GEOLOGICAE SERVICE OT ENCL

Assessment Report

On The

Tam Property

Lac La Hache, British Columbia

NTS: 92P/14W/14E

Latitude 51°57'N Longitude: 121° 17'W

Clinton Mining Division

For

G.W.R. Resources Inc.

Box 545

Armstrong, B.C.

VOE 1B0

Вy

David E. Blann, P.Eng.

Standard Metals Exploration Ltd.

August, 2001

RECEIVED

OCT 1 2 2001

Gold Commissioner's Uffice VANCOUVER, B.C.

Table of Contents

1.0 Summary	
2.0 Introduction	4
3.0 Property Description and Location	4
4.0 Access, Infrastructure, Physiography	4
5.0 History	5
5.1 Geophysical Surveys	5
5.2 Geochemical Surveys	5
6.0 Regional Geology	5
7.0 Property Geology	6
8.0 Mineralization	6
9.0 2001 Exploration	7
9.1 Geology and Rock Sampling	7
9.2 Drilling	8
10.0 Discussion and Conclusions	8
11.0 Recommendations	10
12.0 Proposed Budget	
13.0 References	
14.0 Statement of Costs	14

Appendices

Appendix 1	Tables:	
	Table 1	Mineral Tenures
	Table 2	Property Geology Legend, Abbreviations
	Table 3	Summary of Drill Results
	Table 4	Summary of Rock Sample Results
		•

Appendix 2 History of Exploration

Appendix 3 Figures:

Figure#

×

- 1) Property Location
- 2a)Claim Location (B.C.Mineral Titles)
- 2b)Claim Location (Paragon, 2000)
- 3) Regional Aeromagnetics
- 4) Regional Prospects, Geology
- 5) TAM Property Plan-Geology, Rock Sample Locations
- 6) Tim 1 Zone Drill Hole Location Plan
- 7) Tim 1 Zone Cross Section TAM01-1
- 8) Tim 1 Zone Cross Section TAM01-2
- 9) Tim 1 Zone Cross Section TAM01-3

1.0 Summary

The Tam property is located 17 kilometres north-northeast of the village of Lac La Hache, in the south central Cariboo region of British Columbia. The property is accessed by approximately 30 kilometres of all weather logging roads and in part by skid trails. Lac La Hache is located on B.C. Highway 97, and is serviced by B.C. Rail, B.C. Hydro, and natural gas.

The property is comprised of 40 modified grid mineral claims totaling 293 units covering approximately 65.4 square kilometres in area. 240 units are registered with B.C. Mineral Titles 100% in the name of G.W.R. Resources Inc., 53 units are registered 80% in the name of G.W.R. Resources Inc., 53 units are registered 80% in the name of G.W.R. Resources Lake Resources Ltd., a private company.

The west central portion of the Quesnel Trough, comprised of Niclola Group island arc volcanicsedimentary rocks Upper Triassic-Lower Jurassic in age, underlies the claim area. Coeval porphyritic dikes and small stocks of gabbro, diorite, monzonite, and locally syenite composition cut Nicola Group calcareous sediments, basaltic-andesite flows, tuffs heterolithic breccia and agglomerate. Nicola Group rocks occur in contact with the Takomkane batholith, late Jurassic in age, to the east. Basalt dikes and flows of Tertiary age crosscut and in part cover portions of the older rocks. The area was covered by approximately 1200-1800 metres of ice during glaciation, and in part removed both Tertiary and older rocks, and deposited till and glaciofluvial-lacustrine sedimentary cover of between 1 and 30 metres or more in thickness.

Mineralization occurring on the property consists predominantly of pyrite, chalcopyrite, and bornite and associated copper, gold and silver values within Nicola Group volcanic and coeval intrusive rocks.

During the spring of 2001, G.W.R. Resources Inc. conducted geological mapping, rock and soil sampling followed by three exploratory diamond drill holes totaling 379.5 metres on the Tim 1 zone.

Drilling in the Tim 1 zone returned 0.61% copper, 0.18 g/t gold and 6.3 g/t silver over 17.4 metres and 0.60% copper, 0.12 g/t gold, 3.1 g/t silver over 4.8 metres; the Tim 1 zone is comprised of several northeast trending sub-parallel mineralized structures 50 metres in length, 2-10 metres in thickness, contain approximately 0.50-0.70% copper, 3.0-17.0g/t silver and remain open.

During the course of mapping the property, rock samples returned encouraging copper and gold values that suggest proximity to a porphyry copper-gold system.

To the southwest of the Tim 1 zone, a sample returned 1773ppm copper, 1.10 g/t gold, and to the south between 0.212 to 1.915% copper, 7 to 222 ppb gold and 5.9 to 64.5 ppm silver occurs in the Tim 2 zone, a 1.0 to 2.0 metre wide shear zone exposed for a distance of 44 metres.

Large areas of the property are covered by glacial till, and in part Tertiary volcanic flows, limiting previous exploration effectiveness and providing opportunity for discovery of porphyry deposits in these areas. Results from work performed during 2001 on the TAM property confirm the existence of several porphyry style copper-gold-silver prospects, and further exploration of the property is warranted.

2.0 Introduction

Under terms of an agreement with Paul Reynolds, G.W.R. Resources Inc. acquired an option to purchase the TAM property in 2000.

Data compilation, reconnaissance prospecting, mapping and limited rock and soil sampling in conjunction with the drilling of three exploratory diamond drill holes totaling 379.5 metres on the Tim 1 zone was performed between May and July 2001.

3.0 Property Description and Location

The TAM property is located approximately 20 kilometres northeast of the village of Lac La Hache, and approximately 400 kilometres northeast of Vancouver, British Columbia (Figure 1). The property is situated on NTS map sheet 92P14W, 92P14E (UTM: 92P.094) and are within the Clinton Mining Division. The approximate coordinates are 51° 57'N latitude and 121° 17'W longitude.

The property is comprised of four contiguous modified grid and three two-post mineral claims totaling 67 units covering approximately 8.5 square kilometres in area. The claims were surveyed by Paragon in 2000 by GPS methods, and are registered with B.C. Mineral Titles 100% in the name of G.W.R. Resources Inc. (Table 1, Figures 2a, 2b). Terms, conditions, and royalties for these claims are not known.

4.0 Access, Infrastructure, Physiography.

The property is accessible by approximately 30 kilometres of all-weather gravel logging road via Timothy Lake from the village of Lac La Hache, British Columbia. Highway 97, B.C. Rail, B.C. Hydro, and a Westcoast Transmission natural gas pipeline station are located in Lac La Hache. Hydropower lines occur at Timothy Mountain, approximately 3 kilometres from the property. Twenty-six kilometres south of Lac La Hache is the town of 100 Mile House, population 5,000. The local economy is primarily dependent on forestry and ranching.

The property is situated in the Central Plateau of the Cariboo region of south central British Columbia. The area is characterized by gentle, rounded hills with elevations ranging from 850 to 1500 metres. Approximately 40% of the fir, spruce and pine forest in the immediate area has been clear-cut, and replanted, and logging is on-going. Several lakes and numerous creeks provide water year-round. The annual precipitation is from 500 to 1000 millimetres, with most of it occurring during the winter months. Winter snow cover averages 1-2 metres between mid November and April.

Operations on the property may be carried out 12 months of the year, and is situated where excellent access to power, water, mining personnel, and mine development logistics occur.

٣

5.0 History

The Lac La Hache area was initially prospected for placer gold during the Cariboo Gold Rush in the 1890's. In 1966, the Geological Survey of Canada, Geophysics Division performed an airborne magnetic survey of the Lac La Hache area, resulting in the delineation of a large annular magnetic anomaly, the southern end of which underlies the property (Figure 3).

History of exploration on the property is provided in Appendix 2.

The TAM property was subject to exploration since 1967 by geochemical, geophysical, geological surveys, trenching, percussion and diamond drilling. Previous exploration on the property located areas containing copper, gold in soil, and induced polarization anomalies, and most previous work was focused in areas of high chargeability.

5.1 Geophysical Surveys

Results from magnetic and VLF-EM surveys by White Geophysical Inc. between 1988 and 1990 suggest strong northwest, northeast and east-west trending structures occur, and in part identify areas of higher magnetite concentrations and/or lithology changes.

White Geophysical Inc. performed Induced Polarization surveys over approximately 1/3 of the central portion of the TAM property with 100 metre lines, and results suggest north-northwest and easterly trending zones of greater than 10 millisecond chargeability occurs (Figure 5). Portions of the surveyed area contain low-order or at depth anomalies and areas of anomalous chargeability clearly remain open.

5.2 Geochemical Surveys

The most recent survey was performed under the direction of White,1989 and resulted in the identification of several strong copper in soil anomalies that in most cases reflect proximity to mineralized bedrock. The strength and extent of these anomalies are affected by depth and nature of overburden, carbonate alteration in bedrock, hydromorphic dispersion of metals into creeks, seeps and associated organic matter, and bedrock mineralization may be more extensive than indicated by soil geochemistry. Gold in soil anomalies appear spotty, however are locally coincident with copper anomalies.

6.0 Regional Geology

The west central portion of the Quesnel Trough, comprised of northwest trending Nicola Group island arc volcanic-sedimentary rocks Upper Triassic-Lower Jurassic in age, underlies the Lac La Hache property (Figure 4). Coeval porphyritic dikes and small stocks of gabbro, diorite, monzonite, and locally syenite composition cut calcareous sediments, basaltic-andesite flows, tuff, heterolithic breccia and agglomerate. Nicola Group rocks occur in contact with granodiorite of the Takomkane batholith, to the east. U-Pb dating of the Takomkane batholith produced 193+/-0.6Ma or a late Jurassic age (Whiteaker, 1997). Basalt dikes and flows of Tertiary age crosscut and in part cover

portions of the older rocks. The area was covered by approximately 1200-1800 metres of ice during glaciation, and in part removed both Tertiary and older rocks, and deposited till and glaciofluvial-lacustrine sedimentary cover of between 1 and 30 metres or more in thickness.

The Takomkane batholith is in part comprised of granodiorite with gabbro-pyroxinite and more felsic phases occurring. To the north of the property, an annular aeromagnetic anomaly with dimensions of 15 kilometres north-south and 10 kilometres east-west is in part underlain by a monzonite stock and Miocene- Eocene volcanic rocks (Figures 3,4). Peripheral to the stock, magnetite-rich mafic to intermediate intrusions cut Nicola volcanic and sedimentary rocks.

7.0 Property Geology

The general property geology is provided in Figure 5, and a property geology legend and geological abbreviations is provided in Table 2.

The geology of the property is dominated by a northwest trending island arc volcanic sequence. Structural information provided by mapping, drill core, and geophysical surveys suggest westnorthwest structures are cut by north and northeast structures, and together may have in part controlled intrusive, volcanic and associated mineralization activity.

Volcanic rocks are fine to coarse-grained, augite-hornblende and feldspar porphyritic flow, crystal tuff, lithic tuff, polymictic breccia and agglomerate of basalt to andesite composition. U-Pb zircon dating of porphyritic andesite produced 203.9+/- 4.2MA (Whiteaker, 1997).

Intrusive rocks include gabbro, diorite, monzodiorite, and monzonite. Intrusions are variably biotitepyroxene-hornblende-feldspar porphyritic, occur as plugs, sills or dikes, and display textural and compositional zoning and crosscutting relationships. U-Pb dating of a diorite produced 203+/-4Ma, and a quartz-hornblende-feldspar porphyry dike returned an age of 199 Ma +23/-(13-24) (Whiteaker, 1997).

Tertiary-Recent volcanic rocks comprise carbonate amygdaloidal, vesicular and augite-feldspar porphyritic basaltic-andesite flows. Feldspar phenocrysts up to 1 cm occur. These rocks unconformably overlie and crosscut Nicola rocks, filling pre-existing basins, and are generally fresh to locally chlorite-epidote-hematite-clay altered.

Glacial erosion has smoothed what once was likely a large mountain range, and glacial-related deposits from 1-30 metres in thickness occur over approximately 50-75% of the property.

Tertiary cover may have in part protected underlying mineral deposits from glacial abrasion.

8.0 Mineralization

Zones of mineralization on a portion of the TAM property are outlined in Figure 5 comprising geology, rock and soil sample, and trench and drill hole locations, respectively.

Widespread propylitic and locally potassic alteration occurs with dominantly pyrite, hydrothermal magnetite, chalcopyrite, bornite mineralization and associated copper, gold and silver values. Volcanic and intrusive rocks are weak to strongly fractured, biotite hornfelsed, and contain chlorite, epidote, sericite, calcite, magnetite, albite, k-feldspar, biotite, and locally tourmaline, garnet-diopside and calc-silicate minerals occur.

Combined pyrite and magnetite concentrations of 10-25% occur in proximity to zones of 10 millisecond or greater induced polarization chargeability. Within or adjacent to areas of increased chargeability, magnetite, pyrite, chalcopyrite and bornite with associated copper, gold and silver values occur in veinlets and vein selvages and fine-grained replacement of altered mafic and feldspar minerals throughout the matrix often accompanied by quartz, magnetite, hematite, epidote and k-feldspar.

Late-stage sericite-clay alteration has locally affected potassic and propylitic altered zones and appears controlled by faults. Post mineral oxidation occurs locally, resulting in iron oxide and variable concentrations of native copper.

9.0 2001 Exploration

9.1 Geology and Rock Sampling

Geology depicted in Figure 5 is the result of field mapping in 2001. Areas of abundant outcrop, or of a more certain nature, and their respective composition are shown. A summary of rock sample results is provided in Table 4.

Much of the Tam property is covered by glacial till, however, mapping identified propylitic to potassic altered augite-feldspar heterolithic andesite volcanic breccia and flow cut by intrusions of monzonite, monzodiorite to syenite composition. Heterolithic intrusive breccia occurs in proximity to intrusions. Widespread propylitic and locally potassic alteration occurs in outcrop accompanied by variable concentrations of pyrite, chalcopyrite, bornite mineralization and associated copper-gold-silver values. Areas underlain by Tertiary volcanic flows occur, and may in part cover mineralization in several areas on the property.

Approximately 300 metres southwest of the Tim 1 zone, sample TAM01DR-02 returned 1773ppm copper, 1.10 g/t gold from propylitic to potassic altered volcanic breccia containing pyrite, chalcopyrite mineralization. Analyses for other samples taken in this area have not been received at this time.

Approximately 500 metres south of the Tim 1 zone, grab samples between 1.0 and 2.0 metres in width across the Tim 2 shear zone were taken over a distance of 44 metres in strike length and returned 0.212 to 1.915% copper, 7 to 222 ppb gold and 5.9 to 64.5 ppm silver. The Tim 2 zone strikes northward and is steeply dipping.

Three auger soil samples were taken on the property. All samples were analyzed by 30 element ICP. One sample analyzed for gold returned 115ppb gold and is located approximately 200 metres southeast of the Tim 1 zone.

.

To the west of the Tim 1 zone, float samples 76194,76195 returned 13 and 10 ppb palladium, respectively. Northwest of 76194, an outcrop sample 76184 returned 605ppm copper, 130ppb gold. South of 76194, sample DB6-14-01-2 returned 1153ppm copper, 270ppb gold from float having similar composition and alteration to nearby outcrop.

In the western portion of Figure 5, Tertiary basalt flows occur. Adjacent these rocks, outcropping Nicola Group volcanic breccia returned 1559ppm copper, 25 ppb gold.

In the southwestern portion of Figure 5, Tertiary basalt flows occur in proximity to an old trench in which dump material of Nicola Group volcanic breccia returned 1394ppm copper and 170ppb gold in sample 76192. Northeast of 76192, a boulder of 15-25kg in size was dug out from the bank of a small creek and sample 76193 returned 45ppm copper, 130ppb gold.

In the eastern portion of Figure 5, a recent logging road ditch exposed sub-cropping strong kfeldspar altered monzonite with malachite mineralization over approximately 25 metres and returned 1092ppm copper, 45ppb gold.

9.2 Drilling

Drilling of three exploratory NQ diameter diamond drill holes totaling 379.5 metres were completed on the Tim 1 zone (Figures 6,7,8,9). A summary of drill results and diamond drill core logs are provided in Table 3 and Appendix 1, respectively.

The Tim 1 zone occurs at the contact between a monzodiorite porphyry dike and propylitic altered volcanic breccia, and is estimated to be between 2.0 and 12 metres in thickness, moderate to steeply northwest dipping, and trends northeast for a distance of at least 50 metres remaining open to the northeast and southwest. Drill holes TAM01-1, TAM01-2 intersected 0.61% copper, 0.18 g/t gold and 6 g/t silver over 17.4 metres and 0.50% copper, 0.11 g/t gold, 3.0 g/t silver over 5.6 metres, respectively. In TAM01-1, a 0.50 metre sample returned 3.30%copper, 0.92g/t gold, and 73.6g/t silver. On surface, sample DB6-25-01-3 consists of a grab over a 3X5 metre area of epidote-k-feldspar altered intrusive with significant bornite, chalcopyrite mineralization and returned 3.46% copper, 455 ppb gold, and >30.0ppm silver. Drill hole 83-3, drilled to the southeast at –50 degrees, intersected 9.2 metres containing 0.52% copper, 0.11 g/t gold, 14.23g/t silver, and at the end of the hole, 6.1metres containing 0.71%copper, 0.09g/t gold, 17.82g/t silver.

A test pit was dug at the end of an old trench to the East of the drill holes and sample DB6-24-01-2 returned 0.32%copper, 40ppb gold, and 12.4ppm silver from a 1X2 metre area of exposure; mineralization in this area remains open.

