

ASSESSMENT REPORT

ON THE

BROKEN HILL-LEO PROPERTY

NTS: 082M/14

Latitude: 51° 50' N Longitude: 119° 15' W

KAMLOOPS MINING DIVISION

AVOLA AREA

BRITISH COLUMBIA

FOR

CASSIDY GOLD CORPORATION 220-141 Victoria Street Kamloops,British Columbia V2C 1Z5

BY

Joseph Eugene Leopold Lindinger, P.Geo 879 McQueen Drive Kamloops, British Columbia V2B 7X8

GEOLOGICAL SURVEY BRANCH

EULUGICAL SUAVER FELLES

GEOCHEMICAL, GEOPHYSICAL AND DIAMORD DRILLING

ASSESSMENT REPORT

ON THE

BROKEN HILL-LEO PROPERTY

NTS: 082M/14

Latitude: 51° 50' N Longitude: 119° 15' W

KAMLOOPS MINING DIVISION

AVOLA AREA

BRITISH COLUMBIA

FOR

CASSIDY GOLD CORPORATION 220-141 Victoria Street Kamloops,British Columbia V2C 1Z5

BY

Joseph Eugene Leopold Lindinger, P.Geo 879 McQueen Drive Kamloops, British Columbia V2B 7X8

NOVEMBER 20, 2001

revised Feb. 24, 2002

~

-

TABLE OF CONTENTS

۶

	Page
SUMMARY	1
INTRODUCTION	3
LOCATION, ACCESS AND INFRASTRUCTURE	3
PHYSIOGRAPHY	3
PROPERTY	4
HISTORY	5
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	6
2000-2001 WORK PROGRAMS	9
SOIL GEOCHEMISTRY	9
ROCK GEOCHEMISTRY	9
GRAVITY SURVEY	10
DIAMOND DRILLING	10
RESULTS	10
DISCUSSION	17
CONCLUSIONS	18
RECOMMENDATIONS	21
SELECTED REFERENCES	23
LIST OF FIGURES	Following P

	LIST OF FIGURES	Following Page
Figure 1	Location Map	3
Figure 2	Topography and Access (1:50,000)	3
Figure 3	Claim Map (1:50,000)	4
Figure 4	Regional Geology	5
Figure 5	Preliminary Property Geology	6
Figure 6a	Index map	7
Figure 6b	Grid and Rock Sample Location Map - Vista-Navan area	back pocket
Figure 7-N.	Silver, Lead, Zing Geochemical Res Vista-Navan area	back pocket
Figure 7-S.	Silver, lead, Zinc Geochemical Res South Grid Ext Mike Area	i back pocket
Figure 7a	Zinc and lead soil results - Vista-Navan Arca	10
Figure 7b	Zinc and lead soil results - Mike Area	10
Figure 8	Drill Hole Location map	12
Figure 9A	Cross section A-A (Vista showing, BH-DDH 01-01, 01-02)	13
Figure 9B	Cross section B-B (BH-DDH 01-02, 01-12, 01-13)	13
Figure 9C	Cross section C-C (BH-DDH-01-03, 01-04)	13
Figure 9D	Cross section D-D (8350N) (BHDDH 01-09, 01-10, 01-11)	13
Figure 9E	Cross section E-E (7870N) (BHDDH 01-5)	13
Figure 9F	Cross section 7710N (BHDDH 01-07, 01-08)	13
Figure 9G	Cross section through Navan 1 showing and BHDDH 01-06	13
LIST OF TAB	LES	Following Page

LISI OF I	ADLC3	r onowing ra
Table 1	Diamond drill hole data	12
Table 2	Geological Legend - Broken Hill Project	13
Table 3	Expenses	19

APPENDICES

. . .

۰.

Appendix I Soil and rock geochemical results

Appendix II Rock descriptions

Appendix III Geophysical Report on a Gravity Survey

Appendix IV Geochemical Procedure and Results (Diamond drilling) Appendix V Diamond Drill Logs

SUMMARY

The 181 unit Broken Hill-Leo property is located 150 km north-northeast of Kamloops and 6 km east of the village of Avola, British Columbia on NTS map sheet 082M/14.

<u>.</u> .

The property covers the newly discovered (September 2000) Vista (15.9% Zn over 0.3m), the Navan (21.5% Zn, 3.8% Pb and 11 g/t Ag) and the Mike (20% Zn in float) occurrences. Cassidy Gold Corp. has an option to earn a 100% interest in the property from Mr. JEL (Leo) Lindinger, the optionor and writer of this report.

The property has no recorded mineral exploration history

The Broken Hill-Leo property is underlain by poorly mapped highly deformed high grade metamorphic rocks of the Proterozoic to Paleozoic Shuswap Metamorphic Complex portion of the Kootenay Terrane. Similar rocks to the east are assigned to the Proterozoic Horsethief Creek Group. The sequence consists of three distinct lithological packages, a lower amphibolite-biotite gneiss unit, a middle biotite gneiss-calc-silicate unit with minor marble and chert, and an upper by mixed siliceous biotite schist and quartzite unit. The middle unit hosts the known zinc-lead-silver mineralization in the region, and on the property. All lithologies are intruded by Devonian orthogneisses, Cretaceous and Tertiary felsic stocks, plugs, sills and dykes. Late Tertiary andesitic to mafic plugs and dykes, and lamprophyric dykes are common

The Broken Hill-Leo property covers a 9 km strike extent of the carbonate stratigraphy on the east side of the North Thompson River valley, favourable for hosting high grade zinc-lead-silver 'Shuswap' style mineralization similar to Ruddock Creek (5 million tonnes grading 7.5% Zn, 2.5% Pb) and CK (1.5 million tonnes grading 8.6% Zn). The Vista Occurrence is in the northwest part of the claims. The Navan occurrences are located 1.3 km southeast of the Vista occurrence. The Mike float showing is located 4 kilometers south of the Navan occurrence.

From late September 2000 to early February 2001 a multiphased rock and soil geochemical, gravity geophysical, and diamond drilling program was completed over parts of the Broken Hill-Leo property to test the economic potential of the property for Shuswap style (carbonate hosted sedimentary exhalitive type) mineralization.

In early October 2000, a single grid was established over the new discoveries. This grid was used for control for multielement geochemical soil and rock sampling programs. Results from this program partially outlined strong zinc, lead and silver geochemical soil anomalies. The rock sampling program detailed and expanded the mineralization in and around the known showings.

