MINET Re	~ 4	• •	~~~~	<u> </u>	NCH
	JUN	2	2	2001	
	ANCO	วบ	VE	R, B.(

GEOCHEMICAL

ASSESSMENT REPORT

on the

CAPOOSE PROPERTY

CAP 1 – 6 MINERAL CLAIMS

CAPOOSE LAKE AREA

OMINECA MINING DIVISION, B.C.

NTS: Latitude: Longitude: Owner: Operator: Author: Date: 093F/06E 53°17'10"N 125°09'31"W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo. May 26, 2001

:

TABLE OF CONTENTS

SUMMARY	Page	1
LOCATION AND ACCESS	Page	2
TOPOGRAPHY	Page	2
PROPERTY	Page	3
HISTORY	Page	4.
GENERAL GEOLOGY	Page	5
WORK COMPLETED	Page	6
CONCLUSIONS AND RECOMMENDATIONS	.Page	7
BIBLIOGRAPHY	Page	10
STATEMENT OF COSTS	Page	9
STATEMENT OF QUALIFICATIONS	. Pagel	10

LIST OF ILLUSTRATIONS

Location Map	Following Page 2
Claim Map	Following Page 3
Rock Sampling-Sample location map-1:5000	In pocket
Rock Sampling-Silver in rocks-1:5000	In pocket
Rock sampling- Lead in rocks-1:5000	In pocket
Rock sampling-Zinc in rocks-1:5000	In pocket
Rock sampling- Copper in rocks-1:5000	In pocket
	Location Map Claim Map Rock Sampling-Sample location map-1:5000 Rock Sampling-Silver in rocks-1:5000 Rock sampling- Lead in rocks-1:5000 Rock sampling- Zinc in rocks-1:5000 Rock sampling- Copper in rocks-1:5000

LIST OF APPENDICES

APPENDIX A	Rock Sample Descriptions
------------	--------------------------

APPENDIX B Analytical Procedures and Results

SUMMARY

The Capoose property is described as a porphyry style silver-gold deposit contained within volcanic rocks intruded by mineralized rhyolite sills.

The occurrence is located 185 kilometres southwest of Prince George and 115 kilometres south-southeast of Burns Lake.

Exploration work has been carried out on the property since 1970. Mineralization comprises pyrite, sphalerite, galena, chalcopyrite and arsenopyrite occurring mainly as disseminations but also as fracture fillings. Precious metals occur as inclusions within the sulphides.

Based on the results of drilling carried out in the 1970s mineral resources on the Capoose property are inferred to be 29,300,000 tonnes grading 36.0 grams of silver and 0.34 grams of gold per tonne.

In 2000 a program of rock sampling was carried out on the property.

LOCATION AND ACCESS

The Capoose property is centred at latitude 53+17'10" North and longitude 129°09'31" West, 115 km south-southwest of Burns Lake and 185 km southwest of Prince George (Figure 1).

Access to the property can be gained from Vanderhoof via the Kenney Dam road and the Kluskus Forest Service Road, Kluskus-Ootsa Forest Service Road, the Kluskus-Malaput Forest Service Road, the Malaput Forest Service Road and the Vantine Forest Service Road.

Final access to the claim area is available off the Vantine Forest Service road by access roads to the property area.

TOPOGRAPHY

The property is contained within the Fawnie Range, north of Fawnie Nose Mountain. The property is above treeline in a relatively flat area, at an elevation of about 6000°. To the east and west the slopes drop away to ~5000 and 4000° respectively.

PROPERTY

The Capoose property (Figure 2) comprises six two-post claims designated D1 to D6, located by Richard G. Mitchell on October 07, 2000 and recorded in Vernon, B.C. on October 23, 2000.

<u>Claim Name</u>	Record No.	Owner of Record	Anniversary Date *
D1	381500	W.R. Gilmour	October 7, 2005
D2	381501	W.R. Gilmour	October 7, 2005
D3	381502	W.R. Gilmour	October 7, 2005
D4	381503	W.R. Gilmour	October 7, 2005
D5	381504	W.R. Gilmour	October 7, 2005
D6	381505	W.R. Gilmour	October 7, 2005

The claims are held by W.R. Gilmour in trust for the Peregrine Syndicate.

