Report on a Geological Mapping and Geochemical Stream Silting Survey

HARRISON LAKE PROPERTY

PD 1-14 & PT 1, 6 & 7 CLAIMS

NEW WESTMINSTER MINING DIVISION

CHILLIWACK AREA

N.T.S. 92H 052 & 062

Longitude 121° 40' W

60000 m E

Latitude 49° 35'

5485000m N

OWNER

606897 BC Ltd.

Ste 1210 675 West Hastings St Vancouver, British Columbia V6B 1N2

Work Performed from August 15, 2000 through June 30, 2001

Report By: L. Stephenson Submitted: September, 2001

GEOLOGICAL SURVEY BRANCH ASSESSMENTS

TABLE OF CONTENTS

 $\left< \right>$

		Page
1.00	Introduction	1
2.00	Location, Access and Description	1
3.00	History	1
4.00	Work Program 4.10 Geological Mapping 4.20 Geochemical Stream Silt Survey	2 2 3
5.00	Conclusions	4
	Exhibit "A" - Statement of Expenditure	13
	Affidavit	15
	Author's Qualifications	16
	Appendix I - Assays	17
	TABLES	
	Table 1 - Mineral Tenure Status Table 2 - Apportionment of Costs to Claims	12 14
	MAPS Map 1 - Location Map PD 1 - 10 & PT 1 Claims Assessment Work 2000 - 2001 Map 2 - Geological Traverses and Silt Sample Location Map 3 - Geological Interpretation Map 3a - Geochemical Results Cu Ni Co Ag PD 11 - 14 & PT 6 & 7 Claims Assessment Work 2000 - 20 Map 4 - Geological Traverses and Silt Sample Location Map 5 - Geological Interpretation Map 5a - Geochemical Results Cu Ni Co Ag	7 8 01

Report on a Geological Mapping and Geochemical Stream Silting Survey

HARRISON LAKE PROPERTY

PD 1-14 AND PT 1, 6 & 7 CLAIMS

NEW WESTMINSTER MINING DIVISION

L. Stephenson

- -

September, 2001

.....**i**

1.00 Introduction

D. Deering and associates staked the 72 units claims in 2000 as the PD 1-14 and the PT 1, 6 & 7 and under took to evaluate and locate the continuation of the B.C. Nickel Mine belt located to the southeast.

The region was an active mining area for copper-nickel base metals from 1959 to 1974 since the 1930's due to the discovery of the B.C. Nickel Mine located southeast of the property. Exploration work has been sporadic since the 1974 closing of the B.C. Nickel Mine, although Giant Mascot did discover several showings throughout the area.

Geological mapping and geochemical stream silt sampling survey was undertaken to establish and evaluate the trend of the ultramafic showings as they relate to the remainder of the claim group. A total of 12 kilometres of road traverses, 7 kilometres of bush traverses and 56 silt samples were taken from the claims. Work was done on every claim in this report and is apportioned in Exhibit "A".

2.00 Location, Access and Description

The PD and PT Claims are located east of Harrison Lake, British Columbia in 2 separate groups of 6 claims with 44 contiguous claim units and 11 claims with 28 contiguous claim units. Access is provided to the claims via the many logging roads off the main Cogburn Creek Road, the North Fork Creek Road, the Settler Creek Road and numerous subsidiary logging roads (Map 1).

The property consists of 72 claims units in 17 claims staked by Mr. D. Deering and associates, in 2000. They are listed in Table 1. The topography is fairly rugged extending from 2900 feet to over 6500 feet in elevation. The lower elevations consist of forested slopes (many areas are clear-cut) giving way at higher elevations to typical high alpine meadows and sparse or drawled timber.

3.0 History

The B.C. Nickel Mine was discovered in 1923 with the main open pit and initial mine development and bulk testing completed in the 1930's. From 1959 to the curtailment of operations in 1974 a total of 4.2 million tonnes of ore was mine and milled with a mill grade of 0.77 % Nickel and 0.34% Copper. Average for the ore pods were 1.19% nickel and 0.46% copper with only minor values of the platinum group minerals "reported.

In 1974/75 Giant Mascot - the successor company to B.C. Nickel Mines - embarked on a limited exploration program of the ultramafic belt to the north and west of the mine area and of the intrusive Spuzzum Diorite. A regional contour soil, stream sediment survey was completed. Access was limited and Giant

Mascot concentrated on the stream sediment anomaly to the west of the mine area defining a resource of 100 million tonnes grading 0.22% Ni and 0.22% Cu. Another zone was located to the north along Settler Creek. Various magnetic high anomalies were not investigated at that time.

Since that time little to no recorded exploration was done on the ultramafic belt. The area has been surveyed by government airborne magnetic survey, which highlights the mine area as a distinct magnetic anomaly. No regional government mapping party has detailed the area. A government regional geochem survey has been completed and the data corresponds favourably within the staked claims.

In the early 2000 activity in the area was generated by the staking of the Cogburn showing to the south of the property. No direct exploration has been recorded on the property.

4.00 Work Program

Two geological road traverses and three silt sampling and geological traverse were conducted along the roads that cross the property, including some side traverses up some of the significant drainages and into areas inaccessible by roads. The traverses are highlighted on Map 1 and involved geological identification of the rock units and sampling general and mineralized outcrops as well as measuring strikes and dips and identifying potential structural trends. The traverses were designed to cover every claim unit of the two post claims and as much of the 4 post claims as possible. As well a helicopter was utilized to inspect inaccessible areas especially in the vicinity of the PT 1 claim where the rugged Settler Mountain is located.