In late November and early December part of the control grid over the Vista and Navan showings was brushed and expanded to allow for a gravity survey to be completed over the prospective area over and between the Vista and Navan occurrences. Although the completed gravity survey did not actually extend to the Vista and Navan showings, it did produce several moderate anomalies, that upon consideration by Cassidy Gold Corp. management warranted drilling.

In January and February, 2001 a 930meter 13 hole diamond drill program was completed. The holes tested approximately 1.2 kilometers of the strike length of the Vista-Navan horizon between the Vista and Navan showings. Most of the holes tested gravity anomalies that were delineated by the geophysical survey. Several holes tested the down dip extent of known mineralization at the Vista and Navan Showings. The Mike area was not tested.

The drill program was successful in intersecting both the Vista and Navan mineralized horizons, down dip from the surface exposures. The drilling results indicate that the Vista and Navan Horizons appear to be the same

A mineralized portion of the Vista Horizon was intersected in DDHBH 01-03 and DDHBN 01-13, approximately 500m east-southeast of the Vista Showing. A weighted average of the mineralized zone in hole DDHBH01-13 returned 2.5% Zn over 3.9m (2.3m true width). Magnetic pyrrhotite is also present. Another mineralized intersection in DDH 01-03 was interrupted by a pegmatite sill, with the remnant mineralization grading 1.2% Zn over 1.1m (weighted average).

The Navan Horizon was successfully intersected 25m down dip from the surface showing by DDHBH 01-06. However the mineralization was disrupted, diluted and truncated by a pegmatite sill. The diluted intersection grades 1.2% Zn with 0.1% Pb over 0.25m. The Navan Horizon should also have been intersected in DDHBH 01-05, -07 and possibly in the very top of DDHBH 01--08 but a large pegmatite sill of leucogranite-tonalite intrusive invades the stratigraphy in this area.

Zinc mineralization was not intersected in the other holes due to; no actual mineralization being present, the drill hole collared too low in the stratigraphy missing the mineralized horizon, not drilling deep enough, and/or was invaded and destroyed by pegmatite sills.

In conclusion, most of the soil anomalies remain open, the gravity survey tested less than 1 kilometer (about 20% of the known strike length of the favourable lithologies hosting the mineralization), the drilling program partially tested only about 1.2 kilometers of the area between the Vista and Navan showings. Therefore the property remains highly prospective for presence of undiscovered economic quantities of mineralization

The areas north and east of the Vista occurrence remain to be tested. The partially outlined soil anomalies and the source of the mineralized float at the Mike showing remain to be tested and expanded. The prospective stratigraphy between the Vista-Navan-Mike horizon and the bottom of the North Thompson River valley, the extensions of the calc-silicate horizon southeast of the Navan occurrence, and many other prospective areas of the property remain unexplored. The excellent access and infrastructure add to the potential of the property.

To determine the properties full potential for Shuswap style mineralization the prospective stratigraphy needs to be traced and mapped along strike and down-dip. In particular fold closures need to be defined in order to target areas of thickening of the mineralized horizon.

Recommended is a program of detailed geological and structural mapping, prospecting, rock and soil geochemical sampling, ground or airborne magnetic surveys. Excavator trenching of the Vista and Mike showings, and any newly discovered mineralization is also recommended. Diamond drilling of the targets already outlined in the Vista area, and any new targets would follow.

INTRODUCTION

This report documents the results of soil and rock sampling, geophysical (gravity) and 930m diamond drill programs completed between October 1, 2000 and February 5, 2001 on the Broken Hill-Leo property near the North Thompson River village of Avola, British Columbia. The program was designed; to explore for extensions of Shuswap style (carbonate hosted sedimentary exhalitive type high grade zinc bearing massive sulphide mineralization discovered in September, 2000 by Mr. Leo Lindinger.

The known massive sulphide showings on the Broken Hill-Leo property include the Vista (15.9% Zn over 0.3m), the Navan (21.5% Zn, 3.8% Pb and 11 g/t Ag) and the Mike (20% Zn in float), hosted by carbonate stratigraphy of the Shuswap Metamorphic Complex portion of the Kootenay Terrane.

LOCATION, ACCESS AND INFRASTRUCTURE (Figure 2)

The Broken Hill-Leo property is located on the east side of the steep sided North Thompson River valley, 150 km north-northeast of Kamloops, and 6 km northeast and east of the village of Avola, British Columbia. The property is located on NTS map sheet 082M/14, at latitude 51° 46-50' north, longitude $119^{\circ}12-15'$ west.

Road access to the property is via Highway 5 (Yellowhead Highway) east onto the Shannon Creek logging road, 0.5 km north of Avola. The Shannon Creek logging road crosses through the property from 12.1 km to 19 km. The Cornice logging road originates at the 11.5 km mark of the Shannon Creek logging road, runs onto the property near the 3 km mark and accesses the areas west of Fowler Lake. Road access to the east central side of the property is via the Fowler logging road, which originates from the Shannon Creek logging road at 17.5 km. Road access to the south and east sides of the property are via the Shannon Creek logging road, which at 20 km intersects the Otter Creek logging road at km 29. The Dustin-Shannon spur accesses the east side of Shannon lake and originates at 15.5 km on the Shannon Creek logging road. The southeast part of the property is accessed by the Otter Creek logging road. Road access to the north part of the property is via Highway 5 (Yellowhead Highway) east onto the Finn Creek logging road 19 km north of Avola, then at the 0.75 km mark, south onto the Elevator logging road. The property is first accessed at approximately 18 km on the Elevator logging road.

The Canadian National Railway mainline in the north Thompson River valley is less than 2.5 km west of the property. A medium sized high tension power line strikes through the west side of the valley. Fuel, food, accommodation and freight services are available in Avola and Blue River, which are both less than 40 km from the property.

PHYSIOGRAPHY

The region lies at the northwest end of the Shuswap Highland of the Interior Plateau. The North Thompson River occupies a south draining, steeply incised valley, the floor of which is about 1200 meters below the surrounding plateau.

The Broken Hill-Leo property covers a 9.5 km portion of the east side of the North Thompson River valley, northeast of Avola surrounding Fowler Lake. The lowest part of the property is the flood plain of the North Thompson River at 580m. The highest parts are at 1750m on the Mike, Jimm and Dian claims east and south of Shannon Lake.

The vegetation on the lower parts of the property consists of lodgepole pine, interior fir and black spruce. Balsam predominates at upper elevations, with pine on dry, substrate deficient cliffs.