* Pending acceptance of this report.

,

<u>HISTORY</u>

The Capoose property was reportedly discovered in 1970 by Rio Tinto Canadian Exploration Ltd. However, available sources indicate that the main focus of exploration at this time was copper/molybdenum mineralization in the Capoose Lake area.

In 1976 and 1977 Granges Exploration carried out exploration for copper and molybdenum in the Capoose Creek – Green Lake area.

Mention was first made of lead, zinc, gold and silver in 1978 by Granges Exploration. Between 1978 and 1980 Granges carried out extensive exploration on what is now the Capoose silver/gold deposit. Work included road building, geochemical sampling, a pulse EM survey, percussion drilling and diamond drilling.

From 1983 to 1986 Granges carried out soil sampling, mapping and a limited diamond drilling program in the area.

In 1996 Pan American Silver acquired the property from Granges and Cominco Ltd. Pan American estimated inferred mineral resources on the property to be 29,300,000 tonnes grading 36.0 grams per tonne silver and 0.34 grams per tonne gold.

The property was staked by the Peregrine Syndicate in 2000.

4

GENERAL GEOLOGY

The area of the Capoose deposit is within the Intermontane Belt, predominantly underlain by Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group.

The Hazelton Group is overlain by the Upper Cretaceous/Eocene Ootsa Lake Group and by Miocene plateau basalt. The Hazelton Group is intruded by felsic plutons of probable Cretaceous age. Late Triassic to Early Jurassic plutons of the Topley Suite, comprising a belt of granodiorite, diorite and quartz diorite occur in the northeastern part of the map sheet.

The Capoose deposit is hosted by late Cretaceous garnetiferous rhyolite sills known as the Quanchus Intrusives. The rhyolite occurs as a sequence of 10 to 400 metre thick sills and is garnetiferous, flow banded and spherulitic.

Mineralization hosted by these sills comprises pyrite, sphalerite, galena, chalcopyrite and arsenopyrite occurring principally as disseminations but also as fracture fillings. Precious metals occur as inclusions within the sulphides.

WORK COMPLETED

Work carried out on the Capoose property in 2000 comprised the collection of rock and drill core. In total twenty-seven samples were collected.

All samples were shipped to ALS Chemex Labs in North Vancouver, B.C. where they were tested by 32 element ICP analysis.

Sample locations are shown on Figure 3. Rock sample descriptions are contained in Appendix A.

Program Results

Anomalous silver values were noted in all samples collected ranging from 0.6 to >100.0 ppm (Figure 4). There appears to be a good correlation between anomalous silver values with arsenic, cadmium and antimony.

Copper values overall are low with a maximum of 1025 ppm obtained (Figure 7). Maximum lead and zinc analyses were >10,000 ppm (Figures 5 and 6). Complete analytical results are listed in Appendix B.

No gold analyses were carried out on the collected samples.

6

CONCLUSIONS AND RECOMMENDATIONS

An examination of previous assessment reports, has shown that the property has been well mapped.

Sampling in 2000 has confirmed the presence and grade of silver and base metal mineralization on the Capoose property.

The potential for defining further mineralization on the property appears to be excellent.

Based on previous reports geophysical programs on the property have comprised only ground electromagnetic and magnetometer surveys. There is no indication that any IP surveys have been carried out on the property.

Further work should include an IP survey over known showings with the intent of defining additional mineralization elsewhere on the property.

With the existence on the property and in the area of a mixed assemblage of sedimentary and mafic and felsic volcanic rocks the possibility of economic deposits of volcanogenic massive sulfide (VMS) deposits also exists in the area.

Respectfully submitted. T.H. Carpenter. ieo.

Vernon, BC May 26, 2001

BIBLIOGRAPHY

British Columbia Ministry of Energy, Mines and Petroleum Resources – Exploration in British Columbia.

1980 – p. 321
1983 – p. 417
1985 – p. C291
•

British Columbia Ministry of Energy, Mines and Petroleum Resources – Exploration in British Columbia.

1979 – p. E123	1992 – pp. 57-67, 475-481
1980 – pp. 121-123	1993 – pp. 9-14, 39-44
1981 – pp. 109-112	1994 – pp. 167-170, 193-197
1986 – pp. 53-56	

Tipper, H.W. 1963, Nechako River Map area, British Columbia, Geological Survey of Canada, Memoir 324.

