

for the

Acacia Property Kamloops Mining Division, SouthWest B.C. Mapsheets 82M04WLatitude $49^{\circ}17'$ N, Longitude $116^{\circ}28'W$ $51^{\circ}05'$ $119^{\circ}50'$

Prepared for:

EAGLE PLAINS RESOURCES LTD. 2720 17th St. S Cranbrook, B.C. V1C 6Y6

By

C.C. Downie, P.Geo. EXPLORATION MANAGER 122 13th Ave. S Cranbrook, B.C. V1C 2V5

July 2001

GEOLOGICAL SURVEY BRANCH

TABLE OF CONTENTS

PAGE

•
L
I
,
)
1
3
8
9
0
2

LIST OF FIGURES

Figure 1: Property Location Map	following page 3
Figure 2: Geological map of the Johnson Lake area	following page 9
Figure 3: Acacia Property Geology, 2000 Sample Locations, Claim Outline	in pocket
Figure 4: Acacia Area Detailed Geology, 2000 Results	in pocket

LIST OF APPENDICES

Appendix I:	
Appendix II:	Statement of E cpenditures
Appendix III	Analytical Results
Appendix IV	

Summary

The Acacia Property is located on the Adams Plateau area of British Columbia in the Kam oops Mining Division. The property was staked by Eagle Plains Resources in 2000 and consists of a 203 unit claim group covering a stratigraphic package that hosts a number of nearby base and precious metal deposits. Work by past operators on the Acacia Property has identified well developed volcanogenic massive sulphide mineralization and alteration hosted by the Lower Cambrian to Devono-Mississippian Eagle Bay Formation and it is believed that the property has high potential for hosting VMS style deposits. The property has a number of exploration targets.

The central part of the Acacia Property surrounds the historic Homestake Mine Crown Grants. The Homestake Mine was worked intermittently by several owners between 1893 and 1984, and has a probable reserve of 249,906 tonnes of 226.6 gm/T silver, 0.58 gm/T gold, 36.7 percent barite, 0.28 per cent copper, 1.24 per cent lead and 2.19 per cent zinc (Statement of Material Facts 06/06/86, Kamad Silver Company Limited). The main mineralization consists of massive to banded barite, metallic minerals and cuartz-sericite cut by veins and lenses of quartz and hosted by Eagle Bay Formation quartz-talc-sericite schists. The Acacia Property covers a number of mineralized showings along the strike extension of the Homestake deposit, including the Inferno Zone massive barite showing area.

The discovery of the Rea Gold volcanogenic massive sulphide lenses in 1983, and the Samatosum massive sulphide vein deposit in 1986 focused exploration on locating similar styles of mineralization on the Acacia Property area. Esso Resources Canada Limited and Homestake Mining (Canada) I imited carried out extensive exploration programs to the north of the current Acacia Claim boundaries to evaluate prospective Eagle Bay Formation volcanics for Rea-Samatosum type deposits. The programs were successful in tracing the mineralized horizons over kilometers of strike length and a number of stacked sulphide lenses were located along both the Rea and Samatosum (Silver) trends. Although none of the lenses were economic, potential exists along the trend for more of these massive sulphide lenses. The current Acacia Property covers the strike extensions of both the Rea and Samatosum horizon.

The Twin Mountain Zone is located on the north eastern part of the Acacia Property. The Twin Mountain occurrence consists of galena, sphalerite, chalcopyrite and pyrite mineralization wit in carbonate-quartz veins, and sulphide barite lenses. The host rock consists of sericitized and si icified schists derived from mafic volcanic flows and volcaniclastic rocks. The zone has an apparent strike k ngth of approximately 2500m. A drill hole that targeted the Twin Mineralization returned values of 11.6 gm/t Au, 335.3 gm/t Ag, 3.13% Zn, 2.74% Pb and 0.55% Cu over 2.37 meters (George Cross Newsle ter #237, 1987).

The Acacia Showing area was the focus of the 2000 Eagle Plains Resources exploration program. The Acacia Showings are located on the south side of Sinmax Creek and consist of at least eight massive sulphide and vein occurrences hosted by Eagle Bay Formation felsic volcanics, mafic volcanics and calcareous schists. The Acacia area has never been drill tested. The most recent work by Esso Minerals in 1988 included soil sampling, 1:2500 scale mapping and limited ground VLF geophysical surveying. The 1988 report by Marr concluded that "the potential for a significant accumulation of massive sulphide is considered to be good" in the area of the Acacia Showings. 2000 work by Eagle Plains included contour and grid soil geochemical sampling and resampling of some of the main Acacia Showings. The results confirmed the presence of an extensive base and precious metal soil geochemical anomaly associated with a package of mafic and felsic volcanics.

More work is recommended for the Acacia property, including diamond drill testing of the Acacia Showing area. The total cost of the 2000 geological exploration work was \$22,753.86

Location and Access

The Acacia Property is located in the Kamloops Mining Division of south-central British Columbia approximately 60km northeast of Kamloops and 22km east of the town of Barriere (Fig.1). The claims are centered on the old Homestake Mine that produced high-grade silver ore intermittently between 1893 and 1984.

Access to the property can be gained from the North Thompson Valley via the Forest Lake road (Agate Bay Road) that leaves Highway 5, 2km south of Barriere. An alternate route is an active logging road that follows the west shore of Adams Lake and joins with the Scotch Creek Road to the south. This road connects with the Trans Canada Highway at Squilax, 4km east of Chase.

This area of the province forms part of the interior plateau, an irregular area of tableland ranging from 1250m to 1800m in elevation. Valleys are typically steeply incised with U-shaped cross sections. Precipitous bluffs are common locally. Tree cover consists of spruce and pine in plateau areas. Here, commercial logging operations have created excellent access by means of an extensive network of logging roads. Valley floors are occupied by small farms that raise beef cattle.

Climate is semi-arid and typical of the South-Central Interior. Summers are hot with average temperatures in the high 20's. Winters are cold with snow-cover in excess of 1m in the Plateau regions

Tenure

The property consists of 203 MGS claim units owned 100% by Eagle Plains Resources Ltc. It carries no royalties or other encumbrances. A list of all pertinent tenure details follows:

	TENURE	NUMBER	EXPIRY
CLAIM NAME	NUMBER	OF UNITS	DATE*
SIN 1	376027	20	April 24, 2002
SIN 2	376028	20	April 24, 2002
SIN 3	376037	20	April 24, 2002
SIN 4	376038	4	April 24, 2002
SIN 5	376039	20	April 24, 2002
SIN 6	376040	20	April 24, 2002
SIN 7	376041	20	April 24, 2002
SIN 8	376042	16	April 24, 2004
SIN 9	376043	16	April 24, 2004
SIN 10	376984	20	April 24, 2002
SIN 11	376985	12	April 24, 2002
SIN 12	376986	<u>15</u>	April 24, 2004
		[OTAL: 203	

* after current assessment filed

History and Previous Work

The Eagle Plains Resources Acacia Property covered by the current SIN1-12 claims has been staked ϵ number of times under different names. Historically the western part of the property was worked as the Kamad Claims and the northeastern part of the property as the Twin Claims.

The early history of the Acacia property is essentially the history of the old Homestake Mine. This mine was worked intermittently by several owners between 1893 and 1984. Production includes 2770 tons high-graded in 1926 and 1927, and 3000 tons processed by a 30 ton per day mill between 1935 and 1936.

Significant underground exploration was carried out on the Homestake deposit between 1970 and 1973 by Kamad Silver, who expanded the old workings to explore three silver-rich barite lenses. Canadian Reserve Oil and Gas continued underground exploration and development of the barite lenses in the early 1980's. They completed an 800m long adit at the 1750 level, a production raise that joined with the upper workings, 2,072m of underground drilling, and 2993m of surface drilling. O.K. Ore Processing Ltd. reopened the mine during the winter of 1983/84 and made several shipments of ore to the smelter at Trail.

The discovery of the Rea Gold volcanogenic massive sulphide lenses in 1983, and the Sar atosum massive sulphide vein deposit in 1986 shifted the focus of exploration from the Homestake Bluffs to the Plateau area. Geophysical and diamond drill programs carried out north of the current Acacia Property boundary on the Kamad 7 claim in 1983 and 1984 identified massive sulphide mineralization on the Rea Horizon. In 1985, 259146 BC Limited drilled five holes totaling 369.7m into this zone.

The property was optioned from Kamad Silver Company Ltd. by Esso Minerals Canada ir December of 1985. In 1986 Esso Minerals conducted an extensive geological, geochemical and geophys cal evaluation of the Rea Horizon on the Kamad 7 and 8 claims. This was followed by trenching and 1814 m of diamond drilling later that year. An additional 1125m of diamond drilling was completed in the same area in 1987.

Esso Minerals continued work on the Homestake Bluff area in 1987 with a 1:2500 scale geological mapping and soil sampling program along strike from the Homestake Mine, and 1899 m of diamond drilling. As part of the 1987 program, a number of old showings on the Kamad 1 and 3 claims on the south side of Sinmax Valley were rediscovered. Originally known as the Acacia showings, the occur ences consist of zinc rich massive sulphide and galena-sphalerite-calcite veins located at a contact between altered volcanics and argillites.

An extensive program by Esso in 1988 was intended to evaluate all the mineral occurrences on the Kamad property. Diamond drilling was carried out on the Kamad 7 claim (2094m) and culminated in the discovery of a small massive sulphide body (the "K7" lens). Work was also carried out on the Homestake Bluffs, Kamad 8 and the Acacia showing. Work on the Acacia showing area by Esso in 1988 set out to evaluate the nature and extent of the mineralization and to explore the surrounding area for ac ditional mineral occurrences. A 29 line km blaze and flag grid was established over the southern part of the Kamad 3 claim (The Acacia area). The grid was geologically mapped at 1:2500 scale and soil sampled. A VLF survey was also undertaken. The results of the mapping and soil sampling indicated that the Acacia showing area is underlain by a widespread base and precious metal geochemical anomaly. The best mineralization appeared to occur along the contact between a felsic volcanic and a mafic fragmental unit. Along the contact, lenses of bedded massive sulphide with pyrite, sphalerite and galena occur These are associated with sphalerite and galena bearing calcite veins thought to represent remobilized sulphides from the mineralized horizon. The felsic mafic contact was traced for approximately 2 kilometers. The 1998

report by Marr concluded that "the potential for a significant accumulation of massive sulphide is considered to be good".

Homestake Canada Ltd. acquired Esso's interest in the Kamad Property in the fall of 1989 and completed 4972m of drilling (25 holes), 785m of backhoe trenching (14 trenches) and 11km of GENIE EM geophysics on the Kamad 7 and Kamad 8 claims. An ESCAN geophysical survey was also carried out over part of the Kamad 7 claim. This work program tested the area down-dip of the K7 lens, and successfully located the Rea zone on the Kamad 8 claim. Some thin (<1m) massive sulphide intersections were obtained in the vicinity of the K7 lens. Homestake completed 2961 m of drilling between June and October of 1990, including two holes into the Inferno Zone.

The last significant work on the Kamad Property was undertaken by Homestake Canada Limited in 1991. A total of 2313 meters of NQ diamond drilling in four holes was completed, and down-hole Pulse EM geophysics was attempted in all holes with limited success. Recommendations from the program included further work to evaluate the Homestake mine area and Homestake Mine host unit, as well as further work on the Acacia massive sulphide showing area.

During the early 1980's, exploration work was also being carried out in the area of the Twin Mountam occurrence, located in the northcentral part of the Acacia Property on the SIN 2 claim block (fig.3). The Twin Mountain showing, discovered in 1936, consists of a 0.6 – 6m width Ag-Pb-Zn bearing quartz-dolomite vein hosted in a strongly foliated, ankeritized-sericitized volcanic package. The vein has an apparent strike length of approximately 2500m defined by cat trenching and a couple of small adits (Carmichael, 1981). Mineralization includes galena, sphalerite, chalcopyrite, pyrite and rare chalcocite. Most of the zone contains less than 2% combined Pb-Zn mineralization with silver values generally in the 5-25 gram per ton range. Select grab samples of vein material have returned values including 1.028 gm/t Au, 54.86 gm/t Ag, 0.23% Cu, 40.83% Pb and 7.10% Zn. The average of 30 grab samples co-lected from the Twin Mountain Zone by various operators as published in BCEMPPR Assessment Reports was 0.894 gpt Au, 28.89 gpt Ag, 6.72% Pb and 3.0% Zn (Carmichael, 1991). These samples were collected at many different locations along the Twin Zone and do not represent average grades across the width of the vein. A drill hole that targeted the Twin Mineralization returned values of 10.6 gm/t Au, 335.3 gm/t Ag, 3.13% Zn, 2.74% Pb and 0.55% Cu over 2.37 meters (George Cross Newsletter #237, 1987).

The Twin Mountain area has seen sporadic exploration work by several operators. Early exploration efforts in the early 1930's were concentrated around several small vein occurrences that were discovered in the area. Most of the work since 1936 has focused on the Twin Mountain Showing area and he Rea massive sulphide horizon northwest of the current Acacia Property boundary. In 1953 two exploration tunnels were constructed to intersect the Twin Mountain vein structure. One of the tunnels ir tersected the mineralized vein and drifting was completed along strike for approximately 60 meters. In 1969 a number of cat trenches were completed along the strike of the Twin Mountain Vein as defined by a coincident Pt–Zn soil geochemical anomaly.

The next major phase of work began in 1981 when Nevin/Sadler-Brown/Goodbrand con pleted a program of soil sampling, trenching, and geological mapping on behalf of the property owners. Apex Energy. The program extended the known strike of the Twin Mountain mineralization to the east with the exposure of a quartz-carbonate-barite vein with galena, sphalerite and minor pyrite. The vein occurred in a zone characterized by pervasive silicification. Rock samples from the zone returned values consistent with the results from samples collected along the Twin Mountain zone during past programs.

7

Following the discovery of the Rea Gold massive sulphide lens in 1983, Lincoln Resources Inc. entered an option agreement with Apex Energy Corp. to work on the Twin property. A grid was established over the property and a soil geochemical survey was carried out.

Corporation Falconbridge Copper acquired the Twin Property from Lincoln Resources in 984, intending to explore the southeasterly strike extension of the Rea zone.

They conducted a 1:2500 scale geological mapping program in conjunction with rock geochemical, and Max-Min II and VLF-EM geophysical surveys. Two diamond drillholes (DDH's AA1 and AA2) completed the program, but failed to intersect the target horizon. Corporation Falconbridge Copper terminated their option in April 1985. Lincoln Resources Inc. conducted a limited fill-in soil geochemical survey that year.

In 1986 J.D. Blanchflower undertook an extensive exploration program on behalf of Lincoln and Apex Energy. The program included reestablishment of the 1983 grid, and the addition of 15.5km of new gr d. The grid was soil sampled, rock sampled and mapped at a 1:5000 scale. Genie EM (fixed source) and trenching was subsequently completed on the Rea zone.

In December 1986 Esso Minerals Canada optioned the Twin Property from Lincoln Resources and Apex Energy. Early in 1987 Esso Minerals conducted a geophysical (VLF EM) survey over geochemical target areas identified by Blanchflower the previous summer. This was followed by 2269m of diamond drilling which resulted in the discovery of a small gold-rich massive sulphide/barite lens on the Twin 3 claim (Heberlein, 1988). This lens is believed to occur along the same stratigraphic horizon as the Rea Gold massive sulphide deposit.

During the summer of 1988, Esso Minerals drilled 1278m in 8 holes and did additional surface geophysics and geological mapping. Work was targeted on both the Rea zone and the Twin Mountain zone. No significant results were produced by this program, although the Rea zone was found to continue strongly down-dip from the Twin 3 lens.

Homestake Canada Ltd. acquired Esso's option in 1989 and did a limited amount of trenching of the Twin Mountain zone. In 1990 Homestake completed 4017m of NQ diamond drilling in nine holes, and 2235m of downhole Pulse EM geophysical surveying in six of the nine holes. Homestake continued exploration work in 1991 completing 4069m of NQ diamond drilling. The program was directed toward evaluating potential down-dip extensions of the Twin 3 massive sulphide lens and to determine if the Silver Zone stratigraphic horizon crossed Twin Property. The Silver Zone is the stratigraphic host for the nearby Samatosum vein deposit. The most significant result of the 1991 program was the identification of the Silver Zone stratigraphy in four holes. The zone had a maximum apparent thickness of 75 meters and consisted of strongly pyritized siltstone to coarse chert pebble conglomerate. The zone was highly anomalous in base and precious metals including a 20cm width intersection of stratiform massive sulphide target and is open along strike and down dip. It is believed that the Silver Horizon stratigraphy extends on to Engle Plains Resources Acacia Property.

Eagle Plains Resources staked the Acacia Property in April 1999. The claims cover the ``win Mountain, Inferno and Acacia Showing areas, as well as potential strike extensions of the Rea, Samatosum and Homestake horizons.

Geology

Regional Geology (Fig.2) (after Bailey, Paradis, Johnston and Höy 1999)

The Adams Plateau area is underlain by metavolcanic and metasedimentary rocks of the Eagle Bay assemblage of the Kootenay Terrane. The Kootenay Terrane and correlative rocks of the Yukon-Tanana Terrane farther north comprise dominantly Paleozoic sedimentary and volcanic rocks that are inferred to have been deposited on the distal western edge of ancestral North America.

The Eagle Bay assemblage described by Schiarizzia and Preto (1987) comprises Lower Cambrian to Mississippian rocks that are intruded by Late Devonian orthogneiss and Jurassic-Cretaceous granodiorite and quartz monzonite of the Raft and Baldy batholiths. Within the Acacia Property area the Eagle Bay Assemblage is contained within four west directed fault slices. The assemblage consists of clastic metasedimentary rocks (units EBH and EBQ Schiarizzia and Preto1987), mafic metavolcanic rocks and limestone (unit EBG) and structurally overlying clastic metasedimentary rocks, with minor carbonate and volcanic rocks (unit EBS), all of which are interpreted to be Cambrian in age. These are in turr overlain by Devonian-Mississippian mafic to intermediate metavolcanic and metasedimentary rocks (units EBA and EBF respectively), which are overlain by metaclastic rocks (unit EBP).

Numerous volcanogenic sulphide occurrences of the Eagle Bay Assemblage, including Rea, Homestake, Samatosum and Twin Mountain are within mafic to intermediate metavolcanic and metasedimentary rocks of units EBA, EBF and EBG (Fig.2). Regional mapping by Schiarizzia and Preto (1987), and Bailey, Paradis, Johnston and Hőy (1999), indicate units EBA, EBF, and EBP between the Samatosum and Homestake deposits are apparently right way up regionally, but are locally overturned. These are structurally overlain by mafic metavolcanic rocks of EBG and the Tshinakin Limestone Member which is assigned to Lower Cambrian age (Schiarizzia and Preto, 1987). These stratigraphic and structural relationships led to the inference by Schiarizzia and Preto of the Haggard Creek Thrust Fault, which places Cambrian rocks on Devonian-Mississippian rocks. The Samatosum and Rea deposits are located near the inferred trace of this fault.

Property Geology (Fig.3)

The Acacia Property area is underlain by northeast dipping metasedimentary and metavo canic rocks that, based on well developed graded beds (Hőy and Goutier 1986; Bailey, Paradis, Johnston and Hőy 1999) display an overall younging down section and toward the west. Hence much of the stratigraphy within this region is overturned. From oldest to youngest, the stratigraphy includes the Tshina cin limestone, mafic metavolcanic rocks, bedded cherts, mafic metavolcanic flows and volcaniclastic rocks, metasediments, and mafic to intermediate metavolcanic rocks.

Tshinakin Limestone (EBGt)

The Tshinakin limestone outcrops in the eastern portion of the map area (Fig.3). It consists dominantly of finely crystalline white to grey marble with minor dolostone, which display a buff white to grey weathered surface. The unit is generally massive with local light and dark banded laminations. At nearby Adams Lake the limestone is interbedded with calcareous chlorite schist.

Figure 2. Geological map of the Johnson Lake area, modified after Schiarizza and Preto (1987)

Mafic Metavolcanics (EBG)

This unit is composed of greenstones and chlorite schists derived from pillows, pillow breccias and feldspathic crystal tuffs. Pillows locally exceed 1 meter in length. The metavolcanics are commonly epidotic and tuffs contain crystals of feldspars less than 1 mm in diameter.

Mafic Metavolcanic Flows and Volcaniclastics (EBFmv)

The mafic metavolcanic rocks in the central portion of the map area are dominated by calcareous chlorite-sericite-quartz schists and chlorite schists derived from mafic volcanic rocks. Abundant volcaniclastic rocks and rare mafic massive flows and pillow basalts and breccias are also present. The most common rock type is a lapilli-tuff with average fragment size of approximately 4-5 centimeters. The lapilli are commonly bleached and are thought to be of similar composition to the matrix. Locally the fragments are up to bomb size as exposed at the Samatosum mine site. Fine grained chlorite schists are abundant throughout the unit. The massive flows contain calcite and quartz amygdules. Pillows are amygdaloidal, approximately 1 meter in size, and have been flattened in the penetrative cleavage plane. The entire unit is calcareous, and locally contains disseminated pyrite.

Major and trace element analysis of these mafic units indicate that they are dominantly alk.li, withinplate basalts (Hőy 1987). As most of the Devonian-Mississippian volcanic rocks of the Eagle Hay Assemblage are calc-alkaline it is postulated that the Rea and Samatosum stratigraphy represents deposition in a rifted volcanic arc (Hőy 1987).

Diorite sills or dykes observed within this unit may have played a role in sulphide mineralization. The Twin Mountain sulphide deposit occurs within pyritic, calcareous chlorite-sericite-quartz schists and chlorite schists derived from mafic volcanic rocks.

Metasediments (EBF/EBP)

The metasediments are phyllites and quartz-sericite schists thought to have been originally fine-grained argillites and quartz wackes. A quartz-lithic pebble conglomerate at the stratigraphic top of this sequence is composed of clasts of chert, chlorite schist, and vein quartz. This conglomerate unit appears to thicken to the northwest beyond the map area.

Near the Sarnatosum and Rea deposits, the metasediments are part of a structurally complex sequence referred to as the "Mine Series". The Samatosum and Rea deposits are located within the metasediments near the contact with the structurally overlying mafic volcanic rocks. Here, the metasediments are highly strained and sericitized +/- clay, silica and carbonate alteration. They consist of carbonaceous black argillites, sericitized yellowish argillites containing chert lenses, and pyrite-rich silicified grayish argillites. Some of the beds show graded bedding and rip-up clasts. Locally distributed massive to brecciated chert within the metasediments appears to be spatially associated with base-metal sulphides.

Felsic Metavolcanics (EBFfv)

The felsic metavolcanic unit is composed of white weathering, beige quartz-sericite schists derived from quartz-feldspar porphyritic rhyolite, quartz-feldspar-crystal-lithic tuffs and pyroclastics. The feldspar component of this unit is mainly albitite. The volcanics are bounded to the east by quartz-lithic pebble conglomerate and appear to be interlayered with phyllite and quartz wackes, which commonly contain several percent cuhedral pyrite.

Mafic to Intermediate Metavoicanics (EBFin)

Chlorite schists derived from mafic volcaniclastic rocks are located in the western and cen ral part of the map area. The most common rock type is mafic volcanic breccia containing 30-cm fragments. In the easternmost section of this unit, the metavolcanics include fragments of felsic volcanic rocks that locally account for 65 to 80 percent of the rock.

Structure and Metamorphism

The structure of the Acacia Property area is dominated by a series of northwest trending, shallow dipping, tight overturned folds, with penetrative axial planar cleavage defined by lower to middle greenschist metamorphic minerals. These folds are west-verging, have parallel axial traces to, and are likely related to a series of southwest-directed thrust faults (Schiarizzia and Preto, 1987). Bedding c eavage relationships and stratigraphic top determinations indicate that the western limbs of these folds are overturned. Parasitic folds plunge at shallow to moderate angles to the northwest.

The penetrative cleavage is crenulated by a second cleavage. The crenulation lineation trends northwest and appears to have formed in conjunction with northeastward trending low amplitude folds (Schiarizzia and Preto, 1987).

Graded beds are the most commonly observed indicators of stratigraphic tops. They are a series of fine sandy layers, which abruptly overlie muddy layers, and grade up into mud. In the coarser units, this gradation proceeds from pebble conglomerate to coarse sand. Rare sedimentary features such as rip-up clasts, and scour-and-fill structures have also been observed. Hőy (1987) interpreted this as a turbidite sequence developed on the distal continental margin in deep marine conditions during rifting.

Mineralization

Prospectors and geologists have long recognized the Johnson-Adams Lake area as a favorable region for base-metal sulphide deposits. Several significant mineral occurrences including the Samatosum, Rea, Homestake and Twin Mountain are located nearby or within Eagle Plains Resources Acacia Property boundary.

<u> </u>	Tonnage	Au(g/T)	Ag g/T)	Cu%	Pb%	Zn%
Samatosum	766,000	1.6	833	1.1	1.4	3.0
Rea	268,000	6.5	73	0.6	2.1	2.3
K7	218,000	7.4	69	0.5	6.1	7.3
Twin(drill	4.1 meters	12.8	108	0.2	1.5	0.6
holes	2.7meters	8.6	259	0.6	2.8	3.2
Homestake	250,000	0.5	202	0.3	1.2	2.2

Table 1 MINERAL DEPOSIT DATA

Twin Mountain

The Twin Mountain occurrence consists of galena, sphalerite, chalcopyrite and pyrite mineralization within carbonate-quartz veins, and sulphide barite lenses. The host rock consists of sericitized and silicified schists derived from mafic volcanic flows and volcaniclastic rocks. The zone has an apparent strike length of approximately 2500m. A drill hole that targeted the Twin Mineralization returned values c f 10.6 gm/t

Au, 335.3 gm/t Ag, 3.13% Zn, 2.74% Pb and 0.55% Cu over 2.37 meters (George Cross Newsletter #237, 1987).

Inferno Zone

The inferno zone represents a potential volcanogenic massive sulphide horizon and occurs near the top of an intensely hydrothermally altered pile of felsic volcanic rocks known as the Homestake schust. The Inferno Zone is the stratigraphic equivalent of the Homestake deposits, and lies about 2 km to the northwest of them. On surface, the zone consists of a 50cm thick bed of massive barite, containing high values in silver, lead and zinc. This barite unit occurs at the contact between a quartz-rich, pyritic sericite schist, and an overlying, less altered quartz eye bearing felsic volcanic. This horizon was intersected by diamond drillhole K90078. Geochemical analysis of the drill core indicated potassium enrichment and so dium depletion in the stratigraphic footwall to the zone, as well as enrichment in base and precious r tetals. These features are typical of footwall alteration related to VMS deposits.

Homestake

The Homestake deposit is hosted by quartz-talc-sericite schists, sericite-quartz-phyllite and sericitechlorite-quartz phyllite derived from felsic to intermediate volcanic rocks. The deposit lies on the southern limb of a northwest trending, tight, overturned syncline. An east dipping fault is inferred to set arate the felsic to intermediate metavolcanics and the more mafic volcanics to the east.

Several barite lenses with variable amounts of sulphides occur near the top of a bleached, rustyyellowish weathered zone of pyritic sericite-quartz schist interpreted to be a highly altered felsic tuff. The schistosity and compositional layering dip shallowly to moderately to the northeast. The main mineralized areas occur as two tabular horizons separated by 4 to 5 meters of schist. The largest, called the "barite bluff", is 5 to 6 meters wide on surface and contains most of the sulphides. A lower horizon, 1 to 2 meters thick, is banded with only minor sulphides. The barite sulphide lenses have been traced for several hundred meters.

The main horizon consists of massive to banded barite, metallic minerals and quartz-sericite cut by veins and lenses of quartz. Metallics include tetrahedrite, galena, sphalerite, pyrite, chalcopyrite, argentite, native silver and trace ruby silver and native gold. The deposit sits within an extremely large scricite envelope.

Several small sulphide lenses, known as the Victory group, were intersected by old workings at 600, 1700, and 2100 meters southeast of the Homestake deposit (Property File-Stevenson, 1936b) Twelve hundred meters northwest of the Homestake deposit, old workings intersected several conformable quartz lenses with pyrite, chalcopyrite, galena and sphalerite. These showings are known as the Silver King and Silver Queen and are located near the Inferno Zone showing.

The Homestake Mine has a probable reserve of 249,906 tonnes of 226.6 gm/T silver, 0.58 gm/T gold, 36.7 percent barite, 0.28 per cent copper, 1.24 per cent lead and 2.19 per cent zinc (Statement of Material Facts 06/06/86, Kamad Silver Company Limited).

<u>Rea</u>

The Rea deposit occurs on the overturned eastern limb of a northwest-trending syncline. The stratigraphic footwall of the deposit consists of metamorphosed mafic tuffs and chert, which show service-quartz-carbonate alteration, likely representing footwall alteration of a mafic volcanic precursor. Two massive sulphide lenses, one of which contains a barite cap, are stratigraphically above this herizon and are overlain by a thin mafic tuff. These are then stratigraphically overlain by a several hundred meter-thick.

sequence of argillites and minor tuffs, which grades into a quartz-pebble conglomerate at the tcp. Sulphides include pyrite, sphalerite, galena, arsenopyrite, chalcopyrite and tetrahedrite. These are fine to medium grained with banded breccia textures in the massive sulphide lenses. Gold and silver are associated with the massive sulphide and barite. Exploration of the Rea Zone has shown that it can be traced along strike for seven kilometers and hosts at least five massive sulphide lenses (Carmichael, 1991).

Samatosum

The Samatosum deposit consists of a highly deformed quartz vein system containing massive to disseminated tetrahedrite, sphalerite, galena and chalcopyrite. It lies within altered and deformed metasediments close to the contact with structurally overlying mafic volcaniclastic rocks. According to Pirie (1989), structural evidence indicates that the sequence is inverted and that the deposit occurs on the overturned limb of a recumbent syncline. The "Mine Series" metasedimentary sequence consists of carbonaceous black argillites, sericitized yellowish argillites containing chert lenses, and pyritic silicified grayish argillites. Some of the beds show grading and rip-up clasts. The metasediments are highly strained and altered with pervasive quartz-pyrite-sericite-fuchsite-carbonate-alteration best developed along the metasediment-metavolcanic contact.

Detailed Geology of the Acacia Area (Fig.4) (after Marr 1989)

The Acacia Showing area consists of at least eight massive sulphide and vein occurrences and was the focus of the 2000 Eagle Plains Resources exploration program. The detailed geology and descriptions are after Marr 1989.

Stratigraphy

The Acacia area occupies a portion of the southern slope of Sinmax Valley, immediately opposite the Homestake Mine. The area is underlain by a rocks of the Homestake (Units EBA, EBG, EBS fig. 4) and Acacia Assemblages (Units EBFmv and EBP, fig.4) that form part of the Devono-Mississippi in Eagle Bay Assemblage. Younging directions are ambiguous; however, structural (SS/S0 intersections from calcarecus argillites) and stratigraphic indicators (graded bedding) suggest that the sequence may be at k ast partially overturned to the southwest.

The geology of the Acacia area is shown in Fig.4 and descriptions of the map units are given below and in Table 2 on following page.

EBA – Felsic Volcanic Rocks:

A felsic volcanic sequence estimated to be approximately 150m in thickness, underlies much of the hillside between Acacia and Delores Creeks. Best exposures occur in cliff outcrops at the bottom of the Delores Creek valley. The felsic unit is truncated to the east by a fault that follows the Delores Creek valley and juxtaposes a monzonitic intrusion. Westerly, the felsic rocks lie in conformable contact with a relatively thin mafic volcanic unit (EBG-fig.4).

Where exposed, the rocks consist of light brown to grey, quartz-eye bearing, quartz-sericite schists or phyllites that contain variable amounts of ankerite, chlorite and disseminated pyrite. These rocks are interpreted to be altered felsic tuffs (based on preserved fragmental textures) and are interpreted to be part of the Homestake Schist.

TABLE 2 DESCRIPTION OF LITHOLOGICAL UNITS-ACACIA AREA

	Approximate Thickness		•	
Lithologic Unit	<u>Kange (m)</u>	Composition		
l Felsic Volcanics	1 - 150	qz, ms, pf, ± cl, ca, ak sulphides: py, trace cp	Strongly foliated or rarely massive 5%, 1 - 4mm quartz- eyes locally	Comprises a major part of the Acacia Property; comparable to the Homestake schist; locally anomalous in Cu-Pb-Zn-Ag; interlayered mafic tuff or argillites common.
2 Calcareous Mafic Volcanics	20 - 50	cl-ca ± bi, ak, ms sulphides: py, sl, gl, cp	Weakly to strongly foliated; calcite vein stockworks in places	Massive py, trace cpy found at the lower contact with feisic volcanics (Unit 1); semi-massive py, sl pods in upper part near contact with graphitic argillite; also sl, gl, bearing calcite veins; footwall mafics.
3 Calcareous Argillite	100 - 120	gp-cl-ca~qz ± ms, ak	Strongly foliated; friable with lenticles of quartz-wacke	No anomalous base or precious metal values. Hanging wall sediments.
4 Ankerític Mafic Volcanic	1 - 10	cl-ak ± ms sulphides: 1 - 2% disseminated py	Moderately foliated or massive with 5 - 30%, 1 - 5mm large ankerite prophyroblasts	No anomalous base or precious metal values; interlayered with quartz-wackes (Unit 5)
5 Quartz-wacke/ Argillite	7	qz-ms-ak-cl- gra sulphides: py, sl, gl	Massive to strongly foliated; good granular texture preserved locally	Fractures in brittle massive quartz-wackes are healed with quartz-weins and locally contain pods of massive S1 and ga; graphitic argillites are interlayered with foliated quartz- wacke in the lower part of Unit 5.
6 Monzonite	7	pf-kf-cl-qz; mt locally sulphides: disseminated py	Massive to foliated equigranular rock	No anomalous base or precious metal values; contact with volcanic rocks is sharp and subvertical.

Abbreviations: qz = Quartz; ms = Sericite; c1 = Ghlorite; pf = Plagioclase Feldspar; kf = Potassium Feldspar; ca = Galcite; gp = Graphite; ak = Ankerite; py = Trite; cp = Ghalcopyrite; sl = sphalerite; mt = magnetite

.

EBG – Mafic Fragmentals:

EBG conformably underlies the felsic sequence and is exposed in a series of cliffs that parallel Acacia Creek on its east side. The sequence consists predominantly of calcareous mafic fragmentals (hpilli and crystal tuffs) and their altered equivalents (chlorite schist and ankerite-chlorite schist). Schistose rocks (altered) are present throughout the section. They are typically medium to dark green in colour and display a moderate to strong foliation. In hand specimen they consist of chlorite, epidote, calcite, biotite, sericite and carbonate (calcite and ankerite). Calcite-vein stockworks occur in many exposures, while ankerite is locally present as a pervasive or spotty alteration. Sericite occurs at several exposures, particu arly near the lower (structural) contact with a calcareous argillite unit (EBS, fig.4).

EBS - Calcareous Argillite:

Calcareous argillites are exposed as a narrow north trending strip low on the slope to the cast of Acacia Creek (fig.4). This unit is conformable with the structurally overlying mafic volcanics of EBG. The contact between these units is gradational, suggesting that the stratigraphy may be inverted. True thickness of this unit is unknown in the Acacia area. To the south of the grid, similar rocks are exposed over a 150 to 200m stratigraphic interval, implying that a considerable thickness of the unit is unexposed.

In outcrop, the argillite has a distinctive zebra-striped appearance that is caused by alternating layers of black graphitic argillite and white calcite stringers, lenses and 'beds' (up to 40%). Locally, chlorite is a major constituent, suggesting that the rock is at least partly of volcanic provenance. Lenses (houdins?) of massive, grey, sugary textured quartz with accessory sericite and pyrite are widespread in EBS. These may represent deformed quartz veins or quartzitic beds. Similar pods of massive ankerite are also common. Best examples outcrop in cliff exposures on the east side of Acacia Creek at the north end of the Acacia Showing area. These rocks strongly resemble the calcareous argillites of the Sicamous Formation exposed on the Adams Plateau to the east of Adams Lake.

EBFmv - Chlorite Schists and Ankeritic Mafic Volcanics:

EBFmv is exposed on the west side of Acacia Creek (fig.4) where it occurs as interlayers in a thick quartzite and quartz-wackes sequence (EBP). In comparison to EBG, EBFmv is typically thinner and significantly more ankerite-rich. The ankerite occurs as distinct porphyroblasts that give the mafic rocks a spotted texture. As it is poorly exposed the true extent of the EBFmv is not known: however, it appears to occur as narrow intervals in the sedimentary sequence. Individual mafic 'beds' may represent tuffaceous deposits into a sedimentary basinal environment. There is no evidence to suggest that Units FBG and EBFmv are related. Fragmental textures have not been observed in these rocks.

EBP – Quartz-wacke with Minor Argillite:

EBP consists of an interbedded succession of massive quartz-wacke, quartzite, sericite-quartz phyllite and graphitic (chloritic) argillite. These rocks underlie grid area to the west of Acacia Creek and are best exposed at the southwest part of the map area (fig.4). The quartzites and wackes can be distinguished on the basis of quartz content. These rocks make up 80% of EBP. They are typically brown to grey, granular rocks consisting primarily of 50-90% subangular to rounded, sand-sized quartz grains in a fine-grained quartz, plagioclase and sericite matrix.

Sericite-ankerite-quartz phyllites (altered sandstone) comprise 15% of the section and are best exposed in cliffs along the west side of Acacia Creek south of the baseline. Here the phyllite contains massive, conformable quartz ankerite lenticles that are interpreted to be boundinaged veins. similar to those seen in the calcareous argillites. Graphite-chlorite schist (mafic argillite) make up less than 5% of EBP. Where present, they are thirdy interlayered with the phyllites. Unlike the argillites of EBS, these rocks do not contain any appreciable amounts of calcite.

Mz – Monzonite:

Unit Mz consists of a monzonite stock that is exposed at the eastern map area (fig.4). At exposures along Delores Creek, the faulted contact between the monzonite and adjacent volcanic rocks is exposed.

The monzonite is typically massive, equigranular, and consists of alkali feldspar and chlorite with accessory quartz. The relative proportion of alkali feldspar to plagioclase has not been determ ned. In places, disseminated pyrite and magnetite are present in the monzonite.

Structural Geology

Structurally, the Acacia grid area is a moderately dipping homoclinal sequence. Rock units strike at approximately 120° and dip at moderate angles (25 to 40°) to the northeast. Foliation (fig.4) parallels bedding contacts and have an average strike of 116° and dip of 40° NE. Although this parallel relationship of bedding to foliation implies isoclinal folding, no macroscopic folds have been observed. Mi tor folds with wavelengths in the tens of centimeters to metre scale have been mapped at several localities. All minor folds axes have consistent plunges of 30 to 40° to the east-northeast.

A west-dipping normal fault is interpreted to cross the grid in a northerly direction. The trace of the fault follows the east fork of Acacia Creek and the main creek valley to the north. Although the fault is not exposed, its position has been constrained with a high degree of confidence using the outcrop distribution of the units. At the north end of the Acacia area, different rock units are exposed on either sice of the creek. Considering the regional strike of the units, this observation can only be explained by a fault offset. At the south end of the Acacia area, the interpreted fault separates Acacia Assemblage rocks (units EBFrav and EBP) from Homestake Assemblage rocks (units EBA, EBG, EBS). Normally, Homestake Assemblage rocks structurally overlie the Acacia Assemblage (as seen on the Homestake Bluffs) but here they occur at the same structural level implying a down-throw to the west.

To the north of the Acacia area, the same fault is exposed on the Homestake Bluffs where it visibly offsets the Homestake Schist unit with the same sense of movement. The down-throw is estimated to be in the order of 150m.

Another fault is exposed in the Delores Creek at the east end of the grid. This steep (70 to 80°) westdipping structure juxtaposes the monzonite and altered felsic volcanic rocks of EBA. The displacement on this fault is interpreted to be east-side-down based on an observed offset of the Homestake Schist to the north.

Mineralization (Table 3 following)

Eight mineral occurrences are present on the Acacia grid (A1 to A8 - fig.4). Most of these zones are exposed in the Acacia Creek valley or adits cut into the adjacent southeast hillsides. The best mineralization occurs in the calcareous mafic volcanics (unit EBG) as stratiform massive sulphides or remobilized sulphides in epigenetic veins. Epigenetic vein mineralization is also present in felsic rocks of Unit EBA and in the quartz-wackes of Unit EBP. Characteristics of the mineral occurrences are given in Table 2 on following page.

TABLE 3 : ACACIA AREA MINERAL OCCURRENCES AFTER MARR 1989

Hineral					ICP And	lysis (P	PN)	
Joournence	Туре	Host Rock	Sulphides Present	Cu	Pb	Zn	Ag	Comments
A1-1	quartz-ankerite vein	Qz-Ms-Schist (felsic_tuff7)	Disseminated 3% gl, 2% py, 1% sl, 1% cp	941	2461	1250	12.3	10 to 30cm thick quartz-ankerite veins host mineralization; they are also anomalous in Bi (23 PPN) possibly related to the nearby monzonite intrusion.
A1-2	replacement?	ak-ms-cl schist (mafic tuff?)	50% py, 1% cp in conformable stringers (2 - 10cm)	2563	896	276	13.1	Massive sulphide stringers are also enomalous in Bi (34 PPM) and As (134 PPM) possibly related to nearby monzonite intrusion.
A2	replacement? stratiform	ca-cl schist (mafic volcanic)	5 - 40% py, 1% cp disseminated or semi- massive layers	739 533	2 2	48 52	0.2 0.1	Sulphides occur as disseminations or in 0.5 to 1cm thick conformable layers; possibly syngenetic sulphide deposition at felsic-mafic contact.
13	stratiform	ca-ci-schiat (mefic volcanic)	95% py, 1% cp, 2m thick messive sulphide layer	1205 Massiv 1281	26 re py bou 28	54 Ider to 91	0.6 south 0.1	The messive sulphide layer is conformable with a felsic-metic volcanic contact; the sulphide is also anomalous in Co (163 PPM) and No (36 PPM).
A4	stratiform with epi-genetic calcite veins	ca-c(-schiat (mafic volcanic)	Lenticular semi-massive sulphide pods of 95% py, 5% sl; one 15cm thick massive st seem; 10% sl, 5% gl in calcite veins	Hassiv 0.08% Banded 0.04% Hassiv 0.10% Calcit 188 0.02%	re sphale 0.96% sphaler 0.11% re pyrite 0.07% e vsin 17177 16.57%	rite 19.2% (ite/pyri 1.45% 0.45% 47878 6.65%	8.5 te 3.6 <u>1.6</u> 140.8 160.5	Lenticular semi-massive py-sl pods occur within calcareous mafic volcanics in close proximity (2 - 3m) to a mafic volcanic/argillite contact. The best exposure of the mineralization is in the north adit. Assays of talus dump samples yield high 2n grades. Calcite vein rubble also from the adit dump are anomalous in Pb-Zn-Ag and also Sb (155 PPH). Ag content both in veins and stratiform sulphides is a function of galena content. The calcareous mafic volcanic becomes sericitic towards the contact with calcareous argillite.
AS	stratiform with epigenetic quartz-calcite veins	ca-cl-schist (mafic volcanic) gp-cl-schist (argiliite)	Semi-massive py pods in mafic volcanic, g(, s), cp, py in cross- cutting quartz-calcite veins in arcillite	quartz 626 0.06%	-celcite 2099 0.23%	vein 12436 1.25%	4.7 4.5	Mineralization in proximity to mafic volcanic-argillite contact; semi-messive py pods observed in 10m long adit; walls have been previously chip sampled; mineralized quartz-calcite veins in argillite found in 5m deep trench uphill from the adit.
A6	remobilized	ca-cl-schist (mafic volcanic)	5 - 20% disseminated to semi-massive pyrite in stringers	65	9	62	0.1	Mefic volcanic is silicified locally, pyrite is probably remobilized; massive py boulder found downhill from A5 is anomalous in Cu; probably representative of massive py at the feisic-mafic contact (ie. A5).
A7 & A5	fracture-filled by quartz-vein	quartz-wacke or quartzite	sl and gl in subvertical quartz-veins	7 23 50 0.012 19 4 0.012	3419 1656 211 0.02% 423 17691 6.43%	156 501 34937 4,52% 3917 99999 18,82%	3.6 <u>1,5</u> 0.1 <u>0.5</u> <u>0.5</u> 30.8 34.5	Cross cutting quartz-veins (1 - 25cm) fill fractures in brittle quartzites overlain by ductile ak-cl schist; veins are typically barren of sulphides but in places contain massive sl and gl along thin fractures (1 - 6cm); sulphides are best exposed at the A8 locality; sliver content of such veins is directly proportional to galena content.

#wwwwintinns- gx = Quartz; Rs = Sericite; cl = Chlorite; pf = Plagioclase Feldspar; kf = Potassium Feldspar; ca = Calcite; gp = Graphite; ak = Ankerite; py = Pyrite; cp = Chalcopyrite; sl = sphalerite; mt = magnetite

2

Vein and Replacement Type Mineralization (Locality A1):

At locality A1 (fig.4) sulphides are hosted by quartz-ankerite veins and an ankerite-sericite-chlorite schist. Quartz-ankerite veins occur as 10-30cm wide boudins in quartz-sericite schist (felsic tu f). The veins contain disseminated galena, sphalerite, chalcopyrite and pyrite. ICP analysis of a single vein yieklec low Cu-Pb-Zn-Ag values. Anomalous Bi in the vein could have been introduced from the adjacent monzonite intrusion.

