

2000 Diamond Drill Report

on the

Black Crystal Graphite Property (Molly 1-4, PB#1 - #4, PB-5, PB-6)

Lat. 49°, 46' North Long. 117° 46.5' West Map#s: 082F.071, 082F.072, 082F.082

of

CRYSTAL GRAPHITE CORPORATION Suite 1750 – 999 West Hastings Street Vancouver, B.C. V6C 2W2

TENLOGICAL SURVEY BRANCH

LHOART ENERGY

. 23 - 63

By: Bernhardt Augsten P.Geo. June, 2001

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0	CLAIM STATUS	3
4.0	EXPLORATION HISTORY	5
5.0	REGIONAL GEOLOGY	5
6.0	DIAMOND DRILLING	8
6.1 6.2 6.3 6.4 6.5 6.6 6.7	METHODOLOGY	0 1 7 8 9 1
7.0	CONCLUSIONS AND RECOMMENDATIONS	2
8.0	STATEMENT OF EXPENDITURES	3
9.0	REFERENCES	4
10.0	STATEMENT OF OUALIFICATIONS	5

LIST OF FIGURES

Figure 1	Property Location Map	2
Figure 2	Claim Map	4
Figure 3	Regional Geology Map	7
Figure 4	Drill Hole Location Map	9
Figure 5	Geological section through BC0001, BC0002 1	2

LIST OF TABLES

TABLE 1	CLAIM STATUS	3
TABLE 2	DRILL HOLE DATA	8
TABLE 3	SIGNIFICANT DRILL INTERCEPTS	20

LIST OF APPENDICES

APPENDIX I	ANALYI
APPENDIX II	DIAMON

ANALYTICAL RESULTS DIAMOND DRILL LOGS

1.0 INTRODUCTION

In late fall of 2000, Crystal Graphite Corporation undertook a diamond drilling and trenching program on their 100% owned Black Crystal graphite project. The project is located in southeastern British Columbia approximately 51 kilometres north of Castlegar. Approximately 1181 metres of NQ core were drilled and twenty-seven vertical trenches were excavated. The diamond drilling was successful in identifying two principal graphite-bearing horizons which can be traced both up and down dip and along strike. These horizons where drilled occur at or very close to surface and mimic the slope of the hill they are located on. This has important extractive implications. In addition trenching of unconsolidated material has added to the understanding of the graphite grade and distribution within this material. Further trenching, drilling and mapping is recommended for the 2001 field season.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Black Crystal property is located in southeastern British Columbia approximately 51 kilometres north of Castlegar and 27.5 kilometres northwest of Passmore, BC., within what is known as the Valhalla Range of the southern Selkirk Mountains. The property is located near the headwaters of Hoder Creek, a tributary of the Little Slocan River, and the geographic center of the property is at latitude 49° 46.5' North and longitude 117° 46' West in the NTS map area 82F/13, (See Fig. 1).

The property is readily accessed from BC Highway #6, exiting the highway immediately north of the village of Passmore, on the Upper Passmore Road. The access road follows the Little Slocan River for 24 kilometres, thence following Hoder Creek for a further 18 kilometres. At this point old logging roads access various parts of the active part of the property. All roads are well-maintained gravel roads capable of handling heavy trucks. For the most part four-wheel drive is not needed, but it is recommended.

Topography on the property can be considered rugged overall with elevations ranging from 1370m to 2380m. The area of current activity is situated on a westerly facing slope that was logged in the late 1970's and now consists of a second growth of spruce and alpine fir with thick underbrush of slide alder. Several small creeks draining the property provide the main water source for drilling.

3.0 CLAIM STATUS

Crystal Graphite Corporation owns a 100% interest in 10 claims covering 124 mineral claim units comprising the Black Crystal Project. The 10 claims cover an area of approximately 2900 hectares. The claim holdings include four 2-post mineral claims of one unit each and six 4-post mineral claims of 20 units each, (See Fig. 2). Pertinent claim data is provided in Table 1 below.

CLAIM NAME	TENURE NO.	CLAIM TYPE	NUMBER OF UNITS	EXPIRY DATE*
			_	
MOLLY 1	305145	2POST	1	September 20, 2011
MOLLY 2	305146	2POST	1	September 20, 2011
MOLLY 3	305147	2POST	1	September 20, 2011
MOLLY 4	305148	2POST	1	September 20, 2011
PB #1	318625	GRID	20	June 28, 2007
PB #2	318626	GRID	20	June 28, 2006
PB #3	318627	GRID	20	June 28, 2006
PB #4	318628	GRID	20	June 28, 2006
PB-5	371670	GRID	20	September 14, 2006
PB-6	371671	GRID	20	September 18, 2006

TABLE 1 CLAIM STATUS

* Claim status assuming acceptance of this report.

•

4.0 EXPLORATION HISTORY

The Black Crystal property was originally discovered and staked by Mr. Steve Paszty of Castlegar, BC in the early 1970's as the Molly 1-4 claims. In the ensuing years the claims were allowed to lapse due to the lack of interest in graphite at the time. The claims were restaked by Mr. Paszty in early 1992 and optioned to Mr. Paul Schiller in July, 1993. Further claims were staked after this to consolidate the land package. A reverse circulation drilling program was conducted in 1994 consisting of six holes totalling 250 metres. Graphite recovery was a problem using this method of drilling. In 1995 a diamond drilling program was undertaken which was comprised of 13 holes totalling 577 metres. In late fall of 1995 a bulk sample of 3000 tons was mined and hauled to the mill site at Koch Creek. Some metallurgical work was carried out on this bulk sample.

5.0 **REGIONAL GEOLOGY**

The Black Crystal Graphite Project of Crystal Graphite Corporation is located in the southern Omineca Morphogeological Belt. This belt along with four others form the Canadian Cordillera continental crust. Each belt is defined by a combination of lithological, structural, tectonic and physiographic characteristics. The Omineca belt is an uplifted region, extensively underlain by metamorphic and granitic rocks, (Gabrielse et al. 1991).

The Project is located within a metamorphic core complex, 'the Valhalla Complex' which is a domal culmination in the southern Omineca belt. The Valhalla complex is a 30km x 90km upper amphibolite gneiss complex located at the eastern exposed edge of the Shuswap complex and is comprised of sheet-like layers of variably deformed paragneiss and middle Cretaceous to Eocene igneous rocks. The domal shape of the Valhalla complex is interpreted to be a result of tectonic denudation due to exhumation along Eocene normal faults, (Carr et al. 1987). The Valhalla complex is bounded on the top by the easterly directed Valkyr-Slocan Lake normal fault system. The Valkyr shear zone is a ductile shear zone that is arched over the complex and was active between 59 and 56 Ma. The Slocan Lake fault zone, which bounds the eastern margin of the complex, is a ductile-brittle normal fault that dips 30° to the east and may have had up to 15 - 20 km of dip-slip displacement along its central portion. Within the large scale 'dome' there are three subculminations or domes termed the Valhalla dome, the Passmore dome and southern Valhalla complex.

The project area is located specifically on the west-central flank of the Valhalla dome, (See Fig. 3). The Valhalla assemblage exposed on the west flank of the Valhalla dome, consists of a heterogeneous ~ 1.5km thick package of upper amphibolite facies pelitic schist, marble, calc-silicate gneiss, psammitic gneiss, metaconglomerate, amphibolite gneiss, and ultramafic schist. The base of the section is comprised of a sequence of conglomerate, calc-silicate gneiss, and marble interlayered with 50-100 m thick units of aluminum-poor semi-pelitic and pelitic schist, (units 1-3). Continuing up structural section the sequence becomes more carbonate rich, with metre-thick marbles and calcsilicate gneisses interlayered with quartzites and sillimanite-bearing pelitic schists (units 4-8). It also contains amphibolite gneiss and ultramafic schist, which do not occur in the structurally lower sections. The upper portion of the exposed sequence contains 30 m thick marble and quartzite layers (units 9 and 10). Metasedimentary rocks in the core of the Valhalla dome generally consist of psammite, semipelitic and pelitic schist, quartzite, marble, and calc-silicate and amphibolite gneiss. The main graphite-bearing units on the Black Crystal Property are part of unit 9, the Rinda marble of Shaubs and Carr. They describe it as a 20-40 m thick, massive coarse-grained granoblastic marble with layering

where present, defined by thin graphitic layers and 30 cm to 1 m thick diopside-rich calcsilicate gneiss horizons and boudins.

6.0 DIAMOND DRILLING

Between November 4th and December 15th of 2000, Crystal Graphite Corporation conducted a diamond drilling program on their Black Crystal Graphite project in southwestern British Columbia. Twenty-two holes for a total of 1181 metres were drilled. (See Fig.4). Pertinent drill data are listed below.

	Grid Coordinates (GPS)		Dis of Hale	Azimuth of	Casing	Total
HOLE #	Easting	Northing	Dip of Hole	Hole	Length (M)	Length (M)
BC0001	4447/25.252	5513997.064	-52.33	041.67	4.27	106.68
BC0002	4447/23.887	5513995.780	-90	ND	4.57	44.50
BC0003	444712.963	5513916.268	-54.67	040.50	2.44	82.30
BC0004	444711.543	5513915.072	-90	ND ·	3.05	52.12
BC0005	444764.483	5514096.948	-54.67	039.50	3.66	60.96
BC0006	444575.126	5513932.415	-53.00	045.33	0.92	63.70
BC0007	444574.105	5513931.189	-90	ND	2.13	49.68
BC0008	444576.748	5513820.362	-57.67	042,25	3.05	79.25
BC0009	444575.252	5513819,386	-90	ND	4.27	37.49
BC0010	444576.123	5513820.015	-70	042.25	2.74	21.95
BC0011*	444572	5513787	-54	042.00	1.83	39.62
BC0012	444578.510	5513751.248	-54.67	043.17	1.83	47.85
BC0013	444577.610	5513750.074	-90	ND	2,13	52.73
BC0014*	444525	5513929	-54.17	046.83	3.05	53.04
BC0015*	444533	5513880	-54.17	042.50	2,14	67.60
BC0016*	444597	5513685	-55.83	045.00	2.74	35.97
BC0017*	444842	5513871	-58.25	045.33	7.32	45.72
BC0018	444695.563	5513820.871	-54.58	047.67	4.57	51.82
BC0019	444676.950	5513725.433	-56.08	043.92	3.66	42.67
BC0020	444252.131	5513878.847	-90	ND	9.14	51.82
BC0021	444170.866	5513728.238	-90	ND	19.20	51.82
BC0022	444100.885	5513578.011	-90	ND	21.95	42.67

TABLE 2 DRILL HOLE DATA

*

Coordinates for these holes attained using a handheld Garmin 12 GPS unit.

6.1 METHODOLOGY

Bergeron Drilling and Exploration Ltd. of Greenwood, BC was contracted to complete the diamond drilling. A track-mounted Longyear 38 was utilized. This is a selfcontained unit with integral mud tanks and rod storage. The unitized mobile drill facilitated rapid drill moves and minimized site disturbance. Local streams provided drill water, though, because of the cold weather and single drill shift, a water truck was used to move water from streams to the drill. Drill collar locations were surveyed and the dip and azimuth of inclined holes were surveyed as well. At least one downhole survey was completed on each hole using a Tripari instrument which measures both dip and azimuth. Most hole locations were also picked up using a differentially-correctable GPS unit and all locations were also recorded by a non-correctable handheld GPS unit.

All core was logged at the company's mill site at the confluence of Koch Creek and the Little Slocan River. Core logging followed a chronological sequence as follows:

- 1. core layed out in sequence on benches,
- 2. footage blocks converted to metric
- 3. core recoveries calculated
- 4. box ends labelled
- 5. geotechnical logging of core completed
- 6. core logged geologically
- 7. samples identified and labelled for analysis
- 8. core photographed
- 9. core stacked to await splitting
- 10. relevant core split
- 11. samples bagged to await shipment

All core is presently stacked in a covered core storage facility and is easily accessible. Holes were labelled using a alpha-numeric system eg. BC0001 where BC – represents the property ie. Black Crystal, 00- year drilling occurred, ie. 2000 and 01 thru 22, hole number.

6.2 LITHOLOGICAL DESCRIPTIONS

No detailed surface mapping has been done to date on the Black Crystal Graphite property. In general, mapping is hampered by poor outcrop exposure in the lower elevation areas. However, bulk sample extraction, trenching and substantial drilling completed to date have assisted in the clarification of the property geology. The property is underlain by paragneisses and marbles intruded by pegmatites, and leucocratic intrusive rocks belonging to the Eocene Ladybird intrusive suite. The primary graphite bearing units identified to date are two conformable but distinguishable 'beds' of calcsilicate gneiss, (CS1 and CS2). These beds where mapped, striking at approximately 130° and dipping to the south at about 35°. Figure 5, illustrates a typical sectional view parallel to drill holes BC0001 and BC0002.

CALCSILICATE GNEISS 1: This is one of the two principal graphite-bearing units identified to date within the Black Crystal graphite property.

This rock is fine to medium grained, varying in colour from a light to medium grey to light to medium greenish grey. This unit is usually weakly to moderately foliated. It is also characterized by a distinctive grainy sucrosic texture. This unit reacts strongly to cold dilute hydrochloric acid. Mineralogy of this unit is comprised of calcite, quartz, diopside, graphite, pyrrhotite +/- pyrite, feldspar and scapolite.

Modal Composition:

Ouartz 35% ?Scapolite 25% Clinopyroxene 15% Calcite 10% K-feldspar 5% Graphite 5% Pyrrhotite 2-3% 1-2% Sphene Amphibole <1% Apatite <1%

Note: Scapolite, Amphibole, Sphene, Feldspar and Apatite were not identified in hand specimen.

The textures and mineralogy of this rock suggests that this rock was probably derived by metamorphism of an impure calcareous sedimentary protolith.

CALCSILICATE GNEISS 2: This is the second of the two principal graphite bearing units on the Black Crystal Property. Both CS1 and CS2 are conformable to one another and in some instances are seen to be intercalated.

This unit is fine grained, moderately to well-foliated, and variable in colour from medium to dark grey to medium greenish-grey. This rock also has a grainy sucrosic tecture. This rock is distinguishable from CS1 by two main factors. This rock tends to be darker in colour, somewhat finer grained, and contains small amounts, <1%, of a very distinctive, bright green, fine-grained, (<1mm), spinel with the colour of an emerald. This mineral is only seen in this unit, although short intercalations of this unit have been logged within larger sections of CS1 in a couple of holes, (BC0002, BC0012).

Modal Composition:	Quartz	30%
	?Scapolite	30%
	Clinopyroxene	10%
	Calcite	10%
	K-feldspar	10%
	Graphite	5%
	Pyrrhotite,pyrite	1-2%
	Sphene	1-2%
	Amphibole	<1%
	Spinel	<1%
	Apatite	2-3%
	Chlorite	trace

Note: This modal composition is from petrological work that was done on similar material from core extracted during the 1997 drilling program. (BCTT-4).

Also note, the scapolite identified in thin section was not recognized in hand specimen.

QUARTZ:(Q): Quartz occurs in the stratigraphic column usually as the footwall of the graphite bearing CS1 and CS2 units. This quartz has variable textures but is often characterized by a moderately to strongly limonite-stained, coarse-grained, recrystallized quartz. In places the quartz appears to replace biotite-feldspar gneiss, calculate gneiss and coarse-grained marble. This section work has identified in addition to the quartz, minor sulfides (pyrrhotite), and traces of feldspar and chlorite/hydrobiotite). This rock has an ambiguous genesis but may in part be the product of partial melting of other rocks. Alternatively this quartz 'unit' may represent quartz flooding and as such is manifesting a cryptic structure.

MARBLE: (M1): This is a pale grey to almost white to pale greenish-grey, medium to coarse-grained quartz marble. This rock tends to be massive to very weakly foliated. This rock is comprised primarily of calcite, quartz, +/- diopside, locally phlogopite, rare pyrrhotite and/or pyrite, and variable amounts of graphite (usually <0.5%). Modal Composition of this rock from petrographic work from 1997 core samples. These modal compositions can vary considerably from sample to sample, but the three main constituents are calcite, quartz, and diopside (clinopyroxene).

Modal Composition:	Calcite	55%
-	Quartz	20%
	Clinopyroxene	5%
	Plagioclase(?labradorite)	7%
	Scapolite	7%
	Graphite	2-3%
	Pyrrhotite, pyrite, sphalerite	2-3%
	Sphene	1%
	K-feldspar	<1%
	Amphibole	1%
	Apatite	<1%

From the petrological description, graphite forms mainly euhedral, commonly bent flakes up to 1mm in diameter, in places associated with minor pyrrhotite as subhedra to 0.5mm, pyrite as subhedra to 1mm and traces of sphalerite to 0.35mm (sphalerite is dark redbrown and therefore is likely Fe-rich.)

QUARTZ SYENITE: (SY): This is a white to pale grey, massive, medium grained felsic rock composed mainly of white feldspar, with lesser grey quartz and minor green mafics. The feldspar is predominantly white k-feldspar (microperthitic?). This rock usually forms small sills or dikes within the metamorphic sequence. From the petrographic description; the texture is certainly igneous-looking, but given the high grade of metamorphism, it could easily be derived by partial melting of a metasediment or metaintrusive. The field relations would be more helpful in determining this and in point of fact, they do appear to be crosscutting in drill core and in fact they appear to have thermal effects upon the surrounding calcsilicate rocks or marbles.

GRANODIORITE: (GD): Medium grained leucocratic biotite granodiorite. Composed of quartz (12-15%), Plagioclase (65%), Kspar (7%), Biotite (3-7%) and trace pyrite. This intrusive varies from massive to weakly foliated (gneissosity). This granodiorite forms sills and dikes on the property and specifically forms the northern boundary of the deposit. Petrological work has identified this as being a quartz monzonite.

PEGMATITE: (P): This is a medium to coarse grained leucocratic pegmatite comprised principally of feldspar, quartz, and minor biotite, pyrrhotite.

In places rocks labelled pegmatite are clearly such and in others the distinction is not so clear. Petrographic work on one sample from the 1997 drilling illustrates this. See sample #BCTT-17. In hand sample the rock is a white coarse-grained, massive gneiss or ?intrusive rock composed mostly of white feldspar and minor quartz with accessory deep brown ?biotite and sulfides that are weakly magnetic. 'Given the high-grade metamorphic setting, and the associated calc-silicate gneisses, it seems more likely to have been derived from a similar rock to that responsible for the calc-silicate gneisses (note relict ?scapolite) or by partial melting(sweating) of a similar rock.' Clearly these rocks are not easy to label.

The pegmatites usually occur as small dikes/sills or metamorphic 'sweats' intrusive to or part of all other units except perhaps for the granodiorite intrusion itself. They can occur in core lengths up to 2 metres but more typically are seen as 10 to 20 centimetre dikes or sweats. They are significant for two reasons:

1. these pegmatites usually carry no or very little graphite,

2. the pegmatites occur with some frequency including within the graphite-bearing calcsilicate gneisses such that in some instances they can comprise 25 - 30% of the interval, thereby diluting the overall grade, (e.g. BC0001, BC0012).

Pegmatites often have a well-defined thermal effect on the surrounding calcsilicate rocks, producing varying forms of contact skarn.

SKARN: (SK): The rock unit labelled skarn is an aphanitic, medium to dark green quartz diopside calcite rock. This rock typically contains no graphite, but contains variable amounts of sulphides, usually pyrrhotite +/- pyrite to 2 to 3%. Contacts are gradational. Within this unit, one occasionally sees biotite-rich sections that are manifested as aphanitic purplish-brown coloured rock, probably a type of hornfels. Also within this skarn we can see small(5-10cm) sections of recrystallized M1 marble which are converted to a quite coarse-grained calcite-rich rock with individual calcite crystals to 5mm and also distinctive small (1mm x 1mm) dark green garnet? metacrysts and occasionally coarse-grained tremolite. It appears that this skarn rock is a result of contact metamorphism by pegmatite and/or qtz syenite dikes.

INTERCALATED ZONE: (IZ): This is a somewhat enigmatic 'unit' consisting of a rapidly changing intercalated sequence of various lithologies. Typically this sequence comprises skarned and hornfelsed metasediments, biotite gneiss, marble and both pegmatitic and quartz syenitic intrusions. Contacts with other units are typically gradational. For instance, frequently as in BC0004 this zone grades into a predominantly marble (M1) unit. The contact is placed where marble predominates and as such is somewhat subjective.

BIOTITE-FELDSPAR-QUARTZ GNEISS: (BFQGN): This is a fine to medium grained, well-foliated rock, dark brown to brown with white bands and lenses of varying proportions of quartz and feldspar. Overall composition includes biotite, feldspar and quartz with variable amounts of sulphides. Occassional garnets are seen in this unit as well. This is not an ore-bearing unit.

6.3 DESCRIPTION OF UNCONSOLIDATED MATERIALS

The bedrock surface on the Black Crystal Property is mantled by a heterogeneous cover which includes organic material, B-horizon soils, heterogeneous glacial till and variably weathered bedrock. With the exception of the organic layer, all layers contain graphite to a greater or lesser extent. It is important to note that the total thickness of the unconsolidated material varies greatly from 1.5 metres to plus 5 metres. The organics layer appears constant in thickness at about 25 to 30 centimetres. All other layers are variable in thickness.

The best graphite-bearing material is contained within the weathered bedrock, specifically weathered *calcsilicate gneiss 1* and *calcsilicate gneiss 2*. The graphite grade in this material appears to be upgraded for the following reasons.

- 1. Sulphides within the calcsilicate gneiss are oxidized producing sulphuric acid which leaches the carbonate from the rock producing an enriched material with respect to graphite, and
- 2. Sampling of this material is selective in the sense that large pieces of contained pegmatite are either not sampled or screened out during bulk sample extraction.

6.4 MINERALIZATION AND ALTERATION

Graphite mineralization occurs in several different rock types on the Black Crystal Property but only occurs in significant amounts in two conformable calcsilicate gneiss units, CS1 and CS2. In both of these rock units graphite occurs as disseminated individual crystals varying in size from 0.5mm to 1.0mm. Graphite crystals define a weak to moderately well-developed foliation. In CS1 graphite varies from 1-3% as disseminated crystals and in CS2 from 2-5%. CS2 is consistently a higher grade unit. This unit is distinguished by the presence of 0.5 to 1.0% disseminated bright emerald green spinel metacrysts. In addition this unit appears to contain higher concentrations of pyrrhotite to 2-3%. Graphite mineralization is not related to any secondary alteration identified to date. The most important alteration observed is contact metasomatism between calcsilicate and/or marble units and pegmatites, granodiorite intrusions or quartz syenite intrusions. These contacts are clearly skarned as described earlier. The net effect however is the decrease in graphite content in these zones.

6.5 ANALYTICAL METHOD

All split core was sent to International Metallurgical and Environmental Inc. in Kelowna, BC for analysis. Analytical Results are available in Appendix I. Samples are first dried and then crushed using a TM engineering jaw crusher to produce a product that is approximately 100 percent minus 6mesh. This crushed product is used for sub-sampling and assaying. The crushed material is riffle split to produce a 200 gram sample for pulverizing in preparation for assaying. Samples are then pulverized using a ring and puck pulverizer. A product is produced that completely passes 150 mesh. Typically the pulverizer is cleaned with silica sand between samples to minimize contamination of concurrent samples.

The actual analytical procedure to arrive at the graphite content is a two stage process based on total carbon analysis. An assumption is made regarding the occurrence of carbon bearing minerals in this procedure, in that they are either acid soluble carbonates or graphite. The presence of organic carbon in the form of plant matter or soil can render this procedure inaccurate.

In summary all samples are washed in dilute acid in order to eliminate any carbonates from samples prior to total carbon analysis. A Leco carbon analyzer is used for total carbon analysis.

The procedure is as follows:

- 1. A 0.010g 0.250g sample is accurately weighed into a Leco crucible. (Sample weight may be altered depending on expected graphite content)
- 2. Connect crucibles to filtering apparatus.
- 3. Rinse with acetone, then rinse with small amounts of dilute HCl (small amount of liquid is used to ensure the graphite does not climb up and over top of crucible)
- 4. Repeat step 3 until fizzing stops completely (this indicates the removal of all carbonate)
- 5. Final rinse is with acetone to push the graphite down into the bottom of crucible.
- 6. Dry in oven at 100 degrees C for 20-25 minutes.
- 7. Now the samples are ready for carbon analysis using the LECO analyzer. The total carbon value obtained from the LECO analysis is reported as the graphite content.

6.6 RESULTS

The diamond drilling program was successful in outlining two conformable calcsilicate units that contain significant graphite concentrations. Importantly, these graphite bearing units are distinguishable and somewhat predictable in their spatial distribution. Because any discussion of economics is so dependent on the marketing aspects of graphite, it is somewhat difficult to categorize intersections in an economic sense, it is better at this stage to discuss intersections in terms of higher or lower grade. Intersections of greater than 1% are tabulated below.