10.0 Discussion and Conclusions

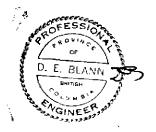
The Tim property is located 17 kilometres northeast of Lac La Hache, in south central British Columbia. The area is underlain by Upper Triassic-Jurassic Nicola group andesite to basalt

volcanic and sedimentary rocks cut by intrusions of monzonite-monzodiorite and locally syenite composition.

Fracture controlled and disseminated pyrite, chalcopyrite, bornite and associated copper, gold and silver values occur in propylitic, calc-silicate to potassic altered volcanic and intrusive rocks. Mineralized zones identified to date occur in proximity to porphyritic intrusions of the Nicola Group, and have dominantly northwest and north-northeast orientations.

At the Tim 1 zone, drill holes TAM01-1, TAM01-2 intersected 0.61% copper, 0.18 g/t gold and 6 g/t silver over 17.4 metres and 0.50% copper, 0.11 g/t gold, 3.0 g/t silver over 5.6 metres, respectively. Current and previous drill intercepts of similar grade and width occur in this area and suggest the Tim 1 zone is comprised of several northeast trending sub-parallel mineralized structures 50 metres in length, 2-10 metres in thickness and contain approximately 0.50-0.70% copper, 3.0-17.0g/t and remain open.

To the southwest, a subcrop sample returned 1773ppm copper, 1.10 g/t gold from propylitic to potassic altered volcanic breccia containing pyrite, chalcopyrite mineralization, and to the south between 0.212 to 1.915% copper, 7 to 222 ppb gold and 5.9 to 64.5 ppm silver occurs in the Tim 2 zone, a 1.0 to 2.0 metre wide shear zone exposed for a distance of 44 metres.


Several areas on the property returned anomalous copper and gold values in rock samples containing appropriate alteration and mineralization; these samples suggest proximity to a porphyry copper-gold system.

Large areas of the property are covered by glacial till, and in part Tertiary volcanic flows, limiting previous exploration effectiveness, and providing opportunity for the discovery of porphyry coppergold silver deposits.

The Tam property contains geology, alteration and mineralization consistent with alkalic porphyry copper-gold deposits. Further exploration of the property is warranted, consisting of geology, soil sampling, induced polarization, trenching and drilling.

Respectfully Submitted,

David E. Blann, P.Eng.

11.0 Recommendations

		Baseline	Line length	#	Total cut	Total km	
	Claim	Length(km)	Length(km)	Lines	Length(km)	Surveyed	_
	TAM1-4	4	2	20	44	40	_
					44	40	
Soil Sample	ng						
		Baseline	Line length	#	Total km	Sample Spacing(m	Total #
	Claim	Length(km)	Length(km)	Lines	Surveyed)	Sample
	TAM1-4	4	1	20	20	50	400
							400
Trenching		Target	# Trenches	Length(m)	Total(m)	Hours	
		TAM	4	100	400	40	•
					400	40	-
Diamond D	rilling	Target	# Holes	Length(m)	Total(m)	~	
		TAM	5	150	750		

12.0 Proposed Budget

,

r

.

-

*

						<u></u>
Preparation						\$3,250
		<u>#Days</u>	\$/Day	<u>Lump Sum\$</u>	Subtotals	
Wages	Sr.Geologist	2	\$450.00		\$900.0	
Wages	Geologist	5	\$300.00		\$1,500.0	
Wages	Technician	2	\$175.00		\$350.0	
	Reproductions			500	\$500.0	
Mob/Demob						\$2,750
		<u>#Days</u>	\$/Day			
Wages	Sr.Geologist	4	\$450.00		\$1,800.0	
Wages	Jr. Geologist	2	\$300.00		\$600.0	
Wages	Technician	2	\$1 75.00		\$350.0	
Field Work-W	Vages					\$27,500
Rock, soil, tre	ench sampling, mapp	ing,core log	ging and splitti	ng, geological supe	rvision	

		<u>#Days</u>	<u>\$/Day</u>	
Sr.Geologist	1	25	\$450.00	\$11,250.0
Geologist	1	25	\$300.00	\$7,500.0
Technician	1	25	\$175.00	\$4,375.0

<u>Totals</u>

Technician	1	25	\$175.00		\$4,375.0	
Field Support		#Days	\$/Day			\$9 ,175
Room/Board		75	\$65.00		\$4,875.0	
Truck		25	\$65.00		\$1,625.0	
ATV		25	\$35.00		\$875.0	
Trucks gas				\$700.00	\$700.0	
Geological,Safe	ty and rock saw s	upplies		\$1,000.00	\$1,000.0	
courier/fax/mail/	phone			\$100.00	\$100.0	
Linecutting and	d Geophysical S	urveys				\$55,400
		Line	\$			
		<u>Km</u>	<u>Km</u>			
Line cutting (km))	44	\$350.00		\$15,400.0	
Geophysics (km)	40	\$1,000.00		\$40,000 .0	
		<u>hrs</u>	<u>\$/hr</u>			
Trenching	Excavator	40	90			\$3,600
		Metres	<u>\$/metre</u>			
Diamond Drillir	ng	750	\$65			\$48,750
Sample Analysi	is					\$12,450
		Samples	\$/Sample		Total \$	
	rock	100	\$17.50		\$1,750.0	
	soil	400	\$17.50		\$7,000.0	
	core	200	\$18.50		\$3,700.0	
Freight/ Bus-St	hipping of Samp	les			\$1,575.0	\$1,575
		lbs	<u>\$/lb</u>			
		4500	\$0.35			
Data Analysis/F	Report		•			\$6,500
					Subtotal>	\$170,950
				7%	GST	\$11,967
					Subtotal>	\$182,917
Recording Fees	s:					\$3,350
Government Bo						\$2,500
Sovernment D					Subtotal>	\$188,767
					Total-allow	\$200,000

.

13.0 References

Campbell, R.B. and Tipper, H.W., G.S.C. Memoir 363, 1972 "Geology of Bonapart Map Area".

G.S.C. (1993), Hanson Vertical Gradient of Magnetic Anomalies, after Geological Survey of Canada, Energy, Mines and Resources, Geophysics Paper 5232G, Lac La Hache, 1967.

McMillan, W.J., Porphyry Deposits in the Canadian Cordillera, from Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1991-4.

Whiteaker, Robin S., B.Sc. 1996. The Geology, Geochronology and Mineralization of the Ann Property: An Early Jurassic Alkalic Porphyry System Near Lac La Hache, B.C. University of British Columbia.

TAM Property

Butler, Sean P. 1984. Diamond Drilling Report on the Tim 2 Claim, Clinton Mining Division, B.C. Prepared for Stallion Resources Ltd., Vancouver, B.C. ASST # 12, 192.

Furneaux, Barry T. and Rowan, Lorne G., B.Sc. 1990. Geological Report on the 1990 Exploration and Diamond Drilling Program on the Tim, Tim 1 and Tim 2 Claims, Lac La Hache Area, Clinton Mining Division, B.C., Canada. Prepared for Liberty Gold Corporation. Prepared by Euro-Canadian Geological Ltd. Volumes 1 and 2.

Gale, R.E., Ph.D., P.Eng. 1988. Engineering Report on the Tim, Tim 1 and Tim 2 Claims, Clinton Mining Division, NTS 92P/14E. Prepared for Liberty Gold Corp. Prepared by R.E. Gale and Associates Inc.

Jones, Harold M., P.Eng. 1990. A Report on the Tim Claims, Mount Timothy, Lac La Hache Area, B.C. 92P/14. Prepared for Liberty Gold Corp. Prepared by Harold M. Jones and Associates, Vancouver, B.C.

Paragon Resource Mapping Inc., 2000, GPS Survey of the MAT 1,2,3 and TAM 1 and 3 Mineral Claims, Clinton Mining Division, for Reynolds Geological Ltd., July 13,14 2000.

Seywerd, Markus B., B.Sc. 1990. Geophysical and Geochemical Report on a Induced Polarization and Soil Geochemical Survey on the Tim, Tim 1 and Tim 2 Claims, Clinton Mining Division, NTS 92P/14E. Prepared for Liberty Gold Corp. Prepared by White Geophysical Inc. Volumes 1 and 2.

White, Glen E., P.Eng. 1988. Geophysical Report – Tim, Tim 1 and 2 Claims, Clinton M.D., Lac La Hache Area, B.C. N.T.S. 92P/14E. Prepared for Liberty Gold Corp. Prepared by White Geophysical Inc.

14.0 Statement of Costs

Ŀ

۰.

,

2

-

ĸ,

÷

.

Υ.

,

۰.

April 1- July 9, 2001

<u>Totals</u>

					\$12,704.35
Wages	#Days	<u>\$/Day</u>			
D.Blann, P.Eng.	22	\$350.00		\$7,700.00	
D. Ridley, Prospector	2	\$265.00		\$530.00	
D. Fuller, Core Cutting per Box	40	\$15.00		\$600.00	
			GST	\$618.10	
Field Support					
Transportation				\$1,496.25	
Room/Board	24	\$65.00		\$1,560.00	
Communications			\$200	\$200.00	
Sample Analysis					\$2,158.00
rock	25	\$18.50		\$462.50	
soil	3	\$18.50		\$55.50	
core	82	\$20.00		\$1,640.00	
Diamond Drilling					\$27,630.00
	Metres	\$/metre			
Drilling	348	\$60.00		\$20,880.00	
Cat(hrs)	75	\$90.00		\$6,750.00	

Freight/ Bus-Shipping of Samples	\$300.00	\$300.00
Drafting,Report,Reproductions	-	\$5,500.00

Total: \$48,292.35

Standard Metals Exploration Ltd

APPENDIX 1

TABLES

ROCK SAMPLE DESCRIPTIONS

DIAMOND DRILL LOGS

Standard M

L

٠

Standard Metals Exploration Ltd

08/20/01

_

TABLE 1 Mineral Tenure

Name	Tenure #	Units	Anniv.Date	Expiry Date yy/mm/dd	Registered Owner
Mat 1	348482	1	96/07/14	03/07/14	110622 100%
Mat 2	348483	1	96/07/14	03/07/14	110622 100%
Mat 3	348484	1	96/07/14	03/07/14	110622 100%
TAM 1	348485	12	96/07/14	03/07/14	110622 100%
TAM 3	348486	20	96/07/14	03/07/14	110622 100%
TAM 4	387327	12	01/06/20	02/06/20	110622 100%
TAM 5	387328	20	01/06/19	02/06/19	110622 100%
	TOTAL:	67	UNITS		

110622=G.W.R. Resources Inc.

-

.

x

.

.

•

•

Table 2

Lac La Hache Property

Geology Legend

Recent

Glacio-fluvial mixed and sorted deposits

Tertiary/Eccene/Miccene

Amygdaloidal, augite feldspar porphyry dikes, flows, peridote present

Early Jurassic Takomkane Batholith 193+/-0.6Ma*

Composite Granodiorite

Late Triassic __ Nicola Group

Intrusive Rocks-crowded feldspar porphyry

Andesite /trachy-andesite dikes (magnetic/non-magnetic) (199+23/-(13-24Ma)*

K-feldspar crystic crowded feldspar porphyry (quartz) monzonite

Biotite monzonite

Homblende-feldspar porphyry monzodiorite, intrusion breccia

Equi-granular monzodiorite-diorite (203+/- 4Ma)

Diorite

Homblende gabbro- pyroxinite

Volcanic Rocks

Heterolithic intrusive breccia

Augite, homblende, feldspar andesite agglomerate, flow, breccia (203.9+/-4.2Ma)*

Also heterolithic fine-grained feldspar crystal tuff, breccia

Sedimentary rocks

Greywacke, siltstone Argillite

Coral Limestone.

* Whiteaker, 1997

Table 2 Geological Abreviations

РУ	pyrite
po	pyrrhotite
ср	chalcopyrite
bo	bornite
cc	chalcocite
Ncu	native copper
gl	galena
sp	sphalerite
tet	tetrahedrite
Oxide	
mag	magnetite
FeOx	iron oxides
lim	limonite
geot	goethite
jar	jarosite
Alteration	-
chi	chlorite
ер	epidote
ca	calcite
ser/s	sericite
ga	garnet
diop	diopside
2-k/k-feld	•
2-b	biotite
qtz/Q	quartz
skam	ga-ep-diop-mag
	J= -F

Rock Names V Volcanic tf/T Tuff Andesite А В Basalt Da Dacite Rhy Rhyolite int intrusive Gd granodiorite Mz monzonite MzD monzodiorite Gr granite Diorite D Gb Gabbro Px Pyroxinite Textures Trachy/Trc Trachytic Het heterolithic lith lithic Bx Breccia crystal х porphyry р Metals molybdenum Mo Cu copper Pb lead Zn zinc Ba barium Sb antimony Ag silver Au gold

Rock Minerals

Α	Augite
F	Feldpsar
н	Homblende
Bi	Biotite
plag	plagioclase
orth	orthoclase
Q	quartz

Qualifiers

Laanners	
wk	weak
tr	trace
mod	moderate
str	strong
msv	massive
fg	fine grained
mg	medium grained
cg	coarse grained
vug	open space fill
cks	cockscombe
bld	bladed
Stuctures	
vn	vein
frct	fracture
flt	fault
Colors	
gm	green
bik	black
gry	grey
wh	white
O L	orange
pk	pink
bl	blue

E.

.

•

٠

. .

×

đ

•

•

•

.

	<u>Zone</u>							
Butler, 1983								
Drillhole locations	Tim 1	<u>Hole</u>	From(m)	<u>To (m)</u>	<u>Width(m)</u>		<u>Au (g/t)</u>	Ag(g/t
uncertain		83-1*	D	51.8	51.8	2.37	0.54	0.95
Location	Known>	× 83-3	16.7	25.9	9.2	0.52	0.11	14.23
			45.7	51.8	6.1	0.71	0.09	17.82
		83-5	13.7	47.8	34.1	0.60	N/A	N/A
		83-6	4.6	49.7	45.1	0.33	N/A	N/A
		83-7	37.8	59.7	21.9	0.13	N/A	N/A
Width-weighted ave	rage of al	i data- some	high grade	intervals i	ncluded			
N/A= Not Available	or incomp	olete analysis	\$					
83-1*-Drillhole at -70	Odegree d	lip, may have	e in part gor	ne down di	p			
							Au	
							<u>(ppb)</u>	
Furneaux/Rowan	Tim 1	PDH90-1			7.5	1.51	309	
1990		PDH90-6			7.5	0.70	56	
Percusion holes								
			_	_		•		
			From	То	Width	Cu		
Diamond Drillholes			<u>(ft)</u>	<u>(ft)</u>	<u>(ft)</u>	<u>%</u>		
		DDH90-2	226.5	272	45.5	0.35		
		DDH90-3	227	287	60	0.11		
		DDH90-6	6	22	16	0.24		
			182	192	10	0.14		
			222	232	10	0.12		
			282	327	45	0.09		
			~~			0.40		
		DDH90-9	67	111	44	0.10		
			227	237	10	0.31		
			07	1 47	60	0.52		
		DDH90-10	87 147	147	60 80	0.52		
			147	227 87	20	0.76		
		DDH90-11	67					
			147	167	20	0.26		
Hole			From(m)	<u>To (m)</u>	Width(m)	%Copper	<u>Au (q/t)</u>	<u>Aq(q/t</u>
GWR Resources	Tim 1	TAM01-1	<u>-ion(in)</u> 5.6	23.0	17.4	0.61	0.18	6.29
	1 (64)E E		5.0 64.0	23.0 76.0	12.0	0.16	0.12	1.23
2lann 2001			V 4 .0	10.0	14.V	0.10	U. 12	1.20
Blann, 2001								
Blann, 2001	Tim 1	TAM01 2	6.2	16.0	10 R	0.25	0.07	1 67
Blann, 2001	Tim 1	TAM01-2	5.2 5.2	16.0 10.0	10.8 4.8	0.35 0.60	0.07 0.12	1.67 3.13