Sulphide mineralization is also hosted by an ankerite- sericite-chlorite schist (mafic tuff?) The mafic schist has a minimum exposed thickness of 2m and contains centimeter-scale, semi-massive pyrite-chalcopyrite stringers. The stringers are weakly anomalous for copper, bismuth and arsenic.

Stratiform Sulphides at Felsic-Mafic Volcanic Contact (Localities A2 and A3):

Stratiform sulphides spatially related to a felsic-mafic volcanic contact are present in cliff exposures along the east side of the Acacia Creek Valley (A2, A3; fig.4).

At locality A2, 0.5 to 1cm thick, conformable semi-massive layers, composed of pyrite and chalcopyrite occur in calcareous mafic volcanics near the contact with felsic volcanics. At locality A3, a 2m thick conformable massive pyrite and chalcopyrite layer occurs directly at the felsic-mafic volcanic contact. In the extreme southern map area, massive pyrite boulders occur 275m downhill from the inferred felsic-mafic contact (fig.4). Everywhere the sulphide was sampled, it was found to be weakly anomalous in Cu. The felsic-mafic volcanic contact is most likely the source of anomalous copper values in soils at the northeast part of the grid.

Stratiform Sulphides and Sulphide Veins at Mafic Volcanic-Argillite Contact (Localities A4, A5, A6):

Stratiform sulphides and associated mineralized veins near a mafic volcanic (Unit 2)/argillite (unit 3) contact were examined in adits and outcrop exposures (A4, A5, A6; fig.3).

Semi-massive pyrite-sphalerite lenses hosted by calcareous mafic volcanics are exposed in the north adit (A4 - fig.4). The sulphides occur within 1m of a lithological contact between the calcareous mafics and calcareous argillites. Close to this contact the mafic volcanic is highly altered to calcite-sericite schist. Locally, pyritic chert lenticles (fragments?) were observed in sericite schist. Grab samples of the sulphides from the dump outside the adit returned high Zn values (table 2). The banded nature of sulph des in some samples signifies a stratiform, syngenetic origin.

Calcite veins up to 1m in width are exposed in the altered mafic volcanic rocks above the portal and in the adit walls. Vein samples from the dump contain coarse-grained sphalerite and galena with lesser pyrite and chalcopyrite. They returned highly anomalous Pb-Zn-Ag-Sb values (table 2).

The south adit (A5-fig.4) penetrates 10m into the hillside and intercepts the same mafic volcanic -argillite contact. Here, pods of semi-massive pyrite occur in the mafic volcanic at the same level as the sulphide pods in the north adit. No sphalerite was seen in the sulphide pods. A 5m deep trench directly uphill (southeast) from the adit exposed a mineralized quartz-calcite vein in graphite schist. The thin (cm's) vein fills a vertical fault in the schist and contains galena, sphalerite, chalcopyrite and r yrite. Highly anomalous Zn values were obtained from the vein. Pb and Ag values were weak (table 2). A significant pyrite occurrence in calcareous mafic volcanics was observed to the south of the adit showings (A6, Fig.4). At this locality, pyrite occurs as disseminated or semi-massive stringers. These were found to contain only background metal values (table 2).

Sulphide Bearing Quartz-veins in Quartz-wackes Localities A7 and A8:

Mineralized quartz-veins in massive quartz-wacke were discovered on the west side of Acacia Creek (A7, A8, fig.4). Samples from both occurrences contained anomalous Pb-Zn-Ag values (table 2). The abundance of silver in such veins is directly proportional to the amount of galena present.

The best exposure of these veins is at locality A8, where fracture openings between house sized, slump blocks provide a 5 to 10m vertical exposure.

Vein mineralization occurs in a dark grey, sugary textured, massive, recrystallized quartz-wacke bounded below and above by narrow shear zones. Although quartz-veins are abundant throughout the quartz-wacke, mineralization occurs locally in the form of massive sphalerite and galena along 1 to 5cm wide, subvertical fractures in the quartz-veins. Sphalerite is disseminated throughout the quartz-wacke. Quartz-veins or mineralized fractures do not occur in the underlying or overlying sericite-ankerite schist.

2000 Work Program (Fig.3)

The objectives of the 2000 Eagle Plains Resources field program on the Acacia property were to better define the geochemical signature of the units that host the Acacia showings. A sample grid was established south of the area covered by the 1988 Esso Minerals soil sampling program. The lines were sampled at 50 meter spacing E-W, with a line spacing of 100 meters N-S. Contour soil sample lines were run along lines from west of Acacia Creek to east of Delores Creek. The lines were sampled at 25m spacing, with 100 meters elevation between lines. Silt samples were collected along both the Acacia and Delores Creek drainages. Rock samples were collected from the main showings in the Acacia Creek area.

A total of 518 soil samples, 12 silt samples and 8 rock samples were collected during the 2000 work program. All samples were shipped to Bondar – Clegg Canada Limited in North Vancouver, B.C. where they were analyzed for 30 element ICP using aqua-regia digestion. High-grade samples were further fire assayed. All samples were collected, handled, catalogued and prepared for shipment by Toklat Resources and Eagle Plains Resources staff. A total of 24 man-days were spent on the property.

All exploration work was carried out in accordance to Ministry of Environment, Ministry of Mines and WCB regulations.

Total expenditures by Eagle Plains Resources on the property in 2000 were \$22,753.86

2000 Program Results (Fig. 4)

Geochemistry

2000 soil geochemical sampling confirmed the presence of an extensive base and precious metal geochemical anomaly associated with a package of felsic and mafic volcanic rocks. The anoma ous geochemical values cover a roughly north-south trend and are generally parallel to and best developed along lithological contacts between and within felsic volcanic, mafic volcanic and calcareous argillite rocks. The anomalies also appear to occur in the areas of known sulphide mineralization and ir many cases outline anomalous zones on the order of 100-200 meters along sample lines. The anomalous areas returned high geochemical values in Cu, Pb, Zn, Ba, As, Ag and Au. Among the samples collected that returned values greater than 95th percentile over multiple stations were:

Line C700 0+00 – 2+00E : average 344ppm Cu / 81ppm Pb / 493ppm Zn / 30ppm As / 7 .ppm Ba Line C800 2+75E – 3 +50E: average 79ppm Cu / 22ppm Pb / 513ppm Zn / 8ppm As / 13 8ppm Ba Line C900 1+00E – 1+50E: average 117ppm Cu / 116ppm Pb / 320ppm Zn / 16ppm As / 482ppm Ba Line C1000 6+75E – 7+75E: average 123ppm Cu / 71ppm Pb / 319ppm Zn / 16ppm As / 140ppm Ba

High gold values include Line 1+00N 4+50W 47ppb Au, Line 8+00N 4+50W 32ppb Au and Line C600 11+00W 34ppb Au.

Silt sampling of the Acacia and Delores Creek drainages returned anomalous values for seven of the twelve samples taken. The anomalous samples were enriched in Cu, Pb, Zn, Ba, As, Ag and Sr.

Rock samples collected in the area of the main Acacia showings returned high base and precious metal values in seven of the eight samples collected. Anomalous samples include:

TTAC00R03: 4.4gm/T Ag, 141ppm Cu, 191ppm Pb, 33.75% Zn, 1284.3ppm Cd, 857ppm W TTAC00R05: 3.2gm/T Ag, 230ppm Cu, 191ppm Pb, 13.45% Zn, 330ppm W TTAC00R06: 191.3gm/T Ag, 842ppm Cu, 22.29% Pb, 6.72% Zn, 155ppm W

Conclusions and Recommendations

The Acacia Property area is underlain by a sequence of volcanic and metavolcanic and metasedimentary rocks that host a number of base and precious metal deposits, as well as numerous base and precious metal showings. The property consists of 203 claim units roughly centered on the historic Homestake Mine crown grants. The stratigraphy covered by the claims hosts the nearby Rea Gold and Samatosum deposits, as well as the Homestake schist. The Rea and Samatosum horizons, known to host multiple massive sulphide lenses and small deposits, have been traced to the current Acacia property boundary and form a potential exploration target. The Twin Mountain Zone occurs on the eastern part of the Acacia Property. The Twin Mountain occurrence consists of galena, sphalerite, chalcopyrite and pyrite mineralization within carbonate-quartz veins, and sulphide barite lenses. Past operators have traced the mineralization over a strike length of 2500 meters using soil sampling, trenching and limited diamond drilling. The Inferno Zone occurs near the western part of the Acacia Property and represents a potential volcanogenic massive sulphide horizon. It occurs near the top of an intensely hydrothermally a tered pile of felsic volcanic rocks known as the Homestake schist. The Inferno Zone is the stratigraphic equivalent of the Homestake deposits. Geochemical analysis of Inferno Zone drill core by past operators indicated potassium enrichment and sodium depletion in the stratigraphic footwall to the zone, as well as enrichment in base and precious metals. These features are typical of footwall alteration related to VMS deposits.

The Acacia Showing area consists of at least eight massive sulphide and vein occurrences and was the focus of the 2000 Eagle Plains Resources exploration program. Results from the program were very encouraging and outlined well developed base and precious metal soil geochemical anomalies associated with a package of felsic and mafic volcanics. The Acacia Showing area has never been tested by diamond drilling.

Further work is recommended for the Acacia Property. The area of coincident soil geochemical anomalies, prospective volcanic stratigraphy and the better massive sulphide showings in the Acacia area should be tested with diamond drilling. Three possible drill collars are shown in Fig. 4. Mapping and structural work by Esso Minerals in 1988 indicates that the general strike of the rocks in the Acacia area is 116-120° with dips in the range of 25 to 40° to the northeast. The holes should be collared to cross the lithologic contacts between the felsic, mafic and calcareous argillites that appear to host the geochemical anomalies. The holes should be drilled at an azimuth of 210°. An initial hole should be collared at -60° dip and followed up with a shallower hole(-45°) if warranted. The drill collar locations shown on Figure 4 should be ground truthed to determine local bedding-foliation measurements, and the collars may have to be moved depending on local topography. The continuous nature of the geochemical anomalies should allow for some flexibility in spotting the hole collars. The drill program should be helicopter supported using a medium sized heliportable drill capable of depths of 500 meters of thin wall BTW core drilling

The Homestake Horizon, the extensions of the Rea and Samatosum horizons and the Twin mountain occurrence also are attractive exploration targets. Future work to assess these targets should include e comprehensive compilation of all past data.

A budget for the proposed work follows:

PERSONNEL: 40 man days @ \$250.00/day	\$10000.00
DIAMOND DRILLING: 4000 feet @ \$15/foot (all-in)	\$60000.00
ANALYTICAL: 500 drill core samples @ \$10.00/sample	\$5000.00
TRANSPORTATION:	
4WD Vehicle: 20 days x \$50.00/day x 1 vehicles	\$1000.00
Mileage: 3000 km x \$.20/km	\$600.00
5 ton trailer: 20 days @ \$50.00/day	\$1000.00
FUEL:	\$500.00
EQUIPMENT RENTAL AND SUPPLIES	\$1500.00
MEALS AND ACCOMMODATION	\$3000.00
CAMP EQUIPMENT RENTAL: 0.5 mo. @ \$500.00/mo	\$500.00
HELICOPTER CHARTER: 8 hours @ \$1000.00/hr	\$8000.00
MISCELLANEOUS:	<u>\$1000.00</u>
SUBTOTAL:	\$92100.00
10 % contingency:	\$9210.00
•	

TOTAL: \$101310.0)

References

BAILEY, SEAN L., PARADIS, S., JOHNSTON, STEPHEN T., AND HOY, T., 1999: Geologic Setting of the Devonian-Mississippian, Rea and Samatosum VMS Deposits of the Eagle Bay Assemblage, Adams Lake Area, South Central British Columbia; in BCMEMPR Geol. Fieldwork, 1999, Paper 2000-1.

BC MINISTRY OF MINES: Annual Report, 1936, p. D36.

BLANCHFLOWER, J.D., 1986: Geologist, Geological and Geophysical Report on the Twin Property. Private Consulting Report for Lincoln Resources Inc. and Apex Energy Corp., 41pp.

CARMICHAEL, R.G., AND BOZEK, J., 1990: 1989 Final Report on the Kamad Claims; Homestake Mining (Canada) Limited

CARMICHAEL, R.G., 1990: 1990 Final Report on the Twin Claims; Homestake Canada Limited

CARMICHAEL, R.G., 1990: 1990 Final Report on the Kamad Claims; Homestake Canada Limited

CARMICHAEL, R.G., 1991: 1991 Final Report on the Kamad Claims; Homestake Canada Limited; BCMEMPR ASS.RPT # 22389

CARMICHAEL, R.G., 1991: 1991 Drill Report on the Twin 1-3 Claims; Homestake Canada Limited

CROFT, S., SADLIER-BROWN, T., and FAIRBANK, B., 1981: A Report on a Geological and Geochemical Survey of the Twin (1-3) Claims, Kamloops Mining Division, BC; A Consulting Report Prepared for Apex Energy Corp., 19 pp.

HEBERLEIN, D.R., 1987 : FAME Report on the 1987 Kamad Property Diamond Drill Program; Esso Minerals Canada

HEBERLEIN, D.R., 1988: 1987 Final Report on the Twin 1-3 Claims; Esso Minerals Canada; BCMEMPR ASS.RPT # 16989.

HEBERLEIN, D.R. and CARMICHAEL, R.G., 1989: 1988 Drilling and exploration report on the Twir. 1-3 Claims; Esso Minerals Canada

GOUTIER, F., GODWIN, C.I., AND HOY, T.: Mineral Deposits of the Birk Creek Area: An Introduction to a Metallogeny Study of the Adams Plateau – Clearwater Area; BC Ministry of Energy, Mines and Pet. Res., Geological Fieldwork, 1984, Paper 1985-1, p.67-76.

HOY, T., and GOUTIER, F., 1986: Rea Gold (Hilton) and Homestake Volcanogenic Sulphide-Barite Deposits, Southeastern British Columbia in BCMEMPR Geol. Fieldwork, 1985, Paper 1986-1.

HOY, T., and GOUTIER, F., 1986: Rea Gold and Homestake Volcanogenic Massive Sulphide-Barite Deposits, Southeastern British Columbia, 82M/4W; BC Ministry of Energy, Mines and Pet. Res., Geological Fieldwork, 1985; Paper 86-1, p. 59-68.

GRAF, C., 1981: Assessment Report on the Twin Claims, Kamloops Mining Division, BC, 6pp.

MARR, J.M., 1989: Assessment Report 1988 Fieldwork on the Kamad Claims BCMEMPR ASS.RPT # 18822

PRETO, V.A. and SCHIARIZZA, P.A., 1985: Geology and Mineral Deposits of the Adams Plateau Clearwater Region; Geol. Soc. Am. Cordilleran Section Meeting, Guidebook, Field Trip No. 16, pp. 1-11.

SHEARING, R., 1984: Geophysical Report on the Twin 1, Twin 2, Twin 3 Mineral Claims. A Private Report for Apex Energy Corp. and Austin Resources Inc. 8 pp.

SCHIARIZZA, P.A., and PRETO, V.A., 1984: Geology of the Adams Plateau-Clearwater Area; BC Ministry of Energy, Mines and Pet. Res., Preliminary Map 56.

SCHIARIZZA, P.A., and PRETO, V.A., 1987: Geology of the Adams Plateau-Clearwater-Vavenby Area; BC Ministry of Energy, Mines and Pet. Res., Paper 1987-2, 88 pp.

WHITE, G.P.E., 1985: Hilton Massive Sulphide Discovery (Rea Gold), Johnson Creek-Adar's Lake Area (82M/4W): BC Ministry of Energy Mines and Pet. Res., Geological Fieldwork, 1984, Paper 985-1, p. 77-83.

BCEMPR MINFILE 082M020, 082M075, 082M107, 082M164, 082M191, 082M215, 082M244, 082M135,

Appendix I

Statement of Qualifications

CERTIFICATE OF QUALIFICATION

I, Charles C. Downie of 122 13th Ave. S. in the city of Cranbrook in the Province of British Cclumbia hereby certify that:

- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia (#20137).
- 2) I am a graduate of the University of Alberta (1988) with a B.Sc. degree and have practiced my profession as a geologist continuously since graduation.
- 3) This report is supported by data collected during fieldwork as well as information gath red through research.
- 4) I hold 125,000 shares of Eagle Plains Resources; I hold an option to purchase a further 25,000 Common Shares of Eagle Plains at \$0.25 per share.

Dated this 30st day of June, 2001 in Cranbrook, British Columbia.

Charles C. Downie, P.Geo.

Appendix II

Statement of Expenditures

STATEMENT OF EXPENDITURES

The following expenses were incurred on the Acacia Property, Kamloops Mining Division, for the purpose of mineral exploration between the dates of May 01,2000 and April 20, 2001.

PERSONNEL	
T. Termuende, P. Geo: 5 days x \$425/day	\$2125.00
B. Robison, Geological Technician: 9 days x \$225/day	\$2025.00
J. Campbell: Technician: 10 days x \$225.00/day	\$2250.00
EQUIPMENT RENTAL	
4WD Vehicle: 12 days x \$50.00/day	\$600.00
Mileage: 2600 km x \$.20/km	\$520.00
Radios (2x): 8 days x \$20.00/day	\$160.00
Field Supply: 20.0 man-days x \$25.00/day	\$500.00
Camp Equipment Rental: 0.3 mo x \$500.00/mo	\$150.00
OTHER	
Meals/Accommodation:	\$815.84
Fuel:	\$505.51
Camp Materials:	\$87.58
Shipping:	\$171.44
Maps / Orthophotos / Reproduction:	\$540.35
Analytical:	\$8123.87
Report Writing/Reproduction (est.)	\$2500.00
Handling Fees:	\$1024.46
Miscellaneous:	<u>\$654.81</u>
Total:	\$22753.86

Appendix III

Analytical Results : 2000 Exploration Program

REFERENCE:

SUBMITTED BY: T. TERMUENDE

DATE RECEIVED: 16-AUG-00 DATE PRINTED: 30-AUG-00

REPORT: V00-01587.0 (COMPLETE)

CLIENT: TOKLAT RESOURCES INC

PROJECT: ACACIA

DATE APPROVED	ELE	MENT	NUMBER OF	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRAC	TION	METHO	D
000823	1 Δα	Silver	8	0.5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMÀ	000823 37 1	a Tantalum	8	5 PPM	HF-HNO3-I	HCLO4-HCL	INDUC. C	OUP. PLASM
000823	2 AdGrav	Silver (Grav.)	1	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000823 38 T	i Titanium	8	0.01 PCT	HF-HNO3-1	HCLO4-HCL	INDUC. CO	OUP. PLASM
000823	3 Cu	Copper	8	1 PPM	HF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMA	000823 39 2	r Zirconium	8	5 PPM	HF-HNO3-I	HCLO4-HCL	INDUC. C	DUP. PLASM
000823	4 Pb	Lead	8	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	000823 40 s	Sulphur	8	0.002 PCT	HF-HNO3-1	HCLO4-HCL	INDUC. C	OUP. PLASM
000823	5 Pb	Lead	2	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY		•						
000823	6 Pb	Lead	1	0.01 PCT		TITRIMETRIC								
							SAMPLE TYP	ES NUMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE P	REPARATION	S NUMBER
000823	7 Zn	Zinc	8	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA			· • • - · • • • • •					•`
000823	8 Zn	Zinc	5	0.01 PCT	HF-HNQ3-HCLO4-HCL	AAS LOW LEVEL ASSAY	R ROCK	8	2 - 150		8	CRUSH/SP	LIT & PULV	. 8 :
000823	9 Zn	Zinc	1	0.01 PCT		TITRIMETRIC								
000823 1	0 Mo	Molybdenum	8	1 PPM	HF-HN03-HCL04-HCL	INDUC. COUP. PLASMA								:
000823 1	1 Ni	Nickel	8	1 PPM	KF-HNQ3-KCLO4-HCL	INDUC, COUP. PLASMÀ	REMARKS: Z	linc concentration >19	ƙwill enhar	ce Tungsten				
000823 1	2 Co	Cobalt	8	1 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA	. r	esults. Therefore, 1	ungsten cor	centration				
							h	ould be greater than	true value.					÷
000823 1	3 Cd	Cadmium	8	1.0 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	. τ	here is carryover to	the blank a	nd standard				:
000823 1	4 Bi	Bismuth	8	5 PPM	HF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMA		lue to the high levels	of zinc in	the samples.				
000823 1	5 As	Arsenic	8	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	. 17	RD 8/22/00		•				
000823 1	6 Sb	Antimony	8	5 PPM	HF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMÀ								
000823 1	7 Fe Tot	Total Iron	8	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA								1
000823 1	8 Mn	Manganese	8	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA	REPORT COP	IES TO: MR. TIM TERML	IENDE		INVOICE 1	0: MR. TI	M TERMUENDE	ε (
		-												
000823 1	9 Te	Tellurium	8	25 PPM	HF-HNQ3-HCLO4-HCL	INDUC, COUP. PLASMA	. *	*****	*********	******	*******	******	******	*****
000823 2	0 Ba	Barium	8	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		This report must not	be reproduc	ed except in	full. The	data pres	ented in th	nis
000823 2	1 Cr	Chrome	8	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		report is specific to	those samp	les identifie	ed under "S	Sample Numi	ber" and is	S :
000823 2	2 V	Vanadium	8	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		applicable only to th	ie samples a	s received ex	pressed or	na dry ba	sis unless	
000823 2	3 Sn	Tin	8	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA		otherwise indicated						
000823 2	4 W	Tungsten	8	20 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA	. *	******	******	******	*****	*******	********	****
													_	
000823 2	5 La	Lanthanum	8	5 PPM	HF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMA							-	
000823 2	6 AL	Aluminum	8	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000823 2	7 Mg	Magnesium	8	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000823 2	28 Ca	Calcium	8	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000823 2	9 Na	Sodium	8	0.01 PCT	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASMA								
000823_3	ю к	Potassium	8	0,01 PCT	KF-HNQ3-HCLO4-HCL	INDUC. COUP. PLASMA								:
000823 3	1 Sr	Strontium	8	1 PPM	HF-HN03-HCLO4-HCL	INDUC, COUP. PLASMA								-
000823 3	2 Y	Yttrium	8	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA								
000823 3	3 Ga	Gallium	8	10 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA								
000823-3	14 I I	Lithium	8	2 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP. PLASMA								:
000823 3	15 NG	Niobium	- Š	5 PPM	HF-HNG3-HCLO4 HCL	INDUC. COUP. PLASHA								1
000823 3	6 Sc	Scandium	â	5 PPM	HE-HNCZ HELC4-HEL	INDUC MUR. PLASMA								

DATE RECEIVED: 16-AUG-00

DATE PRINTED: 30-AUG-00

Ge (hemical Lab

Report

PROJECT: ACACIA

PAGE 1A(1/ 6)

CLIENT: TOKLAT RESOURCES INC REPORT: V00-01587.0 (COMPLETE)

SAMPLE	ELEMENT	Ag	AqGrav	Cu	Pb	Pb	Pb Zr	n Zn	Zn	Мо	Nī	Co	Cď	Bi	As	ŞЬ	Fe fot	Mri	Ťe	Ва	Cr	v	Sn	₩	La	AL	Mg	Ca	Na	K	Sr	Y
NUMBER	UNITS	PPM	FFM	PPM	PPN	PCT F	CT PPN	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	₽ ₽ ₩	PPM	PPM	ppm	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	p pn	PP M
TTACOOR01		<0.5		10	43		69	,		2	26	9	<1.0	9	10	<5	3.53	2784	<25	120	165	14	<20	<20	6	0.82	1.24	4.93	0.15	0.28	336	<5
TTACOOR02		<0.5		96	17		189	,		4	95	49	<1.0	<5	7	<5	4,76	1381	<25	1099	82	102	<20	<20	43	8.01	1.60	1.38	0.10	2.36	122	11
TTACOOR03		4.4		141	4198		>20000	>15.00	33.75	<1	33	110	1284.3	<5	14	136	6.22	3040	239	13	65	30	<20	857	<5	0.67	0.53	5.41	0.03	0.02	748	<5
TTACOOR04		2.9		708	1147		2659	,		4	138	967	10.1	<5	107	<5	>10.00	3906	33	12	94	9	<20	<20	<5	0.17	0.19	>10.00	<.01	0.02	1249	<5
TTACOOR05		3.2		230	191		>20000	13.45		<1	70	396	515.8	<5	45	<5	>10.00	4304	128	84	138	37	<20	330	8	0.88	0.79	>10.00	0.01	0.09	1387	<5
TTACOORDS		>200.0	191.3	842	>10000	>15.00 22.	29 >20000	6.72		<1	65	9 5	256.5	<5	29	237	5.41	4971	61	25	145	42	<2 0	155	12	1.20	1.09	>10.00	0.03	0.03	1236	9
TTACOOR07		4.2		628	2983		>20000	14.19		<1	48	44	470.9	<5	13	23	>10.00	14445	126	29	9	16	<20	263	6	0.58	4.55	>10.00	0.03	0.02	335	6
TTACOORO8		28.8		2177	>10000	1.83	>20000	3.76		20	16	11	123.3	<5	16	6	4.03	1452	60	802	104	35	<20	92	20	8.22	1.31	2.47	4.93	0.53	578	11

Get hemical Lab Report

CLIENT: TOKI REPORT: VOO	LAT RESOURCES INC -01587.0 (COMPLETE)	DATE RECEIVED: 16-AUG-00	DATE PRINTED: 30-AUG-00	PROJECT: ACACIA PAGE 1B(2/ 6)
SAMPLE	ELEMENT Ga Li No Sc Ta ti Zr S			
NUMBER	UNITS PPM PPM PPM PPM PCT PPM PCT			
TTACOORO1	<10 3 <5 <5 <5 0.04 8 0.048			
TTACOORO2	17 45 8 14 <5 0 .38 76 0.635			
TTACOOR03	11 5 <5 <5 15 0.18 <\$ >10.00			
TTACOOR04	<10 <2 <5 <5 11 0.06 <\$ >10.00			
TTACOOR05	<10 3 <5 <5 15 0.30 8 >10.00			
TTACOORO6	<10 13 <5 6 <5 0.18 18 7.737			
TTACOOR07	<10 8 <5 <5 15 0.05 <5 5.989			
TTACOOR08	18 5 7 8 7 0.16 213 5.694			

Ge**(** hemical Lab Report

CLIENT: TOKLAT RESOURCES INC REPORT: V00-01587.0 (COMPLETE) PROJECT: ACACIA

PAGE 2A(3/ 6) DATE PRINTED: 30-AUG-00 DATE RECEIVED: 16-AUG-00

STANDARD NAME	ELEMENT UNITS	Ag / PPM	lgGrav PPM	Cu Þ PM	Pb PPM	Pb Pct	Pb PCT	Zn PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cdi PPM	Bi PPM	As PPM	Sb PPM	Fe Tot PCT	Min Te PPM PPM	Ba PPI	e Cr I PPN	. v 1 ppn	(Sn PPN	IPPN	i La I PPN	A PC	l Mg t PCT	Ca PCT	Na PCT	K PCT	Sr PPM	y PPM
cc01 - 3		~0.5		154	74	-	-	181	-	-	3	165	42	<1.0	<5	154	<5	7.85	1558 <25	193	3 294	164	<20	<20	12	2 7.0	1 2.75	3.88	0.86	1.43	106	6
6571-2		1	-	1	1	-	-	1	-	-	1	1	1	1	1	1	1	1	1 1		1	1	1	1		1	1 1	1	1	1	1	1
Number of Ana	(yses	03	-	15/	, 24	-	-	181	-	-	3	165	42	0.5	3	154	3	7.85	1558 13	193	3 294	164	10	10	12	2 7.0	1 2.75	3.88	0.86	1.43	106	6
Mean value	intion	0.5	-	-		-	-		-	-	-	-	-	-	-	-	-	-	• •			• •			•	-		-	•	-	-	-
Accepted Valu	le le	0.2	-	148	20	-		148	-	-	4	155	38	0.1	1	145	1	7.30	1500 1	18	5 30	1 170) 5	5 20	0 1	2 6.8	0 2.80	4.00	0,90	1.60	110	3
ANALYTICAL RI	ANK	<0.5	-	<1	<2	-	-	21	-	-	<1	<1	<1	< 1. 0	<5	<5	<5	<0.01	<5 <25	<	5 <	2 <7	2 <20) <20) <	5 <.0	1 <.01	<0.01	<.01	<.01	<1	<5
Number of Ana	alvses	1	-	1	1		-	1	-	-	1	1	1	1	1	1	1	1	1 1		1	1 '	1	·	1	1	1 1	1	1	1	1	1
Mean Value		0.3	-	<1	1	-	-	21	-	-	<1	<1	<1	0.5	3	3	3	<0.01	3 13		3	1 '	1 10	1	0 3	3 <.0	1 <.01	<0.01	<.01	<.01	<1	5
Standard Devi	iation	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-			-	•	-	•	-	-		-	-	-		-
Accepted Valu	ue	0.2	<0.1	1	2	<0.01	<0.01	1	<0.01	<0.01	1	1	1	0.5	2	5	5	0.05	1 <1	<	1	1	1 <'	<	1 <	1	- <.01	<0.01	-	<.01	<1	<1
MP-1A		-	-	-	-	4.27	-		>15.00	-	-	-	-	-	-	-	-	-			-	•		•	-	-		-	~		-	-
Number of Ana	alyses	-	-	-	-	1	-	•	1	-	~	-	-	-	-	-	-	•			-	-	-	•	-	-		-	-	_		
Mean Value		-	-	-	-	4.27	-	•	15.00	-	-	-	-	-	-	-	-	-			-	•	-	•	-	-		-		-	_	-
Standard Devi	iation	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-			-		-	•	•	-		-	-	-	_	
Accepted Valu	ue	-	-	-	-	4.33	4,33	-	19.02	19,02	-	-	-	-	-	-	-	-			-	-	-	-	-	-	~ 0.02	-				
IGS42 BRIT.G	EO.SURV.	-	-	-	-	-	74.61		-		-	-	-	-	-	-	-	-			-	•	-	-	-	-	· ·	-	-	-	-	-
Number of An	alyses	-	-	-	-	-	1	-	~	-	•	• -	-	-	-	-	-	-		•	-	•	-	-	-	_		-		-	_	_
Mean Value		-	-	-	-	-	74.61	-	-	-	-		-	-	-	-	-	-		•	-	•	-	•	-	_		_			_	_
Standard Dev	iation		-	-	-	-	-	-	-	-	•		-	-	-	-	-	-	-	-	-	•	-	-	-	-					-	
Accepted Val	ue	-	-	-	-	-	74.84		-	-	-		•	-	-	-	•				-	~	-	-	-	-						
CZN-3		-	-	-	-	-	-	•	-	51.04			-	-		-	-	-		•	-	•	-	-	-	-		-	-	-	-	-
Number of An	alyses	-	-	-	-	-	•	•	-	1			-	-	-		-	-		•	-		-	-	_	_		_			-	
Mean Value		-	-	-	-	-	-	•	-	51.04	, -		-	-	-	• •	-	-	-	-	-	•	-	-	-	-		_			_	
Standard Dev	viation	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	• -	-	-	-	-	-	-	-	_	_			_	
Accepted Val	ue	-	•	· -	-	0.11	0.11	-	50.92	2 50.92	2	• •	-	-	-		-	-		-	-	•	-	-	-	-	-	-	-	-	-	

Accepted Value

-

Ge ('hemical Lab Report

CLIENT: TOKLAT RESOU	URCES	S INC	:						
REPORT: V00-01587.0	(00	MPLE	TE))					
STANDARD ELEMENT	T Ga	a Li	Nt	s S	с	Тa	Ti	Zr	S S
NAME UNITS	s pp	PPN	PPN	i PPI	M P	PM	PCT	PPM	PCT
6591-2	11	27	11	27	7	~5	0 20	41	1 10/
Number of Analyses	1	1	1	2.	1	1	0.30 1	1 04	1.194
Mean Value	12	22	• • •		7	7	0 70	4	1 10/
Standard Deviation		~~~	11	۷.		2	0.30	04	1.194
Accepted Value	5	- 74	-	. 11	-	4	- - 10	40	1 000
Accepted variae	-	24	6	• •	0	1	0.10	00	1.000
ANALYTICAL BLANK	<10	<2	<5	<	5	<5	<.01	<5	0.006
Number of Analyses	1	1	1		1	1	1	1	1
Mean Value	5	1	3	-	3	3	<.01	3	, , ,
Standard Deviation		-	-		-	-	-	-	
Accepted Value	<1	<1	<1	<	1	<1	<.01	<1	<0.001
MP-1A	~	-	-	-	-	-	-	-	-
Number of Analyses	~	-	-	-	-	-	-	-	-
Mean Value	-	-	-	-	•	-	-	-	-
Standard Deviation	-	-	-	-	•	-	-	-	-
Accepted Value	-	-	-	-	•	-	-	-	-
IGS42 BRIT.GEO.SURV.	. ~	-	-	-		-	-	-	-
lumber of Analyses	~	-	-	-	•	-	-	-	-
lean Value	~	-	-	-		-	-	-	-
Standard Deviation	~	-	-	-	•	-	-	-	-
Accepted Value	~	-	-	-		-	-	-	-
:ZN-3		-	-	-		-	-	-	-
lumber of Analyses	-	-	-	-		-	-	-	-
lean Value	-	-		-		•	-	-	-
itandard Deviation	•	-	-	-		-	-	-	-

CLIENT: TOK REPORT: VOO	LAT RESOUR -D1587.0 (CES INC						DA	TE RECE	EIVEC): 1	6-AU0	i-00	DATE	PRIN	ITED:	30-A	UG-0	0	PAG	₽ E 3	ROJE	CT: A / 6)	CACIA									
SAMPLE NUMBER	ELEMENT UNITS	Ág ÞPM	AgGrav PPM	Cu PPM	pd Ppm	Pb PCT	Pb PCT	Zn PPM	Zn PCT	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	sd PPM	Fe Tot PCT	Mn PPM	Te PPM	8a PPM	Cr PPM	V PPM	Sn PPM f	W PPM P	La PM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	y PPM
TTACOORO3 Duplicate		4.4		141	41 98			>20000	>15.00 >15.00	33.75 33.83	<1	33	110	1284.3	<5	14	136	6.22	3040	239	13	65	30	<20 8	857	<5 0	.67	0.53	5.41	0.03	0.02	748	<5
TTACOORO6 Duplicate		>200.0	191.3 193.2	842	>10000	>15.00	22.29 22.43	>20000	6.72		<1	65	95	256.5	<5	29	237	5.41	4971	61	25	145	42	<20 ·	155	12 1	.20	1.09	>10.00	0.03	0.03	1236	9
TTACDORD8 Duplicate		28.8 29.1		2177 2290	>10000 >10000	1.83		>20000 >20000	3.76		20 23	16 15	11 11	123.3 127.2	<5 <5	16 10	6 11	4.03 4.19	1452 1503	60 57	802 1094	104 107	35 36	<20 <20	92 85	20 8 21 8	.22 1.51	1.31 1.37	2.47 2.58	4.93 5.21	0.53 0.55	578 601	11 12

Ge hemical Lab Report

SAMPLE ELEMENT Ga Li Nb Sc Ta Ti Zr S UNTTS PPN PPN PPN PPN PPN PCT PPN PCT S TTACOOR03 11 5 <5 <5 15 0.18 <5 >10.00 Duplicate <10 13 <5 6 <5 0.18 18 7.737 TTACOOR08 18 5 7 8 7 0.16 213 5.694 Duplicate 20 5 9 8 5 0.17 221 6.234	CLIENT: TOKLA REPORT: VOO-O	NT RESOURCES INC 1587.0 (COMPLETE)	DATE RECEIVED: 16-AUG-00	DATE PRINTED: 30-AUG-00	PR PAGE 3B
TTACOOR03 11 5 <5 15 0.18 <5 >10.00 Duplicate <10 13 <5 6 <5 0.18 18 7.737 Duplicate 18 5 7 8 7 0.16 213 5.694 Duplicate 20 5 9 8 5 0.17 221 6.234	SAMPLE NUMBER	ELEMENT Ga Li Nb Sc Ta Ti Zr S UNITS PPW PPM PPM PPM PCT PPM PCT			
TTACOOR06 <10	TTACOORO3 Duplicate	11 5 <5 <5 15 0.18 <5 >10.00			
TTACOORO8 18 5 7 8 7 0.16 213 5.694 Duplicate 20 5 9 8 5 0.17 221 6.234	TTACOORO6 Duplicate	<10 13 <5 6 <5 0.18 18 7.737			
	TTACOORO8 Duplicate	18 5 7 8 7 0.16 213 5.694 20 5 9 8 5 0.17 221 6.234			

Ger chemical Lab Report

REPORT: VOO-01696.0 (COMPLETE)

CLIENT: TOKLAT RESOURCES INC

PROJECT: ACACIA1

REFERENCE:

SUBMITTED BY: T. TERMUENDE

DATE RECEIVED: 06-SEP-00 DATE PRINTED: 14-SEP-00

		NUMBER OF	LOWER	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE	FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
AT TROILD	E CEI MARI	RIVETSES	DETECTION	EXTRACTION	ne moo	s sofi	210	1	-80	210		210
000911 1 A	لگ0 Gold	210	5 PP8	Fire Assay of 30g	30g Fire Assav - AA		2.10	•		210	DRI, SILVE -DO	210
000911 2 A	Ag - 1001	210	0.2 PPM	HC1 : HNO3 (3:1)	INDUC. MUP. PLASMA							
000911 3 0	Cu - 1001	210	1 PPM	HC1 - HNO3 (3:1)	INDUC COULD PLASMA	PEPOPT CODIES TO 2	720 - 1714 51	c			(0. 3730) 1770 of 6	
000011 4 0	D DD - 1001	210	2 004	HCI +HNO3 (3-1)	THEFT COLD DIASMA	REPORT COPIES TO. 2		3		INVUICE	0: 2/20 - 1/1H SI S	
000011 5 7	20 - 1001	210	1 004		INDER COUP, PLASMA	*****	****					
000011 6 M	n Xn - 1001	210	1 004	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	****				***********	***************	***
000911 0 1		210	I PPM	HULTHNUS (3:1)	INDUC. COUP. PLASMA	Inis repo	int must not b	e repi	roduced except	in full. The	data presented in thi	s
000911 7 N	i Ní-ICO1	210	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	annlicahl	e only to the	cnose	samples identi	tied under "S	sample Number" and is	
000911 8 C	Co - 1C01	210	1 PPM	HCL :HNO3 (3:1)	INDUC. COUP. PLASMA	otherwise	indicated	odiųo		CAN COACU U	a dry basis uncess	
000911 9 0	d Cd - 1001	210	0.2 PPM	HCL:HN03 (3:1)	INDUC COUP PLASMA	*****	******	*****	********	*********	*****	***
000911 10 B	i Ri- 1001	210	5 PPM	HC1 - HN03 (3-1)	TNDUC COUR PLASMA							
000911 11 4		210	5 PPM		TNDUC COUP. PLASHA							
000011 12 5	5 1001	210	5 DDM		THOUS COUP. PLASHA							
000711 12 5	5 35 - 1001	210	J PPM	NCL:NNO3 (3:1)	INDUC. COUP. PLASMA							
000911 13 Fe	e Fe - 1CO1	210	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						3	
000911 14 M	h Min - ICO1	210	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000911 15 Te	e Te - 1CO1	210	10 PPM	HCL:HN03 (3:1)	INDUC, COUP, PLASMA							
000911 16 B	8a - ICO1	210	1 PPM	HCL :HNO3 (3:1)	INDUC COUP. PLASMA							
000911 17 C	Cr - 1001	210	1 PPM	HCL -HNO3 (3:1)	TNDHC COLD PLASMA							
000911 18 V	V - 1001	210	1 PDM	NCL -HNO3 (3-1)	INDUC COULD DIASMA							
		•										
000911 19 St	n Sn-IC01	210	20 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA							
000911 20 W	W - 1C01	210	20 PPN	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA							
000911 21 La	a La-ICO1	210	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000911 22 A	AL - 1C01	210	0.01 PCT	HCL:HN03 (3:1)	INDUC. MUP. PLASMA							
000911 23 M	Ma - 1CO1	210	0.01 PCT	HCL +HNO3 (3:1)								
000911 24 6	Ca - 1C01	210	0.01 PCT	HCL+HN03 (3+1)	INDER PRED DIASMA							
000911 25 Na	na - 1CO1	210	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000911 26 K	K - IC01	210	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000911 27 Sr	Sr - 1001	210	1 PPN	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000911 28 Y	Y - IC01	210	1 PPN	HCL:HNG3 (3:1)	INDUC. COUP. PLASMA							
000911 29 G	Ga - 1C01	210	2 PPM	HCL:HN03 (3:1)	INDUC COUR PLASMA						-	
000911 30 L	Li - 1001	210	1 PPM	HCL -HNO3 (3:1)	INDIA MUR PLASMA							
					INCOL. COOP. PLASMA							
000911 31 NE	Nb - 1001	210	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000911 32 Sc	Sc - 1001	210	5 PPM	HCL:HNO3 (3:1)	INDUC. COLP. PLASMA							
000911 33 Ta	Ta - 1CO1	210	10 PPM	HCL:HN03 (3:1)	INDUC, COLIP. PLASMA							
000911 34 TI	Ti - 1C01	210	0.01 PCT	HCL:HN03 (3:1)	INDUC. MUP. PLASMA							
000911 35 7	2r - 1C01	210	1 PPM	HCL : HNO3 (3:1)								
anėti 34 s	\$ - 1001	210	0.01 PCT	Uni -1007 77-17	TARNER COLD DIACUA							

DATE RECEIVED: 06-SEP-00

Ge Chemical Lab Report

REPORT: VOO-	01696.0	(COM	YLETH	• •				
SAMPLE	ELEMENT	Au30	Ag	Q	РЬ	Zn	Мо	Ni
NUMBER	UNITS	PPB	PPM	PPM	PPN	PPM	PPM	PPN
10+00 0+00W		<5	0.2	24	22	139	2	26