HOLE #	FROM (M)	TO (M)	WIDTH (M)	GRAPHITE (%C)
BC0001	10.00	19.74	9.74	2.03
including	11.55	19.74	8.19	2.79
	39.00	41.87	2.87	1.48
	61.00	69.92	8.92	1.84
including	16.60	20.00	3.40	2,74
BC0003	2.66	18.43	15.77	1.50
including	2.66	4.60	1.94	4.17
BC0004	3.43	22.12	18.69	1.48
including	3.43	6.16	2.73	2.79
BC0005	6.70	9.83	3.13	1.44
BC0008	3.05	7.86	4.81	2.14
	11.86	26.23	14.37	1.28
BC0009	5.21	28.90	23.69	1.43
BC0011	8.92	32.00	23.08	1.47
including	8.92	17.10	8.18	2.12
BC0012	6.00	22.00	16.00	1.18
	25.55	37.00	11.45	1.15
BC0013	8.00	49.86	41.86	1.10
including	8.00	11.58	3.58	1.51
	13.71	16.59	2.88	2.50
	22.51	25.00	2.49	1.13
	28.00	34.00	6.00	1.26
	38.00	41.86	3.86	1.63
	42.65	44.00	1.35	1.34
	47.18	49.86	2.68	1.37
BC0014	8.00	9.79	1.79	1.79
BC0015	2.44	12.60	10.16	1.56
BC0016	4.00	6.00	2.00	1.09
•	10.00	12.00	2.00	1.10
	10.00	18.00	2.00	1.47
DC0017	20.00	22.00	2.00	1.40
BC0017	9.09	12.12	3.03	1.47
including	17.39	20.12	12.70	1.50
BC0018	17.39	20.05	3.40	1.95
BC0010	12.60	30.97	10 10	1.32
BC0019	3.66	186	1 70	1.41
BC0019	10 74	77 12	1.40	3.31
including	10.74	11 74	1.00	1.65
including	13.65	17.40	3.75	4.40
including	18.82	27.43	8.61	<i>∠</i> 5 1.03
munng	30.85	34 47	3 62	1.25
BC0020	45.43	46 63	1 20	1.50
BC0021	26.25	27.35	1.10	2.08
~~~~	20.20		1.10	2.00

### TABLE 3 SIGNIFICANT DRILL INTERCEPTS

#### 6.7 GRAPHITE GENESIS

Marchildon et al, 1992 in their paper on the AA Graphite Deposit near Bella Coola describe some possible sources of carbon which may have been the source of the graphite in that deposit. The suggestions are valid for the Black Crystal deposit and at the very least provoke some different ways of thinking with respect to the genesis.

They are as follows.

- 1. in situ reduction of organic matter during metamorphism
- 2. devolatilization of organic matter to produce  $CO_2$  or  $CH_4$  (or both) in the fluid phase.
- 3. destabilization of early graphite to produce carbon-bearing volatiles CO₂ and CO₄
- 4. decarbonation of carbonate minerals
- 5. injection of carbon-bearing fluids from the deep crust or mantle
- 6. a combination of the above.

Within the Black Crystal deposit, the uniform disseminated nature of the graphite within the calcsilicate gneisses and marbles (high grade metamorphic rocks) suggests in situ reduction of some form of organic matter during metamorphism.

## 7.0 CONCLUSIONS AND RECOMMENDATIONS

The diamond drilling program was successful in identifying the important graphitebearing horizons. In addition the drill program added to our knowledge of the spatial distribution of those horizons. These horizons are still open to the west, east and south but appear to be cut off to the north. While we did gain appreciable knowledge of the important stratigraphy there are still some questions to be resolved regarding the apparent structural reversals that we observed between the two principal calculates gneiss horizons.

Future drilling and exploration should be directed toward extending the known graphitebearing zones along strike and up and down dip. In addition the drilling should be of sufficient density to explain the structural ambiguities and to be able to calculate a measured and indicated reserve. Because of the apparent shallow nature of the zone, drill holes will be relatively short. A total of 1500 metres of drilling is recommended in approximately 30 holes.

With respect to the unconsolidated material more trenching is recommended with a sufficient density to both understand the spatial and grade distribution within this material. A series of vertical trenches along existing and new access trails with a spacing of not more than 50 metres is recommended. A minimum of 100 such trenches would be required.

Lastly, it is strongly recommended that surface geological mapping be undertaken as early as possible in the upcoming field season. This will be an ongoing effort as new access trails are constructed for trenching and drilling. This will aid considerably in the geological interpretation and may help to unravel some of the structural ambiguities that were seen in the drilling.



## 8.0 STATEMENT OF EXPENDITURES

Diamond Drilling	Bergeron Drilling and Exploration Ltd. 1181 metres of NQ core	\$73,360.00
Water Truck	October 29 th to December 12 th /2000	5,550.00
Excavator	55 hrs @ \$135.00	7,425.00
Labour	Geologist 46.5 days @ \$350.00/day Core splitter (29.5 hrs @ \$15.00) Surveyer (73 hrs @ \$25.00)	16,275.00 442.50 1,825.00
Truck (4x4)	46.5 days @ \$60.00	2,790.00
Fuel	· · ·	1,319.87
Tripari	Downhole Survey instrument (Nov.4 – Dec. 15)	1,466.39
Analyses/Petrography	Graphite assays Petrographic studies	8,041.00 1,911.56
Shipping/Freight		1,140.24
Report Preparation		5,000.00
	FINAL TOTAL	\$126.546.56

114 cece ESSIC BRITISH OSCIEN Č.

### 9.0 REFERENCES

- Carr, S.D., Parrish, R.R., and Brown, R.L. 1987 Eocene structural development of the Valhalla complex, southeastern British Columbia. Tectonics, 6: 175-196
- Carr, S.D. 1995: The Southern Omineca Belt, British Columbia: new perspectives from the Lithoprobe Geoscience Program, in Canadian Journal of Earth Sciences. **32**: 1720 1739 1995.
- Gabrielse, H., Monger, J.W.H., Wheeler, J.O., and Yorath, C.J. 1991;
  Part A. Morphogeological belts, tectonic assemblages, and terranes; in Chapter 2 of Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C.J. Yorath (ed.); Geological Survey of Canada, Geology of Canada, no. 4. p. 15-28.
- Howard, D.A. 1994: Report on the Exploration Potential of the Black Crystal Property (Molly 1 4 and PB (1 4)).
- Marchildon, N., Simandl, G.J., and Hancock, K.D. 1992: The AA Graphite Deposit, Bella Coola Area, British Columbia. Exploration Implications For The Coast Plutonic Complex (92M/15). In British Columbia Geological Fieldwork 1992
- Parrish, R., Carr, S.D., and Brown, R.L. 1985: Valhalla Gneiss Complex, Southeast British Columbia: 1984 Fieldwork in Current Research, Part A, Geological Survey of Canada, Paper 85-1A, p. 81-87, 1985.
- Reesor, J.E. 1965: Valhalla gneiss complex, British Columbia. Geological Survey of Canada, Bulletin 129.
- Snell, J., 1998; Geological Evaluation and Production Feasibility Study of the Black Crystal Graphite Deposit. Report for IMP Industrial Mineral Park Mining Corporation.

Shaubs, P.M. and Carr, S.D. 1998:

Geology of metasedimentary rocks and Late Cretaceous deformation history in the northern Valhalla complex, British Columbia. Canadian Journal of Earth Sciences **35**: 1018 – 1036.

## **10.0 STATEMENT OF QUALIFICATIONS**

I, Bernhardt E.K. Augsten of the City of Nelson, British Columbia, hereby certify that:

- 1. I am a graduate of Carleton University with a B.Sc. Hons. in Geology (1985).
- 2. I am presently self-employed as a Consulting Geologist
- 3. I have practiced as a geologist for the last 16 years in Ontario, Quebec, Manitoba, British Columbia, Arizona, Alaska and Mexico.
- 4. I supervised this diamond drill program including logging and sampling all the core.
- 5. I have worked on several other projects in the region over the last nine years
- 6. I am a registered Professional Geologist, registered in the Province of British Columbia.
- 7. I have not received, nor do I expect to receive, any interest in the properties or securities of Crystal Graphite Corporation.



## APPENDIX I ANALYTICAL RESULTS

Project: Industrial Mineral Park Mining Corp. Certificate No: 2809 Date: December 6, 2000

Sample	%	Sample	%
	Graphite		Graphite
4801	0.43	4815	1.66
4802	0.58	4816	0.14
4803	1.00	4817	0.49
4804	1.01	4818	1.44
4805	2,45	4819	1.59
4806	3,83	4820	1.84
4807	3,10	4821	2.56
4808	1.83	4822	1.57
4809	2.07	4823	1,08
4810	0,11	4824	2.53
4811	2.74	4809 dup	2.46
4812	0.93	4818 dup	1.43
4813	2.28	1% std	1.09
4814	0.14		
	V. 1-7		

Approved: H Duf-

Dond copy to Dany Drang

P.O. #: 2820

Project: Crystal Graphite

Date: January 4, 2001

	Sample	% Graphite	Sample	% Graphite
	1005		1004	
	4825	0.42	4861	0.15
	4820	0.75	4862	0.35
	4827	0.71	4863	0.28
	4828	0.71	4864	0.27
	4829	1.03	4865	0.43
	4830	1.49	4866	0.02
	4831	1.78	4867	3.53
	4832	2.30	4868	1.80
	4833	3.04	4869	0.61
	4834	0.92	4870	0.97
	4835	0.04	4871	1.21
	4836	0.15	4872	1.60
	4837	0.20	4873	1.54
	4838	0.42	4874	1.51
	4839	0.34	4875	1.38
	4840	0.09	4876	1.20
	4841	0.13	4877	0.14
	4842	4.17	4878	0.13
	4843	0.74	4879	0.06
	4844	1.07	4880	0.10
	4845	1.03	4881	0.09
	4846	1.22	4882	0.25
	4847	1.27	4883	0.24
	4848	1.40	4884	0.20
	4849	1.25	4885	0.33
	4850	0.96	4886	0.32
	4851	0.10	4887	0.46
	4852	0.20	4888	0.22
	4853	0.16	4830 prep ck	1.43
	4854	0.25	4835 prep ck	0.02
`	4855	0.11	4839 prep ck	0.36
	4856	0.13	4841 prep ck	0.10
	4857	0.03	4862 prep ck	0.41
	4858	0.17	4869 prep ck	0.67
	4859	0.03	4874 prep ck	1.56
	4860	0.08	4876 prep ck	1.33
	1% Std	0.90	10% Std	9.6
		•		
	· · · · · · · · · · · · · · · · · · ·			

. . . .

P.O. #: 2832

Project: Crystal Graphite Date: January 16, 2001

Sample	% Graphite	Sample	% Graphite
4889	1.70	4916	0.15
4890	1.25	4917	0.28
4891	0.19	4918	0.14
4892	0.02	4919	<0.02
4893	0.20	4920	0.07
4894	0.02	4921	0,98
4895	0.16	4922	0.72
4896	0.05	4923	0.95
4897	0.04	4924	0.05
4898	0.23	4925	0.05
4899	0.41	4926	0.09
4900	0.12	4927	0.20
4901	0.10	4928	0.24
4902	0.17	4929	0.20
4903	0.20	4930	0.37
4904	0.06	4931	0.41
4905	0.10	4932	0.47
4906	0.07	4933	0.14
4907	0,14	4934	0.08
4908	0.19	4904 prep ck	0.07
4909	0.80	4908 prep ck	0.14
4910	0.10	4911 prep ck	0.17
4911	C.19	4926 prep ck	0.09
4912	0.13		
4913	0.60	1.00% std	0.95
4914	0.37	10.0% std	9.7
4915	0.36		

Approved: H. D.t.

P.O. #: 2844 Project: Crystal Graphite Date: February 1, 2001

Sample	% Graphite	1	Sample	% Graphita
			Sample	% Graphile
4935	2.41		4971	1 73
4936	1.91		4972	1.05
4937	2.06		4973	1.00
4938	0.31	1	4974	1.40
4939	0.81		4975	1.20
4940	0.47		4976	1.56
4941	1.44		4977	1.00
4942	1.06		4978	1.39
4943	1.51		4979	1.00
4944	1.37		4980	1.06
4945	1.03		4981	0.07
4946	1.23		4982	< 0.02
4947	1.17		4983	0.81
4948	1.64		4984	0.73
4949	0.06		4985	0.85
4950	0.12		4986	0.42
4951	0.13		4987	1.27
4952	0.05		4988	1.48
4953	0.13		4989	2.39
4954	0.23		4990	3.30
4955	0.39		4991	0.33
4956	0.15		4992	1.11
4957	0.30		4993	1.01
4958	0.42		4994	1.37
4959	0.54		4995	1.15
4960	0.35		4996	1.0
4961	0.19		4997	1.34
4962	0.34		4998	1.46
4963	0.40		4999	0.90
4964	0.13		5000	0.15
4965	0.52		5001	0.07
4966	0.10		5002	0.03
4967	0.33		5003	0.40
4968	1.53		5004	0.16
4969	2.84		5005	0.89
4970	1.85		5006	0.31

2

.

Approved: H. Duf

P.O. #: 2844 Project: Crystal Graphite Date: February 1, 2001

Sample	% Graphite		Sample	% Graphite
5007	0.92		5043	1.20
5008	2.10		5044	1.19
5009	1.46		5045	1.38
5010	1.01		5046	0.72
5011	0.54		5047	0.68
5012	1.51		5048	1.25
5013	0.49		5049	2.05
5014	2.60		5050	0.05
5015	0.87		5051	1.34
5016	1.39		5052	0.40
5017	0.42		5053	0.04
5018	0.14		5054	1.25
5019	1.09		5055	1.62
5020	0.58		5056	0.12
5021	1.35	-	5057	0.06
5022	1.55		5058	0.90
5023	1.29		5059	0.35
5024	1.05		5060	1.79
5025	0.72		5061	0.20
5026	D.19	1. A	5062	0.19
5027	0.80		5063	0.26
5028	0.54		5064	0.36
5029	0.19		5065	0.34
5030	0.89		5066	0.10
5031	1.43		4944 prep ck	1.37
5032	1.62		4954 prep ck	0.2
5033	0.34		4964 prep ck	0.18
5034	1.34		4974 prep ck	1.38
5035	2.93		4984 prep ck	0.79
5036	0.72		4994 prep ck	1.30
5037	1.59		5004 prep ck	0.13
5038	0.09		5014 prep ck	2.54
5039	2.23		5024 prep ck	1.04
5040	0.99		5034 prep ck	1.27
5041	0.22		5044 prep ck	1.17
5042	0.75		1.00 % std	0.97

.

Approved: ______ . Duf

P.O. #: 2861 Project: Crystal Graphite Date: February 9, 2001

Sample	% Graphite	Sample	% Graphite
5067	1 28	5002	1 00
5068	1.20	5092	0.11
5069	1.60	5094	0.16
5070	1.51	5095	1 10
5071	1.63	5096	0.65
5072	1.65	5097	0.00
5073	<0.02	5098	1.47
5074	0.19	5099	0.77
5075	0.31	5100	1.40
5076	0.10	5101	0.42
5077	0.13	5102	1.47
5078	0.09	5103	0.07
5079	0.15	5104	0.84
5080	0.11	5105	0.09
5081	0.22	5106	0.17
5082	0.23	5107	3.75
5083	0.06	5108	1.12
5084	0.30	5109	0.08
5085	0.52	5110	1.58
5086	0.32	5111	1.18
5087	0.22	5112	1.42
5088	0.28	5113	1.76
5089	0.38	5114	1.04
5090	0.16	5115	0.03
5091	0.35		
5072 prep ck	1.63	5106 prep ck	0.12
5082 prep ck	0.18	5115 prep ck	0.02
5092 prep ck	1.02	1 % std	0.97

Approved: 76 - 1 Juf

P.O. #: 2862 Project: Crystal Graphite Date: February 9, 2001

Sample	% Graphite		Sample	% Graphite
EAAC	4.50			
0110	1.58		5146	2.08
5117	3.37		5147	1.44
5118	2.42		5148	2.55
5119	0.25		5149	0.35
5120	0.25		5150	0.42
5121	0.03		5151	1.35
5122	1.61		5152	1.38
5123	1.39		5153	0.70
5124	1.28		5154	1.24
5125	1.42		5155	0.95
5126	1.25		5156	0.26
5127	1.37		5157	0.62
5128	1.26		5158	0.73
5129	1.29		5159	0.42
5130	2.40		5160·	0.16
5131	1.36		5161	1.47
5132	0.35		5162	0.36
5133	3.31	ĺ	5163	0.32
5134	0.23		5164	0.32
5135	0.20		5165	2.08
5136	0.12		5166	0.48
5137	0.03	1	5167	0.08
5138	4.48		5168	0.16
5139	0.09		5169	0.69
5140	0.68		5170	0.46
5141	2.83		5171	0.48
5142	2.05		5172	0.20
5143	0.07		5173	0.36
5144	2.50		5174	0.04
5145	1.51		5175	0.38
5125 prep ck	1.43		5156 prep ck	0.26
5136 prep ck	0.18		5166 prep ck	0.41
5146 prep ck	2.08		50% std	48.0
Approved: H Duf				

.

. ئىرىغ
APPENDIX II DIAMOND DRILL LOGS

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1

Page 1 7 of

E.

ļ,				SURVEY DATA							I	<u>ATA</u>			
SURVEY	D	<u>epth</u>		DIP	TI	RUE AZIMUTH	<u> </u>		GR	D	······	GRID SYS	TEM	M	INE
	<b>(</b> ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	THING (m)	131	4.95
Collar				-5233°	041	40						APPROX. EAS	TING (m)	72:	5,26
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. ELEV.	ATION (m)	1631.27	
	170		52°		013°						,	DATE DRILLING	STARTED	NOV.	4/2000
 	340		53°		023,5°							DATE DRILLIN	G ENDED	NOV.	8/2000
					ļ		4							<u>(ft)</u>	<u>(m)</u>
ļ					ļ		4					TOTAL DE	PTH	350°	106.68
					ļ		_					CASING D	epth	14	4.27
	<u>_,</u>			·								CASIN	G		<u> </u>
					ļ							STEEL IN I	IOLE	NO	Ft.
											•	LOGGED	ВУ	B.E.K. AU	JGSTEN
					<u> </u>		]					LOGGING 1	DATE	NOV. 14-2	23/2000
GEG	JUGIC	ΔT. ·	LITH			LITUOLO		TODETON			•		SAMPLE	rog	
IN IN	TERVA	L	O CODE			LIIRULA	JGICALD	escription	L			SAN INTE	1PLE RVAL	SA	MPLE
From (n	u [ ]	[o (m)		0	VERBURDEN	sand,boulder	rs, fine gravel				· · · · · · · · · · · · · · · · · · ·	From	To (m)		
0	<u></u>	4.27		CALCETTIC	ATE CNEES	1								_	
4.27		11.55	<u>CS1</u>	L	ithology: light	to medium gre	ev to light gre	w/green coloured r	ock, fine to medium	grained with		4.27	6.00	4801	
			<u> </u>		alcite grains <1	mm in diamete	er. Rock has	a sucrosic texture.	,			6.00	8.00	4802	
i					lineralogy: Roc	k is distinguis	hed by the pro	esence of 3-5% light	nt to medium green d	iopside grains		3.00	10.00	4803	
			I		ock also contai	us 1-2 % gran	uration. hite as discre	te discs (<0.5mm d	iameter) which descr	ibe		10.00	11.55	4804	
ļ				a	weak lepidobla	stic foliation. I	Locally over :	5-10cm, heavier co	ncentrations of graph	ite giving the rock	a darker grey look		<u> </u>		
<u> </u> ,		<del></del>	¦		Structure: Ro	ck has a weak	lamination/fo	oliation manifested	by the orientation of	the graphite.			1		
},					Vithin this unit t	here is some n	nineralogical	and more significa	ntly textural variabili	tv.			<u> </u>		- <u></u> -
				-											
		·		There are sor	ne coarse graine	ed sections as	follows:	0.1.1		e					
				8.	.50 - 9.02 - with correspond	Somewhat cos	arser material n granhite ori	of simuar composition size	tion. Grain size 1-1	mm			<u> </u>		
					0.30 - 10.66 - 1 .5mm but avera	pale beige/yell ge 0.75 mm.	owy cream c	oloured coarse man	ble with grain size of	1-1.5mm and grap	bite crystals to				
 			İ			-							ļ		
Ĺ			<u> </u>	<u> </u>						·	·····				·

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1

01 Page 2 of 7

GROUO	CICAI	LITH			SAMPLE LO	)G
INTEI	GEOLOGICAL INTERVAL		LITHOLOGICAL DESCRIPTION	SAM INTE	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)	
			As well with in this calc-silicate unit there are several qtz/fsp/+/- biotite +/-graphite, 'pegmatite' sweats. (recrystallized qtz-			ļ
	····		4mX 3m. They generally contain variable amounts of coarser graphite but usually <0.3%. They are however, significant in that they			
			make up a large proportion (25%) volumetrically of this marble unit.			
			They are use @			
			4.35 - 4.46 (.11)			
			4.64 - 4.75 (.11)			
		<u> </u>	$\begin{cases} 6.41 - 6.62  (.21) \\ 6.76 - 7.17  (.41) = 1.84 \text{ m} (.25\% \text{ of unit}) \end{cases}$			
		<u> </u>	8.11 - 8.27 (.16)			
			8.61 - 8.66 (.05)		_	L
			9.16~9.38 (.22)			
			10.77 - 11.5 (.56)			
		<u> </u>	Alteration: Fracture controlled oxidation is well developed throughout unit manifested as limonite development on fxs.			
		· ·				
		CS2	CALCSILICATE GNEISS 2:	11.55	13.00	4805
11.55	19.74	1	Lithology Medium to dark grey fine-grained foliated gneiss containing	13.00	15.00	4806
			variable amounts of diopside, graphite and spinel. This unit is distinguishable by two mineralogical features, graphite and	15.00	17.00	4807
			spinel. This is the graphite-bearing gneiss unit that weathers to a sand like consistency at surface.	17.00	18.00	4808
	-		<u>Multieralization</u> : Kock contains 5-1% fine grained graphite at 0.25 $\sim$ 0.50mm in diameter. What really distinguishes this unit is the presence of bright emerald, organ spinel grains (<0.5%) typically 0.1-	18.00	19.74	4809
			0.3 mm in diameter. (Note: we only see this spinel in the this unit) Trace pyrite +/- pyrhotite.			
		1	Structure: Structurally this rock is distinguishable from the other gneiss unit by a well-developed foliation or schistosity			
			$S_1 = 75^{\circ}$ to C.A. (2) 13.74 $\rightarrow$ 14.02 - variable folding foliation			
			(Note: we don't see upper contact with the other marble unit. Upper contact with a quartz feldspar boudin.			
			L.C. sharp @ 75° to C.A.			
		1	$\gamma$ when $\rightarrow$ coarse-grained granodiorite dikes/dikelets occur at the following locations.			-
				[ ]		1
		<b>T</b>				
		1			]	1
·····				<u></u>	·	
			· · · · · · · · · · · · · · · · · · ·			

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1 Page

3

N. 1

7 of

.

GEOLO INTER	GICAL WAL	LITH O CODE	LITHOLOGICAL DESCRIPTION	SAN INTE	DG SAMPLE NUMBER	
From (m)	<u>To (m)</u>		They occur @ $16.04 - 16.07 (.03)$ 16.15 - 16.22 (.07) 16.29 - 16.31 (.02) 16.38 - 16.61 (.23) 17.52 - 17.56 (.04) 17.91 - 17.93 (.02)	From	<u>To (m)</u>	
19.74	21.33		17.91 - 17.93 (.02)         Granodiorite Gneiss: (Foliated Granodiorite): Medium grained leucocratic biotite granodiorite; (Note: subsequent petrological work         has shown this unit to be a quartz monzonite.)         Model Composition:         Qtz: 12-15%         Plag: 65%         .Kspar: ? 7%         Biotite: 5.7%         .YPO: Trace         Non magnetic.         This intrusive has a weakly- developed foliation (gniessosity) manifested by the biotite.         S1= 80° to C.A.         @ 20.85 granodiorite grades into = more leurocratic intrusive with no or minor biotite and increase in disseminate py+/-(<0.7%)	19.74	21.33	4810
21.33 (4.28)	25.61	CS2		21.33 23.00 24.00	23.00 24.00 25.61	4811 4812 4813
25.61	29.59		Foliated Granodiorite (Qtz Monzonite). Same rock as @ 19.74 → 21.33m - Med grained ;eurocratic biotite granadiarite. - C.I = 5	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1

7 Page 4 of

GEOLO	GICAL	LITH			SAMPLE LO	DG
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAM INTE	IPLE RVAL	SAMPLE NUMBER
From (m)	То (m)			From	To (m)	
			5-7 % biotite			
			Foliation: 40° to C.A. (variable)			
·			U.C. @ 65° to C.A.			
			L.C. @ 40° to C.A. Note: U.C. displays a lom chill margin			
		. <u> </u>				
30.50	21.06		SKARN: Otz-diopside ~ Actinolite Skam			
29.39		SK.	Med $\rightarrow$ dk green, hard, massive rock consisting of intergrown qtz/diopside+/- actinolite			
		·	1-2% diss py Surprisingly about but irregular lower contact	·		
			Surprisingly asture out integrial tower contact.			
31.06	36.50	M1	<u>Quartz-Diopside Marble – M1</u>	31.06	33.00	4814
51.00			- Pale grey to pale greenish grey medium to coarse grained gtz marble	33.00	35.00	4815
			- Contains tr $\rightarrow$ <0.5 % diss graphite. Note: Graphite in this particular rock is generally fine grained but somewhat variable.	35.00	36.50	4816
		<u> </u>	Generally graphite grain size appears to mimic host rock grain size.			· · · · · · · · · · · · · · · · · · ·
·			<ul> <li>Several 10-(Scin zones of fracture-controlled oxidation manifested by fracture-controlled and weak pervasive limonite.</li> <li>Marble varies in structure from massive to having a weak planar fabric @ 70° to C.A</li> </ul>			,,,,,,
	····		- < 0.5% diss pyrite.		· · · ·	
	-		- Tr. diss po (non-mt. Po). From 35.24 $\rightarrow$ 36.17 – see ~1% med, arean grossular garnet metacrysts			
			L.C. abrupt but somewhat irregular $@ \sim 15^{\circ}$ to C.A.			
			Distite Deleganite Cranadianites Med a contra grained non fel a while foliated two miss grave disting			· · · · · · · · · · · · · · · · · · ·
36.50	41.87	GD	$\frac{1}{1}$ $\rightarrow \frac{1}{1}$ $\rightarrow \frac{1}$			
	·	 	- 4-5% biotite			
		L			<u> </u>	<u> </u>

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1 Page

.

,

.

.

<u> </u>		- <b></b>				
GEOLO	GEOLOGICAL LITH INTERVAL 0		I FIGLACIAL RECOMPTON		SAMPLE LO	OG
INTE	GEOLOGICAL INTERVAL From (m)   To (m)		LITHOLOGICAL DESCRIPTION	SAN INTE	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)	1
			Tr. Phlogopite; Non-magnetic; U.C. strongly altered or may contain a 20cm section of digested marble.			
				38.05	39.00	4817
38.05	41.87	CS1	<u>Catcsilicate Ghelss 1:</u> - Weakly faliated/laminated fine to med $-$ grained med arey $\rightarrow$ to faint greenish grey coloured rack	39.00	41.00	4818
			- 1-3% diss graphite as discrete diss crystals with crystal size typically $< 0.5 \times 0.5 \text{ mm}$ ; Tr. $\rightarrow <<0.3\%$ diss. Pyrite 38.05 - 38.70 – Upper 65cm of unit composed almost entirely of a coarse grained limonitically stained gtz	41.00	41.87	4819
	······································		feldspar pegmatitic sweat.		· · ·	
			$\frac{40.40 - 41.24}{10}$ - Marble has been pervasively limonitized – (I'm not sure what is being converted to limonite? (biotite?).			
			(a) 41.70 - Went developed tonation (a) 05 to C.A.			
	·····					·
41.87	48 17		'Qtz Vein'		<u> </u>	}
		<u> </u>	- Recrystallized qtz-rich metamorphic sweat with the appearance of a qtz vein. When seen in outcrop they tend to be		· · · · · · · · · · · · · · · · · · ·	
	·····		discontinuous boudin-like bodies of variable size but measured up to $4m \times 3m$ .		<u> </u>	
			minor biotite.	}	<u> </u>	
· · · · ·		·	- Within the vein are several small intervals of biotite fsp-gtz gneiss and biotite - calc-silicate gnesiss.			
			- What distinguishes this unit visually is the strong fracture-controlled and pervasive limonite.	 		
			<u>- Milleranzanon</u> . It. Graphite Tr. Po. pv.			
			- Structure: Gneissic foliation @ 85° to C.A.	~		
			- Lower contact not abrupt but more gradational in the sense that we start seeing more and more biotite - fsp-qtz gneiss			
			intervals with a minor lesser after vein zones.		,	
48.17	56 58	17	INTERCALATED ZONE:	-		
			- Intercalated sequence of a fine grained biotite qtz-fsp gneiss with a med green qtz-diopside calcsilicate rock (skare)		1	Í
			- minor narrow, <10cm lenses of coarse - grained calcite - garnet - graphite marble			, ¹
	· · · · · · · · · · · · · · · · · · ·		- (Note: other than small marble layers no reaction to dilute HCl.			
		<b>┦</b>	- True pytrhotite? ? ??? in gneissic layers.		<u> </u>	i
			· · · · · · · · · · · · · · · · · · ·		<u> </u>	ļ
		ļ				
		<u> </u>			<u>                                     </u>	
					l	

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1

E

.

( **E** 

E

6 Page

Ł

E

CECTO		LITH			G	
GEOLO INTER	GICAL RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAM INTE	IPLE RVAL	SAMPLE NUMBER
From (m)	To (m)			From	To (m)	
