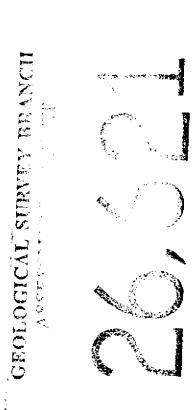


QUEEN PROPERTY GEOCHEMICAL ASSESSMENT REPORT

Nanaimo Mining Division NTS 92L/5 50° 27' 30"N; 127° 45' W British Columbia, Canada


For:

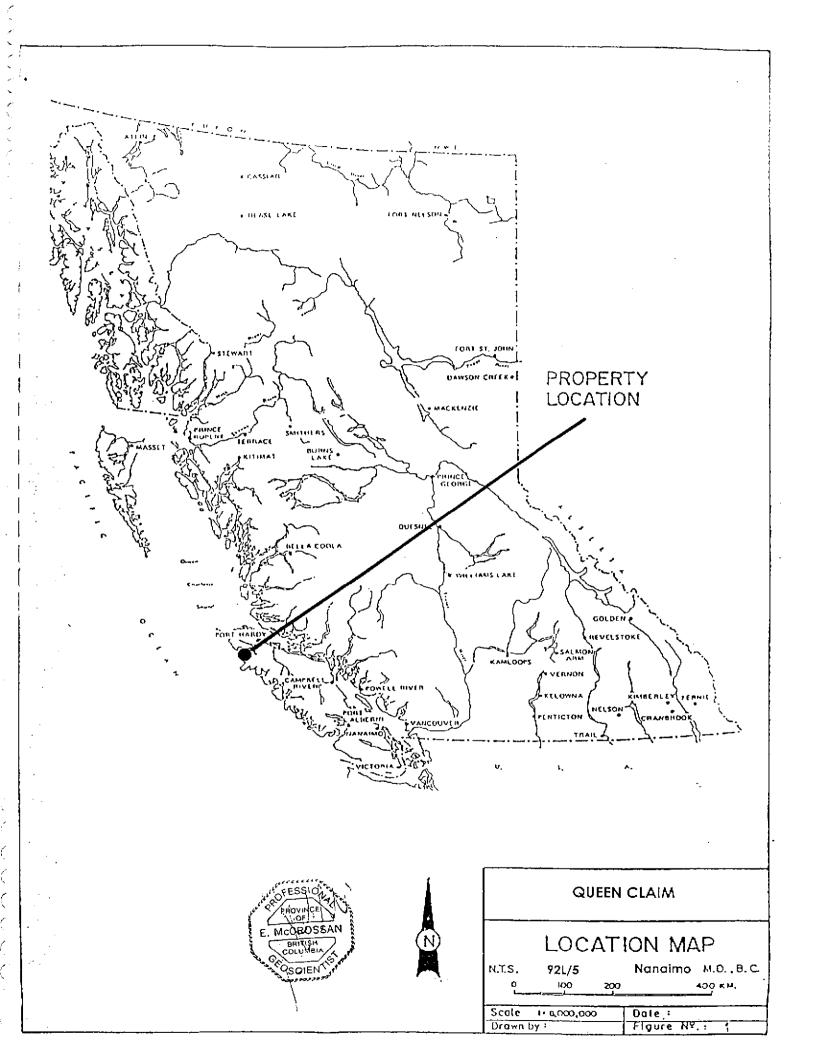
Whistler Investments Inc. 4340 E. Washington Avenue, Suite 107 Las sVegas, Nevada USA 89110

Ву:

Ed McCrossan, P. Geo. (604) 681-7362 edmccrossan@hotmail.com www.geocities.com/circlepacific

July 25, 2001

TABLE OF CONTENTS


	Page
Summary	1
Introduction	1
Location and Access	1
Claim Data	1
Topography, Vegetation and Climate	2
History and Previous Work	2
Regional Geology	2
Local Geology	2
Geochemical Sampling and Assay Results	3
Conclusions and Recommendations	4
Cost Statement	4
References	5
Statement of Qualifications	6

Appendices

- Analytical Results 1.
- Rock Sample Descriptions 2.

Figures

- Location Map (after page 1) 1.
- Claim Map (after page 2) 2.
- 3.
- Geology Map (after page 3)
 Geochemical Sample Location Map and Assay Results. (after page 4) 4.

The Queen claim consists of 20 units and is located 20 km west of Port Alice on Vancouver Island, British Columbia, Canada.

1

The property is underlain by Bonanza Group volcanics and associated sediments of Lower Jurassic age, Island intrusions, dating from the middle Jurassic, are also present on the property.

