

. . .

and the second second

t. Notice

ь.

• · · ·

· .

<u>r</u>---

۔ ۲ ۱۰۰۰

• ----• ---

٤.

. ...

<u>د</u> .

.

L . .

• •

• -

h . .

.

. ...

DIAMOND DRILLING REPORT

on the

NMG 26 MINERAL CLAIM

Keithley Creek Area Cariboo Mining Division British Columbia 93A, 14W 52*47'N - 121*29'W

for

NOBLE METAL GROUP INCORPORATED

801 - 409 Granville Street Vancouver, British Columbia V6C 1T2

by

WGT CONSULTANTS LTD.

September 2001

GEOLOGICAL SURVEY PRANCH

TABLE OF CONTENTS

C

. . .

•----• · ·

r:---

-

р----ъ

C

		<u>Page</u>
SUM	MARY AND RECOMMENDATIONS	1
1.0	GENERAL	2
	 1.1 INTRODUCTION 1.2 LOCATION AND ACCESS 1.3 PHYSIOGRAPHY 1.4 PROPERTY AND CLAIM STATUS 1.5 AREA AND PROPERTY HISTORY 	2 2 3 4 7
2.0	GEOLOGY AND MINERALIZATION	10
	 2.1 REGIONAL GEOLOGY 2.2 CLAIM GEOLOGY 2.3 SNOWSHOE GROUP GEOLOGY 2.4 MINERALIZATION 2.5 GENERAL INFORMATION ON a) Nickel b) Chromium c) Strontium d) Vanadium 2.6 ASSAYS 	10 11 12 13 15 16 16 18 19
3.0	DIAMOND DRILL PROGRAM	20
4.0	CONCLUSIONS	23
5.0	REFERENCES	24
6.0		25

FIGURES

Figure 1	Index Map	4
Figure 2	Claim Map	9
Figure 3	Drill Hole Location Map	22

APPENDICES

Appendix 1	Diamond Drill Logs and Assay Intervals
Appendix 2	Diamond Drill Sections
Appendix 3	Certificates of Analysis
Appendix 4	Petrographic Thin Section Descriptions

SUMMARY AND RECOMMENDATIONS

-- .

Ξ

5

....

 \Box

وبينيو د الم

. . .

έ.

ί.

L

ь.

....

•

.

ь. ,

÷ ...

ь.

÷....

A diamond drill program was carried out by Noble Metal Group Incorporated during the months of August to November 2001.

Two vertical holes totalling 805.4 metres (2642.5 feet) were drilled to test coincident induced polarization-magnetic anomalies in proximity to fault intersections.

The drilling intersected quartzites, greywackes and phyllites intruded by dioritic dykes and altered matic and ultramatic rocks. Concentrations of pyrite, pyrrhotite, chalcopyrite, magnetite, hematite and pentlandite occur throughout the core.

Anomalous values in nickel up to 1006 ppm, chromium up to 1553 ppm as well as elevated values in strontium and vanadium occur related to matic zones in the core.

Further exploration of the property is warranted and an exploration program consisting of additional geological mapping, prospecting and geochemical soil sampling surveys is recommended.

Respectfully submitted,

W.G. Timmins, P.Eng. WGT Consultants Ltd.

September 28, 2001.

1.

1.1 INTRODUCTION

.....

. •-----

.....

. . .

. -

. .

ι.

. .

ы . .

• •

. .

•

. .

ы. . .

.

b. .

k ...

• .--

A diamond drill program was carried out on the Cariboo Gold Property between August 25 and November 4, 2000. The drill program was conducted by Adams Diamond Drilling of Princeton, B.C.

A John Deere ELC excavator and a Caterpillar D8N were used to build roads and drill sites, reclaim the roads and drill sites, ditch and assist in setting up the drill, as well as loading and unloading the equipment.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located approximately 21 kilometres north-northeast of Likely, in the Cariboo region of central British Columbia. The property is centred at approximately 52°47' north latitude and 121°29' west longitude (NTS 93A-13E, 14W).

Access to the property is via the all weather, two wheel drive Keithley Creek logging road from Likely, B.C. At the old settlement of Keithley Creek, a logging road on the east side of Keithley Creek leads to the property.

The camp is located approximately 12 kilometres from the main road. A network of old logging roads provides good access to all areas of the property.

2.

1.3 PHYSIOGRAPHY

- -

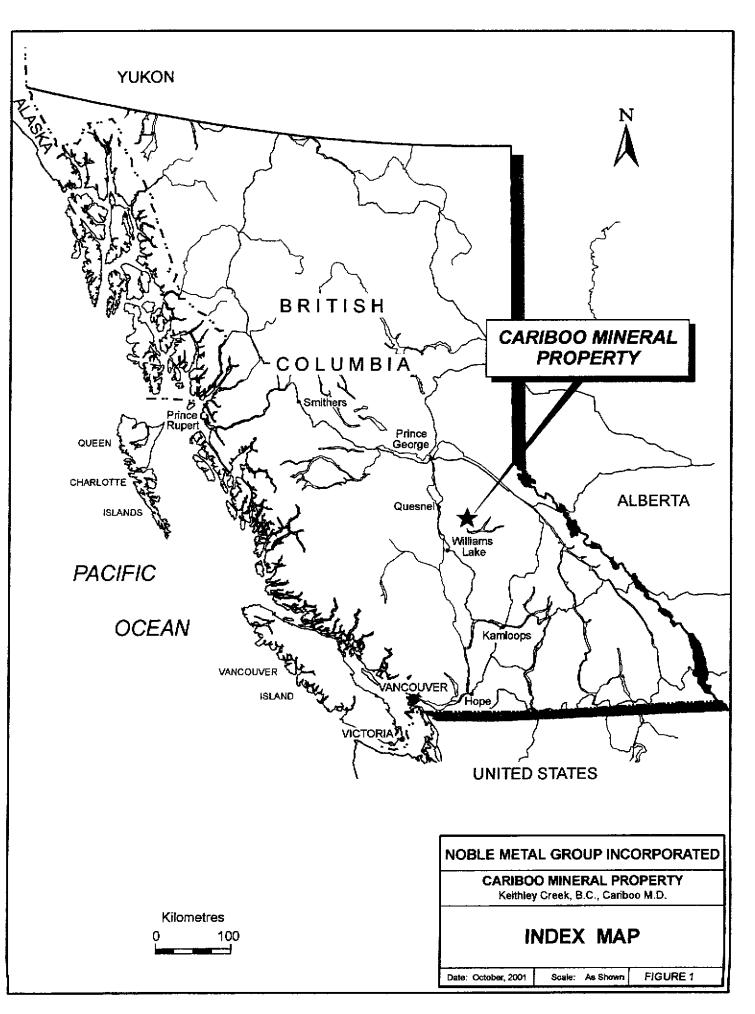
ہ ۔ وہ انجو و انجو

. .

• •

► ...

6. -


...

The property is located in the Quesnel Highlands of central British Columbia and the average elevation is approximately 1200 metres above sea level. Topography varies from steep along Keithley Creek and Snowshoe Creek to gentle at some higher elevations. Keithley Creek flows in a southeasterly direction through the centre of the property with many tributaries such as Donaldson, Honest John, Rabbit, Snowshoe, French Snowshoe and Weaver Creeks flowing into Keithley Creek.

The Keithley Creek area receives significant precipitation throughout the year as both rain and snow. Accumulations of snow may reach three metres or more during the winter months with extremely cold temperatures.

The natural vegetation is predominantly coniferous forest consisting of spruce, balsam, firs and cedar. Large portions of the property have been logged by clear cutting and most of these areas have been replanted. Many of the replanted areas have second growth timber ranging from three to ten metres in height.

1.4 PROPERTY AND CLAIM STATUS

The mineral claims and placer leases making up the Cariboo Gold Property (Figure 2) are owned by Noble Metal Group Incorporated, 801 - 409 Granville Street, Vancouver, B.C. V6C 1T2. The mineral claims are located in the Cariboo Mining Division and consist of 17 four post claims covering 288 units and 37 two post claims for a total of 325 units as described below and shown on NTS Maps 93A 13E/14W.

TENURE NO.	CLAIM NAME	<u>No. Units</u>	Expiry Date
204123	J 1	20	2004/10/12
204184	STU 1	12	2004/08/17
204185	DD 2	6	2001/08/17
204351	CASCA 1	8	2002/10/02
204352	CASCA 2	20	2005/10/02
204363	CASCA 3	16	2001/10/23
204364	CASCA 4	16	2001/10/23
204756	CAC 1	20	2001/07/12
204757	CAC 2	20	2001/07/12
205123	CAC 3	20	2003/04/16
205124	CAC 4	20	2004/04/16
205125	CAC 5	20	2004/04/16
302656	J2	18	2004/07/16
349094	DD 3	12	2001/07/14
349095	DD 4	20	2001/07/19
349096	DD 5	20	2001/07/19
349097	DD 6	20	2001/07/17
349098	DD 7	1	2001/07/16
349099	DD 8	1	2001/07/16
349100	DD 9	1	2001/07/16
313490	NMG 2	1	2005/09/24
313491	NMG 3	1	2005/09/24
313492	NMG 4	1	2005/09/24
313493	NMG 5	1	2005/09/24
313494	NMG 6	1	2005/09/24
313495	NMG 7	1	2005/09/24
313496	NMG 8	1	2005/09/24
313497	NMG 9	1	2001/09/25
313498	NMG 10	1	2001/09/25
313499	NMG 11	1	2001/09/25

-

<u>Tenure No.</u>	CLAIM NAME	<u>No. Units</u>	EXPIRY_DATE
313500	NMG 12	1	2001/09/25
320311	NMG 13	1	2006/08/07
320312	NMG 14	1	2006/08/07
320313	NMG 15	1	2006/08/07
320314	NMG 16	1	2006/08/07
320315	NMG 17	1	2006/08/07
320316	NMG 18	1	2006/08/07
320317	NMG 19	1	2006/08/07
320318	NMG 20	1	2006/08/07
320319	NMG 21	1	2006/08/07
320320	NMG 22	1	2006/08/07
320321	NMG 23	1	2006/08/08
320322	NMG 24	1	2006/08/08
320323	NMG 25	1	2006/08/08
320324	NMG 26	1	2006/08/08
320325	NMG 27	1	2006/08/08
320326	NMG 28	1	2006/08/08
320327	NMG 29	1	2006/08/09
320328	NMG 30	1	2006/08/09
320329	NMG 31	1	2006/08/09
320330	NMG 32	1	2006/08/09
320331	NMG 33	1	2006/08/09
320338	NMG 40	1	2001/08/10

The claims upon which work is being filed are listed below:

-----ن____

_

.

• •

----⊾ ,

р (сар

• ---

. .

р ----Ь --

. ...

р----6 - --

Tenure No.	CLAIM NAME	<u>No. Units</u>	EXPIRY DATE
204123	J 1	20	2004/10/12
302656	J 2	18	2004/07/06
204184	STU 1	12	2005/08/17
204756	CAC 1	20	2001/07/12
204757	CAC 11	20	2001/07/12
204185	DD 2	6	2001/08/07
349094	DD 3	12	2001/07/14
349095	DD 4	20	2001/07/19
349096	DD 5	20	2001/07/19
349097	DD 6	20	2001/07/17
349098	DD 7	1	2001/07/16

•

<u>Tenure No.</u>	CLAIM NAME	No. Units	EXPIRY DATE
349099	DD 8	1	2001/07/16
349100	DD 9	1	2001/07/16
313497	NMG 9	1	2001/09/25
313498	NMG 10	1	2001/09/25
313499	NMG 11	1	2001/09/25
313500	NMG 12	1	2001/09/25
320338	NMG 40	1	2001/08/10
204351	CASCA 1	8	2002/10/02
204363	CASCA 3	16	2001/10/23
204364	CASCA 4	16	2001/10/23

1.5 AREA AND PROPERTY HISTORY

.....

.

٤.

.

-

b. ...

h. ..

.....

The Cariboo region of British Columbia is very famous for the gold rush that began in 1860. Placer mining has continued throughout the Barkerville-Likely area from 1860 to present.

Prospecting for hard rock deposits started shortly after the Cariboo gold rush began. The three most significant gold producers have been the Mosquito Creek, Island Mountain and Cariboo Gold Quartz mines near Wells. Mining began in 1935 and has continued to recent times with periods of inactivity. Production from the three mines has been in the order of 1.3 million ounces of gold.

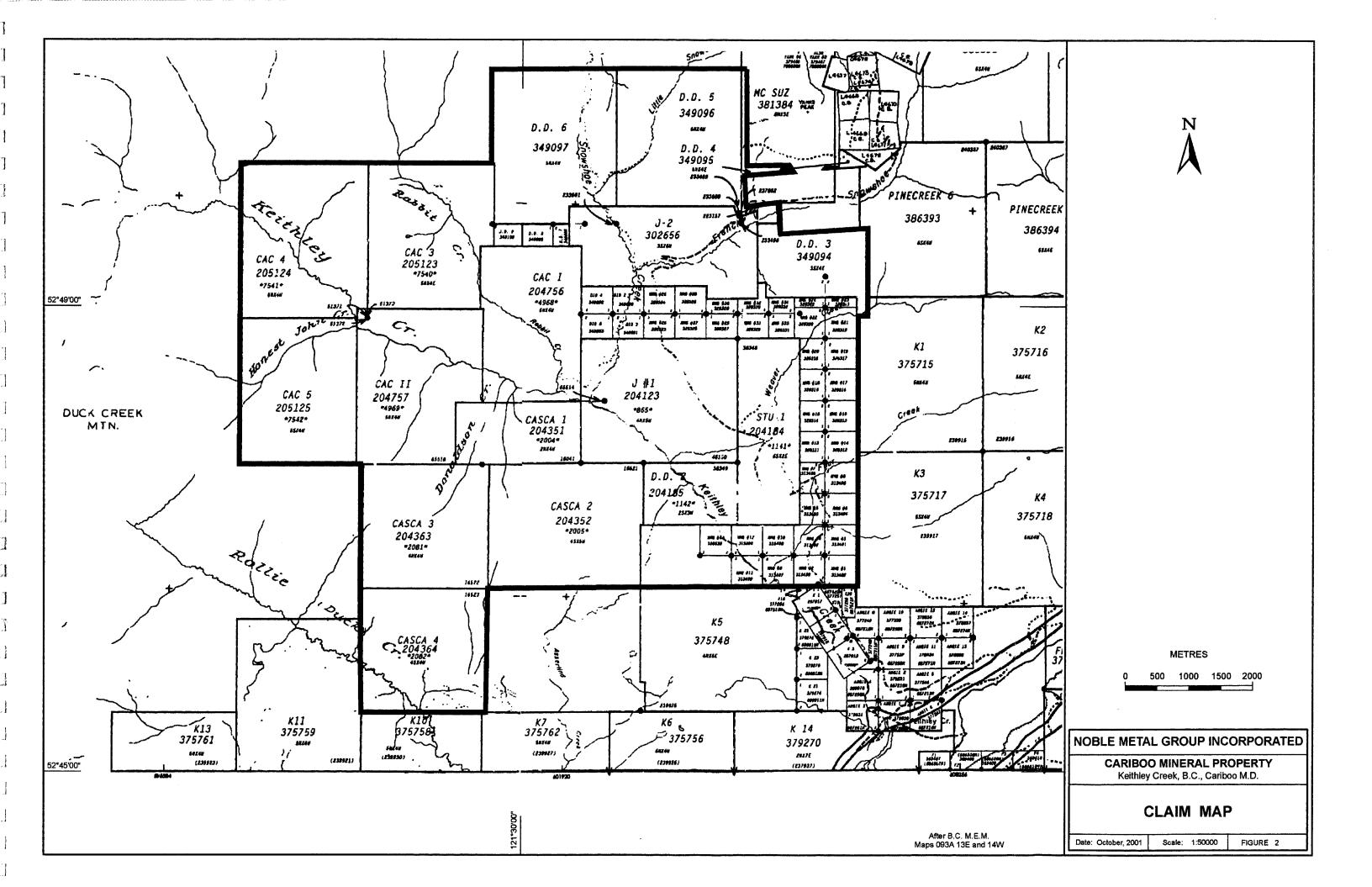
Placer gold was discovered on Keithley Creek in 1850, and significant production occurred for the next few decades. Placer gold was also discovered on Snowshoe, Little Snowshoe and French Snowshoe Creeks in 1860. Approximately \$6 million in gold has been reported from Keithley Creek but the actual gold produced is probably much higher.

Prospecting for the lode gold deposits began shortly after the discovery of the placer gold on Keithley Creek in 1860. This resulted in the discovery of gold bearing quartz veins on the right bank of Little Snowshoe Creek in December of 1862. Additional discoveries were made in the area over the next year. These included the Douglas vein at the head of Luce Creek in April of 1863 and the showing upon which the Steele and Cunningham tunnel was driven in June of 1863.

In August 1864, the first claims were located on Yank's Peak by Thomas Haywood and Associates. Additional discoveries were made around Yank's Peak over the next few years and Yank's Peak because the most prominent location for lode gold deposits in the Keithley Creek - Snowshoe Creek area. the recorded lode gold production from Yank's Peak is 5,204 ounces.

Intermittent exploration activity has taken place in the Keithley Creek area from the 1860's to present.

....


-

. .

Noble Metal Group Incorporated and its predecessor company Cascadia Mines and Resources Ltd. have been carrying out exploration for both placer and lode gold deposits since 1979. The work carried out on the hardrock claims includes grid preparation, soil geochemical surveying, magnetic and electromagnetic surveying, induced polarization surveying and diamond drilling.

In the year 2000, a diamond drill program totalling 805.4 metres (2642.5 feet) was carried out to test anomalous coincident I.P. and magnetic zones in areas of fault intersections.

2.0 GEOLOGY AND MINERALIZATION

2.1 REGIONAL GEOLOGY

. .

The Cariboo mining district is divided into four tectonically and stratigraphically unique terrains. The rocks of the four terrains range in age from Proterozoic to Jurassic and were deposits into an ocean environment. From east to west, the terrains are Cariboo (continental shelf clastics and carbonates, Barkerville (continental shelf and slope clastics, carbonates and volcaniclastics), Slide Mountain (rift floor pillowed basalt and chert) and Quesnel (island arc volcaniclastics and fine grained clastics).

The Cariboo Terrain is of Precambrian to Permo Triassic age and is in fault contact with the western margin of the Precambrian North American Crater along the Rocky Mountain Trench. It can be divided into two successions, one Cambrian and older and the other Ordovician to Permo-Triassic. The older succession consists of grit, limestone, sandstone and shale and is unconformably overlain by the younger succession of basinal shale, dolostone, wacke, limestone and basalt.

The Barkerville Terrain consists of Precambrian and Palaeozoic rocks ranging in composition from grit, quartzite, and black and green pelite to lesser limestone and volcaniclastic rocks. The contact between the Barkerville and Cariboo terrains is the northwest trending, east dipping Pleasant Valley Thrust.

The Barkerville and Cariboo terrains are overthrust (Pundata Thrust) by the Slide Mountain Terrain. The Slide Mountain Terrain consists of Mississippian to Permian basalt in part pillowed, and chert pelite sequences intruded by diorite, gabbro and minor ultramafic rocks.

The Quesnel Terrain lies west of the Slide Mountain Terrain and consists of Upper Triassic and Lower Jurassic black shale and volcaniclastic greenstone.

st. Pun s of trud ł

2.2 CLAIM GEOLOGY

The rocks in the vicinity of Yank's Peak belong to the Barkerville Terrain and have been named the Snowshoe Group by Struik (1988). Struik has further divided the sedimentary and volcanic rocks of the Snowshoe Group into fourteen informal subdivisions, Ramos, Tregillus, Kee Khan, Keithley, Harvey's Ridge, Goose Peak, Agnes, Downey, Eaglenest, Braico, Hardscrabble, Unnamed carbonate, Island Mountain, and Tom. Igneous intrusions of the terrain consist mainly of diorite and gabbro sills with quartz porphyry rhyolite. All rocks have been regionally metamorphosed to low and middle greenschist facies.

The following table summarizes the composition of each group, as well as the estimated thickness (from Struik 1988).

Island Mountain Amphibolite (<150m)	Amphibolite, tuff siliceous mylonite
Hardscrabble Mountain (<150m)	Black sulphide, argillite and muddy granule conglomerate
Bralco (<100m)	Grey limestone, locally pelletal, commonly marble, includes undifferentiated phyllite
Eaglenest (≥150m)	Grey and olive micaceous feldspathic, poorly sorted quartzite and phyllite
Downey (<u>></u> 150m)	Ollve-grey micaceous feldspathic, poorly sorted quartzite and phyllite, marble, metabasaltic volcaniclastics
Agnes (<150m)	Light grey conglomerate in part with calcareous matrix
Goose Peak (<250m)	Light grey, poorly sorted quartzite, phyllite, minor black sulphide
Harvey's Ridge (<300m)	Black micaceous, poorly sorted quartzite, sulphide and phyllite, minor muddy conglomerate, limestone and basaltic metavolcanics
Keithley (<300m)	Light grey quartzite, olive micaceous, poorly sorted quartzite, sulphide and phyllite

Kee Khan (<750m)	Marble, olive phyllite, sandy marble
Tregillius (>400m)	Olive-grey micaceous, poorly sorted feldspathic quartzite and phyllite, conglomerate
Ramos (>300m)	Olive micaceous poorly sorted feldspathic quartzite and phylite, black sulphide and phylite, amphibolite, marble, minor basaltic and felsic volcanics
Tom (<175m)	Olive-grey micaceous poorly sorted feldspathic quartzite, phyllite and schist; quartzose mylonite

2.3 SNOWSHOE GROUP GEOLOGY

.

.....

. . .

÷. .

i.

k -

h ...

ĥ. ...

h

L_

 \Box

<u>ب</u>

The successions range in age from Hadrynian (Ramos through Keithley) to Palaeozoic (Harvey's Ridge through Bralco) and Upper Palaeozoic (Hardscrabble Mountain and Island Mountain Amphibolite).

The claims of the Noble Metal property are underlain by rocks of the Ramos succession of which interbedded quartzite and phyllite are the most abundant. The age of the Ramos succession is believed to be Hadrynian.

The quartzite is olive to grey on fresh surfaces, is poorly sorted and generally medium to coarse grained. The quartz clasts are predominantly glass clear and grey with minor blue. The quartzite is usually micaceous and sericite, epidote, muscovite, chlorite and biotite occur along foliations. Some sections of the quartzite are weakly calcareous.

The phyllite varies from olive, grey to black with chlorite and accessory pyrite, and pyrrhotite. There is often rhythmic banding within the phyllite and contacts between the quartzite and phyllite are sharp.

The main structure in the area is the Keithley Creek Thrust that runs from Shoal's Bay on Quesnel Lake northwest up Keithley Creek and crosses Lightning Creek in the Wingdam area. A north-south fault that may be a continuation of the Antler Fault continues from the southern end of Bowron Lake southwards to Snowshoe Creek, and the lower portion of Rabbit Creek, towards the Keithley Creek Thrust.

A study of the current diamond drill data, combined with results of thin section analysis confirms that the area of exploration is more complex than originally thought.

The quartzites, phyllites and greywackes are intruded by dioritic rocks and several zones of mafic, ultramafic and altered ultramafic rocks.

Mineralization is related to a hydrothermal system. Gold is associated with quartz and silicification, and nickel, chromium, platinum group minerals as well as strontium and vanadium are related to altered matics and ultramatics.

The ultramatic zones are considered to emanate from a singular magmatic mass at depth.

2.4 MINERALIZATION

. .

e ---

The Barkerville Terrain hosts the principal gold occurrences of the Cariboo area. These include the Mosquito Creek, Island Mountain, Cariboo Gold quartz and Cariboo Hudson mines and the Snowshoe and Midas veins. Deposits of less economic importance include those of silver, tungsten, lead, zinc and copper.

The gold ore at the Mosquito Creek, Island Mountain and Cariboo Gold Quartz mines in the Cariboo Gold Belt occurs (1) auriferous pyrite in quartz veins and (2) stratabound, massive auriferous pyrite lenses, termed "replacement ore". The location of the gold deposits correlates with elements of (1) stratigraphy, (2) structure and (3) metamorphism.

- Stratigraphic Controls: Lode gold deposits are almost entirely confined to the 1. Palaeozoic section of the Snowshoe group. In the Keithley Creek-Snowshoe Creek area, the Palaeozoic Harvey's Ridge succession contains a high density of auriferous quartz veins.
- 2. Structural Controls: The auriterous replacement pyrite in limestone lenses is located in the hinge zones and less commonly along the limbs of regional and minor folds. Orientation of quartz veins is in part controlled by the regional fault and fracture pattern.
- Metamorphic Controls; Lode gold concentrations are confined to rocks in the З, chlorite grade of metamorphism. The auriferous guartz veins in the Yank's Peak area vary greatly in dimension, ranging in width from a few inches to tens of feet and in length from a few tens of feet to greater than 1000 feet. They can be grouped into three types based on their strike, northerly, northeasterly and easterly striking. The vein quartz is usually milky-white in appearance and massive or slightly fractured with small crystal lined vugs. Ankerite is a common gangue mineral. The quartz is sparsely to moderately mineralized with sulphides. The highest gold values appear to be associated with the highest concentrations of pyrite. Gold assays are highly variable, ranging from nil to 2 ounces gold per ton or more.

Gold is present in the placer deposits tested by Noble Metal Group Incorporated as both bench gravels of Keithley Creek and buried gulch-type channels from Snowshoe Creek, and preparations are being made for processing of gravels in 2001. Platinum group minerals have been reported from testing in the past.

[

The placer gravels are present to the south and southwest of the area being tested for lode gold mineralization. The gold in the placer gravels occurs from a source north and northeast of the placer operation.

Mineralization consisting of pyrite, chalcopyrite, pyrrhotite, pentlandite, magnetite and ilmenite are identified in varying concentrations through the drill core.

2.5 GENERAL INFORMATION ON NICKEL, CHROMIUM, STRONTIUM AND VANADIUM

A summary of the properties and uses of nickel, chromium, strontium and vanadium is provided the reader for general information purposes. The metals commonly occur in association with various types of ultramafic and mafic rocks.

a) Nickel

b....

1

ι.

<u>.</u>....

٤.

⊾ .

b....

× .

. к. -

p ----

i. ...

Nickel is a hard, malleable, ductile metal, capable of taking a high polish. It exists in five stable isotopic forms. Metallic nickel is not very active chemically. It is soluble in dilute nitric acid and becomes passive (nonreactive) in concentrated nitric acid; it does not react with alkalies. It has a specific gravity of 8.9. The atomic weight of nickel is 58.69.

Combined with other elements, it occurs in minerals such as garnierite, millerite, niccolite, pentlandite and pyrrhotite; the latter two minerals are the principal ores of nickel.

Nickel is used as a protective and ornamental coating for metals, particularly iron and steel, that are susceptible to corrosion.

