

REPORT-ON THE RED 1-6 MINERAL CLAIMS,

BITTER CREEK PROJECT:

2000 GEOCHEMICAL AND GEOLOGICAL

FOLLOW-UP SURVEYS

BITTER CREEK AND CLEMENTS LAKE AREAS:

LATITUDE 56° 02' NORTH

LONGITUDE 129° 54' WEST

NTS 104A/04W

SKEENA MINING DIVISION,

STEWART GOLD CAMP,

NORTHWESTERN BRITISH COLUMBIA

BY

DAVID E. MOLLOY

17. TAY 1.

JANUARY 2001

SUMMARY: 2000 BITTER CREEK PROJECT CARRIED OUT ON THE RED 1-6 MINERAL CLAIMS:

The Red 1-6 Mineral Claims are located in the Bitter Creek and Clements Lake Areas of the Stewart Gold Camp of Northwestern British Columbia. The 6 contiguous claims comprise 61 Claim Units and cover about 15 square km. The Red 1-4 Claims were staked in September 1999, as part of a regional geochemical stream sediment and geological evaluation (i.e., a BC Prospectors Assistance Program) of various, currently unexplored environments in the camp (Molloy, 2000). In 2000, the Red 3 Claim was re-staked as New Red 3, to cover open ground; and, the Red 5 and Red 6 Claims were staked as part of the 2000 follow-up activities.

The 1999 geochemical program had almost immediately identified interesting, polymetallic targets in the Bitter Creek Valley (Molloy, 2000). Initial follow-up activities indicated that an historic mill complex was located in one of the target areas. Research in 1999 and 2000 first indicated that mill feed had apparently come from a source or sources in proximity to the mill. However, data provided by the BC government on August 14, 2000 indicated that the mill was owned by the Adam Milling Company and operated from April until September 1973. The mill was apparently built to treat copper-gold ore from the Red Cliff deposit on American Creek and from the Roosevelt deposit farther up Bitter Creek (Minfile 104A037).

The author's current interest in the Bitter Creek and Clements Lake Areas is based primarily on the favourable geological environment, which includes the Eocene Bitter Creek quartz monzonite pluton, a satellite of the Coastal Plutonic Complex; and, proximal, altered Hazelton Group Rocks, including Unuk River Formation andesite rhyolite flows, and pyroclastic rocks, including crystal tuff and crystal tuff breccia. The environment becomes particularly interesting when the various stream sediment anomalies are referenced with respect to specific geological settings on the property, and in terms of the relevance of such polymetallic anomalies obtained from similar environment elsewhere in the Stewart Camp. For example, the geology of the Poly Property (Molloy, 2000P) includes the Entrance Peak quartz monzonite pluton, in the vicinity of which polymetallic stream sediment and soil anomalies are indicative of rather prospective and only recently discovered gold-copper-silver-lead-zinc targets.

The 2000 Bitter Creek Project was also carried out a under the BC Prospectors Assistance Program as part of a regional project. In addition to the aforementioned claim staking, the exploration activities included compass and chain surveying of access roads, mill site roads, trails, and hiking trails; the installation of various flagged grid and control lines; detailed and reconnaissance geological and geochemical surveys, including the collection of 113 stream sediment, rock, soil and check samples and their analysis for gold and 34 element ICP; and, some airborne investigation to ascertain possible local source areas of the Adam's mill feed.

ίi

A> Bitter Creek Area Geological and Geochemical Surveys:

All of the 10 stream sediment samples collected in the Bitter Creek Valley on the Red Property have anomalous copper and cadmium contents ranging between 64 and 2330 ppm and 1 and 5 ppm, respectively. Six samples have anomalous lead contents ranging between 20 and 268 ppm; 9 samples have anomalous zinc contents between 130 and 346 ppm; 5 samples have anomalous arsenic contents between 32 and 80 ppm; three samples have anomalous gold values between 30 and 120 ppb; and five samples have anomalous silver values between 0.8 and 4.4 ppm.

The stream sediment samples are indicative of at least two areas of interest: Area 1> an area located about 1.2 km south of the historic mill on the Bitter Creek Road (sample 759713SS: 346 ppm zinc, 100 ppm copper; 80 ppm arsenic; 5 ppm cadmium; and sample 759714SS: 120 ppb gold; 150 ppm zinc, 79 ppm copper, 40 ppm arsenic); and, Area 2> the Mill Area (e.g. sample 759788SS, a retake of the original discovery sample 160207SS, located on the Bitter Creek Road about 70 m north of the mill: 35 ppb gold; 4.4 ppm silver; 256 ppm lead; 268 ppm zinc; 2330 ppm copper). The original sample contained 50 ppb gold; 5 ppm silver; 372 ppm lead; 346 ppm zinc; and, 1325 ppm copper.

Four of the 54 soil samples collected on the property in the Bitter Creek Valley were taken from the historic tailings pond, which is now dry and located about 250 m north of the mill. The four samples have gold contents ranging between 300 and 510 ppb; silver contents between 4.4 and 5.5 ppm; lead contents between 18 and 68 ppm; zinc contents between 8 and 22 ppm; copper contents between 188 and 840 ppm; arsenic contents between 42 and 74 ppm; and bismuth contents between 34 and 52 ppm. The analytical results are somewhat suggestive of the metals recovered in the mill i.e., gold, copper, and silver from rock with a distinctive arsenic-bismuth signature.

The remaining 50 B-horizon soil samples were mainly taken on grid lines in the vicinity of the mill. Twenty-five have anomalous gold values ranging between 10 and 360 ppb; 34 have anomalous silver values between 0.8 and 25 ppm; 35 have anomalous copper values between 40 and 1550 ppm; 19 have anomalous arsenic contents between 30 and 48 ppm; 2 have anomalous zinc contents of 172 and 1270 ppm; 4 have anomalous bismuth contents between 6 and 144 ppm; and two have anomalous W contents of 20 and 70 ppm. The results are considered reflective of the favourable rhyolite and rhyolite breccia horizon exposed on the east edge of the Bitter Creek Road. The felsic rocks appear to have been intruded by the quartz monzonite pluton, with which they have both sharp and gradational contacts. A large majority of the soil samples taken within 100 m of the east side of the road have anomalous silver, lead, copper, and arsenic values. The higher zinc values are also located in this area, along with the majority of anomalous gold values.

The gold anomalies are not limited to the area of the historic mill site e.g. the second and third highest gold values (120 and 95 ppb) and the second highest copper value (524 ppm) were obtained on higher ground, to the east of the site. The most interesting soil sample (759769SO)

iii

was dug from the bank above the culvert where the aforementioned stream sediment samples 759788SS and 160207SS were taken. The soil sample returned 125 ppb gold; 25 ppm silver; 1510 ppm lead; 2270 ppm zinc; 34 ppm arsenic, 8 ppm cadmium and 26 ppm bismuth. The significance of this apparently important sample has yet to be fully ascertained: while its metal contents could be possibly due to run off from the muck pile to the east or from the mill site to the south, there is little evidence of any such historic metal dispersion or contamination elsewhere on the property, except in the tailings pond.

The second most interesting soil sample (759753SO) was taken about 200 m south of the mill, just east of the Bitter Creek Road. It returned 360 ppb gold; 0.8 ppm silver; 28 ppm lead; 124 ppm zinc; 249 ppm copper; 32 ppm arsenic; 1.5 ppm cadmium; 144 ppm bismuth; and, 70 ppm tungsten. The third most interesting soil sample (759758SO) was taken east of all historic infrastructure on the property – about 8 m east of, and above the main muck pile. It contained 95 ppb gold; 6 ppm silver; 44 ppm lead; 28 ppm zinc; 524 ppm copper; 42 ppm arsenic; and, 24 ppm bismuth.

Of the 22 rock samples collected on the property in the Bitter Creek Area, 4 are composite samples of the two main mineralization types on the 2 muck piles located about 100 m above the mill. The smaller dump pile contains quartz-carbonate breccia vein material mineralized with disseminations and fracture fillings of galena, sphalerite and chalcopyrite. Two samples (759729RM and 759730RM) returned 870 and 60 ppb gold; 451.0 and 44.4 ppm silver; 4240 and 7660 ppm lead; 8810 and 44700 ppm zinc; 16 and 6 ppm arsenic; 136.5 and 486.0 ppm cadmium; and 2 and 24 ppm bismuth, respectively.

The two composite samples (759731RM, 759732RM) of semi massive sulfides (coarse pyrite and massive chalcopyrite in silicified, brecciated volcanic rock) from the main pile contained 870 and 2340 ppb gold; 10 and 35 ppm silver; <2 and 50 ppm lead; 124 and 206 ppm zinc; 4670 and 35600 ppm copper; 204 and 692 ppm arsenic; 3 and 6 ppm cadmium; and 80 and 220 ppm bismuth.

Of the remaining 18 rock samples collected in the Bitter Creek area of the property, 17 have strongly anomalous copper contents, ranging between 67 and 66200 ppm; 10 have anomalous gold contents ranging between 25 and 3420 ppb; 5 have anomalous silver contents ranging between 0.8 and 45.2 ppm; 2 have anomalous lead contents of 50 and 84 ppm, one has an anomalous zinc content of 156 ppm; three have anomalous arsenic contents ranging between 80 and 692 ppm; 7 have anomalous cadmium contents ranging between 1 and 6.5 ppm; 7 have anomalous bismuth contents ranging between 6 and 2160 ppm; and, six have anomalous tungsten values ranging between 10 and 670 ppm.

Of the 18 aforementioned rock samples, 9 are from outcrop and 9 are interpreted as subcrop. All of the outcrop samples have anomalous copper contents ranging between 188 to 2920 ppm; and, seven of the samples have anomalous gold contents ranging between 30 and 3150 ppb. The latter gold value came from rock sample 759752R, collected from a 10 cm wide quartz sulfide vein, and located above the aforementioned soil sample759753SO. The rock sample

iv

returned 3150 ppb gold, 5.6 ppm Ag, 64 ppm lead; 124 ppb zinc; 2920 ppm copper; 6 ppm arsenic; 3 ppm cadmium; 2160 bismuth; and, 670 ppm tungsten. A composite sample (759753R) of hanging wall and footwall rocks composed of rhyolite breccia contained 210 ppb gold; 413 ppm copper; 48 ppm bismuth and 150 ppm tungsten.

The most interesting subcrop sample (759744RS) was dug out of the overburden about 50 m southeast of the mill. The brecciated and silicified, angular semi massive sulfide (pyrite and chalcopyrite) boulder returned 3420 ppb gold; 45.2 ppm silver; 84 ppm lead; 156 ppm zinc; 66200 ppm copper; 648 ppm arsenic; and, 464 ppm bismuth. Gold, silver, copper and zinc soil anomalies are located in the area of the sample. A sample (759745R) of similarly altered rhyolite from a nearby outcrop contained 90 ppb gold, 593 ppm copper, 6 ppm bismuth and 10 ppm tungsten.

Geological surveys indicate that the favourable felsic stratigraphy and its irregular contact with the quartz monzonite extends at least 600 m south of the mill, and is probably in excess of 200 m wide in the vicinity of the mill. The rhyolite and rhyolite breccia remain open for delineation in every direction.

It is concluded from work in the Bitter Creek Valley, that the Adam Mill was built on prospective geology, which continues to offer interesting exploration targets. The copper-gold -bismuth signature of the rhyolite and rhyolite breccia, along with the numerous historic mining claims staked in the area, many of which have recently come open, support, this interpretation.

Although it is firmly documented that the mill feed came from other properties, it is somewhat intriguing that in situ and subcrop mineralization on the property can have a geochemical signature, including bismuth, and alteration that is rather similar to that of the muck on the largest stock pile (e.g., sample 759752R vs. 759731RM). In addition to bismuth, one of the muck samples and a number of the rock samples from the property have anomalous tungsten contents. Based on the author's experience, tungsten is often associated with specular hematite, which is one of the most reliable and important indicators of gold potential in the Stewart Camp.

It is recommended that the Bitter Creek area of the property be followed-up along with the Clements Lake area, which is summarized below. The follow-up work in both areas should first include a detailed compilation to ascertain the precise location of all historic mineral occurrences, their reported geology, access routes and historic work carried out on and in the vicinity of the property. For example, air photos suggest there are a number of historic bush roads and trails leading to the area of the Adam Mill from well above the Bitter Creek Road. Fieldwork indicates many of these are now overgrown by dense vegetation. Do these roads lead to mineral showings and occurrences, which supplied some muck to stockpiles? The currently apparent follow-up targets, which include a number of geochemical anomalies and geological environments outlined by the 2000 work, should be prioritized for follow-up work based on the results of the compilation.

v

B> Clements Lake Area Geological and Geochemical Surveys:

The Red 5 and 6 Mineral Claims were staked based on the positive results from the 1999 program (Molloy, 1999); and, on the favourable indications from the 2000 work in the Bitter Creek Area. The Bitter Creek quartz monzonite pluton dominates the geology south of Clements Lake. The 1999 work delineated stream sediment anomalies, which were confirmed via the 2000 results. Of the 9 stream sediment samples taken, 8 have anomalous copper contents ranging between 47 and 173 ppm; seven samples have weakly anomalous silver contents between 0.8 and 1.8 ppm; six samples have anomalous lead contents between 22 and 48 ppm; seven samples have weakly anomalous zinc contents between 138 and 176 ppm; six samples have anomalous arsenic between 36 and 146 ppm; and three samples have weakly anomalous gold contents between 10 and 20 ppb. All three streams draining north into Clements Lake have polymetallic sediment anomalies, with the Middle and East Creeks having the strongest gold, copper and arsenic values.

As in the case of the Bitter Creek area, the anomalies are postulated to have sources in altered rocks near or at the contact with the quartz monzonite pluton. The initial follow-up of the East Creek anomaly located a large outcrop of pyritized crystal tuff, a composite sample (759847RF) of which returned 25 ppb gold and 94 ppm copper. Further follow-up of the East and Middle Creek anomalies lead to the discovery of some historic pits and adits at about the 1300 m elevation, about 1.5 km south of Clements Lake. The area is accessible by the Ore Mountain Hiking Trail.

Four contiguous panel samples (686801RP-686804RP) of sulfidized tuff (pyrite veins, stringers) were taken in a small open cut into the hillside. The samples have gold contents ranging between 195 and 1810 ppb and averaging 618 ppb; silver contents between 3.6 to 21.2 ppm and averaging 8.5 ppm; lead contents between 80 and 1010 and averaging 488 ppm; zinc contents between 148 and 216 ppm, and averaging 170 ppm; and, arsenic contents between 348 and 2150 ppb and averaging 917 ppm. A fifth, composite sample (686805RC) was taken from a pit located about 70 m north of the open cut and returned 20 ppb gold, 1.2 ppm silver, 88 ppm lead, 594 ppm zinc and 88 ppm arsenic. Weather conditions did not allow the examination of an adit located about 50 m below the pit.

It is concluded that the geological environment of the Clements Lake area of the Bitter Creek Pluton also offers interesting polymetallic exploration targets. The area, and the Bitter Creek Valley Area apparently have not been subject to recent detailed exploration scrutiny via discovery criteria that have been used successfully, elsewhere in the Stewart Camp. The Red Property is deemed to have sufficient favourable attributes for the initiation of such detailed follow-up work.

The compilation contemplated above in Section A is an important prerequisite. It should also reference the regional structural fabric, including a major east-west trending fault that extends through the property and with which historic mineralization is associated to the west. Based on the integration of the results of the compilation and those from this program, exploration

vi

targets would be prioritized for detailed follow-up. Current priorities include the sulfidized tuffs in the Clements Lake area; the felsic horizon on and in the vicinity of the Adam Mill site and the Bitter Creek Road; the rationale for the upper road network above the mill site; and, a number of rock and stream sediment anomalies in the southern area of the Bitter Creek Road.

A proposed 2001, Phase 1, \$50,000 budget would include some helicopter time for air photo acquisition and interpretation to facilitate the delineation of structural fabric, bush road infrastructure and Ore Mountain historic mineral occurrences and access. The budget would utilize two geologists to carry out detailed follow-up geological and geochemical surveys for 30 days. The objective of the program would be the identification and initial prioritization of drill targets.

vii

TABLE OF CONTENTS

	TITLE:	PAGE :
	SUMMARY	
1.	INTRODUCTION:	1
2.	RED PROPERTY	1
з.	LOCATION, ACCESS:	5
4.	TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION:	5
5.	STEWAART CAMP GEOLOGY	8
6.	STEWART CAMP MINERALIZATION	14
7.	EXPLORATION HISTORY, GEOLOGY, MINERALIZATION, RED PROPERTY AND BITTER CREEK AREA	16
		16 20 21 22 23 24 25 26 27 28 29 30
8.B. 8.C. 8.C. 8.C. 8.C. 8.C. 8.C.	2000 EXPLORATION ACTIVITIES ON THE RED 1-6 CLAIMS CLAIM STAKING	32 32 34 34 34 45 s.48 48

viii

TABLE OF CONTENTS (CON'T)

TITLE:

_____.

1000

9.B.	CONCLUSIONS, RECOMMENDATIONS BITTER CREEK VALLEY CLEMENTS LAKE AREA PROPOSED 2001 EXPLORATION BUDGET	51 51
10.	REFERENCES	53
11.	STATEMENT OF QUALIFICATIONS	54
12.	APPENDIX A: CHEMEX CERTIFICATES OF ANALYSIS	46
	LIST OF FIGURES	PAGE :
1. L	OCATION MAP	2
2. S	TEWART GOLD CAMP	3

1. LOCATION MAP
2. STEWART GOLD CAMP
3. ROAD MAP
4. RELIEF MAP
5. STEWART COMPLEX9
6A.DILWORTH FORMATION
7. MINFILE NUMBERS, RED PROPERTY GEOLOGY
FIGURE A SOIL GOLD GEOCHEMISTRY, MILL AREA
FIGURE F SOIL ARSENIC GEOCHEMISTRY, MILL AREA44

ix

.

LIST OF PHOTOS

TITLE: PAGE:	
1. ADAM MILL. 17 2. AMAM MILL. 17 3. ADAM MILL. 18 4. ADAM MILL. 18 5. RHYOLITE BRECCIA. 36	
LIST OF TABLES	
TITLE: PAGE:	
TABLE 1. RED MINERAL CLAIMS 4	
TABLE 2. EXPLORATION EXPENDITURES	!
TABLE REDSSOO: BITTER CRK AREA STR.SEDIMENT SAMPLES & MOST RELEVANT RESULTS	
TABLE REDSO00: BITTER CRK AREA SOIL SAMPLES & MOST RELEVANT RESULTS	
TABLE REDROO:BITTER CRK AREA ROCK SAMPLES & MOST RELEVANT RESULTS	
TABLE CLEMENTS SS0049	i
TABLE CLEMENTS ROO	I
LIST OF MAPS:	
MAP: MAP POCKE	T :
1. RED PROPERTY CLAIM MAPPOCK	ΞT
2. TOPOGRAPHIC MAP: RED PROPERTY: BITTER CRK & CLEMENTS LAKE AREAS - 1999 EXPLORATION RESULTS	ŦТ
3. BITTER CREEK VALLEY AREA: GEOLOGY & GEOCHEMICAL SURVEYS. POCK	ΈT
4. CLEMENTS LAKE AREA: GEOLOGICAL, GEOCHEMICAL SURVEYSPOCK	ΈT

Α

А

В

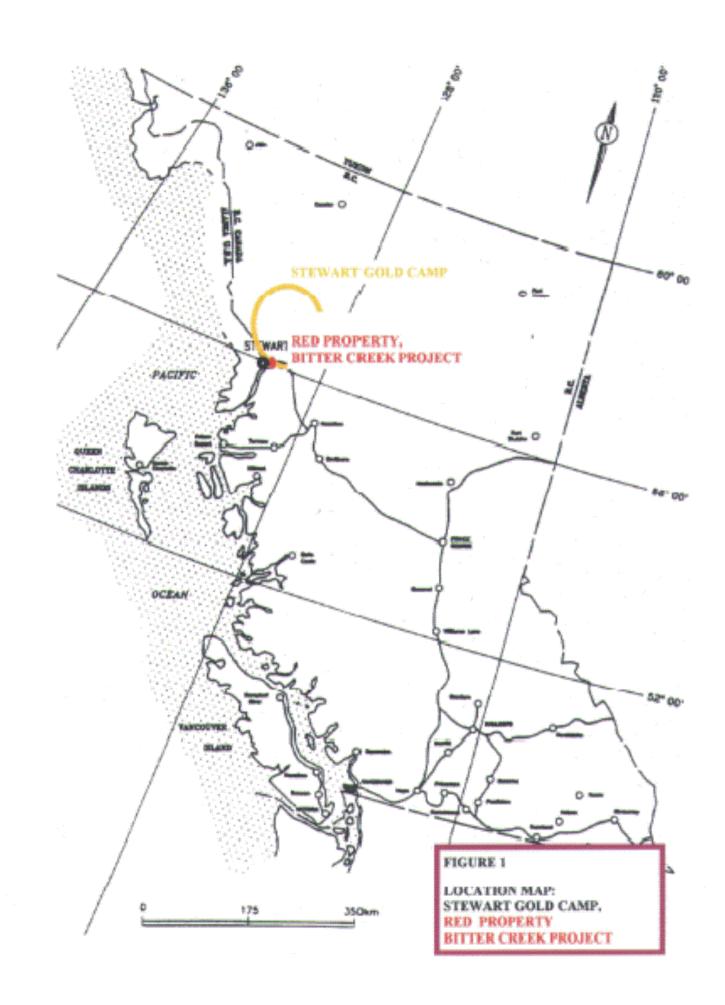
в

х

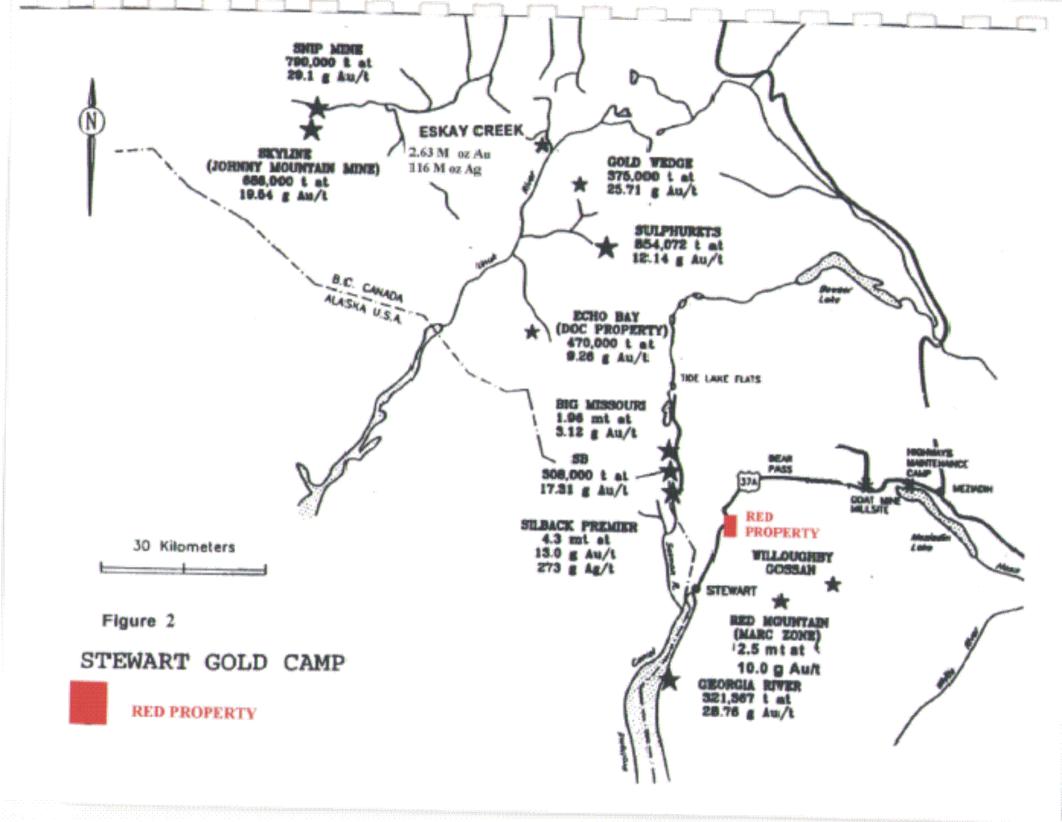
REPORT ON THE RED 1-6 MINERAL CLAIMS, 2000 BITTER PEAK PROJECT, SKEENA MINING DIVISION, NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:

The following report reviews the work carried out as part of a BC 2000 Prospectors Assistance Program on the Red 1-6 Claims (Map 1). The property is located in the Bitter Creek and Clements Lake Area of the Stewart Gold Camp (Figures 1, 2), Northwestern British Columbia. It was originally staked (Red 1-4 Claims) to cover the postulated source area of a number of significant, polymetallic stream sediment anomalies located as part of the 1999 BC Prospectors Assistance Program (Molloy, 2000). The follow-up targets were discovered close proximity to the Bitter Creek Road and an historic mill site, a few km south of the Stewart-Cassiar Hwy 37A.


The targets comprise both sygenetic and epigenetic gold and polymetallic mineralization, associated with rhyolite breccia and fracture zones in the Bitter Creek quartz monzonite intrusion and in Unuk River Formation crystal tuff and crystal tuff breccia, respectively. The relevant Stewart Camp syngenetic models include the Eskay Creek VMS deposit (Figure 2) with 2000 total reserves of about 2.1 million tonnes containing 2.63 M oz of gold and 116.06 oz of silver; and total deposit size of 7.10 M oz gold equivalent. The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia.

The relevant epigenetic models include the Marc Zone, Red Mountain (Figure 2) type mineralization (auriferous pyrite and chalcopyrite in fracture controlled, often brecciated zones associated with Jurassic diorite intrusions), which totals about 1 M oz grading about 10 g Au/t. The historic Silbak-Premier deposit (Figure 2), which produced 56,000 kg of Au and 1,281,400 kg of Ag from 1918 to 1976, is also a relevant model. The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections, but also occurs locally concordant with andesitic flows and breccias.


2. RED PROPERTY:

1

The Red 1-6 Claims are registered in the author's name, David E. Molloy. The claims comprise 61 units on BC Mineral Titles Map 104A04W (Map 1, Table 1) and cover about 15 square km.

Sec.

TABLE 1

RED CLAIMS, BITTER CREEK PROJECT:

CLAIM	UNITS	TENURE NO.	ANNIVERSARY DATE
RED 1	3	371779	SEPTEMBER 7, 1999
RED 2	4	371780	SEPTEMBER 7, 1999
NEW REI	3 15	379231	JULY 29, 2000
RED 4	9	371782	SEPTEMBER 7, 1999
RED 5	18	379658	JULY 31, 2000
RED 6	12	379659	JULY 31, 2000

TOTALS: 6 CLAIMS; 61 UNITS

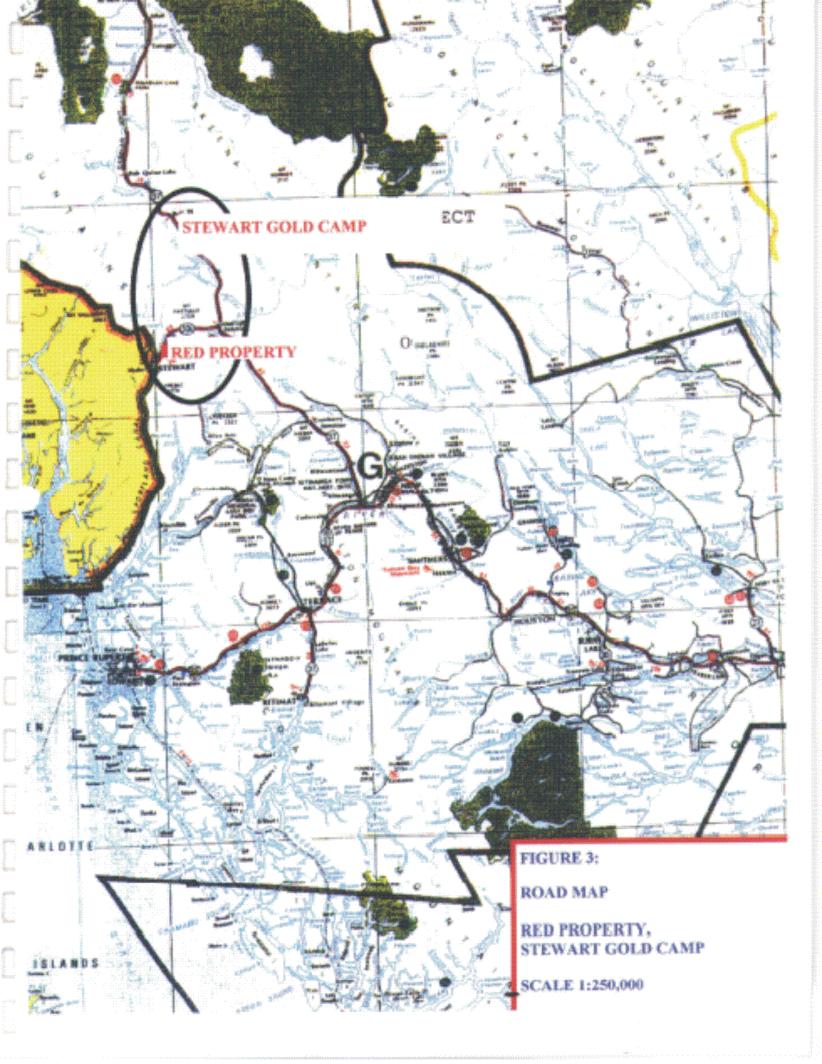
4

· ··· _ --- ··· · ··

3. LOCATION AND ACCESS:

The Red Claims (Figures 1-3; Maps 1, 2) are located in the Bitter Creek and Clements Lake Area of the Skeena Mining Division of Northwestern British Columbia, about 12 km east of Stewart. The claims are centred at about Latitude 56° 02'N, Longitude 129° 53'W on NTS Map 104A/04W (Map 2). Access is to the Bitter Creek Valley is afforded from Hwy 37A, on the east side of Bitter Creek Bridge, via the Bitter Creek Road. The road is an old lumber/mining trail, which is frequently blocked by fallen trees and washouts. The LCP for the Red 1-4 claims is located about 2 km south of Hwy 37A, on the east side of the Bitter Creek Road, about 200 southeast of the avalanche gates.

Access to the Clements Lake Area is gained from Hwy 37A, on the east side of Bitter Creek Bridge, via the same exit to the Bitter Creek Road. A left turn at the junction of the Bitter Creek Road (as opposed to a right turn to Bitter Creek Valley) leads to Clements Lake (Maps 1, 2). The LCP for the Red 5 and 6 claims is located on the north tip of the peninsula in the centre of the lake. The Ore Mountain Hiking Trail is located east of Clements Lake and leads south off the old Clements Lake Road (old Hwy 37A). The trail provides foot access to the alpine meadows on Ore Mountain.


4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

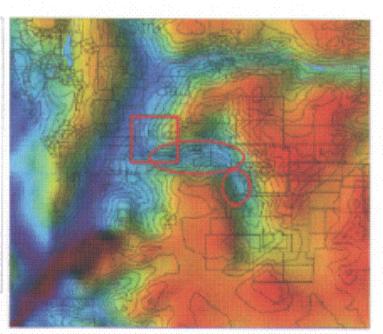
The western area of the Red Property straddles the Bitter Creek Valley, which trends generally northeast on the property (Maps 1, 2). The eastern part of the property covers the southern area of Clements Lake and extends south, up the north flank of Ore Mountain. Elevations range from less than 100 m above sea level in the valley, to over 1400 m on Ore Mountain (Figure 4; Map 2). Bitter Creek is located in a young mountain valley, which mainly comprises tree covered, steep sides that generally extend southwest and northeast from the creek. Tributary creeks flow southwest and northeast into Bitter Creek, which flows northeast into Bear Creek (Map 2). Bitter Creek can quickly become and often remains a raging torrent because of the extreme topography in the drainage basin.

The exploration field season in the Stewart Camp generally extends from late June to October. However, with the good access, low elevation and close proximity to Stewart, the target areas in the Bitter Creek Valley could be pursued for much of the year. In the summer of 2000, the Stewart area experienced weather worse than that of 1999, which long time residents had characterized as the "worst in memory". Below normal temperatures, with rather constant and often heavy rainfall and thick fog, entailed generally negative exploration conditions for most of the field season. Snow accumulations at higher elevations did not melt in 1999, a conditions never previously experienced by the author in the Stewart Camp.

Although winters have been getting milder and glaciers are receding, snow can cover higher evaluations in early September and accumulations can total several meters in a 24-hour period. The narrow mountain valleys in the Bitter Creek Area, southeast of the main target area, are conducive to the development of avalanche conditions in the winter months. Recorded mean

5

B.C. Ministry of Energy and Mines


FIGURE 4:

RC RELIEF MAP WITH MINERAL TITLES

RED PROPERTY
BITTER CREEK VALLEY

ROADS (IM) — Thurk Road — Major Roads — All Others Contours (250) ROADS (250) MINERAL TITLES transparent __All Others RIVERS (250) LAKES (250) BC Colour Relief Map BC Border (1:2m)

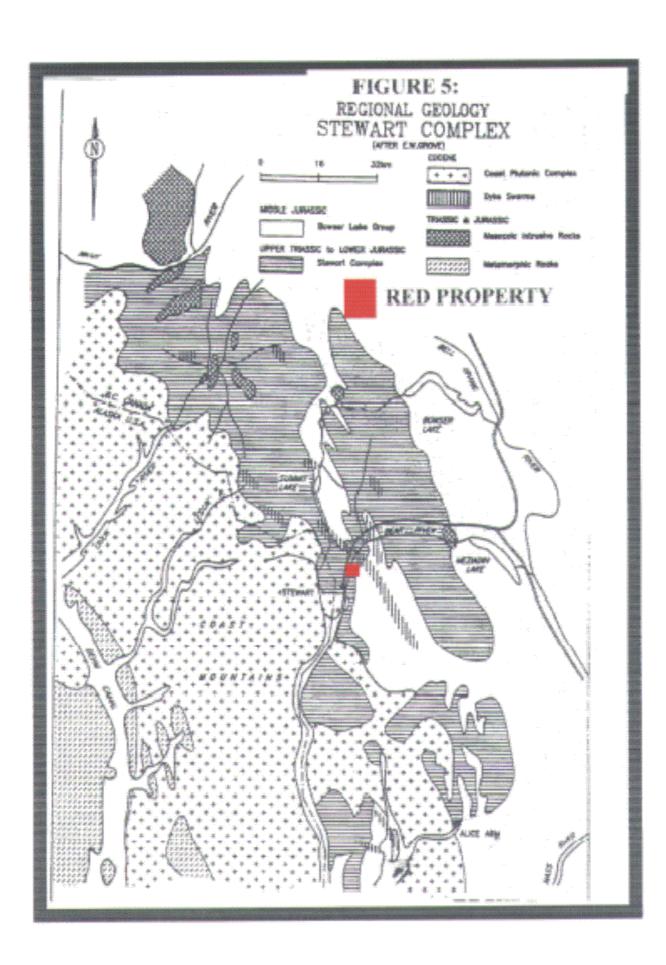
50

SCALE 1 : 431,517

annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Tide Lake Flats (915 m elevation). Summers are usually characterized by long hours of daylight and pleasant temperatures. However, the proximity to the ocean and relatively high mountains can make for highly changeable weather, including dense morning fog along the coast. Stewart is located on the Portland Canal (Figures 1, 2) and has the distinction of being Canada's most northerly, ice-free seaport.

Wildlife on and in the area of the Red Property can include skunks, mountain goats, moose, foxes, black bears, grizzly bears, wolves, coyotes, lynx, marmots, martins, ptarmigan, eagles, hawks, jays, gulls, and crows. Vegetation in the valleys and on their edges ranges from dense tag alders to areas of spruce, pine and poplar forest. Sub-alpine spruce thickets, with heather and alpine meadows, occur at higher elevations. Bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail above treeline, at approximately 1,200 m.

5. STEWART CAMP GEOLOGY:


8

The Red Property is located in the Stewart Gold Camp, which is characterized by a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figures 5, 6) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane, together with the Cache Creek and Quesnel Terranes, constitute the Intermontaine Superterrane, which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

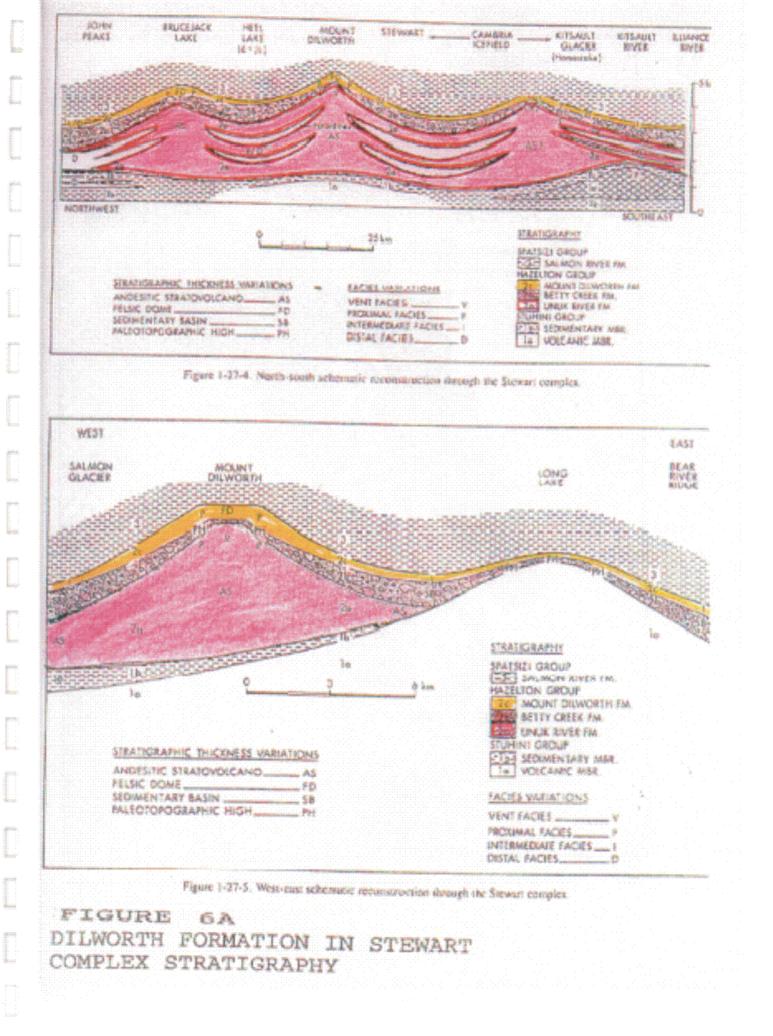
The Jurassic stratigraphy was established by Grove (1986, Figure 5) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and Thorkelson, 1990; Lewis, et al, 1993; Creig, et al, 1995). The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

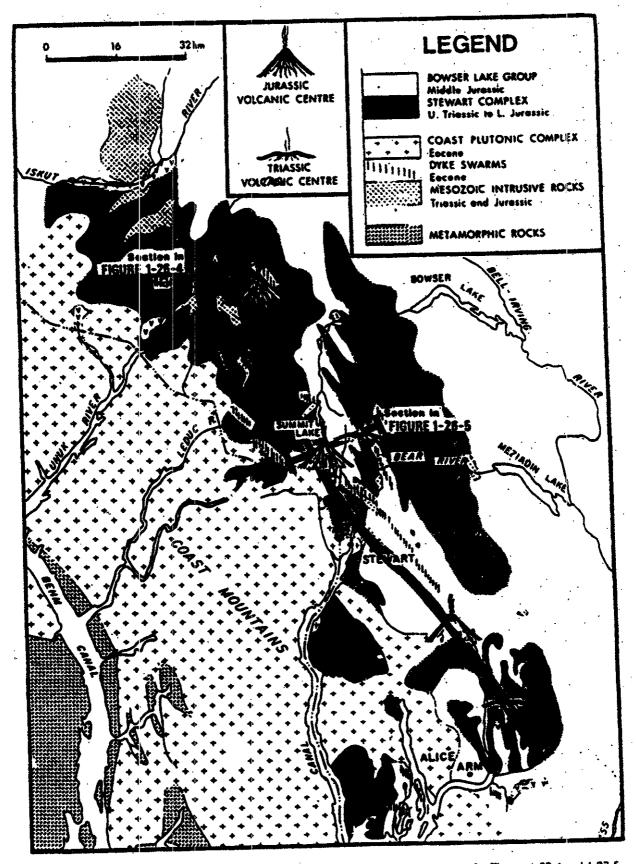
The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick, 1987):

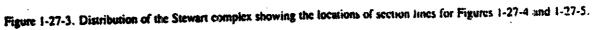
- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian).
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian).

- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian).
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian).

Alldrick assigned formational status (Mt. Dilworth Formation, Figure 6A) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.


The Unuk River Formation (Figure 6A), a thick sequence of andesite flows and pyroclastic rocks with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart Camp (Figure 2). The unit is unconformably overlain by heterogeneous, maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure 6A). This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).


Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and they include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with the Bowser Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.


Two main intrusive episodes occurred in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally pot-assium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs, including the Bitter Creek quartz monzonite, and a widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontaine - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

10

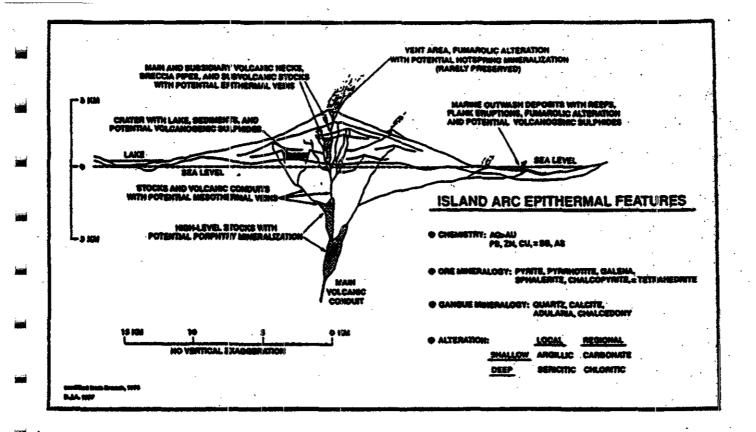


FIGURE 6B

STEWART VOLCANIC BELT

Existribution of ore deposits within a stratovolcano (modified from Branch, 1976).

FIGURE 6C

MINERALIZATION TYPES STEWART CAMP

6. STEWART CAMP MINERALIZATION:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri, Red Mountain, Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Eocene quartz monzonite plutons (e.g., as described in this report and Molloy, 2000P) and to Lower Jurassic Calc-alkaline intrusions and volcanic centres (Figures 6B, C). The latter intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier goldsilver mine, which has produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine was closed in the summer of 1997 and the mill is currently up for sale.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections, but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena, with minor pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An 14

example of this type of deposit is the BC Molybdenum Mine at Lime Creek.

The Eskay Creek Mine (total current reserves of 2.1 million tonnes containing 2.63 M oz gold and 116.06 M oz silver) was planning to increase current production from 150 t/d to 250 t/d in October 2000. The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling continues to expand the original, approximately 280 m by 100 m zone that has an average thickness of 10 m.

The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high-grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization, are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

No exploration was carried out on the Red Mountain project in 1999. However, Wheaton River optioned the property early in 2000 and commenced due diligence activities. Royal Oak had curtailed work in 1997 as a result of a dispute with the BC government. The Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi massive, coarse-grained pyrite aggregates, but also with stock works of pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides. Approximately 1 M ounces have been outlined to date, with an average grade of about 10 g gold/t.

15

7. EXPLORATION HISTORY, GEOLOGY, MINERALIZATION: RED PROPERTY AND BITTER CREEK TARGET AREA:

7.A.: EXPLORATION HISTORY:

The general area hosts the Red Mountain Au-Cu deposit (about 6 km to the southeast, discovered by the author and Dave Kennedy in 1989) and the Silbak Premier Mine, about 3 km to the west. Subsequent to the discovery of Red Mountain, the surrounding area and a large part of the Stewart Camp were staked or re-staked. Bond Gold flew a helicopterborne, conventional EM and magnetic survey over the area in 1990.


Various historic activities were conducted on and in the vicinity of the Red Claims, including the erection of an old mill and tailings pond (Photos 1-4), just east of the Bitter Creek Road i.e., apparently on the old Mill 1 Claim 313872, which now is mainly the Red 4 Claim. The mill was owned by the Adam Milling Company and operated from April until September 1973 (Minfile 104A 037). The mill was apparently built to treat copper-gold ore from the Red Cliff deposit on American Creek and from the Roosevelt deposit farther up Bitter Creek

The numerous mineral occurrences in the area are shown on Figure 7. Most relate to narrow quartz-sulfide veins with Cu-Au-Ag-Pb-Zn values, and hosted by quartz monzonite or coarse cherty sediments. Some cross cutting and tunneling was done e.g., on the Ore Mountain Property (MINFILE 104A 143) and the Morgan 6 Property (104A 051), on quartz fracture zones with mineralization similar to that mentioned above.

As documented in the author's report on the 1999 Prospectors Assistance Program (Map 2; Molloy, 2000), very interesting polymetallic, stream sediment geochemical anomalies and in situ mineralization was discovered in proximity to the mill on the Bitter Creek Road. Similar targets were also found south of Clements Lake, where intrusive quartz monzonite has apparently strongly altered the host Hazelton Group volcanic rocks (Figure 7).

The MINFILE occurrences in the Bitter Creek Project Area are classified in Figure' and the individual MINFILE descriptions are provided in the following pages.

16

PHOTOS 1, 2: ADAM MILL SITE, BITTER CREEK VALLEY: A: MUCK PILES; B: MILL SITE; C: BITTER CREEK ROAD: D: ALTERED RHYOLITE BRECCIA; F: TAILINGS POND SOME ROAD/TRAIL INFRASTRUCTURE

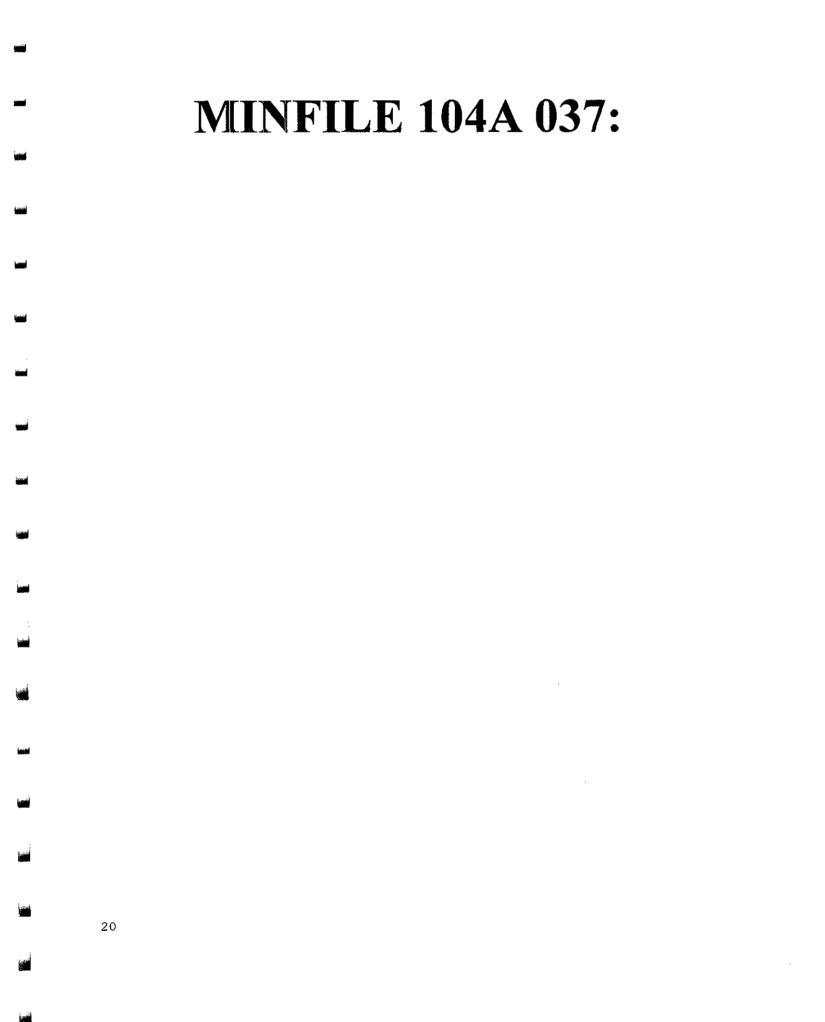

PHOTO 3: ADAM MILL LOOLING NORTH

PHOTO 4: ADAM CRUSHER AND MUCK BIN: LOOKING EAST FROM SOUTH END OF MILL

FIGURE 7: **RED PROPERTY:** MINFILE NUMBER FILE, GEOLOGY SCALE: 1:56250 104A 065 SALMON ARM FORMATION 104A 043 SEDIMENTS 104A 044 A 153 104A 042 104A 050 104A 070 104A 1 104A 143 10 104A 045 104A 044 104A 051 104A 104A 14 104A 140 104A 156 104A 053 104A 144 104A UNUK RIVER 104A 157 FORMATION: 104A 145 MAFIC, FELSIC VOLCANIC ROCKS 104A 064 104A 148 104A 079 RED PROPERTY 1044 120 BITTER CREEK QUARTZ MONZONITE PLUTON

NINFILS / pc NASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, NINES AND PETROLEUM RESOURCES

MINFILE NUMBER: 104A 037 MATIONAL MINERAL INVENTORY: 104A4 CO10 NAME(S): <u>MED CLIFF (L. 75)</u>, REDCLIFF, MOUNT LYELL, NAC FR., DOY FR. STATUS: Past Producer NTS MAP: 106404/ LATITUDE: 56 05 55 LONGITUDE: 129 33 47 ELEVATION: (1260 Metres LOCATION ACCURACY: 1/1thin 500M MINING DIVISION: Skeena UTH ZONE: 09 Underground NORTHING: 6217200 EASTING: 444240 CONVENTS: North portal (1000 level?) (Assessment Report 17465). COMMODITIES; Copper Gold Silver Zinc MINERALS SIGNIFICANT: Pyrite ASSOCIATED: Quartz Chalcopyrite Schalerite ALTERATION: Sericite ALTERATION TYPE: Sericitic MINERALIZATION AGE: Unknown DEPORT SIT CHARACTER: Vein CLASSIFICATION: Epigenetic SHAPE: Irregular Podi form Hydrothermal MODIFIER: Faulted DIMENSION; 76 x 6 Metres STRIKE/DIP: COMMENTS: The vertical dimensions of the discrete one lenses are not known and their attitude is highly variable. Dimensions of the largest lens on DIMENSION: TREND/PLUNGE: the 700 level. HOST ROCK DOMINANT HOST ROCK: Volcanic STRATIORAPHIC AGE Triassic-Juressic Hazel ton FORNATION IGNEOUS/METANORPHIC/OTHER River LITHOLOGY: Andesitis Tuff Armiesitic Agglomerate Andesitic Flow Andenite Amygdeloidal Feldspar Porphyry Quartz Honzonite Dike Diorite bike Hornblende Porphyry Dike GEOLOGICAL SETTING TECTONIC BELT: Intermontane PHYSIOGRAPHIC AREA: Boundary Ranges TERRANE: Stikine RESERVES ORE ZONE: RED CLIFF CATEGORY: Unclassified GUANTITY: 18850 YEAR: 1912 18856 Tonnes CONMODITY GRADE 2,8000 Grams per 3,1900 Per cent Gold Grams per tonne Copper 3.190 COMMENTS: Estimate by J.L. Parker in 1912. REFERENCE: Cited in Assessment Report 17465, p. 35. ٠, The Red Cliff mine is on the west bank of Lydden Creek, immediately west of the confluence of American Creek and the Bear River. The portal to a lower, 423-metre long access tunnel (700 level) is at an elevation of 146 metres and is located on the east bank of Lydden Creek, about 700 metres West of the Stewart highway. Two portals (North and South) access the 1000 level and are located on the west bank of Lydden Creek, about 500 metres north-northwest of the portal of the lower tunnel. A fourth portal (Upper portal) ties about 30 metres above the North and South portals. The Red Cliff group (Red Cliff, Montrose (104A 033), Mount Lyell, Little Pat (104A 062), Waterloo (104A 033) and Mac and Dot Fractions) were originally held by Lydden, Pederson, McDonald and Peardon who did some open cutting and drove tunnels in 1908. Apparently, other zones were discovered at the same time (Montrose, M CAPSULE GEOLOGY

MINFILE NUMBER: 1044_037

٠

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

CAPSULE GEOLOGY

Waterico). That year the property was sold to A.E. Smith, who formed the Red Cliff Mining Company. Batween 1908-12, about 2,383 metres of underground development was carried out on S(7) levels on the Red Cliff mineralization, including 4 portals, a long access turnel and raises. The Red Cliff mine was the first significant mine in the Stewart area; it was linked to Stewart by road and rull. About 200 tonnes of one grading 5 per cent copper was stockpiled in 1910; an indditional 1.4 tonnes was shipped to the Type smelter and yielded 0.25 per cent copper, 83.7 grams per tonne sliver and \$5 per ton gold (1910 prices). In 1912, upon completion of the railway, a further 1,133 tonnes of one was shipped to the Tacma smelter and another 2,030 tonnes was placed on one dumps. A total of 2,411 grams of gold and 40,100 kilograms of copper was recovered. The mine closed in 1912.

and 40,100 kilograms of copper was recovered. The mine closed in 1912. The property remained (dle until 1921, when Trites, Woods and Wilson purchased the property and carried out minor work on the Montroase and Waterloo Zones. Little further work was reported until 1939, when H.D. Haywood purchased the claims from the estate of Wilson. That year a camp and trail were built and during 1939-40 Haywood worked on the Montrose zone about 40 tannes of ore were shipped from the Montrose zone during this period. In 1941, 10 tannes (averaging 9.23 per cent copper, 1.09 per cent zinc, 8.9 grams per turne gold and 73.4 grams per tonne silver) was high graded from the 700 lavel(2) of the Red Cliff deposit and a 19.3 tonnes of ore was high graded from the Montrose zone. In 1946, the Yale Mining Company, Limited optioned the property and sampled the Montrose and Waterloo zones. In 1950, Yale Lead and Zinc Mines Limited completed about 600 metres of drilling on the Montrose(7) zone. In 1959, Oro Fine Mines Ltd. optioned the property; no work was reported. In 1968, International Mogul Mines Limited acquired the property through amalgamation of saveral companies, including Yale Lead and Zinc. In 1972, Citex Mines Ltd. acquired a three year lease on the property from International Mogul and subsequently entered into an agreement with Adam Willing Ltd. The Latter company built a 110 tonnes our day mill at the mouth of Bitter Creek and reopened the Red Cliff mine in April, 1973. The 700 level was rehabilitated and open stoping commenced. However, due to unaste conditions, the Ministry closed the mine in September, 1975. Apparently, 3,766 tonnes of ore were shipped to the mill from the mine and old dumps. (This tonnape may include some ore from the Roosevelt deposit (1044 069)). Some drilling was also reported in area of the Red Cliff deposit that year. Listle further work has been reported since 1975. In the late 1970s, limited work was done underground and, in 1979, Page and Skimming carried out sampling on the Red Cliff, Montros

zones. In 1987, Joutel Resources Ltd. entered into a joint venture sgreement with B.L. Carlson and V.N. Harbinson on the Red Cliff claim group and staked two grid claim blocks. That year Joutel conducted a comprehensive program, focusing mainly on the Montrose and Waterloo zones, comprising tranching, geological mapping, soil, silt and rock sampling and diamond drilling (6 holes, totalling 1,007 metres) on the Montrose and Ridley Road zones. The area is underlain prodominantly by north-striking, west-dipping andesitic tuffs, agglomerates and alnor flows, of the Upper Triassic to Lower Jurassic Unuk River Formation (Hazelton Group) (Bulletin S8, 63). Immediately east of Lydden Creek a conformable body of umygdaloidal feldspar purphyry, containing phenocrysts of faldspar and sugite, may represent a sill or a flow. Tertiary(?) quartz morzonite, diwrite and hornblende porphyry dikes are common. These trend northwest and northeast and are part of the Portland Ganul dike awarm (Bulletin 58). The area is intensely fractured and

These trend northwest and northwest and are part of the Portland Ganal dike awarm (Bulletin 58). The area is intensely fractured and faulted. North-trending, west-dipping dip-slip faulta are most conspicuous and appear to be younger than east-trending faults. Mineralization comprises irregular veins and pods of quartz, pyrite, chalcopyrite and minor sphalerite. The ore bodies, irregular and lenticular, are commonly enclosed in weakly developed sericitic alteration. The largest ore body, 76 metres long and averaging 6 metres in width, occurs on the 700 level. Nost of the mineralized pods appear to lie along locally east-trending, steeply dipping shears that transect all rock types except the diorite dikes. The mineralization is most conspicuous adjacent to, and on the hangingwall of, a prominent north-trending, west-dipping fault along Lydden Creek. Estimated reserves for the Red Cliff deposit are reported to be Irregular

Estimated reserves for the Red Cliff deposit are reported to be 18,856 tonnes of sorted ore containing 3.19 per cent copper and 2.8 grams per tonne gold (J.L. Parker, 1912; cited in Assessment Report 17465, p. 35).

MINFILE NUMBER: 104A 037

P.05/06

PAGE: 74 REPORT: RGENDIOO

RUN DATE: 03/29/93 RUN TIME: 10:19:25 MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

81BLIQGRAPHY

7

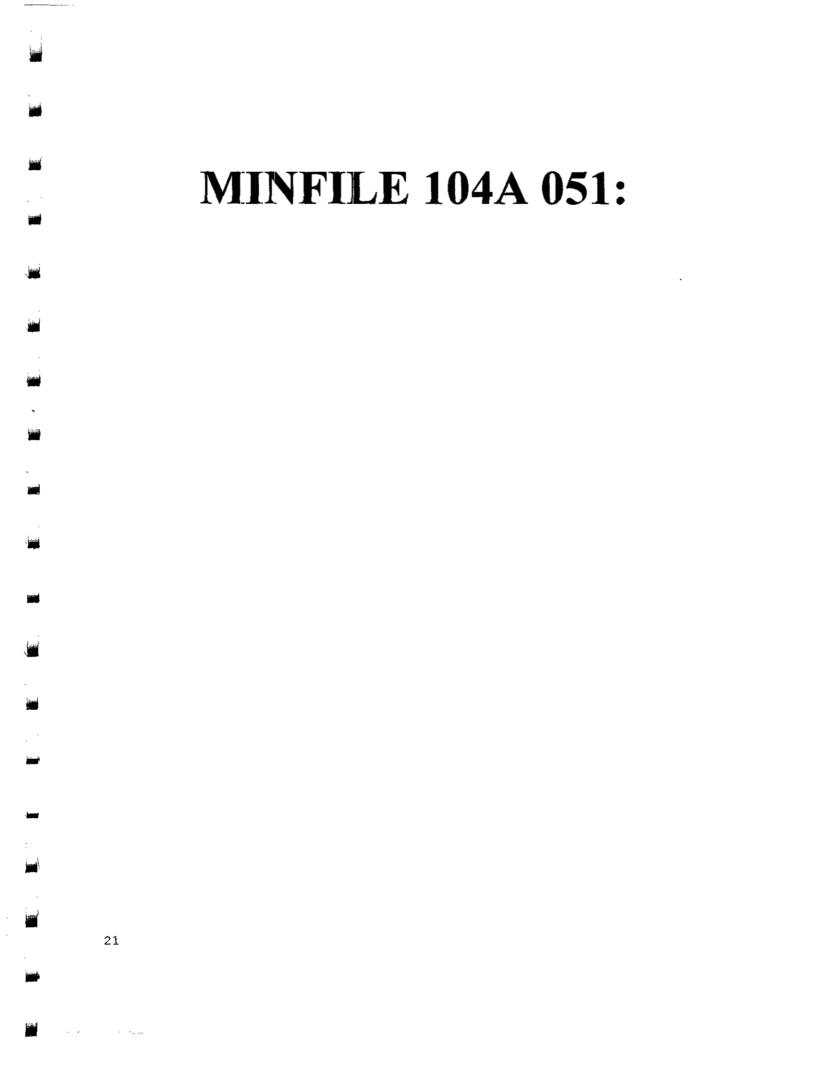
EMPR AR 1908-56; 1909-67; 1910-62; 1911-72, 74; 1912-104,107; 1921-66; 1939-66; 1940-52; 1946-79; 1950-78; 1959-8 EMPR GEN *1973-494 EMPR EVL 1987-A15; 1988-A15,A32 EMPR BULL 58, p. 151; 63 EMPR MAP 8 EMPR MAP 8 EMPR PF (In 104A General - Knobel, H.E. (1909): Report upon the mineral district of Bear River) EMR NP CORPFILE (Red Cliff Hining Company, Limited; Citex Mines Ltd.; Adam Milling Ltd.) GST MEN 32, p. 47; 175, p. 141 GST MAP *23A; *216A; *217A; 307A; *315A; 9-1957; 1418A GSC OF 2582

t,

DATE CODED: 850724 DATE REVISED: 911004

CODED BY: GSB REVISED BY: WC

FIELD CHECK: N FIELD CHECK: N


MINFILE NUMBER: 104A 037

RUN DATE: 03/29/93 RUN TIME: 09:46:14

NINFILE / pg PRODUCTION REPORT GROLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

PAGE: REPORT: RGENO2(

MINFILE NUMBER:	<u>104a 037</u>		NAME :	RED CLIFF (L. 7	5)	STATUS: Past	Producer
Production <u>Year</u>		Tennes <u>Nined</u>	Tonnes <u>Nilled</u>		Connedity	Grans <u>Recovered</u>	Kilogra <u>Recover</u>
1973			3,768		Sflver Gold Copper	1	
1941		10			Sflver Gold Copper Zina	754 89	93 11
1940		31			Silver Gold Copper	1,182 2,550	2
1912		1,133	ſ		Gold Copper	2,426	40,0
1910	-	1			Silver Gold Copper	117 12	t
SUMMARY TOTALS:	104A - 837		NAME:	RED CLIFF (L. 7	\$}		
			<u>Metric</u>		Imperial		
Recoverys	Minud: Milled:			tonnes tonnes	1,295 4,154	tons	
	Silvers Golds Coppers Zimos		2,054 5,078 41,386 109	grams grams kilograms kilogr ams	66 163 91,240 240	ounces ounces pounds pounds	
Connents:	1973: 1941: 1912: 1910:	Assessment 2030 tonne	Report 17465. s placed on or	unknown quantit; e dumps. ed (Assessment Re		GEM 1973.	

	RUN DATE: 03/29/93 RUN TIME: 10:19:25				rt Al resources			GE: 102 PORT: RGEN0100	•.
	MINFILE NUMBER:	<u>104a 051</u>			•	NATIONAL MINERAL	INVENTORY:	104/\4 Ag19	\bigcirc
	•	LAKE SHORE (L. 4808)	, ORE MOUNTA	IN	·				1
	NTS MAP: LATITUDE:	56 02 41		· Und	lerground	· MINI	G DIVISION: UTN. ZONE: NORTHING:	09 621/1200	
	LOCATION ACCURACY:	1021 Metres	ssment Repor	t 13352).			EASTING:	445:>90	
	COMMODITIES:	Gold	Silver	Co	pper	Lead	. Z	inc	•
•	MINERALS SIGNIFICANT:	Pyrite Chalcopyrite	Pyrrhotite	Ar	senopyrite	Sphalerit	• 6	alena	
	ASSOCIATED: ALTERATION: ALTERATION TYPE: MINERALIZATION AGE:	Pyrite Silica Silicific'n	Pyrrhotite	Ar	senopyrite				
			Podiform Epigenetic		• • •	ч. И			
	HOST ROCK DOMINANT HOST ROCK:					•			
	STRATIGRAPHIC AGE	GROUP Hazelton		FORMATION Salmon Rive	<u>کر</u>	IGNEOUS	/METAMORPHIC	/OTHER	
		Argillite Slate Feisic Dike	:			• •		•	
	·	Intermontane Stikine			P	HYSIOGRAPHIC ARE	A: Boundary	Ranges	
	RESERVES ORE ZONE:	ADTT							
		CATEGORY: Assay SAMPLE TYPE: Chip			YEAR:	1984	• .		
		COMMODITY Silver Gold Copper	·····	GRADE 139.5000 3.4000 0.1900	Grams per		•		
		Lead Zinc		1.0000	Per cent	·			
				0.6200	Per cent	95 metres from			
I		Zinc : Chip(?) sample acro the portal. : Assessment Report 1	3352.	0.6200 stres in t	Per cent he adit; 4.9			· ·	
	REFERENCE	Zinc Chip(?) sample acro the portal. Assessment Report 1: The Lake Shore of Stewart, about 3 Bitter Creek and th In 1925, the O	3352. showing is .5 kilometre e Bear River re Hountain	0.6200 ptres in t located ab s east-nor , on the w Wining Co.	Per cent he adit; 4.5 out 13 kilos theast of th est side of Ltd. acqui	netres northeast te confluence of Ore Mountain. ired the Lake			
) + Y	REFERENCE	Zinc Chip(?) sample acro the portal. Assessment Report 1: The Lake Shore of Stewart, about 3 Bitter Creek and th In 1925, the O Shore claim (L. 480 and 116 metres long on the mineralizati 1929-32. In 1955,	3352. showing is .5 kilometre e Bear River re Hountain B). During , respection on. Only mi the claim wa	0.6200 stres in t located ab s east-nor , on the w Wining Co. 1925-28, 2 ly, and se nor surfac s acquired	Per cent he adit; 4.5 out 13 kilos theast of th est side of Ltd. acqui crosscut ti veral openci e Nork Mas i by Rufus-Al	netres northeast te confluence of Dre Mountain. Fred the Lake Innels, 18 metres uts were emplaced uts were emplaced treported during reported during	3 ' · · ·		
	REFERENCE	Zinc Chip(?) sample acro the portal. Assessment Report 1: The Lake Shore of Stewart, about 3 Bitter Creek and th In 1925, the O Shore claim (L. 480 and 116 metres long on the mineralizati 1929-32. In 1955, Limited. Jun 1966, Limited. During 19 of Crest Ventures, mapping. During 19 carried out prospec	3352. showing is .5 kilometre e Bear River re Mountain 8). During , respective on. Only mi the claim wa the company 66-67, Crest acquired the 70-73, Ardo ting. magnet	0.6200 stres in t located ab s east-nor , on the w Nining Co. 1925-28, 2 ly, and se nor surfac s acquired name was c s filver Co claim and Hines Ltd. cometer and	Per cent he adit; 4.5 out 13 kilos theast of th est side of Ltd. acqui crosscut to veral openc e Work Was 1 by Rufus-An hanged to CI mpany Limito carried ou optioned 1 electro- mu	netres northeast te confluence of Dre Mountain. Tred the Lake unnels, 18 metred uts were emplaced reported during rgenta Mines rest Ventures ad, a subsidiary t some geological the property and sometic surveys.	1		•
	REFERENCE	Zinc Chip(?) sample acro the portal. Assessment Report 1: The Lake Shore of Stewart, about 3 Bitter Creek and th In 1925, the O Shore claim (L. 480 and 116 metres long on the mineralizati 1929-32. In 1955, Limited. In 1966, Limited. Juring 19 of Crest Ventures, mapping. During 19 carried out prospec During 1979-80, Bea and carried out map property was owned Limited optighed th	3352. showing is .5 kilometre e Bear River e Nountain 8). During , respective on. Only mi the claim wa the company 66-67, Cress the company 66-67, Cress company 66-67, Cress the company 66-67, Cress company 66-67, Cress company 67-73, Ardo company 67-73, Cress company 67-73, Cress company 67-75, Cress	0.6200 etres in t located ab s east-nor , on the w Wining Co. 1925-28, 2 ly, and se nor surfac s acquired name was c sliver Co claim and kines Ltd. cometer and surces Inc eting and fer Mines L	Per cent he adit; 4.5 out 13 kilos theast of the est side of Ltd. acqui crosscut ti veral openci by Rufus-An hanged to Ci mpany Limit carried out optioned to lelectro-mu . acquired sampling. td. That yu	netres northeast te confluence of Ore Nountain. ired the Lake usels, 18 metres uts were emplaced reported during rgenta Mines rest Ventures ad, a subsidiary t some geological the property and agnetic surveys, the property in In 1984, the ear Maralgo Mines LF-EM and			
	REFERENCE	Zinc Chip(?) sample acro the portal. Assessment Report 1: The Lake Shore of Stewart, about 3 Bitter Creek and th In 1925, the O Shore claim (L. 480 and 116 metres long on the mineralizati 1929-32. In 1955, Limited. Juring 19 of Crest Ventures, mapping. During 19 carried out prospec During 1979-80, Bea and carried out map property was pumed	3352. showing is .5 kilometre e Bear River re Mountain 8). During , respective on. Only mi the claim wa the company 66-67, Crest acquired the 70-73, Ardo ting, magnet ver Gold Res ping, prospe by Grey Silv e property a over the ar	0.6200 stres in t located ab s east-nor , on the w Wining Co. 1925-28, 2 ly, and se nor surfac s acquired name was c s silver Co claim and kines Ltd. cometer and surces inc acting and wer Mines L and flew an wa and con	Per cent he adit; 4.5 out 13 kilos theast of the est side of Ltd. acqui crosscut to veral opence e work was i by Rufus-An hanged to Ci mpany Limit i carried our optioned i letetro- mu . acquired sampling. td. That y airborne Vi ducted geold	netres northeast te confluence of Dre Mountain. Fred the Lake unnels, 18 metres uts were emplaced reported during rgenta Mines rest Ventures ad, a subsidiary t some geological the property and agnetic surveys. the property in In 1984, the sar Maraigo Mines LF-EM and ogical mepping,	s	BER: <u>104A_051</u>	

RUN DATE: 03/29/93 RUN TIME: 10:19:25

reported until 1989 when Gréy Silver Nines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area. The showing was resampled that year. The area is underlain by north to north-northeast striking,

steeply dipping argillites and slates of the Hiddle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). The showing lies close to the unconformable contact of these rocks with the underlying volcanics of the Upper Triassic to Lower Jurassic Unuk River Formation. The rocks are cut by several north to northwest-trending narrow felsic dikes that belong to the Portland Canal dike swarm. prominent north to northeast trending fault lies immediately east of the showing. The dikes and mineralization appear to terminate against this fault (Assessment Report 13352).

Most of the mineralization occurs in the sediments, close to the acts with a series of felsic dikes. Some mineralization occurs contacts with a series of felsic dikes. Some mineralization of in the dikes themselves as fracture fillings and along joints. in the dikes themselves as fracture fillings and along joints. Mineralization comprises predominantly pyrite and pyrhotite with lesser arseropyrite, sphalerite, galena and chalcopyrite in a siliceous gangue. The sulphides form discontinuous, north-trending and west-dipping gash veins and pods up to 3 metres across; widths are typically less than 0.5 metre. The discrete mineral accumulations extend over a north to northeast length of about 150 metres, approximately parallal to the fault. The individual gash veins and pxds, especially those hosted in dikes, tend to trend slightly oblique to the fault. A chip(?) sample was collected in 1984 from the adit, 4.95 metres from the portal, near the south end of the exposed mineralization. The sample assayed 3.4 grams per tonne gold, 139.5 grams per tonne silver, 0.19 per cent copper, 1.0 per cent lead and 0.62 per cent zinc across a width of 27 centimetres (Assessment Report 1335?). A grab sample collected from a new discovery epopoyies and 240

A grab sample collected from a new discovery, approximately 210 metres south-southeast of the adit, in 1979 assayed 26.4 grams per tonne gold, 1,033.7 grams per tonne silver, 0.21 per cent copper, 11.75 per cent lead and 6.93 per cent zinc (Assessment Report 8095).

BIBLIOGRAPHY

EMPR AR 1925-93; 1926-93; *1928-104; 1929-433; 1931-43; 1932-43; 1966-41; 1967-34 EMPR GEN 1970-74; 1971-32; 1972-512; 1973-494 EMPR EXPL 1979-273 EMPR BULL 63 ENPR ASS RPT *8095, 10489, *13352, 19242, 20379, *20622 EMPR MAP 8 ENR MP CORP!ILE (Ardo Mines Ltd.; Crest Ventures Limited; Ore Nountain Mining Company, Limited; Van-Sea Resources Limited) GSC MEM 159, p. 40; 175, p. 134 GSC MAP 28A; *216A; *217A; 307A; *315A; 9-1957; 1418A GSC OF 2582

DATE CODED: 850724 DATE REVISED: 920117

CODED BY: GSB REVISED BY: WC

MINFILE NUMBER: 104A 051

FIELD CHECK: N FIELD CHECK: N · · · · ·

REPORT: RGEN0100

103

PAGE

MINFILE 104 053:

22

<u>د</u>ه

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

MINFILE NUMBER: 104A 053 NATIONAL MINERAL INVENTORY: 10444 Cu13 NAME(S): <u>GOLD BAR NO. 1</u>, AMERICA'S GIRL, AMERICUS GIRL, GOOD ENOUGH, GOLDBAR, BLUE BELL, BIG BOULDER STATUS: Showing MINING DIVISION: Skeana NTS MAP: 104404W UTH ZONE: 09 LATITUDE: 56 01 55 LONGITUDE: 129 54 35 ELEVATION: 0305 Netres NORTHING: 6209794 EASTING: 443508 LOCATION ACCURACY: Within 1 KM COMMENTS: Location of showing #59 (Geological Survey of Canada Memoir 175). COMMODITIES: Gold Copper MINERALS SIGNIFICANT: Chalcopyrite ASSOCIATED: Quartz Pvrite NINERALIZATION AGE: Unknown DEPOSIT CHARACTER: Vein CLASSIFICATION: Nydrothermal Epigenetic HOST ROCK DOMINANT HOST ROCK: Plutonic TRATIGRAPHIC AGE GROUP FORMATION IGNEOUS/METAMORPHIC/OTHER Triessic-Jurassic Hazelton Unuk River Tertiary **Coast Plutonic Complex** LITHOLOGY: Quartz Monzonite Greenstone HOST ROCK COMMENTS: The hostrocks are not clear; GSC Map 28A indicates that the showing occurs in the Tertiary Bitter Creek quartz monzonite pluton. GEOLOGICAL SETTING TECTONIC BELT: Intermontane PHYSIOGRAPHIC AREA: Boundary Ranges TERRANE: Stikine RESERVES ORE ZONE: SAMPLE CATEGORY: Assay YEAR: 1925 SAMPLE TYPE: Grab COMMODITY GRADE 5.8000 Grams per tonne Gold COMMENTS: Vein on the Americus Girl claims reported to contain \$3.50 per tonne rold. REFERENCE: Minister of Mines Annual Report 1925, p. 92. CAPSULE GEOLOGY The exact location of the Gold Bar No. 1 occurrence is not The Gold Bar claim was reported to lie on the south side of known. Sitter Creek, about 1.6 kilometres above its mouth (Geological Survey of Canada Mup 28A and Memoir 175). The Good Enough claim group, which included the Gold Bar No. 1 claim, was owned by Crosset and associates in 1910. That year 12 metres (40 feet) of tunnelling was reported. The America's (Americus) Girl claim group, staked in about 1925, covered approximately the same area. This claim group was owned by Duke, approximately the same area. This claim group was owned by Duke, Campbell and Cullen who completed some open cutting and stripping and emplaced 2(?) short tunnels during 1925-27. The recent Tenajon Goldbar property is located just to the east of these showings. The area is underlain by greenstones of the Upper Triassic to Lower Jurassic Unuk River formation (Hazelton Group), close to the contact with the Tertiary(?) Bitter Creek quartz monzonite pluton (Geological Survey of Canada Memoir 175; Bulletin 58, 63). Since the exact location is uncertain, the nature of the host rocks is not clear. According to Geological Survey of Canada Map 28A, the mineralization is hosted in the Bitter Creek pluton. The showing comprises a quartz vein, up to 3 metres wide, that is The showing comprises a quartz vein, up to 3 metres wide, that is reported to carry gold (Geological Survey of Canada Memoir 32, 175). On the Americus Girl claims, at an elevation of 500 metres, a 0.8 to 1.2-metre wide quartz vein contains minor chalcopyrite and pyrite. It is reported to contain gold values of about 5.8 grams per

MINFILE NUMBER: 104A 053

MINFILE 104 062:

23

· _*		MASTER L SURVEY BRANCH - Y OF ENERGY, MINE			PAGE: 126 REPORT: RGEN0100
MINFILE NUMBER:	<u>104A 062</u>			NATIONAL MINERAL INV	ENTORY: 104A4 W1
NAME(S):	LITTLE PAT, BADLAND GOLDBAR, ART	HOGBACK,			
NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	56 02 00 129 53 15 0366 Metres) side of Ritter C	ceek, in the nor	UT NG itter Creek theast corner	VISION: Skeena N ZONE: (19 RTHING: 6209925 ASTING: 444690
COMMODITIES:	Tungsten Lead	Gold Zinc	Silver .	Copper	Notybdenum
IINERALS SIGNIFICANT: ASSOCIATED: MINERALIZATION AGE;		Scheelite Tetrahedrite	Pyrite Cosalite	Nolybdenite	Sphalerite
EPOSIT CHARACTER: CLASSIFICATION:		Epigenetic	Porphyry		•
HOST ROCK DOMINANT HOST ROCK:	Plutonic	·			
STRATIGRAPHIC AGE	GROUP	FORM	ATION	IGNEOUS/MET/ Coast Plutor	MORPHIC/OTHER
194 L 194 Y					
LITHOLOGY:	Quartz Monzonite The hostrock is a	Tertiary(?) Bitter	r Creek quartz mo	mzonite pluton, a	,
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT: TERRANE:		Tertiary(?) Bitte e of the Coastal f	Plutonic Complex.	mzonite pluton, a PHYSIOGRAPHIC AREA: Bo	windary Ranges
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT:	The hostrock is a satellite intrusive	Tertiary(?) Bitter e of the Coastal f	Plutonic Complex.		xindary Ranges
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT: TERRANE:	The hostrock is a satellite intrusive Intermontane Stikine SAMPLE CATEGORY: Assay	Tertiary(?) Bitte e of the Coastal f	Plutonic Complex.		xandary Ranges
LITHOLOGY: HOST ROCK COMMENTS: GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES	The hostrock is a satellite intrusive Intermontane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY	e of the Coastal i	Plutonic Complex. YEAR	PHYSIOGRAPHIC AREA: BO	xundary Ranges
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE:	The hostrock is a sateilite intrusive Intermontane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY Tungsten Tungsten an M03.	e of the Coastal i <u>GRA</u> Sample across a w	Plutonic Complex. YEAR DE 0.1100 Per cent	PHYSIOGRAPHIC AREA: Bo 1: 1943	xundery Ranges
LITHOLOGY: HOST ROCK COMMENTS: GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS:	The hostrock is a sateilite intrusive Intermontane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY Turgsten	e of the Coastal i <u>GRA</u> Sample across a W Wing.	Plutonic Complex. YEAR DE 0.1100 Per cent	PHYSIOGRAPHIC AREA: Bo 1: 1943	xındary Ranges
LITHOLOGY: HOST ROCK COMMENTS: GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS:	The hostrock is a satellite intrusive Intermontane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY Tungsten Tungsten Tungsten Tungsten as WO3. main (Hogbuck) sho Bulletin 10, p. 52 The Little Pa and approximately Bitter Creek with The property number of narrow f chalcopyrite and s Creek. During the	<u>GRA</u> <u>Sample across a W</u> wing. t showing is abou 2.9 kilometres ea the Bear River. has been intermit issure veins cont cheelite were loc 1940s the showin	YEAR YEAR 95 0.1100 Per cent 1dth of 7.5 centi 1dth of 7.5 centi 1st-southeast of 1 tently explored s aining quartz, p ated on the north ated on the north ated on the north	PHYSIOGRAPHIC AREA: Bo 1: 1943 	xındary Ranges
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostrock is a satellite intrusive satellite intrusive intermentane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY Tungsten as W03. main (Hogback) sho Bulletin 10, p. 52 The Little Pa and approximately Bitter Creek with The property number of narrow f chalcopyrite and s Creek. During the Badland and Hogbacc cutting was done d conducted prospect The showing was the showing was the showing sare prese Resources.	<u>GRA</u> Sample across a wi wing. t showing is about 2.9 kilometres ea the Bear River. has been intermit issure veins cont cheelite were loc 1940s the showin k claims, were kn wring this time. ing and rock samp en covered by the ntly located on t	YEAR <u>Plutonic Complex.</u> YEAR <u>0.1100 Per cent</u> idth of 7.5 centi ts-southeast of .1 tently explored s aining quartz, p ated on the north gs, comprising th gs, comprising th un as the Little Beaver Gold Reso ling near the sho Art group of cla he Goldbar claim	PHYSIOGRAPHIC AREA: Bo 1: 1943 imetres from the th of Bitter Creek the confluence of Bince 1908, when a yrite, h side of Bitter he Little Pat, a Pat. Open burces inc. wing in 1979. hims. The held by Tenajon	xındary Ranges
LITHOLOGY: HOST ROCK COMMENTS: SEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostrock is a sateilite intrusive sateilite intrusive intermentane Stikine SAMPLE CATEGORY: Assay SAMPLE TYPE: Chip COMMODITY Tungsten The Little Pa and approximately Bitter Creek with The property number of narrow f chalcopyrite and s Creek. During the Badland and Hogbac cutting was done d conducted prospect The showings are prese Resources. The area is u quartz monzonite i Complex (Bulletin	<u>GRA</u> Sample across a W wing. t showing is about 2.9 kilometres ea the Bear River. has been intermit issure veins cont cheelite were loc of 1940s the showin k claims, were kn uring this time. ing and rock samp en covered by the ntly located on t nderlain by the T ntrusive that is 58, 63). w quartz veins oc	YEAR <u>DE</u> 0.1100 Per cent idth of 7.5 centi t 500 metres nord st-southeast of .1 tently explored s aining quartz, p ated on the nort gs, comprising th own as the Little Beaver Gold Ress ling near the sho Art group of cla he Goldbar claim ertiary(?) Bitten a satellite to th cur in the plutor	PHYSIOGRAPHIC AREA: Bo t: 1943 metres from the th of Bitter Creek the confluence of Bince 1908, when a yrite, h side of Bitter he Little Pat, a Pat. Open burces inc. wing in 1979. hims. The held by Tenajon r Creek pluton, a he Coast Plutonic h. They typically	xındary Ranges

.

d 0.11 per cent W03 MINFILE NUMBER: <u>104A 062</u>

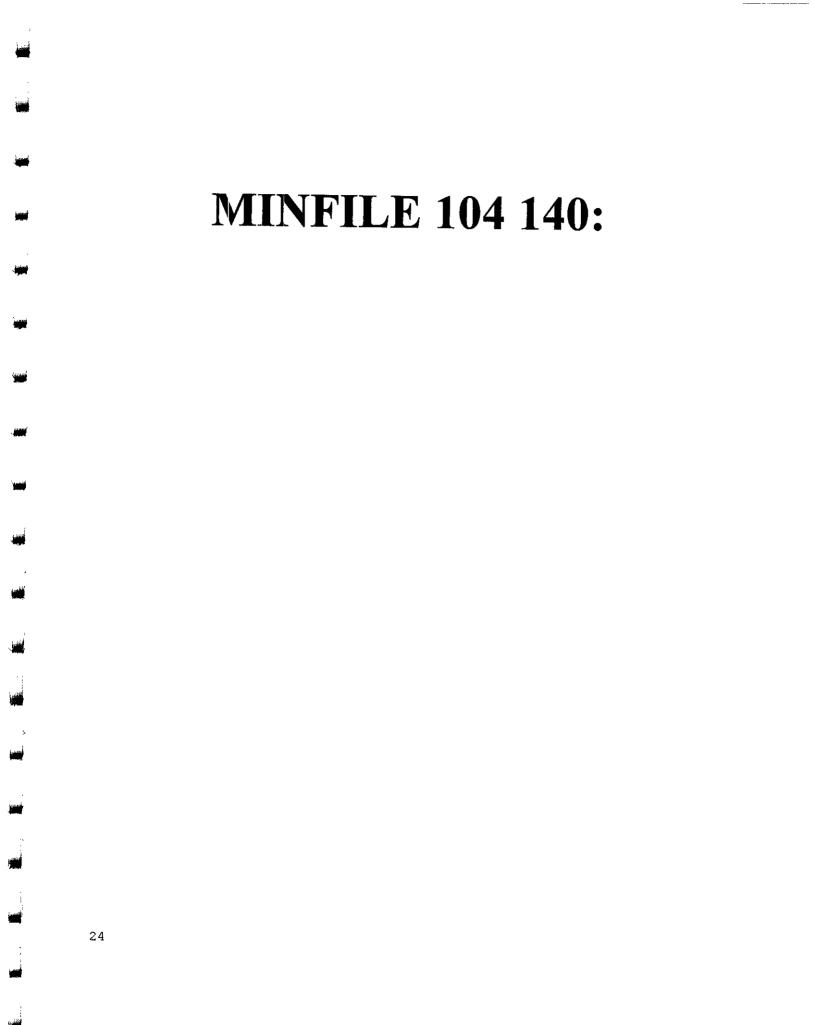
MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

PAGE: 127 REPORT: RGEN0100

CAPSULE GEOLOGY

(Bulletin 10 p. 52). About 300 metres to the north, a 7.5 to 15 centimetre wide quartz vein is mineralized with pyrite, sphalerite, scheelite and some galena and tetrehedrite. Samples of this vein are reported to have assayed 8.6 grams per tonne gold and 377.1 grams per tonne silver (Bulletin 10, p. 53). A composite sample of the vein assayed 0.01 per cent W03 (Bulletin 10, p. 53) At least 3 other similar vein showings occur in the area to the porth of the wein showing.

north of the main showing.