Over 25 rock samples and 56 silt samples were taken from outcrops and drainages on the claims and either on the claim group or draining the claim group, respectively. Forty nine silt samples were assayed for 30 elements by Acme Labs and the results are appended (Appendix I) and sample locations are plotted on Map 2 and Map 4.

Fifteen of the rock samples (Map 3 and Map 5) were cut and polished to help in identifying rock textures and geological features. Some of these were mineralized boulders that are believed to reflect the upper elevations of the claims.

The work amounts of time and sampling are reported in table form as part of Exhibit "A".

4,10 Geological Mapping

The PT 1 and PD 1-10 claims are almost entirely underlain by highly sheared metavolcanics and schist with mafic to felsic composition. The description places them either as part of the Cogburn Schist or Settler Schist with the intrusive Yellow Aster Formation as described by the Geological Survey of Canada (GSC) Open File 2948a. Their sedimentary nature suggesting the Settler Schist Formation but the presence of significant ultramafics sections suggesting the former or part of the Yellow Aster Formation.

The strike of the schistosity as measured along the Settler Creek Road is consistently in the 100° to 140° range with variable dips mainly to the northeast. The upper part of the PD claims along the road and the east part of

the PT claim is mainly metasediments while the lower part is diorite intrusive. The geological mapping is summarized and interpreted on Map 3.

The PD 11 - 14 and PT 6 and 7 Claims are mostly underlain by a metamorphosed intrusive that is loosely classified as part of the Spuzzum Pluton of GSC Open File 2948a. The metasediments are mainly found in the southern part of PT 7 with generally a $350^\circ - 20^\circ$ strike and easterly dip but the contact area of the intrusive marked by a "skarnified" metasediment(?) is closer to an east west strike with a greater predominance of massive mafic to ultramafic portions that are consistent with the Cogburn Schist demarcation.

Sulphide mineralization appears to be ubiquitous with areas of greater concentrations noted and sampled. Coarse grained ultramafic float similar to the host rock that is found in the area of the B.C. Nickel Mine was found in drainages draining higher elevations of the claims and warrants further investigation.

In the cut and polished rocks the coarse grained ultramafic charactor of the rock was revealed. Some of the sulphide mineralization which was mainly pyrrhotite was disseminated pervasively through the rock and in some instances some net texture similar to that located in samples taken from the old B.C. Nickel mine area. The ultramafic nature of the intrusive on the PT 6 and 7 and PD 11 - 14 was revealed in the several samples that were taken and cut and polished from those claims. The fine laminated metasedimentary nature of the schistosed rocks was obvious in the few examples cut and polished from representative outcrops. The geological mapping is summarized and interpreted on Map 5.

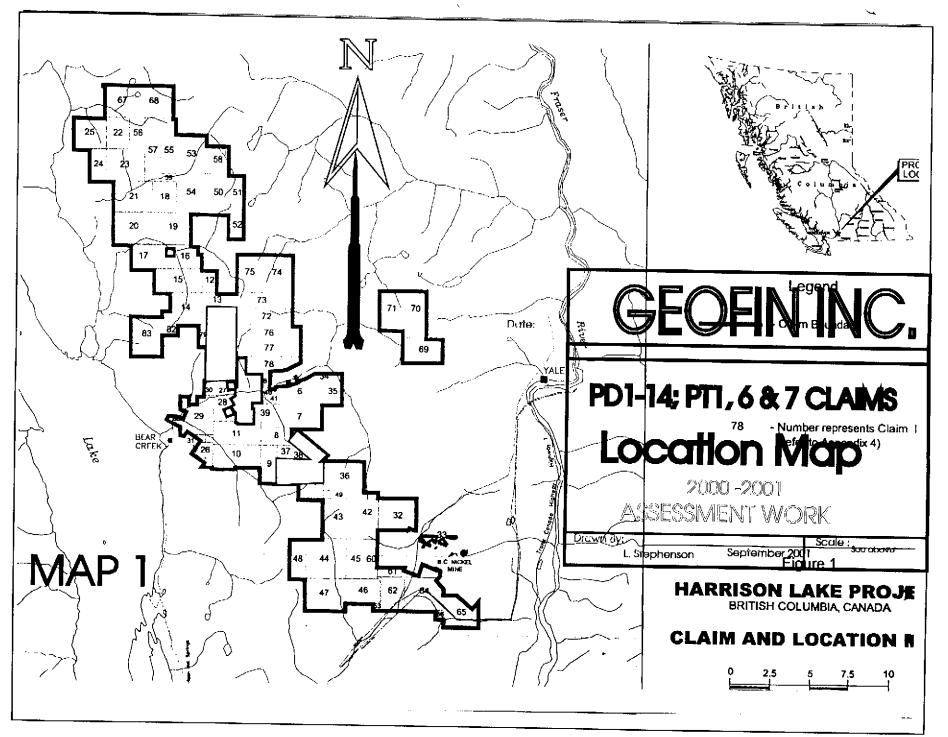
4.10 Geochemical Stream Silt Survey

A total number of 56 stream samples were collected from the claims. Due to financial constraints only 49 samples were analysed. All drainages active or inactive were sampled and locations recorded and marked in the field. Field crew would drive along the road and stop the vehicle on the road at the drainage and then walk to the upside of the road area of the drainage to collect there sample. They would dig in the active or inactive stream bed to obtain a sufficient sample so that enough stream silt or drainage soil would be taken to obtain sufficient sample for analysis. This usually was at least half a standard brown Kraft paper geochem bag full or more.

