. 01	$<.05$	13.3	8.47	41.5	. 05	<1	. 3	12.7	30.0
GSMD-17738	. 26	<. 1	. 19	. 16	1.1	3.0	.3	. 02	<. 05	8.0	7.56	15.7	. 03	<1	.2	8.0	30.0
RE GSMD-17738	. 26	$<.1$. 21	. 21	1.1	2.9	. 3		$<.05$	7.9	7.40	15.8	. 03	<1	. 2	8.0	30.0
GSMD-17818	. 75	<. 1	. 13	. 54	2.7	5.6	. 5	. 03	<. 05	8.0	9.34	20.3	. 05	<1	.3	17.3	30.0
GSMD-17886	. 80	<. 1	. 13	. 33	5.4	3.4	. 4	. 01	<. 05	6.3	5.24	36.4	. 05	<1	. 3	19.3	30.0
GSMD-17731	. 79	<. 1	. 13	. 37	4.0	5.0	. 5	. 03	<. 05	8.1	10.41	39.7	. 04	<1	. 4	14.7	30.0
GSMD-17899	. 71	< 1	. 04	. 74	6.8	2.5	1.5	. 03	<. 05	2.1	5.63	27.5	. 02	<1	.3	18.0	7.5
GSMD-17812	. 36	$<.1$. 24	. 22	1.9	5.9	. 4	. 01	<. 05	12.7	9.82	20.1	. 03	<1		11.9	30.0
GSMD-17732	. 42	< 1	. 19	. 11	3.8	5.0	. 4	. 01	$<.05$	9.3	11.03	34.9	. 02	<1	. 4	16.3	30.0
GSMD-17810	2.94	<. 1	. 18	1.14	4.0	5.4	1.0	. 03	<. 05	8.8	6.99	14.6	. 06	<1	. 4	29.2	30.0
GSMD-17730	. 33	<. 1	. 14	. 37	2.8	2.8	. 4	. 01	<. 05	7.5	9.16	37.1	. 02	<1	. 4	12.5	30.0
TCHD-17828	. 42	<. 1	. 27	. 15	3.0	7.6	. 6	. 02	<. 05	14.4	9.84	23.2	. 03	<1	. 2	12.7	30.0
TCHD-17823	. 51	<. 1	. 12	. 75	3.3	4.3	. 6	. 01	<. 05	7.3	7.81	20.1	. 03	<1			30.0
TCHD-17825	. 62	<. 1	. 43	. 08	3.5	6.8	. 6	. 01	<. 05	19.9	12.30	20.1	. 02	<1	. 3	13.2	30.0
ICHD-17839	. 73	<. 1	. 25	. 63	3.5	6.8	. 7	. 02	$<.05$	13.7	11.49	21.2	. 03	<1	.3	16.7	30.0
STANDARD DS2	3.45	<. 1	. 04	1.47	13.0	3.1	26.1	. 03	<. 05	3.1	7.86	32.1	5.22	<1	. 7	14.7	30.0

[^12]

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: - 230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: JUL 312000 DATE REPORT MATLED: fíq 26
SIGNED BY...................... C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

[^13]| | SAMPLE\# | $\begin{array}{rr} \hline \text { SiO2 } & \text { Al203 } \\ \% & \% \end{array}$ | $\begin{array}{r} \mathrm{fe} 203 \\ \% \end{array}$ | $\begin{gathered} \mathrm{MgO} \\ \% \end{gathered}$ | $\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{TiO} \\ \% \end{array}$ | $\begin{array}{r} \text { P205 } \\ \% \end{array}$ | $\begin{array}{r} \mathrm{MnO} \\ \% \end{array}$ | $\mathrm{Cr} 203$ | $\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Sc} \\ \mathrm{pp} \mathrm{~m} \end{array}$ | $\begin{array}{r} \text { LOI } \\ \% \end{array}$ | $\begin{array}{r} \text { TOT/C } \\ \% \end{array}$ | $\begin{array}{r} \text { TOT/S } \\ \% \end{array}$ | $\begin{array}{r} \text { SUM } \\ \hline \end{array}$ | |
| :---: |
| \cdots | TCHD-17831 | 61.3311 .42 | 6.61 | 3.40 | 4.39 | 2.17 | . 63 | 1.37 | . 11 | . 13 | . 028 | 619 | 50 | 25 | 8.3 | 1.47 | <. 01 | 99.97 | |
| | TCHD-17821 | 67.2611 .24 | 5.82 | 2.53 | 2.91 | 1.96 | . 83 | 1.14 | . 12 | . 10 | . 021 | 506 | 42 | 18 | 6.0 | . 70 | . 01 | 100.00 | |
| | TCHD-17840 | 52.7213 .98 | 7.97 | 3.65 | 3.89 | 1.67 | 1.06 | 1.17 | . 16 | . 16 | . 027 | 663 | 64 | 22 | 13.5 | 2.33 | $<.01$ | 100.04 | |
| | TCKī-17030 | | 5.95 | $3.0 \hat{3}$ | 3.90 | 2.10 | . 506 | 1.36 | . 15 | . 12 | . 0220 | 3931 | 45 | $2 i$ | o. 0 | . 78 | $<.001$ | 89.006 | |
| | TCHD-17832 | 63.4110 .96 | 6.50 | 4.14 | 6.15 | 2.38 | . 46 | 1.58 | . 11 | . 15 | . 029 | 545 | 56 | 32 | 4.0 | . 83 | . 03 | 99.94 | |
| | TCHD-17834 | 63.4410 .90 | 6.23 | 4.20 | 5.91 | 2.50 | . 47 | 1.45 | .13 | .13 | . 031 | 564 | 58 | 30. | 4.7 | . 26 | $<.01$ | 100.17 | |
| | TCHD-17822 | 67.2511 .13 | 5.84 | 2.55 | 2.88 | 1.83 | . 88 | 1.14 | . 10 | . 10 | . 017 | 511 | 41 | 18 | 6.2 | . 59 | . 01 | 99.98 | |
| | TCHD-17826 | 64.5711 .29 | 6.88 | 3.04 | 3.67 | 1.99 | | 1.25 | . 12 | . 13 | . 022 | 394 | 38 | 25 | 6.3 | . 29 | <. 01 | 100.10 | |
| | TCHD-17838 | 64.1511 .14 | 6.16 | 3.55 | 4.26 | 1.99 | . 77 | 1.32 | . 12 | . 14 | . 022 | 788 | 57 | 24 | 6.3 | . 63 | . 01 | 100.03 | |
| | TCHD-17837 | 63.0913 .10 | 7.30 | 3.14 | 3.07 | 1.89 | 1.30 | 1.18 | .11 | .13 | . 021 | 866 | 44 | 23 | 5.4 | . 22 | <. 04 | 99.84 | |
| | TCHD-17829 | 57.8313 .06 | 8.58 | 3.77 | 4.21 | 1.94 | . 79 | 1.49 | . 09 | . 15 | . 025 | 364 | 50 | 30 | 7.9 | . 49 | . 02 | 99.89 | |
| | TCHD-17833 | 53.2718 .55 | 8.80 | 2.33 | 3.97 | 3.02 | 1.11 | 1.37 | . 13 | . 14 | . 011 | 342 | <20 | 23 | 7.2 | . 68 | . 04 | 99.94 | |
| | TCHD-17836 | 59.1612 .99 | 7.66 | 3.44 | 3.48 | 1.84 | 1.12 | 1.20 | . 10 | . 14 | . 021 | 883 | 63 | 23 | 8.7 | 1.04 | . 05 | 99.96 | |
| | TCHD-17824 | 52.9214 .13 | 9.39 | 4.81 | 5.08 | 1.96 | . 93 | 1.31 | . 15 | . 19 | . 031 | 424 | 73 | 32 | 9.1 | . 66 | <. 01 | 100.06 | |
| | TCHD-17835 | 58.3112 .69 | 7.37 | 3.87 | 4.42 | 1.82 | . 94 | 1.23 | . 13 | . 15 | . 024 | 663 | 58 | 23 | 8.9 | 1.15 | <. 01 | 99.94 | |
| | TCHD-17827 | 67.5311 .48 | 5.95 | 2.27 | 2.57 | 1.87 | 1.24 | 1.13 | . 12 | . 16 | . 018 | 534 | 33 | 19 | 5.4 | . 19 | $<.01$ | 99.80 | |
| | PPD-17859 | 62.0512 .48 | 7.69 | 2.36 | 3.37 | 1.97 | 1.08 | 1.43 | . 50 | . 23 | . 026 | 1503 | 73 | 23 | 6.6 | . 37 | $<.01$ | 99.97 | |
| | PPD-17856 | 63.3112 .23 | 7.12 | 3.76 | 4.03 | 1.91 | 1.02 | 1.32 | . 05 | . 13 | . 026 | 934 | 60 | 25 | 5.0 | . 23 | <. 01 | 100.02 | |
| | PPD-17858 | 64.1111 .56 | 7.05 | 3.58 | 4.18 | 1.82 | . 99 | 1.32 | . 11 | . 14 | . 025 | 863 | 51 | 27 | 4.9 | . 20 | <. 01 | 99.89 | |
| | PPD-17860 | 62.1911 .55 | 7.30 | 3.14 | 3.36 | 1.47 | . 89 | 1.20 | . 24 | . 15 | . 024 | 1251 | 47 | 23 | 8.2 | 1.19 | <. 01 | 99.86 | |
| \cdots | PPD-17857 | 57.9588 .78 | 6.98 | 1.80 | 1.58 | 1.18 | . 70 | 1.03 | .17 | . 07 | . 018 | 2186 | 59 | 13 | 19.5 | 5.39 | . 01 | 100.01 | |
| | RE PPD-17847 | 65.3410 .99 | 6.12 | 3.36 | 4.67 | 2.10 | . 55 | 1.31 | . 12 | . 13 | . 025 | 406 | 43 | 25 | 5.1 | . 34 | . 01 | 99.87 | |
| | LAMD-17847 | 65.3610 .94 | 6.18 | 3.34 | 4.65 | 2.12 | . 58 | 1.31 | . 11 | . 13 | . 023 | 410 | 46 | 25 | 5.1 | . 34 | <. 01 | 99.90 | |
| | LAMD-17849 | 64.3910 .40 | 5.70 | 3.48 | 4.44 | 2.00 | . 56 | 1.28 | .11 | . 13 | . 028 | 868 | 43 | 25 | 7.3 | 1.13 | $<.01$ | 99.92 99.98 | |
| | LAMD-17852 | 60.3810 .78 | 6.98 | 3.70 | 3.77 | 1.65 | . 67 | 1.21 | . 19 | . 15 | . 030 | 495 | 78 | 24 | 10.4 | 1.79 | <. 01 | 99.98 | |
| | LAMD-17842 | 55.1111 .70 | 7.75 | 3.37 | 3.52 | 1.77 | . 58 | 1.32 | . 17 | . 13 | . 025 | 652 | 55 | 23 | 14.4 | 3.30 | . 03 | 99.93 | |
| | LAMD-17850 | 59.6711 .12 | 6.11 | 2.99 | 3.73 | 1.84 | . 69 | 1.22 | . 09 | . 09 | . 024 | 654 | 50 | 22 | 12.1 | 2.56 | . 02 | 99.76 | |
| | LAMD-17848 | 66.1110 .24 | 5.98 | 3.48 | 4.54 | 2.04 | . 58 | 1.28 | . 06 | . 13 | . 024 | 587 | 46 | 24 | 5.2 | . 57 | . 01 | 99.74 | |
| | LAMD-17844 | 65.3012 .32 | 6.35 | 3.09 | 3.31 | 2.02 | 1.17 | 1.23 | . 11 | . 11 | . 022 | 727 | 45 | 21 | 4.8 | . 19 | . 01 | 99.92 | |
| | LAMD-17846 | 60.2611 .53 | 6.73 | 3.61 | 3.83 | 1.67 | . 62 | 1.22 | . 09 | . 18 | . 025 | 961 | 59 | 25 | 10.2 | 1.73 | . 02 | 100.08 | |
| | LAMD-17855 | 55.2012 .10 | 7.00 | 1.89 | 1.69 | 1.28 | 1.36 | . 87 | . 24 | . 11 | . 018 | 537 | 46 | 28 | 18.0 | 3.44 | . 01 | 99.83 | |
| | LAMD-17851 | 40.6711 .11 | 6.86 | 2.79 | 2.84 | 1.14 | . 30 | . 93 | . 24 | . 07 | . 025 | 408 | 61 | 20 | 33.1 | 8.81 | . 06 | 100.13 | |
| | LAMD-17854 | 61.6511 .58 | 7.39 | 4.35 | 5.04 | 2.06 | . 52 | 1.31 | . 04 | . 14 | . 024 | 455 | 49 | 28 | 5.8 | . 23 | $<.01$ | 99.96 | |
| | STANDARD SO-15/CSB | 49.6912 .43 | 7.27 | 7.24 | 5.88 | 2.40 | 1.87 | 1.74 | 2.70 | 1.41 | 1.064 | 1917 | 73 | 12 | 5.9 | 2.39 | 5.33 | 99.82 | |

[^14]

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
\qquad

> GROUP $4 B$ - REE - LiBO2 FUSION, ICP/MS FINISHED.
> -SAMPLE TYPE: - \bar{S} GU JILL
> Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 312000 DATE REPORT MAILED:
STGNFT BY

Sample type: - 230 TILt. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{array}{r} \text { Co } \\ \text { ppon } \end{array}$	$\begin{gathered} \text { Cs } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Ga} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Hf } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Nb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pppm} \end{array}$	Ta ppm	$\begin{array}{r} \text { Th } \\ \text { ppon } \end{array}$	$\begin{array}{r} 11 \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \text { U } \\ \text { ppon } \end{array}$	$\begin{array}{r} v \\ p p o n \end{array}$	$\begin{array}{r} \mathrm{N} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} 2 r \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{rr} & \mathrm{Ce} \\ \mathrm{n} & \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Nd } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Sm } \\ \text { ppom } \end{array}$	$\begin{aligned} & \mathrm{Eu} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \text { Gd } \\ \text { ppon } \end{array}$	$\begin{array}{r} \text { Ib } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Dy } \\ \text { ppr } \end{array}$	$\begin{array}{r} \text { Ho } \\ \text { ppom } \end{array}$	$\begin{gathered} \text { Er } \\ \mathrm{n} \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Ym } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Yb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Lu} \\ \mathrm{ppm} \\ \hline \end{array}$
TCHD-17831	21.7	1.4	13.7	6.0	7.8	22.9	1	130.5	. 7	3.9	. 7	1.4	194	<1	241.2	31.8	21.5	45.9	5.33	21.9	5.1	1.42	5.44	. 85	5.79	1.20	3.53	. 50	3.26	. 46
TCHD-17821	17.6	1.6	12.8	6.3	8.4	31.2	1	108.6	. 7	5.4	. 3	1.5	145	<1	253.0	25.6	25.9	52.8	5.94	22.7	4.9	1.19	4.71	. 69	4.54	. 95	2.76	. 39	2.78	. 39
TCHD-17840	37.0	2.2	17.1	3.3	7.3	40.1	2	110.3	. 6	3.9	. 4	1.1	196	<1	131.8	25.0	18.1	39.0	4.49	18.2	4.3	1.22	4.31	. 69	4.69	. 93	2.75	. 39	2.43	. 36
TCHD-17850	20.7	f.ó	i2. 5	6.4	ถิ.Û	2< 2.7	d	129.4	. 7	4. ${ }^{\text {¢ }}$. 6	1.5	$16 \bar{y}$	i	264.0	27.3	23.2	49.0	5.53	$2 i .5$	4.6	1.5i	4.53	. 70	4.74	i. T ט̂	2.98	. 42	2.0̂4	. 42
TCHD-17832	24.8	. 9	12.5	7.0	7.1	14.1	1	144.3	. 6	3.1	. 5	1.2	234	<1	275.4	37.0	19.3	41.7	5.11	21.8	5.2	1.65	6.32	. 98	6.46	1.34	3.87	. 55	3.64	. 53
TCHD-17834	23.6	1.0	12.6	4.9	6.5	14.9	1	137.9	. 6	2.7	. 4	1.0	218	<1	192.5	31.8	17.5	38.7	4.51	$19.1{ }^{\circ}$	4.9	1.45	5.38	. 86	5.85	1.20	3.50	. 49	3.14	. 45
TCHD-17822	18.6	1.7	13.4	6.9	8.8	32.8	2	113.0	. 8	5.6	. 7	1.8	155	2	272.6	27.0	27.0	54.6	6.08	23.1	4.9	1.31	4.67	. 74	4.74	1.03	2.88	. 44	2.85	. 42
TCHD-17826	22.8	1.8	14.2	6.6	7.8	28.0	1	126.8	. 7	4.8	. 5	1.6	182	1	265.0	33.6	25.5	51.5	6.21	25.0	5.9	1.59	5.78	. 88	5.58	1.24	3.70	. 51	3.22	. 51
TCHD-17838	24.8	1.8	14.1	6.3	7.9	26.0		122.0	. 7	4.1	. 9	1.4	194	1	256.1	31.2	23.1	50.2	5.67	22.2	5.3	1.39	5.32	. 84	5.38	1.15	3.32	. 49	3.06	. 45
TCHD-17837	25.4	2.4	17.6	4.2	10.1	48.4	2	139.3	. 9	5.2	. 8	1.5	193	2	163.3	29.8	27.1	53.8	6.50	25.3	5.5	1.49	5.50	. 80	5.32	4.10	3.20	. 43	2.93	. 42
- -17829	28.3	3.5	16.3	6.4	7.2	28.0	2	153.2	. 6	3.8	. 5	1.3	218	2	256.0	37.1	24.0	48.8	6.07	25.0	5.8	1.72	6.38	. 99	6.58	1.42	3.98	. 55	3.63	. 54
Tレ..U-17833	19.8	2.7	22.9	5.4	7.5	39.4	2	344.2	. 6	4.7	. 7	1.5	186	<1	225.1	30.7	22.6	50.6	6.10	25.4	6.0	1.79	5.81	. 83	5.32	1.14	3.30	. 46	3.20	. 45
TCHD-17836	28.2	2.7	16.6	3.9	9.6	43.8		132.0	. 8	4.7	. 7	1.3	186	1	156.6	30.2	24.2	55.1	5.71	22.9	5.0	1.36	5.12	. 80	5.27	1.11	3.22	. 44	3.08	. 44
TCHD-17824	37.1	3.7	18.5	4.0	6.4	31.5	2	147.7	. 5	2.9	. 5	. 9	256	<1	157.8	34.9	18.1	38.2	5.02	21.7	5.3	1.61	6.05	. 98	6.34	1.30	3.85	. 51	3.31	. 52
TCHD-17835	30.7	1.9	15.9	5.1	8.4	33.5	1	127.2	. 7	4.1	. 5	1.3	203	<1	201.0	28.2	22.4	45.8	5.39	21.8	5.0	1.34	5.08	. 78	5.14	1.10	3.13	. 43	2.81	. 41
TCHD-17827	17.8	2.3	15.5	6.5	11.3	48.6	2	128.3	. 9	7.2	. 6	2.2	140	<1	265.7	31	33.	65.4	7.71	28.8	5.9	1.43	5.43	. 82	5.33	1.13	3.14	. 48	2.93	. 44
PPD-17859	23.9	2.1	16.1	6.0	10.9	31.8	1	222.9	. 9	4.5	. 5	3.4	182	3	247.5	40.3	32.3	53.7	7.34	29.2	6.0	1.62	6.42	. 97	6.16	1.30	3.86	. 53	3.42	. 52
PPD-17856	25.7	2.0	16.2	4.8	9.4	36.9	2	129.6	. 7	4.5	. 4	1.5	202	<1	194.8	30.9	25.6	50.3	6.11	24.2	5.4	1.54	5.50	. 84	5.49	1.13	3.30	. 45	2.99	. 42
PPD-17858	25.2	1.9	14.7	5.5	9.3	34.3	2	133.5	. 8	5.0	. 4	1.5	189	1	218.5	36.2	28.1	51.7	6.64	26.8	6.0	1.65	6.30	. 95	6.10	1.30	3.66	. 52	3.37	. 48
PPD-17860	25.8	1.6	14.4	5.3	7.4	30.5		116.8	. 6	3.8	. 4	1.9	184	<1	205.5	37.2	24.8	49.5	6.03	25.0	5.6	1.54	5.97	. 91	6.03	1.31	3.83	. 52	3.40	. 50
PPD-17857	12.4	2.8	15.4	4.2	9.1	31.2	1	95.1	. 8	4.2	. 4	1.7	185	1	164.2	17.6	19.	42.6	4.41	16.6	3.4	. 79	3.06	. 48	3.21	. 68	2.04	$\text { . } 29$	1.85	. 31
RE PPD-17847	22.0	1.4	12.6	6.1	7.2	18.7	1	123.3	. 6	4.0	. 4	1.3	188	<1	243.6	29.9	21.9	49.4	5.33	21.0	4.8	1.38	5.24	. 81	5.30	1.09	3.16	. 47	2.97	. 45
LAMD-17847	22.4	1.4	13.2	7.1	7.4	19.7	1	128.5	. 6	3.7	.4	1.4	188	<1	286.3	30.9	20.8	47.4	5.23	20.7	4.8	1.44	5.19	. 84	5.44	1.14	3.32	. 47	3.07	. 47
LAMD-17849	23.6	1.2	12.2	5.5	7.1	18.4	1	122.3	. 6	3.1	. 4	1.2	188	1	214.1	30.2	18.8	41.0	4.81	19.5	4.5	1.37	5.29	. 78	5.44	1.12	3.23	. 45	2.95	. 42
LAMD-17852	25.4	1.8	13.4	7.5	7.8	24.9	1.	109.1	. 7	4.7	. 4	1.7	151	1	298.6	37.4	24.9	66.0	6.34	25.3	5.8	1.69	6.17	. 98	6.43	1.35	3.98	. 57	3.87	. 56
LAMD-17842	26.8	2.0	15.6	4.6	7.1	23.3	1	117.0	. 6	3.1	. 3	1.1	207	<1	181.0	29.9	19.0	38.4	4.84	19.4	4.6	1.42	5.15	. 79	5.14	1.11	3.22	.47	3.07	. 44
LAMD-17850	20.4	1.4	13.0	5.6	8.4	24.2	1	132.5	. 7	4.3	. 4	1.6	167	2	227.8	33.3	23.7	48.9	5.88	22.7	5.0	1.48	5.51	. 87	5.72	1.21	3.35	. 49	3.21	. 43
LAMD-17848	22.7	1.3	12.2	6.1	7.6	18.5	1	125.0	. 7	3.5	. 3	1.3	184	2	241.6	31.0	21.3	49.8	5.21	20.8	4.7	1.36	5.21	. 81	5.34	1.16	3.49	. 46	3.06	. 44
LAMD-17844	20.9	1.9	15.4	4.8	9.7	42.0	2	145.3	. 8	5.5	.4	1.5	173	3	193.5	28.1	28.2	54.1	6.53	25.2	5.3	1.33	5.26	. 75	4.83	1.03	2.91 3.36	. 43	2.75	. 40
-2-17846	28.7	1.7	12.9	5.4	7.1	22.1	1	107.2	. 6	3.4	. 4	1.2	185	2	218.5	30.0	19.5	55.9	4.98	19.7	4.6	1.34	5.39	. 82	5.29	1.12	3.36	. 47	2.98	. 43
LAMD-17855	21.0	4.4	15.2	7.7	11.3	49.2	2	113.0	1.0	9.5	. 5	3.5	142	4	299.2	74.0	45.8	92.3	11.66	48.6	10.9	3.11	12.34	1.86	11.98	2.59	7.56	1.08	7.03	1.10
LAMD-17851	20.7	1.0	10.7	5.4	5.2	11.3	1	69.7	. 5	3.0	. 3	1.4	137	2	211.8	32.5	17.6	37.6	4.90	20.7	5.4	1.63	6.09	. 96	6.12	1.28	3.53	. 49	3.14	. 43
LAMD-17854	26.0	1.5	13.5	4.9	5.9	17.0	1	109.1	. 6	3.1	. 5	1.0	198	3	188.1	26.7	16.8	36.2	4.35	17.4	4.2	1.25	4.48	. 70	4.62	1.01	2.87	. 43	2.79	. 39
STANDARD SO-15	21.4	2.9	17.2	25.3	31.3	63.7	19	397.5	1.7	22.0	. 8	20.6	152	21	1040.5	24.0	30.8	57.8	6.33	23.8	4.7	1.03	3.95	. 61	3.72	. 81	2.46	. 35	2.58	. 41

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the añalysis only.

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR $=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: -230 TILL
samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: JuL 312000 date report mailed: fins $26 / 100$
SIGNED BY.......... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Ali resuits are considered the conf́idenciai property of the chient. Acme assimes the fiatilities for actual cost of the arialysis onty.

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED YO 600 ML , ANALYSIS BY ICP/ES \& MS.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A002202
Page 2 (a)

GSAR-10075
6SKR-10061
OSTR-10063
CSTR-10065 (514-10073

GSTR- 20076
GSTR-10068
GSTR-10062
CSKR-10072
GSTR-10074
GSHP-10077
GSTE-10070
GSTR-10064
assere-10066
GSTR-10079

GSTR-10071 GSHR-10080 GE8R-10088 CEse-10085 CEBP-10094
 GESR-30098
GERR-10084

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR, DILUTED TO GOO ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 \mathrm{PPM}: C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 \mathrm{PPM}$,

\square
D. TOYE, C.LEONG, J. HANG; CERTIFIED B.C. ASSAYERS

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{array}{r} \mathrm{sio2} \\ \% \end{array}$	$\begin{array}{r} 2 \mathrm{Al} 203 \\ \% \quad \% \\ \hline \end{array}$	$\begin{array}{r} 3 \mathrm{Fe} 203 \\ 8 \quad \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{gathered} \mathrm{CaO} \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} 10 \mathrm{Na} 2 \mathrm{O} \\ \% \quad \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{array}{r} \mathrm{TiO2} \\ 6 \quad \% \\ \hline \end{array}$	$\begin{array}{r} \text { P205 } \\ 6 \\ \hline \end{array}$	$\begin{array}{r} \hline \hline \mathrm{MnO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppan} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 r \\ \text { ppm } \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathbf{S c} \\ \mathbf{p p m} \end{array}$		$\begin{array}{r} \text { ToT/C } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \hline \text { TOT/S } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { SUM } \\ \% \end{array}$	
NHRR-10182	48.63	13.81	9.52	3.02	6.91	. 07	. 23	1.92	. 18	. 16	. 024	96	59	52	128	38	<10	35	15.3	3.00	. 61	99.83	
NWRR-10165	47.57	14.24	11.84	6.49	12.29	1.17	. 24	1.92	. 18	. 20	. 029	144	82	64	109	38	<10	37	3.7	. 11	. 14	99.93	
NHRR-10190	48.99	14.55	10.81	7.59	8.97	3.09	. 05	1.50	. 15	. 16	. 035	56	100	84	86	30	<10	36	3.9	. 06	. 01	99.84	
NHRR-10167	90.59	3.22	3.10	. 34	. 09	. 06	. 94	. 20	. 03	. 01	. 014	745	38	10	58	<10	<10	5	1.7	<. 01	1.08	100.39	
NHRR-10187	49.51	13.11	10.75	9.05	7.87	3.67	. 17	1.42	. 11	. 17	. 042	48	107	95	83	26	<10	39	3.8	. 01	. 03	99.72	
GSMR-10075	55.64	12.74	10.27	4.71	5.63	3.18	. 86	1.56	. 18	. 11	. 024	757	89	139	96	32	<10	32	4.9	. 02	4.18	99.94	
GSMR-10061	86.95	5.29	3.01	. 25	. 11	11.12	. 94	. 37	. 06	. 11	. 007	220	29	68	196	10	11	4	1.7	. 11	. 05	99.98	
GSMR-10063	91.35	. 55	4.96	. 04	. 03	3.04	. 14	. 03	. 01	<. 01	. 007	375	41	10	49	<10	<10	<1	2.3	<. 01	2.89	99.52	
GSMR-10065	65.04	15.03	4.13	. 63	. 07	71.01	9.31	. 92	. 15	. 01	. 008	5155	32	82	245	29	43	13	2.9	. 03	1.71	99.84	
GSMR-10073	66.01	14.24	3.84	. 61	. 05	5.54	9.94	. 89	. 08	. 01	. 006	10286	29	36	223	20	12	13	2.6	. 03	2.16	100.01	
GSMR-10076	49.12	14.63	10.85	7.31	8.86	3.20	. 39	1.84	. 21	. 17	. 032	253	130	118	107	34	<10	40	3.2	<. 01	. 09	99.90	
GSMR-10068	48.89	13.34	10.99	7.24	6.44	4.20	. 62	1.91	. 20	. 18	. 027	720	79	114	106	34	<10	35	5.7	. 05	4.96	99.86	
GSMR-10062	87.58	5.17	2.87	. 22	. 19	1.07	. 95	. 36	. 06	. 11	. 007	237	69	66	177	10	<10	4	1.4	. 09	. 04	100.06	
GSMR-10072	66.37	12.34	5.69	. 36	. 16	62.19	6.30	. 74	. 17	. 01	. 007	16059	20	79	207	22	12	11	3.7	. 01	4.03	99.88	
GSMR-10074	53.70	11.51	12.72	. 62	. 15	5.42	. 76	. 73	. 16	. 01	. 007	46529	21	338	199	21	17	9	7.9	. 03	8.81	99.96	
GSMR-10077	47.35	12.65	10.92	9.92	10.13	32.73	. 06	1.48	. 15	. 17	. 048	267	172	131	76	27	<10	36	4.1	. 03	. 02	99.79	
GSMR-10070	65.46	14.11	3.51	. 09	. 09	2.83	7.06	. 89	. 12	. 01	. 004	33978	32	101	254	24	18	9	2.0	. 01	1.53	100.02	
GSMR-10064	60.31	10.71	13.69	. 96	. 21	11.81	3.51	. 68	. 16	. 01	. 006	2799	28	34	187	16	15	9	7.6	. 07	9.06	100.01	
GSMR-10066	53.51	18.24	8.65	2.31	3.90	3.05	1.12	1.37	. 18	. 13	. 010	372	<20	330	186	26	13	23	7.4	. 63	. 01	99.99	
GSMR-10079	85.73	5.98	2.59	1.23	. 48	81.71	. 67	. 32	. 02	. 04	. 007	344	38	34	57	11	<10	8	1.2	. 03	. 01	100.03	
GSMR-10067	67.40	9.96	9.08	. 85		91.93	2.76	. 62	. 12	. 01	. 008	2390	26	38	164	15	14	7	6.5	. 08	6.61	100.03	
GSMR-10069	46.86	13.90	12.43	6.70	6.42	23.65	. 54	1.97	. 16	. 11	. 029	305	47	119	101	33	<10	36	7.1	<. 01	6.31	99.95	
RE GSMR-10069	47.05	13.94	12.39	6.66	6.42	3.71	. 54	1.97	. 16	. 11	. 032	303	46	118	105	34	<10	36	7.0	. 01	6.43	100.06	
RRE GSMR-10069	46.67	13.87	12.71	6.66	6.36	3.71	. 52	1.96	. 16	. 10	. 030	300	39	118	107	32	<10	36	7.1	. 01	6.56	99.93	
GSMR-10078	48.54	12.35	10.68	9.72	9.83	2.93	. 09	1.68	. 16	. 19	. 070	114	160	100	91	31	<10	42	3.6	. 06	. 01	99.91	
GSMR-10071	68.40	14.21	4.77	1.26		3.72	2.54	. 83	. 15	. 02	. 003	4063	21	74	215	25	15	12	3.2	. 05	2.01	99.88	
GSMR-10080	52.29	14.33	10.00	7.08	5.42	5.13	. 19	1.77	. 18	. 20	. 034	339	79	107	110	35	<10	37	3.0	. 07	. 02	99.71	
GEBR-10088	45.60	11.44	9.17	6.91	13.21	2.58	1.42	. 75	. 35	. 14	. 030	1266	84	712	46	14	<10	30	8.0	1.80	1.45	99.85	
GEER-10085	77.52	6.26	7.20	1.77	. 87	. 77	1.20	. 39	. 33	. 05	. 015	712	42	30	94	19	<10	9	3.5	. 03	2.52	99.98	
GEBR-10094	77.43	6.79	5.53	2.42	1.52	2.14	. 72	. 47	. 13	. 24	. 012	1143	58	64	67	20	<10	11	2.4	. 02	1.52	99.96	
GEBR-10081	50.11	14.19	9.87	6.81	10.44	2.76	. 31	1.44	. 16	. 16	. 032	121	94	113	72	27	<10	35	3.4	. 06	. 09	99.74	
GEBR-10093	49.99	14.07	10.51	7.15	8.07	3.47	. 50	1.74	. 19	. 32	. 032	1543	92	209	103	32	<10	35	3.6	. 08	. 15	99.87	
GEER-10098	79.64	6.72	5.77	1.81	1.36	1.64	. 32	. 42	. 30	. 31	. 010	245	50	74	96	22	<10	11	1.7	. 02	. 36	100.06	
GEBR-10084	79.51	5.80	5.81	1.46	. 96	. 13	1.28	. 35	. 32	. 03	. 012	761	35	54	84	15	<10	9	3.9	. 04	2.20	99.67	
STANDARD SO-15/CSB	49.74	12.29	7.27	7.23	5.84	2.40	1.86	1.81	2.69	1.38	1.055	2081	75	394	1042	21	22	12	5.9	2.41	5.32	99.90	

[^15]

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROIP $4 B$ - REE - LiBO2 FUSION, ICP/MS FINISHEO.

- SAMPIE TYPE: ROCV P!!?

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

 PPM; $C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: ROCX PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ROCK pULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{array}{r} \mathrm{Mo} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { As } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$
GEBR-10082	1.0	66	<3	71	92	3	. 2	<1	<1
GEBR-10087	1.5	3	20	23	1	5	$<.2$	2	1
GEBR-10092	< 5.5	61	<3	101	90	2	. 2	<1	<1
GEBR-10063	133.9	5323	22	77	46	7	. 8	9	8
GEBR-10091	1.1	63	<3	84	91	<2	$<.2$	<1	<1
GEBR-10095	$<.5$	90	<3	100	52	2	. 3	4	
GEBR-10100	2.0	62	25	49	33	5	. 2	1	<1
GEBR-10096	. 5	11	21	59	9	2	. 2	5	I
GEBR-10086	1.5	129	6	75	36	2	. 3	1	<1
GEBR-10099	14.2	166	34	129	35	26	. 4	<1	
GEBR-10089	1.4	6	33	42	3	21	. 6	1	
RE GEBR-10089	1.2	6	34	42	2	24	. 8	1	1
RRE GEBR-10089	. 9	6	33	40	4	22	. 8	1	1
GEBR-10097	. 6	49	<3	78	54	<2	. 4	<1	<1
GEBR-10090	. 6	18	<3	108	32	3	$\stackrel{.}{2}$	<1	<1
STANDARD CT3	27.6	65	40	185	38	59	22.6	23	22
STANDARD G-2	2.3	3	20	49	7	<2	. 2	<1	2

GROUP 1 F30 - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: UL $1020 \cap$ DATE REPORT MATED: (A)
STONED BY
$C \rho$
D. TOYE; C.LEONG; J. WANG: CERTIFIED B.C. ASSAYERS

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT. Samples Deginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject. Reruns.

GROUP 1 F30-30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

d. TOYE, c. LEONG, J. WâkG; CERTified bic. assayers

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

[^16]

[^17]

[^18] $800 \% 700 \mathrm{H}$. Pender St, Vancouver BC V6C 168 , Submil ted by Gerry Biduell.

SAMPLE\#	LOI
SDWX-10229	39.3
SDWX-10221	21.1
SDWX-10232	34.9
SDWX-10225	34.8
SDWX-10222	24.5
SDWX-10234	43.2
SDWX-10249	54.8
SDWX-10228	46.3
SDWX-10239	16.6
SDWX-10251	15.1
SDWX-10227	29.4
SDWX-10255	26.6
SDWX-10230	18.6
SDWX-10226	56.7
SDWX-10254	29.6
SDWX-10233	7.2
SDWX-10224	36.3
SDWX-10237	4.8
SDWX-10252	26.3
SDWX-10259	25.6
SDWX-10256	16.4
SDWX-10223	51.4
RE SDWX-10256	16.1
SDWX-10250	24.4
SDWX-10238	13.3
SDWX-10236	34.4
SDWX-10257	31.5
SDWX-10260	19.0
SDWX-10235	40.7
SDWX-10258	33.2
SDWX-10231	
SDWX-10253	26.7
SDWX-10248	30.7
SDWX-10240	8.8
STANDARD DOLOMITE	45.7

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Repyns.

$4 A$ Hudson Bay Expl. \& Dev. Co. Itd. PROJECT 2398 FILE \# A002291R Page 2

SAMPLE\#	LOI
GSMX-10264	37.7
GSMX-10271	46.7
GSMX-10273	47.0
GSMX-10269	48.3
GSMX-10261	48.3
GSMX-10270	21.8
GSMX-10262	47.6
GSMX-10272	40.2
GSMX-10266	7.4
GSMX-10265	50.3
GSMX-10268	32.1
GSMX-10267	54.5
RSHX-10284	15.2
RSHX-10241	28.7
RSHX-10274	25.6
RSHX-10243	26.4
RSHX-10283	71.5
RSHX-10288	60.5
RSHX-10242	27.6
RSHX-10275	27.2
RSHX-10278	19.2
RSHX-10282	64.3
RSHX-10244	44.8
RE RSHX-10298	10.6
RSHX-10298	10.7
RSHX-10245	16.2
RSHX-10279	13.4
RSHX-10293	33.0
RSHX-10300	16.9
RSHX-10246	14.3
RSHX-10292	72.4
RSHX-10276	12.2
RSHX-10291	15.0
RSHX-10280	28.5
STANDARD DOLOMITE	46.0

Sauple type: MOSS MAT. Samples beginning 'Rp' are Rexuns and 'RRE' are Reiect Reruns.
\qquad

14
Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A002291R
Page 3

Sample type: MOSS MaT: Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, H, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, 8 \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are keruns and 'kर̄E' are रुejecí keruns.

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1F30-30:00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100$ PPM; MO, CO, CD, SB, $B 1, T H, U, B=2,000 P P M ; C L, P B, ~ Z N, N 1, M N, A S, V, L A, C R=10, O D O P P M$

- SAMPLE TYPE: - 230 TILL
 Samples beginning 'RE' are Reruns and 'RRE' are Reject keruns.

$\underset{\text { ppra }}{\mathrm{Cs}}$	ppm	$\begin{array}{r} \mathrm{Hf} \\ \mathrm{pp} \text { 保 } \end{array}$	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppm} \end{gathered}$	ppm	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \end{array}$	S	Ta ppm	$\begin{array}{r} 2 r \\ p p m \end{array}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { in } \\ \text { ppm } \end{array}$	$\begin{aligned} & \text { Re } \\ & \mathrm{ppb} \end{aligned}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	ppm	gm
2.15	<. 1	. 26	1.48	1.4	5.3	. 6	. 04	$<.05$	14.2	7.49	9.2	. 04	<1	2	6.2	30.0
1.76	<. 1	. 42	1.29	6.3	5.9	1.0	. 01	<. 05	19.1	10.46	32.7	. 05	<1	8	22.6	30.0
1.43	< 1	. 30	1.03	2.1	6.8	. 8	. 02	<. 05	15.5	9.70	10.5	. 04	<1	. 4	16.7	30.0
8.43	< 1	. 09	2.41	31.7	3.5	6.6	. 07	<. 05	4.7	7.97	46.5	. 31	3	. 9	21.0	7.5
. 77	<.	. 11	. 99	5.7	3.5	. 5	<. 01	<. 05	5.5	6.45	24.7	. 03	<1	. 4	17.0	30.0
1.49	<. 1	. 18	1.69	2.5	5.6	. 9	. 07	<. 05	7.6	11.12	10.3	. 05	<1.	6	10.4	30.0
. 53	<. 1	. 36	. 21	1.2	5.3	. 6	<. 01	<. 05	11.4	9.51	24.5	. 02	<1	. 4	8.0	30.0
. 75	<. 1	. 36	. 34	1.5	5.6	. 6	. 01	<. 05	19.3	9.72	36.6	. 03	<1	. 5	11.3	30.0
3.32	< 1	. 04	1.50	13.0	2.9	26.0	. 02	< 05	2.8	7.67	28	. 26	<1	5	13.6	30

[^19]

GROUP 4A - O. 200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGMITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SÜïi

- SAMPLE TYPE: - 230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^20]

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-H 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{YH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYFE: mUSS mAI sampies beginning 'ke' are keruns and 'kki' are keject keruns.