BIBLIOGRAPHY

EMPR BULL *10, p. 52; 58; 63 EMPR ASS RP1 8095, 20379, 20682, 21909 EMPR MAP 8 EMPR PF (In 104A General - Nathews, W.H. (1943): *Tungsten in the Portland Canal Area; Mathews, W.H. (1942): *Geology and Scheelite Deposits of the Portland Canal Area, Map) GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A GSC OF 2582

DATE CODED: 850724 DATE REVISED: 920116 CODED BY: GSB REVISED BY: WC

FIELD CHECK: N FIELD CHECK: N

MINFILE NUMBER: 104A 062

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

PAGE: **REPORT: RGEN0100**

MINFILE NUMBER: 104A 140 NATIONAL MINERAL INVENTORY: 104A4 Ag19 NAME(S): LEAD COIL A (L. 4811), SILVER BAND (L. 4810), ORE MOUNTAIN MINING DIVISION: Skeena STATUS: Showing NTS NAP: 104A04W LATITUDE: 56 02 34 LONGITUDE: 129 51 40 ELEVATION: 1341 Metres UTH ZONE: 09 NORTHING: 6210970 EASTING: 446345 LOCATION ACCURACY: Within 500M CONMENTS: Portal of adit (Assessment Report 13352). Silver Zinc Copper COMMODITIES: Gold Lead MINERALS SIGNIFICANT: Pyrite ASSOCIATED: Quartz Sphalerite Chalcopyrite Galena MINERALIZATION AGE: Unknown DEPOSIT CHARACTER: Vein CLASSIFICATION: Hydrothermal SHAPE: Tabular Epigenetic MODIFIER: Faulted HOST ROCK DOMINANT HOST ROCK: Sedimentary TRATIGRAPHIC AGE GROUP Hazelton IGNEOUS/METAMORPHIC/OTHER FORMATION Salmon River LITHOLOGY: Argillite Granodiorite Dike GEOLOGICAL SETTING TECTONIC BELT: Intermontane PHYSIOGRAPHIC AREA: Boundary Ranges TERRANE: Stikine RESERVES ORE ZONE: TRENCH CATEGORY: Aspay YEAR: 1984 SAMPLE TYPE: Channel COMMODITY Silver 231.7000 Grams per tonne 4.4600 Grams per tonne Gold Copper 0.0800 Per cent 0.4400 Lead Per cent 0.1200 Per cent Zinc COMMENTS: Channel sample across a width of 30 centimetres from trench 46%. **REFERENCE: Assessment Report 13352.** The Lead Coil A showing is located about 13 kilometres northeast of Stewart and 4.2 kilometres east of the confluence of Bitter Creek and the Bear River, on the west flank of Ore Mountain. In 1925, the Ore Mountain Mining Co. acquired the Lead Coil (L. 4811) and Silver Band (L. 4810) claims. During 1925-23, an adit, 21 metres long, was driven on the Silver Band claim and several opencuts were emplaced on the exposed mineralization in the western part of the adjacent Lead Coil claim. Only minor surface work was reported during 1929-32. The claims were subsequently acquired by Rufus-Argenta Mines. In 1966, the company name was changed to Crest Ventures Limited. That year Crest Silver Company Limited, a subsidiary of Crest Ventures, acquired the claims and during 1966-67 carried out some geological mapping. During 1970-73, Ardo Mines Ltd. optioned the property carried out prospecting, megnetometer and electromagnetic surveys. During 1979-80, Beaver Gold Resources Inc. acquired the property and carried out mapping, prospecting and sampling. In 1986, the property was owned by Grey Silver Mines Ltd. That year Meralgo Mines Limited optioned the property and flew an airborne VLF-EM and magnetometer survey over the area and conducted geological mapping, prospecting and sampling on the occurrence. No further work was reported until 1989 when Grey Silver Mines performed geological mapping, sampling and soil surveys in the area. The following ymar Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EM and CAPSULE GEOLOGY

MINFILE NUMBER: 104A 140

CAPSULE GEOLOGY

magnetometer surveys in the area. The showing was resempled that

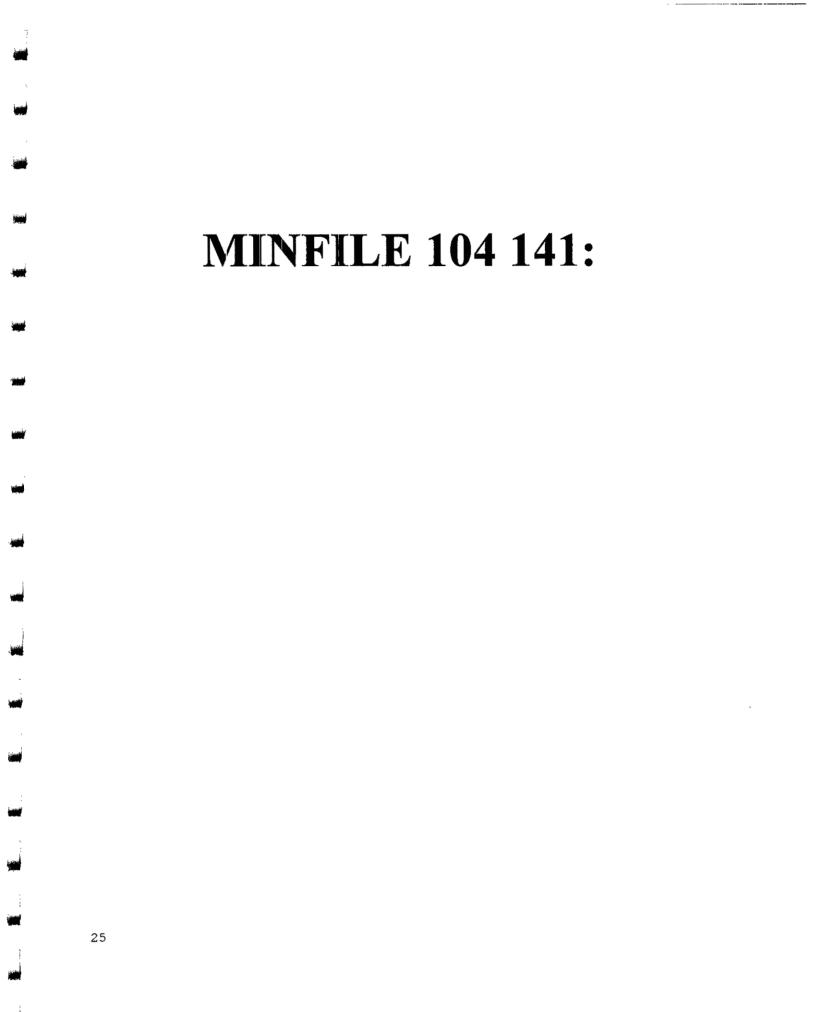
year. The area is underlain by north to northeast-striking, folded argilites of the Niddle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). The rocks are cut by several northwest-trending granodiorite dikes that belong to the Portland Canal dike swarm.

Discontinuous mineralization occurs along both the faulted, vertical contacts of a 20-metre wide, northwest-trending granodiorite dike. This dike can be traced for about 400 metres and appears to split into two 5 to 15-metre wide dikes to the southeast. The

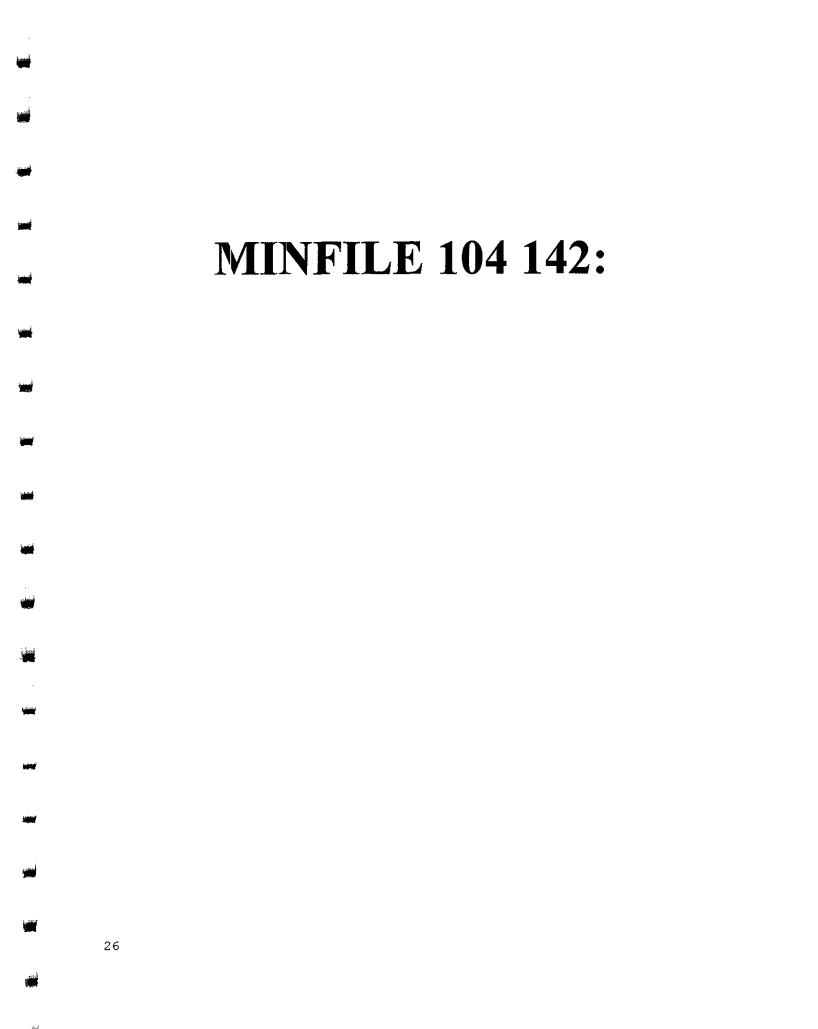
split into two 5 to 15-metre wide dikes to the southeast. The mineralization comprises quartz veins and lenses, containing pyrite, galena, sphalerite and chalcopyrite, hosted in crushed and sheared argilith. The lenses, or swelling of the veins, appear to coincide with flauures in the dike walks. The longest continuous vein is exposed over a length of about 45 metres in the adit; channel sampling in 1980 indicated negligible values for this vein (Assessment Report 10489). In 1984, channel samples were taken from a trench on the mineralization between the east and west branches of the dike (trench 46N), about 350 metres south-southeast of the adit. One sample, assayed 4.46 grams per tonne gold, 231.7 grams per tonne silver, 0.08 per cent copper, 0.44 per cent lead and 0.12 per cent zinc across a width of 30 centimetres (Assessment Report 13352).

BIBLIOGRAPHY

EMPR AR 1925-93; 1926-93; *1928-104; 1929-433; 1931-43; 1932-43; 1966-41; 1967-34 EMPR GEN 1970-74; 1971-32; 1972-512; 1973-494 EMPR EXPL 1979-273 EMPR BULL 63 EMPR ASS.RPT 8095, *10489, *13352, 19242, 20379, *20622 EMPR NAP 8 EMP NAP 8


EHR NP COMPFILE (Ardo Wines Ltd.; Creat Ventures Limited; Ore Nountain Mining Company, Limited; Van-Sea Resources Limited) GSC MEN 159, p. 40; 175, p. 134 GSC MAP 20A; *216A; *217A; 307A; *315A; 9-1957; 1418A GSC OF 2502

DATE CODED: 920120 DATE REVISED: 920120 CODED BY: WC . REVISED BY: WC


MINFILE NUMBER: 104A 140

FIELD CHECK: N

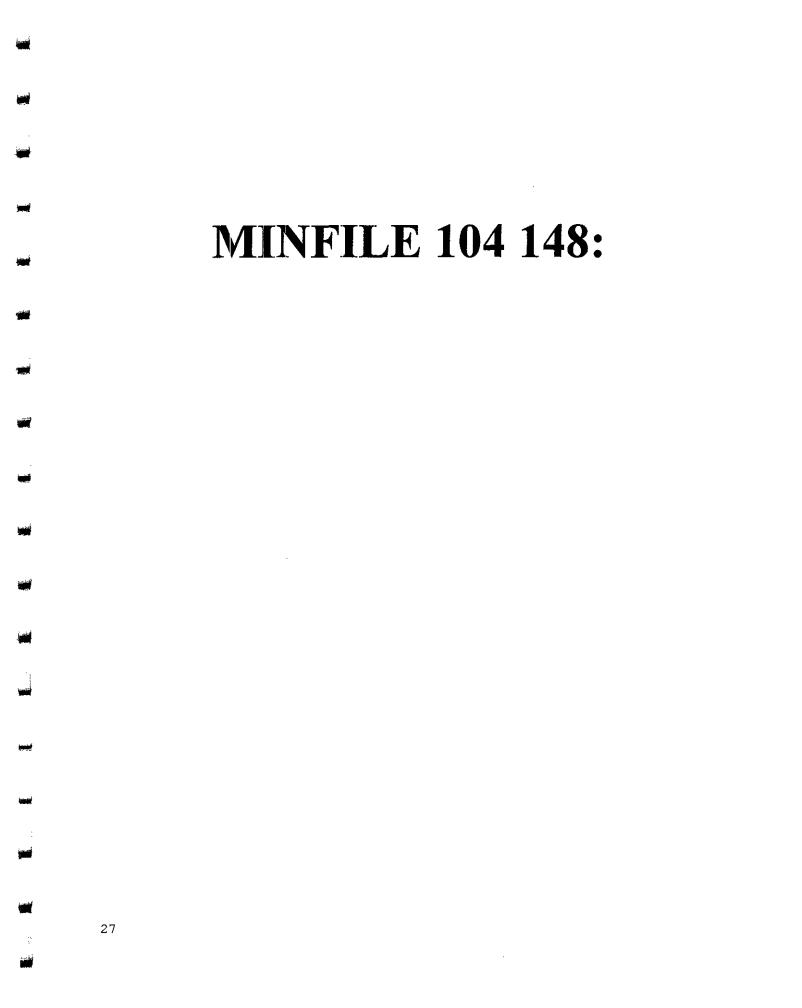
FIELD CHECK: N

HIMFILE MARGER: 1044_141 MATCHAL HAREAL HAVENTONY: 104AA Ag19 HAME(3): LED COLL B (L. 4513). ORE MONHTAIN MATCHAL HAVENTONY: 104AA Ag19 STATUS: BANGING HATTON: 105 00 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	RUN DATE: 03/29/93 RUN TIME: 10:19:25	MINFILE % pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES		GE: 284 PORT: RGEN0100	
STATUS: Should	MINFILE NUMBER:	104A 141 NATIONAL NINER	L INVENTORY:	104A4 Ag19	
HTS AMP: ICANAGA Hint Turning: 00 LITTOR: 50 125 Hint Turning: 00 CLORING ACCARCY UICH: 1950 Norres ELEVATION: 1950 Norres COMMENTS: Minaralized outcrop (Assessment Report 19242). ELEVATION: 1950 Norres COMMENTS: Minaralized outcrop (Assessment Report 19242). COMMENTS: Minaralized outcrop (Assessment Report 19242). COMMENTS: Minaralized outcrop (Assessment Report 19242). COMMENTS: Minaralized outcrop (Assessment Report 19242). COMMENTS: Minaralized outcrop (Assessment Report 19242). COMMENTS: Minaralized outcrop (Assessment Report 19242). MIREALLS: SUBJECT CONTRol (Minaralized Outcrop (Assessment Report 19242). State (Minaralized Outcrop (Assessment Report 19242). MIREALLS: SUBJECT CONTRol (Minaralized Outcrop (Assessment Report 19242). State (Minaralized Outcrop (Assessment Report 19242). DEFOSIT CAMARTER: Stockwork Brescia DAMARTER: Stockwork Brescia	NAME(S):	LEAD COIL B (L. 4811), ORE MOUNTAIN			
COMMENT: Mineralized outcrop (Assessment Report 19242). COMMONITIES: Cooper Silver Turgsten NIRERALIS SIGNIFICATION: Chalcopyrite Scheelite ASTERATION TYPE: Objection Scheelite ASTERATION TYPE: Objection Scheelite ASTERATION TYPE: Objection Scheelite ASTERATION AGE: Unknown DEPOSIT CLASSIFICATION: Baydrothermel Epigemetic HOGI ROCK DOWNIANT MOST ROCK: Sadimentary SIBAILGAPPIC AGE GROUP LITHOLOGY: Argillite GEOLOGICAL SETTING GEOLOGICAL SETTING CATEGORY: Assay SIGNIFICATION: Support LITHOLOGY: Argillite GEOLOGICAL SETTING GEOLOGICAL SETTING CONTENT INFORMATION RESERVES ORE ZONE: SAMPLE CATEGORY: Assay SUPPORT COMPENSITY FOR THE Intermentant TERTANE: Stiking RESERVES ORE ZONE: SAMPLE CATEGORY: Assay The Load Coil & Showing is Located about-13 kilometres northeast of the Sample from the Jamet in Guine Global Content Type: Content typ	NTS MAP: LATITUDE: LONGITUDE: ELEVATION:	104A04W 56 02 25 129 51 12 1493 Metres	UTH ZONE: NORTHING:	09 6210680	
HIMERALS SIGNIFICAT: Chalcopyrite Scheelite ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite HIMERALIZING ARE: Unknown DEPOSIT CLASSIFICATION: Heischite BOULMANT NOT KOCK: Sadimentery STRATUBAPHIC ASE BOULMANT NOT KOCK: Sadimentery STRATUBAPHIC ASE BOULMANT NOT KOCK: Sadimentery STRATUBAPHIC ASE GROUP: Argillite GEOLOGICAL SETTING TECTONIC SELT: Intermontane TECTONIC SELT: Intermontane COMPETER: ADD SENT AN SELTON SELET TE SELTONIC SELT: Intermontane COMPETER: ADD SELTON: ASSERT TECTONIC OCTONIC SELT: Intermontane TECTONIC SELT: Intermontane COMPETER: ADD SELTON: ASSERT TECTONIC SELETONIC SELTON: ASSERT TECTONIC SELTON: SELTON SELETONIC SELTON: ASSERT SELTON SELETONIC SELTON: ASSERT SELTONIC SELTON: ASSERT TETONIC SELTONIC SELTON: ASSERT SELTONIC SELTONIC SELTONIC SELETONIC SELTONIC SELI	COMMENTS:	Mineralized outcrop (Assessment Report 19242).			
SIGNIFICATI: Chalcopyrite Scheelite ASSCIATE: Guntation ALTERATION: Heischite ALTERATION: Heischite ALTERATION: Heischite HIERATION: Horison DEPOSIT CUMARTER: Stockork Breccia CLASSIFICATION: Hydrothermal Epigenetic HOST ROCK DOWNINHT HOST ROCK: Sadimentary STRATGRAPHIC AGE GROUP LITHOLOGY: Argillite GEOLOGICAL SETTING TECTONIC PELT: Intermentann TERRAME: Stikine RESERVES ORE ZONE: SAMPLE CLASSIFICE TYPE: Grad COMPERT: Grad Sample for chall COMPETT: Grad Sample for chall COMPETT: Grad Sample for chall Strategy CLASSIFICE Assessment Report 19262. CAPSULE GEOLOGY The Led Coil B showing is located about-13 kilometres northeast of star the River, on the arge of flams of the strategy flams, but ways in the showing may have been from performing, sample for and flams of the strategy in the showing may have been from performing, sample for and flams of the strategy and flams of the strategy in the showing may have been from performing, sample for and flams of flams for the showing is allowed and flams of the strategy in the showing may have been from performing and solity, but it was first reported in 1959 show Gray Silver Namescatter sourtheast of the same is underlain by nort to northeast sorting, sampling, and solity. UL-DB and magnetome sourtisking, folded and flams apple collected in 1969 showed been coment on the strate formation (Statelon Grapp) (Sullies of the Sidver sources carrying chalcopyrite, malachite and and and apple collected in 1969 showed are to fold of part end the strate of the strate opper to and and and the strate of the	COMMODITIES:	Copper Silver Tungsten			
CUMARCTER: Stockwork Breecia Epigenetic HOST ROCK DURINANT HOST ROCK: Sadimentary Signification HOST ROCK: Sadimentary Highle Jurssic HOST ROCK: Sadimentary Highle Jurssic HIGHEOUS/METAMORPHIC/OTHUR Hazelton Salmon River LITHOLOGY: Argillite GEOLOGICAL SETTING TERRAME: STIKINE RESERVES ORE ZONE: SAMPLE CATEGORY: A:say COMPETIT: Intermontanu TERRAME: STIKINE RESERVES ORE ZONE: SAMPLE CATEGORY: A:say COMPETIT: Grab Salmon River LITHOLOGY: Argillite GEOLOGICAL SETTING TERRAME: STIKINE RESERVES ORE ZONE: SAMPLE CATEGORY: A:say COMPETIT: Grab COMPETIT: Grab Salmon River LITHOLOGY: Argillite CATEGORY: A:say COMPETIT: Grab Salmon River LITHOLOGY: Argillite CATEGORY: A:say COMPETIT: Grab CATEGORY: A:say COMPETIT: Grab CATEGORY: A:say CATEGORY: A:say CATEGORY	SIGNIFICANT: ASSOCIATED: ALTERATION: ALTERATION TYPE:	Quartz Malachite Oxidation			
DOWINANT MOST ROCK: Sedimentary STRATIGARAMIC AGE GROUP Middle Jurgessic Marketon Salmon River LITHOLOGY: Argillite GEOLOGICAL SETTING TECTONIC SELT: Intermontane TERRAME: Stikine RESERVES ORE ZONE: SAMPLE CATEGORY: Ansay SUPPL TYPE: Grab SOMED IYPE: GRAD SOMED IYPE: Grab SOMED IYPE: GRAD SOMED IYPE: GR	CHARACTER:	Stockwork Breccia Hydrothermal Epigenetic	۰.	- . *	
Hiddle Jurassic Hazelton Salmon River LITHOLOGY: Argillite Salmon River GEOLOGICAL SETTING TERRAME: Stikine PHYSIOGRAPHIC AREA: Boundary Rangus TERRAME: Stikine PHYSIOGRAPHIC AREA: Boundary Rangus RESERVES ORE ZONE: SAMPLE CATEGORY: Assay YEAR: 1989 SAMPLE TYPE: Grab GRADE COMMEDITY: Grade COMMENTS: Grab assay YEAR: 1989 COMMENTS: Grab assay 0.4900 Par cent COMMENTS: Grab assay 0.4900 Par cent COMMENTS: Grab assay 0.100 Par cent COMMENTS: Grab assay 14,4000 Grams par tonne COMMENTS: Grab assay 19242. CAPSULE GEOLOGY The Lesd Coil B showing is located about 13 kilometres northeast of Stewart and 4.7 Kilometres been froom previously, but it uses first reported in 1959 winn Brey Silvar Nines performed geological mapping, sangating and joue	HOST ROCK		•		
Hiddle Jurssic Hzelton Salmon River LITHOLOGY: Argillite GEOLOGICAL SETTING GEOLOGICAL SETTING PHYSIOGRAPHIC AREA: Boundary Rangus TECTONIC BELT: Intermontanue PHYSIOGRAPHIC AREA: Boundary Rangus RESERVES ORE ZONE: SAMPLE CATEGORY: Assay YEAR: 1989 SUPPER GRADE SUPPER 0.45000 Grams per tonne COMMODITY 0.45000 Per cent COMMODITY 0.45000 Per cent COMMENTS: Grab asapte from the 3-metre wide breccis zone. 0.45000 Per cent COMMENTS: Grab asants from the 3-metre wide breccis zone. The lead Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 Kilometres east of the confluence of Bitter Creak and the Bace River, on the south flank of Ore Mourtain. The showing is neotrons to confluence of sitter Creak and the Bace River, on the south flank of Ore Mourtain. The showing performed geological mapping, measures to confluence and second flank of the Mourtain and soil, VLF-EM and megnetomater surveys in the area: conducted to program of integratic mapping, measures it to conducted a program of integratic mapping, measures it contains underlisin by north to northeaster striking, folded argilites in bit Mide durassic Salmon River Formation (Raceton in black argilites in the Midel aurassic Salmon River Formation (Raceton in black argilites in the Midel aurassic salmon River formation (Raceton in black argilites in the Midel aurassic Salmon River formation (Raceton in black argilites (As			S/METAMORPHIC	/OTHIR	
TECTONIC BELT: Intermontane TERRAME: Stikine RESERVES ORE ZONE: SAMPLE CATEGORY: Assay SAMPLE TYPE: Grab COMMODITY SILVer SILVer SILVer SILVer Copper Tungsten COMMENTS: Grab sample from the 3-metre wide breccis zone. REFERENCE: Assessment Report 19242. CAPSULE GEOLOGY The Lead Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Mountain. The showing is near the ortheast corner of the Lead Coil Claim (L. 4811). The showing is under law been formed mount previously, but it uses first reported in 1989 when Grey Silver Mines performed geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area is underlain by north to northeast wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains guart stockooks carrying chalcopyrite, malachite and minor scheait(att). A grab sample collected in 1989 sayad 0.49 per cent copper, 16.4 grams per tonne silver and oil per cent tungster, lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR MALE 63 EMPR MALE 63 EMPR MALE 64 EMPR MALE 64 EMPR MALE 64 EMPR MALE 64 EMPR MALE 65 EMPR MALE 6		Hazelton Salmon River		·····	
ORE ZONE: SAMPLE CATEGORY: Assay SAMPLE TYPE: Grab COMMENDITY GRADE SILVer SILVer 0.4000 Grams per tonne Copper O.0100 Per cent COMMENTS: Grab sample from the 3-metre wide breccia zone. REFERENCE: Assessment Report 19242. CAPSULE GEOLOGY The Leed Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Mountain. The showing is near the northeast corner of the Leed Coil Caim (L. 681). The showing may have been known previously, but it was first reported in 1989 when Gray Silver Wines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources thd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area is underlain by north to northeast-striking, folded arguilltes of the HMdkle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 65). Minorelization comprises a breccis zone, 3 metres wide, hosted in black arguilite. The zone trends north and dips 46 degrees west. It contains guartz zockworks carrying chalcopyrite, malachite and minor scheelize(2). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and goid values were negligible (Assessment Report 19242). BIBLIOGRAPHY EMPR MALL 63 EMPR MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	TECTONIC BELT:	Intermontane PHYSIOGRAPHIC AR Stikine	EA: Boundary	Rangos	
CATEGORY: Assay SAMPLE TYPE: Grab COMMEDITY Silver Copper Copper Copper Copper Comments: Grab sample from the 3-metre wide breccia zone. REFERENCE: Assessment Report 19202. CAPSULE GEOLOGY The Lead Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 kilometres east of the confluence of Bitter Creak and the Bear River, on the south flank of Ore Mountain. The showing is near the northeast corner of the Lead Coil claim (L. S611). The showing may have been known previously, but it was first reported in 1989 when Gray Silvar Mines performed geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area is underlain by north to northeast-striking, folded arguillites of the Widel Jurassic Salmon River Formation (Hazelton Group) (Bullatin 63). Minerelization comprises a brecci zone, 3 metres wide, hosted in black argiilite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrit, malachite and minor scheelize(c). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungstor; lead, zinc and gold values were nogligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR MSL 20379, 20622 EMPR MAP 8 GSC MAP 204; 2164; 217A; 307A; 315A; 9-1957; 1418A	RESERVES				
SAMPLE TYPE: Grab COMMODITY GOMENTS: Grab sample from the 3-metre wide breccia zone. REFERENCE: Assessment Report 19262. CAPSULE GEOLOGY The Lead Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 kilometres east of the confluence of Bitter Creak and the Bear River, on the south flank of Ore Mountain. The showing is near the northeast corner of the Lead Coil claim (L. 481). The showing may have been known previously, but it was first reported in 1989 when Brey Silvar Wines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EM and magnetometers in the area is underlain by north to northeast-striking, folded argillites of the Hiddle Jurassic Salmon River Formation (Hazeiton Group) Guilstin 632. Mineralization comprises a breccia zone, 3 metres wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR BULL 63 EMPR BULL 63 EMPR BULL 63 EMPR BULL 63 EMPR BUL 63 EMPR BUL 63 EMPR BUL 63 EMPR BUL 64 EMPR BUL 65 EMPR MAP 3 GSC MAP 20A; 20A7; 307A; 315A; 9-1957; 1418A	ORE ZONE:	SAMPLE		•	
Copper 0.4000 Per cent Tungsten 0.000 Per cent COMMENTS: Grab sample from the 3-metre wide breccia zone. REFERENCE: Assessment Report 19242. CAPSULE GEOLOGY The Lead Coil B showing is located about-13 kilometres northeast of Stewart and 4.7 kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Mountain. The showing is near the northwast corner of the Lead Coil claim (L. 4811). The showing may have been known previously, but it was first reported in 1980 when Grey Silver Mines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EM and magnetometer surveys in the area, The area is underlain by north to northeast-striking, folded argillites of the Middle Jurassic Salmon River Formation (Hazelton Group) Guilatin 63. Mineralization comprises a breccia zone, 3 metres wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelte(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per torne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR MAP 8 GSC MAP 20A; 216A; 217A; 307A; 315A; 9-1957; 1418A		SAMPLE TYPE: Grab COMMODITY GRADE			
The Lead Coil B showing is located about-13 kilometres mortheset of Stewart and 4.7 kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Mountain. The showing is near the northeast corner of the Lead Coil claim (L. 6811). The showing may have been known previously, but it was first reported in 1989 when Grey Silvar Nines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area. The area is underlain by north to northeast-striking, folded argillites of the Midkle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). Mineralization comprises a breccia zone, 3 metres wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains quart strickworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent turgsten; lead, zinc and gold values were megligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A		Copper 0.4900 Per cent Tungsten 0.0100 Per cent Grab sample from the 3-metre wide breccia zone.			
of Stewart and 4.7 Kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Mountain. The showing is near the northeast corner of the Lead Coil claim (L. 6811). The showing may have been known previously, but it was first reported in 1989 when Grey Silver Nines performed geological mapping, sampling and soil surveys in the area. The following year Varitech Resources Ltd. conducted a progrem of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area. The area is underlain by north to northeast-striking, folded argilites of the Middle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). Mineralization comprises a breccia zone, 3 metres wide, hosted in black argilitic. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and goid values were megligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	CAPSULE GEOLOGY				
Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area. The area is underlain by north to northeast-striking, folded argillites of the Middle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). Mineralization comprises a breccia zone, 3 metres wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY EMPR BULL 63 EMPR ASS RPT *19242, 20379, 20622 EMPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	· ·	of Stewart and 4.7 kilometres east of the confluence of Bitter Creek and the Bear River, on the south flank of Ore Hountain. The showing is near the northeast corner of the Lead Coil claim (L. 4811). The showing may have been known previously, but it was first	•		
argillites of the Mickle Jurassic Salmon River Formation (Hazelton Group) (Bulletin 63). Mineralization comprises a breccia zone, 3 metres wide, hosted in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY ENPR BULL 63 ENPR ASS RPT *19242, 20379, 20622 ENPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A		Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EN and magnetometer surveys in the area.	· ·	· · · ·	
in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and minor scheelite(?). A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY ENPR BULL 63 ENPR ASS RPT *19242, 20379, 20622 ENPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	· ·	argillites of the Middle Jurassic Salmon River Formation (Hazeiton Group) (Bulletin 63).			
A grab sample collected in 1989 assayed 0.49 per cent copper, 14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc and gold values were negligible (Assessment Report 19242). BIBLIOGRAPHY ENPR BULL 63 ENPR ASS RPT *19242, 20379, 20622 ENPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A		in black argillite. The zone trends north and dips 46 degrees west. It contains quartz stockworks carrying chalcopyrite, malachite and			
ENPR BULL 63 ENPR ASS RPT *19242, 20379, 20622 ENPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	ı	14.4 grams per tonne silver and 0.01 per cent tungsten; lead, zinc	. .	· · · · · · · · · · · · · · · · · · ·	
ENPR MAP 8 GSC MAP 28A; 216A; 217A; 307A; 315A; 9-1957; 1418A	BIBLIOGRAPHY	ENPR BULL 63 ENDR ASS 80T #10262 20370 20422	;		
		ENPR MAP 8		۰. ۱	
	- ·	www.new			

RUN DATE: 03/29/93 RUN TIME: 10:19:25

NINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINËRAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

PAGE: 286 REPORT: RGEN0100


MINFILE NUMBER: 104A 142 NATIONAL MINERAL INVENTORY: 104A4 Ag19 NAME(S): ORE HILL & (L. 4821), ORE HOUNTAIN MINING DIVISION: Skeena STATUS: Showing NTS MAP: 104A04W LATITUDE: 56 02 UTH ZONE: 09 LATITUDE: 56 02 17 LONGITUDE: 129 53 27 NORTHING: 6210470 EASTING: 444500 ELEVATION: 0260 Metres LOCATION ACCURACY: Within 500M COMMENTS: Mineralized vein (Assessment Report 13352). COMMODITIES: Gold Silver Zinc Copper MINERALS SIGNIFICANT: Pyrite ASSOCIATED: Quartz Chalcopyrite Sphalerite Pyrite MINERALIZATION AGE: Unknown DEPOSIT CHARACTER: Vein CLASSIFICATION: Hydrothermal SHAPE: Tabular Epigenetic HOST ROCK DOMINANT HOST ROCK: Plutonic GNEOUS/METAMORPHIC/OTHER Coast Plutonic Complex STRATIGRAPHIC AGE GROUP FORMATION Tertiary LITHOLOGY: Quartz Porphyry Diabase Dike HOST ROCK COMMENTS: The host quartz porphyry, is a grey-pink phase of the Tertiary(?) Bitter Creek pluton (a satellite of the Coast Plutonic Complex). GEOLOGICAL SETTING TECTONIC BELT: Intermontane PHYSIOGRAPHIC AREA: Boundary Ranges **TERRANE:** Stikine RESERVES ORE ZONE: VEIN CATEGORY: Assay YEAR: 1984 SAMPLE TYPE: Channel CONHODITY Silver 165.2000 Grams per tonne Gold 11.4000 Grams per tonne COMMENTS: Channel sample across the maximum vein width of 12 centimetres **REFERENCE: Assessment Report 13352.** CAPSULE GEOLOGY The Gre Hill 6 showing is located about 11 kilometres north-northeast of Stewart, just east of the Stewart highway (37A), and approximately 4.2 kilometres east of the confluence of Bitter Creek with the Bear River. The showing is in the southeastern part of the Ore Hill 6 claim (L. 4821).

The showing may have been known in the 1920s when the Ore Hill claim group was explored by the Ore Mountain Mining Company Limited. In 1984, the property was owned by Grey Silver Mines Ltd. That year Maralgo Mines Limited optioned the property and flew an airborne VLF-EM and magnetometer survey over the area and conducted geological mapping, prospecting and sampling on the Ore Hill claims. The showing was reported at that time. In 1989, Grey Silver Mines performed geological mapping, sampling and soil surveys in the general area; no work was reported on the showing. The following year Varitech Resources Ltd. conducted a program of geological mapping, prospecting, sampling and soil, VLF-EM and magnetometer surveys in the area. The area is underlain by the Tertiarv(?) Bitter Creek pluton.