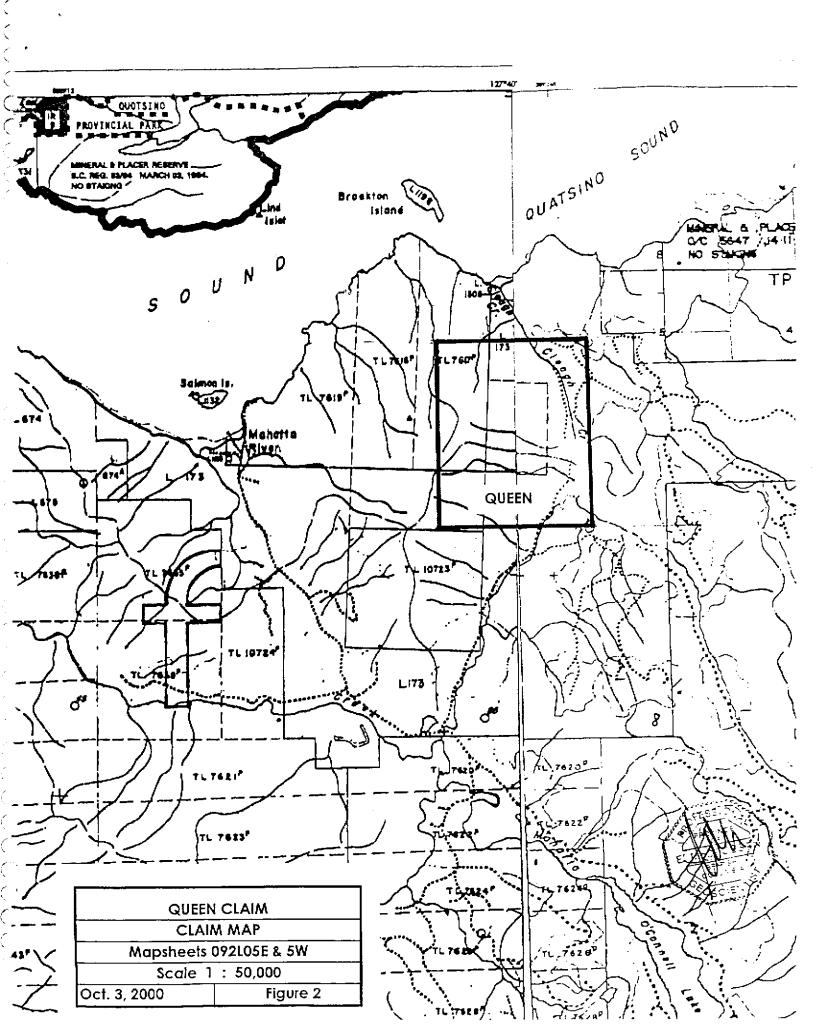
The Les minfile showing located within the claim consists of disseminated chalcopyrite, pyrite, magnetite and hematite hosted by andesitic volcanics. Previous geochemical sampling results from this area assayed between 0.15 and 0.60% copper.

Since northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, carbonate replacement, and/or porphyry related mineral occurrences or deposits, further work including geochemical sampling, geological mapping and geophysical surveys are recommended for the Queen claim.

Introduction

Summary

The writer visited the Queen property during October, 2000 and completed a preliminary rock geochemical sampling programme, investigated the Les Minfile showing, and reviewed the local geology.


Location and Access

The Queen claim is located 20 km west-northwest of Port Alice on Vancouver Island (Figure 1).

The property is road accessible by Western Forest Products logging roads which begin south of Port Alice on the east side of Neroutsos Inlet.

Claim Data

Claim Data				1 ~ 1/1
Claim Name	Tenure #	# of Units	Expiry Date	
Queen	380883	20	October 2, 2001	
A claim map is in	cluded as Figure 2.		September 24	,2002

Topography, Vegetation and Climate

Topography within the claim area is moderate to steep with elevations ranging between 250 feet (76 meters) and 2,500 feet (760 meters).

Vegetation and climate is typical for the west coast of Vancouver Island.

Second growth vegetation in previously logged areas can be dense and difficult to traverse. Rainfall, at times, can be heavy and continuous.

History and Previous Work

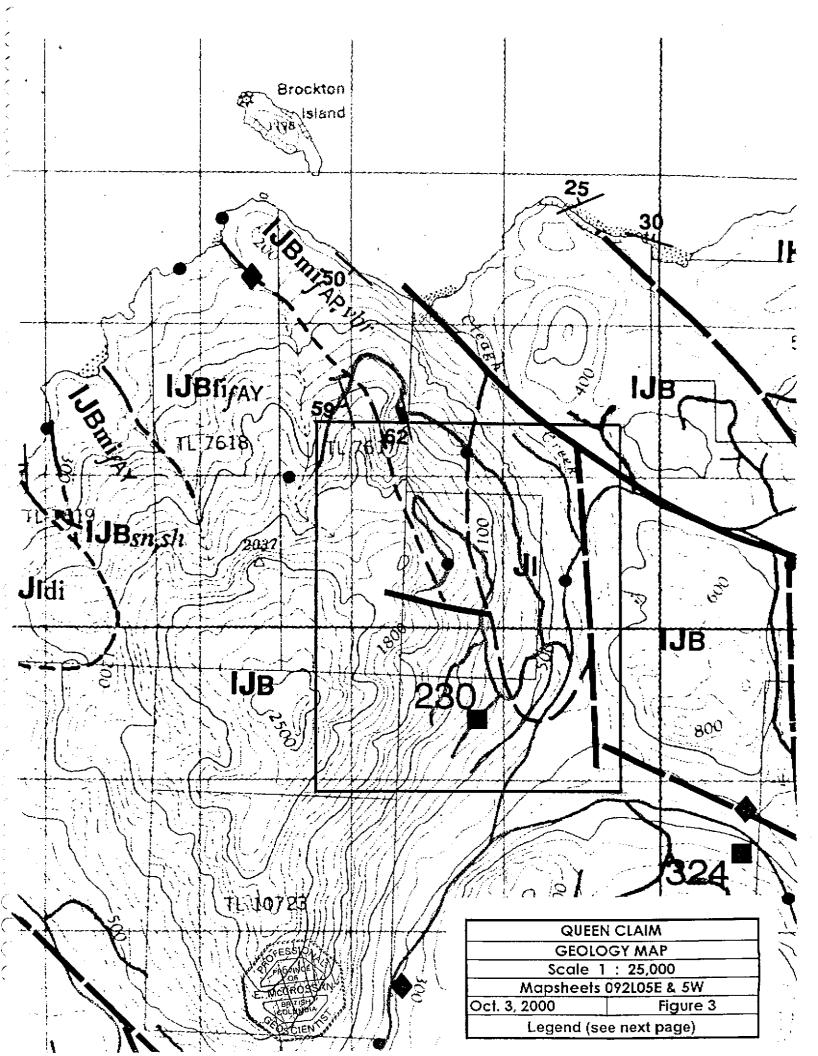
The Les Minfile occurrence (number 092L230) is located within the Queen claim.