CLIENT: TOKLAT RESOURCES INC

PROJECT: ACACIA1 PAGE 1 OF 13 DATE PRINTED: 14-SEP-00

SAMPI F	FLEMENT	AU30	Aa	Qi	РЬ	Zn	Мо	Nj	Co	Cd	Bi	As	Sb	Fe	Mn	Te	8a	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	ĸ	Sr	Y	Ga	Li	ΝЬ	Sc	Ta	Ţİ	Zr	S
NUMBER	UNITS	PPB	PPM	PPM	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PPM (PPN	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	ppm I	эрм	PPM	PPN	PPM	PPM	PPM	PCT	PPM	PCT
																																	_				_
L0+00 0+00W		<5	0.2	24	22	139	2	26	11	0.5	<5	6	ら	2.81	358	<10	57	19	28	<20	<20	11	3.05	0.26	0.29	0.02	0.04	22	2	6	15	4	<5	<10 (3.09	18 0	.02
10+00 0+50W		ব	<.2	8	13	138	1	8	7	<.2	<5	7	45	2.16	162	<10	42	7	30	<20	<20	5	2,93	0.07	0.12	0.02	0.02	12	1	9	9	3	<5	<10 (3.09	12 0	.02
L0+00 1+00W		<5	<.2	58	40	312	2	30	16	0.3	<5	5	<5	3.57	850	<10	118	19	31	<20	<20	13	1.96	0.29	0.20	0.02	0.05	21	2	5	17	3	<5	<10 (3.06	40	1.02
L0+00 1+50W		<5	<.2	20	26	186	1	17	13	0.5	<5	6	<5	2.68	1111	<10	98	12	59	<20	<20	9	2.81	0.14	0.11	0.03	0.05	18	2	6	13	2	<5	<10 (0.08	90	1.05
L0+00 2+00W		<5	<.2	9	24	218	<1	23	9	0.3	<5	7	<5	2.24	1717	<10	130	17	27	<20	<20	12	1.68	0.13	0.13	0.02	0.06	14	2	5	15	3	ক	<10 (0.06	6 <	.01
				47	74	405	4	20	17	. 7	~	0	~	2 57	1271	<1N	13/	17	26	<20	<20	13	1 50	0.37	n. 15	0.02	0.05	15	2	5	11	2	ক	<10 (3.06	3 <	:.01
L0+00 2+50W		\$	<.2	17	21	100	1 4	<i>CY</i>	13	<.2	() ()	4	~) ~	2.06	1200	<10	1.04 88	17	20	<20	<20	6	2 83	ກ 10	0.18	0.03	0.04	14	2	8	12	3	5	<10 (1.10	17 0).02
L0+00 3+00W		\$ 	<.2	. 8	15	149	-	25	17	<.2 2 2	() ~	0	~) ~	2.04	800	~10	106	10	20	<20	<20	8	2 03	n 15	0110	0.02	0.05	12	2	7	18	2	<5	<10 (0.09	20 0	3.01
L0+00 3+50W		<u>دې</u>	<.2	: 13 47	24	477	2	22	12	~ 2	~5	10	с. ж	2.72	2006	<10	01	17	24	<20	<20	11	1 46	n 10	0.00	0.02	0.04	8	1	5	15	3	ব	<10 (0.05	2 0	1.01
L0+00 4+00W		• •	<.2	15	20	1/3	2	10	10	>.2 2 2	- 7	0	~	2.00	2000	<10	56	12	77	<20	<20	7	3.51	0.12	0.06	0.02	0.03	7	2	9	17	4	s	<10 (0.10	22 0	0.02
L0+00 4+50W		5	<.2		4	110	I	19	10	`. 2	~)	,	7	2.00	271		~		.			•		•••~				•	-			•	-			•	
L0+00 5+00W		-5	<.2	: 7	15	110	<1	16	7	<.2	<5	7	ব	Z. 15	594	<10	63	12	26	<20	<20	7	1.78	0.10	0.13	0.02	0.04	11	1	6	11	3	4	<10 (0.06	90	1.02
L0+00 5+50W		<5	<.2	. 7	17	60	Ĵ	12	7	<.2	-\$	6	\$	2.64	123	<10	45	15	27	<20	<20	15	1.60	0.09	0.06	9.01	0.03	7	1	6	11	3	4	<10 (3.06	60	1.01
L0+00 6+00W		ব	<،2	z	7	45	<1	7	6	<.2	<5	5	\$	2.19	324	<10	38	14	39	<20	<20	3	2.34	0.06	0.06	0.03	0.02	6	<1	8	6	5	ক	<10 (0,08	10 0	.02
L0+00 6+50W		<5	<. <u>2</u>	30	21	71	2	50	15	<.2	<5	13	\$	3.38	223	<10	62	50	24	<20	<50	32	1.14	0.38	0.05	<.01	0.07	10	2	2	10	<1	Q	<10 (0.01	5 <	:.01
L0+00 7+00W		ব	<.2	: 20	15	65	Ż	36	15	<.2	<5	8	\$	3.28	236	<10	101	34	32	<20	<20	16	1.56	0.28	0,10	0.02	0.04	11	2	3	12	3	~5	<10 (0.04	5 <	.01
L0+00 7+50W		<5	<.2	! 10	8	51	<1	21	8	<.2	<5	<5	<5	1.97	453	<10	73	17	31	<20	<20	7	2.87	0.19	0.15	0.03	0.05	16	4	6	15	4	4	<10 (0.10	27 0	1.01
L0+00 8+00W		- 5	<.2	24	16	60	1	25	10	<.2	-5	7	<5	2.68	163	<10	72	21	17	<20	<20	33	0.86	0.21	0.06	<.01	0.06	9	2	<2	8	<1	ଏ	<10 (0.02	4 <	:.01
L0+00 8+50W		<5	<.2	: 16	16	53	1	26	9	<.2	<5	<5	ৎ	2.54	212	<10	102	14	23	<20	<20	16	2,36	0.12	0.14	0.03	0.06	17	4	6	13	<1	ৎ	<10 (0.06	26 <	:.01
L0+00 9+00W		<5	<.2	: 6	10	52	1	15	7	<.2	<5	<5	ふ	1.98	169	<10	61	10	25	<20	<20	11	1.98	0.10	0.09	0.02	0.05	9	2	6	12	4	<5	<10 (3.06	15 <	.01
L0+00 9+50W		-5	<.2	8	11	66	1	19	8	<.2	<5	5	4	2.52	156	<10	91	19	28	<20	<20	11	3.10	0.14	0.09	0.02	0.04	10	2	7	15	3	<5	<10 (0.07	20 0	1.01
		<i></i>		17	44	52	÷	26	11	~ >	~	6	<i>6</i> 5	2 RR	104	<1D	120	10	31	<20	<70	12	3 21	0.17	n. 12	0.02	0.07	14	3	9	18	3	\$	<10 (0.09	29 <	.01
L0+00 10+00		- 	~ 7		12	125	1	20		~ 2	~	<5	ž	2 01	673	<10	RI	13	25	<20	<20	Ģ	2.35	0.12	0.13	0.02	0.04	14	2	7	11	3	5	<10 (1.07	11 0	1.02
L1+UUN 0+00	M 		~ 2		14 14	104	1	15	7	< 2	~	7	~5	2 40	305	<10	52	13	28	<20	<20	11	2 63	n. 11	0.13	0.02	£0.0	14	2	7	11	3	6	<10 1	0.06	14 0	1.02
11+UUN 0+50	M 1		عبر فرر	15	10	04		18	10	< 2	-5	5	ä	2 31	226	<10	30	15	28	<20	00	q	2.18	0.15	0.10	0.03	0.02	16	5	4	17	3	5	<10 (1.08	9.0	0.02
L1+UUN (+UU	Wf						-	01 جر:	्रत	1.L 1	~	0	~	2 57	268	<10	30	42	26	<20	<20	ó	2.79	0.27	0.82	0.03	0.03	37	5	5	26	1	5	<10 6	0.07	80	1.06
L1+00N 1+30	м	0	-15	. 10		120	•	~	.,		-	•						76	20	-20			2117			0.00			-	-			-				
11+00N 2+00	w	-5	<.2	2 14	14	133	2	26	10	<.2	~5	9	<5	3.44	88	<10	39	35	40	<20	<20	7	2.05	0.21	0.06	0.02	0.03	7	1	8	12	4	<5	<10 (3.08	11 0	1.03
11+00m 2+50	W	-5	<.2	212	16	161	Ż	109	- 41	Û.9	ార	19	\$	8.44	1111	<10	59	51	32	<20	<20	29	2.79	1.04	1.14	0.03	0.03	67	14	2	17	<1	6	<10 (0.05	8 0	1.09
L1+00N 3+00		<5	₹ ,2	41	17	101	İ	52	16	<.2	<5	7	\$	5.83	481	<10	86	37	34	<20	<2Ũ	<u>19</u>	2.17	0,51	0.13	0.02	0.09	22	4	4	18	3	Q	<10 í	80.0	13 <	:.01
L1+00H 3+50	Ņ	ব	<.2	? 14	27	161	2	27	11	<.2	<5	12	\$	2.69	531	<10	91	12	28	<zū< td=""><td><2Û</td><td>Ŷ</td><td>2.37</td><td>0.13</td><td>0.15</td><td>0.02</td><td>0.04</td><td>14</td><td>2</td><td>6</td><td>13</td><td>3</td><td>ৎ</td><td><10 (</td><td>80.0</td><td>50</td><td>1.02</td></zū<>	<2Û	Ŷ	2.37	0.13	0.15	0.02	0.04	14	2	6	13	3	ৎ	<10 (80.0	50	1.02
L1+00N 4+00	W	ব	<.2	23	10	102	2	38	13	<.2	<5	13	ち	2.5Ż	515	<10	64	32	34	<20	<20	5	3.03	Ņ, 18	D. 14	0.02	0.03	12	2	8	13	2	ଟ	<10 (0.10	14 0	1.02

Ge iemical Lab Report

CLIENT: TO	KLAT RESOUR	CES IN	IC																													PRO	JECT	: ACACI/	1	
REPORT: VO	0-01696.0 (COMPL	ETE)													D	ATE	RECE	IVE	: 06	-SEP	-00	DA	TE P	RINTED	14-	SEP-0	00	P	AGE	2 0	F 13			
				•																						•										
CAMDI F	EL EMENT	A: 130	40	Du .	Pb	7n	Mo	Ni	Са	Cđ	Bi	As	sb	Fe	Mn	Тe	8a	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	κ	Sr	Y	Ga	Li	NЬ	Sc	Ta T	Zr	S
	INITS	DDR	NOM D	DM 1	PPM	DDM 1	PPM -	PPM	PPM I	PN P	PM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PCT	PCT	PCT	PCT	PCT	PPM (PPM	PPM	PPN	PPM	PPM	PPM PC	MAG	PCT
NOUNDER	QUITS		161 1	••••						••••		•••	•••																							
L1+00N 4+5	ON	47	<.2	3	13	70	<1	14	5 ·	<.2	<\$	<5	<5	1.44	828	<10	81	9	23	<20	<20	5	1.88	0,06	0.07	0.02	0.03	7	Z	6	8	2	<5	<10 0.07	12 (0.01
L1+00N 5+0	OM .	<5 ·	<.2	52	<u>2</u> 4	133	1	43	17 ·	<.2	<5	14	ৎ	4.03	646	<10	99	24	25	<20	<50	22	1.80	0.26	0.07	0.01	0.04	13	4	3	10	1	<5	<10 0.04	7	<.01
L1+00N 5+5	OW .	18	<.2	19	20	100	2	23	13 -	<.2	<5	10	<5	2.99	142	<10	50	16	29	<20	<20	9	2.33	0.19	0.31	0.02	0.04	23	2	6	13	4	<5	<10 0.0	7 7 1	0.03
L1+00N 6+0	OM .	<5 ·	<.2	10	19	118	2	18	11 -	<,2	<5	8	<5	2.57	368	<10	67	16	29	<20	<20	9	1.88	0.14	0.13	0.02	0.04	14	2	6	12	3	<5 ·	<10 0.0	5 2 9	0.01
L1+00N 6+5	OW .	- ব	<.2	44	27	96	1	66	19 ·	<.2	<5	14	ক	4.04	453	<10	67	46	25	<20	<20	23	1.27	0.34	0.26	0.01	0.06	19	4	<2	9	1	<5 ·	<10 0.0	5 5	0,02
L1+00N 7+0	IOM .	5	<.2	9	26	85	<1	53	12	<.2	<5	10	ৎ	2.48	270	<10	78	29	27	<20	<20	10	1.94	0.20	0.17	0.02	0.05	21	3	5	21	3	~ 5	<10 0.00	5 6 1	0.01
L1+00N 7+5	iow	5	<.2	4	9	44	1	13	5 (0.4	<5	4	ক	1.40	100	<10	50	7	25	<20	<50	5	2.22	0.05	0.12	0.03	0.04	9	S	6	8	3	ح ة ا	<10 0.00	5 11 (0.01
L1+00N 8+0	NOM .	<5	<.2	2	11	85	1	8	4	<.2	\$	4	4	1.48	1604	<10	90	10	31	<20	<50	8	0.97	0.08	0.07	0.02	0.03	8	<1	7	5	3	<5 ·	<10 0.00	5 <1 I	0.01
L1+00N 8+5	iow -	- ব	<.2	16	23	118	Ť.	30	12	<.2	<5	7	6	2.82	705	<10	148	21	29	<20	<20	17	2.11	0.21	0.11	0.02	0.07	15	S	6	12	2	<5 ·	<10 0.0	5 5 (0.01
L1+00N 9+0	XOM .	5	<.2	7	15	81	<1	27	9	<.2	<5	ক	4	2.01	853	<10	111	16	25	<20	<20	11	2.07	0.14	0.09	0.03	0.05	13	Ζ	7	15	2	<5 ·	<10 0.0	7 5 (0.01
L1+00N 9+	iow -	\$	< <u>.2</u>	8	15	71	1	23	9	<.2	~ 5	6	ଟ	2.10	355	<10	110	14	26	<20	<20	12	2.33	0,14	0.11	0.03	0.06	14	S	6	15	3	<5 ·	<10 0.0	3 13 (0.01
L1+00N 10-	HOOW	\$	<.2	6	10	36	<1	12	6	<.2	-5	ব	4	1.64	123	<10	51	13	24	<20	<20	27	0.87	0,14	0.13	0.01	0.04	13	Ś	3	9	2	<5 ·	<10 0.02	2 2	<.01
12+00N 0+1	00	ৎ	<.2	23	16	75	2	42	14 ·	<.2	<5	7	ব	3,37	233	<10	81	36	27	<20	<20	31	1.45	0.34	0.08	0.01	0.06	14	Ź	5	13	2	ا گ	<10 0.0	5 <1 ·	<.01
L2+00N 0+	50E	ৎ	<.2	18	15	68	1	31	12	<.2	<5	5	ৎ	2.45	500	<10	93	24	25	<20	<20	18	2.11	0.21	0.12	0.03	0.09	14	3	4	12	2	<5 ·	<10 0.00	5 5 ·	<.01
L2+00N 1+0)0E	ৎ	×. 2	13	12	106	2	26	11 ·	<.2	4	ৎ	ଟ	2.34	492	<10	89	18	30	<20	<20	12	2.32	0.18	0.14	0.03	0.05	14	3	6	13	3	<5 ·	<10 0.07	6	0.01
L2+00N 1+	50E	-5	<.2	47	40	144	Ś	68	25 1	0.4	<5	18	ক	4.60	447	<10	136	33	31	<20	<20	20	2.34	0.39	0.22	0.02	0.06	24	4	5	14	2	<5 ·	<10 0.0	3 11 1	0.02
L2+00N 2+1	DOE	<5	< <u>.2</u>	11	ŹĬ	166	2	31	12 (0.2	<5	9	-5	2.84	525	<10	87	26	30	<20	<50	9	4.83	0.27	0.47	0.04	0.05	35	4	9	30	2	<5 ·	<10 0.13	<u>29</u>	0.02
L2+00N 2+	50E	ଏ	<.2	50	32	122	2	52	20	<.2	\$	16	<5	4.51	905	<10	89	36	31	<20	<50	24	1.58	0.40	0.20	0.02	0.06	23	4	3	11	2	<5 ·	<10 0.0	5 <1	0.02
L2+00N 3+	DOE	<5	<.2	19	24	118	Ż	26	14	<.2	<5	7	Q	3.01	720	<10	80	21	27	<20	<50	15	2.23	0.20	0.15	0.03	0.05	17	S	5	14	1	<5 ·	<10 0.0	5 5	0.01
L2+00N 3+	50E	<5	<.2	13	27	144	2	23	13	<.2	< 5	7	-5	3,04	512	<10	74	21	36	<20	<20	11	1.76	0.20	0.13	0.02	0.04	16	Z	8	15	3	<5 ·	<10 0.0	3 5	0.02
12+00N 4+	DOE	ব	0.4	49	18	188	2	14	13 1	0.4	≪5	Q	4	2.20	735	<10	47	12	21	<20	<20	12	2,29	0.14	0.77	0.05	0.04	46	8	3	21	1	ج	<10 0.0	5 8	0.05
L2+00N 4+	50E	4	<.2	10	16	216	1	22	10	<.2	<5	7	4	2,14	614	<10	97	22	31	<20	<20	8	1.93	0.24	0.19	0.03	0.04	16	Ż	7	14	3	<5 ·	<10 0.0	3 5	0.01
12+00N 5+1	30E	Q	<.2	31	12	154	2	12	11	<.2	~ 5	8	~ 5	2.67	558	<10	84	9	27	<20	<20	13	3.13	0.16	0.14	0.03	0.04	15	3	7	13	2	\$ ·	<10 0.0	3 18 (0.02
12+00N 0+	50W	6	<-2	13	13	58	1	18	6	<.2	4	Q	ক	1.91	290	<10	82	14	23	<20	<20	8	1.60	0.12	0.31	0.04	0.04	34	2	5	13	2	S -	<10 0.0	5 Z (0.02
12+00N 1+	NOC NOC	ক	<.2	У	Þ	70	i	10	10	- 2	-5	8	~	2 <u>5</u> 0	204	<10	62	19	32	<20	<20	11	2.42	0.12	0.12	0.02	0.04	15	2	8	16	4	الج	<10 0.09	7	0.01
L2+00N 1+	50W	ଏ	<.2	30	25	104	2	57	18	0.3	<5	4	4	3.48	2753	<10	124	28	27	<20	<20	17	2.80	0.34	0.47	0,03	0.06	54	9	6	37	1	<5 ·	<10 0.0	9 12 (0.ŪZ
LZ+00K 2+	ŵ.	5	- 2	<u>20</u>	14	76	i	35	14	<.2	ぅ	9	Ś	3.37	260	<10	71	34	27	<20	<50	25	1.44	0.42	0.14	<.01	0.07	15	2	3	15	2	<5 ·	<10 0.0	i <1 (0.01
12+00N 2+	50W	-5	<u>«.2</u>	ē	15	84	1	25	11	<.2	<5	4	Ś	2,13	1172	<10	141	27	0	<zu< td=""><td><žū</td><td>16</td><td>1.47</td><td>0.10</td><td>5.13</td><td>0.02</td><td>9.07</td><td>17</td><td>1</td><td>5</td><td>14</td><td>2</td><td>ئ></td><td><10 0.0</td><td><1</td><td>0.01</td></zu<>	<žū	16	1.47	0.10	5.13	0.02	9.07	17	1	5	14	2	ئ >	<10 0.0	<1	0.01
12+00N 3+	00H	-5	<.2	7	15	79	1	27	10	<.2	<5	<5	ବ	1.94	661	<10	100	18	25	<zû< td=""><td><20</td><td>14</td><td>1.91</td><td>0.15</td><td>0.16</td><td>0.03</td><td>0.05</td><td>18</td><td>5</td><td>5</td><td>12</td><td>2</td><td>る</td><td><10 0.0</td><td>5 5 1</td><td>0.01</td></zû<>	<20	14	1.91	0.15	0.16	0.03	0.05	18	5	5	12	2	る	<10 0.0	5 5 1	0.01
L2+00N 3+	50W	Q	<.2	18	15	63	<1	34	13	<.2	<5	6	5	2.5Z	264	<10	119	23	21	<20	<\$Û	<u>25</u>	1.56	0.21	0.18	0.02	0.09	19	S	4	11	2	<5 ·	<10 0.03	5 2 1	0.01

DATE RECEIVED: 06-SEP-00

Gel hemical Lab Report

5

PROJECT: ACACIA1

PAGE 3 OF 13

DATE PRINTED: 14-SEP-00

Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr

PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT

REPORT: V00-01696.0 (COMPLETE) SAMPLE ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bi As Sb NUMBER <5 <.2 12 13 60 1 22 8 <.2 <5 <5 <5 2.14 555 <10 153 20 29 <20 <20 11 2.09 0.15 0.11 0.03 0.05 15 3 7 11 2 <5 <10 0.08 6 0.01</p> 12+00N 4+00W

CLIENT: TOKLAT RESOURCES INC

L2+00N 4+50W 12+00N 5+00M <5 <.2 14 14 108 1 29 10 <.2 <5 7 <5 2.59 216 <10 87 24 24 <20 <20 23 2.07 0.21 0.09 0.02 0.08 11 2 4 14 2 <5 <10 0.05 7 <.01</p> <5 <.2 9 13 68 1 17 8 <.2 <5 <5 <5 1.96 928 <10 99 10 26 <20 <20 8 2.90 0.10 0.17 0.03 0.05 20 3 8 13 2 <5 <10 0.10 12 0.02</p> 13+00N 0+00 <5 <.2 12 11 64 <1 25 11 <.2 <5 <5 <5 2.47 365 <10 85 27 25 <20 <20 23 1.18 0.25 0.10 0.02 0.06 15 2 4 11 1 <5 <10 0.03 <1 <.01</p> 13+00N 0+50E

<5 <.2 4 11 76 <1 20 9 <.2 <5 <5 <5 1.94 737 <10 75 16 26 <20 <20 12 1.67 0.16 0.11 0.02 0.05 13 1 5 12 2 <5 <10 0.05 2 0.01</p> 13+00N 1+00E 13+00N 1+50E <5 <.2 11 20 143 1 33 12 <.2 <5 12 <5 2.67 626 <10 114 25 33 <20 <20 11 2.23 0.26 0.18 0.03 0.05 21 2 6 14 3 <5 <10 0.07 3 0.02</p> <5 <.2 14 15 134 1 34 12 <.2 <5 6 <5 2.58 635 <10 100 28 27 <20 <20 14 2.16 0.25 0.15 0.02 0.06 17 2 7 14 3 <5 <10 0.07 9 0.01</p> 13+00N 2+00E L3+00N 2+50E <5 <.2 23 14 94 2 38 14 <.2 <5 7 <5 3.19 146 <10 71 39 35 <20 <20 19 1.88 0.42 0.30 0.02 0.04 33 3 6 17 3 <5 <10 0.04 3 0.02</p> <5 <,2 18 20 142 1 43 16 0.2 <5 8 <5 3.46 251 <10 86 29 33 <20 <20 12 3.31 0.24 0.14 0.02 0.05 18 3 7 16 3 <5 <10 0.09 16 0.02</p> 13+00N 3+00E

<5 <.2 91 27 215 2 52 22 <.2 <5 16 <5 5.21 492 <10 97 39 25 <20 <20 29 1.62 0.48 0.18 <.01 0.04 17 3 3 12 <1 <5 <10 0.03 2 0.02</p> 13+00N 3+50E L3+00N 4+00E <5 <.2 175 27 226 6 38 28 <.2 <5 16 <5 7.62 460 <10 140 23 31 <20 <20 18 2.97 0.48 0.11 0.02 0.06 24 4 4 19 2 <5 <10 0.06 9 0.10</p> 13+00N 4+50E <5 <.2 57 27 181 3 48 20 0.4 <5 13 <5 5.24 163 <10 47 40 36 <20 <20 19 2.07 0.45 0.61 0.01 0.04 38 2 5 17 3 <5 <10 0.02 3 0.03</p> <5 <.2 12 19 182 2 16 8 0.3 <5 7 <5 1.93 1081 <10 83 11 25 <20 <20 10 2.47 0.11 0.13 0.03 0.04 14 4 8 11 2 <5 <10 0.08 9 0.02</p> L3+00N 5+00E -5 <.2 15 16 97 1 31 12 <.2 <5 9 <5 2.70 411 <10 81 19 29 <20 <20 11 3.05 0.17 0.25 0.03 0.05 26 2 9 17 2 <5 <10 0.09 14 0.02</p> L3+00N 0+50W

<5 <,2 45 27 105 2 56 21 <.2 <5 14 <5 4.47 944 <10 98 42 29 <20 <20 25 1.26 0.35 0.21 0.01 0.10 23 3 12 1 <5 <10 0.04 <1 0.02</p> 13+00N 1+00W <5 <,2 6 14 70 <1 16 7 <.2 <5 <5 <5 1.75 1185 <10 113 12 27 <20 <20 6 2.00 0.13 0.16 0.03 0.04 17 1 8 12 3 <5 <10 0.09 4 0.01</p> L3+00N 1+50N L3+00N 2+00N <5 <.2 27 15 110 2 38 12 <.2 <5 6 <5 2.77 1010 <10 171 24 28 <20 <20 13 2.62 0.24 0.23 0.02 0.10 25 3 7 30 3 <5 <10 0.07 4 0.02</p> L3+00N 2+50W <5 <.2 5 10 97 <1 18 7 <.2 <5 <5 <5 1.70 995 <10 109 12 26 <20 <20 10 1.71 0.11 0.11 0.03 0.05 15 2 6 12 2 <5 <10 0.07 4 0.01</p> <5 <,2 17 14 71 1 31 12 <.2 <5 <5 <5 <5 2.56 440 <10 100 24 24 <20 <20 24 1.50 0.23 0.14 0.02 0.07 15 2 4 13 2 <5 <10 0.05 2 <.01</p> 13+00N 3+00W

L3+00N 3+50N <5 <.2 11 9 40 <1 17 6 <.2 <5 <5 <5 1.82 79 <10 49 13 24 <20 <20 16 0.94 0.14 0.11 0.02 0.04 13 1 4 9 3 <5 <10 0.04 2 <.01</p> <5 <.2 25 15 100 1 42 15 <.2 <5 7 <5 3.19 769 <10 133 31 29 <20 <20 17 3.03 0.25 0.16 0.02 0.10 23 3 6 18 2 <5 <10 0.06 8 0.02</p> L3+00N 4+00W 13+00N 4+50W <5 <.2 12 14 69 <1 25 10 <.2 <5 <5 <5 2.32 686 <10 82 20 23 <20 <20 23 1.41 0.19 0.27 0.02 0.08 25 2 5 10 2 <5 <10 0.04 1 0.01</p> <5 <.2 9 14 47 1 27 9 <.2 <5 <5 <5 <5 2.08 205 <10 89 20 23 <20 <20 19 1.79 0.17 0.12 0.03 0.06 17 2 6 13 3 <5 <10 0.05 4 <.01</p> 1.3+00N 5+00M s5 x 2 15 18 23 1 2 12 12 15 15 12 12 15 15 15 10 0.07 5 0.02 14+00N 0+00 <5 <.2 5 15 70 <1 16 7 <.2 <5 <5 <5 1.53 709 <10 110 13 28 <20 <20 6 1.55 0.12 0.20 0.02 0.04 17 1 6 12 3 <5 <10 0.08 2 0.01</p> 14+00N 0+50E <5 <.2 14 8 100 <1 53 16 <.2 <5 <5 <5 2.84 747 <10 95 59 42 <20 8 2.21 0.29 0.27 0.03 0.06 24 2 7 18 4 <5 <10 0.07 2 0.02</p> 14+00H 1+00E <5 < 2 9 13 95 1 23 10 < 2 <5 7 <5 2.53 181 < 70 25 18 33 <20 <20 9 3.44 0.17 0.15 0.03 0.04 19 2 10 19 4 <5 <10 0.11 23 0.02 1:50E 21 < 2 43 20 106 2 50 20 < 2 5 12 5 4.34 267 510 64 36 30 50 50 50 31 1,52 0.43 0.08 5 0 10 64 14 3 3 14 1 5 5 10 0.04 2 0.01 14+00N 2+00E <5 <.2 13 13 81 1 30 10 <.2 <5 5 <5 2.73 152 <10 67 40 37 <20 <20 10 1.76 0.28 0.15 0.02 0.03 15 2 7 11 3 <5 <10 0.05 2 0.02</p> 14+00N 2+50E

15+00N 2+00N

Ge (hemical Lab Report

CLIENT: TOK	LAT RESOU	AT RESOURCES INC 01696.0 (COMPLETE)																										PRO	JECT	T: AC	ACIA1	l -			
REPORT: VOO	-01696.0	(COMPLE	TE)													C	ATE	RECE	EIVED:	06-si	EP-00	D	ATE P	RINTE	D: 14	- SEP	-00	ł	'AGE	4 0	⊮ 13	3			
SAMPLE	ELEMENT	AU30 A	ġ Cu	í Pi	o Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	۷	Sn	W L	a Al	Mg	Ca	Na	к	Sr	Y	Ga	Li	ΝЬ	Sc	Ta	Tj	Zr	s
NUMBER	UNITS	PP8 PP	k pp	e ppi	e ppm	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	PPM	PPM	bbii bb	M PP	M PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPN	PPM	PPM	PPM	PCT	PPM	PCT
L4+00N 3+00	E	<5 <.	2 32	2 19	9 155	2	29	16	<.2	<5	10	<5	3.49	1200	<10	103	25	29	<20 <2	0 2	6 1.18	0.28	0. 09	0.01	0.06	11	2	4	10	2	<5	<10 /	0.04	<1 (J.01
14+00N 3+50	E	<5 <.	Z 12	2	580	2	6	8	0.4	<5	22	Q	3.90	606	<10	67	6	19	<20 <2	03	2 1.03	0.31	0.04	0.01	0.05	10	1	3	6	<1	ৎ	<10	<.01	1 0	1.05
L4+00N 4+00	E	<5 <.	2 11	1 14	4 138	2	11	12	0.3	<5	6	<5	2.71	430	<10	95	12	26	<20 <2	0 1	5 3.71	0.28	0.15	0.03	0.05	17	5	8	14	2	4	<10	0.09	22 ().02
14+00N 4+50	Æ	<5 <.	2 13	5 1	8 244	2	29	14	0.3	<5	8	<5	3.29	351	<10	114	28	35	<20 <2	0 1	9 3.10	0.26	0.19	0.02	0.05	23	3	7	22	3	ক	<10	80.0	8 Ç	1.02
14+00N 5+00	E	<5 <.	2 57	7 18	8 204	2	47	17	0.4	~ 5	ব	ও	3.10	495	<10	128	21	29	<20 <2	0 1	6 2.64	0.28	0.20	0.03	0.08	5 21	3	6	17	5	-5	<10 (0.06	14 (1.01
L4+00N 0+50	W.	15 <,	2 14	1 1	7 135	2	32	12	<.2	<5	9	ব	2.77	1370	<10	140	15	31	<20 <2	0 8	8 4.13	0.17	0.25	0.04	0.04	29	3	9	19	3	ক	<10 /	0.13	21 (3.02
L4+00N 1+00) N	<u>ج</u> د.	2 39	3 Z	2 102	1	54	19	<.2	-5	9	4	4.18	351	<10	63	45	32	<20 <2	0 Z	9 1.68	0.62	0.14	0.01	0.08	3 22	3	3	16	1	ら	<10 (0.05	2 *	<.01
1+50 L4+00N	ж.	ও <.	2 25	5 19	984	2	45	17	<.2	<5	7	4	3.55	263	<10	80	32	33	<20 <2	0 1	8 1.96	0.35	0.16	0.03	0.07	23	3	6	17	5	4	<10 (0.06	4 (J.01
L4+00N 2+00	Ne l	ও <.	2 20) 13	3 74	1	18	7	<.2	-5	ବ	Q	2.09	518	<10	89	15	25	<20 <2	0 1	0 3.08	0,17	0.16	0.03	0.05	22	3	8	15	2	<5	<10 (0.10	22 (J.02
14+00N 2+50	W	6 <.	2 40) 1	986	1	51	18	<.2	ر ج	9	4	4.08	733	<10	80	51	32	<20 <2	0 2	6 1.31	0.54	0.14	0.01	0.08	19	3	3	13	5	4	<10 (0.06	<1 <	¢.01
14+00N 3+00	Ni	< <.	z 26	5 13	3 120	1	44	16	<.2	4	7	ব	3.55	754	<10	189	47	34	<20 <2	0 2	0 2.51	0.46	0.12	0.02	0.08	17	Z	6	19	3	\$	<10 +	0.05	7 (3.01
14+00N 3+50	Ж	ক <,	2 18	3 1(588	1	36	13	<.2	<5	5	Q	Z.91	1012	<10	164	34	33	<20 <2	D 1	9 2.58	0.33	0.15	0.03	0.09	20	3	7	16	5	-5	<10 r	0.07	12 0	3.01
14+00N 4+00	ж	<্ <,	2 <u>9</u>	7 1	1 74	1	21	8	<.2	ক	ଟ	Ġ	2.08	363	<10	97	12	27	<20 <2	0	9 3.28	0.13	0.16	0.03	0.05	14	Z	8	15	3	ব	<10 1	9,10	22 Q).02
14+00N 4+50	ж	ব <	2 18	3 1	7 111	<	29	12	<.2	4	6	Q	2.92	798	<10	133	22	29	<20 <2	0 Z	0 2.12	0.20	0.09	0.02	0.09	15	2	6	14	3	ر ې	<10 (0.06	6 ().01
L4+00N 5+00	Ж	<5 <.	2 42	2 19	9 90	1	49	11	<.2	4	5		3.17	676	<10	179	26	32	<20 <2	0 1	5 3.17	0.23	0.19	0.03	0.12	32	5	9	27	2	ৎ	<10 (0.08	4 0).02
L5+00N 0+00	ו	ক <,	ż 17	2 19	9 91	Z	26	9	<.2	ক	ح	ক	1.96	1257	<10	125	17	25	<20 <2	0 1	1 1.68	0.19	0.52	0.03	ġ.07	33	2	5	12	2	ক	<10	0.06	1 (J.04
L5+00N 0+50)E	< <.	2 5	5 13	2 128	<1	18	7	<.2	ଟ	්	<5	1.62	1294	<10	199	14	25	<20 <2	0 (6 1.52	0.10	0.39	0.03	0.06	40	1	6	9	2	4	<10 (0.07	3 ().01
L5+00N 1+00	Æ	<5 <.	2 2	5 1	3 93	1	54	13	<.2	-5	12	<5	3.01	208	<10	132	25	28	<20 <2	0 12	2 2.57	0.22	0.20	0.04	0.07	28	3	5	15	2	\$	<10 (D.07	15 0	3.01
L5+00N 1+50)E	<5 <.	2 2	5 1:	5 93	Ż	57	16	0.3	්	11	ら	3.36	724	<10	94	33	34	<20 <2	0 17	2 3.05	0.31	0.28	0.03	0.04	22	4	7	16	4	~ 5	<10 f	0.09	13 0	1.03
L5+00N 2+00)E	<5 <,	2 40) Ż	3 155	2	54	18	<,2	<5	12	ব	4.49	329	<10	144	35	31	<20 <2	0 2	5 2.67	0.37	0.10	0.02	0.09	17	3	5	20	2	4	<10 1	D.04	8 0).01
L5+00N 2+50	Æ	دې د .	2 19	9 Z	3 146	2	30	15	5. >	<5	9	\$	3.25	270	<10	91	32	35	<20 <2	0 14	4 2.72	0.24	0.10	0.02	0.04	14	3	8	15	2	-5	<10 (0.08	11 (J.02
L5+00N 3+00	Æ	حې د .	Ž	B 2	1 213	1	22	11	0.3	ব	6	<5	2.47	425	<10	91	15	27	<20 <2	0 T	7 3.42	0.14	0.08	0.03	0.04	10	4	9	15	2	<5	<10 (û.09	18 C	1.02
L5+00N 3+50	Æ	< <.	2 1	8 7	1 296	1	9	10	0.4	-5	ক	\$	2.05	1279	<10	136	11	27	<20 <2	9 12	2 2.34	0.13	0.10	0.02	0.04	13	2	7	13	2	ব্ট	<10 (0.06	4 0).02
L5+00N 4+00	Æ	<5 <,	2 /	4 1	1 155	1	7	7	<.2	-6	ক	ð	1.72	215	<10	52	10	27	<20 <2	0 1	7 2.66	0.09	0.20	0.03	0.03	20	2	8	11	3	\$	<10 (80.0	9 0).02
1.5+00N 4+50	Æ	<u>بة</u> ب	2	; ;	6 102	-1	25	Q.	<.?	4	Q	\$	2.27	368	<10	114	17	30	<20 <2	0 1	2 2.42	0.16	0.20	0.03	Ö.05	19	2	7	13	3	~ 5	<10 (0.07	6 0).01
15+00N 5+00	DE	<5 <,	28	53	0 226	2	32	20	0.4	\$	7	\$	4.20	826	<10	102	23	35	<20 <2	0 2	5 2.12	0.56	0.19	0.02	0.09	22	4	4	15	2	ら	<10 f	0.05	5 0).02
15+00N 0:50	.	<5 <	2 50	3	1 134	2	56	19	<.2	Ś	13	ৎ	4.27	487	<10	114	38	27	<20 <2	034	4 1.79	0.33	0.15	0.02	Ö.11	24	5	4	13	<1	ব	<10 (50.0	5 0	J.01
15+001 1+00	л.	<5 <,	2 1	B 12	5 111	1	Z6	İÛ	<.2	~ 5	ó	-5	2.02	55 7	<iû< td=""><td>68</td><td>12</td><td>27</td><td><20 <2</td><td>e :</td><td>6 2.46</td><td>Q_14</td><td>ñ. 17</td><td>0.03</td><td>0.05</td><td>27</td><td>ż</td><td>7</td><td>15</td><td>3</td><td>-5</td><td><10 (</td><td>ð.09</td><td>70</td><td>).02</td></iû<>	68	12	27	<20 <2	e :	6 2.46	Q_14	ñ. 17	0.03	0.05	27	ż	7	15	3	-5	<10 (ð. 0 9	70).02
15+00N 1+50	Эм	6 <.	Z 7	7 7	1 126	4	100	48	0.3	ব্য	32	⊲5	>10.UÙ	10.59	<îû	66	69	49	<20 <2	ŭ 34	4 2,13	1.47	Ó.46	<.01	0.10	46	12	4	20	<1	6	<10 (3.08	60	J.22
15+00N 2+00)W	حة ح ,	2 1	8 1	4 94	2	44	15	<.2	Ś	7	\$	3.51	<u>604</u>	<10	144	<u>43</u>	41	<20 <2	0 13	3 2.98	0.57	0.32	0.02	0.08	36	3	9	24	3	\$	<10 (51.O	6 0).01

Ged hemical Lab Report

PROJECT: ACACIA1

CLIENT:	TOKLAT RESOUR	CES I	NC																												PRO	JECT	: ACA	CIAI		
REPORT:	V00-01696.0 (COMP	LETE)												I	DATE	REC	EIV	ED: 0	6-se	P-00	Di	ATE P	RINTE): 14·	-SEP-	00	F	AGE	5 0	F 13	6			
SAMPLE	ELEMENT	AU30	Áq	Cu	РЬ	Zn	Mo	Ni	Co	Cd	Bj	As	Sb	Fe	Min Ti	e Ba	Cr	• •	/ S	n W	La	AL	Mg	Ca	Na	κ	Sг	Y	Ga	Lī	ΝЬ	Sc	Ta	Tì	2r	s
NUMBER	UNITS	PPB	PPNE 1	PPM	PPM	PPH	PPN	PPM	PPH	PPN I	PPM	PPN	PPM	PCT	PPM PP	M PPM	PPM	I PPI	(PP	Maa N	DDM	PCT	РСТ	PCT	PCT	PCT	PPM	PPM	PPM	PPN	PPM	PPM	PPM	PCT	PPM F	PCT
L5+00N	2+50W	<5	<.2	14	15	99	1	39	12	<.2	<5	<5	<5	2.91	1202 <1	0 198	41	39	j <2	0 <20	12	2.37	0.46	0.26	0.03	0.06	33	3	7	20	3	ح	<10 0	1.09	50.	.01
L5+00N	3+00W	<5	<.2	11	13	56	2	31	9	<.2	<5	6	<5	2.37	418 <1	0 112	21	25) <2	0 <20	8	3.60	0,19	0.40	0.03	0.06	41	3	8	19	2	<5	<10 0	11	27 0.	.02
L5+00N	3+50W	<5	<.2	12	10	131	2	199	32	<.2	\$	<5	<5	4.99	1438 <1	0 214	204	48	3 <2	0 <20	11	3.40	Z.78	0.52	0.02	0.07	49	3	10	34	3	<5	<10 0	i .17	3 <.	.01
15+00N	4+00W	ර	<.2	10	10	66	2	55	13	<.2	4	<5	<5	2.42	629 <1	0 70	61	3	5 <2	o <so< td=""><td>12</td><td>2.19</td><td>0.51</td><td>0.35</td><td>0.03</td><td>0.05</td><td>35</td><td>4</td><td>8</td><td>13</td><td>3</td><td>5</td><td><10 0</td><td>10</td><td>30.</td><td>.03</td></so<>	12	2.19	0.51	0.35	0.03	0.05	35	4	8	13	3	5	<10 0	10	30.	.03
1.5+00N	4+50W	ব	«.2	20	17	77	2	51	14	<.2	<5	7	4	2.96	388 <1	0 92	50	30) <2	0 <20	23	2.00	0.35	0.19	0.03	0.10	30	6	6	16	<1	<5	<10 0	.05	9 <.	.01
15+00N	5+004	ক	<.2	26	21	120	2	70	17	<.2	<5	ক	5	3.38	212 <1	0 133	43	34	∼2	0 <20	13	3.27	0,32	0.30	0.03	0.11	36	3	11	28	3	<5	<10 0	.08	12 0.	.01
(6+00N	0+00	ঁ	<.2	13	20	83	1	15	8	<.2	5	8	4	2.25	819 <1	0 129	12	2	3 <2	0 <20	21	0.86	0,16	0.20	0.02	0.06	24	1	5	11	2	<5	<10 0	.05	<1 0,	.01
1.6+00N	0+50E	14	<.2	43	19	101	2	19	11	<.2	45	8	Q	2.94	371 <1	0 87	8	3 16	5 <2	0 <20	28	0.98	0.20	0.08	<.01	0.08	11	S	2	7	<1	\$	<10 0	.01	<1 <,	.01
16+00N	1+00E	\$	<.2	171	53	182	3	147	53	8.0	~ 5	41	ব	>10.00	1466 <1	0 65	109	53	3 <2	0 <20	26	2.13	1.31	1.20	0.01	0.07	46	18	<2	14	2	9	<10 0	.05	30.	. 19
16+00N	1+50E	ら	<.2	169	38	157	3	158	54	0.6	ব	33	ବ	>10.00	1320 <1	0 66	129	60) <2	0 <50	27	2.40	1.54	1.36	0.01	0.05	51	16	2	18	2	9	<10 0	.04	50.	. 18
	3.005	*		0	15	105	1	77	a	~ 2	~	~	ح.	2.05	000 -1	0 117	17		2.0	n ∡⊅ n	13	1 84	<u> </u>	n 14	0.03	0.06	16	2	4	17	2	~	<10 0	1.07	3.0	02
LOTUUN	27005	رب بر		100	70	141	י י	108	16	۰.۲ ۱ Ո	š	~	~	2 31	2738 -1	0 117 CA 0	16	. 7	10	o ~20 ∩ ~20	44	2 84	0.11	0.14	0.05	0.00	61	29.	4	14	2	~	<10.0	i ne	о п	.02
	27005	رب ح	7-6 2.3	77	20	454	2	37	10	1.0 0.6	š	7	å	4.22	576 <1	0 02. 0 70	20) 7	, ~_ ; </td <td>, ~20 n <20</td> <td>22</td> <td>2.84</td> <td>0.41</td> <td>D.45</td> <td>0.03</td> <td>0.09</td> <td>42</td> <td>6</td> <td>5</td> <td>28</td> <td>2</td> <td>5</td> <td><10 0</td> <td>.07</td> <td>16.0.</td> <td>.03</td>	, ~20 n <20	22	2.84	0.41	D.45	0.03	0.09	42	6	5	28	2	5	<10 0	.07	16.0.	.03
144000	34505	~	22	10	17	67	1	11	11	<.7	5	ò	ર્ક	3.25	218 <1	0 101	11		2	n <20	20	2.90	0.22	0.16	0.02	0.05	25	2	7	13	3	\$	<10 0	1.06	5 0.	.03
1.6+00N	4+00E	ঁ	<.2	43	20	95	3	8	18	<.2	-5	10	ব্য	6.55	2146 <1	0 57	7	32	2	0 <20	68	2.52	1.11	0.27	0.01	0.06	18	11	5	16	<1	<5	<10 0	1.02	60.	.09
		_					_																													
L6+00N	4+50E	ব	<.2	13	15	219	t	16	8	<.2	4	<5	ক	2.22	762 <1	0 98	13	i 3'	1 <2	0 <20	12	2.36	0.17	0.21	0.04	0.05	19	3	8	13	3	\$	<10 0	. 10	14 0,	.01
L6+00N	5+00E	<	<.2	47	17	123	1	13	12	<.2	45	<5	Q	3,02	1875 <1	0 129	12	2 34	i <2	0 <20	18	1.67	0.21	0.18	0.02	0.07	18	Ζ	6	15	2	45	<10 0	.04	<1 D,	.03
L6+00N	0+50W	ৎ	<.2	82	24	232	1	25	14	0.4	<5	8	4	3,39	901 <1	0 153	22	25	i <2	0 <20	21	1.58	0.37	0.34	0.01	0.13	30	3	4	11	2	<5	<10 0	.03	<1 0.	. 02
L6+00N	1+00W	ক	<.2	17	17	116	1	22	11	<.2	ক	<5	ବ	2.09	932 <1	0 96	14	27	5 <2	0 <20	11	2.12	0.18	0.54	0.03	0.07	5 8	4	5	20	1	<5	<10 0	.04	7 0.	.02
L6+00N	1+50W	く	<.2	8	11	64	<1	13	8	<.2	4	6	<5	2.01	338 <1	0 46	14	25) <2	0 <20	10	1.66	0.13	0.17	0.03	0.04	18	5	5	9	2	<5	<10 0	-06	Z Q.	.01
L 6+ 00N	2+00W	ব	<.2	21	21	107	1	37	15	<.2	45	8	4	2.99	535 <1	0 116	32	2	3 <2	0 <20	14	3.03	0.29	0.20	0.02	0.06	25	3	7	17	z	Ś	<10 0	.07	14 0.	.02
L6+00N	2+50W	ব	<.Ż	19	44	94	1	46	13	<.2	న	8	ক	2.74	395 <1	0 141	25	28	3 <2) <20	20	1.86	0.29	0.25	0.02	0.08	28	2	4	13	2	45	<10 Ű	.06	3 Û,	.01
L6+00N	3+00₩	ৎ	<.Ż	31	16	87	2	53	15	<.2	<5	7	ৰ	3.59	232 <1	0 112	49	32	2 <2) <20	26	2.26	0.55	0.11	0.02	Ö.08	17	3	5	16	2	<5	<10 0	.05	4 <.	.01
L6+00N	3+50W	ৎ	<.Ž	21	16	89	1	51	15	<.2	45	<5	<5	3.18	243 <1	0 122	47	32	2 <2	0 <20	25	2.35	0.49	0.14	0.02	0.09	21	2	7	20	3	ら	<10 0	.04	1 0.	.01
<u>L6+00n</u>	4+00W	\$	Ū.3	70	2;	54	•	<u>/</u> !	11	۵ ۵	<5	ላ	<5	2.68	1816 <1	0 148	33	; 30) <2) < 2 0	19	2.23	0.25	D.97	0.05	0.06	103	20	4	24	3	\$	<10 0	.07	50.	,05
1.64000	4+5 0 4	ৎ	<.2	46	6	138	2	124	38	0.3	ক	4 5	ر ح	8,28	417 <1	0 91	196	5 162	2 <2	0 <20	26	3.70	3.18	0.36	<.01	0.15	30	4	14	47	12	14	<10 G	.20	<1 0.	.02
LÓTICH	SHOOL	ক	<.ż	20	16	119	2	43	16	0.3	6	4	<5	3.93	174 <1	0 97	40) 48	3 <2	0 <20	18	2.27	0,42	0.10	0.02	0.07	16	5	7	23	4	5	<10 0	.05	4 <	.01
17+00	0:00	<5	<.2	11	11	90	1	23	7	Ö.3	Ś	7	<5	2.07	956 <1	U 97	14	Ze	5 - 2 -	0 <20	9	3.07	0.11	0.21	0.03	0.05	19	3	8	14	3	-5	<10 0	.11	15 0.	.02
17+004	0+50E	\$	<.2	125	66	190	Ĵ.	82	45	0.5	4	45	⊲5	>10.00	1179 <i< td=""><td>0 115</td><td>- 38</td><td>5 3</td><td>) e</td><td>0 <20</td><td>2?</td><td>1 47</td><td>0 38</td><td>n >></td><td>0.01</td><td>0.08</td><td>22</td><td>6</td><td><2</td><td>13</td><td><1</td><td>\$</td><td><10 Ú</td><td>.ÛŻ</td><td>3Ŭ.</td><td>.05</td></i<>	0 115	- 38	5 3) e	0 <20	2?	1 47	0 38	n >>	0.01	0.08	22	6	<2	13	<1	\$	<10 Ú	.ÛŻ	3Ŭ.	.05
17+00N	1+00E	-5	<.2	27	26	9 5	2	43	14	š.>	Ś	ó	-5	3.63	300 -1	0 78	32	2	5 <2	0 <20	30	1.42	0.32	0.15	0.01	0.09	19	2	2	12	1	<5	<10 0	.01	1 <.	.01