The area is underlain by the Tertiary(?) Bitter Creek pluton, a satellite intrusion of the Coastal Plutonic Complex (Bulletin 58, 63). The immediate hostrocks to the mineralization comprise 'quartz porphyry', a greyish-pink phase of the pluton (Assessment Report 13352).

A narrow, 5 to 12-centimetre wide, quartz vein follows a fault zone that lies along the south wall of an east-northeast trending, narrow diabase dike. The vein can be traced for about 10 metres. It contains pyrite, chalcopyrite and minor sphalerite. A channel sample

MINFILE NUMBER: 104A 142

								يفيهينيكم وخفعطتهم	
MINFILE NUMBER:					NATIONA	L MINERAL	INVENTORY:		•
NAME(S):	ART					•			
NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	56 01 20 129 51 53 0305 Netres Within 500N					MINING	DIVISION: UTM ZONE: NORTHING: EASTING:	09 6208675	
COMMENTS:	Mineralized	outcrop (/	Assessment Re	eport 8095).	•		•		
COMMODITIES:	Gold	S	ilver		•				
NINERALS SIGNIFICANT: MINERALIZATION AGE:					· · .				
DEPOSIT CHARACTER: CLASSIFICATION:					,				
HOST ROCK DOMINANT HOST ROCK:	Plutonic								
STRATIGRAPHIC AGE Middle Jurassic Tertiary	GROUP Hazelton			RMATION Lmon River			<u>ETAMORPHIC</u> Itonic Comp	•	
LITHOLOGY:	Quartz Monzo Sediment/Se								
		· · · ·							
HOST ROCK COMMENTS:	The hostroc	i: is uncle	ar; they may assic Salmon	be Tertiary(? River Formati) Bitter Creek on sediments.	¢			
GEOLOGICAL SETTING TECTONIC BELT:	The hostroc plutonic ro	i: is uncle eks or Jur	ar; they may assic Salmon	be Tertiary(? River Formati	on sediments.		; Boundary	Ranges	
GEOLOGICAL SETTING TECTONIC BELT: TERRAME:	The hostroc plutonic ro Intermontan	i: is uncle eks or Jur	ar; they may assic Salmon	be Tertiary(? River Formati	on sediments.		; Boundary	Ranges	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:	The hostroc plutonic ro Intermontan Stikine	i: is uncle eks or Jur	ar; they may assic Salmon	be Tertiary(? River Formati	on sediments.		; Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRAME: RESERVES	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE	i: is uncle cks or jur 0 0 13 15 15 15 15 15 15 15 15 15 15 15 15 15	assic Salmon	River Formati	on sediments.		; Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRAME: RESERVES ORE ZONE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Grab sample	i: is uncle cks or Jur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	essic Salmon	River Formati RADE 4.8000 Gram 3.4000 Gram	on sediments. PHYSIOGRA		; Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE <u>COMMODITY</u> Silver Gold	i: is uncle cks or Jur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	essic Salmon	River Formati RADE 4.8000 Gram 3.4000 Gram	on sediments. PHYSIOGRA YEAR: 1979 is per tonne		: Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Grab sample Assessment The Ar of Stewart, kilometres Bear River.	is is uncle is or jur is asay a Grab from mine ileport 809 t showing on the no mast-south	eralized outc 5. is located a prth side of neast of the	River Formati 4.8000 Gram 3.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of	on sediments. PHYSIOGRA YEAR: 1979 is per tonne is per tonne metres north- and approximat Bitter Creek a	northeast tely 4.5 and the	Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Grab sample Assessment The Ar of Stewart, kilometres Bear River. In 197 Beaver Gold program of surveys in	is is uncle is or jur is is is is is is is is is is	eralized outcost is located a orth side of neast of the owing was cove inc. That mapping, pr The showing	RADE 4.8000 Gram 3.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of vered by the An year, the comp ospecting, sam was sampled a	on sediments. PHYSIOGRA YEAR: 1979 is per tonne is per tonne ometres north-i and approxima	northeast tely 4.5 and the ed by ut a chemical	Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Grab sample Assessment The Ar of Stewart, kilometres Bear River. In 197 Beaver Gold program of surveys in further wor The ar Creek pluto	is ay is ay is Grab from mine iteport 809 t showing on the no mast-south 7, the sho Resources geological the area. the as beer that is und wh, a sate intrudes f	eralized outc is located a orth side of least of the buing was cove inc. That mapping, pr The showing n reported on ortain by the lite intrusi fiddle Juress	RADE 4.8000 Gram 3.4000 Gram 7.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of rered by the An year, the comp ospecting, sam was sampled a the showing. Tertiary(?) co on of the Coast ic sediments of	on sediments. PHYSIOGRA YEAR: 1979 IS per tonne is per tonne and approxima: Bitter Creek a rt claims, own any carried on poing and geo at that time. quartz monzoni st Plutonic Con of the Salmon	northeast tely 4.5 and the ed by ut a chamical No te Bitter mplex. River	; Boundary	Rangos	-
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Gold Gold Gold Gold Gold Stewart, kilometres Bear River. In 197 Beaver Gold program of surveys in further wor The ar Creek pluton Formation (hostrock is No det from minere	is ay is ay is Grab from mine it showing on the no mast-south the area. is and the area. is a satel intrudes f may a satel intrudes f satel intrudes f satel in	eralized outc 5. is located a orth side of least of the owing was cov a inc. That mapping, pr The showing n reported on orlain by the stite intrusi fiddle Jurass Sroup) (Bulle r; it may be ne mineraliza crop?, collec	RADE 4.8000 Gram 3.4000 Gram 3.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of rered by the Ar year, the comp ospecting, sam was sampled a the showing. Tertiary(?) c on of the Coas ic sediments of tion 58, 63). granitoid or si tion are avail tion are avail	on sediments. PHYSIOGRA YEAR: 1979 Reper tonne and approximal Bitter Creek a rt claims, own pany carried or apling and geo at that time. puertz monzoni st Plutonic Co of the Salmon (The nature of	northeast tely 4.5 and the ed by ut a chemical No te Bitter mplex. River the sample, ms per	; Boundary	Rangos	-
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE:	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Grab sample Assessment The Ar of Stewart, kilometres Bear River. In 197 Beaver Gold program of surveys in further wor The ar Creek pluton Formation (hostrock is No det from minere tonne gold	t is uncle t is uncle t is or jur a t showing on the no mast-south the area. the showing on the no mast-south the area. the astel intrudes I that is und a satel intrudes I that is on the trais on the ison to clear chils on the tized outo and 4.8 gr	eralized outc 5. is located a orth side of least of the owing was cov a inc. That mapping, pr The showing n reported on orlain by the stite intrusi fiddle Jurass Sroup) (Bulle r; it may be ne mineraliza crop?, collec	RADE 4.8000 Gram 3.4000 Gram 3.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of rered by the Ar year, the comp ospecting, sam was sampled a the showing. Tertiary(?) c on of the Coas ic sediments of tion 58, 63). granitoid or si tion are avail tion are avail	on sediments. PHYSIOGRA YEAR: 1979 is per tonne is per tonne is per tonne and approximal Bitter Creek : rt claims, own any carried on mpling and geo at that time. puertz monzoni st Plutonic Co of the Salmon 1 The nature of sedimentary. lable. A grab sayed 3.4 grab	northeast tely 4.5 and the ed by ut a chemical No te Bitter mplex. River the sample, ms per	; Boundary	Rangus	
GEOLOGICAL SETTING TECTONIC BELT: TERRANE: RESERVES ORE ZONE: COMMENTS: REFERENCE: CAPSULE GEOLOGY	The hostroc plutonic ro Intermontan Stikine SAMPLE CATEGORY: A SAMPLE TYPE COMMODITY Silver Gold Gold Gold Gold Gold Gold Stewart, kilometres Bear River. In 197 Beaver Gold program of surveys in further wor The ar Creek pluton Formation (hostrock is No det from minere	is a uncle is a uncle intrudes # is a uncle intrudes # is a uncle intrudes # is a uncle intrudes # is a uncle is a u	gralized outc 5. is located a orth side of neast of the owing was cov inc. That mapping, pr The showing n reported on arlain by the lite intrusi fiddle Jurass Sroup) (Bulle r; it may be ne mineraliza crop?, collec rams per torm	RADE 4.8000 Gram 3.4000 Gram 3.4000 Gram rop(?). bout 10.5 kild Bitter Creek, confluence of rered by the Ar year, the comp ospecting, sam was sampled a the showing. Tertiary(?) c on of the Coas ic sediments of tion 58, 63). granitoid or si tion are avail tion are avail	on sediments. PHYSIOGRA YEAR: 1979 is per tonne is per tonne is per tonne and approximal Bitter Creek : rt claims, own any carried on mpling and geo at that time. puertz monzoni st Plutonic Co of the Salmon 1 The nature of sedimentary. lable. A grab sayed 3.4 grab	northeast tely 4.5 and the ed by ut a chemical No te Bitter mplex. River the sample, ms per	; Boundary	Rangos	

MINFILE / BC_

RUN DATE: 03/29/93

• .

MINFILE NUMBER: 104A 148

296

PAGE:

MINFILE 104 156:

JN TIME: 10:19:25	GEOLOGICA MINISTR	L SURVEY BRANCH	R REPORT - MINERAL RESOURCE ES AND PETROLEUM R	ES DIVISION RESOURCES	PAGE: 31 REPORT: RGEN010	
MINFILE NUMBER:	<u>104A 156</u>		· ·	NATIONAL MINERAL	INVENTORY: 10444 Cu13	
NAME(S):	GOLDBAR MI, GOLDBAR					
NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	56 02 10 129 54 41 0122 Netrus Within 500M Mineralizud outcrop	west of the Gol	dbar property (104	4A 157), near the	G DIVISION: Skeena UTM ZONE: 09 NORTHING: 6210250 EASTING: 443210	
	historical Gold Bar 20682).	No. 1 showings	(104A 053) (Asses:	sment Report		
CONMODITIES:	Silver Bismuth	Copper	Zinc	Lead	Molybdenum	
INERALS						
SIGNIFICANT: ASSOCIATED: MINERALIZATION AGE:		Nolybdenite Pyrite	Chlorite			
POSIT			· ·			
CHARACTER: CLASSIFICATION:		Shear Epigenetic	Porphyry		• .	
DST ROCK DOMINANT HOST ROCK:	Plutonic					
TRATIGRAPHIC AGE	GROUP	FORM	IATION		METAMORPHIC/OTHER	
Entiary LITHOLOGY:	Quartz Monzonite		·		utonic Complex	
	The showing occurs	uithin the Tonti				
	monzonite pluton.	wrennin Circi (Brei	ary(?) Bitter Cre	ek quartz		
EOLOGICAL SETTING TECTONIC BELT: TERRANE:	monzonite pluton.		•	ek quartz Physiographic Area	: Boundary Ranges	
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES	monzonite pluton. : Intermontune : Stikine		•		: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE:	monzonite pluton. : Intermontune : Stikine : VEIN			PHYSIOGRAPHIC AREA	: Soundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES	monzonite pluton. : Intermontune : Stikine : VEIN CATEGORY: Assay SAMPLE TYPE: Grab	•	YEAR		: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES	<pre>monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab COMMODITY Silver</pre>	GR/	YEAR YEAR 19.4000 Grams per	PHYSIOGRAPHIC AREA	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES	Monzonite pluton. : Intermontune : Stikine : VEIN CATEGORY: Assey SAMPLE TYPE: Grab COMMODITY	GR/	year Year	PHYSIOGRAPHIC AREA	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES	Monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab <u>COMMODITY</u> Silver Bismuth Copper Nolybdenum	GR/	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.0400 Per cent	PHYSIOGRAPHIC AREA	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE:	<pre>monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc</pre>		YEAR 9-4000 Greas per 0.9100 Per cent 1.0000 Per cent 0.0400 Per cent 0.2100 Per cent 0.2200 Per cent	PHYSIOGRAPHIC AREA	: Boundary Ranges	• • •
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE:	<pre>monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab COMPODITY Silver Bismuth Copper Molybdenum Lead</pre>	GR/ 17/ 17/	YEAR 9-4000 Greas per 0.9100 Per cent 1.0000 Per cent 0.0400 Per cent 0.2100 Per cent 0.2200 Per cent	PHYSIOGRAPHIC AREA	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	<pre>monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYIPE: Grab COMMODITY Silver Bismuth Copper Molybdenum Lead Zinc Grab sample (88657) Assessment Report 2</pre>	<u>GR</u> 171 20682.	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein.	PHYSIOGRAPHIC AREA : 1990 tonne	: Boundary Ranges	· · · ·
COMMENTS: REFERENCE	Monzonite pluton. Intermontume Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab <u>COMMODITY</u> Silver Bismuth Copper Nolybdenum Lead Zinc : Grab sample (88657) : Assessment Report 2 The Goldbar Ni north-northeast of	from a quartz-0 20682. Showing is loca Stewart, on the	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein.	PHYSIOGRAPHIC AREA : 1990 tonne tonne stewart highway	: Boundary Ranges	• • •
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	Monzonite pluton. Intermontione Stikine VEIN CATEGORY: Assay SAMPLE TYNE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NM north-northeast of (37A) about 600 met	from a quartz-0 20682. I showing is loc: Stewart, on the cres west of the	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2100 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein.	PHYSIOGRAPHIC AREA : 1990 tonne Stewart highway ige. This showing	: Boundary Ranges	• • •
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	Monzonite pluton. Intermontune Stikine VEIN CATEGORY: Assay SAMPLE TYIPE: Grab <u>COMMODITY</u> Silver Bismuth Copper Molybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar Nu north-northeast of (37A) about 600 met is just west of Ter area as the histor	GR/ i7/ i7/ i7/ i7/ i7/ i7/ i7/ i7/ i7/ i7	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2100 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is lo . 1 showings (104A	PHYSIOGRAPHIC AREA : 1990 tonne Stewart highway ige. This showing ocated in the same (053).	: Boundary Ranges	· · · ·
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	Monzonite pluton. Intermontione Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NM north-northeast of (37A) about 600 met is just west of Ter area as the history The history of during 1910 and, as	GR/ 17/ 20682. I showing is loc: Stewart, on the tres West of the majon's Goldbar ical Gold Bar No. ical Gold Bar No. ical Gold Bar No. ical Gold Bar No. ical Gold Bar No. jain, in 1925 who	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is to . 1 showings (104A unclear. The area en the area was co	PHYSIOGRAPHIC AREA : 1990 tonne Stewart highway ige. This showing cated in the same (053). sa was explored by the Good	: Boundary Ranges	· · · · · · · · · · · · · · · · · · ·
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	<pre>monzonite pluton. i Intermontune Stikine i Stikine i VEIN CATEGORY: Assay SAMPLE TYIPE: Grab COMMODITY Silver Bismuth Copper Molybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NU north-northeast of (37A) about 600 met is just west of Ter area as the histori The history of during 1910 and, as Enough (including t Girl claim groups.</pre>	GR/ 17/ 20682. I showing is loc: Stewart, on the tres west of the res west of the ical Gold Bar No. f the showing is gain, in 1925 wh the Gold Bar cla In 1990, Tenaju	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brio property and is lo . 1 showings (104A unclear. The area en the area was co im) and America's on Resources Corp.	PHYSIOGRAPHIC AREA 1 1990 tonne Stewart highway ige. This showing cated in the same (053). a was explored overed by the Good (or Americus). carried out a	: Boundary Ranges	
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	<pre>monzonite pluton. i Intermontune Stikine i Stikine i VEIN CATEGORY: Assay SAMPLE TYIPE: Grab COMMODITY Silver Bismuth Copper Molybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar Nu north-northeast of (37A) about 600 met is just west of Te area as the histori The history of during 1910 and, ag Enough (including f Girl claim groups, limited nock, soil</pre>	GR/ from a quartz-o from a quartz-o 20682. Stewart, on the treswest of the majon's Goldbar ical Gold Bar No. f the showing is pain, in 1925 who the Gold Bar cla In 1990, Tenaj and silt samplin	YEAR 9.4000 Grams per 0.9100 Per cent 0.0400 Per cent 0.2100 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is lo . 1 showings (104A unclear. The are en the area was co im) and America's on Resources Corp. ng program on the	PHYSIOGRAPHIC AREA 1 1990 tonne to	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	Monzonite pluton. Intermontume Stikine VEIN CATEGORY: Assay SAMPLE TYNE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NH north-northeast of (37A) about 600 met is just west of Ter area as the histori The history of during 1910 and, as Enough (including 1 Girl claim groups. Limited nock, soil owned by Javorsky. The area is u	GR/ ir/ ir/ 20682. Stewart, on the cal Gold Bar No. ical Sold Bar No. ical Sold Bar Sold ical Sold Bar Sold Bar Sold ical Sold Bar Sold	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is to . 1 showings (104A unclear. The area en the area was co im) and America's on Resources Corp. ng program on the s reported at that Tertiary(?) Bitter	PHYSIOGRAPHIC AREA : 1990 : tonne : Stewart highway ige. This showing ocated in the same (053). a was explored overed by the Good (or Americus) . carried out a Goldbar group : time. Creek quartz	: Boundary Ranges	· · · · · · · · · · · · · · · · · · ·
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	<pre>monzonite pluton. i Intermontume Stikine i Stikine i VEIN CATEGORY: Assay SAMPLE TYIPE: Grab COMMODITY Silver Bismuth Copper Molybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NM north-northeast of CATE area as the histori The history of during 1910 and, as Enough (including 1 Girl claim groups, limited rock, soil owned by Javorsky. The area is ur monzonite pluton, a The pluton intrudes </pre>	GR/ from a quartz-o 20682. I showing is local Stewart, on the tres West of the ical Gold Bar No. f the showing is gain, in 1925 who the Gold Bar Cla In 1990, Tenajo and silt sampling The showing was nderlain by the a satellite body S Upper Triassic	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2100 Per cent 0.2100 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is lo . 1 showings (104A unclear. The are en the area was co im) and America's on Resources Corp. ng program on the s reported at that Tertiary(?) Bitter of the Coast Plut to Lower Jurassic	PHYSIOGRAPHIC AREA 1 1 kilometres 2 tonne 2 tonne 3 tonne 4 11 kilometres 5 Stewart highway 19 June 10	: Boundary Ranges	· · · · · · · · · · · · · · · · · · ·
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	Monzonite pluton. Intermontime Stikine VEIN CATEGORY: Assay SAMPLE TYPE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NH north-northeast of (37A) about 600 met is just west of Ter area as the histori The Nistory of during 1910 and, as Enough (including i Girl claim groups. limited rock, soil owned by Javorsky. The area is um monzonite pluton, of The pluton intrudes Formation volcanice	GR/ 177 20682. 20682. 20682. 20682. 20682. 20682. 20082. 2	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2400 Per cent 0.2200 Per cent 0.2200 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek bric property and is lo (1.1 showings (104A unclear. The area en the area was co im) and America's on Resources Corp. ng program on the s reported at that Tertiary(7) Bitter of the Coast Plut to Lower Jurassic n Group (Bulletin	PHYSIOGRAPHIC AREA : 1990 tonne tonne stewart highway ige. This showing cated in the same (053). a was explored overed by the Good (or Americus). . carried out a Goldbar group time. Creek quartz tonic Complex. : Unuk River 58, 63). The	: Boundary Ranges	•
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE: COMMENTS: REFERENCE:	<pre>monzonite pluton. i Intermontume Stikine i Stikine i VEIN CATEGORY: Assay SAMPLE TYNE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NH north-northeast of Ter area as the histori The history of during 1910 and, ag Enough (including 1 Girl claim groups. Limited rock, soil owned by Javorsky. The area is u monzonite pluton, a The pluton intrudes formation volcanics volcanics comprise form large.inclusing</pre>	GR/ from a quartz- 20682. Stewart, on the tres west of the majon's Goldbar y ical Gold Bar No. f the showing is gain, in 1925 wh the Gold Bar cla In 1990, Tenaju and silt samplin The showing was derlain by the a satellite body b Upper Triassic s of the Hazelton crystal and liti and liti	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2000 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek brid property and is id . 1 showings (104A unclear. The area en the area was co im) and America's on Resources Corp. ng program on the s reported at that Tertiary(?) Bitter of the Coast Plut to Lower Jurassic n Group (Bulletin hic tuffs and cher n (Assessment Report	<pre>PHYSIOGRAPHIC AREA : 1990 : tonne : stewart highway ige. This showing bcated in the same A 053). a was explored overed by the Good (or Americus) . carried out a Goldbar group t time. Creek quartz tonic Complex. UNUK River 58, 63). The rty sediments that ort 20682).</pre>	: Boundary Ranges	
EOLOGICAL SETTING TECTONIC BELT: TERRANE: ESERVES ORE ZONE:	<pre>monzonite pluton. i Intermontume Stikine i Stikine i VEIN CATEGORY: Assay SAMPLE TYNE: Grab COMMODITY Silver Bismuth Copper Nolybdenum Lead Zinc Grab sample (88657) Assessment Report 2 The Goldbar NH north-northeast of Ter area as the histori The history of during 1910 and, ag Enough (including 1 Girl claim groups. Limited rock, soil owned by Javorsky. The area is u monzonite pluton, a The pluton intrudes formation volcanics volcanics comprise form large.inclusing</pre>	GR/ 177 5 from a quartz- 20682. 5 showing is loc: Stewart, on the tres west of the najon's Goldbar Vo ical Gold Bar vo ical G	YEAR 9.4000 Grams per 0.9100 Per cent 1.0000 Per cent 0.2100 Per cent 0.2200 Per cent 0.2200 Per cent 0.2200 Per cent chlorite vein. ated approximately south side of the Bitter Creek bric property and is lo c. 1 showings (104A unclear. The area en the area was co im) and America's on Resources Corp. ng program on the s reported at that Tertiary(7) Bitter of the Coast Plut to Lower Jurassic n Group (Bulletin hic tuffs and cher n (Assessment Repord de, quartz veins c	PHYSIOGRAPHIC AREA : 1990 tonne tonne stewart highway ige. This showing cated in the same (053). a was explored overed by the Good (or Americus). . carried out a Goldbar group t time. Creek quartz tonic Complex. : Unuk River 58, 63). The rty sediments that orcupy narrow a and chalcopyrite	: Boundary Ranges	

.

. . .

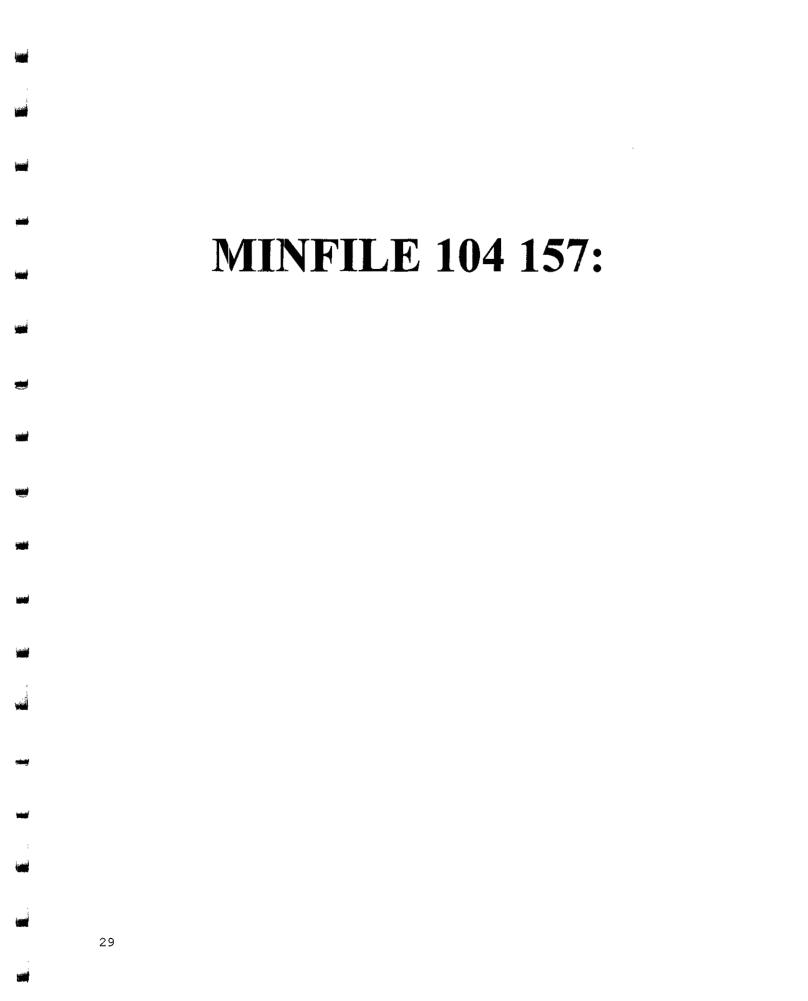
.

. · .

CAPSULE GEOLOGY

silver, 0.91 per cent bismuth, 0.22 per cent zinc, 0.21 per cent lead and 0.04 per cent molybdenum; gold, antimony and tungsten values were also anomalicus (Assessment Report 20682). The reported assays are confusing as to which results belong with which sample/showing. Subsequent sampling (Assessment Report 21909) of the Goldbar showing (104A 157) to the southeast, fails to duplicate the results reported for that showing in Assessment Report 20682, but the values are very similar to the results quoted for this showing. showing.

BIBLIOGRAPHY


EMPR AR 1911)-64; 1925-92; 1927-92 EMPR BULL 58; 63 EMPR ASS RPT 20379, *20682, 21909 EMPR MAP 8 GSC MEN 32, p. 58; 175, pp. 105,119 GSC MAP *280; 216A; 217A; 307A; *315A; 9-1957; 1418A GSC OF 2582

DATE CODED: 920214 DATE REVISED: 930301

CODED BY: WC REVISED BY: DEJ

FIELD CHECK: N FIELD CHECK: N

MINFILE NUMBER: 104A 156

MINFILE / pc WASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

MINFILE MUMBER: 104A 157 NATIONAL MINERAL INVENTORY: 10444 Cu13 NAME(S): GOLDBAR STATUS: Showing MINING DIVISION: Skeena NTS MAP: 104A04W UTH ZONE: 09 LATITUDE: 56 01 49 LONGITUDE: 129 53 58 NORTHING: 6209600 EASTING: 443950 ELEVATION: 0130 Metres LOCATION ACCURACY: Within 500M CONDENTS: Mineralized quartz vein located in the northwest corner of the Goldbar claim (Assessment Report 20682). COMMODITIES: Silver Gold Соррег Lead **Nolybdanum** Bismuth MINERALS SIGNIFICANT: Pyrite Stibnite Chalcopyrite Nolybdenite ASSOCIATED: Quartz Pvrite MINERALIZATION AGE: Unknown DEPOSIT CHARACTER: Vein CLASSIFICATION: Hydrothermal Epigenetic Porphyry HOST ROCK DONINANT HOST ROCK: Plutonic STRATIGRAPHIC AGE ORMATION GROUS IGNEOUS/METAMORPHIC/OTHER Hazelton Unuk River Tertiary Coast Plutonic Complex LITHOLOGY: Augite Diorite Porphyry Tuff Volcanic Cherty Sediment/Sedimentary HOST ROCK COMMENTS: The showing occurs within augite diorite porphyry (Tertiary?) near the contact with Hazelton Group rocks. GEOLOGICAL SETTING TECTONIC BELT: Intermontane TERRANE: Stikine PHYSIOGRAPHIC AREA: Boundary Ranges RESERVES ORE ZONE: VEIN CATEGORY: Assa YEAR: 1990 SAMPLE TYPE: Chip COMMODITY 1779.7000 Grams per tonne Grams per tonne Silver 0.3428 Gold COMMENTS: Sample across 0.3 metre of the mineralized quartz vein. REFERENCE: Assessment Report 21909. The Goldbar showing is located approximately 11 kilometres north-northeast of Stewart, on the west side of Bitter Creek about 700 metres south-southeast of the Bitter Creek bridge. The Goldbar NW (104A 156) showing occurs to the northwest and the historical Gold Bar No. 1 showings (104A 053) also occur in the area. The history of the showing is unclear. The area was explored during 1910 and, again, in 1925 when the area to the west was covered by the Good Enough (including the Gold Bar claim) and America's (or Americus) Girl claim groups (104A 053). No further work was reported in the area until 1990 when Tenajon Resources Corp. carried out a limited rock, soil and silt sampling program on the Goldbar group owned by Javorsky. The showing was reported at that time. The area is underlain by the Tertiary(?) Bitter Creek Quartz monzonite pluton, a satellite body of the Coast Plutonic Complex. The pluton intrudes Upper Triassic to Lower Jurassic Unuk River formation volcanics of the Hazelton Group (Bulletin 58, 63). The volcanics comprise crystal and lithic tuffs and cherty sediments that form large inclusions in the pluton (Assessment Report 20682). The volcanic and sedimentary rocks are intruded by augite diorite porphyry. CAPSULE GEOLOGY porphyry. Several narrow (less than 10 centimetres wide) quartz veins contain variable amounts of pyrite, chalcopyrite, stibnite and MINFILE NUMBER: 104A 157

.

HINFILE / po MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUN RESOURCES

CAPSULE GEOLOGY

molybdenite. One quartz vein, 30 centimetres wide, is well mineralized with stibnite, molybdenite and pyrite. A chip(?) sample collected in 1990 assayed 17.0 grams per tonne gold, 4.04 per cent bismuth, 21.7 grams per tonne silver and 0.16 per cent lead (Assessment Report 20682). A sampling program was conducted to follow this vein; the highest value was 1773.7 grams per tonne silver and 0.3428 gram per tonne gold (Assessment Report 21909). The reported assays are confusing as to which results belong with which sample/showing. Subsequent sampling (Assessment Report 21909) of this showing southeast, fails to duplicate the results reported in Assessment Report 20682, but the values are very similar to the results quoted for the Goldbar NW (104A 156) showing.

BIBLIOGRAPHY

· · · ·

EMPR AR 1910-64; 1925-92; 1927-92 EMPR BULL 58; 65 EMPR ASS RPT 20379, *20682, *21909 ENPR MAP 8 GSC MEH 32, P. 58; 175, pp. 105, 119 GSC MAP *28A; 216A; 217A; 307A; *315A; 9-1957; 1418A GSC OF 2582

DATE CODED: 920214 DATE REVISED: 930301

CODED BY: WC REVISED BY: DEJ FIELD CHECK: N FIELD CHECK: N

MINFILE NUMBER: 104A

7.B. GEOLOGY:

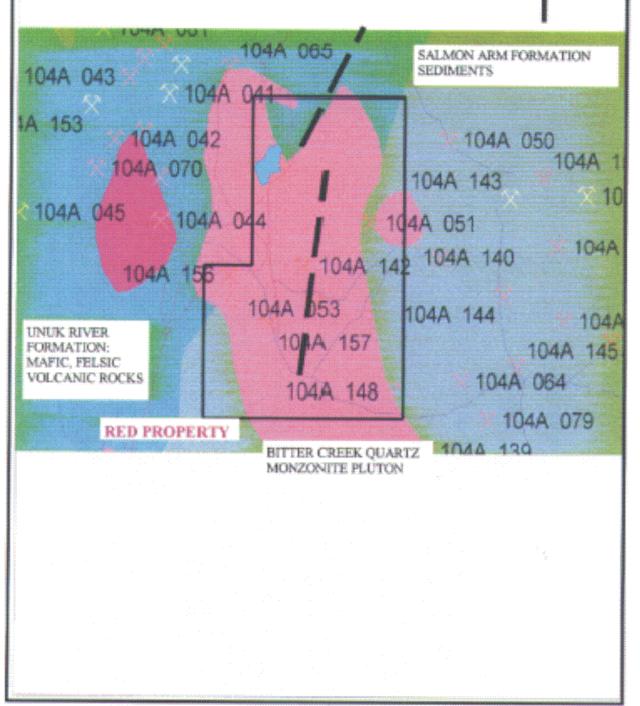
The regional and Red Property geology, as compiled by the B.C. Ministry of Energy and Mines, is shown in Figures 7 and 7A. The property geology comprises a segment of the Bitter Creek quartz monzonite pluton, shown in pink. The Eocene pluton is a satellite intrusive of the Coastal Plutonic Complex, and is hosted by Hazelton Group Rocks: Unuk River Formation basalt, andesite and rhyolite flows shown in green; and, Salmon Arm Formation argillites, sandstone, siltstone and shale, shown in olive green.

Some MINFILE reports reference acid volcanics, breccias and cherty sediments as components of the mineral occurrences. Some of more interesting historic mineralization appears to be associated with these rocks. Northeast of the property in the Clements Lake area (Map 7.B.) the geology is somewhat similar, with the host rocks of the intrusion comprising altered breccias and tuffs. As mapped by Grove (1962) the regional structure shown in Figure 7A extends northeast from the Town of Stewart across the Bitter Creek Pluton to the area of the American Creek Anticline.

7.C. MINERALIZATION:

As noted in Section 7.A. and described in the MINFILE reports, historic mineralization on and in the vicinity of the Red Property generally comprises narrow quartz-sulfide veins, with copper-gold-silver-lead-zinc values, and some tungsten and molybdenum values, hosted by quartz monzonite or coarse cherty sediments. Some cross cutting and tunneling was done e.g., on the Ore Mountain Property (MINFILE 104A 143) and on the Morgan 6 Property (MINFILE 104A 051), on quartz fracture zones with mineralization similar to that mentioned above.

Mineralization is also hosted sediments of the Salmon Arm Formation and is associated with felsic dykes and the faulted contacts of such dykes e.g., the Lead Coil A Showing (MINFILE 104A 140); and, the Lead Coil B Showing (MINFILE 104A 141). The mineralization generally comprises pyrite, galena, sphalerite, and chalcopyrite in quartz veins and lenses, and quartz breccia zones, hosted by sheared argillite.


The regional structure referenced in Section 7.B. and shown on Figure 7A above appears to be a favourable environment for mineralization. Two of the Minfile locations are located in proximity to it and southwest of Bitter Creek it is associated with the historic Dunwell Mine on Dunwell Creek.

Most of the aforementioned mineral occurrences were discovered historically and, in themselves, do not appear to constitute substantial targets. Moreover, many of the relatively recent exploration activities have been focused on the re-evaluation of the showings, without the broader perspective of evaluating the potential of favourable geological environments to host world-class ore bodies.

FIGURE 7A:

RED PROPERTY: MINFILE NUMBER FILE, GEOLOGY REGIONAL STRUCTURE

SCALE: 1:56250

Section 8

8. 2000 EXPLORATION ACTIVITIES ON THE RED 1-6 CLAIMS:

The Red 1-4 Mineral Claims were staked in September 1999 to cover polymetallic stream sediment anomalies generated by a regional geochemical and geological program carried out under the BC Prospectors Assistance Program. Follow-up activities in 1999 almost immediately identified interesting, polymetallic targets associated with rhyolite and rhyolite breccia stratigraphy in the Bitter Creek Valley (Molloy, 2000). The activities also indicated that an historic mill complex was located in one of the target areas. Research in 1999 and 2000 first indicated that mill feed had apparently come from a source or sources in proximity to the mill. However, data provided by the government on August 14, 2000 indicated that the mill was owned by the Adam Milling Company and operated from April until September 1973. The mill was apparently built to treat copper-gold ore from the Red Cliff deposit on American Creek and from the Roosevelt deposit located farther up Bitter Creek (Minfile 104A 037).

The 2000 Bitter Creek Project was also initiated as part of a regional Prospectors Assistance Program in the Stewart Gold Camp. Exploration activities including additional research and compilations, claim staking, geological and geochemical surveys, analytical work, data entry and reporting, were initiated in July and completed in December, 2000. The fieldwork was carried out intermittently as allowed by the generally adverse weather conditions, which often entailed heavy, incessant rainfall and fog. The Town of Stewart was used as a base for the work.

The approximately \$20,000 project expenditure is summarized Table 2. Expenses have been apportioned from the Assistance Program, but include industry salary rates and the full cost of report writing and map preparation.

8.A. CLAIM STAKING:

The Red 3 Mineral Claim was re-staked as New Red 3, to cover additional ground that had come open in the Bitter Creek Area. The Red 5 and Red 6 Claims were staked in the Clements Lake Area as the part of the initial 2000 follow-up activities, which continued to confirm the favourable geological environment covered by the Red Property.

8.B. 2000 GEOLOGICAL AND GEOCHEMICAL SURVEYS:

In addition to the aforementioned claim staking, the 2000 exploration activities included research in the Smithers, BC Ministry of Energy and Mines' Office and the Stewart Museum; compass, chain and flag surveying of access roads, mill site roads, trails, and hiking trails; the installation of various flagged grid and control lines; detailed and reconnaissance geological and geochemical surveys, including the collection of 113 stream sediment, rock, soil and check samples and their analysis at ALS Chemex in Vancouver for gold (FA/AA) and 34 elements (ICP); and, some air photo investigation to ascertain the existence of possible local source areas of the Adam Mill feed. The ALS Chemex Certificates of Analysis are included in Appendix A.

TABLE 2: EXPLORATION EXPENDITURES (\$ CDN) (INCL MOB TORONTO>STEWART CAMP; DEMOB >TORONTO)

TYPE:	CLAIM NO. (WK ALLOCATION):	AMOUNT				
	RED 5	9%					
	RED 6	8%					
	RED 4	40%					
	RED 3	35%					
	RED 2	6%					
	RED 1	2%					
b. subsistence, acco	, repairs, km nmodation l charges	*****	1365.08				
d. salaries 20 days () \$300/day		9000.00				
f. shipping, courier, comm g. claim registration g. project research, data a		vicationuisition					
	data acquisition						
• •	ta interp						
c. reproduction			175.00				

TOTALS	9194.:	33
--------	--------	----

8.C.1. BITTER CREEK AREA 2000 GEOLOGICAL AND GEOCHEMICAL SURVEYS:

Reconnaissance 2000 geological and geochemical surveys were initially carried out in the Bitter Creek Valley to confirm 1999 targets; and, to ascertain the extent of the felsic volcanic stratigraphy and its potential, to south of the Adam Mill on the Bitter Creek Road (Map3). The work was hindered by the constant heavy rainfall, which tended to cleanse streams of sediment and precipitate landslides, which closed the road about 1.5 km south of the mill.

8.C.1.a. RECONNAISSANCE STREAM SEDIMENT GEOCHEMISTRY:

All of the 10 stream sediment samples (Table REDSS00; Map 3; Appendix A) collected in the Bitter Creek Valley on the Red Property have anomalous copper and cadmium contents ranging between 64 and 2330 ppm and 1 and 5 ppm, respectively. Six samples have anomalous lead contents ranging between 20 and 268 ppm; 9 samples have anomalous zinc contents between 130 and 346 ppm; 5 samples have anomalous arsenic contents between 32 and 80 ppm; three samples have anomalous gold values between 30 and 120 ppb; and five samples have anomalous silver values between 0.8 and 4.4 ppm.

The stream sediment samples are indicative of at least two main areas of interest: Area 1> an area located about 1.2 km south of the historic mill on the Bitter Creek Road (sample 759713SS: 346 ppm zinc, 100 ppm copper; 80 ppm arsenic; 5 ppm cadmium; and sample 759714SS: 120 ppb gold; 150 ppm zinc, 79 ppm copper, 40 ppm arsenic); and, Area 2> the Mill Area (e.g. sample 759788SS, a retake of the original 1999 discovery sample, located on the Bitter Creek Road about 70 m north of the mill: 35 ppb gold; 4.4 ppm silver; 256 ppm lead; 268 ppm zinc; 2330 ppm copper). The original, 1999 sample (160207SS) contained 50 ppb gold; 5 ppm silver; 372 ppm lead; 346 ppm zinc; and, 1325 ppm copper. The geological survey (Map 3) indicated that the favourable rhyolitic unit that has apparently been intruded by the Bitter Creek quartz monzonite pluton continues to the south of the mill area (Map 1) and remains open to further delineation.

8.C.1.b. DETAILED FOLLOW-UP SOIL GEOCHEMISRY:

Soil geochemical surveys were used to evaluate and delineate the extent of the rhyolite and rhyolite breccia in the vicinity of the historic mill (Photo 5). The felsic rocks appear to have been intruded by the Bitter Creek quartz monzonite pluton. As exposed along the east side of the road, the two main rock types have both sharp and gradational contacts. The rocks are covered by clay and silt-sand and clay overburden within a few meters of the road, and the cover thickens and becomes rather pervasive, even on the much steeper topography on the eastern area of the grid lines (Map 3). However, many of the soil holes that were dug with a large boniknocker, contained angular, felsic rock fragments and boulders, suggesting the target stratigraphy is fairly extensive.

