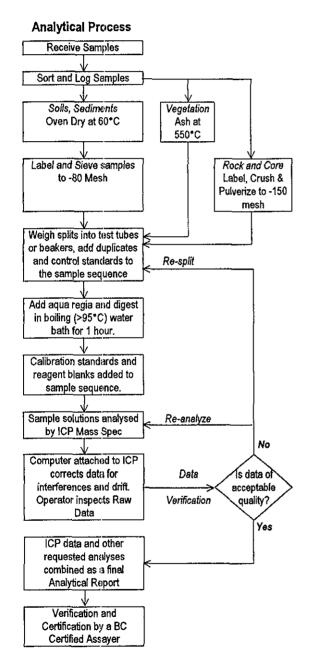
APPENDICES

- II Assay Procedures ACME Analytical Laboratories Ltd.
 - (a) Group 1F Ultratrace by ICP-MS
 - (b) Group 4A Whole Rock Analysis by ICP
 - (c) Group 4B Whole Rock Trace Elements by ICP-MS
- IV Assay Certificates
- V Surficial Geology, Eureka property by Roger C. Paulen; June 19, 2000
- VI Ice Flow Patterns & Copper Dispersal Trains, Eureka Property by R. C. Paulen; Oct 1, 2000 contains details of the trenching program
- VIII Petrographic Reports
- IX Drill Logs
- X Expenditures & Assessment Data
- XI Author's Qualifications

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Appendix II


ASSAY PROCEDURES

A ACME ANALYTICAL LABORATORIES LTD.

852 East Hastings Street ◆ Vancouver, British Columbia ◆ CANADA ◆ V6A 1R6
Telephone: (604) 253-3158 ◆ Fax: (604) 253-1716 ◆ Toll free: 1-800-990-ACME (2263) ◆ e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1F-MS - ULTRATRACE BY ICP-MS • ANGLO OPTION

Comments

Sample Collection

Samples may consist of soil, sediment, plant or rock. A minimum field sample weight of 200 gm is recommended.

Sample Preparation

Soils and sediments are dried (60°C) and sieved to -80 mesh (-177 microns). Moss-mat samples are dried (60°C), pounded to loosen trapped sediment, then sieved to -80 mesh. Rocks are dried (60°C) crushed (>75% -10 mesh) and pulverized (>95% -150 mesh). Splits weighing 1 to 30 g (Optional packages) are placed in bottles. Each batch (34 samples) contains a duplicate pulp split for monitoring precision and reference material DS2 for monitoring accuracy.

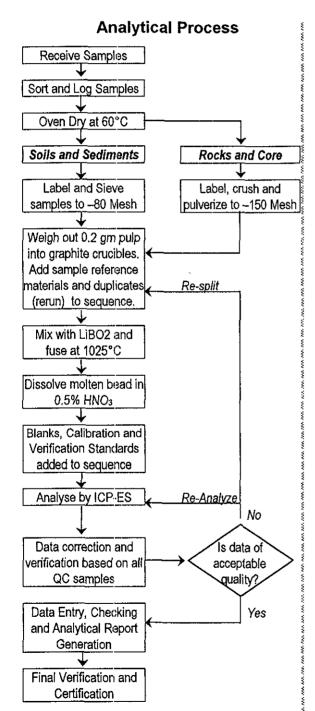
Sample Digestion

Aqua Regia is added to each bottle (3mL/gm of sample). Aqua Regia is a 2:2:2 mixture of ACS grade concentrated HCI, concentrated HNO₃ and distilled H₂O. Sample solutions are heated for 1 hr in a boiling hot water bath (95°C). The solutions are then diluted to 20:1 mL/gm ratio. A reagent blank is carried in parallel through leaching and analysis.

Sample Analysis

Analysis is by an Elan 6000 ICP Mass Spec. For the Anglo Option, 51 elements are determined comprising: Au, Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Other optional elements include the REE suite, Pt and Pd. Sample volumes of 10 to 30 gm are recommended when the determination of Au or other elements subject to the nugget effect are of importance.

Data Evaluation


Raw data are reviewed by the instrument operator and by the laboratory information management system. The data is subsequently reviewed and adjusted by the Data Verification Technician. Finally all documents and data undergo a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

AAACME ANALYTICAL LABORATORIES LTD.

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6
Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 4A: WHOLE ROCK ANALYSIS BY ICP

Comments

Sample Preparation

Soils and sediments are rarely analysed by Group 4A, however method of sample preparation is provide for completeness. Soil and sediment samples are dried (60°C) and sieved to -80 mesh ASTM (-177 microns). Moss-mat samples are dried (60°C), rnacerated then sieved to recover -80 mesh sediment or ashed at 550°C (upon a client's request). Rocks and drill core are crushed and pulverized to -150 mesh ASTM (-100 microns). Sample splits (0.2 gm) are placed in graphite crucibles and a LiBO2 flux is added. Duplicate splits of crushed (rejects duplicate) and pulverized (pulps duplicate) fractions are included with every 34 drill core or trench samples to define sample homogeneity (reject duplicate) and analytical precision (pulp duplicate). Duplicate pulp splits (only) are included in every batch of soil, sediment and routine rock samples. A blank and in-house standard reference material STD SO-15 are carried through weighing. digestion and analytical stages to monitor accuracy. STD SO-15 has been certified in-house against USGS CRMs AGV-1, BCR-2, G-2, GSP-2 and W-2.

Sample Digestion

Crucibles are placed in an oven and heated to 1025°C for 25 minutes. The molten sample is dissolved in 5% HNO₃ (ACS grade nitric acid diluted in demineralised water). Calibration standards and reagent blanks are added to the sample sequence.

Sample Analysis

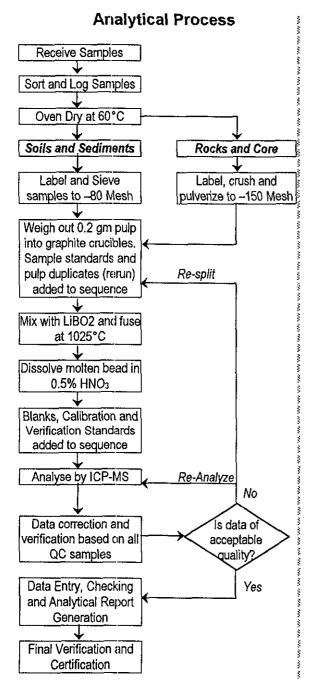
Sample solutions are aspirated into an ICP emission spectro-graph (Jarrel Ash AtomComp Model 975) for the determination of the basic package consisting of the following 17 major oxides and elements: SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O, MnO, TiO₂, P₂O₅, Cr₂O₃, Ba, Ni, Sr, Sc, Y and Zr. The extended package also includes: Ce, Co, Cu, Nb, Ta and Zn. Loss on ignition (LOI) is determined for both packages by igniting a 1 g sample split at 950°C for 90 minutes then measuring the weight loss. Total Carbon and Sulphur are determined by the Leco method (Group 2A).

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical report before release to the client. Chief assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

AA ACME ANALYTICAL LABORATORIES LTD.

852 East Hastings Street Superior Vancouver, British Columbia CANADA V6A 1R6
Telephone: (604) 253-3158 Fax: (604) 253-1716 Toll free: 1-800-990-ACME (2263) Sermail: info@acmelab.com


Document: Methods and Specifications for Group 4A.DOC Date: March 6, 2000 Prepared by: J. Gravel

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6
Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 4B: W/ROCK TRACE ELEMENTS BY ICP-MS • ANGLO OPTION

Comments

Sample Preparation

Soils and sediments are rarely analysed by Group 4B, however method of sample preparation is provide for completeness. Soil and sediment samples are dried (60°C) and sieved to -80 mesh ASTM (-177 microns). Moss-mat samples are dried (60°C), macerated then sieved to recover -80 mesh sediment or ashed at 550°C (upon a client's request). Rocks and drill core are crushed and pulverized to -150 mesh ASTM (-100 microns). Sample splits (0.2 gm) are placed in graphite crucibles and a LiBO2 flux is added. Duplicate splits of crushed (rejects duplicate) and pulverized (pulps duplicate) fractions are included with every 34 drill core or trench samples to define sample homogeneity (reject duplicate) and analytical precision (oulp duplicate). Duplicate pulp splits (only) are included in every batch of soil, sediment and routine rock samples. A blank and in-house standard reference material STD SO-15 are carried through weighing, digestion and analytical stages to monitor accuracy. STD SO-15 has been certified in-house against USGS CRMs AGV-1, BCR-2, G-2, GSP-2 and W-2.

Sample Digestion

Crucibles are placed in an oven and heated to 1025°C for 25 minutes. The molten sample is dissolved in 5% HNO₃ (ACS grade nitric sciel diluted in demineralised water). Calibration standards, verification standards and reagent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP mass spectrometer (Perkin-Elmer Elan 6000) for the determination of the basic package consisting of the following 34 elements: Co, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, Tl, U, V, W, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, IEr, Tm, Yb and Lu. A second sample split is analyzed by Group 1EX to determine the concentrations of: As, Bi, Cd, Cu, Mo, Ni, Pb, Sb and Zn.

Data Evaluation

Raw and final data undergoes a final verification by a British Columbia Certified Assayer who must sign the analytical report before release to the client. Chief assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

HBED Quality Control Procedures: Unconsolidated Surficial Materials

The following standard HBED quality control procedures were used over the course of sample collection and analysis:

- 1 field duplicate sample pair collected in every block of 20 samples as a measure of combined sampling, preparation and analytical variation. In all, a total of 5 field duplicate pairs were collected in each 100-sample sequence.
- 3 control standards were inserted in each 100-sample sequence to monitor analytical accuracy.

Overall, each complete 100-sample sequence contains 92 routine field samples, 5 field duplicate samples and 3 control standards.

HBED Quality Control Procedures: Rock and Drill Core

The following standard HBED quality control procedures were used over the course of sample collection and analysis:

- 1 field duplicate sample pair collected in every block of 20 samples (5%), as a measure of combined sampling, preparation and analytical variation. In all, a total of 5 field duplicate pairs were collected in each 100-sample sequence.
- 1 preparation duplicate sample in every block of 20 samples (5%), as a measure of combined sample preparation and analytical variation. A total of 5 prep duplicate pairs were prepared in each 100-sample sequence. These were split, where possible, from the first samples of each field duplicate pair.
- 3 control standards were inserted in each 100-sample sequence (3%) to monitor analytical accuracy.

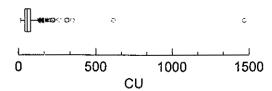
Overall, each complete 100-sample sequence contains 87 routine field samples, 5 field duplicate samples, 5 prep duplicate samples and 3 control standards.

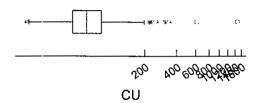
Standards Report Hudson Bay Exploration and Dev. Co. Ltd. Project: Eureka Project - Till Geochemistry Fail: ● +/-2 std. dev. Batch: Scientist: Gerry Bidwell Standard: TILL3 Pass: @ Project date: 2000/12/19 Historic: • Report date: 2000/12/19 Мо Pb Ag . mean:1440 pp.> accept: ±371 (2 st Co Mn Fe As • mean:330 ppm accept: ±15.6 (2 atd.o mesn:10.7 ppm socept; £1.94 (2 sld. mean:83 6 ppr 1 accept: ±13.3 (2 std an 32.5 ppm iss ept; ±3.5 (2 std.de Αu Th Cd mean:1,13 ppm eccept: ±0.306 (2 std dev.) mean() 93 ppb accept; ±1.92 (2 std de Ça Bi 0 mean 0.32 ppm accept: ±0.02 (2 std dev Mg Cì. Ва Τī mean:63.4 ppm accept; ±5.52 (2 std dev mean:0.5 % accept: ±0 04 (2 std.de an:14.6 ppm accept ±0.987 (2 std dev. mean:44.8 ppm accept ±5.91 (2 std.de mean:0 061 % sccept: ±0.00346 (2 std de ΑI Na Κ W mean:4.33 ppm ept: ±1.15 (2 std.dev.) Нg Se Те Ga 0 . en 0.05 ppm lept: ±0 (2 xtd dev. mean:114 ppb accept: ±8:33 (2 std dev. mean:0.167 ppm accept: ±0.115 (2 std d mean:0.02 ppm eccept; ±0.02 (2 std. mean:3.77 pp::) accept: ±0 416 (2 std. Cs Ga Нf Nb Rδ Sn S Та Zτ mean:1.7 ppm accupt, ±0.4 (2 std.dev. meant0 025 ppm accept ±0 (2 std.dev mean 2.3 % accept: ±0.4 (2 std.de an 2 57 ppm apt. ±0.231 (2 ald dev.) mean:0.02 ppm sccept. ±0.02 (2 std.dev.) Çe Ве (3 mean 0.02 ppm accept: s0.02 (2 std.dev.) SampleWt

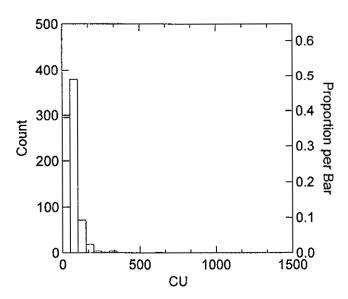
Standards Report Hudson Bay Exploration and Dev. Co. Ltd. Fail: ● +/-2 sto. cev. Project: Eureka Project - Till Geochemistry Batch: Pass: @ Scientist: Gerry Bidwell Standard: TILL4 Historic: • Project date: 2000/12/19 Report date: 2000/12/19 Ag Pb Мо mean:172 pp: accept, ±20,3 [2 std.dev] mean 236 ppm accept: ±10.7 (2 std dev.) mean:41 ppm scoept: ±4.66 (2 std de: mean:60.3 ppm socept. ±7.22 (2 std dev. Mn Fe As Co ٠ ran:14.7 ppm cept: ±1.77 (2 eld de mr an.6.24 ppm accept; ±0 593 (2 std.dev.) mean 287 ppm accept: £31.3 (2 std.de mean:3.28 % accept: ±0 382 (2 std Cd Th Sr Αu mean 9.9 ppm accept: ±1.09 (2 std dev.) ean:2.42 ppm coept: 10.261 (2 std dev.) Ça Bi mran:45.6 ppm ao:ept: 24.7 (2 std.dav.) mean:40.8 ppm sccept: ±1.67 (2 std.dev. mean:0.112 % accept: ±0 00894 (2 std. Ti Ct Mg Ва mean:25.1 ppm accept: x1.4 (2 std der mesn:0.113 % sccept: ±0.0168 (2 std.c freen:27 4 ppm accept: ±3.57 (2 std dev.) Κ w mean 0 298 % accept. ±0.0329 (2 ald.dev.) mesn:7,3 ppm cept: ±25 5 (2 sld dev. Te Ga ⊬g Se meen:6.14 ppm accept: ±0.45_2 std.dev Rb Нf Nb mnan:0.07 Report2 sociept. ±0:0548 (2 std.dev mean:0:092 ppm accept: ±0:0518 (2 std mean:2.06 ppm accept: ±0 463 (2 std dev Zs Sn ran:3.52 ppm cept: ±0.219 (2 skd dev.) nean:0.066 ppm iccept: ±0.0179 (2 std dev Ве Re С́е In moan:48.4 ppm socept: ±5.38 (2 std d mean:0.348 ppm accept: ±0 059 (2 e4d de mean:1.9 ppm sccept: ±2.28 (2 std.dev.) SampleWt nan 22.3 ppb cept: ±1.88 (2 std.dev man:7 ppm scoept: 22:24 (2 std.der

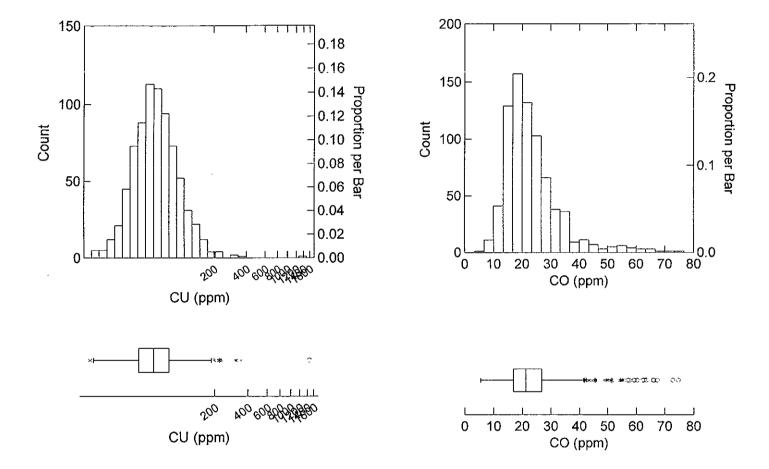
Standards Report Hudson Bay Exploration and Dev. Co. Ltd. Project: Eureka Project - Till Geochemistry Batch: Fail: +/-2 std. dev. Pass: @ Standard: S1 Scientist: Gerry Bidwell Project date: 2000/12/19 Report date: 2000/12/19 Historic: • Zn Ag Cu Рb Мо mesn:40.9 ppt accept: ±18.9 (2 std.de ian:1.05 ppm rapt: ±0.088 (2 std dev.) As Fе Ço Mn mean:4 04 % sccept: ±0.283 (2 std.de Sr Cd Th Αu mean:1,66 ppb accept: ±1,41 (2 std der mean:47.1 ppm accept. ±5,79 (2 std dt Ca mean:158 ppm accept; ±8.16 (2 std.dev.) Ва C. Мg mean:40.8 ppm accept: ±4 83 (2 std.d :11.8 ppm of: ±1.33 (2 std dev. mean:0.135 p; m accept: ±0.0955 (2 std dev.) Ga Te Se Нg mean.10 6 ppm accept: ±0.85f (2 skd dex Rb Ge Hf Νþ mean 1,29 SAMPLES2 accept ±0,134 (2 std dev.) mean 9.115 Report2 accept. ±0 121 (2 std de mean:0 667 ppm eccept: ±0.107 (2 std de mean:0.454 ppm accept, ±0 105 (2 s Zr Sn mesn.0.0126.ppm sccept ±0.015 (2 std dev mean:38.8 % accept; ±3.72 '2 std.dev. an 9 07 cpm cept ±0.764 (2 std dev Re Ве Сe mnan 30 ppm accept: ±2.54 (2 std.dev mean.0.0676 ppm accept: s0.0391 (2 sld.6ev. mesn:0.588 ppm sccept: ±0.728 (2 std.: SampleWt nan:10.9 ppb pept: 21.18 (2 std.dev.) m)an:30 ppm accept. ±0 (2 std.dev.)

Standards Report
Hudson Bay Exploration and Dev. Co. Ltd.


Project: Eureka Project - Till Geochemistry Scientist: Gerry Bidwell

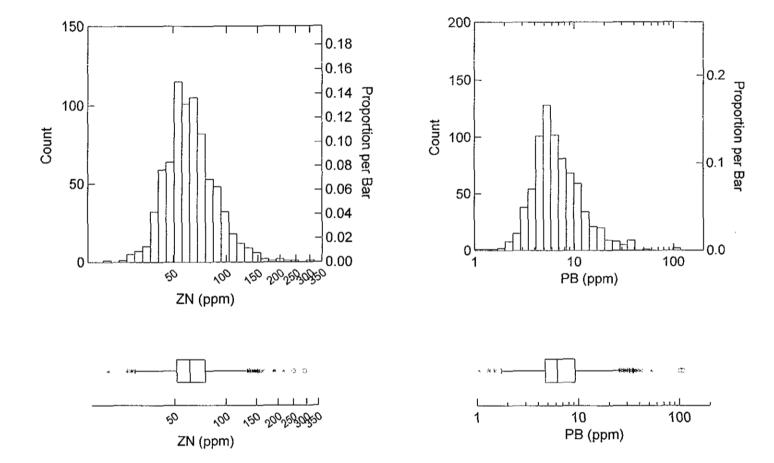

Batch: Standard: DS2

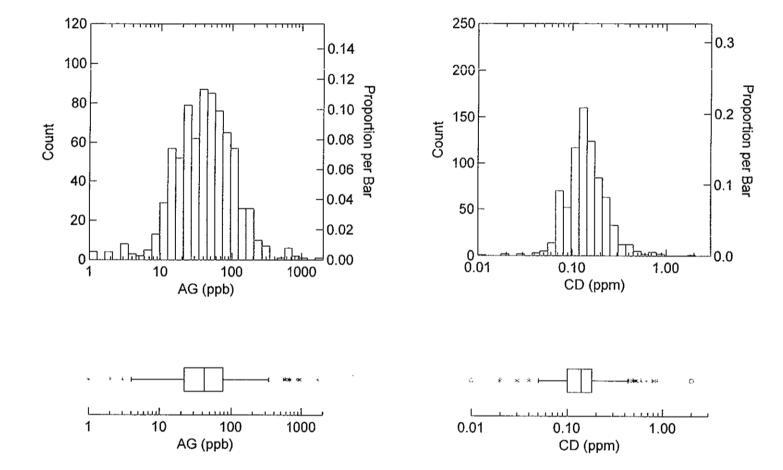

Fail: ● +/-2 std. dev.


Pass: ®

Project date: 2000/12/19		Report dat	te: 2000/12/19	listoric: ●
Мо	Cu -	Pb	Zn	Ag
• •	1			
			······································	
•	· · · · · · · · · · · · · · · · · · ·	•		
ean:13 ppm -epi 20 659 (2 etd.dev.)	mean 126 ppm accept: 46 2 (2 sld.dev.)	mean:32.6 ppm accept: ±1.62 (2 std.dev.)	mean:158 ppm sccapt: ±8.99 (2 std.dev.)	mean 262 ppb accept: ±18.3 2 sld dev.)
ч	Co .	Mn	Fe .	As .
			† ``	
a a a a a a a a a a a a a a a a a a a				
an:34,7 ppm sept: ±2,43 (2 std,dev.)	musn 11.7 ppm accept, ±0.759 (2 skt dev.)	mes n \$1.4 ppm accept ±44 (2 std dev.)	maan3.07 % accept: ±0.176 (2 std.dev.)	mean 57.3 ppr v accept: ±3 54 (2 std.dev)
υ	Au .	Th	Sr	Cd
		• • •		
esn:19,7 ppm ccept: 12,68 (2 std.dev.)	mean:204 ppb accept: ±18.7 (2 std dev.)	mean 3.54 ppm accept: ±0.287 (2 std dev)	mean:27.4 ppm accept: ±2.57 (2 std dev.)	meán:10.3 ppn: accept: ±0.809 (2 std dev.)
b	Bi	v	Ca .	P
4		• • • • • • • • • • • • • • • • • • • •		

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	j	· · · · · · · · · · · · · · · ·	· · · · · .	
-an 2-65 ppm -apt: 20,795 (2 abd.dev.)	mean:10.8 ppm except: s0 647 (2 skl.dev.)	mean:73.7 ppm eccept: ±3.33 (2 std.dev.)	meant).52 % accept: t0.0453 (2 std.dev.)	mean:0.0894 %. accept: ±0.00516 (2 std dev.)
lla .	·	Mg	Ba	т .
		• • • • • • • • • • • • • • • • • • • •		
ean:15.7 ppm coept. ±1.44 (2 std dev.)	menn:156 ppm scospt: ±13.4 (2 std dev.)	mean:0.584 % accept: ±0.0439 (2 etd dev.)	mean:149 ppm accept, ±19,4 (2 std.dev.)	mean(0.0909 % accept: ±0.012; (2 std.dev.)
В	AI	Na	к	W
• • • • • • •			.	•
4		ļ	 	
• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	·	• • • • • • • • • • • • • • • • • • •
noan 2.45 ppm :ept: 21.94 (2 std.dev.)	meini:1.67 % accept: ±0.114 (2 std day.)	mean:0.0298 % accept: ±0 0043 (2 std.dev.)	mean 0.153 % socept: ±0.0171 (2 std dev)	mean;7,34 ppr/ accept: ±0,692 (2 std.dev.)
1	H ₃	Se	Te	Ga
				•
				• • • • • • • • • • • • • • • • • • • •
an:1.82 ppm Mapt: ±0.0938 (2 std dev.)	mean 237 ppb ecospt: ±22.1 (2 std.dev.)	mean 2.3 ppm accept: ±0.257 (2 std.dev.)	mean:1.86 ppm accept: ±0 179 (2 std.dev.)	mean 5.9 ppm accept: 20 341: '2 std dev.)
Cs	Ge	Hf •	Nb	Rb .
	•			
	5-1-1-1-1 b + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +			
rean/3.3 SAMPLES2 ccept: ±0,242 (2 etd.dev.)	menn/0.0597 Report2 accept: ±0.0498 (2 std.dev.)	mean:0.0379 ppm accept: ±0.0268 (2 std.dev.)	mean;1,38 ppm eccept: ±0.154 (2 std.dev.)	mean:12.9 ppm sccept: ±0.933 · 2 std.dev.)
C	Sa	s	Та	Zr
gram i saman na majar sa ja gar				
**************************************		· · · · · · · · · · · · · · · · · · ·		-
• • • • • • • • • • • • • • • • • • • •			T'	
an 2.92 ppm Sept: ±0.296 (2 std.dev.)	meon.28 ppm accopt: a1.23 (2 std.dev.)	mean:0 0255 ppm accept: s0.018 (2 std.dev.)	mean:0.025 ppm accept: 10 (2 std dev.)	mean:2 84 % accept: ±0.495 (2 std.dev.)
1	Cit	In	Re •	Be
		,	•	•
				* * * * * * * * * * * * * * * * * * * *
				1
nean:7.66 ppm ccept. 20.355 (2 sid.dev.)	meen:30 ppm accopt: s2.51 (2 std.dev.)	mean 5.35 ppm accept: s0.351 (2 std dev.)	mean:1.56 ppm accept: ±2.13 (2 std dev.)	mean.0.545 ppin. accept: ±0.184 · 2 std.dev.)
CONPT. 10.355 (2 90.66V.)	SampleWt	moneyo, 20, do 1 (x Bu GEY.)	American Agency (Control of the Control	
<u> </u>	***			
nant4.4 ppb cept: ±1.11 (2 ski.6ey.)	mein:30 ppm accript: 20 (2 std.dev.)			





Histogram and box plot showing log distribution of Cu (ppm) and Co (ppm) in till (<63 micron fraction)

Histogram and box plot showing log distribution of Zn (ppm) and Pb (ppm) in till (<63 micron fraction)

Histogram and boxplot showing log distribution of Ag (ppb) and Cd (ppm) in till (<63 micron fraction)

Appendix IV

ASSAY CERTIFICATES

EUREKA ASSAYS - LAB REPORTS & TURN AROUND TIME

		Samples	Lab	Confirm	Group 1EX	Group 1F	Group 4A	Group 4B	Group 7AR	LOI	from lab	from field
Lab No.	Туре	Sent	Received	Request	Results	Results	Results	Results	Results		to results	to results
2291	moss	7-Jul	10-Jul	13-Jul		31-Jul					21	24
2291R	moss	7-Jul	22-Nov	75 041		0.00.				8-Dec	16	i - '
2374	moss	11-Jul	13-Jul	15-Jul		28-Jul					15	17
2374R	moss	11-Jul	22-Nov							8-Dec	16	
2512	moss	18-Jul	20-Jul			8-Aug					19	21
2512R	moss	18-Jul	22-Nov							4-Dec	12	
2627	moss	25-Jul	26-Jul			13-Aug					18	19
2627R	moss	25-Jul	22-Nov				1			4-Dec	12	i
3057	moss	15-Aug	16-Aug			5-Sep					20	21
3057R	moss	15-Aug	22-Nov			•				4-Dec	12	
3304	moss	29-Aug	30-Aug			12-Sep					13	14
3304R	moss	29-Aug	22-Nov							4-Dec	12	<u> </u>
4181	moss	10-Oct	13-Oct			30-Oct					17	20
4181R	moss	10-Oct	22-Nov				<u> </u>			4-Dec	12	
4332	moss	10-Oct	24-Oct			15-Nov					22	36
4332R	moss	10-Oct	22-Nov							4-Dec	12	İ
4333	moss	23-Oct	24-Oct			15-Nov	-				22	23
4333R	moss	23-Oct	22-Nov							4-Dec	12	
1847	rocks	13-Jun	14-Jun			5-Jul	5-Jul	1	i		21	
1847R	rocks	13-Jun	22-Nov		13-Dec			13-Dec			21	<u>l</u>
2202	rocks	4-Jul	5-Jul			20-Jul	20-Jul				15	
2202R	rocks	4-Jul	22-Nov		18-Dec			18-Dec			26	I.,
2513	rocks	18-Jul	20-Jul			4-Aug			1		15	17
2513R	rocks	18-Jul	22-Nov		14-Dec		14-Dec	14-Dec			22	
3058	rocks	15-Aug	16-Aug			31-Aug	31-Aug				15	
3058R	rocks	15-Aug	22-Nov		15-Dec			15-Dec			23	
3305	rocks	29-Aug	30-Aug			14 - Sep					15	
3305R	rocks	29-Aug	20-Sep]	1	26-Sep		6	
3305R2	rocks	29-Aug	22-Nov		8-Dec		8-Dec	8-Dec			16	ļ
4335	rocks	23-Oct	24-Oct		22-Nov	22-Nov	22-Nov	22-Nov			29	30
4396	rocks	31-Oct	31-Oct	1	23-Nov	23-Nov	23-Nov	23-Nov	l		23	23
4396R	rocks	31-Oct	1-Dec	1-Dec		<i>-</i> .	 		8-Dec		7	
5002	rocks	13-Dec	14-Dec	L	5-Jan	5-Jan	5-Jan	5-Jan			22	23
			1 44 6				F 1.1					r
1848	till	13-Jun	14-Jun	 		5-Jul	5-Jul				21 21	22 21
2057	till	23-Jun	23-Jun			14-Jul	14-Jul				18	19
2201	till	4-Jul	5-Jul	ļ	26 4	23-Jul	26 4	26 4	ŀ			
2201R	till	4-Jul	31-Jul	45 101	26-Aug	20 1	26-Aug	26-Aug			26 15	17
2373	till	11-Jul	13-Jul	15-Jul		28-Jul	7 Dog	ŀ			15	1 17
2373R	till	11-Jul	22-Nov 20-Jul	 		9 4	7-Dec		ļ. <u>-</u>			
2511	till 4:11	18-Jul	20-Jul 31-Jul		20 4	8-Aug	20 4	20 4	•		19 28	
2511R 2626	till till	18-Jul 25-Jul	26-Jul		28-Aug	10-Aug	28-Aug	28-Aug			15	
2626R	till	25-Jul	22-Nov			iv-Aug	7-Dec		ŀ		15	
3056	till	15-Aug	16-Aug			2-Sep	1-000				17	18
3056R	till	15-Aug	22-Nov			_ 50p	7-Dec				15	
3303	till	29-Aug	30-Aug		<u> </u>	12-Sep	1 200			····	13	14
3303R	till	29-Aug	22-Nov			.= -op	7-Dec				15	
3480	till	5-Sep	7-Sep	12-Sep	ļ	21-Sep	1		·		14	
3480R	till	5-Sep	22-Nov			.	7-Dec	l	l		15	
3741	till	18-Sep	19-Sep			5-Oct	1	 	 		16	
3741R	till	18-Sep	22-Nov				7-Dec	1	<u> </u>		15	
4334	till	23-Oct	24-Oct	 	10-Nov	10-Nov	10-Nov	10-Nov			17	18

Group 1EX - ICP by total digestion

Group 1F - Ultratrace by ICP MS

Group 4A - Whole Rock by ICP

Group 4B - Whole Rock Trace Elements by ICP MS

Group 7AR - Multi-Element Assay by ICP (high grade)

LOI - loss on ignition

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co.(Ltd. PROJECT 2398 File # A001847 Page 1

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submi≉ted by: Gerry 8idwell

SAMPLE#	Ī	si02	A1203	Fe203					TiO2			Cr203	Ba		Sr		Y	Nb	Sc		TOT/C 1		SUM %		
		%	%	*	%	%_	%	%	%	- %	%_	%	pрm	ppm	ppm	ppm	ppm	ppm	ppm		*	- %			\dashv
NWRR-10160		50 74	14.81	10 01	6.36	9.67	3.91	.09	1.79	-15	.17	.029	61	77	156	102	34	11	37	2.1	.03	.12	99.89		-
NWRR-10150		50.32	14.86	10.92	5.75	7.80	4.09	.45	2.17	.20	.20	.018	1151	63	122	126	40	12		2.9	.03	.02	99.86		
NWRR-10007		50.29	15.42	9.01	6.80	8.98	3.92	.16	1.50	.14	. 15	.039	131	94	253	94	30	14		3.4	.08	.04	99.89		- 1
NWRR-10117		47.92	14.71	8.84	9.46	9.08	2.83	.10	1.34	.14	.16	.053	225	198		73		<10		5.1	.02	.06	99.81		
NWRR-10147		87.04	5.61	2.07	.88	.28	.08	1.51	.38	.07	.06	.007	3381	28	11	116	<10	<10	10	1.6	.03	<.01	99.99		-
	- 1																								1
NWRR-10112	1	51.41	14.49	10.54	5.81	8.16	4.11	.07	1.85	.17	.16	.011	98		118		35	10		3.2	.04	.43	100.04		
NWRR-10141	1	50.87	13.88	11.47	7.80	6.75	3.31	.18	1.81	.15	. 19	.034	225	111	131	93		<10		3.6	.03	.04	100.12		
NURR-10014	1	47.21	11.49	11.16	.51	10.35	3.50	.81	2.52	.28	. 19	.063	669	214	219	148		28		11.7		.06	99.94		-
NWRR-10001	1	53.25	13.01	9.72	7.20	5.47	2.19	1.55	1.58	.17	.21	.027	3281		88			<10		5.2		3.25	99.99		
NWRR-10116		52.03	13.44	10.72	6.48	8.49	3.52	<.04	1.78	. 15	.16	.029	142	69	112	7 5	31	<10	41	3.0	.10	<.01	99.89		- 1
	-													407				47	47	76 7	7 10	.30	99.97		1
NWRR-10009		26.39	6.34	5.02	1.27	31.01	1.30	.99	.77	-17	.12	.023	1339	103	741	49		17		3.0	7.19 .07	.56			- 1
NWRR-10103		48.83	14.48	13.63	6.69	6.45	2.67	1.46	2.10	.18	.16	.021	302			110		<10		3.1	-03	.57	99.54		_ [·
RE NWRR-10103	;	48.60	14.42	13.57	6.76	6.44	2.69	1.44	2.09	.17	.16	.019	296			123		<10		3.0		.57			- 1
RRE NWRR-1010	3	48.94	14.41	13.50	`6.89	6.48	2.74	1.42	2.08	.16	.16	.018	2/3			119	37	11		2.7	.41	.06	99.86		- 1
NWRR-10144		79.17	7.92	3.47	1.50	1.55	.53	2.07	.64	.13	.05	.024	4/9	97	80	201	13	20	,	2.1	.41	.00	77.00		
							2 /2	22	70	05	03	01/	212	39	47	88	13	10	٥	.8	. በፕ	<.01	100.14		- 1
NWRR-10153		85.50	6.55	1.44	1.36	1.15	2.60	-22	2.00	.05	10	021	80		141		40	10		2.7	.01	.09	99.98		- [
NWRR-10146	1	49.34	14.50	11.45	6.62	9.02	3.04	-1/	2.09			.021 .027	81			115	39	11		5.0		.03	99.84	·	
NWRR-10114		50.42	14.25	12.06	6.49	4.94	4.03	<.U4	2.20	16	. 17	013			866	56	26	22			10.11	.28	99.82		
NWRR - 10008		9.91	5.61	4.60	2.//	40.60	.02	1 77	-11	. 10	07	.002	5/0	24	31	-	14	10		1.7		<.01	99.96		
NWRR - 10003		84.85	0.44	2.10	.95	.41	.47	1.73	-44	.04	.07	.002	747	4	٥,	.0.				•••	•••	• • •			1
NWRR-10011		17 57	1 00	7 15	00	45.07	23	14	13	.04	. 18	.006	298	22	885	<10	19	<10	5	35.3	10.37	.44	99.95		
NWRR-10011		51 00	1/ 13	10 53	5 22	8.69	4 13	.10	2 04	15	.16	.022	52		91			<10	38	3.7	.02	.42	99.92		
NWRR-10015		10 56	5 06	3 18	1 05	38.02	.43	.89	.36	.09	. 12	.003			1336		24	<10	4	31.0	8.76	.01	99.97]
NWRR-10113		40 75	13 04	12 50	6.36	9.13	1.66	.38	2.14	.18	.20	.026	135		130		41	<10	39	3.5	.07	.03	99.92		
NWRR-10133		54 84	18 33	8 18	2.00	3.58	3.06	1.16	1.41	.15	.12	.010	364	<20	332	173	29	12	23	7.2	.68	.01	100.15		- 1
NACK 10133		34.04	10.55	00	2.00	5.25																			ı
NWRR-10145		50.45	14.55	9.22	8.84	8.14	3.47	.18	1.03	.09	. 15	.058	428	184	138	53	20	<10	34	3.7	.07	<.01	99.98		
NWRR-10111		51 03	14 84	10.85	6.07	8.60	2.87	.40	1.96	-14	. 18	.012	180	47	222	103	37	<10	39	3.1	.05	.02	100.13		ŀ
RE NWRR-10111		51.01	14.71	10.93	6.10	8.64	2.81	.40	1.96	-14	.18	.011	180	43	221	116	38	<10		3.0	.04	.02	99.97		
RRE NWRR-1011	1	50.94	14.84	10.71	6.10	8.58	2.91	.39	1.94	.15	.18	.011	179		223		37	<10	39	3.1		<.01	99.93		- 1
NWRR-10148	''	47 77	13.11	14.64	7.29	8.07	1.95	.44	2.15	.20	.20	.013	462	83	198	94	39	10	41	4.3	.26	<.01	100.24		- 1
MARK 10140		7,		,,,,,,,			,,,,																		- 1
NWRR-10157		48.54	14.80	12.18	6.20	9.58	2.41	.25	2.18	.16	.20	.027	143	79	99			<10		3.5	.03		100.09		ı
NWRR-10142		56.20	12.57	9.33	6.41	7.56	2.99	.06	1.59	.15	. 17	.031	60	108		105		<10		2.9			100.02		-
NWRR-10115		50.95	14.02	8.10	7.73	6.47	3.48	.15	1.34	.09	. 13	.067	303	105	195	68		<10		7.5			100.12		
STANDARD SO-1	5/CSB	50.70	12.10	7.08	7.04	5.70	2.34	1.85	1.77	2.62	1.35	1.029	1922	76	384	934	23	23	12	5.9	2.48	5.20	99.88		\dashv

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK

SIGNED BYD TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

SAMPLE#	si02 %		Fe203	Mg0 %	CaO	Na20	K20 Ti	2 P20	5 MnO %	Сг203 %	Ba ppm	Ni ppm	Sr ppm	Zr ppm	PPITE TIPOTE	ppm dk	Sc ppm	LOI %	TOT/C	TOT/S %	SUM %	
NWRR-10109							.29 2.				122	79	142	133	38 16	<10 53		3.4	.05 4.96	.55 1.57	99.83 99.89	
NWRR-10016			10.91				.39 .			.113	490	320	322	90 66	<10			29.8		.10	99.16	
NWRR-10010			7.30				.16 .4			.008	202	60	697	189	13		_	1.4	.08	.01	99.84	1
NWRR-10151			1.35				.11 .			.015	82	42	44		37	<10	37	2.8	.03	.11	99.78	i
NWRR-10143	49.44	14.35	10.88	6.55	10.24	2.83	.34 1.	70 .1	7 .18	.021	88	59	255	124	31	<10	31	2.0	.03	• • • •	77.70	
NWRR-10120 NWRR-10019 NWRR-10002 NWRR-10105 NWRR-10110	38.27 55.38 47.17	14.09 12.33 16.72	9.39 11.42	8.51 6.81 5.23	6.66 5.24 7.89	2.43 2.28 3.72	.50 . 1.04 1. 1.58 1. .05 2. .15 1.	17 .1 33 .1 17 .2	2 .12 5 .20 0 .41	.091 .028 .005	841 2921	37 165 96 36 96	27 206 85 90 126	32 75 120 130 128	<10 21 30 38 39	<10 12 10	34 30	1.0 18.3 4.7 4.6 2.6		.10 .01 3.56 .02 .03	99.68 99.95 99.89 99.64 99.69	
WIDD 40047	25 12	2 75	4 00	4 05	30 /8	11	.52 .	45 2	1 16	022	423	146	457	68	11	14	6	28.6	8.32	.24	99.80	
NWRR-10017	10 77	11. 24	11 /0	4.03	0.70	3 75	.12 2.	1. 10			74			130	38	12	38	2.8	.03	.26	99.62	i
NWRR-10102			3.02					1 .0					111	124	14		10	1.7	-03	.09	99.86	
NWRR-10155								7 .1					535	28	<10			28.3		.08	100.03	
NWRR-10012			4.34							.036			298	99	27	15	37			.08	99.64	· .
NWRR-10006	20.75	14.90	9.29	7.00	0.23	4.07	.30 1.	,, .,	. 10	.030	150	,,	2,0	,,								
NWRR-10107 NWRR-10118 RE NWRR-10118 RRE NWRR-10118 NWRR-10152	68.07 66.55 68.12	2.56 2.64 2.53	13.58 16.40 17.34 16.28 11.34	.93 .97 .89	.35 .37 .33	.05 .06 .03	.57 .	11 .0 11 .0 11 .0	8 .52 4 2.14 2 2.26 4 2.19 9 .21	.007 .011 .005	2291 2235	84 69 82 72 90	26	154 40 46 36 114	50 <10 <10 <10 34	11		5.1 8.5 8.5 8.6 3.4	2.07	1.73	99.79 99.99 99.66 99.95 100.05	
W.D. 40404	00.01	0 /2	3.93	1 0/	72	45	1.52 .	55 .0	9 .09	.010	1518	46	20	177	19	15	12	2.1	.04	.05	99.84	Y
NWRR-10106			10.49				.34 1.		4 .22		84	106	151		30	<10	38			.07	100.06	
NWRR-10004			5.04							-	123	72	42	119	21	17		1.7		.02	99.86	i
NWRR-10108							1.18 1.					23	336		28	17	23		.65	.03	99.96	
NWRR-10166							1.09 1.					158		80	23	.10		15.7		.03	99.85	
NWRR-10020	41.90	17.34	0.00	0.41	0.03	2.00	1.09 1.	ا . ر	1 .14	.070	703	150	_,,,	•						•		- 1
NWRR-10104			6.09					74 .1			373 204	47 77		180 108	20 21	11 10	14 21	2.2		.86 .04	100.09	ļ
NWRR-10005	1		6.23			3.34		99 .1				59	182	57	16	11		7.7		.02	99.94	
NWRR-10119			7.72			4.30		97 .0				81		140	19	47		27.2		.10	99.68	
NWRR-10013	23.01	6.28	8.31	7.77	23.87	1.04	1.08 1.	70 .4					397		20	20			2.50		99.74	
STANDARD SO-15/CSB	49.29	12.41	7.52	1.28	2.89	2.42	1.85 1.	00 2.7	1 1.39	1.003	1721		371	1002	- 20							

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001847 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

Page 1 (a)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppb		Co ppm	Mn ppm	Fe %	As ppm		Au Th ppb ppm	Sr	Cd ppm	Sb	Bi V ppm ppm	Ca	P	~~~~		Mg	Ba	*****	B Aì						Te Ga pm ppm
NWRR-10160 NWRR-10150 NWRR-10007 NWRR-10117 NWRR-10147	.18 .71 .18	15.21 38.95 50.56	3.30 2.07 .49	75.9 60.0 50.0	60 33 44	42.8 88.0 178.3	26.1 28.5 34.8	986 5 636 4 792 4	5.40 1.63 1.35	1.7 .5 1.4	<.1 <.1 <.1	1.7 < .1	8.5 15.8 7.2	.10 .08 .07	.14 .07 .19	.04 106 .02 173 <.02 163 <.02 73 .11 14	1.72 2.20 2.06	.079 .056 .052	3.3 2.4 1.8	15.3 42.5 76.0	2.05 2.57 3.77	87.3 16.8 61.2	.398 .321 .189	5 2.98 12 3.15 4 4.26	.068 .093 .057	.03 . .02 . .01	.7 <.0 .3 <.0 .4 .0	2 <5 2 5 2 <5	.2 <.1 .3 <.1 .2 <.1	02 12.8 02 9.8 02 10.4
NWRR-10112 NWRR-10141 NWRR-10014 NWRR-10001 NWRR-10116	.69 1.58 .61	64.57 40.09 56.74 96.99 54.53	.42 4.68 3.25	69.2 83.4 42.7	33 106 78	86.1 230.3 70.5	33.4 52.4 33.9	706 4	5.15 7.34 4.96	2.8 63.1 1.7	<.1 .1 <.1	.9 .1 2.5 .7 2.2 .2	8.2 61.5 12.1	.05 .18 .07	.22 .33 .17	<.02 200 <.02 187 .04 27 .27 85 <.02 165	1.32 7.14 1.34	.059 .140 .065	2.3 12.9 2.4	48.4 53.1 92.3	3.16 .21 2.16	28.0 119.8 247.0	.511 .047 .355	3 3.87 1 .65 3 2.14	.095 .049 .095	.02 .06 .20	.3 <.0 .4 <.0 .9 .0	2 <5 2 <5 4 11	.3 . .3 . 2.1 .	02 12.9 02 13.0 03 1.6 06 6.4 02 11.8
MWRR-10009 MWRR-10103 RE MWRR-10103 RRE MWRR-10103 NWRR-10144	1.11 1.11 1.09	59.67 276.42 280.37 281.58 19.81	11.47 12.05 11.73	383.4 384.2 377.6	114 119 112	31.5 32.0 32.2	19.9 22.0 22.3	693 5 715 5 729 5	5.56 5.71 5.77	4.5 4.7	.2 .2 .2	2.0 .3 3.5 .1 4.0 .1 4.3 .1 2.0 5.6	19.0 20.6	1.20 1.25 1.32	.80 .82 .80	<.02 7 .10 155 .10 161 .10 166 .04 10	1.45 1.51 1.56	.054 .054 .057	1.2 1.3 1.3	36.3 39.4 36.9	2.00 2.06 2.11	63.3 66.0 65.6	.496 .525 .532	4 2.77 2 3.06 3 3.11	.170 .177 .196	.22 < .23 < .24 <	.2 .0 .2 .0 .2 .0	5 584 6 611 5 601	1.2 <. 1.2 <. 1.3 <.	07 .5 02 9.6 02 10.5 02 10.6 02 2.6
NWRR-10153 NWRR-10146 NWRR-10114 NWRR-10008 NWRR-10003	.84 .32 1.00	5.19 35.96 57.75 4.67 11.73	9.21 2.53 70.11	83.1 85.4 121.5	101 46 228	35.9 53.8 23.2	26.3 37.6 15.2	753 5 1172 6 1441 2	5.60 5.90 2.63	.8 1.1	<.1 .1	1.9 3.5 2.3 .1 1.4 .4 1.9 .4 .6 4.2	10.5 28.6 815.3	.13 .11 .73	.26 .26 .25		1.81 2.28 23.65	.084 .074 .061	3.1 2.6 9.1	32.3 165.5 9.9	1.94 3.68 1.57	22.3 29.1 116.1	.290 .611 .016	5 3.22 2 3.94 <1 .13	.068 .063< .008	.02 .01 .04	.4 <.0 .3 <.0 .6 <.0	2 12 2 <5 2 24	.3 <. .3 <. .4 .	02 12.1 02 15.6
NWRR-10011 NWRR-10101 NWRR-10015 NWRR-10113 NWRR-10133	.85 .20 .56	16.73 51.37 5.78 49.67 29.65	4.24 14.39 1.54	75.5 35.1 75.7	65 38 36	66.1 16.6 69.6	31.3 6.4 29.8	624 4 891 1 1013 5	1.41 1.80 5.61	.5 2.1 1.2	<.1 .7 <.1	2.5 .1 1.1 2.8	11.4 1281.5 26.4	.23 .07 .11	.75 .30 .19	<.02 2 <.02 147 .06 6 <.02 179 .13 159	2.22 23.33 2.67	.063 .044 .061	2.0 12.4 1.4	21.6 11.1 83.0	1.50 .47 2.57	17.4 63.2 34.4	.450 .018 .550	6 2.61 1 .89 2 3.87	.094 .005 .128	.01 1. .13 <. .08	.0 <.0 .2 <.0 .5 <.0	2 16 2 <5 2 <5	.8 <.! .2 .: .3 <.!	02 11.7
NWRR-10145 NWRR-10111 RE NWRR-10111 RRE NWRR-10111 NWRR-10148	.47 .51 .53	84.64 49.39 49.21 52.01 59.67	1.68 1.76 1.78	70.6 72.1 74.0	34 41 31	29.8 29.8 31.2	25.6 26.8 28.5	850 5 862 5 907 5	5.11 5.14 5.41	1.2 1.1 1.3	<.1 <.1 <.1	.9 .1 .9 <.1 .8 .1	20.5 20.8 22.1	.09 .08 .09	.19 .21 .20	<.02 59 <.02 148 <.02 147 <.02 157 <.02 158	1.92 1.92 2.01	.069 .068 .072	2.1 2.2 2.4	16.6 13.4 16.8	2.11 2.13 2.23	46.1 45.9 49.0	.515 .506 .536	1 3.28 <1 3.31 <1 3.78	.079 .069 .078	.08 .08 .09	.5 <.0 .5 <.0 .5 <.0	2 <5 2 <5 2 <5	.2 <.! .2 <.! .2 <.	02 8.8 02 8.9 02 9.5
NWRR-10157 NWRR-10142 NWRR-10115 STANDARD DS2	.38	15.77 75.83	2.23	48.8 54.8	38 45	81.8 112 9	26 4 37 4	871 4 1053 5	1.57 5.31	3.1 12.7	.1	.8 .4 .7 <.1	9.9 45.6	.06 .10	.21 .30	<.02 190 <.02 153 <.02 196 11.01 75	1.90	.067 .048	3.7	58.1 463.9	2.30 4.83	13.6 51.9	.443	2 3.81 1 3.07 3 4.03 3 1.65	.057 .051	.01 .02	.7 <.0 .3 <.0	2 <5 2 <5	.2 <.0	02 10.8 02 11.7

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: July 5/00 DATE RECEIVED: JUN 14 2000

SIGNED BY .D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

	SAPLE#	Но	Cu	Pb	Zn	Ag	Ni Co	Mo	Fe	As	U A	w Th	\$r	Cd	Sb	Bi	٧	Ca	PL	.a (Cr H	g 8a	Ti	В	Αl	Ha	K	W TI	Hg	Se	Te	Ga		1
	-	ppm	bba	pps.	ppa	g dag	ber bhar	bba	8	DOM D	A D4	ab ppm	ppa	bba	ppa 1	ppa p	XXA	\$	\$ pp	ya py	opa :	r bbs	*	bba	<u> </u>	*	* M	oa bba	bbp	ppa	bba	bbs		
													-										•											
	NMRR-10109	2.16 1	01.65	1.93	70.1	32 62	.8 26.9	732	5.84	3.0 <	1 2.	4 <.1	13.5	. 15	.43	.04 1	176 1.	.72 .0	67 1.	6 69	.5 2.1	2 25.1	.550	2	2.99 .	114 .	03 .	.2 <.02	13	1.0	<.02 1	10.7		
	NAR-10016	6.98	18.31 1	12.07	62.4	57 421	.0 52.6	1804	6.99 2	85.3 1	1 8	0 4.4	324.9	. 16	3.15	.03	23 11.	.42 .2	26 17.	.9 143	3.2 1.9	0 134.5	.030					.2 .02						
	NMRR-10010	.76	5.03 1	14.47 21	157.8	102 52	.1 15.0	1570	4.83	14.4 <	1 2	.0 .4	711.9	2.51	.17 <	,02	5 17	.55 .0	36 3.	.8 13	3.1 3.2	8 51.4	.014	<1	.06 .	. 800	01 1	.2 .02	468	.2	- 07	.3		
	NARR-10151	2.47	4.83	10.06	16.0	34 33	.2 6.4	236	.94	1.4	3 1	.0 4.2	6.1	.07	.10 <	.02	53	.53 .0	24 10.	.2 71	1.9 .7	1 20.4	.179	2	.88 .	077 .	01 3	.8 .02		<.1	- 02	4.5		-
	MHRR-10143	.96	53.95	3.61	72.7	43 36	.7 26.4	713	4.64	۰6 <	1 1	.4 .1	22.9	-10	.15 <	.02	98 1	.55 .0	71 2.	.4 34	4.1 1.6	3 29.	2 .358	<1	2.76 .	0 91 .	08	.8 .02	. 6	.2	<.U2	0.9		
																										222				•	ns			- 1
	NHRR-10120	2.19	34.48	4.76	22.7	114 14	.7 4.0	6519	1.28	3.6	.1 2	.2 .9	26.9	.02	.63	.16	8	.05 .0	103 3.	.9 17	7.4 .1	2 544.	1 .007	5	.29 .	. 002	08 3	.5 .03	12	.3	.03	1.4		}
	MMRR-10019	.35	64.49	1.10	54.7	75 185	6.6 46.0	993	6.10	54.1 <	.1	.6 <.1	1 109.4	.04	1.35 <	.02	36 5	5.11 .0	145 1.	.5 142	2.5 5.0	2 95.	9 .005					.3 .04						1
	HMRR-10002	2.00	97.55	2.83	29.6	68 68	3.6 31.5	675	5.17	1.7	.1 1	.7 .4	4 11.8	. 04	.16	.27	80 1	.27 .0	070 2.	.7 93	3.4 1.8	3 388.	8 .340					.6 .04						- 1
	MWRR-10105	.44	9.00	1.29	74.0	26 26	5.5 32.4	2816	7.28	1.8 <	.1 I	.5 .	16.3	.04	.29 <	.02 2	226 3	3.43 .0	079 3.	.0 13	3.0 2.5	5 42.	3 .308					.6 < .02						i
	NWRR-10110	.63	53.02	.85	65.7	41 60	0.6 27.9	893	5.03	2.0	.1 1	.7	1 18.5	. 11	.16 <	.02	159 2	2.25 .0	056 1.	.5 106	6.9 1.9	8 21.	5 .521	. 1	2.85	.146 .	.03	.8 <.02	. 49	.2	<.V2	9.7		
																																٠.	•	
	MARR-10017	1.13	17.72	16.90	34.1	43 124	1.7 18.4	1145	4.33	12.1	.5 3	.0 .	5 456.0	. 13	.29	.02	14 19	.82 .0	079 6.	.6 50	0.9 1.9	5 82.	0 .029					.6 .02						
	MMRR-10102	.44	60.40	4.75	90.0	62 68	3.9 28.9	798	5.37	.3 <	.1 1	.4 .	1 10.2	.21	-42	.02	151 2	2.17 .0	169 1	.9 24	4.9 1.7	6 45.	2 .453	3	3.07	. 102	.02	.5 <.02	: 11	.6	<.U2	12.2		
	NL/RR-10155	.69	35.38	2.43	56.9	27 29	3.3 8.0	456	1.31	.1	.3	.7 1.6	6 24.8	.03	-07	. 10	16	.26 .0	021 2.	.3 18	8.5 .5	0 757.	7 .121	. 4	.83	.004 .	23 2	.1 .04	12	<.1	.47	2.9		
	HARR-10012	.49	23.11	5.23	29.9	58 8	1.5 18.6	887	2.66	30.2	.1 1	.0 .:	2 467.5	.07	.19 <	<.02	6 21	1.71 .0	040 4	.7 18	6.2 .6	61 48.	7 .010					.6 .07						
	MARR-10006	.63	60.44	.95	52.4	32 49	25.9	705	4.90	<.1 <	.1	.8 <.	1 12.5	.03	.03 <	<,02	157 1	.42 .0	054 1	.8 45	5.9 2.1	14 29.	2 .312	2 4	2.74	,078 .	.04	.5 <.07	? <5	.2	<.U2	9.1		
																															00	16 4		ĺ
	NMRR-10107	1.27 4	15.21	5.31	68.0	116 90).1 34.7	4054	9.44	1.6	.8 4	.2 2.	8 18.8	.09	. 23	. 19	259 1	1.40 .2	235 20	.1 85	5.1 2.0	9 12.	2 .131	1	3.25	.006 <.	01 1	.2 <.02		4.8	.09	13.4		
	NHRR-10118	3.92 1	42.24	6.60	75.1 3	522 6	5.2 4.5	11671	10.88	15.6	.1 139	.2 .	8 21.6	. 16 1	3.18	.12	28	.21 .0	019 3	.2 5	9.7 .4	10 268.	6 .005	< 1	. 25 .	.002 .	05 2	.2 .04	105	0.3	.04	1.1	•	1
	RE MMRR-10118	3.94 1	41.12	6.63	75.2	1427 6	5.4 4.3	11833	10.84	15.6	.1 136	.9 .	8 21.5	.14 1	2.73	.12	29	.21 .0	019 3	.2 10	0.4 -4	10 277.	4 .005					.2 .05						
	RRE NMRR-10118	4.01 1	36.70	6.44	73.1 3	1558 69	5.2 4.2	11830	10.75	14.7	.1 151	.6 .	8 21.4	.14 1	2.57	,13	29	.21 .0	019 3	.4 9	9.4 .	39 288.	9 .003					.4 .04						l
	MHRR-10152	.27	42.65	1.15	63.0	40 5	5.3 29.8	1018	5.82	.2 <	.1 1	.6 .	1 8.5	.05	.09 <	<,02	125 1	1.95 .0	065 2	.9 17	7.1 2.3	36 30.	865. 0	2	3.69	. 170	02	.4 <.0	. •	. 1	UZ .	11.7		l
																										012	22 1		. 14	. 1	43	5 7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	MARR-10106	.67	9.81	1.69	62.9	21 3	2.9 9.0	614	2.48	1.7	.2	.8 4.	7 5.2	.02	.11	,12	18	.17 .0	029 17	.4 25	9.1 .	90 451.	5 .024		1.60	,012 ,	.00	4 0	, 14	٠.١	- 02	9.6		
	NARR-10004	.80	59.86	1.80	66.3	57 6	8.1 28.6	938	4.81	2.1	.1 2	.8 .	1 10.9	.07	.20	<,02	90 1	1.32 .	054 1	.9 8	1.6 2	31 24.	8 .2/5		3.00	.106 .	.00	.4 .0	, ~	٠,۷	02	0.0		
<u> </u>	NHRR-10108	1.33	23.80	1.89	23.0	21 5	8.7 18 <i>.</i> 8	1935	3.23	1.4	.5 2	.0 3.	1 13.9	.02	. 14	,03	134	.39 .0	045 13	.9 44	4.8 1.	13 54.	3 .100					.6 <.0						- 1
×	NWRR-10166	1.01	30.73	9.87	48.8	38 1	1.9 12.9	477	4.29	2.4	.6 2	.9 3.	0 45.2	.09	.10	, 14	161	.51 .0	040 11	.5 42	2.5 .:	51 88.	4 .362					.2 .1						
	MHRR-10020	.39	76.75	.77	56.4	107 18	4.4 46.9	1075	6.17	53.4	.1	.8 <.	1 88.7	.07	2.56	<,02	45 4	4.67 .0	045 1	.7 178	8.2 3.	/6 144.	9 .015	, 6	.99	.083 .	13	.4 .0	. 5	۲.1	.42	1.0		
																										A22	^ .			1 4	12	5 A		. 1
	NWRR-10104	10.89 7	707.11	1.79	39.7	119 3	2.0 21.1	529	3.83	1.4	.4 3	.0 4.	3 23.8	. 10	.32	,43	61	.59 .0	033 6	.8 57	2.4 1.	1/ 114.	3 .31/		1.83	,0// .	.07 1		, ,	1.0	- 02	8.0		
	NARR-10005	.78	10.38	1.55	33.4	8 4	2.6 18.7	722	3.24	.6	.2	.9 1.	9 10.9	.03	.08	,02	88	.79 .0	041 5	.6 8	1./ 1.	58 44.	1 .291		2.05	,11/ .	12	. I . V			< 02	10.5	•	}
	NARR-10119	.24	70.02	1.14	54.3	37 4	8.7 36.6	1160	5.51	7.3	.1	.5 <.	1 26.6	.12	1.67	<,02	137 4	4.02 .0	023 1	.1 16	6.8 4.	11 152.	/ .132	. 9	4.00	.089	. 13	.2 .0	, ' '	ر.	02	6		1
	NHRR-10013	.76	24.39	9.39 1	574.4	117 6	8.3 16.6	1640	5.20	71.7	.2 2	.6 1.	3 484.6	9.02	.34	<.02	10 14	4.40 .	148 9	.9 2	7.3 2.	9/ 15V.	U .UZ9					.9 <.0						Ì
	STANDARD DS2	13.69 1	29.08	31.77	157.3	271 3	5.3 11.6	805	3.34	55.3 18	.4 191	.2 3.	6 28.4	9.66	8.51 10	0.73	/5	.53 .0	U85 14	.9 15	7.5 .	25 152.	0 .090	, 4	1.09	,029	.10 0	1.7.	2,35	2.3	1.70	J.0		
																																		ľ

852 R. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001847

Page 1 (b)

SAMPLE#	Cs ppm		Hf Nb ppm ppm	Rb ppm	Sc Si ppm ppx			2r ppm	ipibur A	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm			
NWRR-10 NWRR-10 NWRR-10 NWRR-10 NWRR-10	0150 .55 0007 .16 0117 .12	.1	.23 .14 .18 .13 .10 .09	.5	4.0 .6 5.5 .6 4.2 .3	5 .01 5 .03 5 .01	<.05 <.05 <.05	4.6 5.1 2.7	12.38 18.09 13.24 8.91 5.79	10.1 7.4 5.2	<.02	2 <1 <1 <1	.4 .1 .1	6.9 6.8 8.3 55.4 3.2	30 30 30 30 30			
NWRR-10 NWRR-10 NWRR-10 NWRR-10 NWRR-10	0141 .23 0014 .16 0001 .20	.2 <.1 .1	.23 .20 .44 .19 .07 .26 .42 .14 .40 .22	.4 2.7 5.1	7.4 .0 11.1 .1 5.0 1.4	5 .01 1 .03 3 3.17	<.05 <.05 <.05	14.5 2.8 12.7	15.43 19.15 11.66 11.27 16.39	7.1 26.3 6.9	.03 .03 .06 .03	<1 <1 1 4	.2 .1 .2	11.3 21.3 3.6 24.4 24.4	30 30 30 30 30			
NWRR-10 NWRR-10 RE NWR RRE NWR NWRR-10	0103 .68 k-10103 .71 kR-10103 .69	.1 .1 .1	.58 .08 .63 .09 .65 .10	4.6 5.3	4.4 < 8.8 32 9.2 35 9.9 32 1.4	5 .58 2 .58 2 .59	<.05 <.05 <.05	17.6 19.9 20.3	14.66 15.96	4.4 4.7 4.7	.17 .17 .18	<1 <1 <1 <1	.2 .2 .1	1.1 14.7 15.5 16.3 14.7	30 30 30 30 30			
NWRR-10 NWRR-10 NWRR-18 NWRR-10 NWRR-10	0146 .62 0114 .09 0008 .07	.3	.22 .15 .45 .32 .07 .36		5.7 .4 16.1 .9 3.4 .	4 .07 9 .01 1 .24	<.05 <.05 <.05	6.4 11.5 2.4	7.13 18.47 21.72 19.95 8.95	9.3 7.1 17.3		<1 2 <1 <1	.2 .1	4.0 7.8 55.2 1.0 4.9	30 30 30 30 30			
NWRR-10 NWRR-10 NWRR-10 NWRR-10 NWRR-10	0101 .16 0015 .22 0113 .19	<.1	.47 .12 .11 .35 .48 .15	.3 3.4 1.5		7 .44 1 .01 B .04	<.05	15.1 5.5 17.0	19.37 17.28 17.88 16.78 14.21	6.2 21.0 4.6	.04 .03 .02 .03	<1 <1 <1 2 <1	.2 .2	.6 9.6 16.5 20.2 10.8	30 30 30 30 10			
HWRR-10 HWRR-10 RE NWRR RRE NWR NWRR-10	0111 .12 R-10111 .12 RR-10111 .12	.1 .1 .1	.08 .07 .27 .21 .29 .23 .25 .23 .36 .64	1.7 1.7	5.0 5.4	7 .01 7 .01 7 .01	<.05	5.4 4.9 7.6	6.34 13.19 13.38 13.98 8.57	6.7 6.7 7.1	.02 .02 .02	<1 <1 <1 1 2	.2 .2 .3	56.6 18.6 18.2 19.9 14.7	30 30 30 30 30			
NWRR-10 NWRR-10 NWRR-10 STANDAR	1142 .13 1115 .16	.3	.59 .17 .32 .24 .14 .11 .06 1.29	.2 .7 ?		5 .01 5 .02	<.05	6.9 3.0	20.48 15.96 16.53 7.67	5.7	.05	<1 <1 <1 <1	.3 .1	20.6 13.4 74.6 13.9	30 30 30 30	 		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 14 2000 DATE REPORT MAILED:

o: July 5/ov

SIGNED BY.....D. T

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

ACHE AWALYTICAL																				
	SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sc	Sn	s	Ta	Zr	Y	Сe	In	Re	Be	Li	Sample		
	SAUTE LEAF				ppm			ppm	*			ppm				ppm		gm		
		P P			<u>''</u>	• •														,
	NWRR-10109	.15	.2	.42	. 15	.6	7.6	.6	.53	<.05	11.3	11.93	5.3	.03	7		16.4	30		
	NWRR~10016	.16	<.1	.09	1.64	1.8	5.0					11.65			<1		13.9	30		ļ
	NWRR-10010	.03	<.1	.05	.18	.5	2.8					7.42			<1		2.3	30		
	NWRR-10151	.12	.1	.09	.48	.6	6.2					7.87			<1		4.0	30		
•	NURR-10143	.15	. 1	.31	.18	1.6	4.2	.5	.07	<.05	11.3	11.16	7.3	<.02	<1	. ?	5.2	30		i
							_									4	7 7	70		1
	NWRR-10120	.11	<.1	.03	.04		9	.1		<.05		1.16			<1		3.7	30		
	NWRR-10019	.39				3.0		<.1		<.05		8.77			<1	۲.۱		30		
	HWRR-10002	.18	- 1	.41		5.2						10.85		.03	2		21.7	30		
	NWRR-10105	.22	.4		. 13		13.6					23.95			<1		35.4	30		
	NWRR-10110	.09	.2	.61	.16	.7	9.0	.7	.02	<.05	19.2	15.18	5.0	.04	<1	د.	11.8	30		*
						. ,			25	. 05	7 5	0.70	44 7	0/	-11	2	9.1	30		
	NWRR-10017	.17		.14		1.4		-1				9.78			<1		15.3	30		
	NWRR-10102	.19	.2	.42	.10	.4	4.7	.8				16.48		.04 .02	<1 2		1.6	30		
	NWRR-10155	.51		.22	.37		1.9			<.05			7.4			<.1		30	•	
	NWRR-10012	.06		<.02	.03		3.6	<.1				5.95 11.92			<1 <1		6.9	30		
	NWRR-10006	.32	.1	.10	.09	1.1	6.7	.4	.00	<,05	۲.۱	11.92	5.0	.04	\ 1	• •	0.7	30		
	NWRR-10107	.20	<.1	.18	.44	.1	6.6	2 8	% 15	< 05	7 0	33.99	20.8	.06	7	.3	19.7	30		
	NWRR-10107	.23	.1	.02			2.3					2.19			<1			30		
	RE NWRR-10118	.23	. 1	.03		3.0						2.12			1	< 1		30		j
	RRE NWRR-10118	.23	.1	.02			2.1			<.05					<1	.1		30		
	NWRR-10152	.42	.2	.27	.22	.8	5.4			<.05	7.3	17.17			<1	.3	8.5	30	•	ì
	HHAR TOTAL		•-	•		••	2.7								-					
	NWRR-10106	.68	<.1	.10	.22	10.5	4.3	.3	.04	<.05	4.5	6.55	42.3	.02	<1	.2	23.2	30		
	NWRR-10004	.45	.1	.30		1.5		.5				10.61	5.4	.02	1	. 1	27.2	30		
	NWRR-10108	.05	<.1	.10	.45		6.3					9.20		.02	<1	.3	16.9	30		·
	NWRR-10166	1.27	<.1	.59								14.25			<1	.7	10.8	10		
	NWRR-10020	.35	<.1	.02		3.5						9.60			2	<.1	8.6	30		
		1	- '															_		
	NWRR-10104	.10	.1	.19	.78	2.2	4.8	3.3	.88	.06	6.3	6.87	17.6	.02	6		18.6	30		
	NWRR-10005	.33	.1	.28	.39	1.1	7.0			<.05					<1		9.0	30		
	NWRR-10119	.96	.1	.10	.06	5.1		.2				10.51			<1		8.03	30		
	NWRR-10013	.13	<.1	.05		2.3						12.21			<1		2.2	30		į
	STANDARD DS2	3.15	<.1	.04	1.33	13.0	2.7	25.7	.02	<.05	2.8	7.72	28.6	5.36	<1	6	14.0	30		
			•																	

Page 1 (a)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001847R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

SAMPLE#	R	C	· Cs	Ga	иf	NЬ	Rh	Sn	Sr	Ta	Th	_ Tl	U U	V	<u></u>	Žr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
SAIR CER	1					ppm			bbu b							ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	ppm
NWRR-10160 NWRR-10150 NWRR-10007 NWRR-10117 NWRR-10147	106° 136	34.9 38.6 46.9	.7	17.3 14.7 14.7	3.5 2.6 2.5	3.1 3.1 2.4 2.5 4.6	8.2 2.5 2.5	1	157.5 115.2 256.8 89.9 2.9	.3	.4	.2. .2	.1 <.1 < 1	324 258 200	1 <1 1	92.5 82.5	38.6 31.0 25.8	5.4 4.0 3.9	16.1 12.1 11.3	2.03	14.5 11.1 9.6	3.6 3.4	1.29	4.50 3.84	.80	5.28 4.24	1.13	3.43 2.84	.47	3.08 2.54	.44
NWRR-10112 NWRR-10141 NWRR-10014 NWRR-10001 NWRR-10116	67 352	4 42. 6 48. 7 35.	1 .7 1 1.2 2.2	15.6 16.5 17.4	3.2 4.3 3.3	29.9 3.6	4.3 32.2 54.6	2 2 3	111.0 133.6 232.5 88.7 109.2	.3 2.3 .3	.4 2.7	.5 .2	1.1	304 211 253	2 5 2	101.2	36.9 22.6 33.1	4.4 24.0 7.8	12.6 51.5 19.3	2.12 6.39 2.84	11.0 27.4 14.4	6.4	1.27 2.23 1.11	5.09 5.58 5.01	.93 .81 .85	5.85 4.53 5.58	1.31 .84 1.21	3.85 2.25 3.56	.27	1.76 3.34	.26 .50
NWRR-10009 NWRR-10103 RE NWRR-10103 RRE NWRR-10103 NWRR-10144	30	31. 7 29.	1.6	19.9	3.6	2.7	31.7	51 50	785.6 1 110.6 109.8 113.5 75.4	.9	.3	.3	.5 .5.	339 331 330	<1 1	116.1 113.6	38.0 37.7	4.5 4.4 4.5	14.4 14.3 14.0	2.39	13.6 13.4 13.2	4.6	1.38	5.70 5.47 5.50	1.00 1.04 1.03	6.41	1.40	4.20	.55	3.79 3.92	.59 .59
NWRR-10153 NWRR-10146 NWRR-10114 NWRR-10008 NWRR-10003	8 7	4 38. 8 43.	2 .8	17.7 16.2	3.9 3.7	7.0	2.9 .8	1	39.3 137.3 127.9 844.4 28.3	.3 .6	.4 .8	<.1 <.1 < 1	.1 .3 1 1	316 327 73	1 1 11	128.0 119.8	41.6 39.5 26.1	6.1 7.0 49.5	18.0 18.6 87.7	2.85 2.82 2.13	16.1 14.3 34.1	5.6 4.8 6.9	1.81 1.66 2.15	6.19 5.69 5.60	1.08	6.79 6.50 4.42	1.44	4.55 4.20 1.92	.56	3.89 1.24	.60 .16
NWRR-10011 NWRR-10101 NWRR-10015 NWRR-10113 NWRR-10133	33 13	2 42. 9 7. 2 42.	6 .3 2 1.2 7 .5	16.6 6.4 16.8	3.6 1.8 3.9	2.6 10.0 2.7	1.4 34.1 7.4	1 <1 1	882.3 97.8 1044.4 133.3 340.7	.6 .3	5.0 5.3	<.1 <.1 <.1	2.0 2.2	319 23 338	2 1	109.3	40.1 24.4 43.4	4.8 29.5 5.0	14.6 53.5 15.8	2.39 6.72 3 2.60	15.2 26.0	5.1 5.1	1.43	4.60 5.96	.98 .74 1.08	4.30 7.02	.82 1.53	2.15 4.57	.26	1.68 4.24	.23
NWRR-10145 NWRR-10111 RE NWRR-10111 RRE NWRR-10111 NWRR-10148	17 17 16	3 37. 5 36. 9 34.	1 .4 8 .3 9 .3	18.1 18.0 16.8	3.6 3.3 3.4	2 /	7.4 7.8 7.1	1 2 1	145.6 220.0 224.5 217.7 211.6	.3	.3	<.1 <.1	.2 .1 <.1	316 314 294	<1 1	114.4 114.5 107.6	38.4 38.5 37.1	5.1 5.3 4.9	16.0 15.7 15.5	2.56 2.52 2.45	14.0 13.6 13.6	4.2	1.75	5.43 5.19	.99	6.35 6.14	1.36	4.10	.55	3.79 3.55	.55
NWRR-10157 NWRR-10142 NWRR-10115 STANDARD SO-15	6	3 36.	5 .2	15.0	3.5	3.1	1.5	<1 <1	104.9 79.7 209.1 404.6	.3	1.2	<.1 < 1	.4	275	.1 <1	111.0 76.5	38.1 27.6	8.4	10.5	3.20	9.2	3.3	1.28	3.84	.74	4.65	1.00	2.82	.38	2.57	.40

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

NOV 22 2000 DATE REPORT MAILED: Dec 13 00

TD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

SAMPLEW Ba Co Ca Ga Hf Mark Rb Rb Sr Sr Ta Th TL U V V V Prim	ACHE ANALYTICAL																														
NURR-10109 NURR-101010 NURR-10	SAMPLE#																-														
NURR-101010 136 47.2 1.1 4.8 1,961.8 13.7 1 299.2 3.5 10.1 4. 2.8 72 4 106.9 15.8 73.5 148.4 15.5 35.7.3 8.7 2.77 5.01 7.70 3.94 5.99 1.20 1.6 1.97 1.50 NURR-10151 234 1.4 1. 2 2.0 1 0.1 11.5 5.2 4 1738.0 9.1 4. 1 1. 63 1.5 4 6.8 9.7 11.9 22.7 2.50 9.9 2.0 1.23 2.12 3.3 1.76 3.2 44. 11. 62 .09 NURR-10161 104 40.1 3 18.4 3.5 3.7 6.8 1 276.3 3. 3. 2 1.1 304 2.8 2.1 2.1 2.1 2.1 1.2 1.1 1.2 1.1		bba	ppm	ppm	bbw	ppm	bbu	bbw	ppm	ppm	ppm	ppm p	PM .	bbu bbu b	ppm	ppm	bbu	ppiii	ppin	- ppii		Ppii	PPIII	ppii	PPII	- Phil	PP"	bb I	- PIII P	Fin FF	
NURR-10160 136 47.2 1.1 4.8 1,961.8 13.7 1 299.2 3.5 10.1 .4 2.8 72 4 106.9 15.8 73.5 148.4 15.53 57.3 8.7 2.77 5.01 .70 3.94 .59 1.20 1.6 .97 .13 NURR-10161 234 1.1 2.2 0.1 0.1 1.5 5.2 4 738.0 .9 1.4 .1 .6 31 5 48.8 9.7 11.9 22.7 2.50 9.9 2.0 1.23 2.12 3.0 1.76 .3.2 44.11 .6 2.0 9 NURR-10161 104 40.1 3 18.4 3.5 3.7 6.8 1 276.3 3 3.3 .2 1.2 6.3 5 114.8 15.1 17.9 47.8 4.42 17.3 3.4 .78 3.06 .45 2.80 .54 1.65 .22 1.62 .26 104 40.1 3 18.4 3.5 3.7 6.8 1 276.3 3 3.3 .2 1.3 0.4 2 1.3 1.4 1.3 1.4 1.4 1.0 1.1 1.4 1.4 1.1 1.4 1.1 1.4 1.4 1.1 1.4 1.4		410		-	••		2 7	, -	4	4/7 (2	~	7	4 770	-1	175 7	/1 7	1. 7	15 7	2 55	1/, 2	4.7	1 03 1	5 86	1 12	7.18	1.52	4.66	65 4.	21 .6	6
NURR-101015 NURR-10104 NURR-10105 NURR-10105 NURR-10105 NURR-10106 NURR-10106 NURR-10107 NURR-10107 NURR-10108 NURR-10108 NURR-10109 NURR-10108 NURR-10109		140	34.0	٠,3	18.8	3.4	2.1	4.3	1	147.0	7.5	.5	٠,	20 72	`/	104.0	41.J	73.5	1/8 /	15 53	573	8 7	2 77 1	5 01	70	3.94	.59	1.56	16 .	97 .1	3
NURR-101043 104 0.1 . 3 18.4 3.5 3.7 6.8 1 276.3 3 3.2 . 1 30.4 NURR-10120 NURR-10109 NURR-10108 NURR-10109 N		220	41.2	1.1	4.8	1.9	01.0	13.7	-4	ZYY.Z	3.7	10.1	-4	2.0 72	5	/5 9	0.7	11 0	22.7	2.50	0 0	2.0	1 23	2.12	30	1.76	.32	.84	11 .	62 .0	9
NURR-10103 NURR-10104 NURR-10109 NURR-10109 NURR-10109 NURR-10100 NURR-10101 NURR-101001 NURR-101001 NURR-101001 NURR-10101 NURR-101001 NURR-10101 NURR-101001 NURR-10100 NURR-101001 NURR		234	14.1	٠.۷	2.0	1.0	11.5	7.4	<u> </u>	730.0	٠,٧	1.4 E 0	. 1	10 31	5	11/ 8	15 1	17.0	47.8	4 42	17 3	3.4	.78	3.06	45	2.80	-54	1.65	22 1.	62 .2	6
NURR-10120 NURR-101017 NURR-10105 NURR-10106 NURR-10106 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10109 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10109 NURR-10108 NURR-10109		96	6.5	.2	8.8	2.9	0.2	3.4	<1	44.U	.0	2.0	٠.	1.2 03	2	170 7	12.1 10.1	5.7	17.8	2 75	14 0	4.7	1.72	5.84	1.08	6.98	1.49	4.37	59 3.	95 .6	1
NURR-10109 NURR-101010 NURR-10	NWRR-10143	104	40.1	.5	18.4	3.5	3.7	0.8	1	210.3	.3	.3	٠.																		
NURR-10019 NURR-10105 NURR-10106 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10108 RE NURR-10118 RE NURR-10104 NURR-10105 NURR-10105 NURR-10106 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10109 N	NWRR-10120	2000	4.4	-6	4.3	.6	1.9	23.5	<1	27.4	.3	1.4	.6	.8 30	5	22.0	4.1	4.5	9.8	1.10	4.3	.9	.07	.86	.13	.82	.16	.49	.07 .	49 .0	8
NURR-10105 NURR-10110 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10108 S3 42.7 3 18.7 3.3 2.6 1 18 1 110.0 .2 .2 < .1 .5 318 2 120.4 39.3 4.2 14.2 2.37 12.6 4.5 1.66 5.54 1.03 6.78 1.43 4.35 .60 3.89 .60 NURR-10107 NURR-10107 NURR-10108 NURR-10109 NURR-10109 NURR-10109 NURR-10109 NURR-101019 NURR-101018 NURR-10106 NURR-10106 NURR-10106 NURR-10106 NURR-10106 NURR-10106 NURR-10107 NURR-10106	NWRR-10019	1016	45.5	1.6	15.2	3.2	2.1	44.7	1	212.1	.3	.4	.3	2 212	7	77.3	23.8	3.2	9.9	1.58	8.6	2.8	.77	3.58	.64	4.15	.92	2.62	.36 2.	40 .5	7
NURR-10105 NURR-10107 NURR-10107 NURR-10108 RE NURR-10118 RE NURR-10118 RE NURR-10118 RE NURR-10118 RE NURR-101012 RIRR-10105 NURR-10106 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10107 NURR-10108 RE NURR-10108 RIRR-10108 RIRR-10108 RIRR-10108 RIRR-10109 NURR-10109 NURR-10109 NURR-10109 NURR-10109 NURR-10109 NURR-101018 RE NURR-101018 RE NURR-10118 RE NURR-10118 RE NURR-10118 RE NURR-10118 RE NURR-10105 NURR-10106 NURR-10107 NURR-10107 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10108 NURR-10109 NURR-										91.3	.4			.6 248	4	124.0	33.0	8.9	20.9	2.93	14.6	4.4	1.35	4.93	.87	5.59	1.16	3.61	.49 3.	30 .5	2
NHRR-10110 55 40.6										88.5	.3	.3	.7	.1 313	2	124.5	38.8	4.8	15.6	2.52	13.9	4.5	1.77	5.69	1.02	6.52	1.39	4.16	.55 3.	73 .6	O O
NHRR-10102 NHRR-10012 NHRR-10012 NHRR-100106 NHRR-100106 NHRR-100107 NHRR-10107 NHRR-10107 NHRR-10118 RE NHRR-10118 RNRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10106 NHRR-10107 NHRR-10118 NHRR-10118 NHRR-10108 NHRR-10118 NHRR-10108 NHRR-10109 NHRR-10109 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-101004 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10109 NHRR		55	40.6	.4	18.0	3.3	2.4	3.2	1	128.1	.2	.2 <	.1	.5 318	2	120.4	39.3	4.2	14.2	2.37	12.6	4.5	1.66	5.54	1.03	6.78	1.43	4.35	.60 3.	89 .6	Ü
NHRR-10102 NHRR-10012 NHRR-10012 NHRR-100106 NHRR-100106 NHRR-100107 NHRR-10107 NHRR-10107 NHRR-10118 RE NHRR-10118 RNRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10106 NHRR-10107 NHRR-10118 NHRR-10118 NHRR-10108 NHRR-10118 NHRR-10108 NHRR-10109 NHRR-10109 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-10109 NHRR-10118 NHRR-10109 NHRR-101004 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10109 NHRR			40.7				47.0	44.3	.4	/70 O	0	4 4 -		1 4 57	2	57 1	12 R	10 n	36.3	3 90	16 3	3.5	1.62	3.27	.47	2-41	.41	1.00	.11 .	63 .1	0
NHRR-10152 NHRR-10006 NHRR-10107 NHRR-10118 RE HHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 RE HHRR-10118 NHRR-10118 NHRR-10106 NHRR-		459	19.5	1.5	4.8	7.2	13.2	10.2	< 1 4	439.0	.7	1.0	4	1.0 37	1	13/ 7	12.0	4.6	15 0	2 47	13 8	4.6	1.76	5.78	1.08	6.88	1.50	4.52	.62 4.	09 .6	5
NHRR-10106 NHRR-10107 NHRR-10118 REF NHRR-10118 NHRR-10118 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10107 NHRR-10107 NHRR-10107 NHRR-10107 NHRR-10107 NHRR-10107 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10108 NHRR-10106 NHRR-10108 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10106 NHRR-10108 NHRR-10106 NHRR-10	NWRR-10102	83	42.		18.7	3.3	2.0	1.0		110.0	• •	E 4	- 1	1 7 70	3,	130 /	1/. 1	16.3	47.1	4.06	15 1	3.0	.50	2.82	.45	2.82	.55	1.66	.23 1.	58 .2	27
NHRR-10106 NHRR-10107 NHRR-10118 RE NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10118 NHRR-10106 NHRR-10107 NHRR-10106 NHRR-101		2158	9.4	2.1	13.0	3.3	0.5	00.2		107.0	•0	3.0	. 1	1.3 70	2	70.4	9.7	0.7	19 7	2.06	8 0	1 6	1 00	1.67	.24	1.39	.26	.71	.08	57 .0	18
NURR-10107 NWRR-10118 RE NWRR-10118 RRE NWRR-10118 RNER-10118 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101018 NWRR-101010 NWRR-101004 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10106 NWRR-10109 NWRR-10106 NWRR		359	19.1		3.9	.9	11.2	8.7	<1	740.7	.0	1.0 \$	1	.4 27	2	02 1	70.J	7.1	11 2	1 81	0.0	3.5	1.19	4.13	.77	5.09	1.09	3.32	.43 2.	95 .4	7
NWRR-10118 RE NWRR-10118 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10108 NWRR-10109 NWRR-101	NWRR-10006	l																													
NWRR-10118 RE NWRR-10118 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10108 NWRR-10109 NWRR-101	NUPP-10107	19	32.7	. 3	15.3	2.7	5.8	.6	3	34.3	.4	4.4 <	.1	2.5 282	2	142.8	54.1	36.2	40.1	10.41	45.1	10.8	2.85	9.88	1.70	10.73	2.24	6.87	.88 6.	36 .9	6
RE NWRR-10118 RRE NWRR-10118 RRE NWRR-10118 RRE NWRR-10118 RRE NWRR-10118 NWRR-10152 NWRR-10152 NWRR-10164 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10108 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10109 N						8	22	25 5	<1	24.2	. 2	1.6	. 2	.4 133	6	32.9	7.6	6.8	15.5	1.77	7.0	1.6	.1/	1.50	.23	1.45	.30	.90	. 13 1.	00 .1	
RRE NWRR-10118 NWRR-10152 2501 4.7 1.0 6.3 .9 2.3 26.7 <1 23.6 .2 1.6 .1 .4 133 7 34.5 7.8 6.9 15.7 1.79 7.4 1.5 .15 1.48 .23 1.52 .31 1.00 .13 1.01 .17 192 41.2 .5 16.6 3.0 2.8 4.3 1 126.9 .2 .2 <1.1 <1.1 294 1 113.1 35.6 4.9 15.0 2.36 12.9 4.1 1.33 5.06 .92 5.95 1.30 3.87 .52 3.44 .54 NWRR-10106 NWRR-10004 NWRR-10108 137 21.1 .2 13.1 2.8 4.9 3.7 2 42.2 .4 4.2 .1 1.7 159 4 121.4 22.6 21.1 41.8 6.10 25.7 5.8 1.47 5.04 .82 4.91 .98 2.97 .42 2.86 .47 NWRR-10166 132 19.4 2.3 22.0 5.1 6.8 38.1 2 320.9 .6 5.2 .2 1.4 183 1 202.8 28.3 20.6 50.4 5.64 24.5 5.4 1.62 4.96 .81 5.02 1.03 3.11 .41 2.95 .46 NWRR-10104 NWRR-10020 NWRR-10104 NWRR-10005 NWRR-10109 140.1 10.1 10.1 10.1 10.1 10.1 10.1 10.	,,,,,,,					-8	2.4	26.7	<1	24.7	.3	1.6	.2	-4 132	6	37.1	7.6	6.9	15.9	1.83	7.4	1.6	.16	1.52	.23	1.52	.51	.97	. 13 1.	01 .1	-
NWRR-10106 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10108 NWRR-10106 NWRR-10108 NWRR-10106		2501	4. 7	7 1 0	63	0	23	26.7	<1	23.6	. 2	1.6	. 1	.4 133	7	34.5	7.8	6.9	15.7	1.79	7.4	1.5	.15	1.48	.23	1.52	.31	1.00	. 13 1.	01 .1	
NWRR-10108 NWRR-10108 NWRR-10166 NWRR-10020 NWRR-10104 NWRR-10105 NWRR-10104 NWRR-10104 NWRR-10104 NWRR-10105 NWRR-10107 NWRR-10108		192	41.2	5	16.6	3.0	2.8	4.3	1	126.9	.2	.2 <	.1	<.1 294	1	113.1	35.6	4.9	15.0	2.36	12.9	4.1	1.33	5.06	.92	5.95	1.30	3.87	.52 3.	44 .5	4
NWRR-10108 NWRR-10108 NWRR-10166 NWRR-101000 NWRR-101004 NWRR-10104 NWRR-10106 NWRR-10			40.7			, ,	7.0	74 7	2	40 (7 4	2	1 4 54		100 0	10 7	21 /	58 0	5 22	21 0	4 1	86	3.68	.58	3.71	. 73	2.31	.30 2.	15 .3	4
NWRR-10108 NWRR-10106 NWRR-10106 NWRR-10104 NWRR-10104 NWRR-10109		1616	10.3	2.4	15.6	4.7	7.9	11.1	-41	1/0.0	.0	7.0	- 4	1 20/	3	100.2	72.1	4 3	13 2	2 07	11 2	7.I	1.37	4.43	.83	5.42	1.17	3.56	.46 3.	19 .5	0
NWRR-10106 NWRR-10104 NWRR-10104 NWRR-10109		95	43.1	.0	10.3	5.7	2.7	0.0	١,	140.9	٠,	/-3 `	1	1 7 150	7	100.0	22.4	21 1	41 8	6 10	25 7	5.8	1 47	5 04	.82	4.91	98	2.97	.42 2.	86 .4	7
NWRR-10104 NWRR-10104 NWRR-10109 NWRR-10119		137	21.1		15.1	2.8	4.9	3.1	2	720.0	.4	4.Z 5.3	٠,	1.7 109	4	202 8	28.3	20.6	50 4	5 64	24.5	5.4	1.62	4.96	.81	5.02	1.03	3.11	.41 2.	95 .4	6
NWRR-10104 NWRR-10104 NWRR-10109 NWRR-10119		352	19.4	2.3	22.0	2.1	0.0	20.1	-4	307.9	.0	2.2	٠.۷	1.4 103	5	76 /	20.3	20.0	0.0	1 45	R 1	2.4	82	3 23	.62	3.92	-86	2.59	.34 2.	27 .3	55
NWRR-10005 NWRR-10119 NWRR-10119 NWRR-10119 NWRR-10119 NWRR-10119 NWRR-10117 NWRR-10117 NWRR-10117 NWRR-10117 NWRR-10118 NWRR-10118 NWRR-10119 NWRR-10118	NWRR-10020	ł																													
NWRR-10005 NWRR-10119	NWRR-10104	406	23.2	4	14.1	5.3	8.9	13.5	5	167.7	.8	6.7	.1	1.8 114	3	207.1	23.2	21.5	56.1	5.36	21.4	4.5	1.22	4.17	.67	4.14	.85	2.68	.35 2.	54 .4	1
NWRR-10119 533 39.5 2.1 15.7 1.6 1.4 31.5 <1 189.8 .1 <.1 .2 <.1 191 2 53.7 17.9 1.8 5.9 1.02 5.7 2.1 .77 2.52 .49 3.11 .68 2.07 .27 1.65 .50		222	27 3	٠ .	1/. 5	7 /	5 6	5 0	2	87 Q	5	4.0	1	1 0 179	2	132.7	25.3	12.9	36.5	3.65	16.1	3.9	1.08	4.23	.70	4.45	.89	2.10	.31 2.))
HUND 4004Z 1270 18 Z 1 2 0 0 Z / /6 2 20 0 1 520 1 Z / 4 5 2 1 7 102 9 149 2 20 4 39 8 74 8 7 84 28 5 5 U Z 10 4 28 80 4 U 1 809 1 94 223 1 32 242		533	39.5	2.1	15.7	1.6	1.4	31.5	<1	180 8	1	< 1	2	< 1 191	2	53.7	17.9	1.8	5.9	1.02	5.7	2.1	.77	2.52	.49	5.11	.08	2.07	.21 1.	נ. כס	υ
THANK TOUGHT I THE CAR DAY TO BE SALE OF THE SALE OF T	WIDD 10017	1270	10 7	1 2	0.0	マ /	1.6 2	20 0	1	520.1	7	45	. 2	1.7 102	9	149_2	20.4	39.8	74.8	7.84	28.3	5.0	2.10	4.28	.00	4.01	•09	1.74	.23 1	75 .6	
STANDARD SO-15 1984 21.9 2.7 17.0 26.1 29.8 64.7 17 389.8 1.9 24.1 1.2 20.8 151 19 1052.1 23.2 29.1 60.6 6.17 23.6 4.5 1.05 3.92 .61 3.85 .76 2.44 .34 2.55 .41	STANDARD SO-15	1984	21.9	2.7	17.0	26.1	29.8	64.7	17	389.8	1.9	24.1 1	.2	20.8 151	19	1052.1	23.2	29.1	60.6	6.17	23.6	4.5	1.05	3.92	.61	3.85	.76	2.44	.34 2.	٠٠ دد	1

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_____FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001847R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
NWRR-10160 NWRR-10150 NWRR-10007 NWRR-10117 NWRR-10147	1.6 <.5 1.0 .6	67 12 39 52 7	3 3 7 7 6	92 89 71 66 32	90 60 116 231 29	<2 <2 <2 <2 6	.4 .2 .3 .2	<1 <1 <1 <1	2 1 1 <1	
NWRR-10112 NWRR-10141 NWRR-10014 NWRR-10001 NWRR-10116	.5 <.5 1.5 <.5	69 36 61 102 56	<3 <3 4 <3 <3	75 79 82 62 79	39 108 233 83 69	<2 3 70 <2 2	.3	<1 1 <1 <1 <1	1 <1 <1 2 1	
NWRR-10009 NWRR-10103 RE NWRR-10103 RRE NWRR-10103 NWRR-10144	<.5 1.4 1.4 .9 3.8	70 313 311 309 22	10 11 12 10 14	39 393 399 388 45	114 47 47 47 73	82 4 5 5 6	<.2 1.5 1.7 1.7 <.2	<1 <1 <1 <1 3	<1 1 1 <1 <1	
NWRR-10153 NWRR-10146 NWRR-10114 NWRR-10008 NWRR-10003	4.5 .8 .7 1.5	5 37 59 5 13	22 8 <3 68 9	26 95 101 123 54	29 51 63 26 30	<2 <2 <2 27 3	<.2 .4 .5 .8 <.2	1 <1 <1 1	1 1 <1 <1	
NWRR-10011 NWRR-10101 NWRR-10015 NWRR-10113 NWRR-10133	.8 .7 <.5 .5	17 52 6 48 35	7 4 13 <3 15	91 93 37 98 79	19 92 16 92 14	2 <2 <2 <2 6	.6 .5 <.2 .3	<1 <1 <1 <1 <1	<1 <1 <1 2 1	
NWRR-10145 NWRR-10111 RE NWRR-10111 RRE NWRR-10111 NWRR-10148		90 49 51 49 60	<3 <3 <3 <3	77 88 85 86 130	219 46 45 45 49	<2 <2 <2 <2 <2	.4 .4 .4 .4	<1 <1 <1 <1	<1 1 1 1	
NWRR-10157 NWRR-10142 NWRR-10115 STANDARD CT3 STANDARD G-2	.7 .6 <.5 26.6 2.0	65 12 74 66 3	4 <3 <3 40 21	99 59 56 179 53	86 110 116 38 8	<2 5 12 59 -<2	.3 .2 .3 22.0 <.2	<1 <1 <1 22 <1	1 2 1 22 <1	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

: Dec 13/00

SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

AA NOE ANALYTICAL

NOTE WILLIAM	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
	NWRR-10109 NWRR-10016 NWRR-10010 NWRR-10151 NWRR-10143	1.8 6.5 1.2 3.3 1.2	97 19 6 4 53	<3 12 13 9 4	109 116 2544 17 90	86 442 53 56	200 9 2 <2	.3 13.3 <.2 .4	<1 3 <1 <1 <1	2 1 <1 <3		
	NWRR-10120 NWRR-10019 NWRR-10002 NWRR-10105 NWRR-10110	2.0	38 65 102 6 51	4 <3 <3 <3	26 58 61 82 90	15 184 80 26 80	3 79 2 6 3	<.2 .4 .2 .2	1 <1 <1 <1	1 1 2 3		
	NWRR-10017 NWRR-10102 NWRR-10155 NWRR-10012 NWRR-10006	1.7 .5 1.0 1.1	18 56 39 25 59	16 12 4 4 <3	36 106 65 30 64	125 89 26 86 70	5 <2 <2 18 <2	<.2 <.2 <.2 <.2	1 <1 <1 <1 <1	1 <1 1		
	NWRR-10107 NWRR-10118 RE NWRR-10118 RRE NWRR-10118 NWRR-10152	1.2 3.8 4.2 4.2 <.5	381 145 149 142 39	35553 V	70 86 88 87 80	89 76 76 77 85	<2 48 53 49 <	.2 <.2 <.2 <.2	<1 17 16 16 <1	<1 <1 <1 2		
	NWRR-10106 NWRR-10004 NWRR-10108 NWRR-10166 NWRR-10020	1.2 1.0 1.8 1.4 <.5	10 57 23 33 75	<3 <3 <5 15 <3	67 82 25 80 60	33 91 60 14 190	3 <2 2 5 100	<.2 <.2 <.2 .2	1 <1 1 1 3	<1 <1 2 1	·	
	NWRR-10104 NWRR-10005 NWRR-10119 NWRR-10013 STANDARD CT3	12.3 1.1 <.5 1.3 26.9	705 7 68 24 65	<3 <3 <3 10 41	44 43 55 2071 182	30 52 45 74 38	<2 <2 75 62	<.2 <.2 9.8 22.3	<1 <1 2 <1 22	2 <1 1 23		
	STANDARD G-2	1.6	3	21	51_	7	<2	<.2	<1	1_		

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

800 - 700 W. Pender St., Vancouver BC V6C 108 Submitted by: Gerry Bidwell

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001848

Page 1

•	AND C#	2:07		7 5-2	07	N-O	CaO	มาวด	K30	7102	D205	M ₂	Cr203	Ba	Ni	Sr	7r	Υ	Nb	Sc	LOI	TOT/C	TOT/S	SUM	
Si	AMPLE#			3 re2	U3 %	mgu %	\ %	%	×20	1102	×203	## X	C1 203 %	ppm					ppm		*	*	*	*	
	· · · · · · · · · · · · · · · · · · ·				<u> </u>																	4.54	. 04	~ ~	
\$	JCD-17506	58.85	12.2	4 7.	78 3	5.63	3.75	1.59	1.02	1.18		.12	.024	527		111			<10			1.56	<.01 .03	99.99 99.93	
s	JCD-17516	52.70	12.7	5 8.	31 3	5.62	4.26	1.63	.65	1.25	. 15	.17				118			<10			2.53	<.01	100.25	
s	JCD-17501	58.66	5 12.1	3 8.	54 3	5.58	4.60	1.64	.79	1.30	.18	.18				124			<10		8.5			99.96	· · · · · · · · · · · · · · · · · · ·
\$	JCD-17508	65.89	7 12.1	76.	59 2	2.55	2.16	1.53	1.41	1.21	. 15	.10	.034	970		127			<10		6.0		<.01 <.01	100.22	
s	JCD-17514	60.66	5 11.4	8 8.	16 4	15	5.10	1.87	.66	1.34	.12	.15	.029	435	81	111	1/5	29	<10	29	6.4	.31	₹.01	100.22	
_	100 47540	,, ,	7 40 5	7 4	70.7	2 /2	7 50	1 71	87	1 17	14	13	.027	619	82	117	186	29	<10	24	5.1	.20	<.01	100.32	•
		00.1	/ 10.3 4 13 0	, 0.	10 -	2.46	2.17	1 57	1 17	1 00	12	11	.023	533					<10		6.7		<.01	99.88	
	JCD-17512	49 3	2 11 0	9 6.	77 1	2 27	2 20	1 60	1 35	1 00	.12	13	.017	507			272		<10		4.5		<.01	99.96	
	JCD-17517	47 3		2 O.	33 A	2 52	2 88	1 52	71	1 10	19	.08	.024	957			198		<10			3.15	.03	100.24	· ·
	JCD-17504	64 /3	5 11 0	, ,. , ,	32 2	ביישב	2.66	1 61	1 11	1 11	32	13	.020	470		128			<10			3.81	<.01	100.10	;
5	JCD-17515	20.43	> 11.5	۷.	33 6	2.03	2.00	1.01			·JL	• 13	.020	410	54	160			• •	•					•
•	JCD~17502	57.20	6 12.7	1 9.	01 3	3.51	4.59	1.66	.77	1.30	.14	.18	.026	659	70	133	142	31	<10		8.7		<.01	99.98	
	SJCD-17518	68.30	0 10.3	2 6.	52 3	3.17	3.51	1.66	.92	1.14	.15	-13	.020	433	62	112	234	28	<10		4.2			100.15	•
	JCD-17505	62 6	7 12.5	9 7	35 3	3.69	3.78	1.73	1.33	1.20	.15	.14	.026	1162	79	119	145	28	<10	25	5.6	.38	<.01	100.44	
	JCD-17509	68 41	10.0	1 5	80	73	2 93	1.77	.96	1.13	.11	.13	.022	643			233	26	<10	20	5.0	.24	<.01	100.11	· ·
	JCD-17513	50 5	2 12 2	, j.	31 7	3 00	4.36	1.85	.77	1.22	-07	.15	.024	462		119		26	<10	28	7.7	.40	<.01	100.21	
3	בו כוו ייטוני	ار. در		<i>.</i>	٠		4.50	,,,,,	• • • •							•									}
9	JCD-17507	63.9	5 11.9	1 7.	28 3	3.18	4.24	2.08	.79	1.47	.12	.15	.023	644	69	185	251	33	<10		4.7			100.04	
	JCD-17511	62.0	9 11.0	0 8.	05 3	3.77	3.66	1.46	.60	1.21	.09	.21	.023	1157		258		29	<10		7.6		<.01	99.96	
	JCD-17503	56 4	3 11.9	8 9.	58 4	4 . 83	6.00	2.13	.63	1.42	.18	.16	.030	518	87	115	121	30	<10		6.7			100.18	
_	ISMD-17578	62 7	5 11 1	6 4	95 2	2.25	6.35	1.41	1.93	.74	-14		.012				240	26	12	12	8.1	1.49	<.01	99.99	
	E GSMD-17578	62 7	6 11.2	2 4	92 2	2.27	6.34	1.47	1.83	.74	.14	.06	.012	530	48	296	242	26	15	11	8.1	1.50	<.01	100.00	
K	E 63ND-17370	02.1			<i>,</i>		0.5			•••	• • •		•												,
G	SMD-17688	64.9	3 13.6	6 6.	96 2	2.03	1.20	1.78	2.46	1.35	.24	.09	.016	1301			255	33	17		4.9		<.01	99.83	
	SMD-17685	62.8	8 14.7	4 7.	68	1.73	1.14	1.29	2.29	1.31	.24	.18	.017	1710			216	37	15		6.2		<.01	99.95	
	SMD-17519	67.7	9 11.9	1 6.	47	1.99	1.77	1.24	2.00	1.04	.21	.10	.020	2354	67		191	34	14		5.1		<.01	99.96	
	SMD-17580	72.2	2 9.8	8 5.	36 2	2.09	2.09	1.60	1.05	1.13	.10	.09	.016	700	51		307	26	10		4.4			100.17	-
	SMD-17686	60.8	3 15.4	2 8.	27 2	2.32	.56	1.51	2.66	1.27	.21	.12	.016	1914	78	86	174	26	16	19	6.5	.50	<.01	99.95	
_																									
G	SMD-17573	69.2	3 10.3	5 6.	23 2	2.66	2.69	1.49	1.07	1.04	.18	.13	.017	1186			150		<10		4.7		<.01	99.97	
	SMD-17689	63.4	7 12.9	7 7.	58 2	2.69	2.43	1.65	1.34	1.31	.21	.13	.020	1385			203		<10		5.8		<.01	99.81	
-	SMD-17566	53.8	9 18.3	5 8.	71 2	2.22	3.88	2.99	1.24	1.37	. 15	. 13	.008	371			183		<10		7.2			100.25	
	SMD-17576	61.3	8 12.2	1 8.	32 3	3.52	3.38	1.75	-98	1.25	.14	.21	.024	1361			199		<10		6.9			100.28	
	SMD-17561	63.0	6 10.3	8 7.	39	4.78	4.41	1.76	.77	1.17	.10	.15	.026	708	116	115	161	28	<10	27	5.9	.17	<.01	100.03	
4																								400.40	
G	SMD-17570	70.6	0 9.8	5 5.	22 2	2.00	1.93	1.49	.90	1.00	.09	.07	.017	504		87		22	10		6.9			100.18	,
	SMD-17577	73.1	0 9.0	5 4.	80 2	2.28	3.21	1.68	.88	1.21	. 13	.10	.018	864			265	28	13		3.6			100.22	
G	SM0-17569	62.3	7 12.2	1 6.	70 3	3.81	3.48	1.42	1.84	.85	-14	-11	.013	856			123	25	<10		6.9		<.01	99.98	
Š	TANDARD SO-15/CSB	49.8	9 12.3	1 7.	24	7.20	5.82	2.39	1.88	1.78	2.68	1.38	1.052	2030	78	393	974	21	19	12	5.9	2.38	5.50	99.94	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 14 2000

... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

SAMPLE#		3 Fe2O3 MgO	CaO Na2O K	20 TiO2 P205		Ba ppm			Zr	y ppm	Mb ppm		101	TOT/C %	TOT/S	SUM %	
GSMD - 17697 GSMD - 17563	61.50 16.0	08 6.78 1.57	1.16 .81 4. 3.90 1.39 .	12 1.06 .24 68 91 16	.10 .014	2059		116 78		34 21	20 <10	16 21 1		.27 3.35	.02	99.93 99.99	
GSMD-17568	63 05 10 C	6 6 72 3 68	3.75 1.62 .	69 1.16 .14	.15 .022	440	70	104			<10	24		1.03		100.04	
GSMD-17508	65 58 12	7 6.60 2.81	3.20 1.78 1.	60 1.29 .25	.11 .017	1388				32	11	20	4.2		<.01	99.83	
GSMD-17579	73.01 10.2	3 4.41 1.96	2.31 1.82 1.	29 1.16 .14	.06 .016	787	49	124	235	28	12	16	3.4	.40	<.01	99.95	
GSMD-17696	70.43 11.	10 5.51 3.36	.73 .91 2.	.01 1.04 .19	.09 .035	2578	149	83		27	16	14			<.01	99.96	
GSMD-17700	67.79 13.	24 6.13 1.67	1.05 1.45 2.	.60 1.13 .21	.10 .014	1715		118		28	16	14			<.01	99.84	
GSMD-17687	50 44 14	41 0.29 3.11	.95 1.38 2.	.76 1.17 .28	.16 .014	1717	95	97	157	32	16	21			<.01	99.81	
GSMD-17564	57.95 11.	53 8.19 5.79	6.28 1.97	.45 1.32 .11	.15 .038	283	130	112	130	-	<10	32		.42	.01	100.07	
GSMD-17698	65.34 14.	16 6.88 1.69	1.17 1.38 2.	.51 1.15 .23	.08 .014	1729	63	129	222	33	16	17	5.3	.20	.03	99.96	
GSMD-17575	67.43 10.	45 6.19 3.30	3.53 1.72 1.	.05 1.15 .14	.13 .020	1118		119			<10	22			<.01	99.99	
GSMD-17520	70.91 12.0	03 5.21 1.69	1.28 1.30 2.	.24 1.06 .19	.08 .012	1986		100		35	14	15			<.01	99.98	
GSMD-17565	158,23 11.	13 7.22 5.50	7.04 1.92 .	.31 1.40 .16	.15 .035	230	92	103		27		32		.72	.02	99.97	
GSMD-17574	71.37 9.9	99 5.17 2.45	3.09 1.80 .	.94 1.26 .10	.11 .017	982	58		249	29		19			<.01	100.07	
GSMD-17562	62.88 10.	78 7.44`4.68	4.26 1.75	.85 1.21 .15	.16 .025	704	115	116	163	30	<10	27	5.6	.23	<.01	99.92	
GSMD-17683	61.28 15.	55 8.50 2.03	.72 1.95 2.	.68 1.21 .26	.12 .010	1754		125	182	31	16	19		.34	.03	99.96	
GSMD-17567	63.65 10.8	83 6.76 3.51	4.16 1.77	.74 1.27 .11	.12 .019	507	62	102			<10	27		.79		100.15	
GSMD-17695	70.43 12.3	30 5.40 1.45	.89 1.45 2.	.39 1.19 .19	.09 .015	2238	75	101		34	18	14			<.01	100.01	
GSMD-17571	61.68 11.	47 8.85 3.82	4.04 1.56 1.	.09 1.24 .19	.19 .023	2027	104	119	155	40	10	28				100.14 99.97	
GSMD-17692	64.61 12.	83 7.12 2.43	2.67 1.91 1.	.25 1.40 .23	.11 .018	1168	80	165	206	31	12	22	5.2	.17	<.01	99.97	
GSMD-17681	64.65 13.	83 7.60 1.74	1.33 1.82 2.	.44 1.30 .28	.14 .012	1462	54	133		35	16	19			<.01	99.97	
GSMD~17690	65.54 14.	18 6.46 2.02	1.53 1.89 2.	.39 1.40 .16	.09 .016	1087			332	37	22	16		.27		99.97 99.97	,
RE GSMD-1769	65.42 14.	06 6.59 2.02	1.53 1.87 2.	.37 1.43 .18	.09 .017	1077	71		324	37	20	16		.29	.01	99.97	
GSMD-17572	49.79 11.	19 9.51 1.69	1.61 1.19 1.	.12 .96 .40	.15 .015	763		104		42	10			5.28	.04 .02	99.98	
GSMD-17684	62.83 15.	14 8.02 1.90	.71 2.08 2.	.50 1.20 .23	.12 .009	1693	53	118	165	30	15	18	5.0	.27	.02	77.70	
GSMD-17694	37.31 5.	02 3.07 8.03	20.05 .64	.93 .61 .43	.12 .010	736	71			40				6.58		100.06	
GSMD-17691	64.65 11.	39 7.07 3.70	4.09 1.65 1.	.12 1.26 .20	.15 .022	1298	76		141		<10	24			<.01	100.00	
GSMD-17682	66.40 13.	22 7.30 1.67	1.37 1.82 2.	.11 1.30 .25	.11 .009	1374	49	136		36	15	18			<.01	99.97	
GSMD-17699	70.19 11.	54 3.94 1.68	2.51 2.62 2.	.22 .53 .15	.06 .016	447	95	301		15			4.3	1.26	.02	99.88	
PPD-17521	55.85 11.	73 9.48 6.90	4.84 1.31	.92 1.12 .20	.17 .055	818	269	153	131	26	<10	29	7.4	.18	<.01	100.14	
PPD-17539	61.29 12.	28 8.25 3.85	4.50 2.03 1.	.06 1.39 .15	.17 .023	1092		192		32		26			<.01		
PPD-17530	69.46 10.	92 5.76 2.65	2.61 1.74 1.	.15 1.10 .15	.10 .016	441	52	115		28		20		.17		100.17	
PPD-17534	52.65 12.	57 8.40 3.88	4.28 1.51 1.	.01 1.27 .18	.13 .025	691	87	107			<10	30 1	4.2	3.08	<.U1	100.23	
STANDARD SO-	15/CSB 50.22 12.	30 7.16 7.12	5.76 2.36 1.	.86 1.77 2.65	1.36 1.039	1950	81	388	1019	22	21	12	2.9	2.43	5.31	99.92	

Page 3

AA ADE AKALYTICA

SAMPLE#	Sio2	A1203			CaO %	Na20 %	K20 %	Ti02	P205 %	MnO %			Ni ppm		Zr ppm				LOI	TOT/C	TOT/S %	SUM %	
PPD-17538	52.48	13.09	9.80	6.69	7.49	2.13	.50	1.43	.16	.22	.040	481	112	104	114	32	<10	39	6.0	.27	<.01	100.14	
PPD-17529		12.29							.03	.17	.029	357	78	124	180	27	11	27	7.5	.74	<.01	99.83	
PPD-17523	67.86	10.48	4.96	2.23	2.83	1.88	.77	1.06	.08	.10	.017	417	62	109	212	24	<10	16	7.7	1.37	.02	100.07	
PPD-17531		9.68											53	116	324	32	<10	21	3.1	.10	<.01	100.18	
PPD-17524	65.16	11.75	6.78	3.12	3.71	1.83	1.01	1.10	.13	-14	.022	424	74	128	193	29	<10	21	5.1	.18	.02	99.96	
PPD-17540		12.81												145			<10		6.4			99.96	
PPD-17535	56.84	12.73	8.98	4.95	6.27	2.03	.72	1.50	.14	.18	.027	625		118			<10		5.4		<.01	99.89	
PPD-17533	52.48	19.76	8.62	2.21	3.82	3.09	.94	1.33	.14	.14	.006	368		350			11		7.4			100.05	
PPD-17525	61.30	12.64	7.99	3.21	3,42	1.75	1.12	1.21	.12	.16	.023	502		122			<10		7.2		<.01		
PPD-17528	62.14	12.03	7.25	3.48	4.05	1.87	1.09	1.14	.12	.15	.024	466	63	120	177	28	<10	23	6.9	.51	.01	100.35	-
PPD-17537		13.28												145			<10		6.0		-03	99.97	
PPD-17527		11.19												137			<10		4.9		<.01		
PPD-17532	74.61	9.52	4.71	2.02	2.48	1.77	1.04	1.11	. 15	-10	.016	423		113			10		2.6			100.25	
PPD-17526	65.01	11.17	6.03	2.90	3.72	1.82	.68	1.25	.08	. 14	.026	436		108			10			1.05		100.14	
PPD-17522	52.37	11.86	10.02	8.19	5.43	1.24	.75	.99	. 19	.20	.073	772	287	133	115	23	<10	31	8.6	.21	.01	100.07	•
PPD-17536		13.00												136			<10		5.1		.01	99.87	•
LAMD-17651		11.75												132			<10		3.7		-01		
LAMD-17560		12.67												122			16		6.4		<.01	99.88	
LAMD - 17550	56.34	13.18	10.36	4.45	4.39	1.71	.84	1.28	.10	.18	.021	474		129			<10		7.1		<.01		
LAMD - 17645	62.96	12.65	7.68	2.90	3.17	1.69	1.29	1.39	.14	. 15	.025	1340	63	139	178	32	12	25	5.6	.10	<.01	99.85	
RE LAMD-17645		12.65												139			11			.10		99.96	
LAMD - 17559		11.28												113			<10			8.58		99.99	
LAMD-17551		11.80												115			<10		5.0		<.01		
LAMD-17545		12.50												137			11		6.1			100.13	
LAMD-17646	65.36	11.50	6.57	2.84	3.46	1.59	1.24	1.33	.14	.15	.020	1454	85	127	213	30	11	21	5.8	.82	-01	100.23	
LAMD-17652		12.16												114			<10		7.5		<.01		
LAMD-17552		12.75													127		<10		6.6		<.01		
LAMD-17557	66.83	11.64	6.40	2.58	3.64	2.01	1.03	1.27	.16	.12	.018	937		160			14		4.1		<.01	99.96	
LAMD-17643	62.34	12.93	7.76	2.91	3.16	1.81	1.18	1.19	.16	- 15	.020	907		131		28	13		6.2		<.01		
LAMD-17542	65.01	12.10	6.48	3.39	3.56	1.81	1.00	1.18	.10	.13	.025	1087	84	132	167	27	<10	23	5.0	.42	<.01	99.96	
LAMD-17558		12.60												130		32			4.7			99.95	
LAMD-17649	65.37	13.91	6.45	2.02	1.32	1.71	2.23	1.34	.25	. 14	.018		69				23		5.0		<.01	99.98	
LAMD-17549	52.07	13.56	11.28	5.29	6.85	2.16	.47	1.63	.21	- 19	.030	336	105		112		<10		6.0		<.01	99.82	
STANDARD SO-15/CSB		12.83											74	396	912	20	23	12	5.9	2.38	5.38	99.78	

Page 4

SAMPLE#		A1203										Ba		Sr	Zr	Y	Nb	Sc		TOT/C		SUM	
	%	*	*	*	%	<u> </u>		%	%	*	*	bbu	ppm	ppm	ppm	bbu	bbut	ppm	*	*	<u> </u>	%	
LAMD-17547	62.02	12.19	7.49	3.53	4.70	2.05	.86	1.52	.13	.14	-022	695	74	143	171	32	<10	29	5.1	.21	.01	99.89	
		11.01												124		29	11		4.5	.40	.02	99.82	
		11.66												126			<10		5.0	.11	<.01	100.01	
		11.65												141			<10	27	5.6	.56	.03	99.95	
		12.53													244	35	13		4.0		<.01	99.83	
LAMD-17655	65.78	10.99	6.51	3.42	3.20	1.69	1.23	1.15	.13	.13	.021	1263	94	121	160	28	<10	22	5.4	.54	<.01	99.85	
LAMD~17648	62.64	13.57	8.40	1.74	1.56	1.91	1.98	1.58	.31	.21	.024	1006	121	132	251	52	35	24	5.7	.69	.02	99.82	
LAMD-17653	61.36	10.62	6.45	3.95	6.26	1.69	.92	1.09	.12	.14	.018	781	78	163	171	28	<10	22	7.1	.86	<.01	99.87	
LAMD-17657	63.54	10.65	7.25	4.66	3.58	1.63	.86	1.07	.11	.14	.030	870	153	104	148	26	<10	24	6.3	.17	.03	99.98	
		13.01										968	77	118	123	30	<10	29	5.2	.26	<.01	100.02	
LAMD-17660	62.16	12,79	8.09	3.37	2.44	1.47	1.90	1.26	.17	.15	.018	1334	83	92	156	37	13	26	5.8	.24	.01	99.82	
RE LAMD-17650	68.83	12.35	5.54	1.95	1.36	1.52	2.00	1.15	.18	.09	.016	2324	65	87	256	38	15	17	4.5	.23	<.01	99.81	
LAMD-17650	68.76	12.12	5.57	1.99	1.39	1.47	2.02	1.15	.21	.09	.016	2268	82	87	249	37	15	17	5.0	.23	<.01	100.10	
LAMD-17654	56.25	11.52	7.55	7.98	6.12	1.50	.38	.95	.07	.14	.060	597	207	97	99	23	<10	29	7.5	.62	.02	100.14	
LAMD~17554	59.85	11.89	8.48	3.95	4.56	1.79	.77	1.41	.14	.16	.022	956	73	123	130	33	<10	30	6.4	.38	<.01	99.58	
LAMD~17656	62.22	12.14	7.52	4.34	3.56	1.90	1.02	1.18	.13	.17	.027	974	132	152	187	29	11	25	5.4	.11	<.01	99.78	
LAMD-17642	61.15	12.75	7.96	3.90	4.20	1.75	1.00	1.45	.12	.15	.020	943	68	115	131	29	<10	28	5.4	.37	<.01	100.00	
LAMD-17555	62.56	12.60	7.41	3.12	3.50	1.70	1.10	1.45	. 15	.13	.021	911	79	119	198	31	<10	25	5.9	.64	<.01	99.80	
LAMD-17647	62.59	13.15	7.57	2.84	1.77	1.76	2.09	1.83	.39	.13	.028	1987	159	115	205	35	39	21	5.5	.19	.01	99.94	
LAMD-17658	66.74	10.51	5.15	2.88	4.80	1.63	1.38	1.00	.12	.10	.014	750	63	182	204	27	<10	17	5.4	.79	<.01	99.87	
		11.85									.023	1604	89	128	132	31	<10	29	5.5	.17	.01	99.88	
LAMD-17546	63.45	12.03	6.74	3.57	5.06	2.00	1.05	1.54	.10	. 13	.026	706	60	147	194	35	<10		4.0	.26	<.01	99.84	
LAMD-17556 6	54.70	11.27	7.00	3.71	5.50	1.93	.88	1.62	-11	.15	.022	863	65	145	185	37	<10	33	3.1	.09	<.01	100.15	
LAMD-17659 6	52.84	11.78	7.85	3.85	3.45	1.57	.91	1.34	.09	. 15	.019	742		140		31	10	25	5.9	.57	<.01	99.89	
LAMD-17544	53.42	13.01	7.63	2.97	2.78	1.85	1.36	1.25	-14	.15	.021	1221	82	157	170	30	<10	22	5.1	.14	<.01	99.88	
STANDARD SO-15/CSB 4	49.92	12.71	7.11	7.01	5.70	2.39	1.87	1.76	2.64	1.36	1.040	2021	78	395	988	22	18	13	5.9	2.40	5.25	99.83	

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001848 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1 (a)

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Şr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ва	Ti	B Al	Na	K W	TI	Hg S	e Te	e Ga
}	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	*	ppm	ppm	ppb p	pm	ppm	ppm	ppm	ppm p	opm	. X	%	ppm	ppm	<u>*</u>	ppm	% p	pm z	¥.	% ppm	ppm	hbn bb	ili ppi	и ррш
SJCD-17506 SJCD-17516 SJCD-17501 SJCD-17508 SJCD-17514	.50 .37 .43	62.24 101.22 69.34 58.65 77.06	4.50 5.44 8.75	53.8 75.7 63.3	158 25 73	61.3 55.3 44.6	28.7 29.0 15.9	1070 1147 566	4.32 1 4.51 3.08		.5 : .3 .4	2.7 2 135.6 1 2.9 1 3.7 4 2.2 2	.6 .8 .5	31.7 36.8 19.0	.12 .15 .16 .08	.40 .34	.07 .06 .13	132 1 134 1 80	.08 .37 .43	.044 .057 .050	13.0 8.4 14.6	76.0 1 139.5 1 82.9 1 69.2 68.6 1	.38 1.25 .89	95.9 272.4 326.1	.220 .324 .192	3 3.41 2 3.33 1 2.14	.011 .037 .013	.04 <.2 .03 .2 .06 <.2 .05 <.2 .05 .2	.06 2 .03 .04	208 . 30 . 21 .	6 .07 3 .07 2 .03	2 7.5 2 9.2 3 5.7
SJCD-17510 SJCD-17512 SJCD-17517 SJCD-17504 SJCD-17515	.28 .30 .50	65.33 53.50 47.85 36.94 63.83	8.63 9.34 5.07	68.9 61.4 53.7	9 10 82	48.8 40.2 37.1	17.4 16.9 12.2	698 810 360	3.74 3.15 2.37		.3 .4 .3	3.3 3 3.3 5 4.8 5 7.0 1 38.7 1	5.1 5.6 1.4	19.0 21.0 14.3	.07 .11 .12 .22 .22	.50 .29	.12 .12 .10	97 74 84	.79 .59 .53	.050 .057 .048	13.8 15.4 7.3	70.8 1 87.6 1 49.8 59.1 87.6	.87 .74	206.7 115.3 461.7	.208 .145 .194	2 2.49 1 1.76 1 2.06	.016 .009 .011	.04 <.2 .15 <.2 .07 <.2 .02 <.2 .04 .2	.07 .06 .03	45 50 58	2 .00 2 .00 4 .00	2 7.6 3 5.6 2 5.6
SJCD-17502 SJCD-17518 SJCD-17505 SJCD-17509 SJCD-17513	.47 .41 .22	75.18 93.99 75.63 80.12 77.58	5.48 7.09 7.13	58.6 66.9 49.5	5 8 9	41.4 68.6 53.5	18.0 24.7 18.0	757 793 756	3.17 3.46 2.98	4.5 6.0 4.5	.3 .3	6.1 1 1.8 3 2.6 3 17.9 3 2.7 2	3.2 3.1 3.5	24.1 20.4 16.4	.17 .08 .10 .08	.30 .45 .35	.10 .09 .14	87 94 92	.82 .71 .74	.055 .056 .049	9.1 10.5 10.6	84.8 48.7 65.7 62.7 78.1	1.04 1.14 .97	147.1 360.1 289.5	.206 .199 .209	2 2.04 1 2.30 2 2.21	.014 .012 .013	.07 <.2 .05 <.2 .04 <.2 .06 <.2 .06 <.2	.04 .03 .04	52 30 20	.2 .0 .3 .0 .2 .0	3 6.3 2 6.7 2 6.4
SJCD-17507 SJCD-17511 SJCD-17503 GSMD-17578 RE GSMD-17578	.20 .27 .30	55.12 55.09 79.17 22.78 22.69	4.70 4.33 8.52	49.5 84.9 61.8	10 115 40	52.1 62.7 29.9	22.8 29.7 10.9	1457 956 410	4.19 4.73 2.51		.1 .1 .4	71.1 2 5.3 2 3.2 1 3.3 6 1.9 6	2.0 1 1.3 5.3 1	179.5 24.9 192.0	.11 .08 .21 .14 .12	.54 .40 .31	.07	131 1 149 1 33 4	.66	.033	12.3 5.9 16.8	73.7 82.7 29.7	1.38 1.57 1.08	984.7 175.2 102.2	.241 .354 .055	2 2.80 3 2.84 <1 1.21	.018 .029 .006	.03 <.2 .05 <.2 .06 <.2 .06 <.2 .06 <.2	.03 .03 .04	81 30 16	2 .0 2 <.0 2 .0	4 9.4 2 10.5 5 4.0
GSMD-17688 GSMD-17685 GSMD-17519 GSMD-17580 GSMD-17686	.79 1.53 .27	43.47 55.99 58.14 31.38 65.36	34.00 17.05 6.41	117.0 104.1 46.9	43 188 13	60.0 61.1 35.2	31.0 18.6 13.2	721 501	4.41 3.32 2.58	17.7 12.8 4.7	.9 .7 .9 .4	5.3 8 6.6 8 6.1 6 2.2 3 5.4 8	3.0 5.1 3.8	14.9 26.7 12.4	.30	1.47 .30	.30 .20 .08	51 64 80	.36 .59 .56	.101 .090 .047	30.8 24.0 13.3	57.1 42.8 63.8 60.5 58.2	.66 .71 .74	143.2 476.0 226.8	.090 .105 .171	1 1.66 1 1.53 1 1.76	.007 .007 .014	.09 <.2 .05 <.2 .11 <.2 .05 <.2 .11 <.2	.03 .08 .04	25 146 24	.5 .0 .8 .0 .2 .0	5 4.9 3 4.9 2 5.4
GSMD-17573 GSMD-17689 GSMD-17566 GSMD-17576 GSMD-17561	.60 1.02 .64	54.69 54.77 30.82 119.86 74.36	13.31 9.96 10.27	216.5 52.7 86.0	7 34 68	66.0 12.4 75.3	23.6 13.2 27.3	978 454 1398	3.90 3.86 4.15	15.1 7.9 2.5 6.6 2.7	.6 .6 .4	8.5 3 2.7 3 1.7 3 5.6 3 2.7 3	5.5 2.7 2.7	24.9 46.1 38.7	.53 .51 .08 .17 .10	.53 .10	.15 .12	95 156 117	.74 .46 .91	.094 .044 .055	19.7 12.2 10.9	55.4 75.1 42.4 73.4 76.2	1.06 .53 1.36	358.9 94.9 701.5	.197 .345 .246	1 2.36 <1 3.86 2 2.57 3 2.15	.020 .110 .016 .019	.10 <.2 .09 <.2 .06 .2 .06 <.2 .05 <.2	.05 .13 .05 .03	185 33 94 32	3 <.0 3 .0 3 .0 1 <.0	2 7.4 4 10.8 4 8.5 2 7.6
GSMD-17570 GSMD-17577 GSMD-17569 STANDARD DS2	.30 41	31.28 31.38 64.96 136.12	5.61	42.4 85.6	3 41	28.5 62.4	12.0 23.1	520 851	1.97 3.54	5.5 6.7	.3	3.0 2	2.7 5.0	13.9 28.0	.15 .19	.39 .45	.07 .17	69 73 1	.61 .78	.064	9.5 18.3	55.1 36.4 53.7 153.0	.56 1.82	272.9 230.5	.173 .135	1 1.31 1 1.93	.011	.04 <.2 .03 <.2 .12 <.2 .16 7.5	.02	10 39	2 <.0 1 .0	2 4.2 3 6.7

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY 1CP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 14 2000 DATE REPORT MAILED:

D: July 5/00

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppb	Ni ppm	Co ppm	Mn ppm		As ppm			Th ppm	Sr ppm	Cd ppm		Bi V ppm ppm			La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B					_		Te Ga ppm ppm
GSMD-17697 GSMD-17563 GSMD-17568 GSMD-17693 GSMD-17579	2.49 .34 .29 .79	53.47 49.24 102.85 51.89 16.76	34.51 3.68 9.55 12.66	145.7 41.5 71.0 95.8	234 59 24 141	57.7 151.7 60.2	20.3 25.8 23.2 20.4	849 526 1112 800	3.99 3.55 3.92 3.72	14.9 1.5 2.6 6.7	1.4 .2 .3 .5	3.5 <.2 .4 6.3	11.7 1.5 2.3 4.5	17.1 28.0	.09 .10 .29	1.72 .13 .20 .63 .17	.45 34 .06 84 .10 132 .14 86 .08 74	.68 .70 1.07	.041 .044 .104	5.7 7.4 17.3	60.4	2.03 1 L.43 1 L.07 4	137.0 166.8 125.2	.191 .384 .190	2 3. 4 3. 4 2.	38 .0 27 .0 17 .0	16 .0 19 .0 19	03 <.2 05 <.2 13 <.2	.02 .03 .06	42 32 63	.2 < .2 .2	.06 3.7 .02 8.8 .04 9.2 .02 6.6 .02 5.4
GSMD-17696 GSMD-17700 GSMD-17687 GSMD-17564 GSMD-17698	1.03 2.56 .14	42.55 37.89 92.93 57.15 53.11	24.41 31.97 3.73	90.3 118.2 58.1	25 255 3	104.5 55.0 82.7 94.4 63.2	18.1 34.9 25.2	831 1360 842	3.47 5.83 4.07	9.8 30.6 .9	1.1 1.2 .1	3.3 4.9 .2	9.5 7.8 1.3	18.6 24.1 46.8 31.5 31.9	.24 .30 .13	.87 1.04 1.27 .14 1.06	.19 58 .25 50 .28 75 .04 117 .28 57	.36 .58 1.44	.098 .129 .053	31.8 30.7 5.6	187.4 45.0 63.2 73.5 61.3	.65 3 1.54 3 1.84 1	331.5 304.3 100.1	.110 .087 .298	3 1. 2 2. 3 3.	85 .0 37 .0 26 .0	108 .: 104 .: 124 .:	28 < .2 23 < .2 05 < .2	.10 .11 .02	77 85 24 •	.2 .8 .1.>	.04 4.9 .03 4.6 .04 7.0 .03 9.3 .04 5.5
GSMD-17575 GSMD-17520 GSMD-17565 GSMD-17574 GSMD-17562	.94 .14 .31	67.04 31.97 59.92 40.71 79.93	18.88 2.85 5.64	67.3 76.3 42.4 45.1 68.9	108 <2 3	61.8 49.7 69.4 40.3 97.5	14.7 25.6 14.4	595 853 697	3.02 3.42 2.64	9.1 .8 5.7	2.6 .2 .3	3.0 2.0 3.7	8.2 1.0 3.0	24.6 30.1 22.3 16.7 28.0	.21 .12	.14 .44	.10 98 .21 49 .04 119 .08 89 .09 115	.53 1.47 .78	.084 .065 .053	32.5 4.2 10.4	50.6 44.3 51.4	.64 . 1 .62 . 2 79 .	418.0 108.5 452.1	.104 .368 .248	3 1. 4 3. 3 1.	72 .0 26 .0 99 .0	107 . 138 . 113 .	24 <.2 03 <.2 04 <.2	.08 .02 .03	79 25 • 25	.1 <.1 < .1	.02 7.2 .02 4.2 :02 8.7 .02 5.4 .03 8.1
GSMD-17683 GSMD-17567 GSMD-17695 GSMD-17571 GSMD-17692	.31 1.15 1.38	84.40 67.02 40.46 164.80 54.92	5.15 24.59 11.73	55.4 79.8 116.9	2 4 160	54.3 55.2	21.9 19.0 35.9	819 744 1412	3.72 3.08 5.14	3.0 9.3 9.0	.3 .9 .9	2.5 3.6 9.0	2.9 11.5 2.9	21.0 24.8 22.3 31.7 26.3		.31	.19 81 .08 120 .21 49 .16 129 .12 108	1.22 .31 1.13	.049 .075 .093	10.1 39.1 15.6	42.2	1.27 1 .56 3 1.41 9	178.0 399.2 307.0	.367 .116 .290	3 2. 4 1. 2 2.	83 .0 59 .0 87 .0	33 . 106 . 130 .	05 <.2 24 <.2 10 <.2	.03 .05 .05	45 71 109	.1 .3 .8	.03 6.1 .04 8.4 .02 3.8 .09 8.3
GSMD-17681 GSMD-17690 RE GSMD-17690 GSMD-17572 GSMD-17684	.55 .55 1.81	65.38 32.08 31.33 83.72 73.62	21.82 21.11 30.18	73.7 73.2 192.4	2 3 1664	56.3 57.0 65.5	20.5 19.5 34.9	718 708 1233	3.75 3.71 5.57	11.7 11.5 24.0	.9 .9 1.3	19.6 11.1	11.0 11.4 1.7	19.2 18.8 19.9	.13 .10 .67	.74 .53 .48 .87 .65	.23 68 .21 53 .20 54 .32 75 .23 74	.46 .47 .50	.065 .065 .116	38.6 40.9 19.0	50.8 64.1	.77 1 .77 1 .63 1	192.0 192.6 173.6	.116 .120 .096	2 1. 3 1. <1 2.	32 .0 31 .0 51 .0	07 .: 08 .: 06 .:	16 <.2 16 <.2 03 <.2	.04 .03 .06	20 22 188	.2 .1 .9	.06 5.2 .04 4.8 .02 4.7 .03 5.5 .03 6.1
GSMD-17694 GSMD-17691 GSMD-17682 GSMD-17699 PPD-17521	.52 1.31 .67	30.22 58.09 61.72 22.67 143.14	11.35 33.86 19.93	85.7 104.5 41.4	98 154 1570	62.2 47.4 34.2	23.0 21.4 11.8	1053 895 339	3.85 4.41 1.87	6.0 16.9 90.7	.3 .8	4.0 8.6 4.8	3.1 8.1 3.1	26.3 35.8	.24 .30 .10	2.81 .49 .69 .72 .57	.07 35 .11 109 .22 64 .33 34 .08 109	1.27 .54 .46	.085 .115 .048	13.0 28.0 15.2	65.3 35.7 66.1	1.40 4 .73 2 .62	159.7 263.5 48.0	.277 .115 .060	4 2. 2 1. 4 1.	51 .0 67 .0 09 .0	29 . 11 . 17 .	16 <.2 18 <.2 11 <.2	.05 .05 .05	51 43 113	.2 < .3 .2	.04 1.7 :02 7.7 .07 4.8 .03 4.0 .03 8.5
PPD-17539 PPD-17530 PPD-17534 STANDARD DS2	.24	80.22 49.28 105.47 129.22	6.82	83.6 54.0 61.2 161.5	<2 104	60.9 43.3 65.7 35.6	16.3 37.7	644 759	3.22 4.43	4.6 6.5	.3	1.2	4.8 1.7	31.8 17.3 17.1 26.6	.08 .18	.46 .38 .40 9.52	.11 133 .10 90 .10 123 10.77 74	.74 1.05	.063	12.8 10.5	53.9 1 74.0	1.04 1 1.28 1	65.3	.223 .268	2 2. <1 3.	34 .0 30 .0	12 10	11 <.2 04 <.2	.04	33 < 68	<.1 .6	.03 9.0 .03 6.5 .03 8.1 .77 6.0

Page 3 (a)

ACHE ANALYTICAL																					_								73	llo.	Co 1	·	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U			\$r		SÞ		٧			La	Cr	Mg	Ba	71 % c	B Al ≵ mox	Na	K W % ppa					
	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	*	ppm	ppm	bbр	ppm	ppm	ррт	ppm	ppm	ppm	X	X	bbw	ppm	*	ppm	٠,	pii *		a ppi	- ppin	ppo p	PF	Р	
PPD-17538 PPD-17529 PPD-17523 PPD-17531 PPD-17524	.30 .22 .19	89.01 59.32 30.41 41.49 50.29	4.89 4.68 4.96	52.4 32.3 38.5	16 39 8	60.2 46.4 28.4	25.5 13.6 12.0	1112 518 514	4.19 2.44 2.31	29.4 3.9 3.3	.2 .3 .6	6.0 1.5 2.7	2.3 2.4 3.7	25.9 23.0 12.9 17.2 31.4	.10 .09 .08	.14 .64 .25 .28 .39	.08 .06 .80	127 1 76 71	.77 .83	.024 .040 .059	7.5 8.4 11.1	130.6 85.5 47.1 33.2 50.9	1.51 .77 .74	106.7 160.9 160.3	.301 .223 .205	4 1.60	.021 .015 .014	.03 <.2 .05 <.2 .04 <.2 .05 <.2 .14 <.2	.04 .02 .03	31 27	.3 <.0). 3.). 1.)2 5.)2 4.	2
PPD-17540 PPD-17535 PPD-17533 PPD-17525 PPD-17528	.24 1.03	72.19 84.07 30.33 78.08 60.33	2.99 9.74 7.38	55.5 53.2 72.0	31 29 50	51.0 12.3 61.3	24.7 13.0 29.5	867 484 1110	4.05 4.16 4.57	2.2 2.5 46.5	.2 .6 .2	2.1 .9 11.2	1.6 2.8 3.0	26.4 14.3 47.7 24.6 25.9	.07 .08 .12	.58 .20 .09 2.07 .63	.05 .14 .12	139 1 161 137 1	1.36 .51 1.16	.059 .043 .057	6.0 11.5 9.7	78.2 69.5 43.0 81.5 75.9	1.46 .55 1.45	162.5 90.6 180.6	.376 .374 .251	2 2.97 1 4.24 3 2.56	.029 .106 .019	.07 < .2 .04 < .2 .06 .2 .08 < .2 .10 < .2	.02 .13	15 31 66	.3 <.1 .3 .1	02 8. 03 10. 03 8.	.5 .7 .5
PPD-17537 PPD-17527 PPD-17532 PPD-17526 PPD-17522	.21 .21 .27	67.10 45.82 23.37 50.38 160.14	4.47 6.55 5.42	42.9 40.6 37.0	16 13 11	38.4 24.1 41.8	15.6 10.7 18.1	650 501 766	3.16 2.03 2.83	13.5 3.3 7.4	.3 .4 .2	6.3 18.9 15.5	3.0 4.7 2.4	15.3 25.6 13.1 11.6 40.8	.08 .12 .08	.20 .49 .26 .44	.07 .08 .08	105 47 98	1.12 .55 .82	.043 .059 .050	8.9 14.0 7.1	82.9 62.2 27.1 53.6 181.8	.98 .60 .90	147.7 101.3 202.7	.281 .134 .261	4 2.21 2 1.24 3 2.39	.019 .015 .012	.03 < .06 < .06 < .06 < .04 < .06 < .06 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 <	.04 .04 .02	38 9 23	.2 <. .1 <. .3 <.	02 6. 02 3. 02 6.	.4 .8 .4
PPD-17536 LAMD-17651 LAMD-17560 LAMD-17550 LAMD-17645	.49 .29	75.68 46.63 82.39 129.39 69.15	7.98 5.96 3.77	50.8 68.7 102.7	13 25 7	37.6 71.1 76.2	13.9 36.4 34.4	553 1224 1038	2.76 4.85 5.52	4.7 8.2 4.0	.4 .2	8.7 4.0 2.0	3.5 2.0 1.7	20.9 5 14.8 9 34.4 7 35.0 5 23.0	.12 .15 .19	.33 .41 .74 .54	.15 .09 .06	78 151 169	.67 1.33 1.26	.064 .064 .040	11.9 7.4 6.5	72.8 49.9 113.4 71.8 74.5	.79 1.87 1.74	260.2 237.6 131.8	.217 .297 .386	1 1.74 3 3.00 3 3.37	.013 .029 .030	.08 < .3 .05 < .3 .09 < .3 .07 < .3 .10 < .3	.04	14 27 29	.3 . .2 . .3 .	04 5. 04 10. 03 10.	.0 .1 .6
RE LAMD-17645 LAMD-17559 LAMD-17551 LAMD-17545 LAMD-17646	.98 .29	67.64 161.25 65.28 91.94	3.72 6.01 7.96	68.0 69.5 80.2	239 53 21	33.8 57.7 57.3	48.6 27.6 25.4	1592 954 1414	6.08 4.02 4.41	6.9 6.4 5.2	.4 .2 .3	1.2 3.1 5.0	2.	3 23.5 9 43.5 5 22.8 4 22.8 7 15.9	.30 .17 .16	.69 .34 .52 .43	.08 .10 .11	193 119 140	.76 1.26 1.10	.087 .058 .069	8.9 8.3 10.5	73.0 92.4 61.7 84.9 45.6	1.15 1.45 1.49	123.3 243.2 378.0	.292 .291 .323	<1 3.43 4 2.47 2 2.74	3 .006 7 .049 4 .032	.08 < .03 < .10 < .09 <	.04	88 28 34	.9 . .1 . .4 .	05 8 02 8 03 8	.3 .7 .6
LAMD-17652 LAMD-17552 LAMD-17557 LAMD-17643 LAMD-17542	.32 .32 .41	96.95 66.96 41.46 77.54 53.65	5.91 4.12 6.10	74.5 64.2 55.2 87.1	41 10 31 83	189.7 59.0 36.7 58.1	45.5 22.4 15.3 25.9	1436 959 677 1045	4.84 4.30 3.08 4.48	20.0 3.3 3.8 6.0	.2 .3 .3	3.6 2.2 3.1	3.0	3 32.3 5 22.2 0 21.3 6 27.5 0 21.3	.10 .10 .18	1.18 .45 .40 .61	.07 .09	155 91 127	1.40 .88 1.19	.041 .070 .069	7.0 10.7 11.6	119.2 81.7 47.7 83.2 55.6	1.48 .83 1.31	262.6 187.7 289.3	.421 .229 .285	3 3.0 3 1.6 3 2.6 2 1.9	1 .030 3 .022 7 .034 1 .007	.07 <. .05 <. .04 <. .11 <. .03 <.	2 .02 2 .02 2 .05 2 .03	22 35 45 19	.2 <. .2 . .3 .	02 8 02 5 04 8 03 5	.7 .4 .7 .5
LAMD-17558 LAMD-17649 LAMD-17549 STANDARD DS2	.55	91.47 49.38 128.64 129.09	23.42	81.6	29	66.5	21.6	983	3.64	7.1	.7	4.0	9.	9 22.0 3 23.0 0 19.2 6 29.3	.15	.63 .56 2.73 9.91	.25	54 203	.47 2.01	.114	37.7 5.3	66.6 57.2 91.3 164.6	.87 1.94	277.5 76.6	.100 .409	2 2.00 5 3.40	3 .028 3 .037	.07 <. .11 <. .03 <. .16 7.	2 .10 2 . 0 2	37 19	.2 . .6 <.	03 6 02 11	.1 .9

Page 4 (a)

ACHE ARALYTICAL																																	
SAMPLE#	Мо	Cu			Ag	Ni				As	U			Sr	Cd		Bi		Ca	P		Cr	Mg	Ba		В	ΑÌ				Hg :		Te Ga
	ppm	ppm	ppm	ррп	ppb	ppm	ppm	βbш	z	ppm	ppm	ppb	ppm	ppm	ppm	bbu	ppm p	pm	8		ppm	ppm	X	ppm	Z.	ppm	*	z	* hbu	ppiii	bbn h	All P	pm ppm
																														••			00 0 0
LAMD-17547			4.47									1.9			.09							80.5				3 2	.73	.047	.06 <.2	.03	15	.3 <.	02 8.8
LAMD-17541	.42	55.82	6.90	56.2	3	71.4	20.1	691	3.02	5.1	.3	3.4	3.3	20.5		.43						54.9							.04 <.2				
LAMD-17548	.31	81.94	6.69	73.7	39	54.3	19.6	937	4.06	4.4	.3	13.6	2.1	24.2	.12	.45						101.8	_						.08 <.2				
LAMD-17543	.34	78.76	5.97	59.7	18	64.3	25.4	902	3.42	4.9	.3	2.7	2.4	20.4	.10	. 38	.08 1					55.6							.06 < .2				
LAMD-17644	.82	80.49	17.96	90.2	3	48.9	18.0	1028	3.35	7.0	.5	2.6	7.2	18.3	.11	. 68	.22	67	.53	.068	27.1	52.2	1.04	232.3	. 157	2 1	.91	.014	.10 <.2	.08	52	.2.	04 6.3
																																_	
LAMD-17655	.35	60.18	7.78	63.9	16	62.8	18.6	837	3.42	4.0	.3	3.7	3.2	26.0	.11	.33	.12 1	.00	.90	.051	12.7	63.0	1.25	478.4	.250				.08 .2				
LAMD-17648	1.31	51.00	25.41	92.2	77	108.1	33.1	1564	4.77	15.3	.8	4.1	9.3	32.2	.22	.85						66.1							.06 <.2				
LAMD-17653	.36	62.12	6.66	63.6	70	58.1	21.6	868	3.48	10.4	.3	7.8	3.2	76.2	.15	.64	.10	99 2	2.90	.053	9.7	63.3	1.71	307.6	. 245				.10 <.2				
LAND-17657	.28	68.40	6.74	63.4	12	148.3	28.0	901	3.98	4.5	.2	4.2	3.0	20.6	.09	.39	.12 1	104	1.01	.047	10.4	98.4	1.92	387.8	.243	4 2	2.59	. 025	.09 <.2	.04	53	.1 .	03 7.5
LAMD-17641	.31	74.36	5.46	65.2	2	58.6	29.0	1017	4.36	3.6	.2	2.3	2.4	23.2	.11	. 47	.10 1	47	1.22	.059	8.9	76.0	1.60	357.0	.386	2:	3.15	.029	.07 < .2	.03	26	.3 .	05 8.9
					_		-												4														
LAMD-17660	.82	91.69	13.82	102.4	15	77.7	27.3	1068	4.76	11.4	.6	5.3	5.1	25.5	.20	1.35	.18 1	120	.87	.081	20.4	91.8	1.57	375.7	.266				.14 .2				
RE LAMD-17650	.55	51.06	18.18	87.9	53	53.1	16.4	722	3.20	6.1	.8	4.3	8.3	22.9	.16	.51	.20	51	.52	. 095	34.0	49.5	.82	572.1	.102	1 :	1.71	.016	.11 <.2	.07			03 5.2
LAMD-17650	.58	51.31	18.64	87.8	68	50.7	16.9	716	3.19	6.3	.8	4.3	8.4	23.6	.15	.50	.20	50	.53	.097	35.1	48.3	82ء	563.1	.102				.11 <.2				
LAMD-17654			2.51								<.1	1.3	1.1	29.7	.07	.17	. 04	90 1	1.12	.028	5.0	132.4	2.58	223.7	.204				.03 <.2				
LAMD-17554			5.80								.2	3.3	1.8	25.8	.13	.50	.13 1	155	1.41	.051	7.9	89.1	1.53	326.6	.381	1 :	2.92	.034	.07 .2	.03	38	.3.	02 9.5
					_																												
LAMD-17656	.41	73.77	6.86	72.0	56	125.1	31.4	1173	4.14	10.2	.2	5.8	2.7	28.7	.14	.72	.16 1	105	.93	.067	9.9	80.7	2.00	445.3	.202				.07 .2				
LAMD-17642	.33	71.76	5.29	63.8	5	55.4	27.9	985	4.20	3.7	.2	1.4	2.3	20.5	.09	. 45	.09 1	140	1.07	.058	8.6	78.0	1.53	315.0	.357				.05 <.2				
LAMD-17555	.52	74.85	7.17	63.4	63	57.7	24.5	793	3.89	7.8	.4	4.6	3.4	18.1	.10	. 65	.10 1	119	.79	.069	9.9	78.1	1.09	219.6	.304				.04 <.2				
LAMD-17647			14.00								.6	4.3	6:3	34.5	.26	. 84	.12	72	.67	.190	35.3	125.8	1.37	328.3	.143				.12 <.2				
LAMD-17658			6.82								.3	10.6	4.2	79.0	.14	. 38	.12	57 2	2.33	.060	12.5	36.2	1.23	226.4	.140	<1 :	1.58	.014	.08 <.2	.04	26	.1 <.	02 4.5
LAMD-17553	.75	103.58	8.94	91.0	103	65.2	273	1150	4.45	6.2	.3	7.5	2.3	31.4	.17	.62	.13 1	40 1	1.27	.062	9.4	85.5	1.49	464.6	.325				.09 <.2				
LAMD-17546	.32	55.41	4.58	45.6	34	40.8	17.3	640	2.97	3.3	.3	3.4	2.1	16.3	.10	.30	.06 1	.00	.95	.054	7.3	53.8	. 92	166.2	. 289								02 5.7
LAMD-17556	. 28	51.24	4.79	47.7	9	35.6	15.8	738	2.97	4.1	.3	5.1	1.9	14.1	.11	.37						45.8							.03 <.2				
LAMD-17659			8.31								. 4	1.8	2.9	56.0	.18	.63	.11 1					82.2											02 7.7
LAMD-17544			12.39		_						.4	2.7	4.4	34.9	.21	.49	.17	98	.86	.084	17.2	95.3	1.18	338.6	.198	<1 2	2.39	.016	.12 <.2	.07	40	.3 <.	02 7.6
STANDARD DS2	13.84	128.12	33.29	162.7	271	36.4	11.8	824	3.07	58.8	18.9	193.9	3.6	28.7	10.24 9	9.54	10.58	75	.53	.092	16.4	162.4	.60	150.3	.096	3 1	.75	.032	.17 6.8	1.85	233 2	<u>.3 1.</u>	90 6.2

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A001848

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

SAMPLE#	Cs		Кf	Nb	Rb	Sc	Sn	S		Zr	Y		In	Re	Be		Sample		1
	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	bbw	bbp	ppm	bbiii	gm		┥
47504			47	77	2 /	c 7	۰.	- 01	- 05	4 0	10.74	20 6	.03	<1	. 4	21.6	30		1
SJCD-17506	.97		.14		2.4						56.07		.05	<1		51.7	30		- [
	4.34	<.1			2.5						13.85		.04	2		12.1	30		- 1
SJCD-17501	.91		.27		3.0 4.3						6.51		.03	<1		18.0	30		
	1.33		.11									16.7	.03	₹1		13.8	30		ļ
SJCD-17514	.90	•1	.37	- 10	2.7	0.7	.0		٠.٥٥	13.3	14.33	10.7	103	٠,	• •				1
0.100 47540	F0	. 1	27	13	2.7	2 7	۲.	- 01	< 05	10 0	12.05	22.8	.03	<1	.4	14.3	30		- 1
SJCD-17510		<.1	.27		8.5						9.50		.04	<1		23.2	30		-
:	1.07	.1	.36		5.0		.,	- 01	< 05	10.7	14.25	31 6	.03	<1		22.6	30		- 1
SJCD-17517	.93	.1			3.3		.4	\. 01	< 05	4 8	6.04	15.3		<1		15.3	30		- 1
SJCD-17504		<.1			6.1		۲.	.01	- 05	7.0	28 01	24.7	.06	<1		33.3	30		- 1
SJCD-17515	2.36	۲.۱	.06	-70	D. 1		.6	.02	1.05	3.2	20.01	6.7.7	.00	* 1	•				1
0.100, 17500	4 07	4	7/	1/	3.1	11 6	7	< N1	< 05	17 3	15.45	16.8	.05	<1	.5	12.0	30		ļ
	1.03		.34		2.7						11.04		.05	1		14.0	30		
	1.22	.1	.31 .19		2.5						9.61		.05	<1		15.9	30		- [
SJCD-17505	.93		.30		3.6						9.34		.05	<1		15.9	30		-
SJCD-17509	.86	.1			3.6						13.26		.07	<1		13.8	30		- (
SJCD-17513		. 1	.30		3.0	11.0	.0		1.05	13.7	13120	20.5	•••	-•					- 1
SJCD-17507	.78	.1	.27	16	1.9	7.1	6	< .01	< .05	9.9	12.36	21.1	.06	<1	.3	12.8	30		- 1
SJCD-17511	1.47	.1		13	3.5	11.0					15.34		.06	<1		16.4	30		- [
SJCD-17511	.88		.44		3.0		8	<.01	< .05	14.0	15.79	13.2	.06	<1		13.1	30		- 1
GSMD-17578	.56	.1			5.0							31.1	.04	<1	.2	26.2	30		- 1
RE GSMD-17578		<.1			5.0							30.9		<1	.2	26.7	30		١
KE G3ND-11310		** 1	.07	• • •	3.0			,										•	- 1
GSMD~17688	1.01	< 1	07	40	5.6	4.0	. 3	<.01	<.05	5.3	8.94	62.4	.04	<1	.4	26.9	30		
GSMD~17685		≺.1			3.5							56.8	.05	<1	.3	30.0	30		- [
GSMD-17519		₹.1			6.6						14.14		.04	<1		16.1	30		- 1
GSMD-17580		<.1			3.9							26.8	.03	<1	.2	16.0	30		ţ
GSMD-17586	1.66		.07		6.5							54.2	.04	<1	.3	32.2	30		- 1
43MD - 11000	1.00	٠.,					•••												- 1
GSMD-17573	.93	.1	.30	. 11	5.2	6.6	-4	<.01	<.05	10.9	12.28	26.6	.04	<1	.3	16.5	30		- 1
GSMD-17689	.71	.1			5.4							41.9	-04	<1	.5	19.3	30		- 1
GSMD-17566	1.29	.1			4.6						14.44		.06	<1	.7	10.6	30		- [
	1.07	.1	.26		3.9			<.01	<.05	11.7	19.29	21.9	.05	<1	.4	14.7	30		- 1
GSMD-17561	.78	.1	.25		3.2		.5	<.01	<.05	9.6	13.01	19.0	.03	2	.3	13.7	30		- 1
43/4D 11301		• •				/													
GSMD-17570	.51	<.1	.17	.53	4.6	3.8	.4	<.01	<.05	7.0	6.34	30.0	.02	<1	.4	14.6	30		- 1
GSMD-17577	.27	.1	.20		2.0		.4	<.01	<.05	8.9	8.31	21.7	.02	<1	.2	9.0	30		- 1
GSMD-17569	.96	.1	.25	.21	7.3	5.9	.4	<.01	<.05	10.4	11.43	36.9	.03	<1		26.0	30		
STANDARD DS2	3.39	<.1	.04	1.42	12.8	2.9						29.3		<1	.6	14.7	30		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY 1CP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: -230 TILL

JUN 14 2000 DATE REPORT MAILED: JULY 5/00 DATE RECEIVED:

SIGNED BY.

