

Finlay River, Toodoggone, British Columbia NTS: 94E.017, 94E.027 Latitude: 57°131'N Longitude: 126° 42'W Omineca Mining Division

> for Stealth Mining Corporation Suite 907, Empire Building 10080 Jasper Avenue, Edmonton Alberta, Canada, T5J 1V6

by David E. Blann, P.Eng. Standard Metals Exploration Ltd. April, 2001

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

Section	n Title Pa	age									
1.	SUMMARY	3									
2.	INTRODUCTION	5									
3.	LOCATION / INFRASTRUCTURE	5									
4.	PHYSIOGRAPHY AND CLIMATE	5									
5.	PROPERTY STATUS	PROPERTY STATUS									
6.	HISTORY / PREVIOUS WORK										
7.	REGIONAL AND PROPERTY GEOLOGY										
	7.1 Structure	9 9									
8.	2000 RESULTS										
	8.1 Pine Southwest 8.2 Goat 8.3 Wrich Hill 8.4 VIP 8.5 Canyon Creek 8.6 Mex.	11 12 13 14 14									
9.	DISCUSSION	15									
10.	CONCLUSIONS	. 17									
1 1.	RECOMMENDATIONS	. 19									
12.	PROPOSED BUDGET	20									
13.	REFERENCES	21									
14.	STATEMENT OF QUALIFICATIONS	24									

.

٠

5.7

ъ •

....

•

.

ŗ

.

.

٦

•

,

-

1

.

ι.

Ē

TABLE OF CONTENTS (continued)

TABLES

- Table 1
 Schedule of Mineral Claims
- Table 2 Regional Geology Legend
- Table 3
 Summary of Sample Geochemical Results
- Table 4
 Geological Abbreviations
- Table 5
 Statement of Costs

FIGURES

,

.

- Figure 1 Property Location
- Figure 2 Claim Location, Regional Setting
- Figure 3 Regional Geology
- Figure 4 Location of Prospects and Rock Samples (Pocket)
- Figure 5 Pine Southwest Geology, Sample Locations
- Figure 6 Goat-Wrich Geology, Sample Locations
- Figure 7 VIP Geology, Sample Locations

APPENDICES

- Appendix 1 Sample Description Sheets
- Appendix 2 Rock, Soil, drill cutting Assay Certificates

1. SUMMARY

The Pine property is located in the Toodoggone mining district, approximately 22 kilometres north of the Kemess South mine, and by road, approximately 400 kilometres north of Mackenzie, British Columbia. The property covers an area of 215 square kilometres and is underlain by carbonate and siliciclastic rocks of the Permian aged Asitka Group, mafic to intermediate volcanic, siliciclastic and carbonate rocks of the upper Triassic-Lower Jurassic Takla Group and dacite-andesite tuff and flow of the Lower Jurassic Toodoggone Formation. Black Lake intrusions of monzonite to diorite composition cut volcanic and sedimentary rocks.

In July and August, 2000 the Pine property was in part geologically mapped and sampled in order to provide better understanding of the occurrence, nature and distribution of mineralization in the Pine Southwest, Goat-Wrich, and VIP zones. Traverses were also made of the Canyon Creek and Mex zones.

Mapping in the Pine Southwest zone identified a monzonite intrusion, approximately 500 metres in width in contact with Takla volcanic rocks to the south and east, and siliciclastic meta-sedimentary and limestone rocks to the southwest. Siliciclastic and carbonate units on the south side of the Finlay River locally contain sphalerite and barite. These rocks are similar to those occurring on the north side, where skarn mineralization occurs at the VIP prospects; in this area, the west skarn zone is comprised of massive magnetite, variable chalcopyrite-pyrite-sphalerite mineralization a minimum 4 metres in width and 44 metres in length. Chip sampling returned 10,903ppm copper, 6.74g/t gold, 66.4ppm silver across 3.4 metres, and 2,477ppm copper, 13.8 ppm silver, 8.32 g/t gold over 1.0 metre. A quartz-k-feldspar altered shear zone in monzodiorite returned 52,142ppm copper and 0.82 g/t gold over 0.32 metres. Adjacent wallrock is moderately propylitic to weakly potassic altered and contain trace to 0.5% pyrite, chalcopyrite mineralization. This intrusion appears in part, similar in composition and alteration to that found in the Pine Southwest zone, south of the Finlay River.

The nature, distribution, alteration and mineralization of sedimentary and intrusive rocks in the western side of the Pine property suggests potential for copper-gold skarn deposits to occur in an area approximately 6 kilometres in length and 4 kilometres in width.

In the Goat zone, numerous quartz-carbonate veins with pyrite, chalcopyrite, sphalerite and galena mineralization and associated gold and silver values occur within Takla Group volcanic and minor siliciclastic rocks. Mineralization appears concentrated within east-west striking

shears and associated quartz-sericite-calcite-pyrite/ankerite alteration, 1-4 metres in width and 100-250 metres in length in proximity to volcanic and siliciclastic rocks of the Takla Group. The southernmost structure (Black vein) contains trace pyrite +/- chalcopyrite, sphalerite, galena mineralization in fine-grained, massive, banded, bladed and vuggy quartz-calcite, 5-40 cm in width and 150 metres in length. Hand trenching and sampling of the vein material returned from 0.4 to 272.4 g/t silver and 70ppb to 297.93 g/t gold over a defined strike length of approximately 115 metres; the eastern most sample returned 557.3g/t silver, 25.18 g/t gold across 0.15-0.20 metres and remains open beneath talus to the east into MacAburn creek.

Mineralization at the Goat zone may be in part related to conjugate structures in the upper plate of a thrust dividing the Takla Group and Toodoggone Formation in MacAburn creek to the east.

East of the thrust fault, the Wrich zone is comprised of a kaolinite-alunite alteration zone hosted by Toodoggone crystal lithic and massive tuff of dacite composition. Rock samples of clay-alunite alteration on Wrich Hill returned 1-0.19.5 ppm silver, anomalous barium and antimony. Rock and soil samples returned 18.4 ppm silver and 131ppb gold and 7.7ppm silver, 139ppb gold, 326 ppm copper, respectively, in proximity to a north-south striking ravine. Approximately 200 metres to the south of these samples, sub crop-talus returned anomalous antimony and barium and 71.5g/t silver, 46.39g/t gold.

The Wrich zone contains geology, structure and associated alteration consistent with highsulphidation epithermal precious metal deposits. The presence of previously undocumented mineralization containing 46.39 g/t gold, 71.5 g/t silver in proximity to the regional Wrich fault and adjacent thrust, is strongly encouraging; the thrust and Wrich faults may be significant controls of epithermal gold-silver mineralization between the Goat-Wrich zone, and on the north side of the Finlay River at the Electrum-Beaverdam epithermal gold-silver prospect, a distance of 7 kilometres through the Pine property.

Further work comprised of geological mapping, rock and soil geochemistry and induced polarization surveys, followed by backhoe trenching or diamond drilling is recommended in the Pine Southwest, Goat-Wrich and VIP and Electrum-Beaverdam zones.

-4 -

2. INTRODUCTION

Between July 12 and August 7th, 2000, a field program of geological mapping and sampling was performed on the Pine property. The purpose of the program was to further evaluate encouraging results obtained by reconnaissance prospecting and sampling during 1999 to the west of the Pine porphyry copper-gold deposit. Geological mapping and sampling of the Pine Southwest, Goat, Wrich, and VIP zones was undertaken.

Compass declination used was approximately 23°E, and GPS locations of sample sites and tie-in of previous grids and drill sites were undertaken where feasible. Samples were analyzed at Acme Analytical Labs in Vancouver, British Columbia.

3. LOCATION / INFRASTRUCTURE

The Pine property is located 22 kilometres north of the Kemess South Mine, or by road, 400 kilometres north of Mackenzie, British Columbia (Figure 1). It is located in the Omineca Mining Division at 57° 13' North latitude and 126° 42' West longitude on NAD83 mapsheets 94E.016, .017, .026, and .027. The property is divided by the northeast flowing drainage of the Finlay River.

Property access is by the Omineca Resource Access Road, 400 and 430 kilometers north of Mackenzie or Windy Point, respectively, then 22 kilometers of rough road east to Fin Lake. The turnoff to the Pine property is approximately 20 kilometres north of the Kemess Mine gate. Access to the VIP and Electrum zones is via a northeast trending rough gravel road with a turnoff just north of the Firesteel River bridge. Airstrips are in place at the Kemess South Mine and Sturdee Valley approximately 20 and 30 kilometres south and north of the Pine property, respectively. B.C. hydropower to the Kemess Mine is in place. An access road from the Kemess South Mine to the B.C. Railhead at Sloane has been proposed. Historically, dominant economic products from the Toodoggone district are gold and silver, and more recently copper-gold concentrate.

4. PHYSIOGRAPHY AND CLIMATE

The Pine property is located between approximately 1100 metres to 2000 metres elevation. The terrain in this area is gentle to undulating, with northeasterly-directed glaciofluvial deposits such as eskers, kettle lakes and gravel terraces underlying the Finlay River valley. The ground cover in this area is extensively beetle-killed and burnt pine forest, with local areas of swamp. Debris comprised of rockslide and talus occurs near the base of truncated spurs and steeper ground to the southeast and north of the Finlay River valley where elevations reach 2000 metres, and pine, spruce and sub-alpine to alpine groundcover prevails.

Seasonal temperatures vary from -35° C in winter to over 30°C during the 4 months of summer. The mean daily temperatures for July and January are approximately 14°C and 15 - 20°C below zero, respectively. Precipitation between 50 and 75 centimetres occurs annually.

5. **PROPERTY STATUS**

The Pine property is comprised of 972 claim units covering approximately 215 square kilometres, and is held by Stealth Mining Corp. of Edmonton, Alberta, under option from Electrum Resources Inc. of Vancouver, British Columbia (Table 1, Figure 2).

6. HISTORY / PREVIOUS WORK

Kennco Exploration (Western) Ltd. initially performed surveys between 1968 and 1973. During this time, airborne magnetometer, induced polarization, geology and geochemical surveys were performed. One 25-metre x-ray diamond drillhole was completed on the Fin copper-molybdenum showings.

Restaked by B.D. Pearson in 1978 and under an option agreement with Rio Tinto Canadian Exploration Ltd., further geochemistry, mapping, and ground magnetic surveys were conducted. Twelve BQ diameter diamond drillholes totaling 1,354 metres were completed on the property, including the Pine zone. The claims were subsequently optioned to Brinco Mining Ltd. and geological mapping was conducted, concentrating on the Fin zone (Woodcock, 1982).

During the mid 1980's, rock geochemistry, lithological classification and alteration studies were performed (Harris, 1987). Also during the 1980's The Goat-Wrich and VIP zones received previous work including cursory geology, soil and silt geochemistry, magnetic and VLF geophysics and limited diamond drilling (Tegart, 1987, Wesa, 1988, Vulimiri, 1988,).

Electrum Resources Corporation acquired the property in 1988, and soil and stream silt geochemistry were performed (Pearson, 1989). Electrum optioned the property to Cominco Ltd. in 1990. Work performed by Cominco Ltd. included the construction of a rough, 23 kilometer road into the property from the Omineca Resource Access Road. Fieldwork

consisted of a flagged grid, induced polarization, magnetic, and geological surveys, followed by 1,460 metres of percussion drilling in 23 holes on the Fin and Tree zones (Smith,1990,1991).

Romulus Resources Ltd. optioned the claims in 1992 and performed property-wide, comprehensive line cutting, induced polarization, geology, and geochemical surveys, air photography, and re-logging and sampling of previous drillcore. Four HQ diameter diamond drillholes totaling 783 metres were completed on the Pine and Tree zones, and surveying of all previous drill holes was performed (Rebagliati et al, Jan. 1993). In 1993, Romulus completed additional HQ diamond drilling totaling 1,703 metres in nine holes on the Pine zone and released a geological resource estimate of 40 million tonnes grading 0.15% copper and 0.57 g/t gold (Rebagliati et al, Dec. 1993).

Electrum Resources Inc. performed a rock sampling and LandSat Thematic satellite imagery program during 1995 and 1996 (Sterenberg, 1996).

Under an option agreement with Electrum Resources Inc. in 1997 and 1998, Stealth Mining Corporation completed 3,193 metres of NQ diamond drilling on the Pine zone. Favorable geology, alteration and mineralization of surrounding areas prompted the acquisition of additional mineral claims. Preliminary investigations of the Mex and Northwest Breccia, along with limited soil sampling to the southwest of the Pine zone were conducted in 1998. At this time, the Pine zone was estimated to hold potential for 200 million tonnes grading between 0.12-0.30% copper and 0.25-0.70 g/t gold, or a smaller tonnage of higher grade (Blann, 1999). In 1999, Stealth completed diamond drilling of three holes in the Pine zone. In addition, high-grade gold and silver values were returned from epithermal and skam mineralization on several new prospects discovered during regional work.

7. REGIONAL AND PROPERTY GEOLOGY

The following account of the regional geology is summarized after works of Bailey et al (1991), Rebagliati (1992, 1993), Diakow et al (1985, 1993), Sterenberg (1996), and Blann (2000).

The area is underlain by a northwesterly trending belt of sedimentary rocks of the Permian Asitka Group, Upper Triassic Takla Group and Lower to Middle Jurassic Hazelton Group Toodoggone Formation, respectively (Table 2, Figure 3). The Cretaceous Sustut Group occurs west of the property.

The Asitka Group is comprised of calcareous meta-sediment, siliciclastic and massively bedded limestone rocks of Permian age, and occurs southwest of the Electrum and Pine SW zones, respectively. It is unclear whether metasedimentary rocks in these areas are part of the Takla Group or Asitka Group.

The Takla Group is comprised of massive, dark green, coarse-grained porphyritic augite basalt, and fine-grained aphyric basaltic andesite lava with lapilli tuff and volcanic breccia, and minor amygdaloidal flows. Tuffaceous siltstone, mudstone, and limestone lenses occur. Takla Group occurs in the southwest and north sides of the property.

The Hazelton Group is comprised of undivided and Toodoggone Formation subarial and marine volcanic members divided into lower and upper volcanic cycles. The lower cycle consists of the Adoogachoo, Moyez, Metsantan and McClair members and the upper cycle consists of the Attycelley and Saunders Members. These rocks are predominantly comprised of red, maroon flow and pyroclastic rocks. The upper cycle volcanic rocks are exposed in part on the Pine property.

The Attycelley Member is 500 metres in thickness, and comprised of a heterogeneous mixture of green, grey and mauve lapilli-ash tuff, subordinate lapilli tuff, with minor ash and lava flows, and epiclastic rocks. These rocks resemble the Adoogachoo Member.

The Saunders Member is composed almost exclusively of welded crystal dacite ash flow and tuff. The lower contact of this Member appears to be in part erosional, with underlying Takla Group conglomerate and tuffite.

Lower to Middle Jurassic Black Lake-Omineca intrusive rocks are comprised of small to medium sized stocks and sub volcanic plutons of granodiorite with localized gabbro, diorite, and quartz-monzonite present. Dikes or sills of quartz latite porphyry, and trachy-andesite to basalt composition cut intrusive and volcanic rocks.

Lower to Upper Cretaceous Sustut Group sedimentary rocks are in unconformable contact with Takla and Hazelton Group rocks to the west of the Pine property.

Glacial and glaciofluvial deposits cover approximately 80% of the Pine zone and low-lying portions of the Finlay River valley and tributaries; in these areas approximately 3-15 metres of clean, unconsolidated sand and till with rounded boulders up to 1 metre in diameter occur.

Gossanous ferricrete and pebble breccia occurs along the base of the hill to the southeast of the Pine and Tree zones, and in the creek draining the Mex zone, respectively.

7.1 Structure

Steeply dipping normal faults and lessor strike slip and thrust faults cut the Takla Group and Toodoggone Formation. Northeasterly trending high angle faults cut and displace northwest trending structures, tilting and rotating monoclinal strata (Diakow et al, 1993). Movement along these faults appears coeval with Toodoggone Formation volcanic, subvolcanic and high-level intrusive rocks, with associated hydrothermal alteration and mineralization. Regional metamorphism is sub-greenschist or zeolite facies (Bailey et al, 1991).

On the Pine property, topographic maps display strong lineaments trending north-northwest and northeast. These structures may be deep-seated strike-slip and in part normal/reverse faults. The Takla Group and Toodoggone Formation rocks occur in fault contact near the Goat-Wrich and Electrum prospects on the south and north side of the Finlay River, respectively.

In the Pine zone, airborne magnetic and ground induced polarization surveys suggest a northnorthwest trending zone of elevated magnetite content, and northeast trending zone of moderate to high chargeability, respectively (Open File 3495,Lloyd 1992). A ridge of elevated magnetic susceptibility trends northeast off the flank of a subdued magnetic high and correlates with the trend of the Pine, Tree and Fin zones. Fractures, shears and faults in rocks and drill core trend north-northwest, northeast, east, and dip variably.

7.2 Regional prospects and mines

Regionally, extensive copper-gold porphyry and epithermal gold-silver mineralization occurs. The Kemess North and South deposit are located 16 and 22 kilometres south of the Pine zone, respectively. The Kemess South deposit is currently mining at a rate of approximately 50,000 tonnes per day from an open pit with a geological reserve of 248 million tonnes grading 0.62 g/t gold and 0.22% copper. The Kemess North deposit is estimated to contain a geological reserve of 175 million tonnes grading 0.37 g/t gold and 0.18% copper (Royal Oak Mines, 1995). Recent drilling in this deposit has significantly expanded the size. Northwest of the Pine property, Toodoggone Formation rocks host epithermal gold-silver deposits such as the Lawyers, AI and Shasta, and Takla volcanic rocks host the Baker, all producers. Two distinct time periods are evident for epithermal deposits (Bull 86).

8. 2000 RESULTS

<u>,</u> - 1

.

. .

. .

, ·

÷ -

. .

A Summary of Geochemical Results is provided in Table 3 and Sample Descriptions and Assay Certificates are located in Appendix 1 and 2, respectively. Table 4 is provided as a legend of abbreviations for Figures 4,5,6 and 7.

Work in 2000 comprised mapping and sampling in the western portion of the property, and traverses were made in the Mex and Canyon Creek area southeast and south of the Pine porphyry copper-gold zone, respectively (Figure 4). GPS and Trim 1:20,000 base maps were used for control, with Error Position Estimates of between 4-15 metres. GPS positions were obtained for the Pine zone diamond drill holes and Gemcom database management was performed, but is not the subject of this report.

8.1 Pine Southwest

Prospect and sample locations are provided in Figures 4 and 5, respectively. The Pine Southwest is located in the area of the Pine property road, northwest of the Goat prospect. The access road into the Pine property was built in 1990, exposing bedrock in this area that remained undocumented until 1999, when prospecting returned a float sample (P99DR59) containing 1.69-1.95g/t gold and anomalous copper and zinc values occur. Silt from several creeks above the road in this area returned anomalous copper, zinc, gold and locally arsenic.

This area is underlain by Takla Group andesite crystal tuff, metasediment, and limestone cut by quartz-k-feldspar altered fine to medium grained monzodiorite similar to sample P99DR59 (Figure 5). To the southwest, a contact between Takla Group volcanic, sedimentary and intrusive rocks occurs. In the southwest portion of the Pine property, a siliciclastic unit comprised of bedded chert and tuffaceous siltstone contains limestone beds 5-100 metres in thickness; overall, the sedimentary package appears approximately 250 metres in thickness and trends north. Sedimentary units on the south and north side of the Finlay River, at the VIP zone, appear similar, and BCGS Bulletin 86 suggests Asitka Group limestone occurs in proximity to the VIP; it remains unclear whether these rocks are in part Takla or Asitka Group.