PROPERTY

NAVAN 15

NAVAN 16

NAVAN 17

380786

380787

380788

1

1

1

The Broken Hill-Leo property consists of eight modified grid and 55 two post claims, totaling 181 units. The claims are contiguous and cover approximately 50 square kilometers. They cover the recently discovered Vista, Navan and Mike high grade carbonate associated zinc+/-lead+/-silver occurrences. Cassidy Gold Corp., has an option to earn a 100% interest in the Broken Hill-Leo property subject to certain cash payments and share allotments to Mr. Lindinger, and incurring certain exploration expenditures. The exploration expenditures made to date are applied for assessment credit in Statement of Work Event# 3170598, Kamloops Mining Division

CLAIM	RECORD	UNITS	S EXPIRY DATE	CLAIM	RECORD	UNITS	EXPIRY DATE
VISTA	380752	4	Sept. 14, 2002*	NAVAN 18	380789	1	Sept. 14, 2002*
VISTA I	380753	1	Sept. 11, 2002*	NAVAN 19	380790	1	Sept. 14, 2002*
VISTA 2	380754	1	Sept. 11, 2002*	NAVAN 20	3 8 0791	1	Sept. 14, 2002*
VISTA 3	380755	1	Sept. 11, 2002*	NAVAN 21	380792	1	Sept. 14, 2002*
VISTA 4	380756	1	Sept. 11, 2002*	NAVAN 22	380793	1	Sept. 14, 2002*
VISTA 5	380757	1	Sept. 14, 2002*	NAVAN 23	380794	1	Sept. 14, 2002*
VISTA 6	380758	1	Sept. 14, 2002*	NAVAN 24	380795	1	Sept. 15, 2002*
VISTA 7	380759	1	Sept. 14, 2002*	NAVAN 25	380796	1	Sept. 15, 2002*
VISTA 8	380760	1	Sept. 14, 2002*	NAVAN 26	380889	1	Oct. 01, 2002*
VISTA 9	380761	1	Sept. 14, 2002*	MIKE	380890	20	Oct. 01, 2002*
VISTA 10	380762	1	Sept. 15, 2002*	VISTA A	380891	8	Oct. 01, 2002*
VISTA 11	3807 63	1	Sept. 15, 2002*	MIK1	381767	1	Oct. 28, 2002*
VISTA 12	380764	1	Sept. 15, 2002*	MIK2	381768	1	Oct. 28, 2002*
VISTA 13	380765	1	Sept. 15, 2002*	MIKY	381777	20	Oct. 26, 2002*
VISTA 14	380766	1	Sept. 15, 2002*	ЛММ	381778	18	Oct. 27, 2002*
VISTA 15	380767	1	Sept. 15, 2002*	DIAN	381779	16	Oct. 28, 2002*
VISTA 16	380768	1	Sept. 15, 2002*	LEO 1	381891	20	Nov. 4, 2002*
VISTA 17	380769	1	Sept. 15, 2002*	LEO 2	381892	20	Nov. 4, 2002*
VISTA 18	380770	1	Sept. 15, 2002*	LLI	381893	1	Nov. 2, 2002*
VISTA 19	380771	1	Sept. 15, 2002*	LL2	381894	1	Nov. 2, 2002*
NAVAN 0	380772	1	Sept. 11, 2002*	LL3	381895	1	Nov. 3, 2002*
NAVAN 1	380773	1	Sept. 11, 2002*	LLA	381896	1	Nov. 3, 2002*
NAVAN 2	380774	1	Sept. 11, 2002*	LL5	381897	1	Nov. 3, 2002*
NAVAN 3	380775	1	Sept. 11, 2002*	LL6	381898	1	Nov. 4, 2002*
NAVAN 5	380776	1	Sept. 11, 2002*	LL7	381899	1	Nov. 4, 2002*
NAVAN 6	380777	1	Sept. 15, 2002*	LL8	381900	1	Nov. 4, 2002*
NAVAN 7	380778	1	Sept. 15, 2002*	TOTAL	181		
NAVAN 8	380779	1	Sept. 15, 2002*	* with accept	stance of th	e work p	rogram expenditures
NAVAN 9	380780	1	Sept. 15, 2002*	by the Mini	stry of Ener	rgy and N	Mines that this report
NAVAN 10	380781	1	Sept. 14, 2002*	documents			
NAVAN 11	380782	1	Sept. 14, 2002*				
NAVAN 12	380783	1	Sept. 14, 2002*				
NAVAN 13	380784	1	Sept. 14, 2002*				
NAVAN 14	380785	1	Sept. 14, 2002*				

Sept. 14, 2002*

Sept. 14, 2002*

Sept. 14, 2002*

HISTORY

There is no written record of any previous private industry geological work on the Broken Hill-Leo property. The oldest known significant zinc-lead-silver massive sulphide base metal discoveries in the region include Ruddock Creek (1961) and Cotton Belt (1905) in the Monashee Mountains, east of the area. More recent discoveries, made with the penetration of logging roads into the rugged interior, north and west of the area include, the CK (Zn-Pb-Ag) (1972), Finn (Zn-Pb-Ag), Dimac tungsten skarn, and Trio and Hydro molybdenum prospects. The Finn occurrence, 8 km north of the Broken Hill-Leo property was discovered in 1978 (Murrell, 1980). Very recent discoveries in the area include the Bizar Au-Bi-Cu veins (1998) east of Ground Hog Mountain, the Readymix Au-Bi-Cu veins (2000) about 10 km to the west, and in September 2000 the Vista, Navan and Mike Zn-Pb-Ag massive sulphide showings that the Broken Hill-Leo Property now covers.

A government regional geochemical silt survey was completed in 1972. Results indicate that the drainages originating from the Broken Hill-Leo property are moderately to weakly anomalous in zinc, lead and gold.

Various prospectors and mining companies have since 1979 staked claims north south and east of, but not on the area now covered by the Broken Hill-Leo property.

In October, 2000 a 1x5 km area in the central part of the Broken Hill-Leo property was explored under the direction of Mr. W. Gruenwald, P.Geo. by limited geological mapping and soil and rock sampling. The results of this program produced several open ended soil anomalies. (Figure 7a, 7b, 7c). Based on these results additional claims were staked including the Leo claims north of the Vista area in late October and early November, 2000. In December, 2000 a gravity survey was completed by Discovery Geophysics Ltd.. I late January and early February 2001 a 13 hole diamond drill program was completed by LDS Diamond Drilling Ltd. of Kamloops, B.C.. The drill program targets included the earlier defined gravity and geochemical anomalies and down dip extensions of the VISTA and NAVAN mineralized horizons.