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

SAMPLE#	Cs	Ge	Нf	NЬ	Rb	Sc	Sn	S	Ta	Zr	Υ	Ce	In	Re	Ве	Li	Sample		1
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	bbw	gm		4
GSMD-17697	1.97	<.1	28	17	8.0	3.7	4	.02	< .05	15.8	11.63	60.0	.03	<1	-4	18.8	30.0		ı
GSMD-17563	.66	<.1				4.2					6.45		.02	2		9.9	30.0		ı
GSMD-17568	1.29	<.1			3.8						10.61		.04	<1		11.7	30.0		ı
GSMD-17693	1	<.1			5.1		-4	-01	<.05	10.2	12.46	32.3	.03	<1	.4	17.4	30.0		
GSMD-17579	.40	1.1	.14		5.0		.5	<.01	<.05	8.0	8.87	29.7		<1		18.9	30.0		
43/15		• •	•••	•••															1
GSMD-17696	1.02	<.1	.15	.28	7.1	4.6					6.53		.02	<1		20.3	30.0		1
GSMD-17700	1.18	<.1	.15	.64	11.3	3.9					9.62		.03	<1		17.8	30.0		1
GSMD-17687	2.73	.1	.18	.23	9.9	7.0					13.11		.05	1		32.0	30.0		1
GSMD-17564	.66	.2	.34	.22	1.9	8.4					15.38		.05	1		7.6	30.0		1
GSMD-17698	1.20	<.1	.31	.19	9.2	5.8	.4	<.01	<.05	14.9	12.04	53.7	.04	<1	.6	24.8	30.0		1
	·										40 74	22.4	0.6	•	7	15 0	30.0		
GSMD-17575	.83				4.2						12.31			2		15.0 17.6	30.0		1
GSMD-17520	1.01	<.1			9.0						12.09		.07 .08	<1 <1		7.3	30.0		
GSMD-17565	.46		.39		1.0						12.61			<1		11.4	30.0		1
GSMD-17574	.41	-1			2.6						9.45 14.15			<1		15.8	30.0		١
GSMD-17562	.91	.1	.30	.08	3.7	0.7	.,	1.01	V.05	:1.1	14.13	20.0	.07	`'	••	13.0	30.0		١
GSMD-17683	2.68	. 1	.08	.40	12.1	6.4	.5	<.01	<.05	7.1	8.45	58.4	.09	<1	.4	26.3	30.0		١
GSMD-17567	.86	.2			3.4						16.81		.10	<1	.5	12.5	30.0		1
GSMD-17695	1.77		.13		6.9						8.16		.09	<1	.4	15.4	30.0		ı
GSMD-17571	.81		.38								23.01			<1	.5	18.1	30.0		
GSMD-17692	.61	.1			4.9		.6	<.01	<.05	15.9	14.38	27.7	.09	<1	.4	14.8	30.0	•	
	1														_				ı
GSMD-17681	1.23	.1	.18		7.5						10.97		.08	<1		20.2	30.0		
GSMD-17690	.58	<.1			4.6						8.09		.08	<1		22.8	30.0		١
RE GSMD-17690	.57	<.1	.13		4.7						8.15		.07	<1		22.9	30.0		1
GSMD-17572	1.10	.1			4.5						24.70			<1		15.9	30.0		ı
GSMD-17684	2.78	.1	.17	.36	13.0	5.5	.4	<.01	<.05	10.0	7.02	60.2	.07	<1	.4	24.8	30.0		1
00MD 17/0/	75	. 1	10	27	2 6	2 7	7	03	< 05	43	23.50	21 2	.04	2	3	7.5	30.0		ı
GSMD-17694	.35		.10 .37		2.6 5.0		.5	- 01	- 05	17 0	13.74	24 8	.06	<1		14.8	30.0		ı
GSMD-17691 GSMD-17682	1 10	.1 <.1	.16		7.6		.,	< 01	< 05	03	10.59	50.8	.04	<1		18.6	30.0		1
GSMD-17602 GSMD-17699	1.10				7.6						5.90			<1		19.4	7.5		ı
PPD-17521	2.39	1.1			3.8						13.17			<1		15.7	30.0		
PPU-17321	2.39	• •			.,.0	.0.2							• • •	•					
PPD-17539	.83	.1	.40	.12	4.1	8.7					13.64			<1		15.8	30.0		1
PPD-17530	.66	.1			4.3	7.7		<.01	<.05	13.3	10.18	27.1	.03	<1		19.4	30.0		1
PPD-17534	1.18	<.1	.16	1.07	3.3	8.5	.6	.01	<.05	6.0	21.19	31.1	.04	1		17.5	30.0		1
STANDARD DS2	3.27	<.1	.04	1.49	12.9	2.9	26.3	.01	<.05	3.1	7.65	28.9	5.42	<1	.5	14.8	30.0		4
																			1

Page 3 (b)

SAI	4PLE# Cs		Hf	ΝР	Rb	Sc	Sn	s	Ţa	Zr	Y		In	Re	Be		Sample	
	bbw	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	bbu	ppb	bbur	ppm	gm	
PPI	0-17538 1.09	.1	.32	.23	1.4	8.7	.5 <	.01	<.05	9.5	14.63	24.4	.04	<1	-4	11.2	30	
. PPI	2.16	.1	.24		3.6 1						11.67		.04	<1		23.9	30	
PPI	-17523 .49	.1		.75	3.1	4.3	1.1	.01 <	<.05	8.5	9.01	20.9	.02	<1		12.3	30	- i
PPO	0-17531 .45	.1	.30	.33	2.7	6.7					12.03		.02	<1		12.0	30	
PPI	0-17524 .88	.1	.35	.24	6.8	8.8	.6 <	.01	<.05	12.5	13.38	27.0	.03	<1	.4	19.5	30	Ì
DDI	o-17540 .75	.1	.27	30	4.4	0 1	.7 <	: 11 -	< .05	9.7	12.05	21.3	.04	<1	.5	16.1	30	1
	0-17535 .97				2.4						12.80		.02	<1		10.6	30	- 1
	0-17533 11.26				4.5						14.10		.05	<1		10.9		- 1
	D-17525 1.30				4.9 1						17.15		.04	1		26.6		1
	D-17528 1.12				6.0 1							23.2		<1		23.1	15	1
Fre	1.12	• 1	.20	.35	0.0	0.0	• • •		1.03	,,,,	17.20	23.0	.03	''	• •		.,	
PPI	0-17537 .42	.1	.40	.29	1.3	6.8	.7 <	.01	<.05	15.3	13.75	17.0	.02	<1		9.3		ĺ
PPI	0-17527 .69	.1	.33	.22	3.6	9.9	.6 <	:.01 -	<.05	13.6	14.40	18.2	.03	<1		20.2		
PPI	0-17532 .37	.1	.25	.39	3.6	4.5	.3 <	.01 -	<.05	9.0	8.01	28.6	<.02	<1		14.0		
PPI	0-17526 .69	.1	.22	.57	2.7	5.7	.6 <	.01 -	<.05	10.6	9.85	22.1	-03	2		13.1	30	- 1
PPI	0-17522 2.07	` .1	.29	.14	3.4 1	0.3	.5 <	.01	<.05	11.4	12.44	15.2	.03	<1	-4	16.1	30	
DO	-17536 .63	1	.29	45	3.3	7 2	6.4	. 01 .	< 05	11 5	11 21	19.0	.02	<1	4	12.9	30	
	MD-17651 .46				3.6						8.85		.02	<1		12.5		
	MD-17560 1.17				4.3 1						16.41		.04	<1		25.9	30	i
·	MD-17550 1.42				2.9 1							16.1		1		17.8	30	
	MD-17645 .68				4.7 1						15.11		.04	<1		16.7	30	
En.	.00	• •	.51		7							2014	•0.,	•	••	••••	•	
RE	LAMD-17645 .69	.1	.33	.43	5.3 1	1.7					15.38		.03	<1		17.1	30	- 1
LA	MD-17559 1.23	<.1	.16 2								18.72		.04		1.4		30	- 1
LA	MD-17551 .84	.1			4.7						13.82		.03	2		18.8	30	
LAI	MD-17545 .71	. 1	.28	.56	4.5 1	1.0					14.22		.03	2		15.0	30	- 1
LA	MD-17646 .73	.1	.20	.69	2.3	4.3	.4 <	.01	<.05	8.3	9.69	33.8	.02	1	.3	14.5	30	
I A I	MD-17652 1.56	2	.25	11	3.7 1	2 5	5 <	. 01 .	< n5	8 4	14.08	18.6	.04	<1	. 3	23.8	30	
	MD-17652 .91	.1			3.4						13.26		.03	<1		15.9	30	ĺ
	MD-17557 .47	.1			2.6						11.11		.02	2		10.9	30	l
					5.5 1						14.66		.04	3		20.5	30	ŀ
		.1											.02	<1		14.2	30	i
LAF	MD-17542 .66	.1	.22	.40	2.3	4.3	.4 \	.01		0.1	8.57	20.0	.02	`'	,	,4.2	20	- 1
LAN	4D-17558 .95	.1			3.3		.6 <	.01 •	<.05	9.5	10.32	42.1	.02	3		16.5	30	
LAI	4D-17649 1.04	.1	.16	.79	8.3	6.1	.4 <	.01	.07	6.9	11.45	78.7	.03	<1		25.6	30	
LAN	4D-17549 .94	.2	.44	.18	1.4 1	2.1						15.8		<1		14.6	30	- 1
STA	ANDARD DS2 3.43	<.1	.04 1	.50	13.4	3.3 2	26.2	.03	<.05	3.0	7.90	32.3	5.45	2	.6	15.0	30	
	· · · · · · · · · · · · · · · · · · ·												_					

Page 4 (b)

SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sc	Sn	s	Ta	Zr	Y	Ce	In	Re	Ве		Sample	
	bbu	bbw	ppm	bbu	ppm	ppm	bbu	*	ppm	ppm	bbw	bbu	ppm	bbp	bba	ppm	gm	
LAND 475/7	/0	4	17	70	7 0	0.7	Ω	02	- 05	16 %	14.24	17.9	.04	<1	4	12.7	30	1
LAMD-17547	.48	- 1	.47		3.0 2.3		.8 .5				9.00		.02	<1		14.1	30	1
LAMD-17541	.66	<.1	.21								16.36		.04	<1		13.3	30	1
LAMD-17548	.68		.37		4.1		٠,							_		13.3	30	i
LAMD-17543	.97	.2			3.4		.7				11.30		.03	<1			30	
£AMD-17644	.80	.1	.22	.38	7.2	6.5	.4	.01	<.05	11.1	12.31	55.2	-03	<1	-4	21.6	30	- 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01	•	.19	40	4.7	7 2	.6	01	Z 05	10 5	11 63	24.5	04	<1	3	15.2	30	į.
LAMD-17655	.81	- 1			4.1		.3				25.41		.06	<1		20.7	30	- 1
LAMD-17648	.73	<.1									12.03		.06	<1		20.0		
LAMD-17653	1.08	.1			4.7		.6						.05	`;		15.4	30	- 1
LAMD-17657	.80	.1			4.7						13.22			:			30	
LAMD-17641	.96	.2	.29	.24	3.8	8.6	.7	<.81	<.05	10.8	12.25	22.2	.06	1	٠.	16.3	20	-
1.110 47//0	4 00	- 4	70	77	7 1	10 /		- 01	م ر عم د	1/ 7	17.71	35.5	.06	2	5	24.3	30	j
LAMD-17660	1.09				7.1						13.15			7		19.5	30	- 1
RE LAMD-17650		<.1			7.6									-1			30	- 1
LAMD-17650		<.1			7.5							62.9		<1		20.5		- 1
LAMD-17654	.65	.1			2.3							12.6		2		9.4	30	
LAMD-17554	.75	-1	.34	.24	3.6	11.0	.9	<.01	<.05	13.7	16.00	16.2	.04	<1	د.	15.8	30	ļ
47454			24	40	, ,		-	- 01	- 05	0 3	11 47	20.2	.04	-1	7	19.4	30	
LAMD-17656	1.07	-1			3.7							20.2		<1 2		17.0		- 1
LAMD-17642	1.01	1			3.7								.03	_				1
LAMD-17555		<.1			3.4		.6				10.22		.04	<1		16.3	30	i
LAMD-17647		<.1			6.5		.5					62.4		<1		25.2	30	i
LAMD-17658	.60	.1	.17	.20	4.4	4.4	.4	<.01	<.05	5.9	8.10	24.9	.02	<1	.5	17.6	30	- 1
	٠,		70	47	, ,	40.0	7	- 01	4 OE	11 7	1/ 71	19.3	.03	2	7	14.1	30	
LAMD-17553	1.86	.1		.13	4.2								.02	4		10.5	30	
LAMD-17546	-46	-1			2.4						10.80			-4				- 1
LAMD-17556	.32	.1	.32		1.8						12.80		.02	<1		9.5	30	. 1
LAMD-17659	.78	<.1	.16		4.0								.03	3		21.3	30	- 1
LAMD-17544	1.11	.1	.26	.17	6.6	8.6	.5	<.01	<.05	10.5	12.64	32.8	.03	<1	.5	22.3	30	.
STANDARD DS2	3 34	<.1	.04	1.44	13.0	3.1	26.2	.04	<.05	2.9	7.77	31.5	5.31	<1	.5	14.4	30	
STANDARD DSE	3.34		.04		.5.0		2012											

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002057

PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Page 1

nuuse)n > be		800																	Luge			LL	
SAMPLE#	sio2	A L 203	Fe203	MgO	CaO	Na20	K20	TiO2	P205	MnO (Cr203	Ba	Ni	Sr	Zr	Y	dи	Sc	LOI	TOT/C	TOT/S	SUM		7
	%	%	%		%		%			%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	<u> </u>	*		-
TCHD-17767	58.19	13.21	7.63	4.42	6.13	2.26	.62	1.44	.12	.14	.031	527		139		30	10		5.7		<.01	100.00 99.98		
TCHD-17760	53.43	12.95	9.54	5.01	4.46	1.93	.58	1.21	.12	. 19	.028	707	102				<10			1.40		99.98		
TCHD-17754	63.02	11.93	7.38	3.14	3.53	2.12	.79	1.33	.11	16	.027			139			11		6.3		<.01			- 1
TCHD-17596	67.75	10.88	6.71	2.71	2.41	1.38	1.14	1.00	.08	.20	.020	1968		102			10		5.4	1.41	<.01	99.95 99.89		
TCHD-17765	51,90	13.84	8,39	5.16	7.01	2.26	.48	1.46	.11	.16	.035	304	75	152	117	29	<10	24	A-0	1_41	<.01	77.07		;
TCHD-17771	70.31	10.77	5.10	2.35	3.53	2.18	1.01	1.28	.11	.08	.021			162		31	12		3.2		< .01		,	
TCHD-17776	68.89	11.46	5.57	2.42	3.10	2.02	1.02	1.18	.08	.10	.021			137		30	<10		4.2			100.18 99.97		
TCHD-17741	65.99	12.22	6.39	2.43	3.09	1.98	1.11	1.24	.13	.11	.020	852		146			11		5.1		<.01	99.90		ı
	65.77	10.53	5.46	2.65	3.84	2.01	.56	1.21	.06	.09	.024	351		115			<10		7.6		<.01	99.85		•
TCHD-17748	69.43	10.60	5.39	2.65	4.15	2.16	.87	1.27	. 14	.11	.018	858	48	168	209	32	10	21	2.9	.07	<.01	77.03		
TCHD-17586	66.82	10.53	6.35	3.45	3.64	1.72	.90	1.13			.027			120			<10		5.0		<.01	99.99		
TCHD-17588	64.70	12.32	6.38	3.35	3.09	2.15	.99	1.14	.10	.12	.027	623		176			10		5.7			100.20		- }
TCHD-17761	55.50	13.53	8.18	4.70	6.26	2.40	.58	1.51	.10	.16	.030			156			12		6.8		<.01	99.86		i
	65.57	11.84	6.43	2.66	2.80	1.87	1.12	1.21	.10	-11	.020	886		138			<10		6.2			100.08		- [
TCHD-17592	64.00	10.13	6.61	5.85	4.46	1.76	.67	1.12	.11	. 13	.052	639	189	128	199	26	<10	19	5.0	.21	<.81	100.04		
TCHD-17595	64.54									.13	.032			113			<10		5.6		<.01	99.93		
TCHD-17773	69.30	10.54	4.93	2.59	3.76	2.14	.73	1.19	-04	.09	.020			128			<10		4.4	.53	.01	99.83 99.78		
TCHD-17599	64.18	14.64	5.70	1.24	1.24	2.60	2.99	. 85	. 15	.07	.007	363		123			18			1.05	.05			ı
TCHD-17778	58.72	12.75	7.35	3.92	5.40	2.29	.53	1.40	.07	.12	.028	250		125			<10		7.4		<.01	100.06 99.82		
TCHD-17762	54.98	13.85	7.98	4.39	5.86	2.36	.65	1.44	.12	.15	.032	500	71	148	145	31	11	25	1.9	1.13	<.U1	77.04		
	55.00										.025			147			<10			1.13		99.98		
	62.63										.035			141		32	11		3.9		<.01	99.91		
TCHD-17777	62.19	12.53	6.71	2.73	3.29	1.97	.82		.09		.020			123		25	10		8.3		.01	100.07		.
TCHD-17591	57.85	9.37	7.27	9.54	6.58	1.37	.50	-88			.056			106			<10		6.4		<.01	100.15 100.09		
TCHD-17587	50.49	14.01	9.88	4.95	4.03	1.89	.62	1.20	.07	.18	.029	602	240	139	123	35	<10	32	12.6	. 94	<.01	100.09		
TCHD-17747	66.47	10.85	5.76	2.55	3.27	2.02	.85	1.35	.11	.10	.023			139			<10		6.5	.86	.01	100.00		
TCHD-17742	65.58	12.19	6.60	2.39	2.89	1.89	1.11	1.23	.12	.12	.017			142			<10		5.9	.28		100.19		
TCHD-17779	67.53	11.75	5.24	1.81	2.23	1.70	1.17	1.18	.09	.09	.018	618		136			19		7.0		<.01	99.95		
TCHD-17597	63.23	12.03	6.43	2.54	2.78	1.80	1.10	1.20	. 14	.13	.021			130					8.4		.04	99.97		
TCHD-17757	62.99	13.48	7.33	1.96	1.75	1.45	2.04	1.08	.18	.09	.014	1225	58	103	239	38	10	20	7.4	.39	<.01	99.96		
TCHD-17589	60.33	11.66	7.66	5.93	4.36	1.86	.70	1.01	.05	.18	.041	749					<10		6.2	.36	.01	100.12		
TCHD-17768	60.17	12.10	6.63	3.31	4.36	1.95	.67	1.25	.10	.12	.024	582	65				<10	-		1.68	.02	99.90		ı
TCHD-17594	57.04	10.86	8.22	5.79	6.01	1.28	1.01	1.00	.14	.21	.030	1878	160				<10		8.2	.77	.01	100.06		
STANDARD SO-15/CSB	49.08	12.82	7.30	7.26	5.87	2.41	1.85	1.66	2.70	1.39	1.061	1910	78	396	912	22	31	12	5.9	2.39	5.33	99.70		

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

DATE RECEIVED: JUN 23 2000

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data MFA

Page 2

SAMPLE#		2 Al203	Fe203 %	Mg0 %		Na20 %	K20 TiO2 % %		MnO (Ва ррп		\$r ppm	Zr ppm	y ppm			% FOI	TOT/C %	тот/s %	SUM %		-
TCHD-17770 TCHD-17763	66.0	7 10.23	6.17	3.50	4.40	2.03	.85 1.31 .83 1.21	.16	-14	.026	656 1064		137 107			<10 <10			.63 1.33		100.21 100.18		
TCHD-17598	66 0	4 13 26	5 53	2.09	1.94	1.77	1.90 1.11	. 13	-08	.016	787		150			17		5.8		<.01	99.82		
TCHD-17756	67.0	5 11.68	6.15	2.58	2.83	1.90	1.20 1.20	.14	.11	.019	1097		136			<10	21	4.8	.14	<.01	99.85		
TCHD-17585	61.1	5 12.55	8.57	3.52	2,93	1.61	1.32 1.19	.23	.20	.025	913	82	123	155	37	<10	29	6.5	.28	<.01	99.96		
TCHD-17593	63.9	8 11.17	7.26	3.97	2.79	1.56	1.03 1.04	.14	.16	.029	1247	102	108			<10		6.6		.01 <.01	99.92 100.08		1
TCHD-17590	60.6	1 10.11	7.38	7.87	5.20	1.73	.64 .97	-14	- 14	.003	414			130 233		<10 17		5.1 5.0		<.01			
TCHD-17780	66.6	1 10.96	0.07	2.94	3.11	2.11	.81 1.25			.023				242		<10					100.09		
TCHD - 17743	60.7	9 11.70 9 40 E4	f.20	3.31	4.07	1 40	.70 1.48 1.27 .99	17	- 14	020	810			227		<10		5.6			99.96		
TCHD-17583	05.9	0 10.36	3.03	3.30	4.29	1.00	1.21 .77		- 11	.020	010	0.0	100		20	110							
TCHD-17600	68.4	2 11.05	6.09	2.12	2.24	1.69	1.34 1.12	.16	.11	.018	851			248	29	15		5.4		<.01			
TCHD-17584	69.0	1 10.62	5.71	2.12	2.78	1.67	1.19 1.16	.23	.09	.019	866			271	34	10		5.2		<.01	99.97		
TCHD-17758	58.4	2 13.44	8.04	4.40	3.59	1.75	1.04 1.22	.12	.13	.029	1055			141		<10		7.7		<.01	100.05		
TCHD-17764	61.1	1 11.17	7.43	4.24	4.91	1.90	.04 1.30	- 19	-20	.030	791			148		<10		6.7		<.01			
TCHD-17766	53.6	2 18.01	8.80	2.43	4.04	2.91	1.07 1.32	. 13	: 14	.008	342	<20	330	164	27	<10	22	7.4	.68	<.01	99.99		
TCHD-17759	57.3	7 11.97	7.57	5.17	6.42	1.93	.62 1.24	.11	. 15	.030	602		128			<10		7.3		<.01	99.99	•	
TCHD-17750							1.13 1.03		-11	.020	647			185		<10		7.1	.84	.01	99.95	•	
TCHD-17775	56.1	9 11.79	8.11	3.92	4.76	1.85	.51 1.32	.13	. 15	.025	239			147		<10					100.03	•	· 1
TCHD-17753	65.9	8 10.17	6.12	3.54	5.00	2.29	.61 1.48	.11	. 14	.029	749			232		10		4.3		<.01	99.92 100.22		ļ
TCHD-17749	68.9	5 10.62	5.75	2.74	3.24	2.13	.95 1.31	.12	.12	.023	999	50	142	100	28	<10	21	4.1	.23	4. 01	100.22		1
TCHD-17744							.73 1.32							218		<10		3.7			100.15		
RE TCHD-17744							.72 1.37									<10		3.7			100.12 100.02		ı
TCHD - 17774	53.7	9 11.94	8.53	4.80	6.59	2.32	.33 1.45	.20	. 16	.038	1/4			140		<10 <10		5.2			100.02		
TCHD - 17582	66.1	4 10.28	6.73	3.50	3.85	1.71	.85 1.24	10	- 18	.024	710			125 129		<10					100.03		l
TCHD-17751	50.4	1 13.24	8.82	3.93	4.20	1.02	.62 1.42	. 13	. 13	.020	310	04	117	127	20	10	رع	13.2	2.00	1.01	100.07		.
TCHD-17746	69.14	4 10.09	5.74	2.73	3.11	1.66	1.06 1.23	.04	.10	.020	1000	52	103	219	26	<10		4.9		<.01			1
TCHD-17745	64.9	9 11.68	6.67	2.54	2.21	1.56	1.29 1.11	.22	.09	.020	1176		120			<10		7.3		.01	99.87		1
TCHD-17752							.47 1.46			.029			124			<10			1.36				
TCHD-17581							.87 1.24							114		<10		5.3			100.15		J
LAMD-17675	60.5	2 12.38	7.94	3.92	3.97	1.62	.94 1.19	.09	.16	.031	1186	84	137	192	29	<10	27	7.2	.26	<.01	100.15		
. LAMD-17661	63.1	1 11.95	8.08	2.93	2.51	1.82	1.03 1.23	-10	.35	.024	1067		130			<10		6.9			100.21		
LAMD-17678	62.7	7 11.00	7.02	3.77	1.50	.80	1.32 1.03	.10	.15	.038	2983			132	22	15					99.98		
LAMD-17670	58.1	8 11.86	8.14	3.10	2.56	1.83	1.17 1.25	.15	.24	.018	1045		114			<10					100.17 99.72		j
STANDARD SO-15/CSB	49.49	7 12.23	7.33	7.29	5.89	2.42	1.86 3.72	2.71	7.40	1.064	2010		598	983	44	20		2.9	2.41	3.31	77.12		

Page 3

ACHE AND YILLOW

SAMPLE#	sio2	A1203	Fe203	Mg0 %	CaO %	Na20 %	K20 T %	i02 P	205 %	MnO %		Ba ppm	Ni ppm	Sr ppm	Zr ppm	y ppm	Mp Mp		LOI %	TOT/C %	TOT/S %	SUM %	
LAMD-17674		11.11									.025			118 110			<10 <10			1.05 1.20		99.99 100.08	
LAMD-17676		11.12							.13	.20	.032						<10			8.06		100.10	
LAMD-17667		10.07							.28		.020		45		151 236		<10			1.83		99.99	. i
LAMD-17664		11.19									.028			116 115			<10			2.48		100.11	
LAMD-17679	55.61	12.53	8.12	4.00	4.37	1.04	.08 1	.25	. 13	. 14	.033	5 24	70	113	137	29	\10	20	13.5	2.40	.01	100.11	
_ LAMD - 17672		11.61									.040		87		148	33	<10					100.09	
LAMD-17663		13.04							. 13		.025		63	78	233	27	11		6.0		.01	99.97	•
LAMD-17677		11.54								. 15	.029		69		187		<10					100.16	
LAMD-17668		10.60									.023		65	80	175	23	<10					100.07	
LAMD-17673	55.98	10.66	7.11	1.87	.89	.90	1.19	.90	.39	.08	.014	2010	51	68	202	21	11	11	19.7	5.32	.02	99.96	
LAMD-17665	66.60	11.06	7.09	3.45	2.69	1.46	1.35 1	.35	.22	.16	.024	1412	56	92	240	41	<10	23	4.3		.01	99.97	
LAMD-17671		12.40							.14	.09	.021		44	119	251	30	<10	19	4.8	.22	<.01	99.90	
LAMD-17666		17.59							.15	. 13	.015	321	20	311	191	26	<10	22	7.3	.68	.01	99.86	
LAMD-17662		11.40							.15	.28	.029	979	64	131	184	37	<10	32	6.3	.29	.01	100.10	
LAMD-17669	66.34	9.79	6.78	3.30	3.08	1.28	1.00 1	.06	.20	.19	.027	1959	67	97	162	27	<10	20	6.6	.89	.01	99.91	
LAMD-17680	63.08	9.80	7.09	1.78	1.61	1.23	1.05 1	.22	.18	. 13	.029	979	34	94	168	23	<10	14	13.0	3.01	.01	100.35	
PPD-17624		9.97							.27	.23	.014		57	69	237		<10		5.2		.02	99.97	
PPD-17640		12.26								, 13	.025		64				<10	26	7.0	.28	<.01	100.00	
PPD-17626	57 19	13.10	9.36	5 04	5.28	1.55	1 26 1	.32						111			<10		5.2		<.01	99.85	
PPD-17634	62.83	10.92	7.69	4.41	4.19	1.62	.66 1	.34	.10	23	.036		72		196	30	<10		6.0		<.01	100.14	,
PPD-17631	50 74	11.21	4 40	2 4/	2 70	1 51	0/. 1	10	15	.09	.024	017	53	114	202	28	<10	18	14.3	3.34	.01	100.05	
PPD-17638		12.89							.12	.20	.036		76	118	121	29	<10		9.0			100.06	
RE PPD-17638		13.21							.11	.20	.037		61	120	137		<10		8.5		<.01	99.96	
PPD-17635		11.55							.11		.034		85	93	147		<10		6.5			100.06	
PPD-17633		11.51											49		185		<10			1.57	.01	100.01	
PPD-17627	139.13	11.51	1.13	3.30	4.27	1.02		.44	. 2.3	. 14	.027	510	47	120	כטו		110	2,3	7.1	1.57	.01	,00.01	
PPD-17632	58.59	12.74	8.72	4.06	3.14	1.68	.72 1	.28	.20	.17	.027	492	56	224	163	35	<10	33	8.5	.40	<.01	99.95]
PPD-17625	69.87	11.81	5.14	1.62	1.24	1.22	2.08	.95	. 13	.08	.019	2168	48	94	228	35	13	13	5.4	.77	<.01	99.86	- 1
PPD-17628		11.09								.09	.025	914	42	129	250	30	<10	20	3.5	. 14	<.01	99.99	1
PPD-17636		12.80								.23	.037		77	103	171	33	<10	38	7.0	.44	<.01	99.91	i
PPD-17621		13.02											329			31	20	17	8.9	1.51	<.01	99.81	
PPD-17630	68 60	12.07	5 54	2 40	1.85	1.86	2.03.1	.27	.01	.08	.018	832	41	89	281	26	10	15	3.9	.46	<.01	99.87	
PPD-17639		12.40									.029			110			<10		7.6		<.01	100.16	
PPD-17639 PPD-17622	56 07	13.15	7 45	2 55	5 0%	1 11	2 37 1						892		197	31	20			1.29	.03	99.85	Ţ
STANDARD SO-15/CSB	10.97	12.41	7 20	7 14	5 70	2 28	1 85 1	78 2	. KK	1 37	1 045	1068		391		22	18			2.41		99.89	
214MNWKD 20-13/C28	147.73	12.41	1.20	1.10	2.17	2.30	1.0.1	.10 2			1.047	1700		371	,,,,				,				

Page 4

ACHE ANNLYTICAL								···· -										MP	80	101	TOT/C	TOT/S	SUM		
	SAMPLE#	Sio	AL203				Na20		Ti02	P205 %	MnO 4	203 %	Ва ррп	Ni ppm	ppm Sr	Zr ppm	ppm Y	ppm mdq	ppm	7	%	*	*	 	_
	PPD-17637 PPD-17623 PPD-17633	64.66 62.98 61.86	3 14.84 3 10.92 2 12.31 1 18.28	6.07 5.94 7.9	2.33 2.99 1.88	3.9 1.6 3.7	3 1.89 7 1.18 8 2.91	.52 3 1.94 3 1.15	.92	.15 .34 .20	.29	.008 .021 .018 .008	277 2736	52 87 111 <20 150	95 324	244 179 188 179 229	27 92 30	<10 <10 <10 <10 <10	24 30 23	5.5 9.3 9.3 7.5 8.3	.38 1.91 1.40 .68 1.26	.01 .01 .02 .01	99.92 100.29 100.01 100.34 99.92		
	GSMD-17711 GSMD-17717 GSMD-17701	59.4 70.0 64.7	4 14.47 5 11.33 8 13.6 8 12.05 7 12.25	8.3 4.8 6.4	3.32 2 1.55 3 2.66	2 2.1 5 .4 5 2.8 3 3.9	5 1.36 9 .93 7 1.65 2 1.66	5 2.44 5 1.43 5 2.16 9 1.28	1.29 1.06 5 1.14 3 1.38	.21	.05 .11 .15	.018	2542 1252	76	145	264 159 154		<10	14 21 27	6.6 7.9 4.1 5.9 6.3	.30 1.46 .16 .21 .29	.01 .01 .01 .01	99.99 100.12 99.93 100.49 100.37		
	GSMD-17709	59.5 46.7 62.6	4 12.46 4 14.46 1 12.7 4 10.9 4 10.1	8 9.1 6 8.6 3 7.4	7 4.15 5 5.76 5 3.36	5 3.4 3 7.6 2 2.7	6 1.4 1 .7 4 1.8 6 1.4	8 1.17 4 .36 1 1.10 7 1.76	7 1.43 4 .95 0 1.29 4 1.16	.17 .20 .16	.17 .14 .14	.025 .041 .026	804 1511	88	139 121	191 249	36 26 31 40 42	<10 <10 <10	33 25	6.9 14.6 6.6 3.6 3.9	.28 .16	.01 .03 .01 .02	100.33 100.13 100.11		
	GSMD-17702 GSMD-17710 GSMD-17715 GSMD-17720 RE GSMD-17720	64.2 62.1 53.5	7 14.2 5 15.1 8 13.9 5 11.8 5 11.9	3 6.4 9 7.5 8 9.4	9 2.3 2 2.3 6 4.2	8 2.6 0 1.5 5 5.7	4 1.7 11 1.5 19 2.0	5 2.1 1 2.6 7 .6 9 1.0	3 1.19 7 1.54 4 1.62 3 1.34	.22 .14 .17	.11 .12 .16	.016 .019 .022	1408 1232 445 834	60	76 147 126		34 40 35 36 38	11 <10 <10	22 35	4.3 5.0 9.0 7.2 7.0	.26 1.16	.01 .01 .01 .01	100.12 100.16		
	GSMD - 17708 GSMD - 17712 GSMD - 17704 GSMD - 17719 GSMD - 17706	64.5	34 12.4 35 11.9 12 15.0 21 12.9 13 7.7	2 6.7 9 8.2 2 7.3	2 3.2 4 1.7 5 2.6	3 3. 7 . 7 2.	50 2.1 59 1.2 55 1.5	0 .8 7 2.3 6 1.5	1 1.38 3 1.57 7 1.37	.15	.11	.022 .026	898 675 1232 1493 1073	556 782 82	126 90 96	190 242 194	37	<10 23 <10	29 18 25	5.4 5.4 8.1 5.5 14.9	.17 1.05 .16	.01 .01 .01	100.09 99.89 100.13		
4	SJCD-10403 SJCD-10406 SJCD-10404 SJCD-10401 SJCD-10405	53.8 50.1	43 14.9 30 14.4 50 12.1 75 15.3 12 12.7	0 10.7 1 9.4 5 13.7	74 4.6 61 1.3 20 1.0	9 2. 8 9. 7 1.	69 2.1 53 1.5 07 1.6	2 1.5 3 1.7 52 2.3	0 .83 70 .81 80 .96	.35 .47 .35	.10	.026 .012 .024	3027 1227 2980 2370 1396	130 95 171	460 96	80 89 97	24 32 29	<10 <10	27 19 28	9.2 8.4 11.9 9.5 10.8	2.14 .58	.01 .05 .01	99.93 99.90 99.61		
	SJCD-10402 STANDARD SO-15/CSB	-	(2.45.2	2 15	7.1.1	3 1	41 1 5	1 2.1	n 1.10	.32 2.62	.10 1.35	1.036	2378 2017	170 80	103 385	106 991		<10 18		10.3 5.9	.61 2.42	.01 5.32		 	

Sample type: -230 TILL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA _

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

4

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002057 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell Page 1 (a)

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Bi		•			Cr			Ti	B A1							e Ga
	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*	x	ppm	ppm	2	ppm	% p	opm %	*	x	ppm	ppm	ppb p	pm pp	a bbu
TCH0-17767 TCH0-17760 TCHD-17754 TCHD-17596 TCHD-17765	.42 .38 .61	58.84 117.91 56.83 100.00 58.05	4.37 9.46 14.42	72.3 55.8 83.7	61 68 58	102.6 51.3 67.1	44.5 25.1 20.0	1367 1077 1387	5.59 3.97 3.83	18.9 29.7 8.2	.2 .3 .4	4.2 47.2 9.0	1.3 2.1 3.9	18.2 31.5 21.1 23.3 26.7	.14 .18 .14	.53 1.34 .72	.08 .06	168 110 93	1.29 .96 .78	.053 .053 .049	6.8 9.4 14.3	106.1 81.5 68.8	2.06 1.13 1.08	286.3 257.8 760.0	.297 .212 .198	2 2.77 <1 3.57 1 2.11 2 2.16 1 3.26	.028 .015 .020	.03 .05 .11	<.2 <.2 .3	<.02 <.02 .03	35 65 133	.6 .0 .4 .0 .3 .1	3 7.1 3 10.0 3 5.9 1 6.2 2 7.9
TCHD-17771 TCHD-17776 TCHD-17741 TCHD-17772 TCHD-17748	.21 .45 .22	16.44 34.04 45.67 27.96 45.47	5.15 12.32 3.48	39.9 63.4 29.5	25 28 46	34.1 43.2 31.3	13.9 16.6 12.7	552 704 437	2.84 3.45 2.65	5.2 6.7 3.5	.3 .4	1.9 6.4 1.0	3.2 3.6 1.6	17.2 20.6 21.9 10.7 23.1	.08 .17 .08	.32 .72 .23	.07 .12 .03	87 102 88	.88 .97 .89	.048 .062 .038	10.7 13.0 5.8	51.4 71.0 47.0	.79 .84 .67	138.2 298.6 90.0	.227 .244 .267	<1 1.37 2 1.89 3 2.18 3 2.02 1 1.36	.028 .024 .013	.07 .08 .02	<.2 <.2 <.2	<.02 <.02 <.02	15 50 37).> 2.). 3.). 3.	12 4.4 12 5.4 12 6.0 12 5.4 12 4.5
TCHD-17586 TCHD-17588 TCHD-17761 TCHO-17755 TCHD-17592	.18 .25 .46	63.41 40.87 55.69 40.49 49.64	5.06 3.90 10.66	46.4 45.3 57.8	27 31 48	85.2 53.1 41.5	20.5 25.0 17.5	670 820 640	3.29 3.81 3.52	4.3 2.5 7.9	.3 .3 .4	6.2 1.7 4.4	2.7 1.9 3.1	23.2 25.1 25.4 21.0 17.7	.10 .11 .15	.31 .19 .60	.06 .05 .09	87 135 102	.80 1.61 .82	.045 .043 .047	10.7 6.7 13.2	70.8 55.2 71.5	1.25 1.30 .93	154.2 270.4	.214 .403 .217	1 2.39 2 3.09	.033 .034 .018	.05 .03 .06	<.2 <.2 <.2	<.02 <.02 <.02	31 20 36). 2.). 3.).> 3.	04 6.2 02 6.5 02 8.4 02 6.1 03 5.1
TCHD-17595 TCHD-17773 TCHD-17599 TCHD-17778 TCHD-17762	.17 16.13 .22	26.66 243.27	3.36 44.31 2.68	30.7 63.7 40.8	14 188 15	27.3 15.9 41.6	10.8 6.7 19.1	393 304 614	2.26 3.57 3.68	5.4 115.8 3.3	.2 2.4 .2	3.4 5.4 3.4	2.4 11.9 1.5	13.0 10.7 22.9	.09 .16 .10	.24 .68 .25	.05 48.33 .09	75 41 133	.85 .11 1.36	.033 .074 .034	8.4 27.1 5.4	39.6 25.6 64.3	.64 .53 1.06	86.0 71.2 65.9	.238 .102 .382	2 2.36 4 1.68 30 1.84 <1 3.03 2 3.10	.018 .026 .035	.02 .29 .03	44.7 1.0	<.02 .31 <.02	22 7 29	.2 <.0 .8 .2 .4 <.0	2 4.7 2 6.5
RE TCHD-17762 TCHD-17769 TCHD-17777 TCHD-17591 TCHD-17587	.25 .28 .13	56.73 55.96 36.50 72.05 91.93	4.17 4.20 2.81	38.8 44.4 45.1	25 26 35	59.2 39.4 282.5	18.6 17.4 39.6	683 583 618	3.00 3.53 3.41	3.0 5.3	.2 .2	3.0 4.8 2.1	1.7 2.4 1.6	22.1 17.6 19.4 35.8 42.2	.08 .09 .09	.29 .31 .14	.06 .06 .04	97 112 54	1.23 .96 2.08	.039 .032 .037	7.1 8.1 6.4	48.2 62.9 96.4	1.10 .93 3.47	185.9 89.5 233.1	.288 .282 .168	2 3.08 <1 2.30 1 2.74 1 2.27 3 3.68	.027 .024 .025	.03 .05 .06	<.2 <.2 <.2	<.02 <.02 <.02	19 23 22	.3 .0 .3 .0 .2 .0	2 8.5 2 6.0 2 7.4 2 5.4 2 10.4
TCHD-17747 TCHD-17742 TCHD-17779 TCHD-17597 TCHD-17757	.47 .42 .63	26.44 44.76 19.82 56.69 52.48	13.16 7.20 12.77	66.5 56.2 72.3	23 63 109	43.5 30.3 43.2	16.3 12.7 17.4	720 439 803	3.46 2.68 3.50	7.5 4.8 6.6	.4 .3 .3	4.2 3.2 4.2	3.6 3.4 2.8	17.8 20.5 9.5 17.3 24.9	.19 .16	,74 .35 .62	.13 .09 .10	102 70 98	.90 .40 .68	.058 .044 .052	13.4 13.8 12.7	69.9 45.4 62.7	.83 .52 .87	296.7 123.0 311.6	.242 .150 .227	2 1.64 1 2.24 1 1.78 2 2.10 <1 1.94	.018 .006 .010	.06 .02 .05	<.2 <.2 <.2	<.02 .02 <.02	51 37 63	.3 .0 .4 <.0 .5 .0	2 5.2 2 6.3 2 5.4 3 6.6 2 5.6
TCHD-17589 TCHD-17768 TCHD-17594 STANDARD DS2	.36	71.03 52.99 107.55 123.95	4.94 11.36	41.3 95.4	85 133	48.1 146.4	21.8 38.2	591 1339	3.25 4.63	3.6 22.0	.3 .2	2.7 11.6	2.0	15.7 56.9	.12 .18	.31 1.69	.06 .11	107 99	.99 3.01	.035	7.0 10.7	·59.4 87.6	.87 2.50	144.8 1052.1	.290 .199	12 2.78 1 2.51 5 2.52 2 1.68	.012 .017	.03	<.2 <.2	<.02 <.02	45 145	.5 < .0 .4 .0	2 7.6° 2 6.6 5 8.1 0 6.0

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 23 2000 DATE REPORT MAILED:

: July 14/00

IGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

ACHE ARALYTICAL																																AURIC, AN	MILLIF	لبست
SAMPLE#	Mo ppm	Cu ppm	Pb oom	Zn ppm p	-	Ni com	Co ppm				ppm U				Cd maa				/ Ca		La ppm		Mg %a			B /								
TCHD-17770 TCHD-17763 TCHD-17598 TCHD-17756 TCHD-17585	.39 4 .36 4 .76 2	14.02 16.42	5.75 6.72 8.86 12.84	39.4 45.9 63.3 71.8	31 55 52 81	57.3 40.4 37.0 42.0	18.4 17.1 12.4 15.7	734 778 474 659	2.77 2.80 2.99 3.17	4.6 3.9 4.6 8.3	.2 .2 .6 .4	5.4 8.8 4.4 5.2	2.0 2.1 4.7 4.4	13.1 11.1 17.9 21.6	.10 .15	.37 .33 .41 .93	.09 .10 .14	9 87 9 102 1 71 5 90	7 .86 2 .85 1 .57	.052 .039 .044	7.3 8.6 17.5	49.3 50.2 59.5 69.8	.90 .91 .76 .89	147.6 277.7 179.7 278.7 117.5	.236 .284 .138 .210	2 2.0 1 1.8 <1 1.1)8 .021 38 .03! 73 .04:	8 .04 5 .14 2 .13	4 <.2 0 <.2 2 <.2	02. > 05. 02.	43 45 61	.6 <.0 .2 .0 .3 .0	2 6. 3 6 6 5	.2 .2 .9
TCHD-17593 TCHD-17590 TCHD-17780 TCHD-17743 TCHD-17583	.33 2 .14 8 .19 4 .32 3 .35 4	62.96 49.57 37.63	3.38 4.06 3.58	58.7 44.1 38.8 43.6 60.6	36 3 45 49	237.5 34.9 43.1	32.6 14.4 19.4	640 618 700	3.23 2.90 3.29	2.5 8.0 6.4	.1 .2 .2	1.6 5.5 4.5	2.0 2.6 1.7	19.0 17.5 11.9	.11 .07 .08 .16 .15	.14 .36 .41	. 05 . 06 . 05	5 66 5 98 5 123	6 .96 8 .96 1 .99	.047	7.6 8.4 5.9	88.6 49.1 67.5	2.55 .86 .93	533.6 197.3 108.2 126.7 289.8	.150 .267 .311	1 2.1 <1 2.1 <1 2.1	27 .04 05 .03 50 .01	0 .0 5 .0 6 .0	15 <.2 16 <.2 13 <.2	<.02 <.02 <.02	23 < 49 47	.1 <.0 .7 .1 .7 .0	12 5 .3 6 16 7	.8 .3 .2
TCHD-17600 TCHD-17584 TCHD-17758 TCHD-17764 TCHD-17766	.41 9	42.61 56.11 1 79.77 1 72.49 30.25	10.41 16.78 6.66	48.1 78.5	42 42 35	41.9 73.8 58.9	15.5 23.3 27.6	489 811 1144	2.69 4.33 3.28	10.8 9.6 7.3	.4 .3 .2	.9 2.5 3.9	3.8 2.5 1.8	21.1 20.1	.08 .17 .15	.74 .72	.17 .10 .10	1 63 3 143 3 103	7 .52 3 .97 1 .87	.068	14.4 8.4 7.2	40.1 122.3 53.8	.56 1.74 1.10	260.6 100.1 400.5 269.1 81.1	.091 .275 .251	<1 1.5 2 3.5 <1 2.5	34 .01 19 .03 41 .01	4 .0 2 .1 9 .0	04 <.2 10 <.2 04 <.2	<.02 .02 <.02	41 61 34	.4 <.0 .4 <.0 .7 .0	12 3 12 8 12 6	.7 .7 .4
TCHD-17759 TCHD-17750 TCHD-17775 TCHO-17753 TCHD-17749	.28 .20	80.49 37.59 61.02 35.99 10 34.42	8.10 2.33 06.81	44.4 99.7	56 30 90	44.5 49.8 33.7	16.7 25.0 15.2	676 868 730	3.15 4.06 2.57	5.9 6.5 5.6	.3 .1 .2	2.4 3.0 11.2	4.1 1.3 1.9	95.9 28.5 16.0	.09 .25 .13 .24 .15	.54 .40 .40	.11 .05 .05	1 81 5 13: 5 9:	1 2.96 1 1.35 7 1.08	.058 .038 .042	12.5 4.5 7.5	53.0 68.1 48.9	1.02 1.34 .89	194.1 195.1 53.7 252.0 290.1	.195 .363 .261	2 1.1 1 3.1 <1 1.6	34 .03 27 .03 56 .02	2 .1 2 .0 8 .0	3 <.2 3 <.2 3 <.2	.03 02.> 02.>	56 35 41	.3 <.0 .8 .0 .4 .0	12 5 14 8 13 5	.6 .2 .3
TCHD-17744 RE TCHD-17744 TCHD-17774 TCHD-17582 TCHD-17751	.30 3 .30 3 .23 6 .48 5	36.39 65.33 50.75	3.46 1.92 6.26	39.1 38.6 46.2 45.5 51.9	24 24 36	31.7 40.9 49.1	13.2 22.7 17.0	527 818 1109	2.65 3.78 3.36	3.7 3.2 3.9	.2 .1 .3	2.7 6.7 6.2	1.7 .8 2.2	17.1 13.8 20.4	.11 .10 .08 .06 .16	. 42 . 24 . 28	. 09 . 03 . 09	5 85 3 152 9 112	5 1.03 2 1.52 2 1.02	.063 .041	5.9 3.7 7.9	42.9 55.6 60.8	.78 1.15 1.11	183.8 178.6 39.9 556.2 70.8	.238 .416 .299	<1 1.5 3 3.6 1 2.5	58 .02 04 .02 31 .03	2 .0 5 .0 6 .0	14 <.2 12 <.2 17 <.2	<.02 <.02 <.02	33 27 30	.2 <.0 .7 <.0 .4 <.0	2 5 2 9 2 6	.0 .4 .7
TCHD-17746 TCHD-17745 TCHD-17752 TCHD-17581 LAMD-17675	.64 6 .20 4 .47 5	48.59 50.55	8.95 2.14 6.25	54.8 81.5 41.0 45.9 63.9	59 14 40	48.7 40.1 49.2	15.4 21.1 17.4	602 590 1081	3.54 3.13 3.38	7.6 2.4 4.3	.5 <.1 .3	3.0 .8 6.9	4.3 .9 2.2	30.5 13.7 22.2		.70 .23 .24	.20 .03 .09) 102 3 122 9 112	2 .85 2 1.27 2 1.02	.062 .020	13.4 3.7 8.1	83.6 43.4 58.8	1.02 1.05 1.10	276.4 361.0 72.5 561.5 509.0	.218 .410 .291	1 2.3 1 2.3 1 2.3	34 .02: 90 .04: 31 .02:	3 .1: 5 .0 6 .0	2 <.2 2 <.2 8 <.2	.03 02.> 02.>	72 22 35	.4 .0 .6 < .0 .3 .0	3 7 2 7 2 6	.0 .1 .9
LAMD-17661 LAMD-17678 LAMD-17670 STANDARD DS2	78 8	36.49 1	10.12 13.77	75.9 1 134.1 1	123 124	88.2 54.7	24.4 41.5	1043 1639	3.76 4.38	8.7 9.4	.3 .7	13.2 3.3	2.5 4.1	17.9 16.0	.11 .41	.90 .82	.14	1 80 116	.33 .66	.032	14.0 17.1	151.3 55.1	1.50 1.18	502.7 1864.1 270.0 133.5	.100 .264	3 2.3 1 2.8	77 .010 37 .013	0 .0 2 .0	5 <.2 5 <.2 8 <.2 5 6.9	<.02 <.02	84 66 1	.4 <.0 .0 <.0	2 6 2 8	.3 .0

Page 3 (a)

SAMPLE#	Mo ppm		Pb ppm			Co ppm		Fe %	As ppm	U ppm	Au Th ppb ppm		Cd Sb ppm ppm		V Ca		La ppm		7								Te Ga pm ppm
LAMD-17674 LAMD-17676 LAMD-17667 LAMD-17664 LAMD-17679	.72 1.01 1.43	66.96 25.62 72.60	9.00 9.59 15.33	58.6 64 69.0 203 44.8 104 155.9 334 62.6 85	61.2 32.4 68.1	15.5 26.6 10.6 19.1 26.9	1327 388 815	3.73 4.39 2.89	14.7 4.6 18.9	.3 .8	2.3 4.7 4.8 2.2 3.2 1.7 14.0 5.1 3.3 1.8	22.6 19.5 61.3	.18 .39 .14 .78 .39 .20 .39 2.45 .20 .44	.11 1 .15 .28	07 .76 79 .36 26 5.14	5 .064 5 .066 4 .079	7.9 13.4 12.4	49.7 . 62.3 1. 55.5 . 20.9 . 86.9 1.	22 517 50 731 43 2378	.2 .26 .7 .13 .3 .03	3 <1 2. 1 4 2. 1 1 .	75 .015 74 .004 87 .007	.04 <. .04 <. .11 <.	2 <.(2 <.(2 .(02 58 02 115 0 03 285	.9 . 1.2 . .8 .	03 5.5 07 7.2 04 6.4 05 2.3 05 8.9
LAMD-17672 LAMD-17663 LAMD-17677 LAMD-17668 LAMD-17673	.73 .51 1.01	43.59 47.43 84.03	19.40 8.19 10.55	91.2 291 96.4 166 60.0 46 88.1 213 137.6 577	53.0 56.0 61.3	25.5 16.9 22.4 16.8 9.0	419 977 769	3.45 4.12 3.42	9.2 11.7	.5 .3 .5	2.9 2.0 4.8 6.7 3.6 2.6 12.6 3.7 14.3 2.0	11.0 13.4 7.4	.37 .41 .26 .51 .17 .64 .16 .65 .78 1.56	.19 .10 1 .19	49 .25 13 .73 92 .36	3 .068 3 .038 3 .059	28.5 10.2 12.6	102.8 1. 49.7 . 73.3 1. 66.0 . 43.7 .	87 316 00 249 79 613	.2 .07 .3 .26 .3 .13	9 11. 9 42. 7 42.	83 .007 85 .015 72 .008	.07 <. .06 <. .04 <.	2 < .0 2 < .0 2 .0	02 41 02 55 05 89	.7 . .9 . 1.0 .	02 9.0 02 5.1 03 7.3 10 6.2 10 7.7
LAMD-17665 LAMD-17671 LAMD-17666 LAMD-17662 LAMD-17669	.31 .97 .38	30.61 30.38 83.98	16.73 8.63 7.26	84.8 39 80.8 24 51.1 29 66.5 17 73.5 54	35.1 13.1 54.7	26.4 14.2 12.5 27.5 20.4	551 472 2020	3.42 4.30 4.41	8.7 3.9 2.3 6.8 7.7	.8 .5 .3	4.3 6.9 2.7 6.7 3.0 2.8 4.9 3.1 7.3 2.9	15.7 46.4 21.3	.13 .86 .34 .49 .07 .09 .15 .66 .16 .54	.17 .12 1 .09 1	78 .79 63 .59 29 .89	8 .055 0 .045 2 .062	19.0 11.0 12.7	55.8 1. 48.7 . 42.1 . 69.3 1. 61.7 1.	99 250 51 82 19 533	.9 .22 2.8 .38 3.1 .23	9 3 2. 0 2 4. 3 5 2.	34 .040 22 .123 36 .020	.13 <. .06 <. .06 <.	2 .(2 .(2 <.(02 27 08 56 02 34	.5 <. .7 . .7 .	05 6.7 02 7.0 06 10.1 04 6.7 05 6.9
LAMD-17680 PPO-17624 PPD-17640 PPO-17626 PPO-17634	1.35 .25 .50	58.22 58.86 112.65	38.36 6.52 8.57	95.5 244 127.5 328 58.9 18 72.5 28 47.6 10	64.3 53.9 54.2	12.4 15.8 22.5 29.7 27.2	1904 845 922	3.83 4.45 4.75	11.4 28.2 4.9	.9 .2 .3	3.5 1.5 16.9 5.8 10.6 3.3 2.9 3.6 8.5 2.6	29.7 28.4 20.6	.30 .97 .39 1.86 .10 .72 .07 .54 .05 1.56	.19 .10 1 .11 1	35 .6: 31 1.0: 25 1.1:	7 .131 3 .039 5 .068	43.0 10.4 11.7	115.1 35.9 87.9 1. 71.8 1. 85.3 1.	68 602 30 162 51 650	.0 .05 .7 .29 .4 .28	6 31. 6 32. 1 12.	31 .009 85 .037 66 .044	.09 <. .07 <. .11 <.	2 2 < 2 <	03 336 02 48 02 42	1.0 . .3 . .4 <.	04 9.3 07 3.6 03 8.4 02 8.0 04 7.9
PPD-17631 PPD-17638 RE PPD-17638 PPD-17635 PPD-17627	.27 .27 .60	91.80 94.57 120.70	2.74 2.66 5.13	50.2 224 60.5 35 62.3 37 53.5 41 55.7 74	53.9 54.9 66.6	34.4 35.3	1206 1248 1332	4.64 2 4.77 2 4.77 2	276.0 284.8 173.1	<.1 <.1 .1	5.7 2.0 24.8 .8 22.3 .8 40.9 1.7 4.0 1.9	32.2 32.4 14.0	.20 .97 .12 1.37 .11 1.33 .10 3.03 .15 .63	.04 1 .03 1 .08 1	57 1.13 62 1.10 48 .93	2 .034 5 .033 2 .041	3.6 3.7 8.1	62.6 77.4 1. 81.3 1. 90.8 1. 61.6	60 13: 64 136 59 150	.2 .37 .0 .38 .2 .29	7 53. 8 43. 2 32.	37 .016 45 .017 64 .019	.03 <. .03 .	2 <.0 3 <.0 3 <.0	02 32 02 31 02 67	.3 <. .5 <. .5 .	03 6.2 02 9.7 02 10.0 03 8.2 02 7.5
PPD-17632 PPD-17625 PPD-17628 PPD-17636 PPD-17621	.85 .27 .29	38.06 22.73 104.55	17.27 7.67 3.49	59.9 27 80.0 277 38.6 14 63.9 39 78.2 36	49.5 27.9 78.7	30.1 13.7 9.9 36.0 41.9	561 434 1586	3.03 2.55 5.30 2	8.6 2.7 223.2	.8 .6 .2	19.8 2.2 9.0 5.5 3.1 4.4 63.8 1.8 6.1 7.2	21.4 15.8 19.9	.14 1.08 .40 .96 .09 .29 .15 3.43 .11 1.32	.17 .09 .05 1	38 .40 77 .93 40 .86	0 .081 1 .044 5 .055	29.2 15.1 8.6	116.2 1. 37.5 . 41.6 . 105.3 1. 60.5 .	51 309 76 244 43 176	.3 .06 .7 .24 .1 .22	2 11. 5 21. 6 12.	44 .008 68 .050 69 .021	.09 <. .09 <.). 2 2 < .(2 < .(02 131 02 21 02 124	.6 . .1 <. .5 .	03 9.2 06 3.6 02 5.7 04 7.6 09 4.2
PPD-17630 PPD-17639 PPD-17622 STANDARD DS2	.72	71.77 250.86	4.92 22.20	48.7 11 55.7 18 79.2 84 160.6 262	61.5 1087.2	13.7 25.3 53.6 11.7	939 924	4.68 4.51	33.0 11.7	.2 .6	1.7 7.0 9.3 2.5 6.9 7.6 215.2 3.5	22.8 114.5	.08 .29 .12 .78 .13 1.14 10.11 9.74	.07 1 .29	47 .99 44 3.49	035 122 .	8.1 28.5	39.4 . 94.3 1. 69.7 . 151.6 .	49 209 88 109	.9 .35 .2 .07	l 23. 3 11.	23 .024 47 .012	.07 <.	2 <.(2 .(02 35 03 170	.4 . .3 .	02 6.4 03 9.1 07 4.7 05 5.9

Page 4 (a)

990-17629	SAMPLE#	Мо	C	ı Pb	Zn	Ag		i Co	Mn	Fe	As	U	Αij	Th	Sr	Cd	56	B1	v	Ca	P	La	Cr	Hg	Ва	T1	B A1	Na	ĸ	¥	TI	Hg	Se	Te	Ga		
970-17428		pon			ppm	ppb																			ppm	*	ppm \$		1	ppa	ppm	ppb	ppm	ppa	ppn		- 1
PRO-1523																		···			·······	·					···										
900-1732 135 116 23 15 22 15 1.8 98 104 4 30.5 2297 445 21.5 1.4 94.7 9.1 96.3 9.9 1.78 3.5 93 1.78 3.5 93 1.78 3.5 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.8 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93 1.78 3.7 93 1.78 3.5 93 1.78 3.7 93	PPD-17629	.48	34.0	5 34.42	89.2	28	33.	6 15.8	538	3.84	5.7	.8	2.5	9.8	13.8	.11	.46	.30	46	.38 .	076 30	.1 3	38.7 1	.08	189.5	.065	2 2.21	.018	. 15	<.2	.09	22	.4	.03	7.4		
PP-17539 1.01 32.13 8.07 51.0 91.16 12.4 12.13 8.07 51.0 91.16 12.13 12.13 8.07 51.0 52.13 5	PPO-17637	.40	70.8	4.77	42.2	35	42.	0 19.2	652	3.17	8.3	.2	5.2	1.9	11.8	.13	.40	.09	116	.95 .	043 5	.4 4	9.8	.89	75.9	.344	3 2.58	.015	.03	<.2	<.02	32	.5	.04	7.0		i
PP-17539 1.01 32.13 8.07 51.0 91.16 12.4 12.13 8.07 51.0 91.16 12.13 12.13 8.07 51.0 52.13 5	PPD-17623																										2 1.96	.008	.n	<.2	.04	489	1.1	.10	4.3		i
\$\text{CSOP_1711}\$\$ \text{ 63 65 64 19 55 66 5 87 79 3 30 8 105 4 82 128 7 6.0 7.7 38.1 18 1.12 22 85 .87 .075 22.6 18 13.138 288 4 .187 3 255 .014 16 <2 .04 52 .6 67 .8 \$\text{CSOP_17170}\$\$ \text{ 23 166 9 45 18 7 30 4 7.8 19 7 714 3.48 7 78 .5 1.15 5.0 7.0 18 .47 2 65 .6 1.1 105 28.1 91 3 5114 16 .015 2 1.78 .002 10 <2 .08 54 .3 .07 7.2 \$\text{CSOP_17170}\$\$\$ \text{ 23 166 9 45 18 7 30 4 7.7 19 .7 114 3.48 7 78 .5 1.0 6 .5 2.2 2.1 882 4.0 4.9 4 .4 1.3 9 22 0 .16 4 .14 112 1.10 05 28.1 91 3 5114 15 802 .2 24 4.2 3.0 23 10 <2 .02 45 4 .4 05 7.0 \$\text{CSOP_171718}\$\$\$\$ 23 16 10 13 77.7 65 52 52 1.882 1.80 4.9 4 .4 4.1 3.9 22 0 .16 4 .14 112 1.10 05 28.1 193 1 52 85 1.2 22 2.3 8.0 4 .6 <4 2.3 4.23 10 <4 2.0 5 5 7.9 \$\text{ 25 16 10 13 7.7 16 5 52 52 1.8 22 1.0 1.4 2.9 512 5.2 2.1 82 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	PPD-17633																																				1
CSO-17771 A2 Si-66 Si-82 Si-87 To F Si-7 A7 Si-7 A7 Si-7 A7 Si-7 A7 Si-7 A7 A7 A7 A7 A7 A7 A7	GSMO-17705	1.54	74.9	2 17.22	115.7	139	146.	0 41.4	899	5.35	53.7	.8	10.9	6.1	19.5	.28	1.62	.23	46	.28 .	125 33	.9 8	33.5	.63	197.8	.029	4 2.08	.007	.06	<.2	.03	117	.9	. 10	4.7		ĺ
CSO-17771 A2 Si-66 Si-82 Si-87 To F Si-7 A7 Si-7 A7 Si-7 A7 Si-7 A7 Si-7 A7 A7 A7 A7 A7 A7 A7																							•														ļ
SSPG-17701 1.6 SS-8.2 18.60 65.4 13 44,7 19.7 714 3.48 7.8 7	GSMD-17711	.63	66.5	4 19.56	96.5	87	79.	3 30.8	1105	4.82	12.8	.7	6.0	7.7	38.1	. 18	1.12	.23	86	.87	076 23	.6 8	81.3 1	. 38	288.4	.187	3 2.56	.014	.16	<.2	.04	52	.6	.05	7.8		- 1
CSPG-17718	GSMD-17717	.62	34.0	6 9.45	136.7	167	30.	4 7.8	342	3.05	6.4	5	11.5	5.0	7.0	. 18	47	.26	45	.11 .	.065 28	.1 3	39.1	.58 1	141.6	.015	2 1.78	.002	.10	<.2	.08	54	.3	.07	7.2		
\$\(\frac{\text{CSPO}}{\text{CSPO}}\) \begin{array}{cccccccccccccccccccccccccccccccccccc	GSH0-17701	. 60	56.8	2 16.80	86.4	113	44.	7 19.7	714	3.48	7.8	~.5	4.0	6.5	32.8	. 26	.61	.23	58	.85 .	.083 19	1.3 4	41.2	.84	165.2	. 128	4 1.50	.018	. 10	<.2	.07	54	.5	.08	5.2		
\$\frac{\text{CSPO}\text{17799}\$}{\text{CSPO}\text{17799}\$}\$ \$\frac{74}\text{140}\text{5}\text{1}0\text{3}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{2}\text{5}\text{5}\text{2}0\text{3}0\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{5}\text{5}\text{7}\text{6}\text{2}\text{5}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{1}0\text{3}\text{5}\text{5}\text{1}0\text{3}\text{2}\text{5}\text{5}\text{6}\text{7}\text{5}\text{5}\text{5}\text{5}\text{5}\text{7}\text{2}\text{5}\text{5}\text{5}\text{7}\text{2}\text{5}\text{5}\text{5}\text{7}\text{5}\text{5}\text{5}\text{5}\text{7}\text{5}\text{5}\text{5}\text{5}\text{7}\text{5}\t	GSHD-17718	. 43	68.0	4 10.13	73.7	65	52.	5 22.1	882	4.00	4.9	.4	4.1	3.9	22.0	. 16	.46	. 14	112	1.10 .	.076 13	1.0 €	68.41	. 15	262.6	. 264	4 2.34	.023	. 10	<.2	<.02	45	.4	.06	7.0		
690-17716 23 73.41 1.30 52.0 69 88.8 29.6 733 4.46 3.3 .1 3.2 .8 76.5 .68 .22 .83 99 2.39 .686 3.3 77.2 1.74 142.1 .218 15.35 .017 .08 <.2 < .02 40 .9 .03 10.0 690-17710 2 69.1 15 40.1 15 1.0 15 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 18 40.8 15 1.0 17 5 40.8 15 1.0 18 40.8 15	GSHD-17713	. 28	78.1	7 5.79	67.4	20	56.	3 26.6	1128	4.39	11.1	.3	6.0	2.9	29.4	. 14	. 69	.09	126	.96 .	.050 10	.1 6	67.3 1	.25	283.1	.262	2 2.58	.024	.08	<.2	<.02	37	.3	.05	7.9		
690-17716 23 73.41 1.30 52.0 69 88.8 29.6 733 4.46 3.3 .1 3.2 .8 76.5 .68 .22 .83 99 2.39 .686 3.3 77.2 1.74 142.1 .218 15.35 .017 .08 <.2 < .02 40 .9 .03 10.0 690-17710 2 69.1 15 40.1 15 1.0 15 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 17 5 40.8 15 1.0 18 40.8 15 1.0 17 5 40.8 15 1.0 18 40.8 15																																					
696-17714	GSMD-17709	.74	140.5	1 10.31	103.7	54	102.	4 32.5	1128	5.22	17.1	.4	2.7	3.6	22.4	.26	1.05	.13	144	1.08	.074 12	2.0 10	04.7 1	.74	404.0	.334	2 2.87	.025	. 10	<.2 ·	<.02	53	.6	.07	9.2		
CSMO-17703 79 47.76 14.76 84.1 195 40.8 16.1 1972 3.16 7.1 6 5.1 6.1 30.5 18 .83 16 42 .59 .089 23.4 30.9 .68 181.7 .098 1 1.19 .011 .08 <.2 < .02 88 .7 .04 3.9 GSMO-17707 78 37.03 7.69 50.0 67 38.2 13.5 529 2.66 5.2 7 4.5 4.2 17.1 15 .46 .09 63 .68 .088 17.2 40.4 .59 205.4 .166 3 1.34 .010 .04 <2 < .02 59 .7 .04 4.2 SMO-17702 49 49.93 16.03 82.0 97 44.1 17.2 689 3.44 7.7 .9 3.7 6.6 30.4 .25 .60 .24 58 .78 .078 19.6 41.5 .83 162.5 .131 4 1.50 .021 .11 < 2 .06 42 .3 .05 5.1 GSMO-17701 11 68.1 1 3.5 66.8 27 6.8 29.9 104 5.22 3.5 .1 2.1 1 5.7 3.1 14 .2 .07 49 5.8 98.8 1.7 10.9 12 4 2.07 .011 .11 < 2 .04 40 .4 .04 6.1 GSMO-17720 .32 82.92 6.46 54.0 54 51.7 24.5 725 3.59 6.7 .3 2.3 2.9 23.3 .14 .50 .09 97 .84 .065 9.5 56.9 9.3 157.2 229 2 2.39 .011 .04 <2 < .02 < 45 .7 .04 6.4 RGSMO-17720 .39 82.30 6.25 53.1 71 51.4 24.6 722 3.56 6.6 .3 2.1 2.8 22.8 10 .52 .09 97 .84 .065 9.5 56.9 9.3 157.2 229 2 2.39 .011 .04 <2 < .02 < 45 .7 .04 6.4 GSMO-17702 .30 82.0 515.7 15.76 100.2 50 118.4 33.9 870 4.95 15.8 .7 .25 6.0 17.8 22 10.1 1.9 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	GSHD-17716	. 23	73.4	1 1.30	52.0	69	80.	8 29.6	733	4.46	3.3	.1	3.2	.8	76.5	.08	.22	.03	99	2.39	.058 3	3.3 7	77.2 1	.74	142.1	.218	1 5.35	.017	.08	<.2 ·	<.02	40	-9	.03	10.0		
GSP0-17707 78 37.03 7.69 50.0 67 35.2 13.5 559 2.66 5.2 7 4.5 4.2 17.1 15 .46 .09 63 .68 .088 17.2 40.4 .59 205.4 .166 31.34 .010 .04 <2 < .02 59 .7 .04 4.2 GSP0-17702 49 49.93 16.03 82.0 97 44.1 17.2 689 3.44 7.7 9 3.7 6.6 30.4 .25 .50 24 58 .78 .078 19.6 41.5 .83 162.5 .131 41.50 .021 .11 <2 .06 42 .3 .05 5.1 GSP0-17710 .64 59.99 34.71 83.5 32 60.3 35.8 789 4.19 21.4 .6 2.6 8.9 20.1 .14 .82 .29 62 .52 .062 33.5 58.2 .92 170.0 .122 42.07 .011 .11 <2 .04 40 .4 .04 6.1 GSP0-17720 .32 82.92 6.46 54.0 54 51.7 24.5 125 3.99 67 .7 3 2.3 2.9 23.3 14 .50 .09 98 .88 .06 10.3 57.7 .95 157.9 .255 35 24.2 24 5.7 40 6.4 RE GSP0-17720 .32 82.30 6.25 53.1 71 51.4 24.6 722 3.55 6.6 .3 21.1 2.8 22.8 .10 .52 .09 97 .84 .065 9.5 56.9 .93 157.2 .229 2 2.39 .011 .04 <2 < .02 45 .7 40 6.4 RE GSP0-17720 .32 82.30 6.25 53.1 71 51.4 24.6 722 3.55 6.6 .3 21.1 2.8 22.8 .10 .52 .09 97 .84 .065 9.5 56.9 .93 157.2 .229 2 2.39 .011 .04 <2 < .02 45 .7 40 6.4 RE GSP0-17720 .32 82.30 6.25 53.1 71 51.4 24.6 722 3.55 6.6 .8 21.2 8 22.8 .10 .52 .09 97 .84 .065 9.5 56.9 .93 157.2 .229 2 2.39 .011 .04 <2 < .02 45 .7 40 6.4 RE GSP0-17708 .26 47.18 9.13 61.5 50 51.3 20.3 768 3.56 5.6 .4 2.4 3.8 14.8 .19 .50 .12 107 .82 .051 13.2 73.8 1.11 169.5 .274 3 2.26 .027 .08 <2 < 0.2 22 45 .7 40 6.4 GSP0-17708 .26 47.18 9.13 61.5 50 51.3 20.3 768 3.56 9.1 .2 3.9 2.5 21.8 .08 .44 .07 114 1.04 .038 8.3 72.3 1.33 223.8 .249 2 2.29 .024 .06 <2 < 0.2 2.4 40 .4 7.3 GSP0-17706 .90 27.57 10.21 65.2 92 51.8 14.1 585 2.42 8.1 6.6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 33.1 .46 148.0 .064 1 .95 .007 .04 <2 .00 53.57 15.76 100.2 50 118.4 31.9 370 .40 .45 15.8 .7 2.5 6.0 17.8 .22 10.7 19 51 .25 .107 10.2 162.0 50 118.4 31.9 370 .37 15.0 10.2 50 118.4 31.9 370 .40 .45 15.8 .7 2.5 6.0 17.8 .22 10.7 19 51 .25 .107 10.2 16.5 2.9 51.8 14.1 585 2.42 8.1 6.6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 33.1 .46 148.0 .064 1 .95 .007 .04 <2 .00 53.57 15.76 100.2 50 118.4 31.9 370 .40 .45 15.8 .7 2.5 6.0 17.8 .22 10.7 19 51 .25 .107 .00 18 .00 18 .00 18 .00 18 .00 18 .	GSMD-17714	. 28	63.6	7 7.62	58.8	27	74.	6 22.0	908	4.15	9.0	.3	4.2	3.5	21.2	. 10	.56	.11	116	.79	.043 10	.1 9	93.4 1	.33	301.4	.235	4 2.60	.027	.08	<.2	<.02	39	.6	.03	7.7		
GSH0-17702	GSMO-17703	. 79	47.7	6 14.76	84.1	195	40.	8 16.1	1072	3.16	7.1	. 6	5.1	6.1	30.5	. 18	.83	.16	42	.59	.089 23	3.4 3	30.9	.68	181.7	.098	1 1.19	.011	.08	<.2 ·	<.02	88	.7	.04	3.9		
GS0-17710	GSHD-17707	.78	37.0	3 7.69	50.0	67	35.	2 13.5	529	2.66	5.2	.7	4.5	4.2	17.1	. 15	.46	.09	63	.68 .	.088 17	.2 4	40.4	.59	205.4	. 166	3 1.34	.010	-04	<.2	<.02	59	.7	.04	4.2		
GS0-17710																																					
GSH0-17715 1.1 68.11 3.35 68.8 27 62.8 28.9 1004 5.22 3.5 1.1 2.1 1.6 37.3 1.4 29 .05 167 1.77 .049 5.8 98.8 1.76 130.9 .426 2 3.35 .034 .05 <.2 < 0.2 36 .4 .02 10.2 GSH0-17720 .32 82.92 6.46 54.0 54 51.7 24.5 725 3.59 6.7 .3 2.3 2.9 23.3 1.4 .50 .09 98 .88 .066 10.3 57.7 .95 157.9 .236 3 2.41 .019 .04 < 2 < 0.2 45 .7 .04 6.4 RE GSH0-17720 3.9 82.30 6.25 53.1 71 51.4 24.6 722 3.56 6.6 .3 2.1 2.8 22.8 1.0 .52 .09 97 .84 .065 9.5 56.9 .93 157.2 .229 2 2.39 .011 .04 < 2 < 0.2 46 .6 .0 6 6.2 GSH0-17720 1.16 59.58 4.18 48.7 7 59.9 19.1 635 3.65 9.1 .2 3.9 2.5 21.8 .08 .44 .07 114 1.04 .038 8.3 72.3 1.33 223.8 .249 2 2.29 .024 .06 < 2 < 0.2 2 2 3.4 .04 7.3 GSH0-17704 2.06 53.57 15.76 100.2 50 184.4 31.9 870 4.95 15.8 .7 2.5 6.0 17.8 .22 1.07 1.9 51 .25 107 31.4 87.3 .77 152.1 .032 5 2.10 .008 .08 < 2 < 0.02 2.2 32 .4 .04 7.3 GSH0-17706 .90 27.57 10.21 65.2 92 51.8 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 < 2 .05 1.27 .009 .14 1.0 4.0 .004 1 .20 5.27 .000 .11 < 2 .24 264.35 14.25 584.3 837 93.6 38.0 1018 6.88 33.3 .6 5.1 2.5 184.4 5.39 6.74 .26 63 2.67 .194 11.8 36.4 .89 811.4 .018 4 1.40 .014 .12 < 2 .44 348 8.5 .13 3.9 SLOD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 25.6 .6 9.4 2.2 301.6 4.48 7.35 .19 60 5.97 192 10.8 20.9 .36 1145.1 .013 3 2.92 .055 .20 .6 .71 42 2.3 15 8.9 SLOD-10405 39.19 161.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .13 191 11.90 11.90 12.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SLOD-10405 39.19 1610.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 191 11.90 11.90 1.24 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .4 .2 160 6.9 .26 4.0 SLOD-10405 39.19 1610.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 191 11.90 11.90 11.6 21.5 22 157.2 .004 4 .74 .006 .12 < 2.22 428 133 .3 .14 1.6	GSMO-17702	.49	49.9	3 16.03	82.0	97	44,	1 17.2	689	3.44	7.7	.9	3.7	6.6	30.4	. 25	.50	. 24	58	.78 .	078 19	-6 4	41.5	.83	162.5	. 131	4 1.50	.021	.11	<.2	.06	42	.3	.05	5.1	•	
GSW0-17720	G\$MD-17710	. 64	59.9	9 34.71	83.5	32	60.	3 35.8	789	4.19	21.4	.6	2.6	8.9	20.1	. 14	.82	. 29	62	.52 .	.062 33	1.5 5	58.2	.92	170.0	. 122	4 2.07	.011	.11	<.2	.04	40	.4	.04	6.1		
RE 6540-17720 39 82.30 6.25 53.1 71 51.4 24.6 722 3.56 6.6 .3 2.1 2.8 22.8 .10 .52 .09 97 .84 .065 9.5 66.9 .93 157.2 .229 2 2.39 .011 .04 < 2 < .02 46 .6 .06 6.2 GSM0-17708 .26 47.18 9.13 61.5 50 51.3 20.3 768 3.56 5.6 .4 2.4 3.8 14.8 .19 .50 .12 107 .82 .051 13.2 73.8 1.11 160.5 .274 3 2.26 .027 .08 < .2 < .02 25 .4 .03 6.8 650-17712 1.6 59.58 4.18 48.7 7 59.9 19.1 635 3.65 9.1 .2 3.9 2.5 21.8 .08 .44 .07 114 1.04 .038 8.3 72.3 1.33 223.8 .249 2 2.29 .024 .06 < .2 < .02 32 .4 .04 7.3 650-17704 2.06 59.57 15.76 100.2 50 118.4 31.9 870 4.95 15.8 .7 2.5 6.0 17.8 .22 1.07 .19 51 .25 .107 31.4 87.3 .77 152.1 .032 5 2.10 .008 .08 < .2 < .04 126 .8 .06 5.3 650-17719 45 76.85 17.89 87.8 30 52.2 19.1 872 4.11 7.6 .5 6.0 5.9 22.0 .16 .66 .18 93 .79 .071 18.9 64.6 1.04 354.8 .209 5 2.27 .030 .11 < .2 .03 77 .5 .03 7.2 650-17706 90 27.57 10.21 65.2 92 51.8 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 < 2 .05 47 .6 .05 2.9 18.0 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 < 2 .05 47 .6 .05 2.9 18.0 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 < 2 .05 47 .6 .05 2.9 18.0 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 < 2 .05 47 .6 .05 2.9 18.0 18.5 18.5 18.2 18.2 18.3 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3	GSHO-17715	.11	68.1	1 3.35	66.8	27	62.	8 28.9	1004	5.22	3.5	.1	2.1	1.5	37.3	. 14	. 29	.05	167	1.77 .	.049 5	.8 9	98.8 1	.76	130.9	.426	2 3.35	.034	.05	<.2	<.02	36	.4	.02	10.2		
6SHO-17708	GSHO-17720	.32	82.9	2 6.46	54.0	54	51.	7 24.5	125	3.59	6.7	.3	2.3	2.9	23.3	. 14	.50	.09	98	.88 .	066 10	.3 5	57.7	.95	157.9	. 236	3 2.41	.019	.04	<.2	<.02	45	.7	.04	6.4		i
6540-17712	RE GSMD-17720	. 39	82.3	0 6.25	53.1	71	51.	4 24.6	722	3.56	6.6	.3	2.1	2.8	22.8	. 10	.52	.09	97	.84 .	.065 9	.5 5	56.9	.93	157.2	. 229	2 2.39	.011	.04	<.2 •	<.02	46	.6	.06	6.2		
6540-17712																																					
GSMO-17704 2.06 53.57 15.76 100.2 50 118.4 31.9 870 4.95 15.8 .7 2.5 6.0 17.8 .22 1.07 .19 51 .25 .107 31.4 87.3 .77 152.1 .032 5 2.10 .008 .08 <.2 .04 126 .8 .06 5.3 GSMO-17719 .45 76.85 17.89 87.8 30 52.2 19.1 872 4.11 7.6 .5 6.0 5.9 22.0 .16 .66 .18 93 .79 .071 18.9 64.6 1.04 354.8 .209 5 2.27 .030 .11 <.2 .03 77 .5 .03 7.2 GSMO-17706 .90 27.57 10.21 65.2 92 51.8 14.1 585 2.42 8.1 .6 2.3 3.2 106.1 .30 .67 .08 34 9.60 .117 16.0 38.1 .46 148.0 .064 1 .95 .007 .04 <.2 .05 47 .6 .05 2.9 SXCD-10403 12.24 264.35 14.25 584.3 837 93.6 38.0 1018 6.88 33.3 .6 5.1 2.5 184.4 5.39 6.74 .26 63 2.67 .194 11.8 36.4 .89 811.4 .018 4 1.40 .014 .12 <.2 .44 348 8.5 .13 3.9 SXCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 .6 9.4 2.2 301.6 4.48 7.35 .19 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 <.2 .60 268 5.2 .20 2.1 SXCD-10405 33.77 348.61 21.44 1675.6 1857 162.1 29.0 835 8.09 90.4 .7 10.5 2.1 63.1 19.01 19.30 .24 39 .74 .163 9.4 25.1 .21 150.7 .004 1 .76 .006 .13 <.2 2.10 236 12.3 .16 1.6 SXCD-10402 37.21 387.15 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 <.2 22.42 238 13.3 .14 1.6																																					
GSM0-17719																																					
SXD-10403 12.24 264.35 14.25 584.3 837 93.6 38.0 1018 6.88 33.3 .6 5.1 2.5 184.4 5.39 6.74 .26 63 2.67 .194 11.8 36.4 .89 811.4 .018 4 1.40 .014 .12 < 2 .44 348 8.5 .13 3.9 SUCD-10406 6.19 186.79 15.02 445.3 183 127.1 34.5 1073 6.46 38.1 .6 4.3 1.8 122.3 3.13 3.30 .62 191 .78 .112 7.6 157.0 2.12 132.8 .180 3 2.92 .055 .20 .6 .71 42 2.3 .15 8.9 SUCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 .6 94. 22 301.6 4.48 7.35 1.9 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 < 2 .20 .08 5.2 2.0 2.1 SUCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SUCD-10402 37.21 387.18 23.62 169.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2 .22 24 238 13.3 .14 1.6																																				*	
SXCD-10403 12.24 264.35 14.25 584.3 837 93.6 38.0 1018 6.88 33.3 .6 5.1 2.5 184.4 5.39 6.74 .26 63 2.67 .194 11.8 36.4 .89 811.4 .018 4 1.40 .014 .12 < 2 .44 348 8.5 .13 3.9 SXCD-10406 6.19 186.79 15.02 445.3 183 127.1 34.5 1073 6.46 38.1 .6 4.3 1.8 122.3 3.13 3.30 .62 191 .78 .112 7.6 157.0 2.12 132.8 .180 3 2.92 .055 .20 .6 .71 42 2.3 .15 8.9 SXCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 .6 9.4 2.2 301.6 4.48 7.35 1.9 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 < 2 .2 .00 268 5.2 .20 2.1 SXCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SXCD-10402 37.21 387.18 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2 .22 42 28 13.3 .14 1.6																																					
SUCD-10406 6.19 186.79 15.02 445.3 183 127.1 34.5 1073 6.46 38.1 6.4.3 1.8 122.3 3.13 3.30 6.2 191 78.112 7.6 157.0 2.12 132.8 .180 3 2.92 .055 .20 .6 .71 42 2.3 .15 8.9 SUCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 6.6 9.4 2.2 301.6 4.48 7.35 1.9 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 < 2 .60 268 5.2 .20 2.1 SUCD-10405 35.77 348.61 21.44 1675.6 1857 162.1 29.0 835 8.09 90.4 7 10.5 2.1 63.1 19.01 19.30 .24 39 .74 .163 9.4 25.1 .21 150.7 .004 1 .76 .006 .13 < 2 2.10 235 12.3 .16 1.6 SUCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SUCD-10402 37.21 387.18 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2 2.24 238 13.3 .14 1.6	GSMD-17706	.90	27.5	7 10.21	65.2	92	51.	8 14.1	585	2.42	8.1	.6	2.3	3.2	106.1	.30	. 67	.08	34	9.60 .	. 117 16	5.0 3	38.1	.46	148.0	.064	1 .95	.007	.04	٧. ٧	.05	4/	.0	.05	2.9		
SUCD-10406 6.19 186.79 15.02 445.3 183 127.1 34.5 1073 6.46 38.1 6.4.3 1.8 122.3 3.13 3.30 6.2 191 78.112 7.6 157.0 2.12 132.8 .180 3 2.92 .055 .20 .6 .71 42 2.3 .15 8.9 SUCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 6.6 9.4 2.2 301.6 4.48 7.35 1.9 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 < 2 .60 268 5.2 .20 2.1 SUCD-10405 35.77 348.61 21.44 1675.6 1857 162.1 29.0 835 8.09 90.4 7 10.5 2.1 63.1 19.01 19.30 .24 39 .74 .163 9.4 25.1 .21 150.7 .004 1 .76 .006 .13 < 2 2.10 235 12.3 .16 1.6 SUCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SUCD-10402 37.21 387.18 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2 2.24 238 13.3 .14 1.6																										410	4 9 44	01.	10			240			10		
SUCD-10404 14.99 166.49 11.60 522.1 572 78.3 31.5 916 5.41 29.6 .6 9.4 2.2 301.6 4.48 7.35 .19 60 5.97 .192 10.8 20.9 .36 1145.1 .013 3 .73 .008 .11 <.2 .60 268 5.2 .20 2.1 SUCD-10405 35.77 348.61 21.44 1675.6 1857 162.1 29.0 835 8.09 90.4 .7 10.5 2.1 63.1 19.01 19.30 .24 39 .74 .163 9.4 25.1 .21 150.7 .004 1 .76 .006 .13 <.2 2.10 235 12.3 .16 1.6 SUCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SUCD-10402 37.21 387.15 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 <.2 2.24 238 13.3 .14 1.6																																					
SXC0-10401 35.77 348.61 21.44 1675.6 1857 162.1 29.0 835 8.09 90.4 .7 10.5 2.1 63.1 19.01 19.30 .24 39 .74 .163 9.4 25.1 .21 150.7 .004 1 .76 .006 .13 < 2 2.10 235 12.3 .16 1.6 SXC0-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SXC0-10402 37.21 387.15 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2 2.24 238 13.3 .14 1.6																																					
SUCD-10405 39.19 616.09 26.15 1032.6 206 308.4 67.1 2280 10.90 37.0 1.6 7.7 2.4 58.2 9.25 11.52 .31 91 .41 .180 27.4 99.6 1.07 124.5 .054 1 2.17 .014 .13 .4 .42 160 6.9 .26 4.0 SUCD-10402 37.21 387.15 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 < 2.24 238 13.3 .14 1.6				-																																	
SECT-10402 37.21 387.15 23.62 1669.6 1733 173.6 31.5 810 8.88 121.5 .8 14.3 2.8 66.4 20.36 22.88 .26 42 .90 .149 11.6 21.5 .22 157.2 .004 4 .74 .006 .12 <.2 2.24 238 13.3 .14 1.6																																					
	SJCD-10405	39.19	616.0	9 26.15	1032.6	206	308.	4 67.1	2280	10.90	37.0	1.6	7.7	2.4	58.2	9.25	11.52	.31	91	.41 .	. 180 27	.4 9	99.6 l	.07	124.5	.054	1 2.17	.014	.13	.4	.42	100	٠.y	. 20	4.V		
													•••										٠	20	^	^^*		000	12		24	200	2 2	1,	1.6		
SIAMENROU DSZ 13.75 127.45 31.05 151.7 254 33.2 11.2 7/0 3.10 54.7 18.2 194.3 3.5 26.4 9.93 9.38 10.16 72 .53 .084 14.8 142.4 .55 144.6 .005 5 1.56 .000 .15 0.6 1.65 221 2.6 1.64 0.0																																					
	STANDARD 052	13.75	122.4	31.06	151.7	254	33.	2 11.2	//0	3.10	54.7	18.2	194.3	3.5	26.4	9.93	9.38 1	U. 16	-72	.53	U84 14	.8 14	+2.4	. 55	134.0	-005	5 1.58	.030	. 15	0.0	03	441	4.0 1	.04	0.0	_ 	

ACME ANALYTICAL LABORATORIES LTD.
(ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

全全

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002057 800 + 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Cs	Ge ppm	Hf ppm	dN ppm	Rb ppm	Sc	Sn ppm	S %	Ta ppm	Zr ppm	y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm		ĺ
TCHD-17767	.34				1.9						10.53		.03	2	.4	8.2	30.0		
TCHD-17760	.99	.1	.23	.55	2.2						13.96		.04	<1		14.6	30.0		
TCHD-17754	.99	<.1	.20		3.9		.5	.01	<.05	8.5	23.13	18.8	.04	<1		14.3	30.0		-
TCHD-17596	.95	<.1			5.4		.5	<.01	<.05	11.6	14.06	27.0	.03	<1		14.4	30.0		- 1
TCHD-17765	.37	, 1	-39	.60	1.5	6.8	.7	<.01	<.05	17.4	11.56	12.3	.02	<1	.4	6.5	30.0		;
TCHD-17771	.31	<.1	.18		4.1						8.46			<1		9.8	30.0		
TCHD-17776	.48	<.1			3.7						10.16			<1		16.8	30.0		
TCHD-17741	.59	<.1	.34		4.4		.5	<.01	<.05	14.5	15.03	25.7	.03	<1		14.0	30.0		- 1
TCHD-17772	.32	<.1	.18		1.9		.4	.02	<.05	10.5	10.16	14.9	<.02	<1		9.8	30.0		- 1
TCHD-17748	.41	<.1	.29	.15	2.6	6.4	-4	<.01	<.05	9.9	11.11	21.9	<.02	<1	.2	10.4	30.0		
TCHD-17586	.72	.1	.23	. 19	4.4	8.9					11.60			<1		12.0	30.0		
TCHD-17588	.82		.18	.34	4.3	7.5	.5	<.01	<.05	7.2	9.47	24.5	<.02	<1		15.9	30.0		
TCHD-17761	.40	<.1	.32	.41	2.0	6.4	.6	<.01	<.05	14.6	12.23	19.6	.02	<1		8.4	30.0		
TCHD-17755	.67	<.1	.14	.43	4.4	9.2	.5	.01	<.05	7.2	15.03	28.4	.02	<1		15.7	30.0		- 1
TCHD-17592	.50	.1	.18	. 16	2.9	6.2	.4	<.01	<.05	7.3	7.56	18.4	<.02	<1	.2	10.4	30.0		
TCHD-17595	.63	<.1	.18	.22	4.5	8.8	.5	<.01	<.05	9.0	10.17	20.4	<.02	<1		13.1	30.0		
TCHD-17773	.35	<.1	.24	.38	1.7	5.0	-4	<.01	<.05	11.3	9.60	18.9	<.02	<1		11.8	30.0		- 1
TCHD-17599	8.67	<.1	.13	1.92	33.1	3.7	6.8	.06	<.05	5.0	7.93	49.0	.34	2		22.8	7.5	•	1
TCHD-17778	.54			.42	1.9	9.0	.8	.03	<.05	24.0	13.59	17.4	.02	<1		11.4	30.0		
TCHD-17762	.46	<.1	.30	.50	2.7	6.7	.7	.02	<.05	13.6	12.77	22.9	.02	<1	.5	8.9	30.0	•	
RE TCHD-1776	2 .47	<.1	.27	.53	2.6	6.4	.7	.02	<.05	13.2	12.35	22.0	.02	<1		8.5	30.0		
TCHD-17769	.35		.26	.30	1.7	6.0	.6	<.01	<.05	11.0	10.90	18.2	.02	<1		7.8	30.0		
TCHD-17777	.75	<.1	.29	.50	4.8	7.1	.6	.02	<.05	14.6	8.95	21.0	.02	<1		14.9	30.0		
TCHD-17591	.77	.1	.16	.08	3.2	5.6	.3	<.01	<.05	6.1	7.82	13.6	<.02	<1		8.5	30.0		- 1
TCHD-17587	1.66	<.1	.27	-44	3.6	16.2	.7	.01	<.05	14.5	19.03	29.5	.04	<1	.4	22.8	30.0		
TCHD-17747	.58	<.1	.09	.51	3.0	4.7	.5	.02	<.05	5.2	9.98	25.8	.03	<1	.3	15.2	30.0		l
TCHD-17742		<.1			4.4		.6				13.44			<1	-4	12.6	30.0		- 1
TCHD-17779	.73				6.2		.4				5.86			<1	.2	14.2	30.0		i
TCHD-17597	.73				3.8		.6				10.73			<1		15.2	30.0		- 1
TCHD-17757	.77				6.9		.6				16.96			<1	.5	13.1	30.0		
TCHD-17589	.74	.1	.18	.36	3.0	8.4	-4	-02	<.05	7.9	9.43	20.4	.02	<1	.4	12.3	30.0		
TCHD-17768	.55			.77		5.7	.6				11.18			<1		8.0	30.0		- !
TCHD-17768	1.78				4.9		.5				13.07			<1		20.8	30.0		
STANDARD DS2		<.1	.05	1.34	13.3	3.2		.03	<.05	2.5	7.58	31.1	5.33	2		14.0	30.0		
SIANDARD DSE	3.10			,,,,,,															

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 23 2000 DATE REPORT MAILED:

. July 14/00

SIGNED BY.C.:

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

AA ACKE ANALYTICAL

SAMPLE#	Cs	Ge	Нf	Иb	Rb	Sc	Sn	S	Ta	Zr	Y		In	Re	Ве		Sample				
	ppm	bbw	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ррп	bbp	ppm	ppm	gm	 			 -
TCHD-17770 TCHD-17763 TCHD-17598 TCHD-17756 TCHD-17585	.41 .47 .76 .69	.1 <.1 <.1 .1	.16 .12 .26	.59 1.05 .67 .27 1.43	3.3 9.7 5.3	5.3 9.9 11.4	.6 .4	<.01 <.01 .01	<.05 <.05 <.05	8.6 5.0 10.2	9.59 9.35 10.50 14.22 19.29	18.8 36.0 29.0	.02 <.02 .02	<1 1 <1 5 <1	.4 .4 .3	10.5 12.8 24.7 15.4 20.6	30 30				
TCHD-17593 TCHD-17590 TCHD-17780 TCHD-17743 TCHD-17583	.93 .65 .50	.1 <.1 .1 <.1 <.1	.25 .16 .34	.36 .21 .24 .61	7.3 2.9	13.9 7.4 9.2 6.7	.6 .4 .6 .7	<.01 <.01 <.01 <.01	<.05 <.05 <.05 <.05	10.7 6.3 15.2 10.3	14.16 8.11 11.66 11.89 9.37	23.7 15.7 18.8 17.0	.02 .02 .04	3 <1 3 4 <1	.4 .1 .2 .6	17.6 9.8 14.5 10.9 18.9	30 30 30 30				
TCHD-17600 TCHD-17584 TCHD-17758 TCHD-17764 TCHD-17766	.68 .94	<.1 <.1	.07 .23 .18	.28 .28 .65	5.6 2.7 5.0 2.2 4.5	5.1 14.1 5.8	.6 .4 .7 .6	<.01 <.01 <.01 <.01	<.05 <.05 <.05 <.05	11.2 3.8 10.8 8.2	10.61 10.49 11.71 10.86 13.99	27.2 29.8 18.2 20.2	.04 .02 .04	<1 <1 <1 <1 <1	.1 .5 .2	14.6 12.5 21.3 10.1 9.9	30 30 30	٠ ,			
TCHD-17759 TCHD-17750 TCHD-17775 TCHD-17753 TCHD-17749	.73 1.49 .39		.28 .31	.23 .57 .33	1.7	8.1 8.5 8.7	.7 .8 .6	<.01 <.01	<.05 <.05 <.05	14.3 16.2 9.8	10.66 11.42 14.56 12.83 9.00	24.9 17.9 16.1	.02	<1 2 <1 <1 <1	.3 .3 .2	9.9 18.1 18.8 12.6 14.1	30 30			•	
TCHD-17744 RE TCHD-17744 TCHD-17774 TCHD-17582 TCHD-17751	.30	<.1 <.1 <.1 <.1	.29 .40	.12 .60 .69	1.5 1.7 1.1 4.7 1.9	7.8 7.9 10.1	.5 .7 .6	<.01 .02 <.01	<.05 <.05 <.05	14.4 20.6 8.8	13.42 13.21 13.88 11.15 11.75	12.2 13.4 17.2	.02 .04 .02	<1 <1 2 <1 <1	.3 .3 .4	9.2 8.7 10.1 11.7 12.0	30 30 30				
TCHD-17746 TCHD-17745 TCHD-17752 TCHD-17581 LAMD-17675	.60 .94 .43 .55	<.1	.31 .52 .21	.23 .69	5.2 6.0 1.3 4.9 4.8	11.8 6.0 9.6	.5 .7 .5	<.01 <.01 <.01	<.05 <.05 <.05	13.2 22.6 8.9	7.22 13.65 9.72 11.52 14.15	25.4 10.7 18.1	.03 .02 .02	2 5 1 <1 2	.5 .4 .3	14.0 17.1 9.1 12.7 18.3	30 30 30	•			
LAMD-17661 LAMD-17678 LAMD-17670 STANDARD DS2	1.80 1.18 4.14 3.13	<.1	.03	.86 1.72	4.9	5.6 6.4	.6 .9	<.01 <.01	<.05 <.05	2.5 7.3	21.35 8.56 17.77 7.50	38.0 39.1	.03	<1 <1 <1 4	.3 .5	17.7 23.6 23.4 13.6	30 30				-

Page 3 (b)

AAA ANALYTICAL

SAMPLE#	Cs	Ge ppm		Nb	Rb ppm	Sc	Sn ppm	s %		Zr ppm	Y mqq	Ce	n1 mqq	Re ppb	Be ppm		Sample gm			
LAMD-17674 LAMD-17676 LAMD-17667 LAMD-17664 LAMD-17679	.76 .89 2.43	<.1 <.1 <.1	.05 .14 .04	.58 .64 2.95 .28	5.4 2.3 8.0	4.6 6.0 4.1 8.5	.4 .6 .8 .3	.03 .02 .05	.08 <.05 <.05 <.05	4.3 7.3 2.5 13.9	12.13 9.38 18.14 18.35 15.12	42.5 20.3 51.8 22.2	.03 .04 .03	<1 1 1 2 <1	.4 .2 1.3	19.5 15.3	30 30 30 30		 •	
LAMD-17672 LAMD-17663 LAMD-17677 LAMD-17668 LAMD-17673	.86 .94 1.89	<.1 <.1 <.1 <.1	.06 .14 .07	.57 .75 1.24	6.2 4.4 9.8	3.4 6.8 4.6	.4 .6 .6	<.01 <.01 .03	<.05 <.05 <.05	3.1 7.9 4.0	19.55 6.02 10.88 6.75 4.87	57.4 23.8 27.1	.02 .04 .06	<1 <1 2 1 <1	.4 .3 .9	15.0 22.6 18.8 17.7 41.7	30 30 30			
LAMD-17665 LAMD-17671 LAMD-17666 LAMD-17662 LAMD-17669	.59 1.24 1.81	.1	.33 .61 .23	.50 .41 .16	4.1 6.7 4.3 3.3 4.0	8.7 9.4 16.7	.9 1.2 .6	.01 .01 .01	<.05 <.05 <.05	12.2 37.0 10.7	17.64 13.88 14.52 20.55 13.50	40.4 29.0 27.5	.03 .05 .04	<1 <1 <1 3	.4 .6 .5	26.4 20.0 10.9 17.6 15.5	30 30 30			
LAMD-17680 PPD-17624 PPD-17640 PPD-17626 PPD-17634	1.10 1.31 1.00	<.1 <.1 <.1 .1 <.1	.08 .44 .28	.39 .17 .33	6.7 4.7 4.6 5.3 2.7	8.3 14.0 11.1	.3 .8 .4	<.01 .01 <.01	<.05 <.05 <.05	7.8 22.9 10.2	8.03 50.97 17.98 13.40 13.50	54.4 21.4 25.6	.06 .05 .02	<1 <1 <1 <1	.2 .5 .4	18.7 16.0 28.9 20.0 24.1	30 30 30			
PPD-17631 PPD-17638 RE PPD-17638 PPD-17635 PPD-17627	2.19 2.22 1.65		.42 .43 .37	.35 .40 .22	2.7 3.1	10.5 10.5 17.6	.9 .9	<.01 <.01 <.01	<.05 <.05 <.05	17.2 16.9 13.7	11.80 14.32 14.35 18.51 10.16	13.9 13.9 24.5	.04 .04 .04	2 <1 <1 <1 3	.6 .4 .5	14.0 33.8 32.4 39.0 16.0	30 30 30			
PPD-17632 PPD-17625 PPD-17628 PPD-17636 PPD-17621	2.63 .71 .41 2.05	<.1 <.1 <.1	.10 .33 .25	.48 .46	5.2 4.5	3.3 9.3 19.1	.3 .6 .6	<.01 <.01 <.01	<.05 <.05 <.05	2.4 11.3 12.8	21.23 14.46 13.32 17.80 13.39	58.7 29.3 22.4	.02 .02 .05	<1 <1 <1 <1	.4 .3 .7	40.6 15.9 13.0 25.8 20.8	30 30 30			
PPD-17630 PPD-17639 PPD-17622 STANDARD DS2	1.40	<.1 <.1 <.1 <.1	.48 .19	.31 .82	7.4 4.0 4.5 12.5	13.0 7.2	.8 .3	<.01 <.01	<.05	19.6 10.8	8.14 12.74 13.65 7.62	19.1 54.6	.04 .02	1 <1 <1 2	.5 .4	20.8 30.0 23.0 15.3	30 30	 	 	_

Page 4 (b)

SAMPLE#	Cs ppm	Ge	Hf ppm	Mb mqq	Rb ppm	Sc	Sn ppm	\$ %	Ta ppm	2r ppm	Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
PPD-17629 PPD-17637 PPD-17623 PPD-17633 GSMD-17705	1.10 .85 1.26 1.24 .93	<.1 <.1 <.1	.10 .23 .07	.57 .99 2.86	9.3 1.8 7.6 5.1	5.2 5.7 14.2 9.6	.5 .6 .4 1.1	<.01 .03 <.01	<.05 <.05 <.05 <.05	4.5 11.7 3.6 35.0	12.81 9.76 74.74 15.35 11.35	85.9 17.1 95.4 28.8	.02 .03 .05	<1 <1 <1 <1 <1	.4 .4 .7 .8	35.6 13.8 16.7 11.4 32.9	30 30 30 30 30	
GSMD-17711 GSMD-17717 GSMD-17701 GSMD-17718 GSMD-17713	1.33 1.32 .68 .66 1.19	.1	.02 .26 .27	.39 .18 .38	10.3 13.8 5.3 5.5 3.9	2.9 6.2 9.2	.7 .4 .5	<.01 <.01 <.01	<.05 <.05 <.05	.9 9.7 11.6	14.99 3.45 10.29 14.37 16.45	55.1 37.3 25.7	.02	4 <1 <1 <1	.5 .6 .6	29.5 28.0 19.3 13.3 21.8	30	
GSMD - 17709 GSMD - 17716 GSMD - 17714 GSMD - 17703 GSMD - 17707	1.10 3.90 .96 .62	<.1 <.1	.15 .25 .14	.27 .33 .81	5.6 2.5 4.8 3.7 3.7	7.1 11.4 5.4	.4 .6 .4	<.01 <.01 <.01	<.05 <.05 <.05	5.7 10.3 7.1	16.93 11.97 12.48 17.02 13.81	11.2 23.6 42.4	.03 .03 <.02	4 <1 <1 <1 2	.3 .4 .3	24.2 16.2 21.4 17.4 10.7	30 30	
GSMD-17702 GSMD-17710 GSMD-17715 GSMD-17720 RE GSMD-17720	1.16 .85 .74		.12 .39 .12	.42 .07 .57	5.7 9.4 2.9 3.0 3.0	5.5 13.1 6.2	.6 .7 .6	<.01 <.01 .01	<.05 <.05 <.05	7.2 19.0 7.8	10.17 8.74 17.67 14.38 13.80	71.0 12.7 29.0	.02 .03 .02	<1 1 <1 <1 <1	.6 .6	18.1 23.4 14.8 14.3 14.4	30 30	
GSMD-17708 GSMD-17712 GSMD-17704 GSMD-17719 GSMD-17706	1.01 1.12 .65	<.1	.29 .05 .31	.23 .72 .33	5.0 3.5 6.7 6.3 3.1	10.6 4.5 10.3	.6 .5 .6	<.01 <.01 <.01	<.05 <.05 <.05	12.6 2.3 12.8	11.69 13.71 8.10 15.38 11.47	17.8 68.6 35.1	<.02 20. <.02	2 <1 <1 <1 1	.6 .6 .4	18.1 20.2 33.4 20.0 10.8	30 30	
SJCD-10403 SJCD-10406 SJCD-10404 SJCD-10401 SJCD-10405	.61 2.43 1.15 .71	.1 <.1	.07 .06 .14	.24 .15 .06	4.2 15.6 4.0 5.1 7.4	10.4 6.6 9.8	.4 .3 .2	<.01 .01 <.01	<.05 <.05 <.05	4.0 3.7 7.3	13.68 11.54 13.98 13.94 28.20	14.5 20.2 15.0	.03 .03 .07	2 <1 <1 2 <1	.5 .4 .4	20.0 21.9 6.7 2.9 12.8	30 30 30	
SJCD-10402 STANDARD DS2	.70 3.07	.1 <.1	.11	.05 1.31	4.8 12.7	10.2 2.9					14.40 7.79			8 <1		2.8 14.1	30 30	_

ACME- ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002201 Page 1 (a) 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

	******	0000000000	********	*****	000000000000000000000000000000000000000		81,8100	(#KD)(XQ)		86,6000	888141				0000000													***********			
SAMPLE#	Mo-	Cu	Pb	Zn	Ag N	i Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Ρ	La	Cr	Mq	Ва	Τi	B AT	Na	K W	TI	Hg 5	Se Te	Ga
*** - *	ppm	ppm	DOM		opb pp				ppm		daa	DDM	ppm	ppm	DDM	ppm	ppm	*	*	mag	ppm	*	ppm	% p	om 1	* *	% ppm	ppm	ppb p	от рог	ppm
·										<u></u>		 -			·					-	<u> </u>										
GSMD-17887	36	32 83	3 62	28 1	37 34.3	3 14.8	430	2.46	2.8	.3	1.6	1.7	14.0	.10	.30	.06	75	.72	.047	5.5	41.7	.70	124.5	.258	4 2.92	.012	.03 .3	.04	61	.2 .02	5.2
GSMD-17801					13 32.						13.6				.30								142.5				.03 <.2				
GSMD-17820					16 64.						5.3			.11													.03 <.2				
GSMD-17808					45 55.						17.1				.93								160.6				.05 <.2				
					30 37.						1.8				.25	.07	750	2.13	.055	10.0	24.6	1 22	163.6	182			.08 < .2				
GSMD-17888	. 22	30.25	0.09	49.2	30 37.	0 14.2	000	2.02	J.4	٠.5	1.0	٥.٥	77.5	.13	.25	.03	US	2.0/	.000	10.9	34.0	1,0%	133.0	. 102	3 1.77	.012	.002	.07	~+	.1 .00	٠.٤
CCHD 17000	22	20.25	6 10	E2 2	13 44.	1 16 7	500	2 22	10.1	2	2 0	2 5	21 6	11	.46	00	101	07	ກະດ	10.0	72.0	1 03	171 2	260	3 2 20	013	.06 <.2	0.3	31 c	1 < 02	6.5
GSMD-17803																.05	101	1.04	0.00	10.5	16.0	1 10	217.0	211	2 2 00	010	.04 .4	na.	20	2 12	6.2
GSMD-17724					28 41.						8.5				.56								777.1				.05 < .2				
GSMD-17895					13 40.						6.9			.07	.38																
GSMD-17813					21 35.						1.8				. 40	.08	85	.6/	.051	8.3	52.4	.87	155.9	.241			.02 < .2				
GSMD-17721	. 62	67.45	10.16	67.2	37 70.	5 18.8	825	3.33	5.6	1.1	4.7	3.5	17.5	.16	. 50	.16	88	. 69	.054	13.7	95.5	1.30	570.4	.202	3 2.20	.010	.07 <.2	.05	54	.1 .03	0.3
GSMD-17737					76 60.										.59												.07 <.2				
GSMD-17819					24 63.						1.3				. 63												.03 < .2				
GSMD-17727	.42	52.38	12.38	80.2	25 46.	4 14.6	627	3.49	6.4	.5	4.0	4.4	22.0	. 23	.62	. 18	102	.89	. 059	14.7	86.6	1.04	362.0	. 245	2 2.5	.014	.07 <.2	.06	46	.2 .03	7.1
GSMD-17814	.38	51.47	5.41	54.7	12 41.	2 15.8	634	3.05	4.6	.3	6.0	3.1	21.9	.09	.47	.09	97	.73	.053	11.2	62.8	.95	134.9	. 250	1 2.14	.014	.03 <.2	.04	38	.1 <.02	5.8
GSMO-17897	. 24	44.41	4.80	42.6	15 36.	9 13.0	632	2.71	2.7	.2	2.6	2.2	21.6	. 07	. 25	.08	90	.84	.044	8.5	52.4	.82	420.0	.276	4 1.8	.013	.04 < .2	.02	29 <	.1 .02	5.4
GSMD-17802	. 19	27.19	4.84	32.7	10 32.	3 11.8	425	2.38	8.6	.2	2.5	2.6	10.7	.08	. 29								140.7				.03 <.2				
GSMD-17898	. 37	81.75	8.43	73.4	27 62.	0 23.0	1050	3.91	5.4	. 3	1.7	2.8	17.9	. 14	.36								396.0				.07 <.2				
RE GSMD-17898	.41	83.97	8.26	73.0	30 60.	0 23.0	1039	3.89	5.2	.3	3.1	2.9	18.4	. 13	. 36	.11	107	.92	.065	9.8	75.8	1.33	399.1	.280	2 3.09	.017	.07 < .2	. 04	20	.3 .02	7.9
GSMD-17815	.41	56.06	5.70	64.0	8 49.	3 19.5	785	3.43	4.9	.3	2.8	3.4	28.1	. 12	.42								139.2		3 2.66	.019	.05 < .2	.04	26	.1 <.02	7.2
GSMD-17896	.31	39.96	4.74	44.6	35 42.	4 16.4	595	2.99	3.5	.2	2.4	1.8	32.4	. 09	. 27	.08	101	.73	.037	6.6	58.4	. 91	323.1	.285	2 2.39	.009	.03 <.2	. 02	36	.2 .02	6.2
20.10 2.000																															
GSMD-17733	1.01	31.13	9.83	51.6	49 13.	0 12.4	480	3.95	2.8	.6	1.9	2.7	44.5	.08	.09	.15	156	.47	.046	11.6	39.1	.54	85.5	.363	2 4.32	.110	.06 <.2	.12	36	.2 .04	10.3
GSMD-17804					54 36.						3.8			. 14	.35	.07	103	.66	.043	7.1	63.2	.84	90.1	.288	2 2.39	.010	.03 <.2	.03	50	.2 < .02	6.8
GSMD-17891					21 39.						12.6				.25	.06	101	1.01	.046	6.4	44.5	.98	133.0	.338			.03 < .2				
GSMD-17809					18 41.						5.9				.70								124.8				.02 <.2				
GSMD-17009					16 27.						2.9				.29								123.4				.08 <.2				
G3/ID-1/720	.20	17.71	14.50	72.0	10 27.	5 10.1	000	,	3.0		4.7	J. 1	10.0	. 10	. 23		٠,	17	.000	13.0	14.0		140.		1 1.0.						1
GSMD-17739	31	49 20	6.78	56 B	26 50.	0 18 5	688	3 84	15 1	3	4.5	3.6	22.3	.11	43	.12	111	85	.038	10 9	81.6	1.23	156.9	.268	1 2.70	.012	.06 <.2	.05	38	.1 <.02	7.7
GSMD-17734					6 54.					.3	2.7				.25								288.2		2 3.31	.018	.03 < .2	.02	28	.2 03	8.4
GSMD-17889					24 50.								25.6	.09	.28								120.5		3 2 6	024	.06 < .2	.03	29	1 < 02	7.5
					28 54.:						2.6				.21								299.9				.03 <.2				
GSMD-17900											3.2				.42												.04 < .2				
GSMD-17805	. 19	40.81	4.01	40.9	15 46.	1 18.4	/38 .	3.3/	12./	. 4	3.2	4.3	20.0	.09	.42	.00	117	1.00	.040	7.0	05.7	1.44	10/./	,314,	J 4.04	,017	.04 \.2	.02	22	02	1.6
CCND 13336	co	E2 10	12.00	04.2	106 70	י וכו	000	2 46	0.0	c	1 E	5 6	<i>1</i> 1 1	.38	92	19	76	1 25	070	14 6	56 1	1 20	481 0	149	3 2 12	012	.10 <.2	06	62	2 03	5.8
GSMD-17736	.58	22.12	13.09	74.5	125 70.	1 21.4	350 .	3.40	2.0	. ၁	9.0	2.3	71.I			.10	70	1.00	430	10.0	בב ה	1.67	556.3	197	2 1 66	012	.06 < .2	.03	15	1 03	5.0
GSMD-17726					55 43.										.61	.12	00	.02	.004	10.9	22.0	. 9/	220.3								
GSMD-17883	.43	17.78	5.68	46.7	55 34.	b 11.4	280	2./6						. 08		.10	08 20	. 35	.041	1./	44.1	.55	100.0	. 155	2 2.02		.02 < .2	1 00	ე 4 ექნ ე	2 1 02	4.9
standard DS2	13.53	126.35	32.74	157.1	255 34.9	9 11.2	805 3	3.00	57.3 1	9.5 1	97.7	3.5	27.3	10.15	₽.60 I	LU.76	72	.52	.089	16.2	156.4	.58	147.5	.094	4 1.68	.028	.15 7.2	1.80	c45 2	. J 1.83	5.9

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

JUL 5 2000 DATE REPORT MAILED:

.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

AA ADIE ANALYTICAL

SAMPLE#	Мо	Cu		Zn	-			Mn						Sr		l SI			٧	Ca %			Cr ppm	Mg %			B	Al %	Na %	K W			Se Te	
	ppm	ppm	ppm	ppm	ppb	ppm ;	ppni	ppm	-	ppm	ppm	ppo	ppn	ppm	ppii	ppi		bbw t	- nick	A		ppm	ppii	- 4	hhii		ppiii			e bhu	ррш	ן טקק	phu phu	рри
GSMD-17890	.15	31.81	2.54	29.5	9 49	9.3 10	6.7	508 2	2.77	1.3	.3	1.0	3.4	18.0	.07	.17	7	.04	97	.96	.012	7.5	52.3	1.19	152.4	.350	3 2	2.51	.015	.03 <.2	.03	17	.2 <.02	7.1
GSMD-17729	. 28	19.26	18.15	56.3	23 28	3.8 1	1.9	514 3	3.03	3.7	.7	1.3	8.3	12.6	. 08												3 1	.85	.005	.14 <.2	.06	14	.2 < .02	5.5
GSMD-17893		55.82			73 4									35.8									42.8							.10 <.2				
GSMD-17881		45.10			64 4									14.5		.4	7	.10	101	.66	.043	10.7	62.3	.95	191.9	.245				.03 < .2				
GSMD-17806	.17	23.24	5.26	32.7	15 2	5.9	9.5	449 2	2.24	3.8	.3	3.3	3.2	13.7	.11	. 3	3	.06	67	.67	.050	10.2	40.3	. 59	126.5	. 191	2 1	1.45	.010	.04 <.2	.02	19	.1 <.04	4.3
GSMD-17816	.19	55.35	3.65	43.2	9 3	3.6 1	7.2	612 2	2.84	4.3	.2	1.7	2.1	19.9	.10	.3							54.8							.03 <.2				
GSMD-17882		42.77			69 4									14.4									65.6							.03 < 2				
GSMD-17892		20.71												11.1		.1							53.9							.03 < .2				
GSMD-17740		21.90														.3							44.3							.03 < .2				
GSMD-17725	.39	71.27	10.62	63.4	29 4	4.1 1	6.5	706 2	2.46	5.4	.3	4.2	3.4	10.6	. 12	2 .5	b	.18	/3	.6/	.060	10.3	47.4	.8/	507.1	.218	3 1	1.54	.009	.03 <.2	.04	29	.ن. د.	4.3
GSMD-17807	.20	29.52	4.92	40.5	14 3	0.9 1	1.3	468 2	2.49	6.3	.2	3.1	3.0	15.7	. 08	3 .3							44.2							.04 < .2				
GSMD-17885		105.60			56 7.									29.4			8	.03	188	1.40	.046	3.5	88.0	2.73	55.2	.359				.02 < .2				
GSMD-17722		68.90			27 6									20.5									90.6							08 < 2				
GSMD-17817		41.72	-													.4							48.5							.03 <.2				
GSMD-17894	.23	54.34	5.39	42.1	18 3	2.2 1	3.5	651 2	2.52	4.0	.2	2.9	2.3	27.0	.08	3 .3	1	.10	/6	.//	.048	7.8	36.9	./9	345.7	. 235	3 1	1.55	.010	.03 <.2	.02	40 -	.1 .0	9.2
GSMD-17884		17.12														.2	1	.10	92	.37	.053	7.4	54.2	.62	106.9	.250				.02 <.2				
GSMD-17723		28.55												9.7		.3							45.2							.05 < .2				
GSMD-17735		31.25			44 4						.5			13.4									54.3							.05 < .2				
GSMD-17811		110.27												25.1		.5							28.5							.03 <.2				
GSMD-17738	.21	27.76	3.93	28.5	18 2	3.3	9.9	450 1	18.1	3.5	.2	2.9	2.3	12.4	. 0	.4	3	.uo	53	.5/	.055	7.9	20.5	.50	213.1	. 100	1 1	1.05	.000	.02 ~.2	.02	13	0	2 3.3
RE GSMD-17738		27.44												11.8		.4							27.1							.02 <.2				
GSMD-17818		38.67												12.8									59.0							.03 <.2				
GSMD-17886		92.93														.4							61.2 63.5							.05 <.2				
GSMD-17731 GSMD-17899		44.84 21.67														6							59.8							.03 < .2				
G2MD-11033	.01	21.0/	10.21	37.4	1223 3)./	7.7	323 1	10.	77.5	1.0	2.9	2.0	1/.1		0																		
GSMD-17812		34.88														.3														.03 < .2				
GSMD-17732		27.92												14.9									46.5							.05 <.2				
GSMD-17810		42.09												6.3									80.8							.02 < .2				
GSMD-17730		21.79			26 3							-		10.5		3. 3							35.4 60.2							.04 < 2				
TCHD-17828	.40	31.82	0.12	41.9	12 3	1.0 1	0.0	003 2	00	3.9	.3	ა.ს	J.4	22.3	. 10	ა	J	.uo	74	./4	.04/	11.4	QU.Z	./5	77.7	.440	1 1	73	.014	.002	.03	20	, 4 7,02	
TCHD-17823		21.10			51 3						.3					.2							50.1							.03 < .2				
TCHD-17825		41.18		-	44 4											.3							47.3							.07 <.2				
TCHD-17839	.52	68.45	6.38	70.4	23 6	1.8 3	2.3 1	005 4	. 25	5.0	.3	2.1	2.4	21.1	.17	.3	8 2 14	.10]	126 I	1.05	.057	9.7	76.9	1.46	120.0	.300		5.45	.021	.05 <.2 .16 6.9	.U4	233 1	.2 <.02	: 9.5 1 6 0
STANDARD DS2	14.27	131.54	33.05	100.1	247 3	0.1 17	<u> </u>	823 3	5.08	56.2	19.0 2	.04.6	3.0	29.1	10.2/	9.7	4 10	1.74	/3	.53	.000	0.01	104.0	.00	104.4	.098	ر ب 	.14	.030	.10 0.9	1.00		1.50	. 0.0

Page 3 (a)

SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co I	In Fe	As	IJ	Au	Th	Sr	Cd	Sb	Bi	ν	Ca	P	La	Cr	Ma	· Ba	Ti	B A1	Na	K W	Tì	Hg :	Se Te	Ga
341122	ppm					ppm p				ppm			ppm	ppm		ppm ppm						8	ppm		pm %						
TCHD-17831 TCHD-17821 TCHD-17840 TCHD-17830 TCHD-17832	. 25 . 48 . 20	40.04 33.93 53.82 23.64 55.13	5.17 5.44 4.46	42.0 68.0 40.4	10 3 44 5 18 3	8.9 14 8.6 30 7.6 16	.0 50 .6 99 .5 7	32 2.74 32 3.84 .5 2.87	6.3 4.4 9.8	.3 .3 .2	1.3 2.1 1.5 5.5 18.3	2.8 2.1 1.7	11.3 24.3 14.7	.17 .10 .20 .11	.32 .39 .48	.07 .08 .06	84 109 103	.66 1.03 1.06	.041 .053 .016	8.3 8.1 6.9	53.4 56.5 63.3 1 65.4 1 49.4	.80 .25 .03	161.7 133.1 130.4	.248 .288 .317	2 3.33 4 2.03	.012 .026 .012	.02 <.2 .04 <.2 .05 <.2 .03 <.2 .02 <.2	.03 .04 .02	26 51 26	.1 .02 .3 <.02 .2 .02	5.6 8.1 6.2
TCHD-17834 TCHD-17822 TCHD-17826 TCHD-17838 TCHD-17837	.21 .24 .29	348.52 34.11 40.77 55.06 61.75	5.37 5.84 5.72	44.0 51.5 42.9	13 4 17 4 12 4	0.8 14 6.5 18 4.3 17	.5 5 .3 8 .4 7	0 2.89 24 3.48 54 2.68	6.2 7.2 4.9	.2 .2 .2	4.0 1.7 3.0 5.5 3.0	3.0 2.8 2.1	12.4 21.5 12.0	.11 .09 .12 .09 .12	.30 .44	.08 .08 .07	87 111 92	.73 1.10 .78	.044 .057 .052	9.1 9.6 7.7	36.2 55.8 69.5 1 52.7 66.4 1	.86 .13 .94	168.4 126.2 302.4	.261 .289 .279	2 2.42	.013 .017 .011	.05 <.2 .06 <.2 .03 <.2	.03 .03 .02	20 37 18	.1 < .02 .1 .02 .1 < .02	5.9 7.1 6.0
TCHD-17829 TCHD-17833 TCHD-17836 TCHD-17824 TCHD-17835	1.01 .44 .29	54.42 30.34 53.40 79.96 63.18	8.82 7.54 4.06	48.9 70.5 69.3	28 1 44 6 20 6	2.4 12 2.2 24 2.6 29	.6 4 .0 9 .2 12	30 3.93 29 3.83 26 4.89	1 2.5 7 6.0 5 3.3	.6 .4 .2	9.8 1.7 2.2 2.3 28.8	2.6 2.5 1.7	45.2 26.1 49.1	.11 .08 .17 .14 .10	.44 .26	.15 .10 .06	153 107 155	.47 1.00 1.57	.042 .038 .049	11.3 11.7 8.8	39.5 74.3 1 86.7 1	.53 .27 .80	87.7 224.1 103.2	.372 .275 .387	<pre><1 3.20 1 4.18 2 2.91 1 3.62 2 2.92</pre>	.098 .018 .032	.06 < .2 .04 < .2 .04 < .2	.12 .03 .03	34 34 19	.4 .02 .3 .02 .2 <.02	2 10.0 2 7.8 2 10.1
TCHD-17827 PPD-17859 PPD-17856 PPD-17858 PPD-17860	1.72 .35 .37	24.44 73.46 64.31 66.07 77.78	5.92 5.54 6.24	189.8 53.5 54.4	588 8 13 5 16 4	1.5 21 3.0 20 8.9 18	.9 14 .0 7 .5 7	90 3.78 15 3.2 26 3.1	3.9 1 3.7 1 4.1	1.7 .3 .3		2.0 2.6 2.4	25.9 17.1 20.2	.07 2.01 .12 .15 .25	.45 .30 .34	.09 .08 .09	108 100 89	.94 .84 .79	.215 .030 .060	14.8 10.6 9.0	61.7 90.8 64.6 1 56.4 1 86.2 1	.98 .15 .01	499.4 328.9 255.5	.209 .297 .243		.011 .015 .013	.02 <.2	.05 .03 .02	255 22 39	.9 .03 .3 .02 .3 <.02	6.6 2 6.8 2 5.8
PPD-17857 RE PPD-17857 LAMD-17847 LAMD-17849 LAMD-17852	.67 .33 .31	31.71 32.49 49.55 38.50 45.83	5.81 4.04 3.92	52.4 39.5 37.1	154 2 6 3 23 3	9.1 9 9.0 15 7.7 15	.4 39 .5 64 .8 63	92 3.68 10 2.60 72 2.41	3.9 3.9 4.2	.5 .2 .2	3.3 2.0 2.0 7.1 2.4	.9 1.7 1.4	11.6 14.0 11.5	.21 .21 .10 .10	.39 .40	.10 .05 .06	135 93 91	.31 .85 .78	.043 .045 .047	7.0 5.9 6.1	59.7 62.0 54.1 49.6 85.6 1	.60 1 .86 .80	133.6 417.5	.166 .270 .284	2 1.89 2 2.03 2 2.07	.007 .016 .012	.03 <.2 .03 <.2 .03 <.2 .02 <.2 .05 <.2	.03 .02 .02	82 23 37	.2 .02 .3 <.02 .3 <.02	8.5 5.6 5.5
LAMD-17842 LAMD-17850 LAMD-17848 LAMD-17844 LAMD-17846	.32 .42 .37	52.64 34.75 53.79 42.65 64.19	4.77 3.94 5.35	37.1 39.0 51.4	70 4 25 3 8 4	2.5 14 8.0 15 1.8 16	.6 42 .7 68 .3 63	20 2.75 37 2.54 33 3.01	4.6 5.1 4.0	.3 .2 .3	1.7 3.0 2.6 1.8 3.1	1.6 1.7 3.0	14.6 13.5 21.2	.17 .15 .09 .11	.34 .43 .37	.06 .06 .07	89 89 94	.76 .89 .79	.035 .035 .048	8.2 6.4 10.7	77.2 1 59.1 47.5 58.4 1 64.1 1	.79 .88 .03	217.8 201.7 160.4	.273 .285 .272	2 2.26 2 1.95	.012 .017 .017	.02 <.2 .02 <.2 .02 <.2 .04 <.2 .03 <.2	.02 .02 .03	60 28 13	.3 <.02 .3 <.02 .3 <.02	2 5.7 2 5.4 2 5.9
LAMD-17855 LAMD-17851 LAMD-17854 STANDARD DS2	.47 .17	40.61 55.25	3.24 3.92	29.6 45.0	85 6 4 5	0.0 14 1.1 20	.3 27 .0 78	6 3.15 8 3.38	3.4	.4 .2	1.2	.8 1.9	10.7 23.5	.16 .08	.18 .20	.05 .05	78 119	.53 1.14	.053 .025	7.5 6.4	98.0 75.1 52.2 1 150.0	.68 .33	158.1 212.4	.180 .346	1 3.35 3 2.83	.008	.05 <.2 .02 <.2 .03 <.2 .15 7.1	.02	122 16	.6 <.02 .2 <.02	6.3 8.0

Page 4 (a)

ADE ANALYTICAL

╚																																AUH	E ANALTITO	<u> </u>
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni			e A	s l			Sr			Bi	٧	Ca	P		Cr	Mg	Ва	Ti		A1	Na	K W				Te Ga	
-		ppm	ppm	ppm	ppm	ppp	ppiii	bbw b	prii	% pp	m pp	n p	bp bbu) bbu	ppm	ppm	ppm	ppm	X	- X	ppm	ppm	X	ppm	* 1	ppm_	- X	*	% ppm	ppm j	opb p	pm p	opm ppm	
	LAMD-17843	.46	27.68	4.67	68.2	99 (33.3	16.0 5	46 3.1	8 5.1	в.:	3 2	.3 1.3	10.0	.07	.35	.08	99	. 53	.065	7.7	61.7	.70 4	140.8	.232	1 2	.11 .0	008 .	.02 <.2	.03	52	.4	.03 6.6	
1	LAMD-17845	.22	51.66	4.63	47.7	29 4	43.1	16.7 6	47 3.1	8 5.	6 .	2 3	.8 2.2	25.4	.03	.37													.04 < .2					
]	LAMD-17841		50.94													.34	.06	123	.80	.041	7.0	79.0	1.09 2	228.6	. 297	1 2	.72 .0	013 .	.02 < .2	.03	53	.4 <	02 8.2	
i	LAMD-17853		51.75																										.13 <.2					
L	STANDARD 0S2	14.18	124.70	31.52	160.3	271	34.8	11.0 8	27 3.0	7 57.1	3 19.0	203	.4 3.5	28.9	10.66	10.45	10.95	73	.53	.092	16.0	154.2	.59	151.2	. 097	4 1	.69 .0	029 .	.17 7.5	1.86 2	222 2	.4 2.	04 6.0	_

Sample type: -230 TILL.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002201 Page 1 (b) 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Cs ppm	Ge ppn	Hf ppm	ppm Nb	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	Y mag		In ppm	Re ppb	Be ppm		Sample gm			
GSMD-17887 GSMD-17801 GSMD-17820 GSMD-17808 GSMD-17888	.62 .42 .78 1.39	<.1 <.1 <.1	.24 .15 .26	1.04 .38 .11	2.9 2.9 2.2 2.4 4.5	4.6 5.0 11.4 10.0	.4 < .5 < .6	.02 .01 .01	<.05 <.05 <.05 <.05	10.5 8.7 9.9 13.2	9.90 8.51 16.25 14.80 9.58	15.3 21.7 18.1 14.7	.03 .02 .04 .04	<1 1 <1 <1 <1	.3 .3	8.8 13.2 22.3 29.1 15.1	30 30 30 30 30			,
GSMD-17803 GSMD-17724 GSMD-17895 GSMD-17813 GSMD-17721	.46 .80 .52	<.1 <.1 <.1 <.1	.26 .22 .19	.31 .08 .39	2.1	4.6 8.2 4.7	1.7 < .5 <	.01 .01 .01	<.05 <.05 <.05	10.9 10.3 9.8	12.26 10.59 13.43 8.66 11.28	16.2 21.4 21.1	.04 .19 .03 .03	<1 <1 <1 <1 <1	.4 .4 .3	19.1 9.9 14.4 13.9 16.7	30			
GSMD-17737 GSMD-17819 GSMD-17727 GSMD-17814 GSMD-17897	1.48 .72 .62	<.1 <.1 <.1 <.1 <.1	.19 .37 .28	.07 .05 .12	3.8 2.8 4.4 2.3 2.2	13.9 9.6 7.4	.9 .7 .5	.02 .01 .01	<.05 <.05 <.05	6.9 15.9 13.2	9.97 12.87 11.98 9.55 11.16	20.0 27.5 23.5	.07	2 <1 <1 1	.6 .7 .4	16.1 37.3 14.6 13.3 9.6				
GSMD-17802 GSMD-17898 RE GSMD-17898 GSMD-17815 GSMD-17896	.78 .78 .87	<.1 <.1 <.1 <.1 <.1	.29 .31 .29	.16 .14 .11	3.0	6.7 6.9 6.6	.6 .7 .6	.01 .01 .01	<.05 <.05 <.05	13.1 12.9 14.1	7.91 10.96 11.22 9.98 8.07	25.7 26.6 27.0	.05 .04 .04	<1 <1 1 <1 <1	.5 .5 .3	12.8 16.4 16.2 14.7 12.2	30			
GSMD-17733 GSMD-17804 GSMD-17891 GSMD-17809 GSMD-17728	.84 .51 .63	<.1 <.1 <.1 <.1	.16 .21	.75 .81 .60		5.0 4.8 5.4	.7 .8 .6	.02 .01 .03	<.05 <.05 <.05	8.6 10.6 7.7	13.43 8.66 10.81 9.58 7.69	16.4 18.2 12.5	.06 .04 .03 .03	<1 <1 <1 <1	.4 .4 .3	11.0 19.6 9.4 17.5 15.6				
GSMD-17739 GSMD-17734 GSMD-17889 GSMD-17900 GSMD-17805	.66 .49	<.1 <.1 <.1 <.1 <.1	.45 .40 .19	.13 .11 .44	4.6 2.3 2.7 2.1 2.4	9.7 8.3 6.1	.7 .6 .6	.01 .01 .01	<.05 <.05 <.05	19.4 14.6 9.2	11.73 9.04 12.68 9.00 11.82	13.7 15.2 18.5	.03 .03 .03 .03	<1 <1 <1 <1	.4 .3 .3	28.1 10.5 12.2 12.4 21.1	30 30 30 30 30			,
GSMD-17736 GSMD-17726 GSMD-17883 STANDARD DS2	.55 .57	<.1 <.1 <.1 <.1	.28 .09	.09 .81		6.3 3.3	.4	.01 .02	<.05 <.05	11.6 4.5	10.90 12.12 5.71 7.59	21.4 16.9	.02	1 1 <1 2	.4	19.9 13.2 13.4 14.1	30 30 30 30			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG. AU. HG. W. SE, TE, TL, GA, SN = 100 PPM; MO. CO. CD. SB. BI, TH, U. B = 2,000 PPM; CU. PB. ZN. NI, MN. AS, V. LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: -230 TILL

DATE RECEIVED: JUL 5 2000

Page 2 (b)

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	dk mqq	Rb ppm	Sc ppm	Sn ppm	s %	Та ррп	Zr ppm	PPm PPm		In ppm	Re ppb	ppm Be:		Sample gm	
GSMD-17890	1.81			1.00							9.58		.03	<1		11.1	30.0	
GSMD-17729	•	<.1	.10		6.3						9.19		.02	<1		27.3	30.0	
GSMD-17893		<.1		.08							10.75		.03	<1		18.3	30.0	
GSMD-17881	3			.77							9.19		.03	<1		16.2	30.0	
GSMD-17806	.31	<.1	.34	.07	2.1	6.0	.4	<.01	<.05	14.0	10.83	20.9	.02	<1	٤.	10.7	30.0	
GSMD-17816	.54	<.1	.54	.12	1.5	8.9	.5	<.01	<.05	22.0	13.10	17.3	.03	<1	.3	12.4	30.0	
GSMD-17882	.89	<.1	.12	.80	3.9		.5	.02	<.05	6.9	9.63	21.6	.04	<1	.3	15.1	30.0	
GSMD-17892	.71	<.1	.05	.93	5.6	3.5	.6	<.01	<.05	3.7	6.74	20.3	.03	<1	.5	13.7	30.0	
GSMD-17740	.40	<.1	.12	.40	2.4	4.4	.4	<.01	<.05	6.8	8.85	20.1	.03	<1	.3	10.4	30.0	
GSMD-17725	.40	<.1	.16	.55	1.9	4.0	.3	<.01	<.05	8.6	10.12	28.4	.05	<1	.4	11.8	30.0	
GSMD-17807	70	<.1	.39	07	2.3	6.3	. 4	<.01	<.05	15.2	11.63	17.3	.03	<1	.4	13.7	30.0	
GSMD-17885		<.1		.23		13.9	.6				14.66		.07	<1		10.2	30.0	
GSMD-17722		<.1		.23			.4				11.76		.05	<1		15.6	30.0	
GSMD-17817	1	<.1		.39			.5				11.99		.04	<1		12.4	30.0	
GSMD-17894		<.1	.28		1.9		.6	.01	<.05	11.2	11.98	16.2	.05	<1	.2	9.9	30.0	
GSMD-17884	40	- 1	11	1.03	. 1	7 É	4	0.3	- 05	6 0	6.34	16 3	.05	<1	7	14.3	30.0	
GSMD-17004 GSMD-17723		<.1			3.1						8.54		.04	<1		12.3	30.0	
GSMD-17725		₹.1		.35							7.82		.05	<1		15.5	30.0	
GSMD-17811		<.1		.13							8.47		.05	<1		12.7	30.0	
GSMD-17738		₹.1					.3				7.56			<1		8.0	30.0	
		_					_				- 45						70.0	
RE GSMD-17738		<.1	.21	.21	1.1				<.05		7.40		.03	<1		8.0	30.0	·
GSMD - 17818		<.1			2.7				<.05		9.34		.05	<1		17.3	30.0	
GSMD-17886		<.1			5.4		.4				5.24		.05	<1		19.3	30.0 30.0	
GSMD-17731		<.1		.37			.5				10.41		.04	<1		14.7	7.5	
GSMD~17899	•71	<.1	.04	. /4	0.8	2.5	1.5	.05	<.02	2.1	5.63	27.5	.02	<1	.3	18.0	1.5	
GSMD-17812	.36	<.1	.24	.22	1.9	5.9	.4				9.82		.03	<1		11.9	30.0	
GSMD-17732	.42	<.1	.19	.11	3.8	5.0	.4	-01	<.05	9.3	11.03	34.9	.02	<1		16.3	30.0	
GSMD-17810	2.94			1.14		5.4	1.0				6.99		.06	<1		29.2	30.0	
GSMD-17730	.33	<.1					.4				9.16		.02	<1		12.5	30.0	
TCHD-17828	.42	<.1	.27	. 15	3.0	7.6	.6	.02	<.05	14.4	9.84	23.2	.03	<1	.2	12.7	30.0	
TCHD-17823	.51	<.1	.12	.75	3.3	4.3	.6	.01	<.05	7.3	7.81	20.1	.03	<1	.4	14.5	30.0	
TCHD-17825		<.1	.43		3.5						12.30		.02	<1		13.2	30.0	
TCHD-17839		<.1		.63			.7				11.49			<1		16.7	30.0	
STANDARD DS2		<.1		1.47								32.1		<1		14.7	30.0	•

Page 3 (b)

AA CHE ANALYTICAL

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	Y ppm		In ppm	Re ppb			Sample gm	
TCHD-17831 TCHD-17821 TCHD-17840 TCHD-17830 TCHD-17832	.46 .70 .61	<.1 <.1 <.1 <.1 <.1	.14 .22 .20	.64 .34 .70	2.5 2.9 3.3 2.7 1.1	5.2 4.9 5.8 5.6	.5 .5 .6	.01 .02 .02	<.05 <.05 <.05 <.05	6.9 10.7 11.0 9.3	10.17 7.30 9.76 8.59 12.04	16.3 19.1 20.0 18.0	.03 .02 .03	<1 <1 <1 <1 <1	.3 .3 .6	14.3 15.3 13.8 21.7 12.5	30 30 30 30	
TCHD-17834 TCHD-17822 TCHD-17826 TCHD-17838 TCHD-17837	.47 .64 .60	< .1	.24 .30 .24	.31 .08 .40	.9 3.2 3.1 1.8 2.9	5.0 10.1 4.8	.5 .6	<.01 .02 .02	<.05 <.05 <.05	11.3 13.4 10.6	10.28 7.69 13.91 9.93 10.82	21.1 20.5 19.9	.05	<1 <1 <1 <1 <1	.3 .4 .4	11.6 17.1 20.3 16.0 16.4	30 30 30	
TCHD-17829 TCHD-17833 TCHD-17836 TCHD-17824 TCHD-17835	1.24 1.01 1.60	<.1 <.1	.60 .15 .30	.38 .64 .15		8.3 6.8 11.1	1.3 .5 .8	<.01 <.01 .01	<.05 <.05 <.05	37.7 8.2 17.5	16.84 13.90 12.55 17.09 9.92	28.3 31.4 20.5	.09 .07 .08	<1 <1 <1 <1 <1	.6 .4 .4	24.0 9.4 19.3 14.0 11.4	30 30 30	
TCHD-17827 PPD-17859 PPD-17856 PPD-17858 PPD-17860	.89 .57 .60	<.1 <.1 <.1	.06 .27 .26	.21 .12 .09	3.6 2.5 2.1 1.7 3.1	9.9 5.6 6.6	.5 .6 .4	<.01 .01 <.01	<.05 <.05 <.05	3.7 11.5 11.0	10.32 18.26 10.04 13.08 18.14	24.1 22.5 17.4	.08 .08 .07	1 <1 <1 <1	.5 .5 .3	22.0 10.4 13.8 10.9 12.9	30 30 30	
PPD-17857 RE PPD-17857 LAMD-17847 LAMD-17849 LAMD-17852	.47	<.1 <.1	.02 .36 .20	1.42 .19 .55		2.9 5.7 4.9	.6 .6	.03 .02 .01	<.05 <.05 <.05	1.8 16.2 10.0	4.11 4.18 9.84 9.90 17.16	19.6 17.8 16.0	.06 .05 .05	<1 <1 <1 <1	.4 .3 .3	12.8 12.8 10.1 10.5 12.5	30 30 30	
LAMD-17842 LAMD-17850 LAMD-17848 LAMD-17844 LAMD-17846	.48 .52 .47		.15 .26 .28	.78 .38 .12	2.8 2.2 1.3 2.6 2.0	5.2 4.7 5.1	.5 .5 .5	.02 .01 .01	<.05 <.05 <.05	8.7 12.7 12.9	11.89 11.48 9.89 8.60 10.76	19.8 20.2 21.6	.05 .04 .03 .02 .03	<1 <1 <1 <1 <1	.3 .4 .3	19.0 11.0 12.0 14.0 14.9	30 30 30	
LAMD-17855 LAMD-17851 LAMD-17854 STANDARD DS2	.72	<.1 <.1	.11 .40	.95 .13	3.7 1.3 1.9 12.5	5.7 6.2	.6 .7	.06 .01	<.05	6.5 15.9	43.33 16.01 10.11 7.46	18.4 15.5	.03 .02	<1 <1 <1 1	.6 .3	19.8 7.6 11.2 14.3	30 30	

Page 4 (b)

AA L

				_															إلىس
SAMPLE#	Cs ppm	Ge ppm	∦f ppm	Nb mgq	Rb mag	Sc ppm	\$n ppm	s %	Ta ppm	Žr ppm	Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm		
		<u> </u>		<u> </u>		<u></u>	<u></u>		•••	•••	- ' ' '	•••	• • • • • • • • • • • • • • • • • • • •			• • •			
LAMD-17843	.92	<.1	.12	.81	4.3	4.7	.6	.01	<.05	5.6	8.01	16.1	.04	<1	.2	14.5	30		
LAMD-17845	.59	<.1	.36	.08	2.3	8.8	.7	< .01	< . 05	15.5	14.97	18.9	.04	<1	.3	13.9	30		ı
LAMD-17841							.7				10.90			<1		18.7	30		
LAMD-17853	11.03	< .1	. 28	.08	4.5	5.7	- 5	< .01	< .05	10.5	11.53	22 R	. 03	<1	2	15.9	30		- 1
STANDARD DS2														2		14.7	30	·	╝
																			_

Sample type: -230 TILL.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Accredited Co.)