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1F30-30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20 \mathrm{AT} 95 \mathrm{DEG}$. C FOR ONE HOUR, DILUTED TO $600 \mathrm{ML}, \mathrm{ANALYSED}$ BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $W, S E, T E, T L, G A, S N=100$ PPM; MO, CO, CD, SB, BI, TH, $\mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: MOSS MAI Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
SAMPLEA

SAMPLE\#
GSMX-14016
GSMX-10400
GSMX-14018
GSMX-10394
GSMX-10398
GSMX-10392
GSMX-14020
RE GSMX-10394
STANDARD DOLOMITE

LOI
8
21.3
28.4
13.5
14
48.3
48.0
60.4
30.8
144.4
45.9

GROUP 1 F30 - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 0-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 202000 DATE REPORT MAILED:

 P. TOME, C.LEONG, J
(Hyg/00

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	Zn Ag ppm ppb	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{cc} \mathrm{n} & \mathrm{fe} \\ \mathrm{~m} & \% \\ \hline \end{array}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} U \\ \text { ppm } \end{array}$	Au Th ppb ppm	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{rr} S b \\ & p p m \\ \hline \end{array}$	$\begin{array}{cr} \text { Bi } & V \\ \text { ppm } & \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & p \\ & q \end{aligned}$	$\begin{array}{r} \text { La } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{cc} \mathrm{Cr} \\ \mathrm{n} & \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \\ \hline \end{gathered}$	$\begin{array}{rr} \mathrm{g} & \mathrm{Ba} \\ 8 & \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \hline \mathrm{Yi} \\ \% \end{array}$		$\begin{array}{rr} B & A I \\ \mathrm{~m} & \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{W} \\ 6 \mathrm{ppm} \\ \hline \end{array}$		$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppb} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Se} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} \mathrm{Te} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ga} \\ \mathrm{ppm} \end{gathered}$
GSMD-17975	. 54	64.19	6.14	56.0179	42.8	20.2	816	3.30	5.4	1.3	12.51 .7	22.8	. 20	. 33	. 091111	1.30	. 074	11.5	68.6	1.06	226.9	. 274		2.31	015		< 2	. 04	55	. 6	. 02	7.0
GSM0-17968	. 55	61.18	10.79	93.2176	168.0	33.8	660	4.62	19.8	. 4	2.92 .9	13.0	. 28	. 66	. 15106	. 47	. 043	15.1	204.7	2.63	138.2	154		3.20	. 006		<. 2	. 05	84	4	. 03	8.4
GSMD-17608	. 74	20.85	6.17	65.396	27.6	13.5	395	4.55	2.7	. 3	1.52 .2	9.3	. 14	. 26	. 12156	. 59	124	7.4	66.9	. 55	168.1	313		22.56	013		<.2	. 04	51	3	02	10.3
GSMD-17978	. 64	34.93	5.55	68.857	54.6	22.4	558	4.47	4.0	. 3	4.92 .1	15.3	. 18	. 24	. 09139	. 81	. 077	7.1	68.8	. 84	188.2	. 310		13.17	. 014		<. 2	. 04	57	. 3	<. 02	9.4
GSMD-17607	. 73	48.31	6.37	67.4104	53.9	28.3	444	4.39	5.1	. 4	8.01 .8	21.6	. 22	. 29	. 12130	. 85	. 059	8.5	66.5	. 74	102.2	. 223		13.27	. 012		<. 2	. 04	68	4	02	8.9
GSMD-17970	. 49	32.89	11.27	71.574	50.9	14.8	481	3.13	5.0	. 9	3.44 .7	17.2	. 15	. 44	. 1784	. 90	. 038	22.9	68.9	1.09	179.3	191		22.17	011		< 2	. 05	33	. 3	. 02	6.3
GSMD-17606	. 67	25.58	4.65	70.297	37.7	16.9	340	4.48	3.0	. 3	3.02 .0	12.1	. 12	. 21	. 09125	. 67	. 082	7.2	63.6	. 65	75.5	. 288		12.85	. 013		<. 2	. 03	63	. 4	< 02	8.6
GSPM-17977	. 85	116.44	7.71	67.8109	49.6	32.5	864	¢ 5.63	10.9	. 3	2.11 .1	17.2	. 22	. 30	. 08151	. 65	. 117	7.3	77.4	11.19	178.7	. 252		13.02	. 010		<. 2	. 03	67	. 4	. 07	9.9
GSMD-17979	. 59	42.73	4.84	53.560	67.4	28.8	389	4.45	4.6	. 3	1.02 .0	15.5	. 13	. 30	. 10136	. 73	. 066	5.9	74.8	. 89	143.4	. 321		23.61	. 015		<.2	. 03	67	. 3	. 02	8.9
GSMD-17610	. 57	22.26	4.95	46.4104	36.9	17.2	303	3.72	3.8	. 3	6.31 .9	11.1	. 14	. 22	. 09108	. 61	. 044	7.1	63.1	. 66	182.8	. 302		12.74	. 011		< 2	. 03	85	. 2	. 02	7.0
65, 17972	. 48	70.96	5.98	57.1102	52.3	21.4	550	3.67	6.7	1.6	2.62 .2	21.2	. 21	. 25	. 09133	1.27	032	12.2	83.4	41.12	266.2	. 314		22.86	. 023		< 2	. 04	42	. 4	. 02	9.0
G ! 7609	. 32	29.71	2.96	42.744	40.8	19.7	412	23.53	2.8	. 2	1.31 .5	12.4	. 10	. 22	. 05128	1.05	. 036	5.2	59.8	. 82	135.1	. 363		32.85	. 018		< 2	. 02	51	. 2	< 02	8.0
GSMD-17980	. 42	63.73	4.04	54.062	50.5	24.7	739	4.27.	3.7	. 3	2.61 .9	22.8	. 15	. 30	. 08155	. 99	. 045	9.7	75.7	1.07	111.7	. 308		23.09	. 020		< 2	. 03	49	3	<. 02	9.5
GSMO-17605	. 56	32.51	4.46	102.260	42.7	20.7	533	33.95	3.6	. 3	2.52 .0	13.8	. 18	. 28	. 08132	. 78	. 091	7.7	67.6	. 86	133.1	. 320		23.20	. 021	. 04	< 2	. 04	71	. 4	. 02	9.4
GSMD-17619	. 65	47.50	6.24	60.8158	50.5	27.6	653	4.19	4.1	. 4	2.11 .2	13.2	. 25	. 25	. 09119	. 92	. 050	7.0	70.9	. 93	146.2	. 272		23.16	. 016		<. 2	. 03	82	. 4	. 04	8.2
GSMD-17961	1.04	35.62	8.45	68.1163	30.8	11.7	574	4.24	5.2	. 3	5.71 .8	8.7	. 27	. 39	.15120	. 44	. 050	9.9	60.2	. 68	410.6	. 235		22.27	. 011		<, 2	. 03	82	. 5	. 05	8.4
GSMD-17618	. 85	43.17	5.81	68.280	44.5	23.6	601	14.10	4.7	. 6	3.31 .8	13.9	. 22	. 30	. 11122	. 57	. 079	8.5	79.0	. 79	189.6	. 245		23.20	. 011	03	. 2	. 03	87	. 8	. 03	8.9
CSSM-17620	. 65	70.40	6.25	61.4163	53.5	29.6	950	3.81	6.4	. 4	12.91 .5	26.0	. 23	. 42	. 10115	1.03	. 053	9.3	64.9	1.04	307.9	. 248		33.01	. 014		< 2	. 03	100	8	02	8.3
GSMO-17966	1.09	29.71	9.47	50.932	12.6	13.1	440	4.02 ${ }^{\text {i }}$	- 2.9	. 6	1.93 .1	53.0	. 08	. 10	. 15158	. 53	. 047	12.8	37.7	. 49	82.4	. 336		14.23	. 113		<. 2	. 14	38	. 2	. 03	1.6
GSMD-17616	. 50	79.17	8.26	$74.7 \quad 13$	57.3	24.6	09	4.18	5.4	. 4	5.53 .0	24.9	. 15	. 42	. 12133	1.19	. 081	12.6	77.6	1.28	333.8	. 293		22.73	. 022		<. 2	. 04	48	. 4	. 04	9.2
GSMD-17947	. 68	73.00	34.89	119.995	70.7	25.6	827	73.72	9.8	. 5	12.66 .7	107.4	. 40	. 81	. 22495	5.83	112	23.9	43.4	. 83	239.7	. 116		21.49	. 006		<. 2	. 04	85	. 3	. 06	4.5
RE PPD-17907	. 94	38.44	22.87	96.2184	26.5	15.6	758	4.51	7.2	. 3	4.52 .4	7.9	. 23	. 39	. 17137	. 42	. 056	10.0	66.9	. 64	199.8	. 293		12.45	. 007		<. 2	. 05	59	. 3	. 06	9.2
PPD-17907	. 95	36.39	22.56	94.2170	26.1	15.5	754	4.43	7.0	. 3	3.32 .2	8.0	. 18	. 38	.16134	. 41	. 055	10.0	67.2	. 65	203.6	. 305		12.40	. 007		< 2	. 05	60	. 4	. 05	9.0
PPD-17915	. 46	97.44	5.53	82.045	105.8	63.6	1180	5.92	4.9	. 2	1.21 .3	78.9	. 16	1.02	. 06166	1.71	. 038	5.9	80.3	1.91	81.8	. 401		34.52	. 027		<. 2	. 02	35	. 4	<. 02	13.9
PPD-17989	. 47	99.87	9.26	$73.2 \quad 17$	58.6	27.1	894	4.05	7.3	. 3	3.32 .5	18.0	. 16	1.36	.11127	1.30	. 066	8.5	60.8	1.20	122.7	. 327		22.67	. 022	. 04	<. 2	. 03	17	5	. 02	8.5
PPD-17901	. 60	32.12	5.09	49.4173	40.3	21.5	526	63.56	5.3	. 3	4.12 .2	12.2	. 20	. 35	. 09105	. 80	085	9.5	57.7	. 75	161.0	. 270		22.89	. 014		<-2	. 03	74			7.4
PPD-17916	. 39	51.28	4.25	52.639	56.4	31.5	698	4.23	6.0	. 3	2.11 .9	22.3	. 12	. 59	. 06136	1.10	. 056	8.6	67.1	1.09	97.0	. 359		23.20	. 020		<. 2	. 03	42	. 5	<. 02	9.5
PPD-17946	. 37	37.63	6.03	$49.3 \quad 9$	53.0	17.5	693	2.84	5.6	. 3	1.83 .6	20.3	. 13	. 37	. $08 \quad 89$. 87	. 048	11.9	56.7	. 84	267.2	. 252		32.06	. 022	. 07	< 2	. 04	18	. 3	. 02	6.3
PPD-17912	. 36	46.43	5.16	54.944	43.0	20.6	801	3.51	3.8	. 2	3.81 .8	17.3	. 15	. 33	. 07133	1.15	. 032	8.5	63.4	1.10	235.4	392		32.73	. 020		< 2	. 03	33	. 4	$<.02$	8.4
ppo. 17917	. 46	99.30	8.49	$61.5 \quad 24$	65.2	27.7	706	3.76	8.1	. 3	6.93 .5	26.5	. 14	. 70	. 11113	. 99	. 030	13.6	64.4	1.03	148.1	. 258		12.66	. 019		<. 2	. 05	39	. 4	<. 02	7.3
Pru-17903	. 67	45.21	6.91	47.988	34.7	14.3	442	3.11	3.6	. 7	1.62 .0	13.0	. 11	. 27	. 13120	. 70	047	15.2	77.9	. 68	214.4	264		12.56	. 011		<. 2	. 05	89	. 4	$<.02$	9.0
PP0-17982	. 70	60.50	8.94	59.530	44.6	19.0	1020	3.37	7.3	. 4	5.03 .0	20.0	. 16	. 54	. 10113	1.03	. 067	14.5	61.5	. 94	396.5	284		32.40	. 028	. 07	< 2	. 05	33	. 6	. 04	7.4
PPD-17944	1.44	117.00	6.49	42.7212	55.1	26.0	614	4.17	9.1	1.1	15.5 . 9	35.8	. 31	. 34	. 12125	1.16	060	13.4	89.1	. 65	255.1	148		12.77	. 011	. 03	< 2	. 04	1361	1.2	. 02	8.3
STANOARD DS2	13.75	130.00	34.97	163.6270	37.0	12.1	786	2.91	58.5	19.7	226.43 .7	28.9	10.59	10.25	$11.18 \quad 71$. 55	. 093	16.3	144.2	. 55	136.4	086		31.64	. 031	. 16	7.5	. 9	2612	2.3	2.08	6.0

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{aligned} & \text { Mo } \\ & \text { pprn } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppp} \end{array}$	$\begin{array}{r} \text { Pb } \\ \text { ppm } \end{array}$	$\begin{array}{rr} 2 n \\ \mathrm{n} & \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppb} \end{gathered}$	ppan	$\begin{array}{rr} \mathrm{i} & \mathrm{Co} \\ \mathrm{n} & \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{ll} n & \mathrm{Fe} \\ \mathrm{n} & \% \end{array}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	ppb	$\begin{gathered} \text { Th } \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{cc} \mathrm{h} & \mathrm{Sr} \\ \mathrm{n} & \mathrm{pppm} \end{array}$	ppm	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \\ \hline \end{array}$		$\begin{array}{rr} \text { Bir } \\ \text { ppin ppin } \end{array}$	*		ppm	ppm		$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Tj} \\ \% \end{gathered}$	$\begin{array}{lr} \mathbf{j} & B \\ \% & \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\hat{\%}$	$\begin{array}{r} \mathrm{W} \\ \mathrm{ppm} \end{array}$	11 ppm	ppb	$\begin{array}{r} \mathrm{Se} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Te } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \text { Ga } \\ \text { ppm } \end{array}$
PPD-17908	. 46	35.92	5.67	55.6	62	38.1	118.2		3.62	3.8	. 3	5.7		713.5	15	. 32		08124	. 75	. 037	8.2	74.0	1.	187.8	402		2.72	. 018	03	<. 2	03	70	5	03	7.9
PPD-17902	. 63	33.85	5.52	47.8	143	38.6	623.4	558	3.57	5.0	. 3	8.6	2.0	10.3	. 19	. 38		09103	. 66	. 078	7.9	65.3	83	179.2	296		2.92	01	02	<. 2	03	81	5	03	8
PPD-17994	. 73	65.70	11.14	101.6	54	46.5	530.0		4.38	7.9	. 5	3.5	4.1	125.0	. 33	. 91		14125	. 81	100	13.5	72.8	1.74	194.2	. 397		2.67	. 009	. 05	< 2	05	38	6	03	8.2
PPD-17904	. 44	21.06	5.83	57.9	25	29.3	313.0	290	2.82	3.1	. 3	2.4	2.3	38.6	. 22	. 19		0995	. 44	. 033	10.5	61.8		1132.8	261		2.24	009	03	<. 2	03	41	4	02	6.7
PPD-17945	. 60	118.33	4.35	72.3	76	215.9	945.4		4.64	6.9	. 4	7.4	1.8	835.0	. 12	. 41		$07 \quad 89$. 76	. 053	7.6	188.6	6	447.	199		3.17	. 015	. 04	<. 2	04	33	. 5	02	2
PPD-17909	. 78	47.68	5.87	72.9	113	34.8	819.3		3.63	3.2	. 4	6.0		214.5	20	. 25		09114	. 70	036	. 0	76	1.00	210	297		2.39	011	. 03	< 2	02	54	5	03	. 1
PPD-17913	. 31	49.21	5.33	63.9	20	43.0	. 18.1		3.77	3.5	. 3	4.0	2.4	421.5	09	. 34		08126	1.07	. 044	9.1	79.5	1.29	326.9	415		2.54	019	04	< 2	02	38	3	02	. 3
PPD-17993	. 51	70.96	6.10	52.9	56	59.9	9 20.9		3.35	4.4	. 5	3.9	3.0	030.8	11	. 30		0899	. 66	045	10.4	72.0	1.18	8398.2	. 270		2.73	. 014	03	<. 2	. 03	47	4	. 04	6.9
PPD-17997	. 72	36.62	7.81	71.9	108	22.7	711.2		3.48	2.9	4	1.7	1.2	212.1	. 19	. 26		13109	. 30	. 054	11.3	56.8	63	3114.8	. 222		2.28	005	04	<. 2	05	59	4	. 02	8.2
PPD-17911	. 80	33.98	5.53	89.2	85	31.0	016.6		14.80	3.7	. 4	1.1	1.3	314.5	. 22	. 29		12142	. 46	. 093	6.5	86.1	1.0	175.6	. 391		3.29	. 007	03	<. 2	. 04	109	. 6	04	. 1
F 7990	. 24	60.68	3.87	64.2	24	48.9	925.6		4.07	4.2	. 2	1.8		632.9	11	. 44		06130	1.16	039	5.4	76.2	1.	222.0	. 464		2.80	. 029	04	<. 2	. 02	25	. 3 <	<. 02	8.3
Pru-17984	. 39	33.99	3.09	58.6	79	38.3	324.0		3.60	3.3	. 3	1.2	1.5	519.5	. 27	. 26		05117	74	067	4.9	67.	1.0	116.5	. 413		. 10	. 017	02	<.2	. 02	82	5	. 02	7.3
PPD-17914	. 40	80.93	9.39	88.8	75	50.7	728.3	1393	4.37	6.6	. 3	6.4	2.7	726.3	. 15	. 57		13123	1.03	. 057	9.5	74.5	. 5	270.4	. 369		2.63	021	08	<. 2	. 04	69	. 2	08	9.1
PPD-17998	. 33	154.42	3.02	105.7	40	45.6	654.4	1334	6.47	2.5	. 3	. 4	1.4	417.6	. 14	. 26		04173	. 86	. 067	4.	64.7	3.90	90.7	24		3.99	007	. 04	<	. 03	34	6	02	1.3
PPD-17905	. 53	30.32	5.54	53.4	109	40.9	919.2	352	3.29	4.4	. 3	1.4	2.6	610.1	12	. 28		0895	5	46	8.	62.5	. 77	7179.1	. 279			. 009	. 02	<.2	. 03			02	. 2
PPD-17983	. 09	65.90	8.69	86.9	17	31.6	610.7		2.29	1.9	. 2	1.6	4.7	79.1	03	. 15		$13 \quad 39$. 30	013	10.3	33.4		289	. 168		1.67	. 002	. 05	. 3	. 02	47	2	. 05	4.6
PPD-17943	. 82	31.05	7.44	54.0	40	48.2	218.0		3.21	5.0	. 4	6	2.6	612.9	. 10	. 37		1176	. 44	020	12.1	68.4	. 9	161.5	. 152		1.84	. 007	02	< 2	. 03	36	4	. 03	5.6
PPD-17910	. 67	53.59	7.28	75.5	108	30.3	324.7	1106	4.55	4.5	. 4	5.0	1.2	219.8	26	. 35		12145	. 70	. 047	8.8	90.3	98	243.2	404		2.59	01	03	<. 2	03	61	.	. 04	9.2
PPD-17999	14.22	236.34	38.81	58.3	161	14.5	5 6.3	288	3.07	101.1	2.3	5.2	12.4	49.2	. 12	. 66	43.94	9440	11	. 073	26.6	24.8	. 51	174.5	119		1.77	. 027	28	28.5	. 29	<5	.	. 20	5.9
PPD-17996	. 61	46.50	7.15	37.0	43	22.5	512.8	183	2.90	2.4	. 7	4.1	. 8	88.3	. 11	. 18		$15 \quad 74$. 22	. 040	10.5	45.4	52	100.8	096		2.68	. 005	. 03	. 6	. 05	82	. 4	<. 02	6.5
PPD-17985	. 4	160.00	18.39	83.7	195	77.0	51.5	2112	5.54	5.2	. 5	16.1	3.0	029.3	. 18	. 25		15181	. 85	. 030	10.	,	2.	327.0	490		4.20	. 014	. 03	. 3	. 03	80	6	. 08	0.7
PPD-17942	. 56	44.93	5.36	53.4	20	85.9	922.4	677	3.36	6.2	. 4	7.0	3.6	624.8	. 11	. 40		0990	. 74	. 055	11.5	104.6	1.22	237.9	. 215		2.13	. 013	. 04	< 2	. 02	24	. 2	. 02	5.8
PPD-17906	. 48	33.49	4.38	49.8	72	41.1	123.3	390	3.63	4.0	. 3	1.5	2.2	210.2	. 13	. 25		07109	. 63	. 042	7.0	70.9	. 87	152.3	. 372		3.09	. 013	03	< 2	. 03	73	. 4	. 02	6.8
RE PPO-17906	. 50	32.63	4.28	48.2	75	40.5	522.4		3.56	3.9	. 3	2.1	2.0	O 9.4	13	. 25		07104	. 57	040	6.5	67.9	. 84	148.4	. 352		3.01	011	02	<. 2	02	62	. 4	03	6.5
PPD-17920	. 64	38.25	5.23	73.7	62	54.4	423.2	383	4.36	4.9	. 3	2.2	2.5	513.1	12	. 45		10133	. 46	060	7.1	77.9	- 85	105.6	. 366		26	. 010	. 03	<. 2	. 03	48	. 3	2	8.3
PPD-17986	. 32	34.59	4.30	43.9	39	43.1	120.8		3.36	4.7	. 2	2.5		115.6	. 12	. 36		07109	. 76	. 030	7.1	62.	1.08	164.	318		2.48	. 017	. 03	<2	. 02	36	3	. 02	6.9
PPD-17992	. 52	92.65	8.75	74.4	137	58.7	724.9	1213	3.96	5.9	. 4	5.9	3.2	21.6	. 12	. 51		10104	. 74	. 050	11.1	69.9		711.5	. 276		2.56	. 12	. 07	<. 2	. 0	108	.	. 03	7.3
PPD-17987	1.01	112.77	7.08	93.1	43	85.8	844.5	1491	6.21	18.9	. 1	3.0		916.5	17	3.00		04200	1.20	. 046	4.4	138.	2.88	88.0	. 496		3.91	011	. 02	< 2	. 02	33	.		4.0
PPD-17918	. 27	117.98	4.06	105.4	21	72.3	335.6	1021	5.50	4.1	. 2	1.6	1.9	32.8	. 16	. 52		05158	1.06	. 036	5.8	68.	1.83	151.			3.38	. 027	04	<. 2	. 02	37	3	<. 02	1.2
17941	. 60	44.87	5.65	51.6	16	80.5	521.7	660	3.30	6.7	. 4	2.2	3.5	524.9	. 10	. 48		0986	. 66	. 059	0.4	98		23	. 198			. 012	. 03	<. 2	. 02	27	. 2	. 2	5.5
PP0-17991	. 66	60.11	6.16	76.9	141	64.0	26.7	956	3.98	4.6	. 3	1.6	1.8	838.6	. 15	. 39		07124	. 69	. 039	5.5	84.0	. 17	7908.4	337		3.19	012	05	<.2	. 03	47	. 4	. 03	7.8
PP0-17919	. 54	38.09	2.44	71.0	98	45.7	25.2	541	4.21	3.4	. 2	. 6	1.0	023.6	. 18	. 38		04137	. 92	058	4.3	79.1	1.19	124.2	461		3.67	023	02	<. 2	. 02	80	5	. 02	8.7
PPD-17981	. 66	58.84	8.56	65.7	20	40.1	119.4	1073	3.43	6.7	. 4	5.3	2.9	917.6	. 15	. 56		10104	. 79	. 063	12.0	63.8	1.04	448.9	. 102		2.33	. 016	05	<. 2	. 04	36	. 4	. 05	6.3
STANDARD OS2	14.45	128.78	34.08	164.8	271	32.7	12.7	843	3.11	54.6	19.7	214.3	3.5	5 28.2	10.53	9.26	11.09	0974	52	. 092	16.4	160.8	. 62	157.9	. 102	2	1.75	. 034	. 15	6.8	1.76	232	2.31	1.74	6.1

[^21]

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00$ GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, $H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM}$; $C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 \mathrm{PPM}$.

- SAMPIE TYPE: -230 TIUL Samples beginning 'PE' are Reruns and 'RPE' are Reiect Reruns.

DATE RECEIVED: JUL 202000 DATE REPORT MAILED: fVg $8 / \mathrm{N}$
SIGNED BY................. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#

[^22]

[^23]

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMP! E TYPF: -230 T!!!

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECETVED: JU 312000 DATE REPORT MAILED: TVY $20 / 07$
SIGNED BY... O O.... TOYE, C.LEONG, H. WANE; CERTIFIED R.C. ASSAYERS

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A002511R
Page 2

[^24]| | SAMPLE\# | $\begin{array}{r} \text { SiO2 } A l 203 \\ \% \end{array}$ | $\mathrm{Fe} 203$ | $\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$ | $\mathrm{Na} 2 \mathrm{O}$ | $\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$ | $\underset{\%}{\mathrm{TiO}} \mathrm{P}$ | P205 | $\begin{array}{r} \text { MnO } \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} \mathrm{Ni} \\ \mathrm{pprn} \end{gathered}$ | $\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} 101 \\ \% \end{gathered}$ | $\begin{array}{r} \text { TOT } / \mathrm{C} \\ \% \end{array}$ | $\begin{array}{r} \text { TOT/S } \\ \% \end{array}$ | $\begin{array}{r} \text { SUM } \\ \% \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , \cdot | PPD-17908 | 59.5811 .87 | 7.46 | 3.30 | 3.66 | 1.80 | . 69 | 1.40 | . 15 | . 12 | . 021 | 760 | 64 | 23 | 9.9 | 1.82 | . 01 | 100.05 |
| | PPD-17902 | 56.0312 .15 | 7.02 | 3.04 | 3.75 | 1.64 | . 75 | 1.31 | . 17 | .11 | . 021 | 650 | 59 | 24 | 13.9 | 2.95 | . 01 | 99.97 |
| | PPD-17994 | 59.6612 .73 | 8.92 | 4.25 | 3.74 | 1.49 | 1.20 | 1.41 | . 23 | . 15 | . 024 | 922 | 71 | 27 | 6.0 | . 33 | . 01 | 99.92 |
| | PPD-17904 | 62.1512 .77 | 6.03 | 2.50 | 2.70 | 1.72 | 1.12 | 1.34 | . 10 | . 07 | . 021 | 768 | 63 | 20 | 9.2 | 1.42 | . 03 | 99.82 |
| | PPD-17945 | 51.47 11.68 | 10.02 | 8.53 | 5.57 | 1.17 | .61 | . 92 | . 10 | . 17 | . 074 | 744 | 280 | 53 | 9.5 | . 20 ט | .03 | 99.74 |
| | PPD-17909 | 58.9011 .41 | 7.21 | 2.61 | 2.87 | 1.68 | . 81 | 1.30 | . 16 | . 13 | . 020 | 756 | 49 | 20 | 12.7 | 2.58 | . 03 | 99.89 |
| | PPD-17913 | 62.5411 .91 | 7.62 | 3.54 | 4.13 | 1.88 | . 85 | 1.37 | . 10 | . 13 | . 022 | 1091 | 74 | 27 | 5.7 | . 22 | <. 01 | 99.93 |
| | PPD-17993 | 64.0611 .76 | 6.69 | 3.46 | 3.22 | 1.71 | . 87 | 1.19 | . 12 | . 12 | . 028 | 919 | 84 | 23 | 6.7 | . 65 | . 06 | 100.04 |
| | PPD-17997 | 54.9011 .50 | 7.09 | 1.86 | 1.67 | 1.28 | . 94 | 1.31 | . 23 | . 09 | . 014 | 539 | 39 | 17 | 18.8 | 5.38 | <. 01 | 99.75 |
| | PPD-17911 | 46.7711 .69 | 9.16 | 2.69 | 2.41 | 1.16 | . 59 | 1.41 | . 33 | . 12 | . 023 | 585 | 47 | 19 | 23.4 | 5.66 | . 04 | 99.83 |
| | PPD-17990 | 58.0012 .42 | 8.90 | 4.38 | 5.17 | 1.85 | . 64 | 1.55 | . 07 | . 17 | . 025 | 662 | 82 | 31 | 6.5 | . 52 | $<.01$ | 99.76 |
| | PPD-17984 | 55.0312 .18 | 7.60 | 3.41 | 4.23 | 1.72 | . 57 | 1.41 | . 18 | . 12 | . 0227 | 418 | 62 | 25 | 13.2 | 2.48 | . 04 | 99.73 |
| | PPD-17914 | 59.4412 .54 | 8.77 | 4.10 | 4.16 | 1.71 | 1.06 | 1.31 | . 12 | . 23 | . 023 | 1054 | 93 | 28 | 6.2 | . 13 | <. 01 | 99.80 |
| | PPD-17998 | 44.3613 .82 | 13.72 | 7.64 | 5.45 | . 92 | . 56 | 1.64 | . 15 | . 22 | . 017 | 337 | 75 | 33 | 11.2 | 1.18 | . 04 | 99.75 |
| | PPD-17905 | 58.5113 .55 | 6.86 | 2.77 | 3.12 | 1.85 | 1.15 | 1.31 | . 09 | . 08 | . 026 | 820 | 65 | 22 | 10.3 | 1.64 | . 02 | 99.72 |
| | PPD-17983 | 72.1010 .35 | 4.17 | 2.37 | . 78 | . 18 | 1.54 | . 66 | <. 01 | . 07 | . 008 | 2145 | 34 | 14 | 7.2 | . 27 | $<.01$ | 99.68 |
| | PPD-17943 | 63.2112 .45 | 6.53 | 2.96 | 2.43 | 1.69 | 1.42 | 1.12 | . 11 | . 10 | . 022 | 926 | 64 | 19 | 7.7 | 1.05 | . 04 | 99.86 |
| | PPD-17910 | 52.1211 .36 | 8.75 | 2.70 | 3.11 | 1.44 | . 70 | 1.54 | . 21 | . 18 | . 022 | 694 | 50 | 22 | 17.6 | 4.05 | . 03 | 99.82 |
| | PPD-17999 | 65.0314 .01 | 5.36 | 1.24 | 1.22 | 2.46 | 2.92 | . 85 | . 18 | . 06 | . 004 | 360 | 43 | 11 | 6.4 | 1.00 | . 08 | 99.78 |
| | PPD-17996 | 50.5212 .85 | 6.08 | 1.68 | 1.43 | 1.37 | 1.06 | 1.06 | .17 | . 04 | . 010 | 530 | 31 | 16 | 23.6 | 6.47 | . 05 | 99.94 |
| | PPD-17985 | 50.9113 .28 | 10.15 | 4.92 | 3.58 | 1.15 | . 45 | 1.29 | .14 | . 35 | . 023 | 1040 | 100 | 30 | 13.4 | 1.81 | . 04 | 99.78 |
| | PPD-17942 | 64.9211 .25 | 6.66 | 3.81 | 3.55 | 1.68 | 1.00 | 1.16 | .13 | . 12 | . 036 | 824 | 114 | 25 | 5.4 | . 23 | $<.01$ | 99.83 |
| | PPD-17906 | 55.6212 .90 | 7.26 | 3.02 | 3.58 | 1.77 | . 82 | 1.36 | . 10 | . 09 | . 023 | 608 | 58 | 23 | 13.2 | 2.49 | . 03 | 99.82 |
| | RE PPD-17906 | 55.8412 .95 | 7.30 | 3.03 | 3.58 | 1.78 | . 84 | 1.35 | . 06 | . 09 | . 023 | 607 | 60 | 23 | 13.2 | 2.47 | . 04 | 100.12 |
| | PPD-17920 | 55.1113 .39 | 8.11 | 2.66 | 2.83 | 1.63 | . 94 | 1.52 | .14 | . 08 | . 020 | 508 | 80 | 21 | 13.3 | 2.41 | . 03 | 99.80 |
| | PPD-17986 | 64.0011 .20 | 6.60 | 3.28 | 3.40 | 1.87 | | 1.25 | . 09 | . 12 | . 022 | 665 | 58 | 20 | 7.2 | 1.34 | . 01 | 99.87 |
| | PPD-17992 | 62.6111 .95 | 7.87 | 3.40 | 3.17 | 1.79 | . 94 | 1.21 | . 13 | . 20 | . 026 | 1199 | 114 | 30 | 6.6 | . 25 | . 03 | 100.05 |
| | PPD-17987 | 49.6714 .77 | 11.42 | 5.86 | 5.77 | 1.89 | . 46 | 1.41 | . 10 | . 25 | . 024 | 419 | 100 | 41 | 8.1 | . 75 | . 03 | 99.79 |
| | PPD-17918 | 56.0112 .91 | 10.68 | 4.84 | 4.61 | 1.64 | | 1.33 | . 10 | . 18 | . 022 | 474 | 93 | 32 | 6.8 | . 19 | . 03 | 99.87 |
| | PPD-17941 | 64.9411 .14 | 6.79 | 3.69 | 3.46 | 1.61 | 1.01 | 1.17 | .13 | . 12 | . 034 | 835 | 103 | 24 | 5.4 | . 25 | <. 01 | 99.60 |
| | PPD-17991 | 57.5412 .58 | 7.50 | 3.32 | 3.42 | 1.80 | | 1.22 1 | . 13 | . 16 | . 026 | 4902 | 86 | | 11.0 | 1.82 | . 01 | |
| | PPD-17919 | 49.9112 .54 | 8.52 | 3.58 | 4.44 | 1.78 | | 1.37 | . 25 | . 12 | . 021 | 380 | 69 | 26 | 17.0 | 3.82 | . 02 | 99.99 99.62 |
| | PPD-17981 STANOARD S0-15/CSB | 66.6510 .77 49.3612 .73 | 6.49 7.44 | 2.99 7.19 | 3.43 5.83 | 1.55 2.43 | 1.88 | 1.22 1.77 | .18 2.69 | . 1.41 | 1.018 | 1349 1991 | 65 78 | 25 13 | 5.1 5.9 | 2. 21 | .03 5.32 | 99.62 99.82 |

[^25]

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $4 B$ - REE - LiBO2 FUSION, ICP/MS FINISHED.
SAMPLE TYPE: - 230 TILL

SAMPLE\#	$\begin{array}{r} \text { Co } \\ \text { ppom } \end{array}$	$\begin{gathered} \text { Cs } \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathbf{G a} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Hf} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppom} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{pp} \times \mathrm{m} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{pprn} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Ta } \\ \text { pprn } \end{array}$	$\begin{array}{r} \text { Th } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Tl } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{p} p \mathrm{n} \end{array}$	$\begin{array}{r} v \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{H} \\ \mathrm{ppom} \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{Y} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { la } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppon} \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Nd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{sm} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Eu} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Gd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Tb } \\ \text { ppin } \end{array}$	$\begin{array}{r} \text { Dy } \\ \text { ppon } \end{array}$	$\begin{aligned} & \text { Ho } \\ & \text { ppon } \end{aligned}$	$\begin{array}{r} \text { Er } \\ \text { ppm } \end{array}$	$\begin{aligned} & \mathrm{Tm} \\ & \mathrm{pp} \mathrm{n} \end{aligned}$	$\begin{array}{r} \mathrm{Yb} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Lu } \\ \text { ppm } \\ \hline \end{array}$
GSMD-17975	25.9	2.0	14.8	6.0	7.9	30.6	1	135.3	. 7	4.2	. 2	2.5	208	1	203.7	39.4	23.2	45.2	6.16	26.7	5.9	1.77	6.40	1.06	6.43	1.31	4.29	. 57	3.76	. 52
GSMD-17968	39.8	2.2	15.1	4.7	9.5	49.6	1	65.7	. 8	5.8	. 2	1.5	160	2	171.1	26.0	23.8	49.8	5.83	23.4	4.6	1.29	4.78	. 74	4.49	. 89	2.84	. 42	2.57	. 36
GSMD-17608	18.2	2.4	18.7	5.5	10.6	39.7	2	118.6	. 9	4.5	. 2	1.4	215	1	193.9	22.8	22.2	44.6	5.41	22.1	3.9	1.23	3.90	. 65	4.15	. 80	2.56	. 40	2.42	. 35
GSMD-17978	25.7	2.0	16.0	5.1	8.3	32.0	1	121.8	. 7	3.9	. 1	1.3	195	<1	178.9	23.4	19.1	41.1	4.73	19.8	3.8	1.17	3.71	. 64	3.96	. 84	2.64	. 36	2.62	. 37
GSMD-17607	30.2	2.0	16.2	4.8	9.1	33.6	1	129.8	. 8	4.8	. 2	1.4	186	<1	171.8	28.1	21.3	56.8	5.48	22.9	4.9	1.35	4.82	. $\overline{\text { ou }}$	$\overline{97}$	i.ui	23	. 40	3.05	42
GSMD-17970	18.3	2.7	16.5	6.2	13.0	74.8	2	108.6	1.1	8.4	. 3	2.5	164	1	231.2	36.0	39.1	80.9	9.25	37.1	6.6	1.69	5.91	. 94	5.90	1.20	3.88	. 55	3.45	49
GSMD-17606	21.6	2.6	16.3	5.5	9.5	36.9	1	121.6	. 8	4.4	. 1	1.4	197	<1	201.1	27.3	22.8	46.0	5.61	22.6	4.8	1.36	4.76	. 77	4.65	. 92	2	42	8	36
GSMD-17977	38.0	4.4	16.3	5.0	8.4	29.8	1	106.9	. 7	3.4	. 1	1.2	223	<1	184.7	24.8	20.2	39.9	4.94	20.9	4.3	1.68	4.52	. 77	4.49	. 89	2.72	. 40	2.45	. 34
GSMD-17979	32.5	2.0	15.3	4.9	8.2	27.1	1	127.4	. 7	3.4	. 2	1.2	205	<1	174.6	26.2	17.7	39.6	4.59	19.3	4.1	33	4.23	. 69	9	. 91	7	. 40	2.73	. 36
GSMD-17610	23.1	1.9	16.1	5.0	9.6	38.8	2	121.2	. 8	4.5	. 2	1.4	189	<1	182.1	27.3	21.9	47.0	5.46	22.1	4.5	1.31	4.53	. 77	4.65	. 91	2.97	. 41	2.73	. 37
)-17972	24.1	1.8	15.2	5.1	7.7	27.2	4	130.6	. 7	3.8	. 2	2.6	197	<1	187.0	36.8	21.6	42.1	5.75	24.6	5.6	1.70	5.71	. 97	6.10	1.23	3.83	. 53	3.55	. 51
L-.to-17609	25.7	1.0	13.8	5.1	6.5	17.5	1	130.7	. 6	2.7	. 1	1.0	209	<1	186.1	27.1	15.9	36.2	4.27	17.9	3.9	1.38	4.31	. 74	4.75	. 95	2.98	43	2.79	. 40
GSMD-17980	27.3	2.0	14.9	5.9	7.4	21.0	2	149.4	. 6	3.9	. 2	1.3	220	<1	217.6	31.3	20.5	45.6	5.44	23.2	5.2	. 49	5.46	. 91	5.35	1.06	3.39	. 49	3.07	. 43
GSMD-17605	23.3	2.4	14.9	4.7	8.6	33.0	4	116.8	. 7	3.5	. 2	1.2	187	<1	174.9	24.9	19.0	38.5	4.69	19.2	4.1	1.26	4.28	. 68	4.48	93	2.85	39	(. 38
GSMD-17619	31.3	2.1	13.5	4.2	6.4	22.9	2	98.4	. 5	3.2	. 1	1.1	187	<1	156.8	26.7	16.5	34.9	4.45	18.7	4.0	37	4.32	. 76	4.84	. 93	2.92	. 39	2.62	. 38
GSMO-17961	14.4	2.4	15.8	5.0	10.5	47.7	1	90.0	. 8	5.0	. 6	1.6	193	<1	192.8	24.0	23.9	47.3	5.63	22.4	4.2	1.10	3.72	. 63	3.97	. 82	2.51		2.61	. 36
GSMD-17618	27.9	1.9	14.9	5.5	8.9	29.0	1	146.2	. 7	4.2	. 7	1.7	188	<1	205.7	30.2	22.0	46.3	5.57	23.3	4.8	1.54	5.14	. 86	5.29	1.04	3.19	. 46	2.87	. 40
GSMD-17620	35.4	2.3	14.4	4.5	7.6	28.5	1	113.2	. 6	4.2	.4	1.3	207	<1	163.8	37.2	21.1	47.8	5.75	24.3	5.2	. 63	5.80	. 97	6.09	1.24	3.81		3.39	. 49
GSMD-17966	18.5	2.7	23.0	5.4	8.0	40.1	2	350.8	.6	4.7	. 5	1.4	187	<1	212.1	31.5	21.6	51.9	6.34	26.5	4.3		5.54	. 89	5.31	02	4	46	14	. 41
GSMD-17616	25.9	1.6	15.0	4.5	8.6	32.8	1	131.6	. 7	3.7	. 5	1.3	204	<1	168.6	31.1	20.6	40.0	5.31	22.6	4.7		5.04	. 84	5.07	1.02	3.25	. 46	3.21	. 41
GSMD-17947	27.5	2.8	13.7	8.6	18.6	55.9	1	160.7	1.5	11.8	.4	2.4	124	1	335.4	38.0	58.8	115.9	13.41	51.6	9.1	2.15	7.56	1.13	6.58	1.21	3.78	. 52	3.28	. 48
RE GSMD-17907	19.1	3.8	17.3	4.7	11.2	46.1	2	97.2	. 9	5.1	. 5	1.5	202	,	183.0	24.6	25.0	50.2	5.98	23.6	4.3	1.13	4.26	. 61	4.07	8	2.58	. 36	2	. 37
PPD-17907	19.5	3.7	17.5	4.9	11.5	46.8	2	98.8	. 9	5.1	. 4	1.6	201	<1	184.5	24.9	24.8	49.5	5.90	22.9	4.5	1.08	4.16	. 70	4.19	. 84	2.72	. 37	2.58	. 35
PPD-17915	67.7	3.1	19.0	3.2	5.3	24.2	2	158.7	$\cdot 4$	1.8	. 4	. 6	240	<1	115.5	27.0	12.2	29.0	3.53	15.9	3.9	1.51	4.58	. 73	4.82	. 90	2.88	. 41	2.59	. 37
PPD-17989	33.7	2.1	16.3	4.8	8.2	32.6	2	116.4	. 7	3.8	. 6	1.1	241	<1	184.2	34.5	21.5	51.9	5.56	23.4	5.4	67	5.80	. 98	82	13	3	. 53	3.13	. 44
PPD-17901	27.0	2.0	14.8	5.6	9.2	34.6	1	110.0	. 7	4.4	. 5	1.4	195	<1	212.9	29.9	22.9	49.1	5.73	23.1	4.8	1.46	5.12	. 81	5.08	. 99	3.14	. 44	2.87	. 41
PPD-17916	35.4	1.8	15.1	4.8	7.3	27.6	2	116.1	. 6	3.5	1.0	1.1	203	<1	176.8	34.7	19.6	44.5	5.33	22.9	5.3	1.62	5.75	. 93	6.13	1.19	3.76	. 53	3.43	. 45
PPD-17946	20.6	1.7	13.6	5.6	9.6	34.8	2	131.6	. 8	5.0	.9	1.5	153	<1	223.9	26.9	25.9	54.7	6.26	24.7	4.7	1.38	4.71	. 70	4.56	. 85	2.74 3.19	. 40	2.48 2.86	. 35
PPD-17912	25.3	1.4	14.7	4.7	8.0	25.4	2	127.4	. 7	3.1	. 8	1.0	216	<1	176.2	29.6	18.6	41.0	4.89	20.6	4.6	1.42	4.82	. 85	5.22	1.03	3.19 3.80	. 47	2.86	. 52
$\checkmark-17917$	29.8	2.6	14.9	7.7	10.4	36.3	3	136.9	1.0	7.4	1.4	2.2	182	1	284.7	37.8	34.1	74.1	8.26	33.0	6.8	1.84	6.20	1.05	6.22	24	80	. 59	50	. 52
PPD-17903	18.1	2.2	16.4	4.9	9.8	38.0	2	113.4	. 8	5.0	. 7	1.8	188	1	185.5	38.1	28.3	51.2	7.49	30.7	6.5	1.94	6.99	1.10	6.75	1.28	3.80	. 54	3.34	. 45
PPD-17982	21.9	1.9	13.1	5.5	8.5	33.0	2	109.6	. 7	4.5	1.1	1.6	186	<1	204.6	33.1	28.3	55.7	7.05	28.0	5.8	1.64	6.33	1.00	6.07	1.14	3.52	. 46	3.20	. 44
PPD-17944	27.3	2.2	13.9	4.7	8.0	29.9	2	120.1	. 8	4.7	. 8	2.3	177	<1	172.6	43.5	23.6	53.5	6.59	27.7	6.2	1.80	6.83	1.13	6.74 3.86	1.31	4.28	. 61	4.01	. 51
STANDARD SO-15	21.4	2.9	17.1	26.4	32.5	65.3	18	397.4	2.0	23.1	. 8	21.0	154	19	1090.7	23.6	29.3	58.2	6.26	24.2	4.5	1.04	3.91	. 63	3.86	. 77	2.43	. 38	2.54	. 41