Rock samples of the monzodiorite intrusion taken in 2000 returned low to weakly anomalous values of copper, zinc, molybdenum and gold. This intrusion appears similar in geology and alteration to that occurring in Grace creek, on the north side of the Finlay River (see VIP). In the north portion of Figure 5, strong fracturing, propylitic alteration and 1-2% pyrite with trace chalcopyrite occurs on the road and southeast up a ridge. At higher elevations to the

southeast, values of up to 38,934ppm zinc, 45.7ppm silver, and 278 ppb gold were obtained from frequently observed quartz-carbonate veins 5-30 cm in thickness; in proximity to these veins, moderately propylitic altered volcanic rocks with 3-10% pyrite returned 34-143ppb gold. To the south of Figure 5, sheared and brecciated limestone with black phyllite wall rock and 1-2% pyrite-sphalerite mineralization contains 5,896ppm zinc, 148ppm arsenic, 24 ppb gold over 1.0 metre, and adjacent very fine grained, finely bedded chert-siliciclastic rocks returned 1,923ppm barium over 4 metres.

8.2 Goat

د ر

.

Prospect and sample locations are provided in Figures 4 and 6, respectively. The Goat prospect is located at an elevation of approximately 1700 metres, and is predominantly underlain by Takla Group fine-grained tuff/flow of augite-hornblende basaltic-andesite and locally laminated carbonate-siliciclastic units approximately 2 metres in thickness occur. A northwest striking, west dipping thrust fault contact between the Takla and Toodoggone rocks occurs to the east in MacAburn Creek.

On the south ridge above Goat Lake, mapping and sampling identified strong east-west faulting and associated alteration and mineralization in proximity to fine-grained siliciclastic and andesite volcanic rocks. Bedding orientation of siliciclastic rocks on the west side of the ridge is approximately 130 degrees, dipping 45 degrees southwest. Volcanic rocks are variably altered to chlorite-epidote-calcite, quartz-sericite-clay-pyrite, k-feldspar and locally garnet-diopside alteration occurs on the west side of the ridge.

Numerous shear related veins occur, however three of the wider structures, located in 1999, were followed up in 2000. Three sub-parallel east-west trending quartz-sericite-carbonate-pyrite/pyrrhotite shears of 1-4 metres in width and 50-200 metres in length occur. Vuggy to massive and weak stockwork of coarse-grained, bladed and cockscomb quartz-carbonate, 5-60 cm in width contain variable concentrations of pyrite, chalcopyrite, sphalerite and galena, and associated silver and gold values. Geochemical anomalies of molybdenum, arsenic and antimony occur locally.

The Mid vein is comprised of variable pyrite, sphalerite, galena, chalcopyrite mineralization hosted by a quartz-carbonate vein 0.20-0.35 metres in width, 200 metres in length and contains up to 225.0 g/t silver and 20.3 g/t gold in 1999 sampling. In 2000, a 0.50 metre chip of previously un-sampled material returned 3899ppm copper, 9642ppm lead, 4601ppm zinc,

1194ppm arsenic and 33.5 ppm silver, 53 ppb gold. Chip samples of wall rock, 1.0 metre in width, returned 0.5 and 1.0ppm silver, respectively.

In the southernmost zone (Black vein), trace pyrite +/- chalcopyrite, sphalerite, galena mineralization occurs with fine grained, massive, banded, bladed and vuggy quartz-calcite 5-40 cm in width and 150 metres in length. Mineralization is contained within a zone of strong fracturing and associated quartz-sericite-calcite-pyrite/ankerite alteration 1-4 metres in width. Concentrations of base metal in the Black vein appears generally lower than the Mid or North vein. Hand trenching and sampling of the vein material returned from 0.4 to 272.4 g/t silver and 70ppb to 297.93 g/t gold over a strike length of approximately 115 metres. The Black vein is covered by talus to the west, where a northerly striking fault and two beds of siliciclastic rocks, each 1.0 metres in thickness, occurs. Although the structure continues on the west side of the fault, the vein thins to 5 cm. The width of the Black vein fault structure increases to the east into MacAburn Creek, however talus prevents further observations in this direction. The eastern most sample of the exposed Black vein returned 557g/t silver, 25.18 g/t gold over 0.15-0.20 metres in width.

Similar veins in proximity to the Goat zone remain largely un-sampled, and relationship between mineralized veins, finely banded siliciclastic rocks, proximity to intrusions or the thrust fault to the east remain unclear.

8.3 Wrich Hill

East of the thrust fault (Figure 6), the Wrich Hill zone is underlain by Toodoggone Formation crystal lithic and massive tuff of dacite composition. North-northwest striking kaolinite-alunite alteration with dimensions of approximately 150-200 metres in width, 600 metres in length occur east of the thrust fault, in proximity to the Wrich Fault. Previous geochemical, geological and diamond drilling was performed (Vulimiri, 1985,Tegart, 1987, Wesa, 1988). Soil sampling outlined an approximate 600 X 100-250 metre area containing >2.0 ppm silver, and anomalous gold, antimony and barium occurs; this anomaly occurs in proximity to the Wrich Fault, and in part coincides with intense clay alteration in the Attycelley member (Unit 5). The altered and mineralized Attycelley member is overlain by dacite tuff of the Saunders member (Unit 6). Documented 1987 diamond drill holes are located a distance of approximately 150-300 metres east of the Wrich fault and targeted linear high resistivity anomalies within the clay alteration. From the assessment report filed, limited core sampling was done with the best result reported in Minfile as 1.0 metre grading 126.86g/t silver (1987 W3). Location uncertain, a sample from

the area of the drill holes contained silicified and vuggy quartz veined material and returned 20.40 oz/t silver and 0.192 oz/t gold (Vulimiri, 1985).

In 2000, rock samples of clay (kaolinite+/-alunite) alteration on Wrich Hill returned 1-0.19.5 ppm silver, anomalous barium and antimony. Sampling of a drill hole cutting pile returned 3.6ppm silver, 42ppb gold. Rock sample G00CM-5, located northwest of the drill holes, returned 18.4 ppm silver and 131ppb gold. A soil sample to the west of this rock sample, in proximity to a north-south trending ravine, returned 7.7ppm silver, 139ppb gold and 326 ppm copper. To the south of this soil sample, a subcrop sample was taken from beneath extensive talus and moss cover in the Wrich fault lineament, approximately 150 metres west of the nearest drill hole. The sample is comprised of a hematite stained chocolate brown crystal lithic tuff cut by a 5 cm wide vuggy, chalcedonic quartz-clay vein containing anomalous antimony, barium, and returned 46.4 g/t gold and 71.5 g/t silver.

8.4 VIP

Prospect and sample locations are provided in Figures 4 and 7, respectively. In 2000, portions of a 1983 grid were re-established and tied to a topographic map with GPS, and clearing and chip sampling of the west skarn was performed. In addition, 1983 drill core was located, reviewed and one 2.1 metre sample of un-split core comprised of massive marble and limestone from 83-1 returned 191ppm copper, 117ppm zinc, 0.9ppm silver and 0.52% mercury.

The VIP prospect is underlain by metavolcanic, siliciclastic rocks and limestone cut by Black Lake granodiorite. It is unclear whether these sedimentary units are Takla or Asitka Group as for the Pine Southwest area. Mineralization occurs in structures within granodiorite, metasiltstone, and skarn altered limestone.

The west skam trends northwest and is a minimum 4 metres in thickness, outcropping in part for 44 metres. A diamond drill hole in 1983 returned up to 45 feet of 0.010 oz/t gold with trace copper (#13057), however it is unclear whether the holes reached the zone exposed on surface. Chalcopyrite-magnetite mineralization, and garnet-diopside-epidote-marble skarn contain variable copper, zinc, gold and silver values. Structurally controlled zones of massive magnetite contain variable pyrite-chalcopyrite-sphalerite mineralization and chip samples returned 10,903ppm copper, 6.74g/t gold, 66.4ppm silver across 3.4 metres, and 2,477ppm copper, 13.8 ppm silver, 8.32 g/t gold over 1.0 metre. A skarn zone also occurs approximately 400 metres east where drill hole 83-3 was partially sampled and returned 74 feet averaging 1.3% copper, 0.026 oz/t gold (0.88 g/t) (#13057).

Approximately 1.5 kilometres northeast of these skarn zones, drill hole 83-1 returned 34.5 feet averaging 0.30% copper, 0.004 oz/t gold (0.14 g/t) (#13057). In this area, widespread disseminated pyrite-chalcopyrite, and minor magnetite mineralization occurs within quartz-k-feldspar altered andesite/ monzonite, and garnet-diopside altered meta-volcanic rocks. Rock sample V00DR-6 returned 245ppm copper, 0.40 g/t gold from a 0.5 metre square panel in previously un-sampled rusty, homfelsed metavolcanic/sediment containing 1-2% pyrite.

In Grace creek canyon to the east of this area, a chip sample of quartz-sericite-epidote+/- k-feldspar altered monzonite containing dominantly chalcopyrite, trace bornite and malachite mineralization returned 52,142ppm copper and 0.82 g/t gold over 0.32 metres. Adjacent wallrock is moderately propylitic to weakly potassic altered and contain trace to 0.5% pyrite, chalcopyrite mineralization. This intrusion appears in part, similar in composition and alteration to that found in the Pine Southwest zone, south of the Finlay River.

8.5 Canyon Creek

A traverse southwest of the Pine porphyry copper-gold zone to canyon creek was performed. The Canyon creek area is comprised of intensely quartz-sericite-pyrite and quartz-sericite-claypyrite altered Toodoggone volcanic rocks cut by strong faults. Two soil samples taken in 1997 returned 4910 and 10,446 ppb gold on the west side of the creek. In 2000, an area of outcropping potassic quartz eye porphyry with abundant quartz veinlets was located adjacent Canyon Creek. Rock samples returned 0.02-0.04 g/t gold, and up to 21.2 ppm molybdenum, 135ppm copper. These rocks contain in part similar geology, alteration and presence of abundant quartz veinlets to those occurring at the Electrum gold-silver zone on the north side of the Finlay River and Pine zone to the northeast.

8.6 Mex

ŗ

A traverse was made southeast of the Pine zone to Mex ridge, and north and west down a creek draining this area. The Mex zone is comprised of widespread, intensely propylitic altered and gossanous rocks exposed over an area approximately 750 metres in length and 300 metres vertically. In this area, Toodoggone Formation dacite-andesite occurs northwest of a steeply dipping contact with Geigerich granodiorite. Quartz-hornblende-feldspar porphyry

monzodiorite occurs at the northeast end of the ridge, in proximity to extensive ferricrete in a creek bottom.

On Mex ridge, quartz-sericite-pyrite and quartz-sericite clay-pyrite alteration predominates, however locally hematite-magnetite-sericite alteration contains pyrite, and trace chalcopyrite and sphalerite mineralization. Rock samples returned <0.01-0.60g/t gold, 0.6-1.7 ppm silver, 76-963ppm copper, 55-182ppm zinc, 2.9-162.7ppm molybdenum. On the north side of the ridge crest, a 5.0 metre talus sample returned 162.7 ppm molybdenum, 175 ppm copper, 124 ppm zinc, 0.6 ppm silver and 0.60 g/t gold. A sample beside the creek to the north returned 0.21 g/t gold.

9. DISCUSSION

Toodoggone Formation volcanic rocks comprised of andesite-dacite underlies the central portion of the Pine property. Maroon to pale green dacite-andesite volcanic tuff and breccia of the Toodoggone Formation occurs between the Pine zone and Wrich zone on the south side of the Finlay River, and north to the Electrum epithermal gold-silver prospect. Takla Group volcanic tuff, flow and breccia of basaltic-andesite composition, and Takla/Asitka Group fine-grained siliciclastic and carbonate units up to 250 metres in thickness underlie the western portion of the Pine property, on the south and north sides of the Finlay River.

Black Lake intrusions of monzonite to monzodiorite composition cut volcanic, siliciclastic and carbonate units in the Pine, Pine SW, and VIP prospects. Dikes and sills of quartz, hornblende, plagioclase feldspar porphyry latite, trachyandesite and basalt crosscut volcanic and intrusive rocks. All rocks have been fractured and affected to some degree by widespread propylitic, potassic and locally argillic hydrothermal alteration, the late dikes less so than adjacent rocks.

Hornfelsed to quartz-sericite-pyrite altered metavolcanic and sedimentary rock, including limestone up to 100 metres in thickness occurs in the western side of the property, on the south and north sides of the Finlay River. Southeast of the Pine property access road, well bedded, very fine grained limestone returned 5,896ppm zinc over 1.0 metre, and very fine grained, banded siliciclastic with black phyllite wallrock contains barium values of up to 1,923 ppm over 4 metres. The presence of similar siliciclastic and carbonate rocks on the south and north side of the Finlay River suggest an extensive north trending sedimentary sequence, a

minimum of 250 metres in thickness and approximately 6 kilometres in length, underlies the western portion of the property.

The VIP skarn zones occur on the north side of the Finlay River. In the southwestern skarn zone, alteration occurs within siliciclastic and carbonate rocks in proximity to Black Lake granodiorite. Previous drill hole results include 45 feet of 0.010 oz/t gold with trace copper and it remains unclear whether the hole intersected the surface showing. On surface, structurally controlled zones of massive magnetite contain variable chalcopyrite-pyrite mineralization with samples returning up to 10903ppm copper, 66.4ppm silver, 6.74g/t gold across 3.4 metres, and 2477ppm copper, 13.8 ppm silver, 8.32 g/t gold over 1.0 metre. Hornfelsed, rusty metasediment approximately 1.5 kilometres to the northeast returned 245ppm copper, 0.40g/t gold, and sheared monzonite in a creek to the east returned 52142ppm copper, 0.82 g/t gold.

Metavolcanic, siliciclastic and limestone in part cut by monzodiorite is inferred to occur between the Pine southwest and VIP zones, a distance of 6 kilometres. The presence of sedimentary rocks, altered and mineralized intrusions and widespread copper, zinc, silver and gold mineralization suggest significant potential occurs for development of skarn mineralization.

In the northern portion of the Pine Southwest zone, intense fracturing, chlorite-epidote alteration and 1-2% pyrite, trace chalcopyrite occurs. At higher elevations to the southeast, values of up to 38,934ppm zinc, 45.7ppm silver, and 278 ppb gold were obtained from quartz-carbonate veins 5-30 cm in thickness and adjacent propylitic altered volcanic rocks with 3-10% pyrite returned 34-143ppb gold; these areas occur in proximity to the projected extension of the regional thrust fault contact between Takla and Toodoggone rocks extending from the Goat-Wrich zones, and is largely covered by overburden.

The Goat zone hosts numerous quartz-carbonate veins and associated pyrite, sphalerite, galena and chalcopyrite mineralization with associated gold and silver values. Veins occur within east trending shear zones 1-4 metres in width and 50-200 metres in length, in part widening to the east. The Black vein consists of coarse banded, bladed and vuggy quartz-calcite with variable sulphide concentrations between 5-40cm in thickness and 115 metres in length. Sampling returned up to 272.4g/t silver, 297.93 g/t gold, appears somewhat erratic in nature, however the eastern most sample returned 557.3g/t silver, 25.18 g/t gold across 0.15-0.20 metres and remains open beneath talus to the east into MacAburn creek.

Garnet-diopside minerals occur locally near Goat Lake, and suggest proximity to an intrusion.

Standard Metais Exploration Ltd.

The relationship between mineralized structures in the Goat zone and proximity with siliciclastic and intrusive rocks remains unclear. The Goat zone shears and associated mineralization trend east in part widening in this direction and suggest these structures may be related to sympathetic faults occurring in the upper plate of the regional thrust fault separating Takla Group and Toodoggone Formation rocks.

East of the thrust fault, the Wrich (Hill) zone is underlain by Toodoggone crystal lithic and massive tuff of dacite composition. A north-northwest striking kaolinite-alunite alteration occurs in proximity to the Wrich Fault. Rock samples of clay-alunite alteration on Wrich Hill returned 1-0.19.5 ppm silver, anomalous barium and antimony. Rock sample G00CM-5, and a soil sample near a north-south striking ravine returned 18.4 ppm silver, 131ppb gold and 7.7ppm silver, 139ppb gold, 326 ppm copper, respectively. Approximately 200 metres south of these samples, a sub crop-talus sample returned anomalous antimony, barium and 71.5g/t silver, 46.4 g/t gold.

The Wrich zone contains favorable lithology, regional structures and associated epithermal alteration containing anomalous gold, silver, barium and antimony. High-grade gold-silver mineralization may be associated with the Wrich fault, west of previous drilling, and may underlie a thrust fault to the west and northwest. A similar geological setting approximately 7 kilometres to the northwest occurs at the Electrum-Beaverdam epithermal gold-silver prospect and suggests the Takla-Toodoggone thrust contact may be of significance in the control of epithermal mineralization in these areas.

10. CONCLUSIONS

The Pine property is located in the Omineca Mining Division of British Columbia, approximately 22 kilometres north of the Kemess South mine. The property covers an area of over 200 square kilometres and contains epithermal gold-silver, transitional porphyry gold-copper, and endo/exo-skarn mineralization.

Mapping and sampling in 2000 identified two distinct geological settings for base and precious metal deposit potential through the western portion of the Pine property.

Sedimentary rocks occurring in the southwestern portion of the property are believed to be reasonably contiguous with those on the north side of the Finlay River. The southern area contains bedded chert-siliciclastic rocks and limestone with anomalous barium and zinc, respectively. On the north side of the River, chip sampling of the VIP pyrite-chalcopyrite-Standard Metals Exploration Ltd. -17 - April 2001

sphalerite-magnetite skarn zones returned 10,903ppm copper, 66.4ppm silver, 6.74g/t gold across 3.4 metres and remains open, and 2477ppm copper, 13.8 ppm silver, 8.32 g/t gold over 1.0 metre. Propyltic monzodiorite with a shear containing quartz-k-feldspar alteration returned 52,142ppm copper, 142.2ppm molybdenum and 0.82 g/t gold across 0.32 metres, and wallrock contains trace to 1% pyrite-chalcopyrite mineralization.

Geology, alteration and mineralization occurring in the western portion of the Pine property appears favorable for the development of base and precious metal bearing skarn and possibly volcanogenic massive sulphide deposits over a distance of approximately 6 kilometres. The intrusion in Grace creek appears similar to that occurring in the Pine Southwest zone.

The Goat and Wrich Hill zones are comprised of epithermal style alteration and mineralization with significant gold and silver values hosted by basaltic andesite and siliciclastic rocks of the Takla Group, and dacite of the Toodoggone Formation, respectively.

In the Goat zone, at least three east-west trending shear-hosted veins 1-4 metres in thickness and 50-200 metres in length occur. The Black vein is comprised of fine grained, massive, banded, bladed and vuggy quartz-calcite containing variable concentrations of pyrite, chalcopyrite, sphalerite, galena, 5-40 cm in width and 150 metres in length. Hand trenching and sampling of the vein material returned from 0.4 to 272.4 g/t silver and 70ppb to 297.93 g/t gold over a strike length of approximately 115 metres, and the eastern most sample returned 557.3g/t silver, 25.18 g/t gold across 0.15-0.20 metres and remains open beneath talus to the east into MacAburn creek.

In the Goat zone, the relationship between mineralization and proximity to siliciclastic rocks and intrusions remain unclear. The Goat zone shears, associated alteration, mineralization and gold-silver values may be related to conjugate structures in the upper plate of a thrust fault contact between the Takla Group and Toodoggone Formation.

East of the thrust fault, the Wrich zone is comprised of a kaolinite-alunite alteration zone hosted by Toodoggone crystal lithic and massive tuff of dacite composition. Rock samples of clay-alunite alteration on Wrich Hill returned 1-0.19.5 ppm silver, anomalous barium and antimony. Rock and soil samples in a ravine returned 18.4 ppm silver, 131ppb gold and 7.7ppm silver, 139ppb gold, 326 ppm copper, respectively. Approximately 200 metres to the south in the same ravine a subcrop-talus sample returned anomalous antimony and barium and 71.5g/t silver, 46.4g/t gold.