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002201R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

四岛
LL

		39/ VV		<i></i>	4,000		# * (*) *	700	···×······			* 7.43		,					
SAMPLE#	\$102	A1203	Fe203	MgO	CaO	Na20	K20	TiO2	P205	MnO	Cr203	Ва	Ni	Sc	LOI	TOT/C	TOT/S	SUM	
	x		%		%		*	X	%	%		ppm	ppm		×	×	*	×	
		11.02											56			4.30	.01	99.74	
=		10.15										439	49		5.4	.60	.01	99.92	
		11.31										833	79		6.1	.16	.03	99.91	
		11.52											67		8.4	.69	-01	99.94	
GSMD-17888	65.17	9.49	5.35	3.29	6.01	1.59	.96	.98	.12	.10	.015	512	45	18.	6.8	.91	.01	99.94	
GSMD-17803	44 77	11.81	4 70	2 45	2 07	2 10	1 10	1 20	17	11	015	£18	47	22	5.3	15	<.01	100.14	
		11.13											55		4.5		<.01	99.95	
		10.44											53		4.7	.15	.04	100.06	
		11.83											54		6.0		<.01	100.26	
		11.35											90		6.4		<.01	100.20	
GSMD*17721	04.50	11.33	0.01	3.52	2,00	1.50	1.30	1.15	. 1 1	. 13	.028	17 10	90	21	0.4	.66	1.01	100.00	
GSMD-17737	64.53	10.96	6.20	3.48	4.75	1.87	1.18	1.19	.16	.15	.018	1068	71	20	5.3	.43	.02	99.92	
		14.02											78		8.6		<.01	100.09	
		13.15											60		7.2		<.01	99.93	
		12.35											57		5.5		<.01	100.11	
		9.84											58		4.5	.31	.04		
							• • •			• . •	•								
GSMD-17802	70.20	10.10	5.13	2.34	2.97	1.85	.69	1.14	.08	.09	.013	442	42	18	5.5	.63	.01	100.16	
GSMD-17898	60.38	13.26	7.93	3.76	3.57	1.68	1.20	1.14	.16	.16	.022	1267	70		6.4	.26	<.01	99.82	
		13.31											71		6.3	.27	.01	99.94	
		12.71											52		5.4		<.01	99.86	
GSMD-17896	64.63	10.79	6.46	2.95	3.49	1.72	.61	1.28	.09	.11	.018	884	69	21	7.9	1.24	<.01	100.16	
GSMD-17733		40 53	0.07	2 7/		7 44	4 42	1 77	47	47	000	777	77	27			- 01	99.91	
		18.52													6.8		<.01	100.06	
		11.46											49 54			2.50	.03	99.97	
		10.60										420	63			1.47	.04	100.15	
==::= ::=::		10.29											61				<.01	99.99	
GSMD-17728	08.90	11.94	4.82	2.06	1.90	2.02	2.10	1.37	-11	.07	.015	9/0	01	13	4.4	.41	.02	77.77	
GSMD-17739	61.50	12.87	7.50	2.91	2.59	1.82	1.24	1.21	- 10	.11	-018	557	65	22	8.0	.80	<.01	99.94	
		13.98										797	72		8.3		<.01	100.17	
		11.23											69		6.7		<.01	99.92	
		12.77											84		8.3		<.01	99.95	
		12.45											65		6.4		<.01	100.09	
done (100)			* ***	2.,,			• • • •		•	•		,,,,					.,.,	,	
GSMD-17736	62.05	12.60	6.95	3.16	3.46	1.62	1.65	1.05	. 14	.15	.018	1427	84	20	6.7	.35	.01	99.72	
		10.69											58		4.4	. 13	.01	99.91	
		10.43											54	14	10.8	2.25	.01	99.93	
		12.39											90			2.45	5.48	99.65	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED:

Ang 26/00

IGNED BY P. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

ACRE ANALTHORE		ALAC AMETITICAL
SAMPLE#	SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Ni Sc LOI TOT/C TOT/S SUM	
	% % % % % % % % % % % ppm ppm ppm % % % %	
	Paris	
GSMD-17890	64.35 10.91 6.22 3.74 3.96 1.62 .79 1.25 .04 .10 .023 519 63 23 7.0 .74 <.01 100.07	
GSMD-17729	67,95 12,74 5.89 2.33 1.32 1.74 2.34 1.24 .15 .08 .013 852 35 15 3.9 .20 <.01 99.79	i
GSMD-17893	67,04 10.53 6.32 3.03 3.34 1.53 1.23 1.03 .15 .13 .014 1400 50 19 5.6 .29 .01 100.11	
GSMD-17881	[58.06 12.58 7.20 2.91 2.77 1.73 1.09 1.18 .15 .12 .019 823 54 20 12.0 2.47 .01 99.91	
GSMD-17806	73.17 9.51 4.86 2.00 2.70 1.94 .78 1.07 .15 .08 .012 457 35 18 3.5 .09 .02 99.83	į
20110 11 000	13.17 7.51 4.66 2.16 1.74 1.76 1.10 1.15 1.06 1.01 4.71 3.5 1.0 3.15 1.02 77.103	
GSMD-17816	63.31 11.80 6.93 3.55 4.95 2.26 .80 1.37 .11 .12 .023 451 55 29 4.9 .16 <.01 100.18	
GSMD-17882	55.91 12.66 7.48 2.81 2.76 1.68 1.16 1.17 .20 .12 .018 760 57 20 13.9 2.98 .01 99.96	
GSMD-17892	62.17 10.52 5.79 1.75 2.02 1.58 .80 1.15 .18 .09 .013 451 41 14 13.9 3.06 .02 100.02	
GSMD-17740	70.04 9.49 4.93 2.32 3.20 1.87 .59 1.19 .12 .08 .019 377 45 18 6.2 .92 <.01 100.10	
GSMD-17725	67.64 9.56 6.00 3.62 4.24 1.73 .83 1.35 .16 .14 .029 1344 70 25 4.5 .42 <.01 99.96	
43mb*11123	0.00 3.00 4.01 1.73 .03 1.33 .10 .14 .023 4.3 .40 .40 77.70	ł
GSMD-17807	70.47 10.28 5.51 2.42 3.29 2.06 .80 1.17 .09 .09 .018 436 42 21 3.6 .06 .02 99.85	1
GSMD - 17885	42.61 15.07 12.37 6.51 5.79 1.63 .10 1.10 .17 .18 .032 97 102 38 14.4 1.48 .01 99.99	1
GSMD-17722	65.71 11.24 6.83 3.49 2.95 1.55 1.28 1.17 .17 .13 .028 1715 81 22 5.5 .29 .01 100.25	Ī
GSMD-17722	63.96 11.02 6.29 3.42 5.04 2.16 .55 1.43 .15 .13 .027 424 75 27 5.7 .64 <.01 99.94	
GSMD-17894	70.05 9.30 5.80 2.92 3.82 1.84 .64 1.21 .15 .12 .017 905 41 24 4.1 .13 <.01 100.08	
13nD-17074	70.05 7.50 7.50 2.72 3.02 1.04 .04 1.21 .15 .12 .011 705 41 24 4.1 .1501 100.00	
GSMD-17884	60.26 11.25 6.82 2.26 2.30 1.67 .87 1.24 .15 .07 .016 447 38 17 13.1 2.85 <.01 100.06	
GSMD-17723	68.96 10.30 5.46 2.99 3.44 1.90 1.21 1.25 .09 .11 .019 1006 44 20 4.3 .40 <.01 100.15	
GSMD-17735	67.93 11.42 5.85 2.39 2.37 1.78 1.42 1.27 .19 .11 .018 1100 55 17 5.0 .43 .01 99.88	
GSMD-17811	67.58 10.81 6.17 3.15 3.40 1.74 .93 1.21 .10 .12 .021 1451 54 23 4.6 .23 <.01 100.00	
GSMD-17738	73.64 8.76 4.63 2.53 3.73 2.04 .65 1.30 .08 .10 .018 676 38 19 2.6 .12 <.01 100.16	
G.I.D 11100		
RE GSMD-17738	73.47 8.77 4.70 2.49 3.73 2.04 .66 1.30 .14 .10 .019 679 44 19 2.7 .10 .01 100.20	
GSMD-17818	64.90 11.55 6.01 2.70 2.99 1.86 .91 1.25 .14 .09 .018 566 51 21 7.7 1.33 .02 100.19	
GSMD-17886	65.20 12.48 6.61 2.67 1.48 1.36 1.40 1.04 .07 .06 .019 1894 93 16 7.2 .66 .02 99.81	
GSMD-17731	64.62 11.99 6.38 2.91 3.07 1.83 1.28 1.32 .12 .12 .022 1208 59 20 6.0 .63 <.01 99.81	
GSMD-17899	69.64 11.79 3.99 1.70 2.56 2.70 2.26 .52 .09 .06 .016 456 42 10 4.7 1.22 .03 100.08	
GSMD-17812	67.30 10.91 5.91 2.93 3.91 2.08 .79 1.31 .12 .10 .022 583 48 24 4.5 .30 .01 99.96	
GSMD-17732	69.15 11.61 5.44 2.42 2.33 2.00 1.61 1.19 .12 .09 .018 953 60 18 3.6 .11 .01 99.69	
GSMD-17810	58.24 12.76 8.60 2.39 2.24 1.75 .84 1.53 .18 .09 .020 429 48 19 11.4 1.54 .02 100.10	
GSMD-17730	69.13 10.94 5.02 2.70 3.40 2.19 1.35 1.42 .12 .09 .019 704 54 19 3.7 .34 <.01 100.17	ľ
TCHD-17828	67.30 11.66 6.15 2.20 2.79 2.08 .94 1.24 .14 .10 .013 440 38 21 5.3 .25 <.01 99.97	
TCHD-17823	63.44 11.08 5.93 2.08 2.47 1.70 .87 1.22 .12 .08 .015 456 43 17 10.9 2.53 .06 99.96	
TCHD-17825	62.91 11.25 7.00 3.51 5.01 2.04 .80 1.26 .12 .13 .019 408 55 25 5.7 .27 <.01 99.80	į
TCHD-17839	54.30 14.41 8.73 3.81 3.44 1.55 1.22 1.16 .20 .15 .017 795 70 23 10.8 1.37 <.01 99.89	
	SB 49.50 12.47 7.28 7.19 5.80 2.37 1.85 1.77 2.69 1.37 1.055 1930 78 12 5.9 2.46 5.34 99.47	

Page 3

ACHE ANALYTICAL		т													_						
	SAMPLE#		AL203									Сг203	Ba	Ni			TOT/C		SUM		
		%	%	*	%	%	%	*	*	%	- %	*	ppm	bbw	bbu	*	% _		<u> </u>		
	T-110 47074	/4 77	44 (2		7 (0	/ 70 0	17	47	1 77	11	17	028	610	50	25	e z	1.47	< 01	99.97		
	TCHD-17831	61.33	11.42	0.01	3.40	2.04.4	1 04	.03	1.37	12	10	.021	214	42		6.0	.70				
	TCHD-17821	67.26	11.24	7.82	2.00	2.91	1.70	1 04	1 17	.16	14	.027		64		13.5			100.04		
	TCHD-17840	52.72	13.98	7.97	3.03	3.89	1.01	1.00	1.17					45		6.0		<.01	99.86		
	TCHD-17830	65.63	10.91	5.90	3.05	3.98 2	2.10	.20	1.30	.05	- 14	.020	271	56		4.0	.83	.03	99.94		1
	TCHD-17832	63.41	10.96	6.50	4.14	6.15 2	2.38	.40	1.58	- 11	. 10	.029	242	36	32	4.0	.03	.03	77.74		
	TCHD-17834	63.44	10 00	٨ 23	4 20	5 91 2	2.50	47	1.45	. 13	- 13	.031	564	58	30 -	4.7	.26	<.01	100.17		
	TCHD-17822	67.25	11 13	5 84	2 55	2 88 1	1.83	.88	1.14	.10	. 10	.017	511	41		6.2		.01	99.98		
	TCHD-17826	64 57	11.29	6 88	3 04	3 67 1	1 00	.79	1.25	. 12	. 13	.022	394			6.3			100.10		
	TCHD-17838	64.37	11.14	6 16	3 55	4 26	1 00	77	1 32	12	14	029	788	57		6.3	.63				
		67.13	13.10	7 30	3.16	3 07	1 80	1 30	1 18	11	13	021	866	44		5.4		<.01	99.84		ļ
	TCHD-17837	03.09	13.10	7.30	3.14	3.07	1.07	1.50	1.10	• • •	. 13	·OLI	000	77			•••	,	,,,,,,,,		
100	TCHD-17829	57.83	13.06	8.58	3.77	4.21	1.94	.79	1.49	.09	.15	.025	364	50	30	7.9	.49	.02	99.89		
f '	TCHD-17833	53.27	18.55	8.80	2.33	3.97	3.02	1.11	1.37	.13	. 14	.011	342	<20	23	7.2	.68	.04	99.94)
	TCHD-17836	59.16	12.00	7.66	3.44	3.48	1_84	1.12	1.20	.10	- 14	.021	883	63	23	8.7	1.04	.05	99.96		J
	TCHD-17824	52.92								.15	. 19	.031	424	73	32	9.1	.66	<.01	100.06		J
	TCHD-17835	58.31												58			1.15	<.01	99.94		- 1
	1600-11000	30.31	12.07		J.U.	7.72		• • •													
	TCHD-17827	67.53	11.48	5,95	2.27	2.57	1.87	1.24	1.13	.12	.16	.018	534	33		5.4		<.01			į
	PPD-17859	62.05	12.48	7.69	2.36	3.37	1.97	1.08	1.43	.50	. 23	.026	1503	73		6.6		<.01	99.97		
		63.31									. 13	.026	934	60		5.0		<.01	100.02		ļ
	PPD-17858	64.11	11.56	7.05	3.58	4.18	1.82	.99	1.32	.11	. 14	.025	863	51		4.9		<.01	99.89		i
	PPD-17860	62.19	11.55	7.30	3.14	3.36	1.47	.89	1.20	.24	. 15	.024	1251	47	23	8.2	1.19	<.01	99.86		
						4 50		70	4 07	47	0.7	040	2407	FO	47	10 E	5.39	01	100.01		
	PPD-17857		8.78											59					99.87		1
	RE PPD-17847		10.99											43 46		5.1 5.1	.34	.01 .01	99.90		
	LAMD-17847		10.94									.023									
	LAMD-17849	64.39	10.40	5.70	3.48	4.44	2.00	.56	1.28			.028		43			1.13		99.98		
	LAMD-17852	60.38	10.78	6.98	3.70	3.77	1.65	.67	1.21	.19	.15	.030	495	78	24	10.4	1.79	V.01	99.90		
	LAMD-17842	55, 11	11.70	7.75	3.37	3.52	1.77	.58	1.32	.17	. 13	.025	652	55	23	14.4	3.30	.03	99.93		
	LAMD-17850		11.12											50			2.56	.02	99.76		
	LAMD-17848		10.24									.024				5.2		.01			
			12.32									.022		45		4.8	.19	.01	99.92		
	LAMD-17844	60.26	14 57	6.33	7 61	7 87	1 67		1 22					59			1.73	.02	100.08		
	LAMD-17846	00.20	11.23	0.73	3.01	3.63	1.01	.02		.07	. 10	.023	701	,,		.0.2	••••	• • •	,,		
	LAMD-17855	55.20	12.10	7.00	1.89	1.69	1.28	1.36	.87	.24	.11	.018	537	46	28	18.0	3.44	.01			İ
	LAMD-17851	40.67	11.11	6.86	2.79	2.84	1.14	.30	.93					61	20	33.1	8.81	.06	100.13		
	LAMD-17854	61.65	11.58	7.39	4.35	5.04	2.06	.52	1.31	.04	. 14	.024	455	49	28	5.8	.23	<.01	99.96		
	STANDARD SO-15/CSB	49.69	12.43	7.27	7.24	5.88	2.40	1.87	1.74	2.70	1.41	1.064	1917	73	12	5.9	2.39	5.33	99.82		
	31AIDAND 30 17/03D	177.07	, 2, 4, 4, 5			2.00			. • • •												

Page 4

SAMPLE#	SiO2	A1203	Fe203						P205 %		Cr203 %	Ba ppm		Sc ppm	LOI %	тот/с %	TOT/S %	SUM %	
LAMD-17845 LAMD-17841	63.76 55.17 61.43	11.44 11.62 10.51	6.96 7.72 6.74	3.32 3.26 4.11	4.25 3.42 5.89	2.12 1.68 1.70	.70 .61 .95	1.26 1.27 1.03	.15 .14 .09	.12 .12	.025 .023 .023	487 601 568	58 61 88	27 23 22	6.0 14.9	.25 3.66 .78	.01	100.06 100.17 100.01 99.87 100.05	

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002201R Page 1 (
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

AMPLE#	•			Hf ppm				78 ppm)Ţ mqq			ppm	Zr ppm				Pr Ppm											
SMD-17887	19.4	1.0	10.0	6.0	6.3	15.4	<1	92.3	-6	3.2	.6	1.2	139	<1	247.4	28.1	15.9	38.2	4.24	18.1	4.3	1.26	4.53	.80	5.27	1.09	3.10	.42	2.75	.37
	15.2							108.3							306.2															
	29.7							124.3			.5			5	190.2	39.1	17.6	38.7	4.97	22.3	5.4	1.68	6.04	1.08	6.63	1.40	4.21	.60	3.95	.58
	29.3						-	139.0		2.3		.6			164.9															
	16.5							168.9			.7			<1	241.1	28.6	25.1	52.4	6.13	25.0	5.1	1.32	4.77	.74	4.80	1.01	2.88	.44	2.95	.42
SMD-17803	19.1	1.9	14.7	5.5	8.9	38.7	1	134.4	.8	5.8	.5	1.5	174		237.2															
SMD-17724	24.4	1.0	14.2	5.5	7.8	22.3	2	143.6	.8	3.5	.8	1.3	213	1	223.7	35.7	17.8	41.9	4.81	20.6	4.9	1.46	5.34	.92	5.80	1.31	3.58	.56	3.62	.52
SMO-17895	18.6	2.0	13.4	6.9	8.6	33.4	1	114.3	8.	5.7	.6	1.7	170		278.5															
SMD-17813	19.7	1.6	14.3	5.6	9.3	35.3	2	135.7	.9	5.1	1.2	1.5	179	1	224.9	32.5	23.6	54.2	6.05	24.3	5.3	1.41	5.04	.85	5.28	1.15	3.43	.50	3.21	.4:
SHD-17721	23.8	2.4	15.5	5.4	11.4	51.4	2	122.9	1.0	6.3	.9	2.5	177	2	216.1	32.4	28.1	57.1	6.99	28.4	6.1	1.50	5.80	.94	5.65	1.18	3.37	.47	3.07	-44
	21.1	1.8	13.8	7.4	10.5	42.4	1	186.6	1.0	6.7	.6	1.9	151	1	295.5	32.1	29.8	62.8	7.42	29.8	6.1	1.46	5.29	.87	5.33	1.19	3.29	.49	3.29	.47
SMD-17819	42.2	3.4	18.1	4.0	5.5	23.6	2	93.5	.5	2.2	.8	.7	253	1	154.6	31.7	12.6	35.7	3.97	18.0	4.5	1.41	4.74	.87	5.37	1.14	3.29	.48	3.20	.4
SMD-17727	18.9	2.6	17.5	6.1	10.4	57.8	2	149.5	1.0	7.4	.6	2.0	182	1	249.4	32.3	30.0	61.2	7.47	30.9	6.0	1.53	5.72	.94	5.77	1.19	3.31	.49	3.22	.4
SMD-17814	22.0	1.9	15.7	6.1	10.1	41.4	1	153.3	.9	6.1	.5	1.7	190	2	240.3	33.8	27.5	59.0	7.00	28.5	6.0	1.60	5.87	.92	5.91	1.25	3.59	.50	3.24	.4
MD-17897	18.4	1.2	12.5	5.8	7.9	26.1	1	122.0	.8	4.3	.4	1.3	171	<1	236.7	33.0	21.3	45.3	5.55	23.3	5.2	1.47	5.14	.91	5.54	1.19	3.28	.47	3.30	-4
SMD-17802	16.5	1.1	11.3	7.1	7.7	25.4	<1	105.2	.7	5.0	.6	1.5	144	<1	290.3	27.9	22.5	48.8	5.67	23.0	4.6	1.26	4.53	.75	4.73	1.01	2.93	.42	3.01	.4
SMD-17898	26.8	2.0	15.8	3.7	6.9	43.7	1	101.3	.6	3.8	.6	1.1	188		141.7															
E GSMD-17898	28.7	2.1	17.0	4.0	7.4	47.0	1	108.2	.7	4.2	.5	1.2	201	<1	150.7	28.5	16.5	43.0	4.54	19.6	4.4	1.34	4.60	.78	5.04	1.10	3.01	.43	2.94	.4
	24.3						1	138.7	.8	5.4	.5			1	198.5	31.5	26.1	56.3	6.50	26.7	5.5	1.46	5.53	.88	5.36	1.15	3.27	.46	3.20	.4
SMD-17896	21.8	1.4	12.5	6.0	7.6	25.2	1	127.5	.7	4.2	.5	1.3	179	<1	236.7	28.0	19.1	44.3	5.02	20.5	4.5	1.24	4.25	.75	4.82	1.04	3.04	.42	3.02	-4
SMD-17733	18.1	2.3	22.3	5.6	7.2	38.8	2	331.5	.6	4.8	.4	1.5	191		232.6															
	18.6						1	113.4			.4				222.7															
	23.8						1	101.7	.6	3.1	.4.	1.1	181		215.7															
MD-17809	24.9	1.4	13.6	7.9	7.9	18.5	1	121.2	.8	3.9	.5	1.7	208	1	323.8	34.7	22.0	48.6	5.79	24.0	5.2	1.52	4.96	.89	5.58	1.22	3.65	.52	3.67	.5
MD-17728	13.9	2.1	14.6	9.2	16.0	73.8	2	115.6	1.5	10.4	.4	2.6	126	2	370.7	32.2	41.4	92.7	10.04	38.2	7.3	1.46	5.63	.90	5.46	1.14	3.31	.47	3,34	.4
MD-17739	21.8	2.7	16.3	5.5	8.5	46.5	1	117.1	.8	5.9	.4	. 1.5	185	3	214.1	30.6	23.2	49.2	5.88	24.4	4.9	1.32	4.73	.78	5.02	1.09	3.13	.45	3.15	.4
MD-17734	22.8	1.4	15.4	4.9	7.5	23.4	1	161.2	.7	3.3	.4	1.1	197		192.6															
	23.1						1	110.9	.5	3.3	.4	.9	189	2	185.5	31.1	16.6	35.9	4.47	19.1	4.5	1.30	4.54	.75	4.91	1.12	3.24	.46	3.07	.4
~0-17900	21.5	1.4	14.1	5.1	7.9	29.2	1	136.0	.8	4.4	.4	1.7	174	3	194.8	28.6	21.9	45.2	5.54	22.5	4.8	1.24	4.74	.73	4.50	1.02	2.95	.45	2.86	.4
D-17805	26.8	1.B	14.9	5.7	7.0	28.5	1	124.8	.7	4.3	.4	1.2	219	3	216.7	33.6	19.2	46.0	5.19	22.0	5.0	1.39	5.21	.84	5.40	1.21	3.54	.50	3.44	.5
MD-17736	26.7	2.7	17.0	6.0	10.4	65.2	2	160.2	1.0	7.9	.5	1.9	166	3	230.5	32.0	29.9	63.1	7.49	30.1	6.1	1.44	5.56	.89 !	5.40	1.13	3.31	.44	3.08	.4
	20.2							123.0						4	245.1	33.5	25.4	53.3	6.73	28.1	6.0	1.48	5.59	.94	5.63	1.23	3.42	.47	3.24	.4
	16.6							97.1							303.7															
ANDARD SO-15								391.0							1035.9															

GROUP 4B - REE - LIBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED:

... Ang 26/10

ACHE ANLYTICAL																													A41. A	VEITION.
SAMPLE#		Cs ppm					Sn ppm			Th ppm	T l ppm	U			Zr ppm		La ppm	Ce		Nd ppm							Er ppm			Lu ppm
																				40 /	, ,	4 25		- (0	, ,,		2 01	14	2 00	70
GSMD-17890	23.0							101.9				1.3		<1	194.4	25.3	19.8	67.0	4.66	18.4	4.5	1.25	4.12	1.02	4.41	1 71	2.01	.45 E4	2.YU 2.17	.49
GSMD-17729	13.2						_	96.7				2.9		2	372.6	34.5	57.7	111.6	12.20	40.3	8.6	1./1	0.09	1.02	0.20	1.01	3.01	.20	2 80	40
GSMD-17893	20.3						-	135.9		5.9		1.6		<1	224.0	28.2	27.2	52.0	0.19	24.0	4.9	1.19	4.04	./3	4.70	1.04	2.40	.40	2.60	22
GSMD-17881	22.3							118.6		4.7		1.3		1	, 153.1	25.3	23.2	47.7	2.44	21.2	4./	1.21	4.42	./U	4.42	1 00	7.07	-41	2.04	.30
GSMD-17806	11.5	1.1	10.3	7.1	8.5	27.3	1	123.5	.7	5.6	.5	1.6	126	<1	292.5	29.7	29.2	54.9	0.00	25.8	5.4	1.34	4.77	./0	3.00	1.09	3.07	.40	2.77	.43
GSMD-17816	26.1	1.7	14.5	5.5	7.8	26.1	1	153.2	.6	4.1	.3	1.2	228	<1	223.9	36.1	22.8	44.7	5.65	24.4	5.4	1.62	5.74	.94	6.00	1.38	3.80	.58	3.81	.53
GSMD-17882	25.3	3.4	17.1	4.2	9.3	49.0	3	128.1	.7	5.0	.6	1.4	198	1	165.1	28.5	24.1	48.5	5.57	22.4	5.2	1.31	4.70	.76	4.95	1.09	3.09	.46	3.00	
GSMD-17892	14.2	2.1	14.1	7.0	10.3	39.7	2	120.8		6.3		1.9		1	286.9	27.7	32.5	63.1	7.17	27.4	5.4	1.33	4.59	.72	4.87	1.04	2.93	-47	2.94	.41
GSMD-17740	15.2	2.7	10.5	8.2	8.8	27.0		125.5		5.6		1.8			339.1	29.9	27.9	58.5	6.47	25.4	5.4	1.36	4.98	.79	5.20	1.14	5.15	-49	5.13	-40
GSMD-17725	21.7	1.5	11.0	7.0	11.0	31.1	3	113.2	1.1	5.8	.5	1.8	170	1	291.3	29.7	27.7	61.2	6.40	25.6	5.7	1.37	5.39	.87	5.34	1.14	3.09	.49	2.91	-42
r -17807	13.6	1.4	10.9	6.9	8.2	28.2	2	125.4	.7	5.4	.4	1.6	133	<1	282.1	29.7	26.3	49.2	5.92	24.5	5.1	1.37	4.95	.73	4.90	1.12	3.16	.46	3.12	.46
ر الماري - 17885 - 17885	44.3							74.4		.7		.3		<1	99.5	26.5	5.7	26.6	2.11	10.5	3.3	1.17	4.20	.73	4.83	1.08	3.07	.47	3.05	.41
GSMD-17722	22.3							125.0		6.0		2.4	174	1	205.1	29.6	29.7	55.5	6.88	27.9	5.9	1.49	5.62	.87	5.51	1.11	3.11	.47	2.91	.41
GSMD-17817	23.6						4	129.4	.7	4.0	.4	1.4	196	<1	301.4	33.3	21.7	46.3	5.23	22.2	5.3	1.47	5.51	.83	5.73	1.27	3.48	.56	3.48	.50
GSMD-17894	17.3						2	130.7	.6	4.2	.3	1.4	158	<1	251.6	30.5	21.8	43.8	5.36	22.3	4.9	1.31	5.09	.78	5.00	1.13	3.16	.52	3.14	.48
GSMD-17884	17.8	2.2	14.5	7.0	10.5	38.0	2	117.1	.9	6.3	.6	2.0	161	<1	288.6	27.7	31.0	60.8	6.86	27.0	5.3	1.30	4.80	.73	5.03	1.02	2.97	.48	2.97	.44
GSMD-17723	18.2							122.8				1.8		1	259.0	28.3	28.4	60.3	6.53	27.0	5.8	1.26	5.09	.79	5.21	1.09	3.04	.48	2.98	-41
GSMD-17735	19.4							143.2				2.4		3	349.9	32.2	42.0	83.2	9.26	36.4	7.4	1.57	6.26	.91	5.81	1.23	3.35	.52	3.35	.47
GSMD-17811	21.5									5.7		1.6	176	1	233.3	28.5	27.7	75.0	6.26	25.6	5.5	1.29	4.95	.78	5.21	1.11	3.04	.47	3.15	.43
GSMD-17738	15.1						1	162.9	.8	5.7	.5	1.8	144	1	324.5	30.9	32.2	61.5	7.29	29.8	6.1	1.53	5.58	.84	5.49	1.20	3.19	.49	3.25	.44
RE GSMD-17738	14.8	1.4	9.9	8.2	9.6	21.7	1	162.4	.8	5.4	.3	1.8	144	1	334.7	30.9	30.7	58.6	6.95	28.7	6.2	1.52	5.60	.82	5.51	1.18	3.29	.51	3.32	.46
GSMD-17818	18.9							125.3		5.3			172	<1	269.9	29.6	27.1	54.6	6.25	26.2	5.7	1.41	5.04	.76	5.38	1.14	3.11	.48	3.18	.45
GSMD-17886	24.8						2	100.4	1.0	7.5	.4	2.1	146	2	255.2	28.1	36.3	75.7	7.69	30.3	6.0	1.17	4.77	.74	5.02	1.06	2.96	.48	2.99	.41
GSMD-17731	22.7							138.7				2.2	178	2	288.8	32.9	37.2	83.3	8.42	34.0	7.1	1.51	6.26	.91	6.09	1.29	3.56	.53	3.40	.48
GSMD-17899	13.2						6	327.7	.5	4.4	.5	1.9	61	<1	238.3	15.1	20.8	40.6	4.68	19.7	3.9	.96	3.19	.42	2.59	.55	1.54	.24	1.53	.23
GSMD-17812	18.4	1.3	12.3	7.2	9.3	26.1	1	148.3	.7	5.4	.4	1.7	174	2	287.6	32.2	28.7	55.8	6.62	28.5	6.0	1.48	5.68	.83	5.79	1.21	3.41	.53	3.43	.47
GSMD-17732	15.1							144.9				2.3		1	295.9	33.5	43.9	82.6	9.47	39.9	7.9	1.69	6.71	.98	6.25	1.25	3.46	.54	3.36	.46
GSMD-17810	20.3							125.1		5.3		1.7		2	245.7	26.6	25.8	51.6	5.78	24.6	5.0	1.26	4.52	.68	4.84	1.02	2.94	.45	2.99	.42
GSMD-17730	15.2							150.0				2.2		2	377.7	32.7	40.8	87.8	8.99	37.1	7.6	1.52	6.31	.93	6.10	1.20	3.36	.53	3.36	-45
77-17828	19.1							166.0		7.4		2.0	158	<1	301.5	32.1	36.9	71.6	8.23	34.3	7.1	1.62	6.30	.90	6.00	1.22	3.42	.52	3.38	.48
TCHD-17823	16.6	1.6	12.8	6.8	9.3	32.5	2	116.1	.8	5.8	.3	1.7	150	<1	277.7	27.8	28.5	57.6	6.46	26.6	5.6	1.24	5.05	.73	5.31	1.08	2.98	.48	3.02	.38
TCHD-17825	25.4							171.0		4.9		1.4		<1	275.5	31.6	25.1	50.2	5.97	25.5	5.5	1.40	5.39	.80	5.43	1.17	3.34	.52	3.11	-46
TCHD-17839	36.5							112.7		3.9		1.1		1	124.2	26.2	18.0	37.9	4.43	20.1	4.6	1.23	4.76	.70	4.99	1.03	2.72	.44	2.63	.37
STANDARD SO-15								402.8				20.1		20	1070.6	22.9	29.5	55.7	6.06	23.3	4.4	1.05	3.84	.57	3.74	.80	2.41	.37	2.58	-39
21VUDVVD 20-12	1-113						.,																							

Page 3 (a)

ACHE ANALYTICAL																														
SAMPLE#	Со					Rb					Ţl ppm					-		Ce ppm		Nd ppm				Tb ppm			Er			
	ppin	ppm	ppm	bbw	ppiii	ppiii	ppiii	ppii	PPII	PAN	ppii	ppii	PAII	Phi	PPIII	PPII	, ppiii		PPIII	PPIII	Phan	Phu		PPII	- PP-	PP	P.P		PP	F F ····
TCHD-17831	21.7	4 /	12 7	4 0	70	22.0	•	130.5	7	7 0	.7	1 /	104	-1	241.2	31 R	21 5	45 0	5.33	21.9	5.1	1.42	5-44	.85	5.79	1.20	3.53	.50	3.26	-46
								108.6		5.4		1.5		24	253.0	25 6	25 0	52 R	5 94	22.7	4.0	1 10	4.71	.69	4.54	. 95	2.76	.39	2.78	.39
	17.6						-			3.9	-	1.1		- 1	131.8	25 0	19 1	30.0	4 40	18 2	43	1 22	4 31	.60	4 69	.03	2.75	.39	2.43	.36
TCHD-17840	37.0							110.3				1.5		,;	264.0	27.0	10.1	40.0	5 53	21.5	4.6	1 31	4 53	70	4.74	1 00	2 90	42	2.84	.42
TCHD-17830	20.7							129.4		4.Û		1.2		- 1	275.4	27.0	10 7	49.0	5 11	21.9	5 2	1 65	6 32	08	6 46	1 34	3 87	55	3.64	53
TCHD-17832	24.8	.9	12.5	7.0	7.1	14.1	ι	144.3	۰٥.	3.1	.5	1.2	234	~ 1	213.4	37.0	17.3	41.7	J. 11	21.0	٥.٤	1.05	0.52	.,0	0.40	1.34	2.0.	.,,	J.07	
FOUR 4707/	127	4 0		, ,		1/ 0	•	137.9		27	.4	1 0	212	-11	192.5	71 B	175	38 7	4 51	19 1	. 4 0	1 45	5 38	86	5.85	1.20	3.50	.49	3.14	-45
TCHD-17834	23.6													1	272.6	27.0	2 17.2	50.1	4.01	27.1	4.0	1 31	4 67	74	4 74	1 03	2 88	44	2.85	42
TCHD-17822	18.6							113.0			.7					27.0	27.0	54.6	4 21	25.1	5.0	1.50	5 78	88	5 58	1 24	3 70	51	3 22	51
TCHD-17826	22.8							126.8		4.8		1.6		1	256.1	33.0	22.2	21.2	D.21	22.0	7.7	1.77	5.70	9/	5 79	1 15	7 72		3.06	45
TCHD-17838	24.8							122.0			.9			1	250.1	31.4	23.1	50.2	2.0/	22.2	2.3	1.39	J.JC	90	2.30 E 73	1 10	3.32	.47	2.03	
TCHD-17837	25.4	2.4	17.6	4.2	10.1	48.4	2	139.3	.9	5.2	8.	1.5	193	2	163.3	29.8	3 27.1	53.8	6.50	25.3	5.5	1.49	2.20	•80	5.32	1.10	3.20	.43	2.73	.42
			-			20.0	_	457 5	,	7 0		4 7	210		256.0	77 1	24.0	/0 0	4 N7	25.0	5 8	1 72	4 38	00	6 58	1 42	3 08	55	3.63	54
· ~ 17829	28.3							153.2		3.8		1.3		- 4	225.1	3/.1	24.0	40.0	6.02	25.0	4.0	1 70	5 91	97	5 72	1 1/	3 30	1.6	3 20	45
าบ - 17833	19.8							344.2			.7			<1	225.1	30.7	22.0	50.0	0.10	22.4	0.0	1.77	5.01	.03	5.32	1 11	3.30	.40	3.20	.43
TCHD-17836	28.2							132.0		4.7		1.3		3	156.6	30.2	24.2	55.1	2./1	22.9	2.0	1.30	2.14	.00	2.21	1.11	7.22	-44	7 71	.44
TCHD-17824	37.1							147.7		2.9			256	<1	157.8	54.9	18.1	38.2	5.02	21./	2.3	1.01	6.05	.98	0.34	1.30	3.03	.21	2.21	.54
TCHD-17835	30.7	1.9	15.9	5.1	8.4	33.5	1	127.2	.7	4.1	.5	1.3	203	<1	201.0	28.2	2 22.4	45.8	5.39	21.8	5.0	1.54	5.08	./8	5.14	1.10	3.13	.43	2.81	-4 I
	1		45 5	, -		,,,	_	120 7	•	7 2		2 2	1/0	-1	265.7	74 5	. 77 7	45 /	7 71	28 8	5 0	1 /3	5 /3	82	5 33	1 13	3 14	48	2 93	44
TCHD-17827	17.8							128.3		7.2		2.2		\1 7	247.5	31.3	, ,,,,,	67.4	7 7/	20.0	4.0	1 62	4 /2	07	6 16	1 30	3.14	53	3 42	52
PPD-17859	23.9							222.9		4.5		3.4		3	247.5	40.3	32.3	55.7	(44	24.2	6.0	1.02	5.42 E E0	0/	E /0	1 17	3.00	.55	2 00	.,2
(, , , , , , , , , , , , , , , , , , ,	25.7						_	129.6		4.5		1.5			194.8	30.9	25.0	50.3	0.11	24.2	2.4	1.34	2.20	.04	2.49	1.13	7 44	.47	7 77	.42
PPD-17858	25.2							133.5		5.0		1.5		1	218.5	36.2	28.1	51.7	0.04	20.8	5.0	1.00	0.30	.95	0.10	1.30	3.00	.72	3.3/	-40
PPD-17860	25.8	1.6	14.4	5.3	7.4	30.5	1	116.8	.6	3.8	.4	1.9	184	<1	205.5	37.2	2 24.8	49.5	6.03	25.0	5.6	1.54	5.97	.91	6.03	1.31	3.63	.52	3.40	.50
47057	1.	2.0	45 /	, ,	0.1	71 2	4	95.1	۰	4.2	,	1.7	195	4	164.2	17 4	. 10 4	12 6	4 41	16.6	3 4	70	3 06	48	3.21	.68	2.04	. 29	1_85	-31
PPD-17857	12.4													-1	243.6	20.0	3 31 0	42.0	5 77	21 0	7.8	1 78	5 24	81	5 30	1 00	3 16	47	2 07	.45
RE PPD-17847	22.0						-	123.3		4.0		1.3		- 11	286.3	70.0	20.0	47.4	5 23	20.7	/ 0	1 //	5 10	8/	5 44	1 14	3 32	47	3 07	47
LAMD-17847	22.4							128.5			.4					30.5	1 20.0	47.4	/ 01	10 5	4.0	1.44	5 20	78	5 44	1 12	3 22	45	2 05	42
LAMD-17849	23.6							122.3		3.1		1.2		1		30.4	10.0	41.0	4.01	19.5	4.3	1.37	4 17	.10	6 /7	1 75	3.63	.4J	7 97	56
LAMD-17852	25.4	1.8	13.4	7.5	7.8	24.9	1.	109.1	.7	4.7	.4	1.7	151	1	298.6	37.4	+ 24.9	66.0	6.34	25.3	5.8	1.09	0.17	.90	0.43	1.33	3.70	.31	3.01	.50
470/0	200	2.0	45 /	, ,	7 1	22.2		117 0		3.1	7	1.1	207	-1	181.0	20.0	10.0	38 /	4 84	10 4	4.6	1 42	5 15	.79	5 14	1.11	3.22	.47	3.07	.44
LAMD-17842	26.8							117.0				1.6		`1	227.8	77 7	7 17.0	/ 48 0	5 22	22.7	5.0	1 48	5 51	87	5 72	1.21	3.35	40	3 21	.43
LAMD-17850	20.4						-	132.5		4.3				2	241.6	33.3	23./	40.9	5 24	20 0	4.7	1 74	5 21	91	5 3/	1 16	3 40	46	3.06	44
LAMD-17848	22.7							125.0		3.5		1.3		2	241.0	31.1	21.3	47.0	2.21	20.0	4./ 5 7	1.30	5 26	75	J.J4 / 97	1 07	2 01		2.75	
LAMD-17844	20.9							145.3		5.5		1.5		٤	193.5	28.1	28.2	24.1	0.00	23.2	2.3	1.33	5.20	.13	4.03 E 20	1.03	7 74	.43		
1-17846	28.7	1.7	12.9	5.4	7.1	22.1	1	107.2	.6	3.4	.4	1.2	185	2	218.5	30.0	1 19.5	22.9	4.98	17.7	4.0	1.54	5.39	.02	3.29	1.12	3.30	.41	2.70	.43
	120	, ,	15 2	7 7	11 7	40.2	3	113.0	1.0	0 5	E	7 5	1/2		299.2	7/. 0	1 45 9	02 3	11 66	48.4	10 0	3 11	12.34	1.86	11.98	2.59	7.56	1.08	7.03	1.10
LAMD-17855	21.0	4.4	17.4	(.(11.3	47.2								4	211.8	77.0	, 4J.O	77.5	4 00	20.7	5 /	1 67	6 00	30	6 12	1 28	3 53	40	3 14	43
LAMD-17851	20.7							69.7		3.0			137	~	188.1	32.3	7 17.0	31.0	4.70	17 /	7.4	1.03	6.09	70	/ 42	1 01	2 87	17	2 70	30
LAMD-17854	26.0						-	109.1		3.1		1.0		3	188.1	26./	10.8	30.2	4.33	17.4	4.2	1.45	7.05	./0	7 72	01	2.0/	.43	2 59	.3 7
STANDARD SO-15	21.4	2.9	17.2	25.3	31.3	63.7	19	397.5	1.7	22.0	.8	20.6	152	21	1040.5	24.0	30.8	57.8	0.33	23.8	4./	1.03	3.75	.01	3.12	.01	2.40		2.50	-41

Page 4 (a)

- 1																															
	SAMPLE#			Ga ppm	Hf ppm	Np	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	T! ppm	ppm U	N V	ppm W	_	Y ppm	La ppm		ppm Pr	Nd ppm			Gdi ppm	Tb ppm	Dy			mqq		Lu ppm
	LAMD-17845 LAMD-17841	21.1 19.6 25.8 22.2	1.5 2.0 2.5	12.3 15.4 13.9	5.1 5.0 5.4	7.0 7.2 7.6	22.6 22.9 36.3	2 12 1 11 1 15	28.8 14.0 56.6	.6 .8 .7	3.5 3.1 4.7	.2	1.1 1.2 1.3	188 218 169	<1 : <1 : <1 :	240.5 212.1 204.6 229.9 236.3	31.7 29.6 28.8	19.8 19.6 22.8	40.7 41.3 47.4	5.26 5.27 5.78	21.9 21.9 23.4	5.2 5.4 5.3	1.37 1.45 1.37	5.38 5.26 5.06	.83 .86 .78	5.41 5.56 5.03	1.25 1.21 1.11	3.49 3.34 3.16	.45 3 .45 3	3.11 3.18 2.81	.53 .44 .47

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002201R Page 1 (b)
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

拾

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
GSMD-17887 GSMD-17801 GSMD-17820 GSMD-17808 GSMD-17888	<.5 <5 <5 <5	29 27 72 62 38	6 7 6 4 8	36 43 68 54	48 14 86 46	4 11 12 55 3	<.2 <.2 <.2 <.2 <.2	<1 2 2 4 <1	<1 1 1 1	
GSMD-17803 GSMD-17724 GSMD-17895 GSMD-17813 GSMD-17721	< < 	38 82 74 35 72	8 5 9 7 10	61 60 61 54 80	53 61 52 50 89	10 3 4 4 5	<.2 <.2 <.2 <.2	1 <1 <1 <1	<1 <1 <1 1	
GSMD-17737 GSMD-17819 GSMD-17727 GSMD-17814 GSMD-17897	.5 < .6 .5 < .5	44 100 53 51 42	9 5 13 7 6	70 86 92 73 51	74 73 58 56 49	6 12 7 5 2	<.2 .3 <.2 <.2 <.2	2 3 1 2 <1	1 2 1 <1	
GSMD-17802 GSMD-17898 RE GSMD-17898 GSMD-17815 GSMD-17896	v.555555	27 80 81 56 38	7 8 8 7 5	43 87 88 76 54	44 75 77 62 53	10 5 7 5 4	<.2 <.2 <.2 <.2 <.2	2 2 2 2 2	<1 1 1 <1	
GSMD-17733 GSMD-17804 GSMD-17891 GSMD-17809 GSMD-17728	1.1 <.5 <.5 <.5	33 30 58 31 16	10 6 5 6 17	79 57 48 54 60	14 48 56 55 37	3 14 4 15 4	<.2 <.2 <.2 <.2	3 1 3 2 1	2 1 1 1	
GSMD-17739 GSMD-17734 GSMD-17889 GSMD-17900 GSMD-17805	<.5 <.5 <.5 <.5	47 53 55 67 45	9 5 7 5	70 69 63 89 57	60 69 67 66 57	18 3 4 4 14	<.2 <.2 <.2 <.2 <.2	2 1 1 3	1 1 2 2	
GSMD-17736 GSMD-17726 GSMD-17883 STANDARD CT3 STANDARD G-2	.6 <.5 <.5 25.7 1.8	57 55 19 63 4	14 9 9 38 19	106 68 65 181 51	79 59 45 39 7	10 8 5 62 <2	.4 <.2 <.2 19.3 <.2	1 <1 22 1	1 1 <1 23 <1	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, B1, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED:

Ang 26/10

SIGNED BY ... P. ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

4
ACKE ANALYTICAL

ACHE AWLYTICAL												DE ANALYTICAL
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	 	
	GSMD-17890 GSMD-17729 GSMD-17893 GSMD-17881 GSMD-17806	555555 V V V V	32 21 59 48 23	19 10 8 8	42 68 82 75 41	65 36 55 54	4 5 6 6 4	<.2 <.2 <.2 <.2 <.2	<1 <1 <1 <1	<1 <1 <1 <1		
	GSMD-17816 GSMD-17882 GSMD-17892 GSMD-17740 GSMD-17725	<.5 <.5 <.5 <.5	55 46 23 21 74	5 7 8 7 11	55 77 72 36 78	54 55 36 39 65	8 6 4 15 7	<.2 <.2 <.2 <.2 <.2	1 <1 <1 <1	<1 <1 <1 <1		
	GSMD-17807 GSMD-17885 GSMD-17722 GSMD-17817 GSMD-17894	<.5 <.6 <.5 <.5	29 112 72 37 49	7 <3 10 5 6	49 71 79 43 47	40 96 82 53 41	7 2 7 8 6	<.2 <.2 <.2 <.2	1 1 <1 <1	1 1 <1 <1		
	GSMD-17884 GSMD-17723 GSMD-17735 GSMD-17811 GSMD-17738	<pre>5.55.55</pre>	17 27 29 109 25	8 9 12 12 7	72 46 64 75 41	44 49 52 54 38	4 3 7 8 4	<.2 <.2 <.2 <.2 <.2	<1 <1 1 <1	1 <1 1 1		
	RE GSMD-17738 GSMD-17818 GSMD-17886 GSMD-17731 GSMD-17899	<.5 <.5 <.5 <.9	25 37 98 42 20	6 7 10 13 26	38 55 89 48	37 52 100 60 42	5 5 9 25 92	<.2 <.2 <.2 <.2 <.2	<1 <1 1 <1 <1	<1 <1 <1 <1		
	GSMD-17812 GSMD-17732 GSMD-17810 GSMD-17730 TCHD-17828	55.655 V V V V	33 26 39 20 30	12 9 10 9	48 54 84 56	47 45 45 42 43	4 6 24 5 4	<.2 <.2 <.2 <.2 <.2	<1 <1 <1 <1	<1 <1 <1 1		
	TCHD-17823 TCHD-17825 TCHD-17839 STANDARD CT3 STANDARD G-2	<.5 <.5 <.4 26.4 1.6	19 34 62 64 2	7 6 36 16	49 56 85 184 45	38 50 70 39 6	6 4 7 61 <2	<.2 <.2 <.3 19.9 <.2	<1 1 23 <1	<1 1 23 <1		

Page 3 (b)

ALPE AVALITICAL												AUAL AVAL	
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm			
•	TCHD-17831 TCHD-17821 TCHD-17840 TCHD-17830 TCHD-17832	555555	37 28 51 16 47	12 8 7 7	84 57 85 55 59	57 48 69 47 60	5 9 7 12 6	.2 .2 .2 <.2 .2	<1 1 1 <1 2	3 1 2 2 3			
	TCHD-17834 TCHD-17822 TCHD-17826 TCHD-17838 TCHD-17837	· · · · · · · · · · · · · · · · · · ·	368 29 35 47 61	6 8 8 7 8	56 56 65 60 86	58 49 54 61 60	6 7 8 7 7	.2 <.2 <.2 <.2	2 <1 1 2 1	2 <1 2 2 1			
	TCHD-17829 TCHD-17833 TCHD-17836 TCHD-17824 TCHD-17835	<.5 1.4 <.5 <.5	45 25 48 73 59	6 9 8 4 6	72 85 85 86 75	62 14 72 76 69	17 3 7 3 5	.3 <.2 <.2 .2	3 2 2 1 2	3 2 2 2 1			
	TCHD-17827 PPD-17859 PPD-17856 PPD-17858 PPD-17860	v.5 2.5 v.5 v.5	21 67 59 64 69	98688	59 210 72 75 92	46 86 65 64 69	5 5 4 5 4	<.2 1.8 <.2 <.2 <.3	<1 <1 <1 <1	1 2 1 1			
	PPD-17857 RE PPD-17847 LAMD-17847 LAMD-17849 LAMD-17852	.7 <.5 <.5 <.5	30 43 44 31 41	8 6 9 6 7	72 58 61 53 59	37 56 55 58 103	66553	.3 <.2 <.2 <.2	<1 1 1 1	1 1 1 1			
	LAMD-17842 LAMD-17850 LAMD-17848 LAMD-17844 LAMD-17846	<.5 <.5 <.5 <.5 <.5	49 29 49 37 63	6 7 6 8 6	84 54 54 71 63	68 57 54 53 71	9 6 6 5 10	.4 <.2 <.2 <.2 <.2	2 <1 2 <1 2	2 2 1 1 1			
	LAMD-17855 LAMD-17851 LAMD-17854 STANDARD CT3 STANDARD G-2	.7 <.5 <.5 27.2 1.9	63 39 49 63 1	14 5 4 40 19	69 45 62 185 56	57 82 71 38 7	31 4 4 61 <2	<.2 <.2 .2 20.3 <.2	2 <1 2 23 1	<1 1 23 <1			

Page 4 (b)

ACAE ANALITICAL											 	 =
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
	LAMD-17843 LAMD-17845 LAMD-17841 LAMD-17853 RE LAMD-17853	555555 V V V V V	28 52 51 52 52	7 6 5 9 8	92 63 76 71 71	53 59 67 60 62	7 8 10 6 7	<.2 <.2 <.2 <.2	1 3 1 <1	<1 1 <1 <1		

AC' ANALYTICAL LABORATORIES LTD.
(ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002202 800 - 700 W. Pender St., Vancouver BC V6C 1GB Submitted by: Genry BidWelt Page 1 (a)

							. 81	00 -	700 l	J. Pe	nder	St.,	Vanc	ouver	BC V6	C 1G	8 Sut	mitt	ed by	: Ger	ry Bid	welt										
SAMPLE#	Mo ppm		Pb ppm		Ag ppb	Ni opm	Со	Mn ppm	-		U			Sr pom		Sb ppm	Bí ppn p	V (P La ≵ ppπ				Ti %	B A					Hg Soppo	-	Ga ppm
NWRR-10173		53.66		66.4		- 						1.8		30.1		.25	n2 2	03 3 3	24 05	.a 1.e	135.8	2 88	129 4	443	933	2 10	15 10	3	< .02	47 .	1 < .02	10.6
		54.03		68.2										28.4	11	.25	<.02 2	15 4	25 AS	3 2 3	86.6	2.00	43.3	004						27 .		
NWRR-10181				41.2								<.2		7.7	02	11	<.02 1	70 T (מת פפ	7 1 0	£0.0	2.66	950.6	260	10 3.1	4 02	00.00	Ā	< 92	<5 <	1 < 02	10.9
NWRR-10197		48.07									.4			48.1	.02	11	.04	70 I.V		9 3 7	24 8	2.00	111 7		4 7	4 01	2 11	3 1	02	11 <	1 05	2.6
NWRR-10176		27.94	2.20	40.2	11	20.7	9.5	223	2.03	3.0						.52		19 .:	30.UZ	6 3.7	24.0 7 120 1	2 10	166 5	.100						20 .		
NWRR-10164	.93	26.20	.67	47.1	28	36.1	11.8	637	3.44	./	<.1	1.2	. 1	27.3	.02	.52	.02 1	13 .:	.07	0 1.5	120.7	2.10	100.5	. 502	-							
NWRR-10180	.43	63.07												8.0	.12	. 20	.03 1	05 1.	10 .05	8 2.5	17.5	2.16	69.5	.375	8 2.5	4 .05	9 .04	.2	<.02	7.	1 < .02	9.7
NWRR-10172	.53	48.11	.69	64.1	20	58.5	28.9	1180	5.92	5.8	<.1	.8		18.7			<.02 2	02 2.	12 .05	4 1.2	91.7	3.11	35.8	.503	10 3.8	3 .07	79 .04	.6	<.02	<5 <,	1 <.02	11.6
NWRR-10161	1.40	158.79												120.8	. 08	. 23	.02	32 4.	50 .05	8 1.7	33.4	1.40	68.3		<1 .4							
NWRR-10195	.29	6.82	.49	41.1	. 11	13.0	21.2	706	4.83	.4	<.1	.8	.1	11.6			.02 1	44 1.	65 .08	0 3.9	3.2	1.33	9.3	.376						<5 <.		
NWRR-10178	.22	165.21	2.11	97.1	49	157.0	36.8	926	5.78	2.1	<.1	8.	1.3	28.5	.04	. 18	.05	77 1.	64 .05	5 7.7	404.4	2.60	480.5	.083	4 3.3	9 .00	6 .19	.3	.02	7 <.	1 <.02	7.8
NWRR-10186	60	59.31	70	140.1	25	53.6	23.3	689	4 78	6	< 1	< 2	1	15.1	.14	.14	<.02 1	19 1.	93 . 07	5 3.1	14.5	2.31	8.4	.351	<1 2.5	1 .13	38 .02	2 .3	<.02	22 .	1 <.02	9.4
NWRR-10174		65.07														.38	.16	17	03 .01	2 16.2	20.2	.53	749.8	.002	4 .9	7 .00	5 .16	5 .5	.03	41 .	3 .03	3.1
NWRR-10184		11.18							.59					5.2		1.60	.06	13	03 .02	3 9.2	20.0	.03	196.0	.002						64 2.		
NWRR-10198		52.36		64.1							<.1			15.5		.03	02	84 1	03 .06	2 2.4	25.6	1.21	13.2	.326						20 .		
NWRR-10191		32.72		52.8								2.7		16.4			<.02 1	30 1	80 05	5 1.9	27.2	1.81	30.7	.384						10 .		
14101-10131																. 10																
NWRR-10196		6.23														.07					8.5									13 <.	1 .03 3 < .02	
NWRR-10171		115.81												76.1		1.02	.03 1	/3 1.0	38 .07	U 5.4	312.7	4.25	92.0		1 3.8							
NWRR-10162		166.92														. 30									<1 .5							
NWRR-10194		123.19												8.4	.08		.04 1	15 1.	05 .05	2.1	21.0	2.30	32.8	.327	<1 2.7	0 .0/	1 .05	2. (<.02	12 .	3 <.UZ	10.9
NWRR-10166	.97	28.87	9.33	47.8	39	12.0	12.7	447	3.94	2.6	.6	.7	2.7	46.4	.07	.08	.14 1	49 .	47 .04	2 12.3	38.3	.51	85.6	.352	<1 3.9	6 .11	.00	> <.2	.11	29 .	2 .02	10.2
NWRR-10188	.86	55.36	.42	62.8	19	69.8	25.2	477	3.73	.5	<.1	1.2	.1	12.6			< .02							.310						15 .		
NWRR-10170	.43	39.32		58.2								.2	.1	17.8	. 05	.11	<.02 1	36 1.	74 .08	1 2.8	23.5	1.62	81.9	.394	3 2.8	6 .04	1 .08	.2	<.02	10 .	1 <.02	8.4
NWRR-10189	.64	65.22	2.60	90.9	48	47.7	24.1	608	4.68	1.4	<.1	2.2	.2	28.5	. 13	1.18	.18 1	42 1.3	38 .06	4 3.4	17.0	1.52	21.3	.544						36 .		
RE NWRR-10189	.68	67.46	2.69	93.5	48	47.6	24.4	631	4.82	1.4	< . 1	7.6	.2	30.3	.13	1.22	.18 1	52 1.	49 .06	6 3.6	17.6	1.56	22.7	.591	5 2.5	0.08	6 .04	1 .4	<.02	32 <.	1 .02	9.2
RRE NWRR-10189		59.60										2.2		34.3	.08	. 34	<.02 1	47 1.	44 .06	5 3.5	16.9	1.56	22.2	.579	6 2.4	4 .08	32 .05	.2	<.02	37 .	2 .03	9.1
M (OD 10105	c c	E0 05		52.1	16	£7 £	23.2	604	4 NO	1 /	<i>-</i> 1	4.0	1	10.9	na	17	<.02 1	34.2	13 NA	9 1 6	75.7	2 02	9.6	.414	529	2 .08	39 .04	6. 4	<.02	19 .	1 .03	7.9
NWRR-10185		50.95 309.11												9.4		1.46														17 3.		
NWRR-10179												<.2					.21	73	ა, .IZ ეც იე	K 3.2	26.4	1.50 67	306 A	130	<1 .7							
NWRR-10192		29.26												16.7			<.02 1													<5 .		
NWRR-10168		49.85		61.0							<.1					.10	<.02	06 1	10 NC	n 27	30 4	2 12	01 5	345						8		
NWRR-10175	.64	63.80	42	54.1	25	89.4	27.9	213	J.53	.9	<.1	4.6	1.	42.3	.03	. 08	<.02	00 1.	10 .05	U 2.	39.0	2.13	91.5	CPC.	4 6.4	U .11	.0.05	, ,	4.02	υ.	1 7.06	0.0
NWRR-10177	. 33	9.09	. 20	45.4	2	22.2	24.3	812	5.30	.2	<.1	1.9					<.02 1													<5 <.		
NWRR-10183	.30	-	21.31	50.7	45	10.8	6.8	369	2.86			2.4	12.6	10.4	.02	.20	.31	12 .:	25 .08	8 47.4	13.1	1.06	89.0	.004						31 <.		
NWRR-10193	.30	32.69	.32	59.5	18	35.9	24.9	830	4.91	2.0	<.1	1.8	.1	8.7	.04	. 07	.02 1	47 1.5	99 .07	9 3.0	27.4	1.65	35.1	.412	<1 3.1	7 .04	4 .04	<.2	<.02	6 <.	1 .02	10.4
STANDARD DS2	14.20	128.95	34.41	162.3	266	38.1	11.8	803	3.10	59.7	19.0	220.5	3.8	30.8	10.16	9.78	10.84	77	66 .09	0 18.7	166.1	.60	147.8	.104	2 1.7	7 .03	2 .17	7.1	1.90	240 2.	2 1.92	6.4
STAIDHAD DOC	21.20		_ ,. ,*																													

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SC, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B - 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR - 10,000 PPM.

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 5 2000 DATE REPORT MAILED:

Data AFA

Page 2 (a)

	SAMPLE#	Но	£u	Pb	Zn Ag) Ni (Co Ha	Fe A	s U	Au	Th S	r Cd	Sb	Bí	V Ca	P	La (Cr Mg	Ва	Ti	8 A1	Na K	H 11	Hg	Se T	ie Ga	1
		ppm	ppa	bbar t	opon pot	ppa p	os ppo	\$ pp	a ppa	ppb p	pa pp	а рра	ppa	рра рр	a \$	X p	de bi	pa I	ppa	\$ PI	n i	1 1	ppm ppm	ppb	ppm pp	и рра	1
									,					•													
	NMRR-10182																						<.2 <.02				1
	NHRR-10165																						.8 < .02				
	HHRR-10190																						.4 <.02				
	M-RR - 10167																		•				1.6 .02				i
	NHRR-10187	.55	75.95	.46 71	1.4 31	88.5 29	.2 711	5.21 .	3 .1	1.7	.1 7.4	4 <.01	.06	.03 11	3 1.23	.049 2	.3 40.	,4 2.66	5.5	394	4 2.73	031 .01	<.2 <.02	12	1 < 0	2 0.5	İ
	GSHR-10075	1 15	£2 d1 2	74 24	6 2 71		3 401	4 02 2	4 - 1	1.7	2 8	s 01	32	2) 12	6 1 31	060 1	7 70	5 1 47	28.7	285	3 2 07	nas es	1.7 .02	17	3.5 2	1 6.5	
	GSHR-100/5																						3.9 .02				
	GSHR-10063																						8.4 4.56				
	GSHR-10065																						1.5 .11				
	GSMR-10003																						2.5 .07				
	03/K-100/3	1.03	7,3-15	.01 0	1.0 4	/	.1 33	2.37 0.	7 2.1	0.0	,,, ,,,	J 1.00	2.04	. 20						•••							
	GSHR-10076	.67	75.40	.63 7	4.0 3	45.5 27	.3 798	5.66 2.	8 <.)	<.2	,2 9.	0 .04	.52	.02 18	7 1,76	.072 3	3.2 56	.2 2.21	32.0	546	3 3.23 .	037 .04	.4 <.02	85	.1 <.0	2 10.1	
	GSMR-10068																						.9 <.02				_ 1
	GSHR-10062																						3.9 .02				
	GSHR-10072																						3.1 .30				
	GSHR-10074																						2.0 .30				
	GSMR-10077	. 25	61.70	.58 57	7.6 20	5 145.8 35	.5 636	4.98 .	1 < 1	.5	.1 10.	9 .03	.06	.05 12	5 1.62	.054 2	.0 52	.8 3.24	147.2 .:	305	5 3.18 .	022 <.01	.4 <.02	27	<.1 <.0	2 11.1	
	GSHR-10070																						2.2 .09				
	GSHR-10064																						2.8 1.03				-
	GSHR-10066																						<.2 .14				
	GSMR-10079	1.01	61.39 6	.53 3	3.5 50	30.0 4	.0 249	1.49 2.	3 .9	5.0 3	3.0 7.	3 .04	. 20	.15 4	6 .23	.008 5	.3 32	.0 .57	117.2	131	2 .77 .	016 .07	2.9 .02	45	.1 .0	7 4.3	,
	00:00 100.03		03 44 60	٠, ٠,	2 2 2/2/	. 10 7 00						1 - 61	c cc	0.5	2 26	016 6		0 84	16.1	003	2 20	A21 24	. 4 1 24	117	34 0 2 0	12 0	.
																							4.1 .34				
	GSHR-10069																						.6 .02 5 <.02				
	RE GSMR-10069																						.9 <.02				
	RRE GSHR-10069 GSHR-10078																						<.2 <.02				
	024K-10010	.40	35.10	.us ux	J.J 21	121.7 33	.1 005	J.UJ .	31	. •	.1 5,	702		VL 13	0 1.55	.002 2		2.10		103	0 0.02 .	v.c. , v.					
	GSHR-10071	2.47	6.42 15	.82 1	1.3 64	9.6 5	.4 128	2.68 4.	6 2.5	.8 6	i.3 7.5	9 <.01	2.33	.52	7 .16	.067 13	.9 13	.5 .26	52.4 .	004	4 .69 .	030 .26	2.0 .12	29	.1 <.0	2 2.6	,
	GSHR-10080																						.3 <.02				
	GE8R - 10088																						.6 .35				
	GEBR-10085																						2.8 .05				
	GEBR-10094																						3.1 .04				. • • • • • • • • • • • • • • • • • • •
																											•
	GE8R-10081	.76	54,46 2	.16 67	7.7 40	64.7 23.	4 543	1.19 2.	7 <.1	1.2	.1 7.0	6 .05	.62	.09 10	2 2.13	.045 1	.4 72	.2 1.80	27.1 .3	303	4 2.97 .	328 .05	.7 <.02	13	.3 <.0	2 9.4	
	GEBR-10093	.62	33.93 2	. 25 55	5.1 59	48.2 22.	8 1319	4.39 .	4 <.1	.8	.1 9.6	6 <.01	.05	<.02 13	1 1.68	.074 2	.9 37.	.1 1.92	193.9 .3	394	2 2.65 .	39 .06	.6 <.02	<5	.3 <.0	2 10.0	
	GEBR-30098	5.02	366.46 35	.34 152	2.1 419	46.6 19	9 1470	3.92 8.	8 .6	3.0 2	.4 16.	38. 1	.13	.52 11	2 .58	.131 10	.6 75	.8 1.00	33.6 .1	152 7	. 13.1 32	322 .04	2.4 .02	38	1.8 .2	2 9.1	· I
•	GEBR-10084																						3.8 .04				
	STANDARD DS2	13.96	122.42 32	.91 168	2.1 248	34.3 12	.0 791	3.28 56.	5 19.3	96.1 3	1.5 30.	7 10.17	9.60 1	0.67 7	6 .58	.091 17	.2 166	.4 .58	145.8 .0	099	2 1.78 .	031 .17	7.1 1.81	229	2.1 1.9	4 6.3	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_FA

Page 3 (a)

	SAMPLE#	Но	Cu	Pb	Zn	Ag	Hi	Co	Mn i	e A	s V	Ац	Th	Sr	Cd	Sb	Bí	γ	Сa	₽	La	Cr H	lg .	Ва	Ti	B /	N N	3 K		w T) H	9 9	se '	Te	Ga	
	-	ppa	pps	ррв	ppa	bbp t	pan p	opan p	pa	x pp	ne ppone	ppb	ppo	ppa	ppa	ppa	ppa	ppa	*	\$ p	ypen p	Ç a	x ;	ppa	\$ p)di	*	: 1	, pp	m pp	a ppi) pç	on p	con b	ppm	
																	-																			
	GEBR-10082	1.21	65.38	.70	58.3	17 71	.3 20	5.6 6	06 4.2	2 3.	8 <.1	.8	.1	8.8	. 10	.36	.02	112 1	.73 .0)51 <u>1</u>	.5 103	.4 2.1	1 2	7.8 .3	114	4 2.5	5 .04	.02	2.	3 <.0	2 <	5.	3 <.(02 9	9.3	
	GEBR-10087	1.09	3.03	21.62	21.6	47]	.5	.3 1	47 .5	5 1.	\$ 2.1	1.1	9.6	2.6	.03	. 22	.58	<2	9. 80.	307 8	.9 €	.9 .0	3 1	0.7<.0	100	2 .2	80. 09	.11	2.	2 .0	2 1	2.	.2 < .1	95	.5	
	GEBR-10092	.45	61.41	1.62	104.7	29 87	.3 43	3.4 9	74 7.1	0 2.	1 <.1	.9	.2	39.1	. 14	.82	. 14	260 2	.60 .0	068 3	1.1 188	.2 3.5	2 14	1.0 .3	808	6 4.2	28 .03	.04	١ <.	2 <.0	2 6	1.	3 < 1	02 15	5.8	
	GEBR-10083	137.42 5	976.24	34.78	83.3	688 52	.6 26	5.1	98 17.5	9 50.	7 .5	14.8	2.7	11.6	.06	8.54 1	0.88	45	.16 .0	047 4	.7 35	.4 .2	8 1	0.0 .0	74	13 .4	7 .00	.12	₹ ,4.	1 .4	4 17	4 85.	.0 5.6	03 7	7.4	
•	GEBR-10091	1.00	60.79	.42	67.7	16 69	.9 30	0.1 8	80 5.3	8 1.	4 <.1	2.4	.1	16.3	.11	.42	.03	199 2	.13 .0	D59 2	.0 127	.6 2.5	7 4	4.0 .3	377	6 3.3	7 .06	- 03	} .	2 .0	2 1	Β.	3 < 6	02 13	3.5	
	GEBR-10095	1.12	101.95	1.63	113.2	30 56	i.6 5l	3.4 39	78 10.1	5 1.	8 <.1	2.8	.8	20.8	.05	1.58	.03	253 1	.05 .1	122 15	.8 39	.6 1.9	5 9	6.7 .0)04 ·	4 .7	00. 01	2 <.03	١ <.	2 .0	7 93	7 .	.6 <.1	02 4	4.0	
	GEBR-10100	1.97	56.22	25.06	43.9	23 30	.2	7.5 14	75 2.9	6 1.	8 .2	.6	2.8	12.7	.02	.22	. 14	50	.07 .0	031 17	.9 30	.9 .7	6 110	3.8 .0	306	1 1.2	21 .00	5 .09		6 .0	3 2	3.	4	11 5	5.8	
	GEBR-10096	.31	12.94	20.75	52.5	51 10).4	9.5 2	47 3.6	0 2.	2 1.9	<.2	11.5	4.7	.08	3.96	.84	8	.20 .0	055 24	1.6 11	.0 .	9 19	6.5 .0	146	<1.1.3	19 .01	9 .19		8 .0	7 1	0 .	.1 .	02 3	3.5	
	GEBR-10086	1.17	118.03	2.05	51.7	41 19	3.3 2	2.3 4	93 3.4	1 1.	7 .2	1.5	.5	54.8	.07	.07	<.02	80	.74 .1	118 2	2.7 45	.8 1.0	0 7	3.4 .:	132	41.6	63 .02	3 .05	5.	6 < .0	2	6	.2 <.	02 4	4.5	
	GEBR-10099		243.11																																	
	GE8R-10089	1.17	5.91	28.08	39.7	136	2.7	.5 4	71 .4	7 22.	4 4.7	.2	11.3	4.7	.40	.44	.48	<2	.07 .0	005 11	.6 8	.9 .0	2 1	7.0<.0	001	4 .	19 .04	0 .19	5 4.	.5 .0	6 1	2 <	.1 <.4	02	.7	
	RE GE&R-10089		5.21																																	
	RRE GEBR-10089		5.76																																	
	GEBR-10097		51.94																																	
	GEBR-10090		24.90																																	
	OCOV-10030	. 54	24.90	2.43	73.0	11 20). - 2.	٠,٤ :	30 J.1			.5	4.5	20.3	71	. 10	02	,,			,,, 1:	2				• • •					-	-		••		
	STANDARD DS2	14.68	124 67	33 11	158 7	260 3	2 1		N2 2 (g 50	7 20 5	223 6	4.0	30 6 1	n 91 1	0 31 1	1 25	75	.54 .0	D&R 17	2 164	5 9	9 14	5.5 .:	101	2 1.7	72 .03	3 .16	5 7.	8 1.9	4 26	62	.3 1.5	97 6	6.2	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___FA__

THE PROPERTY OF THE PROPERTY O

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002202 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

SAMPLE#	Cs ppm	Ge ppm	Kf ppm	Np Np	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	y ppm	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm			
NWRR-10173 NWRR-10181 NWRR-10197 NWRR-10176 NWRR-10164	2.03 1.46 .27 .87 .03	.1 .1 .2 <.1	.16	.03	2.4 1.6 1.6 2 4.9	23.7 8.4 1.8	. 4 .5	.04 .17 <.01 <.01	<.05 <.05 <.05 <.05	16.6 1.0 5.1 5.0	19.37 19.56 12.99 4.21 6.27	7.1 4.8 10.3		2 2 1 <1 5	.4 .2 .6	26.8 11.7 13.6 2.2 22.0	30 30 30 30 30		,	
NWRR-10180 NWRR-10172 NWRR-10161 NWRR-10195 NWRR-10178	.31 .21 .32 .43 1.73	.2 <.1	.32 .51 .02 .29	.07 .02 .09	1.6	9.7 9.0 3.0		.01 .47 <.01	<.05 <.05 <.05	15.1 .4 9.1	11.50 15.65 7.92 14.06 9.23	4.1 4.2 10.6	.03 .05 .07 .03	1 <1 1 <1 <1	.2 .1 .4	25.2 38.8 9.1 1.9 49.5	30 30 30 30 30			
NWRR - 10186 NWRR - 10174 NWRR - 10184 NWRR - 10198 NWRR - 10191	.54 .97 .36 .51	<.1	.05	.09 <.02 <.02 .06 .05		1.3 .4 1.7	.2 .1 .6	.08 .01 .10	<.05 <.05 <.05	6.2 1.8 19.6	13.64 2.67 1.14 11.88 11.24	29.0 15.4 7.1	.05 .04 .05	<1 <1 2 4 1	.2 <.1 .1	15.1 14.2 1.7 4.1 21.8	30 30 30 30 30			
NWRR-10196 NWRR-10171 NWRR-10162 NWRR-10194 NWRR-10166	.77 .52 .23 .24 1.24	. 1	<.02	<.02 .06	1.8 1.1 .9	6.1 3.7	<.1 <.1 .7	.07 .64 .15	<.05 <.05 <.05	.9 .4 9.0	9.02 6.01 5.75 11.73 14.09	10.7 3.3 6.0	.06 .11 .09 .06	<1 <1 <1 <1 <1	.4 .1 .2	4.4 83.0 9.5 6.7 10.4	30 30 30 30 30			
NWRR-10188 NWRR-10170 NWRR-10189 RE NWRR-10189 RRE NWRR-10189	.27 .16 1.33 1.38 1.37	.2 .1 .1 .1	.88		.7 1.3 .9 1.0 1.0	3.7 2.9 3.0	.4 .3 .8 1.0	.02 .09 .09	<.05 <.05 <.05	6.0 31.5 36.0	11.49 14.22 15.93 16.67 16.07	7.9 9.6 10.1	.05 .06 .07 .07	<1 1 1 1 <1	.3 .3 .3	3.8 21.1 13.4 13.6 11.9	30 30 30 30 30			
NWRR - 10185 NWRR - 10179 NWRR - 10192 NWRR - 10168 NWRR - 10175	.55 .14 .20 .23 .37	.1 <.1 <.1 .2	.46 .50 .07 .47 .21	.60 .08 .09	1.1 .1 2.9 .3 2.1	4.6 1.5 5.3	<.1 .2	3.41 .24 .40	<.05 <.05 <.05	20.0 2.2 13.6	13.91 21.79 3.35 20.18 7.65	25.4 10.4 9.9	.07 .06 .05 .07	<1 <1 <1 <1 <1	.3 .3	20.6 12.5 6.8 13.3 10.0	30 30 30 30 30			
NWRR-10177 NWRR-10183 NWRR-10193 STANDARD DS2	.60 .33 .17 3.44	.1	.27	<.02 .12		1.5 3.9	.4 .6 .6 26.2	.01 .01	<.05 <.05	7.2 5.9	18.36 21.24 14.98 7.82	82.8 8.4	<.02 .02	<1 <1 <1 <1	.5 .2	3.7 28.5 10.8 14.6	30 30 30 30			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK

JUL 5 2000

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

ACE ANALYTICAL																		AND MELITICE
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb	Rb ppm	Sc ppm	Sn ppm	\$ %	Ta ppm	Zr ppm	PPM Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
NWRR-10182 NWRR-10165 NWRR-10190 NWRR-10167 NWRR-10187	1.19 .21 .49 .53	.1	.03 .31 .30 .06	.03 .05 .04 .02	1.3 .8 .1 3.9		.3 .6 .7	.04 1.33	<.05 <.05 <.05 <.05	8.3 10.7 2.3	18.41 12.76 15.96 1.14 13.40	8.0 2.9 5.4 8.5	.08 .02 .03 <.02	1 <1 2 <1 <1	.2 .2 .1	10.5 15.9 44.6 2.4 9.0	30 30 30 30 30	
GSMR-10075 GSMR-10061 GSMR-10063 GSMR-10065 GSMR-10073	.14	<.1 <.1 <.1 <.1	<.02 <.02 .59	.05 .07 <.02	3.1 .4	1.1 .2 .8	.2 .2 .5	.05 3.79 2.45		.4 .6 19.6	12.03 2.86 .35 7.91 5.28	23.1 3.4 31.0	<.02 .07 .02	10 2 3 <1 <1	.1 <.1 .3	9.0 3.8 .4 2.5 1.8	30 30 30 30 30	
GSMR-10076 GSMR-10068 GSMR-10062 GSMR-10072 GSMR-10074	.49 .05 .13 .17 2.09	< 1	.45 <.02 .66	.03 20.>	1.2 3.0 6.3	4.2 1.1 1.8	1.2 .2 1.1	5.64 .06 4.60	<.05 <.05 <.05	14.3 .4 22.3	17.16 11.65 3.88 9.34 7.53	3.9 21.6 25.8	.07 .03 .05	2 <1 <1 <1 <1	.1 .1 .3	29.7 15.7 3.5 3.5 17.1	30 30 30 30 30	
GSMR-10077 GSMR-10070 GSMR-10064 GSMR-10066 GSMR-10079	.19 1.27	.1 <.1 <.1 <.1 <.1	.57 .64	<.02 .04 .37	5.7 8.6	.7 8.7	1.8 .4 1.3	1.80 9.44 .03	<.05 <.05 <.05	22.6 20.3 40.0	8.33 5.11 4.01 14.80 6.49	32.7 13.3 29.1	.05 .03	<1 5 <1 <1	.2 .3 .6	11.5 1.4 1.7 11.7 3.4	30 30 30 30 30	
GSMR-10067 GSMR-10069 RE GSMR-10069 RRE GSMR-10069 GSMR-10078	.24 .13 .14 .14	<.1 .1 .1 .1	.52 .26 .30 .29	.04 .08 .09 .11	.7 .8	.6 5.1 5.2 5.5 3.0	.5 .5 .4	6.63 6.87 7.13	<.05 <.05	6.1 6.4 6.7	4.59 8.49 8.64 8.74 14.10	2.8 2.9 2.9	.02	1 38 44 41 <1	.2 .3 .1	1.7 12.3 13.4 13.4 12.3	30 30 30 30 30	
GSMR-10071 GSMR-10080 GEBR-10088 GEBR-10085 GEBR-10094	.55	<.1 .2 <.1 <.1 <.1	.48	.34	9.7 .9 16.2 4.3 2.8	3.0 2.8	.8 .2 7.9	.01 1.68 3.03	<.05 <.05 <.05	11.5 3.7 3.7	12.39 17.99 5.22 11.32 11.40	6.5 4.3 19.7	<.02 .03	<1 <1 3 7 2	.6 .2 .2	9.8 15.1 15.8 8.6 8.1	30 30 30 30 30	·
GEBR-10081 GEBR-10093 GEBR-10098 GEBR-10084 STANDARD DS2	.50 .66 .29 .75 3.34	.1 .1 <.1 <.1 <.1	.23 .13	.06 .23 .32		4.2 3.0 2.5	3.0 7.5	.16 .44 2.70	<.05 <.05 <.05	10.3 8.2 3.1	10.15 13.54 11.36 7.23 7.99	7.7 17.7 16.5	.02 .07 .02	<1 <1 4 12 1	.2 .2 .1	21.7 14.0 14.6 7.9 14.0	30 30 30 30 30	

Page 3 (b)

THE RELITION																				السيت
	SAMPLE#	Cs	Ge	Hf	Nb	Яb	Sc	Sn	s	Ta	Zr	Y	Се	In	Re	Ве	Lî	Sample		
		ppm	ppm	ppm	ppm	ppm	ppm	bbu	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm		
	GEBR-10082	.48	. 1	.25	.08	.6	3,4	.8	. 10	< .05	9.9	10.50	4.4	<.02	2	. 1	19.3	30.0		1
	GEBR-10087	.13		.51			1.5					3.58			4	1	.6	30.0		
	GEBR-10092	3.72		.42			19.6					28.03			ì	.3	46.3	30.0		i
	GEBR-10083	.58	.5	. 15	1.23	5.6	1.6	20.0	17.08						204	.1	2.3	30.0		
•	GEBR-10091	81	.2	.49	.06	1.0	12.6	1.0	.03	< .05	17.4	20.51	6.2	.07	4	.3	23.4	30.0	•	i
	GEBR-10095	.08			<.02		26.3					34.13			8		5.3	30.0		1
	GEBR-10100	.52	<.1	.02	<.02	4.3	1.7	.2				3.00			<1		11.8	30.0		- 1
	GEBR-10096	.29	<.1	.54	. 11	8.3	1.3	.6				16.56			<1		28.8	30.0		
	GEBR-10086	. 14	.1	.11	.04	2.1	1.8	.2	.07	<.05	3.4	2.64	4.6	.04	<1	<.1	8.9	30.0		- 1
	GEBR-10099	7.98	<.1	.09	1.83	30.9	3.3	7.4	.06	<.05	4.6	7.14	46.1	.36	2	1.1	22.5	7.5		1
	GEBR-10089	.24	<.1	17	3.46	9 7	.4	.4	12	- 05	10 0	10.35	23 U	.05	2	7	1.5	30.0		
					3.51							10.43			<1		1.6			- 1
	RE GEBR-10089	.23				•		٠,												- 1
	RRE GEBR-10089	.23			3.52			-4				10.07			<1		1.5	30.0		- 1
	GEBR-10097	.29		.27			2.4					14.63			- 5		27.8	30.0		- 1
	GEBR-10090	.28	<.1	. 18	.19	3.2	2.5	.6	.04	<.05	3.9	9.04	13.8	.05	<1	.2	45.3	30.0		
	STANDARD DS2	3.46	<.1	.02	1.48	13.9	3.1	26.6	.04	<.05	3.3	8.11	30.1	5.42	2	.6	15.3	30.0		
	41111011110 002	100.0																	· · · · · · · · · · · · · · · · · · ·	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002202 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

												**********	<u></u>	******							***************************************	
SAMPLE#			Fe203		CaO Na20									Zr					TOT/C		SUM	
	*		%	*	<u>%</u> 7	. %	%	- %	*	<u>%</u>	bbu	ppm	bbu	ppm	ppm	ppm	bbu	<u> </u>	*		*	
N₩RR-10173	/0 75	1/ 15	13 70	4 05	6.67 2.79	47	2 04	20	10	028	286	07	136	117	70	<10	30	5.0	.42	.03	99.77	
NWRR-10181					7.38 .07				.17			73		115		<10			3.80	.12	99.90	
NWRR-10197					8.53 3.82								97			<10		4.1		< .01	99.78	
NWRR-10177					2.94 .66								303			<10			<.01	.02	99.89	
NWRR-10178					9.92 2.44									115		<10		4.3		.70	99.75	
MWW. 10104	40.13	14.31	11.05	0.23	7.72 2.44		1.73	. 17		.024	203	,,	200	112	J 7	110	٥.	7.0	.04		,,,,,	
NWRR-10180	50 53	14.43	9 97	7.38	8.02 3.88	. 32	1.58	. 15	. 18	.032	517	87	177	97	30	<10	37	3.2	.04	.02	99.78	
NWRR-10172					8.85 1.70							85	82	113		<10		4.7		-	99.74	
NWRR-10161					6.48 2.22					.012			157			<10			2.48		99.82	
NWRR-10195					8.83 4.09									121		<10		2.8		<.01	99.98	
NWRR-10178					3.01 .52									88		<10		6.5		.06	99.95	
HANK 10110	33.13	14.03	10.07	J. L.L	3.01 .31	. 2.04		. 10		. ()	7220	.02	70					0,,,				
NWRR-10186	50.66	14.01	11.10	7.28	7.35 3.96	.09	2.01	.22	. 15	.026	42	85	231	117	37	<10	36	3.0	.01	.15	99.92	
NWRR-10174			3.15		.06 .46							28	25	103	18	<10	10	2.5	.17	.89	99.86	
NWRR-10184			1.26		.05 .04									101	<10		4	2.0	.60	<.01	99.84	
NWRR-10198					9.61 3.07								175	104		<10	37	3.0	.07	.09	99.83	
NWRR-10191					9.72 2.3								207	91		<10		3.8		.04	100.00	
WWW TOTAL					, .			- • •	•		-											
NWRR-10196			2.29		.46 3.17									168	14	13		2,2		.01	99.98	
NWRR-10171	47.71	13.47	15.07	6.93	2.89 2.54	.49	1.88	.22	.21	.050	235	254	145	89	20	15		8.5		.03	100.06	
NWRR-10162					4.57 2.12								104		12				1.52		99.92	
NWRR-10194	50.00	15.08	10.22	7.41	7.27 4.17	41.	1.57	.20	. 15	.028	233			96		<10		3.4		.16	99.99	
NWRR-10166	53.15	18.08	8.67	2.31	3.84 2.98	1.14	1.33	.12	. 13	.011	361	<20	329	176	27	11	23	8.1	.67	.01	99.97	
																••					00.05	
NWRR-10188					10.14 2.91							100				<10		3.3		.06	99.85	
NWRR-10170					9.30 3.09								191			<10		3.9			100.06	
NWRR-10189					8.38 3.61					.026					35			3.6			100.00	
RE NWRR-10189					8.42 3.68								203	98		<10		3.4			100.18	
RRE NWRR-10189	49.92	14.03	11.40	6.70	8.42 3.60	.37	1.81	.21	.17	.026	145	75	206	98	35	<10	38	3.5	.01	.06	100.23	
W 100 40405	F2 20	47 70	40 47		40 44 4 70		4 70	47	17	024	7/	40	/0	80	7/	-10	75	77	<.01	.04	99.99	
NHRR-10185					10.16 1.72							69	49	89		<10		4.9			100.01	
NWRR-10179	72.16				.80 2.82							77 35	56	72 66	<10	<10		2.7			100.01	
NWRR-10192	87.57				.15 .22					.006			10 182	138		<10		3.1	.18		99.98	
NVRR-10168					5.21 4.99							110						3.3			100.08	
NWRR-10175	100.26	14.35	9.87	(. (/	9.47 2.57	.09	1.34	. 15	. 10	.033	301	110	421	71	21	<10	33	3.3	.04	.00	100.00	
NWRR-10177	50 21	1/, 81	11 36	5 42	7.89 4.24	ρρ	2 02	10	18	002	106	36	145	124	40	<10	3በ	3 5	<.01	< 01	99.96	
NWRR-10177 NWRR-10183	67.03				.40 .73	4 32	88	18	. 10	005	700	24		232		16		3.9			100.00	
NWRR-10103					9.66 2.77	7 27	1 08	10	21	2002	166		108			<10		3.9				
STANDARD SO-15/CSB	49.50	12 34	7 20	7 25	5.00 2.77	1 85	1 78	2 70	1 39	1 058	2028			1020		26					99.87	
2 VUDVVD 20- 1) C2B	177.29	0	1.67		2.00 2.41	1.05		2110	1.27			,,,	3/3							J . J . J	,,,-,	

GROUP 4A - 0.200 GM SAMPLE BY LIBOZ FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 5 2000

.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

AA ICHE AWALYTICAL

ACHE ANALYTICAL																								ACHE AWALYTICAL
SAM	PLE#	SiO2 %	A1203 %			CaO %	Na20 %	K20 %	Ti02 %	P205 %	MnO %	Сг203 %	Ва	Ni ppm	Sr ppm	Zr ppm	Y	Nb ppm	Sc ppm	LOI %	TOT/C	TOT/S	SUM %	
NWR	R-10182	48.63	13.81	9.52	3.02	6.91	.07	.23	1.92	.18	.16	.024	96	59	52	128	38	<10	35	15.3	3.00	.61	99.83	
NWR	R-10165	47.57	14.24	11.84	6.49	12.29	1.17	.24	1.92	. 18	.20	.029	144	82	64	109	38	<10		3.7	.11	. 14	99.93	
NWR	R-10190	48.99	14.55	10.81	7.59	8.97	3.09	.05	1.50	. 15	.16	.035	56	100	84	86	30	<10	36	3.9	.06	.01	99.84	
NWR	R-10167	90.59	3.22	3.10	.34	.09	.06	.94	.20	.03	.01	.014	745	38	10	58	<10	<10		1.7	<.01		100.39	
NWR	R-10187	49.51	13.11	10.75	9.05	7.87	3.67	.17	1.42	.11	.17	.042	48	107	95	83	26	<10	39	3.8	.01	.03	99.72	
GSM	R-10075	55.64	12.74	10.27	4.71	5.63	3.18	.86	1.56	.18	.11	.024	757	89	139	96	32	<10	32	4.9		4.18	99.94	
GSM	R-10061	86.95	5.29	3.01	.25	.11	1.12	.94	.37	.06	.11	.007	220	29	68	196	10	11		1.7	.11	.05	99.98	
GSM	R-10063	91.35	.55	4.96	.04	.03	.04	. 14	.03	.01	<.01	.007	375	41	10	49	<10	<10		2.3		2.89	99.52	
GSM			15.03			.07	1.01	9.31	.92		.01	.008	5155	32	82	245	29	13		2.9	.03	1.71	99.84	
GSM	R-10073	66.01	14.24	3.84	.61	.05	.54	9.94	.89	.08	.01	.006	10286	29	36	223	20	12	13	2.6	.03	2.16	100.01	
GSM	R-10076	49.12	14.63	10.85	7.31	8.86	3.20	.39	1.84	.21	.17	.032	253	130	118	107	34	<10	40	3.2	<.01	.09	99.90	
GSM	R-10068	48.89	13.34	10.99	7.24	6.44	4.20	.62	1.91	.20	. 18	.027	720	79	114	106	34	<10	35	5.7	.05	4.96	99.86	
GSM	R-10062	87.58	5.17	2.87	.22	.19	1.07	.95	.36	.06	.11	.007	237	69	66	177	10	<10	4	1.4	.09	.04	100.06	
GSM	R-10072	66.37	12.34	5.69	.36	.16	2.19	6.30	.74	.17	.01	.007	16059	20	79	207	22	12		3.7	.01	4.03	99.88	
GSM	R-10074	53.70	11.51	12.72	.62	.15	6.42	.76	.73	. 16	.01	.007	46529	21	338	199	21	17	9	7.9	.03	8.81	99.96	
GSM	R-10077	47.35	12.65	10.92	9.92	10.13	2.73	.06	1.48	. 15	.17	.048	267	172	131	76	27	<10	36	4.1	.03	.02	99.79	
GSM	R-10070	65.46	14.11	3.51	.09	.09	2.83	7.06	.89	.12	.01	.004	33978	32	101	254	24	18	9	2.0	.01	1.53	100.02	
GSM	R-10064	60.31	10.71	13.69	.96	.21	1.81	3.51	.68	.16	.01	.006	2799	28	34	187	16	15	9	7.6	.07	9.06	100.01	
GSM	R-10066	53.51	18.24	8.65	2.31	3.90	3.05	1.12	1.37	.18	.13	.010	372			186	26	13	23	7.4	.63	.01	99.99	
GSM	R-10079	85.73	5.98	2.59	1.23	.48	1.71	.67	.32	.02	.04	.007	344	38	34	57	11	<10	8	1.2	.03	.01	100.03	
GSM	R-10067	67.40	9.96	9.08	.85	.49	1.93	2.76	.62	. 12	.01	.008	2390	26	38	164	15	14	7	6.5	.08	6.61	100.03	
GSM	R-10069	46.86	13.90	12.43	6.70	6.42	3.65	.54	1.97	. 16	.11	.029	305	47	119	101	33	<10		7.1	<.01	6.31	99.95	
RE	GSMR-10069	47.05	13.94	12.39	6.66	6.42	3.71	.54	1.97	.16	.11	.032	303	46	118	105	34	<10	36	7.0		6.43	100.06	
RRE	GSMR-10069	46.67	13.87	12.71	6.66	6.36	3.71	.52	1.96	.16	.10	.030	300	39	118	107	32	. <10	36	7.1	.01	6.56	99.93	
GSM	R-10078	48.54	12.35	10.68	9.72	9.83	2.93	.09	1.68	. 16	.19	.070	114	160	100	91	31	<10	42	3.6	.06	.01	99.91	
GSM	R-10071	68.40	14.21	4.77	1.26	.28	3.72	2.54	.83	. 15	.02	.003	4063	21	74	215	-25	15	12	3.2	.05	2.01	99.88	
		52.29	14.33	10.00	7.08					.18	.20	.034	339	79	107	110	35	<10	37	3.0	.07	.02	99.71	
			11.44						.75	.35	.14	.030	1266	84	712	46	14	<10	30	8.0	1.80	1.45	99.85	
			6.26				.77		.39	.33	.05	.015	712	42	30	94	19	<10	9	3.5	.03	2.52	99.98	
GEB	R-10094	77.43	6.79	5.53	2.42	1.52	2.14	.72	.47	. 13	.24	.012	1143	58	64	67	20	<10	11	2.4	.02	1.52	99.96	
GER	R-10081	50.11	14.19	9.87	6.81	10.44	2.76	.31	1.44	.16	.16	.032	121	94	113	72	27	<10	35	3.4	.06	.09	99.74	
			14.07									.032	1543		209	103	32	<10		3.6	.08	.15	99.87	
			6.72								.31	.010	245	50	74	96	22	<10		1.7	.02	.36	100.06	
			5.80					1.28				.012	761	35	54	84	15			3.9		2.20	99.67	,
			12.29												394		21	22				5.32	99.90	

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

adelini i delini inda delini i deleni delini i delini indica delini delini delini delini delini delini delini d

Page 3

AA ONE ANALYTICAL

								<u>~</u>														ACHE ANALYTICA
			•	CaO											Υ				-	٠		
										A	bbu	Брш	bbu	ppm	ppm	ррп	ppm	7	_ %	7.	*	
49.42	15.01	10.40	7.09	10.14	2.92	.20	1.45	. 16	_18	.034	128	107	113	76	33	<10	32	3 4	z 01	70	100 /4	
73.45	13.96	1.07	.09	.08	5.07	3.84	.07	.01	.03	.005										•		
47.59	15.39	12.50	6.76	5.74	2.04	-30	2.03	.19	.16	.032		-		_	-		_	- •	-	_	-	
54.63	3.87	23.43	.76	.43	. 17	1.03	.23	.12	02	008			-	-		• • •						
47.00	15.41	12.30	7.18	8.24	3.44	.18	1.94	20	10	020												
							, . , .			.0.,	131	73	104	7.3	43	~10	40	4.5	. 1 f	.01	10.001	
41.53	15.02	16.79	3.40	1.69	<.01	<.04	2.63	.30	.54	.014	323	60	23	157	41	15	1.6	18 2	7 45	12	100.22	
80.76	5.66	5.24	1.56	.12	.03	1.01	.27	.08	.21											•		
68.55	13.09	5.31	2.30	.69	1.85	2.72	.74	-08	.04	007							-					
49.54	13.51	11.06	6.92	11.99	1.98	2.29	.68	34	18													
64.32	14.08	5.56	1.22	1.24	2.46	2 98	.83	23	07													
						,0	.03		.01	.000	354	20	117	344	30	16	11	3.7	1.00	.00	99.01	
74.88	13.24	.90	.09	.21	3.15	4.55	.08	กร	กห	005	82	<20	47	54	27	72	6	1 2	04	42	00 /5	
74.79	13.33			.20	3.08	4 50	.06	06	08	007												
74.87	13.27																					
									18					- •								
52.42	14.23	12.02	6.37	4.32	4.57												. –		•			
						.05	/		0	.007	1107	40	277	110	25	17	20	2.0	.05	.04	100.25	
49.53	12.86	7.28	7.24	5.86	2.40	1.85	1.70	2 69 -	1 70	1 057	1021	72	305	000	22	25	17	E 0	2 50	E 71	400 44	
	249.42 73.45 47.59 54.63 47.00 41.53 80.76 64.32 74.88 74.79 74.87 49.88 52.42	*	*	x x x x 49.42 15.01 10.40 7.09 73.45 13.96 1.07 .09 47.59 15.39 12.50 6.76 54.63 3.87 23.43 .76 47.00 15.41 12.30 7.18 41.53 15.02 16.79 3.40 80.76 5.66 5.24 1.56 68.55 13.09 5.31 2.30 49.54 13.51 11.06 6.92 64.32 14.08 5.56 1.22 74.88 13.24 .90 .09 74.79 13.33 .94 .09 74.87 13.27 .89 .09 49.88 15.00 11.08 6.46 52.42 14.23 12.02 6.37	x x x x x 49.42 15.01 10.40 7.09 10.14 73.45 13.96 1.07 .09 .08 47.59 15.39 12.50 6.76 5.74 54.63 3.87 23.43 .76 .43 47.00 15.41 12.30 7.18 8.24 41.53 15.02 16.79 3.40 1.69 80.76 5.66 5.24 1.56 .12 68.55 13.09 5.31 2.30 .69 49.54 13.51 11.06 6.92 11.99 64.32 14.08 5.56 1.22 1.24 74.88 13.24 .90 .09 .21 74.87 13.27 .89 .09 .21 49.88 15.00 11.08 6.46 9.07 49.88 15.00 11.08 6.46 9.07 52.42 14.23 12.02 6.37	x x x x x x 49.42 15.01 10.40 7.09 10.14 2.92 73.45 13.96 1.07 .09 .08 5.07 47.59 15.39 12.50 6.76 5.74 2.04 54.63 3.87 23.43 .76 .43 .17 47.00 15.41 12.30 7.18 8.24 3.44 41.53 15.02 16.79 3.40 1.69 <.01	x x x x x x x 49.42 15.01 10.40 7.09 10.14 2.92 .20 73.45 13.96 1.07 .09 .08 5.07 3.84 47.59 15.39 12.50 6.76 5.74 2.04 .30 54.63 3.87 23.43 .76 .43 .17 1.03 47.00 15.41 12.30 7.18 8.24 3.44 .18 41.53 15.02 16.79 3.40 1.69 <.01	x x	x x	x x	x x	X X X X X X X X X X X X X X X X X Ppm 49.42 15.01 10.40 7.09 108 5.07 3.84 .07 .01 .03 .005 105 47.59 15.39 12.50 6.76 5.74 2.04 .30 2.03 .19 .16 .032 281 54.63 3.87 23.43 .76 .43 .17 1.03 .23 .12 .02 .008 545 47.00 15.41 12.30 7.18 8.24 3.44 .18 1.94 .20 .19 .029 137 41.53 15.02 16.79 3.40 1.69 <.01	x x x x x x x x x x ppm ppm 49.42 15.01 10.40 7.09 10.14 2.92 .20 1.45 .16 .18 .034 128 107 73.45 13.96 1.07 .09 .08 5.07 3.84 .07 .01 .03 .005 105 29 47.59 15.39 12.50 6.76 5.74 2.04 .30 2.03 .19 .16 .032 281 95 54.63 3.87 23.43 .76 .43 .17 1.03 .23 .12 .02 .008 545 <20	x x x x x x x x x x x x ppm ppm	X X X X X X X X X Ppm ppm ppm ppm 49.42 15.01 10.40 7.09 10.14 2.92 .20 1.45 .16 .18 .034 128 107 113 76 73.45 13.96 1.07 .09 .08 5.07 3.84 .07 .01 .03 .005 105 29 36 45 47.59 15.39 12.50 6.76 5.74 2.04 .30 2.03 .19 .16 .032 281 95 106 105 54.63 3.87 23.43 .76 .43 .17 1.03 .23 .12 .02 .008 545 <20	X X X X X X X X Ppm pp	X X X X X X X X Ppm pp	x x x x x x x x x ppm ppm<	X X X X X X X X Ppm pp	X X X X X X X X Ppm ppm ppm ppm ppm ppm ppm ppm x X X X X X X Ppm ppm ppm ppm ppm ppm ppm x X X X X X Ppm ppm <td>X X</td> <td>X X X X X X X X X Ppm ppm<</td>	X X	X X X X X X X X X Ppm ppm<

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002202R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

Page 1 (a)

	11111	7		<u> </u>	····		:		- V - 10			<u> </u>			<u> </u>			·					<u> </u>			 _				
SAMPLE#				Ga ppm				Sn ppm			Th T		U V	-			La ppm	Ce	Pr ppm	No ppn	i Sm	Eu ppm	Gd ppm	Tb ppm	Dγ	Ho ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm
	 ``		···-					· · · · · -		•••																				
NWRR-10173	272	43.2	3.5	17.3	3.4	2.8	13.8	1	139.6	.3	.3 .	2	.1 353	<1	123.7	41.3	4.7	14.5	2.50	13.5	4.7	1.71	5.57	1.04	7.25	1.44	4.43	.58	3.97	.62
NWRR-10181	00	75 1	2 6	15 1	7 6	ኛ ያ	5 7	1	ፕ ደ በ	3	4	1	1 298	1	117.0	38.4	5.4	16.1	2.64	14.2	4.7	1.70	5.79	1.01	0.72	1.5/	4.20	• >0	3.70	.57
NWRR-10197	100/	77 7		1/ 0	27	2 2	1 7	-1	98.1	.2	.3 .	1	.1 298	<1	89.5	33.0	3.3	10.6	1.81	9.9	3.3	1.08	4.45	.81	5.72	1.13	3.61	.50	3.14	.48
NWRR-10176	i /.19	12 0	2 7	17 2	/. O	8 8	51 4	2	310 3	. 8	6 R .	5	1.7 49	6	176.1	19.8	22.0	59.7	5.63	22.6	4.6	1.00	4.10	.68	4.10	./8	2.49		2.29	.30
NWRR-10164	293	16.1	.3	19.8	3.5	4.0	5.9	1	269.9	.3	.5 .	4	.1 307	2	126.1	36.8	6.0	17.2	2.61	14.0	4.3	1.75	5.18	.93	6.69	1.31	4.14	.54	3.58	.58
NWRR-10180	519	38.5	.6	17.4	2.8	2.9	9.3	1	182.2	.2	.3 .	2	.1 267	<1	97.5	32.3	4.4	13.0	2.10	11.2	2 4.0	1.27	4.56	.83	5.80	1.16	3.55	.47	3.05	.45
NWRR-10172	89	41.6	.4	18.0	3.2	2.4	4.4	· 1	86.2	.2	. 2	6	< 1 331	2	106.0	39.3	3.7	12.2	2.16	31.4	(4.3	1.52	5.44	.99	7.08	1.41	4.43	.00	3.04	.37
NWRR-10161	677	21.6	1.2	6.5	1.6	9.1	20.4	2	163.2	.8	. 9 1.	6	.3 106	26	57.5	16.6	5.7	12.7	1.75	(.5	1 2.3	.90	2.14	.40	3.00	.20	1.79	.20	1.53	.23
NWRR-10195	79	33.9	.6	19.8	3.8	3.7	2.1	1	170.2	.3	.3 .	.5	<.1 315	3	125.9	40.7	5.8	17.1	2.73	14.	5 5.0	1.94	5.86	1.07	7.44	1.49	4.00	.00	4.10	.00
NWRR-10178	4219	38.9	5.2	18.1	2.5	11.9	86.7	1	41.8	.9	3.5 1.	.5	1.0 208	2	89.9	27.1	21.0	41.1	5.68	25.3	5 5.6	1.01	5.30	.79	5.51	.90	2.89	.31	2.50	.51
NWRR-10186	45	38.6	.6	15.7	3.6	3.6	1.3	2	242.9	.3	.3 .	8	.1 296	1	126.2	39.8	5.6	16.9	2.70	14.5	5 4.7	1.55	5.54	.97	7.06	1.45	4.29	.58	3.91	.59
NWRR-10174	4435	3.9	3.7	14.3	3.0	9.3	92.2	2	25.1	.8	6.4	.4	1.8 90	3	111.7	17.8	21.2	43.2	5.05	18.8	8 3.6	.50	3.08	.48	3.40	.63	2.11	.21	1.98	.32
NWRR-10184	700	1 0	1 7	7 0	28	4 0	44 2	<1	9.5	- 4	4.1 .	.5	1.8 140	8	97.9	7.7	12.4	23.1	2.59	8.5	1.4	. 24	1.18	-17	1.20	. 43	ده.	- 11	./0	. 13
NWRR-10198	98	39.1	.7	17.8	3.1	2.8	4.1	i	189.3	.3	.3 .	.1	.1 314	1	112.7	38.4	4.6	14.6	2.44	13.0	0 4.5	1.69	5.44	.96	6.82	1.38	4.26	.56	3.86	.56
NWRR-10191	102	36.9	.3	19.1	2.9	2.2	3.2	<1	234.3	.2	.3 .	.2	.1 319	1	94.8	36.0	3.9	12.3	2.04	10.9	9 3.9	1.52	4.96	.85	6.16	1.24	4.08	.55	3.66	.57
NWRR-10196	001	3 3	3 2	18.4	5.5	15.4	130.8	4	99.6	1.6	17.3	.5	3.6 10	4	182.8	15.2	40.8	89.1	10.05	37.8	3 7.8	1.22	5.39	.75	3.91	.54	1.48	.15	1.00	.14
NWRR-10171	238	62.5	1.0	20.8	2.8	16.8	18.2	<1	156.7	1.2	1.7	1	. 7 233	3	90.1	20.6	12.3	27.2	3.50	15.4	4 4.7	1.30	4.34	.0/	4.19	./0	2.42	.21	1.03	.27
NWRR-10162	1.36	18 5	5	5 8	15	R 1	12.4	<1	113.4	- 6	.7 <.	. 1	.2 89	34	48.7	12.6	4.3	10.2	1.35	6.3	3 1.8	.73	2,13	. 54	2.34	.42	1.30	. 17	1.44	. 19
NWRR-10194	236	46 5	7.	17 4	27	2 4	ራ ብ	1	179 5	. 2	.2 <	. 1	.2 278	<1	92.3	32.1	3.8	11.9	2.00	10.5	5 3.5	1.47	4.62	-82	5.84	1.22	3.86	.50	3.28	.50
NWRR-10166	373	18.3	2.5	22.4	5.5	7.7	37.5	2	357.1	-6	5.4	.2	1.5 174	<1	205.8	28.8	19.8	49.9	5.82	23.7	7 5.6	1.81	5.32	.84	5.50	1.09	3.35	.47	3.07	.46
NWRR-10188	70	70.2	7	10 0	7 2	2 7	2.4	1	173 (3	2 <	1	<.1 307	1	110 5	37.9	4.3	14.2	2.35	12.4	4 4.3	1.57	5.24	.98	6,61	1.43	4.35	.58	3.88	.57
NWRR-10170	221	37.6		18 8	3.5	3 0	7.6	1	205 7	.3		1	.1 304	<1	126.1	40.5	5.7	16.5	2.67	13.7	7 4.8	1.82	5.90	1.04	7.22	1.47	4.66	.62	4.14	.63
NWRR-10170	156	39.0	1.6	16.5	3.3	2 0	6.2	1	225 8	.2	.3 <		1 307	<1	108.1	37.5	4.7	14.4	2.34	12.7	7 4.4	1.69	5.39	.94	6.64	1.34	4.27	.56	3.76	.55
RE NWRR-10189				16.1					219.0		.2 <		1 299	<1	104.9	36.8	4.5	13.9	2.31	12.0	0 4.3	1.64	5.18	.94	6.38	1.30	4.14	.57	3.64	.56
RRE NWRR-10189				15.6					216.1		.2 <		.1 302	<1	105.9	36.8	4.6	14.3	2.33	12.4	4 4.3	1.69	5.24	.92	6.65	1.37	4.28	.57	3.76	.56
4048E	70	77 3	0	15 0	7 0	2 /	. 7	1	5/ 7	2	2 -	1	.1 293	4	103 4	37.2	4.0	12.9	2.15	12.0	0 4.2	1.53	5.23	.93	6.58	1.38	4.25	.60	3.71	.59
NWRR-10185	121	27 /	2	10 1	2 2	40	1 2	~1	64 N	6	65 <	1	6 D 179	3	74.8	33.4	29.8	40.8	8.08	32.	2 (.(. 96	6.72	1.00	0.12	1.20	3.01		3.24	.40
NWRR-10179 NWRR-10192	12720	4 0	٠.۷	7 4	2.2	3 2	30 0	21	11 3	. 3	3.5 \.	1	1.1 49	3	71.5	9.1	4.6	13.5	1.28	5.2	2 1.3	.21	1.33	.23	1.71	.33	1.22	.16	1.18	.18
NWRR-10192 NWRR-10168	370	22.5	-0	18 7	4.3	3.6	20.0	1	204 3	.3	8 <	. 1	_4 180	2	147.8	51.8	6.6	20.3	3.28	16.5	y 5.8	2.22	7.51	1.36	9.20	1.90	0.10	.04	3.76	.07
NWRR-10175	381	41.8	.8	18.3	2.7	2.3	17.6	<1	465.1	.2	.3 <.	1	<.1 255	<1	96.2	28.6	3.7	11.1	1.76	9.0	5 3.2	1.22	4.05	.76	5.00	1.04	3.36	.44	2.97	.45
NWRR-10177	124	35.5	.8	19.0	3.8	4.2	1.7	<1	159.4	.3	.4 <.	.]	.2 310	<1	137.1	44.5	5./	17.8	2.85	14.4	+ 2.5	1.07	6.21	1 17	7.04	1.24	4.70 ኚ ያን	50	7.70	50
NWRR-10183	746	7.4	4.5	22.1	7.1	17.6	166.2	4	28.8	1.7	18.1	.5	4.3 50	3	243.7	34./	57.1	108.8	12.26	44.4	+ Y. !	1.09	0.11	1.13	7.04	1 50	7.01	. 72	4 35	88
NWRR-101 9 3	180	39.5	.3	18.9	3.9	4.2	6.0	1	121.7	.4	.4 <.	.1	.2 324	<1	134.0	42.2	5.9	18.4	2.89	22	7 7 . 4	1.00	7.07	1.12	7.70	75	9.70	75	2 52	41
STANDARD SO-15	2052	21.9	2.7	17.4	26.0	31.8	64.2	18	399.1	1.9	24.3 1.	.2 1	19.9 148	21	1005.9	22.6	28.1	57.7	6.04	44.	(4./	1.00	3.73	.58	3.19	.75	2.55		4.,,2	.41

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 18/00

Page 2 (a)

ACHE ANALYTICAL																		<u></u>					_			_						
SAMPLE#	Ba		o Cs		Ga	Нf	Иb		Sn			Th		_	٧		Zr	-	La	Ce	Pr		Sm	Eu		dT	Dy ppm		Er		Yb	
	ppm	pp	u bbu	n p	pm	bbu	ppm	ppm	ppm	ppm	bbu	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppin	ppu	ppm	ppii	ppii	РРШ	PP	PPII	ppii	P.P.
NWRR-10182	113	37	5 2 7	7 16	n	3.9	4.1	6.5	2	58.3	.3	.4	. 1	.1	347	1	133.9	43.4	5.7	17.7	2.79	15.7	4.7	1.95	5.99	1.12	7.21	1.53	4.69	.64	4.12	.61
NWRR-10165						3.9		6.0		76.1		.4			387	2	126 4	44.2	5.1	15.9	2,59	14.7	5.0	1.90	6.36	1.18	7.56	1.60	5.04	.69	4.50	.65
NWRR-10190						2.8		.8		95.2					326	1	91.7	35.6	5.7	16.1	2.52	12.7	4.3	1.64	5.19	.94	6.06	1.33	4.02	-55	3.46	.51
NWRR-10167							3.4							.8	34	4	70.3	6.6	8.2	22.4	2.10	8.1	1.7	.23	1.40	.22	1.29	.25	.64	.12	.83	. 13
NWRR-10187								2.2		104.2				.1	286	<1	84.0	30.7	2.9	10.1	1.77	8.7	3.3	1.36	4.07	.82	5.17	1.09	3.46	.49	3.00	.46
GSMR-10075	807	34	8 .	7 16	.4	3.3	3.5	25.2	1	149.1	.3	.8	.2	.3	266	3	108.6	35.1	5.7	17.2	2.51	12.6	4.2	1.55	5.22	1.00	6.02	1.28	4.07	.53	3.44	.50
GSMR-10061	229	7	9 1	3 6	3	5.6	4.8	39.7	1	71.3	.5	8.9	.2	1 3	27	6	182.9	11.1	16.9	37.8	3.94	14.8	3.0	.74	2.62	.37	2.01	.38	1.24	.17	1.23	.19
GSMR-10063	414	7	1	ζ.	8	1.9	1.1	5.2		10.4				.6	<5	12	60.1	3.2	6.0	12.3	1.34	4.9	.8	.06	.57	.09	.53	.12	.33	.06	.35	.07
GSMR-10065								269.3		94.5						5	279.7	35.5	60.3	121.0	13.36	48.4	9.6	1.19	6.76	1.16	6.71	1.25	3.88	.51	3.43	.45
GSMR-10073								223.2		39.6	1.8	17.0	1.4	6.1	54	8	275.7	23.4	44.8	90.1	10.14	37.6	6.9	<.05	4.69	.74	4.46	.85	2.84	.40	2.66	.37
G001X 10013	11130	• • •				•••			_																							
GSMR-10076	280	42.	2 .	9 15	.9	3.4	3.6	7.6	2	132.0	.3	.5	.3	.2	326	1	115.8	38.5	5.8	16.4	2.56	12.7	4.4	1.79	5.57	1.08	6.58	1.39	4.39	.58	5.84	.58
GSMR-10068								17.0	3	126.5	.3	.4	.1	.3	339	2	120.1	40.0	5.5	16.3	2.55	12.9	4.8	1.79	5.70	1.11	7.09	1.43	4.52	.62	5.95	.20
GSMR-10062	255	7.	5 1.	3 6	.2	5.8	4.8	40.6	1	69.0	.5	9.0	.3	1.2	27	6	190.7	11.1	19.5	39.6	4.26	15.9	3.2	.77	2.74	.38	2.17	.39	1.26	-37	1.18	.17
GSMR-10072								142.4	4	84.4						8	240.2	26.2	46.9	93.8	10.64	39.5	8.1	.68	5.49	.90	5.22	.90	2.90	.41	2.62	.3/
GSMR-10074	38984	9.	0 2.	7 17	.6	6.7	15.4	25.3	5	369.9	1.6	14.9	.4	3.5	41	6	217.6	23.3	44.5	89.1	9.89	36.8	6.9	<.05	5.23	.81	4.98	.85	2.51	.37	2.50	.32
															740		95.0	ל כל	- 0	47.0	2 1/	11 1	7 4	1 47	. so	99	5 /.7	1 13	3 67	48	ጓ 1 3	-45
GSMR-10077								1.3		150.0						1	235.6	32.3	2.0	13.7	10.04	27 7	2.0	- 05	4.37	73	4 70	93	2 65	37	2 67	.35
GSMR-10070	25342	5.	6 3.	2 19	1.1	7.4	16.7	167.6		100.5						2	189.6	23.5	47.3	47.4	7 71	27.5	5 1	73	4.0J	57	3 27	50	1 93	27	1.72	.25
GSMR-10064								119.8		34.4						0	191.2	20.9	30.7	40.0	5 73	27.5	5.5	1 77	5 11	.85	4 97	1.02	3.26	.44	2.99	-44
GSMR-10066								39.2		330.0	٠,٥	2.2	- 1	1.5	70	1	57.0	11 7	12 0	27.5	3.73	11 6	2.4	.60	2.23	.35	2.16	-43	1.47	.20	1.39	.22
GSMR-10079	319	4.	.6 1.	1 9		1.8	4.8	24.4	2	33.0	.4	4.3	٠. ١	1.0																		
GSMR-10067	2404	10	43	n 15	. 3	4.8	13.4	107.9	2	40.1	1.1	11.5	.3	3.2	32	7	163.2	17.5	32.8	65.9	7.29	26.7	5.2	.60	3.85	.58	3.28	.61	1.95	.26	1.66	.23
GSMR-10069	305	35	6	6 14	. 7	3.6	3.2	11.1						.1		1	114.9	35.1	4.4	13.6	2.13	11.4	3.7	1.61	4.88	.90	5.69	1.30	4.07	.54	3.5 0	.51
RE GSMR-10069								11.0		117.6				<.1		1	111.9	35.3	4.4	13.3	2.09	10.7	3.7	1.66	4.70	.93	5.65	1.28	3.92	.53	3.51	.51
RRE GSMR-10069								11.2				- 3	<.1	.1	297	2	112.3	35.3	4.4	13.1	2.09	11.2	3.8	1.57	4.58	.91	5.78	1.26	3.91	.54	3.48	.50
GSMR-10078							2.8		1	103.3	.3	.2	<.1	<.1	287	<1	95.9	32.3	4.1	12.1	1.94	10.7	3.6	1.36	4.50	.87	5.36	1.14	3.63	.48	3.09	.44
	1	-	0.7			7 1	16 7	119.6	7	74. 3	1 4	17 7	3	4.0	47	5	242.6	27 0	57.2	100 4	11.70	43.3	8.1	1.03	5.30	.88	5.11	.94	2.87	.35	2.36	.32
GSMR-10071	4046	٠,	B 3.	0 42	. !	7.1	10.3	113.0	1	107.0	1.0	17.7	- 1	4.7	701	-1	108.9	35 A	5 7	14 8	2 25	11 7	3.9	1.29	4.96	.92	6.01	1.28	3.91	.56	3.47	.50
GSMR-10080	360	35.	7 1) [<i>[</i>		3.4	3.0	75 4	-1	490 0		1 4	7.1	1 /	237	1	44.9	15 1	8 2	17.0	2.31	11.2	2.9	.84	2.96	.44	2.65	.54	1.65	.22	1.43	.22
GEBR-10088	1247	34.	0 1	5 11 5 11	. 9	1.4	4.1	35.6 41.1	17	20 0		/. 1		1.4	152	5	91.4	20 1	15.3	32.5	3.99	16.3	3.9	.98	3.70	.60	3.65	.72	2.38	.34	2.17	.32
GEBR-10085	687	27.	2	D 14	. 9	4.0	4.6	22.1	13	45 2	.4	4.1	. I	2 1				21 0	20.5	30.0	4.84	18.9	4.1	.83	3.82	.57	3.54	.74	2.28	.31	2.05	.28
GEBR-10094	1097	18.		, 0).y	1.0	4.0	22.1	'	05.2	.4	4.5	٠. ١	2.1	174	7																
GEBR-10081	125	39.	3.	8 17	.2	2.5	2.3	6.5	1	114.2	.2	.2	<.1	-1	276	1	80.9	28.6	3.6	11.0	1.73	9.2	3.0	1.29	4.06	.77	4.61	1.00	3.15	.44	2.82	.40
GEBR-10093								15.3		211.1		.3	<.1	<.1	291	1	108.0	35.0	4.9	14.5	2.24	11.9	3.8	1.32	4.78	.90	5.71	1.22	3.77	.52	3.39	.4/
GEBR-10098	253	20.	6 .	7 12	8.5	2.7	5.8	11.1	5	75.9	.5	4.2	<.1	1.8	137		109.3	22.8	20.8	38.5	5.27	21.7	4.6	1.19	4.62	.74	4.27	.85	2.80	.36	2.50	.37
GEBR - 10095	717	70	6 2	1 1/	7	2.5	5.0	44 1	14	52 4	4	۵ 1	1	1.6	141	5	86.3	16.4	14.2	33.8	3.55	14.7	3.4	.93	3.10	.50	3.07	.62	1.97	.26	1.77	.28
STANDARD SO-15	2068	22.	1 2.	9 17	.4	27.4	31.6	65.9	18	395.9	1.8	24.7	.9	20.3	148	22	1050.7	23.4	29.5	60.2	6.14	23.2	4.4	-99	3.93	.58	3.77	.76	2.59	.36	2.53	.41
							_				·																					

Page 3 (a)

AA DE ANALYTICAL

																													:		
SAMPLE#	Ba	Co ppm	Cs	Ga	Hf ppm	Nb	Rb maa	Sn ppm	Sr mag	Ta ppm		T l	U	V	₩ DDM	Zr ppm	Y	La	Ce	Pr	Nd	Sm	Eu	Gd mag	dT mqq	Dy	Ho		Tm	Yb	Lu
	 			FF		- FFm	la la m	bb	- Le	101000	ppiii	PPII	PP.	PPIII	<u> </u>	PP	PPII	 	PMII	PMII	PP"	PPIII	<u> </u>	- Phi	- bhu	Phi	Phi	- PAN	Phu-	PP11	Ph:
GEBR-10082	138	41.5				2.6		_	129.6			.6			<1	90.1	33.0	4.3	12.4	1.97	10.7	3.4	1.22	4.24	.78	5.01	1.13	3.49	.47	3.16	.47
GEBR-10087	111	.8	1.7	14.3	3.0	41.4	123.1	3	35.7	4.2	17.5	1.2	6.8	5	6	50.0	27.9	12.5	27.2	3.14	11.1	3.2	. 19	3.23	.64	4.13	.84	2.63	.38	2.67	.38
GEBR-10092	328	45.4	5.0	18.4	3.5	3.7	9.6	2	111.7	.3	.3	.7	.2	351	<1	124.9	45.6	5.1	15.0	2.57	14.5	4.6	1.66	5.84	1.09	7.28	1.56	4.69	.67	4.36	.64
GEBR-10083	565	121.3	1.3	13.6	1.4	3.3	30.9	11	28.0	.3	2.8	.2	1.0	92	4	53.4	6.1	9.1	21.3											.97	-16
GEBR-10091	145	42.3	1.0	17.3	3.2	3.3	5.2	2	109.3	.4	- 5	.3		346	2	113.3				2.47											
								-	.0,.5	• •	. ••	•••		570	-	113.3	76.,	2.4	17.5	2.47	13.4	7.5	1.07	J.42	1.02	0.55	1.40	4.51		J. 7 I	
GEBR-10095	335	50.1	.3	20.8	4.3	16.0	1.1	2	23.2	1.3	1.4	- 1	.4	360	2	162.2	38.3	13.6	32.3	4.52	21.0	5.5	1.84	5.96	1.05	6.66	1.42	4.27	.60	4.05	.56
GEBR-10100	5972	8.6	1.5	8.6	1.4	4.1	44.1	1	21.9	.5	4.3	.3	1.1	92	3	51.5	15.2	22.0	32.1	4.75	18.6	3.4	.38	3.09	-42	2.81	- 53	1.67	.22 '	1_61	-24
GEBR-10096	4411	10.7	4.8	18.3	6.1	15.1	147.3	3	71.5	1.6	15.2	.5	4.2	45	3	209.2	29.5	43.1		9.96						5.51	• • •				
GEBR-10086	864	42.4	. 4	14.4	1.2	2.2	44.1	_	841.9		1.6			273	1			9.1		2.34						2.71		1.60			
GEBR-10099	373			19.0	–		144.3		149.8						Ė				100.6												
GEDR 10077	1 3.3	.4.5	12.0	17.0	<i>,</i> , ,	10.4	144.3	'	147.0	4.4	17.4	.,	٥.٥	13	,	310.0	33.9	45.5	100.0	10.50	40.4	1.2	1.29	5.70	1.01	0.19	1.10	3.01	.51	3.41	.49
GEBR-10089	87	1.1	2.0	18.6	3.2	35.7	201.4	4	49.4	3.9	16.5	.8	7.2	< 5	6	58.0	24.6	17.7	36.9	3.92	13.2	3.3	. 22	3.10	-58	3.63	74	2.38	35 2	2.46	36
RE GEBR-10089	93	.9	2.0	18.1	3.0	36.3	199.4	5	46.5	3.8	16.1	1.0		<5	6			17.8		3.96				3.12		3.76		2.40			
RRE GEBR-10089	82	1.0					190.8		48.1			.8		-	6			17.3		3.81				3.18		3.66					
GEBR-10097	858	39.0		17.2				-						-	-										•			2.32			
							9.9		261.3			<.1		335	<1	125.3															
GEBR-10090	1119	37.6	.6	20.4	3.4	17.5	15.1	2 :	354.1	1.4	2.3	<.1	.6	190	<1	113.6	22.6	14.8	30.4	3.94	18.5	4.8	1.61	5.01	.77	4.36	.79	2.18	.28 1	1.72	.23
STANDARD SO-15	2040	22.2	3.0	16.5	26.8	31.9	66.1	19	401.6	2.0	24.5	1.1	20.2	157	20	1058.3	24.3	30.0	59.1	6.31	24.3	4.5	1.04	3.87	.61	3.83	.75	2.48	.36 2	2.53	.42

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002202R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1 (b)

						<u></u>	<u></u>			<u></u>	<u></u>		
	SAMPLE#	Mo mqq	Cu ppm	dq ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm			
•	NWRR-10173 NWRR-10181 NWRR-10197 NWRR-10176 NWRR-10164	<.5 <.5 1.6 1.1	62 58 52 34 27	<3 <3 <3 <3 <3	94 81 56 76	101 60 109 36 54	2 <2 <2 <2 <2	.4 .3 <.2 .4	<1 2 <1 1	1 1 1 <1			
	NWRR-10180 NWRR-10172 NWRR-10161 NWRR-10195 NWRR-10178	<.5 .8 2.1 <.5 <.5	73 52 167 4 184	3 <3 <3 <3	78 92 23 55 108	99 79 32 23 171	2 55 55 < 6	.4 .3 <.2 .4 .4	<1 <1 <1 <1 2	2 <1 <1 1			
	NWRR-10186 NWRR-10174 NWRR-10184 NWRR-10198 NWRR-10191	.8 .7 5.9 1.2 <.5	64 73 12 58 32	<3 7 <3 <3	155 51 41 87 66	84 25 12 80 71	2 5 13 3 2	.4 .3 <.2 .2	<1 <1 2 <1 <1	1 <1 1			
	NWRR-10196 NWRR-10171 NWRR-10162 NWRR-10194 NWRR-10166	1.0 <.5 1.9 <.5	6 126 177 131 34	27 <3 <3 <3 13	69 113 19 74 77	286 28 106 14	2 53 39 5	.2 .3 <.2 .3 .2	1 <1 <1 <1	<1 <1 <1 <1			
	NWRR-10188 NWRR-10170 NWRR-10189 RE NWRR-10189 RRE NWRR-10189	.7 <.5 <.5 <.5	59 38 63 60	<3 <3 <3 <3	82 77 102 103 81	81 49 69 71 70	<2 <2 <2 <3	.3 .4 .4 .3	<1 <1 <1 <1	1 1 1 1			
	NWRR-10185 NWRR-10179 NWRR-10192 NWRR-10168 NWRR-10175	<.5 4.7 <.5 <.5	51 330 30 48 66	<3 <3 <3 <3	73 28 20 78 70	77 71 14 6 121	2 5 2 2 <2	.2 <.2 <.2 .2 .3	<1 2 2 <1 <1	<1 <1 1			
	NWRR-10177 NWRR-10183 NWRR-10193 STANDARD CT3 STANDARD G-2	<.5 <.5 <.5 27.5 2.1	5 9 31 67 2	<3 21 <3 41 21	53 63 77 183 51	29 11 58 39 7	<2 6 2 63 <2	<.2 <.2 .4 22.4 .2	<1 <1 <1 23 <1	2 <1 23 <1			

GROUP 1EX - 0.25 GM SAMPIF DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W - 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 18/00

Page 2 (b)

AA ACHE ANALYTICAL

ADE ANALYTICAL										 	
SAMPLE#	Mo ppm	Cu ppm	dq mqq	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
NWRR-10182 NWRR-10165 NWRR-10190 NWRR-10167 NWRR-10187	2.1 1.3 <.5 1.4 <.5	64 56 70 65 80	<3 <3 9 <3	77 90 82 5 83	60 79 111 12 120	3 <2 25 7 <2	.2 .4 <.2 <.2	<1 1 2 <1	<1 <1 <1 <1		
GSMR-10075 GSMR-10061 GSMR-10063 GSMR-10065 GSMR-10073	1.0 1.0 6.2 1.8 2.0	53 28 19 11 8	5 15 49 43 19	47 48 4360 74 70	75 14 13 17 9	2 2 27 10 9	<.2 <.2 13.2 <.2 .8	<1 <1 2 3 4	<1 <1 <1 <1		
GSMR-10076 GSMR-10068 GSMR-10062 GSMR-10072 GSMR-10074	<.55 1.65 4.9	78 313 25 11 19	<3 <3 15 20 48	84 80 62 11 16	65 80 18 12 11	<2 <2 <2 7 9	<.2 <.2 <.2 <.2 <.4	<1 <1 3 6	1 <1 <1 <1		
GSMR-10077 GSMR-10070 GSMR-10064 GSMR-10066 GSMR-10079	<.5 1.9 16.9 1.0 1.3	63 10 28 36 71	<3 24 92 14 6	71 25 83 38	193 12 24 14 32	<2 17 16 3 4	<.2 <.2 <.2 <.2 <.2	<1 2 10 2 <1	1 <1 <1 <1		
GSMR-10067 GSMR-10069 RE GSMR-10069 RRE GSMR-10069 GSMR-10078	12.5 1.2 1.3 1.0 <.5	22 47 47 49 36	62 3 <3 <3	26 44 45 44 79	19 98 97 98 184	8 <2 3 <2	<.2 <.2 <.2 <.2	8 <1 <1 <1	<1 1 1 1		
GSMR-10071 GSMR-10080 GEBR-10088 GEBR-10085 GEBR-10094	2.5 <.5 2.7 4.2 4.1	10 31 87 322 99	16 <3 5 5 6	20 100 94 32 49	10 96 90 37 62	4 <2 <2 <2 <2	<.2 .3 <.2 <.2	<1 <1 <1 <1	1 1 1 1		
GEBR-10081 GEBR-10093 GEBR-10098 GEBR-10084 STANDARD CT3	.6 <.5 5 9.0 27.7	56 33 391 2248 66	3 35 35 42	78 73 151 13 184	88 82 49 30 39	2 <2 4 3 61	<.2 <.2 .2 <.2 22.3	<1 1 2 23	2 1 2 23		
STANDARD G-2	2.0	3	22	52	7_	<2	<.2	<1	<1	 	

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_FA

Page 3 (b)

SAMPLE#	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
GEBR-10082 GEBR-10087 GEBR-10092 GEBR-10083 GEBR-10091	1.0 1.5 <.5 133.9 1.1	66 3 61 5323 63	<3 20 <3 22 <3	71 23 101 77 84	92 90 46 91	3 5 2 7 <2	.2 <.2 .8 <.2	<1 2 <1 9 <1	<1 <1 <8 <1	
GEBR-10095 GEBR-10100 GEBR-10096 GEBR-10086 GEBR-10099	<.5 2.0 .5 1.5 14.2	90 62 11 129 166	<3 25 21 6 34	100 49 59 75 129	52 33 9 36 35	2 5 2 26	.3 .2 .2 .3	4 1 5 1 <1	<1 <1 <1 4	
GEBR-10089 RE GEBR-10089 RRE GEBR-10089 GEBR-10097 GEBR-10090	1.4 1.2 .6	6 6 49 18	33 34 33 <3 <3	42 42 40 78 108	3 2 4 54 32	21 24 22 <2 3	.8	1 1 <1 <1 <1	1 1 <1 <1	
STANDARD CT3 STANDARD G-2	27.6 2.3	65 3	40 20	185 49	38 7	59 <2	22.6	23 <1	22 1	

852 E. HASTINGS ST. VANCOUVER BC VOA 1R6

Phone (603, 2333230 FAX 004) 25

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002291 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Bi V Ca P La Ва Ti B Αl Na K W Tì Ho Se SAMPLE# Pb Zn Ag Ni Co Fe As U Au Th Sr Cd Sb Cu 8 % % ppm ppm ppb ppm ppm ppm mag mag dag mad mad mag mag ž aca a DDM 8 DDM % ppm mag mag dag mag mag mag % ppm ppm ppm .11 113 1.45 .133 8.5 49.3 .54 256.2 .058 1 1.69 .009 .07 <.2 .09 211 .7 .02 4.2 .59 SDWX-10229 2.48 20.47 6.82 88.2 161 21.5 40.6 9831 4.13 78.1 .3 3.5 .4 43.2 .11 80 1.19 .064 10.9 60.2 .86 317.2 .167 3 1.89 .009 .08 <.2 .04 102 .8 .02 4.9 .44 64.89 5.96 57.1 192 39.8 17.6 2221 2.64 8.6 .33 .49 SDWX-10221 .3 3.4 1.0 27.0 .08 95 1.54 .082 10.1 79.9 .93 269.9 .122 4 2.36 .008 .08 < .2 .05 147 .8 .02 5.3 .38 .66 SDWX-10232 .75 68.10 5.87 114.8 214 45.7 21.3 3376 3.14 20.0 .4 4.8 .6 35.4 .07 87 1.38 .082 11.6 55.5 .66 92.2 .160 5 1.84 .011 .09 <.2 .03 93 .9 <.02 4.9 SDWX-10225 .62 60.59 5.70 49.3 261 28.8 13.1 1221 2.42 5.6 .4 1.5 5 31.5 .35 .54 .13 87 1.35 .074 12.6 67.2 .92 348.2 .171 2 2.25 .010 .09 < .2 .04 119 .8 .03 5.3 .77 75.84 7.31 65.7 139 45.0 20.0 2590 2.84 9.7 .3 .38 .54 SDWX-10222 3.8 1.0 31.3 1.61 50.36 16.09 144.0 667 45.9 22.3 6738 2.75 6.7 3.8 4.2 .5 89.1 2.25 .42 .16 39 1.67 .141 25.7 40.7 .41 574.0 .025 2 1.78 .006 .12 <.2 .13 279 1.9 .03 3.0 SDWX-10234 .06 10 2.40 .070 6.7 30.4 .15 96.7 .013 5 .45 .003 .07 < .2 .03 107 2.4 .02 1.1 .34 SDWX-10249 39 24 44 5.37 99.1 179 14.3 4.3 916 .84 1.5 .7 1.5 .2 92.2 .49 .03 54 1.00 .052 4.2 26.5 .35 37.9 .095 2 .94 .009 .06 < .2 .02 68 1.3 < .02 2.4 SDWX-10228 .34 26.46 2.38 70.6 67 13.2 9.1 1353 1.46 1.6 .1 .5 .2 19.0 .16 . 26 .17 60 .93 .069 18.4 61.2 .84 221.3 .119 2 1.67 .007 .09 <.2 .05 87 .6 .04 4.7 .56 40.80 13.57 86.8 226 47.7 17.8 1198 3.11 7.5 1.4 2.9 3.2 46.0 .21 .71 SDWX-10239 .10 77 1.03 .057 10.2 64.8 .87 302.7 .159 3 1.86 .007 .05 <.2 .03 74 .8 .03 5.3 .36 SDWX-10251 .49 35.94 5.73 60.4 121 45.7 15.1 1585 2.69 4.9 .9 2.8 1.5 24.1 .20 4 2.31 .014 .07 <.2 .04 123 1.2 <.02 6.1 .09 116 1.40 .073 10.3 67.0 .76 81.9 .187 St. 0227 .51 36.64 5.35 52.5 126 32.5 18.5 1168 3.02 3.0 .3 3 2.23 .008 .11 <.2 .06 163 1.0 <.02 5.0 .08 94 1.38 .096 12.2 61.9 .75 1045.4 .121 SDWx-10255 1.93 42.77 7.00 157.6 199 59.2 40.3 11675 4.06 9.3 .5 4.5 .7 41.8 .41 .38 50.92 4.10 57.7 88 43.4 20.1 947 3.23 10.3 .3 4.1 .7 29.3 .06 119 1.28 .056 7.5 76.9 1.20 99.9 .276 3 2.60 .016 .07 <.2 .03 86 .6 <.02 7.6 . 20 .53 SDWX-10230 .11 80 2.20 .116 12.1 61.8 .61 83.1 .108 8 1.72 .013 .17 <.2 .04 184 3.1 .02 4.1 SDWX-10226 .71 51.12 6.79 56.2 175 29.4 12.2 1227 2.23 3.9 .4 123.2 .5 53.1 .37 .60 4 2.51 .007 .04 <.2 .06 181 .7 .02 5.8 SDWX-10254 .97 69.32 7.75 127.3 250 44.9 23.7 3430 3.28 6.2 1.2 2.0 .6 32.0 .39 . .36 .10 91 1.38 .088 15.3 68.7 .81 479.1 .120 .15 161 .47 .045 13.3 44.5 .54 93.7 .375 <1 4.29 .113 .06 <.2 .13 33 .6 .04 10.8 S0WX-10233 1.07 32.42 9.66 50.5 39 13.1 13.7 489 4.12 3.0 .6 1.3 3.0 47.1 3 2.23 .009 .08 <.2 .06 158 .7 .02 5.2 SDWX-10224 .76 59.39 7.04 72.3 155 38.5 23.7 3339 3.31 9.0 .4 133.4 .7 36.1 .35 .11 97 1.67 .088 10.6 63.1 .76 207.4 .126 .12 56 .46 .070 21.9 49.2 .59 145.4 .128 3 1.25 .006 .05 < .2 .03 25 .3 .02 3.7 SDWX-10237 .50 30.06 10.27 56.3 57 34.1 12.6 516 2.66 5.2 .5 5.4 5.7 17.4 .15 .40 .09 91 1.48 .078 12.7 69.7 .94 408.4 .147 3 2.27 .009 .07 <.2 .04 123 1.4 .03 5.7 .36 .44 SDWX-10252 .61 52.85 8.34 184.0 180 53.8 21.7 2493 3.24 5.7 .6 3.2 1.2 31.0 3 2.49 .008 .08 <.2 .06 141 .9 .02 6.7 SDWX-10259 .87 82.59 16.93 93.0 374 54.6 19.0 1088 3.62 10.0 .7 6.9 1.0 22.4 .17 111 1.24 .081 14.1 99.4 .94 342.3 .128 4 2.63 .019 .06 < .2 .03 63 .6 < .02 7.4 .07 116 1.47 .068 7.6 61.7 1.20 143.5 .306 SDWX-10256 .61 44 06 4.73 61.6 73 44.1 20.0 805 3.27 5.9 .3 1.9 .9 24.2 .16 .32 .39 .43 .10 79 2.13 .117 10.3 50.7 .59 302.8 .085 7 1.83 .009 .12 < .2 .06 203 1.0 .02 3.9 SDWX-10223 .84 58.19 7.13 112.1 131 32.2 15.0 2826 2.41 4.5 .4 2.4 .2 42.3 6 2.58 .018 .05 < .2 .02 64 .5 < .02 7.2 .57 42.19 4.44 59.9 66 42.8 19.5 793 3.20 5.6 .3 2.3 .9 23.0 .15 .31 .07 112 1.43 .064 7.1 62.4 1.17 139.1 .298 RE SDWX-10256 .12 41 1.54 .099 18.5 46.1 .56 411.8 .059 6 1.55 .006 .09 < .2 .05 142 2.3 .02 3.8 SDWX-10250 1.00 37.47 12.87 146.9 253 43.3 14.7 2515 2.87 7.2 1.1 2.2 1.5 71.0 .41 .54 .14 65 1.09 .102 19.4 67.9 .94 322.7 .125 6 1.79 .009 .12 <.2 .05 95 1.6 .03 5.0 SDWX-10238 1.48 46.44 14.63 112.4 255 57.8 19.5 1015 3.19 10.1 1.5 18.8 2.9 42.6 2.83 89.16 15.23 194.7 417 72.9 31.7 19800 4.82 12.9 1.3 3.8 1.4 52.7 1.18 .22 65 1.46 .116 22.0 57.9 .66 1682.4 .069 3 1.99 .009 .13 <.2 .10 204 1.8 .03 4.7 SDWX-10236 4 2.60 .013 .08 < .2 .04 128 1.0 .04 5.7 1.08 73.96 7.36 74.2 195 43.0 17.3 1119 2.89 4.6 .5 265.0 .5 29.2 .24 .30 .08 94 1.25 .095 12.9 69.2 .92 511.2 .182 SDWX-10257 3 2.03 .008 .07 <.2 .06 101 1.5 .02 5.4 .34 85 1.04 .069 11.2 62.0 .97 361.0 .137 .83 52.01 17.92 148.4 156 46.0 19.7 1096 3.15 12.4 .8 138.7 1.7 26.7 .42 .91 SDWX-10260 2 2.55 .008 .24 <.2 .15 291 4.6 .03 5.3 2.61 65.48 15.57 306.1 538 59.4 46.7 13423 4.76 12.1 1.4 3.1 .7 42.4 1.49 . 51 .15 112 1.84 .134 20.1 68.0 .58 707.8 .074 SDWY-10235 .14 87 1.47 .117 16.4 107.2 1.28 1010.9 .130 6 2 26 .010 .11 < .2 .05 144 3.9 .10 5.7 1.36 141.79 15.09 118.5 231 64.5 22.7 1731 3.17 8.8 1.8 11.3 .7 46.8 .35 .63 10258 3 2.33 .012 .12 < .2 .05 180 .7 < .02 6.3 1.32 38.06 7.77 66.2 215 33.2 20.7 1929 3.01 11.3 .6 2.4 .4 27.1 .44 .48 .09 109 1.07 .106 11.7 71.5 .67 121.6 .115 SDWX-10231 3 2.07 .009 .08 <.2 .04 102 1.5 .02 5.4 .10 84 1.46 .072 11.3 62.3 .93 312.4 .153 .55 54.88 8.78 65.7 162 45.6 17.9 1222 2.84 5.5 .5 299.9 1.0 28.3 .30 .44 SDWX-10253 6 2.26 .007 .07 <.2 .06 117 .6 .04 5.9 .11 95 .85 .099 9.1 68.8 .86 498.7 .113 SDWX-10248 .91 39.63 7.88 83.4 177 54.0 22.4 2720 3.85 4.8 .4 5.4 .5 24.8 .30 .23 3 1.49 .006 .08 < .2 .04 58 .5 .02 4.5 .54 31.15 14.90 67.3 115 42.2 16.0 736 2.87 7.3 1.5 3.8 4.0 27.0 .17 .52 .15 51 .66 .063 22.3 49.0 .77 185.0 .112 SDWX-10240

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, IH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT

JUL 10 2000

Data MFA

3 1.69 .030 .15 7.4 1.82 247 2.4 1.81 5.7

13.87 127.17 35.49 158.1 270 35.6 11.8 824 3.07 58.2 21.4 221.5 3.6 27.4 10.88 9.93 11.28 73 .53 .091 17.3 163.0 .60 149.3 .092

Page 2 (a)

ACME ANALYTICAL																																
SAMPLE#	Мо	Cu	Pb		•		Co			As			Th		Cd	Sb		٧		-	La	Cr	Mg	Ва		B A1		K W				
	ppm	ppm	ppm	ррл	ppb	ppm	ppm	ppm	*	ppm	ppm	bbp	ppm	ppm	ppm	ppm	ppm p	opm .	*	¥	ppm	ppm	* 	ppm	∦ p	pm å	*	% ppm	ppm pp	ppm ppm	ppm	ppm
GSMX-10264 GSMX-10271 GSMX-10273	1.99	42.29 77.14 67.83	11.08	105.6	335	36.4	19.2	4813	2.71	4.3		2.8 3.9 2.6	.3 5	6.6	.43 .64 .69	.36 .43 .49	. 19	93 1	.93	.130	11.8	60.9 61.0 57.0	.61	606.9	.128	5 2.02	.012	.06 <.2 .16 <.2 .09 <.2	.08 27	4 1.9	.03	5.0
GSMX-102/3 GSMX-10269	1.52	48.12	12.62	169.4	410	46.1	45.0	12763	4.40	10.1					1.20	.69	.11	80 1	.41	.177	20.6	42.8	. 39	939.9	.075	3 1.99	.017	.18 <.2	.11 17	5.9	.02	3.4
GSMX-10261		57.71										2.1	.2 3	34.6	.47	.38	.07	89 1	.58	.107	12.8	48.5	.42	310.2	.127	5 2.03	.011	.13 <.2	.04 15	. б	<.02	4.6
GSMX-10270 GSMX-10262 GSMX-10272 GSMX-10266 GSMX-10265	.85 .56 1.13	52.74 60.28 13.80 32.88 53.24	5.53 7.68 9.70	66.5 57.9 53.1	5 228 9 104 1 37	24.7 17.2 13.9	21.0 15.5 14.5	2288 2075 505	2.73 2.37 4.44	3.6 6.4 2.6	.4 .1 .7	2.7 1.8 .3 1.3 1.8	.3 3 .3 3 3.2 5	34.9 22.3 54.8	.84 .48 .19 .09	1.19 .47 .15 .11 .32	.08 .07 .16	92 1 66 170	.64 .91 .52	.103 .122 .051	13.2 5.1 13.2	49.3 31.5 45.1	.41 .43 .58	307.0 110.6 94.8	.122 .090 .386	4 2.10 2 1.10 <1 4.64	.010 .012 .141	.09 <.2 .12 <.2 .09 <.2 .06 <.2 .13 <.2	.04 16 .07 12 .14 3	3 .8 5 .4 8 .4	<.02 .02 .05	4.7 3.6 11.5
GSMX-10268 GS 0267 RS0284 RSHX-10241 RSHX-10274	1.65 .43 .90	40.42 40.84 42.14 74.52 42.25	11.27 4.66 9.42	82.9 62.8 146.2	338 3 106 2 385	21.0 44.8 62.7	20.1 20.2 21.0	6479 739 1594	3.11 3.78 3.32	4.4 6.5 6.2	.5 .3 1.0	4.2 2.4 2.1 4.1 4.4	.1 3 1.0 3 .8 3	39.9 23.0 29.3	1.16 .59 .14 .55 .89	.72 .45 .40 .75	.07 .06 .13	99 1 134 1 96 1	1.53 1.28 1.46	.158 .068 .116	9.3 6.2 13.8	54.5 51.2 66.2 1 81.0 1 41.3	.39 1.17 1.00	334.4 152.8 330.8	.052 .312 .173	3 1.70 2 2.82 3 2.56	0 .015 2 .020 5 .014	.07 <.2 .14 <.2 .04 <.2 .14 <.2 .14 <.2	.09 25 .02 7 .05 1 5	4 .9 3 .5 5 1.6	.02 .02 .04	3.9 8.6 6.1
RSHX-10243 RSHX-10283 RSHX-10288 RSHX-10242 RSHX-10275	.63 .99 .75	74.93 143.53 41.94 63.39 43.14	5.65 12.99 13.07	26.3 92.5 117.0	3 267 5 257 9 288	11.3 20.9 56.4	5.2 26.7 20.6	570 10501 1409	.91 2.38 3.19	6.6 7.4 5.4	.7 .5 .8	3.3 4.1 4.4 17.6 4.1	.1 3	39.8 43.4 26.9	.35 .39 .66 .42 .40	.52 .81 .66 .62 .33	.06 .08 .36	47 2 60 1 93 1	2.19	.176 .138 .112	17.4 14.7 11.5	77.9 91.2 37.5 74.0 1 55.4	.34 .37	36.4 211.4 295.1	.021 .054 .174	6 .73 4 2.02 3 2.33	3 .009 2 .014 3 .013	.06 <.2 .11 <.2 .25 <.2 .12 <.2 .10 <.2	.06 35 .07 22 .04 11	5 5.8 3 .8 1 1.2	<.02 .02 .02	2.0 2.8 5.7
RSHX-10278 RSHX-10282 RSHX-10244 RE RSHX-10298 RSHX-10298	1.02 .99 .80	33.26 10.89 80.03 38.69 39.51	10.50 8.38 19.15	47.1 134.1 104.1	104 446 265	9.3 64.2 45.4	38.2 23.2 17.6	9652 2666 1109	3.70 2.95 3.07	15.4 6.0 15.2	.1 1.1 2.3	2.5 15.5	.1 3 .6 3 3.4 3	36.6 26.3 34.1	.49 .47 1.00 .36 .38	.68 .26 .65 .93	.08 .11 .21	54 1 75 1 41	1.22 1.45 .58	.178 .146 .090	3.2 14.8 25.9	42.3 14.3 69.5 38.9 37.4	.21 .92 .70	234.0 340.4 256.9	.012 .122 .054	2 .61 4 2.18 2 1.58	.010 3 .013 3 .006	.18 <.2 .19 <.2 .47 <.2 .13 <.2 .13 <.2	.12 18 .06 16 .06 8	9 .5 8 3.5 0 .6	.02 .02 .04	1.5 4.5 4.3
RSHX-10245 RSHX-10279 RSHX-10293 RSHX-10300 RSHX-10246	.69 .57 1.05	47.37 47.04 60.34 32.76 57.18	8.03 4.54 23.09	78.7 56.8 143.3	161 185 278	51.1 29.6 43.9	19.6 13.8 35.6	989 842 5685	3.07 2.40 3.01	6.7 40.2 24.7	1.2 .4 3.2	366.6 5.7	2.0 4 .4 2 3.2 4	44.1 29.3 14.8	.28 .28 .21 1.06 .39	.55 .66 .67 .81	.10 .07 .23	81 1 79 1 28	.24 1.41 .60	.103 .087 .108	13.0 9.3 38.4	61.5 1 57.8 1 58.8 25.9 57.8 1	.02 .71 .50	220.9 139.6 282.7	.172 .128 .030	2 1.97 4 1.82 1 1.52	.012 2 .011 2 .007	.13 <.2 .08 <.2 .09 <.2 .17 <.2 .09 <.2	.03 7 .03 14 .09 11	7 1.0 0 1.5 4 .6	.02 <.02 .04	5.3 4.7 3.5
R: 10292 RSHX-10276 RSHX-10291 RSHX-10280 STANDARD DS2	1.13	76.78 35.04 36.48 56.42 131.79	14.39 4.47 5.79	112.8 51.6 204.9	208 62 244	49.0 35.9 47.8	20.7 16.3 35.7	2248 795 7618	3.21 2.76 4.12	10.0 19.5 8.2	1.5 .3 .6	7.8 3.3 7.2 5.2 226.4	3.6 4 1.2 2 .8 2	12.3 21.2 27.3	.32 .37 .14 .49 10.61	.91 .90 .49 .41	.16 .06 .08	51 90 1 90 1	.75 .15	.092 .058 .088	22.9 7.2 11.1	30.2 44.4 53.1 1 55.6 159.8	.74 .01 .60	228.0 117.0 432.9	.075 .201 .105	<1 1.67 3 1.98 2 1.98	.008 .014 .011	.19 <.2 .12 <.2 .07 <.2 .11 <.2 .16 7.9	.05 8 .03 6 .05 12	3 .7 5 .6 9 1.2	.02 .02 .02	4.5 5.8 4.7

Page 3 (a)

ACHE ANALYTICA	L																											~			_			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppb	Ni ppm	Со	Mn ppm	Fe %	As ppm	U ppm			Sr ppm	Cd ppm	Sb ppm		V ppm	Ca %		La ppm	Cr ppm	Mg %	Ba ppm		В ррт	A۱ %	Na %	К %		T1 ppm p		e Te n ppm	1
RSHX-10285 RSHX-10277 RSHX-10295 RSHX-10286 RSHX-10297	.96 1.00 .64	57.87 36.83 28.71 126.79 37.14	17.78 20.99 7.38	84.4 122.7 46.1	84 307 183	58.1 32.5 35.1	20.0 27.0 12.7	868 4335 321	3.56 2.90 2.10	8.4 18.4	1.4 2.6 .5	3.9	7.5 2.4 1.0	27.6 44.5	.20 .17 .65 .16	.51 .78 .76 .39	.19 .19 .08	67 40 103	.64 .76 .72	.077 .128 .059	29.8 30.4 11.7	66.4 27.4 59.2	1.06 .50 .64	259.7 188.1 254.8 87.4 362.5	.147 .060 .161	2 2 3 1 2 2	.01 .53 .03	.020 .009 .008 .012	.13 .38 .06	<.2 <.2 <.2	.05 .09 1 .06 1	52 . .39 .	0 .04 2 .04 7 <.02 6 .02 6 .04	5.9 3.7 6.0
RSHX-10289 RSHX-10294 RSHX-10247 RSHX-10296 RSHX-10287	.74 62 1.05	39.58 26.27 39.37 23.92 62.54	18.28 11.23 23.55	148.3 76.4 180.7	279 367 522	30.5 60.4 28.8	22.3 15.4 33.4	3007 2041 9279	2.46 2.17 2.49	8.1 6.6	.3 2.1 2.1 5.0 .3	2.2	1.6 .6 1.4	41.2 39.2 82.0 69.0 30.0	.44 .85 .27 1.01 .22	.54 .56 .47	.16 .11 .17	32 38 21	.77 1.48 1.01	.108 .101 .145	24.7 23.6 48.5	22.3 61.4 19.6	.42 .56 .23	228.2 209.5 209.1 499.0 76.2	.039 .047 .009	2 1 3 1 3 1	.39 .51 .35	.015 .008 .009 .012 .015	.24 .34 .28	<.2 <.2 <.2	.07 1 .05 1 .09 1	146 . 177 1 .	5 <.02 8 <.02 8 .03 2 <.02 8 <.02	3.1 3.6 2.6
RSHX-10299 RSHX 31 RSHX-10290 GEBX-10321 GEBX-10340	1.05 1.06 .88	230.43 11.72 25.89 138.82 44.99	14.39 6.78 5.43	56.8 78.1 56.3	203 137	9.3 23.3 34.5	39.1 38.5 6.2	10590 11965 1078	4.16 4.12 1.16	17.1 19.1	.1 .3 1.4	5.5 1.7 2.1 3.1 2.2	.1 .4 .1	8.9 37.1 31.8 52.1 21.7	.52 .51 .34	.59 .25 .33 1.03 .15	.09 .07	66 91 46	1.24 1.11 2.41	.163 .118 .115	3.4 10.1 5.7	15.2 37.9 51.6	.21 .33 .30	72.0 248.1 242.6 233.4 281.2	.009 .052 .037	3 1 1 9	.66 .47 .75	.009 .012 .006	.15 .24 .09	.7 <.2 <.2	.13 1 .08 1 .04 1	195 . 175 <i>.</i> 198 6.	8 .18 5 <.02 6 <.02 0 <.02 6 .02	2 1.9 2 4.1 2 2.2
GEBX-10331 GEBX-10338 GEBX-10325 GEBX-10339 GEBX-10327	.89 .64 .35	166.56 44.52 49.26 50.61 29.04	6.35 5.01 2.75	84.1 58.8 67.5	308 121 40	26.7 33.6 156.1	21.5 12.5 25.1	4217 994 582	3.43 2.42 2.40 2.80 2.78	5.4 4.8 2.3 .8 2.8	.5 .2	2.1 2.1 6.9	.3 .5 .9	50.0 31.9 24.8 19.7 19.1	.27 .73 .24 .09	.61 .45 .31 .13	. 06 . 06 . 04	78 86 72	1.33 1.32 1.01	.119 .078 .046	9.4 9.4 4.4	40.6 50.3 92.9	.38 .76 2.28	455.6 289.0 259.5 241.6 208.3	.053 .186 .150	4 1 5 2 4 2	.37 .04 .19	.011 .008 .012 .013 .010	.11 .10 .04	<.2 <.2 <.2	.06 1 .04 1 .02	192 . 140 2. 47 .	8 .04 8 .02 0 <.02 4 .02 4 <.02	2 3.1 2 5.2 2 5.8
GEBX-10322 GEBX-10335 GEBX-10329 RE GEBX-10336 GEBX-10336	.83 .56 .58	142.99 65.12 63.39 52.41 55.60	4.92 5.55 6.31	48.5 46.9 101.1	214 99 84	23.6 49.2 44.3	13.1 12.3 20.6	1515 606 1173	2.05 2.35 3.49	8.6 2.1 2.8 3.1 3.4	.8 .4	8.4 53.6	.2 1.2 1.5	23.0	.42 .16 .19		.05 .07 .09	92 72 122	1.65 1.49 1.29	.103 .062 .053	11.3 8.1 8.2	54.2 54.8 63.0	.52 .80 1.17	253.3 111.3 161.9 346.9 365.5	.122 .148 .349	6 1 7 1 4 2	.93 .73 .42	.006 .011 .011 .017	.07 .07 .06	<.2 <.2 <.2	.06 2 .04 1 .03	235 2. 105 2. 64 .	4 .02 0 <.02 6 .02 5 .02 5 .04	2 4.3 2 5.0 2 8.0
GEBX-10324 GEBX-10332 GEBX-10337 GEBX-10323 GEBX-10334	.65 .57 .38	69.59 88.54 15.03 77.80 72.75	7.32 6.42 5.46	74.2 65.1 72.9	158 154 65	64.7 20.1 48.6	17.5 10.7 21.8	858 2985 884	3.24 2.00 3.74		.5	2.6 1.7 3.3	1.4 .8 1.0	31.7 44.5 18.5 32.2 28.1	.34 .19 .43 .18	.58	.10 .08 .08	99 48 129	1.59 1.07 1.62	.064 .062 .066	10.7 9.5 6.4	66.7 32.4 61.7	1.07 .37 1.28	564.4 512.8 203.4 162.3 192.9	.183 .077 .345	10 2 2 1 5 2	.41 .25 .48	.013	.07 .09 .05	<.2 <.2 <.2	.04 1 .05 1 .03	139 2. 101 . 75 1.	7 .02 3 .03 5 <.02 1 .02 4 .03	7.0 2 3.8 2 8.3
EBX - 2328 EBX-10333 EBX-10326 EBX-10330 STANDARD DS2	1.09 .46 .68	33.64 30.00 38.11 73.77 127.69	10.11 5.10 6.50	51.6 82.1 57.0	92 153	13.0 37.9 54.1	14.0 14.3 15.0	477 723 680	2.35 4.21 2.68 2.83 3.02	2.7 2.5 2.6 2.9 59.8	.6 .4 .9	2.2 1.8	3.1 1.1 1.5	46.6 19.3 39.1	. 08 . 17 . 18	.26	.15	161 91 87	.49 1.11 1.50	.048 .063 .059	12.2 7.9 11.1	40.8 49.8 59.4	.55 .84 .88	298.5 87.4 242.9 334.9 152.6	.377 .215 .179	<1 4 3 2 6 2	.26 .09 .05	.012 .112 .012 .012 .028	.06 .06 .08	<.2 <.2 <.2	.13 .03 .04	36 . 76 . 108 1.	6 <.02 5 .05 7 .02 9 .03 2 1.87	5 11.4 2 5.9 3 6.3

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA

Page 4 (a)

ACRE MALITICAL																												14 11	71	11- C	e Te	<u></u>
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Γħ	Sr	Cd	SÞ	Βi	٧	Ca	Р	La	Çr	Mg	8a	Ti	B A		K W		Hg S	•	
	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	x	ppm	ррп	ppb p	om p	PM	pom	ppm	ppm	ppm	*	X	bbw	ppm	8	ppm	*	ppm :	\$ \$	% ppm	ppm	pp pp	n ppm p) biti
																									100		- 000	11 - 2	16	20E 1	າ ດາ ເ	: 7
GSMX-10342	1.59	58.87	30.07	155.6	329	100.5	25.9	2341	4.49 1	1.7	1.2	4.8 4										88.5 1	27	474.9	.136	3 1.8	.008	.11 <.2	.10	205 I.	3 .03 5	1 0
GSMX-10358	.99	48.87	5.28	56.2	281	32.5	15.2	2555	2.64	3.6	1.0	2.4	.3 39).1	. 36	.39								394.2				.11 <.2				1.7
GSMX-10347		60.43							2.30			5.3	.8 65	5.6	. 46	.71						53.0						.06 <.2		182 1.		
GSMX-10343	1.36	48.08	19.77	114.8	449	57.4	17.4	1557	3.27 1	3.5	4.1	10.7 1		1.5	. 84	.87								766.8		2 1.3	1 .006	.12 <.2	.04	14/ 1.	0 .00	5.1
GSMX-10357	.58	55.14	5.15	57.2	127	38.1	15.4	1038	2.76	3.7	.5	2.4	.8 26	8.6	. 26	.40	.06	97 1	.38	.081	7.6	68.9	.93	206.0	.245	4 1.8	.012	.07 <.2	.03	122 2.	9 <.02 ;	5.2
																								500.0	0.00		- 000	00 - 2	07	261.2	2 02 1	2 6
GSMX-10346	1.76	31.44	12.53	111.1	442	50.3	14.4	2014	2.78	9.2	1.9	9.0 2			. 79	1.20	.13	42 1	.03	.105	19.2	41.5	.53	583.3	.068			.08 <.2				
GSMX-10341	1.45	53.71	25.00	141.2	288	90.5	22.3	2026	3.93	0.4					. 64		.16	60 1	.26	.151	24.7	71.3 1	1.03	388.3	.104	3 1.6	4 .00/	.11 <.2	.14	102 1.	2 .04;	5.U E 0
GSMX-10359		43.14										129.4 1										52.6						.06 <.2				
GSMX-10356		25.17										2.3	.2 4	3.8	1.28	. 30						55.2						.09 <.2				
GSMX-10349	.99	34.73	11.34	106.5	242	34.7	21.0	5114	2.78	5.1	1.4	3.3 1	.0 3	5.6	. 88	. 35	. 11	82 1	.36	. 096	26.5	50.6	.68	563.9	.120	2 2.1	1 .011	.09 <.2	.10	1/0 .	8 4.02 :	5.5
Ì																								010 0				07 - 0	06	164	0 - 02 1	6 6
GSMX-10352	. 69	49.41	7.04	58.€	176	40.2	15.9	1099	3.06	0.3	.6											81.9						.07 <.2				
GS 0355		40.01							3.16		. 4	2.8 1			. 17							64.1 1				4 2.4	0.01/	.05 <.2	.03	160 160	0 .03	/ . G
GSn., 10344		36.71										4.8 1					.19	48 1	.07	.109	22.8	49.8	.72	248.7	.051	3 1.8	9 .008	.10 < .2	.00	166 .	5 .UZ 1	4.J 6.7
GSMX-10360	. 87	39.67	5.95	66.0	146	25.4	30.8	4507	3.29	5.5	.3			5.0	. 35	.39	.08	118 1	.17	.078	10.4	49.8	.54	220.8	.1/1			.09 <.2				
RE GSMX-10344	.73	35.52	20.62	100.1	315	48.4	16.5	1303	3.47	8.7	2.1	25.4 1	.7 5	8.0	.52	.47	.19	47 1	,05	. 107	22.1	50.0	./1	248.7	.053	2 1.8	3 .008	.09 <.2	.00	1/1 .	0 .02	4.7
																70	0.0		41	050	7 0	65.6 1	1 00	145 0	264	225	1 610	.06 <.2	nз	84	5 03	7.6
GSMX-10354		41.78										4.3	-											385.9				.09 <.2				
GSMX-10348		32.85										12.6				.63								1033.8				.07 <.2				
GSMX-10350		29.95										4.3 1												1155.1				.10 <.2				
GSMX-10345		41.67																						625.3				.26 <.2				
GSMX-10353	2.19	42.20	6.93	91.0	417	24.1	82.4	28421	7.28	31.7	.3	55.1	.3 4	6.9	.89	.53	.07	190 1	38	.139	10.7	35.7	. 34	025.3	.0/1	3 1.2	7 .013	.202		, 20		
						40.6	٥. ٦	4406	2 60			100 C	0 4	2 6	60	1 04	3.4	105 1	40	105	26 1	94.0	.87	687.6	118	325	6 N12	.11 <.2	.09	205 1.	3 .02 (6.7
GSMX-10351		65.85										138.5					10.20					163.9		154.8				.16 6.8				
STANDARD DS2	13.33	123.44	32.64	153.4	269	33./	11./	828	3.0/ (0.0	19./	221.4 3	.4 2	0./	9.54	9.94	10.20	/3	. 52	.002	14.0	100.9	. 50	134.0	.037		1 .020	0.0				

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_____ FA .

