Rimfire Minerals Corporation

2001 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE BILL PROPERTY

Located in the Spatsizi Area Liard Mining Division NTS 94E/12E, W, 94E/13E, W 57° 47' North Latitude 127° 47' West Longitude

-prepared for- **RIMFIRE MINERALS CORPORATION** Suite 700, 700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8

-prepared by-Henry J. Awmack, P.Eng. **EQUITY ENGINEERING LTD.** Suite 700, 700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8 henrya@equityeng.bc.ca www.equityengineering.com

August, 2001

SUMMARY

The Bill property consists of 88 claim units covering approximately 22 km² of mountainous terrain in north-central British Columbia, 330 kilometres north of Smithers. Access to the property is currently by helicopter and float-plane, with the nearest road 75 kilometres to the southeast; the de-activated portion of the Omineca Mining Road extends to within 40 kilometres. Rimfire Minerals Corporation has an option to acquire 100% interest in the property.

The two main prospects (T-Bill and Park) on the Bill property were independently discovered in the early 1980's by Cominco and Du Pont, following up highly anomalous stream geochemistry. The companies joined forces to drill 3,023 metres on the T-Bill prospect in 1983-84, before allowing the property to lie dormant. Rimfire optioned the core of the property in May 2001, attracted by the kilometre-scale alteration and soil geochemistry at the T-Bill and the Park prospects. Later this year, Rimfire staked an additional 68 claim units and carried out initial geological and geochemical fieldwork.

The T-Bill prospect is underlain by penetratively deformed Devono-Permian Asitka Group metavolcanics which have been altered to carbonate-muscovite-quartz schist over an area of 1,200 x 2,300 metres. This alteration is confined to the core of a northeasterly-trending structural dome and is controlled both by foliation and by steep cross-cutting structures. Gold-rich quartz-arsenopyrite veins, locally with visible gold, are broadly co-spatial with the carbonate-muscovite alteration, although they extend into unaltered chlorite schists with only centimetre-scale alteration envelopes. Individual veins generally cut across foliation and are rarely wider than 30 centimetres, although swarms of veinlets are common. Du Pont/Cominco's best drill intersections include 2.0 metres @ 24.8 g/tonne Au, 4.0 metres @ 11.0 g/tonne Au and 2.0 metres @ 35.0 g/tonne Au. They may have been under-reported, since metallics (screen) assaying was not utilized, despite the presence of visible gold. Potential for a bulk-mineable target is indicated by broad low-grade intersections, including 149 metres @ 1.17 g/tonne Au and 164 metres @ 0.73 g/tonne Au, both of which bottomed in mineralization. The T-Bill prospect is marked by a strong 2 x 3 kilometre Au-As soil geochemical anomaly whose limits reflect masking by till and talus cover as much as by changes in alteration and mineralization of the underlying bedrock.

The Park prospect is centred less than two kilometres north of the T-Bill prospect's northern edge, across a broad valley which may mark a major east-west fault. The Park prospect is hosted by undeformed Takla Group volcanics, presumably down-dropped by the fault, which have been hornfelsed, silicified and pyritized by a multiphase intrusion. A 500 x 900 metre, open-ended, Au-Cu soil geochemical anomaly encloses two gossans. At the more prominent one, intensely silicified tuff in contact with crowded feldspar porphyry graded up to 2960 ppb Au. A more subtle gossan 500 metres to the southeast was formed from pyritic hornfels; limited prospecting yielded samples with 1405 and 3590 ppb Au.

2001 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE BILL PROPERTY

TABLE OF CONTENTS

Page

	SUMMARY	
1.0	INTRODUCTION	1
2.0	PROPERTY TITLE	1
3.0	LOCATION, ACCESS AND GEOGRAPHY	. 1
4.0	PROPERTY EXPLORATION HISTORY	2
	4.1 Previous Work	2
	4.2 2001 Exploration Program	4
5.0		
6.0	PROPERTY GEOLOGY	5
	6.1 Lithology and Structure	5
	6.2 Alteration and Mineralization	. 6
	6.2.1 Mesothermal (T-Bill Prospect)	6
	6.2.2 Intrusion-related (Park and Gos Prospects)	11
	6.3 1983-84 Core Re-Logging and Sampling	12
7.0	GEOCHEMISTRY	14
	7.1 Silt Geochemistry	14
	7.2 Soil Geochemistry	15
8.0	DISCUSSION AND CONCLUSIONS	17

APPENDICES

Appendix A	Bibliography
Appendix B	Statement of Expenditures
Appendix C	Rock Sample Descriptions
Appendix D.1	Notes on 1983-84 Drill Core
Appendix D.2	Diamond Drill Analyses
Appendix E.1	Certificates of Analysis: Silts and Soils
Appendix E.2	Certificates of Analysis: Rocks

Appendix F Quality Control / Quality Assurance

Appendix G CD-ROM

Appendix H Engineer's Certificate

LIST OF TABLES

	P	<u>age</u>
Table 2.0.1	Claim Data	. 1
Table 4.1.1	Bill Exploration Programs	2
Table 6.2.1.1	Showing A Mineralization	
Table 6.2.1.2	Showing B Mineralization	
Table 6.2.1.3	Showing C Mineralization	
Table 6.2.1.4	Showing D Mineralization	
Table 6.2.1.5	Showing E Mineralization	
Table 6.2.1.6	Showing F Mineralization	
Table 6.2.1.7	Showing G Mineralization	
Table 6.2.1.8	Showing H Mineralization	10
Table 6.2.1.9	Showing I Mineralization	10
Table 6.2.1.10	Showing J Mineralization	10
Table 6.2.1.11	Showing K Mineralization	10
Table 6.2.1.12		11
Table 6.2.2.1	Park Mineralization	11
Table 6.2.2.2	Gos Mineralization	11
Table 6.3.1	1983-84 Drilling: Significant Intersections	12
Table 6.3.2	1983-84 Drilling: Broad, Low-grade Intersections	14
Table 7.1.1	Silt Geochemistry Percentiles	15
Table 7.2.1	Soil Geochemistry Percentiles	15
Table 7.2.2	Soil Geochemistry Correlation Matrix	16

LIST OF FIGURES

Following Page

		<u>1 985</u>
Figure 1	Location Map (1:10,000,000)	1
Figure 2	Claim Map (1:50,000)	1
Figure 3	Regional Geology (1:200,000)	
Figure 4	Property Geology (1:50,000)	
Figure 5	Sample Locations (1:10,000)	Pocket
Figure 6	Au (ppb) in Silts, Soils and Rocks (1:10,000)	Pocket
Figure 7	As (ppm) in Silts, Soils and Rocks (1:10,000)	Pocket
Figure 8	Cu (ppm) in Silts, Soils and Rocks (1:10,000)	Pocket

1.0 INTRODUCTION

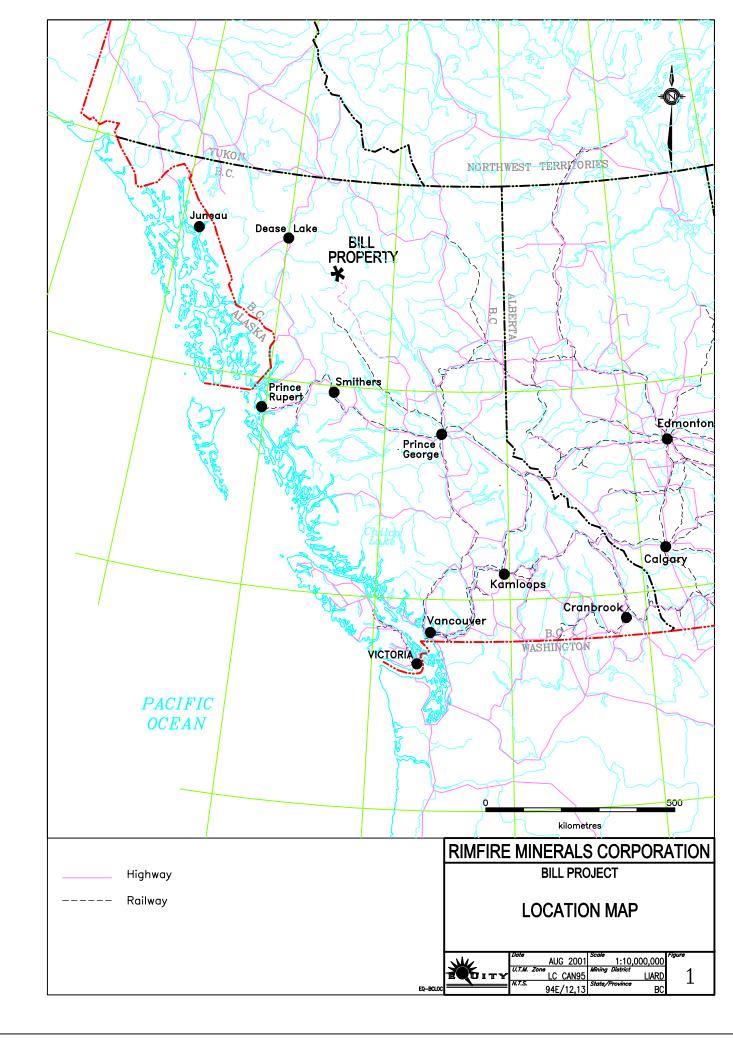
The Bill property covers two distinct gold-bearing prospects in north-central British Columbia (Figure 1). The T-Bill prospect is a 3 km² area of carbonate alteration, highly anomalous Au-As soil geochemistry and gold-bearing quartz-sulphide veining. The Park prospect, located 3 kilometres to the north, is a poorly explained 0.5 km² Au-Cu soil geochemical anomaly centred on a prominent gossan. These two prospects were discovered independently through regional stream sediment sampling programs carried out by Cominco and Du Pont in the early 1980's. Cominco/Du Pont drilled the T-Bill prospect in 1983 and 1984, intersecting 2-metre intervals grading 24.8 and 35.0 g/tonne Au.

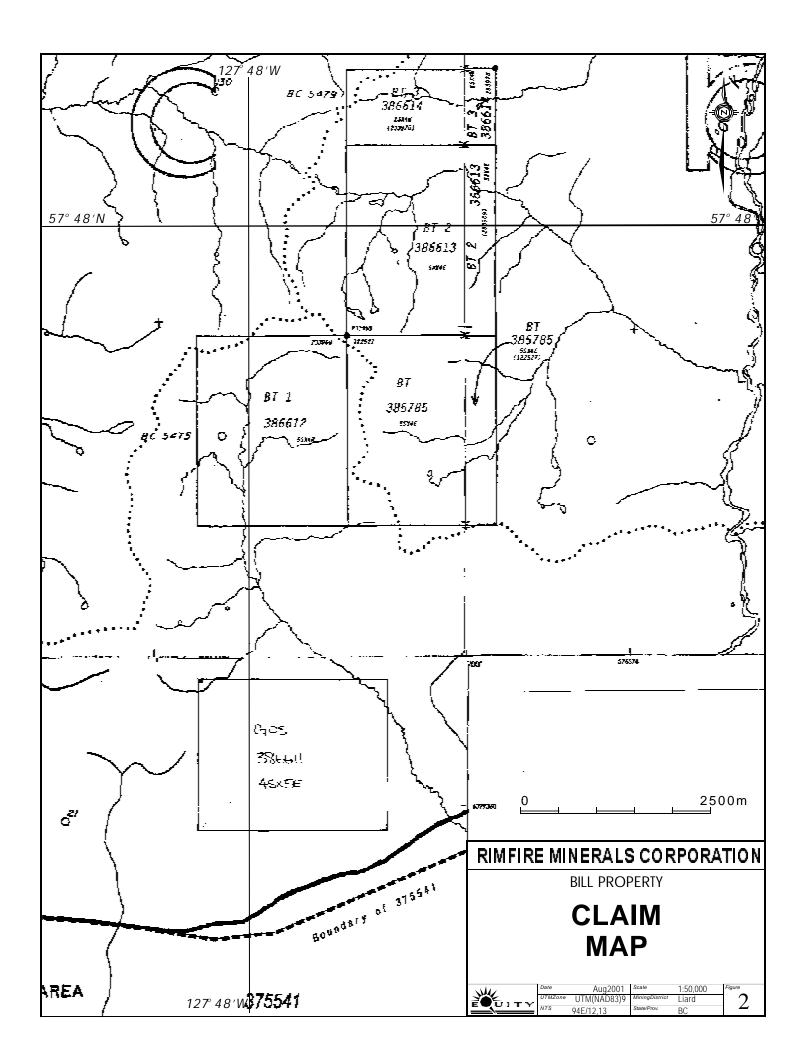
Rimfire Minerals Corporation acquired the Bill property in May 2001 and carried out initial fieldwork in July. Equity Engineering Ltd. was contracted to execute the 2001 Bill fieldwork and has been retained to report on its results.

2.0 PROPERTY TITLE

The Bill property (Figure 2) consists of 5 mineral claims totalling 88 contiguous units (22 km²) in the Liard Mining Division of British Columbia, as summarized in Table 2.0.1. Records of the British Columbia Ministry of Energy and Mines indicate that all claims are held by Rimfire Minerals Corporation. Separate documents indicate that the claims are owned by Lorne Warren and John Mirko, who have granted Rimfire an option to acquire 100% of the property by making cash and share payments. The BT, BT 1 and BT 2 legal corner posts were located in the field by the author.

Claim Name	Mineral Tenure	No. of Units	Record Date	Expiry Date
ВТ	385785	20	April 21, 2001	April 21, 2002
			• •	
BT 1	386612	20	May 16, 2001	May 16, 2002
BT 2	386613	20	May 16, 2001	May 16, 2002
BT 3	386614	8	May 17, 2001	May 17, 2002
GOS	386611	20	May 17, 2001	May 17, 2002
		88	-	-


Table 2.0.1 Claim Data


3.0 LOCATION, ACCESS AND GEOGRAPHY

The Bill property lies on the Spatsizi Plateau of north-central British Columbia, approximately 150 kilometres southeast of Dease Lake and 330 kilometres north of Smithers (Figure 1). It lies within the Liard Mining Division, centred at 57° 47' north latitude and 127° 47' west longitude.

Access to the Bill property for the 2001 program was by helicopter from Dease Lake and the Kemess Mine (100 kilometres to the southeast). Float planes can land on Jerry Lake, 15 kilometres west of the Bill property. The Omineca mining road continues past the Kemess Mine to the Sturdee airstrip, 75 kilometres southeast of the Bill; the portion between Sturdee and Albert's Hump (40 km southeast of the Bill) is no longer accessible.

The Bill property covers part of two major tributaries which flow southeasterly into the Park Creek, itself a tributary of the Stikine River. The property is moderately rugged and largely above treeline. Elevations range from 1,210 metres in the Park Creek valley to over 2,000 metres along the crest of several ridges. The Bill prospect lies at 1,700-2,000 metres and the Park prospect at 1,550-1,800 metres elevation.

4.0 PROPERTY EXPLORATION HISTORY

4.1 Previous Work

Table 4.1.1 summarizes all known exploration work carried out on the ground currently comprising the Bill property.

Operator Zones	Geochemistry	Geophysics	Trenching and Drilling	Reference
Cominco (1	<u>976)</u>		_	
T-Bill, Gos	33 silts (Cu, Pb, Zn, Ag)			
Cominco (1	979)			
T-Bill, Gos	22 silts (Au, As)			
Cominco (1	980)			
T-Bill	86 soils			Sharp (1981)
Du Pont (19	980)			
Park	53 bulk stream sediments, 2 rocks			Eccles (1981)
Cominco (1	<u>981)</u>			
	353 soils, 135 rocks		6 blast-trenches	Sharp (1982)
Du Pont (19				,
-	2 bulk stream sediments, 1 silt and 36 soil samples			Strain (1981)
Du Pont (19				
Park	8 bulk stream sediments, 16 silts, 188 soil samples, 47 rocks			Drown (1982)
Du Pont &	Cominco (1982)			
T-Bill	275 soils, 52 rocks	4.8 km mag-VLF, 3.2 km IP	11 blast-trenches	Copland and Drown (1983), White (1982)
Du Pont (19	982)			
	123 soils. 62 rocks		11 blast-trenches	Copland (1982)
Du Pont &	Cominco (1983)			
T-Bill	148 soils	16.5(?) km mag-VLF	6 NQ DDH: 1,175m	Forbes and Drown (1984)
Du Pont &	<u> Cominco (1984)</u>			
T-Bill	342 soils	10 km VLF	9 NQ DDH: 1,848m	Kowalchuk (1984), Paterson (1985)
Skylark & C	<u> Comox (1987)</u>			
Park	191 soils, 21 rocks	1.7 km VLF		McAtee and Burns (1988)
AGC Ameri	<u>cas Gold (1995)</u>			
	380 soils, 15 rocks			Krause (1996)
Antares &	AGC Americas Gold (1998)			`` <i>`</i>
Park	. ,	Airborne magnetics		Hawkins (1998)
Rimfire Mir	erals (2001)	, ř		
T-Bill, Park. Gos	10 silts, 117 soils, 49 rocks			This report
Totals	63 bulk sediments. 59 silts. 2.203 soils. 383 rocks	Ground: VLF. magnetics. IP Airborne: magnetics	28 blast-trenches 15 DDH: 3.023m (9,918')	

Table 4.1.1 Bill Exploration Programs

In 1976, Cominco Ltd. carried out a regional silt sampling program through the Toodoggone

area, with analysis for Cu, Pb and Zn only. In 1979, roughly one-third of the sample pulps were analysed for Au and As; Cominco's Bill property was staked to cover the drainages of 10 samples exceeding 50 ppb Au (maximum values: 960 ppb Au, 2350 ppm As).

Cominco took a series of contour soil samples from the Bill claims in 1980, revealing a widespread Au-As soil geochemical anomaly in what is referred to here as the T-Bill Prospect (Sharp, 1981). The following year, they carried out grid soil sampling and mapping in the heart of the soil anomaly, defining an open-ended 1,400 x 1,800 metre Au-As soil geochemical anomaly with peak values of 4,620 ppb Au and 12,740 ppm As. The rock sampling and trenching returned erratic gold values to 15,800 ppb, associated with arsenopyrite-quartz veining (Sharp, 1982).

Meanwhile, Du Pont of Canada Exploration Limited had carried out a regional stream sediment survey in 1980, using field-sieved bulk samples for heavy mineral concentrate analysis. This work showed several Au anomalies on a tributary of Park Creek lying northeast of the Bill property and on Bill Creek, which drains the southwestern portion of the Bill property. A line of contour soils upstream from the Bill Creek anomaly returned background values and no further work was done in this area (Strain, 1981). To the northeast, Du Pont staked their Park claims adjacent to Cominco's Bill property and carried out initial silt sampling and mapping in 1980. Several gossans were recognized, mainly associated with the intrusive contact between granodiorite and chert. Several silt samples were anomalous in Au, As or Cu; most of them drained the T-Bill showings (Eccles, 1981). The following year, Du Pont expanded their Park property, filled in gaps in their silt coverage, and took reconnaissance soil samples over the entire property. Fifteen soil samples returned >100 ppb Au; five of these (the "Park" anomaly) were located around the westernmost gossan and the others were scattered over the remainder of the property. A 17-sample soil grid over the Park anomaly yielded up to 1670 ppb Au, 415 ppm Cu and 104 ppm As (Drown, 1982).

In 1982, Du Pont optioned the Bill property from Cominco and conducted separate exploration programs on it and the Park claims. On the Bill property, Du Pont verified Cominco's soil geochemical anomaly by detailing the core of it with samples spaced at 20 x 50 metres. Magnetic, VLF-EM and induced polarization surveys were carried out over the same E-W grid-lines. These showed NNW-trending linear magnetic lows and VLF conductors; a chargeability high from the IP survey was unrelated to soil geochemical anomalies and ascribed to graphitic schist. The blast trenches did not reach fresh bedrock and in each case chip samples from bedrock returned lower gold values than the overlying soil samples (Copland and Drown, 1983). On their wholly-owned Park property, Du Pont blasted trenches in the Park anomaly gossan, reporting a 4-metre zone of massive magnetite in one of the trenches and Fe-Mn "sinter". Again, bedrock analyses from the trenching returned significantly lower Au, As and Cu values than the soils immediately above (Copland, 1982) and Du Pont allowed the Park claims to lapse.

In 1983, Du Pont extended the mag/VLF survey and drilled six holes in the >500 ppb Au portion of the T-Bill soil anomaly, four of them directed to the east across the northerly-trending VLF conductors. Core was sampled in 2-metre intervals, regardless of geological contacts. All holes intersected quartz-arsenopyrite veining with the best intervals assaying 35.0 g/tonne Au over 2.0 metres (83-2) and 11.0 g/tonne Au over 4.0 metres (83-6). With this program, Du Pont's option was vested and they formed a 50/50 joint venture on the Bill with Cominco (Forbes and Drown, 1984).

It appeared from the 1983 drilling that the east-west holes were subparallel to the bulk of veining, so the following year Du Pont and Cominco carried out a new VLF-EM survey on north-south lines and drilled seven of nine holes to the north or south. Each of their holes cut intervals with >1 g/tonne Au, with the best sections assaying 16.5 g/tonne over 2.0 metres (84-2), 24.7 g/tonne over 1.5 metres (84-5) and 24.8 g/tonne over 2.0 metres (84-8). In addition, soil sampling extended the main T-Bill Au-As soil geochemical anomaly 600 metres to the northwest in the West Bowl and revealed a new 400 x 900 metre Au-As soil anomaly in the North Cirque (Kowalchuk, 1984). A structural study by Paterson (1985) indicated that ESE-trending quartz-carbonate-arsenopyrite veining was related to but post-dated

property and their claims were allowed to lapse in 2001.

The Park gossan was re-staked in 1987 by Comox Resources Ltd. and optioned to Skylark Resources Ltd.. Skylark established a detailed 250 x 400 metre grid over the gossan for prospecting, soil geochemical and VLF-EM surveys. Soil samples returned up to 12,120 ppb Au, 1186 ppm Cu, 801 ppm As and 82 ppm Mo; the best rock sample contained 1580 ppb Au in quartz float (McAtee and Burns, 1988).

AGC Americas Gold Corp. staked the Park gossan in 1995 and carried out soil sampling over a 900 x 1000 metre grid. This survey showed the Au-Cu soil geochemical anomaly to be much larger than previously known, covering an area of 500 x 900 metres and open to the east and west (Krause, 1996). No further fieldwork was carried out on the Park property, but in 1997, AGC Americas and Antares Mining and Exploration Corporation participated in a joint GSC-industry airborne magnetic survey over the entire Toodoggone area, including the Park prospect (Hawkins, 1998).

4.2 2001 Exploration Program

Rimfire Minerals Corporation optioned the Bill property in May 2001, attracted by its large, poorly explained soil and silt geochemical anomalies, by the extent and high Au grades of the T-Bill mesothermal veining and by a large magnetic low centred immediately southeast of the T-Bill prospect. An initial program of prospecting, silt and soil geochemistry and core re-examination and sampling was carried out in July, with air support provided on a charter basis by Canadian Helicopters (Kemess base), Pacific Western Helicopters (Dease Lake base) and BC/Yukon Air Service (Dease Lake base). A magnetic declination of 24° 39'E was used for all compass measurements. All maps and UTMs are referenced to the 1983 North American Datum (NAD-83).

Reconnaissance soil samples were collected along contour or compass lines in areas where previous soil geochemical anomalies had not been closed off, and where gold-bearing silt samples had never been followed up. Wherever possible, soil samples were collected from the red-brown B horizon; poor soil development meant that most were actually collected from the C horizon. Sites were marked with orange flagging and a Tyvek tag. Silt samples were collected from the active parts of creeks in areas where no other work had previously been carried out. Rock samples were taken from mineralized and altered rocks during the course of prospecting. Rock sample descriptions are attached in Appendix C. Both silt and rock sample sites were marked by orange and blue flagging and aluminum tags.

Core from the 1983 and 1984 diamond drilling is stored at the 2001 camp site. The 1983 core and holes 84-6 to 84-9 were inaccessible, due to collapse of their core racks. The first five 1984 holes could be recovered, but were in poor condition from animal disturbance. They were examined and 14 previously unsampled sections were split for analysis (Appendices D.1-D.2). All samples were analyzed by ALS Chemex Labs of North Vancouver for Au and 34-element ICP, using an aqua regia digestion (Appendices E.1-E.2). Pulp assays were carried out for high geochemical values of Au, Ag, As, Cu, Pb or Zn; reject "metallics" Au assays were used for plotting and calculations. The procedures, results and conclusions of the sampling quality control/quality assurance program are summarized in Appendix F. Locations for all 2001 silt, soil and rock samples are plotted on Figure 5.

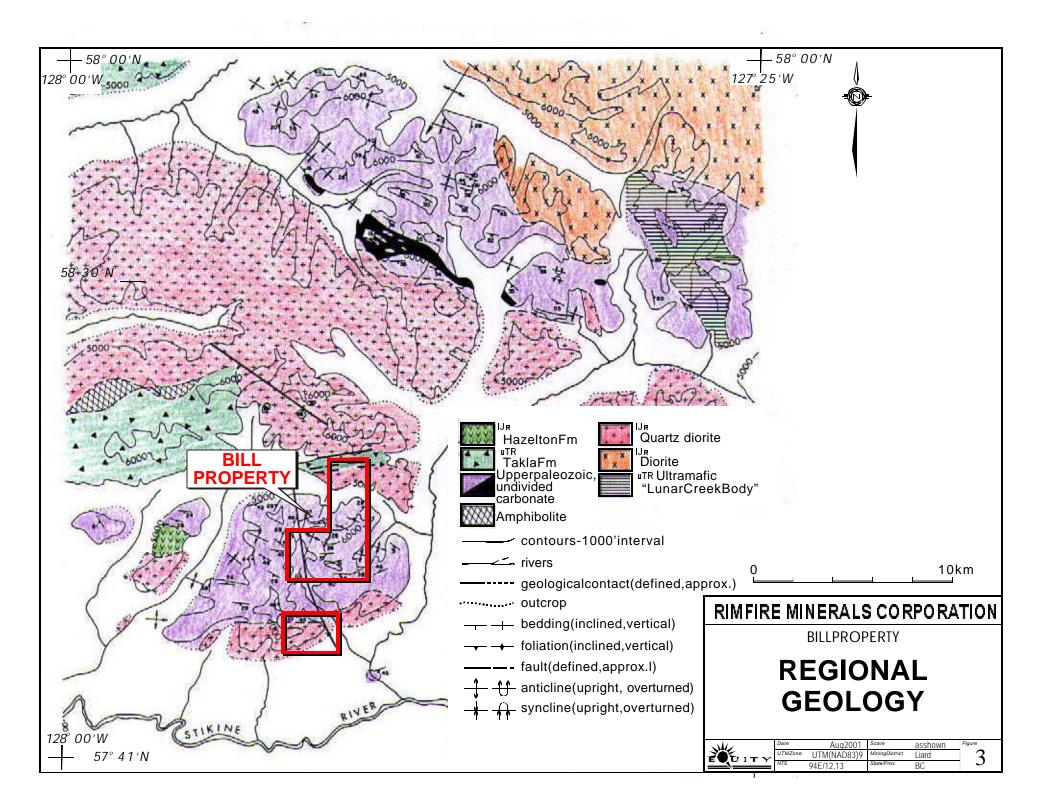
5.0 REGIONAL GEOLOGY

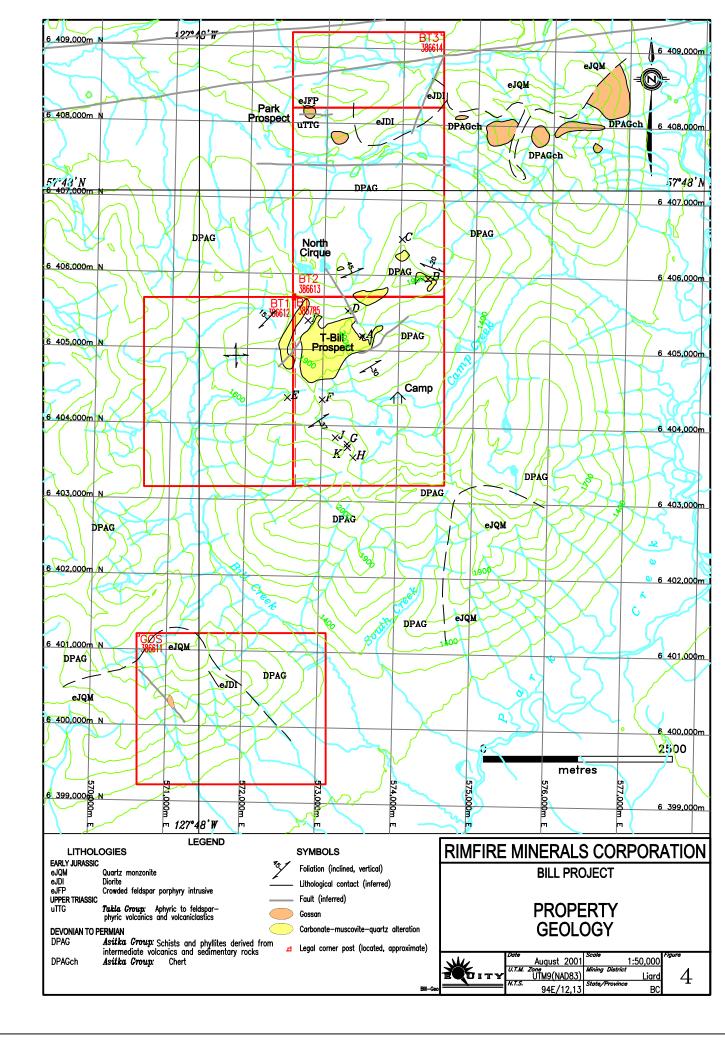
The Bill property lies near the eastern edge of the Intermontane Belt in a fault mosaic of: Devonian to Permian Asitka Group carbonates and volcano-sedimentary rocks; the Carboniferous to Lower Triassic Cache Creek oceanic assemblage, including the Kutcho Formation; Triassic Stuhini and Takla volcano-sedimentary rocks; Lower Jurassic Toodoggone (subaerial) and undifferentiated Hazelton volcanic rocks and Laberge Group volcanic and epiclastic rocks (Figure 3).

Thorstad (1980) divided the Asitka Group rocks into five stratigraphic units in the vicinity of the Bill property. From oldest to youngest, these are: (1) feldspathic chlorite schist; (2) phyllite, sericite and calcareous sericite schist; (3) massive rhyolite, chert and sericite schist; (4) carbonate; and (5) upper feldspathic, chlorite schist. Dolomitic members from the middle of the sequence contain Mississippian crinoids. The Asitka Group rocks show evidence of two phases of pre-Jurassic penetrative deformation: primary layering is transposed to parallelism with a penetrative foliation, then overprinted by folding and a less penetrative foliation. Thorstad (1980) noted two predominant fold axis trends: one at 150° to 200°, associated with moderate to steeply west-dipping foliations; the other at 090° to 130° with shallow to moderately south-dipping foliations.

The Upper Triassic Takla Group is dominated by coarse augite-phyric basalt, finer aphyric basaltic andesite flows with lapilli tuff interbeds and volcanic breccia (Diakow et al, 1993).

The stratified rocks are intruded by a variety of Late Triassic and Early Jurassic stocks and batholiths of felsic to ultramafic composition. Most of the Early Jurassic quartz monzonites, granodiorites and quartz diorites are marked by a distinctive magnetic high; in particular, this applies to the intrusive immediately northeast of the Bill property. The quartz monzonite stock exposed on the southern part of the Bill property is the exception to this rule; it is characterized by a distinctive magnetic low almost ten kilometres across.


The Pitman Fault is a major E-W fault which passes 30 kilometres north of the Bill property. Alldrick (2000), who traced the Pitman Fault for 300 kilometres, states that there is 3 kilometres of leftlateral movement along it with minimal vertical offset, and that movement occurred during Eocene to Oligocene time. He characterizes it as an antithetic fault associated with the continental-scale displacement along the Northern Rocky Mountain Trench and notes that it is accompanied by subparallel faults of similar orientation, attitude and offset. Three of these major E-W faults have been mapped at the northern and southern extremities of the Bill property (Figure 4), one along the Stikine and Chukachida Rivers four kilometres south of the Gos claim and the other two passing through the BT 3 claim, north of the Park occurrence. A fourth could reasonably be inferred along the valley between the T-Bill and the Park prospects, downdropping undeformed Upper Triassic Takla Group volcanics to the north against deformed Paleozoic Asitka Group rocks to the south.


6.0 **PROPERTY GEOLOGY**

Only limited mapping was carried out on the Bill property in 2001. The property-wide geology in Figure 4 has been largely compiled from Thorstad (1980), Drown (1982) and Paterson (1985).

6.1 Lithology and Structure

Most of the Bill property is underlain by phyllites and schists of the Devonian-Permian Asitka Group (**Unit DPAG**). These have been penetratively deformed; primary textures and protoliths are not generally obvious. Paterson (1985) divided the Asitka schists into three stratigraphic units in the vicinity of the T-Bill prospect, without discerning age relationships. His "lower volcanic" unit, forming the large cliff to the south of camp, is composed of calcareous chlorite schist, chlorite-muscovite-feldspar schist and sericitic quartzite. Paterson believed the lower volcanic unit to be derived from at least 1500

metres of intermediate tuffaceous volcaniclastics and cherts. His "middle sedimentary" unit, located primarily to the west of camp, is composed of buff-weathering limestone, argillaceous phyllite, graphite schist and calcareous greywacke. His "upper volcanic" unit consists of a sequence of chlorite schists and quartz-chlorite-feldspar schists; it has undergone extensive carbonatization and sericitization and hosts the quartz-arsenopyrite veining at the T-Bill prospect. Paterson interprets the upper volcanic unit to be a sequence of andesitic to rhyolitic tuffs and volcaniclastics with lesser mafic volcanics. In the vicinity of the T-Bill prospect, Paterson recognized Thorstad's (1980) two phases of Triassic(?) penetrative deformation and a Mesozoic or Tertiary kinking. The kink folding accompanied a northeasterly-elongated doming of the foliation, centred on the T-Bill prospect.

Northeast of the property, the Asitka Group is dominated by dark grey chert (**Unit DPAGch**) with lesser tuffaceous sediments and andesitic volcanics (Drown, 1982). Further west, Drown assigned green, aphyric to feldspar-phyric volcanics to the Upper Triassic Takla Group (**Unit uTTG**). In the immediate vicinity of the Park prospect, these are represented by siliceous tuffs. The contact between the Asitka and Takla Group rocks has not been mapped.

An unfoliated quartz monzonite to granodiorite stock (**Unit eJQM**) intrudes Asitka Group schists on the GOS claim and immediately southeast of the BT claim. The stock is generally medium-grained and equigranular, but locally pegmatitic or aplitic and quite variable in composition. A pronounced magnetic low associated with this stock suggests that it may be about ten kilometres in diameter at depth, centred two kilometres southeast of the BT claim, although part of this magnetic low could be related to magnetite-destructive alteration such as that at the T-Bill prospect.

Another felsic stock (**Unit eJQM**) intrudes Asitka Group cherts to the northeast of the Bill property. Drown (1982) describes it as fine- to medium-grained, with phases ranging from rhyolite to granodiorite. A medium-grained diorite body (**Unit eJDI**) mapped by Drown immediately to the west may constitute a separate phase of this stock. A crowded feldspar porphyry intrusive (**Unit eJFP**) lies a little further west, along the north edge of the Park gossan; its extent is unknown, but it too is thought to be another phase of this stock. The entire stock, like almost all the Jurassic intrusions in the Toodoggone area, is characterized by a broad magnetic high; no magnetic susceptibility work has been done to separate the effects of the stock from those of its pyrrhotite-bearing hornfels. No dating has been carried out on any of the intrusives and their ages are a matter of conjecture.

6.2 Alteration and Mineralization

The Bill property hosts two main styles of alteration and gold-bearing mineralization: mesothermal arsenopyrite-bearing veins and disseminations (T-Bill prospect); and intrusive-related veining and silicification (Park and Gos prospects).

6.2.1 Mesothermal (T-Bill Prospect)

Asitka Group chlorite schists on the BT, BT 1 and BT 2 claims have been extensively altered to muscovite-carbonate-quartz schists over a northeasterly-trending area of 1,200 x 2,300 metres (Figure 4). On a large scale, this alteration appears mainly controlled by foliation (S_1) and by steeply-dipping NE-SW structures, and is largely confined to the core of the structural dome. In detail, the muscovite-carbonate-quartz alteration follows joints, fractures and foliation planes; it appears to pre-date gold deposition from an evolving hydrothermal fluid. Cominco dated the alteration at 136±5 Ma (Early Cretaceous), using K-Ar methods on muscovite from 110 metres depth in hole 84-1.

Paterson (1985) recognized three styles of gold mineralization at the T-Bill Prospect, spread over an area of 1,800 x 2,400 metres which roughly coincides with the muscovite-carbonate-quartz alteration:

- Disseminated and vein pyrite-arsenopyrite in carbonatized rock adjacent to mineralized veins (e.g. Showing D): Up to 20% sulphides in quartz-carbonate-muscovite schist is accompanied by <1 g/tonne Au;
- Brecciated quartz veins or carbonatized rock associated with movement on faults or joints (e.g. Showings A, F): The breccias are related to post-carbonatization and pre-mineralization faulting. The breccia matrix is composed of quartz-arsenopyrite-pyrite-carbonate±chalcopyrite; gold values are moderate.
- Quartz-carbonate-arsenopyrite-pyrite veins: These are responsible for all high-grade surface and core assays. They are planar tension veins, 0.2-30 centimetres wide, and occur in swarms. They commonly cross-cut foliation and are present in both chlorite schist and muscovite-carbonate-quartz alteration; in the chlorite schist they are enclosed by narrow bleached or carbonate-pyrite alteration envelopes. Although some of these veins lie outside of the pervasive carbonate-muscovite alteration, their distribution is broadly coincident with that of the alteration. Based on a study of vein orientations relative to foliation in drill core, Paterson (1985) calculated that most of these veins strike 100-120° and dip 60-90° to the north. Foliation-parallel shear locally offsets veining. Visible gold is present in higher-grade veins, some of which exceed 100 g/tonne Au.