Nickel is used chiefly in the form of alloys. It imparts great strength and corrosion resistance to steel. Nickel steel, containing about 2 to 4 percent nickel, is used in automobile parts such as axles, crankshafts, gears, valves, and rods; in machine parts; and in armour plate. Nickel is also a key component of nickel-cadmium batteries.

b) Chromium

• • •

-

More than half the production of chromium goes into metallic products, and about another third is used in refractories. It is an ingredient in several important catalysts. The chief use of chromium is to form alloys with iron, nickel, or cobalt. The addition of chromium imparts hardness, strength, and corrosion resistance to the alloy. In the stainless steels, chromium makes up 10 percent or more of the final composition. Because of its hardness, an alloy of chromium, cobalt and tungsten is used for high-speed metal-cutting tools. When deposited electrolytically, chromium provides a hard, corrosion-resistant, lustrous finish. For this reason it is widely used a body trim on automobiles and other vehicles. The extensive use of chromite as a refractory is based on its high melting point, its moderate thermal expansion, and the stability of its crystalline structure.

c) Strontium

Strontium commonly occurs in nature, averaging 0.034% of all igneous rocks, however only two minerals, celestite (strontium sulphate) and strontianite (strontium carbonate), contain strontium in sufficient quantities to make its recovery practical.

The principal end-use for strontium is in cathode ray tubes for colour monitors and televisions. Strontium metal also faces a healthy future with strong uptake from the automotive industry.

. و____

. .

. ...

C C Mexico and Spain are currently the major producing countries, accounting for 36% and 30% of world production respectively. Output in other major producing countries - Turkey, Iran and the UK - has dropped sharply in recent years.

China is becoming an increasingly important producer of strontium carbonate with a production capacity now estimated at around 35,000 tpy. At the end of 1994 a new 15,000 tpy carbonate plant came into operation, intended to supply the Asian market with 12,000 tpy expected to be shipped to Japan.

The use of strontium carbonate in CRTs for televisions and computer monitors remains the main market for strontium, accounting for around 70% of demand.

Production of CRT glass is dominated by Asia, accounting for 70% of world output. Japan dominates production, but in recent years Japanese producers have shifted some television output overseas: this has resulted in growth in CRT glass production in South Korea and Taiwan.

The Solvay group in Belgium dominates production of strontium carbonate. The company operates a wholly owned plant in German and has majority interests in facilities in Italy, South Korea and Mexico, giving it over 40% of total world production capacity.

d) Vanadium

.

-

ι.

. . .

.

•

Vanadium occurs in about 65 different minerals among which are carnotite, roscoelite, vanadinite, and patronite, important sources of the metal. Vanadium is also found in phosphate rock and certain iron ores, and is present in some crude oils in the form or organic complexes.

Pure vanadium is a bright white metal, and is soft and ductile. It has good corrosion resistance to alkalis, sulphuric and hydrochloric acid, and salt water, but the metal oxidizes readily above 660 °C.

The metal has good structural strength and a low fission neutron cross section, making it useful in nuclear applications.

Vanadium is used in producing rust-resistant and high-speed tools steels. It is an important carbide stabilizer in making steels.

About 80% of the vanadium now produced is used a ferrovanadium or as a steel additive. Vanadium foil is used as a bonding agent in cladding titanium to steel. Vanadium pentoxide is used in ceramics and as a catalyst.

C

2

-

[

× .

•

.....

,....

· · ·

ы. ртт ы.а

•---

ъ... , ,

. . . .

-

.

Fire assaying and I.C.P. analysis carried out by Loring Laboratories of Calgary, and check sampling by ALS Chemex of North Vancouver, show nickel values up to 1006 ppm and chromium values up to 1553 ppm.

Twenty-four samples were sent for neutron activation to test for platinum group metals, and although only low values were obtained, the drilling carried out in 1996 by Noble Metal Group produced platinum values of 1000 ppb in a sample with an average background of 30 ppb.

The 1996 and 2000 diamond drill programs and subsequent fire assay, I.C.P. and neutron activation analysis, have confirmed the presence of gold associated with quartz vein structures related to a hydrothermal system, and nickel, chromium, vanadium, strontium in altered ultramatic zones related to a magmatic mass at depth.

3.0 DIAMOND DRILL PROGRAM

The 2000 diamond drill program consisted of two vertical NQ to BQ diamond drilling holes totalling 805.4 m (2642.5 ft). The drill hole locations are shown on Figure 3, the drill logs are listed in Appendix I and the drill hole sections in Appendix II. The core is stored at the Noble Metal Group Incorporated camp at Keithley Creek.

Overall core recovery was good ranging from 85% to 90%.

DDH #00-1 was drilled to at depth of 235.8 m (772 ft) where a major fault was intersected necessitating a reduction to BQ sized core.

DDH #00-2 was drilled to a depth of 184.7 m (606 ft), then reduced to BQ size.

Drill holes 00-1 and 00-2 were drilled to test highly anomalous IP values with low resistivity, with or on the flank of strong magnetic anomalies and in proximity to fault structure intersections.

Both drill holes intersected variable thicknesses of interbedded quartzites and green to black phyllites intruded by dioritic dykes and sills and altered ultramafic sections.

Numerous intersections of weak to very strong sulphide enrichment up to 15% were intersected throughout the drill core. Sulphides consisted of pyrrhotite and pyrite on chloritic and graphitic lamella and shear planes, and disseminations.

Pyrite filled micro fractures crosscut the quartzites and phyllites in many sections of the core which may be pressure injection of sulphides from a recent hydrothermal episode. Sulphides also occur in quartz veins and veinlets.

Sections of altered ultramatic rocks were intersected with thicknesses varying from approximately 0.5 m to 5.0 m. Anomalous chromium, nickel, strontium and vanadium assay values are present.

. .

.

•

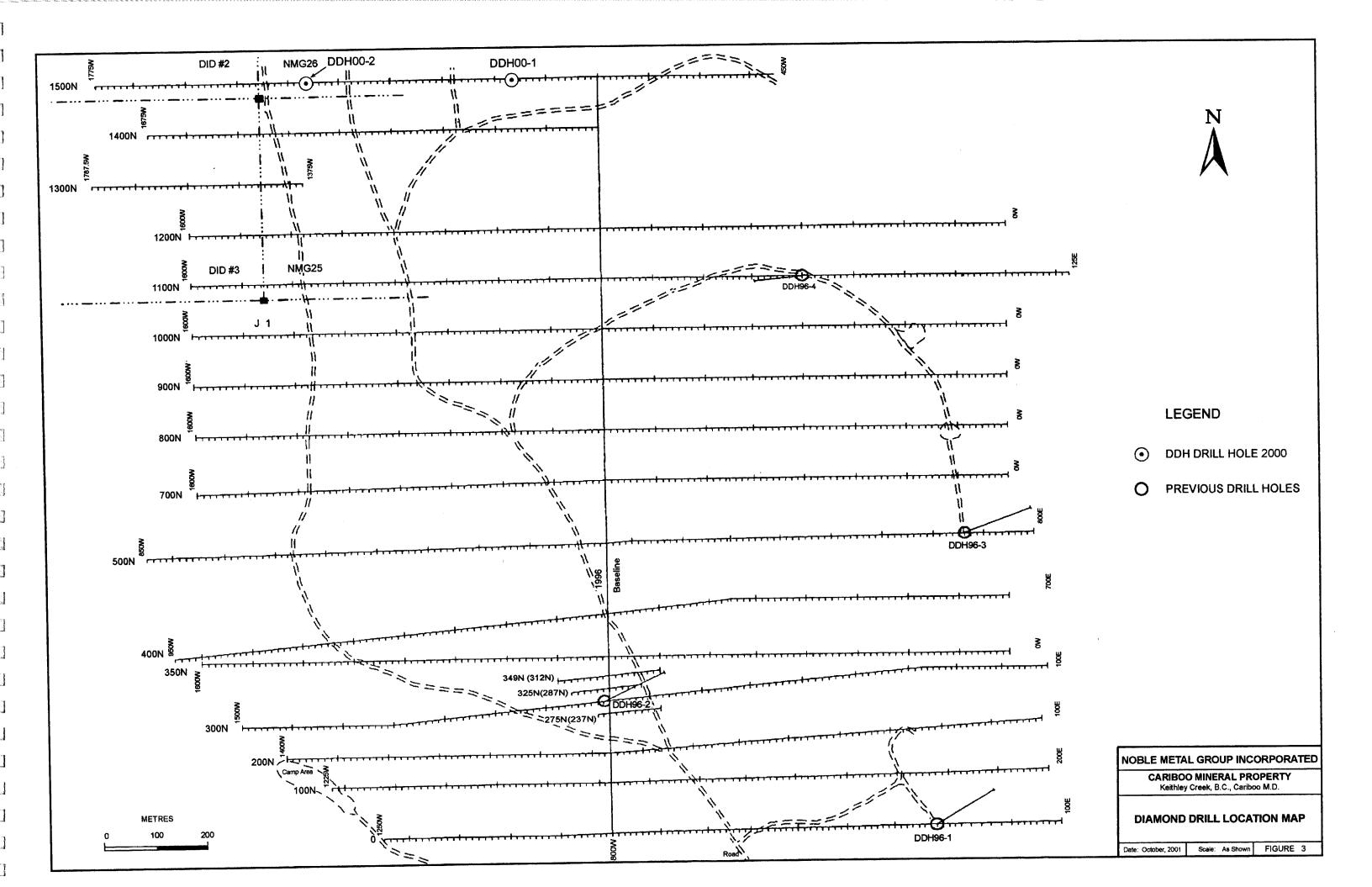
κ.

ς.

ь.

1

i. ..


.

ber an

 The altered ultramatics for the most part have been completely metamorphosed to a yellow-green, fine grained matrix with black augen-like ellipsoidal fine grained black phenocrysts at varying aligned orientations becoming mylonatized in parts.

Contorted micro folding was observed to be related to pressure injection of the ultramatic sills and other igneous intrusions. Many smoky-grey quartz veins and clots were encountered throughout the core defining a major hydrothermal event. The altered ultramatics contain minimal quartz and fractures.

It is postulated that the ultramatic sill-like zones emanate from a magmatic mass at depth, with the fault structures providing the necessary conduits.

4.0 CONCLUSIONS

The diamond drill program was successful in determining the presence of several zones of sulphide enrichment related to hydrothermal activity associated with magmatic intrusion. The more massive zones vary from 10% to 15% pyrrhotite with pyrite and chalcopyrite to 10% to 15% pyrite with lesser pyrrhotite and chalcopyrite. Magnetite, hematite and pentlandite also occur.

The drilling intersected quartzites, greywackes, and phyllites intruded by dioritic dykes or sills and altered matic and ultramatic rocks emanating from a magmatic mass.

The program conducted in the year 2000 further supports the 1997 diamond drilling in that encouraging values in nickel up to 1006 ppm, chromium up to 1553 ppm, with anomalous values in strontium and vanadium were received.

Further exploration of the property is warranted and an exploration program consisting of additional geological mapping and geochemical soil sampling surveys and prospecting followed by diamond drilling of anomalous areas is recommended.

Respectfully submitted W.G. Timmins: 🖡 **:End**: (12) WGT Consultants Ltd.

September 28, 2001.

23.

5.0 REFERENCES

- Alldrick, D.J. (1982): The Mosquito Creek Mine, Cariboo Gold Belt (93/4). B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1982, Paper 1983-1.
- Archambault, Marthe (1986): Assessment Report CAC Claim Group, Cariboo Mining Division for Cascadia Mines and Resources Ltd.
- Brown, A. Sutherland (1957): Geology of the Antler Creek Area, Cariboo District, British Columbia, B.C. Department Mines Bulletin No. 38.
- Cartwright, Paul A. (1995): Report on Induced Polarization and Resistivity Survey and Magnetic Survey on the Cariboo Gold Property, J1, Casca 1-4 Claims, Cariboo Mining Division, British Columbia for Noble Metal Group Incorporated.
- Crooker, G. (1996): Assessment Report on J1 and CAB 3-4 Mineral Claims, Cariboo Mining Division for Noble Metal Group Incorporated.
- Garrow, Terry D. (1989): The 1989 Geological Exploration Report on the cariboo Gold Property Prepared for Noble Metal Group Incorporated.
- Holland, Stuart S. (1954): Geology of the Yank's Peak Roundtop Mountain Area, Cariboo District, British Columbia, B.C. Department of Mines Bulletin No. 34.
- Robert Francois and Taylor, Bruce, E.: Structure and Mineralization of the Mosquito Creek Gold Mine, Cariboo District, B.C., Geological Survey of Canada.
- Schell, B., Timmins, W.G. (1997): Diamond Drilling Report on J1 and NMG 29 Claims.
- Seywerd, Markus B. (1991): Geophysical Report on a Magnetometer and VLF-EM Survey on the Stu Claim Group, Cariboo Mining Division for Noble Metal Group Incorporated.
- Shearer, J.T. (1991): Report on the Sonic Drilling Program, CAC1, J1 Mineral Claims, PL 29, J2 Claim Group, Keithley Creek Area, Cariboo Mining Division for Noble Metal Group Incorporated.
- Struik, L.C. (1988): Structural Geology of the Cariboo Gold Mining District, East-Central British Columbia, Geological Survey of Canda, Memoir 421.
- Timmins, W.G. (1985): Summary Report, Geological and Geophysical Studies for Cascadia Mines and Resources Ltd.

6.0 CERTIFICATE OF QUALIFICATIONS

s. .

. . .

I, William G. Timmins, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

- I am a consulting geologist, with offices at 410 455 Granville Street, Vancouver, British Columbia.
- I have been practising my profession for the past 39 years, having been engaged in evaluation, exploration and development of mineral properties throughout Canada, the United States, Latin and South America, Australia and New Zealand. The projects focused mainly on gold, silver and base metals.
- 3. I am a registered Professional Engineer in the Province of British Columbia since 1969.
- This report is based upon on-site core logging, sampling and drill related duties performed by myself from August to November, 2000.
- 5. I have no interest, nor do I expect to receive any interest in the property or securities of Noble Metal Group Incorporated.

W.G. Timmins, P.Eng Consulting Geologist

September 28, 2001

<u>___</u>

.

5...

• •

•

<u>ب</u>ور م

• •

•

- -1 -

• · · · ·

.

• • •

но н •

....

•----• ·

•--► •

•----• ·

. . .

•----•----

рания 16 - 1 ---- APPENDICES

Appendix I

р-----16-----

.

• •• • •

• •

р..... • - -

. .

• ---

• •

-

,

• --• -

• ··~

• ---

• •

• -

•·--

рота 8- 5 9- 00 8- 5 9- 00 8- 5 8- 5 8-

.

•

•

DIAMOND DRILL LOGS

and

ASSAY INTERVALS

NOBLE METAL GROUP INCORPORATED CARIBOO PROJECT DIAMOND DRILL GEOLOGICAL LOG

.

•----

----L .

.

- -

р.... ъ р. л к

н --н н----к --

ya na Na sa

ب - م

р.... К. -

•-----• •

. .

• -L -

• -•

9 mai 9 - - -9 mai 9 ma

<u>DDH 00-1</u>

Co-ordinates	-	L15N, 9+75W (I.P. Grid)
Claim	-	NMG 26
Inclination	-	Vertical
Started	-	August 29, 2000
Completed	-	September 25, 2000
Collar Elevation	-	1209.8 m (3959 ft)
Size	•	NQ, BQ (below 235.3 m - 772 ft)
Total Depth	-	412.1 m (1352 ft)

From M/(FT)	To M/(FT)	DESCRIPTION
0	8.0 (25.0)	CASING
8.0 (25.0)	17.6 (58.0)	Badly broken, light to dark-grey phyllite banding 45 ⁺ to core
17.6 (58.0)	24.4 (80.0)	Phyllite, light to dark-grey, fine grained, banding 60 ⁺ to core, minor graphitic section, pyrite on slips, occasional pyrite stringers
24.4 (80.0)	28.3 (93.0)	Quartzite, medium grained, light to dark-grey, occasional quartz stringers, finely disseminated pyrite and pyrrhotite 1-2%, occasional interbedded phyllite
28.3 (93.0)	55.5 (182.0)	Greywacke, fine grained, dark grey-green to black, mainly siliceous, graphitic on slips, pyrite on slips, up to 5% cubic pyrite to 1 cm, occasional minor finely disseminated pyrrhotite, dark argillaceous bands - 60* to core, quartz- carbonate stringers common.
		At 47.2 (155): a 1.0 m section fine-grained quartzite, black quartz eyes, 2-5% pyrite, minor pyrite.
		At 48.3: 7.0 cm white quartz stringer, disseminated and cubic pyrite.
55.5 (182)	56.8 (186.5)	Phyllite, fine grained, grey to black, banded 80° to core, graphitic in places, minor pyrite and pyrrhotite.

FROM	To M/(FT)	DESCRIPTION
M/(FT) 56.8 (186.5)	67.1 (220.0)	Quartzite, fine grained, light to dark grey, white and blue quartz eyes, pyrite on slips, scattered quartz stringers.
		At 63.0-63.7: fault zone.
67.1 (220.0)	89.8 (294.5)	Quartzite, fine to medium-grained, light grey- green, massive appearance, random quartz- carbonate stringers, occasional specks of pyrite.
89.8 (294.5)	90.7 (297.5)	Phyllite, fine grained, grey to black, contorted, occasional quartz stringers.
90.7 (297.5)	107.4 (352.5)	Quartzite, fine to medium-grained, grey to light green, glass-white and smoky-grey quartz eyes, occasional interbedded grey to black phyllite, odd specks of pyrite.
107.4 (352.5)	116.6 (382.5)	Phyllite, fine grained, light to dark grey, contorted sections, pyrite smeared on slips.
116.6 (382.5)	124.7 (409.0)	Quartzite, medium to coarse-grained, grey to pale green, smoky-grey glassy quartz eyes up to 1 cm, occasional phyllite interbeds.
		At 116.9: 15 cm white quartz vein, additional fine specks pyrite and pyrrhotite.
124.7 (409.0)	141.7 (465.0)	Phyllite, fine grained, light grey-green to black, graphitic in places, sections highly altered with talc and chlorite, quartzite interbeds, white quartz veins and stringers, minor pyrite and pyrrhotite.
		At 140.5: 15 cm white and smoky quartz with stringers, clots, pyrite.
141.7 (465.0)	151.6 (497.5)	Quartzite, fine to medium-grained, grey to light green, numerous random narrow quartz- carbonate stringers, minor disseminated pyrite and clots and smears of pyrite.
		At 142.3-145.4: core fractured and broken.
151.6 (497.5)	157.6 (517.0)	Mafic dyke, very fine grained, pale green, dense, numerous carbonate stringers, finely disseminated pyrrhotite.
157.6 (517.0)	158.0 (518.0)	Quartzite, medium to coarse-grained, greenish- grey.

/----•----

.

•----•----

r -

ро — К. . .

•.

•

	· · · · · · · · · · · · · · · · · · ·	
From m/(ft)	То м/(ft)	DESCRIPTION
158.0 (518.0)	160.9 (528.0)	Quartzite, very fine grained, dark grey to black, schistose, sericite, foliation 60° to core, smears and clots of pyrite.
160.9 (528.0)	162.5 (533.0)	Phyllite, very fine grained, banding at 70° to core.
162.5 (533.0)	171.3 (562.0)	Quartzite, fine grained, light grey-green, occasional specks of pyrrhotite.
171.3 (562.0)	173.4 (569.0)	Phyllite, fine grained, grey to black, crenulated, disseminated pyrite and pyrrhotite - 1-2%.
173.4 (569.0)	180.1 (591.0)	Greywacke, fine grained, greyish-green, quartz and quartz-carbonate veinlets and stringers, smears and clots of pyrite.
180.1 (591.0)	180.4 (592.0)	Fault zone - gouge.
180,4 (592.0)	182.0 (597.0)	Limy sediment(?), light green, carbonate stringers, broken core, minor pyrite and pyrrhotite.
182.0 (597.0)	199.0 (653.0)	Phyllite, fine grained, dark grey to black, chloritic, graphite on slips, quartz-carbonate veinlets and stringers, minor pyrite and pyrrhotite.
199.0 (653.0)	201.0 (662.0)	Quartzite, fine grained, grey to greenish-grey.
201.0 (662.0)	204.2 (670.0)	Phyllite, very fine grained, greyish-green to black, crenulated, chlorite, graphitic, vuggy- quartz-carbonate, disseminated clots, stringers and fillings 5-10% pyrrhotite and minor pyrite.
204.2 (670.0)	204.5 (671.0)	Mafic band, fine grained, light yellow-green, contorted smoky quartz-carbonate bands and stringers, scattered minor pyrrhotite.
204.5 (671.0)	205.4 (674.0)	Phyllite, fine grained, greenish-grey to black, pyrrhotite 10-15%, minor pyrite.
205.4 (674.0)	206.3 (677.0)	Mafic dyke(?), fine grained, yellow-green, greasy, broken, quartz-carbonate veinlets and stringers, scattered minor pyrrhotite.
206.3 (677.0)	218.5 (717.0)	Greywacke, fine to medium-grained, grey-green to dark grey, numerous quartz veins, veinlets and stringers, minor scattered pyrite and cubic pyrite on fractures.

-

-

C

р----К. .

<u>.</u>

ι.

н н н - н - -

ب.....

₽ -►

р ~~

- --

р,..... ь.....

• ·

. .

• ---• -

<u>___</u>

рала А. (22) Р. – – Қ

.....

narra bria

•----• •

-

FROM M/(FT)	To M/(FT)	DESCRIPTION
218.5 (717.0)	223.1 (732.0)	Phyllite, fine grained, grey to black, banding at 60° to core, chloritic.
223.1 (732.0)	228.9 (751.0)	Siltstone, fine grained, light green.
228.9 (751.0)	229.2 (752.0)	Fault gouge.
229.2 (752.0)	229.5 (753.0)	Phyllite, fine grained, grey to black.
229.5 (753.0)	235.3 (772.0)	Quartzite, fine to medium-grained, light grey.
		At 229.8-230.4: White broken quartz vein.
235.3 (772.0)	243.8 (800.0)	Major fault zone - gouge, broken, graphitic, greywacke.
		Reduce from NQ to BQ core.
243.8 (800.0)	266.4 (874.0)	Quartzite, fine to medium-grained, light greenish-grey, occasional interbedded phyllite.
266.4 (874.0)	271.0 (889.0)	Altered ultramafic, greasy, light to dark green, carbonate bands and fillings, occasional specks fine sulphide.
271.0 (889.0)	287.1 (942.0)	Interbedded greywacke, light to dark greyish- green, and phyllite-siltstone.
287.1 (942.0)	288.6 (947.0)	Diorite, coarse grained, grey to greenish-grey.
288.6 (947.0)	293.2 (962.0)	Quartzite, grey to greenish-grey.
		From 292.8: shatter zone, graphitic, chloritic and quartz remnants.
293.2 (962.0)	293.8 (964.0)	Altered ultramafic, green to grey-white talcy.
293.8 (964.0)	312.7 (1026.0)	Interbedded greywacke, phyllite.
312.7 (1026.0)	315.2 (1034.0)	Mafic dyke(?) soft, greasy, yellow-green, talcy, quartz-carbonate stringers.
315.2 (1034.0)	318.5 (1045.0)	Greywacke, fine grained, dark grey, minor cubic pyrite, specks pyrrhotite.
318.5 (1045.0)	321.0 (1053.0)	Phyllite-siltstone, fine grained, light green-grey, banded at 40° to core.
321.0 (1053.0)	327.2 (1073.5)	Greywacke, light grey, fine grained, occasional interbedded phyllite, graphitic on slips, minor smears of pyrrhotite.

.

....

.

р----Б. . .

рания 16. ч

ран ал. Бал — л

ро на во со реп — Х

• •

• · · · · ·

• •

р -. .

₽ - -► --

• •

ener K

▶ • • ▶ •

₽ ~

•-----► ---

C

₽--•

• >

•

FROM	То	
M/(FT)	M/(FT)	DESCRIPTION
327.2 (1073.5)	345.0 (1132.0)	Quartzite, light grey, fine to coarse grained, glassy grains, occasional narrow interbeds of phyllite or argillite, occasional carbonate stringers.
		At 332.8: Quartz vein, 20.0 cm.
345.0 (1132.0)	347.9 (1141.5)	Greywacke, light grey, fine grained, finely disseminated pyrrhotite, occasional narrow interbedded phyllite with minor disseminations of pyrrhotite.
347.9 (1141.5)	357.2 (1172.0)	Phyllite, grey to black, fine grained, banding and cortorta, at 50° to core, scattered clusters, smears and cubes pyrite up to 1.5 cm, black bands carbonaceous, slightly graphitic, some light bands contains greenish-yellow grains(?), minor yellowish-green limy sections.
357.2 (1172.0)	357.8 (1174.0)	Limestone, grey with narrow yellow-green bands, foliation 50° to core.
357.8 (1174.0)	367.3 (1205.0)	Highly hard altered quartz-sericite-carbonate- graphite black and white marble-like sediment in patches, stringers, clots and disseminated cubic pyrite 5-10%.
367.3 (1205.0)	370.9 (1217.0)	Graphitic schist, very broken, barely cemented white quartz fragments and veinlets.
370.9 (1217.0)	371.6 (1219.0)	More competent, harder, altered quartz- graphitic rock as before, 5-10% pyrite.
371.6 (1219.0)	372.0 (1220.5)	Quartzite, grey-green, fine grained, numerous random quartz-carbonate stringers, clots and stringers, cubic pyrite.
372.0 (1220.5)	373.2 (1224.5)	Graphitic schist.
373.2 (1224.5)	379.5 (1245.0)	Altered mafics, yellowish-green, fine grained, harder than before, numerous quartz-carbonate stringers, contains dark grey contorted phyllitic bands with stringers and cubic pyrite 5%.
379.5 (1245.0)	380.8 (1249.5)	Siltstone, pitted, soft, foliation 60° to core, mottled, light yellowish-grey.
380.8 (1249.5)	381.6 (1252.0)	Quartzite, dark grey, medium grained, two white quartz veinlets with minor pyrrhotite.

Na sa

.

р..... М. -

5

рана 8а. -

5

.

•-----•

,

.

~ ~ •

-

•

н. н. н. н.

• -

р: — • .

► ---►

р. - ч н. - с

•----\

• •

₽ → ⊾ →

~

р — - ы. - -

-

r ---

From m/(ft)	То м/(FT)	DESCRIPTION
381.6 (1252.0)	386.0 (1266.5)	Phyllite, black to greenish-grey, fine grained, banded at 65° to core, dark bands contain 3 5% pyrite. At 393.7: 15.0 cm quartz vein.
386.0 (1266.5)	412.1 (1352)	Greywacke, dark grey, fine to medium grained numerous random narrow carbonaceous stringers, occasional quartz veinlet, coarser grained intervals exhibit large glassy dark gre clasts of quartz giving mottled appearance.
	END	OF HOLE
	END	OF HOLE

5.

<u>ب</u>

----م - الم

р п к к

р...— Ь

µ-⊥ ⊾ .