Phone (60%, 203-35.00 FAX (004) 295-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002291
800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell

Page 1 (b)

			×					₩ (J)			(6.8570)	*******		10.0000			4,04,000,000		
	SAMPLE# .	Cs	Ge	Нf	Nb	Rb	Sc	Sn	S	Ta	Zr	Υ	Се	In	Re	₿e	Li	Sample	
		ppm				ppm		ppm	%		ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
	SDWX-10225	.73 .92 1.28 1.25	<.1 <.1 <.1	.04	.43 .71 .67	3.4 4.1 3.4	9.3 10.4 7.0	.4 .4 .5	.14 < .08 < .12 < .11 < .09 <	.05 .05 .05	4.9 3.7 5.2	23.74 29.21 32.31	15.9 13.9 12.4	.02 .03 .02	3 <1 <1 1 <1	.4 .4 .5	13.0 13.5 17.6 10.3	30 30 30 30 30	
	SDWX-10222 SDWX-10234 SDWX-10249 SDWX-10228 SDWX-10239 SDWX-10251	.45 .22 .40	<.1 <.1 <.1 <.1 <.1 <.1 <.1	.02 .02 .06	.36 .16 .36 .76	5.7 2.5 1.7 5.3	3.0 .9 3.8 4.7	.2 .1 .2	.17 < .13 < .09 < .04 < .05 <	2.05 2.05 2.05 2.05	1.1 .8 3.1 3.8	32.92 6.95 17.19 13.23	32.4 7.5 5.6 28.2	.02 <.02 <.02	4 ' <1 <1 <1	.4 .2 .1	14.5 6.1 4.0 18.9 15.0	30 15 15 30 30	
<i>:</i>	SDWX-10227 SDWX-10255 SDWX-10230 SDWX-10226 SDWX-10254	.48 1.20 .45	<.1 <.1 <.1 <.1	.06 .21 .10		5.5	6.4 9.4 6.5	.3 .6 .4	.09 < .10 < .05 < .20 < .11 <	<.05	2.6 8.6 4.8	19.91 22.11 31.39	22.0 12.2 12.7	.02 .03 .02	<1 <1 <1 <1 3	.4 .4 .5	11.2 11.0 21.8 9.3 12.8	30 30 30 15 30	
	SDWX-10233 SDWX-10224 SDWX-10237 SDWX-10252 SDWX-10259	.88 .32 .56	<.1 <.1 <.1 <.1	.10 .09 .09 1	.83 .42 1.08	4.6 3.2 4.7	3.6 8.3	.5 .3 .4	.01 < .12 < .01 < .09 < .08 <	<.05 <.05 <.05	4.1 3.7 3.8	20.68 7.55 20.30	17.4 34.8 20.9	.03 .02 .03	<1 <1 <1 <1 <1	.4 .6	11.0 13.6 11.9 14.9 17.0	30 30 30 30 30	
,	SDWX-10256 SDWX-10223 RE SDWX-10256 SDWX-10250 SDWX-10238	.72 .53 .47	<.1 <.1 <.1 <.1 <.1	.06	.90 .71 .87 .55	4.4 2.7	5.1 7.0 3.2	.4 .5	.05 < .18 < .05 < .11 < .06 <	<.05 <.05 <.05	2.4 11.0 2.2	22.74 17.27	12.1 13.6 27.4	.02 .03 .02	<1 <1 <1 <1	.4 .5 .7	10.5 8.6 10.1 16.7 18.5	30 30 30 30 30	
	SDWX-10236 SDWX-10257 SDWX-10260 SDWX-10235 SDWX-10258	.55 .76 .51	<.1 <.1 <.1 <.1 <.1	.16	.64	3.6 5.4 6.9	6.4 7.1 8.0	.5 .5 .4	.11 < .09 < .07 < .15 < .12 <	<.05 <.05 <.05	6.6 5.0 2.5	27.05 17.79 38.26	18.8 20.8 37.3	.03 .03	<1 <1 <1 9 2	.5 .4 .9	16.3 9.5 15.9 15.2 16.3	30	
	SDHX-10231 SDHX-10253 SDHX-10248 SDHX-10240 STANDARD DS2		<.1 <.1 <.1	.13 1 .07 .08	.95 .74	4.4 5.7 5.8	7.3 4.5 3.2	.4 .5 .4	.13 < .08 < .08 < .01 < .02 <	<.05 <.05 <.05	4.9 2.7 3.5	20.76 11.85 11.21	16.6 20.6 36.4	.03 .03 .02	3 <1 <1 <1 <1	.4 .5 .3	16.0 12.7 11.7 17.5 14.3	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 10 2000 DATE REPORT MAILED:

s. July 31/00

Data FA _

Page 2 (b)

ACRE ANALTHON																	<u></u>	
SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sc	Sn	S	Ta	Zr	Y	Ce	In	Re	Вe	Li S	Sample	
V, 44,	ppm	ppm	ppm	ppm		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppb	ppm	mqq	gm	
	PPm	PPIII	PP	PPIII	. FP	FF	P-P							···	••			
CCHV 1007/	71	- 1	.04	5.4	3.3	8 O	.6	.15 <	ns.	24	28 76	22.9	.03	<1	- 5	13.0	30.0	
GSMX-10264		<.1									27.57		.03	<1		10.3	30.0	
GSMX-10271	.62	<.1	.04			7.4	.6										30.0	
GSMX-10273	1.21	<.1			3.5			.16 <					.03	<1		10.5		
GSMX-10269	.44	<.1	<.02	.48	4.7	5.9	.6				35.89		.03	<1		9.2	30.0	
GSMX-10261	.58	<.1	.03	.82	3.6	6.2	.6	.14 <	:.05	2.6	29.00	13.7	.03	<1	.5	8.2	30.0	į
																		1
GSMX-10270	20	<.1	.04	58	7.6	7.1	.8	.08 <	. 05	2.5	18.09	30.9	-05	<1	.5	20.7	30.0	
					3.4		.5				29.93			<1		8.5	30.0	
GSMX-10262		<.1	.03											<1		8.8	30.0	
GSMX-10272	.67	<.1	.04		4.7		.3	.15 <	.05	۷.۷	8.03	7.0	1.02					
GSMX-10266	1.44	<.1	.71		5.2		1.6				16.65				1.0		30.0	
GSMX-10265	.65	<.1	.02	.47	3.5	9.1	.6	.15 <	<.05	2.2	37.11	22.7	.03	<1	.5	8.3	30.0	
GSMX-10268	8/.	<.1	.03	49	5.6	7.5	.5	.10 <	<.05	2.0	24.85	25.4	.03	<1	.5	13.7	30.0	,
			.02		3.5			.19 <			25.74		.02	1		7.8	30.0	,
GSMX-10267	.65	<.1					_				12.38		.04	<1		11.8	30.0	1
RSHX-10284		<.1			2.9		.7	.05 <										
RSHX-10241	.90	<.1	.07	1.28	5.6	8.0	.7	.11 <			24.80		.07	2		18.4	30.0	
RSHX-10274	.61	<.1	<.02	.42	6.2	3.6	.4	.08 <	<.05	1.6	18.28	46.3	.02	1	.6	16.1	30.0	
RSHX-10243	75	< 1	.06	1.11	4.5	9.6	.5	.08 <	<.05	3.8	27.59	18.5	.03	<1	.5	17.8	30.0	
RSHX-10283	.88			.29		6.8	.3	.26 <		2.9	87.00	4.9	<.02	<1	.5	3.3	30.0	
					5.5		.3	.19 <			37.77			<1		7.7	15.0	
RSHX-10288								.09 <			19.82			<1		16.2	30.0	
RSHX-10242	.75				4.9		.5							<1		16.8	30.0	1
RSHX-10275	.51	<.1	.04	.65	5.1	4.7	.3	.30 <	<.U5	.2.2	20.00	23.0	.03	< 3	.0	10.0	30.0	
	ŀ													_	_		70.0	
RSHX-10278	.55	<.1	.03	.59	6.2	3.2	.3	.07 <	<.05		13.95			2		19.1	30.0	
RSHX-10282	.40	< . 1	<.02	.16	4.1	1.3	.2	.21 <	<.05	.2	7.45	8.6	<.02	<1	.1	2.2	30.0	
RSHX-10244					7.5		.4	.14 <	<.05	2.6	25.41	19.3	.03	1	.5	13.3	30.0	
	75	- 1	- 03	30	7.1	2.7	.3	.04 <			13.45			3	.4	24.2	30.0	,
RE RSHX-10298			1.02	.37	7 1	2.0					13.33			<1		24.9	30.0	!
RSHX-10298	1.78	<.1	.02	.40	7.1	2.4	.2	٠ دن.		1.0	13.33	43.7	.02	-1		/	20.0	, ·
								• •			41 07	40 4		.4	,	45 /	70.0	, ·
RSHX-10245	.48	<.1			4.1		.6	.06 <			14.93			<1		15.6	30.0	,
RSHX-10279	.51	<.1	.09	1.05	3.9	5.7	.5	.05 <			15.99		.03	3		17.0	30.0	,
RSHX-10293		<.1			3.0		.5	.13 <	<.05	4.7	31.89	10.9	.02	<1	.2	18.2	30.0	
RSHX-10300					7.0		.2	.08 <	< .05	1.3	19.71	63.7		<1		19.3	30.0	!
					4.2		.4				17.68			<1		17.9	30.0)
RSHX-10246	.74	<.1	.09	1.12	4.2	J.4	• **	.00 \		7.3		20.3	.02	- 1	•			1
	1	_						25	. 05	^	/4 77	. .	- 02	2	2	7 0	7 5	
RSHX-10292	1.66	<.1			3.3			.25 <			41.33			- 4		3.8	7.5	
RSHX-10276	.64	<.1	.04	.57	5.9	3.6	-4	.06 <			13.55			<1		20.2	30.0	
RSHX-10291	.85	<.1	.16	.73	3.3	7.4	.5	.06 <	<.05	7.1	16.18	12.2	.02	<1		20.8	30.0	
RSHX-10280	.65	<.1			4.0		.3	.11 <	<.05	2.5	22.59	16.1	.02	1	.4	12.3	30.0	1
STANDARD DS2	3.32				13.0						8.03			<1	.6	14.8	30.0	,
JIANDARD USZ	3.72		.,,,		.5.0	3.0				/								

Page 3 (b)

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	\$ %	Ta ppm	Zr ppm	ppm Y		In ppm	Re ppb	Be ppm		Sample gm		
RSHX-10285 RSHX-10277 RSHX-10295 RSHX-10286 RSHX-10297	.77 .63 .98	<.1	.05 <.02 .07	.79 .68 .50 .99	6.8 7.8 4.4	4.1 2.2 10.4	.4 .3 .5	.02 .08 .06	<.05 <.05 <.05	4.2 1.0 5.0	20.71 12.58 18.71 26.78 13.52	58.1 60.5 19.4	.03 .02 .02 .03	<1 <1 <1 <1 <1	.3 .4 .5	11.1 25.0 13.7 13.1 17.4	30.0 30.0		
RSHX-10289 RSHX-10294 RSHX-10247 RSHX-10296 RSHX-10287	1.51	<.1 <.1 <.1	<.02 <.02	.45 .44 .61 .24	7.5 6.8	1.8 3.0 1.3	.2	.08 · .13 · .12 ·	<.05 <.05 <.05	1.0 1.1 .8	30.32 19.09 21.60 30.79 34.10	47.7 21.8 51.0	<.02 .02 <.02	<1 <1 <1 <1	.3 .4 .4	9.4 14.1 13.5 10.8 14.1	30.0 15.0		
RSHX-10299 RSHX-10281 RSHX-10290 GEBX-10321 GEBX-10340	.52 .47 1.28	<.1 <.1	<.02 <.02 .02	1.96 .15 .36 .45 .54	4.0 5.7 2.6	1.4 4.8 2.5	.3 .3 .3	.23 · .17 ·	<.05 <.05 <.05	.3 1.3 1.5	7.13 8.50 24.10 23.28 9.80	11.0 21.7 6.0	<.02 .02 <.02	2 <1 <1 2 1	.3	19.7 2.2 7.6 5.7 7.6	7.5 15.0 15.0	,	
GEBX-10331 GEBX-10338 GEBX-10325 GEBX-10339 GEBX-10327	.61	<.1 <.1 <.1	<.02 .08 .06	1.22 .41 .86 .43 .85	4.2 3.6 3.0	5.3 7.1 3.3	.3 .4 .2	.18 · .11 ·	<.05 <.05 <.05	1.3 4.3 3.2	41.43 27.09 26.21 8.54 12.74	13.7 13.2 9.8	.03 .02 .02 .02 .03	<1 <1 1 1 <1	.2 .5 .1	15.0 7.5 9.5 6.9 11.7	15.0 30.0 30.0		
GEBX-10322 GEBX-10335 GEBX-10329 RE GEBX-10336 GEBX-10336	.69	<.1 <.1 <.1	.02 .11 .17	.51 .69 .87 1.02 1.03	2.2 4.1 3.9	10.9 5.7 6.9	.5 .4 .6	.19 .10 .05	<.05 <.05 <.05	3.5 5.7 8.1	23.31 46.54 18.56 15.51 15.95	11.3 13.8 18.1	.02 .02	2 <1 <1 <1	.6 .3 .3	6.2 5.7 11.4 12.0 12.6	15.0 30.0 30.0		
GEBX-10324 GEBX-10332 GEBX-10337 GEBX-10323 GEBX-10334	.41 1.21	<.1 <.1 <.1	.10 <.02 .20	.93 .97 .38 1.01 1.18	5.6 4.9 3.3	8.4 2.8 7.9	.5 .3 .9	.08 - .08 -	<.05 <.05 <.05	6.0 1.1 9.9	34.03 23.60 9.12 19.09 30.12	18.7 19.2 13.7	<.02 .03	<1 <1 <1 <1	.5 .2 .3	9.2 16.5 10.7 13.8 10.4	30.0 30.0 30.0		
GEBX-10328 GEBX-10333 GEBX-10326 GEBX-10330 STANDARD DS2	.53 1.35 .59 .70 3.27	<.1 <.1	.69 .10 .12	.39 .83 .98	3.7 5.0	8.8 6.0 7.4	1.3 .5 .6	.03 · .07 ·	<.05 < <.05 <	41.9 5.3 5.9	13.53 15.88 17.04 20.80 8.40	33.3 16.2 18.1	.05 .02 .03	<1 <1 <1 <1 <1	.8 .3 .4	9.5 10.8 10.6 13.6 13.6	30.0 30.0 30.0		

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA__

Page 4 (b)

ACHE ANALYTICAL																			-
SAMPLE#	Cs	Ge	Hf	ИÞ	Rb	Sc	Sn	s	Ta	Zr	Y	Ce	In	Re	Be		Sample		
	bbu	ppm	ррm	bbw.	ppm	ppm	ppm	- %	ppm	ppm	ppm	bbw	ppm	bbp	ppm	ppm	ı gm		\dashv
CONV 107/2	1 57	<i>-</i> 1	0/.	1.01	6.4	4.9	.5	.05 <	: 05	3.3	20.64	45.6	.04	<1	.5	21.3	30		
GSMX-10342	1.57		.05	.91			.5	.18 <			28.19		.02	2		8.9			ı
GSMX-10358	.39				4.9		1	.09 <			22.81		.02	<ī		18.2			ı
GSMX-10347		<.1					. 1	.06 <			16.42		.02	2		21.9	30		- 1
GSMX-10343	1.33			.23			.2				22.76		.02	<1		9.5			ŀ
GSMX-10357	.52	<.1	.13	.92	2.8	1.1	.6	.10		5.6	22.10	11.5	.02	-1		/			1
11701 vuon	17	- 1	ກວ	5 2	5.8	2 8	.3	06.4	05	1 4	13.13	34 4	.02	3.	2	12.7	30		- 1
GSMX-10346	.67						.3	.07 <	- 05	2 0	18.09	41 3	.03	<1		18.4			- 1
GSMX-10341	1.42		.04								16.44			<1		10.5		•	- 1
GSMX-10359	.66				3.5		.0	.03 4	. 05	0.2	70.44	11-1	.03	<1		6.3			1
GSMX-10356		<.1			3.8		.3	.16 <	<.05	1.0	30.40	44.1	.03			12.2			i
GSMX-10349	.68	<.1	.03	.68	5.3	5.7	.5	.11 <	<.05	2.4	27.76	42.8	.03	<1	.4	12.2	30		- 1
	1						_			~ ^	70 00	40.7	07	4	,	44 7	7 30		
GSMX-10352	.68	<.1		1.04			.5				32.22			- 1		11.7			- 1
GSMX-10355	.62	<.1	.16				.6				19.15			<1		10.6			
GSMX-10344	.95	<.1	.02				.3	.07 ∢	<.05	1.7	15.19	39.1	.03	1		23.4			
GSMX-10360	.87	<.1	.07	.95	3.7	6.1	.5				25,39			4		9.7			
RE GSMX-10344	.92	<.1	<.02	.60	6.9	3.5	.3	.06 ⋅	<.05	1.7	14.59	38.6	.03	<1	.5	22.8	3 30		
	1														-		. 70		- 1
GSMX-10354	.61	<.1					.6				21.51			<1		9.9			
GSMX-10348	.71	<.1	<.02	1.13	5.4	1.9	.3	.12	<.05		7.27			2		16.1			
GSMX-10350	.50	<.1	<.02	.43	5.4	5.0	.3	.09	<.05		42.03			2		11.1	1 30		
GSMX-10345	.83	<.1	.02	.32	5.2	4.0	.3	.17	<.05	1.1	22.91	16.9		<1		11.3	30		
GSMX-10353		<.1				5.4	.3	.18	<.05	1.0	39.61	23.4	.02	3	.3	4.9	9 15		
401M 10333	'''																		i
GSMX-10351	1.02	<.1	.03	.80	5.7	10.6	.5	.14	<.05	3.0	34.75	27.0	.03	<1		16.2			Ì
STANDARD DS2	3.21			1.39							7.67				.5	14.7	2 30		
STANDARD DOL													-						- 1

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA__

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002291R Page 1 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE	LOI
SDWX-1 SDWX-1 SDWX-1 SDWX-1 SDWX-1	39.3 0221 21.1 0232 34.9 0225 34.8 0222 24.5
SDWX-1 SDWX-1 SDWX-1 SDWX-1 SDWX-1	0228 46.3 0239 16.6
SDWX-1 SDWX-1 SDWX-1 SDWX-1 SDWX-1	255 0230 18.6 0226 56.7 0254 29.6
SDWX-1 SDWX-1 SDWX-1 SDWX-1 SDWX-1	0224 36.3 0237 4.8 0252 26.3
SDWX-10 SDWX-10 RE SDWX SDWX-10 SDWX-10	0223 K-10256
SDWX-10 SDWX-10 SDWX-10 SDWX-10 SDWX-10	0260 119.0
SDWX-10 SDWX-10 SDWX-10 SDWX-10 STANDAI	0253

Samples beginning 'RE' are Reruns and 'RRE' are Reject Repuns. - SAMPLE TYPE: MOSS MAT

DATE REPORT MAILED: Lec 8/00 SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUL 10 2000

Page 2

ACHE ANALYTICAL		
	SAMPLE#	LOI
	GSMX-10264 GSMX-10271 GSMX-10273 GSMX-10269 GSMX-10261	37.7 46.7 47.0 48.3 48.3
•	GSMX-10270 GSMX-10262 GSMX-10272 GSMX-10266 GSMX-10265	21.8 47.6 40.2 7.4 50.3
	GSMX-10268 GSMX-10267 RSHX-10284 RSHX-10241 RSHX-10274	32.1 54.5 15.2 28.7 25.6
	RSHX-10243 RSHX-10283 RSHX-10288 RSHX-10242 RSHX-10275	26.4 71.5 60.5 27.6 27.2
	RSHX-10278 RSHX-10282 RSHX-10244 RE RSHX-10298 RSHX-10298	19.2 64.3 44.8 10.6 10.7
,	RSHX-10245 RSHX-10279 RSHX-10293 RSHX-10300 RSHX-10246	16.2 13.4 33.0 16.9 14.3
	RSHX-10292 RSHX-10276 RSHX-10291 RSHX-10280 STANDARD DOLOMITE	72.4 12.2 15.0 28.5 46.0

Page 3

ACHE ANALYTICAL

ACHE ANALYTICAL		
	SAMPLE#	LOI
	RSHX-10285 RSHX-10277 RSHX-10295 RSHX-10286 RSHX-10297	18.1 7.3 26.9 22.6 10.8
	RSHX-10289 RSHX-10294 RSHX-10247 RSHX-10296 RSHX-10287	47.2 31.6 41.0 35.3 31.3
	RSHX-10299 RSHX-10281 RSHX-10290 GEBX-10321 GEBX-10340	5.8 60.3 43.3 66.0 14.9
	GEBX-10331 GEBX-10338 GEBX-10325 GEBX-10339 GEBX-10327	46.6 52.3 31.4 11.4 21.5
	GEBX-10322 GEBX-10335 GEBX-10329 RE GEBX-10336 GEBX-10336	66.9 50.5 23.6 13.0 12.8
	GEBX-10324 GEBX-10332 GEBX-10337 GEBX-10323 GEBX-10334	48.1 27.9 19.4 14.7 34.6
·	GEBX-10328 GEBX-10333 GEBX-10326 GEBX-10330 STANDARD DOLOMITE	10.6 7.3 17.4 25.9 46.0

Page 4

ACME ANALYTICAL		ACRE AND TITUL
	SAMPLE#	LOI %
·	GSMX-10342 GSMX-10358 GSMX-10347 GSMX-10343 GSMX-10357	12.3 41.9 26.3 17.8 27.1
	GSMX-10346 GSMX-10341 GSMX-10359 GSMX-10356 GSMX-10349	18.0 13.2 16.8 52.2 36.2
	GSMX-10352 GSMX-10355 GSMX-10344 GSMX-10360 RE GSMX-10360	32.0 17.3 23.7 36.3 36.1
	GSMX-10354 GSMX-10348 GSMX-10350 GSMX-10345 GSMX-10353	21.6 36.7 32.0 45.0 49.5
	GSMX-10351 STANDARD DOLOMITE	38.5 46.0

ACME ANALYTICAL LABORATORIES LTD.
(ISO 9002 Accredited Co.)

852 R. HASTINGS ST. VANCOUVER BC VOA 1RO

Phone (60 1,233-3200 FAX 1004) 250-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002373

Page 1 (a)

稅

PD-17870		ppm 66, 27	ppm	ppm	ppb	ppm	DOM	200						-		Sb		٧		P			•		•	~~~	8	x	9	0.00	nnm	ppb	D D D	DOM	nnm
		66 27						- ppiii	X	ppm	ppm	ppp	ppm	ppm	ppm	ppm	ppm	ppm	*	& 	ppm	ррп	X	ppm		ppm				ppm	ppiii	ppu	hhui.	ppii	PPin
		91.77		63.1			31.4 30.2				.3			29.2 28.7		.55 .61								63.0 280.5			3.80 3.28			<.2 <.2		87 39		.02 .02	
PD-17872	.45 1	52.31	5.10	112.0	83	104.2	60.4	1611	6.72	13.4	.5	4.3	1.5	46.4	.10	1.03	.06	212	1.66	.021	7.9	119.3	2.06	214.3	.433		4.32			<.2		65		.02	
PD-17867 PD-17875		164.38 148.02					43.5 66.2				.2 .3			13.2 23.6										118.8 143.0			2.20 3.97			<.2 <.2	.02	27 40		.02 .02	
PPD-17861	. 28	97.21	4.34	95.2			36.9				.2	3.0	1.4	36.5	.08	.65								200.7			3.53			<.2		40		<.02	
PPD-17876		100.15					28.5 32.6				.2 .3			47.5 21.0		.55 .74								298.8 78.0			2.68 3.45				.02 .02	44 65		.02 02.>	
PPD-17871 PPD-17865		43.38 109.51					25.6							15.0	.09	.57								108.9		_	2.39	.016	.02	<.2	.03	41	.4	.03	7.6
PD-17874		128.71			26	103.5	54.8	1213	5.93	4.2	.1	2.2	1.0	24.0	.06	.77	. 05	192	1.38	.044	4.2	83.7	2.01	144.0	.449	3 :	3.49	.023	. 03	<.2	.02	18	.4	.02	11.9
PPD 39		76.69 31.80					24.0 13.7							27.4 48.6	. 07 . 05	.53 .09								262.1 79.6			2.71 4.17			<.2 <.2		28 39		.02	
PPD-17866 : PPD-17878		62.05					27.5							10.4	.01	.54	. 07	117	.83	.054	6.2	69.5	.98	117.0	.307	2 :	3.30	.015	.02	<.2	.02	45	.5 -	<.02	7.3
PD-17862		93.10					36.7							35.9		.61					_			195.5 191.5			3.55 2.49			<.2 <.2	.02	30 24		<.02 <.02	
PD-17879	. 59	53.74	5.4/	54.4	24	47.0	20.4	\$ 32	3.65	3.6	.4	5.1	1.7	20.2	.07	.36																			
PD-17864		219.03					66.0					4.9		45.6 24.7		1.74 .60								35.6 269.8			4.38 2.67			<.2 <.2	.03	70 36		.02	
PD-17868 PD-17877		73.39 41.02					23.9				.3 .2			23.3										192.4			2.79				.02	16	.3 •	<.02	9.1
PD-17873	.61	135.26	4.38	103.8	45	77.1	42.4	1355	6.32	11.5	.1			80.1										258.6		_	3.55			<.2		49		.02	
PD-17880	.46	176.92	4.80	73.8	25	50.5	23.9	881	3.82	3.7	.3	5.1	1.6	16.7	.08	. 39	.07	143	1.30	.013	7.3	70.2	1.26	242.4	.432	3 /	2.89	.024	.04	<.2	.03	27			
		80.57					23.9							16.2		. 39								229.3			2.88 2.36			<.2 <.2		28 47		.03	
		32.79 44.47			_		18.9 21.8		_		.5 .9			12.0 19.6		.41 .93	.13							154.3 129.5			2.59			<.2				.05	
	. 26	34.64	4.36	49.0	26	46.0	15.0	432	2.96	3.0	.3	2.3	2.1	20.6	.06	.21	.06	94	1.09	.048	7.6	56.3	1.02	181.6	.272		2.55			<.2		28		<.02	
EBD-17796	.57	32.16	8.70	73.2	134	50.1	18.1	366	3.48	6.7	. 5	4.5	4.2	10.6	.11	. 43	. 13	88	.53	.060	16.5	68.2	.82	174.0	.186	1 7	2.51	.008	.04	<.2	.04	44	.3	.02	0.4
		15.46																						152.0			1.49				.05	35		.04	
		40.09			530	52.9	20.5	743	4.66	18.6	1.0	6.7	6.0	18.3	.33	.77 25	.31	49 153						134.8 107.5			2.56 3.25			<.2 <.2		137 96		.05 .02	
EBD-17788 EBN-17797		33.08 49.72					24.8				.4			12.4		.53	.13							176.7		_	2.61			<.2		44		.02	
E 7790		35.10					17.8				. 4			19.5	.27	.44	.09							161.8		<1 2	2.31	.014	.04	<.2	.03	37	.4	.02	6.6
		59.60										38.3	.8	28.8	.19	.38						49.4		204.5			1.59			<.2		95	.6		
		84.84 34.47												20.3		.53 .53	.22 .09	119 156				150.7 74.9		331.8			3.43 2.87			<.2 <.2		167 91	.6	- 1	_ 1 1
EBD-17792 EBD-17784		34.47 47.02									.s .6					. 53 . 45		121						220.7		1 2	2.69	.011	.03	<.2	.03	71	.5	.02	8.4
TANDARD DS2 14		.29.75														9.23 1	0.60	75					.52	126.0	.088	2 :	1.66	.029	. 14	7.1 1	1.78	245	2.5 1	.83	5.8

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Keruns and 'REE' are Reject Reruns.

DATE RECEIVED: JUL 13 2000 DATE REPORT MAILED:

Data 1/FA_

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A002373 Page 2 (a)

		A	
٦			_
CHE	AWA	LY7]	CAL,

ACHE ANALYTICAL																															=		
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni ppm	Co t	in Fe	As	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V	Ca %	P	La ppm	Cr ppm	Mg %	Ва ррп	Ti % p	B pm	Aì %	Na %	Κ %		TI !	Hg S pb pp		Ga ppm
	ppm	ppin	ppm	phin	PPD	PPIII	bbin bi	~			64-				<u>' </u>	<u> </u>	<u> </u>																
GEBD-17791 GEBD-17785	.81	41.17	6.17	82.3	145	60.4	25.2 5	15 4.02	9.2		14.3	1.3		.22	.43 .91 47	.09	32	.49	.030	9.9	68.2 84.9 76.3	.90 1 1.34	38.2 1119.3 48.2	. 272 . 368	1 3 2 3	.30 .46	.007 . .019 .	02 03	.2 :.2	.05 1 .02	30 1 . 76 <i>.</i>	5 .05 5 <.02	7.3 11.2 9.0
GE8D-17793 GEBD-17899 GEBD-17800	15.43 2	57.03 228.27 36.09	39.06	63.3	171	13.8	5.9 2	52 3.36	104.3	2.6	6.3	11 3	9.7	11	73	42.55	40	.11	.075	25.5	24.2	.43	59.5	.107 .173	<1 1 <1 2	.79 .40	.025 .009	.29 13: .04			<5 . 57 .		6.0 6.1
GEBD-17786 GEBD-17794 RE GEBD-17794 STANDARD DS2	.36	31.75 81.27 80.12	4.97	46.1	18	40.5	15.3 9	23 3.07 10 3 04	2.7	.2	2.5 3.4 5.5 214.7	1.8	17.3 16.7 20.0 28.1	.09	.24 .53 .65 9.75	.06 .06	97 96	.79 .78	.024	7.1 9.8	44.8 44.8	.98 .96	111.2 406.7 392.6 146.3	.296 .286	1 1 2 1	.91	.009	.02 .02	<.2 <.2	.02	20 . 28 .	2 .02 9 .03	9.5 2 5.7 3 8.0 6.2

852 R. HASTINGS ST. VANCOUVER BC V6A 1R6

Page 1 (b)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002373 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	\$n	S v	Ta ppm	Zr ppm	Y	Ce ppm	In mon	Re	8e ppm		Sample gm	
	ppm	ppm	ppm	PPIII	ppm	bbut	ppm		Phin	Phu	- Phu	Phil	hh.	مرابا	htv	Lh.		\dashv
PPD-17870	1.12	<.1	.35 1	1.23	1.6	9.7	1.0				23.38		.05	<1		18.8		
PPD-17863	.93	< . 1			3.1		.8				16.94		.04	<1		18.8		
PPD-17872		<.1			1.9		.9				32.32			<1		24.8		
PPD-17867	.53		.38								11.45			<1		11.7		- 1
PPD-17875	1.60	<.1	.30	.47	3.1	9.0	.9	.01	<.05	14.3	13.21	24.8	.04	<1	.ó	22.2	15	
222 47044	4 04			27		44.0	_		. 05	47 (17 0/	14 1	0/	٠.	E	19.3	70	
	1.01										17.84		.04	<1		13.1		
PPD-17876		<.1			2.3						15.92		.03	<1				
PPD-17871			.28 1				1.0				25.05			<1		22.2		
	1.10				1.8						13.72			<1		12.4		,
PPD-17874	1.35	<.1	.37	. 18	2.1	8.3	.9	.01	<.05	15.8	14.45	13.5	.04	2	.6	19.7	30	}
PPD-17869	70	<.1	42	ng.	3.1	11 በ	7	< 01	< 05	15 N	17.45	18.8	.03	<1	. 3	15.5	15	
PPD-17866	1.28										15.68		.05	<1		10.9		
PPD-17878					3.3						9.90			<1		15.1		
	1.00				3.0						16.47			<1		19.5		
PPD-17862		<.1									11.40			<1		12.7		
PPD-17879	.01	<.1	.25	.00	3.7	0.1	.0	.01	\.U.	10.1	11.40	10.0	.0.	``	••	16.1	50	
PPD-17864	1.37	.1	.62	.09	1.1	20.9	1.1	.01	<.05	22.0	28.42	11.0	.05	<1	.5	10.5	30	ĺ
PPD-17868	.66	<.1	.40	. 11	2.7	11.7	.7	<.01	<.05	16.0	18.55	20.0	.03	2	.2	15.3	30	
PPD-17877	.59	<.1			2.9		.7	<.01	<.05	16.0	13.22	17.8	.03	<1	.4	16.5	30	
	1.42										25.68		.05	<1	.4	23.0	30	
PPD-17880		< 1	.40		2.7						13.00		.03	<1	.5	14.1	30	
							_								_			
RE PPD-17880		<.1			2.6						13.15		.03	<1		13.7		
GEBD-17795		<.1	.09		4.8						7.86		.03	<1		19.8		
GEBD-17781		<.1	.04		6.5		.3				9.32		.05	<1		17.6		
GEBD-17789	.42	< .1	.19				.6				8.98		.02	1		12.3		
GEBD-17796	.75	<.1	.11	.93	7.3	5.2	.5	-01	<.05	6.4	10.25	36.0	.03	<1	.4	19.2	30	j
AERD 47707	4 /4		0/ 4		7 (2 7	4 7	. 02	4 OE	2.2	7 00	14 /	07	-1	7	6.2	30	
GEBD-17787	1.41	<.1			7.6						3.08		.03	<1 -1		20.2		
	1.04						1.4				9.46		.05	<1				J
	1.14										9.61			<1		13.9		Ì
GEBD-17797			.10 1				.5				8.59		.03	<1		17.5		ſ
GEBD-17790	.65	< .1	.10	.83	3.9	4.6	.5	.02	<.05	5.5	9.34	28.7	.03	1	.5	15.9	30	ļ
GEBD~17783	1.64	< 1	<.02 1	١ 41	6.2	2.6	.8	.06	< . 05	1.1	9.41	32.3	.04	<1	.5	16.0	30	
GEBD-17798		<.1			6.6						28.15		.03	<1		27.1		
			.14 1								7.26			<1		24.0		
							.7				22.99			<1		13.0		1
GEBD-17784	.72	<.1			3.3						7.53			<1		13.7		ļ
STANDARD DS2	3.22	۲.۱	.05	1.41	14.5	۷.۶	د. د.	.03	\.U0	2.1	1.23	2101	J.04	`'		1.3.1	JU	

GROUP 1F30 - 30:00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Keruns. - SAMPLE TYPE: -230 TILL

JUL 13 2000

......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

AA
4343
ACHE ANALYTICAL

								=::-==										ALTE AVALTE	TOOL .
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Ppm div	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	PPm Mqq	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm		
GEBD-17785 GEBD-17793	1.43 8.43	<.1 <.1 <.1	.42 .30 .09	1.29 1.03 2.41	6.3 2.1 31.7	5.9 6.8 3.5	1.0 .8 6.6	.01 .02 .07	<.05 <.05 <.05	19.1 15.5 4.7	7.49 10.46 9.70 7.97 6.45	32.7 10.5 46.5	.05 .04 .31	<1 <1 <1 3 <1	.8	16.2 22.6 16.7 21.0 17.0	30.0 30.0 30.0 7.5 30.0		
GEBD-17794 RE GEBD-17794	.53 .75	<.1 <.1	.36 .36	.21 .34	1.2 1.5	5.3 5.6	.6 .6	<.01 .01	<.05	11.4 19.3	11.12 9.51 9.72 7.67	24.5 36.6	.02	<1 <1	.4 .5	10.4 8.0 11.3 13.6	30.0 30.0 30.0 30.0		

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Accredited Co.)

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002373R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

		ovigrue in unit	529 A. CAS	338.345	s 1-900 rgc.	rgang nage	88719990	9.32.38	80-3003	0.36000	20000000000	<u>Northern</u>	9-3-5 sta		:030, <u>13</u>	1000 e e	20 1 2 2 4 	<u></u>	<u> </u>	<u>: </u>		·	Single Control of the
SAMPLE#	sio2	A1203	Fe203	MgO	CaO	Na20	K20 Ti	02 P	205	MnO	Cr203	8a	Ni	Sr	Zr	Y	Nb	Şc	LOI	TOT/C	TOT/S	SUM	
1	1 %			-	%	%	%	%	%	%		ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	٠ %	%	%	
												- <u></u> -		<u> </u>									
PPD-17870	43.41	12.84	10.51	3.47	4.23	1.72	.44 1.	64	.24	.12	.024	270	49	121	128	35	<10	27	21.3	5.89	.03	100.02	
PPD-17863	56.99	12.16	9.82	4.68	4.75	1.89	.66 1.	47	.16	.17	.029	847	73	120	134	29	<10	31	6.8	.36	<.01	99.72	
PPD-17872	49.92	13.17	11.73	4.81	4.22	1.73	.53 1.	50	.07	.24	.027	558		120		43	10	35	11.9	1.88	.01	99.96	
PPD-17867	61.89	11.12	7.67	4.26	5.93	2.16	.66 1.	61	.09	.18	.028	686	71	134	174	31	<10	30	4.3	34	<.01	100.03	
PPD-17875							.69 1.						103		141	24		24	10.6	1.66	.01	99.97	
	1				•																		
PPD-17861	53.93	12.67	10.56	4.98	5.18	1.92	.60 1.	64	.12	-18	.028	614	79	133	133	31	10	32	8.1	1.02	<.01	100.03	
PPD-17876		11.41					.68 1.				.030			154		32	<10	30	5.2	. 13	<.01	99.94	
PPD-17871		12.22												120		39	10	27	16.3	3.86	.03	99.96	•
PPD-17865							.65 1.							129		30	10			1.17			
PPD-17874							.46 1.						105				<10		7.4		<.01	100.09	
112	- ' ' ' '	12.77		0	0.03				• • • •	•	.033	,02	.05	,	,		-,0			•••	•••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
PPD-17869	62, 18	11.30	8.28	3.82	4.48	1.90	.81 1.	38	. 13	-16	.025	900	79	125	150	31	10	28	5.2	. 17	<.01	99.82	
PPD-17866							1.25 1.				.010		<20				<10		7.3	.69	.02	100.00	
PPD-17878							.71 1.							110		27			9.5			100.17	
PPD-17862		12.78									.032				132	32	10		7.9		<.01	100.01	
PPD-17879							.69 1.				.026			137		27	12		5.8	.70	.01	100.10	
)	01,07	11.01		7.01	7.,,	1.,,	.0, 1.		.01	. 10	.020	4,50	77	137	140		,_		۵.0	.,,	.01	100110	
PPD-17864	46.40	13,48	13 45	6.24	7.11	2.00	.28 1.	64	.13	25	-030	143	104	100	98	37	<10	42	9.0	. 15	<.01	100.08	
PPD-17868							.78 1.							128		33	11		5.4		<.01	100.05	
PPD-17877		11.41					.70 1.								155	28	10		4.9	34	.02	99.96	
PPD-17873		12.63					.62 1.				.028			171			<10		7.0	-	<.01	99.85	
PPD-17880							.59 1.							122			<10		5.4		<.01	100.09	
770 11000	101.54	11,34	0.10	4.22	4.70	1.70		J U	.01	. 10	.020	GLY	ÇÜ	164	(7)	۲,	-10	-		,,,	1,01	100.07	
RE PPD-17880	61.53	11.33	a no	4.10	4 95	2 01	.61 1.	52	04	16	026	825	56	123	143	28	<10	27	5.5	.55	<.01	100.10	
GEBD-17795							1.50 1.				.018			117		27	15			1.44	.03	99.99	
GEBD-17781							1.06							92			16			5.86	.04		
GEBD-17789							.88 1.							149		25	12		6.6	,84		99.98	
GEBD-17796							1.41 1.				.022			116		27	15			1,25		99.99	
GEBD-11190	02.39	12.34	0.76	2.13	2.34	1.00	1.41 1.	20	. 16	.07	.022	1047	40	110	172	21	10	17	4.5	1,23	1.01	77.77	
GEBD-17787	61 75	0.30	7 /5	1 03	1 17	1 17	1.14 1.	43	22	06	012	518	- 21	20	193	16	13	11	15 1	4.40	.03	100.03	
GEBD-17782							1.20				.014		40	98	200	25	17			5.47		100.00	
GEBD-17788							.62 1.				.019			114			<10			5.54	.01	100.00	
GEBD-17765							1.03 1.				.020				151	25	10					100.03	
GEBD-17790							1.09 1.				.020			136		26	14	_				100.03	
9500-17770	101.55	11.07	0.00	2.77	٧. ٧	1.00	1.07 1.		. 10		.020	301	0.5	170	111	20	14	17	4.0	1.13	1.07	100.04	
GEBD-17783	48.60	9.63	8 28	1.05	1 98	1 22	1.02 1.	12	34	nο	013	700	<20	104	185	23	12	12	26. 6	8.86	.05	100.16	
GEBD-17798							1.46 1.				.030			100		43	12			3.75	.01		
GEBD-17792					_		.66 1.							104			10			6.09	.02	99.86	•
GEBD-17792							.65 1.							121			<10			4.15	.02	99.82	
STANDARD SO-15/CSB														398			27			2.40		99.66	
31KHDKD 30-13/C3B	17.32	12.09		7.67	3.70	C.4C	1.00 1.	17 2		.40		1703	- (7	270	1004			- 12		2.40	2.32	77.00	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

NOV 22 2000 DATE REPORT MAILED:

7.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data 🖔

Page 2

																							NOTE NOTE THAT
SAMPLE#	Si02	A1203	Fe203	Mg0 %	CaO	Na20	K20 T	i02 P2	05 %	MnO 0							Nb		LOI	TOT/C	TOT/S	SUM %	
												PMII	PPI	P	- PMII	Phil	Phu	-PMII					
			8.24											96	140	20	<10	19	35.0	11.18	.03	100.08	
GEBD - 17785	57.43	11.15	6.98	2.98	2.57	1.28	.61 1	.25 .	15	-10	-015	2394	38	104	134	22	<10	20 '	15.3	3.68	.01	100.12	
GEBD-17793			8.57												121		<10			4.87	.04	99.97	
GEBD~17899	65.65	13.47	5.61	1.30	1.21	2.43	3.07	.85 .	19	.06 4	<.001	355	<20	119	332	30	15	10	6.0	1.08	-06	99.95	
			6.92											99	153	23	10			3.40	.02	100.02	
GEBD-17786	37.19	10.88	9.50	2.30	2.55	1.09	.43 1	.32 .	33	.09	.012	264	23	92	103	21	<10	17	34.3	11.18	.05	100.05	
GE8D-17794	63.78	10.80	7.11	4.45	5.56	2.09	-64 1	-49 .	11	- 19	-022	912	45	146	154	29	12	31	3.7	. 17	<.01	100.10	
RE GEBD-17794	63.75	10.87	6.99	4.48	5.58	2.10	.65 1	.48 .	06	.19	.025	921	42				<10		3.8		<.01	100.13	
STANDARD SO-15/CSB	49.87	12.23	7.28	7.24	5.85	2.40	1.85 1	.76 2.	69 1	1.39 1	.059	1926	78	395	941	22	21	12	5.9	2.44	5.32	99.93	

ACMS ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC VOA 1R6

Phone (604) 253-3158 FAX (804) 255-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

全全

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002374
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (a)

	<u> </u>			<u> </u>		<u> </u>		<u></u>	. : 5					3 21.3		<u> </u>	200 200					<u></u>				*****	2007-20	<u></u>		*1 /	U- C	Ta	Co
SAMPLE#	Mo	Cu	₽b	Zn	Ag	Ni	Co	Mn			U				Cd	Sb	-	٧			La	Cr					A1	Na	K W % ppm	וו וו	nd noo	, 16	nom
	ppm	ppm	ррп	ppm	ppb	ppm	ppm	ppm	X	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm		X	ppm	bbu		ppm	<u>*</u>	ppm			& ppiii	ppii pi	bo bb	- Ppin	- pp.,
CDIN 1400F	20	42.00	0.72	120 1	100	20.2	17 4	076	2 67	16	7	3 5	1 1	21 R	.20	. 38	08	103 1	1.17	064	8.8	71.1	.87	188.3	.158	2 1	.76	.008	.05 < .2	.04 8	84 1.8	.03	5.2
SDWX-14005		43.99			189	35.9	17.4	270	2.0/	0.0		2.9				.50	.06	86 1	50	070	9 0	67.7	88	185.9	.126	3 2	.13	.006	.08 < .2	.04 13	31 .9	₹.02	5.4
SDWX-10381		53.25		45.0		32.4						12.2				.47	10	53	46	059	12 3	44 0	67	139.0	.144	<1 1	.18	004	.04 <.2	.03 4	44 .:	3 < .02	3.3
SDWX-14008		34.47		04.8	74	32.4	19.3	2072	4.00	4.0					.51	.83	14	97	93	125	8 7	109 4 1	19	512.3	.078	1 3	.26	.006	.11 <.2	.08 1	55 .	02.> ذ	7.9
SDWX-10389	1.15	53.41	10.65	99.8	335	128.1	33.3	3072	4.30	4.1						.23	0.4	66 3	. 32	080	5.4	73 7 1	82	276.1	144	3 2	.14	.010	.04 <.2	.03	83 1.7	.02	5.1
SDWX-10385	.46	62.75	3.76	91.5	90	135.0	20.2	910	4.11	1.1	. ა	2.9	.0	30.1	.11	.23	.04	00 .	1.52	.033	J.4	70.7		2,0.1									
COLIV 14004	67	129.95	10 22	104 6	208	73 2	20 8	914	3 53	9 1	3.0	5.0	9	42.5	.42	.89	.10	87	1.70	.099	13.1	85.3	.29	339.3	.132	3 2	2.59	.009	.11 <.2	.08 1	73 4.	1 .03	6.3
SDWX-14004	.07	49.43	17.02	06.2	120	38 0	22.7	3434	3 30	5 R	5.5	1.2				.41	.09	69	.59	.083	14.1	53.6	.74	289.9	.101	<1 1	.45	.005	.08 <.2	.04 1	03 .	ô <.02	3.6
SDWX-14009	1 10	70.06	2 61	120 /	212	90.3	25.0	7436	3.31	12.2		8.2				.76	.07	73	1.86	.102	9.7	72.1	.97	644.0	.079	3 2	2.17	.009	.12 <.2	.05 1	69 2.	0 <.02	5.0
SDWX-10387	7.10	92.14	0.04	04.2	220	41 7	10 0	1007	3.07	6.3					.88	.53	10	83	1.63	.090	16.0	57.7	.85	333.0	.103	2 2	2.14	.010	.10 <.2	.04 1	33 .	7 <.02	5.5
SDWX-14013		75.43										7.5				.76	07	89	1 34	067	7.6	88.7	2.12	564.4	.142	3 2	2.19	.015	.06 <.2	.04 1	10 2.	3 <.02	6.3
SDWX-10384	./1	75.43	5.70	70.0	105	200.0	41.1	2332	3.02	3.2	. 7	/	1.0	07.0		.,,																	
s' \4010	62	55.16	15.05	78 N	170	42 1	17.8	993	2.64	4.7	. 5	107.2	1.6	17.8	.36	.40	.11	64	.62	.076	11.9	55.2	.69	260.2	.112	<1]	. 58	.006	.08 <.2	.04	66 .	3 <.02	4.3
SL 10390	72	42.90	4 80	50.0	148	26.4	12.5	3579	1 74	3.8		1.3				.25	06	54	1.22	.072	9.0	35.9	.48	244.0	.083	4 3	1.30	.006	.06 < .2	.04 1	21 .	6 <.02	3.2
SDWX-14003	.72	52.17	10 09	160.7	145	44 3	19.0	755	3 23	17.5		133.3				1.44	19	85	89	.063	11.5	55.4	.85	215.0	.141	<1 1	1.73	.007	.08 <.2	.07 1	63 .	7.02	4.9
SDWX-14003 SDWX-10383		54.28													.18	.47	07	101	1.00	057	8.2	79.1	1.51	276.0	. 150	2 2	2.41	.008	.06 <.2	.04 1	. 00	9 <.02	6.9
	. 54	57.26	25 75	166 1	303	45 1	18 2	764	3 18	20.8						1.86	.18	92	1.15	.067	12.3	58.1	.83	271.1	.115	1 1	1.80	.006	.10 <.2	.13 2	37 1.	3 <.02	5.3
SDWX-14001	.03	37.20	25.75	105.1	302	43.1	10.2	707	0.10	20.0	.0	••••																					
SDWX-14014	.68	79.62	6.91	79.2	118	47.1	24.1	974	3.44	9.0	.5	3.3	1.2	23.0	.17	.65	.09	97	1.05	.058	9.4	58.7	1.08	289.1	.182	1 2	2.04	.008	.06 <.2	.03	69 .	4 < .02	6.4
SDWX-14007		43.19				33.8					-4	10.8	2.6	17.3	.23	. 56	.09	51	.48	.073	10.9	43.4	.62	129.2	.113	<1 1	.18	.004	.05 <.2	.03	43 .	1 <.02	3.3
SDWX-10382	.49	53.62	4.87	45.4	95	38.9	14.9	790	2.73	9.4	.3	2.5	6	26.8	.22	.50	.06	92	1.49	.066	8.5	68.6	.91	184.9	.129		2.20	.006	.07 <.2	.04 1	18 .	3 <.02	5.5
SDWX-14006	93	45.72	10.07	93.6	211	45.4	19.2	2957	2.96	4.0	1.0	2.9	1.3	27.9	.65	.49	.11	79	1.01	.076	16.7	61.0	.82	700.6	.130		2.19	.007	.08 <.2	.07 1	26 .	3 .04	5.5
SDWX-14012	1.56	36.55	11.92	130.6	386	30.7	17.0	3401	2.43	2.9	1.5	2.6	.4	47.5	1.48	.46	.14	62	1.25	.129	25.6	53.0	.52	532.0	.059	1 2	2.24	.009	.11 <.2	.09 2	. 00	3 <.02	4.6
JUNA TIOLE																												•••		00			
RE SDWX-14008	.50	33.48	21.16	60.9	93	33.1	17.6	917	2.57	4.7	. 4	3.6	3.3	15.4	.25	.49	.10	52	. 43	. 059	12.1	43.2	.66	137.6	.140		1.14	.003	.04 < .2	.03	51 .	2 - 02	3.3
SDWX-14002	1.04	58.67	25.57	161.4	368	44.6	17.9	818	3.26	20.9	.9	4.8	1.7	25.9	1.26		.19	95	1.19	.070	12.1	63.4	.91	304.5	.122		1.92	.006	.10 <.2	.13 2	33 2.	2 < . 02	0.4
SDWX-10386	1.22	102.47	8.89	88.9	243	122.0	37.6	3053	4.56	3.3		4.8				. 25	.11	100	.99	.070	11.6	100.4	1.40	730.5	.121		3.00	.010	.08 < .2	.06 1	.03 .	.04	8.0
SDWX-14011	.95	46.05	10.86	84.3	269	38.9	14.0	1132	2.54	3.8	1.0	7.2	1.0	28.7	.36	.52	.12	68	1.06	.091	15.1	58.3	.79	634.7	.116	3 .	.98	.007	.09 <.2	.06 1	51 1.	1 <.U2	4.9
SDWX-10388	1.30	487.49	14.92	237.2	1019	132.7	14.6	2005	2.59	68.1	1.3	12.0	.3	64.3	.65	3.96	.18	57	2.72	.120	15.9	90.5	.67	645.0	.037	10	1.76	.007	.12 <.2	.09 3	41 5.	3 .05	4.0
•																							٠.		107			010	.09 <.2	05.3	22 1	0 - 02	
GSMX-10395	.79	100.13	6.09	64.9	175	42.8	17.6	1005	3.08	4.5	.2	3.5	.3	25.3	.35		.07	113	1.74	.083	8.1	86.6	.94	102.2	.187		2.40	.013	.09 <.2	.00 1	33 I.	7 ~ 02 7 ~ 02	3.0
GSMX-14017	.82	46.35	26.27	88.2	231	37.9	22.9	3102	3.17	12.0		4.9				.83	.26	88	1.03	.082	11.7	55.1	.65	393.3	.120	2 :	1.86	.008	.08 <.2	.08 1	42 .	7 ~.02	10.7
GSMX-10399	1.02	30.41	9.21	49.6	40	13.6	14.3	461	4.13	2.6	.5	1.9	2.6	47.6	.05	.10	. 14	155	. 45	.047	11.4	38.8	.53	89.6	.367	<1 4	1.18	.110	.07 <.2	. 12	3D .	3 .04	10.7
GSMX-10397	.88	150.13	7.14	82.8	168	38.2	8.2	1211	1.36	3.8	.7			44.4		. 64	. 05	47	1.98	. 150	7.9	42.6	.54	347.9	.048		.95	.010	.16 < .2	.03 1	.53 4.	UZ	2.1
C 14015	1.06	29.45	9.01	101.6	569	33.7	15.7	2458	2.36	4.7	.8	2.4	. 4	26.6	.97	.48	.12	63	.85	.088	11.3	50.6	.49	324.0	.065	2 2	2.03	.006	.07 <.2	.07 1	. ೮೦	3 .UZ	4.3
• • • • • • • • • • • • • • • • • • • •																	. -					64.6		110.0	201		. 40	010	04 - 2	ຄວ	74	e 03	7.2
GSMX-10391	.39	44.17	3.71	55.8		47.0									19	.32	. 05	112	1.16	.061	5.4	64.0	1.13	119.0	.281		2.49	.015	.04 < .2	.02	74 .1 62	ა .სა ვ ინ	7.2
GSMX-14019	. 25	37.60	4.08	51.9		41.2									.08	.40	.04	109	1.08	.053	5.4	60.5	1.19	24/./	.309		2.28	.014	.03 <.2	.02	05	2 .UD	7.0
GSMX-10393	.50	45.64	3.59	61.1	65	42.3	18.3	723	3.84	9.4					.17	.59	.05	118	1.31	.089	6.6	79.1	11.1	104.2	.285		2.04	.013	.06 < .2	.03	90 . 93 1	ሀረ በ - ሰን) / E
GSMX-10396	.44	44.93	4.43	38.4	104	31.5	12.8	762	2.26	2.2	.3	1.5	1	32.1	.16	. 28	.04	84	1.37	.091	8.1	82.7	. /8	8/.6	.148		2.04	110.	.07 < .2	1 76 2	20 I.	5 1 04	6.0
STANDARD DS2	14.03	130.24	32.28	158.6	273	36.0	12.4	836	3.06	57.3	17.9	254.2	3.5	27.3	9.76	10.07	10.10	74	.52	.092	15.5	163.9	.62	159./	.102	1 .	1./1	.032	.15 7.5	1.70 2	.23 2.	3 1.04	0.2

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MUSS MAI Samples beginning 'KE' are Keruns and 'KKE' are Reject Keruns.

DATE RECEIVED: JUL 13 2000 DATE REPORT MAILED:

July 28/00

Data L FA

Page 2 (a)

	À.			
7		1	•	
CHE	ANA	LYT	E ICAL	

<u> </u>																_										ALINE AN	ML IIIO								
SAMPLE#	Mo ppm	Си ррт	Pb ppm	Zn	Ag ppb	Ni ppm	Co		Fe 🕏	As ppm	U ppm	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Τi	В	Αĵ	Na	K	W	Tl	Нg	Se	Te	
	85	PP	PPIII	PPIII	PPD	PP	. pp.	PPIII		Ppili	ppii	ppb	ppm	ppm	ppm	ppm	ppm	ppm	٨	A	ppm	ppm	&	ppm	ä	ppm	ā	3	<u></u>	ppm	ppm	ppb	ppm	ppm	ppo
GSMX-14016		31.12									.8	2.4	1.1	28.2	1.00	.63	.10	70	.90	.076	11.2	47.2	.52	457.9	.093	2	1.78	.009	.07	<.2	.07	116	.6	.02	4.1
GSMX-10400	. 67	51.93	6.26	151.4	140	35.8	21.1	1759	3.20	3.9	.3	2.2	6	19.3	.26	. 48	.08	108	1.03	.056	7.5	60.9	.83	217.4	.217	3	2.27	010	04	<.2	04	128	4	<.02	
GSMX-14018	.47	33.80	9.24	60.7	92	34.7	14.1	762	2.77	4.8	.4	1.9	1.7	17.2	. 20	.48	.12	87	.85	.052	9.4	56.4					1.82			. –				<.02	
GSMX-10394	.51	47.21	4.62	68.2	99	52.4	25.8	1094	4.20	5.2	.3	3.3	1.3	27.7	.22	.57						90.2				_	2.86							<.02	
GSMX-10398	.95	92.67	9.36	102.1	195	40.6	12.7	1509	2.34	3.8	.8	2.2	.2	32.0	. 32	.45						50.0					1.69						2.6		
GSMX-10392		72.76									.2	3.5	.1	26.6	.30	.51	.07	70	1.52	.096	8.9	57.1	.57	118.3	.111	6	2.07	.013	.08	<.2	.03	158	.5 ·	<.02	3.5
GSMX-14020		43.12									.3	.9	- 6	21.9	. 25	.31	.08	143	1.14	.064	7.6	88.6	. 93	226.5	.302		2.94							<.02	
RE GSMX-10394		45.76												27.1	.21		.06	135	1.27	.060	7.0	86.2	1.41	103.3	.351		2.80			<.2				<.02	
STANOARD DS2	13.33	123.44	32.64	153.4	269	33.7	11.7	828	3.07	60.0	19.7	221.4	3.4	26.7	9.54	9.94	10.20	73				163.9	_			_	1.74						2.1		

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002374

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

	auu 🔹	700 W	. Pelk	1E1 3	S).(:\	ai icon	ver bu	***	100	, our	m) ctec	. 27:	*****		: A • A 770	200000				
SAMPLE#	Cs	Ge	Нf	Иb	Rb	Sc	\$n	s	Ta	Zr	Y	Се	In	Re	Ве		Sample	·		
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>%</u>	ppm	ppm	ppm	bbw	ppm	ppb	ppm	ppm	gm			
SDWX-14005	57	<.1	.07	- 80	4.3	5.3	.5	. 07	<.05	3.4	10.80	15.8	.02	5	.4	11.6	30.0			
SDWX-10381	.96	<.1	.06		3.7						26.30			<1	.4	17.4	30.0			
SDHX-14008		<.1	.08	-48	3.1	3.3	.2	.01	<.05	3.2	7.48	22.0	<.02	<1		9.8				
SDWX-10389		<.1			7.0						13.72			<1		15.0				!
SDWX-10385	.77	<. î	.06	.58	2.9	4.3	.4	.07	<.05	5.4	11.90	8.9	<.02	<1	.2	8.1	30.0			1
SDWX-14004	.94	<.1			6.2		.6				40.26			<1 ·		12.4				- 1
SDWX-14009		<.1			3.3		.1				12.12			2		11.2				1
SDWX-10387			.03								18.25			6 6		13.9 10.7				
SDWX-14013			.06		3.7		.5				31.34 13.28			7		16.9				′
SDWX-10384	1.03	<.1	.01	-00	2.1	0.4	.4	.01	٠.05	3.0	13.20			•	•	,				ľ
SDWX-14010	.47	<.1	.04	.59	4.1	4.6	.4	.04	<.05	2.0	12.37	23.5	.03	<1		11.9				1
SDWX-10390	.76				2.9		.4				17.35			<1		10.0				l
SDWX-14003	.64	<.1	.11	.54	4.6	7.6	.3				18.07			2		12.6 19.6				
SDWX-10383			.10								17.16 21.42			<1 1		18.3				
SDWX-14001	.84	<.1	.09	.56	6.1	7.9	.5	.00	٠.05	4.4	21.42	20.2	.04	•	• •	10.5	30.0			- !
SDWX-14014	.84	<.1			3.5		.3				15.91			1		12.3				
SDWX-14007		<.1			3.4		.2				8.43		.02	<1		9.0				- 1
SDWX-10382		<.1			3.6		-4	.08	<.05	3.1	24.05 22.57	70.0	.02	2 5		17.7 13.5				l
SDWX-14006			.04	-81	5.9	6.4	.5				33.42			<1		12.5				ì
SDWX-14012	.01	٠.١	<.02	.09	2.9	4.6	• **	. 13	1.05	1.6	JJ.4L	76.6		••	••					Į.
RE SDWX-14008	.33	<.1	.05	.44	2.9	3.3	.1				7.13			<1		9.5				
SDWX-14002	.86	<.1			6.2		.4				21.57			4		19.2				
SDWX-10386		<.1			5.8						18.61			<1 1		15.0 13.4				1
SDWX-14011		<.1			5.8		.5 .5	.11	<.05	2.0	21.17 46.38	17.5	.03	-	1.3					i
SDWX-10388	2.17	<.1	.04	.57	6.1	1.0	.5	. 13	٠.05	2.4	40.30	17.5	.03	``	1.3	20.7	,,,,			- 1
GSMX-10395	.72	<.1	.16	.93	2.9	18.5	.5	.14	<.05	7.2	52.02	9.2	.04	<1		8.3				- 1
GSMX-14017	.75	<.1	.06		5.1		.4				23.20			<1		11.4				[
GSMX-10399		<.1			4.5		1.4				14.73			<1		10.7				- 1
GSMX-10397		<.1			2.8		.1				24.48			1		4.5				l
GSMX-14015	.58	<.1	.02	.55	5.3	4.2	.2	.10	₹.05	1.4	20.86	22.2	.03	<1	.0	13.1	50.0			
GSMX-10391	.58	<.1			2.1		.5				18.99			<1		9.0				
GSMX-14019		<.1			1.8						14.44		.02	2		11.4				1
GSMX-10393		<.1			2.8		.6				27.16			<1 <1		10.1 4.8				
GSMX-10396		<,î			2.2						37.09 7.74			<1 2		15.4				- 1
STANDARD DS2	3.39	<.1	05_	1.43	16.4	3.1	20.2	.04	رن.٠	٤.٥	1.14	20.0	2.02			4			 	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAI

DATE RECEIVED: JUL 13 2000

Page 2 (b)

ACHE ANALYTICAL

SAMPLE#	Cs	Ge	Нf	Иb	RЪ	Sc	Sn	S	Та	Zr	Y	Ce	In	Re	Ве		Sample	
	ppm	bbw	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	bbp	ppiii	ppm	gm	
GSMX-14016	47	<.1	02	40	/. O	/ Q	.3	.05 <	. 05	1 7	16.84	24.4	.02	<1	.3	11.8	30	
GSMX-14016 GSMX-10400		<.1														9.0	= :	
GSMX-14008		<.1						.03						2		13.1	30	
GSMX-14016 GSMX-10394		<.1									18.81			<1		10.4	30	
GSMX-10394		<.1						.15						3	.4	7.7	15	
GSMX-10392	.78	<.1	.09	.58	2.6	9.2	.4	.14	<.05	5.1	36.57	11.6	.02	<1.		6.2		
GSMX-14020	-84	<.1	. 13	1.15	4.1	7.7	.7	.05	<.05	7.4	22.97	15.4	.03	<1	.5	11.5	30	
RE GSMX-10394	.55	<.1	.24	.82	2.7	8.6	.7	.03	<.05	11.8	18.39	16.2	.03	<1	.4	10.0	30	
STANDARD DS2								.03						1	.5	14.2	30	

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_ FA

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002374R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

SAMPLE#	LOI
SDWX-14005	21.3
SDWX-10381	36.6
SDWX-14008	7.0
SDWX-10389	41.3
SDWX-10385	22.0
SDWX-14004	45.0
SDWX-14009	17.9
SDWX-10387	44.3
SDWX-14013	45.2
SDWX-10384	26.1
SDWX-14010	14.5
SDWX-10390	29.0
SDWX-14003	18.2
SDWX-10383	25.0
SDWX-14001	26.8
SDWX-14014	17.2
SDWX-14007	9.1
SDWX-10382	35.7
SDWX-14006	23.0
SDWX-14012	41.3
RE SDWX-14012	41.4
SDWX-14002	27.9
SDWX-10386	27.2
SDWX-14011	21.4
SDWX-10388	58.3
GSMX-10395	48.2
GSMX-14017	27.2
GSMX-10399	7.4
GSMX-10397	67.0
GSMX-14015	35.0
GSMX-10391	17.7
GSMX-14019	12.5
GSMX-10393	30.0
GSMX-10396	52.7
STANDARD DOLOMITE	45.9

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 8/00

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

		ACHE ANALYTICAL
SAMPLE#	LOI	
GSMX-14016 GSMX-10400 GSMX-14018 GSMX-10394 GSMX-10398	21.3 28.4 13.5 14.3 48.0	
GSMX-10392 GSMX-14020 RE GSMX-10394 STANDARD DOLOMITE	60.4 30.8 14.4 45.9	

ACME ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

一般人物教育教育教育教育教育 有於東京教育人民

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002511
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (a)

SAMPLE#	Mo	Си	Pb	Zn	Ag		Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B /	ı Na	K	W -	Tì Họ	g Se	Te	
	ppm	ррп	ppm	ppm	ppb	ppm	ppm	ppm	*	ppm	ppm	bbp	ppm	ppm	ppm	ppm	bbw t	opm	ž	*	ppm	ppm	ኔ	ppm	* 1	ppm	3 X	% pp	nn pj	bu bbr	o bbii	ppiii	ppiii
GEBD-17931	1 02	28.62	5 64	58 E	120	23.4	30 0	426	4 62	3.7	3	2.7	1 1	10.6	.17	.29	1N -	134	39	065	5.7	62.5	. 63	194.1	.276	2 1.9	6 .006	.02 <.	2 .(03 67	7 .6	.02	7.0
GEBD-17931		60.63									.4			18.5	.10	.59	11	70	59	072	13.6	47.3	.85	302.9	.174	1 1.7	0 .011	.04 <.	2 .0	03 26	6.3	.03	4.6
GEBD-17925		80.63									.4			13.3	.10	.50	11	71	59	056	10.5	61.7	.88	212.7	. 181	1 2.5	1 .009	.03 <	2 .0	03 64	4 .6	.03	4.2
GEBD-17923 GEBD-17930		62.57									.4			16.0	.17	.40	11	าเริ	72	065	6.5	79.5	.00 80 I	469 1	234	23.2	1 009	02 <	2 .0	03 100	0 .7	.04	7.5
GEBD-17924		49.37												13.7	.19	.46	14	106	57	060	13.2	63.6	63	229 1	166	121	7 006	03 <	2 (04 56	6 5	.03	6.5
GEOU-1/924	1.94	49.31	9.20	00.0	140	3C. L	10.2	403	4.03	3.3		۷.4	1.3	1 24.1	. 1.3	.40		100		. uuu	10.0	33.0	.03	CCJ.I	.100			.00			• .•		*
GEBD-17927	.52	72.39	9.30	72.3	34	43.8	19.0	662	3.16	6.8	.4	3.2	4.8	21.3	.12	. 59	.12	70	.55	.071	15.0	47.8	.87	152.4	. 145	11.	5 .011	.05 <	.2 .1	04 5	2.3	.03	4.7
GEBD-17921		60.47												17.7	.08	.60	.12	72	.54	.071	13.9	51.9	.88	325.6	.175	1 1.3	4 .010	.03 <	.2 .	03 2	8.4	.03	4.6
GEBD-17926		79.18												16.3	.06	.51						56.4				1 1.7	5 .010	.05 <	.2	04 43	7.3	.02	4.8
GEBD-17923		42.16												29.9	.16	.36	.12	96	.58	.042	11.8	78.7	1.06	288.0									
GEED-17929		91.82												22.9	.13	.39	10	144 1	1.16	.063	9.9	90.8	1.82	336.5	.352	2 2.9	0 .023	.08 <	2 .	04 30	6 .4	<.02	8.9
GEDD-17525	.10	J1.0L	0	00.0				****	1.00												•												
17932-يىي	1 02	41.61	5.88	57.8	63	34.9	23.4	631	5.33	4.4	.3	1.6	1.2	15.6	.17	.32						70.5				2 2.8	6 .009	.02 <	.2 .1	02 6	6.7	.03	8.3
GEBD-17928		35.55												13.4	.12	. 23	06	120	.92	.075	8.3	65.6	.79	112.9	.301	1 2.0	3 .014	.02 <	.2	02 7	2 .6	.02	6.9
GSMD-17963		35.35												18.2	.12	.25	.08	98	59	.048	8.9	70.2	1.22	238.0	.227	3 2.0	5 .011	.07 <	2 .	03 4	3.4	<.02	7.1
GSMD-17973		45.70									.4			14.7	.14	.39	11	110	.97	.024	9.4	71.6	1.17	164.7	.262								
GSMD-17617		57.37									.4			16.0	.19	.21	.07	98	55	058	5.8	69.3	84	210.6	.199	1 3.4	2 .010	.02 <	2 .	02 6	7.9	<.02	6.8
G3ND-17017	.57	37.37	5.55	45.5	04	34.0	20.0	401	0.03	2.0	. 7	2.0		10.0	.17																		
GSMD-17969	.94	32.03	13.03	75.7	93	59.8	15.7	494	3.40	8.6	.6	1.8	3.3	15.5	.22	.74	.21	82	.75	.042	19.8	103.6	1.41	131.5	.120	2 2.0	6 .006	.05 <	2 .	04 4	7.5	.04	5.9
GSMD-17602	.41	39.30	3.76	38.4	69	37.1	16.1	665	3.58	4.0	.3	3.4	1.2	18.3	.11	.32	.06	108 3	1.00	.055	7.3	65.4	. 94	172.3	. 280	2 2.5	5 .019	.03 <	ا. 2	03 5	7.8		7.2
GSMD-17965	.40	48.68	7.25	50.5	26	57.1	22.7	994	3.68	3.2	.2	6.5	2.2	29.9	.09	. 27	.08	124	.87	.022	8.4	79.3	1.50	755.5	.319	2 2.7	8 .018	.05 <.	2 .1	03 36	б.3	. 03	7.9
GSMD-17962		31.31									.3	4.1	1.7	7.7	. 24	.40	.13	117	.39	.045	8.8	65.2	.71	395.7	.271	<1 2.	800.8	.03 <	.2 .1	03 79	9.6	.02	7.3
GSMD-17615	.36	32.24	5.86	56.1	20	36.5	17.8	662	3.54	2.7	.3	1.7	2.2	15.6	.12	. 19	.08	115	.87	.046	9.2	70.2	1.32	191.6	.303	1 2.3	.011	.04 <	.2 .1	03 3	3.3	.02	7.1
GSMD-17604		74.43											1.2	13.2	.19	. 40	.22	96	.51	. 048	12.4	77.9	1.13	845.0	.168	1 2.7	0 .006	.06 <	.2	07 5	6.6	.06	8.3
RE GSMD-17974		36.73									.3			15.7	.13	. 27						56.4						.03 <					
GSMD-17613	.60	92.02	12.93	92.5	144	53.5	25.7	843	3.70	3.6	. 4	4.0	2.1	10.8	.19	. 34						75.3						.04 <					
GSMD-17603	. 47	65.01	3.78	63.0	58	51.8	29.7	784	4.51	4.3	.3	1.7	.8	20.2	. 18	. 55						82.3						.02 <					
GSMD-17974	.32	33.44	4.20	41.1	58	31.8	15.1	456	2.76	2.8	. 3	2.3	1.8	14.9	.11	. 25	.06	97 1	L.09	. 059	8.3	56.5	.97	179.5	.306	2 1.9	3 .012	.03 <	.2 .1	02 3	1.4	.02	5.7
											_											~~			000	0.0		00 -		00 10	, ,	0.2	0.1
GSMD-17612		111.45														1.79						73.5				3 2.9	.015	.03 <.	ا. ۷.	02 13	/ ./	- 02	9.1 16.1
GSMD-17967		135.14									<.1			28.7	.21	. 43	.03	229]	1.44	.058	2.7	68.2 2	۷.84 مم	130.9	.529			.04 <.					
GSMD-17601		44.04												18.9	. 10	.35						66.0 1						.03 <					
17611-ר		51.90									.3			18.0	.09	.48						79.6 1						.07 <.					
17614-ر	.49	59.41	6.10	57.0	83	45.8	22.6	1043	4.12	4.0	.3	6.1	1.5	14.5	. 17	.27	.09	131	.78	. 044	7.3	76.1 1	1.53	384.5	.3/0	2 2.7	4 .012	.04 <.	ا. ک	U3 34	4 .5	.03	7.5
OCUD 17071		33.68	0 22	60.7	05	44 0	10.0	652	2 51	10	4	1 5	2 1	14 4	. 15	. 39	11	aa	86	044	11 1	63.4	ge.	172 9	195	<1 2 4	ስ በበሷ	N4 <	2 1	በ3 ፍ⁄	8 6	.02	6.3
GSMD-17971	. 55	33.00	0.22	09.7	77	44.0	20.0	003 771	J. DI	9.5					.15		. 11.	<i>33</i> 110 1	.00	ሳልሰ	71.1	66.3 1	. 70 10 1	172 2	226	<1 2 /	6 000 200	03 <	2 1	03 7/	4 7	03	6.6
GSMD-17976		53.12												14.1		.30	.00 .	150 110]	10.1	040	7.4	63.2 1	1.00	765 0	242	-1 2.4	000	.05 \.	2 .	00 /	7 ·/	.05	9 3
GSMD-17964	1.12	50.21	10.53	88.9	15/	54.3	22.5	/31	5.42	0.0	. 4	4.3	2.4	55.5	.20	.41	. ۱۷. ۱۸ ۸۸	לטו כל	. 40 01	. U4D	1.4	161 0	ב.טט בי	160 0	000	2 1 4	5 .000 100 A	15.7	5 1 9	07 /1	7 .3 8 2 A	1 86	5.6
STANDARD DS2	14.29	124.61	32.64	159.1	263	33.8	11./	833	3.06	5/.0	18.5	215.8	3.3	25.4	10.03	10.00	10.44	/3	.49	.091	14,0	101.6	.01	159.0	.090	3 I.C	100.031	.15 /.	J 1.0	01 220	2.4	1.00	3.0

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 20 2000 DATE REPORT MAILED:

Aug 8/00

Page 2 (a)

ACHE ANALYTICAL

,如此是一个人,我们就是一个人,我们就是一个人的时候,我们就是一个人的时候,我们就是一个人的时候,我们也不是一个人的时候,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个人的话,我们就是一个

ACRE ARRETTICAL																														=======
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au Th	Sr	Cd	Sb	Bi V	' Ca	Р	La	Cr	Mg	Ва	Τi	B A1	Na	K W	T1 .	Hg Se	e Te	Ga
· · · · · ·	ppm	ppm	ppm	ppm	ppb		ppm		% p			ppb ppm		ppm	ppm	ррт ррт	*	8	ppm	ppm	ž	ppm	% p	ت mqc	*	≵ ppm	ppm p	pb ppn	n ppm	ppm
			:									·····	::							· · · · · · · · · · · · · · · · · · ·								_		
GSMD-17975	.54	64.19	6.14	56.0	179	42.8	20.2	816 3.	30 5	4 1	.3	12.5 1.7	22.8	.20	.33	.09 111	1.30	.074	11.5	68.6	1.06	226.9	.274	2 2.31	.015	.05 <.2	.04	55 .E	.02	7.0
GSMD-17968	.55	61.18	10.79	93.2	176	168.0	33.8	660 4.	62 19	.8	4	2.9 2.9	13.0	.28	.66	.15 106	.47	.043	15.1	204.7	2.63	138.2	.154	2 3.20	.006	.04 < .2	. 05	84 ,4	.03	8.4
GSMD-17608												1.5 2.2		.14	.26	.12 156	.59	.124	7.4	66.9	.55	168.1	.313	2 2.56	.013	.03 <.2	.04	51 .3	3 .02	10.3
GSMD-17978												4.9 2.1		. 18	.24	.09 139	.81	.077	7.1	68.8	.84	188.2	.310	1 3.17	.014	.04 < .2	.04	57 .3	3 < .02	9.4
GSMD-17607												8.0 1.8		.22	.29	12 130	85	.059	8.5	66.5	.74	102.2	.223	1 3.27	.012	.04 <.2	.04	68 .4	1 .02	8.9
GOID 17007			0.07	0, . ,	-0.	00.5	20.0		• •		• •	0.0 2.0							•											
GSMD-17970	49	32.89	11 27	71 5	74	รก 9	14 R	481 3	13 6	ſ.	g	3.4 4.7	17.2	.15	.44	.17 84	90	. 038	22.9	68.9	1.09	179.3	. 191	2 2.17	.011	.06 <.2	.05	33 .:	3 .02	6.3
GSMD-17606								340 4.				3.0 2.0		.12	.21	.09 125									013	.03 <.2	03	63 .4	4 < .02	8.6
GSMD-17977								864 5.				2.1 1.1		.22	.30	.08 151	65	117	7 7 3	77 4	1 19	178 7	252			.04 <.2				
GSMD-17979								389 4.				1.0 2.0		.13	.30	.10 136								2 3.61						
GSMD-17610								303 3.				6.3 1.9		.14	.22	.09 108										.02 < 2				
G2ND-17010	.57	24.20	4.50	40.4	104	30.7	17.2	JUJ J.	12 -	. 0		0.3 1.5	11.1	. 17		.05 100	.01	.047		00.1	.00	IUL.U	.002	£ E./7	.011					
65' 17972	49	70 06	E 08	67 1	102	62.3	21 /	550.3	67 6	7 1	6	2.6 2.2	21.2	. 21	.25	.09 133	1 27	032	122	83 4	1 12	266 2	314	2 2.86	.023	.06 <.2	. 04	42 .	4 .02	9.0
G! .7609								412 3.				1.3 1.5		.10	.22	.05 128										.02 <.2				
GSMD-17980								739 4.				2.6 1.9		.15	.30	.08 155										.04 <.2				
GSMD-17605								533 3.				2.5 2.0		.18	.28	.08 132										.04 <.2				
	.50	47 EO	4.40	202.2	100	42./ CA E	27.6	663 A	10 /	1		2.1 1.2		.25	.25	.09 119										.03 <.2				
GSMD-17619	.05	47.50	0.24	00.0	150	50.5	47.0	000 4.	13 4	. 1	. 4	2.1 1.2	13.2	ب2.	.23	.09 113		. 030	, ,	70.5	. 50	170.6		_ 0.10	.040					
GSMD-17961	1 04	35 62	Ω 15	6R 1	163	ያበ ያ	11 7	574 A	24 5	2	3	5.7 1.8	8.7	. 27	.39	.15 120	1 44	050	9 9	60.2	.68	410 6	.235	2 2.27	.011	.04 <.2	.03	82 .	5 .05	8.4
GSMD-17618												3.3 1.8		.22	.30	.11 122								2 3.20	011	.03 .2	.03	87 .	B .03	8.9
GSMD-17620								950 3.				12.9 1.5		.23	.42	.10 119										.05 <.2				
GSMD-17966								440 4.				1.9 3.1		.08	.10	. 15 158								1 4.23						
GSMD-17906 GSMD-17616												5.5 3.0		.15	.42	.12 133										.08 <.2				
G2UD-11010	.50	15.17	0.20	74.7	13	37.3	44.0	1034 4.	10 -	. 7	. 4	3.3 3.4	24.3	. 1.4	.76	.12 200	. 1.13	.001	11.0	77.0	2.20	000.0	, 0							• • • • •
GSMD-17947	68	73 00	34 80	110 0	95	7n 7	25.6	827 3.	72 0	Я	5	12.6 6.7	107 A	.40	.81	.22 49	5 83	.112	23.9	43.4	.83	239.7	.116	2 1.49	.006	.06 <.2	.04	85 .:	3 .06	4.5
RE PPD-17907								758 4.				4.5 2.4		.23	.39	.17 137										.03 <.2				
PPD-17907								754 4.				3.3 2.2		.18	.38	.16 134								1 2.40						
PPD-17915								1180 5.				1.2 1.3			1.02	.06 166										.06 <.2				
PPD-17915								894 4.				3.3 2.5			1.36	.11 127										.04 <.2				
PPU-1/303	.47	33.07	3.20	13.2	,	50.0	21.1	ד דעט.	4 5 /			3.5 4.5	10.0	.10	1.50	.11 12/	1.00	.000	, 0.0	00.0	1.20	114.,	·OLI	£ 2.0,				,,		
PPD-17901	60	32 12	5 00	4 DA	173	ልስ ዓ	21.5	526 3.	56 5	3	3	4.1 2.2	12.2	.20	.35	.09 108	. ลก	.085	9.5	57.7	.75	161.0	.270	2 2.89	.014	.03 <.2	.03	74	7 < .02	7.4
PPD-17916								698 4.				2.1 1.9		.12	.59	.06 136										.03 <.2				
PPD-17916 PPD-17946								693 2.				1.8 3.6		.13	.37	.08 89										.07 <.2				
PPD-17946 PPD-17912								801 3.				3.8 1.8		.15	.33	.07 133										.04 <.2				
PPU-17912 PPO-17917								706 3.				6.9 3.5		.13	.70	.11 113										.03 <.2				
Ebg. (1/21)	.40	37.JU	0.49	01.5	4	00,2	21.1	700 3.	/O C	. 1	. J	0.5 3.5	20.0	. 14	.70	.11 110	33	.000	10.0	J4.4	1.00	140.1	.400	1 2.00	.015					
Pru-17903	67	45 21	6 01	47 Q	ΩΩ	3/1 7	14 2	442 3	11 3	6	7	1.6 2.0	13.0	.11	27	13 120	70	∩47	15.2	77 9	.68	214 4	264	1 2.56	.013	.04 <.2	.05	89 .4	4 < .02	9.0
PPD-17982												5.0 3.0		.16		10 113	1 03	067	14.5	61.5	94	396.5	284	3 2.40	028	.07 < .2	.05	33 .	5 .04	7.4
PPD-17944												15.5 .9		.31		10 100	1 16	060	13.4	89 1	65	255 1	148	1 2.77	011	.03 < 2	04 1	36 1	2 .02	8.3
STANDARD DS2	1.44	111.00	24.07	162 6	270	27 A	12.0	796 7	71 EG	E 10	.i 70	26 / 2 7	20.0	.0.50	. 35 10 26 1	.12 123 11 19 71	. I.IO	.000	16 3	144 2	55	136.4	086	3 1 64	031	16 7 5	1.94 2	61 2	2.08	6.0
21 ANDARD D25	13./5	130.00	34.9/	103.0	2/0	37.0	12.1	/00 Z.	2T 00	. 3 19	. 1 2	20.4 3./	20.7	.0.03	10.20	11.10 /1		.033	, 10.5	+17.6		100.4	.000	J 1.07	.001					

Page 3 (a)

ACIE AMETICAL																																=			=
SAMPLE#	Мо проп	Cu ppm	Pb ppm		Ag ppb		Co		Fe %	As ppm	U ppm			Sr ppm	Cd ppm		Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg ≵		Ti %			Na %	K %			-		Te pm p	- 1
PPD-17908 PPD-17902 PPD-17994 PPD-17904 PPD-17945	.63 .73 .44	35.92 33.85 65.70 21.06 118.33	5.52 11.14 5.83	47.8 101.6 57.9	143 54 25	38.6 46.5 29.3	23.4 30.0 13.0	558 919 290	3.57 4.38 2.82	3.8 5.0 7.9 3.1 6.9	.3 .5 .3	5.7 8.6 3.5 2.4 7.4	2.0 4.1 2.3	10.3 25.0 8.6	.19 .33 .22	.32 .38 .91 .19	.09 .14 .09	103 125 95	.66 .81 .44	.078 .100 .033	7.9 13.5 10.5	74.0 65.3 72.8 61.8 188.6	.83 1.74 .71	179.2 194.2 132.8	.296 .397 .261	1 2 1 2 <1 2	2.72 2.92 2.67 2.24 3.17	.011 .009 .009	.02 .05 .03	<.2 <.2 <.2	.03 .05 .03	81 38 41	.5 . .6 . .4 .	03 7 03 6 03 8 02 6 02 8	.8 .2 .7
PPD-17909 PPD-17913 PPD-17993 PPD-17997 PPD-17911	.31 .51 .72	47.68 49.21 70.96 36.62 33.98	5.33 6.10 7.81	63.9 52.9 71.9	20 56 108	43.0 59.9 22.7	18.1 20.9 11.2	705 671 547	3.77 3.35 3.48	3.2 3.5 4.4 2.9 3.7	.3 .5	3.9 1.7	2.4 3.0 1.2	21.5 30.8	.09 .11 .19	.25 .34 .30 .26	.08 .08 .13	126 99 109	1.07 .66 .30	.044 .045 .054	9.1 10.4 11.3	76.9 79.5 72.0 56.8 86.1	1.29 1.18 .63	326.9 398.2 114.8	.415 .270 .222	1 2 1 2 1 2	2.54 2.73 2.28	.019 .014 .005	.04 .03 .04	<.2 <.2 <.2	.02 .03 .05	38 47 59	.3 . .4 .	03 8 02 8 04 6 02 8 04 9	.3 .9 .2
F 7990 Pru-17984 PPD-17914 PPD-17998 PPD-17905	.39 .40 .33	60.68 33.99 80.93 154.42 30.32	3.09 9.39 3.02	58.6 88.8 105.7	79 75 40	38.3 50.7 45.6	24.0 28.3 54.4	567 1393 1334	3.60 4.37 6.47	4.2 3.3 6.6 2.5 4.4		6.4	1.5 2.7 1.4	19.5 26.3 17.6	.27 .15 .14	.44 .26 .57 .26 .28	.05 .13 .04	117 123 173	.74 1.03 .86	.067 .057 .067	4.9 9.5 4.3	76.2 67.0 74.5 64.7 62.5	1.01 1.57 3.90	116.5 270.4 90.7	.413 .369 .724	<1 3 2 2 3 2 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4	3.10 2.63 3.99	.017 .021 .007	.02 .08 .04	<.2 <.2 <.2	.02 .04 .03	82 69 34	.5 . .2 . .6 .	.02 8 .02 7 .08 9 .02 11 .02 6	.3 .1 .3
PPD-17983 PPD-17943 PPD-17910 PPD-17999 PPD-17996	.82 .67 14.22	65.90 31.05 53.59 236.34 46.50	7.44 7.28 38.81	54.0 75.5 58.3	40 108 161	48.2 30.3 14.5	18.0 24.7 6.3	578 1106 288	3.21 4.55 3.07	5.0 4.5 101.1	.4 .4 2.3	5.0	2.6 1.2 12.4	12.9 19.8 9.2	.10 .26 .12	.35	.11 .12 43.94	76 145 40	.44 .70 .11	.020 .047 .073	12.1 8.8 26.6	33.4 68.4 90.3 24.8 45.4	.95 .98 .51	161.5 243.2 74.5	.152 .404 .119	2 : 1 : 3 :		.007 .010 .027	.02 .03 .28 1	<.2 <.2 .28.5	.03 .03 .29	36 61 <5	.4 . .5 .	.05 4 .03 5 .04 9 .20 5	.6 .2 .9
PPD-17985 PPD-17942 PPD-17906 RE PPD-17906 PPD-17920	. 56 . 48 . 50	160.00 44.93 33.49 32.63 38.25	5.36 4.38 4.28	53.4 49.8 48.2	20 72 75	85.9 41.1 40.5	22.4 23.3 22.4	677 390 382	3.36 3.63 3.56	5.2 6.2 4.0 3.9 4.9	.4 .3 .3	16.1 7.0 1.5 2.1 2.2	3.6 2.2 2.0	24.8 10.2 9.4	.18 .11 .13 .13	.25 .40 .25 .25 .45	.09 .07 .07	90 109 104	.74 .63 .57	.055 .042 .040	11.5 7.0 6.5	104.4 104.6 70.9 67.9 77.9	1.22 .87 .84	237.9 152.3 148.4	.215 .372 .352	3 2 4 3 2 3	4.20 2.13 3.09 3.01 3.26	.013 .013 .011	.04 .03 .02	<.2 <.2 <.2	.02 .03 .02	24 73 62	.2 . .4 .	08 10 02 5 02 6 03 6 02 8	.8 .8 .5
PPD-17986 PPD-17992 PPD-17987 PPD-17918 17941	.52 1.01 .27	34.59 92.65 112.77 117.98 44.87	8.75 7.08 4.06	74.4 93.1 105.4	137 43 21	58.7 85.8 72.3	24.9 44.5 35.6	1213 1491 1021	3.96 6.21 5.50	4.7 5.9 18.9 4.1 6.7	.4 .1 .2	2.5 5.9 3.0 1.6 2.2	3.2 .9 1.9	31.6 16.5 32.8	.12 .17 .16	.36 .51 3.00 .52 .48	.10 .04 .05	104 200 158	.74 1.20 1.06	.050 .046 .036	11.1 4.4 5.8	62.5 69.9 138.3 68.8 98.6	1.31 2.88 1.83	711.5 68.0 151.1	.276 .496 .443	4 2 9 3 3 3	2.48 2.56 3.91 3.38 2.02	.012 .011 .027	. 07 . 02 . 04	<.2 <.2	.04 .02 .02	108 33 37	.3 .4 .3 <.	02 6 03 7 02 14 02 11 02 5	.3 .0 .2
PPD-17991 PPD-17919 PPD-17981 STANDARD DS2	.54	60.11 38.09 58.84 128.78	2.44 8.56	71.0 65.7	98 20	45.7 40.1	25.2 19.4	541 1073	4.21 3.43	3.4 6.7	.2 .4		1.0	23.6 17.6	. 18 . 15	.39 .38 .56 9.26	.04	137 104	.92 .79	.058	4.3 12.0	84.0 79.1 63.8 160.8	1.19 1.04	124.2 448.9	.461 .310	3 3	3.19 3.67 2.33 1.75	.023 .016	.02 .05	<.2	.02 .04	80 36	.5 . .4 .	03 7 02 8 05 6 74 6	.7 .3

Page 4 (a)

SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm	Ag ppb	Ni opm			Fe %	As ppm	U	Au ppb		Sr ppm	Cd ppm	Sb	Bi ppm	V ppm	Ca %	P %	La Mag	Cr pom	Mg %	Ba ppm	Ti %	B	A1	Na %	K %	W ppm	T1 ppm	Hg ppb	Se ppm	Te ppm	Gа ppm
	PP		- PP	PP	PPD	PP	PP	- P.D		PP	P P				PP	P P	PP									<u></u>	·····	~			•••				
PPD-17995	.89	77.91	8.30	89.8	70	36.6	15.7	362 3	3.76	5.4	.4	2.8	2.4	13.9	. 17	.49	.15	114	.42	.045	12.3	60.8	.94	127.9	.260	2 2	2.57	.006	.04	<.2	.06	65	.6	.03	7.0
PPD-17988	.38	48.78	4.43	55.3	46	45.5	20.7	528	3.30	4.9	.3	16.4	2.6	14.5	.11	.41	.07	111	.78	.043	7.7	61.8	.95	145.8	.303	2 2	2.63	.019	.04	<.2	.03	47	.4	.02	6.8
PPD-18000	51	198.13	5 51	134 2	44	68.5	62.4	1365	7 07	8.9	. 3	1.6	1.6	32.8	.23	.82	.08	256	1.45	.043	6.0	91.6	2.69	174.3	.659	7 4	1.20	.011	.05	<.2	.05	27	.7	.03	13.0
RE PPD-17988	.36	48.21	4.34	54.3	40	43.7	20.9	524	3.30	4.9	.3	.8	2.5	14.2	.10	.42	.06	110	.78	.043	7.7	63.3	.94	146.7	.303	2 2		.018						.02	
STANDARO DS2	14.18	125.28	32.28	157.5	266	32.3	11.1	796	2.96	54.6	18.4	217.4	3.4	25.8	10.68	9.71 1	1.13	71	.47	.085	14.9	147.3	.56	143.2	.080	2 :	1.55	.030	.15	7.9	1.76	223	2.3	1.74	5.6

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

A

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002511 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1 (b)

SAMPLE#	Cs ppm		Hf ppm	dM mqq	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm		Y mqq	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
GEBD-17931 GEBD-17922 GEBD-17925 GEBD-17930 GEBD-17924	.69 1.31 .98	<.1 <.1 <.1 <.1	.14 .09 .12	.25 .69 1.15	2.6 2.4 3.6	3.5 6.0 5.1	.3 .3	.02 .03 .06	<.05 <.05 <.05	7.4 4.0 5.1	5.01 9.05 16.22 11.00 13.57	29.0 44.3 19.5	.02 .02 .05	<1 <1 <1 <1 <1	.4 .6 .5	17.9 16.5 18.4 13.8 25.0	30 30 30 30 30	
GEBD - 17927 GEBD - 17921 GEBD - 17926 GEBD - 17923 GEBD - 17929	.73 .67 2.00	<.1 <.1 <.1 <.1	.10 .15 .07	.39 .22 .72	2.6 3.3 8.2	3.8 6.0 4.6	.3 .4 .5	.01 .01 .03	<.05 <.05 <.05	5.8 7.0 3.4	11.81 9.82 10.36 8.80 16.18	30.3 27.4 28.2	.03 .02 .03 .04	<1 <1 <1 <1	.4 .4 .2	15.9 16.6 16.9 19.8 16.8	30 30 30 30 30	
GEBD - 17932 GEBD - 17928 GSMD - 17963 GSMD - 17973 GSMD - 17617	.64 .68	<.1 <.1 <.1 <.1	.15 .12 .15	.92 .63 .80	3.5 5.2 4.0	7.1 5.6 5.2	.7 .5 .5	.03 .01 .01	<.05 <.05 <.05	8.1 6.5 6.7	10.08 23.15 10.71 11.73 9.41	18.7 20.0 25.2	.07 .06 .06	1 <1 <1 <1 <1	.4 .5 .4	18.7 12.0 16.5 17.2 8.1	30 30 30 30 30	
GSMD - 17969 GSMD - 17602 GSMD - 17965 GSMD - 17962 GSMD - 17615	.91 .70 .84	<.1 <.1 <.1 <.1	.09 .18 .07	.74 .44 1.15	4.4 7.2	6.2 6.8 3.0	.6 .7 .7	.03 01.> 02.	<.05 <.05 <.05	5.8 8.0 3.6	9.17 20.89 10.72 4.53 7.96	22.3 20.8 17.3	.05 .05 .06	<1 <1 1 <1 <1	.4 .3 .2	22.1 11.6 12.6 14.6 14.6	30 30 30 30 30	
GSMD-17604 RE GSMD-17974 GSMD-17613 GSMD-17603 GSMD-17974	.44 .97 .81	<.1 <.1 <.1 <.1	.12 .06 .29	.81 1.00 1.19	3.2 6.9 2.0	5.3 4.7 7.6	.5 .5 .9	.01 .02 .03	<.05 <.05 <.05	5.5 3.9 12.7	15.96 13.50 15.29 18.69 13.11	17.7 31.2 16.2	.04 .05 .05	<1 <1 2 <1 <1	.3 .6 .7	24.4 12.5 17.0 15.3 11.3	15 30 30 30 30	
GSMD-17612 GSMD-17967 GSMD-17601 GSMD-17611 GSMD-17614	1.11 .91 .67	<.1 <.1 <.1 <.1	.39 .11 .29	.27 .86 .12	4.3	10.2 6.7 10.0	1.1 .6 .5	.02 .02 <.01	<.05 <.05 <.05	17.3 7.3 12.8	14.62 13.27 20.51 15.28 12.35	9.4 23.1 19.7	.03	<1 <1 <1 <1 <1	.5 .4 .2	14.6 18.2 12.0 16.0 14.4	30 30 30 30 30	
GSMD-17971 GSMD-17976 GSMD-17964 STANDARD DS2	.63 1.77	<.1 <.1 <.1 <.1	.07 .19	1.21 2.17		4.4 5.8	.5 1.1	.03 .02	<.05 <.05	3.9 8.5	12.02 13.39 8.71 7.59	17.6 17.5	.04	1 <1 <1 <1	.3 .7	16.5 15.0 16.7 14.8	30 30 30 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 20 2000 DATE REPORT MAILED:

Angelvo

SIGNED BY ... TO. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

SAMPLE#	Cs	Ge	Hf	Nb	Rb	\$c	Sn	S %	Ta ppm	Zr ppm	Y	Ce	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	
	bbu	ppm					ppm											
GSMD-17975		<.1		1.00			.6				17.69		.03	<1 1		14.8 34.5		
GSMD-17968	.87				8.0						9.09 4.78		.04	<i< td=""><td></td><td>19.9</td><td></td><td>1</td></i<>		19.9		1
GSMD-17608		<.1										16.6		2		16.8		
GSMD-17978	1.01			1.32							11.92		.06	<1 ·		16.0		į
GSMD-17607	11.00	<.1	. 19	1.02	4 -4	2.9	.9	.02	1.05	: - :	!!.72	2,.,	.00	-,	.,	.0.0		
GSMD-17970	.54	<.1	.10	.81	7.8	5.6						44.6		<1'		18.7		1
GSMD-17606	1.06			1.40			.8	<.01	<.05	10.3	8.17	14.7	.05	<1		15.9		
GSMD-17977	2.65	<.1	.10	1.72	6.1	6.2					8.07		.05	2		26.1		
GSMD-17979	.95	<.1		.79			.9	.01	<.05	17.6	9.15	15.8	.04	<1		14.8		1
GSMD-17610	.61	<.1	.25	1.30	4.5	4.1	.7	.01	<.05	9.2	7.34	16.9	.05	<1	.6	14.5	30	}
GSMD-17972	84	<.1	.21	1.08	4.7	11.5	.7	<.01	<.05	7.8	18.13	21.2	.05	2	.5	26.0	30	
GSMD-17609		<.1		.99			.8	<.01	<.05	12.7	8.44	14.0	.05	<1	.4	11.9	30	
GSMD-17980	4	<.1		.86			.8	<.01	<.05	9.0	12.91	20.7	.07	<1	.6	18.0	30	
GSMD - 17605		<.1	.22	1.16	6.0	5.9	1.1	<.01	<.05	10.6	8.44	15.6	.06	<1	.3	16.4	. 30	1
GSMD-17619		<.1		1.33							11.50		.07	<1		13.9		
Band-17017	1.00														_		70	1
GSMD-17961	.78	<.1		1.54			.8					18.0		<1		18.4		
GSMD-17618	.67	<.1		1.62							11.02		.07	2		12.8		
GSMD-17620	1.00	<.1		1.32			.6				16.24		.06	3		14.1		
GSMD-17966	1.30	<.1									14.12		.08	<1		11.6		- 1
GSMD-17616	.64	<.1	.35	.25	4.3	10.9	.8	.01	<.05	13.6	14.12	22.6	.05	<1	.5	14.9	30	
GSMD-17947	.73	<.1	.28	. 15	2.7	6.7	.3	.02	<.05	11.8	10.86	42.4	.05	<1	.3	16.5		
RE PPD-17907		<.1		1.56				.03	<.05	5.3	5.65	18.0	. 05	<1		18.4		- 1
PPD-17907	1.53	<.1					.9		<.05	5.4	5.55	18.5	.05	<1		17.7		
PPD-17915		<.1	.37	.67	3.6	8.2	1.2	.03	<.05	13.3	11.75	14.1	.05	1		22.3		
PPD-17989		<.1		.32					<.05	14.8	12.22	23.2	.05	1	.4	15.2	30	
000 47004	70	. 1	10	1.26	5 1	5 4	.5	02	< 05	23	9 68	19.9	.03	<1	.3	15.2	30	- 1
PPD-17901		<.1			3.7		.8	- : -			16.48		.05	<1		15.4		- !
PPD-17916	1	<.1					.6				8.07		.03	<1		12.5		
PPD-17946	•	<.1		.28			.8				10.58		.03	<1		12.7		Į
PPD-17912		<.1		.56								31.2		2		17.5		- 1
PPD-17917	1.09	<.1	.17	.50	3.5	0.0	.5	.02	1.03	7.0	13.21	31.2	.03	-	• • •			
PPD-17903	.89	<.1	.10	.93	6.5	8.9						22.3		<1		16.0		
PPD-17982	.66	<.1		.36			.7	<.01	<.05	11.2	13.30	26.4	.03	<1		12.5		1
PPD-17944	•	<.1		1.21					<.05	3.1	25.09	28.9	.04	1		18.2		
STANDARD DS2	3.28	<.1	.05	1.45	13.7	3.0	26.3	.03	<.05	2.6	7.91	29.8	5.56	<1	.4	14.3	30	
							-											1

Page 3 (b)

SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	Sn	S %	Ta	Zr	Y	Ce	n mqq	Re ppb	Be ppm		Sample gm		İ
	ppn	ppm	ppm	ppm	ppm	bbu	ppm			ppm			ppu	ppb					\neg
PPD-17908		<.1			3.8		.8				11.11		.03	<1		13.3	30 30		
PPD-17902		<.1	.19		4.2			.05 <			10.20		.04	<1 2		14.3 21.5	30 30		- 1
PPD-17994		<.1	.20		4.1		.6				12.93 7.04		.03	<u>-</u> 1>		15.5	30		
PPD-17904	.71		.13 .28	.76	2.6						11.25		.03	<1		14.9	30	•	- 1
PPD-17945	2.08	\.1	.20	.07	2.0	ر.ن	.,	.02		11.3	11.23	14.5	.03	••	••	,			ı
PPD-17909	.91	<.1	.09	.98	5.0	5.8					10.89		.04	<1 ·		13.9	30		ļ
PPD-17913	.52	<.1	.43	. 15	2.8	8.3	.7				13.28		.04	<1		13.0	30		
PPD-17993	.87	<.1		.53			.6				16.51		.04	<1		13.0	30		i
PPD-17997		<.1		1.42							5.20		.05	<1		15.6	30		
PPD-17911	1.50	<.1	.11	1.54	5.3	5.4	1.4	.06	<.05	5.8	8.27	14.3	.07	3	-4	14.5	30		
PPD-17990	.83	<.1	.36	.19	2.3	7.8	.7	.02 -	<.05	15.3	13.79	15.0	.07	2	.2	15.1	30		
PPD-17984	.71		.24	.79							8.70		.07	<1	.3	11.8	30		
PPD-17914		<.1		.05			.7				14.98		.08	<1		16.7	30	•	
PPD-17998		<.1		1.22	2.7	5.9	.6				8.81		.06	<1		28.0	30		- 1
PPD-17905	.68	<.1	.19	.76	4.8	3.9	.5	.01	<.05	8.6	6.82	22.1	.08	<1	.2	15.5	30		- 1
PPD-17983	1.18	<.1	. 13	.38	3.5	3.8	1.6	.01 -	<.05	5.7	8.21	22.9	.09	<1	.4	8.0	30		
PPD-17943		<.1		.46			.5				7.35		.08	<1	.2	18.1	30		- !
PPD-17910	.96	<.1				6.9	1.0	.05 -	<.05	6.1	19.87	18.5	.09	<1		16.1	30		
PPD-17999	8.56	<.1				3.4					7.35		.36	3		21.8	5		
PPD-17996	1.27	<.1	.03	1.31	4.6	2.7	.7	.05	<.05	1.8	8.57	23.1	.07	<1	.5	29.2	30		
PPD-17985	1.12	<.1	.26	1.19	3.2	10.7	1.0	.04	<.05	11.6	17.39	56.4	.09	<1	.6	19.0	30		
PPD-17942		<.1		. 15			.4				10.54		.06	1		13.3	30		-
PPD-17906		<.1	.24		5.1		.6	.01 •	<.05	10.0	8.98	18.5	.06	<1		13.3	30		
RE PPD-17906	.65	<.1	.21	.83	4.6	5.1	.6	.03	<.05	9.5	8.84	17.4	.06	<1		12.7	30		
. PPD-17920	1.17	<.1	.26	1.05	4.4	5.8	.8	.03	<.05	12.5	9.07	15.7	.06	<1	.3	15.6	30		
PPD-17986	70	<.1	. 17	.64	3.5	4.2	.5	.02 -	<.05	8.5	8.45	16.8	.05	<1	.3	14.8	30		
PPD-17992		<.1		.10							18.70		.04	<1		14.3	30		
PPD-17987		<.1		.11			.9				19.27		.08	<1		32.7	30		- 1
PPD-17918		<.1	.48	.07	2.2	9.4	.6				13.01		.04	1		16.5	30		
PPD-17941	.80	<.1	.20	. 14	2.5	7.2	.4	.01	<.05	9.2	10.50	20.0	.02	<1	.3	12.9	30		
PPD-17991	1.02	<.1	.23	.71	4.3	5.6	.6	.02 -	<.05	10.3	7.99	21.4	.04	1	.4	14.8	30		
PPD-17919	•	<.1		1.04							12.30		.03	1		12.4	30		
PPD-17981		<.1		.13			.5	.02 •	<.05	12.1	12.69	22.5	.03	<1		10.9	30		
STANDARD DS2						2.9	26.9	.05	<.05	3.1	7.88	31.2	5.59	2	.4	14.7	30		
			_				•												- 1

Page 4 (b)

ACRE AMETICAL																	
SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sc	Sn	S	Ta	Zr	Y	Ce	In	Re	Ве	Li	Sample
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	bbw	ppm	ppb	ppm	ppm	gm
DDD 4700	5 4 20	. 4	^^	4 57	7 0	E 1	7	07	- 0E	/ D	0.64	2/ 3	0.3	-1	-4	21 7	30
PPD-1799 PPD-1798	0 1.29	<.1	26	1.21	1.0	7.1	.,	< 01	< 05	12 4	9.64 9.09	20.7	.03	•		14.8	30
PPD-1800	0 1 57	< 1	-55	43	3.7	12.3	.8	.01	<.05	18.9	15.44	14.3	.04	<i< td=""><td></td><td>27.8</td><td>15</td></i<>		27.8	15
RE PPD-1											9.03					15.6	30
STANDARD	DS2 3.20	<.1	.04	1.32	12.8	2.7	25.0	.02	<.05	2.6	7.53	27.9	5.41	2	.5	13.4	30

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

44

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002511R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

発

			· · · · · · · · · · · · · · · · · · ·		**********					********									
SAMPLE#		Al 203															TOT/S %	SUM %	
	%	%	*	%	*		*	^	*	*	*	ppn	bbu	ppii	^	^	^		
GEBD-17931	49.66	10.25	8.92	2.02	1.99	1.21	1.08	1.23	.28	.08	.021	600	30	15	23.1	6.87	.02	99.91	
GEBD-17922		12.05											48		4.0		<.01	100.18	
GEBD-17925		12,12											72	25	13.6	2.59	.04	100.01	
GEBD-17930		11.37											66	20	23.5	6.29	.07	99.87	
GEBD-17924		10.61											41	17	18.4	4.31	.07	99.91	
														•					
GEBD-17927	66.36	12.75	6.36	2.51	2.52	1.86	1.91	1.03	.19	.11	.036	1008	125		4.5	.12		100.27	
GEBD-17921	65.48	12.40	6.13	2.74	2.98	1.77	1.54	1.17	.17				57		5.1		<.01	99.75	
GEBD-17926	64.93	12.96	6.73	2.76	2.86	1.72	1.78	1.10	.12	.12	.023	1113	48		4.8	.24		100.04	
GEBD-17923		12.81															<.01	99.98	
GEBD-17929	58.02	12.48	9.20	4.46	4.38	1.74	1.02	1.29	-17	. 18	.026	983	71	29	6.9	. 15	<.01	99.99	
	l														~~ -			00 7	
GEBD-17932		10.83											44			5.70		99.76	
GEBD-17928		12.09									.020		40			2.96		99.72	
GSMD-17963		11.54											76				<.01	99.80	
GSMD-17973	60.41	11.71	7.23	3.73	4.23	1.81	-87	1.31	-11	. 13							<.01	99.65	
GSMD-17617	47.14	12.41	7.18	2.90	3.30	1.55	.60	1.13	.18	. 10	.023	516	61	20	23.3	4.93	.03	99.88	
00UD 47040	50 50	40 77		7 0/	~ ~~	1 27	1 02	4 15	40	00	022	010	41	17	11 7	2 2/	01	99.96	
GSMD-17969		12.33									.022		64			2.24	.01 .02		
GSMD-17602		10.84									.020		48			2.61		99.75	
GSMD-17965	61.81	11.43	7.38	4.31	3.70	1.89	.//	1.17	.03	-17	.020	1344			6.9	4.09	<.01	100.03	
GSMD-17962	56.04	10.44	8.13	2.15	1.88	1.17	1.15	1.32	.20	- 10	.015	1130	33 50			1.01		99.90	
GSMD-17615	02.84	11.61	7.21	3.31	3.38	1.60	.00	1.34	. 10	. 12	.019	0/1	50	17	7.1	1.01	.03	99.90	
GSMD-17604	57.49	12.48	6.89	2 55	1 67	1.28	1.34	1.07	.26	.12	.020	1391	55	20	14.5	3.24	.02	99.84	
RE GSMD-17974	1	10.68									.022		37			1.31		99.91	
GSMD-17613		11.02											57			2.80		99.80	
GSMD-17603		13.68											58			4.14		100.15	
GSMD-17974		10.70									.023		54				<.01	99.99	
25/15 11774	02.01		0145	3.27	J T			,		• • •			- '				•		
GSMD-17612	56.79	12.41	9.79	4.50	5.39	1.90	.77	1.47	.15	.18	.024	536	99	29	6.6	.59	<.01	100.05	
GSMD-17967		15.02											195				<.01	99.92	
GSMD-17601		10.67									.019		46				<.01	99.83	
GSMD-17611		11.72											67		6.0	.20		99.78	
GSMD-17614		11.31											60			1.62		99.93	
								. •		• • •				-	-	_	-	_	
GSMD-17971		11.81											57			2.53		100.17	
GSMD-17976	55.57	10.50	7.57	3.19	3.83	1.47	.64	1.22	.20	. 14	.017	804	51			3.66		99.95	
GSMD-17964		12.91											52			2.75		100.07	
STANDARD SO-15/CSB	49.25	12.68	7.31	7.25	5.86	2.38	1.87	1.71	2.70	1.37	1.036	1943	78	12	5.9	2.40	5.33	99.54	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED: .

: Arg 28/00

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2

ACHE ANALYTICAL																			
SAMPLE#	sin	A1203	Fe203	MaO	CaO N	a20	K20 I	102	P205	MnO	Cr203	Ba	Ni	Sc	LOI	TOT/C	TOT/S	SUM	
SAM LLW	1	× ×			%	~ %	%	%	·%	*		ppm			%	*	%	%	
	 											 -	•••						
GSMD-17975	59.59	11.19	7.23	3.63	4.77 1	.71	.80 1	.40	.19	.15	.025	825	62	33	9.2	1.91	.02	99.99	
GSMD-17968	54 0	12.10	8.81	7.29	2.24 1	.03	1.06 1	1.05	.12	-11	.035		179	22 1	11.9	2.03	.01	99.90	
GSMD-17608	56 2	12.28	8.92	2.16	2.69 1	-67	.87 1	1.64	.30	.08	.022		51			2.55	.03	99.95	
GSMD-17978	56 0	12.17	7.99	2.64	3.00 1	.68	.74	1.28	.17	.10			55	20 '	13.1	2.52	.07	99.90	
GSMD-1770	51 1	13.35	8.12	2.49	2.98 1	-68	92	1.23	- 16	.09	.018	495	58			3.88	.01	99.93	
35HD 11001			0,,2				• • •		•										
GSMD-17970	A3 31	12.50	6.39	3.38	3.02 1	-56	1.55 1	1.26	.11	.09	.021	1003	54	23 '	6.6	.79	.03	99.90	
GSMD-17606	53 8	12.56	8.84	2.54	3.09 1	58	88 1	1.41	.24	.08			50	21 '	15.1	3.29	.01	100.20	
GSMD-17977	/8 0	3 11.76	10 07	3 48	2 94 1	50	64	1 33	39				66			4.13		100.09	
GSMD-17979	55 2	5 13.78	8 40	3.40	3 63 1	86	68 '	1 45	15	109	.022	535	68			1.39	<.01	99,75	
GSMD-17979 GSMD-17610	57.2	3 12.69	7 66	2 56	3 12 1	.66	.00	1 36	10	07	022	636	49			3.32	.07	99.97	
G9W0-11010	74.3	3 12.07	7.00	2.30	J., 1	.00	.72	1.50	. 10	. 01	, oct	030	7,						
GSMD-17972	50 7	12.28	7 77	3 41	4 11 1	86	71	1.37	. 11	11	-022	728	51	32	8.7	1.50	.07	99.87	
GSMD-17972 GSMD-17609	50.0	1 12.02	7.56	3 55	/ 81 2	00	42	1 51	06	10	.023	427	57			1.49	<.01	99.81	
	59.0	9 12.55	8 38	3.77	7 88 1	02	55	1 42	08	14	024	413	51			1.31	.01	99.81	
GSMD-17980	50.1	3 12.74	7 62	2 85	3 10 1	70	75	1 38	18	10	024	603	47			2.17	.05	99.75	
GSMD-17605	/7 E	1 12.15	0 45	7 5/	3 76 1	-10	58	1 30	21	13	021	484				5.19		99.84	
GSMD-17619	47.5	1 12.13	0.05	3.54	3.70 1	.) [.50	1.30			.021	404	٠,			2	••••		
GSMD-17961	56 2	3 10.47	8 15	2 26	1 00 1	16	96	1 32	13	10	-018	1199	51	16	17.1	3.77	.04	99.94	
GSMD-17901 GSMD-17618	50.2	9 12.38	8 13	2 87	2 80 1	50	74	1 24	19	12	024	667				4.00	.03	99.95	
GSMD-17610 GSMD-17620	53.4	7 11.40	7 68	3 50	3 76 1	30	73	1 22	17	16	021	941	61			4.03	.01		
GSMD-17820 GSMD-17966	52.1	2 18.54	8 45	2.36	3.70 T	.05	1 15	1 31	10	13	.010	323	<20		7.8	.67	.01	99.99	
GSMD-17900 GSMD-17616	41 /	3 12.10	8 27	3 68	3.85 1	60	80	1 31	17	17	021	1101	40		6.5	.24	.01	100.12	
G2MD-11010	01.4	12.10	0.27	3.00	3.03 1	.00	.07	1.31	• • • •	• • •			-10	-	•••		• • •		
GSMD-17947	57 2	5 10.04	6 04	2 21	8 50	00	1 50	1 26	. 24	. 12	-015	1009	45	18	10.6	1.66	.02	99.88	•
RE GSMD-17907	57 8	2 10.78	8 60	1 07	1 70 1	26	00	1 37	18	13	.014	730	32			3.11	.02	99.90	
PPD-17907	57.0	3 10.77	8 52	1 07	1 80 1	2/	88	1 40	10	13	019	728				3.19		99.94	
PPD-17907 PPD-17915	31.3	7 13.52	10.32	4 87	4 51 1	44	64	1 27	.11	.19	.026	350	97			1.91	.02	99.73	
PPD-17913	40.0	11.95	8 18	4.00	4 88 1	70	80	1 37	16	16	024	625	68		5.6		<.01	99.95	
PPU-17707	00.9	, 11.95	0.10	4.00	7.00 1		.07		• 10	•			•••						
PPD-17901	56 2	6 11.88	7.32	3.06	3.66 1	-65	-78	1.33	.19	.11	.022	626	50	24	13.8	2.81	.01	100.14	
PPD-17901		3 11.93					.66	1.32	.15	.12	.024	447						100.08	
PPD-17916 PPD-17946		7 10.63					91	1.17	-10	. 12	.017	787	51		4.8	.22		100.08	
PPD-17940 PPD-17912	62 4	0 11.47	7 / 1	3 60	4.22 1	70	65	1.46	. 13	. 15	.021	828	58		6.6	.77		100.00	
PPD-17912 PPD-17917	62 4	2 12.28	7 24	3.00	3.47 1	75	80	1.32	- 13	. 12	.018	638	63		7.2	.69	.01	99.99	
, PPU-17717	02.4	. 12,20	1.24	3.07	2.71		.07		• 13	•									
PPD-17903	50 3	6 12.22	6.34	2.50	2.95 1	.71	.82	1.37	- 14	.09	.024	645	51	26	12.2	2.58	<.01	99.81	
PPD-17982	67 0	5 10.61	6.63	2.92	3.27 1	.55	.86	1.23	-19	.16					5.3		<.01	99.94	
PPD-17902	48 2	5 11.19	7.78	2.51	3.41 1	41	71	1.08	.28	.11	.026	650	62			5.95	.02	99.84	
	40.5	B 12.70	7.32	7.18	5.83 2	37	1.88	1.75	2.66	1.39	1.047	1935				2.41		99.83	
31ANDARD 30-13/C3D	47.3	14.70	1.52	,0	2.03														

Page 3

ACHE ANALYTICAL																				
	SAMPLE#	Sin2	AL203	Fe203	Maa	Can	Na20	K20	TiO2	P205	MpO (Cr203	Ba	Ni	Sc	LOI	TOT/C 1	OT/S	SUM	
	SAMPLE	%	X(203	X	go %	%		*	%	*	*	Z 2	ppm			%	%	*	%	
		^											- Political	- PP	FF					
	555 47000	59.58	11 07	7 /4	Z 30	7 44	1 80	40	1 40	15	12	021	760	64	23	9 9	1.82	.01	100.05	
	PPD-17908	56.03	11.07	7.40	3.30	7 70	1.46	75	1 71	17	41	.021	650	59			2.95	.01	99.97	
	PPD-17902	20.03	12.15	7.02	3.04	3./3	1.04	4 20	1.31	27	45	.024		71	27		.33	.01	99.92	
	PPD-17994	59.66	12.73	8.92	4.25	3.14	1.47	1,20	1.41	10				63			1.42	.03	99.82	
	PPD-17904	62.15	12.77	6.03	2.50	2.70	1.72	1.12	1.34	. 10	.07	.021	700				.20	.03	99.74	
	PPD-17945	51.47	11.68	10.02	8.53	5.57	1.17	.61	.92	.10	.17	.074	744	280	33	9.3	.20	.03	99.74	
											47	020	75/	40	20.4	12 7	2 50	0.3	99.89	
		58.90							1.30	.16	.13			49			2.58	.03		
	PPD-17913	62.54	11.91	7.62	3.54	4.13	1.88		1.37			.022		74		5.7		<.01	99.93	
	PPD-17993	64.06	11.76	6.69	3.46	3.22	1.71	.87	1.19	.12	.12	.028		84		6.7	.65	.06	100.04	
	PPD-17997	54.90	11.50	7.09	1.86	1.67	1.28	.94	1.31	.23	.09	.014	539	39			5.38		99.75	
	PPD-17911	46.77	11.69	9.16	2.69	2,41	1.16	.59	1.41	.33	.12	.023	585	47	19	23.4	5.66	.04	99.83	
																			00.7	
*	PPD-17990	58.00	12.42	8.90	4.38	5.17	1.85	.64	1.55	.07	.17	.025		82		6.5		<.01	99.76	
	PPD-17984	55.03	12.18	7.60	3.41	4.23	1.72	.57	1.41	.18	.12	.027	418	62			2.48	.04	99.73	
	PPD-17914	59.44	12.54	8.77	4.10	4.16	1.71	1.06	1.31	.12	.23	.023	1054	93	28	6.2	.13	<.01	99.80	
	PPD-17998	44.36	13.82	13.72	7.64	5.45	.92	.56	1.64	.15	.22	.017	337	75	33 '	11.2	1.18	.04	99.75	
	PPD-17905	58.51	13.55	6.86	2.77	3.12	1.85	1.15	1.31	.09	.08	.026	820	65	22	10.3	1.64	.02	99.72	
	112 11703		,,,,,,,																	
	PPD-17983	72.10	10.35	4.17	2.37	.78	.18	1.54	.66	<.01	.07	.008	2145	34	14	7.2	.27	<.01	99.68	
	PPD-17943	63.21	12.45	6.53	2.96	2.43	1.69	1.42	1.12	.11	.10	.022	926	64	19	7.7	1.05	-04	99.86	
	PPD-17910	52.12	11.36	8.75	2.70	3.11	1.44	.70	1.54	.21	. 18	.022		50	22	17.6	4.05	.03	99.82	
	PPD-17999	65.03	14 01	5 36	1.24	1 22	2.46	2.92	.85	. 18	.06			43			1.00	.08	99.78	
	PPD-17996	50.52	12 85	80.3	1 68	1 43	1.37	1.06	1.06	- 17	.04	.010		31			6.47	.05	99.94	
	1770	30.52	12.05	0.00					,,,,,	• • •										
	PPD-17985	50.91	13.28	10.15	4.92	3.58	1.15	. 45	1.29	-14	.35	.023	1040	100	30	13.4	1.81	.04	99.78	
		64.92										.036	824	114	25	5.4	.23	<.01	99.83	
	PPD-17906	55.62	12 00	7 26	3.02	3 58	1.77	82	1.36	- 10	.09	.023		58	23	13.2	2.49	.03	99.82	
	RE PPD-17906	55.84	12 05	7 30	3.03	3 58	1.78	84	1.35	.06	.09	.023		60	23	13.2	2.47	.04	100.12	
	PPD-17920	55.11	17 70	8 11	2.66	2 83	1.63	94	1.52	. 14	.08			80			2.41	.03	99.80	
	770 11720	1	13.37	0.11				1,7			•••						'			
	PPD-17986	64.00	11.20	6.60	3.28	3.40	1.87	. 75	1.25	.09	. 12	.022	665	58	20	7.2	1.34	.01	99.87	
•	PPD-17992	62.61	11 05	7.87	3 40	3 17	1 70	. 94	1.21	. 13	.20		1199			6.6	.25	.03	100.05	
		49.67						44	1.41	. 10	. 25	.024				8.1	.75	.03	99.79	
		56.01										.022		93		6.8	.19	.03	99.87	
		64.94														5.4		<.01	99.60	
	PPD-17941	04.74	11.14	0.79	3.09	3.40	1.01	1.01		. 13	. 12	.034	ررد	,03		J.7			,,,,,	
	PPD-17991	57.54	12 50	7 50	7 72	3 //2	1 80	63	1 22	13	16	026	4902	86	21	11.0	1.82	.01	99.89	
	PPD-17971	49.91	12.30	9.50	7.32	1.44	1 79	.03	1 37	25	12	021	38D	69			3.82	.02	99.99	
	PPD-17919	44.41	10.77	6.02	3.30	7 /7	1.10	.40	1 22	12	10	.018	1340	65		5.1	.21	.03	99.62	
	PPD-17981	66.65	10.77	7 //	7 10	5.43	2 /2	1 70	1 77					78			2.38		99.82	
	STANDARD SO-15/CSB	49.30	12.73	1.44	7.19	2.63	2.43	1.79	1.//	2.07	1.41	1.044	1771	10			2.50		,,,,,,,,	

Page 4

		_																		_	ACHE ANALYTIC
SAMPLE#	Sio	2 A' %	1203 %	Fe203 %	MgO %	CaO	Na20	K20	Tio2	P205	Mn0	Cr203	Ba ppm		\$c ppm	LOI	TOT/C	TOT/S	SUM		
	_												- PPIII	bbill	- byn				^		
PPD-17995	54.86	5 13	3.05	7.96	2.62	2.23	1.44	1.20	1.33	.18	.07	.016	637	40	17	15.2	3.35	.03	100.23		
PPU-17900	107.53	5 72	2.44	7.15	3.22	3.71	1.80	.83	1.32	.07	-11	-018	645	49	20	7 8	1 08	< 01	100 08		
PPD-10000	44.7	/ 1:	2.26	14.24	5.89	5.52	1.56	.78	1.81	. 15	.25	.012	620	67	32	9 6	77	< 01	00 02		
KE PPU-1/900	01.4	2 1 <i>a</i>	2.48	7.14	3.25	3.71	1.74	.83	1.31	- 17	11	· 018	651	50	20	7 2	1 02	- 01	100 06		
 STANDARD SO-15/CSB	49.11	1 12	2.83	7.31	7.27	5.88	2.41	1.84	1.55	2.70	1.39	1.061	1923	81	11	5.9	2.49	5.29	99.59		

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Accredited Co.)

Hudson Bay Ex

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002511R Page 1 (a)
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SHPLEFF Co Cs Ga Hr Nb Sb Sr Sr Ta Th TI U V V Dr Pr Pr Pr Pr Pr Pr Pr	<u> Paramanana dan da 12 - 1311-21</u>		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u>				*******				7.5.9	<u></u>						·			<u> </u>		<u></u>				
GEBD-17931 15.1 2.2 15.0 4.7 9.6 39.1 3 115.3 9 5.1 <1 1.6 201 <1 190.4 19.6 22.4 44.0 4.09 21.4 4.0 1.14 3.58 6.65 3.76 8.85 2.38 35 2.6 2.6 2.7 2.8 16.0 6.2 13.7 56.8 1 160.4 1.2 9.1 <1 2.2 179 1 273.3 36.6 63.4 85.9 9.4 4.0 1.14 3.58 6.65 3.76 8.85 2.38 3.5 2.6 2.5 3.5 3.2 13.2 5.2 4.0 4.3 2.9 4.1	SAMPLE#	Co	Cs	Ga	Hf	Nb	Яb	Sn	Sr	Ta	Th	Τŧ	U	٧	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Τb	Dy	Ho	Er	Tm	Υb	Lu
GEBD-17922 22.7 2.8 16.0 6.2 13.7 56.8 1 10.4 1.2 9.1 1 2.2 176 1 273 36.6 43.4 85.9 9.44 40.1 7.3 1.93 6.48 1.09 6.38 1.39 3.48 .53 3.4 GEBD-17930 37.2 2.3 13.3 3.5 6.6 27.3 1 90.4 7. 3.8 1 1.3 186 1 1.5 18.8 91.6 7.87 36.0 7.4 2.0 6.83 1.19 4.22 .58 3. GEBD-17930 37.2 2.3 13.3 3.5 6.6 27.3 1 90.4 7. 3.8 1 1.3 186 1 1.5 18.8 91.6 7.87 36.0 7.4 2.0 6.83 1.19 4.22 .58 3. GEBD-17927 2 20.6 5.1 16.3 6.0 12.6 51.2 1 117.5 10 7.7 1 2.4 194 1 1.3 18.8 19.16 7.87 36.0 7.4 2.1 33 4.47 .79 4.87 10.7 3.08 .41 2. GEBD-17927 25.0 3.0 17.3 5.5 12.5 66.9 4 162.4 1.3 8.9 1 2.2 176 1 229.0 34.5 39.4 74.4 8.67 37.0 6.9 1.82 6.48 1.04 6.05 1.33 3.70 .51 3. GEBD-17921 21.5 2.8 14.7 6.0 12.5 53.8 1 137.1 1.1 8.4 1 2.1 160 1 247.4 33.0 40.8 82.9 8.94 38.0 7.1 1.77 6.08 1.03 5.88 1.31 3.58 .53 1.6 EBD-17923 22.8 5.3 16.4 5.9 11.9 68.5 1 156.1 1.0 6.9 1.1 1.9 170 1 1.2 17.1 31.9 22.9 65.7 7.38 23.3 6.2 1.6 15.5 9.0 95.6 4 1.27 3.38 .48 3. GEBD-17923 28.6 1.9 14.7 4.0 7.5 24.8 4 120.3 .7 3.8 1 1.2 246 1 1.2 247 1 1.2 247 1 1.2 248 1	i	ppm	ppm	ppm	ppm	ppm	рþт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	bbu	ppm	ppm
GEBD-17922 22.7 2,8 16,0 6.2 13,7 56,8 1 10.0,4 1.2 9,1 11 2,2 179 1 273,3 36.6 43,4 85,9 9,44 40.1 7,3 1.93 6.48 1.09 6.38 1.39 3.48 .53 3, GEBD-17923 31.5 3,2 13,2 5,4 10.4 39,2 11 24, 19, 174 1,9 174 1,2 179 1 273,3 36.6 43,4 85,9 9,44 40.1 7,3 1.93 6.48 1.09 6.38 1.39 3.48 .53 3, GEBD-179724 20.6 5 5,1 16,3 6,0 12,6 51,2 1 117.5 10. 7,7 1 2,4 194 1 1,2 179 1 273,3 36.6 43,4 85,9 9,44 40.1 7,3 1.93 6.48 1.09 6.38 1.39 3.48 .53 3, GEBD-179724 20.6 5 5,1 16,3 6,0 12,6 51,2 1 117.5 10. 7,7 1 2,4 194 1 1,2 194 1		T																											75	2 2/	77
GEBD-17925 31.5 3.2 3.2 5.4 10.4 39.2 5.4 12.4 9 7.7 5.1 1.9 176 5.2 1.3 1.3 1.5 5.2 1.3 1.5 5.2 1.3 1.5 5.3 5.6 27.3 5.0 5.7 5.0 7.7 5.1 1.3 1.5 5.3 1.4 5.2 5.3 5.3 5.4 5.7 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 6.2 5.3 5.5 5.5 6.2 5.3 5.5 5.5 6.2 5.5															<1	190.4	19.6	22.4	44.0	4.99	21.4	4.0	1.14	3.58	.65	3.76	.85	2.38	.35	2.20	.33
GEBD-17924 20.6 5.1 16.3 6.0 12.6 51.2 1 117.5 1.0 7.7 1 2.4 194 1 255.7 36.8 38.1 75.5 8.88 38.7 7.2 1.85 6.37 1.09 6.44 1.46 4.11 5.7 3 1.0 6.6 1.1 16.3 6.0 12.6 51.2 1 117.5 1.0 7.7 1 2.4 194 1 255.7 36.8 38.1 75.5 8.88 38.7 7.2 1.85 6.37 1.09 6.44 1.46 4.11 5.7 3 1.0 6.6 1.1 1.0 1 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0															1	273.3	36.6	43.4	85.9	9.44	40.1	7.3	1.93	6.48	1.09	6.38	1.39	3.84	.55	3.44	•53
GEBD-17924 20.6 5.1 16.3 6.0 12.6 51.2 1 117.5 1.0 7.7 <1 2.4 194 1 255.7 36.8 36.1 75.5 8.88 38.7 7.2 1.85 6.37 1.09 6.44 1.46 4.11 .57 3. GEBD-17927 25.0 3.0 17.3 5.5 12.5 66.9 4 162.4 1.3 8.9 <1 2.2 17 6 1 229.0 34.5 39.4 74.4 8.67 37.0 6.9 1.82 6.48 1.04 6.05 1.33 3.70 .51 3. GEBD-17928 21.3 2.9 15.9 5.0 11.6 61.8 <1 137.0 .9 7.5 <1 1.9 170 <1 274.4 33.0 40.8 82.9 84.9 43.80 7.1 1.77 6.08 1.05 5.88 1.31 3.58 .53 3.73 .58 5.2 11.6 61.8 <1 137.0 .9 7.5 <1 1.9 170 <1 274.7 33.0 40.8 82.9 8.9 49.4 38.0 7.1 1.77 6.08 1.05 5.88 1.31 3.58 .53 3.6 .6 5.9 11.9 68.5 <1 156.1 1.0 6.9 <1 1.9 170 <1 274.7 33.0 40.8 82.9 8.5 7.3 33 2.3 6.2 1.61 5.90 .96 5.64 1.27 3.38 4.83 3. GEBD-17929 31.6 2.0 16.8 4.2 8.8 35.0 <1 137.3 .7 3.8 <1 1.2 246 <1 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.7 4 .94 5.86 1.35 3.70 .52 3. GEBD-17928 24.1 71 13.8 4.3 7.5 28.4 4 1134.0 6.3 3.3 11.2 217 185.0 43.8 2.9 43.7 5.5 26.5 5.2 1.87 6.9 1.7 7.0 61.64 4.44 .60 3.3 GSMD-17963 24.7 1.9 14.6 4.3 5.8 8.9 35.6 <1 131.8 9 4.7 <1 1.5 169 <1 246.5 30.1 26.8 53.8 6.31 26.5 5.3 1.51 5.07 .86 5.17 1.18 3.26 4.8 2.8 5.0 5.8 1.1 1.3 1.8 9 4.7 <1 1.5 169 <1 246.5 30.1 26.8 53.8 6.31 26.5 5.3 1.51 5.07 .86 5.11 1.18 3.26 4.8 2.8 2.9 3.7 5.9 2.0 2.0 13.4 4.6 7.7 1.0 1.0 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1															<1	227.4	40.2	31.8	91.6	7.87	36.0	7.4	2.06	6.83	1.19	6.85	1.58	4.22	.58	3.89	.55
GEBD-17927 25.0 3.0 17.3 5.5 12.5 66.9 4 162.4 1.3 8.9 41 2.2 176 1 229.0 34.5 39.4 74.4 8.67 37.0 6.9 1.82 6.48 1.04 6.05 1.33 3.70 .51 3. GEBD-17922 21.5 2.8 14.7 6.0 12.3 55.8 1 137.1 1. 8.4 41 2.1 160 1 229.0 34.5 39.4 74.4 8.67 37.0 6.9 1.82 6.48 1.04 6.05 1.33 3.70 .51 3. GEBD-17923 23.8 5.3 16.4 5.9 11.9 68.5 41 137.0 1.9 7.5 41.9 170 41 21.1 13.0 4.0 4.0 13.1 13.0 40.8 82.9 8.94 38.0 7.1 1.77 6.08 1.03 5.88 1.31 3.58 .53 3. GEBD-17923 23.8 5.3 16.4 5.9 11.9 68.5 41 156.1 1.0 6.9 41 1.9 178 1 254.5 29.5 30.3 66.2 6.88 29.7 5.4 1.47 4.90 .85 5.19 1.15 3.21 4.7 3. GEBD-17929 31.6 2.0 16.8 4.2 8.8 35.0 41 137.3 .7 3.8 41 1.2 246 41 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.74 .94 5.86 1.36 3.70 .52 3. GEBD-17928 22.4 1.7 13.8 4.3 7.5 28.4 4134.0 .6 3.3 41 1.2 249 41 170.7 25.3 16.8 35.9 4.20 19.3 4.2 1.35 4.50 .75 4.76 1.06 2.90 43 2. GEBD-17928 22.4 1.7 13.8 4.3 7.5 28.4 4134.0 .6 3.3 41 1.2 247 41 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.87 6.69 1.17 7.06 1.61 4.44 .60 3. GSBD-17973 21.1 1.9 14.4 5.5 9.1 37.5 41 132.5 .7 5.0 41 1.6 201 41 245.2 31.3 25.6 55.5 5.96 26.0 5.2 1.46 5.17 .85 5.28 1.21 3.46 .50 3. GSBD-17973 31.2 1.3 13.5 5.8 7.9 18.8 12 175.3 7 3.5 41 1.6 180 41 262.1 28.3 21.0 41.3 5.0 52.7 4.6 1.36 4.68 81.50 5.10 13.1 4.4 2.5 GSBD-17969 21.0 3.4 17.2 5.8 14.4 92.4 41 92.9 1.3 8.4 41 2.4 172 1 252.9 30.8 37.6 6.0 3.8 3.6 5.8 1.35 5.3 8.8 5.26 61.13 3.4 4.6 5.9 1.7 7.06 4.1 4.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	GEBD-17930														<1	142.3	25.4	17.4	41.3	4.33	20.0	4.4	1.33	4.47	.79	4.87	1.07	3.08	.47	2./4	-40
GEBD-17926 21.5 2.8 14.7 6.0 12.3 53.8 1 137.1 1.1 8.4 <1 2.1 160 1 247.4 33.0 40.8 82.9 8.9 438.0 7.1 1.77 6.08 1.03 5.88 1.31 3.58 .53 3.6 GEBD-17928 23.8 5.3 16.4 5.9 11.9 68.5 <1 156.1 1.0 6.9 <1 1.9 178 1 254.5 29.5 30.3 66.2 6.88 29.7 5.4 1.47 4.90 .85 5.19 1.15 3.21 .47 3.6 GEBD-17929 28.6 1.9 14.7 4.0 7.5 24.8 4 120.3 7 3.8 <1 1.2 246 <1 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.74 .94 5.86 1.36 3.70 .52 3.	GEBD-17924	20.6	5.1	16.3	6.0	12.6	51.2	1	117.5	1.0	7.7	<1	2.4	194	1	255.7	36.8	38.1	75.5	8.88	38.7	7.2	1.85	6.37	1.09	6.44	1.46	4.11	.57	3.60	.57
GEBD-17926 21.5 2.8 14.7 6.0 12.3 53.8 1 137.1 1.1 8.4 <1 2.1 160 1 247.4 33.0 40.8 82.9 8.9 438.0 7.1 1.77 6.08 1.03 5.88 1.31 3.58 5.53 3.6 GEBD-17928 23.8 5.3 16.4 5.9 11.9 68.5 <1 156.1 1.0 6.9 <1 1.9 178 1 254.5 29.5 30.3 66.2 6.88 29.7 5.4 1.47 4.90 .85 5.19 1.15 3.21 4.73 6.88 1.79 1.9 68.5 <1 156.1 1.0 6.9 <1 1.9 178 1 254.5 29.5 30.3 66.2 6.88 29.7 5.4 1.47 4.90 .85 5.19 1.15 3.21 4.73 6.88 1.79 1.8 6.8 1.77 1.8 4.3 7.5 28.4 <1 137.3 7 3.8 <1 1.2 246 <1 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.74 .94 5.86 1.36 3.70 .52 3. ### CEBD-17928 28.6 1.9 14.7 4.0 7.5 24.8 4 120.3 .7 3.0 <1 1.1 229 <1 170.7 25.3 16.8 35.9 4.20 19.3 4.2 1.35 4.50 .75 4.76 1.06 2.90 .43 2. GEBD-17928 22.4 1.7 13.8 4.3 7.5 28.4 <1 134.0 .6 3.3 <1 1.2 217 <1 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.87 6.69 1.17 7.06 1.61 4.44 .60 3. GEND-1793 24.7 2.0 14.3 5.8 8.9 35.6 <1 131.8 .9 4.7 <1 1.5 169 <1 246.9 30.1 26.8 53.8 6.31 26.5 5.36 6.2 1.55 6.7 17.1 83 3.26 4.8 2. GEND-1793 51.1 9 14.4 5.5 9.1 37.5 <1 132.5 .7 5.0 <1 1.6 180 <1 246.9 30.1 26.8 53.8 6.31 26.5 5.30 6.2 6.5 5.0 6.2 6.5 5.0 6.2 6.0 5.2 1.46 5.17 8.55 2.8 1.21 3.46 .50 3. GEND-17949 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 6.5 1.50 5.10 3.16 4.42 . GEND-17960 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 106 <1 266.2 3.7 27.3 53.6 6.06 24.9 4.9 1.32 4.60 8.2 5.95 1.04 6.6 1.45 4.2 6.1 3. GEND-17962 21.4 2.3 14.8 4.6 7.1 2.5 3.5 5.9 4.6 4.1 1.1 207 <1 124.4 2.2 6.2 3.4 4.2 4.7 2.0 3.8 3.6 4.8 1.36 5.3 6.4 6.8 3.5 5.0 2.1 10 3.01 4.4 2. GEND-17962 14.4 2.8 16.2 5.1 10.8 51.3 11.1 1.5 5.9 4.6 11.1 207 <1 124.4 2.2 2.3 14.8 4.9 10.2 38.5 <1 135.5 5.9 4.6 4.1 1.1 207 <1 124.4 2.6 2.3 14.4 2.4 10.2 38.5 <1 135.5 5.9 4.6 4.1 1.1 207 <1 124.4 2.6 2.3 14.4 2.4 10.2 38.5 <1 135.5 5.9 4.6 4.1 1.1 207 <1 124.4 2.2 2.3 14.8 4.5 1.1 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1	1																			•										
GEBD-17926 21.3 2.9 15.9 5.0 11.6 61.8 4.1 137.0 .9 7.5 41 1.9 170 41 271.1 31.9 32.9 65.7 7.38 32.3 6.2 1.61 5.90 .96 5.64 1.27 3.38 .48 3. GEBD-17929 28.8 5.3 16.4 5.9 11.9 6.5 41 156.1 1.0 6.9 41 1.9 170 41 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.74 .94 5.85 5.19 1.15 3.21 4.7 3. GEBD-17929 28.6 1.9 14.7 4.0 7.5 24.8 4 120.3 .7 3.0 41 1.1 229 41 170.7 25.3 16.8 35.9 4.20 19.3 4.2 1.35 4.50 .75 4.76 1.06 2.90 .43 2. GEBD-17928 22.4 1.7 13.8 4.3 7.5 24.8 4 120.3 .7 3.0 41 1.1 229 41 18.0 24.9 3.7 5.0 26.5 6.2 1.87 8.6 9.1.7 7.06 1.61 4.44 4.60 3. GEBD-17928 22.4 1.7 13.8 4.3 7.5 24.8 4 120.3 .7 3.0 41 1.1 229 41 18.0 24.9 3.7 5.0 26.5 6.2 1.87 8.6 9.1.7 7.06 1.61 4.44 4.60 3. GEBD-17973 24.7 2.0 14.3 5.8 8.9 35.6 41 131.8 .9 4.7 41 1.2 217 41 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.48 76.69 1.17 7.06 1.61 4.44 4.60 3. GEBD-17973 25.1 1.9 14.4 5.5 9.1 37.5 41 132.5 .7 5.0 41 1.6 201 425.2 31.3 25.6 56.5 5.90 28.0 5.2 1.46 5.17 1.83 3.26 4.8 2. GEBD-17969 21.0 3.4 17.2 5.8 14.4 92.4 41 92.9 1.3 8.4 41 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 8.85 5.26 1.15 3.28 4.5 GEBD-17960 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 41 1.3 196 41 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 6.13 6.90-17962 21.4 4.2 4.3 8.4 30.0 41 14.6 3.7 7 3.4 41.1 207 41 84.4 27.6 20.3 45.2 4.72 24.4 91.2 34.6 0.6 25.00 1.10 1.0 4.2 4.5 1.1 1.2 1.3 13.3 1.5 1.0 4.6 8.9 27.8 41 135.5 9.9 4.6 41 1.4 183 41 1.2 1.3 1.3 1.3 1.4 4.4 2.7 8 20.3 44.4 27.6 20.3 45.2 4.9 10.2 33.5 41 135.5 9.9 4.6 41 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.7 24.5 2.7 2.0 3.9 2 1.1 10.8 18 4.3 41 1.5 41 1.5 201 41 1.4 183 41 1.2 21 1.3 1.3 1.5 5.8 7.9 14.3 1.4 1.3 1.3 1.5 5.9 4 1.6 41 1.4 183 41 1.2 1.3 1.3 1.5 5.8 7.9 1.3 1.4 1.3 1.3 1.5 5.9 4 1.6 41 1.4 183 41 1.2 1.3 1.3 1.5 5.8 7.9 1.3 1.4 1.3 1.3 1.3 1.5 5.9 4 1.6 41 1.3 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.	GEBD-17927	25.0	3.0	17.3	5.5	12.5	66.9								1	229.0	34.5	39.4	74.4	8.67	37.0	6.9	1.82	6.48	1.04	6.05	1.33	3.70	.51	3.34	.52
CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17928 CEBD-1	GEBD-17921	21.5	2.8	14.7	6.0	12.3	53.8	1	137.1	1.1	8.4	<1	2.1	160	1	247.4	33.0	40.8	82.9	8.94	38.0	7.1	1.77	6.08	1.03	5.88	1.31	3.58	.53	3.19	.50
CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17929 CEBD-17928 CEBD-1	GEBD-17926	21.3	2.9	15.9	5.0	11.6	61.8	<1	137.0	.9	7.5	<1	1.9	170	<1	217.1	31.9	32.9	65.7	7.38	32.3	6.2	1.61	5.90	.96	5.64	1.27	3.38	.48	3.02	.47
CEBD-17929 31.6 2.0 16.8 4.2 8.8 35.0 <1 137.3 7 3.8 <1 1.2 246 <1 177.2 35.1 20.7 40.9 5.16 24.2 5.1 1.61 5.74 .94 5.86 1.36 3.70 .52 3.8 3.8	GEBD-17923	23.8	5.3	16.4	5.9	11.9	68.5	<1	156.1	1.0	6.9	<1	1.9	178	1	254.5	29.5	30.3	66.2	6.88	29.7	5.4	1.47	4.90	.85	5.19	1.15	3.21	.47	3.01	.44
28.6 1.9 14.7 4.0 7.5 24.8 4 120.3 .7 3.0 <1 1.1 229 <1 170.7 25.3 16.8 35.9 4.20 19.3 4.2 1.35 4.50 .75 4.76 1.06 2.90 .43 2.6 EBD-17928 22.4 1.7 13.8 4.3 7.5 28.4 <1 134.0 .6 3.3 <1 1.2 217 <1 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.87 6.69 1.17 7.06 1.61 4.44 .60 3.	GEBD-17929	31.6	2.0	16.8	4.2	8.8	35.0	<1	137.3	.7	3.8	<1	1.2	246	<1	177.2	35.1	20.7	40.9	5.16	24.2	5.1	1.61	5.74	.94	5.86	1.36	3.70	.52	3.42	.51
GEBD-17928 22.4 1,7 13.8 4,3 7,5 28.4 <1 134.0 .6 3.3 <1 1.2 217 <1 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.87 6.69 1.17 7.06 1.61 4.44 .60 3. GSMD-17973 25.1 1.9 14.4 5.5 9.1 37.5 <1 132.5 .7 5.0 <1 1.6 201 <1 245.2 31.3 25.6 55.5 5.86 26.0 5.2 1.46 5.17 1.18 3.26 4.82 2.6 4.87 6.9 1.77 7.06 1.61 4.44 .60 3. GSMD-17973 31.2 1.3 13.5 5.8 7.9 18.8 2 175.3 .7 3.5 <1 1.6 180 <1 262.1 28.3 21.0 41.3 5.05 22.7 4.6 1.36 4.68 .81 5.05 1.10 3.16 .44 2. GSMD-17969 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 4.5 2. GSMD-17965 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSMD-17965 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSMD-17965 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSMD-17965 28.6 2.0 14.2 4.9 10.2 38.5 <1 135.5 9 4.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSMD-17961 21.3 1.6 14.2 4.9 10.2 38.5 <1 135.5 9 4.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 23 <1 277.5 36.3 24.4 8.4 6.02 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17974 23.6 1.7 19.5 2.6 2.6 6.9 2 105.3 4. 4.4 1.2 23 4.4 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17974 23.5 2.7 16.4 5.1 7.3 25.0 1 127.7 6 3.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSMD-17974 23.5 2.7 16.4 5.7 7.2 23.7 7 1 20.0 6 3.2 11.3 1.1 1.2 11 1.2	, , , , , , , , , , , , , , , , , , , ,																														
GEBD-17928 22.4 1.7 13.8 4.3 7.5 28.4 <1 134.0 .6 3.3 <1 1.2 217 <1 185.0 43.8 20.9 43.7 5.50 26.5 6.2 1.87 6.69 1.17 7.06 1.61 4.44 .60 3. GSWD-17973 25.1 1.9 14.4 5.5 9.1 37.5 <1 132.5 .7 5.0 <1 1.6 201 <1 245.2 31.3 25.6 55.5 36.5 5.3 1.51 5.07 .85 5.28 1.21 3.46 .50 3. GSWD-17973 31.2 1.3 13.5 5.8 7.9 18.8 2 175.3 .7 3.5 <1 1.6 180 <1 262.1 28.3 21.0 41.3 5.05 22.7 4.6 1.36 4.68 .81 5.05 1.10 3.16 .44 2. GSWD-17969 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 .45 2. GSWD-17965 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 190 <1 1.2 07 <1 184.4 27.6 20.3 45.2 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSWD-17965 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.9 72.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSWD-17965 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSWD-17965 28.6 2.0 14.2 4.0 10.2 38.5 <1 135.5 9 4.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSWD-17961 21.3 1.6 14.2 4.9 10.2 38.5 <1 155.9 9 4.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSWD-17961 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 23 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSWD-17613 28.4 2.4 14.0 4.7 9.1 44.3 1 100.8 8 4.3 <1 1.6 23 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSWD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.8 3.4 1.5 7.2 6.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSWD-17967 28.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .6 3.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.3 3.84 .54 3. GSWD-17976 28.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.5 190 2 1 277.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSWD-17976 29.5 4.7 1.5 12.6 4.3 7.9 27.5 <1 120.0 .6 3.2 <1 1.3 191 1 177.6 30.5 17.9 40.1 48.7 5.9 27	_BD-17932	28.6	1.9	14.7	4.0	7.5	24.8	4	120.3	.7	3.0	<1	1.1	229	<1	170.7	25.3	16.8	35.9	4.20	19.3	4.2	1.35	4.50	.75	4.76	1.06	2.90	.43	2.48	.39
GSMD-17963 26.1 1.9 14.4 5.5 9.1 37.5 <1 131.8 9 4.7 <1 1.5 169 <1 246.9 30.1 26.8 53.8 6.31 26.5 5.3 1.51 5.07 .86 5.17 1.18 3.26 .48 2.5 GSMD-17973 25.1 1.9 14.4 5.5 9.1 37.5 <1 132.5 .7 5.0 <1 1.6 201 <1 245.2 31.3 25.6 56.5 5.96 26.0 5.2 1.46 5.17 .85 5.28 1.21 3.46 .50 3. GSMD-17969 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 .45 2. GSMD-17962 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 .61 3. GSMD-17962 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.7 207 1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 13.2 4.60 .82 5.02 1.10 3.01 .44 2. GSMD-17962 14.4 2.8 16.2 5.1 10.8 51.3 <1 101.1 .9 5.6 <1 1.7 212 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 .45 2. GSMD-17962 14.4 2.8 16.2 5.1 10.8 51.3 <1 010.1 .9 5.6 <1 1.7 212 1 256.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSMD-17615 21.3 1.6 14.2 4.9 10.2 38.5 <1 135.5 .9 4.6 <1 1.4 183 <1 213.8 25.6 23.9 46.6 5.56 22.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2. GSMD-17604 RE GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 8.1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.3 4.15 <1 1.6 123 GSMD-17604 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 8 4.0 <1 1.5 201 <1 127.7 6.3 3.5 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17601 25.4 2.7 16.4 5.1 7.3 25.0 1 127.7 8 4.0 <1 1.5 201 <1 127.7 8 4.0 <1 1.5 201 <1 127.9 5.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.84 .53 3. GSMD-17601 27.6 1.7 19.5 2.6 2.6 6.9 2 105.3 4. 4 <1 1.2 20 GSMD-17601 27.6 1.7 19.5 2.6 2.6 6.9 2 105.3 4. 4 <1 1.2 238 GSMD-17601 27.6 1.7 19.5 2.6 2.6 6.9 2 105.3 4. 4 <1 1.2 238 GSMD-17601 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 8 5.1 1.1 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .99 6.18 1.38 3.38 .54 3. GSMD-17601 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 8 5.1 1.4 1.8 180															<1	185.0	43.8	20.9	43.7	5.50	26.5	6.2	1.87	6.69	1.17	7.06	1.61	4.44	.60	3.97	.60
GSMD-17973															<1	246.9	30.1	26.8	53.8	6.31	26.5	5.3	1.51	5.07	.86	5.17	1.18	3.26	.48	2.99	.47
GSMD-17667 31.2 1.3 13.5 5.8 7.9 18.8 2 175.3 .7 3.5 <1 1.6 180 <1 262.1 28.3 21.0 41.3 5.05 22.7 4.6 1.36 4.68 .81 5.05 1.10 3.16 .44 2. GSMD-17969 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 .45 2. GSMD-17965 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 .61 3. GSMD-17962 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 .61 3. GSMD-17962 31.4 2.8 16.2 5.1 10.8 51.3 <1 101.1 .9 5.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSMD-17615 21.3 1.6 14.2 4.9 10.2 38.5 <1 135.5 .9 4.6 <1 1.4 183 <1 213.8 25.6 23.9 46.6 5.56 22.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2. GSMD-17604 77.8 5.3 16.6 5.2 10.1 62.7 <1 108.2 .8 6.1 <1 1.9 152 1 230.8 32.5 31.0 68.8 7.41 32.3 6.4 1.53 5.74 .91 5.5 4 1.24 3.48 .50 3. GSMD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.3 .4 11.5 <1 .6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 5.5 3. GSMD-17604 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 198.2 31.8 27.6 57.0 6.78 29.0 6.1 1.55 5.87 .97 5.99 1.25 3.58 4.5 3. GSMD-17601 25.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17601 25.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .8 4.0 <1 1.2 238 21.0 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 4.1 2. GSMD-17961 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 8 5.1 1.4 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.5 4. 98 5.34 1.19 3.24 4.5 3. GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 8 5.1 1.4 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .98 5.34 1.19 3.24 4.5 3.8 4.5 3.8 4.5 3.8 4.5 3.8 3.8 4.1 3.8 3.8 9.5 3.8 4.1 3.8 3.8 9.5 3.8 4.1 3.8 3.8 9.5 3.8 4.1 3.8 3.8 9.5 3.8 3.8 9.0 3.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0 9.0 3.0															<1	245.2	31.3	25.6	56.5	5.96	26.0	5.2	1.46	5.17	.85	5.28	1.21	3.46	.50	3.17	.46
GSMD-17969 21.0 3.4 17.2 5.8 14.4 92.4 <1 92.9 1.3 8.4 <1 2.4 172 1 252.9 30.8 37.6 80.3 8.25 33.6 5.8 1.36 5.38 .85 5.26 1.15 3.28 .45 2. GSMD-17965 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 .61 3. GSMD-17962 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 .61 3. GSMD-17962 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 .7 3.4 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2. GSMD-17962 21.3 1.6 14.2 4.9 10.2 38.5 <1 101.1 .9 5.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2. GSMD-17615 21.3 1.6 14.2 4.9 10.2 38.5 <1 135.5 .9 4.6 <1 1.4 183 <1 213.8 25.6 23.9 46.6 5.5 22.8 4.5 1.33 4.24 .72 4.52 3.9 2.8 3.9 2.6 3.9 2. GSMD-17604 22.3 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17613 28.4 2.4 14.0 4.7 9.1 44.3 1 100.8 8.4.3 <1 1.6 194 <1 198.2 31.8 27.6 57.0 6.78 29.0 6.1 1.55 5.87 .97 5.99 1.25 3.58 .46 3. GSMD-17974 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.8 9.6 6.19 1.33 3.84 5.3 3. GSMD-17967 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 4 4.4 <1 .2 233.8 1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2. GSMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.7 6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 7 3.0 <1 1.3 12.9 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.2 <4 4.4 5.5 4.7 1.4 15.19 .89 5.34 1.19 3.2 <4 4.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.5 5.9 4.5 5.9 1.9 5.5 1.22 3.44 .45 3.								-							<1	262.1	28.3	21.0	41.3	5.05	22.7	4.6	1.36	4.68	.81	5.05	1.10	3.16	.44	2.81	.42
GSMD-17602 22.0 2.0 13.4 4.6 7.1 24.2 3 114.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 6.2 5.0 28.6 2.0 14.2 4.3 8.4 30.0 <1 146.3 7.3 7.3 4.6 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 24.5 2.1 3 1.6 14.2 4.9 10.2 38.5 <1 101.1 9 5.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 6.64 4.3 3.9 4.6 1.3 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.8 3.8 <1 1.6 123 3.8	93.40 17017				٠.٠	•••		-	117.5	• • •	2.5		***	,											• - •						
GSMD-17602 22.0 2.0 13.4 4.6 7.1 24.2 3 14.8 4.5 3.2 <1 1.3 196 <1 198.0 40.6 19.8 49.0 5.22 23.6 5.7 1.62 5.95 1.04 6.66 1.45 4.28 6.2 5.0 2.0 14.2 4.3 8.4 30.0 <1 146.3 7.3 7.3 <1 1.1 207 <1 184.4 27.6 20.3 45.2 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2.5 3.2 3.6 3.6 3.6 3.6 5.1 10.8 51.3 <1 101.1 9 5.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 6.6 4.33 .94 2.61 .37 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.7 2.8 6.1 3.8 3.8 4.5 3.2 3.8 3.8 4.5 3.2 3.8 3.8 4.5 3.3 4.24 7.2 4.52 9.7 2.80 .39 2.8 3.8	GSMD=17060	21.0	3.4	17.2	5.8	14 4	92 4	<1	92.9	1.3	8.4	<1	2.4	172	1	252.9	30.8	37.6	80.3	8.25	33.6	5.8	1.36	5.38	.85	5.26	1.15	3.28	.45	2.91	.46
GSMD-17965 28.6 2.0 14.2 4.3 8.4 30.0 < 146.3 .7 3.4 < 1.1 207 < 184.4 27.6 20.3 45.2 4.97 22.4 4.9 1.32 4.60 .82 5.02 1.10 3.01 .44 2.6 GSMD-17615 21.3 1.6 14.2 4.9 10.2 38.5 < 135.5 .9 4.6 < 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2.5 2.13 1.6 14.2 4.9 10.2 38.5 < 135.5 .9 4.6 < 1.4 183 < 1213.8 25.6 23.9 46.6 5.56 22.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2.5 2.8 4.5 2.3 4.4 4.5 2.5 2.5 4.5 2.5 4.5 2.5 2.5 4.5 2.5 2.5 4.5 2															<1	198.0	40.6	19.8	49.0	5.22	23.6	5.7	1.62	5.95	1.04	6.66	1.45	4.28	.61	3.95	.60
GSMD-17615 14.4 2.8 16.2 5.1 10.8 51.3 <1 101.1 .9 5.6 <1 1.7 212 1 226.6 23.7 27.3 53.6 6.06 24.9 4.6 1.26 4.17 .66 4.33 .94 2.61 .37 2.2 .37 2.38 2.39 4.6 5.56 22.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2. GSMD-17604 RE GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 5.55 3.8 6.58 6.57															<1	184.4	27.6	20.3	45.2	4 97	22.4	4.9	1.32	4.60	.82	5.02	1.10	3.01	44	2.85	.40
GSMD-17615 21.3 1.6 14.2 4.9 10.2 38.5 <1 135.5 .9 4.6 <1 1.4 183 <1 213.8 25.6 23.9 46.6 5.56 22.8 4.5 1.33 4.24 .72 4.52 .97 2.80 .39 2. GSMD-17604 17.8 5.3 16.6 5.2 10.1 62.7 <1 108.2 .8 6.1 <1 1.9 152 1 230.8 32.5 31.0 68.8 7.41 32.3 6.4 1.53 5.74 .91 5.54 1.24 3.48 .50 3. RE GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 .8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 100.8 .8 4.3 <1 1.6 194 <1 198.2 31.8 27.6 57.0 6.78 29.0 6.1 1.55 5.87 .97 5.99 1.25 3.58 .46 3. GSMD-17974 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17612 55.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .6 3.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.															1	226 6	23 7	27.3	53.6	6.06	24 9	4.6	1.26	4.17	.66	4.33	.94	2.61	.37	2.53	.37
GSMD-17604 RE GSMD-17974 CGSMD-17604 RE GSMD-17974 CGSMD-17605 RE GSMD-17613 CGSMD-17606 RE GSMD-17606 CGSMD-17606 CGSMD-17607 CGSMD-17607 CGSMD-17607 CGSMD-17607 CGSMD-17608 CGSMD-17608 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17609 CGSMD-17601						-									<1	213 8	25 6	23 9	46.6	5 56	22 8	4.5	1 33	4 24	.72	4.52	.97	2.80	39	2.53	.39
RE GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 .8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17613 28.4 2.4 14.0 4.7 9.1 44.3 1 100.8 .8 4.3 <1 1.6 194 <1 198.2 31.8 27.6 57.0 6.78 29.0 6.1 1.55 5.87 .97 5.99 1.25 3.58 .46 3. GSMD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.3 .4 1.5 <1 .7 246 <1 144.9 35.2 11.2 30.4 3.72 18.6 5.0 1.73 5.83 1.07 6.51 1.43 3.84 .53 3. GSMD-17974 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 129 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.	G3FID-17013	21.3	120	14.6	7.,	10.2	30.3	~1	133.3	.,	4.0	``	1.4	103	• • •	£13.0	23.0		40.0	3.50		7.5			*		• • •	_,			
RE GSMD-17974 23.6 1.4 13.7 6.4 8.9 27.8 <1 153.9 .8 3.8 <1 1.6 223 <1 277.5 36.3 24.4 48.4 6.20 27.8 6.0 1.82 5.88 1.01 6.18 1.37 3.82 .55 3. GSMD-17613 28.4 2.4 14.0 4.7 9.1 44.3 1 100.8 .8 4.3 <1 1.6 194 <1 198.2 31.8 27.6 57.0 6.78 29.0 6.1 1.55 5.87 .97 5.99 1.25 3.58 .46 3. GSMD-17603 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.3 .4 1.5 <1 .7 246 <1 144.9 35.2 11.2 30.4 3.72 18.6 5.0 1.73 5.83 1.07 6.51 1.43 3.84 .53 3. 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17967 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 .4 .4 <1 .2 338 <1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2. GSMD-17611 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 129 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. 44 3	CCUD-17404	17 8	5 7	16 6	5 2	10 1	62.7	-1	108 2	R	٨ 1	-1	1 0	152	1	230 8	32.5	31 A	68 8	7 41	32 3	6.4	1 53	5 74	Q1	5 54	1.24	3.48	.50	3.20	.46
GSMD-17613															-1	277.5	36.3	24 4	48 4	6 20	27 R	6.0	1 82	5 88	1 01	6 18	1 37	3.82	55	3.74	.54
GSMD-17603 GSMD-17974 38.9 1.3 14.3 3.4 4.1 10.3 <1 105.3 .4 1.5 <1 .7 246 <1 144.9 35.2 11.2 30.4 3.72 18.6 5.0 1.73 5.83 1.07 6.51 1.43 3.84 .53 3. 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17612 GSMD-17612 GSMD-17601 GSMD-1															-1	108 2	30.3	27 6	57 0	6 78	20 0	6.1	1.55	5 87	97	5 00	1 25	3 58	.46	3.05	-45
GSMD-17974 22.1 1.3 12.5 6.0 8.6 26.3 <1 147.7 .8 4.0 <1 1.5 201 <1 257.1 36.1 24.0 48.7 5.97 27.0 5.6 1.60 5.85 .96 6.19 1.33 3.84 .54 3. GSMD-17612 55.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .6 3.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSMD-17601 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 .4 .4 <1 .2 338 <1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2.00 GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3.								-							-1	1// 0	35.2	11 2	30.6	7 72	18 6	5.0	1 73	5 83	1 07	۸ 51	1 43	3 84	53.	3 41	.47
GSMD-17612 55.4 2.7 16.4 5.1 7.3 25.0 1 127.7 .6 3.5 1.1 1.1 270 4 217.9 35.0 20.7 50.1 5.52 25.0 5.5 1.79 5.98 1.02 6.07 1.31 3.76 .52 3. GSMD-17967 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 .4 .4 .4 .2 338 <1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2. GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.															-1	257 1	36.1	24.0	18.7	5.72	27.0	5.6	1.60	5 85	20.1	6 10	1 33	3 84	54	3 45	52
GSMD-17967 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 .4 .4 <1 .2 338 <1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2. GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17614 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. Z7.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.	G2MD-1/9/4	22.1	1.5	12.5	6.0	0.0	20.3	~1	147.7	.0	4.0	\1	1.5	201	_1	231.1	30.1	24.0	40.7	3.71	27.0	٥.٥	1.00	رن.ر	. 70	0.17	1.33	3.04		3.73	
GSMD-17967 76.0 1.7 19.5 2.6 2.6 6.9 2 105.3 .4 .4 <1 .2 338 <1 105.4 28.4 6.3 18.1 2.37 12.9 3.6 1.61 4.39 .79 4.85 1.10 3.07 .41 2. GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. SMD-17611 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. Z7.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.	CCUD-17413	EE /	27	16 /	5 1	7 7	25.0	4	127 7	4	7.5	1 1	1 1	270		217 0	35 N	20 7	50 1	5 52	25 N	5 5	1 70	5 OR	1 112	6.07	1 31	3 76	.52	3.38	-50
GSMD-17601 21.6 1.9 12.7 4.5 7.2 23.7 <1 120.0 .6 3.2 <1 1.3 191 <1 194.6 37.5 19.6 47.1 5.06 23.1 5.1 1.47 5.54 .98 6.18 1.38 3.98 .57 3. 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. 24 3. 24 7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.															-4 -1	105 /	20.7	40.1	10 4	2.26	12.0	7.5	1 61	7.30	70	/ RF	1 10	3 07	41	2 71	42
-SMD-17611 23.5 2.2 14.8 5.3 7.9 37.1 2 123.7 .8 4.9 <1 1.6 189 2 233.9 32.5 22.8 46.6 5.59 24.8 5.1 1.37 5.49 .88 5.38 1.18 3.38 .54 3. 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17976 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. 2															-1	107.4	27 E	10.2	/7 1	5 04	22 1	5 1	1.01	5 5/	08	4.0J	1 38	3 08	57	3 70	.54
SMD-17614 27.1 1.7 13.9 4.1 8.6 27.8 1 127.3 .7 3.0 <1 1.3 229 1 177.6 30.5 17.9 40.1 4.64 20.5 4.7 1.41 5.19 .89 5.34 1.19 3.24 .45 3. GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.															`1	277 0	31.J	17.0	76.1	J.00	2/ 0	J. I	1.47	5.74	99	5 70	1 12	7 72	5/	3 02	40
GSMD-17971 23.5 1.9 14.3 5.8 9.6 40.9 1 121.3 .8 5.1 1.4 1.8 180 1 252.3 32.1 27.6 63.0 6.67 28.4 5.9 1.49 5.45 .94 5.75 1.22 3.43 .44 3. GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.															2	477 /	32.3	47.0	40.0	2.27	24.0	2.1	1.31	J.47	-00	J.30	1 10	2 2/	4	3.02 3.01	.47 ./5
GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.	3MD-1/614	27.1	1.7	13.9	4.1	8.6	27.8	1	127.3	•1	5.0	<1	1.5	224	T	177.6	20.5	17.9	40.1	4.04	20.5	4.7	1.4	3. IY	.09	J.34	1.19	J. C4	.4)	J.01	.43
GSMD-17976 24.7 1.5 12.6 4.3 7.9 27.5 <1 105.1 .6 3.2 <1 1.4 185 <1 186.9 29.0 18.4 38.0 4.67 21.3 4.6 1.28 5.24 .80 5.10 1.10 3.08 .46 2.	47074	27 5		4/ 7	5 0	~ .	(0.0				F 4	4 /	4 0	400		252.3	70 4	27 (47 A		20 /	E 0	1 /0	E /F	0/	E 7E	1 22	7 /.7	4.4	3 12	7.1
GSMD-17976 24.7 1.5 12.6 4.5 7.9 27.5 <1 105.1 .6 5.2 <1 1.4 185 <1 186.9 29.0 18.4 58.0 4.67 21.5 4.6 1.28 5.24 .80 5.10 1.10 5.08 .40 2.6 csmp-17064 27 1 3.6 15.8 4.8 11.7 37 2 5 157 4 1.1 4.7 <1 1.7 237 1 206.1 25.2 24.9 50.9 5.34 22.6 4.5 1.11 4.19 .71 4.57 .99 2.81 .38 2.															Ī	404.5	34.1	21.0	05.0	0.0/	20.4	2.9	1.47	2.42	. 74	J./J	1.44	3,43 7 00	.44	2.12	.41
1 08MD+17064 127.1 5.6 15.8 4.8 11.7 37.2 5 157.4 1.1 4.7 <1 1.7 257 1 206.1 25.2 24.9 50.9 5.54 22.6 4.5 1.11 4.19 ./1 4.57 ./9 2.61 ./30 2.															<1	100.9	29.0	18.4	58.0	4.0/	21.5	4.6	1.25	2.44	.80	2.10	1.10	3.00	.40	2.71	-41 70
															1	206.1	25.2	24.9	20.9	2.54	22.6	4.5	1.11	4.19	.(1	4.00	.99	2.01	.38	2.04	.39
STANDARD SO-15 20.8 3.0 15.7 25.9 31.4 64.6 17 395.9 1.8 22.0 1.2 20.4 152 20 1045.9 22.6 29.8 60.3 6.14 24.5 4.5 1.08 4.02 .62 3.80 .80 2.44 .36 2.	STANDARD SO-15	20.8	3.0	15.7	25.9	31.4	64.6	17	395.9	1.8	22.0	1.2	20.4	152	20	1045.9	22.6	29.8	60.3	6.14	24.5	4.5	1.08	4.02	.62	<u>5.80</u>		2.44	.30	2.28	-41
		24.7	1.5	12.6	4.3	7.9	27.5	<1	105.1	.6	3.2	<1	1.4	185	<1 1	186.9 206.1	29.0 25.2	18.4 24.9	38.0 50.9	4.67 5.34	21.3	4.6 4.5	1.28	5.24 4.19	.80 .71	5.10 4.57	1.10	3.08 2.81	.46 .38	2.97 2.64	.41 .39