Most of the mineralization in the T-Bill prospect is characterized by elevated Au and As and background levels of Ag, Cu, Pb, Sb and Zn. The Au:Ag ratio is 1:1 or higher and the As:Sb ratio is commonly >100:1. However, on the periphery of the T-Bill prospect, Showing C (at the northern extremity) and Showings H, J and K (at the southern extremity) indicate the possibility of zonation from the Au-As core outwards to mineralization with much higher Ag (Showings C and K), Ba (Showing J), Pb (Showing C), Sb (Showings C and K) and Zn (Showings C, H and K) contents.

The following descriptions of individual showings (Figures 48) within the T-Bill prospect are largely based on Paterson (1985).

Showing A

Showing A is a two metre wide, easterly-trending fractured and/or brecciated zone located 1000 metres northwest of camp. Veining and the breccia matrix are composed of quartz-arsenopyrite-pyrite±carbonate. The vertical faulting is left-lateral and has horizontal slickensides. Interestingly from a regional perspective, this is the same orientation and sense of displacement as the Pitman Fault and presumably its subparallel faults north and south of the Bill property. Showing A was not examined in 2001, but reported gold grades are extremely variable, even with abundant arsenopyrite.

Sample	Width	Au	Ag	As	Cu	Мо	Pb	Sb	Zn	Ref.
Number	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
P137-F	N/A	770	N/A	>10000	N/A	N/A	N/A	N/A	N/A	P(1985)
P138-F	N/A	1.9g/t	N/A	>10000	N/A	N/A	N/A	N/A	N/A	P(1985)
P212-F	N/A	110	0.2	>5000	12	N/A	3	1	10	P(1985)
P221-F	N/A	2.3g/t	0.5	>5000	16	N/A	5	4	8	P(1985)
P223-F	Float	21.7g/t	0.8	>5000	20	N/A	7	6	6	P(1985)
P224-F	N/A	11.0g/t	0.4	>5000	34	N/A	4	5	6	P(1985)
P225-F	N/A	890	1.4	>5000	34	N/A	11	16	6	P(1985)
P226-F	N/A	710	0.2	>5000	40	N/A	4	6	4	P(1985)
P240-O	2.0	70	<0.1	>5000	18	N/A	5	1	4	P(1985)
P241-O	N/A	30	3.8	4900	72	N/A	19	1	44	P(1985)
P242-O	N/A	40	0.3	250	10	N/A	4	1	62	P(1985)

Table 6.2.1.1 Showing A Mineralization

P(1985): Paterson (1985)

2001: This report (Appendix C)

<u>Showina B</u>

Showing B is in a northeast-facing circue 1.600 metres north of camp, near the northeastern end of the mapped belt of carbonate-muscovite-quartz alteration. Paterson (1985) reported two float boulders of brecciated guartz containing disseminated arsenopyrite and hypothesized that they came from narrow veins in altered schist in the cirgue face.

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272518	Float	5	<0.2	10	3	<1	<2	2	30	2001
P132-F	Float	190	N/A	1160	N/A	N/A	N/A	N/A	N/A	P(1985)
P133-F	Float	620	N/A	>10000	N/A	N/A	N/A	N/A	N/A	P(1985)
P(1985)		2001	: This repo	ort (Apper	ndix C)					

Table 6.2.1.2 Showing B Mineralization

Showing C

Showing C is located 2,100 metres north of camp in the same northeast-facing circue as Showing B. It is a 40 centimetre vein of sphalerite, galena and pyrite in an ankerite-quartz matrix, filling a fault zone in carbonate-muscovite schist.

Table 6.2.1.3 Showing C Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272519	Float	75	58.0	76	632	<1	1.28%	550	18.55%	2001
P(1985): Paterson	(1985)		2001	1: This rep	ort (Apper	ndix C)			

P(1985): Paterson (1985)

Showing D

Showing D follows a northwesterly-trending gully in the north-facing cirque 1,300 metres northwest of camp. Paterson (1985) reports boulders of quartz-arsenopyrite veining and arsenopyritebearing guartz-ankerite alteration spalling out of a fracture zone along this gully. Sample 272515 was taken from quartz-ankerite alteration at the top of the gully which may form the wall-rock to veining at Showing D.

Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
0.15 N/A	35 330	0.6 N/A	208 >10000	12 N/A	<1 N/A	2 N/A	6 N/A	28 N/A	2001 P(1985)
N/A	660	0.4	>5000	20	N/A	12	2	16	P(1985)
N/A	730	3.1	1300	290	N/A	26	2	24	P(1985)
N/A	330	0.6	>5000	16	N/A	15	1	28	P(1985)
	(m) 0.15 N/A N/A N/A N/A	(m)(ppb)0.1535N/A330N/A660N/A730	(m)(ppb)(ppm)0.15350.6N/A330N/AN/A6600.4N/A7303.1N/A3300.6	(m)(ppb)(ppm)(ppm)0.15350.6208N/A330N/A>10000N/A6600.4>5000N/A7303.11300	(m)(ppb)(ppm)(ppm)(ppm)0.15350.620812N/A330N/A>10000N/AN/A6600.4>500020N/A7303.11300290	(m)(ppb)(ppm)(ppm)(ppm)(ppm)0.15350.620812<1	(m)(ppb)(ppm)(ppm)(ppm)(ppm)(ppm)0.15350.620812<1	(m)(ppb)(ppm)(ppm)(ppm)(ppm)(ppm)(ppm)0.15350.620812<1	(m)(ppb)(ppm)(ppm)(ppm)(ppm)(ppm)(ppm)(ppm)(ppm)0.15350.620812<1

Table 6.2.1.4 Showing D Mineralization

P(1985): Paterson (1985) 2001: This report (Appendix C)

Showing E

Showing E is located in a west-facing bowl 1,400 metres west of camp. Paterson (1985) describes it as a series of 10 centimetre quartz-arsenopyrite veins cutting carbonate-altered schists. Showing E was not found in 2001. Samples were taken from carbonate-altered schist and from guartzpyrite veining, but no high-grade guartz-arsenopyrite veins were found.

Table 6.2.1.5 Showing E Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272512	1.5	10	<0.2	14	350	<1	<2	2	26	2001
272513	Float	190	<0.2	510	9	<1	4	<2	<2	2001
272531	Float	15	<0.2	30	1	<1	<2	4	<2	2001
P285-O	Float	105.4g/t	2.6	>5000	180	N/A	92	4	4	P(1985)
P290-O	Float	2.3g/t	0.4	>5000	26	N/A	19	2	6	P(1985)
D(4005		~ (100E)		2004	. This range	art (Annar				. ,

P(1985): Paterson (1985) 2001: This report (Appendix C)

Showing E

Showing F lies just below the ridgeline, about 1,000 metres west of camp. A fault-bounded zone, subparallel to foliation, of carbonate-muscovite alteration envelopes a strongly altered 3 metre wide zone with 10% pyrite and up to 5% arsenopyrite in small lenses.

Table 6.2.1.6 Showing F Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
51065	Float	1470	0.6	1.51%	5	<1	<2	12	<2	2001
272501	0.2	2800	6.0	1.86%	42	<1	66	10	10	2001
272502	0.6	305	2.8	3950	34	2	20	18	6	2001
560702	Float	5	0.4	18	201	<1	<2	<2	40	2001
560703	7.0	5	<0.2	18	17	<1	2	4	58	2001

P(1985): Paterson (1985) 2001: This report (Appendix C)

Showing G

Showing G is located on the northeast-facing ridge 900 metres southwest of camp. It consists of <10 cm cobbles of quartz-arsenopyrite-pyrite veining which seem to originate from a patch of reddish soil near the base of bluffs.

Table 6.2.1.7	
Showing G Mineralization	

Number	(m)	(ppb)	(ppm)	(ppm)	(ppm)	Mo (ppm)	(ppm)	(ppm)	(ppm)	Ref.
272523 I	Float	13.2g/t	1.4	5.52%	14	<1	66	54	116	2001
P276-F	N/A	15.7a/t	5.2	>5000	30	N/A	>5000	8	6	P(1985)

P(1985): Paterson (1985) 2001: This report (Appendix C)

Showing H

Located on the same slope as Showing G, this showing was described by Paterson (1985) as <4 centimetre guartz-arsenopyrite veins enveloped by 50 centimetres of bleached, altered wallrock within chlorite schist. It trends 275°/60°N, parallel to Showing A and the regional faults north and south of the property. Samples 272521 and 272522 were taken from the general vicinity of Showing H in 2001, but were not likely derived from the same structure.

Table 6.2.1.8 Showing H Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272521	Float	1480	1.6	684	99	<1	44	14	596	2001
272522	0.2	605	1.8	536	192	1	4	26	184	2001
P270-F	Float	5.1g/t	3.5	4600	260	N/A	18	2	14	P(1985)
P271-F	Float	22.0g/t	9	>5000	1200	N/A	30	160	84	P(1985)
P272-O	N/A	110.0g/t	144	>5000	1350	N/A	>5000	3450	400	P(1985)
P274-O	N/A	49.4g/t	6.7	>5000	18	N/A	370	40	8	P(1985)
D(1005		(1005)			· ·					()

P(1985): Paterson (1985)

2001: This report (Appendix C)

Showina I

Showing I, located in the west-facing bowl 1,600 metres northwest of camp, consists of arsenopyrite-bearing boulders in a talus slope. This showing was not investigated in 2001, due to cornices overhanging the talus slope.

Table 6.2.1.9 Showing I Mineralization

Sample	Width	Au	Ag	As	Cu	Mo	Pb	Sb	Zn	Ref.
Number	(m)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
P308A	Float	162	N/A	0.64%	N/A	N/A	N/A	N/A	N/A	P(1985)
P308B	Float	15000	N/A	12.00%	N/A	N/A	N/A	N/A	N/A	P(1985)
P(1985)	: Paterson	(1985)		2001	I: This repo	ort (Apper	ndix C)			

Showing J

Showing J was discovered in 2001, about 200 metres northwest along slope from Showing G. Sample 272524 consisted of a single vein boulder of bladed barite and pyrite-chalcopyrite blebs in a siderite matrix. A second quartz-pyrite boulder, sample 272525, at the same location was quite distinct mineralogically and in metal content.

Table 6.2.1.10 Showing J Mineralization

Sample	Width	Au	Ag	As	Cu	Mo	Pb	Sb	Zn	Ref.
Number	(m)	(ppb)	(ppm)							
272524	Float	250	0.8	494	1915	1	14	22	90	2001
272525	Float	4700	4.4	910	42	<1	30	70	52	2001

P(1985): Paterson (1985) 2001: This report (Appendix C)

Showing K

A few tens of metres above Showing G, sample 272520 was taken from a steeply-dipping, easttrending, quartz-carbonate-pyrite vein. Its relatively high Ag content distinguishes it from the other veining in the area.

Table 6.2.1.11 Showing K Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272520	0.4	1500	142a/t	2190	583	<1	102	628	830	2001
P(1985)): Paterson	(1985)	0	2001	1: This repo	ort (Apper	ndix C)			

Drilled Area

In the vicinity of the 1983-84 drilling, outcrop is minimal and veining is present on surface only as sparse float boulders and cobbles. A few float samples were taken from this area in 2001 (Table 6.2.1.12), although the drilling gives a better representation of the style and tenor of mineralization.

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
51066	Float	115	2	5900	29	<1	48	22	18	2001
51067	Float	2290	0.6	9990	10	<1	8	4	10	2001
272503	Float	6.85g/t	0.8	6780	3	<1	2	2	2	2001
272504	Float	135	<0.2	144	3	<1	6	2	<2	2001
D(1005)		o (1095)		2001	· This rope	rt (Annor	div C)			

Table 6.2.1.12 Drilled Area Mineralization

P(1985): Paterson (1985)

2001: This report (Appendix C)

6.2.2 Intrusive-Related Mineralization (Park and Gos)

Park Prospect

A multi-phase stock which extends east from the north end of the Bill property is responsible for several geochemically anomalous gossans near its contacts (Figure 4). Of these, only the Park prospect was examined in 2001, but Drown (1982) ascribed the others to bleaching and pyritization of chert adjacent to the intrusive.

The main Park gossan is an intense goethite-jarosite gossan developed along the contact between a crowded feldspar porphyry intrusive and siliceous tuff. A few hundred metres from the contact, the siliceous tuff is hornfelsed and variably chloritic. Within a few tens of metres of the contact, the tuff is intensely silicified and has boxwork developed after sulphides. Locally, the silicification is frothy, with drusy quartz lining some of the abundant voids. Float from the strongest silicification returned up to 2960 ppb Au. A weaker gossan extends a few tens of metres into the porphyry, with little silicification or sulphides. Copland (1982) reported 4 metres of massive magnetite in one of Du Pont's trenches at the downslope end of the most silicified area; this could not be verified, due to sloughing. His Fe-Mn "sinter" consists of blocks of ferricrete, indicating the abundance of sulphides in the intense silicification upslope.

A more subtle gossan is apparent through the trees and scrub about 500 metres southeast of the main Park gossan. Although outcrop is limited, this gossan too appears related to hornfelsing and pyritization. Only 5 rock samples were taken from this southeastern gossan, but two altered and pyritic ones, taken 300 metres apart, returned 1405 and 3590 ppb Au. Similar hornfelsing and pyritization is common, leaving open the possibility for extensive low-grade Au mineralization in this area.

Mineralization sampled in each gossan is accompanied by elevated Cu and Mo (max. 731 ppm Cu, 93 ppm Mo) and variable As levels. Both gossans are accompanied by Au+Cu_±As soil geochemical anomalies which remain incompletely explained by rock sampling to date.

Sample	Width	Au	Ag	As	Cu	Mo	Pb	Sb	Zn	Ref.
Number	(m)	(ppb)	(ppm)							
51068 ¹	Float	55	0.8	112	110	13	2	4	14	2001
51069 ¹	Float	295	1	48	160	2	4	<2	4	2001

Table 6.2.2.1 Park Mineralization

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
51070 ¹	Float	2960	1.4	162	108	14	4	<2	2	2001
51071 ¹	Float	170	0.2	22	10	6	2	<2	<2	2001
272526 ²	Float	155	<0.2	18	442	<1	<2	4	44	2001
272527 ²	Float	3590	0.2	92	110	3	<2	6	40	2001
272528 ²	Float	485	0.6	10	731	58	<2	6	34	2001
272529 ²	1.5	1405	4.2	82	221	6	10	6	26	2001
272530 ²	1.0	80	<0.2	86	420	10	2	6	22	2001
560704 ¹	N/A	25	<0.2	8	77	15	2	<2	38	2001
560705 ¹	Float	230	<0.2	10	36	93	<2	2	6	2001

Table 6.2.2.1 (continued) Park Mineralization

2001: This report (Appendix C) ¹Main Gossan

²Southeast Gossan

Gos Prospect

A prominent 40-50 metre wide gossan on the south-facing slope of the GOS claim follows a northwesterly-trending gully along a fault zone within an equigranular, medium-grained granite. Float within the gully includes a variety of rock types, including: siliceous buff volcanic(?) fragments in a quartz-chlorite-pyrite matrix; clay-altered fault gouge; and fault breccia with <1 cm milled quartz fragments and disseminated specularite(?) in a rock flour matrix. Float sample 560706 (170 ppb Au) was taken from intensely silicified rock, similar in appearance to that found at the Park prospect's main gossan. Approximately 600 metres to the northwest, the granite hosts a stockwork of 15% quartz veinlets with low metal values (272535).

Sample Number	Width (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)	Ref.
272534	5.0	<5	<0.2	2	10	<1	8	2	6	2001
272535	4.0	<5	<0.2	2	12	2	<2	<2	2	2001
560706	Float	170	<0.2	12	1040	3	2	2	<2	2001
560707	2.5	10	<0.2	<2	5	1	<2	<2	<2	2001

Table 6.2.2.2 Gos Mineralization

2001: This report (Appendix C)

6.3 1983-84 Core Re-Logging and Sampling

About a third of the 1983-84 drill core was re-examined in 2001, with an emphasis on holes 84-3, -4 and -5. Notes on mineralized sections are attached in Appendix D.1. A few more sections were split for analysis, covering previously unsampled mineralization and clarifying sampling problems. Including the new samples, Table 6.3.1 summarizes significant intersections (>1 g/tonne Au over 2 metres) from the 1983-84 drilling; intersections equating to >10 g/tonne Au over 3 metres are highlighted. Complete results are shown in Appendix D.2.

Hole	From (m)	To (m)	Length (m)	Au (a/tonne)	Ag (maa)	As (mqq)	uC (maa)	dq (maa)	Sb (mqq)	Zn (ppm)
83-1	76.00	78.00	2.00	4.3	N/A	2500	N/A	N/A	N/A	N/A
	102.00	104.00	2.00	12.5	N/A	300	N/A	N/A	N/A	N/A

 Table 6.3.1

 1983-84 Drilling: Significant Intersections

Hole		From	То	Length	Au	Ag	As	Cu	Pb	Sb	Zn
00.4		(m)	(m)	(m)	(g/tonne)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
<u>83-1</u> 83-2		132.00 50.00	134.00 62.00	2.00	<u>2.9</u> 6.7	N/A N/A	<100 6617	N/A N/A	N/A	N/A	<u>N/A</u>
83-Z	incl.	52.00	62.00 54.00	12.00 <i>2.00</i>	35.0	N/A	11500	N/A	N/A N/A	N/A N/A	N/A N/A
	<i>IIICI</i> .	92.00	98.00	6.00	5.0	N/A	5733	N/A	N/A	N/A	N/A
	incl.	92.00 94.00	96.00 96.00	2.00	5.0 11.9	N/A	4000	N/A	N/A	N/A	N/A
	1101.	106.00	122.00	12.00	1.7	N/A	3533	N/A	N/A	N/A	N/A
	incl.	120.00	122.00	2.00	5.1	N/A	12400	N/A	N/A	N/A	N/A
	11101.	130.00	136.00	6.00	1.2	N/A	6767	N/A	N/A	N/A	N/A
		166.00	168.00	2.00	1.3	N/A	2600	N/A	N/A	N/A	N/A
		186.00	190.00	4.00	1.0	N/A	3100	N/A	N/A	N/A	N/A
83-3		14.00	16.00	2.00	1.2	N/A	200	N/A	N/A	N/A	N/A
000		58.00	62.00	4.00	1.6	N/A	2100	N/A	N/A	N/A	N/A
		64.00	66.00	2.00	1.1	N/A	2200	N/A	N/A	N/A	N/A
		114.00	116.00	2.00	1.7	N/A	1200	N/A	N/A	N/A	N/A
83-4		16.00	18.00	2.00	1.2	N/A	<100	N/A	N/A	N/A	N/A
83-6		60.00	62.00	2.00	13.8	N/A	5500	N/A	N/A	N/A	N/A
00 0		116.00	128.00	12.00	6.1	N/A	2150	N/A	N/A	N/A	N/A
	incl.	116.00	120.00	4.00	11.0	N/A	2300	N/A	N/A	N/A	N/A
	and	126.00	128.00	2.00	12.0	N/A	7400	N/A	N/A	N/A	N/A
	ana	208.00	210.00	2.00	2.5	N/A	<100	N/A	N/A	N/A	N/A
		222.00	224.00	2.00	1.3	N/A	400	N/A	N/A	N/A	N/A
84-1		76.40	78.40	2.00	1.6	0.1	3500	8	2	1	22
84-2		51.80	53.80	2.00	1.0	0.4	>10000	10	2	1	22
072		88.20	90.20	2.00	1.4	0.2	210	9	1	1	28
		133.20	139.20	6.00	1.8	0.1	3537	16	1	. 1	34
		145.90	148.10	2.20	2.6	<0.1	2700	15	1	1	66
		179.20	181.20	2.00	1.4	<0.1	6300	47	7	1	26
		183.20	186.70	3.50	10.3	0.1	633	21	3	1	37
	incl.	183.20	185.20	2.00	16.5	0.2	500	14	4	1	24
		208.40	214.40	6.00	5.9	0.3	3583	41	2	1	69
	incl.	212.40	214.40	2.00	15.6	0.2	850	38	1	1	66
84-3		63.30	73.30	10.00	1.8	0.4	2548	36	3	1	36
		105.50	107.50	2.00	5.5	0.6	2350	44	1	1	36
		111.50	113.50	2.00	2.0	0.6	5400	46	5	1	50
		145.00	146.00	1.00	1.6	0.2	>10000	24	1	1	26
84-4		9.14	14.00	4.86	2.4	0.1	5643	34	1	1	47
		109.30	110.00	0.70	1.4	-0.1	1540	26	1	1	40
		172.50	173.00	0.50	25.6	6.2	28300	12	178	74	144
84-5		48.50	51.50	3.00	12.7	0.4	2500	64	4	1	44
	incl.	48.50	50.00	1.50	24.7	0.1	2600	60	4	1	26
		130.80	132.90	2.10	4.1	7.9	>5000	760	15	140	48
		179.90	181.90	2.00	1.5	0.2	>5000	22	3	1	32
		233.70	234.70	1.00	3.5	0.4	>5000	82	7	1	38
		244.40	244.60	0.20	9.3	1.8	9900	7	4	2	10
		268.50	270.50	2.00	1.1	0.2	2900	32	7	1	60
84-6		87.20	87.50	0.30	1.8	<0.1	50	34	1	1	48
		108.00	108.50	0.50	4.2	<0.1	4600	30	2	1	62
		114.60	116.60	2.00	1.3	<0.1	2300	22	1	1	60
84-7		31.30	32.30	1.00	2.1	28	4600	1550	4	24	54
		65.80	66.10	0.30	21.1	0.8	>5000	98	15	2	38
		91.10	99.10	8.00	1.1	0.2	3925	31	1	1	46
		102.30	104.30	2.00	5.0	0.5	4600	52	1	1	36

Table 6.3.1 (continued) 1983-84 Drilling: Significant Intersections

Hole		From (m)	То (m)	Length (m)	Au (g/tonne)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)
84-7		111.8	114.9	3.10	7.8	0.2	4690	15	1	1	41
	incl.	111.80	113.30	1.50	15.5	0.3	>5000	18	1	1	40
		125.2	129.2	4.00	3.6	0.2	2495	22	15	1	48
	incl.	127.20	129.20	2.00	6.5	0.2	4500	22	26	1	45
84-8		16.10	18.20	2.10	1.9	0.4	3900	68	8	1	70
		29.00	36.10	7.10	7.9	0.1	2921	23	3	1	76
	incl.	31.90	33.90	2.00	24.8	0.1	3000	24	4	1	70
		48.20	50.60	2.40	4.5	3.0	>5000	36	142	2	1220
		63.70	65.70	2.00	2.9	0.1	2050	16	1	1	96
		168.00	169.40	1.40	2.2	<0.1	1600	6	1	1	72
84-9		113.60	115.60	2.00	1.9	0.9	>5000	34	52	3	66
		152.60	154.60	2.00	2.0	0.8	>5000	40	37	1	46

Table 6.3.1 (continued)1983-84 Drilling: Significant Intersections

Table 6.3.2 summarizes intersections with >50 metres exceeding 0.5 g/tonne Au. Some of them are simply an artefact of spreading a few gold-rich intervals over a broad intersection. However, some drill holes contain extensive widths of low-grade gold values due to multiple vein swarms and gold-bearing alteration. Despite the incomplete assaying for the 1984 holes, which lowers the average gold grade reported below, these broad low-grade intersections indicate potential for a bulk-mineable target at the T-Bill prospect.

	Table 6.3.2
1983-84 Drilling:	Broad, Low-grade Intersections

Hole	From (m)	To (m)	Length (m)	Au (a/tonne)	Ag (mqq)	As (mqq)	Cu (maa)	dq (maa)	Sb (mqq)	Zn (maa)
83-1	60.00	176.00	116.00	0.58	N/A	93	N/A	Ń/A	N/A	N/Á
83-2	50.00	198.73 ^⁵	148.73 ^⁵	1.17	N/A	2381	N/A	N/A	N/A	N/A
83-6	60.00	224.00	164.00	0.73	N/A	1383	N/A	N/A	N/A	N/A
84-2	57.80	218.20 ⁵	166.40 ^{1,5}	0.62	0.1	809	12	1	1	25
84-3	29.00	113.50	84.50	0.56	0.5	1544	35	15	1	43
84-5	48.50	135.50	87.00 ²	0.61	0.5	682	60	5	4	34
84-7	65.80	129.20	63.40 ³	1.02	0.1	1272	9	1	0	16
84-8	9.70	85.0	75.30^{4}	1.07	0.2	1043	12	15	0	122

¹Only 92.7 metres have been sampled; the remaining 73.7 metres were assigned zero grade.

²Only 60.3 metres have been sampled; the remaining 26.7 metres were assigned zero grade.

³Only 21.0 metres have been sampled; the remaining 42.4 metres were assigned zero grade. ⁴Only 31.5 metres have been sampled; the remaining 43.8 metres were assigned zero grade.

⁵End of hole (bottomed in mineralization)

7.0 GEOCHEMISTRY

7.1 Silt Geochemistry

During the 2001 program, 10 silt samples were collected from creeks draining previously unexplored ground (Figure 5). Figures 6-8 show Au, As and Cu results for these silts and those collected from 1976-1981 by Cominco and Du Pont and analysed with less reliable methods. Percentiles for the entire data set are summarized in Table 7.1.1.

Percentile	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
	(ppb)	(ppm)						
50th	20	0.3	46	50	3	8	39	82
80th	65	1.0	244	93	9	15	65	111
90th	220	1.3	628	127	10	19	90	152
95th	540	1.4	1084	141	11	21	103	183
98th	1314	1.7	1426	165	14	31	108	252
Maximum Value	3500	2.6	2300	221	21	75	110	334
Population	121	74	59	173	45	172	26	172

Table 7.1.1 Silt Geochemistry Percentiles

The 2001 silt sampling showed two little-explored drainages of interest, southwest and southeast of the T-Bill Prospect. Samples 01HASS-01 to -03 (20-165 ppb Au, 178-384 ppm As) were taken from a creek which drains west into Bill Creek from the ridge whose other flank hosts Showings G, H and J. Eighteen contour soil samples had previously been taken from near the ridgeline in this drainage, returning spotty high Au and As values.

Samples 01HASS-08 to -10 (20-95 ppb Au, 20-46 ppm As) were taken from a south-draining creek ("South Creek") located about a kilometre southeast of the south end of the T-Bill Prospect. Cominco had taken a silt sample with 540 ppb Au from this creek in 1976, but no further work had ever been reported. This creek drains the contact between variably altered Asitka Group schists and the Early Jurassic quartz monzonite stock.

Silt samples 01HASS-04 to -07 were taken from creeks draining east into Bill Creek. Except for 01HASS-06, with 82 ppm As, results were low for all metals.

7.2 Soil Geochemistry

During the 2001 program, 117 soil samples were collected from the Bill property. Most of these were taken along contour lines or grid lines in previously unsampled areas or in areas where reported soil anomalies had not been closed off (Figure 5). For completeness, Figures 6-8 include 1,662 soils collected in previous programs. Since some areas of the property have been sampled and re-sampled repeatedly in different campaigns, only the most recent or most detailed sampling have been included in Figures 6-8. Although most of the samples were only analysed for a few elements and the data are not strictly comparable, given the varying analytical methods used, percentiles and the correlation matrix in Tables 7.2.1 and 7.2.2 were calculated from all 1,779 soil samples on Figures 6-8.

Percentile	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
	(ppb)	(ppm)						
50th	40	0.2	184	54	1	12	6	66
80th	220	0.8	841	133	2	17	25	82
90th	475	1.0	1476	189	3	20	35	90
95th	930	1.2	2300	278	3	24	45	99
98th	1772	1.3	3606	428	4	35	60	117
Maximum Value	9600	5.3	12740	1166	4	560	105	4500
Population	1779	729	1445	659	117	659	274	355

Table 7.2.1 Soil Geochemistry Percentiles

	Au	Aq	As	Cu	Мо	Pb	Sb	Zn
Au								
Ag	0.22							
As	0.41	0.33						
Cu	0.44	0.16	0.27					
Мо	-0.01	-0.28	-0.09	0.38				
Pb	0.09	0.14	0.07	0.32	0.34			
Sb	-0.01	0.41	-0.08	0.06	0.14	0.04		
Zn	-0.04	0.10	0.08	0.67	0.43	0.96	-0.02	

Table 7.2.2 Soil Geochemistry Correlation Matrix

As would be expected from the mineralization described on the Bill property, the soils show strong correlations for Au-As (characteristic of the T-Bill prospect) and Au-Cu (especially prominent at the Park and Gos prospects). There is an excellent correlation in soils between Pb and Zn, neither of which is associated with precious metals, and good correlation between them and Cu-Mo. There is no correlation between As and Sb.

A strong Au-As soil geochemical anomaly, defined by >100 ppb Au and >200 ppm As, covers an area of 2 x 3 km over the T-Bill prospect. The majority of this anomaly lies above tree-line on gentle to moderate grassy slopes; solifluction lobes are common. Rock outcrop is sparse throughout most of the soil anomaly, although float is present in frost boils and talus patches. In 2001, soil sampling was carried out at the T-Bill anomaly's northern and western tips, where previous sampling had not closed off the anomaly. On the western edge, two contour soil lines were run at 1700 and 1790 metres elevation, returning up to 930 ppb Au and 1350 ppm As. Much of the soil on these lines was derived from talus and the anomalous results reflect downslope dispersion more than bedrock mineralization. However, the highest values are directly below bedrock and extend the T-Bill geochemical anomaly 500 metres to the west.

Soil samples were taken in 2001 from two grid lines run 200 and 300 metres north of the northernmost soil sampling previously carried out on the T-Bill anomaly. These lines cross a gentle mound in the floor of North Cirque which had previously returned anomalous Au and As in soil samples. Outcrop is scarce in this vicinity, limited to a few exposures in creeks and at the base of the ridge, but is thought to underlie most of the mound. Much of the 2001 soil sampling was carried out over till away from the mound and returned background values. However, samples near the midpoint of the southern line were taken from residual soils near the tail of the mound and returned values up to 160 ppb Au and 170 ppm As. This sampling extends the T-Bill soil anomaly by 200 metres to the north and indicates that its northern boundary is a function of till cover rather than metal-deficient bedrock.

A contour soil line was run at 1760 metres elevation to cover the western branch of South Creek, where Cominco had previously reported a 540 ppb Au silt sample. To the southwest of the creek, the soil samples returned background values for all elements. However, sampling in the bowl to the east of this creek gave weakly elevated gold and arsenic values (maximum: 140 ppb Au, 94 ppm As). Soils in this bowl are largely derived from talus of variably altered chlorite schist.

On the Gos claim, a contour soil line at 1740 metres elevation was run downslope from a prominent gossan, in a drainage that had previously yielded a silt sample with 280 ppb Au. Most of the line returned 20-50 ppb Au, but accompanied by only 2-8 ppm As. The highest values (165 and 220 ppb Au) were taken in the vicinity of the gossan and probably reflect fault-related mineralization associated with it.

17

8.0 DISCUSSION AND CONCLUSIONS

The Bill property hosts two distinct, but possibly related, styles of gold mineralization: mesothermal and intrusion-related. Most previous exploration has been focused on the mesothermal mineralization of the T-Bill prospect, where a package of Devono-Permian metavolcanics has been altered to carbonate-muscovite-quartz schist over an area of 1,200 x 2,300 metres. This alteration is confined to the core of a northeasterly-trending structural dome and is controlled both by foliation and by steep cross-cutting structures. Gold-rich quartz-arsenopyrite veins are broadly co-spatial with the carbonate-muscovite alteration, although they extend into unaltered chlorite schist with only centimetre-scale alteration envelopes. Individual veins generally cut across foliation and are rarely wider than 30 centimetres, although vein swarms are common. The best drill intersections include 2.0 metres @ 35.0 g/tonne Au (83-2), 4.0 metres @ 11.0 g/tonne Au (83-6) and 2.0 metres @ 24.8 g/tonne Au (84-8). The T-Bill prospect is marked by a strong 2 x 3 kilometre Au-As soil geochemical anomaly covering a grassy slope; its limits reflect masking by till and talus cover rather than bedrock changes in alteration and mineralization.

The 1983-84 diamond drilling program on the T-Bill prospect cut dozens of gold-bearing intervals but did not define controls governing the location and intensity of the quartz-arsenopyrite veining. In particular, no major controlling structure has been recognized. Discovering the ore controls is made more difficult by the lack of surface exposure within the altered zone and its accompanying Au-As soil geochemical anomaly. On a very broad scale, there appears to be metal zonation outward from Au-As in the heart of the zone to higher Ag, Ba, Pb, Sb and Zn toward its periphery. Showings C, H, J and K, each of which has elevated levels of one or more of these elements, are located to the north and south of the carbonate-altered schists and may mark the limits of the hydrothermal system in these directions. No equivalent "peripheral" veining has been found to the east or west, implying that the system could extend in these directions under till and talus cover.

The main focus on the T-Bill prospect has been to identify high-grade veins or vein swarms amenable to underground mining. While this should remain the highest priority, drilling has indicated potential for broad zones of lower-grade mineralization. As an example, hole 84-2 averaged 0.62 g/tonne Au across 166 metres, despite assuming zero grade for unsampled sections, and hole 83-2 averaged 1.17 g/tonne Au across 149 metres; both holes bottomed in mineralization.

Although visible gold was noted in core, no metallics (screen) assaying was carried out on it prior to the current program. Four of the 2001 rock and core samples exceeded 5000 ppb Au on initial analysis and were subjected to metallics assaying. A metallics assay takes the conventional fire assay on pulverized rock and adds the coarse gold left on the screens during sample preparation, giving a truer estimate of total gold grade than a simple fire assay. Three of the four samples showed coarse gold to be a significant factor, with the grade increasing by 22-113% with metallics assaying (Appendix F). It is very likely that some of the better intersections previously reported by Du Pont and Cominco were also substantially under-reported by ignoring the presence of coarse gold.

The intrusion-related gold mineralization at the Gos and Park prospects has received less exploration and is not as well understood as the mesothermal T-Bill veining. At the Park prospect, a 500 x 900 metre open-ended Au-Cu_±As soil geochemical anomaly overlies hornfelsed, silicified and pyritized volcanics. Limited prospecting in 2001 yielded up to 3590 ppb Au from fairly mundane-appearing rocks and this area may have potential for extensive low-grade mineralization.

It would seem highly coincidental to have two totally unrelated kilometre-scale gold-mineralizing systems within a few kilometres of each other, as the T-Bill and the Park prospects are. An intriguing alternative would have the T-Bill and Park as different manifestations of roughly coeval Jurassic or Cretaceous intrusion-related systems. The T-Bill prospect is draped over a dome which post-dates the regional deformation. It has been suggested that the dome reflects an intrusion at depth, although no felsic dykes were encountered in drilling. A >10 kilometre bulls-eye magnetic low is centred on the

quartz monzonite stock southeast of the T-Bill prospect and extends under it; a satellite stock or apophysis may have created the doming and the T-Bill mineralizing system. The Park and T-Bill prospects are likely separated by a major east-west post-mineral fault which downdropped undeformed Takla Group volcanics (Park) to the north against deformed Asitka Group rocks (T-Bill) to the south. Presumably, at the time of intrusion and mineralization, the Park could have been several thousand metres higher than the T-Bill; it may be that the hornfelsing and associated Au-Cu±As mineralization at the Park represents a high-level equivalent to the deeper carbonate-muscovite alteration and mesothermal Au-As veining at the T-Bill.

The 2001 program on the Bill successfully:

- confirmed the presence of a large gold-bearing mesothermal vein/alteration system at the T-Bill prospect;
- expanded its associated Au-As soil geochemical anomaly by 200 metres north-south and 500 metres east-west;
- demonstrated the importance of metallics assaying for obtaining true gold grades and suggested that previously reported intersections may have been under-reported;
- identified a new style of low-grade hornfelsed and pyritized gold mineralization on the Park prospect within a 500 x 900 metre open-ended Au-Cu+As soil geochemical anomaly; and
- identified two new areas with gold-bearing soils in previously unexplored portions of the property.

Respectfully submitted,

Henry J. Awmack, P.Eng. **EQUITY ENGINEERING LTD.**

Vancouver, British Columbia August, 2001 APPENDIX A

BIBLIOGRAPHY

BIBLIOGRAPHY

- Alldrick, D.J. (2000): Exploration Significance of the Iskut River Fault, in Geological Fieldwork, 1999; British Columbia Geological Survey Paper 2000-1, p. 237-247.
- Copland, H.J. (1982): Geological and Geochemical Report on the Park 1-5 Claims; British Columbia Ministry of Energy and Mines Assessment Report #11,148.
- Copland, H.J. and T.J. Drown (1983): Geological, Geochemical and Geophysical Report on the Bill Claims; British Columbia Ministry of Energy and Mines Assessment Report #11,075.
- Diakow, L.J., A. Panteleyev and T.G. Schroeter (1993): Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map area, Northern British Columbia; British Columbia Geological Survey Bulletin 86, 72 p.
- Drown, T. (1982): Geological and Geochemical Report on the Park 1-5 Claims; British Columbia Ministry of Energy and Mines Assessment Report #10,485.
- Eccles, L. (1981): Geological and Geochemical Report on the Park 1-3 Claims; British Columbia Ministry of Energy and Mines Assessment Report #9,288.
- Forbes, J.R. and T.J. Drown (1984): Geological, Geochemical, Geophysical and Diamond Drill Report on the Bill Claims; British Columbia Ministry of Energy and Mines Assessment Report #11,493.
- Hawkins, P.A. (1998): Interpretation of Regional Airborne and Remote Sensing Studies, ARC Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #25,573.
- Kowalchuk (1984): Geological, Geochemical, Geophysical and Diamond Drill Report on the Bill Claims; British Columbia Ministry of Energy and Mines Assessment Report #12,559.
- Krause, R.G. (1996): Geochemical and Prospecting Report on the ARC 1, 2, 3, 4 Claims; British Columbia Ministry of Energy and Mines Assessment Report #24,366.
- McAtee, C.L. and P.J. Burns (1988): Geological and Geophysical Report on the Chuc 1, 2, 3 & 4 Claims; British Columbia Ministry of Energy and Mines Assessment Report #17,322.
- Patterson, I.A. (1985): Structural Control of Gold Mineralization on the Bill Property; Private report for Cominco Ltd..
- Sharp, R.J. (1981): 1980 Geological and Geochemical Report on the Bill 1, 2 and 3 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #8,973.
- Sharp, R.J. (1982): 1981 Geological, Geochemical and Trenching Report on the Bill 1, 2, 3 and T-Bird 1, 2, 3, 4, 5, 6 Mineral Claims; British Columbia Ministry of Energy and Mines Assessment Report #10,245.
- Strain, D.M. (1981): Geological and Geochemical Report on the Ark 1 & 2 Claims; British Columbia Ministry of Energy and Mines Assessment Report #9,398.
- Thompson, M. and R.J. Howarth (1976): Duplicate Analysis in Geochemical Practice; Analyst, p. 690-709.
- Thompson, M. and R.J. Howarth (1978): A New Approach to the Estimation of Analytical Precision; Journal of Geochemical Exploration, p. 23-30.