The area surrounding the Les showing was investigated during 1969 and 1970 by Skaist Mines Ltd. At that time the company completed geological, geochemical and geophysical surveys.

Regional Geology

The northwestern portion of Vancouver Island is underlain primarily by two thick volcanic-sedimentary cycles:

- The Vancouver Group of Triassic age which includes the Karmutsen volcanics, the Quatsino limestone and the Parson Bay marine sediments; and
- 2. The Bonanza Group volcanic assemblage of Lower Jurassic age.


These volcanic-sedimentary packages were intruded by the Island Intrusions during the middle Jurassic.

Northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, skarn (carbonate replacement) and/or porphyry related mineral occurrences or deposits.

Local Geology

The Queen claim is underlain by Bonanza Group volcanics and associated sediments of Lower Jurassic age (Figure 3). The volcanic rocks are andesites and rhyodacites and included lavas, tuffs, agglomerates and breccias.

Some of the lavas were amygdaloidal and/or porhyritic, the tuffs were aphanitic and contained lapilli fragments and crystals; and the agglomerates and breccias were primary volcanic facies.

Legend for Figure 3

- IKL: lower Cretaceous Longarm Formation; volcanic sedimentary rocks, wackes, sandstone, siltstone, shale, conglomerate.
- Ji: early to middle Jurassic Island Plutonic Suite, medium grained, equigranular granitoid rocks
- IJB: lower Jurassic Bonanza Group; marine to continental basaltic to rhyolitic lavas, pyroclastic and epiclastic volcanic rocks
- m: mafic
- i: intermediate
- f: felsic
- A: aphanitic
- P: porphyritic
- Y: amygdaloidal
- v: volcanic
- t: tuff
- br: breccia
- f: lavas
- di: diorite
- sn: sandstone
- sl: siltstone
- sh: shale

		fault, shear, lineation
		geological contact
Ą	bedding	
230■	Minfile occurrence	092L230

Elevation contours (100 feet)

The Bonanza volcanic sequence was intruded in the northeastern portion of the property by a Jurassic stock having a quartz monzonitic to dioritic composition.

The Les Minfile occurrence, associated with the southwestern margin of the stock, consists of disseminated chalcopyrite, pyrite, magnetite and hematite hosted by andesitic volcanic breccias, lavas and tuffs.

Alteration products associated with the mineralization included chlorite, clays and carbonate, as well as silica and tourmaline. The nearby intrusion was also altered and pyritized.

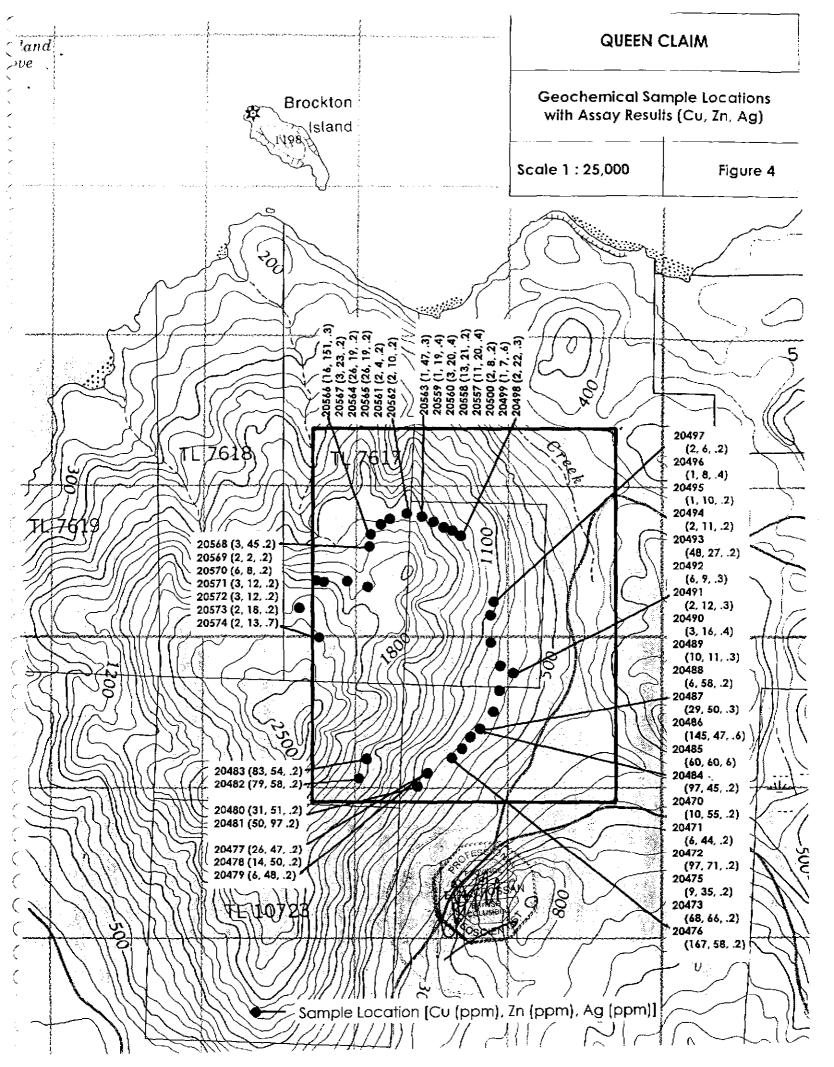
Mineralization and alteration is widespread on the property and previous chip samples have returned assay values between 0.15 and 0.60% copper.