TABLE REDS500 RED STREAM SEDIMENT SAMPLE DESCRIPTIONS AND MOST RELEVANT ANALYTICAL RESULTS:

	SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY: HAZ. VOL & QTZ MON INTRUSIVE	SAMPLE NO	AU ppb	SOME ANAYTK AG ppm	CAL RESULT PB ppm	TS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	W ppm
1.0	759701CK TOP MAP 104/A HWY 37 & BITTER CRK; NW BANK, CH MATERIAL FOR SUI		MAFIC VOL (70%); QTZ (15%); OX MAT (6%); FELD (5%); MINOR BIOTITE,	FAST FLOW NW, MAJOR STREAM DRAINING MINERALIZED AREA THAT INCLUDES RED MOUNTAIN FLOWS NE	ALTERED (SIL, CARB, K FELSPAR, LIM)	759701CK	360.0	2.8	106.0	252.0	139.0	162.0	5.0	50.0	<10
2.0	759713SS 2.525 KM S OF RD CULVERT @ 0+00 ON RED GRID SAMP AT END OF DRIVEABLE SECT C BITTER CRK RD	BRN	30% SILT, 60% SD, 10% GRAV	HIGH ENERGY REGIME CRK FLOWS 345° FEW SEDS	HETRO BO - QM, FELD PORPH; FEW OXID SEDS	759713SS	<30	0.8	14.0	346.0	100.0	80,0	5.0	130.0	<10
3.1) 759714SS 2.225 KM S OF RD CULVERT @ 0+00	HÉTRO SD, GRV; BRN		CRK FLOWS 353* SLUGGISH DRAINAGE	HETRO BO, MAINLY QTZ MON & PORPH, ONLY FEW OX BO	759714SS	120.0	0.4	22.0	150.0	79.0	40.0	2.0	110.0	<10
4.0) 759725CK BITTER CREEK CHECK SAMP		•			759725CK	300.0	0.6	34.0	188.0	127.0	128.0	3.0	50.0	<10
5.0) 759727SS 0+35S, 1+ 50E RED GRID	SILT/SD/GRAV RÉD BRN	SILT-PEBS 60%SILT, 30 SD, 10 PEB, ORGS MAINLY PEB FRAGS, FEW OX FRAGS	CRK FLOWS 325°	FORESTED, OV, DEVILS CLUB NEGATE PROGRESS	759727SS S	<30	0.6	12.0	138.0	115.0	26.0	3.0	170.0	<10
6.4) 75973588 0+65N, 0+40E RED GRID	HETRO SD BRN	FI-CO 20% FI, 80% C, INCL BLK VOL, GRY-WH-PK CHERTY MAT, SOM QTZ MON, SOM OX FRAGS, SOM WH QTZ 60% MAFICS, 30% FELSICS	CRK FLOWS 96° MOD FLOW	FORESTED, OV, DEVILS CLUB NEGATE PROGRESS	75973588 S	30.0	0.4	20.0	130.0	78.0	50.0	1.5	130.0	<10
7.6) 75973655 0+82N RED GRID	čl/silt/SD BRN		CRK FLOWS 240° LOW FLOW	ON E SIDE OF RD DENSE VEG	75973655	<30	0.8	24.0	136.0	95.0	46.0	2.0	140.0	<10
8.0) 75973788 1+078 RED GRID	SILT/SD/PEBS ORG BRN	SILT - PEBS 70% SILT, 20% SD, 10% ORGS, MUCK, FRAGS > 50% OXID QTZ MON 50% FR QTZ MON	DRY DITCH SAMP NO FLOW	ON E SIDE OF RD DENSE VEG	75973788	<30	0.4	46.0	138.0	128.0	22.0	1.0	160.0	80,0
9.0) 759748SS 1+57S, 1+25E RED GRID	ORG MUCK BLK	SILT 50% SILT, 50% ORGS	MIN FLOW @ 220* WELL HEM RHY	ON E SIDE OF RD DENSE VEG FLT BO	759748SS	<30	1.2	6.0	24.0	111.0	<2	1.5	170,0	<10
10.0	75974988 2+25 S ALONG BITTER CRK RD RED GRID	SILT/CL PK RD BRN	CL-SILT 80% SILT, 20% CL	FLOW S IN DITCH	ON E SIDE OF RD OXID RHY	75974958	<30	0.6	22.0	114.0	64.0	28.0	2.0	170.0	<10
11.0	759750CK BITTER CRK CHECK SAMP					759750CK	270.0	2.6	104.0	258.0	138.0	194.0	5.0	50.0	10.0
12.0	759755SS 3+06 BITTER CRK RD, RED GRID	SILT/SD BRN - ORG BRN		HI ENERGY STR, FLOWS 240°	RHY BREC	75975588	<30	0.8	14.0	154.0	121.0	18.0	2.5	220.0	<10
13.0	759788SS 0+03 BITTER CRK RD, RED GRID	Silt/SD BRN - ORG BRN	SILT-CO 120% SILT, 80 SD, HETRO SD - OX FRAGS, LIM, HEM, RHY, QTZ MON	DITCH CREEK	RHY BREC	759788SS	35.0	4.4	256.0	268.0	2330.0	32.0	1.5	150.0	<10

E EL ÂL E E E E E E E E

.

L

Í

PHOTO 5:

RHYOLITE BRECCIA, EDGE OF BITTER CREEK ROAD, WEST OF ADAM MILL SITE

Four of the 54 soil samples (759702SO-759705SO, Table REDSO00; Map 3; Appendix A) collected on the property in the Bitter Creek Valley Area were taken from the historic tailings pond (Photo2), which is now dry and located about 250 m north of the mill. The analytical results are somewhat suggestive of the original contents of the muck milled: the four samples have gold contents ranging between 300 and 510 ppb; silver contents between 4.4 and 5.5 ppm; lead contents between 18 and 68 ppm; zinc contents between 8 and 22 ppm; copper contents between 188 and 840 ppm; arsenic contents between 42 and 74 ppm; and bismuth contents between 34 and 52 ppm. The mill thus appears to have thus been constructed to process mainly gold-silver-copper feed that has a distinctive arsenic + bismuth signature.

Detailed soil geochemical surveys in the mill area and to the south of it entailed the collection of 50 additional samples taken from the generally well-developed B-horizon. The sample material is usually composed of silt and sand that is often well oxidized (limonite, hematite, jarosite-alunite), with distinctive hues of yellow, red brown and pink. Most of the 50 samples were collected at a spacing of 10 to 25 m on grid lines and mill roads (Table REDSO00; Map 3; Appendix A). Twenty-five samples have anomalous gold values ranging between 10 and 360 ppb; 34 have anomalous silver values between 0.8 and 25 ppm; 35 have anomalous copper values between 40 and 1550 ppm; 19 have anomalous arsenic contents between 30 and 48 ppm; 2 have anomalous zinc contents of 172 and 1270 ppm; 4 have anomalous bismuth contents between 6 and 144 ppm; and, two have anomalous tungsten contents of 20 and 70 ppm.

The results of the soil samples taken in the vicinity of the mill are considered reflective of the favourable rhyolite and rhyolite breccia horizon exposed on the east edge of the Bitter Creek Road. A large majority of the soil samples taken within 100 m of the east side of the road (Map 3; Figures 8A-8F) have anomalous silver, lead, copper, and arsenic values. The higher zinc values are also located in this area, along with the majority of anomalous gold values. Since the overburden is interpreted to have a masking affect and the initial FA/AA gold analyses had a lower detection limit of 30 ppb, 13 soil samples with values <30 ppb were rerun. Eleven returned anomalous gold values ranging between 10 and 80 ppb (Figure 8A).

The gold anomalies are not limited to the area of the historic mill site e.g. the second and third highest gold values (120 and 95 ppb; Figure 8A; Map 3) and the second highest copper value (524 ppm; Figure 8C; Map 3) were obtained on higher ground, to the east of the site. The eastern area of the grid has the steepest terrain and the thickest overburden cover that often comprises a 10-15 cm A-horizon, with a 3-6 cm thick clay horizon at its base; and, an underlying, apparently thick and well-oxidized B-horizon. The B-horizon often contains angular fragments of felsic volcanic rock and crystal tuff, as well as some quartz monzonite and black sediment. In spite of the deep overburden cover, the gold, copper and silver soil values on the eastern area of the grid are intriguing: a number of weak gold values just above the detection limit, along with one very anomalous value of 120 ppb, and a number of silver and copper anomalies. However, the results have to be interpreted carefully: e.g., in the original sample 759728SO, B-horizon material was taken below the aforementioned clay horizon and it

	TABLE REDSO RED SOIL SAM		NS AND MOST RELEV		CAL RESULTS:											
Sampli No., Lo Type:		gr size Colour		DRAINAGE, GEOLOGY	COMMENTS	SAMPLE NO	F AU ppb	RELEVANT ANA AG ppm	AYTICAL RE PB ppm	SULTS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bl ppm	W ppm
	0+25E TAILINGS? ITTER CRK WATER LAID, AILINGS WATER SORT7 15 CM		SILT, SOM WELL LIM	TAILINGS PA NO GEOL AVAIL	AD:TAILINGS EITHER TRUCKED OR PIPED FROM MILL	759702SO	510.0	5.4	18.0	20.0	842.0	42.Q	1.5	1.0	52.0	<10
2.0 759703 2+05N, W OF B RD IN T. AREA? RED GF	0+40E TAILINGS? ITTER CRK WATER LAID, AILINGS WATER SORTE 15 CM		60% SILT, 30% SD, 10% FRAGS WELL LIM, SOM JAR/AL	TAILINGS PA NO GEOL AVAIL	ADTAILINGS EITHER TRUCKED OR PIPED FROM MILL	75970350	450.0	5.4	68.0	22.0	514.0	74.0	0.5	130.0	42.0	<10
	0+40E TAILINGS? ITTER CRK WATER LAID, AILINGS WATER SORTE 20 CM	SILT ORG BRN - GREY BRN ED?	Silt in Oxid (LIM) Bands	TAILINGS PA NO GEOL AVAIL	DTAILINGS EITHER TRUCKED OR PIPED FROM MILL	759704SO	300.0	4.4	26.0	26.0	188.0	66.0	≺0.5	30.0	34.0	10.0
	0+40E TAILINGS? ITTER CRK WATER LAID, AILINGS WATER SORTE 24 CM	ORG BRN - YEL GREY	75% SILT, 25% SD LIM	TAILINGS PA NO GEOL AVAIL	AD:TAILINGS EITHER TRUCKED OR PIPED FROM MILL	75970580	480.0	4.4	30.0	8.0	348.0	50.0	<0.5	70.0	34.0	<10
5.0 759707 0+255, E SIDE CRK RD RED GR	0+25E B-C BITTER POOR 0 15 CM	BRN GREY - ORG BRN	30% SILT, 20% SD, 50% CHERTY, OXID FRAGS> RHY BRECC, QTZ MON	OXID RHY BF BOLDERS & FRESH ANG QTZ MON		759707SO	<30, 25	0.6	30.0	94.0	384.0	30.0	2.0	140.0	8.0	20.0
6.0 759710 0+255, E SIDE CRK RD RED GR	0+31E B-C BITTER POOR) 15 CM		30% SD, 50% SILT, 20% FRAGS, MAINLY LIM, SIL MAT			75971080	<30, 20	0.6	22.0	88.0	108.0	34.0	1.5	80.0	<2	<10
7.0 759711 0+255, E SIDE CRK RE RED GF	0+50E B-C BITTER POOR) 18 CM	BRN - ORG BRN	60% SD, 30% SILT, 5% FRAGS, 5% ORG FRAGS WELL OXID, MAINLY MN		ENSE ,	759711SO	<30, 10	1.4	16.0	78.0	69.0	30.0	1.0	90.0	<2	<10
8.0 759712 0+255, E SIDE CRK RD RED GR	0+75E BITTER }					75971250	<30, 5	1.0	16.0	102.0	88.0	34.0	2.0	130.0	2.0	<10
@ 0.52	CRK RD BC	SILT - FI ORG BRN	80% SILT, 20% SD WELL LIM, LOC DERIVED	OXID FELSIO OUTCROP SEE RK SAM 759716, 17		75971850	<30, 45	<.2	22.0	88.0	89.0	36.0	0.5	40.0	<2	<10

	TABLE REDSO RED SOIL SAI		INS AND MOST RELEV	ANT ANALYTIC	CAL RESULTS:											
SAMPLE NO., LOC, TYPE:	NAME HORIZ DEVEL DEPTH	GR SIZE COLOUR	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS	SAMPLE NO	AU ppb	SOME ANAYTH AG ppm	CAL RESUL PB ppm	.TS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bl ppm	W ppm
10.0 759720SO BITTER CR @ 0+50 S, RED GRID	SILT/SD (RD BC 0+25 E BANK 25 CM	SILT - CO ORG BRN TO RD BRN	60% SILT, 40% SD LIM, HEM SOM CO FRAGS RHY BREC	OXID RHY BO QTZ MON; DRAINAGE GO TO WEST		75972050	30.0	0.4 .	22.0	52.0	260.0	24.0	0.5	110.0	~2	<10
11.0 759721SO BITTER CR @ 0+50 S, RED GRID		SILT - CO PK BRN	70% SILT, 30% SD LIM, HEM SOM CO FRAGS RHY BREC	OXID RHY BO GRANITE; DRAINAGE GO TO WEST		75972180	30.0	0.8	22.0	98.0	100.0	34.0	1.5	110.0	~2	<10
12.0 759722SO BITTER CR @ 0+50 S, RED GRID	SILT/SD KRD B 0+67 E WELL 30 CM	SILT - CO ORG BRN, PK TINGE	70% SILT, 30% SD LIM, HEM SOM CO FRAGS RHY BREC	NO GEOL DRAINAGE GO TO WEST	COD	75972280	<30, 20	0.8	26.0	106.0	126.0	48.0	1.5	100.0	2.0	<10
13.0 759723SO BITTER CR @ 0+50 S, RED GRID	SILT/SD KRD B 0+85 E WELL 24 CM	SILŤ - CÔ ORG BRN, PK TINGE	70%, SILT, 30%, SD LIM, HEM	OXID PORPH MON? DRAINAGE GO TO WEST		75972380	<30, 80	2.6	18.0	72.0	76.0	32.0	1.0	110.0	<2	<10
14.0 759724SO BITTER CRI @ 0+50 S, RED GRID		SILT - CO ORG BRN	70% SILT, 30% SD MIN ORGS SOM OXID FRAGS - RHY?	NO GEOL DRAINAGE GO TO WEST	COD	75972450	<30, 5	1.4	16.0	38.0	29.0	18.0	0,5	70.0	~2	<10
15.0 759726SO BITTER CRI @ 0+50 S, RED GRID		SILT - CO ORG, BRN BLK, YEL	80% SILT, 10% SD, 10% FRAGS, ORGS SIL OXID FRAGS INC BLK ANG VOL	DRAINAGE G	000	75972650	<30	1.4	20.0	30.0	25.0	18.0	2.0	50.0	~2	<10
16.0 759728SO @ 0+50 S, RED GRID	SILT/SD 1+75 E B WELL 30 CM	SILT - CO YEL ORG, BRN	80% SILT, 20% SD, MINOR FRAGS - BL¥ VOL & ALT FEL VOL	FIR FOREST	000	75972850	120.0	0.2	16.0	94.0	67.0	26.0	1.5	120.0	~2	<10
17.0 759733SO @ 0+50 S 0 BK SAMP RED GRID	SILT/PEBS NRD 8 WELL 30 CM	SILT - PEBS YEL BRN	90% SILT, 10% PEBS OXID PEBS - BKL VO & RHY		COD	75973380	30.0	1.8	14.0	64.0	52.0	24.0	1.5	100.0	<2	<10
18.0 759734SO ~ 0+00, 0+2 ON UPPER BK SAMP RED GRID		SILT - CO ORG BRN	90% SD, 10% SILT MIN FRAGS - BLK VOL, SIL PEBS	FOREST DRAINAGE GO TO WEST	COD	75973480	30.0	0.4	26.0	98.0	113.0	40.0	1.5	110.0	2.0	<10
19.0 759738SO 1+25S, 0+1 BK SAMP RED GRID		SILT - PEBS ORG BRN	20% SD, 70% SILT 10 ORGS & OXID FRAGS - MAINLY RHY	BK DRAINAGE G(TO WEST	OOD	75973850	<30, 10	1.2	14.0	60.0	70.0	20.0	0.5	100.0	~2	<10
20.0 75973950 1+255, 0+2 RED GRID	SILT/SD/PEBS 5E ROCKY B WELL 15 CM	as 759738SO				75973950	<30, 30	0.8	32.0	172.0	98.0	28.0	1.5	220.0	ą	<10

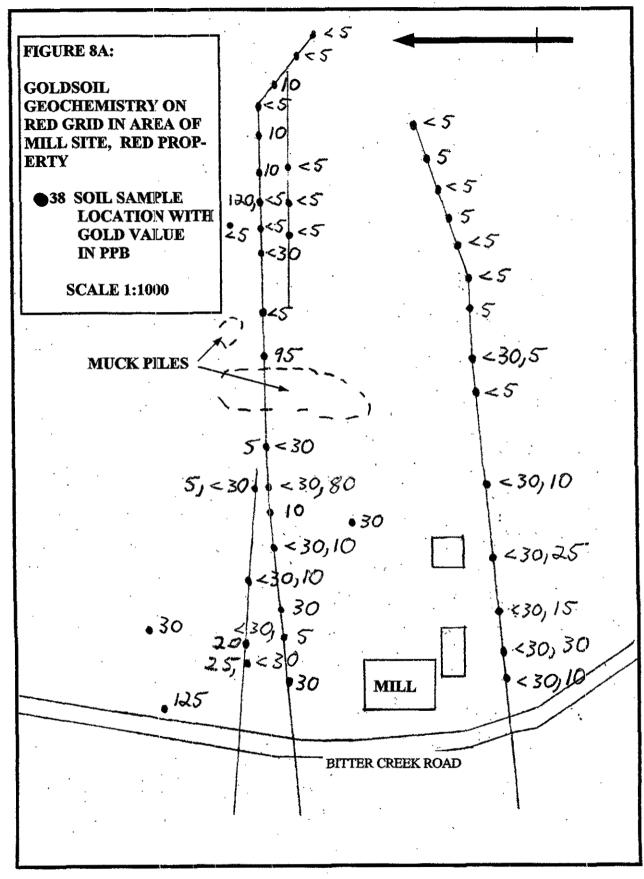
.

TABLE REDSO00 (CON'T):	
RED SOIL SAMPLE DESCRIPTIONS AND MOST RELEVANT AN	ALYTICAL RESULTS:

Sample NO., LOC, TYPE:	NAME HORIZ DEVEL DEPTH	gr size Colour	COMPOSITION	DRAINAGE, GEOLOGY	SAMPLE NO	AU PPD	SOME ANAYTI AG ppm	CAL RESULT PB ppm	ts Zn ppm	CU ppm	AS ppm	CD ppm	BA Ppm	Bl ppm	W ppm
21.0 759740SO 1+25S, 0+40E BK SAMP RED GRID	SILT/SD/PEBS ROCKY B WELL 20 CM	AS 759738SO			759740SO	<30, 15	0.6	24.0	108.0	111.0	30.0	2.0	160.0	<2	<10
22.0 759743SO 1+25S, 0+56E BK SAMP RED GRID	SILT/SD/PEBS STONEY B WELL 25 CM	Silt - Pebs Org Brn	20% SD, 70% SILT 10 ORGS & OXIO FRAGS - MAINLY RHY, BLK VOL	BK DRAINAGE G OOD TO WEST	75974380	<30, 25	<.2	24.0	108.0	116.0	40.0	1.5	120.0	<2	<10
23.0 759746SO 1+25S, 0+79E TREE SAMP RED GRID	SILT/SD/PEBS B WELL 30 CM	Silt - Pebs Pk Brn	10% SD, 80% SILT 10 ORGS & BLK FRAGS	NO GEOL DRAINAGE GOOD TO WEST	759746SO	<30, 10	2.0	12.0	50.0	48.0	22.0	0.5	90.0	<2	<10
24.0 759747SO 1+25S, 1+19E RED GRID	SILT/SD/PEBS ROOTY B WELL 20 CM	SILT - PEBS GREY PK	10% SD, 80% SILT 10 ORGS & HEM FRAGS	NO GEOL DRAINAGE GOOD TO WEST	759747SO	<30	1.2	10,0	20.0	16.0	20.0	<0.5	70.0	<2	<10
25.0 759754SO BITTER CRK RD 2+91S AT BASE OF OUTCROP IN SAMP 759753RX	SILT/SD BASE OC RK DERIVED	SILT - CO ORG BRN	50% SD, 50% SILT SD FR HAS OX BR FRAGS	IN SAMP 759753RX OUTCROP	759754SO	360.0	0.8	28.0	124.0	249.0	32.0	1.5	170.0	144.0	70.0
26.0 759757SO 3+65 M S ON BITTER CRK RD BK SAMP	SILT/SD B WELL 10 CM	SHLT - FI ORG BRN	80% SILT, 20% SD MIN GRAN FRAGS	QTZ MON OC NEAR SAMP	759757SO N	A									
27.0 759848SO L0+50S 37.5E RED GRID	SILT/SD/PEBS 8 WELL 25 CM	Silt - Pebs Org Brn	60% SILT, 30% SD 5% ORG, 5% HETRO FRAGS - OXID MAT, RHY, MIN BLK SED	SULF RHY NEAR SAMP	759848SO	5.0	1.6	18.0	74.0	64.0	24.0	<0.5	120.0	<2	<10
28.0 759849SO L0+50S 75E RED GRID	SILT/SD/PEBS B WELL 30 CM	SILT - PEBS ORG BRN	60% SILT, 30% SD 5% ORG, 5% HETRO FRAGS - OXID MAT, RHY, MIN BLK SED	NO OC	75984980	10.0	1.2	16,0	84.0	82.0	30.0	<0.5	110.0	<2	<10
29.0 759850 CHECK WGMI					759850CHK	105.0	3.4	<2	78.0	5780.0	2.0	0.5	<10	<2	<10
30.0 759758SO 1,0+50S 1+25E RED GRID	SILT/SD/PEBS 8 WELL 20 CM	Silt - Pebs Org Brn	55% SILT, 30% SD 5% ORG, 10% HETRO FRAGS - OXID MAT, RHY, MIN BLK SED	NO OC D	759758SO	95.0	6.0	44.0	28.0	524.0	42.0	<0.5	150.0	24.0	<10
31.0 759759SO L0+50S 1+37.5E RED CRID	CL/SILT//PEBS B - BELOW CL HORIZ WELL 32 CM	CL - PEBS ORG BRN YELL BRN	50% CL, 40% SILT 10% HETRO FRAGS - OX, SIL BLK DACITE	NO OC	75975980	<5	0.8	8.0	20.0	19.0	18.0	<0.5	60.0	<2	<10

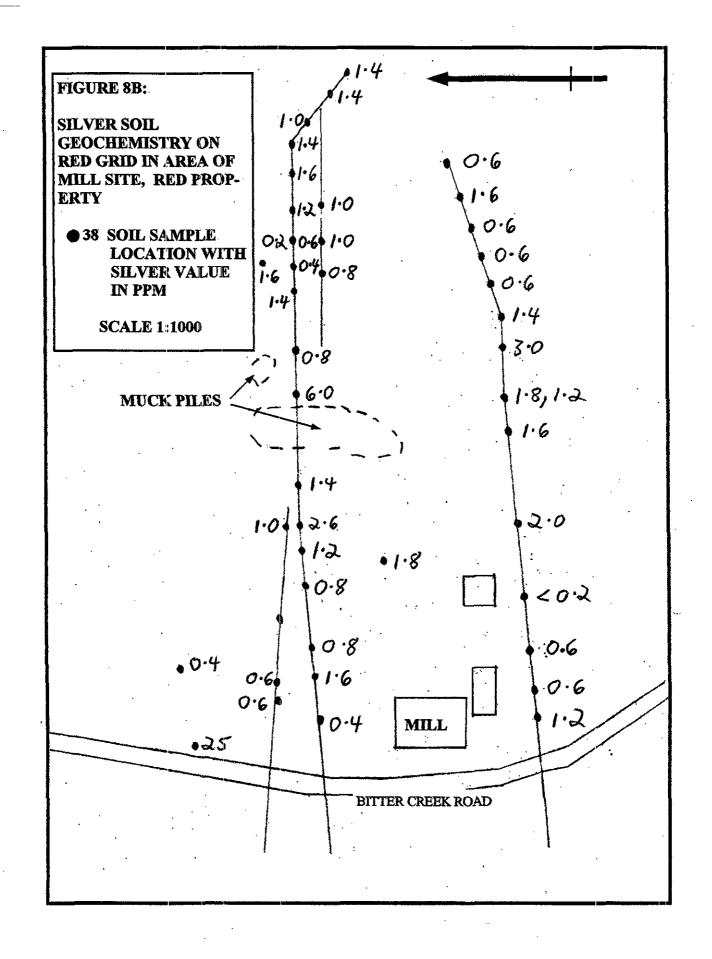
TABLE REDSO00 (CON'T):
RED SOIL SAMPLE DESCRIPTIONS AND MOST RELEVANT ANALYTICAL RESULTS:

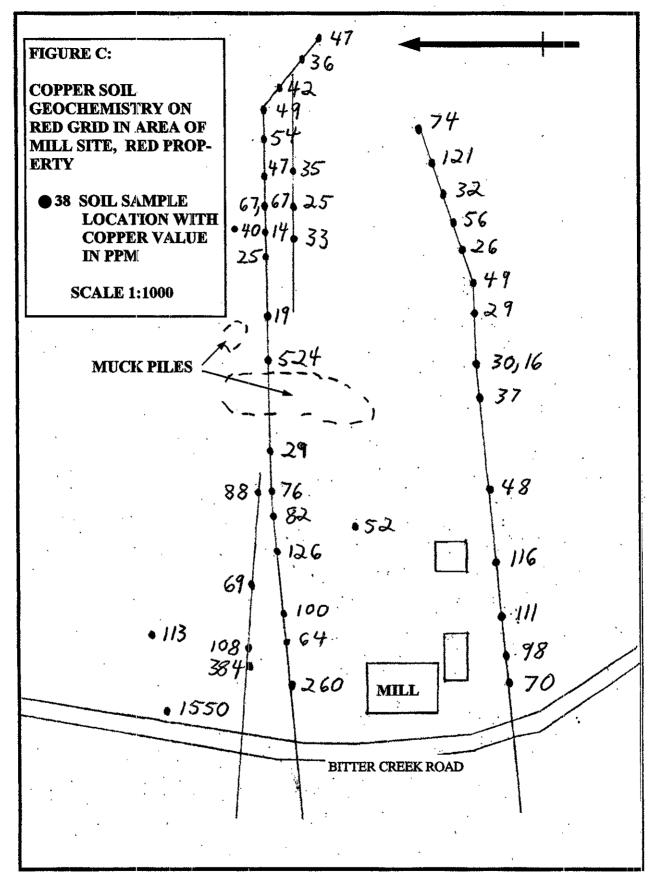
SAMPLE NO., LOC, TYPE:	NAME HORIZ DEVEL DEPTH	gr size Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS	SAMPLE NO	AU ppb	SOME ANAYT AG ppm	ICAL RESUL PB ppm	TS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bi ppm	W ppm
32.0 759760SO L0+50S 1+65E IN MATURE FOREST RED GRID	CL/SILT//PEBS B - BELOW CL HORIZ WELL 32 CM	CL - PEBS RED BRN	60% CL, 30% SILT 10% HETRO FRAGS - OX RHY	NO OC		759760SO	<5	0.4	4.0	16.0	14.0	12.0	<0.5	50.0	<2	<10
33.0 759761SO L0+50S 1+75E IN MATURE FOREST RETAKE OF 759728SO RED GRID	CL/SILT//PEBS B - BELOW CL HORIZ WELL 32 CM	CL - PEBS ORG BRN	10% CL, 45% SILT 45% SD, MIN 0X FR/			759761SO	<5	0,6	14.0	96.0	67.0	24.0	<0.5	140.0	<2	<10
34.0 759763SO L0+50S 1+85E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 35 CM	SILT - PEBS ORG BRN YELLOW BRN WOW	70% SILT, 26% SD MIN OX CRYST TUFI			759763SO	10.0	1.2	12.0	94.0	47.0	24.0	<0.5	140.0	<2	<10
35.0 759764SO L0+50S 1+95E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 35 CM	SILT - PEBS ORG BRN	60% SILT, 30% SD, 3% ORGS, 7% OXID FRAGS - DACITE	NO OC		759764SO	10.0	1.6	20.0	56.0	54.0	32.0	<0.5	100.0	<2	<10
36.0 759765SO L0+50S 2+05E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 35 CM	SILT - PEBS ORG BRN	60% SILT, 30% SD, 3% ORGS, 7% OXID - DACITE			75976580	<5	1.4	18.0	42.0	49.0	26.0	<0.5	70.0	<2	<10
37.0 75976750 L0+505 2+15E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 35 CM	SILT - PEBS YELL BRN	70% SILT, 25% SD, 5% OXID FRAGS - DACITE	NO OC		759767SO	10.0	9 1.0	10.0	56.0	42.0	22.0	<0.5	100.0	<2	<10
38.0 75976850 L0+505 2+25E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 35 CM	SILT - PEBS YELL BRN ORG BRN	70% SILT, 25% SD, 5% OXID FRAGS - DACITE	NOOC		759768SO	<5	1.4	16.0	56.0	36.0	24.0	<0.5	100.0	<2	<10
39.0 759770SO L0+50S 2+35E IN MATURE FOREST RED GRID	SILT/SD/PEBS B - BELOW CL HORIZ WELL 25 CM	SILT - PEBS YELL BRN ORG BRN	70% SILT, 25% SD, 5% OXID FRAGS - DACITE	NO OC		75977050	<5	1.4	14.0	64.0	47.0	26.0	<0.5	70.0	<2	<10

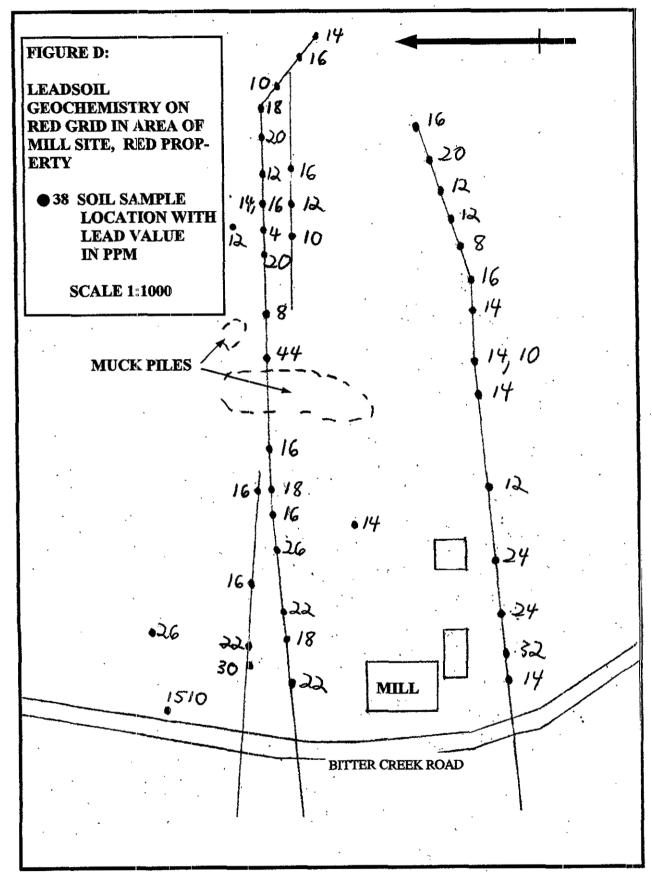

TABLE REDSO00 (CONT):
RED SOIL SAMPLE DESCRIPTIONS AND MOST RELEVANT ANALYTICAL RESULTS:

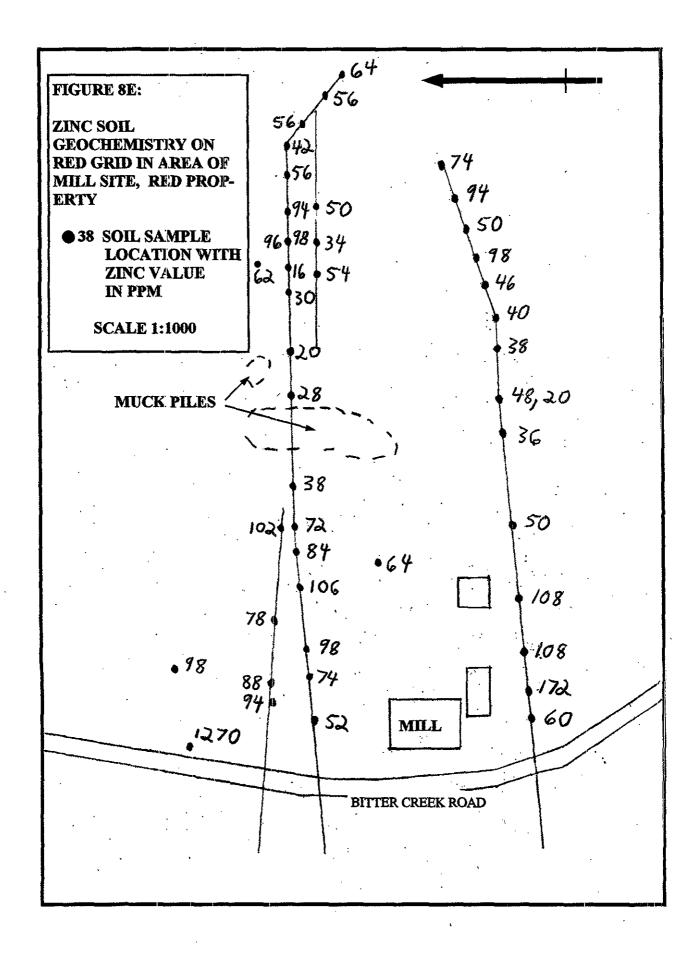
SAMPLE NO., LOC, TYPE:	NAME GR SIZE HORIZ COLOUR DEVEL DEPTH	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS	SAMPLE NO	AU ppb	SOME ANAYTI AG ppm	ICAL RESUL PB ppm	TS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bi ppm	W ppm
40.0 75977180 L0+60S 1+75E IN MATURE FOREST RED GRID	CL/SILT/SD/PEB/CL - PEBS B - BELOW YELL BRN CL HORIZ ORG BRN WELL 35 CM	40% CL, 40% SILT 10% SND 5% OXID FRAGS- DACITE 5% ORGS	NO OC		759771SO	<5	1.0	12.0	34.0	25.0	24.0	<0.5	100.0	<2	<10
41.0 75977290 L0+60S 1+85E IN MATURE FOREST RED GRID	CL/SILT/SD/PEB/CL - PEBS B - BELOW YELL BRN CL HORIZ ORG BRN WELL 24 CM	40% CL, 40% SILT 10% SND 5% OXID FRAGS- DACITE 5% ORGS	NO OC		75977280	~5	1.0	16.0	50.0	35.0	26.0	<0,5	100.0	<2	<10
42.0 759773SO L0+60S 1+60E IN MATURE FOREST RED GRID	CL/SILT/SD/PEB SILT- PEBS B - BELOW ORG BRN CL HORIZ YELLOW BRN WELL 35 CM	80% SILT, 10% SD 5% Oxid Frags- Rhyolite 5% orgs	NO OC		759773SO	<5	0.8	10.0	54.0	33.0	14.0	<0.5	100.0	<2	<10
43.0 759774SO L0+40S 1+65E IN MATURE FOREST RED GRID	SILT/SD/PEBS SILT-PEBS B-BELOW ORG BRN CL HORIZ YELLOW BRN WELL SO CM	60% SILT, 35% SD 5% OXID FRAGS- DACITE	NO OC		759 774 SO	<5	1.6	12.0	62.0	40.0	20.0	<0.5	90.0	<2	<10
44.0 759775 CHECK CH3					759 775 CK	1240.0	3.2	<2	132.0	7650.0	136.0	0.5	<10	2.0	<10
45.0 759776SO L1+25S, 1+19E RETAKE OF 759747SO RED GRID	CL/SILT/SD/PEB CL-PEBS B - BELOW ORG BRN CL HORIZ YELLOW BRN WELL 30 CM	10% CL, 60% SILT, 20% SD, 10% OXID - LIM, JAR/ALUN, SIL TUFF	NO OC		75977650	5.0	1.8	14.0	48.0	30.0	26.0	<0.5	90.0	<2	<10
46.0 759777SO L1+25S, 1+08E RED GRED	SILT/SD/PEBS SILT-PEBS B - BELOW RED BRN CL HORIZ WELL 25 CM	80% SILT, 10% SD, 10% OX - LIM, JAR/ALUN, SIL TUFF	NO OC		75977750	<5	1.6	14.0	36.0	37.0	32.0	<0.5	80.0	<2	<10
47.0 759778SO L1+25S, 1+35E RED GRID	CL/SILT/SD/PEB CL-PEBS B - BELOW RED BRN CL HORIZ YELLOW BRN WELL 25 CM	10% CL, 60% SILT, 20% SD, 10% OXID - LIM, JAR/ALUN, SIL TUFF	NO OC		75977850	5.0	3.0	10.0	38.0	29.0	20.0	<0.5	140.0	<2	<10
48.0 75977950 L1+25S, 1+45E RED GRID	Clisiltisdipeb CL-PEBS B - Below Red BRN CL Horiz Well, 25 CM	5% CL, 80% SILT, 10% SD, 5% OXID - LIM, JAR/ALUN, SIL TUFF	NO OC		75977980	<5	1.4	16.0	40.0	49.0	18.0	<0.5	90. 0	<2	<10

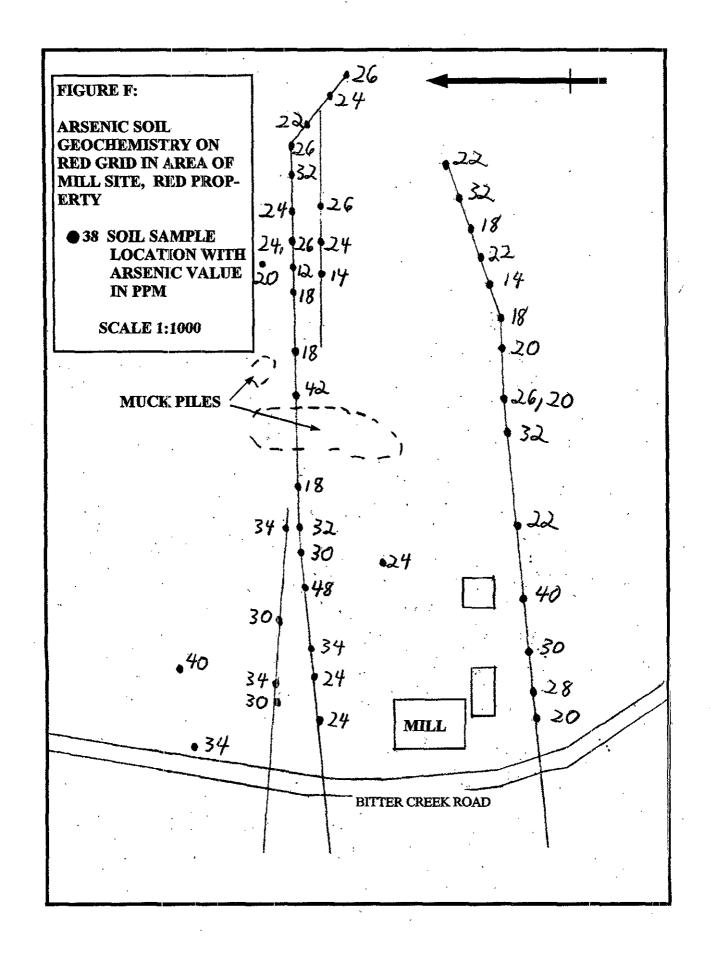
TABLE REDSOO) (CONT):
RED SOIL SAMP	LÉ DESCRIPTIONS AND MOST RELEVANT ANALYTICAL RESULTS:


SAMPLE NO., LOC, TYPE:	NAME HORIZ DEVEL DEPTH	GR SIZE COLOUR	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS	SAMPLE NO	S AU ppb	SOME ANAYT AG ppm	ICAL RESU PB ppm	-TS ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bi ppm	W ppm
49.0 759780SO L1+25S, 1+55E RED GRID	SILT/SD/PEBS B WELL, 25 CM	SILT- PEBS ORG BRN YEL BRN	60% SILT, 30% SD 10% OXID TUFF FR - LIM, JAR/ALUN, SIL TUFF			759780SO	<5	0.6	8.0	46.0	26.0	14.0	<0.5	80.0	<2	<10
50.0 759781SO L1+25S, 1+65E RED GRID	SILT/SD/PEBS B WELL, 25 CM	SILT- PEBS ORG BRN YEL BRN	60% SILT, 35% SD, 5% OXID TUFF FRA - LIM, JAR/ALUN, SIL TUFF			759781SO	5.0	0.6	12.0	98.0	56.0	22.0	<0.5	100.0	<2	<10
51.0 759782SO L1+25S, 1+75E RED GRID	SILT/SD/PEBS B WELL, 25 CM	SILT- PEBS ORG BRN YEL BRN	60% SILT, 35% SD, 5% OXID TUFF FRA - LIM, JAR/ALUN, SIL TUFF			759782SO	<5	0.6	12.0	50.0	32.0	18.0	<0.5	70.0	<2	<10
52.0 759783SO L1+25S, 1+85E RED GRID	SILT/SD/PEBS B WELL, 35 CM	SILT- PEBS YEL BRN	40% SILT, 50% SD, 10% OXID TUFF FR, - LIM, JAR/ALUN, SIL TUFF			759783SO	5.0	1.8	20.0	94.0	121.0	32.0	<0.5	130.0	2.0	<10
53.0 75978490 L1+25S, 1+95E RED GRID	SILT/SD/PEBS B WELL, 60 CM BK	SILT- PEBS YEL BRN	40% SILT, 50% SD, 10% OXID TUFF FR, - LIM, JAR/ALUN, SIL TUFF			759784SO	<5	0.6	16.0	74.0	87.0	22.0	<0.5	80.0	<2	<10
54.0 2+85 S ON BIT CRK RD, 15 M TO EAST OF RD - E OF AU, CU SHOWING	CL/SILT/SD/PEE B WELL, 25 CM	SCL- PEBS ORG BRN	30% CL, 50% SILT, 10% SD, 10% OXID OF OX RHY			759785SO	10.0	0.8	10.0	40.0	35.0	24.0	<0 <u>.</u> 5	150.0	2.0	<10
55.0 759786SO 2+85 S ON BIT CRK RD, 40 M TO EAST OF RD - E OF AU, CU SHOWING	SILT/SD/PE8S B WELL, 25 CM	SILT- PEBS ORG BRN RED BRN	50% SILT, 40% SD, 10% OXID OF OX TUFF	AT RHY OC PEBS		759786SO	<5	1.4	14.0	56.0	48.0	24.0	<0,5	90.0	<2	<10
56.0 759787SO 2+85 S ON BIT CRK RD, 10 M S OF AU, CU SHOWING	SD TALUS SAMP	FI - CO BRN	50% CO FR HETRO SD - LIM, RHY, TUFF FRAGS	AT RHY OC		759787SO	10.0	0.4	18.0	74.0	85.0	30.0	0.5	90.0	6.0	<10
57.0 759789SO 0+03 S ON BIT CRK RD, AT ORIG STR SED SAMP AT OLI VERT	CL - SILT B? BK 15 CM	CL - SILT YELLOW BRN TO GREY	50% CL, 50% SILT	AT RHY TALUS		759789SO	125.0	25.0	1510.0	1270.0	1550.0	34.0	8.5	110.0	26.0	<10


AT CULVERT


:




.