- Thorstad, L. (1980): Upper Paleozoic Volcanic and Volcaniclastic rocks in Northwest Toodoggone Map Area, British Columbia; Geological Survey of Canada Paper 80-1B, p. 207-211.
- White, G.E. (198): Geophysical Report on Induced Polarization, Magnetometer and VLF-EM, Bill 1 and 2 Claims; Appendix C in British Columbia Ministry of Energy and Mines Assessment Report #11,493.

APPENDIX B

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

BT, BT1, BT2, BT3 Claims

July 5-12, 2001

PROFESSIONAL FEES AND WAGES:			
Henry Awmack, P. Eng.			
16.03 days @ \$460/day	\$	7,373.80	
Mark Baknes, P.Geo.			
14.20 day @ \$460/day		6,532.00	
David A. Caulfield, P.Geo.			
8.85 days @ \$460/day		4,071.00	
Clerical		,	
102.0 hours @ \$25/hour		2,550.00	\$ 20,526.80
EXPENSES:	ሱ	140 50	
Expediting	\$	142.50	
Chemical Analyses			
10 silts @ \$13.97/silt		139.70	
101 soils @ \$13.97/soil		1,410.97	
59 rocks @ \$16.26/rock		959.34	
8 assays @ \$4.88/assay		39.00	
4 met. assays @ \$35.59/assay		142.35	
Materials and Supplies		351.53	
Maps and Publications		1,960.96	
Drafting		2,071.00	
Plot Charges		216.89	
		843.17	
Printing and Reproduction			
Meals		118.95	
Accommodation		272.25	
Taxis		42.62	
Truck Rental		1,125.29	
Automotive Fuel		95.51	
Tolls and Airport Taxes		9.19	
Parking		64.53	
Airfare		768.55	
Camp Food		430.30	
Fixed Wing Aircraft Charters		1,755.60	
Helicopter Charters		4,018.82	
Telephone Distance Charges		133.88	
Courier			
		8.17	
Freight		1,254.84	40 747 04
Satellite Phone Rental		371.10	18,747.01
EQUITY ENGINEERING EQUIPMENT RENTALS:			
Camp			
19.95 days @ \$25/day	\$	498.75	
Generator, 1kVA			
6.65 days @ \$10/day		66.50	
Core Splitter		00.00	
1 days @ \$5/day		5.00	570.25
i days 🤓 yo/day		0.00	 510.25
SUB-TOTAL:			\$ 39,844.06

STATEMENT OF EXPENDITURES

BT, BT1, BT2, BT3 Claims

July 5-12, 2001

PROJECT SUPERVISION CHARGE:

TOTAL:	\$ 47,749.12
GST: 7% on sub-total	 3,123.77
SUB-TOTAL:	\$ 44,625.35
12% on first \$100,000 of expenditures	 4,781.29

Note: Chemical analyses, core splitter and field days assigned to the BT or Gos claims. All other expenses prorated on the basis of field days spent on each claim group: BT:Gos in ratio of 19:1.

STATEMENT OF EXPENDITURES

GOS Claim

July 5-12, 2001

PROFESSIONAL FEES AND WAGES: Henry Awmack, P. Eng.			
0.47 days @ \$460/day	\$	216.20	
Mark Baknes, P.Geo. 1.43 day @ \$460/day		657.80	
David A. Caulfield, P.Geo.		<u> </u>	
0.15 days @ \$460/day Clerical		69.00	
5.0 hours @ \$25/hour		125.00	\$ 1,068.00
EXPENSES:			
Expediting	\$	7.50	
Chemical Analyses			
22 soils @ \$13.97/soil		307.34	
4 rocks @ \$16.26/rock		65.04	
Materials and Supplies		18.50	
Maps and Publications		103.21	
Drafting		109.00	
Plot Charges		11.42	
Printing and Reproduction		44.38	
Meals		6.26	
Accommodation		14.33	
Taxis		2.24	
Truck Rental		59.23	
Automotive Fuel		5.02	
Tolls and Airport Taxes		92.40	
Parking		3.40	
Airfare		40.45	
Camp Food		22.65	
Fixed Wing Aircraft Charters		92.40	
Helicopter Charters		211.52	
Telephone Distance Charges		7.05	
Courier		0.43	
Freight		66.04	
Satellite Phone Rental		19.53	1,309.34
EQUITY ENGINEERING EQUIPMENT RENTALS	:		
1.05 mandays @ \$25/day Generator, 1kVA	\$	26.25	
0.35 days @ \$10/day		3.50	 29.75
SUB-TOTAL:			\$ 2,407.09
PROJECT SUPERVISION CHARGE:			
12% on first \$100,000 of expenditures			 288.85

SUB-TOTAL:	\$ 2,695.94
GST: 7% on sub-total	 188.72
TOTAL:	\$ 2,884.66

Note: Chemical analyses, core splitter and field days assigned to the BT or Gos claims. All other expenses prorated on the basis of field days spent on each claim group: BT:Gos in ratio of 19:1.

APPENDIX C

ROCK SAMPLE DESCRIPTIONS

MINERALS AND ALTERATION TYPES

AK	ankerite	AL	alunite	AS	arsenopyrite
AU	native gold	AZ	azurite	BA	barite
BI	biotite	BO	bornite	ΒT	pyrobitumen
CA	calcite	CB	Fe-carbonate	CC	chalcocite
CD	chalcedony	CL	chlorite		CP chalcopyrite
CV	covellite	CY	clay	DO	dolomite
EN	enargite	EP	epidote	GE	goethite
GL	galena	GR	graphite	HE	hematite
HS	specularite	HZ	hydrozincite	JA	jarosite
KF	potassium feldspar	MC	malachite	MG	magnetite
MN	Mn-oxides	MR	mariposite/fuchsite	MS	sericite
MT	marcasite	MU	muscovite	NE	neotocite
PA	pyrargyrite	PL	pyrolusite	PO	pyrrhotite
PY	pyrite	QZ	quartz veining	RE	realgar
RN	rhodonite	SB	stibnite	SI	silicification
SM	smithsonite	SP	sphalerite	SR	scorodite
TT	tetrahedrite				

ALTERATION INTENSITY

m	moderate	S	strong	tr	trace
VS	very strong	W	weak		

				R	OC	k Sample D	escriptions				
	<u>Projec</u>	t Name:	Bill			-	•	<u>5:</u> 94E/12,13			
Sample Number:	Grid North:	N	Grid East:		E	Type: Core	Alteration: mCL	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	Cu (ppm
134153	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trCP, 1%P	Y 485	<.2	256	37
T-Bill	Elevation	m	Sample Width:	0.1	m	True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Spotted chlorite	schist	<1	2	6	36
Sampled By: MEB 08-Jul-01	Core sample 84 chalcopyrite in c					•	e vein, straight-sided, acute angl	le to foliation. Thin sea	m of pyrite ±	arsenopyri	te-
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration: mCB, mQZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm</u>
134154	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trPY	45	<.2	80	28
T-Bill	Elevation		Sample Width:	2.3	m	True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Chlorite schist		<1	2	2	80
Sampled By: MEB 08-Jul-01	Core sample 84 ankerite.	-4: 71.0-73.3	3. Metamorphic o	quartz-o	calcite	veins with minor to trace p	vrite and arsenopyrite replacing o	chloritic inclusions/sep	tae. <3% qu	artz veins w	rith rare
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration: mCB, mQZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
134155	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trPY	<5	<.2	112	32
T-Bill	Elevation		Sample Width:	2	m	True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Chlorite schist		<1	2	4	70
Sampled By: MEB 08-Jul-01	Core sample 84	-4: 73.3-75.3	8 m. Metamorphi	c quart	z-calci	te veins with minor to trace	pyrite-arsenopyrite replacing chl	orite inclusions and ve	in septae. 15	5% vein mat	erial.
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration: mCB, mQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm)</u>
134156	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trPY	120	<.2	534	22
T-Bill	Elevation		Sample Width:	2	m	True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
						Host : Chlorite schist		<1	10	<2	84
Sampled By: MEB 08-Jul-01	Core sample 84	-4: 75.3-77.3	8 m. Metamorphi	c quart	z-calci	te veins with trace pyrite-ar	senopyrite replacing chlorite inclu	usions and vein septae). 10% vein r	material.	
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration: mCA, mCL, mQZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
134157	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trPY	10	<.2	64	27
T-Bill	Elevation		Sample Width:	2	m	True Width: cm	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
						Host : Chlorite schist		<1	8	6	138
Sampled By: MEB 08-Jul-01	Core sample 84	-4: 77.3-79.3	8 m. Metamorphi	c quart	z-calci	te veins with trace pyrite ar	nd arsenopyrite replacing chloritic	c inclusions/septae. 30	% quartz an	d calcite vei	ning.
Sample Number:	Grid North:	N	Grid East:		Е	Type: Core	Alteration: mCA, mCL, mQZ	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)
134158	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics: trAS, trPY	<5	<.2	12	22
T-Bill	Elevation		Sample Width:	2	m	True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
						Host : Chlorite schist		1	2	4	102
Sampled By: MEB 08-Jul-01	Core sample 84	-4: 79.3-81.3	8 m. Metamorphi	c quart	z-calci	te veins with trace pyrite ar	nd arsenopyrite replacing chlorite	inclusions and septae	. 10-15% qu	lartz and cal	lcite veinin

				R	loc	k Sample	Descrip	tions				
	<u>Projec</u>	t Name:	Bill			Project:	RFM01-11	<u>NTS:</u>	94E/12,13			
Sample Number:	Grid North:	N	Grid East:		E	Type: Core	Alteration:	mMS	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm
134159	UTM Elevation	Ν	UTM Sample Width:	3	E m	Strike Length Exp: True Width:	Metallics: Secondarie	trAS, trPO, tPY	10 Mo (ppm	0.2 ' Pb (ppm)	76) Sb (ppm)	60 Zn (ppm
T-Bill			Campie Width.	U		Host : Carbonaceou			<u> </u>	, <u>- e (ppin</u> , 8	2	<u> (pp::-</u> 66
Sampled By: MEB 08-Jul-01	Core sample 84-	4: 87.0-90.0	m. Distinctive u	init with	n disse	minated pyrite, pyrrhotil			foliation planes.	-		
Sample Number:	Grid North:	Ν	Grid East:		E	Type: Core	Alteration:	mMS	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm
134160	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics:	trAS, trPO	40	0.2	198	34
T-Bill	Elevation		Sample Width:	1	m	True Width:	Secondarie	es:	<u>Mo (ppm</u>	Pb (ppm)) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Carbonaceou	is and sericitic cald	cite schist	<1	12	<2	114
Sampled By: MEB 08-Jul-01	Core sample 84-	4: 90.0-91.0	m. Continuation	n of 13₄	4159 b	ut less carbonaceous h	ere.					
Sample Number:	Grid North:	Ν	Grid East:		E	Type: Core	Alteration:	CY	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm
134161	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics:	trAS, trPY	145	<.2	544	81
T-Bill	Elevation		Sample Width:	1.1	m	True Width:	Secondarie	es:	<u>Mo (ppm</u>	Pb (ppm)) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Chlorite schis	st		<1	<2	2	58
Sampled By: MEB 08-Jul-01	Core sample 84- late brittle feature		0.8 m. Brittle fai	ult zone	e, chlor	itic clay fault gouge sup	porting clasts of th	e above unit in gouge.	Trace arsenopyri	e noted in f	fragments. Lo	ooks like
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration:	mMS	<u>Au (ppb)</u>	<u>Ag (ppm</u> `) <u>As (ppm)</u>	<u>Cu (ppm</u>)
134162	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics:	3%PY	<5	0.4	340	73
T-Bill	Elevation		Sample Width:	3.4	m	True Width:	Secondarie	es:	<u>Mo (ppm</u>	Pb (ppm)) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Carbonaceou	is and sericitic cald	cite schist	<1	12	<2	50
Sampled By: MEB 08-Jul-01	Core sample 84-	4: 151.9-15	5.3 m. 3% pyrite	as dis	semina	ted blebs and as mass	ive granular aggreg	gates. Pyrite looks syng	genetic.			
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration:	mCA, sCB, sMS, mQZ	<u>Au (ppb)</u>	<u>Ag (ppm</u>)) <u>As (ppm</u>)	Cu (ppm)
134163	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics:	5%AS, trAU	25.6 g/t	6.2	2.83 %	12
T-Bill	Elevation		Sample Width:	0.5	m	True Width:	Secondarie	es:	<u>Mo (ppm</u>	Pb (ppm)) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
						Host : Altered chlori	te schist		<1	178	74	144
Sampled By: MEB 08-Jul-01						ith rare visible gold in b and fuchsite alteration.		vein breccia of quartz a	and dolomite. Strir	igers are irr	regular but c	ut foliation.
Sample Number:	Grid North:	Ν	Grid East:		Е	Type: Core	Alteration:		<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm</u>)	Cu (ppm)
134164	UTM	Ν	UTM		Е	Strike Length Exp:	Metallics:	trAS, trPY	5	0.2	84	18
T-Bill	Elevation		Sample Width:	1.5	m	True Width:	Secondarie	es:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
. 2						Host : Chlorite schis	st		<1	6	14	162
Sampled By: MEB 08-Jul-01						th <3% 1-3 mm quartz- 55 (10.6 g/tAu) incorred				% white bul	ll quartz with	chlorite

				Ro	ock S	Sample Do	escriptions					
	Project	Name	: Bill			Project: R	- RFM01-11	<u>NTS:</u> 94E/12, ⁻	3			
Sample Number:	Grid North:	N	Grid East:		Е Туре	e: Core	Alteration: mCB, mQZ	<u>Au (</u>	ppb) <u>Ag (p</u>	pm) <u>As (</u>	<u>(ppm) C</u>	u (ppm
134165	UTM	Ν	UTM		E Strik	e Length Exp:	Metallics: trAS, trPY	75	50 <.2	48	370	4
T-Bill	Elevation		Sample Width:	0.3 r	n True	Width:	Secondaries:	<u>Mo (</u>	<u>ppm'</u>			
						: Chlorite schist		<			2	32
Sampled By: MEB 08-Jul-01	Core sample 84-4: arsenopyrite also to						nopyrite tension gashes w	which cut the segregation	n and cut the	e foliation	~45°. Th	IE
Sample Number:	Grid North:	N	Grid East:		Е Туре	e: Core	Alteration: wCA, wDC) <u>Au (</u>	ppb) <u>Ag (p</u>	<u>pm) As (</u>	(ppm) <u>C</u>	<mark>;u (ppm</mark>)
134166	UTM	Ν	UTM		E Strik	e Length Exp:	Metallics: 2%AS, 1%	6PY 9.28	8 g/t 1.8	0.9	9 %	7
T-Bill	Elevation		Sample Width:	0.2 r		Width:	Secondaries:		ppm) Pb (p			
						: Chlorite schist		<	-		2	10
Sampled By: MEB 09-Jul-01	Core sample 84-5: pyrite along septae				0 but core	lost from 244.0-244.4	m. Quartz ankerite vein a	t low angle to core axis	. 2% fine-gra	ined arse	nopyrite	and trace
Sample Number:	Grid North:	Ν	Grid East:		Е Туре	e: Select/Grab	Alteration: sCB, sMS,	wQZ <u>Au (</u>	ppb) <u>Ag (p</u>	<u>pm) As (</u>	(ppm) <u>C</u>	<u>;u (ppm)</u>
272501	UTM 6404265	Ν	UTM 572983		E Strik	e Length Exp: ~10 m	Metallics: <1-5%AS,	10%PY 28	00 6	1.8	6 %	42
T-Bill	Elevation 1790	m	Sample Width:	20 c	m True	Width: 20 cm	Secondaries: sJA	<u>Mo (</u>	<u>ppm'</u> Pb (p	<u>pm) Sb (</u>	<u>(ppm)</u> Z	<u>'n (ppm)</u>
	Folia	tion 075	5°/56° S		Host	: Altered chlorite sc	hist	<	1 66	1	10	10
Sampled By: DAC 06-Jul-01	Showing F. Jarosite mineralization is re			ization ar	d alteratio	ו follow (roughly) folia	tion. Entire altered zone is	approximately 3 m tru	width althout	ugh best s	sulphide	
Sample Number:	Grid North:	Ν	Grid East:		Е Туре	e: Grab	Alteration: wCB, sMS	<u>Au (</u>	ppb) <u>Ag (p</u>	<u>pm) As (</u>	(ppm) <u>C</u>	<u>;u (ppm)</u>
272502	UTM 6404265	Ν	UTM 572983		E Strik	e Length Exp: ~10 m	Metallics: ?PY	30)5 2.8	39	950	34
T-Bill	Elevation 1790	m	Sample Width:	60 c	m True	Width: 60 cm	Secondaries: sJA	<u>Mo (</u>	ppm <u></u> Pb (p	<u>pm) Sb (</u>	<u>(ppm)</u> Z	<u>'n (ppm)</u>
		tion 075				: Altered chlorite sc		2	2 20	1	18	6
Sampled By: DAC 06-Jul-01	Showing F. Charac	cter samp	le of altered wall	rock avo	iding vein	materials. Sulphides a	are weathered out.					
Sample Number:	Grid North:	Ν	Grid East:		Е Туре	e: Float	Alteration: w-mCB, sC	QZ <u>Au (</u>	ppb) <u>Ag (p</u>	<u>pm) As (</u>	<u>(ppm)</u> C	<u>;u (ppm)</u>
272503	UTM 6404708	Ν	UTM 573056		E Strik	e Length Exp:	Metallics: 2-3%AS	6.85	5 g/t 0.8	67	780	3
T-Bill	Elevation 1785	m	Sample Width:		True	Width:	Secondaries: wGE, wa	SR <u>Mo(</u>	ppm <u></u> Pb (p	<u>pm) Sb (</u>	<u>(ppm)</u> Z	<u>'n (ppm)</u>
						: Quartz vein		<	• –		2	2
Sampled By: DAC 06-Jul-01	Angular irregular v	ein float	- 25x20 cm. Qua	rtz vein h	as breccia	ted texture. Arsenopy	rite occurs as stringers (wispy) and as late frac	ure fillings.			
Sample Number:	Grid North:	N	Grid East:		Е Туре	e: Float	Alteration: sQZ	<u>Au (</u>	ppb) <u>Ag (p</u>	<u>pm) As (</u>	(ppm) C	u (ppm)
272504	UTM 6404664	Ν	UTM 573196		E Strik	e Length Exp:	Metallics:	13	35 <.2	14	44	3
T-Bill	Elevation 1745	m	Sample Width:		True	Width:	Secondaries: mJA	<u>Mo (</u>	ppm` Pb (p	<u>pm) Sb (</u>	<u>(ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
					Host	: Quartz vein		<	1 6		2	<2
Sampled By: DAC 06-Jul-01	Pitted quartz vein.	Sulphide	s weathered out.	Angular	loat 5x10	xm.						

				Roc	k Sample	Descriptions				
	Project	Name:	Bill		Project:	RFM01-11 <u>NTS:</u>	94E/12,13			
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: mCB, mQZ	<u>Au (ppb)</u> Ag	j (ppm) As	; (ppm) <u>C</u>	u (ppm)
272505	UTM 6404933	Ν	UTM 572014	Е	Strike Length Exp:	Metallics:	455	1.2 1	1345	167
T-Bill	Elevation 1825	m	Sample Width:		True Width:	Secondaries: wGE, mJA	<u>Mo (ppm) Pb</u>	<u>) (ppm) Sb</u>	<u>(ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
					Host: Quartz carbor	ate vein	<1	38	4	<2
Sampled By: DAC 07-Jul-01	Rubble float in scre In an area of highe			l phyllite. Co	omposite of several piece	es, mostly 2 cm with one larger 5x10 cm	1. Has a bit of weight - c	carbonate is	3 probably	[,] ankerite
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: wCA, sCB	<u>Au (ppb)</u> Ag	<u>ı (ppm) As</u>	; (ppm) <u>C</u>	<u>;u (ppm)</u>
272506	UTM 6405108	Ν	UTM 572146	E	Strike Length Exp:	Metallics: 3%PY	10	<.2	38	6
T-Bill	Elevation 1775	m	Sample Width:		True Width:	Secondaries: mGE	<u>Mo (ppm) Pb</u>	<u>) (ppm) Sb</u>	<u>(ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
					Host : Iron carbonate	9	<1	<2	10	<2
Sampled By: DAC 07-Jul-01	Chocolate-brown ir	ron carbor	nate, likely siderite	e but some a	ankerite noted as well. P	vrite disseminated as mm scale cubes.	Same type is abundant	t as scree w	ith blocks	30-40 cm
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: wCB, sQZ	<u>Au (ppb)</u> Ag	<u>j (ppm) As</u>	<u>; (ppm) C</u>	;u (ppm)
272507	UTM 6405742	Ν	UTM 572535	Е	Strike Length Exp:	Metallics:	<5	<.2	18	49
T-Bill	Elevation 1790	m	Sample Width:		True Width:	Secondaries:	<u>Mo (ppm) Pb</u>	<u>) (ppm) Sb</u>	<u>, (ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
					Host: Quartz-carbor	nate vein	<1	8	<2	52
Sampled By: DAC 07-Jul-01	Composite sample	of quartz	vein rubble in sad	dle up from	high gold values in soils	on Dupont contour line. Taken 30 m dov	wn ridge line from LCP.			
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: wCB, m-sMS	<u>Au (ppb)</u> Ag	<u>ı (ppm) As</u>	<u>; (ppm) C</u>	<u>;u (ppm)</u>
272508	UTM 6405742	Ν	UTM 572535	E	Strike Length Exp:	Metallics:	<5	<.2	10	33
T-Bill	Elevation 1790	m	Sample Width:		True Width:	Secondaries: wGE	<u>Mo (ppm) Pb</u>	<u>) (ppm) Sb</u>	<u>(ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
					Host: Altered phyllite	9	<1	<2	2	64
Sampled By: DAC 07-Jul-01	Sample location sa	ime as 272	2507 but sample i	s of sericite	altered phyllite only. Con	nposite sample.				
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: mCB, sMS, wQZ	<u>Au (ppb) Ag</u>	<u>ı (ppm) As</u>	<u>; (ppm) C</u>	<u>;u (ppm)</u>
272509	UTM 6405764	Ν	UTM 572420	E	Strike Length Exp: 5 m	Metallics:	10	<.2	6	81
T-Bill	Elevation 1790	m	Sample Width:	50 cm	True Width: 50 cr	n Secondaries:	<u>Mo (ppm) Pb</u>	<u>) (ppm) Sb</u>	<u>(ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
	Folia	ition 230°	°/29° NW		Host : Sericite-carbo	nate altered phyllite	<1	<2	8	30
Sampled By: DAC 07-Jul-01	Light brown weathe	ering alter	ed phyllite. Highly	contorted i	soclinal folding with fold	ed quartz vein and quartz boudins. Sam	ple taken upslope from	ו good gold	soil geoch	nemistry.
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: sCB, sMS, mQZ	<u>Au (ppb)</u> Ag	<u>ı (ppm) As</u>	; (ppm) <u>C</u>	u (ppm)
272510	UTM 6405644	Ν	UTM 572258	Е	Strike Length Exp: 7 m	Metallics:	<5	<.2	6	48
T-Bill	Elevation 1720	m	Sample Width:	1 m	True Width: 1 m	Secondaries: wGE	<u>Mo (ppm)</u> Pb	<u>) (ppm) Sb</u>	<u>, (ppm)</u> <u>Z</u>	<u>'n (ppm)</u>
	Folia	ition 235°	°/29° NW		Host : Sericite-carbo	nate altered phyllite	<1	<2	4	50
Sampled By: DAC 07-Jul-01	Brown-weathering boudinaged.	sericite-a	nkerite altered ph	yllite. Quart	z veining is abundant. M	ost of the veining appears to be pre-def	ormation as it is isoclina	ally folded a	and quite	

				Roc	k Sample D	escriptions				
	<u>Project</u>	Name:	Bill		Project:	RFM01-11 <u>NTS:</u> 9	94E/12,13			
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: mCB, mMS, mQZ	<u>Au (ppb)</u>	Ag (ppm)	As (ppm)	Cu (ppm
272511	UTM 6405069	Ν	UTM 571974	Е	Strike Length Exp:	Metallics: <1%PY	380	0.2	1075	9
T-Bill	Elevation 1770	m S	Sample Width:		True Width:	Secondaries: w-mGE, mJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
					Host : Carbonate-musc	ovite altered phyllite/chlorite schist?	1	6	<2	<2
Sampled By: DAC 07-Jul-01	Composite of three probably 10% or g	0	oat pieces, the la	rgest of wh	ich is 15 cm in diameter. S	ulphides mostly weathered, boxwork af	ter pyrite. Pyrite r	noted in one	e piece. Tota	ıl sulphide
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: mCB, w-mMS	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm</u>
272512	UTM 6404316	Ν	UTM 572511	E	Strike Length Exp: 10 m	Metallics: 3%PY	10	<.2	14	350
T-Bill	Elevation 1690	m S	Sample Width:	1.5 m	True Width: 1.5 m	Secondaries: wGE, wJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
	Folia	ation 090°/	45° S		Host: Quartz crystal to	Iff to chloritic schist	<1	<2	2	26
Sampled By: DAC 07-Jul-01	Apparent location contact not expose			0 (,	ist with 3 mm bluish quartz eyes. Area	of carbonate-alte	eration up to	o 10 m thick	. Lower
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: mCB, wMS, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm</u>
272513	UTM 6404313	Ν	UTM 572606	Е	Strike Length Exp:	Metallics: 10%PY	190	<.2	510	9
T-Bill	Elevation 1710	m S	Sample Width:		True Width:	Secondaries: sGE, wJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
					Host: Quartz vein bred	cia	<1	4	<2	<2
Sampled By: DAC 07-Jul-01	Showing F area. 4	0 cm angul	ar boulder. Brec	cia with ang	ular quartz, phyllite clasts.	Carbonate in matrix with quartz. Pyrite	is disseminated	as fracture f	fillings.	
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: wMS, mQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm</u>
272514	UTM 6405363	Ν	UTM 573273	E	Strike Length Exp:	Metallics: trAS, 5%PY	105	<.2	1915	4
T-Bill	Elevation 2000	m S	Sample Width:		True Width:	Secondaries: mGE, wJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
					Host : Carbonate-seric	te altered schist	<1	6	2	20
Sampled By: DAC 08-Jul-01	A number of rusty	boulders in	n red soil streak o	on north sid	e of ridge above drop off. (Can't follow float train downslope, it is b	uried under unal	ered green	schist talus	upslope.
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: CB, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm</u>
272515	UTM 6405447	Ν	UTM 573421	E	Strike Length Exp: 2-3 m	Metallics:	35	0.6	208	12
T-Bill	Elevation 1960	m S	Sample Width:	15 cm	True Width: 15 cm	Secondaries: wGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
	F	ault 140°/	′90°		Host : Chloritic schist		<1	2	6	28
Sampled By: DAC 08-Jul-01	Rusty soil in slot or sample.	n ridge. Qu	artz-ankerite rub	ble in notch	. Gully off north end trends	140° and resembles description of Sho	wing D. Should b	e location o	of 710 ppb A	vu soil
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: mCB, mMS, mQZ	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm</u>
272516	UTM 6405545	Ν	UTM 573527	Е	Strike Length Exp: 0.5 m	Metallics: <1%AS, trCP, 3%PY	215	0.2	4040	37
T-Bill	Elevation 1900	m S	Sample Width:	60 cm	True Width: 60 cm	Secondaries: sGE, wJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
	N	Vein 160°/	′90°		Host : Chlorite schist		<1	2	6	2
Sampled By: DAC 08-Jul-01	Red (hematitic) so	il; Dig dowr	n to reveal quartz	z alteration :	zone. Except for soil colour	very subtle expression of quartz-anker	ite vein. >1 g/t so	oils in area.		

				Ro	ck Sar	nple De	escrip	tions				
	Project	Name:	Bill		<u>P</u>	r <u>oject:</u> R	RFM01-11	<u>NTS:</u>	94E/12,13			
Sample Number:	Grid North:	N	Grid East:		E Type: G	ab	Alteration:	mCB, mMS, wQZ	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm
272517	UTM 6405545	Ν	UTM 573527	E	Strike Leng	gth Exp: 0.5 m	Metallics:	tr CP, trPY	30	<.2	1365	33
T-Bill	Elevation 1900	m	Sample Width:	30 cm	True Width	n: 30 cm	Secondarie	es: wGE, wHE, wJA	<u>Mo (ppm</u>	<u>Pb (ppm</u>) <u>Sb (ppm)</u>	<u>Zn (ppm</u>
		140)°/?°		Host : Cł	nlorite schist			<1	22	4	24
Sampled By: DAC 08-Jul-01	Similar looking zon zone, presumably		0 0	``	, 0	0	d soil to locate	vein(?) of altered ma	aterial. 9 cm quartz-	ankerite bo	ulder sits on	top of
Sample Number:	Grid North:	N	Grid East:		E Type: Fl	oat	Alteration:	mAK, MS, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm</u>) <u>As (ppm)</u>	<u>Cu (ppm)</u>
272518	UTM 6405936	Ν	UTM 574247	E	Strike Leng	jth Exp:	Metallics:	trPY	5	<.2	10	3
T-Bill	Elevation 1880	m	Sample Width:	14 m	True Width	n: cm	Secondarie	es: wGE	<u>Mo (ppm</u>	<u>Pb (ppm</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Cł	nlorite schist			<1	<2	2	30
Sampled By: DAC 08-Jul-01	Recessive muscov composite of quart				0		ld put it upslop	be from Showing B (under snow). Grab	aken acros	s zone pick	ing a
Sample Number:	Grid North:	Ν	Grid East:		E Type: Fl	oat	Alteration:	sAK, wQZ	<u>Au (ppb)</u>	<u>Ag (ppm</u>) <u>As (ppm)</u>	<u>Cu (ppm)</u>
272519	UTM 6406513	Ν	UTM 574018	E	Strike Leng	jth Exp:	Metallics:	3%GL, trPY, 10%S	SP 75	58	76	632
T-Bill	Elevation 1770	m	Sample Width:		True Width	1:	Secondarie	es: wSM	<u>Mo (ppm</u>	<u>Pb (ppm)</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Ca	arbonate-musco	vite altered ch	lorite schist	<1	1.28 %	550	18.55 %
Sampled By: DAC 08-Jul-01	Showing C. Brown sampled.	weatheri	ing vein (ankerite	e) rubble cr	osses saddle.	May be in outcr	op to east but	t snow cornice cover	ring area. Arsenopy	rite reported	d but none s	een in chip
Sample Number:	Grid North:	Ν	Grid East:		E Type: G	ab	Alteration:	wCB, sQZ	<u>Au (ppb)</u>	<u>Ag (ppm</u>) <u>As (ppm)</u>	<u>Cu (ppm)</u>
272520	UTM 6403712	Ν	UTM 573340	E	Strike Leng	gth Exp: 10 m	Metallics:	10-15% PY	1500	142 g/t	2190	583
T-Bill	Elevation 1860	m	Sample Width:	40 cm	True Width	n: 40 cm	Secondarie	es: sGE, sJA	<u>Mo (ppm</u>	<u>Pb (ppm)</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
	١	Vein 100	°/90°		Host : Qu	uartz-carbonate	vein		<1	102	628	830
Sampled By: DAC 09-Jul-01	Showing K. Sits in wispy lenses.	promine	nt planar, sharp-	walled gully	. Two grain si	zes of pyrite - la	rger 1-2 mm, s	sometimes cubic gra	ins and finer dissen	ninated grai	ns which co	ncentrate ir
Sample Number:	Grid North:	N	Grid East:		E Type: Fl	oat	Alteration:	mAK, m-sQZ	<u>Au (ppb)</u>	<u>Ag (ppm</u>) <u>As (ppm)</u>	<u>Cu (ppm)</u>
272521	UTM 6403561	Ν	UTM 573419	E	Strike Leng	yth Exp:	Metallics:	5%PY	1480	1.6	684	99
T-Bill	Elevation 1780	m	Sample Width:		True Width	1:	Secondarie	es: mGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Qu	uartz-ankerite ve	ein		<1	44	14	596
Sampled By: DAC 09-Jul-01	Showing H. Angula	ar float. Ve	ein width 7 cm. F	loat may co	ome from one	of two fault zone	s 25 m upslop	be. (105°/90°, 140°/6	2°SW)			
Sample Number:	Grid North:	N	Grid East:		E Type: G	ab	Alteration:	mCB, sQZ	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm)
272522	UTM 6403677	Ν	UTM 573399	E	Strike Leng	jth Exp:	Metallics:	3-5%PY	605	1.8	536	192
T-Bill	Elevation 1820	m	Sample Width:	20 cm	True Width	n: 20 cm	Secondarie	es:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
	١	Vein 245	°/35° NW		Host : Cł	nlorite schist			1	4	26	184
Sampled By: DAC 09-Jul-01	Showing H. Contro	lling struc	cture trends 110°/	/85°N altho	ugh alteration r	nineralization ha	is bled out alo	ng foliation.				

				Roc	k Sample	Descriptions				
	Project	Name:	Bill		Project:	-	94E/12,13			
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: wCB, sQZ	<u>Au (ppb)</u>	Ag (ppm)) <u>As (ppm)</u>	Cu (ppm)
272523	UTM 6403798	Ν	UTM 573360	Е	Strike Length Exp:	Metallics: 5%AS, 3%PY	13.2 g/t	1.4	5.52 %	14
T-Bill	Elevation 1810	m	Sample Width:		True Width:	Secondaries: wGE, wJA, SR	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Quartz vein		<1	66	54	116
Sampled By: DAC 09-Jul-01	Showing G. Lots c cm.	of quartz v	vein float in talus. Ca	an follow f	oat for 20 m upslope v	where it appears out of slope in rusty soil.	Sample is compos	ite of vario	ous float. Ve	in width to
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: sSD, sBA	<u>Au (ppb)</u>	<u>Ag (ppm</u>) <u>As (ppm</u>)	<u>Cu (ppm)</u>
272524	UTM 6403841	Ν	UTM 573178	E	Strike Length Exp:	Metallics: trCP, 3%PY	250	0.8	494	1915
T-Bill	Elevation 1860	m	Sample Width:		True Width:	Secondaries: mGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Siderite-barite	9	1	14	22	90
Sampled By: DAC 09-Jul-01	Showing J. Chocol massive pods.	ate browr	n weathering, angula	ar float. Ve	in width 15 cm; 1-2 cm	bladed barite grains with siderite matrix. F	Pyrite along calcite	grain bou	ndaries and	in semi-
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: sQZ	<u>Au (ppb)</u>	Ag (ppm)) <u>As (ppm</u>)	<u>Cu (ppm)</u>
272525	UTM 6403841	Ν	UTM 573178	Е	Strike Length Exp:	Metallics: 5%PY	4700	4.4	910	42
T-Bill	Elevation 1860	m	Sample Width:		True Width:	Secondaries: mGE, wJA	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Quartz vein		<1	30	70	52
Sampled By: DAC 09-Jul-01	0		s 272524. Angular f n-south orientation t		m wide. Pyrite weather	s out to give frothy, pitted texture to surface	ce. Yellow-stained	outcrops	50 m upslop	be can't be
Sample Number:	Grid North:	Ν	Grid East:	Е	Type: Float	Alteration: mAK	<u>Au (ppb)</u>	Ag (ppm)) <u>As (ppm</u>)	<u>Cu (ppm)</u>
272526	UTM 6407847	Ν	UTM 573025	Е	Strike Length Exp:	Metallics: trCP, 1%PY	155	<.2	18	442
Park	Elevation 1610	m	Sample Width:		True Width:	Secondaries: mGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
i unit					Host : Mafic volcani	c (amygdaloidal)	<1	<2	4	44
Sampled By: DAC 10-Jul-01	60 cm angular floa	t boulder,	located at a soil sta	tion. 0.5-1	cm ankerite veinlets c	utting through host. Pyrite is disseminated,	chalcopyrite IN bl	ebby aggr	egates on d	ry fractures
Sample Number:	Grid North:	N	Grid East:	Е	Type: Float	Alteration: wAK	<u>Au (ppb)</u>	<u>Ag (ppm)</u>) <u>As (ppm</u>)	<u>Cu (ppm)</u>
272527	UTM 6407856	Ν	UTM 573035	E	Strike Length Exp:	Metallics: 2%PY	3590	0.2	92	110
Park	Elevation 1620	m	Sample Width:		True Width:	Secondaries: mGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Well-altered f	ractured volcanic	3	<2	6	40
Sampled By: DAC 10-Jul-01	20 cm rusty boulde	er with the	e same lithology as 2	272526 bu	t intensely fractured.					
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: wCB, wCY	<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm</u>)	Cu (ppm)
272528	UTM 6407878	Ν	UTM 573229	Е	Strike Length Exp:	Metallics: trCP, 3-5%PY	485	0.6	10	731
Park	Elevation 1610	m	Sample Width:		True Width:	Secondaries: sGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
i an					Host : Mafic volcani	c	58	<2	6	34
Sampled By: DAC 10-Jul-01	Rusty soil spilling c	out in ope	n meadow. 5x10 m	area. Sam	ple is composite of a n	umber of float pieces. Very angular float cl	ose to source.			