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

nore anuertical																												Nate artick		
SAMPLE\#	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Cs } \\ \mathrm{ppxn} \end{array}$	$\begin{array}{r} \mathrm{Ga} \\ \mathrm{p} p \mathrm{~m} \end{array}$	$\begin{array}{r} H f \\ \mathrm{pprn} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Ta } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Th } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Il} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{H} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{2 r} \\ \mathrm{ppmn} \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{ppm} \end{array}$	Nd ppm	$\begin{array}{r} \mathrm{Sm} \\ \mathrm{Pp} \mathrm{~m} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Eu} \\ \mathrm{ppon} \end{gathered}$	$\begin{array}{r} \mathrm{Gd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Tb} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Dy } \\ \text { ppril } \\ \hline \end{array}$	$\begin{array}{r} \text { Ho } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Er} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Tm } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Yb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Lu} \\ \mathrm{ppm} \\ \hline \end{array}$
PPD-17908	22.0	1.4	14.2	4.7	7.7	28.6	1	127.9	. 7	3.9	. 2	1.3	215	<1	172.9	27.8	19.5	41.9	4.91	20.3	4.8	1.52	5.05	. 79	5.15	1.10	3.37	. 49	3.03	. 44
PPD-17902	25.9	1.7	14.1	4.9	8.3	32.7	1	106.1	. 8	4.7	. 1	1.3	205	2	181.9	28.0	22.8	50.3	5.62	22.5	5.2	1.42	4.97	. 81	5.29	1.05	3.27	. 44	2.85	. 41
PPD-17994	31.0	2.4	16.7	4.8	10.4	50.5	2	100.6	. 9	6.0	. 3	1.7	249	<1	174.1	33.9	27.1	54.9	6.41	26.6	6.1	1.63	6.21	. 95	6.01	1.30	3.66	. 54	3.38	. 51
PPD-17904	15.6	2.2	15.9	5.0	10.8	53.7	1	120.4	. 9	5.5	. 2	1.5	183	1	192.1	24.9	26.8	53.7	6.06	24.0	5.0	1.31	4.59	. 72	4.62	. 92	2.77	. 41	2.52	. 38
PPD-17945	56.4	3.2	13.7	3.2	5.8	21.6	<1	123.6	. 5	2.6	-1	-9	198	<1	119.3	25.2	13.2	27.0	3.53	16.1	4.0	1.18	4.37	. 66	4.36	. 94	2.80	. 41	3.43	. 37
PPD-17909	21.3	2.0	15.4	5.3	9.1	36.7		138.0	. 8	5.1	. 1	1.5	196	<1	197.9	28.9	24.5	52.4	5.86	24.2	5.4	1.50	5.25	. 80	5.06	1.09	3.25	. 50	3.03	. 45
PPD-17913	21.3	1.5	15.0	4.6	8.0	31.2		136.5	. 8	3.9	. 1	1.1	227	<1	174.1	30.7	19.6	40.7	5.00	22.3	5.0	1.51	5.32	. 84	5.62	1.17	3.52	. 53	2.99	. 46
PPD-17993	25.3	2.2	14.1	6.1	9.3	33.7		149.7	. 8	5.5	. 2	1.8	191	<1	226.9	36.5	27.1	65.5	6.60	27.5	6.2	1.60	6.36	. 95	6.29	1.33	4.05	. 57	3.77	. 54
PPD-17997	12.5	3.6	16.0	4.9	11.0	52.2		100.2	. 9	6.2	. 2	1.8	177	<1	184.2	22.0	25.4	51.8	5.77	22.4	4.4	1.18	4.23	. 63	4.02	. 84	2.44	. 36	2.21	. 35
PPD-17911	19.3	2.7	15.1	4.3	8.4	30.7	2	106.3	. 7	3.8	. 1	1.3	218	<1	159.9	22.9	17.3	36.9	4.10	17.4	3.9	1.22	4.03	. 68	4.43	. 90	2.68	. 38	2.43	. 36
- 17990	31.5	1.8	15.0	4.4	5.8	23.4	3	120.5	. 5	2.5	. 1	. 8	257	<1	160.3	31.5	13.3	33.4	3.83	17.9	4.5	1.46	5.27	. 85	5.68	1.19	3.58	. 51	3.25	. 50
,-17984	27.5	1.3	13.1	4.9	6.9	20.5		147.7	.6	3.6	.1	1.2	210	<1	184.0	25.8	17.5	37.5	4.29	18.5	4.3	1.32	4.38	. 73	4.86	1.01	3.04	. 46	2.69	. 41
PPD-17914	30.5	2.4	16.4	4.1	7.2	40.2	2	130.8	. 6	4.0	. 2	1.1	232	<1	159.5	30.5	19.9	41.8	5.05	21.1	5.1	1.46	5.64	. 84	5.48	1.14	3.42	. 49	3.06	. 48
PPD-17998	56.3	2.3	18.0	3.1	9.2	22.6	3	86.9	. 7	2.3	. 2	. 9	323	<1	107.5	29.6	11.1	25.5	3.11	14.3	4.2	1.36	4.75	. 79	5.36	1.13	3.44	. 50	3.17	. 47
PPD-17905	21.0	2.1	14.5	4.9	9.6	50.1	1	121.3	. 7	5.2	. 2	1.4	191	<1	179.5	24.4	22.7	50.8	5.24	21.0	4.6	1.25	4.34	. 68	4.38	. 93	2.81	. 40	2.53	. 40
PPD-17983	9.4	5.7	12.1	3.1	8.0	70.0	2	23.6	. 7	6.0	. 7	1.2	105	1	113.2	15.7	19.7	42.4	4.40	17.0	3.4	. 65	2.88	. 43	2.89	. 62	1.83	. 28	1.65	. 27
PPD-17943	20.6	3.0	15.7	5.3	11.6	61.0		114.0	. 9	7.3	. 8	1.8	172	1	198.9	27.6	30.7	61.2	6.84	26.5	5.5	1.33	4.90	. 72	4.61	. 97	3.02	. 46	2.50	. 42
PPD-17910	27.3	2.0	16.6	4.7	9.2	33.1	,	127.8	. 7	4.5	. 5	1.5	235	<1	177.2	37.6	22.9	48.0	6.05	26.3	6.1	1.80	6.85	1.11	7.00	9.48	4.26	. 65	3.71	. 57
PPD-17999	7.1	12.8	17.1	10.3	15.1	170.0	13	116.2	1.6	17.2	1.0	4.8	66	200	391.3	31.7	45.0	86.3	9.19	34.9	7.1	1.29	5.94	. 90	5.41	1.17	3.49	. 50	3.42	. 47
PPD-17996	15.9	2.6	15.4	5.5	10.8	44.1	2	84.8	. 9	6.4	. 5	2.2	133	2	204.9	24.3	23.2	50.2	5.44	21.8	4.6	1.22	4.60	. 73	4.78	. 96	2.75	. 39	2.38	. 33
PPD-17985	49.9	1.9	14.3	3.2	9.1	17.7	,	97.3	. 7	3.9	.4	1.0	264	2	114.7	29.9	20.4	76.4	5.27	22.8	5.5	1.71	5.65	. 99	6.05	1.28	3.63	. 51	3.07	. 45
PPD-17942	26.1	2.4	13.8	6.4	10.1	39.7		137.6	. 8	6.5	. 5	1.8	186	<1	240.4	31.4	30.3	60.1	7.12	28.1	6.2	1.56	5.87	. 88	5.44	1.17	3.48	. 49	3.22	.47
PPD-17906	26.2	1.9	14.3	4.8	8.3	37.5	1	118.3	. 7	4.3	. 4	1.2	207	3	180.8	26.3	19.3	44.6	4.64	19.8	4.6	1.35	4.45	. 78	4.83	1.05	3.09	. 45	2.84	. 40
RE PPD-17906	26.7	1.8	14.5	4.9	8.3	37.1		120.3	. 6	4.3	. 6	1.3	211	<1	178.2	26.9	19.2	44.3	4.68	19.4	4.7	1.38	4.73	. 74	4.94	1.07	3.02	. 46	2.86	. 42
PPD-17920	28.7	2.5	16.3	6.9	11.9	38.3	2	148.8	. 9	6.0	. 5	1.8	227	<1	256.8	29.8	27.1	56.1	6.36	25.6	5.6	1.47	5.29	. 81	5.38	1.12	3.38	. 49	3.12	. 48
PPD-17986	26.0	2.0	13.7	5.3	8.0	32.2		125.4	. 7	4.2	. 5	1.2	205	<1	200.7	27.2	20.2	45.2	4.86	20.2	4.6	1.29	4.66	. 76	4.87	1.05	3.10	. 47	2.81	. 41
PPD-17992	29.8	6.8	14.6	6.7	8.7	35.8	2	150.0	. 8	5.4	. 6	1.8	196	<1	247.2	39.9	26.9	53.9	6.64	28.3	6.5	1.73	6.84	1.05	6.55	1.40	4.48	. 65	3.99	. 65
PPD-17987	47.5	2.5	19.9	3.1	3.7	15.4	2	82.4	. 3	1.2	. 5	. 3	305	<1	109.5	34.7	9.9	24.6	3.63	19.1	5.6	2.17	7.05	1.07	6.64	1.41	3.98	. 59	3.53	. 51
PPD-17918	41.9	2.9	17.5	4.2	5.8	24.9	2	126.6	. 6	3.3	. 9	1.1	273	1	148.1	30.6	16.1	36.2	4.19	19.5	5.1	1.64	5.34	. 91	5.47	1.19	3.48	. 55	3.20	. 52
-70-17941	26.2	2.6	13.8	6.5	10.4	39.8	2	134.3	1.0	7.0	. 5	1.9	185	<1	241.9	31.7	30.9	62.0	7.21	29.6	6.3	1.55	6.15	. 91	5.36	1.17	3.56	. 51	3.07	. 45
HPD-17991	31.2	2.6	14.2	5.3	8.0	28.2	2	145.5	. 8	3.9	. 9	1.2	208	<1	194.9	23.7	18.1	49.4	4.41	18.1	4.0	. 75	4.04	. 65	4.20	. 88	2.75	.41	2.53	. 39
PPD-17919	28.9	2.2	13.4	3.6	5.3	16.6		107.8	. 5	2.1	. 6	. 7	227	<1	134.0	26.8	11.8	27.1	3.40	15.3	4.2	1.38	4.74	. 76	4.77	1.03	3.01	. 45	2.70	. 40
PPD-17981	22.6	1.9	13.1	5.4	8.4	33.0	2	109.9	. 7	5.0	. 5	1.7	206	<1	202.3	33.4	28.5	54.9	6.82	28.3	6.4	1.73	6.11	. 99	5.85	1.23	3.64	. 53	3.13	. 47
STANDARD S0-15	21.4	2.7	16.6	25.7	32.0	65.5	18	391.3	1,7	23.1	. 9	20.3	154	18	1052.8	22.6	29.6	59.1	6.09	23.3	4.5	1.03	3.94	. 60	3.75	. 77	2.46	. 37	2.45	. 42

Sample type: -230 TILL. Samples beginning.'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A002511R
Page 4 (a)
SAMPLE\#

PPD -17995
PPD-17988 PPD -18000 RE PPD -17988 RE PPD -17988
STANDARD SO-15

 $\begin{array}{llllll}18.6 & 3.1 & 18.1 & 6.1 & 12.6 & 53.4\end{array}$ $\begin{array}{lllllllll}26.1 & 2.0 & 15.1 & 5.9 & 8.5 & 33.6 & 1 & 112.6\end{array}$ $\begin{array}{llllllll}60.8 & 2.7 & 20.4 & 3.3 & 6.2 & 25.3 & 1 & 121.8\end{array}$ $\begin{array}{llllllll}26.2 & 2.0 & 14.7 & 5.4 & 8.4 & 33.7 & 1 & 1111 .\end{array}$ $\begin{array}{rrrrrrrrrrrrr}26.1 & 2.0 & 15.1 & 5.9 & 8.5 & 33.6 & 1 & 112.6 & .7 & 4.7 & .4 & 1.4 & 198 \\ 60.8 & 2.7 & 20.4 & 3.3 & 6.2 & 25.3 & 1 & 121.8 & .5 & 1.8 & .5 & .6 & 363 \\ 26.2 & 2.0 & 14.7 & 5.4 & 8.4 & 33.7 & 1 & 111.8 & .7 & 4.6 & .4 & 1.4 & 198 \\ 21.0 & 2.9 & 16.8 & 26.6 & 30.8 & 64.2 & 10 & 401.5 & 2.1 & 22.9 & 1.0 & 21.1 & 153\end{array}$

$3 \quad 210.3 \quad 29.030 .158 .36 .9829 .5 \quad 6.01 .415 .64$ $\begin{array}{llllllllll}3 & 198.5 & 28.8 & 21.8 & 49.3 & 5.37 & 22.7 & 4.9 & 1.34 & 5.03\end{array}$ | 3 | 189.0 | 28.0 | 22.2 | 49.9 | 2.77 | 14.0 | 4.2 | 1.41 | 4.88 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 201050.823028 .557 .15 .1924 .1451 .385 .02

| .83 | 5.24 | 1.08 | 3.02 | .44 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}.81 & 4.98 & 1.11 & 3.01 & .43 & 2.91\end{array}$ $\begin{array}{llll}.81 & 5.56 & 1.23 & 3.43 \\ .80 & 5.31 & 1.09 & 2.99\end{array}$ $\begin{array}{rrrr}.80 & 5.31 & 1.09 & 2.99 \\ .56 & 3.76 & .80 & 2.41\end{array}$

442.74
432.91 .432 .91
.513 .22 .513 .22
.432 .82 $\begin{array}{ll}43 & 2.82 \\ 36 & 2.48\end{array}$

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 E X-0.25 \mathrm{GM}$ SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH} \& \mathrm{U}=4,000$
 - SAMPLE TYPE: - 230 TILL Samples beginning'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECETVED: IUI 312000 DATE REPORT MATLED: FTO $28 / 00$ SIGNED BY.
 (I) .

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{aligned} & \mathrm{Mo} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	
PPD-17908	$<.5$	40	6	66	51	4	$<.2$	1	1	
PPD-17902	. 5	35	6	61	53	6	$<.2$	2	1	
PPD-17994	$<.5$	73	10	109	61	9	$<.2$	2	1	
PPD-17904	. 5	19	7	70	41	3	$<.2$	1	1	
PPD-17945	$<.5$	155	4	86	31.3	7	- 2	1	1	
PPD-17909	. 6	57	7	88	46	3	$<.2$	2	<1	
PPD-17913	$<.5$	54	5	72	58	4	$<.2$	1	1	
PPD-17993	. 5	80	7	61	80	5	$<.2$	<1	1	
PPD-17997	. 7	40	9	90	28	4	<. 2	2	<1	
PPD-17911	. 8	41	6	101	43	4	. 2	1	1	
PPD-17990	$<.5$	75	4	77	71	6	$<.2$	2	1	
PPD-17984	$<.5$	36	4	69	57	4	$<.2$	<1	<1	
PPD-17914	$<.5$	98	9	102	68	8	$<.2$	<1	1	
PPD-17998	$<.5$	189	<3	119	54	3	$<.2$	1	2	
PPD-17905	. 7	33	7	68	57	5	$<.2$	1	2	
PPD-17983	$<.5$	73	9	95	40	<2	$<.2$	<1	<1	
PPD-17943	. 8	37	9	70	68	5	$<.2$	<1	<1	
PPD-17910	-. 6	64	7	90	43	6	$<.2$	1	<1	
PPD-17999	15.3	252	51	70	17	116	$<.2$	<1	46	
PPD-17996	- 8	57	8	58	29	2	$<.2$	1	<1	
PPD-17985	$<.5$	181	15	88	95	7	$<.2$	2	1	
PPD-17942	$.5$	47	7	64	109	7	$<.2$	1	<1	
PPD-17906	$<.5$	31	5	61	59	5	$<.2$	2	<1	
REP PPD-17906	. 5	31 40	6	61	57 66	6 5	$<.2$	1	<1	
PPD-17920	. 6	40	7	83	66	5	$<.2$	1	<1	
PPD-17986	$<.5$	$\begin{array}{r}35 \\ \hline 15\end{array}$	6	55	58		$<.2$		<1	
PPD-17992	$<.5$	115 149	11	88 107	86	7 22	$<.2$	$\frac{1}{6}$	<1	
PPPD-17987	.7 $<.5$	149 149	4	1107	112	22	<.2	6	$\frac{1}{1}$	
PPD-17941	$\bigcirc .5$	-49	7	-64	111	6	$<.2$	1	<1	
PPD-17991	. 8	77	7	86	91	5	$<.2$	2	<1	
PPD-17919	$<.5$	43	<3	78	65	5	$<.2$	1	1	
PPD-17981		63 63	38	68 182	55 37	7 60	1<.2	23	<1	
STANDARD CT3	24.8	63	38	182	37	60	19.2	23	22	

Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^26]

GROUP $1830-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

DATE RECEIVED: UL 202000 DATE REPORT MAILED:

Any 8100
SIGNED BY... A......D. TOYE, C.LEONG, J. HANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#	$\begin{array}{r} \mathrm{Mo} \\ \mathrm{ppran} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppma} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$2 n \quad \mathrm{Ag}$ ppm ppb	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \\ \hline \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{p} \mathrm{~m} \\ \hline \end{array}$		$\begin{array}{r} \mathrm{V} \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{o} \\ \hline \end{gathered}$	$\begin{aligned} & p \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{cc} \mathrm{Cr} \\ \mathrm{n} & \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \\ \hline \end{gathered}$	$\begin{array}{rr} \hline 9 & \mathrm{Ba} \\ 8 & \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ti} \\ 8 \\ \hline \end{gathered}$	$\begin{array}{r} 8 \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Al } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \\ \hline \end{gathered}$		$\begin{array}{lr} \mathrm{K} & \mathrm{~W} \\ \& & \mathrm{ppm} \\ \hline \end{array}$			$\begin{array}{r} \mathrm{Se} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Te} \\ \mathrm{pppm} \\ \hline \end{array}$	$\begin{gathered} \text { Ga } \\ \text { ppm } \end{gathered}$
SJCX-10304	. 94	57.52	5.35	87.3167	38.9	16.7	1472	2.97	3.6	. 6	2.7	. 5	32.1	. 29	. 36	. 07	7109	1.38	. 080	9.4	65.5	. 88	363.0	205		2.68	. 014		8<.2			. 9	. 03	6.0
SJCX-10301	. 63	43.90	5.08	64.0147	34.6	13.6	896	2.57	3.1	. 5	189.2	. 6	23.9	. 24	. 33	. 07	790	1.26	. 080	9.3	55.3	. 82	280.4	. 199		2.32	. 013		$7<.2$		16	1.1	2	5.4
SDWX-10376	. 92	32.67	11.54	96.6247	45.9	33.2	6652	4.05	8.2	. 9	2.4	1.9	35.8	. 90	. 46	. 14	463	1.24	. 094	17.3	52.4	. 67	359.8	. 067		1.55	. 008		0<.2			1.1	02	4.3
GSMX-10312	. 76	52.00	6.18	105.9282	41.1	14.5	838	2.61	2.9	. 9	3.3		23.6	. 87	. 31	. 09	986	1.17	. 116	10.2	64.2	. 88	435.6	. 172		2.03	. 011	. 07	$7<2$. 03	102	3.1	. 03	5.4
GSMX-10314	. 54	34.37	4.84	62.2221	32.1	13.6	829	2.46	3.0	. 6	57.3		28.7	. 29	. 26	. 07	789	1.25	. 086	10.0	65.9	. 79	364.2	. 195		2.17	. 019	. 07	$7<.2$. 02		. 8	. 03	5.3
GSMX-10317	. 75	61.77	9.99	76.8368	53.4	13.8	774	3.15	4.3	1.4	3.5	1.0	45.1	. 47	. 52	. 12	284	1.37	086	18.3	79.1	:81	433.0	. 151		2.33	. 008		$9<.2$. 05		. 5	. 02	5.9
GSMX-10313	. 75	45.78	5.65	76.6230	39.7	14.0	753	2.52	3.2	. 7	2.3	. 6	23.5	. 33	. 30	. 08	82	1.19	. 103	10.1	71.9	. 87	277.8	. 177		1.96	013		$0<2$	03		3.0	<. 02	5.0
GSMX-10320	. 62	50.54	10.42	69.0277	45.2	13.4		2.72	5.7	1.0	129.5	1.6	25.5	. 24	. 44	. 24	2475	1.09	. 060	16.5	64.2	. 67	410.0	. 157		1.97	. 008		$5<2$. 9	. 02	4.9
GSMX-10315	. 71	62.65	15.12	93.0441	61.2	15.9	898	3.53	5.9	1.4	3.9	1.6	31.4	45	. 59	. 16	682	1.01	. 105	23.4	92.0	. 85	429.5	139		2.65	. 008	. 09	$9<2$		157	. 7	. 02	5.8
GEBX-10059	. 71	77.73	6.24	79.0203	45.2	15.8	977	2.91	7.7	. 7	3.5	. 7	26.2	. 35	. 51	. 08	897	1.50	. 081	11.3	66.2	. 86	276.4	. 208		2.28	. 018	. 09	$9<2$			5.0	04	5.9
' ${ }^{\text {- }}$ - 10041	. 50	32.82	16.19	63.783	43.	17.1	882	2.95	7.8	1.2	4.0	5.1	27.8	. 16	. 71	. 17	$7 \quad 52$. 59	. 065	524.6	51.0	. 77	162.8	. 110		1.48	. 007		$0<2$. 3	. 03	4.5
.-10049	1.26	48.36	5.40	88.9157	75.7	30.8	6254	3.87	12.4	. 5	15.9	. 7	33.7	. 35	. 51	. 08	8115	1.22	. 079	10.3	80.1	1.07	388.2	. 162		2.51	. 012	. 06	< 2		120	. 9	<. 02	6.8
GEBX-10060	. 87	71.93	10.81	71.6542	31.4	9.4	1217	1.86	3.3	2.2	4.8	. 1	35.2	. 38	. 44	. 10	063	1.84	. 171	18.3	106.8	. 64	138.8	. 071		1.70	. 012	. 12	$2<.2$. 04	252	8.1	<. 02	4.0
GEBX-10042	. 52	33.59	16.79	64.674	43.6	16.7	902	3.04	7.6	1.2	2.5	5.3	29.7	. 17	. 67	. 18	856	. 61	. 069	26.5	54.5	. 78	178.0	. 116		21.56	007		$1<2$	05		. 3	03	4.6
GEBX-10048	1.51	49.79	4.77	116.1137	81.6	34.2	9253	4.36	14.9	. 5	8.9	. 6	39.3	. 31	. 53	. 08	8117	1.36	. 078	8.2	77.1	. 15	453.6	. 148		2.41	. 013	. 07	< 2			. 9	. 03	6.7
GEBX-10046	. 93	97.59	7.82	74.9438	43.9	16.0	2684	2.38	9.1	1.6	12.8	5	35.4	. 50	1.11	. 11	175	1.29	. 097	30.5	74.7	. 59	613.1	. 084		1.78	. 010		$0<2$			3.1	. 02	4.5
GEBX-10050	. 59	36.66	6.01	54.592	43.2	19.4	1931	3.26	5.7	. 4	42.6	1.4	20.6	. 19	. 38	. 08	8103	. 87	. 046	10.4	69.9	. 87	246.2	173		2.20	. 010	. 06	$6<2$			4	. 02	6.5
GEBX-10043	. 68	33.55	15.03	103.3255	52.1	18.2	1491	3.14	8.0	1.3	14.9	3.5	36.6	. 28	. 73	. 16	$6 \quad 54$. 68	. 078	29.2	59.6	. 83	242.5	100		1.66	. 008		$1<2$. 05		. 5	. 03	4.7
GEEX-10066	1.04	29.82	9.81	50.728	12.6	12.4	443	3.90	3.2	. 6	1.1	2.7	46.5	. 09	. 11	. 14	4147	. 45	. 043	311.5	39.1	. 52	82.9	. 352		4.04	. 120		< <2	. 12		3	. 05	5.1
GEBX-10058	1.41	57.03	10.98	225.0383	49.6	24.1	8418	3.48	7.4	1.1	4.5	. 9	40.4	. 80	. 50	. 14	4 B1	1.33	091	17.3	57.5	. 666	632.2	. 103		2.11	. 010	. 09	$9<.2$. 5	. 02	5.1
GEBX-10051	. 58	42.82	5.11	70.4162	56.6	18.8	2770	2.72	7.1	. 5	64.0	. 6	25.6	. 23	. 59	. 07	796	1.16	. 063	10.7	68.2	. 91	459.6	. 153		1.96	. 011		$5<2$. 04		. 2	< 02	5.2
GEBX-10044	. 79	33.32	17.75	75.5246	41.9	12.7	722	2.70	8.1	1.5	59.4	3.9	31.0	. 23	. 72	. 20	2040	. 59	. 067	26.9	39.8	. 61	242.5	. 059		1.46	. 006	. 11	$1<.2$. 06	81	. 5	03	3.8
RE GEBX-10044	. 81	34.99	17.82	78.6244	43.2	14.2	721	2.71	8.3	1.6	- 4.4	4.0	31.7	22	. 75	. 21	140	. 59	. 066	27.4	39.7	. 61	243.9	. 059		1.46	. 005		$2<.2$. 06		. 6	. 02	3.9
GEBX-10055	. 83	82.20	6.45	163.4272	36.2	20.1	5255	2.52	4.2	. 5	3.3		39.4	. 63	. 36	. 09	972	1.78	. 105	14.1	52.0	. 51	367.1	. 075		1.75	. 010	. 09	< <2			. 8	. 02	4.0
GEBX-10052	. 79	41.04	5.04	73.6121	43.7	31.3	4425	4.01	5.4	. 3	3.6	. 8	31.8	. 26	. 50	. 07	7131	1.29	. 077	10.4	67.6	. 94	374.6	. 219		2.63	. 014	. 11	$1<.2$. 5	. 02	6.9
GEBX-10054	. 85	29.20	7.49	112.2135	38.7	37.9	9165	3.88	12.8	. 7	3.3	1.0	31.6	. 42	. 40	. 08	8112	1.13	. 071	16.4	60.6	. 72	470.2	154		2.14	. 012		8<.2		148	. 6	. 02	5.6
GEBX-10057	. 87	52.97	9.52	88.7335	52.3	24.3	4449	3.34	9.2	. 7	3.3	. 8	31.8	.44	. 37	. 13	373	1.00	. 100	21.9	71.2	. 69	430.8	. 093		1.89	. 008		$1<2$. 5	. 03	5.0
GEBX-10045	. 76	26.39	9.98	71.178	42.4	20.1	4117	3.13	6.1	. 5	2.2	3.6	31.0	. 24	. 36	. 14	444	. 57	. 076	17.3	40.0	. 60	242.1	. 074		1.26	. 007		$8<2$. 03		. 5	. 02	3.6
GEBX-10053	. 58	28.92	6.12	68.3111	48.3	20.7	2790	3.28	6.9	. 5	3.7	1.1	24.9	. 24	. 37	. 08	89	1.05	. 058	9.5	68.4	. 98	441.6	. 178		2.24	. 010	. 05	< 2	. 05		. 6	. 03	6.3
crax-10047	. 92	44.41	5.98	83.3206	31.5	16.4	4281	2.28	11.6	. 5	5.3	. 2	35.1	. 34	. 86	. 08	894	1.57	. 107	12.8	62.8	. 65	459.5	. 095		1.80	. 012		8<.2			. 6	. 02	4.2
GtBX-10056	. 84	91.54	9.26	165.3309	66.7	18.2	1538	2.83	6.8	2.9	4.9		51.3	. 53	. 55	. 13	382	1.73	085	24.1	81.7		297.5	. 126		2.20	. 009		$9<.2$		176		. 03	5.5
STANDARD DS2	13.98	128.00	33.19	161.3269	36.0	11.7	811	3.03	61.8	18.8	214.0	3.5	27.0	10.43	9.69	10.68	873	. 53	086	$\underline{15.6}$	160.9	. 591	150.0	. 094	2	1.72	. 033	. 15	57.1	1.76	226	2.2	1.80	5.9

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20 \mathrm{AT} 95 \mathrm{DEG}$. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 \mathrm{PPM} ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 \mathrm{PPM}$.

DATE RECEIVED: JUL 202000 DATE REPORT MAILED: fUGy \&/00

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	LOI
L.AMX-10362	27.3
LAMX-10368	15.7
LAMX-10364	25.6
LAMX-10361	22.7
LAMX-10371	14.1
LAMX-10365	47.6
LAMX-10366	7.2
LAMX-10367	45.8
PPX-10377	34.1
PPX-10308	78.2
Ppx-10375	15.7
PPX-10380	5
PPX-10374	
PPX-10379	39.3
PpX-10307	65.8
PpX-10372	23.8
PPX-14044	41.5
PPX-10319	75.2
PPX-10309	44.5
Ppx-10378	38.9
PPX-10373	54.8
Ppx-10310	
PPX-10318	12.8
PPX-10306	71.1
PPPX-10316	38.4
SJCX-10303	7.0
SJCX-10305	24.4
SJCX-10302	25.1
STANDARD DOLOMITE	46.0

- sample type: moss mat

Semples beginning.'RE' are Reruns and 'RRE' are Reject Repons.

SAMPLE\#	LOI
SJCX-10304	32.5
SJCX-10301	26.8
SDWX-10376	27.6
GSMX-10312	23.0
GSivid-10314	25.6
GSMX-10317	27.2
GSMX-10313	24.4
GSMX-10320	19.8
GSMX-10315	27.3
GEBX-10059	29.9
GEBX-10041	7.9
GEBX-10049	25.0
GEBX-10060	58.7
GEBX-10042	8.2
GEBX-10048	28.3
GEBX-10046	
GEBX-10050	18.6
GEBX-10043	11.2
GEBX-10066	7.3 32.4
GEBX-10051	25.2
GEBX-10044	11.6
RE GEBX-10044	11.5
GEBX-10055	42.8
GEBX-10052	33.4
GEBX-10054	27.9
GEBX-10057	29.1
GEBX-10045	13.3
GEBX-10053	16.9
GEBX-10047	46.9
GEBX-10056 STANDARD DOIOMITE	$\begin{aligned} & 38.5 \\ & 46.0 \end{aligned}$

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

DATE RECEIVED: JUL 202000 DATE REPORT MAILED:
And $4 / 00$
SIGNED BY......... TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{gathered} \mathrm{Cs} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ge} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} H f \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{Ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ p p r n \end{array}$	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppxI} \end{gathered}$	$\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$	Re ppb	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Li} \\ \mathrm{ppm} \end{gathered}$	Sample gm	
RCPR-10021	. 51	$<.1$. 17	. 04	5.8	1.6	. 2	. 19	<. 05	6.5	2.42	25.9	. 06	<1		16.2	30	
RSHR-10206	. 90	. 1	. 09	. 08	4.8	5.0	<. 1	. 03	<. 05	4.8	25.69	11.5	. 06	<1	. 2	1.5	30	
SDWR-10026	. 09	.1	<. 02	. 79	. 4	3.6	. 5	<. 01	<. 05	2.6	42.11	29.6	<. 02	<1	. 6	2.5	30	
GSMD-10035	. 27	. 1	. 47	. 13	2.5	2.1	. 6	. 09	$<.05$	18.3	13.54	7.1	<. 02	<1	. 1	19.0	30	
GEBR-10200	. 15	.1	. 17	. 15	3.5	3.2	. 3	.01	<. 05	4.4	8.20	4.3	. 02	<1	. 1	4.0	30	
PPR-10201	. 65	. 2	. 53	. 08	1.1	3.7	. 7	. 04	<. 05	19.7	16.86	6.8	. 04	<1	. 4	4.7	30	
RSHR-10207	. 51	. 2	. 03	. 09	1.8	9.5	<. 1	. 04	<. 05	2.2	9.29	10.2	. 06	2	. 2	44.7	30	
GSMR-10036	. 18	. 2	. 06	. 03	. 2	1.3	. 1	1.12	<. 05	2.0	2.58	2.1	. 03	11	<. 1	8.0	30	
RSHR-10209	. 50	<. 1	. 14	. 02	6.5	2.3	. 2	. 06	$<.05$	5.9	3.34	19.2	. 03	<1	. 2	9.2	30	
RE RSHR-10209	. 48	< 1	. 14	. 02	6.3	2.3	. 3	. 06	<. 05	5.5	3.10	18.0	. 03	<1	. 2	8.5	30	
RRE RSHR-10209	. 47	<. 1	. 13	. 04	6.2	2.4	. 3	. 06	<. 05	5.7	3.05	17.2	. 03	<1	. 3	8.8	30	
SDWR-10028	. 40	. 1	. 32	. 10	1.7	2.4	. 5	. 10	<. 05	7.5	12.97	7.4	. 05	7	. 2	17.0	30	
PPR-10202	. 56	. 2	. 45	. 07	3.1	4.0	. 7	. 03	<. 05	16.7	13.97	5.6	. 06	3	. 3	5.4	30	
PPR-10211	. 40	. 1	. 52	. 08	1.5	5.7	8.3	. 56	<. 05	14.5	12.24	5.2	. 14	<1	. 2	13.6	30	
RCPR-10025	1.67	. 1	. 34	. 06	1.8	7.6	. 7	. 02	$<.05$	10.4	14.42	5.9	. 06	3	.3	21.0	30	
GSMR-10037	. 04	. 1	. 39	. 06	1.1	4.5	. 4	1.98	$<.05$	11.9	7.53	3.9	. 04	1	.1	5.0	30	
RCPR-10022	. 48	< 1	. 14	. 02	5.5	1.6	. 2	. 05	<. 05	5.7	2.31	28.0	. 03	<1	. 3	15.4	30	
RSHR-10210	. 48	< 1	. 11	$<.02$	6.4	2.0	. 3	. 08	<. 05	4.2	3.17	17.4	. 04	2	. 2	11.1	30	
SDWR-10033	1.39	<. 1	. 76	. 55	4.9	8.8	1.5	. 02	$<.05$	43.0	15.10	31.0	. 07	3	. 7	11.2	30	
SDWR-10027	. 04	. 2	<. 02	1.11	. 2	5.1	. 3	. 03	<. 05	3.2	54.29	35.7	. 03	2	. 8	. 8	30	
PPR-10204	2.96	. 1	. 41	. 10	4.5	5.7	2.5	. 07	$<.05$	10.4	13.29	11.8	. 07	2		14.3	30	
SDWR-10030	1.25	<. 1	. 99	. 04	10.7	. 9	. 9	3.97	<. 05	38.8	10.22	18.9	. 04	9	. 3	14.7	30	
GSMR-10038	. 54	. 1	. 12	. 09	1.6	3.6	. 2	2.34	<. 05	2.3	7.80	5.2	. 02	6	. 1	3.2	30	
PPR-10205	. 22	. 1	. 56	. 08	1.4	5.0	. 7	. 05	<. 05	20.8	15.83	5.9	. 04	5	. 3	6.0	30	
RSHR-10208	. 50	. 2	. 32	. 08	2.5	9.7	. 1	. 03	<. 05	12.4	19.75	34.3	. 08	2	. 4	71.2	30	
RCPR-10023	. 22	<. 1	. 63	. 10	7.9	1.0	. 6	3.07	<. 05	21.3	14.13	24.8	. 02	2	. 2	19.4	30	
SDWR-10029	. 43	. 1	. 45	. 25	2.3	3.0	2.0	. 77	<. 05	12.9	6.11	9.4	. 02	2	. 2	7.3	30	
RE SDWR-10029	. 43	< 1	. 72	. 25	2.4	3.1	2.1	. 79	<. 05	21.3	6.20	9.6	. 02	3	. 2	7.5	30	
RRE SDWR-10029	. 41	<. 1	. 52	. 27	2.3	3.1	1.9	. 75	<. 05	13.9	5.79	8.9	. 02	2	. 3	6.9	30	
GSMR-10034	. 41	. 1	. 37	. 06	1.2	4.2	. 9	. 90	<. 05	12.4	10.03	5.0	. 05	1	. 3	21.3	30	
PPR-10203	. 31	. 2	. 33	. 10	. 2	2.9	. 6	. 20	<. 05	11.5	12.61	5.3	. 02	3	. 2	28.7	30	
SDWR-10032	. 06	<. 1	<. 02	. 07	. 6	14.6	<. 1	. 06	<. 05	. 5	7.68	2.1	. 05	3	<. 1	. 2	30	
RCPR-10024	1.00	<. 1	<. 02	. 04	5.5	14.5	$<.1$. 03	$<.05$. 2	10.00	4.7	. 04	1		63.4	30	
STANDARD DS2	3.17	<. 1	. 04	1.36	12.4	2.8	24.9	. 01	<. 05	2.8	7.34	27.6	5.21	<1	. 5	14.0	30	