			Intercalated Zone continued:         - The BFQG is readily distinguished by it's reddish brown colouration intermixed in variable amounts with the white feldspar-qtz material. To the untrained eye this may first appear to be graphite - rich gneissic layers but that is not the case.         - The last 1.3m of this section has more coarse grained qtz-diopside-calcite +/- graphite +/- garnet layers. These layers have a moderate reaction to HCl.         - Lower contact abrupt @70° to C.A.         - Some moderate F.C. limonite staining for 50cm above lower contact.		•	
56.58	61.29	P	PEGMATITE:         - Coarse grained Feldspar Biotite – Qtz- Pyrrhotite Pegmatite         ~1-2% pyrrhotite along fractures. This po is mt- whereas some of the other po seen in gneisses/ calcsilicate rocks tends not to be mt         57.87 - 58.30 - coarse grained calcite - qtz diopside marble with <0.5% coarse graphite metacrysts to 2mm X 1.5 mm.			
61.29	69.92	M1	Qtz - Diopside - Graphite Marble: M1	61.29	63.00	4820
			- Medium to coarse grained, pale grey to pale greenish grey marble.	63.00	65.00	4821
			- <0.5% diss fine $\rightarrow$ med granne grannie moughout - Texture generally massive with a weak lamination evident occasionally	65.00	67.00	4822
			- Tr. Diss po throughout	67.00	69.00	4823
		1	- L.C. sharp but undulating @ about 60° to C.A. with minor skarning.	69.00	69.92	4824
	-	1				
69.92	73.02	GD	Biotite Granodiorite:         -       Medium grained weakly foliated granodiorite         -       Non-mt         -       Tr. Sph?, Tr. Po         -       L.C. abrupt @ 50° to C.A. with contact effect on underlying metasediments			

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO1

Page

GEOLO	GEOLOGICAL INTERVAL From (m) To (m)			SAMPLE LOG			
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAM INTEI	PLE RVAL	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)		
			<ul> <li>Calcsilicate is disrupted by several qtz-feldspar 'veins" or pegmatitic sweats.</li> </ul>				
			Mineralogy of the calculicate:				
			Qtz- 30-40%				
			Diopside 20.49%				
			Garnet 25%				
			Pyrraottie 1-3%				
			Note: Purchastic account throughout unit as 1, 204 discerning taking trainer trainably some in size )		······		
			Note: I yilluotte occurs unoughout unit as 1-376 disseminated grants (pitcan) ~1100 m size.)				
			phenocrysts of pamer? to 2mm x 0 5mm (grossilar?)				
			Within this unit as elsewhere in the entire hole - see several sections of coarse-grained at feldspar +/- sericite/chlorite				
			pegmatitic sweats. These vary in width from ~5cm to 35cm and as seen in outcrop are usually discontinuous			· .	
			boudinaged bodies.				
			79.95 – 80.15 – biotite granodiorite gneiss				
			81.10 – 81.72 – biotite granodiorite gneiss – small dike				
			L.C. abrupt @ 50° to C.A. and marked by a mixture of biotite granodiorite gneiss and pegmatitc sweats.				
81.95	106.68	BQFG	Biotite – Qtz – Fsp Gneiss:				
			- Med to dark reddish brown coloured rock with a well – defined foliation				
			- Rock unit is not completely homogeneous in that it contains intercalations of skarn above and once again as seen in				
			other rock units is cut by pegmatitic sweats- usually coarse grained and composed of qtz - feldspar with biotite -				
	1		- Biotite gneiss is fine-grained with biotite metacrysts to $\leq 1$ mm				
	-	•	- 84.62 – 86.55 – <u>Biotite Granodiorite Gneiss</u> – well foliated leucoratic → mesocratic intrusive				
			Note: preliminary petrological work suggests that these are actually qtz syenites (feldspar predominately kspar)				
			<0.5% diss polynomial for the second state of the second state				
	·		Chelssosky / rohauon somewhat variaory out usually blw. 70-65° to C.A. with local changes to 45° to C.A.				
			F.O.H @ 106.68				
	······································			····.			
	1						

· · · · . • • 

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO002

3 1 Page of

				SURVEY DATA									DRILLING DATA		
SURVEY	I	DEPTH		DIP	T	RUE AZIMUTH	[		GR	φ		GRID SYS	TEM	MINE	
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX, NORT	fHiNG (m)	131	3.62
Collar				-90								APPROX, EAS	TING (m)	72	4.05
Down Hole	(ft.)	(m)	Read	True	Read	True		·				APPROX. ELEV.	ATION (m)	163	31.43
		43.59	-88		325.50		1					DATE DRILLING	STARTED	NOV. 8 /2000	
												DATE DRILLIN	G ENDED	NOV. 9/2000	
			~					•						(ft.)	(m)
												TOTAL DE	3PTH	146	44.50
												CASING D	EPTH	15	4.57
												CASIN	G		
· · ·							]					STEEL IN I	HOLE	NO	-Ft.
							]		•			LOGGED	BY	B. AUGS	TEN
							]				-	LOGGING	DATE	NOV. 267	/2000
CF		"AT	LITH		LITHOLOCICAL DESCRIPTION									LOG	
IN	INTERVAL					LITHOLO	GICAL E	DESCRIPTION				SAN INTE	APLE RVAL	ŞA NU	MPLE
From (n	1)	To (m)					• • • • • • • •					From	To (m	)	
4.57		16.60	CS1	CS1-CAL	<u>CSILICATE GI</u>	NEISS 1						4.57	6.00	4825	5
					<ul> <li>Pale – medium</li> <li>Relatively find</li> </ul>	a grey to pate ;	a distinct su	coloured rock				6.00	8.00	4826	5
					- Well- laminate	ed/ banded? w	ith gneissic f	foliaton @53° to C.	A. The lamination i	s manifested by a p	preferred orientation	8.00	10.00	4827	/
				an	l segregation of	diopside-rich l	bands (green	), and qtz + calcite-	rich bands, (beige to	whitish) and narro	ow 2-3 mm graphite	, 10.00	12.00	4828	<u>}</u>
				ric	h bands	2% amphito?	Granhita m	eteorista to A Smm	•			12.00	14.00	4829	) 
				-	- <1% py +/~ pc	Note: non-m	- Orapinie n. it.	letaci ysis to 0.5mm	1			14.00	15.00	4830	)
		·	 	-	- rock reacts str	ongly to cool	dilute (10%)	KCI			·	15.00	16.60	4831	l 
·					- 11.98-16.60 -	strong pervas	ive 2° oxidat	tion manifested by t	he presence of limo	nite		ļ		· · · · · · · · ·	
					- in places the re	ock is consider	and goes – n ably weaker	end by oxidation suc	ch that it can be brok	the $\frac{1}{2}$ biome;			<u> </u>		
					- Also within th	is unit as well	as througho	ut the metasedimen	tary/gneissic horizor	is, we see several 1	enses/boudins of	L			- <b>.</b>
				-	qzt-feldspar bio	tite +/- pyrrho	tite metamor	phic pegmatitic swe	eats. Near surface th	ney tend to be oxid	ized with moderate	d		`	
			 		to strong limoni	te. These lens	ses/boudins r	enge in size from 2	cm – 35 cm.						
				-									·	-	;
L			L	1							· · · · · · · · · · · · · · · · · · ·		<u> </u>		····-

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO2 Page

1

F

3 2 of

CEOLO	CICAL	LITH			SAMPLE LO	)G
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAN INTE	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)	1
			C\$1 Continued: - In total within this unit (4.57-16.60) they have a cumulative total length (thickness) of 1.09m. This amounts to ~9% of			
			this interval. Noteworthy is the fact that they do not contain graphite and that they are much harder than the host unit.	·		{
			- L.C. is abrupt but conformable and may represent a facies change. L.C. @ 55° to C.A.			
· · · · · · · · · · · · · · · · · · ·				16.60	18.00	4832
16.60	21.23	CS2	CALCSILICATE GNEISS 2:	18.00	20.00	4833
			-very similar unit to CS1 with some notable exceptions. Mineralogy is almost the same except that this unit has visually more graphite and contains the distinctive bright green, fine grained spinel	20.00	21.23	4834
			- ~<1% spinel as solitary 0.5mmx0.5mm, disseminated bright emerald-green metacrysts			
			- This rock tends to be a med			
			- Graphite: 3-5% (locally $\rightarrow$ 7%)			
			- Vyindute. 0.5.76 unschmacht	· · · ·		
			- On average, this unit tends to be finer grained than CS1			
			(Note: minor interbeds of CS1 w/in this unit)	1		
			- rock reacts moderately to cool dilute (10%) HCl	1		
			- 20.27-21.23 - last Im? Of this unit has been 'skarmed'? by the contact w/ the grerodiarite? Gneiss	1		
		1	- this skarming has destroyed the gragnite for the most part and produced a dark green, the grained, diz – diopside? –			
		· ·	- minor disseminated calcite	1		
			- 1-2% F.C. +diss po.			
	-		L.C. sharp@ to C.A.			
			BIOTITE CD ANODIODITE (OT 7 MONTONITE): (thin section save this is a dr monzonite)	21.23	22.00	4835
21.23	34.88		<ul> <li>Medium grained, leucocratic — mesocratic, pale grev coloured rock w/ a salt and pepper texture.</li> </ul>			
		<u> </u>	- Rock is composed of feldspar (plagioclase)? Qzt and biotite w/ accessory Po			
			- Feldspar - 75%			· · · · ·
			- Qzt - 15%			
			$P_{\rm res} = 20000 \pm 5\%$	ļ		
			- Otz occurs as anhedral grains. 1mmx 1mm with larger aggregates - qtz has a faint pinkish to light grev hue to it		<u> </u>	

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO002

ſ

2

Page

CEOLO	CICAL	LITH			SAMPLE LA	) G
INTER	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAN INTE	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)	
			Biotite produces a weak→mod. Foliation typically @70° to C.A. - 23.97 - 24.77 - aphanitic Pale grey→v. pale pinkish grey aplitic phase within the granodiorite. Contacts are not sharp - contains 3% very fine grained biotite. (Note: this rock does not react at all to cold dilute HCI) 22 (0. 22 04 is the index bits the share bits the pinking product of the first product of the share bits of the share bits			
:			<ul> <li>Strong and a strong of strong of strong of the strong of th</li></ul>		· · · · · · · · · · · · · · · · · · ·	
34.33	41.10	MI	MARBLE (M1):	34.88	36.00	4836
			- Medium grained massive to weakly foliated pale grey impure marble	36.00	38.00	4837
			- <0.5% diss po +/- py	38.00	40.00	4838
			- contains 5-7% qtz as anhedral aggregates/ metacrysts usually 1mm x 1mm but variable up to + 1cm x 1cm - contains 4 -7% diopside	40.00	41.10	4839
			- At upper contact see a 12-15cm contact skarn effect producing a medium green qtz-calcite actinolite +/- green garnet			 
			- Rock reacts vigorously to cool dilute HCI			
			- Lower content (L.C.) is a gradational contact marking a change from a relatively homogenous marble (M1) to an intercalated sequence of coarse – grained marble and skarn/calc-silicate bands as described below. Contact established at first "skarn "band.			
41.10	44.50		MARBLE/CALC SILICATE SKARN:	41.10	43.00	4840
	·····		- This is a rapidly intercalating sequence of coarse-grained qtz-rich +/- graphite marble with variably textured skarned metasediments including dark green, massive qtz rich actinolite skarn and biotite-rich bands.	43.00	44.50	4841
			- Also includes several star-rich metamorphic sweats /veins? - The finer grained metaseds contain 3-5% disseminated by +/- bo		ļ	
			- Overall graphite grade <0.3% and concentrated in the qtz-marble bands.			
			- @ end of hole small piece of biotite qtz-feldspar intrusive?	·····		
		<b> </b>		·		<u> </u>
 				 		<u> </u>
	······································			h		
II		1		I.,	L	1

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0003

Page 1 of

6

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRIÐ GRID SYSTEM MINE (fl.) (m) True Degrees Minutes Seconds SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) 1234.13 Collar -54.67° 40 30 APPROX. EASTING (m) 712.39 Down Hole 1625.02 (ft.) (m) Read True Read Тпе APPROX. ELEVATION (m) 39.62 -53 -53 021.0 039.50 DATE DRILLING STARTED NOV. 10/00 80.16 -53 -53 021.5 040.00 DATE DRILLING ENDED NOV, 12/2000 (ft.) (m) TOTAL DEPTH 270 82.30 8 CASING DEPTH 2.44 CASING STEEL IN HOLE NO Ft. LOGGED BY B AUGSTEN NÖV.29-30/2000 LOGGING DATE SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER To (m) From (m) From (m) To (m) 2.44 Casing - till, weathered graphitic calcsilicate. MARBLE ( likely boulder) - Coarse - grained pale grey → beige marble with accessory diopside M3 2.44 2.66 And coarse muscovite/ sericite on fractures - Minor graphite - Strong limonite, staining on fxs. - Interval consists entirely of a few small, 7cm long pieces. . 2.66 4.60 CS2 CALCSILICATE GNEISS 2: - fine  $\rightarrow$  med grained med  $\rightarrow$  dark grey foliated rock composed of qtz diopside calcule graphite and spinel 2.66 4842 4.60 - Model composition 45% Rock is readily distinguishable by its dark grey colour, foliated texture and Otz Caloite 35-40% most importantly, by the presence of bright green spinel metacrysts. Diopside 10-12% Graphite 3-5% Spinel 1% ₽y < 1% -Foliation @ 55-70° to CA

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO003

£

E

E

2 6 of Page

E.

			SAMPLE LOG				
GEOLOGICAL INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m) To (m)			From (m)	To (m)			
		<ul> <li><u>CS2 continued:</u></li> <li>See minor narrow zones of oxidation where rock is limonitically stained – presumably Fe-sulfides oxidated by meteoric water. Possible biotite oxidation.</li> <li><u>@</u> 4.05 m. a 15cm long section with a distinctive banded appearance manifested by coarse, lenticular accumulations of diopside,+/- spinel aligned with the gneissic foliation.</li> <li>This rock reacts strongly to cool dilute (10%) HCR.</li> <li>Graphite metacrysts to 0.5 x 0.5 mm with rarely larger</li> <li>L,C sharp but undulating @ 65-75° with a distinctive 1-2 cm contact effect producing a weak skarning.</li> </ul>					
	CS1	<ul> <li>CALCSILICATE GNEISS 1: <ul> <li>Very similar to CS2 in many aspects. This rock varies in colour, grain size and mineralogy w.r.t. CS2.</li> <li>This is a weakly foliated to foliated ,med grey → pale greenish grey, medium grained rock</li> <li>Overall mineralogy is similar to 2 except for the lack of spinel. For the same reason it does not include the bright green spinel.</li> </ul> </li> <li>Model Composition: <ul> <li>Qtz: 30-35%</li> <li>Diopside: 15%</li> <li>Calcite: 45%</li> <li>Graphite: 2-3%</li> <li>Py+/-Po: &lt;1%</li> </ul> </li> <li>Gneissic foliation compositional banding very firm 40° to 70° to C.A.</li> <li>Reacts strongly to dilute 10% HCI (except for permattic lenses/boudins)- While overall this rock unit is relatively homogeneous in and of itself, crosscutting or intruding this unit are numerous small to large felsic metamorphic sweats, pegmatitic sweats and intrusive dikelets of possible quartz systemic composition <ul> <li>They vary in size from 5cm to greater than 30cm. In total within this rock unit they have an accumulative ore length of a 2.66 m comprising 19% of the total.</li> <li>These are significant because of their typical lack of graphite – although some have small amounts of coarse graphite - aid their hardness.</li> <li>L.C. marked by a large pegmatitic like – sharp @ 40° to C.A.</li> </ul> </li> </ul>					

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0003 Page 3 of 6

SAMPLE NUMBER 4851 4852
4851 4852
4851
4852
4852
· · · · · · · · · · · · · · · · · · ·
+
·····

,

.

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT ... Geological Log Hole-ID: BC0003

Page

6 4 of

CEOLOGICAL INTERVAL		1		SAMPLE LOG			
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	1	
31.20	39.62		PEGMATITE DIKE:				
			Coarse – grained qtz-kspar – garnet – actinolite pegmatite.				
			- Quarz and relospar ineracitysis to Zoni x Toni - Brown – reddish/brown "andradite"? garnet				
	· · · · · · · · · · · · · · · · · · ·		- Patches of retrograde actinolite after chlorite?				
		<u> </u>	- Within the dike or cut up or surrounded by dikes are varying sized segments of M1 marble. Where these section are	<u> </u>			
			small they have been completely recrystallized into a very coarse-grained, calcite and green garnet assemblage				
	·						
			coarsening in the grain size.				
			The lower contact therefore is somewhat gradational and arbitrary.	ļ			
			It was picked where it appears that the M1 marble predominates.				
	·····		Note: Large section of M1 marble as follows:			4052	
			1. From To Length	37.02	38.00	4853	
			35.70 36.30 0.60m	38.00	39.62	4854	
			37.02 37.34 0.32m				
			38.15 38.83 0.68m				
			Perhaps the contact could be placed at 37.02?				
			Note: Contact @ 37.02 is @ 40° to C.A.				
			- Contact is sharp but undulatory.				
	~		2. Section @ $37.02 \rightarrow 37.34$ has the appearance closer to CS1.			`	
39.62	58.65	M1	M1 MARBLE: Quatrz- diopside – Graphite Marble:	39.62	41.00	4855	
			Qtz: 5-10%	41.00	43.00	4856	
			Calcite: 8.5%	43.00	45.00	4857	
			Diopside: <3% Granhite: <0.5%	45.00	47.00	4859	
			Py+/-Po: <1% diss.	47.00	49.00	4860	
				49.00	51.00	4861	
		-	- vice $\rightarrow$ pale grey, med $\rightarrow$ coarse gramed massive to locally weakly tollated matorie.	51.00	53.00	4862	
					55.00	4863	
·				55.00	57.00	4864	

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO3

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) M1 Marble continued: 57.00 58.65 4864 Note: This is a relatively, clean easily recognizable marble - unfortunately the graphite grade visually looks low in this unit, - Graphite metacrysts tend to be somewhat larger, although on average still < 1mm x 1mm. - Some limonite development on fxs. Note: Occasionally see small segments with a light brown phlogopite development such as at 54.74 -> 54.92m Here phlogopite makes up 3-5% of rock. L.C. somewhat gradational and marked by increasing percentage of bands of CS1. L.C. / compositional banding/gneissic foliation @ 65° to C.A. 58.65 59.93 CSI CALCSILICATE GNEISS 1: 58.65 59.93 4865 - Fine grained foliated med  $\rightarrow$  dark grey  $\rightarrow$  greenish grey- coloured rock. Similar in appearance to CS2 without the spinel - Also contains more sulphide than typical - ~ 2% diss py +/- po - Reacts strongly to cold dilute (10%) HCl - Well developed limonite on fxcs- fxcs parallel to foliation @ 55° to C.A. - 2-3% diss graphite L.C. very irregular but sharp 61.23 59,93 P **PEGAMITITE:** Coarse grained, gtz - feldspar- biotite pegmatite. - <0.5% po. - Does not react to cold dilute (10%) HCI - Overall colour white  $\rightarrow$  pale grey, 61.23 64.90 SK SKARN ROCK: - Med -> dark green, aphanitic, rock composed of diopside.? + quartz. +/- calcite - No graphite - This rock is extremely hard. - Locally this unit will react to cold dilute HCl - This interval is not homogeneous in that it includes several small sections usually (<10cm) of coarse - grained recrystallized M1 several small <5cm pegmatitic sweats and ore large pegmatitic sweat (dike) @ 62.5 -> 62.91m Note; the recrystallized M1 sections are now quite coarse grained with individual calcite grains to 5mm across. Typically this calsite is white -- it. Grey included commonly in these sections are small <1mmX1mm dark green garnet (pending thin section) metacysts. Also see <0.5% diss, Pyrite. -In addition, btw 63.68 and 63.91 rock is biotite- rich producing a banded green and reddish / brown rock relflecting respectively more diopside and biotite- rich sections. L.C @70° and marked by a decrease in grain size and increase in qtz.

Hole-ID: BCOOO3 Page

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) | To (m) 64.90 68.48 GRANODIORITE GNEISS; Light → medium grey, leurocratic → mesocratic biotite grandiorite gneiss. (med grained) (gtz syenite gneiss?) - U.C. marked by a 1cm chill margin - does not react to cool dilute HCI - L.C. sharp @ 80° to C.A. - Gneissic foliation @ 70-75° to C.A. 68.48 82.30 M1 MARBLE: Intercalated sequence of predominately variably recrystallized M1 marble with minor biotite - feldspar gneiss and E.H.O several small and large pegmatitic "sweats" and /or dikes. - The impression one gets is that the pegmatitic intrusions are responsible for the recrystalliaztion of the marble. - Overall colour of the marble is a pale  $\rightarrow$  med grey  $\rightarrow$  grey/green colour. - Marble is composed of variable proportions of qtz-diopside -- calcite with / accessory sulphides +/- graphite. - Overall graphite grade is <0.3% with locally higher - Marble varies from appearing massive to weakly foliated. - Large pegmatite dikes occur @ 70.48 → 71.55 76.47 → 77.93 @72.50 well-developed compositional banding within small segment of CS1 @ 60° to C.A. @ 82.05 a 10 cm section of med  $\rightarrow$  dark green massive qtz-diopside rock with 5-10 % po as semi-massive aggregates and 'veins' to 0.5cm. tr. Cpy. Note: Minor F.C limonite to bottom of hole. .

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO3

6 6 Page of

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0004

SURVEY DATA DRILLING DATA SURVEY DEPTH TRUE AZIMUTH GRID GRID SYSTEM MINE DIP 1232.97 ELEVATION (m) APPROX. NORTHING (m) (ft.) (m) Тгие Degrees Minutes Seconds SYSTEM NORTHING (m) EASTING (m) Collar -90 APPROX. EASTING (m) 711.27 1625.10 APPROX. ELEVATION (m) Down Hole (ft.) (m) Read True Read True NOV. 12/2000 49.07 DATE DRILLING STARTED -88 -88 32.5 051.0 DATE DRILLING ENDED NOV. 13/2000 (ft.) (m) TOTAL DEPTH 171 52.12 CASING DEPTH 10 3.05 CASING STEEL IN HOLE NO -Ft. LOGGED BY **B. AUGSTEN** LOGGING DATE Dec. 4, 2000 SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER To (m) From (m) To (m) From (m) 0 3.05 CASING M1 - Marble: (possible boulders) 3.43 4866 3.05 3.43 3.05 - Coarse grained marble with minor diopside - rich (green) bands +5-10% disseminated grains of yellowy-orange . mineral – possible scapolite. Overall colour is beige  $\rightarrow$  pale grey. - <0.1% diss graphite</p> Tr. Diss py. - Calcite crystals to 5mm - Compositional banding @60 ° to C.A, - Reacts vigorously to cool dilute (10%) HCI 3.43 5.00 4867 CALCSILICATE GNEISS 2: 3.43 6.16 CS2 5.00 6.16 4868 Med > dark groy fine- grained foliated rock consisting of quartz, calcite, diopside, graphite, spinel and minor sulphides.

Page

1

4

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT ... Geological Log Hole-ID: | BCOO04

2 Page

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION * GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CS2 continued: - 5-7% graphite - <0.5 % diss py - poss. Tr. Cpy. - Unit readily distinguishable by presence of 1-2% diss, bright green (<1mm) spinel metacrysts Gneissic foliation @ 55° to C.A. (Note: ( $\hat{a}$  4.2  $\rightarrow$  4.76 unique texture manifested as coarse 'clots' of diopside? (pale green) to 5mm x 3mm aligned parallel to gneissosity. Have seen this tecture elsewhere in this unit). @ 5.30 pervasive limonite development over 10 cm weakening the rock somewhat and probably related to the undulating contact with pegmatitic sweat. - 5.35  $\rightarrow$  6.07 - Pegmatitic 'Sweet'' (Dike). - Medium  $\rightarrow$  coarse grained qtz-feldspar - garnet igneous rock with <1% diss py+/-po, possible tr. Sphalerite. - Has a weak patchy pervasive limonite 'wash' through the unit. (Note: L.C. not clear due to altered zone @ contact. ~ see below for descriptions) (Note: 1- small amount of CS2 on other side of dike. 2- CS2 reacts strongly with dilute 10% HCI) CALCSILICATE GNEISS1: 6.16 CSI 22.12 6.16 8.00 4869 - Med grey  $\rightarrow$  med  $\rightarrow$  pale grey/green, fine  $\rightarrow$  medium grained 8.00 10.00 4870 - Rock varies from a massive texture  $\rightarrow$  weakly  $\rightarrow$  well foliated. - Overall graphite 2-3% 10.00 12.00 4871 - Rock is composed of quartz, calcite, diopside, graphite, pyrite, +/- po. Also possible small amounts of scapolite. 14.00 4872 12.00 - Very similar to CS2 and usually units occur together - CS2 tends to have a higher graphite grade visually and also 14.00 16.00 4873 has the unique spinel. 4874 - 6.16 - 6.64 - CSI converted to a fine-grained hard, dense rock, composed of qtz, diopside, + minor calcite. Rock 16.00 18.00 has a med. green colour. 18.00 20.00 4875 - No graphite 20.00 4876 22.12 - Appears to be a 'skam' of CA1 - related to proximity to two felsic, pegmatitic dikes perhaps?? - Contacts are gradational. - @ 6.75 well-dev. Compositional banding/gneissic foliation @50° to C.A. - 7.01 - 7.50 - Pegmatite Sweat/Dike - coarse-grained feldspar-qtz-garnet +/- py/po with patchy weak pervasive liinonite development (Note: @ contacts of pegmatite - CS1 becomes coarser grained - markedly so @ upper contact where CS1 converted to coarsegrained M1 marble.) Note: Several small felsic/permatite dikes/sweats throughout unit. These tend to be lensoidal/boudinage bodies.

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological D:

E

E

E

E

E

1.1.1.1.1.1