BONDAR CLEGG

ELEMENT AU30 Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb

PROJECT: ACACIA1

Ge hemical

Lab

Report

S

CLIENT: TOKLAT RESOURCES INC REPORT: VOO-01696.0 (COMPLETE)

SAMPLE

NUMBER

L7+00N 1+50E

DATE RECEIVED: 06-SEP-00 DATE PRINTED: 14-SEP-00 PAGE 6 OF 13 Fe Min Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT <5 <.2 39 7 62 <1 15 11 <.2 <5 <5 <5 2.94 277 <10 40 7 26 <20 <20 16 1.73 0.19 0.20 0.03 0.04 18 2 4 8 2 <5 <10 0.04 4 0.01

17+00N 2+00E <5 <.2 70 41 456 <1 25 22 1.3 <5 9 <5 3.70 1661 <10 116 19 41 <20 <20 22 2.79 0.33 0.17 0.02 0.06 22 4 7 21 3 <5 <10 0.06 4 0.02</p> <5 <.2 6 10 123 <1 7 7 0.4 <5 <5 5 1.86 353 <10 51 6 29 <20 <20 8 2.15 0.11 0.50 0.03 0.03 29 2 7 11 3 <5 <10 0.07 5 0.02</p> L7+00N 2+50E <5 <.2 39 50 217 1 28 22 0.7 <5 9 <5 4.31 1017 <10 93 19 25 <20 <20 24 1.63 0.45 0.38 0.01 0.06 29 3 3 13 <1 <5 <10 0.03 <1 0.05</p> L7+00N 3+00E L7+00N 3+50E 17 <.2 4 8 66 <1 5 7 0.2 <5 <5 5 1.92 390 <10 52 7 30 <20 <20 7 1.94 0.08 0.15 0.04 0.03 14 2 6 9 3 <5 <10 0.06 3 0.01

<5 <.2 30 6 89 <1 12 13 <.2 <5 6 <5 2.42 901 <10 79 6 24 <20 <20 10 2.57 0.10 0.18 0.03 0.03 14 3 5 10 2 <5 <10 0.09</p> L7+00N 4+00E 8 0.03 <5 <.2 135 23 166 3 42 24 0.4 <5 16 <5 5.67 871 <10 83 30 34 <20 <20 26 1.96 0.59 0.25 0.02 0.06 18 6 3 13 2 <5 <10 0.04 4 0.05</p> L7+00N 4+50E 17+00N 5+00E <5 <.2 48 13 228 2 9 10 0.5 <5 6 <5 2.99 3479 <10 196 9 26 <20 <20 15 1.63 0.15 0.61 0.03 0.07 46 2 5 11 2 <5 <10 0.06 1 0.04</p> <5 <.2 65 49 187 3 64 26 0.5 <5 32 <5 6.61 1036 <10 72 16 25 <20 <20 44 1.49 0.18 0.29 0.02 0.10 38 16 <2 15 <1 <5 <10 0.03 12 0.02</p> 17+001 0+501 8 <.2 25 30 150 1 32 13 <.2 <5 8 <5 2.88 622 <10 106 16 25 <20 <20 1.99 0.19 0.17 0.02 0.07 25 3 4 12 3 <5 <10 0.04 7 0.01 17+00N 1+00M

17+00N 1+50M 6 < 2 12 13 96 1 20 9 < 2 5 5 5 5 5 2.13 918 < 10 97 15 25 < 20 < 20 12 1.76 0.17 0.29 0.02 0.05 25 2 5 11 3 5 < 10 0.06 3 0.02 11 <.2 16 17 148 1 31 10 <.2 <5 <5 <5 2.36 1265 <10 138 16 26 <20 <20 12 1.81 0.19 0.27 0.03 0.06 31 2 5 14 2 <5 <10 0.06 2 0.02 L7+00N 2+00M <5 <.2 16 17 103 1 25 9 0.2 <5 <5 <5 2.25 1278 <10 141 19 28 <20 <20 12 1.56 0.23 0.27 0.02 0.06 33 2 5 11 2 <5 <10 0.06 <1 0.02</p> 17+00N 2+50M 17+00N 3+00N <5 <.2 15 14 165 <1 38 14 0.4 <5 6 <5 3.00 216 <10 103 26 36 <20 <20 16 2.36 0.31 0.14 0.02 0.05 20 2 8 18 4 <5 <10 0.07 11 0.01</p> 8 < 2 9 8 84 1 16 8 0.3 <5 <5 <5 2.11 314 < 10 74 13 28 < 20 < 20 8 2.99 0.12 0.11 0.03 0.04 14 3 7 14 2 <5 < 10 0.09 24 0.01 L7+00N 3+50W

<5 <.2 17 25 109 1 29 13 0.4 <5 6 <5 2.76 719 <10 95 25 29 <20 <20 13 2.18 0.30 0.68 0.04 0.06 67 4 4 34 2 <5 <10 0.08</p> L7+00N 4+00M 9 0.02 <5 <.2 23 20 84 1 48 20 0.2 <5 7 <5 4.43 433 <10 75 44 36 <20 <20 23 2.01 0.73 0.90 0.03 0.07 78 8 4 24 3 5 <10 0.05 6 0.03</p> L7+00N 4+50W 17+00N 5+00W <5 <.2 10 10 56 1 30 12 <.2 <5 <5 <5 2.96 111 <10 117 22 39 <20 <20 11 3.48 0.25 0.11 0.02 0.04 15 2 8 21 4 <5 <10 0.08 24 0.02</p> <5 <.2 10 50 154 <1 20 7 0.2 <5 <5 <5 1.80 1413 <10 143 13 25 <20 <20 10 1.32 0.17 0.24 0.02 0.06 21 1 4 11 2 <5 <10 0.06 <1 0.02</p> 18+00N 0+00 <5 <.2 21 16 153 1 21 6 <.2 <5 <5 <5 1.63 419 <10 154 10 23 <20 <20 11 1.41 0.13 0.22 0.03 0.08 24 2 5 12 2 <5 <10 0.06 5 0.01</p> L8+00N 0+50E

<5 <.2 57 18 99 2 120 23 <.2 <5 26 <5 3.44 358 <10 128 34 33 <20 <20 11 1.76 0.31 0.33 0.03 0.06 34 3 6 16 3 <5 <10 0.06 5 0.03 L8+00N 1+00E <5 <.2 57 34 105 2 126 28 <.2 <5 9 <5 5.18 590 <10 112 101 54 <20 <20 17 2.60 0.86 0.33 0.02 0.09 26 6 5 18 3 6 <10 0.08 10 0.01</p> 18+00N 1+50E <5 <.2 35 47 506 2 34 28 0.9 <5 11 <5 4.95 1608 <10 159 32 40 <20 <20 20 1.77 0.31 0.30 0.02 0.07 32 3 4 16 2 <5 <10 0.04 L8+00N 2+00E 1 0.02 L8+00N 2+50E <5 < 2 22 24 100 1 29 13 <.2 <5 7 <5 2.97 1125 <10 107 15 29 <20 <20 10 1.52 0.16 0.30 0.03 0.06 25 2 6 12 2 <5 <10 0.06 1 0.02 18:00N 3:00E <5 <-2 83 24 114 1 53 22 0.3 <5 14 <5 5.20 349 <10 52 38 29 <20 <20 29 1.64 0.56 0.08 0.01 0.08 15 5 3 12 <1 <5 <10 0.03 2 0.02 8 < 2 59 46 144 2 64 23 0.2 <5 15 <5 5,96 485 <10 99 19 30 <20 <20 18 2.24 0.29 0.33 0.02 0.06 36 4 4 17 2 <5 <10 0.06 8 0.03 L8+00N 3+50E <5 0-2 15 25 150 1 20 9 0.5 <5 <5 <5 2.35 1003 <10 123 13 28 <20 <20 10 1.49 0.13 0.27 0.03 0.05 24 2 5 11 3 <5 <10 0.06 <1 0.02 18+00N 4+00E <5 × 2 9 11 119 <1 20 6 × 2 × 5 × 5 × 1.73 759 10 107 11 22 <0 <20 6 2.72 0.11 0.27 0.03 0.05 23 2 7 14 2 <5 <10 0.10 21 0.02 18+00N 4+50E L8+00N 5+00E 10 <.2 52 11 138 1 13 16 0.2 5 9 5 4.46 1678 < 10 177 9 30 <20 <20 42 1.50 0.18 0.48 0.02 0.12 47 6 3 19 2 <5 < 10 0.04 2 0.03 <5 < 2 10 14 93 41 28 7 < 2 5 5 < 2.00 561 < 10 103 14 25 < 20 < 20 10 2.53 0.16 0.34 0.03 0.06 30 3 7 14 4 < 5 < 10 0.09 12 0.02 18+00N 0+50W

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

Get hemical Lab Report

CLIENT: TO	KLAT RESOUR	RCES 1	NC																													PRO	JECT	ACACI	1	
REPORT: VO	0-01696.0 (COMP	LETE)													D	ATE	RECE	TVE	b: 06	- SEP	P-00	D/	TE PI	RENTED	: 14	-SEP-	00	P	AGE	70	F 13			
																										·										
SAMPLE	ELEMENT	Au30	Aq	Cu	Рb	Zn	Ħū	Ni	Co	cd I	i.	As	Sb	Fe	Mm	Te	Ba	Cr	۷	Sn	W	٤a	AL	Mg	Ca	Na	ĸ	Sr	Y	Ga	Li	NÞ	Sc	Ta Ti	Zr	S
NUMBER	UNITS	PPR	PPM	PPM	PPN	PPM	PPM	PPN	PPM F	PPM P	М Р	PM P	PM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPN I	PM PC	PPN	PCT
					••••																															
L8+00N 1+0	ow	<5	<.2	39	16	96	2	44	13 ().3	<5	13	<5 3	.25	259	<10	78	11	28	<20	<20	26	1.74	0.16	0.22	0.04	0.11	31	5	4	16	2	<5 ·	10 0.06	9	<.01
18+00N 1+5	ᅋ	32	<.2	23	9	123	<1	20	12 0).2 -	45	13	<5 2	.56	869	<10	76	7	26	<20	<20	14	2.25	0.20	0.44	0.05	0.06	45	3	6	16	1	<5 ·	<10 0.08	<1	0.02
L8+00N 2+0	ON .	19	<.2	29	22	189	1	49	17 ().3 ·	<5	11	<5 4	.04	738	<10	120	22	34	<20	<20	19	2.23	0.32	0.28	0.03	0.10	34	3	5	26	3	ا ک	<10 0 .0 8	5	0.01
L8+00N 2+5	ON	<5	<.2	4Z	20	101	2	53	18 -	< <u>.2</u>	\$	13	-6 3	5.91	415	<10	81	34	30	<20	<20	33	1.69	0,46	0.18	0.01	0.11	28	3	3	17	3	5	10 0.05	<1	<.01
18+00N 3+0	CN .	<5	<.2	16	10	73	1	26	10 -	< .2 ·	5	5	<5 Z	2.47	442	<10	62	19	31	<20	<20	18	2.04	0,19	0,16	0.03	0.06	19	3	5	12	3	<5 ·	<10 0.05	6	0.01
1.8+00N 3+5	ow.	<5	<.2	21	28	99	1	38	13 ().2 ·	5	7	<5 3	3.15	463	<10	126	32	35	<20	<20	29	1.67	0,39	0.22	0.02	0.08	21	3	4	18	3	S -	10 0.10	· <1	<.01
L8+00N 4+0	ow .	<5	<.2	12	10	115	t	29	11 -	<.2 ·	5	ر ه	<5 2	2.53	372	<10	88	18	33	<20	<20	15	2.21	0.21	0.12	0.03	0.07	17	Ż	6	17	3	S -	<10 0 .0 5	9	0.01
L8+00N 4+5	ON .	<5	<.2	23	20	156	1	42	13 •	<.2 ·	ত	8	6 3	5.08	318	<10	121	34	36	<20	<20	19	2.18	0,37	0.21	0.02	0.08	23	3	6	16	3	<5 ·	10 0.05	3	0.01
L8+00N 5+0	W.	<5	<.2	17	16	133	1	33	14 0).2 ·	5	7	<5 Z	. 92	592	<10	127	30	31	<20	<20	18	1.81	0,35	0.25	0.02	0.09	30	2	6	16	3	<5 ·	<10 0.09	2	0.01
19+00N 0+0	0	<5	<.2	13	10	65	1	25	7 -	< <u>.2</u>	ര്	5	-5 1	.86	847	<10	105	12	30	<20	<20	7	1.77	0.14	0.37	0.04	û.07	26	2	5	10	3	ا ک	10 0.05	2	0.02
19+00N 0+5	OE	ব	<.2	131	17	103	2	133	37 ().4 -	5 (35	54	.27	1474	<10	121	51	50	<20	<20	11	3.08	0.66	0.70	0.05	0.05	40	5	7	16	4	ار ک	10 0.14	3	0.04
L9+00N 1+0	Œ	10	<.2	102	18	125	5	88	34 0).3 ·	5	13	-5 5	. 19	738	<10	121	65	50	<20	<20	15	2.41	0.66	0.42	0.03	0.10	35	4	6	22	6	\$	10 0.15	<1	0.02
L9+00N 1+5	OE	6	<.2	435	44	106	4	230	96 () . 5 ·	5 '	55	<5 >10	.00	875	<10	54	203	81	<20	<20	19	4.56	2.36	0.45	0.01	0.04	20	12	4	27	4	8 -	10 0.23	5	0.13
19+00N 2+0	IOE .	<5	<.2	10	7	91	<1	20	11 0).3 -	5	5	-5 Z	03	765	<10	139	21	33	<20	<20	6	1.35	0,19	0.35	0.05	0.05	35	2	5	8	3	م ،	(10 0 .05	<1	0.02
19+00N 2+5	OE	<5	<.2	99	35	169	3	69	27 ().2 ·	ৰ্জ	16	< 5	5.49	453	<10	66	56	39	<20	<20	34	1.67	0.60	0.16	0.02	0.10	22	5	2	14	2	ار ې	10 0.05	5	0.02
19+00N 3+0	0E	<5	<.2	54	22	172	<1	29	16 0).Ż ·	ر ج	8	<5 3	.37	257	<10	94	23	29	<20	<20	27	1.55	0.34	0.18	0.02	0.10	24	3	4	14	2	<5 ·	10 0.03	<1	<.01
L9+00N 3+5	OE	<5	<.2	38	13	158	<1	12	14 0).4 ·	5	6	-5 3	.76	1262	<10	228	9	24	<20	<20	26	1.61	0.29	0.43	0.02	0.11	56	3	4	18	2	<5 •	10 0.04	<1	0.03
19+00N 4+0	IOE .	-5	<.2	130	38	131	2	17	23 <	<.2 ·	<5	9	55	.31	417	<10	91	14	37	<20	<20	26	1.55	0.46	0.19	0.01	0.06	25	4	<2	11	1	<5 ·	10 <.01	<1	0.07
L9+00N 4+5	0E	ব	≺.2	163	34	143	3	35	16 <	<.2 ·	5	11	5 4	.38	317	<10	104	35	32	<20	<20	23	2.11	0.38	0.21	0.02	0.06	17	2	5	16	2	<5 -	10 0.05	7	0.02
19400N 540	OE	<5	<.2	132	19	177	3	35	22 ().5	S	7	5 4	. 16	1687	<10	249	16	46	<20	<20	17	2.32	0.39	1.03	0.07	0.32	72	3	7	15	2	ক •	10 0.08	<1	0.03
L9+00N 0+5	iow -	ব	<,2	12	9	83	1	36	8 <	< <u>.</u> 2 ·	\$	5	<52	2.13	582	<10	110	15	28	<20	<20	13	2.19	0,19	0.31	0.05	0.09	34	3	5	15	3	ふ・	10 0,10	9	0.01
L9+00N 1+0	OH .	11	<.2	113	41	144	6	91	39 C).5 -	~5 🔅	59 ·	< 5 8	1.15	1181	<10	71	19	24	<20	<20	80	1.88	0,55	0.94	50.0	0.12	67	18	<2	30	<1	<u>ج</u>	10 0.02	16	0.04
1+5 L9+00N 1+5	OW .	<5	<.2	81	48	186	4	55	24 0).5	5	46 ·	<57	.09	3435	<10	135	13	23	<20	<20	44	1.39	0.37	0.65	50.0	0.07	61	26	<2	14	<1	6 •	10 0.03	6	0.05
19-001 2:0	<u>er</u>	<5	<.2	22	32	145	2	42	14 0).3 ·	S	8	<5 3	.28	637	<10	88	19	31	<20	<20	19	1.97	0.20	0.22	0.03	0.10	28	3	4	16	3	<5 <	10 0.0 7	8	<.01
19+00N 2+5	iow -	<5	≺.2	10	20	155	<1	23	9.0	- 1,5	\$	ō -	J 2	.02	1248	-10	158	16	31	<20	<20	13	1.46	0,16	0.20	0.03	0.05	23	2	6	16	3	ক ৰ	10 0.07	<1	0.01
19+00N 3+0	OM .	\$	<.2	18	34	99	Ż	31	12 <	< . 2	5	7	-S 3	.08	539	<10	95	14	32	<20	<20	19	1.96	0.15	D.22	0,04	0.08	27	5	5	15	3	ও ধ	10 0.06	5	<.01
L9+00N 3+5	iow -	<5	<.2	20	žŻ	143	2	40	11 -	·.2	с <u>с</u>	6	б 2	.65	539	<10	121	19	<u>2</u> 7	<20	<20	22	2.01	0,24	0.23	0.03	0.09	31	Ż	5	17	3	م ،	10 0.0 6	4	0.01
19+00N 4+0	ion -	<5	×.ż	ÿ	15	105		35	11.0	12	5	5 -	ර 2	.20	1138	<19	114	17	30	<20	<20	1 3	1,74	0,25	C.ŻS	0.03	<u>0_07</u>	28	Ż.	ó	16	3	÷.	10 0.07	3	0.01
19+00N 4+5	iow -	<5	<.2	5	ģ	96	<1	16	7 <	4 . 2	6	5	5 1	.63	483	<10	103	10	28	<20	<zŭ< td=""><td>7</td><td>1.80</td><td>0,12</td><td>0.20</td><td>0.03</td><td>Ų ML</td><td>21</td><td>2</td><td>6</td><td>12</td><td>4</td><td>ক ৰ</td><td>10 0:09</td><td>4</td><td>0.01</td></zŭ<>	7	1.80	0,12	0.20	0.03	Ų ML	21	2	6	12	4	ক ৰ	10 0:09	4	0.01
19+00N 5+0	OH .	8	<.2	11	11	104	<1	14	8 ().3	5	6	o 1	.83	1804	<10	227	12	26	<20	<20	ò	2 24	Q. 13	0.41	0.03	0.06	31	Ż	7	12	4	<5 <	10 0.09	<1	0,02

Ged hemical Lab Report

÷

CLIENT: TOK REPORT: VOO	(LAT RESOUR 1-01696.0 (rces 1 (comp	NC Lete)								`					C	DATE	RECE	i vei	D: 00	S-SEI	P-00	D	ATE P	RINTE	D: 14	-SEP	-00	Ρ	AGE	PRC 8 0	JECT IF 13	: AC.	ACIA1	l	
stândârd N ame	ELEMENT UNITS	AU30 PPB	Ag PPN	Cu PPM	РЬ РРМ	Zn PPM	Mo PP M	Nī PPM	Co PPN	Cd PPM	Bi PPM	As PPM	Sb PPM	Fe PCT	Min Pphi	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PP N	AL PCT	Mg PCT	Ca PCT	Na PCT	r PCT	Sr PPM	Y PPM	Ga PPM	Li PPM	N b PPM	Sc PPM	ta PPM	Tİ PCT	Zr PPM	s Pct
ANALYTICAL	BLANK	<5	<.2	<1	<2	<1	<1	<1	<1	<,2	<5	ৎ	<5	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	ৎ	<.2	<1	<2	<1	<1	<1	<1	<.2	4	<5	\$	0.03	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<_01	<1	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	<5	<.2	<1	<2	<1	<1	<1	<1	<.2	<5	4	<5	0.01	<1	<10	<1	1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	2	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	<5	<.2	<1	<2	<1	<1	<1	<1	<.2	<5	<5	<5	0.01	<1	<10	<1	3	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	<5	<.2	<1	<2	<1	<1	<1	<1	<.2	<5	ৎ	উ	<0.01	<1	<10	<1	1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	1	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	ব	<.2	<1	2	<1	<1	<1	<1	<.2	4	ৎ	ৎ	<0.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1	<.01
ANALYTICAL	BLANK	<5	-	-	-	•	•	-	•	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	• •	-	-	-	-	-	-	-	-	-
ANALYTICAL	BLANK	<5	-	•	-	•	-	-	•	-	-	•	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	-	-	-	-	-
ANALYTICAL	BLANK	ক	•	-	-	•	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
ANALYTICAL	BLANK	ৎ	٠	-	-	•	-	•	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	• -	•	-	-	-	-	-	-	-	-
Number of A	Analyses	10	6	6	6	6	6	6	6	6	ő	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	5 6	6	6	6	6	6	6	6	6	· 6
Mean Value		3	0.1	<1	1	<1	<1	<1	<1	0.1	3	3	3	0.01	<1	5	<1	1	<1	10	10	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	1	<1	<1	3	5	<.01	<1	<.01
Standard De	eviation	-	<.1	-	-	•	-	-	-	<,1	•	-	-	0.01	-	-	-	<1	-	-	÷	٠	-	-	-	-	-	<1	•	•	-	-	٠	-	-	-	-
Accepted Va	alue	5	0.2	1	2	1	1	1	1	0.1	2	5	5	0.05	1	<1	<1	1	1	<1	<1	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<1	<1	<1	<1	<1	<.01	<1	<.01
0X8 Oxide		182	•	-	-	•	•	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	_	. <u>-</u>		-	-	-	-	-	-	-	-
0X8 Oxide		178	-	-	-	-	-	-	-	-	-	-	•	-	-	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of A	Analyses	2	-	-	٠	-	-	•	•	-	-	•	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	٠		-	-	-	-	-
Mean Value	-	180	-	-	-	-	-	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	•	-	-	-	-		-	-	-	-	-	-	-	-	-
Standard De	eviation	3	-	•	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	• -	•	-	-	-	•	-	-	-	-
Accepted Va	alue	186	-	-	•	-	۲	-	•	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	ч	-	-	-	-

CANMET LKSD-2	- 0.	Ż.	34	41	198	Ź	26	17 (8.0	~ 5	11	<5	3.60	1759	<10	221	28	43 -	<20 <	<20	52 1.	.70 ().62	0.62	σ.04	0.22	30	26	4	16	5	6	<10 Ū.Ū8	40	1.17
CARRET LKCD 2	- <,	.Ż	36	36	203	2	27	17 ().7	-5	10	4 5	3.76	1775	<10	223	32	46 -	<20 <	<20	55 1.	.69 ().62	0.64	0.04	0.23	30	27	4	16	4	6	<10 0.09	30	1.17
Number of Analyses	•	Ż	2	2	Z	2	Ż	Ż	Ž	Ż	2	2	2	2	2	Ž	2	Z	2	2	2	2	2	2	2	2	Ż	Z	Ż	2	2	2	2 2	2	2
Meen Value	- 0.	.2	35	39	200	2	56	17 0).7	3	11	3	3.68	1/67	ō	22Z	30	45	10	10	53 1.	<u>. 69</u> (). 62	<u>0.63</u>	ብ_በ4	0.23	30	27	4	16	4	6	5 0.09	4 Ú	1.17
Standard Deviation	- 0.	.1	1	4	3	<1	<1	<1 •	<.î	+	< î	-	0.11	11	-	2	3	2	-	-	20.	.01	<.01	0.02	<.01	<.01	<1	<1	<1	<1	<1	<1	- <.01	<1 <	.01

Ged hemical Lab Report

CLIENT: TOKLA REPORT: VOO-C	AT RESOUR	ces in Compl	IC ETE	,														DATI	E RE	CEIN	ÆÐ:	06-	SEP-	00	DA	te pr	INTED): 14	- SEP	-00	f	PAGE	PRO 9 O	JECT: F 13	ACA	ACIA1		
STANDARD NAME	ELEMENT . UNITS	Au30 PPB F	Ag IPM 1	ũu P PM	P15 PP14	Zn PPM	Mc PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	sd PPM	Fe PCT	Mr PPI	n Te 1/PPN	e Ba I PPN	a C IPPI	ir M pp	V S M PF	sn Mipi	W PM P	í.a PM	Al PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	y PPM	Ga PPM	Li PPM	Nb PPM	SC PPM F	Ta >PM	t i PCT	Zr PPM	s PCT
Accepted Valu	ue	- ().8	36	40	200	2	23	17	8.0	-	9	1	3.50	1840) -		2	94	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DX9 Dxide		450	•	-	-		-	-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
DX9 Oxide		466	-	-	-	-	-	•	-	-	-	-	-	-				•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	•	-
Number of Ana	alyses	2	-	-	-	-	-	-	•	-	-	-	•	-			•	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
Mean Value		458	-	-	-	-	-	-	-	•	-	-	-	-			•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-	-
Standard Dev	iation	12	-	-	-	-	-	-	-	-	•	-	-	-				•	-	-	-	-	-	-	-	-	-	-	-	٠	-	-	-	-	-	-	-	-
Accepted Val	ue	465	•	-	-	-	-	-	•	-	-	-		-		• -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	· -
OX11 Oxide		2968	•	-	-	-	•		-	-	•	-	:	-	•				-	-	-	-			-	-	-	-	-	-	-		-	-	-	-		-
DX11 Dx1de		<u>د ۲</u> ۳۵۵	-	-	-					-	-		-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Number of An	aryses	2068	-	-	-		-	-	•	-	-	-	-	-				-	-	-	_	-	-	-	-	-	-		-	-	_		-	-	-	-	_	-
Standard Dev	istion		•	-	•	-	•	-	-	-	-	-	-	-				•	-	-	-	-	-	-	-	-	-	7	-	•	-	•	-	-	-	-	-	-
Accepted Val	ue	2940	-	-	-	-	-	-	•	-	-	•	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-

6591-2	- <.	2 1	52	16 14	6	4 15	3 3	9 0.4	ক ।	152	<5	7.76	1455	<10	8 2	26	48 -	20 <	20	42,	12 2	.62 3	1,70	0.02	0.05	79	3	<2	20	2	8	<10 <	<.Ū1	8 1.	29
GS91-2	- <	ž î	56	16 13	2	4 13	7	6 0.4	ର୍ବା	133	5	7.29	1352	<10	72	21	50 <	20 <	20	5 1.	94 2	.44 3	.58	0.02	0.05	17	3	S	21	2	8 -	:10 <	:.01	91.	20
Number of Analyses	-	2	2	2	3	2	2	22	2	2	2	2	Ż	2	2	2	2	2	Ž	2	2	2	2	2	2	7	Ż	Z	Ż	2	Ż	2	2	2	2
Mean Value	- Q.	1 1	45	16 14	3	4 14	53	7 0.4	3 '	142	4	7.53	1404	5	82	24	49	טו	ÌŨ	42.	03 2	.53 3	. <u>₩</u>	0.02	0_05	78	3	2	20	2	8	5 <	¢.01	91.	24
Standard Deviation	-	-	10	-	5	<1	8	2 -	-	13	2	0.33	7 2	-	<1	4	1	-	-	<1 Q:	13 0	1.12 0	.08	<.01	+	2	<1	1	<1	<1	<1	-	-	<1 0./	07

Bondar Cless Canada Limited. 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

Standard Deviation

3

CLIENT: TOKL REPORT: VOO-	AT RESOUR	ices (com	INC PLETE	:)													1	DATE	RECE	IVEC	: 06	-SEP	-00	D	ATE F	RINT	ED:	14-9	SEP-(00	P)	AGE	PRO 10 0	JECT F 13	: AC	ACIA1		
STANDARD NAME	ELEMENT UNITS	Au30 PPB	Ag PPM	Cu PPM	РЬ РРМ	Zn PPM	Mo PPM	Nî PPM	Co PPM	Cdi PPM F	Bi ≫PM ∃	As PPM 1	S15 PPM	Fe PCT	Mri Pphi	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM (La PPM	Al PCT	Mg PCT	Ca PC1	3 N T PC	a TP	K PCT F	Sr PPM F	y PPM I	Ga PPM (£î PPM i	ND PPM (Sc PPM I	Ta PPM	ti PCT	Zr PPN	s Pct
Accepted Val	lue	-	0.2	148	20	148	4	135	35	0.2	1	145	1	7.20	1450	<1	6	251	50	5	12		1.80	2.70	4.00	0.0	1 0.	04	70	3	-	24	2	6	1	<.01	5	1.00
CANMET STSD- Number of An	-4 nalyses	-	<.2 †	70 1 70	t5 1	88 1 88	2 1 2	27 1 27	11 1 11	0.3 1 0.3	5 1 3	12 1 12	<5 1 3	3.08 1 3.08	1226 1 1226	<10 1 5	1074 1 1074	35 1 35	48 1 48	<20 1 10	<20 1 10	14 1 14	1.32 1 1.32	0.70 1 0.70	1.19	2 0.0 1 7 0.0	40. 1 40.	.10 1 10	65 1 65	11 1 11	3 1 3	8 1 8	4 1 4	<5 1 3	<10 1 5	0.09 1 0.09	<1 1 <1	0.11 1 0.11
Standard Dev Accepted Val	viation lue	-	0.3	66	13	82	- 2	23	- 11	- 0.6	-	- 11	4	2.60	1200	-	-	- 30	- 51	-	-	•	-	-		•	-	-	-	-	-	-	•	-	-	-	•	•
0X5 Oxide 0X5 Oxide		939 939) -) -	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	د د	-	-	-	-	-	•	-	• -	-	-		-	-	-	-	-	-	-	' - -
Number of Ar	nalyses	z		-	-	-	-	-	-	-	٠	-	-	-	-	+	-	-	-	-	-	•	-	-		-	-	-	٠	-	-	-	-	•	-	-	-	-
Mean Value	•	939	-	-	•	-	-	-	-	-	-	-	•	-	-	-	-	٠	-	-	-	•	-	-		-	-	-	-	-	-	-	•	-	-	-	•	-
Standard Dev	viation	-	· -	-	÷	-	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	٠	-	-	-	-	-	-
Accepted Val	lue	968	3 -	-		-	-	-	-	-	▲	-	-		-	-	-	-	-	-	•	-	-	-		-	-	-	-	-	-	-	~	-	-	-		-
GS91-1		-	0.6	97	7	80	3	41	19	<.2	<5	8	<5	5.06	708	<10	228	56	125	<20	<20	8	3.39	1.60	1.0	9 0.0	60.	.31	45	8	8	23	10	10	<10	0.24	11	0.03
Number of Ar	nelyses	-	• 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		-	0.6	97	7	80	3	41	19	0.1	3	8	3	5.06	708	5	228	56	125	10	10	8	3.39	1.60	1.0	3 0.0	6 0.	.31	45	8	8	23	10	10	5	0.24	11	0.03
Standard Dev Accepted Val	viation lue	-	· •.7	7	11	£	ż	- 40	- 10	- n 1	- 1	- 8	1	- 4.74	- 720	- <1	- 200	- 54	133	- 4	- 2	5	- 3.09	- 1.83	1.0	3 0.0	- 60.	- 32	- 39	- 9	4	-	1	- 18	- 1	-	9	- 1.00
OX12 Oxide		6700 6700) +) -	•		-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	•	-	-	•		-	-	-	-	-	-	-	-	-	-	-	•	•
UKIZ UKIGE	nalumee		, - , _			-		_		-		-	-	_		-	-	_	-	_			-	-		-	-	-	_	_	-	+	-	-	_	-		_
Mean Value		6700		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		~	-	-		-	-	-	-	-	-	-	•	-	-	-	•	-

Gel nemical Lab Report

λ.

BONDAR CLEGG

	BONDAR				PROJECT: ACACIA1
CLIENT: TOKLAT RESOUR	RCES INC	DATE RECEIVED: 06-SEP-00	DATE PRINTED:	14-SEP-00	PAGE 11 OF 13
REPORT: VOO-01696.0 (STANDARD ELEMENT	AU30 Ag CU PID Zn Mo Ni Co Col Bi As Sb Fe Mn Te E	3a Cr. V Sn. W La Al DM PPM PPM PPM PPM PCT 1	Mg Ca Na PCT PCT PCT I	K Sr Y G PCT PPM PPM PP	a Li NIS SC TA TI ZF J M PPN PPM PPM PPM PCT PPM PCT
NAME UNITS	5 PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM		·		
Accepted Value					

The Local Control 130 Pemberton Avenue North Vancouver, BC, V7P 2R5, (604) 985-0681

Ged nemical Lab Report

CLIENT: TOKE	AT RESOUR	CES	NC																													PRO	JECT	: ACAC	1A1		
REPORT: VOO-	-01696.0 (COM	LETE)													D	ATE	RECI	E I VEI	D: 06	5-SEP	-00	D	ATE F	RINTE	D: 14	-SEP-	00	P	AGE	2 0	F 13				
SAMPLE	ELEMENT	AU30	ÂO	Cu	Pb	Zn	Mo	Nŝ	Co	Cď	81	As	sb	۶e	Mn	Te	8a	Cr	v	Sn	¥	Ĺa	٨l	Mg	Ca	i Na	ĸ	Sг	Y	Ga	Li	NÞ	Sc	Ta	Ti	Zr	s
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPN	PPM	PPM	PPM	PPM	PPM	PĊĨ	PCT	PCT	PCT	PCT	PPN	PDM P	ipm 1	PPM 1	PPM	PPM 1	PPM P	CT P	PPM PC	T
LO+00 3+00W		<\$	<.2	8	15	149	1	23	8	<.2	4	6	<5	2.04	1309	<10	88	13	27	<20	<20	6	2.83	0.10	0.18	\$ 0.03	0.04	14	2	8	12	3	<5 ·	<10 0.	10	17 0,0	2
Duplicate		<5	<.2	8	15	143	1	22	8	<.2	~ 5	6	ر ج	1.91	1275	<10	86	11	25	<20	<20	5	2.75	0.10	0,17	• 0.02	0.03	14	2	7	11	3	<5	<10 0.	09	17 0.0	2
L1+00N 1+00	H	ৎ	<.2	15	16	96	1	18	10	<.2	ৎ	<5	<5	2.31	226	<10	30	15	28	<20	<20	9	2.18	0.15	0.19	0.03	0.02	16	5	4	17	3	<5 ·	<10 0.	80	9 0.0	2
Duplicate			<.2	15	14	97	2	18	10	<.2	ব	ব	ব	2.25	238	<10	31	16	28	<20	<20	9	2.28	0.15	0.20	0.03	0.02	17	5	5	18	3	ار ې	<10 0.	80	9 0.0	2
L1+DON 4+00	u l	<5	<.2	23	10	102	2	38	13	<.2	<5	13	<5	2.52	515	<10	64	32	34	<20	<20	5	3.03	0.18	0.14	0.02	0.03	12	2	8	13	2	<5	<10 D.	10	14 0.0	12
Duplicate		ふ																																			
1.2+00N 0+50	E	<5	<.2	18	15	68	1	31	12	<.2	\$	5	ব	2.45	500	<10	93	24	25	<20	<20	18	2.11	0.21	0.12	0.03	0.09	14	3	4	12	2	<5	<10 0.	06	5 <.0	11
Duplicate			<.2	18	14	67	1	31	11	<.2	\$	6	4	2.38	486	<10	90	24	24	<20	<20	18	2.06	0.20	0,12	2 0.03	0.09	13	3	5	12	2	<5	<10 0.	06	5 <.0	1
L2+00N 5+00	E	~5	<.2	31	İZ	154	2	12	11	<.2	\$	8	Q	2.67	558	<10	84	9	27	<20	<20	13	3.13	0,16	0.14	0,03	0.04	15	3	7	13	2	\$	<10 0.	80	18 0.0	2
Duplicate		4																																			
L2+00N 4+00	u -	<5	«.2	12	13	60	1	22	8	<,2	\$	ৎ	\$	2.14	555	<10	153	20	29	<20	<20	11	2.09	0.15	0.11	0.03	0.05	15	3	7	11	2	5	<10 0.	80.	6 0.0	11
Duplicate			<.2	12	12	60	1	21	8	<.2	ব	ব	4	2.17	550	<10	152	19	30	<20	<20	12	2.04	0.15	0.1	0.03	0.05	17	3	7	11	2	~ 5	<10 0.	80	5 0,0	1
1.3+00N 1+00	W	<5	<.Ź	45	27	105	2	56	21	<.2	ゥ	14	~5	4.47	944	<10	9 8	42	29	<20	<20	25	1.26	0.35	0.21	0.01	0.10	23	3	3	12	1	<5	<10 0.	04	<1 0.0	12
Duplicate		ふ																																			
L3+00N 3+50	M	<5	<.2	11	9	40	<1	17	6	<.2	~ 5	<5	ৰ্ণ	1.82	79	<10	49	13	24	<20	<20	16	0.94	0.14	0.1	0.02	0.04	13	1	4	9	3	<5	<10 0.	04	2 <.0	11
Duplicate			<.2	11	10	40	<1	17	6	<.2	ৎ	ক	4	1.84	79	<10	49	14	25	<20	<20	17	0.93	0.14	0.11	0.02	0.04	12	2	4	9	3	<5 ·	<10 0.	64	2 <.0	1
L4+00N 1+50	M	ব	<.2	25	19	84	2	45	17	<.2	\$	7	4	3.55	263	<10	80	32	33	<20	<20	18	1.96	0.35	0.16	6 0,03	0.07	23	3	6	17	2	<5	<10 0.	.06	4 0.0	1
Duplicate			<.2	25	20	83	1	44	17	<.2	\$	8	ら	3.56	270	<10	78	32	31	<20	<20	17	1.98	0,35	0.17	0.02	0.06	22	3	5	17	3	<5	<10 0.	06	2 0.0	1
14+00m 2+00		~	₹.Ź	7 0	13	74	Í	18	7	<.2	ৎ	ব	ৰ্ণ	2.09	518	<10	89	15	25	<20	<20	10	3.08	0,17	0,18	6 0.03	0.05	22	3	8	15	2	ব	<10 0.	10	22 0.0	2
Duplicate		~ 5																																			
15+00N 1+00	N	-5	<.2	8	15	111	1	26	10	<.2	ব	6	ক	2.02	657	<10	68	12	27	<20	<20	6	2.46	0.14	0.37	° 0.03	0.05	27	2	7	15	3	<5	<10 0.	09	7 0.0	12
ຼີຫຼາງlicate			<.2	8	15	104	</td <td>24</td> <td>10</td> <td><.2</td> <td>\$</td> <td>Ģ</td> <td><<u>5</u></td> <td>1.91</td> <td>625</td> <td><10</td> <td>65</td> <td>12</td> <td>26</td> <td><20</td> <td><20</td> <td>7</td> <td>2.34</td> <td>0.14</td> <td>0,35</td> <td>6 0.03</td> <td>0.05</td> <td>27</td> <td>2</td> <td>6</td> <td>15</td> <td>2</td> <td>5</td> <td><10 0.</td> <td>80</td> <td>7 0.0</td> <td>2</td>	24	10	<.2	\$	Ģ	< <u>5</u>	1.91	625	<10	65	12	26	<20	<2 0	7	2.34	0.14	0,35	6 0.03	0.05	27	2	6	15	2	5	<10 0.	80	7 0.0	2
L5+00N 3+00	W	\$	<.Ž	11	13	56	2	31	9	<.2	ৎ	6	ぅ	2.37	418	<10	112	21	29	<20	<20	8	3.60	U. İŸ	Û, 4	0.03	0.06	41	Ż	R	19	2	< 5	<10 0.	11	27 0.0	12
Duplicate		-5																																			

Ge hemical Lab Report

CLIENT: TOKLAT RES	OURCES	INC																													PRO	JECT	: AC/	ACIA1		
REPORT: V00-01696.	0 (00)	PLET	E)													0	ATE	RECE	I VEC	: 06	-SEP	-00	D	ATE PR	INTE): 14	SEP-	00	Ρ	AGE	13 0)F 13	÷			
SAMPLE ELEME	NT AUBO) Ag	Cu	Pb	Zn	Мо	Ni	Co	Cď	8 i	As	Sb	Fe	Min	Te	Ba	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	ĸ	Sr	Y	Ga	Li	Nb	Sc	₹a	Ti	Zr	S
NUMBER UN1	TS PPE	PPM	PPM	PPN	PPM	PPM	PPN	PPM	PPN	P PM !	PPM	PPN	PCĪ	PPM	PPM	PPM	ppm	PPM	PPN	PPN	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPN I	PM	PPM	PPM	PCT	PPM	PCT
L6+00N 4+00E	<	i <.Z	43	20	95	3	8	18	<.2	<5	10	ব	6.55	2146	<10	57	7	32	<20	<20	68 (2,52	1.11	0.27	0.01	D.06	18	11	5	16	<1	<5	<10 (0.02	6 (1.09
Duplicate		<.2	43	19	95	3	8	18	<.2	<5	9	<5	6.55	2173	<10	55	5	31	<20	<20	68	2.52	1.12	0.27	0.01	0.05	18	11	4	16	<1	<5	<10 (0.01	5 0	1.09
L6+00N 4+00W	<5	5 O.3	70	21	54	1	41	11	0.4	ଟ	<5	ব	2.68	1816	<10	148	33	30	<20	<20	19	2.23	0.25	0.97	0.05	0.06	103	20	4	24	3	<5	<10 ().07	5 (),05
Duplicate	10)																																		
1.7+00N 3+50E	17	<.2	4	8	66	<1	5	7	0.2	4	<5	ব	1.92	390	<10	52	7	30	<20	<20	7	1.94	0.08	0.15	0.04	0.03	14	2	6	9	3	<5	<10 0	J.06	30	3.01
Duplicate		<.2	4	8	64	<1	5	7	<.2	ব	<5	ゥ	1.97	404	<10	52	6	29	<20	<20	7 3	2.00	0.08	0.15	0.03	0.03	14	2	5	8	3	<5	<10 0	0.06	4 0	3.01
					_				_	÷	_												_					_								
L7+00N 5+00W	<	5 <.2	10	10	56	1	30	12	<.2	~ 5	4 5	4	2.96	111	<10	117	22	39	<20	<20	11 3	3,48	0.25	0.11	0.02	0.04	15	2	8	21	4	<5	<10 0).08	24 0	1.02
Duplicate	<	5																																		
											~		F 40	500					-20			• ••	~ ~	a 3-	~ ~~		•				_					
L8+00N 1+50E	<) <.Z	57	 	105	Z	126	28	<.2	9		\$	5.18	590	<10	112	101	54	<20	<20	17 7	2.60	0.86	0.33	0.02	0.09	26	6	5	18	3	6	<10 0	1.08	10 0	1.01
Duplicate		<.2	53	\$3	100	2	120	27	<.2	\$	10	0	4.92	573	<10	107	94	52	<20	<20	17 2	2.49	0.83	0.32	0.02	0.09	z	6	5	17	4	6	<10 0	1.08	90	1.01
	4		171	17	107	ċ	172	77	n /	×	75	, ii	6 77	1272	-10	121	51	50	~20	~20	14 3	2 00	0 44	à Tả	0.05	n ne	60		,	14	,	æ	-10 0		7 6	
Lytum Utouc	10 10		131	17	103	6	133	31	U.4	0	33	0	4.27		10	121	57	90	~20	~20	11.2	3.00	0.00	0.70	0.05	0.05	40	2	'	10	4	<2 ·	10 0	1. 14	50	1,04
Dupricate	~	,																																		
19+00N 1+00F	11	1 <.2	102	18	125	5	88	34	0.3	5	13	4	5.19	738	<10	121	65	50	<20	<20	15 3	2.41	0.66	D.42	0.03	0.10	35	4	6	22	4	65	<10 C	15	<1 r	1 112
Dural icate		< 2	100	15	123	5	88	77	< 2	5	13	5	5.06	725	<10	118	66	53	<20	<20	16 2	2 35	0.65	0.42	0.03	n 10	37	4	7	22	5	5	<10 0	1 16	2 1	1.02
oup: logic						-	~						2.00								.0.1		0.05			0.10	5,	•	,		2	~	-10 0		20	.05
L9+00N 4+50W	4	; *. 2	6	9	96	<†	16	7	<.2	45	Q	5	1.63	483	<10	103	10	28	<20	<20	7 1	1.80	0.12	0.20	0.03	0.04	21	2	6	12	4	<5	<10 0	0.09	4 0	1.01
Duplicate	-	<.2	7	10	105	<1	17	7	<.2	حه	4	4	1.73	524	<10	109	12	30	<20	<20	8 1	1.96	0.13	0.23	0.04	0.04	23	2	7	13	3	<5	<10 0	1.10	50	0.01

TOKLAT RESCURCES INC 2720 - 17TH ST S CRANEROOK, BC V1C 4H4

+

Ge Lab Report ' hemical

r

۰,

BONDAR CLEGG

╋

+

+

Ge hemical Lab Report

REPORT: V00-01695.0 (COMPLETE)

CLIENT: TOKLAT RESOURCES INC.