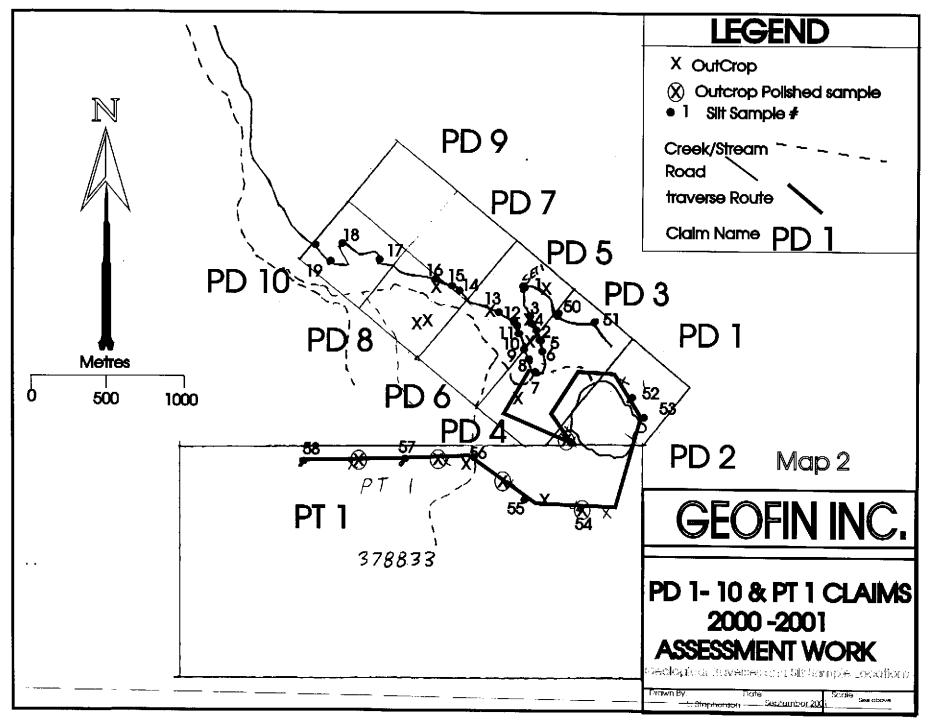
Samples were dried and sent to Acme Analytical Labs. for preparation. Acme would further dry the sample and then sieve it to -80 mesh. A 50 gram sample was then leached with 3 millilitres of 2-2-2 HCL-HNO₃-H₂O at 95° Celsius for one hour, diluted to 10 millilitres and analysed by ICP-ES.

Locations are plotted on Map 2 for the PD-1 - 10 and PT-1 and Map 4 for PD-11 - 14 and PT-6 and 7. Results are appended and plotted on Map 3a for the PD-1 - 10 and PT-1 and Map 5a for PD-11 - 14 and PT-6 and 7. Only the results for Cu (copper), Ni (nickel), Co (cobalt) and Ag (silver) which are consistent with the B.C. Nickel Mine exploration target were plotted.

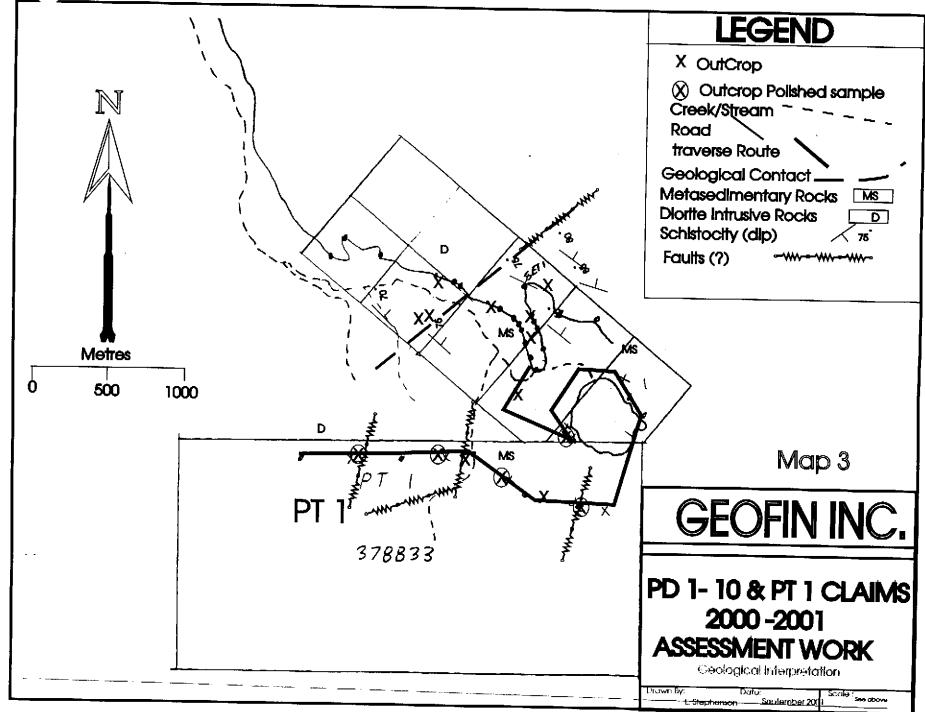
Results for the PD 1- 10 and PT 1 claims reflected the non mineralized diorite and the unmineralized metasediments located on the claims. These results give a good idea of low background for the area.