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG . C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, H, SE, $T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CJ}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.
SAMPIE TYPE: ROCK Samoles beginning 'RE' are Reruns and 'RRE' are Reiect Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the anaiysis oniy.
Dara_A $\overline{\mathrm{F}}$

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP LA - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL C \& S BY LEGO. (NOT INCLUDED IN THE SUM)
SAMPLE TYPE: POCK YID
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: NOV 222000 DATE REPORT MATTED: 1)eC $14 / v 0$
SIGNED BY. \because : O. TOME, C.IEONG, J. WANG; CERTIFIED REC. ASSAYERS

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

											者, 1-1																			
ACME ANA (TSO	9002	L. Acc Hud	$\triangle A B O$ $r-d$ dBo	$A T$	CE	$\begin{gathered} \text { LTP } \\ \text { Exp } \\ \hline, \end{gathered}$				HA CHE $\frac{0}{\text { der } \mathrm{s}}$	I				OUVSR $\frac{2398}{168 \quad 54}$		V			25	+	3606				RAX	$604)$		-17	
SAMPLE\#	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Cs} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Ga } \\ \text { ppom } \end{array}$	$\begin{gathered} H f \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Rb } \\ \mathrm{ppmm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Tl} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} U \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{array}{r} W \\ p P m \end{array}$	$\begin{array}{r} \mathrm{zr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { 1a } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Nd} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sm} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Eu } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \text { Gd } \\ \text { ppmin } \end{array}$	$\begin{array}{r} \text { Tb } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Dy } \\ \text { ppn } \end{array}$	$\begin{aligned} & \text { Ho } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathrm{Er} \\ \mathrm{ppmi} \\ \hline \end{gathered}$	$\begin{array}{r} \text { Tm } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Yb } \\ \mathrm{pp} \pi \end{array}$	$\begin{array}{r} \text { Lu } \\ \text { ppon } \end{array}$
RCPR-10021	7.5	3.0	15.4	6.1	9.5	74.9	2	32.8	1.0	8.7	. 4	2.7	104	3	216.1	25	28.5	64.8	7.23	27.2	5.7	. 69	4.95		5.12	. 94	3.01	. 38	2.92	. 43
RSHR-10206	131.6	2.5	11.3	2.9	14.1	60.8	2	1129.6	1.1	2.3	. 4	1.0	73	3	97.6	33.3	11.4	25.0	3.32	14.6	5.1	2.76	6.56	1.1	6.81	1.20	3		3	35
SDWR-10026	- 10.6	. 1	9.2	4.7	5.5	1.5	<1	40.3	. 5	5.0	. 1	7.3	159	5	171.1	61.6	44.6	39.4	9.82	38.4	7.5	1.91	7.29		7.55	. 48	4.67		. 10	60
GSMD-10035	44.1		18.7	3.8	3.8	12.4	1	336.1	. 5	. 3	. 5	. 1	318	3	122.6	39.8	5.1	15.7	2.64	13.8	4.6	1.81	5.77	1.05	12	1.46	6	. 58	4.10	1
GEBR-10200	43.0	. 5	19.6	3.6	10.6	23.6	1	108.7	. 9	. 8	. 3	. 6	368	2	113.9	46.0	10.6	23.2	3.48	16.5	5.1	1.94	6.52		8.19	68	5.21	. 69	1	. 73
PPR-10201	36.8		19.1	3.8	2.8	2.4	1	158.1	. 2	. 3	<. 1	. 3	344	2	123.9	41.8	4.7	15.0	2.50	13.9	4.6	1.82	5.74	1.08	7.45	1.54	4.72	.62	. 27	. 61
RSHR-10207	107.7	1.0	10.2	2.0	11.7	16.1	2	847.0	1.0	1.4	. 4	. 7	86	4	69.4	12.4	8.2	17.6	2.29	10.1	2.6	1.31	2.83		2.66	46	1.24	15	. 00	13
GSMR-10036	127.9		11.6	1.3	1.3	1.6	<1	153.0	. 1	. 2	<. 1	$<.1$	137	<1	44.1	15.7	2.3	6.2	1.02	5.2	1.8	77	2.17		2.88	. 54	1.72	23		24
RSHR-10209	17.2	2.9	21.1	7.1	12.7	92.1	2	60.0	1.1	12.9	. 9	2.5	65	4	237.7	17.4	22.8	50.5	5.46	19.7	4.0	1.15	3.60		3.27	. 62	1.91	24	. 72	28
RE RSHR-10209	15.4	2.8	20.8	6.7	12.5	86.6	2	57.8	1.1	12.7	. 4	2.4	62	3	233.9	16.4	20.5	45.0	4.89	19.1	4.0	1.07	3.		3.23	. 59	6	24	2	26
RRE RSHR-10209	16.5	2.9	20.8	6.8	12.7	89.3	2	57.9	1.1	13.2	. 3	2.5	64	4	238.0	17.2	22.8	49.5	5.43	20.5	4.2	1.17	3.54		3.37	. 62	1.93	. 25	1.86	. 28
SDWR-10028	35.9		17.5	3.1	3.4	6.2	1	156.9	. 3	. 4	. 2	. 1	297	1	106.1	33.4	4.7	14.4	2.25	11.7	3.8	1.57	4.81		6.15	1.20	3.80	. 51	3.45	3
PPR-10202	35.0		18.5	3.3	2.5	5.1	1	117.5	. 2	. 2	. 1	. 3	318	3	112.0	37.7	4.4	13.6	2.35	12.3		1.60	5.31		6.91	. 38	4.36	. 59	3.96	. 59
PPR-10211	36.1		19.0	3.5	2.8	11.4	12	132.0	. 3	. 3	< 1	. 3	330	<1	116.9	37.0	5.0	15.1	2.45	13.0	4.4	1.54	24	1.04					888	. 57
RCPR-10025	34.0	2.1	16.6	2.8	3.0	6.0	1	144.0	. 2	. 3	<. 1	. 2	264	<1	100.6	30.6	4.6	13.5	2.14	11.0	3.7	1.37	4.35	. 80	5.45	10	2	45		. 48
GSMR-10037	32.2		18.3	2.6	2.2	6.9	2	94.2	. 2	. 2	<. 1	$<.1$	291	<1	92.4	31.4	4.1	13.7	2.35	12.4	3.9	1.76	4.69		5.80	1.15	3.56	. 47	3.34	. 50
RCPR-10022	6.0	2.4	11.7	4.3	6.5	60.2	2	24.7	. 8	6.3	. 2	1.7	81	1	157.4	20.1	21.9	48.6	5.42	20.8	4.6	39	3.96		4.09	76	2.31	30	39	. 33
RSHR-10210	14.9	2.7	18.6	7.2	11.6	82.9	2	57.5	1.0	12.8	-2	2.3	62	<1	262.8	15.5	19.3	43.2	. 89	18.1		. 05								
SDWR-10033	18.5	2.5	21.5	5.2	7.4	37.3	2	332.1	. 6	5.2	. 1	1.4	174	<1	184.1	27.1	20.0	47.6	5.72	22.5	5.2	1.60	4.76	. 78	(1)	,	6	41	15	
SOWR-10027	8.6	<. 1	11.3	4.2	5.4	1.2	<1	55.6	. 5	4.8	<. 1	10.6	203	4	158.4	65.5	47.1	36.9	9.85	39.3	7.5	1.90	7.49	1.16	96	1.55		. 59	15	. 64
PPR-10204	28.6	3.6	13.1	2.7	4.1	22.2	3	122.9	. 3	2.5	<. 1	. 8	202	<1	96.5	23.6	12.2	26.7	3.64	15.3	3.9	1.11	4.17		4.67	. 88	2.82	. 36	2.65	. 38
SDWR-10030	7.1	4.0	17.1	5.5	13.1	146.7	11	61.1	1.3	13.4	3.0	6.7	114	5	191.6	23.4	35.2	72.4	8.44	31.0	6.1	. 83	4.41		4.41	8	3	. 3	5	. 32
GSMR-10038	50.9		18.4	3.2	2.2	12.1	<1	232.7	. 2	. 3	<. 1	. 2	561	<1	103.5	30.9	4.0	11.7	1.91	9.6	3.									
PPR-10205	36.7		18.9	3.2	2.7	2.2	1	71.1	. 3	. 2	<. 1	$<.1$	307	<1	109.6	36.3	4.1	13.3	2.25	12.0	4.1	1.55	5.02	. 90	6.35	. 29	98	. 53	-	. 56
RSHR-10208	181.8	1.2	18.8	6.2	28.0	30.7	2	53.0	2.2	5.4	. 1	1.8	104	<1	215.8	24.3	31.2	58.7	7.05	27.3	6.1	2.51	5.68	. 82	5.17	. 82	40	. 29		. 25
RCPR-10023	9.5	4.9	16.7	6.1	14.5	148.2	3	42.8	1.4	13.7	. 5	3.6	46	<1	214.4	20.1	14.8	31.2	3.89	14.8	3.3		3.51		3.78	. 71	2.27	. 31	2.24	. 33
SDWR-10029	18.2	1.1	13.2	3.0	4.8	13.0	4	265.4	. 5	4.1	<. 1	1.0	88	<1	109.4	17.1	13.	35.2	3.67	14.5	3.6	1.02	3.24		3.44	. 69	2.12	. 30	2.12	. 33
RE SDWR-10029	17.9		12.6	2.9	4.6	13.2	4	258.5	. 6	3.8	$<.1$. 9	84	<1	102.0	16.3	12.3	34.3	3.56	14.2	3.4	. 96	3.26		3.48 3.38	. 64		28		
RRE SDWR-10029	16.0		11.3	2.6	4.3	11.5	3	239.6	. 3	3.5	<. 1	. 8	81	<1	91.1	15.0	11.5	31.7	3.33	13.3	3.4		3.03		3.38	. 60	1.90	. 25	1.85 3.69	. 29
GSMR-10034	40.1	. 5	17.7	3.5	3.1	7.6	4	130.2	. 3	. 3	<. 1	<. 1	315	<1	114.1	37.1	4.	14.	2.40	12.8		1.56			6.43	1.32	4.11	. 53	3.69	. 5
PPR-10203	37.2		17.1	3.0	2.8	1.1	<1	70.1	. 2	.3	$<.1$. 2	265	1	104.0	29.9	4.2	12.1	1.95	10.1	3.5	1.21	4.14	. 80	5.28	1.08	3.29	. 46	2.96 1.13	. 46
SDWR-10032	10.1	. 1	3.6	1.0	2.2	3.3	<1	396.7	. 2	. 2	<. 1	.1	105	35	34.2	10.6	1.9	4.7	. 74	3.7	1.2	. 69	3.61	. 67		. 36	2.87	38	1.13	. 37
RCPR-10024	33.8	4.8	14.5	2.3	2.1	68.1	17	185.9	. 2	-2	. 2	<. 1	239	19	75.2	26.3	3.3	9.9	1.60	8.8	3.0	. 69	3.61 3.89	. 67	4.65 4.05	. 94	2.87 2.53	. 38	2.58	. 37
STANDARD SO-15	22.6	2.9	17.1	27.2	31.3	64.9	17	404.5	1.8	24.1	1.0	21.4	146	19	1085.4	23.1	28.6	59.2	6	23.3	4.7	1.	3.89	. 60	4.05	. 78	2.53	. 35	2.58	4

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Sam! es haginnipg 'oc, nro pertins and pret are Reiect Reruns.

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACMB ANALYTCCAL LABORATORIES LTD

GROUP $1 E X-0.25 \mathrm{GM}$ SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - AG, $A U, W=200 \mathrm{PPM}$; MO, CO, CD, SB, BI, TH \& U $=4,000$

- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30$ - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO $600 \mathrm{ML}, \mathrm{ANALYSIS}$ BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N 1, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ATE RECEIVED: JUL 262000 DATE REPORT MAILED: Hug $10 / \mathrm{NO}$

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 2 \mathrm{O}$ AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: - 230 IILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ATE RECEIVED: JUL 26
DATE REPORT MAILED: Aug $10 / 00$
.D. TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 4A - 0. 200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL C \& S BY LEGO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 222000
DATE REPORT MAILED:

ec $7 / 00$

GROUP 1F30-30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$,

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $\mathrm{W}, \mathrm{SE}, \mathrm{TE}, \mathrm{TL}, \mathrm{GA}, \mathrm{SN}=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM}$; CU, PB, $2 \mathrm{~N}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$

- SAMPLE TYPE: MOSS MAT Samples beginning. 'RE' are Reruns and 'RRE' are Reject Reruns.

ATE RECEIVED: JUL 262000 DATE REPORT MAILED: fig $13 / 00$
SIGNED BY........... TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#	LOI
GEBX-14032	25.7
GEBX-14022	29.4
GEBX-14037	31.0
GEBX-14028	21.9
GEBX-14025	55.2
GEBX-14039	40.4
GEBX-14027	47.5
GEBX-14023	34.6
GEBX-14029	22.6
GEBX-14024	66.6
GEBX-14030	31.2
STD GEBX-14033 S-1	7.3
GEBX-14040	28.1
RE GEBX-14040	27.8
GEBX-14036	13.6
GEBX-14021	27.7
GEBX-14035	7.7
GEBX-14038	31.9
GEBX-14034	17.4
GEBX-14031	6.8
GEBX-14026	46.0
GEBX-10369	34.4
STANDARD DOLOMITE	45.6

- SAMPLE TYPE: MOSS MAT

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reguns.

GROUP 1 1F30-30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-H 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM}$; $C \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.
SAMPIE TYPE: TI! 523040 C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{n} \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\begin{array}{r} \text { AS } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{poD} \end{array}$	$\begin{array}{r} \mathrm{Th} \\ 0 \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{p} p \mathrm{~m} \end{array}$	$\begin{array}{r} V \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\%$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$			$\begin{array}{r} \text { Al } \\ \text { \& } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{W} \\ \mathrm{ppm} \end{array}$	11 ppm	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppb} \\ \hline \end{gathered}$	Se ppm	$\begin{array}{r} \mathrm{Te} \\ \mathrm{pprim} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ga} \\ \mathrm{ppm} \\ \hline \end{array}$
GSMD-18014	. 39	79.13	3.38	59.4	33	55.1	38.1	2076	4.62	139.5	. 2	33.9	1.9	17.0		2.76	. 07	130	. 73	. 045	8.6	80.4	1.31	127.1	. 178			40	. 008	04	. 2	. 09	127	3	. 02	6.9
GSMD-18069	. 42	38.66	5.81	52.2	44	40.6	16.1	506	3.66	3.1	. 3			10.3	. 13	. 26	. 09	128	. 58	. 029	8.5	78.8	1.03	204.4	. 322			89	. 010	03	<. 2	. 03	36	5	04	7.8
GSMD-18011	. 42	62.14	10.86	70.9	72	55.6	31.8	794	3.89	7.6	. 3	38.8	3.1	9.2	. 08	. 59	. 17	110	62	068	9.8	66.4	1.32	308.2	270			67	. 008		<. 2	03	32	4	03	7.1
GSMD-18080	. 55	126.97	3.07	98.3	61	67.8	59.2	1391	6.09	9.5	2	2.8		44.9	. 17	. 97	. 04	189	1.38	050	4.3	58.3	1.65	183.8	433			44	. 012	,	2	02	55	8	05	. 4
GSMD-18018	. 39	87.41	4.45	51.6	50	48.1	28.9	1024	3.81	11.2	. 2	2.0		19.8	. 15	. 54	. 06	136	1.01	. 069	3.9	70.3	1.41	72.1	. 357			3.25	013	03	<. 2	02	42	5	. 02	8.8
GSMD-18071	. 40	37.87	5.09	55.8	59	46.7	24.3	491	3.70	3.7	3		2.0	14.6	. 13	. 30	. 08	127	. 59	071	7.1	81.9	. 95	177.7	328			3.45	012	. 03	<. 2	03	67	5	. 03	7.7
GSMD-18077	1.00	33.81	7.23	152.7	151	28.4	23.6	1218	5.36	4.2	. 3	1.0		11.7	. 44	42	. 14	175	. 56	. 114	6.4	76.5	. 60	224.3	330			2.81	008	03	<, 2	. 04	88	5	. 05	0.6
GSMD-18020	. 21	46.20	7.60	53.3	11	43.7	17.5	650	3.31	5.6	.		4.5	17.6	. 14	. 37	10	97	. 79	. 045	11.8	70.9	. 98	122.1	. 242			2.39	009	09	. 2	05	28		<. 02	6.4
GEBD-18098	. 44	71.25	4.88	67.4	61	56.0	24.9	874	4.00	2.7	. 3	3.2		21.0	. 16	. 47	. 07	145	1.26	014	6.4	81.5	. 37	162.0	. 441			2.79	. 02		<.2	. 02	32		. 04	8.8
GE80-18039	. 32	51.50	6.22	57.1	24	49.1	29.9	929	3.76	3.7	. 2	4.2	1.3	14.6	. 16	. 39	. 09	138	1.08	. 034	5.8	70.5	1.30	185.0	. 420			3.00	. 015		. 2	. 02	50	. 5	04	8.2
GEBD-18036	. 54	47.21	4.99	57.2	37	43.1	21.0	672	3.82	3.2	. 3		1.4	11.8	. 20	34	. 08	129	. 81	. 030	6.7	69.8	1.15	192.7	. 376			3.10	. 013	03	2	03	58	6	. 05	7.9
GEBD-18026	. 63	97.49	10.69	76.9	94	83.1	25.2	1250	3.62	13.8	7	40.7	3.2	17.4	. 13	1.22	. 17	97	. 73	028	13.4	79.2	1.34	953.0	. 217			2.36	. 009	07	2	05	71	6	09	6.8
GEED-18082	. 29	40.24	4.44	45.1	32	42.7	19.4	546	3.08	5.2	. 2	23.2	22.2	13.5	. 08	. 45	. 08	107	. 87	039	7.0	60.6	. 94	176.3	315				. 011		< 2	02	20	4	04	6.3
GEBD-18089	. 40	64.96	4.71	53.9	87	47.3	22.1	570	3.35	5.2	4	7.3	1.3	26.4	. 12	. 56	. 08	110	1.04	. 055	8.8	74.9	. 87	90.2	. 236			2.39	010	03	<.2	02	78	7	02	. 9
GEBD-18037	. 34	52.94	6.12	60.5	53	47.1	21.7	1035	3.75	5.6	. 3	4.3	31.6	19.1	. 14	. 47	. 10	137	1.20	028	7.8	74.0	1.30	220.8	. 405			2.58	. 016	03	<. 2	. 02	44	5	05	8.1
GEBD-18091	. 51	104.03	6.37	64.5	93	77.6	43.3	843	3.30	10.2	3		2.1	15.2	. 14	65	. 09	94	. 59	041	9.4	63.1	. 82	96.0	. 224			3.06	. 009	. 03	< 2	. 03	75	7	02	5.4
GEBD-18081	. 28	41.67	4.71	47.8	40	42.0	19.2	570	3.12	3.5	2	2.8	82.2	13.4	. 10	46	. 06	108	. 87	. 042	6.8	63.0	. 96	176.0	. 318			2.29	. 012	04	< 2	. 03	24	. 4	02	6.5
GEBD-18027	. 85	141.00	12.68	110.8	124	118.0	34.6	1779	4.55	32.1	. 2	16.5	53.1	27.2	. 18	2.02	. 25	103	. 94	. 048	13.9	79.1	1.91	1464.7	. 181			2.44	011	07	<. 2	. 05	15	. 5	. 06	7.1
GEED-18086	. 42	34.60	3.36	55.3	340	48.5	23.0	430	4.21	2.8	. 2		1.2	15.5	. 15	36	. 08	148	. 70	. 048	3.7	83.4	. 99	138.0	405			3.28	011	. 02		. 02	49	4	07	,
GE80-18083	. 70	36.38	3.86	67.7	754	38.1	18.0	606	4.11	3.5	2	3.2	1.2	14.5	. 21	36	. 08	137	. 76	042	5.6	76.7	. 9	142.6	. 361			3.29	. 010	. 2	2	. 02	81	6	05	8.0
GEBD-18033 \$-1	1.02	29.08	8.46	50.2	37	11.7	12.5	456	3.85	1.9	5		2.8	42.8	. 10	09	. 14	157	44	041	11.8	40.7	52	86.4	. 373			4.01	101	. 06	. 2	. 13	34	4	04	0.1
GEBD-18096	. 28	33.26	3.41	50.4	26	37.6	19.2	767	3.26	2.4	. 1		21.0	13.7	. 10	29	. 06	134	1.17	012	4.3	63.3	1.16	123.4	. 443			2.26	017	02	<. 2	<. 02	19	3	05	7.7
GEBD-18092	. 34	76.71	3.30	54.3	49	67.8	35.3	770	4.26	6.5	. 2		51.0	22.8	. 13	. 91	05	125	. 13	035	4.6	71.	. 32	72.2	. 380				016			. 02	45		03	8.2
RE GEBD-18092	. 36	79.69	3.36	58.5	50	71.0	37.4	785	4.33	6.8	2	2.3	31.1	23.9	. 14	90	. 05	128	. 20	. 036	4.9	72.9	1.34	73.8	. 394			3.26	016	.	<	02	41		02	8.8
GEBD-18035	. 33	34.37	5.26	51.5	23	36.5	18.4	756	3.05	2.5	. 2	3.3	31.7	14.4	. 16	. 29	. 07	121	. 98	. 024	7.1	58.8	1.02	181.7	. 380			2.22	013	. 03	<.2	. 02	22	4	. 03	6.
GEBD-18087	. 71	110.00	4.04	78.6	60	106.6	55.1	987	5.73	30.8		2.1		9.1		1.39	. 07	193	1.22	060	2.9	41.6	1.92	166.7	. 394			5.86	. 006	03	<. 2	. 02	70	8	. 03	14.0
GEBD-18023	. 43	57.62	7.57	52.6	30	71.6	24.3	1167	3.52	12.8	2		22.0	15.2	. 09	. 85	. 10	114	. 63	013	9.7	83.1	1.58	405.1	. 283			2.37	008	03	<.2	. 03	29	4	04	6.8
GEBD-18032	. 79	50.43	5.47	58.4	60	37.0	15.3	530	3.91	3.9	4		61.3	11.2	. 14	. 32	. 07	135	. 57	. 041	6.6	80.4	. 99	160.3	350			3.32	. 08			03				8.1
GEES-18085	1.02	107.83	7.95	75.1	194	50.3	19.8	666	4.24	4.2	. 4	1.6	61.5	23.3	. 28	. 47	. 17	176	. 68	047	11.0	94.6	. 94	138.1	. 221			3.11	. 008	04	<. 2	05	52	5	. 04	1.2
GEBD-18088	. 46	37.41	4.17	75.2	48	54.1	28.9	550	4.08	3.3	2	2.6	61.2	174.6	. 14	. 37	. 06	135	. 84	. 042	4.1	82.1	1.17	366.0	. 376			3.58	. 015	03	< 2	. 02	41	5	. 05	8.1
GEBD-18038	. 58	82.81	3.80	52.9	165	31.9	19.9	617	4.09	3.2	. 4		1.0	19.1	. 27	. 31	. 08	132	. 85	. 037	8.7	68.6	. 95	200.4	. 399			3.37	. 013		< 2	. 03	92	6	. 03	8.1
GEBD-18090	. 77	44.31	4.16	65.7	79	35.4	18.5	522	4.62	7.4	. 3		71.2	21.6	. 20	. 53	. 09	154	. 71	. 043	5.6	72.7	. 75	44.6	353			2.96	008		< 2	02	64	. 5	02	7.8
GEBD-18031	. 58	105.71	10.54	77.6	49	109.0	28.9	1299	4.21	16.0	. 3	7.3	32.4	20.2	. 13	1.10	. 13	117	. 89	. 042	9.9	95.9	1.75	592.5	237			2.56	011	. 07	<. 2	. 04	68	.	06	7.9
STANDARD DS2	13.95	127.22	32.92	148.9	254	34.7	12.1	818	3.04	59.9	19.3	193.7	73.5	25.3	10.24	9.83	11.24	72	49	. 088	15.4	151.1	. 58	147.2	. 087			1.62	. 027	. 14	7.6	. 8	253	2.4	1.80	5.6

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the ctient. Acme assumes the itabiities ror actuai cosi of the anaiysis oniy.

 | 46 | 40.86 | 4.38 | 47.0 | 95 | 44.7 | 30.2 | 533 | 3.51 | 5.5 | .3 | 1.5 | 1.6 | 14.5 | .10 | .49 | .07 | 102 | .79 | .037 | 6.6 | 65.0 | .82 | 66.9 | 292 |
| :--- | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}.46 & 40.86 & 4.38 & 47.0 & 95 & 44.7 & 30.2 & 533 & 3.51 & 5.5 & .3 & 1.5 & 1.6 & 14.5 & .10 & .49 & .07 & 102 & .79 & .037 & 6.6 & 65.0 & .82 & 66.9 & .292 \\ .69 & 46.63 & 5.44 & 75.1 & 655 & 68.4 & 26.1 & 6894.42 & 9.1 & .3 & 3.9 & 1.4 & 19.1 & .73 & .61 & .09 & 126 & .71 & .068 & 7.0 & 98.6 & 1.50 & 322.5 & .263\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}.69 & 46.63 & 5.44 & 75.1 & 655 & 68.4 & 26.1 & 689 & 4.42 & 9.1 & .3 & 3.9 & 1.4 & 19.1 & .73 & .61 & .09 & 126 & .71 & .068 & 7.0 & 98.6 & 1.50 & 322.5 & .263 \\ .64 & 93.36 & 11.96 & 76.3 & 93 & 99.1 & 28.6 & 1191 & 4.50 & 20.1 & .3 & 22.1 & 2.5 & 30.0 & .14 & 2.05 & .12 & 127 & 1.11 & .033 & 13.8 & 103.0 & 1.69 & 529.3 & .269\end{array}$

$\begin{array}{lllllllllllllllllllllllll}.87 & 115.79 & 5.09 & 77.9 & 102 & 70.5 & 22.3 & 832 & 4.16 & 4.3 & .4 & 3.5 & 1.1 & 25.8 & .18 & .66 & .10 & 132 & 1.02 & .068 & 9.2 & 92.6 & 1.18 & 93.1 & .274\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}36 & 96.43 & 6.93 & 76.2 & 80 & 108.7 & 36.6 & 1220 & 4.86 & 10.1 & .2 & 7.7 & 1.6 & 56.1 & .18 & .86 & .13 & 131 & 2.79 & 061 & 7.9 & 89.7 & 2.34 & 560.2 & 288\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllllllllll}42 & 78.79 & 7.44 & 65.5 & 42 & 89.9 & 25.0 & 1008 & 4.38 & 8.4 & .3 & 7.5 & 1.8 & 23.0 & .14 & .80 & .09 & 133 & .85 & .020 & 8.7 & 110.4 & 1.72 & 564.0 & .289\end{array}$
$\begin{array}{llllllllllllllllllllllll}.57 & 55.74 & 3.77 & 57.4 & 75 & 40.5 & 14.8 & 428 & 4.48 & 2.5 & .3 & 1.4 & 1.0 & 18.6 & .16 & .40 & .08 & 122 & .83 & .051 & 6.8 & 73.5 & .83 & 87.7\end{array} .304$

C80. 18093 CEBD-18095 - 1002 .

| Ppo-18042 | .35 | 81.35 | 6.40 | 50.6 | 25 | 40.2 | 15.6 | 718 | 2.87 | 7.8 | .2 | 4.7 | 1.9 | 20.3 | .10 | .51 | .10 | 95 | .97 | .038 | 6.2 | 55.9 | .97 | 104.7 |
| :--- | .272 PCO 18044 . 35 81.35 6.4050 .6

STANOARO OS2
 $\begin{array}{llllllllllllllllllllllllllllllllllll}.52 & 46.50 & 8.23 & 63.8 & 28 & 75.2 & 18.1 & 688 & 3.35 & 4.8 & .4 & 2.5 & 4.6 & 20.1 & .13 & .44 & .13 & 87 & .68 & .051 & 15.9 & 127.5 & .90 & 29.9 & .217\end{array}$

 26

$\begin{array}{lllllllll}3 & 3.14 & .021 & .11 & .2 & .04 & 37 & .4 & .06 \\ 9.9\end{array}$ $\begin{array}{llllllll}3.01 & 013 & .04 & <2 & .02 & 61 & .5 & .02 \\ 6.6\end{array}$ $\begin{array}{llllllll}2 & 2.99 & .010 & .02 & <.2 & .02 & 58 & .6\end{array} .02 \quad 6.7$ $\begin{array}{lllllllll}3 & 3.42 & .010 & .03 & <.2 & .04 & 106 & .7 & .02 \\ 8.5\end{array}$ $\begin{array}{lllllllll}3 & 2.87 & .011 & .06 & <.2 & .05 & 100 & .5 & .05 \\ 8.6\end{array}$
$\begin{array}{lllllllll}2 & 2.76 & .011 & 03 & <.2 & .03 & 67 & .6 & .03 \\ 8.6\end{array}$ $\begin{array}{lllllllll}53.07 & .023 & .12 & .2 & .03 & 57 & .3 & .06 & 9.3\end{array}$ $\begin{array}{llllllll}42.74 & 019 & .13 & .2 & .05 & 81 & .4 & .10 \\ 9.0\end{array}$ $\begin{array}{lllllllll}2 & 2.51 & .011 & .03 & <2 & .03 & 40 & .4 & .06 \\ 7.7\end{array}$ $\begin{array}{lllllllll}43.17 & .013 & .06 & <.2 & .04 & 62 & .4 & .05 & 8.7\end{array}$
$\begin{array}{lllllllll}2.72 & 011 & .02 & <.2 & .02 & 69 & 5 & .02 & 7.5\end{array}$ $\begin{array}{lllllllll}4 & 2.71 & .015 & .14 & .2 & .06 & 141 & .4 & .15 \\ 8.4\end{array}$ $\begin{array}{lllllllll}3 & 3.44 & .010 & .04 & <.2 & .04 & 103 & .6 & .05 \\ 8.9\end{array}$ $\begin{array}{lllllllll}13.17 & 012 & .02 & <.2 & .03 & 87 & .6 & .05 & 8.0\end{array}$ $\begin{array}{llllllll}33.29 & .022 & .02 & <.2 & .02 & 75 & .5 & .04 \\ 9.9\end{array}$
$\begin{array}{lllllllll}1.82 & .023 & .32 & 128.0 & .31 & 10 & .7 & .21 & 6.1\end{array}$ $\begin{array}{llllllll}1.64 & 010 & .02 & .9 & .02 & 26 & .2 & .05 \\ 5.2\end{array}$ $\begin{array}{llllllll}12.52 & .007 & .05 & .3 & .04 & 50 & .4 & .03 \\ 6.9\end{array}$ $\begin{array}{lllllllll}22.15 & 010 & .02 & .2 & .02 & 22 & .3 & .04 & 6.8\end{array}$ $\begin{array}{llllllll}21.70 & 009 & .03 & .2 & .02 & 29 & .2 & .04 \\ 5.6\end{array}$

$\begin{array}{lllllllll}1.76 & .010 & .03 & <.2 & .02 & 41 & .3 & .03 & 5.9\end{array}$ $\begin{array}{lllllllll}2 & 2.48 & .015 & .17 & .2 & .04 & 34 & .2 & .03 \\ 7.6\end{array}$ | 32.68 | .009 | .02 | $<.2$ | $<.02$ | 18 | .3 | .03 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 22.92 | .022 | .03 | $<.2$ | .02 | 39 | .6 | .03 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}2 & 2.95 & .014 & .03 & <.2 & .02 & 39 & .4 & .02 \\ 8.2\end{array}$

$\begin{array}{lllllllll}22.82 & .025 & .03 & <.2 & .02 & 19 & .5 & .03 & 9.1\end{array}$ $\begin{array}{llllllll}22.25 & .015 & .18 & <2 & .05 & 37 & .3 & .03 \\ 6.2\end{array}$ $\begin{array}{llllllll}2.94 & .017 & .04 & <2 & .03 & 41 & .7 & .04 \\ 9.2\end{array}$ $24.93 .027 \quad .05<2 \quad 03 \quad 22 \quad .6 \quad .0215 .1$

$2.92 .024 \quad .03<2<02 \quad 15 \quad 4 \quad 02 \quad 9.3$ $\begin{array}{llllllll}33.24 & .021 & .03 & <.2 & .02 & 25 & .5 & .04 \\ 9.8\end{array}$ $\begin{array}{lllllllll}2.60 & .025 & .10 & <.2 & .02 & 33 & .3 & .05 & 8.7\end{array}$ | 1 | 1.58 | .028 | .14 | 7.7 | 1.80 | 245 | 2.3 | 1.80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^27] SAMPLE\# Mo

RCPD-18052
RCPD-18058 RCPD-18050

RCPD-18060

RCPD-18060
RE RCPD-18060

$\begin{array}{llllllllllllllll}.61 & 52.70 & 5.31 & 63.0 & 55 & 57.3 & 33.9 & 782 & 3.99 & 6.6 & .3 & 1.7 & 1.6 & 15.8 & .15 & .65\end{array}$ $\begin{array}{rlllllllllllllll}.61 & 52.70 & 5.31 & 63.0 & 55 & 57.3 & 33.9 & 782 & 3.99 & 6.6 & .3 & 1.7 & 1.6 & 15.8 & .15 & .65\end{array}$ $\begin{array}{lllllllllllllllll}.34 & 62.36 & 3.84 & 56.4 & 27 & 71.4 & 36.5 & 918 & 3.95 & 5.5 & .2 & 33.4 & 1.1 & 23.4 & .11 & .90 \\ .43 & 88.73 & 5.50 & 52.5 & 89 & 76.5 & 30.0 & 868 & 3.79 & 20.4 & .3 & 12.4 & 1.9 & 26.2 & .18 & .87\end{array}$ $\begin{array}{rrrrrrrrrrrrrrr}.43 & 88.73 & 5.50 & 52.5 & 89 & 76.5 & 30.0 & 868 & 3.79 & 20.4 & .3 & 12.4 & 1.9 & 26.2 & .18 \\ .68 & 57.21 & 7.17 & 56.1 & 183 & 41.7 & 16.9 & 508 & 3.52 & 9.2 & .5 & 3.0 & 1.7 & 16.9 & .14 \\ .71 & 59\end{array}$ $\begin{array}{lllllllllllllll}.68 & 57.21 & 7.17 & 56.1 & 183 & 41.7 & 16.9 & 508 & 3.52 & 9.2 & .5 & 3.0 & 1.7 & 16.9 & .14 \\ .71 & 57.66 & 7.35 & 55.7 & 190 & 41.3 & 16.8 & 512 & 3.55 & 9.0 & .5 & 1.8 & 1.7 & 17.0 & .14 \\ .61\end{array}$ $\begin{array}{rrrrrrrrr}.08 & 117 & .73 & .042 & 6.7 & 70.3 & .97 & 72.2 & .273 \\ .06 & 127 & 1.17 & .020 & 3.5 & 83.5 & 1.40 & 74.2 & .397\end{array}$ | 06 | 127 | 1.17 | 020 | 3.5 | 83 | 5 | 1.40 | 74 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}.08 & 104 & .88 & .049 & 8.6 & 85.8 & 1.10 & 152.0 & .211\end{array}$ $\begin{array}{lllllllll}.11 & 115 & .73 & .048 & 10.6 & 70.5 & .71 & 112.1 & .214 \\ .11 & 115 & .73 & .046 & 10.5 & 66.7 & 71 & 113.6 & \end{array}$ $\begin{array}{lllllll}.73 & .046 & 10.5 & 66.7 & .71 & 113.6 & .209\end{array}$

$\begin{array}{lllll}1 & 2.94 & .010 & .03<2 \\ 2 & 2.53 & .011 & .02<2\end{array}$
356 . 5
.047 $\begin{array}{lllllllll}1 & 2.35 & .010 & .03 & <.2 & .03 & 58 & .6 & .02 \\ 1 & 6.0 \\ 1 & 2.07 & .008 & .02 & <.2 & .03 & 63 & .7 & .02 \\ 6.7\end{array}$ 11115

 $\begin{array}{llll}.03 & 68 & .6<.02 & 6.7\end{array}$

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. \& Dev. Co. Ltd., RROJECT 2398 , File \# A003056

SAMPLE\#	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{ppm} \end{array}$	Ge ppm	$\begin{gathered} \mathrm{Hf} \\ \mathrm{ppran} \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathbf{S} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Zr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \text { pprin } \end{array}$	$\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \end{array}$		
GSMD-18064	. 97	$<.1$. 31	1.29	4.3	6.2	. 9	. 02	$<.05$	12.5	11.41	13.9	. 04	<1		15.4	30	
GSMO-18076	1.50	. 2	. 66	. 11	2.2	14.4	. 8	. 02	<. 05	18.8	18.47	18.8	. 04	<1		15.1	30	
GSMD-18062	. 72	. 1	. 17	1.16	3.8	6.0	. 8	. 02	< 05	7.3	12.70	17.9	. 04	<1	. 3	15.4	30	
GSMD-18003	. 53	. 1	. 09	. 29	4.1	3.2	. 3	< 01	<. 05	4.7	6.59	41.0	. 02	1	. 3	23.9	30	
GSMD-18017	1.89	. 1	. 31	. 23	3.2	13.1	. 7	$<.01$	<. 05	12.6	15.63	21.0	. 04	<1	.4	26.0	30	
GSMD-18019	. 93	. 1	. 38	. 12	5.0	9.6	. 6	<. 01	<. 05	13.9	15.27	23.5	. 04	<1	. 3	19.5	30	
GSMD-18012	. 96	. 1	. 08	. 88	9.9	3.5	. 6	. 02	<. 05	4.4	6.94	29.4	. 05	<1	. 5	27.0	30	
GSMD-18078	2.76	. 1	<. 02	. 42	6.1	24.1	.4	. 02	<. 05	1.0	38.14	26.0	. 07	2	. 5	24.7	30	
GSMD-18063	. 61	. 1	. 18	1.29	3.2	4.6	. 6	. 02	<. 05	9.0	8.68	14.2	. 06	<1	. 4	14.9	30	
GSMD-18009	. 56	. 1	. 14	. 63	2.5	4.6	. 5	. 01	<. 05	5.9	11.49	16.5	. 05	<1	. 4	15.0	30	
GSMD-18015	1.40	. 1	. 13	. 95	4.4	6.7	. 6	. 01	<. 05	7.1	12.49	18.8	. 08	<1	. 4	18.8	30	
GSMD-18005	. 66	. 1	. 21	. 09	2.8	8.2	. 3	<. 01	$<.05$	8.0	12.28	25.2	. 08	<1	. 3	19.9	30	
GSMD-18002	. 66	. 2	. 20	. 11	4.9	5.8	. 3	< 01	$<.05$	8.4	9.33	39.0	. 08	2	. 4	22.2	30	
GSMD-18070	. 76	. 1	. 13	1.20	4.2	4.2	. 7	. 01	$<.05$	6.2	8.93	15.5	. 10	1	. 4	17.8	30	
GSMD-18001	. 53	. 1	. 21	. 20	3.2	3.9	.3	<. 01	<. 05	7.8	7.66	37.4	. 09	1	. 4	20.0	30	
GSMD-18075	. 65	. 1	. 12	1.42	3.3	4.3	. 8	. 02	<. 05	5.0	9.17	14.5	. 10	1	. 3	19.1	30	
GSMD-18061	. 84	. 1	. 14	1.23	4.6	6.4	. 7	. 02	<. 05	5.2	13.36	17.3	. 11	<1	. 4	15.2	30	
GSMD-18004	. 67	. 2	. 20	. 12	3.6	6.8	. 3	<. 01	<. 05	8.1	11.49	36.2	. 09	<1	. 5	21.3	30	
RE GSMD-18004	. 64	. 1	. 21	. 12	3.5	6.6	. 3	<. 01	<. 05	7.7	11.21	36.7	. 08	<1	. 5	21.3	30	
GSMD-18016	. 94	. 1	. 13	. 30	4.1	5.1	. 5	<. 01	$<.05$	6.3	7.74	27.2	. 07	<1	. 3	26.0	30	
GSMD-18073	1.03	. 1	. 35	. 97	4.4	5.9	. 7	. 02	$<.05$	12.8	9.53	10.9	. 09	1	.4	17.0	30	
GSMD-18066 S-1	1.32	. 2	. 71	. 54	4.8	8.8	1.3	. 02	<. 05	37.6	14.87	30.0	. 09	2	. 8	10.8	30	
GSMD-18079	. 78	. 1	. 20	. 74	3.8	6.0	. 9	. 02	<. 05	8.7	10.61	17.7	. 07	1	. 5	17.6	30	
GSMD-18072	. 75	. 1	. 23	. 98	4.0	5.0	. 6	. 02	<. 05	9.8	7.89	12.1	. 07	<1	. 5	19.5	30	
GSMD-18010	1.13	. 1	. 07	1.32	6.8	3.5	. 7	. 02	$<.05$	3.6	7.08	21.5	. 06	<1	. 4	22.3	30	
GSMD-18065	. 88	. 1	. 15	. 21	3.9	7.6	. 3	. 01	<. 05	4.8	11.91	33.8	. 03	<1	. 5	21.5	30	
GSMD-18006	. 88	. 1	. 17	1.16	4.9	6.9	. 7	. 03	<. 05	8.1	12.59	15.5	. 05	<1	. 5	17.0	30	
GSMD-18074	. 85	. 1	. 14	1.15	3.7	5.2	. 7	. 03	<. 05	6.1	10.04	16.7	. 04	<1	. 4	15.8	30	
GSMD-18013	2.56	. 1	. 16	. 89	3.9	7.3	. 4	. 02	<. 05	6.7	16.04	32.9	. 03	2	. 8	22.3	30	
GSMD-18068	. 58	.1	. 23	1.13	4.0	5.2	. 7	. 02	<. 05	9.7	10.71	14.7	. 03	<1	. 4	14.9	30	
GSMD-18007	. 93	. 1	. 11	. 85	5.1	3.3	.4	. 02	<. 05	3.4	7.51	26.3	. 02	<1	.4	19.2	30	
GSMD-18067	. 53	. 1	. 26	1.55	2.6	4.6	. 7	. 03	<. 05	10.4	10.04	13.7	. 03	<1	. 3	13.3	30	
GSMD-18008	2.24	. 1	. 12	. 56	5.6	4.2	. 4	. 01	<. 05	4.7	8.74	25.4	. 02	<1	. 5	21.0	30	
STANDARD DS2	3.35	. 1	. 02	1.32	12.7	2.7	25.9	. 03	<. 05	2.7	7.68	28.4	5.58	2	. 5	13.8	30	

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

* SAMP!