TAM01-3 No Assays available

ELEMENT	Au**	Ag	Са	Cu	Fe	Мо	Pb	Zn	Pd**	Pt**	Rh**	Cu*	Au	Ag
SAMPLES	ppb	ppm	%	ppm	%	ppm	ppm	ppm	ppb	ppb	ppb	%	g/t	g/ť
76194	25	2.0	4.03	941	5.83	8	37	239	13	6	< 5	0.10	9.1	5
76195	3	< .3	1.43	72	3.42	2	6	131	10	2	< 5	0.01		
76196	12	22.1	0.78	11587	3.05	2	9	114	< 2	< 2	< 5	1.17		
76197	222	64.5	1.12	19829	2.37	1	< 3	95	< 2	< 2	< 5	1.92		
76198	85	16.5	0.48	9286	2.93	2	9	147	2	< 2	< 5	0.94		
76199	99	30.6	0.53	10503	2.68	2	5	213	5	< 2	< 5	1.08		
76200	7	5.9	0.7	2051	3.04	2	4	117	< 2	< 2	< 5	0.21		
76201	2	< .3	1.3	200	2.32	2	< 3	81	5	< 2	< 5	0.02		
761 82	95	>30	0.97	>10000	2.26	<1	6	73	<5	<5		1.14		50.70
76183	25	0.4	1.35	542	5.04	3	16	103	<5	<5				
76184	130	<0.2	1.24	605	4.6	<1	8	41	<5	<5				
76185	25	2.0	3.75	1569	5.38	1	16	128	<5	<5				
76186	15	<0.2	2.41	83	4.98	1	22	73	<5	<5				
76187	50	<0.2	1.47	309	5.08	<1	18	55	<5	<5				
76188	25	<0.2	1.46	239	4.38	1	12	63	<5	<5				
76189	15	<0.2	1.27	340	4.62	<1	24	136	<5	<5				
76190	15	<0.2	1.53	157	5.43	<1	26	278	<5	<5				
76191	10	0.2	3.81	179	5.16	<1	28	255	<5	<5				
76192	170	3.2	1.61	1324	4.55	<1	28	296	<5	<5				
76193	130	<0.2	1.56	45	2.31	1	14	67	<5	<5				
5-31-01-1	120	<0.2	1.29	596	4.53	<1	10	43	<5	<5				
TAM 01 DR1	20	<0.2	1.61	13	2.86	2	28	65						
TAM 01 DR2	>1000	6.4	1.53	1773	3.49	3	18	66					1.10	
TAM 01 DR3	20	<0.2	1.59	36	3.73	3	10	89						
DB6 14-01-1	20	<0.2	0.99	244	2.53	3	8	53						
DB6 14-01-2	270	1.2	1.13	1153	2.3	3	14	96						
DB6 14-01-3	30	<0.2	1.18	38	4.18	<1	10	55						
DB6 15-01-1	45	0.8	1.17	1092	1.47	4	8	78						
DBR6 24-01-1	25	<0.2	2.33	144	2.76	<1	10	44						
DBR6 24-01-2	40	12.4	1.16	3289	2.97	2	8	81				0.32		
DBR6 25-01-1	40	1.8	2.59	994	5.59	<1	14	230						
DBR6 25-01-2	10	0.2	0.53	39	3.25	3	12	134						
DBR6 25-01-3	455	>30	0.74	>10000	3.26	<1	•	88				3.46		
Soils:														
223642	NA	<0.2	0.27	105	2.72	<1	6	38						
223644	NA	<0.2	0.56	89	3.74	7	10	146						
223643	115	<0.2	0.33	43	1.55	<1	6	27	<5	<5				

Table 4 Rock Sample Assay Summary

and the second second

Company:	G.W.R. Resources Inc.	R	ock Sa	ample	Des	cript	ion	Sh	eet															
Prospect: ⁻	TAM Property, Lac La Hache, B.	С.	s	ampled	by: Da	avid E	. Blai	nn, F	P. En	g.									Dat	e: Ma	ay 3	0-July	7, 200	1
															Alter	atio	n Sca	ale	1-5	1				
Sample Number	Comments	Rock Code	Voic/ in# Bed V, +, =,Lst	Structure 000/00	Chip m/sq.m	Grab Kg.	% Py	% Ср	% B0	% GI	% Qvn	% Mag	% Hem	Ser	K Feld	Ça	Chl	Eŗ	o Cia	Au / ppt		Ag ppm	Cu ppm	Zn ppm
76181	620325E,5756299N EPE 9m	MzD	+	050	0.80	2.5	2	3	0	0	90	10	0	4	3	1	2	2	1					
weak brec	cia, sample across 2-3 metre wid	de zone	of sheari	ng at 05	0, and	310/4	15N k	-felo	Ispar	veir	IS	At S	tallic	n Zo	ne									
		MzD	+		2X5	4		<u>^</u>	0.5		0	10	0	3	3	2	3	3	3 0		Т			
76182	620406E,5755673N EPE 5m				2/3		1	2	0.5	0		10	0	3	3	4	3	3					<u>i </u>	
Grab over	2X5 metre area of shear and fra	icture zc	ne																					
76183	619762E,5756169N,EPE5m	MzD	+		0	3	.5	.5	0	0	0	10	0	3	1	2	1	2	2 0					
) percussion drill setup, grab of 2	X2 metr	e area. n	noderate	ely frac	tured,	prop	oylitic	;															
76184	619685E,5756396N,EPE8m	MzD	+		i	0	0	0	0	0	0	0	0	0	0	0	0	(
					-				-	1	1		- 	- -	T	r	-							
76185	618818E,5756091N,EPE4m	AVbx	V		2X3	3	2	.3	0	0	0	5	0	2	0	3	4		4 0]	
Dark gree	n-grey-brown, fg, heterolithic An	desite vo	olcanic br	reccia. C	ltz-ca-	lim-py	-cp s	tock	work															
		-	-							T	1	1			1	1	1	1						— —
76186	618781E,5756276N,EPE5m	Τv	V			2.5	0	0	0	0	0	3	0	2	0	4	0		0 2				<u> </u>	
Tertiary a	ge? Augite-Hbl Volcanic breccia,	quartz+	amygda	iloidal ca	lcite +	actin	olite?	mai	trix w	ith g	reen	yello	w cł	ay.										<u> </u>
		MzD	+	1	-	0		0	Το	ο	0	0	0	0	Το	Ιo	0	T	0 0	, T	T		T	T
76187	619440E,5756281N,EPE5m	<u> </u>		_l		1	0		0	0	0	10	<u> </u>	U	10	10	10			<u> </u>			<u> </u>	
pyrite in E	Biotite-magnetite quartz-sericite s	chist. 10	metres	West of	5000	E,987	<u>5N</u>																<u></u>	
		T						Τ_		6									<u>, ,</u>					1
76188	619112E,5755927N,EPE9m	l Vbx	V	0	0	2	2	.5	0	0	0	5	0	2	0	3	3		3 (<u>' _</u>			<u> </u>	

r 1

	O annual ta	D -				Cart	07	07	â/	%	%	%	%					-		A		Cu	Zn
Sample Number	Comments	Rock Code	Volo/Int/Sed V,+,=,Lst	Structure 000/00	Chip m/sq.m	Grab Кg.	% Ру	% Ср	% Во	1			70 Hem	Ser	K Feld	Са	Chi	Ер	Clay	Au popb	Ag ppm	ppm	ppm
						_													<u> </u>	***	FF		
Augite-hornt	blende feldspar porphyry flow,	preccia.	Chl-ep v	eins with	n pyrite	, chai	сору	nte.	Floa	it in ti	ree r	0015.											
	T										· · · ·												<u> </u>
76189	618804E,5755918N,EPE5m	Vbx	V	300,360	3.0	3.5	1	.5	0	0	0	10	0	2	0	3	3	3	0				
Beside road	l. Augite-hornblende-feldpsar vo	lcanic b	reccia in	contact	to eas	t with	pink	crow	ded	hom	blen	de fe	ldspa	r poi	phyr	y Mz	D.S	trong	g frac	turing,	ca, pyr	te, lim,	ср
280-320 frc	ts cut by 360/90 fractures.																						
76190	617293E,5756037N,EPE4m	Vbx	V		20.	5.0	.1	0	0	0	0	5	0	3	0	1	3	3	0				
On edge of	- Miracle Swamp- south side, we	akly frac	xtured, w	ith lim, ti	race p	yrite.																	
5-31-01-1	616983E,5757152N,EPE5m	MzDbx	V		0	2.0	.5	.5	0	0	0	10	0	3	1	2	3	3	0				
	a north-south ravine, north side (n 2 km2	P Fast	of Mir	acle	DIOS	nect	We	ak k	-feld	spary	/eins	to 0	5cm	n ch	l-ser-	mao	en He	erolithi	. MzD i	bx
	of similar material 20 metres to		o onan					P												-			· · ·
76191	619003E,5755467N,EPE5m	Vbx	v	<u> </u>	4.0	3.5	.5	0	0	0	0	7	5	3	2	1	2	2	0				
			<u> </u>		-				Ū	Ū	<u> </u>	<u> </u>		<u> </u>	-							<u> </u>	<u> </u>
Hbl-Fp MzL) Vbx, trace FeOx, native coppe	er disserr	ninated a	is smear	s alon	g trac	tures	*										<u></u>					
		λ //	<u> </u>		T	La F				<u> </u>											!		<u> </u>
76192	619126E,5755433N,EPE6m		V			3.5	.2					3	1	3	0	2	3	3	0				
Grab of pit	dump material over 2X3 metres	5. Fp het	. Vbx, m	al,lim on	fractu	res.							<u>.</u>										
<u> </u>		1		1				τ	1	1	1	-	<u> </u>		T	T	—			T		, 	
76193	619265E,5755520N, EPE6m	Vbx	V			2.5	.25					0	10	4	0	3	3	4	0				<u> </u>
Float beside	e creek. Heterolithic Vbx, strong	chi-ser-	ep-hema	atite and	trace	mal.																	<u> </u>
							_			-	-	-			_		-	_	_				
76194	619861E,5756267N,EPE7m	Vbx	V			2.5	.25	0	0	0	0	5	2	2	0	2	3	3	0				
Angular flor	at 25kg. Qtz-ca vn stockwork, <	0.3% DV	rite, trac	e chalco	pyrite.	Varia	able (clast	alter	ation),												
					<u></u>																		
76195	620220E,5756272N,EPE6m	D	+			2.5	1.0	.3	.1	0	0	20	0	3	2	3	3	3	0	T			Τ
	25 metres to east. Weakly fract)0mm	1_2/2	0 Ec	n mic	modi	orite			<u></u>		1	<u> </u>				•	•	<u> </u>	

Sample Numb <u>er</u>	Comments	Rock Code	Vok:/int/Sed V,+,≃,Lst	Structure 000/00	Chip m/sq.m			% Ср			% Qvn	% Mag		Ser	K Feld	Ca	Chi	Ер	Clay	Ац ррь	Ag ppm	Си ррт	Zn ppm
														-	-			-					
76196	620406E,5755673N EPE 5m	D	+	360/90	0.25	2.5	.5	.1	1.0	0	0	15	3	3	2	3	3	3	0				
South End o	f Tim 2 Zone. Crowded hornbl	ende fel	dspar po	rphyry D	iorite i	s cut l	oy 36	<u>30 sh</u>	ear z	one,	0.25	5-1.2	5 me	tres i	<u>n wic</u>	ith a	nd ex	pose	ed ov	er 44 r	netres	in leng	h.
76196-7620	0 are in sequence northward.	Specula	rite locall	y											_								
76197	620406E,5755673N EPE 5m	D	+	030	0.55	2.5	.5	.5	1.5	0	0	15	0	3	2	3	3	3	0		İ	i	
10m north o	f 76196. Epidote-k-feldspar vei	ns trend	020.														. <u>.</u>						
															_	-							
76198	620406E,5755673N EPE 5m	Ð	+	360	0.45	2.5	.5	.3	1.0	0	0	15	0	3	2	3	3	3	0		Ì		
15 metres n	orth of 76197.																						
76199	620406E,5755673N EPE 5m	D	+	360	0.35	2.5	.5	.3	1.5	0	0	15	0	3	2	3	3	3	0				
5 metres po							·																
		_		1			ì—	1			[40	0	3	2	3	3	3	0		1		
76200	620406E,5755673N EPE 5m	D	+	050	2.0	3.5	.5	.3	.3	0	0	15		<u> </u>		Ľ Š		<u> </u>	10			1	
		D	+	050	2.0	3.5	.5	.3	.3	0	0	15		<u> </u>				3		<u> </u>		1	1
	620406E,5755673N EPE 5m orth of _76199.	D	+	050	2.0	3.5	.5	.3	<u>.3</u>	0	0	15						3				<u> </u>	1
		L	+	050	2.0				· · · ·		·					·	3					<u>_</u>	1
5 metres no 76201	orth of 76199. 620406E,5755673N EPE 5m	D	+	050	0.25	2.5	.5	01	0	0	0					·						 	
5 metres no 76201	orth of 76199.	D	+	050	0.25	2.5	.5	01	0	0	0					·						1 	
5 metres no 76201 5 metres w	orth of 76199. 620406E,5755673N EPE 5m	D	+	050	0.25	2.5	.5 xcia,	.01 with	0 trace	0	0		0			·			0				
5 metres no 76201 5 metres w TAM01DR-1	orth of 76199. 620406E,5755673N EPE 5m est of 76182. Wall rock of shea 620597E,5755459N	D ar zone, Fp	+ epidote-1	050 k-feldspa	0.25 ar vein:	2.5 s, bree	.5 .5	.01 with	0 trace	0 e pyri	0 ite.	15	0	3	2	3	3	3	0]		
5 metres no 76201 5 metres w TAM01DR-1	orth of _76199. 620406E,5755673N EPE 5m est of _76182. Wall rock of shea	D ar zone, Fp	+ epidote-1	050 k-feldspa	0.25 ar vein:	2.5 s, bree	.5 .5	.01 with	0 trace	0 e pyri	0 ite.	15	0	3	2	3	3	3	0		 		
5 metres no 76201 5 metres w TAM01DR-1	est of 76199. 620406E,5755673N EPE 5m est of 76182. Wall rock of shea 620597E,5755459N spar-epidote veins with fg py, n	D ar zone, Fp	+ epidote- + bo. Prob	050 k-feldspa	0.25 ar vein:	2.5 s, bree 1.5	.5 .5	.01 with	0 trace	0 e pyri	0 ite.	15	0	3	2	3	3	3	0				