NOBLE METAL GROUP INCORPORATED CARIBOO PROJECT

Ξ.

به مر م. ح

5

рания Б. - -. ÷ · . P* ~• • + ε.... ----• . -. κ. **•**· -• p-----• • • • ι. p ----• • · · ·

- --**1**. . r --κ.

• ·---

. .

-• **p**- --m ¥ -به م د ا

Γ.

DIAMOND DRILL GEOLOGICAL LOG

DDH 00-2

Co-ordinates	-	L15N, 13+50W
Claim	-	NMG 26
Inclination	-	Vertical
Started	-	October 3, 2000
Completed	-	November 2, 2000
Collar Elevation	-	1183.2 m (3882 ft)
Size	-	NQ, BQ below 184.7 m (606 ft)
Total Depth	-	393.3 m (1290.5 ft)

FROM M/(FT)	То м/(гт)	DESCRIPTION
0	10.4 (34.0)	CASING
10.4 (34.0)	13.1 (43.0)	Quartzite, light grey, fine to medium grained, core broken, rusty.
13.1 (43.0)	18.0 (59.0)	Argillite, black, fine grained, broken, stringers and patches cubic pyrite 1-2%
		At 16.0 m: white quartz stringers 10.0 cm.
		From 14.3 (47.0) to 18.0 (59.0): 1.5 m (5.0 ft) lost core.
18.0 (59.0)	25.0 (82.0)	Quartzite, light grey, fine to medium grained, numerous stringers white quartz, interbeds of black banded and contorta phyllite, fine disseminated and clots and stringers of pyrite 2-3%.
25.0 (82.0)	59.7 (196.0)	Greywacke, dark grey, fine grained, argillaceous, silty and phyllitic interbeds with stringers, clots and disseminated pyrite and pyrrhotite up to 5%, numerous quartz veinlets and stringers.
		At 25.0 (82.0): a 30.0 cm (12 in) quartz vein. At 28.3 (93): 45.0 cm (18 in) quartz vein.
59,7 (196.0)	61.3 (201.0)	Phyllite, grey to black.

	T	T
FROM M/(FT)	To M/(FT)	DESCRIPTION
61.3 (201.0)	70.7 (232.0)	Quartzite, light to dark grey, fine to coarse grained, occasional narrow phyllite interbeds, smoky grey elongated quartz grains up to 1.0 cm.
		At 69.2 (227.0): Fault gouge 6.0 cm.
70.7 (232.0)	73.6 (241.5)	Diorite dyke, light grey, fine to medium grained.
73.6 (241.5)	73.9 (242.3)	Limestone, light green, calcite stringers.
73.9 (242.3)	75.9 (249.0)	Quartzite, dark grey, fine grained.
75.9 (249.0)	83.1 (272.8)	Phyllite, grey-green to black, fine grained, occasional quartzite interbeds, several narrow quartz and quartz-carbonate stringers, occasional smear of pyrite on slips.
		At 76.5 (251.0): a 25.0 cm white and smoky quartz vein with occasional specks of pyrrhotite
		Quartz veins and stringers common from 76.5 to 83.1m
83.1 (272.8)	93.3 (306.2)	Quartzite, light grey, fine to coarse grained, random narrow carbonate stringers common.
93.3 (306.2)	94.2 (309.0)	Limestone, light to dark green, very fine grained, numerous random calcite stringers.
94.2 (309.0)	95.1 (312.0)	Phyllite, grey to black, fine grained, occasional quartz-carbonate stringers, pyrite smears on slips, occasional speck of pyrrhotite.
95.1 (312.0)	99.7 (327.0)	Quartzite, dark grey, fine grained.
		At 95.7 (314.0) to 96.0 (315.0): quartz vein, occasional short phyllite interbeds and limy sections.
99.7 (327.0)	101.0 (331.5)	Phyllite, dark greenish-black, very fine grained, numerous quartz stringers and veinlets and hairline quartz-carbonate stringers, pyrrhotite on slips.
101.0 (331.5)	101.7 (333.5)	Chert, dark greenish-grey, quartz veinlets and carbonaceous stringers.
101.7 (333.5)	102.7 (337.0)	Quartzite, light grey, fine grained, quartz stringers, minor pyrite in slips.

,

5

-----د الک

------ -

антан 1917 - 19

р. н. 1. – .

* ----% ----*

••• ·•

- ---

ب. ... د

р..... н. .

• •

•

[]

- -

	From м/(ft)	То м/(ғт)	DESCRIPTION
	102.7 (337.0)	107.3 (352.0)	Greywacke, dark grey to black, broken core to 105.9 (247.5), clots and smears pyrite 1% very fine pyrrhotite.
			Lost core - 1 metre.
	107.3 (352.0)	113.4 (372.0)	Phyllite and interbedded quartzite, random quartz and quartz-carbonate stringers, finely disseminated and hairline stringers, pyrite and pyrrhotite - 1%.
	113.4 (372.0)	114.3 (375.0)	Greywacke, dark grey, fine to medium grained, minor finely disseminated pyrrhotite.
	114.3 (375.0)	119.8 (393.0)	Phyllite, grey to black, very fine grained, contorta and foliation at 80° to core, clots and stringers pyrrhotite 5-10%, pyrite in smears on slips, graphite on slips, occasional narrow quartzite interbeds, last 1.7 metres pyrrhotite 10%.
	119.8 (393.0)	120.8 (396.5	Greywacke, dark grey, fine to medium grained, minor disseminated pyrrhotite and pyrite.
	120.8 (396.5	123.6 (405.5)	Phyllite, black, very fine grained, minor grey bands, quartz-carbonate fillings, foliation, graphitic, contorta, some vuggy calcite stringers, blebs, fillings, stringers pyrrhotite 15%.
	123.6 (405.5)	125.9 (413.0)	Greywacke, dark grey, medium grained, occasional quartz stringers, minor dissemination or stringers cubic pyrite.
	125.9 (413.0)	126.6 (415.5)	Phyllite, black, very fine grained, sericitic, some quartz veining, pyrrhotite 5%.
	126.6 (415.5)	149.5 (490.5)	Greywacke, light to dark grey, fine to medium grained, black phyllitic or siltstone interbeds in the quartz-carbonate stringers, blebs, patches, stringers and disseminated pyrrhotite 2-4%.
-	149.5 (490.5)	151.8 (498.0)	Quartzite, light grey, coarse grained, contains smoky quartz grains and occasional blue quartz eye.
	151.8 (498.0)	161.7 (530.5)	Greywacke, light to dark grey, interbeds of grey to black phyllite, sericitic, some quartz and quartz-carbonate stringers, odd bleb pyrite and pyrrhotite.

улган 16 - к

_____ ____

 \Box

-

••••• • •

. .

.

р: -ь

.

ро м к р к —

r -.

Γ.

рипа. Б. с. и

r --

FROM M/(FT)	То м/(F T)	DESCRIPTION
161.7 (530.5)	165.5 (543.0)	Phyllite-mudstone, dark grey to black, fine grained, quartz carbonate stringers giving marbleized appearance, narrow stringers, blebs and patches pyrrhotite and pyrite.
165.5 (543.0)	178.0 (584.0)	Greywacke, light grey, fine to coarse grained, occasional narrow quartz or carbonate stringers.
		At 171.9: 1.2 metres very coarse grained section with smoky grey-black and blue quartz grains 2-3 mm.
178.0 (584.0)	182.6 (599.0)	Phyllite or mudstone, grey to black, very fine grained, banding in places 60° to core, contorta, minor quartz stringers, minor disseminated pyrrhotite.
182.6 (599.0)	188.4 (618.0)	Greywacke, light to dark grey, fine to medium grained, minor pyrite as smears, last 0.6 metre white quartz vein and veining, no sulphides.
188.4 (618.0)	189.3 (621.0)	Quartz vein structures, yellow-green matrix.
189.3 (621.0)	192.6 (632.0)	Greywacke, dull grey to dark grey, fine to medium grain.
192.6 (632.0)	197.7 (648.5)	Mudstone, dark grey to black, very fine grained, occasional hairline stringers of pyrrhotite.
197.7 (648.5)	240.6 (789.5)	Quartz wacke, fine to very coarse grained, light to dark grey, occasional narrow interbed mudstone, occasional quartz vein up to 20 cm, minor scattered finely disseminated pyrrhotite, occasional splash pyrite on slips.
240.6 (789.5)	243.8 (800.0)	Fault gauge and broken core,
		Lost core - 1.5 metres
243.8 (800.0)	246.9 (810.0)	Phyllite, grey to black, fine grained, occasional speck of pyrrhotite.
246.9 (810.0)	253.0 (830.0)	Quartz wacke, grey, fine to medium grain.
253.0 (830.0)	256.0 (840.0)	Mudstone, grey to black, very fine grained, minor pyrrhotite.
256.0 (840.0)	261.8 (859.0)	Mudstone as above, badly broken. Lost core - 1.5 metres. Quartz wacke rubble mixed in lower interval.
261.8 (859.0)	280.4 (920.0)	Greywacke, dull grey, fine to medium grain, somewhat broken.

.

0

5

.

5

.

.

.

р (т.) 1 (т.) 1 (т.) 1 (т.) 2 (т.) 2

- -

е. 5

. د د

р..... р. ...

•

....

]						
	FROM м/(FT)	То м/(г т)	DESCRIPTION					
	280.4 (920.0)	291.7 (957.0)	Greywacke and carbonaceous sediments, graphitic in part, badly broken and crumbly sections.					
	291.7 (957.0)	302.1 (991.0)	Phyllite-mudstone, grey to black, very fine grain, core broken in discs, occasional quartz- carbonate stringers, blebs and hairline stringers pyrrhotite 5%.					
	302.1 (991.0)	305.0 (1000.6)	Limy sediments, yellow-green to black, banded and contorted at 75° to core, numerous carbonate and quartz-carbonate stringers, minor blebs and patches pyrrhotite.					
	305,0 (1000.6)	314.9 (1033.0)	Greywacke, light to dark grey, fine to medium grain, with interbeds of very fine grained black phyllite or mudstone, hairline seams and disseminated pyrrhotite, occasional pyrite stringers, chloritic sections.					
	314.9 (1033.0)	320.6 (1052.0)	Greywacke, light grey, fine to coarse grained.					
	320.6 (1052.0)	334.8 (1098.5)	Mixed sequence light grey wackes and black phyllites, fine to very fine grained, graphitic in places, minor pyrrhotite and pyrite.					
	334.8 (1098.5)	356.5 (1169.5)	Graphitic schist, hard to soft, black and white zebra appearance, whitish carbonaceous bands, patches, stringers and disseminated cubic pyrite 15%.					
	356.5 (1169.5)	380.5 (1248.5)	Fault shatter zone, mixture of gouge, greywacke shards, graphitic, sections of greywacke.					
		Lost Core	356.5 - 360.9: 1.0 metre 360.9 - 362.7: 1.4 metres 362.7 - 364.2: 0.5 metres 372.4 - 374.9: 1.0 metre 374.9 - 376.5: 0.3 metre 376.5 - 379.6: 1.2 metres 379.6 - 380.5: 0.5 metres					
-	380.5 (1248.5)	382.5 (1255.0)	Graphitic schist, pyrite 2%.					
-	382.5 (1255.0)	388.9 (1276.0)	Greywacke.					
	388.9 (1276.0)	393.3 (1290.5)	Greywacke with mudstone interbeds, silicified, some quartz-carbonate stringers, sections with minor cubic pyrite.					
-	· · · · · · · · · · · · · · · · ·							
		END (OF HOLE					

р-с. Б. .

Γ.

[]

-

н н Х. -

. .

•

ріті 5. ріті 8. і 1. ріті 8. і

С

p----

•----.

NOBLE METAL GROUP INCORPORATED CARIBOO PROJECT - ASSAYS

..... د 🖬

Ξ.

5

.

•-----•

г •

. . .

. .

.

• ~

,----

. -

. .

ун тон 16 — г

5

.

- -

<u>DDH 00-1</u>

	FROM	To	WIDTH	Co PPM	Ni	CR	Cu	SR	V
<u>No.</u>	<u>FT</u>	<u>F1</u>	FT	<u>rrm</u>	<u>PPM</u>	<u>PPM</u>	<u> PPM</u>	<u>PPM</u>	PPM
91557	93.5	97,0	3,5	25	42	144	18	84	5
91551	97.0	102.0	5.0	53	108	26	101	17	5
91552	102.0	107.0	5.0	37	65	83	35	46	8
91553	107.0	112.0	5.0	48	84	40	36	40	8
91554	112.0	117.0	5,0	35	63	36	35	27	5
91555	123.5	127.0	3,5	59	109	79	51	24	9
91556	127.0	130.0	3,0	54	101	124	37	18	14
91558	155.0	158,5	3.5	57	103	97	45	15	11
91559	158.5	159.0	0.5	45	87	119	35	11	9
91560	290.0	293.0	3.0	33	61	133	27	23	14
91561	432.0	434.0	2.0	55	103	85	38	24	116
91562	434.0	434.3	0.3	30	57	299	16	33	24
91563	434.3	437.0	2.7	54	99	128	41	36	29
91564	437.0	442.5	5.5	52	102	63	53	47	10
91565	442.5	444.0	1.5	64	128	134	99	59	25
91566	447.0	451.0	4.0	58	109	139	48	45	20
91567	451.0	454.0	3.0	65	126	103	55	20	15
91568	454.0	457.0	3.0	45	83	89	28	34	12
91569	457,0	459.0	2.0	58	110	158	58	58	20
91570	459.0	461.0	2.0	58	43	90	23	40	13
91571	461.0	461.7	0.7	18	30	203	15	138	11
91572	461.7	465.0	3.3	53	94	71	28	27	15
91573	497.5	502.0	4.5	109	185	203	96	218	226
91574	502.0	507.0	3.0	109	183	219	91	237	225
91575	507.0	512.0	5,0	110	176	178	106	222	224
91576	512.0	517.0	5.0	88	145	141	87	201	17 9
91577	562.0	565.0	3.0	5 6	111	39	55	9	8
91578	565.0	569.0	4.0	51	99	41	51	32	8
91589	602.0	607.5	5.5	54	103	113	59	39	19
91579	607.5	612.0	4.5	59	111	43	39	9	12
91580	612.0	617.0	5,0	58	108	83	42	13	14
91581	617.0	622.0	5.0	66	122	58	41	13	16
91582	622.0	626.0	4.0	70	129	55	43	15	16
91583	626.0	627.0	1.0	74	140	104	59	41	23
91584	627.0	632.0	5.0	64	119	51	43	14	14
91585	632.0	637.0	5.0	50	82	48	51	28	9
91586	637.0	641.0	4.0	35	63	82	18	5 9	11

SAMPLE <u>No.</u>	From <u>Ft</u>	To <u>FT</u>	Width <u>Ft</u>	Со <u>РРМ</u>	Ni <u>PPM</u>	Ся <u>РРМ</u>	Си <u>РРМ</u>	SR <u>PPM</u>	V <u>PPM</u>
91587	641.0	647.0	6.0	59	108	73	38	9	18
91588	647.0	653.0	6.0	61	116	73	46	19	19
91590	662.0	667.0	4.0	55	105	76	45	45	18
91591	667.0	670.0	3.0	68	128	59	68	56	20
91592	670.0	671.0	1.0	85	62	892	71	215	139
91593	671.0	674.0	3.0	69	131	84	76	34	27
91594	674.0	677.5	3.5	37	70	341	41	17	13
91595	677.5	678.0	0.5	34	70	243	27	31	12
91596	678.0	680.0	2.0	32	59	131	9	97	19
91597	680.0	680.5	0.5	27	50	199	2	50	21
91598	711.5	712.0	0.5	22	41	223	17	62	10
91599	712.0	714.0	2.0	64	125	100	74	43	20
91600	714,0	715.5	1.5	50	95	139	43	38	24
91601	715.5	717.0	1.5	53	103	111	66	57	17
91602	754.0	756.0	2.0	10	18	93	3	50	5
91603	839.0	840.0	1.0	52	70	133	23	143	152
91607	872.0	874.0	2.0	35	43	94	167	107	40
91604	874.0	879.0	5.0	64	1006 461	1453 1380	54	465 341	117 107
91605	879.0	884.0	5.0	63	950	1553	69	416	120
01000					379	1280		260	104
91606	884.0	889.0	5.0	75	892	1376	44	346	116
01000					416	1230		279	103
91608	889.0	891.0	2.0	29	43	94	167	25	11
91609	902.0	905.0	3.0	48	77	58	92	15	10
91610	912.0	917.0	5.0	48	86	52	33	47	20
91611	917.0	922.0	5.0	46	82	49	38	43	16
91612	960.5	962.0	1.5	43	215	477	50	116	52
91613	962.0	964.0	2.0	71	587 481	1042 868	47	349	91
91614	964.0	968.0	4.0	30	46	52	22	23	11
91645	1027.0	1031.0	-	-	-	-	-		-
91646	1031.0	1034.0	3.0	67	142	252	44	150	80
91647	1034.0	1038.0	4.0	44	70	102	42	51	16
91648	1038.0	1042.0	4.0	37	59	89	26	43	13
91649	1042.0	1045.0	3.0	55	93	84	51	50	18
91650	1045.0	1050.0	5.0	74	149	280	32	187	91
91615	1050.0	1055.0	5.0	52	101	162	30	111	56
91616	1092.5	1093.4	0.9	24	28	102	24	60	5
91617	1131.5	1136.5	5.0	41	64	78	32	23	12
91618	1136.5	1141.5	5.0	41	63	63	30	26	12
91619	1141.5	1147.0	5.5	56	101	47	60	10	8
91620	1147.0	1152.0	5.0	64	222	198	81	44	16
91621	1152.0	1157.0	5.0	67	12 9	42	64	12	11

۳۳۰۰ ۲۰۰۰

ания ания

р (194 Б. – А

μ (14) μ (14

.

SAMPLE	Глом	То	WIDTH	Co	Ni	CR	Cu	SR	۷
<u>No.</u>	FT	<u>FT</u>	FT	<u>PPM</u>	<u>PPM</u>	PPM	PPM	PPM	<u>PPM</u>
				,					
91622	1157.0	1162.0	5.0	48	85	86	46	43	13
91623	1162,0	1167.0	5.0	63	106	95	50	68	47
91624	1167.0	1172.0	5.0	49	83	100	45	38	21
91626	1172.0	1174.0	2.0	6 9	378	1200	72	136	75
91627	1174.0	1177.0	3.0	43	114	126	75	65	64
91628	1177.0	1182.0	5,0	43	135	109	108	53	67
91629	1182.0	1187.0	5.0	34	151	234	88	58	164
91630	1187.0	1192.0	5.0	34	134	98	52	60	98
91631	1192.0	1197.0	5.0	39	156	106	84	67	82
91632	1197.0	1202.0	5.0	39	140	168	118	64	93
91633	1202.0	1205.0	3.0	37	101	50	98	89	27
91634	1205.0	1212.0	7.0	24	121	86	114	94	85
91635	1212.0	1217.0	5.0	36	141	77	105	68	77
91636	1217.0	1219.0	2.0	24	165	113	78	25	166
91637	1219.0	1220.5	1.5	54	95	85	90	61	101
91638	1220.5	1224.5	3.0	40	112	92	42	42	34
9163 9	1224.5	1228.0	3,5	34	67	104	30	32	9
91640	1228.0	1232.0	4.0	51	93	70	41	89	41
91641	1232.0	1235.0	3.0	61	222	228	63	97	35
91642	1235.0	1238.0	3.0	69	300	332	64	132	63
91643	1238.0	1242.0	4.0	60	213	347	42	69	58
91644	1242.0	1245.0	3.0	54	130	114	75	49	35
91676	1245.0	1249.5	4,5	70	531	856	112	173	69
91677	1249.5	1252.0	2.5	18	35	119	22	14	7
91678	1252.0	1256.0	5.0	48	103	145	40	48	30
91679	1256,0	1259.0	3.0	32	56	58	25	36	10
91680	1259.0	1259.5	0.5	16	30	221	11	28	9
91681	1259,5	1263.0	3,5	51	77	84	35	44	36
91682	1263.0	1266.5	3.5	40	66	65	31	14	7
91683	1277.0	1282.0	5.0	40	60	69	89	62	32
91684	1302.0	1307.0	5.0	30	45	93	15	55	10
91685	1322.0	1327.0	5.0	50	68	98	1 9	42	68

jerina Na s

рип. 14. с

,-----,

•-----•

e----

р---ь ,-

· ---

р ---к - --

•

e ---

р — Б. –

, ...

END OF DRILL HOLE 00-1

NOBLE METAL GROUP INCORPORATED CARIBOO PROJECT - ASSAYS

<u>DDH 00-2</u>

	SAMPLE <u>No.</u>	From <u>Ft</u>	To <u>FT</u>	WIDTH <u>FT</u>	Co PPM	Ni PPM	Ca PPM	Cu PPM	Sa PPM	V <u>PPM</u>
,										
	91686	42.0	47.0	5.0	47	78	79	50	5	9
	91687	52.0	53.0	1.0	24	38	98	20	15	8
	91688	53.0	59.0	6.0	49	83	61	53	14	6
	91689	59.0	62.0	3.0	32	48	91	16	41	8
	91690	62.0	67.0	5.0	41	65	56	30	22	8
	91691	67.0	72.0	5.0	50	84	51	39	28	9
	91692	72.0	77.0	5.0	34	54	83	20	38	10
	91693	77.0	82.0	5.0	35	51	47	17	49	11
	91694	82.0	83.0	1.0	26	45	125	19	31	7
	91695	83.0	88.0	5.0	48	75	63 7 4	30	5	11
	91696	88.0	93.0	1.0	52	88	74	45	12	8
	91697	93.0	94.5	1.5	23	40	77	28	7	4
	91698	94.5	100.0	5.5	49 40	83	72	44	16	9
	91699	100.0 105.0	105.0	5.0 5.0	43 40	74 70	76 56	27 27	31	16 12
	91700 91701	110.0	110.0 115.0	5.0 5.0	40 42	67	50 75	27 24	31 31	10
	91702	122.0	127.0	5.0	49	80	67	39	23	10
	91702	142.0	147.0	5.0	45 26	43	107	12	114	10
	91704	162.0	167.0	5.0	29	43	115	16	50	15
	91704	167.0	172.0	5.0	31	50	58	16	35	14
	91706	196.0	201.0	5.0	44	75	46	47	7	8
	91713	227.0	232.0	5.0	43	60	111	43	39	64
	91707	247.0	249.0	2.0	37	55	75	31	45	10
	91708	249.0	251.0	2.0	41	74	33	27	11	9
	91709	251.0	251.8	0.8	22	43	108	21	15	7
	91710	251.8	252.8	1.0	40	70	53	35	22	8
	91711	252.8	256.6	3.8	43	70	55	27	27	11
	91712	256.6	259.0	2.4	27	42	140	24	33	8
	91714	259.0	262.0	3.0	49	77	73	45	10	12
	91715	262.0	267.0	5.0	52	83	38	83	11	12
	91716	267.0	272.8	5.8	49	83	66	34	23	15
	91717	282.0	287.0	5.0	19	27	60	8	59	7
	91718	302.0	306.2	4.2	26	41	85	20	57	10
	91719	306.2	309.0	2.8	53	106	190	50	114	17
	91720	309.0	312.0	3.0	43	72	74	32	16	34
	91721	327.0	331.5	4.5	39	66	71	26	19	11
	91722	331.5	333,5	2.0	30	43	64	16	50	11
	91735	337.0	342.0	5.0	39	29	34	39	12	86
	91736	342.0	347.0	5.0	61	82	57	25	64	52
	91737	347.0	352.0	5.0	59	92	65	34	46	22
	91738	352.0	355.0	3.0	55	85	70	26	59	27
	91739	355.0	258.0	3.0	38	57	102	25	30	14
	91740	358.0	361.0	2.0	80	129	39	30	36	71
	51170	000,0	001,0	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			50		~~	. •

0

, .