2. .

l

I

1. 10

**BC0004** Page

E

E

3 oŕ

					)G	
GEOLOGICAL	INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			CS1 CONTINUED:			
		1	- @ 19.20 gneissic foliation @65° to C.A.			
		1	- L.C. is somewhat obscured by alteration note from pegmatite dike.			
		<u> </u>				• .
22.12	27.05	P	PEGMATITE DIKE:	22.12	23.00	4877
			Coarse grained, rusty-weathering feldspar-qtz – biotite +/-po pegmatitc     Patchy pervasive limonite throughout     Individual feldspar phenocrysts to + 2cm x 1cm     L.C. abrupt @ 80° to C.A.			
		<u> </u>				
27.05	30.50	BIOTITE FELDSPAR GNEISS/SKARN:				
		<u> </u>	Intercalated sequence of biotite-feldspar gneiss, recrystallized marble and variably altered (skarned) calcsilicate rock.			
·	· · · · · · · · · · · · · · · · · · ·		- The high the general permane dikes/swears.			
·			- The altered calasilicate rocks are med green coloured and weakly foliated to massive			
	·	<u> </u>	The' skarned' calculicates are composed of a fine grained mixture of qtz, diopside, pale brown garnet? + sulphides.			
			$\pm 1$ +/- calcite.			
		·	- Op to 2-570 das py 1/2 po			
			- Toward the lower contact start seeing small sections of coarse recrystallized M1 marble separated by pegmatitic			
	·····	ļ	dikes/sweats.			
			Contact with pegnatite @ 25° to C.A.			
		1				
30.50	52.12		MI MAKBLE:	30.50	32.00	4878
			- Coarse $\rightarrow$ field grained part grey $\rightarrow$ while matche composed of carche, quz and dispside - Calcite crystals to 3mm x 3mm	32.00	34.00	4879
		<u> </u>	- Overall graphite grade <0.4% with locally higher sections as identified further.	34.00	36.00	4880
	,	1	<ul> <li>- &lt;0.5% diss py +/-po.</li> <li>1. (Note: 30.50 - 32.45 - strong limonite development along and peripheral to low angle fxs. Locally marble pervasively limonitized.)</li> </ul>		38.00	4881 ~
	· • · · ·					
		1	2. (Note: Numerous small pegmatitic sweats/dikes occur throughout the unit			
		1				

f

F

Ē

4 of Page

GEOLOGICAL INTERVAL		LITHO			G	
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLÉ I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			MI MARBLE CONT:			
			<ul> <li>These pegmtites appear to have a skarning effect on the marble – very noticeable at contacts where the marble is recrystallized into a very coarse grained marble with come changes in mineralogy. If graphite was present it seems to be destroyed or mobilized elsewhere. Often get some actinolite development and green garnet? At the contacts.</li> <li>A good example is @ pegmatite dike btw. 37.23 → 37.59</li> <li>These pegmatitic sweats are frequently limonitically stained along fxs, patches, plus occasionally see rusted out ? cavities.</li> </ul>	28.00	40.00	4865
			Calcite: 75%	38.00	40.00	4002
	-		Qtz: 15-20%	40.00	42.00	4883
			Diopside: <5%	42.00	44.00	4884
			Pv+/-: <0.5%	44.00	46.00	4885
			*Qtz. Can occur as aggregates or 'clots' to 1cm x 1cm	46.00	48.00	4886
			* Graphite occurs as dissem. Individual crystals <0.5mm x 0.5mm	48.00	50.00	4887
			This rock reacts vigorously to dilute 10% HCI	50.00	52.12	4888
	-		<ul> <li>Texture:</li> <li>Variable from massive generally to weakly foliated with graphite metacrysts describing a lepidoblastic texture.</li> <li>3. (Note: Limonite stained fixs persist to bottom of hole. <ul> <li>Also several areas of pervasive limonite development such as</li> <li>Btw: 42.53 → 43.33</li> <li>43.69 → 43.79</li> <li>44.19 → 44.79</li> </ul> </li> <li>*These appear to be related to pegmatitic intrusions /sweats which must increase primary permeability.</li> </ul>			

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0004

٤.

.

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO5

F

**E** 

f

of 4 Page 1

					SURVEY DATA							DRILLING DATA			
SURVEY	D	ертн		DIP	T	RUE AZIMUTH	(		GR	D		GRID SYS	TEM	М	INE
	(ft.)	(m)		Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	'HING (m)	141	.3.21
Collar				-54° 40'	39°	30'						APPROX. EAS	TINĠ (m)	766.41	
Down Hoic	(ft.)	(m)	Read	True	Read	Тгие	ļ					APPROX. ELEVA	ATION (m)	a) 1638.46	
		51.82	-53	-53	016.0	034.50	1					DATE DRILLING	STARTED	NOV.	15/2000
						·	]				,	DATE DRILLIN	G ENDED	NOV.	16/2000
							1							(ft.)	(m)
										*		TOTAL DE	PTH	200	60.96
												CASING DI	epth	12	3,66
							]					CASING	9		
							1					STEEL IN F	IOLE	NO	Ft.
												LOGGED	BY	B. AUGST	ren
												LOGGING I	DATE	DEC. 8,15	<i>i /</i> 2000
			LITHO			ITTO		FECTION					SAMPLE	LOG	
GEOLOG	JICAL INI	ERVAL	CODE			LINUS	OGICAL D	ESCRIF HOIV				SAMPLE	INTERVAI	SA NU	MPLE
From (m	) (	To (m)		1				·····				From (m)	To (m)		
0		3.66		OVERBURD	EN: - soil, bou	lder, silt, till.	Weathered b	edrock							
				PET DODAD	077 0107										
3.66		6.70	P	FELDSFAR	- Coarse g	rained limoni	tically staine	d pegmatite					<u> </u>		
				_	- Massive	with locally w	veak fabric d	eveloped by biotite					· · · ·		
[		-		ł	- Feldspar	phenocrysts t	o 2cm x 1cm	with a beige to pal	le green colour.				<u> </u>		
		<u></u>	] <u>.</u> .	-	- Limonite - No visibl	e developed al le subshides	ong ixs – ox	idation of blottle?					<u> </u>		
		<u>,</u>		4	- No graph	nite									
					L.C. sharp	@ to C.A.									
6 70		0.02	001	CALC SILIC	CATE GNEISS	1.						6.70	0.00	- 4000	<u></u>
0.70		9.05		↓ <del></del>	- Calcite -	Qtz – Diopsi	de – Graphit	e – Py +/- Po Gneis	s.			0.70	0.00	4009	
			ļ	-	- Fine grai	ned foliated r	ock with a m	ied grey $\rightarrow$ pale gre	$y \rightarrow \text{grey/green color}$	our		6.00	9.05	4090	<i>i</i>
		. <u> </u>	[ 	-	- 2-3% gra	iphile lise by +/- no									
		·	ļ	ļ	- 1-1.3700	100 pj 11- po						ļ	<u> </u>		
									· · · · · · · · · · · · · · · · · · ·			<b>I</b>			

£ . . .

F

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO005 Page

2 4 of

	GEOLOGICAL INTERVAL	LITUO	· · · · ·	SAMPLE LOG				
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)			
		CSI	CSI CONTINUED:					
		+	- reacts strongly to cool dilute. HCl					
			(Notes: 1.7.58-8.01- small sections of coarse grained M1 marble with minor diopside, <1.5 % graphite – this section has					
ļ			gradational contacts with rest of CSI.			,		
			2.9.14 - 9.57 - small section of slightly coarser grained CS1 which has been weakened by a pervasive limonite 'wash'.)					
			sharp (2) to C.A.					
0.93	12.80	GD	CPANODIANITE CNEISS: (Quartz Monzonite)	···				
9.05	12.00		- Leucorzatic hiotise amandiarite geneiss					
			- Setuportation and grandoutante grandoutante grandoutante grandoutante $(0, 0, 0)$ to C A					
	•	[	- includes some minor permatitic sweats					
			- No graphite.					
12.80	13.04	P	FELDSPAR – OTZ – PEGMATITE ?:					
			- Course grained leurocratic pegmatites sweat/dike					
			- U.C. @ 55 ° to C.A.					
		· .	- L.C. @ 85° to C.A.					
13.04	13.76		BIOTITE – FELDSPAR GNEISS:					
			- Fine $\rightarrow$ med grained biotite feldspar gneiss			·· · · · · · · · · · · · ·		
	·	1	- 2-3% diss py					
			- No graphite; fxs limonite coated					
	•		- Minor calc-silicate bands			-		
			- Also includes 15cm section of med grained qtz-feldspar (qtz-syenitic sweat)					
			L.C. appears conformable but abrupt @ 60° to C.A.	10.24		1001		
13.76	20.82	CS1	CALCSILICATE GNEISS I: (somewhat different looking than typical CSI with less calcite and less graphite)	13.76	14.56	4891		
			- Pate green, well foliated fine→med grained rock with a sucrosic texture	14.56	16.15	4892		
			- 1-1.9 /0 uss graphic - 1-2%diss pv	16.15	18.03	4893		
		<u> </u>	- Well-developed gneissic foliation manifested by lepidoblastic texture of graphite @ 70° to C.A.	18.03	18.61	4894		
Į		<u> -</u>	- Also includes <0.3% pale brown fine-grained mineral – poss gamet? or scapolite?		20.17	4895		
· · · · · · · · ·	- Reacts weakly to HCI (dilute.		- Reacts weakly to HCI (dilute.	20.17	20.82	4896		
		· ·	14.56 - 16.15 - Feldspar - Qtz - Biotite +/- garnet +/- po Pegmatite. Coarse-grained leucocratic pegmatite.					
				L		1		

· .

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0005 Page

£

£

E

£

E

3 |of

GEOLOGICAL INTERVAL	UTHO		SAMPLE LOG				
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE	SAMPLE NUMBER		
From (m)	To (m)	<u> </u>		From (m)	To (m)		
			18.03 - 18.61       - Feldspar - Qtz - Biotite +/- garnet +/- po Pegmatite         - medium grained leucocratic pegmatitic         probably qtz-syenite in composition         - <0.5% diss po         - ~1% pale reddish brown → brown 1mm garnets         - where unweathered has a pale green colour which is the colour of the predominant feldspars         - ½ of interval pervasively limonitized without weakening rock.         20.17 - 20.82       - Qtz. Syenite. (Pegmatite)         - medium grained, pale green coloured igneous/metamorphic sweat         - <0.3% diss graphite → includes rare rosettes of graphite to 2mm diameter         - 3.4% brown biotite - / < 0.5% diss po.         U.C. sharp @ 70° to C.A.         L.C. sharp @ 60° to C.A.				
		M1	M1 MARBLE:	20.82	22.00	4897	
20.82	33.95		Pale grey, granoblastic, massive/non-foliated med $\rightarrow$ coarse grained marble	22.00	24.00	4898	
			- Overall less then 1% graphite with locally higher sections	24.00	26.00	4899	
			- Reacts strongly to cool dilute (10%) HCI	26.00	28.00	4900	
		····	- Moderate f.c. limonite throughout with locally weak pervasive limonite $< 0.3\%$ disc py $\pm/c$ no throughout	28.00	30.00	4901	
			- minor small pegmatic sweats overall except @ lower contact area	30.00	32.00	4902	
			33.60 – 33.95 – Qtz – Feldspar Pegmatitic Sweat.	32.00	33.95	4903	
33.95	46.22	JZ	INTERCALATED CALCSILICATE/MARBLE/BIOTITE GNEISS:	33.95	35.00	4904	
			garnet? metacrysts	35.00	37.00	4905	
			- Less commonly seen brown biotite-rich bonds.	37.00	39.00	4906	
		( }	- Overall graphile grade very low, < 0.3% although locally see some well-developed coarse graphite Compositional handing @ 70.80° to C.A.	39.00	41.00	4907	
	- Compositional Sanding @ 70-80" to C.A. - 1-1.5% diss py throughout				1	L	
		İ			l	L	

# · · · ·

· £

f

E.

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOD5

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE SAMPLE INTERVAL NUMBER From (m) To (m) From (m) To (m) IZ INTERCALATED CALCSILICATE/MARBLE/BIOTITE GNEISS CONTINUED: Several pegmatitic sweats throughout sequence usually 10-30 cm. A larger one marks the lower contact. 45.33 - 46.22 Feldspar -- Qtz - Biotite - Pegmatite **BIOTITE - FELDSPAR GNEISS:** 46.22 60.96 BFgn Distinctive brown bonded rock composed of predominately biotite rich bands intercalated with white feldspar-rich bands . - Interspersed within this unit are the ubiquitous feldspar-qtz-biotite pegmatitic sweats - Also see some pale green calcsilicate lenses Also see some pare green caromonic reaction
 Possible disseminated sulphides with biotite – rick bands, hard to tell - When core split you can see pyrthotite +/- pyrite as foliation parallel stringers  $\rightarrow < 1\%$  overall - No graphite. Gneissic foliation @ 75-85° to C.A. . · .

in ser

4

OŤ

Page

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0006

Ē

E

E

Page J. of 

				SURVEY DATA							r	АТА			
SURVEY	DE	ртн		DIP	TI	RUE AZIMUTH		·····	GRI	D		GRID SYS	TEM	м	INE
	(ft.)	(m)		Тлие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX, NORT	HING (m)	125	53.30
Collar				-53° 00'	45°	20'						APPROX. EAST	rING (m)	57	3.88
Down Hole	(ft.)	(m)	Read	Тпие	Read	True						APPROX. ELEVA	ATION (m)	156	54.88
		30.48	-52	-52	027.0	045.50	]					DATE DRILLING	STARTED	NOV.	16/2000
		60.96	-52	-52	021.0	039.50	]					DATE DRILLIN	G ENDED	NOV.19/2000	
														(ft.)	(m)
							1					TOTAL DE	ртн	209	63.70
							1					CASING DI	epth	3	0.92
												CASING	3		
												STEEL IN F	IOLE	NO	Ft.
												LOGGED	BY	B. AUGS	TEN
							]					LOGGING I	DATE	DEC.18/2	000
								FECTIPTION	1				SAMPLE	LOG	
IN	TERVAL	,	O CODE			LIIHOLO					SAMPLE INTERVAL		SA	MPLE	
From (n	1) T	0 (m)								·		From	To (m)		
0		0.92		CASING											
				CRANODIO	DITE. (Ouasta	Manaanita)									
0.97	2	4.80	GD	GRANODIO	- Mesocrat	tic medium gr	ained equigra	anular to weakly p	orphyritic foliated bio	otite granodiorite:	- rare feldspar-				
					megacryst	s to 1.5 x 1cm	1.5			a					
			·		- Weak to	med. Foliation	n @ 50° to C	.A.					·		
					- KOCK IS I (Note: pos	sibly more all	alie ksnar	ve plag ((thin sec	tion shows this to be	the case is atz mor	(interior				
					(11010) 200	olory more an	uno nopu	vo. prag. ((ani see		aio caso io qiz iio	120111(0))				
					<u>3.39 - 4.0</u>	8: xenolith of	coarse - gra	ined M1 marble an	id small 14 cm sectio	n of green coarse-	grained feldspar?				
					calcite, act	linolite, skarn	rock (this oc	curs at contact.)							
					- 1412 maro		mor graphia	(~0.570)							
				<u>4.08 – 5.08 :</u> c	oarse grained g	green feldspar	/ qtz rock – s	karn? / altered peg	matite?		~		·		
					- no graph	ite		·. ·							
												· .			
											ŕ				
												<u> </u>			

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0006

Page

GEOLO	GEOLOGICAL LITH	LITH		SAMPLE LOG					
INTE	RVAL	O CODE	Lithological description	SAN INTE	APLE RVAL	SAMPLE NUMBER			
From (m)	To (m)			From	To (m)				
			GRANODIORITE CONTINUED:	3.39	5.32	49.08			
			5.35> 7.41 CS1	5.32	7.41	4909			
· · · · · · · · · · · · · · · · · · ·			small band of CS1 caught up in granodiorite - variably recrystallized, (xenolith)						
			2-3% diss. Graphite						
			L.C. (2) 75° to C.A. (contact may not mean much)						
			L.C. of granodiorite placed @ 24.80m, but there are small segments of granodiorite in the next few metres.						
	CONTACT ZONE:								
24.80	28.99 - For lack of a better term, this interval is called a contact zone which is a zone that appears to mark a transition from the granodiorite to the MI marble.				· · · · · · · ·				
			- The zone is marked by 'screens' of hornfelsed and variably skarned metasediments, segments of grandionite and		1				
	one large pegmatite dike and several small ones.	one large pegmatite dike and several small ones.							
}			<u>20.17 – 20.70</u> – coarse grained feldspar qtz – biofife pegmatite						
			Note: pyrrhotite +/- py seen within the skarned/altered metasediments, Overall <1%			1			
			L.C. of 'contact zone' @ 70° to C.A.						
28.99	43.28	<u>M1</u>	M1 MARBLE:	28.99	31.00	4910			
	· · · · · · · · · · · · · · · · · · ·		- Pale grey to pale greenish grey, medium $\rightarrow$ coarse grained. massive to locally wkly foliated qtz-diopside – calcite $\pm 4$ , graphite markle	31.00	33.00	4911			
			- Granoblastic	33.00	35.00	4912			
			- 1-2% diss. Py +/- po	35.00	37.00	4913			
			- Overall graphite grade 0.5 - 1.0% Within this M1 workle there are coveral sections of finer argund foliated material more alongly recembling CS1	37.00	39.00	4914			
			Within this M1 marble there are several sections of finer grained foliated material more closely resembling CS1 although the diopside content seems lower. These are @ 1. 36.58 to 37.30	39.00	41.00	4915			
		Í		41.00	42.00	4916			
			2. 39.40 to 40.85		43.28	4917			
		These have a me	- Foliation @ 75° to C.A.						

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO6

3 Page of

GEOLO	GEOLOGICAL	LITH			)G	
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAMPLE INTERVAL		SAMPLE NUMBER
From (m)	To (m)			From	To (m)	
		M1	M1 MARBLE CONTINUED:			
			41.31 - 41.63 - Medium grained qtz - syenite dike			Ì
			U.C. @ 75° to C.A.			·
	·		L.C. @ to C.A.			<b> </b>
	ļ		$\underline{U}$ contact marked by a 2-3mm who zone with nearly pyrmonic. In addition, the marble has been recrystantized for about 21 cm above unner contact into a coarse, agained callete + grainer correct pack	J		
			v, distinctive and seen elsewhere.			
		,		l		
			L.C. of M1 marble @ 15° to C.A.			
43.28	58.54	LD	LAMPROPHYRE DIKE:	43.28	45.00	4918
			- Medium grained equigranular, massive, biotite-rich lamprophyre, dark brown colour			
			- Contains minor diss calcite ><0.3%)			
·····		1	-<0.5% F.C, calcite			
			-~1% diss py	[		
			- Tr. F.C. cpy.	·		
			- Non-magnetic - Includes some sections of alt'd marble	·		
	'		54.86 $\rightarrow$ 57.10 - section of intense low angle faulting @ 5-10° to C.A. associated with intrusion of qtz-feldspar pegmatite			
		· ·	fault surfaces strongly chloritized	<b>i_</b>		
			57.10 > 58.54 from foult to L.C. mak becomes more measing and finer around with distinctive incoming one the tabes' of			
			chlorite?/actinolite- rich material.			
-						
			L.C. sharp @ 55° to C:A.			
58.54	59.81	SK	SKARN:			
		VIL	- Variably skamed and hornfelsed qtz-rich metasediments	l .	1	
······			- Overall colour medium green	l		
			- 1-2% F.C. and diss po +/-py			
			- includes narrow section of coarse recrystallized marble	·	<u>}</u>	
<b></b>						
			L.C. @ 80° to C.A.	·	ļ	ļ
		1		l	1	

# . and the second second second second second second second second second second second second second second second

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0006

E

4 Page oť

GEOLOGICAL LIT		LITH		SAMPLE LOG			
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAM INTE	PLE RVAL	SAMPLE NUMBER	
From (m)	To (m)			From	To (m)		
59.81	. 60.58	P	QTZ SYENITE/PEGMATITE:				
			Medium $\rightarrow$ coarse – grained fsp + qtz +/- po rock				
			$90\%$ pate green $\rightarrow$ beige isp 8% atz (ninkish)				
			<1%po.				
			L.C. @ 75° to C.A.				
60.58	63.70	GD	GRANODIORITE: (Quartz Monzonite)		`		
	E.O.H.		Medium grained biotite granodiorite				
			$62.92 \rightarrow 63.47 - 4tz$ rich segment – looks like qtz vein with minor biotite				
			63.38 - 63.70 - qtz/tsp pegmatite.				
_							
						<u> </u>	
	······································				· · · ·		

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO007

 $(x_1, x_2, \dots, x_n) = p_{n-1}(x_1, \dots, x_n) + p_{n-1}(x_1, \dots, x_n) + p_{n-1}(x_1, \dots, x_n) + p_{n-1}(x_1, \dots, x_n)$ 

SURVEY DATA DRILLING DATA GRID SYSTEM MINE DEPTH TRUE AZIMUTH GRID SURVEY DÌP 1251.93 NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) (ft.) (m) True Degrees Minutes Seconds SYSTEM APPROX. EASTING (m) 572.61 Collar -90° APPROX. ELEVATION (m) 1564.98 Down Hole (m) Read Тгие Read True (ft.) NOV.19/2000 DATE DRILLING STARTED 46.63 -89 -89 236? 254.5? NOV. 20/2000 DATE DRILLING ENDED (ft.) (m) TOTAL DEPTH 163 49.68 CASING DEPTH 7 2.13 CASING NO NO / Ft. STEEL IN HOLE B. AUGSTEN LOGGED BY LOGGING DATE DEC. 19/ 2000 SAMPLE LOG LITH GEOLOGICAL LITHOLOGICAL DESCRIPTION 0 SAMPLE INTERVAL SAMPLE CODE INTERVAL NUMBER From To (m) From (m) To (m) GD GRANODIORITE : (Quartz Monzonite) 2.13 3.61 Strongly foliated leuocratic granodiorite -Gneissic foliation@ 65° to C.A. -Foliation manifested by both biotite +/- phlogopite and qtz metacrysts -Tr. Diss py. No graphite • Overall colour light → med. Grey -L.C. @ 70% to C.A. and marked by exidation of biotite +/- sulphates 4919 3.61 10.45 CSI CALCSILICATE GNEISS 1: 3.61 5.86 - Calcite - qtz - diopside - graphite gneiss 5.86 7.00 4920 - Pale greenish/grey colour. Overall well foliated (gneissosity) 7.00 4921 9.00 Fine grained -4922 9.00 10.45 3.61 - 5.86 poorly foliated medium grained with minor graphite. <0.1% diss graphite 5.86 - 10.45 - well foliated, finer grained. 1-2% diss graphite <1% diss py. (1. Note; pertaining to 3.61 - 5.86 - well - defined compositional banding defined by segregated qtz-rich bands to 1cm wide

DO7 Page 1

Page 1 of 3

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO007

SAMPLE LOG LITH GEOLOGICAL LITHOLOGICAL DESCRIPTION 0 SAMPLE INTERVAL SAMPLE CODE INTERVAL NUMBER From To (m) From (m) To (m) **CSI CONTINUED:** occurring subparallel to C.A. - this section is also somewhat more diopside rich. 2. (Note: pertaining to 5.85 - 10.45 - Model Composition: Otz - 40-50% Calsite 20% Diopside 20% Graph. 1-2% Py+/- 1% this section also includes two narrow purplish-coloured qtz- rich fine- grained sections with no graphite at 9.89 - 10.01 and 10.06 - 10.15 which also contain 3% diss py. - Minor limoite stained fxs. L.C. @ 45° to C.A. marked by a lcm zone of marked grainsize reduction. GRANODIOROTE : (Ouartz Monzonite) 10.45 20.45 GD Leucocratic medium- grained biotite granodiorite gneiss? - variable gneissic foliation from poor to well - developed - non- mt; 1-1.5% diss py 16.48 - 17.13 - xenolith of CS1 18.80 - 19.70 - feldspar alf'd to a pale green weak sericity?? L.C. @ 60° to C.A. ĊŻ 20.45 26.25 **CONTACT ZONE:** This is somewhat of a hybridized zone consisting of dikes of granodiorite and screens of variably contact metamorphosed metasediments. Also includes several small feldspar-qtz +/- biotite pegmatite sweats/dikes. - No graphite - Can be thought of as a intrusive contact with digested metasediments - <1% po overall but variable in amount and location L.C. placed where the marble starts to predominate L.C. @ 60° to C.A.

Page

2 of

*	•		-	1
		4	va v svoj	
		•		

E

F

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO007

F

f

E

Page

Ē

of 3 3

. C

GEOLOGICAL INTERVAL		LITH Ö CODE	LITHOLOGICAL DESCRIPTION	SAMPLE LOG		
				SAMPLE INTERVAL		SAMPLE NUMBER
From (m)	<u>To (m)</u>			From	To (m)	1
26.25	49.68	M1	MI MARBLE:	26.25	28.00	4923
			- Med $\rightarrow$ coarse grained granoblastic? Qtz-diopside $\pm$ graphite marble.	28.00	30.00	4924
			- Massive to locally weakly foliated.	30.00	32.00	4925
	· · · · · · · · · · · · · · · · · · ·		- Pale grey to ~ pale greenish grey colour	32.00	34.00	4926
			- Weak Ionation @ 60-65' to C.A.	34.00	36.00	4927
			- Qtz 20%	36.00	38.00	4928
			- Calcite: 70%	38.00	40.00	4929
			- Graphite <0.5% - 1.0% - $P_V + /_P_0 \sim 1\%$	40.00	42.00	4930
			- Diopside 7%	42.00	44.00	4931
			45.10 - 45.80- finer grained more foliated calcsilicate	44.00	46.00	4932
		1	- with 2-3% disseminated po, <0.7% graphite	46.00	48.00	4933
			(Note: locally see accumulation of light→med brown glassy mineral – garnet, e.g. @ 42,90m.	48.00	49.68	4934
· · · ·			<ul> <li>47.42 - med→coarse grained fsp-qtz actinolite +/- gt +/- p</li> <li>probably qtz- synite in composition</li> </ul>			
			47.64 – 4822 - similar to above – more medium grained.			
			49.14 – 49.54 - coarse grained fsp-qtz biotite qtz syenite $\rightarrow$ pegmatite			
			49.53 - 49.68 - foliated fn.gr. qtz-fsp - biotite gneiss.			
	-		FOH @ 49.68			
	······································					
-						
						· · · · · · · · · · · · · · · · · · ·
				i		
					1	
				l		

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0008

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE Minutes (ft.) (m) True Degrees Seconds SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX, NORTHING (m) 1139.45 Collar -.57° 40° 42° 15 -APPROX. EASTING (m) 572.97 Down Hole (ft.) (m) Read True Read Тпе APPROX. ELEVATION (m) 1569.29 36.58 -55 -55 021.5 040.0 DATE DRILLING STARTED Nov. 20 /2000 76.20 -55 021.5 Nov. 22 /2000 -55 040.0 DATE DRILLING ENDED (ft.) (m) TOTAL DEPTH 260 79.25 CASING DEPTH 10 3.05 CASING STEEL IN HOLE No Ft. LOGGED BY B. Augsten LOGGING DATE Dec. 20, 29 /2000 SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CASING Ō 3.05 3.05 CALCSILICATE GNEISS 2: -7.86 CS2 3.05 4.75 4935 3.05 - 4.75- In this interval not your typical CS2, due to higher graphite content, and apparent lack of spinel/ Rock has a black colour overall due to high graphite content. • 1-2% diss. Py +/- po. strongly foliated @ 75-80% C.A ~ Model Composition Otz-15-20% -Calcite - 45% Graphite 10-12% Py-1-2% Diopside 7-10% Unfortunately interval not pure CS2 --3.05 - 3.33 - Otz-feldspar-biotite-actinolite? Garnet Pegmatite 3.08 - 4.20 light to mediun green course grained feldspar? +/- biotite? +/- graphite rock?? <0.3% diss graphite -4.75 - 7.86 More typical CS2, - distinctive med-->dark green foliated spinel - bearing calcsilicate gneiss 4.75 6.00 4936 will foliated @ 70° to C.A. 6.00 7.86 4037 contains 3-5% diss graphite < 1mm in diameter 7.86 8.5 4938

Page 1 oí

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO008