				Roc	k Sample De	escriptions				
	Project	Name:	Bill		-	-	94E/12,13			
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: wQZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	Cu (ppm)
272529	UTM 6407902	Ν	UTM 573325	Е	Strike Length Exp: 1 m	Metallics: >5%PY	1405	4.2	82	221
Park	Elevation 1610	m	Sample Width: 1.	5 m	True Width: 1.5 m Host : Altered volcanic	Secondaries: sGE, wJA	<u>Мо (ppm</u> 6	2 Pb (ppm) 10	<u>Sb (ppm)</u> 6	Zn (ppm) 26
Sampled By: DAC 10-Jul-01	Outcrop at the hea	d of anoth	ner rusty soil patch.	Unit has h	ornfelsed appearance.					
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: wQZ	<u>Au (ppb)</u>	Ag (ppm)	As (ppm)	Cu (ppm)
272530	UTM 6408060	Ν	UTM 573432	Е	Strike Length Exp: 0.5 m	Metallics: 2%PY	80	<.2	86	420
Park	Elevation 1660	m	Sample Width: 1	m	True Width: 1 m	Secondaries: mGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
i unit					Host: Well-fractured hor	nfelsed volcanic	10	2	6	22
Sampled By: DAC 10-Jul-01	Sample taken at to	p end of r	usty soil run. Soil sa	ample stati	on - can't read flag.					
Sample Number:	Grid North:	Ν	Grid East:	Е	Type: Float	Alteration: mCB, sQZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
272531	UTM 6404358	Ν	UTM 572606	Е	Strike Length Exp:	Metallics: <1%PY	15	<.2	30	1
T-Bill	Elevation 1705	m	Sample Width:		True Width:	Secondaries:	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Quartz-ankerite ve	in	<1	<2	4	<2
Sampled By: DAC 12-Jul-01	10 cm angular bou	lder in tal	us slope with traces	of black n	nineral.					
Sample Number:	Grid North:	Ν	Grid East:	Е	Type: Grab	Alteration: vwKF, wQZ, mSI	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
272534	UTM 6400574	Ν	UTM 571552	Е	Strike Length Exp: >25 m	Metallics: 2%HS?, trPY	<5	<.2	2	10
Gos	Elevation 1900	m	Sample Width: 5	m	True Width: 5 m Host : Granite	Secondaries: wGE	<u>Mo (ppm</u> <1	9 Pb (ppm) 8	<u>Sb (ppm)</u> 2	<u>Zn (ppm)</u> 6
Sampled By: DAC 28-Jul-01	Grab across intrusi	ive outcro	p approximately 30	+ m inboai	d of diorite contact. Represe	entative sample - hillside consists of s	similar-looking stu	ıff.		
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: mQZ	<u>Au (ppb)</u>	Ag (ppm)	As (ppm)	Cu (ppm)
272535	UTM 6400600	Ν	UTM 571610	Е	Strike Length Exp: >25 m	Metallics: 1%HS?	<5	<.2	2	12
Gos	Elevation 1900	m	Sample Width: 4	m	True Width: 4 m	Secondaries: mGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
000					Host : Granite		2	<2	<2	2
Sampled By: DAC 28-Jul-01			d quartz veining at c d streak (same as i		n diorite unit. Stockwork vein	ing decreases in granite away from c	ontact. Contains	grey metalli	ic mineral th	at looks lik
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: 10%CB, 80%QZ	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)
51065	UTM 6404270	Ν	UTM 572989	Е	Strike Length Exp:	Metallics: 10%AS, 2%PY	1470	0.6	1.51 %	5
T-Bill	Elevation 1800	m	Sample Width: 10) cm	True Width:	Secondaries: mGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Quartz-carbonate-	sulphide vein	<1	<2	12	<2
Sampled By: HJA 06-Jul-01			Showing F. White q e weathering out?)		onate with fine-grained arse	nopyrite and massive medium-graine	ed pyrite along fra	ctures and i	in granular c	lots. Looks

				Roc	k Sample	Descriptions				
	Project	Name	Bill		Project:	RFM01-11 <u>NTS:</u> 9	4E/12,13			
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: mCB, 95%QZ	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	Cu (ppm)
51066	UTM 6404941	Ν	UTM 573078	E	Strike Length Exp:	Metallics: 1%AS, 1%PY	115	2	5900	29
T-Bill	Elevation 1925	m	Sample Width:	8 cm	True Width:	Secondaries: mGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Quartz-carbo		<1	48	22	18
Sampled By: HJA 06-Jul-01	8x10x12 cm cobble	e. White t	o olive grey to red	d mottled qu	artz with patches fine-g	rained pyrite or arsenopyrite.				
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration:	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm)</u>
51067	UTM 6404994	Ν	UTM 573283	E	Strike Length Exp:	Metallics: 1%AS, <1%PY	2290	0.6	9990	10
T-Bill	Elevation 1920	m	Sample Width:	6 cm	True Width:	Secondaries: wGE, trSR	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Quartz-sulph		<1	8	4	10
Sampled By: HJA 06-Jul-01	Six nearby cobbles	s. Milky q	uartz with arseno	pyrite filling	fractures, along septa a	and in clusters.				
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: sSI	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
51068	UTM 6408139	Ν	UTM 572762	Е	Strike Length Exp:	Metallics:	55	0.8	112	110
Park	Elevation 1720	m	Sample Width:	1 m	True Width:	Secondaries: sGE, mHE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Siliceous tuff		13	2	4	14
Sampled By: HJA 10-Jul-01	White. 2% boxwor	k (after p	yrite?) just below	ferricrete tr	ench.					
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration:	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm)</u>
51069	UTM 6408149	Ν	UTM 572770	E	Strike Length Exp:	Metallics:	295	1	48	160
Park	Elevation 1720	m	Sample Width:	4 cm	True Width:	Secondaries: sGE	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Quartz boxw	ork vein	2	4	<2	4
Sampled By: HJA 10-Jul-01	Frothy - 30% boxw	vork (after	sulphides?). Mee	dium grey m	ottled quartz or silicifica	tion.				
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: vsSI	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	Cu (ppm)
51070	UTM 6408157	Ν	UTM 572782	E	Strike Length Exp:	Metallics:	2960	1.4	162	108
Park	Elevation 1735	m	Sample Width:	3 cm	True Width:	Secondaries: sGE, wHE, trSR	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Vuggy silica		14	4	<2	2
Sampled By: HJA 10-Jul-01	Several pebbles. F	rothy - 40)% voids. Rare qu	uartz druse.						
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: sSI	Au (ppb)	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
51071	UTM 6408176	Ν	UTM 572793	Е	Strike Length Exp:	Metallics: trCP, <1%PY	170	0.2	22	10
Park	Elevation 1740	m	Sample Width:	7 cm	True Width:	Secondaries: sGE, trSR	<u>Mo (ppm)</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Siliceous tuff	?	6	2	<2	<2
Sampled By: HJA 10-Jul-01	Several cobbles fro	om upper	most trench. Grey	y-blue silica/	quartz with sparse void	s, medium-grained disseminated pyrite and	l rare chalcopyrite	Э.		

				Roc	k Sample	Descriptions	5			
	Project I	Name:	Bill		Project:	RFM01-11	<u>NTS:</u> 94E/12,13			
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration:	<u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	Cu (ppm)
51072	UTM 6402261	Ν	UTM 574476	E	Strike Length Exp:	Metallics: 1%PY	5	<.2	14	19
T-Bill	Elevation 1570	m	Sample Width:	20 cm	True Width:	Secondaries: sGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
					Host : Muscovite-py	rite-quartz schist	1	2	80	16
Sampled By: HJA 12-Jul-01	15x20x50 cm angu	ular boulde	er. 2 mm pyrite cu	ıbes. Milky v	hite quartz segregation	S.				
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration:	<u>Au (ppb)</u>	<u>Ag (ppm)</u>	<u>As (ppm)</u>	<u>Cu (ppm)</u>
51073	UTM 6402414	Ν	UTM 574007	Е	Strike Length Exp:	Metallics: trPY	<5	<.2	6	5
T-Bill	Elevation 1645	m	Sample Width:	10 cm	True Width:	Secondaries: sGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm</u>
					Host : Muscovite-qu	artz schist	6	<2	36	<2
Sampled By: HJA 12-Jul-01	Rusty muscovite-q	luartz sch	ist with light grey	foliation - pa	rallel and cross-cutting	quartz veins. Rare grains of	pyrite on fractures in veins.			
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: mMS, sS	Au (ppb)	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
560701	UTM 6404092	Ν	UTM 573197	Е	Strike Length Exp:	Metallics: 3%AS, 8	3%PY 315	0.6	5750	4
T-Bill	Elevation 1720	m	Sample Width:		True Width:	Secondaries: SR	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Pale green sil	icified and sericite altered ch	lorite schist <1	26	28	62
Sampled By: MEB 06-Jul-01	30x40 cm angular t Arsenopyrite as fine					s fine- to medium-grained, in	disseminated wispy lenses an	d pervasive	disseminatio	ons.
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: mCB, wM	IS, sQZ <u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
560702	UTM 6404206	Ν	UTM 573002	Е	Strike Length Exp:	Metallics: 1%CP	5	0.4	18	201
T-Bill	Elevation 1790	m	Sample Width:		True Width:	Secondaries: wGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host : Chlorite schis	t	<1	<2	<2	40
Sampled By: MEB 06-Jul-01	Showing F. 15 m u Minor blebs chalco			cm angular	alus boulder with quart	z vein cutting chlorite schist.	Minor sericite selvedges, chlo	rite inclusion	is and minor	carbonate
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Grab	Alteration: wCB, mM	1S, sSI <u>Au (ppb)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Cu (ppm)</u>
560703	UTM	Ν	UTM	Е	Strike Length Exp:	Metallics: trPY	5	<.2	18	17
T-Bill	Elevation 1790	m	Sample Width:	7 m	True Width:	Secondaries: wGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
	Folia	ition 048	°/32° SE		Host : Silicified chlor	rite schist	<1	2	4	58
Sampled By: MEB 06-Jul-01	7 m exposed then a grab across the factors		Strong pervasive s	silicification	vith minor sericite and c	arbonate alteration in chlorite	e schist. Minor pyrite as 0.5-1r	nm cubes. S	Sample is a r	andom
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: sSI	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)
560704	UTM 6408109	Ν	UTM 572867	Е	Strike Length Exp: 4 n	n Metallics: 1%PY	25	<.2	8	77
Park	Elevation 1710	m	Sample Width:		True Width:	Secondaries: sGE	<u>Mo (ppm</u>	<u>Pb (ppm)</u>	<u>Sb (ppm)</u>	<u>Zn (ppm)</u>
i an					Host : Silicified cher	ty tuff	15	2	<2	38
Sampled By: MEB 10-Jul-01	3 m north of fault c vuggy drusy surfac			•		ilicified cherty tuff. Pervasive	e silicification with disseminate	d fine-grain	ed oxidized	pyrite. Sor

				Roc	k Sample	Descriptions					
	Project	Name	: Bill		Project:	RFM01-11 <u>I</u>	NTS:	94E/12,13			
Sample Number:	Grid North:	Ν	Grid East:	E	Type: Float	Alteration: sQZ, sSI		<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	<u>Cu (ppm)</u>
560705	UTM 6408159	Ν	UTM 572765	E	Strike Length Exp:	Metallics: 3%PY		230	<.2	10	36
Park	Elevation 1710	m	Sample Width:		True Width:	Secondaries: mGE, wJ	A, ?SR	<u>Mo (ppm)</u> 93	<u>Pb (ppm</u>)) <u>Sb (ppm)</u>	
Sampled By: MEB 10-Jul-01	20x20 cm talus col	bble of in	tensely silicified ch	erty tuff. G	Host : Cherty tuff lassy granular texture wi	th pyrite as disseminated 0.5-2	2 mm cry			z vugs.	6
Sample Number:	Grid North:	N	Grid East:	E	Type: Float	Alteration: sSI		<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm)</u>	Cu (ppm)
560706	UTM 6400925	Ν	UTM 570920	Е	Strike Length Exp:	Metallics: 1%CP, trPY	/	170	<.2	12	1040
Gos	Elevation 1730	m	Sample Width:		True Width:	Secondaries: sGE		<u>Mo (ppm)</u>	Pb (ppm) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
					Host: Granite?			3	2	2	<2
Sampled By: MEB 12-Jul-01	Intensely silicified i m east of gully.	rock/quar	tz vein. Glassy qua	artz with gra	anular textures and local	drusy vugs. Minor chalcopyrite	e as bleb	s. Very similar in ap	pearance	to Park silici	ification. 10
Sample Number:	Grid North:	N	Grid East:	E	Type: Grab	Alteration: sCY		<u>Au (ppb)</u>	Ag (ppm) <u>As (ppm</u>)	<u>Cu (ppm)</u>
560707	UTM 6400025	Ν	UTM 571095	Е	Strike Length Exp: 5 m	Metallics:		10	<.2	<2	5
Gos	Elevation 1760	m	Sample Width: 2	2.5 m	True Width: 2.5 m	Secondaries: mGE, mH	E, mJA	<u>Mo (ppm)</u>	<u>Pb (ppm</u>) <u>Sb (ppm)</u>	<u>Zn (ppm)</u>
000	F	ault 002	°/65° E		Host: Granite?			1	<2	<2	<2
Sampled By: MEB 12-Jul-01	3 m wide clay-alter	red fault z	zone in possible gra	anite host.	Sample grab over width o	of zone. Rocks very gossanous	s above.	In gully 20 m above	e contour.		

APPENDIX D.1

NOTES ON 1983-84 DRILL CORE

(From memo by Mark Baknes, P.Geo. dated July 17, 2001)

NOTES ON 1983-84 DRILL CORE

Holes 84-1, -2, -3, -4 and -5 were unloaded from the damaged core racks and laid out for re-logging. All of the other drill core was in racks that have collapsed. This core, although partly destroyed, could still be accessed by dismantling the rebar core racks. Porcupines have eaten parts of several boxes and other animals have disturbed sections of the core. Marker blocks and assay tags are generally still decipherable.

I concentrated on holes 3, 4 and 5 and only briefly looked at hole number 2. I was less interested in holes 1 and 2 since they were drilled in an E-W direction, intersecting the veins at a poor angle. The following is a summary of some of the significant observations from each of the holes. These observations include identification of errors made in the original logging and sampling that have a significant impact on the interpretation of the results.

<u>Hole 84-3</u>

- This hole was drilled to the north in the heart of the geochemical anomaly.
- 32.0-81.5 m, rough average of 200-300 ppb Au, >1000 ppm As: Fairly typical chlorite schist, but very weak CB alteration as AK along foliation. The Au and As are hosted in <5% 1-5 mm QZ-CB-AS-PY stringers generally oriented at a high angle to foliation. Although this grade is not of economic importance it demonstrates the widespread nature of the gold even in weakly altered rocks.
- 105.5-107.7 m, 5.5 g/tonne Au, 2350 As: 2.2 m section but I estimate that the grades are coming from a 30 cm interval. Milky-blue, banded and brecciated fabrics resemble intercept of vein in 84-5 at 130.7 m.

<u>Hole 84-4</u>

- 10.97-12.97 m, 4.1 g/tonne Au, >10,000 As; 12.97-14.00 m, 2.4 g/tonne Au, 1880 As: Oxidized core, mod-strong QZ-CB-MS alteration, visible mineralization in sparse 15 mm QZ-AK stringers (<5% veins) at a high angle to foliation and locally along kink bands (axial planar). The intercept is important for at least a couple of reasons: 1) it is probably larger since the mineralization begins right at the casing; 2) in prospecting around the collar, we noted an abundance of carbonate altered talus, but saw no mineralization. It is clear that these minute quartz stringers have essentially no preservation potential on the surface and yet when intersected in the subsurface can produce significant intercepts. It is easy to imagine walking over these sorts of grades on surface without recognizing them.</p>
- Results as reported in the drill log (Kowalchuk, 1984):

Sample	From (m)	To (m)	Au (ppb)	As (ppm)
553	169.5	172.5	180	1480
554	172.5	173.0		
555	173.0	174.5	10.6g/t	10,000

There is a problem here. Clearly the mineralization is strongest in the 172.5-173.0 m interval, including visible Au. The mineralization occurs over approximately 20 to 30 cm as coarse AS with visible gold in stringers and stringer breccias of QZ-DO. Stringers are irregular, but cut across foliation at a low angle to the core axis. This intercept is the most westerly of Paterson's (1985) "Z" trend of mineralization. The 3rd interval looks almost barren and it appears that the core splitter sampled from 172.5-174.5 m in sample 555. These two intervals were guartered, confirming this inference:

Sample	From (m)	To (m)	Au (ppb)	As (ppm)
134163	172.5	173.0	25.6g/t	2.83%
134164	173.0	174.5	5	84

<u>Hole 84-5</u>

- 48.5-50.0 m, 24.7 g/tonne Au, >10,000 As: unfortunately this core has been destroyed. The interval is
 described as narrow QZ-AK-AS stringers within a strongly QZ-CB altered section. In some respects
 this sounds more similar to the intercept at the top of hole 84-4 rather than the 10.6 g/tonne interval
 near the end of Hole 84-4 that it has been correlated with as part of Paterson's "Z" Zone.
- 116.5-130.8 m, approx. avg. 50-100 ppb Au, 500 ppm As: stockwork zone above vein at 130.8
- 130.8-132.9 m, 4.05 g/tonne Au, >5000 ppm As: Well developed blue grey quartz vein and quartz breccia with banded vein margins and AS selvages. The blocks indicate a mis-latch in the vein interval so it may even be larger. This is the most impressive vein in terms of size and consistency that I saw in the holes examined. The vein resembles the vein at 105.5 m in 84-3 and resembles the talus float observed on surface near the collar of 84-5. The section below to 135.5 resembles the hanging-wall and is also anomalous in Au and As.
- 218.2-219.3 m, 3.2 g/tonne Au, >5000 As: This interval is mislabelled in the logs and should read 218.2-218.3 as proven by the mineralization in core and the original sample interval marks in the boxes.
- 233.7-234.7 m, 3.5 g/tonne Au, >5000 As: Strong mineralization and alteration over 40 cm within this 1 m interval. Stringers at a high angle to foliation and at a low angle to the core axis.

299.0-314.9 m (end of hole), approx. avg. 200 ppb Au, 1000 ppm As: The hole was ended in a strong zone of CB alteration with minor stockwork and up to 400 ppb Au. Clearly other holes pass through zones like this into nothing, but it is a bit of a worry to have ended a hole in a section as well mineralised and altered.

APPENDIX D.2

DIAMOND DRILL ANALYSES

The 2001 sampling has been incorporated with data from Forbes and Drown (1984) and Kowalchuk (1984) and adjusted for the two sampling/clerical errors noted in Appendix D.1 (hole 84-4: 172.5-174.5m and hole 84-5: 218.2-218.3m).

Hole Sample From To Length Au Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Ti Ti U V W Zn (m) (ppb) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) Number (m) (m) 83-4500 4.80 6.00 1.20 34 200 83-1 4501 6.00 8.00 2.00 34 100 83-1 4502 8.00 10.00 2.00 34 100 83-1 4503 10.00 12.00 2.00 34 100 83-1 4504 12.00 14.00 2.00 -100 34 83-1 4505 14.00 16.00 2.00 34 200 83-1 4506 16.00 18.00 2.00 34 200 83-1 4507 18.00 20.00 2.00 34 900 83-1 4508 20.00 22.00 2.00 34 300 83-1 4509 22.00 24.00 2.00 103 -100 83-1 4510 24.00 26.00 2.00 103 100 4511 26.00 28.00 2.00 100 83-1 34 83-1 4512 28.00 30.00 2.00 34 -100 83-1 4513 30.00 32.00 2 00 34 -100 4514 32.00 34.00 2.00 83-1 34 300 83-1 4515 34.00 35.00 1.00 34 200 4516 35.00 36.00 1.00 83-1 103 2200 83-1 4517 36.00 38.00 2.00 137 300 4518 38.00 40.00 83-1 2 00 137 100 83-1 4519 40.00 42.00 2.00 100 137 4520 42.00 44.00 -100 83-1 2.00 137 83-1 4521 44.00 46.00 2.00 137 -100 4522 46.00 48.00 2.00 83-1 103 -100 83-1 4523 48.00 50.00 2.00 103 -100 83-1 4524 50.00 52.00 2.00 137 -100 83-1 4525 52.00 54.00 137 -100 2.00 83-1 4526 54.00 56.00 2.00 137 -100 83-1 4527 56.00 58.00 2.00 137 -100 83-1 4528 58.00 60.00 2.00 137 -100 83-1 4529 60.00 62.00 2.00 754 600 83-1 4530 62.00 64.00 2.00 411 1400 83-1 4531 64.00 66.00 2.00 309 -100 83-1 4532 66.00 68.00 2.00 34 -100 83-1 4533 68.00 70.00 2.00 206 -100 83-1 4534 70.00 72.00 2.00 103 -100 83-1 4535 72.00 74.00 2.00 103 -100 83-1 4536 74.00 76.00 2.00 206 400 83-1 4537 76.00 78.00 2.00 4251 2500 83-1 4538 78.00 80.00 2.00 309 -100 83-1 4539 80.00 82.00 2.00 103 -100 83-1 4540 82.00 84.00 2.00 206 -100 4541 84.00 86.00 103 -100 83-1 2.00 83-1 4542 86.00 88.00 2.00 103 100 4543 88.00 90.00 2.00 -100 83-1 206 83-1 4544 90.00 92.00 2.00 411 -100 83-1 4545 92.00 94.00 2.00 411 -100 83-1 4546 94.00 96.00 2.00 411 -100 4547 96.00 98.00 2.00 83-1 309 -100 83-1 4548 98.00 100.00 2.00 103 700 83-1 4549 100.00 102.00 2.00 309 1800 83-1 4550 102.00 104.00 2.00 12514 300 83-1 4551 104.00 106.00 2.00 583 600 4552 106.00 108.00 2.00 83-1 206 -100 83-1 4553 108.00 110.00 2.00 309 -100 83-1 4554 110.00 112.00 2.00 994 100 4555 112.00 114.00 2.00 83-1 103 100 83-1 4556 114.00 116.00 2.00 206 -100 83-1 4557 116.00 118.00 2.00 411 100 83-1 4558 118.00 120.00 2.00 206 100 83-1 4559 120.00 122.00 2.00 103 -100 83-1 4560 122.00 124.00 2.00 206 -100 83-1 4561 124.00 126.00 2.00 206 -100 83-1 4562 126.00 128.00 2.00 309 -100 83-1 4563 128.00 130.00 2.00 206 100 4564 130.00 132.00 2.00 83-1 137 100 83-1 4565 132.00 134.00 2.00 2914 -100 4566 134.00 136.00 411 -100 83-1 2.00 83-1 4567 136.00 138.00 2.00 309 -100 4568 138 00 140 00 2 00 -100 83-1 103 4569 140.00 142.00 2.00 83-1 309 -100 83-1 4570 142.00 144.00 2.00 103 -100 83-1 4571 144.00 146.00 2.00 103 -100

Core Analyses

4572 146.00 148.00 2.00

4573 148.00 150.00 2.00

83-1

83-1

137

34

-100

-100

Hole Sample From To Length Au Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La Mg Mn No Na Ni P Pb S Sb Sc Sr Ti TI U V W Zn 83-1 4574 150.00 152.00 2.00 343 -100</td

83-1		2.00	206	-100	
83-1 83-1		2.00	206 206	-100 -100	
83-1		2.00			
83-1			137	-100	
83-1			411	-100	
83-1					
83-1 83-1					
83-1			137		
83-1			514	600	
83-1			206	4600	
83-1					
83-1 83-1					
83-1			206	-100	
83-1			206	-100	
83-1					
83-1 83-1					
83-1					
83-1			206	-100	
83-1	4598 198.00 200.00		514	-100	
83-1					
83-1 83-1					
83-1		Har Book Har Book			
83-2	4603 4.88 9.14				
83-2					
83-2 83-2					
83-2					
83-2					
83-2					
83-2 83-2					
83-2					
83-2					
83-2 83-2					
83-2					
83-2					
83-2					
83-2					
83-2 83-2					
83-2					
83-2					
83-2					
83-2 83-2					
83-2					
83-2					
83-2					
83-2 83-2					
83-2	4632 72.00 74.00	2.00	137	1500	
83-2					
83-2 83-2					
83-2 83-2					
83-2			240	-100	
83-2					
83-2					
83-2 83-2					
83-2	4642 92.00 94.00			7400	
83-2					
83-2					
83-2 83-2					
83-2	4647 102.00 104.00				Page 2 of 13
					. 490 - 41 - 6

Hole	Sample From	To Ler	ngth A			Ca Cd Co Cr Cu			Mg Mn Mo	Na Ni	P Pb	S Sb Sc Sr	Ti TI U V W Zn
	Number (m)		(m) (ppb 2.00 34		m) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm)	(%) (ppm) (ppm)	(%) (ppm)	(%) (ppm) (ppm)	(%) (ppm)	(%) (ppm)	(%) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm) (ppm)
83-2 83-2	4648 104.00 4649 106.00		2.00 343 4.00 65										
83-2	4650 110.00	112.00 2	2.00 116	6 1700									
83-2	4651 112.00		2.00 51										
83-2 83-2	4652 114.00 4653 116.00		2.00 549 4.00 137										
83-2	4654 120.00	122.00 2	2.00 514	3 12400									
83-2	4655 122.00		2.00 17										
83-2 83-2	4656 124.00 4657 126.00		2.00 51- 2.00 17										
83-2	4658 128.00		2.00 17										
83-2	4659 130.00		2.00 54										
83-2 83-2	4660 132.00 4661 134.00		2.00 44 2.00 260										
83-2	4662 136.00		2.00 200										
83-2	4663 138.00		2.00 10										
83-2 83-2	4664 140.00 4665 142.00		2.00 274 2.00 309										
83-2	4666 144.00		2.00 34										
83-2	4667 146.00		2.00 27										
83-2 83-2	4668 148.00 4669 150.00		2.00 17 ⁻ 2.00 13 ⁻										
83-2	4670 152.00		2.00 20										
83-2	4671 154.00	156.00 2	2.00 24	0 500									
83-2 83-2	4672 156.00 4673 158.00		2.00 13 2.00 10										
83-2	4674 160.00		2.00 20										
83-2	4675 162.00	164.00 2	2.00 274	4 -100									
83-2 83-2	4676 164.00 4677 166.00		2.00 37 2.00 126										
83-2	4678 168.00		2.00 120										
83-2	4679 170.00	172.00 2	2.00 103	3 -100									
83-2 83-2	4680 172.00 4681 174.00		2.00 -34 2.00 103										
83-2	4682 176.00		2.00 10.										
83-2	4683 178.00	180.00 2	2.00 17	1 -100									
83-2	4684 180.00		2.00 514										
83-2 83-2	4685 182.00 4686 186.00		4.00 20 4.00 102										
83-2	4687 190.00	192.00 2	2.00 54	9 -100									
83-2	4688 192.00		4.00 51										
83-2 83-3	4689 196.00 4690 2.44		2.73 17 3.56 51										
83-3	4691 6.00		2.00 30										
83-3			2.00 41										
83-3 83-3	4693 10.00 4694 12.00		2.00 41 ⁻ 2.00 58										
83-3	4695 14.00	16.00 2	2.00 120	0 200									
83-3			2.00 30										
83-3 83-3	4697 18.00 4698 20.00		2.00 30 2.00 41										
83-3	4699 22.00	24.00 2	2.00 549	9 -100									
83-3			2.00 30										
83-3 83-3	4701 26.00 4702 28.00		2.00 30 2.00 6										
83-3	4703 30.00	32.00 2	2.00 6	9 1600									
83-3	4704 32.00		2.00 6										
83-3 83-3	4705 34.00 4706 36.00		2.00 6 2.00 6										
83-3	4707 38.00	40.00 2	2.00 13	7 300									
83-3	4708 40.00		2.00 13										
83-3 83-3	4709 42.00 4710 44.00		2.00 20 2.00 20										
83-3	4711 46.00	48.00 2	2.00 20	6 700									
83-3			2.00 20										
83-3 83-3			2.00 30 2.00 78										
83-3	4715 54.00	56.00 2	2.00 103	3 300									
83-3			2.00 6										
83-3 83-3	4717 58.00 4718 60.00		2.00 270 2.00 58										
83-3	4719 62.00	64.00 2	2.00 20	6 600									
83-3	4720 64.00		2.00 109										
83-3	4721 66.00	08.00 2	2.00 51	4 2200			Page 3 of 13						

Hole Sample From To Length Au Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Ti Tl U V W Zn (%) (ppm) (ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppb) (ppm) 514 Number (m) (m) (m) 83-3 4722 68.00 70.00 2.00 83-3 4723 70.00 72.00 2.00 206 300 83-3 4724 72.00 74.00 2.00 309 600 83-3 4725 74.00 76.00 2.00 514 100 83-3 4726 76.00 78.00 2 00 103 -100 83-3 4727 78.00 80.00 2.00 103 -100 83-3 4728 80.00 82.00 2.00 206 -100 83-3 4729 82.00 84.00 2.00 514 -100 83-3 4730 84.00 86.00 2.00 103 -100 83-3 4731 86.00 88.00 2.00 103 -100 83-3 4732 88.00 90.00 2.00 103 -100 4733 90.00 92.00 -100 83-3 2.00 206 83-3 4734 92.00 94.00 2.00 103 -100 83-3 4735 94.00 96.00 2.00 137 -100 83-3 4736 96.00 98.00 2.00 137 -100 83-3 4737 98.00 100.00 2.00 137 -100 4738 100.00 102.00 83-3 2.00 206 -100 83-3 4739 102.00 104.00 2 00 206 -100 83-3 4740 104.00 106.00 2.00 274 -100 83-3 4741 106.00 108.00 2.00 206 -100 4742 108.00 110.00 -100 83-3 2.00 309 83-3 4743 110.00 112.00 2.00 411 -100 83-3 4744 112 00 114 00 2 00 240 -100 83-3 4745 114.00 116.00 2.00 1714 1200 83-3 4746 118.00 120.00 -100 2.00 206 83-3 4747 122.00 124.00 2.00 206 100 83-3 4748 126.00 128.00 2.00 789 -100 83-3 4749 130.00 132.00 2 00 137 100 83-3 4750 134.00 136.00 2.00 137 -100 4751 138.00 140.00 83-3 2.00 137 100 83-3 4752 142.00 144.00 2.00 137 100 83-3 4753 146.00 148.00 2.00 103 -100 83-3 4754 150.00 152.00 2.00 103 -100 83-3 4755 154.00 156.00 2.00 137 -100 83-3 4756 158 00 160 00 2.00 137 -100 83-3 4757 162.00 164.00 2.00 137 -100 83-3 4758 166.00 168.00 2.00 137 -100 83-3 4759 170.00 172.00 2.00 137 -100 83-3 4760 174.00 176.00 2.00 137 -100 83-3 4761 178.00 180.00 2.00 137 -100 83-3 4762 182.00 184.00 2.00 309 -100 83-3 4763 186.00 188.00 103 -100 2.00 83-3 4764 188.00 189.68 1.68 103 -100 83-4 4765 3.96 10.00 6.04 69 -100 83-4 4766 10.00 12.00 2.00 103 -100 83-4 4767 12.00 14.00 2.00 137 -100 83-4 4768 14.00 16.00 2.00 206 -100 83-4 4769 16:00 18:00 2 00 1234 -100 83-4 4770 18.00 20.00 2.00 480 1600 83-4 4771 20.00 22.00 600 2.00 103 83-4 4772 22.00 24.00 2.00 103 -100 4773 24.00 26.00 83-4 2.00 103 -100 83-4 4774 26.00 28.00 2.00 103 -100 83-4 4775 28.00 30.00 2.00 240 -100 83-4 4776 30.00 32.00 343 400 2.00 4777 32.00 34.00 83-4 2.00 309 -100 83-4 4778 34.00 36.00 2.00 411 -100 83-4 4779 36.00 38.00 2.00 103 -100 83-4 4780 38.00 40.00 2.00 206 -100 83-4 4781 40.00 42.00 69 -100 2 00 83-4 4782 42.00 44.00 103 -100 2.00 83-4 4783 44.00 46.00 2.00 69 -100 83-4 4784 46.00 48.00 2.00 69 -100 83-4 4785 48.00 50.00 2.00 103 -100 83-4 4786 50.00 52.00 2.00 206 400 83-4 4787 52.00 54.00 2.00 103 200 83-4 4788 54.00 56.00 -100 2.00 69 83-4 4789 56.00 58.00 2.00 69 -100 83-4 4790 58.00 60.00 2.00 103 -100 83-4 4791 60.00 62.00 2.00 103 -100 83-4 4792 62.00 64.00 2.00 583 -100 83-4 4793 64.00 66.00 2.00 34 -100 83-4 4794 66.00 68.00 206 -100 2.00

Page 4 of 13

83-4

4795 68.00 70.00 2.00

103

-100

	Sample From	To Le		Au Ag			Ca Cd Co Cr Cu			Mg Mn Mo		P Pb	S Sb Sc Sr	Ti TI U V W	Zn
83-4	Number (m) 4796 70.00	(m) 72.00		opb) (ppm) 206	(%) (ppm) (ppm) (ppm) (pp -100	m) (ppm)	(%) (ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppm)	(%) (ppm)	(%) (ppm) (ppm)	(%) (ppm)	(%) (ppm)	(%) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm)	(ppm)
83-4	4797 72.00	74.00	2.00	137	-100										
83-4	4798 74.00			137	-100										
83-4 83-4	4799 76.00 4800 78.00			103 103	-100 -100										
83-4	4801 80.00			103	-100										
83-4	4802 82.00			103	-100										
83-4 83-4	4803 84.00 4804 86.00			137 206	-100 -100										
83-4	4805 88.00			103	-100										
83-4	4806 90.00			103	-100										
83-4 83-4	4807 92.00 4808 94.00			137 137	-100 -100										
83-4	4809 96.00			137	-100										
83-4	4810 98.00			137	-100										
83-4 83-4	4811 100.00 4812 102.00			206 206	-100 -100										
83-4	4813 104.00			206	-100										
83-4	4814 106.00			103	300										
83-4 83-4	4815 108.00 4816 110.00			103 103	-100 -100										
83-4	4817 112.00			103	-100										
83-4	4818 114.00			103	-100										
83-4 83-4	4819 116.00 4820 118.00			206 309	900 5900										
83-4	4820 118.00			309	2800										
83-4	4822 122.00	124.00		309	3200										
83-4 83-4	4823 124.00 4824 126.00			309 309	-100 -100										
83-4	4825 128.00			309	1100										
83-4	4826 130.00	132.00	2.00	309	-100										
83-4 83-4	4827 132.00 4828 134.00			309 103	-100 -100										
83-4 83-4	4829 136.00			103	-100										
83-4	4830 138.00			103	-100										
83-4	4831 140.00			103	-100										
83-4 83-4	4832 142.00 4833 144.00			103 103	-100 -100										
83-4	4834 146.00	148.00	2.00	137	-100										
83-4	4835 148.00			137	-100										
83-4 83-4	4836 150.00 4837 152.00			137 137	-100 -100										
83-4	4838 154.00	156.00	2.00	137	-100										
83-4	4839 156.00			206	-100 500										_
83-4 83-4	4840 158.00 4841 160.00			206 137	-100										
83-4	4842 162.00	164.00	2.00	137	-100										
83-4 83-4	4843 164.00 4844 166.00			137 137	-100 -100										
83-5	4845 3.35			137	100										
83-5	4846 6.00	8.00	2.00	137	-100										
83-5	4847 8.00			137	2000										
83-5 83-5	4848 10.00 4849 12.00			206 137	1100 800										
83-5	4850 14.00	16.00	2.00	206	6000										
83-5 83-5	4851 16.00 4852 18.00			137	6100 -100										
83-5 83-5	4852 18.00 4853 20.00			137 137	-100										
83-5	4854 22.00	24.00	2.00	137	-100										
83-5	4855 24.00			137	-100										
83-5 83-5	4856 26.00 4857 28.00			137 103	-100 -100										
83-5	4858 30.00	32.00	2.00	103	-100										
83-5	4859 32.00			103	-100										
83-5 83-5	4860 34.00 4861 36.00			103 137	-100 -100										
83-5	4862 38.00	40.00	2.00	103	-100										
83-5	4863 40.00			103	-100										
83-5 83-5	4864 42.00 4865 44.00			309 309	-100 -100	_									
83-5	4866 46.00	48.00	2.00	206	-100										
83-5	4867 48.00			309	-100										
83-5 83-5	4868 50.00 4869 52.00			309 206	-100 -100			Page 5 of 13							
								age 5 01 15							

Hole Sample From To Length Au Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Ti Tl U V W Zn (m) (m) (m) (ppb) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) Number 4870 54.00 56.00 2.00 -100 83-5 206 83-5 4871 56.00 58.00 2.00 137 -100 83-5 4872 58.00 60.00 2.00 891 2900 83-5 4873 60.00 62.00 2.00 309 5200 83-5 4874 62.00 64.00 2 00 137 100 83-5 4875 64.00 66.00 2.00 137 -100 83-5 4876 66.00 68.00 2.00 137 2800 83-5 4877 68.00 70.00 2.00 103 2800 83-5 4878 70.00 72.00 2.00 103 2400 83-5 4879 72.00 74.00 2 00 103 500 83-5 4880 74.00 76.00 2.00 103 100 83-5 4881 76.00 78.00 2.00 137 200 83-5 4882 78.00 80.00 2.00 103 200 83-5 4883 80.00 82.00 2.00 103 -100 83-5 4884 82.00 84.00 2.00 103 -100 83-5 4885 84.00 86.00 2.00 103 -100 4886 86.00 88.00 83-5 2.00 103 1800 83-5 4887 88.00 90.00 2 00 137 1000 83-5 4888 90.00 92.00 2 00 137 -100 83-5 4889 92.00 94.00 2.00 137 3200 83-5 4890 94.00 96.00 2.00 103 700 83-5 4891 96.00 98.00 2.00 2000 103 83-5 4892 98 00 100 00 2 00 103 400 83-5 4893 100.00 102.00 2.00 137 700 83-5 4894 102.00 104.00 2.00 137 2700 83-5 4895 104.00 106.00 2.00 -100 206 83-5 4896 106.00 108.00 2.00 103 -100 83-5 4897 108.00 110.00 2.00 137 -100 83-5 4898 110.00 112.17 2.17 137 -100 83-6 4899 3.96 6.40 2.44 -34 100 83-6 4900 6.40 8.23 1.83 -34 400 83-6 4901 8.23 9.81 1.58 -34 500 83-6 4902 9.81 13.41 3.60 -34 300 83-6 4903 13.41 15.24 1.83 -34 100 83-6 4904 15 24 17 07 1.83 -34 200 83-6 4905 17.07 18.90 1.83 -34 100 83-6 4906 18.90 20.12 1.22 -34 -100 83-6 4907 20.12 22.00 1.88 -34 -100 83-6 4908 22.00 24.00 2.00 -34 -100 -34 83-6 4909 24 00 26 00 2 00 -100 83-6 4910 26.00 28.00 2.00 -34 -100 4911 28.00 83-6 30.00 2.00 -34 -100 83-6 4912 30.00 32.00 2.00 -34 -100 4913 32.00 34.00 2.00 83-6 -34 700 83-6 4914 34.00 36.00 2.00 -34 100 4915 36.00 38.00 2.00 83-6 -34 100 83-6 4916 38.00 40.00 -34 -100 2.00 4917 40.00 42.00 4700 83-6 2 00 -34 83-6 4918 42.00 44.00 2.00 -34 -100 83-6 4919 44.00 46.00 2.00 -34 -100 83-6 4920 46.00 48.00 2.00 206 -100 83-6 4921 48.00 50.00 2.00 206 -100 83-6 4922 50.00 52.00 2.00 69 1600 83-6 4923 52.00 54.00 2.00 309 2800 83-6 4924 54.00 56.00 2.00 137 2600 83-6 4925 56.00 58.00 2.00 2900 137 83-6 4926 58.00 60.00 2.00 137 1600 83-6 4927 60.00 62.00 2.00 13817 5500 83-6 4928 62.00 64.00 2.00 -34 400 83-6 4929 64.00 66.00 2.00 -34 -100 83-6 4930 66.00 68.00 2.00 -34 300 83-6 4931 68.00 70.00 2.00 -34 100 83-6 4932 70.00 72.00 2.00 -34 200 83-6 4933 72.00 74.00 2.00 -34 200 83-6 4934 74.00 76.00 2 00 -34 3400 83-6 4935 76.00 80.00 4.00 -34 3700 6600 83-6 4936 80.00 82.00 2.00 -34 83-6 4937 82.00 84.00 2.00 -34 1400 4938 84.00 86.00 2.00 1500 83-6 -34 83-6 4939 86.00 88.00 2.00 206 900 83-6 4940 88.00 90.00 2.00 -34 2500