The Wrich zone contains geology, structure, alteration and anomalous gold, silver, barium and antimony consistent with precious metal epithermal deposits. Significant gold-silver mineralization occurs in proximity to the Wrich fault, and may in part underlie a thrust fault to the west-northwest. Similar epithermal gold-silver mineralization occurs at the Electrum-Beaverdam zone on the north side of the Finlay River, and suggests proximity to the Takla-Toodoggone contact may be a regional structural control of epithermal mineralization extending 7 kilometres through the property.

11. RECOMMENDATIONS

. .

Expand and in part fill in, geological, geophysical and geochemical surveys of the property. Areas of priority include the Pine, Canyon Creek, Mex, Northwest Breccia, North, Goat-Wrich, Pine Southwest, VIP, Electrum, and Nub zones. Work would initially comprise further geological mapping and sampling followed by installing grid lines, soil sampling, induced polarization and magnetic surveys and trenching where feasible. It is recommended that PIMA spectral analysis be performed over portions of the Pine and southwest to Canyon creek, Wrich and Northwest Breccia to Nub west zones; this work would help define alteration patterns and assemblages.

A diamond drilling program comprised of 10 holes totaling 1,500 metres would be required to test some of the targets outlined above. Some of these zones would require helicopter support.

12. PROPOSED BUDGET

...

-

ς.

e - 5

.

-

Preparation, data acquisition, map	s	\$5,000.00		
Mob/Demob		\$10,000.00		
Labour				
Senior Geologist, P.Eng., P.Geo	25 days@ \$500/day	\$12,500.00		
Geologist	25 days@ \$375/day	\$9,375.00		
2 Field techs	(2X) 25days@ \$200/day	\$10,000.00		
Room/Board	100days@ \$65.00/day	\$6,500.00		
Transportation				
2 Trucks	(2X)25 days @ \$65.00/day	\$3,250.00		
ATV	25days @\$30.00/day	\$750.00		
Helicopter Hrs.	12 hrs @\$850/hr	\$10,200.00		
Field Supplies, expendables	\$2,500.00			
Communications				
Hand-held radios, satellite phone,	airtime, field computer	\$2,500.00		
Assays				
200 rock @ \$20.00		\$4,000.00		
200 soil @ \$18.00		\$3,600.00		
Report		<u>\$5,000.00</u>		
	Subtotal	\$85,175.00		
	GST@7%	\$5,962.25		
	Subtotal	\$91,137.25		
Subcontractors-Geophysics		\$25,000.00		
Diamond Drilling (all found) 1500) metres @ \$150/metre	\$225,000.00		
	Subtotal	\$341,137.25		
	Contingency@ 10%	\$34,113.73		
	TOTAL	\$375,251.		

13. REFERENCES

- 1. Blann, D.E., (Jan1998), Geological Report, 1997 Diamond Drilling program on the Pine Property, Finlay River, Toodoggone, B.C., Jan, 1998, for Stealth Mining Corporation.
- Blann, D.E., (Jan 1999), Geological and Diamond Drilling Report on the Pine Prospect,
 Finlay River, Toodoggone, B.C., Jan, 1999, for Stealth Mining Corporation.
- 3. Blann, D.E., (Apr, 2000), Geological and Diamond Drilling Report on the Pine Prospect, Finlay River, Toodoggone, B.C., Apr, 2000, for Stealth Mining Corporation.
- Bowen, B.K., Copeland, D.J. and Rebagliati, C.M. (1993): Pine Gold-Copper Porphyry Project; Summary Report on the 1992 Exploration and Diamond Drilling Program. Copeland Rebagliati and Associates Ltd., Priv. Rep. for Romulus Resources Ltd.
- Diakow, Panteleyev, Bulletin 86, Geology of the Early Jurassic Toodoggone Formation and gold-silver deposits, northern British Columbia, NTS 94E/2,3,6,7,11,12, Geological Survey Branch, B.C. Ministry of Energy, Mines and Petroleum Resources
- Diakow, L.J., Panteleyev, A. and Schroeder, T. (1993): Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Area, Northern British Columbia. Bul. 86, B.C. Ministry of Energy Mines & Petroleum Resources.
- 7. Harris, J.F. (October 16, 1987): Rock Geochemistry, Lithological Classification, and Alteration Studies in Volcanic Rocks from the Central Part of the Fin Property, Fin Claim Group, Omineca Mining Division, British Columbia, for Bradford D. Pearson.
- Klit, Daniel A., Lloyd, John (November, 1992): A Geophysical Report on an Induced Polarization Survey on the Pine Property, Omineca Mining Division, British Columbia, for Romulous Resources Ltd.
- McMullen, J. and Smith P.K. (1973): Geophysical Report for Kennco Explorations (Western) Ltd., Pine Property, Omenica M.C., British Columbia. Kennco Explorations Priv. Rep.
- 10. Ostensoe, Eric, (Dec, 1997): Geochemical Survey of the Black Group mineral claims, Omineca Mining Division, British Columbia, Stealth Mining Corp. Assessment Report.

- 11. Pearson, Bradford, D., St. John, Robert, (July, 1989): Fin Claims Soil and Stream Silt Geochemistry, Omineca Mining Division.
- Rebagliati, C.M., Bowen, B.K. and Copeland, D.J. (1993): Pine Property Gold-Copper and Copper-Molybdenum Porphyry Prospects, Kemess-Toodoggone District, Northern British Columbia. Paper 29, CIM Special Volume 46, pp 436-440.
- Rebagliati, C.M. (1993): Pine Gold-Copper Porphyry Project; Summary Report on the 1993 Drilling Program. Copeland Rebagliati and Associates Ltd., Priv. Rep. for Romulus Resources Ltd.
- 14. Royal Oak Mines Inc. (1995) Annual Report, pub. rel

¥.

- Sadlier-Brown, T.L. (November 5, 1996): A Report of the Pine Gold-Copper Property, Finlay River Area, Toodoggone District, Omineca Mining Division, for Stealth Mining Corporation.
- Smith, S.W. (August, 1990): Assessment Report on Rock Sampling and Line Chaining on the Pintree Property, Omineca Mining District, British Columbia, June 28-July 14, 1990, Cominco Ltd.
- Smith, S.W. (February, 1991): 1990 Owners Report on the Pinetree Property, Cominco Ltd.
- Sterenberg, V.Z. (November 1, 1996): Assessment Report- 1995 and 1996 Exploration,
 Pine Property, Omineca Mining Division, British Columbia, for Electrum Resources Inc.
- Tegart, Peter, F., 1987, Diamond Drilling Report on the Wrich 1,2,3 claims, Toodoggone River Area, Omineca Mining Division, 94E2, For Cheni Gold Mines Inc.., Assessment Report 16470.
- 20. Woodcock, J.R. and Gorc, D. (December 13, 1982): Geology and Geochemistry of the Fin Claims, Omineca Mining Division (94-E2), Priv. Rep. for Brinco Mining Ltd.
- 21. Assessment Report # 18313, Reynolds, P., (Dec. 12, 1988) Diamond Drilling Report on the Grace Claim Group, Omineca Mining Division, Skylark Resources Ltd.

- 22. Assessment report # 13057, Allen, D.G., (August 20, 1984). Geological, geophysical and diamond drilling report on the Grace 1-5 claims, for Asitka Resources Corp.
- Assessment Report # 9747, Crawford, S.A., Vulimiri, M.R., (Nov. 1981), Geological and Geochemical Report on the Nub Mnt. Claim Group, Omineca Mining Division, for Serem Ltd.
- 24. Assessment Report # 10705, Crawford, S.A., Vulimiri, M.R., (Jan 1982), Geological and Geochemical Report on the Wrich Claims, Omineca Mining Division, for Serem Ltd.
- 25. Open File 3495, Geological Survey of Canada, Aeromagnetic Residual Total Field Map, 94E/SE, 1999.

14. STATEMENT OF QUALIFICATIONS

I, David E. Blann, of Burnaby, British Columbia, do hereby certify:

- 1. That I am a Professional Engineer registered in the Province of British Columbia.
- 2. That I am a graduate in Geological Engineering from the Montana College of Mineral Science (School of Mines), Butte, Montana (1987).
- 3. That I am a graduate in Mining Engineering Technology from the B.C. Institute of Technology (1984).
- 4. That I have been actively engaged in the mining and mineral exploration industry since 1984.
- 5. That the 2000 exploration program was directed and performed under my supervision, and information, conclusions and recommendations herein are based on approximately twenty three weeks on the property between 1997and 2000, and review of information in public records.

Dated at Burnaby, B.C., April 28, 2001

David E. Blann, P.Eng.

TABLES

•

•

- -

ì

•

- 1

r

•

.

. .

- -

.

ŀ

•

,

. .

-

•

:

-

.

· · ·

TABLE 1April, 2001Stealth Mining Corp. Electrum Resources Corp.Schedule of Mineral Claims

		Total:	972	claim units	
Name	Tenure #	Units	Anniversary Date	Expiry Date	Registered
Hame			yy/mm/dd	yy/mm/dd	Owner
Black 1	352922	18	96/11/22	2002MAR31	107591
Black 2	352923	18	96/11/22	2002MAR31	107591
Black 3	352924	18	96/11/23	2003MAR31	107591
Black 4	352925	15	96/11/23	2003MAR31	107591
Black 11	352926	12	96/11/22	2003MAR31	107591
Black 12	352927	8	96/11/22	2003MAR31	107591
Black 5	352928	1	96/11/23	2003MAR31	107591
Black 6	352929	1	96/11/23	2003MAR31	107591
Black 7	352930	1	96/11/23	2003MAR31	107591
Black 8	352931	1	96/11/23	2003MAR31	107591
Black 9	352932	1	96/11/23	2003MAR31	107591
Black 10	352933	1	96/11/23	2003MAR31	107591
Easter 1	241918	16	90/04/16	2004MAR31	107591
Easter 2	241919	12	90/04/16	2004MAR31	107591
Easter 3	241920	20	90/04/16	2004MAR31	107591
Easter 4	241921	20	90/04/17	2004MAR31	107591
Easter Seal	303156	20	91/08/08	2004MAR31	107591
Egg 1	310065	15	92/05/29	2004MAR31	107591
Egg 2	310066	15	92/05/29	2004MAR31	107591
Egg 2 Fin 3	238305	1	80/07/31	2006MAR31	107591
Fin 11	240089	20	88/08/18	2004MAR31	107591
Fin 12	240090	20	88/08/18	2005MAR31	107591
Fin 14	240091	20	88/08/18	2005MAR31	107591
Fin 16	240092	6	88/08/18	2005MAR31	107591
Fin 17	240093	8	88/08/18	2004MAR31	107591
Fin 18	240094	12	88/08/18	2004MAR31	107591
Fin 19	240095	6	88/08/18	2005MAR31	107591
Fin 20	241595	20	90/02/13	2004MAR31	107591
Fin 20 Fin 21	241596	16	90/02/13	2004MAR31	107591
Fin 21	308119	20	92/03/14	2004MAR31	107591
Fin 22	308120	20	92/03/14	2004MAR31	107591
Fin 23	308121	20	92/03/14	2004MAR31	107591
Fin 23	308122	20	92/03/14	2004MAR31	107591
Fin 25	308123	20	92/03/14	2004MAR31	107591
Fin 26	308124	20	92/03/14	2004MAR31	107591
Fin 971	358929	20	97/08/26	2004MAR31	107591

-

.

• •

ι.

•

.

•

.

•

.

.

1

.

7

,

.

.

7

•

.

.

-

TABLE 1 April, 2001 Stealth Mining Corp. Electrum Resources Corp. Schedule of Mineral Claims

Name Fin 972 Fin 973	Tenure # 358930 358931	Units 	Anniversary Date	yy/mm/dd	Owner
Fin 973		20			
Fin 973		20	97/08/30	2004MAR31	107591
	358931	20	97/08/30	2004MAR31	107591
	050022	20	97/08/30	2004MAR31	107591
Fin 974	358932	20	93/07/19	2004MAR31	107591
Kath 2	319656 319658	15	93/07/20	2004MAR31	107591
Kath 4		12	99/02/09	2003MAR31	107591
Kath 5	367803	1	93/07/19	2004MAR31	107591
Kath 6	319661	1	93/07/19	2004MAR31	107591
Kath 7	319662	1	93/07/19	2004MAR31	107591
Kath 8	319663	1	93/07/20	2004MAR31	1075 9 1
Kath 9	319666	י 1	93/07/20	2004MAR31	107591
Kath 10	319667	20	92/05/30	2004MAR31	107591
LY 1	310081		92/05/30	2004MAR31	107591
LY 2	310060	1	92/05/30	2004MAR31	107591
LY 3	310061	1	92/05/30	2004MAR31	107591
LY 4	310062	1	92/05/30	2004MAR31	107591
LY 5	310080	1	91/06/08	2004MAR31	107591
Paula	300641	20	92/05/29	2004MAR31	107591
Song 1	310079	20	92/05/30	2004MAR31	107591
Song 2	310064	20	92/05/31	2004MAR31	107591
Song 3	310038	1	92/05/31	2004MAR31	107591
Song 4	310039	1	92/05/31	2004MAR31	107591
Song 5	310040	1		2004MAR31	107591
Song 6	310041	1	92/05/31	2004MAR31	107591
Song 7	310042	1	92/05/31	2004MAR31	107591
Song 8	310043	1	92/05/31	2004MAR31	107591
Song 9	310044	1	92/05/31	2004MAR31	107591
Song 10	310045	1	92/05/31	2002MAR31	107591
Nub 1	367377	15	98/12/8	2002MAR31	107591
Nub 2	367378	20	98/12/8	2002MAR31	107591
Nub 3	367379	20	98/12/8	2002MAR31	107591
Nub 4	367380	16	98/12/8	2002MAR31 2002MAR31	107591
Sky 1	363244	18	98/05/29	2002MAR31	107591
Sky 2	363245	18	98/05/30		107591
Sky 3	363246	18	98/05/30	2002MAR31	107591
Tax 1	363247	18	98/05/25	2002MAR31	107591
Gov	363248	20	98/05/26	2003MAR31	107591
N.D.P.	363249	20	98/05/24	2003MAR31	101551

ς.

· ·

``

,

.

,

. .

-

TABLE 1April, 2001Stealth Mining Corp. Electrum Resources Corp.Schedule of Mineral Claims

Name	Tenure #	Units	Anniversary D∎te yy/mm/dd	Expiry Date yy/mm/dd	Registered Owner
			98/05/26	2002MAR31	107591
S.K	363250	20		2003MAR31	107591
C-K	363251	20	98/05/26	2002MAR31	107591
MR.	363252	20	98/05/27	2002MAR31	107591
GLEN	363253	20	98/05/24	2003MAR31	107591
-	363254	20	98/05/23	-	107591
CLARK	363255	1	98/05/25	2004MAR31	107591
Tax 2	363256	1	98/05/25	2004MAR31	107591
Tax 3		1	98/05/25	2004MAR31	107591
Tax 4	363257				

-

.

-

ς.

•

•

•

,

÷

Table 2

Regional Geology Legend

Glacial Deposits, Overburden

Cretaceous Sustut Group - not present at Pine

Lower and Middle Jurassic

Hazelton Group, undivided well bedded lapilli tuff and pyroclastic breccia

Black Lake/Omineca intrusive suite at the Pine property

- trachyite, andesite, minor basalt dikes, sills
- Feldspar porphyry latite dikes, sills
- Quartz-k-feldspar rich dacite-andesite/quartz latite porphyry/ quartz monzonite porphyry dikes and sills.
- Crowded feldspar porphyry quartz monzonite- monzodiorite
- Granite
- Hornblende granodiorite

Lower Jurassic

Toodoggone Formation

Upper Volcanic Cycle

(6) Saunders Member: Welded ash flow tuff of dacite composition with local granodiorite clasts.

(5) Attycelley Member: Quartz, feldspar crystal tuff, fine pyroclastic rocks of latite to andesite composition

Lower Volcanic Cycle

(4) McClair Member

(3) Metsantan Member: high potassium, massive latite flows with local flow breccia.

(2) Moyez Member

Adoogachoo Member

Upper Triassic-Lower Jurassic Takla Group

Massive, dark green, coarse-grained porphyritic augite basalt, fine grained, aphyric, basaltic andesite lava flows with subordinate lapilli tuff, volcanic breccia, and minor sedimentary units of carbonate and/or siliciclastics.

Permian Asitka Formation Marble, siltstone

Table	3
Sample Assay	Summary

· ·

.

									-			A .	D .	A * *
ELEMENT	Мо	Cu	Pb	Zn	Ag	Fe	As	Cd	Sb	Bi	V	Ca	Ba	Au**
SAMPLES	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppp
P008K1	7	47	255	196	0.8	3.32	3	1.6	< 3	< 3	42	0.26	64	6
P00BK2	< 1	31	72	122	< .3	7.14	23	1.3	< 3	< 3	234	5.24	17	6
P00BK3	1	369	32249	38934	45.7	0.9	18	529.4	8	32	11	13.35	4	278
P00BK4	2	95	247	259	0.8	6.33	30	2.6	< 3	< 3	188	1.17	10	143
P00BK5	< 1	46	240	222	0.3	6.07	24	2.5	< 3	< 3	167	1.2	12	34
P00CM1	8	37	31	57	0.3	2.93	6	0.3	< 3	< 3	47	0.37	145	33
P00CM2	4	173	36	60	< .3	3.19	3	0.4	< 3	< 3	85	0.51	62	23
P00CM3	40	20	34	102	< .3	3.17	14	1	< 3	< 3	55	0.27	49	3
P00DB1	4	25	28	104	< 3	3.13	10	0.7	< 3	< 3	54	0.57	73	< 2
P00DB2	16	15	52	112	3	3.73	69	0.5	< 3	3	34	0.36	36	110
P00DB3	13	26	19	78	< .3	2.87	6	< .2	< 3	< 3	36	0.18	141	4
P00DB4	2	6	8	67	< .3	2.38	3	< .2	< 3	< 3	31	0.85	98	15
P00DB5	2	48	13	29	< 3	2.82	2	0.2	< 3	< 3	78	0.5	99	9
P00DB6	5	31	8	40	< .3	1.03	4	0.4	< 3	< 3	10	0.26	136	5
P00DR1	< 1	103	6	37	0.4	4.87	89	0.6	< 3	< 3	98	2.64	84	8
P00DR2	3	840	606	2805	6.5	1.9	89	28.9	11	5	69	3.07	7	14
	-													Au**
														gm/mt
P00CM-4	3.6	27	7	74	0,2	2.57	4	< .2	< .5	< .5	62	0.31	56	0.04
P00DB-7	2.6	10	8	38	0.1	4.14	12	< .2	< .5	< .5	33	2.27	112	0.02
P00DB-8	21.2	127	29	135	0.5	3.03	5	0.2	< .5	< .5	78	0.34	74	0.02
P00DB-9	162.7	175	38	124	0.6	3.85	8	3.2	1.4	2.4	30	0.27	112	0.6
P00DB-10	2.9	963	4	182	0.9	4.93	2	7.7	< .5	1.9	78	1.07	45	< .01
P00DB-11	40.2	156	19	179	0.8	5.14	1	0.2	< .5	0.7	78	0.41	48	0.1
P00DB-25	13.6	76	60	55	1.7	1,68	12	0.6	0.8	3.5	12	0.07	193	0.21
	∆a**	Au**												

ELEMENTAg**Au**SAMPLESgm/mtgm/mtP00BK346.90.3RE49.00.28

· · ·

.