STATEMENT OF COSTS

1. Profession	nal Services		
	T.H.Carpenter (P.Geo.) Report Writing & Data Interpretation \$ 5 days @\$400/day	\$ 600.00	
	R.A. Tilsley (Geologist) Prospecting & rock sampling (Oct 7 - 9)	• •••••	
	2.0 days @\$400/day	800.00	
			1,400.00
2. Personnel			
	R. Mitchell		
	Rock Sampling (Oct 7 - 9)		
	2.0 days @\$299.78/day	599.56	
	Drafting	347.80	
	Secretarial	160.00	
			1,107.36
3. Expenses			
-	Communications	4.25	
	Office	86.40	
	Analysis	301.96	
	Equipment Rental	87.00	
	Field Supplies	28.52	
	Lodging & Meals	240.27	
		an an an an an an an Art Maile an an	748.40
	Exploratio	n Expenditure:	\$ 3,255.76
4. Transporta	ation		
	a) Truck 928km @30¢/km	\$ 278.40	
	usage charge 1day @\$40/day	40.00	
	gas	89.68	
		408.08>	408.08
	or 20% of exploration expenditure	590.76	
	Total Asse	essment Work:	\$ 3.663.88

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration with Discovery Consultants, Vernon, B.C.
- 2. I have been practicing my profession since graduation.
- 3. I am a 1971 graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Capoose property gained from a review of earlier work and supervision of the present program.

Vernon, B.C. May 26, 2001

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

Rock Sample Descriptions

CAP-001	Rusty pyrite rich sample from badly deteriorated core (1.2 ppm Ag).
CAP-002	Typical garnet bearing rhyolite from core (4.2 ppm Ag).
CAP-003	Very aphanitic core (4.0 ppm Ag).
CAP-004	Very bleached kaolinitic, altered core (54.0 ppm Ag).
CAP-005	Thinly bedded flows or sediments. Common in core (1.4 ppm Ag).
CAP-006	Typical dark volcanic containing pyrite and possibly chalcopyrite (1.4 ppm Ag).
CAP-007	Pyrite bearing rhyolite from Zone 3 area. Bull dozed rubble near source (3.0 ppm Ag).
CAP-008	Sphalerite Trench. Possibly sphalerite, galena & pyrite (62.6 ppm Ag).
CAP-009	Zone 3. Rhyolite with trace pyrite and lots of yellow stain (jarosite?) (82.4 ppm Ag).
CAP-010	UTM 356224E, 5906544N. Rhyolite from blasted trench on hillside. Not much pyrite but lots of jarosite stain (10.2 ppm Ag).
CAP-011	UTM 356096E, 5905800N. Rusty zone on edge of zone #1. Facing pond. Traces of pyrite. Micro-fracturing (11.6 ppm Ag).
CAP-012	Red clay alteration from 10 m southwest of CAP-011. Soil & rubble (18.4 ppm Ag).
CAP-013	UTM 356122E, 5905806N. Dark green dacite? Weakly pyritized. Rusty fractures (0.5 ppm Ag).
CAP-014	UTM 356267E, 5905767N. Outcrop in bulldozed trench. Bleached andesite with traces of pyrite disseminated throughout (1.6 ppm Ag).
CAP-015	Grey rhyolite with garnet and narrow quartz fractures. Located 15 m west of CAP-014 in Zone #1 (1.0 ppm Ag).
CAP-016	Float from in front of camp. Pyrite in rhyolite (7.0 ppm Ag).