TAMOTOR:3 619928E,5756315N Vbx V 2.0 0.1 0.2 0 0 10 0 3 0 2 2 3 0 Epidole clast and veining with trace cp. D86.14.01.1 619910E,5756051N,EPESm Vbx V 2.5 5 0.1 0 0 7 1 3 3 2 2 4 0 D86.14.01.1 619910E,5756051N,EPESm Vbx V 2.5 5 0.1 0 0 7 1 3 3 2 2 4 0 1 D86.14.01.2 619843E,5756170N,EPESm Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 1 5 0 0 0 15 10 3 2 3 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0	Sample	Comments	Rock	Volc/Int/Sed	Structure	Chip	Grab	%		%	%	%		1		к					Au	Ag	Cu	Zn
Epidote clast and veining with trace op. De8.14.01.1 619910E,5756051N,EPE5m Vbx V 2.5 5 0.1 0 0 7 1 3 3 2 2 4 0 Soft-weathering het. Vbx, intense ep-k-feldspar veins with trace pyrite in frots. Float-Subcrop. De8.14.01.2 619843E,5756170N,EPE5m Vbx V 2.5 .5 0.3 0 0 7 1 3 3 2 2 4 0 Float. As above De6.14.01.3 621073E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.0 0 15 10 3 2 3 1 3 0	lumber		Code	V, +, =,Lst	000/00	m/sq.m	Kg.				G			_	Ser	Feld	Ca				ppb	ppm	ppm	ppm
Soft-weathering het. Vbx, intense ep-k-feldspar veins with trace pyrite in frcts. Float-Subcrop. DBs-14-01-2 619843E,5756170N,EPE5m Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 DBs-14-01-2 619843E,5756170N,EPE5m Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 Float. As above DBs-14-01-3 621073E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.0 0 15 10 3 2 3 1 3 0 1 2 3 1 3 0 1 5 0 0 0 0 15 10 3 2 3 1 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	AM01DR-3	619928E,5756315N	Vbx	V		l	2.0	0.1	0.2	0	0	0	10	0	3	0	2	2	3	0		<u> </u>	<u> </u>	
Soft-weathering het. Vbx, intense ep-k-feldspar veins with trace pyrite in frcts. Float-Subcrop. DBs-14-01-2 619843E,5756170N,EPE5m Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 DBs-14-01-2 619843E,5756170N,EPE5m Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 Float. As above DBs-14-01-3 621073E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.0 0 15 10 3 2 3 1 3 0 1 2 3 1 3 0 1 5 0 0 0 0 15 10 3 2 3 1 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Epidote clas	t and veining with trace cp.																-						
DB8-14-01-2 619843E,6756170N,EPE5m Vbx V 2.5 5 0.3 0 0 7 1 3 3 2 2 4 0 Float. As above 500173E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.1 0 0 0 15 10 3 2 3 1 3 0 D86-14-01-3 621073E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.1 0 0 0 15 10 3 2 3 1 3 0 Augite-Hbi-Fp MzD and Vbx are cut by lamprophyre dikes. Strong sercep. 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 CB6-15-01-1 621254E,5755669N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 CB6-24-01-1 620659E,5756143N,EPE3m Vbx V 2.0 0.1 0.3 2 2 2 0)B6-14-01-1	619910E,5756051N,EPE5m	Vbx	V			2.5	.5	.01	0	0	0	7	1	3	3	2	2	4	0				
Float. As above DB6-14-01-3 621073E,5756089N,EPE3m Vbx V 3.0 4.0 0.1 0.0 0 0 15 10 3 2 3 1 3 0 Augite-Hbi-Fp MzD and Vbx are cut by lamprophyre dikes. Strong ser-ep. D86-15-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0	Soft-weathe	ring het. Vbx, intense ep-k-feld	spar veir	n <mark>s wit</mark> h tra	ace pyrit	<u>e in fr</u>	ct <u>s.</u> Fl	oat-S	Subci	rop.		<u></u>							<u>-</u>					<u></u> .
DB6-14-01-3 621073E, 5756089N, EPE3m Vbx V 3.0 4.0 0.1 0.0 0 0 15 10 3 2 3 1 3 0 Augite-Hbi-Fp MzD and Vbx are cut by lamprophyre dikes. Strong ser-ep. DB6-15-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 DB6-15-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 DB6-15-01-1 621254E,5756143N,EPE30m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 DB6-24-01-1 620659E,5756143N,EPE30m Vbx V 2.0 0.1 0.3 0.2 0 10 5 3 3 3 2 3 0 DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.	DB6- <u>14-0</u> 1-2	619843E,5756170N,EPE5m	Vbx	V			2.5	.5	0.3	0	0	0	7	1	3	3	2	2	4	0				
Augite-Hbl-Fp MzD and Vbx are cut by lamprophyre dikes. Strong ser-ep. DB6-19-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 DB6-19-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 K-feldspar altered HbI-Fp MzD. Soft-weathering float over 25 metres. Mal, strong FeOx in fractures. E	Float. As ab	ove												<u> </u>			<u> </u>							
DB6-15-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 NS6-15-01-1 621254E,5755869N,EPE4m MzD + 5.0 0.1 0.3 0 0 5 10 3 4 2 2 3 0 K-feldspar altered HbI-Fp MzD. Soft-weathering float over 25 metres. Mal, strong FeOx in fractures. DB6-24-01-1 620659E,5756143N,EPE30m Vbx V 2.0 0.1 0.3 0.2 0 0 10 5 3 3 3 2 3 0 DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.5 0.3 0 15 0 3 2 2 2 0 1 DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.5 0 0 15 0 3 2 2 2 0 1 DB6-24-01-2 50 metres SE of Stallion zone MzD + <	DB6-14-01-3	621073E,5756089N,EPE3m	Vbx	V		3.0	4.0	0.1	0.01	0	0	0	15	10	3	2	3	1	3	0				
K-feldspar altered HbI-Fp MzD. Soft-weathering float over 25 metres. Mal, strong FeOx in fractures. DB6-24-01-1 620659E,5756143N,EPE30m Vbx V 2.0 0.1 0.3 0.2 0 10 5 3 3 2 3 0 Tree root angular, shattered boulder. Orange-brown Fp, strongly oxidized, lim, geoth., mal. DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.5 0.3 0 15 0 3 2 2 0 1 DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.5 0.3 0 15 0 3 2 2 2 0 1 15 metres beyond south east end of old trench. Grey, fg HbI-FpD. Strong ser-mag, wk chi-ep-k-feldspar, weak frct, actinolite?, py=cp, trbo 1 1 0 0 0 5 0 3 1 2 2 3 0 1 DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3	Augite-Hbl-I	Fp MzD and Vbx are cut by lam	prophyri	e dikes, S	Strong s	er-ep.								<u> </u>										
DB6-24-01-1 620659E,5756143N,EPE30m Vbx V 2.0 0.1 0.3 0.2 0 10 5 3 3 2 3 0 Tree root angular, shattered boulder. Orange-brown Fp, strongly oxidized, lim, geoth., mal. mail 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 0 15 0 0 15 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15	DB6-15-01-1	621254E,5755869N,EPE4m	MzD	+			5.0	0.1	0.3	0	0	0	5	10	3	4	2	2	3	0				
Tree root angular, shattered boulder. Orange-brown Fp, strongly oxidized, lim, geoth., mal. DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.3 0 15 0 3 2 2 2 0 15 15 metres beyond south east end of old trench. Grey, fg HbI-FpD. Strong ser-mag, wk chi-ep-k-feldspar, weak frct, actinolite?, py=cp, trbo DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3 0 1 Float/ angular subcrop in tree root. Biotite-ser-ep+/-chi-k-feldspar, FpMzD ibx, Vbx. Vbx. -	K-feldspar a	altered Hbl-Fp MzD. Soft-weath	ering flo	at over 2	5 metre	s. Mal	, stror	ng Fe	:Ox ir	n frac	ture	<u>3.</u>		<u> </u>		<u> . </u>								
DB6-24-01-2 50 metres SE of Stallion zone MzD + 3.0 0.5 0.5 0.3 0 15 0 3 2 2 2 0 15 15 metres beyond south east end of old trench. Grey, fg HbI-FpD. Strong ser-mag, wk chi-ep-k-feldspar, weak frct, actinolite?, py=cp, trbo DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3 0 Float/ angular subcrop in tree root. Biotite-ser-ep+/-chi-k-feldspar, FpMzD ibx, Vbx. Vbx. -	DB6-24-01-1	620659E,5756143N,EPE30r	Vbx	v			2.0	0.1	0.3	0.2	0	0	10	5	3	3	3	2	3	0				
15 metres beyond south east end of old trench. Grey, fg Hbl-FpD. Strong ser-mag, wk chl-ep-k-feldspar, weak frct, actinolite?, py=cp, trbo DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3 0 DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3 0	Tree root a	ngular, shattered boulder. Oran	ge-brow	n Fp, stro	ongly oxi	dized,	<u>lim, g</u>	eoth	<u>., ma</u>	<u>al.</u>									-					
DB6-25-01-1 620005E,5756584N,EPE7m MzDbx + 3.0 1.0 0.3 0 0 5 0 3 1 2 2 3 0 Float/ angular subcrop in tree root. Biotite-ser-ep+/-chl-k-feldspar, FpMzD ibx, Vbx. -	DB6-24-01-2	50 metres SE of Stallion zon	MzD	+			3.0	0.5	50.5	0.3	0	0	15	0	3	2	2	2	2	0				
Float/ angular subcrop in tree root. Biotite-ser-ep+/-chl-k-feldspar, FpMzD ibx, Vbx.	15 metres I	beyond south east end of old th	ench. Gr	ey, fg Ht	ol-FpD. S	Strong	ser-m	nag, v	wk cł	ni-ep	k-fel	dspa	ar, we	eak fi	rct, a	ctino	lite?,	ру=	cp, ti	to				
	DB6-25-01-1	620005E,5756584N,EPE7m	MzDb	(+			3.0	1.0	0.3	B 0.	0	0	5	0	3	1	2	2	3	0				
	Float/ angu	lar subcrop in tree root. Biotite-	ser-ep+/	-chl-k-fel	dspar, F	pMzD	ibx, \	/bx																
			MzD	+	┯—	т-	10		100				2	T 10	2	5	2	1	т-		T			

Sample	Comments	Rock	Vola/ Int/ Sed	Structure	Chip			%	%	%	%	%	%		K	6 .				Au	Ag	Cu	Zn
Number		Code	V, +, =,Lst	000/06	misq.m	Kg	Fy	Ср	Во	GI	Qvn	мад	Hem	Ser	Feld	Ca	Chi	Ep	Clay	ppb	ррт	ppm	ppm
Subcrop In	tense FeOx fractures, pervasive	e ser-ed.																					
	Harrison a construction per rubits				<u> </u>					-								-					
 						T			-	r		T			T			<u> </u>		_ <u>،</u>	<u> </u>	1	
DB6-25-01-3	620325E,5756299N,EPE9m	MzD	+	050	3X5	4.0	1	3	3	0	0	15	0	4	3	2	2	3	0				
inicked are	b of 3X5 metre area of main sta	lion sho	wing at a	rea of 70		ost). H	liah-a	orad	e fa c	. b	o. m	al dis	semi	nate	d in f	a Hb	l-Fo	MzD	ibx.	Bornite	veins t	o7mm	I .
picked grat		inon ano	ang ar a			<u></u>			- 9	- <u>(*)</u>	-,						<u> </u>						
223643	620402E,5756093N,EPE4m	Soil								[I			<u> </u>								
	55cm depth, wet tan brown silt, r	ninor org	janics.																				
223642	619854E,5756676N,EPE8m	Soil			Ī	T				ľ													
	m below "B", in "C", moist grey s		· · · · · · · · · · · · · · · · · · ·		_																		
, ugo. 000																_							
223644	620071E,5756658N,EPE8m	Soil											Í.]		
	pit 30 cm. Moist, tan-orange bro		silt, lots o	f angula	r iron (oxide I	ock 1	fragi	ment	s., Si	ubcn	op. S	See F	Rock	DB6	25-0)1-2						
			·																				
DB7-7-01-	1 620171E,5755883N,EPE4m	Vbx	T + "			3.5	0.2	0.2	0	0	0	15	1	3	1	1	1	1	0				
Angular fig	pat in clearcut . Biotite-ser-mag l	- Ibl-Fp M	IzD ibx, w	veak ep-	k-feld	spar, r	nod.	Frct	, tr p	у,ср													
			i																				
DB7-7-01-	2 620153E,5755873N,EPE4m	Vbx	<u> </u>	T	T	3.5	0.2	0.2	2 0	0	0	15	1	3	1	1	1	1	0				
	pat in clearcut Biotite-ser-mag		zD ibx. e	p clast.	mod s	;er-ma	g, m	od. I	Frct,	tr py,	ср												
DB7-7-01-	-3 620217E,5755905N,EPE7m	ibx				3.5	0.2	0.2	2 0	0	0	10	1	3	1	1	1	2	Ū				
	pit to 1.0metre- subcrop. Het bid		mag, ep	clast, H	bl-Fp I	MzD it	x, m	od. I	Lim f	rct, ti	r py												
																.		-					
	4 620196E,5755913N,EPE3m		V					20.2	2 0	0	Ō	5	3	3	1	1	3	3			}	<u> </u>	
Float Het	chl-ser-ep-mag, ep clast, Fp Mz	D ibx, n	od. Lim,	FeOx fr	ct, tr p	y, ma																	
		inst	<u></u>			175	117					140		13	11	1.2	13	13					 _
	-5 620127E,5755900N,EPE3m				_1	1 3.5	11.0	10.2	2[0	To	10	10	1	3		2	3	13	10			<u> </u>	
Float, Het	chi-ser-ep-mag, ep clast, Fp Ma	<u>ED IDX, N</u>	nod. ⊢rct	with py																			
										_									_				

A CARA A

3 1

1.1

· · · · ·

1 1

- T - N

7

1

a contract the terms of the terms of the

HOLE: TAM01-1

3

,

1

1 11

× /

Northing	5756271
Easting	620299
Elevation	1420 m

.

3 F 3

.

•

.

1

. .

*

1 r

		Azimuth	Dip
	Collar	360°	- 45°
EOH	101.83		

.

٦

ALTN SCALE: 1----5 MAX

Dept	n (m)	Description	ROCK	%	%	%	%	Chl	Ep	Ca	2 ^C	2 ⁸	2 ^K	2 [™]	Sample	Interv	al (m)	Cu	Au
from	to		CODE	Ру	Ср	Во	Qvn		[Number	from	to	%	g/t
0.0	0.91	Casing.													20351	0.91	3.5	0.02	0.14
															20352	3.5	5.6	0.02	0.06
0.91	5.6	Monzodiorite: Black, grey-cream, fine to medium grained,	MzD	0	0.1	0,1	0	1	3	1	0	3	1	2	20353	5.6	7.0	0.51	0.09
		homblende-actinolite crowded feldspar porphyry. Packed													20354	7.0	9.0	0.34	0.08
		stubby plagioclase laths with irregular, zoned cores, weakly													20355	9.0	11.0	0.47	0.11
		sericitic and epidotized. Mafics epidote sericite magnetite													20356	11.0	13.0	0.23	0.16
		altered. Weakly fractured 1-3 mm, 5-10/m, C.A. 5-10°, 30-60°,													20357	13.0	14.0	0.31	0.05
		with limonite, malachite, chalcopyrite, bornite.	1												20358	14.0	14.5	1.68	0.43
		0.91 - 3.91 m 2.1 m of core recovered, strongly broken.													20359	14.5	16.5	0.18	0.08
															20360	16.5	17.0	3.30	0.98
5.6	14.0	Monzodiorite, as above. Increasing sericite epidote+calcite	MzD	0.1	1.0	0.3	Q	0	3	1	0	4	2	2	20361	17.0	19.0	1.10	0.20
		in matrix and veins 1-10mm, 10-30/m, C.A. 0-10°, 45-60°,	1		1										20362	19.0	21.0	0.40	0.10
		chalcopyrite, bornite. Core appears mottled, local strong			[20363	21.0	23.0	0.85	0.42
• •		subparallel fracture / alteration changes. Sulphides increasing				ľ		<u> </u>							20364	23.0	25.0	0.11	0.10
		in veins, selvages, wallrock.					1								20365	25.0	28.0	0.06	0.05
		At 8.7 m 2 cm sericite-calcite+limonite filled fault, C.A. 30°.			1										20366	28.0	31.0	0.01	0.05
					1	1	1	[1						20367	31.0	34.0	0.42	0.10
14.0	17.0	Monzodiorite, as above. Strong fractures, veins of sericite-	MzD	0.1	1.5	0.5	0	0	3	1	0	4	2	2	20368	34.0	37.0	0.01	0.08
		epidote±K-feldspar / albite, chalcopyrite, bornite, 1mm- 10 cm,			1						·			ł	20369	37.0	40.0	0.01	0.11
		25-100/m, C.A. 0-10° (limonite), 20-40° (chalco-bornite),				1	-	Ι	1						20370	40.0	43.0	0.05	0.06
		moderately broken cora.			<u> </u>	Γ									20371	43.0	46.0	0.02	0.05
		At 14.15-14.33 m 2-5% chalcopyrite, 2-5% bornite, breccia			1										20372	46.0	49.0	0.03	0.11
	1	C.A. 30°.				1									20372A	49.0	52.0	<0.01	0.03
		At 16.60-16.75 m 2-5% chalcopyrite, 2-5% bornite, breccia					T		Ţ						20373	52.0	55.0	<0.01	0.04
· · · · ·		C.A. 45°.	1	1							ĺ				20374	55.0	58.0	<0.01	0.05
							1	[<u> </u>				20374A	58.0	61.0	0.05	0.06
17.0	23.0	Monzodiorite, as above. Moderately broken core, limonite,	MzD	0	1.0	0.3	0	-	3	2	1	3	1	2	20375	61.0	64.0	0.02	0.04
		orange clay, native copper and malachite on fractures, C.A.		-	Τ		1			Ī					20376	64.0	67.0	0.23	0.09
	t	0-20°, 45-60°. Core is mottled, epidote-sericite-albite patches,		1		1									20376A	67.0	70.0	0.11	0.10
	1	veinlets, clots. Chalcopyrite, bornite replacing matics, feldspar		Ì			T								20377	70.0	73.0	0.06	0.08
	1	and in veins 1-10 mm, 10-30/m, C.A. 20-40°, 60-80°.		1			1						-		20378	73.0	76.0	0.23	0.20
	t	21.5 - 22.5 m Shear zone C.A. 10°, strong iron oxide, brecciation,		1	1	1			1						20379	76.0	78.5	0.04	0.07
	1	moderate clay gouge.	1				T.								20379A	78.5	81.3	0.03	0.13

3

2

-

٦

۰.

.

N 8

• •

л -

.

1 7 F

HOLE: TAM01-1

•

ALTN SCALE: 1-5 MAX

3

•

•

.

.

۰. ۲

			<u>.</u>									- 0 1	I	- 14				-	
Dept	ו (m)	Description	ROCK	%	%	%	%	Chi	Ep	Ca	2 ^C	2 ⁵	2 ^K	2 [™]	Sample		al (m)	Cu	Au
from	to		CODE	Py	Ср	Bo	Qvn	ļ							Number	from	to	%	g/t
23.0	76.65	Monzodiorite, as above. Unit is uniformly textured, trachytic,	MzD	0.1	0.01	0	0	1	2	1	0	2	1	2	20380	81.3	84.0	0.02	0.06
		fine grained, massive crowded hornblende-feldspar monzo-			Ĺ										20381	84.0	87.0	0.01	0.16
		diorite. Weak to moderately broken core, weak epidote-sericite-					1								20382	87.0	90.0	<0.01	0.08
		albite in matrix, minor veins of albite-K-feldspar 1-3 mm, 5-10/m													20383	90.0	93.0	0.03	0.11
		with limonite+malachite, local stringers with chalcopyrite,	<u>i</u>				_			<u> </u>					20384	93.0	96.0	<0.01	0.03
		bornite, trace pyrite locally. Scattered zenoliths of dark mafic													20385	96.0	99.0	0.01	0.02
		intrusive.						<u> </u>							20386	99.0	101.83	0.01	0.29
		58.3 - 59.9 m Epidote-K-feldspar-quartz veins to 3 cm +							į	L	L								
		stringers with pyrite, chalcopyrite, trace bornite, C.A. 25°, 70°,			1														
		5-20/m.							<u> </u>					L .		ļ	ļ		
		63.9 - 65.7 m As above.															ļ		
		At 66.9 m 10 cm as above, chalcopyrite bornite.														1]
		68.0 - 68.5 m As above, decreasing fracturing, mineralization-											L				L	ļ	
		ladder veins.			1					i i									
		68.5 - 76.65 m Weak fracturing, trace - 0.3% chalcopyrite														<u> </u>		L .	
		replacing sericite-epidote, magnetite in matrix.														<u> </u>	<u> </u>	1	ļ
						T	<u> </u>											<u> </u>	
76.65	92.6	Basaltic-andesite volcanic breccia and flows. Dark-pale green,	Vbx	1.0	0.3	0.01	0	1	3	3	0	3	0	3		1			
		black, fine grained, weakly heterolithic trachytic volcanic breccia.									<u> </u>					<u> </u>			
	<u> </u>	Mottled grey-green (epidote)-black matrix with irregular size and									1								
. · · · ·	-	altered clasts. Sericite epidote calcite dominant in matrix and								1									
 	[fracture-fillings, with pyrite_chalcopyrite.		Τ	1	{													
	[76.65 - 77.0 m Epidote-sericite / chlorite K-feldspar-albite-				T													
· · · ·	· · · · ·	pyrite-chalcopyrite vein 3-5 cm, C.A. 10-20°.			1				1										
		78.5 - 81.3 m K-feldspar albite flooding, broken strong fracturing			1					T			1						
		with sericite epidote magnetite veins 1-10 mm, 20/m, C.A. 0-10°,	1	1															
		cut by 40-50° calcite fractures. Pyrite 2-3%, chalcopyrite 0.3%.				T													
	1	81.3 - 85.0 m Massive, uniform fine grained feldspar crystal																	
·	1	andesite flow.	1	1															
	1	89.4 - 89.7 m Epidote-calcite-chalcopyrite-pyrite vein, breccia.																	
	+	At 90.55 m 20 cm fault-chlorite-sericite-calcite-clay, C.A. 15°.																	
		91.9 - 92.6 m 10 cm massive epidote-quartz-calcite with																	
<u> </u>	† †	hematite filled fractures, C.A. 10-30°.				1													
	1		1															1	
92.6	101 83	Heterolithic andesite volcanic breccia, tuff dark grey-black, fine	Vbx	0.2	-	-	-	2	3	3	1	3	0	2					
	1.0.00	grained, mottled texture with variable altered clast input. Less			1	1													
	+	pyrite than previous section. Weakly broken, dominantly chlorite-		1	1														