REGIONAL GEOLOGY (Figure 4)

The rocks are thought to be part of the Kootenay Terrane portion of the Omineca Belt. The region is underlain by the Shuswap Metamorphic Complex, which is thought to comprise Upper Proterozoic to early Palaeozoic marine off shore sediments and rare volcanic rocks, derived from the ancestral margin of North America (Wheeler 1992, pp 142-145), and tentatively assigned by the writer to the Horsethief Creek Group (Gibson 1991). The Complex has undergone extensive metamorphism and multiple episodes of deformation, due to collisional orogenic episodes during the Devonian, early Jurassic, mid to late Cretaceous and early to mid Tertiary times. Coincident with these orogenic episodes, intrusive bodies have invaded the rock package. It is assumed that the host lithologies underwent deep burial and deformation until the earliest Tertiary. Significant uplift, and erosion occurred from the mid to late Tertiary. The uplift was accompanied by north trending trans-tensional (basin and range) faulting and emplacement of felsic to intermediate stock and dikes, and recent? basaltic and lamprophyric dykes.

The Shuswap Metamorphic Complex hosts several significant sedimentary hosted zinc-lead-silver massive sulphide occurrences of assumed syngenetic origin, hosted within carbonate bearing lithologies at the transition between platformal carbonates and pelitic sediments. The occurrences include Ruddock Creek (5 million tonnes grading 7.5% Zn, 2.5% Pb), Cottonbelt, King Fissure, Big Ledge, CK (1.5 million tonnes grading 8.6% Zn). Clusters of occurrences are generally aligned along north trending large scale folds. The mineralized horizons tend to be laterally extensive but thin. Significant thickness' may be present where easterly trending secondary folding occurs. Thickening can occur over short distances (i.e. from 1 to

. . je sem

Figure 17.30. Southeastern Omineca Belt showing the distribution of terranes, some of the regional structures, and the location of structural cross-sections in Figures 17.40, 17.41 and 17.44.

FIGURE 4 - REGIONAL GEOLOGY

From Wheeler, 1992: Page 608

5m over a distance of 25m – Oliver, 1988). The newly discovered Vista, Navan and Mike discoveries that comprise the Broken Hill-Leo property are situated between Ruddock Creek and CK (with Ruddock Creek 25 km to the east and CK, 25 km to the west) and are tentatively hosted by the same lithologies.

Other deposit types known in the region are epigenetic deposits, commonly related to one or more of the many an intrusive events that occured in the region. Some of these are high grade gold-bismuth-copperarsenic veins of unknown but possibly Tertiary age (e.g. Bizar, Readymix), copper, tungsten, molybdenum, zinc-lead silver and gold bearing intrusive and associated skarn and wallrock hosted deposits, metamorphic related gemstone and industrial mineral (ie. garnet) deposits and carbonatite hosted niobium-tantalum occurrences.

PROPERTY GEOLOGY (Figure 5)

The Broken Hill-Leo property is underlain by highly deformed (multi-episodically ductily folded) rocks of the Shuswap Metamorphic Complex portion of the Kootenay Terrane. The metamorphic grade of the Kootenay rocks is upper amphibolite. The sequence is interpreted to consist of three distinct lithological packages that are strongly intruded by pegmatite sills and dykes.

The overall stratigraphic sequence of the property is unknown and has not been mapped. The overall stratigraphy is presently structurally north striking and moderately east dipping. Late stage east plunging parallel folds have gently north and south dipping fold flanks. The general stratigraphy near the mineralized horizons in the Vista and Navan areas is somewhat better known and is described below.

From Lindinger and Pautler 2001, page 6.

"The lowest structural package consists of amphibolite with lesser biotite gneiss and forms a thick monotonous sequence. This is overlain by a sequence dominated by biotite gneiss The third package consists of calc-silicate rocks with minor marble and chert. This package hosts the known zinc-lead-silver mineralization at the Vista, Navan and Mike Showings, on the property. The Broken Hill-Leo property covers an unexplored 9 km extent of the favourable lithology. In addition the Finn and Pica zinc-lead-silver occurrences lie 8 km and 7 km to the north-northwest of the property, respectively (Evans, 1993).

The rocks, although highly folded, have a common north to northwesterly strike with moderate easterly dips. Secondary fold structures observed elsewhere, include late easterly trending roll folds that may reflect larger structures.

Invading the host lithologies is an augen orthogneiss of assumed Devonian Age, which has been observed along the east side of the property. The rocks have been further intruded by weakly deformed to massive leucogranites of late Cretaceous and early Tertiary ages. Accompanying and/or post dating in part, the larger intrusive bodies, are at least two generations of coarse grained leucogranite intrusions, including pegmatite. These occur as tabular to highly irregular cross cutting and concordant pods, dykes and sills. Undeformed mid Tertiary (and later?) intrusions include grey 'dacitic' feldspar porphyry stocks and dykes intrude steeply dipping brittle tensional fractures. Melanocratic lamprophyric dykes also intrude similar structures. (Wheeler 1992, pp. 508, 514, and Lindinger, personal observations)."

The following descriptions of the VISTA, NAVAN and MIKE showings are part of the original information sent for Minfile description by the writer. Additional information is in italics.

"VISTA SHOWING - Location: UTM zone 11 5745390 N 344370 E, 1415 m. el., Lat. 51° 50' 15" N, 119° 15' 31"W. About 1 km northwest of Fowler Lake, and 10 km NNE of Avola.

The <u>Vista "I" showing</u> is a partially exposed band of very dark brown fine to medium grained massive sphalerite with subordinate galena, pyrrhotite, chalcopyrite and pyrite?. The band was exposed by blasting to establish a road surface for the Cornice Logging road at about Km 9.3. The band is at the contact of sulphidic siliceous gneisses on the structural footwall, and an overlying 2+ meter thick band of calc-silicate rocks that appear to be highly metamorphosed limestone. The showing appears to be part of a moderately (10-20 degrees) south-east plunging partially eroded antiform or northeast dipping monocline. Rocks to the northeast change dip to moderate to steep northeast dips. Exposures to the south-west are eroded off, and covered by glacial debris, or have not been mapped.

The observed mineralization is in the form of planar to swirling bands of nearly 100% sulphides up to 35 cm thick that grade upward into the calc-silicate host rocks into less intense massive and semi massive sulphides bands. The contact with the underlying silicate rock appears very sharp. The band of Vista "A" type mineralization is discontinuously exposed over about 20 meters, and is assumed to be continuous except for the following. It is truncated at surface to the northwest by a northwest striking moderately northeast dipping fault that brings a pegmatite dyke into direct contact with the mineralization. It plunges below the logging road to the south-east. High grade representative grabs from bedrock exposures report up to 24% zinc, 4.9% lead and 72 g/t silver.