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED: Hyg 28/02

Page 2 (a)

ACE AMERICA			-,						<u> </u>																					
SAMPLE#	Co	Cs	Ga	Нf	Nb	Rb	Sn				Τl				Zr	Y	La	Ce		Nd			Gd				Er		Υb	
	ppm	ppm	mqq	ppm	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbur	ppm	bbu	ppm	bbw	ppm	ppm	bbu	ppm	bbw	ppm	ppm	рри
																				24 7		4 77		4 07	. 17	1 71	/ 20	57 3	7 76	52
GSMD-17975	25.9							135.3		4.2		2.5		1	203.7	39.4	23.2	45.2	6.16	26.7	3.9	1.//	0.40	1.00	0.45	1.31	2 0/	.57	2.57	36
GSMD-17968	39.8	2.2	15.1	4.7	9.5	49.6	1	65.7		5.8		1.5		2	171.1	26.0	23.8	49.8	5.83	23.4	4.0	1.29	4.78	-/4	4.49	-07	2.04	.42	2.21	75
GSMD-17608	18.2	2.4	18.7	5.5	10.6	39.7	2	118.6		4.5		1.4		1	193.9	22.8	22.2	44.6	5.41	22.1	3.9	1.23	3.90	.65	4.15	.80	2.30	.40	2.42	.33
GSMD-17978	25.7						1	121.8	.7	3.9		1.3		<1	178.9	23.4	19.1	41.1	4.73	19.8	3.8	1.17	3.71	.64	3.96	.84	2.04	.30	2.02	.3/
GSMD-17607	30.2	2.0	16.2	4.8	9.1	33.6	1	129.8	.8	4.8	.2	1.4	186	<1	171.8	28.1	21.3	56.8	5.48	22.9	4.9	1.35	4.82	ŪŠ.	4.97	1.01	3.25	.40	3.05	.42
																													~	
GSMD-17970	18.3	2.7	16.5	6.2	13.0	74.8	2	108.6	1.1	8.4	.3	2.5	164	1	231.2	36.0	39.1	80.9	9.25	37.1	6.6	1.69	5.91	.94	5.90	1.20	3.88	.55	3.45	.49
GSMD-17606	21.6						1	121.6	.8	4.4	.1	1.4	197	<1	201.1	27.3	22.8	46.0	5.61	22.6	4.8	1.36	4.76	.77	4.65	.92	3.02	.42	2.78	.36
GSMD-17977	38.0						1	106.9	.7	3.4	.1	1.2	223	<1	184.7	24.8	20.2	39.9	4.94	20.9	4.3	1.68	4.52	.77	4.49	.89	2.72	-40	2.45	.34
GSMD-17979	32.5						1	127.4	.7	3.4	.2	1.2	205	<1	174.6	26.2	17.7	39.6	4.59	19.3	4.1	1.33	4.23	.69	4.49	.91	2.87	.40	2.73	.36
GSMD-17610	23.1							121.2	.8	4.5		1.4		<1	182.1	27.3	21.9	47.0	5.46	22.1	4.5	1.31	4.53	.77	4.65	.91	2.97	.41	2.73	.37
43110 11010			,				_																							
)-17972	24.1	1.8	15.2	5.1	7.7	27.2	4	130.6	.7	3.8	.2	2.6	197	<1	187.0	36.8	21.6	42.1	5.75	24.6	5.6	1.70	5.71	.97	6.10	1.23	3.83	.53	3.55	.51
u-10-17609	25.7							130.7		2.7		1.0		<1	186.1	27.1	15.9	36.2	4.27	17.9	3.9	1.38	4.31	.74	4.75	-95	2.98	.43	2.79	.40
GSMD-17980	27.3							149.4		3.9		1.3		<1	217.6	31.3	20.5	45.6	5.44	23.2	5.2	1.49	5.46	.91	5.35	1.06	3.39	.49	3.07	.43
GSMD-17605	23.3						_	116.8		3.5		1.2		<1	174.9	24.9	19.0	38.5	4.69	19.2	4.1	1.26	4.28	.68	4.48	-84	2.85	.39	2.60	.36
GSMD-17619	31.3						-	98.4		3.2		1.1		<1	156.8	26.7	16.5	34.9	4.45	18.7	4.0	1.37	4.32	.76	4.84	.93	2.92	.39	2.62	.38
11017 GWCF	31.3	2.1	13.3	7.2	0.4	22.7	-	,,,,	•••	٠.٢	• •		,																	
GSMD-17961	14.4	2 4	15.8	5.0	10.5	47.7	1	90.0	-8	5.0	.6	1.6	193	<1	192.8	24.0	23.9	47.3	5.63	22.4	4.2	1.10	3.72	.63	3.97	.82	2.51	.37	2.61	.36
GSMD-17618	27.9	1 0	14 9	5.5	8.9	29.0		146.2		4.2		1.7		<1	205.7	30.2	22.0	46.3	5.57	23.3	4.8	1.54	5.14	.86	5.29	1.04	3.19	-46	2.87	.40
GSMD-17610	35.4							113.2		4.2		1.3		<1	163.8	37.2	21.1	47.8	5.75	24.3	5.2	1.63	5.80	.97	6.09	1.24	3.81	.51	3.39	.49
GSMD-17966	18.5							350.8		4.7		1.4		<1	212.1	31.5	21.6	51.9	6.34	26.5	5.3	1.77	5.54	.89	5.31	1.09	3.44	.46	3.14	.45
GSMD-17616	25.9							131.6		3.7		1.3		<1	168.6	31.1	20.6	40.0	5.31	22.6	4.7	1.47	5.04	.84	5.07	1.02	3.25	.46	3.21	.41
G3/4D* [7010	-3.7		,,,,,	7			•		• •																					
GSMD-17947	27.5	2.8	13.7	8.6	18.6	55.9	1	160.7	1.5	11.8	.4	2.4	124	1	335.4	38.0	58.8	115.9	13.41	51.6	9.1	2.15	7.56	1.13	6.58	1.21	3.78	.52	3.28	.48
RE GSMD-17907	19.1						2	97.2	.9	5.1	.5	1.5	202	1	183.0	24.6	25.0	50.2	5.98	23.6	4.3	1.13	4.26	.61	4.07	.81	2.58	.36	2.42	.37
PPD-17907	19.5							98.8		5.1	.4	1.6	201	<1	184.5	24.9	24.8	49.5	5.90	22.9	4.5	1.08	4.16	.70	4.19	.84	2.72	.37	2.58	.35
PPD-17915	67.7						2	158.7	.4	1.8	.4	.6	240	<1	115.5	27.0	12.2	29.0	3.53	15.9	3.9	1.51	4.58	.73	4.82	.90	2.88	.41	2.59	.37
PPD-17989	33.7							116.4		3.8	.6	1.1	241	<1	184.2	34.5	21.5	51.9	5.56	23.4	5.4	1.67	5.80	.98	5.82	1.13	3.63	.53	3.13	.44
170 17707	33		,,,,	,,,			_																							
PPD-17901	27.0	2.0	14.8	5.6	9.2	34.6	1	110.0	.7	4.4	.5	1.4	195	<1	212.9	29.9	22.9	49.1	5.73	23.1	4.8	1.46	5.12	.81	5.08	.99	3.14	.44	2.87	.41
PPD-17916	35.4						2	116.1	.6	3.5	1.0	1.1	203	<1	176.8	34.7	19.6	44.5	5.33	22.9	5.3	1.62	5.75	.93	6.13	1.19	3.76	.53	3.43	.45
PPD-17946	20.6							131.6		5.0		1.5		<1	223.9	26.9	25.9	54.7	6.26	24.7	4.7	1.38	4.71	.70	4.56	.85	2.74	.40	2.48	.35
PPD-17912	25.3	1 4	14.7	4.7	8.0	25.4	_	127.4		3.1		1.0		<1	176.2	29.6	18.6	41.0	4.89	20.6	4.6	1.42	4.82	.85	5.22	1.03	3.19	.47	2.86	.43
17917	29.8	2 6	14 0	7.7	10.4	36 3		136.9						1	284.7	37.8	34.1	74.1	8.26	33.0	6.8	1.84	6.20	1.05	6.22	1.24	3.80	.59	3.50	.52
	27.0	2.0	,4.,		4	50.5	,	,50.7			1.4		,																	
PPD-17903	18.1	2.2	16.4	4.0	9.8	38.0	2	113.4	.8	5.0	.7	1.8	188	1	185.5	38.1	28.3	51.2	7.49	30.7	6.5	1.94	6.99	1.10	6.75	1.28	3.80	.54	3.34	.45
PPD-17982	21.9							109.6			1.1			<1	204.6	33.1	28.3	55.7	7.05	28.0	5.8	1.64	6.33	1.00	6.07	1.14	3.52	.46	3.20	.44
PPD-17944	27.3							120.1		4.7		2.3		<1	172.6	43.5	23.6	53.5	6.59	27.7	6.2	1.80	6.83	1.13	6.74	1.31	4.28	.61	4.01	.55
STANDARD SO-15	21.4	2.0	17 1	26 /	72 5	45 3		397.4				21.0		10	1090.7	23.6	29.3	58.2	6.26	24.2	4.5	1.04	3.91	.63	3.86	.77	2.43	.38	2.54	.41
51ANUAKU 50-15	121.4	2.4	11.1	20.4	22.3	05.5	10	J71+4	2.0	23.1		21.0	124		1070.1															

Page 3 (a)

SAMPLE#			-	Hf ppm			Sn ppm				Tl ppm							Ce ppm						Tb ppm					Yb ppm	
PPD-17908	22.0	1 /	1/ 2	/ 7	77	28.4		127.0	. <u></u> 7	7.0	·····	1 7	215		172.9															
PPD-17902	25.9							106.1		4.7		1.3		١,	181.9	29 0	33 B	50 Z	5 62	22.5	5 2	1 /2	/ O7	81	5 20	1 05	3 27	44	2.85	.41
PPD-17994	31.0							100.6	٠.	4.1	٠,١	1.7	2//0	-1	174.1	20.U	27 1	5/ 0	6 41	26.5	6 1	1 63	X 21	05	6 O1	1.30	3 66	.54	3.38	.51
PPD-17994	15.6							120.4						1	192.1	2/ 0	2K 8	57 7	6.06	24.0	5 0	1 31	4 50	72	4 62	. 92	2.77	.41	2.52	.38
PPD-17945	56.4							123.6		2.6		. 9			119.3															
PPD-17909	21.3	2.0	15.4	5.3	9.1	36.7	1	138.0	.8	5.1	.1	1.5	196	<1	197.9	28.9	24.5	52.4	5.86	24.2	5.4	1.50	5.25	.80	5.06	1.09	3.25	.50	3.03	.45
PPD-17913	21.3							136.5	.8	3.9	.1	1.1	227	<1	174.1	30.7	19.6	40.7	5.00	22.3	5.0	1.51	5.32	.84	5.62	1.17	3.52	.53	2.99	.46
PPD-17993	25.3							149.7		5.5	.2	1.8	191	<1	226.9	36.5	27.1	65.5	6.60	27.5	6.2	1.60	6.36	.95	6.29	1.33	4.05	.57	3.77	.54
PPD-17997						52.2		100.2			.2	1.8	177	<1	184.2	22.0	25.4	51.8	5.77	22.4	4.4	1.18	4.23	.63	4.02	.84	2.44	.36	2.21	.35
PPD-17911						30.7		106.3		3.8		1.3		<1	159.9	22.9	17.3	36.9	4.10	17.4	3.9	1.22	4.03	.68	4.43	.9 0	2.68	.38	2.43	.36
17990	31.5	1.8	15.0	4.4	5.8	23.4	3	120.5	.5	2.5	,1	.8	257	<1	160.3	31.5	13.3	33.4	3.83	17.9	4.5	1.46	5.27	.85	5.68	1.19	3.58	.51	3.25	.50
17984-ر	27.5	1.3	13.1	4.9	6.9	20.5	1	147.7	.6	3.6	.1	1.2	210	<1	184.0	25.8	17.5	37.5	4.29	18.5	4.3	1.32	4.38	.73	4.86	1.01	3.04	.46	2.69	.41
PPD-17914	30.5	2.4	16.4	4.1	7.2	40.2	2	130.8	.6	4.0	.2	1.1	232	<1	159.5	30.5	19.9	41.8	5.05	21.1	5.1	1.46	5.64	.84	5.48	1.14	3.42	.49	3.06	.48
PPD-17998	56.3	2.3	18.0	3.1	9.2	22.6	3	86.9	.7	2.3	.2	.9	323	<1	107.5	29.6	11.1	25.5	3.11	14.3	4.2	1.36	4.75	.79	5.36	1.13	3.44	.50	3.17	.47
PPD-17905	21.0	2.1	14.5	4.9	9.6	50.1	1	121.3	.7	5.2		1.4		<1	179.5	24.4	22.7	50.8	5.24	21.0	4.6	1.25	4.34	.68	4.38	.93	2.81	.40	2.53	.40
PPD-17983						70.0		23.6							113.2	15.7	19.7	42.4	4.40	17.0	3.4	.65	2.88	.43	2.89	.62	1.83	.28	1.65	.27
PPD-17943	20.6							114.0	٠9	7.3	.8	1.8	172	1	198.9	27.6	30.7	61.2	6.84	26.5	5.5	1.33	4.90	.72	4.61	.97	3.02	.46	2.50	.42
PPD-17910	27.3							127.8	.7	4.5	.5	1.5	235	<1	177.2	37.6	22.9	48.0	6.05	26.3	6.1	1.80	6.85	1.11	7.00	1.48	4.26	.65	3.71	.57
PPD-17999						170.0								200	391.3	31.7	45.0	86.3	9.19	34.9	7.1	1.29	5.94	.90	5.41	1.17	3.49	.50	3.42	.47
PPD-17996	15.9	2.6	15.4	5.5	10.8	44.1	2	84.8	.9	6.4	.5	2.2	133	2	204.9	24.3	23.2	50.2	5.44	21.8	4.6	1.22	4.60	.73	4.78	.96	2.75	.39	2.38	.33
PPD-17985						17.7		97.3			.4				114.7															
PPD-17942	26.1							137.6			.5				240.4															
PPD-17906	26.2							118.3			-4				180.8															
RE PPD-17906	26.7							120.3		4.3		1.3			178.2															
PPD-17920	28.7	2.5	16.3	6.9	11.9	38.3	2	148.8	.9	6.0	.5	1.8	227	<1	256.8	29.8	27.1	56.1	6.36	25.6	5.6	1.47	5.29	.81	5.38	1.12	3.38	.49	5.12	.48
PPD-17986	26.0							125.4							200.7															
PPD-17992	29.8				_			150.0			.6			<1	247.2	39.9	26.9	53.9	6.64	28.3	6.5	1.73	6.84	1.05	6.55	1.40	4.48	.65	3.99	.65
PPD-17987	47.5						_	82.4			.5				109.5															
PPD-17918	41.9						_	126.6		3.3		1.1		1	148.1	30.6	16.1	36.2	4.19	19.5	5.1	1.64	5.34	.91	5.4/	1.19	3.48	-55	3.ZU	.52
D-17941	26.2	2.6	13.8	6.5	10.4	39.8	2	134.3	1.0	7.0	.5	1.9	185	<1	241.9	31.7	30.9	62.0	7.21	29.6	6.3	1.55	6.15	.91	5.36	1.17	5.56	.51	3.07	.45
PPD-17991	31.2							145.5						<1	194.9	23.7	18.1	49.4	4.41	18.1	4.0	.75	4.04	.65	4.20	.88	2.75	-41	2.53	.39
PPD-17919	28.9	-						107.8		2.1		.7			134.0															
PPD-17981	22.6							109.9	• •	5.0		1.7		<1	202.3	33.4	28.5	54.9	6.82	28.3	6.4	1.73	6.11	.99	5.85	1.23	5.64	.53	5.13	.47
STANDARD SO-15	121.4	2.7	16.6	25.7	32.0	65.5	18	391.3	1,7	23.1	.9	20.3	154	18	1052.8	22.6	29.6	59.1	6.09	23.3	4.5	1.03	3.94	.60	3.75	.77	2.46	.37	2.45	.42

Page 4 (a)

SAMPLE#	Co			Hf ppm	dN	Rb ppm	\$n ppm	\$r ppm	Ia ppm	Th ppm		U ppm	V	H mag	Zr ppm	Y	La	Се	Pr ppm	Nd ppm			Gdi ppm			Ho ppm	Er	Tm ppm		Lu ppm
}	·	<u> </u>		<u> </u>	_ <u></u> -		<u> </u>	<u> </u>									<u> </u>		 -	···		<u> </u>		·						
PPD-17995	18.6	3.1	18.1	6.1	12.6	53.4	2	107.5	1.0	7.4	.6	2.0	186	1	210.3	29.0	30.1	58.3	6.98	29.5	6.0	1.41	5.64	.83	5.24	1.08	3.02	44	2.74	.44
PPD-17988	26.1	2.0	15.1	5.9	8.5	33.6	1	112.6	.7	4.7	.4	1.4	198	3	198.5	28.8	21.8	49.3	5.37	22.7	4.9	1.34	5.03	.81	4.98	1.11	3.01	.43	2.91	.43
PPD-18000	60.8						1	121.8	.5	1.8	.5	.6	363	4	103.6	31.8	8.8	20.9	2.77	14.0	4.2	1.41	4.88	.81	5.56	1.23	3.43	.51	3.22	.49
RE PPD-17988	26.2	2.0	14.7	5.4	8.4	33.7	1	111.8	.7	4.6	.4	1.4	198	3	189.0	28.0	22.2	49.0	5.39	22.3	4.9	1.37	5.02	.80	5.31	1.09	2.99	.43	2.82	.41
STANDARD SO-15	21.0	2.9	16.8	26.6	30.8	64.2	18	401.5	2.1	22.9	1.0	21.1	153	20	1050.8	23.0	29.6	57.1	6.19	24.1	4.5	1.08	3.81	.56	3.76	.80	2.41	.36	2,48	41

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002511R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwelt Page 1 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
GEBD-17931 GEBD-17922 GEBD-17925 GEBD-17930 GEBD-17924	1.0 .7 .7 1.0 1.8	25 64 108 71 56	9 10 10 12	93 77 68 90 77	32 53 75 64 43	4 5 7 6	<.2 <.2 <.2 <.2	2 1 2 2 <1	1 3 1 2		
GEBD-17927 GEBD-17921 GEBD-17926 GEBD-17923 GEBD-17929	.7 .7 .7 1.0	73 71 97 43 94	12 9 11 11 7	86 75 80 86 98	51 57 53 46 72	6 7 6 3 3	<.2 <.2 <.2 <.2	2 2 1 1 2	1 2 1 3 2		
GEBD-17932 GEBD-17928 GSMD-17963 GSMD-17973 GSMD-17617	1.1 .6 .7 .6	37 31 34 43 60	6 7 8 8 5	77 70 67 72 66	45 47 68 62 72	5 3 4 5 3	.3 <.2 <.2 <.2	1 1 1 2	2 3 1 3 2		
GSMD-17969 GSMD-17602 GSMD-17965 GSMD-17962 GSMD-17615	.9 .6 1.0	32 44 51 29 26	14 6 8 12 7	104 61 68 88 74	85 55 79 36 48	9 5 4 5 2	<.2 <.2 .2 .3 <.2	2 1 <1 <1	1 1 3 1		
GSMD-17604 RE GSMD-17974 GSMD-17613 GSMD-17603 GSMD-17974	.9 .6 .6	87 30 98 66 30	33 5 13 3 5	134 61 105 77 59	52 50 65 73 51	3 2 4 5 2	<.2 <.2 <.2 <.2 <.2	<1 <1 3 1	3 2 1 3 2		
GSMD-17612 GSMD-17967 GSMD-17601 GSMD-17611 GSMD-17614	.7 <.5 .5 .7	117 142 41 59 64	6 <3 5 9 7	107 126 57 77 80	110 106 55 65 65	6 <25 4 4	.2 <.2 <.2 <.3	3 2 2 1	2 3 2 1 2		
GSMD-17971 GSMD-17976 GSMD-17964 STANDARD CT3 STANDARD G-2	.7 1.0 22.8 1.6	31 52 51 62 1	9 6 11 40 18	82 69 114 187 52	58 52 70 39 7	4 35 59 52	<.2 .2 .4 18.6 <.2	2 <1 1 23 <1	2 1 2 24 <1	 	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2000 DATE REPORT MAILED: 1

: Arg 28/00

Data FA_

Page 2 (b)

ACHE ANALYTICAL										·	 ACIL MALITIC	<u></u>
	SAMPLE#	oM mqq	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
	GSMD-17975 GSMD-17968 GSMD-17608 GSMD-17978 GSMD-17607	.7 .6 .8 .8	68 67 14 28 46	8 12 9 7 11	75 112 95 80 81	57 229 42 65 64	6 19 2 4 5	.2 .5 <.2 .4 .3	1 2 <1 1 <1	3 <1 3 3 2		
	GSMD-17970 GSMD-17606 GSMD-17977 GSMD-17979 GSMD-17610	.6 .7 .8	28 18 120 39 19	12 7 8 6 7	88 95 89 71 70	65 52 63 83 53	4 2 11 4 3	<.2 <.2 .4 .4 <.2	<1 <1 2 1	22232		
, -	GSMD-17972 GSMD-17609 GSMD-17980 GSMD-17605 GSMD-17619	.8 .6 .8 .7	72 22 59 24 44	7 5 5 6 7	72 57 70 121 72	63 58 60 53 66	6 2 4 3 3	.2 <.2 .3 .2	1 2 <1 <1 2	2 2 2 2 1		
	GSMD-17961 GSMD-17618 GSMD-17620 GSMD-17966 GSMD-17616	1.0 1.0 .8 1.5	32 40 70 27 78	11 8 8 10 9	89 87 77 87 91	39 58 67 15 68	4 5 6 2 5	.3 .5 .2 <.2	<1 1 1 1 2	1 2 1 3 3		
	GSMD-17947 RE GSMD-17907 PPD-17907 PPD-17915 PPD-17989	1.0 1.9 .6	74 35 36 89 91	34 25 25 4 9	133 128 130 98 88	77 35 36 118 76	10 7 7 3 7	.4 .3 .2 .2 .3	2 1 <1 2 2	1 2 3 2 3		
	PPD-17901 PPD-17916 PPD-17946 PPD-17912 PPD-17917	.8 .66 .7	29 45 35 42 109	7 6 9 6 11	71 63 63 70 79	56 65 63 58 80	4 5 4 4 8	.3 <.2 <.2 <.4	2 1 <1 1 3	2 2 1 1		
	PPD-17903 PPD-17982 PPD-17944 STANDARD CT3 STANDARD G-2	.9 .8 1.4 22.2 1.6	46 60 121 66 1	10 10 8 41 21	69 75 63 187 54	50 57 71 39 7	3 6 8 60 <2	<.2 <.4 20.0 <.2	2 22 <1	2 2 1 24 <1		

Page 3 (b)

ACHE ANALTITUAL											 	AUNE AVALITION
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
	PPD-17908 PPD-17902 PPD-17994 PPD-17904 PPD-17945	<.55 5.55 5.55 5.55	40 35 73 19 155	6 10 7 4	66 61 109 70 86	51 53 61 41 313	4 6 9 3 7	<.2 <.2 <.2 <.2	1 2 2 1 1	1 1 1 1		
	PPD-17909 PPD-17913 PPD-17993 PPD-17997 PPD-17911	.6 <.55 .7 .8	57 54 80 40 41	7 5 7 9 6	88 72 61 90 101	46 58 80 28 43	3 4 5 4 4	<.2 <.2 <.2 <.2	2 1 <1 2 1	<1 1 <1 <1		
•	PPD-17990 PPD-17984 PPD-17914 PPD-17998 PPD-17905	<.5 <.5 <.5 <.7	75 36 98 189 33	4 9 <3 7	77 69 102 119 68	71 57 68 54 57	6 4 8 3 5	<.2 <.2 <.2 <.2 <.2	2 <1 <1 1	<1 1 2 2		
	PPD-17983 PPD-17943 PPD-17910 PPD-17999 PPD-17996	<.5 .8 .6 15.3	73 37 64 252 57	9 7 51 8	95 70 90 70 58	40 68 43 17 29	<2 5 6 116 2	<.2 <.2 <.2 <.2 <.2	<1 <1 <1 1	<1 <1 <1 46 <1		
	PPD-17985 PPD-17942 PPD-17906 RE PPD-17906 PPD-17920	<.55 555 555 6	181 47 31 31 40	15 7 5 6 7	88 64 61 61 83	95 109 59 57 66	7 7 5 6 5	<.2 <.2 <.2 <.2	2 1 2 1 1	1 <1 <1 <1 <1		
	PPD-17986 PPD-17992 PPD-17987 PPD-17918 PPD-17941	<.5 <.5 <.5 <.5	35 115 149 149 49	6 11 4 4 7	55 88 107 119 64	58 86 112 95 111	7 7 22 3 6	<.2 <.2 <.2 <.2	2 1 6 2 1	<1 <1 1 <1		
	PPD-17991 PPD-17919 PPD-17981 STANDARD CT3	.8 <.5 .6 24.8	77 43 63 63	7 <3 9 38	86 78 68 182	91 65 55 37	5 7 60	<.2 <.2 <.2 19.2	2 1 2 23	<1 <1 <1 22	 	

Page 4 (b)

	,									 HOLE MACTITUME
SAMPLE#	Mo ppm	Cu ppm	dq mgq	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
PPD-17995 PPD-17988 PPD-18000 RE PPD-17988 STANDARD CT3	.9 <.5 <.5 26.1	60 39 195 37 50	10 6 3 6 43	93 63 136 65 178	45 63 74 61 39	7 6 10 5 61	<.2 <.2 <.2 <.2 19.9	1 2 1 2 24	1 3 1 24	

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

役

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002512

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidHell

CAMPLE#														Cd	Sb			Ca					Do.						T1 Hg			
SAMPLE#	MQ mqq	Cu ppm				ppm i	Mn ppm	re %						ppm	DDW			ار ا			ppm	rig X	DDM	X :	DOM.	X,	Na %	% DDM	ppm ppb	ppm	DDM DDM	ppm
	PPIII	ЬЫн	PPIII	- bbii bbo		, pp	Ppin		Pp	PP	PPD		PP···	PP.III	PPIII																	
LAMX-10362				107.0 295						1.1	4.5	1.1	58.5	.42	.49														.06 174			
LAMX-10368				62.6 63							2.9			.15	.36								136.5						.02 57			
LAMX-10370				54.0 83						.1				. 17	. 14	.05	84	1.18	.058	5.0	47.6	. 91	115.5	. 198	3 2	. 07 .	.016	.06 <.2	.02 78	.6	<.02	5.7
LAMX-10364				109.3 345										.61	.41	.18	33	1.02	.132	20.0	42.6	. 44	584.7	. 923	2 1	.36	.005	.10 <.2	.05 152	1.9	.03	3.6
LAMX-10361	.77	40.49	12.02	100.8 250	110.7	24.0	1257	3.42	5.6	.9	4.9	1.3	53.1	.36	.46	. 13	50	1.11	.148	21.2	101.2	.92	425.4	.053	3 1	.76	.008	.12 <.2	.05 137	1.3	<.02	5.5
LAMX-10371	36	45 42	4 80	52.1 69	61 1	20 2	1256	2 95	3 0	ર	12 3	15	18.3	. 14	.22	07	92	89	046	7.1	54.3	.91	157 9	194	2 2	ຸດຄ	.012	.05 <.2	.02 45	.5	<_02	6.2
LAMX-10365				113.7 341										.73	.32								919.9		5 1	.42	.008	.10 <.2	.06 236	2.8	<.02	3.4
LAMX-10366				48.5 42							2.9			.09	.09														.12 34			
LAMX-10363				100.0 349										.51	.48	.15	32	1.30	.132	21.0	41.1	. 48	446.2	.029	3 1	. 28	.004	.07 <.2	.04 168	2.8	.03	3.3
LAMX-10367				61.0 180										.33	.42	. 07	69	1.40	.116	10.7	52.3	.71	227.7	.091	4 1	.95	.013	.06 <.2	.03 160	3.9	<.02	4.3
2.13/1 2000.		****		****	•																											
PF., _0377	.79	20.78	7.56	110.3 181	28.4	10.6	1292	1.95	8.1	2.9	4.1	.4	44.8	.80	.39								727.7						.04 96			
PPX-10308				88.5 321										.75	.56								122.3						.05 428			
PPX-10375				75.3 113							2.5			.35	.32								348.0						.04 62			
PPX-14043				76.6 244										.39	.35								253.5						.02 145			
PPX-10380	.71	86.32	5.22	43.6 231	24.6	10.4	1726	1.89	2.9	.3	7.2	<.1	42.5	.47	.32	. 07	79	1.89	.121	14.3	52.7	. 50	136.5	.086	5 1	.86	.009	.06 <.2	.06 242	1.4	<.02	4.1
										_			^^ ^		-00		0.5		300	^	e 4		000 0	000		1.0	000	00 - 2	00 244	1 1	0.2	E 2
PPX-10374				154.7 452							6.1			.54	.33	.10	85	1.03	.100	11.3	5/.4	.5/	839.2	.082	2 2	.10	010	07 - 2	.08 244 .04 152	1.1	- 02	5.3
PPX-10379				52.9 91						.2				.27	.30	.00	70	2.04	142	20.2	54.3 EE 2	.01	211 0	.103	10 1	.U/ .	013	20 < 2	.05 301	6.7	^.UZ 02	3.6
PPX-10307				71.1 303							4.0			.62	.86														.03 301			
PPX-10372				58.9 90						.3	8.9 1.9			.19	.25 .40														.04 101			
PPX-14044	1.14	80.48	0.25	102.3 251	45.5	10.0	10/4	2./4	4.1	2.9	1.9	. 2	23.0	1.04	.40	.00	39	1./4	. 149	10.1	74.3	. 94	230.2	.100	4 2	.04	.014	.15 \.2	.04 100	3.0	.00	0.1
PPX-10319	1.13	73.19	6.57	53.5 197	29.3	7.0	1575	.87	3.9	.5	2.7	<.1	44.5	.51	.47	. 05	38	2.09	.169	11.2	41.6	. 34	513.6	.034	6	.88	.009	.12 <.2	.03 168	12.3	<.02	1.8
PPX-10309	.90	74.80	5.09	63.1 205	31.7	13.7	1106	2.41	3.2	.5	4.4	. 2	36.6	.28	.28								188.7						.04 193			
PPX-10378	.67	77.29	4.75	50.2 184	27.1	11.8	765	2.27	2.9	. 4	1.8	. 4	30.9	.27	.29								156.6						.05 206			
RE PPX-10378	.59	73.62	4.47	50.9 174	27.0	11.6	751	2.31	2.8	. 4	2.5	. 4	29.8	.27	. 28								152.2						.04 191			
PPX-10373	1.24	50.74	4.34	334.0 153	34.7	61.7	20547	4.26	5.7	.2	5.7	.3	45.0	.49	.30	.06	96	1.57	.118	12.6	34.7	.44	510.8	.064	5 2	. 26	.009	.22 <.2	.07 20 9	1.1	.02	3.6
nny 10210	1 00	60.22	7 00	338.3 270	CO A	21 6	2742	2 71	E 0	2 5	AO E	2	EQ 11	.53	.33	no	76	2 07	127	22 1	63.3	76	368 4	110	5 2	06	012	34 < 2	.05 223	2 5	< 02	5.1
PPX-10310				338.3 Z/U 65.9 102										.23	.33								165.2						.03 223			
PPX-10318				73.2 410										.23	.25								124.2						.06 382			
PPX-10306				73.2 410							3.0			.70	.26								222.3						.08 203			
P*** \0311 F .0316				146.2 380											.33								603.1						.05 155			
F .U310	1.45	70.91	0.02	140.2 380	55.7	17.3	115/	2.03	4.2	1.4	2.1	٠.۷	۷.0	1.40	. აა	.10	00	1.40	.170	14.3	/1.0	.00	005.1	. 143	JZ	.07 .	. 017	,202	.00 100	3.7	02	J.7
SJCX-10303	.26	21.38	6.58	42.4 98	25.5	10.3	771 2	2.12	3.2	.3 3	395.7	3.4	15.3	.14	.17	.10	45	.70	.054	12.7	36.1	.69	120.7	.095	2 1	. 27	.009	.10 <.2	.04 34	.3	<.02	4.0
SJCX-10305				81.6 140			815				3.7				.25	.07	110	1.49	.063	7.6	72.8	1.00	352.6	. 276	32	.61 .	.015	.07 <.2	.04 114	1.0	02	6.9
SJCX-10302	.56	43.08	4.51	60.1 123	30.3	13.4	821	2.40	3.0	.3	5.5	.5	22.3	.20	.26	.06	87	1.22	.070	8.1	51.3	.79	258.1	. 197	32	.11	.011	.07 <.2	.03 111	1.1	<.02	5.5
STANDARD DS2	14.33	128.00	32.53	158.8 266	36.0	11.8	815	3.05	52.1	19.3	228.1	3.7	28.4	10.52 1	0.06	10.82	74	.53	.090	16.1	163.1	.60	150.9	.092	2 1	.72	.033	.15 7.6	1.85 228	2.1	1.86	6.4

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 20 2000 DATE REPORT MAILED:

Augs/100

 where we will are the first the production of the first contractions

Page 2 (a)