Predominant structures and contacts on the Queen property that may have influenced mineralization, trend northerly, north-northeasterly and north-northwesterly.

Geochemical Sampling and Assay Results

Fifty rock geochemical grab samples were collected along logging road cut exposures within the Queen Claim. Refer to Figure 41 and the Appendices for rock sample locations, analytical results, and sample descriptions.

The samples were analyzed by Acme Analytical Laboratories for 30 elements and gold using the ICP–ES method.


In general, the samples consisted of altered and pyritized Bonanza Group volcanic lithologies taken adjacent to the contact with the monzonitic to dioritic intrusion or within or close to faulted, sheared or fractured areas. Some samples were also taken from the stock-like intrusion.

Geochemical sampling results indicate low level anomalies in copper, molybdenum, zinc, silver and arsenic.

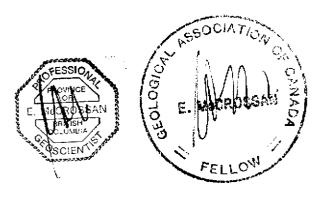
Copper values ranged up to 167 ppm (sample #20476), zinc values were as high as 151 ppm (sample #20566), and arsenic values ranged up to 229 ppm (sample #20496). The highest silver value was 0.7 gpt (sample #20574).

The highest copper assay was obtained close to the Les Minfile occurrence from which previous chip sampling returned analytical results between 0.15 and 0.60% copper (Minfile 092L230, Capsule Geology).

¹ Note that silver assay results less than 0.3 ppm were plotted as 0.2 ppm.

Conclusions and Recommendations

Northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, skarn, carbonate replacement and/or porphyry related mineral occurrences and deposits.


The Island Copper Mine, located 16 km south of Port Hardy and operated by BHP Minerals Canada Ltd. between 1971 and 1994, produced 345 million tonnes of ore averaging 0.41% copper, 0.017% molybdenum, 0.19 gpt gold and 1.4 gpt silver.

Since previous geochemical sampling results from the Queen claim returned between 0.15 and 0.60% copper, further work is recommended for the property.

An initial phase programme of grid emplacement accompanied by geological, geochemical and geophysical surveys should be followed by a second exploration phase of detailed geological surveys and trenching and a third phase of diamond drilling, if warranted.

Cost Statement

	Þ
Geologist @ \$400/day	2000
Vehicle rental	350
Hotel, food, gas, miscellaneous	520
Assays	1,030
Drafting, typing, photocopies	<u>275</u>
	\$ <u>4,175</u>

References

- B.C. Ministry of Energy and Mines: Minfile 092L230, Capsule Geology.
- Dodson, E.D. 1970: Report on the Les Group of Mineral Claims; Mahatta River, B.C. for Skaist Mines Ltd.
- Stokes, R.B. 1970: Geological and Geochemical Report on the Les Claim Group for Skaist Mines Ltd.

Statement of Qualifications

I, Ed McCrossan of 204 – 1225 Barclay Street, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc., degree in geology.
- I have been employed in my profession by various mining companies since graduate and have worked on projects in Canada, U.S.A., Thailand, China, Argentina, Chile, Bolivia, Peru, Venezuela, Central America and Mexico.
- 3. I am a member of the Society of Economic Geologists, the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, and a registered member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 4. The information and recommendations contained in this report are based upon a four day site visit and a review of the literature listed in the bibliography.
- 5. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public documents.

Ed McCrossan, Geologist, F.G.A.C., P.Geo.

DATED at Vancouver, British Columbia this $25^{\rm th}$ day of July, 2001.

ACME ANALYTICAL LABORATORIES LID. (ISO 9002 Accredited Co.)