PROJECT: ACACIA1

REFERENCE:

SUBMITTED BY: T. TERMUENDE

DATE RECEIVED: 05-SEP-00 DATE PRINTED: 7-SEP-00

DATE		NUMBER OF	LOWER			SAMPLE TYPES	NUMBER	SIZ	E FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
APPROVED EI	LEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD					47		
	0 .1.1		5 005		70- Fire Acons. At	T STREAM SED, SILT	12	3	-80	12	DRY, SIEVE -80	12
000906 1 AUDU	6010	12	0 2 225	FILE Assay of DUg	JUG FILE ASSAY - AA							
000906 2 Ag	Ag - ICUT	12	0.2 PPM	NUL: INVO3 (3:1)	THOUS COUP. PLASMA		0 1774 5			THEOLOG	TO- 3730 17TH CT C	
000906 5 Cu		12	1 PPH	HUL: HNUD (3:1)	INDUC. CUP. PLASMA	REPORT UPTES TO: 272	0 - 1718 5	: 3		INVOICE	10: 2720 - 1718 51 5	
000906 4 Pb	PD - 1001	12	2 PPM	HCL:HNU5 (5:1)	INDUC. COUP. PLASMA	*********	والمراجعة والمراجعة والمراجعة والمراجعة	*****	فرحان بالحرك والمركبة والمركب والمركب والمركب والمركب والمركبة	و الله الله الله الله الله الله الله الل	والمراجعة والمراجعة والمراجعة والمراجعة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	****
000906 5 Zn	Zn - 1001	12	1 PPM	HCL:HNU5 (5:1)	INDUC. LUUP. PLASMA						data and and in the	***
000906 6 Mo	Ma - ICD1	12	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	report is s	pecific to	be re thos	produced except e samples ident	ified under "	data presented in th Sample Number" and is	15
000906 7 Ni	Ni - ICO1	12	1 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA	applicable	only to th	e sam	ples as receive	d expressed o	n a dry basis unless	
000906 8 Co	Co - IC01	12	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	otherwise i	naicated					
000906 9 Cd	Cd - IC01	12	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	********	*******	****	*****	*******	*******	***
000906 10 Bi	Bi - 1CO1	12	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 11 As	As - 1001	12	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 12 sb	Sb - 1001	12	5 PPK	HCL : HN03 (3:1)	INDUC, COUP. PLASMA						1	
000906 13 Fe	Fe - IC01	12	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÁ							
000906 14 Mn	Mn - 1001	12	1 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 15 Te	Te - 1001	12	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
- 000006 16 ks	Ra - 1001	12	1 PPM	HCL - HNOS (3:1)	INDUC. MULP. PLASMA							
000006 17 Cc	Cr - 1001	12	1 PPM	HCL :HNO3 (3:1)	INDUC. COLP. PLASMA							
000900 17 C	V - 1001	12	1 PPN	HCL +HNO3 (3-1)	INDUC. DUP. PLASMA							
. 000900 10 ¥	1 1001				THEORY COOL & LENGING							
000906 19 Sn	Sn - 1001	12	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 20 V	W - 1C01	12	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 21 La	La - IC01	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 22 AL	A1 - 1C01	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP PLASMA							
000906 23 Mg	Ma - 1001	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 24 Ca	Ca - 1001	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
				••••								
000906 25 Na	Na - ICO1	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 26 K	K - IC01	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 27 Sr	Sr - IC01	12	1 PPN	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 28 Y	Y - ICO1	12	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 29 Ga	Ga - 1CO1	12	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 30 11	<u>1</u> 1 - 1001	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 31 No	ND - 1CO1	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000000 31 ND	Sc - IC01	12	5 PPM	HCL: HNO3 (3:1)	INDUC, COUP, PLASMA							
000006 33 To	Ta - 1001	12	10 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA							
	71 - 1100	12	0.01 PCT	HC1 : HNO3 (3:1)	INDUC. COLP. DI ASMA							
	75 - 1001	12	1 PPM	HC1:HN03 (3:1)	INNEL CITP. PLANNE							
000006 36 0	s - 1001	12	0.01 PCT	HEL-HNUS (5:5)	THINK ON DI ACHA							
00000 30 3	~ 1001	12										

Ged hemical Lab Report

CLIENT: TOKL	AT RESOU	RCES	INC																													PR	OJECT	: ACAC	1A1		
REPORT: VOO-	01695.0	COM	PLETE	•														DA	TE I	RECE	VED:	05-	SEP-	00	DATE	PRINT	ED :	7-SEP	-00		PAGE	1	OF 3				
SAMPLE	ELEMENT	Au30	Ag	Cu	РЪ	Zn	Mo	NÌ	Ça	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	v	Sn	W	La	AL	Mg	Ca	Na	ĸ	Sr	Y	Ga	Li	Nb	Sc	Ta T	i Z	lr s	
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPH	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM P	PM PC	t pf	м рст	
BRACOOS01		7	<.2	58	38	165	3	92	31	0.6	<5	19	<5	6.18	1735	<10	65	76	30	<20	<20	17	0.93	1.20	3.52	0.01	0.07	133	6	<2	11	1	<s <<="" td=""><td>10 0.0</td><td>z</td><td>3 0.12</td><td></td></s>	10 0.0	z	3 0.12	
BRACO0S02		<5	<.2	73	36	123	2	10	14	0.6	<5	5	ৎ	2.99	1087	<10	79	7	15	<20	<20	25	0.78	0.25	2.98	0.01	0.14	50	7	<2	5	<1	ر ې د	10 0.0	2	4 0.05	
BRAC00S03		6	<.2	105	45	1 8 0	3	81	32	0.5	ব	20	6	6.49	1408	<10	54	67	32	<20	<20	19	1.22	1.23	2.81	0.01	0.08	111	6	<2	14	2	ক <	10 0.0	2	5 0.14	
BRACOOSO4		S.	Û.8	106	29	157	3	16	12	0.8	ব	10	ব	3.06	535	<10	49	13	12	<20	<20	9	0.78	0.52	>10.00	0.01	0.07	159	4	<2	6	1	ক <	10 0.0	1	2 0.27	
JCACOOSO1		4	<.2	51	25	118	2	85	30	0.4	ব	19	4	7.03	3048	<10	125	61	22	<20	<20	12	Ū.78	0.91	2.42	0.01	0.07	125	5	<2	8	<1	ও <	10 <.0	1	4 0.23	
JCAC00S02		ব	0.5	63	155	350	3	35	14	1.7	ব	9	ব	3.76	1440	<10	45	16	14	<20	<20	12	0.74	0.40	8.10	0.01	0.06	166	6	~2	9	<1	ৰ্ব <	10 0.0	1	z 0.10	
JCAC00s03		<5	<.2	48	34	159	3	96	30	0.4	Q	19	Q	5.89	1957	<10	71	76	27	<20	<20	16	0.78	1.09	2.22	<.01	0.08	102	5	<2	8	1	<5 <	10 <.0	1	4 0.11	
JCACOOSO4		ক	1.1	31	18	111	1	13	8	0.3	4	7	ō	1.74	366	<10	31	5	5	<20	<20	7	0.33	0.40	>10.00	<.01	0.03	310	2	~2	5	<1	<5 <	10 <.0	1	2 0.16	
JCAC00S05		ক	<.2	97	49	139	2	13	18	0.6	ব	10	đ	4.04	1165	<10	66	7	18	<20	<20	24	0.83	0.39	1.48	0.01	0.10	42	6	<2	8	1	ক <	10 0.0	1	4 0.11	
JCAC00S06		ব	1.1	38	9	92	2	4	3	0.3	\$	4	4	0.66	175	<10	33	3	3	<20	<20	3	0.18	0.25	>10.00	<.01	0.03	218	1	<2	2	<1	<5 <	10 <.0	1 <	1 0.25	
JCAC00S07		8	<.2	110	35	149	4	71	34	0.5	ব	25	5	6.67	1010	<10	31	30	19	<20	<20	16	1.08	0.93	1.97	<.01	0.05	86	7	~2	16	<1	< <	10 0.0	1 1	1 0.33	
JCAC00S08		ক	1.0	77	35	120	. 2	15	12	0.5	ব	8	4	2.58	424	<10	36	7	9	<20	<20	9	0.64	0.54	>10.00	0.01	0.04	232	3	2	5	<1	ও <	10 <.0	1	3 0.29	

,

Ge hemical Lab <u>Report</u>

•

CLIENT: TOK	lat resou	RCES	INC																														P	ROJE	CT : .	ACACI	A1		
REPORT: VOO	-01695,0	COM	PLETE)														D	ATE	RECE	IVE): 05	S-SEP	-00	DAT	E PI	RENTI	ED :	7-se	P-00		PAGE	: 2	OF	5				
STANDARD	ELEMENT	AU30	Âg	Çu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mn) Te	Ba	Cr	v	Sr	n 1	l La	A	L M	9	Ca	Na		(Sr	Y	Ga	Li	Nb	Sc	Ta	ті	Zr		5
NAME	UNITS	PPB	PPM	PPM	PPM	PPM	Pph	PPM	PPM	PPM	PPM	PPM	PPH	PCT	PPN	PPM	PPN	PPM	PPM	PP#	i ppi	i PPI	i PC	T PC	r P	CT	PCT	PCI	i ppn	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PC	ſ
ANALYTICAL	BLANK	4	<.2	<1	~2	<1	<1	<1	<1	<.2	ৎ	<5	<5	<.01	<1	<10	<1	<1	<1	<20	<20) <1	<.0	1 <.0	1 <0.	01 •	<.01	<.01	<1	<1	<2	<1	<1	4	<10	<.01	<1	<.0	1
Number of A	nalyses	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	·	1 '	1	1	1	1	1	1	1	1	1	1	1	3	1	-	t
Mean Value		3	0.1	<1	1	<1	<1	<1	<1	0.1	3	3	3	<.01	<1	5	<1	<1	<1	10	10) <1	<.0	1 <.0	<0.	01 •	<.01	<.01	<1	<1	1	<1	<1	3	5	<.01	<1	<.0	1
Standard Dev	viation	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-		. .	•	-	•	-	-	-	-	-	-	-	-		-		•
Accepted Va	lue	5	0.2	1	2	1	1	1	1	0.1	2	5	5	0.05	1	<1	<1	1	1	<1	<1	<1	<.0	1 <.0'	- ⊲.	01 •	c.01	<.01	<1	<1	<1	<1	<1	<1	<1	<.01	<1	<.0	J
OXS Oxide		946	-	-	-	-	-	-		-	-	•	-	-	-	-	-	-	-	-	-	-				-	-	-	-	•	-	-			-		-		-
Number of A	nalyses	1	•	-	-	-	-	-	-	•	~	-	-	-	-	-	-	-	-	-	-	-		. .		-	-	-	-	-	-	-	-	-	-		-		
Mean Value		946	-	-	-	-	+	•	-	-	•	•	-	-	•	-	-	-	-	-	-	-		•	•	-		*	-	-	-	-	-	-	-	-	-	-	
Standard Dev	viation	-	-	-	•	-	-	-	-	-	-	•	-	-	•	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-		-	-	-	
Accepted Va	lue	968	-	-	-	-	٠	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	~	-	-	
GS91-1		-	0.6	96	6	78	, 3	40	19	0.2	ব	7	ক	5.00	726	<10	202	56	129	<20	<20	6	3.3) 1.67	0.9	% 0	.06	0.32	36	8	4	26	10	11	<10	0.23	12	n n	2
Number of Ar	nalyses	-	1	1	1	1	ť	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1.	1	1	1	1	
Mean Value		-	0.6	96	6	78	3	40	19	0.2	3	7	3	5.00	726	5	202	56	129	10	10	6	3.30	1.67	0.9		.06	0.32	36	8	4	26	10	11	5	0.23	12	1. 17	
Standard Dev	viation	-	-	-	-	-	-	~	-	-	-	•	-	-	-	-	•	-	-	-	-	-				-					-				-	~	-		
Accepted Val	lue	•	ð.7	9 5	11	80	2	40	18	0.1	. 1	8	1	4.74	720	<1	200	54	133	4	Z	5	3.09	1.83	1.0	18 0	.06	0.32	39	ģ	4	•	1	18	1	-	9	1.00	I

Donder Close Conside Limited 130 Pemberion Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

Ged hemical Lab Report

CLIENT: TOKI	LAT RESOUR	RCES INC																													PR	OJECT	: AC	ACIA	1	
REPORT: VOO-	01695.0	COMPLET	Έ)														DA	ITE F	ECEI	VED ;	: 05-	SEP-1	00	DATE P	RINTE	Đ:	7-sep	-00		PAGE	3 (OF 3				
sample	ELEMENT	AU30 Ag	I CU	i PD	Zn	Mo	Ni	Co	Cđ	bi	As	sb	Fe	Mn) Te	Ba	Cr	V	Sri	W	La	Al	Mg	Ca	Na	k	Sr	y	Ga	Li	ND	Sc	Ta	TÎ	Zr	s
Number	UNITS	PPB PPN	I PPM	IPPNI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PCT	PPM	IPPMI	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	Pct	PPM	PPM	PPM	PPM (PPM (PPM P	PM	PCTI	>PM	toq
JCACOOSO2		<5 0.9	5 63	155	350	3	35	14	1.7	<5	9	<5	3.76	1440	10 <10	45	16	14	<20	<20	12	0.74	0.40	8.10	0.01	0.06	166	6	<2	9	<1	ৎ <	10 0	.01	2 0).10
Duplicate		6 0.9	5 70	166	383	2	38	15	1.8	<5	12	<5	4.19	1561	<10	48	18	14	<20	<20	13	0.83	0.45	8,83	8.01	0.07	173	7	<2	9	<1	ৎ <	10 0	.02	2 0).11

TOKLAT RESOURCES INC 2720 - 17TH ST S CRANBROOK, BC V1C 4H4

+-

╋

Geo iemical Lab Report

+

-

+

REFERENCE:

REPORT: VOO-01693.0 (COMPLETE)

CLIENT: TOKLAT RESOURCES INC.

PROJECT: ACACIA1

SUBMITTED BY: T. TERMUENDE DATE RECEIVED: 01-SEP-00 DATE PRINTED: 7-SEP-00

DATE APPROVED	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT		NUMBER OF ANALYSES	LOWER DETECTION	EXTRACT	ION	METHOD)
000903	1 Au30 Gold	1	2	5 PPB	Fire Assay of 30g	30g Fire Assay - AA	000903 37 1	ti Ti-	1001	2	0.01 PCT	HCL:HNO3	(3:1)	INDUC. CO	UP. PLAS
000903	2 AgGrav Silv	er (Grav.)	1	0.7 PPM	FIRE ASSAY	FIRE ASSAY-GRAV	000903 38 z	Zr Zr-	1001	2	1 PPM	HCL:HNO3	(3:1)	INDUC. CO	UP. PLAS
0000013	3 Ao Ao -	1001	2	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	000903 39 9	s s-1	1001	2	0.01 PCT	HCL: HNO3	(3:1)	INDUC. CO	UP. PLAS
000003	4 fu fu -	1001	2	1 PPM	HCL: HN03 (3:1)	INDUC, COUP, PLASHA									
000000	5 Ph Ph-	1001	2	2 PPM	HC1 : HNO3 (3:1)	INDUC, COUP, PLASMA									
000903	6 Pb Lead	I	ī	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY	SAMPLE TYP	PES	NUMBER	SIZE FRAC	TIONS	NUMBER	SAMPLE F	REPARATIONS	S NUMBER
000903	72n Zn-	1001	2	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	R ROCK		2	2 -150		2	CRUSH/SF	LIT & PULV.	2
000903	87n Zinc		Ĩ	0.01 PCT	HF-HNO3-HCLO4-HCL	AAS LOW LEVEL ASSAY									
000903	9 Mo Mo-	1001	2	1 PPM	HEL: HNO3 (3:1)	INDUC. COUP. PLASMA									
000903 1	ถ้ามี พริ-	1001	2	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REMARKS: Z	Zínc concent	tration >1%	will enhand	ce Tungsten				
000003 1	100 00-	1001	2	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	r	results. T	nerefore. T	unasten con	centration				
000903 1	2 Cd Cd -	1001	2	0.2 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	6 7	would be gre	eater than	true value.				,	
000003 1	tei ei-	1001	2	5 PPM	HCL: HNO3 (3:1)	INDUC. CTUP. PLASMA	•								
000703	201 01 4.8e 8e -		5	5 PPM	HCL +HNO3 (3-1)	INDUC. COUP. PLASMA									
000703	чиз из- Есь сь.	1001	5	5 DDM		THE COULD PLASMA		275 101 272	20 - 17TH C	тс			n 2720 -	17TH ST S	
000903 1	550 50- 450 50-	1001	2	0.01.007		INDUC COULT FLOOP	KEPOKT OUT	10. 21		1.5			0. 2720	17111 31 3	
000002 1	ore re-	1001	2	1 004		TUDIT COURT PLASHA		**********	*******	*********	******	*******	*******	*******	****
000007 1	7941 1911 - 1975 - 76	1001	2	10 004		INDUC COUPL PLASHA		This second		he concertion	al avaatt in	full the	data neos	optod in th	
000905	ole le-	1001	4	IU PPM	NULINAUG (J:1)	INDUC. COUP. PLNOMA		report is a	enerific to	these same	eu except m les identifie		orana pres orana ta tiun	berli and in	
000003 1	0 Ro Ro -	1001	2	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		applicable	only to the	e samo les as	s received ex	oressed on	an pre nom La drv ba	sis unless	,
0000703	902 00 10 cr - 0 cr -	1001	2	1 PPM	HC1 : HNO3 (3-1)	INDUC CIUP PLASMA		otherwise i	indicated						
000003 2	1.0 U U	1001	2	1 DPM	NC1 - HNO3 (3-1)	UNDER COUP PLASMA	*	******	*******	****	*****	******	*******	*********	****
000703 2	1 V V -	1001	2	20 004		INDUC COUR PLASMA									
000703 2	,⊈341 347* 17/11 1/	1001	2	20 004		INDUC COUR PLASHA									
000003	ЭМ М~ Ила Ла	1001	2	1 000		TNDUC COUP. PLASHA									
000903 2	4L8 L8-	1001	2	i rrm	NCC:NWOO (J://	INDUC, OUP, PLASHA									
000903 2	SAL AL-	1001	2	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA									
000003 2	6 Ma Ma-	1001	2	0.01 PCT	HCL: HNO3 (3:1)	INDUC, COUP, PLASMA									
000000 2	77a 7a-	1001	2	0.01 PCT	HC1 :HNO3 (3:1)	INDUC. COUP. PLASMÁ									
0000703 2	RNa Na-	1001	2	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000002 2	10 M C -	1001	2	0.01 PCT	HCL +HNO3 (3-1)										
000903 2	ия- Каларыканыканыканыканыканыканыканыканыканыкан	1001	Ž	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000903 3	1Y Y-	1001	2	î pîmi	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000903 3	2 Ga Ga-	1001	2	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000903 3	BLI LI-	1001	2	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000903	AND NO-	1001	2	1 ppn	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA									
000002 1	SSc Sc -	1001	2	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA									
000903 3	6. Та Та-	1001	z	10 111	HUL: HNUS (3.1)	INDUC. COLD. DI ACMA									
					·····										

**

Ged nemical Lab Report

CLIENT: TOK	lat resour	CES I	NC																										PROJE	:CT: /	ACAC	IA1					
REPORT: VOO	-01693.0 (COMP	lete)											D	ATE	RECE	IVED:	01-S	EP-00)	DAT	E PR	INTER):	7- sei	P-00	F	PAGE	1A(1	1/ 6)							
																					,																
SAMPLE	ELEMENT	Au3O	AgGrav	Ag	Cu	Рb	Pb	Zn	Zn	Mo	Ni	Со	Cd	Bi	As	Sb	Fe	Mn	Тe	Ba	Ըր	۷	Sn	W	La	Ai	Mg	Ca	Na	ĸ	S٢	Y	Ga	Li	Nb	Sc	Ta
NUMBER	UNITS	P PB	PPM	PPM	PPM	PPN	PCT	PPM	PCT	PPM	PPM	₿ ₽ ₩	PPM	PPM	PPM	PPM	PCT	PDM	DDM	PPM	PPM	PPM	PPM P	PM	PPN	PCT	PCT	PCT	PCT	PCT	PPM	PPN	PPN	PPM	PPM 1	PPM P	PM
TTICOOROT		51	408.2	>200.0	25	>10000	6.79 >	10000	1.65	1	<1	<1	249.1	<5	19	209	0.22	4	<10	107	6	<1	<20	33	<1 (3.02	<.01	<.01	<.01	<.01	35	<1	<2	<1	<1	<5 <	:10
BRACOOR01		<5		<0.2	77	22		32		1	7	14	<0.2	<5	<5	<5	6.85	168	<10	61	25	47	<20 <	20	62	2.26	1.19	0.27	0.04	0.18	15	3	8	14	2	<5 <	:10

North Vancouver, BC, V7P 2R5, (604) 985-0681

Ge Chemical Lab Report

CLIENT: TOKLAT RESOURCES INC REPORT: VOO-01693.0 (COMPLETE)	DATE RECEIVED: 01-SEP-00	DATE PRINTED:	7-SEP-00 P	PROJECT: ACACIA1 GE 1B(2/6)
SAMPLE ELEMENT TI Zr S NUMBER UNITS PCT PPM PCT				
TTICOOR01 <.01 2 2.83 BRACCOR01 <.01 6 2.34				

Dondre Clean Canada I imited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

DATE RECEIVED: 01-SEP-00

Ge hemical Lab Report

CLIENT: TOKLAT RESOURCES (NC REPORT: VOD-01693.0 (COMPLETE)

PROJECT: ACACIA1 DATE PRINTED: 7-SEP-00 PAGE 2A(3/6)

STANDARD ELEM Name un	ient aut IITS PP	50 A 28	gGrav PPN	Ag PPM	Cu PPM	Pd PPM	Pb Pct	Zn PPM	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM) Fe I PCT	e M PP	n Te Mippi	e Bi (PPI	a Cr 1 PP#	· V ippm	' Sn PPM	W PPM	La PPM	AI PCI	Mg PCT	Ca PC	a N FPC	.a .T F	к °СТ /	Sr PPH (Y PPM	Ga PPM	Li PPM	Nb P PM	Sc PPM	Ta PPM
GS91-2		-	•	<0.2	158	22	-	139		3	147	35	0.3	<5	155	<5	7.90	158	3 <10) 9	215	46	<20	<20	3	2.08	3 2.56	3.6	9 D.O	2 0.	.05	79	3	6	20	3	7	<10
Number of Analyse	s	-	•	1	1	1	-	1	-	1	1	1	1	1	1	1	1		1 1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1
Mean Value		-	-	0,1	158	22	-	139	-	3	147	35	0.3	3	155	3	7.90	158	3 5	; ;	> 215	46	10	10	3	2.08	2.56	3.69	0.0	2 0.	. 05	79	3	6	20	3	7	5
Standard Deviatio	'n	-	•	-	-	•	-	-	-	-	-	-	-	-	-	-	-					-		-	-	-	_		-	-	-	-	-	_	-	-	-	-
Accepted Value		-	-	0.2	148	20	-	148	-	4	135	35	Û.Z	1	145	1	7.20	145	0 <1	. 6	5 251	50	5	12	-	1.80	2.70	4.00	0.0	10.	04	70	3	-	24	2	6	1
ANALYTICAL BLANK		-5	-	<0,2	<1	<2	-	<1	-	<1	<1	<1	⊲0.2	<5	<5	<5	<.01	<	1 <10) <1	<1	<1	<20	<20	<1	<.01	<.01	<.01	1 <.0	1 <.	.01	<1	<1	<2	<1	<1	ব	<10
Number of Analyse	s	1	•	1	1	1	-	1	•	1	1	1	1	1	1	1	1		1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Mean Value		3	•	0.1	<1	1	-	<1	•	<1	<1	<1	0.1	3	3	3	<.01	<	15	i <1	<1	<1	10	10	<1	<.01	<.01	<.01	۰.0	1 <.	.01	<1	<1	1	<1	<1	3	5
Standard Deviatio	'n	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-					-	-	-	-	-	-	-		-	-	-	-	-	-	-	_	
Accepted Value		5	⊲0.1	0.2	1	2 ·	< .01	1	<0.01	1	t	1	0.1	S	5	5	0.05		1 <1	<1	1	1	<1	<1	<1	<.01	<.01	<.01	<.0	۱ <.	01	<1	<1	<1	<1	<1	<1	<1
OX11 Oxide	275	99	24.1	-	-	-	•	-	-	-	-	-	*	~	-	-	-				. -	-	-	-	-		-	-		-	-	-	-	. /	·	-	-	-
Number of Analyse	s	1	1	-	-	-	-	-	-	•	-	•	-	~	•	-	-			-		-	-	•	-	-	-	-		-	-	-	-	-	_	_		-
Mean Value	275	9	24.1	-	•	-	-	-	-	-	-	-	-	•	-	-	-			_	-	-		-	_	-	-	-		•	-	-	-	-	_	-	-	-
Standard Deviatio	n	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-				-	-	•	-	-	-		-		-	-	-	-	-	_	-	-	-
Accepted Value	294	Ð	25.0	-	•	•	•	-	•	-	-	-	-	-	-	-	-			-	-	-	4	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-
MP-1A		-	•	-	-	- 4	.34	- >	-15.00	-	-	-	-	-		-				-	-	-	•	-	-	-	-	-	-	-	-	_	-	-	-		_	-
Number of Analyse	s	-	-		-	-	1	-	1	-	-	-	-	-	-	-	-			-	-	-		-	-	-	-	_	-		-	-	-	-	-	-	-	-
Mean Value		•	-	-	•	- 4	.34		15.00	-	-	-	-	~	-	-	-			-	+	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Standard Deviation	n	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-			-	-	-		-	-	_	÷	-	-		-	-	-	-	-	-	-	-
Accepted Value		-	•	-	-	- 4	.33	-	19.02	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	0.02	-	-		-	-	-	-	-	-	_	-

•

Ge (hemical Lab <u>Report</u>

CUJENT: TUREAT RESOURCES INC		
REPORT: V00-01693.0 (COMPLETE)	DATE RECEIVED: 01-SEP-00	DATE PRINTED: 7-SEP-00 PAGE
TANDARD ELEMENT TI Zr S		
ME UNITS PCT PPM PCT		
591-2 <.01 6 1.25		
umber of Analyses 1 1 1		
Mean Value <.01 6 1.25		
Standard Deviation		
Accepted Value <.01 5 1.00		
ANALYTICAL BLANK <.01 <1 <.01		
Number of Analyses 1 1 1		
Mean Value <.01 <1 <.01		
Standard Deviation		
Accepted Value <.01 <1 <.01		
Ox11 Oxide		
Number of Analyses		
Mean Value		
Standard Deviation		
Accepted Value		
MP-1A		
Number of Analyses		
Mean Value		
Standard Deviation		
Accepted Value		

Ge	hemica
Lab	
Repo	ort

CLIENT: TOK REPORT: VOO	LAT RESOUR -01693.0 (ices (Comp	NC PLETE)											۵	ATE	RECE	VED:	01-S	EP-00		DATE	PRIN	ITED:	7-si	EP-00	f	PAGE	Proje 3a(5	CT: i/ 6)	ACACI	1 A1				
SAMPLE NUMBER	ELEMENT UNITS	Au30 PPB	AgGrav PPM	Ag PPM	Cu PPM	рр Маа	Pb PCT	Zn PP N	Zn PCT	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	SID PPM	Fe PCT	Mn PPM	Te I PPM PI	Ba PM P	Cr PM P	V S PM PP	in k MPPN	La PPM	Al PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM	Ga PPM	Li PPM F	ND PM P	Sc Ta PM PPM
TTICOORO1 Duplicate		51	408.2 417.2	>200.0	25	>10000	6.79 > 6.74	10000	1.65 1.66	1	<1	<1 ;	249.1	<5	19	209	0.22	4	<10 10	07	6	<1 <2	0 33	<1	0.02	<.01	<.01	<.01	<.01	35	<1	<2	<1	<1	<5 <10

Bondar Cleng Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

?

FL

+

+

+

-

REFERENCE:

SUBMITTED BY: T. TERMUENDE

DATE RECEIVED: 04-SEP-00 DATE PRINTED: 12-SEP-00

Geo 'iemical Lab Report

REPORT: VOO-01694.0 (COMPLETE)

CLIENT: TOKLAT RESOURCES INC.

PROJECT: ACACIAT

					,					`		
DATE		MIMBER OF	LOWER			SAMPLE TYPES	NUMBER	SL	ZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
APPROVED	ELEMENT	ANALYSES	DETECTION	EXTRACTION	METHOD							
						S SOIL	307	1	-80	307	DRY, SIEVE ~80	308
000906 1 A	u30 Gold	307	5 PP8	Fire Assay of 30g	30g Fire Assay - AA	\$ MISSING SAMPLE	1	0	NONE	1		
000906 2 A	g Ag-ICO1	307	0.2 PPM	HCL:HNO3 (3:1)	INDUC, COUP. PLASMA							
000906 3 0	u Cu - ICO1	307	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASHA							
000906 4 P	ь рь-IC01	307	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	NOTES: \$ indicates	Sample Not	Rece	ivedi			
000906 5 Z	n Zn - ICO1	307	t PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 6 M	o Mo-ICO1	307	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	_						
						REPORT COPIES TO: 2	720 - 17TH S	TS		INVOICE	TO: 2720 - 17TH ST S	
000906 7 N	i Ni-ICO1	307	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 B C	o Co-ICO1	307	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	*********	*********	****		************		****
000906 9 C	d Cd - IC01	307	0.2 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA	This report	rt must not	be r	eproduced excep	t in full. The	data presented in thi	IS
000906 10 B	i Bi-ICO1	307	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	report is	specific to	tho	se samples iden	titied under "	sample Number" and is	
000906 11 A	s As - ICO1	307	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	applicable	e only to th	e sar	nples as receiv	ed expressed o	n a dry basis unless	
000906 12 \$	b Sb-IC01	307	5 PPN	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	otherwise	Indicated			<u></u>		
÷							**********	****	***************	*************	******	
000906 13 F	e Fe-1C01	307	0.01 PCT	HCL:HNOS (5:1)	INDUC. CUUP. PLASMA							
000906 14 M	n Min-1001	307	1 PPM	HCL:HN05 (5:1)	INDUC. CUUP. PLASMA							
000906 15 T	e Te-ICO1	307	TO PPH	REL: HNUS (5:1)	INDUC. COUP. PLASMA							
000906 16 8	a Ba-ICO)	307	T PPN	HCL:HNUS (5:1)	INDUC. COUP. PLASMA							
000906 17 0	r Cr - ICU1	307	T PPM	HUL HHUD (511)	INDUC. COUP. PLASMA							
000906 18 V	V - 1001	507	1 999	HULIHNUS (SII)	INDUC. CUUP. PLASMA				1			
		707	20.004	001 -0007 /7-4N								
000906 19 5	n Sn 1001	307 707	20 PPM	HUL: HNUS (J:))	TNDUC, COUP. PLASHA							
000906 20 9		207	1 004	HCL:HRCD (3:1) HCL:HRCD (3:1)	INDUC. COUP. PERSIA							
000906 21 0		207	0.01.007	UCL:0003 (3:1)	INDUC. COUP. PLASHA							
000900 22 A	1 AL-1001	207	0.01 PCT		INDUC MUD PLASMA							
000900 25 1	19 Mg - 1001	307	0.01 PCT		INDUC COULT PLASMA							
000900 24 0		106	0.01 / 01	neconde (act)	CHOOD BOOK TENDER							
000004 25 N	a Na-1001	307	0.01 PCT	HC1: HNO3 (3:1)	INDUC. COUP. PLASMA							
000006 25 1	K - 1001	307	0.01 PCT	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA							
000906 28 %	r sr - 1001	307	1 PPM	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA							
- 000905 ET 3	v - 1001	307	1 PPN	HCL: HNO3 (3:1)	INDUC. COUP. PLASMA							
000900 20 1	a na-ICO1	307	2 PPN	HCL: HNO3 (3:1)	INDUC, COUP, PLASMA							
000006 30 1	រដ ស្រះ ដេញំ	307	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
: :												
000906 31 N	ib ND-ICD1	307	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000906 32 9	c Sc - IC01	307	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
100006 37 7	a Te - ICO1	307	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000006 34 1	i Ti - 1001	307	0.01 PCT	ICL: HM03 (3:1)	INDUC, COUP. PLASMA							
000906 35 2	r Zr - ICUI	307	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA							
000006 36 5	S - 1C01	307	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						•	

.

a sea the state of the sea of the

BONDAR CLEGG

Ge	hemical
Lab	
Repo	ort

ı.