SAMPLE\#	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ge} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Hf} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppon} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppom} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{aligned} & S \\ & \% \end{aligned}$	Ta ppm	$\begin{gathered} \mathrm{Zr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	Ce ppm	$\begin{array}{r} \text { In } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \\ \mathrm{pprn} \end{array}$	Sample gm	
GSMD-18014	2.93	.1	. 16	. 16	3.8	19.2	. 5	. 01	<. 05	7.0	23.99	21.5	. 05	<1	. 326.7	30	
GSMD - 18069	. 76	<. 1	. 17	. 85	5.4	5.0	. 6	. 01	<. 05	7.4	8.87	17.6	. 03	1	.417 .5	30	-
GSMD-18011	. 65	. 1	. 17	. 48	4.1	4.6	. 5	. 01	<. 05	7.4	9.44	22.2	. 03	<1	.420 .1	30	
GSMD-18080	1.20	. 1	. 30	. 67	1.4	9.1	. 9	. 03	<. 05	12.4	18.78	18.5	. 04	<1	. 813.4	30	
GSMD-18018	1.66	. 1	. 24	. 85	2.0	6.6	. 8	. 02	<. 05	10.8	11.08	13.6	. 05	<1	. 518.6	30	
GSMD-18071	. 84	. 1	. 24	. 85	5.5	6.6	. 7	. 02	<. 05	11.0	10.35	17.4	. 04	<1	.414 .7	30	
GSMD-18077	1.37	. 1	. 05	1.03	7.1	5.1	. 9	. 03	<. 05	4.3	9.98	13.4	. 07	<1	.415 .7	30	
GSMD-18020	. 83	.1	. 28	. 14	5.7	9.5	. 5	. 01	<. 05	12.5	12.01	23.9	. 04	2	.319 .8	30	
GEBD-18098	. 73	.1	. 28	. 70	2.9	6.4	. 8	. 02	<. 05	13.1	12.66	15.1	. 06	<1	.417 .6	30	
GEBD-18039	. 63	. 1	. 23	. 95	3.2	6.1	. 8	. 01	<. 05	10.1	11.84	15.1	. 07	<1	.412 .9	30	
GEBD-18036	. 70	- 1	. 22	1.16	3.3	5.3	. 8	. 02	<. 05	9.8	10.50	15.4	. 06	<1	. 515.3	30	
GEBD-18026	1.10	. 1	. 17	. 26	4.9	9.0	. 6	. 01	<. 05	9.0	13.61	27.8	. 08	<1	.320 .9	30	
GEBD-18082	. 51	. 1	. 23	. 48	3.7	5.0	. 6	. 01	<. 05	10.6	8.77	17.3	. 08	<1	.414 .0	30	
GEBD-18089	2.41	. 1	. 08	. 61	2.8	9.8	. 4	. 04	<. 05	4.4	25.30	23.4	. 09	<1	. 318.4	30	
GEBD-18037	1.42	. 1	. 21	. 71	2.7	6.4	. 8	. 01	<. 05	9.0	14.73	22.6	. 10	<1	. 416.1	30	
GEBD-18091	1.34	. 1	. 15	. 79	3.1	7.0	. 4	. 02	<. 05	7.3	15.20	39.0	. 10	<1	. 518.2	30	
GEBD-18081	. 52	. 1	. 24	. 49	3.6	5.0	. 6	. 01	<. 05	10.5	8.85	17.7	.10	<1	. 213.9	30	
GEBD - 18027	1.30	. 2	. 20	. 06	4.4	7.8	. 4	. 02	<. 05	13.0	13.00	29.0	. 21	<1	. 220.5	15	
GEBD-18086	1.03	. 1	. 34	. 85	3.3	5.1	. 9	. 02	<. 05	13.9	7.99	9.2	. 12	<1	.416 .5	30	
GEBD - 18083	. 93	. 1	. 19	1.62	3.9	5.2	. 6	. 03	<. 05	10.5	8.81	12.9	. 12	1	.415 .2	30	
GEBD-18033 \$-1	1.27	. 2	. 66	. 47	4.6	8.9	1.4	. 01	$<.05$	37.5	14.32	30.5	. 12	<1	. 710.3	30	
GEBD-18096	. 36	. 1	. 30	. 57	2.2	4.6	. 8	<. 01	<. 05	11.8	9.48	11.4	. 09	<1	.212 .5	30	
GEBD-18092	. 76	. 1	. 32	. 76	1.6	6.6	. 9	. 01	<. 05	13.0	14.43	22.5	. 09	1	.613 .6	30	
RE GE8D-18092	. 79	. 1	. 34	. 80	1.7	6.7	. 7	. 02	<. 05	13.7	15.16	23.0	. 09	<1	. 514.3	30	
GEBD-18035	. 42	. 1	. 24	. 66	2.7	4.2	. 7	. 01	<. 05	9.3	8.93	16.4	. 07	1	$\begin{array}{ll}.3 & 12.5\end{array}$	30	
GEBD-18087	1.24	. 1	. 57	. 82	3.4	11.9	1.1	. 03	$<.05$	21.1	12.20	9.4	. 10	<1	. 719.0	30	
GE8D-18023	. 75	. 1	. 18	. 44	3.5	6.1	. 5	<. 01	<. 05	8.0	8.44	24.5	. 06	<1	.418 .4	30	
GEBD-18032	1.13	. 1	. 17	1.44	4.4	6.5	. 7	. 02	<. 05	8.2	10.57	14.7	. 06	<1	.515 .2	30	
GEBD-18085	1.75	. 1	. 06	1.50	6.0	9.4	. 9	. 03	$<.05$	5.0	23.45	17.7	. 07	2	. 823.3	30	
GEBD-18088	1.32	. 1	. 31	1.04	3.8	4.9	.7	. 02	<. 05	11.8	7.17	9.8	. 03	2	.415 .0	30	
GEBD-18038	1.04	. 1	. 271	1.51	2.7	7.3	. 8	. 03	$<.05$	11.2	20.04	15.6	. 04	3	. 611.8	30	
GEBD-18090	1.44	. 1	. 191	1.36	3.3	5.4	. 8	. 03	<. 05	10.1	10.98	14.3	. 04	<1	$\begin{array}{ll}.5 & 16.8\end{array}$	30	
GEBD-18031	1.09	. 1	. 26	. 13	3.8	10.5	. 5	. 01	<. 05	10.8	14.28	19.4	. 03	<1	. 318.4	30	
STANDARD DS2	3.27	. 1	. 051	1.37	12.6	2.8	25.4	. 03	<.05	2.6	7.55,	,27.9)5	5.34	<1	.415 .0	30	

Sample type: TILL $\$ 23040 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^28]

[^29]Hudson Bay Expl. \& DEv, Co. Itd. PROUECT 2398 Fille. \# A003056R. Page 1 $800-700$ W. Pender st, Vancouver BC V6C 168 , submitted by Gerry Biduell

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)
skiple fups: !!! s3n kne
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: NOV 222000 DATE REPORT MATLED: $22,7 / 0 \hat{N}$
SIGNED BY: :....D. TOYE: C.LEONG; J. WANG; CERTIFIED B.C. ASSAYERS

Hudson Bay Expl. \& Dev. Co. Itd. PROJECT 2398 FILE \# A003056R

SAMPLE\#	$\begin{array}{r} \mathrm{SiO} 2 \\ \mathrm{Al} 203 \\ \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{gathered} \mathrm{CaO} \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{NazO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{array}{r} \mathrm{TiO2} \\ 6 \end{array}$	$\begin{array}{r} \text { P205 } \\ \% \end{array}$	$\begin{array}{r} \text { Mno } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { Cr203 } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { ppra } \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{pppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} 2 r \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	LOI	$\begin{array}{r} \mathrm{TOT} / \mathrm{C} \\ \% \end{array}$	$\begin{gathered} \hline \text { OT/s } \\ \% \end{gathered}$	SUM
GSMD-18014	59.6912 .75	8.62	3.44	3.00	1.70		1.39	. 12	. 29	. 027	466	59	106	183	43	<10	39	7.5	. 50	. 01	99.44
GSMD-18069	60.0612 .30	7.34	2.98	2.76	1.71	. 81	1.39	. 12	. 10	. 019	836	50	120	166	26	<10	20	9.7	1.90	. 01	99.43
GSMD-18011	60.6912 .36	8.07	3.86	3.55	1.42		1.34	. 21	. 14	. 024	1340	76	104	171	30	<10	25	6.5	3.86	- 01	99.45
GSMD-18080	43.2713 .95	11.84	4.62	5.00	1.66		1.43	. 20	. 22	. 016	488	78	127	102	35	<10	31 27	17.0	3.48	<.	99.63
	52.4312 .50	8.03	4.15		2.03			. 21	. 18	. 028	261	150	109	158	26	<10	27		3.06	<. 01	99.44
GSMD-18071	57.4612 .87	7.45	2.95	3.03	1.65		1.36	. 22	. 10	. 027	698	92	121	163	27	<10	22	11.4	2.05	. 01	99.36
GSMD-18077	50.7011 .67	9.80	1.91	2.14	1.44		1.55	. 41	. 17	. 016	681	31	116	163	25	<10	17	18.8	5.06	. 01	99.58
GSmO-18020	66.0611 .63	6.40	2.57	2.52	1.69	1.08	1.14	. 12	. 11	. 020	419	56	112	236	29	<10	23	5.8	. 23	-01	99.25
GEBD-18098	58.4111 .92	8.38	4.07		1.83		1.63	. 06	. 15	. 027	741	75 78	120	148	31	<10	27	7.4	1.90	. 03	99.29
GEBD-18039	56.9611 .94	7.84	4.07				1.50	. 13	. 16	. 023	715	78									
GEBD-18036	55.1112 .01	7.90	3.57	3.62	1.60		1.41	. 10	. 12	. 021	801	60	106	137	28	<10	24	13.2	3.23	. 01	99.43
GEBD-18026	65.2310 .95	6.83	3.33	2.44	1.32	1.09	1.11	. 07	. 18	. 022	2402	100	88	155	30	<10	24	6.5	. 69	$<.01$	99.39
GEBD-18082	63.8711 .37	6.61	3.21	3.89	1.82		1.37	. 13	. 11	. 021	635	59	116	184	26	<10	23	6.0	. 92	. 0	99.32
GEBD-18089	57.2011 .70	7.20	3.03		1.65		1.34	. 24	. 11	. 023	622	51	135	192	47	<10	31	11.8	2.83	-01	99.41
GEBD-18037	60.8511 .46	7.70	3.90	4.63	1.89		1.52	. 12	. 17	. 024	886	63	130	155	33	<10	26	6.3	1.12	<. 01	99.41
GEBD-18091	54.5613 .49	6.98	2.84	3.07			1.20	. 16	. 14	. 020	708	83	109	185	36	<10	24	14.4	3.26	$<.01$	99.50
GEED-18081	64.3811 .29	6.60	3.21	3.97	1.82	. 78	1.39	. 13	. 11	. 019	625	52	116	196	27	<10	23	5.6	. 90	. 01	99.42
GEBD-18027	64.2210 .68	7.43	4.18	2.88	1.11	1.13	1.02	. 13	. 23	. 024	3066	123	82	128	30	<10	24	5.8	+ 17	<. 01	99.23
GEBD-18086	53.8713 .03	8.80	3.38	3.78	1.78		1.60	. 17	. 10	. 027	483	85	123	143	24	<10	22	12.6	2.50 5.07	. 03	99.49
GEBD-18083	50.6011 .94	8.05	2.98		1.56		1.36	. 19	. 11	. 020	581	61	109	137	23	<10	21		5.07	. 03	
GE8D-18033 s-1	53.1818 .46	8.27	2.40	3.88		1.22	1.37	. 18	. 13	. 010	355	26	328	186	28	<10	23	7.2	. 67	$<.01$	99.37
GEBD-18096	61.5311 .12	7.54	4.13	5.40	2.10	. 55	1.66	. 07	. 15	. 025	663	55	129	150	28	<10	26	4.9	. 71	<. 01	99.30
GEBD-18092	53.6412 .47	8.87	4.44	5.61	1.80		1.54	. 13	. 15	. 028	333	82	120	159	34	<10	29	10.2	1.98	. 02	99.43
RE GEBD-18092	53.6012 .48	8.92	4.40		1.81		1.54	. 14	. 15	. 024	339	98	121	160	34	<10	29	10.3	2.01	- 01	99.38
GEBD-18035	63.9311 .11	6.73	3.41	4.31	1.99		1.52	. 10	. 14	. 019	839	44	138	171	27	<10	22	5.2	. 8	<. 01	
GEBD-18087	40.4916 .87	10.30	4.01	4.30	. 77		1.28	. 19	. 14	. 024	334	105	45	95	23	<10	26	21.0	3.50	. 03	99.78
GEED-18023	64.8610 .81	6.94	4.06	2.87	1.69	. 80	1.36	. 06	. 18	. 025	1213	64	105	141	25	<10	22	5.4	. 46	<. 01	99.24
GEBD-18032	51.2511 .82	7.64	2.92	2.74	1.34		1.35	. 17	. 10	. 017	762	36	95	147	25	<10	21	19.2	5.19	. 01	99.43
GEBD-18085	53.0113 .60	7.89	2.44	2.25	1.56	1.06	1.29	. 20	. 10	. 020	525	59	149	177	41	<10	22	16.0	4.00	-04	99.54 99
GEBD-18088	52.9512 .92	8.23	3.66	3.81	1.65		1.40	. 13	. 11	. 028	683	60	274	143	21	<10	22	14.0	2.99	<. 01	
GEBD-18038	46.3012 .30	8.51	3.30				1.49	. 16	. 12	. 023	533	54	113	132	37	<10	25	21.4	6.01	. 01	99.62
GEED-18090	48.8811 .79	8.78	2.38	2.69	1.33	. 81	1.43	. 21	. 09	. 018	364	61	112	173	28	<10	18	21.1	5.97	. 02	99.60
GEBD-18031	61.3111 .23	8.05	4.52	3.43	1.52	. 90	1.14	. 12	. 20	. 034	1409	119	988	135	28	<10	26	6.7	2.30	- 5.25	99.36
STANDARD SO-15/CSB	49.4812 .55	7.16	7.12	5.76	2.36	1.86	1.79	2.65	. 36	1.05	2011	78	388	964	23	17	12	5.9	2.43	5.25	

[^30]

[^31]Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2398 FILE \# A003056R Page 4

SAMPLE\#	$\begin{array}{r} \mathrm{SiO2} \text { Al203 } \\ \% \\ \% \end{array}$	$\begin{array}{r} \mathrm{Fe} 203 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{gathered} \mathrm{CaO} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{array}{r} \mathrm{TiO2} \\ \% \end{array}$	$\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$	$\begin{array}{r} \mathrm{MnO} \\ \% \end{array}$	$\begin{array}{r} \hline \mathrm{Cr} 203 \\ \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{p} \mathrm{p} \pi \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pprn} \end{array}$	$\begin{array}{r} 2 r \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} r \\ p p m \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Sc} \\ \mathrm{ppm} \end{gathered}$	101 $\%$	$\begin{array}{r} \text { TOT/C } \\ \% \\ \hline \end{array}$	rot/s	$\begin{gathered} \text { SUM } \\ \% \end{gathered}$
RCPD-18052	55.6612 .53	7.96	2.85	3.28	1.59	1.02	1.27	. 17	. 13	. 016	548	76	125	174	31	12	22	13.4	3.29	<. 01	99.99
RCPD-18058	57.8212 .27	8.70	4.60	5.77	2.07	. 68	1.61	. 14	. 17	. 025	475	171	134	156	28	10	29	6.1	. 86	<. 01	100.08
RCPD-18050	61.4511 .97	7.78	3.35	4.13	1.75	. 90	1.38	. 18	. 14	. 022	644	98	145	207	40	<10	30	7.0	1.05	. 02	100.19
PCPD-18060	61.2911 .75	7.23	2.49	3.35	1.68		1.36	. 21	. 10	. 016	616	58	133	224	46	<10	25	9.3	2.13	. 01	99.87
RE RCPD-18060	61.2011 .76	7.41	2.46	3.33	1.68		1.37	. 19	. 10	. 019	620	57	i5i	2006	44	10	25	8.5	2.14	. 01	100.11
STANDARD SO-15/CSB	49.5312 .58	7.28	. 2	. 84	2.4	. 85	. 74	2.69	. 38	1.060	2013	80	395	950	23	23	12	5.9	2.45	5.32	99.92

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{NO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$

- SAMPLE TYPE: MOSS MAT S140' Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. f

DATE RECEIVED: AUG 162000 DATE REPORT MAILED: Sept $5 / 00$ C. h

GROUP $1530-30.00 \mathrm{GM}$ SAMPLE LEACHED HITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20 \mathrm{AT} 95 \mathrm{DEG}$. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, $S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: MOSS MAT S140 Samples begínning 'RE' are Reruns and' 'RRE' are Reject Reruns.

R
R
- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1F30-30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N 03-H 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100$ PPM; $M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.
SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: AUG 162000 DATE REPORT MAILED: HИV 3//00
SIGNED BY

TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 1 F30 - 30.00 GN SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{KCL}-\mathrm{HNO} 0$-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, 2 \mathrm{~N}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPIE TYPE: ROCK R150 40C Samples beginning 're' are Reruns and 'RRE' are Reject Reruns.
date received: aug 162000 date report mailed: fug 31/00

GROUP 4A - 0. 200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- Sámple tipe: kúk rijo 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.
SAMPLE TYPE: ROCK PULP
Samples beginning 'RE' are Reruns and 'RRE' are Beject Reruns.

GROUP $1 E X-0.25$ GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH} \& \mathrm{U}=4,000$ PPM; CU, PB, $Z N, N I, M N, A S, V, L A, C R=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOL.ATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject keruns.

GROUP 1F30-30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - $A G, A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2, O 00 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.
SARLE YYPE: T:l S230 unc Samips heginninc top' are Reruns and 'RRE' are Reject Reruns.

GEBD-18141
GEBD-18154
GEBD-18150
GEBD-18177
GERD-18144
GEBD-18169
GEBD-18147
GEED-18153
RE GE8D-181
RE GEBD-18153
$\begin{array}{llllllllllllll}.77 & 67.68 & 15.11 & 79.3 & 28 & 67.3 & 22.6 & 878 & 4.01 & 9.6 & .5 & 2.8 & 5.5 & 21.3\end{array}$ $\begin{array}{llllllllllllll}.32 & 40.37 & 5.76 & 49.9 & 15 & 33.1 & 12.1 & 564 & 2.59 & 3.5 & .3 & 2.9 & 2.7 & 17.5\end{array}$ $\begin{array}{llrlllllllll}.48 & 77.14 & 15.54 & 91.4 & 69 & 63.0 & 24.1 & 988 & 4.25 & 7.1 & .5 & 1.6 \\ .21 & 66.33 & 2.14 & 51.5 & 23 & 49.2 & 28.6 & 969 & 3.87 & 83.1 & .1 & 5.0 \\ .25 .1 & 32.2\end{array}$ $\begin{array}{lllllllllllllll}21 & 60.33 & 2.14 & 51.5 & 23 & 49.2 & 28.6 & 969 & 3.87 & 83.1 & .1 & 5.0 & 1.1 & 32.2 \\ .59 & 00.50 & 12.55 & 67.9 & 26 & 56.8 & 23.0 & 851 & 3.74 & 7.3 & .5 & 5.2 & 4.8 & 19.7\end{array}$

$\begin{array}{lllllllllllll}.26 & 49.18 & 5.06 & 43.5 & 20 & 42.0 & 17.7 & 759 & 2.65 & 5.8 & .2 & 3.2 & 1.5\end{array} 13.7$ $\begin{array}{llllllllllllll}40 & 77.21 & 8.08 & 75.7 & 96 & 56.1 & 24.1 & 1074 & 3.88 & 5.7 & .3 & 2.1 & 3.4 & 45.2\end{array}$ $\begin{array}{llllllll}95 & 43.57 & 9.11 & 65.9 & 41 & 34.3 & 14.1 & 461 \\ 4.14 & 5.25\end{array}$ $\begin{array}{llllllllll}.95 & 43.57 & 9.11 & 65.9 & 41 & 34.3 & 14.1 & 461 & 4.14 & 5 \\ .94 & 42.58 & 9.16 & 66.1 & 45 & 32.6 & 13.0 & 453 & 4.09 & 5.4\end{array}$ | .94 | 42.58 | 9.16 | 66.1 | 45 | 32.6 | 13.0 | 453 | 4.09 | 5.4 | .4 | 1.5 | 2.6 | 7.6 | .17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{ll}.22 & .82\end{array}$

$\begin{array}{rrrrrrrrrrrrrrrr}22 & .82 & .17 & 104 & .68 & .073 & 20.9 & 89.1 & 1.29 & 342.0 & .224 & 2 & 2.47 & .010 & .13 & <.2 \\ 12 & .35 & .08 & 85 & .78 & .065 & 9.6 & 46.7 & .74 & 205.0 & .238 & 2 & 1.61 & .013 & .04 & <.2 \\ .\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrr}85 & .78 & .065 & 9.6 & 46.7 & .74 & 205.0 & .238 & 2 & 1.61 & .013 & .04 & <2 & 03 & 65 & .4\end{array}<.027 .0$ | .08 | 85 | .78 | .065 | 9.6 | 46.7 | .74 | 205.0 | .238 | 2 | 1.61 | .013 | .04 | $<.2$ | .03 | 25 | .1 | $<.02$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5.0 | | | | | | | | | | | | | | | | | |
| .19 | 107 | .87 | .077 | 16.3 | 96.7 | 1.47 | 318.6 | .251 | 2 | 2.55 | .011 | .16 | <2 | .07 | 56 | .2 | .04 |
| 7.3 | | | | | | | | | | | | | | | | | |
| .03 | 143 | 1.08 | .040 | 4.1 | 78.4 | 1.53 | 121.8 | .381 | 4 | 3.26 | .013 | .02 | $<.2$ | .02 | 35 | .2 | .02 | $\begin{array}{lllllllllllllllllllllllllllll}.0 & 104 & .85 & .064 & 17.5 & 86.2 & 1.33 & 269.9 & .268 & 2 & 2.34 & .010 & .12 & <.2 & .07 & 65 & .3 & .02 & 6.9\end{array}$

025.9

13	2	1.94	.011	.03	$<.2$	$<.02$	22	.3	.02	5.9
253	2	2.46	.018	.14	.2	.04	45	.3	.02	7.7
16	1	2.94	.006	.04	$<.2$.06	57	.4	.02	8.1

Sample type: TILL $\$ 23040 C$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 2 \mathrm{O}$ AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 NL, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{HN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

DATE RECEIVED: AUG 302000 DATE REPORT MAILED:
sept 12/00 SIGNED BY. . TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#	$\begin{gathered} \mathrm{Cs} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ge} \\ \mathrm{pppm} \end{array}$	$\begin{gathered} \mathrm{Hf} \\ \mathrm{ppxn} \end{gathered}$	$\begin{aligned} & \mathrm{Nb} \\ & \mathrm{pprn} \end{aligned}$	$\begin{array}{r} R b \\ \mathrm{ppma} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppma} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppon} \end{array}$	$\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \end{array}$	Sample gm
GEBD-18141	. 99	. 1	. 20	. 28	6.7	7.3	. 6	. 02	$<.05$	7.9	15.34	40.0	. 03	2		24.0	30
GEBD-18154	. 38	. 1	. 35	. 10	2.2	6.2	. 5	. 03	<. 05	12.0	11.48	18.5	. 02	<1		10.8	30
GEBD-18150	. 81	. 1	. 33	. 10	5.6	8.7	. 6	. 05	<. 05	11.7	14.84	30.5	. 03	<1	. 4	21.2	30
GEBD-18177	1.97	.1	. 41	. 59	1.7	8.7	. 7	. 07	<. 05	15.1	13.74	18.7	. 04	<1		27.8	30
GERO-18! 44	. 67	.1	. 32	. 23	4.1	7.4	. 5	. 06	<. 05	10.6	14.81	33.9	. 02	<1	.3	19.5	30
GEBD-18169	. 50	.1	. 33	. 47	1.3	5.2	.6	. 05	<. 05	11.2	12.29	17.4	. 03	<1	.4	16.7	30
GEBD-18147	. 78	.1	. 39	. 07	5.2	6.5	. 5	. 03	<. 05	11.9	12.78	21.7	. 02	1	. 3	22.6	30
GEBD-18153	1.34	$<.1$. 11	1.55	9.6	3.6	. 8	. 02	<. 05	4.4	5.97	25.1	. 03	2	. 5	28.1	30
RE GEBD-18153	1.40	<. 1	. 10	1.58	9.5	3.7	. 8	. 04	<. 05	4.2	6.01	24.9	. 03	<1	. 5	26.6	30
STANDARD DS2	3.26	. 1	. 04	1.29	14.3	2.9	26.6	. 02	<. 05	2.9	8.12	31.2	5.58	5	. 7	14.7	30

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL $C \& S$ BY LECO. (NOT INCLUDED IN THE SUM)

- SAMP: TYPE: Y!!! s?

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: NƯ 222000 DATE REPORT MAILED: $1 / 207 / 00$
-D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

[^32]

GROUP $1 \mathrm{~F} 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE', are Reject Reruns.

DATE RECEIVED: AUG 302000 DATE REPORT MAILED:

GROUP 1F30-30.00 GM SAMPLE LEACHED HITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM}$; $C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Repans.

DATE RECEIVED: NOV 222000 DATE REPORT MAILED: Dec 4 (W
SIGNED by........)D. toye, c.leong, s. wang; certified b.c. assayers

SAPPEt	$\begin{gathered} 40 \\ \text { pon } \end{gathered}$	$\underset{\infty}{c}$	$\begin{gathered} \text { PD } \\ \text { ppos } \end{gathered}$	$\mathrm{zn}_{\mathrm{ppon}}$	$\begin{array}{cc} \mathrm{Ag} & \mathrm{Ni} \\ \mathrm{POD} \\ \hline \mathrm{pma} \end{array}$	$\begin{gathered} \text { co } \\ \text { ppo } \end{gathered}$	$\underset{\text { ppo }}{\substack{\text { n }}}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{t} \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { ppa } \end{aligned}$	ppa	$\begin{aligned} & \text { Au } \\ & \text { cob } \end{aligned}$	$\begin{array}{cc} \text { Th } & 5 r \\ \text { pona } & \text { pona } \end{array}$	$\underset{\text { pos }}{\text { cd }}$	poa	$\begin{gathered} 81 \\ \text { ppm } \end{gathered}$	$\underset{p \times p a}{V}$	$\begin{array}{lc} \mathrm{Va} \\ \mathrm{ca} \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \vdots \end{aligned}$		$\begin{gathered} \mathrm{cr} \\ \mathrm{ppos} \end{gathered}$	$\begin{gathered} \mathrm{kg} \\ \mathrm{t} \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { ppa } \end{gathered}$	$\begin{gathered} i 1 \\ i \end{gathered}$			Ko		$\underset{\sim}{N}$		$\begin{aligned} & \text { H } \\ & \text { PDD } \end{aligned}$			
PPR-14113	2.16	166.21	11.17	32.3	4831.4	11.1	322	8.071	11.8	< 1	9.5	1.411 .2	. 05	. 40	. 57	141	. 76	. 036	2.8	76.	87	117.6	396		1.55	20	05	. 6	. 05	34	4.1	. 70	. 2
PPR-14117	. 43	. 04	1.6	69.	1551.5	25.2	746	4.13	. 4	< 1	1.5	. 618.5	13	15	. 02	141	2.5	. 044	3.2	67.6	1.64	96.9	410		3.54	. 063	. 04		02	11		<. 02	
PPR.14120	94.41	287.62	17.99	20.2	23025.7	105.1	13315	15.58	44.3	1.4	25.8	1.15 .7	. 075	5.26	7.18	78	. 15	. 224	4.3	40.1	. 22	21.5	136		59	. 009	. 10	1.3	17	136	24.0	. 98	4.3
PPR-14111	. 65	108.09	1.10	51.6	46.5	22.6	745	5.47	8.7	< 1	1.6	. 46.9	. 05	. 18	. 04	134	1.3	058	3.4	36.01	1.86	48.2	. 418		2.6	335	04	. 6	02	17	. 5	02	. 4
Per-14:	2.04	59.35	.?	76.1	5845.9	19.0	${ }^{484}$	2.70	4.5	<. 1	. 9	119.1	. 46	. 63	. 04	1015	5.01	037	1.3	107.31	1.15	165.5	. 291		3.35	. 036	. 02	1.3		45	4		. 1
PPR-14119	20.44	159.72	12.9	18.0	7618.3	36.8	128	7.393	31.3	. 4	14.5	1.98 .2	. 073	3.61	2.54	85	. 17	057	5.5	40.2	32	143.3	172			. 009	. 21	1.2	. 10	74	11.7	1.89	. 5
PPR-14112	. 72	71.53	2.58	68.0	4028.0	22.1	795	4.75	3.5	. 1	1.7	. 213.6	13	. 39	. 03	131	1.37	066	2.9	14.6	2.04	9.9	381		2.55	. 091	. 04	. 5	02	33	4	. 04	. 5
PPR-24115	2.43	2225.40	2.04	386.5	41027.0	. 0	201	5.82	2.7	<. 1	1.6	. 42.4	29	. 28	1.64	25	. 35	. 003	1.8	26.8	. 36	20.2	051	1		. 007	. 01			88	1.6	. 56	3.2
PPS-14118	. 39	25.69	. 51	60.0	1037.	28.7	942	5.65	2.1	< 1	. 7	9.2	. 03	. 07	<. 02	2	2.37	. 081	3.0	37.5	2.26	51.6	428		3.81	. 035	. 01		<. 02	s	1		3.6
PPR-14114	. 84	57.02	1.06	53.9	2238	21.7	607	3.95	1.0	<. 1	1.2	. 214.9	. 09	. 41	<. 02		2.10	. 0	2.9	43.0	1.44	13.4	419		5.51	. 050	. 03		< 02	29	2	. 04	9.6
RCPR-14122	. 44	26	. 55	8.9	19.3	31.5	933	6.80	<.1	<. 1	. 6	<. 19.5	. 05	. 11	. 04	294	1.52	093	2.2	5.9	1.79	73.7	458		33.22	038	. 03		. 02	11	8		. 5
RCPR-141\%	. 90	49.15	1.19	54	1867.0	28.6	874	4.88	. 8	< 1	. 7	. 215.2	. 06	48	. 02	177	2.88	055	2.2	10.3	2.27	23.2	382		3.97	. 056	. 03		<. 02	9		< 02	3.0
RCPR-14123	1.26	1561.65	7.6	1346.9	41139.0	38.9	631	4.63	4.2	. 2	3.2	. 114.8	4.36	. 66	40	149	1.53	. 049	1.4	29.3	1.33	31.7	410		2.2	158	. 08	. 3	. 03	1337	4.0		9.2
RCPR-14133 S-1	1.11	32.84	9.33	53.	5312.9	13.4	47	4.06	2.6	. 6	1.3	3.147 .0	. 07	. 08	15	164	. 46	045	1.7	44.3	. 54	98.9	372		4.21	. 117	. 06	<. 2	13	46	4		0.9
RCP8.1412!	. 55	44.56	. 55	65.	14	26.1	816	5.99	<.1	<. 1	1.9	<. 111.0	. 06	. 3	. 02	1	1.70	. 090	2.1	10.2	. 60	78.7	439		2.98	. 041	. 02		<. 02	12	5	<	13.3
RCPR-14124	4.70	3816.96	132.50	147.4	431662.2	83.5	481	14.3	21.6	. 5	79.7	110.6		8.97	5.59	137	1.44	031	. 8	46.6	. 87		351		1.03	076	. 08	<. 2	. 10	906	27.6	52	7.9
GEBR. 14149	. 76	240.56	8.83	73.7	5226.0	13.2	655	2.26	7.7	. 3	. 7	3.94 .3	. 10	. 14	28	31	. 24	023	5.4	27.0	11	106.7	137		1.25	. 018	. 19	1.3	. 03	47	. 2	. 07	5.6
RE GER-14149	. 28	238.44	8.58	73.9	15726.5	13.2	657	2.26	7.9	. 3	1.0	3.74 .1	. 11	. 15	. 26	31	. 24	. 023	5.2	26.4	. 78	103.9	136		1.25	. 018	. 18	1.3	. 03	59	2	. 06	5.6
RRE GEBr-14149	. 74	212.83	8.38	47.9	6026.4	12.5	664	2.22	8.3	. 3	<. 2	3.73 .2	. 03	. 13	26	25	5.20	023	4.5	25.0	. 76	77.8	126		1.16	009	14	1.3	. 02	21	1	. 03	5.2
GE8R-14147	1.09	149.05	9.89	50.9	9722.6	9.5	483	1.91	2.1	. 3	. 4	3.94 .9	07	. 18	. 25	22	. 21	. 019	9.9	24.4	. 68	68.5	126		1.04	010	. 13	1.3	. 02	19	. 1	. 05	4.6
GEER-14141	2.99	11.07	. 70	6.5	720.6	3.5	98	. 66	. 8	. 3	. 5	1.65 .3	. 01	. 10	. 02	61	1.3	. 013	5.4	53.9		125.3	066	<1		. 017	. 01		< 02	< 5			2.1
GEES. 14146	. 68	5.80	. 18	50.4	2427.7	21.8	761	4.80	. 8	<. 2	2.2	. 110.2	. 02	. 11	<. 02	173	2.86	. 078	3.3	21.9	1.60	31.0	324		63.20	, 30	01		<. 02	9			3.0
GEER-14152	. 28	271.33	. 58	71.5	1436.6	32.61	1094	6.00	5.6	<. 1	1.4	18.2	. 06	. 08	. 02	210	1.82	. 093	3.9	50.8	2.59	36.2	394		3.93	020	. 01		<. 02	\checkmark			2.6
GEER. 14142	1.26	10.90	. 51	8.3	325.0	5.4	127	. 79	1.0	3	<. 2	2.913 .8	<. 01	. 11	<. 02	63			7.1	44.5			119	<1		015	. 03						2.8
GE8P-14148	720.408	80769.70	166.19	119.5	844280.7	85.5	10716	16.36	13.1	< 1	79.8	1.84 .7			24.65	55			2.8	70.2	. 42		103	1			. 14	3.9	69				10.1

GROUP 1 F30 - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK R150 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: AUG 302000 DATE REPORT MAILED: Seff $14 / 00$

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACMR
4 AYT $L \mathrm{~L}=$ ATO
LTE
त.
Prf

SAMPLE\#	$\begin{array}{r} \mathrm{cs} \\ \text { ppom } \end{array}$	$\begin{aligned} & \text { Ge } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathrm{Hf} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { sin } \\ \text { ppm } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppm }}{2 r}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{gathered} \mathrm{ce} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} \text { In } \\ \text { ppm } \end{array}$	$\begin{aligned} & \text { Re } \\ & \mathrm{ppb} \end{aligned}$	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Li} \\ \text { ppon } \end{array}$	Sample gm
PPR-14113	. 25	- 1	. 56	. 20	2.4	5.2	9.1	. 01	<. 05	20.0	4.85	6.5	. 28	1	. 1	5.5	30
PPR-14117	. 19	:-1	. 62	. 18	1.5	6.3	. 9	. 01	<. 05	26.8	12.43	9.6	. 04	<1	.3	8.4	30
PPR-14120	. 66	. 2	. 28	. 59	3.9	4.2	6.8	6.93	<. 05	7.9	8.32	11.6	<. 02	91	. 2	2.9	30
PPR-14111	. 38	. 1	. 46	. 07	1.4	4.5	. 5	. 01	<. 05	13.6	12.69	8.7	. 04	<1	. 3	7.7	30
PPR-14116	2.89	. 3	. 28	. 02	1.4	7.1	. 5	. 08	<. 05	9.6	11.57	3.9	. 03	<1	. 2	12.2	30
PPR-14119	1.05	. 1	. 29	. 62	7.1	4.7	9.7	. 34	<. 05	9.0	10.48	9.6	. 03	3			30
PPR-14112	1.26	. 2	. 18	. 04	. 9	4.1	. 9	. 17	<. 05	8.3	16.56	8.8	. 04	2	. 2		30
PPR-14115	. 13	. 2	. 09	. 11	. 3	1.9	3.1	4.25	<. 05	2.5	2.32	5.1	. 20	5			30
PPR -14118	. 20	. 3	. 40	. 05	. 3	5.7	1.1	<. 01	<. 05	10.0	22.43	9.1	. 07	<1	. 2	16.4	30
PPR-14114	. 78	. 2	. 38	. 04	. 6	4.3	. 8	. 07	<. 05	15.3	14.72	8.7	. 07	2	.4	11.4	30
RCPR-14122	. 64	. 2	. 26	. 03	. 9	4.1	. 7		<. 05	6.5	21.38	7.6	. 09	<1		9.6	30
RCPR-14125	. 14	. 2	. 41	. 04	1.1	7.1	. 8	. 01	<. 05	13.4	19.07	6.5	. 08	2		20.3	30
RCPR-14123	. 29	$\cdot 1$. 56	. 03	2.0	5.8	26.0	1.08	<. 05	18.7 39	14.73	4.9	. 69	5	1	7.3	30
RCPR-14133 RCPR-1 14121	1.36 .58	- 2	. 72	.43 .04	4.9 8	9.0 4.6	1.4	<. 01	<. 05	39.0 8.1	15.35 20.99	30.7 7	. 08	<1	. 8	10.8 7	30
RCPR-14121	. 58	. 2	. 35	. 04	. 8	4.6	. 6		<. 05	8.1	20.99	7.3	. 08	<1	. 3	7.6	30
RCPR-14124	. 34	. 3	. 78	. 11	2.0	6.0	17.9	13.00	<. 05	21.6	10.51	3.0	. 59	1	. 2	6.5	30
GEER-14149	. 82	-1	. 13	. 18	6.8	2.7	2.0	. 07	<. 05	4.2	7.52	14.9	. 08	<1	. 3	8.3	30
RE GEBR-14149	. 79	<. 1	. 14	. 18	6.5	2.8	2.1	. 05	$<.05$	4.1		13.9	. 07	2	.3	8.0	30
RRE GERR-14149	. 77	. 1	. 14	. 15	5.1	2.4	1.4	. 04	<. 05	3.2	6.61	12.6	. 05	2	. 2	7.5	30
GEBR-14147	. 96	<. 1	. 15	. 14	5.2	2.4	1.1	. 06	<. 05	3.9	8.03	26.0	. 06	<1	. 4	7.7	30
GEBR-14141	. 04	$<.1$. 09	. 18	. 5	1.7	. 2		$<.05$	4.1	5.55	10.0	. 02	<1			30
GEBR-14146	. 42	. 2	. 28	. 06	. 1	4.8	. 5	. 01	<. 05	6.5	19.06	9.6	. 03	5		11.1	30
GEBR-14152	. 25	. 2	. 31	. 06	. 4	7.8	. 6	<. 01	<. 05	5.9	23.44	10.3	. 05	<1		20.8	30
GEBR-14142	. 05	<. 1	. 15	. 23	. 8	2.5	. 2	. 11	<. 05	4.8	5.60	14.2	<. 02	<1	.4	10.6	30
GEBR-14148	. 75	. 1	. 07	. 78	4.4	2.6	103.4	9.28	<. 05	3.7	4.21	7.15	5.61	177	. 3	5.3	30
STANDARD DS2	3.27	. 1	. 04	1.43	12.9	2.8	26.8	. 02	<. 05	2.9	7.70	29.45	5.62	2	. 5	14.2	30

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ hCL-hNO3-h2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, $H G, W, S E,-T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK R150 40 C , Samples beginning' 'RE' are Reruns and' ${ }^{\prime}$ RE' are Reject Reruns.