ACK ARETHOL		=: -:: ::-	· · · · · · · · · · · · · · · · · · ·		=====																C-	Иa	D-	74	D A7	M-	V 1.1	T1 Hg	۵2	Tα	Ga
SAMPLE#	Мо	Cu	Pb				Mn						Sr ppm		Sb ppm		V			La ppm		Mg	Ba ppm	11 % p				ppm ppb			
	ррп	ppm	ppm	ppm p	D ppi	і рра	ppin	۵	δbu	ρpm	ppb	poili	ppu	ııkdd	ppiii	ppiii	phin	٨		ppii	ppiii	•	ppii	* F	101H A	~	& ppiii	ppii ppu	PP }	, p,	pp
SJCX-10304	.94	57.52	5.35	87.3 10	57 38.9	16.7	1472 2	. 97	3.6	.6	2.7	.5	32.1	.29	.36	.07	109	1.38	.080	9.4	65.5	.88	363.0	. 205				.05 137			
SJCX-10301				64.0 1										. 24	.33	.07	90	1.26	.080	9.3	55.3	.82	280.4	. 199				.04 116			
SDWX-10376	.92	32.67	11.54	96.6 2	17 45.9	33.2	6652 4	. 05	8.2	.9	2.4	1.9	35.8	.90	.46	.14	63	1.24	.094	17.3	52.4	.67	359.8	.067	2 1.55	.008	.10 <.2	.07 108	1.1	.02	4.3
GSMX-10312	.76	52.00	6.18	105.9 2	32 41	14.5	838 2	.61	2.9	.9	3.3	.4	23.6	.87	.31						64.2				2 2.03	.011	.07 <.2	.03 102	3.1 .	.03	5.4
GSMX-10314				62.2 2							57.3	.5	28.7	.29	.26		89	1.25	.086	10.0	65.9	.79	364.2	.195	3 2.17	.019	.07 <.2	.02 81	2.8	.03	5.3
UJIN 10014		04.07	4.04	VL. L		10.0	023 2		0.0																						
GSMX-10317	.75	61.77	9.99	76.8 3	58 53.4	4 13.8	774 3	3.15	4.3	1.4	3.5	1.0	45.1	.47	.52	.12	84	1.37	.086	18.3	79.1	:81	433.0	.151				.05 158			
GSMX-10313				76.6 2							2.3	.6	23.5	.33	.30	.08	82	1.19	.103	10.1	71.9	.87	277.8	.177	3 1.96	.013	.10 <.2	.03 88	3.0 <	.02	5.0
GSMX-10320				69.0 2							129.5	1.6	25.5	.24	.44						64.2							.05 120			
GSMX-10315				93.0 4											.59	.16	82	1.01	.105	23.4	92.0	.85	429.5	. 139	2 2.65	.008	.09 <.2	. 05 157	.7	.02	5.8
GEBX-10059				79.0 2											.51	.08	97	1.50	.081	11.3	66.2	.86	276.4	.208	4 2.28	.018	.09 <.2	.04 131	5.0	.04	5.9
GLDA 10005																															
~~~~10041	.50	32.82	16.19	63.7	33 43.	7 17.1	882 2	2.95	7.8	1.2	4.0	5.1	27.8	. 16	.71	.17	52	.59	.065	24.6	51.0	.77	162.8	.110	1 1.48	.007	.10 <.2	.05 48	.3	.03	4.5
-10049				88.9 1											.51						80.1				3 2.51	.012	.06 <.2	.05 120	.9 <	.02	6.8
GEBX-10060	87	71 93	10 81	71.6 5	12 31	4 9 4	1217 1	.86	3.3	2.2	4.8	.1	35.2	.38	.44						106.8				4 1.70	.012	.12 <.2	.04 252	8.1 <	.02	4.0
GEBX-10042	52	33 59	16 79	64.6	74 43.	5 16.7	902 3	3.04	7.6	1.2	4.5	5.3	29.7	.17	.67	.18	56	.61	.069	26.5	54.5	.78	178.0	.116	2 1.56	.007	.11 <.2	.05 52	.3	.03	4.6
GEBX-10042	1.51	49 79	4 77	116.1 1	37 81	5 34 2	9253 4	36	14 9	.5	8.9	.6	39.3	.31	.53						77.1				4 2.41	.013	.07 <.2	.05 131	.9	.03	6.7
GLOX-10040	1.01		1,		3, 01.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•				••••																		
GEBX-10046	.93	97.59	7.82	74.9 4	38 43.5	9 16.0	2684 2	2.38	9.1	1.6	12.8	. 5	35.4	.50	1.11						74.7							.07 324			
GEBX-10050				54.5											.38	.08	103	.87	.046	10.4	69.9	.87	246.2	.173		.010	.06 <.2	.04 101	.4	.02	6.5
GEBX-10043				103.3 2											.73	.16	54	. 68	.078	29.2	59.6	.83	242.5	.100	2 1.66	.008	.11 <.2	.05 83	.5	.03 -	4.7
GEBX-10066				50.7											.11	.14	147	.45	.043	11.5	39.1	.52	82.9	.352	<1 4.04	.120	.06 <.2	.12 35	.3	.05 1	0.1
GEBX-10058	1.41	57.03	10.98	225.0 3	33 49.	5 24.1	8418 3	3.48	7.4	1.1	4.5	.9	40.4	.80	.50	.14	81	1.33	.091	17.3	57.5	.66	632.2	.103	4 2.11	.010	.09 <.2	.08 171	1.5	.02	5.1
220/1 20000																															
GEBX-10051	.58	42.82	5.11	70.4 1	62 56.	6 18.8	2770 2	2.72	7.1	.5	64.0	.6	25.6		. 59						68.2				3 1.96	.011	.05 <.2	.04 121	1.2 <	.02	5.2
GEBX-10044	.79	33.32	17.75	75.5 2	46 41.5	9 12.7	722 2	2.70	8.1	1.5	9.4	3.9	31.0		.72						39.8							.06 81			
RE GEBX-10044	.81	34.99	17.82	78.6 2	44 43.2	2 14.2	721 2	2.71	8.3	1.6	4.4	4.0	31.7		.75	. 21	40	. 59	.066	27.4	39.7	.61	243.9	.059				.06 87			
GEBX-10055	.83	82.20	6.45	163.4 2	72 36.3	2 20.1	5255 2	2.52	4.2	.5	3.3	. 4	39.4	.63	.36						52.0				4 1.75	.010	.09 <.2	.06 224	.8	.02	4.0
GEBX-10052	.79	41.04	5.04	73.6 1	21 43.3	7 31.3	4425 4	.01	5.4	.3	3.6	.8	31.8	.26	.50	.07	131	1.29	.077	10.4	67.6	. 94	374.6	.21 <del>9</del>	2 2.63	.014	.11 <.2	.04 126	.5	.02	6.9
_																													_		
GEBX-10054				112.2 1											.40						60.6							.10 148			
GEBX-10057	.87	52.97	9.52	88.7 3	35 52.0	3 24.3	4449 3	3.34	9.2	.7	3.3	.8	31.8		.37	.13	73	1.00	.100	21.9	71.2	. 69	430.8	.093				.06 207			
GEBX-10045				71.1						. 5	2.2	3.6	31.0		.36						40.0							.03 54			
GEBX-10053				68.3 13						.5	3.7	1.1	24.9		.37						68.4				2 2.24	.010	.05 <.2	.05 94	.6 .	.03 (	6.3
CC3X-10047				83.3 2						.5	5.3	.2	35.1	. 34	.86	.08	94	1.57	.107	12.8	62.8	.65	459.5	.095	4 1.80	.012	.18 <.2	.04 185	1.6	.02	4.2
,																															
GEBX-10056	.84	91.54	9.26	165.3 3	19 66	7 18.2	1538 2	2.83	6.8	2.9	4.9	.6	51.3	.53	.55	.13	82	1.73	.085	24.1	81.7	.95	297.5	.126				.06 176			
STANDARD DS2	13.98	128.00	33.19	161.3 2	59 36.	11.7	811 3	3.03	61.8	18.8	214.0	3.5	27.0	10.43	9.69	10.68	73	.53	.086	15.6	160.9	.59	150.0	.094	2 1.72	.033	.15 7.1	1.76 226	2.2 1	.80	5.9
211 1101 110 000																							-		_						

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

骨骨

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002512 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell

	SAMPLE#	Cs ppm	Ge ppm	Hf DDM	dN maa	Rb ppm	Sc ppm	Sn ppm	s %		Žr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm				
	1 AUV 10742	[															25.3	30	 		•	7
		3.78	-1		1.54							18.23		.03	<1		11.3	30				۱
	LAMX-10368	.50	.1	.14		2.6	6.3					15.24 16.56		.03	<1		8.1	30				
	LAMX-10370	.48	.1	.14										.03	₹1		16.9	30 30				
	LAMX-10364	.64			.56							17.38		.03	3		25.8	30				1
	LAMX-10361	3.71	-1	.05	1.72	6.0	4.2	. 2	.07	5	1.4	16.47	33.3	.05	٦.	.4	٥.ر∡	30				
	LAMX-10371	.77	.1	. 15	.77	3.7	5.8	.5	.03	<.05	5.3	12.62	15.9	.03	3	.4	12.6	30		_		ĺ
	LAMX-10365	.59	.1	.06	.58	4.1	3.0	.3	.17 •	<.05	.7	22.01	13.4	.03	1	.4	8.4	15		•		ı
		1.19	.2	.75	.56	4.4	8.9	1.1	<.01 -	<.05	39.6	13.75	27.8	.07	<1	.7	10.4	30				Ţ
	LAMX-10363	.63	.1	.07	.71	4.9		.1	.09 -	<.05	2.4	16.14	35.8	.03	<1	.5	16.4	30				-
	LAMX-10367	.78	.1			2.7						37.16		.03	<1	.3	7.6	15				
_ · •-																					-	
	PPX-10377	.91	.1	.03	.54	3.5	1.7	<.1	.16 •	<.05	1.2	4.63	9.3	.03	1	.2	15.8	30				
	PPX-10308	.97	. 1	. 13	.31	2.0	5.9	.2	.22 -	<.05	2.6	73.71	9.5	.04	3	.8	4.7	15				
	PPX-10375	.32	.1	.03	.43	4.1	3.9	.1	.03	<.05	1.4	10.57	22.9	.04	<1	.2	18.4	30				- 1
	PPX-14043	.65	.2	.08	.86	2.5	4.2	.2	.09	<.05	2.1	14.87	10.8	. 05	7	.2	11.8	30				-
	PPX-10380	.58	.1	.11		3.0						59.57		.04	<1	.6	6.8	15				-
	44774						, ,	~	40	. 05		24 05	40 7	06	_	,	10 0	70				1
	PPX-10374	.67	-1	.06		4.4			.10			24.05		.06	- 5		10.8	30 15				-
•	PPX-10379	.71	-1	-19		3.8						37.16		.06	<1		9.6	15 15				
	PPX-10307	1.68		. 15		4.4						59.92		.08	5		9.3	15 30				- [
	PPX-10372	.72	-1		.70							17.50		.05	<1		10.3 13.6	30 15				-1
	PPX-14044	.91	.1	.09	1.73	5.5	5.5	.3	.10	<.05	3.1	21.84	11.8	.05	5	.4	13.0	10				- 1
	PPX-10319	.55	.3	.04	.39	2.9	2.2	.2	.26 •	<.05	.7	27.26	5.7	.03	5	.7	2.5	15				
	PPX-10309	.69			1.00							37.14		.05	4		9.9	15				
	PPX-10378	.77	.1		1.10							37.24		.04	<1		10.1	15				
	RE PPX-10378	.78			1.08							35.78		.04	1		9.8	15				
	PPX-10373	.39	.1		.45							35.88		.03	<1		5.2	15				
	FFX 10373	.3/	• 1	.00	.45	7.3	J.L	• •				33.00	3713		•							-
	PPX-10310	.70	.1	.05	1.05	6.5	6.4	.3	.17 •	<.05	1.8	25.62	18.6	.04	4	.6	12.0	15				
	PPX-10318	.45	. 1	.16	.79	2.0	4.9	.6	.04	<.05	7.0	13.17	12.1	.03	<1	.3	8.5	30				-
	PPX-10306	1.73	. 1	.12		2.7						71.06		.03	4	.7	7.5	15				
٠.	PPX-10311	.73	.1	.09	.93	3.4	9.7	.4	.13 •	<.05	3.4	28.66	12.7	.03	2	.4	10.3	30				
	PPX-10316	.64	.1	.06		5.8		.4	.12 <	<.05	1.8	24.14	16.4	.03	8	.3	11.3	15				
								_					ar -					70				1
	SJCX-10303	.49	- 1			5.4						8.06		.02	<1		18.2	30				
	SJCX-10305	.60			1.39			.5				19.40		.03	<1		12.6	30				- [
	SJCX-10302	.68	. 1		.89							19.30		.02	<1		10.7	30				-
	STANDARD DS2	13.52	. 1	. 05	1.40	13.2	3.3	26.0	.02 •	< . 05	2.8	7.88	52.0	2.52	3	.5	15.3	30				- 1

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: HOSS HAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 20 2000 DATE REPORT MAILED:

Aug 1/00



Page 2 (b)



SAMPLE	1	Ge	Нf	Nb	Rb	Sc	Sn		Ta	Zr	Y	Ce	In	Re	Be ppm		Sample gm	
	bbw	bbw	bbu	ppm	ppm	ppm	ppm	% F	ppm	ppm	ppm	ppm	ppm	ppb	PAII	PPIII	9.11	
SJCX-1	0304 .97	<.1	.06	1.22	4.3	8.0	.5	.12 <	.05	4.1	23.55	15.8	.03	<1	.7	14.0	30	
SJCX-1		<.1	.07	.92	3.5	7.0	.5	.09 <			21.12		.02	<1		11.7	30	
SDWX-1		<.1						.10 <			17.86		.02	<1		21.0	30	
GSMX-1	0312 .51	<.1						.09 <			19,19		.03	2		9.9	30	•
GSMX-1	0314 .40	<.1	.ûô	.63	2.7	6.3	.5	.09 <	.05	4.4	22.54	15.9	.02	<1	٠.5	9.5	30	
GSMX-1	0317 49	<.1	06	1.18	5.0	9.5	.6	.09 <	.05	3.9	31.63	21.9	.03	1	.6	15.4	30	
GSMX-1		<.1		.73				.08 <			21.06		.02	1	.3	11.4	15	<u>.</u>
GSMX-1		<.1		.86				.07 <					.03	<1	.6	16.5	30	
GSMX-1		<.1					.5	.06 <	.05	3.0	36.26	33.2	.04	<1	.5	17.6	30	
GEBX-1		< 1	.08		3.8		.6	.08 <	.05	4.8	23.25	13.1	.04	2	.4	12.6	30	
<i>y</i> -						<b>.</b> ,	,	00 -	. 05	7 2	40 06	,, ,	0/	<1	7	20.0	30	
GEBX-		< . 1		.64				.02 <					.04	<1		18.3	30	
GEBX - 1				.58				.19 <					.04	1		6.3	15	
GEBX - 1		<.1 <.1					.4 .4				11.46		.04	<1		20.6	30	
GEBX-1		<.1					.5				22.83		.05	1		16.6	30	
GEBX-1	10046	`.'	.03		4.5	7.0		.00		2.0	22.05	,,,,,	•••	•				
GEBX-1	1.67	<.1	<.02	.60	4.8	10.9	.5	.12 <	.05	1.6	43.56	20.3	.04	<1		12.4	15	
GEBX-1	10050 .84	<.1	.06	.78			.5				14.86		.04	<1		17.2	30	
GEBX~1	10043 .80	<.1					.4				14.86		.04	<1		23.6	30	
GEBX-1		<.1					1.3				14.40		.06	<1		10.8	30	
GEBX-1	10058 .62	<.1	<.02	.62	5.6	7.7	.5	.10 <	.05	2.0	30.44	28.3	.04	3	ه.	16.4	30	
GEBX-	10051 79	<.1	.03	.63	3.7	7.1	.3	.09 <	. 05	2.5	19.16	16.2	.04	<1	.4	13.6	30	
GEBX-		<.1					.4	.03 <	.05	1.7	12.60	49.3	.03	<1	.4	19.0	30	
		<.1						.04 <	.05	1.7	13.06	49.7	.03	<1	.4	18.7	30	
GEBX-1	10055 .58	<.1	<.02	.65	4.0	7.4	.4	.13 <					.03	<1		10.4	15	•
GEBX-		<.1			3.9	8.8	.5				23.69		.04	<1	.4	13.2	30	
			00	50	7.0	0.0	r	00 -	. 05	7.0	2/ 54	25 6	.03	<1	Į.	10.4	30	
GEBX-		<.1		.59			.5	.09 <					.03	<1		13.0	30	
GEBX-		<.1						.03 <					.02	<1		14.8	30	
GEBX-		<.1 <.1			4.9		.2 .4				15.66		.03	<1		15.8	30	
GEBX - '		<.1						.15 <					.02	<1		11.4	15	
GEBX-	.02	`. 1	.02	.03	4.0	٥.٥	••				-0.56	,		• •				
GEBX-	10056 .78	<.1		1.17				.11 <	:.05	3.0	31.90	20.0	.03	1		16.1	30	
		<.1	.03	1.45	12.9	3.1	25.9	.05 <	.05	3.2	7.63	31.0	5.47	<1	.7	15.1	30	

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___FA_

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002512R 800 · 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1

	SAMPLE#	LOI %
	LAMX-10362 LAMX-10368 LAMX-10370 LAMX-10364 LAMX-10361	27.3 15.7 26.6 25.6 22.7
	LAMX-10371 LAMX-10365 LAMX-10366 LAMX-10363 LAMX-10367	14.1 47.6 7.2 28.5 45.8
	PPX-10377 PPX-10308 PPX-10375 PPX-14043 PPX-10380	34.1 78.2 15.7 30.2 59.2
	PPX-10374 PPX-10379 PPX-10307 PPX-10372 PPX-14044	32.8 39.3 65.8 23.8 41.5
	PPX-10319 PPX-10309 PPX-10378 RE PPX-10378 PPX-10373	75.2 44.5 38.9 38.7 54.8
	PPX-10310 PPX-10318 PPX-10306 PPX-10311 PPX-10316	47.6 12.8 71.1 38.4 30.1
·	SJCX-10303 SJCX-10305 SJCX-10302 STANDARD DOLOMITE	7.0 24.4 25.1 46.0

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Repons.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

: Der 4/00

SIGNED BY ......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



Page 2



SAI	MPLE#	LOI %
SJ( SD) GSI	CX-10304 CX-10301 WX-10376 MX-10312 MX-10314	32.5 26.8 27.6 23.0 25.6
GSI GSI GSI	MX-10317 MX-10313 MX-10320 MX-10315 BX-10059	27.2 24.4 19.8 27.3 29.9
GEI GEI GEI	BX-10041 BX-10049 BX-10060 BX-10042 BX-10048	7.9 25.0 58.7 8.2 28.3
GEI GEI	BX-10046 BX-10050 BX-10043 BX-10066 BX-10058	35.9 18.6 11.2 7.3 32.4
GEI RE GEI	BX-10051 BX-10044 GEBX-10044 BX-10055 BX-10052	25.2 11.6 11.5 42.8 33.4
GEI GEI GEI	BX-10054 BX-10057 BX-10045 BX-10053 BX-10047	27.9 29.1 13.3 16.9 46.9
GE! STZ	BX-10056 ANDARD DOLOMITE	38.5 46.0

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (a

File # A002513

Contained the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section

2

おおおおいまままでは、まなは異なないではないというないではないではないとないません。おいかできないできる。

Ba Ti 8 Al Na K W Tl Hg Se Te Ga Sr Cd Sb BI V Ca P La Cr Mg SAMPLE# As U Au Th \$ \$ poes poet 3 pour 1 pour 1 1 1 pour pour pob pour pour pour ppa ppa ppa oper poe pob poe DOM DOM DOG DOM DOM .31 48.16 14.49 71.0 243 34.1 7.6 119 2.70 4.6 1.0 8.8 4.3 9.2 .08 1.44 .36 19 .07 .036 11.8 31.8 1.00 1126.3 .004 4 1.39 .003 .14 1.3 .05 69 1.1 .04 4.3 RCPR-10021 .81 20.67 8.07 51.3 91 785.5 105.2 3571 9.59 1032.5 .2 6.1 .7 1021.2 .09 47.96 .10 2 12.68 .206 4.7 28.8 3.73 81.3< .001 2 .20 .006 .14 < .2 .02 10 .4 .13 .8 RSHR-10206 1.05 17.09 13.71 39.3 169 35.8 9.3 265 1.30 6.3 4.3 3.1 3.8 21.6 .25 .67 .06 130 2.61 .624 38.1 441.3 .53 22.2 .081 3 1.09 .023 .01 3.4 < .02 27 < .1 < .02 6.0 SDWR-10026 1.13 63.46 12.01 95.7 145 83.2 29.4 699 5.23 6.3 <.1 2.5 .1 12.1 .20 .41 .11 106 .84 073 2.4 47.5 1.89 31.3 .339 4 2.62 .037 .11 .3 .02 20 .2 <.02 11.0 0550-10035 4 <.1 1.2 .2 9.9 .08 .11 <.02 112 1.24 .104 2.2 59.0 1.90 23.1 .263 2 2.15 .033 .12 .6 <.02 <5 <.1 <.02 8.8 GEBR-10200 .18 28.17 4.13 68.8 68 33.6 26.5 703 4.89 91 50.64 9.65 66.1 161 32.9 22.5 708 4.47 1.1 .2 1.8 .2 17.8 .20 .44 .02 155 2.19 .067 2.4 15.1 1.38 33.5 .386 16 2.82 .040 .02 .2 < .02 20 .3 < .02 13.0 PPR-10201 .45 10.10 6.82 150.8 78 1085.7 102.4 2247 8.23 438.8 .2 5.1 .4 603.3 .17 .91 .05 47 7.99 .047 4.7 370.3 5.75 66.9 .007 <1 2.19 .006 .04 .3 .05 20 .3 .07 8.3 RSHP. 10207 .71 2833.04 41.93 143.9 1239 3041.5 92.8 628 5.70 1.8 <.1 53.5 .1 8.8 .89 .50 .16 13 .59 .024 .9 43.7 5.19 10.1 .046 7 3.75 .021 .01 .2 .03 52 5.0 .30 5.7 GSMR-10036 .34 11.53 21.84 72.6 68 42.6 16.8 508 3.38 21.4 .9 1.8 10.3 11.4 .06 .55 .10 4 .19 .033 8.6 18.2 .56 88.9 .001 6 .54 .021 .19 1.5 .04 14 .1 < .02 1.8 RSHR-10209 33 11.54 20.43 71.9 58 43.6 16.4 495 3.31 20.3 .9 1.2 9.5 10.6 .05 .55 .09 4 .18 .033 8.3 19.6 .55 88.7 .001 5 .54 .019 .20 1.4 .03 18 .1 < .02 1.8 RE BSHR-10209 30 10.83 20.21 69.8 60 40.4 15.9 485 3.24 19.8 .8 1.1 9.1 10.5 .05 .51 .09 4 .18 .032 7.8 17.3 .54 84.8 .001 7 .52 .021 .19 1.3 .03 13 <.1 < .02 1.8 RRF RSHR-10209 1.32 90.83 14.80 87.1 176 58.9 24.1 708 4.78 1.1 < 1 2.0 .1 10.2 .25 .67 .03 124 1.62 .067 2.5 13.7 1.62 40.3 .395 8 2.87 .044 .04 .3 .02 28 .3 < .02 10.6 SDWR-10028 8 .2 1.1 .2 16.7 .27 .18 < .02 125 2.16 .059 1.9 27.6 1.30 26.2 .334 11 2.63 .051 .02 .9 .03 17 .2 < .02 11.5 PPR-10202 .33 47.84 9.06 81.9 82 37.7 19.5 685 3.83 1.35 223.02 22.07 257.9 263 40.3 26.0 701 5.62 3.8 .2 5.0 .1 9.6 .67 1.75 .23 151 1.15 .056 1.9 34.4 1.64 53.5 .396 3 2.53 .065 .06 < 2 .04 223 1.5 .03 11.2 PPR-10211 .6 <.1 .7 .1 13.4 .23 .31 .03 133 2.06 .056 2.0 20.7 1.82 129.6 .276 6 2.76 .039 .04 .4 .02 23 .2 <.02 10.9 .24 66.42 8.70 74.1 75 40.7 25.0 740 4.53 RC28-10025 6 < 1 9 < 1 6.3 09 .11 .05 90 1.29 .043 1.3 74.0 1.94 18.0 .274 6 2.52 .057 .06 .2 .02 24 .8 < .02 8.8 .88 70.78 4.30 26.7 65 57.3 21.8 323 5.25 GSHR-10037 20 29.55 9.48 46.9 152 25.9 5.8 109 1.91 1.9 .5 3.5 4.0 13.0 .03 1.22 1.15 19 .07 .030 13.1 31.8 .86 1980.4 .007 4 1.12 .004 .12 .9 .06 37 .5 .02 3.8 RCPR-10022 1.73 5.44 17.15 62.5 97 30.6 14.4 398 2.94 18.2 .8 1.6 10.0 12.8 .05 .68 .09 5 .22 .036 7.5 19.7 .59 84.9 .002 7 .59 .021 .19 .3 .04 12 < .1 < .02 2.2 RS8R-10210 1.10 31.50 9.82 47.8 25 12.7 13.0 463 3.98 2.7 .8 1.1 3.1 47.3 .09 .09 .16 157 .45 .043 12.1 37.7 .53 88.4 .374 2 4.14 .099 .06 .2 .14 32 .4 .05 11.3 SOMR-10033 .62 10.95 26.63 64.1 254 57.8 7.7 250 1.06 1.4 8.1 2.6 4.4 31.7 .38 .59 .06 196 3.58 .767 48.3 549.8 .22 32.1 .095 8 1.42 .024 .01 4.9 .02 25 < 1.4 < 0.02 25 < 1.4 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 1.5 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < 0.02 25 < SDWR-10027 5.16 320.82 69.60 150.5 395 53.4 25.0 1829 4.59 7.2 .4 4.5 1.5 18.8 .38 .96 .46 133 .95 .097 5.4 66.8 1.52 28.2 .254 8 2.32 .028 .08 .7 .05 67 .4 .16 10.6 202.10204 6.73 33 80 301.47 90.0 114 13.6 7.2 367 5.02 219.4 4.2 2.0 7.9 4.9 2.34 12.66 .98 22 .12 .064 8.8 11.5 .37 31.7 .003 6 .74 .010 .19 1.7 2.10 244 .8 .03 3.9 SDWR-10030 1.70 171.63 6.57 19.8 162 17.2 44.5 544 4.86 1.0 < 1 .9 .1 7.8 .06 .23 < 02 149 .95 .061 1.9 3.0 .90 69.5 .333 2 1.58 .030 .05 .3 .02 7 6.1 .15 7.6 GSMR-10038 .30 51.42 5.39 57.0 54 34.0 19.0 710 3.94 1.2 <.1 .9 .2 22.0 .15 .16 .02 142 2.71 .052 1.8 35.3 1.41 13.5 .443 6 2.96 .085 .02 1.3 .02 20 .1 <.02 11.7 PPR-10205 2.31 54.66 12.39 225.8 155 2134.0 147.0 3249 12.05 1075.5 .6 18.8 2.5 44.2 .40 8.68 .09 68 .36 .086 18.2 455.8 4.43 210.8 .005 5 3.42 .006 .05 .2 .06 52 .2 .02 15.5 RSHR-10208 4.64 14.71 27.33 41.9 96 20.3 9.6 236 4.09 15.0 2.2 2.4 11.5 11.0 .11 4.04 .44 2 .17 .063 11.3 12.3 .62 32.0 .015 6 .87 .006 .20 .4 .17 36 .5 .02 2.2 RCPR-10023 8.25 305.51 15.40 103.1 140 27.4 17.9 772 3.42 4.6 .3 3.8 1.1 30.1 .39 .28 .63 52 .42 .032 3.0 26.0 1.53 34.4 .265 5 1.73 .025 .05 1.2 .02 41 .6 .24 6.8 SDWR-10029 8.26 321.17 14.98 107.4 135 29.0 19.5 804 3.55 4.8 .3 3.2 1.2 31.0 .39 .26 .64 55 .44 .034 3.0 23.4 1.60 35.8 .276 4 1.80 .027 .05 1.3 .02 38 .6 .26 7.0 RE SOMR-10029 7.77 303.65 14.61 101.5 129 26.9 18.0 764 3.39 4.5 .3 3.6 1.1 27.4 .37 .25 .61 51 .41 .032 2.8 22.6 1.52 33.7 .260 5 1.70 .029 .05 1.3 .02 34 .6 .30 6.7 1 09 1155 52 12 98 75 7 310 59 5 32 7 658 5 70 1.6 < 1 8.3 .1 12.7 .32 .25 .11 128 1.20 .066 1.9 104.3 1.97 162.9 .287 8 2.58 .059 .03 .4 < .02 18 3.8 .22 13.4 GSHR-10034 49 54.22 8.02 55.4 126 69.0 22.9 525 3.78 .9 <.1 1.2 .1 10.1 .16 .70 .06 100 2.40 .048 1.8 76.3 1.60 22.0 .339 6 2.00 .027 <.01 1.2 <.02 13 .4 <.02 10.4 PPR-10203 .27 15.33 2.57 23.8 59 10.2 10.1 1336 4.50 106.7 <.1 33.8 .1 303.7 .08 .62 .02 88 3.99 .023 .8 24.1 1.04 62.0 .004 1 .13 .022 .01 2.2 <.02 7 .3 .04 .3 SDHR-10032 .67 58.89 1.79 61.8 161 85.0 32.0 1176 5.23 87.4 <.1 1.1 <.1 128.0 .07 .24 <.02 74 5.13 .045 1.5 250.5 3.57 138.4 .003 4 2.38 .012 .17 <.2 .03 7 .1 <.02 5.8 RCPR-10024

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK

13.75 127.34 30.88 157.6 252 35.3 12.1 825 3.08 59.4 21.4 215.2 3.4 25.3 9.70 9.94 10.10 72 .52 .088 14.4 159.1 .60 149.5 .089 4 1.67 .027 .15 7.6 1.71 225 2.1 1.74 5.9

DATE REPORT MAILED: Hug 4/00 JUL 20 2000

STANDARD 0S2

SIGNED BY. ..D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



Page 2 (a)

44
ACHE ANALYTICAL

ACK ANETHOR																	===					==:::=					~==								
			Dh	7.0		Ald		Ma	E0.	۸۶	- 11	Au	Th	Sr	Cd	Sb	Bí	v	Ca	Р	La	Cr	Ma	Ва	Τi	В	Αì	Nа	K	₩	Tl	Hg	Se T	e G	, [
SAMPLE#	MO	cu	Pb	ZN	•		CO		re	₩2	•									-				nnm	9	ppm	4	4	¥	DOM	nnm	daa	ppm pp	אמס וווא	a I
	DDM	ppm	ppm	mag	ppb	ppm	ppra	ррт	*	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	4	4	ppni	bbw		ppm		ppiii		~		PPIII	Ppin	PPO	PP. PP	FF	
				···																												_			. 1
00110 10000	20	cn nc	2 22	CC 1	61	127 4	26 1	1011	. 03 6	7 0	- 1	23	< 1	61 A	10	25 -	< .02	76.4	85 .	041	1.6	293.4	3.52 1	35.0	.002	1 2	. 23	.034	.06	.3	.02	8	.3 < .0	2 5.1	, 1
									2.03		`	2.3	11 6	11 0	07	2 22	04	. 3	12	066	12.0	8.1	0.4	93.2	በበ6	1	25	024	23	.3	.08	20	.3 <.0	2 .9	j
SDWR-10031	1.60	10.91	24.56	22.7	271	8.6	5.9	47	1.5/	5.6	1.4	2.8	11.0	11.0	.07	2.33	.04	3	. 14 .	000	16.9	0.1	. 04	20.2		-		• • - •					.3 <.6	12	a /
DE SUMP-10031	1 65	11 15	25 34	23 4	271	9.0	6.0	47	.59	5.8	1.5	2.9	11.8	11.0	.06	2.28	.04	3	.11 .	.067	13.2	7.6	.04	81.2	.006	2	. 20	.025	.23		.09	15	.5 \.		

PHONE (604) 253-3158 FAX (604) 253-1716

# GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002513 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

SAMPLE#	Cs ppm	Ge ppm	∦f ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm		Ce ppm	In ppm	Re ppb	Be ppm		Sample gm			
RCPR-10021 RSHR-10206 SDWR-10026 GSMD-10035 GEBR-10200	.51 .90 .09 .27		.09 <.02 .47	.08 .79 .13	5.8 4.8 .4 2.5 3.5	5.0 3.6 2.1	<.1 .5 .6	.03 01.> 09.	<.05 <.05 <.05	4.8 2.6 18.3	2.42 25.69 42.11 13.54 8.20	11.5 29.6 7.1	<.02	<1 <1 <1 <1 <1	.2 .6 .1	16.2 1.5 2.5 19.0 4.0	30 30 30 30 30			
PPR-10201 RSHR-10207 GSMR-10036 RSHR-10209 RE RSHR-10209	.65 .51 .18 .50 .48	.2		.09 .03 .02		9.5 1.3 2.3	<.1 .1 .2	.04 1.12 .06	<.05 <.05 <.05	2.2 2.0 5.9	16.86 9.29 2.58 3.34 3.10	10.2 2.1 19.2	.03	<1 2 11 <1 <1	.2 <.1 .2	4.7 44.7 8.0 9.2 8.5	30 30 30 30 30			
RRE RSHR-10209 SDWR-10028 PPR-10202 PPR-10211 RCPR-10025	.47 .40 .56 .40	<.1 .1 .2 .1	.45	.10 .07 .08	6.2 1.7 3.1 1.5 1.8	2.4 4.0 5.7	.5 .7	.10 .03 .56	<.05 <.05 <.05	7.5 16.7 14.5	3.05 12.97 13.97 12.24 14.42	7.4 5.6 5.2	.05 .06 .14	<1 7 3 <1 3	.2 .3 .2	8.8 17.0 5.4 13.6 21.0	30 30 30 30 30			
GSMR-10037 RCPR-10022 RSHR-10210 SDWR-10033 SDWR-10027	.04 .48 .48 1.39	<.1	.14	.02 <.02 .55	4.9	1.6	.2	.05 .08 .02	<.05 <.05 <.05	5.7 4.2 43.0	7.53 2.31 3.17 15.10 54.29	28.0 17.4 31.0	.03 .04 .07	1 <1 2 3 2	.3	5.0 15.4 11.1 11.2 .8	30 30 30 30 30			
PPR-10204 SDWR-10030 GSMR-10038 PPR-10205 RSHR-10208	2.96 1.25 .54 .22 .50	.1 <.1 .1 .1	.99 .12 .56	.04 .09 .08		.9 3.6 5.0	.9	3.97 2.34 .05	<.05 <.05 <.05	38.8 2.3 20.8	13.29 10.22 7.80 15.83 19.75	18.9 5.2 5.9	.07 .04 .02 .04	2 9 6 5 2	.3 .1 .3	14.3 14.7 3.2 6.0 71.2	30 30 30 30 30			
RCPR-10023 SDWR-10029 RE SDWR-10029 RRE SDWR-10029 GSMR-10034	.22 .43 .43 .41 .41	<.1	.45 .72 .52	.25 .25 .27	2.4	3.0 3.1 3.1	2.0 2.1 1.9	.77 .79 .75	<.05 <.05 <.05	12.9 21.3 13.9	14.13 6.11 6.20 5.79 10.03	9.4 9.6 8.9	.02 .02 .02 .02	2 2 3 2 1	.2 .2 .3	19.4 7.3 7.5 6.9 21.3	30 30 30 30 30			
PPR-10203 SDWR-10032 RCPR-10024 STANDARD DS2	.31 .06 1.00 3.17	<.1 <.1	.33 <.02 <.02 .04	.04	.6 5.5		<.1 <.1	.06	<.05 <.05	.5 .2	12.61 7.68 10.00 7.34	2.1 4.7	.04	3 3 1 <1	<.1 .3	28.7 .2 63.4 14.0	30 30 30 30	 	 	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK

JUL 20 2000 DATE REPORT MAILED: Huy 4/100 DATE RECEIVED:

SIGNED BY.

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



Page 2 (b)



AGE AFETTION																		
SAMPLE#	Cs ppm								Ta ppm						Be ppm		Sample gm	
GSMP-10039 SDWR-10031 RE SDWR-10031	.38 .24 .22	.1	.39	.06	9.3	.7	-4	1.26	<.05	11.0	8.41	27.8	<.02	<1	.2	1.7	30	

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

### WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002513R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

SAMPLE#	Si02 %	Al203 %	Fe203 %	Mg0 %	CaO %	Na20 %	K20 %	Ti02 %	P205 %	Mn0 %	Cr203 %	Ba ppm			L01 %	TOT/C %	TOT/S %	SUM %	
	77.29										.009		41 959		3.2 33.4	.02 9.14	.19	99.77 99.51	
RSHR-10206			17.45						.55		.033	65	58		1.4	.14	.01	99.74	
	80.16									.04 .17					2.8	- 14	-11	99.66	
	49.09												58		3.2	.16	.02	99.98	
GEBR-10200	47.90	13.16	14.01	6.58	9.10	4.54	.94	2.04	. 29	. 10	.010	142	30	42	3.2	. 10	.02	77.70	
PPR-10201	49.93	14 40	11.10	6-00	9.55	3.68	. 15	1.92	.16	.18	.017	79	93	34	3.0	.07	.05	100.11	
	28.00									.29		154	1146	14	24.0	5.80	.04	99.93	
	43.68									.16	.094		2104		5.7	.04	1.44	99.64	
	69.08									.06			50		4.0	.51	.06	100.24	
	69.61					2.67				.06		883	56		3.4	.51	.06	100.05	
KE KSHK-10209	103.01	(3,3)	3.00	1.30	0	4.00	2.70	. 1 .	.07	.00	,	003		• • •		•••	•••	,	
RRE RSHR-10209	69.49	13.59	5.51	1.39	.30	2.65	2.69	.74	.09	.06	.005	885	53		3.5	.51	.07	100.12	
SDWR-10028	49.09	14.98	10.81	6.43	9.43	3.29	.27	1.79	.19	.17	.014	268	75		3.4	.06	.11	99.91	
	49.87	14.26	10.94	6.03	10.72	2.89	.21	1.91	.18	.19	.017	74	78	34	2.8	.08	.03	100.04	
	48.44									.16	.016	173	69	35	3.4	.05	.60	100.03	
	50.48									. 15	.015	363	74	32	3.8	.25	.02	99.97	
	48.76									. 12			81		5.6		2.36	100.13	
	80.66							.50		.02	.005		24		2.3	<.01	.07	99.66	
RSHR-10210	69.55	13.18	5.25	1.49	.37	2.72	2.47	.73	.07	.05		851	50		4.0	.59	.07	99.99	
SDWR-10033	53.14	18.31	8.62							. 13		358	25		7.9	.67	.03	99.91	
SDWR-10027	79.55	6.21	1.91	.55	6.18	1.73	.04	.37	2.10	.04	.081	91	75	9	1.2	.06	.06	99.98	
					_ ~~			٠.,			047	707	70	22	2 7	00	.08	99.84	
	67.15								.23		.016		75		2.7	.09			
	65.23					1.59			.15		.002		41		5.7	.02		99.36	
	49.41										<.001				6.6	.03	2.71	99.90	
	48.83										.019		65		3.0	.08	.05	99.98	
RSHR-10208	48.91	9.64	20.71	7.44	.58	- 14	.81	1.32	.25	.39	.076	416	2042	13	9.1	.21	.03	99.67	
RCPR-10023	66.89	12 54	4 77	2 10	<b>7</b> 0	7/.	7 57	.81	15	.03	.001	7034	44	12	5.3	.01	3.18	99.53	
	73.23				1 97	2 57	3.33	.58			.001				3.0	.02	.84	99.96	
SDWR-10029	77 11	A*33	6.00	2.00	1.03	2.33	.30	.50			<.001				3.0	.02	.84	99.87	
	73.11										<.001		20		2.5	.02	.82	99.93	
													53		3.2	.09	1.06	99.55	
GSMR-10034	48.83	13.90	13.38	0.94	0.30	3.02	٥٤.	2.00	.16	.17	.023	331	23	20	٥.٤	.09	1.00	77.22	
PPR-10203	49.71	13 51	10.15	6.55	12.17	2.68	.05	1.58	.16	.18	.026	56	89	33	3.2	.16	.24	99,99	
	66.41										<.001					2.19	.02		
RCPR-10032	42.54	15 10	8 60	6 6/	7 42	1 55	2 10	1.37	.14		.054					2.71	.02	99.55	
STANDARD SO-15/CSB	49.85	12 42	7 23	7 17	5.83	2.30	1 86	1.75								2.42		99.71	
31ANDARD 30-13/03B	77.00	16.46	1.23			,													

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 14/10

SIGNED BY. C: .........0.

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



Page 2

**AA** 

SAMPLE#	SiO2	A1203 %	Fe203	MgO %	CaO %	Na20 %	K20 %	Ti02 %	P205 %	MnO %	Cr203 %		Ni ppm	Sc	LOI %	TOT/C	TOT/S %	SUM %	
SDWR-10031	73.17 73.45	14.31 12.31 12.39 12.54	3.49 3.42	.74 .74	.22	3.05 3.01	2.97 2.88	.76 .74	.14	.01	.006	1253 2171 2175	131 <20 23	11 11	2.7	.05	1.05	99.98 99.81 99.81 99.61	

ACMB ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (a)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002513R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Co	Cs	Ga ppm		ИР	• • • • • • • • • • • • • • • • • • • •	Sn ppm		Ta ppm	Th	71	υ	٧	W	Zr ppm	Y	La	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	ďT mqq	Dy Ppm	ppm mqq	Er ppm	Tm ppm	Yb pqq	Łu ppm
RCPR-10021 RSHR-10206 SDWR-10026 GSMD-10035 GEBR-10200		3.0 2.5 .1	15.4 11.3 9.2 18.7	6.1 2.9 4.7 3.8	9.5 14.1 5.5 3.8	74.9 60.8 1.5 12.4	2 2 <1 1	32.8 1129.6 40.3 336.1 108.7	1.0 1.1 .5	8.7	.4 .4 .1	2.7 1.0 7.3	104 73 159	3 3 5	216.1 97.6 171.1 122.6 113.9	25.4 33.3 61.6 39.8	28.5 11.4 44.6 5.1	64.8 25.0 39.4 15.7	7.23 3.32 9.82 2.64	27.2 14.6 38.4 13.8	5.7 5.1 7.5 4.6	.69 2.76 1.91 1.81	4.95 6.56 7.29 5.77	.77 1.15 1.09 1.05	5.12 6.81 7.55 7.12	.94 1.20 1.48 1.46	3.01 3.23 4.67 4.46	.38 .42 .59	2.92 2.73 4.10 4.10	.43 .35 .60 .61
PPR-10201 RSHR-10207 GSMR-10036 RSHR-10209 RE RSHR-10209	36.8 107.7 127.9 17.2 15.4	1.0 .2 2.9	10.2 11.6	2.0 1.3 7.1	11.7 1.3 12.7	16.1 1.6 92.1	2 <1 2	158.1 847.0 153.0 60.0 57.8	1.0 .1 1.1	1.4 .2 12.9	.4 <.1 .9	.7 <.1	86 137	4 <1 4		12.4 15.7 17.4	8.2 2.3 22.8	17.6 6.2 50.5	2.29 1.02 5.46	10.1 5.2 19.7	2.6 1.8 4.0	1.31 .77 1.15	2.83 2.17 3.60	.46 .40 .52	2.66 2.88 3.27	.46 .54 .62	1.24 1.72 1.91	.15 .23 .24	1.00 1.59 1.82	.61 .13 .24 .28 .26
RRE RSHR-10209 SDWR-10028 PPR-10202 PPR-10211 RCPR-10025	35.9 35.0 36.1	.6 .7 .7	20.8 17.5 18.5 19.0 16.6	3.1 3.3 3.5	3.4 2.5 2.8	6.2 5.1 11.4	1 1 12	57.9 156.9 117.5 132.0 144.0	.3 .2 .3	.4 .2 .3	.2 1 <.1	.1 .3 .3	297 318	1 3 <1	238.0 106.1 112.0 116.9 100.6	33.4 37.7 37.0	4.7 4.4 5.0	14.4 13.6 15.1	2.25 2.35 2.45	11.7 12.3 13.0	3.8 4.1 4.4	1.57 1.60 1.54	4.81 5.31 5.24	.86 .99 1.04	6.15 6.91 6.93	1.20 1.38 1.35	3.80 4.36 4.19	.51 .59 .55	3.45 3.96 3.88	.53 .59 .57
GSMR-10037 RCPR-10022 RSHR-10210 SDWR-10033 SDWR-10027	14.9 18.5	2.4 2.7 2.5	18.6 21.5	4.3 7.2 5.2	6.5 11.6 7.4	60.2 82.9	2	94.2 24.7 57.5 332.1 55.6	.8 1.0 .6	6.3 12.8 5.2	.2	1.7 2.3 1.4	81 62 174	1 <1 <1	92.4 157.4 262.8 184.1 158.4	20.1 15.5 27.1	21.9 19.3 20.0	48.6 43.2 47.6	5.42 4.89 5.72	20.8 18.1 22.5	4.6 4.0 5.2	.39 1.05 1.60	3.96 3.15 4.76	.60 .46 .78	4.09 2.90 5.23	.76 .55 1.00	2.31 1.74 3.16	.30 .23 .41	2.39 1.71 2.97	.33 .26 .43
PPR-10204 SDWR-10030 GSMR-10038 PPR-10205 RSHR-10208	7.1	4.0 .6	13.1 17.1 18.4 18.9 18.8	5.5 3.2 3.2	13.1 2.2 2.7	146.7 12.1 2.2	11 <1 1	122.9 61.1 232.7 71.1 53.0	1.3 .2 .3	13.4 .3 .2	<.1 <.1	6.7 .2 <.1	114 561 307	5 <1 <1	96.5 191.6 103.5 109.6 215.8	23.4 30.9 36.3	35.2 4.0 4.1	72.4 11.7 13.3	8.44 1.91 2.25	31.0 9.6 12.0	6.1 3.3 4.1	.83 1.10 1.55	4.41 4.09 5.02	.67 .76 .90	4.41 5.38 6.35	.83 1.14 1.29	2.53 3.55 3.98	.32 .47 .53	2.25 3.54 3.80	.32 .52 .56
RCPR-10023 SDWR-10029 RE SDWR-10029 RRE SDWR-10029 GSMR-10034	18.2	1.1 .8 .7	16.7 13.2 12.6 11.3 17.7	3.0 2.9 2.6	4.8 4.6 4.3	13.0 13.2 11.5	4 4 3	42.8 265.4 258.5 239.6 130.2	.5 .6 .3	4.1 3.8 3.5	.5 <.1 <.1 <.1	1.0 .9 .8	88 84 81	<1 <1 <1	214.4 109.4 102.0 91.1 114.1	17.1 16.3 15.0	13.1 12.3 11.5	35.2 34.3 31.7	3.67 3.56 3.33	14.5 14.2 13.3	3.6 3.4 3.4	1.02 .96 .96	3.24 3.26 3.03	.52 .53 .47	3.44 3.48 3.38	.69 .64 .60	2.12 2.07 1.90	.30 .28 .25	2.12 1.98 1.85	.33 .29 .29
PPR-10203 SDWR-10032 RCPR-10024 STANDARD SO-15		.1 4.8	14.5	1.0	2.2	3.3	<1 <1	70.1 396.7 185.9 404.5	.2 .2	.2	<.1 <.1 .2 1.0	.1 <.1	105 239	35 1	104.0 34.2 75.2 1085.4	10.6	1.9	4.7 9.9	.74 1.60	3.7 8.8	1.2	.45 .69	1.52 3.61	.27 .67	1.77 4.65	.36 .94	1.17 2.87	.16 .38	1.13 2.62	. 16 . 37

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 14/00

SIGNED BY .... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data FA _



Page 2 (a)

	١.		
	M	Ļ	۱
П		I	_
	-		
ache	ANA	.YT	ICA

ACHE ANALYTICAL											·					<u></u>							0.1		- Dv.			Tm	Yb	Lu
SAMPLE#	Co	Cs	Ga	Hf	Nb	Яb	Sn	Sr	Ta	Th	Τl	U	٧	W	Žr	Y	La	Ce	Pr	Na	DDM DDM	Eu ppm		dī mag	ρ <b>ρ</b> m Dy	OH MOC	ppm	ppm	ppm	ppm
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm			ppm				ppm			.,,				_::		2	70
40070	70.7	4 6	15 1	1 0	1 8	34.8	<1	122.0	.1	.2	.1	<.1	209	3	61.5	21.0	2.7	8.3	1.38	7.7	2.4	.59	2.88	.57	3.78	.77	2.48	.32 2	.21	.30 32
	39.7							84.0		13.5	• •	3.6		2	203.8	24.9	37.5	81.2	9.10	37.4	6.4	.88	5.03	-/8 75	4.91	-88	2.78	.35 2	.37	.33
RE SDWR-10031	6.7	2.7				113.8	3	83.8			• •	3.6	36 147	4	200.1 1026.7	25.1	38.5	50.0	9.17 6.12	24.9	4.5	1.04	4.04	.59	3.85	.77	2.53	.33 2	.56	.42
	22.3	2.7	17.4	27.7	32.2	64.6	16	390.2	1.8	24.0	1.3	20.2	147	21	1020.7	22.2	27.0	77.1	0.12		-11.2									

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002513R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)



SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
RCPR-10021 RSHR-10206 SDWR-10026 GSMD-10035 GEBR-10200	<.5 1.8 1.1 <.5	54 22 20 65 40	17 8 15 10 4	78 62 46 110 114	38 873 54 109 53	591 6 5 <2	<.2 <.2 .4 .2 .4	2 48 1 <1 <1	<1 1 2 1	
PPR-10201 RSHR-10207 GSMR-10036 RSHR-10209 RE RSHR-10209	955555	50 10 3182 11 12	8 43 23 22	84 166 154 86 81	55 1275 3320 77 49	<2 372 2 23 22	.3 .4 <.2 <.2 <.2	1 <1 <1 2 1	2 1 <1 <1 <1	
RRE RSHR-10209 SDWR-10028 PPR-10202 PPR-10211 RCPR-10025	<.5 1.2 <.5 1.0 <.5	11 95 47 230 65	22 14 6 19	80 101 102 263 86	48 82 62 58 57	22 <2 <2 <2 <2	<.2 <.2 <.2 .5 .3	<1 2 1 1 <1	<1 2 2 2 2	
GSMR-10037 RCPR-10022 RSHR-10210 SDWR-10033 SDWR-10027	1.2 <.5 1.5 1.3 1.0	75 35 5 34 11	5 11 18 15 25	52 60 75 78 68	83 30 37 14 74	<2 5 19 5 <2	<.2 .3 <.2 <.2 .3	<1 2 1 1	2 1 <1 2 1	
PPR-10204 SDWR-10030 GSMR-10038 PPR-10205 RSHR-10208	4.7 7.3 1.5 <.5 1.7	343 33 173 50 56	70 322 5 4 7	155 100 53 89 213	64 13 16 55 2148	74 <2 <2 1085	<.2 2.5 <.2 <.3	17 <1 1 9	2 1 3 <1	
RCPR-10023 SDWR-10029 RE SDWR-10029 RRE SDWR-10029 GSMR-10034	4.9 8.0 8.1 7.5 1.2	13 352 354 332 1181	24 14 14 14 11	53 105 106 100 101	19 28 27 27 67	12 2 3 3 <2	<.2 <.2 <.2 <.2	5 1 <1 <1	1 2 2 1 3	
PPR-10203 SDWR-10032 RCPR-10024 STANDARD CT3 STANDARD G-2	.6 <.5 .6 28.3 2.3	55 15 59 68 3	7 <3 <3 42 22	75 25 67 182 52	90 9 86 40 7	<2 99 33 65 <2	<.2 <.2 <.2 22.9 <.2	3 2 <1 23 <1	4 2 3 24 <1	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECRIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 14/00

SIGNED BY .... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



							_ff		A A
<del>22</del>	Hudson Ba	ay Expl. &	Dev. Co	. Ltd.	PROJECT 2398	FILE #	A002513R	Page 2 (b)	ACHE ANALYTICAL

ACHE ANALYTICAL											AUG ANCTIOE
NE WELLEN	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb mqq	Bi ppm	
	GSMP-10039 SDWR-10031 RE SDWR-10031 STANDARD CT3	<.5 1.6 1.7 26.9	74 15 11 66	3 24 25 39	65 38 38 189	144 9 9 38	65 7 8 62	.5 .2 .2 22.6	<1 4 4 20	1 <1 <1 22	

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002626 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

	F1 Hg Se Te Ga om ppb ppm ppm ppm
ррт ррт ррт ррт ррт ррт ррт зрт зрт ррт р	ואל וואלל מלול ווועל
PPD-17958 .85 41.03 10.37 80.2 169 39.9 15.9 541 3.78 7.1 .6 2.0 1.6 12.3 .29 .80 .14 92 .48 .052 15.3 68.0 .82 137.8 .182 1 2.30 .005 .05 <.2 .04	04 76 .5 .04 6.5
700 7704 1 40 62 05 7 20 103 0 651 63 2 10 0 570 2 80 4 8 1 3 2 9 1 0 22 8 78 40 10 93 63 168 16 4 87.9 .80 343.0 .129 2 2.20 .009 .03 < .2 .04	04 109 1.0 .04 6.2
000 17054 45 222 04 9 00 103 0 79 148 0 45 6 1462 6 71 12 7 4 4 6 1 8 22 8 27 81 10 162 1.03 .063 8.3 128.1 2.43 398.3 .392 2 3.38 .015 .00 < .2 .00	03 42 .4 .05 10.2
09 47 34 10 20 97 9 180 62 0 19 5 709 3 54 8 0 9 4 9 3 4 17 5 42 88 13 81 73 .053 19.3 76.0 1.09 283.6 .190 1 2.14 .009 .00 5.2 .00	04 61 .8 .03 6.0
PPD-17950 .75 138.58 10.39 138.9 77 96.6 35.5 1143 5.06 23.1 .5 3.7 3.2 23.7 .29 1.26 .13 142 1.04 .074 13.7 109.9 1.90 425.7 .360 3 2.99 .019 .10 <.2 .00	05 /1 .5 .02 9.3
PPD-17955 .65 105.09 10.33 106.0 68 77.0 29.7 1180 4.74 9.1 .6 7.3 3.2 23.2 .22 1.52 .13 133 1.03 .086 14.3 110.4 1.92 497.0 .363 <1 2.91 .023 .09 <.2 .01	05 46 .4 .04 9.0
PDD 170589 65 38 85 8 08 50 0 61 51 4 20 5 545 3 08 7 1 4 9 3 2 9 12 3 20 79 10 92 62 050 11 5 67 5 92 141.7 289 1 2 06 007 03 < 2 0	04 28 .4 .04 5.3
70 70 06 14 60 87 2 53 71 9 26 3 1081 4 15 10 7 6 9 0 5 9 23 3 27 1 31 17 101 81 089 24 4 80.3 1.23 301.1 .259 2 2.29 .023 .13 < .2 .01	
ppp 17056 67 100 12 11 70 98 5 25 71 3 31 3 1143 4 87 8 3 5 2 8 4 4 21 6 18 .93 .14 132 .82 .075 16.2 94.8 1.89 288.9 .359 <1 2.92 .015 .12 <- 2 .01	06 53 .5 .02 8.7
PPD-17951 .50 33.40 5.46 53.5 36 36.0 16.0 590 3.08 3.3 .5 15.2 2.7 20.6 .16 .29 .11 86 .62 .069 12.0 58.7 .86 170.8 .222 <1 1.90 .013 .07 <.2 .0	04 25 .3 .03 5.7
P( 949 60 33 56 2 90 49 6 71 36.3 17.2 428 3.50 2.8 .4 4.4 1.2 12.7 .21 .25 .06 98 .43 .062 6.9 65.2 .96 114.9 .282 <1 2.68 .006 .02 < .2 .00	02 63 .6 .02 5.8
71 343 ,00 00:00 4:30 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 11 00:0 1	05 37 .6 .02 8.5
77 17 250 21 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	03 15 .1 <.02 5.5
PE DDD 17060 14 26 42 3 77 36 4 11 30 4 10 8 344 2 49 2 3 3 2 0 2 8 14 3 05 19 .06 82 .76 .032 11.5 57.3 .78 200.9 .252 3 1.95 .014 .05 < .2 .00	03
GEBD-17933 1.11 29.55 9.76 50.8 45 13.0 13.0 463 3.95 2.6 .6 2.0 2.8 48.2 .10 .09 .15 155 .48 .045 13.0 39.7 .53 86.9 .386 <1 4.26 .112 .07 <.2 .1	13 40 .4 .03 10.8
	02 22 2 04 5
GEBD-17938 .43 63.96 6.83 63.6 29 49.0 19.8 927 2.65 4.8 .3 3.9 2.2 19.8 .14 .45 .10 79 .72 .063 8.8 55.7 1.02 519.8 .248 1 2.04 .011 .03 < .2 .06 GEBD-17938 32 84 63 4.08 36 8 59 62.6 15.2 524 2.89 28.9 .3 3.2 1.3 17.4 .10 .51 .07 91 .77 .024 7.3 63.3 .95 174.1 .241 1 2.16 .010 .02 < .2 .06	03 22 .3 .04 3 02 26 6 02 6 0
	02 35 .5 .02 5.0
1000-1/340 100 4717 OF 1210 2710 477 OF 1210 2710 AT AT A A	05 13 .3 .05 5.
QLD0-1/30/ 100 10/100 010/ 01/10 10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10	03 64 1.0 .02 6.1
GEBD-17934 .64 60.09 4.58 62.9 97 54.4 26.8 819 3.46 3.8 .4 3.8 1.1 17.3 .16 .39 .08 94 .68 .069 7.4 69.3 1.03 163.8 .246 <1 3.78 .011 .02 < .2 .0	00 01 110 102 011
GEBD-17939 .34 71.08 4.67 49.2 22 50.3 19.6 817 3.06 3.9 .2 5.0 1.9 21.9 .10 .43 .07 100 .93 .049 7.3 54.2 1.18 431.0 .292 1 2.59 .022 .03 <.2 .0	03 17 .5 .02 6.4
GEBD-17936 .34 71.08 4.07 49.2 22 30.3 17.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617 51.0 617	03 14 .4 .02 9.4

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: -230 TILL

STANDARD DS2 14.01 121.60 32.93 162.3 266 36.0 11.8 823 3.06 59.3 19.4 216.5 3.6 28.8 10.23 10.05 10.97 73 .54 .090 17.7 165.2 .60 150.2 .095 4 1.73 .030 .16 7.4 1.80 242 2.2 1.91 5.9

Aug 10/00

... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(b)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002626 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

SAMPL	E# Cs ppm		Hf ppm	ppm dN	Rb ppm	Sc ppm	Sn ppm	\$ %	Ta ppm	Zr ppm	ppm Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
PPD-1	7958 .71	<.1	.05		5.7		.6	.03	<.05	2.8	10.68	26.5	.03	<1		20.0		
PPD-1		<.1			2.6		.5	.02	<.05	1.5	19.02	30.0	.03	2		10.4		
PPD-1	L.		.25		2.8		6	<.01	<,05	9.2	17.31	7/ 0	.03	<1 <1		23.1 24.9	30 30	
PPD-1					5.8						13.72 17.23			<1		25.0		
PPD-1	7950 1.04	<.1	.27	.41	4.9	11.7	.0	<.U:	<b>~.</b> 03	10.0	11.23	22.3	.04	``'			30	
PPD-1	7955 .86	<.1	.34	.35	4.7	11.0	.6	.01	<.05	13.5	16.19	23.1	.04	<1	.5	20.9		
PPD-1		<.1			3.7		.5				8.93			<1	.6	13.9		
PPD-1		.1		.42	6.6	10.9	.6	.01	<.05	14.9	19.71	37.3	.04	<1		21.4		
PPD-1	7956 .96	<.1	.28	.55			.6				12.69			<1		23.4		
PPD-1	7951 .58	<.1	.09	.57	4.9	4.8	.5	.01	<.05	4.0	8.86	23.2	.04	<1	.3	11.7	30	
								^=	. 05	<b>.</b> .		4. 0	۰,		,	13 7	70	
PPD-1	7949 .37	<.1	.11	1.89	2.7	3.5					6.86			-1		12.3 26.5		
PPD-1		<.1					.6				9.53 6.80			<1 <1		13.9		
PPD-1		<.1 <.1	10	25	4.0						6.84			<b>&lt;</b> 1		13.9		
		<.1	.18 .66	55	4.6	9.5					15.39			<b>&lt;</b> 1		10.9		
GEBD-	17733	`	.00	.,,	4.4	,.,	1.5	.02	1.03	10.5	13.37			•	••			
GEBD-	17938 .49	<.1	.25	.83	2.1	4.3	.5	<.01	<.05	9.2	9.24	19.0	.03	1	.3	11.2		
GEBD-		<.1			2.2			.01	<.05	4.4	14.69	18.8	.03	<1		15.8		
GEBD-		<.1			1.4		.5				9.63			<1		9.5		
GEBD-		<.1					.6				12.04			1		14.5		
GEBD-	17934 .75	<.1	.15	1.11	2.0	5.6	.6	.03	<.05	6.4	12.02	16.0	.03	2	.4	11.5	30	
0500	17070 //	. 1	77	/5	1 7	5 /	5	- 01	< 05	12 8	9.91	17 5	.02	<1	3	10.7	30	
<del>-</del>	17939 .46 17936 .67	<.1 .1			1.7 1.6		۲.	< 01	< .05	14.4	14.42	21.4	.04	<1		13.7		
	ARD DS2 3.18		.04	1.38	13.1	3.0	26.4	.03	< .05	2.8	7.90	29.7	5.41	2		14.6		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.
- SAMPLE TYPE: -230 TILL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### WHOLE ROCK ICP ANALYSIS

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002626R

SAMPLE#		Al 203		MgO	CaO Na20	K20		205					12	Zr	Y	dk ppm		LOI	TOT/C	701/S 2	SUM %	
	*	<u>%</u>	%	%		76					Ppm	ppm	ppii	Pivil	ppm	ppii	ייאלק					
PPD-17958	57.33	11.27	7.52	2.50	2.15 1.31	1.17	1.25	.27	.10	.012	728	36	94	173	28	<10	18	15.0	4.01		100.01	
PPD-17948	63.74	11.66	6.17	2.45	3.09 2.04	.94	1.22	.49	.11	.019	1049	56	220	216	38	<10	17	8.2			100.32	1
PPD-17954	53.37	12.01	11.87	6.22	4.54 1.31	.78	1.37	.18	.24	.023	1062	144	97	96	35	<10		8.3		<.01	100.38	1
PPD-17957	63.23	11.92	7.10	2.97	2.55 1.56	1.45	1.23	.19	.12	.015	1003	52	108	173	33	<10		7.5		<.01	100.00	1
PPD-17950	57.55	12.46	9.93	4.50	3.55 1.47	1.04	1.34	.23	.18	.024	1107	181	104	137	34	<10	29	7.5	.35	<.01	99.96	
																					00.70	
PPD-17955	59.08	12.11	9.33	4.53	3.51 1.43	1.13	1.32	.24	-19	.019	1258	66		150		<10		6.7		.02	99.78	
PPD-17959	64.01	10.81	6.86	3.17	3.68 1.68	.90	1.59	.16	.11	.020	684	56	122	249	31	11		7.0		<.01	100.13	
PPD-17952	63,60	12.09	8.04	3.23	2.73 1.58	1.42	1.34	.22	.16	.018		65	104	198	39	<10		5.4		.02	100.00	
PPD-17956	57.48	13.06	9.91	4.46	3.02 1.49	1.41	1.38	.22	. 18	.017		58	93	150	30	<10		7.0		<.01	99.78	1
PPD-17951	64.28	12.77	6.63	2.52	2.88 2.20	1.38	1.29	.18	.11	.011	793	41	221	227	28	<10	17	5.6	.53	<.01	100.01	
	İ									001	, -,		205	2//	27	11	20	16 7	4.51	ດວ	100.31	
					3.45 1.86					.024					27 28	11 10			1.14	.02	99.98	1
					2.86 1.40			.13	.15	.017		131	92	150 185	21	<10		4.3		<.01	100.29	
					2.51 1.82			.11	.07	.012		36 32	109 108	178	23	<10		4.2		<.01	99.92	!
RE PPD-17960	71.91	10.03	4.91	2.32	2.51 1.81	.84	7.70	.09	.07	.010			336		28	<10				.03	100.00	1
GEBD-17933 S-1	53.85	18.09	8.68	2.45	3.94 3.01	1.00	1.36	. 14	. 13	.005	344	120	336	117	20	110	6.5		.0.	.03	,,,,,,,	
47070	CE (C	40 EO	4 13	7 44	4.13 1.76	01	1 27	15	17	010	1300	39	132	161	26	13	24	5.4	.61	.01	100.06	
					4.75 1.81		1 48	.10	.12	.022	659	64				<10		8.1		<.01	100.15	
					4.81 2.06			.11		.022		42		173	26	<10	25	5.2	.49	<.01	100.29	
					2.86 1.41				.16			38	119	132	27	<10	24	4.6	.22	<.01	100.22	1
GEBD-17937 GEBD-17934	51 12	12 55	7 10	3 27	3.27 1.44	. 77	1.09			.017		51	113	132	27	<10	21	18.9	4.40	<.01	100.00	
GE80-17934	71.12	12.73	1.07	J.L.	3.21 1.44		,		•	•••												
GEBD - 17939	62.84	11.25	6.83	4.13	4.86 1.95	.76	1.32	.13	.15	.023	1018	145	134	149	26	<10		5.5		<.01	99.92	
GEBD - 17936	58.67	12.29	8.67	5.18	4.59 2.09	.56	1.31	.09	. 19	.022	784	82	114	117	29	<10		6.4		<.01	100.20	
STANDARD SO-15/CSB	49.87	12.23	7.28	7.24	5.85 2.40	1.85	1.76	2.67	1.39	1.059	1926	78	395	946	22	21	12	5.9	2.44	5.32	99.91	
JIANDING CO 107 CC	1													_								

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.

TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: -230 TILL

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED: tec 7/00

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data FA __

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

File # A002627

#### GEOCHEMICAL ANALYSIS CERTIFICATE

				(47 M)		80	) • /L	U W. P	ender	Sr.	vano	conve	BC V	ou II	ra san	an, r ce	a by	nei i	y 014	Merr										******
SAMPLE#	Mo	Cu	Pb ppm	Zn A	•			Fe A		_		Sr ppm				V Ca		La ppm	Cr ppm	Mg %	Ba ppm		B ppm					Hg Se ppb ppm		
GEBX-14032	1.76	17 24	0.62	101 0 21	5 22 0	13 1	7613 8	36 33	Δ Δ	2.6	1.6	48.6	.54	2.06	.10 4	0 1.10	.144	10.5	40.6	.51	424.2	.037	2	1.09 .	006	.08 <.2	.05	83 .7	.02	3.5
GEBX-14022 GEBX-14037	00.0	204 67	8 30	65.9 27 63.7 9	106 /	19 6	273 2	66 3	3 1 3	ากก	. 3	23 4	39	1.15	.09 8	19 1.16	.108	14.0	77.Q	.94	170.2	.139	3 7	Z.U5 .	UIU .	.08 <.2	.04	111 2.3	. 03	5.5

S GE GEBX-1403 .07 93 1.13 .068 9.0 63.1 .85 244.4 .155 3 1.99 .014 .05 <.2 .04 151 .8 <.02 5.5 .51 41.98 5.35 67.4 96 40.7 18.6 1453 3.19 5.9 .4 5.9 .9 28.4 .29 1.10 GEBX-14028 .07 75 1.47 .150 14.9 62.7 .61 305.0 .112 6 3.14 .010 .06 <.2 .06 243 2.8 .02 4.4 .45 .49 1.02 56.33 8.50 62.4 332 32.0 12.5 1351 2.17 3.5 .6 214.7 .1 35.8 GEBX-14025 7 1.67 .009 .13 <.2 .05 216 3.1 .02 4.5 .10 67 2.08 .089 8.6 69.4 .82 315.0 .085 .3 3.8 1.1 41.4 .38 9.17 GEBX-14039 .69 44.57 9.27 70.8 179 40.1 13.5 1330 3.04 7.8 .03 46 .86 .063 5.3 27.2 .26 216.8 .063 2 .93 .006 .05 <.2 .03 88 .8 <.02 1.8 .25 5.43 .41 23.42 3.44 51.6 135 18.7 8.8 2868 1.28 2.3 .2 1.6 .1 20.3 GEBX-14027 .12 69 1.33 .133 21.8 61.1 .68 342.2 .071 4 1.78 .008 .14 <.2 .05 172 6.3 .03 4.3 .86 65.78 10.25 84.0 429 34.5 11.2 865 2.21 4.7 1.3 4.3 .3 29.6 .55 4.85 GEBX-14023 .09 99 .99 .066 11.5 53.4 .73 157.6 .131 3 1.92 .012 .08 <.2 .05 132 .8 <.02 5.5 .41 .98 .63 40.19 7.74 80.8 101 30.6 26.3 3048 3.58 4.3 .3 2.4 1.2 21.8 GEBX-14029 .10 73 2.51 .176 28.1 81.6 .57 430.4 .063 7 2.02 .008 .09 <.2 .06 298 9.3 .02 3.8 1.09 110.18 8.21 40.2 440 46.8 10.7 1480 2.14 6.3 1.6 3.6 .1 45.6 .60 .69 GEBX-14024 4 1.83 .014 .09 <.2 .04 108 1.0 <.02 5.0 .09 81 1.32 .081 12.0 58.4 .67 169.4 .130 2.1 .9 29.0 .31 .50 .73 57.48 7.08 74.8 87 28.8 13.9 892 2.79 4.8 14030 1 4.00 .100 .06 .2 .12 26 .6 .04 10.0 .14 152 .47 .043 10.7 41.8 .53 88.7 .352 .09 .09 1.00 30.44 9.25 46.3 39 11.9 12.5 449 3.93 2.7 .6 2.7 2.7 43.8 .STD GEBX-14033 3 1.67 .007 .06 < .2 .07 233 1.2 < .02 4.3 .10 52 1.08 .087 19.7 57.5 .64 191.3 .083 .68 65.51 9.60 74.8 372 40.8 12.4 637 2.36 3.8 1.1 3.1 .8 31.8 .70 .72 GEBX-14040 2 2.22 .012 .06 < .2 .04 81 .8 .02 6.9 .10 125 1.68 .062 6.4 87.7 1.99 1325.3 .174 .58 70.66 5.41 81.9 92 58.5 33.3 1253 4.37 18.7 .2 5.2 1.5 30.8 .18 1.52 RE GEBX-14036 3 2.15 .011 .05 <.2 .04 81 .8 .02 6.7 .09 121 1.63 .060 6.2 82.9 1.94 1297.5 .169 .19 1.68 .55 68.67 5.25 81.7 91 56.3 31.7 1222 4.23 18.4 .2 5.9 1.4 30.2 GEBX-14036 3 2.05 .010 .08 <.2 .03 108 3.6 .04 5.7 .08 91 1.13 .111 13.2 78.1 .97 170.4 .149 .84 202.67 6.28 65.8 249 192.6 19.9 901 2.71 3.1 1.2 7.2 .3 22.6 .38 1.61 GEBX-14021 1 .67 .002 .04 < .2 .02 30 .3 .02 2.6 .09 36 .31 .064 9.4 19.4 .29 116.8 .073 .64 12.48 7.09 46.8 86 13.2 6.2 439 1.80 4.4 .3 4.6 1.6 8.4 .22 .34 GEBX-14035 6 1.50 .009 .06 < .2 .04 205 1.8 .02 4.2 .26 1.94 .06 78 1.52 .070 6.6 57.2 .84 384.0 .087 . 3 8.5 .9 30.4 .65 43.98 6.58 60.0 94 42.3 16.0 765 2.94 16.3 GEBX-14038 2 .34 .003 .04 < .2 .03 45 .2 < .02 2.4 .10 26 .26 .041 9.4 14.1 .11 135.1 .047 .5 .2 7.8 .17 .56 .48 6.91 6.73 19.5 244 4.8 1.8 265 .54 1.2 .1 GEBX-14034 1 1.50 .004 .06 < .2 .04 31 .4 .02 4.2 .13 43 .32 .064 17.2 42.1 .74 118.4 .067 .5 1.8 4.4 12.7 .24 .34 .53 23.44 9.79 74.8 81 33.4 13.3 666 3.31 5.5 GEBX-14031 .10 83 1.51 .146 14.4 60.6 .74 210.0 .122 5 2.50 .012 .08 <.2 .05 231 7.1 .03 4.6 1.04 71.24 9.58 84.7 331 39.7 13.9 1448 2.26 4.1 .8 16.0 .1 33.4 .72 4.95 GEBX-14026 .86 36.95 8.49 105.5 125 36.2 38.7 6523 5.27 5.5 .3 2.7 1.0 33.3 .50 .56 .08 106 1.38 .102 9.7 52.0 .76 233.2 .108 3 1.75 .011 .12 < .2 .04 198 .9 .02 5.1 GEBX-10369 14.10 128.22 31.93 156.8 260 37.0 11.7 831 3.09 57.4 21.1 210.5 3.5 27.0 10.27 9.37 10.72 74 .52 .088 15.2 160.1 .60 152.3 .091 2 1.70 .027 .15 7.4 1.76 224 2.1 1.87 6.0 STANDARD DS2

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY 1CP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT

Hug 13/00

SIGNED BY .... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002627

(b)

全个

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sc ppm	\$n ppm	s %	Ta ppm	Zr ppm	ppm Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
GE8X-14025	.32 .45 .90 1.57 .77	.1	.03 .09 .15 .13		3.5 4.1 3.7 2.7			.10 .08 .18	<.05 <.05 <.05 <.05	2.6 5.7 6.1 3.1	7.87 24.99 15.35 21.38 32.14	15.6 16.7 18.8 20.8	.02 .03 .04 .03	2 4 <1 <1 <1	.4 .2 .4 .6	14.8 8.7 14.0 13.7 7.0	30 30 30 30 30	
 GEBX-14039 GEBX-14027 GEBX-14023 GEBX-14029 GEBX-14024	1.45 .21 .57 .80 .58	.1 .2 .1		.26 .58		3.1 4.0 8.0	.3 .1 .4 .4	.08 .14 .08	<.05 <.05 <.05	.8 1.5 4.5	13.60 14.17 31.28 23.70 50.57	8.3 23.2 21.9	.03 .05 .07	<1 <1 2 3 6	.2 .5 .4	19.8 3.5 11.9 14.9 11.1	15 30 15 30 15	• '
GEBX-14030 .STD GEBX-14033 GEBX-14040 RE GEBX-14036 GEBX-14036	1.07 1.20 .74 1.36 1.33	.2 .1 .1	.12 .64 .12 .18	.40 .61 .38		8.3 8.4	1.3 .3 .5	.02 .09 .05	<.05 <.05 <.05	35.9 3.9 6.8	24.99 13.50 31.00 17.71 16.84	29.7 18.2 15.2		2 <1 2 <1 <1	.6 .4 .3	17.0 10.3 14.9 15.9 15.5	30 30 30 30 30	
GEBX-14021 GEBX-14035 GEBX-14038 GEBX-14034 GEBX-14031	.46 .27 1.20 .54 .45	.1 <.1 <.1 <.1		.36 .51 .29	4.8	1.0 7.5 .6	.2 .3 .4	.02 .11 .03	<.05 <.05 <.05 <.05 <.05	.9 3.7 .3	23.54 2.24 13.86 1.28 5.18	20.9 13.9 18.4	.03 .04 .02	4 <1 <1 <1	.1 .2 .1	9.1 8.2 13.9 1.4 25.2	30 30 15 15 30	
GEBX-14026 GEBX-10369 STANDARD DS2	1.05 1.07 3.23	.1 .1 .1	.09 .10 .06	.52	6.2	4.9 7.6 2.8	.3	.14	<.05	3.7	31.71 25.53 7.55	18.9	.02	6 <1 <1	.3	8.5 12.9 14.3	15 15 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 26 2000 DATE REPORT MAILED: Aug 13/00

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A002627R 800 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	roi *
GEBX-14032 GEBX-14022 GEBX-14037 GEBX-14028 GEBX-14025	25.7 29.4 31.0 21.9 55.2
GEBX-14039 GEBX-14027 GEBX-14023 GEBX-14029 GEBX-14024	40.4 47.5 34.6 22.6 66.6
GEBX-14030 .STD GEBX-14033 S-1 GEBX-14040 RE GEBX-14040 GEBX-14036	31.2 7.3 28.1 27.8 13.6
GEBX-14021 GEBX-14035 GEBX-14038 GEBX-14034 GEBX-14031	27.7 7.7 31.9 17.4 6.8
GEBX-14026 GEBX-10369 STANDARD DOLOMITE	46.0 34.4 45.6

- SAMPLE TYPE: MOSS MAT

Samples beginning 'RE' are Reruns and 'RRE' are Reject Repuns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 4/00

SIGNED BY.

.... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

## GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (a)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 Fil	e # A003056	Š
800 - 700 V Render St Vancouver BC V6C 168 Submitted by		2

Ba Ba						ింది	UU + 1	UU I	ı. Pen	ger:	St.,	yaı	icouve	L BC	VOL	iga 🕾 subn	ui c ce	a by	· Ge	CA DIC	iwe .	<u> </u>	1.80		00000	87.97 (373)	33775	886,086,85	6.00	
SAMPLE#	Mo ppm	Cu ppm			Ag N				As ppm				Sr ppm	Cd ppm	Sb ppm	Bi V ppm ppm	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti % p	B Al		K W				e Ga m ppm
GSMD-18064 GSMD-18076 GSMD-18062 GSMD-18003 GSMD-18017	.62 .39 .53	31.37 187.52 43.74 46.68	5.09 5.11 5.66 11.96	63.4 102.6 71.8 72.7	42 34. 29 95. 45 43. 43 47. 28 59.	7 17.0 3 50.9 7 21.8 1 20.0	415 4 1283 5 959 4 633 3	\$.23 5.62 \$.06 3.31	2.3 3.4 3.0 7.1	.3 .2 .3	3.1 3.4 3.5 2.2	1.6 1.6 1.3 5.8	8.2 34.8 15.9 15.0 25.6	.12 .17 .16	.28 1.08 .31 .69 1.07	.10 157 .08 171 .10 144 .17 68 .06 158	1.60 .82 .36	.046 .036 .055	6.6 7.8 20.9	109.3 1 92.4 1 53.2	1.91 1.21 .95	117.9 255.3 130.1	.419 .373 .136	3 3.53 1 2.62 1 1.82	.019 .012 .006	.02 .2 .04 <.2 .03 <.2 .04 <.2 .03 <.2	.04 .03 .04	43 . 43 . 38 .	4 .0 4 .0 4 .0	3 11.0
GSMD-18019 GSMD-18012 GSMD-18078 GSMD-18063 GSMD-18009	.71 .46 .52	36.43 88.81 35.60	12.99 3.15 4.48	85.3 82.1 55.9	16 55 57 51 60 80 42 37 36 50	4 22.0 0 38.9 9 14.6	483 3 2015 3 471 3	3.94 5.10 3.47	8.3 32.4 2.4	.4 .2 .3	2.3 2.8 2.7	3.7 .7 1.3	27.2 8.5 13.3 11.5 12.7	.09 .18 .20	.35 .56 1.08 .23 .48	.10 111 .21 93 .06 94 .06 114 .09 103	.37 .39 .68	.064 .054 .041	14.9 8.7 6.4	66.8 73.8 67.9	.92 .91 .95	312.8 129.4 147.4	.174 .028 .327	1 2.63 1 2.51 1 2.88	.006 .005 .011	.08 <.2 .03 <.2 .04 <.2 .02 <.2 .03 <.2	.05 .05 .03	50 106 78	.4 .0 .6 < .0 .5 < .0	6 6.4 2 5.3 2 7.3
GSMD-18015 GSMD-18005 GSMD-18002 GSMD-18070 GSMD-18001	.50 .66 .57	75.95 69.71 27.13	8.71 12.22 5.38	71.4 80.2 56.4	101 37 54 49 18 51 66 32 17 43	.9 23.2 .9 24.5 .3 13.7	845 3 768 3 369 3	3.49 3.70 3.96	13.3 8.9 4.2	.3 .4 .6 .3	2.2 2.8 9.8	4.3 6.3 1.6	14.3 19.6 18.0 12.2 17.4	.16 .10	.63 .26	.08 103 .12 76 .16 75 .09 131 .14 80	.53 .43 .46	.070 .053 .042	13.8 19.7 7.9	56.9 63.1 78.5	1.03 1.06 .79	287.1 163.5 134.1	.146 .155 .344	1 1.63 1 1.83 1 2.39	.008 .007 .007	.03 .2 .05 <.2 .06 <.2 .02 <.2 .04 <.2	.03 .06 .03	48 40 76	.2 .0 .3 .0 .3 .0	6 5.3 4 5.6 2 8.1
GSMD-18075 GSMD-18061 GSMD-18004 RE GSMD-18004 GSMD-18016	.64 .65 .66	48.18 78.83 79.27	6.66 11.18 10.85	74.3 74.2 74.8	64 30 59 36 19 50 18 50 16 37	.9 19.2 .9 24.3 .1 24.4	892 782 781	4.04 3.72 3.69	3.8 7.9 7.7	.3 .5 .5	5.8 2.7 3.4	1.1 5.6 5.5	15.4 12.8 22.4 21.2 26.5		.30	.13 165 .12 146 .15 86 .15 86 .09 93	.65 .55 .54	.042 .063 .060	8.3 19.4 19.1	94.6 63.5 62.2	.99 1.10 1.10	264.9 156.4 155.3	.313 .178 .177	1 2.47 3 1.83 2 1.81	.007 .007 .007	.02 <.2 .03 <.2 .06 <.2 .06 <.2 .04 <.2	.03 .05 .04	52 67 69	.5 .0 .4 .0 .3 .0	18 8.9 15 5.6 13 5.5
GSMD-18073 GSMD-18066 S-1 GSMD-18079 GSMD-18072 GSMD-18010	1.04 .35 .59	30.27 62.14 30.72	9.30 6.94 3.85	52.0 63.3 87.7	38 51 55 12 41 52 26 45 122 40	3 12.8 0 25.4 6 22.8	471 816 466	4.01 4.06 4.33	2.2 4.5 3.3	.6 .2 .2	1.4 4.7 1.2	2.7 1.6	21.1 45.0 5 15.2 5 24.5 3 10.1	.07 .13 .12	.47 .10 .44 .28 .43	.07 152 .14 162 .12 135 .07 140 .16 101	.44 .80 .71	.043 .023 .105	12.1 7.0 5.9	45.9 84.6	.53 1.31 .92	89.4 270.2 235.5	.389 .345 .317	1 4.28 2 2.90 2 3.17	.112 .011 .013	.03 <.2 .06 <.2 .03 <.2 .02 <.2 .03 .2	.12 .02 .02	42 37 36	.4 .0 .3 .0 .5 <.0	14 10.5 15 8.7 12 8.0
GSMD-18065 GSMD-18006 GSMD-18074 GSMD-18013 GSMD-18068	.43 .92 .58	61.31 43.02 106.54	5.87 5.45 5.11	63.0 68.6 56.3	38 48 53 49 118 47 114 72 54 38	.0 19.0 .1 24.2 .0 37.3	723 · 919 · 722 ·	4.36 3.80 4.94	3.7 4.1 5.8	.3 .4 .3	6.4 2.8 1.2	1.4	3 18.8 12.8 3 19.0 7 12.5 5 10.6	.13 .22 .09	.31	.10 112 .10 153 .08 127 .07 145 .07 131	.76 .88 .97	.032	7.8 6.0 6.8	89.2 97.8 79.8 102.7 91.3	1.27 1.00 1.53	280.4 224.3 181.5	.364 .330 .313	2 3.25 2 2.67 2 3.89	.011 .009 .006	.05 <.2 .04 <.2 .03 <.2 .03 <.2 .02 <.2	.04 .03 .03	68 79 51	). 6. ). 5. ).> 6.	9.7 34 7.8 32 8.9
GSMD-18007 GSMD-18067 GSMD-18008 STANDARD DS2	.52	35.81 62.98	4.46 6.14	53.0 70.8	46 41 48 34 44 48 249 34	9 20.8	744 680	3.51 4.28	2.8 5.0	.2	2.5	1.0	12,9 11,7 14,2 26,3	.21	.42 .31 .55 9.85	.07 123	.86 .64	.036	5.5 11.5	62.5 63.9	.98 1.28	186.8 199.3	.381 .268	2 2.77	.013	.03 <.2 .02 <.2 .04 <.2 .14 7.6	.02	70 26	.6 .0 ). 4.	13 7.2 14 7.3

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: TILL S230 400

AUG 16 2000 DATE REPORT MAILED:



Page 2 (a)

TT CHE ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm			Ag ppb		Co		Fe %	As ppm	U ppm	Au Th ppb ppm		Cd Sb ppm ppm	Bi V ppm ppm	Ca %		La ppm	Cr Mg ppm %	Ba ppm	Ti % pi	B Al pm %	Na %	K ₩ % ppm				•
GSMD-18014 GSMD-18069 GSMD-18011 GSMD-18080 GSMD-18018	.42 .42 .55	79.13 38.66 62.14 126.97 87.41	5.81 10.86 3.07	52.2 70.9 98.3	44 72 61	40.6 55.6 67.8	16.1 31.8 59.2	506 794 1391	3.66 3.89 6.09	3.1 7.6 9.5	. 3	33.9 1.9 4.5 1.9 38.8 3.1 2.8 .7 2.0 1.1	10.3 9.2 44.9	.12 2.76 .13 .26 .08 .59 .17 .97 .15 .54	.09 128 .17 110 .04 189	.58 .62 1.38	.029 .068 .050	8.5 9.8 4.3	80.4 1.31 78.8 1.03 66.4 1.32 58.3 1.65 70.3 1.41	204.4 308.2 183.8	.322 .270 .433	2 2.40 2 2.89 2 2.67 2 4.44 2 3.25	.010 .008 .012	.03 <.2 .04 <.2 .03 <.2	.03 .03 .02	36 .! 32	5 .04 4 .03 3 .05	7.8 7.1
GSMD-18071 GSMD-18077 GSMD-18020 GEBD-18098 GEBD-18039	1.00 .21 .44	37.87 33.81 46.20 71.25 51.50	7.23 7.60 4.88	152.7 53.3 67.4	151 11 61	28.4 43.7 56.0	23.6 17.5 24.9	1218 650 874	5.36 3.31 4.00	3.7 4.2 5.6 2.7 3.7	.3 .3 .3	1.6 2.0 1.0 1.2 7.1 4.5 3.2 1.4 4.2 1.3	11.7 17.6 21.0	.13 .30 .44 .42 .14 .37 .16 .47 .16 .39	.14 175 .10 97 .07 145	.56 .79 1.26	.114 .045 .014	6.4 11.8 6.4	81.9 .95 76.5 .60 70.9 .98 81.5 1.37 70.5 1.30	224.3 122.1 162.0	.330 .242 .441	1 2.81 2 2.39 2 2.79	.008 .009 .020	.03 <.2 .03 <.2 .09 <.2 .03 <.2 .04 <.2	.04 .05 .02	88 . 28 . 32 .	5 .05 3 <.02 5 <.02	10.6 6.4 8.8
GEBD-18036 GEBD-18026 GEBD-18082 GEBD-18089 GEBD-18037	.63 .29 .40	47.21 97.49 40.24 64.96 52.94	10.69 4.44 4.71	76.9 45.1 53.9	94 32 87	83.1 42.7 47.3	25.2 19.4 22.1	1250 546 570	3.62 3.08 3.35	3.2 13.8 5.2 5.2 5.6	.7	2.1 1.4 40.7 3.2 23.2 2.2 7.3 1.3 4.3 1.6	17.4 13.5 26.4	.20 .34 .13 1.22 .08 .45 .12 .56 .14 .47	.17 97 .08 107 .08 110	.73 .87 1.04	.028 .039 .055	13.4 7.0 8.8	69.8 1.15 79.2 1.34 60.6 .94 74.9 .87 74.0 1.30	953.0 176.3 90.2	.217 .315 .236	3 2.36 2 2.29	.009 .011 .010	.03 <.2 .07 <.2 .04 <.2 .03 <.2 .03 <.2	.05 .02 .02	71 . 20 . 78 .	6 .09 4 .04 7 .02	6.8 6.3 5.9
GEBD-18091 GEBD-18081 GEBD-18027 GEBD-18086 GEBD-18083	.28 .85 .42	104.03 41.67 141.00 34.60 36.38	4.71 12.68 3.36	47.8 110.8 55.3	40 124 40	42.0 118.0 48.5	19.2 34.6 23.0	570 1779 430	3.12 4.55 4.21	3.5 32.1	.3 .2 .2 .2	2.8 2.2 16.5 3.1	13.4 27.2 15.5	.14 .65 .10 .46 .18 2.02 .15 .36 .21 .36	.09 94 .06 108 .25 103 .08 148 .08 137	.87 .94 .70	.042 .048 .048	6.8 13.9 3.7	63.1 .82 63.0 .96 79.1 1.91 83.4 .99 76.7 .94	176.0 1464.7 138.0	.318 .181 .405	2 2.29 3 2.44 1 3.28	.012 .011 .011	.03 <.2 .04 <.2 .07 <.2 .02 <.2 .02 <.2	.03 .05 .02	24 . 115 . 49 .	4 .02 5 .06 4 .07	6.5 7.1 8.6
GEBD-18033 S-1 GEBD-18096 GEBD-18092 RE GEBD-18092 GEBD-18035	.28 .34 .36	29.08 33.26 76.71 79.69 34.37	3.41 3.30 3.36	50.4 54.3 58.5	26 49 50	37.6 67.8 71.0	19.2 35.3 37.4	767 770 785	3.26 4.26 4.33	1.9 2.4 6.5 6.8 2.5	.5 .1 .2 .2	.9 2.8 3.2 1.0 5.5 1.0 2.3 1.1 3.3 1.7	13.7 22.8 23.9	.10 .09 .10 .29 .13 .91 .14 .90 .16 .29	.06 134 .05 125 .05 128	1.17 1.13 1.20	.012 .035 .036	4.3 4.6 4.9	40.7 .52 63.3 1.16 71.2 1.32 72.9 1.34 58.8 1.02	123.4 72.2 73.8	.443 .380 .394	2 3.19	.017 .016 .016	.02 <.2 .02 <.2 .02 <.2	<.02 <.02 <.02	19 . 45 . 41 .	3 .05 5 .03 6 <.02	7.7 8.2 8.8
GEBD-18087 GEBD-18023 GEBD-18032 GEBO-18085 GEBD-18088	.43 .79 1.02	110.00 57.62 50.43 107.83 37.41	7.57 5.47 7.95	52.6 58.4 75.1	30 60 194	71.6 37.0 50.3	24.3 15.3 19.8	1167 530 666	3.52 3.91 4.24		.2 .4 .4	8.2 2.0 2.6 1.3 1.6 1.5	15.2 11.2 23.3	.17 1.39 .09 .85 .14 .32 .28 .47 .14 .37	.07 193 .10 114 .07 135 .17 176 .06 135	.63 .57 .68	.013 .041 .047	9.7 6.6 11.0	141.6 1.92 83.1 1.58 80.4 .99 94.6 .94 82.1 1.17	405.1 160.3 138.1	.283 .350 .221	2 2.37	800. 800. 800.	.03 <.2 .03 <.2 .02 <.2 .04 <.2 .03 <.2	.03 .03 .05	29 . 122 . 52 .	4 .04 7 .04 5 .04	6.8 8.1 11.2
GEBD-18038 GEBD-18090 GEBD-18031 STANDARD DS2	.77 58	82.81 44.31 105.71 127.22	4.16	65.7 77.6	79 49	35.4	18.5	522 1299	4.62	7.4 16.0	.3	4.9 1.0 .7 1.2 7.3 2.4 193.7 3.5	21.6	.27 .31 .20 .53 .13 1.10 10.24 9.83	.08 132 .09 154 .13 117 11.24 72	.71 .89	.043	5.6 9.9	68.6 .95 72.7 .75 95.9 1.75 151.1 .58	44.6 592.5	.353 .237	1 2.96 2 2.56	.008	.02 <.2 .02 <.2 .07 <.2 .14 7.6	.02	64 . 68 .	5 .02 3 .06	7.8

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 3 (a)



SAMPLE#	ю	Çı	ı P	) Zn	Ag	N1	Co	th Fe	ÁS	Ų	Au	Th Sr	Cđ	55	8í	V	Ca	P La	a C	r Hg	8a	7 i	8 A	Na	ĸ	¥	ון	Hg S	e Ji	e Ga	)
	ppm	ppa	n pp	я рря	ppb	ppm	ppa	opm 3	рра	ppa	ppb	руш руш	ppa	ppm	ppa	ppa	2	\$ pps	a pp	a \$	ppa	1	ppm 3	*	*	ppa p	opa p	po po	a ppo	a ppa	
																						-									
GE80-18097	.44	85.27	7 9.2	0 77.7	41	65.5	8.85	1409 4.80	15.9	.3	8.6	2.0 20.6	. 15	.80	. 19	156 1	.20 .0	34 7.2	2 98.	2 1.58	433.3	.406	3 3.14	.021	.11	.2	.04	37 .	4 .0	6 9.9	i
GE80-18093	.33	78.87	7 4.5	5 53.0	100	71.1	28.6	730 3.43	5.5	.3	2.5	1.5 18.7	. 13	.55	-07	104	.98 .0	50 7.3	3 72.	4 1.00	129.5	.287	2 3.0	.013	.04	<.2	.02	61 .	5 .03	2 6.6	i
GEBD-18095	.46	40.86	6 4.3	8 47.0	95	44.7	30.2	533 3.5	5.5	.3	1.5	1.6 14.5	.10	.49	.07	102	.79 .0	37 6.6	6 65.	28. 0	66.9	.292	2 2.9	.010	.02	<.2	.02	58 .	6 .0	2 6.7	
GEBD-18022	. 69	46.63	3 5.4	4 75.1	655	68.4	26.1	689 4.42	9.1	.3	3.9	1.4 19.1	.73	.61	.09	126	.71 .0	68 7.0	0 98.	6 1.50	322.5	.263	3 3.4	.010	.03	<.2	.04 1	06 .	7 .0	2 8.5	I
GEBO-18024	.64	93.3	6 11.9	6 76.3	93	99.1	28.6	1191 4.50	20.1	.3	22.1	2.5 30.0	. 14	2.05	-12	127 1	.11 .0	33 13.8	8 103.	0 1.69	529.3	. 269	3 2.8	.011	.06	<.2	.05 1	00 .	5 .0	5 8.6	
																															j
GE8D-18084												1.1 25.8																			
GEBD-18030												1.6 56.1																			
GEBD-18028												2.6 25.1											4 2.7								i
GEBO-18040												1.7 13.2																			+
GEBO-18029	.42	78.79	9 7.4	4 65.5	42	89.9	25.0	1008 4.3	8.4	.3	7.5	1.8 23.0	.14	.80	.09	133	.85 .0	20 8.7	7 110.	4 1.72	564.0	. 289	4 3.1	.013	.06	<.2	.04	62 .	4 .0	5 8.7	1
										_																	••				1
GE80-18094												1.0 18.6																			,
GE8D-18025												2.4 32.9																			!
GEBO-18021												1.4 20.7																			ſ
GEBO-18034												1.1 12.6																			
GEB0-18100	.54	44.9	3 3.1	8 68.0	102	45.5	21.2	607 4.8	2.8	.2	2.8	1.0 16.2	.18	.44	.07	162 1	. 18 .0	46 4.5	9 81.	J 1.25	93.5	.403	3 3.2	.022	.02	<.2	.02	<i>,</i> 2 .	o .u	4 9.9	1
GEBD-18099 TILL-4	34.45	236 1	0 40 E	s 61 0	166	15 4	6.2	286 3 2	109 6	2 3	4 7	11 4 9 9	13	73	16.35	42	13 (	74 27	4 26	0 50	77.6	121	2 1.8	.023	.32 1	28.0	.31	10 .	7 .2	1 6.1	<b>!</b>
PPO-18041												1.8 18.5																		5 5.2	
PPO-18045												2.3 10.5														.3					
PPD-18043												1.8 17.6																			i
RE PPO-18042												1.9 19.5																			
NE 110-2004E	.55	40.20	0.2	7 70.0		05.0		,54 2.0.			•.,				•••	,,			• •••		,		-								i
PPO-18042	.35	81.3	5 6.4	0 50.6	25	40.2	15.6	718 2.87	7.8	.2	4.7	1.9 20.3	. 10	.51	-10	95	.97 .0	38 6.2	2 55.	9 .97	104.7	.272	2 1.7	.010	.03	<.2	.02	41 .	3 .0	3 5.9	İ
PPD-18044												3.8 22.9																			1
PPO-18046												1.1 16.7												.009	.02	<.2 <	.02	18 .	3 .0	3 8.5	
RCPD-18055												1.2 18.0												.022	.03	<.2	.02	39 .	6 .0	3 9.1	1
RCPD-18057												1.5 12.2												.014	.03	<.2	.02	39 .	4 .0	2 8.2	
RCPD-18054	.35	132.3	0 5 0	9 81.9	28	78.7	42.4	1146 4.56	14.9	.2	3.1	1.4 19.3	.16	.97	-06	152 1	.21 .6	50 5.1	8 94.	9 1.65	134.4	.398	2 2.8	.025	.03	<.2	-02	19 .	5 .0	3 9.1	
RCPD-18059	.52	46.50	8.2	3 63.8	28	75.2	18.1	688 3.39	4.8	.4	2.5	4.6 20.1	.13	.44	.13	87	.68 .0	51 15.9	9 127.	5 .90	299.9	.217	2 2.2	210.	.18	<.2	.05	37 .	3 .0	3 6.2	1
RCPD-18051	.38	179.5	5 4.8	5 85.0	115	78.1	31.3	985 4.67	7.5	.3	.3	1.5 33.7	.24	.72	.08	161 1	.23 .0	33 8.9	9 91.	3 1.28	101.0	.347	2 2.9	.017	.04	<.2	.03	41 .	7 .0	4 9.2	<u> </u>
RCPD-18053	.42	130.96	6 4.4	0 120.6	21	107.0	55.6	1533 6.82	3.7	.1	1.7	1.2 16.8	.20	.87	.08	218 1	.54 .0	64 4.8	8 138.	5 2.12	338.0	.483	2 4.9	.027	.05	<.2	.03	22 .	6 .0	2 15.1	1
RCPD-18048	.22	37.89	9 4.3	2 48.7	17	44.7	16.8	626 3.20	2.1	.2	2.2	1.9 16.4	.08	.36	.07	114	.97 .0	29 7.5	5 69.	7 1.07	208.4	.335	2 2.3	.016	.03	<.2	.03	16 .	3 .0	2 7.0	
																															1
RCPD-18056	.30	46.7	2 3.1	4 59.3	15	56.6	26.4	825 4.09	1.2	. 1	2.7	1.1 22.7	.12	.32	.05	154 1	.36 .0	14 4.8	8 88.	1 1.41	311.1	.499	2 2.9	.024	.03	<.2 <	.02	15 .	4 .0	2 9.3	1
RCPO-18049	.26	66.2	5 3.0	1 66.9	46	60.5	29.5	812 4.5	2.3	. 1	1.0	1.1 19.7	. 21	. 49	.04	153 1	.25 .0	45 5.0	0 82.	3 1.42	122.0	.437	3 3.2								1
RCPD-18047	.35	91.5	5 5.6	7 77.3	45	72.1	27.0	1006 4.3	3.9	. 1	5.5	1.6 41.1	. 17	.56	-09	137 1	.25 .0	55 6.9	9 106.	9 1.39	403.0	.352	2 2.6						-		1
STANDARD OS2	13.77	126.00	32.2	8 157.6	264	<b>35</b> .2	11.4	792 3.08	56.5	18.7	211.3	3.4 26.8	10.57	10.06	10.56	71	.49 .0	88 15.3	3 152.	7 .57	141.3	.086	1 1.5	.028	.14	7.7 1	.80 2	45 2.	3 1.8	0 5.8	

Sample type: TILE S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 4 (a)



ACHE ANALTTICAL																						_								_~~	2 7102 171	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm j	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	υ ppm	Au ppt		Sr ppm	Cd ppm	Sb ppm	Bi V ppm ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti B % ppm	Al %	Na %	K W		Нg ppb p		Te Ga ppm ppn	
RCPD-18052 RCPD-18058 RCPD-18050 RCPD-18060 RE RCPD-18060	.34 .43 .68	52.70 62.36 88.73 57.21 57.66	3.84 5.50 7.17	56.4 52.5 56.1	27 7 89 7 183 4	1.4 3 6.5 3 1.7	36.5 30.0 16.9	918( 868( 508(	3.95 3.79 3.52	5.5 20.4 9.2	.2 .3 .5	33.4 12.4 3.6	1.1 1.9 1.7	26.2 16.9	.11 .18 .14	.65 .90 .87 .59	.08 117 .06 127 .08 104 .11 115	1.17 .88 .73	.020 .049 .048	3.5 8.6 10.6	83.5 1 85.8 1 70.5	l.40 l.10 .71	74.2 152.0 112.1	.397 2 .211 1 .214 1	2.53 2.35 2.07	.011 .010 .008	.02 <.2 .03 <.2 .02 <.2	.02 .03 .03	11 58 63	.4 .6 .7	.02 8.2 .02 6.0 .02 6.7	2 0 7
STANDARD DS2	14.15	125.46	31.93	158.2	267 3	5.5	11.9	832 (	3.10	57.0	18.8	194.0	3.4	26.5	10.55	9.87	10.80 76	.52	.091	14.9	155.9	.60	146.1	.085 2	1.66	.029	.15 7.6	1.78	232 2	2.3 1	.82 5.8	8

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

**44** 

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003056 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

餄

	<u></u>	<u>~</u>			, 5, 12, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7		2 2 2 2	<u> </u>					~~~	<u> </u>					
SAMPLE#	Cs	Ge	Нf	ИЬ	Яb	Sc	Sn	S			Y		In	Re	Вe		Sample		
	ppm	ppm	ppm	ppm	ppm	ppm	mqq	%	ppm	ppm	ppm	bbw	ppm	ppb	bbw	ppm	gm		 
GSMD-18064	.97	<.1	.31	1.29	4.3	6.2	.9	.02	<.05	12.5	11.41	13.9	.04	<1	.4	15.4	30		
GSM0-18076	1.50			-11							18.47		.04	<1	.3	15.1	30		
GSMD-18062	.72	.1	.17	1.16	3.8	6.0	.8	.02	<.05	7.3	12.70	17.9	.04	<1	.3	15.4	30		
GSMD-18003	.53	.1	.09		4.1		.3	<.01	<.05	4.7	6.59	41.0	.02	1	.3	23.9	30		
GSMD-18017	1.89	.1	.31	.23	3.2	13.1					15.63		.04	<1	.4	26.0	30		
GSMD-18019	.93	.1	.38	12	5.0	0.6	6	<b>-</b> ∩1	< 05	13 0	15.27	23.5	.04	<1	. 3	19.5	30		
GSMD-18012	.96		.08		9.9						6.94		.05	<1		27.0	30		
GSMD-18078	2.76			.42							38.14		.07	2		24.7	30		
GSMD-18063	.61			1.29							8.68		.06	<1		14.9	30		
GSMD-18009	.56			.63			.5				11.49		.05	<1		15.0	30		
g3nb (000)		• •		.05			•••						•				*		
GSMD-18015	1.40	.1	.13	-95	4.4	6.7	.6	.01	<.05	7.1	12.49	18.8	.08	<1	-	18.8	30		
GSMD-18005	.66	.1	.21	-09	2.8	8.2					12.28			<1		19.9	30		
GSMD-18002	.66	.2		-11							9.33			2		22.2	30		
GSMD-18070	.76	.1		1.20							8.93			1		17.8	30		
GSMD-18001	.53	.1	.21	.20	3.2	3.9	.3	<.01	<.05	7.8	7.66	37.4	.09	1	-4	20.0	30		
			40	4 15		, ,		00	- 05	F 0	0.47	1/ 5	10	4	7	19.1	30		
GSMD-18075	.65			1.42							9.17		.10	<1		15.2	30	•	
GSMD-18061	.84			1.23		6.4					13.36 11.49			<b>₹1</b>		21.3	30		
GSMD-18004	.67			.12		6.8			- 05	77	11.21	36.2	.09	<1		21.3	30		
RE GSMD-18004	.64	.1	.13	.12	4.1		.5	- 01	- 05	43	7.74	27 2	07	<b>&lt;</b> 1		26.0	30		
GSMD-18016	.94	. 1	.13	.30	4.1	5.1			٠.٠٠	0.5	7.14	41.2	.01	~,					
GSMD-18073	1.03	-1	.35	-97	4.4	5.9	.7	.02	<.05	12.8	9.53	10.9	.09	1	.4	17.0	30		
GSMD-18066 S-1	1.32		.71				1.3				14.87		.09	2	.8	10.8	30		
GSMD-18079	.78	.1	.20		3.8	6.0	.9				10.61		.07	1	.5	17.6	30		
GSMD-18072	.75	.1	.23		4.0	5.0	.6	.02	<.05	9.8	7.89	12.1	.07	<1		19.5	30		
GSMD-18010	1.13			1.32							7.08			<1	.4	22.3	30		
															_		70		
GSMD~18065	88.	.1		.21		7.6	.3	.01	<.05	4.8	11.91	33.8		<1		21.5	30		
GSMD-18006	.88			1.16							12.59		.05	<1		17.0	30		
GSMD-18074	.85			1.15			.7				10.04			<1		15.8	30		
GSMD-18013	2.56	.1	.16	-89	3.9	7.3	.4	.02	<.05	6.7	16.04	32.9	.03	2		22.3	30 30		
GSMD-18068	.58	.1	.23	1.13	4.0	5.2	.7	.02	<.05	9.7	10.71	14./	.03	<1	.4	14.9	20		
GSMD-18007	.93	.1	.11	.85	5.1	3 3	. 4	.02	<.05	3.4	7.51	26.3	.02	<1	.4	19.2	30		
GSMD-18067	.53	.1		1.55		4.6	.7				10.04			<1		13.3	30		
GSMD - 18008	2.24		.12		5.6	4.2	.4	.01	<.05	4.7	8.74	25.4	.02	<1		21.0	30		
STANDARD DS2	3.35	.1						.03	<.05	2.7	7.68	28.4	5.58	2		13.8	30		 
	1								• • • • • • • • • • • • • • • • • • • •		-								

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED:

Sept 2/00

SIGNED BY

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS



Page 2 (b)



SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb mqq	Sc ppm	Sn ppm		Ta ppm	Zr ppm	Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm		
GSMD-18014 GSMD-18069 GSMD-18011 GSMD-18080 GSMD-18018	2.93 .76 .65 1.20 1.66	.1 .1	.16 .17 .17 .30	.16 .85 .48 .67	3.8 5.4 4.1 1.4 2.0	19.2 5.0 4.6 9.1	.6 .5 .9	.01 .01 .01	<.05 <.05 <.05 <.05	7.4 7.4 12.4	23.99 8.87 9.44 18.78 11.08	21.5 17.6 22.2 18.5	.05	<1 1 <1 <1 <1	.3 :	26.7 17.5 20.1 13.4 18.6	30 30 30 30 30 30	-	
GSMD - 18071 GSMD - 18077 GSMD - 18020 GEBD - 18098 GEBD - 18039	.84 1.37 .83 .73	.1 .1 .1 .1		1.03 .14 .70	5.5 7.1 5.7 2.9 3.2	5.1 9.5 6.4	.5 .8	.03 .01 .02	<.05 <.05 <.05	4.3 12.5 13.1	10.35 9.98 12.01 12.66 11.84	13.4 23.9 15.1	.04 .07 .04 .06	<1 <1 2 <1 <1	.4 .3 .4 .4 .4	15.7 19.8 17.6	30 30 30 30 30		
GEBD - 18036 GEBD - 18026 GEBD - 18082 GEBD - 18089 GEBD - 18037	.70 1.10 .51 2.41 1.42		.22 .17 .23 .08	.26 .48 .61	3.3 4.9 3.7 2.8 2.7	9.0 5.0 9.8	.6 .6 .4	.01 .01 .04	<.05 <.05 <.05	9.0 10.6 4.4	10.50 13.61 8.77 25.30 14.73	27.8 17.3 23.4	.06 .08 .08 .09	<1 <1 <1 <1	.5 .3 .4 .4 .3 .4 .4 .1	20.9 14.0 18.4	30 30 30 30 30		
GEBD - 18091 GEBD - 18081 GEBD - 18027 GEBD - 18086 GEBD - 18083	1.34 .52 1.30 1.03 .93	.1 .2 .1	.24 .20 .34	.49 .06 .85	3.1 3.6 4.4 3.3 3.9	5.0 7.8 5.1	.6 .4 .9	.01 .02 .02	<.05 <.05 <.05	10.5 13.0 13.9	15.20 8.85 13.00 7.99 8.81	17.7 29.0 9.2	.10 .10 .21 .12	<1 <1 <1 <1	.5 / .2 / .2 / .4 /	3.9 0.5 6.5	30 30 15 30 30		
GEBD-18033 S-1 GEBD-18096 GEBD-18092 RE GEBD-18092 GEBD-18035	1.27 .36 .76 .79 .42	.1 .1 .1	.66 .30 .32 .34	.57 .76 .80	4.6 2.2 1.6 1.7 2.7	4.6 6.6 6.7	.8 < .9 .7	.01 .01 .02	<.05 <.05 <.05	11.8 13.0 13.7	14.32 9.48 14.43 15.16 8.93	11.4 22.5 23.0	.12 .09 .09 .09	<1 <1 1 <1	.7 1 .2 1 .6 1 .5 1	0.3 2.5 3.6 4.3	30 30 30 30 30		
GEBD-18023 GEBD-18032 GEBD-18085	1.24 .75 1.13 1.75 1.32	.1 .1 .1	.18 .17 1 .06 1	.44 1.44 1.50	4.4	6.1 6.5 9.4	1.1 .5 < .7	.03 · .01 · .02 ·	<.05 ; <.05 ; <.05 ;	21.1 8.0 8.2 5.0	12.20 8.44 10.57 23.45 7.17	9.4 24.5 14.7 17.7	.10 .06 .06 .07	<1 <1 <1 2 2	.7 1 .4 1 .5 1 .8 2	9.0 8.4 5.2 3.3	30 30 30 30 30		
GEBD-18090 GEBD-18031	1.04 1.44 1.09 3.27	.1 .1	.27 1 .19 1 .26	.51 .36 .13	2.7 3.3 3.8	7.3 5.4 10.5	.8 .8 .5	.03 < .03 <	. 05 1 : 05 1 : 05 1	11.2 10.1 10.8	20.04 10.98 14.28 7.55,2	15.6 14.3 19.4	.04 .04 .03	3 <1 <1 <1	.6 1 .5 1 .3 1	1.8 6.8 8.4	30 30 30 30		

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 3 (b)



SAMPLE#	Cs ppm	Ge	Hf ppm	Nb ppm	Rb ppm	Sc	\$n ppm	s %		Zr ppm		Ce ppm	In ppm	Re ppb	Be ppm		ample gm	 	 
GEBD-18097 GEBD-18093 GEBD-18095 GEBD-18022 GEBD-18024	.82 1.06 1.24 1.48 1.16	.1	.21 .26 .16		4.9	7.0 5.8 6.3	.7 .7	.02 .02 .02	<.05 <.05 <.05	8.5 11.0 8.5	10.95 16.24 14.60 9.61 17.52	29.7 20.8 16.6	.04 .03 .03 .03	<1 <1 <1 <1	.4 .5 .4	15.0 14.7 13.0 19.7 21.6	15.0 30.0 30.0 30.0 30.0		
GEBD-18084 GEBD-18030 GEBD-18028 GEBD-18040 GEBD-18029	2.52 1.58 1.44 .70 1.24	.2 .2 .1	.24	.13	5.0 5.3	8.6 10.5 4.8	.7 .6 1.3	.01 .02 .02	<.05 <.05 <.05	10.9 10.5 5.0	21.97 13.29 16.15 10.55 9.74	17.2 25.2 22.8	.07 .07 .08	<1 <1 <1 <1	.4 .5 .3	19.3 24.8 21.1 17.3 22.0	30.0 30.0 30.0 30.0 30.0		
GEBD-18094 GEBD-18025 GEBD-18021 GEBD-18034 GEBD-18100	1.34 1.67 1.51 .84 .94	.2 .1 .1	.27 .11 .13	1.19 .15 1.47 1.51 1.10	4.7 5.3 3.1	10.3 6.5 4.9	.5 .7	.01 .02 .04	<.05 <.05 <.05	10.5 6.3 8.0	13.54 14.84 9.95 9.44 13.50	24.4 17.7 19.4	.13 .12 .12	<1 2 <1 1 <1	.4	15.6 21.1 20.3 15.7 17.1	30.0 30.0 30.0 30.0 30.0		
GEBD-18099 TILL-4 PPD-18041 PPD-18045 PPD-18043 RE PPD-18042	8.15 .66 1.00 .83 .64	.2 .1 .1	.29 .10 .26	.15 .76	1.4 4.8 2.1	5.7 5.4 6.0	.6	.01 .02 .01	<.05 <.05 <.05	11.4 7.0 10.5	7.49 10.43 9.41 10.17 10.84	12.8 20.8 18.1	.09 .09 .08	<1 1 1 1 <1	.4	22.7 12.3 18.0 13.1 12.9	7.5 30.0 30.0 30.0 30.0		
PPD-18042 PPD-18044 PPD-18046 RCPD-18055 RCPD-18057	.66 .92 .69 .74	.1 .2 .1	.34 .34 .36 .26	.21 .33 .91	1.7 5.7 1.0 3.1 3.5	9.6 5.3 7.4	.5 .8 .7	.01	<.05 <.05 <.05	15.4 12.9 10.8	11.19 13.31 12.42 16.24 10.07	25.3 16.5 19.4	.08 .07 .06 .07	<1 <1 <1 2 3	.4 .3 .4	13.5 19.5 9.2 16.3 14.2	30.0 30.0 30.0 30.0 30.0		
RCPD-18054 RCPD-18059 RCPD-18051 RCPD-18053 RCPD-18048	1.51 .59 1.33 1.31 .49	.1 .1	.24 .46	.32 .91 .29	2.0 6.0 3.5 3.6 2.6	8.2 11.9 11.1	.5 .6 1.0	01.> 02. 01.	<.05 <.05 <.05	8.1 11.0 18.1	15.49 12.07 24.38 15.98 9.51	34.5 21.0 17.9	.05 .03 .05 .04	<1 1 <1 1 3	.3 .6 .5	27.4 20.1 18.3 23.4 14.3	30.0 30.0 30.0 30.0 30.0		
RCPD-18056 RCPD-18049 RCPD-18047 STANDARD DS2	.54 .91 .85 3.37	.1	.28 .46	.64	2.8	7.0 10.3	.8	.01	<.05	12.5 14.1	11.40 13.06 15.28 7.59	14.9 15.7	.04	2 2 <1 2	.4 .4	14.5 14.9 14.3 14.3	30.0 30.0 30.0 30.0	 	 

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 4



	_																	 	 
SAMPLE#	Cs	Ge ppm	Hf mag	dN	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	Y	Се	In ppm	Re ppb	Be ppm		Sample gm		
	<del>  ```</del>	<del></del>	<del></del> -										<del>'''</del>			<u>'</u>		 	 
RCPD-18052	1.25	.1	.22	1.05	3.3	6.3	.6	.02	<.05	10.0	14.41	19.1	.05	<1	.4	15.6	30		ļ
RCPD-18058	.80	.1	.34	.51	2.0	5.1	.7	.02	<.05	12.5	10.53	12.8	.04	1	.3	15.3	30		
RCPD-18050											22.13			<1	.4	15.8	30		- 1
RCPD-18060	.77	.1	.11	.91	5.0	8.3	.6	.02	<.05	5.5	26.12	22.9	.03	2	.6	14.6	30		1
RE RCPD~18060	.77	<.1	.08	.88	5.0	8.4	.6	.02	<.05	5.3	25.55	23.2	.03	3	_4	13.9	30		ļ
STANDARD DS2	3.16	.1	.03	1.33	12.9	2.7	25.9	.01	<.05	2.8	7.59	28.7	5.31	1	.6	14.0	30		

Sample type: IILL \$230,40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA ___

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003056R 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell 役

SAMPLE#	SiO2		Fe203 %	Mg0 %		Na20 %	K20 %	Ti02 %	P205 %	Mn0 %	Cr203 %	Ва	Ni ppm	72 mgg	Zr ppm	y ppm			LOI %	TOT/C %	TOT/S %	SUM %	
GSMD-18064 GSMD-18076 GSMD-18062 GSMD-18003 GSMD-18017	53.26 59.44 64.48	13.28 11.20 13.66	8.96 11.34 8.29 6.89 9.37	5.06 3.39 2.83	5.23 3.39 1.86	1.88 1.76 1.62	.69 .71 1.91	1.51 1.49 1.18	.11 .12 .14	.20 .16 .10	.027 .021 .015	485 957 1400	125 52 60	129 123 125 115 119	111 139 174	31 27 25	<10 <10 <10 <10 <10	34 21 17	11.4 7.5 10.2 4.9 7.5	2.14	<.01 <.01 <.01	100.38 100.20 100.32 99.79 100.19	
GSMD-18019 GSMD-18012 GSMD-18078 GSMD-18063 GSMD-18009	61.61 53.42 55.44	12.46 15.25 11.52	7.58 7.76 9.75 7.68 8.50	2.79 2.34 3.36	2.15 1.72 3.76	1.43 1.46 1.75	1.15 1.35 .63	1.34 1.31 1.40	.17 .14 .14	.09 .28 .10	.015 .020 .021	1191 658 630	57 116 59	129 93 147 118 135	207 139 152	26 52 24	<10 <10 <10 <10 <10	18 45 22	12.8 14.4	.23 1.49 2.29 3.74 1.11	.01 .03 .03	100.13 99.95 99.98 100.32 100.10	
GSMD - 18015 GSMD - 18005 GSMD - 18002 GSMD - 18070 GSMD - 18001	64.18 61.88 58.03	13.09 14.99 11.69	6.87 7.61 7.48 8.12 7.97	3.09 2.96 2.59	2.70 1.89 2.64	1.87 1.67 1.75	1.57 2.40 .96	1.24 1.14 1.56	.17 .17 .17	.14 .12 .08	.016 .019 .020	1286 1427 667	75 68 51	117 142 131 140 124	168 154 194	34 29 26	<10 <10 11 <10 <10	25 21 18	4.1 5.0	2.90	.04 .02 <.01 .01 <.01	100.12 99.98 99.93 100.14 99.73	
GSMD-18075 GSMD-18061 GSMD-18004 RE GSMD-18004 GSMD-18016	57.72 62.36 62.24	11.26 14.01 14.05	8.60 8.37 7.77 7.76 6.17	2.89 3.10 3.11	2.88 2.50 2.50	1.66 1.67 1.66	.77 2.04 2.01	1.48 1.20 1.20	.20 .13 .16	.15 .14 .14	.019 .021 .018 .013	905 1346 1356	49 70 58	129 124 132 132 145	165 168 171	29 31 33	<10 <10 <10 <10 <10	21 23 24		3.03 .14 .13	<.01 .01 .01 <.01 <.01	100.10 100.15 99.94 99.95 99.81	
GSMD-18073 GSMD-18066 S-1 GSMD-18079 GSMD-18072 GSMD-18010	53.06 59.23 56.53	18.21 11.76 12.42	9.18 8.98 8.39 9.08 7.87	2.49 3.79 3.35	3.99 3.68 3.96	3.07 1.90 1.83	1.04 .64 .64	1.37 1.39 1.46	.16 .10 .27	.13 .14 .10	.022 .009 .022 .021	364 735 679	<20 76 60	128 344 124 140 94	185 165 158	29 25	<10 <10 <10 <10 10	23 23 23	7.3 8.8 10.2	2.33 .70 1.56 1.62 3.33	.04	99.91 99.93 99.98 99.99 99.93	
GSMD-18065 GSMD-18006 GSMD-18074 GSMD-18013 GSMD-18068	56.54 56.10 49.02	11.90 11.25 13.05	9.01 8.73 8.27 10.40 8.02	3.65 3.34 5.17	3.34 3.88 5.52	1.58 1.68 1.57	.66 .67 .65	1.40 1.39 1.40	.14 .15 .10	.12 .15 .14	.020 .021	941 825 660	70 64 93	119 110 132 92 130	145 149 134	28 26 36	<10 <10 <10 <10 <10	23 23 35	12.9 12.4	.27 2.49 3.15 2.44 1.96	<.01 .02 .01	99.90 99.83 99.94 99.57 99.97	
GSMD-18007 GSMD-18067 GSMD-18008 STANDARD SO-15/CSB	55.70 56.71	11.00 14.03	7.52 7.81 9.44 7.41	3.61 4.08	4.26 3.62	1.79 1.62	.51 1.61	1.41	.13	.14 .13	.021 .020	744 1135	62 75	119 112 116 402	134 151	26 30	<10 <10 <10 23	24 26	13.5 7.0	1.32 3.53 .90 2.39	.01 <.01	99.74 100.01 99.91 99.56	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: TILL 9230 400

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 7/00



Page 2



ACME ANALTITUAL																								
	SAMPLE#	Sina	A1203	E0203	Man	റംവ	Na20	¥20	TiO2 F	205	MpQ (	Cr203	Ba	Νi	Sr	ZΓ	Υ	Nb	Sc	LOI	TOT/C	TOT/S	SUM	ŀ
	SAMPLE#				1190	· · · · · · · · · · · · · · · · · · ·		ν		~~~	%	<u>«</u>		ppm		ppm	ppm	ppm	ppm	%	%	%	%	
•		%	%	*	76		%%						PPIII	- PPIII	- Phui	- PPII	- Phys.	Pivii	PP					
												~~~			*04	407	17	-30	70	7.5	.50	.01	99.44	i
				8.62				.81	1.39	.12	.29	.027			106	183		<10						
	GSMD-18069	60.06	12.30	7.34	2.98	2.76	1.71		1.39			.019			120	166		<10			1.90	.01	99.43	
	GSMD-18011	60.69	12 36	8.07	3.86	3.55	1.42	1.08	1.34	.21	.14	.024	1340	76	104	171	30	<10		6.5		.01	99.45	
	0000 10011	47 27	17 05	11.84	1 62	5 00	1 66	32	1 43	20	22	.016	488	78	127	102	35	<10	31	17.0	3.48	<.01	99.63	
	GSMD - 18080	43.21	13.77	0.03	/ 1/	7.75	2 07	30	1 /5	.21	.18	.028	261			158	26	<10	27	13.2	3.06	<.01	99.44	
	GSMD-16016	22.43	12.50	8.03	4.10	4.73	2.03	.36	:.~2	. 4 !	. 10	1020	٤0.	.,,,		.50					•••			
		1									4.0	027	/00	00	121	147	27	-10	22	11.4	2.05	.01	99.36	
	GSMD-18071	57.46	12.87	7.45	2.95	3.03	1.65	.71	1.36	.22	.10	.027		92		163		<10				.01	99.58	
	GSMD - 18077	50.70	11.67	9.80	1.91	2.14	1.44	.85	1.55		.17	.016			116			<10			5.06			
	GSMD-18020	66.06	11.63	6.40	2.57	2.52	1.69	1.08	1.14	. 12	.11	.020	419	56	112	236		<10		5.8		.01	99.25	
	GEBD-18098	58 /1	11 02	8.38	4 07	4.75	1.83	-67	1.63	.06	. 15	.027	941	75	120	148	31	<10	27	7.4	1.23	<.01	99.45	
	GEBU- 18070	54.04	11.06	7.84	4 07	1. 64	1 82	58	1 50	13	.16			78	119	143	30	<10	27	9.5	1.90	.03	99.29	
	GEBD-18039	20.30	11.94	7.04	4.07	4.04	1.02	. , ,	1.50	. 13		•020						• -						
				7 00		7 (2	4	17	1 /1	10	12	021	201	60	106	137	28	<10	24	13.2	3.23	.01	99.43	
	GEBD-18036	55.11	12.01	7.90	5.57	3.62	1.60	.63	1.41	. 10	. 12	.021						<10		6.5		<.01	99.39	
	GEBD-18026	65.23	10.95	6.83	3.33	2.44	1.32					.022		100		155							99.32	
	GEBD-18082	63.87	11.37	6.61	3.21	3.89	1.82		1.37			.021		59				<10		6.0		<.01		
	GEBD-18089	57.20	11.70	7.20	3.03	4.12	1.65	.91	1.34	.24	. 11	.023	622	51	135	192	47	<10			2.83	.02	99.45	
	GEBD-18037	60 85	11 46	7.70	3 90	4.63	1.89	.70	1.52	. 12	.17	.024	886	63	130	155	33	<10	26	6.3	1.12	<.01	99.41	
	GEBD - 19031	00.05	11.40	7.70	3.70	7.05	1.07	•••			•	•												
	40004	F. F.	47 /0	6.98	2 0/	7 07	1 /0	1 01	1 20	16	1/4	.020	708	83	109	185	36	<10	24	14.4	3.26	<.01	99.50	
		24.20	13.49	0.70	2.04	3.07	1.47	1.01	1.20	47	11	.019		-	116			<10		5.6		.01	99.42	
	GEBD - 18081	64.38	11.29	6.60	3.21	3.97	1.82	.78	1.39	. 13	-11						30	<10		5.8		<.01	99.23	
	GEBD-18027	64.22	10.68	7.43	4.18	2.88	1.11	1.13	1.02	.13	.23	.024		123		128						.02	99.49	
	GEBD - 18086	53.87	13.03	8.80	3.38	3.78	1.78	.55	1.60	.17	.10	.027		85				<10			2.50			
	GEBD-18083	50.60	11.94	8.05	2.98	3.41	1.56	.58	1.36	.19	.11	.020	581	61	109	137	23	<10	21	18.6	5.07	.03	99.51	
	debb (debb																							
	GEBD-18033 S-1	53 18	18 44	8.27	2 40	3.88	2.96	1.22	1.37	. 18	.13	.010	355	26	328	186	28	<10	23	7.2	.67	<.01	99.37	
		41 67	11 12	7.54	7 13	5 40	2 10	55	1 66	.07	.15	.025		55	129	150	28	<10	26	4.9	.71	<.01	99.30	
		01.53	11.12	0.07	4.13	5.40	1 00	- 7.5	1 5/	17	15				120			<10	29	10.2	1.98	.02	99.43	
	GEBD-18092	53.64	12.47	8.87	4.44	2.01	1.60	.40	1.34	- 13	. 12	020			121	160		<10			2.01	.01	99.50	
	RE GEBD-18092	53,60	12.48	8.92	4.40	5.58	1.81	.40	1.54	.14	. 15	.024	227							5.2		<,01	99.38	•
	GEBD-18035	63.93	11.11	6.73	3.41	4.31	1.99	.78	1.52	.10	-14	.019	839	44	138	171	21	<10	22	3.2	.00	1.01	77.30	
		1																		~ ^	7 50	07	00.70	
	GEBD-18087	40,49	16.87	10.30	4.01	4.30	.77	.33	1.28	.19	.14	.024	334	105	45	95		<10			3.50	.03	99.78	
	GEBD - 18023	64 86	10 81	6.94	4.06	2.87	1.69	.80	1.36	.06	.18	.025	1213	64	105	141	25	<10		5.4		<.01	99.24	
	GEBD-10023	51 25	11 82	7.64	2 02	2 74	1 34					.017	762	36	95	147	25	<10	21	19.2	5.19	.01	99.43	
	GEBD-18032	51.45	11.02	7.04	2.76	2.74	1 54	1 04	1 20	30	10	020		59			41	<10	22	16.0	4.00	.04	99.54	
	GEBD - 18085	25.01	13.60	7.89	2.44	2.20	1.30	1.00	4.40	.20					274		21				2.99		99.59	
	GEBD-18088	52,95	12.92	8.23	3.66	5.81	1.65	.56	1.40	. 13	•11	.028	003	οψ	414	143	21	-10	22	.4.0	6.77	01		
		1														470	77	45.0	25	21 /	2 04	01	99.62	
	GEBD-18038	46.30	12.30	8.51	3.30	3.92	1.47	.52	1.49			.023			113			<10			6.01	.01		
	GERD - 18090	48.88	11.79	8.78	2.38	2.69	1.33	.81				.018			112	173	28	<10			5.97	.02	99.60	
	GEBD-18031	61 31	11 23	8.05	4 52	3.43	1.52	-90	1.14	.12	.20	.034	1409	119	98	135	28	<10	26	6.7		<.01	99.36	
		140 49	12 55	7.16	7 12	5 74	2 36	1 86	1 79	2.65	1.36	1.057	2011	78	388	964	23	17	12	5.9	2.43	5.25	99.46	
	STANDARD SO-15/CSB	47.40	16.33	7.10	1-12	7.10	2.30	1.00									-							

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA__

Page 3

SAMPLE#	Sio2	AL203		Mg0	CaO %	Na20 %	K20	Ti02	P205 %	MnO (Cr203 %	Ba ppm	Ni ppm	ng maga	2r ppm	Y ppm	Nb ppm		LOI %	TOT/C	TOT/S %	SUM %	
		12.31												113			<10			.58		100.39 100.17	
		12.17							.20				131		172 182		<10 11			2.93		99.92	
GEBD - 18095	50.45	5 12.01 5 12.00	7.30	4.10	3,00	1.50	-/2	1.34	22	17	.017	871					<10					100.20	
GEBD-18022 GEBD-18024	50 7	11.98	8 34	4.10	3 61	1.64	.89	1.23	.13	-18	.024	1260	210	118	151		<10		7.9			100.03	
																					0.7	400.0/	
GEBD-18084	54.28	12.05	7.90	3.14	3.63	1.56	.94	1.47	.37	.14	.020	609	150	137	198		<10			3.46		100.04	
GEBD-18030	52.88	3 12.43	9.62	6.13	7.02	1.88	-89	1.43			.029			164			<10		7.2 6.4			100.02 99.84	
GEBD-18028	61.6	11.06	8./1	4.51	5.3/	1.50	1.92	1.15	-12	-25	.026	1024	159	126	135	30	<10 10					100.03	
GEBD-18040	59.63	3 11.90 7 12.32	7.79	2.03	3.01	1.75	1.01	1.47	. 40	-10	024	1330				23	10		8.2			100.25	
GEBD - 18029	39.9	12.32	8.10	4.18	3,14	1.02	.90	1.33	. 10	. 10	.020	1530	133	111	137	23	10	20	0.2	.,0		100.25	
		2 10.84												105			<10			5.53		100,16	
		7 10.92									.026		208		112		<10		6.7			99.97	
		12.01									.028		131		139		<10			3.15 5.98		100.12 99.77	
		7 11.20												105			<10 <10				-	100.00	
GEBD-18100	37.44	12.21	9.50	3.73	4.20	1./6	.5/	i .05	. 19	. 12	.020	302	110	107	140	20	10	20	14.4	3.43	1,01	100.00	
GEBD-18099 TILL-4	61.6	3 14. 9 7	5.51	1.83	1,26	2.19	2.64	.97	.20	.10	.007	531	122	151	333	38	14			1.65	.04	99.80	
PPD-18041	67.62	9.81	6.20	3.43	4.91	1.99	.52	1.37	-11	. 13	.026	317	121	123			<10		3.7		<.01	99.93	
PPD-18045	60.09	11.91	6.94	2.38	2.21	1.58	-99	1.20	.20	-11	.016	419	102	103	222	27						100.04	
PPD-18043	64.9	2 11.00	6.80	3.41	4.29	2.07	-58	1.38	-13	-15	.022	343	116	128	260		<10		5.3 5.3		<.01	100.16 99.79	
RE PPD-18043	64.69	10.95	6.74	5.41	4,28	2.06	.58	1.3/	.15	. 15	.024	340	112	120	200	28	11	20	3.3	.51	1.01	77.17	
PPD-18042	67.6	1 9.91	6.35	3.51	4,95	1.99	.54	1.38	.12	.14	.025	326	121		268				3.4			100.04	
PPD-18044	65.23	3 11.47	6.93	2.87	3.13	1.77	1.03	1.22	.14	.14	.020	450	133	120	204		<10		5.9		<.01	99.97	
PPD-18046	58.17	7 11.76	8.15	5.39	6.71	2.35	.31	1.55	·. 15	.16	.034	245	153	115	137		<10		5.2			100.02	
RCPD - 18055	55.95	12.28	9.15	4.22	4.81	1.83	-65	1.56	.13	.17	.025	754	143	117	132		<10					100.12	
RCPD-18057	60.77	7 11.91	8.06	3.60	4.17	1.92	.58	1.50	.14	.11	.025	531	143	111	154	26	<10	25	7.0	1.07	<.01	99.90	
RCPD - 18054	57.24	12.39	9.75	4.94	5,79	1.82	.73	1.74	.14	.20	.028	647	126	114	158	36	<10	34	5.0		<.01	99.90	
RCPD-18059	68.32	2 11.45	6.29	2,32	2,26	1.64	1.02	1.09	.11	.11	.022	858	121	119	192	28	<10		5.2		<.01	99.99	
RCPD - 18051	55.19	12.37	9.29	3.75	4.38	1.74	.72	1.44	. 14	-17	.023	481	143	138	154		<10			2.36			
RCPD-18053	48.22	2 14.89	12.59	5.22	5.18	1.58	-65	1.61	.18	.23	.029	759	167	80	104		<10	_	9.5			100.02	
RCPD-18048	67.29	10.64	6.62	3.23	3.81	1.91	.69	1.38	.06	.12	.019	678	94	124	184	25	<10	21	4.3	.33	<.01	100.20	
RCPD-18056	59.2	1 11.94	8.59	4.33	5,33	2.08	.55	1.71	.07	.15	.025	833	123	128	127	28	<10	29	5.9	.76	<.01	100.03	
RCPD-18049	55.01	12.49	9.54	4.47	5,22	1.89	.52	1.64	.17	-16	.021	471	119	114	136	29	<10		8.8			100.04	
RCPD-18047	60.39	11.69	8.84	4.15	5,02	1.89	.73	1.55	-18	.18	.025	1124	142	145	139		<10		5.3			100.13	
STANDARD SO-15/CSB	49.80	12.37	7.24	7.20	5,82	2.39	1.85	1.81	2.68	1.38	1.051	2085	78	393	967	22	25	13	5.9	2.45	5.32	99.92	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

ACRE ANALYTICAL																								ACRE ARACTITICAL
SA	MPLE#	Sio2	A1203 %	Fe203 %	MgO %	CaO %	Na20 %	K20 %	Ti02 %	P205 %	MnO %						Y ppm				TOT/C %	101/S %	SUM %	
RC RC RC	PD-18058 PD-18050 PD-18060	57.82 61.45 61.29	12.27 11.97 11.75	8.70 7.78 7.23	4.60 3.35 2.49	5.77 4.13 3.35	2.07 1.75 1.68	.68 .90 .96	1.61 1.38 1.36	.14 .18 .21	.17 .14 .10	.025 .022 .016	475 644 616	171 98 58	134 145 133	156 207 224	28 40 46	10 <10 <10	29 30 25	6.1 7.0 9.3	1.05 2.13	<.01 .02 .01		
ST	ANDARD SO-15/CSB	49.53	12.58	7.28	7.24	5.84	2.41	1.85	1.74	2.69	1.38	1.060	2013	80	395	950	23	23	12	5.9	2.45	5.32	99.92	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACMB ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

004 B. has FINGS ST. Van OUVE LC ton 1R6 PH. (601, _3-31_ FAX __1) 25

GEOCHEMICAL ANALYSIS CERTIFICATE Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003057 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

	<u> </u>										3 ~~	<u> </u>			- B			3412				.,		<u> </u>			تيند		<u></u>				
SAMPLE#	Мо	Cu	Pb	Zr	ı Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Co	Şb	Bi	٧	Ca	P	La	Çr	Mg	Ba	Τi	B Al	Na	K h	1	1 Hg	Se	Te	Ga
	ppm	ppm	ppm	ppn	n ppb	ppm	ppm	ppm	8	ppm	ppm	ppb	ppm	ppm	ррп	ppm	ppm	ppm	*	*	ppm	ppm	*	ppm	* 1	spm %		% ррп	ppr	m ppb	ppm	ppm	ppm
GEBX-14062	16	22 50	10 01	61 /	. 05	22.0	12 4	£20	2 62	27		182.9	4 1	27 /	22	.32	12	46	91	054	12 0	52.7	70	133.5	086	2 1 40	006	.07 <.2	0	5 54	7 .	< 02	4.1
		23.58																				85.2						.24 .4		0 318		.03	
GEBX-14070		428.05													-	3.22						**											
GE8X-14077		129.30											-	59.5	. 55									256.9				.09 <.2				.02	
GEBX-14064	.35	20.05	8.70	59.8	3 67	27.2	9.5	702	2.29	3.7	.4	1.9	3.3	31.6	. 23	.29	.11	41	1.01	.064	12.9	44.4						.06 <.2					
GEBX-14075	.91	111.86	9.37	63.6	5 405	67.9	17.6	1139	2.40	2.3	2.4	5.6	.7	42.0	.27	.53	.10	64	1.47	.093	13.7	95.8	.82	673.2	.086	4 1.84	.007	.23 <.2	.0	4 405	4.4	.02	4.4
0504 14051	40	00.03	11 07	60 1		26.2	12.5	505	2 70		-	0		20.0	20	- 24	2.5	40	o.c	063	15 6	57.9	75	120 2	004	2 1 40	007	.07 <.2	0	5 56	Ω	ns.	4 5
GEBX-14061		26.91									.5			30.0																			
GEBX-14073		45.12									.4			26.8								76.7		_				.06 <.2					
GEBX-14069	.96	58.70	4.97	55.2	2 258	39.9	16.2	2106	1.92	4.0	.9	1.7	.1	33.1	. 35							65.2						.26 < .2					
GEBX-14067	. 55	44.28	4.80	60.8	81	33.9	16.2	872	2.93	1.2	.2	2.3	. 5	36.3	24	. 25						57.3	-					.06 < .2					
GEBX-14076	.73	57.27	6.08	71.3	3 159	38.7	16.7	1309	2.98	2.3	.6	3.6	. 5	33.5	. 29	.30	.10	114	1.62	.086	10.0	64.1	.94	401.6	. 237	5 2.77	.011	.05 <.2	.0	5 161	1.1	.03	6.5
OFDY 14066 6 1	1 00	20.07	0.02	co /	20	10.6	10.0	475	4 02	2.2		1.7	2 7	4E 0	00	.09	1.4	166	46	044	11 2	40 Q	55	00 1	260	<1 4.09	122	06 2	1	3 34	Ā	04	10 5
GEBX-14066 S-1		30.97																								11 1.43						-04	
GEBX-14071		261.81											_	71.7		2.86						77.3		_									
RE GEBX-14065		28.24									.4	27.7	_			.41						43.3						.04 .2		3 39		.02	
GEBX-14068	.75	79.48	8.52	82.0	230	93.1	27.3	2807	3.81	13.7	-6	7.9	.6	42.2	.40	1.05						81.9						.08 <.2				.03	
GEBX-14074	.88	79.65	7.52	87.6	5 211	36.2	13.4	1018	2.52	2.2	.6	3.2	.3	31.8	.35	.40	.12	90	1.42	.108	11.9	57.5	.81	577.3	. 147	5 2.56	.010	.08 <.2	.0	4 188	1.5	.02	5.5
OFDY 14065	20	24.04	E 67.		,	20. 7	1.4.1	1212	2 60	<i>c</i> 7	,	75.5	2 2	20.0	. 16	38	. 07	68	70	062	10.0	40.4	76	128 4	151	2 1 46	010	.04 .2		3 43	3	.02	4.5
GEBX-14065		24.84																										.11 <.2					
GEBX-14072		143.26												44.9								94.4								5 33			
GEBX-14063		24.75												21.8								36.3		124.4				.06 <.2					
GEBX-14078		86.39												53.7	. 49							86.2		335.3				.30 .2				.02	
STANDARD DS2	14.26	131.33	33.28	163.3	3 257	35.9	12.2	846	3.20	57.4	20.0	205.0	3.6	27.9	10.49	9.85	11.25	76	- 54	.093	15.4	166.9	. 62	160.3	.093	2 1.75	.030	.16 7.8	1.8	8 246	2.4	1.86	5.9

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT \$140

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED: Sept 5/00

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

B. E 'INCE C. V

1R6

60∉ 3-

(b)

PAX.

11

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003057

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Cs ppm	Ge ppm	Kf ppm	ppm dy	Rb ppm	Sc ppm	Sn	s %	Ta ppm	Zr ppm	ppm Y	Ce ppm	In ppm	Яе ppb	Be ppm		Sample gm	
GEBX-14062	.54	.1	.04	-62	5.1	2.9	.2	-03	<.05	2.9	8.03	27.2	-02	<1	.4	23.8	30	
	2.06	<.1	.02		9.0		.5				40.29			5		21.1	15	
GEBX-14077	1.84	.1	.04		4.2		.4				67.29			<1		16.1	30	
GEBX-14064	.41	.1	.02		4.7				-		6.88			<1		20.3		
GEBX-14075	1.31	.1	.07	.79			.3				23.84			<1		8.8		
)																	
GEBX-14061	.55	.1	.04	.65	5.4	3.2	.3	.03	<.05	3.0	8.67	30.1	.05	<1	.3	27.4	30	
GEBX-14073	1.02	.1	.04	.69	5.5	6.2	.5	.05	<.05	2.3	12.13	18.1	.07	<1	.4	14.7	30	
GEBX-14069	1.20	.1	<.02	.66	5.5	5.6	.3	.14	<.05	1.4	35.48	19.9	.07	<1	-9	6.1	30	
GEBX-14067	.52	. 1	.22	1.05	2.4	9.3	.7	.10	<.05	12.3	30.48	13.3	.09	2	.5	7.5	30	
GEBX-14076	.94	.1	.11	1.29	4.0	8.5	.7	.10	<.05	5.6	26.88	15.4	.09	2	.6	14.0	30	
	ļ																	
GEBX-14066 S-1	1.27	.2									14.90			1	1.0			
GEBX-14071	2.00	. 1	.02		5.2		-4				29.06			7		13.6		
RE GEBX-14065	.64	.1	.10	.40	3.4	5.0	-4	.02	<-05	5.9	11.68	24.1	.06	<1		15.2		
GEBX-14068	.90	.1	.05	1.24	5.8	8.1	-5	.12	<.05	3.0	17.02	13.5	.07	3	.5	18.5		
GEBX-14074	.99	.1	.07	1.19	4.1	7.2	.6	.13	<.05	4.1	31.55	16.3	.05	<1	.6	11.7	30	
							_								_			
GEBX-14065	.61	. 1		.38							11.14			<1		15.0		
GEBX-14072	1.23	.1		1.08			-6				22.23			4		15.1	30	
GEBX-14063	.50	.1	.05	.45	4.9		.3				8.98			<1		24.1	30	
GEBX-14078	.85	.1		1.11			.5				45.95			<1		14.6		
STANDARD DS2	3.28	. 1	.03	1.43	13.0	2.9	25.0	.02	<.05	2.9	7.75	28.6	5.22	<1	.6	14.6	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED:

Sept 5/00

GNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data____FA__

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003057R 800 + 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell

SAMPLE#	LOI
GEBX-14062	15.2
GEBX-14070	56.6
GEBX-14077	56.3
GEBX-14064	15.4
GEBX-14075	49.6
GEBX-14061	14.4
GEBX-14073	19.5
GEBX-14069	57.9
GEBX-14067	39.8
GEBX-14076	31.2
GEBX-14066 S-1	7.2
GEBX-14071	68.0
RE GEBX-14065	8.5
GEBX-14068	36.4
GEBX-14074	45.6
GEBX-14065	8.0
GEBX-14072	35.5
GEBX-14063	6.8
GEBX-14078	54.9
STANDARD DOLOMITE	45.6

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Retuns.

852 E, HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

4

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003058 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell (a)

 SAMPLE#	Ко	Cu	Pb	Zn	Ag	МI	Co	Hn F	e As	U	Au	Th	\$r	Cd	Sb	B1	V	Ca	Р	La	Cr	Hg	Ва	Ϊí	В	Al	Na	K	¥	n	Hg	Se	Te	Ga	
	ppm	ppm	ров	ppa	ppb	ppa	ppa	ppa	k ppe	ppa	ppb	ppm	ppn	ppe	ppa	ppm	ppa	3	1	рра	ppa	*	ppn	*	ppa	8	3	*	ppa	ров	ppb	pç#	ppa	ppa	
 																																	_		
GEBR-10131	2.96	20.43	1.09	7.2	36	13.3	2.5	162 3,6	3 .6	<.1	2.3	.1	5.4	.02	.14	.03	13	.55 .6	011	.6	23.0	.38	22.6	.006	1	.40<	.001	.01	1.3	<.02	6	6.9	<.02	1.9	
GE8R-10123	.36	52.22	.42	59.9	21	54.8	24.8	674 4.3	3 .8	<.1	<.2	<.1	9.2	.09	. 18	<.02	88 1	.09 .	065	2.8	37.2 1	.83	20.5	. 262	2	2.64	.027	.03	.5	<.02	⋖5	.3 •	<.02	9.6	
GEBR-10137	1.55	43.22	.70	55.5	14	39.7	18.5	480 3.4	0 1.0	<.1	.4	.1	11.0	.14	. 18	<.02	123 1	.84 .	057	1.8	41.6 1	1.20	35.9	. 283	6	2.30	.046	.01	.6	<.02	10	.4 •	<.02	11.3	
GEBR-10126	.13	32.74	.55	47.5	25	87.3	36.7	1270 5,7	2 81.2	<.1	.9	<.1	110.1	.05	4.38	<.02	93 7	.08 .	044	2.1	88.9 3	3.04	230.2	.004	2	.63	.005	. 14	<.2	.03	90	۰ 2 ،	<.02	1.5	
GEBR-10138	7,20	28.89	71.03	71.9	236	15.0	15.1	189 7.6	1 32.3	9.	2.7	8.8	4.2	.05	2.47	.89	9	. ûő .	û27 î	7.6	12.6 i	1.15	97.7	.009	1	2.03	.006	.14	.3	.20	117	.5	.14	7.5	
			-																																
GEBR-10140	.26	53.56	.84	55.3	42	67.2	35.9	1434 4.8	7 36.3	<.1	1.1	.1	89.5	.14	.43	<.02	44 7	.58 .	056	2.0	33.1 2	2.10	54.8	-007	1	.67	.029	.12	<.2	.02	32	.3	.03	1.3	
GEBR-10135								141 .9																	1	.25	.001	.06	.6	.02	176	.9	.05	.8	
GE8R-10125								1211 5.3																	4	1.68	.003	.05	.2	<.02	28	.3	.02	3.6	
GEBR-10130	1.69							838 4.6						.06									76.7		3	2.29	.064	.02	.4	<.02	14	.4	<.02	9.1	
GEBR-10128								844 4.3																	2	2.71	.035	.03	.4	<.02	8	.2	.02	10.3	
4441	,	*****	0.02		•••	****	••		•																										
GEBR-10122	.65	47.08	.69	60.1	11	35.2	22.4	866 4.6	4 .9	<.1	.5	<.1	6.9	.07	.21	.02	132	.81 .	067	2.6	27.8 1	1.64	104.0	.350	20	2.38	.019	.04	.2	<.02	9	.3	<.02	9.5	
GEBR-10139	.26	58.96						1268 5.4															60.9		2	.99	.035	.12	<.2	.02	50	.4	.02	1.6	
GEBR-10136	1.41	45.07	4.92	32.3	35	18.0	3.9	118 1.5	2 9.5	.1	1.5	2.5	8.0										1186.1		3	.46	.004	.11	.2	.02	56	.3	.05	1.0	
GEBR-10127	3.20							132 6.9																	<1	.04	.002	<.01	3.2	.24	730	4.4	.02	.4	
								456 3.8																											
GEBR-10132	1.78	9.13	.23	50.0	5	7.8	11.2	557 3.3	6 1.9	<.1	.2	.1	10.7	.07	.19	<.02	72 1	.32 .	187	4.4	8.2	.99	87.4	. 184	4	1.94	.039	.02	.6	<.02	25	.3	<.02	11.2	
GE8R-10124	.29	58.50	.40	60.2	13	70.7	21.8	541 3.4	8 4.0	<.1	<.2	.1	10.0	.14	.12	<.02	100 1	.57 .	050	2.2	52.3	1.89	58.1	.282	5	2.39	.043	.01	.7	<.02	22	.2	<.02	9.1	
GEBR-10121	.77	44.11	.42	59.6	11	34.0	20.5	775 4.3	4 1.5	<.1	.3	<.1	7.0	.07	.23	<.02	127	.90 .	074	2.5	31.2	1.52	133.4	.317	8	2.35	.021	.05	.2	<.02	10	.3	<.02	10.0	
GEBR-10134	.50	68.58	25.30	43.4	39	25.6	6.6	2072 2.7	7 3.3	۱.2	<.2	2.3	7.3	.03	.31	. 15	43	.02 .	013 1	4.2	28.9	.68	735.8	.010	1	1.12	.002	.06	1.7	.03	44	.4	.14	4.9	
GE8R-10129	7.95	173.98	7.90	123.3	56	131.7	23.5	1491 6.3	3 5.8	4.8	5.7	7.1	9.4	1.10	.50	. 10	275	.36 .	037 1	6.0	96.2]	1.60	232.5	.166	1	2.13	.015	.04	.5	.03	136	5.7	.15	10.7	
RE GEBR-10129	7.86	180.81	8.25	127.2	67	133.2	22.9	1536 6.5	3 5.8	5.0	5.2	7.6	9.4	1.12	. 49	.10	283	.36 .	036 1	6.0	102.4 1	1.65	232.7	.168	1	2.19	.015	.04	.5	.03	143	5.7	. 14	10.5	
RRE GE8R-10129	8.48	177.73	8.52	128.3	67	131.3	25.3	1505 6.3	8 5.9	5.3	6.0	7.8	9.2	1.17	.55	.11	279	.36 .	040 1	6.4	99.3 1	1.62	240.7	.166	<1	2.15	.015	-04	.6	.03	143	5.8	. 17	11.2	
PPR-10220	.51	1347.00	.83	54.1	552	539.7	44.7	597 4.2	5 1.0	<.1	.8	<.1	4.2	.25	. 21	.05	78	.96 .	075	2.2	106.1]	1.79	89.0	.204	1	2.00	.022	.03	.5	<.02	19	3.1	.02	7.4	
PPR-10215	1.43	21.84	1.44	60.1	21	6.2	22.7	548 4.1	4 1.8	<.1	1.4	.1	23.1	.04	.37	.02	89	.90 .	115	2.9	12.9]	1.09	90.9	.409	<1	1.28	.021	.02	.3	<.02	45	.8	.05	7.1	
PPR-10212	.36	50.26	.52	66.4	15	31.1	19.8	620 4.2	3 2.0	<.1	<.2	.1	6.0	.17	.71	<.02	125 2	.01 .	066	1.9	42.2 1	1.59	24.8	.338	3	2.86	.020	.01	.6	<.02	10	.3	<.02	11.6	
PPR-10214	1.44	272.98	2.67	36.4	50	36.6	35.8	514 4.9	6 3.5	<.1	8.1	. 1	8.5	.10	.79	.06	105 1	. 18 .	060	1.4	55.0]	1.56	44.7	.387	1	2.06	.032	.02	.3	<.02	12	4.3	.02	6.2	
PPR-10217	2.90	5617.34	1.15	50.5	1662	3044.4	153.5	391 4.7	6 1.7	1.>	4.1	<.1	2.7	.81	.34	. 19	60	-90 -	045	.8	271.9 1	1.98	22.7	. 149	<1	1.76	.030	.01	.3	<.02	52	8.2	.15	5.4	
PPR-10213	1.31	126.41	1.15	44.4	46	69.6	25.8	547 4.4	3 3.4	<.1	1.5	<.1	6.6	.06	.28	.03	113 1	.18 .	052	1.7	47.7	1.78	51.8	. 299	1	2.46	.020	.06	<.2	<.02	9	1.4	<.02	8.0	
GSHR-10040	-59	91.06	.51	64.7	24	48.4	24.1	671 4.4	8 1.7	<.1	1.0	<.1	6.0	.04	.21	<.02	119 1	.si .	069	1.8	33.1 1	.67	13.7	.370	1	2.61	.020	<.01	.7	<.02	<5	.6	<.02	9.9	
GSHR-10218	.80	55.63	.51	63.8	48	14.8	20.4	650 5.6	3 1.5	<.1	2.0	. 1	5.7	.05	.12	<.02	154 B	.52 .	108	1.6	12.4 1	1.37	81.7	.275	1	2.62	.023	.04	.2	<.02	<5	1.0	<.02	10.3	
G\$HR-10216	.24	4209.79	.61	44.2	2212	1832.3	98.6	342 3.5	5 1.7	<.1	.6	<.1	3.8	.49	. 19	.09	51	.94 .	034	.7 2	288.5 1	1.72	109.0	. 126	<1	1.61	.049	.06	.3	.02	32	5.9	.14	4.3	
GSHR-10263	.66	59.50	1.58	95.0	61	42.2	26.4	818 5.2	4 1.5	<.1	36.4	<.1	13.0	.11	.45	<.02	193 1	.41 .	070	1.5	31.6 1	1.78	161.9	.470	2	2.53	.020	.03	.3	<.02	10	٠,7	<.û2	12.4	
GSNR-10219	.49	46.17	.32	75.7	33	11.6	21.9	719 4.8	4 1.2	<.1	1.2	.1	23.0	.11	.24	<.02	186 1	.41 .	084	1.9	8.2 1	1.33	141.7	.334	<1	2.49	.020	.02	.7	.02	6	۰6 ،	<.02	9.7	
STANDARD DS2	14.20	128.18	34.42	156.4	271	34.3	11.2	834 3.1	2 57.3	20.3	197.5	3.8	28.1	10.32	10.16	11.35	77	.53 .	092 1	6.4	156.9	.60	152.6	.091	2	1.69	.031	.16	7.7	2.03	253	2.4	1.96	6.0	
 				-								_																							

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED: Aug 31/00

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003058 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

(b)

44

	T	*********	A. C.S. 150	40,000000	W.70000		····		998.9			V.5.000	(1993) (3		96:1372			
SAMPLE#	Cs	Ge	Ηf	Мþ	Rb	Sc	Sn	S		Zr	Y	_					Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u> </u>	ppm	ppm	ppm	ppm	ppm	ppb	ppm	_bbut	gm	
0F00 40474	40		. 03	47			2	4 0/	4 05		4 4 4	4 ^	- 02	-4			70	
GEBR-10131	.10		<.02	.13	.1	.3			<.05		1.16			_	<.1		30	
GEBR-10123	.23		.22	.06	1.1						11.03			2		11.4	30	
GEBR-10137	.26		.43	.07		2.2					12.85			1		7.8	30	
GEBR-10126	1.07		.02	.02			<.1				16.42			<1		7.1	30 30	
GEBR-10138		• 1	.41	.04	3.2	1.4	.5	2.0)	1.03	13.5	2.61	24.4	.02	i		60.3	30	
GEBR-10140	1.03	< 1	< 02	< 112	2 2	24. 5	<.1	12	<.05	5	13.34	63	.08	1	4	8.6	30	
GEBR-10135	.26			<.02					<.05					3		2.1	30	
GEBR-10125	1.10			<.02					<.05		13.95			<1		26.7	30	
GEBR-10130	.56		.27			4.7					9.87			3		11.3	30	
GEBR-10128	.46			.03							11.60			<1		26.7	30	
THE POLICE	1			•••						,				• •		~~,		
GEBR-10122	.28	.2	.29	.05	2.8	3.3	-4	.02	<.05	6.7	13.33	7.8	.07	<1	.1	25.9	30	
GEBR-10139	1.01			<.02					<.05		12.99		.11	2		14.8	30	
GEBR-10136	.50			<.02							1.07			1		2.7	30	
GEBR-10127	.07	.3	<.02	.08	.2	.6			<.05		1.14			<1	<.1	.4	30	
GEBR-10133 S-1	1.30	.2	.70	.48	4.2	8.9	1.3	.04	<.05	39.1	14.08	30.8	.08	<1	.6	10.4	30	
GEBR-10132	.34	.2	.23	.06	.8	3.1	.3	.05	<.05	6.0	33.88	14.8	.06	<1	.2	9.5	30	
GEBR-10124	.28	.2		.03							10.86			<1		16.0	30	
GEBR-10121	.29	.2	.28			3.7					13.87			<1		22.3	30	
GEBR-10134	.33	.1		<.02							1.98			1		12.1	30	
GEBR-10129	.31	.2	.75	.38	1.3	4.3	.2	2.54	<.05	32.0	11.49	24.3	.03	11	.6	17.1	30	
DE GERR 40420	72	•	75			, -			. 05	~. ,	44 07	~	٠.	_	•	• •	70	
RE GEBR-10129	.32		.75		1.3						11.23		.04	9		16.7	30	
RRE GEBR-10129	.34		.83		1.3						11.36		.04	11		18.6	30	
PPR-10220	.12		.15		1.0						10.39		.04	4		17.5	30	
PPR-10215 PPR-10212	.11	.1	.29	.20		2.5					14.74			-1		5.6	30 30	
PPK-10212	.20	• •	.40	.00	1.7	2.6	•0	. 10	~. U5	11.0	12.12	5.9	.03	<1	• 1	20.3	30	
PPR-10214	.07	1	.26	.13	5	3.1	0 1	2 37	< 05	5 8	7.49	4 7	< 02	10	2	13.9	30	
PPR-10217	.13		.17	.03		4.0					5.02			14		14.4	30	•
PPR-10213	.15		.18		1.3						7.89			5		16.1	30	
GSMR-10040	.07		.30	.09		2.2					11.04			ź		20.7	30	
GSMR-10218	.23	.2	.14		1.1						11.83			<1		14.0	30	
				•										٠				
GSMR-10216	.16	.1	.15	.03	1.8	3.2	.1 1	1.15	<.05	3.9	3.03	1.9	.02	9	.1	17.3	30	
GSMR-10263	.31	.3	.38		3.2						14.20			<1		12.7	30	
GSMR-10219	.45	.2	.19	.05	1.8	3.7					11.94			2	.2	14.1	30	
STANDARD DS2	3.37	.1	.05	1.41	12.9	3.2	25.6	.02	<.05	2.7	7.86	32.1	5.53	<1	.4	14.3	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED:

1/00

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAX (604) 253-1716

(ISO 9002 Accredited Co.)

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003058 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell 船

SAMPLE#	SiO2 Al203 Fe203	MgO CaO Na2O K2O TiO2 P2 % % % % %	MnO Cr203 Ba Ni Sc LOI TOT/C TOT/S % % % ppm ppm ppm % % %	SUM X
GEBR-10131 GEBR-10123 GEBR-10137 GEBR-10126 GEBR-10138	49.47 14.04 10.86 52.20 14.22 9.42	1.05 1.54 .05 .04 .03 . 7.13 9.68 2.87 .18 1.85 . 5.52 9.22 4.27 .11 1.92 . 5.40 10.78 .58 1.31 1.43 . 2.18 .07 .85 1.47 .61 .	18 .19 .027 99 75 36 3.3 .04 .05 16 .14 .020 58 66 35 2.7 .10 .12 13 .16 .032 933 84 36 20.8 4.85 .01	99.85 99.80 99.92 99.98 99.99
GEBR-10140 GEBR-10135 GEBR-10125 GEBR-10130 GEBR-10128	92.03 2.72 1.53 38.07 11.23 8.59 49.53 14.34 11.46	3.67 11.58 .92 1.80 1.6039 .02 .04 .79 .17 . 3.96 15.54 .20 .32 1.14 . 6.42 8.30 4.61 .23 1.94 . 7.15 7.73 3.11 .47 1.58 .	01 .02 .001 5985 28 5 1.6 .19 .15 .06 .16 <.001 445 34 22 20.6 4.93 <.01 .18 .21 .023 373 75 38 2.7 .10 .32	99.92 99.99 99.93 100.00 99.98
GEBR-10122 GEBR-10139 GEBR-10136 GEBR-10127 GEBR-10133 S-1	42.92 12.31 9.02 86.62 5.76 2.60 85.21 .21 11.08	6.86 7.56 4.28 .28 1.91 .4.08 10.37 .98 1.49 1.50 .58 .04 .08 1.42 .30 .10 .14 .05 .04 .02 .2.31 3.95 2.84 1.11 1.37 .	.13 .16 .025 414 81 31 16.9 3.91 .24 .06 .02 .003 4790 37 7 1.9 .18 .05 .11 .02 <.001 988 31 <1 2.9 .11 .64	99.99 99.95 99.92 99.99 99.91
GEBR-10132 GEBR-10124 GEBR-10121 GEBR-10134 GEBR-10129	51.09 13.99 9.61 50.94 13.96 10.30 83.94 5.24 4.87	3.18 4.98 6.80 .23 1.43 .7.25 8.62 4.78 .17 1.64 .6.58 7.59 5.29 .37 1.93 .1.43 .05 .06 1.03 .28 .2.83 1.34 2.51 .80 .47 .	.18	99.97 99.94 99.89 99.90 100.06
RE GEBR-10129 RRE GEBR-10129 PPR-10220 PPR-10215 PPR-10212	67.04 9.57 10.57 48.31 11.52 12.14 49.23 13.17 13.10	2.87 1.39 1.66 .79 .48 . 2.85 1.34 1.85 .79 .48 . 9.14 9.90 2.86 .45 1.78 . 4.56 9.26 3.58 .29 2.94 . 6.31 10.16 3.26 .06 1.77 .	.10 .21 .011 2964 120 9 4.8 .02 3.31 .19 .21 .080 834 484 40 3.1 <.01 1.15 .32 .23 <.001 565 22 29 3.1 .02 1.90	99.64 99.96 99.84 99.85 99.94
PPR-10214 PPR-10217 PPR-10213 GSMR-10040 GSMR-10218	43.07 7.89 16.04 1 50.66 13.55 11.18 48.98 14.07 10.99	5.92 7.73 4.28 .23 1.76 . 12.74 12.13 .67 .13 1.59 . 7.25 8.55 3.15 .49 1.61 . 6.70 10.55 2.83 .06 1.91 . 4.01 7.21 3.46 .44 2.12 .	.13 .20 .124 84 1768 56 4.7 .02 2.63 .14 .16 .031 249 92 37 3.1 .01 1.05 .19 .18 .024 67 72 37 3.5 .01 1.07	99.84 99.66 99.92 100.01 99.94
GSMR-10216 GSMR-10263 GSMR-10219 STANDARD SO-15/CSB	51.81 14.06 11.70 53.15 14.20 12.19	12.65 12.30 1.04 .68 1.17 . 5.13 6.69 4.04 .67 1.94 . 3.48 7.89 3.18 .14 2.27 . 7.22 5.84 2.40 1.87 1.78 2.	.18 .19 .006 3530	99.70 100.12 99.95 99.73

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 16 2000 DATE REPORT MAILED:

Ang 31/00

SIGNED BY

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

41

Hudson Bay Expl. & Dev.

Hudson Bay	Expl. &	Dev. Co.	Ltd. PROJECT	2398 F	ile # A	003058R
			Jancouver BC VAC 168			

		**********				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							25-41-200-0														**		-	VI		
SAMPLE#	Ba								Sr	Ta	Th	Τl	U			Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er ppm	DDM IM	DOD:	nom.	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbw	bbw	bbu	bbu	bbw bt	om bb		ppm	ppm	ppm	ppm	ppm	ppiii	ppii	ppiii		ppii	ppii	ppii	PPII	Phi	PPIII	PP	
aran 40474	26	7.4	2	2 (0	ء ر	٦4	77	1		- 1	.2 3	7 1	2	10 0	3 በ	1.5	2.2	39	1.6	.3	- 10	.47	.08	.56	.13	.44	.07	.47	.08	
GEBR-10131		3.1 41.5							181.9	٠,١	.3	``1	1 3	27	5	114.2	36.3	5.1	15.0	2.40	13.1	4.3	1.75	5.19	.92	6.13	1.35	4.08	.55	3.56	.51	
GEBR-10123 GEBR-10137	1 40	77 0	,	40 0	7 3	2 4	1 2	1	119 2	7	7	<i>-</i> 1	7 7	35 <	1	115 4	37 6	4.7	14.0	2.31	12.8	4.1	1.68	5.07	-92	6.19	1.35	4.20	.57	3.65	.55	
	1005	33.9	. 4	1/. 0	2.5	2.0	44 0	1	1/6.2	.5	.5	` 8	.1 2	50	5	92.5	29.9	3.7	11.8	1.89	10.4	3.3	1.21	4.28	.77	5.27	1.10	3.33	.43	2.97	.43	
GEBR-10126	1005	37.3	7 7	17.6	5.0	18 0	77 8		37 A	1 3	12.5	7	2.9	36 <	í	185.1	16.8	25.7	40.3	5.60	20.7	3.5	.73	3.39	.46	3.19	.63	1.93	.26	1.84	.27	
GEBR-10138	1																															
GEBR-10140	468	35 5	3 4	15 6	2.6	3.0	45 3	1	143.4	. 3	.3	.3	.3 2	68 <	<1	95.4	31.8	4.7	13.3	2.13	11.9	3.3	1.35	4.43	.78	5.30	1.11	3.48	.46	3.07	.45	
GEBR-10135	4081	2 /	1 7	5.0	1.0	20	32 R	2	1ጵ ጵ	5	24	6	.9 (68	2	38.2	5.2	8.7	16.4	1.98	7.4	1.4	<.05	1.18	.10	1.09	.20	.02	.09	.00	- 12	
GEBR-10125	111	2/ 0	4 0	11 1	1 5	1 7	11 1	1	168 1	1	2	1	< 1 2	70	1	50.2	19.4	2.4	6.8	1.11	6.3	2.1	.88	2.69	.47	3.30	.70	2.04	.27	1.70	. 25	
GEBR-10130	385	38 2	1 3	16.9	3.0	2.7	7.0	2	190.9	.3	.2	.8	.2 3	Uð.	1	110.9	35.8	4.7	14.7	2.33	15.2	4.1	1.58	5.23	- 88	0.11	1.20	3.70	. 26	3.47		
GEBR-10128	312	39.6		16.2	2.8	2.9	8.1	1	166.9	.3	.6	.4	.2 2	94	1	97.3	31.4	5.1	14.6	2.30	12.0	3.7	1.30	4.61	.79	5.55	1.16	3.52	.44	2.98	.45	
GEBK-10150	1							-																								
GEBR-10122	587	36.5	1.2	15.3	3.5	3.5	11.0	2	192.1	.3	.3	.1	.1 3	09 <	<1	123.9	37.8	5.0	16.0	2.54	13.7	4.4	1.45	5.30	.92	6.31	1.32	4.09	.54	3.56	.52	
GEBR-10139	175	70 2	Z /	16 0	2 7	27	/n 1	1	13/. /.	2	2	1	3 2	56 <	<1	88.1	30.1	4.1	11_8	1.96	11.4	3.4	1.56	4.25	./1	5.10	1.05	3.21	.40	4.11	.46	
GEBR-10136	4701	7 0	2 7	0.3	1 6	7. 7	66 R	1	1/, Q	5	41	1	1 0	76	1	59.8	9.3	13.3	28.6	3.13	12.6	2.3	<.05	1.97	. 24	1.77	. 34	1.11	• 10	1.10	. 11	
GEBR-10127	1072	2 2	2	0	- 5	- 5	- 5	-1	0.7	< 1	< 1	3	7 '	34	5	4.0	1.7	1.0	1.4	- 18	-8	.2	<.05	. 20	.02	. 24	<.05	• 10	<.U3	.21	.04	
GEBR-10133 S-1	363	18.0	2.5	21.3	5.1	7.4	37.7	2	330.6	.6	5.3	.2	1.3 1	76 <	<1	191.5	27.7	20.9	51.4	5.90	25.8	5.5	1.68	5.02	.77	4.99	.99	3.03	.43	2.83	.42	
GEDR 10103 0 1	1																															
GEBR-10132	342	17.5	_4	18.2	7.0	3.9	3.6	<1	250.0	.4	.5	<.1	.2 1		1	270.6	67.3	9.4	29.6	4.73	26.2	8.0	2.01	9.54	1.53	10.79	2.31	7.28	.99	6.66	1.00	
GEBR-10124	149	39.0	.4	13.6	2.9	2.9	1.1	1	122.3	.2	.3	<.1	.2 2	77	1	99.3	31.8	4.4	13.3	2.13	11.8	3.5	1.41	4.56	.78	5.31	1.12	3.42	.46	3.07	.43	
GEBR-10121	951	34.6	.5	15.4	3.3	3.6	11.3	1	154.9	.3	.3	<.1	.13	00	1	120.9	36.6	5.0	15.4	2.44	13.8	4.2	1.42	5.42	.91	6.37	1.30	4.04	.52	3.56	.52	
GEBR-10134	6884	7.9	1.3	8.1	1.3	4.1	39.8	<1	18.8	.4	4.1	.1	1.1		5	50.2	13.0	20.4	30.4	4.53	17.7	3.3	.13	2.93	.34	2.52	.47	1.49	.21	1.40	.21	
GEBR-10129	3016	24.3	.6	14.5	2.5	10.2	17.5	<1	83.8	.8	9.7	<.1	8.8 3	20	1	105.8	23.6	31.9	45.5	7.55	29.3	5.1	.88	4.39	.62	4.29	.84	2.73	.37	2.65	.40	
															_									,		, ,,	0.5	3 00	70	2 74	(2	
RE GEBR-10129	3016	25.2	.6	14.7	2.7	10.0	16.9	<1	87.7	.8	9.9	<.1	9.1 3	35	2	106.5	23.8	32.1	47.4	7.62	29.5	5.5	.99	4.55	.04	4.37	.02	2.00	.37	2.10	.42	
RRE GEBR-10129	2949	23.8	.5	14.7	2.6	9.9	16.6	<1	82.3	.8	9.9	.1	8.9 3	32	1	100.6	23.4	30.9	45.4	7.39	29.7	5.0	1.01	4.55	.01	4.44	1 71	7.00	.51	7 40	57	
PPR-10220	809	56.0	.5	15.2	3.4	2.9	10.4	<1	91.0	.2	.3	.1	.1 2	89	1	120.3	36.7	4.7	15.3	2.47	15.1	4.0	1.41	0.24	.87	0.10	1.31	4.09	77	5 37	70	
PPR-10215		26.8										<.1	.2 2	85 <	<1	195.0	53.8	8.9	25.6	4.12	22.3	6.5	2.29	8.13	1.33	9.09	1.76	7 70	17	3 22	//8	
PPR-10212	66	34.0	.5	17.4	3.1	3.1	2.5	1	75.4	.3	.3	<.1	.1 3	06	1	107.0	32.8	4.4	13.6	2.23	12.0	3.8	1.47	4.99	.02	7.63	1.17	3.70	.47	J. 22	.40	
								_		_	_		~ ^			440 5	72.0	- 4	45 7	2 70	17 2	7 7	1 51	/ 99	Ω1	5 01	1 1/	3 60	48	3 23	49	
PPR-10214	148	36.9							152.2			<.1	.3 2	۶/ <	۲T	110.5	32.9	2.1	15.7	1.49	0.0	3.1	1.31	7 88	67	7.51	05	2 04	38	2.50	.37	
PPR-10217	68	157.3	.2	12.1	2.1	1.8	1.4	<1	22.8	.1	.1	<.1	<.1 2	89 <	< T	08.2	20.4	2.0	11 /	1.40	10.0	21	1 17	7.00	70	5 2/	1 08	7 70	47	2.94	.44	
PPR-10213	228	35.1	.4	15.5	2.6	2.2	8.7	<1	97.7	.2	.3	<.1	.2 2	79 <	<1	114.5	30.3	3.8	15.0	3.40	17.0	3.4	1 //	5 26	87	6 3/	1 27	3.30 3.87	53	3 40	.51	
GSMR-10040	62	36.1	.3	18.8	3.4	3.5	.9	<1	82.0	.3	.3	<.1	.1 2	96	1	174.5	30.1	4.5	15.0	2.40	15.0	4.4	1 95	5 05	-00	7 25	1	4 50	62	4 08	.62	
GSMR-10218	803	28.6	.4	18.9	3.4	2.6	8.4	1	102.5	.2	.5	.1	.2 3	22 <	()	121.2	42.0	2.1	10.1	4.00	13.1	4.7	1.00	J.7J	.77	1.23	1.47	7.27	.02	7.00		
			_				47 /		72 (4	<.1 2	74	-1	40 4	10 /	2 /	7 4	1 2/	۵ ۸	2 3	77	2 81	46	3 31	.67	2.04	.27	1.77	.26	
GSMR-10216	600	119.4	.8	12.0	1.6	1.4	17.6	1	52.4	.1	.1	٠!	.1 3	10 5	-1	100.0	77.4	4.4	17.5	2 14	17 1	7 7	1 11	5 10	90	6 26	1.20	3.98	54	3.58	.52	
GSMR-10263	3541	34.3	.5	17.4	3.1	2.5	11.5	1	179.6	.3	.3	-1	.1 3	U3 <	1	109.7	37.1	4.3	1/. /	2.10	13.1	1. 1.	1 58	5 57	97	6 74	1.37	4.35	.58	3.88	.59	
GSMR-10219	383	28.5	8.	21.7	3.4	2.4	3.7	1	339.6	2.2	2/ 0	1.1	20.04	01 /0 3	1 21 1	1051	37.3	28 2	50 0	6 20 6 20	24.4	1. 1	1 07	3 07	.60	3.94	. 77	2.53	.34	2.44	.40	
STANDARD SO-15	2000	22.1	2.9	17.3	26.4	52.4	66.5	19	400.5	4.0	24.9	1.0	20.0	47 6	١ ٢	1021-0	23.0	20.2	39.0	0.20		4.4	1.03	3.71	.00	3.74						

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Der 15/00

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(b)

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003058R

■ ■ 800 - 700 W. P	ender St.	, Vancouv	rer BC V6	C 168	Submitted	by: Ger	ry Bidwe	, t			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		
GEBR-10131 GEBR-10123 GEBR-10137 GEBR-10126 GEBR-10138	3.4 <.5 1.4 <.5 7.9	21 52 43 34 30	<3 <3 <3 <78	10 76 72 54 81	14 82 68 100 14	<2 2 <2 74 27	<.2 .3 .3 .2 .2	<1 <1 <1 8 3	<1 2 3 2 1		
GEBR-10140 GEBR-10135 GEBR-10125 GEBR-10130 GEBR-10128	<.5 3.0 <.5 1.7 <.5	57 42 41 64 65	<3 <5 <3 <3	61 16 88 75 81	78 15 26 79 99	44 6 11 2 2	.2 <.2 <.3 .3	2 1 2 <1 <1	2 <1 2 4 5		
GEBR-10122 GEBR-10139 GEBR-10136 GEBR-10127 GEBR-10133 S-1	<.5 <.5 1.3 3.4 1.3	47 61 45 8 32	<3 <3 4 5 15	79 73 33 31 78	60 86 21 22 14	<2 10 15 209 6	<.2 .2 .3 <.2	<1 2 5 15 1	5 4 1 <1 4		
GEBR-10132 GEBR-10124 GEBR-10121 GEBR-10134 GEBR-10129	1.8 <.5 <.5 <.4	56 41 73 186	<3 <3 <4 24 8	57 71 73 47 130	10 101 57 31 139	<2 3 <2 3 <2	<.2 .3 .2 <.2 1.4	<1 <1 <1 2 2	4 6 7 3		
RE GEBR-10129 RRE GEBR-10129 PPR-10220 PPR-10215 PPR-10212	8.4 8.2 <.5 1.2 <.5	177 176 1284 30 50	8 7 <3 <3 <3	126 128 84 94 77	134 137 626 5 52	<2 <2 <2 <2 <2	1.2 1.2 .3 <.2 .2	1 <1 <1 <1 3	33899		
PPR-10214 PPR-10217 PPR-10213 GSMR-10040 GSMR-10218	<.5 2.7 .6 <.5 .8	252 5171 128 86 59	<3 <3 <3 <3	43 80 58 23 100	43 3189 99 24 19	<2 <2 <2 <2 <2	<.2 .2 .2 <.2 .5	1 <1 <1 3 <1	9 9 7 7 7		
GSMR-10216 GSMR-10263 GSMR-10219 STANDARD CT3 STANDARD G-2	.5 <.5 .6 26.7 1.7	4061 100 60 66 2	5 4 3 43 22	80 114 104 181 53	2358 55 13 39 7	2 2 <2 62 <2	.9 .6 .5 22.7 <.2	<1 <1 <1 23 <1	1 1 25 <1		

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 15/00

SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACM: ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (a)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003303
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

														ننستك	.,,,,,,,,				~		<u></u>									
SAMPLE#	Mo	Cu	Pb	Zn	Ag N	i Co	Mn F	e As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca			Cr				B Al	Na	K W	TI	Hg :	Se T	e Ga
]	ppm	ррп	ppm	ppm	ppb pp	n ppm	ppm	к ррп	ppm	ppb	ppm	ppm	ррm	ppm	ppm	ppm	X	x	ppm	ppm	X	ppm	% p	pm %	X	% ppm	ppm	bbp bi	pm pp	m ppm
			<u>:-</u>																											
GEBD-18172							661 3.1						. 07		.06	118 1	. 02	.037	5.9	58.0	1.17	152.0	.347	3 2.66	.014	.02 .2	.02	20	.2 .0	2 7.3
GEBD-18148	. 67	104.13	11.01	88.9	98 69.	5 34.3	1447 4.9	1 7.6		2.7			.24	.79						96.6				2 2.83						
GEBD-18173	. 23	53.28	4.85	51.2	22 44.	1 20.2	784 3.2	2 31.9	.2	9.3	2.6	15.3	.09	.70	.07	114	.90	.041	7.7	64.7	1.15	205.5	.293	2 2.61	.012	.04 <.2	.03	27	.1 .0	2 7.2
GEBD-18142	1.02	79.59	17.83	94.5	48 81.	3 28.5	1089 4.5	4 11.6	.6	5.6	6.3	21.8	. 28	1.07										2 2.70	.010	.21 <.2	.09	82	.4 .0	4 7.9
GEBD-18180	.43	53.54	5.25	51.0	18 41.	8 17.8	680 3.0	2 4.2	.3	2.2	2.8	18.3	. 09	.49	. 08	93	.87	.051	10.8	56.4	1.01	144.6	.255	2 2.37	.015	.05 <.2	. 03	21	.3 <.û	2 6.0
1																														
GEBD-18143	.99	71.32	20.84	84.9	48 74.	9 27.4	1513 4.1	4 11.9	. 7	5.5	6.7	21.3	.24	1.16	.21	100	.72	.071	23.4	88.0	1.16	376.7	.215	2 2.42						
GEBD-18161	.20	63.93	4.05	39.2	3 39.	4 15.9	590 2.4	3 3.7	.1	4.3	1.4	11.9	.10	.40	.04	103 1	.15	.033	5.3	44.9	.91	223.7	.360	3 1.93	.018	.02 <.2	<.02	13	.1 <.0	2 5.9
GEBD-18175							651 3.3			31.4			.09	.58	.08	104	.93	.050	10.6	70.9	.91	138.3	.256	2 2.30	.013	.06 < .2	.03	51 <	.1 <.0	2 6.5
GEBD-18145							742 3.4			2.5			.10		15	100	83	052	16.3	78.0	1.24	241.4	.272	2 2.23	.012	.12 < .2	.04	38	.4 .0	3 6.5
GEBD-18176							1065 4.0			14.5			. 20							103.2				3 3.26						
GEDO 10170	. 20	03.12	0.00	50.0	V1 00.	0 00.5	1000 4.0	1 102.0		1	,	_,												•						
GEBD-18168	30	54 12	5 36	57 1	10.50	1 22 6	882 3.4	3 7 6	2	3.5	27	17 0	.12	62	.09	118 1	.01	.040	9.7	76.1	1.28	393.8	.320	2 2.48	.015	.04 <.2	.03	18	.2 .0	2 7.4
GEBD-18178	36	81 90	2.75	52.5	23 83	8 42 3	1337 4.3	6 70 1	2	10.5	1 2	26.7	.13							108.0				3 3 86	.013	.03 .2	.02	47	.3 <.0	2 9.7
PPD-18159							846 3.1			4.2			.09							75.7						.03 <.2				
GEBD-18164							662 2.6			2.7			.10							45.6				3 2.33						
GEBD-18146							635 3.1			3.1			.09							63.5				2 2.13						
GEDD-10140	./5	33.05	3.24	54.5	10 40.	1 17.5	055 5.1	0 0		5.1	0	14.5	.07	.00	.11	00	.00	.000	10.7	00.0	1.12	ŲL7.L		L L.10						_
PPD-18160	30	53 2B	4 77	53.3	9 56	9 22 4	1027 3.4	9 62	1	3.5	15	10.7	.13	71	60	137 1	06	030	6.6	85.4	1.44	486.4	.394	3 2.66	.017	.02 <.2	.02	15	.3 .0	8 8.1
GEBD-18174	.33	41 19	4 68	43.7	3 20.	7 14 5	810 2.5	2 25 0	3	5.7	4 4	17 Q	.08							46.2						.04 <.2				
GEBD-18149							682 3.6						.16							77.7						.15 <.2				
RE GEBD-18149							674 3.6						.16		20	92	.83	075	21 1	76.4	1 15	285 7	244	2 2.32						
PPD-18156							657 2.8						.12							50.3				3 2.35						
PP-10130	.21	00.21	4.75	50.2	14 30.	1 10.4	037 2.0	, 3.2		٠.٠	1.4	19.5		.07	.00	117 1	71	.001	Ų. 1	50.0	1.00	207.1	.000	0 2.00						
GEBD-18162	20	66 07	4 14	30 3	4 30	4 16 2	617 2.4	5 4 (1	1.5	1 4	12 6	.10	42	05	102 1	11	.035	5.5	46.2	.90	216.2	.350	3 1.92	.016	.02 <.2	<.02	24	.2 .0	3 6.0
GEBD-18166 S-1	1 02	30.84	9 01	53.3	31 12	7 10.2	475 3.9	9 2 (2.0	2.8	46.7	.09							42.6				1 4.19						
GEBD-18165							666 2.5			9.3			.08							57.6						.02 <.2				
GEBD-18158							1255 4.5			4.2			.15							100.7				1 2.70						
GEBD-18170							583 2.7			4.9			.10		15	RR	72	135	15.2	53.9	84	634 R		2 1.77						
GEDD-101\0	.27	02.90	11.20	00.5	13 34.	0 14.5	303 2.7	2 J.,	.5	7.9	5.5	27.0	.10	. 55	.10	au	., .	.000	13.2	00.5	.07	001.0				,,,,				
PPD-18157	22	30 //0	4.04	AA Q	18 34	n 18 4	564 2.2	n 3 4	2	23.7	1 4	11 4	.10	30	กร	89	91	048	4.8	38.2	. 78	193.1	.290	2 1.82	.013	.02 <.2	<.02	19	.2 <.0	2 5.4
GEBD-18171	2 60	223 80	6 91	55.5	25 66	6 54 4	1503 6.4	4 193 3		22.7	2.1	7.6	.13 9							116.6						.03 .4				
GEBD-18155							814 3.2			1.8			.15							67.7						.06 <.2				
GEBD-18179							1024 4.0			2.1			.18							75.9				3 3.24						
GEBD-18179 GEBD-18151							764 3.4			2.5			.17							73.6				2 2.30						
ncpn-19121	.41	47.31	10.72	00.2	23 40.	0 17.0	704 3.4	0 5.0	. 3	۷.5	4./	17.7	. 17	. 04	. 17	23	.02	.0/2	17.0	75.0	10	J17.0	. 200	_ 2.00	.010			0,		- 0.0
GEBD-18167	22	64 67	5.06	47 A	3 /1	6 21 Q	871 2.9	4 8 9	1	3 /	1 /	11 8	.09	72	. 07	111 1	00	046	5 3	60 4	1 14	323 9	350	2 2 14	.012	.02 <.2	.02	11	.3 .0	2 6.8
	.23	67.00	7 00	67.4	J 41.	0 24 0	434 3.7	9.0 0 6.0		ე.4 ენ	3.3	0.7	. 27							82.4				2 3.35						
GEBD-18152							951 3.5						.20							60.5						.06 <.2				
GEBD-18163	.32	107.73	0.99	01.0	266 25	23.8	951 3.5 817 3.0	4 3.0 0 CC 4	10.2	205 2	2.3	26.0												2 1.70						
STANDARD DS2	14.5/	127.33	32.0/	155.4	200 35.	n TT'P	01/ 3.0	0 55.0	19.3	200.3	٥.٥	20.0	10.42	7.07	10.33	/4	.52	.003	13.0	104.0	. 59	100.5	.005	2 1.70	.023	.10 /.2	1.//		/ .	<u> </u>

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

SAMPLE TYPE: TILL \$230 400 Samples beginning 'RE' are Reguns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 30 2000 DATE REPORT MAILED:

Sept 12/00

SIGNED BY D. TOYE, C.LEONG, J.

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

<u> </u>																															
SAMPLE#	Мо	Cu	Pb		Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi V	Ca	Р	La	Cr	Mg	Ba	Ti B	ſΑ	Na	K W	71	Hg :	Se	Te Ga
	ppm	ppm	ppm	ppm t	ppb	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm ppm	*	X	ppm	ppm	x	ppm	% ppm	*	*	% ppm	ppm p	pb p	bw b	pm ppm
GEBD-18141 GEBD-18154 GEBD-18150 GEBD-18177 GEBD-18144	.32 .48 .21	67.68 40.37 77.14 66.33 90.50	5.76 15.54 2.14	49.9 91.4 51.5	15 3 69 6 23 4	33.1 1 33.0 2 19.2 2	12.1 24.1 28.6	564 988 969	2.59 4.25 3.87	3.5 7.1 83.1	.3 .5 .1	1.6	2.7 4.8 1.1	17.5 25.5 32.2	.22 .12 .20 .10	.35	.17 104 .08 85 .19 107 .03 143 .20 104	.78 .87 1.08	.065 .077 .040	9.6 16.3 4.1	46.7 96.7 78.4	.74 1.47 1.53	205.0 318.6 121.8	.238 2 .251 2 .381 4	1.61 2.55 3.26	.013 .011 .013	.04 <.2 .16 <.2 .02 <.2	.03 .07 .02	25 56 35	.1 <. .2 .	02 5.0 04 7.3 02 9.8
GEBD-18169 GEBD-18147 GEBD-18153 RE GEBD-18153 STANDARD DS2	.40 .95 .94	49.18 77.21 43.57 42.58 124.82	8.08 9.11 9.16	75.7 65.9 66.1	96 5 41 3 45 3	6.1 2 84.3 1 82.6 1	24.1 14.1 13.0	1074 461 453	3.88 4.14 4.09	5.7 5.2 5.4	.4	2.1 1.5 2.8	3.4 2.6 2.6	45.2 7.6 7.7	.06 .17 .17 .19	.65 .40 .44	.07 103 .13 104 .13 121 .13 119 10.44 76	2.07 .31 .29	.054 .040 .039	10.7 12.9 12.8	72.1 74.0 73.9	.83 .81	454.7 115.7 113.7	.253 2 .216 1 .209 1	2.46 2.94 2.90	.018 .006 .006	.03 <.2 .14 <.2 .04 <.2 .04 <.2 .16 7.3	.04 .06 .06	45 57 61	.3 . .4 .	02 7.7 02 8.1 02 8.1

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003303 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

SAMPLE#	PF	s Ge om ppm	∦f ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	s %	Ta ppm	Zr ppm	PPM Y	Ce ppm	In ppm		Be ppm		Sample gm	
GEBD-18172 GEBD-18148 GEBD-18173 GEBD-18142 GEBD-18180	1.1 .9 1.0 1.3	95 .2 97 .2 96 .1	.33	. 15	4.8 2.8 8.1	6.1 9.7 7.4 8.7 5.1	.6 .6 .6	.01 .01 .01	<.05 <.05 <.05	10.8 12.6 11.0	9.96 15.05 10.17 16.58 10.17	21.3 19.9 41.6	.03 .04 .03 .03	<1 ; <1 <1 1	.4 .4	18.2 21.7 21.9 23.0 13.6	30 30 30 30 30	
GEBD-18143 GEBD-18161 GEBD-18175 GEBD-18145 GEBD-18176	1.0 .4 .9 .6	1 .1 29 .1 51 .1	.39 .40 .26	.31 .07 .26	6.8 1.0 4.0 4.4 3.5	5.8	.6 .5 .5	01. 01. 01.	<.05 <.05 <.05	14.7 15.0 10.1	18.10 11.23 15.48 10.33 15.32	16.8 21.5 34.3	.03 .03 .03 .03	2 <1 <1 <1 <1	.3 .3	21.2 12.4 16.7 18.7 23.7	30 30 30 30 30	
GEBD-18168 GEBD-18178 PPD-18159 GEBD-18164 GEBD-18146	1.6	8 .2	.36 .51	.17 .67 .11 .44	1.6		9 7 7	.01 01.> 01.>	<.05 <.05 <.05	17.9 13.0 18.5	11.08 13.03 13.87 11.52 8.79	14.1 17.2 11.5	.03 .04 .03 .03	2 1 <1 1	.3 .5 .3	21.9 39.5 23.1 10.0 20.7	30 30 30 30 30	
PPD-18160 GEBD-18174 GEBD-18149 RE GEBD-181 PPD-18156	.7	66 .1 76 .1 71 .1	.31 .27	.12 .18 .15	2.1 2.7 6.5 6.1 1.3	7.8 7.8 7.5	.6 .6	<.01 <.01 <.01	<.05 <.05 <.05	15.2 13.3 12.5	10.81 11.88 14.05 13.57 15.64	31.7 43.7 41.0	.04 .03 .03 .03	<1 <1 3 <1 <1	.3 .5 .4	23.8 18.1 20.7 20.1 13.0	30 30 30 30 30	
GEBD-18162 GEBD-18166 GEBD-18165 GEBD-18158 GEBD-18170	5-1 1.2 1.2 1.2 1.2 1.2	28 .1 55 .1 29 .1	.62 .23 .20	.46 .13	1.1 4.9 1.4 2.4 2.6	12.9	1.5 .7 .5	.02 .01 .01	<.05 <.05 <.05	38.7 9.8 8.5	11.17 14.43 10.90 13.06 11.03	30.8 19.0 18.0	.03 .06 .02 .05	1 <1 1 <1	.7 .3 .5	13.1 10.8 17.3 27.1 13.3	30 30 30 30 30	
PPD-18157 GEBD-18171 GEBD-18155 GEBD-18179 GEBD-18151	.2 2.1 .5 .9	1 .2 6 .1 2 .1	.28 .24 .15	.22 1.03		12.9 6.9 9.0	1.0 .6 .8	.02 .01 .05	<.05 <.05 <.05	12.3 11.0 8.9	9.85 14.27 11.29 23.73 13.75	26.0 31.9 16.6	.02 .06 .03 .05	<1 2 <1 <1 2	.6 .3 .5	10.6 50.2 16.7 17.0 19.4	30 30 30 30 30	
GEBD-16167 GEBD-18152 GEBD-18163 STANDARD DS	.4 1.1 .9 2 3.3	2 .1	.35	1.40	3.2			.03	<.05	7.1 12.9	12.21 8.44 14.79 7.49	34.0 20.4		2 <1 <1 3	.6 .3	22.4 28.6 22.1 13.8	30 30 30 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: TILL S230 400

ept 12/00 signed by...:

......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

							====											
SAMPLE#	Cs	Ge	Нf	Иb	Rb	\$c	Sn	S	Тa	Zr	Y	Ce	In	Re	₿e	Li	Sample	
	ppm	ppm	ppm	bbu	ppm	ppm	bbw	×	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
OEDD 101/1	00	4		20	4.7	77		02	- DE	7.0	15 7/	, o o	07	2		24.0	30	
GEBD-18141	1 -99		.20		6.7		.6				15.34			~				
GEBD-18154	(.38	1	.35	.10	2.2	6.2	.5	.03	<.05	12.0	11.48	18.5	.02	<1	.3	10.8	30	
GEBD-18150	.81	.1	.33	.10	5.6	8.7	.6	.05	<-05	11.7	14.84	30.5	.03	<1	.4	21.2	30	
GEBD-18177	1.97	' .1	.41	.59	1.7	8.7	.7	.07	<.05	15.1	13.74	18.7	.04	<1	.5	27.8	30	
GEBD-18144	_67	٠ .1	.32	.23	4.1	7.4	.5	.06	<.05	10.6	14.81	33.9	.02	≺1	.3	19.5	30	
	ł																	
GEBD-18169	.50	.1	.33	.47	1.3	5.2	.6	.05	<.05	11.2	12.29	17.4	.03	<1	.4	16.7	30	
GEBD-18147	.78	.1	.39	.07	5.2	6.5	.5	.03	<.05	11.9	12.78	21.7	.02	1	.3	22.6	30	
GEBD-18153	1.34	<.1	.11	1.55	9.6	3.6	.8	.02	<-05	4.4	5.97	25.1	.03	2	.5	28.1	30	
RE GEBD-18	53 1.40	<,1	.10	1.58	9.5	3.7	.8	.04	<.05	4.2	6.01	24.9	.03	<1	.5	26.6	30	
STANDARD D	2 3.26	.1	.04	1.29	14.3	2.9	26.6	.02	<.05	2.9	8.12	31.2	5.58	5	.7	14.7	30	

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

44

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003303R Page 1
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