F ----

-

•

ب - م

- -

_

SAMPLE <u>No.</u>	FROM FI	To FI	WIDTH <u>FT</u>	Со <u>РРМ</u>	Ni <u>PPM</u>	Cr PPM	CU PPM	SR PPM	V <u>РРМ</u>
		<u></u>	<u></u>	<u></u>	<u> m</u>	<u></u>	<u></u>	<u></u>	<u> m</u>
91741	361.0	364.0	3.0	74	136	57	43	31	20
91742	364.0	367.0	3.0	72	135	62	48	34	22
91743	367.0	370.0	3.0	59	116	53	32	35	16
91744	370.0	372.0	2.0	63	117	51	31	27	21
91745	372.0	375.0	3.0	32	57	78	10	17	14
91746	375.0	377.0	2.0	60	108	51	41	33	11
91734	377.0	379.5	2,5	68	125	46	61	11	9
91729	379,5	383.0	3.5	5 9	103	75	44	27	16
91730	383.0	386.0	3.0	61	130	27	56	17	8
91731	386.0	389.0	3.0	70	143	28	45	19	8
91732	389.0	393.0	4.0	68	136	26	67	27	7
91733	393.0	396.5	3.5	55	135	25	32	29	9
91723	396.5	400.0	3.5	49	85	38	43	48	7
91724	400.0	403.0	3.0	51	86	28	62	14	5
91725	403.0	405.5	2.5	51	86	52	70	14	7
91726	405.5	408.0	2.5	35	53	64	27	11	12
91727	408.0	411.0	3.0	53	83	71	26	58	26
91728	411.0	413.0	2.0	23	33	46	37	64	67
91747	413.0	415.0	2.0	68	125	46	61	22	21
91748	454.0	457.0	3.0	73	151	74	50	54	15
91749	476.0	479.0	3.0	27	51	101	10	100	9
91750	479.0	482.0	3.0	28	51	106	12	44	13
91751	506.0	509.0	3.0	56	110	73	41	17	8
91752	509.0	512.5	3.5	60	118	33	42	17	8
91753	530.5	534.0	3.5	74	144	40	52	22	11
91754	534.0	537.0	3.0	63	125	46	39	15	9
91755	537.0	540.0	3.0	65	123	55	49	19	10
91756	540.0	543.0	3.0	75	147	66	56	24	13
91757	616.0	618.0	2.0	32	60	129	12	27	18
91758	618.0	621.0	3.0	55	99	121	3	66	35
91759	830.0	835.0	5.0	57	105	3 9	42	8	7
91760	920.0	925.0	5.0	33	57	78	14	51	12
91761	957.0	960.0	3.0	55	96	111	34	16	12
91762	960,0	965.0	5.0						
91763	965,0	968.0	3.0						
91764	968.0	971.0	3.0						
91765	971.0	974.0	3.0						
91766	974.0	977.0	3.0						
91767	977.0	980.0	3.0	44	127	241	20	38	29
91768	980.0	985.0	2.0	66	119	58	40	9	12
91769	985.0	988.0	3.0	52	93	97	33	14	14
91770	988.0	991.0	2.0	58	98	78	53	13	19
91771	991.0	993.0	2.0	58	80	133	35	34	141
91772	993.0	996.0	3.0	~-	100		- -		
91773	996.0	998.0	2.0	39	192	466	23	122	130
91774	998.0	1000.6	2.6	22	60	181	16	94	81
91775	1000.6	1004.0	3.4	39	71	100	23	18	15
91776	1004.0	1007.0	3.0	49	86	104	27	8	15
91777	1007.0	1010.0	3.0	46	79	65	20	15	10
91778	1010.0	1013.0	3.0	49	90	62	21	16	13

-

SAMPLE <u>No.</u>	ГНОМ <u>FT</u>	То <u>F</u> T	Width <u>Ft</u>	Со <u>РРМ</u>	Ni <u>PPM</u>	CR <u>PPM</u>	Си <u>ррм</u>	SA <u>PPM</u>	V <u>РРМ</u>
91779	1013.0	1016.0	3.0	44	80	85	20	18	14
91780	1016.0	1020.0	4.0	53	100	67	32	8	10
91781	1020.0	1023.0	3.0	46	88	89	28	23	11
91782	1020.0	1026.0	3.0	40	81	114	32	26	17
91782	1025.0	1020.0	3.0	42 56	106	64	32 34	20 19	10
91765 91784	1020.0	1029.0	4.0	57	106	64	34 31	19 24	14
91704	1029.0	1033.0	4.0	57	100	04	31	24	14
91785	1052.0	1055.0	3.0	53	163	226	116	43	29
91786	1055.0	1058.0	3.0	62	363	254	48	31	40
91787	1058.0	1061.0	3.0	56	141	100	44	26	17
91788	1061.0	1063.0	2.0	61	152	97	43	35	24
91789	1063.0	1066.0	3.0	56	122	119	32	22	18
91790	1066.0	1070.0	3.0	54	105	76	37	31	32
91791	1070.0	1073.0	3.0	57	110	77	27	44	26
91792	1073.0	1076.0	3.0	63	116	48	38	36	44
91793	1076.0	1079.0	3.0	67	126	68	37	34	38
91 79 4	1079.0	1082.0	3,0	52	102	77	30	33	12
91795	1082.0	1085.0	3.0	51	96	70	35	30	12
91796	1085.0	1088.0	3.0	51	106	78	29	42	15
91797	1088.0	1091.0	3.0	53	113	96	23	33	16
91798	1091.0	1094.0	3,0	41	83	83	46	61	23
91799	1094.0	1098.5	4.5	52	99	73	50	35	14
91800	1098.5	1102.0	3,5	53	151	107	85	79	10
91 801	1102.0	1105.0	3.0	19	100	74	47	126	55
91802	1105.0	1108.0	3.0	27	138	119	99	125	333
91803	1108.0	1111.0	3.0	24	90	74	47	746	96
91804	1111.0	1114.0	3 .0	21	110	83	72	143	89
91805	1114.0	1117.0	3.0	28	148	304	13	146	96
91806	1117.0	1120.0	3.0	19	122	79	62	152	89
91807	1120.0	1123.0	3.0	21	90	68	51	122	26
91808	1123.0	1126.0	3.0	22	122	80	78	151	47
91809	1126.0	1129.0	3.0	47	150	100	72	85	81
91810	1129.0	1132.0	3.0	42	135	94	104	73	61
91811	1132.0	1135.0	3.0	44	161	118	112	56	109
91812	1135.0	1138.0	3.0	49	149	129	118	79	101
91813	1138.0	1141.0	3.0	51	163	154	99	85	77
91814	1141.0	1143.0	2.0	43	113	139	53	83	39
91815	1143.0	1147.0	4,0	42	140	137	89	76	76
91816	1147.0	1151.0	4.0	50	145	164	130	106	61
91817	1151.0	1154.0	3.0	43	99	77	58	59	22
91818	1154.0	1157.0	3.0	29	86	89	59	98	47
91819	1157.0	1160.0	3.0	22	62	80	18	93	12
91820	1160.0	1163.0	3.0	85	172	76	44	93	45
91821	1163.0	1166.0	3.0	39	121	119	46	80	16
91822	1166.0	1169.0	3.0	73	210	203	107	113	77
51022	1100.0	, 100.0	9,9	,0	210	200	.07	. 10	.,
91823	1214.5	1218.0	2.5	41	105	83	107	78	76
91824	1243.5	1245.5	2.0	84	199	119	111	96	52
91825	1248.5	1251.0	2.5	17	59	1 31	92	91	43
91826	1251.0	1253.0	2.0	50	101	67	114	101	47
91827	1253.0	1255.0	2.0	84	143	64	109	59	68

5

Ξ.

 \Box

----- ...

.....

. .

----• ·

,

. .

р. Б

•~~ • ---

•---•--

р.... ъ. р.....

p:----

Appendix II

بندر د ک

period be a period be a period

•••••

۱....

[]

- · · · ·

بيني م

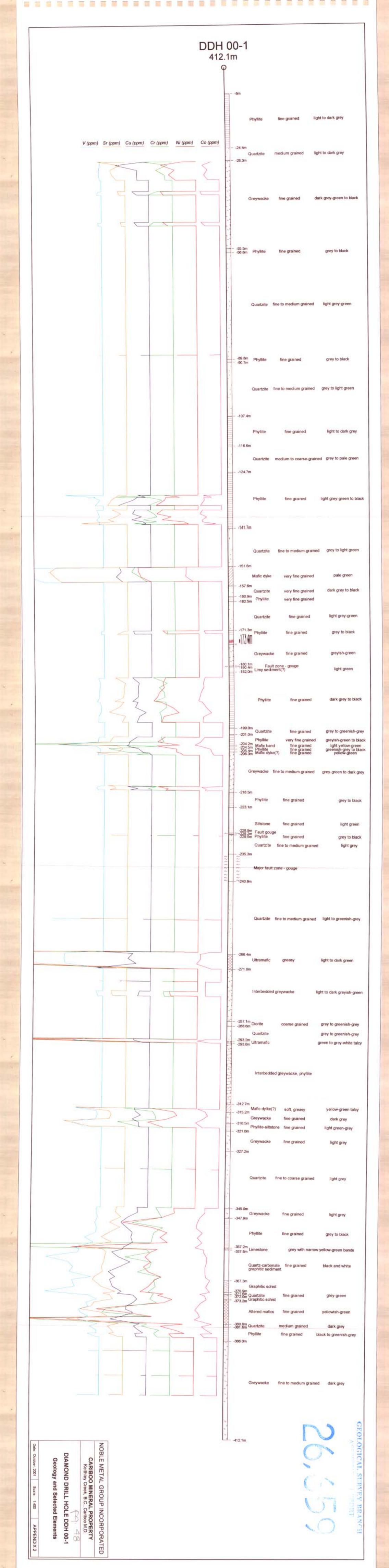
5.

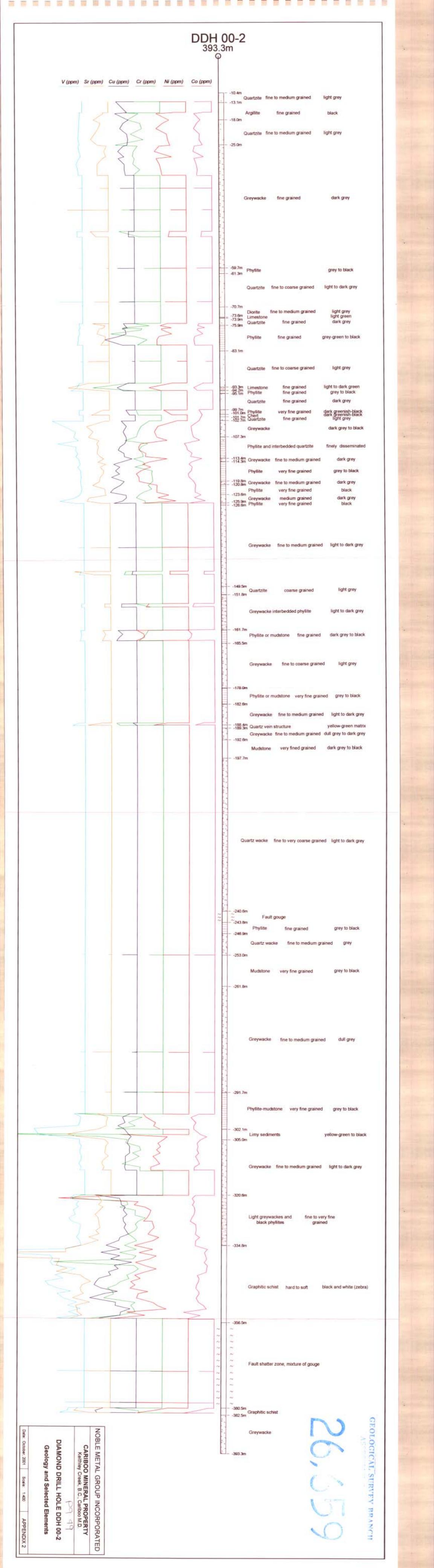
:-

рот. Б. – С

Ξ.

•----• •


р..... Б. .


• -

•

• •

DIAMOND DRILL SECTIONS

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43364

DATE: Oct.13, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	l a	Mg	Mn	Mo	No	Ar:	-	DL	OL.	<u>.</u>						
No.	ppm	%	ppm	ppm	ppm							ppm				_					P		Sb				U	V	W	
91551	<0.5			<1	17	48		0.21	2	53	26	101				0.67	ppm			_			<u>ppm</u>					ppm	ppm	ppm
91552	<0.5	1.08	5	<1	17	38		1.04	1	37	83	35				0.75		4	0.01		0.024		(17	-	<0.01		5	12	99
91553	<0.5	1.41	2	<1	20	30		0.97	÷	48	40	36		0.13				2	0.02		0.148		5	46	•	<0.01	-	8	6	54
	<0.5		12	<1	19	22	•	0.51	<1	35	36	35		0.13		1.22			0.01	•••	0.040		4	40		<0.01	•	8	3	73
	<0.5			<1	19	63		0.38	•	59	7 9	51		0.30		0.64		2			0.066		3	27	<1	<0.01	<1	5	2	39
				•			- 1	V.VU	-	55	13	σī	9.70	0.30	27	1.26	505	2	0.02	109	0.031	30	6	24	<1	<0.01	<1	9	2	72
91556	<0.5	2.09	10	<1	25	68	e 1	0.24	2	54	404	37	E 20	A 22				_												
	<0.5		6	<1	21	41		1.73			124	37	5.30					2			0.029		5	18	<1	<0.01	<1	14	1	65
	<0.5		_	<1	21	77		0.23	-	25 57	144	18		0.22	-	0.41		1	0.03		0.018		3	84	<1	<0.01	<1	5	2	25
	<0.5		<1	<1	11	63	-		4	57	97	45		0.35				1			0.034		5	15	<1	<0.01	<1	11	1	71
	< 0.5		•	<1	15			0.18	1	45	119	35		0.28		1.16					0.028		4	11	<1	<0.01	<1	9	<1	56
¥1000	-0.0	1.01	~1	~1	rə	54	<1	0.57	<1	33	133	27	3.34	0.28	31	0.87	360	1	0.02	61	0.032	19	4	23	<1	0.10	<1	14	3	41
91561	~0 E ·	3 4 E	7		24	40			~		~-																			
	~0.5 <0.5			<1	21	42		0.60		55	85	38				1.42		1	0.02	103	0.051	23	5	24	<1	0.01	<1	16	<1	65
				<1	21	62		0.91	-	30	299	16		0.32		0.88		2	0.04		0.037		4	33	<1	<0.01	<1	24	2	39
	<0,5 :			<1	21	60		1.26	2	54	128	41				1.48			0.02	••	0.047		5	36	<1	<0.01	<1	29	<1	65
	<0.5		<1	<1	22	34		1.65	2	52	63	53				1.24		1	0.02	102	0.039	39	4	47	<1	<0.01	<1	10	<1	64
91565	<0.5	2.19	<1	<1	23	39	<1	1.63	2	64	134	99	6.23	0.19	61	1.58	921	2	0.02	128	0.019	115	5	59	<1	<0.01	<1	25	<1	191
			-																											
91566				<1	23	74	•	1.34	2	58	139	48	5.96	0.39	50	1.67	931	2	0.03	109	0.042	26	6	45	<1	<0.01	<1	20	2	67
	<0.5		<1	<1	22	71	<1	0.52	2	65	103	55	6.9 3	0.35	67	1.57	647	2	0.02	126	0.038	30	6	20	<1	<0.01	<1	15	<1	79
	<0.5		<1	<1	21	60	<1	0.85	1	45	89	28	4.35	0.29	56	1.16	587		0.02		0.034	10	3	34	<1	<0.01	<1	12	1	54
	<0.5		6	<1	19	55	<1	1.63	2	58	158	58	5.30	0.27	64	0.94	731	2	0.02	110	0.019	15	5	58	<1	<0.01	<1	20	1	45
91570	<0.5	<u>1.15</u>	<1	<1	16	25	<1	1.22	<1	25	90	23	2.42	0.13	39	0.66	537		0.02		0.020		3	40				13	2	35
							-														V.VLV		5	77	~ 1	-0.01	~!	1.3	2	30

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43364

DATE: Oct.13, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	Ał	As	Au	8	Ba	Bi	Ca	Cd	Co	Cr	Сц	Fe	К	La	Ma	Mn	Mo	Na	M i	P	Ph	Qh	Sr	TL	Ti	U		147	
No.	ppm	%	ppm	ppm	ppm						ppm						ppm			ppm							-	V	W	Zn
91571	<0.5	0.73		<1	20	21		3.95		18	203	15		0.15	27	0 33	1050	1			0.013		<u>ppm</u> 3	128			ppm			ррт
91672	<0.5	2.35	3	<1	22	46		0.66		53	71	28		0.19				4			0.013		_			< 0.01		11	<1	19
91573	<0.5	5.49	7	<1	24	35		5.74		109	203		11.36					3					5	27	<1	0.01	•	15	<1	73
	<0.5			<1	23	31	2	5.18			219		11.50								0.133		11	218	<1	0.52	-	226	4	66
91575				<1	24	33	_	5.22			178		11.56								0.133		10			0.47	•	225	2	65
			••			••	- 1			110	170	100	11.50	0.05	40	4 .f I	1080	3	U.UZ	170	0.137	16	10	222	<1	0.48	<1	224	4	66
91576	<0.5	4.46	7	<1	25	66	1	4.90	3	88	141	87	0.64	0.07	43	240	1700	•	0.00	445	0 4 4 0	4 6	~	~~ 4						
91577				<1	19	70		0.25		56	39	55						-			0.116		8			0.57		_	1	61
	<0.5			<1	21	52		1.01	2	51	41	51		0.33				<1			0.035		3	9	<1	0.11	•	8	<1	66
	<0.5			<1	19	38	-	0.23	2	59				0.26		0.99		1			0.048		4	32	<1	80.0	-	8	<1	65
	<0.5			<1	18	57			2		43	39		0.15		1.31		1			0.043		5	9	<1	0.01		12	<1	75
01000	-0.5	2.20	~1	~1	10	97	~1	0.43	4	58	83	42	9,62	0.27	64	1.33	449	2	0.02	108	0.044	53	4	13	<1	0.06	<1	14	<1	82
91581	-0.6	2 12	~1	~1	24	42	-1	0.45	2	80	50	44	7.40	0.40	0E								_							
	<0.5									66 70	58	41	7.10					1			0.046		5		-	0.08	-	16	<1	81
r i				<1		41		0.47		70	55	43		0.16		1.48		1			0.056		4	15	-	<0.01	•	16	<1	80
	<0.5			<1	24	56		1.16		74	104	59	8.08					2			0.050		5	41	•	<0.01	-	23	<1	94
	<0.5			<1	20	52		0.39	2	64	51	43	6.84					2			0.045		4	14	<1	<0.01	<1	14	<1	81
91585	<0.5	1.56	<1	<1	21	32	<1	1.12	1	50	48	51	4.07	0.14	55	0.90	773	1	0.02	82	0.031	16	3	28	<1	0.01	<1	9	<1	46
04000			. 4					.			••																			
91586								2.12	1	35	82	18	3.48				1280	<1			0.023		3	59	<1	0.02	<1	11	<1	42
			<1	<1	18	52		0.21	2	59	73	38	6.44		52	1.76	590	1	0.02	108	0.048	11	4	9	<1	0.01	<1	18	<1	91
91567-R				<1	17	54	_	0.42	1	52	88	47		0.26	59	1.26	549	2	0.02	103	0.032	29	4	17	<1	<0.01	<1	12	<1	65
	1.9			<1	23	62	3	1.91	4	52	124	122	5.82	0.19	42	2.16	1060	7	0.50	254	0.047	142	45	87	<1	0.19	<1	134	<1	182
91588	<0.5	2.84	<1	<1	21	68	<1	0.41	2	61	73	46	6.34	0.31	73	1.67	561	2	0.03	116	0.046	16	5	19	<1	0.01	<1	19	<1	87

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43364

DATE: Oct.13, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	B	Ba	Bi	Ca	Cd	Ço	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	Ρ	Ph	Sb	Sr	Th	Ti		v	W	7
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%			ppm		%		ppm		ppm			ppm	<u>.</u> .			i ppm				•		Zn
91589	<0.5	2.86	<1	<1	25	61	<1	0.99	2	54	113	59	5.79	0.29		1.57		2	and the second diversion of the second diversion of the second diversion of the second diversion of the second		0.048		<u>- ppin</u> 5	39	<1	0.01	<u>- 200</u>	19		ppm 72
91590	<0.5	2.68	<1	<1	22	49	<1	1.07	2	55	76	45	5.77	0.21		1.71		1			0.045		Ā	45	<1	0.01	<1		<1	
91591	<0.5	3.28	<1	<1	25	50	<1	1.15	2	68	59	68		0.19		2.22		2			0.057		4	56	<1	0.01	<1	18	<1	74
91592	<0.5	5.70	80	<1	22	42	<1	4.45	3	85	892	-		0.09			1850	-			0.074		12	215	<1	0.01		20	<1	91
91593	<0.5	3.57	<1	<1	24	58	<1	0.74	2	69	84	78		0.22							0.057		4	34	<1		<1	139	<1	76
							•		-	••	• ·		0,00		00	4.01	035	2	0.02	151	0.057	15	4	34	51	0.01	<1	27	<1	81
91594	<0.5	2.17	<1	<1	23	110	<1	0.24	1	37	341	41	3.79	0.54	47	0 08	283	2	0.03	70	0.036	13	E	17	- 4	-0.04	- 4	40		
91595	<0.5	1.56	<1	<1	23	36	-	0.76	1	34	243	27		0.18				2	0.03		0.038		5			<0.01	-	13	<1	39
	<0.5		2	<1	20	53		2.31	1	32	131	9		0.25				2	0.03		0.020	9	4	31		< 0.01	-	12	<1	42
91597	<0.5	1.67	<1	<1	19	44		1.93	<1	27	199	2		0.17		0.92		2	0.03			- 14	4	97	<1	0.01		19	<1	42
	< 0.5		6	<1	20	44		1.73	<1	22	223	17		0.17		0.42		2 <1	0.03		0.014	4	ა ი	50		< 0.01		21	<1	38
			-	•		• •		1.10	~ •	5. <u>6</u> .	220	17	2.00	V. 17	21	0.42	Jar	~1	0.02	41	0.015	44	3	62	<1	0.01	<1	10	<1	26
91599	<0.5	2 99	6	<1	24	53	<1	1.07	2	64	100	74	6.30	0.24	74	4 67	704	2	A AA	400	0.045	40		4.5						
	< 0.5		<1	<1	24	66		1.08	5	50	139	43		0.31		1.32		2			0.045		4	43	<1	0.08		20	<1	81
	< 0.5		<1	<1	21	38		1.79	2	53	111						1160	2	0.03		0.036	19	5	38	<1	0.11	-	24	<1	66
	<0.5		1	<1	21	41		1.44	<1	10	93	2		0.14							0.072		5	57	<1	0.05	-	17	<1	67
	<0.5		- <1	<1	23	27	2	7.12	2	52	133	23									0.018		2	50	_	<0.01		5	<1	13
	-0.0	0.00	~	~,	20	21	-	1.12	4	JZ	133	23	0.00	0.15	21	2.29	2060	ł	0.02	70	0.024	26	4	143	<1	0.23	<1	152	<1	39
91604	<0.5	2 96	32	<1	20	66	<1	4.64	2	64	1380	54	5 22	0 00	20	E 47	4500		~ ~ ~			•					_			
	<0.5			<1	15	15	<1	3.24	4	63	1280	69					1520				0.044		12		-			107	<1	25
	<0.5			<1	18	23	- 1	3.68	2	75				0.00			1200	<1	0.01		0.037		12	260	<1	0.01	<1	104	<1	22
	<0.5		52	<1	16	37	י י	5.05	2		1230	4 4		0.00			1500	1			0.041	14	12	279	<1	0.01	<1	103	<1	43
							2		4	69	1200	72		0.15			2610	1			0.037	-	11	136	<1	<0.01	<1	75	<1	19
91627	~v.5	1.03	24	<1	18	43	<1	3.06	1	43	126	75	4.37	0.20	42	2.55	1420	7	0.01	114	0.080	20	_4	65	<1	<0.01	<1	64	<1	25

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43364

DATE: Oct.13, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	la	Ma	Mn	Mo	Na	h.t.t	P		OF.							
No.	ppm	%	ppm	ppm	ppm							ppm					ppm						Sb				U	V		Zn
91628	<0.5	1.33		<1	20	32		2.39	1	43	109	108		0.17			987	8 8			0.077	<u>ppm</u>	ppm							ppm
91629	<0.5	1.46	30	<1	21	42	<1	2.60	1	34	234	88		0.22				-			0.129		3	53		< 0.01	-	67	<1	21
91630	<0.5	1.04	44	<1	17	27	<1	2.71	1	34	98	52		0.15		1.15					0.129		4	58	-	< 0.01	•	164	<1	28
91631	<0.5	0.90	45	<1	19	30	<1	3.14	1	39	106	84		0.17			1190				0.104		4	60 67		< 0.01	-	98	2	20
91632	<0.5	1.03	28	<1	21	36	<1	3.03	1	39	168	118		0.21							0.120		3	67		< 0.01		82	1	16
									•				0.01	V.2 I	23	1.40	1030	13	0.02	140	0.120	33	4	64	<1	<0.01	<1	93	<1	14
91633	<0.5	0.55	12	<1	19	17	<1	4.48	1	37	50	9 8	3 65	0.09	21	2 4 4	2000	9	0.04	101	0.103	40	-	~~	- 4					
91634	<0.5	0.48	26	<1	18	25		4.10		24	86	114					1140						3	89		<0.01		27	<1	16
91635	<0.5	0.60	53	<1	19	41	<1	3.14	1	36	77	105		0.20							0.106		3	94		< 0.01		85	<1	29
91636	<0.5	0.34	75	<1	18	53		1.03		24	113	78		0.19		0.28					0.091		3	68 25		< 0.01		77	<1	30
91637	<0.5	1.72	33	<1	18	37		3.23	2	54	85	90					1000				0.084		ა ი	25		< 0.01	•	166	<1	360
									-						.,	2.70	1000	'	0.02	90	0.047	10	6	61	~ 1	<0.01	<1	101	<1	88
91638	<0.5	1.16	14	<1	17	43	2	1.98	2	40	92	42	3.75	0.18	22	1.56	595	6	0.01	112	0.037	11	3	42		-0.04		~ .		
91639	<0.5	1.04	<1	<1	17	39		1.45		34	104	30		0.21				1	0.01		0.036		-	4∠ 32		< 0.01		34	<1	75
91640	<0.5	1.62	<1	<1	17	46	1	3.73	1	51	70	41					1120	;	0.01		0.042	-	4 3	32 89		< 0.01	-	9	<1	25
91641	<0.5	1.85	8	<1	16	46	<1	4.32	2	61	228	63		0.18				1	•		0.042		ა 5		-	< 0.01	,	41	<1	21
91642	<0.5	2.58	24	<1	16	27	1	5.23	2	69	332	64		0.08				1			0.049		-	97		< 0.01		35	<1	17
									-	••		÷,	Q . 7 <i>7</i>	0.00	~~	4.00	1000		0.01	300	0.051	Q	8	132	<1	<0.01	<1	63	<1	31
91643	<0.5	2.96	22	<1	17	48	<1	2.59	2	60	347	42	5.60	0.20	44	3 15	908	2	0.01	212	0.054	20	7	60		-0.04				
91644	<0.5	2.47	<1	<1	16	30	<1	1.81	2	54	114	75		0.09							0.046		1	69 40	-	<0.01	•	58	<1	88
STD	1.7	5.28	102	<1	21	60		1.91	4	52	117	109	5.74			2.04					0.046		4	49 97		<0.01		35	<1	65
91632-R	<0,5	0.89	27	<1	15	30		2.95	1	37	143		3.40		•••	1.13					0.114		46	87 60			<1	130	<1	177
														V.17		1.10	372	14	V.V I	120	<u>V.114</u>	29	4	_60	5]	<0.01	<1	79	<1	14

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

1

• 1

1.