.

.

returned 120 ppb gold. A repeat sample (759761SO) of similar material returned <5 ppb gold, possibly indicative of a nugget effect.

The most interesting soil sample (759769SO; Table REDSO00; Map 3; Figures 8A-8F; Appendix A) was dug from the bank above the stream near the culvert, where the aforementioned stream sediment samples 759788SS and 160207SS were taken. The soil sample returned 125 ppb gold; 25 ppm silver; 1510 ppm lead; 2270 ppm zinc; 34 ppm arsenic, 8 ppm cadmium and 26 ppm bismuth. The significance of this apparently important sample has yet to be fully ascertained: while its metal contents could be possibly due to run off from the muck pile to the east or from the mill site to the south, there is little evidence of any such historic metal dispersion or contamination elsewhere on the property, except in the tailings pond. Moreover, the muck pile with the mineralization that contains high lead-zinc values is very small and could not itself be the source of the aforementioned anomalies.

The second most interesting soil sample (759753SO; Table REDSO00; Map 3) was taken about 200 m south of the mill, just east of the Bitter Creek Road. It returned 360 ppb gold; 0.8 ppm silver; 28 ppm lead; 124 ppm zinc; 249 ppm copper; 32 ppm arsenic; 1.5 ppm cadmium; 144 ppm bismuth; and, 70 ppm tungsten. The third most interesting soil sample (759758SO; Table REDSO00; Map 3; Figures 8A-8F) was taken east of all historic infrastructure on the property – about 8 m east of, and above the main muck pile. It contained 95 ppb gold; 6 ppm silver; 44 ppm lead; 28 ppm zinc; 524 ppm copper; 42 ppm arsenic; and, 24 ppm bismuth.

8.C.1.c. ROCK GEOCHEMISTRY AND GEOLOGICAL SURVEYS:

The geological survey indicated that the prospective felsic stratigraphy is more extensive than originally anticipated: it has been located in outcrop for at least 600 m south of the mill site and fragments in stream sediment samples indicate it could extend beyond 1.4 km south of the mill. Fragments in soil sample holes indicate it could also extend for over 200 m to east of the Bitter Creek Road. Its extent to the west of the road remains to be determined. The felsic unit comprises massive to flow banded rhyolite, to coarse rhyolite breccia, with angular to sub rounded fragments up to over 30 cm in their longest dimension (Photo 5). Outcrops are often well oxidized (limonite, jarosite-alunite) and altered (hematite, silica, carbonate) and are mineralized with disseminations of pyrite, pyrrhotite and chalcopyrite. The breccia fragments are mainly composed of felsic material, with apple green (fuchsite) and pink (potassium altered?) varieties in a siliceous, aphanitic matrix.

The contacts of the quartz monzonite with the felsic rocks range from sharp to gradational. However, at such contacts, the intrusive rock is often altered (pyrite, limonite, carbonate) and strongly oxidized, and it is difficult to readily determine the exact relationship between them. The Bitter Creek Pluton appears to have intruded the pyroclastic rocks (crystal tuff and crystal tuff breccia) and mafic (andesite) and felsic (dacite to rhyolite) units of the Unuk River Formation. The contact of the pluton with such rocks and the cross cutting structures in such rocks and the pluton appear to offer prospective exploration targets for gold-silver-base metall mineralization.

Of the 22 rock samples collected on the property in the Bitter Creek Area (Table REDR00; MAP 3; Appendix A), 4 are composite samples of the two main mineralization types on the 2 muck piles located about 100 m above and east of the mill. The smaller dump, over grown pile contains quartz-carbonate breccia vein material mineralized with disseminations and fracture fillings of galena, sphalerite and chalcopyrite. Two samples (759729RM and 759730RM; Table REDR00; Map 3; Appendix A) returned 870 and 60 ppb gold; 451.0 and 44.4 ppm silver; 4240 and 7660 ppm lead; 8810 and 44700 ppm zinc; 16 and 6 ppm arsenic; 136.5 and 486.0 ppm cadmium; and 2 and 24 ppm bismuth, respectively.

Two composite samples (759731RM, 759732RM; Table REDR00; Map 3; Appendix A) of semi massive sulfides (coarse pyrite and massive chalcopyrite in silicified, brecciated volcanic rock) from the main 40 X 25 m pile contained 870 and 2340 ppb gold; 10 and 35 ppm silver; <2 and 50 ppm lead; 124 and 206 ppm zinc; 4670 and 35600 ppm copper; 204 and 692 ppm arsenic; 3 and 6 ppm cadmium; and 80 and 220 ppm bismuth. This material was obviously the main material milled and it has rather distinct bismuth and arsenic signature that is found in the soil samples from the tailings pond (Section 8.C.1.b.).

Of the remaining 18 rock samples collected in the Bitter Creek area of the property (Table REDR00; Map 3; Appendix A), 17 have strongly anomalous copper contents, ranging between 67 and 66200 ppm; 10 have anomalous gold contents ranging between 25 and 3420 ppb; 5 have anomalous silver contents ranging between 0.8 and 45.2 ppm; 2 have anomalous lead contents of 50 and 84 ppm; one has an anomalous zinc content of 156 ppm; three have anomalous arsenic contents ranging between 80 and 692 ppm; 7 have anomalous cadmium contents ranging between 1 and 6.5 ppm; 7 have anomalous bismuth contents ranging between 6 and 2160 ppm; and, six have anomalous tungsten values ranging between 10 and 670 ppm.

Of the 18 aforementioned rock samples, 9 were taken from outcrop; and, 9 are interpreted as subcrop. All of the outcrop or "R" samples have anomalous copper contents ranging between 188 to 2920 ppm; and, seven of the samples have anomalous gold contents ranging between 30 and 3150 ppb. The latter gold value came from rock sample 759752R, collected from a 10 cm wide quartz-sulfide vein, and located above the aforementioned soil sample759753SO. The rock sample returned 3150 ppb gold, 5.6 ppm Ag, 64 ppm lead; 124 ppb zinc; 2920 ppm copper; 6 ppm arsenic; 3 ppm cadmium; 2160 bismuth; and 670 ppm tungsten. A composite sample (759753R) of hanging wall and footwall rocks composed of rhyolite breccia contained 210 ppb gold; 413 ppm copper; 48 ppm bismuth and 150 ppm tungsten.

The most interesting subcrop sample (759744RS) was dug out of the overburden about 50 m southeast of the mill. The brecciated and silicified, angular semi massive sulfide (pyrite and chalcopyrite) boulder returned 3420 ppb gold; 45.2 ppm silver; 84 ppm lead; 156 ppm zinc; 66200 ppm copper; 648 ppm arsenic; and, 464 ppm bismuth. A rock sample (759745R) taken from a nearby outcrop of altered rhyolite contained 90 ppb gold, 593 ppm copper and 6 ppm bismuth. Gold, silver, copper and zinc soil anomalies are located in the area of the sample.

TABLE REDROO	
ROCK SAMPLE DESCRIPTIONS A	ND MOST RELEVANT ANALYTICAL RESULTS:

SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:	COMMENTS:	SAMPLE NO	AU ppb	AG ppm	PB ppm	ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bi ppm	W ppm
1.0 759706RS 0+25S, 0+16E RED GRID	Rhy Brec; W: Org Brn F:Gry, Gr, Pk, Blk	FI - APHAN, SUG, BREC TEXT, SIL MATRIX, WELL FRAC WITH VNS, STRING, OFTEN II TO SUB II CW FRAC FILL OF BLK MET MIN - HEM? CW DISEM PY, TR CPY TO 5 - 7% CPY, APPOX 80% SIL, UP TO 5% SULFS, 5 % HEM, 5% CHL LOC. 5% OXID MAT CHERTY FRAGS TO 4 CM	SUBCROP IN VICINITY OF ORIG STR SED ANOMALY AT CULVERT		<30	0.2	2.0	30.0	650.0	6.0	<0.5	30.0	<2	<10
2.0 759708RS 0+25S, 0+25E RED GRID		FI - APHANITIC MATRIX C/W ACHERTYTY FRAGS TO 2 CM, GEN ELONG & OFTEN FORMING BNDS TO 0.5 CM WIDE & 6 CM LONG; VNS, STRING AND LATTER VNS OF BLK HEM? LOC 10% FI DISSEM SULF, MAINLY PY; CHL STRINGS C/W PY; SOM BLEB PY, CPY, HEM		759708RS	<30	<0.2	<2	40.0	403.0	8.0	1.5	30.0	<2	<10
3.0 759709RS 0+255, 0+31E RED GRID		FI - APHANITIC MATRIC, BREC TEXT, FRAGS TO 20%, TO 6 CM X 2 CM; CHL IN FRACS CW SOM DISSEM SULFS - PY TO 3%, TR CPY -80% SILICA, 3% SULFS, 3% CHL, 15% PK HEM FRAGS, SOM POLY PHASE FLOW BND, BNDS TO 2 CM	CRK FLOWS @ 29 DEG NO SEDIMENT	759709RS	60.0	0.8	2.0	30.0	811.0	<2	<0.5	20.0	<2	<10
4.0 759715R BITTER CRK RD @1.125 KM S OF CULVERT (0+00 RED GRID	Flow BND Rhyolite? W: Org BRN)) F: Gry Pink	FI - APHANITIC, CHERTY BNDS, IRREG TO 0.3 CM, PINK, GREY, CW FI DISSEM PY, 2 % LOC, CHL LENSES, FRAC FILLINGS, STRING, SOM STRING ASPY, SOM BLEBS, DISSEM PY TR JAR/ALUN ON FRACS	CRK FLOWS @ 29 DEG NO SEDIMENT	759715R	60.0	0.2	<2	38.0	296.0	8.0	0.5	20.0	6.0	20.0
5.0 759716R BITTER CRK RD @ 0.525 KM S OF CULVERT (0+00	F: GRY GREEN	FI - APHANITIC SIL MATRIX, CHL BANDS, PATCHES, PK K ALT, ASPY IN CHL; CPY & PY AS PATCHES, SOM EPIDOTE COATIN PY, ASP TO 5% AS DISEM, STRING CPY ON II FRAC SURFS; SOM FUCHS LENSES WITH MIN SULFS; FRACS WITH MN, AL/JAR, CHL.		F 759716R	60.0 <0.	2	4.0	54.0	188.0	<2	1.0	60.0	2.0	<10
6.0 759717R BITTER CRK RD @ 0.525 KM S OF CULVERT (0+00		FI - APHANITIC SIL MATRIX, CW SIL BREC FRAGS TO 4 CM SOM FLOW BND, PY, ASP AS DISSEM STRINGS, TO 3%; SOM BLK FIBROUS RADIATING MINERAL - TREM?		759717R	<30	0.2	<2	32.0	395.0	128.0	<0.5	10.0	<2	<10
7.0 759719R BITTER CRK RD @ 0+50 M S OF CULVERT (0+00 RED GRID	RHY BREC? W: ORG BRN TO BUFF) F: GREY YEL	FI - APHAN MATRIX, FÉLSIC FRAGS - PINK, GREY TO 20 CM; SOM FI TO BLEB PY, PYRR, ALSO DISSEM, COATINGS FINE PYRR - MAGNETIC	OUTCROP IN EAST DITCH TREND N-S	l, 759719R	90.0	0.2	<2	26.0	398.0	80.0	1.0	10.0	4.0	10.0

	TABLE REDR00 ROCK SAMPLE	(CON'T) DESCRIPTIONS AND MOST RELEVANT	ANALYTICAL RESULTS:											
SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:		SAMPLE NO	AU ppb	AG ppm	PB ppm	ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	81 Ppm	W ppm
8.0 759729RM EAST OF STOCK PILE AREA ABOVE MILL	W; ORG BRN	FI - APHAN MATRIX C/W QTZ AND QTZ CARB VNS, STRING, STK WKS, WEAK TO WELL DEVEL, CONTAIN BLEBY CPY, GAL, SPHAL?, WITH SOME MAL STAIN, SOM ANKERITE, SID? UP TO 5% SULFS, INCL MIN POLYMETAL STRING	FROM RUBBLE PILE APPROX 15 M BEYOND STOCK PILE - LOOKS LIKE RUBBLE LOC DERIVE	759729RM	870.0	451.0	4240.0	8810.0	1305.0	16.0	136.5	30.0	2.0	10.0
9.0 759730RM EAST OF STOCK PILE AREA ABOVE MILL	W: ORG BRN	C FI-APHAN MATRIX C/W QTZ AND QTZ CARB VNS, STRING, STKWKS, AND BREC FRAGS, 50% FRAGS, 50% MATRIX, FRAGS TO 4 CM; MATRIX QTZ CARB, WITH BLEBY GAL, CPY, SPHAL; SOM MAL STAIN; SOM EVID MULTIPHASE ACTIV	FROM RUBBLE PILE APPROX 15 M BEYOND STOCK PILE - LOOKS LIKE RUBBLE LOC DERIVE	759730RM	60.0	44.4	7660.0	44700.0	782.0	6.0	486.0	10.0	24.0	<10
10.0 759731RM SOUTH END OF STOCK PILE AREA ABOVE MILL	W: ORG BRN	BLEBY TO PEA PY, COAR GRAN TEXT IN FI GR SIL MATRIX; SOM MASS TO 60% PY; TR MAL, TR ASPY	FROM RUBBLE PILE SAT S END OF STOCK PILE AREA OVERLOOK ROAD	759731RM	870.0	10.0	<2	124.0	4670.0	204.0	3.0	10.0	80.0	<10
11.0 759732RM MID STOCK PILE ABOVE MILL	CPY W: ORG BRN	TO BLEB CPY; SOM QTZ BX FRAGS; LOCAL CHL ALT	FROM RUBBLE IN MID STOCK PILE AREA	759732RM	2340.0	35.0	50.0	206.0	35600.0	692.0	6.0	10.0	222.0	<10
12.0 759741RS 1+25S, 0+42E RED GRID	RHY W: ORG BRN F: GREY BLK	FI - APHAN, SIL, SOM CHL, LIM, MN, HEM, FI DISSEM PY, TR ASPY	SUBCROP	759741RS	<30	<0.2	6.0	90.0	177.0	2.0	0.5	110.0	<2	<10
13.0 759742R8 1+25S, 0+56E RED GRID	RHY BREC W: ORG BRN F: GREY PK	FI - APHAN, SIL MATRIX C/W FRAGS TO 6 CM X 2 CM, 30% OX PATCHES IN FRAGS, LENSES PY; 1-2% PY AS DISSEM, BLEBS, SEMI MASS; K ALT, FUCHSITE, EPIDOTE	SUBCROP	759742RS	<30	<0.2	2.0	50.0	154.0	<2	0.5	40.0	<2	<10
14.0 759744RS 1+255, 0+60E RED GRID	SEMI MASS SULFS W: ORG BRN GREY BLK F: BRASSY YEL TO BLK	FI - CO, MASS PY, MASS CPY, 15% CPY, 35% PY, & SOM NET TEXT - PY GRS IN TOUR? GREY QTZ FRAGS TO 1.5 CM; WH QTZ VN, BX TO 2 CM; METAL BLK VEIN SPHAL? TO 1 CM	COMPOSITE OF 2 OXID SULF BO	759744RS	3420.0	45.2	84.0	156.0	66200.0	648.0	6.5	10.0	464.0	<10
15.0 759745R 1+25S, 0+69E RED GRID	RHY W: ORG BRN GREY BLK F: PK, WH, GRE	FI - APHAN, BND, SIL, BREC, GREY QTZ VNS TO 1 CM, STRING, DISSEM, BLEBS PY, TR CPY, YTR GAL; 20% QTZ, UP TO 7-8% SULFS LOC IN QTZ; MAINLY SIL GREY VOL, TRANS FROM SMS 758744	OUTCROP	759745R	90.0	1.0	<2	14.0	593.0	20.0	0.5	10.0	6.0	10.0

TABLE REDROO (CON'T)	
ROCK SAMPLE DESCRIPTIONS AND MOST RELEVANT ANALYTICAL RE	SULTS:

	NAME, COLOUR:	DESCRIPTION:	COMMENTS:	SAMPLE NO	AU ppb	AG ppm	PB ppm	ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bi ppm	W ppm
2+25S IN DITCH ON BITTER CRK RD		FI - APHAN, SIL, K ALT, BREC - FRAGS TO 10 CM, CHL AROUND FRAGS, CPY IN GR "FRAGS, LOC 10%; 2-3% FI DISSEM PY, LOOK LIKE PYRR, SOM MAG PYRR, VAR BREC TO MASS TO ANOMASTOSING VNS; SIL BNDS, GEN UP TO 7-8% SULFS - PY 3-4%, PYRR 1-2%, 1% CPY	OUTCROP	759751R	30.0	<0.2	<2	30.0	349.0	<2	0.5	10.0	12.0	80.0
	QTZ VN W: ORG BRN GREY BLK F: BLK, WH, BRASSY	VN ON SLICK SURF, UP TO 10 CM WIDE; CO CRYST QTZ CM 5 - 30 % SULFS - PYRR TO 20%, AS MASSES & CO DISSEM; CPY 2-5%; MIN GEN AS STRING II TO QTZ VN, BUT ALSO AS DISSEM; HIGHL MAG PYRR; SOM RESINOUS SPHAL; SOM SOOTY GOETHITE? QTZ GREY TO BLUE GREY CW RUSTY BNDS	OUTCROP Y	759752R	3150.0	5.6	64.0	124.0	2920.0	6.0	3.0	<10	2160.0	670.0
2+915 IN DITCH ON BITTER CRK RD	HW, FW QTZ VN @ 2+91S W: ORG BRN F: GRY PK GR	HW: FI - CO, SOM PORPH TEXT, ALT QTZ MON? C/W VN MAT TO 0.5 CM: DISSEM PYRR, OX PY, CPY, BKJACK, SOM IN FRACS & LAD VNS, 5-7% SULFS, HIGHLY FRAC FW: LESS SULF, FRAGS & ANOMOST VNS OF CHL, VNS TO 2 CM, SOM FLOW BND	OUTCROP	759753R	210.0	0.6	<2	66.0	413.0	<2	1.5	50.0	48.0	150.0
	RHY BREC W: ORG BRN F: GRY PK GR	FI APHAN SIL MATRIX, FRAGS TO +10CM, CHL PATCHES, SULF TO 5% - DISSEM PY, MIN CPY IN BREC FRAGS; EARTH PATCHES - GOETHITE? FW: LESS SULF, FRAGS & ANOMOST VNS OF CHL, VNS TO 2 CM, SOM FLOW BND	OUTCROP	759756R	<30	<0.2	2.0	78.0	264.0	<2	1.5	100.0	2.0	<10
	CRYST TUFF W: ORG BRN F: GRY GR	FI APHAN SIL MATRIX, CRYSTS GRY WH QTZ, MM SCALE; APPROX 20% CRYSTS; 1-2% DISSEM PY		759762RS	<5	<0.2	18.0	62.0	5.0	2.0	<0.5	120.0	<2	<10
1.0+508	DACITE W: ORG BRN F: GRY BLK	FI APHAN SIL MATRIX, 2-3% DISSEM PY		759766RS	25.0	1.4	12.0	46,0	90.0	20.0	<0.5	60.0	≪2	<10
L0+50S	DACITE W: ORG BRN F: GRY BLK	FI APHAN SIL MATRIX, 2-3% DISSEM PY		759769RS	<5	0.2	2.0	84.0	67.0	<2	<0.5	120.0	≪2	<10
23.0 759775CK CH3				759775CK CH3	1240.0	3.2	<2	132.0	7650.0	136.0	1.5	<10	2.0	<10
24.0 759888A CK CH3				759888A C	1875.0	2.2	16.0	126.0	7360.0	128.0	<0,5	<10	2.0	<10

The results of the rocks samples, integrated with those of the soil, stream sediment and geological surveys are deemed to provide conclusive evidence that the Adam Mill was built on a prospective geological environment that remains open in all directions.

8.C.2. CLEMENTS LAKE AREA 2000 GEOLOGICAL AND GEOCHEMICAL SURVEYS:

The Red 5 and 6 Mineral Claims were staked based on the positive results from the 1999 program (Molloy, 1999); and, on the favourable indications from the 2000 work in the Bitter Creek Area. The Bitter Creek quartz monzonite pluton dominates the geology south of Clements Lake. The 1999 work was delineative of stream sediment anomalies; and, indicative of prospective geological environments on the edge of the pluton.

8.C.2.a. STREAM SEDIMENT GEOCHEMISTRY:

Of the 9 stream sediment samples (Table CLEMENTS SS00; Map 4; Appendix 1) taken in 2000, 8 have anomalous copper contents ranging between 47 and 173 ppm; seven samples have weakly anomalous silver contents between 0.8 and 1.8 ppm; six samples have anomalous lead contents between 22 and 48 ppm; seven samples have weakly anomalous zinc contents between 138 and 176 ppm; six samples have anomalous arsenic between 36 and 146 ppm; and three samples have weakly anomalous gold contents between 10 and 20 ppb. All three streams draining north into Clements Lake (Maps 1, 2) have polymetallic sediment anomalies, with the Middle and East Creeks having the strongest gold, copper and arsenic values.

8.C.2.b. ROCK GEOCHEMISTRY AND GEOLOGICAL SURVEYS:

As in the case of the Bitter Creek area, the stream sediment anomalies are postulated to have sources in altered rocks near or at the contact with the Bitter Creek quartz monzonite pluton. The initial follow-up of the East Creek anomaly located a large outcrop of pyritized crystal tuff, a composite sample (759847RF; Table CLEMENTS R00; Map 4; Appendix A) of which returned 25 ppb gold and 94 ppm copper. Further follow-up of the East and Middle Creek anomalies led to the discovery of some historic pits and adits at about the 1300 m elevation, about 1.5 km south of Clements Lake (Map 4). The area is accessible by the Ore Mountain Hiking Trail and the workings may comprise the historic Lake Shore, Ore Mountain showing (Figure 7; Minfile 104A 051).

Four contiguous panel samples (686801RP-686804RP; Table CLEMENTS R00; Map 4; Appendix A) of sulfidized tuff (pyrite veins, stringers) were taken in a small, open cut into the hillside. The samples have gold contents ranging between 195 and 1810 ppb and averaging 618 ppb; silver contents ranging between 3.6 to 21.2 ppm and averaging 8.5 ppm; lead contents ranging between 80 and 1010 and averaging 488 ppm; zinc contents ranging between 148 and 216 ppm, and averaging 170 ppm; and, arsenic contents ranging between 348 and 2150 ppb and averaging 917 ppm. A fifth, composite sample (686805RC) was taken from a pit 48

TABLE CLEMENTS SS00A: CLEMENTS LAKE INITIAL FOLLOW-UP SURVEYS RE 1999 SEDIMENT SAMPLES 160213SS, 160208SS. 160211SS

STREAM SEDIMENTS SAMPLES AND MOST RELEVANT ANALYSES:

E

SAMPLE	NAME,	DESCRIPTION:	STREAM	GEOLOGY:	SAMPLE	M	OST RELEVA		ICAL RESU	LTS:					
NO., LOC, TYPE:	COLOUR:		PERAMATERS:	HAZELTON TUFF, BRECCIA & QUARTZ MONZONITE PLUTON	NO	AU ppb	AG ppm	PB ppm	ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	Bl ppm	W ppm
1.0 75983655 CONFIRM 16021355	SD/PE8S ORG BRN	FI - PEBS 70% PEBS, 30% FI HETRO FRAGS QTZ MON & OX, TUFF BREC, GR VOL	-	HETRO BO	75983655	20.0	1.0	22.0	138.0	114.0	146.0	0.5	320.0	4.0	<10
2.0 75983755 60 M WEST ON RI	SD/PEBS D ORG BRN	FI - PEBS 70% PEBS, 30% FI HETRO FRAGS QTZ MON & OX, TUFF BREC, GR VOL	_	HETRO BO	75983755	<5	0.4	14.0	118.0	69.0	72.0	<0.5	420.0	<2	<10
3.0 7598395S DRY V STR S SIDE RD LOC S OF GRAV PIT JUST WEST OF CLEMEN LAKE - 60 M E OF CLEMENTS L RD	LIM, HEM	FI - MED DER FROM QTZ MON - WELL SORTED, QTZ, FELD, OX MATERIAL	DRY CRK 10 M W OF RD @ 220°	QTZ MON OC IN AREA	75983955	<5	0.6	30.0	150.0	60.0	28.0	0.5	270.0	<2	<10
4.0 759840SS DRY CRK IN GRAV PIT @ END OF RD	SD 'BRN	FI - CO HETRO SD - GR GRY VOL, QTZ, FELD, OX, MIN ORG	DRY CRK 70 M FROM MAIN RD @ 080°	QTZ MON OC IN AREA	759840SS	5.0	0.8	30.0	150.0	99.0	36.0	0.5	260.0	<2	<10
5.0 75984255 UP DRY CRX 30 M FROM 75984055	SD BRN	FI - CO HETRO SD - GR GRY VOL, QTZ, FELD, OX, MIN ORG	080°	QTZ MON OC IN AREA	759842SS	15.0	1.2	48.0	176.0	79.0	38.0	<0.5	150.0	<2	<10
6.0 759843SS UP DRY CRK 25 M FROM 759842SS	SD/ORG BRN	FI - CO MAINLY OX MAT - HEM, SOM WI QTZ, FELD MIN ORG		QTZ MON OC IN AREA	759843SS	5.0	1.0	46.0	142.0	76.0	46,0	0.5	200.0	<2	<10
7.0 759844SS UP DRY CRK 30 M FROM 759843SS	CL/SILT/ORGS BRN	70% ROOTS, 15% SILT, 15%	DRIP CRK CREEK BECOMES DIFFUSE - MANY SMALL CHAN	QTZ MON OC IN AREA	759844\$\$	<5	0.8	6.0	28.0	21.0	2.0	<0.5	90.0	<2	<10
8.0 759845SS 100 M E ON RD FROM PARKING AREA	CL/SILT BRN	CL - SILT 50% CL - 50% SILT NO FRAGS	SMALL CREEK @ 108°	QTZ MON OC IN AREA	759845SS	<5	1.8	26.0	146.0	47.0	12.0	0.5	350.0	<2	<10
9.0 759846SS 155 M E ON RD FROM HIKING TRAIL - 15 M UP <i>CREKK</i>	SD/GRAV BRN	FI - CO 80% CO & PEB: FEW FINES MAINLY ANG GR ANDESITE. SOM WH QTZ, MIN OX MAT	HIGH ENERG SCRK @ 118°	AND BO	759846SS	10.0	0.8	8.0	148.0	173.0	106.0	0.5	140.0	<2	<10

TABLE CLEMENTS RS00: CLEMENTS LAKE INITIAL FOLLOW-UP SURVEYS RE 1999 SEDIMENT SAMPLES 160213SS, 160208SS. 160211SS

ROCK SAMPLE DESCRIPTIONS AND MOST RELEVANT ANALYSES:

			6400000000000				OST RELEV								
	SAMPLE NO, TYPE LOCATION	NAME, COLOUR:	DESCRIPTION:	COMMENTS:	SAMPLE NO	AU ppb	AG ppm	pbeu bbeu	ZN ppm	CU ppm	AS ppm	CD ppm	BA ppm	BI ppm	W ppm
1.0	759838R AT 759837SS SEE TABLE: CLEMENTS SS00	QTZ MON W: ORG BRN BLK (LIM, MN) F: YEL WH GREY BLK		NUMEROUS OX BO TO INVESTIG	759838R	<5	0.2	2.0	18.0	32.0	2.0	<0.5	290.0	2.0	<10
2.0	759841RF	QTZ MON W: ORG BRN GREY WH F: CREY WH TO ORG BRN	CO OM, CAW EUHED BLK BIOTITE WH QTZ, FELD; 2-3% SULFS, PY PYRR, <1% CPY	NUMEROUS OX BO TO INVESTIG	759841RF	ব	0.2	<2	40.0	637 <u>.</u> 0	4	<0.5	310.0	4	<10
3.0	759847RF 75 M E OF AT 759847SS	CRYST TUFF W: ORG BRN F: GRN GREY	MM SCALE CRYSTS IN GR SIL MATRIX 7-10% DISSEM PY, SOM WH ASPY; MIN CARB	NUMEROUS OX BO TO	759847RF	25.0	0.6	8.0	28.0	94.0	2.0	<0.5	60.0	2.0	<10
4.0	759850CK WGM1				759850CK	105.0	3.4	<2	78.0	5780.0	2.0	0.5	<10	4	<10
5.0	686801RP S OF CLEMENTS L. ON HIKE TRAIL AT ORE MT. AT OPEN CUT OVER 1 M	PY VN IN CRYST TUFF W: ORG BRN F: GRY WH, BRASSY	PY VN TO 30 CM; SAMP OVER 0.5 CM; PY AS MASS LENS, STRING, VN TO 0.5 CM; COATINGS, VUG FILLINGS, SOOTY ON WH APHAN QTZ; OVERALL 20%;	VN & WALL ROCK SIM TO TODD CRK	686801RP	1810.0	21.2	644.0	154.0	121.0	2150.0	0.5	<10	\$	<10
6.0	686802RP S OF CLEMENTS L. ON HIKE TRAIL AT ORE MT. AT OPEN CUT OVER 1 M AT 1290 M ELEV	SULF CRYST TUFF W: ORG BRN F: GREY WH, BRASSY		VN & WALL ROCK SIM TO TODD CRK	686802RP	110.0	2.2	80.0	216.0	37.0	348.0	2.0	90.0	2	<10
7.0	686803RP S OF CLEMENTS L. ON HIKE TRAIL AT OPEN CUT OVER 1 M AT 1290 M ELEV	SULF CRYST TUFF W: ORG BRN F: GREY WH, BRASSY	WK CARB, TUFF CRYST TO MM SCALE LIM FRAGS TO 0.5 CM, BLEB CO PY IN 2 CM LENS, SEMI MASS PY VN TO 0.5 CM; LOC 20% PY, OVERALL 5-7%; WELL FR, WELL MN, VUG, EARTHY		0 686803RP	355.0	3. 6 ,	216.0	160.0	36.0	604.0	2.5	70,0	4	<10
8.0	686804RP S OF CLEMENTS L. ON HIKE TRAIL AT OPEN CUT OVER 1 M AT 1290 M ELEV	AS 686803RP		VN & WALL ROCK SIM TO TODD CRK	686804RP	195.0	6.8	1010.0	148.0	33.0	564.0	1.0	400.0	4	<10
9.0	686805RC SOF CLEMENTSL. ON HIKE TRAIL AT ORE MT. AT N OPEN CUT ABOUT 75 M NORTH OF FIRST TRENCH COMP SAMP	AS 686802RP	WELL FR; DISSEM PY IN SIL MATRIX, SOM PY VN TO 2 CM; OVERALL 3-5% BLEB PY	VN & WALL ROCK SIM TO TODD CRK	686805RC	20.0	1.2	88.0	594.0	27.0	88.0	6.5	90.0	<2	<10
10.0	686806CK				686806CK	95.0	3.0	2.0	76.0	5820.0	6.0	0.5	<10	4	<10

NELLER RELEVANT DE LE REL

Appendix 9

located about 70 m north of the open cut and returned 20 ppb gold, 1.2 ppm silver, 88 ppm lead, 594 ppm zinc and 88 ppm arsenic. Weather conditions did not allow the examination of apparent adits located about 50 m below the pit.

The mineralization is rather interesting, given its similarity to that at other significant deposits and exploration targets in the Stewart Camp e.g., the mineralized tuff breccias at the Red Mountain Deposit to the south and at the Todd Creek Deposit to the north in the Todd Creek Valley.

9. CONCLUSIONS, RECOMMENDATIONS:

It is concluded that regional geochemical and geological surveys, in part sponsored by the BC Prospectors Assistance Program, have been successful in quickly identifying prospective geological environments in the Stewart Gold Camp. The Clements and Bitter Creek Areas of the Red Property are examples of such environments: favourable geology, alteration and mineralization is associated with contacts of the Bitter Lake Pluton. A major east trending structure as mapped by Grove bisects the property and the regional geology, and it and parallel structures, as well as the aforementioned contact rocks, are deemed prospective for copper-gold mineralization. The environment is analogous to that on the Poly Property (Molloy, 2000P). Such evidence is indicative that Eocene, as well as Jurassic intrusive rocks, can entail significant exploration potential for polymetallic mineralization in the Stewart Gold Camp.

9.A. BITTER CREEK VALLEY, RED PROPERTY:

It is concluded from work in the Bitter Creek Valley, that the Adam Mill was built on prospective geology, which continues to offer interesting exploration targets. The copper-gold signature of the rhyolite and rhyolite breccia, along with the numerous historic mining claims staked in the area, many of which have recently come open, support, this interpretation.

Although it is firmly documented that the mill feed came from other properties, it is somewhat intriguing that in situ and subcrop mineralization on the property can have a somewhat similar geochemical signature, including bismuth (e.g., sample 759752R vs. 759731RM), and alteration to that of the muck from the largest stock pile. In addition to bismuth, one of the muck samples and a number of the rock samples from the property have anomalous tungsten contents. Based on the author's experience, tungsten is often associated with specular hematite, which is one of the most reliable and important indicators of gold potential in the Stewart Camp.

Based on the apparent overgrown, upper bush roads and overgrown, smaller muck pile, it is postulated that there are historic mineral occurrences and showings located on or in closed proximity to the Red Property. One or more of these may have supplied some of the muck, particularly the quartz-carbonate vein material on the smaller pile. 51

It is recommended that the Bitter Creek area of the property be followed-up along with the Clements Lake area, which is referenced below. The follow-up work in both areas should first include a detailed data integration and compilation to ascertain the precise location of all historic mineral occurrences, their reported geology, access routes and historic work carried out on and in the vicinity of the property. For example, air photos and fieldwork suggest there are a number of historic bush roads and trails leading to the area of the Adam Mill from well above the Bitter Creek Road. The routes are now overgrown by dense vegetation. Do these roads lead to mineral showings and occurrences, which supplied some muck currently on the piles?

A structural fabric map should be prepared from new or available air photos, with emphasis on the major, Grove structure, parallel and orthogonal structures and their structural junctions. The currently apparent follow-up targets, which include a number of geochemical anomalies and the apparently widespread felsic geological environment outlined by the 2000 work, should be prioritized for follow-up work based on the results of the compilation.

9.B. CLEMENTS LAKE AREA, RED PROPERTY:

It is concluded that the geological environment of the Clements Lake Area of the Bitter Creek Pluton also offers interesting polymetallic exploration targets. The area, and the Bitter Creek Area apparently have not been subject to recent detailed exploration scrutiny via discovery criteria that have been used successfully, elsewhere in the Stewart Camp. The Red Property is deemed to have sufficient favourable attributes for the initiation of such detailed follow-up work.

The compilation contemplated above in 9.B. A is an important prerequisite. The delineation of the structural fabric noted above is one of the most important priorities of the compilation. Based on the integration of the results of the compilation and those from this program, exploration targets would be prioritized for detailed follow-up. Current priorities include the sulfidized tuff and tuff breccia and andesite east and south of Clements Lake Area, and the major structure and parallel structures that bisect the geology south of the lake.

9.C. 2001 EXPLORATION BUDGET, RED PROPERTY:

A proposed Phase 1, 2001, \$50,000 budget would include some helicopter time for air photo acquisition; and, the interpretation of structural fabric, bush road infrastructure and Ore Mountain access and mineral occurrence location. The 30-day program would utilize two geologists to carry out detailed follow-up geological and geochemical surveys to identify and initially prioritize drill targets. A proposed Phase 2, \$50,000 program would be contingent on the success of the Phase 1 program and would contemplate line cutting and geophysical surveying (IP and magnetometer) to precisely delineate drill step-ups.

Appendix 10

,

REFERENCES:

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BARRETT, T. J., SHERLOCK, R. L. (1996): Geology, Lithogeochemistry and Volcanic Setting of the Eskay Creek Au-Ag-Cu-Zn Deposit, Northwestern British Columbia; in: Explor. Mining Geol., Vol. 5, No. 4, p 339-368, 1996.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April 1990.

GREIG, C. J., MCNICOLL, V. J., ANDERSON, P. H., DAUBENY, P. H., HARAKAL, J. E., RUNKLE, D. (1995): New K-Ar and U-Pb dates for the Cambria Icefield area, northwestern British Columbia; in: Current Research, 1995-A; Geological Survey of Canada, p. 97-103.

GREIG, C. J., ANDERSON, P. H., DAUBENY, BULL, K. F., HINDERMAND, T. K. (1995): Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia; in: Current Research, 1994-A; Geological Survey of Canada, p. 45-46.

GROVE, E. W. (1982): River-Salmon River-Anyox Area Geology Map in BCMEMPR, Bulletin 63.

10.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MOLLOY, D. E. (1994): Report on the Exploration Potential of the Vista De Oro Property, Skeena Mining Division, Northwestern British Columbia; for Geofund.

MOLLOY, D. E. (1994): Report On The Phase 1, 1994 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia for: Oracle Resources Ltd., BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2000P): Report On The Poly 1-7 Mineral Claims, Entrance Peak Project: 2000 Geochemical and Geological Surveys, Entrance Peak Area, Skeena Mining Division, Northwestern British Columbia: BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2000): Report On The Red 1-4 Mineral Claims, Bitter Creek Project: Initial 1999 Geochemical and Geological Surveys Carried Out To Prioritize Detailed Follow-up Targets, Bitter Creek Area, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak-Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous West-vergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14.