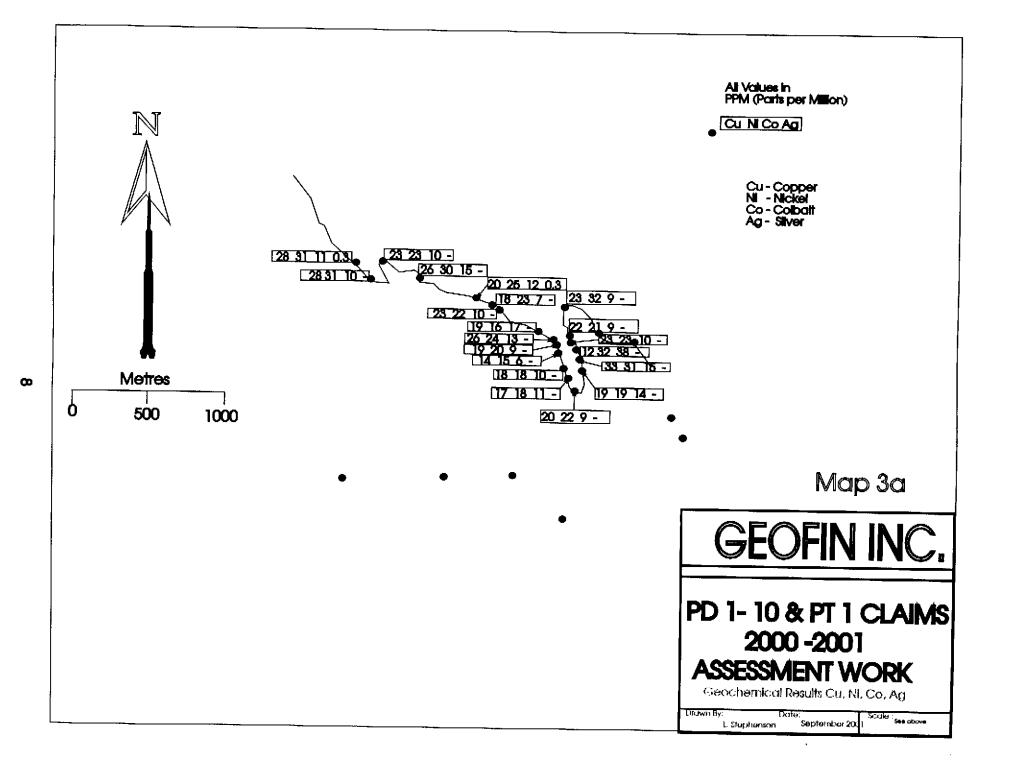

Results for the PD-11 - 14 and PT-6 and 7 claims have delineated two areas of anomalous values. One on the northern most end of the road sampling with values that peaked at 2-3 times background and have indicated additional sampling to the north is warranted and the area in the central part of the road sampling where an altered to talc metasediment/Ultramafic geology was mapped. This association of ultramafic and high nickel values is very favourable to property potential and further work is required.