NUMBER: 1000-01694.0 (COMPLEE) Date Better Mulb: A g Ou Pet Ag OU Pet Ag OU		AT RESOURCES INC																			PROJ	ECT	: ACAI	CIA1			
Sumple Element AUD AUD B D <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<>	PEDART VOD	-01694.D (COMPLETE)							DATE	RECEIN	/ED: 04	-SEP-00) 0	ATE PR		: 12-	SEP-00)	PA	GE	1 OF	18					
Subset Builds Page Page Page<	KLPONII 100												,						• • •					• • •			
NUMBER Units PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM	SAMPLE	ELEMENT AU30 Ag Cu Pb	Zn Mo	Ni Co Cd	Bi As	Sb	Fe	Min Te Ba	a Cr	v s	Sn ₩	La /	AL Mg	Ca	Na	κ	Sr	Y ·	Ga	_ i	Nb	Sc	1a	Ti 🛛	Zr	s	
Cácho Chung 8 C 10 9 10 13 13 1 2 2 2 3 1 1 5 3 11 1 5 3 11 1 5 3 11 1 5 3 11 1 5 3 11 1 5 3 11 1 5 10 0.3 3 0.0 2 2 2 3 1 1 5 10 0.3 3 0.0 2 2 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 </th <th>ME INRER</th> <th>UNITS PPR PPM PPM PPM</th> <th>PPK PPM I</th> <th>PPM PPM PPM 5</th> <th>PM PPM</th> <th>PPM</th> <th>PCT</th> <th>PPM PPM PPI</th> <th>A PPM</th> <th>PPM PF</th> <th>WI PPM</th> <th>PPM P(</th> <th>T PCT</th> <th>PCT</th> <th>PCT</th> <th>PCT</th> <th>PPM PP</th> <th>W P</th> <th>PM P</th> <th>M F</th> <th>PM P</th> <th>PM I</th> <th>PPH 1</th> <th>PCT P</th> <th>PM P</th> <th>10</th> <th></th>	ME INRER	UNITS PPR PPM PPM PPM	PPK PPM I	PPM PPM PPM 5	PM PPM	PPM	PCT	PPM PPM PPI	A PPM	PPM PF	WI PPM	PPM P(T PCT	PCT	PCT	PCT	PPM PP	W P	PM P	M F	PM P	PM I	PPH 1	PCT P	PM P	10	
6600 0+00 (5 < 2, 222 8 5 5 5 7 1 6 7 1 6 10 0.03 3 1.01																											
componencing s, s, z, z, z, z, z, z, z, z, z, z, z, z, z,	C600 0+00	8 <.2 109 49	191 3	51 31 <.2	<5 23	<5	6.28	757 <10 49	7 35	22 <2	20 <20	28 1.0	0.71	0.48	0.01	0.07	39	5	3	11	1	ক -	<10_0.	.03	3 0.	.12	
cond 0.956 c < 2 z z </th <th>C600 0+25E</th> <th><5 <.2 222 28</th> <th>356 2</th> <th>48 26 1.6</th> <th><5 16</th> <th>ら</th> <th>5.72</th> <th>523 <10 99</th> <th>20</th> <th>31 <</th> <th>20 <20</th> <th>28 1.2</th> <th>23 0.23</th> <th>0.32</th> <th>0.01</th> <th>0.09</th> <th>26</th> <th>4</th> <th>3</th> <th>10</th> <th>5</th> <th><5 ·</th> <th><10_0</th> <th>03</th> <th>30.</th> <th>.02</th> <th></th>	C600 0+25E	<5 <.2 222 28	356 2	48 26 1.6	<5 16	ら	5.72	523 <10 99	20	31 <	20 <20	28 1.2	23 0.23	0.32	0.01	0.09	26	4	3	10	5	<5 ·	<10_0	03	30.	.02	
$ \begin{array}{c} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \\ \begin{aligned} \\ \begin{aligned} \\ $	C600 0+50E	<5 <.2 23 26	157 <1	36 13 <.2	<5 6	<5	2.54	414 <10 166	21	25 <á	20 <20	12 2.3	53 0.26	0.22	0.02	0.10	24	2	4	15	2	<5 ·	<10 0	.08	9 <.	.01	
Geno 1+00e +5 2 1 1 1 2 2 1 1 1 2 2 1 1 5 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	C600 0+75E	< <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u>	159 <1	14 6 <.2	<5 6	<5	1.45	711 <10 112	2 12	20 <	20 <20	5 1.7	70 0.13	0.25	0.03	0.07	28	1	<2	12	5	<5 ·	<10 0	.08	50.	.01	
C600 1+25E C C 2 C 5 C 2 2 C 10 11 2 2 2 1 10 </th <th>C600 1+00E</th> <th><5 <.2 12 14</th> <th>144 <1</th> <th>25 7 <.2</th> <th><57</th> <th><5</th> <th>1.66</th> <th>560 <10 113</th> <th>5 14</th> <th>19 <</th> <th>20 <20</th> <th>6 1.7</th> <th>76 0.15</th> <th>0.26</th> <th>0.03</th> <th>0.07</th> <th>27</th> <th>2</th> <th>2</th> <th>12</th> <th>1</th> <th><5 ·</th> <th><10_0</th> <th>.07</th> <th>6 0.</th> <th>.01</th> <th></th>	C600 1+00E	<5 <.2 12 14	144 <1	25 7 <.2	<57	<5	1.66	560 <10 113	5 14	19 <	20 <20	6 1.7	76 0.15	0.26	0.03	0.07	27	2	2	12	1	<5 ·	<10_0	.07	6 0.	.01	
cd00 1:22E cd:2 2 1 1 1<2 cd:2 2 2 2 1<1 2 5 1<0 0.6 10 2 2 2 2 1 1 2 5 1 0 4 3 1 1 2 5 5 5 1 0 4 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>																											
cd00 i+50c i+50c i+10	C600 1+25E	<5 <,2 30 25	194 <1	35 12 <.2	<5 5	<5	2.92	396 <10 18	1 24	24 <2	20 <20	15 2.1	10 0.32	0.20	0.02	0.12	29	Z	4	13	5	<5 ·	<10 0	.06	10 <.	.01	
como 1+75E cs < 2 14 12 17 cs 7 2 5 5 1.60 37 16 20 10 0.00	C600 1+50E	<5 <.2 7 19	193 <1	17 7 <.2	-5 5	ぐう	1.49	443 <10 10	2 12	24 <	20 <20	5 1.4	4 0.15	0.24	0.03	0.07	22	1	<2	14	5	ଏ -	<10 0	.07	4 <.	.01	
$ \begin{array}{c} cccccccccccccccccccccccccccccccccc$	C600 1+75E	<5 <.2 14 12	147 <1	23 7 <.2	-5 5	5	1.60	347 <10 12	9 16	20 <	20 <20	8 1.4	45 0.19	0.19	0.02	0.09	26	2	2	14	5	<5 ·	<10 0	.07	5 <.	.01	
C600 2+25E $< < < 19$ 18 120 < 12 < 9 < 2 < 5 < 2 21 < 20 < 20 < 10 < 0.01 0.00 < 10 2 < 2 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <th>C600 2+00E</th> <th><5 <.2 9 12</th> <th>155 <1</th> <th>22 7 <.2</th> <th>ර ර</th> <th>4</th> <th>1.66</th> <th>214 <10 94</th> <th>\$ 14</th> <th>22 <</th> <th>20 <20</th> <th>8 1.5</th> <th>55 0.18</th> <th>0.23</th> <th>0.03</th> <th>0.09</th> <th>25</th> <th>2</th> <th>2</th> <th>12</th> <th>S</th> <th><5 ·</th> <th><10_0.</th> <th>.07</th> <th>9 <.</th> <th>01</th> <th></th>	C600 2+00E	<5 <.2 9 12	155 <1	22 7 <.2	ර ර	4	1.66	214 <10 94	\$ 14	22 <	20 <20	8 1.5	55 0.18	0.23	0.03	0.09	25	2	2	12	S	<5 ·	<10_0.	.07	9 <.	01	
C600 2+50E (5 (2) 19 9 (4) 19 8 (2) 7 (5) 2.03 222 (2) 10 10 2 (2) 10 (2) 2 (2) 10 (2) 10 (2) 2 (2) (2) 12 10 (2)	C600 2+25E	<5 <,2 19 18	129 <1	22 9 <.2	ৰ্ব ব	5	2.35	445 <10 83	5 2Z	21 <	20 <20	16 1.1	0.31	0.20	0.01	0.09	18	2	<2	10	2	<5 ·	<10 0.	.05	<1 <.	.01	
$ \begin{array}{c} c c c c c c c c c c c c c c c c c c $																					_	_			_		
$ \begin{array}{c} c c c 0 2 + 75 E \\ c c 0 3 + 75 E \\ c c 0 2 1 16 10 - 1 26 10 - 2 5 7 6 2.80 20 - 10 60 26 22 + 20 - 20 20 1.2 6 0.34 0.16 0.02 0.11 16 3.4 2 8 2 5 < 10 0.06 7 < .01 \\ c c 0 3 + 05 E \\ c c 0 3 + 50 E \\ c c 0 4 + 50 E \\ $	C600 2+50E	<5 <.2 19 11	93 <1	19 8 <.2	S 7	ら	2.03	282 <10 7	1 16	22 <	20 <20	12 1.0	01 0.22	0.14	0.02	0.07	14	2	<2	9	5	<5 ·	<10 0.	.05	1 <.	.01	
C400 3+00E -5 -2 2 17 153 -1 2 2 5 -5 2.51 452 400 15 1.60 0.29 0.15 0.02 0.15 0.02 0.13 22 2 3 13 2 -5 -6 0.00 6 -01 C600 3+55E -5 -2 2 1 2 -5 10 0.08 6 -01 - 2 2 2 3 13 2 -5 -6 0.09 6 -01 - 2 2 2 3 0.02 0.10 13 2 11 2 5 -6 -01 -01 0.02 0.01 13 2 10 0.07 4<.01 C600 3+75E -5 -2 25 5 -5 5 5 2 3 11 2 2 5 10 0.07 7 0.01 11 15 2 3 15 2 5 10 0.07 10 0.01 10<	C600 2+75E	<5 <.2 31 16	101 <1	26 10 <.2	~ 5 7	\$	2.80	200 <10 6) 26	22 <	20 <20	20 1.3	26 0.34	0.16	0.02	0.11	16	3.	<2	8	2	<5 ·	<10 0.	.06	7 <.	.01	
C600 3+25E c5 2 17 16 118 c1 34 11 c2 c5 6 c5 c2 22 16 118 c1 34 11 c2 c5 c2 c2 c1 c2 c5 c10 c600 c5 c2 c2 c1 c3 c2 c1 c2 c5 c10 c600 c5 c2 c2 c1 c5 c2 c5 c5 c2 c5 c5 c5 c5 c5 c5 c2 c5 00 3+00E</th> <th><5 <,2 22 17</th> <th>153 <1</th> <th>31 10 <.2</th> <th><57</th> <th>5</th> <th>2.51</th> <th>452 <10 154</th> <th>4 25</th> <th>23 <</th> <th>20 <20</th> <th>15 1.0</th> <th>50 0.29</th> <th>0.15</th> <th>0.02</th> <th>0.10</th> <th>18</th> <th>2</th> <th>3</th> <th>11</th> <th>5</th> <th><5 ·</th> <th><10 0.</th> <th>.07</th> <th>3 <.</th> <th>01</th> <th></th>	C600 3+00E	<5 <,2 22 17	153 <1	31 10 <.2	<57	5	2.51	452 <10 154	4 25	23 <	20 <20	15 1.0	50 0.29	0.15	0.02	0.10	18	2	3	11	5	<5 ·	<10 0.	.07	3 <.	01	
C600 3+50E 45 < 2 2	C600 3+25E	<5 <.2 17 16	118 <1	34 11 <.2	<56	4	2.61	309 <10 14	2 27	24 <	20 <20	11 2.0	0.27	0.23	0.02	0.13	22	2	3	15	S	< <u>5</u>	<10 0.	.08	6 <.	.01	
C600 3+75E <5 <2 25 18 132 <1 33 11 <2 5 5 2 2 2 2 3 12 2 5 10 0.07 2 0.01 2 3 12 2 5 10 0.07 2 0.01 2 3 12 2 5 10 0.07 2 0.01 2 3 12 2 5 10 0.07 2 0.01 2 0.01 2 2 2 3 12 2 5 10 0.07 2 0.01 2 0.01 10	C600 3+50E	<5 <.2 22 16	120 <1	34 11 <.2	<5 6	<5	2.33	471 <10 13	2 22	24 <i< th=""><th>20 <20</th><th>11 1.1</th><th>70 0.23</th><th>0.19</th><th>0.02</th><th>0,10</th><th>21</th><th>3</th><th>2</th><th>11</th><th>2</th><th>~ ~</th><th><10 Q.</th><th>.07</th><th>4 <.</th><th>נט</th><th></th></i<>	20 <20	11 1.1	70 0.23	0.19	0.02	0,10	21	3	2	11	2	~ ~	<10 Q.	.07	4 <.	נט	
C600 3+75E c5 c5 c2 3 17 c2 c5 c5 c2 3 17 c2 c5 c5 c2 35 c5 c1 18 c5 c2 18 15 c2 c5 c5 c2 35 c5 c1 16 c0 c4 c5 c2 c5 c5 c5 c5			499 .4					FT .40.4/		~ .				0.07	0.02	~ ~	20	-	7	47	~			07	2.0		
C600 $4+05E$ C5 C5	C600 3+75E	<5 <,2 23 18	132 <1	33 11 <.2	00	\$	2.55	5/5 <10 14	5 26	24 <	20 <20	14 1,0	55 0.50	0.27	0.02	0.11	28	2	5	12	~	⊙ -	<10 0.	.U/ 05	20.	.01	
C600 $4+25E$ C5 C2 C5 C4 S1 C4 C5 C2 C5 C4 S1 C4 C5 C2 C5 C4 S1 C4 C5 C4 S1 C4 C5 C4 S1 C5 C2 C4 S15 C4 C5 C4 S15 C4 C5 C4 S15 C4 C5 C4 C4 C4 C5 C4 C4 C4 C5 C4 C4 C4 C5 C4 th=""> C4 C4 C4</thc4<>	C600 4+00E	<5 <.2 139 47	122 <1	36 15 <.2	0 13	دی خ	4.29	500 <10 0	J 40	20 </th <th>20 <20</th> <th>20 1.0</th> <th>30 U.80 V. 6 / 4</th> <th>0.17</th> <th>0.01</th> <th>0.11</th> <th>10</th> <th>2</th> <th>э 7</th> <th>13 45</th> <th>~</th> <th>۰ وې حد</th> <th><10 U.</th> <th>.05</th> <th>10.</th> <th>.01</th> <th></th>	20 <20	20 1.0	30 U.80 V. 6 / 4	0.17	0.01	0.11	10	2	э 7	13 45	~	۰ وې حد	<10 U.	.05	10.	.01	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C600 4+25E	<5 <.2 20 20	129 <1	39 15 <.2	5 6 	5 	Z.(4	776 (10 5	4 <u>2</u> 5	20 </th <th>20 <20</th> <th>15 1.0</th> <th>30-0.41 // 1-16</th> <th>0.21</th> <th>0.02</th> <th>0.11</th> <th>47</th> <th>۲ ۲</th> <th>с</th> <th>12</th> <th>2</th> <th>· دې حد</th> <th><10 U.</th> <th>.00</th> <th>4 3.</th> <th>וט. ריס</th> <th></th>	20 <20	15 1.0	30-0.41 // 1-16	0.21	0.02	0.11	47	۲ ۲	с	12	2	· دې حد	<10 U.	.00	4 3.	וט. ריס	
C600 ξ_{4}/ξ_{E} C5 C2 C2 C5 C3 C5 C2 C5 C2 C2 C2 C3 C5 C2 C3 C3 C2 C2 C3 C3 th=""> C3<!--</th--><th>C600 4+50E</th><th><5 <,2 107 24</th><th>110 <1</th><th>40 19 4.2</th><th><5 14 .a. e</th><th>5 ~</th><th>2.10</th><th>336 <10 33</th><th>5 JU</th><th>33 54</th><th>20 <20 20 <20</th><th>40 4 6</th><th>44 .10 10 0 77</th><th>0.19</th><th><.01</th><th>0.00</th><th>21</th><th>о 5</th><th>2</th><th>10</th><th>2</th><th><9. </th><th><10 0.</th><th>,03 07</th><th>У U. 10 ~</th><th>01</th><th></th></thc3<>	C600 4+50E	<5 <,2 107 24	110 <1	40 19 4.2	<5 14 .a. e	5 ~	2.10	336 <10 33	5 JU	33 54	20 <20 20 <20	40 4 6	44 .10 10 0 77	0.19	<.01	0.00	21	о 5	2	10	2	<9. 	<10 0.	,03 07	У U. 10 ~	01	
C600 5+00E <5 < 2	C600 4+75E	\$3 \$,2 20 (7	()) <1	29 12 4.2	5 2	-0	2.41	402 10 10	* 17	20 4	20 20	10 1.3	N 0.57	V.21	0.02	0.11	21	٢	2	15	£	`		.07	10 .	.01	
Coord shore Cound shore	C(00 E+00E	<u>∕5 x 2 50 21</u>	157 ~1	/3 16 07	-5 13	-5	3 50	538 210 13	a 31	30 <2	20 <20	15 2 3	70 n 59	0.28	0 02	ń 13	30	7	4	16	2	~5.	<10 ภ	<u>1</u> 7	7 D	02	
Code Structure	COUL 2400E	-5 - 5 - 98 - 27	122 1	40 20 2 2	-5 16	~	1.70	314 <10 11) 45	<u> </u>	20 ~20 20 ∢20	27 2 4	(R N 78	0.20	0.02	n 12	28	4	5	17	2	~ ~	(10-0. (10-0	.07 07	70.	.0E	
Cold 5+302 Cold (1,2) Cold (1,2) Cold (1,2) Cold (1,2) Cold (1,2) Cold (1,3) th></th> <th></th> <th>103 1</th> <th>50 20 < 2</th> <th><5 15</th> <th>~</th> <th>4.70</th> <th>427 <10 A</th> <th>2 55</th> <th>38.42</th> <th>20 <20</th> <th>28 1 5</th> <th>x0 0.70</th> <th>0.23</th> <th>0.02</th> <th>0.13</th> <th>18</th> <th>4</th> <th>ź.</th> <th>14</th> <th>ž</th> <th>~ ~</th> <th><10 0</th> <th>N7</th> <th>κ n</th> <th>יי. כח</th> <th></th>			103 1	50 20 < 2	<5 15	~	4.70	427 <10 A	2 55	38.42	20 <20	28 1 5	x0 0.70	0.23	0.02	0.13	18	4	ź.	14	ž	~ ~	<10 0	N7	κ n	יי. כח	
C600 6402 C5 C5 C5 C60 C600 C60 th=""><th>C600 5+755</th><th><5 < 2 25 20</th><th>150 <1</th><th>48 14 < 2</th><th>-5 11</th><th>à</th><th>2.85</th><th>481 <10 144</th><th>5 20</th><th>29 <</th><th>>0 <20</th><th>12 2.4</th><th>ιο η Δη</th><th>0.2.5</th><th>0.03</th><th>n 12</th><th>31</th><th>5</th><th>4</th><th>18</th><th>2</th><th></th><th><10 D</th><th>no</th><th>11 N</th><th>01</th><th></th></thc<>	C600 5+755	<5 < 2 25 20	150 <1	48 14 < 2	-5 11	à	2.85	481 <10 144	5 20	29 <	>0 <20	12 2.4	ιο η Δη	0.2.5	0.03	n 12	31	5	4	18	2		<10 D	no	11 N	01	
C600 6+25E <5 <2 43 20 125 <1 35 15 <.2 <5 10 <5 3.17 447 <10 91 33 32 <20 17 1.60 0.44 0.28 0.02 0.13 24 2 3 14 2 <5 <10 0.06 2< <.01 C600 6+25E <5 <2 43 20 125 <1 35 15 <.2 <5 10 <5 3.17 447 <10 91 33 32 <20 17 1.60 0.44 0.28 0.02 0.13 24 2 3 14 2 <5 <10 0.06 2< <.01 C600 6+502 <5 <5 <5 <5 <5 <2 <20 17 1.89 0.44 0.27 0.02 0.14 24 2 3 16 2 <5 <10 0.07 3< <.01 C600 6+7302 <5 <2 2 5 <2	COUL 24/ 3E	6 CZ 83 %	100 11	50 20 20 20	-5 18	- 25	4.15	371 <10 12	, <u>.</u> ,	34 0	20 <20	17.2.4	16 D.61	0.34	0.02	0.11	36	2	5	17	2	ج	<10 Å	.07	7 0	.02	
C600 6+25E <5 <.2 43 20 125 <1 35 15 <.2 <5 10 <5 3.17 447 <10 91 33 32 <20 <20 17 1.60 0.44 0.28 0.02 0.13 24 2 3 14 2 <5 <10 0.06 2 <.01 C600 6+25E <5 <.2 15 18 127 <1 37 12 <.2 <5 <5 <5 <2.78 521 <10 128 36 30 <20 <20 17 1.89 0.44 0.27 0.02 0.14 24 2 3 16 2 <5 <10 0.07 3 <.01 C600 6+75C <5 <.2 15 18 127 <1 37 12 <.2 <5 <5 <5 2.78 521 <10 128 36 30 <20 <20 17 1.89 0.44 0.27 0.02 0.14 24 2 3 16 2 <5 <10 0.07 3 <.01 C600 6+75C <5 <.2 21 20 201 <1 39 14 <.2 <5 6 <5 2.56 532 <10 155 24 29 <20 32 12 2.01 0.35 0.26 n 02 0.12 31 1 4 19 2 <5 <10 0.08 3 0.01 C600 7+00E <5 <.2 28 18 165 <1 42 13 <.2 <5 12 <5 2.73 /33 <10 134 25 24 <20 <20 12 1.95 0.34 0.24 0.02 0.13 25 2 3 20 2 <5 <10 0.06 3 0.01		· · · · · · · · · · · · · · · · · · ·			-		4112		, ,,					0.24	0.02	••••		-	-		~						
CODE 6+502 <5 <2 15 18 127 <1 37 12 <2 <5 <5 <5 <2 78 521 <10 128 36 30 <20 <20 17 1.89 044 0.27 0.02 0.14 24 2 3 16 2 <5 <10 0.07 3 <.01 C600 6+752 <5 <2 12 <5 <5 <5 <5 <5 <5 <2 <2 <14 <14 2 <3 16 2 <5 <10 0.07 3 <.01 C600 6+752 <5 <2 <2 <5 <5 <5 <2 <2 <20 <20 <12 <0.01 0.35 <0.26 0.02 <12 31 1 4 19 2 <5< <10 0.08 3 0.01 C600 74002 <5 <2 <2 <5 <12 <5 <2.73 <5 <2 <2 <2 <2 <2 <th>C600 6+25E</th> <th><5 <.2 43 20</th> <th>125 <1</th> <th>35 15 <.2</th> <th><5 10</th> <th>ব</th> <th>3.17</th> <th>447 <10 9</th> <th>1 33</th> <th>32 <2</th> <th>20 <20</th> <th>17 1-0</th> <th>50 0.44</th> <th>0.28</th> <th>0.02</th> <th>0,13</th> <th>24</th> <th>2</th> <th>3</th> <th>14</th> <th>2</th> <th><5 ·</th> <th><10 0</th> <th>.06</th> <th>2 <.</th> <th>.01</th> <th></th>	C600 6+25E	<5 <.2 43 20	125 <1	35 15 <.2	<5 10	ব	3.17	447 <10 9	1 33	32 <2	20 <20	17 1-0	50 0.44	0.28	0.02	0,13	24	2	3	14	2	<5 ·	<10 0	.06	2 <.	.01	
1000 04732 <5 <.2 21 20 201 <1 39 14 <.2 <5 6 <5 2.56 532 <10 155 24 29 <20 320 12 2.01 0.35 0.26 0 07 0.12 31 1 4 19 2 <5 <10 0.08 3 0.01 1000 64732 <5 <.2 21 20 201 <1 39 14 <.2 <5 6 <5 2.56 532 <10 155 24 29 <20 320 12 2.01 0.35 0.26 0 07 0.12 31 1 4 19 2 <5 <10 0.08 3 0.01 1000 64732 <5 <.2 28 18 165 <1 42 13 <.2 <5 12 <5 2.73 703 <10 154 25 24 <20 <20 12 1.95 0.34 0.24 0.02 0.13 25 2 3 20 2 <5 <10 0.06 3 0.01 1000 7400E <5 <.2 28 18 165 <1 42 13 <.2 <5 12 <5 2.73 703 <10 154 25 24 <20 <20 12 1.95 0.34 0.24 0.02 0.13 25 2 3 20 2 <5 <10 0.06 3 0.01		<5 < 2 15 18	127 <1	37 12 < 2	55	4	2.78	521 <10 12	3 36	30 <	20 <20	17 1.1	39 0.44	0.27	0.02	ŭ. 14	24	2	3	16	2	<5 ·	<10 0	.07	3 <	.01	
CHOR <5 <.2 28	CAGG 4:755	<5 < 2 21 20	201 <1	39 14 <.2	- 	\$	2.56	532 <10 15	5 24	29 -	80 - 20	12 2.9	0.35	0.26	0.02	0.1Ż	3î	- 1	4	19	2		<10 0	.08	30	01	
	CAN1 7+00F	<5 < 2 28 18	165 <1	42 13 <.2	-5 12	ব	2.73	/33 <iū 13<="" th=""><th>\$ 25</th><th>24 <</th><th>20 <20</th><th>12 1.9</th><th>95 0.<u>74</u></th><th>n 74</th><th>0.02</th><th>0.13</th><th>25</th><th>2</th><th>3 2</th><th>20</th><th>2</th><th><5</th><th><10 D</th><th>.06</th><th>3 0.</th><th>.01</th><th></th></iū>	\$ 25	24 <	20 <20	12 1.9	95 0. <u>74</u>	n 74	0.02	0.13	25	2	3 2	20	2	<5	<10 D	.06	3 0.	.01	
C500 7+25E S S S S S S S S S S S S S S S S S S S	C600 7+25E	<5 < 2 41 18	123 <1	42 15 <.2	ố iî	5	3.37	555 <10 13	7 25	27 <	20 <20	14 Z.(09 0.43	0.21	0.02	0,12	22	3	3	15	2	<5 ·	<10 0.	.07	7 0	.01	

Ge**(** hemical Lab <u>Report</u>

CLIENT-	TOKI AT RESOLIR	CES I	NC																													PRO	JECT.	ACACI	IA1		
REPORT	V00-01694.0 (COMP	LETE)													D	ATE	RECE	I VED	: 04	- SEP	-00	DA	TE PR	INTED	: 12-	SEP-	00	Ρ	AGE	2 0	F 18				
																																• •					
SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Мо	Ni	Co	Cđ	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	۷	\$n	W	La	Al	Mg	Ça	Na	K	Sr	Y	Ga	Li	NЬ	Sc	Ta i	ri -	Zr	S
NUMBER	UNITS	PP8	PPM	PPM	PPH	PPM	PPM	PPM	PPM	PPM I	P PM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	ррң	рþн	PCT	PÇT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPH I	PPM P(CT P	PPM P	201
a400 7.6	· ^-	Æ	- 7	57	24	17/	-1	55	12		~	11	5	3, 95	356	<10	174	37	20	<20	<20	18	2.51	0.46	0.26	0.02	0.22	24	5	4	14	2	<5 -	10 0.0	38	13 0.	.01
COUU 7+5		<u>ر</u> ب	·.2	177	20	134	4	71	70	~ 2	~	27	ž	6 57	580	~10	67	57	20	~20	<20	26	1 34	0.68	0.26	< 01	0.08	21	10	3	10	2	<5 ·	10 0.0	14	<1 0.	.05
C600 7+7	')E	0	<.2	123	27	10/	-1	F 1	44	`.c	~5	11	~	3.90	72/	<10	178	37	28	<20	~20	14	2 08	0.61	0.53	0.02	0.18	47		5	17	2	<5	10 0.0	18	12 0	02
000 8+0		<2 47	<.2	40	23	104	- 1	20	16	`. <u>c</u> 0 7	~	0	~	3 17	1102	~10	135	37	30	<20	<20	14	1 80	0.30	0.22	0.02	n 17	43	2	3	18	2	<5	10 0.1	16	<1.0	02
C600 8+4	DE .	17	<.2	10	32	234	<1 -	47 E4	10		~	42	~	1. 53	615	~10	57	54	20	~20	~20	77	1 / 2	0.57	75 n	< 01	0.14	16	ç	ž	11	,	-5	10 0 1	n5	3 0.	.01
C600 8+3	OE	\$	<.2	80	20	14	2	21	10	<.2	0	14	0	4.72	412	10		71	67	-20	-20	21	1.42	0.00	0.23		0.14	.0	2	~	••	-	Ý	.,		5 01	
C600 8+7	75E	ح	<.2	33	36	204	<1	55	16	<.2	<5	16	<5	3,12	257	<10	121	32	26	<20	<20	11	2 <i>.</i> 38	0.37	0.30	0.03	0.12	34	z	4	18	2	<5 ·	(10 0.0	8	11 0.	.01
C600 9+1	DOE	<5	<.2	33	26	191	1	46	15	<.2	ব	8	ব	3,56	349	<10	84	32	28	<20	<20	16	1.83	0.33	0.21	0.02	0.10	20	2	3	15	2	<5 ·	10 0 0)7	5 <.	.01
C600 9+2	25E	<5	<.2	49	27	161	2	50	16	0.6	<5	15	ح	4.33	277	<10	104	38	27	<50	<20	20	1,70	0.47	0.18	0.01	0.10	22	3	3	13	2	<5 ·	10 0.0	6	10 0.	.01
C600 9+5	50E	<5	<.2	22	21	140	<1	44	13	<.2	-5	6	6	3.13	301	<10	140	34	27	<20	<20	17	2,15	0.40	0.15	0.02	0.14	23	2	4	15	2	<5 ·	10 0.0)5	8 <.	.01
C600 9+1	75E	<5	<.2	12	15	139	<1	28	8	<.2	ক	ব	ও	2.17	254	<10	72	20	28	<20	<20	11	1.16	0.23	0.15	0.03	0.08	16	2	2	11	3	ا ئ	<10 O.(6	3 <.	.01
						1																															
C600 10-	+00E	ら	<.2	11	15	113	<1	41	11	<.2	4	6	4	2.69	425	<10	122	32	26	<20	<20	15	1.97	0.39	0.22	0.02	0.14	25	S	4	16	2	< <u>5</u> ·	10 0.1)5	4 <.	.01
C600 10-	+25E	ৎ	<.2	48	35	109	1	55	15	<.2	ৎ	14	Q	4.30	271	<10	50	56	25	<20	<20	29	1.34	0.67	0.09	<.01	0.12	12	3	4	10	1	ار ې	10 0.1)2	5 <.	.01
C600 10	+50E	ব	<.2	18	23	130	<1	42	12	<.2	ক	8	5	3.29	440	<10	95	33	26	<20	<20	16	1,80	0.39	0.21	0.02	0.14	27	Ż	4	16	2	ক •	:10 0.0	5	3 <,	.01
C600 10	+75E	<	<.2	31	22	105	<1	42	13	<.2	ବ	8	\$	3.26	268	<10	79	30	26	<20	<20	15	2.02	0,34	0.23	0.02	0.12	25	3	4	14	2	<5 ·	<10 Ö.(36	8 <.	.01
C600 11-	+00E	34	<.2	375	36	313	18	Ø	40	<.2	ব	51	< 5 .	>10.00	608	<10	52	24	37	<20	<20	18	2.07	1.13	0.11	0.03	0.10	71	S	7	16	1	<5 ·	<10 <.(01	<1 0.	.61
											_		_																44	_	_		_				
C600 0+3	25w	8	<.2	107	49	173	2	36	24	0.3	<5	15	<5	4.83	782	<10	32	22	17	<20	<50	23	0.76	0.49	1.61	<.01	0.08	52	5	~2	7	1	<5 ·	10 0.0	35	20.	.07
C600 0+	50W	<5	<.2	Π	36	131	2	28	18	<.2	4	14	4	3.86	568	<10	24	17	15	<20	<20	24	0.59	0.34	0.82	0.01	0.05	33	6	<2	5	1	<5 ·	(10 0.0	32	30.	.03
C600 0+	75W	<5	<.2	52	29	132	1	31	14	<.2	<5	10	5	3.65	445	<10	81	25	22	<20	<20	21	1.39	0.32	0.21	0.01	0,10	22	4	2	10	2	< <u>5</u> ·		35	70.	.01
C600 1+	DÓM	ক	<.2	49	32	147	1	41	17	<.2	ক	11	5	4.20	302	<10	104	29	26	<20	<20	17	1.88	0.36	0.26	0,02	80.0	26	3	3	12	2	<5 ·	10 0.0)6	90.	.01
C600 1+3	25W	4	<.2	22	19	182	<1	28	11	<,2	4	7	4	2,85	349	<10	103	21	25	<20	<20	15	1.53	0.30	0.17	0.02	0.08	19	S	3	12	2	<5 ·	10 0.1	6	2 <.	.01
C600 1+	5 D W	ৎ	<.ż	8	10	212	<1	23	7	<.2	-5	<5	<5	1.66	267	<10	88	15	22	<20	<20	7	1.15	0.18	0.22	0.03	0.09	25	1	<2	14	3	<5 ·	:10 0.0)7	2 <.	.01
C600 1+	75u	<5	<.Z	17	21	154	<1	40	12	<.2	حة	7	ব	3,21	424	<10	86	40	26	<20	<50	16	1.39	0.32	0.20	0.02	0.14	25	S	3	11	2	<5 ·	10 0.0)5	2 <.	.01
C600 2+	000	<5	<.2	14	20	111	<1	32	10	<.2	ক	6	<5	2.63	376	<10	97	25	24	<20	<20	14	1.67	0.28	0. 19	0.02	0.13	22	2	3	13	2	<5 ·	10 0.0	6	5 <.	.01
C600 2+	25u	ব	<.2	16	18	124	<1	64	14	<.2	4	4	4	2,86	267	<10	139	72	32	<20	<20	12	2.23	0.50	0.18	0,03	0.11	30	2	4	15	2	<5 -	10 0.0	6	11 <.	.01
C600 2+	504		·	17	17	:22	-1	27	11	< ?	~ 5	6	ð	2.62	259	<10	117	34	25	<20	<20	17	1.58	0.36	0.18	0.02	0.10	19	S	2	13	2	ر ې	:10 0.0	36	5 <.	.01
0000 20		_																																			
C600 2+	75W	-5	<.2	40	24	94	<1	45	13	<.2	\$	7	<5	3.78	207	<10	40	39	24	<20	<20	23	1.08	0.35	0.16	<.01	0.11	17	3	<2	8	2	ر ې وې	10 0.0)6	5 <.	.01
C/00 3:	00.	4 5	<.2	15	16	98	1	33	11	0.5	-5	7	<5	2.80	.384	<10	85	27	24	<20	<20	15	1.01	0.21	0.12	0.01	80.0	15	1	<2	8	2	<5 ·	10 0.6	15	2 <.	.01
C700 0+	00	7	<.2	341	32	183	6	70	4Ŷ	ū.3	Ś	26	<5	8.66	705	<1Ú	37	25	24	-20	-20	35	1.67	1.17	1.00	<_01	0.06	47	6	5	17	≺1	ار ې (:10 <.(01	13 ().	.45
C700 0+	25E	ا ح	<.Ž	Z28	42	142	4	91	48	0.2	-5	39	4	9,06	1319	<iù< td=""><td>ÓŸ</td><td>31</td><td>28</td><td><20</td><td><20</td><td>40</td><td>1.92</td><td>1.11</td><td>0.53</td><td><.01</td><td>0.05</td><td>39</td><td>9</td><td>6</td><td>22</td><td><1</td><td><5 ·</td><td>:10 <,0</td><td>21</td><td>7 9.</td><td>.Ú6</td></iù<>	ÓŸ	31	28	<20	<20	40	1.92	1.11	0.53	<.01	0.05	39	9	6	22	<1	<5 ·	:10 <,0	21	7 9.	.Ú6
C700 0+	50E	6	<.2	464	87	326	17	79	52	8.Û	-5	35	\$	9,18	1094	<10	66	45	43	< <u>20</u>	<20	34	2.44	1.51	0.91	<.01	0.07	50	ÿ	8	24	2	<5 ·	10 0.0)1	90.	. 15

C700 8+00E

Ge (hemical Lab Report

CLIENT: TOK	LAT RESOURCES INC																												PR	OJEC	T; A	CACIA	1	
REPORT: VOC	0-01694.0 (COMPLETE)													C	DATE	REC	EIVE	D: 04	4-SE	P-00	D,	ATE P	RINTE): 12	- SEP	-00	1	PAGE	3	OF 1	8			
SAMPLE	ELEMENT Au30 Ag Cu	РЬ	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	۷	Sn	W	La	L AL	Mg	Ca	n Na	κ	Sr	Ŷ	Ga	Li	Nb	Sc	Ta	Ti	۲r	S
NUMBER	UNITS PPB PPM PPM	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PPM F	PM	PCT	PPM	PPM	PPN	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPN	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PCT
C700 0+75E	<5 <.2 456	33	240	4	82	55	0.5	<5	28	<5	9.64	851	<10	55	32	42	<20	<20	18	2.34	1.25	0.51	0.01	0.05	34	12	7	23	2	<5	<10	0.02	8	0.08
C700 1+00E	<5 <.2 325	64	181	10	65	50	0.3	ব	22	<5	7.96	771	<10	47	41	38	<20	<20	30	2.58	1.74	0.80) <.01	0.06	54	10	8	30	2	<5	<10	0.01	11 (0.21
C700 1+25E	7 <.2 540	57	215	5	87	61	0.5	<5	24		8.77	1336	<10	93	55	51	<20	<20	23	2.91	1.49	1.07	0.01	0.11	37	18	7	26	4	4	<10	0.07	7 (0.14
C700 1+50E	8 <.2 445	346	2908	8	54	40	4.8	<5	67	<5	6,51	760	<10	44	34	30	<20	<20	20	2.14	1.26	0.59	0.01	0.07	29	8	5	24	1	4	<10	0.03	8 (0.06
C700 1+75E	<5 <.2 133	48	167	Ž	51	22	<.2	<5	20	\$	4.84	6 01	<10	163	26	28	<20	<20	23	2.29	0.37	0.39	0.01	0.10	24	6	5	16	2	<5	<10	0.04	10 ·	<.01
C700 2+00E	<5 <.2 163	20	π	2	44	19	<.2	<5	13	\$	4,78	218	<10	67	29	28	<20	<20	21	1.61	0.44	0.19	¢ <.01	0.08	11	4	5	14	2	<5	<10	0.02	5 (0.01
C700 2+25E	<5 <.2 11	8	190	<1	22	7	<.2	<5	5	\$	1.84	312	<10	94	12	22	<20	<20	7	2.29	0.14	0.25	6 0.03	0.09	19	2	3	12	2	-5	<10	0.09	22 (0.01
C700 2+50E	<5 <.2 17	14	507	<1	22	7	0.6	ৎ	<5	<5	1,93	375	<10	154	16	24	<20	<20	11	1.60	0.17	0.21	0.02	0.08	19	1	3	11	2	<5	<10	0.07	2 -	<.01
C700 2+75E	<5 <.2 33	14	224	2	16	10	0.4	4	6	ら	2.66	614	<10	148	13	25	<20	<20	8	3.25	0.17	0.30	0.03	0.07	26	4	4	14	2	4	<10	0.11	21 (0.02
C700 3+00E	<5 <.2 80	40	223	3	13	14	1.2	ক	11	\$	4,58	1939	<10	301	9	21	<20	<20	23	1.76	0.17	0.69	0.02	0.11	70	4	4	9	1	<5	<10	0.04	11 1	0.03
C700 3+25E	<5 <.2 84	95	380	5	14	12	1.3	4	10	\$	5.16	1521	<10	187	11	17	<20	<20	19	1.55	0.21	0.59	0.02	0.15	56	8	3	9	1	ক	<10	0.03	12 (0.02
C700 3+50E	<5 <.2 50	28	332	<1	11	8	0.2	<5	<5	\$	1.97	355	<10	211	9	20	<20	<20	10	1.55	0.15	0.45	6 0.02	0.13	49	2	3	10	2	-5	<10	0.05	4 (0.01
C700 3+75E	<5 <.2 11	12	136	<1	12	5	<.2	-5	5	\$	1.35	218	<10	67	6	17	<20	<20	4	1.81	0.09	0.23	\$ 0.03	0,06	20	S	<2	9	2	ক	<10	0.08	18 ·	<.01
C700 4+00E	<5 <.2 21	18	130	1	37	15	0.4	Ś	7	4	2,63	Š20	<10	86	27	26	<20	<20	14	1.79	0.27	0.34	0.02	0.11	25	2	3	12	2	ক	<10	0.07	61	0.01
C700 4+25E	<5 <.2 12	14	75	<1	20	9	<.2	4	5	\$	1.88	445	<10	89	9	21	<20	<20	8	2.08	0.13	0.31	0.03	0.07	24	2	2	11	2	4	<10	0.08	13 (0.01
C700 4+50E	<5 <.2 29	22	159	<1	43	11	<.2	ব	7	\$	2.69	467	<10	129	25	22	<20	<20	11	2.12	0.26	0.38	3 0.02	0.12	31	2	3	14	2	<5	<10	0.08	12 /	0.01
C700 4+75E	<5 <.2 25	24	104	1	40	12	<.2	්	9	\$	2.91	412	<10	126	21	23	<20	<20	13	1.90	0.23	0.29	0.02	0.10	26	2	3	14	2	4	<10	0.07	5 -	<.01
C700 5+00E	<5 <.2 33	28	169	1	36	12	<.2	ব	8	\$	3.14	360	<10	111	24	24	<20	<20	16	2.01	0.28	0.28	0.01	0.09	24	3	3	13	2	-5	<10	0.07	14 (0.01
C700 5+25E	<5 < 2 17	23	120	<1	36	11	<.2	ଟ	9	4	2.49	519	<10	113	17	22	<20	<20	8	2.62	0.20	0.30	0.02	0.09	27	2	3	15	2	<5	<10	0.10	21 (0.01
C700 5+50E	<5 <.2 18	22	92	<1	30	10	<.2	්	<5	\$	2.69	362	<10	98	17	22	<20	<20	14	1.37	0.16	0.21	0.02	0.09	21	1	3	11	2	<5	<10	0,04	4 •	<.01
C700 5+75E	<5 <,2 23	15	72	<1	32	10	<.2	4	7	< <u>5</u>	2.53	252	<10	79	21	23	<20	<20	13	1.30	0.22	0.20	0.02	0.08	19	1	3	10	2	<5	<10	0.05	4	<.01
C700 6+00E	<5 <.2 20	17	89	<1	33	10	<.2	<5	9	<5	2.48	230	<10	105	22	19	<20	<20	14	1.27	0.21	0.11	0.01	0.07	14	1	2	10	2	4	<10	0.05	4	<.01
C700 6+25E	<5 <.2 15	15	102	<1	35	11	<.2	ଟ	6	\$	2.60	279	<10	99	25	23	<20	<20	18	1.70	0.30	0.16	6 0.02	0.12	18	2	3	13	2	45	<10	0.05	4 ·	<.01
C700 6+50E	<5 <.2 39	- 31	96	<1	40	13	<.2	ত	5	<5	3.41	549	<10	70	20	24	<20	<20	17	1.37	0.27	0.20	0.02	0.09	20	2	3	13	2	4	<10	0.04	4 ·	<.01
0700 6+75E	< <u>s</u> < <u>.</u> ? 11	21	161	<1	34	11	<.2	~ 5	<5	\$	2.42	316	<10	111	19	26	<20	<20	13	1.64	0.24	0, 17	0.02	0.11	20	2	3	14	3	<5	<10	0.06	4	<.01
C700 7+00E	<5 <.2 57	32	142	1	57	18	<.2	<5	13	< 5	4,78	543	<10	69	48	31	<20	<20	20	1.42	0.43	0.20	0.01	0.10	22	3	3	12	2	4 5	×10	0.05	i (0.02
C700 7+25E	- <u>5</u> - <u>2</u> 13	23	207	<1	42	11	<.2	ক	10	<5	2.53	553	<10	119	26	30	<20	<20	8	1.73	0.29	0.31	0.02	0.09	31	1	3	20	3	-5	<10	Ŭ,08	2 (0.01
C700 7+50E	<5 <.2 26	23	116	<1	44	34	<.2	-6	6	-5	3,31	304	<10	101	24	26	-20	~2 <u>0</u>	17	1.84	በጓበ	0.20	0.0Ž	ó. 10	3Û	Ż	4	15	2	ব	<10	0.05	5	<.01
C700 7+75E	<5 <.2 45	37	165	i	65	17	<.2	-5	13	5	4.23	307	<10	140	32	27	~20	<20	19) 7.1İ	0.32	0.25	0.01	ó.13	36	2	4	15	2	<5	<10	0.06	10 (0.01

<5 <.2 46 37 177 1 55 18 <.2 <5 11 <5 4.36 390 <10 53 33 24 <20 <20 27 1.06 0.29 0.17 0.01 0.11 17 3 3 10 2 <5 <10 0.03 3 0.01</p>

Ge (`hemical Lab Report

CLIENT: TOKI	AT RESOURCES INC			i	PROJECT: ACACIA1
REPORT: VOO	01694.0 (COMPLETE)		DATE RECEIVED: 04-SEP-00	DATE PRINTED: 12-SEP-00 PAGE	4 OF 18
SAMPLE	ELEMENT AU30 Ag CU PD) Zn Mo Ni Co Col Bi As Sb	Fe Min Te Ba Cr V Sn W La Al	Mg Ca Na K Sr Y Ga Li I	ND SC IA 11 Zr S
NUMBER	UNITS PPB PPM PPM PPM	I PPM PPM PPM PPM PPM PPM PPM	PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT P	СТ РСТ РСТ РСТ РРМ РРМ РРМ РРМ Р	рм ррм ррм рст ррм рст
c700 8+755	<i>r</i> 5 <i>r</i> 2 15 14	× 10/ <1 34 11 < 2 <5 7 <5	2.57 249 <10 57 25 28 <20 <20 13 1.27 0.	.23 9.20 0.02 0.09 20 2 2 12	3 <5 <10 0.06 3 <.01
C700 0+23E	<5 < 2 / J / 4		3 08 484 <10 70 31 32 <20 <20 12 1.68 0	33 0.20 0.02 0.09 20 2 3 15	3 <5 <10 0.07 2 <.01
0700 8+505	<5 < 2 20 25 <5 < 2 16 26		2 09 603 <10 75 35 31 <20 <20 14 1.53 0	33 0.24 0.02 0.12 21 1 4 15	2 <5 <10 0.05 3 <.01
C/00 8+/5E	<) <, 2 14 20 -5 - 3 47 / 6	1 m 2 44 20 4 2 45 20 45	5 34 512 <10 55 62 26 <20 <20 27 1 28 0	37 0 18 < 01 0 10 16 3 3 11	2 <5 <10 0.03 1 0.01
C700 9400E	<2 <. 2 Di 44		3 B1 610 c10 97 60 32 c20 c20 13 1 B1 0		2 <5 <10 0.06 4 0.01
C/00 9425E	<> <.2 51 20		3.01 410 410 31 03 32 428 420 13 1.01 0.		
C700 9+50E	<5 <.2 7 13	3 174 <1 28 9 <.2 <5 8 <5	1.88 595 <10 75 19 29 <20 <20 5 1.64 0.	.19 0.30 0.03 0.08 25 1 3 17	3 <5 <10 0.09 3 0.01
C700 9+75E	<5 1.0 10 20	213 <1 38 10 <.2 <5 8 <5	2.40 574 <10 97 24 27 <20 <20 12 1.71 0.	.29 0.23 0.02 0.10 21 2 3 16	3 <5 <10 0.07 2 0.01
C700 10+00E	<5 <.2 108 21	1 164 1 38 16 <.2 <5 13 <5	4.59 310 <10 62 36 39 <20 <20 46 2.05 0.	.83 0.15 0.01 0.10 13 2 6 17	3 <5 <10 0.04 3 <.01
C700 10+25E	<5 <.2 80 13	ś 91 <1 22 12 <.2 <5 9 <5	3.62 286 <10 58 20 36 <20 <20 14 1.93 0.	.82 0.17 0.02 0.07 14 1 4 14	2 <5 <10 0.04 3 <.01
C700 10+50E	<5 <.2 50 31	1 157 1 25 12 <.2 <5 6 <5	3.52 443 <10 77 23 23 <20 <20 23 1.27 0.	.39 0.19 0.01 0.14 15 3 3 10	2 <5 <10 0.04 2 <.01
C700 10+75E	-5 - ,2 25 14	4 83 <1 5 5 <.2 <5 <5 <5	1.78 323 <10 74 7 12 <20 <20 19 0.67 0.	.18 0.16 <.01 0.14 13 2 <2 5	<1 <5 <10 0.02 1 <.01
C700 11+00E	<5 <.2 41 26	\$ 164 <1 25 14 0.3 <5 7 3	3.48 816 <10 91 33 27 <20 <20 26 1.46 0.	.63 0.32 0.01 0.18 19 4 2 13	3 <3 <10 0.06 <1 0.01
C700 0+25W	<5 <.2 87 41	1 202 1 31 19 0.3 <5 10 <5	4.20 871 <10 94 28 24 <20 <20 27 1.42 0.	.72 1.41 0.02 0.20 45 6 3 12	2 <5 <10 0.05 6 0.08
C700 0+50W	<5 <.2 87 48	8 257 1 37 20 0.5 <5 9 <5	4.29 852 <10 76 33 26 <20 <20 30 1.34 0.	.65 0.69 0.02 0.18 31 6 3 12	2 <5 <10 0.05 5 0.03
C700 0+75₩	<5 <.2 48 131	1 761 1 43 20 1.8 <5 14 <5	4.61 1134 <10 28 27 13 <20 <20 18 0.60 0.	.42 6.48 <.01 0.08 71 4 <2 4 -	<1 <5 <10 0.02 2 0.05
C700 1+00W	<5 <.2 9 14	4 185 <1 32 8 <.2 <5 <5 <5	1.82 326 <10 97 16 18 <20 <20 10 1.64 0.	.15 0.20 0.02 0.09 18 1 3 14	1 <5 <10 0.06 6 <.01
C700 1+25₩	<5 <.2 10 17	7 103 <1 41 11 <.2 <5 <5 <5	2.44 477 <10 115 24 21 <20 <20 13 1.70 0.	.19 0.20 0.02 0.12 19 1 3 14	2 <5 <10 0.06 3 <.01
C700 1+50W	9 < 2 28 23	5 82 <1 48 14 <.2 <5 10 <5	3.65 312 <10 51 33 20 <20 <20 24 1.05 0.	.24 0.16 <.01 0.09 15 2 2 8	1 <5 <10 0.04 2 <.01
C700 1+75W	<5 <.2 43 34	4 141 <1 51 17 <.2 <5 14 <5	4.06 352 <10 26 31 17 <20 <20 21 0.65 0.	.24 0.19 <.01 0.09 16 4 <2 5	<1 <5 <10 0.02 5 <.01
C700 2+00W	6 <.2 48 28	8 97 1 57 18 <.2 <5 13 <5	4.34 326 <10 34 39 21 <20 <20 23 0.88 0.	.31 0.14 <.01 0.09 14 4 <2 6	1 <5 <10 0.04 5 <.01
€700 2+25₩	<5 <.2 18 17	7 80 1 45 14 <.2 <5 9 <5	3.04 447 <10 62 36 22 <20 <20 21 0.96 0.	.27 0.14 <.01 0.09 18 2 <2 8	2 <5 <10 0.04 3 <.01
C700 2+50₩	<5 <.2 40 23	3 80 <1 72 20 <.2 <5 11 <5	4.04 611 <10 50 59 21 <20 <20 23 0.94 0.	.49 1.57 <.01 0.14 39 5 2 7	2 <5 <10 0.03 3 0.02
C200 5+52M	<5 <.2 34 22	2 103 <1 62 16 <.2 <5 9 <5	3.63 425 <10 50 55 24 <20 <20 27 0.92 0.	.41 0.13 <.01 0.11 14 3 2 7	2 <5 <10 0.03 4 <.01
C700 3+00W	<5 <.2 13 16	5 83 <1 48 11 <.2 <5 6 <5	2.67 396 <10 92 44 25 <20 <20 20 1.35 0.	.31 0.14 0.01 0.10 16 2 3 11	3 <5 <10 0.05 2 <.01
C800 0+00	5 51 .22	2 114 -1 34 15 < 2 5 7 5	3.27 510 <10 69 34 29 <20 <20 27 1.38 0.	.56 0.33 0.02 0.14 23 6 <2 13	3 <5 <10 0.08 4 <.01
C800 0+25E	<5 <.2 78 27	7 116 <1 48 32 <.2 <5 18 <5	4.62 1009 <10 114 24 34 <20 <20 22 2.20 0.	.69 0.61 0.02 0.06 57 7 5 20	2 <5 <10 0.04 3 0.04
CCCC 0+50E	<5 <.2 11 14	4 82 <1 10 11 < 2 <5 5 <5	1.77 781 <10 116 13 26 <20 <20 7 1.55 0.	.18 0.36 0.03 0.04 45 2 2 8	3 <5 <10 0.06 1 0.03
C800 0+755	<5 <.2 68 26	6 151 1 58 26 <.2 <5 7 <5	5.98 559 <10 99 23 24 <20 <20 14 1.90 0	59 0.18 0.01 0.07 22 4 4 16	2 <5 <10 0.04 <1 0.02
C800 1+00E	6 <.2 66 18	8 76 1 38 20 <.2 <5 55 <5	4.64 565 <10 63 24 16 <20 <20 28 1.85 1	.17 0.19 <.01 0.06 24 3 5 21 4	<1 <5 <10 <.01 <1 0.02
C800 1+25E	26 <.2 274 38	8 54 2 145 49 5.2 5 16 5	>10.00 681 <10 87 25 13 <20 <20 102 2.28 0.	.98 0.96 <.01 0.07 39 14 6 21 4	<1 <5 <10 <.01 7 0.09