FLUXLIBE BLACK COLLINE 85 . B. HASTING SI. ANJULISH BC V.A .KO

GEOCHEMICAL ANALYSIS CERTIFICATE

McCrossan, Ed PROJECT NONE File # A003864 Page 1 204 - 1225 Barclay St., Vancouver BC V6E 1H5 Submitted by: Ed McCrossan

226	سنست	سبيسين	<u></u>		<u> </u>		. Att A Million		5000000000000		نىينىنىن		~~~~	******	recommendation.	10100000	O M. Jerseya	rangga arang			سسسنن		~~~~					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***************************************
SAMPLE#	Mo ppm	C⊔ ppm	Pb ppm	Žn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	ppm mqq	ppb ppb
B 20451 B 20452 B 20453 B 20454 B 20455	<1 1 7 1 4	48 21 66 16 3	7 14 58 10 8	92 78 230 85 4	<.3 <.3 <.3 .3	47 7 48 7 3	17 46	1599 1745 3285 1200 98	6.55 4.39 14.20 5.27 .47	8 3 10 2 <2	<8 <8 8 <8	<2 <2 <2 <2 <2	2 2 6 4 2	149 67 20 69 2	.4 .3 2.8 .4 <.2	<3 5 <3 <3	4 <3 6 3 <3	115 3 61	3.89 .35 4.86	.052 .137	18 17 39 22 2	18 35	1.86 1.43 .41 1.41		.42 <.01 .04 .01 <.01	3 5 4	4.10 2.68 2.07 1.64	.35 .07 .03 .11	.09 .12 .27 .10	2 <2 <2 2 8	6 5 4 4 2
B 20456 B 20457 B 20458 B 20459 B 20460	105 3 4 3 5	13 14 6 4 3	303 23 53 155 <3	83 5 303 155 6	1.4 .7 1.0 2.2 .7	7 1 5 1 5	<1 <1 2 1	69 40 2985 396 85	1.34 2.96 .93 .58 1.13	127 16 4 5 60	10 10 <8 <8 <8	<2 <2 <2 <2 <2	2 <2 12 10 2	3 18 22 4 5	.3 <.2 2.9 .6 <.2	35 8 3 6 <3	<3 <3 <3 <3	7 14 1 3 7	.06 .01 3.16 .03	.032 .015 .015	1 23 24 10	20 18 10 8 13	.02 .01 .12 .01	336 50 317	<.01	7 4 7 3 8	.16 .25 .67 .38 .39	.01 <.01 .01 .01	.02 .04 .43 .30	3 5 <2 5 <2	4 9 2 <2 3
B 20461 B 20462 B 20463 B 20464 B 20465	11 48 7 7 2	2 7 4 3 11	<3 <3 <3 4 7	10 1 9 15 23	1.3 .6 1.5 .7 <.3	4 8 2 6 2	4 65 1 <1 10	141 26 313 285 751	1.43 4.41 1.52 2.37 5.25	26 9 13 8 9	<8 <8 <8 <8	<2 <2 <2 <2 <2	3 2 3 2 6	8 3 15 8 13	<.2 <.2 <.2 .2	ও ও ও ও	3 3 4 <3 5	7 3 <1 <1 12	.73 .26	.004 .002	35 9 35 31 37	22 25 19 17 14	.13 .01 .47 .73 1.24	16 76 87	<.01 <.01 <.01 <.01	24 7 13 5 4	.35 .21 .59 1.12	.07 .14 .02 .12	.09 .03 .29 .19	5 2 5 <2 <2	2 2 3 <2 3