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CS2 cont' - 4.75-5.15 - 40 cm section of coarse-grained beige to pale yellow M1 marble (impure) with <0.5% diss. Graphite M1 marble contains gtz diopside Non-foliated - 6.36-6.70 - M1 marble w/ half being skarned to a fine grained qtz/actinolite? diospide rk. . - Note: within this unit several narrow zones <10cm of oxidation manifested by limonite development at expense of sulphides and/or possible biotite. - @ 7.6m. - foliation appears to curve around a gtz sweat. Foliation at this location @ 50° to C.A. -L.C. with pegmatite @ 67° to C.A. Note: Pegmatite has a contact effect on the CS2 for about 20 cm above pegmatite. PEGMATITE: Quartz-Feldspar -- Biotite Pegmatite with minor po, graphite 7.86 8.5 P L.C. @ 55° to C.A. 8.50 26.23 CS1 CALCSILICATE GNEISS 1: -variably foliated graphite-bearing calc-silicate gneiss 8.50 10.00 4939 pale grey to pale greenish/grey 10.00 11.86 4940 Gneiss composed of qtz, calcite, diopside, graphite and pyrite. 11.86 13.00 4941 Overall graphite grade 2-3% 15.00 4942 Within this unit certain amount of variability in textures 13.00 Overall graphite size <0.5mm in diameter (but variable) 15.00 4943 17.00 4944 17.00 19.00 - 8.50 - 11.86 more typical CS1 unit is intercalated with bands of M1 marble and compositionally banded M1- type marble with scapolite-rich bands 19.00 21.00 4945 Also within this interval several narrow pegmatitic sweats 21.00 23.00 4946 Overall graphite grade in the interval < 1%23.00 4947 ` 25.00 Granodiorite Dike 4948 - 20.5 - 20.98 25.00 26.23 U.C. @ 45° to C.A. 26.23 28.00 4949 L.C. @ 55° to C.A.

2 Page

. .

ľ

ŧ.

F

and the second second second second second second second second second second second second second second second

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCOOO8 Page 3

of

GEOLOGICAL INTERVAL		LITHO CODE		SAMPLE LOG		
			LITHOLOGICAL DESCRIPTION		SAMPLE INTERVAL	
From (m)	To (m)			From (m)	To (m)	
			nt'			
	12.14		ANT CHIDICCO.			
26.23	47.16	Q	<ul> <li>UIZ GNEISS?:</li> <li>Intercalated sequence of pegmatitic sweats/dikes biotite gneiss, qtz 'vein' (ie. recrystallized and qtz flooded Marble and granodiorite dikes</li> <li>contains diss. graphite in places suggesting qtz-flooded calcsilicate?? or marble</li> <li>26.23 - 27.89 - medium→coarse grained pegmatite dike.</li> <li><u>Note:</u> much of the rest of this intersection is a pale→medium grey qtz-rich - medium-grained rock - possibly recrystallized quartzite? In places contains appreciable calcite (+25%) - there it looks like a recrystallized marble. <ul> <li>- interspersed within this are narrow 5-20 cm bands of biotite fsp-qtz rich gneiss? with 3-5% diss py plus trace chalcopyrite plus trace graphite.</li> <li>- Where calcite rich, the rock has a pale→med.grey colour w/ a white speckled appearance</li> <li>- Interval is dominated by this qtz-rich material and/or qtz-calcite material.</li> </ul> </li> <li>Note: @ 40.67, 41.07 and 41.50 patches of bright reddish, orange, garnet accompanied by po +/- py (3%)</li> <li>L.C. gradational and marked by granodiorite dike.</li> </ul>	· · · · · · · · · · · · · · · · · · ·		
47.16	78.35	M1	M1 MARBLE:       - Variably- textured med→coarse grained impure marble with variable graphite, qtz, diopside +/- sulphide Content         Overall colour is a pale grey to v. pale greenish grey       Overall colour is a pale grey to v. pale greenish grey         Overall graphite grade <0.5% diss. (typical graphite metacrysts? tend to be larger in M1 material)	47.16 49.00 51.77 53.49 55.00	49.00 51.77 53.49 55.00 57.00	4950 4951 4952 4953 4954

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO008

E

E

E

E

÷.

4 Page

4

				SAMPLE LOG		
GEOLOGICAL INTERVAL		LITHO CODE	LITHOLOGICAL DESCRIPTION		SAMPLE INTERVAL	
From (m)	To (m)			From (m)	To (m)	
			M1 MARBLE con't			
78.35	79.25		<ul> <li>M1 MARBLE con't</li> <li>51.77 - 53-49 - Qtz Syenite? (Fsp-qtz-pegmatite-Dike)</li> <li>U.C. @ 70° to C.A.</li> <li>I.C. @ 70° to C.A.</li> <li>Note: @ L.C. marble recrystallized to a v. coarse calcite marble with conspicuous green garnet? metacrysts. this sort of recrystallization / contact effect is seen frequently where these pegmatite sweats/dikes intrude M1 type marble</li> <li>what distinguishes the M1 marble from the CS1 And CS2 units is primarily a lack of foliation and grain size</li> <li>The overall modal mineral composition is probably in places not that much different consisting of varying proportions of calcite, qtz, diopside, graphite and py +/-po</li> <li>The M1 tends to be a massive unit. However, within and conformable to it are relatively narrow sections of material v. similar in appearance to CS1</li> <li>The M1 tends to med→coarse grained versus fine→med grained CS1 and CS2 units. CS2 of course is dintinguished by the presences of distinctive spinel metacrysts</li> <li>Weak foliation @70° to C.A.</li> <li>64.85 - 66.10 weakly foliated fine→ med. grained calcsilicate gneiss similar to CS1 unit.</li> <li>contains 2-2.5% diss. Pyrite</li> <li>67.80 -70.70 well developed limonite on fxs.</li> <li>73.15 - 74.93 weakly foliated med. grained qtz-calcite +/- diopside + graphite marble ~ 2% disseminated graphite.</li> </ul>	57.00 59.00 61.00 63.00 65.00 67.00 69.00 71.00 73.00 75.00 77.00 78.35	59.00 61.00 63.00 65.00 67.00 69.00 71.00 73.00 75.00 77.00 78.35 79.25	4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
<u> </u>						·
		 		 		] 
				<u> </u>		L
3 Page 1 of

F

					SURVEY DATA				DRILLING DATA						
SURVEY	DE	PTH		DIP	TR	UE AZIMUTH			GRI	D		GRID SYS	ТЕМ	M	INE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	'HING (m)	113	18.23
Collar				-90°								APPROX. EAST	f1NG (m) 571.82		1.82
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. ELEVA	ATION (m)	1569.34	
·		34.44			151.0	169 50	-					DATE DRILLING	STARTED	NOV 22/2000	
						107.50	-					DATE DELLING	DATE DRILLING STARTED		23/2000
							-					DATE DIGEO	GENDED	(8)	(m)
			-				1					TOTAL DE	ртн	123	37.49
			-		[		1					CASING DE	ертн	14	4.27
			-				•		,			CASING	3		
		<u> </u>	,									STEEL IN H	IOLE	NO	FL.
·												LOGGED	BY	B. AU	GSTEN
							1					LOGGING I	DATE	JAN	2/2001
					<u></u>				•••••				A		
CEDIO	WOLL INT	DIAX	LITHO			LITHOL	OCICAL D	ESCRIPTION					SAMPLE	LOG	
	ICAL IN II	LKVAL	CODE							SAMPLE INTERVA		L SAMPLE			
From (m	)   1	'o (m)				<i></i>				· · · · · · · · · · · · · · · · · · ·		From (m)	To (m)		UDER
0	·	4.27		CASING				<u>.</u>							
4.27		5.21	IZ	INTERCALA	TED ZONE:				· · · ·			4.27	5.21	4967	,
				-	this has been in	ar gneiss/schi: itruded by feld	st with skarn ispar-diz peo	M1 marble and com matitic sweats	arse- grained diopsic	le and graphite- bea	aring marble. All				
				_ ·	Overall graphite	e grade <0.2%	with locall	y higher intervals w	vithin marble bands		-		\ \		
		0.00		CAL CON YO				<u> </u>							·
3.21		9.80	<u>CS2</u>	CALCSILIC	ATE GNEISS	<u>Z:</u> side _ aranhit	e sninel mei					5.21	7.01	4968	
					<0.5% diss brig	ht green spine	e spinor giic. I					7.0	8.00	4969	·
	·			- :	5-7% diss graph	ite						8.00	9.80	4970	·
				_	overall colour o	t this unit dar. 60-65% to C	k grey to bla A	ck				<u>.</u>			
			i			00 0570 10 0.							[		<b></b>
				5.61 5.77	feldspar-qtz-bio	tite pegmatite	,								
 				577-603-	normal dark ere	v CS2 'conv	erted' to a br	ownish atz-fsn- nh	logonite +/- muscovi	$te \pm l_{-} brown at? \pm$	aranhite +3_		l .		
					i% diss py.		0.000 10 A UI	owinger des-rab- hu	ogopite 17- muscovi	ao a- biowii qii +	Brabilitie - 2-		ļ	_	
				6.03 - 6.20 -	normally texture	ed CS2 with n	nore sulphid	es (3%) plus no vis	ble spinel. (Note: S	pinel seems to get	wiped out at		İ		
1												1	1		

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BCO009

1

09 _{Page} 2

of 3

					SAMPLE LO	)G
GEOLOGICAI	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			contact zones.	9.80	11.00	4971
			6.20 - 7.01 - predominantly a med green massive dark of qtz. + diopside?	11.00	13.00	4972
			- Within this interval is a 30cm white + green mottled $\rightarrow$ speckled unit of fsp + diopside + chlorite? + graphite. <0.5%	13.00	15.00	4973
			diss graph	15.00	17.00	4974
			- this section contains a low angle, chloritized fault @ 5° to C.A,	17.00	19.00	4975
	*Overall graphite grade is low         7.14 - 7.30 - coarse grained M1 marble with <0.1% graphite.	·	19.00	21.00	4976	
		erall graphite grade is low	21.00	23.00	4977	
		23.00	25.00	4978		
			contacts conformable	25.00	27.00	4979
		j	8.48 - 8.67 - coarse grained M1 marble with <0.3% diss graphite.	27.00	28.90	4980
					<u></u>	
			L.C. clear and conformable @ 50° to C.A.			
	······································			·	• • • • • • • • • • • • • • • • • • • •	
9.8	28.9	CS1	CALCSILICATE GNEISS 1:			
			<ul> <li>Medium grey-pale greenish -grey, fine-med. grained, massive to weakly foliated gneiss composed of qtz-calcite- Diopside graphite write +(no Distinguish from CSL by its lighter calcus, lawar graphite context and lack of brickty</li> </ul>		•••	
			green spinel			
· · · ·			- As seen elsewhere, this unit interrupted by several variably-sized pegmatitic sweats and dikes			
			- Overall graphite grade is 1.5%-2.5% as disseminated fine grained metacrysts.			
			10.06 – 10.44 – feldspar –qtz – biotite +/- gt pegmatite.			
			12.60 - 13.01 med. Green, massive 'skam' rock composed of qtz+diopside?			
ļ ļ	Note: Foliation or compositional banding variable t	ivote: rollation or compositional banding variable through unit 50° to 78° but averaging 60°.	 			
	• • •	 	C. marked by grain size increases, recrystallization and loss of graphite.	 		
	· · · · · · · · · · · · · · · · · · ·		L.C. is an irregular contact with pegmatitic dikes/sweats.		· · · · · ·	

Å

f

à

ſ

F

E

F

3 Page of 

CEOLOCICAL INTERNAL		LETHO			SAMPLE L			
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)			
28.90	37.49	Q						
			QTZ 'VEIN' GNEISS:	28.90	30.00	4981		
			- Recrystallized qtz 'vein' with weak gneissic foliation manifested by biotite	30.00	32.00	4982		
			<ul> <li>From 28.90→34.00 moderate → strong pervasive limonite</li> </ul>					
			33.02 - 33.43 - distinctive looking thinly laminated qtz-fsp biotite +/- gt +py schist.					
			<ul> <li>Imministions (@ 50° to C.A but display tight contortions</li> <li>strongly chloritized joint surfaces</li> <li>4.00 - 37.49 - rock is a med. grey to faint purplish grey qtz with occasional bands of qtz - fsp - biotite gneiss and toward E.O.H.</li> <li>aloite shows up as white snots - aggregates to 2.3 mm. This may represent a quarter flooded/replaced machine</li> </ul>					
		-						
		:	calcite shows up as white spots - aggregates to 2-3 mm. This may represent a quartz-flooded/replaced marble.					
			E.O.H. @ 37.49					
	· · · · · · · · · · · · · · · · · · ·							
	•							
						<u> </u>		
			· ·					

DRILLING DATA SURVEY DATA GRID SYSTEM MINE DEPTH DIP TRUE AZIMUTH GRID NORTHING (m) EASTING (m) ELEVATION (m) NORTHING (m) (ft.) (m) True Minutes Seconds SYSTEM Degrees 572.51 EASTING (m) -70° 42 15 GPS ELEVATION (m) (ft.) (m) Read Тгие Read True DATE DRILLING STARTED DATE DRILLING ENDED Nov. 23 /2000 . (ft.) TOTAL DEPTH 72 CASING DEPTH 9 CASING STEEL IN HOLE No LOGGED BY B. Augsten LOGGING DATE Nov. 24 /2000 SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL To (m) From (m) To (m) 8.89 CS2 CALCSILICATE GNEISS 2: Qtz - Diopside - Calcite - Graphite - Gneiss - Otz: 35% - Diopside: 5-7% - Calcite: 40% . - Graphite: Var (1-5%) - Pyrrhotite? +/- pyrite <1% diss. - Spinel: <0.3% • Effervesces vigorously in cold 10% HCl variably textured calcsilicate gneiss. Typically has a weakly to moderately foliated texture; fine grained with a _ distinct sucrosic texture.

Colour varies from a light  $\rightarrow$  dark grey which may be a function graphite content

Folitation/banding is a function of alignment of graphite metacrysts and possible weak compositional segregation of oiz, calcite and diopside.

This unit is not homogeneous in texture. There are intercalations of more coarse grained 'true' marble and diopside rich calesilicates.

SURVEY

Collar

Down Hole

From (m)

2.74

Ŧ

1569.30 Nov. 23 /2000 (m) 21.95 2.74 Ft.

SAMPLE NUMBER

1138.93

3 of

1 Page

2 Page of

3

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE SAMPLE INTERVAL NUMBER From (m) To (m) From (m) To (m) CS2 con't: - Notable btw: 5.26 -> 5.61 - pale yellow-grey coarse-grained marble with calcite crystals to 1.5mmx1.5mm with correspondingly larger graphite crystals - several other smaller < 5cm bands of similar material occur. In addition to the different intercalated lenses of metasediments, there are several intervals of coarse grained pegmatitc 'sweats' of variable texture but typically containing quartz, feldspar and and biotite with accessory pyrrhotite? They occur @ 3.34 - 3.66m (.32) 4.03 - 4.36m (.33) 8.16 - 8.23m(.07)8.47 - 8.70m (.23) As seen in outcrop these tend to be discontinuous lenses and boudinaged bodies the gneissic foliation in this unit is at 70° to C.A. The other noteworthy feature is the presence of limonite staining as an alteration peripheral to fractures in several . locations. This likely represents oxidation of iron minerals such as pyrrhotite/biotite by oxygenated meteoric waters. - Lower contact relationship somewhat obscured by the presence of a pegmatitic sweat. 8.89 CALCSILICATE GNEISS 1: 12.23 CS1 Coarser grained pale yellow-grey calcsilicate gneiss with locally a distinct compositional banding . Qtz-calcite metacrysts to 4mm x 2mm and granular looking -This unit doesn't have the sucrosic texture of CS2 and the graphite grade is much lower. --<0.5% graphite overall minor narrow coarse-grained qtz-feldspar +/-pyrrhotite +/-biotite pegmatitic sweats compositional/gneissic banding at 65 - 80° to C.A. _ Lower contact marked by pegmatitic sweat.

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0010 Page 3 of 3

		1	LITHOLOGICAL DESCRIPTION		SAMPLE LO	)G
GEOLOGICA	AL INTERVAL	LITHO CODE		SAMPLE I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
				·····		
12.23	21.95		<ul> <li>CALCSILICATE GNEISS 1:</li> <li>Qtz - calcite -diopside - graphite -gneiss:</li> <li>Med grained, medium grey - coloured, massively - textured, to locally weakly foliated calcsilicate gneiss.</li> <li>1-3% diss flake graphite</li> <li>&lt;1% po +/- py</li> <li>tr cpy</li> <li>large irregularly shape qtz metacrysts to 1cmx4mm but typically smaller several narrow zones of limonite staining peripheral to fxs.</li> </ul>			
	1					
		•				
	· ·					
	1				· · ·	
				·		
				·		
				~		
	1					
						-
		1				
		1				

1 Page of

DRILLING DATA SURVEY DATA DEPTH TRUE AZIMUTH GRID GRID SYSTEM MINE SURVEY DIP 1103.67 (ft.) SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) NORTHING (m) (m) True Degrees Minutes Seconds 568.31 -54° 10' 42° 00' EASTING (m) Collar ELEVATION (m) 1569.04 (ft.) Read Тше Down Hole (m) True Read DATE DRILLING STARTED NOV.24/2000 36.58 -55 -55 328.5? 347? NOV. 42/2000 DATE DRILLING ENDED (ft.) (m) TOTAL DEPTH 130 39.62 6 1.83 CASING DEPTH CASING NO Ft. STEEL IN HOLE B. AUGSTEN LOGGED BY LOGGING DATE JAN. 2-3/2001 SAMPLE LOG LITH GEOLOGICAL LITHOLOGICAL DESCRIPTION 0 SAMPLE INTERVAL SAMPLE CODE INTERVAL NUMBER From To (m) From (m) To (m) CASING 1.83 0 CALCSILICATE GNEISS: 1.83 8.92 CS1 Pale grey to pale green/grey weakly foliated ( or weak compositionally banded gneiss composed of variable ?portions of calcite, qtz, diopside, pyrite, and graphite with possible minor scapolite. rock is fine-→med. Grained ~ 1% diss py +/- po × . 2-2.5% crystalline graphite typically < 0.5mm in size @3.00m compositional banding/foliation @ 68° to C.A. rock reacts strongly to dilute 10% HC! -@ 8.70m compositional banding/foliation @ 63° to C.A. (Note: Compositional banding/foliation manifested by varying concentration principally of graphite and diopside to qtz + calcite ratio resulting in either darker grey bonds in the case of an increased concentration of graphite or stronger green bands in the case of greater diopside content of the expense lot qtz and /or calcite.) This section/interval is not entirely homogeneous for several reasons: 1. Within the calcsilicate goeiss are intercalated lenses/beds of coarser grained qtz-diopside marble containing less graphite.

-

2 Page

of

GEOLOGICAL		LITHOLOGICAL DESCRIPTION	I TEROLOGICAL DESCRIPTION		)G	
INTER	RVAL	O CODE			IPLE RVAL	SAMPLE
From (m)	<u>To (m)</u>			From	To (m)	
			<ul> <li>CS1 CONTINUED: and typically more massive in texture. These lenses are conformable and commonly are 10-20cm long.</li> <li>In addition, there are several small and not so small intervals of pegmatitic sweats/dikes. These typically are feldspar and qtz- rich with minor biotite and rarely contain graphite. They can have the appearance of qtz veins. Usually they are 5-10cm but two larger ones occur as follows:</li> <li>*These will have the overall effect of reducing the net graphite content!</li> <li>6.15 - 6.72 - Partially limonitically - stained fsp-qtz-biotite, medium to coarse-grained pegmatitic sweat / dike.</li> <li>6.87 - 7.13 - similar to the above. (Note: the wall rock between these two pegmatites is strongly skarned to a qtz-diopside rock with diss po.</li> <li>8.06 - 8.59 - fsp-qtz - biotite pegmatite</li> <li>See zones of pervasive limonitization peripheral to fxs in two areas. The extent of the limonite would suggest that there is more than ~1% sulphides. Possible oxidation of biotite present??</li> <li>The lower contact is a conformable contact marked by rapid change in graphite grade and mineralogical changes - See Below.</li> </ul>			
8.92	17.10	CS2	CALCSILICATE GNEISS 2: Med→ dark grey, fine med. grained, moderately foliated/compositionally banded calcsilicate gneiss composed of variable properties	8.92	11.00	4987
├──── <del></del>			of calcine, qiz, diopside, graphite, py+/-po and spinel	11.00	13.00	4988
	· · · · · · · · · · · · · · · · · · ·		the 'richer' dark grey calculated. In this case we don't see the spinel intil $\sim 11.00$ m. Otherwise the rock is a typical	13.00	15.00	4989
			<ul> <li>the 'richer' dark grey calcsilicate. In this case we don't see the spinel until ~ 11.00m. Otherwise the rock is a typical CS1. Of note, overall spinel content is lower than other CS1 units.</li> <li>~&lt;0.2% diss spinel</li> <li>3-5% diss graphite throughout (except intrusions)</li> <li>1-1.5 % diss py +/- po</li> <li>foliation/compositional banding @ 75-80° to C.A.</li> </ul>	15.00	17.10	4990
			This interval is not homogeneous due to intercalations of both coarse grained marble (M1) and minor lenses of CS1. In addition, as elsewhere there are several intrusive? Pegmatite $\rightarrow$ qtz syenite dikes. The larger ones are as follows: 12.17 - 12.38 12.63 - 13.18 (Note: below the latter dike there is a 15cm med green massive "skarned" rk. with no graphite.)			

E

3 of Page

4

L

.

GEOLO	GICAL	LITH	LITHOLOCICAL DESCRIPTION	SAMPLE LOG			
INTE	RVAL	O CODE	LITHOLOGICAL DESCRIPTION		SAMPLE INTERVAL		
From (m)	To (m)			From	To (m)		
		CS2	CS2 CONTINUED:				
			The other noteworthy feature of this unit is the occurrence of locally much higher grade zones. These are usually small < 10cm. Of note, is one between $14.94 \rightarrow 15.49$ (.55m). This is a black fine grained gneiss with $\pm 10\%$ (visually graphite), also contains more				
			spinel (1-2%) and higher sulphide content. (2-3%)				
			O(1 - What does (if it exists) the correlation between spinel, py and graphite mean?				
			Q:2 – Spinel is resistant H=8, S.G? – Can you explore for this with the pan – as an indicator of high grade graphite zones?				
			I. C. irregular and marked by a small atz-fan negregitie sureat		·		
			2.0. Anogana and marked of a share do the populatio broad				
17.10	18.61		SKARN ROCK:	17.10	18.61	4991	
			Light-medium green coloured, massive, compact rock composed of qtz, diopside, minor calcite and minor brown garret?				
		<u> </u>	<ul> <li>also see minor coarse grained marble with calcite crystals to 1 cm x 1 cm with med→ dark green garnet metacrysts</li> <li>minor subplides</li> </ul>				
	<ul> <li>pegmatitic material noted at either end with 17cm marking ? contact.</li> </ul>						
			- No graphite - ** Resarding above - Protolith probably calculicate one iss				
	-						
			L.C. somewhat irregular with a 3cm contact aureole @ 45° to C.A.				
			,				
18.61	33.34	CS1	CALCSILICATE GNEISS 1:	18.61	20.00	4992	
			- Composed of variable proportions of calcite atz dionside graphite and portionally banded calculate greiss.	20.00	22.00	4993	
			<ul> <li>2-3% diss graphite overall</li> </ul>	22.00	24.00	4994	
		[	- 1-1.5% diss py throughout (+/- po)	24.00	26.00	4995	
			<ul> <li>Ionation/ compositional, banding relatively uniform @ 70-75° to C.A.</li> <li>Overall relatively homogeneous unit with the exception of the following.</li> </ul>	26.00	28.00	4996	
				28.00	30.00	4997	
			1. 19.71 - 20.65 - medium beige/grey to yellowish strongly compositionally banded medium- grained calculicate gneiss. Distinctive	30.00	32.00	4998	
			by the prominent 2 -5mm wide yellowish bonds probably scapolite-rich material. Graphite grade within this is ~1-1.5%	32.00	33.34	4999	

E

£

,

F

F

· E

4 Pade

E

4 of

GEOLOGICAL		LITH	TTELOLOCICAT DESCRIPTION	SAMPLE LOG				
INTE	RVAL	O CODE		SAN INTE	IPLE RVAL	SAMPLE NUMBER		
From (m)	To (m)	1	· · · ·	From	n To (m)	1 }		
			CALC SILICATE GNEISS 1 CONTINUED:	-				
			<ul> <li>this unit appears conformable to the rest of the calcsilicate unit.</li> <li>2. Several small pegamatite and granite sweats/dikes occur throughout the unit. Two larger ones occur @</li> <li>22.33 - 22.70</li> <li>26.18 - 25.56</li> <li>(Note: the latter one is more of a foliated granodiorite/quartz syenite.</li> <li>Start seeing skarning in the last metre of unit with patches of med. green massive qtzdiopside rock.</li> <li>L.C. relatively sharp @85° to C.A.</li> </ul>					
33.34	39.62	Q	QUARTZ 'VEIN' (GNEISS)	33.34	35.00	5000		
			Medium grey, medium—coarse grained qtz 'vein'. Contains diss graphite <0.5% suggesting that this is either a recrystallized Qtz –	35.00	37.60	5001		
			<ul> <li>- &lt;0.5% diss po with heavier concentrations locally, notable near upper contact where po+/- py 5% over 15cm <li>qtz has a granular recrystallized appearance to it.</li> <li>Overprinted in places by a weak pervasive limonite.</li> </li></ul>	37.00	37.93	5002		
	·		L.C. somewhat undulating but sharp $@ \sim 85^\circ$ to C.A.					
37.93	39.62		QTZ-FSP-BIO-GNEISS:         - Well-foliated gneiss with intercalations of qtz gneiss (as above)         - 2-4% py +/- po along foliation planes. Tr. diss cpy         - locally ~1% graphite - overall <0.3%	37.93	39.62	5003		

ĩ Page of

ã

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE (ft.) (m) True Minutes Seconds SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) 1070.16 Degrees Collar -54° 40' 043° 10' APPROX. EASTING (m) 574.54 Down Hole (ft.) Read 1570.23 (m) True Read True APPROX. ELEVATION (m) . . 45.72 -55 -55 020.0 038.50 DATE DRILLING STARTED NOV.25/2000 DATE DRILLING ENDED NOV.26/2000 (fL) (m) TOTAL DEPTH 157 47.85 CASING DEPTH 6 1.83 CASING STEEL IN HOLE NO Ft. B. AUGSTEN LOGGED BY LOGGING DATE JAN 4/ 2000 SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) 0 1.83 CASING 1.83 2.08 **BIOTITE-GNEISS:** 5004 Bfgn 1.83 2.08 Biotite -qtz - fsp gneiss: Fine - grained, somewhat mottled textured rock with 2-3% diss pyrite. No graphite - dark brown colour L.C. not clear. 2.08 38.77 CSI CALCSILICATE GNEISS 1: 4.00 5005 2.08 Fine ->medium grained pale->med. grey to pale green/grey rock, weakly to well-foliated and/or compositionally banded. Rock is composed of somewhat variable proportions of qtz, calcite, diopside, py +/- po and graphite. 1-2% diss py +/- po overall Overall graphite grade 1.5 - 2.5% as foliation parallel or disseminated metacrysts typically 0.5mm in diameter or less. 4.00 5006 6.00 Compositional banding and/or foliation @ 65-75° - predominately 65° to C.A. 5007 6.00 7.35 Compositional banding not everywhere, but where it occurs as at 3.25m. for example, it is manifested by a preferred segregation of diopside rich material at the expense of qtz and calcute into 0.5cm wide bands of light green material. In addition one sees a preferred accumulation of graphite in darker narrow bands. The overall effect is a banded