r 1

1 1

1.1

т <u>т</u>

1 1

FILE:43410

DATE: November 02, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Ĉď	Co	Ćr	Сн	Fe	к	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	-						_
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	-	ppm			ppm				Sr	Th	Ti	U	V	W	
91607	<0.5	1.87	14	<1	13	83		2.58		35	78		3.46			1.66		1	0.01		0.03	ppm 64								ppm
91608	<0.5	1.40	<1	<1	14	55	<1	0.60	<1	29	94		2.82			0.93	-	4	0.02		0.03		4 3	107	<1	0.01	<1	40	<1	38
91609	<0.5	1.98	<1	<1	15	49	1	0.36	1	48	58		4.58			1.20		4	0.02	77	0.03		-	25	10	0.01	<1	11	<1	33
91610	<0.5	2.43	2	<1	17	61	1	1.32	1	48	52		4.90			1.49		4	0.01	86	0.05		3	15	47	0.03	<1	10	<1	53
91611	<0.5	2.46	<1	<1	16	57	<1	1.23	1	46	49		4.67			1.65		1	0.01		0.05		3 3	47 43	11	0.09	<1	20	<1	60
																1.00	1400	•	0.01	02	0.05	21	3	43	12	0.07	<1	16	<1	63
91612	<0.5	1.87	9	<1	17	41	<1	3.14	<1	43	4	- 50	3.59	0.13	23	2.56	961	<1	0.02	215	0 03	110		118		0.02		50	- 4	~ ~
91613	<0.5	2.75	20	<1	16	26	2	7.30	2	71	868	47	6.00	0.01		6.26			<0.01				4 9	116	<1	0.03		52	<1	31
91614	<0.5	1.40	<1	<1	15	22	<1	0.65		30	52		3.07			0.85		- <1	0.01	5-	0.03		2	349 23	<1 7	0.01	<1	91	<1	30
91615	<0.5	2.74	6	<1	14	37	<1	3.25	1	52	162		5.25			2.55		2			0.06		2		•	< 0.01		11	<1	36
91616	<0.5	0.64	2	<1	12	18	<1	2.30	<1	17	102		1.45				1040		0.01		0.05		2	111 60		<0.01 <0.01	•	56 5	<1	49
																	1010	-	0.01	20	0.00	140	2	00	~1	~0.01	S 1	J	<1	14
91617	<0.5	1.81	<1	<1	15	45	<1	0.79	<1	41	78	32	4.16	0.13	31	1.11	528	1	0.01	64	0.04	18	3	23	19	<0.01	-4	40	<1	
91618	<0.5	1.79	<1	<1	15	32	<1	1.04	<1	41	63					1.02		i	0.01		0.03		1	26	• •	<0.01		12		44
91619	<0.5	1.69	<1	<1	15	44	<1	0.34	1	56	47		5.37			1.13		2	0.01		0.04	• •	4	10		<0.01		12	<1	38
91620	<0.5	1.93	34	<1	17	30	<1	1.64	1	64	198		5.97			2.25					0.04		Ā	44		<0.01		8	<1	32
91621	<0.5	2.24	2	<1	19	37	2	0.55	2	67	42		6.88			1.64		1			0.03		2	12		<0.01		16 11	<1 <1	26
																		•			0.00		-	16	UZ.	-0.01	~1	1 6	~1	22
91622	<0.5			<1	17	41	2	1.84	1	48	86	46	4.52	0.19	36	1.40	1500	1	0.01	85	0.03	36	۸	43	26	<0.01	~1	13	<1	47
91623	<0.5	2.69	<1	<1	19	25	1	2.94	2	63	95	50	6.29	80.0		2.57		1	0.01		0.07	15	4	68		<0.01		47	<1	17 27
91624	<0.5	2.13	<1	<1	17	31	<1	1.63	1	48	100		4.80			1.67		Í.	0.01		0.08		Ă	38		<0.01		21		
91646	<0.5	3.97	16	<1	18	27	1	4.86	2	67	252		6.83			3.56	- • -	2			0.08		â	150	-	0.01		2 ! 80	<1	18
91647	<0.5	1.58	<1	<1	14	46	<1	1.54	1	44	102		4.34			1.24		<1	0.01		0.03		2	51		< 0.01		16	<1 <1	70
																		-			0.00	~.	-	01	-1	-0.01		10	~1	41
91648	<0.5	1.55	<1	<1	15	47	<1	1.18	<1	37	89	26	3.80	0.14	18	1.13	615	1	0.01	59	0.02	19	4	43	c1	<0.01	-1	13	<1	45
91649	<0.5	2.30	<1	<1	17	68	2	1.63	1	55	84		5.40			1.62		2	0.01		0.03	21	5	50	-	<0.01	•	18		45
91650	<0.5	3.77	17	<1	19	34	2	5.07	2	74	280		7.21			3.83		2	0.01		0.09	18	ĕ	187		0.01	<1	10 91	<1	51
	<0.5			<1	16	21	2	5.24	1	70	805					6.04			<0.01			12	Ř	173	-	<0.01	-	91 69	<1	51
91677	<0.5	0.74	<1	<1	16	31	<1	0.57	<1		119					0.56		<1	0.01			7	1	14	-	<0.01		09 7	<1	29
		· · · ·																~ ,	V.V1	~~	0.04	1		14	14	~V.V I	<u><u>SI</u></u>	1	<1	13

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43410

DATE: November 02, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	La	Mg	Mn	Мо	Na	Ni	P	Pb	Sb		TL					_
	ppm	%	ppm	ppm	ppm	ppm	ppm				ppm				ppm		ppm			ppm				Sr	Th	Ti	U	V	W	Zn
91678	<0.5	2.30	<1	<1	17	34	1	1.89		48	145			0.15		1.75		4	0.01		0.04		<u>ppin</u> 3		ppm	_				<u>ı ppm</u>
91679	<0.5	1.31	<1	<1	17	33	<1	1.72	<1	32	88	25		0.18		0.90		4	0.01		0.04		2	48		< 0.01		30	<1	49
91680	<0.5	0.68	<1	<1	15	40	<1	1.32	<1	16	221			0.15	49	0.36		<1	0.01	30	0.03		2	36 28		<0.01	-	10	<1	16
91681	<0.5	2.33	<1	<1	16	35	1	2.22	1	51	84			0.19	38	1.78		1	0.01		0.02		2		-	<0.01	-	9	<1	9
91682	< 0.5	1.12	<1	<1	16	38	<1	0.58	<1	40	65			0.21		0.65		4	0.01	66	0.04		3	44		<0.01	-	36	<1	33
												• ·	~	V.E.	Ψï	0.00	20,		0.01	00	0.03	14	2	14	33	<0.01	<1	7	<1	18
91683	<0.5	2.11	<1	<1	18	28	<1	2.84	1	40	89	89	4 13	0.14	35	1.91	1250	4	0.01	60	0.03	4.4	•	60						
91684	<0.5	1.53	<1	<1	16	32	<1	2.21	<1	30	93			0.20		0.93		4	0.01	45	0.03		3	62		<0.01	-	32	<1	24
91685	<0.5	2.62	4	<1	18	27	<1	3.16	1	50	98			0.18		1.95		4	0.01	45 68	0.02		ა ნ	55		< 0.01	•	10	<1	18
91686	<0.5	1.40	3	<1	19	43	<1	0.12	1	47	79			0.20		0.86		2	0.01		0.03	-	2	42		0.09		68	<1	34
91687	<0.5	0.75	4	<1	17	29	<1	0.33	<1	24	98			0.13		0.55		<1	0.02		0.02		3 2	5		< 0.01	-	9	<1	60
									-					0.10		9.00	201	- 1	0.02	50	0.05	14	2	15	18	<0.01	<1	8	<1	24
91688	<0.5	1.38	21	<1	18	44	1	0.26	1	49	61	53	4.81	0.22	17	0.87	351	2	0.01	83	0.03	24	2	4.4	E 4	-0.04		~		
91689	<0.5	0.90	<1	<1	16	41	<1	0.97	<1	32	91			0.22		0.75		<1	0.03		0.03		3	14		<0.01		6	<1	64
91624R	<0.5	2.15	<1	<1	18	29	<1	1.61	1	47	101			0.13	-	1.69		4	0.01	82	0.03		2	41	-	<0.01	•	8	<1	41
STD	1.7	4.71	104	<1	21	53	4	1.81	3	49	104			0.17		1.84		à			0.05		40	38		< 0.01	-	21	<1	18
91690	<0.5	1.20	<1	<1	18	37	<1	0.52	•	41	56	÷.		0.16		0.90		<1	0.02		0.05		46	75		0.12		123	<1	149
							•		-	••			1.0.1	0.10		¥.VV	404	-1	0.02	05	0.00	19	3	22	17	<0.01	<1	8	<1	56
91691	<0.5	1.52	<1	<1	18	50	<1	0.78	1	50	51	39	4 QA	0.24	19	1.15	634	1	0.01	84	0.04	4.4		~~	~~	-0.04		•		
91692	<0.5			<1	17	43		1.10		34	83			0.21		0.82		<1	0.02		0.04		4	28		< 0.01		9	<1	63
91693	<0.5			<1	19	28		1.71	•	35	47			0.13		0.81	866	<1	0.02			14	2	38		<0.01	-	10	<1	37
91694	<0.5			<1	19	31		0.73	•	26	125			0.16		0.63	383	<1	0.01	51	0.03	14	2	49		< 0.01	•	11	<1	40
91695	<0.5			<1	20	35		0.13	1	48	63			0.14		1,26					0.07	34	Z	31		< 0.01		7	<1	32
				-			•	••	•	19	00	94	7.91	0.14	15	F,24,0	303		0.01	75	0.02	10	3	5	16	<0.01	<1	11	<1	60
91696	<0.5	1.69	4	<1	20	50	<1	0.31	1	52	74	45	5 25	0.24	17	1.12	400	4	0.04	00		47	~					-		
91697	<0.5			<1	16	20		0.19	-	23	77			0.10	9	0.32		4	0.01	88	0.04	17	2	12		<0.01		8	<1	56
_	<0.5			<1	18	50		0.46	1	49	72			0.10	-	1.15	10∠ 523	1	0.01	40	0.02	25	2	7		<0.01		4	<1	22
91699	<0.5			<1	17	32	1	0.88	1	43	76			0.24				1	0.01		0.05	14	2	16		< 0.01	-	9	<1	63
-	<0.5			<1	18	32	<1	0.95	<1	40	70 56					1.19		<1	0.01	74	0.03	13	2	31		<0.01	-	16	<1	56
	.0.0		-7		10		- 1	V.0J	~1		50	21	4.14	0,13	20	1.19	110	1	0.01	70	0.03	14	2	31	8	<0.01	<1	12	<1	50

Loring Laboratories Ltd.

1

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

7 1

FILE:43410

DATE: November 02, 2000

TO:**W.G.T. CONSULTANTS** 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Сu	Fe	К	La	Mg	Mn	Мо	Na	Ni	D	B 4	01							
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	DOM	Dom	ppm	DDm	%		ppm		ppm				P	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
91701	<0.5	1.54	5	<1	19	49		0.81		42	75			0.22	_			<u>- Phill</u>	0.02	<u>ppm</u> 67			ppm						_	ррт
91702	<0.5	1.86	<1	<1	19	59	<1	0.68	1	49	67	39		0.30		1.15		4	0.02		0.03		3	31		< 0.01	•	10	<1	47
91703	<0.5	0.99	4	<1	19	60	<1	2.25	<1	26	107			0.28		0.68		<1	0.02		0.04	18	3	23		< 0.01		10	<1	55
91704	<0.5	1.17	2	<1	19	85	<1	0.79		29	115	. —		0.48		0.78		<1	0.02		0.02	15	2	114	<1	0.04	<1	11	<1	28
91705	<0.5	1.19	3	<1	21	72	<1	0.56	<1	31	58					0.80		<1	0.02		0.02	33	2	50	<1	80.0	11	15	<1	35
									-					0.00	~~	0.00	012		0.01	50	0.03	23	2	35	12	0.09	14	14	<1	39
91706	<0.5	1.68	<1	<1	19	34	<1	0.23	1	44	46	47	4 02	0 15	20	1.01	310	4	0.01	76	0.04	22	~	-	00			_		
91707	<0.5	1.43	<1	<1	19	27	<1	1.92	<1	37	75			0.14			1170	<1	0.01			-	2	1		0.02		8	<1	56
91708	<0.5	1.89	2	<1	19	27	<1	0.78	1	41	33			0.12		1.18		<1	0.01		0.08	11	4	45		< 0.01		10	<1	36
91709	<0.5	0.92	<1	<1	16	20	<1	0.44	<1	22	108			0.09		0.56		<1	0.01		0.05	11	3	11		<0.01		9	<1	54
91710	<0.5	1.52	<1	<1	16	18	<1	1.41	<1	40	53		3.76			0.94		<1	0.01	_	0.03	11	~	15		<0.01		7	<1	31
							-		•			00	0.70	0.03	10	V.34	330	~1	0.01	70	0.03	15	2	22	11	<0.01	<1	8	<1	45
91711	<0.5	1.74	4	<1	18	24	<1	0.56	1	43	55	27	4 51	0.10	24	1.19	510	4	0.04	70	~~~	40	~	~-			-			
91712	<0.5	1.07	3	<1	17	39	<1	0.53	<1	27	140			0.20		0.61		4	0.01		0.04		2	27		<0.01	-	11	<1	53
91713	<0.5	2.02	5	<1	19	24	1	2.21	ť.	43	111			0.10		1.67		4	0.02		0.04	73	2	33		< 0.01	<1	8	<1	28
91714	<0.5	2.34	8	<1	19	50	<1	0.19	t	49	73			0.23		1.26		4	0.02		0.03		4	39	-	0.11	7	64	<1	29
91715	<0.5	2.41	12	<1	19	38	2	0.22	1	52	38					1.37		2	0.01		0.05	15	4	10		<0.01		12	<1	61
							_		•				0.01	0.12	40	1.07	TUZ	<i>.</i>	0.01	03	0.06	14	2	11	21	<0.01	<1	12	<1	65
91716	<0.5	2.29	4	<1	20	47	2	0.47	1	49	66	34	5.21	0.21	28	1.38	500	4	0.01	02	0.05	40	~	~~						
91717	<0.5	0.72	4	<1	17	28	_	1.18	•	19	60			0.14		0.39					0.05		3	23		<0.01		15	<1	60
91718	<0.5	1.21	2	<1	16	56		1.03		26	85		2.43			0.66		<1	0.01		0.03	11	1	59		0.01		7	<1	23
	<0.5		14	<1	19	41	<1	3.62	1	53	190			0.18		2.18		1			0.03	11	2	57		0.04	<1	10	<1	28
91720	<0.5			<1	19	58	<1	0.52	1	43	74		4.43			1.25		<1	0.01 0.01			20	4	114		0.19	36	70	<1	46
							•		•	••			7.70	U .2. I	27	1.20	400	~1	0.01	12	0.03	20	2	16	24	0.14	34	17	<1	56
91721	<0.5	2.05	2	<1	18	55	<1	0.56	1	39	71	26	4 20	0.22	A 7	1.02	491	<1	0.01	66	0 0E	40	~		~~					
	<0.5		4	<1	19	22		1.73	<1	30	64		2.91			0.79	789	<1			0.05	16	2	19		80.0		11	<1	52
91723	<0.5	1.29	<1	<1	17	38	-	1.57	1	49	38	• •	5.03			0.77	542	-	0.01		0.02	24	2	50			<1	11	<1	33
	<0.5		<1	<1	17	28		0.31	+	51			4.83			0.83	359	2	0.01		0.36	31	1	48		0.01		7	<1	43
	<0.5		<1	<1	19	47		0.36	1	51	52			0.21		0.83		2	0.01		0.03	35	Z	14		0.01		5	<1	66
												10	V.2.V	V.61	50	v.80	300	2	0.01	86	0.03	19	4	14	59 -	0.01	<1		<1	_57

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43410

DATE: November 02, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Ma	Mn	Mo	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	W	-7-
No.	ppm	%	ppm	ppm	ppm	ppm									ppm	%	ppm	ppm		ppm	-					· %	-	v DDM		2n ppm
																							••							
91726	<0.5	1.68	<1	<1	18	23	2	0.44	<1	35	64	27	4.20	0.08	27	1.00	404	1	0.01	53	0.03	6	3	11	14	<0.01	-1	12	<1	49
91707R	<0.5	1.36	1	<1	16	26	<1	1.86	<1	36	72						1110						ž	43		<0.01	-	11	<1	
\$TD	1.8	4.81	105	<1	20	58	3	1.82	3	51	104						789			219			_	77	<1	0.12	~			34
90727	<0.5	2.55	2	<1	19	26	2	1.88	1	53	71		5.95				1120			83			40	••	•			125	<1	156
90728	<0.5	2.05	14	<1	31	296	<1	0.03		23	46				15			•	0.05				4	58		w	-	26	<1	73
				•	•••		.,	0.00	- 1	20	74		£.7£	V.77	10	0.27	40	2	0.05	33	0.05	24	2	64	11	<0.01	<1	67	<1	55
91736	<0.5	1 77	<1	<1	17	18	4	1.51	<1	39	34	20	2.05	0.04	+0	4 20	552		0.04		A 45	_	~			.				
	<0.5		•				•		•		•••									29	-	-	2	12	16	0.41	117	86	11	32
			-	<1	19	23	1	2.66	2	61	57	25	6.67	0.09	26	1.74	1420	1	0.01	82	0.05	15	4	64	<1	0.01	<1	52	<1	71
	<0.5	2.61	6	<1	19	35	2	1.79	1	59	65	34	5.99	0.15	34	1.62	1160	1	0.01	92	0.05	21	4	46	10	0.01	<1	22	<1	73
91738	<0.5	2.66	1	<1	19	27	<1	1.92	1	55	70	26	6.10	0.11	27	1.65	1150	1	0.01		0.04		À	59		0.01		27	<1	76
91739	<0.5	1.67	<1	<1	18	37	<1	1.05	<1	38	102	25	4.05	0.18		0.97		i.			0.03		3	30	15		-	14	<1	52
																		•			0.00	• •	5	50	10	0.01	~1	1 19	~1	υz

"R" Denotes duplicate sample analyzed.

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43464

DATE: November 20, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	W	Zn
	ppm	%	ppm	ppm	ppm	ppm	ppm	%		ppm					ppm	-	ppm			ppm				ppm	-		-	•		
91729	<0.5	1.61	4	<1	24	54	<1	0.73	3	59	75	44		0.25	_	0.84	454	1		103			3	27	<u>2</u>	<0.01	<1	16	<u>- 2011</u> 1	ppm 628
91730	<0.5	1.75	<1	<1	25	72	<1	0.30	<1	61	27	56		0.34		0.83		7		130			Ă	17		<0.01	•	8	<1	ſ
91731	<0.5	1.70	<1	<1	26	39	<1	0.38	<1	70	28	45	6.20			0.93	465	8		143			л Л	19		<0.01	•	8	<1	65
91732	<0.5	1.65	<1	<1	25	67	<1	0.53	<1	68	26	67	5.75			0.80		5		136			4	27		<0.01		7		72
91733	<0.5	1.18	<1	<1	27	26	<1	0.80		55	25	32	4.97			0.70		18	0.01				3	29		<0.01		9	<1 <1	93 58
															•••				,		0.04		U U	25	-	-0.01	~1	3	N I	50
91734	<0.5	1.85	1	<1	34	56	<1	0.22	<1	72	23	43	6.11	0.23	40	1.07	399	14	0.02	154	0.05	46	4	11	7	<0.01	<i>c</i> 1	9	<1	81
91740	<0.5	2.75	3	<1	28	64		1.38	<1	80	39	30	7.24			1.46	815	1					5	36	<1	0.01	<1	9 71	•	- · •
91741	<0.5	2.48	6	<1	26	61	<1	0.91	<1	74	57	43	6,53		. –	1.33		<1	0.02				5	31		<0.01	•	20	<1 <1	82 81
91742	<0.5	2.52	<1	<1	26	61	<1	1.03	<1	72	62		6.34			1.35		1		135			4	34		<0.01		20	<1	90
91743	<0.5	2.23	5	<1	30	66	<1	0.84	<1	59	53		5.25			1.18		1		116			4	35	5	<0.01		16	<u>∼</u> ≀ <1	59
																	020	•	0.01	110	0.00			00	0	-0.01	-1	10	2 71 1	39
91744	<0.5	2.10	61	<1	31	59	<1	0.62	<1	63	51	31	5.51	0.15	44	1.22	526	<1	0.02	117	0.04	43	4	27	5	<0.01	<u>e 1</u>	21	<1	72
91745	<0.5	1.10	<1	<1	22	20	<1	0.47	<1	32	78	10	3.03			0.60	373	1	0.02			•	2	17	4	<0.01		14	<1	43
91746	<0.5	1.65	2	<1	24	51	<1	0.73	<1	60	51	41	5.11			0.85	490	<1					<u> </u>	33	8	<0.01		11	<1	43 57
91747	<0.5	1.78	<1	<1	31	53	<1	0.61	<1	68	46	61		0.24		1.04	382	2					4	22		<0.01		21	~; <1	57 67
91748	<0.5	2.06	<1	<1	24	80		1.04	<1	73	74	50	5.80	0.28		1.23	487						4	54		<0.01		15	<1	75
																			0.01		w.ww	~~	7		-1	-0.01	~1	FQ.	~1	13
91749	<0.5	0.56	4	<1	23	34	<1	1.86	<1	27	101	10	2.19	0.16	38	0.43	738	1	0.03	51	0.02	20	3	100	<1	<0.01	21	9	<1	27
91750	<0.5	0.94	2	<1	23	46	<1	0.96	<1	28	106		2.23				338	<1	0.03	÷ ·	0.02		2	44	-	<0.01	•	13	<1	31
91751	<0.5	1.52	<1	<1	22	59	<1	0.39	<1	56	73	41	4.55			0.76	352	2	0.02				5	17	-	<0.01	•	i J R	<1	64
91752	<0.5	1.44	<1	<1	30	59	<1	0.30	<1	60	33	42	4.72			0.80	297	<1	0.01				3	17		<0.01		9	<1	
I	<0.5			<1	25	55		0.49	<1	74	40		6.41			1.16	·			144			4	22		<0.01		11		66
										_							W . T	· · · · · · · · · · · · · · · · · · ·	0.01	1-1-1	0.00		T	"	10	~0.01	~1	11	<1	96

1 <u>[] [] []</u> [] 11 []] 11 101 []] 11 1 [1]n n n n n n n

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43464

DATE: November 20, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	Al	As	Au	В	Ba	BI	Ca	Cd	Co	Сг	Сu	Fe	К	La	Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	W	7
No.	ppm	%	ppm	ppm	ppm	ppm					ppm				ppm		ppm			ppm				ppm				V nnm		Zn
91754	< 0.5			<1	28	50		0.36		63	46					1.06	334	<1		_	0.04		4	15		<0.01		<u>9</u>	<u>41 < 1</u>	<u>ррт</u> 69
91755	<0.5	1.97	<1	<1	28	55		0.67	<1	65	55		5.83			0.94	439	<1	0.01		0.04		4	19		<0.01		10	<1	76
91756	<0.5	2.09	<1	<1	31	54	<1	0.66	<1	75	66		6.50			1.17		1	0.01	•=•	0.06		4	24	8	<0.01		13	<1	75
91757	<0.5	1.24	3	<1	29	39	<1	0.81	<1	32	129		2.60			0.64	329	<1	0.02		0.02		4	27	<1	0.01	<1	18	<1	33
91758	<0.5	2.19	8	<1	31	43		2.22		55	121		4.70			1.41	792	2	0.02		0.02	••	5	66	-	<0.01		35	~ 1 <1	53 58
-												•		•			JVL	~	0.02	00	0.00	L.	Ļ	00	~1	~v.v1	~1	33	~ (20
91759	<0.5	1.82	21	<1	29	42	<1	0.18	<1	57	39	42	4.57	0.22	65	1 07	788	<1	0.01	105	0.04	17	4	8	34	0.07	<1	7	<1	69
91760	<0.5	1.30	4	<1	22	58	<1	1.65	<1	33	78		2.58			0.55		2	0.01		0.04	-	7	51	6	0.01	<1	12	<1	
91761	<0.5	1.31	<1	<1	24	44	<1	0.58	<1	55	111		4.71			0.78		2	0.01		0.03		5	16	20	0.01	-	12		38
91767	<0.5	1.94	6	<1	21	47	<1	2.22	<1	44	241	• •	3.63		- •	1.55	654	2			0.02		5	38	11	0.02		29	<1 ~1	45
91768	<0.5	1.97	<1	<1	26	57	<1	0.22	<1	66	58		5.42			1.21	524	1			0.03		4	9	20	0.02	<1	29 12	<1	48
									-			• •			••			•	0.01	110	0.00	17	-	3	20	0.07	~1	12	<1	77
91769	<0.5	1.66	<1	<1	28	45	<1	0,63	<1	52	97	33	4.35	0.18	37	0.91	575	2	0.01	93	0.02	20	4	14	17	0.11	<1	14	<1	55
91770	<0.5	1.85	<1	<1	23	46	<1	0.64	<1	58	78		4.77			1.22			0.01		0.03		5	13	12	0.15	<1	19	<1	48
91775	<0.5	1.43	<1	<1	28	46	<1	1.11	<1	39	100		3.27		•	0.79	497	2	0.02		0.03		Ă	20	11	0.05	<1	13	<1	40
91776	<0.5	1.53	<1	<1	31	51	<1	0.96	<1	49	104		4.04			0.83			0.02	•••	0.05		4	18	Ŕ	0.05	<1	15	<1	56
91777	<0.5	1.41	<1	<1	30	30		0.74		46	65		3.91			0.84			0.02		0.02		Å	13	15	0.09	<1	10	<1	56
																••••	• · -	•			0.02	••	-	10	10	0.00	71	10	~1	50
91778	<0.5	1.58	<1	<1	28	37	<1	1.09	<1	49	62	21	4.22	0.15	41	0.91	484	<1	0.02	90	0.09	21	4	17	16	0.08	<1	13	<1	59
91779	<0.5	1.64	<1	<1	29	36	<1	1.06	<1	44	85		3.67			0.93	490	2	0.02		0.06		3	18	7	0.00	<1	14	<1	55
91749-R				<1	29	29		1.76	<1	25	101		2.06			0.40		2	0.03		0.02		2	94	<1	< 0.01	•	9	<1	25
STD		4.89		<1	34	55		1.92	3	61	108		5.76			1.69		5	0.41				37	84	<1	0.16	<1	9 125	<1	179
	<0.5			<1	20	45	•	0.35	- <1	53	67		4.31			1.09		<1	0.02		0.04		4	8	27	0.13	<1	125	<1	56
less-			_	-		. –	-										414		J.UL	100	0.04	20	7		<u> </u>	0.10	1	10	~ I	20