١

5 6 5 6 X

							-	-							
G00DB19	2	8	15	55	< .3	762	0.65	5	0.9	< 3	< 3	14.84	183	-	
G00DB20	3	23	3	21	< .3	190	1.34	17	< .2	< 3	< 3	0.18	1923	5	
G00DB21	2	187	24	5896	1.8	2029	2.56	148	50.6	6	< 3	25.51	1923	2	
G00DB22	1	38	121	28	19.5	32	1.77	24	0.4	10	< 3	25.51	343	24	
G00DB23	14	120	76	16	73.7	81	3.89	56	< .2	273	15	0.08	- 343 1458	6	
G99DR1	6	102	17	66	1.6	572	2.61	42	0.2	< 3	< 3	0.62	44	48860	
G99DR2	36	55	22342	53598	210.4	5042	1.01	747	522.6	32	4	24.3	15	105	
G00DR3	12	289	2511	4193	41.2	5691	1.52	4362	35.8	79	< 3	24.3	9	25108	
G00DR4	47	903	9037	10644	11.8	2270	1.36	113	123.1	7	< 3	11.08	11	15337	
G00DR5	4	16	106	76	1	66	0.81	25	0.9	< 3	< 3	0.14	356	368	
G00DR6	3	25	100	54	1.1	71	2.56	10	0.6	< 3	3	0.06	472	33	
G00DR7	2	44	54	23	8.1	67	2.26	34	<.2	25	< 3	0.08	233	10	
G00DR8	10	3891	27093	25285	41.2	3824	3.87	57	273	9	13	0.68	235 10	64	
								•	2.10	•	10	0.00	10	141	
ELEMENT	Мо	Cu	Pb	Zn	Ag	Mn	Fe	As	Cd	Sb	Bi	Са	Ba	Au**	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	gm/mt	
G00DB-24	0.5	14	2	35	0.9	1718	2.48	35	0.4	2.9	0.6	20.95	17	0.01	
G00DB-25	3.7	52	38	11	2.8	16	5.6	19	< .2	3.7	1.6	0.11	184	< .01	
												0.11		V I	
		•													
ELEMENT	Ag**	Au**													
SAMPLES		gm/mt													
G00DB5	272.4	297.93													
G00DB6	7.5	0.87													
G00DB23	71.5	46.39													
G99DR2	557.3	25.18													
G00DR3	41	13.97													
Drill cutting	e/ Soil e	omoloo													
ELEMENT	Mo	-	D h	* 7			_								
SAMPLES	ppm	Cu	Pb	Zn	Ag	Mn	Fe	As	Cd	Sb	Bi	Ca	Ba	Au**	
G00DL1	ррпі 1	ppm 42	ppm 412	ppm	ppm	ppm	%	ррт	ppm	ppm	ppm	%	ppm	ppb	
223649	3	42 326		55	3.6	61	2.52	20	0.3	9	< 3	0.03	414	42	
223650	3	320 54	261 21	33 160	7.7	150	5.72	20	< .2	< 3	< 3	0.01	285	139	
220000	J	94	21	169	1.4	2624	4.4	12	0.4	< 3	< 3	0.26	377	43	

Table 3 Sample Assay Summary

the second se

,

• •

.

٢

the group of the second second second second

1 · · · · · · · ·

Table 3 Sample Assay Summary

,

.

. .

×.

.

,

. .

· ·

、 ·

•

•

ELEMENT	Мо	Cu	Pb	Zn	Ag	Mn	Fe	As	Cd	Sb	Bi	Са	Ва	Au**
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ррЬ
G00BK1	119	821	6812	4244	8.7	2164	1.28	82	41	12	< 3	10.53	28	36
G00BK1	2	117	37	545	0.4	2001	4.58	18	3.1	< 3	< 3	2.95	37	5
G00BK3	2	217	28	94	< .3	1096	8.48	164	1	< 3	< 3	1.44	42	48
G00BK4	208	103	68	128	25.1	1521	2.34	71	1.7	7	< 3	14.5	7	24
G00BK5	7	19	79	5	2.9	37	1.97	17	< .2	< 3	< 3	0.08	463	4
G00BK6	2	745	655	4733	6.7	3438	4.22	15	32.6	< 3	< 3	2.21	113	12
G00BK7	4	10	6	34	< .3	386	1.44	13	< .2	< 3	< 3	5.83	5	20
G00BK8	<1	74	4	74	< 3	916	3.89	16	0.3	< 3	< 3	2.22	23	8
G00BK9	4	103	28	354	1.7	2436	4.85	10	1.6	< 3	< 3	2.94	42	7
G00BK10	3	184	11984	18195	7.6	4665	2.32	21	136.2	6	< 3	13.56	47	13
G00BK11	2	45	62	115	< .3	998	5.39	57	0.7	4	< 3	1.99	32	47
G00CM1	60	141	125	108	9.4	1940	4.59	48	1.1	6	< 3	4.94	25	402
G00CM2	2	42	12	131	< .3	886	4.78	8	0.2	< 3	< 3	1.36	43	9
G00CM3	1	16	12	15	< .3	266	1.45	5	< .2	< 3	< 3	0.05	160	5
G00CM4	5	38	71	5	11.5	30	2.12	36	< .2	16	4	0.02	1570	67
G00CM5	5	69	120	10	18.4	29	2.72	32	< .2	14	3	0.01	215	131
G00DB1	109	3899	9642	4601	33.5	541	1.9	1194	32.5	46	< 3	0.44	20	53
G00DB2	3	74	73	255	0.5	1323	4.22	73	1	4	< 3	2.07	40	29 16
G00DB3	8	99	123	913	1	1821	5.11	61	5.2	4	< 3	2.52	47	16 109
G00DB4	8	104	68	146	3.3	2309	5.8	767	2.5	7	< 3	8.24	25	999999
G00DB5	51	282	1516	589 9	245.5	2846	3.56	208	51	7	< 3	17.72	45	99999 824
G00DB6	15	161	195	285	6.7	1865	6.56	144	4.9	6	< 3	8.29	18 46	683
G00DB7	24	104	91	279	4.2	2091	5.98	156	2.7	5	< 3	9.4	16	70
G00DB8	12	507	825	450	3.7	3006	5.26	454	2.5	9	< 3	6.6	34 34	100
G00DB9	4	125	14	172	0.4	1727	5.7	502	1.4	16	< 3	1.04 6.4	33	9
G00DB10	8	119	3	63	< .3	1708	4.9	142	0.5	6	< 3	6.29	33 34	13
(E G00DB1	7	116	13	62	< .3	1668	4.8	138	0.3	6	< 3 < 3	10.55	30	47
G00DB11	79	187 9	4082	2135	10.9	2305	2.31	53	29.8	5	< 3 < 3	5.01	30 19	149
G00DB12	14	159	44	187	3.4	1585	5.48	106	4.3	4	< 3 < 3	0.51	33	425
G00DB13	126	171	43	298	16.5	868	6.02	516	3	9 < 3	< 3	1.26	43	39
G00DB14	3	33	4	26	1.9	281	1.71	50	< .2	< 3 < 3	< 3 < 3	0.82	43 66	8
G00DB15	9	31	11	29	0.4	206	1.98	53	0.2	-		0.53	52	15
G00DB16	2	17	7	27	0.3	258	1.03	3	< .2	< 3	< 3 < 3	0.53 2.47	26	14
G00DB17	1	52	17	171	0.5	1325	4.25	12	0.9	3 < 3	< 3	1.83	69	17
G00DB18	< 1	61	< 3	114	< .3	1182	4.29	8	0.8	< 3	₹ 0	1.00	QĐ	14

Table 3 Sample Assay Summary

ELEMENT	Мо	Cu	Pb	Zn	Ag	Mn	Fe	As	Cd	Sb	Bi	Са	Ba	w	Ga	Au**
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/mt
V00DB-1	1.4	314	< 2	109	0.4	756	6.79	< 1	0.2	< .5	< .5	1.12	284	1	13	< .01
V00DB-2	18.4	31	9	47	0.2	641	2.96	1	< .2	< .5	1	1.3	85	2	6	< .01
RE V00DB-2	15.4	30	10	47	0.3	649	2.97	1	< .2	< .5	0.8	1.31	86	2	6	< .01
V00DR-1	1.1	2477	10	163	13.8	1934	33.6	23	< .2	< .5	26.6	3.62	3	11	16	8.32
V00DR-2	2.8	3484	27	1324	22.2	4018	26.6	49	16.3	3.1	31	13. 9 9	3	37	18	0.85
V00DR-3	1.6	168	11	2117	0.7	7870	6.5	26	9.2	3.1	2.1	7.86	18	14	6	0.05
V00DR-4	5.8	420	14	2820	0.8	10656	8.32	13	18.6	4.5	7.2	7.86	26	31	6	0.01
V00DR-5	1.5	1731	10	138	6	2078	41.05	15	< .2	< .5	3.3	2.31	2	9	16	1.07
V00DR-6	4	245	10	79	1.3	770	6.48	32	< .2	< .5	4.3	0.47	72	2	8	0.4
V00DR-7	1.6	11	2	50	0.2	1275	1.41	2	< .2	2.6	< .5	5.7	26	< 1	4	< .01
V00BK-1	0.6	5271	16	7230	22.4	11053	9.2 9	11	56.8	4.4	16.1	15.52	11	9	9	0.5
V00BK-2	0.6	244	< 2	3886	0.8	5474	0.29	3	6.4	0.8	< .5	37.95	10	1	2	< .01
V00BK-3	1.2	10903	16	1571	66.4	3422	31.04	33	8.9	0.6	25.2	7.52	5	12	18	6.74
V008K-4	0.5	1633	12	1101	35.4	7116	21.37	44	8.5	1	32.7	7.62	17	18	16	1.4
V00BK-5	0.4	328	3	355	2.1	4412	27.22	28	1,1	0.7	0.5	7.98	6	10	13	0.67
V00BK-6	142.2	52142	27	119	38.9	584	10.62	< 1	3.8	< .5	< .5	0.73	43	1	5	0.82
VIP163-1 103-111ft	0.6	191	4	117	0.9	2302	0.87	3	0.9	1.9	3.2	32.82	6	<1	3	<.01

•

,

ELEMENT SAMPLES JC00DB-1 JC00DB-2 JC00DB-3	Mo ppm 5.8 5.9 2.3	Cu ppm 5 18 15	Pb ppm 8 16 20	Zn ppm 1 3 48	Ag ppm 0.3 0.4 1.2	Mn ppm 8 11 616	Fe % 0.43 1.06 1.78	As ppm 5 4 6	Cd ppm 0.2 < .2 0.2	Sb ppm 6.2 2.3 < .5	Bi ppm 0.5 7.4 < .5	Ca % < .01 0.09 0.09	Ba ppm 1236 1239 651	Ti % 0.001 0.001 0.002	Au** gm/mt 0.01 0.02 0.02
Canyon Cre P00CM-4 P00DB-7 P00DB-8	eek 3.6 2.6 21.2	27 10 127	7 8 29	74 38 135	0.2 0.1 0.5	429 445 770	2.57 4.14 3.03	4 12 5	< .2 < .2 0.2	< .5 < .5 < .5	< .5 < .5 < .5	0.31 2.27 0.34	56 112 74	0.005 0.102 0.111	0.04 0.02 0.02
Mex P00DB-9 P00DB-10 P00DB-11 P00DB-25	162.7 2.9 40.2 13.6	175 963 156 76	38 4 19 60	124 182 179 55	0.6 0.9 0.8 1.7	1018 895 1707 198	3.85 4.93 5.14 1.68	8 2 1 12	3.2 7.7 0.2 0.6	1.4 < .5 < .5 0.8	2.4 1.9 0.7 3.5	0.27 1.07 0.41 0.07	112 45 48 193	0.068 0.113 0.142 0.202	0.6 < .01 0.1 0.21

Table 3 Sample Assay Summary

۰.

.

.

•

•

•

4

•

× / / / / / /

1

1

Table 4 Geological Abreviations

РУ	pyrite
ро	pyrrhotite
ср	chalcopyrite
bo	bornite
00	chalcocite

sulphides

cc	chalcocite
Ncu	native copper
gi	galena
sp	sphalerite
tet	tetrahedrite
Oxide	
mag	magnetite
FeOx	iron oxides
lim	limonite
geot	goethite
jar	jarosite
Alteration	
chl	chlorite
ep	epidote
са	calcite
ser/s	sericite
ga	garnet
diop	diopside
2-k/k-feid	k-feldspar
2-b	biotite
qtz/Q	qu artz
skam	ga-ep-diop-mag

Rock Names	
V	Volcanic
tf/T	Tuff
А	Andesite
В	Basalt
Da	Dacite
Rhy	Rhyolite
int	intrusive
Gd	granodiorite
Mz	monzonite
MzD	monzodiorite
Gr	granite
D	Diorite
Gb	Gabbro
Px	Pyroxinite
Textures	
Trachy/Tro	•
Het	heterolithic
lith	lithic
Bx	Breccia
x	crystal
Р	porphyry
Metals	
Мо	molybdenum
Cu	copper
Pb	lead
Zn	zinc
Ba	barium
Sb	antimony
Ag	silver
Au	gold

Rock Minerals

А	Augite
F	Feldpsar
н	Homblende
Bi	Biotite
plag	plagioclase
orth	orthoclase
Q	quartz
Qualifiers	
wk	weak
tr	trace
mod	moderate
str	strong
msv	massive
£	fine areined

fg	fine grained
mg	medium grained
cg	coarse grained
vug	open space fill
cks	cockscombe
bld	bladed
Stuctures	
vn	vein
frct	fracture
fit	fault
Colors	
grn	gr een
blk	black
gry	grey
wh	white
or	orange
-	

pink

blue

pk bl

Standard Metals Exploration Ltd.

Table 5 Statement of costs

Time of Work

e - 1

.

-

× .

•

r .

. ,

•

.

٠

-

•

,

. ,

.

.

.

-

•

•

•

•

v

July 6 to December 17 2000

PREPARATION/PLA	NNING	DAYS	\$/DAY	LUMP \$	TOTAL
D. Blann, P.Eng., Geo		5	\$450.00	-	\$2,250.00
D. Ridley- Prospector		8	\$265.00		\$2,120.00
				GST	\$305.90
EXPENSES					
	additional 99	Report Reproc	ductions	178.26	\$178.26
	Fed-Ex/ Posta	sge		148.87	\$148.87
	Map reproduc	tions		\$349.50	\$349.50
MOB/DEMOB		DAYS	\$/DAY		
D. Blann, P.Eng., Ger	Vsupervision	5	\$450.00		\$2,250.00
D. Ridley- Prospector	•	4	\$265.00		\$1,060.00
Darin Black- field tech	ı	4	\$175.00		\$700.00
Cam Matheson -field	tech	5	\$175.00		\$875.00
				GST	\$341.95
Accomodations		18	\$65.00		\$1,170.00
		DAVE	ይጠልሃ		
FIELD WORK	alla, maa inina	<u>DAYS</u> 15	<u>\$/DAY</u> \$450.00		\$6,750.00
D. Blann, P.Eng., Ger D. Bidley, Presporter	-	15	\$450.00		\$3,975.00 \$3,975.00
D. Ridley- Prospector Darin Black- field tech					\$2,625.00
	•	15 15	\$175.00 \$175.00		\$2,625.00
Cam Mathesonfield I	lech	10	\$175.00		\$2,023.00
				GST	\$1,118.25
FIELD SUPPORT		~~	F 40 00		#0. 400 00
Accomodations +food		60	\$40.00	eo coo 70	\$2,400.00
Truck+trailer	f350cc			\$2,622.70	\$2,622.70
Truck+ATV				\$1,500.00	\$1,500.00
Trucks gas				\$1,075.00	\$1,075.00
Sat phone+data port		2	\$750.00		\$1,500.00
Sat ph-airtime		425	\$1.00		\$425.00
Field Supplies- Safety			np equip	\$3,410.49	\$3,410.49
microscope, GPS, ca			* ** ***	\$800.00	\$800.00
progr. Field radios	4	25	\$8.00		\$800.00
Shipping Smithers exp	pediting			\$177.49	\$177.49
Fax/mail/phone				\$200.00	\$200.00
Canadian Helicopter	<u>15</u>			\$1,732.07	\$1,732.07
Assays+storage	rock	95	\$20.00		\$1,900.00
	silt	3	\$20.00		\$60.00
Other					
Pine Zone Drillhole an	d geochem data i	management o	on Gemcom ar	nd AutoCad Softv	vare
D.Blann, P.Eng.	-	6	\$450.00		\$2,700.00
J. Melnyk, Mining Eng	ineer-hrs	48	\$60.00		\$2,880.00
, <u> </u>				GST	\$390.60
Lloyd Geophysics Ltd	- I.P. Ir	versions-Pine	Zone	\$2,675.00	\$2,675.00
Computer					\$395.88
Report and Reproduc	tions			\$6,500.00	\$6,500.00
				SUBTOTAL:	\$62,986.96
				10%mgt	\$6,298.70
				TOTAL:	
				TUTAL:	\$69,285.66

FIGURES

-

.

۳ 、

- - -

.

.

.

.

.

-

.

.

,

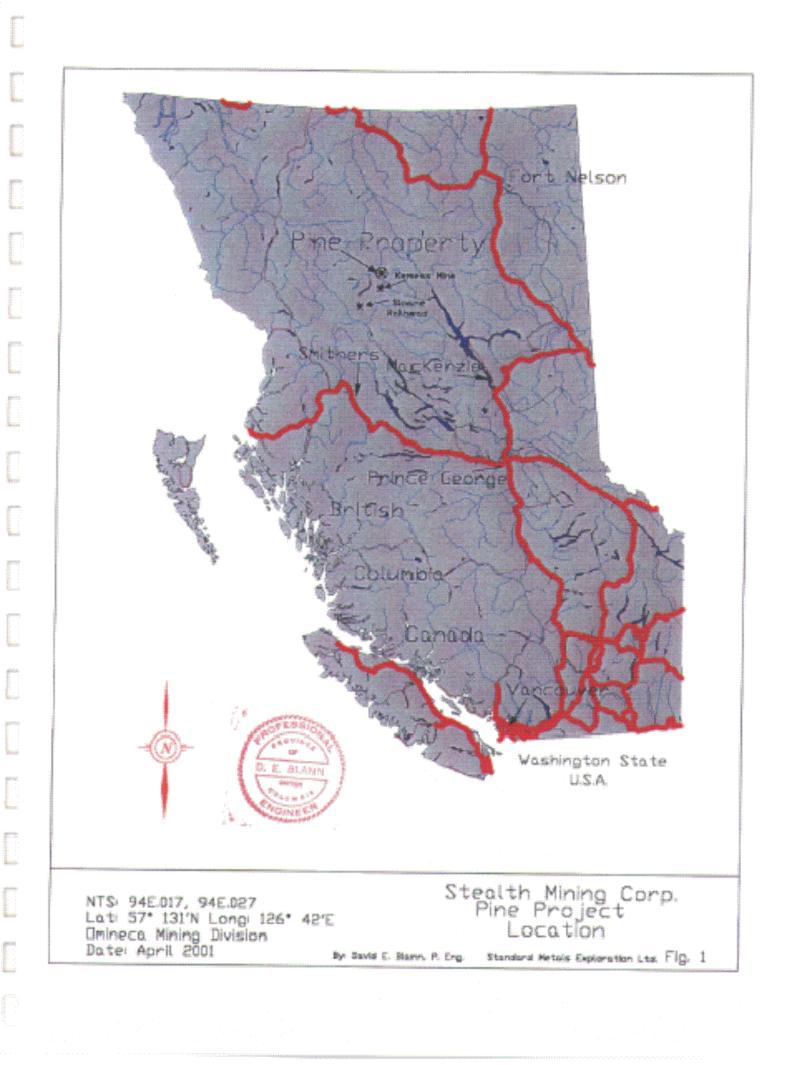
.