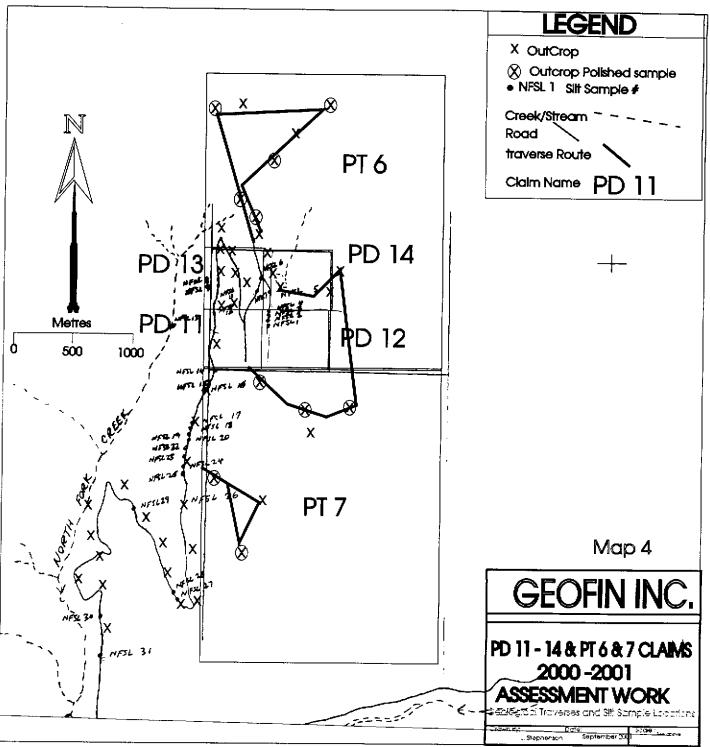
5.00 Conclusions

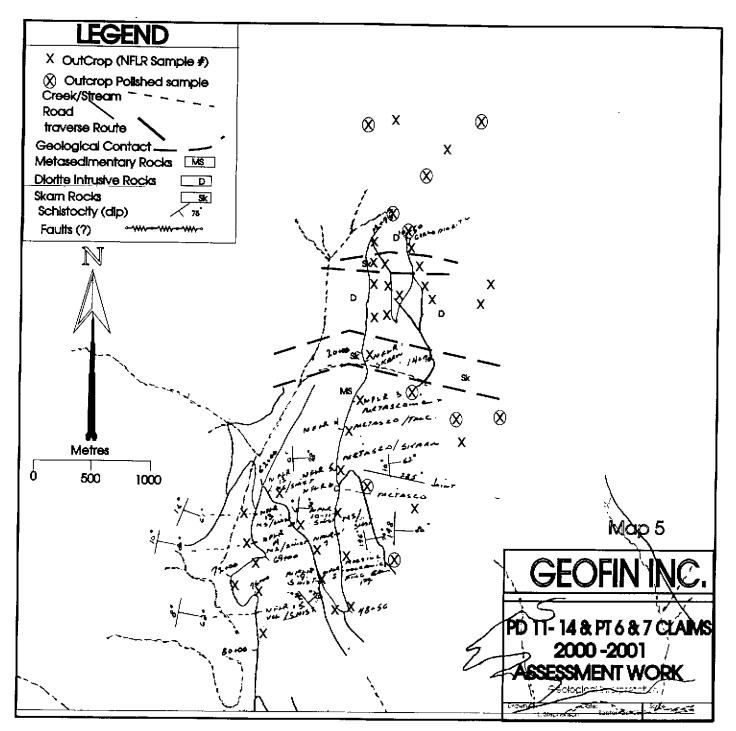

The PT and PD Claims have the continuation of the B.C. Nickel mine hosting schists and related ultramafic rocks, located within its boundaries. As well the property has several anomalous stream silt samples that warrant follow up work.

More detailed surveying to better delineate anomalous zones is recommended to guide future exploration and develop exploration drilling targets effectively.


Further exploration is required evaluate these claims. ther TEPHENSON, B.Sc., M.B.A. P.Eng.


Öì




ð

N

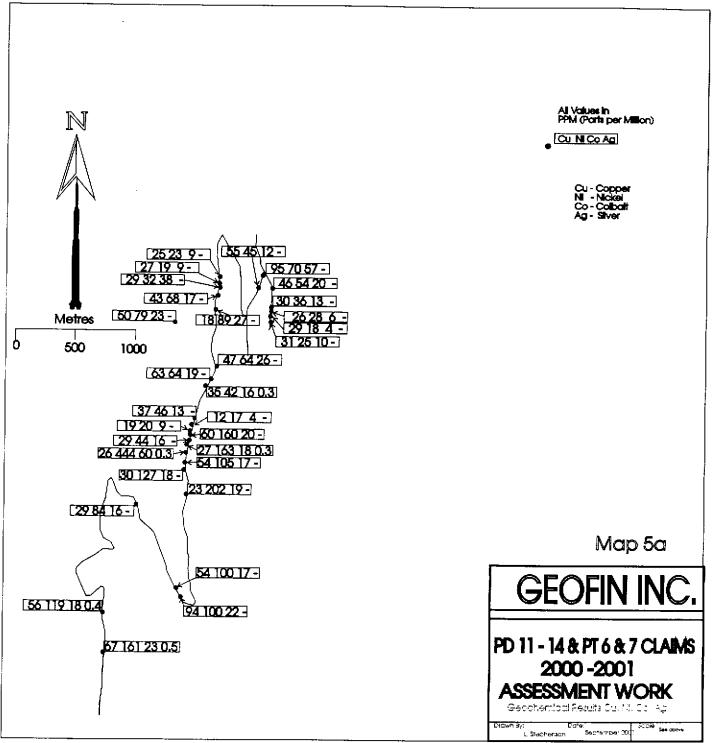


TABLE 1

			1
Claim Name	Mineral Tenure #	Date Staked	Map Sheet
PD 1	378836	1-Jul-01	M092H052
PD 2	378837	1-Jul-01	M092H052
PD 3	378838	1-Jul-01	M092H052
PD 4	378839	1- Jul -01	M092H052
PD 5	378840	1-Jul-01	M092H052
PD 6	378841	1-Jul-01	M092H052
PD 7	378842	1-Jul-01	M092H052
PD 8	378843	1-Jul-01	M092H052
PD 9	378844	1-Jul-01	M092H052
PD 10	378845	1-Jul-01	M092H052
PD 11	378846	1-Jul-01	M092H052
PD 12	378847	3-Jul-01	M092H052
PD 13	378848	3-Jul-01	M092H052
PD 14	378849	3-Jul-01	M092H052
PT 1	378833	1-Jul-01	M092H052
РТ б	378834	10-Jul-01	M092H052 & 62
PT 7	378835	10-Jul-01	M092H052

EXHIBIT "A"

STATEMENT OF EXPENDITURES

on a Geological Mapping and Geochemical Stream Silting Survey HARRISON LAKE PROPERTY PD 1-14 AND PT 1, 6 & 7 CLAIMS NEW WESTMINSTER MINING DIVISION CHILLIWACK AREA

Covering the period of August 15th 2000 to September 26th, 2001

SALARIES:

L. Stephenson - Geologist, P. Eng. Geological Mapping - 4 days @ \$500/Day B. Krause - Geologist, Geological Mapping - 2 days @ \$500/Day Sylvan Pelltier - Geologist, Geological Mapping - 2 days @ \$450/Day L. Stephenson Report writing, Compilation of data - 3 days @ \$500/Day & Map Preparation Total Geology Salaries \$ 5,400 G. Nicholson Geologist -silt sampling 10 days @ \$250/day D. Deering Mining Engineer -silt sampling 6 days @ \$250/day Total Silt Sampling Salaries \$ 4,000 TRANSPORTATION:

2 - 4x4 Pickup; 10 days @ \$85/day *	Ş	850
Fuel, Tire repair \$60/day, \$200 per tire 3 tires lost	Ş	1,200
Food and supplies	\$	1,000
Helicopter	\$	1,300
ASSAYS	S	350

\$ 14,100 STEPHENSON, B.Sc., M.B.A. P.Eng.