2

CEOLOCICAL INTERVAL	LITHO	LITHOLOGICAL DESCRIPTION		SAMPLE LO		
GEOLOGICAL INTERVAL	CODE			NTERVAL	SAMPLE NUMBER	
From (m) To (m)			From (m)	To (m)		
		<ul> <li>appearance which should not be mistaken for bedding. This is a metamorphic fabric.</li> <li>This unit is not homogenous due to the presence of intercalations of marbie and other calcsilicate lenses and to the presence of numerous small and several relatively large pegmatitic sweats and dikes.</li> <li>(Note: The pegmatitic dikes are or can be a large percentage of the rock unit. For example between 2.08 and 7.37m pegmatites total 1.71m. for 32% of the rock. Overall the number of dikes is less but the larger ones are noted. Because these usually have no graphite in them they can significantly bring down the average grade.)</li> <li>Some of the larger pegmatites occur at:</li> <li>FROM TO LEINGTH</li> <li>5.21 5.73 52</li> <li>12.70 13.73 1.03</li> <li>14.58 15.34 .76</li> <li>*16.78 17.31 .53</li> <li>18.79 19.15 .36</li> <li>19.84 20.42 .58</li> <li>20.57 20.87 .30</li> <li>22.72 223.04 .32</li> </ul> More notes on Pegmatites: These pegmatites course grained containing feldspar + qtz + biotite +/- po. They are usually limonitically stained in a patchy mammer with the limonite forming alteration rims around biotite and/or pyrrhotite +/- py patches. Occasionally these recessively oxidize forming miarolitic cavities. 7.35 – 8.20 – intercalated lens of CS2 material – distinguished by higher graphite content, dark grey to black colour and presence of bright green spinel. Well foliated @ 65° to C.A. <ul> <li>-4% graphite (Note: last 10cm, 8.10 – 8.20, vblack with 10% graphite)</li> <li>Usually we see this unit as a relatively large 5-10m distinguishable unit – in this hole it occurs as small intercalations - Contacts are conformable</li> </ul>	7.35 8.20 10.00 12.00 14.00 16.00 17.60	8.20 10.00 12.00 14.00 16.00 17.60 18.47	5008 5008 5009 5010 5011 5012 5013 5014	

of

E E

E.

L

.

CEOLOCICAL INTERVAL			LITTICLOCICAL DESCRIPTION		SAMPLE LO	)G
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION		NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
		CS2	17.60 - 18.47 - another intercalated lens of CS2 with 3.5 - 4.0% diss graphite			
			<ul> <li>distinguished by dark grey → black colour + green spinel</li> </ul>			
			Note: @ 21.06m a 10cm section of CS2			
			@ 21.70m a 5cm section of CS2	···· ·		
		CSI	(Note: From 18 47 - 25 55 difficult to distinguish the heating rock ((251) because it has been out by numerous permetties superts/dikes			
			in addition to being intercalated with minor lenses of CS2 (as noted) and more of a compositionally banded M1 marble)	18.47	20.00	5015
			<ul> <li>Addition to being intercatated with much tenses of CS2 (as noted) and more of a compositionally balded with match of 20.00</li> <li>Overall graphite grade will be low in this interval.</li> <li>The larger of the pegmatites are noted on Pg.2. In addition to the larger dikes there are several small ones (5-10 cm) dispersed in this interval.</li> <li>Between them the CS1 unit is often 'skarned'' to a green massive skarn with no or little graphite.</li> <li>3.10 - 25.55 - pale yellow /grey compositionally banded coarse grained qtz-diopside +/- marble scapolite</li> </ul>	20.00	22.00	5016
				22.00	24.00	5017
		·		24.00	25.55	5018
				-		
			- variably recrystallized by permatitic sweats			
	ļ		- compositional banding @~70° to C.A.		<u> </u>	
		1				
·		·	<ul> <li>- Foliated biotite granodiomite composed of biotite, white feldsnar and atz.</li> </ul>			<u> </u>
			- U.C. @ 60° to C.A.			
	•		- L.C. @ 55° to C.A. * No graphite.			
	<u> </u>	Ļ			ļ	·
<u> </u>		001	28.35 29.25 distinct compositionally banded med→coarse grained gneiss/marble with pale yellowish (scapolite -?) band	25.55	27.00	5010
		CSI	interbanded with grey $\rightarrow$ flesh coloured qtz-rich bands and pale grey $\rightarrow$ whitish calcite-rich bands in addition to black narrow 1-2 mm	25.55	27.00	5019
			graphite rich bands. - connectional banding @ 65 - 70° to C A	27.00	29.00	5020
<u> </u>			<ul> <li>Overall graphite &lt;0.7% disseminated and focused in discrete bands.</li> </ul>	29.00	31.00	5021
			Note: @ 32.59 – discrete metacrysts (1-2%) of spinel within CS1 unit.	31.00	33.00	5022
			26.64 27.52 CSI becomes finer arrived declar and computed sitiation with a warr surrous texture	33.00	35.00	5023
			- 21.32 - CSI becomes met grained darker and somewhat sincified with a very sucrosic texture.	35.00	37.00	5024
			- this texture is a function of proximity to lower contact?	37.00	38.77	5025

Page

4 of

. 

,

.

200 B

· . .

Ē

ſ

.

#### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0012

.

Page 4 of

А

			LITHOLOGICAL DESCRIPTION		SAMPLE LO	G
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION		NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			CS1 CONTINUED:			
			- 38.56 - rock is skarned and interjected with qtz / pegmatitic sweats.	~		
			- no graphine.			
	· · · · · · · · · · · · · · · · · · ·		38.56 - 38.77 - Pegmatite dike. L.C. @ 40°			
			· · · · · · · · · · · · · · · · · · ·			
38.77	47.85		QTZ 'GNEISS':	38.77	40.00	5026
-			- Recrystallized limonifically stained qtz 'vein' – pegmatite Has a coarse 'granular' texture with occasional 'schlieren'' of biotite grains			
			- Minor diss biotite throughout			
			- Locally heavy pyrrohotite associated with biotite schlieren			
			- No graphite.			
					· · · · · ·	·
	-					
				,		
-						
		····· ·				
			4		L	
	<u></u>					
·				L		<u> </u>
						1

True

-88 ·

DIP

True

-90°

Read

-88

SURVEY

Collar

Down Hole

DEPTH

(m)

(m)

46.63

(ft.)

(ft.)

SURVEY DATA

Seconds

SYSTEM

TRUE AZIMUTH

Degrees

Read

116.0

Minutes

True

134.5

1

GRID

EASTING (m)

Page 1

DRILLING DATA GRID SYSTEM MINE 1068.86 ELEVATION (m) APPROX. NORTHING (m) APPROX. EASTING (m) 573.38 APPROX. ELEVATION (m) 1570.18 DATE DRILLING STARTED NOV 26/2000 DATE DRILLING ENDED NOV 28 / 2000 (fL) (m) 173 TOTAL DEPTH 52.73 CASING DEPTH 7 2.13 CASING STEEL IN HOLE NO FL LOGGED BY B. AUGSTEN LOGGING DATE JAN. 5/2001

	CEOLOGICAL INTERVAL				SAMPLE LOG		
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE	INTERVAL	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	1	
0	2.13		CASING				
2.13	14.48	CS1	CALCSILICATE GNEISS 1:	2.13	4.00	5027	
			<ul> <li>pale grey               greenish grey to darker grey/green, fine             med grained rock, weakly to well foliated and/or             compositionally banded rock.</li> </ul>	4.00	5.00	5028	
			- Rock is composed of variable proportions of calcite, quartz, diopside, graphite and pyrite +/- po with accessory				
	-		scapolite, poss. Phlogopite				
			<ul> <li>Colour variations seen in the rock are due to variations, principally in the amounts of graphite, diopside and to a</li> </ul>				
			graphite content				
			The dionside content controls the green colouration			<u> </u>	
			- Overall graphite content is 1.75-2.5 % with local variations off this			<u> </u>	
			- Sulphide content predominantly py with lesser po @ 1-2% dissem.			<u> </u>	
		·····	<ul> <li>Graphite occurs as discrete metacrysts – small disc like crystals sometimes disseminated where rock isn't foliated</li> </ul>				
	<u> </u>		well and where toltation noticeable the graphite is a ligned parallel to the foliation. Crystal size is typically <0.5mm		ļ	<u> </u>	
		<u> </u>	f working of the surger dimensions, but locally see larger inelacitysis to + imit / ine crystal size appears to be a	ļ	ļ	[	
	}	<u> </u>	all the drill holes.		·	ļ	
·			- Foliation or gneissic banding is variable but where easily seen it avorages about 55° to C.A. c.z.@ 7.8m.				
L	·	1					

NORTHING (m)

5

of

F

.

Page

E.

5 2 of

CEOLOCICAL INTERNAL		LITHO		į	DG	
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE INTERVAL		SAMPLE
From (m)	To (m)			From (m)	To (m)	1
		CSI	CS1 CONTINUED: This calcsilicate unit is not homogeneous due to the presence primarily of leucocratic pegmatitic sweats/dikes. These are variable in size from <5cm to +1m. The larger ones are noted below. They tend to be coarse-grained and composed primarily of Kspar with lesser qtz and minor biotite +/- po +/- py. They often have a contact affect on the surrounding calcsilicate gneiss, commonly producing a green skarn or a coarsely crystalline marble. The pegmatites usually do not have any graphite – thus while they would have to be mined they contribute nothing to the overall grade, - rather they reduce the overall grade substantially plus they change the mining characteristics of the rock ie. They are much harder. <u>5.00 - 6.22</u> – pegmatite dike as described above – patchy limonite staining (probably oxidation of sulphides) – also contains 2-3% spotty chloritized mafics.	5.00	6.22 8.00	5029 5030
			One further note on the texture of this unit (CS1) In this hole as in others this unit as well as (CS2) have a distinctly "sucrosic" texture - produced by the granular nature of the quartz. This has led previous workers (1997) drilling to describe these rocks as "limy sandstones" By virtue of their metamorphic grade they cannot be sandstones. This sucrosic texture is a function of the grain size and qtz content - more noticeable in the finer grained and more qtz rich sections - although the qtz content doesn't seem to vary that mach - usually 20 - 30 % (also may be a function of scapolite content which as seen in thin section is appreciable). <u>11.58 - 13.71</u> - majority of the rock is a massive, med. grained diopside, qtz graphite marble, <0.5% diopside. - no foliation - <0.3% diss graph. - Med—pale grey/beige colour - This interval includes some (50cm of CS1) as well as one small 15cm pegmatitic sweat - Contacts are somewhat gradational and conformable At the lower contact there is a 10 cm pegmatitic sweat that marks the transition from CS1 to CS2.	8.00 10.00 11.58 13.71	10.00 11.58 13.71 14.48	5031 5032 5033 5034
	22.80	CS2	<ul> <li>CALCSILICATE GNEISS 2: (Note: this interval is a good type section for CS2)</li> <li>Dark grey → black, fine grained, well foliated and /or compositionally banded rock.</li> <li>rock is composed of calcite, qtz, diopside, graphite, pyrite +/- po and spinel</li> <li>Three things usually distinguish this unit: <ol> <li>High graphite content - typically 3-5% with locally (10-15cm) 7-10%</li> <li>Presence of ~0.5 - 0.7% distinct bright emerald-green spinel metacrysts 0.5 - 1.0mm in diameter.</li> <li>3. We almost always see at least one section within CS2 that has a distinctive texture produced by whitish, lenticualr to ovoid clots, 5mm x 3mm to +10mm x 3-4mm, composed of calcite qtz +/- diopside (probably also kspar +/- scapolite), aligned parallel to foliation against a backdrop of dark grey → black fine grained graphitic calcsilicate gneiss. Where the texture is best defined these clots make up 7-10% of the rock eg @ 15.90m</li> </ol> </li> </ul>		16.59	5035

t

5 of

				SAMPLE LO		DG
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			CALCSILICATE GNEISS 2 CONTINUED:			
			(Note: This texture is only seen in this unit.) Foliation / compositional banding variable from 35 to 50° to C.A.			
			16.59 - 18.57 Leucocratic coarse-grained, weakly gneissic qtz syenite	16.59	18.57	5036
			- <2% biotite - <1% po	18.57	20,93	5037
			<ul> <li>contains small amounts &lt;0.1% graphite as individual crystals</li> <li>Overall graphite grade in this interval may be relatively high due to the inclusion of a 43cm xenolith of CS2</li> </ul>			
			Note: @ 18.57 in underlying CS2 unit there is a 2cm zone of heavy graphite and decrease in grain size right up against contact with z syenite dike.			
		- Sulphide content within CS2 unit is a mixture of py + po as disseminated fine grains totaling 1-2%  19.35 - 20.20 - section of intercalated CS1 with 1-2% diss graphite  20.93 - 22.51 - Qtz Syenite Dike - similar to one @ 16.59  U.C. @ to C.A.	- Sulphide content within CS2 unit is a mixture of py + po as disseminated fine grains totaling 1-2%, localling to 3-4%	20.93	22.51	5038
	····		<u>19.35 - 20.20</u> - section of intercalated CS1 with 1-2% diss graphite	22.51	22.80	5039
	····		20.93 – 22.51 - Qtz Syenite Dike – similar to one @ 16.59			
	<u>.</u>		- a 10 cm qtz syenite sweat marks the lower contact.	<b> </b>		
22.80	52.73	CS1	CALCSILICATE GNEISS 1: - Mineralogically very similar to CS1 at top of the hole. The difference in this section is the grain	22.80	25.00	5040
			size This is a pale grey $\rightarrow$ green/grey, med $\rightarrow$ coarse, grained rock, very weakly foliated overall with locally good foliation and excellent compositional banding.	25.00	26.65	5041
		ļ	<ul> <li>rock is composed of qtz, calcite, diopside, graphite + po +/- py.</li> </ul>			·
			(Note: From 22.80 - 26.65- within this subinterval textures vary greatly because of contact effects and recrystallization caused by the			
			presence of several giz syenite and pegmatitic sweats and dikes. One notable large intrusion (@ 24.55 - 25.83 - it includes several xenoliths of country rock.)			
						· · · · · · · · · · · · · · · · · · ·
	i					

i.

Sea.

E

E

F

of 5 4 Page

			SAMPLE LOG			
GEOLOGICAL INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER	
From (m) To (m)			From (m)	To (m)	l	
	CS1	CS1 CONTINUED:				
			26.65	28.00	5042	
		25.82 - 27.00 - well -developed compositional banding comprised of blackish graphic rich bands (1-5mm), yellowish scapolite -	28.00	30.00	5043	
		- compositional banding @ 65° to C.A.	30.00	32.00	5044	
· · · · · · · · · · · · · · · · · · ·		- this CS1 unit has more of a granular look (granoblastic) with conspicuous qtz clots up to 1 cm x 1 cm with v. irregular	32.00	34.00	5045	
		edges - this unit continues to end of hole interrupted only by numerous dikes and sweats of atz symptite and/or felsic kspar-				
		qtz-pegmatites These in turn have variably altered the CS1 unit.				
·······		The larger of the dikes are located as follows:				
		From (m) To (m) Length (m)				
		36.56 37.49 0.93				
·····		41.86 42.65 0.79				
		44.89 45.18 0.29		ļ		
		46.02 47.18 1.16				
	·	50.88 52.73 1.88			1	
		101AL: 5.75m				
		*these dikes tend to recrystallize (coarsen) and skarn the peripheral host rock.				
		**Between 35.45 and 52.73 felsic pegmatites/qtz syenite dikes comprise at least 33% of rock	······································			
		39.35 - 43.42 - With the excention of a counter of atz sympleted ites (notably at 41.86 - 42.65) this is a higher oracle section visually		[		
······································		similar to CS2 material except for the lack of the emerald green spinel	34.00	36.15	5046	
		- dark grey $\rightarrow$ black mottled to well-foliated rock - 3-5% diss graphite	36.15	38.00	5047	
· · · · · · · · · · · · · · · · · · ·		-2-3% diss po.	38.00	40.00	5048	
		- Foliation and/or compositional banding @ 70° to C.A.	40.00	41.86	5049	
		47.18 – 49.86 – darker, finer grained locally mottled texture	41.86	42.65	5050	
		- overall 3% diss po	42.65	44.00	5051	
		- 2-3% graphite	44.00	46.00	5052	
		<ul> <li>last 50 cm of this section becoming browner due to appearance of philogopile? 5-7%</li> </ul>	46.00	47.18	5053	
			47.18	49.00	5054	
			49.00	49.86	5055	

# . .

E

ſ

ſ

F

F

## CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0013

F

.

5 Page

5 oĩ

·					SAMPLE LO	G
GEOLOGICAI	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	1
			CS1 CONTINUED: -	49.86	50.88	5056
			S0.96 S2.62 On Sumity Dila	50.88	52.73	5057
			- 2-3% biotite			
			- $\sim$ 1-2% po overall with locally 3-5% f.c. po with tr. Sph, cpy. @ 52.33			
	·····					
	<u> </u>		·			
				<u> </u>		
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
					<b>_</b>	
	• • • • • • • • • • • • • • • • • • • •					
				<u> </u>		
······································						
				<u> </u>		
				1		

E

3

Page 1 of

Ŝ

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE ഡ (m) True Minutes Seconds SYSTEM NOR'IHING (m) ELEVATION (m) 1242.77 Degrees EASTING (m) APPROX. NORTHING (m) Collar -54° 10' 46° 50 APPROX. EASTING (m) 521.36 Down Hole Read (ft.) (m) True Read Тпæ 1543.66 APPROX. ELEVATION (m) 46.02 -54 -54 021.5 040.0 NOV, 30/2000 DATE DRILLING STARTED DATE DRILLING ENDED Dec 1/2000 (ft.) (m) TOTAL DEPTH 174 53.04 CASING DEPTH 10 3.05 CASING NO Ft STEEL IN HOLE LOGGED BY B. AUGSTEN JAN 7/ 2001 LOGGING DATE SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) To (m) From (m) 0 3.05 CASING 3.05 4.55 P PEGMATITE: Coarse grained feldspar - qtz pegmatite with limonitic miarolitic? spots centered on fracture controlled pyrrhotite -(po) Also includes 20 cm section of coarse grained atz syenite dike? -. L.C. sharp @ 70 ° to C.A. CS1 CALCSILICATE GNEISS 1: 4.55 9.79 4,55 5058 6.00 Fine  $\rightarrow$  med grained wealkly to well foliated pale  $\rightarrow$  med grey to pale  $\rightarrow$  med greenish/grey (where unalt'd) -6.00 8.00 5059 Composed of variable proportions of calcite, qtz, diopside, graphite + pyrrhotite +/- pyrite. (1-2% po) 8.00 9,79 5060 Foliation variable from  $57 \rightarrow 67^{\circ}$  to C.A. -Overall <1.5% diss graphite but where unalt'd 2-2.5% diss graphite Limonitically stained fixs and joints with minor pervasive limonite peripheral to joints only locally. Unit is not homogenous due principally to the presence of several small pegmatitic dikes and one larger pegmatitic - qtz syentic dike @ 6.91 to 7.78 In addition, the unit is alt'd at lower contact from 8 89 to 9 79. This alteration appears to be contact effect from the underlying gtz.

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CS1 CONTINUED: . body. The alteration has converted the normally greenish rock into a dark grey to black rock. There appears to be a grain size reduction to a fine grained rock with increase in sulphides to 3-3.5% diss po + appearance of fine grained brown mineral ~3% possible fine grained biotite. In essence this is a hornfelsing effect. L.C. marked by a 10cm pegmatitic sweat. L.C. @ 48° but v. irregular (Note: At the contact there is a 3-5 mm thermal effect manifested by med → dark green alteration (chlorite +/- actinolite) and increase in pyrrhotite) 9.79 Med grey to limonitically stained coarse grained, recrystallized qtz 11.90 0 **QUARTZ:** -~1% F.C. pyrrhotite (po) possible trace sphalerite (sph) strongly fractured L.C. sharp @ 80° to C.A. 11.90 20.50 GRANODIORITE: (Quartz Monzonite) GD Medium grained, leucocratic, biotite granodiorite comprised of qtz (med grey-flesh coloured), feldspars (white) biotite (black) Variable texture from massive to wkly foliated Model Composition: QTz: 20% Feldspar: 75% (plag vs kspar?) Note: all feldspars white Biotite: 3-5% Sulphides: Tr. Good type Example - get thin Section from here. L.C. Sharp @ 57° to C.A., although the granodiorite has been intruded by apophyses of the underlying pegmatite? Qtz syenite. PEGMATITE: 20.50 28.30 P This is somewhat of a heterogeneous zone consisting primarily of a pegmatite dike "swarm". Between pegmatites are small sections of recrystallized M1 marble and biotite gneiss. Pegmatites are feldspar, qtz, +/- biotite +/- pyrrhotite?? -L.C. sharp @ 50° to C.A., but may not mean much due to variability.

Page

2 of

SAMPLE LOG LITHO GEOLOGICAL INTERVAL LITHOLOGICAL DESCRIPTION CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) 28.30 48.80 M1 MARBLE: M1: - Pale -> med grey, med -> coarse grained qtz +/- diopside +/- graphite marble -Minor diss. and remobilized pyrrhotite throughout. 31.00 - 31.00 - pegmatite dike. 33.13 - 34.53 - Biotite Grandionite (fine-grained) intruded by a Pegmatite Dike Hydrid zone. (Note: @ 36.1m strongly limontized joint with some obvious dissolution of marble - this probably represents a water channel. 37.00 39.00 5061 Occasionally these are seen in both marble and calculicate units.) 39.00 5062 41.00 41.00 43.00 5063 Overall graphite grade <0.5% as disseminated euhedral metacrysts. Locally the graphite content both much lower to -<0.1% and somewhat higher. Better sections sampled. The colour of the marble is a good clue to the graphite 43.00 45.00 5064 content. The darker grey sections are higher grade. 45.00 47.00 5065 (Note: 39.50 m a 3cm pegmatite sweat/dike with a distinctive white sericite alt'n rim including some apple green sericite - possible 47.00 48.80 5066 fuchsite/ mariposite.) Commonly, the M1 is massive but locally you can see a weak foliation and/or compositional banding. This is usually manifested by alignment of graphite metacrysts and sometimes qtz-rich vs. calcite rich bands. (Lepidoblastic texture). Also locally see occurrence of phlogopite manifesting a similar foliation (Note @ 42.05 - see distinctive bright orange - spessartine garnets to 2mm diam @ 45.00 - compositional banding @ 68° to C.A. L.C. sharp @ 57° to C.A. and marked by a gradational 10 cm zone of increase 'skarn' toward contact. Rock becomes progressively finer grained and darker green. 48.80 53.04 HZ HYBRID ZONE: Interval of strong pegmatitic to gtz sygnitic intrusions resulting in strongly hornfelsed and skarned rocks. includes some sections of biotite feldspar gneiss. Overall 1-3% disseminated and fracture-controlled pyrrhotite. No Graphite ---Prominent limonite development on fractures.

З

of

Page

E

l

ſ

É

E

E

Page 1 ā. of

E

E

E

1

.

	SURVEN						DATA					DRILLING DATA			
SURVEY	DEI	ртн	_	DIP	TR	UE AZIMUTH			GRI	D		GRID SYS	rem	MI	NE
	(ft.)	(m)		Тгие	Degrees	Minutes	Seconds	SYSTEM	NORTHENG (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	HING (m)	119	8.46
Collar				-54" 10'	42°	30						APPROX. EAS	(ING (m)	533.14	
Down Hote	<b>(</b> ft.)	(m)	Read	True	Read	True						APPROX. ELEV	APPROX. ELEVATION (m)		8.55
		64.01	-53	-53	014.5	033?						DATE DRILLING	DEC 1/2000		
		<u>.</u>			<u> </u>							DATE DRILLIN	G ENDED	DEC 2/200	90
ļ					L									(fL)	(m)
		·										TOTAL DE	ртн	220	67.60
İ <del></del> i			<u> </u>									CASING DI	BPTH	8	2.14
								,				CASING	3		
							ł					STEEL IN F	IOLE	NO	Ft.
		-										LOGGED	BY	B. AUGST	TEN
L						ļ	ļ					LOGGING I	JAN 8/2001		
GEOLOGICAL INTERVAL LITHO LITHO				LITHOL	DGICAL DESCRIPTION						SAMPLE	LOG			
GEOLOG			CODE		•							SAMPLE INTERVA			MPLE MBER
From (m	) T	0 (m)				- L		· · · · · · · · · · · · · · · · · · ·	····			From (m)	To (m)		
0		2.44	8	CASING											
2.44	1	2.60	CS1	CALCSILIC	ATE GNEISS	<u>l:</u>		-		· · · · · ·					
				-	Pale→ grey	$y \rightarrow \text{locally da}$	rk grey –we	ak/ pale greenish/g	rey fine→medium gr	ained rock with a	variable fabric	2.44	4.00	5067	
				-	The rock is	composed of	variable pro	portions of calcite.	moderately ionate. quartz, dionside grat	ahite avrrahatite +	/- ny plus accessor	4.00	6.00	5068	
					scapolite?	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	4	,	, b) bino googoori	6.00	8.00	5069	
				-	Overall gra	phite grade 1.	5 – 2.2 % "a	s disseminated" me	stacrysts to <0.5mm	in diameter.				·   · ·	
				-	<1% diss p	virtholite overa	all except wi	here noted below	enerocie texture whi	nh is characteristic	of both CS1 and		1		
					CS2 units.	notmotive Br	iniy icci (ii	broken surique -	sucrosic texture with		or oour cor and				······································
				-	Also see dis	stinctive anhe	dral clots of	med grey quartz?(s	capolite/kspar)- thes	e typically have v	ery irregular				
				_	boundaries Editation at	and are up to	1cm x 0.5 ci	n with some much	large accumulations.	. Typically 2-4mm	x 2-4mm.(	8.00	9.70	5070	