- RM-01 Rusty fine grained volcanic rock. Visible pyrite & limonite on fractures. Silicified. Deep weathering. Difficult to get fresh sample. Sphalerite present on some fractures (21.2 ppm Ag).
- RM-02 No description (>100.0 ppm Ag).
- RM-03 Outcrop of beige to light green volcanic rock. Limonitic fractures with pyrite and sphalerite (?) (Probable rhyolite) (1.2 ppm Ag).
- RM-04 Beige volcanic. Rusty on weathered surface. Kaolinitic? Vesicular (5.8 ppm Ag).
- RM-05 UTM 355546E, 5905776N. 20 m east of drill hole. Weathered outcrop. Beige to grey. Visible pyrite. Limonitic fractures. Very siliceous (rhyolite) (3.0 ppm Ag).
- RM-06 UTM 356194E, 5906352N. Black to grey, fine grained dacite/rhyodacite. Pyrite. Very little rusty on fractures (1.8 ppm Ag).
- RM-07 UTM 356239E, 5906226N. Rusty weathered rhyodacite/rhyolite. Fine grained. Banded. Rusty on fractures. 20m² stripped area (1.2 ppm Ag).
- RM-08 UTM 356303E, 5905814N. 20m wall. Rusty. Deeply weathered (to 10 cm). Porphyritic. Vesicular. Limonite on fractures (1.2 ppm Ag).
- RM-09 DDH location. Large stripped area. Dark to black very fine grained rock. Rusty limonitic fractures. Visible pyrite (1.8 ppm Ag).
- RM-10 UTM 355952E, 5905484N. Outcrop ~100m southwest of pond. Fine grained pyrite. Rusty limonite on fractures. Jointing @ 060°/80° + 025°/70°S (1.0 ppm Ag).
- RM-11 UTM 355754E, 5905703N. Garnetiferous rhyolite with trace of pyrite. Outcrop from near survey pin on hill (13.4 ppm Ag).

APPENDIX B

ANALYTICAL PROCEDURES AND RESULTS

ANALYTICAL PROCEDURES

Geochemical Analysis

by Chemex Labs Ltd.

ť

ELEM	ENT	LOWER DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5 ppb	fire assay	A.A.
AI*	Aluminum	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sb	Antimony	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
As	Arsenic	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ba*	Barium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Be*	Beryllium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Bi	Bismuth	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Cd	Cadmium	0.5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ca*	Calcium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Cr*	Chromium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Co	Cobalt	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Cu	Copper	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ga*	Gallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Fe	Iron	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
La*	Lanthanum	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Pb	Lead	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Mg*	Magnesium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Mn	Maganese	5 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Hg	Mercury	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Мо	Molybdenum	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ni	Nickel	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
P	Phosphorus	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
К*	Potassium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sc*	Scandium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ag	Silver	0.2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Na*	Sodium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
Sr*	Strontium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
TI*	Thallium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Ti* 👉	Titanium	0.01%	Aqua-Regia digestion	Ind. Coupled Plasma
₩*	Tungsten	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
U	Uranium	10 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
V	Vanadium	1 ppm	Aqua-Regia digestion	Ind. Coupled Plasma
Zn	Zinc	2 ppm	Aqua-Regia digestion	Ind. Coupled Plasma

* Incomplete digeston.

Project 666

Capoose

Rock Sample Analyses

file: 666/geodata\Rock_00.wk4 Reference: a0032017 (a0032734)

.