Page 6 of 13

83-6

83-6

83-6

4941 90.00 92.00

4942 92.00 94.00

4943 94 00 96 00

2.00

2 00

2.00

-34

-34

-34

2800

4800

900

Hole	Sample From	To L	ength	Au Ag	a Al As B Ba	ı Be Bi	Ca Cd Co Cr (Cu Fe Ga Hq	K La	Mg Mn Mo	Na Ni	P Pb	S Sb Sc Sr	Ti TI U	V W Zn
	Number (m)	(m)	(m)	(ppb) (ppm) (%) (ppm) (ppm) (ppm)		(%) (ppm) (ppm) (ppm) (ppi				(%) (ppm)	(%) (ppm)	(%) (ppm) (ppm) (ppm)		opm) (ppm) (ppm)
83-6 83-6	4944 96.00 4945 98.00	98.00	2.00 2.00	480 103	1100 1700										
83-6	4946 100.00		2.00	103	800										
83-6	4947 102.00		2.00	103	3500										
83-6 83-6	4948 104.00 4949 106.00		2.00 2.00	480 103	8100 3700										
83-6				103	3500										
83-6	4951 110.00		2.00	206	6000										
83-6 83-6	4952 112.00 4953 114.00		2.00 2.00	137 137	1600 3100										
83-6	4954 116.00	118.00	2.00	13029	1600										
83-6	4955 118.00		2.00	8914	3000										
83-6 83-6	4956 120.00 4957 122.00		2.00 2.00	994 103	-100 -100										
83-6	4958 124.00	126.00	2.00	1817	1100										
83-6	4959 126.00		2.00	12000	7400										
83-6 83-6	4960 128.00 4961 130.00		2.00 2.00	137 -34	11200 -100										
83-6	4962 132.00	134.00	2.00	-34	100										
83-6 83-6	4963 134.00 4964 136.00		2.00 2.00	-34 -34	900 3000										
83-6	4965 138.00		2.00	-34	-100										
83-6	4966 140.00		2.00	-34	-100										
83-6 83-6	4967 142.00 4968 144.00		2.00 2.00	-34 -34	100 -100										
83-6	4969 146.00		2.00	-34	-100										
83-6	4970 148.00		2.00	-34	-100										
83-6 83-6	4971 150.00 4972 152.00		2.00 2.00	-34 -34	-100 -100										
83-6	4973 154.00		2.00	-34	-100										
83-6	4974 156.00		2.00	-34	-100										
83-6 83-6	4975 158.00 4976 160.00		2.00 2.00	-34 -34	-100 100										
83-6	4977 162.00	164.00	2.00	-34	-100										
83-6 83-6	4978 164.00 4979 166.00		2.00 2.00	-34 -34	-100 -100										
83-6	4980 168.00		2.00	-34	-100										
83-6	4981 170.00	172.00	2.00	-34	-100										
83-6 83-6	4982 172.00 4983 174.00		2.00 2.00	-34 -34	1700 100										
83-6	4984 176.00		2.00	-34	100										
83-6	4985 178.00		2.00	-34	-100										
83-6 83-6	4986 180.00 4987 182.00		2.00 2.00	-34 377	-100 5000										
83-6	4988 184.00	186.00	2.00	240	4800										
83-6	4989 186.00		2.00	206	600										
83-6 83-6	4990 188.00 4991 190.00		2.00 2.00	69 69	-100 -100										
83-6	4992 192.00	194.00	2.00	69	300										
83-6 83-6	4993 194.00 4994 196.00		2.00 2.00	69 103	100 900										
83-6	4995 198.00 2		2.00	103	-100										
83-6	4996 200.00 2	202.00	2.00	686	1400										
83-6 83-6	4997 202.00 2 4998 204.00 2		2.00 2.00	69 69	-100 -100										
83-6	4999 206.00 2	208.00	2.00	69	200										
83-6 83-6	7601 208.00 2 7602 210.00 2		2.00 2.00	2503 103	-100 100										
83-6 83-6	7602 210.00 2		2.00	309	300										
83-6	7604 214.00 2	216.00	2.00	103	-100										
83-6 83-6	7605 216.00 2 7606 218.00 2		2.00 2.00	480 103	-100 -100										
83-6	7607 220.00 2		2.00	103	-100										
83-6	7608 222.00 2		2.00	1303	400										
83-6 83-6	7609 224.00 2 7610 226.00 2		2.00 2.00	103 69	-100 -100										
83-6	7611 228.00 2	230.00	2.00	69	-100										
83-6	7612 230.00 2		2.00	69 69	-100 -100										
83-6 83-6	7613 232.00 2 7614 234.00 2		2.00 2.00	69 69	-100 -100										
83-6	7615 236.00 2	238.00	2.00	69	-100										
83-6 83-6	7616 238.00 2 7617 240.00 2		2.00 2.00	206 69	-100 -100										
83-6	7617 240.00 2		2.00	69	-100			Page 7 of 13							
								. age / 0/ 10							

Hole Sample From To Length Au Ag. Al. As. B. Ba Be Bi Ca Cd. Co. Cr. Cu Fe Ga Hg. K. La Mg. Mn. Mo. Na Ni. P. Pb. S. Sb. Sc. Sr. Ti Ti. U. V. W. Zn (m) (ppb) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (ppm Number (m) (m) 83-6 7619 244.00 246.00 2.00 -100 69 83-6 7620 246.00 248.00 2.00 69 -100 83-6 7621 248.00 250.00 2.00 -34 -100 83-6 7622 250.00 252.00 2.00 -34 -100 7623 252.00 254.00 2.00 -100 83-6 -34 83-6 7624 254.00 256.00 2.00 -34 -100 83-6 7625 256.00 258.00 2.00 -34 -100 83-6 7626 258.00 260.00 2.00 -34 -100 83-6 7627 260.00 262.00 2.00 -34 -100 83-6 7628 262 00 264 00 2 00 -34 -100 83-6 7629 264.00 266.00 2.00 -34 -100 7630 266.00 268.00 -100 83-6 2.00 -34 83-6 7631 268.00 270.00 2.00 -34 -100 83-6 7632 270 00 272 00 2 00 -34 3900 7633 272.00 274.00 2.00 83-6 -34 200 83-6 7634 274.00 276.00 2.00 -34 100 7635 276.00 278.00 83-6 2.00 -34 -100 7636 278.00 280.00 2.00 83-6 -34 700 83-6 7637 280.00 282.00 2.00 -34 1600 7638 282.00 284.00 2.00 83-6 -34 700 7639 284.00 286.00 -100 83-6 2.00 -34 83-6 7640 286.00 288.00 2.00 -34 100 83-6 7641 288.00 290.00 2.00 -34 -100 83-6 7642 290.00 292.00 2.00 -34 -100 83-6 7643 292.00 294.00 -34 -100 2.00 83-6 7644 294.00 296.88 2.88 -34 -100 58 84-1 7000 30.60 32.00 1 40 10 -0.1 14 8 7 84-1 7026 58.80 59.30 0.50 3600 -0.1 10000 22 8 14 84-1 7001 59.30 62.30 150 30 66 3.00 -5 0.1 1 84-1 7002 62.30 64.30 210 66 2.00 5 -0.1 8 8 78 84-1 7003 64.30 66.30 2.00 10 0.2 90 16 64 84-1 7004 66.30 68.30 2.00 -5 0.1 12 34 84-1 7005 68.30 70.30 2.00 10 0.1 40 18 60 8 84-1 7006 70.30 72.30 2.00 360 20 48 25 0.3 3 1 84-1 7024 72:30 74:30 2:00 15 -01 20 44 64 52 1 84-1 7025 74.30 76.40 2.10 180 -0.1 2050 42 1 84-1 7007 76.40 78.40 2.00 1600 0.1 3500 8 22 84-1 7008 78.40 80.40 2.00 40 -0.1 380 10 4 36 84-1 7009 80 40 82 40 2 00 78 12 40 -5 01 1 1 48 84-1 7010 8240 8400 1.60 50 0.1 120 22 1 72 84-1 7011 94.20 96.20 2.00 45 0.1 96 58 5 7012 96.20 98.20 330 120 40 58 84-1 2.00 0.1 2 84-1 7013 98.20 100.20 2.00 -5 0.1 2 26 56 46 84-1 7014 100.20 102.20 2.00 -5 0.6 2 24 1 1 84-1 7015 102.20 104.20 2.00 30 0.1 115 30 28 1 84-1 7016 104.20 106.20 2.00 20 0.2 64 34 38 32 84-1 7017 106.20 108.20 2.00 150 -0.1 50 70 4 84-1 7018 108.20 110.20 2.00 42 20 -0.1 30 44 2 84-1 7019 110.20 112.20 2.00 -5 -0.1 20 36 1 1 58 84-1 7020 112.20 114.20 25 -0.1 20 56 62 2.00 1 84-1 7021 114.20 116.20 2.00 40 0.2 30 66 46 3 40 84-1 7022 116.20 118.20 2.00 15 -0.1 10 46 40 84-1 7023 118.20 121.00 2.80 10 -0.1 10 17 1 84-1 469 160.90 162.80 140 -0.1 2600 46 24 1.90 6 84-1 470 162.80 164.80 2.00 30 -0.1 170 11 44 1 1 18 84-1 471 164.80 166.40 1.60 110 -0.1 2100 9 28 84-1 472 166.40 168.40 2.00 430 -0.1 2700 21 84-1 473 168.40 170.60 2.20 870 0.4 2550 22 3 34 84-2 431 43.80 45.80 2.00 90 0.2 2800 26 20 5 1 84-2 432 45.80 47.80 2 00 80 -0.1 110 17 26 1 38 38 433 47.80 49.80 22 84-2 2.00 5 -0.1 80 84-2 434 49.80 51.80 2.00 100 0.4 1400 70 84-2 435 51.80 53.80 2.00 1000 0.4 10000 10 22 84-2 436 53.80 55.80 2.00 580 -0.1 8400 11 26 1 30 38 84-2 437 55 80 57 80 2 00 150 0.2 2500 52 1 84-2 438 57.80 59.80 2.00 60 -0.1 600 40 439 59.80 61.80 690 0.4 3400 78 34 84-2 2.00 84-2 440 61.80 63.80 2.00 30 -0.1 140 52 42 1 58 84-2 441 79 20 80 20 1 00 10 04 90 40 3 1 84-2 442 80.20 82.20 2.00 40 0.2 1200 20 7 1 80 84-2 443 82.20 84.20 2.00 50 -0.1 50 8 2 14 84-2 444 84.20 86.20 2.00 50 0.2 140 11 13

8

9 Page 8 of 13

24

28

1

1

1

84-2

84-2

445 86.20 88.20 2.00

446 88 20 90 20 2 00

210 0.2

1400 0.2

50

210

	Sample From Number (m)	To L (m)	ength.	Au (ppb) (B Ba Be Bi Ca Cd Co Cr Cu	Fe Ga Hg K La Mg Mn Mo Na Ni P P (%) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm)	b S S	Sb Sc Sr Ti TI U V W Zn n) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm)
84-2	447 90.20	92.20	2.00	(ppb) (40	0.2	(%) (ppm) (ppm) 70	(ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) 6		2 (%) (ppi	1 (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 20
84-2 84-2	448 94.20	96.20	2.00 1.60	20 30	-0.1 0.2	80 60	7 23		1	1 34 1 36
84-2	449 98.60 450 106.90		1.60	35	0.2	60	12		3	1 17
84-2	451 108.50	110.50	2.00	20	-0.1	10	46		3	1 34
84-2 84-2	452 123.50 453 125.50		2.00 2.00	140 130	-0.1 0.2	60 450	6 16		1 1	1 62
84-2	454 130.00		2.00	840	0.2	2700	22		1	1 60 1 38
84-2	455 132.00		1.20	110		1800	16		2	1 42 1 26
84-2 84-2	456 133.20 457 135.20		2.00 2.00	880 900	-0.1 -0.1	3800 410	11 8		1	1 26 1 38
84-2	458 137.20	139.20	2.00	3700	0.2	6400	29		1	1 38
84-2 84-2	459 145.90 460 164.90		2.20 1.30	2600 110	-0.1 -0.1	2700 60	15 16		1 3	1 66 1 42
84-2	461 166.20	168.20	2.00	60	-0.1	490	20		1	1 48
84-2	462 168.20 474 172.70		2.00		-0.1 0.4	290 40	11		1	1 62
84-2 84-2	474 172.70 475 179.20		6.50 2.00	70 1350	-0.4	40 6300	34 47		2 7	1 58 1 26
84-2	476 181.20	183.20	2.00	20	0.2	60	6		1	1 50
84-2 84-2	477 183.20 478 185.20		2.00 1.50	16500 2100	0.2 -0.1	500 810	14 30		4 2	1 24 1 54
84-2	479 192.40	194.40	2.00	150	-0.1	450	7		1	1 36
84-2	480 194.40		2.00	120	-0.1	150	15		1	1 32
84-2 84-2	481 196.40 482 198.40		2.00 2.00	20 30	-0.1 -0.1	30 20	4 3		5	1 44 1 50
84-2	483 200.40	202.40	2.00	15	-0.1	10	8		1	1 50
84-2 84-2	484 202.40 485 204.40	204.40	2.00 2.00	20 50	-0.1 -0.1	10 30	11 9		1 2	1 60 1 50
84-2	486 206.40		2.00		-0.1	2100	30		1	1 52
84-2	487 208.40		2.00	1400	0.4	6100	48 36		2 3	1 68 1 72
84-2 84-2	488 210.40 489 212.40		2.00 2.00	720 15600	0.2 0.2	3800 850	38		3 1	1 66
84-2	490 214.40	216.40	2.00	30	-0.1	50	23		2	1 90
84-2 84-3	491 216.40 701 27.00	218.20 29.00	1.80 2.00	90 70	-0.1 0.2	470 920	33 24		1 1	1 78 1 64
84-3	702 29.00	32.00	3.00	900	0.2	1510	15		1	1 32
84-3 84-3	703 32.00	34.00 36.00	2.00	320	0.8	1830 760	22 60		8 8	1 42
84-3	704 34.00 705 36.00	36.00	2.00 2.00	50 630	1.8 1.6	6400	28	29	-	1 20 1 92
84-3	706 38.00	40.50	2.50	40	0.4	300	28		4	1 34
84-3 84-3	492 40.50 493 42.50	42.50 45.00	2.00 2.50	50 500	0.4 0.4	500 3200	36 28	13	5	1 30 1 38
84-3	707 45.00	47.00	2.00	520	0.2	2900	28		3	1 24
84-3 84-3	708 47.00 709 49.00	49.00 51.10	2.00	360 15	-0.1 -0.1	2300 20	28 56		2	1 32
84-3 84-3	494 51.10	53.10	2.10 2.00	430	-0.1	3600	58 46		4	1 50 1 32
84-3	495 53.10	55.10	2.00	610	0.6	5000	42	2		1 46
84-3 84-3	710 55.10 711 57.10	57.10 60.50	2.00 3.40	5 -5	0.2 -0.1	160 10	15 30	1	1 1	1 56 1 38
84-3	496 60.50	63.30	2.80	180	0.4	1100	30		-	1 40
84-3 84-3	497 63.30 498 65.30	65.30 67.30	2.00 2.00	3150 2300	0.4 0.4	4200 2600	28 38		3 2	1 32 1 38
84-3 84-3	498 65.30	69.30	2.00	460	0.4	1340	38 34		2	1 30
84-3	500 69.30	71.30	2.00	2800	0.4	3200	38		2	1 36
84-3 84-3	523 71.30 524 73.30	73.30 75.30	2.00 2.00	520 350	0.6 0.4	1400 1600	40 38		6 1	1 40 1 42
84-3	525 75.30	77.30	2.00	50	0.4	740	42		1	1 50
84-3 84-3	526 77.30 527 79.30	79.30 81.50	2.00 2.20	430 70	1.2 0.8	2000 1180	42 34	1	1	1 44 1 60
84-3	528 81.50	83.50	2.20	-5	0.8	180	28		3	1 86
84-3	529 83.50	85.50	2.00	70	2.2	2200	40	4		1 62
84-3 84-3	530 85.50 531 87.50	87.50 89.50	2.00 2.00	70 120	1.6 -0.1	1100 790	36 15		2 1	1 70 1 58
84-3	712 89.50	91.50	2.00	50	1.4	980	38		1	1 42
84-3 84-3	713 91.50 714 93.50	93.50 95.50	2.00 2.00	25 15	-0.1 0.4	340 110	42 68		1	1 48 1 60
84-3 84-3	714 93.50	95.50 97.50	2.00		-0.1	10	15		1	1 32
84-3	716 97.50	99.50	2.00	5	-0.1	30	20		1	1 24
84-3 84-3	717 99.50 718 101.50	101.50 103.50	2.00 2.00	40 50	0.6 -0.1	40 20	54 24		1	1 22 1 22
84-3	719 103.50	105.50	2.00	15	-0.1	10	34		1	1 42
84-3 84-3	720 105.50 721 107.50		2.00 2.00	5500 240	0.6 1	2350 1500	44 48		1 2	1 36 1 48
84-3	722 109.50				0.4	110		Page 9 of 13	4	1 54

Hole Sample From To Length Au Ag. Al. As. B. Ba Be Bi Ca Cd. Co. Cr. Cu Fe Ga Hg. K. La Mg. Mn. Mo Na Ni. P. Pb. S. Sb. Sc. Sr. Ti Tl. U. V. W. (%) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) (ppm) 50 (ppb) (ppm) (%) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) Number (m) (m) (m) (%) (ppm) (ppm) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) 84. 723 111.50 113.50 2.00 5400 2000 0.6 46 84-3 724 113.50 115.50 2.00 20 0.6 510 76 68 84-3 725 115.50 117.90 2.40 -5 0.2 20 74 54 2 84-3 726 117.90 118.90 1.00 -5 0.4 10 40 24 84-3 501 127.50 130.00 2.50 200 -0.1 590 26 54 84-3 727 145.00 146.00 1.00 1600 0.2 10000 24 1 26 84-3 728 146.00 148.00 2.00 70 -0.1 70 12 32 729 148.00 150.00 4000 32 18 84-3 2.00 250 1.4 34 730 150.00 152.00 220 -0.1 2000 18 38 84-3 2.00 84-3 731 152.00 154.00 2.00 50 -01 130 26 38 84-3 732 172.00 173.00 1.00 400 -0.1 2600 22 24 36 44 84-3 733 177.70 178.70 1.00 50 -0.1 20 36 5 84-3 734 178.70 179.30 0.60 320 -0.1 580 7 58 1 84-3 735 179 30 182 20 2 90 30 -0.1 10 46 2 38 84-3 532 187.00 189.00 2.00 25 -0.1 710 19 50 84-3 533 189.00 191.00 2.00 125 -0.1 80 26 42 30 84-3 534 191.00 192.40 1.40 390 -0.1 510 20 84-4 535 914 1097 1.83 640 -0.1 3000 50 66 2 30 84-4 536 10.97 12.97 2 00 4100 0.2 10000 24 84-4 537 12.97 14.00 1.03 2400 -0.1 1880 46 26 38 84-4 538 14.00 17.00 -0.1 840 50 3.00 210 2 1 84-4 539 17.00 20.00 3.00 50 -0.1 30 24 38 3 46 84-4 540 20.00 22.00 2 00 15 -01 30 30 -3 84-4 541 22.00 24.00 2.00 450 -0.1 60 17 40 84-4 542 24.00 26.00 2.00 85 -0.1 260 36 24 42 84-4 543 26.00 28.00 2.00 180 -0.1 30 18 1 84-4 544 28.00 30.00 2.00 25 -0.1 20 24 46 84-4 545 30.00 32.00 2 00 -5 -0.1 10 18 30 84-4 546 39.00 41.00 24 28 2.00 -5 -0.1 760 84-4 547 46.70 48.70 2.00 -5 -0.1 19 270 22 84-4 134153 59.60 59.70 0.10 485 -0.2 3.17 256 -10 30 -0.5 6 9.49 -0.5 18 200 37 2.99 -10 1 0.02 -10 3.07 1060 -1 0.01 38 0.032 2 0.08 6 14 256 0.01 -10 -10 91 -10 36 84-4 548 67.00 69.00 2.00 150 -0.1 2500 36 40 84-4 549 69.00 71.00 -0.1 22 36 2.00 70 460 84-4 134154 71.00 73.30 2.30 45 -0.2 2.76 80 -10 250 -0.5 -2 1.41 -0.5 9 21 28 3.75 -10 -1 0.13 -10 2.6 465 -1 0.02 3 0.078 2 0.32 62 -0.01 -10 -10 80 2 7 17 -10 84-4 134155 73.30 75.30 2 00 -5 -0.2 3.22 112 -10 70 -0.5 6 0.94 -0.5 9 53 32 3.89 -10 1 0.07 -10 2.82 485 -1 0.02 9 0 085 2 0.32 4 10 31 -0.01 -10 -10 47 -10 70 84-4 134156 75.30 77.30 2.00 120 -0.2 3.26 534 -10 80 -0.5 8 0.98 -0.5 10 58 22 3.93 -10 -1 0.1 -10 2.88 510 -1 0.03 9 0.075 10 0.19 -2 11 32 -0.01 -10 -10 41 -10 84 84-4 134157 77.30 79.30 2.00 10 -0.2 2.82 64 -10 160 -0.5 -2 1.21 0.5 6 56 27 3.32 -10 -1 0.12 -10 2.47 405 -1 0.01 4 0.071 8 0.21 6 6 53 -0.01 -10 -10 17 -10 138 84-4 134158 79.30 81.30 2.00 -0.2 3.18 12 -10 130 -0.5 -2 1.8 0.5 7 41 22 3.83 -10 1 0.14 -10 2.68 510 1 0.01 3 0.101 2 0.17 4 63 -0.01 -10 -10 14 -10 102 -5 6 84-4 134159 87.00 90.00 3 00 10 0.2 1.51 76 -10 60 -0.5 -2 9.85 -0.5 11 28 60 3.19 -10 -1 0.16 -10 0.96 780 -1 0.01 9 0.031 8 1 4 9 -2 3 143 0.01 -10 -10 17 -10 66 84-4 134160 90.00 91.00 1.00 40 0.2 0.63 198 -10 30 -0.5 -2 13.35 -0.5 5 22 34 1.91 -10 -1 0.12 -10 0.57 755 -1 0.01 9 0.015 12 1.36 -2 2 220 -0.01 -10 -10 6 -10 114 84-4 550 109.30 110.00 -0.1 1540 26 40 0.70 1400 22 84-4 551 121.00 123.00 2.00 25 -0.1 230 58 84-4 552 123.00 125.00 2.00 50 -0.1 220 32 24 9 84-4 134161 129 70 130 80 -10 50 -0.5 -2 5 34 0 5 27 141 81 5 34 -10 1 0 07 -10 3 52 1255 -1 0 03 19 189 -0.01 -10 -10 137 1 10 145 -0.2 4.05 544 47 0 095 -2 0.12 2 -10 58 84-4 134162 151.90 155.30 3.40 -5 0.4 0.48 340 -10 50 -0.5 -2 6.16 -0.5 14 23 73 4.13 -10 -1 0.18 -10 1.01 665 -1 0.03 10 0.042 12 2.06 -2 6 100 -0.01 -10 -10 16 50 -10 84-4 553 169.50 172.50 3.00 180 0.4 1480 46 36 80 84-4 134163 172.50 173.00 0.50 25600 6.2 3.15 28300 50 -0.5 -2 4.07 2 25 98 12 5.91 -10 -1 0.12 -10 4.59 1870 -1 0.01 47 0.092 178 1.81 189 -0.01 -10 -10 144 -10 74 16 85 -10 -2 3.38 2 -10 -1 0.1 -10 4.4 1285 21 169 0.03 -10 -10 136 84-4 134164 173 00 174 50 1.50 5 02 418 84 -10 70 -0.5 27 149 18 4 94 -1 0.03 50 0 091 6 0 1 6 14 -10 162 84-4 134165 179 30 179 60 0.30 750 -0.2 1.71 4870 -10 60 -0.5 6 1.71 -0.5 8 126 4 2.23 -10 -1 0.09 -10 2.43 875 -1 0.02 16 0.037 4 0.38 2 5 74 -0.01 -10 -10 38 -10 32 84-4 556 193.00 195.20 2.20 160 34 85 -0.1 24 14 557 195.20 197.00 84-4 1.80 40 -0.1 280 40 16 7 84-5 740 1970 2070 1 00 10 01 20 22 2 18 84-5 741 20.70 21.70 1.00 180 0.2 680 52 4 32 36 84-5 742 21.70 22.70 1.00 -5 0.1 20 56 3 743 28.70 30.70 2.00 84-5 -5 -0.1 30 36 52 3 84-5 744 30 70 32 70 2 00 -5 -0.1 20 38 4 40 84-5 745 32.70 34.70 2.00 -5 0.1 60 52 36 2 84-5 746 34.70 36.70 2.00 -5 -0.1 50 38 3 26 747 36.70 38.70 -5 -0.1 30 40 26 84-5 2.00 84-5 748 44.50 46.50 2.00 40 -5 -0.1 10 42 84-5 749 46.50 48.50 2.00 170 -0.1 490 58 1 32 26 84-5 750 48.50 50.00 1.50 24700 0.1 2600 60 62 84-5 751 50.00 51.50 1.50 750 0.6 2400 68 4 84-5 752 51.50 53.00 1.50 270 0.8 1200 76 10 56 84-5 753 53.00 54.50 1.50 20 0.2 190 58 5 34 84-5 754 54.50 55.50 1.00 20 56 56 60 -0.1 4 755 55.50 57.50 340 0.1 240 62 62 84-5 2.00 3 84-5 756 57.50 59.50 2.00 60 0.2 300 84 64 4 1 52 84-5 757 59 50 61 50 2 00 40 -0.1 10 38 2 84-5 758 61.50 63.50 2.00 40 -0.1 10 50 66 1 1 759 63.50 72 84-5 65.50 2.00 10 -0.1 10 90 1 1

48

66

70 Page 10 of 13

760 68 60 70 60

761 78.40 79.90

762 79.90 81.40

2 00

1.50

1.50

30 01

430 0.2

35 0.1 260

30

2300

84-5

84-5

84-5

Zn

46

54

46

8

6

5

1

1

1

	Sample From		_ength		Ag	Al As	B Ba Be Bi		Cu		Mg Mn Mo				τι τι ι		Zn
84-5	Number (m) 763 81.40	(m) 82.90	(m) 1.50	(ppb) (420	(ppm) 0.3	<u>(%) (ppm) (p</u> 420	pm) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm)	(ppm) 66	(%) (ppm) (ppm) (%) (ppm)	(%) (ppm) (ppm)	(%) (ppm) (%) (ppm) (%) (ppm) 5 1	(ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm) ((ppm) 50
84-5	764 82.90	84.40	1.50	20	-0.1	240			52				4 1				40
84-5 84-5	765 84.40 766 86.40	86.40 88.40	2.00 2.00		-0.1 -0.1	10 20			40 36				1 1 1 1				70 52
84-5	767 88.40	90.40	2.00	170	-0.1	10			48			:	3 1				60
84-5 84-5	768 93.00 769 95.00	95.00 96.00	2.00 1.00		-0.1 1.2	80 1300			50 38			1:	1 1 2 1				52 52
84-5	770 96.00	98.00	2.00	10	0.1	60			58				6 1				30
84-5 84-5	775 102.60 774 103.90		1.30 1.00	30 -5	0.1 0.1	30 30			56 60				2 1 5 1				38 40
84-5	771 113.50		1.00	10	-0.1	20			36				2 1				46
84-5 84-5	772 114.50 773 115.50		1.00 1.00	340 -5	0.1 0.9	2900 4700			26 58			6: 9:					44 48
84-5	776 116.50		2.00	5	0.1	640			42				6 1				40
84-5 84-5	777 118.50 778 120.50		2.00 2.00	40 40	-0.1 -0.1	280 420			38 42				2 1 7 1				40 48
84-5	779 122.50		2.00	5	0.2	50			40			1					50
84-5 84-5	780 124.50 781 126.50		2.00 2.00	220 170	4.3 0.9	4500 2000			98 56				83 111				42 40
84-5	782 128.50		1.40	20	0.7	110			38				1 1				40
84-5 84-5	783 129.90 784 130.80		0.90 2.10	30 4050	2.6 7.9	140 5000			82 760				2 1 5 140				36 48
84-5	785 132.90		1.10	25	0.3	180			128								50
84-5 84-5	786 134.00 787 135.50		1.50 2.00	760 20	2.8 0.3	5000 580			270 54			1.	4 1 4 1				22 46
84-5	788 137.50		2.00	10	-0.1	570			46			:	2 1 1 1				34
84-5 84-5	789 139.50 790 141.50		2.00 2.00	10 10	0.1 -0.1	110 10			42 28				1 1 1 1				38 44
84-5	791 143.50		2.00		0.1	20			58				1 1				40
84-5 84-5	792 145.50 793 147.50		2.00 2.00	100 -5	-0.1	1700 20			30 32				1 1 4 1				30 40
84-5 84-5	794 149.50		2.50 1.20	-5 110	0.1 0.3	130 1700			38 24				1 1 3 1				40
84-5 84-5	795 152.00 796 153.20		1.20	10	-0.1	60			24 14				י 1 1				46 44
84-5	797 167.20		1.00	200	-0.1	650			44				1 1				54
84-5 84-5	798 178.90 799 179.90		1.00 2.00	240 1500	-0.1 0.2	3700 5000			62 22				3 1				64 32
84-5	800 181.90	184.70	2.80	710	1.3	5000			40			21					64
84-5 84-5	0750F 184.70 0751F 218.20		1.00 1.10	50 3200	0.2 1.5	90 5000			72 194				1 1 4 1				64 46
84-5	0752F 231.70		0.60		0.6	5000			52				4 1				42
84-5 84-5	0753F 233.70 134166 244.40		1.00 0.20	3500 9280	0.4 1.8	5000 0.29 9900	-10 40 -0.5 -2	3.66 -0.5 10 65	82 7	3.25 -10 -1 0.13 -10	1.58 1430 -1		7 1 4 1.51 2	3 132 -	0.01 -10 -10	5 50	38 10
84-5 84-5	0754F 246.50 0755F 268.50		1.00 2.00	310 1100	0.1 0.2	4800 2900			22 32				2 1 7 1				40 60
84-5	0756F 270.50		2.00	50	-0.1	780			20				1 1				38
84-5 84-5	0757F 274.90 0758F 276.40		1.50 1.10	140 130	-0.1 0.1	940 1450			20 24				1 1 5 1				42 24
84-5	0759F 279.00	281.00	2.00	50	-0.1	820			6				2 1				20
84-5 84-5	0760F 287.30 0761F 291.00		1.00 2.00	140 760	0.3	1380 180			10				3 1 2 1				24 22
84-5	0762F 293.00	295.00	2.00	170	-0.1	10			4				1 1				40
84-5 84-5	0763F 295.00 0764F 297.00		2.00 2.00	30 20	0.1 0.1	60 20			6 6			:	31 111				54 56
84-5	0765F 299.00	301.00	2.00	180	0.2	670			10				5 1				8
84-5 84-5	0766F 301.00 0767F 303.00		2.00 2.00	170 210	0.3 0.1	3800 2600			30 52				31 31				10 34
84-5	0768F 305.00	307.00	2.00	300	0.1	1500			38			:	3 1				44
84-5 84-5	0769F 307.00 0770F 309.00		2.00 2.00	30 30	0.1 -0.1	120 1000			52 42				3 1 2 1				46 44
84-5	0771F 311.00	313.00	2.00	410	0.2	1850			36			:	3 1				68
84-5 84-6	0772F 313.00 0773F 22.20	314.90 23.60	1.90 1.40	100 690	0.2 -0.1	4500 3700			78 26				2 1 2 1				32 44
84-6	0774F 23.60	26.20	2.60	120	-0.1	1650			16				1 1				76
84-6 84-6	0776F 28.20 0777F 30.20	30.20 32.20	2.00 2.00	360 180	-0.1 -0.1	420 170			14 12				1 1 1 1				52 52
84-6	0778F 32.20	34.20	2.00	10	-0.1	390			16				1 1				40
84-6 84-6	0779F 34.20 0786F 73.50	35.80 75.50	1.60 2.00	25 25	-0.1 -0.1	140 50			12 34				1 1 1 1				52 42
84-6	0787F 75.50	77.50	2.00	50	-0.1	50			52				1 1				52
84-6 84-6	0788F 77.50 0789F 79.50	79.50 81.80	2.00 2.30	30 20	-0.1 -0.1	20 10			22 22				1 1 1 1				62 66
84-6	0790F 87.20	87.50	0.30	1750	-0.1	50			34				1 1				48 58
84-6	0791F 90.20	92.00	1.80	60	-0.1	120			10	Page 11 of 13			ı 1				50