				-	This interva	al is not compl	ietely homos	geneous. The rock i	s intruded by several	pegmatite dikes/s	weats, usually	9.70	11.00	5071	
					<10cm. On	e larger one n	oted below.	In addition, approa	ching to lower conta	ct rock has been so	omewhat altered -	11.00	12.60	5072	
					perhaps hor	mfelsed. (See	description I	pelow)							
										•					
<u></u>			<u> </u>		· · · ·			· · · · · · · · · · · · · · · · · · ·	·····						

f

ſ.

Ē.

Ľ

2 4 of

GEOLOGICAL INTERVAL				SAMPLE LOG				
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)			
			CSI CONTINUED:					
	····		3.91 - 4.45 - alt'd zone due to smallish (15cm) pegmatite dike between $3.96 - 4.11 - atl'd$ surrounding the dike ia a med green coarse grained rock with qtz + fsp + diopside with unusually large graphite metacrysts to 2mm x 2mm					
			9.70 - 12.60 - calcsilicate has become dark grey to almost black, finer grained perhaps more siliceous. And better foliated. - also 2-3% diss po			、		
		   	<ul> <li>3-4% diss graphite</li> <li>@ 12.40 tr. Cpy, aspy? And gn? Associated with coarse pyrrohotite within a qtz sweat/irregular veinlet &lt; 1cm wide.</li> <li>(Note: Locally see well developed phlogopite within coarsely crystalline calcite rich intercalation e.g. @ 11.44m</li> </ul>					
			L.C. sharp @ 70° to C.A. and marked by coarsening and recrystallization of the upper calcsilicate.					
12.60	17.50	Q	Quartz: - Med grey to limonitically stained, coarse grained recrystallized qtz.	12.60	14.00	5073		
			<ul> <li>Weakly foliated</li> <li>&lt;1% diss biotite</li> <li>&lt;0.5% diss po+/- py</li> <li>Strong F.C. and pervasive limonite in patches</li> </ul>					
						:		
			- Interval includes minor pegmatitic diking/ and small intercalations of bi-qtz-po-gneiss.	<u> </u>				
			L.C. placed somewhat arbitrarily - where for the most part the limonite-stained qtz disappears and biotite-fsp-qtz gneiss bands start to predominate.					
ļ								
	·····							
17.50	34.30		BIOTITE - FSP - GNEISS/QZ/P/M:					
			gneiss and skarned marble.			<u></u>		
			<ul> <li>This is a difficult interval to put a label on because of the rapidly changing lithologies. I've seen this sequence elsewhere. I've placed the lower contact of the point which the last band of biotite – fsp gneiss occurs.</li> <li>Rocks in this zone include biotite – fsp- qtz gneiss which is a black → dark brown with whitish patches/lenses, well foliated.</li> </ul>			<u>↓</u>		
					<u></u>	<u> </u>		
			<ul> <li>Qtz unit is a med grey, often spotted unit with whitish calcite spots and minor diss. Dark green chloritized ma??</li> <li>Spots. This unit may be a qtz - flooded/recrystallized marble.</li> </ul>					

. . . . .

and the second second second second second second second second second second second second second second second · . · · · 

E

. . . . •

E

## CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0015 Page

Ŧ

F

Ŀ.

3 of 4

		T THO	LITHOLOOICAL DESCRIPTION	L	SAMPLE LO	DG
GEOLOGICA	L INTERVAL	CODE	LIINOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE
From (m)	To (m)			From (m)	To (m)	1
		Bfgn	BFGN CONTINUED:			
i			The sequence is intruded frequently by atz-for negrotife suggests/dikes and intrusions of atz suggite — (they are probably genetically			
			rie acquaice is included requertly by que-usp peginaute sweats dives and inclusions of the sycline – (incy are probably genericany related)			
	1 .		80 we first start seeing intercalations of dark green skarned rock now composed of massive qtz/diopside/gamet +/- po rock.			
			These become more frequent toward lower contact. (Skarned M1 marble).			
· · ·			30.97 – 31.79 – Dike of biotite granodiorite – mod. Foliated			1
		· ·	.C. @ 77° to C.A.			
			L.C. (Ø) 78° to C.A.			
		-				
34.30	66.47	Ml	MARBLE M1 :	34.30	36.00	5074
		+	- Pale grey $\rightarrow$ med grey $\rightarrow$ pale grey / greenish grey med to coarse grained marble Impure mathle due to presence of significant amounts of stand lesser dionside (ver) plus philosophile (locally)	36.00	38.00	5075
		- Impure marble due to presence of significant amounts of qtz and lesser diopside (var.) plus phiogopite (locally) po+/-py + graphite.				
<u> </u>			- This unit is usually massive with small sections of somewhat finer grained intervals displaying either a weak $\rightarrow$			
			med. foliation or weak $\rightarrow$ med. compositional bonding. - Overall graphite grade <0.5% as diss metacrysts usually <0.5mm in 2 but up to 1mm in 22 in coarser grained			
			sections.	38.00	40.00	5076
			$34.30 - 35.05$ - med $\rightarrow$ dark green massive fine grained skarned marble consisting of qtz-diopside-gt? - <1%po. (no graphite).	40.00	42.00	5077
		- <u> </u>	35.05 - 37.95 - well foliated fine grained atz – dionside-graphite –po marble/calculation (1%) diss graphite nale greenish colour.	42.00	44.00	5078
			Foliation @ 72° to C.A.	44.00	46.00	5079
			27.95 54.90 modes according to 1/ diamoids models. Nature with multiplate according the (the fill later as a state of the	46.00	48.00	5080
			recrystallization and coarsening in grain size: <0.5% diss graphite overall.	48.00	50.00	5081
	↓			50.00	52.00	5082
	<u> </u>		54.80 - 55.20 - foliated fine grained qtz-diopside +/- gt - graphite - po marble - (calcsilicate)	52.00	54.00	5083
	- 2% diss po; if cpy. - <1% graphite.	54.00	56.00	5084		
			$55.20 - 66.47$ – predominately med $\rightarrow$ coarse grained qtz-diopside marble with <0.5% diss graphite thoughout. <0.5% diss po.	56.00	58.00	5085 -
				58.00	60.00	5086
				60.00	62.00	5087
					27.00	6000

l

E

.

.

· · · · · · · · · · · · · · · · · · ·		Ţ			SAMPLE LO	)G	
GEOLOGICA	L INTERVAL	LITHO	LITHOLOGICAL DESCRIPTION	SAMPLE 1	NTERVAL	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	1	
·			MI MARBLE CONTINUED:	64.00	65.00	5089	
<u></u>				65.00	66.47	5090	
			Note: Within this marble unit, pegmatitic sweats/dikes comprise a cumulative total of approximately 12% of the core length.				
			Note: all contacts between subsections above are gradational.				
			L.C.(2) 20° 10 C.A.				
66 47	67.06		GRANODIONITE / BIOTITE GNEISS:				
			Low angle contact with biotite gneiss and leurocratic granodiorite. Not enough core to see what really is happening. Probably getting				
			The anomet one of mose zones of rapidly changing hillorogies as above the MT Marole.			ļ	
	E.O.H.						
		1					
					[		
						1	
		<u> </u>			•		
	······						
		<u> </u>					
			· · · · · · · · · · · · · · · · · · ·				
						· · ·	
	· ····.	<u> </u>		<u> </u>		ļ	
·							
		1					
<u> </u>		1				<u> </u>	
	·	1			[ · · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	
		1			[		
L	┞ ┉ <u>→┉──</u> →→→→→→ ┃	<u>1</u>	l	 	۱ <u></u>	L	
		1	·				

4 4 Page of

f

E.

E

ŧ.

E

f

......

						SURVEY D	ATA					0	RILLING D	ATA	
SURVEY	DI	epth		DIP	TR	UE AZIMUTH	t		GR	ID	-	GRID SYST	rem	M	(INE
	(ft.)	(m)		Тпие	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	HING (m)	100	00.22
Coltar		1		-55° 50'	45	00'	T					APPROX. EAST	TING (m)	60	1.18
Down Hole	(ft.)	(m) iy	Read	True	Read	Тпіе						APPROX. ELEV/	ATION (m)	1572.20	
		32.92	-55	-55	022.0	040.50						DATE DRILLING	STARTED	DEC	2/2000
												DATE DRILLING	G ENDED	DEC	3/2000
							]							(fL)	(m)
							]					TOTAL DE	PTH	118	35.97
											CASING DI	артн	9	2.74	
												CASING	3		
		1			Å							STEEL IN F	IOLE	NO	Ft.
					<u>4</u> -							LOGGED	BY	B, AUGS	TEN
							]					LOGGING I	DATE	JAN. 9/20	001
													SAMPLE	LOG	
GEOLOG	GICAL INT	ERVAL	LITHO CODE			LITHOL	OGICAL D	ESCRIPTION		<u></u>		SAMPLE ]	INTERVA		MPLE UMBER
2.74		24.41	CS1	CALCSILIC	ATE GNEISS 1	1:							(iii)	-	
				-	$Pale \rightarrow mea$	d grey, to dar	k grey to bla	ck (where alt'd), to	pale greenish grey,	generally finer grai	ned rock, with a				~
				1	variable tex	ture from aln	nost massive	granoblastic to we	ll – foliated.	atita L/ nurita and	oranhita				
					Overall gra	phite grade ir	i variable pro i interval <0.	7% due to the prep	onderance of intrusi	ve pegnatitic dikes	s/sweats and other	******	1		
			,	-	felsic intrus	ions as will b	e described	below. Overall gray	ohite grade within th	e CS1 unit itself is	$1.5 \rightarrow 2.5$ % as fine	e	1		
				1	disseminate	d grains rang	ing in size f	$rom \sim 1mm \rightarrow 0.25$	imm in diameter, pro	obably averaging <	0.5mm		1		
					The interva	í is not a horr	ogenous on	e due to the number	of and frequency of	f predominately pe	gmatatic dike/sweat	s. 2.74	4.00	5091	Ī
				1	These pegn	natites are pri	marily felds	par – qtz - +/- biotit	e +/- pyrrhotite. The	ey tend to be white	$\rightarrow$ pale green in	4.00	6.00	5092	2
· · · · ·		······································			colour with	limontic ove	rprinting.		Lin 4 74 m Notes th	in in a numulation t	otol. This opposite t	6.00	8.00	5093	3
				-	$\sim 22\%$ of in	nterval of per	gmanne uike		1 18 4.74 m. Note. m	is is a cumulative t	otar. This amounts	8.00	10.00	5094	4
				] -	` This interva	al of CS1 is p	articularily h	ard hit with dikes s	uch that , at , first g	lance you would no	ot see this as a	10.00	12.00	5095	5
				]	cohesive ur	uit from 2.74-	$12.74 \rightarrow 24.41$ . I interpret the section to be a calcsilicate gneiss intruded by a dike swarm. The king may be indicative of the proximity to an intrusive?? The larger dikes are identified below.					12.00	14.00	5096	5
	1	Ì		]	miensity of	we using m						14.00	16.00	5097	7
												16.00	18.00	5098	8
												18.00	20.00	5099	9

	· .			e se s	 • .
		• • • •	. •		

E

L

Ĩ

# CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0016

E

.

2.2

E.

F

2 Page of

3

GEOLOGICAL INTERVAL				SAMPLE LOG				
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)	[		
			<u>CS1 CONTINUED</u> :	18.00	20.00	5099		
			2.91 - 4.10	20.00	22.00	5100		
			4.67 - 5.70	22.00	24.41	5101		
		-	<ul> <li>8.10 - 8.55</li> <li>10.08 -10.75 (This is a somewhat unusual pegmatitic with pale purplish almost amethyst-like qtz and strong fine-grained white → pale green muscovite development at the expense the felspar (kspar). The feldspars are soemwaht chalky in appearance.)</li> </ul>					
			18.84 - 19.45 Note: In addition to lowering the overall grade merely by their presence these intrusions also have a thermal effect producing weak→mod. skarning + hornfelsing in some cases seemingly driving off the graphite Note: In addition to lowering the overall grade merely by their presence, these intrusions also have a thermal effect producing weak→mod. skarning + hornfelsing which in some cases seemingly drives off the graphite					
	·		13.05 - 14.28 <u>BIOTITE - FSPAR - QTZ - GNEISS</u> : intercalated lens of biotite fsp/qtz gneiss; fine-grained, dark brown with white patches; strongly foliated; more than half of interval is strongly pervasively limonitized.					
			Throughout the unit(CS1) see the occurrence of narrow zones of strong limonite development which is a maifestation of the oxidation of the contained sulphides. These limonitized zones tend to accentuate the foliation if present.					
	· · · · · · · · · · · · · · · · · · ·		(Note: @ 4.6 m. foliation @ 65° to C.A.)	ļ				
	·····		22.64 – 23.79 – Granodiorite Gneiss – weakly foliated, slightly feldspar – porphyritic, biotite grandiorite gneiss; med grained U.C. @ 30° to C.A.	 				
		· · · ·	- small (2-3cm) shear zone (fault) @22.88m with shearing @ 18-20° to C.A.					
24.41	35.97	Q	Quartz:       -       Medium grey to limonitically stained med → coarse grained recrystallized qtz containing <1% fine grained biotite 1-2% F.C, pyrihotite +/- pyrite and locally even coarse grained graphite			· · · · · · · · · · · · · · · · · · ·		

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE SAMPLE INTERVAL NUMBER To (m) From (m) From (m) To (m) Ō QUARTZ CONTINUED: 33.19-33.87 - Biotite - Fsp - Q gneiss containg 1-2% pyrrhotite and 1-1.5% graphite @ 34.80 - coarsely crystalline graphite with recrystallized qtz. Graphite metacrysts to 4mm x 3mm . (Note: In sampling this hole because of the rapid lithological changes throughout the interval of interest, oscillating between pegmatite and CS1, I didn't break down the samples on lithology breaks. Rightly or wrongly, I divided into 2m intervals. If this will be mined we will have to take the entire interval - no individual section of CS1 was big enough to mine? - The overall grade in this hole will be too low regardless.

3 3 Page of

· · · .

ŧ

E

E

E

## CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0017

Page 1 â of

	···	SURVEY DATA								D	ATA				
SURVEY	DE	рти		DIP	T	RUE AZIMUTH	[		GRI	D		GRID SYS7	rem	м	INE
	(ft_)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	HING (m)	117	78.17
Collar	}			-58° 15'	45°	20'		1				APPROX. EAST	TING (m)	834.45	
Down Hole	(fl.)	(m)	Read	True	Read	True						APPROX. ELEVA	TION (m)	1693.86	
		42.67	-59	-59	022.5	041.0	]	-				DATE DRILLING	STARTED	December 3, 2000	
L							1					DATE DRILLING	G ENDED	December 4, 2000	
		.  .					4							(fL)	(m)
ļ							-					TOTAL DE	PTH	150	45.72
<u> </u>					-		1					CASING DE	PTH	24	7.32
							1					CASING	3		
												STEEL IN H	IOLE	NO	FL
							1					LOGGED	BY	B. AUGS	TEN
				<u></u>								LOGGING D	DATE	JAN 10/2	001
			SAMPLE LOC												
GEOLO	GICAL INTI	ERVAL	LITHO CODE			LITHOL	OGICAL D	ESCRIPTION				SAMPLE INTERVAL			MPLE
From (m	i) T	'o (m)		<u> </u>					······································			From (m)	To (m)	"	MOEA
0		7.32		CASING											
7.32		8.00	MI	MARBLE:											
				-	pate grey - badly brok	$\rightarrow$ beige, med	ium> coars	e- grained marble	with <0.5% diss grap	hite.					
				-	part of inte	erval skarned	marble to a n	nedium green mass	ive rock						
				L	.C. obscured by	y rubble		-							
8.00		9.09	P	PEGMATIT	E: strongly liv	monitically st	ained coarse	mained feldenar -	atz + / histite / ma	whatite normatite					
					ouchgij h	monteduny se		granion totophi –	que l'é biolité _/- pyi	mone pegnane.			1		
				L.C. obscured	by broken core	e									
9.09		115	CSI	CALCSILIC	ATE CNEISS	1.							<u> </u>	_	
				-	pale to dar	$\frac{\Delta}{k}$ grey $\rightarrow$ pale	e greenish gr	ey fine → med. gra	ined, very weakly fo	liated to almost m	assive granoblastic				
				1	to well foi	iated and /or i	ocaliy comp	ositionally banded			0	ļ			<b>_</b> _
		<u>_</u>		-	rock is con	nposed of var	f variable proportions of calcite, qtz, diopside, graphite and pyrrhotite +/- pyrite +/- phlogo					·			·
l I				^	1004119 472	soapouto.									
L	<u> </u>		··	<u> </u>			·····		• • • • •				1		

,

.

017 Page

2 of 4

		LITHO		SAMPLE LOG					
GEOLOGICA	L INTERVAL	CODE	LITHOLOGIÇAL DESCRIPTION	SAMPLE	NTERVAL	SAMPLE NUMBER			
From (m)	To (m)			From (m)	To (m)				
		CS1	CS1 CONTINUED:	9.09	12.72	5102			
			The rock /interval is not completely homogenous due to	12.72	14.10	5103			
			1. various textural changes down section	14.10	16.09	5104			
			2. Interstorio i pognaturo uncessore and						
			4 presence of several intercalations of smith-hearing CS2	ļ	[				
			5. alteration due to meteoric waters ie. oxidation/production of limonite						
			- @9.69- good example of well-developed compositional banding manifested by yellowish-beige bands (scapolite-rich) to 0.5cm						
			interbanded with graphite-rich bands (dark grey $\rightarrow$ black)						
			- banding @ 80° to C.A.	ļ					
				L					
			$\frac{-10.05}{10.05} - \frac{11.14}{10.05}$ (US27) - dark grey, graphite -inco segment with distinctive resture of dark green pods i cm x 4mm of iess, possible graph and the set of the provide time is the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the						
		1	sputer autorigin not quite as green as normal, this may be due to suble of Autoria.						
		- sample is strong imminized .							
			-@11.62- rock reduced to a limonitic, graphitic sand.			<u> </u>			
				L					
			-12.72 - 14.10 - Pegmatite - limonitically stained fsp-qtz biotite pegmatite with coarse fzp-qtz and fn gr. Biotite.						
			- <0.5% pyrrhotite.						
		CS2	-14.98 - 15.34, dark oney to black fine orgined rock with a mottled texture created by whitish lenticular pode up to 1 cm x 2 mm	16.09	16.55	5105			
			This texture is seen in CS2 unit frequently	16.55	17.39	5106			
	· · · · · · · · · · · · · · · · · · ·		- in this case no visible spinel	<u> </u>					
			- very siliceous rock although still appreciable calcite	<u> </u>	<u> </u>	+······			
	 		<ul> <li>2-4% diss po; 3-5% diss fine grained graphite &lt;0.3 mm diam</li> </ul>		<u> </u>				
		OV	-15.34 - 16.09 - skamed calculicate producing a med green massive sometimes mottled rock now mostly at addancide with		····				
		SK <u>-10.09</u> - skaried carcsincate producing a med. green, massive, sometimes motied rock, now mostly qz,+diopside with coarse actinolite visible in calcite veinlet.							
				L		<u> </u>			
		P	$\frac{-16.09 - 16.55}{\text{cm} \text{ ats} \pm 4}$ - pale green $\rightarrow$ beige pegmatitic type sweat/dike						
					1				
	· · · · · ·		L.C. @ 55° to C.A.						
·	<u></u>	<u>.</u>			.i	i			

L

3 Page of

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CS1 CONTINUED: -16.09 -- 16.55 - recrystallized ; weakly skarned classificate -now- a med ->coarse grained qtz marble with patchy accumulations of 17.39 5107 18.46 . distinctive orange spessertine garnet; <0.3% diss graphite. 18.46 20.85 5108 -17.39-18.46 - CS2 - dark grey -> black, well - foliated, spinel - bearing calculate gneiss, fine grained, sucrosic - textured 20.85 21.45 5109 <1% diss spinel -21.45 5110 23.00 1-2% diss po ~3% diss graphite 5111 23.00 25.00 oxidized along narronw zones, producing strong limonite 5112 25.00 27.00 foliation @ 60° to C.A. 5113 27.00 29.00 @ 18.90 - good compositional banding @ 55° to C.A. 29 00 30 15 5114 5115 30.15 32.00 -20.85 - 21.45 - Qtz fsp pegmatitic sweat. -26.82-27.21 - CS2 - intercalated band of dark grey, spinel-bearing CS2 3-4% diss graphite . 1-2% diss po well foliated @ 66° to C.A. -27.30 - 28.10 - dark grey to black fine- grained well foliated, qtz - rich gneiss - looks like CS2 unit without the distinctive spinel. 4-5% diss graphite 2+% po • foliation @ 75° to C.A. contacts gradational L.C. marked by recrystalliaztion, creating a coarse calcite - qtz marble for ~10 cm above contact plus increase in sulphide content @ contact (3-5%po). L.C. @ 81° to C.A. 31.15 39.47 OUARTZ: - Med. grey to purplish grey to limonitically stained orange qtz. Can't quite call this a qtz vein - it really isn't. It has 0 the appearance more of a replacement zone and /or qtz flooded zone. In places it appears the qtz has replaced a marble - there are white remnant interstitial calcite -In other places it appears to replace a foliated gneiss As elsewhere this qtz is intruded by several small pegmatitic dikes/sweats

,

27

Ą. of

ã.

.

GEOLOGICAL INTERVAL		LITHO CODE			SAMPLE LOG			
			LITHOLOGICAL DESCRIPTION	SAMPLE I	SAMPLE INTERVAL			
From (m)	To (m)		· · · · · · · · · · · · · · · · · · ·	From (m)	From (m) To (m)			
			QUARTZ CONTINUED:					
			- Tr Graphite (this must have been part of the metasediment prior to replacement by gtz.)					
39.47	42.30	P	PEGMATITE:					
			- Intercalated sequence of Qtz-Fsp pegmatite and Biotite – FSp – Gneiss.					
			- ~1% po within pegmatites					
			- 2-3% po within gneiss					
			Pegmatite comprises 64% of interval L.C. @ 67° to C.A.					
	"			·		•		
					<u> </u>			
42.30	44.52	SK.	SKARN: - Med green $\rightarrow$ pale yellowish green, foliated to compositionally-banded skarned classificate gneiss.					
	· · · · · ·		- fine $\rightarrow$ med grained	·····		· · · · · ·		
			- rock is now converted to compact qtz + diopside +/- calcite +/- po	· · · · ·				
			- Compositional banding @ 75° to C.A.					
					-			
			. gradational			· · · ·		
	-				· · · · · ·			
44.52	45.72	MI	MARBLE (M1): Med $\rightarrow$ coarse grained nale grey atz +/- dionside marble		<del>.</del>			
			- <0.3% diss graphite throughout					
		<u> </u>	- massive texture					
			FOR					
<u>├</u> ─────	·· · · · · · · · · · · · · · · · · · ·				···· ·			
		<u> </u>				<u>`</u>		
		[						
1		<u> </u>	1			i •		
L		L				<u> </u>		

2

Page 1 of

1

•				SURVEY DATA								DRILLING DATA			
SURVEY	DEPTH		DIP TR			GRID					GRID SYSTEM		MINÊ		
	(ft.)	(m)		True		Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORTHING (m)		1138.57	
Collar				-54° 35'	47°	40*						APPROX. EASTING (m)		691.63	
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. ELEVATION (m		1619.28	
		48.77 -55		-55	021.0	039.50				DATE DRILLING STARTED		DEC 5 /2000			
										DATE DRILLING ENDED		DEC 6 / 2000			
														(fL)	(m)
							TOTAL DEPTH				ртн	170	51.82		
												CASING DE	PTH	15	4.57
												CASING	3		
									s			STEEL IN H	IOLE	NO	Ft.
												LOGGED BY		B. AUGSTEN	
							]					LOGGING I	DATE	JAN 11/20	001
CROX OCTOBER LITTE				······				_				SAMPLE	LOG		
GEO	ULUGI FTFDV/		0		LITHOLOGICAL DESCRIPTION						SAMPLE				
INIERVAL			CODE									INTE	INTERVAL		SAMPLE NUMBER
From (n	n)	To (m)								· · ·		From	To (m)	)	1
0		4.57	-	CASING				-							
4.57		8.65	CS2	CALCSIL	CATE GNEISS	2:						4.57	6.00		5116
				7	- Fine	$\rightarrow$ med graine	ined dark grey to black (where fresh), well - foliated calcsilicate gneiss.					6.00	6.85		5117
					- Gnei	ss composed of $disc not < 0.5$	of calcite, qtz % diss spine	diopside, graphite	, pyrrhotite +/- scapo	lite +/- spinel		6.85	8.65		5118
					- 3-5%	6 diss graphite	with metacr	ysts usually <0.5m	m in diameter						
					- Inter	val is strongly	weathered d	own to 6.85m, we	akening the rock (this	is manifested by s	trong pervasive				
				]	limo	nite.	~ .								
	- Fonation @ /0° to C.A.							-							
	4.57 - 5-11 - rock is badly broken, limonitized and somewhat different composition -														
	· · ·			med $\rightarrow$ coarse grained qtz-rich material with <0.5% diss graphite											
		- may be a boudin within CS2													
[												 	 		
				_									İ		
L													1		
L															

Ĩ

· ·

f

E

E

Ē

.

2

⊿. of

1

GEOLOGICAL LITH INTERVAL O CODE		LITH		SAMPLE LOG			
		O CODE	LITHOLOGICAL DESCRIPTION	SAMPLE INTERVAL		SAMPLE	
From (m)	To (m)			From To (m)		-	
			<ul> <li>CS2 CONTINUED:</li> <li>Gneiss cut by two small 10-15cm qtz-fsp pegmatitic dikes.</li> <li>These dikes have a definite thermal effect on the host. For example, the small dike @ 8.00 - 8.10 immediately above this dike is some coarse recrystallized CS2 - now a marble with distinct bright orange spessartine garnets.</li> <li>The lower contact is with another pegmatitic dike and here we see a 3cm zone consisting of actinolite +/- po pegmatite grading into a v. fn. gr. 1cm black zone of strong graphite + po + actinolite + diopside + qtz.</li> <li>L.C. @ 65 ° to C.A. but undulatory</li> </ul>				
				-			
8.65	30.87		CALCSILICATE GNEISS 1:         -       Fine → med grained pale → med grey to pale→ med greenish/grey         -       Generally weakly → mod. Foliated and/or compositionally banded.         -       Rock is composed of variable proportions of qtz, calcite, diopside, graphite, pyrrhotite +/- scapolite.         -       Typically:         Calcite       60 - 70%         Qtz       20-25%         Diopside       5-10%         Graphite       1-3%         Pyrrhotite       1-2%         Scapolite<				
			The interval is not homogeneous due to various textural changes and due to the presence of several pegmatitc dikes and sweats the larger of which are described.				
			8.65 – 9.71 – zone of strongly alt'd rock including two pegmatitic zones – which are probably responsible for the alteration	8.65	9.71	5119	
			- the pegmatities are coarse-grained fsp-qtz with no biotite – the alt'd rock varies from coarsely crystalline	9.71	11.78	5120	
			- No graphite.	11.78	12.69	5121	
			<ul> <li>9.71 - 11.78 - pale grey to yellowish grey, compositionally banded. Med→ coarse grained, qtz - calcite diopside scapolite</li> <li>&lt;1% graphite concentrated in discrete narrow zones or bands usually 1mm → 1cm producing greyer bands</li> <li>compositional banding @ 65° to C.A.</li> <li>this interval includes a 20cm pegmatite</li> </ul>				