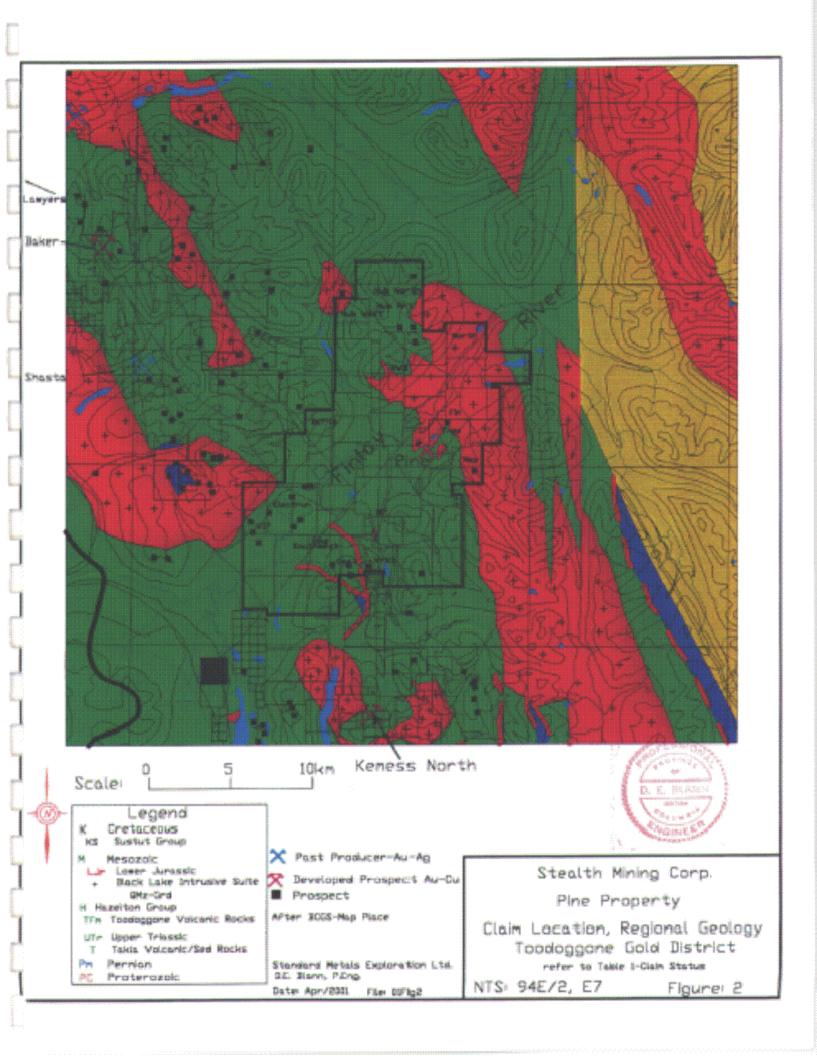
.

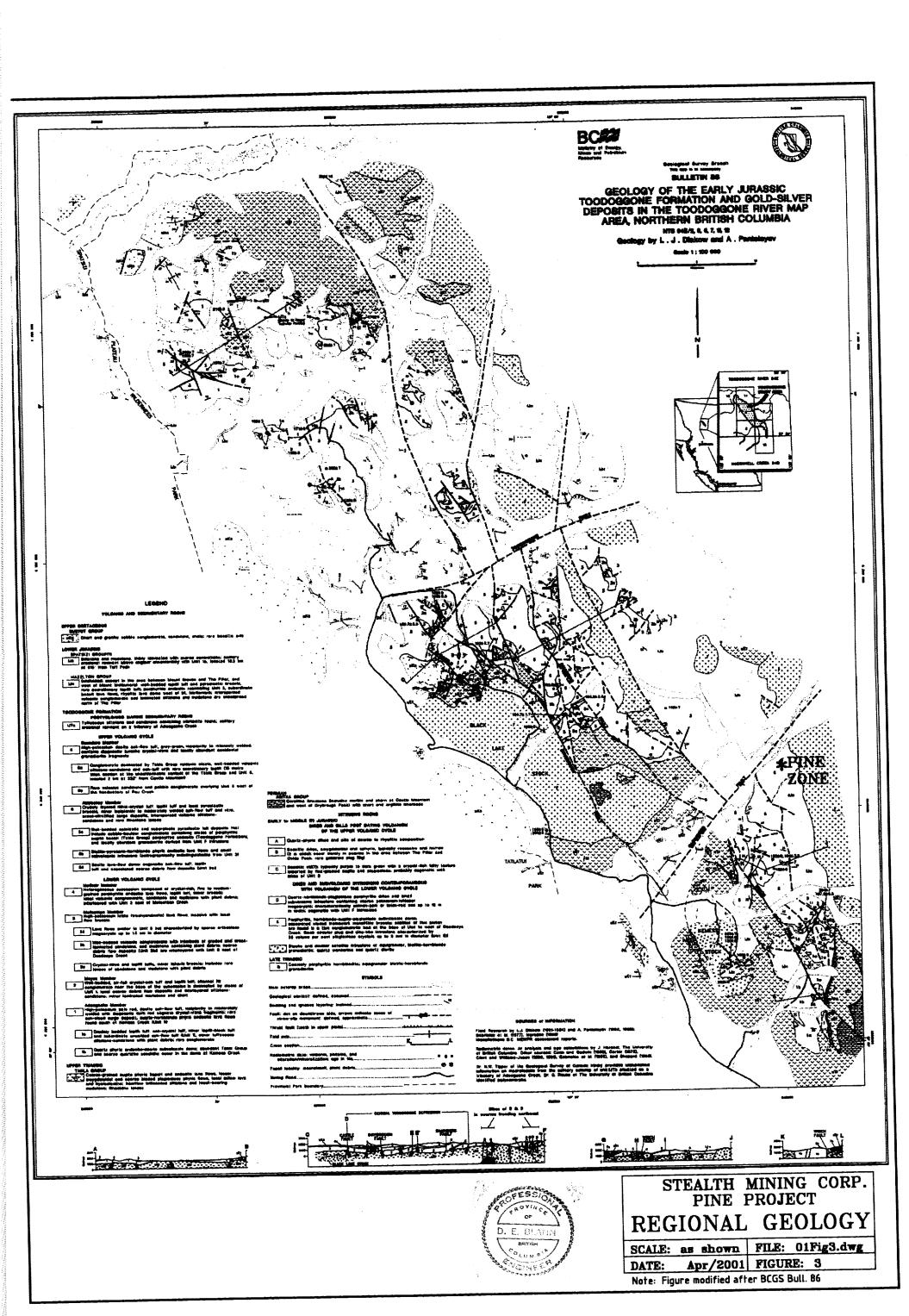
,

Þ

÷

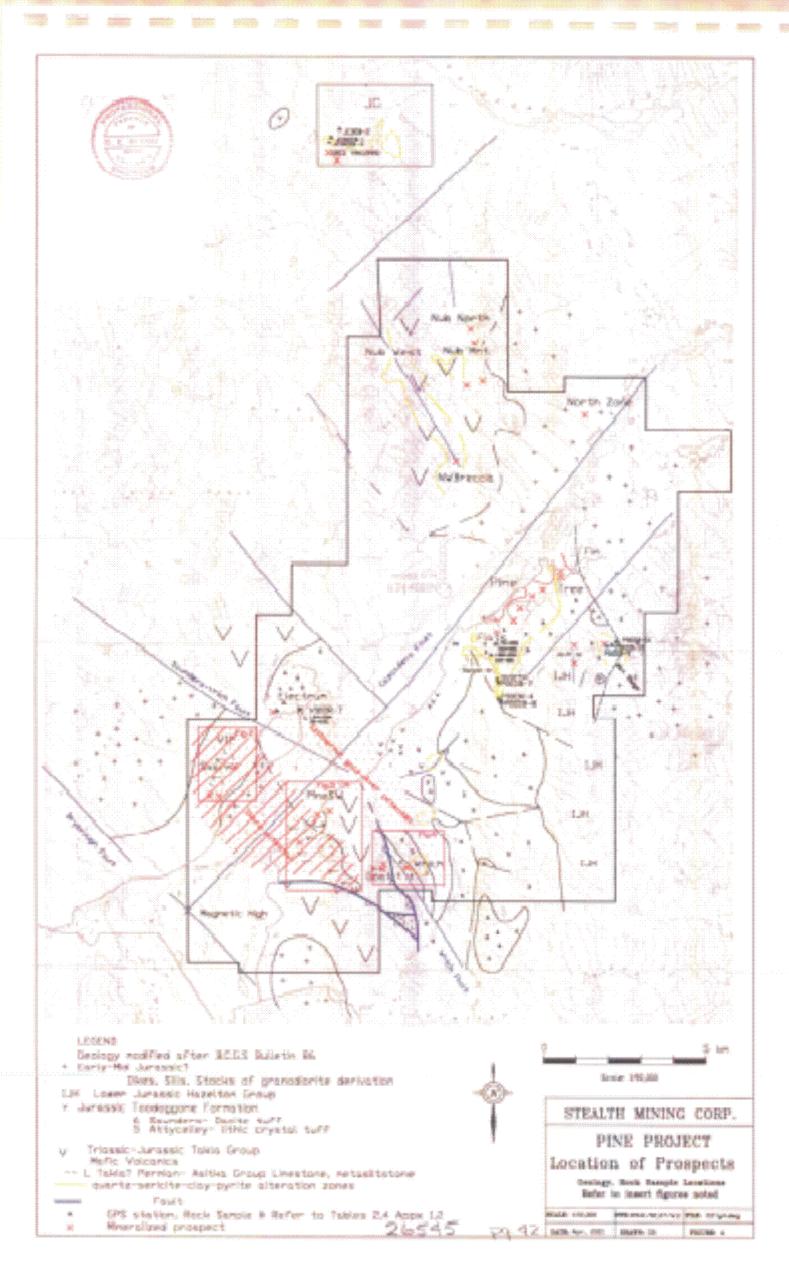

.

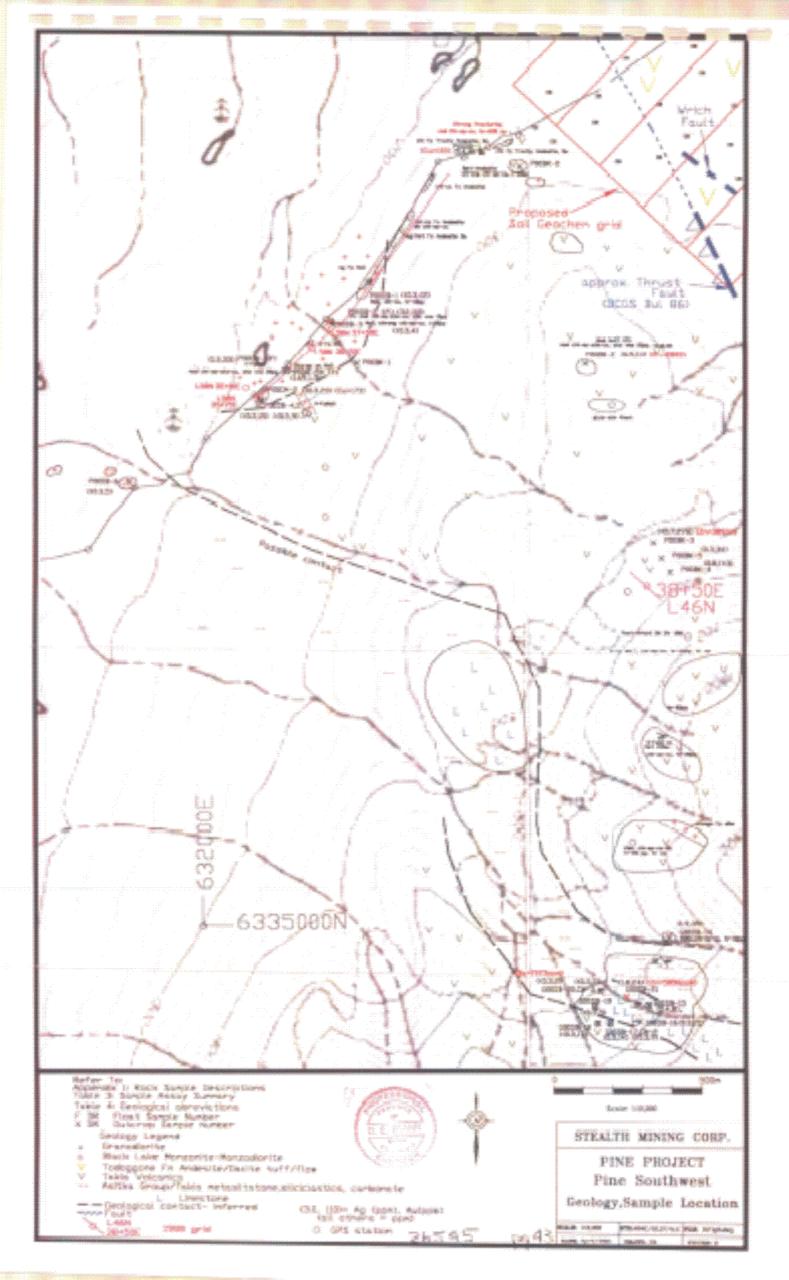

,

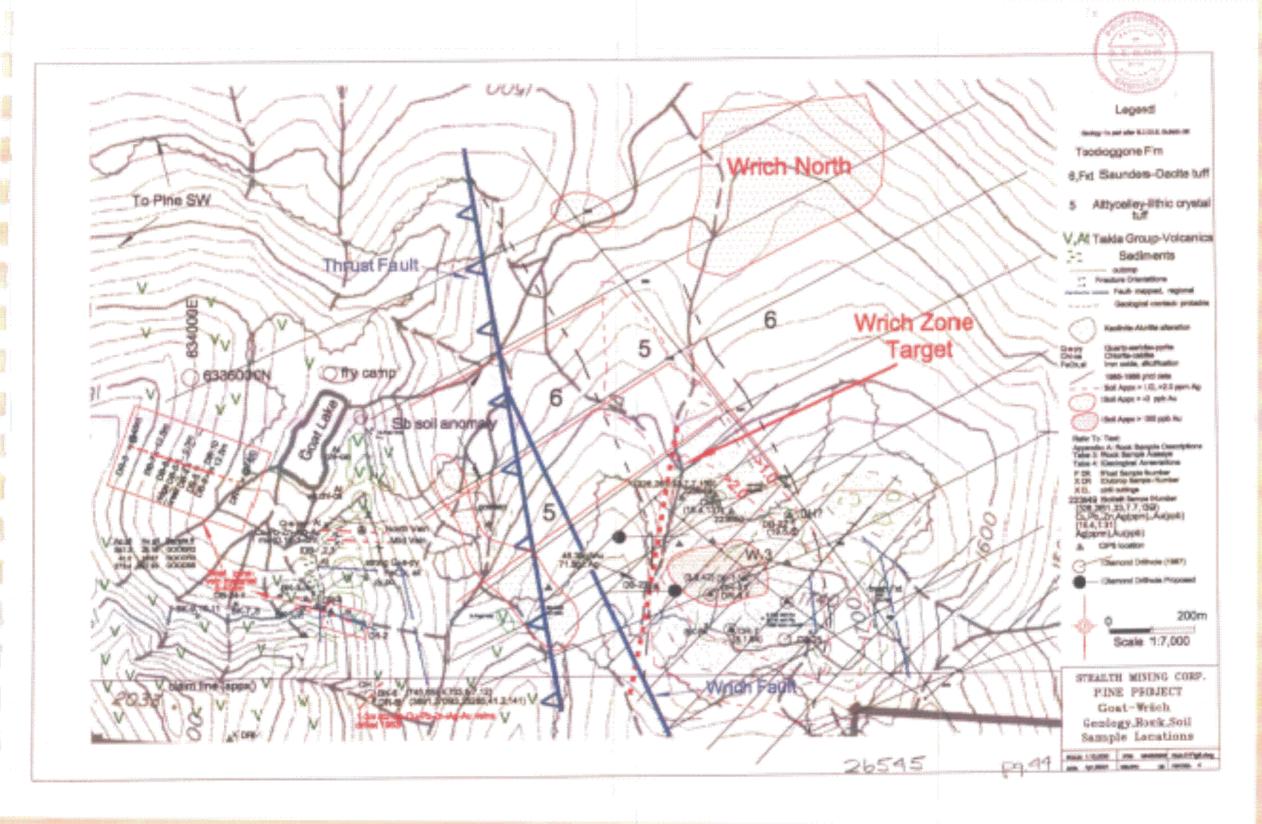

•

•

٠




2----


B. . . .

.

.

APPENDICES

- ·

- -

÷ -

٠

. .

*

. -

٠

.

.

.

					Roc	k Sa	ami	ple	Des	зсгі	iptio	on S	She	et									
Area:	Goat																						
Sampled b	y: D. Ridley, D. Black																						
Date: July	28, 2000			RH Rule																1			
				Az/Dip										Alt	eratio	лS	cale	1-5					
Sample Number	Comments	Rock Code	Rock Type	Structure	Chip m/sq.m	Grab Kg.	% Ру	% Ср	% Sp	% Gl	% Qvn	% Mag	% Hem	Ser	K Feld	Ca	Сы	Ep	Clay	Au ppb/g	Ag ppm/g	Cu ppm/%	Zn ppm/%
G00DR-1	634086, 6335132 N	Qvn	V	145/50	0.25	1.0	1.0	tr	-		90	-	-	2	-	3	2	3	-				
Quartz-epi	dote-calcite+pyrite stockwork v	veins. Pi	opylitic	andesite	e waliro	ocks.															<u></u>		
G00DR-2		Qvn	V	190/60	0.17	2.0	0.2	-	5.0	5.0	90	-	-	1	_	5	1	2	-				
Massive o	barse-bladed calcite, vuggy qui	artz, with) galena	, honey :	sphale	rite. V	√ein	brec	cia.														
G00DR-3	Black vein 50 m W of ridge.	Qvn	V	100/60	0.12	1.5	1.0	tr	1.0	1.0	90	-	-	1	-	5	1	2	-				
Massive-c	oarse calcite, minor quartz. Te	ennantite	? Copp	er-arsen	ic?, +	spale	rite, ·	galer	na. N	lore	silici	fied (han	DR-2	2.								
G00DR-4	Black vein 90 m W of ridge.	Qvn	V	080/60	0.10	1.5	0.5	0.3	2.0	2.0	90	+	-	-	-	5	1	2	-				
Vein is 0.5	i m wide, 10 cm sampled of hig	<u>ah sulphi</u>	de. Ma	ssive coa	arse ca	lcite ,	wea	k sili d	cifica	tion.	Not	e gol	d m	ay be	e in d	lffer	ent p	art c	f vei	n not s	ampled		
K-feldspar	veins in adjacent andesite.																	-					
G00DR-5	635302, 6335511 N.	Daxt	V	-	0.15	2.0	-	-	-	-	0.1	-	3	1	-	-	-	-	3				
Pervasive	clay-alunite?-hematite breccia	matrix v	with volc	anic fraç	gment	s. No	te ba	arium	, silv	er, g	jold.												
			,		T	r	T			r		r		-	_		—	T	1				
G00DR-6	At DR-5	DaxLit	V	-	-	2.0	-	-	-	-	<u> -</u>	-	3	2	-	-	-	1	3				
Grey-purp	le massive, fine grained, felds	par cryst	al lithic t	tuff. Ma	uve he	matit	e ma	atrix.	Note	e bar	rium,	lead	, silv	er.									
G00DR-7	635270, 6335391 N.	DaxLit	v	-	-	2.0																	
	DR-5, minor quartz veins, 1 m	m. Note	barium	, silver (i	8.1 pp	m), go	old, a	antim	ony.														