Hole Sample From To Length Au Ag Al As B I	Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La	Mg Mn Mo Na Ni P Pb S Sb Sc Sr Ti Ti U V W Zn
Number (m) (m) (ppb) (ppm) (%) (ppm) (ppm) (ppm)	m) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm)	(%) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (ppm) (ppm) (%) (ppm) (ppm) (ppm) (ppm) (ppm)
84-6 0792F 94.30 94.70 0.40 90 -0.1 10 84-6 0793F 98.70 100.00 1.30 960 -0.1 3100	10 30	<u>1 1 28</u> 2 1 72
84-6 0794F 101.00 102.00 1.00 60 -0.1 40	12	2 1 76
84-6 0795F 108.00 108.50 0.50 4200 -0.1 4600 84-6 0796F 111.60 113.60 2.00 350 -0.1 1150	30 16	2 1 62 1 1 68
84-6 0797F 114.60 116.60 2.00 1300 -0.1 2300	22	1 1 60
84-6 0798F 116.60 118.60 2.00 530 -0.1 3000 84-6 0799F 118.60 120.70 2.10 460 0.2 5000	16 44	1 1 50 9 1 44
84-6 5600E 131.10 132.30 1.20 35 -0.1 530	32	1 1 60
84-6 5601E 133.50 135.50 2.00 30 0.1 360 84-6 5602E 135.50 137.50 2.00 40 -0.1 2300	26 28	4 1 86 1 1 72
84-6 5603E 137.50 139.60 2.10 40 0.2 2400	28	2 1 56
84-6 5604E 145.70 146.60 0.90 60 -0.1 2800 84-6 5605E 159.20 159.50 0.30 40 -0.1 880	30 24	2 1 48 1 1 92
84-6 5606E 170.50 172.50 2.00 30 -0.1 3200	16	1 1 58
84-6 5607E 182.90 184.70 1.80 20 0.2 100	16	2 1 54
84-6 5608E 197.10 198.60 1.50 40 -0.1 1250 84-7 5609E 20.50 22.50 2.00 25 -0.1 2300	44 16	14 1 12 4 1 38
84-7 5610E 22.50 24.50 2.00 30 -0.1 1400	14	3 1 34
84-7 5611E 24.50 26.50 2.00 40 -0.1 2100 84-7 5612E 26.50 28.50 2.00 25 -0.1 640	16 12	2 1 36 1 1 40
84-7 5616E 31.30 32.30 1.00 2100 28 4600	1550	4 24 54
84-7 5617E 32.30 35.20 2.90 270 1.1 3200 84-7 5618E 39.90 41.90 2.00 430 0.1 3900	102 16	9 1 30 2 1 32
84-7 5619E 65.80 66.10 0.30 21100 0.8 5000	98	15 2 38
84-7 5620E 72.80 73.10 0.30 1600 0.1 5000 84-7 5621E 91.10 93.10 2.00 1500 -0.1 5000	24	1 1 26
84-7 5621E 91.10 93.10 2.00 1500 -0.1 5000 84-7 5622E 93.10 95.10 2.00 180 0.1 2600	14	1 1 40 1 1 56
84-7 5623E 95.10 97.10 2.00 1600 0.4 3100	44	1 1 46
84-7 5624E 97.10 99.10 2.00 940 0.2 5000 84-7 5625E 102.30 104.30 2.00 5000 0.5 4600	52 52	1 1 42 1 1 36
84-7 5626E 111.80 113.30 1.50 15500 0.3 5000	18	1 1 40
84-7 5627E 113.30 114.90 1.60 520 0.2 4400 84-7 5628E 115.40 117.20 1.80 380 0.2 5000	12 22	1 1 42 1 1 48
84-7 5629E 121.50 123.00 1.50 160 0.2 2350	22	1 1 96
84-7 5630E 125.20 127.20 2.00 660 0.2 490	22	3 1 50
84-7 5631E 127.20 129.20 2.00 6500 0.2 4500 84-7 5632E 143.30 144.50 1.20 -5 -0.1 30	22 26	<u>26 1 45</u> 1 1 110
84-7 5633E 154.20 156.20 2.00 -5 0.1 40	40	1 1 82
84-7 5634E 156.20 158.20 2.00 10 0.5 40 84-7 5635E 158.20 160.30 2.10 20 0.4 30	118 42	1 1 68 1 1 44
84-8 5636E 9.70 11.90 2.20 230 1.2 2500	46	270 1 1900
84-8 5637E 11.90 13.90 2.00 640 0.1 2400 84-8 5638E 13.90 16.10 2.20 390 0.1 5000	22 28	14 1 108 10 1 66
84-8 5639E 16.10 18.20 2.10 1900 0.4 3900	68	8 1 70
84-8 5640E 29.00 31.90 2.90 530 0.1 3300	22	3 1 70
84-8 5641E 31.90 33.90 2.00 24800 0.1 3000 84-8 5642E 33.90 36.10 2.20 2350 0.1 2350	24 22	4 1 70 3 1 88
84-8 5643E 36.10 38.00 1.90 40 0.1 50	18	1 1 56
84-8 5647E 46.30 48.20 1.90 120 1.1 2750 84-8 5648E 48.20 50.60 2.40 4500 3 5000	26 36	7 1 58 142 2 1220
84-8 5649E 50.60 52.60 2.00 80 0.3 720	40	1 1 60
84-8 5650E 61.70 63.70 2.00 40 -0.1 170 84-8 5651E 63.70 65.70 2.00 2900 0.1 2050	14 16	1 1 118 1 1 96
84-8 5652E 65.70 67.80 2.10 80 -0.1 290	14	1 1 90
84-8 5653E 71.50 71.90 0.40 550 -0.1 370 84-8 5654E 72.50 72.80 0.30 40 0.1 500	22 20	1 1 52 1 1 54
84-8 5655E 84.10 85.00 0.90 360 0.2 4700	10	51 1 50
84-8 5656E 110.00 112.60 2.60 10 -0.1 40	12	2 1 66
84-8 5657E 163.30 163.80 0.50 40 -0.1 130 84-8 5658E 168.00 169.40 1.40 2200 -0.1 1600	10 6	2 1 52 1 1 72
84-8 5659E 179.30 180.00 0.70 10 -0.1 30	4	1 1 62
84-8 5660E 183.50 185.00 1.50 10 -0.1 30 84-8 5661E 185.00 186.90 1.90 -5 -0.1 20	4 6	1 1 58 1 1 60
84-9 5662E 18.90 20.90 2.00 -5 -0.1 220	30	1 1 66
84-9 5663E 20.90 22.90 2.00 5 -0.1 130 84-9 5664E 22.90 24.90 2.00 10 -0.1 140	20	1 1 32 1 1 30
84-9 5665E 24.90 26.90 2.00 10 -0.1 140 84-9 5665E 24.90 26.90 2.00 20 -0.1 290	26	1 1 30
84-9 5666E 26.90 28.90 2.00 -5 -0.1 80	20	9 1 26
84-9 5667E 28.90 30.90 2.00 20 -0.1 90 84-9 5668E 30.90 32.90 2.00 20 -0.1 60	26 28	1 1 36 1 1 52
84-9 5669E 32.90 34.90 2.00 5 -0.1 30	40	1 1 52
84-9 5670E 34.90 36.90 2.00 30 -0.1 170 84-9 5671E 36.90 38.90 2.00 250 -0.1 470	40 40 Page 12 of 13	1 1 56 1 1 38
	Faye 12 01 13	

Hole				Length		Ag	Al As	B Ba Be Bi	Ca Cd Co Cr Cu		K La	Mg Mn Mo	Na Ni	P Pb	S Sb Sc Sr	Ti TI U V W Zn
84-9	Number 5672E	(m) 38.90	(m) 40.90	(m) 2.00	(ppb) (20		<u>(%) (ppm) (p</u> 240	opm) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm) (44	(%) (ppm) (ppm)	(%) (ppm)	(%) (ppm) (ppm)	(%) (ppm)	(%) (ppm)	(%) (ppm) (ppm) (ppm)	(%) (ppm) (ppm) (ppm) (ppm) (ppm) 26
84-9	5685E		42.90	2.00		0.3	570		22					18	1	20
84-9		42.90		2.00	410		5000		26					8	1	24
84-9			46.90	2.00	640		5000		20					5	1	40
84-9			48.90	2.00	110		340		32					3	1	72
84-9	5689E	48.90	50.90	2.00	290	0.1	1700		152					4	1	34
84-9	5690E	50.90	52.90	2.00	80	0.2	760		30					11	1	72
84-9	5691E	52.90	54.90	2.00	30	-0.1	1100		18					12	1	82
84-9	5692E	54.90	56.90	2.00	20	0.1	510		44					12	1	84
84-9	5693E	79.60	81.60	2.00	20	0.1	580		76					5	1	48
84-9	5694E	81.60	83.60	2.00	-5	-0.1	40		122					2	1	40
84-9		83.60	85.60	2.00	450		4800		68					26	1	44
84-9		85.60		2.00		-0.1	40		120					1	1	28
84-9	5697E		89.60	2.00	840	1.7	4300		50					310	1	72
84-9	5698E		91.10	1.50			230		38					12	1	64
84-9		91.10		2.20	960	0.2	5000		44					21	1	96
84-9		93.30		2.60	120	0.5	2100		120					17	1	60
84-9	5451E			2.00		-0.1	80		12					7	1	78
84-9		98.80		2.00			5000		66					16	1	76
84-9		100.80		2.00	30		10		2					2	1	50
84-9		104.60		2.40		-0.1	10		50					1	1	42
84-9		108.20		0.30	10		10		126					1	1	38
84-9				2.00	210		2250		6					8	1	62
84-9		113.60		2.00	1900		5000		34					52	3	66
84-9		115.60		2.00	220		2000		E					12	1	70
84-9		117.60		2.00	160		1550		4					2	1	62
84-9	5460E 5461E	119.60		2.00	40		480 530		10					8	1	78 80
84-9		121.60		2.00	10				4					3	1	
84-9		123.60		1.90	10		130		4					1	1	80
84-9 84-9		125.50		1.50 2.00	20 170		80 110		4					1	1	46 74
84-9 84-9	5464E			2.00		-0.1	10		4					1	1	14
84-9	5465E			2.40	-	-0.1	10		C					13	1	40
84-9	5467E			2.00		-0.1	10							13	1	88
84-9		150.60		2.00		-0.1	100							2	1	94
84-9		152.60		2.00	2050	0.8	5000		40					37	1	54 46
84-9	5470E			2.00	2000	0.3	380		116					12	1	40 64
84-9		156.60		2.00	10		20		370					.3	1	46
84-9				1.20	15		10		148					2	1	42
0.0							10							-	•	12

APPENDIX E.1

CERTIFICATES OF ANALYSIS

SILT AND SOIL SAMPLES

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A0120658

(EIA) - EQUITY ENGINEERING LTD.

Project: BILL P.O. # : BFM01-11

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-JUL-2001.

	SA	MPLE	PREPARATION
	Method Code	NUMBER	DESCRIPTION
	201 202 229	86 38 86	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
*_NO7	E		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Ti, W. : EQUITY ENGINEERING LTD.

.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

A0120658

Comments: ATTN: STEWART HARRIS

METHOD CODE	NUMBER SAMPLES		METHOD		UPPEF LIMIT
Ju-JJ23	87	Au-AA23 : Au ppb: Fuse 30 grams	FA-AAS	5	10000
Ag-ICP41	88 .	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
Al-ICP41	88	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
Xa-ICP41	88	As ppm: 32 element, soil & rock	ICP-AES	2	10000
B-ICP41	88	8 ppm: 32 element, rock & soil	ICP-AES	10	10000
Ba-ICP41	88	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
Ba-ICP41 Bi-ICP41	88 88	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
Ca-ICP41	88 88	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
Cd-ICP41	88	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock	ICP-AES ICP-AES	0.01	15.00 500
Co-ICP41	88	Co ppm: 32 element, soil & rock	ICP-AES	0.5	10000
Cr-ICP41	88	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
Cu-ICP41	88	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
Fe-ICP41	88	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
Ga-ICP41	88	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
Hg-ICP41	88	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
K-ICP41	88	K %: 32 element, soil & rock	ICP-AES	0,01	10.00
La-ICP41	88	La ppm: 32 element, soil & rock	ICP-AES	10	10000
Mg-ICP41	86	Mg %: 32 slement, soil & rock	ICP-AES	0.01	15.00
Mn-ICP41	86	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
Mo-ICP41 Na-ICP41	86 86	No ppm: 32 element, soil & rock	ICP-AES	1	10000
Ni-ICP41	88	Na %: 32 slement, soil & rock	ICP-AES	0.01	10.00
P-ICP41	88	Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock	ICP- AES ICP- AES	1	10000
Pb-ICP41	88	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
S-ICP41	88	S %: 32 element, rock & soil	ICP-ALS	0,01	10.00
Sb-ICP41	88	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
SC-ICP41	88	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
Sr-ICP41	88	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
Ti-ICP41	88	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
T1-ICP41	88	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
U-ICP41	88	U ppm: 32 element, soil & rock	ICP-AES	10	10000
V-ICP41	68	V ppm: 32 element, soil & rock	ICP-AES	1	10000
W-ICP41	88	W ppm: 32 element, soil & rock	ICP- AES	10	10000
Zn-ICP41	88	Zn ppm: 32 element, soil & rock	ICP- AES	2	10000

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8 Page Nu. /r : 1-A Total Pages : 3 Certificate Date: 24-JUL-2001 Invoice No. : 10120658 P.O. Number : RFM01-11 Account : EIA

Project : BILL Comments: ATTN: STEWART HARRIS

		_										RTIFI			NAL	rsis	F	0120	658		
SAMPLE	PREP		λи ррђ Гλ+λλ	λg ppm	A1 %	λs ppm	B PPm	Ba jojom	Be ppn	Bi ppm	C∎ %	Cđ	Co ppm	Cr ppa	Cu ppm	Fo %	Ga ppm	Hg ppm	K %	La ppm	Mg %
1HASS-01	201 2	202	35	< 0.2	1.65	384	< 10	180	< 0.5	< 2	0.41	< 0.5	23	44	73	4.09	< 10	< 1	0.03	< 10	1.37
1 HASS-02	201 2	202	20	< 0.2	1.56	214	< 10	140	< 0.5	< 2	0.52	< 0.5	18	34	54	3.53	< 10	< 1	0.05	< 10	1.12
) 1HASS-03	201 2	202	160	< 0.2	1.58	178	< 10	130	< 0.5	< 2	0.50	< 0.5	16	27	71	3.67	< 10	< 1	0.07	< 10	1.11
)1HASS-04	201 2		< 5	< 0.2	2.14	- 4	< 10	370	0.5	< 2	0.58	0.5	10	27	68	3.27	< 10	< 1	0.26	10	1.62
)1HASS-05	201 2	102	< 5	< 0.2	2.17	16	< 10	270	< 0.5	< 2	0.58	< 0.5	18	50	70	3.98	< 10	< 1	0.14	< 10	1.80
1HAS8-06	201 2	02	< 5	< 0.2	1.62	82	< 10	180	< 0.5	< 2	0.86	< 0.5	13	31	69	3.20	< 10	< 1	0.06	< 10	0.82
)1 HASS-0 7	201 2	102	< 5	< 0.2	1.48	12	< 10	110	< 0.5	< 2	0.43	< 0.5	13	30	40	2.84	< 10	< 1	0.05	< 10	0.74
)1 HASL- 01		102	245	< 0.2	2.39	308	< 10	90	< 0.5	< 2	0.03	< 0.5	6	36	27	3.18	< 10	< ī	0.04	< 10	0.61
)1HASL-02		102	95	0.2	1.76	1140	< 10	320	0.5	< 2	0.37	< 0.5	16	26	80	4.88	< 10	< 1	0.04	10	0.67
1HASL-03	201 2	102	not/ss	0.2	2.10	630	< 10	280	0.5	< 2	0.73	< 0.5	11	30	64	4.49	< 10	< 1	0.06	10	0.78
1HASL-04		202	65	< 0.2	1.45	1230	< 10	180	0.5	< 2	0.53	< 0.5	10	23	91	4.69	< 10	< 1	0.04	< 10	0.58
01HASL-05		202	20	< 0.2	1.72	88	< 10	160	0.5	< 2	0.45	< 0.5	10	35	32	3.06	< 10	< 1	0.05	< 10	0.61
DIHASL-05D		102	10	< 0.2	1.75	74	< 10	150	0.5	< 2	0.43	< 0.5	10	35	29	2.96	< 10	< 1	0.05	< 10	0.61
1HASL-06		202	< 10	0.8	2.07	102	< 10	380	0.5	< 2	1.69	< 0.5	5	29	39	2.59	< 10	< 1	0.08	10	0.58
1HASL-07	201 2	202	10	< 0.2	2.18	88	< 10	100	0.5	< 2	0.12	< 0.5	13	31	49	4.19	< 10	< 1	0.08	< 10	0.74
DIHASL-08		202	10	< 0.2	1.89	140	< 10	210	0.5	< 2	0.44	< 0.5	12	21	71	4.04	< 10	< 1	0.09	10	0.81
01 HASL-09		202	20	< 0.2	1.38	104	< 10	110	0.5	< 2	0.61	< 0.5	12	16	89	4.30	< 10	< 1	0.12	10	0.66
DIHASL-10		202	25	< 0.2	2.11	144	< 10	160	0.5	< 2	0.47	< 0.5	12	24	62	4.13	< 10	< 1	0.09	10	1.01
D1HASL-11		202	50	< 0.2	1.95	336	< 10	140	0.5	< 2	0.49	< 0.5	16	27	99	4.72	< 10	< 1	0.12	10	1.10
D1HASL-12	201 2	202	55	< 0.2	2.41	374	< 10	150	0.5	< 2	0.32	< 0.5	18	30	109	5.31	< 10	< 1	0.13	10	1.28
DIHASL-13		202	40	< 0.2	2.45	270	< 10	140	0.5	< 2	0.16	< 0.5	14	28	81	4.51	< 10	< 1	0.12	10	1.13
DIHASL-14		202	75	< 0.2	2.14	185	< 10	90	< 0.5	< 2	0.36	< 0.5	17	27	108	4.14	< 10	< 1	0.12	10	1.29
DIHASL-15		202	< 5	0.2	1.89	36	< 10	160	< 0.5	2	0.05	< 0.5	6	29	27	2.25	< 10	< 1	0.05	< 10	0.35
DIHASL-16		202	25	< 0.2	1.91	122	< 10	70	< 0.5	< 2	0.38	< 0.5	13	23	83	3.49	< 10	< 1	0.09	< 10	1.16
01HASL-17	201 2	202	155	< 0.2	1.65	262	< 10	80	0.5	< 2	0.41	< 0.5	17	24	126	4.81	< 10	< 1	0.11	10	0.86
01HASL-18		202	40	< 0.2	2.13	162	< 10	80	< 0.5	< 2	0.42	< 0.5	16	28	115	4.25	< 10	< 1	0.10	10	1.25
01HASL-18D		202	25	< 0.2	2.01	154	< 10	70	< 0.5	< 2	0.39	< 0.5	15	27	110	4.00	< 10	< 1	0.10	10	1.19
01 HASL-19		202	15	< 0.2	2.65	52	< 10	60	< 0.5	< 2	0.31	< 0.5	15	22	54	3.91	< 10	< 1	0.14	< 10	1.60
01HASL-20		202	110	< 0.2	1.97	302	< 10	100	< 0.5	< 2	0.52	< 0.5	15	30	82	3.58	< 10	< 1	0.08	< 10	1.18
01HASL-21	201 2	202	50	< 0.2	2.17	156	< 10	100	< 0.5	< 2	0.29	< 0.5	12	25	52	3.99	< 10	< 1	0.09	< 10	1.15
01HASL-22		202	150	< 0.2	2.86	804	< 10	120	0.5	< 2	0.55	< 0.5	25	24	190	7.30	< 10	< 1	0.43	10	1.82
01 HA SL-23		202	70	< 0.2	1.75	232	< 10	130	0.5	< 2	0.61	< 0.5	19	16	147	5.97	< 10	< 1	0.26	10	0.93
01HASL-24		202	30	< 0.2	2.22	148	< 10	100	< 0.5	< 2	0.38	< 0.5	14	16	94	4.52	< 10	₹ 1	0.08	< 10	1.38
01HASL-25		202	80	< 0.2	2.07	614	< 10	170	0.5	< 2	0.40	< 0.5	15	22	57	5.57	< 10	< 1	0.07	< 10	0.55
01HASL-26	201 2	202	505	0.2	1.30	838	< 10	220	0.5	< 2	0.03	< 0.5	11	15	28	6.23	< 10	< 1	0.18	< 10	0.18
01HABL-27		202	10	< 0.2	0.97	54	< 10	130	< 0.5	< 2	0.01	< 0.5	3	12	12	1.66	< 10	< 1	0.05	< 10	0.07
01HASL-28		202	145	< 0.2	1.31	626	< 10	130	0.5	< 2	0.09	< 0.5	22	13	60	8.14	< 10	< 1	0.11	< 10	0.19
01HASL-29		202	180	< 0.2	1.44	176	< 10	100	0.5	< 2	0.08	< 0.5	14	10	83	5.96	< 10	< 1	0.08	10	0.26
01HASL-30		202	50	< 0.2	1.47	150	< 10	100	< 0.5	< 2	0.20	< 0.5	8	11	41	3.58	< 10	< 1	0.06	< 10	0.63
01HASL-31	201 2	202	205	< 0.2	1.99	144	< 10	50	< 0.5	< 2	0.17	< 0.5	11	23	58	4.02	< 10	< 1	0.06	< 10	1.07
			·				<u>.</u>										· ·	<u>\</u>	11		

CERTIFICATION:

S Chemex Α Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbla, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY ENGINEERING LTD.

1 .

.

700 - 700 W. PENDER ST, VANCOUVER, BC V6C 1G8

Page Nu / :1-B Total Pages :3 Certificate Date: 24-JUL-2001 Invoice No. :10120658 P.O. Number : RFM01-11 Account :EIA

3

Project : BILL Comments: ATTN: STEWART HARRIS

										CE	RTIFI	CATE	OF A	NAL	rsis	4	012065	58
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na S	Ni ppm	p ppm	Pb ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U Maqa	V ppm	W	Zn ppm	
1HASS-01	201 202	1445	< 1	< 0.01	49	780	20	0.03	4	7	15	0.01	< 10	< 10	31	< 10	70	
HASS-02	201 202	1055		< 0.01	47	1130	20	0.04	Ā	5	25	0.01	< 10	< 10	34	< 10	86	
HASS-03	201 202	805		< 0.01	39	1270	14	0.05	8	4	30	0.02	< 10	< 10	31	< 10	84	
HASS-04	201 202	835		< 0.01	18	790	20	0.08	< 2	6	25	0.04	< 10	< 10	33	< 10	268	
HASS-05	201 202	1380	1	< 0.01	34	1000	14	0.08	4	7	27	0.04	< 10	< 10	61	< 10	184	
HASS-06	201 202	640	1	0.01	35	1070	12	0.11	4	•	51	0.01	< 10	< 10	33	< 10	90	
BASS-07	201 202	525		< 0.01	39	860	6	0.03	2	3	30	0.01	< 10	< 10	36	< 10	68	
EASL-01	201 202	365		< 0.01	24	1080	6	0.05	4	1	6	0.01	< 10	< 10	41	< 10	62	
HASL-02	201 202	1575		< 0.01	27	1180	18	0.05	6	7		0.01	< 10	< 10	38	< 10	78	
HASL-03	201 202	390	1	< 0.01	33	1050	12	0.12	6	6	37 <	0.01	< 10	< 10	43	< 10	84	
EASL-04	201 202	440	1	< 0.01	27	920	14	0.07	6	5	24 <	0.01	< 10	< 10	40	< 10	78	
EASL-05	201 202	295		< 0.01	43	860	6	0.05	2	4		0.01	< 10	< 10	37	< 10	72	
HASL-05D	201 202	480	1	0.01	43	780	6	0.04	2	3	20 <	0.01	< 10	< 10	37	< 10	66	
EASL-06	201 202	335	1	0.01	26	3220	2	0.31	2	4	67	0.01	< 10	< 10	32	< 10	96	
EASL-07	201 202	715	1	< 0.01	30	1250	4	0.04	2	1	11	0.01	< 10	< 10	42	< 10	70	
IASL-08	201 202	520	1	< 0.01	22	1330	4	0.04	2	3	27	0.01	< 10	< 10	38	< 10	78	· · · · ·
IASL-09	201 202	420		< 0.01	18	1370	6	0.04	2	4	28	0.01	< 10	< 10	35	< 10	70	
HASL-10	201 202	505		< 0.01	21	1590	2	0.03	2	3	28	0.01	< 10	< 10	43	< 10	72	
HASL-11	201 202	745		< 0.01	21	1960	< 2	0.03	2	4	33	0.03	< 10	< 10	47	< 10	58	
HASL-12	201 202	840	1	< 0.01	23	1390	4	0.04	4	5	27	0.01	< 10	< 10	54	< 10	66	
HASL-13	201 202	650		< 0.01	19	1610	2	0.06	4	2	20	0.02	< 10	< 10	48	< 10	60	
HASL-14	201 202	820		< 0.01	21	1780	2	0.03	2	3	31	0.03	< 10	< 10	42	< 10	58	
HASL-15	201 202	555	_	< 0.01	19	1360	4	0.09	2	< 1	15 <	0.01	< 10	< 10	40	< 10	42	
HASL-16 Hasl-17	201 202	485		< 0.01	19	1920	< 2	0.03	2	2	29	0.03	< 10	< 10	38	< 10	54	
RASL-1/	201 202	900	2	< 0.01	27	2000	8	0.05	4	1	27	0.02	< 10	< 10	45	< 10	80	
HASL-18	201 202	740		< 0.01	21	2140	< 2	0.03	2	4	27	0.03	< 10	< 10	48	< 10	58	
LASL-18D	201 202	710		< 0.01	20	2060	2	0.03	6	4	25	0.03	< 10	< 10	45	< 10	58	
HASL-19	201 202	530		< 0.01	17	1390	< 2	0.03	2	1	24	0.07	< 10	< 10	48	< 10	68	
IASL-20 IASL-21	201 202 201 202	570 655		< 0.01	27	1630	< 2	0.03	6	2	32	0.03	< 10	< 10	38	< 10	52	
	101 202		T	< 0.01	17	1430	2	0.05	< 2	1	25	0.03	< 10	< 10	63	< 10	56	
HASL-22	201 202	1350	3	0.02	21	1720	4	0.15	6	8	60	0.05	< 10	< 10	109	< 10	76	
ASL-23	201 202	1040	1	0.01	18	2660	2	0.06	2	8	38	0.05	< 10	< 10	89	< 10	70	
HASL-24	201 202	535		< 0.01	14	1610	< 2	0.03	2	4	23	0.03	< 10	< 10	78	< 10	60	
RASL-25 Rasl-26	201 202 201 202	545	1	0.01	29	1010	6	0.09	4	2	35	0.01	< 10	< 10	37	< 10	40	
	201 202	435	1	0.05	13	1580	8	0.47	4	1	66 <	0.01	< 10	< 10	24	< 10	24	
LASL-27	201 202	130		< 0.01	7	840	4	0.05	< 2	< 1	8 <	0.01	< 10	< 10	33	< 10	26	
RASL-28	201 202	1085	3	0.07	18	2800	12	0.37	4	5		0.01	< 10	< 10	34	< 10	50	
HASL-29	201 202	545	1	0.01	14	1770	- 4	0.09	2	2		0.01	< 10	< 10		< 10	50	
RASL-30 Rasl-31	201 202	495		< 0.01	11	1640	4	0.04	2	< 1	18	0.01	< 10	< 10	32	< 10	54	
nn34-31	201 202	365	1	< 0.01	19	1570	6	0.04	< 2	1	16	0.02	< 10	< 10	47	< 10	54	ΔV
					· · · · · · · · · · · · · · · · · · ·										· ·····			- N/ -

CERTIFICATION:

ALS Chemex

····•

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 2: EQUITY ENGINEERING LTD.

Υ.

٠,

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8 Page Nu r :2-A Total Pages :3 Certificate Date: 24-JUL-2001 Invoice No. : 10120658 P.O. Number : RFM01-11 Account : EIA

Project : BILL Comments: ATTN: STEWART HARRIS

e 1

SAMPLE PREP Au ppb Ag Al As B Ba											CE	RTIF	CATE	OF A	A	0120					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE			-													-	-			Ng %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		201 202	70	< 0.2	2.25	78	< 10	40	< 0.5	< 2	0.23	< 0.5	14	3.9	43	3.94	< 10	. 1	0 0E	. 10	1.56
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				< 0.2	2.53	56	< 10	50	< 0.5	< 2	0.19						·				1.36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							< 10	50	< 0.5	< 2	0.19	< 0.5									1.27
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										2	0.83	< 0.5									0.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IASL-36	201 202	85	< 0.2	0.35	214	< 10	80	< 0.5	< 2	0.34	< 0.5	19	4	112	5.88					0.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			40	< 0.2	1.40	184	< 10	200	0.5	< 2	0.51	< 0.5	13	22	88	5.58	< 10	1	0.09	10	0.63
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				< 0.2	0.86	178	< 10	220	0.5	< 2	0.90			-			-	_			0.32
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						324	< 10	140	0.5	< 2	0.71										0.52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									< 0.5	2	0.89	< 0.5						_		-	0.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LASL-41	201 202	145	< 0.2	1.41	528	< 10	150	0.5	< 2	0.55	< 0.5	28	22	173	7.30	< 10	_			0.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				< 0.2	2.79	376	< 10	170	0.5	< 2	0.52	< 0.5	25	11	255	6 79	< 10	< 1	0 13	10	1.43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	iasl-42d	201 202	295	< 0.2	2.93	436	< 10	200										_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				< 0.2	1.91	50	< 10	50	< 0.5		0.45										1.42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								240	0.5	< 2	0.50	< 0.5									0.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IASL-45	201 202	60	0.2	0.33	408	< 10	50	< 0.5	< 2	0.82	< 0.5	17	4	141						0.16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IASL-46	201 202	40	< 0.2	2.70	90	< 10	60	0.5	< 2	0.18	< 0.5	54	20	100	6 21	~ 10			• •	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	iasl-47	201 202	< 5	0.2	1.36	12	< 10	60										_			1.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			< 5	< 0.2	2.23		< 10	60					_								0.51 0.92
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	< 0.2		10	< 10	80	< 0.5	< 2	0.12	< 0.5	6				-	_			0.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LASL-50	201 202	5	< 0.2	2.21	16	< 10	80	< 0.5	< 2	0.16	< 0.5	13	15	63			_			1.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		201 202	< 10	< 0.2	1.68	22	< 10	280	< 0.5	< 2	0.31	< 0.5	8	12	47	3 77	× 10	< 1	A 45	. 10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10	< 0.2	1.84	20	< 10	240	< 0.5	< 2			_				•	_			0.78 0.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	< 0.2	1.59	14	< 10	170	< 0.5	< 2							-				0.85
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								210	< 0.5	< 2	0.51	< 0.5	10								0.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IASL-54	201 202	15	0.2	1.26	32	< 10	70	< 0.5	< 2	0.04	< 0.5	4								0.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		201 202	10	0.2	2.28	12	< 10	80	< 0.5	< 2	0.07	< 0.5	7	42	18	1 02	< 10		A 03		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		201 202	< 5	0.2	1.64	10	< 10	90	< 0.5	< 2	0.05		-								0.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			< 5	1.2	1.29	6	< 10	80	< 0.5	< 2	0.03		-							-	0.29 0.21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-					60	< 0.5	< 2	0.03	< 0.5	6		-					-	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UASL-59	201 202	20	< 0.2	2.09	50	< 10	70	< 0.5	< 2	0.08	< 0.5	8	26	22						0.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LASL-60	201 202	35	< 0.2	2.00	34	< 10	50	< 0.5	< 2	0.12	< 0.5	R	1.0	24	7 00	- 10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	< 0.2	1.69	• -							-					_			1.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			25	< 0.2	2.05					-											0.83
$11881-64$ [201] 202] 15 \neq 0.2 1.63 24 \neq 10 170 \neq 0.5 \neq 0.41 \neq 0.6							< 10	340	0.5												1.05
	IASL-64	201 202	15	< 0.2	1.83	34	< 10	130	< 0.5	< 2			-								0.88
DIHASL-65 201 202 < 5 < 0.2 2.04 54 < 10 310 0.5 < 2 0.53 < 0.5 9 25 37 4.11 < 10 < 1 0.05 < 10	LASL-65	201 202	< 5	< 0.2	2.04	54	< 10	310	0.5	< 2	0.53	< 0.5	0	25	37	4 11	< 10		A AF		
	INSL-66	201 202	5										_								0.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			160																		1.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							< 10	420	< 0.5												0.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	insl-69	201 202	55	< 0.2	1.71	74	< 10	130	< 0.5	< 2			•					-			0.75
													-							7	4.40
								· ···											-	1	

CERTIFICATION:

ALS

ALS Chemex

۰.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 # EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Į

Project : BILL Comments: ATTN: STEWART HARRIS Page NL r :2-B Total Pages :3 Certificate Date: 24-JUL-2001 Invoice No. : I0120658 P.O. Number : RFM01-11 Account : EIA

						<u> </u>				CERTIFICATE OF ANALYSIS						ŀ		
SAMPLE	PREP CODE	Ma. ppm	Мо ррт	Na %	Ni ppm	P Pjan	Pb ppm	8 %	Sb ppm	Sc ppm	Sr p ym	Tİ %	T1 ppm	D D	V ppm	W	Zn	a a a a a a a a a a a a a a a a a a a
1HASL-32	201 202		1	< 0.01	30	1290	6	0.01	2	2	16	0.03	< 10	< 10				
1HASL-33	201 202			< 0.01	37	1150	2	0.02	6	3	10	0.02	< 10	< 10	46 45	< 10	72	
1HASL-34	201 202			< 0.01	29	1160	< 2	0.02	< 2	ī	Ā	0.01	< 10	< 10	35	< 10 < 10	64	
1HASL-35	201 202			< 0.01	12	1340	12	0.07	2	3	33 4	< 0.01	< 10	< 10	19		44	
IRASL-36	201 202	860	2	< 0.01	16	1570	14	0.04	< 2	4		< 0.01	< 10	< 10	21	< 10 < 10	72 70	
HASL-37	201 202	625	1	0.01	16	1960	6	0.09	< 2	4								
LHASL-38	201 202	2300	3	< 0.01	10	3440	8	0.09	22	3	40 74	0.01	< 10	< 10	58	< 10	50	
LHASL-39	201 202		1	0.02	12	2590	ž	0.17	2	7	59	0.02 0.01	< 10	< 10	26	< 10	88	
HASL-40	201 202		< 1	0.04	14	3620	2	0.29	2	8	97	0.03	< 10	< 10	56	< 10	58	
1HASL-41	201 202	1695	< 1	0.04	28	1850	6	0.23		11	61	0.01	< 10 < 10	< 10 < 10	65 61	< 10 < 10	58 62	
IHASL-42	201 202	1445	2	0.05	28	1180	6										02	
HASL-42D	201 202		2	0.08	31	1220	6	0.31	2	12		0.01	< 10	< 10	62	< 10	46	
INASL-43	201 202		_	< 0.01	21	1240	< 2	0.47	6	12		0.01	< 10	< 10	63	< 10	48	
1HASL-44	201 202		1	0.04	16	1510	1	0.30	6	1	27	0.04	< 10	< 10	36	< 10	54	
LHASL-45	201 202			< 0.01	17	1420	14	0.30	2	2	52 33 <	0.01	< 10 < 10	< 10	37	< 10	44	
IHASL-46	201 202	2020											~ 10	< 10	24	< 10	92	
RASL-47	201 202			< 0.01 < 0.01	50	1920	26	0.05	- 4	7	12	0.01	< 10	< 10	44	< 10	194	
HASL-48	201 202			< 0.01	6	890	A	0.03	2	< 1	7 <	0.01	< 10	< 10	27	< 10	26	
IRASL-49	201 202			< 0.01	14 10	660 830	6	0.01	6	1	7	0.03	< 10	< 10	50	< 10	50	
1HASL-50	201 202	520		< 0.01	15	1000	4 2 4	0.01	2	1 3	10 11	0.01 0.01	< 10 < 10	< 10 < 10	31	< 10	42	
1HASL-51	201 202	495		< 0.01									· 4v	< 10	39	< 10	68	
1HASL-51D	201 202			< 0.01	15 14	2410 1460	8	0.09	< 2	4	17 <		< 10	< 10	36	< 10	98	
1HASL-52	201 202			< 0.01	12	1590	6 6	0.04	3	3		0.01	< 10	< 10	39	< 10	106	
1HASL-53	201 202			< 0.01	42	550	10	0.04	4	3		0.01	< 10	< 10	28	< 10	88	
1HASL-54	201 202			< 0.01	12	640	6	0.03 0.04	2 < 2	2 < 1	42	0.10 0.01	< 10 < 10	< 10	54	< 10	92	
IBABL-55	201 202	305											<u> </u>	< 10	40	< 10	28	
IHASL-56	201 202		1	< 0.01	46	510	6	0.01	4	3	9	0.01	< 10	< 10	37	< 10	58	·····
LHASL-57	201 202		-	0.01 < 0.01	19 7	580	12	0.07	< 2	1	8	0.17	< 10	< 10	62	< 10	54	
1HASL-58	201 202		_	< 0.01	13	910 760	4	0.03	< 2	< 1	10 <		< 10	< 10	21	< 10	18	
IHASL-59	201 202			< 0.01	22	510	4 2 4	0.03	2	1 3	7	0.03	< 10	< 10	60	< 10	42	
IRASL-60	000 000									3	,	0.04	< 10	< 10	37	< 10	64	
LHASL-60 LHASL-61	201 202			< 0.01	11	720	< 2 <		4	3	7	0.02	< 10	< 10	30	< 10	60	
LHASL-62	201 202 201 202			< 0.01	18	1350	2	0.05	2	4	27	0.01	< 10	< 10	28	< 10	118	
LHASL-63	201 202 201 202		2	0.01	29	860	6	0.06	4	4	39	0.05	< 10	< 10	37	< 10	76	
1HASL-64	201 202			< 0.01 < 0.01	17 18	2150 710	4	0.19	4	7	73	0.02	< 10	< 10	29	< 10	100	
						,10		0.03	2	3	16	0.03	< 10	< 10	36	< 10	110	
HASL-65	201 202			< 0.01	26	1520	6	0.05	2	4	27 <	0.01	< 10	< 10	35			
HASL-66	201 202			< 0.01	19	1140	2	0.03		- i		0.01	< 10	< 10	35	< 10	112	
LRASL-67	201 202			< 0.01	18	1070	6	0.01	- Ā	3		0.01	< 10	< 10	40 29	< 10	78	
IHASL-68	201 202			< 0.01	9	1460	6	0.05	2	1		0.01	< 10	< 10	31	< 10	68	
IRASL-69	201 202	990	1 4	< 0.01	19	1430	4	0.01	< 2	5	19	0.01	< 10	< 10	34	< 10 < 10	34. 78 \	
											-							

CERTIFICATION:_

ar

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

FIGUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page Nu r :3-A Total Pages :3 Certificate Date: 24-JUL-2001 Invoice No. : 10120658 P.O. Number : RFM01-11 Account : EIA

Project : BILL Comments: ATTN: STEWART HARRIS

· · · ·	- <u>r</u>										CI	ERTIFI	CATE	OF A	NAL	YSIS	4	0120	658		
SAMPLE	PR CO		ли ррв Гл+лл	λg ppm	Al %	λs ppm	B ppm.	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K ¥	La ppm	Mg
01HASL-70 01HASL-71 01HASL-72 01HASL-73 01HASL-74	201 201 201	202 202 202 202 202 202	15 25 40	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.49 1.41 1.49 1.75 1.91	118 38 30 16 10	< 10 < 10 < 10 < 10 < 10 < 10	60 90 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	0.32 0.33 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 20 16 11 9	10 12 10 11 11	139 140 110 75 52	4.40 5.30 4.67 3.58 2.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.04 0.04 0.04	< 10 10 10 < 10 < 10	0.87 0.94 0.94 1.08 1.05
01HASL-75 01HASL-75D 01HASL-76	201	202 202 202	70	< 0.2 < 0.2 < 0.2	2.11 2.20 2.02	52 58 30	< 10 < 10 < 10	50	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.13	< 0.5 < 0.5 < 0.5	11 11 13	22 24 17	41 47 114	4.74 5.57 4.26	< 10 < 10 < 10	< 1 < 1 < 1	0.03 0.03 0.03	< 10 < 10 10	0.75 0.80 1.09
																		÷)		·7	

CERTIFICATION:_

EQUITY ENGINEERING LTD.

5

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page NL at :3-B Total Pages :3 Certificate Date: 24-JUL-2001 Invoice No. : 10120658 P.O. Number : RFM01-11 Account : EIA

A0120658

٩

	CERTIFICATE OF ANALYSIS
British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218	Project : BILL, Comments: ATTN: STEWART HARRIS
212 Brooksbank Ave., North Vancouver	VANCOOVER, BC V6C 1G8

			<u></u>		·			·						-		
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na * 1	Ni ppen pp	e p			Sc ppm	Sr ppm	Tİ T T PP		V DDM	W Dome	Zn ppm	
IASL-70 IASL-71 IASL-72 IASL-73 IASL-74	201 202 201 202 201 202 201 202 201 202 201 202	840 795 420	4 < (3 < (2 < (1 < (2 <)	0.01 0.01 0.01	17 94 22 178 18 164 13 141 11 115	0 1 0 :	4 0.02 0 < 0.01 8 0.02 2 0.01 2 < 0.01	4 < 2 < 2	4 4 5 4 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03 < 10 01 < 10 01 < 10) < 10) < 10) < 10	24 33 35 34	< 10 < 10 < 10 < 10 < 10	250 76 84 60	
HASL-75 HASL-75D HASL-76	201 202 201 202 201 202	340 360	3 < (3 < (3 < (0.01 0.01	21 95 24 108 24 87	0 1: 0 1:	2 0.02	2	1 1 4	10 < 0. 9 0. 10 0. 12 < 0.	03 < 10 03 < 10	< 10 < 10	31 43 46 37	< 10 < 10 < 10 < 10	48 56 60 84	
										n				_	$\left(\right)$	Í -
												CERTIFIC	ATION:_		Mole	68

З.