<u>Vista "II" type mineralization</u> occurs 2 to 3 meters structurally above the Vista "A" horizon and is hosted by and contained within the calc-silicate rocks. This zone is also stratiform and is as exposed, a 5 to 10 cm thick band of dark brown coarse grained massive to semi-massive sphalerite. Not even trace amounts of lead, sliver and copper are reported. This band is exposed in its unweathered form for at least 5 meters about 20 meters south-east of the Vista "A" discovery outcrop. To the northwest it is eroded off. To the south-east it also plunges below the road. To the northeast, if continuous it would dip to the northeast as part of the stratigraphic package.

<u>Vista "III" type mineralization</u> (discovered by M. Warner Gruenwald, P.Geo.) are fault? hosted 4 to 6 cm thick silvery-grey medium to fine grained massive to semi-massive sphalerite and galena bands that appear to both occupy the top of and crosscut the calcsilicate horizon hosting the Vista "A" and "B" mineralization. Weathered exposures are visible over a planar 8 by 2.5 meter exposure of the top of the calc silicate horizon above the fresh exposures of the Vista"B" mineral band. A sample (0.8 m. long by 8 cm thick) taken by Mr. Gruenwald returned 6.6% zinc, 4.1% lead and 6.2 g/t silver.

The calc silicate unit hosting the various types of zinc rich sulphide mineralization appears to contain erratically generally weakly disseminated sphalerite with probably subsidiary argentiferous galena. Traces of other iron and copper bearing sulphides are also present....

NAVAN SHOWINGS - Location (Navan A): UTM zone 11 5744500 N 344500 E, 1385 m. el., Lat. 51° 49' 49" N, 119° 14' 32"W.. About 10 km NE of Avola, 0.2 km west of Fowler Lake at 7.4 km point on the Cornice Logging road.

The <u>Navan "1" showing</u> is a partially weathered poorly exposed band of dark brown fine grained massive sulphides hosted by disrupted (frost heaved?) calc-silicate rocks. The grade and style of mineralization are very similar to the Vista "A" type with the following difference, the highest grade exposures are totally within calc-silicate (meta-carbonate) host rocks. *Disrupted lenses of massive zinc sulphides over 15 cm thick are found in the disrupted bedrock forming the cut that hosts the showing. However boulders of massive sulphide mineralization up to 30 cm in diameter grading up to 23% zinc, 4.05% lead and 17 g/t silver. occur as float that was dug out of the subcrop exposures hosting the sulphides by the road construction crew. The package hosting the mineralization appears to be part of a moderately south-east plunging antiform. <i>A 25 cm thick second layer of semi massive sulphides occurs less than 1 meter above the massive sulphide horizon. Still higher are disseminated medium grained sulphides in highly weathered pitted garnetiferous cal-silicate rock.*

The <u>Navan "2" showing</u> is about 130 meters north of the Navan "1" exposure. Here a small 1.5 meter long 5 to 10 cm band thick of massive sphalerite that is hosted by westerly dipping silicate rocks is found. No real bedrock exposures can be seen here and the rocks hosting the sulphides may be a large rotated sub crop boulder. A 0.3 meter thick sample taken by Mr. *Warner* Gruenwald P.Geo. of Geoquest Consulting Ltd. including the massive sulphide mineralization returned 5.6% zinc, 0.6% lead and 8.4 g/t silver. The host rocks are very different from the NAVAN "A" mineralization and probably represent a separate layer not seen at the NAVAN "A" showing.

The Navan "3" float showing is a 30 cm diameter piece of siliceous calc silicate and biotite gneiss float occurring in basal till that has on one side part of a massive sulphide layer. The remnant sulphide layer was about 12 cm thick. Based on glacial information the source of the boulder was to the northeast and away from the NAVAN "A", and NAVAN "B" showings.

The NAVAN "4" float showing occurs 300 meters south of the NAVAN "1" showing. Here small (less than 10 cm diameter) fragments of zinc bearing semi-massive sulphides hosted by calc-silicate and chert occur in a basal till and subcrop road cut. This is the area of the original rock sample taken by the writer in July 2000 that returned nearly 1% zinc with anomalous copper, lead silver and tungsten values.

An open ended to the north soil anomaly immediately north (up ice) and west (down hill of the Navan "2" and "3" showings that contains the highest zinc (2590 ppm) and lead (412 ppm) values in soil found to date.

MIKE FLOAT SHOWING - Location: UTM zone 11 5740800 N 346400 E, 1610 m. el.. Lat. 51° 47' 49" N, 119° 13' 39"W. About 0.5 km northwest of Shannon Lake, 4.0 km SSE of the Navan showings at Km 15.2 on the Shannon Ck Logging road. (Figure 5, 6, 7c)

The Mike Float showing contain cobbles and boulders of dark brown massive, semi massive and disseminated fine to coarse grained sphalerite and pyrrhotite associated with

garnetiferous calc-silicate, pyrrhotitic silicate and coarse grained pegmatitic rocks that are exposed over 225 meters in a series of pits and scrapings dug for material to upgrade the Shannon Ck. logging road. The semi massive and massive sulphide boulders and cobbles can be dug out of the cut bank and occur within discreet stratigraphic zones near to and overlying possibly glacially disrupted pegmatitic bedrock. Northwest of the float occurrence is an area of calc silicate float and bedrock extending for over 2 km. To the south-east is glacial till extending to Shannon Lake. One select sulphide sample taken by Gruenwald from a 40 cm boulder with 20 cm of massive sphalerite on one side returned 19.6 % zinc, and 352 ppm cadmium. The lead content of this and other samples have consistently lower lead values than the Vista and Navan areas. However a soil sample site approximately 100 meters north of the float area returned the second highest lead (350 ppm) (with accompanying high zinc (270 ppm) along with weakly anomalous chrome and nickel) of all the samples taken on the Vista, Navan and Mike areas. This may have significant implications in the Mike area as the geochemical signatures of the sampled mineralized rocks in the road exposures when compared with the preliminary soil results 100 to 300 meters to the north (up ice) are quite different."

2000-2001 WORK PROGRAMS SOIL GEOCHEMISTRY (Figures 7a, 7b, 7c)

In early October 2000, a 6 kilometer long brushed ,compassed, slope corrected and tight chained baseline oriented at 325 degrees was established to provide field survey control over the areas surrounding and in between the Vista, Navan and Mike showings. In the Vista area to the north and the Mike area at the south end orthogonal tie lines and additional baselines were established to cover the most prospective exploration areas. From these base lines variably spaced (50, 100 and 200 meters) orthogonal grid lines were established in conjunction with soil sampling.