the the term of term o

HOLE: TAM01-1

,

1 1

						ALTN	N SCA	LE:	15	MAX									
Depth	(m)	Description	ROCK	%	%	%	%	Chi	Еp	Ca	2 ^c	2 ^s	2 ^K	2 ^M	Sample	Interv	al (m)	Cu	Au
from	to		CODE	Py		Во			-			-	-		Sample Number	from	to	%	g/t
	-	sericite-calcite on fractures variably magnetic matrix, epidote-																	
T		spot.					<u> </u>			1									
								1			1	-							
101.83	-	End of Hole.					1									1			
T										1									[
	- <u></u> -						1			1						1			
							1							1		1			
								1						· · · · ·					
								1		1									
							†			1							····		
	•					1	1			1	1					1			
	_						1		1						1	1			
							1					1		1					
							+												
							<u>† </u>			1			 			1			
	•															ł	<u> </u>		<u> </u>
	_				[· · · ·		+	1		†		1	· · ·			1			
·····								1	<u> </u>	1						1			— ——
						t	+	1	1	<u> </u>	1	<u> </u>				1			
	•						1	1	†	<u> </u>		-		1		1		1	
				1	1		1	1		1		<u> </u>				1			F
	·				1	1	+	1	-				†	1		1	· · · · · · · ·		
							1		-	1	1		1	<u> </u>					
							1						1					f	
					1	1	1	1	†		1	<u> </u>	†				<u> </u>	1	<u> </u>
	•	· · · · · · · · · · · · · · · · · · ·							<u> </u>	1	1	<u> </u>		1			t	<u> </u>	t
							1		<u> </u>	1	<u>† </u>		1		1	1		<u> </u>	<u> </u>
h	••••									1	1			1			<u> </u>	ł	t
†				1	1			1	1		1	1	1	1	1		t	†	†
ł							1	1	<u> </u>	1	1	†	1	1		1		T	†
_ 					1	1	1		1			1	1		1	1	1	1	t
	·		-	<u> </u>	1		1	+	1	1	1	<u> </u>	1	\uparrow		1	†	ļ	†
					1	1	+	1	·	1	1	†	t	1	<u> </u>	1	[†	t
ł				1	1	1	1	†	+			1	1	1	1	1	t	1	†
				1			1	1	<u> </u>	1	1	1	1	1	1	1	t	-	t
	·				<u>†</u>	†	1		<u> </u>	1	1	<u> </u>	1	1	t		t	<u> </u>	<u>†</u>
				↓ · _	1	┫────	+	+	+	+ -	+	+	+	+	+	4	╋╼┅───	1	┣

7 7 7 7 7 7 7

۲

HOLE: TAM 01-2

٠

٦

٦

•

Company: GWR Resources
Project: Tam
Core logged by David Blann, P.Eng.
Date: June 16, 2001

· •

•

. .

Northing	5756264
Easting	620276
Elevation	1420 m

_		Azimuth	Dip
	Collar	180°	- 45°
EOH	162.8		

						ALTN	SCA	LE: 1	I-—5 I	MAX									
Depti	1 (m)	Description	ROCK	%	%	%	%	Chi	Έρ	Ca	2 ^c	2 ^s	2 ^K	2 [™]	Sample	Interv	al (m)	Cu*	Au*
from	to		CODE	Py	Ср	Bo	Qvn								Number	from	to	%	g/t
0	1.22	Casing.													20387	1.22	4.1	0.03	0.06
															20388	4.1	5.2	0.03	0.04
1.22	4.0	Monzodiorite. Grey-cream, fine grained trachytic hornblende-	MzD	0.0	0.1	0.01	0	0	2	0	0	3	1	3	20389	5.2	6.5	1.36	0.30
		feldspar porphyry. Highly broken core, 60% recovery. Moderate													20390	6.5	8.0	0.16	0.03
		sericite-magnetite, trace chalcopyrite / malachite, weak epidote													20391	8.0	10.0	0.45	0.08
		in matrix and fractures, increasing down section.													20392	10.0	13.0	0.15	0.03
															20393	13.0	16.0	0.13	0.03
4.0	9.3	Monzodiorite. As above. Moderately broken core. Moderate -	MzD	0.1	1.0	0.1	Q	1	3	0	0	4	3	2	20394	16.0	19.0	0.01	0.01
		strong sericite-epidote-magnetite in matrix with epidote veins													20395	19.0	22.0	0.00	0.02
		and K-feldspar envelopes, and limonite, malachite, azurite,													20396	22.0	25.0	0.00	0.00
		trace - 1% chalcopyrite along fractures, 5-20 mm, 20-75/m,													20397	25.0	28.0	0.18	0.09
		C.A. 0°, 30–45°.													20398	28.0	31.0	0.01	0.04
		5.4 - 6.7 m Shearing brecciation, strong malachite, chalcopyrite				1									20399	31.0	34.0	0.02	0.03
		1-3%, 10 cm 5%, chalcopyrite vein at 5.8 m, C.A. 30-45°.						l							20400	34.0	37.0	0.01	0.02
		5.8 - 9.3 m Epidote-chalcopyrite veins 2-5 mm with 2-3 cm													20401	37.0	40.0	0.01	0.02
		K-feldspar envelopes. Locally chalcocite replacing chalcopyrite,													20402	40.0	43.0	0.01	0.02
		C.A. 45-60°, 0-20°.				<u> </u>			ļ						20403	43.0	46.0	0.00	0.02
										1					20404	46.0	49.0	0.05	0.01
9.3	33.1	Grey, fine grained, massive hornblende-magnetite feldspar	D	0.3	0.3	0	0	1	3	2	1	3	1	3	20405	49.0	52.0	0.01	0.01
		crowded porphyry diorite dike or sill. Upper / lower contact 30°.							<u> </u>						20406	52.0	55.0	0.01	0.02
		9.3 - 13.0 m Moderately broken along sericite-epidote+clay													20407	55.0	58.0	0.01	0.01
		slips 1-3 mm, 5-25/m, + chalcopyrite > pyrite (0.3%, 0.2%).													20408	58.0	61.0	0.04	0.02
		Weak feldspar envelopes (< 1 cm).				1		ļ	ļ	1					20409	61.0	64.0	0.02	0.01
		13.0 - 26.4 m Weak fracturing.						ļ	ļ						20410	64.0	67.0	0.02	0.01
		26.4 - 26.9 m Moderate fracturing, epidote-gamet + calcite +		<u> </u>				1	<u> </u>						20411	67.0	70.0	0.02	0.02
		K-feldspar, pyrite 1-2 %, chałcopyrite 1-2 %, C.A. 45-60°.				<u> </u>					ļ	L			20412	70.0	73.0	0.01	0.03
		26.9 - 29.0 m Weak fracturing, trace chalcopyrite.			1						<u> </u>				20413	73.0	76.0	0.01	0.03
		At 29.57 m 1 cm pyrite-chalcopyrite vein in epidote-K-feldspar,										L			20414	87.0	90.0	0.26	0.05
		C.A. 40°.						ļ	ļ				L		20415	90.0	93.0	0.14	0.03
		32.0 - 32.6 m Strong brecciation, pervasive calcite, quartz-				<u> </u>		ļ	1	L		L			20416	93.0	96.0	0.11	0.03
		sericite, K-feldspar, 1-2 % pyrite, 1 % chalcopyrite, C.A. 45°		1		ļ		ļ				1			20417	96.0	99.0	0.07	0.03
		veins cut by 0° shearing.	_	1	Ļ	ļ			1	<u> </u>	ļ	L			20418	151.0	154.0	0.05	0.03
		32.6 - 33.1 m Moderate clay-epidote-calcite, soft matrix.				[20419	157.0	160.0	0.004	0.001

* Some % Cu values = ICP geochem conversions; g/t Au = ppb conversions

HOLE: TAM 01-2

						ALTN	I SCA	LE: _1	5	MAX									
Depti	n (m)	Description	ROCK	%	%	%	%	Chl	Ep	Ca	2 ^C	2 ^s	2 ^ĸ	2™	Sample	Interv	al (m)	Cu	Au
from	to		CODE	Py	Ср	Во	Qvn								Number	from	to	%	g/t
33.1	49.75	Light-dark green, fine grained feldspar crystal heterolithic	Vbx	0.1	0	0	0	2	3	2	1	2	0	3	20420	160	162.8	0.003	0.005
		basattic andesite breccia. Weak - moderately broken, locally																	
		variable intensity propylitic alteration. Epidote clasts up to 10 cm,																	
		with hematite-calcite filled fractures.														_	 		
			- <u>-</u>				0	1	3	2		3	3	2		<u> </u>	<u> </u>		
49.75		Pink-cream, fine grained. Homblende-feldspar crowded	D	1.0	0.5	0	0		3	- * -	·	3	3						<u> </u>
		porphyry diorite. Flow / sill 2 % xenoliths bleached, broken,		<u> </u>													<u> </u>		
		brecciated core. Veins of sericite-epidote-pyrite chalcopyrite	· ······		ļ		ļ									ļ			
		1 - 5 mm, C.A. 45-60°, 0-20°. Contacts; upper 80° sharp with									ļ			<u> </u>				<u> </u>	
		2% pyrite, 1% chalcopyrite + calcite. Lower 80° sharp, strong		ļ		<u> </u>				 	ļ								ļ
		(3%) pyrite into wallrock. Unit is in part K-feldspar-carbonate	_		ļ		ļ		<u> </u>		ļ			┨	Į	ļ	<u> </u>		+
		altered.			L	I	l		L	L	<u> </u>			 	 	 	<u> </u>		
					!	_	ļ			ļ	ļ			<u> </u>		 	ļ		
53.0	61.0	Dark green, fine grained feldspar crystal heterolithic basaltic-	Vbx	0.5	0.1	0	0	3	3	2	1	3	0	3	ļ	_	Ì		
		andesite volcanic breccia. Potassic and propylitic fragments.															<u> </u>	1	<u> </u>
		Trace, specs of malachite (green clay?).			<u> </u>									L		1	_	ļ	
														ļ		ļ			1
61.0	68.4	Fault and breccia. Volcanic breccia cut by strong ductile +	Fbx	2	0.1	0	0	3	3	2	3	3	2	3			Į		ļ
		open space. Epidote-calcite-clay-pyrite-magnetite + trace															_		_
		chalcopyrite veins, 0.1 - 3 mm, 25-50/m, C.A. 45°.			1						1						1		
		61.95 - 62.35 m (0.4 m) Strong fault gouge, C.A.; upper 45°,					Ι	-								1			
	-	lower 90°.		Ĩ			Ţ												
	<u> </u>	63.7 - 63.9 m Crush zone. Epidote-pyrite-magnetite-pinkish			1		1	1				ł							
		matrix (K-feidspar ±).		1	1		1									ļ			
,		65.0 - 67.4 m Crush, breccia. Deformed epidote-pyrite-		1		1										1			
		magnetite+chalcopyrite veins with 3 - 10 cm, K-feldspar																	1
	<u> </u>	envelopes.						1							1	T			
	<u> </u>	67.4 - 68.4 m Leuco diorite feldspar porphyry pinkish-cream,		1									Ι						
		1% pyrite, trace malachite.			1	1		1			1	1						Ī	1
		170 pyrtes, e ave maraximo.		1	1	1	1	1	1	1	1		1	1	1	1	1	T	1
68.4	80.1	Dark green, fine grained feldspar crystal heterolithic basalt-	Vbx	0,1	10	0	0	3	3	2	1	3	0	3					
- UU.4	1 00.1	andesite volcanic breccia. Weakly broken.		+	+				1	1	1	1	1		1			1	1
				1	<u>† </u>	1		1	1	1	1	1	†	1	1	1	1	1	1
80.1	91.5	Fault breccia, shear zone. Heterolithic breccia sheared and	Fbx	0.1	0.05	5 0	0	3	3	3	2	3	1	1				1	
	1	strained 10-25° C.A.	-1		1			1											
	1	86.5 - 91.5 m Strongest shear, C.A. 25-30° dextral sense of	1	1			1				1								
	+	movement. 5 cm calcite/ankerite vein at 91.5, C.A. 10°.		1	1	1			1	1		1							

HOLE: TAM 01-2

the first set and a
						ALTN	I SCA	LE: 1	5 !	MAX									
Dept	n (m)	Description	ROCK	%	%	%	%	Chi	Ep	Ċa	2 ⁰	2 ⁵	2 ^ĸ	2 ^M	Sample	Interv	al (m)	Cu	Au
from	to		CODE		Ср		Qvn								Number	from	to	%	g/t
91.5	94.8	Pale cream-pinkish, fine grained feldspar crystal flow, dike,	D	0.2	0.2	Ö	0	2	2	1	1	3	2	2					
		sil. Locally ductile sheared with chlorite hematite, 0.5%																	
		chalcopyrite at lower 35 cm contact.		1															L
94.8	162.8	Dark green, fine grained feldspar crystal heterolithic basaltic andesite volcanic breccia. Variably epidote clast size 5-25 cm. Moderately crushed, broken matrix, chlorite-calcite-epidote+	Vbx	0	0	Ó	0	4	3	3	1	2	0	3					
		andesite volcanic breccia. Variably epidote clast size 5-25 cm.																	
		Moderately crushed, broken matrix, chlorite-calcite-epidote+		ļ															
		hematite filled.				 	 												
		133.8 - 142.57 m Fine grained massive, feldspar crystal flows					 					 							
		pinkish-orange, in contact with epidote clast agglomerate.		<u> </u>											<u> </u>	·			
	i	Chlorite contacts; upper 50°, lower 60°.		 	 	┨	<u> </u>					$\left[\cdot \right]$						·	
		145.2 - 145.3 m Epidote-calcite+gypsum crackle breccia and		<u> </u>								 				 			
		vein 2 cm, C.A. 25°.	1		-	Į					 	 			ļ	 			l
		151.65 - 151.9 m As above.	-	<u> </u>		ļ	ļ				I		<u> </u>			 	<u> </u>		
		145.3 - 162.8 m. Propylitic volcanic breccia.		ļ	ļ	 	ļ		<u> </u>		ļ	ļ							
					ļ		ļ					I		ļ					
162.8		End of Hole.		<u> </u>	<u> </u>	<u> </u>	 		 		ļ					_			
														1		ļ			
												<u> </u>				<u> </u>			
					1														
										<u> </u>									
				Ī		I													
				1		Ī	Ι			I								[
						1	1		ľ		[
							1					1		Ţ		1			
				1		1	1	1	1	1	<u> </u>		1			1		1	
				1		1		† T	Ī	1			1	1		1	1	1	
	-		1	1	1	1	1	1	1	1	1	1	1	1		Ī		1	
			1	1					1	1	1	1	<u> </u>		1	1	1	1	
—				1	1	1	1	<u>† </u>		1	1				1	1	1	1	<u>├───</u>
			+	1	1	†	1	1	1	+	1	1	1	1	1	1	1	†	<u>├</u> /
<u> </u>			-	+	1	1	<u>+</u>	<u> </u>	1	+	1	1	<u>†</u>	<u> </u>	1	t	<u>†</u>	<u>†</u>	┟───┦
		······		+	+ -	+	+		 	-	<u> </u>	+	1	1	ł	<u> </u>	t		<u>├</u>
					+	1		+	╉╍╍	+	╉───	+	 	+		1	ł	 	<u>↓</u>
1	1	8	1	1	1	4	1	1	1	1	1	1	1.	1	1		1	1	1 /

.

c) (1) (2) (2)

HOLE: TAM 01-3

Company: GWR Resources	
Project: Tam	
Core logged by David Blann, P.Eng.	
Date: July 17, 2001	

1

٦

ſ

.