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43464

DATE: November 20, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Сг	Cu	Fe	ĸ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ťī	U	v	W	7
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm						ppm		ppm			ppm			ppm				-	•		Zn
91781	<0.5	1.48	<1	<1	20	43	<1	1.06		46	89	_	3.90			0.89		2	0.02		0.03		<u>v v</u>	23	<u>16</u>	0.07	<u>- ppm</u> <1	<u>11</u>		ppm
91782	<0.5	1.71	3	<1	23	40	<1	1.19		42	114		3.65			1.14		1	0.02		0.03		7	23 26	201	0.07	•	••	<1	47
91783	<0.5	1.53	<1	<1	20	3 6	<1	0.94	<1	56	64		4.95			1.07		<1	0.01	•••	0.03		4	20 19	11			17	<1	53
91784	<0.5	1.71	<1	<1	19	34	<1	1.07	<1	57	64	31	4.75			1.13		<1	0.01	106			- -		11	0.01	<1	10	<1	63
91785	<0.5	2.38	4	<1	19	39	<1	1.65	•	53	226		4.19			2.13		4	0.01	163		• •	5	24 43		0.01	<1	14	<1	66
					·		_							9 .17	70	2.19	126	•	0.01	105	0.03	ZU	9	40	5	<0.01	<1	29	<1	91
91786	<0.5	2.80	8	<1	21	51	<1	1.28	<1	62	254	48	4.92	0 18	50	236	665	4	0.01	282	0.04	41	5	31	42	-0.04		40		
91787	<0.5	2.23	<1	<1	19	40		0.97		56	100	44	4.69			1.67		· -	0.01				-			< 0.01		40	<1	86
91788	<0.5			<1	22	35	<1			61	97	•••	5.22					2	0.01	152	+		4 5	26		<0.01		17	<1	53
91789	<0.5	2.28	<1	<1	22	43	•	0.92	-	56	119		4.87			1.59		2	0.01				5	35		<0.01		24	<1	62
91790	< 0.5			<1	20	35	<1	1.47		54	76		4.61			1.48		<1	0.01				5 3	22		< 0.01		18	<1	66
				•					-	04		57	4.01	0.10	-+1	1.40	101	~ 1	0.01	105	0.04	17	3	31	13	<0.01	<1	32	<1	62
91791	<0.5	2.38	<1	<1	20	39	<1	2.09	<1	57	77	27	5.13	0.20	51	1 5 3	1070	4	0.01	440	0.04	47	F		~	.0.04		~~		
91792	<0.5			<1	23	39	<1	1.81	<1	63	48		5.70				805						5	44	_	< 0.01	-	26	<1	26
91793	< 0.5			<1	21	45		1.70	•	67	68	37	5.74		61	1.38	805	~	0.01				4	36		< 0.01	•	44	<1	30
91794	<0.5			<1	20	38	<1	1.61	•	52	77	~ .	4.25			0.91	742	ا بە بىر				-	4	34		<0.01		38	<1	28
91795	<0.5			<1	19	45	<1	1.53		51	70		4.49									12	3	33		< 0.01	-	12	<1	15
			•				••	1.00	- 1	91	10	35	4.43	0.24	00	1.18	000	2	0.01	96	0.05	12	4	30	16	<0.01	<1	12	<1	16
91796	<0.5	1 75	<1	<1	20	43	<1	2.14	<u>e 1</u>	51	78	29	4.17	0.00	50	1 20	000		0.04	400	~ ~~	4.0				/				
91797	<0.5			<1	19	53	<1	1.55	<1	53	96						938		0.01				4	42		<0.01	•	15	<1	15
91798	<0.5			<1	21	45	•	2.78	<1				4.19			1.26				113			5	33		<0.01		16	<1	17
91799	<0.5			<1	19	4J 66	-	1.30		41 52	83 72		3.68			1.51		-	0.01		0.03	12	4	61		< 0.01		23	<1	19
91800	< 0.5			<1	19	46		3.65		52 52	73		4.25						0.01		0.04	13	3	35		<0.01		14	<1	23
01000	-0.0	1.50		~1	19	40	~	J.00	<1	53	107	85	4.34	0.21	43	1.46	1010	9	0.01	151	0.12	13	5	79	<1	<0.01	<1	101	<1	17

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43464

DATE: November 20, 2000

TO:W.G.T. CONSULTANTS 410 - 455 Granville Street Vancouver, B.C. V6C 1T1

Attn: Bill Timmins

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	La	Mg	Mn	Мо	Na	NI	P	РЬ	Sb	Sr	Th	Ti	U	v	W	Žn
No.	ppm	%	ppm	ppm	ppm	ppm	ррп		ppm							-					-			ppm		• •	-	-		2л ррт
91809	<0.5	0.87	46	<1	21	56	<1								46	1.25	1060			150	0 14	25	7	85	10	<0.01		81	<u>- 2011</u> 21	10
91810	<0.5	0.79	32	<1	21	32	<1	3.45	<1	42	94			0.16			1160		0.01			20	6	73	12	<0.01	-	61	<1	10
91811	<0.5	0.65	45	<1	21	39	<1	2.73	<1	44	118			0.20		0.93			0.01				7	56	27	<0.01	-	109	<1	
91812	<0.5	0.71	38	<1	23	37	<1		-	45				0.19			1360		0.01				6	79		<0.01	-		-	8
91813	<0.5	1.07	40	<1	17	43	<1	3.84	<1					0.21			1250			163			8	85	20 4	<0.01	-	101 77	<1	9
							·		•					•	00	1.41	1200	•	0.01	100	0.15	20	Ų	00	4	~0.01	~1	11	<1	12
91814	<0.5	0.84	29	<1	18	41	<1	3.61	<1	43	139	53	3 66	0.22	44	1.32	1140	7	0.01	113	0.10	31	5	83	4	<0.01	-1	39	<1	18
91815	<0.5	1.01	33	<1	22	51	<1	3.16	<1	42	137			0.18		1.19		8		140			6	76		<0.01	-	3 9 76	<1	
91816	<0.5	1.13	34	<1	16	42	<1	4.40		50				0.18			1170	7		145			6	106		<0.01				14
91817	<0.5			<1	20	48		2.60	-	43	77				43			2	0.01		0.12		4	59		<0.01		61	<1	
91818	<0.5	0.99	12	<1	19	38	<1	4.34	-	29	89			0.16			1200	7	0.01		0.12		3	98		<0.01		22 47	<1	8
									•				2.00	0.10	40	1.01	1200	'	0.01	00	U. 12	15	5	90	~ 1	SU.01	~1	47	<1	10
91819	<0.5	1.09	2	<1	16	62	<1	4.06	<1	22	80	18	1.93	0.22	60	0.88	1120	<1	0.01	62	0.04	8	2	93	<1	<0.01	-4	12	-1	_
91820	<0.5	2.59	49	<1	23	57	<1	4.18	1	85	76			0.22			1560		0.01				4	93		<0.01	-		<1	8
91821	<0.5	0.43		<1	19	21	<1	4.07	<1	39	119			0.10			1540	_	0.01				7	93 80	<1		•	45	<1	21
91822	<0.5			<1	16	43	-	5.92	-	73				0.18			1890	-	0.01				47	113		<0.01 <0.01		16 77	<1	11
91823	<0.5			<1	15		•	4.15	1	41				0.28		1.14			0.01				5	78	-		•	77	<1	23
			-	-			•		•	* •		107	0.72	0.20	00	1.14	030	17	0.01	103	0.09	:	5	10	51	<0,01	S]	76	<1	75
91824	<0.5	1.00	116	<1	19	46	<1	5.57	2	84	119	111	8 36	0.12	31	242	1530	6	0.04	100	0 10	72	A	96	<1	<0.01	-4	60		~
91825	< 0.5	0.50	22	<1	11	113	-		-	17	131			0.20		0.76		Å	0.01		0.70	. —	*	90 91			•	52	<1	94
91826	<0.5			<1	15	79	<1	4 39	<1	50				0.15		1.87	602	3	0.01				ა ნ			< 0.01		43	<1	26
91827	< 0.5			<1	21		•	3.72	<1	84	64			0.16		2.47			0.02				ב ב	101 59		< 0.01	-	47 69	<1	45
91795-R				<1	16	48	•	1.55	<1	55	72			0.25		1.20	727		0.02				3		-	<0.01		68	<1	60
STD		4.95		<1	21	60	1	2.13	3	68				0.19			873						4	32	9	< 0.01		12	<1	18
				-			1		_		100	117	J.JJ	0.13	44	1.11	010	J.	0.46	271	¢0.0	143	45	93	<1	0.18	<1	143	<1	200

"R" Denotes duplicate sample analyzed.

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

Geochemical Lab Report

BONDAR CLEGG

1

. WG	T CONSULT	NTS 1	LTD.																							DAGE		DJECT:	BC N	ORTH		
(T: VO	1-00648.2	(CO	MPLET	E)												DATE	RECI	EIVED:	05-JUI	N-01	DATE	PRINT	ED: 11-	JUN-		PAGE	10	J F J				
LE												Fe Tat		Te		Cr		Sn W	Second and		Mg PGT		Na PCT F		20020	1902-00	· ·	é ngang j	in de la constante	Ti		S PCT
ER	UNITS	s ppm	PPM	PPM	PPM :1	PPM .	PPM P	PM S	PPM PI	n Rru See	S HH	To off Gala	PPM		14440	KKW	PPM į	PPM PPM		FUL		FUI		ч р С		A CONTRACTOR A		la na cita Managina Managina Managina				
2		<.5	57	34	115	8	253	50	c1.0	<5 91	े इ. २५	7.10	1411	<25	380	756	157	<20 <20) 34	7.38	4.75	4.79	0.57 1	.32 2	283 1	4 <10	62	21	19 <5	0.92	60 0.	.153
4	-1 .A		ana dia Guarda Guarda Guarda	l				0000		An antar a Darian An antar a Darian An antar		na na na baite Chaite Chaite Na na chaite Chaite Chaite						100-02220 6-00-000 6-00-000 8-00-000 8-00-000 8-00-000	300300 800303				COULTRANT DESCRIPTION COULTRANT STORE DOUT	4 J 4 J 4 J 4 J 4 J 4 J 4 J 4 J 4 J 4 J			\$ 8					•=
لا ^{ين} لر4	14-98	<.5	75	6	98	<1	1006 1	07	<1.0	<5 112	ु <5	8.87	1501	<25	10	1453	117	<20 <20) 10	3.45	>10.00	5.90	0.02 0	.01 4	-85	6 <10	12	9	14 ∷≪ ⊡	0.42	210.	,271
15°5 YI		<.5	78	14	93	7	950	83	<1.0	<5 855 2000	© ≺5	8.85	3 398	~25	6	1553	120	<20 20)	3.55	>10.00	4.65	0.02 <	.01 ¥	416 <	5 <10	ू12 े 17	<u>_10</u>	15 53 17 51	0.30	37 O.	114
6/		<.5	54	16	131	2	892	91	<1.0	<5 142	5	9.15	1538	<25	7	1376	116	<20 <20		4.17	>10.00	4.55	U.U2 U	.01 2	¥+ 0	0 <10	8 17 8		נא <u>יאר</u> ממ	2.0 . 37	23.U.	
13		<.5	65	<u> </u>	75	8	587	63	<1.0	<5 22	{ <5	6.74	2659	<25	50	1042	108	<20 <20	D 11	3.64	7,35 >	-10.00	0.02 0	.03	486	0 <10	16	10	15 😽	5 0.46	30 0.	.350
56 · · ·	. <u>.</u>	<.5	69	ິ 24	417	42	145	8	4.5	<5 100	ໂ <5	2.36	<u></u> 193	<25	505	287	1346 -	<20 <20	0 21	2.68	0.47	0.98	0.16 1	.41	46 ′	10 <10	្ត 4	121	<5 ্র	50.19	47 2.	,07
57 · · ·	0.0	َ ج 1	5 88	23	133	8	- 42	25	×1.0	<5 Š) <5>	5.64	986	<25	374	113	439	<20 20	0 6	6.01	2.82	3.60	1,14-1	.47	139	8 <10	26	ି 36	19 💰	5 0.60	11 2.	. 14
76		<.5	5 130	ੇ 6	88	6	771	79	<1.0	<5 10	€ <5	7.44	15 39	<25	222	1280	115	<20 <20	0 15	4.86	>10.00	7.26	0.04 0	.60	251	7 <10	े 17	12	14 <	5 0.60	36 0.	.32
23		<.	5 48	<u></u> 48	93	<1	62	28	<1.0	<5	ि <5	5.14	559	~25 0	1012	133	93	21 <2	0 83	7.76	1.20	1.41	1.07 2	.50	151 7	20 18	30 	18	8 <	5 0.55	127 1.	.98
24		ا م	5 °43	2 8 66	122	<1	57	25	<1:0	-ব া	2 <5	i 4.9) 387	<25	865	111	75	<20 <2	0 77	9.79	1.23	0.37	0.92 2	.31	104	10 15	ੇ 30	14	8 <	5 0.46	80 1.	.83
⊆4 71 [°] ≧	, . ·																	<20 <2				2.31	0.73 1	.61	34	16 <10	ğ 36	12	11 🔮	5 0.55	32 1.	.81
73	6 9	<.	5 22	23 23	159	3	192	39	<1.0	<5 9	0 <	5 7.7	7 1440	<25	323	466	130	×20 2	1 44	8.07	5.99		0.24 1									
74	🗢 11 r	ارا ک	5 57	1	5 73	Z	60	22	<1.0	<5 2	5 <	5 4.3	2 602	<25	622	181	91	<20 <2	0 45	6.32	2 1,66	1.55	5 0.36 2									
05		<.	5 100) 13	5 21	្តិ 11	148	28	<1.0	<5 3	5 1'	1 4.2	7 1240	<25	581	304	467	<u>~20</u> <2	0 27	5.96	5 2.45	4.66	5 0.08 1	.85	151	15 <10); 25	49	11 _<	5 0.59	83 2	.07
			2000) 2000 2000 2000 2000			÷	 Sector Sector 					 Construction (Construction) Construction (Construction) Construction (Construction) Construction (Construction) Construction (Construction) Construction (Construction) 						in a substance and a social social substance of the substance substance social	00000 00000 00000 00000	40 40 20	Antonio antonio antonio Contra contra contra di Contra contra contra di Contra contra contra contra Contra contra contra contra contra contra		Mandalah Sang Santa Ingga Sang		diodesidi Antoniosi Marconae Laborae	1999 - 1999 1999 - 1999 1999 - 1999 1999 - 1999	80 20 0				a des portes Productos La recorrecto Agrador estas	
						9 2	 Constant and Doctor of the con- traction of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the c						20. 000 500		:	200 A0049 100 A0049 100 A0049 100 A0049 100 A0049		n standard Ar Konkolay Milangaray Ar Angelay	k din k Oktober Kontober Oktober		 A standard stan Standard standard stan Standard standard stan Standard standard st Standard standard stand Standard standard stand Standard standard stand Standard standard stand Standard standard stan Standard standard stand Standard standard stand Standard standard stand Standard standard standard stan		ini ang				0 0.				AN DECC MARCON MARCON MARCON	
				44. 20			anna ann Anna ann Chruan an Anna anna					an an ann ann Tarlaichte Ann an Chailte					ļ	2012010 60000402 - 5000-02		0 0			Tradición (Construint) 2010 Construint) 1010 Construint (Construint) 2010 Construint (Construint) 1010 Construint (Construint)			novie 1924 – 1936 – 1939 –		NARAN DEROKO NGROS NGROS		anta Anta Ata Ata Ata Ata Ata Ata		
						5			Secondaria NA Secondaria NA Secondaria NA Secondaria NA Secondaria			 Acceleration of a 1.25 - 26 - 26 - 26 - 27 1.25 - 26 - 26 - 26 - 26 1.25 - 26 - 26 1.25 - 26 - 26 1.25 - 26						ali tata tata Katabatan Katabatan Katabatan Katabatan	andi Andi Marin Andi	9. 91			tanan aradi terten aradi Terten aradia terten aradia				590 979 899 999			Alaba Alaba Maria Maria Nationa	Santa Cantan Alama (Alama) Santa (Alama) Santa (Santa)	
			a ba Artigor Artigor Artigor				Andreas Colorador Decorres Antreas											area e di Manago di Manago di Manago di	4494 5253 2453	07 85 87 89	 A to define the design of the d	:	ing kata Kata kata Kata kata								n de la companya La companya de la companya De la companya de la companya de la La companya de la companya de la companya de la companya de la companya de	
								n X					88			- 19000 - 19000 - 1900			ante en la Norma de Norma de Norma de Norma de		in an ann an Anna Ann ann an Anna An Anna Anna		di ta fan da na Kara waja na j Kara waja na j Kara waja na j									
						Ş					90.	97679.		11999 11999 11999	; 				2741 2745 2745													
			833		1999 1995 1997	2								69669 58:121 57:77	÷			n nachada Maria an Car Maria an Car Maria an Car	- 60-60 - 10-60 - 10-60 - 10-60		e de la constante de la constante Constante de la constante de la constante de la constante de la constante de Constante de la constante de la Constante de la constante de la Constante de la constante de la Constante de la constante de la		Standar Antonio Antonio						1	9494 1. 10 - 20 - 17		
					3020 575 		n den anter Conservation Anter Anter Anter Anter A)))/			696) Ogé	Secondonas Romas de Secondo Romas de Secondo						n da ana ang ing Ang pangangan Ang pangangan Ang pangangangan	2000 2000 2000 2000 2000 2000 2000	201 201	Maria da Langa d Producto de Langa Producto de Langa Producto de Langa		 Alexandria and Alexandria and<td></td><td></td><td>1999) 1999 1999 1999</td><td></td><td></td><td></td><td></td><td></td><td></td>			1999) 1999 1999 1999						
						8	in de la composition la composition de la composition la composition de la composition la composition de la composition												n an Araba Taonach Tha an Araba Taonach		 Constant and a second Constant and a second Second second and a Second second second Second second Second Second second Se		na da ser a com November de la composition November de la composition November de la composition			1000 - 1000 1000 - 1000 1000 - 1000 1000 - 1000 1000 - 1000				53	de la deservición Productiones Productiones Productiones	
					840 200		Alexandra Alexandra Carlona an Alexandra Alexandra	3. 33		4		ser energi Portenis Services Portenis			4	andra an fairt Carlon an 2000 Carlon Anna 2000 Carlon Anna 2000		Concernent Concernent Anno San Capita Concernent Concernent			en en angelen (en el 1999 - State State (en el 1996 - State State (en el el estate) 1996 - State State (en el estate)		na series Maggior									
							n de la de agrèce e de la de la de la de entre de la dela de la entre de la dela de entre de la dela de	20	n sa san Ni Carang Na Carang							Albert Albert Charles Albert					na katalogi na Katalogi na katalogi na kat Katalogi na katalogi na kat Katalogi na katalogi na kata											
					1300 240					9 d 7 d			824.8. 1921): 1996:			in a substance Substance The Substance The Substance					kana kana bib Marata Marata		n an						1	999 200	ana ang ang ang ang ang ang ang ang ang	
				2										10100 2010 2010						6.0 20.		2 A 2	1.467620 2711-283 284		-0.90 -0.00	200 200 200					ana i gene	
						3			n brong da Stranger Stranger Stranger			0.9.3			8						ni Pasina pa Pasina pasina Pasina pasina Pasina pasina	1 9 9						01000 2010-0 100-0-0		den Haff		
			in M									an a	alaa Mariya Mariya				2		5		 A second state of the second state and the second state of the second state of the second state and the second state of the second state of the second state of the second state and the second state of the second state			•	and China Carlor Carlor							
				15	1.0	5		ô.						- 86					- 19	¥.,		÷.	14.27				ti i i				5398 ⁽	

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

.

۰.

•

1

.

BONDAR CLEGG

Geochemical Lab Report

	CONSULTANTS L					a		OJECT: BC NORTH ATE PRINTED: 29-MAY-01	PAGE 1 DF
REPORT: V01-	00648.0 (COM	PLETE)		DATE RE	CEIVED: 1	2-APR-01	ں 	ALE PRINTED: 29-MAT-01	
SAMPLE	ELEMENT	Au	Pt	Pd	Rh	Os	Ir	Ru	
NUNBER	UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	
R2 19629		8	<20	<20	<5	<10	<1	<50	
R2 91590		3	<20	<20	<5	<10	<1	<50	
R2 91592		3	<20	<20	<5	<10	<1	<50	
R2 91593		3	<20	<20	<5	<10	<1	<50	
\$0 91594									
R2 91604		3	<20	<20	<5	<10	<1	<50	
R2 91605		2	<20	<20	<5	<10	<1	<50	
R2 91606		<1	<20	<20	<5	<10	<1	<50	
R2 91613		2	<20	<20	<5	<10	<1	<50	
\$0 91629									
		· · · · · · · · · · · · · · · · · · ·	<20	<20	<5	<10	<1	<50	
R2 91630		6 10	31	<20	<5	<10	<1	<50	
R2 91636		10	<20	<20	<5	<10	<1	<50	
R2 91637		6	<20 <20	<20	<5	<10	2	<50	
R2 91676		2	<20	<20	<5	<10	<1	<50	
R2 91723		0	×2V	~ <u>~</u> u		· · · · · · · · · · · · · · · · · · ·			
R2 91724		8	<20	<20	<5	<10	<1	<50	
R2 91763		7	<20	<20	<5	<10	<1	<50	
R2 91764		3	<20	<20	<5	<10	<1	<50	
R2 91768		7	<20	<20	<5	<10	<1	<50	
R2 91771		5	<20	<20	<5	<10	<1	<50	
			<20	<20	<5	<10	<1	<50	
R2 91773		4	<20 <20	<20	<5	<10	<1	<50	
R2 91774		د ر	<20 <20	<20	<5	<10	<1	<50	
R2 91787		4. 1.	<20 <20	<20	<5	<10	<1	<50	
R2 91805 R2 91808		4 11	<20 <20	<20	<5	<10	<1	<50	

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 410 - 455 GRANVILLE ST. VANCOUVER, BC V6C 1T1

Project : Comments: ATTN: BILL TIMMINS

CERTIFICATE OF ANALYSIS A0121092

Page Number :1-A Total Pages :2 Certificate Date: 02-AUG-2001 Invoice No. :10121092 P.O. Number : Account :RJV

SAMPLE	PREP CODE	Weight Kg	Au ppb ICP-MS	Pt ppb ICP-MS		ли ррв ГА+АА	Ag PPM	A1 %	λs ppm	b. B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm
69576 (918 01) °	94139402	0.44				< 5	0.2	1.31	46	< 10	40	< 0.5	< 2	3.97	< 0.5
69577 (91802)	94139402	0.54				< 5	0.4	1.99	40	< 10	50	0.5	2	3.81	< 0.5
	94139402	0.54				< 5	< 0.2	1.55	18	< 10	60	< 0.5	< 2	4.23	< 0.5
MT/3 ~ /	94139402	0.50				20	0.2	1.59	36	< 10	50	< 0.5	< 2	4.59	< 0.5
69579 7 9 0 7 69580 7 8 55	94139402	0.46				< 5	0.2	1.62	28	< 10	40	< 0.5	< 2	4.88	< 0.5
69581 919 - 6	94139402	0.56				10	0.4	1.19	42	< 10	40	< 0.5	< 2	4.76	< 0.5
69582 G1 8 c 7	94139402	0.52				15	0.2	0.76	50	< 10	50	< 0.5	< 2	3.88	< 0.5
69583 41909	94139402	0.60				10	0.2	1.20	40	< 10	40	< 0.5	< 2	4.87	< 0.5
69584 41 409	94139402	0.38				20	0.6	0.63	62	< 10	60	< 0.5	< 2	2.80	< 0.5
91626	94139402	0.12				< 5	0.2	2.46	56	< 10	60	0.5	< 2	6.12	0.5
91627	94139402	0.36				5	0.2	1.67	28	< 10	40	< 0.5	< 2	3.29	< 0.5
91628 JA J	94139402	0.56				5	0.2	1.21	50	< 10	30	< 0.5	< 2	2.38	< 0.5
91631	94139402	0.50				< 5	0.4	0.62	52	< 10	30	< 0.5	< 2	3.32	< 0.5
91632 🖓	94139402	0.46			1	5	0.2	0.86	34	< 10	30	< 0.5	< 2	3.09	< 0.5
91633	94139402	0.18				< 5	0.2	0.76	12	< 10	40	< 0.5	< 2	5.15	< 0.5
91634	94139402	0.40				< 5	0.4	0.47	34	< 10	30	< 0.5	< 2	4.88	< 0.5
91635	94139402	0.44]	15	0.6	0.51	66	< 10	40	< 0.5	< 2	3.44	< 0.5
91638	94139402	0.16				< 5	< 0.2	1.33	16	< 10	70	< 0.5	< 2	2.07	0.5 < 0.5
91639	94139402	0.28				< 5	< 0.2	1.33	< 2 30	< 10	40	< 0.5	< 2	6.17	0.5
91640	94139402	0.34				< 5	< 0.2	2.0/							
91642	94139402	0.40				10	< 0.2	1.75	< 2	< 10	70	< 0.5	< 2	3.84	< 0.5
91643	94139402	0.30				< 5	< 0.2	2.83	26	< 10	50	0.5	< 2	2.74	0.5
91644	94139402	0.36				< 5	< 0.2	2.90	2	< 10	70	0.5	< 2	2.08	< 0.5
91800	94139402	0.34				< 5	0-2	1.82	< 2	< 10	60	< 0.5	< 2	3.40	< 0.5
91809 D ^H 1.	94139402	0.32				20	0.4	0.90	58	< 10	60	< 0.5			
91810 0	94139402	0.36				15	0.4	0.89	38	< 10	40	< 0.5	< 2	3.25	< 0.5
91811	94139402	0.34				15	0.6	0.61	56	< 10	40	< 0.5	< 2	2.65	< 0.5
91812	94139402	0.30				15	0.6	0.76	50	< 10	40	< 0.5	< 2	3.66	< 0.5
91851	94139402	0.78	1	1.0	<1		< 0.2	2.53	< 2	< 10	70 60	0.5	< 2	0.59	< 0.5
91852	94139402	0.42	1 1	0.5	< 1		< 0.2	2.38	< 2	< 10	60			· · · · · · · · · · · · · · · · · · ·	
91853	94139402	0.46	1	0.5	< 1		< 0.2	2.55	2		60	0.5	< 2	0.37	< 0.5
91854	94139402	0.64	< 1	0.5	< 1		< 0.2	3.65	< 2		30 40	< 0.5		0.47	< 0.5
91855	94139402	0.56	< 1	0.5	< 1		< 0.2	2.72	< 2		40	< 0.5		0.34	< 0.5
91856	94139402	0.66	1 1	0.5	<1		< 0.2	1.75						14.45	< 0.5
91857	94139402	0.72	1	< 0.5	< 1									L	
91858	94139402	0.80	< 1	< 0.5	< 1		0.4	0.85						>15.00	< 0.5
91859	94139402		1	< 0.5	< 1		0.4	0.81						>15.00	< 0.5
91860	94139402	0.62	< 1	0.5	< 1		< 0.2	2.29							< 0.5
91861	94139402	0.74	<1	1.0			< 0.2	2.90							
91862	94139402	0.88	1 1	0.5	1					1		1		1	1
		1		1				<u> </u>					{	hto	1

CERTIFICATION:

Xaie

DE

00

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: W. G. T. CONSULTANTS LTD.