2001.05.28

	:Secold:	*******	≔≂≖≖≈⇒	*******		******		122=23	=Ff=f=f	*****	======	*****	_ 3 방 음 <u>-</u> =		=======================================	-====	*****		±sp≓≈≓	967:≍ <u>~</u> 81	********
				ICP	FA	ICP	KCP	ICP	ICP	AAS	KCP	AAS	KCP	ICP	ICP	ICP	ICP	ЮP	KCP	KP	(Cl)
Sample ID	U	rм	Lab	Ag	Ag	As	Sb	Cu	Pb	Pb	Zn	Zn	W	Cd	Мо	Bi	Ni	Co	Cr	Fe	Min
•	Easting	Northing	report #	ppm	g/t	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ррт	ppm	ppm	ppm	%	ррл
CAP 001	355988	59057061	0032017	1.2		52	2	66	2		2290		<10	10.5	4		7	8	32	6.50	885
CAP 002	355988	5905700	0032017	4.2		108	6	8	458		792		<10	5.5	4	<2	1	<1	27	0.31	109()
CAP 003	355988	5905695 1	0032017	4.0		44	8	10	480		1160		<10	5.0	7	<2	3	2	53	0.80	1475
CAP 004	355988	59056901	0032017	54.0		710	2	31	132		124		<10	<0.5	5	<2	1	<1	43	0.41	500
CAP 005	355988	5905685	0032017	1.4		12	4	49	46		420		<10	3.5	56	<2	81	7	68	3.44	1155
CAP 006	355988	5905679	0032017	1.4		<2	2	526	20		1065		<10	6.0	24	6	8	17	44	5.38	1665
CAP 007	356223	5906635 :	0032017	3.0		70	<2	49	28		12		<10	<0.5	6	<2	1	<1	30	1.14	800
CAP 008	356004	5906450	0032734	62.6		6600	36	1025	1680	>	10000	1.16	<10	60.0	13	8	8	13	50	3.00	1745
CAP 009	356110	59065501	0032734	82.4		7240	82	144	>10000	1.18	1470		<10	77.5	16	2	12	13	42	1.82	2910
CAP 010	356130	5906742	0032017	10.2		232	6	98	506		702		<10	10.5	6	<2	1	<1	50	1.80	3590
CAP 011	356010	5906008	0032017	11.6		44	2	21	224		70		<10	<0.5	3	<2	1	<1	46	1.11	655
CAP 012	356002	5906000 #	0032017	18.4		66	<2	47	704		72		<10	<0.5	6	62	<1	<1	11	7. 9 7	215
CAP 013	356032	5906003	0032017	0.6		6	<2	33	18		266		<10	0.5	1	<2	16	12	32	4.05	189)
CAP 014	356173	5905965	0032017	1.6		356	8	14	26		84		<10	2.5	1	<2	<1	<1	32	0.53	1565
CAP 015	356163	5905954	0032017	1.0		444	<2	23	20		670		<10	3.0	2	<2	3	3	32	1.65	1415
CAP 016	355941	5905740	0032017	7.0		16	<2	75	122		192		<10	1.0	3	<2	1	3	39	1.46	225
666 RM 01	355996	5906470	0032017	21.2		4510	44	302	896		8340		<10	41.5	5	<2	3	19	35	4.54	1570
666 RM 02	356003	5906454	0032734	>100.0	118	8050	84	854	7780	>	10000	6.01	<10	373.0	12	12	6	9	37	3.28	2020
666 RM 03	355619	5905845	0032017	1.2		96	<2	40	40		194		<10	0,5	26	<2	<1	<1	44	1,05	1580
666 RM 04	355518	5905848	0032017	5.8		90	<2	17	18		120		<10	<0.5	6	10	1	<1	36	1.15	805
666 RM 05	365460	5905974 1	0032017	3.0		122	<2	9	100		30		<10	<0.5	4	6	<1	<1	33	2.15	50
666 RM 06	356100	5906550	0032017	1.8		582	4	68	116		2400		<10	13.0	3	2	13	5	41	3.24	1725
666 RM 97	356145	5906420	0032017	1.2		14	<2	40	34		530		<10	4.0	28	2	26	5	34	2,73	1650
666 RM 08	356209	5906012	0032017	1.2		206	<2	10	70		70		<10	0.5	3	<2	1	<1	63	83.0	1175
666 RM 09	356081	5906006	*0032017	1.8		146	<2	68	128		358		<10	1.0	2	<2	15	16	32	3.69	2390
666 RM 10	355858	5905682	0032017	1.0		114	2	42	12		1500		<10	10.0	4	<2	3	1	46	1.27	605
666 RM 11	355661	5906904	a0032017	13.4		1265	12	29	954		906		<10	7.0	3	<2	1	<1	60	0.36	1095

Project 666Capoose

file: 666\geodata\R Rock Sample Analyses (part 2)