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: NOV 222000 DATE REPORT MAILED: $10 \mathrm{ecf} / \mathrm{v}$
SIGNED BY.......... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.
SAMPLE TYPE: ROCK PULP
Samples beginning 'RE' are Reruns and 'RRE' arefeject Reruns.
DATE RECEIVED: NOV 222000 DATE REPORT MAILED: $\mathrm{PeC} 8 / \mathrm{u}$

GROUP TEX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH} \& \mathrm{U}=4,000$ PPM; CU, $\mathrm{PB}, 2 \mathrm{~N}, \mathrm{NI}$ MN, AS, $V, L A, C R=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 222000 DATE REPORT MAILED
1 ec $8 / 00$
SIGNED BY. :......... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 1 F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.
SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 72000 DATE REPORT MAILED:

TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS -

Sample type: TILL S230 40C. Samples Deginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: TILL $\$ 23040 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD

PR ${ }^{2}$ (604,

GROUP 1 F30-30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, 8 I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.
SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 72000 DATE REPORT MAILED: \square stamp by. C
 . TOYE, C.leONG, J. WANG; CERTIFIED B.C. ASSAYERS

[^33]

[^34]

GROUP KA - 0.200 GM SAMPLE $8 Y$ LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL C \& S BY LEGO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: TILL S230 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 222000 DATE REPORT MATED:

SIGNED BY $c h$

[^35]| | SAMPLE\# | $\begin{array}{r} \mathrm{SiO} \\ \% \end{array}$ | $\begin{array}{r} \text { Al203 } \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$ | MgO | $\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$ | $\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$ | $\begin{array}{r} \mathrm{TiO} \\ \% \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{P} 205 \\ \% \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{MnO} \\ \mathbf{\%} \\ \hline \end{array}$ | $\begin{array}{r} \text { Cr203 } \\ \% \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} s r \\ p p \pi \end{gathered}$ | $\begin{gathered} \mathbf{2 r} \\ \mathbf{p p r a} \\ \hline \end{gathered}$ | $\begin{array}{r} Y \\ p p a n \end{array}$ | $\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppan} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \\ \hline \end{array}$ | $\begin{array}{r} 101 \\ \% \end{array}$ | $\begin{array}{r} \text { TOT/C } \\ \% \end{array}$ | $\begin{array}{r} \mathrm{OT} / \mathrm{s} \\ \% \end{array}$ | $\begin{array}{r} \text { SUM } \\ \% \end{array}$ |
| :---: |
| | GSMD-18117 | 56.72 | 12.41 | 9.53 | 4.45 | 5.21 | 1.91 | . 70 | 1.67 | . 15 | .16 | . 021 | 763 | 71 | 121 | 133 | 35 | <10 | 33 | 7.0 | . 72 | $<.01$ | 100.07 |
| | GSMD-18110 | 62.28 | 12.18 | 7.69 | 3.57 | 3.45 | 1.70 | . 90 | 1.36 | .11 | . 15 | . 029 | 1247 | 358 | 120 | 139 | 25 | <10 | 24 | 6.3 | . 43 | . 02 | 99.94 |
| | GSMD-18105 | 45.93 | 13.64 | 13.70 | 7.91 | 7.09 | . 74 | . 62 | 1.85 | . 16 | . 25 | . 011 | 323 | 66 | 137 | 96 | 32 | <10 | 35 | 8.2 | . 58 | $<.01$ | 100.18 |
| | GSMD-18116 | 59.19 | 11.44 | 7.89 | 3.74 | 4.54 | 1.88 | . 67 | 1.55 | . 15 | . 14 | . 019 | 736 | 69 | 121 | 141 | 29 | <10 | 26 | 8.5 | 1.70 | -02 | 99.84 |
| | GSMD-18109 | 59.36 | 12.21 | 8.55 | 4.42 | 4.20 | 1.81 | . 72 | 1.55 | . 13 | .17 | . 017 | 975 | 70 | 127 | 130 | 27 | <10 | 28 | 6.5 | . 55 | -.01 | -0.90 |
| | GSMD-18103 | 46.25 | 13.50 | 12.85 | 6.84 | 7.43 | 2.00 | . 23 | 2.03 | . 16 | . 22 | . 026 | 239 | 100 | 77 | 114 | 35 | <10 | 41 | 8.2 | . 51 | <. 01 | 99.81 |
| | GSMD-18120 | 63.75 | 10.74 | 7.14 | 4.33 | 5.39 | 1.89 | . 53 | 1.31 | . 09 | . 14 | . 018 | 509 | 67 | 110 | 169 | 30 | <10 | 32 | 4.7 | $\underline{.12}$ | . 01 | 100.14 100.10 |
| | GSMD-18104 | 60.76 | 11.57 | 6.75 | 2.08 | 2.45 | 1.53 | 1.07 | 1.33 | . 15 | . 07 | . 013 | 578 | 41 | 123 | 225 | 29 | <10 | 18 | 12.2 | 2.77 | <. 01 | 100.18 |
| | GSMD-18112 | 56.27 | 11.46 | 7.96 | 3.53 | 4.45 | 1.81 | . 55 | 1.53 | . 08 | . 11 | . 019 | 589 | 49 | 110 | 138 | 28 | <10 | 29 | 12.3 6.2 | 2.69 | . 01 | 100.11 |
| | GSMD-18118 | 59.43 | 12.09 | 8.23 | 4.36 | 5.15 | 1.97 | . 68 | 1.56 | . 13 | . 16 | . 022 | 711 | 73 | 111 | 138 | 28 | <10 | 2 | | | | |
| | RE GSMD-18118 | 59.23 | 12.09 | 8.30 | 4.32 | 5.12 | 1.96 | . 69 | 1.55 | . 16 | . 16 | . 020 | 710 | 66 | 112 | 135 | 26 | <10 | 29 | 6.2 | $\begin{array}{r}.67 \\ \hline 1\end{array}$ | $<.01$ | 99.93 100.15 |
| | GSMD-18115 | 62.10 | 11.66 | 7.50 | 3.50 | 4.37 | 1.73 | .91 | 1.51 | . 17 | . 13 | . 019 | 785 | 73 | 118 | 225 | 32 | <10 | 25 | 6.4 6.8 | . 71 | . 01 | 100.09 |
| | GSMD-18107 | 61.47 | 11.69 | 7.82 | 3.69 | 4.17 | 1.97 | . 57 | 1.55 | .09 | . 13 | . 019 | 713 | 51 | 124 | 129 | 26 | <10 | 24 | 6.8 4.9 | . 95 | -. 01 | 99.84 |
| | GSMD-18101 | 58.07 | 12.15 | 8.69 | 4.58 | 6.30 | 2.31 | . 59 | 1.78. | . 15 | . 16 | . 0213 | 748 | 63 | 133 119 | 185 | 31 | <10 | 23 | 4.9 8.4 | 1.20 | $<.01$ | 99.85 |
| | GSMD-18114 | 61.02 | 12.34 | 7.55 | 2.95 | 3.07 | 1.68 | . 98 | 1.45 | . 17 | . 09 | . 013 | 722 | 63 | 119 | 185 | 31 | <10 | 23 | 8.4 | 1.20 | | |
| | GSMD-18102 | 58.07 | 12.09 | 8.67 | 4.50 | 6.25 | 2.31 | | 1.80 | . 14 | . 16 | . 020 | 756 | 60 | 134 | 126 | 35 | <10 | 31 | 5.3 | . 47 | . 02 | 100.03 |
| | GSMD-18113 | 56.00 | 12.14 | 8.95 | 3.26 | 3.78 | 1.71 | . 70 | 1.66 | . 24 | . 11 | . 018 | 646 | 60 | 110 | 144 | 28 | <10 | 25 | 11.5 | 2.18 | 5.01 | 100.19 |
| | STANDARD S0-15/CSB | 49.81 | 12.32 | 7.25 | 7.21 | 5.83 | 2.39 | 1.84 | 1.78 | 2.68 | 1.38 | 1.063 | 1993 | 82 | 393 | 986 | 22 | 26 | 12 | 5.9 | 2.42 | 5.32 | 99.87 |

[^36]

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 2 O$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: TILL S230 40 C , Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

DATE RECEIVED: SEP 192000 DATE REPORT MAILED:
SIGNED BY M 10 200 2000

BY ALA...D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Sample type: THLL S230 40 C . Satples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

41

[^37]GEBD-18337 GEBD-18334 GEBO-18334 GEBD-18326
GEBD-18336 GEBD-18336
$\begin{array}{lllllllllllllllll}56 & 34.05 & 9.86 & 58.0 & 74 & 41.9 & 16.1 & 513 & 2.89 & 5.6 & 4 & 2.5 & 3.9 & 10.6 & 13 & 50\end{array}$ $\begin{array}{llllllllllllllll}29 & 45.22 & 4.67 & 44.9 & 17 & 52.3 & 18.5 & 662 & 3.37 & 4.7 & .2 & 3.6 & 1.8 & 15.3 & .09 & .36\end{array}$
 $\begin{array}{lllllllllllllllllllll}45 & 65.31 & 7.84 & 53.5 & 55 & 84 & 19 & 35.6 & 1250 & 3.76 & 13.9 & 3 & 1.2 & 1.3 & 12.4 & .13 & .31\end{array}$ $\begin{array}{llllllllllllllllllllll}40 & 66.99 & 8.88 & 53.5 & 55 & 84.2 & 35.1 & 1250 & 3.76 & 13.9 & .3 & 2.3 & 2.8 & 11.6 & .12 & .97\end{array}$ $\begin{array}{llllllllll}40 & 66.99 & 8.10 & 51.0 & 59 & 87.4 & 37.0 & 1296 & 3.91 & 14.4\end{array}$

4	2.1	3.1	12.1	.11	1.01

$\begin{array}{llllllllllllllllllllll}04 & 116 & .95 & .015 & 6.7 & 70.7 & 1.19 & 216 & 3 & 313 & 2 & 2.88 & .009 & .04 & <.2 & .04 & 21 & .3 & .04 & 4.9\end{array}$ $\begin{array}{llllllllllllllllllllllll}03 & 108 & 1.08 & .041 & 5.2 & 48.5 & .95 & 193.6 & .306 & 2 & 2.24 & .019 & .03 & <.2 & .02 & 28 & .3<.02 & 18 & .2 & 2.02 & 6.7\end{array}$ $\begin{array}{llllllllllllllllllllllllll}.03 & 108 & 1.08 & .04 & 5.2 & 48.5 & .95 & 193.6 & .306 & 2 & 2.24 & .019 & .03 & <.2 & <.02 & 18 & .2 & <.02 & 6.7 \\ .09 & 107 & .54 & .057 & 11.2 & 98.7 & 1.64 & 350.8 & .177 & 1 & 2.35 & .008 & .03 & <.2 & .03 & 58 & .4 & .04 & 6.0\end{array}$ $\begin{array}{lllllllllllllllllll}.09 & 107 & .54 & .057 & 11.2 & 98.7 & 1.64 & 350.8 & .177 & 1 & 2.35 & .008 & .03 & <.2 & .03 & 58 & .4 & .04 & 6.0 \\ .09 & 111 & .58 & .059 & 12.1 & 99.5 & 1.72 & 351.1 & .189 & 1 & 2.46 & .008 & .04 & <.2 & .03 & 52 & .3 & .03 & 6.4\end{array}$ $21.73 .033 .167 .91 .842252 .21 .9 ิ 0.80$

Sample type: TILL $\$ 23040 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1F30-30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.
SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

DATE RECEIVED: SEP 192000 DATE REPORT MAILED:
ashen
SIGNED BY. Kilo. TOYE, C.LEONG, J, WANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#	$\begin{array}{r} \text { Cs } \\ \text { ppom } \end{array}$	$\begin{array}{r} \mathrm{Ge} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Hf} \\ \mathrm{pppm} \end{array}$	$\begin{aligned} & \mathrm{Nb} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Sc } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Sn } \\ \text { ppm } \end{array}$	$\begin{aligned} & \hline \mathrm{s} \\ & \% \end{aligned}$	$\begin{gathered} \text { Ta } \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{zr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} Y \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { in } \\ \text { pppm } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Sample } \\ \mathrm{gm} \\ \hline \end{array}$	
TCHD-18269	. 49	. 1	. 23	. 11	3.6	4.9		<. 01	<. 05	10.0	11.40	40.8	. 02	1		15.4	30.0	
TCHD-18262	. 90	<. 1	. 35	. 18	6.9	5.5	. 4	<. 01	<. 05	19.3	14.29	77.2	. 03	2		26.8	30.0	
TCHD-18268	. 41	. 1	. 14	. 32	3.0	3.5	. 4	<. 01	< 05	6.9	7.93	40.4	. 02	<1		17.2	30.0	
TCHD-18265	. 86	. 1	. 15	. 33	4.0	3.5	. 4	<. 01	<. 05	7.3	9.58	51.5	. 03	<1		21.8	30.0	
TCHD-18270	. 82	.1	. 15	. 17	4.7	4.6	. 4	<. 01	<. 05	8.0	8.94	43.7	. 04	<1	. 5	18.4	30.0	
тСно-18266 s-1	1.39	. 2	. 68	. 42	4.7	9.2	1.5	. 01	<. 05	41.0	14.70	31.4	. 06	<1		11.6	30.0	
TCHD-18261	. 79	<. 1	. 38	. 13	6.2	5.1	. 4	<. 01	<. 05	18.1	12.22	72.0	. 04	<1		24.6	30.0	
TCHD-18264	. 71	. 1	. 44	. 06	3.2	9.4	3.2	<. 01	<. 05	16.0	15.65	18.7	. 05	<1		13.8	30.0	
GSMD-18300	1.56	. 1	. 20	. 19	5.3	10.9	. 6	<. 01	<. 05	9.4	14.22	30.1	. 06	<1		22.6	30.0	
GSMD-18256	. 75	. 1	. 16	. 63	4.2	7.4	. 4	. 01	<. 05	8.2	24.78	26.3	. 05	<1		26.4	30.0	
GSMD-18253	. 55	. 1	. 12	. 29	4.6	3.3	. 4	<. 01	<. 05	6.0	6.12	35.9	. 04	<1		14.2	30.0	
GSMD-18249	. 42	. 1	. 17	. 13	3.0	6.1	. 3	<. 01	<. 05	7.6	12.42	37.0	. 04	<1	. 3	13.3	30.0	
GSMD-18241	. 75	. 1	. 04	. 51	5.4	3.0	. 3	< 01	<. 05	3.4	7.72	54.9	. 06	<1		22.5	30.0	
GSMD-18251	. 55	. 1	. 41	. 10	2.6	6.7		<. 01	<. 05	13.8	13.73	16.5	. 05	<1		13.4	30.0	
GSMD-18281	1.71	.1	. 30	. 08	3.8	12.5	. 6	<. 01	<. 05	11.0	15.50	16.4	. 07	<1	. 4	22.1	30.0	
GSMD-18246	. 69	. 1	. 15	. 48	7.3	4.7	. 4	<. 01	<. 05	7.5	8.79	43.9	. 05	<1		40.4	30.0	
GSMD-18254	. 68	. 1	. 39	. 19	1.9	6.4		<. 01	<. 05	16.9	10.50	20.9	. 05	<1	. 4	14.6	30.0	
GSMD-18282	1.69	. 1	. 32	. 07	3.5	11.9	. 6	<. 01	<. 05	11.2	15.20	16.0	. 06	<1		21.3	30.0	
GSMD-18291	. 92	$\cdot 1$. 17	. 83	3.6	4.8	. 5	<. 01	<. 05	7.1	7.65	20.0	.35	<1		14.7	30.0	
GSMD-18299 TILL-4	8.91	. 1	. 10	1.89	33.0	3.5	7.4	. 06	<. 05	4.9	8.29	53.8	. 34	1		23.4	7.5	
GSMD-18250	. 58	. 1	. 25	. 78	2.1	5.3	. 7	<. 01	<. 05	10.6	11.75	20.5	. 05	<1		11.1	30.0	
GSMD-18242	. 72	. 1	. 05	. 53	4.9	3.0	. 4	. 01	<. 05	3.3	7.61	53.2	. 04	<1		22.4	30.0	
GSMD-18292	1.19	. 1	. 08	1.28	7.0	5.9	. 6	. 01	<. 05	4.0	11.17	25.9	. 05	<1		20.8	30.0	
RE GSMD-18292	1.23	. 1	. 08	1.36	7.4	6.1	. 8	. 01	<. 05	4.2	11.61	27.8	. 05	<1		20.7	30.0	
GSMD-18255	. 75	. 1	. 33	. 25	1.9	7.7	. 9	<. 01	<. 05	13.5	14.43	27.1	. 04	<1	. 6	12.3	30.0	
GSMD-18243	. 81	. 1	. 15	. 83	9.0	3.8	. 5	<. 01	<. 05	7.5	8.47	66.2	. 05	<1	. 8	29.0	30.0	
GSMD-18290	. 86	. 1	. 13	. 88	4.2	4.6	. 5	. 01	<. 05	5.3	8.64	23.1	. 03	2	. 4	12.7	30.0	
GSMD-18247	1.00	. 1	. 22	. 08	4.0	5.0	. 4	<. 01	<. 05	10.5	12.56	51.6	. 03	<1	. 4	23.1	30.0	
GSMD-18252	. 36	. 1	. 38	. 22	1.7	4.4	. 6	<. 01	<. 05	11.3	9.96	15.2	. 03	<1	$\cdot 3$	10.3	30.0	
GSMD-18295	. 69	<. 1	. 24	. 30	4.1	5.4	. 7	<. 01	<. 05	9.8	8.39	24.7	. 02	<1	. 3	14.7	30.0	
GSMD-18286	. 69	. 1	. 16	. 83	3.0	5.5	. 6	. 01	<. 05	7.8	10.43	27.2	. 04	<1	. 4	14.7	30.0	
GSMD-18245	. 58	. 1	. 19	. 13	6.6	3.0	. 4	< 01	<. 05	8.7	6.46	67.3	. 02	<1	. 4	24.1	30.0	
GSMD-18294	1.60 3.34	. 1	. 12	. 70	5.3	4.7	. 5	< 01	<. 05	5.9	5.99	18.9	. 03	<1	.4	15.5	30.0 30.0	
StANDARD DS2	3.34	. 1	. 04	1.43	13.3	2.9	26.5	. 03	<. 05	3.0	7.72	30.7	5.42	<1	. 6	15.0	30.0	

[^38]ACRE ANALYTICAL

SAMPLE\#	$\begin{array}{r} \mathrm{Cs} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} G e \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Hf} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Sn } \\ \text { ppin } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \% \end{aligned}$	$\begin{array}{r} \text { Ta } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ p p m \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppprn} \end{array}$	$\begin{array}{r} \text { In } \\ p p \pi \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppob} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{pp} \times \mathrm{m}}{\mathrm{Li}}$	Sample gm
GSMD-18257	. 30	. 1	. 37	. 12	1.4	6.0	. 5	<. 01	< 05	15.7	11.81	18.2	. 02	1	. 3	12.1	30
GSMD-18284	1.32	. 1	. 34	. 08	2.9	10.7	. 5	<. 01	<. 05	12.5	17.61	16.5	. 03	2	. 3	20.4	30
GSMD-18248	. 61	. 1	. 11	. 19	4.8	4.6	. 3	<. 01	<. 05	5.9	9.07	39.4	. 03	1	. 4	19.3	30
GSMD-18258	. 78	. 1	. 32	. 42	2.0	6.1	. 6	<. 01	$<.05$	14.1	11.63	21.7	. 03	2	. 4	12.1	30
GSMD-18297	1.91	. 1	. 24	. 18	4.2	13.3	. 6	<. 01	<. 05	9.2	17.25	19.9	. 04	<1	. 3	24.9	30
GSMD-18259	. 52	<. 1	.31	. 45	2.0	5.2	. 5	<. 01	<. 05	13.5	9.56	22.7	. 03	<1	. 4	14.2	30
GSMD-18287	. 72	< 1	. 12	. 96	3.2	4.3	. 4	. 02	<. 05	5.1	9.14	14.8	. 04		. 3	14.3	30
GSMD-18293	1.37	<. 1	. 04	. 97	7.2	7.6	. 6	. 02	<. 05	2.7	14.66	22.1	. 04	<1	. 4	18.8	30
GSMD-18244	. 90	. 1	. 12	. 21	7.7	6.4	. 4	<. 01	<. 05	5.0	8.76	40.8	. 05	<1	. 6	37.4	30
GSMD-18296	1.49	. 1	. 15	. 08	2.3	12.9	. 6	<. 01	<. 05	6.8	16.14	20.1	. 07	<1	. 5	17.8	30
GSMD-18288	. 73	<.1	. 30	. 05	3.3	10.2	. 5	$<.01$	<. 05	13.7	14.52	23.2	. 05	<1	. 4	14.8	30
GSMD-18285	1.01	. 1	. 15	1.01	4.5	7.2	. 6	. 01	<. 05	7.2	10.29	22.0	. 06	<1	. 3	11.7	30
GSMD-18298	. 88	. 1	. 36	. 04	2.2	12.1	. 5	<. 01	<. 05	13.2	14.93	15.7	. 06	<1	. 3	20.0	30
GSMD-18283	1.24	. 1	. 21	. 16	3.1	8.6	. 7	<. 01	<. 05	8.9	11.31	18.6	. 07	<1	. 4	18.1	30
GSMD-18260	. 70	. 1	. 15	. 34	2.5	14.5	. 7	< 01	<. 05	9.5	23.12	23.2	. 06	<1	. 3	16.1	30
GSMD-18289	. 30	. 1	. 30	. 34	1.5	3.9	. 4	<. 01	<. 05	12.5	8.92	16.9	. 05	<1	. 2	9.3	30
GEBD-18329	1.19	. 1	. 17	. 79	2.4	6.8	. 6	. 01	<. 05	9.5	12.21	13.8	. 07	<1	. 4	18.1	30
GEBD-18338	. 41	<. 1	. 15	. 37	3.8	4.4	. 5	< 01	<. 05	6.6	8.40	33.2	. 05	<1	.4	15.3	30
GEBD-18333 s-1	1.35	.1	. 67	. 47	4.6	8.8	1.5	. 01	$<.05$	40.1	14.82	31.3	. 09	<1	. 7	11.0	30
GEBD-18322	1.75	. 1	. 22	. 41	3.8	10.9	. 8	<. 01	<. 05	13.4	13.09	15.0	. 08	<1	. 5	14.3	30
GEBD-18330	. 89	. 1	. 35	. 40	1.7	6.8	. 9	<. 01	<. 05	11.0	12.14	12.6	. 07	<1	. 5	24.4	30
RE GEBD-18330	. 91	. 1	. 30	. 45	1.7	6.9	. 7	<. 01	<. 05	10.9	12.09	12.6	. 06	<1	. 4	25.2	30
GEBD-18339	. 49	. 1	. 14	. 54	3.9	3.4	. 4	. 01	<. 05	6.3	7.36	32.6	. 04	<1	. 3	15.1	30
GE8D-18321	1.75	. 1	. 25	.41	3.6	10.6	. 8	. 01	$<.05$	12.9	12.54	14.8	. 06	<1	. 4	14.0	30
GEBD-18331	. 78	.1	. 39	. 30	1.3	6.0	. 8	<. 01	<. 05	15.3	13.36	16.7	. 05	<1	. 4	16.2	30
GEBD-18340	. 49	<. 1	. 16	. 42	2.8	3.8	. 4	<. 01	$<.05$	6.7	8.42	32.4	. 03	<1	. 3	17.4	30
GEBD-18323	. 58	. 1	. 31	. 65	1.7	5.6	. 7	<. 01	<. 05	16.5	12.93	19.7	. 04	<1	. 4	12.0	30
GEBD-18328	. 79	. 1	. 21	. 97	2.7	5.4	. 6	. 01	<. 05	10.5	10.66	18.2	. 03	2	. 3	11.9	30
GEBD-18325	. 31	. 1	. 31	. 57	. 8	5.2	. 6	< 01	<. 05	15.8	10.83	12.0	. 02	2	. 3	6.7	30
GEBD-18335	. 62	. 1	. 24	. 86	1.5	6.1	. 7	. 01	<. 05	11.3	12.19	14.1	. 04	2	. 3	14.7	30
GEBD-18327	. 89	. 1	. 20	. 65	2.1	5.5	. 6	<. 01	$<.05$	9.1	11.17	18.8	. 03	2	. 3	21.2	30
GEBD-18332	. 94	.1	. 17	. 84	2.6	8.2	. 6	. 01	<. 05	8.8	16.19	24.4	. 05	<1	. 5	20.0	30
GEBD-18324	. 84	$\cdot 1$. 31	. 82	2.0	6.5	. 8	. 01	<. 05	16.0	11.55	17.6	. 03	2	. 3	11.9	30
STANDARD DS2	3.46	. 1	. 04	1.47	13.0	3.0	26.9	. 01	$<.05$	3.0	7.80	30.4	5.58	2	. 6	15.1	30

[^39]

Sample type: TILL S23040C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson, Bay Expl. \& Dev, Co. Ltd. PROJECT 2398 , File \# A003741R Fage 1

SAMPLE\#	$\begin{array}{r} \mathrm{SiO2} \\ \% \end{array}$	$\begin{array}{r} \text { Al203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{MgO} \\ \% \end{array}$	$\begin{gathered} \mathrm{CaO} \\ \mathbf{x} \end{gathered}$	$\begin{array}{r} \mathrm{Na} 2 \mathrm{O} \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{array}{r} \mathrm{T} i \mathrm{O} \\ \% \end{array}$	$\begin{array}{r} \text { P205 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{MnO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{pppm} \end{array}$	$\begin{gathered} Y \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Sc } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} 101 \\ \% \end{array}$	$\begin{array}{r} \mathrm{TOT} / \mathrm{C} \\ \% \end{array}$	$\begin{array}{r} \hline \text { TOT/S } \\ \% \\ \hline \end{array}$	$\begin{array}{r} \text { SUM } \\ \% \end{array}$	
PPD-18126	74.26	9.61	4.59	1.97	1.90	1.65	1.08	1.04	. 11	. 09	. 010	471	35	107	289	28	20	13	3.4	. 21	$<.01$	99.83	
PPD-18137	63.25	12.46	7.07	2.99	3.11	1.75	1.04	1.44	. 07	. 08	. 015	669	56	123	194	30	19	20	6.4	. 83	$<.01$	99.81	
PPD-18128	66.73	10.58	7.22	3.27	2.16	1.14	1.19	1.13	. 16	. 26	. 025	2070	77	113	153	40	19	25	5.6	. 39	$<.01$	99.75	
PPD-18134	66.76	10.41	6.55	3.36	3.01	1.17	1.08	1.26	. 12	. 20	. $22 ?$	2812	79	120	143	29	<10	23	5.9	. 65	. 01	100.22	
PPD-18122	58.33	11.61	6.91	3.78	4.06	1.83	. 50	1.35	. 14	. 13	. 020	422	54	91	155	25	<10	26	11.4	2.17	<. 01	10ิบ. 15	
PPD-18131	64.75	10.91	7.45	3.89	3.60	1.39	1.12	1.33	. 18	. 19	. 023	3528	72	154	138	39	11	32	4.7	. 13	. 01	99.98	
PPD-18140	63.66	13.46	6.57	2.60	1.95	1.52	2.00	1.15	. 18	. 10	. 017	1307	63	115	206	32	14	18	6.4	. 75	$<.01$	99.81	
PPD-18121	58.35	11.35	6.91	3.80	4.09	1.83	. 49	1.34	. 14	. 13	. 022	422	55	93	156	26	<10	26	11.4	2.33	<. 01	99.94	
PPD-18127	58.13	11.57	7.31	3.92	3.86	1.42	. 83	1.17	. 26	. 20	. 026	1729	76	103	130	29	<10	25	10.9	1.97	. 01	99.84	
PPD-18136	61.07	12.06	7.21	2.73	2.68	1.52	1.27	1.32	. 20	.11	. 017	890	53	114	197	33	<10	20	9.5	2.00	. 01	99.84	
PPD-18124	63.13	10.34	6.69	4.56	5.30	1.79	. 46	1.31	. 08	. 14	. 031	332	324	97	187	29	<10	30	5.9	. 68	. 01	99.85	
PPD-18129	62.33	11.86	6.73	2.67	2.32	1.43	1.09	1.12	. 18	. 15	. 021	1344	64	135	192	26	10	18	9.9	1.89	$<.01$	100.01	
PPD-18125	65.19	10.22	6.35	3.09	3.03	1.63	. 57	1.23	. 11	. 11	. 022	457	57	95	219	25	<10	21	8.2	1.30	< 01	99.86	
PPD-18139	63.98	13.19	6.66	2.75	1.89	1.49	1.82	1.15	. 16	. 09	. 018	1399	53	105	179	29	11	19	6.4	. 65	. 01	99.81	
PPD-18132	67.17	10.65	6.84	3.60	2.69	1.22	1.13	1.09	. 14	. 20	. 027	2017	94	113	117	35	<10	27	4.9	. 18	. 01	99.93	
PPD-18123	67.50	10.16	5.87	3.17	2.97	1.47	1.10	1.12	. 10	. 19	. 018	650	56	80	191	26	16	21	6.3	. 79	<. 01	100.01	
PPD-18135	52.48	13.37	8.56	3.51	3.33	1.36	. 89	1.35	. 30	. 13	. 020	1145	74	93	147	31	11	24	14.6	2.87	. 03	100.08	
RE PPD-18135	52.67	13.30	8.50	3.51	3.33	1.37	. 89	1.34	. 28	. 13	. 022	1138	78	93	148	31	<10	24	14.6	2.84	. 01	100.12 99.82	
PPD-18138	61.78	13.84	7.07	2.69	1.81	1.49	2.03	1.16	.17	. 08	. 017	1186	53	116	-167	29	<10	19	7.5	1.02	$<.01$	99.82	
PPD-18130	60.89	11.86	7.92	4.36	3.65	1.34	1.07	1.20	. 19	. 21	. 026	2101	98	106	135	30	<10	27	6.8	. 41	<. 01	99.80	
PPD-18275	54.00	12.02	9.02	3.90	3.36	1.82	. 53	1.48	. 18	. 13	. 025	772	144	94	129	29	<10	25	13.6	2.88	. 02	100.21	
PPD-18272	59.05	11.85	6.76	3.64	4.24	1.89	. 63	1.49	. 14	. 16	. 026	395	76	114	282	29	<10	26	9.7	1.72	$<.01$	99.69	
PPD-18280	56.42	12.08	9.38	5.84	4.59	1.90	. 69	1.36	. 11	. 19	. 039	925	152	142	140	32	<10	35	7.3	. 26	< 01	100.07	
PPD-18277	59.30	12.77	7.11	3.02	2.27	1.60	1.25	1.26	. 15	. 12	. 021	522	64	115	218	30	<10	23	11.3	2.07	. 01	100.29	
PPD-18271	58.16	12.70	8.00	4.66	4.64	2.03	. 63	1.37	. 09	. 17	. 033	325	74	134	207	33	<10	33	7.6	. 70	<. 01	100.18	
PPD-18276	46.96	14.66	11.50	7.00	3.10	1.65		1.51	.13	. 25.	. 037	617	114	89	98	32	<10	44	12.6	. 92	< 01	99.82	
PPD-18133 \$-1	53.69	18.00	8.67	2.47	3.98	2.99	1.12	1.39	. 13	. 13	. 008	360	29	335	185	29	<10	24	7.2	. 64	. 01	99.89	
PPD-18278	53.93	12.26	7.65	3.48	2.78	1.61	. 62	1.30	. 20	. 13	. 025	388	59	86	163	25	<10	26	15.8	3.51	. 02	99.88	
PPD-18274	54.99	11.87	7.75	2.61	2.28	1.47	. 90	1.13	. 21	. 11	. 024	762	83	113	181	37	<10	24	16.3	4.03	. 02	99.79	
PPD-18279	57.33	12.58	8.80	5.38	4.51	1.84	. 86	1.22	.13	. 14	. 033	644	139	135	135	31	<10	30	7.2	. 17	<. 01	100.16	
PPD-18273	53.66	11.18	7.46	4.03	3.99	1.85	. 46	1.39	.17	. 12	. 029	1113	75	98	122	26	<10	27	15.3	3.90	. 02	99.81	
ICHD-18267	63.57	12.87	7.96	3.00	2.74	1.70	1.69	1.17	. 18	. 14	. 015	1232	57	148	174	36	<10	24	4.6	. 17	< 01	99.83	-
TCHD-18263	63.23	13.54	7.28	3.03	2.63	1.65	1.76	1.21	. 14	. 12	. 019	1179	60	137	162	34	<10	24	5.0	. 29	$<.01$	99.79	
STANDARD SO-15/CSB	49.72	12.33	7.27	7.23	5.85	2.40	1.85	1.81	2.69	1.38	1.056	2010	78	394	1005	24	23	12	5.9	2.42	5.26	99.91	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE Tiffe: Tiil sajo 400

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNRD RY $=$ O....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Sample type: TILL $\$ 230$ 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: MOSS MAT S140

DATE RECEIVED: OCT 132000 DATE REPORT MAILED: (OCO $30 / 00$ SIGNED BY. . Am.
D. TOYE, C.lEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE\#	$\begin{array}{r} \mathrm{Ho} \\ \mathrm{pom} \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{p} \cdot \mathrm{~m} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppb} \end{array}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { As } \\ \text { pprn } \end{gathered}$	$\begin{array}{r} \text { U } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \text { Th } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$B i$ pprin	ppm	$\begin{array}{r} \mathrm{Ca} \\ 6 \end{array}$	$\%$	$\begin{array}{r} \text { La } \\ \text { ppm } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\underset{\sim}{\mathrm{Mg}}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	Ti	$\begin{array}{r} 8 \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$		$\begin{array}{r} \mathrm{W} \\ \mathrm{ppm} \end{array}$			$\begin{array}{r} \mathrm{Se} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Te} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Ga} \\ \mathrm{ppm} \end{array}$
PPX-14269	1.23	41.16	12.89	119.7	291	36.8	20.8	2738	2.81	9.2	1.4	4.6	1.2	30.0	. 50	. 69	. 14	70	. 88	109	18.5	50.2	. 62	381.5	070		1.46	. 005	. 08	< 2	. 07		3.2	<. 02	3.8
PPX-14225	1.47	53.61	17.33	104.8	1016	54.6	12.6	954	2.46	9.2	10.8	13.5	1.4	64.9	. 79	. 74	. 19	37	. 98	097	35.6	34.0	46	324.0	. 034	2	1.52	. 012		2	. 07	23	3.0	04	. 4
PPX-14213	1.31	63.25	15.06	93.0	297	20.6	19.0	2630	4.44	16.0	1.3	9.3	2.3	87.2	. 86	45	. 11	61	1.00	103	18.3	15.2	77	453	61			时			07		4	. 03	4.9
PPX-14280	. 93	36.21	8.60	93.8	389	40.9	90.8	6500	3.54	4.5	. 6	4.5	. 7	26.0	. 58	53	. 13	86	. 64	125	10.8	57.3	51	359.7	. 082		2.09	. 009		2	08	198	4	. 02	4.7
PPX-14086	. 68	70.30	4.16	48.6	177	26.2	11.9	956	2.22	3.3	. 3	1.5	. 2	28.8	30	. 37	. 06	90	1.30	113	11.7	49.	58	404.	140	3	1.91	. 008			. 03	107	. 7		4.6
PPX-14235	. 62	33.12	14.52	79.9	127	33.7	16.4	1319	2.70	4.1	1.0	11.3	3.4	20.0	. 29	41	. 15	58	. 54	058	20.7	41.0	. 69	279	117		1.59	005		2	. 05	98	. 5	$<.02$	4.3
PPX-14250	. 60	31.36	13.83	78.0	105	28.9	20.5	1491	2.70	2.9	. 5	1.3	1.6	20.9	. 23	. 23	. 14	93	. 76	. 059	11.2	59.1	85	190.6	143		. 62	. 007		< 2	04	102	5	. 02	4.8
PPX-14267	. 87	51.54	14.37	82.4	232	29.9	23.0	1788	2.36	4.5	. 9	1.0	1.3	24.4	. 78	. 56	. 13	57	. 87	107	19.1	36.4	61	302.8	105	3	1.65	006		< 2	. 07	44	. 6	09	3.7
PPX-14239	1.63	37.47	13.89	122.5	782	42.4	14.1	1651	2.69	8.2	1.4	11.1	1.7	46.6	1.00	57	14	45	56	083	18.3	28	. 49	362	. 043		1.54	. 005			07	17	9	04	3.6
PPX-14259	3.05	47.44	21.00	215.1	804	50.1	135.0	18215	6.15	10.8	1.4	2.8	1.2	50.1	3.18	. 70	. 18	88	1.08	135	32.8	40.4	43	1014.	052	2	2.	. 010		<. 2	. 21	417	. 0	. 05	
PPX-14089	63	78.92	4.62	50.3	198	111.0	19.1	920	3.05	14.7	. 7	40.8		34.3	. 21	. 53	. 08	109	1.48	070	15.0	83.8	. 13	724.8	139		2.42	007		< 2	04	136	3.0	02	6.5
PPX-14100	1.92	59.61	14.99	146.2	654	86.0	12.8	811	2.55	6.6	2.0	1.4	1.3	77.9	. 69	1.12	. 15	34	99	107	24.0	25.6	43	232.9	037		1.05	. 006		< 2	07	189	4.0	02	3.1
PPX-14232	. 67	28.69	19.13	88.3	171	30.8	13.2	860	2.40	11.1	1.4	2.2	4.5	27.3	. 39	. 58	. 19	38	58	078	31.6	25.4	. 50	179.3	064	2	1.30	008		. 2	06	70	5	02	3.6
PPX-14223	1.39	40.95	15.70	263.9	1155	79.1	61.0	16479	3.19	12.0	3.6	41.3	1.0	84.2	2.49	63	. 21	34	92	142	32.9	28.1	34	536.8	. 025	3	1.88	. 012			09	28	8	07	3.9
PPX-14268	. 73	36.99	14.27	87.6	180	34.7	30.9	3062	3.16	10.5	. 8	2.5	2.8	18.8	. 55	. 86	. 16	57	. 52	. 077	18.4	37.6	. 57	262.9	. 078		1.44	. 006		2	07	29	. 5	. 04	4.2
RE PPX-14268	. 76	39.04	14.70	93.1	183	35.3	32.7	3345	3.36	10.7	. 8	6.1	3.4	20.8	. 50	97	17	63	. 58	. 083	21.4	40.2	. 61	281.0	089		1.59	. 007		. 2	. 07	137	4	. 03	4.3
PPX-14249	. 55	26.32	7.16	47.1	94	21.5	14.3	1579	1.51	2.5	. 5	1.6	1.0	20.2	. 29	. 33	. 09	31	. 50	056	9.6	22.1	. 39	201.4	062	2	. 95	006		2	03	81	. 5	22	2.4
PPX-14278	. 36	29.49	6.75	57.4	55	29.6	14.3	676	2.32	2.6	. 5	1.4	2.9	17.7	16	36	. 09	67	56	053	11.	46.	59	14	182		. 42	. 007			04	51	2	2	4.1
PPX-14084	. 61	117.35	6.52	81.6	239	40.4	17.8	1258	3.34	8.7	. 4	2.8	. 7	29.2	. 39	. 72	10	113	1.33	. 093	11.	98.1	79	280.7	159		2.32	010			. 15	40	5	. 02	6.3 11.2
PPX-14233 S-1	1.06	29.82	8.94	55.0	38	12.6	12.9	484	4.17	2.8	. 6	1.2	3.0	51.8	10	. 10	16	162	. 53	. 045		42.7	. 55	101.6	348			141			15	40	5		11.2
PPX-14238	1.26	55.66	17.93	163.5	544	43.8	28.4	2287	3.40	6.2	. 8	1.8	1.1	36.1	1.01	. 35	. 13	59	. 69	092	14.0	39.0	. 72	379.0	. 056		1.98	. 010			. 07	155	6	. 02	5.1
PPX-14094	. 57	28.32	11.13	71.9	140	32.0	13.8	954	2.33	7.4	. 9	2.4	3.6	21.4	27	70	13	59	. 70	067	18.9	33.3	67	292.8	123	2	1.45	007		<. 2	05	64	7	2	4.4
PPX-14234	78	49.64	18.26	86.9	177	46.3	15.5	2083	2.85	8.5	. 8	168.3	4.1	22.0	. 34	. 62	16	64	51	070	20.2	44.6	70	605.2	. 137			005			. 06		.	05	
PPX-14212	2.00	54.61	14.97	100.0	386	26.2	16.5	1620	3.93	11.7	2.1	106.0	4.2	77.4	. 97	. 50	12	70	. 76	119	24.2	23.7	. 86	345.5	. 103		1.60	. 005			. 04	93	. 3	. 02	5.6 7.3
PPX-14088	. 60	56.97	4.97	50.5	91	97.5	22.5	924	3.35	8.4	. 4	4.8		28.3	18	. 55	08	111	1.28	062								. 009			04		. 3	. 2	7.3
PPX-14209	. 95	34.06	12.83	99.1	438	32.3	18.8	2521	2.80	9.2	7	12.0	1.3	23.1	60	1.00	. 16	62	. 61	081	16.1	47.2	53	258.9	. 090		1.72	007			. 08	140	6	. 02	4.4
PPX-14274	. 59	32.05	4.80	50.4	181	27.0	21.4	1097	1.83	1.8	. 4	1.8	1.1	14.4	24	20	. 07	53	51	062	8.9	49.3	56	127	. 185			05		- 2	03	0	. 4	. 2	3.6
PPX-14242	. 98	73.08	18.10	111.7	433	34.9	17.1	762	3.59	10.5	1.1	3.9	3.8	58.0	. 72	74	. 15	59	. 73	107	22.5	17.9	78	334.2	080	2	. 59	006		<. 2	08	121	. 0	. 22	4.8
PPX-14208	. 88	41.02	15.12	157.1	639	45.6	29.2	3985	3.48	12.3	. 8.	8.9	1.4	30.1	. 86	. 48	. 18	59	. 69	104	18.1	47.6	. 59	376.8	. 072	2	2.01	007		< 2	10	89	5	02	4.6
PPX-14224	2.27	75.60	17.58	170.3	1124	74.4	15.6	921	2.92	8.8	5.0	2.7	1.4	83.3	1.35	. 01	. 16	47	96	147	27.	23.1	. 63	363.3	. 041	2	1.45	. 006		<. 2	13	52	3.6	. 04	4.2
PPX-14256	1.71	74.79	5.72	176.6	539	71.0	38.8	19808	3.59	16.6	6	3.7		42.0	1.62	57	.12	79	1.65	188	15.0	45.7	. 38	962.4	. 052		2.17	007		< 2	19	292	1.0	. 03	3.8
PPX-14091	1.09	61.92	7.59	83.7	262	56.4	24.2	1668	3.32	3.6	. 9	1.2		26.6	46	37	12	94	. 80	093	10.1	89.3	48	224.5	. 76			010			15	149	4	02	5.2
PPX-14257	1.72	32.48	7.04	144.5	281	44.7	106.7	21763	5.26	9.7	. 7	1.		40.6	92	34	10	92	1.08	116	14.2	49.0	48	796.5	. 076	2	2.13 1.65	029	15		86	185	2.2	. 83	5.5 6.0
STANDARD DS2	13.92	127.81	32.62	151.2	265	35.8	11.5	801	2.97	57.5	8.4	195.1	3.5	27.7	10.37	9.25	1.06	75	. 51	. 086	15.7	155.2	. 58	164.3	. 0		1.65								