3 Page of

Ì.

Ľ.

4

GEOLOGICAL INTERVAL		LITH		SAMPLE LOG			
		O CODE	DE			SAMPLE	
rom (m)	To (m)			From		1	
			CS1 CONTINUED:			[ 	
			<u>11.78 - 12.69</u> - Pegmatite: Coarse grained, pale green, feldspar - qtz - biotite - py+/- po pegmatite				
_			- includes a 7cm screen of CS1				
		1	- No Graphite				
		1	L.C. @ 68° to C.A.				
						· · · ·	
		1	(Note: 2cm thermal aureole at L.C. producing a dark green fn. gr. actinolite/ chlorite / pyrrhotite qtz rock.)	12.69	14.00	5122	
· · ·		+	probably represent pathways of oxygenated meteoric water.	14.00	16.00	5123	
·	· <u>· · · · · · · · · · · · · · · · · · </u>			16.00	18.00	5124	
	· · · · · · · · · · · · · · · · · · ·		$28.00 - 29.05$ - dark grey $\rightarrow$ blk, fa, gr, foliated gneiss similar to CS2 without the spinel	18.00	20.00	5125	
		<u>+-</u>	- contacts gradational over 10cm	20.00	22.00	5126	
		· <u> </u>	- includes a 12 cm qtz vein (sweat)	22.00	24.00	5127	
		┼	- 2-3% graphite	24.00	26.00	5128	
	·		- 2% pymoute	26.00	28.00	5129	
		+	(Note: In general from $28.00 \rightarrow 30.87$ (lower contact) this gneiss is darker grey to black in places, reflecting generally finer grain	28.00	29.00	5130	
	·····	┼	size, more graphite and perhaps higher sulphide content.	29.00	30.87	5131	
		+	L.C. sharp @ 70° and marked by 3cm thermal aureole of fine grained atz – diopside +/- actinolite + pyrrhotite			·	
		+				<u> </u>	
30.87	44.04	· Q	Quartz:	30.87	32.00	5132	
			Med grey to mottled grey to orange limonitically -stained qtz. This unit should not be thought of as a qtz vein per se, but more of a			<u></u> •	
·	<u></u>		$dtz - flooded$ zone. The interval is quite heterogeneous, including med $\rightarrow$ coarse grained recrystallized $dtz$ , often limonifical stained $dtz - flooded$ biotite - for grains hands $dtz - flooded$ calculates and $dtz - flooded$ biotite - for grains hands $dtz - flooded$ calculates and $dtz - flooded$ biotite - for grains hands $dtz - flooded$ calculates and $dtz - flooded$ biotite - for grains hands $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ biotite - for grains hands $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz - flooded$ calculates $dtz$				
	<u></u>		- The common feature is the gtz – flooding		<u></u>		
			<ul> <li>Also see some pegmatitic diking of the fsp – qtz variety</li> </ul>			+	
		+	- 1-2% fracture-controlled pyrthotite.		<u> </u>	<u> </u>	
		+		}	1	}	
		†	$42.97 - 44.04 - Qtz$ syenite - fine $\rightarrow$ med grained qtz syenite dike with xenoliths of skarned calculate		<u> </u>		
					¢ 1		
· .-

Ľ

~~	107	. 8	1 ~~	- تـ 1
	3-5-61		LVY	- F •

DO.	Hole-

e-ID: BC0018 Page

E

4 of

E

4

GEOLO	GICAL	LITH			DG	
INTEI	RVAL	O CODE	LITHOLOGICAL DESCRIPTION	SAM INTEI	PLE RVAL	SAMPLE NUMBER
From (m)	To (m)	From	To (m)			
44.04	45.46 CS1 CALCSILICATE 1: Weakly skamed foliated atz = diopside calcite = graphite calcsilicate: med greenish/ heige					
		· · · ·	Weakly skarned foliated qtz – diopside calcite – graphite calcsilicate; med greenish/ beige			
			- <0.5% diss graphite			
·	·····		- foliaton @ 30° to C.A.			
			- L.C. with underlying pegmatite dike (a block to C.A.			
			- Contact marked by development of chlorite?, pyrrhotite, brown garnet and qtz.			
		1				
45.46	51.82	M1	M1 MARBLE :	· ·	· · ·	
			Med $\rightarrow$ coarse grained, massive, pale $\rightarrow$ med grey $\rightarrow$ mottled, qtz +/- diopside marble			
		[ <del></del>	- Interval cut by numerous small and large pegmatites as listed below.			
		<u> </u>	- Overall granite grade <0.2% within marble itself <0.5%			<u> </u>
			$\begin{array}{c} 1.  45.40 - 45.16 \\ 2.  46.90 - 47.65 \\ (75) \end{array}$			
		·	3 48.07 - 48.30 (73)	[ _]		
			4. $50.87 - 51.63$ (.76) 2.06m (32%)			
	E.O.H.		Marble recyrstallized to v. coarse grained calcite rock, including green garnet? / orange/ brown garnet.			
						h <u></u>

Ľ.

SURVEY DATA DRILLING DATA SURVEY DEPTH DIP TRUE AZIMUTH GRID GRID SYSTEM MINE (ft.) Minutes (m) Тпие Degrees Seconds SYSTEM NORTHING (m) EASTING (m) ELEVATION (m) APPROX. NORTHING (m) 1044.20 Collar - 56° 05' 43° 55' 678.36 APPROX. EASTING (m) Down Hole (ft.) Read (m) True Read Тпе APPROX. ELEVATION (m) 1609.88 39.62 -56 -56 DEC 6/2000 005.5°? DATE DRILLING STARTED 024.0°? DEC 7 2000 DATE DRILLING ENDED (ft.) (m) TOTAL DEPTH 140 42.67 CASING DEPTH 3.66 12 CASING STEEL IN HOLE NO Ft. LOGGED BY B. AUGSTEN JAN 12/2001 LOGGING DATE SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CASING 0 3.66 3.66 10.74 CS1 CALCSILICATE GNEISS1: Med green-dark grey foliated gneiss comprised of calcite, diopside, qtz, p + po + graphite -Interval intruded by several small & large pegmatite dikes as described below. Graphite grade of CS1 is 1-2% locally  $\rightarrow$  2-5% Po 1-2% throughout . Locally see strong oxidation over 5-10cm which has the dual effect of accentuating the foliation and weakening the rock . These zones are strongly limonite stained / alt'd. @ 4.00m foliation @ 43° to C.A. @ 4.77m foliation @ 74° to C.A. 3.66 4.86 5133 4.86 6.17 5134 This unit is not very homogeneous due to 5135 6.17 7.10 1. weathering 7.10 8.70 5136 2. preponderance of pegmatite dikes 3. skarning peripheral to dikes 8.70 10.74 5137

Ĩ Page of

Page

2 of

GEOLOGICAL INTERVAL					G	
GEOLOGICAI	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			CS1 CONTINUED:			
			<ul> <li>This interval and indeed this entire hole is cut by numerous pegmatite dikes perhaps more so than many. The largest ones in this interval are as follows:</li> </ul>			
		ļ <u>-</u>	1. $6.17 - 7.10$ - Med $\rightarrow$ coarse ground fsp -qtz - diotite pegmatite (felsic intrusion). The biotite is not coarse grained.			
		} 	2. 8.70 - 10.74 - pale green $\rightarrow$ limonite stained coarse grained fsp - qtz +/- po +/- biotite pegmatite			·
			- the pegmatite comprise a minimum of 42% of interval	<u> </u>		
			(Note: $(a, 7.51 \rightarrow 8.10 - intercalated lens of biolite - isp - qtz gneiss ( in.gr.)$			
			- No graphite			
		<u> </u>				
10.74	30.85	CS2	CALCSILICATE GNEISS 2:	10.74	11,74	5138
			<ul> <li>Dark grey→ black fine grained → med grained foliated rock composed of calcite, diopside qtz, graphite, pyrrhotite and spinel</li> </ul>			
			<ul> <li>Really distinguished by presence of &lt;0.5% dissem. bright green spinel metacrysts typically &lt;0.5mm x 0.5mm in</li> </ul>			
			<ul> <li>Really distinguished by presence of &lt;0.5% dissem. bright green spinel metacrysts typically &lt;0.5mm x 0.5mm in diameter</li> <li>Overall graphite grade 2-3% with locally +4% within the CS2 unit. This grade is diluted somewhat by presence of mumerous small and larger permatites diles as identified below.</li> </ul>			
			- @ 11.60 foliation @ 74° to C.A.			
				11.74	12,94	5139
	-		Permatrices: 1174 - 1294. Med crained for - at a negative with minor highlight + numbrative liminationally stained	12.94	13.65	5140
			U.C. @ 20° to C.A.	13.65	15.00	5141
			L.C. @ 55° to C.A. (but undulatory).	15.00	17,40	5142
			Note: For 8cm below L.C. CS2 recruitallized / coarsened including coarsening of granhite to metacrusts up to 2mm x 1.5 mm	17.40	18,82	5143
			(contenting of graphics to how you have to a you have a monormy of graphics to how you up to which x 1.5 million	18.82	20.00	5144
	2. <u>13.30 - 13.65</u> - Similar to above 3. <u>14.77 - 14.93</u> - coarse grained pegmatite		20.00	22.00	5145	
			22.00	24.00	5146	
		$3. \underline{14.77 - 14.93} - \text{coarse grained pegmatite}$		24.00	26.00	5147
			$17.4 - 18.82$ - Pale $\rightarrow$ med grey $\rightarrow$ limontized, med. grained massive rock composed of fsp + qtz + biotite with <0.2% diss graphite,	26.00	27,43	5148
			- near L.C. it looks like a pegmatite - elsewhere more of a altered metasedimeni.			

SAMPLE LOG LITHO LITHOLOGICAL DESCRIPTION GEOLOGICAL INTERVAL CODE SAMPLE INTERVAL SAMPLE NUMBER From (m) To (m) From (m) To (m) CS2 CONTINUED: 21.40 - 21.85 - coarse grained qtz - fsp pegmatite 22.07 - 22.24 - similar pegmatite sweat to above 22.65 - 23.00 - coarse grained fsp - qtz pegmatite (Note: the rock between these pegmatites is a well-folitated - high graphite-bearing CS2 @ 23.50m CS2 well-foliated @ 66° to C.A. 27.43 - 29.54 - Pegmatite - Fsp - Qtz +/- biotite +po +/- py pegmatite with xenoliths of strongly alt'd CS2 - some graphite, <0.2% 27.43 29.54 5149 overall 29.54 30.85 5150 <1% po <1% py 29.76-30.35 - Pegmatite L.C. @ 10° to C.A. 30.35 - 30.85 - Granodiorite Gneiss: Fine  $\rightarrow$  med grained, well foliated biotite granodiorite gneiss Foliation @ 20° to C.A. --L.C. @ 52° to C.A. 30.85 42.67 CS1 CALCSILICATE GNEISSI: 30.85 33.00 5151 Well foliated fine-med grained, med -> dark grey-> greenish grey calcsilicate composed of variable proportions of calcite, qtz, diopside, graphite, pyrrhotite +/- minor scapolite 1.5 - 2.5 % diss graphite thourhgout: well developed sucrosic texture. 1.2% diss po. Not homogenous due to several small pegmatite dikes and intercalating of coarse grained gtz - diopside +/- gt marble (see notes below) Well-developed limonite on fxs and joints and as pervasive alt'd peripheral to fxs (oxidating po +/- py presumably) These limonite joints /fxs, probably represent channelways for oxygenated meteoric waters, 5152 33.00 34.47 @ 33.50 foliation @ 62° to C.A. 34.47 35.55 5153

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0019

3 Page of

### CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geologic

E.E.E.

.

.

E

ť

E

E

E

BC0019

.

Ē

.

f

1

cal	Log	Hole-ID:

Page

1

4 4 of

				SAMPLE LOG				
GEOLOGICAI	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	Te (m)			From (m)	To (m)			
			<u>CS1 CONTINUED:</u>	35.55	37.00	5154		
			24.47, $25.55$ M1 Markley - course aminal calculate + atx +/ disperies +/ philosophite + arenhite	37.00	38.69	5155		
			- <0.2% graphite as diss. coarse grained metacrysts to lmm x lmm	38.69	39.34	5156		
			- both upper and lower contacts gradational					
			<u>36.45 - 37.00</u> - "intrusion' of v. fine grained purplish/brown biotite - qtz - fsp rock with a 0.4cm chill margin surrounding CS1 Contact @ 10° to C.A.					
			Variable foliation/compositional banding attitudes 1. @ 37.55 @ 45° to C.A. 2. @ 37.75 @ 55° to C.A.					
			<u>38.08 – 38.69</u> – M1 Marble – v. coarse grained calcite +/- qtz +/- diopside + graphite + phlogopite marble < 0.3% graphite U.C. abrupt @ 50° to C.A.					
			L. C. sharp @ 32° to C.A.					
			38.69 – 39.34 Pegmatite:					
			- interval includes pegmatite and strongly alt'd CS1	/ 	·			
			- L.C. @ 50 ° to C.A.					
				39.34	41.00	5157		
			<ul> <li>39.34 - 42.67 (E.O.H.)</li> <li>Med grained CS1 with intercalated lenses of coarse - grained CS1 and M1, in addition to dark green 'skarned'</li> </ul>	41.00	42.67	5158		
			lenses					
			<ul> <li>Overall graphite &lt; 1%</li> </ul>					
				<u> </u>		+		
						· · · · · ·		
						·		
				<u> </u>	<b></b>			
						<u>+</u>		

۰.

T.

Ĩ

2 Page Î of

L					SURVEY DATA							DRILLING DATA			
SURVEY	DE	PTH		DIP	m	RUE AZIMUTH	í		GRI	D		GRID SYST	EM	м	INE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	HING (m)	Not	done
Collar				-90				GPS	5513878.847	444252.131	1385.077	APPROX. EASTING (m)		Not done	
Down Hole	(ft.)	(m)	Read	True	Read	True	- T	<ul> <li>This hole didn't get surveyed – due to time/instrument limitations</li> <li>Location tie/in via differentially corrected GPS</li> <li>Hole located on Hoder Creek Road</li> </ul>					APPROX. ELEVATION (m)		1385
		48.77	-88	-88	095.0	113.50	] - 12 - 18						DATE DRILLING STARTED		00
			-									DATE DRILLING	G ENDED	DEC 8/20	00
						·	4							(fL)	(m)
												TOTAL DEPTH		170	51.82
													CASING DEPTH		9.14
													}		
												STEEL IN H	IOLE	NO	Ft.
												LOGGED	BY	B. AUGS	TEN
L												LOGGING I	DATE	JAN. 13/2	2001
								OGICAL DESCRIPTION					SAMPLE		
GEOLOG	GEOLOGICAL INTERVAL LITHO CODE					Linot	OGICAL D	ESCRIPTION				SAMPLE I	NTERVAI		MPLE
From (m	1) T	'o (m)										From (m)	To (m)		
0		9.14		CASING-F	Roadbed/ Till/ w	eathered bedr	ock?								
9.14	3	36.20		BIOTITE -	FSP -QTZ GN	EISS:									
				] .	- Well-foliat	ed fine→med	grained dark brown/white banded gneiss								
					<ul> <li>Minor pegi</li> </ul>	matite dikes th	rough hole	<i></i>							,
	· .				- 2-5% disse	minated to fol	liation parall	iel po +/- py (proba	ble cause of IP anon	aly).					
					<ul> <li>Locally v. s</li> </ul>	small amounts	s of graphite	(0.1%) – overall m	uch less.				· · · · · · · · · · · · · · · · · · ·		
				13.40 - 13.90	) - Pegmatite: c	oarse – graine	ed fsp – atz –	-/- biotite permatite							
				U.C. irregula	r @ - 40° to C.A	L.		p - p - p - p - p - p - p - p - p - p -							
	L.C. @ 38° to C.A.														
	- Some qtz – flooding/ silicifica					/ silicification	i peripheral	to U/LC. For 10 cm					[		
	- (@ 25.57 uate opy.														
	L.C. s				.C. sharp @ 60° to C.A.										

E

E

E

F

f

2 of

2

GEOLOGICAL INTERVAL		TITTO		SAMPLE LOG				
GEOLOGICA	L INTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER		
From (m)	To (m)			From (m)	To (m)			
36.20	41.87							
			- 1-2% diss po +/- py					
			- Foliation @ 50-55° to C.A.					
			- L.C. Sharp $(2)$ 45° to C.A.					
41.87	57.82	57.82       CS1       CALCSILICATE GNEISS 1: -         -       Well foliated med green → grey, fine → med grained gneiss consisting of variable amounts of calcite, qtz, diopside, graphite						
			44.10	45.43	5160			
		<ul> <li>+ po.</li> <li>This interval is strongly altered in many sections due to proximity to intrusions</li> <li>41.87 - 44.10 although foliated this is a hard dense rock.</li> <li>moderately skarned CS2 with well developed quartz and diopside?</li> <li>moderately sharned context are increased highly highly and the parafale.</li> </ul>						
			- in approaching lower contact see increased biotite hornfels					
			- @ lower contact recrystallization with coarse biotite + graphite					
			- 1-3% po overall					
	*****		- foliation well – developed @ to C.A.	45.43	46.63	5161		
			44.10 - 45.43 - Permetite - Investigate - for normative	46.63	48.00	5162		
	11 11			48.00	.50.00	5163		
				50.00	51.82	5164		
	- From 46.63 to 51.82 the CS1 is varibly skarn		- From 46.63 to 51.82 the CS1 is variably skarned and silicified with general reduction in graphite. Includes several small fsp – otz negmatite dikes					
		<ul> <li>Thom 40.05 to 51.22 the CST is variety skalled and sinchled with general reduction in graphite. Includes several qtz pegmatite dikes</li> <li>Overall graphite &lt;1%</li> </ul>						
	- Overall graphite <1%							
				Į				
L								

# . .

E

.

E

. . . . .

E

E. E. E. E.

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0021

E

and the second second second second second second second second second second second second second second second

E

E

Page 1

3 of

L						SURVEY DATA							DRILLING DAT.		
SURVEY	DE	PTH		DIP	T	RUE AZIMUTE	ť		C78 G	RID		GRID SYSTEM		M	INE
	(ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORTHING (m)			
Coilar				-90°				GPS	5513728.238	444170.866	1381.307	APPROX. EAST	TING (m)		
Down Hole	(ft.)	(m)	Read	Тлие	Read	True						APPROX. ELEVATION (m)		Est. 1381	
		48.77	-89	-89	228	246.50						DATE DRILLING	STARTED	DEC	3 /2000
												DATE DRILLIN	g ended	DEC	9 /2000
ļ		ļ												(fL)	(111)
												TOTAL DEPTH		170	51.82
			~				_					CASING DEPTH		63	19.20
						1						CASING			
					-							STEEL IN H	NO F		
												LOGGED	BY	B. AUGS	TEN
												LOGGING I	DATE	JAN. 15 /2	2001
GEOLOGICAL INTERVAL LITHO			LITHO CODE			LITHOI	.OGICAL D	ESCRIPTION				SAMPLE	SAMPLE	LOG L SA	MPLE
From (m		[n (m)										From (m)	To (m)		MBER
0	, ,	19.20	<u> </u>	CASING-1	oadbed, till wea	thered rock ?									
19.20		20.59		GRANODIO	DRITE GNEIS	<u>s</u> :								'	
				-	Fine→ mee	d grained will	-foliated boti	te fsp (fsp ?? gnei	ss)						
		•		-	Foliation (a	1,?? to C.A.							1		
20.59		24.57		BIOTITE-F	ELDSPAR PO	RPHYRY G	NEISS:								
			<u> </u>	1 -	Medium to	dark grey qt	z-flooded roc	k with distinct lep	bidoblastic texture ma	nifested by 3-4% bi	iotite and a				
				] -	Locally we	akly foliated	iesieu by gift	SLEEC SUDDELLAL W	amediai isp phenoe	lysts.					
		_		] -	<ul> <li>&lt;0.3% diss/f.c. pyrite last two may be good I.P. anomaly</li> </ul>										
		_		-	- <0.2% diss graphite										
				23.40 - 23.9	- 23.52 - rsp - qtz regmanic										
				23.92 - 24.2	7 – dark brown,	well foliated	biotite-graph	ite gneiss							
				- 1-2% py											
				] .	~1-1.5% gi	raphito									
					·										

f

· 1

E

-

.

Ĩ

2

3 of

100

E.

				G		
GEOLOGICA	LINTERVAL	CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	SAMPLE NUMBER	
From (m)	To (m)			From (m)	To (m)	1 !
24.27	28.89		GRANODIORITE GNEISS:         -       Fine→ medium grained weakly → mod. foliated leucocratic biotite granodiorite gneiss         -       Tr py +/- po throughout         -       Includes several small fsp –qtz pegmatite dikes	26.25	27.35	5165
			- 27.35 - Dark brown $\rightarrow$ dark grey, well-foliated, fine graned biotite isp gneiss - 2-3% py +/- po			
			<ul> <li>2-3% py +/- po</li> <li>1-1.5% graphite (fn.gr.) - good chargeability anomaly</li> <li>Well - foliated @ 46° to C.A.</li> </ul>	·		
					· · ·	
					· · · · · · · · · · · · · · · · · · ·	1
28.89	45.86		BIOTITE - ESP - OZ - GNEISS:	· · · · · · · · · · · · · · · · · · ·		
			- Dark brown fine → medium grained well-foliated gneiss composed primarily of biotite with fsp+gtz- rich sections			
			as bands on large accumulations - 1-3% py +/- po along foliation planes and associated with qtz/fsp- rich schlieren - locally < 0.5 - 1.5% diss graphite - **Chargeability Anomaly on the above			
			29.50 - 32.22 - Qtz flooded zone converting rock into a siliceous medium grey to brownish grey to greenish rock			
			- 1-2% py			
			- If. Cpy		• • • •	
	- · · · ·		$\frac{32.22 - 32.97}{U.C. @ 40^{\circ} \text{ to C.A.}}$	32.97	35.00	5166
			L.C. @ 55 to C.A. (but undulatory)	35.00	37.33	5167
			35.00 - 37.33 = 00tz - flooded zone similar to zone @ 20.50 + 32.20		<b>_</b>	
			$\frac{35.00-57.55}{10}$ = $\sqrt{12}$ = Notice which in the same we set to $25.50-52.20$			
		- Tr. Cpy				
	- U.C. gradational - L.C. abrupt @ 30 ° to C.A. x-cutting foliation					
			37.33	39.31	5168	
			38.93 - 39.31 - Fsp - OTZ - Pegmatite	39.31	41.00	5169
				41.00	43.00	5170

and the second second second second second second second second second second second second second second second

i.

ι.

E

E

## CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0021 Page

3

of 3

	·				SAMPLE LOG				
GEOLOGICA	L INTERVAL	LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE I	NTERVAL	SAMPLE NUMBER			
From (m)	To (m)			From (m)	To (m)				
			BIOTITE ESP Q CNEISS CONTINUED:	43.00	44.00	5171			
			From 39.31 to 45.86 the biotite energies contains variable graphite up to $1.5\%$ along foliation planes – difficult to estimate against	44.00	45.86	5172			
			shiny brown biotite						
			- the coarse-grained fsp-rich sections don't contain much graphite.						
			- Foliation @ 45° to C.A.						
45.86	51.82		GRANODIORITE GNEISS:						
			- 3-5% biotite						
			- Tr. Py.						
			- Foliation @ 45° to C.A.						
						1			
		L							
		·							
		ļ			-				
<u> </u>		<u> </u>							
						<u> </u>			
			·						
		<u> </u>							
	í 	l			 				
				1					

F

E

F

3 Page 1 of

				SURVEY DATA									DRILLING DATA		
SURVEY	D	ертн		DIP	יד	RUE AZIMUTH	[		GR	1D		GRID SYS	rem	M	IINE
	` (ft.)	(m)		True	Degrees	Minutes	Seconds	SYSTEM	NORTHING (m)	EASTING (m)	ELEVATION (m)	APPROX. NORT	HING (m)	Not done	
Collar				-90°				GPS	5513578.011	444100.885	1376.643	APPROX. EAST	TING (m)	No	t done
Down Hole	(ft.)	(m)	Read	True	Read	True						APPROX. ELEVA	ATION (m)	Est	1376
		- 48.77	-86	-86	322.5	341.0	]	• •				DATE DRILLING	STARTED	DEC	10/2000
												DATE DRILLIN	G ENDED	DEC	10/ 2000
														(ft.)	(m)
				· .								TOTAL DE	PTH	140	42.67
	L						]					CASING DE	epth	72	21.95
												CASING	3		
							_					STEEL IN F	STEEL IN HOLE		Ft.
												LOGGED	BY	B. AUGS	TEN
												LOGGING I	DATE	JAN. 16/2	2001
					LITHOLOCICAL DESCRIPTION									LOG	
GEOLO	GEOLOGICAL INTERVAL											SAMPLE	INTERVAL		MPLE MBER
From (m	l)	To (m)										From (m)	To (m)		
0		21.95		CASING							·				
21.95		42.67		BIOTITE - I	$\frac{GSP - QZ - GP}{Trail - fa}$	VEISS: listed to bond	ad dark brom	m to handed brown	(hita						
					$Fine \rightarrow n$	nedium graine	ed date blow	In to banded blown	o wille						
		·····			Contains	variable sulpl	hides 0.5→ 3	% po +/- py					ļ		
					Up to 2%	6 graphite in b	oiotite – rich	sections ( ie. Dark	brown bands usually	associated with hi	gher sulphide				
					contents.	Overall inclu	iding Qz – Fa	sp rich sections <0.	1% graphite						
 			 	These two and	ive teamres acc	count for char	geability and	maly					ļ	_ <b>i</b>	
	<u> </u>			- · -	Foliation	and/or bandi	ng @ 65° to (	C.A							
- Interval not homogeneous due to presence of a numb							resence of a numbe	r of small and larger	permatite dikes/ss	veats - the larger					
				4	ones des	cribed below.	p		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	FeBrine	and might				<u>``</u>
		<u> </u>	<u> </u>	** These are a	all similar pegn	atites consist	ing of predo	minantly Fsp + qtz	with lesser biotite. T	hey are med. $\rightarrow$ co	arse grained with				
<u> </u>	·	<u>.</u>		u.→ <0.3% p	o. – Contacts c	an be sharp of	tten see injec	teo contacts – activ	e contacts where how	st is altered or brok	en up / partially	1	ļ		
·	· ·			-									<u> </u>		· · ·
L															
L															

Ĕ.

Ł

.

ŝ.

E

Ĺ

E

2 Page

GEOLOGICAL INTERVAL		LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE LOG		
				SAMPLE INTERVAL		SAMPLE NUMBER
From (m)	To (m)			From (m)	To (m)	
			BIOTITE - FSP - QZ - GNEISS CONTINUED:			
			1. $\frac{22.71 - 24.94}{(2.23)}$ Fsp - qz +/- biotite Pegmatite - minor pink garnet         . (2.23)       - coarse gr.         - No graphite.         2. $\frac{25.95 - 26.40}{(.45)}$ Pegmatite : Similar to the above         3. $\frac{28.62 - 29.71}{(1.09)}$ Pegmatite:         4. $\frac{31.17 - 32.05}{(.88)}$ Pegmatite:         5. $\frac{34.02 - 34.93}{(.88)}$ (.31) Pegmatite         6. $\frac{34.47 - 34.90}{(.43)}$ (.43) Pegmatite         7. $\frac{37.76 - 38.06}{(.30)}$ (.30) Pegmatite			
			8. $40.15 - 41.00$ (.91) Pegmanie			
			9. <u>41.65 - 42.67</u> (1.02) Pegmatite TOTAL = 7.62m of Pegmatite Minimum. = 37% of interval	26.40	28.62	5173
			26.40 28.62 - well-developed graphite within biotite-rich sections of gneiss ? browner sections	28.62	29.71	5174
			<ul> <li>~2% graphite with 1-3% po +/-py</li> <li>Tr. Cpy within qtz vein/sweat.</li> </ul>	29.71	31.17	5175
		 		<u> </u>		
		Į		l		

CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0022

L

3 of

### ٦ 🚛 .

## CRYSTAL GRAPHITE CORP. BLACK CRYSTAL PROJECT Geological Log Hole-ID: BC0022 Page 3

3 of

GEOLOGICAL INTERVAL		LITHO CODE	LITHOLOGICAL DESCRIPTION	SAMPLE LOG		
					SAMPLE INTERVAL	
From (m)	To (m)			From (m)	To (m)	
			BIOTITE - FSP - QZ - GNEISS CONTINUED:	`·		
			<u>29-71 - 31.17</u> - <0.5% graphite overall with biotite - rich sections of gneiss - ~ 1-2% po +/- py 34.90 - 36.49 - dark brown / green - mixture of biotite and chlorite - No graphite			
}						
			- minor qtz			
			- <1% po +/-py			
			- moderately magnetic due to pyrnotite.			
			38.47 - 40.08 - dark brown/green - predominantly biotite with chlorite(chloritized biotite)			
			- No graphite			
			- $\sim 1\%$ po – weakly $\rightarrow$ mod. Magnetic.			
			- #			
			(Note: Hole ends in pegmatite			
·						
-						
						_
		S				
			,			
		:				
<u> </u>				<u> </u>		
						<u> </u>
			·	· · · · · · · · · · · · · · · · · · ·		
 				ļ	ĺ	{
L			· · · · · · · · · · · · · · · · · · ·			

• .

.