Rock Sample Description Sheet

Area:	Goat																						
Sampled b	y: D. Ridley, D. Black																						
Date: July	28, 2000			RH Rule										Δ.H.	eratio	n S	calo	1_5	_	1			
		<u> </u>		Az/Dip						A /		04	0/	7410		n o		T I		Au	A	Cu	Źn
Sample	Comments	Rock	Rock	Structure 1	Chip	Grab	%	%	%	%		% Mag	% ਮ	Cor	K Feld	Ca	Сы				1 - 1		
Number		Code	Туре	000/00	m/æq.m	Kg.	Ру	Cp				may											
G00DR-8	Old drill site.	Qvn	V		1.5	3.0	1.0	1.0	5.0	5.0	90	-	1	2	-	3	-		-	<u> </u>			l
Vein south	of old camp 200 m at 1720 m	elev. M	assive,	quartz-c	alcite	breccia	a, vu	iggy,	chal	cede	xny.	.											
YOIT SOUT																							
			· · ·	1	T												T						
G00DL-1			<u> </u>	<u> </u>					<u> </u>		L				_								
Grab of dr	ill fines from around collar. Ye	llow-bro	wn clay	altered t	uff. N	ote ba	rium	n, lea	d, ar	time	ny, s	alver,	gol	<u>a.</u>									
							_	_								1	-	—				T	
G00BK-1	65 m, 247° from ridge crest	Qvn	V	-	0.47	2.5	0.5	1.0	1.0	1.0	90	-	-	2	-	5	1	·	<u> </u>				
										-													÷
20 m E of	DR-4. Massive, quartz-calcite			<u> </u>																			
		T	1			<u>т</u>	1	1		I	Т			1	T	1	T	Т			T	T	Ţ
G008K-2									1	1			1								_	<u></u>	<u> </u>
Chip of w	allrock 1.0 m.																						
		A	V	_	1.0	2.0	5	T.	Τ.	-	-	-	-	3	T.	1	2	2	2	,			
	50 m N of DR-4.	-L					-								-	•						-	
Pale gree	n, rusty weathering, andesite.	5% diss	eminate	d and w	eak ve	ins of	pyri	le	•														
								-1		-						-	_	-				—	— —
GOOBK-4	Float, 4 m E of BK-3	Qvn	V	-	-	1.0	tr	· -	-	-	90) -	<u> </u>	2	-	5	5 _ 1		1	·			
								_															
Massive,	coarse calcite breccia vein 20	<u>un.</u>																					
									Τ	- 1	T	Т	2		T	Τ.				5			
G00BK-		Daxt		360								1-	_					_ 1		<u> </u>			
Intense p	ervasive clay-alunite? + weak	silicificat	tion. Br	eccia wi	th lime	nite?	Geo	thite.	No	e ba	rium	silve	er (2.	9 pp	m).						<u></u>		

					Roc	k Sa	am	ple	Des	scri	ipti	on (She	et									
Area:	Goat]									-												
	y: D. Ridley, D. Black																						
Date: July	28, 2000			RH Rule																			
				Az/Dip										Alt	erati	on S	cale	1-5				_	_
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%		к					Au	Aq	Cu	Zn
Number		Code	Туре	000/00	m/aq.m	Kg.	Ру	Ср	Sp	Gł	Qvn	Mag	Hem	Ser	Feld	Ca	Chi	Ερ	Clay	ppb/g	ppm/g	ррт/%	ppm/%
G00BK-6	At DR-8	Qvn	V	220	1.0	2.0	1.0	1.0	1.0	0.05	90	-	~	2		2	1	1	1				
Vuggy, qu	artz veins, breccia up to 6 m v	wide. Not	e minor	calcite.																			
	-																						
G00BK-7	15 m SW of Black vein.	Qvn	V	124/50	0.08	1.0	1.0	-	-	-	90	-	-	1	-	3	1	1	-				
Massive c	= alcite <u>+</u> quartz vein.																						
															<u></u>								
G00BK-8	Wallrock of BK-7	A	v	-	1.5	2.5	1.0	-	-	-	1.0	-	-	1	-	2	1	1	-				
									.		.				8						L	<u> </u>	
·																		<u></u>					
G00BK-9	Black vein wallrock.	A	V	-	1.0	2.0	2	tr	tr	-	-	-	1	3	-	3	1	2	-				
	n, fine grained crystal tuff. Pe	n/asive s	ericite-e	nidate-m	vrite '	Trace				silve		Id 3			34° tr) sta	tion	6342	62. F	33538	5 N	<u> </u>	
i dio groci	, mic granica orystal tan. Te				1760.					01.10	<u>, g</u> o	10. 0			<u> </u>	010							
GOORIC 40	Adjacent to BK-9	Qvn	V		0.30	2.5	20	4.7	20	40	70			3			2	2					
		-		1	0.00	2.0	2.0	u	2.0	[-4.0	17.0			5	-	-	14		1 -			<u> </u>	<u> </u>
Quartz-cal	cite vein breccia with propylit	ic andesit	e fragm	ents.												·	<u> </u>						
		_	r		1		T		T		T				r	1	<u> </u>	-		T			
G00BK-11	84 m at 234° to station.	A	V	248/50	0.12	2.0	3.0	-	-	-	-	1	-	3	-	1	2	1	-				
Pale green	n, fine grained, massive felds	par tuff. F	Pervasiv	e sericite	e, 1-39	% diss	emir	nated	l and	frac	ture-	filled	, руг	ite. 1	Vote	trac	e zir	ic an	d gol	d.			
				- ••																			
			I										-	ľ								T	
			I							.			•				4	.				*	
·····															<u></u>								

na sense in a sense sense and a sense and a sense sense in the sense of the sense of the sense of the sense of The sense in the sense of the sense

														N	-	-	*	۲.	•	•	•	۲.	*	۲	•
•)	•	۰.	(۲	•	,					-						í						4	
	1								-		,														

Агеа:	Goat																						
Sampled by	y: D. Blann, C. Matheson																						
Date: July	29, 2000			RH Rule																			
				Az/Dip										Alt	eratio	n S	cale	1-5					
Sample Number	Comments	Rock Code	Rock Type	Structure 000/00	Chip m/aq.m	Grab Kg.	% Ру	% Ср	% Sp	% Gi	% Qvn	% Mag	% Hem	Ser	K Føld	Ca	Chi	Έρ	Clay	Au ppb/g	Ag ppm/g	Cu ppm/%	Zn ppm/%
G00DB-1	Mid vein area.	Qvn	V	250/70	0.10	2.0	1	-	-	•	75	_	1	3	1	3	3	3	1				
Several ve	ins present over 10 metres. S	ample of	i one ve	in.																			
																		_					
G00DB-2	South side of vein DB-1.	At	V	-	1.0	2.0	3	0.1	-	÷	2	-	1	3	1	1	3	3	1				
Wallrock to	DB-1.				,																		
												_					_		-				
G00DB-3	North side of vein DB-1.	At	V	-	1.0	2.0	3	0.4	-	-	2	-	1	3	1	1	3	3	1				
Wallrock to	DB-1.																						
																					_		
G00DB-4	At Black vein (South wall).	Ca vn	V	080/90	0.40	2.0	0.5	-	-	-	25	-	-	3	1	5	3	3	1				
Photo. 10	cm quartz-calcite vein, vuggy,	, banded	, 3-4 sta	ige quari	z-calc	xite.																	
									_					-					1		.		1
G00DB-5	15 cm Qvn+45 cm wallrock.	Qvn	V	080/90	0.60	2.0	0.1	0.1	0.5	0.5	25	-	1	3	1	3	3	3	2				
3-4 stage	vein with galena, sphalerite, ch	alcopyri	te+pyrite	e. Vuggy	y quar	tz-calc	ite v	/ein b	precc	ia in	qua	rtz-se	ricit	e-da	у-руг	ite, I	imor	ite f	ault (jouge.			
																					_		
G00DB-6	3.5 m W of DB-5	Qvn	v	090/70	1.0	3.0	1.0	0.1	0.1	0.1	20	-	1	3	1	4	3	2	3				
Quartz-ser	ricite-clay-pyrite fault with quar	tz-calcite	e vein b	reccia (1	2 cm)	, trace	mai	lachii	e.		····												<u></u>
																						_	_
G00DB-7	5 m W of DB-6	Qvns	v	090/65	5 3.0	3.0	1	0.1	0.1	0.1	10	-	2	3	1	3	3	2	3				
Chip over	3.3 m (horizontal). 3 vines 10	cm and	numero	us stock	work	stringe	rs. (340/9	90°, z	one	may	be h	orse	tailin	g.								

•

Area:	Goat	7			Ro	ck S	am	ple	De	scr	ipti	on	She	eet									
	by: D. Blann, C. Matheson	4																					
	y 29, 2000	-		RH Rule																			
_				Az/Dip																1			
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%	Alt	eratio	on S	cale	1-5		 	T		
Number		Code	Туре		m/sq.m		Py	1		GI		Mag		Ser	K. Feld	C a	Chi	Ер		Au	Ag	Cu	Zn
G00DB-8	5 m E of DB-4	SHR	V	065/70	1.0	3.0	1	1	0.1	0.1	5		4	3					Clay	ppb/g	ppm/g	ppm/%	ppm/%
Downslop	e. 50 cm shear zone with 5 cr	nvein V	Vallrock	monuliti										3	-	3	3	3	3	Ĺ			L
				роруна	струп	ite. vv	eak	quan	IZ-Ca	CITO	string	gers.											
G00DB-9	5 m E of DB-8.	Shr	V	065/70	1.0	2.0	10							-				_	 _				
Down hill i					1				-	-	3	-	1	3	-	2	3	3	4				L
	n ravine. 1 m shear with 10 c	m ciay-iin	nonne g	ouge. M	linor c	alcite	quar	tz ve	<u>in.</u> Z	one	tracl	ked a	furtl	her 2	5 m (to E	dowr	n hill	<u>. Rid</u>	<u>llêy sar</u>	ne.		
C0008 40				<u></u>											_								
	2 m N of DB-8.	QCavn	V	150/80		2.5		0.1	-	-	20	-	+	3	-	5	3	3	2				
Chip of 10	cm vein + 90 cm wallrock. A	ndesite tu	ff propy	litic shea	ered, v	weak q	uart	z-caio	<u>cite v</u>	eins	, stoc	kwor	k.										
												<u></u>	*				·			<u> </u>			
G00DB-11	5 m W, down from DB-6.	Qvn	v	090/90	0.40	2.5	2	0.5	0.3	01	50		2	3			3	3		—			
20 cm qua	rtz vein with chlorite-epidote-p	vrite-calc	ite-clav	andesite	tuff u	valless							-		-	-	3	3	4				
							<u>n. v</u>		OIIOW	s sne	sar.												
G00DB-12	15 m W of DB-11.	Qvn	v	360/90	1.0	2.0	2.0	~ 1										_		<u> </u>			
			-						0.1		2	1	1	3	-	3	2	1	2				
	 Fine grained heterolithic se 	aimentan	/ Drecci	a. Feisic	-cherl	t fragn	nents	s, que	artz-c	alcit	e vei	nlets.	•										
						_																	
	10 m NW of DB-11.	Qvn	V	360/80		2.5		-	-	-	5	-	2	3	-	4	3	3	3				
Chips of qu	artz vein (10 cm) and wallrock	k. Propyli	tic ande	esite tuff.	Clay	-shear	r/faul	it gou	ige w	<i>i</i> ith q	uartz	:-caic	ite s	tock	work/	vein	s into) wai	lirocł	(.			
											_				**		*****						
300CM-1	25 m SW of DB-12.	At	V	360/70	2.5	3.0	2	0.1	_	_]	5	_	1	3		3	3	2	ᡜ				
Chip of 2 b	y 3 m outcrop of propylitic fels	ic andesi	e tuff. c	uartz+~	licite v	veine «	-	toolo	and a	ahe		میں ا ا	<u> </u>			5.1	3	2	_' 1				
									WILLI K	SIG	aring	moo	erat	e-str	ong.					<u> </u>			[
						_					_												

•

· •

:

.

1

• • ·

•

					-				_														
Area:	Goat	1			KO	ck S	am	pie	De	SCI	ipti	on	Sh	eet									
	y: D. Blann, C. Matheson	1																					
Date: July				RH Rule																			
				Az/Dip										Alt	erati	on S	cale	1-5		1			
Sample Number	Comments	Rock Code	Rock Type	Structure 000/00	Chip m/ng.m	Grab Kg.		1	%	%	%	%	%		к			-		Au	Ag	Cu	Zn
	W trav. At 1790 m elev.	SilC	V=	-	-	1.0	Ру 0.5		Sp -	GI -	um 10	Mag	Hem	Ser 2	Feld	Ca 1	Chi 1	Ер 1	Clay	ppb/g	ppm/g	ppm/%	ppm/%
Float of sili	iciclastic, carbonate well fractu	red with	trace py	rite.						L.						<u> </u>	<u> </u>						
						·····					<u></u>												
G00DB-15	633670, 6334720 N.	Sed	SedBx	270/30	1.0	2.0	1.0	0.1	-	-	_	_	2	3	-	4	2	3	-				
In next ravi	ine. Bedded quartz-travertine	-chert?	Limestor	ne brecci	a/qua																• 		
																						-	
G00DB-16	633626, 6334660 N.	Sed	=, Lst	-	ŀ	1.0	1.0	-	-	-	-	-	1	2	-	5	1	2	1				
Grab of out	tcrop near lunch spot. Quartz	pebble k	preccia in	n limesto	ne.												•						
	·																						
G00DB-17	633541, 6334659 N.	At	V	-	0.5	2.0	0.5	0.3		-	-	3	1	3	1	4	3	3	1				
Andesite-fe	eldspar crystal tuff, quartz-eye	porphyry	. Chiori	ite-epido	te <u>+</u> cal	lcite, s	erici	te-m	agne	tite.	Ругі	te, t	race	chak	COPY	rite.	•						
																		_					
G00CM-2		At	V	-	0.5	2.0	3.0	0.3	-	-	-	3	1	3	1	4	3	3	1				
As above.	· · · · · · · · · · · · · · · · · · ·																						
G00DB-18	633497, 6334659 N.	At	V	320/45	2.0	2.0	2.0	0.2	-	-	-	5	÷	3	1	2	3	3	1				
Andesite fe	Idspar crystal lithic tuff. Stron	g propyli	tic, shea	ared volc	anic t	uff.																	
G00DB-19	633490, 6334715 N.	Sed	*	260/50	3.0	3.0	0.1	-	-	-	-	-	-	2	-	4	-	-	-				
Quartz and	limestone bands to 30 cm. A	pprox. 1	5-20+ m	true wid	th.																		
																						<u> </u>	

					Roc	ck Sa	am	ple	De	SCL	ipti	on	Sh	eet									
Area:	Goat							•			-												
	y: D. Blann, C. Matheson	l																					
Date: July	29, 2000	l i		RH Rule																			
				Az/Dip										Alt	erati(on S	Scale	1-5					
Sample	Comments	Rock	Rock	Sinucium	Chip	Grab	%	%	%	%		%	%	[к		T		Ī	Au	٨g	Cu	Zn
Number		Code	Туре	000/00	m/sq.m	Kg.	Ру	Ср	Sp	GI	Qvn	Mag	Hem	Ser	Feld	Ca	Chi	Εp	Clay	ppb/g	ppm/g	ppm/%	ppm/%
G00DB-20	10 m above CM-3	Sed	=	270/50	4.0	2.0	0.1	-		<u> </u>	?	-	1	1	-	1	<u> </u>		2			<u> </u>	
Pink-purple	e quartz cryptocrystalline quart	z bande	d/lamina	ited 15 ti	mes v	vith se	ricite	<u>-chk</u>	orite-	pyrit	ie (vc	Jcan	ic?)	partir	igs.	Stro	ng in	on-o	xide,	limonit	ie?		
				<u></u>																			
G00CM-3	633510, 6334770 N.	Sed	=	270/50	1.0	1.0	1.0	-	-	-	?	-	2	3	-	1	1		2				
Grev-white	-cream quartz highly fractured	limonite	a fill.	<u>4</u>				<u> </u>			<u> </u>		<u> </u>	<u> </u>		<u></u>	<u></u>	<u> </u>	<u></u>	<u>*</u>			
	<u></u>					<u> </u>			****					<u></u>						•••••			
G00DB-21	At 1710 m elev.	Lst	Lst	_	-	2.0	2	Γ.		—	1	_	1	Γ.	-	(5)	1	2	1		Γ		
	bove CM-3. Limestone with bia	eck obvi/	lite adjar	cent.	<u>.</u>	<u> </u>		4	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	4	1 1-7	<u> </u>	<u></u>	4	L	<u></u>		
		<u> </u>	no aajaa	AGIN.															<u></u>	. <u></u>		<u></u>	
G00DB-22	Float. 635411, 6335659 N.	Dat	v	-	-	1.0	0.5	_	-	_	3	-	. 3	3	_	-	-	1	3				
Quartz-ser	ricite-calcite. Dacite tuff brecci	a. Perv	asive sil	iceous a	nd vei	in brec	ccia.																
					,			<u> </u>				<u></u>	<u>ali</u>									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
G00CM-4	50 m W of DB-22.	Dat	V	<u> </u>		1.0	0.5	·[_	_	5		3	3	<u> </u>	_	Ι	<u> </u>	2			<u> </u>	
Float. Irric	descent blue-red-purple-green a	along lin	nonite?-	aeothite-	-clav-()	alunite		actu	res.	Wel	l brev	cciate	ad ar	nd sil	iceol	us br	eccia	a. we	ak q	uartz vi	eining.		
223650	Soil/talus.			Τ	T	T	T	Τ	Τ	Γ	T	Γ	Γ	Γ	Γ	Γ	Τ	Τ	T		1		
	"N" drillhole. Depth 30 cm, we	et oranov	-brown/	tan We		et ba		f Wri	ich kr				4							<u> </u>		<u> </u>	
	N Uninter Departed on, no	it or ongo		(QII). 775	1 0000		86	1 1 111		<u></u>		<u></u>										<u></u>	
GOOCM-5	Float. 635236, 6335711 N.	Dat	v	—	Τ-	1.0	1.0	Π_	Γ_	-	5	Τ.	2	3	Τ_	Γ.	Τ-	Ţ.	3		T	Ţ	
		<u>.</u>	erroto oll			<u> </u>		-	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-					<u> </u>	<u> </u>
MUCCEI alte-:	strong quartz-sericite-clay-pyrit	<u>e. Mode</u>	state sm	cincalio	<u>l.</u>			<u></u>															

,

7

j

ł

۰.

2

١.

.

Page 7

-

.

Δ.

S = -r

Ŋ,

.