410 - 455 GRANVILLE ST. VANCOUVER, BC V6C 1T1

Project :

C

Comments: ATTN: BILL TIMMINS

Page Number : 1-B Total Pages :2 Certificate Date: 02-AUG-2001 Invoice No. : I0121092 P.O. Number : Account : RJV

								CERTIFICATE OF ANALYSIS A0121092									
SAMPLE	PREP CODE	Со	C r ppm	Cu ppm	F= %	Ga ppm	Eg ppm	R %	La ppm	Mg %	Mn ppm	No ppm	Na %	Ni P p m	DDur B		
69576	94139402	19	74	47	3.50	< 10	< 1	0.16	10	1.25	925	8	< 0.01	100	2:		
69577	94139402	27	119	99	4.48	< 10	< 1	0.21	10	2.11	1105	3	< 0.01	138	2		
957B	94139402	24	74	47	3.71	< 10	< 1	0.24	20	1.67	1100	3	0.01	90	1		
59579	94139402	21	83	72	4.34	< 10	< 1	0.19	10	1.66	1035	9	< 0.01	110	1		
59580	94139402	22	107	122	3.65	< 10	< 1	0.18	10	2.26	1230	9	< 0.01	137	1 1		
59581	94139402	19	79	62	3.78	< 10	< 1	0.17	10	1.61	1175	14	< 0.01	122	1		
9582	94139402	21	68	51	3.27	< 10	< 1	0.22	< 10	1.55	1030	4	0.01	90			
59583	94139402	22	80	78	3.80	< 10	< 1	0.18	< 10	1.89	1210	6	0.01	122			
69584	94139402	17	83	81	3.40	< 10	< 1	0.24	10	0.95	700	15	0.01	110			
91626	94139402	33	781	58	4.43	10	< 1	0.31	10	2.91	1805	< 1	0.01	245			
91627	94139402	15	79	65	3.46	< 10	< 1	0.23	10	2.00	1095	6	0.01	68			
91628	94139402	18	74	90	3.58	< 10 < 10	< 1	0.17	10	1.10	725	8	0.01	94			
91631	94139402	13	83	93	2.91	< 10		0.20	< 10	1.10	910	14	0.01	101 93			
91632 91633	94139402 94139402	14	71	93	3.04	< 10		0.10	< 10	2.00	1505	7	0.01	64			
91634	94139402	10	95	115	2.15	< 10	< 1	0.16	< 10	1.02	980	18	0.01	100			
91635	94139402	12	99	88	3.15	< 10	~1	0.20	< 10	1.17	695	15	0.01	102			
91638	94139402	15	80	36	3.12	< 10	1 41	0.31	< 10	1.33	520	6	0.01	70			
91639	94139402	14	108	30	2.60	< 10	1 41	0.40	20	0.73	455	<1	0.01	37	4		
91640	94139402	36	272	66	4.92	10	< 1	0.21	< 10	3.30	1310	< 1	0.01	219	ļ		
91642	94139402	20	44	39	3.94	< 10	< 1	0.34	10	0.99	880	1	0.01	48			
91643	94139402		258	42	4.36	10	< 1	0.27	20	2.51	745	1		141			
91644	94139402	25	120	84	4.58	10	< 1	0.32	30	2.02	760	1	0.01	91			
91800	94139402	19	98	91	3.57	< 10	<1	0.26	10	1.51	885	11	0.01	104			
91809	94139402	15	83	82	3.36	< 10	< 1	0.25	10	1.23	890	12	0.01	104			
91810	94139402	11		115	2.95	< 10	< 1	0.19	10	1.36	955	9		92	1		
91811	94139402		96	111	3.25	< 10	< 1	0.18	10	1.00	850	17	< 0.01	110			
91812	94139402	11		112	3.42	< 10	<1	0.21	< 10	1.42	1115 510	13	0.01	102			
91851 91852	94139402 94139402		43	29 46	3.86	< 10 < 10		0.33	40	1.03	470	1		35			
91853	94139402	20	41	24	3.91	< 10	< 1	0.38	30	1.05	445	1 1	0.02	35			
91854	94139402			1	5.11	10	<1	0.19	< 10	2.44	835	ī		50			
91855	94139402				4.36	< 10	1 < 1	0.25	20	-	470	1 1		42			
91856	94139402			_	3.76	< 10	< 1	0.25	20	1.11	480	1	0.03	30			
91857	94139402				2.39	< 10	< 1	0.13	10	1.25	645	< 1	0.01	32			
91858	94139402				1.73	< 10	< 1	0.14	20		470	< 1		14	1		
91859	94139402		-	-	0.81	< 10	< 7	0.14	10		325			10	1		
91860	94139402				1.53	< 10	< 1	0.09	< 10		730	< 1		16			
91861	94139402				3.30	< 10	< 1	0.17	< 10					52			
91862	94139402	25	176	47	3.97	10	< 1	0.08	< 10	2.57	760	<1	0.03	77			
	1 1		l		1	1	1	1	1	1	1	1					

CERTIFICATION:_

Lavel

+ 1

AL S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbla, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: W. G. T. CONSULTANTS LTD.

410 - 455 GRANVILLE ST. VANCOUVER, BC V6C 1T1

Project :

Page Number : 1-C Total Pages :2 Certificate Date: 02-AUG-2001 Invoice No. : 10121092 P.O. Number : Account : RJV

Comments: ATTN: BILL TIMMINS

9977 9413 402 16 3.12 < 2								CERTIFICATE OF ANALYSIS A0121092								
9977 94139402 16 3.12 < 2	SAMPLE						1			1 -	-				1	
9977 9413b402 16 3.12 < 2 2 3 113 < 0.03 < 10 < 10 48 < 10 20 9976 9413b402 16 3.12 < 2 2 114 < 0.03 < 10 < 10 33 < 10 20 20 21 144 < 0.01 < 10 48 < 10 33 < 10 20 21 144 < 0.01 < 10 43 < 10 20 21 145 < 0.01 < 10 43 < 10 33 < 10 20 21 145 < 0.01 < 10 < 10 < 10 44 < 10 40 < 10 40 < 10 40 < 10 410 40	69576	94139402	20	2.71	< 2	1	126	< 0.01	< 10	< 10	55	< 10	16			
9979 9413402 12 1.10 < 2 2 1.43 < 0.01 < 10 410 99 < 10 112 9980 9413402 36 3.00 < 2	69577			3.12	< 2	3	113	< 0.01	< 10	< 10	48	< 10	20		-	
SSB80 SALE SALE SC SC< SC< SC<	69578	94139402	12	2.43	< 2	2	125	< 0.01	< 10	< 10	33	< 10				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	69579		62	-				ł							1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	69580	94139402	18	2.39	< 2	3	146	< 0.01	< 10	< 10	96	< 10	14		1	
SPERS SPERS <th< td=""><td>69581</td><td></td><td>36</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	69581		36													
93336 93135402 28 3.35 4 1 91 < 0.01 < 10 < 10 < 64 < 10 20 46 < 10 20 94139402 2 0.48 < 2	69582				_											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	69583									1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	69584															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91626	94139402	2	0.48	< 2	13	204	< 0.01	< 10	< 10	63	< 10	26			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91627				_							1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9162B															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	91631							1							i i	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	91632															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91633	94139402	10	1.16	< 2	2	128	< 0.01	< 10	< 10	42	< 10	20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91634															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91635				. –				-					9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	91638				. –			1		1					Į [
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-											1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91640	94139402	< 2	0.36	< 2	8	196	< 0.01	< 10	< 10	6.0	< 10	••			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91642					-										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	91643															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
9180994139402303.10211000.0020.0020.100.100.1010109181094139402263.114175<0.01																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91809	94139402	30	3.10	2	1	108	< 0.01	× 10	1 4 10		. 10	10			
9111 9113 213 2 1 106 < 0.01 < 10 < 10 866 < 10 10 91812 94139402 6 0.01 < 2 2 45 0.07 < 10 < 10 13 < 10 76 91851 94139402 16 0.02 < 2 2 45 0.07 < 10 < 10 13 < 10 76 91852 94139402 16 0.02 < 2 2 33 0.04 < 10 11 < 10 72 91853 94139402 16 0.01 < 2 2 33 0.04 < 10 11 < 10 72 91854 94139402 16 0.01 < 2 2 33 0.04 < 10 11 < 10 72 91855 94139402 16 0.01 < 2 2 26 0.06 < 10 < 10 15 < 10 76 91856 94139402 2 0.27	91810							1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91811				1									1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91812															
91852 94139402 10 0.01 < 2 2 33 0.04 < 10 < 10 11 < 10 72 91853 94139402 16 0.01 < 2 7 113 0.10 < 10 < 10 116 < 10 72 91854 94139402 16 0.01 < 2 7 113 0.10 < 10 116 < 10 82 91855 94139402 10 0.04 < 2 3 36 0.05 < 10 < 10 82 91856 94139402 4 < 0.01 < 2 2 26 0.05 < 10 < 10 39 < 10 76 91856 94139402 2 0.38 < 2 1 1130 0.03 < 10 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10 32 < 10																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91852	94139402	16	0.02	< 1	4	3/	0.00								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91853	94139402	10	0.01											1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91854	94139402	16											1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91855	94139402	10									+		1	ļ	
91857 94139402 2 0.38 < 2 1 1130 0.03 < 10 < 10 6 < 10 22 91858 94139402 4 0.32 < 2	91856										1					
91350 94139402 4 0.32 < 2 1 1480 0.01 < 10 3 < 10 10 91859 94139402 2 0.40 < 2 1 1480 0.01 < 10 < 10 10 10 91860 94139402 2 0.40 < 2 1 816 0.04 < 10 < 10 10 14 91861 94139402 2 0.24 < 2 7 121 0.10 < 10 < 10 48 91862 94139402 4 0.06 2 9 152 0.13 < 10 < 10 10 48 91862 94139402 4 0.06 2 9 152 0.13 < 10 < 10 107 < 10 52	91857	94139402	26	0.27	< 2	4	534	0.05	< 10	< 10	39	< 10	32			
91859 94139402 2 0.40 <2 1 816 0.04 < 10 < 10 10 14 91860 94139402 2 0.40 <2 1 816 0.04 < 10 < 10 10 40 14 91861 94139402 <2 0.24 <2 7 121 0.10 < 10 < 10 48 91862 94139402 4 0.06 <2 9 152 0.13 < 10 < 10 10 52	91858	94139402	2						1							
91860 94139402 2 0.40 < 2 1 816 0.04 < 10 < 10 10 < 10 14 91861 94139402 < 2 0.24 < 2 7 121 0.10 < 10 < 10 < 10 48 91862 94139402 4 0.06 < 2 9 152 0.13 < 10 < 10 107 < 10 52																
91861 94139402 4 0.24 2 9 152 0.13 < 10 < 10 52 7 91862 94139402 4 0.06 < 2														1	ļļ	
91862 94139402 4 0.00 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															1	
	91862	94139402	4	0.06	< 2	9	152	0.13	< 10	< 10	10/	< 10	· 32	()		
						1			. I	L	<u> </u>			┶━┼━┼─	170	

CERTIFICATION:_

(Elm

Appendix IV

-

5

.....

k i pros k i pros k

ы. . .

en s En s

<u>,</u>

5.

.

PETROGRAPHIC THIN SECTION DESCRIPTIONS

.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-1199: STRONGLY ALTERED, FOLIATED, KINK-BANDED,

QUARTZ-SERICITE-CARBONATE-PYRITE-GRAPHITE RICH ROCK (MINOR CHLORITE)

Hand sample is a dark grey to blackish, quartz-, pyrite- and graphite-rich rock with crenulated foliation defined by wispy laminae richer in the graphite. Certain layers up to several mm thick are enriched in coarse, euhedral pyrite, and associated with or cut by irregular white veining. The rock is not magnetic and shows no stain for K-feldspar in the etched slab, but reacts to cold dilute HCl. Modal mineralogy in polished thin section is approximately:

	2 1	
Quartz (?largely secondary)		70%
Sericite		10%
Carbonate (?mainly calcite)		10%
Pyrite		5%
Carbon (graphite)		3-5%
Chlorite		1-2%
Chalcopyrite		tr

This slide is made up mostly of fine-grained quartz, with some areas richer in sericite and others in carbonate. Both these areas and areas enriched in carbon (?graphite) have irregular, lensey outlines that suggest they are remnants of wallrock in a quartz-flooded rock, and that thus a large proportion of the quartz may be secondary.

Quartz forms mainly tightly interlocked, anhedral crystals less than about 0.1 mm in diameter, with a secondary appearance. In places almost 100% of the rock appears to be quartz, although what portion of this has been replaced by quartz is not clear (if the rock originally was a metasiltstone, for instance, only part of the quartz is secondary but all appears to be recrystallized). In these parts of the rock, only minor carbonate occurs with the quartz. Carbonate is likely mostly calcite, mostly forming subhedral crystals up to about 0.25 mm in diameter (but could include areas of fine-grained ?dolomite or ankerite).

Sericite forms subhedral, bent flakes mostly <0.25 mm in diameter in the sericite-rich portions of the rock, with foliation following the mineralogical layering (partly defined by concentrations of carbon) but subsequently cut by a second foliation due to kink banding (also partly defined by concentrations of carbon).

The carbon in the rock is probably graphite (seen on slip faces in the hand specimen), but is not coarse enough in the body of the rock to have the high reflectivity or anisotropism of graphite. Most particles are about 10 microns in diameter, but aggregates up to 0.1 mm in size occur. In places minor chlorite is found in the carbon-rich areas, chlorite characteristics are as for the samples from 001-619 to 913.5.

Veins are composed of anhedral quartz and subhedral carbonate up to 0.35 mm in size, with carbonate commonly oriented perpendicular to vein walls. The veins are offset in places along slips in graphite.

Pyrite forms large euhedra up to 4 mm in size with common fine silicate inclusions arranged in zonal patterns indicative of the large crystals having overgrown or replaced earlier crystals. The pyrite also contains rare inclusions of anhedral chalcopyrite up to 0.1 mm across, in places along grain boundaries between pyrite crystals, and traces of ?pyrrhotite <20 microns across. Pyrite crystals are in places surrounded by fibrous quartz or chlorite crystals up to 0.5 mm long that have grown perpendicular to the pyrite crystal face, in a pressure shadow.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V1M 3S3 PHONE (604) 888-1323 • FAX (604) 888-3642 email: vanpetro@vancouver.net

PETROGRAPHIC REPORT ON 14 SAMPLES

Invoice 000570

Report for: Bill Timmins WGT Consultants Ltd. 410-455 Granville Street Vancouver, B.C. V6C 1T1.

Oct. 20, 2000.

SUMMARY:

The 14 samples in this suite, apparently collected at increasing depths in a drill hole from about 100 to 1200 foot depth, appear to record a transition downward from somewhat coarser metasedimentary rocks to finer-grained metasedimentary rocks and altered gabbro, followed by metasedimentary rock? so strongly altered that it is of uncertain type. Kink-banding, which cuts and re-orients foliation, is seen in 6 of the samples (126, 186, 619, 913.5, and 1199). The samples, including altered gabbro, are similar to rock types in the Aldridge Formation of southeastern B.C.; almost all the metasedimentary rocks contain traces of tournaline (intermediate dravite-schorl) as 0.1-0.2 mm long ?detrital euhedra, and minor rutile and ?carbonaceous matter. Note: the prefix meta- is understood in all the following descriptions.

From 113 to 156, the samples are mainly weakly foliated to foliated, quartz-plagioclase wacke with maximum average grain size of detrital quartz and feldspar about 1.5 mm. Plagioclase appears to be ?andesine; the rocks range from quartz veined with silicified and sericitized envelopes at 113 to sericitized at 126 (both samples contain significant coarse euhedaral pyrite) to weakly sericitized at 156 (with minor pyrrhotite). Only traces of carbonate, possibly dolomite or ankerite, are found.

The sample from 186 represents interlaminated mudstone and fine quartz wacke, and is the first sample that chlorite is noted in the drillhole. From 530 and 589, the samples appear to be fine-grained quartz-plagioclase wacke similar to that from 113-156 but of finer grain size. These samples are possibly sericite-chlorite altered and contain minor pyrhotite; plagioclase may be albite in the sample from 589.

Samples from 619, 632 and 661 appear to be finely laminated siltstone and mudstone, in places with disrupted bedding and/or fragmental textures (especially 632). These samples appear to be altered to sericite, chlorite, calcite, and locally quartz; albite is present in 661. Minor sulfides are pyrrhotite.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

The samples from 674.5, 874, and 913.5 are hard to determine a protolith for; given the presence of altered gabbro at 947 and the abundance of both chlorite and sphene/rutile in 674.5 and 874, it is possible they are strongly calcite-sericite-chlorite-quartz altered and deformed gabbros. An increase in quartz content and relict (kink-banded) foliation in 913.5 may indicate that this sample represents sericite-chlorite-calcite altered siltstone, possibly between two gabbro sills. Alteration in the gabbro at 947 is strong ?actinolitic amphibole, chlorite, calcite, zoisite, sphene and patchy albite with quartz-calcite veins.

The sample from 1199 may be a strongly altered, recrystallized sediment, composed mainly of quartz-sericite-calcite-pyrite and graphite, and also cut by quartz-calcite veins.

eitch, P.Eng.

Craig H.B. Leitch, Ph.D. P.Eng (250) 653-9158 cleitch@saltspring.com 492 Isabella Point Road, Salt Spring Island, B.C. V8K 1V4

 \Box

<u>.</u>

μ.

÷.,

5

1

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-113: QUARTZ VEINED, SILICIFIED, SERICITIZED, PYRITIZED QUARTZ-PLAGIOCLASE WACKE

Hand sample is a dark grey-green, fine-grained rock containing scattered pyrite crystals The rock is not magnetic and shows no reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Quartz (partly secondary)	65%
Sericite, muscovite	20%
Plagioclase (?andesine)	10%
Рутіtе	3%
?Carbonaceous matter	1-2%
Carbonate	<1%
Rutile	<1%
?Zircon, tourmaline	tr

In thin section, this sample is composed mainly of anhedral to subhedral, likely detrital, grains of quartz and lesser plagioclase in a matrix of fine-grained quartz, sericite, plagioclase, rutile, carbonate and ?carbonaceous matter. A weak foliation is defined by sub-parallel orientation of the narrow (<20 micron thick) ?stylolitic carbonaceous matter seams, and crude sub-parallel orientation of the sericite flakes. Coarse euhedral pyrite crystals up to 2 mm across appear to be superposed on the original detrital fabric, but are not obviously related to a major quartz vein about 4 mm thick cutting the slide. Pyrite crystals up to about 1.5 mm in diameter, cut by narrow zones of fine-grained (recrystallized) quartz <0.1 mm in diameter, and appears to be flanked by zones of silicification (alteration envelopes up to about 2 mm wide). Outside these silicified envelopes, sericite content may increase slightly toward the vein but this is not certain.

Detrital quartz and plagioclase grains or clasts have subangular outlines up to 1.5 mm in diameter. Quartz clasts are commonly aggregates of several crystals, with undulose extinction and minor suturing of grain boundaries indicating strain; some have narrow overgrowth rims up to 50 microns thick, suggesting silicification. Plagioclase clasts are commonly partly altered to sericite (5-25% replaced); composition appears to be either ?andesine based on extinction angles Y'010 = 15 degrees, X'001 = 6 degrees (this lacks confirmation by comparing the refractive index of the plagioclase with quartz, since a thin film of sericite always occurs between the two minerals). Scattered relatively coarse flakes of sericite (muscovite) up to 0.75 mm in diameter could also be detrital. Rare euhedral ?zircon crystals up to 100 microns long and pale green tourmaline up to 0.2 mm long (intermediate dravite-schorl) could be relict detrital.

In the matrix, smaller clasts of quartz and lesser plagioclase mainly <0.25 mm in diameter are embedded in fine flakey sericite (mainly <50 microns), minor rutile (brown euhedra mainly <0.1 mm but aggregating in places to 0.2 mm) and ?carbonaceous matter mostly <5 microns, and rare carbonate subhedra to 0.15 mm. The carbonate may be ?dolomite or ankerite to judge by the lack of reaction in hand sample, or it may be too little to show any reaction.

In summary, this sample appears to represent a medium-grained sandstone or quartz wacke (significant feldspar content) cut by quartz veins with silicified envelopes, partly altered to sericite, carbonate, pyrite and rutile (?carbonaceous matter may be primary; it is not clear how much of the matrix sericite is primary and how much is secondary).

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-126: SERICITIZED AND PYRITIC, IN PLACES ?CARBON-RICH, PYRRHOTITE-BEARING, QUARTZ-PLAGIOCLASE WACKE

Hand sample is very similar to 001-113: dark grey, fine-grained quartz wacke with scattered coarse euhedral pyrite crystals and foliated black ?carbonaceous zones. The rock is weakly magnetic but shows no reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

65%
20%
7%
3%
2-3%
1%
1%
<1%
tr

This sample is a little more foliated than 001-113 and contains slightly less/more altered plagioclase, but otherwise is very similar in thin section; in order to save repetition, please refer to the description above for more details than given below.

Detrital quartz and lesser plagioclase feldspar grains have subrounded to subangular outlines up to 1.5 and 1.2 mm in diameter respectively, and are set in a matrix of fine-grained (roughly 0.25 mm or less in diameter) quartz, sericite and lesser plagioclase. Most feldspar grains are partly altered to fine-grained sericite. Narrow foliae of black ?carbonaceous matter mainly wrap around the quartz clasts but appear to partly replace the feldspar clasts. Overgrowth rims on quartz are very narrow (<25 microns thick). Scattered coarse flakes of sericite (muscovite up to 0.5 mm in diameter) may also be relict detrital. Rare tournaline (intermediate dravite-schorl, as described for 001-113) are also likely detrital. Coarse pyrite euhedra up to 0.5 cm across contain common inclusions of sericitized plagioclase, quartz and rutile

In the matrix, sericite flakes mostly <0.1 mm in diameter are mixed with abundant very fine ?carbonaceous matter and rutile, and scattered subhedra of carbonate up to 0.2 mm in diameter. Lack of reaction in hand sample suggests this carbonate may be ?dolomite or ankerite. At one end of the slide, a 1 cm thick strongly foliated zone consists mainly of sericite as coarser flakes up to 0.25 mm in diameter commonly mixed with abundant microscopic ?carbonaceous matter, and contains irregular blebs of pyrrhotite up to 1 mm across. This zone shows strong kink banding oblique to the foliation. The pyrrhotite crystals are subhedral and mostly <0.15 mm in diameter, intergrown with quartz that may be secondary; narrow lenses up to 0.25 mm thick of secondary quartz and minor carbonate are also associated with this zone.

In summary, this example of quartz wacke is likely sericitized (at least in part) as in 001-113, but silicification and quartz veining is not so evident. The presence of a reduced, carbon-rich zone (containing pyrrhotite rather than pyrite) is also distinctive, compared to the coarse pyrite-bearing rocks adjacent to it.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-156: FOLIATED, FINE-GRAINED QUARTZ-PLAGIOCLASE WACKE WITH ACCESSORY PYRRHOTITE, CARBONATE, ?CARBONACEOUS MATTER, RUTILE AND TOURMALINE

Dark grey, very fine-grained wacke similar to 001-113 and 126 but lacking the coarse euhedral pyrite crystals and generally much more strongly foliated. The rock is weakly magnetic but shows no reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Quartz (mainly detrital)	45%
Sericite	40%
Plagioclase	5%
Carbonate (?dolomite-ankerite)	3%
Pyrrhotite	3%
?Carbonaceous matter	2%
Rutile	<1%
Tourmaline (dravite-schorl)	<1%

In this slide, the large detrital clasts of quartz and feldspar are rare (a few are up to 1.5 mm in maximum dimension, elongate parallel to the foliation). Most of the slide consists of fine-grained, well-foliated, sericite and quartz with abundant dark foliae of ?carbonaceous matter, pyrrhotite, and minor rutile plus scattered tourmaline.

Sericite forms subhedral flakes mostly <0.15 mm in diameter, defining the foliation. Quartz mostly occurs as elongate to lensey grains under 0.7 mm long with length:width ratios about 3:1 or 4:1, implying significant flattening and elongation of original detrital grains. In places lenses and layers up to 1 mm thick, parallel to foliation, of finer-grained quartz may be secondary, or could represent a primary quartz-rich, clay-poor lithology. Feldspar grains are sparse and generally not as flattened as the quartz, although sericitized examples appear to grade into aggregates of sericite and quartz that may have replaced former plagioclase detritus.

Carbonate is slightly more abundant than in the slides from 001-113 and 126, forming subhedral crystals to 0.25 mm that in places aggregate to 0.5 mm in the plane of foliation; they may be ?dolomite or ankerite to judge by the lack of reaction in hand sample.

Pyrrhotite occurs as fine-grained (<0.2 mm) subhedra in lensey aggregates or blebs up to 2 mm long parallel to foliation.

Very fine opaques (mainly 10 microns or less in diameter), with very low reflectivity, are interspersed with sericitic foliae in the rock. They probably represent ?carbonaceous matter that has not been sufficiently metamorphosed to form graphite. Rutile forms small aggregates up to 0.15 mm across composed of small (50 micron) dark brown subhedra. Tourmaline is medium green, intermediate dravite-schorl, forming euhedral ?detrital crystals up to 0.25 mm long.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-186: INTERLAMINATED META-SILTSTONE/MUDSTONE AND FINE QUARTZ WACKE WITH BLEBS/VEINLETS OF PYRRHOTITE-QUARTZ-CHLORITE

Hand sample is a very fine-grained, finely interlaminated meta-siltstone and fine wacke with narrow fractures that contain minor pyrrhotite. The rock is weakly magnetic in places but shows no reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Sericite	45%
Quartz	40%
Chlorite	10%
Pyrrhotite	2-3%
Rutile, ilmenite	1%
?Carbonaceous matter	1%
Carbonate	<1%
Tourmaline (dravite-schorl)	tr
Apatite	tr

There are two basic variants, or rock types, in this slide: the major one is very fine silt- or mudstone, composed almost entirely of sericite (likely after clays), and the other is fine quartz wacke with lesser but still significant sericite.

In the sericite-rich rock, sericite forms mainly euhedral flakes mostly <50 microns in diameter that define a strong foliation. Quartz is minor, probably <20% of this part of the rock. Narrow kink bands <0.25 mm thick cross the rock oblique to the foliation, and narrow (<0.1 mm thick) quartz-trace carbonate ?veinlets are either planar, parallel to foliation (syn-metamorphic) or ptygmatically folded (pre-metamorphic). Pyrrhotite also occurs in the folded veins, forming elongate crystals up to 0.35 mm long parallel to the veinlet that are fractured or altered at their margins. Euhedral brown rutile crystals commonly form aggregates up to 0.25 mm long, parallel to the foliation (some are cored by ilmenite, and tabular ilmenite up to 0.1 mm long are also present in places). Narrow lenses or veinlets of quartz-pyrrhotite are rare. Scattered pale green tourmaline crystals are euhedral, up to 50 microns long.

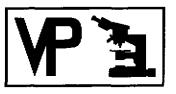
In the more quartz-rich wacke, fine flattened ?detrital quartz mainly <0.1 mm in size makes up about 50% and sericite about 30-40% of the rock, with the remainder being chlorite mixed with the sericite, ?carbonaceous matter, and rutile. Blebs of pyrrhotite mostly <0.2 mm long but in places aggregating up to 2 mm long are associated with lenses of quartz containing (and peripherally associated with) minor chlorite (flakes up to 0.1 mm diameter, so intimately mixed with sericite that they are difficult to distinguish). Rare traces of chalcopyrite (subhedra <20 microns in diameter) are associated with the pyrrhotite.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-530: FINE QUARTZ-PLAGIOCLASE WACKE WITH SERICITE-CHLORITE-CARBONATE \pm PYRRHOTITE-RUTILE-?CARBONACEOUS MATTER FOLIAE

Hand sample is a dark grey, very fine-grained, laminated meta-siltstone or fine wacke with minor blebs of pyrrhotite and rare narrow white fractures parallel to the core axis. The rock is slightly magnetic and shows trace reaction to cold dilute HCl, but no stain for K-feldspar in the etched slab. Modal mineralogy in thin section is approximately:


	· · · · · · · · · · · · · · · · · · ·	
Quartz (largely	v detrital)	50%
Plagioclase (?c	ligoclase)	20%
Sericite	-	15%
Chlorite		10%
Carbonate	(partly calcite)	2-3%
Opaque (?pyrr.	hotite)	1-2%
Rutile	-	<1%
?Carbonaceous	s matter	<1%

Although finer-grained, the mineralogy of this sample is similar to that of 001-113: detrital quartz, significant plagioclase feldspar, with foliae of sericite and ?carbonaceous matter, rutile and minor pyrrhotite. However, in this sample there is significant chlorite intimately mixed with the sericite.