٦,

٦

S

Aurora Laboratory Services Ltd.

r ...

Analytical Chemists * Geochemists * Registered Assayers

** ۳. ۳

hemex

٠.

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RFM01-11 Comments: ATTN: HENRY AWMACK Page Nu. Jr :1-A Total Pages :2 Certificate Date: 24-JUL-2001 Invoice No. : 10120695 P.O. Number : Account : EIA

F	_ 	-								CE	RTIFI	CATE	OF A	NAL	YSIS		40120	695		
SAMPLE	PREP CODE	λи ppb Γλ+λλ	-	A1 %	λs ppm	B jypm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	K K	La ppm	Mg %
01HASS-008	201 20	2 95	< 0.2	2.36	20	< 10	340	< 0.5	< 2	0.57	< 0.5	13								
01HASS-009	201 20		< 0.2	1.66	22	< 10	110	< 0.5	< 2	0.59	< 0.5	12	65 40	27	3.38	< 10	< 1	0.25	< 10	1.62
01HASS-010	201 20			2.16	46	< 10	100	< 0.5	< 2	0.83	< 0.5	16	50	28 56	2.62	< 10	< 1	0.14	< 10	1.26
01HASL-077	201 20			2.14	64	< 10	80	< 0.5	< 2	0.11	< 0.5	13	39	26	3.50	< 10 < 10	< 1	0.06	< 10	1.59
01HASL-078	201 20	2 < 5	< 0.2	3.58	8	< 10	60	< 0.5	< 2	0.11	< 0.5	16	55	62	4.10	< 10	< 1 < 1	0.04 0.03	< 10 < 10	1.21 2.80
01HASL-079	201 20		< 0.2	1.68	6	< 10	150	< 0.5	< 2	0.52	< 0.5	2	7							
01HASL-080	201 20			1.55	2	< 10	60	< 0.5	< 2	0.03	< 0.5	i	14	4	1.88 2.02	< 10 < 10	< 1	0.14	< 10	1.30
01HASL-081	201 20			1.94	2	< 10	100	< 0.5	< 2	0.07	< 0.5	7	17	10	2.64	< 10	< 1	0.08	< 10	0.62
01HASL-082	201 20			2.04	4	< 10	50	< 0.5	< 2	0.09	< 0.5	5	22	10	2.52	< 10	< 1 < 1	0.15	< 10	1.30
01HASL-083	201 20	2 5	< 0.2	1.73	6	< 10	60	< 0.5	< 2	0.15	< 0.5	10	26	17	2.67	< 10	< 1	0.17 0.05	< 10 < 10	1.22
01HASL-084	201 20	2 35	< 0.2	1.98					·								••	0.05	< 10	1.09
01HASL-085	201 20			1.98	26	< 10	60	< 0.5	< 2	0.04	< 0.5	7	26	11	2.42	< 10	< 1	0.03	< 10	1.00
01HASL-086	201 20			1.90	< 2	< 10 < 10	100	< 0.5	< 2	0.04	< 0.5	5	17	8	3.40	< 10	< 1	0.05	< 10	0.70
01HASL-087	201 20			1.66	< 2	< 10	60	< 0.5	< 2	0.02	< 0.5	7	23	7	3.09	< 10	< 1	0.04	< 10	0.81
01HASL-087D	201 20			1.67	2	< 10	60 50	< 0.5 < 0.5	< 2 < 2	0.05	< 0.5	4	16	8	2.64	< 10	< 1	0.07	< 10	0.82
						10	30	< 0.9	< 4	0.04	< 0.5	4	15	8	2.65	< 10	< 1	0.06	< 10	0.79
CIHASL-088	201 20			2.95	< 2	< 10	330	< 0.5	< 2	0.18	< 0.5	11	35	23	4.18	< 10	< 1			
01HASL-089	201 20			1.86	48	< 10	70	< 0.5	< 2	0.09	< 0.5	13	35	24	3.36	< 10	< 1	0.67 0.03	< 10	1.83
01HASL-090	201 20			2.28	88	< 10	100	0.5	< 2	0.40	< 0.5	17	43	27	4.16	< 10	< 1	0.03	< 10	1.06
01HASL-091 01HASL-092	201 20			2.36	94	< 10	120	0.5	< 2	0.37	< 0.5	18	53	25	4.14	< 10	< 1	0.03	< 10 < 10	1.24
01000097	201 20	2 50	< 0.2	2.60	44	< 10	70	0.5	< 2	0.12	< 0.5	22	149	36	4.38	< 10	< 1	0.06	< 10	1.10 1.61
01HASL-093	201 20	2 55	< 0.2	2.85	8	< 10	40	< 0.5	< 2	0.38	< 0.5		144							
01HASL-094	201 20:	2 45	< 0.2	2.29	2	< 10	140	< 0.5	< 2	0.17	0.5	18 13	198	27	3.50	< 10	< 1	0.04	< 10	1.97
01HASL-095	201 20:	2 15	< 0.2	3.11	6	< 10	90	< 0.5	< 2	0.10	< 0.5	13	134 41	20	2.96	< 10	< 1	0.04	< 10	1.37
01 HD SL-001	201 20:		< 0.2	2.29	6	< 10	300	0.5	< 2	0.06	< 0.5	10	30	23 19	3.23	< 10	< 1	0.04	< 10	1.39
01MBSL-002	201 20:	2 15	< 0.2	2.10	4	< 10	500	0.5	< 2	0.09	< 0.5	6	21	25	2.89 2.73	< 10 < 10	< 1	0.07	< 10	0.54
01MBSL-003	201 20														4.75	4 IQ	< 1	0.05	< 10	0.39
01MBSL-004	201 20			1.99	6	< 10	1140	0.5	< 2	0.06	< 0.5	6	19	19	2.78	< 10	< 1	0.04	< 10	0.37
01MBSL-005	201 20			2.19	4	< 10	2860	0.5	< 2	0.32	< 0.5	8	21	41	2.94	< 10	< 1	0.05	10	0.51
01MBSL-006	201 20			1.71 1.70	2	< 10	470	0.5	< 2	0.07	< 0.5	6	17	22	2.53	< 10	< 1	0.06	10	0.31
01MBSL-007	201 20			2.04	2	< 10 < 10	1330 1730	0.5	< 2	0.35	< 0.5	6	18	28	2.68	< 10	< 1	0.06	10	0.46
		-	× V.2	2.04	4	< 10	1/30	0.5	< 2	0.32	< 0.5	7	20	26	2.54	< 10	< 1	0.05	10	0.44
01MBSL-008	201 20:			2.65	2	< 10	3900	1.0	< 2	0.63	< 0.5	10	21	51	3.22	< 10				
01MBSL-010	201 20:			1.67	4	< 10	1780	0.5	< 2	0.25	< 0.5	Ē	13	65	3.17	< 10	< 1	0.06	30	0.61
01MBSL-011	201 20:			1.76	2	< 10	530	0.5	< 2	0.09	< 0.5	7	20	34	2.84	< 10	< 1 < 1	0.05	10	0.38
01MBSL-012	201 20:			1.84	2	< 10	320	0.5	< 2	0.07	< 0.5	6	16	24	2.84	< 10	< 1	0.06 0.05	< 10	0.39
01MBSL-013	201 20:	2 220	< 0.2	2.13	2	< 10	370	0.5	< 2	0.07	< 0.5	9	25	50	3.82	< 10	< 1	0.05	< 10 < 10	0.22
01MBSL-014	201 203	2 165	< 0.2	2.31	6	< 10	800	1.0	< 2	0.10	< 0.5	-	10				,	·	· • •	
01MBSL-015	201 20:	2 50		1.16	4	< 10	2040	1.0	< 2	0.31	< 0.5	6 6	12	73	4.34	< 10	< 1	0.04	40	0.44
01MBSL-016	201 20:	2 25	< 0.2	2.18	2	< 10	540	0.5	< 2	0.19	< 0.5	7	< 1 15	158	4.97	< 10	< 1	0.04	50	0.21
01MBSL-017	201 20:			2.34	2	< 10	430	0.5	< 2	0.11	< 0.5	9	25	26 27	3.98	10	< 1	0.05	30	0.29
01MBSL-018	201 20:	2 75	< 0.2	1.62	< 2	< 10	950	0.5	< 2	0.15	< 0.5	6	19	24	3.41 3.27	< 10	<u> </u>	0.05	< 10	0.49
									-				4.3	43	3.41	< 10	(< 1	0.04	< 10	0.33
L								-										0		

CERTIFICATION:

1,250

Chemex S А Aurora Laboratory Services Ltd.

100

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

2 EQUITY ENGINEERING LTD.

٠,

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RFM01-11 Comments: ATTN: HENRY AWMACK Page Nu. 7 :1-8 Total Pages :2 Certificate Date: 24-JUL-2001 Invoice No. : 10120695 P.O. Number : Account :EIA

																	_				
		1	_			.					CE	RTIFI	CATE	OF A	NALY	/SIS		0120	695		
SAMPLE	PRI COI		Ma. jypni	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	S ጜ	Sb ppm	Sc ppn	Sr ppm	Ti %	T1 ppm	U Den	V Dom	M DDW	Zn ppn			
01HASS-008		202	950		< 0.01	31	800	12	0.05	2	6	25	0.08	< 10	< 10	63	< 10	108			
01HAS8-009		202	635		< 0.01	24	1190	4	0.06	4	3	21	0.04	< 10	< 10	36	< 10	68			
01HASS-010	201		1030		< 0.01	33	1350	2	0.07	4	5	30	0.02	< 10	< 10	45	< 10	76			
1HASL-077		202	830		< 0.01	22	830	2	0.05	2	1	9	0.04	< 10	< 10	53	< 10	72			
1HASL-078	201	202	615	1 -	< 0.01	25	640	2	0.02	8	7	в	0.01	< 10	< 10	66	< 10	96			
1HASL-079		202	380		< 0.01	2	240	< 2	0.02	2	1	16	0.07	< 10	< 10	10	< 10	84			
1HASL-080	201		650		< 0.01	6	720	< 2	0.06	2	< 1	6	0.04	< 10	< 10	25	< 10	58			
1HASL-081		202	555		< 0.01	11	390	2	0.03	< 2	1	7	0.05	< 10	< 10	26	< 10	76			
1HASL-082	201		430		< 0.01	13	610	2	0.02	2	1	7	0.05	< 10	< 10	29	< 10	78			
)1HASL-083	201	202	410	1 ·	< 0.01	22	820	2	0.02	2	3	9	0.03	< 10	< 10	39	< 10	66			
1HASL-084	201		325		< 0.01	13	710	< 2	0.02	2	1	5	0.01	< 10	< 10	40	< 10	50			
1HASL-085		202	670		< 0.01	10	500	2	0.05	2	ī	7	0.05	< 10	< 10	36	< 10	56			
1HASL-086	201		700		< 0.01	9	370	< 2	0.02	< 2	1	5	0.03	< 10	< 10	42	< 10	62			
1HASL-087		202	340		< 0.01	9	590	4	0.04	2	< 1	7	0.03	< 10	< 10	30	< 10	80			
1HASL-087D	201	202	350	< 1 ·	< 0.01	9	590	2	0.04	4	< 1	7	0.03	< 10	< 10	31	< 10	76			
1RASL-088		202	1215	1 ·	< 0.01	18	680	< 2	0.05	2	4	9	0.14	< 10	< 10	73	< 10	98			
)1HASL-089		202	870	< 1 -	< 0.01	22	1190	2	0.05	2	< ī	7	0.01	< 10	< 10	49	< 10	98 70			
1HASL-090		202	1005	1 -	< 0.01	32	1740	2	0.06	< 2	2	15	0.02	< 10	< 10	50	< 10	78			
1RASL-091		202	1195	1 •	< 0.01	36	1380	6	0.05	4	3	18	0.03	< 10	< 10	43	< 10	84			
)1 HASL-092	201	202	1830	1 ·	< 0.01	69	1150	2	0.05	2	1	7	0.03	< 10	< 10	78	< 10	86			
1HASL-093	201	202	630	1 -	< 0.01	78	1650	< 2	0.05	2	2	10	0.05	< 10	< 10	73	< 10	66	· · · - · · · · · · · · · · · · · · · ·		
01RASL-094	201		825	1 -	< 0.01	53	830	2	0.06	< 2	ī	10	0.04	< 10	< 10	70	< 10	86			
01 HASL-095		202	360	3.	< 0.01	31	630	< 2	0.04	4	2	7	0.03	< 10	< 10	49	< 10	62			
1MBSL-001	201		835	1 •	< 0.01	33	840	10	0.05	2	2	23	0.01	< 10	< 10	47	< 10	78			
1MBSL-002	201	202	995	< 1 -	< 0.01	21	950	8	0.08	4	< 1	20	0.01	< 10	< 10	43	< 10	76			
110BSL-003	201	202	1055	< 1 4	< 0.01	16	1230	14	0.11	2	< 1	49	0.01	< 10	< 10	52	< 10	90			
110BSL-004		202	1495	1 -	< 0.01	21	1220	12	0.07	4	2	60	0.01	< 10	< 10	54	< 10	88			
1MBSL-005	201		965	1 -	< 0.01	15	1390	10	0.11	4	< 1	21	0.01	< 10	< 10	42	< 10	78			
1MBSL-006	201		1005	1 -	< 0.01	19	760	6	0.04	< 2	2	36	0.01	< 10	< 10	49	< 10	78			
11088L-007	201	202	1395	1 ·	< 0.01	20	910	14	0.05	2	1	61	0.01	< 10	< 10	43	< 10	74			
1MBSL-008		202	2570	1 -	< 0.01	21	1840	18	0.09	2	3	49	0.02	< 10	< 10	53	. 10		·		
1MBSL-010		202	2580		< 0.01	14	970	62	0.04	2	ž	43	0.01	< 10	< 10	45	< 10	100			
1MBSL-011		202	1505	1 -	< 0.01	21	750	16	0.05	2	ĩ	42	0.01	< 10	< 10	42	< 10 < 10	78			
1MBSL-012		202	1310	1 •	< 0.01	13	840	8	0.07	2	< Ī	18	0.01	< 10	< 10	43	< 10	76			
110BSL-013	201	202	1385	2 ·	< 0.01	28	490	8	0.04	2	3	13	0.03	< 10	< 10	48	< 10	76 90			
DIMBSL-014	201	202	2610	3 -	< 0.01	14	740	8	0.03	< 2	11	10 <	0.01	10	< 10		. 10				
01MBSL-015	201		2390	4 -	< 0.01	2	630	10	0.01	< 2	21	15 <		10	< 10	45 39	< 10	82			
1MBSL-016		202	1440	4.4	< 0.01	13	1200	6	0.07	< 2	- 5	11	0.01	10	< 10	39	< 10 < 10	72			
1MBSL-017	201		1195	3 -	< 0.01	27	890	4	0.05	1	6	10	0.01	< 10	< 10	42	< 10	84			
1MBSL-018	201	202	965	1 -	< 0.01	18	740	4	0.05	Ā	3	11	0.01	< 10	< 10	44	< 10	74 82			
																		04	1	4	
					<u> </u>														1	1 .	

CERTIFICATION:_

ALS Chemex

٢

10 C 1 N

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **J: EQUITY ENGINEERING LTD.**

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

.....

CERTIFICATION:

Watel.

Page Nu. r :2-A Total Pages :2 Certificate Date: 24-JUL-2001 Invoice No. :10120695 P.O. Number : Account :EIA

Project : RFM01-11 Comments: ATTN: HENRY AWMACK

r	-				·····				··		ĊE	RTIFI	CATE	OF A	NAL	YSIS	ļ	0120	695		
SAMPLE	PR CO		ли ррb Гл+лл	λg ppm	X1 %	λs ppm	B ppm	Ba p pm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fo %	Ga jypna	Hợ ppm	к х	La ppm	Mg %
01NBSL-019 01NBSL-020 01NBSL-021 01NBSL-022 01NBSL-023	201 201 201	202 202 202 202 202 202	20 20 25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.13 1.88 2.94 2.26 1.07	2 2 2 2 2 2 4 2	< 10 < 10 < 10 < 10 < 10	1110 1740 1630 770 430	0.5 0.5 1.0 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	0.09	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 15 8 3	24 19 28 27 14	20 23 61 36 12	3.26 2.92 4.56 3.21 2.31	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.20 0.06 0.04	< 10 < 10 20 10 < 10	0.39 0.32 0.92 0.46 0.15
																		1.2			
												. <u> </u>						$\frac{1}{1}$	- <u>0</u> -		

ſ

.

ALS Chemex

э.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **EQUITY ENGINEERING LTD.**

1- 1

•

۰, ^۱

п

.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RFM01-11 Comments: ATTN: HENRY AWMACK Page Nu r :2-B Total Pages :2 Certificate Date: 24-JUL-2001 Invoice No. : 10120695 P.O. Number : Account :EIA

÷ 1.

1

11 1

	_ r										CE	RTIFI	CATE	OF A	NALY	SIS	A	01206	895	
SAMPLE	PR CO		Nn: pgm	Mo ppm	Na %	Ni ppn	bim b	Pb p pm	s t	Sb 1911	Sc ppm	Sr ppm	Ti %	T1 ppm	U PPm	V ppm	W Dom	2n ppm		
01MBSL-019 01MBSL-020 01MBSL-021 01MBSL-022 01MBSL-023	201 201 201	202 202 202 202 202 202	1160 1560 3320 1725 255	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	24 20 22 29 11	670 670 1400 860 640	6 6 10 12 6	0.03 0.03 0.06 0.06 0.05	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 4 6 3 < 1	8 7 20 12 9	0.02 0.01 0.05 0.02 0.01	< 10 < 10 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 37 81 41 37	< 10 < 10 < 10 < 10 < 10 < 10	98 84 154 114 56		
																		()	- a 1 ()	

.

APPENDIX E.2

CERTIFICATES OF ANALYSIS

ROCK SAMPLES

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

CERTIFICATE

A0120655

(EIA) - EQUITY ENGINEERING LTD.

Project: BILL P.O. # : RFM01-11

Samples submitted to our lab in Vancouver, BC. This report was printed on 26-JUL-2001.

SA	MPLE	PREPARATION
	NUMBER SAMPLES	DESCRIPTION
205 226 294 3202 229	12 2 14	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save entire reject ICF - AQ Digestion charge
YTE 1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

A0120655

Comments: ATTN: STEWART HARRIS CC: D. CAULFIELD

5 TRIC 0.07 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 1 1 0.01 10 10 0.01	1000 1000 1000 1000 1000 1000 1000 100
TRIC 0.07 0.2 0.01 2 10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 10 10 10 10 10 10 10 10	1000. 100. 100. 100.
0.01 2 10 0.5 2 0.01 0.5 1 1 1 1 0.01 10	15.0 1000 1000 1000 1000 1000 15.0 50 1000 100
2 10 10 0.5 2 0.01 0.5 1 1 1 0.01 10	1000 1000 1000 1000 1000 15.0 50 1000 100
10 10 0.5 2 0.01 0.5 1 1 1 0.01 10 1	1000 1000 100 15.0 50 1000 1000 1000 15.0
10 0.5 2 0.01 0.5 1 1 1 0.01 10 10	1000 100. 1000 15.0 50 1000 1000 1000 15.0
0.5 2 0.01 0.5 1 1 1 1 0.01 10	100. 1000 15.0 50 1000 1000 1000 15.0
2 0.01 0.5 1 1 1 0.01 10 1	1000 15.0 50 1000 1000 1000 15.0
0.01 0.5 1 1 0.01 10 1	15.0 50 1000 1000 1000 1000
0.5 1 1 0.01 10 1	50 1000 1000 1000 15.0
1 1 1 0.01 10 1	1000 1000 1000 15.0
1 1 0.01 10 1	1000 1000 15.0
1 0.01 10 1	1000 15.0
0.01 10 1	15.0
10 1	
1	
—	1000
0 01	1000
	10.0
10	1000
0.01	15.0
5	1000
1	1000
0.01	10.0
1	1000
	1000
	1000
	10.0
_	1000
_	1000
_	1000
	10.0
	1000
	1000 1000
	1000
	10 2 0.01 2 1 1 0.01 10 10 10

P -- - - N

٦

r -----

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

r.	EQUITY	ENGINEERING LTD.
----	--------	------------------

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

A0120655

Comments: ATTN: STEWART HARRIS CC: D. CAULFIELD

CERT	FICA	TE A0120655			ANALYTICAL P	ROCEDURE	S 2 of 2	
A) - EQUITY (pject: BILL D. # : RFM		ERING LTD.	METHOD CODE	NUMBER	DESCRIPTION	METHOD	DETECTION	UPPER LIMIT
moles submi	tted to	o our lab in Vancouver, BC. nted on 26-JUL-2001.	Zn-ICP41	14	Zn ppm: 32 element, soil & rock	îcp- aes	2	10000
SA	MPLE	PREPARATION						
METHOD CODE	NUMBERI SAMPLES	DESCRIPTION						
205 226 294 3202 229	14 12 2 14 14	Geochem ring to approx 150 mesh 0-3 Kg crush and split 4-7 Kg crush and split Rock - save antire reject ICP - AQ Digestion charge						
ace metals ments for gestion is	in : which possib	package is suitable for soil and rock samples. the nitric-aqua regia ly incomplete are: Al, K, La, Mg, Na, Sr, Ti,						

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8 Page NL r :1-A Total Pages :1 Certificate Date: 25-JUL-2001 Invoice No. :10120655 P.O. Number : RFM01-11 Account :EIA

Project : BILL

Comments: ATTN: STEWART HARRIS CC: D CAULFIELD

	r	1								CE	RTIF	ICATE	OF A	NALY	SIS		A0120	655		
SAMPLE	PREP CODE	ли ррб Гл+лл	λu Fλ g/t	λg ypm	А1 %	λs ppm	B ppm	Ba ppm	Be Jypn	Bi P pm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	70 %	Ga ppm	Hg 1710m	K %	La ppm
134153	205 226			< 0.2	3.17	256	< 10	30	< 0.5	6	9.49	< 0.5	18	200	37	2.99	< 10	1	0.02	< 10
L34154 L34155	205 294			< 0.2 < 0.2	2.76 3.22	80 112	< 10	250	< 0.5	< 2	1.41	< 0.5	9	21	28	3.75	< 10	< 1	0.13	< 10
134156	205 226			< 0.2	3.26	534	< 10 < 10	70 80	< 0.5	6	0.94 0.98	< 0.5	9	53	32	3.89	< 10	1	0.07	< 10
134157	205 226			< 0.2	2.82	64	< 10		< 0.5	< 2	1.21	< 0.5 0.5	10 6	58 56	22 27	3.93 3.32	< 10 < 10	< 1 < 1	0.10 0.12	< 10 < 10
34158	205 226			< 0.2	3.18	12	< 10	130	< 0.5	< 2	1.80	0.5	7	41	22	3.83	< 10	1	0.14	< 10
L34159 L34160	205 294			0.2	1.51	76	< 10	60	< 0.5	< 2		< 0.5	11	28	60	3.19	< 10	< Ĩ	0.16	< 10
134161	205 226			0.2	0.63	198	< 10	30	< 0.5	< 2		< 0.5	5	22	34	1.91	< 10	< 1	0.12	< 10
134162	205 226	< 5		< 0.2 0.4	4.05 0.48	544 340	< 10 < 10	50 50	< 0.5 < 0.5	< 2 < 2	5.34 6.16	0.5 < 0.5	27 14	141 23	81 73	5.34 4.13	< 10 < 10	1 < 1	0.07 0.18	< 10 < 10
134163	205 226	>10000		6.2		>10000	< 10	50	< 0.5	< 2	4.07	2.0	25	98	12	5.91	< 10	< 1	0.12	< 10
L34164 L34165	205 226			0.2	4.18	84	< 10	70	< 0.5	< 2	3.38	2.0	27	149	18	4.94	< 10	< 1	0.10	< 10
L34166	205 226		10 21	< 0.2 1.8	1.71	4870 >10000	< 10 < 10		< 0.5 < 0.5	6 < 2		< 0.5 < 0.5	8 10	126 65	4	2.23 3.25	< 10 < 10	< 1 < 1	0.09 0.13	< 10 < 10
																			110	

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

x EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page Nu r :1-B Total Pages :1 Certificate Date: 25-JUL-2001 Invoice No. :10120655 P.O. Number :RFM01-11 Account :EIA

Project : BILL

Comments: ATTN: STEWART HARRIS CC: D. CAULFIELD

										CE	RTIFI			YSIS		40120	655	
SAMPLE	PREP CODE	Ng %	Mn ppm	No ppn	Na %	Ni ppm	b đ	Pb ppm	5 %	Sb ppm	Sc pp	Sr T ppm	i Tl % ppm	U ppm	V Naje	W	Zn ppm	
134153 134154 134155 134156 134156 134157	205 226 205 294 205 226 205 226 205 226 205 226	3.07 2.60 2.82 2.88 2.47	1060 465 485 510 405	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.02 0.02 0.03 0.01	38 3 9 9 4	320 780 850 750 710	2 2 2 10 8	0.08 0.32 0.32 0.19 0.21	6 2 4 < 2 5	14 7 10 11 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 17 47 41 17	< 10 < 10 < 10 < 10 < 10 < 10	36 80 70 84 138	
134158 134159 134160 134161 134162	205 226 205 294 205 226 205 226 205 226 205 226	2.68 0.96 0.57 3.52 1.01	510 780 755 1255 665	1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.03 0.03 0.03	3 9 9 47 10	1010 310 150 950 420	2 8 12 < 2 12	0.17 1.49 1.36 0.12 2.06	4 < 2 < 2 2 < 2	6 3 2 19 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 17 6 137 16	< 10 < 10 < 10 < 10 < 10 < 10	102 66 114 58 50	
134163 134164 134165 134166	205 226 205 226 205 226 205 226 205 226	4.59 4.40 2.43 1.58	1870 1285 875 1430	< 1 < 1 < 1 < 1	0.01 0.03 0.02 0.01	47 50 16 1	920 910 370 360	178 6 4 4	1.81 0.16 0.38 1.51	74 14 2 2	16 21 5 3	169 < 0.0 169 0.0 74 < 0.0 132 < 0.0	3 < 10 1 < 10	< 10 < 10 < 10 < 10	85 136 38 5	< 10 < 10 < 10 < 50	144 162 32 10	
											_					()	,10	- 1

CERTIFICATION:

272526

272527

272528

272529 272530 560701

560702

560703

205 226

205 226

205 226

205 226

205 226

205 226

205 226

205 226

205 226

4700 -----

3590 -----

1405 -----

80 -----

5 -----

5 ----

315 -----

155 -----

485 -----

4.4

0.2

0.6

4.2

0.6

0.4

< 0.2

< 0.2

< 0.2

0.16

1.89

1.78

1.57

0.75

1.31

1.68

0.68

0.35

910

18

92

10

82

86

18

18

5750

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

30

70

70

30

30

40

20

50

100

< 0.5

0.5

0.5

0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

2

2

4

4

6

< 2

< 2

< 2

126

0.01

3.05

0.19

1.74

0.05

0.02

0.15

0.68

 \mathbf{S} hemex Aurora Laboratory Services Ltd.

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 # EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page Nu . (. **:1-A** Total Pages :2 Certificate Date: 25-JUL-2001 Invoice No. :10120656 P.O. Number : RFM01-11 Account :EIA

Project : BILL Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

·	_ <u></u>	1							CE		ICATE	OF A	NAL	YSIS		A0120	656		
SAMPLE	PREP CODE			λg λ pm 9		B ppm	Ba ppm	Be ppm	Bi ppm	Ca %		Co	Cr ppm	Cu ppm	Fo %	Ga ppm	iig ppm	_	La ppm
51065	205 226	1470	0	.6 0.63	>10000	< 10	40												
51066	205 226		-	.0 0.04		< 10	80	< 0.5	< 2	4.96		10	27	5	3.63	< 10	1	0.14	< 10
51067	205 226		-	6 0.0				< 0.5	< 2	0.30		1	127	29	1.39	< 10	1	0.02	< 10
51068	205 226		-			< 10	270	< 0.5	< 2	0.03		< 1	125	10	1.35	< 10	< 1	0.03	< 10
51069	205 226		-			< 10	< 10	< 0.5	< 2	0.01		3	64	110	9.08	< 10	< 1		< 10
		233		.v v.s.	48	< 10	50	< 0.5	4	0.03	< 0.5	1	138	160	6.76	< 10	< 1		< 10
51070	205 226			4 0.20	5 162	< 10	50	< 0.5	2	0.03	< 0.5	1	126	108	7.30				·
51071	205 226			.2 0.11	L 22	< 10	180	< 0.5	< 2	0.01		< 1	95			< 10	< 1		< 10
272501	205 226		6.	.0 0.39	>10000	< 10	30	0.5	< 2	3.06		8	33	10	2.02	< 10	< 1		< 10
272502	205 226			.8 0.30) 3950	< 10	100	< 0.5	2	0.37				42	7.26	< 10	< 1		< 10
272503	205 226	>10000 10	.26 0	.8 0.09		< 10	330	< 0.5	2	0.04		1	42	34	3.00	< 10	< 1		< 10
L			· .							0.04	× v.5	1	145	3	1.43	< 10	< 1	0.04	< 10
272504	205 226					< 10	70	< 0.5	< 2	< 0.01	< 0.5	1	38	3	1 1 7	. 10			
272505	205 226			.2 0.31	1345	< 10	50	0.5	< 2	0.11	0.5	12	15	-	1.17	< 10	< 1		10
272506	205 226		< 0.	.2 0.02	28	< 10	< 10	< 0.5	< 2	13.55	2.0	1	3	167	12.00	< 10	< 1		< 10
272507	205 226		< 0,	.2 0.25	5 18	< 10	30	< 0.5	< 2	0.08		5	125	6	7.99	< 10	1	0.01	< 10
272508	205 226	< 5	< 0.	2 0.81	L 10	< 10	30	< 0.5	< 2	0.15		9	33	49	2.07 3.02	< 10 < 10	< 1 < 1		< 10
272509	205 226	10	< 0.	2 0.24											J + VA	- 10	、 I	0.05	< 10
272510	205 226					< 10	40	< 0.5	< 2	1.98	< 0.5	6	67	81	2.50	< 10	< 1	0.13	< 10
272511	205 226					< 10	40	< 0.5	< 2	1.87	< 0.5	7	52	48	2.74	< 10	< 1		< 10
272512	205 226					< 10	40	< 0.5	< 2	0.05		3	72	9	3.32	< 10	- < î		< 10
272513	205 226					< 10	140	0.5	< 2	2.30	< 0.5	10	19	350	4.86	< 10	- < i	0.30	< 10
	203 220	190	< 0.	2 0.11	. 510	< 10	30	< 0.5	4	3.86	0.5	23	56	9	6.59	< 10	< 1	0.07	< 10
272514	205 226	105	< 0.	2 0.85	1915	< 10	110	< 0.5	< 2	0.05									
272515	205 226	35				< 10	60	< 0.5	_			4	35	- 4	2.91	< 10	< 1	0.14	< 10
272516	205 226	215				< 10	40	< 0.5	< 2	0.76		4	108	12	1.79	< 10	< 1	0.04	< 10
272517	205 226	30				< 10			2	3.32	+	8	48	37	2.67	< 10	< 1	0.16	< 10
272518	205 226					< 10	20 50	< 0.5 < 0.5	< 2	8.94	< 0.5	5	31	33	4.99	< 10	2		< 10
						~ 1V	50	< 0.5	< 2	3.87	< 0.5	5	94	3	3.23	< 10	< 1		< 10
272519	205 226			0 0.10	76	< 10	30	< 0.5	< 2	8.03	>500	9	< 1	620	6.44				
272520	205 226			0 0.18	2190	< 10	60	< 0.5	< 2	0.04	3.0	8	50	632	6.44	< 10	31		< 10
272521	205 226			6 0.06	684	< 10	10	< 0.5	2	7.50	4.5	22	34	583	6.90	< 10	< 1	0.16	< 10
272522	205 226			8 0.15	536	< 10	10	< 0.5	< 2	0.46	< 0.5			99	9.67	< 10	< 1	0.04	< 10
272523	205 226	6620	1.	4 0.07		< 10	20	< 0.5	< 2	2.65	< 0.5	5	66	192	3.65	< 10	< 1	0.05	< 10
		 							<u> </u>	A.03	× v.a	2	80	14	6.28	< 10	< 1	0.05	< 10
272524	205 226			8 < 0.01		< 10	30	0.5	8	0.28	0.5	< 1	9	1915	13.55	- 10		·	
272525	205 226	4700	- 4	4 0 1 6	010		**		2					A713	+3.33	< 10	< 1	< 0.01	< 10

CERTIFICATION:

110

121

13

51

60

43

81

123

126

2.85

4.76

6.92

8.14

5.65

6.60

1.22

2.45

11.25

42

442

110

731

221

420

201

17

4

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 1 < 0.01

0.12

0.26

0.12

0.19

0.14

0.08

0.12

p.04

< 1 _0.05

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

ac

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

1.51 < 0.5

0.5

1.0

3

25

17

16

4

9

5

3

5

272529

272530

560701

560702

560703

205 226

205 226

205 226

205 226

205 226

0.60

0.63

1.16

0.40

0.45

60

145

145

270

520

6

< 1 0.01

< 1 < 0.01

< 1 < 0.01

10

0.07

0.03

7

13

7

7

14

710

500

200

260

340

10

2

26

2

< 2

0.98

0.08

4.93

0.01

0.05

6

6

4

28

< 2

•

e

٩.

S Chemex Д Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page Nu. :1-1 Total Pages :2 . :1-B Certificate Date: 25-JUL-2001 Invoice No. : I0120656 P.O. Number : RFM01-11 Account :EIA

Project : BILL Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

·		•								CE	RTIF		F A	NAL	/SIS		4012	0656	
SAMPLE	PREP CODE	Ng %	Mn ppm	No ppm	Na %	Ni ppm	P DDM	Pb ppn	8	Sb ppm	Sc pp	Sr ppn	Ti %	T1 ppm	U ppm	V P pm	W pym	2n ppm	
51065	205 226		1640	< 1	0.01	18	770	< 2	2.62	12	3	250 < 0.	01	< 10	< 10	7	< 10	< 2	
51066	205 226		670	< 1	0.01	4	10	48	0.20	22	< 1	18 < 0.		< 10	< 10	< 1	< 10	18	
51067	205 226		80	< 1	0.01	3	10	8	0.30	4	< 1	31 < 0.		< 10	< 10	< 1	< 10	10	
51068	205 226		85	13	0.01	3	190	2	0.04		< 1	2 0.		< 10	< 10	9	< 10	14	
51069	205 226	0.01	25	2	0.02	4	750	4	0.17	< 2	3	6 < 0.		< 10	< 10	15	< 10	4	
51070	205 226	0.01	35	14	0.03	2	920	4	0.26	< 2	4	11 < 0.	01	< 10	< 10	28	< 10	2	- .
51071	205 226	0.01	5	6	0.05	3	140	2	0.60	< 2	< 1	11 < 0.		< 10	< 10	8	< 10	< 2	
272501	205 226	0.13	465	< 1	0.02	3	2720	66	6.55	10	2	180 < 0.		< 10	< 10	5	< 10	10	
272502	205 226	0.03	200	2	0.03	1	1770	20	0.50	18	ĩ	44 < 0.		< 10	< 10	3	< 10	6	
272503	205 226	< 0.01	155	< 1	0.01	3	30	2	0.14	2	< 1	17 < 0.		< 10	< 10	1	< 10	2	
272504	205 226		10	< 1	0.14	1	90	6	0.49	2	< 1	11 < 0.	01	< 10	< 10	1	< 10	< 2	
272505	205 226		200	< 1	0.15	6	980	38	0.41	4	3	132 < 0.		< 10	< 10	ĝ	< 10	< 2	
272506	205 226		5880	< 1	0.02	< 1	170	< 2	0.29	10	ī	95 < 0.		< 10	10	1	< 10	< 2	
272507	205 226		670	< 1	0.01	5	90	8	0.05	< 2	3	8 < 0.		< 10	< 10	9	< 10	52	
272506	205 226	0.37	565	< 1	0.03	5	470	< 2 -	< 0.01	2	6	13 < 0.		< 10	< 10	24	< 10	64	
272509	205 226		680	< 1	0.01	10	350	< 2	0.01	8	1	44 < 0.	01	< 10	< 10	7	< 10	30	
272510	205 226		445	< 1	0.02	9	460	< 2	0.05	- Ā	1	58 < 0.		< 10	< 10	14	< 10	50	
272511	205 226		30	1	0.04	2	510	6	0.49	< 2	1	16 < 0.		< 10	< 10	6	< 10	< 2	
272512	205 226		960	< 1	0.02	3	2760	< 2	0.49	2	5	121 < 0.		< 10	< 10	6	< 10	26	
272513	205 226	1.71	1395	< 1	0.02	38	190	4	3.27	< 2	6	92 < 0.		< 10	< 10	10	< 10	< 2	
272514	205 226		285	< 1	0.01	3	350	6	0.65	2	2	5 < 0.	01	< 10	< 10		< 10	20	
272515	205 226		650	< 1	0.03	4	380	2	0.02	6	4	28 < 0.	01	< 10	< 10	2	< 10	28	
272516	205 226		1135	< 1	0.01	10	650	2	1.34	6	3	133 < 0.		< 10	< 10	5	< 10	2	
272517	205 226		4110	< 1	0.01	6	510	22	0.24	4	8	81 < 0.		< 10	< 10	19	< 10	24	
272518	205 226	1.29	1235	< 1	0.01	5	130	< 2	0.12	2	4	43 < 0.		< 10	< 10	5	< 10		
272519	205 226	2.80	3580	< 1	0.01	13	450	>10000	2.60	550	1	121 < 0.	01	< 10	< 10	1	30	>10000	
272520	205 226		75	< 1	0.01	6	180	102	1.86	628	ī	12 < 0.		< 10	< 10	i	10		
272521	205 226	2.01	2210	< 1 <	< 0.01	23	110	44	5.18	14	5	87 < 0.		< 10	< 10	- 11	< 10		
272522	205 226		240	1	0.04	7	360	4	2.27	26	3	14 < 0.		< 10	< 10		< 10		
272523	205 226	1.32	1420	< 1 -	< 0.01	3	130	66	4.03	54	ī	126 < 0.		< 10	< 10	< 1	< 10		
272524	205 226		4560	1 .	< 0.01	B	40	14	1.68	22	1	285 < 0.	01	< 10	< 10	1	< 10	90	·
272525	205 226		30	< 1 -	< 0.01	3	50	30	1.92	70	< ī	10 < 0.		< 10	< 10	3	< 10		
272526	205 226		865	< 1	0.02	59	1380	< 2	1.17	4	20	44 < 0.		< 10	< 10	87	< 10		
272527	205 226		310	3	0.04	12	1520	< 2	0.09	6	11	18 < 0.		< 10	< 10	199	< 10		
272528	205 226	1.68	565	58	0.02	19	1120	< 2	1.80	6	14		06	< 10	< 10	164	20		

CERTIFICATION:

< 10

< 10

< 10

< 10

< 10

138

60

6

7

16

10

< 10

< 10

< 10

< 10 \

26

22

62

40

58

広切び

0.12

4 < 0.01

8 < 0.01

41 < 0.01

34 < 0.01

< 10

< 10

< 10

< 10

< 10

10

6

8

1

1

3

ALS Chemex

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8 Page NL : :2-A Total Pages :2 Certificate Date: 25-JUL-2001 Invoice No. : I0120658 P.O. Number : BFM01-11 Account : EIA

π ~[™] π

Ŧ

٩

* 1

Project : BILL Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

											CE	RTIF		OF A	NAL	/SIS		A0120	656		
SAMPLE	PREI		λυ ppb Fλ+λλ	λu Fλ g/t	λg ppm	A1 %	λs ppm	B Dom	Ba Pjm	Be ppm	Bi ppm	Ca %	Cđ PP	Co ppm	Ĉr ppm	Cu ppm	Pe K	Ga ppm	Hg ppm	X %	La ppm
560704 560705	205 205	226 226	25 230		< 0.2 < 0.2	0.40 0.12	8 10	< 10 < 10	10 130	< 0.5 < 0.5	< 2 < 2	0.01 0.07	< 0.5 < 0.5	5 4	50 108	77 36	4.37 2.38	< 10 < 10	< 1 < 1	0.09 0.18	< 10 < 10
																		·			
																		()		10	

CERTIFICATION:_

hemex S μ Aurora Laboratory Services Ltd.