Rock Sample Description Sheet

	Goat																						
Sampled by	r: D. Blann, C. Matheson																						
Date: July	29, 2000			RH Rule									1	Alé	eratio		colo	1.5					
			<u></u>	Az/Dip	1.								A /	AIG		¢ nc	Cale	1-5	-	Au	Ag	Cu	Zn
Sample Number	Comments	Rock Code	Rock Type	Structure 000/00	Chip m/sq.m	Grab Kg	% Py	% Ср	% Sp	% GI		% Mag	% Hem	Ser	K Feld	Са	Chi	1	Clary			ррпт/%	
	Subcrop. 635096, 6335492.	Dat	V	-	-	1.0	1.0		-	-	5	-	3	3	-	1	2	2	3				
Quartz-seri	cite-clay-pyrite. Wallrock with	<u>13 cm st</u>	ear/bree	xia. Str	rong li	monite	-geo	othite	, bo)	wor	k, sili	ica fle	oodii	ng, re	eplac	eme	nt.						<u></u>
												r					T	1			T.		
G00DB-25		Dat	V	360	2.0	-	-	-	-	-	-	-	3	3	-	-	-	1	4			I	L
Intense sei	ricite-clay+alunite breccia with	hematite	e matrix.																			<u>.</u>	
					-		1				_	1	1		-		T	1		1	<u> </u>		
223649	Soil. 635156, 6335705 N.																				<u> </u>		<u> </u>
40 cm dep	th. East side of N/S ravine.																						
										-		<u>.</u>	1		T	1		T		1	<u> </u>	1	
												- 1.	<u> </u>					-		<u> </u>		1	
														•									
										_						<u> </u>				- <u>1</u>		1	
																		_		<u> </u>			
		••••••••••••••••••••••••••••••••••••••																					
																<u> </u>		- 1		T		1	
																							<u> </u>
											_												

					Roc	k Sa	amp	ple	Des	scri	iptic	on S	She	et									
Area:	VIP]																					
Sampled b	y: D. Ridley, D. Black]																					
Date: Aug	ust, 2000]		RH Rule																			
				Az/Dip								1	_	Alt	_	on S	cale	1-5				-	
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%		ĸ	_			0	Au	Ag	Cu	Zn mm/%
Number		Code	Туре	000/00	m/sq.m	Kg.	Ру	Ср	Sp	GI	Qvn	Mag	Hem	Ser	Feld	Ca	Chi	Ep	Clay	ppb/g	pping	ppm/%	ppm/%
V00DR-1	Re-sample V99DR-67	SKN	Lst	-	1.0	3.0	0.1	1.0	-	-	-	25	-	-	-	-	-	4	-				
628043. 63	337568 N. Massive garnet-(ep	pidote) dia	opside-n	nagnetite	e vein :	skarn	Not	e bis	muth														
	Development .	SKN	V		0.5	30	0.1	1.0	03	_		25	-	2	Γ.		_	2	Γ.				
	Poorly exposed.			-			•						_	-		-		L.=	L				
Subcrop.	Magnetite -pyroxine/amphibol	e-garnet-	calc-silio	cate, wea	akiy so	histos	æ.F	elds	par ci	rysta	al tuff	?					~						
								_	_		_	_			_				_	-			T
V00DR-3	Wallrock to DR-1	SKN	Lst	-	1.25	-	-	-	0.1	-	-	0.5	2	-	-	2	-	3	-				
					anotite	<u> </u>			•														
Massive n	nedium-coarse grained garnet-	pyroxine	SAdiri		gneute	<u>.</u>																	
			I	r			T	1			T	1			T	I .					1	1	
V00DR-4	West of DR-3	SKN	Lst	-	0.55	-	-	tr	1.0	<u> </u>	0	7	10	-	-	1	-	3	1		1		
Massive c	oarse grained gamet-epidote-	diopside-	magneti	te-specu	larite.																		
	West of DR 4	SKN	Lst	Γ.	2.0	_		0.7	01		Ι.	10	2	_		2	-	3	<u> </u>				
V00DR-5						<u> </u>				I		1.0	-					1 -			1		I
Massive g	amet-epidote-diopside-calc-si	licate, ma	agnetite	veins wi	th mal	achite	-cha	lcopy	<u>rite.</u>														
					-		_										-	_			_		
V00DR-6	at 83BL 10 N, 19+85 W	A/QMz	+	-	/0.50) -	10	0.3	-	-	-	0	-	3	1	2	2	2	-				
	ricite <u>+garnet crystall tuff,mayt</u>	e fine er	nined m	onzonite	. Dvri	lo die	zemi	nated	i and	l in t	hin v	einle	ts N	lote i	race	COD	per.	0.40	a/t a	old.			
Quanz-se	ncite <u>+gamet crystair tun, mayt</u>	e nne gr	amed m		<u>, yn</u>		2011 10	- ieitov											0.0				
	· · · · · · · · · · · · · · · · · · ·					T	T			1	T :	T	1	Ι.	Τ.				Т	T		1	
V00DR-7	Electrum area.	Qvn	V	-	- 1	2.5	-	-	-	-	60	-	1.0	1	1	3	1	1	-				
Maroon c	rystal tuff cut by quartz veins s	stockwork	, breccia	a. Vugg	y, cocl	scom	be.	Quar	rtz-ac	Jula	ria ve	ins.	Zon	es of	brec	cia '	10-50) cm	•				
ł	race pyrite in wallrock.																						

States and the second second

•

.

. 1

.

, .

.

.

.

					Roc	k Sa	ımp	ole	Des	cri	ptic	on S	She	et									
Area:	VIP	1																					
Sampled by	y: D. Ridley, D. Black																						
Date: Augi	ust, 2000			RH Rule																			
	······································	_		Az/Dip										Alt	eratic	m S	cale	1-5	_				
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%		к	_				Au	Ag	Cu	Zn
Number		Code	Туре	000/00	m/sq.m	Kg.	Ру	Ср	Sp	GI	Qvn	Mag	Hem	Ser '	Feld	Са	Chl	Ер	Clay	ppb/g	ppm/g	ppm/%	ppm/%
V00BK-1		SKN	Lst	338	1.0	-	tr	1.5	2.5	-	-	10	5	-	-	2	1	2					
Massive m	agnetite-specularite with chal	copyrite s	phalerit	e in garr	et-cal	c-silica	ate.V	/eins	of m	agn	etite-	spec	ulari	te co	ntain	sulp	hide	S					
				1			1							I			Γ.						
V00BK-2	Massive	SKN	Lst	- 1	0.30	-	-	-	1.0	-	-	-	-	-	-	5	1	1	-			1	-
Recrystaliz	ed limestone/marble.																						
																		-					
V00BK-3	Massive	SKN	Lst	-	3.4	-	0.1	3.0	1.0	-	-	15	5	-	-	4	<u> </u>	2	-]			
	pside magnetite skarn. Conta	ins 0.24 r	netres o	f semi-n	nassiv	e chal	сору	rite+	tr bo	rnite	э. Zo	one o	pen	to we	est.								
Carnet alo	police magnetice entries even																						
V00BK-4	Massive	SKN	Lst	-	1.8	-	0.5	0.5	0.2	-	-	7	3	-	-	4	1	2	-				
Garnet-dic	pside magnetite skam. Less	sulphide	than BK	-3.		-																	
															_				_				-
V00BK-5	Massive	SKN	Lst	- 1	1.5	-	-	0.1	0.1	-	-	10	3	-	-	4	-	1	-				
	pside-magnetite <u>+</u> specularite	skam. Ti	race cha	lcopyrite	+mala	achite	in fra	actur	es.														
Currier die																							
V00BK-6	Shear zone in creek wall.	MzD	+	0.40	0.32	-	0.5	5 10	-	-	1	2	Γ.	3	3	2	2	2	-				
	gnetite monzodiorite cut by q		aldenar	tr cha	lconvr	ite+hr			ns. A	uso (epido	te-se	ericit	e-cai	cite v	eins	s. Ve	eins r	non-r	nagnet	ic.		
Biotite-ma	gnetite monzodionte cut by q		siuspai-																	×			
V00DB-1	Grab sample.	SED	=	- 1	1.5	-	2.0	0.0	1 -	-	-	3	2	3	-	4	1	2	-				
	+10W. Siliceous calc-silicate	- La	iment wi	th ovrite	+ ma	anetit	 A	•			-												
BLION 33	+ TUVV. Siliceous calc-silicate	nedseu			, • 1110	gnout	<u>.</u>									;							

i.

۲ N

۴

٦,

					Roc	k Sa	amj	ple	Des	scri	iptio	on (She	et									
Area:	VIP																						
Sampled b																							
Date: Aug	ust, 2000			RH Rule									1	A 14	ti		cale	1 6		1			
				Az/Dip				L nr	0/	07		%	%	Alt	eralio K	оп а	cale	1-0		Au	Ag	Cu	Zn
Sample Number	Comments	Rock Code	Rock Type	Structure 000/00	Chip m/sq.m	Grab Kg.	% Py	% Ср	% Sp	% Gl	% Qvn			Ser		Са	Chi	Ер	Clay				1
V00DB-2	Grab sample.	SED	=	-	1.0	-	1.0	-	_	-	-	1.0	.5	3	-	1	1	1	<u> </u>			<u> </u>	
Аррх 100 г	m NE of DB-1.Siliceous calc-sil	licate me	etasedin	nent with	i pyrite). 																	
VIP163-1	103-111 feet of old drillhole.	Lst	Lst	-	2.1	_	0.3	tr	-	-	-	-	0.5	1	-	5	-	1	-				
	zed limestone/marble. Massiv	e magne	tite-cha	lcopyrite	abov	e sam	ple ((66-9	3'), 9	96-1	03' m	nissin	<u>ıg. O</u>	-60' r	neta	volc	anic/	sedir	nent	-calc-si	licate		
	- 0.3% copper.				-		-		,			4			_			1	1				r
								ļ															
			_		-																		
													-					-				-	
																					<u> </u>		
			<u></u>																				
											_												
		1		-																			
																					n ay it is in a state of the		
		T			1																<u> </u>		

۲. <u>۱</u>

1 N

					Roc	:k Sa	amj	ple	De	scr	ipti	on :	She	et									
Area:	Canyon Creek]																					
Sampled b	y: D. Blann, C. Matheson]																					
Date:	Aug 2, 2000			RH Rule									1										
	-			Az/Dip							T			Alt		on S	cale	1-5					
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%	_	К	_				Au	Ag	Cu	Zn
Number	·	Code	Туре	000/00	m.pe\m	Kg.	Ру	Ср	Sp	GI	Qvn	Mag	Hem	Ser	Feld	Ca	Chi	Ep	Clay	ppb/g	ppm/g	ppm/%	ppm/%
P00DB-7	637690, 6341275	At	V	320/090	1.0	2.0	5	-	-	-	-	-	1	5	-	-	-	-	5		_	, 	
Canyon cr	eek above falls. Intense qua	rtz-sericit	e-clay-p	yrite shea	red at	320/s	steep	dip	with	white	e (alu	inite?	?) vei	ins. (Cros	s-cut	tting	struc	ture	at 090°			
POOCM-4	637756, 6340758	Qep	+	340°	1.0	2.0	2	0.1	-	-	2	1	1	3	1	-	1	1	1				
	lorite-epidote-pyrite. K-feld C	en Mode	- vate-stri	no fracti	ured w	veak h	recc	ia A	bund	ant i	cross	-cutt	ina a	wartz	veir	liets	wea	ıkly v	naa	v. trace	ovrite		
				Jing macce	100, H			rta, <i>i</i> t											-35	,	F1		
	edrite, chalcopyrite?. Looks g	1					T			1	1_		.	<u> </u>								<u> </u>	
P00DB-8	637789, 6340660	Qep	+	-	5.0	2.5	1.0	0.1	-	-	5	3	1	3	3	1	2	2	1				
Grab of ta	lus / subcrop over 5.0 m. Ora	ange Qep	(QMz).	Quartz-(i	magne	etite)-h	nema	itite v	veinle	ets, :	string	ers,	brec	cia fr	om C	CM-4	to D	B-8	(ove	r 100 m	n strike)	<u> </u>	
	de Canyon creek. Variable o																						
								Τ						Γ					Γ				
			<u></u>				1			1	1			<u>.</u>				<u> </u>					
	<u></u>																 .					<u> </u>	
		1	1	τ	T			T	1	<u> </u>	1	I	Τ	T	1	1	Τ		1	1		1	
													L	<u> </u>									
									Ţ	I									Τ				
			.				<u> </u>		•		•												
																	·				••••••		
													Τ	Τ									
					•				•		•	• • • •											
			_																				

•

1

۲

٠,

•

~

• • •	, ,	 N 1 1	 •	٦	•	١	,	.1	•	·	•	;	•	1	•	,	*	1	•	,

Rock Sample Description Sheet

Area:	Mex																						
Sampled by	/: D. Blann, C. Matheson																						
Date:	.ig 4, 2000	ļ		RH Rule									ſ	A 14	erati	nn S	calo	1.5					
				Az/Dip								A (AII	-			1-0	1	Au	Ag	Cu	Zn
Sample	Comments	Rock	Rock	Structure	Chip	Grab	%	%	%	%	%	%	%	0	K. Feld		Chi	En	Clary	1	ppm/g	1	
Number		Code	Туре	000/00	m/sq.m	Kg.	Ру	Ср	Sp	GI	QVn	Mag	mem	36	reiu	Ca	0			PP- 3			
P00DB-9	641021, 6342403	Dat/Mz	V	-	5.0	3.0		0.1		-	5	3	1	4	-	-	-	1	3	<u>i</u>			L
EPE20', 5	600ft elev. Quartz-sericite-cla	y-pyrite.	Grab al	ong talus	s slope	e, in pa	art su	ubero	р . S	ilice	ous,	grey	fine	grair	ned t	uf <u>f/ r</u>	nonz	zonit	e; da	rk weat	nering,	magne	
					T				1				_			-	.	.				T	
P00DB-10	641164, 6342451	QMz	+	290/90°		2.0		0.3		-	-	4	-	3	-	-	2		1			<u></u>	l
EPE 18' 54	109' elev. Outcropping bluff (1640 m ∈	elev., E s	side of M	ex). 🤇	Grey s	ilice	ous, i	unifo	rm a	terat	tion a	and n	niner	aliza	tion	ove	10-	20 m	etres+	,,		
									÷					ī						1	T		
P00DB-11	641316, 6342665	QMz	+	320°	-	2.0	0.5	0.2	<u> </u>	-	5	5	2	3	2	1	1	2	1				
	880' elev. (across creek appro	x. 10 m l	E) Ming	or quartz y	veinle	ts with	n pyri	ite,m	agne	tite I	pesid	e cre	æk.						W-				
P00DB-25	Appx 40 metres	Mz	+	-	2.0	-	2.0) -	-	-	-	2.0	-	3	1	2	2	2	2				
	of DB-11. Fine grained sericit	te-magne	tite mor	zonite w	ith mil	nor qu	artz	veins	s. No	te 0.	21 g/	/t gol	d									,	
Horantosa														_									
													T	1									
		1		1																			
																		-					
		-T					Ţ		1	Ţ		Τ	Ţ	Τ	Т	Τ		Ţ		1			
								_!										<u> </u>	-				-
								—	Τ_		T	T	Τ	T	T	Τ							
							<u> </u>					ļ		<u></u>						!		<u></u>	
1																							

				<u>S1</u>	and	arc		eta	18 6	PRC 06 i	UE 5595	CT Bons	PII or A	NE ve,	Fi Burnet	le wBC	# : v5i	A0(1 465	0275 5	7	P	age	1								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	-	Nî ppm		Mn ppm		As ppm					Cd ppm	Sb ppm			Ca X		La ppm		Mg X	Ba ppm	TÎ X	B	AL X	Na X		W ppm	Au**
GOOBK1	119	821	6812	- · ·	8.7	8		2164		82	<8	<2	<2	64	41.0	12	3	23	10.53	.020	4	13	. 16	28	.04		.74	.01			36
GOOBK2	2	117	37	545	.4			2001		18		<2	<2	55	3.1	<3	હ	167	2.95	.102			2.12	37	.31	<3	2.73	.08	.16	<2	5
GOOBK3 GOOBK4	209	217	28 68	94	<.3	53		1096			<8		<2		1.0				1.44		_		1.98				2.43				48
GOOBK5	208 7	103 19	00 79	128 5	25.1 2.9	4 6	<1	1521 37	2.34	71 17	<8 <8	<2 <2		40 42	1.7 <.2	7 3	-		14.50 .08	.021	4	4 16	.46 .02	7 463-	-01 :.01		.90				24 4
G00BK6	z	745	655	4733	6.7	10	21	3438	4.22	15	<8	<2	<2	41	32.6	3	ख	67	2.21	051	र	10	.80	113	07	2	1.78	07	77	-	12
G00BK7	4	10	6	34	<.3	6		386		13	<8		<2		<.2		3	47	5.83	.024	1				.08		.97			-27	20
GOOBK8	<1	74	4	74	<.3	10	18		3.89	16	<8	<2		65			-3	125	2.22	.095			1.72				2.08				8
GOOBK9	4	103	28	354	1.7	12		2436		10	_	<2	<2	35	1.6				2.94		6		1.92	42			2.26			<2	7
G00BK10	3	184	11984	18195	7.6	4	16	4665	2.32	21	<8	<2	<2	109	136.2	6	3	30	13.56	.022	3	8	.38	47	-06	<3	.95	.01	.25	<2	13
G00BK11 G00CM1	2 60	45 141	62 125	115 108	<.3 9.4	9 9		998		57	-	<2		30	.7				1.99				2.19		.38		2.47			<2	47
GOOCM2	2	42	12	131	<.3	18	25	1940 886		48 8	<8 <8	<2 <2	<2 <2	46	1.1	6	3	100	4.94	-089	6		1.61		.14		2.42			<2	402
GOOCM3	1	16	12	15	<.3	11	1		1.45	Š	<8			4	<.2	3				.024		13	1.84	43 160-			2.13 .34•			<2 5	9 5
GOOCM4	5	38	71	5	11.5	5	<1		2.12	36	<8	<2		70	<.2	16		6 3		.019		11	.01			3		<.01		<2	67
GOOCHS	5	69	120	10	18.4	2	<1			32	<8			78	<.2	14	3	37	.01	.025	1	7	.01	215-	.01	<3	.49	<.01	.06	<2	131
G00DB1		3899	9642	4601	33.5	13	4			1194	<8			6		46		10		-005	<1	30	.20		.01		.434			_	53
G00082 G00083	3	74 99	73 123	255 913	.5			1323		73	<8	<2		35	1.0	4		170	2.07				2.33		.29		2.53			<2	29
G00DB4	8	104	68	146	1.0 3.3	47 15		1821 2309		61 767	<8 <8	<2 <2		26 47	5.2 2.5	4	-उ -उ	148 179	2.52 8.24				3.19				3.11 2.99			<2 <2	16 109
G00085	51	282	1516	5899	245.5	9	24	2846	3.56	208	<8	296	0	172	51.0			101	17.72	037	2	3	.94	45	.16						99999
G00086	15	161	195	285	6.7	18		1865			<8	<2		50	4.9	6	उँ	238	8.29	-071	3		2.62		-		3.27				824
G000B7	24	104	91	279	4.2	15		2091			<8	4	<2		2.7	5	<3	172	9.40	-072	4		1.86				2.98				683
G00088 G00089	12	507 125	825 14	450 172	3.7 .4	4		3006 1727			<8 <8	<2 <2	<2 <2	58 36	2.5 1.4	9 16	े उ	141 148	6.60 1.04	.099	6		1.53	34	.17	<3 (2.74 2.69	.07	.24	<2	70 100
G000810	8	119	3	63	<.3	4	20	1709	4 00	142	_	_																		~2	
RE G000B10	7		13	62	<.3	4		1668			<0 <8	<2 <2		38 37	.5 .3	6			6.40 6.29		4	_	1.83				2.44			<2	.2
G000B11	79	1879	4082	2135	10.9	Ś		2305		53	<8	~2		59	29.8	5	उँ	36	10.55	.062	5		.51				2.41			<2 <2	13 47
G000812	14	159	44	187	3.4	34		1585		106	<8	<2		33	4.3	- Ĩ	उं	171	5.01	.079	6		2.26				2.85				149
G000B13	126	171	43	298	16.5	8	15	868	6.02	516	<8	<2	<2	16	3.0	9		202		.096	5		1.54	33	.03	<3	2.50	.06	. 16	<2	425
G000B14 G000B15	3	33 31	4	26	1.9	10	5		1.71	50	_			10					1.26		8	19	.65		-03		.92			3	39
G000B16	9	17	11	29 27	.4	12 4	3 र	206 258		53 Z		<2 <2	<2 2	18		<3 				.027		21		66	.01	<3	1.10	-05	-12	-	8
G000B17	lī	52		171				1325		12	<8	<2	<2	123	_0	3	3	106	.53 2.47	.022	2	74	1 00	26	.00. 20	<) -7	.00	10.	.08	4	15
STANDARD C3/AU-R	28	67		170	6.2	36	11	796	3.47	65	21	3	22	30	25.7	zõ	23	80	.59	.090	18	165	.61	152	.09	23	1.86	.04	.17	14	14 480
STANDARD G-2	1	3	<3	47	<.3	8	4	561	2.14	<2	<8	<2	4	87	<.2	उ	3	39	.71	.099	7	76	.61	262	. 13	⊲	1.12	. 13	.53	<2	<2
GR	DUP 1	D - O	.50 GM	SAMPL	E LEAC	HED	WITH	3 ML	2-2-	2 HCL	-HNC	3-H2	O AT	95 (DEG. C	FOR	ONE	HOU	IR, DIL	.UTED	TO 1	Ó ML	, ANA	LYSEC	BY	ICP-	ES.				
UPI	PER L	INITS	i - AG,	AU, H	G, W =	100	PPH	HO,	CO.	CD. 5	iB, E	И. Т	H. U	& B	= 2.0	00 P	PM:	CU.	PB. ZP	F, NE,	MN,	AS,	V, L	A, CS	t = 1	0,00	O PPF	4.			
AS	DAT K Camdi	ELUMM F TYD	IERVEV	FOR RO	LK AND ADC		E 5Å 11##	APLES COMM	11-0	30 PB . 20 7	20 A	1 6 T M	1 % ,	AG >	30 PP YSIS B	M & .	AU >	100	IU PPB												
				<u>'RE' a</u>		une	and	'RRE'	are	Reiec	t Re	i JAM Kruns	"LE . -	저희주니	1312 8	I PA	VILP	`. 	1												
								19/11		77		100	-					(1)	1	_											