咎

	SAMPLE#			Fe203	Mg0					P205			Ва	Ni	Sr	Zr	Y	ИÞ		101 %	TOT/C %	70T/S %	SUM %	
		%	%	%	%	%	. %	%	<u>%</u>	<u> </u>	%	%_	ppm	ppm	ppm	ppm	bbu	ppm	ppm			^		
	GEBD-18172	62 54	11 32	7.18	/. 1 2	۸ ۵۸	2 13	4.4	1 42	10	. 13	024	352	57	117	160	26	<10	29	5.5	.31	<.01	99.97	
				9.99						17	. 22	.018	1147		109	133	36	13		6.7		<.01	99.87	
	GEBD-18173	6/ 80	11 71	6.80	7.47	3.74	1 05	-42							118			<10		5.7		<.01	100.14	
				9.04											91			<10		7.0		<.01	99.97	
	GEBD-18142 GEBD-18180	123.15	13.30	6.84	3.43	7 61	3 03	1 25	1 10	14	12	016	70%		137			<10		5.8		<.01	99.96	
	GERD - 10 100	103.09	12.42	0.04	3.33	3.01	2.02	1.23	1.19	- 14	. 16	.010	,,4	01	131	120	L.	- 10		,,,			,,,,,	
	GEBD-18143	61.33	12.97	8.36	3.06	2.26	1.47	2.02	1.22	.22	.22	.019	1190	82	95	187	40	10	24	6.4	.24	<.01	99.74	
	GEBD-18161	63.39	10.80	6.48	4.37	6.09	2.49	.44	1.54	.08	.14	.026		59	134	176	30	<10	32	4.0	.40	<.01	99.97	
	GEBD - 18175	66.60	11.14	6.97	2.54	3.03	1.83	-89	1.23	.12	-11	.012	398	43	118	277	35	<10	25	5.5	.12	<.01	100.08	
	GEBD-18145	65 23	11.74	7.26	3 31	2.82	1.65	1.46	1.40					63	99	169	31	10	22	4.6	.20	<.01	99.96	
	GEBD-18176	56.86	12 36	8.30	4 60	3.99	1.85	.54	1.44	. 15	. 18	.026	510	72		162	34	<10	31	9.7	1.28	.01	100.10	
	dEDD 10170	30.00	12.50	0.50	4.00	3. ,,	,,,,,	,,,,						. –										
	GEBD-18168	62.80	12.04	7.40	3.75	3.92	2.08	1.05	1.44	.13	.15	.023	917	56	129	177	29	<10		4.8		<.01	99.74	
	GE8D - 18178	50.99	13.37	8.97	5.40	4.83	1.75				.22		362	103	106	111	28	<10		12.3	1.98	.02	99.96	
		65.38	10.50	7.19	4.12	4.37	2,08	.60	1.45	.10	.16	.025	1376	80	108	149	31	<10		3.7	.08	<.01	99.88	
	GEBD-18164			7.22				.39	1.64	.13	. 15	.031	522	61	123	149	29	<10		5.2		<.01	100.07	
	GEBD-18146	66.74	11.49	6.81	3.12	2.63	1.67	1.39	1.40	.09	-11	.019	1121	61	93	209	31	12	21	4.3	.36	<.01	99.95	
		1																	•					
	PPD-18160			7.88								.029			106		28	<10		4.9		<.01	100.18	
	GEBD - 18174			5.43								.013	377		117		37	16		3.8		<.01	99.92	
				7.59											99		33	13		5.3		<.01	99.98	
	RE GEBD-18149	63.26	13.02	7.53	3.00	2.57	1.63	1.88	1.30	. 17	.11	.015	1064		100		35	14		5.3		<.01	99.97	
	PPD-18156	62.14	11.48	7.17	4.33	6.09	2.57	-48	1.53	.11	- 14	.025	592	44	137	141	32	<10	34	3.9	.09	<.01	100.08	
																	~.	.40	70	, ,		. 01	100.06	
				6.59									606			168		<10		4.1			100.06	
				8.89									370		338			<10		7.2		<.01	99.99	
				6.55								.029	788		115			<10		4.3			100.05	
	GEBD-18158	60.62	13.13	8.62	3.89	2.73	2.32	-65	1.62	. 15		.021			108			<10		6.2		<.01	100.29	
1	GE8D - 18170	68.27	10.66	6.23	3.04	3.43	1.76	.88	1.23	.08	.11	.020	1464	32	129	203	29	12	25	4.0	.22	<.01	99.93	
		l								.,	47	007			17/	400	20	-10	20	5.1	75	<.01	99.83	
				6.05								.026				198		<10		9.0	.80	.01	99.94	
	GEBD - 18171	56.51	11.26	12.11	4.37	2.63	1.73	.47	1.38	. 14		.023		76	74			<10					99.77	
	GEBD - 18155	63.76	12.84	6.93	3.02	3.24	1.88	1.52	7.28	.17	- 14	.018	1020		138			<10		4.8	.26			
	GEBD - 18179	47.60	12.48	8.75	3.59	4.39	1.68	.60	1.30	.27	.18	.026	542		102		41			19.0	4.77	.04	99.97	
1	GEBD-18151	65.11	12.00	7.41	3.05	2.95	1.87	1.21	1.39	.18	.13	.018	907	60	110	211	54	<10	22	4.5	.20	<.01	99.98	
	CEOD 19167	62 04	11 11	7.26	/ /6	5 54	2 75	50	1 6/	1/	17	020	817	47	120	170	32	<10	31	3.9	. 28	<.01	100.11	
												.029		74	86		26	13			3.45	.02	99.94	
	GEBD-18152	22.34	13.14	7.89	(15	1.YZ	2.20	1.U/	1 74	14					133		32			4.5			100.15	
	GEBD-18163	01.41	17.70	7.91 7.30	7 2/	J. 10	2.30	1 05	1.30	2 70	1 30	1 057	180¢		396		22	18			2.37		99.84	
	STANDARD SO-15/CSB	49.29	12.34	7.30	1.20	5.01	2.41	1.00	1.74	2.70	1.24	1.057	2000	17	370	774	2.2	10	12	3.7	2.57	7.20	77.04	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.

TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: TILL \$230 400

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 7/00

Page 2

' <u></u>																	~			
SAMPLE#	SiO2 AL	203 Fe203	MgO	CaO Na20	K20 Ti02	P205	MnO (Cr203	Ва	Ni	Sr	Zr	Y	Nb	Şc	LOI	TOT/C	TOT/S	SUM	
	<u> %</u>	<u>%</u> 2	<u> </u>	* *	<u> </u>	%	*	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%		
GEBD-18141	61.59 12	7.76 7.99	3.24	2.29 1.55	1.65 1.34	.20	14	.018	1112	88	96	192	34	13	23	6.7	.46	.01	99.61	
GEBD-18154	1				1.07 1.36						147	•		10		3.7			99.55	
GEBD-18150	59.51 13	3.10 8.6	3.70	3.01 1.43	1.70 1.30	.19	.16	.018	1081	80	104	172	34	<10	27	6.7	.18	<.01	99.60	
GEBD-18177	55.45 12	2.45 7.96	4.79	5.35 2.20	.32 1.53	.16	.17	.027	294	76	132	172	29	<10	33	9.2	1.38	<.01	99.70	
GEBD-18144	62.81 12	2.10 7.66	3.49	3.16 1.61	1.45 1.44	.17	.14	.018	943	82	109	213	35	10	56	5.4	-20	<.01	99.59	
GEBD-18169	64.71 10	0.41 6.16	3.88	4.97 2.17	.57 1.54	.14	.15	.025	899	91	125	193	30	<10	28	4.8	.57	<.01	99.69	
GEBD-18147	60.46 11	1.41 7.86	4.45	4.86 1.39	1.16 1.17	.17	.17	.017	1182	75	118	149	29	<10	24	6.3	.57	<.01	99.60	
GEBD - 18153	58.12 12	2.32 7.97	2.37	1.77 1.31	1.05 1.40	-14	.08	.016	615	51	96	191	24	14	17	13.1	2.81	.01	99.77	
RE GEBD-18153	58.04 12	2.23 7.89	2.43	1.78 1.32	1.05 1.40	.12	.08	.016	616	67	95	186	25	11	17	13.1	2.81	.01	99.58	
STANDARD SO-15/CSB	49.52 12	2.32 7.25	7.21	5.83 2.39	1.84 1.78	2.68	1.38	1.053	1993	82	393	996	22	26	_12	5.9	2.44	5.37	99.57	

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003304 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE	Ho	Cu	Ро	Zη	Ag	KI	Co	На	Fe	As	U	Au	Th	Şr	C	a s	SÞ	Ві	y	Ça	۶	10	Cr	Mg	84	īi	В	Αì	Na	K	W	TI	lig	Se	Te	Ga
	ppa	ppm	ppa	ppn	ppb	ppm	ppa	ppm	1	рра	ppa	ppb	ppa	ppe	pp	n pş	Çm	ppm	ppa	*	*	ppa	ppn	*	ppa	1	ppm	2	*	*	ppa	ppa	ppb	ppa	bba	ppa
GE8X - 14080	.42	68.16	4.97	62.2	61	44.9	21.6	808	3.49	4.9	.5	9.4	1.4	30.1	. 1	7 .	57	.09							192.1				.019			.03		1.0		
PPX-14049	.87	218.84	13.76	69.3	1449	44.4	11.7	916	2.14	7.1	3.5	8.9	.5	62.1	.6	9 1.1	02	. 14					76.8				_		.013	. 19				3.2		
PPX-14045	.64	53.37	5.44	37.7	196	122.5	13.2	128	1.94	6.5	1.3	1.3	.7	46.9	. 2	5 .	42	.07							133.1		-		.011			.06		4.1		
PPX-14052	.60	41.26	4.41	64.5	108	23.7	19.8	3923	2.93	31.2	.3	2.8	.6	36.2	.2	5 .	56	.06							150.2		-		.011						.03	
PPX-14048	1.51	56.07	6.41	93.3	230	37.6	28.1	7643	3.67	5.2	.9	9.4	1.0	38.2	. 8	2 .	52	.35	82	1.20	.089	12.7	35.7	.53	1258.1	. 118	4	1.72	.009	.11	.3	. 10	141	.5	.ÛŠ	3.9
PPX-14042	.84	51.61	5.22	53.l	458	27.1	10.9	958	1.89	2.1	1.1	1.9	.2	34.4	6	8 .	.22	.07	65	1.53	. 140	19.7	80.3	.59	167.5	.096			.012							
PPX - 14054	2.37	39.89	5.52	141.7	255	45.8	82.6	32559	4.26	7.3	.4	4.3	.3	37.6	. 7	9 .	31	.06	• • • •				43.5				-		.014						.02	-
PPX-14041	.91	48.29	5.83	54.5	434	26.6	11.6	862	2.01	2.1	1.0	1.6	.2	32.8	5	8 .	.21	.08	69	1.44	. 133	17.9	78.1	.61	171.5	.106	•		.013		-					
PPX-14051	1.05	314.32	8.47	117.3	641	74.6	10.1	1792	1.93	44.6	1.7	10.8	. 2	60.7	4	5 2.	39	.11		-		-	74.3		434.1				.608			.08				
GEBX-14099 STSD-4	1.22	63.09	13.59	78.3	316	21.9	9.8	1226	2.46	11.3	1.9	3.1	1.8	65.8	3	8 \$.	.80	.20	52	1.10	.088	13.5	32.9	. 69	1056.0	.067	4	1.15	.037	12	<.2	. 10	1037	.7	.03	3.6
PPX-14047	.33	45.54	4.00	37.1	79	169.0	18.6	929	2.24	1.7	.3	1.8	1.4	35.6	1	4.	19	.06	57	1.22	.059	6.1	80.9	1.48	107.9	. 169	4	1.59	.011	. 07	≺.2	.04				
RE PPX-14047	.31	42.95	3.93	35.8	79	153.9	16.5	868	2.19	1.7	.3	1.3	1.5	32.0	1	3.	.20	.06	57	1.19	.058	6.5	80.0	1.43	106.2	.118			.011					1.9		
PPX-14053	.54	63.38	4.99	46.3	159	27.2	13.1	1413	2.23	14.5	.5	3.6	.8	33.8	3	32 .	.87	.05	84	2.02	.094	13.1	76.0	.72	86.8	. 157	-	-	.012							
PPX-14046	.44	45.30	5.82	38.8	93	101.8	15.0	582	2.11	3.2	.9	2.4	1.5	26.4		lS .	.28	.06	71	1.20	.047	6.1	70.9	1.23	223.7	.136			.012					2.0		
PPX-14050	.89	68.13	5.69	85.1	280	38.2	17.7	1714	2.91	3.8	.6	3.0	.3	39.1	:۔ ا	18 .	.40	.08	93	1.77	. 124	10.2	69.8	.65	318.	.108	5	2.55	.011	. 19	<.2	.06	261	1.5	<.02	5.1
PPX-14055	5.79	33.49	6.49	121.1	266	38.5	79.4	39285	5.96	12.9	.5	2.0	.4	47.7	3.	36 .	.40	.09	122	1.39	.134	9.7	41.2	. 39	1308.0	.069			800.							
GEBX-14079	.96	134.57	6.53	76.3	130	40.3	17.4	1245	3.06	17.3	.2	4.1	.3	54.9	.:	38 1.	.78	.06	108	2.15	. 109	6.0	\$6.5	1.01	112.6	.126	_		.012							
STANDARD DS2	14.15	129.61	31.33	158.3	260	37.0	11.7	837	3.08	64.1	19.8	195.2	3.4	24.8	10.	33 9.	.02 1	10.53	72	.51	.091	13.9	156.9	.59	152.7	.082	2 2	1.64	.031	. 15	6.8	1.72	238	2.2	1.77	5.6

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT S140

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003304 800 · 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

(b)

SAMPLE#	Çş	Ge	Нf	Nb	Rb	Sc	Sn	S	Ta	Zr	Y	Ce	In	Re	Ве	Lī	Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	- %	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
GEBX~14080	1.10	1	.32	94	3.7	7 2	R	07	< 05	12 N	16.53	13 1	.03	2	4	16.9	30.0	
	1.07		<.02		5.9						98.58		.02	<1		9.2		
	2.93	.1			6.3				<.05		8.41		.02	1		11.0		
PPX-14052	-99	<.1			4.9				<.05		18.28		.03	,		14.5		
PPX-14048	.56		<.02		4.3		1.1			_	21.36			2		9.1		
117. 14443		• ,		,.,				• • •			_,,,,,		• • •	_				
PPX-14042	.48	. 1	<.02	1.10	4.2	5.6	.4	. 15	<.05	1.5	40.91	17.6	.04	5	.6	8.7	30.0	
PPX-14054	.50	-	-	.32		_	.4		<.05		33.25			<1	.6	7.4	15.0	
PPX-14041	.46		-	1.19		_	.5		<.05		38.47			6		9.5		
·	2.52		-	.46			.4		<.05	1.5	33.87	13.2	.04	3	.5	12.7	15.0	
GEBX-14099 STSD-4	.95	.1	<.02	.86	7.2	2.8	1.1	.09	<.05	1.2	10.60	26.4	.04	3	.3	10.3	7.5	
PPX-14047	1.06	.1	.05	.52	5.6	3.0	.3	.07	<.05	2.9	6.88	12.9	.03	1	.3	10.9	30.0	
RE PPX-14047	1.04	.1	.04	.51	5.5	3.0	.3	.05	<.05	2.7	6.57	13.5	.03	2	.2	9.7	30.0	
PPX-14053	1.21	.1	.13	.79	3.5	16.9	.5	. 15	<.05	7.2	39.06	11.1	.03	1	.4	14.3	30.0	
PPX-14046	.86	.1	.08	.67	4.5	3.2	.4	.05	<.05	4.5	6.97	13.7	.03	2	.2	11.7	30.0	
PPX-14050	1.25	.1	.06	.85	4.9	13.8	.5	.19	<.05	3.8	37.71	13.1	. 03	<1	.5	12.4	30.0	
PPX-14055	.85	.2	<.02	.38	3.8	8.0	4	.17	<.05		28.10			<1		8.0		
GEBX-14079	2.03	- 1			4.0		.4		<.05		32.25			2		14.8		
STANDARD DS2	3.05	.1	.05	1.35	12.6	2.7	24.4	.04	<.05	3.0	7.52	28.2	5.01	2	.5	15.0	30.0	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 30 2000 DATE REPORT MAILED: Sept 12/00

SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003304R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	LOI
GEBX-14080	11.7
PPX-14049	62.8
PPX-14045	40.0
PPX-14052	42.7
PPX-14048	38.1
PPX-14042	48.9
PPX-14054	54.4
PPX-14041	44.5
PPX-14051	69.8
GEBX-14099 STSD-4	12.4
PPX-14047	19.7
RE PPX-14047	19.7
PPX-14053	45.2
PPX-14046	27.1
PPX-14050	56.7
PPX-14055	48.7
GEBX-14079	48.5
STANDARD DOLOMITE	46.0

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Repans.

ATE RECEIVED: NOV 22 2000 DATE REPORT MAILED: Dec 4

IGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

(ISO 9002 Accredited Co.)

STANDARD DS2

852 8. HASTINGS ST. VANCOUVER DO VOA 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 /Ei-le-# A003305 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted/by: Gerry Bidwell

SAMPLEA Fe As U Au Th Sr Cd Sb 81 V Ca P La Cr Hg Ba Ti B Al Na K W Tl Ho Se Te Ga DOM \$ ppm ppm ppb ppm ppm ppm ppm pom pom 1 1 pom pom 1 pom 1 pom 1 pom 1 pom pom pom pom pom pom pom PPR-14113 2.16 166.21 11.17 32.3 48 31.4 11.1 322 8.07 11.8 < 1 9.5 1.4 11.2 .05 .40 .57 141 .76 .036 2.8 76.6 .87 117.6 .396 2.1.55 .020 .05 .6 .05 .34 4.1 .70 9.2 .43 47.04 1.62 69.9 1551.5 25.2 746 4.13 .4 <.1 1.5 .6 18.5 .13 .15 .02 141 2.54 .044 3.2 67.6 1.64 96.9 .410 6 3.54 .063 .04 .3 <.02 11 .3 <.02 10.8 94.41 287.62 17.99 20.2 230 25.7 105.1 133 15.58 44.3 1.4 25.8 1.1 5.7 .07 5.26 7.18 78 .15 .024 4.7 40.1 .22 21.5 .136 1 .59 .009 .10 1.3 .17 136 24.0 1.98 4.3 .65 108.09 1.10 51.6 17 46.5 22.6 745 5.47 8.7 <.1 1.6 .4 16.9 .05 .18 .04 134 1.37 .058 3.4 36.0 1.86 48.2 .418 3 2.61 .035 .04 .6 .02 17 .5 .02 9.4

PPR-14117 PPR-14120 PPR-14111 .77 76.1 58 45.9 19.0 484 2.70 4.5 <.1 .9 .1 19.1 .46 .63 .04 101 5.01 .037 1.3 107.3 1.15 165.5 .291 5 3.26 .036 .02 1.3 <.02 45 .4 .02 13.1 PPR-14115 PPR-14119 20.44 159.72 12.99 18.0 76 18.3 36.8 128 7.39 31.3 .4 14.5 1.9 8.2 .07 3.61 2.54 85 .17 .057 5.5 40.2 .32 143.3 .172 2 .71 .009 .21 1.2 .10 74 11.7 1.89 5.5 PPR-14112 71.53 2.58 68.0 40 28.0 22.1 795 4.75 3.5 .1 1.7 .2 13.6 .13 .39 .03 131 1.37 .066 2.9 14.6 2.04 9.9 .381 4 2.55 .091 .04 .5 .02 33 .4 .04 9.5 2.43 2225.40 7.04 186.5 410 27, D 16.0 207 5.82 2.7 <.1 1.6 .4 2.4 .29 .28 1.64 25 .35 .003 1.8 26.8 .36 20.2 .051 <1 .71 .007 .01 3.0 <.02 88 1.6 .56 3.2 PPR-14115 PPR-14118 .51 60.0 10 37.1 28.7 942 5.65 2.1 <.1 .7 .1 9.2 .03 .07 <.02 188 2.37 .081 3.0 37.5 2.26 51.6 .428 4 3.81 .035 .01 .3 <.02 <5 .1 .05 13.6 PPR-14114 57.02 1.06 53.9 22 38.8 21.7 607 3.95 1.0 <.1 1.2 .2 14.9 .09 .41 <.02 131 2.10 .058 2.9 43.0 1.44 13.4 .419 5 2.51 .050 .03 .8 <.02 29 .2 .04 9.6 RCPR-14122 .55 68.9 32 19.3 31.5 933 6.80 < .1 < .1 .6 < .1 9.5 .05 .11 .04 294 1.52 .093 2.2 5.9 1.79 73.7 .458 3 3.12 .038 .03 .2 < .02 11 .8 .08 13.5 RCPR-14125 90 49.15 1.19 54.1 18.67.0 28.6 874 4.88 .8 < 1 .7 .2 15.2 .06 .48 .02 177 2.88 .055 2.2 110.3 2.27 23.2 .382 8 3.97 .056 .03 .5 < 0.2 9 < 1 < 0.2 13.0 1.26 1561.65 7.61 1346.9 411 39.0 38.9 631 4.63 4.2 .2 3.2 .1 14.8 4.36 .66 .40 149 1.53 .049 1.4 29.3 1.33 31.7 .410 2 2.23 .158 .08 .3 .03 1337 4.0 .09 9.2 RCPR-14123 RCPR-14133 S-1 1.11 32.84 9.33 53.5 53 12.9 13.4 477 4.06 2.6 .6 1.3 3.1 47.0 .07 .08 .15 164 .46 .045 11.7 44.3 .54 98.9 .372 1 4.21 .117 .06 <.2 .13 46 .4 .04 10.9 .55 65.7 140 19.6 26.1 816 5.99 < 1 < 1 1.9 < 1 11.0 .06 .13 .02 279 1.70 .090 2.1 10.2 1.60 78.7 .439 3 2.98 .041 .02 .4 < .02 12 .5 < .02 13.3 RC28-14121 4.70 3816.96 132.50 147.4 4316 62.2 83.5 481 14.34 21.6 .5 79.7 .1 10.6 .38 8.97 5.59 137 1.44 .031 .8 46.6 .87 16.1 .351 1 2.03 .076 .08 <.2 .10 906 27.6 .52 7.9 RCPR-14124 8.83 73.7 52 26.0 13.2 655 2.26 7.7 .3 .7 3.9 4.3 .10 .14 .28 31 .24 .023 5.4 27.0 .77 106.7 .137 1 1.25 .018 .19 1.3 .03 47 .2 .07 5.6 GFBR - 14149 RE GERR-14149 8.58 73.9 157 26.5 13.2 657 2.26 7.9 .3 1.0 3.7 4.1 .11 .15 .26 31 .24 .023 5.2 26.4 .78 103.9 .136 2 1.25 .018 .18 1.3 .03 59 .2 .06 5.6 RRE GEBR-14149 .74 212.83 8.38 47.9 60 26.4 12.5 664 2.22 8.3 .3 <.2 3.7 3.2 .03 .13 .26 25 .20 .023 4.5 25.0 .76 77.8 .126 1 1.16 .009 .14 1.3 .02 21 <.1 .03 5.2 1.09 149.06 9.89 50.9 97 22.6 9.5 483 1.91 2.1 .3 .4 3.9 4.0 .07 .18 .25 22 .21 .019 9.9 24.4 .68 68.5 .126 1 1.04 .010 .13 1.3 .02 19 .1 .05 4.6 GEBR-14147 6.5 7 20.6 3.5 98 .66 .8 .3 .5 1.6 5.3 .01 .10 .02 61 .13 .013 5.4 53.9 .53 125.3 .066 <1 .39 .017 .01 4.1 < .02 <5 < .1 < .02 2.1 GFRR-14141 .18 50.4 24 27.7 21.8 761 4.80 .8 <.1 2.2 .1 10.2 .02 .11 <.02 173 2.86 .078 3.3 21.9 1.60 31.0 .324 6 3.20 .030 .01 .5 <.02 9 <.1 <.02 13.0 GEBR-14146 GE8R-14152 .58 71.5 14 36.6 32.6 1094 6.00 5.6 <.1 1.4 .1 8.2 .06 .08 .02 210 1.82 .093 3.9 50.8 2.59 36.2 .394 2 3.93 .020 .01 .2 <.02 <5 <.1 <.02 12.6 GEBR-14142 1.26 10.90 .51 8.3 3.25.0 5.4 127 .79 1.0 .3 <.2 2.9 13.8 <.01 .11 <.02 63 .23 .017 7.1 44.5 .82 301.6 .119 <1 .63 .015 .03 2.0 <.02 <5 <.1 .02 2.8 720.40 80769.70 166.19 119.5 8442 80.7 85.5 107 16.36 13.1 <1.7 79.8 1.8 4.7 .63 2.59 24.66 55 .12 .071 2.8 70.2 .42 20.8 .103 <1 .71 .004 .14 3.9 .69 184 23.5 1.63 10.1 GEBR-14148

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

13.72 125.45 32.11 152.2 253 34.5 11.7 806 3.01 57.2 18.2 199.8 3.6 25.4 10.50 9.75 10.56 73 .49 .089 14.6 154.9 .57 159.2 .086 1 1.61 .027 .15 8.0 1.78 232 2.3 2.01 5.7

Sept 14/00 SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data Ü

(d)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003305 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

7	Ň	₩.	N	
	P	ν.		N
	š	8	ı.	
8	***	×	•	1

SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	Sn	S	Ta	Zr	Y	Се	In	Re	Be	Li	Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm				ppm				gm	
PPR-14113	25	4	E 4	20	2 /					20.0								
PPR-14117	.25	.1 .1	.56		2.4		1.1				4.85			3	.1	5.5	30	
PPR-1417	.66	•			1.5		.9				12.43			<1		8.4	30	
PPR-14111		.2	.28		3.9		6.8				8.32			91		2.9	30	
PPR-14111	.38	.1	.46		1.4		.5				12.69			<1		7.7	30	
PPK-14110	2.89	.3	.28	.02	1.4	7.1	.5	.08	<.05	9.6	11.57	3.9	.03	<1	.2	12.2	30	
PPR-14119	1.05	.1	.29	.62	7.1	4.7	9.7	.34	<.05	9.0	10.48	9.6	.03	3	.2	3.5	30	
PPR-14112	1.26	.2	.18	.04	.9	4.1	.9				16.56		.04	2		18.5	30	
PPR-14115	-13	.2	.09	.11		1.9	3.1				2.32			5		5.5	30	
PPR-14118	-50	.3	.40	.05		5.7					22.43			<1		16.4	30	
PPR-14114	.78	.2	.38	.04		4.3	.8				14.72			2		11.4	30	
	1																	
RCPR-14122	.64	.2	.26	.03	.9	4.1	.7	.71	<.05	6.5	21.38	7.6	.09	<1	.2	9.6	30	
RCPR-14125	-14	.2	-41	.04	1.1		.8				19.07		.08	2		20.3	30	
RCPR-14123	.29	.1	.56	.03	2.0	5.8	26.0				14.73		.69	5		7.3	30	
RCPR-14133 S-1	1.36	.2	.72	.43	4.9	9.0	1.4	<.01	<.05	39.0	15.35	30.7	.09	<1		10.8	30	
RCPR-14121	-58	.2	.35	.04	.8	4.6	.6	-46	<.05	8.1	20.99	7.3	.08	<1		7.6	30	
RCPR-14124	7,	7	70	11	3.0		17.0	17 00	. 05		40 54	7.0			_			
GEBR-14149	.34	.3	.78 .13		6.8						10.51			1		6.5	30	
RE GEBR-14149			.13		6.5		2.0				7.52			<1		8.3	30	
RRE GEBR-14149	.77	<.1 .1	.14		5.1		2.1				7.45			2		8.0	30	
GEBR-14147		<.1			5.2						6.61			2		7.5	30	
GEDR - 14 141	.90	`	. 15	. 14	5.2	2.4	1.1	.06	<.05	3.9	8.03	20.0	.06	<1	-4	7.7	30	
GEBR-14141	-04	<.1	.09	.18	.5	1.7	.2	.09	<.05	4.1	5.55	10.0	.02	<1	.1	6.9	30	
GEBR-14146	.42	.2	.28	.06	.1	4.8	.5				19.06		.03	5		11.1	30	
GEBR-14152	.25	.2	.31	.06		7.8	.6				23.44			<1		20.8	30	
GEBR-14142	-05	<.1	.15	.23		2.5	.2				5.60			<1		10.6	30	
GEBR-14148	.75	-1		.78							4.21			177		5.3	30	
CTANDADA NOS	7 27	4	0/			~ ^	24.0			2.0	7 70	20.		•				
STANDARD DS2	3.27	- 1	.04	1.45	12.9	2.8	26.8	.02	<.05	2.9	7.70	29.4	5.62	2	.5	14.2	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150 40C

DATE RECEIVED: AUG 30 2000 DATE REPORT MAILED: Sept 14/00

SIGNED BY

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ALY L L CATO LI (ISO 9002 Accredited Co.)

E. FING T. OUVE C 1R6

ASSAY CERTIFICATE Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003305R

																							·	
SAMPLE#	Mo %	Cu %	Pb %		Ag gm/mt		Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Er %	Mg %	Al %	Na %	К %	W %	Hg %	
RCPR-14123	.001	.146	<.01	.13	<.3 <.3 3.1	.003	.004	.07	5.78	<.01	.003<	.001<	.001	<.01	2.19	.049	.003	1.52	3.07	.42	.15<	.001<	.001	
	.065	7.029	.02	.04	4.8	.004	.007	.01	14.79	<.01<	.001<	.001<	.001	<.01	.13	.050	.005	.43	1.05	.01	.34	.013<	.001	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK PULP

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003305R2 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	\$102 %	Al203 %					K20 %	Ti02	P205 %	Mn0 %	Сг203 %	Ва ррпп_			LOI %	TOT/C %	TOT/S %	SUM 	
PPR-14113	58.10	8.89	15.45	2.94	3.70	1.96	.56	1.21	.11	.08	.024	367	32	20	6.7	.32		99.77	
PPR-14117	50.58	14.35	9.64	5.62	8.53	2.72	.47	1.58	.15	.17	.026	228	73	33	6.1	.48		99.98	
PPR-14120	58.51	4.30	23.62	.77	.52	.62	1.01	.39	.06	.02	.011	496	37	9	10.1	.28	8.29	99.99	
PPR-14111	52.84	12.33	11.29	5.67	7.38	2,65	.27	1.57	.17	.15	.026	162	60	31	5.4	.12	.04	99.78	•
PPR-14116	49.34	14.46	8.20	4.54	16.69	1.28	.ūŝ	1.18	.12	. 19	.027	192	59	27	3.7	.24	.11	99.84	-
PPR-14119	71.94	6,20	11.81	1.13	.50	.25	2.04	.54	.18	.02	.018	905	23	14	5.4	.23	.35		
PPR-14112	50.30	15.02	11.06	6.26	7.29	4.17	.63	1.83	.22	.17	.010	138	33	32	2.9	<.01	.22	99.88	
PPR-14115	79.36	2.47	9.10	.80	1.05	.33	-05	.16			.008	57	21	4	6.0	.03	5.08	99.37	
PPR-14118	48.91	14 70	11.33	6.25	8.43	3,65	- 12				.014	183	38	38	3.8	.07	.03	99.69	
PPR-14114	51.18										.024	114	61	37	3.2	.03	.10	99.72	
RCPR-14122	46.78	14.53	14.25	5.46	7.21	4.10	.20	2.87	.20	.24	.003	229	<20	32	3.6	.01	.87	99.47	
RCPR-14125	48.54	15.13	11.11	6.81	8.78	3.44	.21	1.72	.16	.18	.035	120	88	39	3.5	.04	.03	99.64	
RCPR-14123	51.31	14 13	12.11	5.42	7.23	4.18	.40	1.91	.15	.16	.018	105	49	33	2.7	.01	1.25	99.74	
RCPR-14133 S-1	53.45	18.29	8.78	2.27	3.93	3.01	1.14	1.35	.12	.13	.011	359	<20	23	7.2	.64	.02	99.73	
RCPR-14121	48.54	14.50	13.18	5.44	7.52	4.29	.18	2.60	.24	.23	.006	222	<20	34	3.3	.01	.57	100.06	
RCPR-14124	34.93	10.74	27.36	3.36	6.12	1.64	.44	1.66	.11	.11	.020	113	<20	27	13.0	.05	15.19	99.51	
GEBR-14149	82.50	6.81	4.06	1.59	47	.66	1.30	.46	.04	.09	.090	602	20	9	1.8	.01	.05	99.94	
RE GEBR-14149	82.54	6.87	3.98	1.60	.47	.63	1.28	.46	.03	.09	.009	603	<20	9	1.8	.01	.06	99.83	
RRE GEBR-14149	82.78	6.78	3.82	1.54	.38	.57	1.28	.43	.08	.09	.007	610	20	10	1.8	.01	.04	99.63	
GEBR-14147	82.72	7.19	3.37	1.48	.45	.72	1.48	.46	.03	.07	.008	650	<20	10	1.8	<.01	.07	99.85	,
GEBR-14141	92.10	3.05	1.06	.99	.30	1.12	.08	.20	.02	.01	.011	208	21	_	.9				
GEBR-14146	48.74											146	30	37	3.5			99.80	
GEBR-14152	49.01	14.92	12.02	6.43	7.38	3.34	.12	2.28	.21	.20	.015	134	37	41	3.8	.04	-01	99.75	
GEBR-14142	86.48									.02	.011	669	29	8	1.1	.03	.11	99.74	
GEBR-14148	54.78	4.00	22.21	.87	.37	.16	.41	.28	.05	.02	.023	406	120	6	12.2	.04	12.35	95.43	
STANDARD SO-15/CSB	49.53	12.40	7.32	7.25	5.87	2.40	1.81	1.76	2.70	1.39	1.059	2000	79	12	5.9	2.40	5.37	99.62	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.

TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003305R2 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell

SAMPLE#	Со	Cs	Ga	Нf	Nb	Rb	Sn	Sr	Ta	Th	Τί	U	٧	W	Zr	Y				Nd ppm	Sm	Eu	Gd ppm	dt ppm	Dy ppm	Ho ppm		Tm ppm	dY ppm	Lu ppm
	bbu	ppm	ppm	ppm	ppm	ppm	ppm	bbm	bbu	ppm	ppm	ppm	ppiii	ppiii	- ppii	ppm	ppm	Phu	ppiii	PMII	Phil		- Physis	PP	PPIII	PPIII	PPIII	PP	FF	- FF
PPR-14113	19.4	O	1/. 3	3.4	4 0	10 4	2	119.5	. 4	2.7	<.1	.6	234	2	131.1	17.7	7.9	18.1	2.18	8.6	2.2	.73	2.60	.44	3.04	.69	2.11	.29	2.08	.33
PPR-14117	43.3			2.9			_	129.4		1.4	<.1	.3	317	<1	114.6	31.0	7.1	19.3	2.63	12.1	4.0	1.45	4.83	.88	5.42	1.26	3.62	.50	3.47	.53
PPR-14170	130.7							27.6		2.0	.2	2.3	125	4	65.0	13.9	8.5	20.8	2.26	9.1	2.3	.73	2.42	.39	2.39	.53	1.59	.24	1.69	.27
	38.3							220.9	.3	9	.3		292		117.5	31.6	6.6	18.2	2.63	12.1	4.0	1.45	4.98	.91	5.55	1.28	3.78	.51	3.55	.55
PPR-14111	32.6							54.5	.2	.3				6	77.ó	24.6	4.1	10.9	1.70	6.6	3.1	1.18	3.82	.69	4.17	.96	2.85	.36	2.57	.36
PPR-14116	32.0	3.5	20.0	۷.۱	2.4	3.1	٠,	24.2			٠. ١	•••	220	·	,,,,	_,,,		,												
PPR-14119	40.8	3 1	17 5	2 7	5 1	58 3	10	24.6	.5	3.4	<.1	1.7	218	6	100.5	17.6	10.4	21.2	2.70	10.9	2.8	.77	3.09	.49	2.93	.67	2.13	.30	2.31	.40
	36.5							251.2	.3	.5		. 4	305	ŭ	120.8	37.2	5.4	16.3	2.56	13.0	4.4	1.58	5.53	.99	6.11	1.40	4.18	.57	3.93	.62
PPR-14112	16.9			.7				18.2		1.0		.2	31	5	25 5	5 1	4.5	12.5	1.26	5.2	1.2	.42	1.16	.18	1.01	.23	.64	.09	.57	.08
PPR-14115								106.6	.3	.3		.2	320	1	129.8	38.7	5 7	17 7	2 77	13.8	4.9	1.87	5.98	1.06	6.80	1.57	4.34	.60	4.18	.65
PPR-14118	36.9			3.6				121.6	.2	.2	.1	<.1	289	, ż	102.7	32 6	4 2	12 0	2 00	11 2	3.0	1.42	4.90	.85	5.30	1.28	3.66	.51	3.43	.51
PPR-14114	37.3	.8	14.7	2.8	2.1	4.5)	121.0	٠.		. 1	٠.١	207	,	102.1	32.0	4.2	12.7	2.07	11.2	3.,		***	•						
4/400	/= 3	-7	20.2	, ,	, 1	1 3	1	175.9	.3	_3	1	<.1	483	2	174.8	52 2	6.4	20.6	3.38	17.8	6.1	2.44	7.92	1.36	8.95	2.04	5.91	.82	5.56	.83
RCPR~14122	45.3			4.6				116.3	.3	.2			306	5	102.9	33 4	4 0	12 3	1 99	10.8	3.9	1.31	4.84	.91	5.87	1.35	3.83	.51	3.50	.56
RCPR-14125	42.2			2.7				154.2	.2	.2			327	3	109.5	35.5	4.0	13.5	2 21	11.8	4.2	1.44	5.50	-98	6.25	1.49	4.19	.56	3.94	.63
RCPR-14123	51.6			3.0				335.1	.6		2		177	3	192.6	28 1	10 8	50.2	5 84	23 0	5.8	1.74	5.36	-81	5.13	1.10	3.21	-44	3.10	.47
RCPR-14133 S-1				4.9				160.2	.3	.3			413	-1	166.7	47.6	6.0	10 2	3 13	16 4	6.0	1 89	7.27	1.26	8.42	1.93	5.34	.74	5.11	.76
RCPR-14121	3/./	. /	18.9	4.3	3.0	3.3	'	100.2			١.١	• 1	413	` ' '	100.7	41.0	0.0	17.2	3.13	,	•••	,,,,,				–				
nenn 4/42/	00.7		16 1	2.6	2 4	0 1	7/	118.3	2	7	<.1	1.6	263	<1	98.2	25.2	3.5	10.6	1.66	8.6	3.0	1.10	3.77	.65	4.39	1.01	2.88	.40	2.76	.44
RCPR-14124	98.3			3.7			_	17.7			<.1		68	8	141.2	14 8	17.0	46.0	4.39	16.2	3.7	.70	3.17	.47	3.02	.57	1.77	.25	1.73	.27
GEBR-14149							_	17.3			<.1		64	3	141-4	14 4	16.5	44.6	4 34	16.2	3.8	.71	3.08	.46	2.84	.58	1.72	.24	1.72	.26
RE GEBR-14149				3.4				15.7			<.1		62	7	143.1	14 6	16.6	45 8	4.37	16.7	3.8	-68	3.24	.44	2.94	.59	1.80	.24	1.78	.27
RRE GEBR-14149				3.6							<.1		63	7	129.9	15 1	16.7	46.5	4 40	16.4	3.5	.72	3.20	.47	3.07	-62	1.81	.24	1.77	.26
GEBR-14147	10.9	2.6	11.8	3.3	0.8	49.7	3	21.9	. 5	2.7	\. I	1.4	63	,	127.7	17.1	10.1	40.5	4.40	.0.4	3.5	•••	5.20	• • • • • • • • • • • • • • • • • • • •		•				-
41414	١,,		٠,	4 7	7.0	2.0	-1	20 4	7	2 /	<.1	1 0	72	6	51.8	10.2	0.5	10 8	2 52	9.6	2.1	.36	2.12	-29	1.89	-41	1.16	.16	1.05	.16
GEBR-14141	4.1			1.3			-	28.6						4	130.8	70.2	5 9	17.0	2 7/	16.3	4 0	1 60	6 00	1 06	7.36	1.57	4.40	.58	4.10	.60
GEBR-14146	36.4			3.6			•	107.3	.3		<.1			0	153.7	37.3	7.0	20 4	7 /0	17.3	4 1	1 86	7 28	1 21	8 54	1.84	5.21	.74		
GEBR-14152	43.3			3.9			-	80.9	.4	.4		.2	361	4	173./	40.0	15 5	72.0	7 24	14 - 4	7 1	57	2 00	40	2 61	57	1.57	.21	1.55	.23
GEBR-14142	6.3			2.4			•	102.0				1.4	102	3	00.7	13.5	10.0	32.9	1 12	/ 2	1 1		1.0/	1/	60	21	.62	.09	.64	.09
GEBR-14148	35.2	.9	9.7	1.0	1.7	13.4	61	12.5	.1	1.3	.3	.7	59	4	41.5	5.2	4.5	9.0	1.12	4.2	1.1	. 50	1.04	. :4	. 77	!	.02	.07	.04	.07
					70.6			705 5	. ,	2/ 7	,	20.0	1//	21	1028.7	22.0	20 /	40 1	6 11	22 0	4.3	1 01	3 05	58	3.76	.70	2.42	.34	2.49	.40
STANDARD SO-15	21.9	2.8	16.2	22.3	30.8	8.00	18	395.5	1.6	24.1	.6	20.0	144	41	1028.7	22.0	20.4	00.1	0.11	22.9	4.3	1.01	3.73	٥ر.	2.70			.54		

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ATE RECEIVED: NOV 22 2000 DATE REPORT MAILED: Dec 8/0

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(b)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003305R2 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

12:00		
3,2		20

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
PPR-14113 PPR-14117 PPR-14120 PPR-14111 PPR-14116	2.6 .8 106.6 .9 2.6	153 38 265 93	12 <3 17 <3 <3	34 86 20 54 98	47 77 30 73 73	14 3 42 10 4	.2 .4 1.0 .4 .6	<1 7 <1 7	1 <1 9 <1 <1	
PPR-14119 PPR-14112 PPR-14115 PPR-14118 PPR-14114	22.0 1.1 2.4 .7 1.2	181 60 2224 7 49	12 <3 6 <3 <3	13 86 187 71 80	21 48 30 49 66	37 3 2 2 2	.5 .4 .3 .3	5 2 <1 2 1	5 <1 <1 <1	
RCPR-14122 RCPR-14125 RCPR-14123 RCPR-14133 S-1 RCPR-14121	.6 .9 1.4 1.8	28 43 1440 28 33	<3 <3 7 11 <3	85 80 1213 82 88	25 90 56 16 27	<2 2 3 4 <2	.3 4.4 .2 .5	3 1 1 1	<1 <1 <1 <1	
RCPR-14124 GEBR-14149 RE GEBR-14149 RRE GEBR-14149 GEBR-14147	6.4 1.3 1.2 1.3	3364 276 294 237 173	137 8 9 8 10	182 78 79 50 54	79 28 29 27 24	7 10 10 10 4	.9 .3 .2 <.2	28 <1 1 <1 <1	6 <1 <1 <1	
GEBR-14141 GEBR-14146 GEBR-14152 GEBR-14142 GEBR-14148	3.4 .8 <.5 1.7 680.8	10 <1 266 11 99999	<3 <3 <3 <3 136	3 59 94 8 90	20 44 46 26 60	<2 <2 <2 <2 <2	<.2 .4 .5 <.2 1.5	1 3 1 <1 6	<1 <1 <1 <1 16	
STANDARD CT3 STANDARD G-2	26.2 2.4	69 2	39 21	180 48	39 8	60 <2	20.6	21	22 <1	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK PULP

DATE RECEIVED: NOV 22 2000 DATE REPORT MAIL

....Q. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS SIGNED BY

(ISO 9002 Accredited Co.)

SOL E. MASTINGS ST. VANCOUVER BC VOM IRO

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003480

Ba Ba		. W. W. W					80	0 - 7	00 W.	Pende	er St	., Ve	incol	ver	BC V60	1 G 8	รน	omit!	ted t	by: G	ierry	8 idwe	ell								_		•
SAMPLE#	Mo ppm	Cu ppm			.5	Ni ppm			Fe %		U ppm			Sr ppm	Cd ppm	Şb ppm	B1 ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррт		B ppm	Al %	Na %	K Wi %∶ppm		Hg So ppb ppr	_	e Ga n ppm
PPD-18220 PPD-18190 PPD-18210 PPD-18186 PPD-18219	.60 .46 .53 .27	41.72 56.21 52.27	9.58 12.17 4.16	66.5 57.5 68.6 44.9 74.0	36 53 16	46.4 55.5 44.7	21.2 15.5 17.7 16.1 21.8	589 741 735	3.38 3.18 3.26 2.75 4.15	9.2 5.3 8.7 4.1 5.4	.6 .5 .6 .3	2.0 5.6 3.2	4.1 5.2 2.1	16.0 14.6 20.4 16.8 25.0	.16 .16 .16 .09 .23	.74 .43 .64 .41 .40	.13 .17 .06	92 84 100	.67 .77 .95	.058 .079 .045	15.0 18.1 7.9	67.8 68.9 54.5	.90 .93 1.02	325.0 215.4 297.3 525.7 320.8	.225 .207 .292	1 2 1 1 2 2	.03 .92 .13	.009 .010 .013	.05 <.2 .04 <.2 .05 <.2 .03 <.2 .07 <.2		66 15	3 .03 3 <.03 3 <.03	4 5.9 3 5.8 2 5.5 2 6.2 2 8.1
PPD-18208 PPD-18216 PPD-18224 PPD-18226 PPD-18183		138.52 157.28 59.58	15.91	89.6 92.6	46 25 66	56.8 54.4 55.4	16.6 27.6 32.2 29.6 27.6	1387 929 913	2.98 3.81 3.56 4.58 3.80	8.1 12.7 4.5 6.7 6.7	.4 .6 .3 .5	8.4 4.0 1.4	4.6 2.1 3.7	21.1 15.6 17.0 17.2 21.7	.16 .15 .13 .17 .15	.60 .84 .46 .54	.20 .07 .14	100 127 144	.73 1.22 .84	.074 .030 .039	18.3 7.7 14.6	67.9 58.6 77.3	1.17 1.16 1.70	258.2 432.4 190.9 182.4 219.0	.221 .376 .379	1 2 2 2 1 3	.08 .46 .16	.009 .022 .009	.05 <.2 .04 <.2 .03 <.2 .05 <.2 .03 <.2	.04		4 .08 3 .03 4 .03	2 5.2 8 6.1 2 7.5 7 8.8 2 7.6
PPD-18188 PPD-18203 PPD-18209 PPD-18199 TILL-3 PPD-18218	.17 .40 .45 .66 .40	67.63 61.25 20.98	9.36 18.67	38.2 73.1 58.9 46.8 69.8	38 43 1515	57.0 62.1 32.5	19.0 22.2 10.5	795 908 326	2.37 3.99 3.20 1.85 3.27	5.2 12.3	.2 .5 .6 1.3	3.2 6.6 4.1	3.4 4.1 3.1	63.6 21.7 17.8 16.7 40.8	.10 .20 .13 .10 .25	.23 .38 .82 .70 .47	.12 .13 .32	118 82 35	1.04 .83 .47	.071 .079 .045	12.9 15.0 14.3	83.0 75.2 64.4	1.21 1.05 .60	125.7 325.0 320.0 44.1 429.1	.279 .207 .063	2 2 1 1 4 1	.68 .86 .05	.014 .009 .018	.05 <.2 .07 <.2 .04 <.2 .08 .2 .11 <.2	.04 .03 .05	119 .	3 .00 3 .00 2 .00	2 5.1 3 7.7 3 5.2 2 3.7 4 6.4
PPD-18239 PPD-18191 PPD-18205 PPD-18240 PPD-18228	.76 1.20 .41 .36 1.88	94.47 60.71	5.96 4.69	69.5 72.9 55.6	37 77 27	61.0 53.6 51.2	23.2	824 872 826	3.63 4.10 3.80 4.15 3.38		.7 .5 .5 .3 4.3	13.0 2.1 5.3	3.5 2.5 1.7	12.4 20.2 44.2 16.3 24.5	.27 .14 .25 .12 .82	.29 .98 .33 .33	.17 .09 .07	103 106 151	.70 1.82 1.03	.078 .070 .033	9.3 7.8	52.6 63.7 86.6	.98 1.59 1.37	97.5 231.2 280.6 265.7 318.8	.212 .254 .394	1 1 2 2 2 3	.96 .45 .16	.009 .026 .016	.03 <.2 .03 <.2 .09 <.2 .03 <.2 .05 <.2	.04	26 . 29 . 25 .	6 .1 4 .0 2 .0	2 5.9 1 5.9 4 7.8 4 9.2 3 4.8
PPD-18206 PPD-18192 RE PPD-18211 PPD-18211 PPD-18225	.48 .46	59.99 310.95 82.21 78.43 316.29	11.77 8.12 7.80	58.3 55.4	102 78 76	73.8 79.5 76.1	57.6 29.3 28.0	1223 1154 1099	3.81 4.04 3.72 3.49 3.87	13.9 16.6 16.0	.5 .7 .5 .5	6.1 8.9 11.7	3.7 4.0 3.8	43.6 21.6 18.3 16.8 19.1	.21 .18 .12 .13 .29	.33 .60 .90 .86	.24 .11 .10	104 91 86	.97 .84 .79	.078 .080 .077	13.8 15.7 14.8	83.7 91.5 87.3	1.09 1.33 1.27	281.9 287.5 299.2 288.6 215.7	.256 .202 .189	1 2 1 2 2 1	.46 .06 .97	.013 .009 .009	.09 <.2 .05 <.2 .03 <.2 .03 <.2 .04 <.2	.04 .03 .03	60 73	5 .0 3 .0 3 .0	2 7.7 4 6.9 3 5.8 2 5.6 2 7.7
PPD-18201 PPD-18227 PPD-18189 PPD-18212 PPD-18223	.51 .56	59.70 127.46 39.65 34.83 161.75	8.76 9.18	143.0 55.0 56.8	59 40 35	83.8 54.6 41.8	33.8 17.9 22.6	1365 653 715	3.73 5.09 2.99 2.91 3.35	11.3 6.7 6.0	.5 .5 .5	2.1 1.7 2.6	2.6 3.9 3.3	17.9 29.5 12.4 12.7 11.9	. 48	.40 1.33 .43 .42 .54	.22 .10 .10	138 : 76 82	1.14 .57 .64	.146 .060 .069	15.8 13.6 13.1	116.8 60.4 51.8	1.93 .93 .79	276.2 306.2 188.4 133.4 82.9	.251 .194 .219	<1 2 1 1 1 1	.89 .89 .79	.010 .007 .008	.06 <.2 .06 <.2 .04 <.2 .04 <.2 .02 <.2	.06 .03	115 24 41	9 .00 4 .00 4 .00	2 7.1 6 8.5 2 5.1 2 5.0 2 6.8
PPD-18204 PPD-18187	. 47		5.84 3.10	77.0 44.9	85 127	57.4 47.2	24.5 20.5	940 639	4.01 3.16	5.1 4.7	.6 .3	1.9 2.2	2.5 1.2	45.2 16.4	.26 .10	.30	.09 .06	108 106	1.88 .86	.071	9.1 6.7	69.1 59.0	1.70 1.04	157.4 294.6 296.1 149.9	. 250 . 287	2 2 1 2	.55 .67	.025 .013	.03 .5 .09 <.2 .02 <.2 .15 7.3			5 .04 4 .03	

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: TILL S230 40C

Pept 21/00 SIGNED BY : / D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 💛 FA

Page 2 (a)

Ą	V	Δ	
		L	
Œ	AWA	YTIO	T,

ACHE ANALYTICAL																												N:-	N 11	T)	Ua 4		ro ·	Ga
SAMPLE#	Мо	Cu	Pb		Ag		Co							Sr		\$b			Ca %		La ppm	Cr ppm	Mg %	Ba ppm		B pom	Al %	Na X	K W % ppm	וו מסמ נ	ng: Iddoo	se om bl	om p	Din
	ppm	ppm	ppm	ppm	ppb	ррm	bbw	ppm	X	ppm	bbw	ppo	ppm	ърт	ppm	ppin	ppm																	
PPD-18207	.51	60.65	11.25	82.6	110	57.5	21.6	825	3.81	7.2	.7	2.2				.48	.14	90	1.26	.080	11.9	64.9	1.52	326.7 162.3	.179	2 2	2.26	.014	.12 <.2 .04 <.2	.04	47 37	.4 <.1	02 6 03 5	.9
PP0-18213	.54	31.23	7.89	57.1	58	40.4	16.2	466	2.86	4.7	.5	6.7				.35	.11	84	.56	,007	12.5	34./	./0	205.0	.130		1.05	012	.03 <.2	02	30	.2 .	03 5	.8
PPD-18194	.43	81.57	5.31	53.9	58	40.6	21.7	660	3.07	6.7	.3	2.5			. 14		.08	90	.52	.000	6.0	44.3 E2 6	. 90	205.0 461.9	250	2 :	1 80	012	.02 <.2	02				
PPD-18185	.24	56.07	4.38	41.2	26	43.6	15.7	910	2.71	4.6	.2	5.2				.36	.05	100	.87	.041	12.7	75.0	1 15	319.2	262		2 50	010	.11 <.2	04	46	.3	02 7	.2
PPD-18202	.45	61.55	9.76	69.6	19	53.3	19.6	795	3.81	6.5	.5	4.3	4.2	17.5	. 16	. 40																		
PPD-18222	.41	79.37	3.83	100.0	134	44.6	24.2	599	3.57	4.7		3.9				.43	.06	123	.90	.049	4.3	58.8	.93	94.0	.345		2.73	.012	.02 <.2	.03	50 18 <	.3 <. 1	02 7 02 8	7.0 8.8
PPD-18181	.14	68.49	8.44	74.5	17	187.1	41.8	1143	4.67	6.0	.3	1.1				.34	.13	121	.60	.034	13.0	335.4	3.00	859.2	. 200		2.02	006	.04 <.2	.03	73	7	08 10	1.1
PPD-18229	1.62	96.63	6.94	105.6	641	78.4	50.2	1298	5.88	5.6	.6	6.3				. 47	-09	159	.86	.050	0.1	94.9	1.9/	309.6	.323		2.55	021	.07 <.2	.03	28	4	03 8	3.0
PPD-18214	.36	59.85	5.77	74.3	85	53.0	22.1	794	3.97	4.8	. 4			43.0		.30	.10	113	1.80	.0/1	0.0	01.0	1.50	246.1	.203		2.40	006	.05 <.2	06	52	.3 .	02 7	7.1
PPO-18238	.58	40.91	14.55	67.9	47	47.7	25.2	645	4.12	6.5	.6	3.0	4.8	18.1	.20	.43	.16	98	.48	.041	16.0	59.6	1.04	118.3	.224									
PPD-18195	52	91.84	11.74	68.7	25	51.3	21.3	923	3.22	7.7	.5			15.3		.50	.14	91	.66	.076	12.9	55.8	.94	527.7	.216	1	1.99	.009	.04 <.2	.05		.3 .		
PPD-18215	.42	60.81	8.77	58.0	38	41.8	16.6	699	2.70	6.2	.4			16.5	_	.45	.12	72	.66	.080	12.1	42.2	.80	2/1.8	.1/6	7	1.44	000	.04 <.2	.03	20	.2 .		
PPD-18197	.36	57.08	5.96	55.0	15	47.0	25.2	963	3.96	12.0	.3			14.6	_	.64	.07	111	.75	.052	9.9	61.3	1.33	364.4	. 454	_1 _1	2.24	000	.03 <.2	.03	20			
PPD-18182	.12	64.58	5.45	57.8	9	243.7	44.1	866	4.01	3.8	.2	1.5			.06		.09	102	.60	.037	9.4	424.5	3.18	2202.2	.1/2	1	4 10	011	.03 <.2	.05	30	.2 .	02 10	1.2
PPD-18230	.36	118.12	7.35	89.8	17	86.1	54.5	1395	5.62	3.9	.5	1.5	3.0	28.3	.23	.27	.10	160	.85	.050	1.4	125.1	3.11	2298.3	.4/4				.06 <.2					
PPD-18221	39	79.51	3.42	106.7	182	46.3	24.9	650	3.75	4.4	.3	3.5	1.2	13.4		.45	.05	143	1.26	.051	5.8	64.1	1.02	104.7	.408		3.12	.022	.02 <.2	.02	61	.3 .	02 8	8.0 6.3
PPD-18196	.51	69.62	9.87	64.2	17	54.3	27.8	978	3.37	7.8	.5	4.8				. 49	.13	105	.85	.073	15.3	59.9	1.04	328.0	.2//		2.34	.012	.12 < .2	.04	E3	.2 .		
PPD-18232	.51	104.60	8.45	98.1	112	72.3	37.1	1248	5.26	5.8	.5			38.6		.56	.13	159	1.30	.083	10.3	103.7	2.26	366.9	.404		3.29	121	.07 .2	.00				
PPD-18133 S-1	1.05	28.68	9.78	53.3	48	12.5	13.1	497	4.28	2.1	.7			52.8		.08	.16	168	- 53	.046	12.6	43.4	1.00	98.2	.3//		2 07	007	.08 <.2	.13	64	3	04	6.0
PPD-18198	1.05	114.03	27.46	116.1	48	70.6	22.0	1792	3.59	13.0	.9	2.6	9.8	19.4	.17	1.05	.32	74		.0//	34.8	55.1	1.09	278.0	.107									
PPD-18231	33	91.66	8.33	84.3	31	57.3	33.9	1108	5.34	4.5	.4	9.2	2.7	29.7		.35	.10	172	1.38	.064	9.7	91.0	2.29	256.0	.520		3.23	.011	.13 < .2 .12 < .2	.05	40 35	.3 .	02 10	0.5 a n
PPD-18237	53	51.87	16.72	85.2	22	53.5	33.2	1048	4.27	7.0	.6			28.3		.59	.18	120	.84	.070	18.6	66.4	1.35	176.5	.303		2.74	.011	.04 < .2	.05	43	٠٠ .	02	7 2
PPD-18184	32	65.35	4.55	52.8	15	55.8	19.1	775	3.60	5.5	.3			26.4		. 47	.07	123	1.20	.044	9.3	72.9	1.26	638.7	.300		2.49	.019	.07 < .2	.03	43	۰۲ - ۲۰	02	R 2
PPD-18217	41	59.18	7.21	72.3	81	60.2	25.0	1044	3.97	7.0	.4			26.6		. 43	. 10	129	1.40	.062	10.9	69.0	1.53	407.4	.310		2.00	.019	.11 <.2	.04	23 45	.2 .	102 1	R A
RE PPD-18217	.40	59.05	7.07	71.2	80	59.6	24.2	1034	3.93	6.6	.4	2.4	3.0	25.8	. 17	.41	.10	128	1.39	.063	10.8	68.2	1.51	403.3	.307									
000 10005	42	60.96	10 57	73 2	58	51 7	28.1	983	4.56	4.0	.6	1.5	3.9	28.6	.15	.35	.14	124	.85	.045	16.9	72.3	1.73	242.1	.306		3.07	.008	.06 < 2	.05	39	.3 .	.02	8.9
PPD-18235	.42 on	118.09	20 10	111 1	53	50 0	23.6	1750	3.78	11.8	.6	10.0				.78	.47	106	. 85	.064	21.1	70.5	1.15	320.4	.249		2.33	.012	.11 <.2	.06	48 60	، ئ.	10	0.0
PPD-18200 PPD-18236	.00	80.16	6 34	82 0	54	50.4	31.9	912	5.09	4.3				28.4	.21	. 37	.09	155	. 87	.065	9.5	73.1	2.00	199.1	.441	1	3.41	.007	.06 < .2	.05	08	.4 .	02	5.0 0.0
PPD-18236 PPD-18234	.55	84.88	17 60	105.3	18	75.9	29.6	1010	4.91	8.2	.8	2.1	7.9	31.9	.20	.71	.23	122	.80	.073	25.4	95.0	1.66	423.8	.272	1	3.26	.010	.26 < .2	.09	73	.ა .	.02	7 O
	.09	48.30	4 91	52.2	88	48 8	21.9	732	3.62	4.0		4.7	1.7	14.5	.14	.40	.06	133	1.19	. 054	7.6	62.4	1.08	159.9	.374	2	2.78	.019	.03 <.2	.02	33	.5	.02	7.3
GSMD-18108																						45.0		142.0	250	,	2 17	016	.04 .5	ກາ	24	2	02	6.4
GSMD-18119	.27	27.21	4.38	31.3	24	38.5	15.3	421	2.16	1.0	.6			15.0		.15		79	.84	.038	12.9	45.9	.9/	143.9 149.9	122		2.17	.010	.02 <.2	.02	28	.2	.02	7.7
GSMD-18106	26	79.86	3.05	83.1	15	35.8	18.1	716	3.44	1.8	.2			17.7		.43	.04	139	1.45	.035	0,4	110 1	1.09	552.4	442		3 83	.024	.08 <.2	.04	44	.3	03 1	2.1
GSMD-18111		+0 =4		00 0	10	72 4	27 4	1105	E 40	A 1	2	5.9	2.0	27.0	.12	.34	.09	188	1.55	000) 9.0) 15.4	154 0	50	156.5	በጸነ		1.62	.028	.14 7.4	1.90	244	2.2 1	.90	5.8
STANDARD DS2	13.95	127.70	34.26	155.4	279	35.7	11.6	823	3.04	59.5	23.8	209.2	3.7	26.1	10.82	9.62	11.19	/5	50	.005	15.4	104.3	. 59	156.5	.001									

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA

Page 3 (a)

ACPE ANALTITUAL																												~~~~~			===	·	
SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm p		i Co		Fe %	As ppm	U ppm		Th ppm		Cd ppm	Sb ppm	Bi ppm	V Dpm	7-			Cr ppm	Mg %	Ва ррт	Ti %	8 ppm	Al X	Na %	K W		Hg ppb (Te ppm	Ga ppm
GSMD-18117		80.83									12.5			.13	.51				. 047				290.4 418.3					.05 <.2 .07 <.2				.02 1	
GSMD-18110		70.57							2.8	.3			19.0	. 09	. 28																		
GSMD-18105	.24	132.54	2.42	86.7	14 52.	2 51.4	1466	5.92	.8	.3	.8	1.3	40.4	. 13	.19				.063				107.9		_			.05 <.2				.02 1	
GSMD-18116	.32	43.83	3.98	59.6	38 43.	3 20.4	752	3.64	2.5	.3	3.2	1.5	19.6	. 11	. 34	.06	149	1.19	.040	6.9	70.7	1.11	194.7	.459	2 2	2.86	. 025	.04 <.2	.02	35	.2	.02	8.2
GSMD-18109	34	70.82	£ 17	65.2	18 53	8 24 0	1004	4 30	3.6	3	6.1	2.0	20.0	.13	.38	. 07	170	1.18	.034	7.8	86.3	1.59	306.8	.493	2 3	3.34	.020	.05 <.2	.03	34	.2	.04	9.8
G2UD-1910A	.54	10.02	5.17	05.2	10 33.	0 24.0	1004	7.00	5.5	.0	0.2		20.0		.00																		
					70 70			. 10		_	~	^	10.4	07	20	0.7	2000	2 14	nee	1 6	101 0	2 42	139.4	620	2 /	4 67	021	.01 <.2	02	วถ	2	05.1	â 5
GSMD-18103		103.13							1.2	.2			16.4	.07	. 39																		
GSMD-18120	.22	81.83	4.58	54.5	12 40.	9 16.0	722	3.23	.5	.3	1.2	2.3	26.8	.06									226.7					.04 .2		36		.02	
GSMD-18104	.74	27.52	5.85	57.0	53 31.	1 15.2	317	3.39	6.2	. 4	3.6	2.6	12.1	.11	.39	.11	111	49	. 047	11.3	54.5	. 55	92.4	. 259				.03 <.2			.3	.02	
GSMD-18112		42.84								.3	3.4	1.4	14.9	.20	.38	.06	147	1.10	.021	5.5	68.0	.98	183.2	.473	2 3	3.11	.021	.03 <.2	.02	45	.3	.03	8.0
1		61.79											15.0	.09		ne.	156	1 36	040	6.3	70 O	1 27	181.2	473	3 3	3.09	.031	.04 < .2	. 02	17	.3	.02	8.9
GSMD-18118	. 29	01.79	4.19	50.1	10 50.	\$ 22.5	020	3.71	2.5	. 2	0.0	1.,	13.0	.00	.01	.00	, 150	1.00		0.0	, ,		101.0	•						-	-		
		CO 04	4 04	50.6	14 61	1 22 4	040	2 00	2.0	2	1.4	2 0	15 0	.10	.37	٥	150	1 /1	0/1	6.7	72 Q	1 30	186.9	484	3 :	3 15	031	.04 <.2	03	19	.2	.02	9.2
RE GSMD-18118		62.94																										.03 <.2					
GSMD-18115	.47	67.74						3.37		.4			13.7	. 09									133.4										
GSMD-18107	. 26	41.18	3.39	56.3	33 45	1 19.8	691	3.76	2.1	.3	5.2	1.6	16.2	.11	. 23								196.7					.03 <.2					
GSMD-18101	33	42.90	2.82	55.9	24 44.	0 23.2	848	3.96	.9	.3	2.4	1.2	23.5	.10	.32	. 04	170	1.89	.044	5.5	72.2	1.38	338.5	. 550				.03 <.2					
GSMD-18114	60	65.98	5 74	66.6	71 49	6 23 8	462	3 62	7.6	. 5	20.4	3.7	12.1	.10	.46	. 09	125	. 67	.053	14.4	57.1	.90	117.3	. 334	2 2	2.97	.014	.03 <.2	.03	56	.3	.03	6.9
431:0-10114	.00	03.90	3.74	00.0	11 75.	0 20.0	, ,,,,	0.04										_															
	22	40.00	2 02	C7 2	20 44	1 22 0	000	2 00	1 0	.3	1 /	1 2	24.0	12	.32	0/	1 175	1 94	043	5.6	73 3	1 38	338.5	564	3 2	2.95	.029	.03 <.2	<.02	20	.3 <	<.02	9.8
GSMD-18102		42.00																			21.9		12.4					.04 < .2					
GSMD-18113		16.55					_	3.01		7			1.1				2 93																
STANDARD DS2	14.08	127.76	32.25	156.8	264 33	4 11.1	. 790	2.93	56.8	22.9	200.3	3.8	24.7	10.16	9.61	11.02	2 74	. 48	.088	14.3	148.4	.5/	154.2	.085		1.05	.02/	.14 7.4	1./9	234	د.۷ .	01	3.0

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC VOA 1R6

PHONE (604, 2.3-31, FAX (....) 255 .../16

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003480

Page 1 (b)

OMBI EH		0-	11.6	Ul-	D.L.	C-	<u> </u>		T-	7	<u></u>	<u> </u>		D. a.	D.	1 2	C	
SAMPLE#	Cs		Нf	Мb	Rb	Sc	Sn	S %		Zr	Y		n! mqq		Be		Sample gm	- 1
	ppm	bbu	bbm	ppm	ppii	ppm	ppiii		PPII	ppiii	ppii	PPIII	ppii	ppu	ppii	ppii	911	
PPD-18220	.63	. 1	.19	-30	3.2	5.7	.5	-02	<-05	10.3	11.21	37.3	.03	<1	.5	15.8	30.0	J
PPD-18190	.50	.i			4.6	4.7					9.10			<1		15.4	30.0	- 1
PPD-18210	.55	.1									14.00			<1		16.2	30.0	- !
PPD-18186	.56	.1			1.8						11.08			<1		14.9	30.0	- 1
PPD-18219	.67		-56		3.7						16.55			<1		15.3	30.0	- 1
110 102.7	1	7.	-20		J.,		••	•••		,,,,				•	••			ļ
PPD-18208	.46	.1	.40	-07	2.7	5.8	-4	.01	<.05	15.1	11.95	27.2	.02	<1	.4	15.2	30.0	İ
PPD-18216	.61	.1			2.5						19.55			<1		16.9	30.0	- 1
PPD-18224	.63	.1			1.5						14.10			1		14.7	30.0	- 1
PPD-18226	.87	.1			5.5						11.46			<1		21.9	30.0	- 1
PPD-18183	.93		.13		3.3						20.18			3		17.4	30.0	- [
1,70 10103	1 .//	• • •	• • • •		3.3		• ·	•••	-100	, . ,				_	•••		•	- 1
PPD-18188	.33	.1	.39	.05	2.4	4.6	.4	.03	<.05	17.7	10.14	14.7	<.02	<1	.1	11.0	30.0	- 1
PPD-18203	.55	.1				_					15.84			<1		14.2	30.0	- 1
PPD-18209	.47	.1		.15	2.1						14.98			2		15.8	30.0	1
PPD-18199 TILL-3		.1				2.5					5.80			1		18.8	7.5	- 1
PPD-18218	.67	.1			3.7						12.14			<1		13.3	30.0	- 1
110 10210		• •	- ,_		2			••-										1
PPD-18239	.99	- 1	.11	2.07	5.9	3.3	.7	.05	<.05	7.0	7.04	19.1	.02	<1	-6	22.4	30.0	1
PPD-18191	.94		.18		1.9	5.5					11.63			<1		12.4	30.0	- 1
PPD-18205	.63		.33		4.0						13.31			<1	.3	15.5	30.0	- }
PPD-18240	.65	.1			3.5						13.35			2	.4	15.0	30.0	i
PPD-18228	1.09				5.4						34.96			2	.7	20.6	30.0	
, , , , , , , , , , , , , , , , , , , ,																		[
PPD-18206	.62	.1	.36	.06	4.0	6.2	.5	.03	<.05	16.9	13.60	18.1	.02	2	.3	15.4	30.0	- 1
PPD-18192	1.44	.1	.17	.37	2.9	10.2	.8	.02	<.05	10.4	19.34	43.1	.03	<1	.6	18.2	30.0	1
RE PPD-18211	.59	.1	.16	.19	1.9	11.1	.4	.01	<.05	9.5	17.81	30.3	.02	<1	.3	20.3	30.0	J
PPD-18211	.55	.1	. 14	.19	1.8	10.5	.3	.01	<.05	8.8	16.67	27.8	.03	1	.5	19.5	30.0	1
PPD-18225	.78	.1	.43	.09	2.1	10.4	.7	.01	<.05	19.2	19.57	23.0	.03	<1	.3	13.8	30.0	- 1
	- 1														_			ĺ
PPD-18201	.55	.1	.30		3.5						13.18			<1		15.2	30.0	l
PPD-18227	-87		.29		3.2						22.93			2		19.0	30.0	ļ
PPD-18189	.51		.14		3.3						8.03			<1		15.7	30.0	
PPD-18212	.40	.1	.14		2.7						8.72			<1		13.1	30.0	1
PPD-18223	1.14	.1	.31	.63	1.2	5.2	.8	.02	<.05	14.2	12.33	16.0	.03	1	.3	11.0	30.0	ĺ
		_								40.0	10 //	20. 4	40	7	4.0		70.0	l
PPD-18193	1.37		.20			9.7					19.66				1.0		30.0	
PPD-18204	1.66		.34			6.7					13.34			2		15.2	30.0	- 1
PPD-18187	.67	-1	.23	.80	1.9	6.3					14.39			1		12.1	30.0	1
STANDARD DS2	3.26	- 1	.03	1.39	12.9	2.9	26.0	.03	<.05	3.3	7.68	51.0	5.46	2	.5	14.7	30.0	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Rejuns and 'RRE' are Reject Reguns.

DATE RECEIVED: SEP 7 2000 DATE REPORT MAILED:

Sept 21/00 SIGNED BY!

. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data____FA__

Page 2 (b)

SAMPLE#	Cs	Ge	Иf	Иb	Rb	Sc	Sn	S	Ta	Zr	Y	Ce	In	Re	Вe		Sample	- (
	ppm	bbu	ppm	ppm	ppm	ppm	bbu	%	ppm	bbu	ppm	bbu	bbu	ppb	ppm	ppm	gm	 -1
PPD-18207	.82	.1	.36	.07	4.0	5.3	.4	.03	<.05	12.7	12.07	22.9	.02	4	.2	19.8	30	.]
PPD-18213	.55	.1	.08								8.49		.02	<1		15.2		ļ
PPD-18194	1.36	.1			1.6						12.80		.02	<1		12.1		- [
PPD-18185	,50	.1	.39		1.3						11.79		.03	2	.2	14.0	30	
PPD-18202	.62	.1	.29								12.38		.03	1	.4	15.0	30	- [
(10 10202		•																- }
PPD-18222	.91	.1	.32	.98	2.5	5.6					12.74			<1		11.5		ł
PPD-18181	1.19	- 1	.21	.12	2.6	8.5	.5				13.73		.03	<1		31.7		- 1
PPD-18229	.89	-1	.17	1.53	3.7	7.3	.6				9.15		.03	<1		24.4		ļ
PPD-18214	.76	.1			3.5						13.09			<1		14.8		- 1
PPD-18238	1.26	-1	. 15	1.28	6.5	3.9	.6	,02	<.05	7.2	10.44	37.1	.04	2	.5	29.5	30	Ì
	1														,	47.0	. 70	
PPD-18195	.69	-1			2.7						10.98			<1		13.8		- [
PPD-18215	.42	-1			1.9		.3				12.57			<1		11.5		ı
PPD-18197	.47				2.3		.4				10.46			<1		17.3 23.4		- 1
PPD-18182	1.03	-1			1.6		.4				12.50		_	<1 2		28.1		. (
PPD-18230	1.23	-1	.27	.//	4.1	0.0	.6	.02	<.03	7.4	9.44	17.7	.02	2	.0	20.1	30	-)
DDD - 49224	1.06		.25	06	3.0	4 4	.8	03	< 05	12 7	15.91	15.6	.05	<1	.3	11.8	30	- 1
PPD-18221 PPD-18196	.78		.21		3.2						11.19			<1		14.7		- {
PPD-18170	1.18				4.5		.7	.02	<.05	13.1	15.96	19.1	.04	2		23.5		- !
PPD-18133 S-1	1.47	.2			4.9						15.21			<1		11.0		- (
PPD-18198	2.21	.1			4.5		.5				14.29			<1	.6	19.8	30	- 1
110 10170	{	٠.		• • •					-									
PPD-18231	1.01	.2	.48	.28	4.1	9.1	.7	.02	<.05	15.1	15.56	19.2	.03	<1		19.2		- [
PPD-18237	1,42				6.0	4.5	.6	.02	<.05	8.3	11.89	50.2	.03	<1		24.0		
PPD-18184	.74	.1	.40	.07	2.4	10.3	.5				16.31			<1		16.2		- 1
PPD-18217	.80	.1	.37		3.8		.7				14.64			<1		17.7		Ì
RE PPD-18217	77.	-1	.35	.07	3.6	8.2	.6	.01	<.05	13.9	14.29	21.9	.04	<1	-4	16.6	30	- 1
	1											3. F	0.7	.4	,	27 /	70	ĺ
PPD-18235	1.22				6.3		.7				12.30			<1		27. <i>6</i>		į
PPD-18200	.94	-1					.5				13.02			<1				
PPD-18236	11.57				6.4		.7				9.52			<1 4		20.7		
PPD-18234	1.39	-1			8.1	9.5					15.99			< 1		12.7		Į
GSMD-18108	.79	. 1	.26	.84	5.6	5.8	.6	.03	<.05	11.1	13.33	13.1	.04	NI.	.4	16.1	30	
0010 40440	00	4	27	3 46	27	4 4	17	01	< 05	QR	13.84	36.9	.02	1	.8	8.3	30	
GSMD-18119 GSMD-18106	.98							.01	< .05	16.5	12.63	14.4	.03	<1		10.6		
GSMD-18106 GSMD-18111	1.08	.1					1.0				19.80			<1		17.2		- 1
STANDARD DS2	3.48	.1	-03	1.31	12.3	2.9	26.9				7.45					14.2		
STANDARD DSE	13.40																	\neg

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_| FA _

Page 3 (b)

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb mag	Rb ppm	Sc ppm	Sn ppm	\$ %	Ta ppm	Zr ppm	y ppn	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
																10 7	30	
GSMD-18117	.78	-1	-46		3.4		.9				18.70			<1		18.7		
GSMD-18110	.73	•1	.29		4.6						10.43			1		13.9		
GSMD-18105	1.24	.1			2.1		.6				11.09			<1		27.2		
GSMD-18116	.69	.1			3.4		.8				12.34			<1		14.7		
GSMD-18109	.76	. 1	.36	.34	3.8	9.1	.9	.01	<.05	15.5	12.69	18.4	.05	<1	.3	17.7	' 30	
GSMD-18103	.70	2	-58	12	.7	13.6	1.4	.02	<.05	24.0	19.88	16.7	.07	2	.4	18.1	30	
GSMD-18120	.83				2.3		. 9				14.46			<1		9.0		
GSMD-18120	1.35	1			5.3		.6				9.76			2		15.0		
GSMD-18112	.80	• •			2.9		-9				11.04			<1		14.8		
GSMD-18118	.57	- 1			3.0		.9				11.83			7		14.8		
53MD-10110	.57	.1	*20	.39	5.0	0.4	.7	.02	٠.05	13.4	11.05	11.0	.00	,		17.0	, 50	•
RE GSMD-18118	.59	- 1	-38	.39	3.1	6.6	.9	.02	<.05	16.2	12.06	18.1	.07	<1	.5	15.1	30	
GSMD-18115	.88	. 1	.29		2.5		.6				10.04			<1	.4	13.6		
GSMD-18107	.63	1			4.4		-9				11.94			< 1		15.8		
GSMD-18101	.51	- 1	.53		1.7		8.				16.80			<1		13.2		
	1.99	• •	.29		5.8		.6				11.08			<1		14.6		
92WD-10114	1.77	• •	.47	.00	5.0	0.2	.0	.01	٠.٥٥	12.7		30.2	.04	•••	• •			
GSMD-18102	.50	.1	.49	.27	1.8	7.6	.9	.02	<.05	19.3	16.77	14.1	.03	2		13.7		
	1.72	<.1	.06	.58	10.3	7.1	2.0	.01	<.05	3.5	8.24	43.7	.05	<1	.3	3.9		
	3.23	.1			11.7						7.28			2	.6	14.3	30	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data & FA _

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003480R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1

44

	사람 남학인 학교	Y A 1 %	8 245 Abr							989 Sec. 194	400 Ard A	01(2)			A 51-18-40		77.5	4 (1919	<u> </u>	9	nay in the demonstration	2 (((((((((((((((((((
SAMPLE#	Si02	A1203	Fe203	MaO	CaO Na20	K20	TiO2	P205	MnO (Cr203	Ba	Ni	Sr	Zr	Y	ΝЬ	Sc	LOI	TOT/C	TOT/S	SUM	
	%				% ?		%		%		ррп		ppm	ppm	ppm	ppm	ppm	%	%	%	%	
<u> </u>	 										·:											
PPD-18220	65.27	11.42	7.08	3.26	3.57 1.75	1.15	1.40	.18	.16	.020	1165	56	122	217	31	11	24	4.5	.34	<.01	99.95	
PPD-18190					3.00 1.79					.014		41	124	215	29	<10	20	5.5	.55	<.01	99.79	
PPD-18210					3.19 1.73					.020	1237		129		35	10	25	5.2	.20	<.01	99.89	
PPD-18186					4.91 2.10							48	124	181	29	<10	28	4.6	.31	<.01	100.09	
PPD-18219	62 43	11.68	7.88	3.52	3.88 1.89	1.01	1.33	.16	.15	.015	894		137			<10	26	5.9			100.00	
110 10217	02			J.,_						• • • •												1
PPD-18208	66 18	11.25	6.50	3.38	3.90 1.84	1.16	1.37	.18	-12	.015	1154	53	136	196	33	<10	24	3.7	.06	<_01	99.78	
PPD-18216	65 29	10 03	7 43	3 51	3.40 1.69	1 12	1.38	16	.21	.016			115			12		4.6	. 15	.01	99.94	ļ
PPD-18224	61 83	11 44	7 08	4 26	5.65 2.0	75	1 65	04	17	.021			126			<10		4.0		<_01	99.96	1
PPD-18226	58 24	12 68	0 04	4 29	3.49 1.40	1 09	1.47	11	.15				87			<10	25	7.8	1.01	<.01	99.97	
PPD-18183	58 15	12 08	7 22	3 28	3.50 1.82	1 13	1 17	16	14	019	744		127			<10			1.43		100.20	1
FFD-10103	30.15	12.70	1.66	٠.,٠	3.30 1.01				• • •			•								-		ļ
PPD-18188	66 17	8 85	5 29	3 48	6.88 1.9	-58	1.08	.08	.10	-016	391	52	158	164	25	<10	21	5.2	.73	<.01	99.76	· ·
PPD-18203					3.79 1.74								123	183		<10	27	6.5	.16	<.01	99.98	
PPD-18209	65 81	10 85	6 65	3 49	3.91 1.8	1.08	1.49	.20	.15	.022	1064		132			10		4.1	. 17	<.01	99.79	
PPD-18199 TILL-3	61 54	14 95	5 51	1 98	1.27 2.24	2 83	. 98	. 15	.10	004	516		152			18			1.65	.03	99.99	
PPD-18218	65 44	9.75	6.50	7 8Q	4.80 1.5	97	1.12	. 14	.17	020	1281		114			<10		5.5		<.01	100.00	ļ
FF0-10210	105.77	,.,,	0.50	3.07	4.00 1.5	• , ,		• • •	• • •	.020	,,	• •										1
PPD-18239	45.74	11.52	7.11	2.34	1.96 1.13	.89	1.12	.25	.07	.012	485	76	85	169	21	<10	16	27.8	8.20	.02	100.04	
PPD-18191					3.69 1.80					.019			139			<10	24	5.0	.30	<.01	99.94	
PPD-18205	60 84	11.35	7.78	4.48	5.33 1.84	. 95	1.23	.18		.023			149			<10	24	5.7	.40	.01	100.01	
PPD-18240	61 30	11 92	R 10	3 80	3.89 1.89	-66	1.54	.12	. 14				120			<10		6.5	.54	<.01	100.12	
PPD-18228	61.58	11 48	6 74	2 54	2.48 1.30	1 57	1.04	.38	.13	020	1149		122			<10			2.38	.01	99.95	
LED 10550	01.50	11.40	0.74		2140 115	, ,	,,,,,		•			• •										
PPD-18206	61.15	11.40	7.73	4.44	5.34 1.86	. 95	1.24	.21	. 15	.021	896	55	149	153	29	<10	25	5.4	.36	.02	100.04	
PPD-18192	62.13	11.46	7.83	3.53	4.09 1.8	1.01	1.42	.18	.19	.022		88	128	208	40	<10	29	6.2	.66	.01	100.04	
RE PPD-18211	64.74	11.12	7.24	3.78	3.74 1.84	1.02	1.42	.20	.18	.025	1061	81	129	201	40	10	30	4.3	.23	<.01	99.79	
PPD-18211	64.87	11.16	7.20	3.76	3.75 1.88	1.01	1.41	. 13	.18				130		40	<10	30	4.4	.25	<.01	99.96	
PPD-18225	60.70	12.04	8.53	4.03	5.04 1.89	.93	1.54	.14	.22	.020	872		125		38	<10	33	4.7	.19	<.01	99.94	
(15 1025		,				• • • •		- • •														
PPD-18201	63.71	12.14	7.25	3.31	3.22 1.69	1.36	1.33	14	.13	.020	1101	58	119	170	30	<10	24	5.5	.17	<.01	99.98	
PPD-18227					3.65 1.13					.034		95		116	41	<10	31	7.4	.24	<.01	100.10	
PPD-18189					3.01 1.74					.019			121		29	11	21	5.8	.51	<.01	99.99	
PPD-18212					3.20 1.74								123			10	20	6.4	1.00	.01	100.00	
PPD-18223	58 86	11 40	8 03	4 11	5.86 2.16	59	1.66	10	-16	.021	537		132			<10		6.9		<.01	99.96	
LLh- Incca	70.00	. , . 40	5.05	7.11		,																
PPD-18193	50.43	8.76	21.72	2.87	2.42 1.16	.86	1.01	.33	.10	.024	656	56	92	136	36	<10	24	10.0	.70	.04	99.80	+
PPD-18204					5.34 1.84								149			<10		5.5	.41	.01	99.97	1
PPD-18187					4.42 1.9								119			<10			1.87	.01	100.01	j
STANDARD SO-15/CSB	49.84	12.23	7.26	7.22	5.84 2 40	1.85	1.78	2.69	1.38	1.051	2015		394			23				5.31	99.87	j
31MIDARS 00 137 CSB	77.04				, =			/					<u> </u>									

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: TILL \$230 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED:

Dec 7/10

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A003480R Page 2

SAMPLE#	\$i02 %	Al203 %		Mg0 %		Na20 %	K20 %	Ti02 %	P205 %	MnO %	Cr203 %	Ba ppm	Nî ppm	Sr ppm	Zr ppm	Y ppm	Мр	Sc ppm	LOI %	TOT/C %		SUM %	
PPD-18207 PPD-18213 PPD-18194	63.51	12.11	7.41 5.98 6.56	2.69	2.98	1.75	1.22	1.34	.21	.09	.018	1067	37	131 122 158	207	29 30 33	<10	19 26	5.1 8.0 3.4	.09	<.01 <.01	99.83 100.07 99.87	
PPD-18185 PPD-18202	65.11	11.00	6.29 7.40	3.89	5.21	2.23	.55	1.45	.10	.17	.027	962	62	127 120	173		<10 <10		3.8 5.2		<.01 <.01	99.99 100.02	
PPD-18222 PPD-18181 PPD-18229 PPD-18214 PPD-18238	56.42 49.29 60.25	11.09 12.99 12.23	7.93 9.22 11.39 7.83 7.83	8.85 4.72 4.36	3.74 4.11 5.60	1.07 1.30 2.01	.77 .69 .93	1.04 1.37 1.30	.14 .19 .19	.19 .21 .14	.073 .020 .020	1705 810 740	234 89 68	98 161	117	25 29 31		30 31 26	7.0 13.3 5.2	2.43	<.01 .02 <.01	99.73 99.85 99.72 100.20 100.06	
PPD-18195 PPD-18215 PPD-18197 PPD-18182 PPD-18230	67.96 63.32	11.13 12.16 9.95	6.53 5.82 7.87 8.91 10.86	3.07 3.64 10.97	3.83 3.73 5.66	1.96 1.93 1.14	1.17 1.02 .53	1.40 1.46 .94	.17 .14 .10	.13 .16 .18	.020 .017 .105	1047 985 1198	61 130 307	141 139 60	210 232 171 98 110	38 32 25	<10 15 <10 <10 <10	25 25 33	4.3 3.2 4.4 6.0 9.3	.07 .23 .10	<.01 <.01 <.01 <.01 <.01	99.82 100.04 100.02 99.73 99.68	
PPD-18221 PPD-18196 PPD-18232 PPD-18133 S-1 PPD-18198	65.05 55.66	11.81 12.88 18.38	8.06 6.87 10.12 8.64 6.38	3.35 5.27 2.45	3.66 4.41 3.99	1.84 1.60 3.11	1.02 1.03 1.04	1.38 1.36 1.36	.16 .17 .16	.17 .20 .14	.021 .022 .008	1062 954 362	66 70 <20	128 131 342	145 210 127 181 240	31 33 30	<10 <10 <10 <10 10	23 31 24	4.5 7.0	.14	<.01 <.01	100.07 100.01 99.88 100.21 100.08	
PPD-18231 PPD-18237 PPD-18184 PPD-18217 RE PPD-18217	59.86 62.70 61.45	12.91 11.58 12.05	10.72 7.89 7.23 7.86 7.24	3.55 3.96 4.37	3.03 4.62 4.74	1.59 1.97 1.90	1.47 .73 .98	1.33 1.31 1.33	.17 .15 .16	.16 .14 .18	.019 .030 .023	844 1267 1044	58 100 64	106 129 123	137 173 166 148 155	30 33 32	<10 <10 <10 <10 <10	22 31 27	6.2 7.7 5.3 4.7 5.4	1.22 .12 .15	<.01 <.01 <.01 <.01 <.01	100.03 99.82 99.92 99.91 99.92	
PPD-18235 PPD-18200 PPD-18236 PPD-18234 GSMD-18108	65.17 48.69 57.92	7 12.02 9 12.62 2 15.16	8.63 6.91 10.07 8.89 7.43	3.19 4.74 3.84	2.91 3.92 2.23	1.53 1.27 1.45	1.34 .98 2.00	1.20 1.43 1.23	.15 .23 .16	.25 .16 .15	.022 .013 .018	1431 648 1241	138 59 90	109 103 102		32 28 33	<10 10 <10 11 <10	23 26 26	4.9 15.5 6.6	3.11	<.01 <.01 <.01	100.03 99.82 99.74 99.84 99.89	
GSMD-18119 GSMD-18106 GSMD-18111 STANDARD SO-15/CSB	61.59	11.64	4.11 7.74 9.84 7.13	4.26 4.63	6.14 4.55	2.32	.56 .75	1.63 1.44	.10 .13	. 15 . 19	.026	601 1183	48 72	139 115	207 161 128 983	27 33 33 23	12 <10 <10 27	32 34	3.6 7.4	.22	<.01 <.01 <.01 5.37	99.94 99.87 99.85 99.61	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

ALME AMETITICAL												===	≟===				=						
	SAMPLE#	Sina	A1203	F4203	Man	CaO Na	20	K20 TiO2	P205	MnO 0	Cr203	Ba	Ni	Sr	Zr	Υ	Nb	Sc	roi .	TOT/C	TOT/S	SUM	1
	SAMPLE#			4	,11g0	4	- °	% %	%	%	*	ppm	ppm	ppm	mqq	mqq	ppm	ppm	%	%	%	%	
		*										Popul	PP.		PP	F-F	- F-1	•••					
							~4	70 4 77	45	47	024	747	71	121	133	35	<10	33	7.0	.72	<.01	100.07	1
								.70 1.67			.021	763			139	25	<10		6.3	.43	.02	99.94	
•								.90 1.36		.15	.029		358	120						.58	<.01	100.18	1
	GSMD-18105	45.93	13.64	13.70	7.91	7.09	.74	.62 1.85	.16		.011		66	137	96	32	<10		8.2			99.84	1
İ	GSMD-18116	59.19	11.44	7.89	3.74	4.54 1	.88	.67 1.55	. 15	. 14	.019	736	69	121	141	29	<10		8.5	1.70	.02		1
}	GSMD-18109	59.36	12.21	8.55	4.42	4.20 1	.81	.72 1.55	.13		.017	975	7û	127	130	27	<10	28	5 . 5	.55	<.01	9 9.90	
	4000 10107	1			,2																		
	CCMD - 19107	14 25	17 50	12 95	4 8/	7 13 2	nn	.23 2.03	.16	-22	.026	239	100	77	114	35	<10	41	8.2	.51	<.01	99.81	
								.53 1.31		.14	.018		67	110	169	30	<10	32	4.7	.12	.01	100.14	
			10.74				•			-07	.013		41	123	225	29	<10			2.77	<.01	100.10	ł
	GSMD-18104	60.76	11.57	0.75	2.08	2.43 1	.55	1.07 1.33						110		26			12.3		.01	100.18	
1	GSMD-18112	56.27	11.46	7.96	3.53	4.45 1	.81	.55 1.53	.08		.019		49								.01	100.11	
[GSMD-18118	59.43	12.09	8.23	4.36	5.15 1	.97	.68 1.56	. 13	- 16	.022	711	73	111	138	28	<10	29	6.2	.09	.01	100.11	,
i															-							00.07	
l	RE GSMD-18118	59.23	12.09	8.30	4.32	5.12 1	.96	.69 1.55	.16	.16	.020	710	66	112	135		<10		6.2			99.93	,
ł			11.66					.91 1.51	.17	. 13	.019	785	73	118	225	32	<10	25	6.4	.71	.01	100.15	
	GSMD-18107	61 47	11.69	7 82	3 60	4 17 1	97	.57 1.55	-09	.13	.019	713	51	124	129	26	<10	24	8,6	.95	.01	100.09	
,			12.15								.022		63	133	128	35	<10	31	4.9	.42	<.01	99.84	
ł											.013		63	119		31	<10	23	8,4	1.20	<.01	99.85	
!	GSMD-18114	61.02	12.34	(.55	2.95	3.07 1	.00	.90 1.43	. 1 !	.09	.015	122	0,5	117	102	٥.	- 10						
											030	751	40	17/	126	75	<10	31	5.3	.47	.02	100.03	
ł	GSMD-18102	58.07	12.09	8.67	4.50	6.25 2	.31	.59 1.80		.16	.020		60	134							.01	100.19	
	GSMD - 18113	56.00	12.14	8.95	3.26	3.78 1	.71	.70 1.66			.018		60	110		28							'
1	STANDARD SO-15/CSB	149.81	12.32	7.25	7.21	5.83 2	.39	1.84 1.78	2.68	1.38	1.063	1993	82	393	986	22	26	12	2,9	2.42	2.32	77.07	
L		1																					

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____ FA

804 R. HASTINGS ST. VANCOUVER SC VOM 1R6 PROME (60 , 43-320 PAN (0.4) 25 __716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003741 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

Page 1 (a)

SAMPLE#	Mo ppm	Cu ppm		Zn ppm j	~	Ni ppm	Co ppm		Fe %	As ppm p	U opm	Au ppb			Cd ppm	Sb ppm	Bi ppm		Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti % p			K W % ppm				
PPD-18126 PPD-18137 PPD-18128 PPD-18134 PPD-18122	.51 1.61 1.15	25.81 41.86 165.74 139.14 64.30	6.31 21.08 17.20	51.3 130.4 92.1	17 62 56	35.1 3 77.1 3 61.9 3	16.6 28.8 25.2	388 3. 1864 3. 1299 3.	46 80 1 18 1	2.4	.9 .4	5.9 2.6 19.9 11.2	3.3 4.1 3.4	13.6 34.4 28.7	.04 .34 .18	.18 .22 1.04 .80 .30	.08 .23 .19	124 102 90	. 67 . 47 . 55	.026 .067 .046	13.1 19.6 12.6	36.3 . 51.9 . 97.9 1. 69.8 1. 47.3 1.	99 25 10 1	112.7 652.7 208.7	.286 .164 .208	1 2.56 1 2.06 2 2.11	.006 .006	.04 <.2 .03 <.2 .05 <.2 .04 .2 .03 .2	.04 .08 .06	18 76 39	2 < .02 5 .10 7 .08	7.8 5.9 5.4
PPD-18131 PPD-18140 PPD-18121 PPD-18127 PPD-18136	.66 .28 .75	162.93 44.23 63.22 136.09 43.36	13.55 5.37 10.48	91.4 53.2 61.9	50 119 48	51.0 (43.7 (59.5 (21.2 19.4 29.7	554 3. 750 3. 1244 3.	11 1 42 67	10.2 3.1 6.6	.5 .3 .4	7.0 4.0 1.2 4.2 1.7	5.4 1.8 2.0	14.7 17.6 24.3	.16 .10 .13	.55 .82 .30 .61	.16 .06 .16	58 114 114	.34 .88 .83	.067 .038 .094	20.1 6.8 9.4	69.5 1. 43.9 . 47.5 1. 67.1 1. 49.8 .	.76 .14 .25	161.2 187.9 713.7	.106 .364 .220	2 1.77 3 3.08 2 3.03	.005 .018 .010	.04 <.2 .04 <.2 .03 .2 .04 <.2 .03 <.2	.05 .04 .04	27 58 57	4 .03 4 .04 6 .03	3 4.3 4 8.5 7 7.5
PPD-18124 PPD-18129 PPD-18125 PPD-18139 PPD-18132	.97 .29 .61	46.22 126.66 47.52 49.04 170.64	11.57 4.32 11.01	76.3 41.5 66.4	95 40 48	58.2 38.5 48.1	21.6 16.0 18.2	941 3. 608 3. 533 3.	26 18 28	8.9	. 4	35.8 36.4 1.2 3.1 9.2	2.7 2.0 5.0	18.2 12.9 14.6	.08	.12 .63 .15 .54	.14 .06 .15	80 103 73	.37 .57 .38	.063 .034 .072	10.8 7.5 18.5	48.6 1. 78.4 60.3 . 55.3 . 109.1 1.	.89 .95 .93	432.1 183.9 155.2	.147 .270 .124	1 2.24 2 2.42 1 1.94	.006 .008 .005	.02 <.2 .04 <.2 .03 <.2 .05 <.2 .05 <.2	.05 .03 .05	60 35 31	.5 .0: .3 .0: .3 .0:	7 5.1 2 7.1 4 5.2
PPD-18123 PPD-18135 RE PPD-18135 PPD-18138 PPD-18130	.59 .62 .57	64.79 68.57 69.72 38.33 132.75	5.81 6.10 8.58	61.4 62.3 65.5	189 195 39	56.6 52.6 46.6	32.5 32.9 19.3	716 4. 714 4. 468 3.	11 07 45	5.1	.3 .3 .4 .4	.8 5.8 1.4 1.1 4.3	1.9 1.9 3.9	15.0 11.4	. 14 . 14 . 11	.17 .43 .45 .51	.09 .09 .14	113 112 79	.67 .65 .31	.098 .096 .052	7.8 7.9 18.0	44.9 1. 82.6 1. 82.6 1. 53.0 . 83.1 1.	. 15 . 14 . 88	367.1 366.6 93.9	.268 .264 .119	1 3.57 2 3.56 1 1.87	.020 .019 .005	.05 .2 .03 <.2 .03 <.2 .03 <.2 .05 <.2	.03 .03 .04	78 76 23	.6 .0: .6 .0: .4 .0:	3 8.2 2 8.3 3 5.1
PPD-18275 PPD-18272 PPD-18280 PPD-18277 PPD-18271	.25 .42 .53	45.34 50.07 121.58 36.65 73.19	5.14 5.37 6.90	43.1 66.6 77.3	39 39 27	42.6 123.5 45.1	22.0 30.3 21.4	952 3. 1101 4. 732 3.	21 2 69 1 57 4	26.9 14.2 13.4	.2 .2 .3	2.3 5.4 22.3 6.0 53.3	1.9 1.8 2.7	13.1 40.8 12.6	.11 .12 .16	.56 .83 .73 .99 .65	.08 .07 .11	110 131 98	.84 1.04 .39	.053 .039 .045	5.9 8.0 10.0	85.9 1. 58.6 1. 98.5 2. 71.2 1. 91.6 1.	. 13 . 18 . 04	143.0 493.2 89.3	. 253 . 246 . 208	2 2.64 2 2.69 1 2.68	.007 .015 .006	.02 <.2 .02 .2 .04 <.2 .03 .2 .02 <.2	.03 .03 .04	28 71 48	.4 <.0 .4 .0 .5 .0	2 7.0 3 8.4 2 6.7
PPD-18276 PPD-18133 S-1 PPD-18278 PPD-18274 PPD-18279	1.03 .76 .63	170.49 29.20 50.68 71.98 72.05	8.08 5.02 6.99	51.0 56.8 70.0	53 98 153	12.1 50.6 66.3	12.3 24.0 28.7	453 3. 853 4. 697 4.	.94 .12 .9 .13 .2	2.2 95.5 25.5	.6 .3	30.4 1.9 10.2 1.4 4.8	2.8 1.5 1.7	45.4 7.8 12.7	.07 .15 .22	1.13 .10 1.32 .74 .41	.15 .10 .13	157 130 140	.46 .51 .56	.043 .058 .059	11.6 7.3 9.8	205.8 3. 38.5 . 87.6 1. 95.9 . 86.5 2.	.53 .25 .90	92.6 127.0 313.6	.348 .266 .157	<1 4.05 1 3.39 <1 2.76	.112 .007 .005	.02 .2	.13 .03 .04	40 90 103	.5 .0 .7 .0 .6 .0	3 10.7 3 7.6 3 7.8
PPD-18273 TCHD-18267 TCHO-18263 STANDARD DS2	.75	50.01 91.19 70.59 126.20	10.25	79.6	50	58.9	34.1	859 3.	98 1 56	12.4	.5	3.5	5.6 5.3	28.4	.21	.56 .98 .54 9.07	.15	75 80	.63	.075	17.9 17.9	86.7 1. 48.5 1. 51.8 1. 160.3	.02 .01	226.0 153.7	.149 .158	<1 1.62 <1 1.74	.007	.04 <.2	.05 .04	70 45	.5 .0 .4 .0	4 5.0 3 5.4

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: TILL \$230 40C

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (a)

	SAMPLE#	но	Cu	Pb	Zn	Ag	Ni (Co Hn	Fe	As	U	Au	Th Sr	Cd	Sb	Bi	Y	Ca	P La	. Cr	Mg	Ba	Ti	ВА	a Na	K	¥	11	Hg	Se T	e Ga	
		ppm	ppm	ppn	ppm	ppo	ppm p	on ppn	*	pon	ppm	ppb	Dour Dour	ppm	ppm	ppm	ppm	*	\$ ppr	рра	*	ppm	ŧ	bba	ı ı	*	ppra	ppa	ppb i	ора пр	ppe	,
																		-														
	TCHD-18269	.52	42.50	11.63	62.3	70 4	2.4 13	7 586	2.90	5.0	.6	10.3	6.4 21.5	.11	.49	. 14	64 .	59 .02	72 21.9	45.9	.71	324.6	. 168	<1 1.4	800. 9	.05	<.2	.04	41	.3 .0	4.4	
	TCHO-18262	.75	76.84	43.12	128.9	33 5	7.0 22	6 965	3.54	11.2	1.0	3.5	2.4 22.8	. 24	.88.	.41	67	37 .07	70 39.1	57.6	1.06	366.7	. 122	1 2.1	8 .006	. 14	<.2	.10	87	.4 .0	6.1	
	TCHO-18268	.61	50.14	11.55	62.9	21 4	6.1 20.	1 643	3.06	8.1	.5	3.6	6.1 18.5	.09	.59	. 15	64 .	45 .00	58 19.8	46.0	. 78	160.4	. 155	<1 1.6	300. Ç	, D4	<.2	.04	18	.4 .0	3 4.4	
	TCHO-18265	.86	60.54	22.53	9.50	32 6	3.6 22.	4 886	3.44	17.6	.6	4.5	7.0 21.9	.16	.00	. 19	66 .	49 .07	76 26.4	49.4	. 98	213.2	. 135	<1 1.8	000. 0	.06	<.2	.07	32	.4 .0	5.2	
	TCHO-18270	.71 1	15.32	18.59	77.4	55 5	0.9 18	2 1142	3.42	14.3	.6	24.7	6.3 20.7	.15	1.15	. 25	76 .	42 .01	60 23.4	47.6	1.01	426.4	. 131	1 1.6	6 .005	.06	<.2	.06	29	.4 .1	5.2	j
																																,
	TCHO-18266 \$-1	1.06	27.95	9.36	54.8	47 1	2.7 33	2 474	4.13	2.1	.6	.7	2.8 48.9	. 37	.09	. 15	158 .	50 .0	43 12.	43.5	.55	101.9	.376	<1 4.2	5 .132	.06	<.2	. 13	38	.4 .0	3 10.9	i
	TCHO-18261	-65	71.25	40.681	121.3	28 5	6.1 21	.5 910	3.45	10.9	.9	4.2	11.7 20.6	.24	.75	.37	65 .	34 .0	68 35.3	3 55.3	1.04	329.7	. 117	<1 2.0	4 .005	. 13	<.2	.09	82	.4 .0	5.9	,
	TCHD-18264	.33	72.45	13.99	75.3	55 5	0.7 22	5 1193	3.84	6.1	.2	3.8	2.3 22.9	.28	.49	.09	125 1.	23 .0	54 9.3	70.2	1.23	322.4	.329	2 2.3	.020	.06	<.2	.03	56	.2 .0	3 7.7	
	6SMD-18300	.56 1	04.34	11.05	79.4	44 10	0.0 26	.1 1412	4.41	20.1	.3	10.6	3.6 27.4	.12	1.00	.14	111 .	74 .0	47 15.9	115.9	1.76	691.8	. 195	2 2.8	.009	.08	<.2	.05	78	.3 .0	8.2	!
	GSHD-18256	.36	38. <i>2</i> 8	5.26	44.2	95 3	9.3 13	.0 456	2.75	4.4	.4	2.5	2.4 18.2	.11	.33	.07	98 .	78 .0	24 12.:	81.3	.70	186.2	. 220	1 2.0	110. 9	.02	<.2	.03	59	.4 <.0	2 5.8	
																																I
	GSHO-18253	.49	37.95	8.72	51.9	44 3	6.2 13	.2 363	2.72	4.8	.4	2.9	5.3 14.7	.07	.33	.11	62 .	41 .0	57 16.	47.5	.61	305.7	. 125	<1 1.7	.006	.03	<.2	.04	31	.4 <.0	2 4.4	
	GSHD-18249	.59	43.74	11.68	55.0	84 3	4.8 13	.0 530	2.61	6.9	.8	5.0	6.2 17.5	. 14	.56	.14	51 .	44 .0	67 22.	3 39.0	-58	228.6	. 121	1 1.2	22 .005	.04	<.2	04	73	.3 .0	2 3.5	
	GSHD-18241	.83	49.05	27.98	132.5	300 5	1.7 21	.6 616	3.37	16.9	.6	5.5	5.8 14.9	.33	1.17	.21	60 .	36 .0	75 28.	3 49.6	.89	193.3	.099	1 1.9	2005	.05	<.2	.08		.5 ,0		
	GSHO-18251	-30	58.09	5.07	63.3	54 4	9.7 20	4 953	3.64	3.5	.2	3.6	1.9 21.7	.13	.35	.08	120 1.	36 .0	57 7.8	57.9	1.34	290.6	.346	2 2.2	.020	.05	<.2	.03	38	.2 .0	2 7.6	ľ
	GSMD-18281	.20	94.25	5.19	66.4	28 19	1.8 35	6 1039	5.23	12.8	.2	5.1	1.8 33.5	. 14	.44	.07	139 1.	21 .0	4) 7.	113.2	2.64	439. I	. 258	3 3.2	.018	.06	<.2	.03	50	.2 <.0	2 9.9	!
																											_					
	GSHO-18246												5.7 15.6												35 .007							
	GSMD-18254												2.0 31.7												2 .017							ł
	GSMD-1828S												1.8 33.5												.019							!
	GSMD-18291												2.1 28.9												.010					.3 .0		ļ
	GSMD-18299 T1LL-4	14.67 2	37.51	42.48	55.1	172	4.1 6	.1 295	3.18	117.5	2.5	4.6	12.6 10.0	.13	.71 47	.02	41 .	12 .0	/5 30.	3 25.1	.52	84.9	.118	1 1.8	34 .024	.31	156.0	.31	45	./ .1	9 0.2	
						1						٠.			12	06		an a	ra .		^2	162.4	226	223	7 .012	42		.02	21	.4 .0		·
	GSMO-18250												1.7 13.0												8 .005					.5 .0		
	GSMD-18242												5.7 15.0 2.2 20.6																	.5 .0		
	GSHO-18292												2.4 21.8																			•
	R€ GSMO-18292												2.4 23.6																			
	GSMD-18255	. 30	¢4.⇒3	0.10	40.0	47 2	10.4	.0 0/2	2.70	5.0	.5	4.1	2.4 23.0	.00	.55	.00	100 .	,,	LJ 10	, 01.0	.0,	400.1		2 4	,5 .010	-4-			•			
	GSMD-18243	Q.C	41 61	24.00	106 4	££0 5	7 6 10	0 761	3 50	15.1	æ	2 7	7.9 12.6	30	66	30	50	36 G	44 26 1	53.3	. 78	254.6	.070	<1 2.3	39 .005	.05	<.2	.10	113	.6 .0	4 5.5	
	GSHD-18290												1.6 17.7												7 .010					.5 .0		
	GSHD-18247												7.1 29.1																	.3 .0	3 4.9	
	GSMD-18252												1.8 12.3												9 .012					.3 .0		
	GSHD-18295												3.3 24.4																			· ·
	JOH ET. 10575	.20	-4.,55	J.25	J4.5	17 3	13							. • /			'						. /									
	GSHD-18286	.52	49.60	6.81	55.3	43 4	6.8 22.	1 1025	3.45	6.1	.3	3.8	1.6 20.9	. 17	.52	. 17	92	95 .00	67 8.8	57.1	1.00	223.1	.218	1 2.6	8 .015	.04	<.2	.03	53	.4 <.0	2 6.5	
	GSHO-18245												8.3 11.6											<1.1.9	.005	.07	<.2	.05	26	.4 .0	2 5.2	
	GSHD-18294												2.3 39.7												26 .007					.3 .0	2 7.1	
													3.6 28.0											1 1.6	8.028	. 16	7.5	1.78	233	2.3 1.8	3 5.9	,

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3 (a)

																																AURE AV	ALTITION
SAMPLE#	Mo ppm				Ag ppb		Co ppm				ppm			ı Şr ı ppm		Sb ppm		V ppm	Ca %		La ppm		Mg ¾	Ba ppm	Ti % p	B	Al %	Na %	K ₩ % ppm	T1 ppm	Hg ppb p	Se Te	e Ga n ppm
GSMD-18257 GSMD-18284	.60	38.67 90.60	5.02	64.4	29	120.0	30.6	1165	4.25	10.0	.2			19.2 40.1	.07 .11		.06 .07	87 116	.94 1.23	.037	8.9 8.5	47.8 93.1	.80 2.00	195.9 364.4	.263	<1 1. 2 2.	61 .0 57 .0	15 . 16 .	02 <.2 05 <.2	.02	26 57	.2 <.0	2 5.1
GSMD-18248 GSMD-18258	. 67 . 36	45.59 64.39	22.53	73.2 55.2	108 26	42.8 55.6	17.1 19.9	664 829	2.97 3.11	12.1	.5 .2			11.9	.10	.74 .36	. 20	61	.30	.055	19.7	44.1	. 68	423.5	.098	<1 1.	55 .0	04 . (04 <.2 03 <.2	.05	41	.4 .04	4.6
GSMD-18297	.50	117.68	5.05	61.7	91	321.1	62.9	1147	5.34	16.2	.4			32.0		.42	.10	140	1.11	.049	8.0	145.3	3.45	148.2	.229	<1 3.	30 .0	10 .0	05 <.2	.04	33	.5 .03	9.4
GSMD-18259 GSMD-18287	.31	54.91 36.18	4.46	43.2 43.5	22 86	46.9	15.2	639	2.81	3.9	.2 .3			14.8	.07 .18	.40 .44	.08	104	.80	.032	8.2	56.3	1.00	353.3	. 298	1 2.	23 .0	15 .	02 <.2	.02	23	.4 .02	
GSMD-18293	.68	83.86	6.24	68.6	130	76.3	21.5	849	3.78	3.6	.5	2.0	1.1	29.1	.15	.23	.12	110	.87	.048	10.9	127.0	1.31	419.1	.136	1 3,	04.0	08 .(02 <.2 05 <.2	.05	49	.4 .03	2 5.9 3 8.8
GSMD-18244 GSMD-18296	.26	63.54 80.18	3.24	63.9	36 26	72.9 211.3	25.2 40.9	1100 1052	4.34 6.18	14.5 8.2				38.2 18.3	.05 .07	.39 .45	.13 .04	130 170	. 48 . 94	.024 .051	17.7 7.7	90.1 100.7	1.75 2.81	515.0 282.1	.155 .240	<1 2. 1 3.	90 .0 34 .0	04 .1 12 .1	06 .2 02 <.2	.05 .03	24 25	.4 .07 .3 <.07	7 9.1 2 12.4
GSMD-18288 GSMD-18285	.43	47.09 55.34	7.11 5.70	63.6 58.1	37 36	47.1 46.2	17.8 17.7	739 738	3.45	5.2				21.2 25.2	.16 .12	.40 .52	.10	103	.84	.057	12.0	73.1	.91	390.8	. 225	1 2.	08 .0	11 .	05 <.2 03 <.2	.04	64	.2 .02	2 6.5
GSMD-18298 GSMD-18283	. 22	68.37	4.18	45.8	16	88.8	20.1	698	3.62	12.9	.2	16.7	2.3	20.8	.05	.44	.06	112	.91	.041	8.0	90.6	1.42	218.1	.214	<12.	61.0	11 .0	03 <.2	.02	36	.2 <.02	7.5
GSMD-18260	.32	84.05 47.15	5.24	39.1	41	44.8	16.3	732	3.04	5.8	.3			20.9 21.7	.08 .12	.50 .42	.07	132 108	.97 .98	.029	8.0 9.2	104.3 77.0	2.42 .85	443.5 172.8	. 281 . 268	2 2. 1 2.	98 .0 02 .0	16 .0 15 .0	03 <.2 02 <.2	.03	33 76	.3 < .02	2 8.9 2 6.1
GSMD-18289 GEBD-18329	.36	40.81 50.06	4.16	42.3 48.0	12 91	35.5 64.6	15.0	572 704	2.45	3.7				15.3 11.6		.35 .35	.06	84	.82	.057	7.6	39.3	.80	181.8 125.9	.250				02 <.2				
GEBD-18338 GEBD-18333 S-1	.46	29.05 26.24	11.11	57.6	35	49.6	16.0	643	2.92	5.2	. 4	1.8	4.3	14.7	.13	.39	. 14	77	.67	. 037	16.1	63.0	.89	220.8	. 199	11,	66 .0	08 .0	02 <.2 04 <.2	.03	26		5.2
GEBD-18322		61.62												46.3 14.3		.08 3.97								97.4 98.9					06 .2 03 <.2				
GEBD-18330 RE GEBD-18330		64.55 66.09												11.4 11.3		.31 .31	.05	134	1.11	.025	4.7	69.4	1.53	261.2 264.1					02 <.2 02 <.2				
GEBD-18339 GEBD-18321	. 54	32.03	9.75	59.1	30	49.5	18.7	557	2.92	5.8	. 4	1.9	4.2	12.6	.14	.42	.13	77	. 55	.055	15.3	56.8	.85	158.5	. 198	1 1.	84 .01	07 .0	05 <.2	.03	28	.4 < .02	5.1
GEBD-18331	.28	59.11 64.39	4.47	51.6	16	53.1	28.3	889	3.22	5.0				14.0 14.9		4.07 .36								101.2 152.7		1 2.	75 .0: 35 .0:	.9 .0 14 .0	03 <.2 02 < <i>.</i> 2	.04 .02	54 18	.4 <.02 .3 <.02	8.0
GEBD-18340 GEBD-18323		36.28 28.42									.4			14.4 15.9		.46 .22	.11.	84	.67	.053	16.7	63.5	.99	195.7 71.6	. 209				04 < .2				
GEBD-18328	.48	52.65	5.52	54.1	115	57.0	24.1	737	3.39	4.2	.2	2.6	1.5	18.8	.18	.34	.07	104	1.01	.056	7.6	52.4	1.07	146.7	.270				02 <.2 04 <.2				
GEBD-18325 GEBD-18335		32.15 40.19												12.9 11.5		.19 .40								45.5 188.3	.313	2 2.	23 .01	14 .0	01 <.2 02 <.2	<.02	36	.3 <.02	6.4
GEBD-18327 GEBD-18332		50.86 50.75									.2 .3			19.0 13.3		.36 .42	.05	121	1.03	.035	6.7	57.8	1.22	212.1	.334				02 < .2			.3 .02	
GEBD-18324	.41	64.31	3.21	49.3	53	55.5	24.7	800	3.53	5.0	. 2	1.1	1.2	24.2	.15	.38	. 05	119	1.01	.051	5.4	60.0	1.10	249.0 99.8	. 296	1 3.3	33 . 01	17 .0	03 <.2 02 <.2	.02	59	.5 < .02	8.6
STANDARD DS2	14.07	122.29	32.56	153.5	262	37.5	11.8	806	3.00	59.2 1	18.5 1	90.6	3.6	28.2	10.22	9.85 1	1.19	73	.51	. 087	15.8	156.2	. 58	157.8	.092	2 1.6	53 .02	8 .1	5 7.7	1.87 2	249 2	.3 1.81	6.0

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4 (a)

Δ	V	Δ
ACHE	AWA	YTICAL

<u> </u>																																		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm			Sr ppm	ppm Cq	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррт	Ti %	8 ppm	Al %	Na %	K W		-		Te G	
GEBD-18337 GEBD-18334	. 29	34.05 45.22	4.67	44.9	17	52.3	18.5	662	3.37	4.7	.2	3.6	1.8	15.3		.36	.04	116	.95	.015	6.7	70.7	1.19 2	16.3	.313	2 2	.68 .	018	.04 <.2	.02	28	.3 <	.02 7.	.3
GEBD-18326 GEBD-18336 RE GEBD-18336	.45	39.85 65.31 66.99	7.88	53.5	55	84.2	35.1	1250	3.76	13.9	.3	2.3	2.8	11.6	.12	.97	.09	107	. 54	.057	11.2	98.7	1.64 3	8.02	.177	1 2	.35	008 .	.03 <.2 .03 <.2 .04 <.2	.03	58	.4	.04 6.	.0
STANDARD DS2	14.29	128.88	33.65	159.1	273	35.1	12.3	841	3.13 (51.8	19.8 2	208.8	3.7	26.7	10.25	9.60	10.97	76	.54	.091	15.8	159.3	.61 1	67.3	.095	2 1	.73	033 .	.16 7.9	1.84	225 2	2.2 î	.90 5.	.8

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC VOA 1

Phone (601, 4.3-31... FAX (...1) 25 _716

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003741 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (b)

SAMPLE#	Cs	Ge	Нf	Иb	Rb	Sc	\$n	S		Zr	Υ	Се		Re			Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	bbw	<u>%</u>	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
PPD-18126 PPD-18137 PPD-16128 PPD-18134 PPD-18122	.40 .93 .91 .85	_	.21 .09 .20	.54 .51 .95	3.2 6.9 5.0 2.3 4.0	3.8 9.1 4.2	.8 <. .5 .	.01 .01 .01	<.05 <.05 <.05	6.5 4.8 8.4	6.94 6.69 20.78 9.53 10.72	25.0 37.3 32.1	.02 .03 .04 .03	<1 <1 1 <1 <1	.6 .8 .5	16.1 23.6 17.7 14.4 10.0	30 30 30 30 30	
PPD-18131 PPD-18140 PPD-18121 PPD-18127 PPD-18136	.77 .57 1.24 1.13	.1 .1 .1	.06 .28 .15	.45 1.15 1.16	2.7 3.9 3.8 2.8 4.1	2.8 6.4 5.6	.3 <. .9 .6	.01 .01 .01	<.05 <.05 <.05	3.7 10.8 6.5	19.56 6.81 11.18 13.04 9.06	42.7 23.1 26.6	.03 .05 .05	<1 <1 1 <1 <1	.4 .5 .7	15.1 22.6 9.9 14.0 17.8	30 30 30 30 30	
PPD-18124 PPD-18129 PPD-18125 PPD-18139 PPD-18132	.69 1.07 .59 .75	.1 .1 .1	.09 .14 .07	1.19 .68 .38	1.8 4.8 2.8 5.7 2.8	3.6 5.4 3.4	.4 .8 <. .4 <.	.01 .01 .01	<.05 <.05 <.05	4.6 7.1 4.2	11.74 6.44 9.63 6.32 18.10	30.4 18.8 39.1	.05 .05 .04	<1 <1 1 <1	.4 .4 .4	10.7 16.5 11.3 20.9 16.5	30 30 30 30 30	
PPD-18123 PPD-18135 RE PPD-18135 PPD-18138 PPD-18130	.72 1.02 .99 .68 1.05	.1	.14	.57 .59 .49	4.1 6.3 6.3 4.8 3.1	6.0 5.9 3.2	.6 .7 .4 <	.01 .01 .01	<.05 <.05 <.05	7.0 7.2 3.0	11.61 11.20 11.37 6.65 12.19	18.7 18.5 37.2	.05 .06 .06 .04	<1 <1 <1 <1	.6 .7 .5	10.2 20.4 20.3 21.9 17.6	30 30 30 30 30	
PPD-18275 PPD-18272 PPD-18280 PPD-18277 PPD-18271	1.37 1.31 1.39 2.11 1.79	.1 .1 .1	.20 .20 .31 .14	.53 .08 .78	3.7 2.8 2.9 3.4 2.1	6.6 13.1 5.9	,6 <. .6 <. .5 <.	.01 .01 .01	<.05 <.05 <.05	9.6 12.6 7.4	13.32 11.44 16.67 9.22 14.38	25.2 15.5 23.0	.07 .05 .05 .05	2 1 2 <1 1	.4 .4 .3	38.0 23.2 18.5 30.0 33.9	30 30 30 30 30	
PPD-18276 PPD-18133 S-1 PPD-18278 PPD-18274 PPD-18279	3.23 1.33 2.55 2.99 1.23	.2	.33 .66 .16 .04	.41 .82 .77		8.7 8.1 8.6	٠5 .	.01 .01 .02	<.05 <.05 <.05	40.1 8.4 3.4		31.0 24.0 31.1	.08 .06 .06 .06	4 <1 <1 2 1	.9 .3 .8	67.9 10.8 38.2 30.0 21.9	30 30 30 30 30	
PPD-18273 TCHD-18267 TCHD-18263 STANDARD DS2	1.70 .74 .51 3.33	.1 .1	.27 .17	.09 .14	2.9 3.3 3.0 13.4	6.7 5.6	.3 <.	.01 .01	<.05 <.05	10.0 7.1	10.46 13.79 12.01 7.65	33.8 34.6	.02	<1 2 <1 1	.3 .5	23.9 17.9 19.7 15.9	30 30 30 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 19 2000 DATE REPORT MAILED:

Oct 5 poor

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Page 2 (b)

Δ	V	٥	
		L	
ACHE	ANAL	YTI	AL.

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb	Rb ppm	Sc	\$n ppm	S %			Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm		
TCHD-18269 TCHD-18262 TCHD-18268 TCHD-18265 TCHD-18270	.49 .90 .41 .86	.1	.23 .35 .14 .15	.11 .18 .32 .33	3.6 6.9 3.0 4.0	4.9 5.5 3.5 3.5	.3	<.01 <.01 <.01	<.05 <.05 <.05 <.05	10.0 19.3 6.9 7.3	11.40 14.29 7.93 9.58 8.94	40.8 77.2 40.4 51.5	.02 .03 .02 .03 .04	1 2 <1 <1 <1	.8 .3 .5	15.4 26.8 17.2 21.8 18.4	30.0 30.0 30.0 30.0 30.0		
TCHD-18266 S-1 TCHD-18261 TCHD-18264 GSMD-18300 GSMD-18256	1.39 .79 .71 1.56 .75	.2 <.1 .1	.68 .38 .44 .20	.13 .06 .19	6.2 3.2	5.1 9.4 10.9	3.2 .6	<.01 <.01 <.01	<.05 <.05 <.05	18.1 16.0 9.4	14.70 12.22 15.65 14.22 24.78	72.0 18.7 30.1	.06 .04 .05 .06	<1 <1 <1 <1 <1	.6 .4 .5	11.6 24.6 13.8 22.6 26.4	30.0 30.0 30.0 30.0 30.0		
GSMD-18253 GSMD-18249 GSMD-18241 GSMD-18251 GSMD-18281	.55 .42 .75 .55	.1 .1	.17 .04	.51 .10	3.0 5.4	6.1 3.0 6.7	.3 .3 .6	<.01 <.01 <.01	<.05 <.05 <.05	7.6 3.4 13.8	6.12 12.42 7.72 13.73 15.50	37.0 54.9 16.5	.04 .04 .06 .05	<1 <1 <1 <1 <1	.3 .4 .4	14.2 13.3 22.5 13.4 22.1	30.0 30.0 30.0 30.0 30.0		
GSMD-18246 GSMD-18254 GSMD-18282 GSMD-18291 GSMD-18299 TILL-4	.69 .68 1.69 .92 8.91	.1 .1 .1		.48 .19 .07 .83 1.89	1.9 3.5 3.6	6.4 11.9 4.8	.6 .6 .5	<.01 <.01 <.01	<.05 <.05 <.05	16.9 11.2 7.1	8.79 10.50 15.20 7.65 8.29	20.9 16.0 20.0	.05 .06 .05	<1 <1 <1 <1	.3	40.4 14.6 21.3 14.7 23.4	30.0 30.0 30.0 30.0 7.5		
GSMD-18250 GSMD-18242 GSMD-18292 RE GSMD-18292 GSMD-18255	.58 .72 1.19 1.23 .75	.1 .1 .1	.08	.53	7.0 7.4	3.0 5.9 6.1	.4 .6 .8	.01 .01	<.05 <.05 <.05	3.3 4.0 4.2	11.75 7.61 11.17 11.61 14.43	53.2 25.9 27.8	.05 .04 .05 .05	<1 <1 <1 <1 <1	.4 .5 .6	11.1 22.4 20.8 20.7 12.3	30.0 30.0 30.0 30.0 30.0		
GSMD-18243 GSMD-18290 GSMD-18247 GSMD-18252 GSMD-18295	.81 .86 1.00 .36 .69		.15 .13 .22 .38 .24	.88 .08 .22	9.0 4.2 4.0 1.7 4.1	4.6 5.0 4.4	.5 .4 .6	.01 .01 .01	<.05 <.05 <.05	5.3 10.5 11.3	8.47 8.64 12.56 9.96 8.39	23.1 51.6 15.2	.05 .03 .03 .03	<1 2 <1 <1 <1	.4 .4 .3	29.0 12.7 23.1 10.3 14.7	30.0 30.0 30.0 30.0 30.0		
GSMD-18286 GSMD-18245 GSMD-18294 STANDARD DS2	.69 .58 1.60 3.34	.1		.13	5.3	4.7	.4 .5	<.01 <.01	<.05	8.7 5.9	10.43 6.46 5.99 7.72	67.3 18.9	.02	<1 <1 <1 <1	4	14.7 24.1 15.5 15.0	30.0 30.0 30.0 30.0	17-17-	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3 (b)

SAMPLE#	Cs		Hf ppm	Nb	Rb ppm	Sc	Sn ppm	s %			Y	Ce	In ppm	Re ppb	Be pom	Li ppm	Sample gm	
GSMD-18257 GSMD-18284 GSMD-18248 GSMD-18258 GSMD-18297	.30 1.32 .61 .78 1.91	.1 .1 .1	.37 .34 .11	.12 .08 .19	1.4	6.0 10.7 4.6 6.1	.5 .5 .3	<.01 <.01 <.01 <.01	<.05 <.05 <.05 <.05	15.7 12.5 5.9 14.1	11.81 17.61 9.07 11.63 17.25	18.2 16.5 39.4 21.7	.02 .03 .03	1 2 1 2 2 <1	.3	12.1 20.4 19.3 12.1 24.9	30 30 30 30 30 30	
GSMD-18259 GSMD-18287 GSMD-18293 GSMD-18244 GSMD-18296	.72	<.1 .1	.12	.96 .97 .21		4.3 7.6 6.4	.4 .6 .4	.02	<.05 <.05 <.05	5.1 2.7 5.0	9.56 9.14 14.66 8.76 16.14	14.8 22.1 40.8	.04 .04 .05	<1 1 <1 <1 <1	.3 .4 .6	14.2 14.3 18.8 37.4 17.8	30 30 30	
GSMD-18288 GSMD-18285 GSMD-18298 GSMD-18283 GSMD-18260	.73 1.01 .88 1.24	.1 .1 .1	.15 .36 .21	.05 1.01 .04 .16 .34	4.5 2.2	7.2 12.1 8.6	.6 .5 .7	.01 <.01 <.01	<.05 <.05 <.05	7.2 13.2 8.9	14.52 10.29 14.93 11.31 23.12	22.0 15.7 18.6	.06 .06 .07	<1 <1 <1 <1	.3 .4	14.8 11.7 20.0 18.1 16.1	30	
GSMD-18289 GEBD-18329 GEBD-18338 GEBD-18333 S-1 GEBD-18322	.30 1.19 .41 1.35 1.75	.1 <.1 .1	.17 .15 .67	.37 .47	2.4 3.8	6.8 4.4 8.8	.6 .5 1.5	.01 <.01 .01	<.05 <.05 <.05	9.5 6.6 40.1	8.92 12.21 8.40 14.82 13.09	13.8 33.2 31.3	.07 .05 .09	<1 <1 <1 <1	.4 .4 .7	9.3 18.1 15.3 11.0 14.3	30 30 30	
GEBD-18330 RE GEBD-18330 GEBD-18339 GEBD-18321 GEBD-18331	.89 .91 .49 1.75	.1 .1 .1	.14 .25	.45 .54 .41	3.6	6.9 3.4	.7 .4 .8	<.01 .01 .01	<.05 <.05 <.05	10.9 6.3 12.9	12.14 12.09 7.36 12.54 13.36	12.6 32.6 14.8	.06 .04 .06	<1 <1 <1 <1	.4 .3 .4	24.4 25.2 15.1 14.0 16.2	30 30 30	
GEBD-18340 GEBD-18323 GEBD-18328 GEBD-18325 GEBD-18335	.49 .58 .79 .31	.1 .1	.31 .21 .31	.97 .57	1.7 2.7 .8	5.6 5.4 5.2	.7 .6	<.01 .01 <.01	<.05 <.05 <.05	16.5 10.5 15.8	8.42 12.93 10.66 10.83 12.19	19.7 18.2 12.0	.04	<1 <1 2 2 2	.3	17.4 12.0 11.9 6.7 14.7	30 30 30	
GEBD-18327 GEBD-18332 GEBD-18324 STANDARD DS2	.89 .94 .84 3.46	.1	.17	.84 .82	2.6	8.2 6.5	.6 .8	.01	<.05	8.8 16.0	11.17 16.19 11.55 7.80	24.4 17.6	.05 .03	2 <1 2 2	.5	21.2 20.0 11.9 15.1	30 30	

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4 (b)

																			AUTE MOLTITURE
SAMPLE#	Cs	Ge	Нf	Иb	Rb	Sc	Sn	s	Ta	ZΓ	Y	Се	In	Re	Вe	Li	Sample		
	bbu	ppm	bbu	ppm	ppm	þþm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	_	
GEBD-18337 GEBD-18334 GEBD-18326 GEBD-18336 RE GEBD-18336	.51 .82 .36 .65	.1 .1	.26 .34 .08	.46 .59 .34	3.1 1.5 3.1	6.0 5.1 6.3	.6 .5	<.01 < <.01 < <.01 <	.05 .05	11.1 13.8 5.0	6.31 9.19 10.29 8.55 9.23	16.6 13.3 27.3	.04 .03 .04	1 3 1 <1 3	.3	15.3 18.4 12.4 21.8 23.5	30 30 30 30 30		
STANDARD DS2	3.60	<.1	.02	1.38	13.4	3.1	27.0	.02 <	.05	2.8	7.90	29.8	5.42	2	.6	14.8	30		
																			

Sample type: IILL S230 40c. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A003741R

Page 1

44

s	AMPLE#	\$102 %	Al 203	Fe203	MgO %	CaO	Na20 %	K20 %	Ti02 I	205	MnO (Ba ppm	Ni ppm	Sr ppm	Zr ppm	y ppm	ppm dk		LOJ %	TOT/C %	TOT/S	SUM %	
	ND 18134			4.59							.09	.010		<u></u>	107		28	20		3.4	.21	<.01	99.83	
	PD-18126	63.25	13 /4	7 07	3 00	7 11	1 75	1.06	1 44	07	.08	.015			123		30	19		6.4		<.01	99.81	
	PPD-18137 PPD-18128	66.73	10 50	7.01	7 27	2 16	1 1/	1 10	1 13	16		.025			113			19		5.6		<.01	99.75	•
	PPD-18134	66.76	10.38	6 55	3.21	3 01	1 17	1 00	1.26	.12	20	.022			120			<10	23	5.9	.65	.01	100.22	
	PPD-18122	58.33	11 61	6 01	3.30	4 06	1.83	.50	1.35	14	. 13	.020		54		155		<10	26	11.4	2.17	<.0î	100.15	
· ·	770-10122	30.33	11.01	0.71	3.70	4.00		.,,		• • •	- , -													
	PD-18131	64.75	10.91	7.45	3.89	3.60	1.39	1.12	1.33	.18	.19	.023	3528	72	154	138	39	11	32	4.7	.13	.01	99.98	•
-	PD-18140	63.66	13.46	6.57	2.60	1.95	1.52	2.00	1.15	.18	.10	.017	1307	63	115	206	32	14		6.4		<.01	99.81	
	PD-18121	58.35	11.35	6.91	3.80	4.09	1.83	.49	1.34	.14	.13	.022	422		93		26	<10	26	11.4	2.33	<.01	99,94	
-	PPD-18127	58.13	11.57	7.31	3.92	3.86	1.42	.83	1.17	.26	.20	.026	1729	76	103	130	29	<10	25	10.9	1.97	.01	99.84	
	PPD-18136	61.07	12.06	7.21	2.73	2.68	1.52	1.27	1.32	.20	.11	.017	890	53	114	197	33	<10	20	9.5	2.00	.01	99.84	
,	-FD-10130	01.01	.2.00			_,,,,																		
t	PD-18124	63.13	10.34	6.69	4.56	5.30	1.79	.46	1.31	.08	-14	.031	332	324	97	187	29			5.9		.01	99.85	
-	PPD-18129	62.33	11.86	6.73	2.67	2.32	1.43	1.09	1.12	.18	. 15	.021	1344	64	135	192	26	10			1.89		100.01	
•	PD-18125	65.19	10.22	6.35	3.09	3.03	1.63	.57	1.23		.11	.022		57	95	219	25	<10			1.30		99.86	
	PD-18139	63.98	13.19	6.66	2.75	1.89	1.49	1.82	1.15	.16	-09	.018	1399	53	105	179		11		6.4		.01	99.81	
	PD-18132	67.17	10.65	6.84	3.60	2.69	1.22	1.13	1.09	- 14	.20	.027	2011	94	113	117	35	<10	27	4.9	.18	.01	99.93	
•																								
F	PPD-18123	67.50	10.16	5.87	3.17	2.97	1.47	1.10	1.12	.10		.018		56		191	26	16		6.3		<.01	100.01	•
į	PPD-18135	52.48	13.37	8.56	3.51	3.33	1.36	-89	1.35	.30		.020			93		31	11			2.87	.01	100.08	
į	RF PPD-18135	52.67	13.30	8.50	3.51	3.33	1.37	.89	1.34	-28		.022						<10			2.84	-01	100.12	
	PPD-18138	61.78	13.84	7.07	2.69	1.81	1.49	2.03	1.16	.17	.08	-017	1186		116			<10			1.02		99.82	
	PPD-18130	60.89	11.86	7.92	4.36	3.65	1.34	1.07	1.20	•19	.21	.026	2101	98	106	135	30	<10	27	6.8	.41	<.01	99.80	
		(400		.40	25	47 (2 00	03	100.21	
F	PPD-18275	54.00	12.02	9.02	3.90	3.36	1.82	.53	1.48	-18	.13	.025	772	144	94			<10	25	13.0	2.88 1.72		99.69	
ŧ	PPD-18272	59.05	11.85	6.76	3.64	4.24	1.89	.63	1.49	- 14	-16	.026			114			<10		7.3		<.01	100.07	
\$	PPD-18280	56.42	12.08	9.38	5.84	4.59	1.90	.69	1.36	-11		-039			142			<10			2.07		100.29	
-	PPD-18277	59.30	12.77	7.11	3.02	2.27	1.60	1.25	1.26	.15	.12	.021	522		115			<10 <10		7.6		<.01	100.27	•
ŧ	PPD-18271	58.16	12.70	8.00	4.66	4.64	2.03	.63	1.37	.09	. 17	.033	325	/4	134	207	33	<10	23	7.0	.70	1.01	100.10	
					7 00	7 40		74	4 54	47	25	077	417	11/	89	98	32	<10	44	12.6	92	<.01	99.82	
	PPD-18276	46.96	74.66	11.50	7.00	3.10	1.65	4 42	1.70	17	.13	.008	360	29	335			<10		7.2		.01	99.89	
	PPD-18133 S-1	55.69	18.00	8.67	2.4/	2.70	1 44	1-12	1.39	- 13	.13	.025		59	86			<10			3.51	.02		
-	PPD-18278	53.93	12.26	7.65	3.48	2.78	1.61	-02	1.30	.20					113			<10		16.3		.02	99.79	
		54.99	11.87	7.75	2.61	2.28	1.4/	.90	1.13	17	-11	037	602		135		31			7.2		<.01	100.16	
\$	PPD-18279	57.33	12.58	8.80	5.58	4.51	1.84	-86	1.22	-15	- 14	.033	044	139	133	133	31	110	30	1.2	• • • •	****	,041,0	
	nnn 19277	E7 44	11 10	7.46	/ 07	3 00	1 25	44	1 70	17	12	020	1113	75	98	122	26	<10	27	15.3	3.90	.02	99.81	
	PPD-18273	47 57	12 97	7.96	3 00	2.77	1 70	1 60	1 17	18	14	.015	1232		148			<10		4.6		<.01	99.83	
	TCHD-18267	42 22	12.0/	7.28	3.00	2 67	1 65	1 76	1 21	14	.12	.019	1179	60	137			<10		5.0		<.01	99.79	•
	TCHD-18263	49.72	12.74	7 27	7 23	5.85	2.40	1.85	1.81	2.69	1.38	1.056	2010		394			23			2.42		99.91	
	STANDARD SO-15/CSB	143.15	12.33	1.21	1 + 23	7.05	2.40																	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: TILL \$230 400

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED: Dec 7

SIGNED BY.C.

...D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A003741R Page 3

SAMPLE#	\$102 %		Fe203 %		CaO %	Na20 %	K20 %	Ti02 %	P205 %	MnO 4	Cr203 %	Ba ppm	∦i ppm	\$r ppm	Zr ppm				LOI	TOT/C %	TOT/S %	SUM %	
GSMD-18257 ·	67,55	10.51	5.94	3.36	4.68	2.16	.74	1.43	.08	.12	.025	631	59	138	228	33	<10	27	3.4	.18	<.01	100.13	
GSMD-18284	57.88	12.07	8.85	5.44	4.86	1.89	.80	1.31	. 13	.19	.033	881				36	11		6.3		<.01	99.92	
GSMD-18248	67.88	12.25	6.22	2.18	1.74	1.52	1.59	1.25	. 13	.11	.013	1515	46	112	274		18	20	4.9	.43	<.01	100.02	
GSMD-18258	61.95	11.49	6.85	3.83	4.56	1.90	.70	1.38	-11	-14	.024	937		116	177		11	28	6.9		.01		
GSMD-18297	53,49	12.22	9.72	7.37	3.99	1.61	.63	1,16	.12	_17	.043	441	303	120	141	30		29	9.2	.52	<.01	99.85	
GSMD-18259	65.40														177		<10		5.8		<.01	99.99	
GSMD-18287	52.91	11.05	7.46	2.69	3.19	1.58	.69	1.26	.18	.09	.021	577	32	122	184		13			5.09			
GSMD-18293	53.66	12.14	7.52	3.90	3.47	1.27	.92	.99	.17	.14	.035	1060	74	106	143	30	10	27	15.6	4.02			
GSMD-18244	60.00	13.88	8.12	3.94	1.62	1.49	1.53	1.38	.03	.16	.019	2021	86	109	190	30	13	24	7.5	.75	.01	99.95	
GSMD-18296	52.29	12.25	12.24	6.70	3.89	2.13	.38	1.33	.11	.20	.033	478	225	98	140	36	<10	34	8.4	.42	<.01	100.07	
GSMD-18288	65.33												61				<10	25	5.5			100.02	
GSMD-18285	59.26	13.22	7.28	2.49	2.60	2.08	1.06	1.40	.13	.12	_021	785	51	210	187		12	21	10.2	1.88	.02	100.01	
GSMD-18298	160.93	11.91	7.76	4.46	4.19	1.84	.66	1.23	.11	. 13	.034	545	108	113	191	32	<10		6.5		<.01		
GSMD-18283	56,25	12.12	9.26	6.30	4.29	1.87	.59	1.36	.10	. 18	.038	830	181	109	140	25	<10	29	7.5	.47	<.01	100.01	
GSMD-18260	64.23	11.03	6.59	3.16	4.36	2.09	.69	1.43	.10	.13	.027	558	39	139	220	42	<10	35	6.0	.66	<.01	99.96	
GSMD-18289	65.79	11.04	5.96	3.32	4.47	2.16	.78	1.45	.16	.12	.024	684			238				4.3				
GEBD-18329	54.87	12,12	7.90	4.40	5.26	2.29	.42	1.55	.17	.14	.032	452	55	116	142		<10			2.26		100.05	
GEBD-18338	66.35	12.09	6.29	2.88	2.88	1.73	1.50	1.38	.10	.11	.018	1198			209				4.5			100.02	
GEBD-18333 S-1	53.40	18.37	8.70	2.43	3.91	2.95	1.15	1.44	.12	. 13	.009	363	<20	328	195	29	<10		7.3			100.02	
GEBD - 18322	54.82	13.77	8.97	3.52	3.71	1.78	.84	1.80	. 13	.14	.034	368	74	94	177	32	<10	31	10.4	1.46	.01	100.01	
GEBD - 18330	57.19	12.15	8.39	5.33	5.71	2.39	.39	1.60	.09	.16	.036	593		106			<10		6.4		<.01		
RE GEBD-18330	57.46	12.24	8.38	5.28	5.72	2.39	.39	1.63	.06	.16	.034	600			117		<10		6.4		<.01		
GEBD-18339	65,73	12.59	6.10	2.80	2.61	1.70	1.56	1.33	.10	.10	.021	1211			198	27			5.2		<.01		
GEBD-18321	54.43	13.72	9.06	3.51	3.62	1.75	.87	1.76	.15	.14	.032	369	64	94			<10				<.01		
GEBD-18331	59.63	11.72	7.50	4.73	5.98	2.38	.52	1.65	.11	.17	.031	520	65	123	154	31	11	34	5.4	.39	<.01	99.93	
GEBD-18340	67.09	11.64	6.19	2.90	2.65	1.78	1.27	1.37	.11	.11	.021	1283		118			<10				<.01		
GEBD~18323	61.99	11.51	6.42	3.38	4.33	2.11	.68	1.46	.10	.12	.026	321	34	127	198		<10			1.29		100.02	
GEBD-18328	54,15	12.65	7.06	3.59	4.18	1.84	.87	1.25	. 16	.13	.024	629					<10			3.05		100.12	
GEBD-18325	59.44	11.15	6.57	3.95	6.06	2.14	.38	1.52	. 13	.12	.029	223			219		<10					99.77	
GEBD-18335	57.26	11.48	6.71	4.00	5.05	2.15	-47	1.47	.11	-14	.028	635	56	111	153	29	<10	30	11.1	2.20	.02	100.09	
GEBD-18327	59.56	12.06	7.05	4.08	4.56	2.40	.60	1.48	.11	.14	.024	623				28					<.01	99.88	
GEBD-18332	56,58	11.86	7.75	3.64	4.03	1.93	.57	1.46	.14	. 19	.028	683	82	110	183	33				2.30		100.11	
GFBD-18324	53.22	12.88	7.41	3.70	4.62	1.80	.57	1.32	. 19	.14	.030	351	55	120	162	27					<.01	99.87	
STANDARD SO-15/CSB	49.82	12.48	7.20	7.16	5.79	2.38	1.85	1.82	2.66	1.37	1.045	2070	80	390	972	23	24	13	5.9	2.37	5.33	99.90	

Sample type: TILL \$230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

ACNE ANALYTICAL																							
SAMPLE#	SiO2	Al 203 %	Fe203 %	MgO %	CaO N	a20 %	K20 T	i02 %	P205 %	MnO %	Cr203	Ba ppm	Nî ppm	Sr ppm		Ppm Ppm				TOT/C %	TOT/S %	SUM %	
GEBD-18334 GEBD-18326	62.06	12.19 11.60	6.22 7.03 6.57 7.74 7.59	3.59 4.05 4.24	3.89 2 5.46 2 2 72 1	.08 .41 .67 1	.70 1 1 50 . 1 00 1	1.36 1.41 1.28	.03 .07	.12	.024 .028	632 596 1132	57 46 103	126 130 105	171 179 171	27 29 30	<10	24 29 23	6.8 6.5 7.5	.82 1.04 .92	<.01 <.01 <.01	99.72 100.00 100.02 99.95 99.65	
STANDARD SO-15/CSB	49.23	12.59	7.28	7.23	5.85 2	.39 1	.84 1	1.71_	2.66	1.38	1.051	2022	80	392	954	23	36	13	5.9	2.37	5.27	99.53	

Sample type: TILL S230 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

854 E. HASTINGS ST. VANCOUVER BC VOM 1RO

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (a)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004181 800 - 700 W. Pender St., Vancouver BC V6C 1G8

SAMPLE#	Mo	Cu	Pb ppm			Vi Co		Fe %		U ppm	Au Th			Sb	Bi ppm pg				Cr ppm		Ва ррт			Al %					е Те тротр
GE8X-14204			•••	69.8 17	<u>·</u>		:-			···	1.4 .2						33 1	23 7.9	41.3	38	106.8	. 093	6	1.68	.008	.08 <,2	.04	157 1.	0 < .02 3
GEBX-14204 GEBX-14202				25.7 21							1.6 < .1		.28		.05	35 1.	55 .I	45 10.9	31.9	.26	54.9	.021							1 < .02 1
GEBX-14205				62.4 21						.6	.9 .3							87 10.2			176.4	.133	2						6 <.02 6
GEBX-14201	.64	51.49	3.90	23.7 19	3 7	0 6.7	1141	.66	3.2		1.5 < .1	34.4	.29	.65	.04	32 1.	54 .1	50 10.4	30.4	. 24									4 .02 1
GEBX-14203	.71	53.94	3.72	73.0 14	1 23	.8 26.4	4483	2.74	11.0	.2	23.1	41.4	. 39	1.84	.09 1	11 1.	75 .1	11 10.0	44.6	.57	97.4	.073	3	1.73	.009	.07 <.2	.06	251 .	8 .02 4
PPX-14083	.98	61.35	3.18	48.6 16	0 15	.8 17.9	3313	1.77	5.1	.2	1.9 <.1	34.7		.73				55 8.3											8 < .02 2
PPX-14252	.52	26.18	6.06	51.4 7	7 30	.3 15.1	913	2.27	2.5	.5	1.6 1.2			.43				68 9.4						1.58	.009	.05 <.2	.03	73 .	4 .02 4
PPX-14098				69.0						.3	4.5 1.8		. 24	.20	. 07	75 .	56 .0	58 8.9	59.8	.75	193.4	. 231							2 < .02 4
PPX-14215				102.6 34							2.4 3.7				.12	49 .	52 .0	86 24.1	36.3	.62	404.6	.062	< <u>i</u>	1.41	.004	2. > 80.	.07	131 .	8 .03 3
PPX-14081	.39	50.97	3.39	48.7	5 133	.1 29.1	831	3.59	6.3	.3	2.4 1.3	28.5	.08	.45	.04 1	14 1.	25 .0	44 6.4	/6.3	2.17	345.4	.216	4	2.25	.013	.05 <.2	.03	47 .	4 .05 6
PPX-14262				67.8 14							2.9 1.7			.59				96 10.3											5 .03 4
PPX-14082				48.2			_	3.56			7.4 1.3			.44				42 6.2								.05 < .2			4 < .02 6
PPX-14093				66.2 13							1.5 1.8		.23					55 11.0											2 .04 5 3 .02 3
PPX-14251				67.3						.3			.20		.05	// .	ის . ს ი ი	61 8.5	00.0	./0	25/1 2	142	-1	2 50	015	22 < 2	.02	141	3 .02 5
PPX-14096	.94	41.56	9.95	78.7 26	1 43	.4 41.3	2556	3.68	5.5	.6	2.0 1.2	23.4	. 33	.80	.14 1	VO .	ου .υ	190 9.5	09.2	.00	234.2	. 142							
PPX-14261	1.42	24.35	5.98	67.4 13	34 33	.6 20.4	3403	2.77	9.8		2.4 1.6		.33		.07			85 9.7						1.52	.008	.06 < .2	.06	87 .	6 .02 4 3 .08 4
PPX-14095	.40	31.24	6.80	64.7 12	4 33	.5 17.8	1581	2.53	4.3	.4	220.4 1.9		. 23 . 27)62 10.3)83 8.2											5 .04 3
PPX-14253	.58	31.93	5.03	59.1 7	3 34	.9 16.7	9/5	2.33	3.0	.4 .6			.26		.07	70 . £1	60 .U	165 13 3	1 46 5	62	322 N	169							6 .04 3
PPX-14236	.85	40.23	65.02	75.1 24 206.5 45	6 50	./ 14.6	1300	2.60	24 0	14.0	2.1 9.5			3.06	3 75	58 1	12 1	22 31 (1 52 8	1 33	112 7	.099	2	3.00	.050	18 1.8	.19	44 .	5 .07 9
PPX-14099 STSD-2																													
PPX-14260	2.11	74.85	9.08	155.3 69	4 44	.6 74.5	14075	6.76	21.0	1.9	2.5 .8	54.9	1.28	.53	.10 1	50 1.	87 .1	43 44.6	56.6	. 36	739.7	.051							9 .03 3
PPX-14214	1.23	51.08	25.30	121.8 46	33	.1 15.0	1045	3.34	8.7	2.2	16.8 2.9	56.6	. 95	.62	.15	46 .	72 .1	15 24.6	24.1	. 64	306.4	. 039							6 .04 4
RE PPX-14214	1.24	50.91	26.87	124.4 46	34	.4 15.9	1010	3.37	8.9	2.2	2.4 3.2	58.3	.99	. 65	.16	46 .	73 .1	.25 26.8	24.4	.65	308.9	.046	< 	1.51	.004	.11 <.2	.07	142 1.	8 .04 4
PPX-14271	.68	58.24	5.81	73.2 27	5 42	.3 30.3	2830	2.51	2.0	.4	1.0 .6			. 18	.07	56 .	81 .0	067 7.5	54.9	.68	102.1	.097	<1 /	1.79	012	21 < 2	. US	120 .	4 < .02 3 3 .02 2
PPX-14085	1.00	75.55	4.32	69.I 20	19	.5 19.2	4418	1.78	5.5	.5	2.0 .1	45.3	.52	.82	.09	6/ 1.	91 .1	145 12.4	2 40.5	.34	413.5	.044	4	1.14	.012	.21 \.2	.03	232 2.	0 .02 .
PPX-14097	. 33	27.76	5.08	51.9	57 30	.0 15.3	822	2.18	3.2		42.6 1.7			.43		73 .	77 .0	58 8.6	56.8	.74	150.9	.219							3 .02 3
PPX-14270				48.7 48									.81		.09	37 .	52 .1	12 10.4	36.2	.32	293.3	.044	1	1.3/	.008	.18 <.2	.05	162.2	4 .03 2
PPX-14216	2.79	40.17	11.70	77.8 35	1 16	.1 14.8	2001	4.56	11.3	1.6				.30	.09	52 .	99 .1	0/ 16.3	15.5	.5/	325.1	.045	1 <1	2.31	. UU4 009	16 < 2	.U/	100 2.	7 .02 3 9 .02 4
PPX-14092	.70	77.23	6.72	69.5 3	28 58	.6 18.2	1056	3.13	6.0	.8								11 12.5 069 12.4											4 < .02
PPX-14279	. 64	37.01	7.93	55.7 15	1 30	.4 40.9	2224	2.31	2.4	.5	2.8 1.5	19.4	.31	.33	.13	/U .	JG .U	109 12.4	, 55.9	.58	137.7	. 139							
PPX-14087				50.3 22				1.91			2.6 .2			1.03	.09	76 1.	29 .1	20 14.0	55.7	.47	307.8	.116							5 .02 3
PPX-14254				113.8 17				2.91	3.8	. 4				.41	.09	87 .	77 .0	92 10.6	66.5	.63	218.2	. 120							$\frac{3}{2} = 03 \frac{4}{2}$
PPX-14237				74.5 26			926	2.05	3.2	.6	1.7 2.1	19.8	.51	. 25	.09	44 .	46 .0	154 13.4	35.3	.5/	1//.7	.087	<i< td=""><td>1.31</td><td>.005</td><td>.U8 <.2</td><td>1 04</td><td>220 2</td><td>2 < .02 3</td></i<>	1.31	.005	.U8 <.2	1 04	220 2	2 < .02 3
STANDARD DS2	13.74	126.83	32.46	158.2 25	57 34	.2 11.8	828	3.11	60.7	19.9	192.1 3.7	29.1	10.34	9.59	10.83	// .	54 .0	15.5	163.5	.60	154.9	. 093	<u> </u>	1./3	.030	.13 /.0	1.04	220 2.	2 1.92 (

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT S140

Page 2 (a)

SAMPLE#	Mo mag	Cu ppm			Ag ppb	Ni ppm	Со	Mn ppm	_		U ppm			sr ppm		d2 mqq	Bi ppm	V DDM		P %	La	Cr	Mg %	Ba ppm				K W %ppm				
PPX-14269 PPX-14225 PPX-14213 PPX-14280 PPX-14086	1.23 1.47 1.31 .93	41.16 53.61 63.25 36.21 70.30	12.89 17.33 15.06 8.60	119.7 104.8 93.0 93.8	291 1016 297 389	36.8 54.6 20.6 40.9	20.8 12.6 19.0 90.8	2738 954 2630 6500	2.81 2.46 4.44 3.54	9.2 9.2 16.0 4.5	1.4 10.8 1.3	4.6 13.5 9.3 4.5	1.2 1.4 2.3	30.0	.50 .79 .86 .58	.69 .74 .45 .53 .37	.14 .19 .11	70 37 61 1 86	.88 .98 .00	.109 .097 .103 .125	18.5 35.6 18.3 10.8	50.2 34.0 15.2 57.3 49.1	.46 .77 .51	324.0 453.9 359.7	.034 .061 .082	2 1.5 2 1.4 1 2.0	2 .012 4 .004 9 .009	.08 <.2 .15 <.2 .12 <.2 .19 <.2 .11 <.2	.07 .07 .08	235 3 107 1 198	.0 .0 .4 .0 .4 <.0	4 3.4 3 4.9 2 4.7
PPX-14235 PPX-14250 PPX-14267 PPX-14239 PPX-14259	.60 .87 1.63	33.12 31.36 51.54 37.47 47.44	13.83 14.37 13.89	78.0 82.4 122.5	105 232 782	28.9 29.9 42.4	20.5 23.0 14.1	1491 1788 1651	2.70 2.36 2.69	2.9 4.5 5.2	.5 .9 1.4	1.3 1.0 11.1	1.6 1.3	3 20.9 3 24.4 7 46.6	.29 .23 .78 1.00 3.18	. 57	.14 .13 .14	93 57 45	.76 .87 .56	.059 .107 .083	11.2 19.1 18.3	41.0 59.1 36.4 28.9 40.4	.85 .61 .49	190.6 302.8 362.7	.143 .105 .043	1 1.6 3 1.6 2 1.5	2 .007 5 .006 4 .005	.11 <.2 .10 <.2 .32 <.2 .12 <.2 .21 <.2	. 04 . 06 . 07	102 144 158	.5 <.0 .6 .0 .9 .0	2 4.8 9 3.7 4 3.6
PPX-14089 PPX-14100 PPX-14232 PPX-14223 PPX-14268	1.92 .67 1.39	78.92 59.61 28.69 40.95 36.99	14.99 19.13 15.70	146.2 88.3 263.9	654 171 1155	86.0 30.8 79.1	12.8 13.2 61.0	811 860 16479	2.55 2.40 3.19	6.6 11.1 12.0	2.0 1.4 3.6	1.4 2.2 41.3	1.3 4.5 1.0	34.3 77.9 5 27.3 84.2 3 18.8	.69 .39 2.49		. 15 . 19 . 21	34 38 34	.99 .58 .92	.107 .078 .142	24.0 31.6 32.9	83.8 1 25.6 25.4 28.1 37.6	.43 .50 .34	232.9 179.3 536.8	.037 .064 .025	2 1.0 2 1.3 3 1.8	5 .006 0 .008 8 .012	.06 <.2 .11 <.2 .13 <.2 .24 <.2 .10 <.2	. 07 . 06 . 09	189 4 70 228	0. 0. 0. 5. 0. 8.	2 3.1
RE PPX-14268 PPX-14249 PPX-14278 PPX-14084 PPX-14233 S-1	.55 .36 .61	39.04 26.32 29.49 117.35 29.82	7.16 6.75 6.52	47.1 57.4 81.6	94 55 239	21.5 29.6	14.3 14.3 17.8	1579 676 1258	1.51 2.32 3.34	2.5 2.6 8.7	.8 .5 .5 .4	1.4 2.8	2.9	1 20.8 20.2 17.7 29.2 51.8	. 29 . 16 . 39	.72	.09 .09 .10	31 67 113	.50 .56 1.33	.056 .053 .093	9.6 11.2 11.1	40.2 22.1 46.9 98.1 42.7	.39 .59 .79	201.4 140.9 280.7	. 062 . 182 . 159	2 .9 1 1.4 3 2.3	5 .006 2 .007 2 .010	.11 <.2 .19 <.2 .06 <.2 .05 <.2	. 03 . 04 . 05	81 1 51 108	.5 .0 .2 .0 .8 .0	2 2.4
PPX-14238 PPX-14094 PPX-14234 PPX-14212 PPX-14088	.57 .78 2.00	55.66 28.32 49.64 54.61 56.97	11.13 18.26 14.97	71.9 86.9 100.0	140 177 386	32.0 46.3 26.2	13.8 15.5 16.5	954 2083 1620	2.33 2.85 3.93	7.4 8.5 11.7	.9 .8 2.1	2.4 168.3 106.0	3.6 4.1 4.2	1 36.1 5 21.4 1 22.0 2 77.4 1 28.3	. 27 . 34 . 97		.13 .16 .12	59 64 70	.70 .51 .76	.067 .070 .119	18.9 20.2 24.2	39.0 33.3 44.6 23.7 80.1	.67 .70 .86	292.8 605.2 345.5	.123 .137 .103	2 1.4 1 1.5 1 1.6	5 .007 4 .005 0 .005	.15 <.2 .08 <.2 .10 <.2 .13 <.2 .08 <.2	.05 .06	64 6 94 9 93 1	7 < .0 6. 6. 0. 0	12 4.4 15 4.4 13 5.6
PPX-14209 PPX-14274 PPX-14242 PPX-14208 PPX-14224	.59 .98 .88	34.06 32.05 73.08 41.02 75.60	4.80 18.10 15.12	50.4 111.7 157.1	181 433 639	27.0 34.9 45.6	21.4 17.1 29.2	1097 762 3985	1.83 3.59 3.48	1.8 10.5 12.3	.4 1.1 .8.	1.8 3.9 8.9	3 1.1 3.8 1.4	3 23.1 1 14.4 3 58.0 4 30.1 4 83.3	.24 .72	1.00 .20 .74 1.48 1.01	.07 .15 .18	53 59 59	.51 .73 .69	.062 .107 .104	8.9 22.5 18.1	47.2 49.3 17.9 47.6 23.1	.56 .78 .59	127.5 334.2 376.8	. 185 . 080 . 072	1 1.3 2 1.5 2 2.0	7 .005 9 .006 1 .007	.08 <.2 .12 <.2 .14 <.2 .12 <.2 .21 <.2	.03	8 80 3 121 1 3 189	.4 .0). 0.1). 5.	02 3.6 02 4.8 02 4.6
PPX-14256 PPX-14091 PPX-14257 STANDARD DS2	1.09	74.79 61.92 32.48 127.81	7.59	83.7 144.5	262 281	56.4 44.7	24.2 106.7	1668 21763	3.32	3.6 9.7	.9 .7	1.2	7	7 26.6 9 40.6	.92	. 37	.12	94 92	.80 80.1	.093	10.1 14.2	45.7 89.3 49.0 155.2	.84 .48	224.5 796.5	.137 .076	2 2.7 2 2.1	6 .010 3 .009	.27 <.2 .17 <.2 .13 <.2 .15 6.8	. 06	149 185	.4 < .0	02 6.2 03 5.5

Sample type: MOSS MAT \$140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Page 3 (a)

SAMPLE#	Mo ppm	Cu ppm			Ag ppb		Co ppm	Mn ppm		As ppm	U ppm	Au ppb		Sr ppm		Sb ppm	8i ppm		Ca %	P %		Cr ppm				8 A	1 Na			T1 Hg S ppm ppb pp		
PPX-14276 PPX-14230 PPX-14241 PPX-14277 PPX-14240	.72 1.16 .39	55.60 31.78 78.38 30.57 85.40	15.29 18.74 5.73	83.1 113.7 50.5	376 4 496 3 100 2	40.1 35.8 28.0	13.8 18.6 18.0	2011 782 879	2.63 3.60 2.29	7.0 10.7 2.1	1.4 1.3 .4	2.7 7.3 236.4	3.4 3.3 2.0	31.1 56.3 16.7	.38 .72 .18	.28 .44 .77 .36 .57	.26 .17 .09	36 58 70	.66 .77 .52	.065 2 .107 2 .054 1	27.9 20.2 10.6	51.3 35.6 19.3 52.2 16.5	.49 .79 .56	422.5 336.9 137.7	.044 .058 .199	1 1.5 2 1.5 <1 1.4	2 .005 7 .006 4 .006	.11 < .15 .06 <	.2	.04 149 1. .07 115 . .08 125 1. .03 65 . .08 173 3.	6 < .02 1 < .02 1 < .02	3.8 4.6 3.9
PPX-14231 PPX-14090 PPX-14275 PPX-14255 PPX-14228	.79 1.11 1.50	30.62 46.72 100.01 62.66 28.57	7.66 5.21 8.17	70.0 44.3 159.6	413 4 623 6 426 4	40.8 53.5 1 43.0	15.9 110.5 54.1	1381 3658 21003	2.46 2.16 4.14	6.2 3.3 16.3	1.1 .6 .4	19.9 2.3 2.5	.8 .4 .3	27.3 18.6 43.7	.47 .35	.31 .55 .39 .59 .85	.12 .08 .09	62 62 77	.80 .55 1.67	.083 : .105 : .204 :	12.8 15.3 14.2	33.6 57.7 50.3 37.4 25.9	.58 .40 .33	258.6 225.7 841.5	.110 .108 .031	1 1.9 1 2.0 3 1.6	5 .007 5 .010 8 .007	.11 < .16 < .21 <	.2 .2 .2	.05 11906 16805 19714 25905 72 .	4 < .02 6 < .02 9 < .02	3.9 3.3 3.5
PPX-14248 PPX-14207 PPX-14258 PPX-14265 PPX-14229	1.87 .74 1.19	54.07 45.80 42.52 52.09 26.76	10.67 8.37 17.61	274.4 81.7 99.0	616 5 299 4 267 4	55.8 41.0 44.2	51.5 18.9 19.7	16113 1404 2345	6.51 2.73 3.05	28.0 4.0 8.1	1.1 .7 .9	7.8 2.6 1.9	.9 1.5 1.4	38.1 54.0 19.8 23.4 21.7	1.17 .67 .45	.42 .47 .68	.13 .12 .16	50 2 82 70	1.08 .78 .75	.127 .059 .070	18.1 11.6 23.6	45.2 38.7 56.2 58.0 30.3	.42 .67 .72	836.6 504.8 342.8	.036 .155 .094	<1 1.9 1 1.9 1 1.6	3 .005 5 .008 7 .006	.09 < .09 < .07 <	.2 .2 .2	.07 158 2. .12 215 1. .05 103 . .07 110 . .04 74 .	2 .05 3 < .02 5 .03	3.9 5.4 4.4
PPX-14263 PPX-14210 PPX-14244 PPX-14273 PPX-14266 S-1	.77 .44 .60	29.74 29.53 15.83 35.64 28.11	11.33 8.65 6.10	72.2 48.3 53.5	259 2 124 2 156 2	27.2 21.1 28.4	14.1 12.8 23.5	1255 707 1002	2.18 1.91 2.11	5.3 3.1 1.7	.6 .4	3.4 4.6 4.7	1.1 2.8 .8		.37 .22 .24	.60 .23	.13 .16 .09	59 32 55	.56 .32 .39	.066 : .054 : .052	12.0 16.8 7.6	54.9	.55 .42 .58	192.8 159.8 159.0	.094 .059 .141	1 1.5 <1 1.6 <1 1.6	8 .006 5 .005 3 .005	.08 < .06 < .07 <	.2 .2 .2	.09 15305 11103 6603 8612 33 .	3 <.02 1 .08 1 .02	4.2 3.0 4.3
PPX-14264 PPX-14206 PPX-14243 RE PPX-14243 PPX-14221	1.34 .69 .68	21.54 60.75 34.27 33.78 33.64	12.16 9.25 8.62	138.1 57.9 55.0	1354 5 301 3 264 3	56.3 33.8 31.8	32.5 15.6 14.4	10604 1456 1396	3.54 2.32 2.28	13.0 4.1 3.8	2.0 .7 .6	6.0 .1.5 3.6	.6 2.0 1.9	73.0 26.7 24.7	1.83 .41 .36	1.18 .42 .40	.16 .13 .13	31 1 49 49	1.74 .62 .60	.130 .079 .075	17.6 17.0 15.6	42.2 32.0 43.0 41.9 25.0	.38 .54 .53	711.9 302.4 296.1	.021 .086 .088	2 1.6 1 1.4 <1 1.4	6 .006 5 .007 2 .007	.10 < .11 < .10 <	.2	.11 123 . .10 342 1. .05 102 . .05 101 . .08 224 .	1 .02 2 .02 1 .02	3.0 3.8 3.6
PPX-14219 PPX-14227 PPX-14211 PPX-14247 PPX-14222	.77 1.28 .51	35.56 28.38 79.29 44.85 31.26	19.24 20.10 16.12	87.8 149.1 131.8	168 3 381 2 204 3	30.6 26.0 35.7	16.3 16.6 20.6	1482 831 1091	2.65 3.41 2.79	23.1 10.7 3.7	1.4 1.2 .8	10.9 3.7 .7	5.8 2.7 2.3	27.5 89.6 31.1	.24 .55 .52	.82 .61 .43	.20 .15 .16	40 59 59	.47 .91 .91	.082 (.113 (.074 (32.6 23.3 20.1	28.5 18.0 44.1	.55 .75 .78	214.3 337.2 270.3	.069 .068 .124	<1 1.3 1 1.4 1 1.7	1 .005 4 .007 7 .006	.12 < .17 < .13 <	.2 .2 .2	.10 100 . .07 65 . .08 108 2. .06 115 . .11 181 .	3 .04 3 .03 3 .04	3.9 3 4.7 4.7
PPX-14272 PPX-14226 PPX-14218 STANDARD DS2	.61	57.85 27.50 49.35 129.38	16.12 19.60	68.0 91.3	142 3 500 4	31.6 3.5	13.1 17.4	782 2621	2.39 3.00	15.7 8.5	1.4	3.7 2.4	6.3 2.8	18.6 25.7 42.3 28.4	.18 .46	.73 .64	.25 .23	37 43	.45 .79	.073 2 .067 3	29.0 33.5	28.1 41.5	.53	228.4 402.5	.067 .040	<1 1.2 <1 1.6	0 .005 2 .005	.10 <	.2	.04 152 . .05 48 . .08 141 . 1.81 229 2.	3 .05 7 .02	3.7 4.5

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4 (a)

SAMPLE#	Mo ppm	Cu	Pb ppm	•	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %		U ppm			\$r ppm	Cd ppm							Cr ppm		Ba ppm		B ppm	A? %	Na %	K W % ppm	וז ppm p			
PPX-14246 PPX-14220 PPX-14217 PPX-14245 RE PPX-14217	1.60 .56 1.04	24.54 28.79 25.64 26.07 25.56	21.84 10.79 23.96	257.0 61.2 102.1	327 6 96 3 575 2	50.6 6 33.4 1 25.6 1	54.2 1 12.7 13.1	16473 782 1437	5.64 2.71 2.19	86.0 5.1 7.0	2.5 .6 4.2	9.9 1.5 1.6	2.3 6.1 5 .5	70.6 22.0 68.0	1.10 .17 .86	.97 .44 .57	.22 .14 .23	33 45 25	.75 .46 .90	.116 .071 .119	55.5 21.5 41.2	30.4 36.6 24.3	.39 5 .58 3 .36 3	596.5 . 132.8 . 245.8 .	020 096 017	2 1 1 1 3 1	.63 .21 .58	.005 . .004 . .005 .	20 <.2 06 <.2 15 <.2	.03 -	94 .6 46 .3 11 .7	3 .03 3 .03 3 .03	3.7 3.7 2.3.5
STANDARD DS2	14.21	124.57	33.75	153.1	260 3	34.8	11.9	804	3.11	55.7	19.5	196.0	3.6	28.5	10.12	9.58	10.88	73	.51	.090	15.8	155.2	.58	159.3 .	093	2 1	. 69	.027 .	15 7.2	1.89 2	27 2.2	1.89	6.2_

Sample type: MOSS MAT \$140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC VOA 1RO PROME (601, 23-72 FAR, 24) 25

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004181 Page 1 (b) 800 - 700 W. Pender St., Vancouver BC V6C 1G8

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	ррт	Rb ppm	\$c ppm	Sn ppm	s %	Та ppm	Zr ppm	Ppm Ppm	Ce ppm	In ppm	Re ppb	Be ppm		ample gm	
GEBX-14204 GEBX-14202 GEBX-14205 GEBX-14201 GEBX-14203	.85 .45 1.68 .36 1.28		.03 .06 .02	.27 .73 .19	2.8 3.3 3.6 4.0 3.3	4.7 10.9 4.4	.3 .6 .2	.27 < .13 < .28 <	<.05 <.05 <.05	1.2 2.8 1.0	30.38 43.81 30.69 43.73 40.03	5.7 15.2 5.0	<.02 .03 <.02	2 5 3 2 3	.2 .4 .1	6.3 2.6 14.8 2.0 7.3	30.0 15.0 30.0 15.0 30.0	
PPX-14083 PPX-14252 PPX-14098 PPX-14215 PPX-14081	.57 .37 .94		.05 .06 .02	.60 .67 .58	3.5 3.2	4.5 4.1 3.3	.4 .4 .3	.03	<.05 <.05 <.05	1.9 2.3 1.0	31.74 10.34 8.35 9.69 10.38	18.4 19.8 41.4	.02 .02 .02	2 <1 3 3	.3 .3 .2	3.5 11.3 9.7 18.4 16.8	15.0 30.0 30.0 30.0 30.0	
PPX-14262 PPX-14082 PPX-14093 PPX-14251 PPX-14096	.89 .52 .31	<.1	.15 .06 .06	.40 .58 .68	2.6 4.3 2.4	6.5 7.1 3.8	.5 .5 .3	.01 · .03 ·	<.05 <.05 <.05	5.4 2.8 2.7	14.42 10.43 11.92 8.41 9.91	12.4 21.9 17.8	.03 .03 .02	<1 <1 1 <1	.3 .4 .2	10.8 16.5 14.2 8.9 16.0	30.0 30.0 30.0 30.0 15.0	
PPX-14261 PPX-14095 PPX-14253 PPX-14236 PPX-14099 STSD-2	.58 .47 .52	<.1	.06 .06 .02	.57 .60 .43	3.7 3.3 5.2	5.0 4.6 3.5	.4 .3 .3	.04 -	<.05 <.05 <.05	2.8 2.5 .9	13.69 9.59 10.52 9.88 16.43	21.8 16.4 25.0	.03 .03 .02	<1 1 <1 <1 1	.4	10.0 13.9 11.0 12.8 53.6	30.0 30.0 30.0 30.0 7.5	,
PPX-14260 PPX-14214 RE PPX-14214 PPX-14271 PPX-14085	3.01 3.26 .42		.02 .02 .02	.38 .45 .38	8.2 8.8 3.5	3.4 3.7 3.2	.3 .3 .3	.18 · .03 · .07 · .05 ·	<.05 <.05 <.05	.9 .8 .6	41.14 11.66 12.09 8.91 41.36	40.8 45.2 16.1	.02 .03 .02	<1 5 4 3 <1	.2 .3 .3	8.4 24.5 25.2 12.5 4.3	30.0 30.0 30.0 30.0 15.0	
PPX-14097 PPX-14270 PPX-14216 PPX-14092 PPX-14279	.30 1.15 .93	<.1 <.1 <.1 <.1 <.1	.02 .02 .06	.26 .60 .80	2.8 4.5 6.2 4.8 4.9	2.4 2.6 11.4	.2 .3 .5	.12 .11 .08	<.05 <.05 <.05	.3 .6 2.4	8.69 10.47 8.16 33.78 11.63	38.3 22.1 23.4	.02 .02	3 1 5 7 1	.3 .2 1.0	11.1 7.6 21.1 19.5 13.1	30.0 15.0 30.0 30.0 30.0	
PPX-14087 PPX-14254 PPX-14237 STANDARD DS2	.76 .54		.02	.45 .36	4.4	5.4 2.5	.3	• 07 • • 01 •	<.05	1.1	41.05 13.01 6.00 7.41	24.5 25.6	.02 .02	<1 <1 1 2	.5 .2	6.9 14.2 14.7 14.4	15.0 30.0 30.0 30.0	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT S140

DATE RECEIVED: OCT 13 2000 DATE REPORT MAILED: OCT 30/00 SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data V

Page 2 (b)

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb	Rb ppm	Sc ppm	Sn ppm	S Ta % ppm		Y	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm				
PPX-14269 PPX-14225 PPX-14213 PPX-14280 PPX-14086	.70 1.39 .55	<.1 <.1 <.1 <.1	.03 .04 .02	.49		2.9 3.2 4.9	<.1 .3 .5	.08 <.05 .09 <.05 .07 <.05 .11 <.05 .15 <.05	1.5 1.3 1.0	23.79 9.30 15.98	35.7 28.4 32.6	.02 .03 .02 .03	6 2 <1 <1 <1	.4	13.5 15.7 24.6 12.8 6.7	30 15 30 15 15			- "	
PPX-14235 PPX-14250 PPX-14267 PPX-14239 PPX-14259	.41 .58 .81	<.1 <.1	.06 .03 .02	.93 1.34 1.17 .32 .39	5.3 6.1 6.8	3.8 3.5 3.2	.4 .4 .2	.02 <.05 .06 <.05 .11 <.05 .07 <.05 .15 <.05	2.9 1.8 .8	7.63 20.23 11.79	23.4 35.1 34.5	.02 .02 .02 .03	1 <1 <1 1 2	.5	16.5 13.8 10.7 14.6 9.1	30 30 15 30 15				
PPX-14089 PPX-14100 PPX-14232 PPX-14223 PPX-14268	.66	<.1 <.1	<.02 <.02 <.02	.81 .48 .46 .14	7.2 6.5	2.4 2.3 2.2	.2 .4 .2	.13 <.05 .09 <.05 .05 <.05 .14 <.05 .07 <.05	1.2 2.1 .5	18.81 13.11 33.65	30.4 57.2 77.0	.02 .02 .03	4 6 <1 <1 2	.3 .3	18.2 13.7 15.9 16.6 13.0	30 30 30 15 30				
RE PPX-14268 PPX-14249 PPX-14278 PPX-14084 PPX-14233 S-1	.64 .31 .38 1.26 1.32	<.1 .1	.02 .09 .08	.48 .52 .91	4.8 4.0 3.2 4.3 4.7	2.4 4.4 19.4	.2 .4 .5	.07 <.05 .08 <.05 .05 <.05 .10 <.05 .01 <.05	1.0 4.6 4.1	9.44 7.85 42.47	21.6 22.6 22.7	.02	<1 <1 <1 <1	.2 .2 .7	13.5 7.6 9.5 12.9 11.5	30 15 30 30 30				
PPX-14238 PPX-14094 PPX-14234 PPX-14212 PPX-14088	.71 .78 1.69	<.1	.06 .04 .02	.52 .65 .74	7.1 5.2 5.1 8.6 4.7	3.7 4.2 4.4	.4 .4 .3	.06 <.05 .05 <.05 .04 <.05 .05 <.05 .08 <.05	2.9 2.6 1.9	12.70 11.04	35.6 38.2 44.4	.03 .03 .03 .03	<1 <1 <1 4 <1	.3 .4 .3	18.6 13.9 14.3 27.6 18.7	30 30 30 30 30				
PPX-14209 PPX-14274 PPX-14242 PPX-14208 PPX-14224	.34 1.42	<.1	<.02 .05 .03 .02 .04	.71 .77 .52	5.2 3.4 8.4 5.8 9.9	3.3 3.8 5.3	.4 .4 .5	.04 <.05	1.9 2.0 1.3	9.27 14.12 18.64	16.3 36.7 41.8	.03 .02 .02 .03	<1 <1 <1 <1 8	.3 .3 .4	15.3 8.8 22.9 16.2 20.4	30 30 30 30 30				
PPX-14256 PPX-14091 PPX-14257 STANDARD DS2	.33 .78 .38 3.34	<.1 <.1	.02 .04 .04 .05	.86	5.8 5.1 4.2 12.8	6.5	.6 .4	.24 <.05 .09 <.05 .12 <.05 .02 <.05	2.5 1.5	17.73 20.68	21.4 43.9		5 <1 3 2	.8	8.1 19.5 10.3 15.1	30 30 30 30	<u> </u>	 	··· <u>-</u>	

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_ FA

Page 3 (b)

SAMPLE#	Cs	Ge ppm	Kf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm		Ta ppm		Y ppm	Ce	nî maq	Re ppb	Be ppm		Sample gm		
PPX-14276 PPX-14230 PPX-14241 PPX-14277 PPX-14240	.61 1.53	<.1 <.1 <.1	.02 .04	.67 .48 .59 .59	7.0 9.0 3.5	3.2 3.6 3.9	.3 .3 .5	.04 .03 .03	<.05 <.05 <.05	1.4 1.8 3.0	20.57 15.25 14.31 8.07 17.23	47.1 32.5 20.8	.02 .02 .02	<1 <1 4 <1 7	.4 .3 .2	9.8 17.5 25.1 8.4 23.6	30 30 30		
PPX-14231 PPX-14090 PPX-14275 PPX-14255 PPX-14228	.80 .39 .40	<.1 <.1 <.1	.04 .03 <.02	.58 .65 .62 .30 .53	4.9 4.2 5.1	6.4 3.7 7.4	.3 .3 .3	.08	<.05 <.05 <.05	1.8 1.1 .8	17.10 21.62 24.50 37.36 11.01	21.4 37.6 25.8	.02 .02 .02	3 1 <1 <1 <1	.5 .9 .5	16.5 13.1 10.8 7.2 12.7	30 30 15		
PPX-14248 PPX-14207 PPX-14258 PPX-14265 PPX-14229	.62 .47 .59	.1 <.1 <.1	<.02 .08 .04	1.02 .28 .94 .65	4.2 4.6 4.6	5.5 5.5 5.9	.1 .5 .4	.12 .02 .07	<.05 <.05 <.05	.8 3.4 1.8	19.16 25.88 14.45 21.79 9.68	28.7 26.5 38.7	<.02 <.02 <.02	2 1 <1 <1 <1	.4 .4 .5	12.9 12.2 15.3 14.8 12.6	30 30 30		
PPX-14263 PPX-14210 PPX-14244 PPX-14273 PPX-14266 S-1	.73	<.1 <.1 <.1	.02 <.02 .03	.38 .71	4.9 4.1 4.6	3.7 2.0 2.8	.3 .1 .3	.05 .01 .04	<.05 <.05 <.05	1.5 1.1 1.4	18.76 9.55 6.48 6.51 13.78	24.5 32.7 15.4	<.02 <.02 <.02	<1 1 <1 1 <1	.2 .3 .3	11.2 14.7 11.8 13.5 12.9	30 30 30		
PPX-14264 PPX-14206 PPX-14243 RE PPX-14243 PPX-14221	.47 .43 .41	<.1 <.1 <.1	.02 .04 .04		4.6 5.2 5.0	5.5 3.9 3.8	<.1 .3 .2	.11 .06 .05	<.05 <.05	.9 1.9 1.7	28.74 33.30 14.61 13.72 42.19	24.7 36.3 33.9	<.02 <.02 <.02	<1 2 <1 1 3	.3 .2 .3	10.6 10.1 12.0 11.2 9.8	30 30 30		
PPX-14219 PPX-14227 PPX-14211 PPX-14247 PPX-14222	.79 1.76 .59	<.1	.03 .03 .08		7.3	2.4 3.6 3.7	.3 .3 .4	.02 .05 .07	<.05	1.8 1.7 3.1	13.28 12.72 12.04 17.22 29.37	66.2 37.1 37.3	<.02 .02 .02	<1 <1 2 <1 <1	.3 .5	20.9 15.4 26.1 16.1 20.2	30 30 30		
PPX-14272 PPX-14226 PPX-14218 STANDARD DS2	.65	<.1 <.1 <.1 <.1	.05	.35	6.0 7.8	3.8	.3 .3	.04	<.05	2.6 1.5	12.16 10.99 21.05 7.78	56.5 47.3	<.02 .02	1 <1 <1 <1	.2 .4	9.2 15.8 19.1 14.2	30 30		

Sample type: MOSS MAT \$140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004181

Page 4 (b)

SAMPLE#	C		•••	Nb	Rb	Sc	Sn	S	Ta	Zr	Y	Ce	In	Re	Вe		Sample	
	bbu	ı ppn	ppm	ppm	ppm	bbu	ppm		ppm	ppm	ppm	bbw	ppm	ppo	ppm	ppm	gm	
PPX-14246	.60	s <.1	.02	.82	7.6	2.0	.3	.10 <	<.05	1.6	15.11	37 .7	.02	<1	.3	13.6	30	
PPX-14220	.57	' <.1	.02	.24	7.1	2.2	.2	.08 <	.05	1.0	25.94	100.4	.02	<1	.5	14.3	30	
PPX-14217	.57	· <.1	.05	.36	3.9	3.3	.3	.01 <	<.05	2.9	7.93	40.2	<.02	<1	.3	14.2	30	
PPX-14245	.65	<.1	<.02	.43	8.8	1.3	.3	.09 <	.05	.6	26.28	71.1	.02	<1	.5	20.1	30	
RE PPX-14	.51	<.1	.06	.39	3.8	3.3	.2 •	<.01 <	.05	2.8	7.70	41.3	<.02	<1	.2	13.8	30	
STANDARD	s2 3.39	< . 1	.07	1.44	13.3	3.0	26.4	.03 <	<.05	2.9	7.97	30.3	5.38	2	4	14.9	3 0	

Sample type: MOSS MAT \$140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA_

E. STIME ST. COUT BC . 1R H 3(60 53-1

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004181R Page 1 800 - 700 W. Pender St., Vancouver BC V6C 1G8

GEOCHEMICAL ANALYSIS CERTIFICATE

SAN	MPLE#	LOI %
GEI GEI GEI	BX-14204 BX-14202 BX-14205 BX-14201 BX-14203	59.2 69.7 32.6 68.1 52.7
વિવ	1	63.5 12.3 13.4 12.8 11.0
PPI PPI PPI	X-14262 X-14082 X-14093 X-14251 X-14096	14.7 11.1 17.1 10.4 32.3
PP PP PP	X-14236 I	14.3 14.6 14.8 15.0 10.4
PP: RE PP:	x-14214	51.0 14.0 14.2 27.5 71.4
PPI PPI PPI	X-14097 X-14270 X-14216 X-14092 X-14279	11.4 43.2 29.4 37.8 24.6
PP	X-14237	55.0 30.1 11.4 45.9

- SAMPLE TYPE: MOSS MAT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 22 2000 DATE REPORT MAILED: DEC 4/50

SIGNED BY ... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004181R

Page 2

ACE ROUTIFUL	SAMPLE#	LOI
	PPX-14269 PPX-14225 PPX-14213 PPX-14280 PPX-14086	24.8 26.4 21.1 38.9 47.2
	PPX-14235 PPX-14250 PPX-14267 PPX-14239 PPX-14259	14.6 22.0 37.9 20.8 46.2
	PPX-14089 PPX-14100 PPX-14232 PPX-14223 PPX-14268	36.3 27.4 13.2 34.7 18.5
	RE PPX-14268 PPX-14249 PPX-14278 PPX-14084 PPX-14233 S-1	18.5 39.8 8.4 24.6 7.2
	PPX-14238 PPX-14094 PPX-14234 PPX-14212 PPX-14088	28.5 9.9 10.2 12.6 27.6
	PPX-14209 PPX-14274 PPX-14242 PPX-14208 PPX-14224	20.6 15.2 15.2 26.1 25.4
	PPX-14256 PPX-14091 PPX-14257 STANDARD DOLOMITE	57.6 31.9 39.0 46.0

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004181R

Page 3

	4
L	
ACHE ANAL	YTICAL

1 ANT CALLING	SAMPLE#	LOI
	PPX-14276 PPX-14230 PPX-14241 PPX-14277 PPX-14240	35.1 16.2 16.0 11.4 28.4
	PPX-14231 PPX-14090 PPX-14275 PPX-14255 PPX-14228	23.3 25.9 40.8 54.6 6.5
	PPX-14248 PPX-14207 PPX-14258 PPX-14265 PPX-14229	43.4 35.6 21.2 19.8 6.8
	PPX-14263 PPX-14210 PPX-14244 PPX-14273 PPX-14266 S-1	33.1 19.5 11.3 17.8 7.3
	PPX-14264 PPX-14206 PPX-14243 RE PPX-14243 PPX-14221	35.0 48.2 19.2 19.1 49.3
·	PPX-14219 PPX-14227 PPX-14211 PPX-14247 PPX-14222	14.4 8.7 21.2 24.1 28.6
	PPX-14272 PPX-14226 PPX-14218 STANDARD DOLOMITE	36.3 6.6 14.5 46.0

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004181R

Page 4

The Meriod	ACHE ANALYTICAL
SAMPLE#	roi *
PPX-14246 PPX-14220 PPX-14217 PPX-14245 RE PPX-14	26.7 6.4 33.2
STANDARD	DOLOMITE 46.0

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🚣 FA _

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004332

Page 1 (a)

Mn Fe As U Au Th Sr Cd Sb B1 V Ca P La Cr Hg Ba T1 B Al Na K N Tl Hg Se Ye Ga SAMPLE# PPX-14343 .34 11.34 8.61 50.0 74 14.2 9.4 610 1.70 4.2 1.0 .9 4.5 11.4 .11 .11 .20 13 16 .032 18.3 12.1 .18 59.1 .015 1 .62 .002 .04 < .2 .03 25 .1 < .02 1.8 .58 22.70 9.00 85.3 203 27.9 11.7 567 2.11 2.9 .9 2.2 4.0 19.2 .19 .20 .17 34 .27 .042 16.1 39.3 .60 366.0 .062 1 1.23 .004 .08 <.2 .04 41 .2 <.02 3.6 PPY-14351 PPX-14294 .55 25.51 5.20 57.6 88 29.7 17.8 976 1.96 1.9 .3 23.8 1.4 18.0 .26 .22 .06 50 .53 .053 6.1 55.5 .64 79.9 .197 <1 1.27 .005 .04 <.2 .02 39 .2 < .02 3.2 PPX-14283 .52 20.22 10.28 60.1 253 26.0 16.1 1263 2.08 4.9 .7 3.7 1.9 21.4 .30 .49 .11 55 .52 .057 13.2 44.5 57 196.9 .117 1 1.55 .006 .06 <.2 .08 157 .3 <.02 4.1 .76 24.40 11.37 77.9 619 54.4 10.7 1602 1.91 2.0 2.6 1.5 .8 59.2 .65 .13 .36 14 .87 .088 11.3 16.2 .29 129.8 .010 2 .77 .003 .07 <.2 .03 113 2.7 .02 1.9 PPX-14316 PPX-14307 .21 32.73 2.91 44.1 38 30.2 22.9 1081 2.04 .8 .1 1.0 .6 14.7 .13 .11 .04 52 .51 .042 3.0 65.3 .80 54.9 .240 <1 1.33 .004 .05 <.2 <.02 33 .2 <.02 2.8 .58 37.12 8.34 55.3 82 35.6 23.5 1178 2.61 2.4 .3 1.2 15.6 .25 .22 .07 60 .51 .059 6.0 66.2 .89 82.3 .187 <1 2.56 .006 .06 <.2 .02 45 .1 <.02 3.6 PPX-14293 PPX-14285 1.13 60.72 9.26 126.9 988 53.3 23.0 6226 3.42 13.0 1.0 4.1 .5 43.6 1.13 .79 .15 80 1.39 .138 16.5 64.9 .58 529.1 .058 2 2.51 .006 .09 <.2 .09 261 .5 .04 4.9 .46 36.51 3.99 47.4 101 33.0 32.5 2366 2.28 1.5 .2 1.1 .5 17.0 .34 .12 .07 59 .50 .061 5.0 68.2 .70 78.7 .204 1 1.77 .007 .18 <.2 .03 107 .2 <.02 3.4 PPX-14301 PPX-14332 .35 13.86 10.43 62.7 239 20.2 13.0 1096 2.22 5.8 1.4 9.3 3.2 20.4 .32 .13 .20 12 .30 .057 20.0 12.9 .22 77.8 .011 1 .74 .003 .05 <.2 .03 68 .1 .02 2.1 PPX-14317 .89 24.67 12.70 66.6 362 35.8 10.0 787 1.98 2.6 1.9 1.8 1.4 43.2 .40 .16 .33 20 .80 .68 14.0 19.6 .31 168.0 .019 2 .85 .003 .07 <.2 .03 84 2.1 .03 2.1 PPY-14324 .80 23.33 13.13 128.9 402 44.1 41.2 12439 5.04 5.1 1.6 .9 2.9 72.4 .73 .16 .33 25 .87 .104 44.5 21.2 .31 297.8 .017 2 1.35 .007 .18 <.2 .08 149 .3 .03 3.5 PPX-14315 .75 18.37 13.92 70.9 635 34.1 14.5 1396 2.41 3.5 1.3 86.5 1.7 31.0 .47 .16 .52 25 .39 .063 18.3 24.4 .32 190.0 .024 1 1.07 .004 .07 <.2 .04 89 .5 .03 3.0 PPX-14288 40 40.19 11.16 49.8 211 42.4 13.6 598 2.01 2.8 .5 1.3 1.2 19.4 .21 .27 .08 48 .91 .044 8.5 57.4 .69 135.4 .105 1 1.31 .004 .06 <.2 .03 77 1.1 <.02 3.6 PPX-14292 .54 29.06 11.29 42.8 70 28.8 14.5 514 1.84 2.3 .3 2.6 .8 12.1 .20 .18 .05 43 .41 .046 4.3 47.5 .63 70.1 .153 1 1.12 .004 .03 < 2 .02 39 .1 < .02 2.4 .91 11.42 9.04 57.3 196 25.7 11.3 2899 1.58 3.4 1.4 .2 1.5 18.3 .32 .0.9 .18 13 .28 .050 15.6 19.3 .28 77.9 .008 1 .80 .002 .04 <.2 .04 64 .3 < 0.0 2.8 PPY-14348 .24 9.94 9.24 63.2 71 12.4 11.0 747 1.87 5.8 .7 1.4 4.5 9.9 .10 .11 .18 10 .029 17.5 10.4 .17 67.7 .008 <1 .61 .002 .06 <.2 .02 36 <.1 .02 2.1 PPX-14338 PPX-14299 STS0-4 1.09 63.54 13.98 78.0 293 23.0 10.2 1192 2.45 10.8 1.8 2.4 1.7 65.1 .31 5.98 .25 50 1.03 .088 12.9 28.8 .63 1198.7 .065 4 1.00 .028 .11 .4 .09 1057 .7 .04 3.9 .53 18.14 10.46 51.1 467 27.2 10.7 1375 1.97 7.1 3.6 1.2 .9 38.7 .41 .16 .19 12 .66 .101 19.6 15.0 .16 76.8 .009 2 .75 .004 .11 <.2 .04 101 .6 <.02 1.9 PPY-14334 1.63 38.44 21.12 55.6 743 63.1 47.7 9887 3.86 3.7 4.7 2.3 2.8 38.8 1.39 .19 .24 16 .65 .087 47.9 16.7 .21 177.4 .015 2 1.31 .006 .09 <.2 .11 261 ..9 <.02 2.0 PPX-14320 PPX-14350 .73 11.82 10.53 62.6 23 30.4 21.2 2000 2.29 9.3 1.3 1.0 2.7 23.8 .38 .11 .19 13 .26 .061 16.9 22.9 .30 97.7 .010 1 .78 .003 .07 <.2 .03 63 .5 .02 2.6 48 14.06 9.44 54.3 206 22.1 9.3 633 1.55 2.5 1.3 385.0 3.3 16.8 .20 .12 .27 15 .19 .048 17.8 15.4 .23 108.4 .020 <\ \text{\$1.64 .003 .09 <\ 2 .02 43 .2 .02 1.9 PPX-14313 RE PPX-14313 .47 14.45 9.67 51.9 229 20.9 9.3 591 1.50 2.6 1.2 264.3 3.4 16.9 .19 .12 .32 15 .18 .049 18.1 14.8 .22 103.7 .018 1 .61 .003 .09 <.2 .02 53 .2 .02 1.9 1.59 32.51 8.53 205.6 1060 147.2 102.1 20395 5.23 8.2 1.3 3.3 .6 120.1 2.00 .22 .16 20 .97 .112 11.9 19.8 .33 2171.6 .013 2 .93 .007 .10 <.2 .05 166 1.8 .04 2.7 PPX-14308 PPX-14296 .69 134.95 4.73 96.4 342 109.4 23.3 1532 2.78 4.7 .4 1.8 .4 28.3 .39 .50 .07 61 1.31 .115 10.9 83.7 .72 145.6 .071 2 2.29 .006 .09 <.2 .06 201 .6 <.02 4.1 .42 22.50 6.65 41.1 75 22.2 11.6 713 1.74 3.5 .4 3.0 2.5 14.8 .15 .36 .09 43 .44 .049 9.6 32.3 .42 122.8 .104 1 .92 .004 .02 < 2 .02 30 .2 < .02 30 .2 < .02 30 PPX-14287 .40 32.51 2.29 56.7 60 38.6 33.4 2977 2.46 1.6 .1 8.0 .6 16.9 .28 .17 .03 66 .56 .050 3.8 66.0 .76 92.6 .218 1 1.55 .008 .06 <.2 .03 87 .1 < .02 3.4 PPX-14327 PPY-14345 .63 17.73 11.82 58.9 414 20.1 7.8 1020 1.76 3.1 4.2 2.5 1.2 59.2 .43 .18 .21 12 1.02 .094 19.0 14.6 .20 82.9 .006 1 .97 .003 .10 <.2 .04 120 .3 <.02 2.6 1.01 46.86 124.94 102.3 405 59.2 19.1 871 2.51 9.5 .7 11.1 1.4 16.3 .65 .72 .24 41 .51 .065 8.8 46.0 .58 92.8 .094 11.21 .003 .03 <.2 .03 88 .9 .02 2.7 PPX-14290 PPX-14330 .29 34.68 2.73 43.1 48 32.1 17.7 592 2.10 1.9 .2 5.6 .6 18.1 .20 .28 .04 60 .55 .055 4.1 62.4 .74 53.2 .215 11.28 .008 .06 <.2 < .02 58 .3 < .02 3.2 PPX-14325 2.46 21.95 16.22 108.6 406 56.6 18.9 8634 3.16 13.2 3.2 1.4 1.5 56.9 .88 .13 .35 19 .70 .117 19.1 23.7 .29 441.9 .012 1 1.34 .004 .11 <.2 .10 150 1.7 .03 3.2 PPX-14309 .68 27.17 9.07 89.6 621 46.4 14.9 2664 1.96 3.5 1.3 1.7 .9 43.1 .72 .21 .15 20 .48 .072 11.7 22.7 .37 323.8 .021 1 .91 .003 .07 <.2 .03 98 1.1 .03 2.3 .78 23.87 12.42 80.0 576 40.8 14.2 1706 2.26 4.7 1.2 93.4 1.5 33.9 .62 .22 .18 30 .41 .068 14.0 31.2 .40 253.7 .032 11.10 .005 .07 <.2 .04 91 .6 .03 3.2 PPX-14312 15.16 126.76 32.41 155.5 272 34.2 12.4 824 3.09 58.5 22.1 197.7 4.1 30.5 10.61 10.04 11.27 76 .54 .084 15.9 165.6 .60 157.9 .096 2 1.73 .030 .17 7.8 1.81 237 2.1 1.99 6.0 STANDARD DS2

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAI S140

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: //6/ /5/00 SIGNED BY.

Data LFA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332 Page 2 (a)

SAMPLE#	Mo	Cu	-		•		Co	Mn		As ppm	_		Th Sr	-	Sb	Bi ppm	V ppm	Ca %		La ppm	Cr ppm		Ba ppm	Tí %	B opm				T7 Hg ppm ppl			
PPX-14304 PPX-14340 PPX-14331 PPX-14321 PPX-14306	.62 .40 .65	54.40	5.59 11.78 9.29 10.73	58.8 83.4 46.2 66.8	192 239 65 90	42.0	20.1 26.0 14.3 13.0	793 1980 1256 827	2.44 2.85 2.02	1.7 10.4 7.5 3.4	.4 1.7 1.1 1.2	.9 2.2 2 8.2 6 10.3 5	.4 22.8 2.5 25.4 3.6 9.2 3.6 14.3	.39 .82 .16	.24	.09 .19 .31	58 8 14 21	.44 .14 .25	.073 1 .049 2 .066 2	16.1 25.8 24.2	9.4 14.5 19.0	.16 .25 .37	97.1 61.3 71.8	.007 .018 .026	2 . <1 . 1 .	60 .00 57 .00 80 .00	1 .07 ≤ 2 .04 ≤ 1 .07 ≤	.2 .2 .2	.03 106 .03 69 .02 28 .04 30	3 .5 3 .3 3 .3	.02	1.4 1.7 2.3