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^40]

Sample type: MOSS MAT S140. Samples beginning. 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20 \mathrm{AT} 95$ DEG. C FOR ONE HOUR, DILUTED TO $600 \mathrm{ML}, ~ A N A L Y S E D ~ B Y ~ I C P / E S ~ \& ~ M S . ~$
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: NOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^41]

SAMPLE\#	LOI
PPX-14269	24.8
PPX-14225	26.4
PPX-14213	21.1
PPX-14280	38.9
PPX-14086	47.2
PPX-14235	14.6
PPX-14250	22.0
PPX-14267	37.9
PPX-14239	20.8
PPX-14259	46.2
PPX-14089	
PPX-14100	27.4
PPX-14232	$\frac{13}{2} 4 . \frac{2}{7}$
PPX-14223	$34 \cdot 7$
PPX-14268	
RE PPX-14268	
PPX-14249	39.8
PPX-14278	8.4
PPX-14084	24.6
PPX-14233 S-1	7.2
PPX-14238	28.5
PPX-14094	19.9
PPX-14234	10.2
PPX-14212	$\frac{12.6}{27.6}$
PPX-14088	27.6
PPX-14209	20.6
PPX-14274	15.2
PPPX-14242	$\frac{15}{15} 2.1$
PPX-14224	25.4
PPX-14256	57.6
PPX-14091	31.9
PPX-14257	39.0
STANDARD DOLOMITE	46.0

SAMPLE\#	$\overline{\mathrm{LO}} \mathrm{O}$
PPX-14276	35.1
PPX-14230	16.2
PPX-14241	16.0
PPX-14277	11.4
PPX-14240	28.4
PPY-14231	23.3
PPX-14090	25.9
PPX-14275	40.8
PPX-14255	54.6
PPX-14228	6.5
PPX-14248	43.4
PPX-14207	35.6
PPX-14258	21.2
PPX-14265	19.8
PPX-14229	6.8
PPX-14263	33.1
PPX-14210	19.5
PPX-14244	11.3
PPX-14273	17.8
PPX-14266 S-1	7.3
PPX-14264	35.0
PPX-14206	48.2
PPX-14243	19.2
RE PPX-14243	19.1
PPX-14221	49.3
PPX-14219	14.4
PPX-14227	8.7
PPX-14211	21.2
PPX-14247	24.1
PPX-14222	28.6
PPX-14272	36.3
PPX-14226	6.6
PPX-14218	14.5
STANDARD DOLOMITE	46.0

Hudson Bay Expl. \& Dev. Co. Ltd. PROJECT 2320 FILE \# A004181R Page 4
$4 a^{4}$

SAMPLE\#	LOI
PPX-14246	28.1
PPX-14220	26.7
PPX-14217	6.4
PPX PPX-14245	33.2
STANDARD DOLOMITTE	66.0

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LID (ISO 9002 Accredited co.)

Hudson, Bay Exp. \& Lev, Co. Lt a, pROJECT, 2320. File. \# R004332

Page 1 (a)

GROUP $1 F 30$ - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 20$ AT 95 DEG. C. FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100$ PPM; $M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: MOSS MAI sîiú

date received: oct 242000 date report mailed: Nov $15 / 00$
SIGNED by. $: \ldots .$.
D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: MOSS MAT S140. Samples Deginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1 F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO} 3-\mathrm{H} 20 \mathrm{AT} 95 \mathrm{DEG}$. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

stamen ar...
-D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
data $\mathcal{K i n}_{\text {in }}$

[^42]\square

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl．\＆Dev．Co．Ltd．PROJECT 2320 FILE \＃A004332R Page 2
$4 t^{\circ}$

SAMPLE\＃	$\underset{\frac{⿳ 亠 口 口 口 口 刂}{}}{ }$
PPX－14304	33.6
PPX－14340	20.2
PPX－14331	5.0
PPX－14321	6.1
PPX－14306	6.8
PPX－14300	11.1
PPX－14346	18.6
PPX－14291	10.5
PpX－14286	46.0
PPX－14337	11.9
PPX－14326	18.3
PPX－14282	7.6
PPX－14329	18.1
PpX－14322	5.3
PPX－14314	5.4
PPX－14302	19.9
PPX－14297	41.2
PPX－14319	4.6
PPX－14344	31.7
PPX－14333 S－1	7.2
PPX－14323	50.4
PPX－14311	29.2
PPX－14305	15.3
RE PPX－14305	15.4
PPX－14298	40.0
PPX－14284	37.1
PPX－14352	14.0
PPX－14339	19.6
PPX－14335	52.5
PPX－14341	23.2
PPX－14328	22.9
PPX－14318	17.5
PPX－14349	10.5
STANDARD DOLOMITE	45.9

Sample type：MOSS MAT．Samples beginning＇RE＇are Reruns and＇RRE＇are Reject Reruns．

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS
UPPER LIMITS - AG, AU, HG, $\mathrm{W}, \mathrm{SE}, \mathrm{TE}, \mathrm{TL}, \mathrm{GA}, \mathrm{SN}=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NL}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$,

- SAMPLE TYPE: MOSS MAT Si40 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 242000 DATE REPORT MAILED: $N O \sqrt{ } / 5 / 00$
D. TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Rgpuns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-\mathrm{HNO}-\mathrm{H} 20$ AT 95 DEG . C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: TILL S230 40C Samples beginning'RE' are_Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 242000 DATE REPORT MAILED: NOV/0/00
SIGNED BY...

GROUP $1 F 30-30.00$ GM SAMPLE LEACHED HITH $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 20$ AT 95 DEG . C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, H, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}$; $N \mathrm{I}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$. - SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY. :. DOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN TBE SUM

- SAMPLE TYPE: TILL S230 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

> GROUP 4B - REE - LiEO2 FUSION, ICP/MS FINISHED.
> - SAMPLE TYPE: TILL S230 40C
> Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 242000 DATE REPORT MAILED: $\times 0 \mathrm{~V} / 0 / \mathrm{N}$
SIGNED BY. C.:. TOME, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACW
最 $B C T$ GEOCHEMICAI, ANATIYSIS CERTIFICATE

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, $H=200$ PPM; MO, CO, CD, SB, $81, ~ T H \& U=4,000$ PPM; CU, PB, $2 \mathrm{~N}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 242000 DATE REPORT MAILED: NON TO/U0

$\checkmark \quad \cos x-14175$
 $\sqrt{2} \quad \operatorname{cosec} c-14187$

\checkmark ©SHC-14182

$\stackrel{\text { astr-14182 }}{ }$
\checkmark ESTC-14191
\checkmark GSHC-14172

- CSTC-14198
\checkmark csic.14886
\checkmark GSHC-14173
$\sqrt{7}$ CSAC- -14190
\checkmark GSTC-14185

\checkmark Csec. 14194

 CSHC-14194GSUC-14189 GSNC-14189 - GSTC-14183

7 OSTC. 14195
$\checkmark \csc \cdot-14197$
\checkmark GSic-14192
\sim GSTC-14192
\sim GSKC-14174
. STo 5-1
$<\operatorname{csic}-14193$

$\checkmark \operatorname{cosc}-14184$

$\checkmark \operatorname{csic} \cdot 14188$ RE CSMC-14188
$<$ OSNC. 14196 CSSC.-14196
SOWR-14442
$\begin{array}{rrrrrrrrr}1.47 & 59.87 & 1.34 & 56.1 & 18 & 50.2 & 19.8 & 510 & 3.46 \\ & & .9\end{array}$

SCAR -14441 CSTR-1403

GSTR-14103
GSTR-14101
GSFR-14101 CSR-14104 CSMR-14168

6548-14102
 SSRR-14105

GROUP 1F30-30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, $H G, W, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

DATE RECEIVED: OCT 242000 DATE REPORT MAILED:
Nou 22100
 GSMC-1ureq = Duplicate of GSitcialits

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis onty.

. 1415
EER-14143
EE8R-14154
E88-2415 GERP-14356

GE8R-14158
PRR-1412
PPR-14107
PPR-14167
PPR-14171
PR-14110 RE PPR- 14110 PPR-14106
PPR-14106
PR-1416
PPR-14127

$\begin{array}{llllllll}7.07 & 007 & 04 & 7.4<.02 & 182 & 1.4 & .22 & 4.4\end{array}$ $\begin{array}{lllllllll}22.63 & .021 & .03 & <.2 & .02 & 5 & 2.2 & .02 & 9.4\end{array}$ $\begin{array}{llllllll}11.15 & .002 & .11 & 2.3 & .02 & 24 & .2 & .03 \\ 3.7\end{array}$ | 1 | .11 | .005 | .03 | $.8<.02$ | 5 | .2 | .02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | .11.62 | .011 | .03 | 8.8 | $<.02$ | 10 | .5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | .02 15.7

 $\begin{array}{ll}3.89 & 19.78 & 68.08 & 54.7 & 224 & 22.3 & 8.4 & 697 & 2.58 & 4.3 & .5 & 1.7 & 2.0 & 30.1 & .11 & .26 & .91 & 3 & .43 & .074 & 6.5 & 17.6 & .37 & 51.8 & .006 & 1 & .29 & .006 & .10 & .8 & .04 & 19 & .6 & .17 & .7\end{array}$ $\begin{array}{ll}.86 & 52.51 & 4.33 & 54.6 & 51 & 34.4 & 29.7 & 550 & 5.20 & 1.4 & <.1 & 1.6 & <.1 & 7.9 & .08 & 1.36 & .13 & 93 & 1.22 & .082 & 2.6 & 50.2 & 1.49 & 61.1 & 168 & 2 & 2.07 & .027 & .03 & .9 & <.02 & 16 & 3.1 & .06 & 7.1\end{array}$
 $\begin{array}{ll}3.54 & 20.85 & 40.31 & 68.1 & 97 & 28.7 & 10.0 & 899 & 2.30 & 7.5 & .8 & 2.8 & 5.0 & 9.8 & .09 & 1.08 & .27 & 4 & .11 & .023 & 12.2 & 19.6 & .10 & 250.5 & .002 & 2 & .56 & .007 & .11 & 6.2 & .05 & 5 & 1.5 & .06 & 1.4\end{array}$
 $\begin{array}{lll}2.58 & 29.84 & 22.72 & 61.4 & 113 & 47.1 & 17.0 & 407 & 6.07 & 35.3 & .7 & 2.0 & 1.9 & 40.7 & .10 & 2.21 & .35 & 23 & .10 & .158 & 10.7 & 22.9 & .15 & 70.7 & .003 & 1 & .74 & .010 & .15 & 1.8 & .07 & 158 & 1.1 & .14 & 2.0\end{array}$

 $1.99117 .24 \quad 1.31400 .8 \quad 7979.6 \quad 28.8 \quad 681$ 26.88 158.3820 .49

Per. 14169
PRP. 1462
PPP. 24109
$\begin{array}{llllllllllllllllllllllllllllllllllllll}.31 & 3.81 & 2.54 & 95.7 & 16 & 111.6 & 36.3 & 1073 & 5.20 & 4.0 & .2 & 10.7 & 1.0 & 10.9 & .03 & .33 & <.02 & 18 & .68 & .013 & 2.4 & 122.0 & 1.45 & 75.6 & .146 & 3 & 1.35 & .009 & .24 & .2 & .02 & 5 & .1 & .02 & 2.4\end{array}$

Sample tyise: ROCK R150 40C. Sapples Deginaing 'RE' are Reruns and 'RRE' are Reject. Reruns.

GROUP $1 F 30-30.00 \mathrm{GM}$ SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-h20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, AU, HG, $H, S E, T E, T L, G A, S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPIE TYPE: ROCK R150 $40 C$ Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ane anvitical

SAMPLE\#	$\begin{array}{r} \text { Cs } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Ge } \\ \text { ppin } \end{array}$	$\begin{aligned} & \mathrm{Hf} \\ & \mathrm{pprn} \end{aligned}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sc} \\ \mathrm{ppm} \end{array}$	Sn ppm	$\begin{aligned} & \mathbf{S} \\ & \mathbf{\%} \end{aligned}$	$\begin{array}{r} \text { Ta } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ p p \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { in } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Re} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppm} \end{array}$	Sample gm
GEBR-14155	$<.02$. 1	. 03	. 06	. 5	. 6	. 3	$<.01$	$<.05$. 9	5.86	6.3	$<.02$	10	$<.1$	$<.1$	30
GEBR-14143	1.11	. 2	. 17	. 04	1.0	4.1	. 4	1.04	<. 05	3.2	9.54	5.3	<. 02	3	. 2	20.8	30
GEBR-14154	. 32	$<.1$. 15	<. 02	4.2	1.3	. 1	. 04	$<.05$	5.6	3.27	30.5	<. 02	<1	. 1	19.5	30
GEBR-14159	. 07	<. 1	. 08	. 03	1.4	. 8	. 3	. 02	<. 05	2.9	7.55	6.0	<. 02	2	<. 1	1.4	30
GEBR-14156	. 14	.3	. 05	. 03	. 9	16.1	. 2	$<.01$	<. 05	1.6	9.45	9.9	. 06	2	. 2	77.2	30
GEBR-14144	. 58	. 2	. 12	. 03	. 5	5.0	. 2	< 01	<. 05	1.9	15.55	8.2	<. 02	<1	. 1	34.2	30
GEBR-14151	. 06	. 1	. 29	. 08	. 8	3.5	. 3	4.27	<. 05	6.6	10.40	5.5	<. 02	7	. 2	11.4	30
GEBR-14157	. 20	. 1	. 11	. 02	3.8	1.3	. 3	. 09	<. 05	5.0	5.54	11.3	$<.02$	2	.1	1.1	30
GEBR-14153	. 08	. 2	. 12	. 06	. 5	2.3	. 2	1.97	<. 05	2.1	10.51	7.4	<. 02	7	. 2	11.8	30
GEBR-14145	. 07	. 2	. 24	. 05	. 2	3.6	. 5	. 25	<. 05	6.1	19.28	7.6	. 02	1	. 2	32.8	30
GEBR-14158	. 38	.1	. 25	$<.02$	4.7	1.0	. 3	.15	<. 05	9.6	2.26	22.8	$<.02$	2	. 2	6.3	30
PPR-14129	. 12	. 2	. 27	. 05	. 6	1.7	. 4	.17	<. 05	8.1	10.26	6.2	< 02	3	. 1	15.2	30
PPR-14107	. 58	. 1	. 13	< 02	5.5	2.3	. 2	. 32	<. 05	7.3	6.04	19.8	. 02	2	.1	11.3	30
PPR-14167	. 54	. 2	. 35	. 04	. 3	6.7	1.3	. 12	<. 05	9.9	18.36	8.5	. 05	2	. 3	11.7	30
PPR-14171	. 25	. 1	. 08	$<.02$	2.3	1.7	. 2	. 04	<. 05	4.3	7.14	14.5	. 02	1	. 2	7.6	30
PPR-14110	. 02	. 1	. 24	. 04	. 2	2.7	. 3	. 52	<. 05	6.3	5.50	2.6	<. 02	3	. 1	11.9	30
RE PPR-14110	. 02	. 1	. 24	. 03	. 2	2.7	. 2	. 55	<. 05	7.1	5.57	2.6	< 02	4	. 2	12.4	30
PPR-14106	1.23	. 2	. 26	. 14	7.7	4.4	. 4	. 23	<. 05	7.6	11.91	21.7	. 02	11	. 3	43.6	30
PPR-14161	. 13	. 5	. 52	. 08	1.2	4.8	116.4	11.33	$<.05$	16.8	4.37	1.4	1.47	17	.1	3.9	30
PPR-14127	. 19	.3	. 31	. 04	. 2	15.8	. 8	. 04	<. 05	5.6	20.33	8.7	. 05	2	. 6	31.0	30
PPR-14166 S-1	1.30	. 2	. 68	. 39	4.4	8.3	1.4	$<.01$	<. 05	38.8	14.23	29.3	. 05	2	. 8	10.5	30
PPR-14165	. 31	. 1	. 58	. 06	. 8	5.1	2.7	. 07	<. 05	17.8	14.07	5.6	. 05	2	. 4	11.3	30
PPR-14170	. 54	. 1	. 25	. 30	3.8	4.1	. 4	$<.01$	<. 05	7.3	3.80	16.9	<. 02	1	. 8	33.1	30
PPR-14163	. 35	. 1	. 49	. 10	1.0	5.5	2.3	. 05	<. 05	14.5	12.84	6.0	. 04	3	. 3	11.5	30
PPR-14126	. 47	. 2	. 07	<. 02	. 3	2.6	. 1	<. 01	<. 05	2.2	5.11	2.4	<. 02	<1	. 1	8.6	30
PPR-14169	2.03	. 1	. 25	. 14	3.2	4.9	. 3	<. 01	<. 05	5.4	2.24	9.1	<. 02	<1	. 7	20.6	30
PPR-14162	. 19	. 3	. 61	. 13	. 9	4.4	52.9	6.47	$<.05$	18.0	7.06	2.6	. 77	20	. 1	6.5	30
PPR-14109	. 06	. 1	. 23	. 11	1.7	2.0	. 3	1.24	<. 05	4.1	5.91	2.6	<. 02	<1	. 1	7.1	30
PPR-14128	. 47	. 1	. 02	. 02	1.3	16.6	.7	. 28	<. 05	. 4	11.06	7.7	. 05	1	. 4	54.8	30
PPR-14164	. 52	. 2	. 35	. 04	. 4	4.1	. 3	$<.01$	<. 05	8.8	17.01	9.0	<. 02	2	. 4	6.5	30
STANDARD DS2	3.44	. 9	. 05	1.35	13.4	3.1	25.8	. 03	<. 05	2.9	7.88	30.9	5.58	1	. 6	13.9	30

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	SAMPLE\#	$\begin{array}{r} \mathrm{SiO2} \\ \% \end{array}$	$\begin{array}{r} \text { Al } 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{Fe} 203 \\ \% \end{array}$	$\mathrm{MgO}_{\%}$	$\begin{array}{r} \mathrm{CaO} \\ \% \end{array}$	$\mathrm{Na} 2 \mathrm{O}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{array}{r} \mathrm{TiO2} \\ \% \end{array}$	$\begin{array}{r} \mathrm{P} 205 \\ \% \end{array}$	$\begin{array}{r} \mathrm{MnO} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Cr} 203 \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{pppm} \\ \hline \end{array}$	$\underset{\mathrm{ppon}}{\mathrm{Ki}}$	$\begin{gathered} \mathrm{Sc} \\ \mathrm{ppm} \end{gathered}$	LOI	$\begin{array}{r} \text { TOT } / \mathrm{C} \\ \% \end{array}$	TOT/S	$\begin{gathered} \text { SUM } \\ \% \end{gathered}$
	GSMC-14175	50.92	13.72	10.49	5.15	5.15	4.94	. 25	1.95	. 17	. 18	. 017	2249	31	32	6.8	1.38	. 53	100.00
	GSMC-14187	44.85	13.37	10.20	5.08	10.37	3.50	. 12	1.41	. 09	. 23	. 017	3367	40	38	10.2	2.02	. 22	99.82
	GSMC-14182	48.70	16.43	6.79	7.36	9.70	3.94	. 07	. 77	. 05	. 18	. 056	563	99	27	5.9	. 55	<. 01	100.03
	GSMC-14191	47.79	14.73	9.49	7.33	8.58	4.23	. 07	1.36	. 13	. 17	. 032	272	77	35	5.9	. 74	$<.01$	99.86
	GSMC-14172	83.48	5.66	2.85	1.59	. 98	. 08	1.41	. 35	. 05	. 15	. 012	1889	23	7	2.2	. 33	. 38	99.03
	GSMC-14198	49.48	14.83	10.35	6.83	9.18	3.78	. 38	1.71	. 18	. 19	. 037	329	65	37	3.0	. 10	. 05	100.00
	GSMC-14186	47.41	14.93	9.23	8.24	9.27	3.59	. 04	1.37	. 14	. 15	. 068	156	130	40	5.5	. 47	. 09	99.98
	GSMC-14173	82.31	4.35	3.80	1.97	1.92	. 05	. 62	. 30	. 05	. 05	. 012	1973	24	9	4.3	. 43	1.29	99.96
	GSMC-14190	45.65	11.74	11.88	7.54	8.37	. 59	. 58	1.97	. 18	. 20	. 016	427	42	38	11.1	1.94	. 13	99.87
	GSMC-14185	50.89	13.13	13.50	6.66	3.75	1.55	. 07	2.25	. 15	. 21	. 019	143	80	43	7.8	. 94	. 63	100.01
	GSMC-14194	78.48	9.45	3.96	1.61	. 43	1.26	1.84	. 66	. 06	.10	. 012	895	36	14	1.9	. 07	. 02	99.87
	GSMC-14189	50.39	13.50	10.62	5.10	5.10	4.88		1.97	. 23	. 18	. 017	2234	32	32	6.8	1.39	. 51	99.28
	GSMC-14183	48.85	14.97	9.31	5.26	4.42	4.11		1.65	. 08	. 16	. 025	2546	49	45	10.3	1.18	. 01	99.95
	GSMC-14195	46.68	14.52	13.07	6.79	8.79	3.37	. 08	2.42	. 15	. 21	. 007	143	36	34	3.8	. 13	$<.01$	99.91
	GSMC-14181	85.59	5.00	2.58	1.72	. 89	1.20	. 44	. 36	. 07	. 06	. 013	1997	30	9	1.6	. 16	. 11	99.75
	GSMC-14197	47.05	14.02	10.52	6.52	7.54	2.67	. 74	1.76	. 14	. 20	. 039	412	65	38	8.7	1.45	. 07	99.96
	GSMC-14192	90.24	3.86	1.08	. 84	. 59	1.60	. 14	. 25	. 01	. 01	. 015	487	<20	6	1.1	. 24	. 01	99.79
	GSMC-14174	61.32	9.97	6.45	3.77	5.35	3.01	. 34	1.18	. 11	. 14	. 015	2621	20	23	7.9	1.71	. 13	99.85
	.STD S-1	53.60	18.19	8.63	2.52	4.02	3.00	1.21	1.37	. 11	. 14	. 013	353	21	23	7.2	. 70	. 02	100.05
	GSMC-14193	47.81	15.22	11.60	6.52	9.57	3.10	. 12	2.16	. 18	. 21	. 021	99	36	38	3.4	. 06	. 01	99.93
			12.91	13.27	7.03	6.44	3.40		2.23	. 18	. 24	. 018	542	28	43	6.8	1.02	. 40	99.54
	GSMC-14188	50.47	14.04	10.08	8.10	4.93	4.35	<. 04	1.53	. 20	. 25	. 037	67	54	39	5.8	. 66	. 14	99.83
	RE GSMC-14188	50.37	14.01	10.09	8.20	4.99	4.33	<. 04	1.52	. 14	. 25	. 040	69	59	39	5.9	. 66	. 15	99.88
	GSMC-14196	42.98	15.31	12.80	8.63	11.31	1.99	<. 04	2.20	. 22	. 20	. 047	36	86	46	4.0	. 06	. 05	99.74
	SDWR-14442	51.04	13.64	11.05	6.82	10.18	2.94	. 21	1.89	. 12	. 21	. 028	53	77	36	1.6	. 04	. 10	99.75
	SDWR-14441 GSMR-14103	51.13 51.51	13.81	11.02 10.45	6.57 5.07	10.08 9.46	3.16		1.88 1.98	. 17	. 20	. 033	37 43	67 30	36	1.6	. 02	. 13	99.83 99.72
	GSMR-14103 GSMR-14101	51.51 39.90	14.04 3.68	11.45 13.67	5.07 30.74	9.46 3.19	3.70 .26	. 06	1.98 .55	. 15	. 17	. 012	18	30 1058	14	3.1 7.4	. 03	<. 01	99.72 99.96
	GSMR-14104	81.88	6.75	2.63	1.44	2.42	2.42	<. 04	. 37	. 12	. 04	. 016	38	46	9	1.5	. 04	<. 01	99.61
	GSMR-14168	49.82	14.04	12.52	5.60	7.55	3.59	. 43	2.00	. 14	. 17	. 021	189	49	33	3.9	. 12	. 48	99.81
	GSMR-14102	40.12	4.82	13.22	28.65	4.46	. 30	. 08	. 53	. 09	. 21	. 073	127	977	14	6.3	. 02	. 05	98.99
	OSMR-14105	40.26	3.37	15.47	31.16	3.02	. 25	. 07	. 47	. 12	. 24	. 039	25	1404	13	5.0	. 01	. 09	99.65
	GEBR-14150	49.66	14.05	10.45	5.38	8.62	3.46	. 25	1.84	. 16	. 15	. 023	156	54	35	6.0	. 02	5.09	100.07
	SIANDARD SO-15/CSE	49.78	12.29	7.30	7.26	5.87	2.41	1.84	1.78	2.70	1.39	1.060	1983	81	12	5.9	2.44	5.31	99.81

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
TOTAL C \& S BY LECO. (NOT INCLUDED IN THE SLMM)

- SAMPLE TYPE: ROCK R150 40C

Sampies beginning ' $\bar{K} E$ ' are keruns and ' $\bar{R} \overline{R E} \bar{E}^{\prime}$ are keject Reruns.
DATE RECEIVED: OCT 242000 DATE REPORT MAILED: N/OV $22 / 02$ ESMC.IU!RG = DunliNate of GSMC-1LITS

[^43]

Hudson. Bay. Expl., \& Dev.. Co.. It

Page. 1\%(a)

SAMPLE\#	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cs} \\ \text { ppn } \end{gathered}$	Ga ppm	$\begin{array}{r} \text { Hf } \\ \text { ppom } \end{array}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Rb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Ta } \\ \text { ppon } \\ \hline \end{array}$	Th ppm	$\begin{array}{r} \mathrm{Tt} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} V \\ p p m \end{array}$	$\begin{array}{r} H \\ \operatorname{ppon} \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} Y \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppon } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ce} \\ \mathrm{ppmm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Nd} \\ \mathrm{ppan} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sm} \\ \mathrm{p} \mathrm{~m} \mathrm{~m} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Eu} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Gd } \\ \text { ppm } \end{array}$	Tb ppm	$\begin{array}{r} \text { Dy } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Ho } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Er } \\ \text { ppon } \\ \hline \end{array}$	$\begin{array}{r} \text { rm } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Yb} \\ \mathrm{ppom} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Lu} \\ \mathrm{ppm} \\ \hline \end{array}$
GSMC-14175	37.5	2.1	18.0	3.6	4.3	7.3	2	406.1	. 4	. 9	$<.1$. 3	405	<1	133.1	40.4	7.0	19.5	2.90	16.0	5.2		5.95	1.1	7.29	1.60	4.67		4.19	. 69
GSMC-14187	48.0	9.0	18.0	2.3	6.5	5.1	1	1295.5	. 6	. 5	<. 1	. 2	372	<1	79.8	27.3	5.4	13.4	2.04	10.2	3.3	1.22	3.82	. 69	4.70	1.07	3.19	. 38	2.76	. 46
GSMC-14182	36.2	1.4	13.9	1.3	9.6	3.5	1	213.5	. 8	. 8	<. 1	. 2	234	1	40.6	12.5	6.0	12.8	1.50	6.6	1.6	. 89	1.96	. 34	2.30	. 47	1.47	. 19	1.30	. 20
GSMC-14191	37.3	<. 1	19.8	2.0	2.4	2.7	2	152.7	. 3	. 1	<. 1	$<.1$	300	<1	69.1	25.1	3.1	9.5	1.61	7.7	2.8	1.35	3.56	. 66	4.35	. 96	81	37	53	41
GSMC-14172	8.9	1.9	8.3	2.9	5.4	57.5	1	20.9	. 6	4.8	. 2	2.1	130	4	101.3	17.5	19.0	42.5	4.59	17.6	3.8	. 65	3.51		3.18	. 67	2.04	. 24	90	. 30
GSMC-14198	38.8	1.1	18.6	2.9	3.1	7.7	2	322.9	. 3	.3	<. 1	$<.1$	381	<1	108.3	34.1	4.5	13	2.27	11.5	4.4	1.40	5.03	. 93	5.59	1.31	3.82		3.39	. 54
GSMC-14186	44.2	1.0	16.3	2.6	2.3	2.7	1	202.0	. 2	. 2	. 3	<. 1	311	2	85.6	27.3	3.6	11.1	1.77	9.4	3.4	1.15	4.22	. 76	4.84	1.07	3.17	. 37	2.82	. 45
GSMC-14173	4.6	1.9	7.4	2.1	3.5	24.5	2	51.5	. 6	3.6	1.1	1.0	47	3	77.3	14.4	13.7	31.3	3.55	13.9	3.0	. 60	2.93	. 44	2.97	55	8	. 20	5	28
GSMC-14190	37.5	1.0	17.4	3.0	6.0	25.8	1	243.8	. 5	. 6	. 1	. 2	405	,	102.8	34.3	6.0	16.3	2.55	12.6	4.6	1.49	5.33	. 94	5.73	1.37	3.88	. 47	3.41	. 57
GSMC-14185	46.1	. 5	18.0	3.3	6.7	3.7	2	87.0	. 6	. 6	. 7	. 2	451	<1	114.4	40.4	6.4	17.7	2.68	14.1	4.7	1.85	5.70	1.04	6.71	1.56	4.56		4.16	. 66
GSMC-14194	14.5	3.2	16.6	6.1	10.0	67.7	3	26.5	1.0	8.6	. 7	2.3	76	4	225.2	21.3	25.3	66.8	6.37	24.1	4.9	1.10	4.31	. 68	4.16	. 90	2.72	. 33	2.52	. 42
GSMC-14189	36.3	1.9	18.4	3.4	4.0	7.1	2	376.5	. 4	. 8	$<.1$. 4	361	<1	127.5	38.9	6.4	18.6	2.91	14.3	4.9	1.33	5.85	. 98	6.54	1.51	4.40	. 56	3.84	. 62
GSMC-14183	56.0	3.0	17.5	2.3	4.6	19.7	2	274.9	.4	. 3	$<.1$. 2	356	<1	80.1	26.1	4.2	11.3	1.75	9.4	3.6	1.20	3.97	. 70	4.72	1.10	3.09	. 40	2.71	. 44
GSMC-14195	42.1	. 5	18.0	3.2	3.0	3.6	1	118.5	. 3	. 3	< 1	<. 1	534	<1	109.2	35.1	4.1	13.1	2.25	11.8	5.0	1.28	5.23	. 93	6.16	1.31	4.07	. 56	3.47 1.67	. 59
GSMC-14181	8.5	1.0	8.6	2.4	4.1	19.1	1	37.6	. 4	3.9	<. 1	1.0	67	2	87.9	14.7	12.0	27.8	3.12	12	2	55	2.70	. 41		. 56		. 22	析	. 28
GSMC-14197	35.3	1.2	14.9	2.7	1.9	21.5	1	190.4	. 2	. 2	. 1	. 1	341	5	90.3	32.3	3.2	10.8	1.85	10.4	3.7	1.15	4.62	. 87	5.52	1.26	3.68	. 43	3.21	. 56
GSMC-14192	3.5	. 1	4.4	1.9	3.2	6.4	<1	39.1	. 4	3.1	<. 1	. 9	58	1	71.3	10.3	9.8	23.0	2.52	9.6	2.2	. 45	1.95	. 28	1.95	. 43	1.26		1.20	. 20
GSMC-14174	19.3	. 7	12.1	2.8	3.9	7.8	1	305.3	. 4	1.8	<. 1	. 6	229	2	104.2	26.3	7.5	19.1	2.66	12.1	3.7	. 97	4.21	. 69	4.76	1.03	3.03	. 35	2.77	. 45
. STD S-1	18.4	2.6	23.1	5.4	7.8	40.7	2	342.7	. 6	5.4	. 1	1.5	220	<1	196.6	29.3	19.9	49.2	5.81	24.4	5.8	1.69	5.32	. 85	5.14	1.13	3.42	. 44	3.21	. 48
GSMC-14193	38.4	<. 1	21.4	3.9	4.1	3.0	2	177.6	. 4	. 4	<. 1	. 2	414	<1	142.2	44.0	5.8	18.6	2.93	15.6	4.9	2.03	6.62	1.17	7.65	1.75	5.03	. 67	4.45	. 66
GSMC-14184	46.1	1.6	19.9	3.7	6.8	3.7	2.	240.4	. 5	. 6	<. 1	. 3	455	<1	118.6	43.9	6.8	19.0	2.79	15.4	5.2	2.20	6.45	1.12	7.15	1.70	4.88	. 66	4.11	. 70
GSMC-14188	54.3	. 3	17.4	2.7	7.1	1.2	1	111.5	. 6	. 8	$<.1$. 5	297	<1	94.5	24.0	7.1	16.7	2.52	11.9	3.5	1.40	3.88	. 72	4.22	. 97	2.73	. 33	2.34	. 36
RE GSMC-14188	56.6	. 2	17.1	2.8	7.0	1.3	1	115.5	. 6	1.0	<. 1	. 5	300	<1	97.4	24.5	7.0	17.1	2.55	12.9	3.5	1.48	4.20	. 70	4.69	. 94	2.83	. 31	2.29	. 38
GSMC-14196	43.5	1.0	17.9	3.7	3.8	2.2	2	100.3	. 3	. 3	<. 1	. 1	425	<1	130.9	41.6	4.8	16.0	2.67	14.3	5.2	1.85	6.04	1.05	7.07	1.61	4.80	. 62	4.19 3.56	. 65
SDHR-14442	37.4	. 3	17.1	3.1	2.6	3.3	2	173.0	. 3	. 2	<. 1	. 2	357	1	111.2	35.5	4.3	13.6	2.24	11.5	4.2	1.68	5.22	. 90	6.02	1.42	4.05		3.56	. 57
SDWR-14441	37.7	. 4	18.9	3.3	2.4	3.7	2	191.2	. 2	. 2	<. 1	. 2	361	<1	110.5	36.3	4.4	13.4	2.19	12.1	4.5	1.66	5.03	. 90	6.08	1.45	4.11	. 51	3.73	. 55
GSMR-14103	32.9	. 5	19.8	3.2	2.4	3.0	2	59.4	. 2	. 3	< 1	$<.1$	406	<1	113.6	38.2	4.6	14.2	2.37	12.1	4.2	1.64	5.58	1.05	6.58	1.49	4.28	. 53	3.87	. 65
GSMR-14101	115.6	. 6	5.6	1.0	1.3	2.9	<1	18.8	<. 1	<. 1	< 1	<. 1	101	<1	30.7	9.5	1.4	4.1	. 67	3.4	1.3	. 43	1.47	. 27	1.57	. 58	1.12	14	46	24
GSMR-14104	10.0	. 2	12.8	2.2	3.9	1.8	1	17.4	.4	3.5	<. 1	1.3	67	<1	82.6	14.4	13.1	28.7	3.48	13.4	3.4	. 85	2.73	. 40	2.53	. 52	1.58	. 18	1.46	. 24
GSMR-14168	29.0	. 7	21.0	3.5	3.0	10.4	16	132.1	. 3	. 6	<. 1	. 8	394	<1	124.1	36.5	5.7	17.	2.47	12.7	4.0	1.46	5.16	. 93	6.34	1.43	4.17	. 54	3.87	. 62
GSMR-14102	117.8	. 4	6.5	. 9	1.1	3.7	<1	159.0	<. 1	$<.1$	$<.1$	$<.1$	105	<1	33.2	10.2	1.4	3.8	. 67	3.4	1.2	.45	1.57	. 25	1.83	. 37	1.21	. 15	1.03	.17
GSMR-14105	132.2	. 4	4.7	. 8	1.0	2.5	<1	42.1	<. 1	. 1	. 1	$<.1$	90	<1	28.3	8.6	1.3	3.6	. 56	2.9	1.0	. 34	1.16	- 20	1.35	. 26	. 95	. 11	. 86	. 16
GEBR-14150 ${ }^{\circ}$	34.9 8.9	3.3	17.5	3.4	3.6	5.9	18	82.2	. 3	22.5	. 1	20^{2}	344	<1	122.2	37.1	5.3	16.5 54	2.54 5.84	14.2 21	4.3 4.7	1.46	5.58 3.82	. 99	6.42 3.71	1.41	4.15 2.42	. 55	3.82 2.37	. 59
STANDARD S0-15	19.9	3.0	17.2	25.7	29.5	63.3	18	403.5	1.9	22.5	1.1	20.2	175	19	1052.1	21.2	26.8	54.3	5.84	21.7	4.7	1.00	3.82	. 55	3.71	76	2.42	. 33	2.37	. 40

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' arepeject Reruns.