ACHE ANALYTICAL

Standard Metals PROJECT PINE FILE # A002797

ACHE ANALYTICAL																															ACHE ANALYTICAL
SANPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm p	Co opm	Mn ppm	Fe X	As ppn p	U ppm	Au ppm		Sr ppm	Cď ppm	Sb ppm	Bi	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Tî %	B ppm	Al X	Na X	к Х ;	W Apm	Au** ppb
G000B18	<1	61	<3	114	<.3			1182	4.29		<8	<2	<2		.8	<3			1.83		4		1.65	69	•		2.71	.06		2	17
G000B19	2	8	15	55	<.3	7	2	762	.65	5	<8	<2	<2	101	.9	<3	<3	14	14.84	.024	7	15	.13	183	.04	<3	.42	.01	.02	<2	5
G000B20	3	23	3	21	<.3	28	8	190		17	<8	<2		21	<.2	<3	<3	10		.021	6	19	.54	1923	.01	<3	.80	.01	.23	5	2
G000B21	2	187	24	5896	1.8	25		2029		148	<8	<2		100	50.6	6	-		25.51		7	3	.54		<.01		_43<	.01<	.01	<2	24
GOODB22	1	38	121	28	19.5	3	< 1		1.77	24	<8	<2	<2	61	.4	10	< 3	32		.017	<1	11	.01	3434		3		.01		ž	6
G000823	14	120	76	16	73.7	5	<1		3.89	56	<8	52	<2	47	<.2		15	66			1		<.01	1458-		-	.51<			-	48860
G99DR1	6	102	17	66	1.6	5	7	572		42	<8	<2	<2	7	.2	<3	<3	41	.62	.027	2	14	- 41		<.01	-	1.03<			4	105
G99DRZ	36	55	22342	53598	210.4	- 4		5042		747	<8	21			522.6	32	4		24.30	.010	3	- 4	. 14	15		_		.01			25108
GOODR3	12	289	2511	4193	41.Z	3	5	5691	1.52	4362	<8	8	<2	169	35.8	79	<3	25	20.27	.021	2	6	.29	9	.03		.57			<2	15337
GOODR4	47	903	9037	10644	11.8	8	8	2270	1.36	113	<8	<2	<2	67	123.1	7	<3	12	11.08	.013	3	15	.11	11	.02	<3	.36<	.01	.08	<2	368
G000R5	4	16	106	76	1.0	2	<1	66	.81	25	<8	<2	<2	73	.9	<3	<3	23		.016		-	<.01		<.01				.02	3	33
GOODR6	- 3	25	100	54	1.1	5	1		2.56	10	<8	<2	2	30	.6	-3	3	66		.040	10	. 9	.03		.03			.01		<2	10
GOODR7	2	44	54	23	8.1	3	<1		2.26	34	<8	<2	<2	55	<.2	25	<3	43			1		<.01		<_01	_		.01		2	64
GOODR8	10	3891	27093	25285	41.2	25	13	3824		57	<8	<2	<2	5	273.0	9	13	18		.003	<1	-43			<.01	-	.72<			6	141
P008K1	7	47	255	196	.8	4	6	569	3.32	3	<8	<2	10	8	1.6	3	3	42	.26	-073	11	11	.82	64	. 12	5	1.16	.05	.22	2	6
P008K2	<1	31	72	122	<.3	26		1879		23	<8	<2	<2	44	1.3	<3		234			7		3.05		.23	_			.17	<2	6
POOBK3	1		32249		45.7	6		1875		18	<8	<2	<2			8	32		13.35				. 16		.01		.34			15	278
Р008К4	2	95	247	259	.8	46	41		6.33	30	<8	<2	<2	22	2.6	<3		188	1.17				1.26		.16		1.64		.06	<2	143
POOBK5	<1	46	240	222	.3	55	49		6.07	24	<8	<2	<2	36	2.5	<3		167					1.57	12					.11		34
POOCN1	8	37	31	57	.3	9	6	603	2.93	6	<8	<2	9	10	.3	<3	<3	47	.37	.071	8	19	.69	145	. 16	> <3	1.09	.04	.21	<2	33
POOCM2	4	173	36	60	<.3	6	5		3.19	3	<8	<2	10	22	.4	<3	<3	85	.51			12			.12		1.20			3	23
POOCM3	40	20	34	102	<.3	8	8		3.17	14	<8	<2	9	6	1.0	<3	<3	55		.077		16			.05		1.31			< <u>2</u>	3
RE POOCH3	41	21	35	105	<.3	8	9		3.18	12	<8	<2	9	7	1.2	<3	্র	56				17			.06		1.33			<2	2
P00DB1	4	25	28	104	<.3	5		1785		10	<8	<2	9	11	.7	<3	<3	54		.084		14			<.01	-				- 3	<2
P00082	16	15	52	112	3.0	10	3	938	3.73	69	<8	<2	<2	5	.5	<3	3	34	.36	.017	' Z	20	1.37	36	.06	> <3	1.51	<.01	.04	2	110
P00083	13		19	78	<.3	4	2		2.87	6	<8	<2	10	14	<.2		<3	36	.18			9		141			1.18			2	4
P00084	2		8	67	<.3	5	6		2.38	3	<8	<2	2	32	<.2	<3	<3	31	.85			9		98			1.18			<2	15
P00085	2	48	13	29	<.3	4	4		2.82	2	<8	<2			.2	<3	<3	78	.50			11					1.08			2	9
P00086	5	31	8	40	<.3		2		1.03	4	<8	<2	<2	6	.4	<3	<3	10	.26	.012		22		136			.45			2	5
POODR1	<1	103	6	37	.4	16	42	701	4.87	89	<8	<2	<2	65	.6	3	3	98	2.64	.061	3	12	1.38	84	.13	6 14	3.02	.21	. 16	<2	8
POODR2	3		606		6.5		84		1.90		<8	<2					5					73			.14		1.18				.14
STANDARD C3/AU-R	26		37	167	5.6	37	12		3.46		20		20				22			.091				148			1.84			15	472
STANDARD G-2	1	3	3	45	<.3	8	4	575	2.19	<2	<8	<2	4	79	<.2	ও	-3	41	.71	.101	8	78	.62	248	.14	3	1.03	.08	.50	2	<2

Sample type: ROCK R150 60C, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 2

ACHE	ALYI 0 90	LCAL	بالعبار د		IUR.	لهمي ا	• لا لا با		63	4 5	. HA	311 r	192 3	DT -	VAN	LUUV.	4X 1	16	A ov	1R5		1 HO	NB (6V4)	403	-515	B FF	LE (D	U#)/	253 -	*/**
	0 30		1CCI	Balt	ea (0 .)		een e		arc	\/TUT	- 14 T /	78 T	2 NT7	LY	TE	CP 1) Dir T'E	PT (71	800 10 1 1 1 1 1									ener:	in stag	
										VIE V			******			7 		****	- 						13913						
a social fittation								ltan	dar	-A N	fota	Ĩ.e.	DBC).TF(CT I	TNE		7 11 6	s #	AD/	1274	38	13 13 1 1 1	2222		an taon taon 1990. Ang 2003 ang 2003 na taon Ang 2003 ang 2003 ang 2003	2020-2012-1				
					an na s Na Sala										Ave,						***		, al agair							n na huna Maria	
				60 - C.				an a' shekara a shekara a		na an an an Anna. Chun an an Anna								• • • • •					21. L. L. D. L.	2?	eathan.	1010104	alas bu		12. C. L.	101201	
	مصيعه مصيفو					يعتب بحصصت	annan ann ann	nga an anann			1000 CONTRACTOR 100	ana ang ang ang ang ang ang ang ang ang											· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u></u>		ووثيا والمحادثا والمحا	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	NÍ	Со	Mn	Fe	Åŝ	U	Au	Th	Sr	Cd	Sb	Bî	V	Ca	P	La	Cr	Ma	Ba	Ti	B	AL	Na	K	U	Au**
SAMPLE#	Мо	Cu ppm		Zn ppm	Ag ppm	Ni pom	Co ppm	Mn ppm		As ppm	U ppm				Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	AL X	Na %	K X		
SAMPLE#						N i ppm					U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppn	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X		Ti X	B ppm	AL X	Na 7.	K Z		Au** ppb
SAMPLE#			ppm			Nî ppm 4			X		U ppm <8				Cd ppm	sb ppm 9	Bi ppma	V ppm 41	Са Х	P %	La ppm 3	Cr ppm 5	Mg X	ppm	Ti % <.01	B ppm <3	Al X .92	Na %	.31		ppb
		ppm	ppm	ррт	ppm	Ni ppm 4 3	ppm	ppm	x 2.52	ppm					Cd ppm .3 <.2	Sb ppm 9 <3	Bî ppm <3 <3	V ppm 41 83	Ca % .03 .01	P % .053 .079	La ppm 3 7	Cr ppm 5 5	X	ppm 414	Ti % <.01 <.01	<3	Al X .92 1.20	.01		ррт 19	ppb 42

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LINITS - AG, AU, HG, W = 100 PPN; NO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALY (ISO 9)	TICAL 002 A	LAI CCT	OR	ATO Led	Co.	3 L' .)	ΓD.		311 d 17	700 A.		i de la composición d Composición de la composición de la comp			l de la com	ė. N. J	ې قورې د دو کې		r b Cer	1.20	i Linto	a di serit Second			HOI	TB (6	04)	253	-31	58 I	TAT	(604)25	3-1 /	716
							<u>s</u>	tan 6	dar %	.d ४५२२२	Met Bons	al or /	8] Ave,	PRC Bur)JE neby	CT	<u>р</u>] V5н	<u>NE</u> 4G5	F Sut	ile mitt	ed b	AO y: Da	02 ve 1	957 Blann										1	
SAMPLE#	Mo ppm			Zn ppm	Ag ppm	Ni ppm		Mn ppm			U ppm p				Cd ppm			V ppm		P I	La ppm	Cr ppm		Ba ppm	Ti X				K XI pp						Au** an∕nt
JC00D8-1 JC00D8-2 JC00D8-3 G00D8-24 G00D8-25	5.8 5.9 2.3 .5 3.7	18 15 14	8 16 20 2 38	1 3 48 35 11	.3 .4 1.2 .9 2.8	2 4 7	4 11	616 1718	1.06	4 6 35	<1 <1.	<2 <2 <2	<] <] <] 4	49 24 44	<.2 .2 .4	2.3 <.5	7.4 <.5 .6	6 13 63	<.01 .09 .09 20.95 .11	.005 .036 .040	<1 3 4	15 < 17 12	.01 : .28 .98	1239 651 17	. 001 . 002 . 099	2 1 <1 1	.23 . .65 . .23 .	005<. 002 . 005 .	01 16 07	2 <1 1 <1 1 <1	.5. 1.0 5.8) 이 - 이	.05 .19	2 3 3 5 3	.01 .02 .02 .01 <.01
P00CM-4 P00DB-7 P00DB-8 P00DB-9 P00DB-10	3.6 2.6 21.2 162.7 2.9	27 10 127 175 963	8 29 38	38	.1 .5	1	2	445 770 1018	2.57 4.14 3.03 3.85 4.93	12 5	<1 1 1	<2 <2 <2	11 4 3	96 10 73	<.2 .2 3.2	<.5 <.5 1.4	<.5 <,5 2.4	33 78 30	2.27 .34	.102 .079 .097	2 9 10	5 11 1 5	.74 .03 .46	74 112	. 102 . 111 . 068	23 11 31	.49 . .24 . .55 .	087 . 044 . 089 .	.09 29 <	1 <1 1 <1 1 <1	2.5 5.1 2.4	5 <1 1 <1 1 <1	1.38	8 5	.04 .02 .02 .60 <.01
P00DB-11 P00DB-25 V00DB-1 V00DB-2 RE_V00DB-2	40.2 13.6 1.4 18.4 15.4	314 31	60	55 109 47	1.7 .4 .2	3 8 2	<1 28	641	1.68 6.79 2.96	12 <1	1 <1 1	<2 <2 <2	11	18 27 52	.6 2, 2.>	<.5 <.5	3.5 ~.5 1.0	12 177 54	.41 .07 1.12 1.30 1.31	.088	2 3 6	21 17 1 12	. 10 . 41 . 59	85	.202 .258 .096	<1 <1 2 <1 1	.22. .72., .39	018 . 254 . 047	05 33 10	1 <1 1 <1 2 <1	1.0 20.5 3.8) <1 5 <1 3 <1	-58 -04	6	.10 .21 <.01 <.01 <.01
V00DR-1 V00DR-2 V00DR-3 V00DR-4 V00DR-5	2.8 1.6 5.8	3484 168 420	27 11 14	1324 2117 2820	22.2	3 2 2	16 4 6	4018 7870 10656	26.60 6.50 8.32	49 26 13	30 2 2	<2 <2 <2	1 <1 1	71 60 831	6.3 9.2 8.6	3.1 3.1 4.5	31.0 2.1 7.2	17 16 20	3.62 13.99 7.86 7.86 2.31	.038 .164	11 1 -1	7 25	.16 .17 23	3 18 26	.002 .006 .004	<1 <1 2	.57 .99<. .67 .	001<. 001<. 001<.	01 3 01 1 01 3	7 <1 4 1 1 3	.7 .7 .6	/ <1 / <1 5 <1	.06 .03 <.01 <.01 .10	18 6 6	.85 .05 .01
V00DR-6 V00DR-7 V00BK-1 V00BK-2 V00BK-3	1.6 .6 .6	244	2 16 <2	50 7230 3886	.2 22.4 .8	3 26 <1	3 18 1	770 1275 11053 5474 3422	1.41 9.29 .29	2 11 3	1 2 <1	<2 <2 <2	2 <11 <11	29 32 5 44	<.2 6.8 6.4	2.6 4.4 .8	<.5 16.1 <.5	28 37 5	.47 5.70 15.52 37.95 7.52	.044 .023 .008	6 3 6	11 11	. 36 . 58 . 09	26 11 10	029 012 001	<1 <1 1 <1	. 48 . . 65<. . 10<.	002 . 001 . 001<.	10 < 03 01	1 <1 9 4 1 <1	2.5 1.5 .9	5 <1 5 <1 9 <1	1.81 .01 .16 .01 1.04	.4 9 2	<.01 .50 <.01
VOOBK-4 VOOBK-5 VOOBK-6 STANDARD C3/AU-1 STANDARD G-2	.4 142.2	328 52142 62	3 27 35	355 119 174	2.1 38.9 5.8	2 11 38	15 27 11	4412 584 781	27.22 10.62 3.43	28 <1 62	9 7 25	<2 <2 2	1 4 20	31 36 29 2	1.1 3.8 4.9	.7 <.5 16.7	.5 <.5 24.5	25 45 80	61	074 058 094	5 8 17	22 11 183	.40 .63 .61	6. 43. 162	.013 .078 .092	<1 <1 1 22 1	.80. .00.	002 . 023 . 038	01 1 11 19 1	0 <1 1 <1	1.3	<] <] <]	.03 <.01 5.30 .04 <.01	13 5	.67 .82

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 KCL-KNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPN; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. <u>Samples beginning (RE' are Refuns and (RE' are Reject Refuns.</u>

DATE RECEIVED: AUG 11 2000 DATE REPORT MAILED: Aug 24/00 SIGNED BY. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA 1

		1	tandard) DIEDIN' AVE			. د د اسار ۲۰	and the second second								
MPLE#	Mo Cu Ph 2n pps ppm pps ppm p	itered under the	Mil Fin As om X 1800 190	n blow blow blow	r Cul Sb (Riceben pern p)	on ober ⊳; A originaria	сн Р (Х Х ()	La Ur Hg La Ur Hg	826 1 826 1 1004	ti e Xoom	4	Ζ Ζινι	10 F2-108 F144	L KINSTON OF	W wards and	4 68 6 6 6
	14 .6 101 4 117	.9 2 3 23	92.16 j. 4	1 -2 i 16	3 .9 1.5 3	$\frac{\gamma}{2} > \frac{2}{3} \frac{1}{32}$	81 .614	5 3 .52	60	<u>42 7</u>	-45 .90	4<.61 -	* <1 2.	-1.	02 <u>3</u> <	01
•	GROUP TOX GLOD GLOD G HPPER LIHITS AG ASSAY PECLIMENDED SAMPLE INTER COM	M SAMPLE LEAD AU, 95, V = FOR ROCK AND	11日日日 - 11日 11日 - 11日 - 11日 11日 - 11日 - 11日 - 11日 11日日 - 11日日 - 11日	2 2 2 801.00 10, 10, 88, 1	NGG BRO ALS BEL THE DIA	м вод. с п 2.000	- ORE GHE HA FIELD, CO.,	MAR, DIEUT PB, ZN, K	UD 70 7 L. HN2	0 ML - A AS - V,	NALYSED LA, CR	6¥ 0₽10 ≂ 10,000	MA LUP <u>E</u> PEN.	5.		
	SAMPLE AVEL COR	E 8150 600	AUAH BY FIR	en giu phi en d E 1935an From	AS 2 37, AG 手 きょくこちませい	* 30 PEH 41.	& AU ≥ 100	399 OC 2								
DATE RECH	ETVELL AND 11 200	DATE RE	PORC MATER	$n \xrightarrow{q}$	and a	ለት በአካላታዊ።	o ax	Terre								
		•		* it y	25/613	5 X 1929 B	U BX		≈ <i>-</i> γ0, 1	OT1. (.	LEDHG,	J. WANG:	CORTIES	ED B.C.	ASSAYERS	
									į			٠			: 15 13	
										1		•		-		
							٤.								* 1 ° C - 14	
· 4													· · ·			
	a'				•		·	•	,							
								·)	•	•				
					1							¥		4		
			2					,				ę				
an a			2007 - 2007 1	•				·,	**	,			· · · ·	,		
	· .										·	'n	4 1			· · · · · ·
	· · ·			,												
	le la		•						•	•			,	ريوا	•	
			6							1	- ·	٩			•	ц. П
		· · · · · · · · · · · · · · · · · · ·) F						
			-					. •		. •				· • • • •	•	•
									·				ť	а ж а 19	r.	· .
		And for the	a start of the		and an and a second s		1	n The state		· .				ч. 1	· ·	•
							29 6 2			•				•		Ϋ́,
									4	-	***	۰ ۲.	• •		÷.,	
	he Marine Are Ballie			A . A . A .									•			ليع