TABLE 2

Claim	Geol. Map	# of Silt	Surveying	# of Cut &	Travel/food	TOTAL
Name	(# of Rock	Samples	of road &	Polished	Helicopter,	Expenditure
	Samples)	(\$)	Recon. work	samples	misc.	_
PD 1	\$50 (2)	-	-	1 (\$125)	\$15	\$190
PD 2	\$50 (1)	2 (\$50)	-	-	\$25	\$125
2D 3	\$50 (1)	3 (\$75)	\$50	-	\$50	\$200
PD 4	\$25 (0)	4 (\$100)	\$25	_	\$50	\$225
PD 5	\$25 (0)	3 (\$75)	\$25		\$25	\$150
PD 6	\$75 (3)	5 (\$100)	\$50	-	\$75	\$300
PD 7	\$75 (3)	0	\$25		\$25	\$125
PD 8	\$25 (0)	3 (\$75)	\$25		\$25	\$150
PD 9	S50 (0)	1 (\$25)	\$75	-	\$50	\$200
PD 10	-	3 (\$75)	_	_	\$25	\$100
PD 11	\$100 (6)	4 (\$100)	\$100		\$50	\$350
PD 12	\$50 (2)	1 (\$25)	\$25	i	\$25	\$125
FD 13	\$100 (4)	_	\$50		\$50	\$200
PD 14	\$50 (2)	3 (\$75)	\$15		\$15	\$155
PT 1	\$500 (10)	5 (\$500)	\$100	4 (\$500)	\$900	\$2500
PT 6	\$475 (6)	17 (\$500)	\$400	5 (\$625)	\$200	\$2200
PT 7	\$950 (8)	2 (\$50)	\$100	5 (\$625)	\$900	\$2650
TOTAL\$	\$2650 (48)	56(\$1825)	\$1065	15 (\$1875)	\$2505	\$9920

Apportionment of Costs to Claims

Not apportioned is the map preparation and report writing, tire repair, addition fuel rental of 4-Trax and motorcycle.

IN THE MATTER OF THE B.C. MINERAL ACT AND IN THE MATTER OF A GEOLOGICAL MAPPING AND GEOCHEMICAL STREAM SILTING SURVEY PROGRAM

CARRIED OUT ON THE PD & PT CLAIMS HARRISON LAKE AREA in the New Westminster Mining Division of the province of British Columbia More Particularly N.T.S. 92H 052 & 062

AFFIDAVIT

I, L. Stephenson, of the City of Surrey, in the Province of British Columbia, make an oath and say:

1. That I am employed as a geologist by GeoFin Inc. and as such have a personal knowledge of the facts to which I hereinafter depose:

2. That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a GEOPHYSICAL program, on the PD 1 to PD 14 and PT 1, PT 6 & PT 7 mineral claims;

3. That the said expenditures were incurred between the 15th day of August 2000 and the 30th day of June 2001 for the purpose of mineral exploration. Report writing continued into September, 2001.

HENSON, B.Sc., M.B.A. P.Eng.

AUTHOR'S QUALIFICATIONS

I, Laurence Stephenson, of the City of Surrey, in the Province of British Columbia, do hereby certify that:

1. I graduated from Carleton University in 1975 with a Bachelor of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration;

2. I am registered as a Professional Engineer for the Province of Ontario (1981);

3. I have had over 33 years experience in the field of mining exploration.

ENSON, B.Sc., M.B.A. P.Eng.