The soil survey on the grid lines were taken at 25 meter stations. Due to the late season the sampled survey lines were completed to only cover the most prospective areas. 479 soil samples and 30 rock samples were sent to ALS-Chemex Laboratories Ltd. in Vancouver, B.C. and analyzed for Al, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe, K, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, W, V and Zn using a 24 element 'total digestion' ICP package which involves a hot Aqua regia plus hydrofluoric acid digestion. This process was used to enable more accurate analyses of barium (Ba) and tungsten (W). Rock samples returning overlimits in any specific element(s) had that/those element(s) assayed with procedures specified to provide an accurate quantity of the element(s) in that sample.

Although most of the area around the Vista and Navan showings received adequate coverage, some of the southern areas around the Mike showing were not completed to a heavy early snowfall.

ROCK GEOCHEMISTRY (Figure 6b, Appendix II)

30 selected rock samples were taken by W. Gruenwald, P.Geo. as part of an examination of the showings and intervening lithologies. The samples were taken from exposures created by the cornice logging road construction crew which cut through the Vista-Navan horizon in several places.

GRAVITY SURVEY (Appendix III)

A gravity survey was completed over grid lines 7650N to 8600N in December, 2000 by Woods Geophysical Consulting Inc.. The coverage was about 500 meters for each line. The lines ended at steep terrain or the shore of Fowler Lake. The program was terminated early before covering the Vista or Navan showings due to heavy snowfall. In order to facilitate the gravity surveyors the pre-existing lines to be surveyed were brushed out and the stations were improved. Lines were also added or extended where the soil survey coverage stopped.

Several diamond drill holes were drilled base on the results of the gravity survey. The details are discussed in the following section.

DIAMOND DRILLING (Figure 8, Table 1)

The following descriptions are from (Lindinger and Pautler 2001)

"Drilling was carried out between January 27 and February 3, 2001 by LDS Diamond Drilling of Kamloops, B.C., using a skid mounted Longyear 38 core drill with NQ wireline tools. A total of 930.1m of diamond drilling in 13 holes was completed. The drill holes tested the most promising gravity anomalies delineated by the geophysical survey. Several holes tested the down dip extent of known mineralization at the Vista and Navan Showings.

A total of 51 samples of core were split and sent to Eco-Tech Labs, Kamloops, B.C. and analyzed for and analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Hg, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V and Zn using a 32 element ICP package which involves a nitric-aqua regia digestion. Most of the samples were also analyzed for gold, which was completed by fire assay with an atomic absorption finish. Anomalous samples were assayed for zinc and lead. Select samples were analyzed for the presence of rare earth elements. The rare earth analyses, including tantalum were forwarded to Activation Labs in Ontario to be analyzed by neutron activation procedures. Laboratory procedures and results are outlined in Appendix IV.

All pertinent drill data is summarized in Table 1 and drill hole locations are shown on Figure 8. Drill logs are included in Appendix V. Sample locations and significant results are plotted on the cross sections (Figures 9A-G. Descriptions of the lithologies encountered, with an accompanying legend, is provided in Table 2. The core is stored on the property at approximately L9025N/2075E. Core recovery averaged 99%."

RESULTS

Soil Sampling (Figures 7a, 7b, 7c, Appendix I)

Briefly most of the significant soil anomalies to date on the Broken Hill-Leo property at least spatially coincide with known massive sulphide outcrop and float occurrences. A limited soil anomaly south of the VISTA Occurrence suggests that the anomaly is derived from at least in part from the mineralized outcrop. The partially defined anomally on line 84+00 N is interpreted to be sourced from extensions of the mineralized horizon east of the VISTA Occurrence. The strong open ended to the north, zinc-lead-silver anomaly north of and up ice of the NAVAN 1 showing strongly suggests a significant unknown metal source north of this anomaly exists. Similarly the strength of the partially defined zinc and lead soil

anomaly north of (up ice and uphill) of the MIKE Float occurrence strongly suggests that a significant base metal source may occur a short distance north of the showings.

Rock Sampling (Figure 6b, Appendix I, Appendix II)

The rock sampling was completed by W. Gruenwald., P.Geo. and was essentially confined to samples of mineralized rock exposed in the road cut of the Cornice Logging road. Briefly Mineralized outcrop, subcrop and float samples from the Vista, Navan, and Mike returned 16%, 21.5% and 19.6% zinc respectively with up to 4% lead and 11 g/t silver. The Vista and Navan mineralization was also distinctly anomalous in barium, bismuth, cadmium, copper and nickel. The samples from the Mike area were notable in their lack of silver, bismuth and lead mineralization.

Gravity Survey (Appendix III)

The gravity survey, as mentioned previously did not extend to cover either the Vista or Navan showings. However the following information was derived from the survey results. The results in this section are also discussed with the results of the drilling known. The surveyed area can grossly be divided into two areas. Please refer to COMPLETE BOUGUER GRAVITY plan in Appendix III. The area grid south of line 8250 north has a distinctively lower density than north of and including line 8250 N. Based on the drilling to date the low density area coincides with an interpreted felsic intrusive body that underlies the flat area northwest of Fowler Lake. The abrupt linear density change at line 8200 N probably coincides with a intrusive contact. Wether the contact is fault controlled or not is unknown, although the gravity anomaly does coincide with Ground Hog Creek which may reflect the surface expression of a fault. The denser material north of 8200N is interpreted to comprise a mixture of carbonate rich (relatively dense) Shuswap metamorphic rocks intermixed with pegmatitic bodies. The localized higher density anomalies in both areas can tentatively be interpreted to be derived from local topographic features. For example most one point density anomalies coincide with mounds (density low) and pits (density high) rather than any underlying rock difference. The density anomaly along the west end of line 8350 N coincides with the base of a steep line parallel slope, that flattens out along the line AND a thick carbonate amphibolite package that underlies the line. One interpretation is that the favourable horizon hosting the zinc mineralization outcrops a short distance north of the line. The effect of this dense material in the survey is unknown. The west 100 meters of line 8400 N coincides with the base of a large pegmatitic sill or dyke. Additional information correlating gravity information with drilling results are discussed with respect to the individual drill holes results in the next section.

Diamond Drilling (Figure 9, Appendix 1V, Appendix V)

A brief description of the results each of the drill holes follows as discussed in Lindinger and Pautler 2001: TW denotes true width. Italics are additional comments made by Lindinger this report.

BH DDH 01-1 (Figure 9A)

DDH 01-1 was drilled to test the down dip extent of mineralization exposed at the Vista Showing and is 93m at 110(from the Showing. The Vista Showing reportedly contains Zn values up to 15.95% over 0.3m (Gruenwald, 2000). The hole also tested a soil anomaly that contains up to 1090 ppm Zn and 92 ppm Pb.