RE B 20465 B 20466 B 20467 B 20468 B 20469	10 4 10 5	10 2 2 3 1	6 <3 <3 4 3	23 2 <1 35 22	<.3 .7 .7 .6	2 5 1 6 1	10 1 <1 <1 <1	761 26 17 148 76	5.22 1.31 1.13 2.01 1.41	10 21 52 19 5	<8 <8 <8 <8	<2 <2 <2 <2 <2	6 2 2 2 4	13 5 1 2 2	<.2 <.2	ও ও ও ও	5 3 3 3 3	3 2 3	.02 .01 .01		38 13 20 31 32	14 14 14	1.23 .04 .01 .07 <.01	16	.02 <.01 <.01 <.01 <.01	5 20 4 <3 4	.89 .36 .23 .58	.11 .09 .08 .14	.03 .13 .09 .14 .13	<2 <2 4 <2 6	2 <2 3 2 5
8 20470 8 20471 8 20472 8 20473 B 20474	1 <1 <1 <1 1	10 6 97 68 64	8 <3 <3 7 13	55 44 71 66 53		67 115 92 90 58		1175 1315	6.27 8.01 9.61 8.07 4.81	7 10 4 9 8	<8 9 16 13 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	27 22 30 39 152	.4 .2	ও ও ও ও	उ उ उ उ	228 176 191	.34 .75	.082 .062 .051 .056	3 4 1 2 1	94 91 76	3.07 4.22 4.62 4.11 2.38	19 14 17 45 20	.29 .15 .32 .36	<3 <3 8	3.92 3.90 4.15 4.59 2.67	.19 .15 .14 .09	.04 .04 .01 .03	<2 <2 <2 <2 <2	3 3 <2 4 3
B 20475 B 20476 B 20477 B 20478 B 20479	2 7 3 1	9 167 26 14 6	12 12 9 <3 5	58 47 50	<.3 <.3 <.3	5 18 4 2 <1	62 44 17 12 9	1035 775	5.30 8.72 6.17 5.64 5.44	9 16 2 3 5	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2		.4 .2 <.2	<3 <3 <3 <3	4 7 <3 <3 3	107 98	.50 1.11 1.28	.167 .187 .165 .171	5 10 11 11	17 7 4	2.18 4.05 2.01 1.93 1.73	14 24 36 38 30	.28 .31 .41 .38	<3 7 21	2.20 3.89 2.03 1.95 1.80	.22 .17 .22 .24	.01 .01 .07 .07	<2 <2 <2 <2 <2	3 5 <2 3 <2
B 20480 B 20481 B 20482 B 20483 STANDARD C3/AU-R	2 1 1 2 26	50 79 83	<3 7 <3 6 38	97 58 54	<.3 <.3 <.3	1 1 2 2 39	14	848 642 814 741 775	6.78 5.56 7.06 5.74 3.41	5 6 3 5 55	<8 <8 <8 <8	\$\$ \$\$ \$\$ \$\$	<2 <2 <2 <2 <2	12 12 16	.5 .2 <.2	उ उ उ उ 17	<3 3 <3 24	86 109 97	.91 .76	.181 .159 .173 .179	12 10 13 11 18	3 4	2.38 1.83 2.43 2.08 .62	31 24 34 22 152	.45 .36 .42 .35	21 <3 <3	2.32 1.72 2.39 2.02 1.82	.27 .17 .25 .24	.08 .08 .06 .06	<2 <2 <2 <2 16	4 2 3 <2 495
STANDARD G-2	2	2	4	45	<.3	10	4	547	2.13	<2	8	<2	5	99	.2	<3	<3	40	.72	.104	8	77	.64	282	. 13	3	1.29	. 19	.60	2	<2