11.

STATEMENT OF QUALIFICATIONS:

I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am prospector/consultant with a business address at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 28 years, including 10 years as a prospector/consultant; 10 years with St. Joe Canada Inc./Eond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager, Vice President and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada; and a Member of the Association of Professional Geoscientists of Ontario;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Prospectors and Developers' Association; of the Canadian Geophysical Union; of the Association of Exploration Geochemists; and, of the BC Yukon Chamber of Mines;
- vi. I have supervised the fieldwork and the preparation of this report entitled "Report On The Red 1-6 Mineral Claims, Bitter Creek Project: 2000 Geochemical and Geological Follow-up Surveys; Bitter Creek and Clements Lake Areas, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia"; by David E. Molloy.
- vii. The recommendations herein are solely the responsibility of the author.

David E. Molloy, B.A., B.Sc., F.G.A.J.

Dated at Unionville, Ontario, on this 15th day of January 2001.

55 -

** • • • • •

and the second second

· • •

... м,

ALS Chemex

ł

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.:

1 -

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number : 1-A Total Pages :1 Certificate Date: 01-AUG-2000 Invoice No. : 10023992 P.O. Number : RED Account : RIX

CERTIFICATION:

Project : GR-R Comments: ATTN: DAVID MOLLOY

~*

										CE	RTIF	CATE	OF A	NAL	rsis	A	0023	992		
SAMPLE	PREP CODE	hu g/t	Ag ppm	A1 %	As ppn	B Dow	Ba ppa	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Ca ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
75970188 75971388 75971488 75971588 75972588 75972788	201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.03 2 0.12 2 0.30	2.2 0.8 0.4 2.2 0.6	1.46 2.51 1.65 1.50 2.29	162 80 40 128 26	< 10 < 10 10 < 10 < 10 < 10	50 130 110 50 170	< 0.5 0.5 < 0.5 < 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	2.19 1.27 0.43 2.22 1.27	4.0 5.0 2.0 3.0 3.0	31 18 15 26 14	25 52 34 29 25	139 100 79 127 115	5.67 3.65 3.65 5.07 3.05	10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.26 0.09 0.09 0.07	< 10 < 10 < 10 < 10 < 10 10	1.19 1.29 1.19 1.23 0.60
75973588 75973688 75973788 75974888 75974888 75974988	201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.03 2 < 0.03 2 < 0.03	0.4 0.8 0.4 1.2 0.6	2.42 2.19 2.34 2.51 2.50	50 46 22 < 2 28	< 10 < 10 < 10 10 10	130 140 160 170 170	0.5 0.5 0.5 2.0 0.5	8 < 2 12 < 2 2	0.57 1.13 0.25 0.56 0.38	1.5 2.0 1.0 1.5 2.0	16 15 29 1 18	38 32 31 22 39	78 95 128 111 64	3.80 3.30 5.10 0.38 4.17	10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.10 0.26 0.01 0.06	< 10 10 10 90 10	0.94 0.82 0.79 0.08 0.69
75975055 75975555	201 20 201 20		2.6 0.8	1.48 3.17	194 18	< 10 < 10	50 220	< 0.5 1.5	< 2 < 2	2.21 0.57	5.0 2.5	32 17	24 30	138 121	5.60 3.06	< 10 10	< 1 < 1	0.09 0.11	< 10 10	1.21 0.70
						-														
							~													

ALS Chemex

1

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

I

٢

Page Number :1-B Total Pages :1 Certificate Date:01-AUG-2000 Invoice No. :10023992 P.O. Number :RED Account :RIX

and a

CERTIFICATION:

~*

Project : GR-R Comments: ATTN: DAVID MOLLOY

											CE	RTIF	CATE	OF A	NAL	(SIS	A	002399	2	
SAMPLE	PRE		Mn ppm	Mo ppm	Na %	Ni ppm	ppm. P	Pb ppm	% 2	dE	Sc ppm	Sr ppm	Ťi %	T1 ppm	bbw Q	V ppm	W ppm	Zn ppm		
59701 55 5971385 59714 <i>85</i> 5972585 5972785	201 201 201 201 201 201	202 202 202	660 1115 880 660 2150	8 5 2 9 12	0.01 0.12 0.01 0.01 0.01	67 82 38 61 24	1000 1180 1050 930 1040	106 14 22 34 12	3.03 0.11 0.04 2.51 0.10	<pre></pre>	35533	106 148 29 111 98	0.03 0.09 0.04 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 30	46 160 62 45 52	< 10 < 10 < 10 < 20 < 10	252 346 150 188 138		
5973588 5973688 5973788 5974888 5974888 5974988	201 201 201 201 201	202 202 202	1230 1785 1815 1430 2040	16 20 9 3 7	0.01 0.02 0.01 < 0.01 0.01	26 25 23 9 30	840 1180 970 1880 1230	20 24 46 6 22	0.04 0.09 0.30 0.21 0.07	< 2 < 2 < 2 2 2 < 2	5 3 5 3 2	45 88 11 50 27	0.04 0.03 0.11 < 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	10 40 < 10 < 10 < 10	77 64 81 7 70	< 10 < 10 80 < 10 < 10	130 136 138 24 114		
59750 <i>88</i> 59755 <i>88</i>	201 201		670 2160	6 3	0.01 0.01	66 32	970 1540	104 14	2.94 0.08	8 < 2	3	110 40	0.03	< 10 < 10	< 10 < 10	47 51	10 < 10	258 154		
i.																				
		ļ																		
			•																	
																	1	7		

ALS Chemex

l

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

ſ

Ĺ

Г

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Ľ.

Ľ

~*

Page Number :1-A Total Pages :1 Certificate Date:01-AUG-2000 Invoice No. :10023994 P.O. Number :RED Account :RIX

Project : GR-R Comments: ATTN: DAVID MOLLOY I.

CERTIFICATION:

			.								CE	RTIF	CATE	OF A	NAL	rsis	<u> </u>	0023	994		
SAMPLE	1	ned See	Au g/t	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррд	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
75970280		1 202		5.4	0.97	42	< 10	110	< 0.5	52 ·	< 0.01	1.5	4	16	842	8.85	10	< 1	0.38	< 10	0.35
75970380		L 202		5.4	0.90	74	< 10	130	< 0.5		< 0.01	0.5	5	16	514	7.99	< 10	< 1	0.34	< 10	0.33
759704so 759705so		202		3.8	0.99	66	< 10	30	< 0.5	30	0.01	< 0.5	132	21	188	8.63	10	< 1	0.10	< 10	0.33
75970780		L 202 L 202		4.4	0.52 2.70	50 30	< 10 < 10	70 1 4 0	< 0.5 0.5	34 -	< 0.01 0.20	< 0.5 2.0	4 57	9 33	348 384	5.55 4.38	< 10 10	< 1 < 1	0.13 0.07	< 10 < 10	0.18 0.81
75971080	201	202	< 0.03	0.6	2.46	34	< 10	80	0.5	< 2	0.17	1.5	20	31	108	4.24	10	< 1	0.09	< 10	0.84
75971180	201	202	< 0.03	1.4	3.18	30	< 10	90	0.5	< 2	0.13	1.0	16	31	69	4.23	10	< 1	0.05	< 10	0.60
75971250	201			1.0	3.99	34	< 10	130	1.0	2	0.13	2.0	22	39	88	4.64	10	< 1	0.06	< 10	0.86
75971850		202		< 0.2	2.35	36	10	40	0.5	< 2	0.07	0.5	12	33	89	4.23	< 10	< 1	0.04	< 10	0.90
75972080	201	202	0.03	0.4	2.00	24	10	110	< 0.5	< 2	0.15	0.5	B	41	260	5.32	10	< 1	0.25	< 10	0.82
75972180 75972280	201 201	202		0.8	3.00	34	< 10	110	0.5	< 2	0.18	1.5	22	33	100	4.62	10	< 1	0.08	10	0.82
75972350	201			0.8	2.68	48	< 10	100	0.5	2	0.16	1.5	25	35	126	4.60	10	1	0.07	10	1.03
75972450	201			2.6 1.4	4.35 2.63	32 18	< 10 < 10	110 70	1.0	< 2	0.10	1.0	20	36	76	4.46	10	< 1	0.04	10	0.54
75972650		202		1.4	3.66	18	< 10	50	< 0.5 0.5	< 2	0.09 < 0.01	0.5 2.0	5 3	22 30	29 25	3.56 6.69	10 10	< 1 < 1	0.03 0.01	< 10 < 10	0.19 0.10
75972850	201		0.12	0.2	4.30	26	< 10	120	1.5	< 2	0.01	1.5	16	38	67	4.97	10	< 1	0.03	< 10	0.48
75973380	201			1.8	3.95	24	< 10	100	0.5	< 2	0.04	1.5	13	35	52	5.17	10	< 1	0.03	< 10	0.35
759734so	201			0.4	2.46	40	< 10	110	0.5	2	0.19	1.5	24	32	113	4.35	10	< 1	0.06	10	0.97
75973850	201		< 0.03	1.2	2.94	20	< 10	100	0.5	< 2	0.07	0.5	14	27	70	3.95	10	< 1	0.06	< 10	0.45
75973980	201	202	< 0.03	0.8	2.27	28	10	220	0.5	< 2	1.52	1.5	15	31	98	3.39	10	< 1	0.08	< 10	0.73
75974050		202	< 0.03	0.6	2.84	30	< 10	160	0.5	< 2	0.24	2.0	21	34	111	4.45	10	< 1	0.08	10	0.91
75974380		202	< 0.03	< 0.2	2.57	40	< 10	120	0.5	< 2	0.16	1.5	23	35	116	4.44	10	< 1	0.07	10	1.08
75974680		202	< 0.03	2.0	3.70	22	< 10	90	0.5	< 2	0.04	0.5	11	27	48	4.27	10	< 1	0.03	< 10	0.26
75974780		202	< 0.03	1.2	1.59	20	< 10	70	< 0.5	< 2	0.05	< 0.5	3	15	16	3.15	10	< 1	0.01	< 10	0.10
75975450		202	0.36	0.8	2.67	32	10	170	1.0	144	0.21	1.5	14	35	249	9.78	10	< 1	0.08	10	0.71
75975580	201	202	< 0.03	< 0.2	3.66	36	< 10	70	0.5	< 2	80.0	1.5	24	34	224	5.66	10	< 1	0.08	10	0.80
		ļ																			

ALS Chemex

Ē.

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GR-R Comments: ATTN: DAVID MOLLOY Page Number :1-B Total Pages :1 Certificate Date:01-AUG-2000 Invoice No. :10023994 P.O. Number :RED Account :RIX

F

CERTIFICATE OF ANALYSIS A0023994 PREP Mn Mo Na Nİ P Pb 8 Sb **T**1 V W 8c Sr Ti Ű Zn SAMPLE CODE % % DDB ppm ppa ppa ppm ppm ppm ppm % ppm DDE Ppm ppm ppm 75970280 201 202 200 17 < 0.01 10 230 18 1.33 2 < 1 4 < 0.01 < 10 < 10 37 < 10 20 22 75970380 201 202 190 19 0.01 9 340 68 1.07 < 2 < 1 7 0.01 < 10 < 10 41 < 10 75970480 201 202 220 19 < 0.0116 230 26 4.47 < 2 2 < 0.01 < 10 < 10 27 10 26 < 1 75970580 201 202 16 < 0.01 120 110 30 0.41 < 2 < 1 1 < 0.01 < 10 < 10 24 < 10 8 . 75970780 201 202 3360 0.01 28 940 30 0.07 2 4 0.05 < 10 < 10 72 20 94 4 14 201 202 759710so 1370 5 < 0.01 28 1050 22 0.05 2 4 9 0.05 < 10 < 10 67 < 10 88 75971150 201 202 1035 4 < 0.01 22 830 16 0.05 < 2 3 0.05 < 10 < 10 77 < 10 78 9 75971250 201 202 1160 3 < 0.01 29 1080 16 0.04 < 2 5 9 0.05 < 10 < 10 73 < 10 102 75971850 201 202 510 6 < 0.01 28 520 22 0.04 2 3 5 0.03 < 10 < 10 71 < 10 88 75972080 201 202 580 16 860 22 0.18 6 52 4 0.01 < 2 7 0.09 < 10 < 10 90 < 10 75972150 201 202 1810 5 98 6 < 0.01 28 1070 22 0.04 2 11 0.05 < 10 < 10 77 < 10 75972280 201 202 1500 6 < 0.01 26 0.02 < 2 0.05 < 10 < 10 71 < 10 106 34 960 8 10 75972380 201 202 950 72 5 < 0.01 20 860 18 0.04 7 0.05 < 10 66 < 10 < 2 4 < 10 < 10 75972450 201 202 350 4 < 0.01 < 10 76 38 8 940 16 0.06 < 2 1 8 0.04 < 10 75972650 201 202 30 280 4 < 0.015 620 20 0.05 < 2 2 2 0.06 < 10 < 10 130 < 10 75972850 201 202 600 5 94 6 < 0.01 23 1300 16 0.03 < 2 5 0.03 < 10 < 10 94 < 10 64 75973380 201 202 875 3 < 0.01 13 1070 14 0.05 < 2 0.04 < 10 < 10 97 < 10 4 4 0.01 98 75973480 201 202 1500 33 950 26 0.02 < 2 6 11 0.04 < 10 69 < 10 7 < 10 201 202 75973850 1355 4 < 0.01 18 960 0.07 < 2 2 0.06 < 10 < 10 82 < 10 60 14 6 201 202 1075 172 75973950 4 0.01 27 720 32 0.06 2 4 39 0.06 < 10 < 10 69 < 10 75974050 201 202 2070 108 4 0.01 34 1030 24 0.03 2 5 13 0.04 < 10 < 10 75 < 10 75974350 201 202 1940 70 10B 3 0.01 38 1010 24 0.02 4 6 9 0.04 < 10 < 10 < 10 201 202 50 75974680 1120 5 < 0.01 10 1130 12 0.06 0.03 < 10 < 10 73 < 10 < 2 3 5 201 202 75974750 225 20 4 < 0.01 6 550 10 0.06 0.04 < 10 < 10 133 < 10 < 2 1 - 55 201 202 575 70 124 75975**4**50 80 8 < 0.01 33 960 28 0.41 < 2 5 17 0.05 < 10 < 10 75975580 201 202 875 124 19 < 0.0135 890 14 0.03 < 2 4 8 0.06 < 10 < 10 99 < 10

i., ŧ

ALS Chemex Aurora Laboratory Services Ltd.

F

Analytical Chemists * Geochemists * Registered Assayers

S175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Ĩ.

Ĩ.

Page Number : 1-A Total Pages : 1 Certificate Date: 01-AUG-2000 Invoice No. : 10023980 P.O. Number : RED Account : RIX

Project : GR-R Comments: ATTN: DAVID MOLLOY CC: DAVID MOLLOY

~*

							,			CI	RTIF	CATE	OF /	ANAL	YSIS	A	\0023	980		·
SAMPLE	PREP CODE	Au g/t	Ag ppm	A1 %	ya Dba	B ppm	Ba ppn	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %
759706 R 759708 R 759709 R 759705 R 759715 R 759716 R	208 226 208 226 208 226 208 226 208 226 208 226	< 0.03 0.06 0.06	0.2 < 0.2 0.8 0.2 < 0.2	1.03 1.92 4.37 1.80 3.39	6 8 < 2 8 < 2	< 10 < 10 < 10 < 10 < 10 < 10	30 30 30 20 60	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 6 2	0.59 0.77 2.47 1.01 2.41	< 0.5 1.5 < 0.5 0.5 1.0	31 50 21 20 20	78 142 53 112 84	650 403 811 296 188	4.19 6.63 2.75 3.77 3.59	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.51 0.86 0.34 0.11 0.70	< 10 < 10 < 10 < 10 < 10 < 10	0.58 0.89 0.48 0.73 1.11
759717 R 759719 R 759729 R 759730 R 759731 R	208 226 208 226 208 226 208 226 208 226 208 226	0.09 0.87 0.06	0.2 0.2 >100.0 44.4 10.0	0.80 1.47 0.29 0.22 0.12	128 80 16 6 204	< 10 < 10 < 10 < 10 < 10 < 10	30 10 30 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 4 2 24 80 <	0.60 0.93 2.03 2.69 0.01	< 0.5 1.0 136.5 486 3.0	47 51 10 8 353	73 63 59 78 85	395 398 1305 782 4670	3.43 7.16 1.62 1.89 >15.00	< 10 < 10 < 10 10 10	< 1 < 1 3 < 1	0.23 0.15 0.14 0.09 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.43 0.25 0.64 0.88 0.04
759732 R 759741 R 759742 R 759744 R 759745 R	208 226 208 226 208 226 208 226 208 226 208 226	< 0.03	35.0 < 0.2 < 0.2 45.2 1.0	1.68 2.17 3.75 1.28 0.75	692 2 < 2 648 20	< 10 < 10 < 10 < 10 < 10 < 10	10 110 40 10 10	0.5 0.5 0.5 0.5 < 0.5	< 2 < 2	<pre> 0.01 0.17 1.86 0.01 0.05 </pre>	6.0 0.5 0.5 6.5 < 0.5	768 18 14 525 137	28 65	177 154	>15.00 7.69 2.73 >15.00 6.14	20 10 10 20 < 10	< 1 < 1 < 1 < 1 < 1	0.02 0.31 0.75 0.03 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.56 0.46 0.77 0.43 0.22
759751 R 759752 R 759753 R 759756 R	208 226 208 226 208 226 208 226 208 226		< 0.2 5.6 0.6 < 0.2	0.89 0.21 3.23 3.82	< 2 6 < 2 < 2	10 < 10 < 10 < 10	10 < 10 50 100	< 0.5 0.5 1.5 0.5	12 2160 48 2	0.61 0.20 1.78 2.08	< 0.5 3.0 1.5 1.5	19 97 22 21	46 103 82 88	349 2920 413 264	3.33 >15.00 4.57 3.75	< 10 10 10 10	< 1 < 1 < 1 < 1	0.33 0.03 0.72 1.33	< 10 < 10 < 10 < 10	0.62 0.20 1.26 1.68
				·												ø				:

CERTIFICATION:_

ALS Chemex Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To:	MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8
	LON HUO

Page Number : 1-B Total Pages :1 Certificate Date: 01-AUG-2000 Invoice No. : 100239\$0 P.O. Number : RED Account : RIX

Project : GR-R Comments: ATTN: DAVID MOLLOY CC: DAVID MOLLOY

..*

										CE	RTIFI	CATE	OF A	NAL	SIS		0023980			
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	. S %	Sb ppa	Sc ppin	Sr ppm	Ti ¥	Tl ppm	U ppm	V ppm	W ppm	Zn ppm			
759706 R 759708 R 759709 R 759715 R 759715 R 759716 R	208 220 208 220 208 220 208 220 208 220 208 220	5 340 6 180 6 315	9 7 4 11 2	0.09 0.13 0.56 0.14 0.28	88 61 26 77 30	1030 920 1060 870 1800	2 < 2 < 2 < 2 4	2.18 2.64 1.59 1.52 0.85	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 5 4 3 10	16 25 129 44 126	0.17 0.17 0.09 0.07 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 90 57 83 145	< 10 < 10 < 10 20 < 10	30 40 30 38 54		1	÷
759717 R 759719 R 759729 R 759730 R 759731 R	208 220 208 220 208 220 208 220 208 220 208 220	6 185 6 1335 6 1965	61 12 7 10 35	0.09 0.19 0.05 0.03 < 0.01	123 257 25 15 4	1030 1100 530 390 120	< 2 < 2 4240 7660 < 2	1.70 3.91 1.08 2.39 >5.00	< 2 < 2 18 14 2	2 1 1 2 < 1	211 -	0.11 0.11 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 75 19 17 13	< 10 10 < 10 < 10 < 10	32 26 8810 >10000 124	ş	: :	N
759732 R 759741 R 759742 R 759744 R 759745 R	208 220 208 220 208 220 208 220 208 220 208 220	6 465 6 310 6 210	9 4 206	< 0.01 < 0.01 0.43 < 0.01 < 0.01	6 1 50 5 5	120 740 1420 130 220	50 6 2 84 < 2	>5.00 0.62 0.94 >5.00 4.57	4 < 2 < 2 6 < 2	< 1 1 6 < 1 < 1	7 101 3	< 0.01 0.01 0.17 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 60 104 38 9	< 10 < 10 < 10 < 10 < 10 10	206 90 50 156 14	3 		-
759751 R 759752 R 759753 R 759753 R 759756 R	208 220 208 220 208 220 208 220 208 220	6 120 6 405	6 21 18 5	0.11 < 0.01 0.35 0.21	14 204 49 39	980 70 1340 1490	< 2 64 < 2 2	1.43 >5.00 2.57 0.85	< 2 4 < 2 < 2	1 1 5 5	15 3 122 108	0.09 < 0.01 0.12 0.19	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	37 22 85 126	80 670 150 < 10	30 124 66 78			

CERTIFICATION:

Ĩ.

Ē

ALS Chemex

Ē

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

f

Ē...

٢

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Number :1-A Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. : 10027913 P.O. Number : GR A27 Account : RIX

Ľ

Project : GR-P,R Comments: ATTN: D. MOLLOY

E

E

-*

Ľ

·····										CE	RTIFI	CATE	OF A	NAL	rsis	4	0027	913		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	M1 %	ks ppn	B	Ba. ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga. ppm	Eg ppm	K. %	La. ppm	Mg %
86765 86770 59788	201 20 201 20 201 20	2 15 2 10 2 35	< 0.2 0.8 4.4	3.26 1.77 3.00	32 24 32	< 10 < 10 < 10	190 800 150	1.0 0.5 1.0	< 2 < 2 8	0.70 1.15 0.31	0.5 3.5 1.5	20 32 55	22 53 34	106 81 2330	4.59 5.47 4.56	10 60 10	< 1 3 < 1	0.60 0.14 0.12	10 < 10 10	1.40 1.02 1.14
						* <u>.</u>														
									-											
		•																		
																`		l		
													c	ERTIFIC	CATION:_	- (Xa	<u></u>	9. : []	<u></u>

Ĩ.

ALS Chemex

E

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

ſ

T.

E

r,

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-B Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. :10027913 P.O. Number :GR A27 Account :RIX

4

Project : GR-P,R Comments: ATTN: D. MOLLOY

~*

											CE	RTIF	CATE	OF A	NALY	/SIS		A00279	13	
SAMPLE		ep)De	Mn ppm	Mo. ppm	Na %	Ni ppm	P PPm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ %	Tl ppm	d D	V ppm	W ppm	Zn ppm		
86765 36770 59788	201 201 201	202 202 202	1700 >10000 2280	20 20 7	0.04 0.02 0.01	21 97 34	1370 1140 1070	12 40 256	0.04 0.10 0.08	< 2 < 2 < 2	8 4 7	46 52 17	0.17 0.01 0.03	< 10 < 10 < 10	30 80 < 10	125 44 65	< 10 < 10 < 10	168 3190 268		
:																				
										,										
																		-D	ŷ	and the second se
															CERTIFIC	ATION:		Xau.	i Venc	Talig

置

S Chemex AL Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Ľ

Page Number :1-A Total Pagas :1 Certificate Date: 08-SEP-200(Invoice No. : 10027910 P.O. Number :GR A27 Account :RIX

.

Project : GR-P,R Comments: ATTN: D. MOLLOY

_*

						•				CI	ERTIFI	CATE	OF A	ANAL	YSIS	4	10027	910		
SAMPLE	Prep Code	Au ppb FA+AA	λg ppm	A1 %	bb B	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %
686766 686768	201 202 201 202	50	0.2	2.87	32 24	< 10 < 10	160 160	0.5	< 2	0.45	0.5	22 21	39 35	113 80	4.50	10 10	< 1 < 1	0.45	10 10	1.31 1.20
86769 86771 86772	201 202 201 202 201 202 201 202	5	0.2 0.2 < 0.2	2.00 3.03 4.77	16 30 52	< 10 < 10 < 10	140 140 280	0.5 0.5 1.0	< 2 4 6	0.35 0.32 0.56	< 0.5 1.0 2.5	18 22 35	57 41 25	60 107 281	3.49 4.73 6.35	< 10 10 20	< 1 < 1 < 1	0.15 0.37 0.86	10 10 < 10	1.12 1.27 2.09
86774 86809 86813	201 202 201 202	<.5	0.2	3.16 0.35	50 26	< 10 < 10	240 50	0.5	< 2	0.73	2.5	27 4	27	179 36	5.29 0.67	10 < 10	< 1 < 1	0.83	< 10 < 10	1.56
86813 86815 86816	201 202 201 202 201 202	25	< 0,2 0.2 0.2	4.95 1.51 0.39	124 24 2	< 10 < 10 < 10	190 110 70	0.5 < 0.5 < 0.5	< 2 < 2 2	0.43 0.19 0.31	1.5 < 0.5 < 0.5	31 8 < 1	13 13 4	271 45 27	6.17 2.87 0.68	20 10 < 10	< 1 < 1 < 1	0.88 0.48 0.21	< 10 < 10 < 10	1.75 0.73 0.19
86817 86819 86820	201 202 201 202	35	< 0.2 0.6	2.11 2.15	20 48	< 10 < 10	150 140	< 0.5	< 2	0.19	< 0.5	8 10	16 20	63 103	3.58 3.40	10 10	<1 <1	0.68	< 10 < 10	1.01
86822 86823	201 202 201 202 201 202	25	0.4 0.2 < 0.2	2.79 2.62 2.54	50 64 32	< 10 < 10 < 10	160 190 140	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.33 0.56 0.16	< 0.5 0.5 < 0.5	16 18 13	14 13 21	130 173 70	4.17 3.94 5.43	10 10 20	< 1 < 1 < 1	0.74 0.72 0.93	< 10 < 10 < 10	1.19 1.18 1.22
586824 586826 586828	201 202 201 202 201 202	70	0.4	1.33	14	< 10 < 10	120 240	< 0.5	< 2 < 2	0.16	< 0.5	6 33	17	43 311	2.69 6.71	10 20	< 1	0.53	< 10 < 10	0.58
86829 86830	201 202 201 202 201 202	30	0.6 0.2 0.2	2.47 2.35 1.19	48 60 14	< 10 < 10 < 10	140 120 80	< 0.5 < 0.5 < 0.5	< 2 2 2	0.28 0.23 0.15	< 0.5 < 0.5 < 0.5	14 13 4	17 13 15	133 119 63	3.74 3.57 2.09	10 10 < 10	< 1 < 1 < 1	0.60 0.46 0.37	< 10 < 10 < 10	1.07 0.97 0.42
586831 586832 759780	201 202 201 202 201 202		0.4	2.87	34 42	< 10 < 10	180 200	0.5	< 2 < 2	0.73	1.5	18 23	30 27	132 168	3.99	10 10	< 1 < 1	0.54	10 10	1.24
59781 59782	201 202 201 202 201 202	< 5 5 < 5	0.6 0.6 0.6	3.69 4.40 4.02	14 22 18	< 10 < 10 < 10	80 100 70	0.5 1.0 0.5	< 2 < 2 < 2	0.04 0.07 0.05	< 0.5 < 0.5 < 0.5	6 11 7	26 32 28	26 56 32	3.98 4.28 4.26	10 10 10	< 1 < 1 < 1	0.02 0.03 0.03	< 10 < 10 < 10	0.18 0.50 0.26
59783 59784 59785	201 202 201 202	- 5 < 5	1.6	4.40	32 22	< 10 < 10	130 80	1.0	< 2	0.09	< 0.5	16. 11	42 28	121 87	5.55	10	< 1	0.04	< 10 < 10	0.80
59785 59786 59787	201 202 201 202 201 202	10 < 5 10	0.8 1.4 0.4	2.14 3.50 3.18	24 24 30	< 10 < 10 < 10	150 90 90	< 0.5 0.5 0.5	. < 2 6	0.05 0.03 0.11	< 0.5 < 0.5 0.5	5 8 17	20 34 34	35 48 85	4.12 5.45 5.19	10 10 10	< 1 < 1 < 1	0.03 0.03 0.08	< 10 < 10 10	0.21 0.28 0.71
/59789	201 202	125	25.0	2.39	34	< 10	110	0.5	26	0.27	8,5	35	31	1550	5.46	10	< 1	0.16	< 10	1.04
													. •						•••	

CERTIFICATION;

L.

emex Aurora Laboratory Services Ltd.

....

Analytical Chemists * Geochemists * Registered Assayers

E. E. E. E. E. E. E. E.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

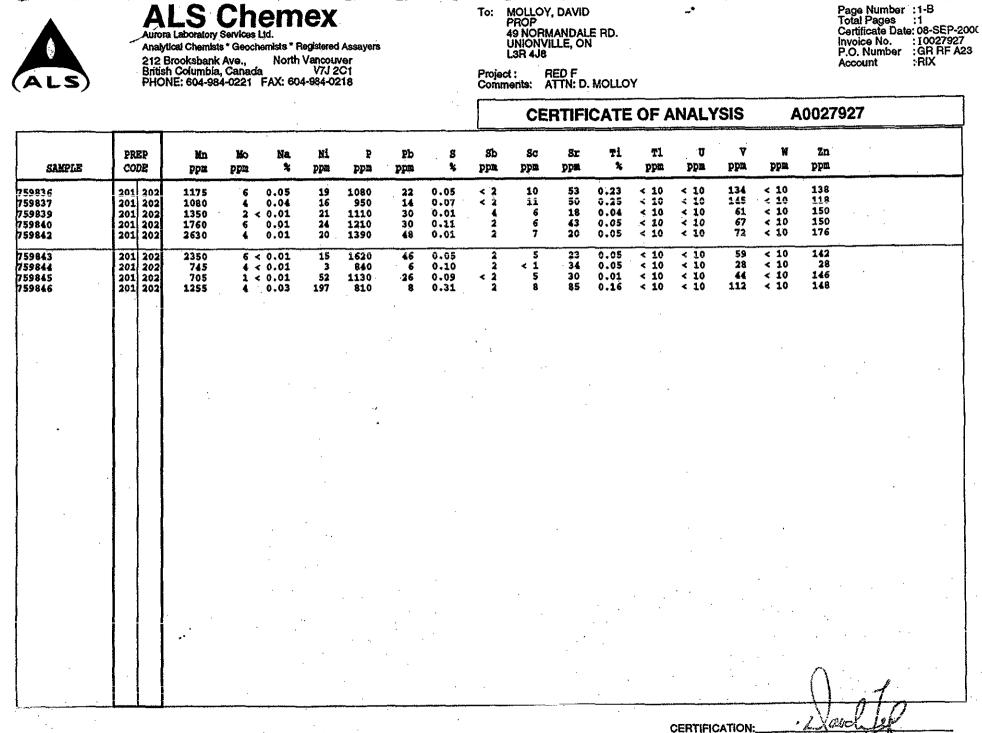
To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-B Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. :10027910 P.O. Number :GR A27 Account RIX

Project : GR-P,R Comments: ATTN: D. MOLLO

L

L


~*

ŕ

nts:	ATTN: D	. MOLLO	Ϋ́				_	
CE	RTIFI		OF A		rsis	A	0027910	
Sc ppm	Sr ppm	Ti %	T1 ppn	U mqq	V ppm	W Mqq	Zn ppm	
7 6 6 7	29 -27 22 27	0.10 0.10 0.05 0.11	< 10 < 10 < 10 < 10 < 10	10 20 10 30	94 92 54 96	< 10 < 10 < 10 < 10 < 10	178 150 146 174	

SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	SC DDM	Sr ppm	Ti ¥	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
686766 686768 686769 686771 686772	201 202 201 202 201 202 201 202 201 202 201 202	2 1365 2 915 2 1395	17 19 5 26 16	0.02 0.02 0.01 0.01 0.04	46 40 67 46 30	1150 1240 1030 1290 1480	26 28 24 26 144	0.03 0.03 0.03 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	7 6 6 7 10	29 27 22 27 57	0,10 0.10 0.05 0.11 0.23	< 10 < 10 < 10 < 10 < 10 < 10	10 20 10 30 10	94 92 54 96 176	< 10 < 10 < 10 < 10 < 10 < 10	178 150 146 174 358	
686774 686809 686813 686815 686815 686816	201 202 201 202 201 202 201 202 201 202 201 202	2 245 2 3490 2 485	11- 1 3 2 < 1	0.04 < 0.01 0.04 0.01 < 0.01 < 0.01	34 6 11 11 6	1540 720 1900 1110 720	26 12 20 8 2	0.05 0.17 0.05 0.11 0.18	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	9 < 1 12 4 1	40 15 28 16 15	0.16 0.01 0.21 0.12 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	127 15 170 89 24	< 10 < 10 < 10 < 10 < 10 < 10	242 42 266 68 32	
686817 686819 686820 686822 686823	201 202 201 202 201 202 201 202 201 202 201 202	2 680 2 930 2 1130	4 3 3 1 3	0.02 0.03 0.03 0.03 0.03 0.02	7 14 12 15 9	1470 1100 1280 1330 3820	8 8 10 8 10	0.09 0.15 0.12 0.13 0.10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 6 7 7 8	22 26 28 37 19	0.17 0.13 0.16 0.15 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	115 101 122 112 157	< 10 < 10 < 10 < 10 < 10 < 10	84 128 172 184 92	
686824 686826 686828 686829 686829 686830	201 201 201 202 201 202 201 202 201 202 201 202	2 2130 2 820 2 725	32333	0.01 0.06 0.03 0.03 0.01	7 18 18 12 9	1340 1580 1110 1030 940	8 12 10 12 8	0.12 0.04 0.09 0.09 0.14	< 2 < 2 < 2 < 2 < 2 < 2	.4 14 6 6 2	13 38 23 20 14	0.14 0.26 0.13 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 194 101 99 58	< 10 < 10 < 10 < 10 < 10 < 10	54 306 144 126 44	
686831 686832 759780 759781 759782	201 202 201 202 201 202 201 202 201 202 201 202	1055 850 705	- 3	0.03 0.04 < 0.01 0.01 < 0.01	30 32 7 20 11	1430 1400 1640 1520 1680	16 22 8 12 12	0.08 0.07 0.05 0.05 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 .8 3 3 3	37 38 5 6 6	0.13 0.15 0.02 0.03 0.02	< 10 < 10 < 10 < 10 < 10 < 10	30 10 < 10 < 10 < 10 < 10	107 120 68 67 82	< 10 < 10 < 10 < 10 < 10 < 10	192 204 46 98 50	
759783 759784 759785 759785 759786 759787	201 202 201 202 201 202 201 202 201 202 201 202	645 225 35		0.01 0.01 < 0.01 < 0.01 < 0.01 0.01	25 20 9 12 21	1380 1140 400 800 910	20 16 10 14 18	0.04 0.04 0.02 0.06 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	7 4 3 3 5	5 8 6 5 7	0.05 0.03 0.02 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	97 80 117 70 87	< 10 < 10 < 10 < 10 < 10 < 10	94 74 40 56 74	
759789	201 202	2 1450	9	0.01	39	1030	1510	0,23	< 2	5	15	0.02	< 10	< 10	54	< 10	1270	
				•			·.	• • •			• • •		• • •				A	
								· 、 ·			~~~_}# ₩~~\$±/ 3 ₩ <u>8</u> ~~ <u>3</u> ~m		. (CERTIFIC	ATION:		the fl	- Al-

(ALS)	212 Briti	alytical Chemist 2 Brooksbank tish Columbia ONE: 604-98	k Ave., a. Canad	North da	Vancourv V7J 2	ver 2C1					RED F ATTN: D.	MOLLO			· ·			Invoice N P.O. Nur Account	mber :
			<u></u>			 	<u> </u>	····		CE	RTIFI	CATE	OF A	NAL	YSIS	A	10027	927	
SAMPLE	PREP CODE	ли ррб Уд+дд	Ag ppm	A1 %	As ppm	B ppm	Ba ppn	Ве рри	Bi ppm	Ca.	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm
759836 759837 759839 759840 759842	201 202 201 202 201 202 201 202 201 202 201 202	2 < 5 2 < 5 2 5	1.0 0.4 0.6 0.8 1.2	3.08 3.19 1.81 1.98 2.60	146 72 28 36 38	< 10 < 10 < 10 < 10 < 10	320 420 270 260 150	0.5 0.5 0.5 0.5 1.0	4 < 2 < 2 < 2 < 2	0.85 0.79 0.36 0.95 0.36	0.5 < 0.5 0.5 0.5 < 0.5	30 24 21 24 27	25 19 18 19 20	114 59 60 99 79	5.85 5.36 4.24 4.59 4.87	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.41 0.70 0.08 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10
759843 759844 759845 759846 759846	201 202 201 202 201 202 201 202 201 202	2 < 5 2 < 5	1.0 0.8 1.8 0.8	2.06 0.24 2.14 3.12	46 2 12 106	< 10 < 10 < 10 < 10 < 10	200 90 350 140	1.0 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.43 0.67 0.37 1.24	0.5 < 0.5 0.5 0.5	25 3 16 54	15 3 36 54	76 21 47 173	4.15 0.83 3.04 6.51	< 10 < 10 < 10 10	< 1 < 1 < 1 < 1	0.10 0.07 0.13 0.15	10 < 10 < 10 < 10 < 10
					•						•		•						
						-													
•																			
			-		s ¹ .										-				
~						. :										·			
								·. ·					• •						-
				•									• •					·	
							•								-	• • •	•••	. •	•
					•			•			<i>.</i> .						\cap		*

T

CERTI

ALS)	-Aŭn Ana	LS ora Laboratory lytical Chemis Brooksbank ish Columbia ONE: 604-98	Services	Ltd. hemists * F	Registered	i Assayers				PROP 49 NOI UNION L3R 4J ct : nents:	REDGR ATTN: D	LE RD. N MOLLOY		-* 	/010			Page Nu Total Pa Certificai Invoice I P.O. Nu Account	Imber : ges : te Date: (vo. : nber : ;	1-A 1 08-SI 1002 RED RIX
	PREP	Au ppb). Ag	A1	λs	B	Ba	Be	Bi	Ca		CATE co	OF A Cr	Cu	r 313 Fe	 Ga	10027 Eg	K	La	1
SAMPLE 759776 759777 759778 759779	CODE 201 202 201 202 201 202 201 202 201 202	βλ+λλ 5 5 5 5 5 5	ppm 1.8 1.6 3.0 1.4	3.83 4.03 2.31 3.63	26 32 20 18	ppm < 10 < 10 < 10 < 10	90 80 140 90	0.5 0.5 0.5 0.5	ppm < 2 < 2 < 2 < 2 < 2	0.04 0.08 0.10 0.11	< 0.5 < 0.5	ppm 10 9 8 11	9pm 36 44 22 37	90m 30 37 29 49	5.37 5.83 4.08	20 10 < 10 < 10 < 10	<pre>ppm < 1 < 1 < 1 < 1 < 1 < 1</pre>	\$ 0.03 0.03 0.03 0.03	ppm < 10 < 10 < 10 < 10	0.2
						-	• •		•											
						·		·							·				•	-1 - (
•																				
								• •			<u> </u>								-	
			-												`					
							•	·												
		••			·									. •				·		

E

I

ALS Chemex

T

Autora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

s

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

1

Project : REDGR Comments: ATTN: D. MOLLOY

E

E

*****بہ

Ŧ

Page Number :1-B Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. :10027900 P.O. Number :RED AU25 Account :RIX

1

SAMPLE PREP CODE Mo Na Ni P Pb S. Sb SG Sr Ti Ti U V W Zi 959776 2021 2023 81.0 5 0.01 11 830 14 0.07 1.2 3 6 0.06 4.50 1.00 4.10 4.4 959776 2021 2022 875 5 0.01 15 840 14 0.07 4.2 3 6 0.06 4.50 1.00 4.6 1.0 4.6 1.0 4.6 0.07 4.2 3 8 0.07 4.50 1.00 4.6 1.0 3.6 3.6 1.0 3.6 1.0 3.6 1.0 3.6 1.0 1.0 1.0 1.0 4.0 3.6 1.0 3.6 1.0 1.0 1.0 1.0 1.0 3.6 1.0 3.6 1.0 1.0 1.0 1.0 1.0 1.0											CE	RTIF	CATE	OF A	NALY	SIS	4	00279	00		
59776 202 202 820 5 < 0.01	SAMPLE					Ni ppm							Ti X								
	59776 59777 59778 59778 59779	201 202 201 202 201 202 201 202 201 202	810 575 875 1000	5 <	.0.01	11 13 8 13	840 780	14 14 10 16	0.07 0.07 0.05 0.08	4	3	8	0.07	< 10 < 10	< 10	118 98	<pre>- 10 < 10 < 10 < 10 < 10</pre>	48 36 38 40			
	·												·								
													/					-			
			-																		. :
																			·		
	•								~												
				••					·.						·						
																				·	
					•																
	• .						•	•	-									· .	• • •		• .
			••			, *											· .				
DEDTIFICATION By Call	•		•				•			<u> </u>					* •	-		2			وسمع

I

I.