Reference : a003

	ICP	ICP	ICP	1CP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICF'	ICP
Sample ID	Ba	v	Hg	Sr	La	AI	Mg	Ca	Na	к	Ti	U	Be	Ga	P	Sc	TI	В	S
	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
CAP 001	50	48	<1	3	<10	1.62	0.58	0.23	0.01	0.84	0.13	<10	0.5	<10	930	1	<10	<10	1.90
CAP 002	10	1	<1	<1	<10	0.44	<0.01	0.01	<0.01	0.25	<0.01	<10	<0.5	<10	50	<1	<10	<10	0.16
CAP 003	20	1	<1	8	<10	1.40	0.01	0.64	0.02	0.24	<0.01	<10	1.5	<10	130	<1	<10	<10	0.53
CAP 004	10	1	<1	2	<10	0.47	<0.01	<0.01	0.05	0.16	<0.01	<10	<0.5	<10	60	<1	<10	<10	0.03
CAP 005	30	143	<1	87	<10	4.04	0.65	2.29	0.62	0.43	0.10	<10	0.5	<10	640	7	<10	<10	1.94
CAP 006	60	134	<1	19	<10	2.76	1.62	0.41	0.09	1.87	0.26	<10	<0.5	<10	850	13	<10	<10	2.60
CAP 007	30	1	<1	4	<10	0.41	<0.01	<0.01	<0.01	0.26	<0.01	<10	<0.5	<10	50	<1	<10	<10	0.83
CAP 008	30	26	<1	6	<10	0.86	0.20	0.20	0.01	0.47	0.05	<10	0.5	<10	680	2	<10	<10	2.37
CAP 009	10	19	<1	5	<10	0.97	0.22	0.11	<0.01	0.38	0.04	<10	<0.5	<10	960	1	<10	<10	0.71
CAP 010	10	1	<1	3	<10	0.96	0.05	0.09	<0.01	0.28	0.02	<10	0.5	<10	140	<1	<10	<10	0.15
CAP 011	30	1	<1	14	10	0.42	0.01	0.01	<0.01	0.26	<0.01	<10	<0.5	<10	210	<1	<10	<10	0.03
CAP 012	330	27	<1	93	40	1.15	0.08	0.01	0.01	0.35	< 0.01	<10	0.5	<10	970	3	10	<10	0.40
CAP 013	100	97	<1	71	<10	2.42	1.63	0.82	0.13	1.29	0.27	<10	<0.5	<10	1630	3	<10	<10	0.19
CAP 014	20	3	<1	5	10	0.59	0.03	0.04	<0.01	0.32	<0.01	<10	<0.5	<10	270	<1	<10	<10	0.01
CAP 015	30	8	<1	6	<10	1.25	0.16	0.16	0.01	0.41	0.03	<10	0.5	<10	530	<1	<10	<10	0.51
CAP 016	40	<1	<1	1	<10	0.34	0.01	<0.01	<0.01	0.26	<0.01	<10	<0.5	<10	60	<1	<10	<10	1.50
666 RM 01	30	16	<1	6	<10	1.18	0.17	0.40	0.02	0.46	0.04	<10	0.5	<10	980	1	<10	<10	3.45
666 RM 02	20	7	1	3	<10	0.53	0.11	0.10	< 0.01	0.25	0.02	<10	0.5	<10	450	<1	<10	<10	3.71
666 RM 03	20	<1	<1	1	10	0.45	<0.01	<0.01	<0.01	0.21	<0.01	<10	<0.5	<10	140	<1	<10	<10	0.03
666 RM 04	10	5	<1	<1	<10	0.43	<0.01	<0.01	<0.01	0.24	<0.01	<10	<0.5	<10	70	<1	<10	<10	0.01
666 RM 05	70	2	<1	5	<10	0.35	0.01	< 0.01	<0.01	0.39	<0.01	<10	< 0.5	<10	80	<1	<10	<10	1.37
666 RM 06	40	46	<1	29	<10	4.14	0.66	2.10	0.14	0.91	0.11	<10	1.5	<10	810	6	<10	<10	1.05
666 RM 07 🔗	30	53	<1	30	<10	2.68	0.70	1.07	0.28	0.67	0.13	<10	0.5	<10	460	4	<10	<10	1.52
666 RM 08	10	<1	<1	2	10	0.41	0.01	0.03	<0.01	0.23	<0.01	<10	< 0.5	<10	50	<1	<10	<10	0.02
666 RM 09	90	112	<1	163	<10	3.58	1.37	1.30	0.41	1.13	0.23	<10	<0.5	<10	1650	4	<10	<10	0.88
666 RM 10	10	3	<1	1	10	0.49	0.03	0.05	<0.01	0.27	0.01	<10	<0.5	<10	380	<1	<10	<10	0.63
666 RM 11	60	·<1	<1	1	<10	0.35	<0.01	<0.01	<0.01	0.19	<0.01	<10	<0.5	<10	50	<1	<10	<10	0.20

Gyr Affir