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

OCT 2 2000 DATE REPORT MAILED:

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

McCrossan, Ed PROJECT NONE FILE # A003864

Page 2

ACHE ANALYTICAL																													A(YJAKK 3K	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	\$r ppm	Cd ppm	Sb	Bi ppm	V ppm	Ça %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	В	Al %	Na %	K %		Au** ppb
B 20484 B 20485 B 20486 B 20487 B 20488	<1 <1 1 1 <1	97 60 156 29 6	4 7 10 5 <3	45 60 47 50 58	<.3 .6 .6 .3 <.3	81 105 96 99 36	78 52 7 5	1785 927 1142	10.21 11.06 7.34 8.65 12.63	15 20 11 10 12	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 2 2 3	18 13 10 13 23	.5 .4 .4 .2 <.2	ও ও ও ও	3 3 3 3	198 236 204 173 177	.86 .66	.048 .050 .056 .053	3 3 2 2 2 3	85 87 83	4.44 6.46 4.38 4.59 1.92	34 68 41 31 27	.44 .42 .50 .36	<3 / <3 / <3 /	3.21 4.71 2.71 3.22	.04 .02 .04 .04	.03 .04 .03 .03	3 3 3 2 2	<2 5 <2 <2 <2
B 20489 B 20490 B 20491 B 20492 B 20493	<1 <1 3 1 <1	10 3 2 6 48	3 5 8 <3 3	11 16 12 9 27	.3 .4 .3 .3 <.3	10 12 7 14 6	5 9 12 10 7	188 426 180 210 682	3.22 4.37 2.94 3.73 3.83	2 4 3 5 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 5 3 4 3	9 19 5 3 10	<.2 <.2 <.2 <.2 <.2	उ उ उ उ	ও ও ও ও	53 87 28 50 47	.59 .20 .15	.091 .139 .062 .093 .210	13 10 5 11 13	11 18 19 17 8	.75 .85 .85 1.18	6 13 5 6 15	.14 .09 .07 .01	<3	.62 .81 .72 1.07	.08 .07 .07 .07	.01 .05 .01 .01	<2 <2 <2 <2 <2	2 <2 <2 3 <2
B 20494 B 20495 RE B 20495 B 20496 B 20497	<1 <1 <1 <1 1	2 1 1 1 2	<3 3 3 3 3	11 9 10 8 6	<.3 <.3 <.3 .4 <.3	1 2 2 2 3	6 22 22 19 2	273 112 114 109 169	3.95 4.71 4.78 4.72 2.60	7 148 146 229 4	<8 <8 <8 <8	<2 <2 <2 <2 <2	3 2 3 2 3	16 3 3 3 21	<.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3	ও ও ও ও	2 1 <1 1 56	.34 .34	.197 .205 .206 .203 .135	15 11 12 11 10	5 5 5 5	.37 .57 .58 .57	8 9 10 8 4	<.01 .02 .02 .03 .13	3 <3 <3 <3	.30 .68 .69 .66	.08 .08 .08 .09	.02 .01 .01 .01	\$ \$ \$ \$	<2 <2 <2 2 2
B 20498 B 20499 B 20500 B 20557 B 20558	<1 <1 <1 1 <1	2 1 2 11 13	4 <3 3 <3 6	22 7 8 20 21	.3 .6 <.3 .4 <.3	6 10 3 1 3	9 8 1 3 22	423 694 134 442 486	4.22 4.71 .85 5.68 6.27	34 218 2 19 5	<8 <8 <8 <8	\$	3 2 3 3 <2	5 40 21 9 8	<.2 <.2 <.2 <.2	उ उ उ उ	ব ব ব ব	61 204 5 59 65	6.01 .94 .95	.154 .101 .009 .176 .216	13 4 8 7 9	16 15 4	1.30 1.88 .44 1.08 1.71	13 14 3 10 12	.01 .16 <.01 .28	4901 : 17 24	1.48 2.27 .24 .98 1.40	.07 .04 .08 .09	.03 .05 .01 .04	<2 <2 7 <2 <2	<2 <2 <2 <2 <2
B 20559 B 20560 B 20561 B 20562 B 20563	<1 2 2 18 <1	1 3 2 2 1	6 9 <3 3	19 20 4 10 47	.4 <.3 <.3	<1 1 2 3 5	16 17 2 19 8	344 324 19 166 471	6.59 8.17 1.96 2.28 4.51	7 <2 4 8 2	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 3 <2 3	11 9 2 2 6	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3	<3 <3 <3 3	16 12 7 5 36	.62 .01	.202 .216 .027 .022 .087	11 17 16 4 14		1.12 1.30 .01 .01		.01 .01 <.01 <.01		1.45 1.40 .15 .24	.06 .06 .07 .06	.02 .01 .03 .04	2 2 2 4 3	<2 2 2 4 4
B 20564 B 20565 B 20566 B 20567 B 20568	19 3 1 2 2	26 2 16 3 3	6 <3 18 3 4	19 32 151 23 45	<.3 <.3 <.3 <.3	4 3 3 2 3	3 1 <1 <1 <1	57 107 191 103 421	1.17 1.64 1.68 1.47 2.77	6 5 8 3 14	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 5 2 9 4	6 4 2 2 2	<.2 <.2 <.2 <.2 <.2	उ उ उ उ	ও ও ও ও	14 8 3 15 5	.03 .02 .01	.045 .008 .002 .007	2 24 20 100 35	10 17 17 22 13	.02 .05 .01 .01		<.01 <.01 .01 .01 <.01	5 ও ও ও	.48 .25 .15 .18	<.01 .03 .07 .05	.12 .23 .04 .11	<2 2 7 3 4	<2 <2 8 <2 2
B 20569 B 20570 B 20571 B 20572 B 20573	5 <1 4 2 5	2 6 3 3 2	<3 3 6 4 5	2 8 12 12 18	<.3 <.3 <.3 <.3	1 2 1 3	<1 1 6 6 <1	19 34 111 119 120	.81 1.70 2.40 1.44 2.65	3 4 3 <2 3	<8 <8 <8 <8	\$\$ \$\$ \$\$ \$\$	<2 4 <2 5 2	1 1 1 2 1	<.2 <.2 <.2 <.2 <.2	उ उ उ उ	उ उ उ उ	6 1 8	<.01 .01 .10<	.001 .001 .001 .001	8 26 13 41 16	12 15 13 25 8	<.01 .01 .04 .01	7 6 5	<.01 <.01 <.01 <.01	ও ও ও ও	.12 .15 .17 .13	.09 .08 .08 .09	.01 .04 .02 .02	2 2 3 4 3	2 2 <2 4 2
STANDARD C3/AU-R STANDARD G-2	26 1	65 3	41 6	166 41	5.7 <.3	41 9	12 4	804 555	3.56 2.12	59 <2	28 <8	2 <2	22 6		24.1 <.2	15 <3	25 <3	73 35		.097 .107	18 8	169 76	.64 .63	148 225	.09		1.83 .96	.04	.17 .49	16 2	481 <2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