2. Un Oliver, Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

PROJECT: ACACIA1

CLIENT: TOK	LAT RESOURCES INC					PROJECT: ACACIA1
REPORT: VOO	-01694.0 (COMPLETE)			DATE RECEIVED: 04	-SEP-00 DATE PRINTED: 12-SEP-0	00 PAGE 5 OF 18
SAMPLE	ELEMENT AU30 Ag Cu Pb	Zn Mo Ni Ca	to Cd Bi As Sb Fe	Mn Te Ba Cr V Sn W	La Al Mg Ca Na K Sr	Y Ga Li Nb Sc Ta Ti 2r S
NUMBER	UNITS PPB PPM PPM PPM	PPM PPM PPM PPM	n PPM PPM PPM PPH PCT	PPM PPM PPM PPM PPM PPM PPM	PPM PCT PCT PCT PCT PCT PPM I	PPN PPM PPN PPM PPM PPM PCT PPM PCT
C800 1+50E	<5 <.2 56 24	183 3 37 16	6 <.2 <5 22 <5 3.27	600 <10 170 19 27 <20 <20	15 1.71 0.22 0.38 0.01 0.12 25	2 4 14 2 <5 <10 0.03 3 0.01
C800 1+75E	<5 <.2 99 61	136 5 54 23	23 <.2 <5 8 <5 5.06	442 <10 99 27 26 <20 <20	28 2.12 0.75 0.16 0.01 0.09 14	3 5 17 2 <5 <10 0.04 3 0.01
C800 2+00E	<5 <.2 131 29	93 5 46 22	2 <.2 <5 11 <5 4.95	266 <10 98 32 30 <20 <20	39 1.73 0.46 0.22 <.01 0.10 19	4 4 13 2 <5 <10 0.04 5 0.01
C800 2+25E	<5 <.2 112 26	130 4 37 19	9 <.2 <5 9 <5 3.93	348 <10 84 29 31 <20 <20	25 1.79 0.60 0.19 0.01 0.09 13	3 4 13 2 <5 <10 0.04 3 <.01
C800 2+50E	<5 <.2 35 15	168 <1 35 12	2<.2 5 5 5 2.49	456 <10 153 22 33 <20 <20	10 2.44 0.32 0.29 0.02 0.08 24	2 5 17 3 <5 <10 0.09 11 0.01
C800 2+75E	<5 <.2 83 23	446 <1 38 14	4 0.2 <5 8 <5 3.03	347 <10 152 24 24 <20 <20	20 1.89 0.24 0.17 0.02 0.09 18	3 3 11 2 <5 <10 0.06 9 <.01
C800 3+00E	<5 <.2 11 17	897 <1 11 5	5 1.5 < < < < < < < < < < < < < < < < < < <	865 <10 168 10 21 <20 <20	10 1.15 0.12 0.22 0.02 0.08 20	1 <2 9 2 <5 <10 0.06 2 0.01
C800 3+25E	6 0.6 205 28	276 1 10 14	14 0.3 🐟 17 🐟 2.73	275 <10 96 7 19 <20 <20	20 1.66 0.17 0.38 0.02 0.07 31	3 4 12 1 <5 <10 0.04 9 0.02
C800 3+50E	<5 <.2 15 18	432 1 24 10	10 0.5 <5 8 <5 2.25	470 <10 137 15 23 <20 <20	11 2.07 0.30 0.21 0.02 0.08 21	2 4 16 2 <5 <10 0.07 7 0.01
C800 3+75E	<5 <.2 28 22	277 <1 36 15	15 0.3 <5 11 <5 2.96	515 <10 120 25 30 <20 <20	11 2.48 0.45 0.27 0.02 0.08 23	2 4 19 2 <5 <10 0.08 9 0.02
C800 4+00E	<5 <.2 77 31	205 <1 38 18	18 0.2 <5 12 <5 4.07	346 <10 96 31 34 <20 <20	19 2.22 0.55 0.19 0.01 0.09 20	4 4 17 2 <5 <10 0.06 7 <.01
C800 4+25E	<5 <.2 22 11	302 <1 30 12	2 0.5 😽 6 🗟 2.18	541 <10 95 18 29 <20 <20	8 1.73 0.30 0.26 0.03 0.07 23	2 3 17 3 <5 <10 0.07 3 0.01
C800 4+50E	<5 0.2 23 23	281 <1 42 13	3 <.2 <5 6 <5 2.47	266 <10 101 20 27 <20 <20	11 1.98 0.30 0.23 0.03 0.10 20	Z 4 18 2 <5 <10 0.09 6 0.01
C800 4+75E	<5 <.2 10 15	153 <1 20 8	8 <.2 5 5 5 1.65	417 <10 69 12 28 <20 <20	7 1.33 0.20 0.20 0.03 0.06 16	2 <2 11 2 <5 <10 0.07 3 <.01
C800 5+00E	<5 <.2 16 14	233 <† 24 9	9 <.2 <5 <5 <5 1.94	300 <10 101 13 24 <20 <20	8 1.99 0.28 0.23 0.03 0.07 23	2 3 15 2 <5 <10 0.08 9 0.01
C800 5+25E	<5 <.2 19 19	198 <1 36 13	3 <.2 <5 8 <5 2.48	349 <10 104 22 29 <20 <20	13 2.16 0.29 0.19 0.02 0.11 19	2 4 16 3 <5 <10 0.08 7 <.01
C800 5+50E	<5 <.2 16 17	140 <1 45 12	12 <.2 <5 13 <5 2.53	459 <10 88 26 30 <20 <20	7 2.93 0.26 0.21 0.03 0.07 19	2 3 19 3 <5 <10 0.12 18 0.01
C800 5+75E	6 <.2 10 15	131 <1 26 9	9 <.2 <5 5 <5 1.92	428 <10 64 19 31 <20 <20	7 1.28 0.20 0.20 0.03 0.07 16	1 2 13 3 <5 <10 0.08 4 <.01
C800 6+00E	<5 < 2 12 16	135 <1 38 1	1 <.2 <5 <5 <5 2.09	542 <10 78 29 31 <20 <20	7 1.42 0.26 0.22 0.02 0.07 19	2 2 14 3 <5 <10 0.07 1 0.01
C800 6+25E	-52 24 16	139 <1 52 1	15 <.2 <5 7 <5 3.38	354 <10 78 44 31 <20 <20	18 1.92 0.49 0.23 0.01 0.10 21	2 3 16 3 <5 <10 0.07 4 <.01
C800 6+50E	<5 <.2 17 16	134 <1 39 12	12 <.2 <5 7 <5 2.57	340 <10 89 29 28 <20 <20	13 1.79 0.32 0.20 0.02 0.09 24	2 3 15 2 <5 <10 0.08 7 <.01
C800 6+75E	6 <.2 26 35	173 <1 57 1	15 <.2 <5 11 <5 3.60	513 <10 69 48 29 <20 <20	16 1.59 0.39 0.24 0.01 0.11 26	2 4 17 2 <5 <10 0.05 4 0.01
C800 7+00E	7 <.2 72 40	173 1 51 1	17 <.2 <5 15 < 5 4.85	449 <10 43 42 26 <20 <20	28 1.46 0.63 0.16 <.01 0.10 15	4 4 13 1 <5 <10 0.02 5 <.01
COUU 7+255	7 < 2 20 27	245 <1 67 1	17 <.2 <5 10 <5 3.49	314 <10 129 44 33 <20 <20	13 2.43 0.39 0.21 0.02 0.11 28	2 5 21 2 <5 <10 0.08 5 0.01
C800 7+50E	<5 <.2 23 20	160 2 38 17	دَهٰ۔Σ <> 11 <> 2.1.0 لَتَهٰ۔Σ	002 10 52 <u>38</u> 31 <20 <20	16 1.06 0.31 0.18 0.02 0.10 18	2 3 12 2 <5 <10 0.04 <1 <.01
<u>1800</u> 7+75E	-5 -4.2 38 23	130 1 41 13	13 <.2 <5 10 <5 3.62	420 <10 69 29 31 <20 <20	20 1.16 0.35 0.14 0.02 0.08 16	2 2 13 2 <5 <10 0.04 3 <.01
C800 8+00E	<5 <.2 23 14	127 1 28 1	11 k.2 🐟 9 🍜 2.51	317 <10 75 15 30 <20 <20	12 1.60 0.22 0.18 0.03 0.08 17	2 3 15 3 <5 <10 0.07 5 0.01
C800 8+25E	<5 <,2 41 23	132 1 43 14	14 <.2 & 9 & 3.23	344 <10 107 23 31 <20 <20	20 1.90 0.33 0.21 0.02 0.12 25	3 4 20 3 <5 <10 0.07 8 <.01
C800 8+50E	-5 <.2 41 X	135 1 35 14	14 <.2 🧐 10 🐔 3.30	482 <10 61 24 35 <20 <20	17 1.26 0.33 0.18 0.02 0.08 17	2 3 13 3 45 <10 0.06 3 0.01
C800 8+75E	15 <.2 46 24	153 1 32 13	13 <.2 <5 9 <5 3.33	446 <10 80 22 35 <20 <20	23 1.40 0.34 0.15 0.02 0.14 17	4 3 14 2 <5 <10 0.05 4 <.01

Ge (hemical Lab Report____

CLIENT: TO	KLAT RESOURCE	S INC	2																													PRO.	JECT :	ACACIA	1	
REPORT: VO	0-01694.0 (0	OMPLE	ETE 3)													D	ATE	RECE	IVEC	: 04	-SEP	-00	DA	TE PR	INTED	: 12-	SEP-	00	P	AGE	6 0	F 18			
																												· ·			• •					
SAMPLE	ELEMENT AU	30 /	Ag (Lu	РЪ	Zn	Mo	Ni	Co	Cd	B i	As	Sb	Fe	Mm	Тe	Ba	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	κ	Sr	Y	Ga	Lì	NЬ	Sc T	a Ti	Zr	\$
NUMBER	UNITS P	PB PI	PN PF	M P	PM	PPM I	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PCT	PCT	PCT	PCT	PCT	PPM I	PPM F	PPM i	PPN F	PM I	PPM PP	M PCT	PPN F	PCT
C800 9+00E		< <	.2 5	59	27	126	1	35	14	<.2	<5	7	<5	4.01	383	<10	82	25	33	<20	<20	27	1.50	0.42	0.24	0.02	0.17	24	5	4	16	Ζ	<5 <1	0 0.04	40.	.01
C800 9+256	1	<5 <	.z 2	22	18	208	<1	8	6	<.2	ব	<5	<5	1.89	296	<10	110	8	21	<20	<20	20	1.00	0,17	0.14	0.02	0.17	16	2	3	9	1	<5 <1	0 0.02	1 <.	.01
C800 9+50E	5	7 <	.s a	26	17	131	<1	8	7	<.2	ব্য	<5	\$	1.89	610	<10	106	10	19	<20	<20	23	0.92	0.21	0.16	0.01	0.16	15	3	2	8	5	<5 <1	0 0.03	<1 <.	.01
C800 9+758	È	<5 <	.2 4	42	24	149	<1	12	10	<.2	<5	<5	<5	2.34	793	<10	98	13	21	<20	<20	26	1.01	0.28	0.20	0.01	0.18	17	4	2	9	1	<5 <1	0 0.03	<1 < ,	.01
C800 10+00	Æ	<s <<="" th=""><th>.z /</th><th>41</th><th>25</th><th>135</th><th>1</th><th>32</th><th>11</th><th><.2</th><th>ব</th><th>ব</th><th>්</th><th>3,15</th><th>266</th><th><10</th><th>76</th><th>31</th><th>32</th><th><20</th><th><20</th><th>24</th><th>1,50</th><th>0.55</th><th>0.13</th><th>0.01</th><th>0.12</th><th>14</th><th>2</th><th>3</th><th>14</th><th>Z</th><th><5 <1</th><th>0 0.04</th><th>2 <</th><th>.01</th></s>	.z /	41	25	135	1	32	11	<.2	ব	ব	්	3,15	266	<10	76	31	32	<20	<20	24	1,50	0.55	0.13	0.01	0.12	14	2	3	14	Z	<5 <1	0 0.04	2 <	.01
C800 0+254	4	6 <	.2 (56	36	194	1	48	25	0.2	ح	7	5	4.23	1050	<10	95	47	37	<20	<20	30	1.46	0.79	1.22	0.02	0.29	47	7	<2	20	3	<5 <1	0 0.09	40.	.02
C800 0+50		<5 <	.2 '	17	18	131	<1	38	11	<.2	ক	5	-5	2.68	474	<10	96	29	24	<20	<20	17	1,11	0.20	0.15	0.02	0.10	19	2	3	11	2	<5 <1	0 0.04	3 <,	.01
C800 0+75	i -	<5 <	.z	13	10	159	<1	24	11	<.2	Ś	6	ا ح	2,47	458	<10	67	25	39	<20	<20	11	1.09	0.23	0.23	0.02	80.0	23	2	3	23	3	<5 <1	0 0.05	<1 0.	.01
C800 1+00	J I	<5 <	.z ;	21	25	182	<1	32	11	<.2	ব	8	4	2.89	776	<10	85	27	26	<20	<20	26 (0.97	0.24	0.18	0.01	0.08	20	2	2	12	2	<5 <1	0 0.04	<1 <.	.01
C800 1+251	4	<5 <	.s.	26	18	98	<1	37	12	<.2	4	6	4	2.92	249	<10	59	29	24	<20	<20	22	1.22	D.21	0.17	0.02	0.09	21	4	2	10	S	<5 <1	0 0.05	14 <.	.01
																					_	_	_						_	_		_			-	
C800 1+50	4	ব <	.z ;	20	21	120	<1	27	10	<.2	4	8	ক	2.40	370	<10	68	22	26	<20	<20	22	1,01	0.19	0.14	0.02	0.07	21	Z	2	10	Z	<5 <1	0 0.05	2 <.	.01
C800 1+751	4	6 <	.2	12	13	86	<1	27	9	<.2	Š	6	4	1.74	232	<10	112	13	21	<20	<20	11	2.42	0.14	0.18	0.03	0.06	26	-5 -	3	17	1	<5 <1	0 0.10	33 0.	.01
C800 2+00	H	ব <	•S	12	16	144	<1	36	11	<.2	ক	6	4	2,16	464	<10	143	18	27	<20	<20	14	1.94	0.19	0.25	0.03	0.09	28	3	3	19	2	<5 <1	0 0.09	11 0.	.01
C800 2+251	W	ব্ট <	.2	21	19	144	2	48	13	0.8	4	11	<5	2,81	331	<10	127	26	31	<20	<20	17	1.75	0.26	0.25	0.02	0.10	30	2	3	17	3	< <	0 0.07	4 <,	.01
C800 2+50	W	<5 <	.2	6	58	819	<1	15	6	0.6	4	ক	4	2.09	642	<10	48	8	27	<20	<20	8	1.10	0.13	0.32	0.03	0.09	34	1	2	11	Z	<5 <1	0 0.06	20.	.01
											_	_	_	• • • •														70				-				
C800 2+751	W	<5 <	-2	10	15	244	<1	27	16	<.2	୍ଚ -	8	<	2,16	715	<10	100	15	28	<20	<20	12	1.00	0.24	0.58	0.02	U.14	39	4	4	10	2	99	0 0.07	4 U.	.01
C800 3+00	W	<5 <		12	27	275	<1	28	17	<.2	0	8	0	3.1/	552	<10	59	32	49	<20	<20	10	1.69	0.44	0.34	0.05	0.07	32	4	4	23	4	<) <)	0 4 01	10 0.	.01
C900 0+00		Z3 <	.2 1	39	43	208	5	67	5(0.4	0	55	\$	1.82	1980	<10	10	П	15	<2U	<20	22	0.01	Ų.27	0.78	١٥.>	0. 11	20	14	3	0	51	94	0 2101	50.	.20
C900 0+251	E	-	_								Ŧ			7 77	740	.40	64	45	ar	-70	-20	20	4 70	0 7E	0 10	0.01	0.14	17	~	,	44	2	× 1	0 0 00	7.	01
C900 0+50	E	<5 <	-2	78	35	145	3	24	15	<.2	0	•	<>	5.72	214	<10	01	15	23	<2U	<20	28	1.20	0.55	0.19	0.01	0.11	17	(2	11	č	10 11	0 0.02	/ x ,	.07
c000 0.75	•	~ .		57	32	176	1	47	18	< 2	<5	5	പ്	3 01	431	~1 0	125	41	41	<20	<20	27	1.03	0 56	0.10	n.n2	<u>ກ 11</u>	25	4	5	17	3	<5 <1	0.0.06	3 <	.01
0000 1+000	E	252	21), 11 4	170	455	7	140	101	1.6	5	23	6	8 82	4218	<10	623	101	111	<20	<20	42	3.18	2.93	1.36	0.02	0_14	228	6	5	34	9	8 <1	0 0.19	<1 Ū	. 15
C900 1+00	E	- R <	2 1	07.1	172	202	7	202	57	0.7	ক	6	5	8.55	2029	<10	611	340	150	<20	<20	31	3.28	4.25	1.83	0.01	0.54	242	6	$\overline{\mathbf{a}}$	21	15	16 <1	0 0.30	<1 0	.07
0000 1+20	E	7 4	2 1	37	56	213	6	286	76	0.5	5	19	5	9.04	1821	<10	213	271	122	<20	<20	31	3.21	3.23	1.17	0.01	0.26	138	10	3	33	10	10 <1	0 0.24	30	.12
C000 1+750	E		-	20	32	01	र	154	46	<.2	\$	16	<u>ح</u>	7.07	972	<10	69	116	52	<20	<20	67	2.37	1.85	0.59	0.01	0.09	106	13	6	35	3	ري ال	0 0.02	60	. 19
C900 (*/)	C									-							• ·		-								••••				•	-				
C900 2+00	F	8 <	.2	60	ģ	64	2	108	27	<.2	حه	15	4 5	5.80	813	<10	9	158	67	<20	<20	39	3.01	2.91	7.22	0.02	0.06	601	6	10	59	4	<5 <1	0 <.0 1	44	.57
COO 2-00	- c	7 <		43	26	103	3	103	45	< <u>,2</u>	ð	15	<5	6.08	908	<10	95	45	29	<20	<20	74	2.14	1.31	0.51	0.01	0:09	76	11	6	35	<1	<5 <1	0 0.01	7 0	.11
0900 2-50	-	6 <	2	96	22	88	3	65	3 0	<,2	-5	6	Ś	5,15	700	<iû< th=""><th>46</th><th>27</th><th>10 10</th><th>-20</th><th><20</th><th>65</th><th>1.76</th><th>1.15</th><th>0.35</th><th><.01</th><th>0-09</th><th>44</th><th>9</th><th>5</th><th>31</th><th><1</th><th><<u>s</u> <1</th><th>0 <.01</th><th>90</th><th>.06</th></iû<>	46	27	10 10	-20	<20	65	1.76	1.15	0.35	<.01	0- 09	44	9	5	31	<1	< <u>s</u> <1	0 <.01	90	.06
C900 2+75	- E	ব্য ৰ	.2	63	28	101	2	72	30	<.2	Ś	6	\$	4.74	730	<10	117	37	34	<20	-20	35	2,63	Ū ĶŌ	ñ.47	0.02	0.17	53	7	6	28	1	<5 <1	0 0.04	វា ប៉	. ŬŽ
C900 3+00	E	ব ৰ	.2	53	16	139	1	64	Z 2	<.2	-5	5	\$	3.41	237	<10	<u>231</u>	<u>2</u> 7	30	<20	<20	28	2,92	D.46	0.25	0.02	0.09	37	4	6	25	1	<5 <1	0 0.07	26 <	.01

DATE RECEIVED: 04-SEP-00

Ge (hemical Lab Report

PROJECT: ACACIA1

PAGE 7 OF 18

DATE PRINTED: 12-SEP-00

CLIENT: TOKLAT RESOURCES INC REPORT: V00-01694.0 (COMPLETE)

SAMPLE	FLEMENT AU30 Ag Cu Po	Zn Mo I	Ni Co Cd Bi	i As Sb	Fe	Min Te Ba	Cr	V Sn W	La A	i Mg	Ca	Na	ĸ	Sr Y	' Ga	Li	Nb	Sc	ĩa T	i Zr	ş
NUMBER	UNITS PPB PPM PPM PPM	PPM PPM P	pm ppm ppm ppm	I PPM PPM	PCT	PPM PPM PPM	PPM	PPM PPH PPM	PPM PC	r PCT	PCT	PCT P	CT P	PM PPM	i ppm	PPM	PPM (PPM PI	PM PC	PPM	PCT
r000 3+25F	<5 < 2 199 41	123 3 4	49 24 <.2 <	5 17 <5	5.12	289 <10 59	26	26 <20 <20	37 1.4	7 0.55	0.22 <	.01 0.	06	23 5	4	14	1	<5 <	10 0.0	2 7	0.01
C000 3+250	<5 < 2 13 17	98 2 3	34 11 0.7 <	র ৬ ৬	2.09	467 <10 74	14	25 <20 <20	9 1.9	4 0.15	0.19 0	.02 0.	06	18 2	3	13	2	<5 <	0.0	75	0.01
C000 3+75E	<5 < 2 15 14	105 <1 3	35 11 < 2 <	5 5 5	2.34	531 <10 89	17	30 <20 <20	11 1.5	5 0.19	0.19 0	.03 0.	08	20 2	2 2	15	3	<5 <	10 0. 07	73	<.01
C000 4+00E	<5 < 2 28 24	137 1	50 15 <.2 <	5 6 < 5	3.18	570 <10 128	26	31 <20 <20	17 1 7	0 0.27	0.21 0	.02 0.	10	27 2	3	17	2	<5 <	10 0.00	53	0.01
C900 4+25E	<5 <.2 35 24	100 3 3	35 15 <.2 <	575	3.50	802 <10 98	27	34 <20 <20	19 1.2	7 0.40	0.21 0	.01 0.	09	20 2	4	13	3	<5 <	10 0.04	i 1	<.01
C900 4+50E	<5 <.2 20 16	114 1 2	29 11 <.2 <	57<5	2.71	657 <10 86	23	34 <20 <20	13 1.5	2 0.42	0.21 0	.02 0.	07	21 2	2 4	14	3	<5 <	10 0.0	5 <1	0.01
C900 4+75E	<5 <.2 59 20	108 2 4	49 16 <.2 <	5 6 < 5	4.13	553 <10 125	32	34 <20 <20	21 1.9	6 0. 68	0.16 0	.02 0.	10	19 3	5	17	2	<5 <	10 0.0	ŝZ	0.01
C900 5+00E	<5 <.2 119 50	193 2	45 17 <.2 <	5 12 <5	5.05	370 <10 59	32	27 <20 <20	35 1.4	0 0.73	0.10 •	.01 0.	10	13 4	4	-11	1	< <	0 0.0	52	<.01
C900 5+25E	<5 <.2 4 7	83 <1 3	24 7 < 2 <	5 ক ক	1.45	379 <10 53	18	32 <20 <20	7 1.0	5 0.17	0.21 0	.03 0.	08	18 1	2	14	3	<5 <	10 0.0	5 <1	<.01
C900 5+50E	<5 <.2 10 16	112 <1 3	30 10 <.2 <	5 ব ব	2.08	1079 <10 88	22	35 <20 <20	10 1.0	9 0.23	0.30 (.02 0 .	08	26 2	2	14	3	ر ې د	10 0.0	7 <1	0.01
C900 5+75E	7 <.2 127 133	243 Z	78 30 0.3 <	5 19 -5	6.25	908 <10 45	35	24 <20 <20	32 0.9	0 0.38	0.39 <	.01 0.	10	30 10	4	12	<1	<5 <	10 0.0	1 2	0.05
C900 6+00E	7 <.2 26 21	215 <1	27 11 <.2 💐	5 ব ব	2.19	916 <10 83	18	31 <20 <20	11 1.1	5 0.20	0.24 (.02 0.	10	19 2	2 2	13	2	<5 <	0 0.0	5 <1	0.01
C900 6+25E	<5 <.2 83 25	120 2	46 17 <.2 <	575	4.70	422 <10 75	30	37 <20 <20	24 2.1	9 0.88	D.14 0	.01 D.	12	14 3	5	18	2	ন্থ <	10 0.0	4 4	<.01
C900 6+50E	<5 <.2 29 27	159 1	34 13 < 2 <	5 8 < 5	3.22	723 <10 88	31	35 <20 <20	20 1.3	5 0.41	0.36 (.02 0.	13	28 2	4	15	2	ও <	0.0	<1	0.01
C900 6+75E	<5 <.2 7 tž	130 <1	45 10 <.2 <	5 8 < 5	1.98	525 <10 62	32	38 <20 <20	6 1.5	8 0.28	0.20 (.04 0.	09	21 1	3	19	4	<5 <	0 0.0	32	0.01
C900 7+00E	<5 <.2 23 34	220 <1	59 18 <.2 <	5 13 <5	3.90	974 <10 88	63	44 <20 <20	16 1.5	2 0.49	0.20 (.02 0.	12	25 2	: 3	20	3	ক <	10 0.0	5 2	0.01
C900 7+25E	<5 <,2 43 22	133 1	32 12 <.2 <	5 6 <5	3.16	288 <10 103	26	31 <20 <20	27 1.6	8 0.49	0.17 (.02 0.	18	18 4	2	17	3	ৎ <	10 0.0	76	<.01
C900 7+50E	<5 <.2 7 13	113 <1	22 10 <.2 <	5 ও ও	2.01	622 <10 69	13	34 <20 <20	10 1.0	6 0.18	0.22 (.03 0.	09	18 1	<2	14	3	<5 <	10 0.0	72	<.01
C900 7+75E	<5 <.2 116 42	180 4	56 22 <.2 <	5 16 <5	5.88	415 <10 44	33	31 <20 <20	28 1.3	7 0.47	0.13 <	.01 0.	80	15 4	3	13	2	<5 <	10 0.04	7	0.02
C900 8+00E	<5 < . 2 29 22	163 1	39 15 <.2 <	58~5	3.14	763 <10 89	20	35 <20 <20	15 1.5	9 0.24	0.24 (.03 0,	09	21 3	53	16	3	ৰ্ণ <	10 0.0	74	0.01
C900 8+25E	<5 <.2 112 36	121 3	49 20 û.6 <	5 14 <5	5.39	487 <10 70	35	34 <20 <20	31 1.6	80.64	0.20 0	.01 0.	13	19 é	5	15	2	ও <	10 0.0	56	0.02
C900 8+50E	<5 <.2 75 37	206 2	46 18 <.2 <	5 15 <5	4.66	680 <10 55	25	31 <20 <20	27 1.1	6 0.31	0.21 0	.02 0.	10	22 8	3	13	2	<5 <	0 0.0	55	0.02
C900 8+75E	<5 <,2 30 25	144 <1	39 14 <.2 <	5 6 < 5	3.49	499 <10 109	23	34 <20 <20	17 1.3	5 0.29	0.16 0	.02 0.	11	18 2	2 3	14	2	<5 <		52	0.0
C900 9+00E	<5 <,2 19 15	76 <1	13 8 <.2 <	5 ও ৩	2.03	274 <10 67	13	22 <20 <20	22 1.0	6 0.27	0.16 (.01 0.	17	14 3	<2	10	2	ব্ব <	10 0.0	4 <1	<_01
C900 9+25E	5 42 24 18	92 -1	17 0 < 2 <	দি বে বি	2.32	262 <10 98	13	24 <20 <20	20 1.3	6 0.29	0.20 (.01 0.	19	17 3	i 3	11	2	<5 <	10 0.0	÷ 2	<.01
C900 9+50E	<5 <.2 55 17	· 133 <1	19 12 0.5 <	১ ৩ ৩	2.54	923 <10 186	18	23 <20 <20	23 1.0	3 0.32	0.44 (.01 0.	15	36 3	<2	9	3	<5 <	10 0.0	4 <1	0.02
C900 9+755	<5 <.2 15 11	81 <1	11 8 <.2 <	5 ক ক	1.74	292 <10 72	16	22 <20 <20	25 0.9	6 0.33	0.18 (.01 0.	17	14 3	<2	10	2	<5 <	10 0.0	5 <1	<.0'
0700 10+00	<5 <.2 18 11	76 <1	17 8 <.2 <	5 <5 <5	2.05	274 <10 130	15	28 ~20 ~20	19 1.7	9 0.26	0.16 (<u>, 02</u> ().	16	17 3	13	17	3	- জন্ম জন্ম জন্ম জন্ম জন্ম জন্ম জন্ম জন্ম	10 0.0	52	<.01
C900 10+25	<5 <.2 14 1	72 <1	9 8 <.2 <	5 ৩ ৩	1.68	236 <10 71	14	23 <20 <20	23 1.0	4 0.28	0.15 (01 Û_	15	11 3	<2	10	3	<5 <	10 0.0	51	<.01
C900 10+50	: <5 <.2 34 20	5 198 1	30 15 <.2 <	5 5 5	3.35	599 <10 141	30	<u>34</u> < <u>2</u> 0 <20	25 1,7	9 0.52	0.17 (.02 0.	15	18 3	5 4	17	3	ا ه د	10 0.0	4 3	<.0'

BONDAR CLEGG

CLIENT:	TOKLAT RESOUR	RCES INC																													PRO	JECI	r: AC	ACIA	1	
REPORT:	V00-01694.0 (COMPLETE	E)													0	DATE	RECE	etve	D: 04	- SEI	- 00	DA	TE P	RINTED): 12	- SEP -	00	F	PAGE	8 0	F 18	3			
				-1.	•	м.		.	د م	n:	• •	cL	5	Ma	Ta	Da	C -	v	6 -0	u	1.0	a 1	Ma	C -2	ملا	r	<u>Cr</u>	v	C a		Nito	50	Та	τ;	7r	s
SAMPLE	ELEMENT	AUSU Ag	00	PD		MO DOM		LO	пры	DDM	AS	20	re ori	00 10	004	504.	DDM	v nbM	DDM	DDM	DDM	PCT	רייש סרד	Prt	DCT	PCT	DDM	PPM	PDM	DDM	DDM	PPM	PPM	PCT	PPM	PCT
NUMBER	UNITS	PPB PPM	PPM	PPT	PPM	PPTT	PPM	PPM	PPM	rrm	PPH	rrm	FUI	rm	Fre	i rrei	T P PI	# C 19				F 64 5	r.u	FGI	PCI	τ υ ι	***	~ ~ ~	, , ,			.,				
C900 10+	75E	<5 <.2	38	27	251	<1	17	13	0.2	ج	<5	<5	3.16	577	<10	148	14	30	<20	<20	22	1.89	0,31	0 .3 6	0.02	0.20	22	4	4	15	2	<5	<10	0.04	3 (0.01
C900 11+	-00E	6 <.2	72	22	113	1	16	12	<.2	<5	ব্য	4	3.22	564	<10	95	16	22	<20	<20	36	1.10	0.40	0.21	0.01	0.22	15	8	2	8	2	<5	<10	0.03	3 (0.01
C900 0+2	5W	7 <.2	78	25	129	1	42	17	<.2	4	8	<5	4.01	480	<10	49	36	30	<20	<20	40	1.12	0.53	0.21	0.01	0.17	20	9	Z	13	2	<5	<10	0.05	2 (0.01
C900 0+5	ow.	<5 <.2	59	24	154	1	41	16	<.2	<5	6	<\$	3.45	624	<10	81	36	29	<20	<20	32	1.20	0.45	0.30	0.01	0.17	26	6	3	13	3	<5	<10	0.04	3 •	<.01
C900 0+7	54	<5 <.2	60	21	129	2	35	15	<.2	<5	ব	4	3.31	525	<10	66	35	31	<20	<20	31	1.38	0,50	0.32	0.02	0.19	28	6	2	16	3	<5	<10	0.06	5 •	<.01
	X	-E - 7	/5	745	107	-1	70	14		~	0	~	z 0 /.	/.81	<10	37	32	77	<20	<20	34	0.87	<u> በ</u> ፈበ	n 11	< 01	n 10	14	3	2	11	1	<5	<10	n.03	<1 ·	<.01
0000 1-0	NUM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	47	203	171	4	1.7	10	~ 2	~	7	~	3.74	401	<10 <10	- 54	ມ	20	<20	<20	32	1.15	0.58	0.28	0.01	0.20	22	7	0	13	3	ব	<10	0.04	3	< 01
0000 1.5	: 7 ₩	~ ~ ~ ~ ~	55	20	111	י כ	46	*	0 6	~5	13	5	3 69	600	<10	46	37	25	<20	<20	39	1.04	0.57	0.35	0.01	0.14	31	5	2	14	2	5	<10	0.04	4 (0.02
C700 1+3	70w 75a i		در ۸۸	26	108	-1	44	20	< 2	~	7	5	3 61	534	<10	35	35	20	<20	<20	41	0.95	0.45	0.17	<.01	0.13	19	4	2	12	1	ব্য	<10	0.02	8 (0.01
C900 2+0)0H	19 <.2	37	21	118	<1	42	21	<.2	5	ج.	\$	3.69	781	<10	61	33	22	<20	<20	36	1.23	0,47	0.21	<.01	0.15	28	3	3	17	1	\$	<10	50.0	3 (50.0
C900 2+2	25W	ৎ <.2	58	27	129	<1	57	24	<.2	ব	13	4	4.58	560	<10	31	48	22	<20	<20	41	1.07	0.56	0.20	<.01	0.09	21	5	3	12	<1	<5	<10	0.01	78	0.02
C900 2+5	50 w	-্র <.2	5	11	76	<1	24	8	<.2	<5	-5	ৎ	1.48	364	<10	69	17	27	<20	<20	11	1.20	0,16	0.18	0.03	0.08	21	1	3	15	3	<5	<10	0.06	<1 •	<.01
C900 2+7	75W	-5 <.2	9	15	77	<1	29	11	<.2	ক	ব	ও	1.88	889	<10	92	23	32	<20	<20	8	1.51	0.20	0.30	0.03	0.07	32	1	3	15	3	ৰ্ব	<10	0.07	2 (3 . 02
C1000 04	+00	<5 <.2	73	29	206	1	22	13	0.2	්	7	ち	3.17	565	<10	71	24	28	<20	<50	39	1.22	0.47	0.18	0.02	0.16	16	5	Z	12	3	<5	<10	0.05	<1 •	<.01
C1000 04	25E	<\$ <.2	34	19	193	<1	23	10	<.2	<5	ব	う	2.51	311	<10	111	20	30	<20	<20	21	2.18	0.31	0.17	0.03	0.13	16	3	4	17	3	<5	<10	0.07	5 (2.01
C1000 04	-50E	ح د.2	25	20	235	1	26	11	<.2	خة	ক	<5	2.50	387	' <10	100	22	31	<20	<20	22	1.70	0.29	0.22	0.02	0.11	18	3	3	17	3	ক	<10	0,07	3 (0.01
C1000 04	+75E	<\$ 0.4	18	19	154	<1	25	9	0.2	5	5	<5	2.29	397	' <10	72	16	27	<20	<20	14	2.08	0.22	0.20	0.02	0.07	14	3	3	15	3	\$	<10	80.0	15 (0.01
C1000 14	HOOE	<5 <.2	13	18	210	<1	24	9	<.2	<5	4	~ 5	2.00	320	<10	114	16	31	<20	<20	13	1.65	0.26	0.20	0.02	0.10	17	Ζ	4	18	3	<5	<10	80.0	6 •	<.01
C1000 1-	+25E	<5 <.2	32	16	136	1	27	11	<.2	<5	ব	<5	2.78	266	<10	118	23	32	<20	<20	22	1.93	0.43	0.20	0.02	0.09	17	3	4	18	3	<5	<10	0.06	7 •	<.01
C1000 14	-50E	<5 <.2	86	93	321	3	62	23	0.3	4	28	\$	5.10	1085	<10	113	30	30	<20	<s0< td=""><td>32</td><td>1.53</td><td>0.39</td><td>0.17</td><td>0.02</td><td>0.10</td><td>17</td><td>7</td><td>5</td><td>18</td><td>2</td><td>4</td><td><10</td><td>0.03</td><td>2 (</td><td>ð.01</td></s0<>	32	1.53	0.39	0.17	0.02	0.10	17	7	5	18	2	4	<10	0.03	2 (ð .01
c1000_14	•75¢	<5 <.2	37	27	574	2	107	22	0.3	<5	40	<5	4.02	428	<10	89	78	50	<20	<20	21	2.19	0,79	0.18	0.03	0.09	21	3	5	32	3	~ 5	<10	0.05	4 •	<.D1
c1000 24	-10E	7 <.2	58	98	381	2	86	25	<.2	<5	16	ব	4.17	419	<10	195	38	41	<20	<20	25	3.07	0.60	0.23	0.02	0.09	41	4	7	27	3	<5	<10	0.07	15 0	0.01
c1000 24	+25E	<5 < 2	15	17	260	- 1	44	13	<.2	ঁ	ح	<5	2.88	778	i <10	136	18	40	<20	<20	18	2.02	0.38	0.28	0.03	0.11	36	3	5	25	3	<5	<10	0.06	3 (0.01
c1000 24		< <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> < <u></u> <	38	188	746	1	51	15	0.8	\$	12	<5	3.79	930	<10	141	18	36	<20	<20	15	1.85	0.30	0.24	0.03	0.11	28	2	4	20	3	<5	<10	0.07	4 (0.01
C1000 24	+75E	sā s.ē	12	. 32	21	4	45	10	< ?	<5	7	\$	2.25	651	<10	116	23	29	<20	<20	13	2.16	0.22	0.19	0.03	0.08	24	Z	4	Z 0	3	<5	<10	80.0	6 0	0.01
						_			_													_									_	_				

c1000 3+00e
c5 < 2 40</th>
29
121
<1</th>
53
16 < 2</th>
<5</th>
11
<5</th>
635 <10</th>
95
24
30
<20</th>
<20</th>
20
21
14
153
16 < .2</th>
<5</th>
11
<5</th>
635
<10</th>
95
24
30
<20</th>
<20</th>
21
154
0.39
0.19
0.02
0.11
25
3
4
19
2
<5</th>
<10</th>
0.55
7
0.01

c1000 3+25:
c5 < 2</td>
15
15
107
2
23
9
0.7
<5</td>
6
<5</td>
2.01
525<</td>
<10</td>
71
12
29
<20</td>
<20</td>
7
7.5
0.15
0.23
0.03
0.06
21
2
2
14
3
<5</td>
0.02
0.02
0.03
0.06
21
2
2
14
3
<5</td>
0.02
0.02
0.03
0.06
21
2
2
14
3
<5</td>
0.02
0.02
0.03
0.00
21
6
<td

CLIENT: TOKLAT RESOURCES INC REPORT: VOO-01694.0 (COMPLETE) PROJECT: ACACIA1

PAGE 9 OF 18

REPORT: VOO	-01694.0 (COMPLETE)			0	ATE RECEIVED: 04-5	SEP-00 DATE	PRINTED: 12-SEP-00	PAGE 9 OF 18
SAMPLE NUMBER	ELEMENT AU30 Ag Cu PD UNITS PPB PPM PPM PPM	2n Mo Ni Co Cd Bi PPM PPM PPM PPM PPM	As SD PPM PPM	Fe Mn Te Ba PCT PPM PPM PPM	Cr V Sn W 1 PPM PPM PPM PPM PP	La AL Mg (PM PCT PCT PC	ca Na K Sr Y St PCT PCT PPM PPI	Y Ga Li NG Sc Ta Ti Zr M PPM PPM PPM PPM PCT PPM PC
C1000 4+25E	<5 <.2 72 29	116 2 68 23 <.2 <5	6 <5	5.70 535 <10 117	18 21 <20 <20 0	45 1.51 0.18 0.5	5 0.02 0.17 49 1	0 5 27 <1 <5 <10 <.01 3 0.0
C1000 4+50E	<5 <.2 91 29	111 3 57 21 <.2 <5	20 <5	5.04 554 <10 63	36 31 <20 <20 3	34 1.97 1.07 0.4	16 <.01 0.08 14	3 6 22 1 <5 <10 0.02 2 0.0
C1000 4+75E	<5 <.2 64 63	980 2 42 16 1.6 <5	7 <5	5.09 661 <10 109	26 33 <20 <20 3	29 1.75 0.50 0.1	17 0.01 0.11 17	2 6 20 2 <5 <10 0.03 3 <.0
C1000 5+00E	<5 <.2 67 32	312 2 44 16 0.3 <5	8 < 5	4.06 505 <10 76	22 32 <20 <20 2	26 1.86 0.32 0.2	27 0.02 0.10 19	4 4 16 2 <5 <10 0.05 8 0.0
C1000 5+25E	<5 <.2 102 22	200 1 47 18 <.2 <5	9 <5	4.35 718 <10 105	<u>25</u> 36 <20 <20 8	26 2.14 0.48 0.1	18 0.02 0.11 21	6 5 20 2 <5 <10 0.05 8 0.0
C1000 5+50E	<5 <.2 68 21	281 2 42 15 0.3 <5	6 <5	4.10 616 <10 72	22 36 <20 <20	17 1.86 0.46 0.2	80 0.02 0.09 16	3 5 18 2 <5 <10 0.05 6 0.0
C1000 5+75E	<5 <.2 113 44	200 2 60 22 <.2 <5	11 <5	5.12 369 <10 105	28 35 <20 <20 2	23 2.19 0.41 0.2	27 0.02 0.10 25	3 5 18 2 <5 <10 0.06 10 0.0
C1000 6+00E	<5 <.2 27 23	159 1 34 12 <.2 <5	ৎ ও	3.33 414 <10 130	25 38 <20 <20 1	18 2.15 0.34 O.	15 0.02 0.12 15	3 6 18 3 <5 <10 0.05 5 0.0
C1000 6+25E	<5 <.2 18 22	233 <1 25 16 0.5 <5	র র	2.68 2004 <10 159	21 44 <20 <20 1	11 2.08 0.19 0.3	37 0.03 0.07 26	3 4 14 4 <5 <10 0.08 2 0.0
C1000 6+50E	<5 <.2 46 82	243 2 30 25 0.6 <5	7 🖪	3.23 1263 <10 127	20 46 <20 <20 7	20 2.34 0.51 0.4	\$7 0.03 0.06 29	8 4 13 4 <5 <10 0.08 8 0.0
C1000 6+75E	<5 <.2 54 74	518 1 41 23 0.8 <5	12 <5	5.29 1005 <10 121	37 53 <20 <20 2	20 2.21 0.81 0.3	30 0.02 0.10 24	3 6 19 3 <5 <10 0.04 2 0.0
C1000 7+00E	<5 <.2 152 117	268 3 50 23 0.3 <5	27 🔨	6.00 505 <10 64	48 43 <20 <20 3	32 2.01 1.09 0.1	14 <.01 0.08 15	4 5 18 2 <5 <10 0.02 2 0.0
C1000 7+25E	<5 <.2 303 87	350 4 30 38 1.1 <5	20 <5	9.58 1692 <10 162	23 63 <20 <20 3	39 3.07 1.75 0.3	33 0.01 0.08 50 (6 8 22 3 <5 <10 0.02 6 0.0
C1000 7+50E	<5 <.2 33 31	295 2 25 13 1.2 <5	75	3.26 1244 <10 268	22 37 <20 <20	15 1.42 0.35 0.2	24 0.02 0.09 36	3 3 14 3 <5 <10 0.07 2 0.0
C1000 7+75E	<5 <.2 72 47	165 <1 41 16 0.2 <5	12 <5	3.93 525 <10 87	24 34 <20 <20 `	17 2.58 0.49 0.2	24 0.02 0.08 20	3 4 18 2 <5 <10 0.07 8 0.0
C1000 8+00E	<5 <.2 122 52	216 3 47 24 0.2 <5	16 <5	5.76 519 <10 83	38 38 <20 <20 2	23 1.80 0.65 0.1	19 <.01 0.10 17	3 5 15 2 <5 <10 0.03 3 0.0
C1000 8+25E	<5 <.2 93 30	146 1 21 14 <.2 <5	75	3.52 677 <10 99	22 26 <20 <20 4	46 1.21 0.51 0.2	2 0.01 0.24 15 1	0 3 11 2 <5 <10 0.04 2 <.0
C1000 0+25M	<5 <.2 9 79	992 <1 26 12 1.5 <5	5 < 5	2.76 1169 <10 100	29 36 <20 <20 1	11 2.26 0.26 0.4	17 0.02 0.07 17	2 4 14 3 <5 <10 0.08 8 <.0
C1000 0+50	<5 <.2 39 93	447 1 46 14 0.2 <5	12 <5	3.35 523 <10 95	38 29 <20 <20 2	24 1.63 0.41 0.4	15 0.01 0.09 17	3 4 17 2 <5 <10 0.04 3 <.0
C1000 0+75k	<5 <.2 28 51	269 1 38 12 <.2 <5	5 <5	2.75 848 <10 75	27 26 <20 <20 3	21 1.45 0.24 0.1	15 0.02 0.09 18	3 3 16 2 <5 <10 0.04 2 <.0
C1000 1+00W	<5 <.2 20 23	172 <1 33 11 <.2 <5	55	2.43 1035 <10 114	28 29 <20 <20	17 1,29 0.26 0.1	17 0.02 0.09 19	2 3 15 2 <5 <10 0.05 3 <.0
C1000 1+25k	<5 <.2 30 25	327 <1 42 12 <.2 <5	75	3.45 908 <10 79	36 32 <20 <20 1	19 1.41 0.33 0.1	8 0.02 0.08 21	3 4 17 3 <5 <10 0.04 2 <.0
C1000 1+50	<5 <.2 26 18	106 1 47 13 <.2 <5	75	2.70 343 <10 58	50 32 <20 <20 3	16 1.42 0.33 0.2	20 0.02 0.06 17	2 3 14 2 <5 <10 0.04 2 <.0
C1000 1+75k	<5 <.2 5 15	120 <1 19 10 <.2 <5	র র	1.68 1027 <10 109	22 29 <20 <20 1	10 1.14 0.17 0.4	16 0.02 0.07 17	1 3 14 3 <5 <10 0.05 4 <.0
11000 2+00 .	-5 n.2 10 159	701 1 27 10 0.8 <5	র র	2.39 828 <10 98	26 33 <20 <20 1	16 1.22 0.22 0.2	21 0.02 0.10 20	2 4 14 3 <5 <10 0.03 1 0.0
C1000 2+25W	<5 <.2 17 23	119 <1 35 11 <.2 <5	ব ব	2.53 474 <10 91	22 47 <20 <20	17 1.21 0.16 0.2	22 0.03 0.08 26	3 4 12 4 <5 <10 0.03 1 <.0
C1000 2+50	-5 <.2 15 12	93 <1 29 9 <.2 <5	-	1.62 245 <10 75	25 29 <20 <20 '	12 1.44 0.19 0.1	17 0.03 0.05 21	3 4 17 3 <5 <10 0.05 5 <.0
C1000 2+75	7 <.2 55 31	124 1 108 54 < 2 <5	56 寺	4.31 905 <10 57	122 <u>38</u> <20 <20 ;	24 1.54 1.06 0.7	72 0.01 0.08 47	6 4 19 2 <5 <10 0.02 3 0.0
C1100 0+00	<5 <.2 45 33	187 i 58 î7 û.5 <5	÷ ÷ ÷	3.88 1876 <10 76	18 22 <20 <28 2	24 1.51 0.28 0.9	73 0.02 0.08 79 1	0 3 28 2 <5 <10 0,03 3 0.0
C1100 0+258	<5 <.2 32 16	105 1 38 13 <.2 <5	75	2.92 548 <10 96	14 24 <20 <20 *	17 2.05 0.15 0.3	25 0.03 0.07 25	4 3 12 2 <5 <10 0.06 6 0.0