PPX-14300 PPX-14346 PPX-14291 PPX-14286 PPX-14337	.95 .47 1.73	20.15	13.22 9.71 10.64	126.8 57.5 126.4	246 105 814	37.8 25.2 54.2	17.4 18.3 22.1	2998 1238 5270	2.52 2.53 4.38	5.1 3.8 11.1	2.2 .6 1.1	1.4 2 2.0 3 7.6	.8 14.5 2.3 28.1 3.6 13.6 .4 40.7 2.3 12.6	.57 .21 .82	.16 .15 .20 .62 .05	.23 .13	20 29 103 1	.56 .38 .79	.078 2 .061 2 .152 1	20.8 20.6 15.8	23.3 26.3 82.8	.38 : .50 :	129.8 121.0 535.7	.017 .036 .068	1 1. 1 1. 3 2.	16 .00 07 .00 54 .00	3 .10 < 3 .04 < 3 .08 <	.2 .2 .2	.02 58 .06 73 .05 53 .10 28 .03 6	2 .4 2 .1 0 .8	.03 <.02 .02	3.1 3.2 5.3
PPX-14326 PPX-14282 PPX-14329 PPX-14322 PPX-14314	.37 .34 .50	34.89 36.18 41.73 16.46 21.45	9.32 2.90 10.04	58.6 47.9 60.7	77 60 81		18.7 21.0 11.9	613 780 662	2.76 2.69 1.90	5.9 2.4 3.4	.4 .2 1.1	83.9 2 1.2 20.6	.7 20.8 2.7 16.6 .5 23.1 5.8 13.8 4.9 18.3	.18		.09 .04 .29	72 78 20	.62 .81 .23	.053 1 .050 .063 2	10.0 4.6 22.8	71.6 54.2 78.8 17.5 24.8	.72 .92 .34	102.4 90.2 64.5	.203 .287 .029	1 1. 2 1. 1	31 .00 71 .01 73 .00	6 .06 < 0 .06 < 4 .06 <	.2	.04 99 .03 5 .02 6 .04 4 .03 3	2 .4 2 .2 3 .3	<.02 <.02 <.02	3.9 3.7 2.3
PPX-14302 PPX-14297 PPX-14319 PPX-14344 PPX-14333 S-1	.68 .61 .76	14.44	5.42 9.63 14.61	91.9 58.7 105.5	497 133 437	91.0 26.5 35.7	28.4 12.9 77.4	1804 1500 14009	3.14 1.64 5.33	4.4 2.4 5.9	.5 1.9 1.3	4.1 48.9 .7	.5 15.3 .4 25.8 6.3 12.3 1.2 49.3 2.5 41.3	.54 .25 .64	.15 .32 .07 .11 .09	.08 .25 .23	72 1 14 17	.22 .81	.097 2 .065 2 .115 2	12.1 23.9 23.8	71.3 87.5 14.1 13.1 40.8	.68 .32 .15	144.6 77.7 325.8	.099 .018 .008	2 2	29 .00 71 .00 91 .00	5 .09 < 2 .04 < 4 .09 <	.2	.03 9 .08 26 .03 2 .12 16 .14 3	2 .6 6 .3 2 .2	.02 .02 .03	4.0 2.2 3.0
PPX-14323 PPX-14311 PPX-14305 RE PPX-14305 PPX-14298	.85 .51 .53	42.66 35.43 45.03 45.44 170.03	14.29 4.18 4.56	137.2 72.3 73.8	1386 126 131	86.9 47.7 46.5	14.5 24.3 25.2	1592 1553 1585	2.32 2.79 2.84	4.9 2.8 2.9	3.6 .3 .3	3.3 2.0 2.4	.8 69.4 .6 69.8 .9 18.0 1.0 20.3	2.65 2.21 3.21	. 28	.22 .06 .07	20 66 69	.89 .66 .69	.117 1 .071 .073	6.1 6.8	16.6 27.3 71.2 72.7 120.8	.45 .76 .78	299.8 109.8 112.7	.015 .167 .182	2 1 1 1 1 1	07 .00 56 .00 61 .00	4 .06 4 6 .07 4 7 .08 4	.2	.07 14 .04 13 .03 6 .03 7 .07 16	7 3.0 6 <i>.</i> 1 9 .3	.04 <.02 <.02	2.7 3.5 3.9
PPX-14284 PPX-14352 PPX-14339 PPX-14335 PPX-14341	.85 .29 .84	61.49 19.03 11.53 36.72 16.70	9.92 11.64 12.81	79.2 59.5 86.0	361 296 496	36.5 20.9 34.5	22.7 13.5 14.1	3535 1340 2932	2.56 2.50 2.50	5.0 5.0 6.0	1.3 1.7 5.0	1.1 2.4 1.4	.5 45.1 1.5 26.1 1.8 24.1 2.5 87.1	.38 .31 .62	.95 .11 .08 .26 .20	.19 .17 .28	25 9 10	.42 .47 1.53	.084 .084 .127	17.6 14.0 38.1	55.9 29.1 11.0 18.6 9.9	.38 .14 .20	507.1 94.7 150.3	.023 .008 .014	1 1 1 6 1	.16 .00 .64 .00 .03 .00	3 .09 4 2 .07 4 6 .14 4	.2	.11 20 .06 10 .04 9 .07 20 .02 6	0 .5 4 .4 5 .6	<.02 <.02 .03	3.5 2.3 2.1
PPX-14328 PPX-14318 PPX-14349 STANDARD DS2	.74 51	9 84	12.56	69.5 57.7	302 116	37.1 28.0	10.4 19.2	670 1772	2.14	2.7 6.2	.7	1.0	.5 20.1 1.1 50.1 2.0 13.1 3.8 28.	2 .29	.14	.37 .15	20 14	.86 .20	.065	10.9 13.7	20.0 21.7	.38	156.1 82.0	.015 .011	2	84 .00 75 .00	4 .06 • 3 .06 •	.2 .2	.03 7 .03 7 .03 4	1 1.5 3 .2	.02	2.4 2.6

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332

Page 3 (a)

ACIE AGALITIC																											=					=			
SAMPLE#	Мо	Cu	Pb	70	Aq	Ni	Co	Mn	Fe	As	U	Au	Th.	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ва	Τi	В	A1	Na	K	W	Tì	Нg	Se	Te	Ga
ortu eeg	ppm	ppm	ppm	ppm		ppm	ppm	_	*	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ррт	*	*	ppm	ppm	*	ppm	_ %	ppm	*	*	*	ppm	ppm	ppb	ppm	ррп	ppm
PPX-14310	83	44.11	12 67	89.2	1560	73.5	14 8	1359 2	52	4.5	6.1	73.1	1.0 5	6.4	.70	.27	.22	25	.63	.085	17.6	29.9	.46	274.3	.025	2	1.17	.004	.09	.3	.04	131	2.1	.07	2.7
PPX-14303		34.20						2702 2				1.5			.23		.05	63						92.7		</td <td>1.67</td> <td>.005</td> <td>.05</td> <td><.2</td> <td>. 63</td> <td>66</td> <td>.3 <</td> <td>.02</td> <td></td>	1.67	.005	.05	<.2	. 63	66	.3 <	.02	
PPX-14295		38.28						4089 3			_	2.2	1.2 2	0.7	.68	.19	.07	86				83.2						.006		<.2	.05	88	.4		5.4
PPX-14289	.41	44.84	10.12	54.8	89	44.5		673 2				15.9			.20	.13	.05					76.9					1.79		.05		.02	42		<.02	
PPX-14281	.31	37.73	8.62	60.3	59	35.7	18.2	630 2	2.77	5.1	.4	210.0	2.9 1	7.0	.18	.62	.09	74	.62	.054	11.8	56.2	,74	106.6	.212	2	1.46	.005	.05	<.2	.03	54	.3	.02	4.1
PPX-14347	86	18.16	11 09	77 3	288	28 2	12.5	1383 2	2.15	4 2	1.8	.8	1.4 3	4.9	.38	.07	.23	. 16	.56	.070	21.6	24.8	.42	86.1	.009	2	1.20	.002	.07	<.2	.05	73	.3	.02	
PPX-14342		18.67						1119					1.1 3		.34	.27	.15	8	. 64	.117	19.3	12.5		37.9		_		.004				78	2.0	.02	
STD S-1	.96	29.57	8.28	52.2	33	12.2	11.7	460 4	1.05	2.5	.5	1.5	2.7 4	5.9	.12	.08	.14	154				40.4		87.6			4.23		.06			34	.4		10.6
PPX-14336	.29	13.37	10.26	123.3									2.1 2		.29		.16	10			15.3			94.8					.12			78		.02	
RE PPX-14289	.40	45.27	9.94	54.9	85	43.8	19.5	681 2	2.62	1.8	.2	<.2	.7 1	7.3	.21	.13	.05	63	.59	.046	5.2	79.1	1.04	123.2	.231	2	1.83	.004	.05	<.2	.02	42	.3 *	02	3.9
CON NGANKATA	1/ 12	120 63	21 65	168 7	260	25.2	11 Q	796 2	2 99	57 2	19 1	191 2	3.6.2	8 9	10.06	9.47	10.21	74	.52	. 085	16.8	160.1	.58	145.4	.093	. 2	1.69	.025	.15	6.9	1.83	226	2.2 1	.91	6.1

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAK (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004332 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

Page 1 (b)

	<u>~~~~~~~</u>	7900.49	<u> </u>	98,999,8	<u> 2000 100</u>	2-00-0000		<u> </u>		V00000		<u> </u>		******	0.000000	0.0000000			
SAMPLE#	Cs		Нf		Rb	Sc	Sn		Ta			Ce		Re	Вe		Sample		
	ppm	bbu	ррm	ppm	ppm	bbw	ppm	- %	ppm	ppm	ppm	_ppm	ppm	ppb	ppm	ppm	gm	 	
												~					70.0	 	
PPX-14343			<.02						<.05		4.32			<1		8.3	30.0		
PPX-14351		<.1			6.4						5.40			<1		16.2	30.0		•
PPX-14294	.27		.05								5.92			<1		6.8	30.0		
PPX-14283	.85		.04								11-46			<1		14.3	30.0		
PPX-14316	.30	<.1	.03	.22	3.4	1.2	.2	.11	<.05	.9	7.38	19.9	<.02	3	.2	14.9	30.0		
4/	1						_					~ .			_		70.0		
PPX-14307	.26		.04		1.7						4.46			<1		6.2	30.0		
PPX-14293	.35		.04		2.3						6.11			<1		8.6	30.0		
PPX-14285	.80		.02								40.71			<1		16.0	30.0		
PPX-14301			.03								8.24			<1		10.0	30.0		
PPX-14332	.50	-1	<.02	.15	3.7	.9	.2	.04	<.05	.2	7.22	35.9	<.02	1	.2	9.4	30.0		
ony 4/747			00	22	, ,	4 /	•	01	- 05	4.2	. 07	26.7	- 02	7	2	12 2	30.0		
PPX-14317	-33		.02		4.4						6.83			3		12.2			
PPX-14324	.50		<.02						<.05		22.56			<1		13.0	30.0		
PPX-14315	-49		<.02						<.05		10.71			<1		15.4	30.0		
PPX-14288	.46		.04								9.91			<1		12.1	30.0		
PPX-14292	-29	<.1	.03	.36	1.6	2.2	.3	<.01	<.05	1.5	5.30	9.0	<.02	<1	.2	6.9	30.0		
PPX-14348	.51	- 1	<.02	13	/. z	.8	7	n/	<.05	3	5.00	20 0	< 02	<1	1	13.0	30.0		
PPX-14348	.39		<.02			.8		.04	-		2.87			<1		7.9	30.0		
PPX-14336 PPX-14299 STSD-4	.93		.03						<.05		10.71			1		9.1	7.5		
PPX-14299 5150-4 PPX-14334	.85		<.02			.9			<.05		17.19			<1		9.1	30,0		
PPX-14334 PPX-14320	.27		.02				-	.06			29.16			<1		7.0	30.0		
PPX- 14320	1 -21	• (.02	. 4 1	٦.١	1.0	.5	.00	1.03	• '	27.10	00.7	1.02	`'		1.0	30.0		
PPX-14350	.50	- 1	<.02	- 15	4.1	1.0	.2	. 05	<.05	.2	6.00	36.2	<.02	<1	.2	12.7	30.0		
PPX-14313	.24		<.02						<.05		5.26			<1		9.7	30.0		
RE PPX-14313	.24		<.02						<.05		5.23			<1		9.1	30.0		
PPX-14308	.30		<.02						<.05		14.94			3		9.9	30.0		
PPX-14296	.58								<.05		38.38			<1		11.6	30,0		
11 / 14E70		- 1			/		•	- ,						•	•••		J-1-		
PPX-14287	.27	<.1	.05	.36	2.3	2.7	.3	.02	<.05	2.1	7.04	20.3	<.02	<1	.2	8,3	30.0		
PPX-14327	.28		.05		2.2						8.01			<1		8.7	30.0		
PPX-14345			<.02			.7			<.05		10.94			1		12.8	30.0		
PPX-14290	.38		.02								9.98			<1		8,7	30.0		
PPX-14330	.38		.07		2.3						9.52			<1		8.0	30.0		
· · · · · · · · · · · · · · · · · · ·		•	•••	• .5								. , .							
PPX-14325	.52	<.1	.02	.25	6.8	1.6	.3	.12	<.05	.6	14.20	38.9	<.02	3	.3	12.1	30.0		
PPX-14309	.31	<.1	<.02	. 19	3.6	1.3	.2	.08	<.05	.5	7.58	22.8	<.02	<1	.2	11.5	30.0		
PPX-14312	-40	<.1	.02	.28	4.5	2.0	.3	.06	<.05		8.29			<1	.3	12.4	30.0		
STANDARD DS2	3.50	.1	.05	1.35	13.2	3.1	25.1	-03	<.05	3.0	8.08	30.7	5.13	<1	.6	15.3	30.0		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT 5140

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: NOV 15/10

SIGNED BY ... 7.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332

Page 2 (b)

ACRE ANACTITURE																		ACK NACIOE
SAMPLE#	Cs	Ge ppm	Kf ppm	dN mqq	Rb ppm	\$c ppm	Sn ppm	S %	Ta ppm		Y		In ppm	Re ppb	Be ppm		Sample gm	
PPX-14304 PPX-14340 PPX-14331 PPX-14321 PPX-14306	.36 .49 .25	<.1	.03 <.02 <.02 <.02	.62 .16 .13	3.3 3.3 2.6 3.9	2.9 .7 .8	.4 .2 .1	.11 .04 .01	<.05 <.05 <.05 <.05	1.4 .3 .3	11.70 10.77 4.41 5.57 4.61	17.2 23.2 46.0 43.2	.02 <.02 <.02 <.02	<1 <1 <1 <1 <1	.4 .2 .2 .1	8.1 5.8 8.8 10.1 5.2	30 30 30 30 30	
PPX-14300 PPX-14346 PPX-14291 PPX-14286 PPX-14337	.61 .64 .81	<.1	20.> 20.> 20.	.20 .33 .66	5.6 5.2 5.7	1.1 1.4 7.6	.2	.05 .02 .17		.5 .5 1.2	5.99 7.67 5.96 34.72 7.89	38.7 38.5 21.8	<.02 <.02 .03	1 <1 <1 <1	.2 .3 .7	6.9 12.8 12.0 12.4 4.2	30 30 30 30 30	
PPX-14326 PPX-14282 PPX-14329 PPX-14322 PPX-14314	.31 .40 .31 .34	.1 .1	.10 .11 <.02	.56 .49 .64 .22 .29	2.9 2.2 3.7	4.4 4.3 1.0	.3 .3 .2	.03 .03	<.05 <.05	4.3 3.2 .7	10.31 8.65 10.40 5.42 6.13	20.3 9.0 43.0	.02 <.02 <.02	<1 <1 <1 <1	.3 .3 .2	9.1 8.4 9.1 10.0 9.8	30 30 30 30 30	
PPX-14302 PPX-14297 PPX-14319 PPX-14344 PPX-14333 S-1	.35 .68 .26 .62 1.33	.1 <.1 .1	.03 20.> 20.>	.52 .62 .13 .18	3.6 2.8 6.8	8.4 .7 .8	.3 <.1 .2	.10 .02 .10	<.05 <.05 <.05	1.2 .7 .1	7.91 37.13 5.25 13.20 13.43	15.3 44.1 33.5	.02 <.02 <.02	<1 <1 2 <1 <1	.6 .1 .4	9.3 10.4 10.8 9.0 10.3	30 30 30 15 30	
PPX-14323 PPX-14311 PPX-14305 RE PPX-14305 PPX-14298	.43 .42 .33 .34	.1 .1 .1	<.02 .04 .03	.39 .19 .40 .45 .73	5.1 2.9 3.4	1.1 3.4 4.1	.2 .3 .3	.08 .02 .05	<.05 <.05	.4 1.5 1.6	27.60 11.45 9.19 10.17 39.81	21.4 13.1 14.6	<.02 <.02 <.02	1 3 <1 <1 2	.2	10.7 12.3 8.5 9.0 13.8	15 30 30 30 15	
PPX-14284 PPX-14352 PPX-14339 PPX-14335 PPX-14341	.58 .47 .71	<.1 <.1 <.1 .1	<.02 <.02 <.02	.18 .16 .26	6.3 5.6 5.6	1.7	.3 .2 .2	.11 .06 .05 .12 .04	<.05 <.05 <.05	.2 .2 .8	27.82 8.49 8.47 24.48 14.16	38.1 21.9 24.0	<.02 <.02 <.02	<1 <1 <1 <1	.3 .2 .3	12.4 12.9 8.1 7.7 6.7	15 30 30 15 30	
PPX-14328 PPX-14318 PPX-14349 STANDARD DS2		<.1 <.1	<.02		4.9 3.7	1.2	.1	.03	<.05	.9 .1	9.30 4.90 3.33 8.02	19.9 28.8	<.02 <.02	<1 2 <1 2	.2	9.4 11.5 9.5 13.9	30 30 30 30	

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332

Page 3 (b)

	SAMPLE#	Cs	Ge	Hf	Иb	Rb	Sc	Sn	s	Ta	Zr	Y	Сe	In	Re	Вe	Li	Sample	
		þþm	ppm	ppm	ppm	ppm	bbu	ppm	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
	PPX-14310	-48	<.1	.04	.41	5.6	1.9	.1	.03	<.05	1.3	16.12	24.2	.02	<1	.2	13.4	30	
	PPX-14303	.31	.1	.04	.59	2.7	2.1	.4	<.01	<.05	1.3	6.03	10.9	<.02	<1	.2	7.8	30	
•	PPX-14295	.48	<.1	.08	.60	3.3	5.6	.4	.03	<.05	2.8	13.23	19.0	.02	<1	.3	12.0	30	
	PPX-14289	.45	.1	.06	.68	2.9	2.7	.3	.02	<.05	1.9	6.55	10.1	<.02	<1	.3	10.4	30	
	PPX-14281	.40	.1	.13	.56	2.8	4.4	.3	.01	<.05	5.0	8.85	21.9	<.02	1	.3	9,2	30	
	PPX-14347	-61	.1	.02	.27	5.8	.8	.2	.05	<.05	.3	6.95	36.5	<.02	<1	.2	17.6	30	
	PPX-14342	1.09	.1	<.02	.11	4.3	.7	<.1	.08	<.05	.2	17.27	18.2	<.02	<1	.1	7.7	15	
	.STD S-1	1.26	.2	.71	.34	4.1	6.8	1.4	.02	<.05	38.7	14.13	29.7	.05	<1	.6	10.1	30	
	PPX-14336	.33	<.1	<.02	.16	4.6	.8	.1	.04	<.05	.2	7.07	24.4	<.02	<1	.2	7.8	15	
	RE PPX-14289	.44	<.1	.05	.66	2.9	2.7	.3	.01	<.05	1.9	6.72	10.1	<.02	<1	.1	9.9	30	
	STANDARD DS2	3,33	.1	.05	1.38	12.8	2.7	25.7	.02	<.05	2.8	8.09	31.3	5.11	3	.6	14.7	. 30	

Sample type: MOSS MAT S140. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

E. TINE ST. COUNT BC TRE FE 3 (60 33-2

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 File # A004332R 800 - 700 W. Pender St., Vencouver BC V6C 168 Submitted by: Gerry Bidwell Page 1

	SAMPLE#	LOI
	PPX-14343 PPX-14351 PPX-14294 PPX-14283 PPX-14316	5.7 7.3 8.4 13.5 21.6
·	PPX-14307 PPX-14293 PPX-14285 PPX-14301 PPX-14332	9.7 11.4 41.3 21.6 14.3
	PPX-14317 PPX-14324 PPX-14315 PPX-14288 PPX-14292	19.4 28.4 14.2 14.6 8.5
	PPX-14348 PPX-14338 PPX-14299 STSD-4 PPX-14334 PPX-14320	10.8 7.0 11.2 23.7 32.5
	PPX-14350 PPX-14313 RE PPX-14313 PPX-14308 PPX-14296	11.8 6.7 6.7 32.1 37.4
	PPX-14287 PPX-14327 PPX-14345 PPX-14290 PPX-14330	4.7 13.8 27.0 10.4 13.2
	PPX-14325 PPX-14309 PPX-14312 STANDARD DOLOMITE	25.4 16.2 13.4 46.0

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT

p. TOYE, C. LEONG, J. WANG: CERTIFIED B.C. ASSAYERS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332R

Page 2

SAMPLE#	LOI
PPX-14304 PPX-14340 PPX-14331 PPX-14321 PPX-14306	33.6 20.2 5.0 6.1 6.8
PPX-14300 PPX-14346 PPX-14291 PPX-14286 PPX-14337	11.1 18.6 10.5 46.0 11.9
PPX-14326 PPX-14282 PPX-14329 PPX-14322 PPX-14314	18.3 7.6 18.1 5.3 5.4
PPX-14302 PPX-14297 PPX-14319 PPX-14344 PPX-14333 S-1	19.9 41.2 4.6 31.7 7.2
PPX-14323 PPX-14311 PPX-14305 RE PPX-14305 PPX-14298	50.4 29.2 15.3 15.4 40.0
PPX-14284 PPX-14352 PPX-14339 PPX-14335 PPX-14341	37.1 14.0 19.6 52.5 23.2
PPX-14328 PPX-14318 PPX-14349 STANDARD DOLOMITE	22.9 17.5 10.5 45.9

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___FA_

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2320 FILE # A004332R

Page 3

ACHE ANALYTICAL		
	SAMPLE#	LOI
	PPX-14310 PPX-14303 PPX-14295 PPX-14289 PPX-14281	22.1 14.8 14.4 11.9 7.2
	PPX-14347 PPX-14342 .STD S-1 PPX-14336 RE PPX-14336	19.3 27.6 7.3 19.4 19.6
	STANDARD DOLOMITE	45.8

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004333

800 - 700 H. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppb	Ni ppm		Mn ppm	-	As ppm	U ppm	Au ppb		-	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca %	P %	La	Cr ppm	Mg ≵	Ba ppm	Ti X	B ppm	Al N			T] Ho	-	Te ppm	Ga ppm
PPX-14360 PPX-14362 PPX-14355 PPX-14359	1.10 .50 .65	43.62 43.26 44.80 33.43	7.24 5.14 5.60	61.1 58.6 75.5	243 124 201	31.3 34.2 36.8	16.3 14.2 14.4	1960 859 749	2.16 2.44 2.44	1.8 2.0 2.7	.5 .5 .8	.7 24.5 8.5 4.2	.8 .7	25.0	.21 .45	.26 .31 .35	.11 .08	88 82	1.25	.075 .107	9.6 10.4	50.8 58.2	.78 .82	244.2 248.4 348.6 457.1	.204 .179	1 2. 1 1. 1 2.	.01 .01 84 .01 00 .00	2 .10 2 .08 8 .10	<.2 <.2 <.2	.08 20 .04 99 .03 81 .08 22	9 .9 3 2.7 9 .3	<.02.> <.02.> .03.	5.8 5.4 5.0
PPX-14058	1.41	125.13	15.03	103.9	192	69.1	23.5	1813	3.27	9.8	1.4	11.0			.29	.99								854.4						.07 11			
PPX-14363 PPX-14059 PPX-14357	1.60 1.14	36.31 173.86 40.59 62.99	11.36 6.11	106.7 51.4	218 123	50.7 29.6	15.0 12.6	1890 1035	2.26	6.8 2.4	1.3	4.0	.5 .7	60.1 40.1 50.0 43.1	.40	1.07	.10 .08	61 70	1.75 1.61	.115 .078	13.8 8.3	56.4 52.3	. 69 . 55	2093.9 1023.3 245.4 254.3	.085 .102	5 1. 3 1.	45 .00 40 .00	8 .17 8 .09	<.2 <.2	.15 22 .08 18 .04 10 .03 7	9 4.3 7 1.9	.06 .04	5.2 4.2 4:4 6.9
PPX-14060 .STD S-1	1.02	30.05	8.37	52.7	37	11.9	12.9	464	4.12	3.1	.5	<.2	3.0	48.0		.08	.14	155	.47	.043	11.5	41.5	.52	85.0 589.3	.348	<1 4.				.13 3			
PPX-14354 RE PPX-14354 PPX-14057	. 48 . 57	44.06 41.82 56.86 100.50	4.60 4.37	57.0 54.3) 169 3 148	31.1 29.6	12.8 12.7	643 919	2.38 2.36 2.28	4.8 2.7	.5		1.1		.22	.32 .27 .89	.07	80 78 67	1.05 1.36 2.72	.076 .116 .135	11.0 11.6 4.3	42.1 44.0 87.3	.74 .79 .40	569.4 396.1 121.0	.185 .147 .033	1 1. 2 2. 12 .	83 .01 20 .01 59 .00	6 .06 2 .09 9 .11	<.2 <.2 <.2	.03 8 .03 15 .03 18	1 1.5 8 .4 7 7.3	<.02 .03 <.02	5.2 5.0 1.9
PPX-14356 PPX-14361	.59	47.12 32.32	4.76	58.8	128	33.0	14.0	889	2.39	3.6	.4	2.6 7.1	.6	26.8	.24	.32	.07	85	1.28	.085	9.5	51.7	.76	265.5 298.3	.181	3 2.	12 .01	3 .12	<.2	.04 11	2 1.1	.02	5.5
PPX-14358 PPX-14353 PPX-14056 STANDARD DS2	.30 1.42	34.62 148.25 130.03	3.72 12.68	52.8 83.8	3 66 3 228	34.4 58.4	15.1 19.3	518 1706	2.55	3.6 9.1	.3 2.1	9.6 5.2	1.0	26.6 50.5	.24	.20 .90	.06 .14	102 68	1.29	.054	6.1 15.0	55.2 83.9	.93 1.02	109.1 833.7 142.4	.276 .086	1 1. 2 1.	78 .01	1 .21	<.2	.02 4 .05 17 1.85 22	2 4.5	.09	4.7

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: MOSS MAT S140

Nov 15/00 SIGNED BY... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS OCT 24 2000 DATE REPORT MAILED:

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004333

(b)

SAMPLE#	Cs ppm	Ge	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn	\$ %	Ta ppm	2r mag	Y mqq	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm	
PPX-14360	.73		<.02	.79	4.4	4.4	.5	.16 <	<.05	1.3	29.40	18.8	.02	<1	.6	9.4		
PPX-14362	.61	. 1	.14	:95			.5				21.65		.02	<1	.3	10.7		
PPX-14355	.39	.1	.10		3.0		.5				19.48			2	.3	10.3	30	
PPX-14359	.53	î	.03				.4				26.79			<1	.3	13.6		
PPX-14058	.72	.1			4.6		.4				19.65			<1	.3	17.2		•
11 X 14050	''-	• •				,		•••	•									
PPX-14363	.46	.2	<.02	.26	3.6	5.6	.3	.10	<.05	.8	29.59	19.2	<.02	1	.3	7.7		
PPX-14059	.68				4.6		.5	.12			22.46			<1	.3	10.2		
DDV-1/357	.43	. 1	.06				-4				11.26	14.8	<.02	2	.1	10.8	30	
PPX-14060	.98	. 1	.17				.4				19.20			<1	.3	11.9		
.STD S-1	1.21		.69		4.6		1.3	<.01						<1	.6	10.7	30	
	1					•											•	
PPX-14354	.51	_1	. 14	.73	3.1	4.7	.4	.05	<.05	5.0	20.30	17.3	.02	<1	.3	9.6		
RE PPX-14354							.5	.05			19.28			2	.3	8.8		
PPX-14057	.41		.09		3.1	5.0	.5	.10	<.05	3.8	28.07	14.5	.02	<1	.2	6.8	30	
PPX-14356	1.43		.02			1.2	.4	.18	<.05	1.0	11.54	4.8	<.02	6	.1	4.3		
PPX-14361	.56		-11		3.8	6.0	.5	.08	<.05	4.1	21.37	13.4	<.02	<1	.4	9.4	30	
,,,,	1																	
PPX-14358	.44	. 1	.14	.71	2.6	3.8	.4				11.59			<1		9.7		
PPX-14353	.22	. 1	.30	.78	2.0	5.7	.5				14.47			<1		6.4		
PPX-14056	.50	. 1	.06	1.66	4.5	4.4	.4	.12	<.05	2.2	24.22	17.1	.02	<1		12.6		
STANDARD DS2	3.15	.1	.06	1.40	13.6	2.7	25.2	.02	<.05	2.9	8.09	30.3	5.21	1	.4	14.0	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: MOSS MAT S140 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: NOV 15/00

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004333R 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Ļ	W	Å	V	
I		I		

SAMPLE#	LOI %	
PPX-14360 PPX-14362 PPX-14355 PPX-14359 PPX-14058	49.0 26.6 22.2 36.0 26.2	
PPX-14363 PPX-14059 PPX-14357 PPX-14060 .STD S-1	46.9 45.3 34.5 27.0 7.1	
PPX-14354 RE PPX-14354 PPX-14057 PPX-14356 PPX-14361	19.2 19.4 42.1 74.5 29.2	
PPX-14358 PPX-14353 PPX-14056 STANDARD DOLOMITE	12.1 14.8 43.4 45.8	!

Samples beginning 'RE' are Reruns and 'RRE' are Reject Remuns. - SAMPLE TYPE: MOSS MAT

DATE REPORT MAILED: Vec 4/00 DATE RECRIVED: NOV 22 2000

. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004334

200 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell SAMPLE# Mo Сu Co an Au Th Sr Cd Sb Βi K W T1 Hg Se Fe As P La ppb ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppb X ppm ppm ppm ppm ppm ppm pom PPD-18305 .35 67.17 9.11 71.0 58 110.9 27.1 413 3.85 7.7 .14 .62 .12 101 .96 .054 13.3 76.5 1.59 452.8 .207 3 2.46 .019 .11 < .2 .07 49 < .1 .03 7.2 3.1 3.7 26.0 PPD-18302 .25 124.14 2.56 56.5 57 537.5 63.8 897 5.49 38.8 .1 4.6 1.2 21.5 .06 .96 .04 105 1.03 .049 4.9 183.0 4.59 157.8 .131 5 2.60 .012 .03 <.2 .04 39 .2 .02 6.1 PPD-18304 .49 78.50 7.51 71.2 18 109.7 24.9 1127 4.13 8.3 .3 4.3 3.1 21.5 .12 .86 .11 113 .93 .037 11.6 101.6 1.58 627.7 .230 3 2.66 .014 .09 <.2 .05 58 .2 .05 7.9 .26 55.72 6.91 56.2 38 94.7 22.0 920 3.59 6.6 3.5 3.2 21.2 .09 .50 .10 102 .86 .038 11.8 87.8 1.41 395.5 .221 3 2.49 .014 .08 <.2 .04 53 .2 .03 7.1 PPD-18306 .3 .17 39.27 4.11 37.6 9 63.3 12.9 496 2.56 3.9 .05 .28 .05 83 .79 .018 9.7 72.5 1.17 338.9 .237 3 1.89 .011 .03 <.2 .02 25 <.1 <.02 5.2 PPD-18303 .4 3.0 2.3 14.8 PPD-18301 .22 126.84 2.70 58.2 57 562.5 67.4 924 5.65 37.4 5.5 1.1 21.5 .07 .94 .03 102 .98 .048 4.7 181.0 4.74 158.9 .119 5 2.63 .011 .03 <.2 .04 38 .2 <.02 6.3 2 1.87 .008 .04 < .2 .03 21 .4 .02 5.4 .14 .39 .10 89 .65 .043 15.1 59.5 .85 230.7 .233 GEBD-18342 .53 29.71 8.23 55.9 71 41.4 15.9 553 2.99 5.2 .4 1.8 3.8 13.4 .66 49.42 13.06 69.7 42 61.5 21.6 691 3.27 7.8 .5 1.4 4.3 14.6 .17 .66 .19 84 .65 .046 16.0 67.8 1.03 364.8 .213 2 2.22 .008 .04 <.2 .05 GEBD-18345 .11 .51 .13 89 .74 .059 14.7 64.9 1.02 271.9 .234 1 1.99 .008 .04 <.2 .03 23 .1 <.02 5.8 GEBD-18343 .41 57.18 10.03 56.1 16 52.3 18.8 731 3.04 6.3 .4 3.9 4.0 14.4 .54 30.39 8.78 56.0 55 43.3 16.4 558 2.94 5.5 .37 .42 .11 89 .66 .045 16.2 58.4 .86 237.3 .236 2 1.88 .009 .04 <.2 .03 18 .3 .02 5.7 GEBD-18341 .4 2.9 4.0 14.5 .7 2.7 49.5 1.11 30.03 8.17 50.7 39 12.5 13.3 478 4.06 2.5 .6 .09 .10 .14 155 .49 .042 11.7 41.2 .53 92.4 .355 1 4.23 .123 .06 <.2 .13 34 .3 .04 10.5 .STD S-1 .5 1.5 4.6 15.8 .13 .39 .11 74 .56 .060 18.2 56.9 .82 223.3 .191 1 1.74 .007 .04 <.2 .03 19 .1 <.02 5.0 GEBD-18346 .54 28.23 9.13 58.4 11 38.2 13.8 463 2.81 4.8 .53 36.99 8.81 61.9 69 54.5 21.4 601 3.22 7.8 .4 1.9 3.4 12.2 .17 .66 .12 81 .57 .049 14.6 65.7 1.07 185.0 .191 2 2.13 .007 .04 <.2 .03 36 .3 <.02 6.0 GEBD-18344 .50 38.01 8.58 61.9 68 56.9 21.1 603 3.23 7.9 .4 3.5 3.4 12.5 .17 .64 .12 82 .57 .050 15.0 65.4 1.07 187.9 .194 2 2.15 .007 .04 < .2 .03 38 .4 .02 6.0 RE GEBD-18344 14,70 125,95 33.36 153.2 260 35.6 11.7 815 3.04 55.6 21.2 203.0 3.5 27.4 10 75 9.92 10.44 74 .52 .090 16.1 161.1 .59 157.6 .095 3 1.71 .031 .15 7.9 1.87 254 2.2 1.90 5.8

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

NOV 10/00

ACM ANALYTICAL ENGRATORIES LEL. E. B. STING ST. COUNT BC E 1RE PE (60 33-1 PA 4)2 7

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004334

11 L

SAMPLE#	Cs ppm	Ge ppn	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	\$ %	Ta ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm		Sample gm		.		
	PP	PPIII	PP	PPIII	PP···	FF	- Pri		FF	-FF		FI	FF		11	11	_	 			ᅥ
PPD-18305	1.07	1	.32	.07	7.0	7.7	.5	c .01	< .05	12.9	12.88	29.4	.04	<1	.5	21.5	30				ो
PPD-18302	1.88	• •	.15	.04							9.62			<1		22.8	30				
PPD-18304	1.06	- 1	.33	.09	5.0						13.11			<1		17.9	30				i
* * * * * * * * * * * * * * * * * * * *	.80	1.1	22		5.6						12.02			- 21		19.2	30				- 1
PPD-18306	1 .	- 3	.27								9.59			<1		13.8	30				- 1
PPD-18303	.50	• 1	.21	-30	2.4	0.3	.4		\. 05	10.3	7.27	20.4	.02	٠.		13.0	30				- 1
nn 10704	4 07		47	OΕ	4 0	7.0	7	- 01	- 05	4.3	0.77	0.0	.02	<1		23.0	30				.
PPD-18301	1.87	-1	.17		1.8						9.44			-1			30		•		". l
GEBD-18342	.46		.16		4.4						7.49			-1		16.4					ļ
GEBD-18345	1	<.1	.19		3.7						9.36			<1		18.5	30				
GEBD-18343	j -44	<.1	.21		2.4						9.46		.02	<1		16.0	30				1
GEBD-18341	.46	<.1	.16	.49	4.2	3.7	.5	<.01	<.05	6.9	7.56	34.5	.02	<1	.3	16.4	30			•	~
																					١,
.STD S-1	1.31	.1	.76	.52	4.5	9.4					14.93			<1		11.7	30				
GEBD-18346	.46	<.1	.16	.32	3.4	3.4	.3	<.01	<.05	6.6	7.16	37.2	.02	<1	.4	17.1	30				77
GEBD-18344	.67	.1	.09	.78	3.8	3.6	.4	.01	<.05	4.9	7.27	32.3	.02	<1	.2	21.4	30				-
RE GEBD-1834	4 .68	<.1	.11	.79	3.8	3.7	.4	.01	<.05	4.8	7.35	32.6	.02	<1	.3	22.4	30				l
STANDARD DS2		.1	.04	1.35	12.3		25.4	.01	<.05	2.8	7.48	31.1	5.26	1	.6	14.0	30				·

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: TILL S230 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: $\sqrt{\delta}\sqrt{10/m}$

SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

(b)

υατα____FA__

ODZ B. DASTINGS ST. VANCOUPS. BC ... 1RE

(c)

4)2

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004334 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

		*****		ľ
	****	8888		
888				

SAMPLE#	SiO2	At 203 %	Fe203 %		CaO %	Na20 %	K20 %	Ti02 %	P205 %	MnO %	Cr203 %	Ba ppm	ы ррп		LOI %	TOT/C %	TOT/S %	SUM %	· " ·
PPD-18305	63.23	11.39	7.17	3.86	3.06	1.69	1.21	1.06	.11	.20	.029	1106	127	20	5.7	.15	<.01	98.85	
	52.40	9.02	10.35	11.81	4.91	1.11	.43	1.00		.16		351	1839	24	8.4	.28	<.01	100.16	3
PPD-18304	62,65	11.01	7.50	4.00	2.93	1.43	1.11	1.06	.08	.16	.034	1495	132	24	6.7	.26	<.01	98.85	
PPD-18306	64.23	11.04	6.81	3.57	2.77	1.68	.99	1.12	.09	.14	.031	1005	86	20	6.4	.44	<.01	99.00	7.
PPD-18303	69.46	10.07	5.58	3.64	3.21	1.80	.83	1.23	.06	.10	.038	994	74	21	4.1	.28	<.01	100.24	.
}												_							· 5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				11.93											8.8		<.01	99.44	•
				2.67						.09	.026		45		4.4	.51	.03	98.94	
				3.12						.11	.024		75		5.1	.55	<.01	99.28	· · · · · · · · · · · · · · · · · · ·
				3.33						. 13		1100	66		4.1	.22	.01	100.99	
GEBD-18341	67.95	12.00	6.09	2.74	2.70	1.79	1.40	1.40	.12	.10	.021	1256	70	18	4.4	.42	.02	100.86	- 1
.STD S-1	57 50	18 7/	R 71	2.45	7 O3	2 05	1 11	1 43	. 14	.13	.015	347	<20	23	7.2	.69	.01	100.44	
				2.61						.08					4.2		.01	98.52	
				3.17						.10	.029		48		7.7	1.58	<.01	98.94	
				3.12						.10					7.7		<.01	98.88	
				7.11														99.14	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.

TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: TILL S230 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED:

Nov 10/10

Data____FA

802 B. HASTINGS ST. VANCOUVER BC VOR 1R5

-3i ـ بـ Pk....غ

PA . . 4) 2

44

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004334 (d)
800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry BidWell

SAMPLE#	Co	Cs	Ga ppm	Hf ppm	d∦ maga	Rb ppm	°Sn mag	Sr ppm	Ta ppm	Th ppm	T L	Deu	V	W	Zr ppm	Y ppm	La	Ce ppm	Pr ppm	Nd ppm	Sm	Eu	Goi ppm	dT mqq	Dy	Но	Er	Tm ppm	Yb ppm	Lu ·
	- PM"	PMI	PP"	PP.	Ph.	PP	PP	- PP	PPIII	PPIII	PPIII	Phil	PPIII	Ppii		Ph.	PPIII	Ppiii	ppii	ppii	PP	PPIII	PP	PPIII	PP	PP	Ppii	PP.	PP	FF
PPD-18305	33.8	2.6	17.3	6.4	9.3	48.0	2	164.5	.9	6.3	.7	1.7	207	1	227.8	30.7	25.6	56.3	6.13	25.2	5.0	1.35	5.18	.83	4.97	1.15	3.63	.43	3.02	.48
PPD-18302	78.5	3.0	11.5	4.5	5.4	15.2	1	100.3	.5	2.7	.6	.8	230	<1	167.6	27.5	12.8	26.5	3.44	15.1	3.5	1.14	4.22	.67	4.25	.99	2.97	.39	2.69	.45
PPD-18304	31.8	3.0	17.4	5.1	8.4	45.7	2	130.1	.8	5.6	.4	1.5	225	1	195.6	32.7	22.4	45.8	5.67	23.4	5.3	1.32	5.31	.84	5.35	1.18	3.77	.47	3.25	.52
PPD-18306	26.5	2.4	15.3	5.5	8.3	41.6	1	142.1	.8	5.6	.8	1.5	179	<1	201.4	28.7	23.0	47.7	5.70	23.0	4.9	1.41	4.71	.78	4.76	1.05	3.30	.42	3.02	-46
PPD-18303	19.1	1.8	13.1	6.1	9.0	32.4	1	133.0	.8	4.9	.3	1_6	166	<1	229.1	29.1	22.9	48.4	5.53	22.3	4.9	1.27	4.72	.73	4.66	1.10	3.34	.45	3.02	.45
PPD-18301	69.7	2.9	9.6	3.6	4.3	14.0	1	83.5	.4	2.3	.4	.7	182	<1	137.7	23.2	10.2	22.1	2.83	13.0	2.9	1.00	3.52	.55	3.64	.85	2.68	.36	2.40	.38
GEBD-18342	19.8	2.1	16.3	5.9	13.7	59.4	3	133.3	1.3	7.8	.3	2.0	180	3	231.8	28.8	33.1	66.6	7.63	28.5	5.8	1.33	4.77	.80	5.11	1.10	3.36	.40	2.82	. 45
GEBD-18345	26.5	2.8	17.9	5.8	13.0	64.3	2	120.1	1.1	7.8	.4	2.1	190	1	219.4	31.8	33.0	70.8	7.77	30.3	5.6	1.54	5.21	.88	5.12	1.19	3.74	.50	3.20	.47
GEBD-18343	23.1	2.2	14.8	6.8	12.6	47.5	2	128.9	1.0	7.5	.6	1.8	191	1	252.7	33.8	33.8	72.5	7.82	29.8	6.4	1.66	5.64	-94	5.74	1.24	3.78	.48	3.26	.47
GEBD-18341	19.8	2.1	15.8	6.2	13.3	55.6	2	132.4	1.0	7.3	.2	1.9	184	1	225.7	29.2	32.2	64.8	7.29	27.4	6.0	1.41	4.94	.75	4.60	1.08	3.37	.45	2.73	.43
.STD S-1	17.9	2.7	22.0	5.6	7.2	38.6	3	343.1	.6	5.0	.3	1.4	206	<1	205.6	29.2	20.0	48.5	5.49	23.9	5.2	1.57	4.90	.80	4.78	1.09	3.34	.43	2.98	.45
GEBD-18346	16.8	2.8	18.5	5.8	14.2	72.0	2	134.0	1.2	8.7	.3	2.0	179	1	218.3	31.1	36.1	71.1	8.24	31.6	6.1	1.48	5.15	.85	5.19	1.14	3.42	.45	2.94	.42
GEBD-18344	24.6	2.4	17.0	5.2	11.9	56.3	2	114.5	1.0	6.8	.2	1.8	180	1	199.5	28.4	29.1	61.5	6.66	24.6	5.2	1.37	4.66	.78	4.89	1.05	3.19	.43	2.95	.47
RE GEBD-18344	25.4	2.6	16.8	5.3	12.5	56.9	2	118.7	1.0	6.9	.3	1.8	183	1	198.1	29.0	30.4	63.5	7.09	26.7	5.4	1.46	4.85	.79	5.10	1.08	3.33	.43	2.93	.44
STANDARD SO-15	21.2	2.8	17.8	25.1	30.9	64.6	18	403.0	1.7	23.3	1.2	20.0	158	20	1025.5	22.9	29.7	60.7	6.30	24.6	4.5	.93	4.04	.55	3.69	.77	2.53	.36	2.54	.38

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: TILL S230 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: $\sqrt{6}\sqrt{10/m}$

OLZE,STIMEL S.COUL... BC1R

(e)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004334 800 - 700 W. Pender St., Vancouver 50 V6C 1G8 Submitted by: Gerry Bidwell

		200000000000000000000000000000000000000	N			***************************************		******				20000000000000000000000000000000000000
SAMPLE#	Mo ppm	Cu ppm	Pb	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm			
PPD-18305 PPD-18302 PPD-18304 PPD-18306 PPD-18303	.7 .5 .5 .5 <.5	69 123 81 55 40	11 8 8 5	82 71 82 66 47	125 607 127 106 85	<2 39 <2 <2 <2	.2 .3 .2 .3 <.2	1 2 2 1	<1 <1 <1 <1 <1	-		
PPD-18301 GEBD-18342 GEBD-18345 GEBD-18343 GEBD-18341	×	120 31 51 60 30	<3 10 15 10 9	70 71 84 70 69	611 54 76 67 53	41 <2 <2 <2 <2	.2 .2 <.2 <.2	<1 2 1 2	<1 <1 <1 <1			
.STD S-1 GEBD-18346 GEBD-18344 RE GEBD-18344 STANDARD CT3	1.4 .6 1.2 .6 26.7	33 29 39 37 63	11 10 9 41	80 73 76 75 182	13 49 70 68 37	3 8 8 5 5	<.2 <.2 .3 .3 23.2	<1 1 2 24	<1 <1 <1 <1 22			
 STANDARD G-2	2.2	3	21	54	7	9	<.2	<1	<1		 	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCL04-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: TILL \$230 40C

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E, HASTINGS ST. VANCOUVER BC VOA 1Ro

nude (602, 253 - 18 Par (104) - 171

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

GEOCREMICAL ANALISIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004335 Page 1 (a) 800 - 700 W. Pender St., Vancouver BC V6C 1GB Submitted by: Gerry Bidwell

	SAMPLE#	Мо	Cu	Pb	70	Ag	Ní		Hn	- 40	11	A.	775	Sr	Cd	Sh	R1	v	Ca	P	La	Cr	Hg	Ra	Ti	В	() Na		: 1	u Ti	Ha	Se	Te	Ga		
	SAULTER	ppa	Ppm Ppm	ppm ppm		-			900												obar t		-	ppm												
				ppm								-		PP																					 	
	✓ GSNC-14175	.51	71.37	1.14	69.9	42	42.7	39.3	1252 6.	52 .5	<.1	.7	_4	198.1	.09	.16	<.02	236 3	3.27 .	080 4	1.9 7	7.3 2.	76 8	302.9 .	137	<1 2.	34 .026	.02	? <.	2 .03	58	.9	.03	13.1		
	✓ GSMC-14187		89.72																																	
	✓ GSHC-14182		65.17																																	
	✓ GSHC-14191		57.72																																	
	✓ GSHC-14172	1.80	2249.72	18.22	88.0	809	25.9	10.8	1022 1.	5â .S	7	.6	3.5	19.8	.09	.33	.95	31	.65 .	037 14	4.8 2	2.1 .	.62 2	217.7 .	002	1 .	78 .004	. 13	3 2.	1 .04	63	1.9	.34	2.8		
	✓ GSMC-14198	.92	64.38	.82	63.9	34	47.0	27.0	777 4.	64 5.4	.1	.3	.2	17.2	.08	. 19	<.02	131	1.64 .	063 2	2.4 2	9.9 1.	56	40.7 .	350	1 2.	52 .030	04	١.	2 <.02	13	.5	<.02	10.4		
	✓ GSMC-14186		125.20																																	
	✓ GSHC-14173	2.66	3.59	1.75	6.2	9	27.2	5.0	367 2.	20 .!	1	.8	1.9	47.7	.01	2.48	.02	23 1	1.28.	036	6.9 2	4.9 .	.93 1	185.9 .	004	<1 .	79 .003	. 05	5.	3 .05	96	.1	.04	2.9		
	✓ GSMC-14190	.50	59.62	2.01	86.6	48	42.4	40.5	1418 7.	26 2.5	<.1	<.2	.1	235.7	.12	.08	<.02	230 5	5.56	069	3.0 6	5.5 4.	.03	99.7 .	055	<1 4.	31 .003	.06	5 <.	2 .04	19	.4	.03	13.6		
	✓ GSHC-14185	.94	73.88	1.67	96.5	54	49.5	47.9	1516 8.	40 9.3	<.1	<.2	.1	45.4	. 13	.09	<.02	289	2.53	080	4.2 9	1.3 3.	.59	44.4 .	027	<1 4.	11 .008	.0	١ <.	2 <.02	383	1.5	.02	15.0		
																						,														
	✓ GSHC-14194	.99	81.85	1.97	58.6	18	38.3	14.7	662 2.	16 1.3	2 .3	6	4.8	7.6	.01	.05	. 17	24	.28	033 1	9.0 2	2.4 .	.66	96.8 .	007	1 1.	11 .009	. 10	δ.	4 .03	26	.1	.03	5.0		
	GSMC-14189	.50	68.91	1.05	69.5	43	39.9	35. <i>9</i>	1226 6.	34 .	7 <.}	. 9	.4	193.1	.07	. 16	<.02	230 3	3.16 .	084	4.6 7	6.1 2.	.69 7	783.8 .	127	<1 2.	30 .027	.07	2 <.	2 .03	66	.7	.02	12.6		
ઇ	✓ GSHC-14183		94.13																																	
"Well	✓ 65HC-14195		21.66																																	
.1	✓ GSHC-14181	2.35	10.99	2.96	13.8	19	32.9	9.3	437 1.	48 .7	.2	<.2	2.4	18.6	.02	.21	.02	35	.49 .	041	9.3 4	12.7 .	.77 9	954.7 .	013	<1 .	83 .012	. 05	5.	4 <.02	123	.2	.03	4.1	•	
Cole																																	**			
-	✓ GSHC-14197		58.27											101.9																						
	✓ GSHC-14192		3.66																																	
	∪ GSHC-14174	.77	32.75	.56	39.1	38	30.9	18.3	993 3.	98 1.	l .1	<.2	1.0	214.8	.05	-11	<.02	145	3,47 .	050 (6.2 5	10.2 Z.	.02 5	530.2	A10	<1 1.	57 .UIC	04		9 - 10	. 04	.4	.03	0.0		
	.STD \$-1	.94	30.17	8.44	51.3	30	12.0	12.3	494 4.	20 2.1	3 .6	1.6	2.5	45.3	.14	.08	.14	159	.50	944 L	1.1 3	88.7 .	.53	89.1.	341	<14.	11 .104	00	9 °.	2 - 02	. 12		.04	7.7		
	✓ GSMC-14193	.90	29.16	.95	69.1	19	40.9	28.3	882 5.	59 2.2	. <.1	<.2	- 5	16.1	.06	.05	<.02	149 3	. 08.1	08/ 2	2.8 5	9.0 2.	10	25.1 .	3/6	~1 3 .	41 .015	-04	٠.	2 ~.02	12	.3	.02	10.0		
	✓ GSMC-14184		60.09		100 6	20	40. 6		1665 0	10 2 4		1.4		154 5	10	ne.	- 02	200.5	27	neo /	47 9	7 / 3	71 4	437 A	550	c 1 3	<u>46 N19</u>	6:	, .	2 < 02	29	R	በ3	16.3		
	✓ GSMC-14188		117.53																																	
	RE GSHC-14188		121.01																																	
	✓ GSHC-14196		72.75																																	
	SOMR-14442		59.87																																	
	20MK-14445	1.97	33.01	1.34	50.1	10	39.2	17.0	J10 J.	٠		1.0	• • •	20.2			., 02	<i>,</i> , ,											•							
	SDWR-14441	73	61.32	3 20	60 1	24	54.3	20 B	494 3	68 (1	1.5	1	22.7	. 13	.03	.02	96 1	L.30 .I	056 2	2.4 3	6.6 1.	30	7.8 .	360	2 1.	190. 98	.01	1.	5 <.02	18	.5	.02	8.0		
	GSHR-14103	56	12.16	1.03	42.7	16	27.5	19 1	672 4	50 8	. <.1	7	.1	5.3	.04	.20	<.02	197 2	2.55	067 2	2.8 2	6.7 1.	28	13.6	285	3 2.	3 .019	<.01	١ <.	2 < .02	9	.6	<.02	11.7		
	GSHR-14101	17	87.59	58	65.8	35	841.4	104.6	1181 7.	29 .	<.1	26.8	<.1	12.0	.05	<.02	<.02	35	.54 .	023	.8 10	7.4 13.	11	11.0 .	033	31 1.	19 .015	.02	? <.	2 <.02	9	.2	.03	3.0		
	GSHR-14104	1 43	19.30	2 31	17 1	6	22.5	9.6	233 1.	38 9	.5	9.2	2.5	4.3	.04	.05	<.02	58 1	.09	051 6	6.2 7	3.4 .	64	11.4 .	133	2 1.	14 .030	<.01	١.	4 < .02	9	<.1	<.02	8.5		
	GSMR-14168		116.73																																	
	WES-14100	4-56	-14-73		200.0	*	٠.,	20.4	J., J.				•	-4.0																						
	GSMR-14102	.23	88.48	.45	68.4	39	790.5	99.0	1127 7.	12	2 <.1	3.4	<.1	113.7	.05	<.02	<.02	30	.71 .	020	.7 7	7.9 12.	16 1	107.3 .	032	16 1.	37 .024	.04	<.	2 <.02	7	.2	.03	3.1		
	GSMR-14105	.70	596.04	.99	71.2	150	1160.4	105.9	1279 8.	48 .:	3 <.1	8.2	<.1	15.4	.10	<.02	.02	26	.31 .	019	.6 2	7.5 13.	44	14.7 .	024	21 .	B9 .010	-04	<.	2 <.02	5	1.3	.05	2.2		
•	GE8R-14150	.60	23.25	2.18	39.0	44	48.0	29.1	496 5.	41 2.8	<.1	2.9	.2	5.1	.07	.63	.06	121 1	. 85 .	069	1.7 6	2.4 1.	51	42.8 .	287	1 2.	06 .028	.02	2.	6 <.02	69	2.4	.96	6.6		
	STANDARD OS2		129.75																																 	

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.

Beme-14189 = Duplicate of GSMC 14175

SIGNED BY

. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data____FA__

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A004335

Page 2 (a)

SAMPLE#	Но	Cu	Pb	Zn	ρA	Ki	Co	Hn	fе	As	U	Au	τ'n	Sr	Cd	Sb	Ðí	٧	Ca	P	La	Cr	Mg	Ba	Ti	8 /	Al	Мa	K	w T	1 н	g	Se	ĭe	Ga		
	pon		2004		pob	post		ppa			DOM	ppb	ppa	ppa	ppa	pps	ppa	ppa	\$	X p	pa	pça	*	ppm	1 9	pa	1	1	1	ppa pp	a pp	b t	()	ppa	ppm		
							PP										 -	<u>··</u>			_							`						_			
GE8R-14155	.36	13.60	25.41	83.8	87	33.6	3.7	99999	2.96	8.9	٠.5	88.0	<.1.	45.9	.04	.95	.05	35 .	22 .0	260 5	.0	2.9	.07	184.6 .	020	7 .	07 .0	107	.04	7.4 <.0	2 18	2 !	.4	. 22	4.4		
GEBR-14143																								180.0 .:										.02			
GE8R-14154	1.42	49.36	6.69	68.9	25	38.6	8.2	794	1.95	.7	.3	.9	4.2	5.9	.03	.09	.19	16 .	.09 .0	029 14	.3	29.5	.92	156.0 .	005	11.	15 .0	102	.11	2.3 .0	2 2	4	.2	.03	3.7		
GEBR-14159	3.58	8.02	4.18	11.1	21	14.1	4.2	800	1.03	2.0	.6	1.8	.8	66.0	.03	.33	.06	5 .	59 .2	288 2	.7	16.7	.04	59.5 .	011	1.	11 .0	205	.03	.8 <.0	2 -	5	.2	.02	.4		
GEBR-14156	.45	77.76	.94	93.0	56	58.2	38.4	1265	7.48	4.7	<.1	1.5	.3	70.1	.10	. 10	<.02	235 2.	53 .0	083 4	.5 1	53.7 4	. 18	57.4 .	069	1 4.	62 .0	11	.03	<.2 <.0	2 1	0	.5	.02	15.7		
2201-2-300			.,,		•		••••						-									٠,															
GEBR-14144	1.14	14.82	.68	53.7	16	31.5	26.1	686	5.29	.6	<.1	.2	<.1	7.9	.06	.22	<.02	187 .	92 .{	089 3	1.0	33.9 1	.89	285.5 .	163	3 2.	65 .Q	24	.02	.2 <.0	2	6	.4 4	.02	11.0		
GE8R-14151			1.17	32.5	35	48.4	36.9	400	5.68	2.0	<.1	.8	<.1	4.1	.05	.44	.02	93 1.	10 .0	073 1	.9	63.2 1	.55	55.3 .	254	21.	76 .0	39	-04	.6 <.0	2 3	9	1.5	.58	5.3		
GEBR-14157	3 89	19.78	68.08	54.7	224	22.3	8.4	697	2.58	4.3	.5	1.7	2.0	30.1	.11	.26	.91	3 .	43 .0	074 6	5.5	17.6	.37	51.8 .	006	1.	29 .0	206	. 10	.8 .0	4 1	9	.6	.17	.7		
GEBR-14153	.86	52.51	4.33	54.6	51	34.4	29.7	550	5.20	1.4	<.1	1.6	<.1	7.9	.08	1.36	.13	93 1.	. 22	082 2	2.6	50.2 1	.49	61.1 .	166	2 2.	07 .0	027	.03	.9 <.0	2 :	6	3.1	.06	7.1		
GEBR-14145	2 11	62.11	1.62	65.1	35	37.0	28.8	669	5.55	1.0	<.1	.6	.1	6.4	.06	.45	.02	136 1	48 .	115 2	2.5	12.8 2	.06	41.7 .	270	3 3.	01 .0	125 <	.01	.4 <.0	2	8	.9 •	.02	9.6		
GCOK-14143	2.01	JE.11	1.02	00.1	-	JV	20.0		5.55					,								-															
GEBR-14158	2 54	20. 86	40.31	68.1	97	28.7	10.0	899	2.30	7.5	R	2.8	5.0	9.8	.09	1.08	.27	4 .	11.8	023 12	2.2	19.6	.10	250.5 .	002	2.	56 .0	007	.11	6.2 .0	5 4	5	1.5	.06	1.4		
PPR-14129	70	56 23	1 26	65.R	28	33.5	28 0	701	4.69	.6	×.1	.2	.1	9.1	.10	.08	.02	103 1	50 .0	075 2	2.3	19.0 1	.67	24.8 .	294	2 2.	83 .0	129	.02	.5 <.0	2 -	5	.6	.06	7.7		
PPR-14107	2.58	29.84	22.72	61.4	113	47.1	17.0	407	6.07	35.3	.7	2.0	1.9	40.7	. 10	2.21	35	23	10	158 10).7	22.9	. 15	70.7 .	003	1.	74 .(010	. 15	1.8 .0	7 1	8	1.1	14	2.0		
PPR-14167	95	172.00	1 16	63.9	101	30.7	27 2	874	6.28	.9	<.1	1.0	.1	9.6	.15	.34	.03	215 1	.73 .6	071 2	2.9	14.9 1	.77	39.8 .	448	4 3.	ot .6	029	.01	.2 <.0	2				13.6	·	
PPR-14171	2.51	156.03	26.31	48.0	82	79.4	20 4	20385	2.28	8.4	3	4.5	1.4	79.6	.03	.65	.17	40	16 .0	029 12	2.5	19.3	.23	1799.3 .	006	2.	54 .0	005	.07	3.4 .0	2 :	34	.5	.12	3.2		
********		200.00	20.02	10.0	-																																
PPR-14110	2.13	119.95	1.32	405.7	78	86.3	28.7	684	3.93	.4	<.1	.3	<.1	9.1	2.03	.04	<.02	70	.71 .4	064	.9 1	119.9 2	.06	20.0 .	312	<1 2.	.07 .0	025	.01	<.2 <.0	2 :	72	.4	.03	4.2		
RE PPR-14110	1.99	117.24	1.31	400.8	79	79.6	28.8	681	3.93	.4	<.1	<.2	<.1	9.2	1.99	.05	<.02	71	74 .0	062	.9 1	118,9 2	.07	20.3 .	327	<1 2.	09 .0	126	.01	<.2 <.0	2 (7	.4	.05	4.2		
PPR-14106	16.88	158.38	20.49	62.2	297	10.7	24.9	1044	7.70	.3	.6	.8	3.8	34.2	.13	.42	. 15	140	54 .	096 12	2.0	15,3 1	.95	421.1 .	281	2 2.	36 .0	017	. 18	.6 .6	8 8	27	.9	.04	8.6		
PPR-14161	8.47	835.39	161.33	2284.9	2124	29.1	18.9	343	16.51	53.0	.3	41.7	<.1	10.1	11.07	5.48	. 10	94	.77 .0	028	4.5	31.3	.60	21.1 .	280	<1 1.	24 .0	043	.06	<.2 .	50 112	6	3.6	.02	11.8		
PPR-14127	.94	45.79	1.05	92.2	35	44.0	34.6	1273	6.69	6.4	<.1	1.7	. 1	10.3	. 24	. 17	<.02	243 2	44 .	087 3	3.4 1	101.6 3	. 15	46.3 .	376	4 4.	47 .0	011	.01	.5 <.0)2 (50	.7	.03	16.5		
PPR-14166 S-1	1.03	29.29	8.75	53.1	34	12.1	12.9	492	4.26	3.1	.6	1.6	3.0	48.4	.12	. 10	.15	164	50 (045 12	0.5	42.7	.55	95.3 .	365	<1 4.	44 .1	117	.06	.2 .1	3	31	.6	.09	10.5		
PPR-14165	1.29	153.99	8.30	156.8	93	34.4	20.1	707	5.47	2.5	.2	1.3	.3	11.4	.60	.55	.04	157 1	.66 .0	057 2	2.5	29.7 1	.37	63.1 .	386	4 2.	76 .0	048	.03	.2 .0	3 8	35	.4	.03	10.4		
PPR-14170	2.79	48.19	2.72	191.1	22	293.5	102.7	1906	7.20	3.4	.2	5.9	1.3	18.8	.06	.55	<.02	43	36 .	048 12	2.1 3	361.3 l	.78	176.9 .	179	3 1.	98 .1	100	20ء	.6 .0	32	15	.3	.03	3.8		
PPR-14163																								66.0 .						<.2 .0		6	.6	.04	11.4		
PPR-14126	-	81.79																						127.1 .			00 .0	800	.01	<.2 <.0	2 3	20	.3	.03	5.1		
			- *-		-	-																															
PPR-14169	.31	3.81	2.54	95.7	16	111.6	36.3	1073	5.20	4.0	.2	10.7	1.0	10.9	.03	.33	<.02	18	. 68 .0	013 2	2.4 1	122.0 1	.45	75.6 .	146	3 1.	35 .0	009	.24	.2 .0	2 -	5	.1	.02	2.4		
PPR-14162	5.86	472.77	83.65	1651.3	946	35.4	18.5	454	11.68	25.2	.4	18.3	.1	7.9	6.29	4.05	.02	129	.98 .6	045	.9	36.1	.85	27.5 .	314	<1 1.	73 .0	035	.04	<.2 .2	9 669	15	2.4	-03	10.9		
PPR-14109		58.21	.89	37.2	60	100.3	39.4	299	3.26	.2	<.1	1.2	<.1	5.1	.86	.21	<.02	37	.70 .1	030	.8	74.8	.93	190.2 .	323	<1 .	95 .0	013	.14	.7 .0	32 7	26	.3 •	.02	1.6		
PPR-14128			3.74	85.0	166	47.1	29.2	945	5.73	47.8	<.1	1.0	<.1	78.8	.14	1.10	<.02	152 7	.04 .1	072 2	2.9	69.3 2	.44	36.5 .	023	<1 3.	00 .	021	.05	<.2 <.0)2	35	.6	.04	9.0		
PPR-14164		15.28	.46	63.9	33	11.8	21.8	831	5.68	.5	<.1	1.0	<.1	12.6	.06	.30	<.02	203 2	.20 .0	081 3	3.1	6.6 1	.17	34.6 .	315	3 2.	91 .0	020	.01	.8 <.0)2	5	.5	.02	11.9		
				55.5	-			-54	5.50		• •	•																									
STANDARD DS2	14 48	127 55	34 99	157.1	267	36.1	12 1	831	3.12	59.4	20.0	198.6	4.0	29.9	10.96	10.08	11.29	76	.54 .1	089 17	7.0 1	164.4	.61	157.9 .	093	11.	73 .0	030	.16	7.5 1.9	21 2	25	2.2	.90	6.0		

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

Data____FA __

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004335

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	Sn	S	Ta	Z۲	Υ	Ce	In	Re	Be	L i	Sample	
SAMPLE#	ppm	ppm	ppm	ppm		ppm	ppm		ppm	ppm 2.	ppm	ppm	ppm			ppm	gm	
										<u>'</u>								•
	1.77		.30	.04							24.06		.07	2		31.9	30	
	4.03		.37	.07		16.3	-4				15.11		.05	2		20.3	30	
GSMC-14182	1.11		.26	.10		8.5					6.78		.02	<1		55.0	30	
GSMC-14191	-19		.18	.03		5.4	.3				10.28		.03	<1		44.3	30	•
GSHC-14172	.30	.1	.21	≺.02	5.1	.6	.2	.37	<.05	7.4	5.01	29.5	.02	<1	.2	11.2	30	
GSMC-14198	.65	3	.19	05	1.0	7 4	Q	00	- 05	4.0	13.52	7 0	03	<1	2	20.0	30	
GSMC-14196	.52		.15	.03		5.9			<.05		12.75		.02	2		47.9	30	
GSMC-14173	.63			≺.02					<.05		4.92			2		8.6	30	
GSMC-14173	.23	<.1			2.3			.14			12.28			<1		80.9	30	
GSMC-14185	.16	1.1	.03	.03		22.3		.54			14.25			2		53.1	30	
GSMC- 14 100	.10	. 1	.03	.03	.4	42.5	٠.	.54	٠.05	.4	14.43	10.1	.07	2	• 4	۱ . د د	, 30	
GSMC-14194	.90	<.1	.07	≺.02	5.8	.8	.3	.03	<.05	2.1	9.99	44.5	.02	1	.2	9.1	30	
GSMC-14189	11.73		.33		1.0						22.21		.06	4		31.8	30	
GSMC-14183	1.58		.30		2.7						21.78		.06	ż		32.4	30	
GSMC-14195	.22		.25			2.6					14.68		.02	<1		15.6	30	
GSMC-14181	.36	.1		<.02							5.68			<1		14.1	30	
25110 14101		••		02	1,	•••		• • •		•••		.,		•	•	•••		
GSMC-14197	.41	.1	.16	.04	2.1	14.9					16.14			<1	.1	49.6	30	
GSMC-14192	.13	< .1	.11	.02	.8	1.4	. 2	.03	<.05	3.0	4.19	15.7	<.02	<1	.1	5.9	30	
GSMC-14174	.45	.1	.07	.02		13.2					14.47		.04	<1	.3	19.2	30	
.STD S-1	1.20		.76		4.2						13.96		.05	<1	.9	10.4	30	•
GSMC-14193	.06		.40	.05	.5	2.9	.6	<.01	<.05	8.9	16.77	8.3	<.02	1	.2	17.3	30	
GSMC-14184	1.23	.3	.67	.07							24.17		.09	3		24.9	30	
GSMC-14188	.12	.3	.40	.07	.1	8.2	.7	.13	<.05	11.6	13.05	9.4	.04	<1		48.4	30	
RE GSMC-14188	.12	.2	.41	.06	-1	7.9	.8	.11	<.05	11.5	13.62	9.6	.04	<1		49.2	30	
GSMC~14196	.74	.2	.40	.05	. 1	4.8					14.86			1	.2	34.8	30	
SDWR-14442	.20	.2	.58	.04	.2	4.1	.6	.09	<.05	24.2	10.82	6.0	<.02	2	.1	3.8	30	
		_			_			4=		•			. 00				70	
SDWR-14441	.25		.58	-04		2.4					11.64			<1		3.5	30	
GSMR-14103	.13		.40	.04		5.0					17.27			<1		8.6	30	
GSMR-14101	.43		.09	.03		4.3					2.92			<1		2.2	30	
GSMR-14104	-04	.2	.31	.16		3.9	.3	<.01	<.05	7.9	8.29	12.5	<.02	<1		5.7	30	
GSMR-14168	.31	<.1	.67	.09	1.4	6.4	13.3	.35	<.05	22.5	12.27	4.8	.07	<1	.3	9.0	30	
CCMD-1/102	50	4	0.6	07	2 7	4.6	2	07	- 0E	2 /	2.48	1 7	- 02	<1	1	2.8	30	
GSMR-14102	.50		.06	.03							2.40			<1		2.1	30	
GSMR-14105	-44		.02		1.0			.05								7.5	30	
GEBR-14150	.05		.39	.11		4.9					11.43			<1		14.7	30 30	
STANDARD DS2	3.40	.1	.05	1.3/	13.0	4.0	27.4	.01	N.U2	2.9	8.16	31.2	2.21		.0	14./	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150 40C

OCT 24 2000 DATE REPORT MAILED: NOJ 22/00 SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS GSMC-14189 > Buplicate of GSMC 14178

Data K

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A004335

Page 2 (b)

AA COE ANALYTICAL

SAMPLE	# Cs	Ge	Ħf	Иb	Rb	Sc	Sn	\$	Ta	Zr	Y	Ce	In	Re	Вę	Li	Sample	
·	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
0500 4	455 4 03	4	07				7	- 01	- 0E		5.86	4 7	- 03	10	<.1	. 1	30	
GEBR-1		.1 .2	.03		.5 1.0	.6 4.1		<.01			9.54			3		20.8	30	- 1
GEBR-1				<.02			.1				3.27			< 1		19.5	30	ĺ
GEBR-1					1.4		.3				7.55			2	<.1		30	- 1
GEBR-1			.05	.03	.9						9.45			2		77.2	30	- 1
GCDK* (+150 -14	.5	.0.	.03	.,	10.1	• 6	1.01	1.05	1.0	7.43	,,,	.00	-	•-	,,,,	30	1
GEBR-1	4144 .58	.2	.12	.03	.5	5.0	.2	<.01	<.05	1.9	15.55	8.2	<.02	<1	.1	34.2	30	Ì
GEBR-1		.1		.08		3.5					10.40			7	.2	11.4	30	1
GEBR-1			.11		3.8		.3				5.54			2	.1	1.1	30	
GEBR-1			.12			2.3					10.51			7	.2	11.8	30	
GEBR-1			.24	.05		3.6	.5				19.28			1	.2	32.8	30	
																		- 1
GEBR-1	4158 .38	.1	.25	<.02	4.7	1.0	.3	.15	<.05	9.6	2.26	22.8	<.02	2	.2	6.3	30	ſ
PPR-14	129 .12		.27		.6		.4	.17	<.05	8.1	10.26	6.2	<.02	3	.1	15.2	30	
PPR-14	107 .58	.1	.13	<.02	5.5	2.3	.2	.32	<.05	7.3	6.04	19.8	.02	2		11.3	30	- !
PPR-14	167 .54	.2	.35	-04	.3	6.7	1.3	.12	<.05	9.9	18.36	8.5	.05	2		11.7	30	
PPR-14	171 .25	.1	.08	<.02	2.3	1.7	.2	.04	<.05	4.3	7.14	14.5	.02	1	.2	7.6	30	
		_			_		_							-			70	
PPR-14				.04		2.7	.3				5.50			3		11.9	30	- 1
RE PPR		-1	.24		2		, -2				5.57			4		12.4	30	- 1
PPR-14				.14			.4				11.91			11		43.6	30	i
PPR-14			.52				116.4							17 2		3.9 31.0	30 30	- 1
PPR-14	127 .19	.3	.31	.04	.2	15.8	.8	.04	<.05	5.0	20.33	0.7	.05	2	.0	31.0	20	- 1
DDD-1/	166 S-1 1.30	2	68	.39	4 4	83	1 4	< 01	< 05	38.8	14.23	29.3	.05	2	.8	10.5	30	i
PPR-14		.1			8.		2.7	-			14.07			2		11.3	30	į
PPR-14		.1			3.8						3.80			1		33.1	30	- 1
PPR-14		.1		.10			2.3				12.84			3		11.5	30	i
PPR-14			.07			2.6					5.11			<1		8.6	30	- 1
174 34	.41	•-	•••				••	••••	-102						• •		•	· [
PPR-14	169 2.03	.1	.25	.14	3.2	4.9	.3	<.01	<.05	5.4	2.24	9.1	<.02	<1	.7	20.6	30	
PPR-14		.3	.61	. 13	.9	4.4	52.9	6.47	<.05	18.0	7.06	2.6	.77	20	.1	6.5	30	- 1
PPR-14		.1	.23		1.7	2.0	.3	1.24	<.05	4.1	5.91	2.6	<.02	<1		7.1	30]
PPR-14	128 .47	.1	.02	.02	1.3	16.6	.7				11.06			1		54.8	30	1
PPR-14	164 .52	.2	.35	.04	.4	4.1	.3	<.01	<.05	8.8	17.01	9.0	<.02	2	.4	6.5	30	- 1
						- 4	o= c		. 05		7.00	70.0	-	4	,	47.0	70	
STANDA	RD DS2 3.44	.1	.05	1.35	15.4	3.1	25.8	.03	<.05	2.9	7.88	20.9	5.58		0	13.9	30	

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC VOA 1R6 PHUNE (600, 253 DALS FRA 1004) 2-- 171

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004335 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Page 1 (c)

SAMPLE#	\$i02	Al 203		Mg0		Na20	K20	Ti02		MnO %			Ni ppm		LOI %	TOT/C	rot/s	SUM %	
GSMC-14175					5.15											1.38	.53	100.00	
					10.37								31 40		10.2	2.02	.22	99.82	
					9.70				.05				99		5.9		<.01	100.03	
					8.58								77		5.9		<.01	99.86	
		5.66							.05		.012		23		2.2	.33	.38	99.03	
4410 1111		2.00	2.03	,	•,0					•		,00,		•		-44		,,,,,	
GSMC-14198	49.48	14.83	10.35	6.83	9.18	3.78	.38	1.71	.18	.19	.037	329	65	37	3.0	.10	.05	100.00	
					9.27				-14		.068	156	130	40	5.5	.47	.09	99.98	
GSMC-14173	82.31	4.35	3.80	1.97	1.92	.05	.62	.30	.05	.05	.012	1973	24	9	4.3	.43	1.29	99.96	
GSMC-14190	45.65	11.74	11.88	7.54	8.37	.59					.016	427	42	38	11.1	1.94	. 13	99.87	
GSMC-14185	50.89	13.13	13.50	6.66	3.75	1.55	.07	2.25	. 15	.21	.019	143	80	43	7.8	.94	.63	100.01	
	}																		
		9.45					1.84	.66	.06	.10			36		1.9	.07	.02	99.87	
					5.10						.017		32		6.8	1.39	.51	99.28	
					4.42						.025		49		10.3	1.18	.01	99.95	
					8.79										3.8		<.01	99.91	
GSMC-14181	85.59	5.00	2.58	1.72	.89	1.20	.44	.36	.07	.06	.013	1997	30	9	1.6	- 16	.11	99.75	
GSMC-14197	/7 OF	1/ 00	40 53	4 52	7 =/	2 47	7,	4 7/	47	20	070	/43		70	0 7	1 /5	07	00.06	
		3.86			7.54											1.45	.07	99.96	
					.59 5.35						.015		20		1.1 7.9	.24	.01 .13	99.79 99.85	
					4.02								21		7.2	1.71 .70	.02	100.05	
					9.57						.021		36		3.4	.06	.02	99.93	
05MC-14173	41.01	13.22	11.00	0.32	7.31	3.10	. 12	2,10	. 10	.21	.021	77	30	30	3.4	-00	.01	77.74	
GSMC-14184	46.89	12.91	13.27	7.03	6.44	3.40	.06	2.23	.18	.24	.018	542	28	43	6.8	1.02	.40	99.54	
GSMC-14188	50.47	14.04	10.08	8.10	4.93	4.35	<.04	1.53	.20	.25	.037	67		39	5.8	.66	.14	99.83	
RE GSMC-14188	50.37	14.01	10.09	8.20	4.99	4.33	<.04	1.52	.14	.25	.040	69	59	39	5.9	.66	.15	99.88	
GSMC-14196	42.98	15.31	12.80	8.63	11.31	1.99	<.04	2.20	.22	.20	.047	36	86	46	4.0	.06	.05	99.74	
SDWR-14442	51.04	13.64	11.05	6.82	10.18	2.94	.21	1.89	.12	21۔	.028	53	77	36	1.6	.04	.10	99.75	
					10.08						.033	37	67		1.6	-02	.13	99.83	
					9.46						.012		30		3.1		<.01	99.72	
					3.19						.088		1058		7.4	.02	.04	99.96	
					2.42						.016	38	46		1.5		<.01	99.61	
GSMR-14168	49.82	14.04	12.52	5.60	7.55	3.59	.43	2.00	.14	.17	.021	189	49	33	3.9	-12	.48	99.81	
GSMR-14102	40 12	4 93	17 22	28 45	1. 1.4	30	ΩĐ	57	00	21	077	127	077	1.6	6.3	-02	.05	98.99	
					4.46 3.02							25			5.0	-01	.09	99.65	
															6.0			100.07	
: : : : : : : : : : : : : : : : : :					8.62														
STANDARD SO-15/CSB	47.78	16.69	1.50	1.20	2.0/	C.41	1.04	1.70	2.70	1.24	1.000	1703	٥ï	14	5.9	2.44	2.31	99.81	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION.

TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'kE' are Keruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: NOV 22/00 p. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A004335

Page 2 (c)

GERR-14155		SAMPLE#	SiO2	Al203	Fe203	MgO %	CaO i	Na20	K20	Ti02 %	P205	MnO (Cr203	Ва	Ni	Sc ppm	101 %	TOT/C	TOT/S %	SUM %	
GEBR-14145 GEBR-14156 GEBR-14156 GEBR-14159 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14156 GEBR-14157 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14151 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14154 GEBR-14157 GEBR-14157 GEBR-14157 GEBR-14157 GEBR-14158 GEBR-14158 GEBR-14159 GEBR-14159 GEBR-14159 GEBR-14150 GEBR-14160 GEBR-14150		GEBR-14155						.05							38	1					
GEBR-14154 GEBR-14156 (A.7.4 13.09 A.7.6 3.47 2.06 A.13 A.05 1.83 4.7 A.07 A.11 A.017 1547 59 11 2.1 A.14 D.2 100.34 GEBR-14156 (A.7.6 14.7.4 13.09 B.16 3.90 2.48 A.32 1.78 A.22 A.18 D.00 257 61 40 5.8 A.73 D.5 99.50 GEBR-14156 (A.7.6 14.7.4 13.09 B.16 3.90 2.48 A.32 1.78 A.22 A.18 D.00 257 61 40 5.8 A.73 D.5 99.50 GEBR-14151 SD.21 14.7.12 D.35 D.65 T.24 A.17 D.2.17 D.20 A.17 D.20 D.17 571 54 40 2.9 D.7 < 0.01 100.45 GEBR-14157 G.21 3.6 A.6 A.25 D.80 A.31 T.7.6 D.21 A.18 D.90 D.90 265 32 D.2 B.2 B.2 B.2 B.2 B.2 B.2 B.2 B.2 B.2 B						6.61	9.70	2.67	.16	3.20		.23									1
GERR-14159 GERR-14164 GERR-14165 GERR-14164 GERR-14165 GERR-14164 GERR-14161 GERR-14165 GERR-14165 GERR-14165 GERR-14166 GERR-14165 GERR-14166 GERR-14165 GERR-14166 GERR-14167 GERR-14166 GERR-14165 GERR-14166 GERR-14167 GERR-14166 GERR-14168 GERR-14168 GERR-14169 GERR-14161 GERR-14160 GERR-14160 GERR-14161 GERR-14165 GERR-14166 GERR-14166 GERR-14166 GERR-14166 GERR-14166 GERR-14168 GERR-14166 GERR-14168											.07	.11									1
GEBR-14144 GEBR-14144 GEBR-14151 GEBR-14151 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14157 GERR-14153 GERR-14157 GERR-14153 GERR-14155 GERR-14157 GERR-14157 GERR-14158 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14169 GERR-14160 GERR-14160 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14159 GERR-14160 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14159 GERR-14159 GERR-14166 GERR-14159 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14167 GERR-14168 GERR-14168 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-14158 GERR-14159 GERR-14158 GERR-14159 GERR-14158 GERR-1		GEBR-14159				.10	.87	.05	.28	.08	.59					_					
GEBR-14151 50.24 14.01 10.39 6.11 6.99 3.67 .52 1.76 .22 1.13 .09 .09 265 32 6 2.8 .60 .12 99.90 GEBR-14157 82.13 6.86 4.25 .80 .63 .15 1.76 .21 18 .09 .009 265 32 6 2.8 .60 .12 99.90 GEBR-14153 49.41 14.68 11.06 .651 8.95 3.51 .25 1.87 .24 .17 .022 202 33 39 3.4 .07 2.64 100.10 GEBR-14153 49.41 14.68 11.06 .651 8.95 3.51 .25 1.87 .24 .17 .022 202 33 39 3.4 .07 2.64 100.10 GEBR-14158 49.26 15.24 11.14 6.22 8.25 4.49 .04 2.61 .29 .16 .010 114 46 39 2.6 .03 .30 100.33 GEBR-14158 81.38 9.15 3.75 .37 .16 .15 2.33 .39 .07 .11 .012 .651 29 7 2.4 .06 .19 100.35 PPR-14129 49.99 14.55 11.26 .6.73 9.59 3.13 .19 1.79 .20 .18 .023 81 55 37 2.6 .01 .20 100.25 PPR-14107 67.89 10.55 9.42 .52 .14 1.38 1.94 1.94 .42 .05 .022 570 51 13 5.7 1.01 .36 100.04 PPR-14167 49.80 15.05 12.25 5.41 7.12 4.57 1.41 1.95 .18 1.7 .016 93 41 35 3.7 .04 .14 100.36 PPR-14110 49.24 14.64 11.17 7.18 9.48 3.68 .12 1.60 1.8 1.8 .037 82 77 37 2.6 .01 .00 100.13 PPR-14100 50.05 15.77 13.79 5.79 6.25 9.47 12.18 .023 80 225 25 4.4 .07 .27 100.41 PPR-14160 50.05 15.77 13.79 5.79 6.25 9.47 12.18 .00 100.38 PPR-14110 49.24 14.04 11.17 7.16 9.47 3.74 .12 1.61 15 .18 .037 82 77 37 2.6 .01 .60 100.38 PPR-14110 49.25 14.70 11.17 7.16 9.47 3.74 .12 1.61 15 .18 .037 82 77 37 2.6 .01 .00 100.13 PPR-14160 50.05 15.77 113.96 5.46 .259 4.90 1.77 .89 .22 .18 .008 2499 20 25 4.4 .07 .27 100.41 PPR-14167 48.55 15.58 11.76 6.50 7.80 2.64 .00 61.98 18 20 .023 73 41 41 50 .04 .04 100.29 PPR-14167 52.08 15.70 14.75 4.06 1.99 .56 4.35 1.20 .01 17 158 4.02 22 13.3 .06 14.16 98.90 PPR-14165 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 1.16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 1.00 1.00 11 7.08 4 29 457 15 9.9 .06 <.01 100.07 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 1.06 1.10 1.10 1.02 14.99 1.00 100.21 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 1.00 1.10 1.02 1.10 1.00 1.00 1.00 1.00		GEBR-14156	48.76	14.74	13.09	8.16	3.90	2.48	.32	1.78	.22	.18	.030	257	61	40	5.8	.73	.05	99.50	
GEBR-14157 GEBR-14157 GEBR-14157 GEBR-14157 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14153 GEBR-14154 GEBR-14155 GEBR-14155 GEBR-14155 GEBR-14155 GEBR-14156 GEBR-14158 B1.38 9.15 3.75 3.7 1.6 1.5 2.33 3.9 0.7 1.1 1.14 6.22 8.25 6.49 0.42 1.6 1.01 1.14 6.6 3.12 9.99 0.03 3.30 3.4 0.7 2.64 1.00 1.03 3.00 0.33 GEBR-14158 B1.38 9.15 3.75 3.7 1.6 1.5 2.33 3.9 0.7 1.1 1.012 6.51 2.9 7 2.4 0.6 0.11 2.01 0.35 PPR-14129 49.99 14.55 11.26 6.73 9.59 3.13 1.9 1.77 2.0 1.18 0.10 1.10 1.012 6.51 2.9 7 2.4 0.6 0.11 2.0 10.35 PPR-14167 49.80 15.05 12.25 5.41 7.12 4.57 1.4 1.93 1.18 1.7 0.16 9.3 41 3.5 7 7 1.6 1.15 3.5 7 1.6 1.15 2.33 3.9 0.7 1.1 1.10 1.10 1.01 6.51 2.9 7 2.4 0.6 0.11 2.01 0.35 PPR-14167 49.80 15.05 12.25 5.41 7.12 4.57 1.4 1.93 1.18 1.7 0.16 9.3 41 3.5 7 7 1.0 1.15 6.10 0.35 PPR-14171 87.01 2.71 3.54 0.50 0.28 3.03 0.49 1.4 0.66 2.69 0.08 2.66 0.79 4 2.2 1.10 0.01 0.04 PPR-14106 40 40 40 40 40 40 40 40 40 40 40 40 40		GEBR-14144	50.21	14.17	12.35	6.65	7.24	4.17	.10	2.17	.20	.20	.017	571							
GEBR-14157 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14165 GEBR-14166 GEBR-14166 GEBR-14165 GEBR-14166 GEBR-14166 GEBR-14165 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14166 GEBR-14169 GEBR-14166		GEBR-14151	50.24	14.01	10.39	6.11	6.99	3.67	.52	1.76	.22	.13									1
GEBR-14145 49.26 15.26 11.14 6.22 8.25 4.49 .04 2.61 .29 .16 .010 114 46 39 2.6 .03 .30 100.33 GEBR-14145 49.26 15.26 11.14 6.22 8.25 4.49 .04 2.61 .29 .16 .010 114 46 39 2.6 .03 .30 100.33 GEBR-14158 81.38 9.15 3.75 .37 .16 .15 2.33 .39 .07 .11 .012 651 29 7 2.4 .06 .19 100.35 PPR-14107 49.80 15.05 9.42 .52 .14 1.38 1.94 1.94 .42 .05 .022 570 51 13 5.7 1.01 .36 100.04 PPR-14167 49.80 15.05 12.25 5.41 7.12 4.57 .14 1.93 1.8 1.7 .016 93 41 35 3.7 .04 .14 100.36 PPR-14171 87.01 2.71 3.54 .50 .23 .03 .49 .14 .06 2.69 .008 2860 79 4 2.2 .10 <.01 99.94 PPR-14110 49.32 14.70 11.17 7.18 9.48 3.68 .12 1.60 .18 .18 .037 82 77 37 2.6 .01 .60 100.13 RE PPR-14110 49.32 14.70 11.17 7.16 9.47 3.74 .12 1.61 .15 .18 .037 82 77 37 2.6 .01 .60 100.38 PPR-14164 50.05 15.71 13.96 5.46 2.59 4.90 1.77 .89 .22 .18 .008 2409 <20 25 4.4 .07 .27 100.41 PPR-14161 43.00 7.98 23.02 3.22 5.41 .97 4.5 13.20 9. 10 .017 158 <20 22 13.3 .06 14.16 98.90 PPR-14127 48.55 15.58 11.76 6.50 7.80 2.64 .06 1.98 .18 .20 .023 73 41 41 5.0 .04 .04 100.29 PPR-14170 50.05 15.71 13.96 5.46 2.59 3.66 .30 1.86 .18 .16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14163 50.31 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.34 PPR-14165 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 16 .021 179 53 34 3.3 .07 <.12 100.34 PPR-14164 40.43 4.98 13.84 17.28 6.39 3.31 .05 .60 10 17 158 4.50 157 59 32 4.4 .17 .05 100.46 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 .16 .10 1.08 175 59 32 4.4 .17 .05 100.46 PPR-14169 50.63 11.76 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14164 47.00 1.33 21.39 3.52 5.69 2.31 .29 1.36 .09 .11 .022 148 <20 22 13.00 14.89 10.071 PPR-14164 47.00 13.31 1.33 1.35 .88 8.90 2.63 2.01 1.55 .13 .15 .035 1604 119 35 3.9 .06 1.48 100.71 PPR-14164 47.00 13.31 1.33 1.33 8.44 17.28 8.39 3.10 5.00 1.17 1.30 19 27 72 33 10.2 2.19 .37 100.34 PPR-14164 47.00 13.31 1.39 3.52 5.69 2.31 .29 1.36 .09 .11 .022 148 <20 24 9.8 .11 8.96 100.07 1 PPR-14164 40.00 10.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20		GEBR-14157	82.13	6.86	4.25	.80	.63	.15	1.76	.21	.18										
GEBR-14158 81.38 9.15 3.75 .37 .16 .15 2.33 .39 .07 .11 .012 651 29 7 2.4 .06 .19 100.35 PPR-14129 49.99 14.55 11.26 6.73 9.59 3.13 .19 1.79 .20 .18 .023 81 55 37 2.6 .01 .20 100.25 PPR-14107 67.89 10.55 9.42 .52 .14 1.38 1.19 4.194 .42 .05 .022 570 51 13 5.7 1.01 .36 100.04 PPR-14167 49.80 15.05 12.25 5.41 7.12 4.57 .14 1.95 .18 .17 .016 93 41 35 3.7 1.01 .036 100.04 PPR-14171 87.01 2.71 3.54 .50 .23 .03 .49 .14 .06 2.69 .008 2860 79 4 2.2 .10 <.01 99.94 PPR-14110 49.24 14.64 11.17 7.18 9.48 3.68 .12 1.60 .18 .18 .037 82 77 37 2.6 .01 .60 100.13 RE PPR-14110 49.32 14.70 11.17 7.16 9.47 3.74 .12 1.61 .15 .18 .037 82 77 37 2.6 .01 .60 100.38 PPR-14106 50.05 15.71 13.96 5.46 2.59 40.177 .89 .22 .18 .008 2409 <20 25 4.4 .07 .27 100.41 PPR-14161 43.00 7.98 23.02 3.22 5.41 .97 1.45 1.32 .09 .10 1.017 158 <20 22 13.3 .06 14.16 98.90 PPR-14161 48.55 15.58 11.76 6.50 7.80 2.64 .06 1.98 .18 .20 .023 73 41 41 5.0 .04 .04 100.29 PPR-14165 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 .16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14163 50.31 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14166 50.31 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14166 50.33 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 .06 .17 .054 741 128 32 4.3 .16 <.01 100.21 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 .06 .17 .054 741 128 32 4.3 .16 <.01 100.63 PPR-14169 50.06 13.3 19.38 4.46 10.42 2.83 .68 1.60 .17 .15 .00 170 76 <20 2.9 3.10 .00 10.01 PPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10		GEBR-14153	49.41	14.68	11.06	6.51	8.95	3.51	.25	1.87	. 24										
PPR-14129		GEBR-14145	49.26	15.24	11.14	6.22	8.25	4.49	.04	2.61	.29	.16	.010	114	46	39	2.6	.03	.30	100.33	ļ
PPR-14107		GEBR-14158	81.38	9.15	3.75	.37	.16	.15	2.33	.39	.07	.11	.012	651	29			.06			
PPR-14107					11.26	6.73	9.59	3.13	.19	1.79	.20	.18									
PRR-14167 PPR-14171 PPR-14171 PPR-14171 PPR-14171 PPR-14171 PPR-14110 PPR-14110 PPR-14110 PPR-14106 PPR-14110 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14107 PPR-14106 PPR-14106 PPR-14106 PPR-14107 PPR-14106 PPR-14107 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14106 PPR-14107 PPR-14106 PPR-14107 PPR-14107 PPR-14106 PPR-14107 PPR-14107 PPR-14107 PPR-14108 PPR-14108 PPR-14109 PPR-14109 PPR-14109 PPR-14109 PPR-14100 PPR-14						.52	.14	1.38	1.94	1.94	.42										
PPR-14110 49.24 14.64 11.17 7.18 9.48 3.68 .12 1.60 .18 .18 .037 82 77 37 2.6 .01 .60 100.13 RE PPR-14110 PPR-14100 50.05 15.71 13.96 5.46 2.59 4.90 1.77 .89 .22 .18 .008 2409 <20 25 4.4 .07 .27 100.41 PPR-14161 43.00 7.98 23.02 3.22 5.41 .97 .45 1.32 .09 .10 .017 158 <20 22 13.3 .06 14.16 98.90 PPR-14127 PPR-14165 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 .16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14163 PPR-14164 55 15.58 11.76 6.50 7.80 2.64 .06 1.98 .18 .20 .023 73 41 41 5.0 .04 .04 100.29 PPR-14165 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 .16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14163 50.31 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14126 40.43 4.98 13.84 17.28 6.39 .31 .05 .60 .10 .17 .084 129 457 15 9.9 .06 <.01 100.21 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 .06 .17 .054 741 128 32 4.3 .16 <.01 100.63 PPR-14164 45.10 10.33 21.39 3.52 5.69 2.31 .29 1.36 .09 .11 .022 148 <20 24 9.8 .11 8.96 100.03 PPR-14128 45.10 10.33 19.38 4.46 10.42 2.83 .68 1.60 .17 .13 .019 272 72 33 10.2 2.19 .37 100.34 PPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10			49.80	15.05	12.25	5.41	7.12	4.57	.14	1.93	.18	.17									
RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14110 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PPR-14106 RE PR		PPR-14171	87.01	2.71	3.54	.50	.23	.03	.49	.14	.06	2.69	.008	2860	79	4	2.2	.10	<.01	99.94	
RE PPR-14110 PPR-14106 PPR-14106 PPR-14106 PPR-14161 PPR-14161 PPR-14162 PPR-14165 PPR-14165 PPR-14165 PPR-14165 PPR-14166 PPR-14167 PPR-14168 PPR-14168 PPR-14169 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14165 PPR-14166 PPR		PPR-14110	49.24	14.64	11.17	7.18	9.48	3.68	.12	1.60	.18										
PPR-14106 PPR-14161 PPR-14161 PPR-14162 PPR-14165 PPR-14163 PPR-14164 PPR-14166 PPR-14165 PPR-14165 PPR-14166 PPR-14166 PPR-14166 PPR-14167 PPR-14166 PPR-14167 PPR-14166 PPR-14169 PPR-14166 PPR-14169 PPR-14160 PPR-14		RE PPR-14110	49.32	14.70	11.17	7.16	9.47	3.74	.12	1.61	. 15										
PPR-14161		PPR-14106	50.05	15.71	13.96	5.46	2.59	4.90	1.77	.89	.22										
PPR-14166 S-1 PPR-14165 PPR-14170 PPR-14163 PPR-14163 PPR-14164 PPR-14169 PPR-14169 PPR-14162 PPR-14162 PPR-14162 PPR-14169 PPR-14162 PPR-14169 PPR-14160 PP	•	PPR-14161	43.00	7.98	23.02	3.22	5.41	.9 7	.45	1.32	.09										
PPR-14168 5-1 PPR-14168 5-1 PPR-14170 51.37 14.33 11.92 5.29 7.92 3.66 .30 1.86 .18 .16 .021 179 53 34 3.3 .07 .12 100.34 PPR-14170 52.08 15.70 14.75 4.06 1.99 .65 4.32 1.62 .13 .28 .480 866 277 26 4.5 .07 <.01 100.70 PPR-14163 50.31 14.50 12.60 5.04 7.33 3.70 .32 1.89 .16 .16 .018 175 59 32 4.4 .17 .05 100.46 PPR-14126 46.43 4.98 13.84 17.28 6.39 .31 .05 .60 .10 .17 .084 129 457 15 9.9 .06 <.01 100.21 PPR-14169 49.82 17.85 12.73 3.98 2.01 2.10 5.50 1.95 .06 .17 .054 741 128 32 4.3 .16 <.01 100.63 PPR-14162 45.10 10.33 21.39 3.52 5.69 2.31 .29 1.36 .09 .11 .022 148 <20 24 9.8 .11 8.96 100.03 PPR-14109 50.64 13.30 9.59 8.49 8.09 2.63 2.01 1.55 .13 .15 .035 1604 119 35 3.9 .06 1.48 100.71 PPR-14128 47.10 13.31 9.38 4.46 10.42 2.83 .68 1.60 .17 .13 .019 272 72 33 10.2 2.19 .37 100.34 PPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10	• .	PPR-14127	48.55	15.58	11.76	6.50	7.80	2.64	.06	1.98	-18	.20	.023	73	41	41	5.0	.04	.04	100.29	
PPR-14170 PPR-14163 PPR-14164 PPR-14164 PPR-14169 PPR-14164 PPR-14164 PPR-14164 PPR-14164		PPR-14166 S-1	53.72	18.60	8.75	2.35	3.88	3.03	1.20	1.28	.13										
PPR-14163 PPR-14164 PPR-14165 PPR-14166 PPR-14166 PPR-14166 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14169 PPR-14160 PPR-14		PPR-14165	51.37	14.33	11.92	5.29	7.92	3.66	.30	1.86	.18								.12	100.34	
PPR-14126	•	PPR-14170	52.08	15.70	14.75	4.06	1.99	.65	4.32	1.62	.13										
PPR-14169 PPR-14169 PPR-14162 PPR-14162 PPR-14109 PPR-14109 PPR-14128 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-141666 PPR-141666 PPR-141666 PPR-141666 PPR-141666 PPR-141666 PPR-141666 PPR-141666 PPR-14166		PPR-14163	50.31	14.50	12.60	5.04	7.33	3.70	.32	1.89	.16										
PPR-14162		PPR-14126	46.43	4.98	13.84	17.28	6.39	.31	.05	.60	.10	.17	.084	129	457	15	9.9	.06	<.01	100.21	
PPR-14162 PPR-14162 PPR-14109 PPR-14109 PPR-14128 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 PPR-14164 45.10 10.33 21.39 3.52 5.69 2.31 .29 1.36 .09 .11 .022 148 <20 24 9.8 .11 8.96 100.03 15 .035 1604 119 35 3.9 .06 1.48 100.71 17 .13 .019 272 72 33 10.2 2.19 .37 100.34 18 .96 100.03 19 .007 66 <20 25 3.6 .03 <.01 100.10		PPR-14169	49.82	17.85	12.73	3.98	2.01	2.10	5.50	1.95	.06										
PPR-14109 50.64 13.30 9.59 8.49 8.09 2.63 2.01 1.55 .13 .15 .035 1604 119 35 3.9 .06 1.48 100.71 PPR-14128 47.10 13.31 9.38 4.46 10.42 2.83 .68 1.60 .17 .13 .019 272 72 33 10.2 2.19 .37 100.34 PPR-14164 FPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10		PPR-14162	45.10	10.33	21.39	3.52	5.69	2.31	.29	1.36	.09										
PPR-14128 47.10 13.31 9.38 4.46 10.42 2.83 .68 1.60 .17 .13 .019 272 72 33 10.2 2.19 .37 100.34 PPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10		PPR-14109	50.64	13.30	9.59	8.49	8.09	2.63	2.01	1.55	. 13								1.48		
PPR-14164 50.00 14.89 12.50 3.85 9.38 3.28 .10 2.09 .20 .19 .007 66 <20 25 3.6 .03 <.01 100.10		PPR-14128	47.10	13.31	9.38	4.46	10.42	2.83	.68	1.60	-17										
10.01 10.01 10.01 7.00 7.01 7.11 7.00 7.01 7.11 10.11 1		PPR-14164	50.00	14.89	12.50	3.85	9.38	3.28	-10	2.09	.20	.19	-007	66	<20	25	3.6	.03	<.01	100.10	
STANDARD SO-15/CSB 49.24 12.91 7.27 7.28 5.81 2.54 1.86 1.66 2.66 1.38 1.061 1995 67 12 5.9 2.41 5.37 99.80		STANDARD SO-15/CSB	49.24	12.91	7.27	7.28	5.81	2.54	1.86	1.66	2.66	1.38	1.061	1995	67	12	5.9	2.41	5.37	99.80	

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

BOL B. HASTINGS ST. VANCOUVER BC VOA 1Ro F.L. 18 (65., 253 ... 8 Pk., 04) ...

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004335

Page 1 (d)

		<u> </u>			611		<u> </u>	0-		71	*	11	·	11	7.			Ce	Pr	Nd	Sm.	C.,	Gd	Th	Dy	Но	Er	Tm	Υb	Lu
SAMPLE#	1		Ga ppm		Nb maa	Rb ppm	\$n ppm		īa ppm	th maa		D mqq	•	₩ Maa	Zr		La		ppm				ppm		•					
	bbu	PM.	P	PP	Pp	PP.III	PPW		Pr.	FF	PP	1-1				_														
GSMC-14175	37.5							406.1	.4		<.1		405	<1	133.1	40.4	7.0	19.5	2.90	16.0	5.2	1.49	5.95	1.11	7.29	1.60	4.67	.61	4.19	.69
GSMC-14187	48.0							1295.5	.6		<.1		372	<1	79.8	27.3	5.4	13.4	2.04	10.2	3.3	1.22	3.82 1.96	-69	4.70	1.07	1 47	10	2.70 1 30	20
GSMC-14182	36.2							213.5	.8		<.1		234	1 <1	40.0	25 1	7 1	0.5	1.50	77	2 8	1 35	3.56	.54	4 35	96	2 81	37	2.53	-41
GSMC-14191	37.3			2.0			1	152.7 20.9	.3 .6	4.8		<.1 2.1			101.3	17.5	10 0	/2 S	4 50	17.6	7 B	65	3.51	.47	3.18	-67	2.04	.24	1.90	.30
GSMC-14172	0.9	1.9	8.3	2.9	5.4	21.3	ı	20.9	.0	4.0	• 2	2.1	130	4																
GSMC-14198	38.8	1.1	18.6	2.9	3.1	7.7	2	322.9	.3	.3	<.1	<.1	381	<1		34.1	4.5	13.9	2.27	11.5	4.4	1.40	5.03	.93	5.59	1.31	3.82	.49	3.39	.54
GSMC-14186	44.2	1.0	16.3	2.6	2.3	2.7		202.0	.2	.2		<.1		2	85.6	27.3	3.6	11.1	1.77	9.4	3.4	1.15	4.22	.76	4.84	1.07	3.17	.37	2.82	.45
GSMC-14173				2.1				51.5	.6	3.6		1.0		3	77.3	14.4	13.7	31.3	3.55	13.9	3.0	.60	2.93	.44	2.97	.55	1.68		1.55	
GSMC-14190	37.5							243.8				.2		1	102.8	34.3	6.0	16.5	2.55	12.0	4.6	1.49	2.33	4.04	5./3	1.3/	1.56	-4/ 57	3.41 7.46	46
GSMC-14185	46.1	.5	18.0	3.3	6.7	3.7	2	87.0	.6	.6	.7	.2	451	<1	114.4	40.4	0.4	17.7	4.00	14.1	4.7	1.00	3.70	1.04	0.71	1.56	4.70		4.10	.00
GSMC-14194	14.5	3.2	16.6	6.1	10.0	67.7	3	26.5	1.0	8.6	.7	2.3	76	4	225.2	21.3	25.3	66.8	6.37	24.1	4.9	1.10	4.31	.68	4.16	.90	2.72	.33	2.52	.42
GSMC-14189	36.3							376.5	4			_4		<1	127.5	38.9	6.4	18.6	2.91	14.3	4.9	1.33	5.85	.99	6.54	1.51	4.40	.56	3.84	.62
GSMC-14183	56.0	3.0	17.5	2.3	4.6	19.7	2	274.9	.4			.2		<1	80.1	26.1	4.2	11.3	1.75	9.4	3.6	1.20	3.97	.70	4.72	1.10	3.09	-40	2.71	
GSMC-14195				3.2				118.5				<.1		<1	109.2	35.1	4.1	13.1	2.25	11.8	5.0	1.28	5.23	.93	6.16	1.57	4.07	.50	3.47 1.67	.29
GSMC-14181	8.5	1.0	8.6	2.4	4.1	19.1	1	37.6	4	3.9	<.1	1.0	67	2	87.9	14.7	12.0	27.8	3.12	12.0	2.9	.55	2.70	.41	2.03	.56	1.77	.22	1.07	.20
GSMC-14197	35.3	1.2	14.9	2.7	1.9	21.5	1	190.4	.2	.2	. 1	.1	341	5	90.3	32.3	3.2	10.8	1.85	10.4	3.7	1.15	4.62	.87	5.52	1.26	3.68		3.21	
GSMC-14192	3.5			1.9				39.1		3.1			58	1	71.3	10.3	9.8	23.0	2.52	9.6	2.2	.45	1.95	.28	1.95	.43	1.26	.16	1.20	.20
GSMC-14174	19.3			2.8				305.3		1.8				2	104.2	26.3	7.5	19.1	2.66	12.1	3.7	.97	4.21	.69	4.76	1.03	3.03	.35	2.77	
.STD S-1	18.4	2.6	23.1	5.4	7.8	40.7		342.7				1.5		<1	196.6	29.3	19.9	49.2	5.81	24.4	5.8	1.69	5.32	.85	5.14	1.15	5.42	.44	3.21 4.45	.48
GSMC-14193	38.4	<.1	21.4	3.9	4.1	3.0	2	177.6	4	.4	<.1	.2	414	<1	142.2	44.0	5.8	18.6	2.93	15.0	4.9	2.03	0.02	1.17	7.00	1.75	5.05	.07	4.43	.00
GSMC-14184	46 1	1.6	10.0	3.7	6.8	3.7	2	240.4	.5	.6	<.1	.3	455	<1	118.6	43.9	6.8	19.0	2.79	15.4	5.2	2.20	6.45	1.12	7.15	1.70	4.88	.66	4.11	
GSMC-14188	54.3			2.7				111.5	.6		<.1		297	<1	94.5	24.0	7.1	16.7	2.52	11.9	3.5	1.40	3.88	.72	4.22	.97	2.73	.33	2.34	.36
RE GSMC-14188	56.6			2.8			1	115.5	.6	1.0	<.1		300	<1		24.5	7.0	17.1	2.55	12.9	3.5	1.48	4.20	.70	4.69	.94	2.83	.31	2.29	.38
GSMC-14196	43.5							100.3	.3		<.1		425	<1	130.9	41.6	4.8	16.0	2.67	14.3	5.2	1.85	6.04	1.05	7.07	1.61	4.80	.62	4.19	.65
SDWR-14442	37.4	.3	17.1	3.1	2.6	3.3	2	173.0	.3	.2	<.1	.2	357	1	111.2	35.5	4.3	13.6	2.24	11.5	4.2	1.68	5.22	-90	6.02	1.42	4.03	.52	3.20	.57
SDWR-14441	37.7		18 0	3.3	2 4	3 7	2	191.2	.2	_2	<.1	.2	361	<1	110.5	36.3	4.4	13.4	2.19	12.1	4.5	1.66	5.03	.90	6.08	1.45	4.11	.51	3.73	.55
GSMR-14103	32.9			3.2	_		ž		_			<.1		<1	113.6	38.2	4.6	14.2	2.37	12.1	4.2	1.64	5.58	1.05	6.58	1.49	4.28	.53	3.87	.65
GSMR-14101	115.6			1.0			<1	18.8	<.1	<.1	<.1	<.1	101	<1	30.7	9.5	1.4	4.1	67	3.4	1.3	.43	1.47	.27	1.57	.38	1.12	.14	1.03	.17
GSMR-14104	10.0			2.2			1	17.4				1.3		<1	82.6	14.4	13.1	28.7	3.48	13.4	3.4	.85	2.73	.40	2.53	.52	1.58	.18	7.46	.24
GSMR-14168	29.0	.7	21.0	3.5	3.0	10.4	16	132.1	.3	.6	<.1	.8	394	<1	124.1	36.5	5.7	17.0	2.47	12.7	4.0	1.46	5.16	.93	6.34	1.43	4.17	.54	3.8/	.02
GSMR-14102	117.8	1.	6.5	.9	1.1	3.7	<1	159.0	₹.1	<_1	<.1	<.1	105	<1	33.2	10.2	1.4	3.8	.67	3.4	1.2	.45	1.57	.25	1.83	.37	1.21	.15	1.03	.17
GSMR-14102	132.2			.8			<1	42.1				<.1		<1	28.3	8.6	1.3	3.6	.56	2.9	1.0	.34	1.16	.20	1.35	.28	.95	.11	.86	.16
GEBR-14150	34.9			3.4			<1	82.2		.5		.2		<1	122.2	37.1	5.3	16.5	2.54	14.2	4.3	1.46	5.58	.99	6.42	1.41	4.15	.55	3.82	.59
STANDARD SO-15	19.9						18	403.5	1.9	22.5	1.1	20.2	175	19	1052.1	21.2	26.8	54.3	5.84	21.7	4.7	1.00	3.82	.55	3.71	.76	2.42	.33	2 .3 7_	.40
1 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	-																												

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED:

68MC 14189 - Duplicate of 65MC-14175

Data AFA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A004335

Page 2 (d)

SAMPLE#			Ga ppm	Hf ppm			Sn ppm	Sr	Ta ppm		Tl ppm	ບ ppm	•	W	Zr ppm	y ppm		Ce ppm		Nd ppm			Gd ppm		- /	Ho	Er		Yb ppm	Lu ppm
GEBR-14155 GEBR-14143 GEBR-14154 GEBR-14159 GEBR-14156	50.2	1.5 2.1 .5	13.0	3.3 3.5 <.5	2.7 6.2 1.0	1.4 3.8 77.0 12.3 11.0	2 2 <1	132.8 132.3 10.3 71.5 113.6	.3 .6 .1	.2 6.7	<.1 .1 <.1	1.6		<1 5 1	111.0 129.7	42.8 15.8 10.5	4.8 19.6 4.4	14.4 43.6 9.8	4.10	13.8 16.8 6.5	4.6 3.1 2.2	1.67 .67 .65	5.62 2.86 2.87	1.08 .43 .53	7.11 2.87 2.84	1.42 .50 .39	4.60 1.78 1.02	.62 4 .25 .11	4.12 1.77	.59 .27 .08
GEBR-14144 GEBR-14151 GEBR-14157 GEBR-14153 GEBR-14145		.5 3.0 .3	14.8	3.3 1.1 3.4	3.0 3.0 3.4	2.4 11.0 84.5 5.2 1.3	1 3 <1	179.1 89.3 52.5 170.4 107.3	.3 .2 .4 .3	.3 5.3	.4	.2 1.4 .2	33	1 2 2	143.3 116.0 36.8 125.0 188.5	38.0 12.9 38.5	5.5 17.7 5.9	16.0 32.8 16.2	2.37 3.60 2.45	13.1 14.2 13.4	4.0 3.0 4.3	1.66 .67 1.59	4.96 2.89 5.14	.93 .49 .98	6.26 2.67 6.27	1.26 .46 1.26	3.98 1.33 4.17	.56 .18 .58	3.74 1.14 3.93	.55 .18 .57
GEBR-14158 PPR-14129 PPR-14107 PPR-14167 PPR-14171	38.4	.3 4.0 .8	18.5 15.3 20.6	3.7 6.1 3.6	3.6 33.0 2.8	102.1 4.3 97.2 3.0 21.8	2 3 2	34.2 175.7 85.5 138.7 95.9	.3 2.2 .2	.3 7.9	<.1 .1 <.1	.2	349 171	<1 6 <1	128.7 132.9 236.3 132.6 36.8	41.5 39.1 47.3	6.2 48.2 5.4	17.3 98.4 16.2	2.56 10.96 2.52	14.3 45.8 14.2	4.7 8.9 4.7	1.60 2.11 1.60	5.40 6.77 5.68	1.01 1.10 1.13	6.38 6.44 7.10	1.34 1.15 1.44	4.32 3.64 4.83	.58 .45 .66	3.90 2.90 4.48	.57 .40 .65
PPR-14110 RE PPR-14110 PPR-14106 PPR-14161 PPR-14127	36.9 35.8 25.3 7.9 40.9	<.1 2.2 .3	18.3 18.6 29.6	3.4 2.4 2.4	3.0 4.4 1.9	1.2 39.5	2 2 173	226.3 233.1 227.1 315.7 53.9	.2 .3 .1	.2 5.0 .3	<.1	.2 1.9 1.1	272	3 1 <1	117.1 122.8 80.3 86.9 154.6	39.3 25.1 19.8	5.4 21.3 3.0	15.5 41.2 8.7	2.29 5.12 1.30	12.5 22.8 7.0	4.0 5.4 2.1	1.45 1.48 .88	4.94 4.94 2.61	.96 .80 .49	5.99 4.42 3.09	1.21 .81 .62	3.98 2.43 2.03	.56 .33 .28	3.69 2.18 1.89	.53 .30 .29
PPR-14166 S-1 PPR-14165 PPR-14170 PPR-14163 PPR-14126	19.1 32.8 118.3 29.9 96.3	.5 4.0 .6	19.4 17.0 20.1	4.0 3.2 3.7	3.2 59.5 3.1	7.0	7 3 5	333.8 153.0 190.1 120.5 46.5	.2 3.7 .3	.6 4.1 .5		.3		<1 2 <1	205.3 139.4 119.9 131.9 .48.7	43.4 11.9 39.7	6.7 30.8 5.9	17.6 58.3 16.5	2.67 6.27 2.34	15.0 25.1 12.8	4.6 4.8 4.4	1.65 1.36 1.44	5.64 3.74 4.94	1.08 .55 1.00	6.79 3.37 6.19	1.38 .56 1.27	4.51 1.85 4.26	.62 .24 .59	4.26 1.81 4.14	.60 .28 .59
PPR-14169 PPR-14162 PPR-14109 PPR-14128 PPR-14164	48.7 26.8 39.3 31.5 33.4	.5 .9 1.4	23.2 15.1 16.0	2.8 3.1 3.2	2.4 3.0 3.3	6.9 28.1 20.8	99 2 3	60.7 205.0 116.5 164.6 212.2	3.6 .2 .2 .3	.4 .3 .3	.2	.1	85 191 201 193 253	<1 1 2	116.0 99.4 116.1 116.0 148.4	27.8 37.3 37.3	4.2 4.9 5.5	11.6 14.5 15.5	1.66 2.20 2.23	9.0 11.8 12.3	2.9 4.0 4.1	1.09 : 1.32 : 1.28 :	3.50 4.83 4.70	.70 .93 .91	4.35 5.83 5.69	.89 1.15 1.17	2.92 3.88 3.83	.40 .53 .54	2.77 3.63 3.49	.41 .52 .51
STANDARD SO-15	20.8	2.6	16.0	26.1	32.9	65.0	17	389.1	1.9	22.2	.9	20.7	151	20	1013.5	21.8	29.3	57.5	6.31	22.6	4.6	1.04	3.80	.60	3.64	.72	2.35	.34	2.46	.40

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC VOA 1Ro

PROME (60%, 253-6.3 FA., 34) #

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004335 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

Page 1 (e)

	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm		· · · · · · · · · · · · · · · · · · ·	
	GSMC-14175 GSMC-14187 GSMC-14182 GSMC-14191 GSMC-14172	.8 1.2 1.0 1.2 2.0	70 97 70 61 2188	<3 <3 <3 16	75 79 49 70 91	44 47 127 89 28	<2 <2 2 2 <2	.2 <.2 .3 .3	<1 <1 <1 <1 <1	<1 <1 <1 <1			
	GSMC-14198 GSMC-14186 .GSMC-14173 GSMC-14190 GSMC-14185	.9 1.3 3.0 1.3	67 128 3 61 83	<3 <3 <3 <3	78 62 7 94 106	73 145 28 50 56	2 <2 <2 <2 <3	.4 .5 .2 .3 <.2	<1 <1 <1 <1	<1 <1 <1 <1 <1			
	GSMC-14194 GSMC-14189 GSMC-14183 GSMC-14195 GSMC-14181	1.5 .8 1.0 .6 2.6	83 72 94 18 9	<3 <3 <3 <3	69 75 80 81 15	43 45 59 36	<2 <2 <2 <2 <2	<.2 <.2 <.2 <.2	11111	<1 <1 <1 <1 <1			
	GSMC-14197 GSMC-14192 GSMC-14174 .STD S-1 GSMC-14193	2.5 1.1 1.8 1.4	59 35 34 27	<3 <3 <11 <3	81 43 78 85	94 21 34 13 54	30 <2 <2 <2	<.2 <.2 .2 <.2	1 1 1 <1	<1 <1 <1 <1 <1			
• • •	GSMC-14184 GSMC-14188 RE GSMC-14188 GSMC-14196 SDWR-14442	.7 <.5 1.3 2.2	60 119 120 77 65	<3 <3 <3 <3	114 82 81 83 86	56 70 69 109 85	<2 9 8 2 2	.3 .3 <.2 .3	<1 1 2 <1	<1 <1 <1 <1 <1			
e.	SDWR-14441 GSMR-14103 GSMR-14101 GSMR-14104 GSMR-14168	<.5 .6 1.8 1.5	62 9 89 19 115	3 <3 <3 <15	86 59 74 17 263	82 44 1060 26 52	<2 <2 <2 <2 <3	<.2 .2 .2 .7	1 2 <1 1 2	<1 <1 <1 <1			
v.	GSMR-14102 GSMR-14105 GEBR-14150 STANDARD CT3 STANDARD G-2	1.3 1.0 26.9 2.0	93 610 27 63 3	<3 <3 <3 38 22	78 80 55 181 54	996 1420 59 39 7	<2 <2 <2 59 <2	<.2 .3 .2 22.8 <.2	<1 <1 23 <1	<1 <1 <1 22 <1			

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns - SAMPLE TYPE: ROCK R150 40C

DATE RECEIVED: OCT 24 2000 DATE REPORT MAILED: NOV 22/00

SIGNED BY

GSMC 14184 = Duplicate of GSMC-14175

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 FILE # A004335

Page 2 (e)

AA LYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	 		
GEBR-14155 GEBR-14143 GEBR-14154 GEBR-14159 GEBR-14156	<.5 1.6 4.2 <.5	16 158 53 8 79	15 <3 6 4 <3	77 71 76 12 104	28 40 43 14 68	6 <2 <2 <2 <3	.6 .3 <.2 .2	<1 1 1 <1	<1 <1 <1 <1		_	
GEBR-14144 GEBR-14151 GEBR-14157 GEBR-14153 GEBR-14145	1.2 <.5 4.5 1.0 2.3	12 36 18 50 61	<3 <3 71 4 <3	72 44 60 59 78	50 62 23 47 49	<2 <2 <2 <2 <2	.3 .3 .2 <.2	<1 <1 1 <1	<1 <1 <1 <1			
GEBR-14158 PPR-14129 PPR-14107 PPR-14167 PPR-14171	3.9 3.0 3.0 1.4	20 54 31 176 142	42 <3 24 <3 24	75 83 70 74 49	31 57 54 48 71	9 <2 38 <2 6	.3 <.2 <.3	2 <1 4 <1	<1 <1 <1 <1 <1			
PPR-14110 RE PPR-14110 PPR-14106 PPR-14161 PPR-14127	2.7 2.0 19.0 12.4 .9	117 120 171 825 45	3 20 160 <3	414 419 87 2084 99	91 91 95 50	<2 <2 <2 13 6	2.2 2.1 <.2 11.1 .3	<1 <1 <1 19 <1	<1 <1 <1 <1			
PPR-14166 S-1 PPR-14165 PPR-14170 PPR-14163 PPR-14126	1.7 1.8 3.7 1.4	35 156 50 96 86	12 7 <3 5 <3	82 174 273 144 81	15 53 296 47 523	<2 <2 12 2 4	<.2 .7 .3 .4 .3	<1 <1 <1 <1	<1 <1 <1 <1			
PPR-14169 PPR-14162 PPR-14109 PPR-14128 PPR-14164	8.0 1.4 .6 <.5	478 57 59 12	92 93 <3 <3	128 1690 86 89 78	133 48 122 50 16	8 9 <2 23 <2	<.2 6.9 .2 .3 <.2	<1 8 <1 4 <1	<1 <1 <1 <1			
STANDARD CT3 STANDARD G-2	27.9 2.3	65 3	40 20	182 51	39 7	63 <2	24.0	25 <1	24 <1			_

Sample type: ROCK R150 40C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396 (a)

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell Latter Cur The solter GFRR-14131 385.63 82577.96 142.96 53.7 9112 72.6 196.7 77 33.76 110.1 <.1 154.1 <.1 <.5 .33 9.42 22.54 40 .40 .018 <.5 23.8 .10 2.1 .038 <1 .44 .011 .02 4.2 1.59 250 28.2 .95 25.6 7.58 201.50 6.31 4.1 47 24.5 35.4 24 2.15 13.4 .2 2.0 1.9 2.1 .02 .68 .67 10 .06 .010 3.5 13.9 .05 98.6 .072 2 .19 .003 .15 .6 .05 11 5.4 .30 1.7 GEBR-14135 381,08 99999,00 150.85 92.0 11839 78.7 185.1 81 33.82 93.2 <.1 171.5 <.1 1.3 .97 7.56 23.63 47 .46 .035 <.5 32.6 .15 3.7 .061 <1 .52 .002 .03 4.3 2.58 318 26.1 .68 37.9 304.49 96438.48 118.55 79.9 8960 44.8 203.2 67 31.81 93.6 < 1.173.1 < 1 .9 .73 8.48 16.48 44 .45 .029 < 5 25.5 .12 2.0 .033 < 1 .48 .002 .02 1.4 1.94 251 33.1 1.18 28.0 30.97 8.22 51.7 42 12.9 14.2 449 4.00 3.1 .6 <.2 2.9 47.4 .09 .08 .11 163 .48 .047 11.7 40.7 .53 87.9 .359 2 4.07 .116 .06 <.2 .15 31 .3 .03 10.6 685.89 1.77 15.0 131 7.5 10.4 50 40.11 42.6 1.0 1.5 <.1 3.3 .04 .74 .06 103 .27 .003 11.8 7.2 .23 75.3 .006 2 .30 .017 .01 2.2 .02 9 3.1 < .02 47.6 925.58 13.11 8.7 525 60.3 1345.5 <1 31.49 99.7 <.1 8.0 .1 <.5 .02 7.10 11.66 7 <.01 .001 <.5 9.9 .01 3.1 .018 <1 .07 .001 .06 .9 .19 312 203.8 9.11 .9 906,74 13.73 8.8 507 59.8 1304.2 <1 30.54 96.1 <1 11.9 .2 <.5 .04 7.01 12.28 7 <.01 .001 <.5 11.5 .01 2.7 .018 <1 .06 .001 .06 .09 .21 317 202.1 8.83 .8 RE GEBR-14134 14.72 131.29 32.11 159.8 273 37.1 12.4 785 3.04 57.4 20.5 198.5 3.9 29.8 10.17 9.15 11.27 80 .57 .093 16.6 169.8 .61 152.0 .095 2 1.67 .031 .16 7.1 1.90 221 2.2 1.94 6.2 STANDARD DS2

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(b)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Ridgell

SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sc	Sn	\$	Ta	Zr	Y	Се	In	Re	Вe	Li	Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
GEBR-14131	.07	3	08	.33	4	1.2	122.5	27.33	< 05	1.0	1 30	17	3 38	128	<.1	< 1	30	
GEBR-14135		<.1						1.19						13	< 1	.6	30	
GEBR-14132	.16	.6	.03	.50	.8	1.6	133.6	27.16	<.05	1.0	2.19	1.9	5.75	93	.2	1.1	30	
· GEBR~14130	.08	.4	<.02	.55	.5	1.0	107.5	23.74	<.05	.6	1.47	1.9	4.12	142	.2	<.1	30	
GEBR-14133 S-1	1.34	.2	.81	.41	4.7	7.5	1.3	<.01	<.05	38.3	14.93	28.8	.05	<1	1.1	11.6	30	
GEBR-14136	1.32	1.8	<.02	. 12	.4	.6	31.7	.16	<.05	.5	1.84	21.2	<.02	3	2.5	1.9	30	
GEBR-14134		1.1				.4		31.04			.14			337			30	
RE GEBR-14134	.12	1.1	.06	.69	2.5	.4	5.3	32.06	<.05	1.5	. 15	_4	.02	385	<.1	<.1	30	
STANDARD DS2	3.37	.1	.06	1.39	13.9	2.8	26.2	.02	<.05	3.0	8.28	31.1	5.46	<1	.7	15.1	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

PHONE (604) 253-3158 FAX (604) 253-1716

(c)

(ISO 9002 Accredited (

WHOLE ROCK ICP ANALYSIS

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Gerry Bidwell AA E E

SAMPLE#	\$i02 %		Fe203	MgO %	CaO %	Na20 %				Mn0 %		Ba ppm				TOT/C %	TOT/S %	SUM %	
	16.68																36.66	89.12	
GEBR-14135	85.62	5.17	3.88	.53	. 14	.07	1.88	.27	.07	.01	.006	1068	<20	7	2.4	.04	1.49	100.17	
GEBR-14132	14.74	1.48	46.38	.30	1.06	.03	.13	. 13	.06	.01	.015	145	20	1	21.7	.18	34.31	86.05	
GEBR-14130	17.07	1.50	45.52	.27	1.22	.03	.05	.10	.05	.01	.014	118	<20	1	21.8	.16	34.69	87.65	
GEBR-14133 S-1	53.60	18.93	8.53	2.43	3.98	3.03	1.15	1.42	.18	.13	.010	360	<20	23	7.0	.65	.01	100.43	
GE8R-14136	8.23	.91	87.57	.62	.66	.08	<.04	.05	<.01	<.01	.010	78	<20	<1	1.5	.02	.21	99.67	
GEBR-14134	19.06	1.05	51.91	. 12	.02	.03	.47	.04	.02	<.01	.010	348	<20	<1	27.2	.01	40.98	99.97	
RE GEBR-14134	19.18	1.04	51.62	.11	.02	.02	.48	.04	<.01	<.01	.007	344	<20	1	27.2	.01	40.42	99.76	
															5.9	2.42	5.13	100.45	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 31 2000 DATE REPORT MAILED: NOV 23 100

SIGNED BY ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

(d)

44

SAMPLE#	Co	Cs ppm	Ga ppm	Kf ppm	Nb ppm	****	Sn ppn	Sr ppm	Ta ppm	Th ppm	Ti ppm	U	V	ppm W	Zr ppm	Y ppm	La	Ce	Pr	Nd ppm	Sm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho	Er ppm	Tm ppm	Yb ppm	Lu
			Firm	1-1	Ltm	- F	FI	64	-Fr	Lh	P-1	P P ···	F-F	6 P	I Prim	FF					FF	- FF	FF	F F	- FF	PP	P-P	FF	P.F.	FF
GEBR-14131	127.1	.2	39.6	<.5	.7	2.1	2	8.0	<.1	.4	<.1	.3	42	4	11.7	3.3	2.0	3.6	.58	2.5	.6	.18	.58	.08	.57	.11	.36	<.05	.34	.05
GEBR-14135	31.3	1.8	14.1	1.8	3.7	54.0	10	9.0	.4	2.9	.2	.8	57	2	55.9	9.0	9.0	24.2	2.36	8.8	2.0	.35	1.63	.28	1.72	.32	1.04	. 15	1.11	. 18
GEBR-14132	110.7	.3	51.3	<.5	.8	3.7	<1	8.7	<.1	.4	<.1	.4	52	3	12.8	3.8	2.9	4.7	.75	3.2	.7	.22	.69	.11	.72	.14	.46	.05	.43	.06
GEBR-14130	123.5	.2	44.5	<.5	.9	2.0	<1	11.9	<.1	.5	<.1	.4	52	1	12.6	3.6	3.0	5.0	.76	3.1	.8	.23	.66	. 11	.65	.13	.41	<.05	.40	.05
GEBR-14133 S-1	17.7	2.2	21.0	5.4	7.5	37.7	4	334.4	.6	4.8	.2	1.4	170	≺1	164.3	26.9	19.9	45.9	5.73	23.7	5.5	1.67	4.65	.79	4.71	.95	2.99	.39	2.87	.42
GEBR-14136	12.4	1.5	54.6	<.5	.5	1.5	41	5.9	<.1	<.1	.1	1.5	105	5	2.1	2.8	18.3	32.9	3.23	10.4	1.8	.99	1.12	. 13	.85	. 14	.41	<.05	.33	.04
GEBR-14134	416.8	.3	3.4	<.5	1.0	13.9	<1	2.1	<.1	.3	<.1	.2	36	<1	12.1	.6	.5	.8	.08	<.4	<.1	<.05	.06	<_01	-09	<.05	.09	<.05	.14	.02
RE GEBR-14134	398.9	.3	3.1	<.5	1.0	13.8	<1	2.2	<.1	.3	< 1	.2	36	<1	11.7	.6	.5						<.05		.07			<.05	.16	.02
STANDARD SO-15	22.9	2.8	17.5	27.6	32.8	68.1	18	409.3	2.0	23.1	1.3	20.4	147	23	1031.5	23.0	29.7	58.2	6.48	26.1	4.9	.95	3.94	.63	3.85	.76	2.48	.35	2.58	.41

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK R150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(e)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell 44

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
GEBR-14135 GEBR-14132	406.5 8.3 405.7 401.7 2.0	85965 214 99999 99999 60	136 135 119 12	74 <2 112 89 70	30 26 53 36 15	5 14 4 5 7	<.2 <.2 <.3 <.2	21 3 17 17 1	20 <1 21 17 <1	
GEBR-14136 GEBR-14134 RE GEBR-14134 STANDARD CT3 STANDARD G-2	47.6 135.0 134.1 27.1 1.9	817 1045 1023 70 7	<3 17 17 38 20	27 3 4 181 53	<1 62 63 38 7	37 11 10 64 3	.2 .2 .2 22.3 <.2	11 10 24 1	12 18 17 23	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCL04-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 31 2000 DATE REPORT MAILED: No v 23/w SIGNED E

SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A004396R

800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Gerry Bidwell

	SAMPLE#	Mo	Cu	₽b			Ni	Co	Mn	Fe */	As	Sr	Cd */	Sb	Bi *	Ca	P Y	Cr	Mg %	AL	Na *	K ¥	₩ %	Hgʻ *Z	
		_^	A			gm/mt	^*	- *		^		<i>^</i>													
	GEBR-14131	.038	8.340	.02	.01	7.7	.003	.016	.01	33.48	.01<	-001<	.001<	.001	<.01	.45	.001	.001	.09	.38	.07	.10<.	.001<	.001	
	GEBR-14135	.001	.020	<.01	<.01	<.3	.004	.003	<.01	2.39	<.01<	.001<	.001<	.001	<.01	.08	.016	.002	.07	.53	.04	.35<.	.001<	.001	
	GEBR-14132	.038	10.346	.02	.01	10.8	.002	.014	.01	32.94	.01<	.001<	.001<	.001	<.01	.55<	.001	.001	. 13	.47	.04	.05<	.001<	.001	
	GEBR-14130	.037	9.250	.02	.01	8.9	.004	òîû.	.ûí	32.35	.01<	.001<	.001	.001	<.01	.60<.	.001	.001	.11	.48	.07	.05<	.001	.001	
·	GEBR-14133 S-1	∤.001	.006	<.01	.01	<.3	.001	.002	.05	4.52	<.01	.006<	.001	.002	<.01	.57	.056	.004	.56	4.25	.21	.08<	.001	.001	
	GEBR-14136	300	-079	<.01	<_01	<.3<	.001<	.001	.01	62.50	.01<	.001<	.001<	.001	<.01	.34	.001<	.001	.26	.38	.05	.03<	.001<	.001	
	GEBR-14134	.013	.102	<.01	<.01					36.83															
	RE GEBR-14134	.013	.103	<.01	<.01	1.2	.003	.149	<.01	37.04	.01<	.001<	.001	.002	<.01	.01<	.001	.001	.03	.21	.05	.21	.001<	.001	
	STANDARD R-1	.088	.842	1.26	2.18	99.6	.024	.024	.08	6.64	-89	.028	.043	. 156	.03	1.32	.121	.026	.93	.91	.25	.43	.004	.001	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HN03-H20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: DEC 1 2000 DATE REPORT MAILED: Dec 8/vi

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A005002 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: GEOFF MULLIGAN

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb p		r Co	i Sb n ppm	Bi ppm	V DDM	Ca	P %	La ppm	Cr ppm	Mg	Ba ppm	Ti	B ppm	A1	Na	K	W T		Se	Te G
											···						FF			PPIII	PPIII		PPIII		ppii	`~_	- 40	- δ bb	m pp	iii ppo	ppiii	ppm pp
LOT004-69.4M	.61	21.24	6.30	30.3	13	51.7	12.3	658	2.12	<.1	.3	1.5 4	7 11	3 0	00	10	3/	74	024 1	16.0	40 O	70	05 7	ດດວ	1 1	1 00	004	17 -	2 0		,	.02 4.
LOT002-17.4M	3.71	51.46	6.89	15.3	46	30.7	3.3	3795	1.95	1.5	< 1	36.3	4 34	3 0			6	26	006	2.1	10.U	./0	00.7 .	003		1.00	004	.1/ <.	2 .0	3 8	.1	.02 4.
LOT004-130M	3.30	49.54	3.63	78.3	23	55.4	18 8	2815	1 80	14 6	2	1.3 5	1 76	4 n	.10		11	24	066 1	9.T	20.5	-13 6	200.9 .	002	<1	.10	.002	.03 1.	0. 1	6 128	.9	.12 .
.STD S-1	.93	27.86	9 18	53.7	34	13.6	12 4	446	1.00	2.0		2.4 3	0 45	4 .U.	.10	.20	11	. 34	.000	0.0	31.0	.43 :	56.0 .	002	4	-44	.005	.19 <.	2 .0	6 77	.3	.13 1.
L0T002-29.5M	2 90	40 98	3 94	25.5	45	24 8	2.4	640	1 50	1.6	.0	2.4 3	0 45.		.07	.15	108	.44	.044	11.3	42.0	.50	82.5 .	368	<1 :	3.94	.098	.06 <.	2.1	3 39	.3	.03 10.
1	2.50	40.50	3.34	23.3	45	24.0	2.0	040	1.00	1.5	. 1	3.3	9 12.	o <.U.	55	. 14	12	.25	.008	4.4	16.4	.42	300.5 .	003	Ī	.49	.001	.07.	6.0	8 208	.4	.05 2.
LOT004-77M	1 40	32 68	60	22 A	0	26.2	7 6	206	1 66	1 7		1.2 4																				
LOT002-18.6M	97	012.00	24 05	106 7	2 160 1	30.3	7.5	300	1.00	1./	.4	1.24	0 /8.	.07	.12	.03	31 1	1./0	.025]	10.1	79.8	.60	9.8 .	188	1	.83	.028<	.01 1.	3 <.0	2 <5·	<.1 <	.02 4.
RE LOT002-18.6M	.07	314.00	24.00	100.7	100 1	1/5.0	39.8	13146	6.43	5.3	.2	5.1 3	5 66.		3 1.77		51	.81	.033 1	11.5	23.3	1.65 2	248.8 .	005	4.]	96	.004	.16 <.	2 .0	6 125	.5	.23 8.
	.94	923.05	24.44	108.1	1/1 1	191.3	40.4	13300	5.51	5.6	.2	4.9 3	4 70.	5 .03	3 1.76	.32	52	.82	.032 1	2.3	22.8	1.68 2	238.4 .	005	4	.97	.004	.16 <.	2 .0	6 128	.5	.21 8.
STANDARD DS2	13.3/	129.23	32.68	156.6	253	31.6	11.3	795	3.21	54.7	18.5	209.9 3.	7 26.	9 10.18	8.95	10.61	78	.49	.086 1	4.7	164.8	.57 1	41.8 .	088	1 1							.90 6.

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: CORE P150 40C

DATE REPORT MAILED: Jan 5/200/ SIGNED BY

...D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A005002 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: GEOFF MULLIGAN

(b)

SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	Sn	S %	Ta	Zr	Y	Ce	In	Re	Be		Sample			
	ppm	Phu	ppm	ppm	ppm	PPIII	ppm		Phu	ppm	Ppii	ppm	Phi	- bho	ppm	hhu	gm		 	
LOT004-69.4M	.66	.1	.05	<.02	5.9	1.5	.6	.02	<.05	1.7	6.06	43.9	<.02	<1	.3	8.0	30			
LOT002-17.4M	.14	<.1	<.02	.03	1.1	.8	.2	.85	<.05	.4	1.52	4.5	.02	<1	.1	1.4	30			
LOT004-130M	1.04	<.1	.08	<.02	8.1	1.9	.2	.07	<.05	3.2	4.80	47.0	.02	<1	.2	4.1	30			
.STD S-1	1.18	.1	.75	.47	4.5	7.8	1.3	<.01	<.05	40.2	14.29	29.8	. 05	<1	.7	11.3	30			
LOT002-29.5M	.17	<.1	.04	<.02	2.9	1.0	<u>.</u> 2	.31	<.05	1.7	1.57	10.2	<.02	<1	.1	4.4	30			
LOT004-77M	.04	- 1	.17	.26	.2	2.7	.8	<.01	<.05	4.3	6.82	25.3	<.02	1	.1	5.3	30			
LOT002-18.6M	.81	.1	.07	.02	6.3	4.3	.3	.80	<.05	2.8	8.94	18.2	.08	<1	.4	29.3	30			
RE LOT002-18.6M	.86	.1	.08	.02	6.6	4.3	.3	.79	<.05	3.0	9.39	18.7	.08	<1	.5	30.8	30			
STANDARD DS2	3.09	.1	.05	1.36	12.5	2.8	25.0	.01	<.05	3.1	7.65	28.8	5.21	<1	.5	14.5	30	<u>-</u>	 	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: CORE P150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

200/ SIGNED BY

....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(c)

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

WHOLE ROCK ICP ANALYSIS

44

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A005002 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: GEOFF MULLIGAN

SAMPLE#	Si02	A1203	Fe203	MgO	CaO	Na20	K20	Tio2	P205	MnO	Cr203	Ba	Ni	Sc	LOI	TOT/C	TOT/S	SUM	
	%	<u>%</u>	%	%	<u>%</u>	- %	- %	%	%	%	%	ppm	ppm	ppm	<u> </u>	*	<u> </u>	*	
LOT004-69.4M	81.76	6.81	3.49	1.84	1.16	.35	1.59	.46	.09	.09	.016	767	82	11	2.5	.25	<.01	100.25	
LOT002-17.4M	92.51	.99	2.73	.31	.55	.05	.28	.01	.03	.52	.009	703	50	2	2.0	.32	.98	100.07	
LOT004-130M	79.62	7.71	3.03	1.43	.53	.09	2.33	.52	.12	.39	.021	4898	62	11	3.8	.65	.10	100.15	
.STD S-1	53.60	18.93	8.53	2.43	3.98	3.03	1.15	1.42	.18	.13	.010	360	<20	23	7.0	.65	.01	100.43	
LOT002-29.5M	90.01	2.69	2.63	1.00	.39	.03	.61	-14	.04	.09	.007	1653	48	6	2.0	. 16	.39	99.83	
LOT004-77M	76.79	8.00	2.93	1.21	4.26	2.77	.06	.54	.06	.05	.022	38	57	11	2.8	-49	<.01	99.50	
LOT002-18.6M	62.45	10.00	10.51	3.46	1.30	.08	1.77	.58	.16	2.06	.016	3482	191	15	7.1	1.08	1.06	99.90	
RE LOT002-18.6M	62.62	9-98	10.21	3.46	1.31	.02	1.78	.58	.14	2.06	.014	3461	178	16	7.1	1.10	1.05	99.69	
STANDARD SO-15/CSB	49.60	12.12	7.30	7.26	5.87	2.41	1.67	1.78	2.70	1.39	1.061	1995	78	12	5.9	2.39	5.30	99.30	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: CORE P150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: DEC 14 2000 DATE REPORT MAILED: AM 5/10/ SIGNED BY.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A005002 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: GEOFF MULLIGAN

Dy ppm		ppm Er			Lu ppm
.06	.61	1.82	.25	1.93	.30
.25	.25	.71	.08	.69	-11
. 19	.85	2.42	.31	2.63	.38
.71	.95	2.99	.39	2.87	.42
.04	.43	1.28	.18	1.32	.20

SAMPLE#	Co	Cs	Ga	Нf	Nb	Яb	Sn	Sг	Та	Th	Τl	υ	٧	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gđ	Тb	Dy	Но	Er	• • • • • • • • • • • • • • • • • • • •	Yb	Lu
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbw	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	5 w	ppm
LOT002-17.4M LOT004-130M .STD S-1	4.2 23.8 17.7	.4 3.8 2.2	3.0 15.8 21.0	<.5 3.3 5.4	1.2 8.5 7.5	54.4 9.5 100.5 37.7	<1 1 4	21.6 44.0 103.4 334.4	.8	7.1 .9 8.4 4.8	.4	1.6 .3 1.8 1.4	18 62 187	1 2 2 <1	164.3	6.0 20.0 26.9	6.0 22.2 19.9	8.9 60.3 45.9	1.53 5.45 5.73	6.6 21.0 23.7	1.3 4.5 5.5	.21 .39 1.67	1.45 4.25 4.65	.17 .59 .79	1.25 4.19 4.71	.25 .85 .95	.71 2.42 2.99	.31 2. .39 2.	69 63 87	.11 .38 .42
LOT002-29.5M	3.5	.8	5.8	.8	2.6	25.2	<1	18.1	.3	2.7	.2	٠,6	19	1	44.2	9.0	9.4	25.5	2.52	9.7	2.2	. 13	2.0!	.20	2.04	.43	1.20	.18 1.	34	.20
LOT002-18.6M	10.4 46.8 45.7 23.0	3.1 3.0	23.6 24.4	3.3 3.2	9.8 9.9		1 2	439.7 85.6 86.8 441.9	.7	8.6 8.6 8.3 27.0	.3	2.2 1.5 1.6 21.8	107 103	3	211.6 138.9 139.0 1152.0	29.3 29.7	39.9 37.9	62.9 60.7	9.48 9.01	38.3 34.3	7.4 7.1	1.46 1.55	6.13 6.21	.92 .83	5.97 6.25	1.23 1.26	3.87 3.80	.46 3.	84 86	.55 .60

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: CORE P150 40C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DEC 14 2000

..D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(e)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT 2398 File # A005002 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: GEOFF MULLIGAN

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
LOT004-69.4M LOT002-17.4M LOT004-130M .STD S-1 LOT002-29.5M	.8 4.7 4.5 2.0 3.7	21 54 53 60 43	<3 7 <3 12 3	33 16 80 70 30	56 27 59 15	<2 <2 12 7 <2	<.2 <.2 <.2 <.2	1 1 2 1 3	<1 <1 <1 <1 <1 <1	
LOT004-77M LOT002-18.6M RE LOT002-18.6M STANDARD CT3 STANDARD G-2	1.9 <.5 <.5 27.2 1.3	34 960 920 69 3	<3 22 21 40 18	22 129 132 181 49	34 198 194 39 6	<2 <2 <2 65 <2	<.2 <.2 <.2 24.2 <.2	<1 5 4 24 1	<1 <1 22 <1	1

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE P150 40C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: DEC 14 2000

00/signed by. ...D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SURFICIAL GEOLOGY, EUREKA PROPERTY

By

Roger Paulen

Appena. v

Surficial Geology Hudson Bay Exploration Eureka Claim Block

Wells, B.C.

Roger C. Paulen June 19, 2000

Introduction

The property is located north of Wells, between the Bowron and Willow river valleys, and extends north past Slender Lake (parts of NTS 93H/3, H/4, H/5 and H/6). The property includes Two Sisters Mountain, at the northernmost extension of the Palmer Range, within the northwest part of the Caribou Mountains. A study was initiated to interpret and map out the distribution of surficial sediments and to document regional and local variations of the Cordilleran Ice Sheet. The results of the mapping, in turn, are to support regional and local till sampling programs and to apply drift geochemistry methods to find the up-ice source of the copper-rich boulders found at the Lottie, Bow and Tow float showings.

Background

Several times during the Pleistocene, British Columbia was covered by an interconnected mass of valley glaciers and mountain ice sheets, collectively known as the Cordilleran Ice Sheet (Flint, 1971). The mountain systems remained the major source areas of glaciers and ice flow was controlled by topography (Fig. 1). However, as ice thickened to form ice domes, radial flow occurred away from their centres. In central British Columbia, glaciers flowed eastward from the Coast Mountains and westward from the Caribou Mountains to merge over the Interior Plateau (Fig. 2) (Fulton, 1971; Tipper, 1971; Clague, 1981).

Each glacial cycle terminated with rapid deglaciation with complex frontal retreat in peripheral glacial areas and by downwasting accompanied by widespread stagnation throughout much of the interior (Fulton, 1967, Tipper, 1971, Clague, 1989). In central British Columbia, the ice front retreated and several glacial lakes formed in the valleys and adjacent plateau surfaces. Regional evidence suggests that the British Columbia interior became deglaciated about 11 ± 1 ka BP (Clague, 1980, 1981) and deglaciation was well advanced, if not complete, by 10 ka BP.

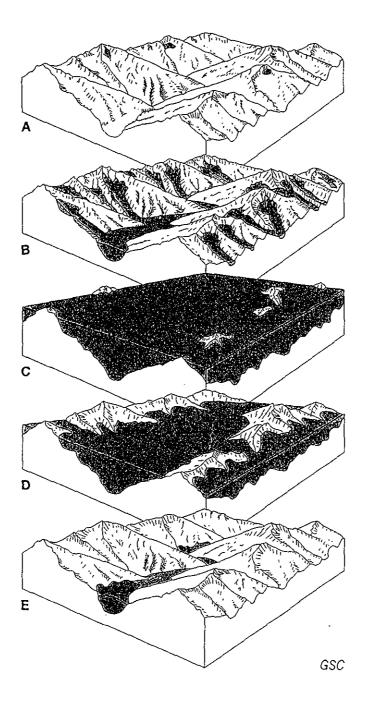


Fig. 1. Growth and decay of the Cordilleran Ice Sheet. A. Mountain glaciation at the beginning of a glacial event. B. Development of a network of valley glaciers. C. Coalescence of valley and piedmont lobes to form an ice sheet. D. Decay of ice sheet by downwasting, upland areas are deglaciated before valleys. E. Residual dead ice masses confined to valleys (from Clague, 1989, p. 42).

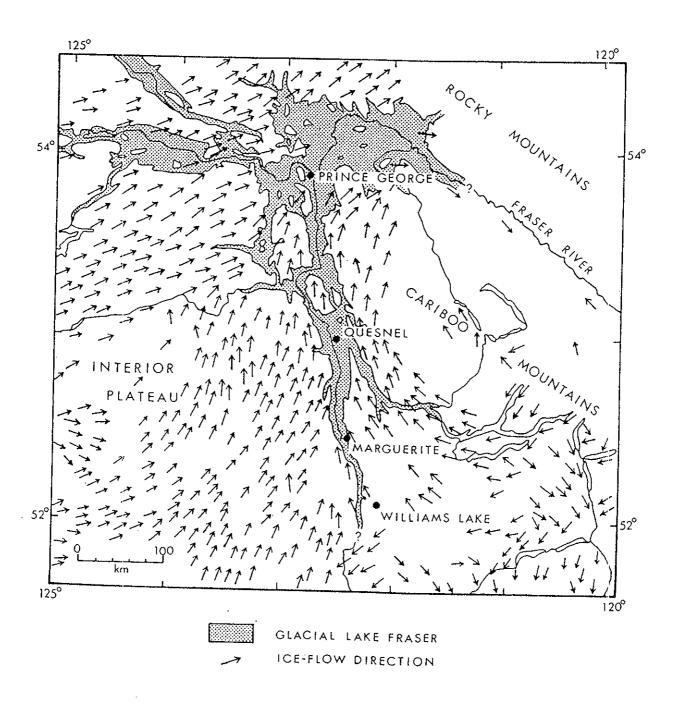


Fig. 2. Map showing the late Wisconsinan ice-flow directions and glacial Lake Fraser that formed in central British Columbia. Ice flow directions from Tipper (1971) and Clague (1987).

There was intense erosion and paraglacial fluvial aggradation in the valleys during the early Holocene. Rapid sedimentation occurred in the glacial lakes and as these drained, modern drainage patterns established in their present valleys. Rivers then became to incise their valley fills, producing terraces.

Methods

Work on the property consisted of three components:

- 1. Mapping the nature and distribution of the surficial sediments.
- 2. Recognition of landforms and striations in the region to confirm and outline the local and regional ice flow history.
- 3. Outlining and discussing the properties and nature of the surficial sediments at the property and their implications for continuing drift prospecting.

Access to the property is excellent. There is an extensive network of logging roads on the slopes and plateaus. Some of the areas are only accessible by all terrain vehicles due to recent alder growth on the older roads and Forest Renewal British Columbia (FRBC) efforts to protect watersheds in the region. Fieldwork was conducted with 4-wheel drive vehicles and all terrain vehicles. In some cases, traverses were completed on foot where access was blocked or non-existent.

Ground truthing observations were noted on 1:50 000 and 1:20 000 airphotos. Key stations were noted at sites of striations, outcrop or elevation control points at areas of glaciofluvial activity maximum (former terrace limits). Identification and recognition of various facies of sediments deposited during and following the last glaciation were conducted both within the property and along its margins, up to 3 km from property boundaries. Generally, comments about till thickness, its texture and properties were noted for the benefit of the sampling crew. This information was later used to aid in airphoto interpretation of the surficial geology and the information was transferred to a map at 1:20,000 scale.

Recognition of landforms was first interpreted from airphotos and confirmed with the identification of several large landforms such as rock-cored drumlins, craig and tail features and glacial striations. This included observing these landforms outside the claim block to provide a regional sense of ice-flow that affected the area.

Surficial deposits

Several types of surficial deposits were observed in the region including: ground moraine (basal and ablation till), colluvial, glaciofluvial, glaciolacustrine, fluvial, organic and anthropogenic. General observations suggest the hills and plateaus are mainly covered by combinations of till and colluvium, whereas glaciofluvial glaciolacustrine and fluvial sediments occur mainly in the valleys. A 1:20 000 scale map accompanies this report.

Till

Throughout the region, the bedrock topography is mantled by various amounts of massive, very poorly sorted matrix-supported diamicton. Deposits range in thickness from thin (<1 metre) veneers to thick (>10 metre) blankets. The till is compact, fissile and clast content ranges from 10 to 25%. Clasts are often faceted and striated, commonly subangular to subrounded shapes. Characteristics of this diamicton suggest that it is most likely a lodgement depositional environment (Dreimanis, 1988) Basal till facies tend to be variable with respect to the underlying bedrock. The till directly overlies bedrock except in the larger valleys, where sediments from the last glaciation overlie older fluvial gravels and are often the targets of placer gold operations (Clague, 1991).

Locally overlying the basal lodgement till is ablation till and/or basal melt-out till, sometimes combinations of both. Ablation till can be expected at the higher elevations, with deposits rarely exceeding 1 metre. The distribution of ablation till is discontinuous and not overly abundant. Basal melt-out till was found in the lower elevations and diamictons commonly exhibit crude stratigraphy. The till is moderately to weakly compacted with clast contents ranging from 35 to almost 50%. Areas of clast-supported till are not uncommon. Clasts are sometimes faceted and striated, but many are not, suggesting supraglacial transport. Roundness ranges from subrounded to very angular.

Till is ubiquitous throughout the region, occurring in varying degrees of thickness and usually directly overlying bedrock. In the valleys, meltwaters from deglaciation and intense early Holocene erosion have reworked and subsequently overlain the tills with various types of glaciofluvial, glaciolacustrine, colluvial and fluvial sediments. Till can generally be found exposed at surface above 1160 m asl. Meltwater activity and perched gravel deposits such as kames and deltas can occur above this elevation. Table 1 lists the major valleys and the corresponding elevations that till outcrops within that valley.

River Valley	Elevation (m asl)
Bowron River Valley	1035 – 1100
Ketchum Creek	1050 - 1075
Big Valley Creek	1200 - 1235
Lottie Creek	1125 – 1150
Willow River	1115
Boyce and Fourteen Mile Creek	1110 - 1150
Slender Lake	1085
Towkuh Lake	1150
Stephanie Creek	1160

Table 1. Major river valleys and corresponding elevation ranges in which ground moraine (till) outcrops above the late glacial and Holocene waterlain sediments.

Glaciofluvial Sediments

As mentioned above, meltwaters from retreating and mass wasting glaciers flowed into the bedrock-controlled valleys, depositing glaciofluvial sands and gravels. The meltwaters coalesced into larger valleys and formed glaciolacustrine lakes. Associated sediments such as subaqueous fans, deltas and terraces were formed in the meltwater channels. Often, small deposits are perched above the terraces, formed from tributary channels flowing into the larger valleys. These sediments range from poorly sorted immature gravels to well-sorted pea gravel and fine sand. They are commonly stratified

and are very susceptible to erosion. Blocks of ice were sometimes trapped in the rapidly deposited sediments and their subsequent melting formed kettle depressions and lakes.

Glaciolacustrine Sediments

Deposits of glaciolacustrine sand and silt occur in the Bowron River and Lottie Creek valleys. Lower terraces have developed in these valleys during peak glacial meltwater flow. These sediments are thick, often exceeding tens of metres, and consist of massive to rhythmically bedded very fine sand and silt with minor clay. These sediments are highly susceptible to erosion once the vegetation mat is disturbed.

Colluvium

Colluvium is a genetic term to describe sediment that has been affected by gravity. This includes, talus, soil creep, slope wash and mass movements such as debris flows. Factors that control downslope movement include the slope angle and the nature (stability) of the sediment or bedrock on the slope.

Various types of colluvium occurs on the steeper slopes within property. Rock talus can be found below bedrock ridges. Colluviated till is common on the steeper hill slopes and occurs locally throughout the property, often as a thin layer overlying till unaffected by gravity. The glaciofluvial and glaciolacustrine terraces were subjected to intense erosion prior to the establishment of vegetation and formed coalescing colluvial fans in the larger valleys.

Fluvial Sediments

Modern streams and rivers are locally depositing small areas of fluvial sands and gravels. Fluvial sedimentation was most intense during the Holocene and modern drainage patterns were formed as the vegetation established itself. Large broad fluvial fans occur in every valley. These sediments include river gravels, sands and occasionally are mixed with organics.

Organics

Organic deposits occur locally in all types of terrain. Areas with poor drainage can have up to 0.5 m of organic deposits. These deposits commonly form in depressions in the bedrock topography but also form on slopes where compact silty till is impermeable to surface drainage.

Anthropogenic

Anthropogenic deposits are not widespread and can be found only near past and present placer operations. Extensive workings can be found at the southern end of the study area and minor placer operation is taking place in the vicinity of the Lottie showing.

Ice Flow Indicators

The striation record in the region is poor due to the lack of preserved outcrop exposure. Striations were observed at a few locations where logging operations has exposed fresh bedrock. The majority of striation measurements are bi-directional, that is, they contain no information regarding direction of ice that gouged the outcrops. Crosscutting relationships are rare, only a few sites with multiple ice directions were observed. Other directional indicators such as rat-tails and large scale landforms were used to aid in ice flow reconstruction. The thick drift cover, bedrock structure and weathering nature of the bedrock all hamper the observation of striae.

At the eastern edge of the property and in the vicinity of the Bowron River valley, large glacially streamlined landforms can be seen in airphotos and clear cuts. The dominant ice flow features indicate a north to north-northwest ice flow direction. Additional landforms were observed east of the Bowron River with similar trends.

At the western edge of the property, large glacial landforms and striations indicate a strong northeasterly ice flow direction. These features occur at the highest elevations and possibly suggest ice flow to the northeast during the Fraser glacial maximum. However, these strong features are absent from the middle and eastern areas of the property.

In the central area of the property, ice flow indicators can be found with a wide range of bi-directional striae and a few landforms. Fabric work conducted at the Lottie property by the author for Eureka Resources show that topography was likely the dominant factor affecting glacial sediment distribution during the late Wisconsinan. There is evidence that Two Sisters Mountain did not undergo stagnation and mass decaying of ice as is typical of the higher peaks rimming the interior plateau (Clague, 1989; cf. Paulen et al., 1999). Ice-recessional lateral and terminal moraines are observed on the western slope of Two Sisters Mountain. A cirque lakes are also noted high up on the mountain, likely dammed by a moraine.

Deglaciation was typical of that described by Clague (1989), ice downwasted at the higher elevations, and flowed locally in the valleys. Striae and ice-flow indicators are poorly preserved due to the thick sediment pile in the valleys and the erosion of bedrock by glacial meltwaters.

Discussion

The major source of ice in the region was the Caribou Mountains to the southeast. Ice flowed locally during the onset of glaciation, following the topography. Regional work by Clague (1987), shows as the ice sheet thickened, ice flowed southwesterly from the Caribou Mountains, across the Mowdish Range and then flowed to the northwest roughly parallel to the regional bedrock structure that is occupied by the Bowron, Swan and Spectacle lakes. Clague (1988), reports northeastward flowing ice west of the Fraser River at Quesnel and to the north at Prince George. There is no known published evidence indicating a northeast direction of ice flow for the regions east of Quesnel, in close proximity to the Caribou Mountains.

The nature of glacial ice flow and ice dynamics would throw caution at ice flowing towards a major topographic feature such as the northwestern Caribou mountains. However, if maximum build-up of interior plateau ice exceeded the ice build-up in the foothills of the Caribou, it is possible that ice-sheet conditions prevailed in the interior plateau and topographically controlled ice was short lived during the onset and

waning of glaciation. Caution must be exercised here, because unlike the ice reversals seen in the Nechako area (Levson *et al.*, 1998), the northeasterly ice flow here is probably an extension of the northeast flow directions observed by Clague (1988) at Quesnel and Prince George.

Given the known striation observations, interpreted landforms and published regional glacial ice flow, a cautious interpretation of ice flow events that affected the property is presented here. Cross cutting relationships indicate that the oldest ice flow in the region was topographically controlled and ice flowed from the Caribou west and northwest to the Interior Plateau. During glacial maximum, ice flowed from the interior plateau, possibly behaving as an ice sheet with ice divides migrating to the thickest area of ice accumulation. Flow here was to the northeast and was deflected to the north and northwest in the vicinity of the Bowron River as the ice sheet converged with mountain glaciers flowing from the Caribou Mountains. During late glacial times, the ice sheet in the interior would have gradually thinned and topographically controlled ice would again affect the property. Ice flow directions were highly variable and ranged from northward to southwesterly flowing ice, depending on topography and ice thickness. Cirque glaciation on Two Sisters Mountain extended into the Holocene as ice flowed from the mountain into the valleys below. The maximum extent of this mountain glacier likely only reached the bottom of Big Valley Creek.

Implications for Drift Prospecting

The basal till mantling the uplands, the scarcity of ablation till, and the defined valley systems provide an excellent landscape for drift prospecting. Basal tills directly overly the bedrock and are representative of the last glaciation to have affected the region. Exceptions include the larger valleys that contain advance glacial gravels and preglacial deposits (Clague, 1991).

Previous geochemical studies of C-Horizon sampling in the region is unknown. These could provide an indication to the style of mineralization, configuration of the anomaly trains and local ice dispersal patterns. Once the pattern of dispersal is

recognized, then the application of known dispersal models can be applied. Locally, the application of Krumbein's (1937) concept of half distance decay can be used to compare transport distances (e.g. Lett *et al.*, 1998). Application of models from Miller (1984), Klassen (1997) and Paulen (1999) to illustrate dispersal in varying degrees of till thickness and transport distances can also be applied to aid in tracking down unknown sources. A recent example of dispersal in three dimensions has been recently presented by Bobrowsky *et al.* (2000) and should be taken into consideration when discussing potential climb angle of dispersal from source subcrop.

However, conditions such as variable relief and a strong local influence of ice flow should be considered as well as a regional flow component. Examples show that in areas of moderate relief, these dispersal fans can range from hundreds of metres to several kilometres down-ice from source (Paulen, 1999). The down-ice dispersal model at the Samatosum and Rea Gold mines in the Adams Lake area also show that the distance from source to the initial surface expression is almost 2 km (Lett *et al.*, 1998; Paulen, 1999).

Lottie

The initial discovery boulders are established to be contained within basal lodgement till. This eliminates the possibility of long distance transport and the mineral-rich boulders being deposited in supraglacial debris. The low frequency of boulders discovered suggested that the immediate area is likely within a distal dispersal fan. Additional basal till geochemistry should provide indications of distance to source, but, I am reluctant to speculate the transport distance without studying the regional basal till geochemistry.

Local flows appear to be the predominate factor in controlling the deposition of sediments within the Lottie Creek Valley below the Twin Sisters Mountains. In fact, ice probably flowed around the Twin Sisters and into the valley, flowing east to west. As ice thickened and topped over the Twin Sisters, ice flowed to the northwest, as indicated by flutings and striations to the northwest of the property, likely out of the influence of the Twin Sisters Mountain. These features indicate a regional ice flow trending approximately 250°. Late cirque glaciation is not present at the discovery float site. The

fabric work at the site in 1999 provides a good indication of the <u>last</u> dispersal direction, but not necessarily the true glacial direction of dispersion if more than one direction affected the distribution of the mineralized boulders.

Bow

The Bow float was found distributed in an extensive area of glaciofluvial sediments. The mineralized cobbles occur at the surface of the glaciofluvial sediments. The glaciofluvial sediments are quite thin (<2 m) at the float site and are directly overlying weathered bedrock. The clasts are well rounded and the sediments are moderately to well sorted, indicating a more mature gravel deposit. Source is possibly eroded from the nearby tills to the southwest, but the maturity of the sediments could also indicate a long distance glaciofluvial transport. The lack of till exposed in the immediate vicinity also is problematic and other methods of prospecting may have to be employed.

However, the relative abundance and clustering of mineralized cobbles in a glaciofluvial deposit is promising of a potential local enriched till that the cobbles were derived from. Interpretation of the regional basal till sampling program could shed some light on the source of this float.

Tow

The Tow float occurs in till at a high elevation. The till blankets the topography but is likely less than three metres thick. The float occurs in an area surrounded areally by basal till. Ice flow at the east side of the property is south to north, with variations up to 20 degrees. This provides an excellent area to apply property scale drift prospecting. The float itself consists of small clasts and the relative abundance indicates that the discovery site is contained in the distal part of a dispersal train.

Conclusion and Recommendations

Ice flow history within the property is complicated but likely a combination of ice sheet-like conditions and topographically controlled ice flow. Tracing of anomalies will be a challenge, if a dispersal train is affected by early, peak and late glacial ice. Palimpsest glacial trains are possible and recognition of their patterns is essential to avoid chasing down false geochemical anomalies. This could be especially true of the Lettie float. Recommendations for the whole property include:

- 1. Confirmation of ice flow directions from the higher hills in the region. This includes Two Sisters Mountain, Slide Mountain and other hills within and adjacent to the property. The question here is, how far east does the northeast ice flow extend and where does it stop becoming the dominant dispersal direction?
- 2. Fabrics to be done at any high basal till anomaly. Understanding the distribution of the till at any anomalous site is essential. The lack of ice flow indicators mean relying on pebble fabric analysis. However, any effort to expose additional striations would help immensely.

The Lottie float will require not only till but multi-media geochemistry to help sort out the net dispersal of the mineralized boulders. False anomalies may become problematic if palimpsest trains do exist. Existing fabric data does indicate a south-southwesterly flow direction for late glacial activity in the area. Additional fabric data in the local area is unnecessary. If complications arise with the dispersal train, retrenching the discovery site and conducting a sedimentological and fabric profile may be necessary. That is, several fabrics from the bottom to the top of the till unit to aid in pinpointing directional sources. Also studying mineralized boulders *in situ* would also be beneficial.

The Tow float is ideally situated for drift prospecting. Great care should be taken

interpreting the regional till samples in order to see where the dispersal train fits existing models. If the regional geochemistry is promising, then fabric work or trenching for outcrop is necessary to augment the interpreted ice flow direction.

The Bow float will be difficult at best to track down due to its occurrence in glaciofluvial gravels. If the tills to the southwest do contain additional boulders, then perhaps long distance transport can be eliminated. Gravels in the area have possibly come from the Boyce Creek – Fourteen Mile Creek valley but directional studies of clasts, imbrication and paleoflow of the gravels at the Bow showing would have to completed.

REFERENCES

- Bobrowsky, P.T., Paulen, R.C. and Lett, R.E. 2000. A 3-D model of glacial dispersal from south-central British Columbia. GSA Abstracts with Programs, Cordilleran Meeting 2000.
- Clague, J.J. 1980. Late Quaternary geology and geochronology of British Columbia. Part 1: Radiocarbon dates. Geological Survey of Canada, Paper 80-13.
- Clague, J.J. 1981. Late Quaternary geology and geochronology of British Columbia. Part 2: Summary and discussion of radiocarbon-dated Quaternary history. Geological Survey of Canada, Paper 80-35.
- Clague, J.J. 1987. Quaternary stratigraphy and history, Williams Lake, British Columbia. Canadian Journal of Earth Sciences 24: 147-158.
- Clague, J.J. 1988. Quaternary stratigraphy and history, Quesnel, British Columbia. Geographie physique et Quaternaire 42: 279-288.
- Clague, J.J. 1989. Relationship of Cordilleran and Laurentide glaciers. *In* Chapter 1 of Quaternary Geology of Canada and Greenland. *Edited by R.J. Fulton*, Geological Society of America, The Geology of North America, v. K-1.
- Clague, J.J. 1991. Quaternary stratigraphy and history of Quesnel and Caribou river valleys, British Columbia: implications for placer gold exploration. *In* Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 1-5.
- Dreimanis, A. 1988. Till: Their Genetic Terminology and Classification. *In* Genetic Classification of Glaciogenic Deposits. *Edited by R.P.* Goldthwait and C.L. Matsch, Balkema, p. 17-67.
- Flint, R.F. 1971. Glacial and Quaternary geology. John Wiley and Sons, New York.
- Fulton, R.J. 1967. Deglaciation studies in Kamloops region, an area of moderate relief, British Columbia. Geological Survey of Canada, Bulletin 154.
- Fulton, R.J. 1971. Radiocarbon geochronology of southern British Columbia. Geological Survey of Canada, Paper 71-37.
- Klassen, R.A. 1997. Glacial history and ice flow dynamics applied to drift prospecting and geochemical exploration. *In* Proceedings of Exploration '97: Fourth Decennial International Conference on Mineral Exploration. *Edited by A.G. Gubins*, p. 221-232.

- Krumbein, W.C. 1937. Sediments and exponential curves. Journal of Geology 45: 577-601.
- Lett, R.E., Bobrowsky, P.T., Cathro, M. and Yeow, A. 1998. Geochemical pathfinders for massive sulphide deposits in the southern Kootenay Terrain. In Geological Fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, p. 15-1 - 15-9.
- Levson, V.M., Stumpf, A.J. and Stuart, A.J. 1998. Quaternary geology and ice-flow studies in the Smithers and Hazelton map areas (93L and M): implications for exploration. *In* Geological Fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, p. 5-1 5-8.
- Miller, J.K. 1984. Model for clastic indicator trains in till. *In* Prospecting in Areas of Glaciated Terrain 1984. Institution of Mining and Metallurgy, London, p. 69-77.
- Paulen, R.C. 1999. Interpretation of geochemical footprints in the southern interior. *In*Drift Exploration in Glaciated Terrain. A Short Course presented during the 19th
 International Geological Exploration Symposium, Vancouver, Canada, p 377-396.
- Paulen, R.C., Bobrowsky, P.T., Lett, R.E., Bichler, A.J. and Wingerter, C. 1999. Till geochemistry in the Kootenay, Slide Mountain and Quesnel terranes. *In* Geological Fieldwork 1998. British Columbia Ministry of Energy and Mines, Paper 1999-1, p. 307-320.
- Tipper, H.W. 1971. Glacial geomorphology and Pleistocene history of central British Columbia. Geological Survey of Canada, Bulletin 196.