17

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 A EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page Nu 7 :2-B Total Pages :2 Certificate Date: 25-JUL-2001 Invoice No. : 10120656 P.O. Number : RFM01-11 Account :EIA

- P - C - N

٦

* *

Project : BILL

Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

									•	CERTIFICATE OF AN						YSIS		A0120	656	
SAMPLE	PR CO	DE	Ng %	Mn ppm	Mo 1711m	Na %	Ni ppm	P ppm	Pb pp	S %	Sb ppm	Sc ppn	Sr D D M	Ti %	Tl ppm	U Maria	V ppm	W ppm	Zn ppm	
560704 560705	205	226	0.08	35 80	15 93	0.01 0.01	63	240 580		0.03	< 2 2	1	< 1 < 0 12 < 0		< 10 < 10	< 10 < 10	14 11	< 10 50	38 6	
																		()	- ()	

ALS Chemex

•*

7

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 # EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Project : RFM01-11 Comments: ATTN: HENRY AWMACK Page NL 7 :1-A Total Pages :1 Certificate Date: 24-JUL-2001 Invoice No. : I0120696 P.O. Number : Account : EIA

- **1**9

1

r			- <u>-</u>						CE	RTIFI	CATE	OF A	NAL	YSIS		0120	696		<u></u>		
SAMPLE			ли ррб Гл+лл	Ag ppm	а1 %	λs ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	አ	La ppm	Mg %
051072 051073 272531 560706 560707	205 205 205	226 226 226 226 226 226	<pre>< 5 15 170</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.13 0.15 0.07 0.04 0.39	14 6 30 12 < 2	< 10 < 10 < 10 < 10 < 10 < 10	60 10 430	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.01 1.62 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 1 26 < 1	104 105 89 129 36	19 5 1 1040 5	3.02 0.80 1.13 1.84 1.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.11 0.01 < 0.01 0.01	< 10	0.01 < 0.01 0.76 < 0.01 0.04
							<u></u>			<u> </u>								_()	1	1.	

CERTIFICATION:

H 1 19

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **J: EQUITY ENGINEERING LTD.**

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 108

Project : RFM01-11 Comments: ATTN: HENRY AWMACK Page NL r :1-B Total Pages :1 Certificate Date: 24-JUL-2001 Invoice No. :10120696 P.O. Nymber : Account :EIA

1

	- <u>1</u>					_					CE	RTIFIC	CATE	OF A	NAL	/SIS	4	0120696	
SAMPLE	PRI COI		Mn ppm	Mo ppm	Na %	Ni ppm	P jojan	Pb ppm	s %	Sp Mar	ŝc ppm	Sr ppm	Tİ X	T1 ppm	U ppm	V ppm	¥ Ppm	Zn ppm	
051072 051073 272531 560706 560707	205 205 205	226 226 226 226 226 226	530 70	1 6 < 1 3 1	0.02 0.01 0.04 0.01 0.04	8 4 5 7 3	200 100 100 10 90	2 < 2 < 2 2 2 < 2	0.10 0.09 0.21 0.24 < 0.01	80 36 4 2 < 2	< 1 < 1 2 < 1 2	7 < 22 < 17 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	2 2 5 6 4	< 10 < 10 < 10 < 10 < 10 < 10	16 < 2 < 2 < 2 < 2 < 2 < 2	
			-																
																<u> </u>		$\left(\right) \frac{1}{\theta}$	10

1111

ALS

¥ ...

1

13

٣~

ALS Chemex

 \mathbf{F}_{i}

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

EQUITY ENGINEERING LTD.

1

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

۰,

÷.,

.

Page NL 7 :1-A Total Pages :1 Certificate Date: 08-AUG-2001 Involce No. : I0121703 P.O. Number : RFM01-11 Account : EIA

1 1

۰.

٦

۰.

Project : BILL Comments: ATTN: H. AWMACK CC: D. CAULFIELD

SAMPLE (CE	RTIF		OF A	NAL	rsis		A0121	703		
SAMPLE	PREP CODE	Weight Kg	λи ppb Fλ+λλ	λg ppm	А1 *	λs ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %		Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
272534 272535	94139402	2.05	< 5 < 5	< 0.2 < 0.2	0.17 0.30	2 2 2	< 10 < 10	110 60	< 0.5 < 0.5	< 2 4	0.21	< 0.5 < 0.5	< 1 4	58 78	10 12	1.19	< 10 < 10	<1 <1	0.04	10 10
																	()		,	

....

hemex S AI Aurora Laboratory Services Ltd.

1 ٦,

1

۰. 1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

*

Г

Page Nu. :1-B Total Pages :1 Certificate Date: 08-AUG-2001 Involce No. :10121703 P.O. Number :RFM01-11 Account :EIA

.**₽**1.55

1

r. ٦,

N

*

Project : BILL Comments: ATTN: H. AWMACK CC: D. CAULFIELD

	- r									CE	RTIFI	CATE	OF A	NAL	YSIS	/	\0121	703	
SAMPLE	PREP CODE	Ng %	Mn ppm	Mo ppm	Na %	Ni Mqq	P ppm	Pb ppm	8	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	D Mađđ	V jojan	W	Zn ppn	
172535	94139402 94139402	0.01	210 125	< 1 2	0.07	< 1 2	90 70	8 × 2 × 1	0.01	2 < 2	32	- 6 <	0.01	< 10 < 10	< 10 < 10	2 3	< 10 < 10	6 2	
																	()?	

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

CERTIFICATE

A0121401

(EIA) - EQUITY ENGINEERING LTD.

Project: BILL P.O. # : RFM01-11

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-AUG-2001.

METHOD NUMBER CODE SAMPLES DESCRIPTION 3288 4 Ring 1000 g to approx -150 me 234 4 0-7 Kg splitting charge 3205 4 IKg sieve to -150 mesh
234 4 0-7 Kg splitting charge

a EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

A0121401

Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

ANALYTICAL PROCEDURES METHOD NUMBER UPPER DETECTION CODE SAMPLES LIMIT DESCRIPTION METHOD LIMIT Au-SCR23 4 Au g/t: Total, metallics calc. FA-AAS/GRAV 0.07 1500.00 Au-GRA21 Au- g/t: double metallics calc. FA-AAS/GRAV 0.07 1500.00 4 887 Au+ mg: Metallics calculation FA-AAS/GRAV 4 0.002 50.000 889 Weight- g: Metallics calculation BALANCE 10000 4 - 1 888 Weight+ g: Netallics calculation BALANCE 200.0 4 0.01 Au-GRA21 Au g/t: 30 gram (double met.) 4 FA-GRAVINETRIC 0.07 1500.0 Au-GRA21 Au g/t: 30 gram (double mat.) 4 FA-GRAVINETRIC 0.07 1500.0

1 N -.

. 113

hemex

•

3

٠

٠.

٦

.

. • ٦ ,

10

1

3

Aurora Laboratory Services Ltd. Analytical Chemista * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY ENGINEERING LTD.

e '

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

٦.

Page Nu. :1 Total Pages :1 Certificate Date: 10-AUG-2001 Invoice No. :10121401 P.O. Number : RFM01-11 Account :EIA

Project : BILL Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

CERTIFICATE OF ANALYSIS A0121401

	r		· · · · · · · · · · · · · · · · · · ·		, <u>L</u>				121401	
SAMPLE	PREP CODE		Au-avg g/t	Au + mg	Wt - grams	Wt + grams	Au -(1) g/t	Au -(2) g/t		
134163 RE 134166 RE 272503 RE 272523 RE	3288 23 3288 23 3288 23 3288 23 3288 23	4 9.28	12.00 9.19 5.60 8.84	4.450 0.032 0.976 2.370	312 100 681 517	7.84 2.40 18.77 9.03	11.91 9.28 5.46 8.43	12.09 9.09 5.75	 	
						3.03	0.43	9.25		
				:						
RERUNS from A0120656				· · · · · · · · · · · · · · · · · · ·		L	لــــــــــــــــــــــــــــــــــــ	ERTIFICATION	· · ·	
										Ì

ר

٦.

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

1

18 10 N 18 1 18 1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: EQUITY ENGINEERIN	IG LTD.
----------------------	---------

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

A0121014

· · · •

Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

CERT	FICA	TE A0121014				ROCEDUR	ES	
et: BiLL		ERING LTD.	METHOD CODE	NUMBER	DESCRIPTION	METHÖD		UPPEF LIMIT
les submi	tted to	o our lab in Vancouver, BC. hted on 24-JUL-2001.	λg-λλ4 6 Pb-λλ4 6 Zn-λλ4 6	1	Ag g/t: Conc. Nitric HCl dig'n Pb %: Conc. Nitric-HCl dig'n Zn %: Conc. Nitric-HCl dig'n	аль Аль Аль	1 0.01 0.01	1500 50.0 50.0
SA	MPLE	PREPARATION						
METHOD CODE	NUMBER SAMPLES	DESCRIPTION						
212	2	Overlimit pulp, to be found						
]	<u>) </u>		····.	

٦

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

10 0° N

,

3 1

•

.

٦,

.

•

3 EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 108 Page Nu. r :1 Total Pages :1 Certificate Date: 24-JUL-2001 Invoice No. : 10121014 P.O. Number : RFM01-11 Account : EIA

Project : BILL Comments: ATTN: 9

Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

CERTIFICATE OF ANALYSIS A0121014 PREP Ag Pb Zπ SAMPLE CODE g/t % %∖ 272519 212 ___ ----1.28 18.55 272520 212 --142 ------- l^{j} \ / + 1 CERTIFICATION: - N. 4 OVERLIMITS from A0120656

. ٦

r ~~

r -

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1

1.1

• ٩. .

٦

EQUITY ENGINEERING LTD.

X - X - X - X

1 C

700 - 700 W, PENDER ST. VANCOUVER, BC V6C 1G8

A0121399

.

٦

Ξ.

۶

Comments: ATTN: STEWART HARRIS CC: D. CAULFIELD

.

•

.

•

,

CERT	IFICA [.]	TE A0121399			ANALYTICAL PF	OCEDUR	ES	
EIA) - EQUITY I Project: BILL P.O. # : RFM	ENGINE	ERING LTD.	METHOD	NUMBER	DESCRIPTION	METHÓD	DETECTION	upper Limit
amples submi	tted to	o our lab in Vancouver, BC. nted on 31-JUL-2001.	As-274	5 2	As %: Conc. Nitric-HCl digestion	аля С	0.01	30.0
SA	MPLE	PREPARATION						
METHOD CODE	NUMBER SAMPLES	DESCRIPTION						
212	2	Overlimit pulp, to be found						
		<u> </u>						

ALS

e 1 -

Ŋ.

ŗ...

.

** ** m

ALS Chemex

1 T.

7

Analytical Chemists * Geochemists * Registered Assayers

1 N P

- 11 Ma

+

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 3: EQUITY ENGINEERING LTD.

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

, 1

Page Ni. r :1 Total Pages :1 Certificate Date: 31-JUL-2001 Invoice No. :10121399 P.O. Number : RFM01-11 Account : EIA

r · · · ·

- **1**

~**1**

.....

*

Project : BILL Comments: ATTN: STEWART HARRIS CC: D. CAULFIELD

•

CERTIFICATE OF ANALYSIS A0121399 PREP λs SAMPLE CODE % 134163 212 ~~ 2.83 134166 212 --0.99 \bar{D} . . 1 CERTIFICATION:

OVERLIMITS from A0120655

.

J

1-7

S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

1

1---1

1 11 1 1 1 1 1

*1 ٦,

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EQUITY ENGINEERING LTD.

(3) P.7 (3)

700 - 700 W. PENDER ST. VANCOUVER, BC V6C 1G8

Page NL at :1 Total Pages :1 Certificate Date: 31-JUL-2001 Invoice No. :10121400 P.O. Number : RFM01-11 Account :EIA

Project : BILL

.

Comments: ATTN: STEWART HARRIS CC:D.CAULFIELD

.

CERTIFICATE OF ANALYSIS A0121400 PREP λs SAMPLE CODE % 51065 212 --212 --212 --1.51 272501 1.86 272523 5.52 ÷ 1 1 9 ÷ • 7 CERTIFICATION: OVERLIMITS from A0120656 1

APPENDIX F

QUALITY CONTROL / QUALITY ASSURANCE

QUALITY CONTROL / QUALITY ASSURANCE

I. Chain of Custody

All samples were packed in rice sacks and sealed with uniquely-numbered non-resealable security straps. Rice sacks were trucked from Prince George via BTS to ALS Chemex Labs in North Vancouver. ALS Chemex reported that all bags were received in good condition, with all security straps intact, and with no evidence of tampering.

II. Field Duplicates

Field duplicates are the collection and analysis of two separate samples from the same field location. They are used to measure the reproducibility of sampling, which includes both laboratory variation and sample variation.

A total of six sets of field duplicate soil samples were collected (approximately every 20th sample location) and submitted for analysis. At a precision level of 20%, all elements of interest except Au show variabilities that lie within the 90th percentile confidence level (Figure 1). Au is consistent with a 40% level of precision; Figure 2 shows that only one sample exceeds the 90th percentile confidence level and that the probability of this occurrence is 71.8%.

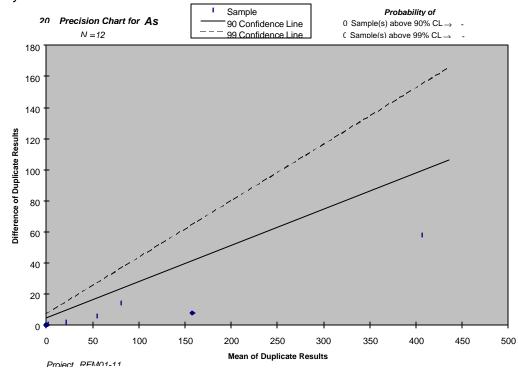


Figure 1: Graph illustrating Thompson and Howarth estimation of analytical precision, method two. The data points represent duplicate pairs, the solid line represents the 90^{th} percentile of the population, and the dashed line the 99^{th} percentile of the population (n=6 duplicate pairs). In this instance, the precision was set at 20%, and at this level within the given dataset, no samples fall above the 90^{th} percentile line.

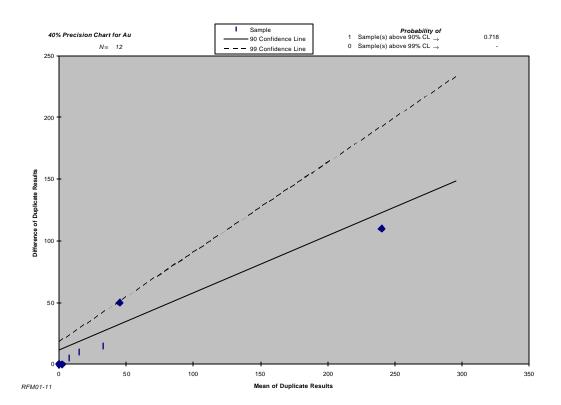


Figure 2: Graph illustrating Thompson and Howarth estimation of analytical precision, method two. The data points represent duplicate pairs, the solid line represents the 90th percentile of the population, and the dashed line the 99th percentile of the population (n=6 duplicate pairs). In this instance, the precision was set at 40%, and at this level within the given dataset, one sample falls above the 90th percentile line. From the binomial probability it can be read that at 40% precision, the probability of 1 sample falling above the 90th percentile is 71.8%.

III. Metallic (Screen) Assays

Reject portions of the four rock and core samples exceeding 5,000 ppb Au in initial geochemical analysis (all taken from the T-Bill prospect) were subjected to metallic assaying to determine whether coarse particulate gold is present and under-reported by conventional sample preparation. Particulate gold is malleable and flattened during the pulverization process; with the standard sample preparation, any coarse gold left on the screens is disregarded. With metallic assaying, the coarse gold contribution (+ Fraction) is added to the assay for the material passing the 150 mesh screen (- Fraction), giving a truer estimate for the total gold content. The following table shows that three samples (134163, 272503 and 272523) contained a significant amount of particulate gold, causing a 22-113% increase in grade. Comparison of the minus fraction assays for initial and reject samples demonstrates a high variability (12-88%) in grade between the two splits.

Sample	Initial San	nple Split	Reject	Sample Split	(Metallic As	say)	Difference
	Geochem (ppb)	 Fraction Assay (g/tonne) 	+ Fraction Gold (mg)	 Fraction Assay (g/tonne) 	Total Grade (g/tonne)	Increase in Grade ¹	between Splits
134163	>10000	22.55	4.45	12.00	25.60	113%	88%
134166	>10000	10.31	0.03	9.19	9.28	10%	12%
272503	>10000	10.26	0.98	5.61	6.85	22%	55%
272523	6620	N/A	2.37	8.73	13.20	51%	32%

¹For the metallic assays, total assay relative to the minus fraction assay

²Percent difference between minus fraction assays for the initial and reject splits (for 272523, the geochemical value was used for the initial split)

IV. Conclusions

1. There was no tampering with the samples between collection and laboratory.

2. Field duplicates for soil samples exhibit a high degree of reproducibility with most elements

reproducible at 20% precision. Au is reproducible at an acceptable 40% level of precision.

- 3. Particulate gold is common in high-grade rock and core samples from the T-Bill prospect. Since previous assaying of drill core did not employ metallic assays, it is very likely that gold contents were under-reported for core intersections.
- 4. All samples exceeding 5,000 ppb Au should be tested by metallic (screen) assaying of the reject.
- 5. The "nugget effect" (high variability between sample duplicates), generally caused by the presence of coarse gold, will be a concern in future evaluation of the T-Bill prospect.

APPENDIX G

CD-ROM

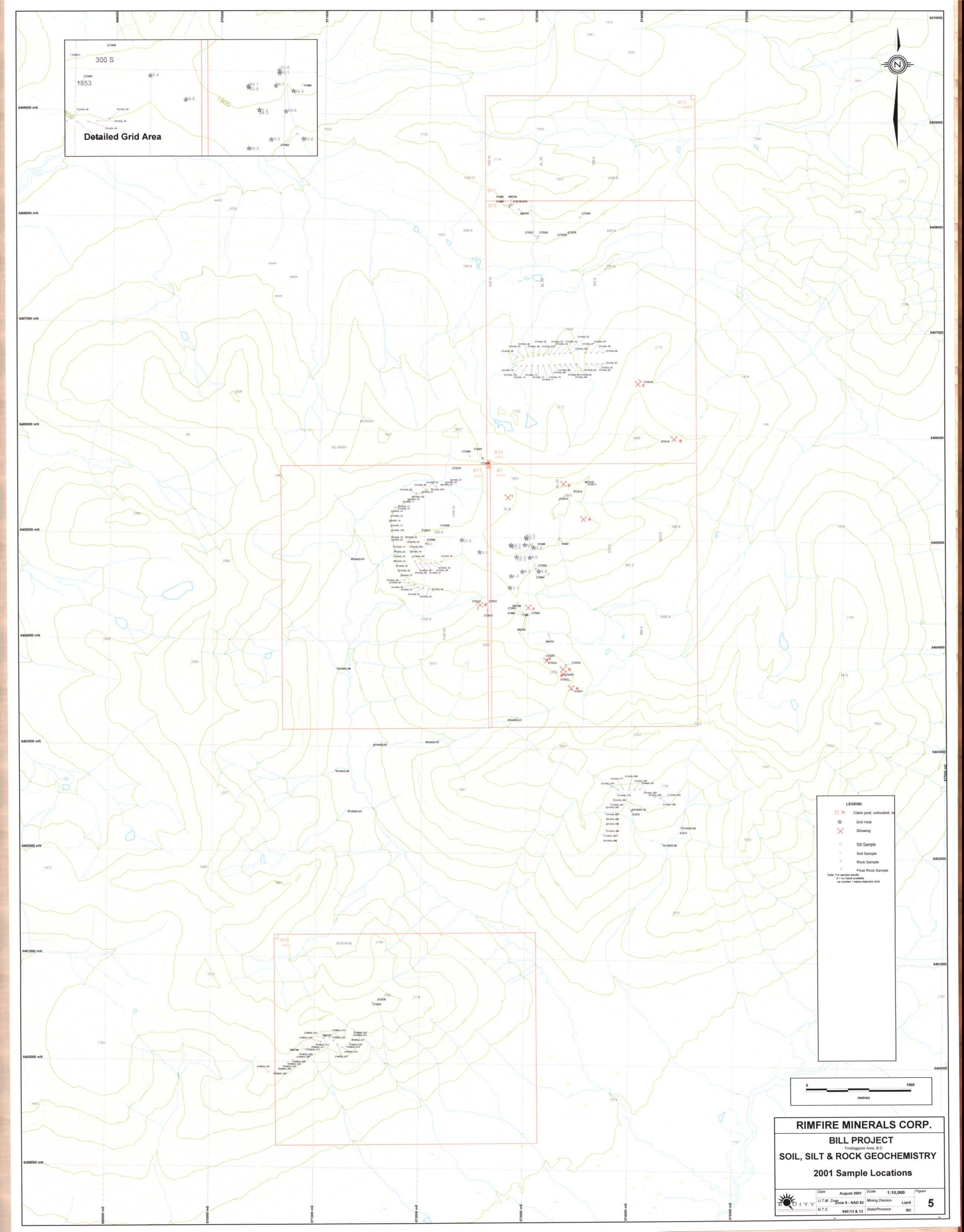
Report text, geochemical and drill databases, CAD files

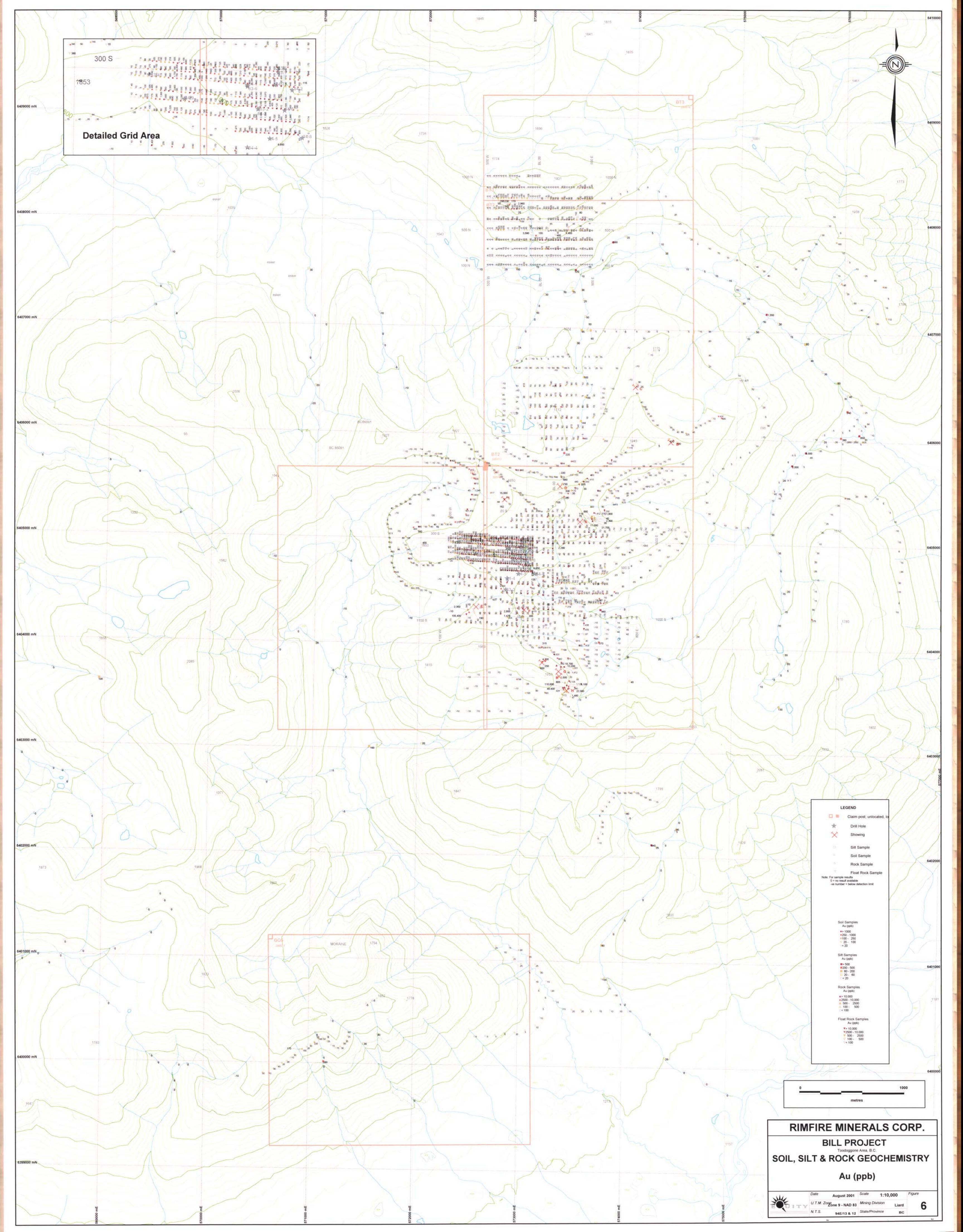
Directory	File Name	Information/Data Type	Data Source/Author	Area of Coverage	Years of Coverage	File Format
N/A	CD-Rom contents.doc	This appendix				Word
N/A	Bill 2001 assessment report.doc	2001 report text	H.J. Awmack	Bill property	2001	Word
N/A	RockSample Descriptions.pdf	Appendix C	Field notes	Bill property	2001	Adobe Acrobat 4.0
Geochem	Bill79-01 silt master.xls	all known silt analyses and locations	Cominco, Drown (1982), Eccles (1981), this report	Bill property	1979- 2001	Excel
Geochem	Bill79-01 soil master.xls	all nonoverlapping soil analyses and sample locations	Chemex, CDN and EcoTec certificates, assorted assessment reports, this report	Bill property	1980- 2001	Excel
Geochem	Bill84-01Rock Master.xls	surface rock analyses and sample locations	Paterson (1985), this report	Bill property	1984- 2001	Excel
Geochem	Bill83-01Core Master00.xls	1983-84 diamond drill sample analyses and interval	CDN certificates, Forbes and Drown (1984), Kowalchuk (1984), this report	Bill property	1983- 2001	Excel
Geochem	Core Summary.xls	1983-84 weighted averages	Bill83-01CoreMaster.xls	Bill property	1983- 2001	Excel
MapInfo		MapInfo tables and layouts for Figures 5-8		Bill property		MapInfo
ACAD		Autocad and Corel files for Figures 1-4		Bill property		Autocad
Plots	Bill01 Fig1.plt	BC location map		Bill property		plt/HP750C+
Plots	Bill01 Fig2.prn	claim map	BC claim maps, field notes	Bill property	2001	Corel/HP1220C
Plots	Bill01 Fig3.prn	regional geology map	Thorstad (1980)	Bill property	1980	Corel/HP1220C
Plots	Bill01 Fig4.plt	1-50,000 geology	M.J. Davies	Bill property	2001	plt/HP750C+
Plots	Bill01 Fig5.plt	1:10,000 sample locations	M.J. Davies	Bill property	2001	plt/HP750C+
Plots	Bill01 Fig6.plt	1:10,000 Au geochemistry	M.J. Davies	Bill property	1979- 2001	plt/HP750C+
Plots	Bill01 Fig7.plt	1:10,000 As geochemistry	M.J. Davies	Bill property	1979- 2001	plt/HP750C+
Plots	Bill01 Fig8.plt	1:10,000 Cu geochemistry	M.J. Davies	Bill property	1979- 2001	plt/HP750C+

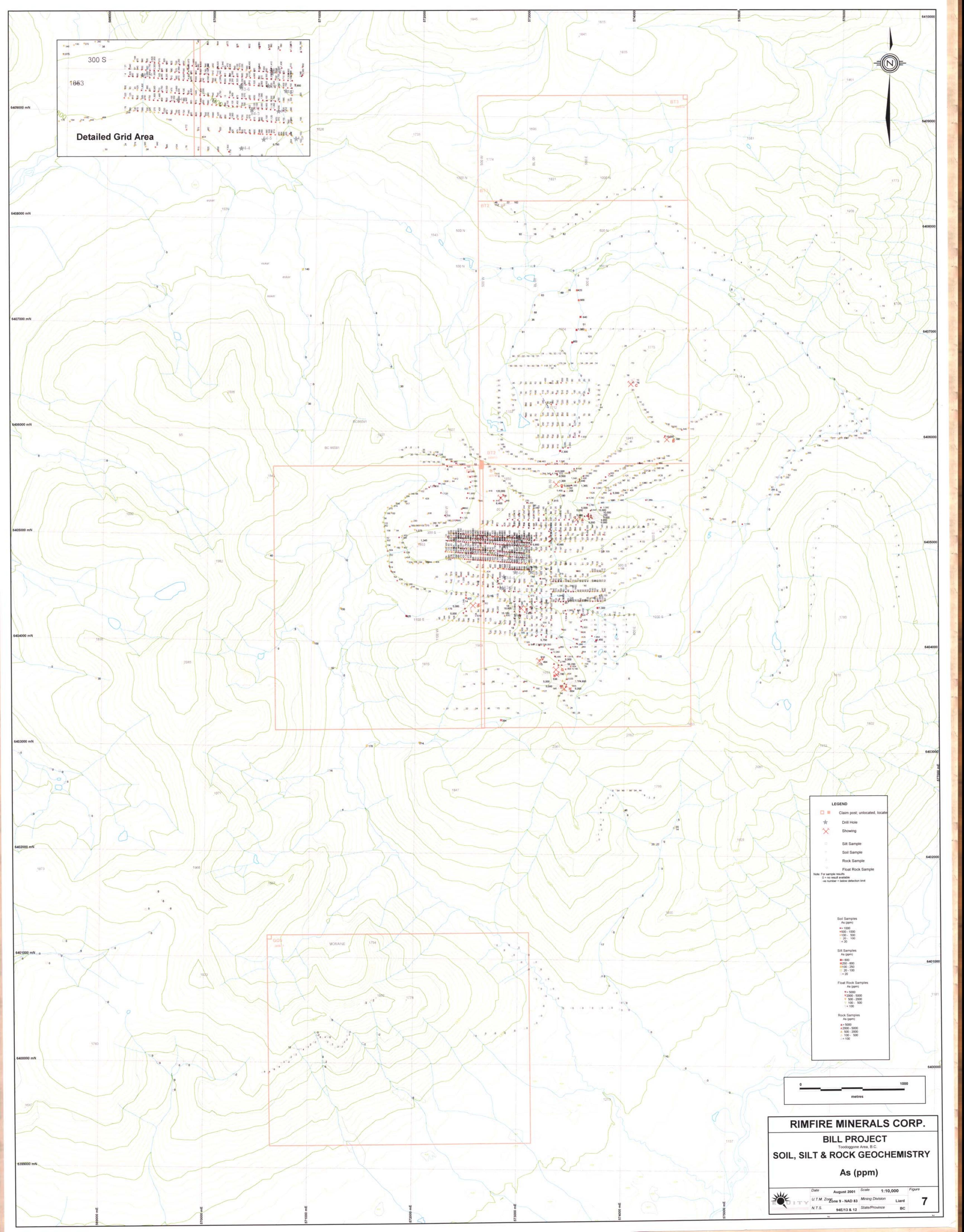
CONTENTS OF COMPACT DISC

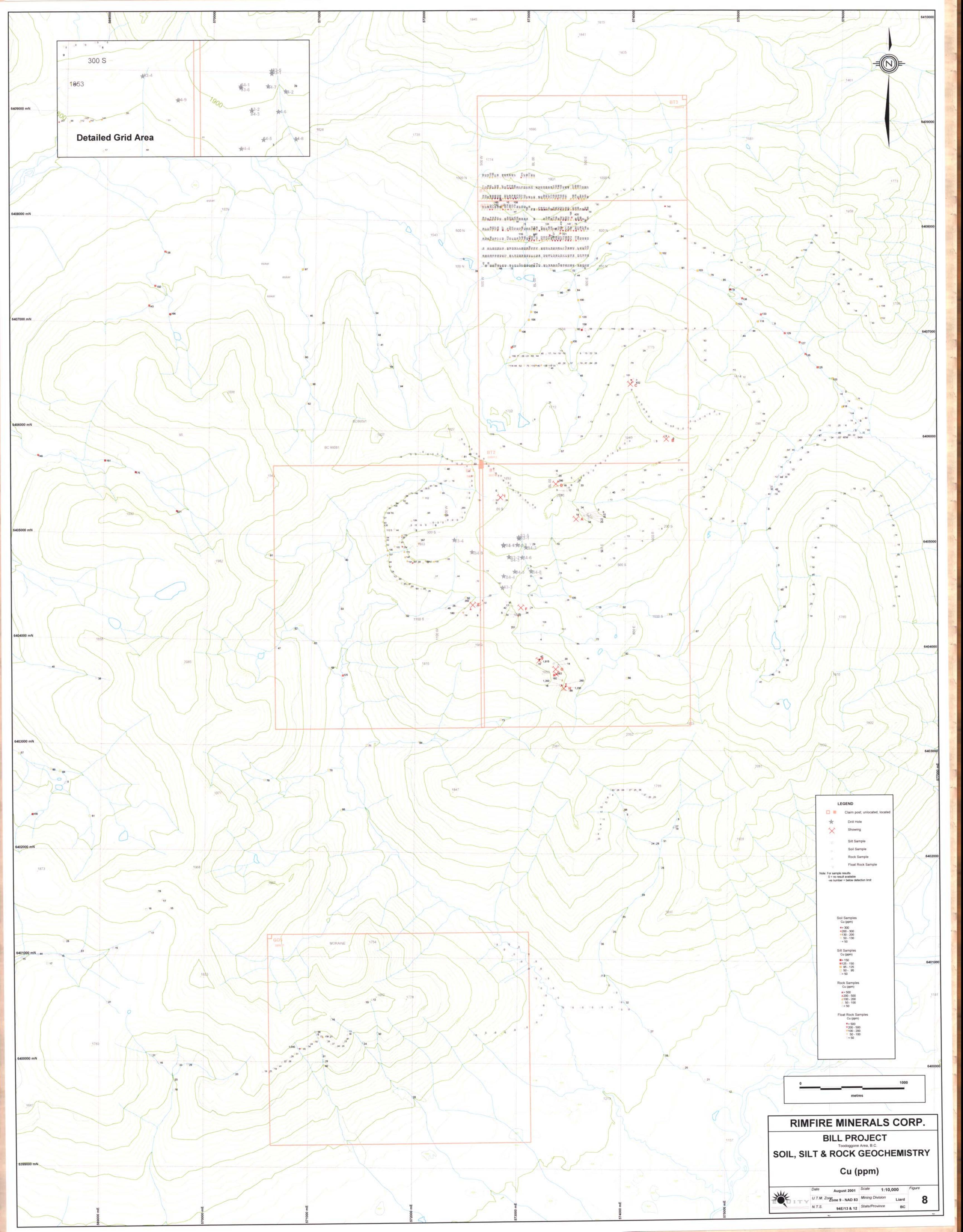
APPENDIX H

ENGINEER'S CERTIFICATE


ENGINEER'S CERTIFICATE


I, Henry J. Awmack, of 1735 Larch Street, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:


- 1. THAT I am a Consulting Geological Engineer with offices at Suite 700, 700 West Pender Street, Vancouver, British Columbia.
- 2. THAT I am a principal of Equity Engineering Ltd., a geological consulting and contracting firm.
- 3. THAT I am a graduate of the University of British Columbia with an Honours Bachelor of Applied Science degree in Geological Engineering.
- 4. THAT I am a Professional Engineer registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (#15,709).
- 5. THAT this report is based on fieldwork carried out by me or under my direction in July 2001, on publicly available reports and on historical data provided by previous operators of the Bill property. I have examined the property in the field.


DATED at Vancouver, British Columbia, this___day of _____, 2001.

Henry J. Awmack, P.Eng.