:

ALS Chemex

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Ĩ

Page Number : 1-A Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. : 10027929 P.O. Number : GR RF A23 Account : RIX

-

Ĩ.

~*

Project : RED F Comments: ATTN: D. MOLLOY

											CE	ERTIF	CATE	OF A	NAL	YSIS		0027	929		
SAMPLE	PR		au ppd Fa+aa	Ag ppm	A1 %	As ppa	B	Ba ppm	Be ppm		Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
59762 759766 759769 759838 759841	205	226 226 226 226 226 226	`25 ≺ 5	< 0.2 1.4 0.2 0.2 0.6	2.01 1.36 3.09 0.81 1.61	20 < 2 2 < 2 < 2	< 10 < 10 10 < 10 < 10 < 10	120 60 120 290 310	0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 3	0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 16 28 8 16	47 46 63 42 67	5 90 67 32 637	3.22 2.89 5.06 1.85 3.68	10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.10 0.17 0.35 0.94	10 < 10 < 10 < 10 < 10 < 10	1.17 1.23 2.74 0.52 1.18
59847	205	226	25	0.6	1.34	2	< 10	60	< 0.5	6	0.98	< 0.5	14	32	94	3.41	< 10	< 1	0.16	< 10	0.28
									•												
;			:												·						
																	,				
														•							
								,					Υ.				1	2		-	
	_ i			, ,	<u> </u>					<u> </u>			<u></u>		CERTIFI	CATION	the	 	Ć	Ń	Ų

E ..

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

E I

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

L

Page Number :1-B Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. :10027929 P.O. Number :GR RF A23 Account :RIX

E.

E

Project : RED F Comments: ATTN: D. MOLLOY

1

£

_*

		_					-			CE	RTIFI	CATE	OF A	NALY	rsis		0027	929		
		Ma ppm	Мо ррп	Na %	Ni ppm	P ppm	Pb ppm	S %	gb mqq	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V pp n	W ppn	Zn pp n			
205 205 205 205 205	226 226 226 226 226 226	545 870 1035 80 165	1 1 10 3	0.08 0.06 0.04 0.08 0.10	12 54 27 5 7	1160 540 1090 870 950	18 12 2 2 < 2	0.01 1.44 < 0.01 0.77 0.99	< 2 10 < 2 2 2	4 4 7 1 7	108 11 26 25 39	0.20 0.12 0.24 0.16 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 86 169 30 75	< 10 < 10 < 10 < 10 < 10 < 10	62 46 84 18 40			
		165	. 1	0.21	7	1140	8	1.11	< 2	3	56	0.13	< 10	< 10	62	< 10	28			
							A													
																				:
														:						
1								-												
				-2																
											.*									
		•																		
																	n		~	
 			·	. <u></u>		,				· · ·								\subseteq	A	4
	CO 205 205 205 205 205	PREP 205 226 205 226 205 226 205 226 205 226 205 226 205 226	CODE Ppm 205 226 870 205 226 1035 205 226 165 205 226 165 205 226 165	CODE ppm ppm 205 226 870 1 205 226 1035 1 205 226 165 3 205 226 165 1	CODE ppm ppm % 205 226 545 1 0.08 205 226 870 1 0.06 205 226 1035 1 0.04 205 226 165 3 0.10 205 226 165 1 0.21	CODE ppm ppm % ppm 205 226 545 1 0.08 12 205 226 870 1 0.06 54 205 226 1035 1 0.04 27 205 226 165 3 0.10 7 205 226 165 1 0.21 7 205 226 165 1 0.21 7	CODE ppm ppm % ppm ppm 205 226 870 1 0.06 54 540 205 226 1035 1 0.04 27 1090 205 226 1035 1 0.04 27 1090 205 226 165 3 0.10 7 950 205 226 165 1 0.21 7 1140	CODE ppm ppm % ppm ppm	CODE ppm ppm <td>CODE ppm ppm % ppm ppm ppm % ppm 205 226 545 1 0.08 12 1160 18 0.01 < 2</td> 2 2 5 2 6 870 1 0.06 54 540 12 1.44 10 205 226 1035 1 0.04 27 1090 2 < 0.01	CODE ppm ppm % ppm ppm ppm % ppm 205 226 545 1 0.08 12 1160 18 0.01 < 2	PREP CODE Mn Mo Na Ni P Fb S Sb Sc 205 226 545 1 0.08 12 1160 18 0.01 < 2	PREP CODE Mr Mo Na Ni P Fb S Sb Sc Sr 205 226 545 1 0.08 12 1160 18 0.01 <.2	PREP Mn Mo Na Mi P Pb S Sb Sc Sr Ti CODE ppm ppm ppm st ppm ppm ppm ppm st ppm ppm st st ppm ppm ppm st st	PREP CODE Mn Mo Na Ni P Pb S Sb Sc Sr Ti Ti Ti 205 226 545 1 0.08 12 1160 18 0.01 4 4 108 0.20 4 108 0.20 4 108 0.20 4 108 0.20 4 108 0.20 4 108 0.20 4 10 0.20 4 10 0.20 4 10 12 4 10 4 11 0.12 4 10 12 1.44 10 4 11 0.12 4 10 205 226 103 10 0.08 5 870 2 0.77 2 1 25 0.16 4 10 205 226 165 1 0.21 7 1140 8 1.21 4 3 56 0.13<	PREP CODE Mn Mo Na Mi P Pb S Sb Sc Sr Ti Ti U 205 226 545 1 0.08 12 1160 18 0.01 <2	CODE ppm ppm ppm ppm ppm ppm ppm % ppm pm	PREP CODE Mn Mo Na Mi P Pb S Sb Sc Sr Ti Ti U V W ppm pm pm pm pm<	PREP Mn No Sa Mi P Pb S Sb Sc St Ti Ti U V N Za CODE ppm ppm <td>PRBP CODE Mn Mo Na Mi p Pb S fb Sc St Ti U V N Zn CODE 226 236 545 1 0.06 54 12 1160 13 0.01 4.2 4 108 0.20 4.0 4.6 10 4.10</td> <td>PREP Mn Ho Na Ni P Pb S Sb Sc Sr Ti Ti U V N Zn 2005 226 545 1 0.06 12 1160 18 0.01 4.2 4 106 0.20 < 10</td> <10	PRBP CODE Mn Mo Na Mi p Pb S fb Sc St Ti U V N Zn CODE 226 236 545 1 0.06 54 12 1160 13 0.01 4.2 4 108 0.20 4.0 4.6 10 4.10	PREP Mn Ho Na Ni P Pb S Sb Sc Sr Ti Ti U V N Zn 2005 226 545 1 0.06 12 1160 18 0.01 4.2 4 106 0.20 < 10

E

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 11-SEP-2000 Invoice No. :10027925 P.O. Number :GR RF A23 Account :RIX

Project : REDF

Comments	R ATT	N: D. N	IOLLOY			
	CERT	IFIC	ATE	OF A	NALY	ISIS

					-						CE	RTIFI	CATE	OF A	NAL'	YSIS	4	0027	925		
SAMPLE	PR		λu ppb FA+λλ	Ag PPM	л1 \$	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	.Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppn	Hg ppm	K %	La ppn	Mg %
759848 759849 759850 759758 759759	201 201 214 201 201	202 202 229 202 202	10 105 95	1.6 1.2 3.4 6.0 0.8	3.28 3.33 2.90 2.10 1.36	24 30 2 42 18	< 10 < 10 < 10 < 10 < 10 < 10	120 110 < 10 150 60	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 24 < 2	0.13 0.11 1.64 0.03 0.05	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	17 19 186 7 5	33 33 251 26 17	64 82 5780 524 19	4.46 4.63 7.78 7.23 3.53	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.01 0.15 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.50 0.66 2.58 0.23 0.08
759760 759761 759763 759764 759765	201 201 201	202 202 202 202 202 202	< 5	0.4 0.6 1.2 1.6 1.4	1.45 4.49 4.93 4.22 7.65	12 24 24 32 26	< 10 < 10 < 10 < 10 < 10 < 10	50 140 140 100 70	< 0.5 1.5 1.0 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.03 0.01 0.02 0.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 18 11 10 9	13 38 36 41 46	14 67 47 54 49	1.75 4.79 5.99 7.74 7.32	10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.04 0.03 0.02 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.09 0.48 0.28 0.30 0.29
759767 759768 759770 759771 759772	201 201 201	202 202 202 202 202 202	< 5 < 5 < 5	1.0 1.4 1.4 1.0 1.0	3.56 5.05 5.10 3.29 4.60	22 24 26 24 26	< 10 < 10 < 10 < 10 < 10 < 10	100 100 70 100 100	0.5 1.0 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.05 0.03 0.01 0.01 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 9 8 7 8	31 36 46 31 34	42 36 47 25 35	6.53 5.56 6.56 6.25 5.66	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.02 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.20 0.32 0.18 0.21
759773 759774 759775	201		€ 5	0.8 1.6 3.2	6.40 5.15 3.58	14 20 136	< 10 < 10 < 10	100 90 • 10	1.5 1.0 < 0.5	< 2 < 2 2	0.04 0.07 3.53	< 0.5 < 0.5 1.5	10 9 208	40 35 21	33 40 7650	5.73 5.49 9.63	10 < 10 10	<1 <1 <1	0.02 0.02 0.03	< 10 < 10 < 10	0.20 0.22 1.97

CERTIFICATION:

T

Ĩ.

ALS Chemex

E

1

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Bivd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

L

Page Number :1-B Total Pages :1 Certificate Date: 11-SEP-2000 Invoice No. :10027925 P.O. Number :GR RF A23 Account :RIX

Project : RED F Comments: ATTN: D. MOLLOY

Ľ

_*

•											CE	RTIFI	CATE	OF A	NALY	SIS	F	0027925	
SAMPLE		ep de	Mn ppm	Mo ppm	Na ¥	Ni ppm	P ppm	Pb ppm	. 3 %	Sb ppa	Sc ppm	Sr ppm	Ti X	Tl ppm	D D	ррш V	N ppn	Zn ppm	
59848 59850 59758 59759	201 214 201	202 202 229 202 202 202	900 235	5 - 1 12 -	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	23 23 2690 8 9	930 930 540 690 360	18 16 ≺ 2 44 8	0.06 0.04 2.72 0.48 0.04	< 2 < 2 2 2 2	4 6 1 2 1	8 8 16 8 5	0.05 0.05 0.10 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 86 38 123 149	< 10 < 10 < 10 < 10 < 10 < 10	74 84 78 28 20	
59760 59761 59763 59764 59765	201 201 201	202 202 202 202 202 202	640 450 455	5.5	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	8 25 15 13 12	340 1540 730 930 960	4 14 12 20 18	0.04 0.04 0.05 0.05 0.06	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 5 5 5 5	9 7 - 4 5 9	0.03 0.03 0.03 0.03 0.03 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	86 91 117 148 116	< 10 < 10 < 10 < 10 < 10 < 10	16 96 94 56 42	
59767 59768 59770 59771 59772	201 201 201	202 202 202 202 202 202	225 270	5.	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	15 13 14 7 11	820 870 840 740 880	10 16 18 12 16	0.06 0.06 0.05 0.03 0.05	< 2 < 2 < 2 < 2 < 2 < 2	3 4 4 4 4	9 6 4 3 4	0.03 0.04 0.06 0.92 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	137 107 119 157 115	< 10 < 10 < 10 < 10 < 10 < 10	56 56 64 34 50	
759773 759774 759775	201	202 202 229	305	5 5 3	0.01 (0.01 0.05	11 11 83	1170 1020 170	10 12 < 2	0.06 0.06 2,49	< 2 < 2 < 2 < 2	5 5 6	6 8 10	0.07 0.05 0.03	< 10 < 10 < 10	< 10 < 10 < 10	92 99 52	< 10 < 10 < 10	54 62 132	
	: [*		· .								-							۰.	

CERTIFICATION:_

(ALS)	Au An 51	ALS rora Laboratory alytical Chemis 75 Timberles ntario, Canad (ONE: 905-6)	ry Services L ists * Geoche a Bivd	Ltd. 1emists * F M	Registered Vississau	d Assayers uda	: S		To: Proje Com	PROP 49 NOR		e RD. 1	YY	~* *				Page Nu Total Pag Certificat Invoice M P.O. Nur Account	ite Date: 1 No. :] mber : F	11-SE 10027
										CE	RTIFI	CATE	: OF /	ANAL	YSIS	/	A0027	/909		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm			Ca %	Cđ ppm	Со	Cr ppa	Cu ppm			Hg ppm	R %	la ppz	М
686801 686802 686803 686804 686804 686804	205 22 205 22 205 22 205 22 205 22 205 22	6 355 6 195	21.2 2.2 3.6 6.8 1.2	0.03 0.65 0.39 0.46 0.96	2150 348 604 564 88	< 10 < 10 < 10 < 10 < 10 < 10	< 10 90 70 400 90) < 0.5) < 0.5) < 0.5	5 < 2 5 < 2 5 < 2	0.27	0.5 2.0 2.5 1.0 6.5	6 4 3 3 4	70 45 46 38 28	121 37 36 33 27	5.11 4.55 2.89	< 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.18 0.14 0.26 0.29	< 10 < 10 < 10 < 10 < 10	0.0 0.3 0.1 0.0 0.3
11 6806	214 22	9 95	3.0	3.00	6	< 10	< 10	< 0.5	5 < 2	1.75	0.5	187	258	5820	7.86	< 10	< 1	0.01	< 10	2.6
-								<i>p</i> -												
	,																			
			· .			μ.														
х.																	\wedge)	4	
																/	, 1		/ 1	1

.

	Aur Ana 517 Oni	Laboratory Jytical Chemiss (5 Timberlea (ario, Canado ONE: 905-62	: Services Lt ts * Geoche: Bivd., a	ld. mists * Reg Mis	BX gistered Ass sissauga L4W 2S3		E.		To:	MOLLOY PROP 49 NORM UNIONV L3R 4J8 st : F hents: A	AANDALI	E RD.				L		Invoice	umber iges ite Date No. mber	:1-B :1 :1002790 :RED AU :RIX
	PREP	Ma	No.	Ne.	ni	 P	Pb		Sb	Sc	Sr		T 1	UNALY	v	W	0027 Zn	909	<u> </u>	
SAMPLE 686801 686802 686803 686804 686804 686805	CODE 205 226 205 226 205 226 205 226 205 226	2240 610 180	6 2 17	% 0.03 0.04 0.05 0.02 0.01	1 1 1	200 420 500 280 470	ppm 644 80 216 1010 88	% >5.00 2.29 3.03 0.66 0.81	ppz 18 6 4 20 2	ppm < 1 1 < 1 < 1 < 1	67 < 56 < 12 <	% 0.01 0.01 0.01 0.01 0.01 0.01	ppm < 10 < 10 < 10 < 10 < 10	ppm < 10 < 10 < 10 < 10 < 10	9998 3 10 7 3 7	ppm < 10 < 10 < 10 < 10 < 10	ppa 154 216 160 148 594			
\$86806	214 225				2690	550	2	2.74	< 2	1	16	0.11	< 10	< 10	40	< 10	76			<u></u>
							~													
					·															:
			·																·	
L	~	J												CERTIFIC	CATION	(/	W (

E

£.

ALS Chemex

E

I

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Ĩ

E

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 13-SEP-2000 Invoice No. :10027931 P.O. Number :GR A27 Account :RIX

1

~*

Ĩ.

.

CERTIFICATION:

Project : GR-P,R Comments: ATTN: D. MOLLOY

											CE	RTIFI	CATE	OF A	NAL	YSIS	A	0027	931		······································
SAMPLE	PRI		Au ppb FA+AA	Ag ppm	A1 %	As	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
686767 686773 686807 686808 686808 686810	205 205 205	226 226 226 226 226 226	< 5 50 20 15 20	< 0.2 0.2 0.4 0.2 0.5	2.11 1.50 5.30 3.56 6.59	< 2 < 2 144 8 < 2	< 10 < 10 < 10 < 10 < 10 < 10	210 100 50 430 100	1.5 1.5 2.5 2.5 2.5	< 2 8 < 2 < 2 < 2 < 2	0.70 1.03 3.33 1.37 2.86	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 19 26 22 18	38 24 31 16 36	18 142 212 141 196	3.25 3.61 6.03 5.80 4.82	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.96 0.49 1.56 2.65 1.88	< 10 < 10 < 10 < 10 < 10 < 10	0.86 0.92 1.39 2.01 2.10
686811 686812 686814 686818 686818 686821	205 205 205	226 226 226 226 226 226	15 200 25 45 185	0.6 0.4 < 0.2 0.4 0.2	3.20 2.76 1.87 2.01 2.38	6 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	90 130 190 140 230	2.0 2.0 2.0 1.5 2.0	< 2 34 < 2 12 12	1.62 0.84 1.07 0.76 1.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	30 22 20 15 21	18 25 25 27 14	293 189 172 188 152	6.52 4.89 3.76 4.77 4.47	10 10 < 10 < 10 10	< 1 1 < 1 < 1 < 1 < 1	1.82 1.44 0.89 0.91 1.20	< 10 < 10 < 10 < 10 < 10 < 10	1.67 1.61 0.98 1.19 1.28
686825 686827 686833 759788A	205 205	229 226 226 229	100 270 15 1875	2.6 0.2 0.2 2.2	3.00 3.78 2.29 3.60	2 < 2 2 128	< 10 < 10 < 10 < 10 < 10	< 10 260 160 < 10	1.0 3.0 1.5 0.5	< 2 < 2 < 2 2	1.73 2.34 0.88 3.56	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	183 24 24 198	254 14 18 21	5830 193 145 7360	8.07 6.25 4.53 9.82	10 10 < 10 10	< 1 2 < 1 1	0.01 2.88 1.11 0.03	< 10 < 10 < 10 < 10	2.69 2.41 1.42 2.00
																		·			
			•															-			
										•								\cap		1	

ALS Chemex

E.

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd.

ſ

Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP . 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

.

Г

Page Number :1-B Total Pages :1 Certificate Date: 13-SEP-2000 Invoice No. :10027931 P.O. Number : GR A27 Account :RIX

.

Ł

~*

Project : GR-P,R Comments: ATTN: D. MOLLOY

Ł

											CE	RTIFI	CATE	OF A	NALY	rsis	<u>, </u>	0027931	·····
SAMPLE	PR CO		Mn ppm	Мо ррж	Na %	Ni ppm	P Eqq	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	ti %	T1 ppm	D D D D D	V ppm	bbu M	Zn ppm	-
767 773 807 808 8 <u>1</u> 0	205 205 205	226 226 226 226 226 226	435 1255 1065	2 10 2 1 < 1	0.15 0.11 0.41 0.07 0.69	2 11 11 7 7	950 1520 2210 2060 2070	8 16 20 10 14	0.28 0.88 1.39 0.15 1.77	< 2 < 2 < 2 < 2 < 2	4 3 12 7 16	39 44 141 64 88	0.18 0.15 0.19 0.29 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 91 187 184 210	< 10 < 10 < 10 < 10 < 10 < 10	78 86 138 98 194	
811 812 814 818 821	205 205 205	226 226 226 226 226 226	590 410 535	< 1 3 4 137 < 1	0.24 0.15 0.15 0.11 0.11	6 10 13 9 7	2140 1860 1580 1330 2290	18 10 10 12 10	2.39 0.96 0.85 0.72 0.74	2 < 2 < 2 < 2 < 2 < 2 < 2	13 10 5 6 7	53 38 51 31 47	0.23 0.22 0.20 0.17 0.20	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	203 167 113 131 140	< 10 < 10 < 10 < 10 110 < 10	122 148 88 96 136	
825 827 833 788A	205 205	229 226 226 229	1305 560	< 1 3 < 1 2	0.01 0.09 0.12 0.05	2820 11 13 82	510 2170 1590 120	24 10 10 16	2.81 0.81 0.96 2.39	< 2 2 2 2	1 17 5 6	10 39 36 < 1	0.11 0.35 0.18 0.03	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	42 231 150 52	< 10 < 10 < 10 < 10	76 128 128 126	
																			,
						•													
	1		į															\cap	

CERTIFICATION:__

.

ALS Chemex

f

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

E

1

Page Number :1 Total Pages :1 Certificate Date: 10-JAN-2001 Invoice No. :10110302 P.O. Number :RED Account :RIX

F

Project : GR-R Comments: ATTN: DAVID MOLLOY

~*

			CERTIF	ICATE OF ANALYSIS	A0110302
SAMPLE	PRE COD	P Au ppb PE FA+AA			
75971180 75972280 75973880 75973980 75973980 75974080	244 - 244 -	- 10 - 20 - 10 - 30 - 15			
75974380 75974680		- 25			
			:		

					CERTIFIC	ATE OF A	NALYSIS		10614	
SAMPLE	PREP CODE	Au ppb FA+AA								
759707S0 759710S0 759718S0 759723S0 759724S0	244 244 244 244 244 244	25 20 45 80 5								
			-		×					
			-	, ,						
								,		

FAR

;

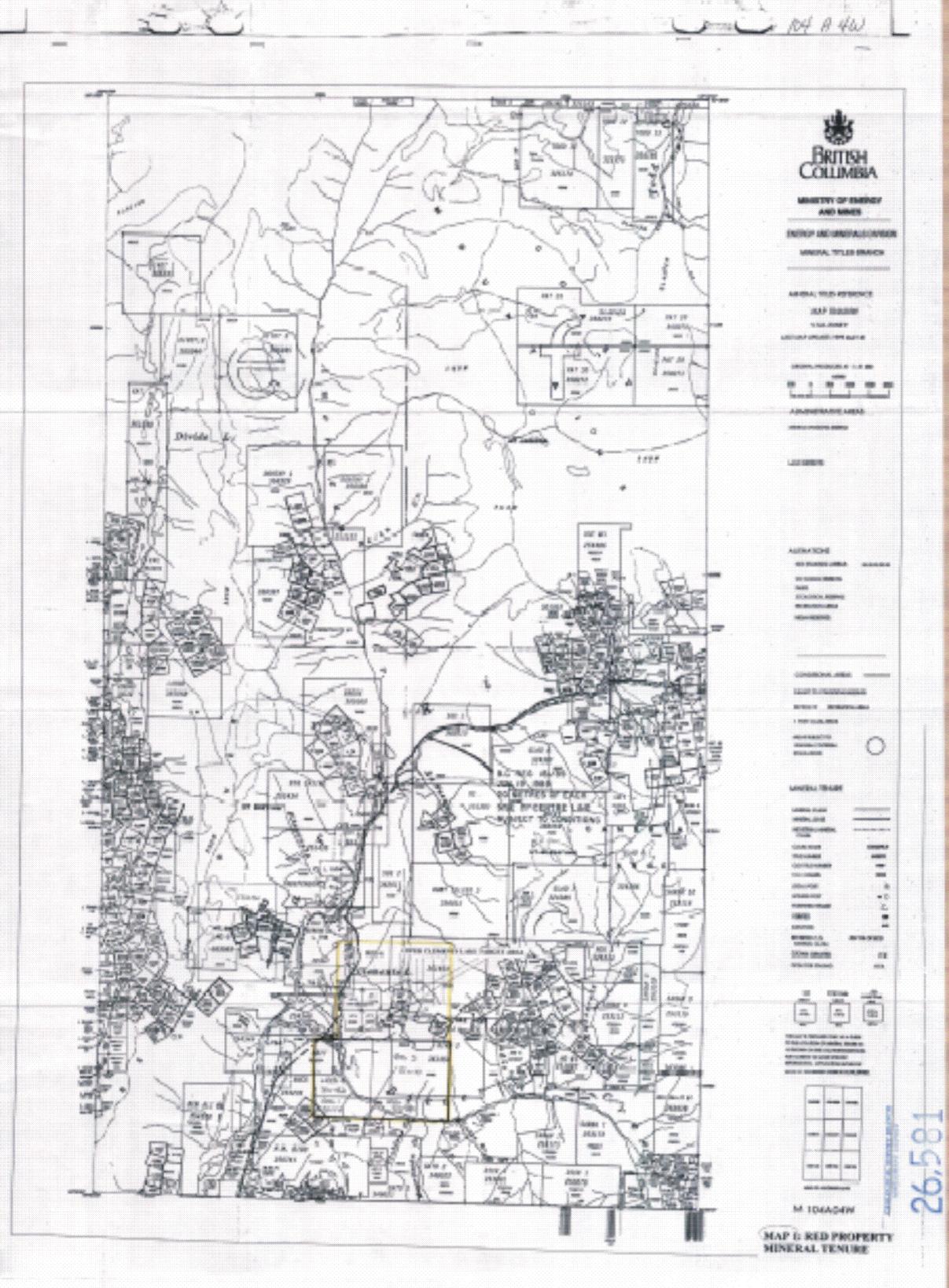
ALS Chemex

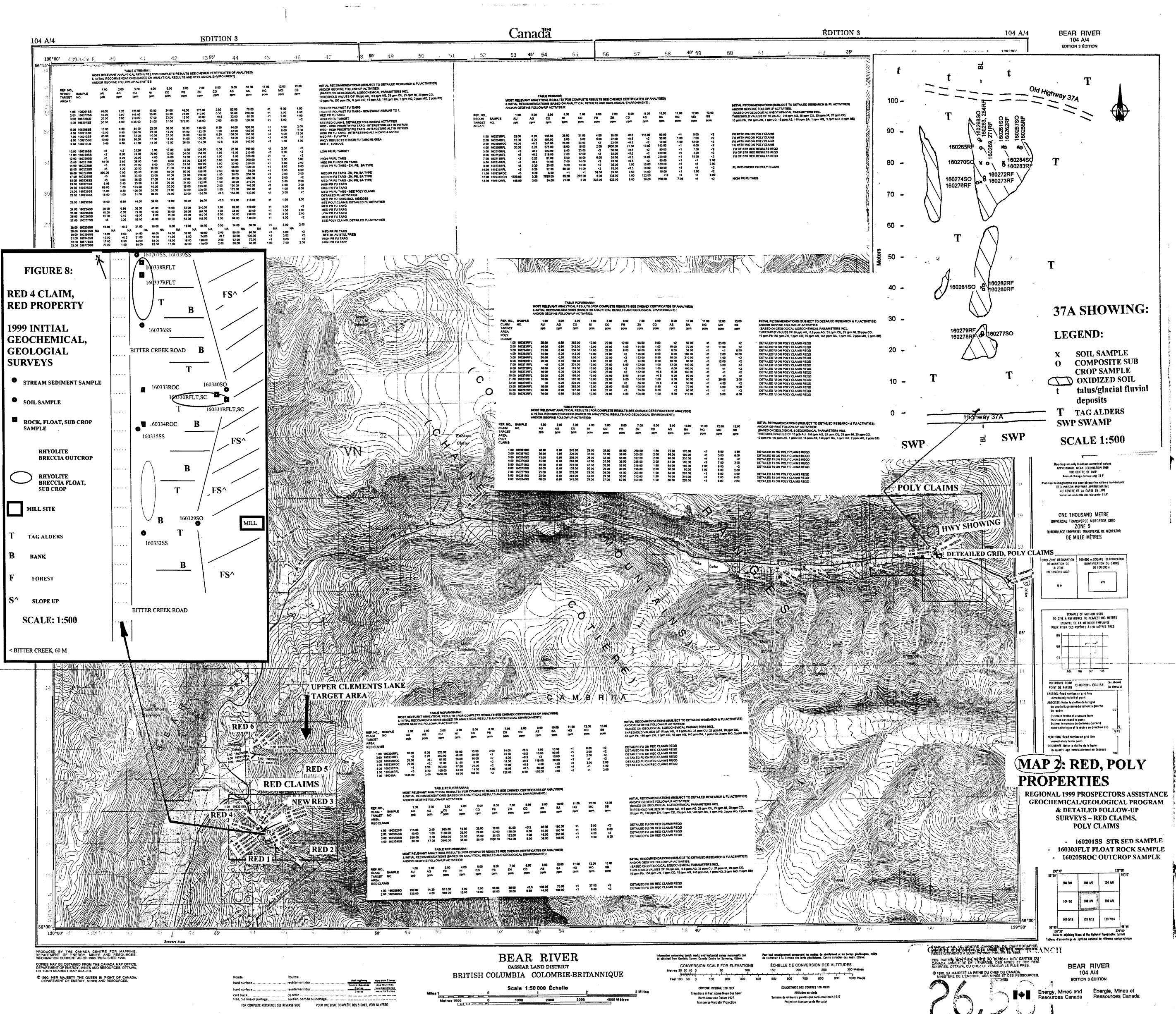
Ē,

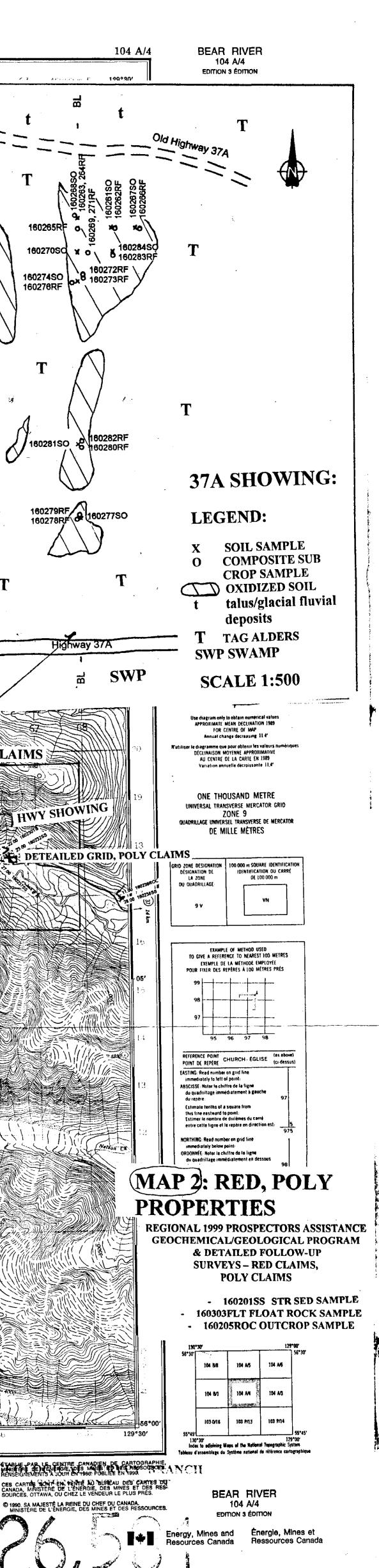
f

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

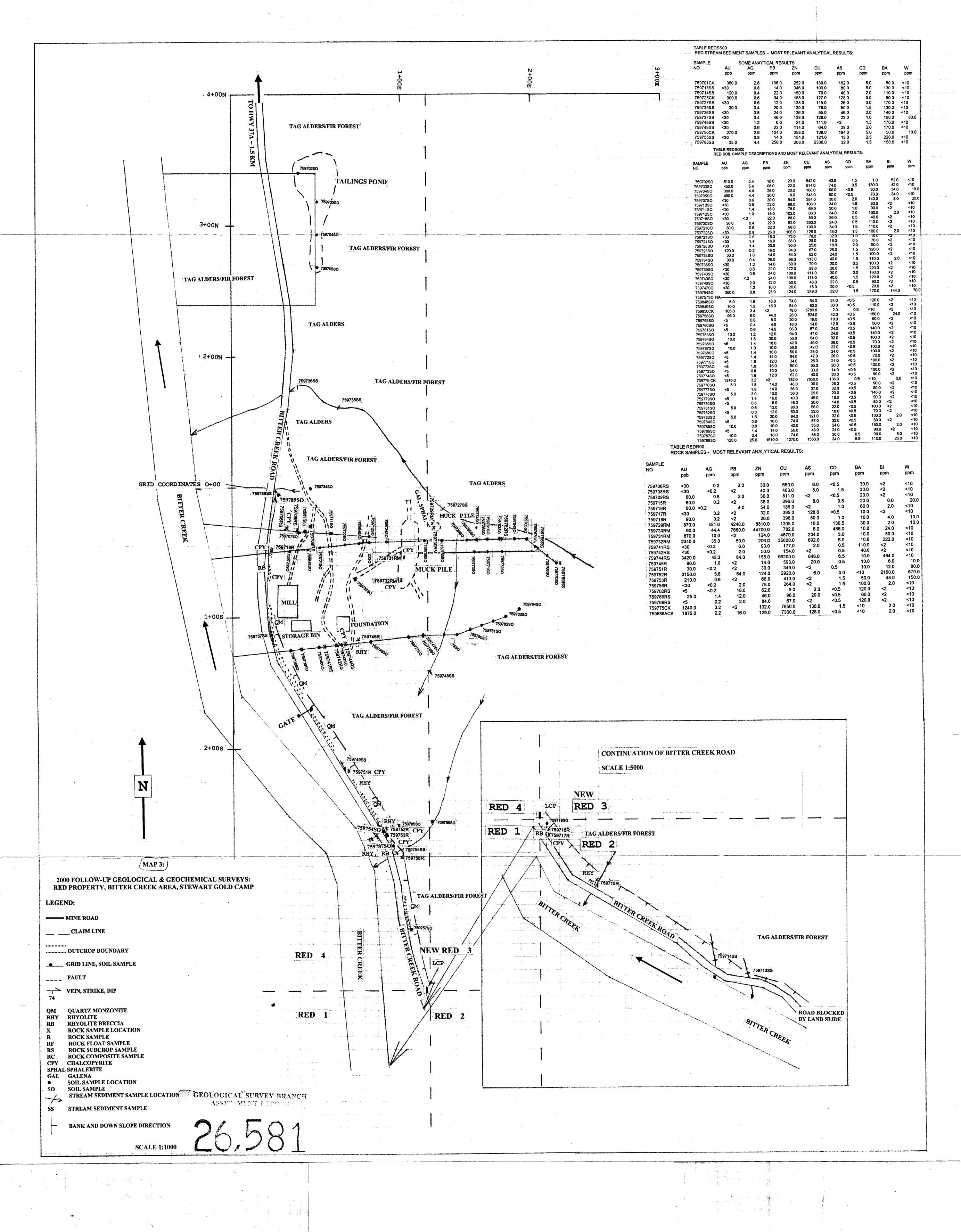

Page Number : 1-A Total Pages : 1 Certificate Date: 19-JAN-01 Invoice No. : 10110708 P.O. Number : RED Account : RIX

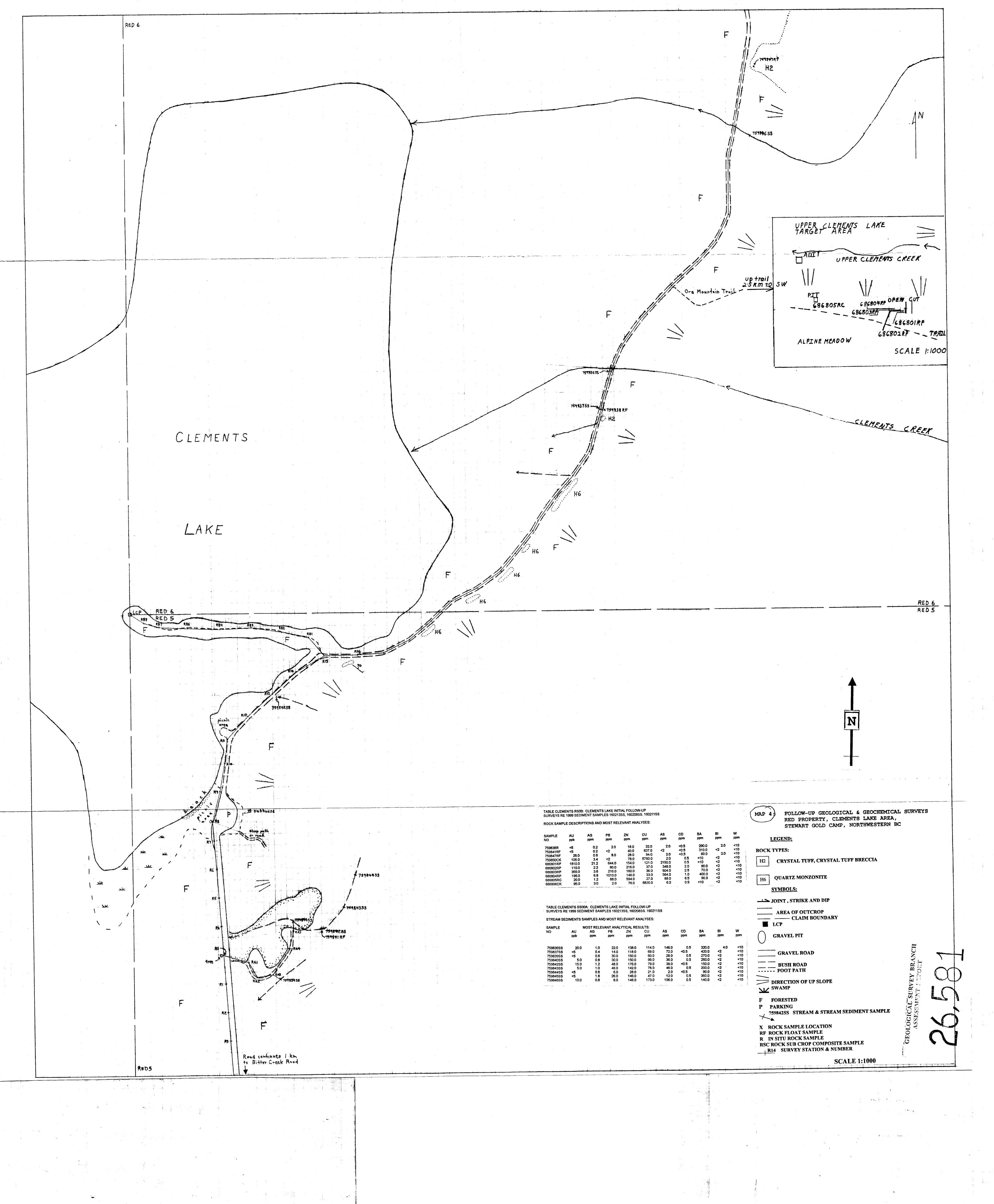

Project : GR-R Comments: ATTN: DAVID MOLLOY

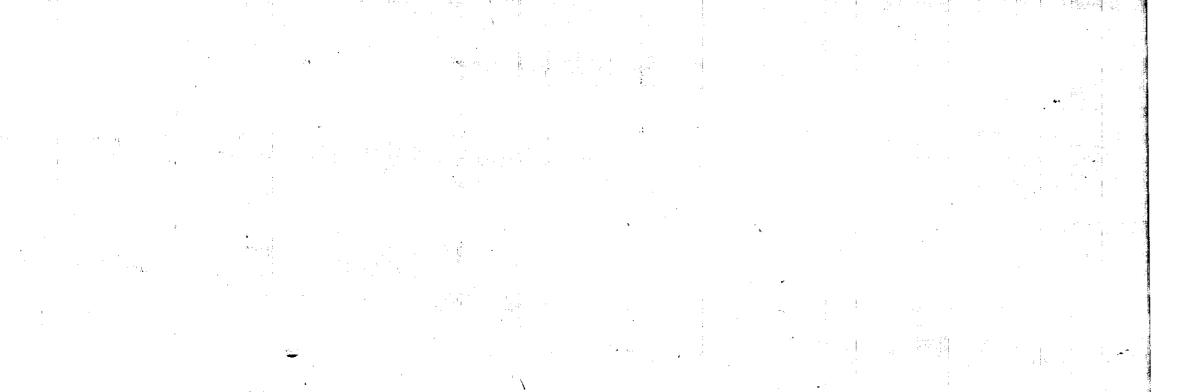

					CERTIFIC	ATE OF ANALYS	IS	A0110708	
·	SAMPLE	PREP CODE	Au ppb FA+AA						- -
	75971280	244	5			· · · · · · · · · · · · · · · · · · ·			
								- -	
		-							
				^			ł		
				7					
				:					
		[<u> </u>	<u></u>			İ	l

MAP POCKET A

.




MAP POCKET B


.

ς.