Approximately 60% of DDH 01-1 consists of pegmatite sills. Apart from the sills, a thick sequence of calc-silicate to diopside-gamet-actinolite skarn with minor biotite gneiss was intersected in the top half of the hole to 40m. A grey banded marble that may be useful as a marker horizon and a cherty unit, possibly representing an exhalite, were intersected

between 26.8 and 32.3m. The bottom half of the hole was dominated by the amphibolite gneiss which was intersected at 49.1m. A high angle, probable westerly dipping fault was intersected at the base of the calc-silicate unit within the pegmatite.

Although no significant mineralization was intersected, a thick sequence of the favourable calc-silicate unit was encountered that contains a possible cherty exhalite. The mineralized horizon in this hole *may not exist*, may have been engulfed by the pegmatite, proximal to the chert unit, or due to the flat stratigraphy may have been missed by collaring the hole.

BH DDH 01-2 (Figure 9A)

DDH 01-2 was drilled to test a gravity anomaly along trend and down dip of mineralization exposed at the Vista Showing and is 285m bearing 108° from the Vista Showing. A northerly trending depression between holes 01 AND 02 may represent the surface expression of a fault.

The hole intersected a thick sequence of the calc-silicate unit, grading to coarser grained skarn, with minor biotite gneiss. The grey banded marble unit was intersected between 23.8 and 31.3m, at a similar depth to the intersection in DDH 01-1. The lower elevation of DDH 01-2 accounts for the fact that the hole is further down dip from the marble intersection in DDH 01-1. The amphibolite unit, with minor calc-silicate beds, was encountered below 55m. Pegmatite sills make up 30% of the hole. No significant mineralization was intersected. However, a thick sequence of calc-silicate to skarn and the marble marker horizon were encountered. The near surface effect and thickness of the calc-silicate to skarn unit may be responsible for the weak gravity

anomaly.

BH DDH 01-3(Figure 9-B)

DDH 01-3 was drilled to test a gravity anomaly along trend and down dip of mineralization exposed at the Vista Showing and is 460 m. bearing 100° from the Vista Showing.

Biotite gneiss with minor beds of calc-silicate was intersected down to 37.5m. A white marble horizon occurs with calc-silicate to skarn within the biotite gneiss package between 32.2 and 33.8m. A Tertiary mafic dyke cuts the biotite gneiss package at 37.5 to 42.1m with an apparent dip of 45(SW. Two similar zones of calc-silicate to marble were intersected between 47.2m and 59.2m and from 99.3m to 109.2m. The amphibolite package, dominated by amphibolite gneiss with some biotite gneiss zones, was intersected at 109.2m to the end of the hole at 139.3m. Pegmatite sills constitute 50% of the hole with a large interval from 59.2m to 99.1m.

A high angle, westerly dipping fault, was intersected at 59.2 to 67.9m. Approximately 40m of reverse movement along the fault (northeast side down) could explain the repetition of the calc-silicate to marble units. With restoration along the reverse fault the lower pegmatite sill would correspond to a pegmatite dominant zone between 17.1 and 47.2m. The amphibolite contact would then be at 59.2m. Local quartzite intervals were encountered proximal to the fault and may reflect silicification related to the structure as opposed to primary lithology.

Sphalerite mineralization was encountered as bands up to 5cm wide and disseminations in quartz-calcite-diopside-actinolite-garnet skarn at 25.9 to 26.5m and at 26.9m. The banding in the skarn and sphalerite bands is at 70° to the core axis. The mineralized zone is dissected by pegmatite sills, reducing the grade and overall width.

TABLE 1: DIAMOND DRILL HOLE DATA

Hole No.	Grid Location	Elev.	Az.	Dip	Total Length	Began d/m/y	Finished d/m/y	Sample Numbers
BH DDH 01-1	87+00N/22+35E	1421 m		-90°	78.3m	27/1/01	27/1/01	131865-75,900
BH DDH 01-2	85+50N/23+50E	1410 m		-90°	84.4 m	27/1/01	28/1/01	131876-77,82
BH DDH 01-3	84+55/N25+00E	1397 m		-90°	139.3 m	28/1/01	29/1/01	131855-64
BH DDH 01-4	84+00N/26+70E	1375 m		-90°	57.0 m	29/1/01	29/1/01	
BH DDH 01-5	78+70N/26+00E	1354 m		-90°	81.4 m	29/1/01	30/1/01	131884-87
BH DDH 01-6	74+85N/26+25E	1342 m	295°	-60°	99.7 m	30/1/01	31/1/01	318179-81,83
BH DDH 01-7	77+00N/26+25E	1348 m	235°	-60°	38.7 m	31/1/01	31/1/01	131888-89
BH DDH 01-8	77+20N/25+65E	1345 m	235°	-60°	99.7 m	31/1/01	1/2/01	131890-94
BH DDH 01-9	83+50N/25+50E	1353 m	235°	-50°	93.6 m	1/2/01	2/2/01	131895-99
BH DDH 01-10	83+50N/25+50E	1353 m		-90°	29.6 m	2/2/01	2/2/01	
BH DDH 01-11	83+50N/24+91E	1345 m	230°	-70°	41.8 m	2/2/01	2/2/01	
BH DDH 01-12	84+90N/24+50E	1406 m		-90°	44.8 m	3/2/01	3/2/01	
BH DDH 01-13	84+90N/24+50E	1406 m	055°	-45°	41.8 m	3/2/01	3/2/01	131301-06
TOTALS:					930.1 m			51 Samples

SIGNIFICANT INTERSECTIONS

FROM (m)	TO	%Zn	ppm Zn
25.926.5	1.69		
26.5 26.9		476	
26.927.0	1.58		

Weighted average from 25.9 to 27.0m is 1.22% Zn over 1.1m.

BH DDH 01-4: (Figure 9-B)

BH DDH 01-4 was drilled to test a gravity anomaly along trend and down dip of mineralization exposed at the Vista Showing and is 625m at 093° from the Vista Showing. A Tertiary mafic dyke with an apparent dip of 45° to the southwest was intersected in the top of the hole from 4.3 to 7.9m and appears to correlate with the mafic dyke intersected in DDH 01-3. The dyke is cut by a high angle, westerly dipping fault that may be correlative with the possible reverse fault intersected in DDH 01-3. The top half of the hole primarily consists of the biotite gneiss unit, down to 30m. Amphibolite gneiss is more dominant below 30m. The contact between the two units is gradational. Core axes of the foliations within the gneisses average 65° , resulting in an apparent dip of $25^{\circ}E$. Pegmatite sills are less prevalent, making up only 20-25% of the hole.