Appendix (

—

# #									Geof	fin	Inc	ŧ.	FI	LE	# 7	103	182	ł							P	age?	5		4	
SAMPLES	Ho ppm	Cu ppa	Pb ppn	Zn ppm	Ag pps	ki ppe	Co ppm	Mn ppa	10.100	As pps	U ppm	Au ppm		Sr pps	Cd ppm	Sb ppn	E1 ppm	¥ مرم	Ca 1	P X	La ppn	Cr ppm	Mg 1	Bai ppm	Ti X	8 ppm	AL X	Na X	10.000	M bbus
SCSL-32 SCSL-33 SCSL-34 SCSL-35 SCSL-35	4 N 4 N	38 44 26 33 28	9 6 6 8 7	66 57 49 70 63	5. 3.> 5.> 5.> 5.>	35 36 25 29 28	14 13 10 12 11	226 158 164 226 295	2.28 2.30 1.87 2.04 1.83	<2 2 3 2 3 2 3 2 3	ቆቆቆቆ	84444 8444	3 2 2 2 2 2 2 2	12 12 10 12 14	้. เจ้าเจ้า	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	80 83 68 71 59	.22 .19 .24	,055 .053 .041 .052 .060	87565	49 53 39 42 38	.91 .94 .75 .81 .73	136 126 99 116 100	.11 .11 .10 .10 .09	-0 3 4	1.84 1.90 1.36 1.52 1.25	.02 .02 .02 .02 .02	.31 .30 .20 .25 .19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SCSL-37 SCSL-38 SCSL-39 SCSL-40 SCSL-41	ande sede met and	34 31 35 31 26	77633	71 36 72 63 55	۲.> ۲.> ۲.> ۲.>	32 25 31 29 29	13 11 13 11 11	462 121 377 334 266	2.09 1.59 2.53 2.00 1.76	*\$\$\$*	4444	44444	8~88A	16 17 9 13 14	s s s s s s s s s s s s s s s s s s s	4444	0 0 4 0 0	65 51 71 62 58	.31 .17 .27	.061 .076 .040 .060 .066	5 6 6 5	47 34 42 35	.82 .69 .71 .75 .72	127 97 105 110 98	.10 .08 .09 .09 .09	5 5 5	1.34 1.17 1.98 1.25 1.15	.02 .04 .01 .02 .02	,22 ,29 ,12 ,20 ,18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SCSL-42 SCSL-43 SET-1 SET-2 SET-3	44 -	32 34 23 12 22	6 10 5 13 4	63 59 40 22 39	ڌ. ڌ.> ڌ.> ڌ.>	29 35 32 32 31	38	221 186 235 2596 200	2.05 2.26 1.59 26.31 1.93	42 ~ 21 2 2 2 2	\$\$\$\$	44444	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 15 9 33 13	ំនំនេះ សំសំសំសំ	00000	0 4 0 0 0 0	69 73 49 117 58	.31 .24 .49	.060 .082 .054 .058 .058	5 7 4 8 4	44 47 34 29 31	.86 .89 .65 .20 .67	126 140 68 131 115	.11 .10 .05 .03 .09	000	1.51 1.66 1.15 1.13 1.47	.02 .03 .02 .01 .02	.25 .27 .11 .08 .17	88888
SET-4 SET-5 SET-6 SET-7 SET-8		23 33 19 20 17	45000	41 50 40 35 68	<.3 <.3 <.3 <.3 <.4	23 31 19 22 18	10 15 14 9 11	240 229 428 163 374	1.68 2.52 1.68 1.71 1.53	20004	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	44444 4444	8 8 8 N 8	18 15 20 14 18	2.× 2.× 2.× 3.	00000	0 0 0 4 0 4 0	60 82 59 56 54	.34 .37 .25	.961 .838 .061 .061 .060	****	35 52 35 35 30	.68 1.12 .61 .58 .56	104 167 98 86 99	.10 .15 .09 .08 .08	5 0 0	1.58 3.07 1.82 2.07 1.37	.03 .05 .02 .02 .03	.16 .24 .11 .10 .12	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
RE SET-8 SET-9 SET-10 SET-11 SET-12	1 2 5	17 18 14 19 26	8 3 3 3 11	68 68 30 38 52	<.3 <.3 <.3 <.3 <.3	17 18 15 20 24	12 10 6 9 13	368 266 97 173 433	1,52 1,48 1,64 1,41 1,91	4442 44 44 44 44 44 44 44 44 44 44 44 44	\$\$\$\$	88888 8888 8	88888	18 19 13 19 20	<.2 <.2 <.2 .3 <.2	00000	00000 0000	54 59 46 57	.40 .25 .43	.055 .069 .041 .076 .072	34334	29 31 41 30 33	.57 .58 .56 .63 .71	99 107 68 95 155	.08 .08 .09 .08 .08	6 3 4	1.36 1.24 2.27 1.14 1.75	.03 .03 .02 .03 .03	.13 .15 .07 .13 .14	88888 8
SET-13 SET-14 SET-15 SET-16 SET-16 SET-17	1	19 23 18 20 26	15 7 3 9	39 32 18 37 62	٤.> ٤.> ٤.> ٤.> ٤.>	16 22 23 25 30	17 10 7 12 15	865 223 112 540 408	1.25 1.42 1.12 1.77 2.32	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	****	2222 2222	00000	35 17 13 22 26	.3 <.2 <.2 .3 .3	00000 00000	0 0 0 0 0 0 0 0 0 0 0	43 43 36 60 76	.36 .29 .38	.076 .069 .064 .063 .074	6 3 3 4 5	19 27 26 40 46	.30 .63 .48 .65 .87	134 105 55 110 159	.06 .08 .07 .09 .11	0 0 0	1.96 1.20 1.15 1.42 1.82	.02 .04 .03 .02 .03	.05 .14 .07 .09 .22	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
SET-18 SET-19 SET-20 STANDARD DS3 STANDARD G-1	1 1 1 9 1	23 28 28 127 3	5 3 4 33 3	27 31 36 158 39	۲.> ۲.> ۲.> ۲.>	23 31 31 37 6	10 10 11 13 4	150 163 163 830 525	1.51 1.43 1.99 3.12 1.68	<2 <2 29 <2	\$ \$ \$ \$ \$	2222	000000	13 14 13 30 65	<.2 ≺.2 .2 5.6 .2	0-000	0000	51 42 70 79 38	.33 .30 .56	.074 .072 .073 .097 .098	4 2 4 18 9	29 29 46 184 17	.67 .79 .80 .63 .54	102 127 123 146 218	.08 .08 .11 .10 .13	0 4 3	1.43 1.18 2.19 1.73 .76	.03 .04 .03 .04 .07	.17 .17 .21 .18 .49	8 9 9 m m

Sample type: SOIL SS60. Samples beginning 'RE' are Reruns and "RRE' are Reject Reruns.