Quartz- and feldspar-rich laminae are about 1-2 mm thick and contain subangular to subrounded detrital grains about 0.3 mm in diameter in a matrix of sericite and chlorite, minor carbonate, rutile, pyrrhotite and ?carbonaceous matter. Quartz grains are commonly composite or recrystallized, but do not display overgrowths; feldspar grains are commonly twinned and partly sericitized. Extinction Y^010 about 10 degrees and lack of significant relief against quartz suggests calcic oligoclase, about An₂₇.

Sericite- and chlorite-rich laminae are mainly <0.5 mm thick and contain 0.1 to 0.3 mm flakes of sericite and lesser chlorite, with irregular blebs of pyrrhotite mainly <0.1 mm in diameter and elongate rutile aggregates up to 0.2 mm long, plus microscopic (5 micron) ?carbonaceous matter. Chlorite has optical characteristics (pale green pleochroism, anomalous blue length-slow birefringence) typical of a moderately Fe-rich variety. Carbonate, likely mostly calcite?, forms irregular subhedra to 0.15 mm diameter.

This sample of fine-grained quartz-plagioclase wacke does not show clear indications of alteration apart from the sericite replacing plagioclase. However, it is possible that part of the sericite in the matrix also replaces feldspar, and therefore the rock has undergone more significant alteration than is readily apparent. Chlorite may also be an alteration product, or simply a product of regional metamorphism.

. .

.....

ι.

-

.

н Б

μ.,

ь.

6 I.

ι.

Έ.

• · ·

.

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 · FAX (604) 888-3642

001-589: FINE QUARTZ-PLAGIOCLASE WACKE WITH SERICITE-CHLORITE MATRIX, ±?PYRRHOTITE-RUTILE-?CARBONACEOUS MATTER-TOURMALINE

Hand sample is a fine-grained, grey, weakly foliated ?siltstone or wacke with minor pyrrhotite. The rock is weakly magnetic and shows trace reaction to cold dilute HCl, but no stain for K-feldspar in the etched slab. Modal mineralogy in thin section is approximately:

Quartz (mainly detrital)	55%
Sericite, muscovite	15%
Plagioclase (albitized, sericitized)	10%
Chlorite	10%
Opaque (?pyrrhotite)	1-2%
Rutile	1-2%
?Carbonaceous matter	<1%
Tourmaline	<1%

In this slide, elongated (likely flattened detrital) quartz and lesser, partly sericitized, feldspar grains plus rare euhedral muscovite flakes are set in a matrix of fine-grained sericite, chlorite, quartz, rutile, and ?carbonaceous matter containing scattered pyrrhotite blebs and rare tourmaline crystals. Proportions of sericite to chlorite vary from about 80:20 to 50:50. Elongate lenses of fine-grained quartz occur parallel to foliation.

Quartz and plagioclase feldspar form detrital grains mostly <0.5 mm in maximum dimension (composite grains of both quartz and plagioclase are up to 1.25 mm long), elongated in the plane of flattening or foliation. Minor overgrowth rims are denoted on quartz by minute inclusions near the rims. Plagioclase is vaguely twinned, with spindle-shaped twins characteristic of albitization that may have accompanied sericitization. Relief compared to quartz inclusions is negative, confirming that the plagioclase is albitic.

In the matrix, sericite is intimately mixed with chlorite, both forming sub- to euhedral flakes up to 0.1 mm diameter. Chlorite optical properties are as described above for 001-530. Quartz grains are generally <0.1 mm in diameter. Rutile and opaque (?pyrrhotite) form elongate aggregates up to about 0.2 mm long aligned parallel to the foliation. Minor amounts of sub-microscopic opaque, likely ?carbonaceous matter, are found within sericitic foliae. Tourmaline crystals <0.1 mm long are medium khaki-green (intermediate dravite-schorl, possibly slightly more Fe-rich than in previous samples). Although traces of calcite are indicated in hand specimen, no carbonate was seen in the thin section.

Although it is not possible to be sure, not knowing what the protolith was and what part of the sericite formation is due to the metamorphism, this sample may represent sericite-chlorite-albite alteration of a fine-grained quartz-plagioclase wacke.

н -1

.

e

. .

b. .

5

p ----

ы. .

ь.

ſ

. .

0

-

•

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-619: LAMINATED, FOLIATED, KINK BANDED META-SILTSTONE OR MUDSTONE COMPOSED OF SERICITE, MINOR QUARTZ, ?CARBON, PYRRHOTITE, RUTILE

Hand sample is a dark grey to black, very fine-grained, finely laminated ?meta-siltstone with alternating dark and light laminae displaying intricate ?isoclinal folding or disruption, cut by a ptygmatically folded pyrrhotite vein. The rock is weakly magnetic but shows only trace reaction to cold dilute HCl, and no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Sericite	75%
Quartz	15%
Pyrrhotite	5%
?Carbonaceous matter	2-3%
Rutile, ilmenite	1-2%
Carbonate (?calcite, in vein)	<1%
Tourmaline	tr

This slide appears to be a meta-mudstone, composed principally of very fine-grained sericite (probably after detrital clays and micas) and lesser quartz (probably mainly detrital), with abundant narrow foliae enriched in submicroscopic ?carbonaceous matter, pyrrhotite, and rutile. The slide is roughly divisible into a silty part, with appreciable quartz, and a muddy part, with virtually no quartz.

In the former, quartz grains making up about 20% of the rock are mainly <25 microns in diameter but in places form composite grains up to 75 microns across. Sericite flakes are subhedral, up to 0.1 mm in diameter and define a strong foliation. Abundant, pervasively distributed narrow foliae (mostly <10 microns thick, but commonly in groups up to 50 microns thick) are enriched in 5-10 micron opaques, most likely ?carbonaceous matter, rutile (aggregates up to 0.25 mm long composed of minute brown subhedra mostly <20 microns in diameter) and pyrrhotite (blebs elongated parallel to foliation up to 0.15 mm long). Rare tourmaline forms scattered euhedra, likely detrital, up to 60 microns long.

In the latter, sericite, pyrrhotite, and rutile seem to be the only minerals present. Sericite, which forms subhedral to commonly bent flakes mostly <0.1 mm in diameter, displays strongly developed kink banding subparallel to the foliation, in which sericite flakes are rotated up to 90 degrees from the plane of foliation. Rutile occurs in slender elongate aggregates up to 0.15 mm long that are likely after former tabular ?ilmenite crystals, some of which remain in the slide. Pyrrhotite blebs are irregular and up to 0.75 mm across, except in the folded vein where masses up to several mm thick are composed of intergrown anhedra mostly <0.2 mm in diameter. Minor carbonate, likely calcite, forms subhedra to 0.35 mm in diameter included in the pyrrhotite vein.

B- ----

5

-

κ.

-

•

۰ ٣

<u>,</u>----

. . .

.

r----

.....

r---

ι.

.....

ъ. .

••••• •

00

 \Box

•----

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-632: ?FRAGMENTAL META-SILTSTONE (DETRITAL QUARTZ-PLAGIOCLASE IN MATRIX OF SERICITE-CHLORITE-CALCITE-PYRRHOTITE-?CARBONACEOUS MATTER-RUTILE

Hand sample is a dark grey to blackish, very fine-grained ?meta-siltstone with a distinctly disrupted or possibly fragmental texture. The rock is magnetic and shows minor reaction to cold dilute HCl, but no stain for K-feldspar in the etched slab. Modal mineralogy in polished thin section is approximately:

Quartz (detrital, ?secondary)	40%
Sericite	25%
Chlorite	10%
Plagioclase (?albite-oligoclase)	10%
Carbonate (?mainly calcite)	5%
Pyrrhotite	5%
?Carbonaceous matter	2-3%
Rutile, trace ?allanite	1-2%
Tourmaline (dravite-schorl)	<1%

In this slide, vague clasts (or ?isoclinally folded and disrupted rock) are defined by distinctly quartz-rich areas up to 1 cm across. Although the boundaries are relatively sharp, they follow the folds in foliation or are lensey areas infolded with the foliation. The possibility exists that this represents a fragmental rock, with disruption either prior to folding or during folding.

In detail, the "clasts" either are enriched in quartz (silts or fine sands) relative to the matrix, or consist mainly of quartz as jigsaw interlocking anhedral to subhedral crystals up to 0.3 mm diameter, plus minor chlorite and sericite as subhedral flakes to 0.15 mm and pyrrhotite blebs up to 0.25 mm across. In places, relict ?fragments within the "clasts" are marked by concentrations of ?carbonaceous matter with feathery, disrupted shapes.

The rest of the rock consists of detrital quartz and lesser feldspar grains embedded in a matrix of fine-grained sericite, chlorite and carbonate plus variable amounts of opaques (pyrrhotite, rutile, ?carbonaceous matter). Quartz grains up to 0.2 mmgenerally have elongate shapes (length:width ratio about 2:1 in composite grains) subparallel to the foliation defined by the intervening micaceous minerals. Plagioclase feldspar grains tend to be smaller (0.1 mm) and subhedral, rarely displaying twinning with extinction on 010 about 12 degrees suggestive of composition either albite or oligoclase (not possible to see relief against quartz due to intervening sericite). The feldspar shows minor sericitization.

Sericite and chlorite in the matrix are intimately mixed subhedral flakes mostly <0.1 mm in size (rare 0.2 mm flakes of sericite could be detrital). Sericite-rich areas of the rock display minor kink-banding that defines a weak foliation oblique to the main foliation. Chlorite optical properties (very pale green pleochroism, anomalous green, length-fast birefringence) indicate lower Fe content than in previously described samples. Carbonate, likely mostly calcite, forms interlocking subhedra mostly <0.1 mm in diameter. Scattered 0.1 mm long tourmaline euhedra are also likely detrital; they have khaki-brown pleochroism suggesting moderately Fe-rich composition. Aggregates of rutile up to 0.2 mm long may be after former tabular ?ilmenite crystals; pyrrhotite blebs are irregular in shape, up to 0.7 mm long. Very fine opaques forming minute (5-10 micron) dusty particles and intergranular films may be ?carbonaceous matter. Rarely, small aggregates of ?allanite (REE-U/Th-bearing epidote) are marked by pleochroic haloes in adjacent chlorite, due to radiation damage.

Appendix III

.

-

• -

* ---* --* --* --

• ---• -

- -• -• • • ~ • • ۰. - --• • ------. ... -----.

CERTIFICATES OF ANALYSIS

. . .

κ.

p ----

s. ..

ь -

ι.

 \Box

h -

N. .

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-661: WEAKLY ALTERED (SERICITE-CHLORITE-CALCITE-ALBITE-PYRRHOTITE) META-SILTSTONE

Hand sample is fine-grained, grey, faintly laminated meta-siltstone with a faint green cast possibly due to pervasive sericite (\pm chlorite?) and minor pyrrhotite alteration. The rock is weakly magnetic and shows major reaction to cold dilute HCl, but no stain for K-feldspar in the etched slab. Modal mineralogy in thin section is approximately:

Quartz (detrital)	45%
Carbonate (mostly calcite)	20%
Plagioclase (?albite)	15%
Sericite	10%
Chlorite	7%
Opaque (?pyrrhotite)	1-2%
Rutile	<1%
?Allanite	tr

This slide is composed of a framework of detrital quartz and plagioclase feldspar grains, mostly <0.5 mm in diameter, in a matrix of carbonate, lesser sericite, chlorite, and minor pyrrhotite and rutile. Scattered coarser sericite flakes (muscovite, up to 0.2 mm) and yellow-brown to green (dreavite-schorl) tourmaline crystals up to 0.2 mm long are also likely detrital.

Quartz grains are mainly subangular, with minor overgrowths at the rims generally <25 microns thick. Plagioclase grains are subhedral to subrounded, commonly partly altered to fine flakes of sericite; composition could be albite (extinction $Y^{010} = 14$ degrees, relief against quartz appears to be negative, but is uncertain due to intervening film of sericite).

Carbonate forms abundant interlocking subhedra mostly <0.15 mm in diameter, likely calcite to judge by the strong reaction to HCl in hand sample. Sericite flakes are mostly <50 microns in diameter, and are mixed in places with chlorite up to 0.1 mm in diameter (optical properties of chlorite are as for 001-619). Chlorite also forms aggregates up to 0.25 mm in size of 0.1 mm flakes, locally with pleochroic haloes surrounding tiny (20 micron) subhedra of ?allanite. Rutile crystals to 50 microns long are commonly intergrown with opaques (?pyrrhotite or less commonly ?carbonaceous matter). Pyrrhotite forms aggregates up to 0.5 mm long composed of smaller subhedral crystals

In summary, it is not clear whether the carbonate, sericite and chlorite entirely or partly represent an alteration assemblage. If these rocks were from the Aldridge Formation in southeastern B.C., which they greatly resemble, the lack of biotite would suggest that they have been weakly sericite-chlorite altered (not enough to destroy the albitic plagioclase). It is also not clear whether the carbonate content is a function of a primary lithology change or due to alteration; more sampling and field relations would be required to determine this.

μ.

È ...

P----

h -

ι.

-

ه...

. .

. .

. .

ъ. н

··--

b. ...

• •

ь.

ь а

. .

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-674.5: STRONGLY CALCITE-CHLORITE-QUARTZ-RUTILE-?PYRITE ALTERED ?METASEDIMENTARY ROCK

Hand sample is composed of mixed, swirled areas of pale green, soft rock and darker green, harder rock with a strongly disrupted texture; in the etched slab, the major dark green area is cored by what appears to be a white to grey, 1-3 mm wide fracture envelope that is also mainly harder than steel. Both areas react vigorously to cold dilute HCl, but show no stain for K-feldspar in the etched slab; the rock is slightly magnetic. Modal mineralogy in thin section is approximately:

(?hematite-magnetite)	<1%
Opaque (sulfide, ?pyrite)	1-2%
Rutile	1-2%
Quartz (secondary)	20%
Chlorite	30%
Carbonate (?mostly calcite)	45%

In thin section, the dark greenish areas (corresponding to the soft, yellow-green areas in hand specimen) are mostly chlorite with lesser carbonate, and the paler coloured areas (corresponding to the dark areas inhand specimen) are mostly carbonate with lesser but significant quartz. Although the whitish ?vein zone seen in the etched offcut is not visible in thin section, it seems likely that it represents a quartz-rich zone at the center of a carbonate-rich zone.

Carbonate, likely mostly calcite, forms tightly interlocking anhedra to subhedra mostly <0.1 mm but in places up to 0.35 mm in diameter. Quartz intergrown with the calcite forms anhedral to subhedral polygonal crystals generally <0.2 mm in diameter (but in places up to 0.7 mm) with a distinctly secondary look, and commonly strained and sutured. The quartz is commonly found in irregular-shaped patches up to several mm across that locally form an irregular network with veinlet-like distribution within the strongly carbonate-altered areas. Minor chlorite is found in the carbonate-rich areas. Fine irregular-shaped opaques appear to be mostly sulfide, likely pyrite, forming subhedra rarely over 0.1 mm in diameter but aggregating in blebs up to 0.25 mm long.

Chlorite forms subhedral flakes up to about 0.1 mm in diameter, with optical properties as described for 001-619 (virtually no pleochroic colour, weak anomalous green, length-fast birefringence) indicating slightly Mg-rich composition (Fe:Fe+Mg, or F:M, ratio possibly about 0.4-0.5). Minute needles of rutile up to 25 microns long are common in the chlorite (these can be seen in the etched slab as yellowish areas). Scattered opaques with rounded outlines up to 0.3 mm diameter are transparent red-brown at thin edges and may be ?hematized magnetite.

This sample, if derived from a metasedimentary rock like the others in this suite, likely represents strong quartz-carbonate-chlorite alteration (note the absence of any sericite, a characteristic mineral of the metasedimentary rocks). Pyrite, suspected in the section but not confirmable lacking a polished surface, is typical of the chlorite-carbonate alteration facies at the Sullivan deposit in the Aldridge Formation of southeastern B.C.

ς.

<u>م</u> .

ι.

ω.

κ.

۰.

k ...

× -

K ...

ь.

B

. .

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-874: ?STRONGLY (SERICITE-CALCITE-CHLORITE-?UARTZ-SULFIDE-SPHENE/RUTILE) ALTERED ?METASEDIMENTARY ROCK

Hand sample is a friable, strongly foliated grey-green rock, with lensey white layers that are softer than steel. The rock is magnetic and shows strong reaction to cold dilute HCl; there is no offcut left to check for stain for K-feldspar. Modal mineralogy in thin section and a polished slab is approximately:

•	
Sericite	40%
Carbonate (?mainly calcite)	25%
Chlorite	25%
Quartz (?detrital or secondary)	5%
Pyrrhotite, pyrite, chalcopyrite	2-3%
Sphene, trace rutile	1-2%
?Hematite	<1%

This slide is somewhat similar to 001-674.5 in mineralogy (abundant calcite, chlorite, pyrite) but contains significant sericite and no quartz, and the Ti mineral consists of sphene as well as rutile.

The bulk of this rock is made up of fine-grained, finely foliated sericite (subhedral flakes mostly <0.15 mm in diameter, but in places with coarser carbonate, euhedral flakes of "muscovite" up to 0.6 mm in diameter). In many layers the sericite is intimately mixed with carbonate, lesser chlorite, and in some places, minor quartz. Quartz, which is very minor in this rock, occurs as flattened elongate crystals or aggregates up to 0.5 mm long, oriented in the plane of foliation; it could be relict detrital or ?secondary. Chlorite tends to be concentrated in narrow foliae between layers of sericite-carbonate rich rock. Lensey blebs of sulfide (pyrrhotite, pyrite, rare chalcopyrite), mostly <0.5 mm long, are found in the plane of foliation in sericite-carbonate-chlorite rich rock.

Carbonate, likely mostly calcite to judge by the reaction in hand sample, forms elongate (flattened) subhedral crystals up to 0.75 mm long in the plane of the well-developed foliation. In places it is concentrated into lenses or layers up to 1 mm thick.

Chlorite, with optical properties as for 001-674.5, forms fine subhedral flakes mostly less than about 0.1 mm in diameter. Most chlorite is concentrated in lensey or flattened ovoid areas about 3 mm long parallel to the foliation; these could represent chloritization and deformation of former ?mafic mineral crystals in a sheared and altered rock, but this is speculative. The ovoid areas contain subhedral opaque crystals in places like the ones in 001-674.5; it is not possible to identify these precisely, but they appear to be altered to limonite at the rims. Fine-grained (20-40 micron) euhedral rutile needles, locally forming aggregates to 0.2 mm, and locally intergrown with subhedral sphene crystals to 35 microns in diameter, are common within the chlorite-rich areas of the rock.

In summary, it is not clear what the protolith was for this rock: metasedimentary or possibly metaigneous, such as gabbro sill. Therefore, it is not clear what the extent of sericite-calcite-chlorite-?quartz-sulfide-sphene/rutile alteration is. However, the high Ti mineral and chlorite content in both this sample from 874 and the sample from 674.5 is suggestive of a metaigneous origin for the two samples; the ?albite akteration in the metasedimentaray sample from 661 is typical of the margins of altered gabbros in the Aldridge Formation.

. .

Υ.

λ.

κ.

Γ.

r ---

ι.

-

a. ..

. .

. .

. .

• • •

• •

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-913.5: STRONGLY KINK-BANDED, ?QUARTZ-SERICITE-CHLORITE±CALCITE ALTERED ?META-SILTSTONE WITH TRACES OF SULFIDES, SPHENE/RUTILE, ?ALLANITE

Hand sample is pale greenish-grey, weakly foliated, with a weakly developed laminated texture, distinctly softer than steel. The rock is only slightly magnetic and shows no stain for K-feldspar in the etched slab, but shows minor reaction to cold dilute HCl. Modal mineralogy in polished thin section is (very approximately):

**	
Quartz	40-50%
Sericite	40-50%
Chlorite	7-10%
Carbonate (mainly calcite)	2-3%
Pyrrhotite, trace chalcopyrite	<1%
Sphene, trace rutile	<1%
?Allanite	tr
Tourmaline (dravite-schorl)	tr

This slide consists mainly of quartz and sericite, plus minor amounts of chlorite, carbonate, and accessory sulfides and Ti-minerals; traces of ?allanite are suggested by pleochroic haloes around them in adjacent chlorite. The prominent fabric (foliation and lamination) seen in hand specimen appears to be kink-banding, at a high angle to the original foliation defined by alignment of sericite flakes. Original mineralogical layering from quartz-, sericite- to chlorite-rich appears to have been on a millimeter scale and to have been closely folded by the kink-banding. Ptygmatically folded quartz-minor sulfide ?layers or veins up to 0.5 mm thick are also affected by the event that produced the kink banding.

Quartz forms subhedral crystals mostly <50 microns in diameter that appear to be thoroughly recrystallized and to have lost their original ?detrital character. The crystals are commonly elongated with length: width ratios about 2:1, and long axes oriented sub-parallel to adjacent sericite flakes in the kink bands. Sericite flakes are mainly euhedral, up to 0.1 mm in diameter. Minor amounts of chlorite are intimately intergrown with the sericite as euhedral flakes of similar size, but there are also narrow laminae <0.1 mm thick (following the original, folded foliation and parallel to the quartz ?layers or veins) in which chlorite is more concentrated. Chlorite is characterized by very weak green pleochroism and near-zero birefringence, suggesting a F:M ratio of ?0.4-0.5. Commonly associated with the chlorite, sphene forms small subhedra mostly <50 microns in diameter, generally cored by minute crystals of rutile to 25 microns. Possible ?allanite forms minute subhedra to 15 microns diameter also associated with chlorite.

Carbonate, likely mostly calcite, is most commonly found in the folded quartz ?layers or veins, where it forms subhedra up to 0.25 mm in diameter intergrown with quartz and rare sulfides. Sulfides are mainly pyrrhotite and traces of intergrown chalcopyrite, forming irregular elongated blebs up to 0.5 mm long. Rare tourmaline (khaki-brown, intermediate dravite-schorl) forms euhedra up to 0.1 mm long.

۰.

ь.

μ.

e ---

κ.

• -

-

L .

h. ...

h -

. .

.....

. ...

_

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

001-947: STRONGLY AMPHIBOLE-CHLORITE-CALCITE-ZOISITE-SPHENE ALTERED GABBRO (WITH ALBITIZED PATCHES, QUARTZ-CALCITE VEINS)

Hand sample is a fine- to medium-grained, altered gabbroic rock composed of sub-equal amounts of white relict plagioclase and two mafic minerals: pale green and lesser, dark green. The rock is cut by narrow white calcite veins (strong reaction to cold dilute HCl) containing traces of magnetic sulfide (?pyrrhotite); there is no stain for K-feldspar in the etched slab. Modal mineralogy in thin section is approximately:

Amphibole (?actinolitic)	35%
(?hornblende)	20%
Relict plagioclase (albitized)	10%
Carbonate (?mainly calcite)	10%
Chlorite	10%
Epidote (?zoisite)	7%
Quartz (?mainly secondary)	5%
Sphene, rutile	2-3%
Sericite	<1%
Opaques (?pyrrhotite)	<1%

This slide consists of strongly altered relict mafic minerals and strongly altered relict plagioclase, probably with an original grain size of about 1.5 mm average and a gabbroic texture.

Relict mafics, likely originally pyroxene, are replaced by two apparently distinct varieties of amphibole: one dark olive-green, likely hornblende, and the other pale green, likely actinolitic. Both form subhedral to ragged crystals up to about 0.7 mm long, pseudomorphing the original mafic crystals in various proportions. In places significant chlorite appears to replace the amphibole, forming subhedral flakes up to 0.1 mm in diameter. Chlorite optical properties, as for samples 001-619 to 913.5, are indicative of moderate F:M perhaps around 0.4-0.5.

Relict plagioclase crystals are less easily recognized, being mostly almost completely replaced, especially at the cores, by aggregates of fine-grained epidote-group mineral (?zoisite), carbonate (likely calcite, forming subhedral crystals up to 0.2 mm diameter), and quartz (subhedra to 0.15 mm; could be partly primary, interstitial). In a rounded patch about 1.2 cm in diameter, plagioclase is replaced by vaguely twinned or untwinned, cloudy ?albite in subhedra mostly <0.75 mm long, and minor sericite (euhedral flakes to 0.1 mm)

Small crystals of subhedral sphene, mostly <0.2 mm in diameter, are common throughout the rock, likely after former ?ilmenite. Quartz-carbonate veins are up to about 0.75 mm thick, composed of subhedral crystals up to that size (0.75 mm) that commonly are oriented across the vein (perpendicular to vein walls). Rare opaques in the veins and rarely in the wallrock are possibly sulfides, mostly <0.35 mm in diameter.

WGT CONSULTANTS LTD. 410 – 455 Granville Street Vancouver BC CANADA V6C 1T1

e 1

Statement of Expenditures

Noble Metal Group Incorporated 801 – 409 Granville Street Vancouver BC V6C 1T2		
Cariboo Mineral Claims – August 20 – November 5, 2000 Diamond Drill Program	<u>.</u>	
Contract Drilling 2642.5 ft (805.4 m)	\$	50,729.28
Construct loading ramp, unload and load drill rig, Rods, pumps and equipment JD 992 Excavator 20 hrs @200/hr.	¢	4,000.00
D8N Caterpillar 10 hrs @ \$200/hr	\$ \$	2,000/00
On site supervisor Geologist Core cutter & sampler Cook Accommodation & board 3 men – 66 days @\$75/day	\$\$ \$\$ \$\$ \$	15,000.00 22,000.00 6,248.00 6,000.00 14,850.00
2 men – 45 days @\$75/day	\$	6,750.00
Assays Service Truck – 66 days @ \$50/day Ambulance on standby – 66 days @ \$50/day Supplies ie., sample bags, saw blades, etc. Transport & travel @ 20%	\$ \$ \$ \$ \$	8,783.50 3,300.00 3,300.00 1,000.00 28,792.16
TOTAL	\$	172,752.94

WGT CONSULTANTS LTD. 410 – 455 Granville Street Vancouver BC CANADA V6C 1T1

Statement of Expenditures

Noble Metal Group Incorporated 801 – 409 Granville Street Vancouver BC V6C 1T2

Cariboo Mineral Claims - May 1 - November 5, 2000

Physical Work

.

•

Road rehabilitation, upgrading and ditching, road construction to drill sites, also construction, excavation of sumps and reclamation

John Deer 992 Excavator 16 hrs. @ \$200/hr	\$ 3200
D&N Caterpillar 20 hrs @ \$200/hr	\$ 4000
Supervision 4 days	\$ 1600
Accommodation & Board 3 men – 4 days@ \$75/day	\$ 900
4 x 4 Rental 4 days @ \$50/day	<u>\$_200</u>

TOTAL \$9900