Northing	5756283
Easting	620312
Elevation	1420 m

		Azimuth	Dip
	Collar	360°	- 70°
EOH	84.45		

1 1

۲

1

ALTN SCALE: 1----5 MAX

Dept	h (m)	Description	ROCK	%	%	%	%	Chi	Ер	Ca	2 ^C	2 ⁹	2 ^ĸ	2™	Sample	Interv	al (m)	Cu*	Au*
from	to		CODE	Ру	Ср	Во	Qvn								Number	from	to	%	g/t
0.0	0.5	Casing													20421	43.8	44.9	n.a.	n.a.
															20422	57.0	60.0	n.a.	n.a.
0.5	84.45	Grey, pale-dark green, black, fine grained crowded feldspar													20423	60.0	63.0	n.a.	n.a.
		heterolithic monzodiorite intrusive breccia. Variably altered													20424	63.0	66.0	n.a.	n.a.
		clasts. Variable clast size 1-10 cm average. Weak-moderate													20425	66.0	69.0	<u>n.a</u> .	n.a.
		pervasive sericite-magnetite, locally epidote veins, clasts up													20426	69.0	72.0	n.a.	ก.ฮ.
		to 25 cm.													20427	72.0	75.0	n.a.	n.a.
		43.9 - 44.2 m 5 cm K-feldspar-epidote-vuggy calcite breccia													20428	75.0	78.0	n.a.	n.a.
		with 3% chalcopyrite. No magnetite, C.A. irregular 80°,													20429	78.0	81.0	n.a.	n.a.
		10-20° stringer.				 			<u> </u>						20430	81.0	84.0	n.a.	n.a.
		44.75 - 44.85 m 2 cm stringer as above.																	
		57.4 - 58.0 m Massive epidote + weak K-feldspar breccia. Trace																	
		pyrite-chalcopyrite.																	
		At 63.4 m 2.0 cm epidote-K-feldspar stringer, 1% pyrite +						1											
		chalcopyrite. C.A. 70°, 20°.																	
		63.4 - 72.26 m Several 1-2 mm stringers of pyrite, chalcopyrite.									ļ								
		C.A. 10-20°. Some pyrite in matrix.																	
		At 74.7 m 3 cm breccia, 3% pyrite, chalcopyrite, C.A. 80°.						1											
		79.0 - 79.3 m Weak fault C.A. 25°.																	
	1	79.3 - 84.45 m Pyrite decreasing.												İ					
84.45		End of hole.]														
																L			
																		<u> </u>	
	1															L	Į		
																L	1		1
					1														
	1							1											
	1												1				1		
	1		Ī]	

n.a. = not available at time of reporting

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 180 20-Jun-01

ATTENTION: IRVIN EISLER

No. of samples received: 19 Sample type: Core Project #: None Given Shipment #: None Given

	ET #.	Tag ≇	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Mo (%)
	1	20351	0.18	0.005	0.2	0.01	0.02	<0.01
	2	20352	0.06	0.002	0.2	0.01	0.02	<0.01
	3	20353	0.09	0.003	3.3	0.10	0.51	<0.01
	4	20354	0.08	0.002	1.2	0.04	0.34	<0.01
	5	20355	D.11	0.003	4.6	0.13	0.47	<0.01
	6	20356	0.16	0.005	1.2	0.04	0.23	<0.01
	7	20357	0.05	0.001	1.4	0.04	0.31	<0.01
***	8	20358	0.43	0.013	18.1	0.53	1.68	<0.01
	9	20359	0.08	0.002	1.1	0.03	0.18	<0.01
iii	10	20360	0.92	0.027	73.6	2.15	3.30	<0.01
WE:	11	20361	0.20	0.006	7.9	0.23	1.10	<0.01
	12	20362	0.10	0.003	3.9	0.11	0.40	<0.01
ý.	13	20363	0.42	0.012	8.9	0.26	0.85	<0.01
	14	20364	0.10	0.003	0.9	0.03	0.11	<0.01
	15	20365	0.05	0.001	0.8	0.02	0.06	<0.01
iii.	16	20366	0.05	0.001	0.2	0.01	0.01	<0.01
	17	20367	0.10	0.003	1.5	0.04	0.42	<0.01
*	18	20368	0.06	0.002	0.1	0.00	0.01	<0.01
	19	20369	0.11	0.003	0.1	0.00	0.01	<0.01

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

GWR RESOURCES INC. AK 2001-118

20-Jun-01

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Mo (%)
	QC DATA: Resplit:							
	1	20351	0.12	0.003	0.2	0.01	0.01	<0.01
	Repeat:							
-	1	20351	0.11	0.003	0.2	0.01	0.02	<0.01
	10	20360	1.03	0.030	73.9	2.16	3.30	<0.01
	Standard:							
	SU1A		-	-	-	-	0.97	-
	MED-STD		1.68	0.049	-	-	-	-
	GEO-STD		-	-	1.6	0.05	-	-
	PR-1		-	-	-	-	-	0.59

XLS/01

FAX: 250-546-3635 cc: E-mail to Dave Blann

cc: Fax to Scott Berkey @ 250-457-6710

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2001-128

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC V0E 1B0

ATTENTION: IRVIN EISLER

No. of samples received: 24 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: GWR

ET #.	Tag #	Au (g/t)	Au (oz/l)	Ag (9 ^{/t})	Ag (oz/l)	Cu (%)	Mo (%)
1	20370	0.06	0.002	0.2	0.01	0.05	< 0.01
2	20371	0.05	0.001	0.1	<0.01	0.02	<0.01
3	20372	0.11	0.003	0.2	0.01	0.03	<0.01
4	20372A	0.03	0.001	0.1	<0.01	<0.01	<0.01
5	20373	0.04	0.001	0.1	<0.01	<0.01	<0.01
6	20374	0.05	0.001	0.2	0.01	<0.01	<0.01
7	20374A	0.06	0.002	0.5	0.02	0.05	<0.01
8	20375	0.04	0.001	0.3	0.01	0.02	<0.01
9	20376	0.09	0.003	1.5	0.04	0.23	<0.01
10	20376A	0.09	0.003	0.8	0.02	0.11	<0.01
11	20377	0.08	0.002	0.4	0.01	0.06	<0.01
12	20378	0.20	0.006	2.2	0.08	0.23	<0.01
13	20379	0.07	0.002	0.4	0.01	0.04	<0.01
14	20379A	0.13	0.004	0.1	<0.01	0.03	<0.01
15	20380	0.06	0.002	0.4	0.01	0.02	<0.01
16	20381	0.16	0.005	0.4	0.01	0.01	<0.01
17	20382	0.08	0.002	0.2	0.01	<0.01	<0.01
18	20383	0.11	0.003	0.4	0.01	0.03	<0.01
19	20384	0.03	0.001	0.1	<0.01	<0.01	<0.01
20	20385	0.02	0.001	0.2	0.01	0.01	<0.01

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

22-Jun-01

Page 1

GWR RESOURCES INC. AK 2001 - 128

22-Jun-01

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (0/1)	Ag (02/t)	Cu (%)	Mo (%)
21	20386	0.29	0.008	0.4	0.01	0.01	<0.01
22	20387	0.06	0.002	0.9	0.03	0.03	<0.01
23	20388	0,04	0.001	0.3	0.01	0.03	<0.01
24	20389	0.30	0.009	6.1	0.18	1.38	<0.01
QC DATA:	i.				â		
Resplit:	00030	0.07	0.002	0.2	0.01	0.05	<0.01
1	20370	0.07	0.002	Q. di	U. U	M-M-M	A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A A
Repeat:							
1	20370	0.06	0.002	0.3	0.01	0.05	<0.01
10	20376A	0.10	0.003	0.8	0.02	0.11	<0.01
Standard: MED-STD SU1A		1.82	0.053	• *	*	0.96	微
MPta		100	*	1.6	0.05	*	*

XLS/01

L

1

FAX: 250-545-3535

oc: E-mail to Dave Blenn oc: Fax to Scott Berkey @ 250-457-6710 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2001-150

GWR RES BOX 545 ARMSTRO V0E 1B0	OURCES ING. NG, BC		6-Jul-01
ATTENTIO	N: IRVIN EISLER		
Sample typ	oles received: 31 e: Core None Given		
Shipment I	II: None Given ibmitted by: Dave Blann		
ET #.	Tag #	Cu (%)	
2 25	20391 20414	0.45 0.26	

XLS/01 FAX: 250-546-3535 cc: E-mail to Dave Blann cc: Fax to Scott Berkey @ 250-457-6710

1 Line

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

5-Jui-01

ECO-TECH LABORATORIES LTD. 10041 Dailes Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2001-150

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 180

ATTENTION: IRVIN EISLER

No. of samples received: 31 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: Dave Blann

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Aa	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Π%	U	٧	W	Y	Zn
	20390	25	1.0	0.94	<5	15	<5	1.25	2	8	44	1567	2.75	<10	0.42	544	<1	0.06	3	900	4	<5	<20	30	0.07	<10	48	<10	1	71
1				1.08	<5	10	<5	1.29	-	9	58	4315		<10	0.43	481	1	0.08	2	770	4	<5	<20	30	0.07	<1D	44	<10	<1	80
2	20391	75	2.8						<u> </u>	7	44	1488		<10	0.48	457	2	0.06	3	900	10	<5	<20	31	0.07	<10	44	<10	2	47
3	20392	30	0.6	0.82	2	10	<5	1.28		,				<10	0.58	455	<1	0.06	2	880	6	<5	<20	55	0.06	<10	34	<10	1	48
4	20393	30	0.4	1.05	₹5	10	<5	1.30	<1	- 1	40	1339			-		-	0.06	5	930	Ā	<5	<20	69	0.06	<10	32	<10	2	54
5	20394	10	<0.2	1.08	<5	10	<5	1.37	<1	8	50	110	2.23	<10	0.65	525	3	0.00	4	230	-		-2.5	~~	0.00	- • •			-	• •
																	- 4	0.00	~	080	•	<5	-<20	78	0.08	<10	36	<10	~	84
6	20395	15	<0.2	1.15	~5	20	<5	1.13	<1	8	52	17	2.39	<10	0.72	551	<1	0.06	2	960	4	-			0.03	<10	35	<10	÷	58
7	20395	<5	<0.2	1.05	-5	15	<5	1.21	<1	8	51	30	2.33	<10	0.64	524	1	0.06	3	960	9	<5	+20	77					2	159
8	20397	85	5.4	0.99	10	15	<5	1.49	50	11	42	1824	2.50	<10	0.56	769	2	0.07	3	980	152	<5	<20	45	0.10	<10	46	<10	<1	
	20398	35	<0.2	0.88	*5	15	<5	1.31	1	11	39	125	2.59	<10	0.52	599	2	0.07	3	1120	18	<5	<2Ū	38	0.10	<10	48	<10	3	78
10	20399	30	0.6	1.09	10	20	<5	1.87	11	19	31	214	3.56	<10	0.79	949	5	0.05	- 4	1510	58	<5	-20	44	0.11	<10	73	<10	<1	256
					, -																									
11	20400	20	<0.2	2.14	10	125	<5	1.45	<1	28	25	123	4.58	<10	1.92	1315	2	0.06	5	2290	6	<5	<20	63	0.17	<10	142	<10	<1	160
-	20401	20	<0.2	1.81	10	135	<5	1.42	•	25	29	60	4.33	<10	1.67	1124	2	0.05	5	2360	6	<5	<20	62	0.16	<10	139	<10	<1	139
12		_		1.99	10	205	<5	1.30	<1	27	24	55	4.76	<10	1.98	1121	<1	0.05	3	2560	4	<5	<20	67	0.17	<10	159	<10	≺1	1 5 5
13	20402	20	<0.2				<5	2.13	<1	25	26	~	4.02	<10	1.54	912	<1	0.04	3	2470	4	<5	<20	90	0.13	<10	126	<10	<1	93
14	20403	15	<0.2	1.72	10	45	-					404	4.56	<10	1.89	1168	5	0.05	ą	2640	12	<5	<20	95	0.20	<10	142	<10	3	130
15	20404	10	0.4	2.22	10	70	<5	1.75	<1	28	18	464	4.50	- 10	1.05	1100	-	0.00	-			-			- · - ·				-	
					_		-					~ .		-10	0.06	840	-	0.05	E	1230	e	<5	<20	57	0.08	<10	63	<10	5	100
16	20405	10	<0.2		<5	15	<5	1.81	<1	12	43	54	2.92	<10	0.96		~ ~ ~			2010	ž	<5	<20	77	0.15	<10	108	<10	1	153
17	20406	20	<0.2	1.65	10	30	<5	1.50	<1	21	21	76	3.70		1.39	1225	<1	0.05	2	_		-	<20	93	0.18	<10	154	<10	<1	123
18	20407	10	<0.2	2.35	15	200	<\$	1.76	<1	28	16	147	4.79	<10	2.08	1142	1	0.06	5	2460		<5		-					~ 1	
19	20408	20	0.4	2.30	10	65	<\$	2.05	1	27	12	445	4.66	<10	1.96	1216	<1	0.05	3	2550	10	<5	<20	104	0.20	<10	148	<10	z	143
20	20409	5	<0.2	1,95	10	25	<5	3.48	з	24	16	182	4,49	<10	1.67	1397	1	0.05	3	2150	12	<5	<20	87	0.14	<10	124	<10	4	213
4.0	20.100	-					-	-	-																					

ICP CERTIFICATE OF ANALYSIS AK 2001-150

Et #.	Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	V	<u>w</u>	<u> </u>	Zn
	20410	10	<0.2	1.24	5	10	<5	3.46	<1	19	20	204	3.40	<10	0.96	1086	4	0.04	3	1950	6	<5	<20	95	0.11	<10	96	<10	2	73
21	20410	15	<0.2	1.75	<5	50	<5	3.02	<1	20	21	179	4.05	<10	1.44	1033	2	0.05	4	2000	8	<5	<20	79	0.12	<10	120	<10	3	96
22	20412	25	<0.2	2.99	15	65	<5	2.86	<1	27	15	96	4,74	<10	2.16	1215	<1	0.05	4	2620	16	<5	<20	152	0.15	<10	148	<10	<1	123
23	20412	25	<0.2	2.10	15	50	<5	1.97	<1	27	20	127	4.24	<10	1.89	1005	<1	0.04	4	2590	4	<5	<20	149	0.13	<10	135	<10	<1	86
24	_		7.8	2.21	15	35	<5	3,85	1	25	13	2531	4.49	<10	2.19	1311	4	0.05	З	2200	8	<\$	<20	127	0.12	<10	144	<10	4	97
25	20414	50	1.0	2.21	10	30		0.00	•																					
			4.0	0.91	<5	10	<5	2.65	<1	6	24	1368	2.65	<10	0.68	780	<1	0.05	2	940	4	<5	<20	68	0.02	<10	44	<10	6	86
26	20415	30	4.2		_		<5	3.01		15	17	1068	3.53	<10	0.97	1083	<1	0.05	4	1620	10	<5	<20	85	0.07	<10	84	<10	5	111
27	20416	25	1.2	1.31	10	15	<5	2.87	ż	30	12	721	4,90	<10	2.21	1804	1	0.05	3	2580	10	<5	<20	177	0 13	<10	163	<10	<1	149
28	20417	25	0.8	2.44	15	55	-	2.95	<1	29	18	475	5.21	-10	2.02	1115	<1	0.05	4	2330	6	<5	<20	251	D.15	<10	173	<10	<1	72
29	20418	30	0.4	2.38	10	100	<5		•	-	22		5.45	<10	2.03	1194	<1	0.08	Á	2380	4	<5	<20	211	0.16	<10	184	<10	<1	72
30	20419	×5	<0.2	2.23	5	130	<5	2.53	<1	30 30	23	40 26	4,71	<10		1176	<1	0.05	7	2350	6	<5	<20	188	0.14	<10	157	<10	<1	82
31	20420	5	<0.2	1.99	10	120	<5	2.10	<1	30	23	29	4.7 4		1.471	1174	•	0.22	•											
<u>c da</u> t/	<u>A:</u>																													
Resplit.	,																													75
1	20390	25	1.0	0.91	10	10	<\$	1.26	1	8	43	1537	2.78	<10	0.41	504	<1	0.06	3	950	12	-5	≪20	25	0.07	<10	47	<10	۲>	75
Repea	it:																		-	040		-5	<20	28	0.07	<10	45	<10	,	72
1	20390	25	1.0	0.94	<5	10	<5	1.26	1	8	44	1541	2.77	<10	••••	500	<1	0.07	Z	910	4	<5		47	0.07	<10	75	<10	<1	267
10	20399	30	0.6	1.11	10	25	<5	1.93	11	20	33	214	3.98	<10		980	5	0.06	4	1550	60	<5	<20 <20		-	<10	150	<10	2	146
19	20408	15	0.4	2.31	20	85	<5	2.07	₹1	27	13	442	4.72	<10	1.96	1224	<1	0.06	4	2570	10	<5	<20	106	0.20	- 10	150	- 10	2	1-40
Stand	ard:		-										4						25	480	20	۰F	<20	65	0.11	<10	74	<10	4	77
GEO'C		120	1.2	1.7 6	55	150	<5	1.63	<1	19	56	90	3.68	<10	0.96	693	<1	0.02	25	680	20	<5	~20	05	0.11	-10		- 10	-	

FP/kk df/150 XLS/01 FAX: 250-546-3635 GWR co: E-meil to Dave Blann cc: Fax to Scott Berkey @ 250-457-6710

GWR RESOURCES INC.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

8-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2000-101

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 180

ATTENTION: IRVIN EISLER

No. at samples received: 13 Sample type: Rock Project #: None Given Shipment #: None Given Samples submitted by: None Given