PROJECT: ACACIA1

CLIENT: TOKLAT RESOURCES INC REPORT: V00-01694.0 (COMPLETE)

c1100 0+75W

REPORT: VOO-	01694.0 (COM	PLETE)													C	DATE	RECI	EIVE	D: 04	-SE	P-00	D/	NTE PI	RINTED): 12·	-SEP-	00	ſ	PAGE	10 0	F 18	3			
SAMPLE	ELEMENT	AU30 PPR	Ag PDM	Cu PPM	Ph PPM	Zn PDM	Mo PPM	Nî PPM	Co PPM	Cd PPM	8i PPM	As PPM	S15 PPM	Fe PCT	Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W Medd	La PPM	AL PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM	Ga PPM	Li PPM	Nb PPM	Sc PPM	Ta PPM	T I PCT	Zr PPM 1	S PCT
NUMBER	04113	ττ D		rrn			****			• • • •	••••				••••						,																
C1100 0+50E		<5	<.2	58	32	159	2	45	18	<.2	<5	12	<5	4.18	539	<10	110	21	26	<20	<20	30	1.46	0.32	0.19	0.01	0.10	20	3	4	13	2	<5	<10	0.02	40	.01
C1100 0+75E		<5	<.2	42	19	94	2	29	13	<.2	<5	8	<5	3.09	961	<10	137	16	25	<20	<20	21	1.43	0.30	0.35	0.02	0.12	33	3	3	16	2	<5	<10	0.03	4 0	- 02
C1100 1+00E		<5	<.2	18	14	67	2	24	9	0.4	<5	<5	<5	2.08	454	<10	133	11	28	<20	<20	12	1.49	0.14	0.17	0.03	0.11	21	3	3	13	2	45	<10	0.05	6 <	.01
C1100 1+25E		<5	<.2	34	17	82	2	33	14	<.2	ব	5	<5	3.11	364	<10	132	18	31	<20	<20	21	1.77	0.29	0,15	0.02	0.09	24	3	- 4	15	2	ব	<10	0.04	4 <	.01
C1100 1+50E		<5	<.2	37	21	80	1	34	13	<.2	<5	6	ৎ	3.07	485	<10	126	15	28	<20	<20	20	1.64	0.21	0.21	0.02	0.08	23	3	4	15	2	ر ج	<10	0.04	6 <	.01
C1100 1+75E		<5	<.2	29	24	116	1	33	13	<.2	ক	12	ح	2.96	579	<10	62	14	30	<20	<20	28	2.07	0.31	D.25	0.03	0.07	22	6	4	24	2	~ 5	<10	0,06	12 0	.02
C1100 2+00E		<5	<.2	28	19	96	1	48	16	<.2	ক	8	ক	3,58	484	<10	132	19	32	<20	<20	25	2.03	0,19	0.21	0.02	0.11	29	3	5	23	2	4	<10	0.04	70	.01
C1100 2+25E		<5	<.2	39	23	60	2	45	17	<.2	ব	6	4	4.08	553	<10	130	19	35	<20	<20	29	2.36	0.42	0.16	0.02	0.08	25	3	6	25	2	<5	<10	0.04	60	.01
C1100 2+50E		\$	<.2	26	13	66	<1	38	14	<.2	-5	<5	4	2.87	1318	<10	159	25	33	<20	<20	18	1.64	0.33	0.27	0.02	0.10	26	3	3	16	2	-5	<10	0.07	20	.01
C1100 2+75E		ر ج	<.2	78	11	65	2	39	21	<.2	<5	<5	ぐ	3.69	594	<10	102	27	39	<20	<20	16	1.81	0.38	0.20	0.03	0.09	18	3	4	18	3	4	<10	0.06	70	.01
C1100 3+00E		ৎ	<.2	31	19	109	1	35	14	<.2	<5	5	Q	Z.83	482	<10	80	24	33	<20	<20	27	1.66	0.32	0,15	0.03	0.10	13	3	3	16	3	< <u>5</u>	<10 :	0.06	40	.01
C1100 3+25E		6	<.2	278	72	214	1	77	26	0.4	ব	23	4	5.43	664	<10	84	80	62	<20	<20	17	2.59	0.72	0.31	0.03	0.06	24	11	5	19	4	6	<10 /	0.09	12 0	.02
C1100 3+50E		<5	<.2	168	63	188	1	180	38	1.0	4	25	\$	5.02	967	<10	205	111	53	<20	<20	16	2.57	0.94	0.43	0.02	0.11	32	6	3	24	4	4	<10 /	0.10	80	.03
C1100 3+75E		<5	<.2	57	32	167	2	56	22	0.4	4	11	ক	3.95	691	<10	140	58	59	<50	<20	20	2.33	0.57	0.46	0.03	0.07	31	5	6	23	5	4	<10	0.07	10 0	-02
C1100 4+00E		~ 5	*.2	25	17	148	<1	33	18	0.4	4	6	ሳ	2.87	806	<10	99	31	48	<20	<20	13	2.28	0.37	0.41	0.03	0.08	29	4	5	16	4	~5	<10	0.09	60	-02
C1100 4+25E		ব	<.2	33	22	183	2	41	17	0.3	ব	ব	ক	3.08	641	<10	91	33	41	<20	<20	20	2.01	0.34	0.23	0.0Z	0.08	19	4	5	17	3	ر ج	<10	0.07	60	.0Z
C1100 4+50E		<5	<.2	22	25	196	1	42	18	0.5	4	5	<5	3.11	1130	<10	134	34	46	<20	<20	16	1.89	0.39	0.37	0.02	0.09	28	2	5	20	4	< 5	<10	0.07	10	.02
C1100 4+75E		<5	<.2	44	33	205	<1	43	20	0.2	\$	8	< 5	3.48	571	<10	87	34	48	<20	<20	13	2.56	0.37	0.23	0.02	0.05	20	3	5	20	4	<5	<10 (0.10	40	.03
C1100 5+00E		<5	<,2	45	30	166	<1	33	17	<.2	ক	7	ক	3.38	750	<10	101	29	42	<20	<20	15	2.32	0.37	0.16	0.02	0.07	16	3	4	14	3	<5	<10 (80.0	11 0	.01
C1100 5+25E		5	<.2	30	19	120	<1	30	12	0.5	⊲5	6	4	5.68	620	<10	95	22	36	<20	<20	13	1.61	0.29	0.39	0.03	0.06	33	3	3	12	4	4	<10	0,06	10	.02
c1100 5+50E		<5	<.2	87	71	168	<1	81	28	0.3	ব	305	ক	4.78	497	<10	133	55	48	<20	< <u>2</u> 0	22	3.00	0.87	0.26	0.02	0.08	29	5	6	23	3	<5	<10	0.07	10 0	.03
C1100 5+75E		<5	<.2	37	28	164	<1	48	16	<.2	-5	40	ৎ	3.34	651	<10	116	37	39	<20	<20	15	2.11	0.47	0.34	0.02	0.10	34	3	4	18	3	<5	<10	80. 0	60	.02
C1100 6+00E		<5	<.2	45	30	155	<1	46	17	<.2	<5	13	5	3.59	941	<10	109	36	39	<20	<20	18	1.65	0.49	0.30	0.02	0.09	25	4	4	15	3	-5	<10	0.06	30	.01
C1100 6+25E		<5	<.2	14	11	90	<1	23	9	<.2	ক	ら	<5	2.01	817	<10	- 91	19	31	<20	<20	9	1.51	0.23	0.19	0.03	ŭ.05	19	2	2	12	3	-5	<10 (0.07	40	.01
C1100 6+50E		ر ې	<.Z	105	41	437	-1	ŝ	24	0.7	÷	~	~ 5	4.47	1428	<10	81	41	34	<50	<20	23	1.76	0.58	0.86	0.02	0.07	57	9	2	21	2	~ 5	<10 /	0.05	5 0.	.03
C1100 6+75E		6	<.2	32	19	110	<1	47	15	<.2	<5	6	ক	3.42	356	<10	94	50	35	<20	<20	15	2.75	0.48	0.23	0.02	0.07	21	4	3	17	Z	<5	<10 /	0.09	22 O	.01
C1100 7+00E		ే	₹.2	<u>50</u>	18	132	≮ î	10	10	<.2	4	\$	-5	2.25	632	<10	97	14	29	<50	<20	14	3.44	0.21	0.20	0.02	0.08	17	Ź	4	11	3	<5	<10 (0.04	2 <	.01
C1100 U+25W		-5	₹.2	<u>†2</u>	20	133	<1	16	11	<.2	4	5	Ś	2.48	477	<10	51	17	51	<20	-20	12	2.06	0.14	<u>ů 5</u> 0	0.02	0.05	19	2	- 4	15	2	-5	<10 (0.07	50	50.
C1100 0+50H	I	<5	×.2	58	40	328	<1	64	19	<.2	<5	22	4	5.01	736	<10	84	40	32	-20	<20	35	ġ.99	0.41	Q. 17	<.01	0.09	17	3	4	14	2	<5	<10 /	0.02	<1 0	.01

11 < .2 32 84 275 <1 44 15 < .2 <5 11 <5 3.60 775 <10 87 29 27 <20 <20 23 1.30 0.26 0.12 0.01 0.07 15 2 3 16 2 <5 <10 0.03 3 < .01

CLIENT: TOKL	AT RESOUR	CES IN	С																														PRO	JEC	T: A(.1		
REPORT: VOO-	01694.0 (COMPL	ETE)													8	DATE	RECE	EIVE): 04	- SEF	-00	٥	ATE I	RIN	ED:	12-s	EP-0	Ü	P/	٩GE	11 0	F 18	3				
																										• •					•	•							•
SAMPLE	ELEMENT	Au30 /	Ag	Cu	РЬ	Zn	Мо	Ni	Со	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	V	٩n	W	La	AL	Mg	Ca	a þ	а	ĸ	Sr [.]	Y	Ga	Łi	Nb	Sc	Ta	Ti	Z٢	s	
NUMBER	UNITS	PPB P	PM F	PM	PPM	PPM	PPM	PPM	PPM ;	P PM I	PPM (PPM	PP M	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PC1	PC	t po	t P	CT P	PM P	PM F	PPM F	뀌	PPM	PPM	PPM	PCT	PPM	PCT	
C1100 1+00W		<5 <	.2	13	34	213	<1	42	10 -	<.2	<5	9	4 5	2.41	593	<10	94	22	26	<20	<20	13	1.79	0.19	0.2	3 0.0	3 0.0	80	32	3	3	17	2	ব	<10	0.07	9	0.01	
C1100 1+25W		<5 <	.2	24	25	254	<1	47	15 -	<.2	<5	9	ر ح	3.18	725	<10	115	47	36	<20	<20	18	1.65	0.51	0.20	o 0.0	2 0.	11	27	2	3	21	3	<5	<10	0.07	6	<.01	
C1100 1+50W		<5 <	.2	50	62	250	<1	66	21 -	<.2	<5	18	45	4.47	596	<10	63	55	32	<20	<20	30	1.16	0.51	0.12	2 <.0	1 0.1	38	17	3	3	14	2	-5	<10	0.02		0 01	
C1100 1+75₩		<5 <	.2	14	14	222	<1	29	10 (0.2	<5	6	حه	2.04	653	<10	67	31	29	<20	<20	9	2.00	0.24	0.30	0.0	3 0.1	05	29	3	3	15	3	5	<10	0.09	12	0.01	
C1100 2+00W		<5 <	.2	10	32	28 2	<1	19	8 (0.3	ৎ	ক	4	1.67	964	<10	72	15	27	<20	<20	8	1.68	0.14	0.17	7 0.0	3 0.0	05	19	3	3	12	3	<5	<10	0.07	7	0.01	
C1100 2+25W		<5 <	.2	22	51	727	<1	29	9 1	1.1	Q	~5	4	1,88	2110	<10	60	15	24	<20	<20	9	1.74	0.24	0.58	3 0.0	4 0.1	36	55	6	<2	13	2	ক	<10	0.07	7	0.02	ŗ
C1100 2+50W		<5 <	.2	19	44	294	<1	44	12 •	۲.>	<5	9	<5	3.18	819	<10	104	35	30	<20	<50	21	1.20	0.35	0.16	5 O.C	1 0.0) 9	19	2	4	16	2	45	<10	0.03	<1	<.01	
C1100 2+75W		<5 <	.2	30	56	165	<1	110	20 -	<.2	⊲5	38	ବ	4.44	660	<10	92	27	31	<20	<20	24	1.39	0.22	0.22	2 0.0	2 0.0	99	26	5	4	12	2	\$	<10	0.04	5	<.01	

ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bi As Sb

Ge(hemical Lab Report

CLIENT: TOKLAT RESOURCES INC REPORT: VOO-01694.0 (COMPLETE)

STANDARD

ANALYTICAL BLANK

ANALYTICAL BLANK

ANALYTICAL BLANK

ANALYTICAL BLANK

ANALYTICAL BLANK

NAME

· PROJECT: ACACIA1 PAGE 12 OF 18 DATE RECEIVED; 04-SEP-00 DATE PRINTED: 12-SEP-00 Fe Mn Te Ba Cr. V Sn. W La Al Mg Ca Na K Sr Y Gali Nb Sc Ta Ti Zr S PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT <5 <.2 <1 <2 1 <1 <1 <1 <2 <5 <5 <5 <0.01 <1 <10 <1 <1 <20 <20 <1 <.01 <.01 <.01 <.01 <1 <1 <2 <1 <1 <5 <10 <.01 <1 <1 <1.01</p> -5 <.2 <1 <2 <1 <1 <1 <1 <2 <5 <5 <5 <0.01 <1 <10 <1 <1 <20 <20 <1 <.01 <.01 <.01 <.01 <10 <1 <1 <2 <1 <1 <5 <10 <.01 <.01 <.01 <.01 <.01 <.01 <1</p>

ANALYTICAL BLANK ANALYTICAL BLANK र्ड र.2 रो र्स्ट रो रो रो रो र.2 रई रई रई र0.01 रो री0 रो रो री र20 र20 र1 र.01 र.01 र.01 र.01 र1 र2 र1 र1 रई र10 र.01 र1 र2 ANALYTICAL BLANK ANALYTICAL BLANK 5 ANALYTICAL BLANK

	_				_			_		_	_			-	_	_	-	_																		
Number of Analyses	14	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
ANALYTICAL BLANK	ব	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-
ANALYTICAL BLANK	5	-	-	-	-	٠	+	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	÷	-		-	٠	-	-	-	٠	-	÷	-	-
ANALYTICAL BLANK	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	•	-	•	+	-	-	-
ANALYTICAL BLANK	4	-	-	•	-	-	-	•	-	-	-	-	-	*	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	*	-	•	-	-	-	· -

Mean Value	2 0.1	< 1	1	<1	< ł	<1	<10.1	2	2	2	0.01	< J	2	<1	<1	<1	10	10	<1 <.01	<.01	<.01	<.01	<.01	<1	<1	1	<1	<1	5	5 <.01	<1 <.01	
Standard Deviation	1 -	-	•	<1	•	-		-	-	•	<0.01	<1	-	-	-	-	-	-	- <.01	<.01	<.01	<.01	<.01	-	-	-	-	-	-	- <.01	- <.01	
Accepted Value	5 0.2	1	2	1	1	1	1 0.1	2	5	5	0.05	1	<1	<1	1	Í	<1	<1	<1 <.01	<.01	<.01	<.01	<.01	<1	<1	<1	<1	<1	<1	<1 <.01	<1 <.01	

OX12 Oxide	6480	-	-	•	-	-	-	-	-	-	-	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
0x12 0xide	7035	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-	-
OX12 Oxíde	6601	-	-	-	-	٠	-	-	-	٠	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
Number of Analyses	3	-	-	-	-	-	-	-	-	-	-	•	-	-	÷	-	-	٠	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean value	6796	-	-	-	-	-	-	•	-	-	-	٠	•	-	٠	-	-	-	-	-	-	-	-	-	-	•	-	¥	-	-	-	-	-	-	-	-
Standard Deviation	292	٠	-	-	-	-	-	+	-	•	-	-	-	+	-	-	-	+	-	-	-	-	-	•	-	-	-	-	-	•	-	٠	-	-	-	-
Accepted Value	6600	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-	÷	-	-	-	-

CLIENT: TOKLAT REPORT: VOD-01	t Resour 1694.0 (RCE:	s (1 Ompi	NC LETE)															DATE	RECI	eivei	D: 04	4-sei	o-00		DAT	e pr	INTE	D: 12	2-se	P-00	•	PAG	æ	PROJ 13 DI	JECT F 18	': AC 3	CACIA	1		
STANDARD E	ELEMENT	Aui	30	Ag	Cu	₽Ь	2n	M	o N	i	Co	Cd	Bi	As	Sb	Fe	. Mr	i Te	e Ba	Cr	۷	Sn	W	La	Al	. 1	łg	Ca	Na	ſ	k s	r	Y C	Ga L	ŧ.	Nb	Sc	Ta	Ti	Zr		s
NAME	UNITS	P	PB I	pipm	PPM	PPM	PPM	PP	n pp	ΜP	PM P	XPM F	PM	PPM	ppm	PCT	PPM	i ppn	i PPM	PPH	PPM	PPM	PPM	PPM	PCT	PC	T	PCT	PCT	PC	t pp	m pp	M PI	PM PP	州丁	ppn f	PPM	PPM	PCT	PPM	PC	:T
CANNET STSD-4			-	<.2	69	15	89		12	5	12 0	1.3	ৎ	15	<5	3.00	1323	<10	942	36	48	<20	<20	12	1.27	0.7	76 1	. 19	0.04	0.10	0 5	31	0.	<2	8	5	<5	<10	0.10	· <1	0.1	0
CANMET STSD-4			-	<.2	66	14	84	;	2 2	4	11 0).3	ক	13	ج	2.89	1233	<10	971	35	58	<20	<20	14	1.19	0.7	701	. 15	0.05	0.12	2 6	31	1 •	<2 1	0	5	<5	<10	0.10	<1	0.1	0
CANMET STSD-4			~	<.2	68	14	84	:	Z 2	4	11 0).3	<5	10	<5	2.93	1261	<10	963	34	55	<20	<20	14	1.17	0.7	72 1	. 15	0.04	0.1	16	0 1	1 -	<2 1	0	5	<5	<10	0.09	<1	0.1	0
Number of Anal	l yses		~	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	; 3	3	3	3	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
Mean Value			- 1	0.1	68	14	85	į	2 2	4	11 0).3	3	13	3	2.94	1272	5	959	35	53	10	10	14	1.21	0.7	73 1	. 16	0.04	0.1	1 5	91	1	1	9	5	3	5	0.09	< 1	0.1	0
Standard Devi	ation		-	<.1	2	<1	3	<	1 <	1	<1 <	4.1	÷	2	•	0.05	46	-	15	<1	5	-	-	1	0.06	0.0	3 0	.03	<.01	0.0	1 !	5	1	- <	:1	<1	-	•	<.01	-	<.0)1
Accepted Value	e		- 1	0.3	66	13	82	;	2 Z	3	11 0).6	-	11	4	2.60	1200	-	-	30	51	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-		•

015 Oxide	1002	-	-	•	-	-	-	٠	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	•	-	< -
OXS Oxide	975	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-
0XS Oxide	961	٠	-	-	•	-	-	-	٠	٠	-	•	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	÷	•		-	-
Number of Analyses	3	-	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-
Mean Value	979	-	-	-	-	-	•	•	-	-	-	•	-	-	-	-	-	-	-	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	21	•	-	-	-	-	-	•	-	٠	-	•	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	•	-	-	-	-	-	-	-	÷
Accepted Value	968	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-

OX8 Oxide	189	•	•	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	_
0X8 Oxide	203	•	-	-	-	•	-	•	-	-	-	-	-	-	•	-	-	-		-	-	-	-	-	-		÷	4	-	-	-	-	-	-	-	-
OX8 Oxide	195	٠	-	-	-	-	-	•	-	-	-	-	-	-	•	-		-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
Number of Analyses	3	•	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean Value	195		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Standard Deviation	7	٠	-	•	-	•	-	-	-	-	•	-	-	-	-	-		-	•		-	-	-	-	-	-	-			-	-		-	-	-	-
Accepted Value	186	-	-	-	-	-	-	•	-	•	•	-	-	-	-	-		-		•	•	-	•	-	-	-		-	-	-	-		-	-	-	-

CLIENT: TOKLAT RESOURCES INC.

PROJECT: ACACIA1 REPORT: VOO-01694.0 (COMPLETE) DATE RECEIVED: 04-SEP-00 DATE PRINTED: 12-SEP-00 PAGE 14 OF 18 STANDARD ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bi As Sb Fe Min Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Li Nib Sc Ta Ti Zr S NAME PCT PPN PPN PPN PPN PPN PPN PPN PPN PCT PCT PCT PCT PCT PPN PPN PPN PPN PPN PPN PPN PCT PPN PCT - 0.5 95 9 81 2 37 22 <.2 <5 9 <5 5.02 753 <10 214 60 117 <20 <20 6 3.26 1.67 1.03 0.05 0.29 33 7 <2 22 10 9 <10 0.24 9 0.03 GS91-1 - 0.9 98 10 81 2 37 22 <.2 <5 6 <5 4.81 758 <10 208 60 133 <20 <20 7 3.14 1.74 1.00 0.05 0.32 35 8 <2 26 10 10 <10 0.23 10 0.03 6S91-1 Number of Analyses - 0.7 97 9 81 2 37 22 0.1 3 7 3 4.92 755 5 211 60 125 10 10 7 3.20 1.71 1.01 0.05 0.31 34 7 1 24 10 9 5 0.24 9 0.03 Mean Value -0.3 2 <1 - <1 <1 <1 - 2 - 0.15 4 - 4 <1 12 - - <1 0.09 0.04 0.03 <.01 0.02 1 <1 - 3 <1 <1 - <.01 1 <.01 Standard Deviation -0.7 95 11 80 2 40 18 0.1 1 8 1 4.74 720 <1 200 54 133 4 2 5 3.09 1.83 1.08 0.06 0.32 39 9 4 - 1 18 1 - 9 1.00 Accepted Value

0X9 Oxide	472	~	-	٠	-	•	-	•	•			٠	-	-	-	-		_	-																	
OK9 Oxide	475	-	-	-	•	-		÷	-		-	-		-		-		-		-	-	•	č	-	-	-	-	4	•	-	-	-	-	٠	~	
OX9 Oxide	456	-	•	•	-	-	-	-	•	•	-	-	-	-	_	_			-	-	-	*	•	-	-	-	•	•	-	-	-	~	•	•	-	-
Number of Analyses	3	-	-	+	-	-	-	•	-	-				_	_	-	•	-	-	-	-	~	-	•	-	-	-	*	-	-	-	•	-	-	-	-
Mean Value	468	-	-	*	-	-	_	•	-	-			_		-	Ĩ	•	-	-	-	-	-	-	-	-	-	~	-	-	-	•	-	-	-	-	-
											-	-	-	~	-	^	-	-	-	-	•	-	-	-	-	-	-	2	-	٠	-	-	-	-	-	-
Standard Deviation	10	-	•	-	-	4	-	_	_																											
Accented Value	445	-	-	-	_	ĺ.			-	-	•	-	*	~	•	*	-	-	-	-	-	-	-	•	-	-	-	*	-	-	-	-	-	~	-	-
the states	-0.7			-	*	-	-	•	-	٠	-	•	-	-	•	-	-	~	•	-	-	-		-	-		_									

CANMET LKSD-2 CANMET LKSD-2 Number of Analyses Mean Value Standard Deviation	- <.2 36 40 204 2 23 17 0.7 <5 11 <5 3.88 1954 <10 228 32 41 <20 <20 48 1.67 0.65 0.62 0.03 0.22 24 24 <2 15 4 <5 <10 0.09 2 0. - <.2 39 41 207 2 24 17 0.8 <5 11 <5 3.79 1971 <10 232 34 53 <20 <20 62 1.72 0.67 0.64 0.04 0.30 31 31 2 19 5 6 <10 0.10 4 0. - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 18 2 18
Accepted Value	- 0.8 36 40 200 2 23 17 0.8 - 9 1 3.50 1840 - 29 48	,,

Bondar Cless Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

CLIENT: TOKLAT RE	Sourc	ES I	NC																																		
REPORT: V00-01694	.0 (Comp	LETE	E)													l	DATE	RECE	IVED	0: 04	-SEP	-00	DA	TE PR	INTED	: 12	SEP	-00	F	PAGE	PRC 15 (iject Df 18	: AC/	ACIA	1	
STANDARD ELEME Name ()N)	ENT A	u30 PPB	Ag PPM	Cu PPM	Pb PP N	Zn PPM	Mo PPM	Ni PPM	Co PPM	Co PPI	d B M PP	Í A M PPI	s Sib Ni PPM	Fe PCT	Mn PPM	Te PPM	Ba PP M	Сг РРМ	V PPM	Sn PPM	W PPM	La PPM	Al PCT	Mg PCT	Ca PCT	Na PCT	K	Sr PPM	y PPM	Ga PPM	Li PPM	Nb PPM	Sc PPM f	Ta PPM	T i PCT	Zr PPN	S PCT
OX11 Oxide	3	062	-	-		-	-	-	-			. .		-																							
OX11 Oxide	Ż	769	-	-	•	-	-	-	-	-					-		•	•	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of Analyses	5	2	-	-	-	-	-	-	-								-	•	-		-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Mean Value	2	915	-	-	-	-	-	-	-	-				_				-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	• i	207	-	-	-	-	-	-	-	-			-		-	-	-	-			-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
Accepted Value	2	7 40	-	-		-	-	-	-		_		_										-	-	-	-	-	-	-	-	-	-	-	•	-	•	-
-													-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			

GS91-2 GS91-2 Number of Analyses Mean Value Standard Deviation	- <.2 155 - <.2 161 - 2 2 - 0.1 158 4	19 20 2 20 <1	144 157 2 150 9	2 137 3 143 2 2 3 140 <1 4	34 0.4 37 0.5 2 2 36 0.4 2 0.1	<5 146 <5 147 2 2 3 147 - <1	\$ \$ 2 3	7.81 1547 <10 7.94 1643 <10 2 2 2 7.87 1595 5 0.09 68 -	10 224 10 242 2 2 10 233 <1 13	45 < 54 < 2 49 6	20 < 20 < 2 10	20 20 2 10	3 2.06 4 2.10 2 2 3 2.08 <1 0.03	2.66 3. 2.86 3. 2 2.76 3. 0.14 0.	64 0.02 91 0.02 2 2 78 0.02 19 <.01	2 0.05 2 0.05 2 2 0.05 <.01	69 82 2 76 9	3323 7	5 5 2 5 <1	19 23 2 21 3	2 2 2 2 1	7 < 8 < 2 7 <1	10 <.01 10 <.01 2 2 5 <.01	5 1.26 6 1.35 2 2 6 1.30 <1 0.06
Accepted Value	- 0.2 148	20	14 8	4 135	35 0.2	1 145	1	7.20 1450 <1	6 251	50	51	12	- 1.80	2.70 4.(0 0.01	0.04	70	3	-	24	2	6	1 <.01	5 1.00

	KLAT RESOLIRI	ES I	NC																													PRO	JECT	: ACAC	IA1		
REPORT: VD	0-01694.0 (COMF	LETE)													C	DATE	REC	IVE): 04	- SEP	P-00	DA	NTE PI	RINTEI	D: 12	-SEP-	00	P	AGE	16 0	F 18				
SAMPLE	ELEMENT A	Au30 PPB	Ag PPM	Cu PPM	Pb PPH	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM 1	Bi PPM	As PPM	S15 PPM	Fe PCT	Mn PPM	Te PPN	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	la PPM	Al PCT	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PP N	Ga PPM	Li PPM	Nb PPM	SC PPM	Ta PPM P	TI CT P	Zr S PM PC1	; r
				••••																																	
C600 1+00E		<5	<.2	12	14	144	<1	25	7	۲.>	<5	7	<5	1.66	560	<10	113	14	19	<20	<20	6	1.76	0.15	0.26	0.03	0.07	27	2	2	12	1	<5	<10 0.	07	6 0.01	ł
Duplicate		<5	<.2	13	14	148	<1	27	8	<.2	<5	6	ও	1.67	583	<10	118	14	20	<20	<20	6	1.84	0.16	0.27	0.03	0.08	29	2	<2	13	2	<5	<10 0.1	07	7 0.01	ł
C600 5+25E	[<5	<.2	88	27	122	1	49	20	<.2	ব	16	<5	4.72	314	<10	110	45	41	<20	<20	22	2.68	0.78	0.27	0.02	0.12	28	4	5	17	3	ক	<10 0.	07	7 0.01	1
Duplicate			<.2	87	26	119	1	48	<u>2</u> 0	<.2	<5	15	ا ئ	4.62	309	<10	107	45	41	<20	<20	22	2.63	0.77	0.27	0.02	0.11	29	4	5	17	3	<5	<10 0.4	06	7 0.02	!
C600 6+75E	I	<5	<.2	21	20	201	<1	39	14	<.2	ج	6	ব	2.56	532	<10	153	24	29	<20	<20	12	2.01	0.35	0.26	0.02	0.12	31	1	4	19	S	<5	<10 0.	80	3 0.01	i
Duplicate		<5																																			
C600 10+25	ίE	ক	<.2	48	35	109	1	55	15	<.2	ত	14	ব	4.30	271	<10	50	56	25	<20	<20	29	1.34	0.67	0.09	<.01	0.12	12	3	4	10	1	<5	<10 0.	02	5 <.01	I
Duplicate	-		<.2	51	36	114	1	58	16	<.2	ব	13	4	4.53	288	<10	50	58	25	<20	<20	28	1.39	0.71	0.10	<.01	0.12	12	3	4	10	5	ব	<10 0.4	02	5 <.01	l
C600 1+50w	1	ব	<.2	8	10	212	<1	23	7	<.2	ব	ব	ক	1.66	267	<10	88	15	22	<20	<20	7	1.15	0.18	0.22	0.03	0.09	25	1	<2	14	3	ব	<10 0.	97	2 <.01	ļ
Duplicate		ব																																			
C700 0+25E		<5	<.2	228	42	142	4	91	48	0.2	ବ	39	4	9.06	1319	<10	69	31	28	<20	<20	40	1.92	1.11	0.53	<.01	0.05	39	9	6	22	<1	\$	<10 <.	01	7 0.06	ś
Duplicate			<.Z	246	46	153	6	99	52	0.3	ৎ	38	Q	9.67	1430	<10	73	34	29	<20	<20	40	2.05	1.17	0.57	<.01	0.05	42	10	7	23	<1	<5	<10 <.1	01	8 0.06	>
C700 4+00e	E	4	<.2	21	18	130	1	37	12	0.4	ৎ	7	\$	2.63	520	<10	86	27	26	<20	<20	14	1.79	0.27	0.3 4	0.02	0.11	25	2	3	12	5	<5	<10 0.	07	6 0.01	1
Duplicate		ر ح																																			
C700 5+25E	E	ক	<.2	17	23	120	<1	36	11	<.2	ৎ	9	ৎ	2.49	519	<10	113	17	22	<20	<20	8	2.62	0.20	0.30	0.02	0.09	27	2	3	15	2	ৎ	<10 0,	10	21 0.01	ł
Duplicate			<.2	17	23	120	<1	36	11	<.2	<5	7	<5	2.51	525	<10	115	17	22	<20	<20	8	2.64	0.20	0.31	0.02	0.10	28	2	3	15	2	<5	<10 0.	10	20 0.01	l
C700 9+508	E	<5	<.2	7	13	174	<1	28	9	<.2	ব	8	ক	1 .8 8	595	<10	75	19	29	<20	<20	5	1.64	0.19	0.30	0.03	0.08	25	1	3	17	3	Ś	<10 0.	09	3 0.01	I
Duplicate			<.2	7	12	171	<1	28	9	<.2	<5	6	ব	1.88	593	<10	74	19	28	<20	<20	5	1.62	0.19	0.29	0.03	0.07	24	1	3	16	3	ا ئ	<10 0.	80	3 0.01	1
C700 9+75E		ক	1.0	10	20	213	<1	38	10	<.2	ব	8	ৎ	2.40	574	<10	97	24	27	<20	<20	12	1.71	0.29	0.23	0.02	0.10	21	2	3	16	3	Ś	<10 Ö.	07	2 0.01	I.
Duplicate		Q																																			
C800 0+25E	Ē	ক	<.2	78	27	116	<1	48	32	<.2	ৎ	18	ব	4.62	1009	<10	114	24	34	<20	<20	22	2.20	D.69	Û.61	0.02	0.06	57	7	5	20	2	4	<10 0.	04	3 0.04	÷
Duplicate			<.2	81	29	113	<1	47	31	<.2	Ś	17	ব	4.60	958	<10	109	24	35	<20	<20	22	2.16	0.68	0.57	0.02	0.06	59	8	5	21	2	ら	<10 0.1	04	3 0.04	ł
CâÚŪ 1+23	E	26	<.2	274	<u>38</u>	54	2	145	49	<.2	ৎ	16	Ġ	>10.00	681	<10	87	2 5	13	<20	<20	102	2.28	0.98	0.96	<.01	Ú.Û7	39	14	ó	21	<1	<5	<10 <.1	01	7 0.09	;
Duplicate		21																																			

CLIENT . TOKI	AT RESOURCES INC																												PRO	JECT:	ACACIA	1	
REPORT VOO	01694.0 (COMPLETE	>												D	ATE	RECE	I VED	: 04	-SEP	-00	DA	TE P	INTE	: 12	SEP-	00	Ρ	AGE	17 O	F 18			
	••••••	•															•				• •									•			
SAMPLE	ELEMENT AU30 Ag	Cu	Рb	Zn	Мо	Ni	Co Cd	8 i	As	Sb	Fe	Mn	Te	Ba	Cr	۷	Sn	W	La	AL	Mg	Ca	Na	κ	Sr	Y	Ga	Li	Nb	Sc	Ta Ti	Zr	S
NUMBER	UNITS PPB PPM	PPN I	PPM	PPM i	PPM	PPM F	PPM PPM	PPM	PPM	P PM	PCT	PPM	PPM	PPM	PPM	P PM I	PPM 1	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM 1	PPM	PPM	PPN	PPN	PPM P	PM PCT	PPM	PCT
C800 4+50E	<5 0.2	23	23	281	<1	42	13 <.2	<5	6	<5	2.47	266	<10	101	20	27	<20	<20	11	1.98	0.30	0.23	0.03	0.10	20	2	4	18	2	ৰ্ব ৰ	10 0.09	6 (3.01
Duplicate	0.2	23	24	278	<1	41	13 <.2	<5	6	<5	2.40	268	<10	101	19	26 ·	<20	<20	10	1.97	0.30	0.23	0.03	0.10	19	Z	4	18	2	<5 <	10 0.08	5 (3.01
C800 7+00E	7 <.2	72	40	173	1	51	17 <.2	<5	15	<5	4.85	449	<10	43	42	26 ·	<20	<20	28	1.46	0.63	0.16	<.01	0.10	15	4	4	13	1	<5 <	10 0.02	5 •	<.01
Duplicate	6																																
C800 9+50E	7 <.2	26	17	131	<1	8	7 <.2	ন্থ	ব	<5	1.89	610	<10	106	10	19	<20	<20	23	0.92	0.21	0.16	0.01	0.16	15	3	2	8	2	<5 <	10 0.03	<1 •	<.01
Duplicate	<.2	27	17	131	<1	8	7 <.2	-5	<5	<5	1.91	616	<10	109	10	20	<20	<20	24	0.95	0.21	0.17	0.01	0.16	16	4	~2	9	1	ار م	10 0.03	<1 •	<.01
																										_			_	-			4
C800 2+75W	<5 <.2	10	15	244	<1	27	16 <.2	<5	8	\$	2.16	715	<10	100	15	28 ·	<20	<20	12	1.66	0.24	0.38	0.02	0.14	39	2	4	18	2	5 (10 0.07	4 (3.01
Duplicate	ব																																
								_									- 20	- 22	70	. ~~	A 75			~ **	47	7	7		-	<u>.</u>	10 0 03	7	- 01
C900 0+50E	<5 <.2	78	35	145	1	24	13 <.2	- 5	8	\$	3.72	519	<10	81	15	25	<20 <20	<20 20	39	1.0	0.32	0.19	0.01	0.11	17	7	3 7	44	2	< -	10 0.02		< 01
Duplicate	<.2	80	35	146	S	24	15 <.2	9	9	0	5.78	525	<10	82	15	20	<20	<20	41	1,25	0.37	0.19	0.01	0.11	17	1	2	11	6	53 5	10 0.02	0.	C.01
	.			07	-*	2/	7 . 7	æ	Æ	~5	1 /5	270	~10	22	10	7 3	-20	~20	7	1 06	0 17	n 21	0 117	n 08	18	1	2	16	z	<u>.</u>	10 0 04	-1 -	< 01
C900 5+25E	<3 <.2	4	ſ	ക	<i< td=""><td>24</td><td>1 5.2</td><td>52</td><td></td><td>1</td><td>1.42</td><td>217</td><td>10</td><td>22</td><td>10</td><td>32</td><td>~20</td><td>~20</td><td>,</td><td>1.00</td><td>V. 17</td><td>0.21</td><td>0.05</td><td>0.00</td><td>10</td><td>•</td><td>2</td><td>14</td><td>2</td><td>~</td><td>10 0.00</td><td></td><td></td></i<>	24	1 5.2	52		1	1.42	217	10	22	10	32	~20	~20	,	1.00	V. 17	0.21	0.05	0.00	10	•	2	14	2	~	10 0.00		
Duplicate	~>																																
	517	10	16	112	-1	٦N	10 < 2	4	ব	5	2.08	1079	<10	RR	22	35	<20	<20	10	1.09	0.23	0.30	0.02	0.08	26	2	2	14	3	ব্য ৰ	10 0.07	<1 (0.01
Lyou 3+30E	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10	17	116	<1	31	11 <.2	ব	-5	<5	2.15	1099	<10	90	24	36	<20	<20	11	1.14	0.24	0.31	0.03	0.08	27	2	2	15	3	ج <	10 0.07	<1 (0.01
Dupticate	·· b	10			.,	.			•	-					- ·											_	_		_	-		-	
10000 9+75F	<5 <.2	15	11	81	<1	11	8 <.2	<5	ৎ	<5	1.74	292	<10	72	16	22	<20	<20	25	0.96	0.33	0.18	0.01	0.17	14	3	<2	10	2	ار م	10 0.06	<1 •	<.01
Duplicate	<.2	16	11	84	<1	12	8 <.2	-\$	<5	<5	1.80	303	<10	74	17	22	<20	<20	26	0.99	0.34	0.18	0.01	0.18	14	4	<2	10	3	<5 <	10 0.06	<1 •	<.01
P. aprillation																																	
C900 11+00E	6 <.2	72	22	113	1	16	12 <.2	<5	<5	<5	3.22	564	<10	95	16	22	<20	<20	36	1.10	0.40	0.21	0.01	0.22	15	8	2	8	2	<5 <	10 0.03	3 (0.01
Duplicate	4																																
•																																	
C1000 0+75E	< 0.4	18	19	154	<1	25	9 0.2	Ś	5	<5	2.29	397	<10	72	16	27	<20	<20	14	5 . 08	0.22	ó.20	0.02	0.07	14	3	3	15	3	ৰ্ব ৰ	10 0.08	15 0	0.01
Dupl icate	0.3	18	18	160	<1	24	9 <.2	< 5	ক	<5	2.22	382	<10	71	16	28	<20	<20	16	2.04	0.22	0.20	0.03	0.08	15	3	4	16	2	<5 <	10 0.08	14 (0.01
	·																																
C1000 2+75E	<5 <.2	12	32	231	<1	45	10 <.2	ব	7	\$	2.25	651	<10	116	23	29 -	<20	<20	13	2.i6	0.22	0.19	0.03	0.08	24	2	4	20	3	ا ې کې	10 0.08	6 (J.01
Duplicate	ক																																
C1000 5+005	-5 × 2	67	32	312	2	44	16 0.3	<5	8	ৎ	4.06	505	<10	76	22	32	<20	<20	26	1.86	0.32	0.27	0.02	û . 10	19	4	4	îő	2	-5 -	10 0.05	8 (3.01
Duplicate	<.2	66	33	301	2	43	16 0.3	<5	<5	<5	4.02	497	<10	75	22	31	<20	<20	25	1.83	0.32	0.26	0.02	0.10	18	4	4	16	2	ৰ্ত প	10 0.05	8 (J.01

CLIENT: TOKL REPORT: VOO-	AT RESOURCES	INC MPLETE	:)													D	ATE	RECE	IVEC	: 04	- SEF	o-00	I 	DATE	PRI	NTED	: 12-	SEP-1	00	P	AGE	PR0 18 0	VEC IF 18	r: A 3	CACI	.t	•	
SAMPLE NUMBER	ELEMENT AU	50 Agi Paippini	Cu PPM	рђ Ррм	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	8i PPM	As PPM	sd PPM	Fe PCT	Min PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	AL PCT	M PC	9 T P	Ca Cĩ	Na PCT	k PCT	Sr PPM	Y PPM I	Ga PPM	Lî PPM	nd PPM	Sc PPM	Ta PPM	PCI	Zr PPM	PC	s T
C1000 0+25W Duplicate	•	র <.2 ত	9	79	992	<1	26	12	1.5	< 5	5	4	2.76	1169	<10	100	29	36	<20	<20	11	2.26	0.2	60.	17 0	.02	0.07	17	2	4	14	3	4 5	<10	0.04	38	<.0	1
C1000 1+75W Duplicate		s <.2 <.2	5	15 14	120 131	<1 <1	19 20	10 10	<.2 <.2	<5 <5	<5 <5	ও ও	1.68 1.71	1027 1050	<10 <10	109 113	22 23	29 30	<20 <20	<20 <20	10 11	1.14 1.21	0.1	70. 80.	16 0 17 0	.02).02	0.07 0.08	17 18	1 1	3 4	14 15	3 3	ব্য ব্য	<10 <10	0.0	54 54	<.(<.(11)1
C1100 3+00E Duplicate		<\$ <.2 <\$ <.2	31 32	19 18	109 113	1	35 37	14 14	<.2 <.2	ন্থ ক	5 <5	ব্য ব্য	2.83 3.01	482 496	<10 <10	80 83	24 25	33 35	<20 <20	<20 <20	27 29	1.60 1.77	50.3 20.3	20. 30.	.15 (.16 ().03).03	0.10 0.11	13 14	3 3	3 4	16 17	3 3	ব্য ব্য	<10 <10	0.0 0.0	54 54	0.0)1)1
C1100 1+00W Duplicate	I .	<5 <.2 <.2	13 13	34 36	213 218	া বা	42 43	10 10	<.2 <.2	ব ব	9 9	ও ও	2.41 2.45	593 632	<10 <10	94 98	22 22	26 27	<20 <20	<20 <20	13 13	1.79 1.83	9 0.1 3 0.1	9 D. 19 D.	.28 (.29 ().03).03	0.08 0.08	32 34	3 3	3 3	17 17	2 3	ব্য ব্য	<1(<1(0.0 0.0	79 B9	0.0 0.0)1)1
C1100 1+75W Duplicate	ł	ও ২.2 ও	2 14	14	222	! <1	25	> 10	0.2	-5	6	\$	2.04	653	<10	67	31	29	<20	<20	9	2.0	0 0.2	24 O.	.30 (3.03	0.05	29	3	3	15	3	4	<10	0.0	9 ta	2 0.4)1

Bondar Clean Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (504) 985-0681

Appendix IV

Rock Sample Descriptions

.

Acacia Project

Rock Sample Descriptions

TTAC00R01 Acacia showing area. Unmapped pit, trench between N and S adits. Green-weathering mafic vo.canic material. Minor sulphides.

TTAC00R02 Acacia showing area. Volcanic footwall material. Trace pyrite.

TTAC00R03

Acacia showing area. Grab sample from Acacia dumps. Sphalerite-rich quartz-carbonate material hosted by green-weathering mafic volcanic material.

TTAC00R04

Acacia showing area. Massive pyrite grab sample from Acacia dumps.

TTAC00R05

Massive banded sulphides with alternating pyrite and quartz-hosted sphalerite.

TTAC00R06

In situ-Acacia portal: Sphalerite in quartz from northernmost adit.

TTAC00R07

Float-plateau above Acacia workings. Sphalerite in quartz-carbonate material.

TTAC00R08

Same location as R08. Quartz-carbonate with green weathering mafic volcanic shards, possible fault or shear zone. 4-6% disseminated sphalerite.