McCrossan, Ed PROJECT NONE FILE # A003864

Page 3

AUNE MARTITURE																															
SAMPLE#	Mo ppm	Cu	Pb	Zn ppm	Ag ppm	Ni ppm	Со	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sp ppm	Bi ppm	ppm V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₽Pm PPm	Au** ppb
в 20574	7	2	3	13	.7	2	1	72 :	2.29	4	<8	<2	3	1	<.2	 <3	3	4	<.01	.001	19	10	<.01	6	<.01	14	.16	.09	.02	3	3
в 20575	ا خ	5	<₹	3	<.3	2	ż	15		<2	- 8>	<2	<2	i	<.2	<3	<3		<.01<		3		<.01		<.01	6	.12	.09	.02	3	2
B 20576	6		<3	26	.3	3	2	184		5	- 8>	< <u>2</u>	2	2	<.2	<3	< 3	ż		.001	17	15	.09	-	<.01	16	.19	.07	.02	4	2
в 20577	6	Ĺ	3	29	.7	3	2	206		5	<8	<2	Ž	Ž	<.2	<3	<3	3		.001	16	20			<.01	14	.20	.07	.02	4	<2
B 20578	2	25	4	29	<.3	6	16	1003		4	<8	₹2	2	18	<.2	<3	<3	_	1.20		11		1.00	27	. 23		1.94	. 17	.08	<2	<2
B 20579	3	5	5	45	.4	4	20	1393	6.24	10	<8>	<2	<2	43	<.2	<3	<3	24	5.55	.159	14	6	1.07	18	<.01	9	.53	.03	.17	<2	<2
B 20580	4	3	<3	2	.3	2	1	1373	1.71	3	<8	<2	2	31	<.2	<3	<3	<1	4.31	.014	10	12	. 14	10	<.01	9	.26	.04	. 15	<2	<2
B 20581	4	12	<3	4	.3	1	<1	242	2.59	8	<8>	≺2	2	5	<.2	<3	<3	<1	.73	.017	12	14	. 16	11	.01	15	1.17	.16	.24	<2	2
B 20582	4	3	5	16	<.3	2	5	516	5.15	4	<8	<2	<2	5	<.2	<3	<3	10	.66	.116	15	9	.39	12	.02	11	1.47	. 12	.21	<2	<2
в 20583	4	3	<3	10	<.3	2	3	535	4.05	4	<8	<2	<2	11	<.2	<3	<3	4	.76	.113	14	8	.56	10	<.01	10	.46	.03	. 15	2	<2
B 20 58 4	<1	249	<3	52	<.3	9	30	1666	6.06	4	<8	<2	2	11	.3	<3	<3	164	2.56	.061	10	7	.90	20	.02	9	1.93	.05	.08	<2	<2
в 20585	<1	47	<3	125	<.3	55	31	2021	7.06	2	13	<2	<2	22	.3	<3	<3	132	8.67	.071	7	89	. 14	31	.01	7	1.34	.02	. 13	2	3
B 20586	3	21	<3	48	<.3	4	4	564	2.28	<2	<8	<2	3	11	≺.2	<3	<3	13	.47	.012	18	13	.27	21	<.01	7	.82	.10	.04	<2	<2
B 20587	4	149	3	267	<.3	48	38	3443	7.19	14	<8	≺2	<2	20	.9	<3	<3	177	4.83	.104	16	86	.08	41	.04	8	1.36	.02	. 18	<2	5
в 20588	4	10	<3	40	.3	3	2	412	3.87	3	<8	<2	2	1	<.2	<3	<3	23	.04	.020	27	9	.04	9	<.01	9	.93	.01	.12	<2	3
RE 8 20588	4	11	<3	40	.3	3	2	407	3.82	3	<8>	<2	2	1	<.2	<3	<3	23	.04	.020	27	8	.04	9	<.01	9	.93	.01	.12	<2	4
B 20589	2	11	<3	9	≺.3	4	2	185	.73	<2	<8	<2	<2	8	<.2	<3	<3	17	1.54	.041	6	22	.11	3	.10	4	.25	.09	.01	3	3
8 20590	2	<1	<3	54	<.3	9	23	980	9.19	5	<8	<2	<2	10	.3	<3	<3	230	.78	.094	7	9	2.81	12	.09	6 -	4.18	.10	.08	2	3
B 20591	1	99	5	171	<.3	29	40	2374	6.87	11	<8	<2	<2	6	1.4	3	<3	138	.18	.068	8	25	.18	62	.01	6	1.27	.05	.09	4	3
в 20592	<1	45	5	63	<.3	27	31	1774	6.90	5	<8	<2	<2	14	.4	<3	<3	225	1.10	.088	6	34	2.69	48	.26	10	3.08	.10	.05	<2	3
STANDARD C3/AU-R	27	67	36	169	5.4	40	12	793	3.47	60	23	<2	23	29	23.8	20	24	74	.57	.095	19	175			.08	29	1.87	.04		17	482
STANDARD G-2	2	4	5	44	<.3	9	5	535	2.06	<2	<8	<2	5	84	<.2	<3	<3	34	.66	. 104	7	77	.62	255	. 13	9	1.06	,12	.53	2	2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Appendix II

Rock Sample Descriptions

20470	intermediate volcanic
20471	intermediate volcanic
20472	intermediate volcanic
20473	3 meter chip sample; intermediate volcanic
20474	intermediate volcanic, sheared, altered
20475	intermediate volcanic; sheared, fractured
20476	intermediate volcanic; sheared, fractured
20477	intermediate volcanic
20478	intermediate volcanic
20479	intermediate volcanic
20480	intermediate volcanic
20481	felsic volcanic
20482	felsic volcanic
20483	felsic volcanic
20484	intermediate volcanic; pyritized
20485	intermediate volcanic; pyritized, sheared
20486	1 meter chip sample; intermediate volcanic
20487	intermediate volcanic; pyritized
20488	intermediate volcanic, pyritized
20489	quartz monzonite – diorite
20490	quartz monzonite – diorite
20491	quartz monzonite – diorite
20492	quartz monzonite – diorite
20493	quartz monzonite – diorite
20494	intermediate volcanic; silicified
20495	intermediate volcanic; silicified
20496	intermediate volcanic; silicified
20497	quartz monzonite-diorite
20498	quartz monzonite-diorite
20499	intermediate volcanic
20500	intermediate volcanic; silcified
20557	intermediate volcanic; silcified
20558	intermediate volcanic
20559	intermediate volcanic
25600	intermediate volcanic
20561	intermediate volcanic breccia
20562	intermediate volcanic breccia
20563	intermediate volcanic breccia
20564	intermediate volcanic
20565	intermediate volcanic
20566	volcanic agglomerate
20567	intermediate volcanic; sheared

20568	felsic volcanic
20569	felsic volcanic
20570	felsic volcanic
20571	intermediate volcanic
20572	intermediate volcanic
20573	intermediate volcanic
20574	intermediate volcanic

٠.