Values in ppm unless otherwise reported

Et #.	Tag #	Δa	Ai %	As	Ba	Bi	Ce %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	5b	5n	<u>8</u> r	Ti %	U	V	W	Y	Zn
EL .			0.91	5 5	25		D.97	7	8		- 10000	2.26	<10	0 37	677	<1	0.06	<1	800	6	<5	<20	31	0.09	<10	45	<10	4	73
1	76182			-0		<5	1.35	5	31	31	542	5.04	<10	1.62	1017	3	0.05	5	2870	16	<5	<20	89	0.17	<10	136	<10	<1	103
2	76183		1.79	5	45	-		2			-	4 60	<10	0.80	538	-	0.06		2410	8	<5	<20	59	D.13	<10	131	<10	<1	41
3	76184		1 14	<5	35	<5	1.24		17	40	605						0.03	-	2510	16	<5	<20	66	0.10	<10	144	<10	<1	128
4	76185	20	1.54	<5	55	20	3.75	4	24	43	1569	5.38	<10		2518	1					-	<20	372	0 27	< 10	145	<10	28	73
5	76186	<0.2	2.76	<5	200	<5	2.41	2	27	18	83	4.98	30	0.55	1008	1	0.29	11	3630	22	<5	¢20	312	021	~ 10	140	-10	40	
	70407	<0.2	2.04	10	55	<5	1.47	2	30	19	309	5.08	<10	1.72	706	<1	0.06	2	3360	18	<5	<20	74	0.16	<10	141	<10	<1	55
6	76187			. –	70	<5	1.46	5	28	26	239	4.38	<10		409	1	0.08	6	2830	12	<5	<20	58	0.18	<10	164	<10	2	63
7	76188		1 32	15	. –	-		2	35	23	340			2.11	1059		0.03	-	3410	24	<5	<20	133	0.16	<10	130	<10	<1	136
8	76189		2.36	10	50	<5	1 27	2	• •					_			0.03		2550	26	<5	<20	82	D 13	<10	134	<10	<1	278
9	76190	<0.2	2.35	15	50	<5		2	35	25	157		<10						2990	28	<5	<20	287		<10	207	<10	3	255
10	76191	0.2	3.07	5	75	<5	3.81	1	27	19	179	5,16	< 10	1.94	2217	~)	0.17	4	2990	20	~	-20	201	0.10	- 10	201	10	•	
11 12	76192 76193	3.2 ≤0 2	2.16 1.19	10 20	75 15	10 <5		2 2	30 20	19 25		2.31	<10 <10	0.97	2112 566	1	0.06	6	3090 3170	28 14	<5 <5	<20 <20 <20	115 167 80	0 14 0 13 0 12	<10 <10 <10	171 90 150	<10 <10 <10	6 12 2	296 67 43
13	5-31-01-1	<0.2	0.87	<5	40	<5	1.29	2	16	30	596	4.53	<10	0.63	355	<1	0.06	4	2330	10	5	~20	00	0.12	- 14		- 10	-	-0

1	8-Jun-01			ICP CERTIFICATE OF ANALYSIS AK 2000-101																		G	WR R	ESOUF	CES IN	IC.			
Et #.	Tag #	Ag	AI %	As	Ba _	BI	Ca %	Cd	<u></u>	Cr	Cu	Fe %	<u>_ La (</u>	Mg %	Mn	Мо	Na %	Ni	<u>P</u>	РЬ	\$b	<u>8n</u>	\$r	TI %	υ	v	<u></u>	<u> </u>	Zn
<u>oc da</u> 1	TA:																												
Resplit: 1	76182	>30	0 88	10	20	70	0.98	1	8	44 >	10000	2 25	<10	0.35	655	<1	0.06	3	920	6	<5	<20	27	0.09	<10	43	<10	3	7 7
Repeat: 1	; 76182	>30	0.87	<5	20	70	0.97	1	8	42 >	10000	2 25	<10	0.35	668	<1	0.06	2	9 00	10	<5	<20	27	0.09	< 10	43	<10	3	77
Standa GEO'00		1.2	1 71	50	140	<5	1.61	3	19	52	89	3.70	<10	0 95	698	<1	0 02	26	810	24	<5	<20	56	0.11	<10	72	<10	3	77

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/102 XLS/01 FAX: 250-546-3635 GWR cc: E-mail to Dave Blann cc: Fax to Scatt Berkey @ 250-457-5710 A101593

rom ACM	IE ANA	LYTICAL	LABOR	ATOR	IES LT	D. 852	E. HAS	TINGS	ST. VA	NCOU	VER B	V6A	TROP	HUNE	004)25	3-3150	FAAIO	04)255	. 11 10 6	1034	1501		<u>'</u>			1									
O GWR R							l								L											}		1							
cme file #	A1015	93 Rece	eived: J	UN 72	2001 *	9 san	nples in	this dis								<u> </u>	6		6.		La	Cr	Ma	Ba	Ti	8	AL	Na	ĸ	w	Âu**	Pt**	Pd**	Rh**	Cur
LEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ça	P W	ppm	ppm		ppm	- 94	ppm		96	%	ppm	ppb	ppb	ppb	ppb	%
AMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	70	70	ppm	ppin	0.94	- 141	0.17	10	1.96	011	0.64	< 2	25	8	13	< 5	0.1
76194	8	941	37	239	2	5	16	1980	5.83	9	< 8	< 2	< 2	98	5.2	< 3	< 3	248	4.03	0.25	3	8		41				0.00	0.64				10		0.01
76195	2	72	6	131	<.3	4	15	979	3.42	9	< 8	<2	< 2	92	0.4	< 3	< 3	92	1.43	0.23	2	2	1.33	62	0.17	4	1.78	0.08					-10	< 5	1.17
76196	2	11587	ä	114	22.1	1 2	5	865	3.05	5	< 8	< 2	< 2	53	1.7	< 3	< 3	53	0.78	0.09	4	17	0.74	27	0.11	6	1.25	0.1	0.32	3	12	<2	< <u>2</u>		
	2			95	64.5		Ě	597	2.37	6	< 8	<2	<2	36	0.4	3	< 3	44	1.12	0.1	3	7	0.48	20	0.1	5	1.16	0.09	0.32	3	222	< 2	<2	< 5	1.92
76197	1	19829	< 3							- v	< 8	<2	1.2	23	0.6	< 3	< 3	44	0.48	0.1	4	13	0.81	19	0.06	5	1.15	0.06	0.25	2	85	< 2	2	< 5	0.94
76198	2	9286	9	147	16.5	2	6	776	2.93	2		14	<2		4.7	<3	< 3	44	0.53	0.09	4	5	0.73	17	0.07	4	1.19	0.08	0.37	3	99	< 2	5	< 5	1.08
76199	2	10503	5	213	30.6	2	6	686	2.68	3	< 8	<2		28	1.1	— — —			0.00	0.05		18	0.66	21	0.08	À	1	0.08	0.2	3	7	<2	< 2	< 5	0.21
76200	2	2051	4	117	5.9	4	7	778	3.04	6	< 8	< 2	< 2	45	0.3	< 3	<3	49			-	10			0.08		0.83	0.08			2	<2	5	< 5	0.02
76201	2	200	< 3	81	<.3	3	4	730	2.32	4	< 8	< 2	<2	32	<.2	< 3	< 3	42	1.3	0.09	4	4	0.34	21		4					<2				0.02
RE 76201	1 7	205	5	82	<.3	3	4	736	2.32	3	< 8	< 2	< 2	32	<.2	< 3	< 3	42	1.3	0.09	4	6	0.34	21	0.08	3	0.83	0.08	0.19			170	4000		0.84
STANDAR	26	66	33	173	-	38	1 11	742	3.47	59	16	<2	19	28	247	13	22	75	0.56	0.09	17	161	0.61	147	0.09	21	1.82	0.04	0.16	20	495	4/8	486	10	10.00

.

CERTIFICATE OF ANALYSIS AK 2001-101

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC V0E 1B0

ATTENTION: IRVIN EISLER

No. of samples received: 13

Sample type: Rock

Project #: None Given

Shipment #: None Given

Samples submitted by: None Given

		Au	Pd	Pt	
ET #.	Tag #	(ppb)	(ppb)	(ppb)	
1	76182	95	<5	<5	
2	76183	25	<5	<5	
3	76184	130	<5	<5	
4	76185	25	<5	<5	
5	76186	15	<5	<5	
6	76187	50	<5	<5	
7	76188	25	<5	<5	
8	76189	15	<5	<5	
9	76190	15	<5	<5	
10	76191	10	<5	<5	
11	76192	170	<5	<5	
12	76193	130	<5	<5	
13	5-31-01-1	120	<5	<5	
<u>QC D</u>	ATA;				
Respi	lit:				
R/S 1	76182	200	<5	<5	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

8-Jun-01

XLS/01

.

r

.

.

CERTIFICATE OF ASSAY AK 2000-101

٣

۲ ۲

.

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 1B0			8-Jun-01
ATTENTION: IRVIN EISLER No. of samples received: 13 Sample type: Rock Project #: None Given Shipment #: None Given Samples submitted by: None Given			
. ET #. Tag #	Ag (g/t)	Ag (oz/t)	Cu (%)
1 76182 <u>QC DATA:</u>	50.70	- 43	1.14
<i>Standard:</i> MP1a	70.20	2.05	1.44
XLS/00 FAX: 250-546-3635 cc: E-mail to Dave Blann cc: Fax to Scott Berkey @ 250-457-6710	Fr	CO-TECH LA ank J. Pezzo C. Certified A	

ICP CERTIFICATE OF ANALYSIS AK 2001-151

. .

, *, ,* , ,

× -

• r

5-Jul-01 ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

1 N

*

7

1 3 7

***** *

N N

1

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 1B0

ATTENTION: IRVIN EISLER

3 7 8

No of samples received. 12 Sample type. Core Project #: None Given Shipment #: None Given Samples submitted by: Dave Blarin

Values in ppm unless otherwise reported

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	_Sb	Sn	Sr	Ti %	U	۷	W	Y	Żn
1	TAM 01 DR1		< 0.2	1.62	<5	45	<5	1.61	<1	26	69	13	2.86	<10	1.50	658	2	0.05	4	2740	28	<5	<20	129	0.20	<10	116	<10	10	65
2	TAM 01 DR2	>1000	6.4	1 78	15	80	<5	1 53	1	32	40	1773	3 49	<10	1.24	937	3	0.05	5	2590	18	<5	<20	126	0 15	<10	100	<10	1	66
3	TAM 01 DR3	20	<0.2	1.84	10	35	<5	1.59	<1	17	31	- 36	3.73	<10	1.38	715	З	0.04	6	2620	10	<5	<20	169	0.19	< 10	103	<10	4	89
4	DB6 14-01-1	20	<0.2	0.63	5	Z5	<5	0.99	<1	9	47	244	2.53	<10	0.21	533	з	0.06	3	1000	8	<5	<20	38	0 11	<10	45	<10	6	53
5	DB6 14-01-2	270	12	1 21	20	50	<5	1 13	<1	14	38	1153	2.30	<10	0.98	821	3	0 09	5	2400	14	<5	<20	63	013	<10	79	<10	13	96
6	DB6 14-01-3	30	<0 2	1.41	15	80	<5	1.18	<1	16	25	38	4.18	<10	0.97	780	<1	0.07	8	2190	10	<5	<20	72	0.12	<10	127	<10	<1	-55
7	DB6 15-01-1	45	08	0 28	25	35	<5	1 17	<1	7	35	1092	1.47	<10	0.03	785	4	0.05	3	840	8	<5	<20	15	<0.01	<10	49	<10	3	78
8	DBR6 24-01-1	25	<0.2	2.81	-5	260	<5	2 33	< 1	24	107	144	2 76	<10	1.62	433	<1	0.22	51	1230	10	<5	<20	171	0.16	<10	78	<10	5	44
9	DBR6 24-01-2	40	124	1 38	<5	40	<5	1.16	1	10	51	3269	2.97	<10	0 49	796	2	0 11	4	950	8	<5	<20	65	0.10	<10	54	<10	2	81
10	DBR6 25-01-1	40	1.8	2 44	15	80	<5	2 59	4	47	18	994	5 59	<10	1.30	1584	<1	0.13	3	2590	14	<5	<20	157	0 16	<10	170	<10	<1	230
11	DBR6 25-01-2	10	0.2	1.37	<5	40	<5	0.53	<1	10	37	39	3.25	<10	0 67	958	3	0.05	5	1010	12	<5	<20	32	0.05	< 10	58	<10	<1	134
12	DBR6 25-01-3	455	>30	1 28	10	35	•	0.74	З	12	52	>10000	3 26	<10	0.41	430	< 1	0.10	4	*	•	•	+	32	<0.01	•	*	٠	<1	68

NOTE: * = Unable to report due to massive copper interference

QC DATA: Resplit: 1 TAM 01 DR1	20 <0.2 1.62	5 35	<5 162	<1 26	58	17 2 83	<10 1.51	665	2 0.05	4 2840	18	<5 <20	123 819 <10 115 <10	10 66
Repeat: 1 TAM 01 DR1	20 <0.2 1.58	<5 35	<5 1.57	<1 26	67	16 277	<10 1.48	655	2 0.05	5 2810	28	<5 <20	118 018 <10 112 <10	10 66
Standard: GEO'01	1.4 179	55 150	<5 1.68	<1 20	57	91 373	<10 097	708	<1 0.02	26 740	20	<5 <20	65 011 <1 0 75 <10	4 79

0f/150 / XLS/D1 FAX: 250-546-3635 GWR cc: E-meli to Dave Blann

ce: Fex to Scott Berkey @ 250-457-6710

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A Sc.T B.C. Certified Assayer

Page 1

CERTIFICATE OF ASSAY AK 2001-151

Åи

(9/1)

1.10

*

.....

		1.000	
ý.		-	2000000
	GWR RESO	URCES I	NC.
	BOX 545 ARMSTRON	G BC	
	VOE 1B0		
	ATTENTION	: IRVIN E	ISLER
	No. of sample	es received	t: 12
	Sample type:	Core	
mç	Project #: 1		
#F	Shipment #: Samples sub	mitted by:	Dave Blann
	and a state of the second second second second second second second second second second second second second s		
		Tag #	
inia.		TAM 01 DF 0BR6 24-0	
		08R6 25-0	
	1.6 3		· * '7#F
inte-			
997	OC DATA:		
aş.	QC DATA:		

3

Repeat 2	TAM 01 DR2	1,13	0.033	<i>4</i> 6
Standard: SU1a			*	0.97

FP/kk XLS/01 FAX: 250-546-3635 oz: E-mail to Dave Blank oc: Fax to Scott Barkey @ 250-457-6710 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.So.T. B.C. Certified Assayer

Cu

(%)

0.32

3.46

Au

(oz/t)

0.032

-

....

8-Jul-01

5-Jul-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-152

GWR RESOURCES INC. BOX 545 **ARMSTRONG, BC** V0E 190

ATTENTION: IRVIN EISLER

No. of samples received. 2 Sample type: Soil **Project #: None Given** Shipment **#: None Given** Samples submitted by: Dave Biann

Values in ppm unless otherwise reported

■ 氏素	Tag #	Ag Al%	As	Ba	Bi Ca %	Cd	Ço	Cr	Cu Fe %	_La Mg %	Mh	Mo	Na %	<u>N)</u>	<u>P</u>	_Pb	Sb	<u>Sn</u>	S r_	Ti %	<u>u</u>	<u>v</u> .	W	<u> </u>	<u>Zn</u>
1	223642	Ag Al % <0.2 2.15	<5	130	<5 0.27	<1	13	28	105 2.72	<10 0.44	256	<1	0.02	16	580	6	<5	<20	22	0.11	<10	74	<10	<1	38
2		<0.2 1.94	5	80	<5 0.56	<1	14	17	8 9 3.74	<10 0.49	446	7	0.02	10	490	10	<5	<20	54	0.05	<10	82	<10	<1	146

QC DATA:

Repeat: 1 223642	<0.2 2.15	<5	125	<5	0.27	51	12	27	105	2.72	<10	0 43	255	<1	0.02	15	570	6	<5	<20	20	0.11	<10	75	<10	<1	38
Standard: GEO'01	1.6 1.93	55	155	<5	1.70	<1	20	58	89	3.80	< 10	1.03	727	<1	0.03	26	690	14	<5	<20	72	0.11	<10	80	<10	3	76

FP/kk df/144 XLS/01 FAX: 250-546-3635 GWR cc: E-meil to Dave Blenn

cc. Fax to Scott Barkey @ 250-457-8710

ECO-TECH LABORATORIES LTD. Frank J Pezzotti, A.Sc.T. 8.C. Certified Assayer 8-Jun-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4									ICP CERTIFICATE OF ANALYSIS AK 2000-102											8	GWR RESOURCES INC. BOX 545 ARMSTRONG, BC VOE 1B0								
Fax :2	260-673-57 250-573-45 In ppm uni	57	berwise	report	ieci																	N S P S	o, of s ample roject hipme	samples type: t#: No out#: l	wie Give Nome Gi	ed: 1 en Iven	R ne Given	1	
	Tag #		AI %	As	Ba	BI	Ca %	Cd	Co	Cr		Fe %		Mg %	Min		Na %	NI	Р	Pb	Sb	Sn	_	TI %	U	<u>v</u>	W	<u> </u>	<u>Zn</u> 27
1	223643	<0.2	0.72	<\$	35	<5	0.33	2	8	16	43	1.55	<10	0.28	299	<1	0.02	7	740	6	<5	<20	18	0.07	<10	50	<10	5	21
QC.DA	[A :																												
Repeat: 1	223643	≪0.2	0.73	<5	35	<5	0.34	2	8	16	42	1. 59	<10	0.28	304	<1	0.02	7	760	8	<5	<20	17	0.07	<10	51	<10	4	27
Stander GEO'00			1.72	55	140	-5	1.59	2	19	51	90	3.62	<10	0.96	719	<1	0.02	24	790	24	<5	<20	58	0.10	<10	71	<10	2	73

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

dt/102 XLS/00 FAX: 250-546-3635 GWR cc: E-mail to Dave Blant cc: Fax to Scott Berkey @ 250-457-6710

÷

1

CERTIFICATE OF ANALYSIS AK 2001-102

GWR RESOURCES INC. BOX 545 ARMSTRONG, BC V0E 1B0

L

8-Jun-01

ATTENTION: IRVIN EISLER

No. of samples received: 1 Sample type: Soil **Project #: None Given** Shipment #: None Given Samples submitted by: None Given

ET #. Tag #	Au (ppb)	Pd (ppb)	Pt (ppb)	
1 223643	115	<5	<5	
<u>QC DATA:</u> Repeat:				
1 223643	95	<5	<5	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/01

HISTORY OF EXPLORATION

Ľ

Ľ

E

..... **APPENDIX 2**

TAM Property

Property Operator	Report Author	Report Date	Type of Work	Cost
Coranex Ltd	R.H. Janes, P.Eng.	August, 1967	Geochemical geophysical	n.a.
Stallion Resources Ltd.	Sean P. Butler, B.Sc.	April, 1984	Diamond Drilling	n.a
Liberty Gold Corp.	Glen E. White, P.Eng., White Geophysical Inc.	September, 1988	Geophysical	\$69,375
Liberty Gold Corp.	R.E. Gale, Ph.D., P.Eng., R.E. Gale and Associates Inc.	October, 1988	Property Review	n.a.
Liberty Gold Corp.	Harold M. Jones, P.Eng., Harold M. Jones & Associates Inc.	January, 1990	Property Review	n.a.
Liberty Gold Corp.	Markus B. Seywerd, B.Sc., White Geophysical Inc.	April, 1990	Geophysical and Geochemical	\$138,208
Liberty Gold Corp.	Barry T. Furneaux and Lorne G. Rowan, B.Sc. Euro-Canadian Geological Ltd.	September, 1990	Geophysical, Percussion and Diamond Drilling	\$270,508
Reynolds Geological Ltd.	Paragon Resource Mapping Inc.	July13,14 2001	GPS Claim Survey	\$7,000
G.W.R. Resources Inc.	D.Blann, P.Eng.	August, 2001	Geology, Diamond Drilling	\$47,000

n.a. = not available

SUMMARY OF RESULTS

1967 - Coranex Ltd., Geochemical surveys, minor I.P. surveys, locations poorly known. Asst#1131.