OLEANLTICN																														
SAMPLE\#	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Cs } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Ga } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Hf} \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Nb} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} R b \\ p p m \end{array}$	$\begin{array}{r} \text { Sn } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	Ta ppm	$\begin{aligned} & \text { Th } \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Tl} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { U } \\ \text { ppm } \end{array}$	$\begin{array}{r} V \\ p p m \end{array}$	$\begin{array}{r} W \\ \text { pprn } \end{array}$	$\begin{gathered} \mathbf{2 r} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} Y \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Ce } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Pr} \\ \mathrm{pprin} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Nd} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sm} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Eu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Gd} \\ \mathrm{ppom} \\ \hline \end{array}$	$\begin{array}{r} \text { Tb } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Dy } \\ \text { ppra } \end{array}$	Ho ppm	$\begin{array}{r} \mathrm{Er} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Tm } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Yb } \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Lu} \\ \mathrm{pp} \times \mathrm{n} \end{gathered}$
GEBR-14155	3.6	<. 1	43.9	<. 5	<. 5	1.4		132.8	<. 1	. 1	<. 1	. 7	83	12	4.9	7.0	5.9	8.2	1.03	4.8	. 9	. 34	1.09	. 17	1.18	. 24	. 82	. 11	. 66	. 11
GEBR-14143	50.2	1.5	24.0	3.3	2.7	3.8	2	132.3	. 3	. 2	<. 1	. 1	954	<1	111.0	42.8	4.8	14.4	2.37	13.8	4.6	1.67	5.62	1.08	7.11	1.42	4.60	. 62	4.12	. 59
GEBR-14154	8.0	2.1	13.0	3.5	6.2	77.0	2	10.3	. 6	6.7	- 1	1.6	97	5	129.7	15.8	19.6	43.6	4.10	16.8	3.1	. 67	2.86	. 43	2.87	. 50	1.78	. 25	1.77	. 27
GEBR-14159	4.0	. 5	2.0	<. 5	1.0	12.3	<1	71.5	. 1	1.2	<. 1	. 9	14	1	12.1	10.5	4.4	9.8	1.26	6.5	2.2	. 65	2.87	. 53	2.84	. 39	1.02	.11	. 66	. 08
GEBR-14156	39.1	. 5	19.4	4.3	8.8	11.0	2	113.6	. 7	1.5	. 3	. 7	370	1	142.7	40.9	9.4	22.7	3.14	15.8	4.5	1.09	50	1.05	6.97	1.36	4.48	. 62	4.12	.61
GEBR-14144	39.1	. 7	19.5	4.0	3.9	2.4	2	179.1	. 3	. 3	. 1	. 2	426	<1	143.3	47.2	6.5	18.4	2.85	15.7	5.0	1.70	6.17	1.22	7.69	1.53	4.85		4.64	. 66
GEBR-14151	30.9	. 5	14.8	3.3	3.0	11.0	1	89.3	. 2	. 3	<. 1	. 2	352	1	116.0	38.0	5.5	16.0	2.37	13.1	4.0	1.66	4.96	. 93	6.26	1.26	3.98		3.74	. 55
GEBR-14157	8.0	3.0	8.8	1.1	3.0	84.5	3	52.5	. 4	5.3	. 4	1.4	33	2	36.8	12.9	17.7	32.8	3.60	14.2	3.0	. 67	2.89	. 49	2.67	. 46	1.33	. 18	1.14	. 18
GEBR-14153	33.6	. 3	18.6	3.4	3.4	5.2		170.4	. 3	. 4	<. 1	. 2	350	2	125.0	38.5	5.9	16.2	2.45	13.4	4.3	1.59	5.14	. 98	6.27	1.26	4.17	. 58	3.93	. 57
GEBR-14145	36.3	. 2	15.4	5.6	5.1	1.3	2	107.3	. 4	. 3	. 4	. 2	396	9	188.5	54.3	6.9	20.9	3.29	18.0	5.9	1.93	7.23	1.42	9.12	1.85	6.08	. 87	5.66	. 82
GEBR-14158	9.4	3.8	12.9	3.9	6.9	102.1	3	34.2	. 7	9.9	. 5	2.1	45	9	128.7	14.	26.9	52.8	5.54	21.9	3.8	. 77	3.26	. 48	2.73	. 47	1.60	. 22	. 44	. 22
PPR-14129	38.4	. 3	18.5	3.7	3.6	4.3	2	175.7	. 3	. 3	<. 1	. 2	349	<1	132.9	41.5	6.2	17.3	2.56	14.3	4.7	1.60	5.40	1.01	6.38	1.34	4.32	. 58	3.90	. 57
PPR-14107	16.0	4.0	15.3	6.1	33.0	97.2	3	85.5	2.2	7.9	. 1	2.9	171	6	236.3	39.1	48.2	98.4	10.96	45.8	8.9	2.11	6.77	1.10	6.44	1.15	3.64	. 45	2.90	. 40
PPR-14167	35.6	. 8	20.6	3.6	2.8	3.0	2	138.7	. 2	. 3	<. 1	. 2	375	<1	132.6	47.3	5.4	16.2	2.52	14.2	4.7	1.60	5.68	1.13	7.10	1.44	4.83	. 66	4.48	. 65
PPR-14171	20.1	. 7	7.9	. 9	2.6	21.8	2	95.9	. 2	2.3	<. 1	. 8	99	6	36.8	17.0	14.4	18.8	3.20	13.8	2.9	. 70	2.87	. 45	2.80	. 54	1.82	. 25	1.68	. 26
	36.9	$<.1$	18.4	3.3	2.9	1.2		226.3	. 2	. 3	< 1	. 2	295	5	117.	38.5	5.3	15.2	2.21	12.6	4.0	1.47	4.98	. 96	6.16	1.25	3.99	. 54	3.70	. 52
$\text { RE PPR- } 14110$	35.8	<. 1	18.3	3.4	3.0	1.2		233.1	. 2	. 2	< 1	. 2	288	3	122.8	39.3	5.4	15.5	2.29	12.5	4.0	1.45	4.94	. 96	5.99	1.21	3.98		3.69	. 53
PPR-14106	25.3	2.2	18.6	2.4	4.4	39.5		227.1	. 3	5.0	<. 1	1.9	272	1	80.3	25.1	21.3	41.2	5.12	22.8	5.4	1.48	4.94	. 80	4.42	. 81	2.43	. 33	2.18	. 30
PPR-14161	7.9		29.6	2.4	1.9	9.2	173	315.7	. 1	. 3	. 1	1.1	187	<1	86.9	19.8	3.0	8.7	1.30	7.0	2.1	. 88	2.61	. 49	3.09	. 62	2.03	. 28	1.89	. 29
PPR-14127	40.9	. 3	24.7	4.3	4.0	1.1	5	53.9	. 3	. 3	<. 1	. 2	317	1	154.6	47.7	6.9	19.1	2.93	16.4	5.2	1.77	6.23	1.19	7.40	1.48	4.85		4.46	. 67
PPR-14166 S-1	19.1	2.6	23.6	6.0	8.0	40.7		333.8	. 6	5.8	. 1	1.6	177	<1	205.3	30.9	20.5	55.3	5.95	25.5	5.8	1.66	5.18	. 89	5.24	1.01	3.29		3.29	. 50
PPR-14165	32.8	. 5	19.4	4.0	3.2	7.0		153.0	. 2	. 6	<. 1	. 7	308	<1	139.4	43.4	6.7	17.6	2.67	15.0	4.6	1.65	5.64	1.08	6.79	1.38	4.51	. 62	4.26	. 60
PPR-14170	118.3	4.0	17.0	3.2	59.5	93.4		190.1	3.7	4.1	. 1	. 8	140	2	119.9	11.9	30.8	58.3	6.27	25.1	4.8	1.36	3.74	. 55	3.37	. 56	1.85	. 24	1.81	. 28
PPR-14163	29.9	. 6	20.1	3.7	3.1	7.3	5	120.5	. 3	. 5	<. 1	. 3	288	<1	131.9	39.7	5.9	16.5	2.34	12.8	4.4	1.44	4.94	1.00	6.19	1.27	4.26	. 59	4.14	. 59
PPR-14126	96.3	. 6	7.6	1.4	1.2	1.3	2	46.5	<. 1	. 2	<. 1	. 2	113	<1	. 48.7	16.7	2.1	5.7	. 92	5.0	1.6	. 52	1.98	. 39	2.43	. 50	1.70	. 24	1.63	. 24
PPR-14169	48.7	7.4	16.3	3.1	59.6	95.5	2	60.7	3.6	3.3	. 3	1.0	85	<1	116.0	12.1	13.0	57.3	3.07	12.6	2.9	1.17	2.63	. 48	2.69	. 48	1.50	. 20	1.40	. 19
PPR-14162	26.8	. 5	23.2	2.8	2.4	6.9	99	205.0	. 2	. 4	. 2	1.0	191	<1	99.4	27.8	4.2	11.6	1.66	9.0	2.9	1.09	3.50	. 70	4.35	. 89	2.92	. 40	2.77	. 41
PPR-14109	39.3	. 9	15.1	3.1	3.0	28.1		116.5	. 2	. 3	. 1	. 1	201	1	116.1	37.3	4.9	14.5	2.20	11.8	4.0	1.32	4.83	. 93	5.83	1.15	3.88	. 53	3.63	. 52
PPR-14128	31.5	1.4	16.0	3.2	3.3	20.8		164.6	. 3	. 3	. 1	. 1	193	2	116.0	37.3	5.5	15.5	2.23	12.3	4.1	1.28	4.70	. 91	5.69	1.17	3.83		3.49	. 51
PPR-14164	33.4	. 7	22.8	4.2	3.0	2.2		212.2	. 3	. 2	<. 1	. 1	253	2	148.4	48.6	5.8	18.0	2.63	14.9	5.2	1.82	6.10	1.20	7.46	1.54	5.01	. 69	4.79	. 69
STANDARD S0-1	20.8	2.6	16.0	26.1	32.9	65.0	17	389.1	1.9	. 2		. 7	151	20	013.5	21.8	9.3	57.5	6.31	22.6	4.6	1.04	3.80	. 60	3.64	. 72	2.35	. 34	2.46	. 40

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson. Bay. Expl. \& Lev. Co. Lead. prouscran 2398.. File. \# A004335
Page. 1/5 le)
$4 \uparrow$

 PPM: CU, PB, ZN, NI, MN, AS, V, LA, CR $=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATILE SOME ELEMENTS, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: ROCK R150 40C Samples beginning. 'RE' are Reruns and 'RRE' are Reject Reruns

DATE RECEIVED: OCT 242000 DATE REPORT MAILED: $1 / 0422 / 00$
SIGNED BY.............

All results are considered the confidential property of the client. Acme assumes the inabilities for actual cost of the analysis only.

SAMPLE\#	Mo ppm	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	As ppm	$\begin{aligned} & \mathrm{Cd} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	
GEBR-14155	$<.5$	16	15	77	28	6	. 6	1	<1	
GEBR-14143	. 7	158	<3	71	40	<2	. 3	<1	<1	
GEBR-14154	1.6	53	6	76	43	<2	$<.2$	1	<1	
GEBR-14159	4.2	8	4	12	14	<2	. 2	1	<1	
GEBR-14156	<. 5	79	<3	104	68	3	. 3	<1	<1	
GEBR-14144	1.2	12	<3	72	50	<2	. 2	<1	<1	
GEBR-14151	<. 5	36	<3	44	62	<2	- 3	<1	<1	
GEBR-14157	4.5	18	71	60	23	2	. 3	1	<1	
GEBR-14153	1.0	50	4	59	47	<2	$<.2$	1	<1	
GEBR-14145	2.3	61	<3	78	49	<2	$<.2$	<1	<1	
GEBR-14158	3.9	20	42	75	31	9	. 3	2	<1	
PPR-14129	. 7	54	<3	83	57	<2	- $\frac{4}{2}$	<1	<1	
PPR-14107	3.0	31	24	70	54	38	$<.2$	4	<1	
PPR-14167	.8 1.4	176 142	<3 24	74 49	48	<2	$\begin{array}{r}\text {. } \\ \hline\end{array}$	<1	<1	
PPR-14171	1.4	142	24	49	71	6	. 2	1	<1	
PPR-14110									<1	
REP PPR-14110	2.0	120	${ }^{3}$	419	91	<2	$2 \cdot \frac{1}{2}$	<1	<1	
PPR-14106	19.0	171 825	20 160	87 2084	35	13	11.2	19	<1	
PPRR-14127	$\begin{array}{r}12.4 \\ \hline .9\end{array}$	825 45	160 <3	2084 99	35 50	13	$11 \cdot \frac{1}{3}$	<1	<1	
PPR-14166 S-1	1.7	35	12	82		<2	$<.2$	<1	<1	
PPR-14165	$\frac{1}{3} .8$	156	7	174	53	<2	. 7	<1	<1	
PPRR-14170	3.7	50	<3	273	296 47	12	. 3	<1	<1	
PPR-14163	$\begin{array}{r}1.4 \\ \hline\end{array}$	96 86	5 <3	144 81	47 523	2 4	.4	<1	< 1	
PPR-14169	. 8	1	4	128	133	8	$<.2$	<1	<1	
PPR-14162	8.0	478	92	1690	48	9	6.9	8	<1	
PPR-14109	1.4	57	<3	86	122	<2	. 2	<1	<1	
PPR-14128	. 6	59	3	89	50	23	. 3	4	1	
PPR-14164	$<.5$	12	<3	78	16	<2	$<.2$	<1	<1	
STANDARD CT3	27.9	65	40	182	39	63	24.0	25	24	

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $5730-30.00 \mathrm{GM}$ SAMPLE, $180 \mathrm{ML} 2-2-2 \mathrm{HCL}-H N O 3-H 20$ AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML , ANALYSIS BY ICP/ES \& MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, $S N=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U}, \mathrm{B}=2,000 \mathrm{PPM} \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $1 F 30$ - 30.00 GM SAMPLE LEACHED HITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$,

- SAMPLE TYPE: ROCK R150 40C 'Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP LA - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LI BY LOSS ON IGNITION.
TOTAL C \& S BY LEGO. (NOT INCLUDED IN THE SUM M

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED

- SAMPLE TYPE: ROCK R150 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP TEX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH} \& \mathrm{U}=4,000$ PPM; CU, PB, $Z N, N I, M N, A S, V, L A, C R=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATILE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK 'R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H20) DIGESTION TO 100 ML , ANALYSED BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE Pare Reject Reruns.

GROUP 1 ISO - 30.00 GM SAMPLE, $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES \& MS
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: CORE P150 40 C Samples beginning' RE' are Reruns and' ${ }^{\prime}$, RRE' are Reject Reruns.

DATE RECEIVED: DEC 142000
DATE REPORT MAILED: Q ($5 / 2001$ SIGNED BY

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML ANALYSED BY ICP/ES \& MS.
UPPER LIMITS - AG, $A U, H G, W, S E, T E, T L, G A, S N=100 P P M ; M O, C O, C D, S B, B I, T H, U, B=2,000 P P M ; C J, P B, Z N, K I, M N, A S, V, L A, C R=10,000 P P M$,

- SAMPLE IYPE: CORE P150 40C Samples beginning're' are Reruns and 'RRE' are Reject Reruns.

GROUP 4A - 0.200 GH SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.
YOTAL C \& S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: CORE P150 40 C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $4 B$ - REE - LIBO2 FUSION: ICP/MS FINISHED.

- SAMPLE TYPE: CORE P150 40C

Samples beginning. 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML . UPPER LIMITS - $A G, A U, W=200$ PPM; MO, CO, CD, SB, BI, TH \& U $=4,000$ PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR $=10,000$ PPM. DIGESTION IS PARTIAL FOR SOME MINERALS \& MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES - SAMPLE TYPE: CORE P150 40 C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: DEC 142000 DATE REPORT MAILED:
UaM $200 /$ sIGNED BY.

Appendix V

SURFICIAL GEOLOGY, EUREKA PROPERTTY

By
Roger Paulen

Surficial Geology Hudson Bay Exploration Eureka Claim Block

Wells, B.C.

Roger C. Paulen
June 19, 2000

Introduction

The property is located north of Wells, between the Bowron and Willow river valleys, and extends north past Slender Lake (parts of NTS $93 \mathrm{H} / 3, \mathrm{H} / 4, \mathrm{H} / 5$ and H/6). The property includes Two Sisters Mountain, at the northernmost extension of the Palmer Range, within the northwest part of the Caribou Mountains. A study was initiated to interpret and map out the distribution of surficial sediments and to document regional and local variations of the Cordilleran Ice Sheet. The results of the mapping, in turn, are to support regional and local till sampling programs and to apply drift geochemistry methods to find the up-ice source of the copper-rich boulders found at the Lottie, Bow and Tow float showings.

Background

Several times during the Pleistocene, British Columbia was covered by an interconnected mass of valley glaciers and mountain ice sheets, collectively known as the Cordilleran Ice Sheet (Flint, 1971). The mountain systems remained the major source areas of glaciers and ice flow was controlled by topography (Fig. 1). However, as ice thickened to form ice domes, radial flow occurred away from their centres. In cent:al British Columbia, glaciers flowed eastward from the Coast Mountains and westward from the Caribou Mountains to merge over the Interior Plateau (Fig. 2) (Fulton, 1971; Tipper, 1971; Clague, 1981).

Each glacial cycle terminated with rapid deglaciation with complex frontal retreat in peripheral glacial areas and by downwasting accompanied by widespread stagnation throughout much of the interior (Fulton, 1967, Tipper, 1971, Clague, 1989). In central British Columbia, the ice front retreated and several glacial lakes formed in the valleys and adjacent plateau surfaces. Regional evidence suggests that the British Columbia interior became deglaciated about $11 \pm 1 \mathrm{ka} \mathrm{BP}$ (Clague, 1980, 1981) and deglaciation was well advanced, if not complete, by 10 ka BP .

Fig. 1. Growth and decay of the Cordilleran Ice Sheet. A. Mountain glaciation at the beginning of a glacial event. B. Development of a network of valley glaciers. C. Coalescence of valley and piedmont lobes to form an ice sheet. D. Decay of ice sheet by downwasting, upland areas are deglaciated before valleys. E. Residual dead ice masses confined to valleys (from Clague, 1989, p. 42).

Fig. 2. Map showing the late Wisconsinan ice-flow directions and glacial Lake Fraser that formed in central British Columbia. Ice flow directions from Tipper (1971) and Clague (1987).

There was intense erosion and paraglacial fluvial aggradation in the valleys during the early Holocene. Rapid sedimentation occurred in the glacial lakes and as these drained, modern drainage patterns established in their present valleys. Rivers then became to incise their valley fills, producing terraces.

Methods

Work on the property consisted of three components:

1. Mapping the nature and distribution of the surficial sediments.
2. Recognition of landforms and striations in the region to confirm and outline the local and regional ice flow history.
3. Outlining and discussing the properties and nature of the surficial sediments at the property and their implications for continuing drift prospecting.

Access to the property is excellent. There is an extensive network of logging roads on the slopes and plateaus. Some of the areas are only accessible by all terrain vehicles due to recent alder growth on the older roads and Forest Renewal British Columbia (FRBC) efforts to protect watersheds in the region. Fieldwork was conducted with 4wheel drive vehicles and all terrain vehicles. In some cases, traverses were completed on foot where access was blocked or non-existent.

Ground truthing observations were noted on 1:50 000 and 1:20 000 airphotos. Key stations were noted at sites of striations, outcrop or elevation control points at areas of glaciofluvial activity maximum (former terrace limits). Identification and recognition of various facies of sediments deposited during and following the last glaciation were conducted both within the property and along its margins, up to 3 km from property boundaries. Generally, comments about till thickness, its texture and properties were noted for the benefit of the sampling crew. This information was later used to aid in airphoto interpretation of the surficial geology and the information was transferred to a map at $1: 20,000$ scale.

Recognition of landforms was first interpreted from airphotos and confirmed with the identification of several large landforms such as rock-cored drumlins, craig and tail
features and glacial striations. This included observing these landforms outside the claim block to provide a regional sense of ice-flow that affected the area.

Surficial deposits

Several types of surficial deposits were observed in the region including: ground moraine (basal and ablation till), colluvial, glaciofluvial, glaciolacustrine, fluvial, organic and anthropogenic. General observations suggest the hills and plateaus are mainly covered by combinations of till and colluvium, whereas glaciofluvial glaciolacustrine and fluvial sediments occur mainly in the valleys. A 1:20 000 scale map accompanies this report.

Till

Throughout the region, the bedrock topography is mantled by various amounts; of massive, very poorly sorted matrix-supported diamicton. Deposits range in thickness from thin (<1 metre) veneers to thick (>10 metre) blankets. The till is compact, fissile and clast content ranges from 10 to 25%. Clasts are often faceted and striated, commonly subangular to subrounded shapes. Characteristics of this diamicton suggest that it is most likely a lodgement depositional environment (Dreimanis, 1988) Basal till facies tend to be variable with respect to the underlying bedrock. The till directly overlies bedrock except in the larger valleys, where sediments from the last glaciation overlie older fluvial gravels and are often the targets of placer gold operations (Clague, 1991).

Locally overlying the basal lodgement till is ablation till and/or basal melt-out till, sometimes combinations of both. Ablation till can be expected at the higher elevations, with deposits rarely exceeding 1 metre. The distribution of ablation till is discontinuous and not overly abundant. Basal melt-out till was found in the lower elevations and diamictons commonly exhibit crude stratigraphy. The till is moderately to weakly compacted with clast contents ranging from 35 to almost 50%. Areas of clast-supporsed till are not uncommon. Clasts are sometimes faceted and striated, but many are root, suggesting supraglacial transport. Roundness ranges from subrounded to very angular.

Till is ubiquitous throughout the region, occurring in varying degrees of thickness and usually directly overlying bedrock. In the valleys, meltwaters from deglaciation and intense early Holocene erosion have reworked and subsequently overlain the tills with various types of glaciofluvial, glaciolacustrine, colluvial and fluvial sediments. Tilt can generally be found exposed at surface above 1160 m asl. Meltwater activity and perched gravel deposits such as kames and deltas can occur above this elevation. Table 1 lists the major valleys and the corresponding elevations that till outcrops within that valley.

River Valley	Elevation (m asl)
Bowron River Vailey	$1035-1100$
Ketchum Creek	$1050-1075$
Big Valley Creek	$1200-1235$
Lottie Creek	$1125-1150$
Willow River	1115
Boyce and Fourteen Mile Creek	$1110-1150$
Slender Lake	1085
Towkuh Lake	1150
Stephanie Creek	1160

Table 1. Major river valleys and corresponding elevation ranges in which ground moraine (till) outcrops above the late glacial and Holocene waterlain sediments.

Glaciofluvial Sediments

As mentioned above, meltwaters from retreating and mass wasting glaciers flowed into the bedrock-controlled valleys, depositing glaciofluvial sands and gravels. The meltwaters coalesced into larger valleys and formed glaciolacustrine lakes. Associated sediments such as subaqueous fans, deltas and terraces were formed in the meltwater channels. Often, small deposits are perched above the terraces, formed from tributary channels flowing into the larger valleys. These sediments range from poorly sorted immature gravels to well-sorted pea gravel and fine sand. They are commonly stratified
and are very susceptible to erosion. Blocks of ice were sometimes trapped in the rapidly deposited sediments and their subsequent melting formed kettle depressions and lakes.

Glaciolacustrine Sediments

Deposits of glaciolacustrine sand and silt occur in the Bowron River and Lottie Creek valleys. Lower terraces have developed in these valleys during peak glacial meltwater flow. These sediments are thick, often exceeding tens of metres, and consist of massive to rhythmically bedded very fine sand and silt with minor clay. These sediments are highly susceptible to erosion once the vegetation mat is disturbed.

Colluvium

Colluvium is a genetic term to describe sediment that has been affected by gravity. This includes, talus, soil creep, slope wash and mass movements such as debris flows. Factors that control downslope movement include the slope angle and the nature (stability) of the sediment or bedrock on the slope.

Various types of colluvium occurs on the steeper slopes within property. Rock talus can be found below bedrock ridges. Colluviated till is common on the steeper hill slopes and occurs locally throughout the property, often as a thin layer overlying till unaffected by gravity. The glaciofluvial and glaciolacustrine terraces were subjected to intense erosion prior to the establishment of vegetation and formed coalescing colluvial fans in the larger valleys.

Fluvial Sediments

Modern streams and rivers are locally depositing small areas of fluvial sands and gravels. Fluvial sedimentation was most intense during the Holocene and modern drainage patterns were formed as the vegetation established itself. Large broad fluvial fans occur in every valley. These sediments include river gravels, sands and occasionally are mixed with organics.

Organics

Organic deposits occur locally in all types of terrain. Areas with poor drainage can have up to 0.5 m of organic deposits. These deposits commonly form in depressions in the bedrock topography but also form on slopes where compact silty till is impermeable to surface drainage.

Anthropogenic

Anthropogenic deposits are not widespread and can be found only near past and present placer operations. Extensive workings can be found at the southern end of the study area and minor placer operation is taking place in the vicinity of the Lottie showing.

Ice Flow Indicators

The striation record in the region is poor due to the lack of preserved outcrop exposure. Striations were observed at a few locations where logging operations has exposed fresh bedrock. The majority of striation measurements are bi-directional, that is, they contain no information regarding direction of ice that gouged the outcrops. Crosscutting relationships are rare, only a few sites with multiple ice directions were observed. Other directional indicators such as rat-tails and large scale landforms were used to aid in ice flow reconstruction. The thick drift cover, bedrock structure and weathering nature of the bedrock all hamper the observation of striae.

At the eastern edge of the property and in the vicinity of the Bowron River valley, large glacially streamlined landforms can be seen in airphotos and clear cuts. The dominant ice flow features indicate a north to north-northwest ice flow directicn. Additional landforms were observed east of the Bowron River with similar trends.

At the western edge of the property, large glacial landforms and striations indicate a strong northeasterly ice flow direction. These features occur at the highest elevations and possibly suggest ice flow to the northeast during the Fraser glacial maximurn. However, these strong features are absent from the middle and eastern areas of the property.

In the central area of the property, ice flow indicators can be found with a wide range of bi-directional striae and a few landforms. Fabric work conducted at the Lottie property by the author for Eureka Resources show that topography was likely the dominant factor affecting glacial sediment distribution during the late Wisconsinan. There is evidence that Two Sisters Mountain did not undergo stagnation and mass decaying of ice as is typical of the higher peaks rimming the interior plateau (Clay̧ue, 1989; cf. Paulen et al., 1999). Ice-recessional lateral and terminal moraines are observed on the western slope of Two Sisters Mountain. A cirque lakes are also noted high up on the mountain, likely dammed by a moraine.

Deglaciation was typical of that described by Clague (1989), ice downwasted at the higher elevations, and flowed locally in the valleys. Striae and ice-flow indicators are poorly preserved due to the thick sediment pile in the valleys and the erosion of bedrock by glacial meltwaters.

Discussion

The major source of ice in the region was the Caribou Mountains to the southeast. Ice flowed locally during the onset of glaciation, following the topography. Regional work by Clague (1987), shows as the ice sheet thickened, ice flowed southwesterly from the Caribou Mountains, across the Mowdish Range and then flowed to the northwest roughly parallel to the regional bedrock structure that is occupied by the Bowron, Swan and Spectacle lakes. Clague (1988), reports northeastward flowing ice west of the Fraser River at Quesnel and to the north at Prince George. There is no known published evidence indicating a northeast direction of ice flow for the regions east of Quesnel, in close proximity to the Caribou Mountains.

The nature of glacial ice flow and ice dynamics would throw caution at ice flowing towards a major topographic feature such as the northwestern Caribou mountains. However, if maximum build-up of interior plateau ice exceeded the ice biildup in the foothills of the Caribou, it is possible that ice-sheet conditions prevailed in the interior plateau and topographically controlled ice was short lived during the onset and
waning of glaciation. Caution must be exercised here, because unlike the ice reversals seen in the Nechako area (Levson et al., 1998), the northeasterly ice flow here is probably an extension of the northeast flow directions observed by Clague (1988) at Quesnel and Prince George.

Given the known striation observations, interpreted landforms and published regional glacial ice flow, a cautious interpretation of ice flow events that affected the property is presented here. Cross cutting relationships indicate that the oldest ice flow in the region was topographically controlled and ice flowed from the Caribou west and northwest to the Interior Plateau. During glacial maximum, ice flowed from the interior plateau, possibly behaving as an ice sheet with ice divides migrating to the thickest area of ice accumulation. Flow here was to the northeast and was deflected to the north and northwest in the vicinity of the Bowron River as the ice sheet converged with mountain glaciers flowing from the Caribou Mountains. During late glacial times, the ice sheer in the interior would have gradually thinned and topographically controlled ice would again affect the property. Ice flow directions were highly variable and ranged from northward to southwesterly flowing ice, depending on topography and ice thickness. Cirque glaciation on Two Sisters Mountain extended into the Holocene as ice flowed from the mountain into the valleys below. The maximum extent of this mountain glacier likely only reached the bottom of Big Valley Creek.

Implications for Drift Prospecting

The basal till mantling the uplands, the scarcity of ablation till, and the defined valley systems provide an excellent landscape for drift prospecting. Basal tills directly overly the bedrock and are representative of the last glaciation to have affected the region. Exceptions include the larger valleys that contain advance glacial gravels and preglacial deposits (Clague, 1991).

Previous geochemical studies of C -Horizon sampling in the region is unknown. These could provide an indication to the style of mineralization, configuration of the anomaly trains and local ice dispersal patterns. Once the pattern of dispersal is
recognized, then the application of known dispersal models can be applied. Locally, the application of Krumbein's (1937) concept of half distance decay can be used to comprare transport distances (e.g. Lett et al., 1998). Application of models from Miller (1984), Klassen (1997) and Paulen (1999) to illustrate dispersal in varying degrees of till thickness and transport distances can also be applied to aid in tracking down unknown sources. A recent example of dispersal in three dimensions has been recently presented by Bobrowsky et al. (2000) and should be taken into consideration when discussing potential climb angle of dispersal from source subcrop.

However, conditions such as variable relief and a strong local influence of ice flow should be considered as well as a regional flow component. Examples show that in areas of moderate relief, these dispersal fans can range from hundreds of metres to several kilometres down-ice from source (Paulen, 1999). The down-ice dispersal model at the Samatosum and Rea Gold mines in the Adams Lake area also show that the distance from source to the initial surface expression is almost 2 km (Lett et al., 1998; Paulen, 1999).

Lottie

The initial discovery boulders are established to be contained within basal lodgement till. This eliminates the possibility of long distance transport and the mineralrich boulders being deposited in supraglacial debris. The low frequency of boulders discovered suggested that the immediate area is likely within a distal dispersal fan. Additional basal till geochemistry should provide indications of distance to source, but, I am reluctant to speculate the transport distance without studying the regional basal till geochemistry.

Local flows appear to be the predominate factor in controlling the deposition of sediments within the Lottie Creek Valley below the Twin Sisters Mountains. In fact, ice probably flowed around the Twin Sisters and into the valley, flowing east to west. As ice thickened and topped over the Twin Sisters, ice flowed to the northwest, as indicated by flutings and striations to the northwest of the property, likely out of the influence of the Twin Sisters Mountain. These features indicate a regional ice flow trending approximately 250°. Late cirque glaciation is not present at the discovery float site. The
fabric work at the site in 1999 provides a good indication of the last dispersal direction, but not necessarily the true glacial direction of dispersion if more than one direction affected the distribution of the mineralized boulders.

Bow

The Bow float was found distributed in an extensive area of glaciofluvial sediments. The mineralized cobbles occur at the surface of the glaciofluvial sediments. The glaciofluvial sediments are quite thin ($<2 \mathrm{~m}$) at the float site and are directly overlying weathered bedrock. The clasts are well rounded and the sediments are moderately to well sorted, indicating a more mature gravel deposit. Source is possibly eroded from the nearby tills to the southwest, but the maturity of the sediments could also indicate a long distance glaciofluvial transport. The lack of till exposed in the immediate vicinity also is problematic and other methods of prospecting may have to be employed.

However, the relative abundance and clustering of mineralized cobbles in a glaciofluvial deposit is promising of a potential local enriched till that the cobbles were derived from. Interpretation of the regional basal till sampling program could shed some light on the source of this float.

Abstract

Tow The Tow float occurs in till at a high elevation. The till blankets the topography but is likely less than three metres thick. The float occurs in an area surrounded areally by basal till. Ice flow at the east side of the property is south to north, with variations up to 20 degrees. This provides an excellent area to apply property scale drift prospecting. The float itself consists of small clasts and the relative abundance indicates that the discovery site is contained in the distal part of a dispersal train.

Conclusion and Recommendations

Ice flow history within the property is complicated but likely a combination of ice sheet-like conditions and topographically controlled ice flow. Tracing of anomalies will be a challenge, if a dispersal train is affected by early, peak and late glacial ice. Palimpsest glacial trains are possible and recognition of their patterns is essential to avoid chasing down false geochemical anomalies. This could be especially true of the Lottie float. Recommendations for the whole property include:

1. Confirmation of ice flow directions from the higher hills in the region. This includes Two Sisters Mountain, Slide Mountain and other hills within and adjacent to the property. The question here is, how far east does the northeast ice flow extend and where does it stop becoming the dominant dispersal direction?
2. Fabrics to be done at any high basal till anomaly. Understanding the distribution of the till at any anomalous site is essential. The lack of ice flow indicators mean relying on pebble fabric analysis. However, any effort to expose additional striations would help immensely.

The Lottie float will require not only till but multi-media geochemistry to help sort out the net dispersal of the mineralized boulders. False anomalies may become problematic if palimpsest trains do exist. Existing fabric data does indicate a southsouthwesterly flow direction for late glacial activity in the area. Additional fabric data in the local area is unnecessary. If complications arise with the dispersal train, retrenching the discovery site and conducting a sedimentological and fabric profile may be necessary. That is, several fabrics from the bottom to the top of the till unit to aid in pinpointing directional sources. Also studying mineralized boulders in situ would also be beneficial.

The Tow float is ideally situated for drift prospecting. Great care should be taker:
interpreting the regional till samples in order to see where the dispersal train fits existing models. If the regional geochemistry is promising, then fabric work or trenching for outcrop is necessary to augment the interpreted ice flow direction.

The Bow float will be difficult at best to track down due to its occurrence in glaciofluvial gravels. If the tills to the southwest do contain additional boulders, then perhaps long distance transport can be eliminated. Gravels in the area have possibly come from the Boyce Creek - Fourteen Mile Creek valley but directional studies of clasts, imbrication and paleoflow of the gravels at the Bow showing would have to completed.

REFERENCES

Bobrowsky, P.T., Paulen, R.C. and Lett, R.E. 2000. A 3-D model of glacial dispersal from south-central British Columbia. GSA Abstracts with Programs, Cordilleran Meeting 2000.

Clague, J.J. 1980. Late Quaternary geology and geochronology of British Columbia. Part 1: Radiocarbon dates. Geological Survey of Canada, Paper 80-13.

Clague, J.J. 1981. Late Quaternary geology and geochronology of British Columbia. Part 2: Summary and discussion of radiocarbon-dated Quaternary history. Geological Survey of Canada, Paper 80-35.

Clague, J.J. 1987. Quaternary stratigraphy and history, Williams Lake, British Columbia. Canadian Journal of Earth Sciences 24: 147-158.

Clague, J.J. 1988. Quaternary stratigraphy and history, Quesnel, British Columbia. Geographie physique et Quaternaire 42: 279-288.

Clague, J.J. 1989. Relationship of Cordilleran and Laurentide glaciers. In Chapter 1 of Quaternary Geology of Canada and Greenland. Edited by R.J. Fulton, Geological Society of America, The Geology of North America, v. K-1.

Clague, J.J. 1991. Quaternary stratigraphy and history of Quesnel and Caribou river valleys, British Columbia: implications for placer gold exploration. In Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 1-5.

Dreimanis, A. 1988. Till: Their Genetic Terminology and Classification. In Genetic Classification of Glaciogenic Deposits. Edited by R.P. Goldthwait and C.L. Matsch, Balkema, p. 17-67.

Flint, R.F. 1971. Glacial and Quaternary geology. John Wiley and Sons, New York.
Fulton, R.J. 1967. Deglaciation studies in Kamloops region, an area of moderate relief, British Columbia. Geological Survey of Canada, Bulletin 154.

Fulton, R.J. 1971. Radiocarbon geochronology of southern British Columbia. Geological Survey of Canada, Paper 71-37.

Klassen, R.A. 1997. Glacial history and ice flow dynamics applied to drift prospecting and geochemical exploration. In Proceedings of Exploration '97: Fourth Decennial International Conference on Mineral Exploration. Edited by A.G. Gubins, p. 221-232.

Krumbein, W.C. 1937. Sediments and exponential curves. Journal of Geology 45: 577. 601.

Lett, R.E., Bobrowsky, P.T., Cathro, M. and Yeow, A. 1998. Geochemical pathfinders for massive sulphide deposits in the southern Kootenay Terrain. In Geological Fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, p. 15-1-15-9.

Levson, V.M., Stumpf, A.J. and Stuart, A.J. 1998. Quaternary geology and ice-flow studies in the Smithers and Hazelton map areas (93L and M): implications for exploration. In Geological Fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, p. 5-1-5-8.

Miller, J.K. 1984. Model for clastic indicator trains in till. In Prospecting in Areas of Glaciated Terrain - 1984. Institution of Mining and Metallurgy, London, p. 69-77.

Paulen, R.C. 1999. Interpretation of geochemical footprints in the southern interior. In Drift Exploration in Glaciated Terrain. A Short Course presented during the $19^{\text {th }}$ International Geological Exploration Symposium, Vancouver, Canada, p 377 396.

Paulen, R.C., Bobrowsky, P.T., Lett, R.E., Bichler, A.J. and Wingerter, C. 1999. Till geochemistry in the Kootenay, Slide Mountain and Quesnel terranes. In Geological Fieldwork 1998. British Columbia Ministry of Energy and Mines, Paper 1999-1, p. 307-320.

Tipper, H.W. 1971. Glacial geomorphology and Pleistocene history of central British Columbia. Geological Survey of Canada, Bulletin 196.

[^0]: Sample type: Rock. Samples Deginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^1]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: Sample type: -230 TILL. Samples beginning'RE' are Reruns and 'RRE' are Reject Reruns.

[^3]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^4]: Sample type: -230 T1LL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^5]: Sample type: -230 IILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^6]: Sample type: -230 T1LL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^7]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^8]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^9]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^10]: Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^11]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^12]: Sample type: -230 TILL.

[^13]: Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^14]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^15]: Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^16]: Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^17]: Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^18]: Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^19]: Sample type: -230 IILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^20]: Sample type: - 230 TILL. Samptes beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^21]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE are Reject Reruns.

[^22]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^23]: Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^24]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^25]: Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^26]: Sample type: - 230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^27]: Sample type: rill $\$ 230.40 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^28]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^29]: Sample type: TILL $\$ 23040 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^30]: Sample type: TILL $\$ 23040 \mathrm{C}$. Samples beginning 'RE' are Reruns and 'RRE' are reject Reruns.

[^31]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^32]: Sample type: TILL 5230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^33]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^34]: Sample type: TILL 523040 C . Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^35]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^36]: Sample type: TILL $\$ 230$ 40C. samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^37]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^38]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^39]: Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^40]: Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^41]: Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^42]: Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^43]: Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