Data FA

SAMPLEA	Mo ppn	Ču DOM	Pb ppm	2n pon		NÍ	Co	Hin con	Fe	As ppn	U DOD	Au	Th	Sr con	Cd	Sb pom		¥ DOM	Ca X	r t	La	Cr pon	Ng X	Ba ppm	Tí X	1	AL T	Na X	K X	pp
NFSL-1 NFSL-2 NFSL-3 NFSL-4 NFSL-3	4 2 4 4 1	31 29 26 30 46	22 12 17 6 8	27 19 25 32 35		25 18 28 36 54	10 4 6	213 82	1.71 3.87 1.07 1.16	40000	<8 9 8 8 12	44444	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 8 76 23 30	<.2 <.2 <.2 <.2 <.2 <.2	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	64 96 36 37 40	.09 .23 .31	.074 .032 .040 .091 .103	3 4 1 4 6	41 59 41 42 44	.55 .25 .36 .49	112 24 144 75 136	.08 .13 .05 .06 .06	0 0 0	1.69 3.18 1.22 2.48 2.52	.02 .02 .04 .02 .02	.11 .03 .05 .10 .10	****
NFSL-6 NFSL-7 NFSL-8 NFSL-9 NFSL-9	<1 <1 <1 2 <1	95 25 27 29	24 8 14 15 16	44 20 38 29 47	<.3 <.3 <.3 <.3 <.3	70 45 23 19 32			1.26	74444	<8 10 10 ₹8	44444	~~~~~	57 12 28 21 17	* · · · ·	00000	QwQwQ	53 40 48 85 74	.12 .39 .21	.083 .033 .073 .074 .079	2010	51 117 37 31 66	.90 .89 .50 .41 .86	171 114 130 86 175	.08 .08 .08 .08 .10	40	1.50 .94 1.70 1.82 2.54	. 02	.18	* * * * *
NFSL-11 NFSL-12 NFSL-13 NFSL-14 NFSL-15	र २ २ २ २	43 18 50 47 63	4 13 19 8	37 44 88 44 44	<.3 <.3 <.3 <.3 <.3	68 87 64	17 27 23 26 19	161 526 740 361 179	2.69	<2 3 18 2 2	\$\$15 \$ \$	88888 8	88888	24 17 14 21 19	****** *****	20202	0 0 0 0 0 0 0 0	547955	.29 .37 .29	.060 .043 .075 .055 .044	24.014.4	41 78 52	1.02 .69 1.30 .98 1.06	185	.12 .09 .17 .11 .11	0 0 0 0	1.44 1.08 1.97 1.17 1.44	- 03 - 01 - 02 - 02 - 02	.38 .09 .42 .28 .27	* * * * *
NFSL-16 NFSL-17 NFSL-18 RE NFSL-18 NFSL-18	द द द द द द द द	35 37 12 13 19	43 5 10 11 5	79 65 12 13 35	5. 3.> 5.> 5.> 5.> 5.>	42 46 17 18 20	16 17 4 9	222 281 66 68 175		M Å Å N N	10 45 45 45 45	22222 22222	22442	14 23 13 13	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	00000 00000	00000	119 103 16 16 70	.33 .13 .13	.073 .077 .037 .038 .044	0. IN M M 4		1.33 1.17 .11 .10 .68	289 286 48 48 136	.18 .15 .04 .04 .11	5 5 5	1.83 2.07 .82 .84 1.36		.65 .58 .03 .03 .27	* * * * *
NFSL-20 NFSL-21 NFSL-22 NFSL-23 NFSL-23	2 2 2 2 1	60 29 27 26 54	6 10 10 5 6	53 72 64 64 64	*,3 *,3 .3 .3 *,3	160 44 163 444 105	18 50	441 355 647 1611 520	2.55	√2 √2 17 10 6	8 8 8 8 8	00000	88888	12 27 26 20 9	<.2 <.2 <.2 <.2	40040	00430	76 74 61 59 82	.50 .33 .30	.050 .061 .075 .085 .085	85767	60 46 54	1.60 .87 .99 3.69 1.47	234 221 171 187 269	.19 .11 .10 .09 .19	0 0 5	1.50 1.89 2.80 2.87 1.84		.33 .29 .14 .17 .37	* * * * *
8FSL-25 NFSL-26 NFSL-27 NFSL-25 NFSL-29	VVVVVVVVVVVVV	30 23 94 54 29	11 4 5 11	55 40 100 75 67	<.3 <.3 <.3 <.3 <.3	127 202 100 100 84	18 19 22 17 16		1.92 3.32 2.51	4444v	<8 <8 <8 8 8 8	88888 8	8484A	15 11 7 10 15	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	3 3 4 3 3	00000	57 38 101 77 46	.20	.948 .039 .067 .075 .946	45675	79 105	1.51 1.89 1.81 1.42 .89	136 666	.12 .10 .26 .20 .10	000	1.33 .95 2.22 2.03 1.14	_01	.22 .15 1.04 .70 .20	4 4 7 8 8 8
NFISL-30 NFISL-31 NTISL-1 STANDARD DS3 STANDARD G-1	1 1 1 8 1	56 67 75 125 2		77 64 71 157 37	4. 3. 3.> 3.> 5.>		23 25 12	595 356 691 820 509	2.11 3.23 3.18	3 2 4 29 4 29 4	<8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <	2	50 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11 9 11 27 64	.2 *.2 *.2 5.6 *.2	3 4 6 3		85 76	.30 .51 .53	.061 .047 .096 .095 .100	5	63 86 181	1.67	254 244 418 149 210	.17	0 0 0	1.16 2.18 1.73	_01 _02 _04	.32 .27 .66 .17 .47	4
	UPP	ER LI	HETS	- AG,	AU,	HC, W	= 10	O PP	t; MO,	CO,	œ, 1	58, BI	, TH,	U &	8 = 2	2,000	PPH;	HOUR CU, P Recy	8, 2)								¥.			