1984 - Sean P. Butler

"A total of six, B.Q. diamond drillholes were done, numbered 1 and 3 to 7, set up number 2 having been located but not used. The total meterage drilled was 312 metres. There was also some cat work done on the road to improve access on the property to the drill site. This work was performed on the Tim 2 claim."

1988 - White Geophysical Inc.

"During the winter of 1988 a program consisting of grid preparation magnetometer and VLF electormagnetic surveys was conducted over the Tim claims.... The surveys were conducted on behalf of Liberty Gold Corp. by White Geophysical Inc. from April 12-22, May 3-27, July 27 – August 5, 12 and September 1, 1988. The purpose of the work was to explore the general area of a large magnetic high and a specific copper showing

that was diamond drilled in 1983 and returned a zone of 10.7 m which assayed 4.6% copper, 1.7 oz/ton silver and a 1.5 m section with 0.119 oz/ton gold.

"Some 120 line kilometers of grid was established and surveyed."

"Correlation of the available data show that the property is traversed by several major fault or shear zones which may possibly be associated with gold and or copper mineralization. The Tim 1 showing which contains the excellent diamond drill results, did not correspond as an electromagnetic conductor. Thus detailed induced polarization work is required."

1988 - R.E. Gale and Associates Inc.

"... My report is based mainly on geological mapping by AMAX done in 1972, with additions to geology based on my interpretation of the new detailed ground magnetic survey by White Geophysical Inc. and my knowledge of the geological factors which control mineralization in the Spout Lake sympositorite intrusive complex."

"The work to date suggests that the main potential for the property is for large low grade Cu-Au-Ag-Mo-W deposits which could be amenable to open pit mining."

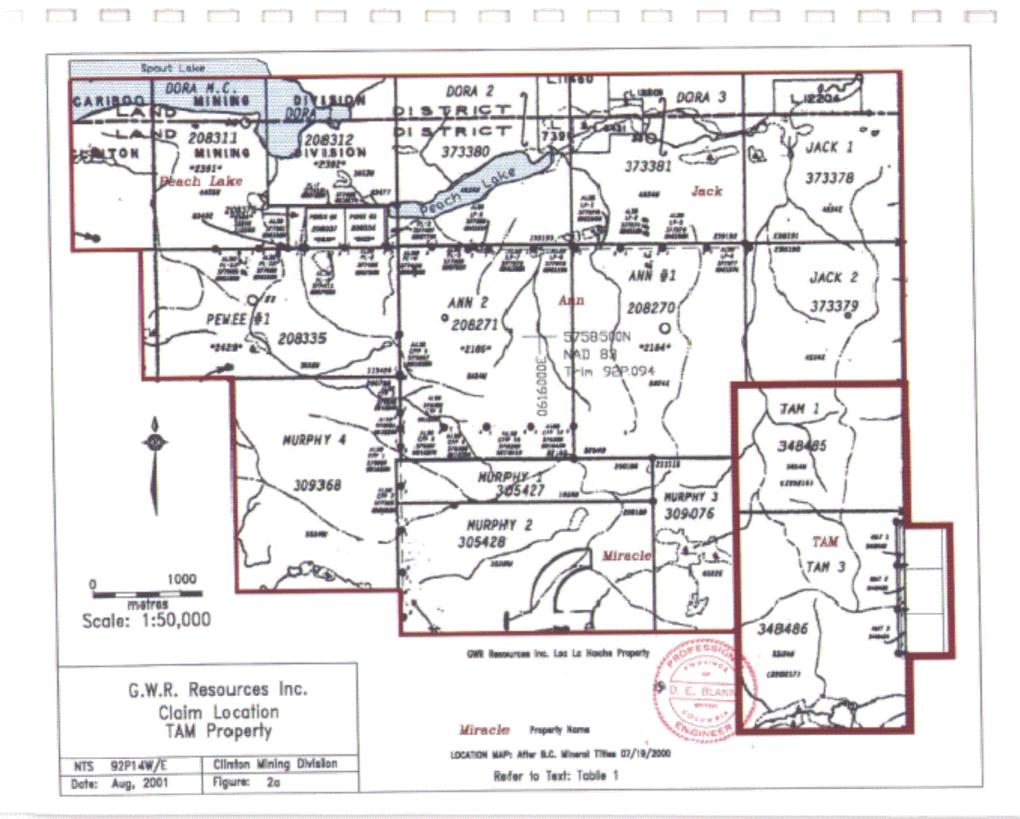
1990 - Harold M. Jones & Associates Inc.

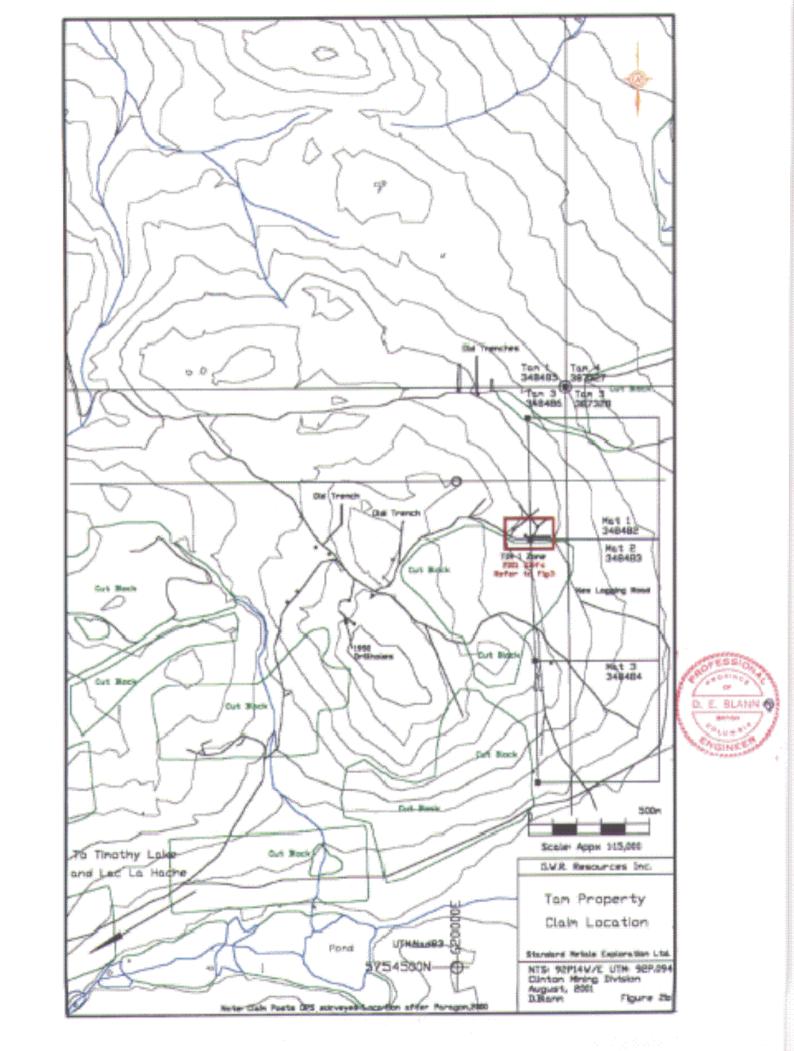
Report was "prepared mostly from a review of literature and from a personal site visit. The data includes the results of a 1989 geochemical and induced polarization survey..."

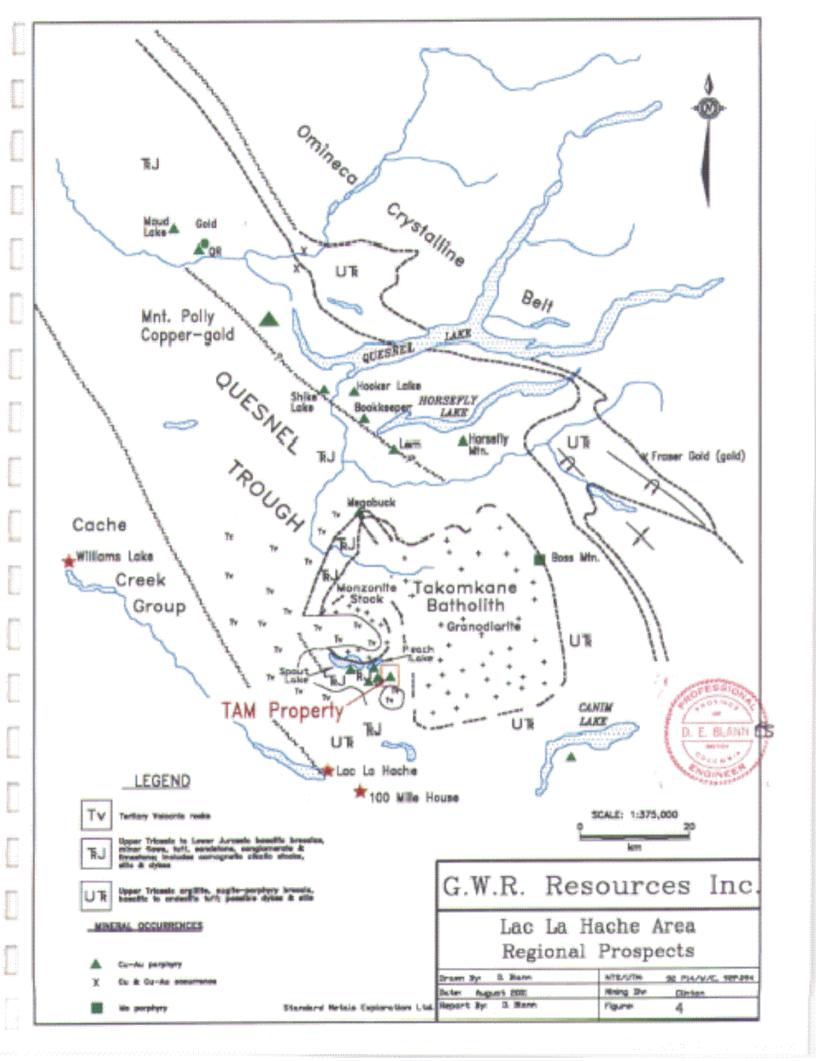
"It is concluded that the Tim claims host significant copper-gold-silver \pm molybdenum and tungsten mineralization in sheared and altered zones on or adjacent to volcanic – alkaline intrusive contacts. Mineralization is associated with a regional, arcurate magnetic anomaly which might reflect a much larger mineralized system. It was also concluded that, since the geology and mineralization on the Tim claims has similarities with the Cariboo Bell and QR deposits, they have the potential for hosting large tonnage, low grade Cu-Au-Ag \pm Mo deposit. Finally, it was concluded that exploration was both warranted and recommended."

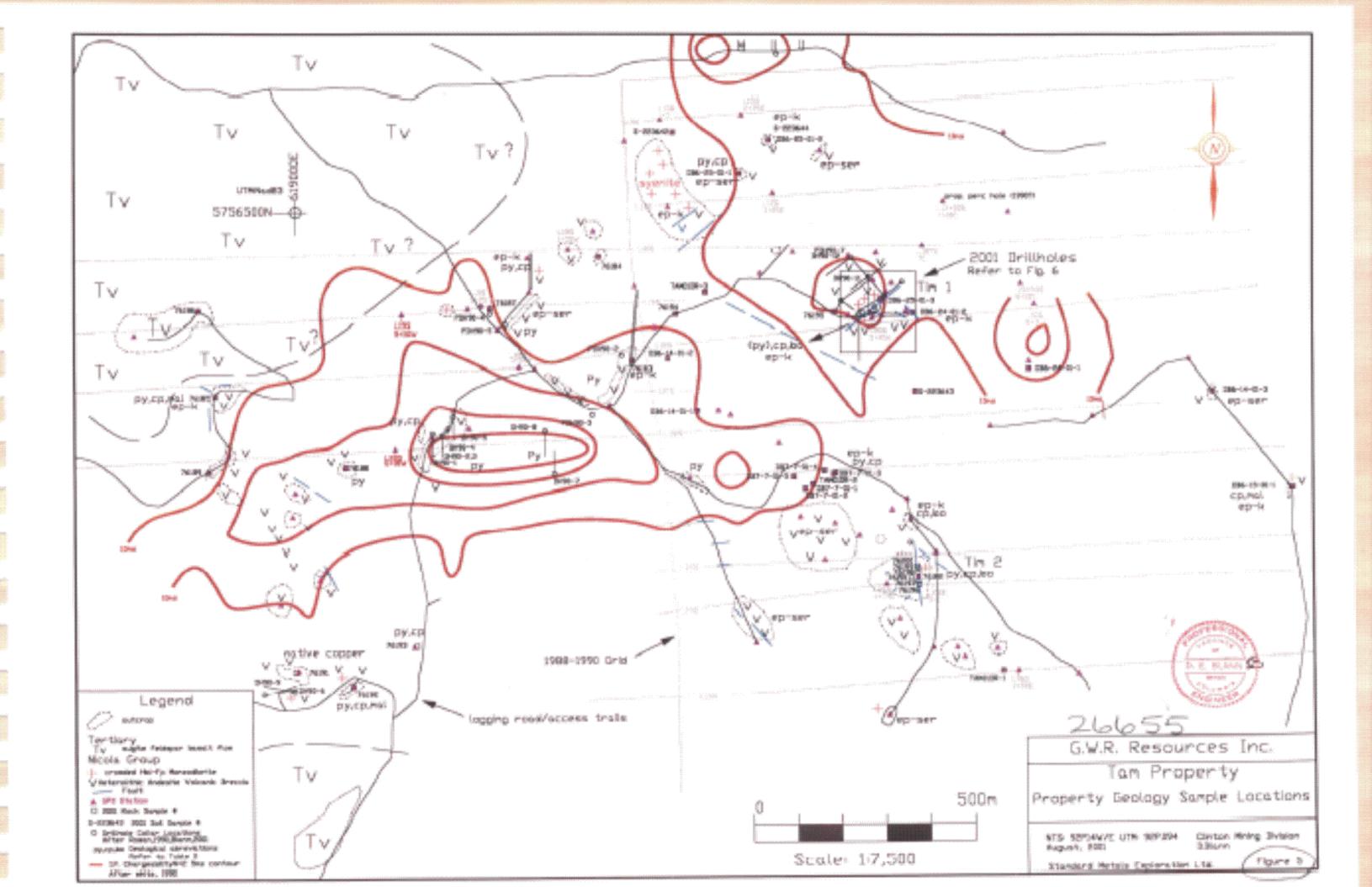
1990 - White Geophysical Inc.

"During the summer of 1989 White Geophysical Inc. conducted a program of soil sampling over the Tim claims near Lac La Hache B.C. The samples were analyzed in the early fall and a program of induced polarization surveying was conducted by Action Mine Services Inc. on the primary targets as defined by the geochemical survey results. In January 1990 White Geophysical Inc. was commissioned by Liberty Gold Corp. to compile, plot and analyze the geophysical and geochemical data"


"... The induced polarization and geochemical surveys have delineated two large anomalous zones which are sourced in sulphides. The known mineralization and soil geochemical survey suggest that a significant portion of these are copper sulphides. Known mineralization and soil geochemical results also suggest that the sulphides host significant precious metals. Due to the large extent of the anomalies a program of trenching and percussion drilling (reverse circulation) should be undertaken to test these anomalies." 1990 - Euro-Canadian Geological Ltd.


Report is a summary of "the June 13 to August 24, 1990, field work program carried out by Euro-Canadian Geological Services Inc. on the Tim mineral claims. This work program was designed following recommendations from Harold M. Jones and Associates Inc. and R.E. Gale and Associates."


"... An exploration program consisting of 17.8 km of induced polarization survey, 736 m of percussion drilling and 1245 m of diamond drilling was carried out. In addition, physical work consisting of road construction, upgrading and trench excavation was carried out. The percussion and diamond drilling was designed to test three separate areas of the property known as the East Zone, Central Zone and Native Copper Zone. These areas were selected for drilling on the basis of their very strong induced polarization survey responses. The drilling indicated a lack of vertical and lateral continuity of geology and/or assays despite the close spacing of drilling." **APPENDIX 3**


FIGURES