No significant mineralization was intersected. A mafic dyke was intersected in the top of the hole and no significant intervals of calc-silicate were encountered. The near surface effect of the dyke (and the limited amount of pegmatite) may explain the weak gravity anomaly.

BH DDH 01-5: (Figure 9E)

DDH 01-5 was drilled to test a gravity anomaly between and along trend of mineralization exposed at the Vista and Navan Showings.

Pegmatite sills constitute approximately 75% of DDH 01-5. Biotite gneiss with minor calc-silicate occurs between 11.1 and 31.3m. Some intervals of biotite gneiss were evident within the pegmatite down to 48.6m. At 76.3m amphibolite gneiss is more dominant. Core axes of the foliations within the gneiss units average 65(, resulting in an apparent dip of 25° E. A steep, possibly westerly dipping fault was intersected at 14 and 21m. No significant mineralization was intersected. Extensive pegmatite was encountered and calc-silicate was intersected near the top of the hole. The gravity anomaly may be related to the density contrast between the pegmatite, the near surface effect of the calc-silicate *and/or local topographic variations*.

BH DDH 01-6: (Figure9G)

DDH 01-6 was drilled to test the Navan Showing approximately 25m down dip from the surface showing that reportedly grades up to 21.5% Zn, 3.8% Pb and 11 g/t Ag from grab samples (Gruenwald, 2000). The hole also tested the down dip extent of a soil geochemical anomaly that contains up to 818 ppm Zn and 82 ppm Pb. A Tertiary *intermediate-mafic* dyke was encountered in the top of the hole from 7.6 to 10.8m, cutting the pegmatite. It appears to correlate with the dyke observed in DDH 01-3 and -4. The biotite gneiss unit, with significant calc-silicate horizons, was intersected between 23.7 and 66.0m. The banded grey marble marker unit, which appears to be

TABLE 2

GEOLOGICAL LEGEND - BROKEN HILL PROJECT to accompany Figure 9

TERTIARY

TDIKE - Grey fine to medium grained intermediate intrusive rock. Fine to medium grained hornblende and feldspars in a grey aphanitic groundmass. (Pautler unit 6)

CRETACEOUS AND/OR TERTIARY

PEG. - Pegmatite sills and dykes. Leucocratic medium but usually coarse grained quartzplagioclase biotite or muscovite intrusive. Often 'contaminated' with partially assimilated wall rocks. (Pautler unit 5)

GRANO - Leucocratic fine grained granodioritic intrusive. (Pautler unit 4)

PROTEROZOIC to PALAEOZOIC: KOOTENAY TERRANE

(Shuswap Metamorphic Complex)

DEVONIAN?

ORTHGN - Feldspar augen orthogneiss ranges from dioritic to quartz dioritic. (not seen in drill core).

PROTEROZOIC? - HORSETHIEF CREEK GROUP?

BIOGN - Metapelitic medium grained usually siliceous biotite gneiss. (Pautler unit 2) CALC-SIL - red-pink to green usually coarse grained, coarsely banded garnet-amphibole-quartz clac silicate and skarn with remnant calcite rich pods. (Pautler unit 3)

MARB - Leucocratic grey to white crystalline marble. (Pautler unit 3-Mb)

SILCC - Siliceous calc-silicate subunit of CALC-SIL. Leucocratic laminated and banded moderately to highly siliceous rock. Over 35% free cryptocrystalline quartz. (incorporated into Pautler unit 3)

CHERT - Cryptocrystalline laminated siliceous subunit of CALC-SIL. Possibly meta-exhalite. Over 75% free quartz. (incorporated into Pautler unit 3)

BIOHBGN - Intermediate fine to medium grained banded metapelite? Similar to BIOGN but with less quartz and the appearance of trace to 15% amphibole. (incorporated into Pautler unit 1) AMPHGN - Melanocratic grey to grey-green fine to medium grained banded amphibole gneiss. Often biotite rich. Trace quartz. (Pautler unit 1)

silicified, and a cherty unit was encountered between 46.0 and 46.5m. From the texture within the intruding pegmatite sill, this unit appears to be more extensive and may extend from between 43.3 and 56.0m. Possible amphibolite gneiss was encountered at 83m, but is obscured by pegmatite. Pegmatite constitutes over 60% of the hole. A near vertical fault was intersected at 18m.

Sphalerite and galena mineralization were encountered at the target depth at 25.5m to 25.75m. The mineralization is hosted by a calc-silicate band in the biotite gneiss package and by the intruding pegmatite sill. The mineralized section consists of narrow, 1-2 mm wide bands of sphalerite within the calc-silicate band (which has been intruded by a 0.4m wide pegmatite sill) followed by a 3 cm wide band of massive sphalerite below the pegmatite, hosted by the biotite gneiss. Minor disseminated galena and sphalerite occur within the invading pegmatite.

SIGNIFICANT INTERSECTIONS

FROM (m)	TO	% Zn	% РЬ
25.5	25.75	1.19	0.12

BH DDH 01-7(Figure 9F)

BH DDH 01-7 was drilled to test a gravity anomaly in an area of sphalerite mineralization hosted by skam and biotite gneiss, 200 meters to the northwest of the Navan Showing. The mineralization exposed at 7660N/2580E is reported to grade up to 5.5 % Zn with 0.6% Pb (Gruenwald, 2000). The down dip extent of a strong soil anomaly on L7700N with values up 2590 ppm Zn and 412 ppm Pb was also tested.

Diopside-gamet-actinolite skarn with minor pyrrhotite was intersected in the top of the hole down to 7.6m, followed by an extensive pegmatite sill and minor foliated, medium grained granodiorite dykes.

No significant mineralization was intersected. The hole was cut short due to the extensive intersection of pegmatite and consequently did not test the soil anomaly. The weak gravity anomaly may be related to the density contrast between the pegmatite and the near surface effect of the skarn *or local topographic variations*.

BH DDH 01-8 (Figure 9F)

Due to the extensive pegmatite intersected in DDH 01-7, DDH 01-8 was drilled closer to the above-mentioned soil anomaly on line 7700 N in order to test for the down dip extension.

Extensive pegmatite was encountered (60% of the hole) with narrow remnant bands of biotite gneiss and calc-silicate down to 56.8m. A marble horizon was intersected from 25.9 to 26.6m. Amphibolite gneiss predominates with minor pegmatite below 56.8m. Faults are evident between 7.1m and 19.9m at 39.5m, 51.4m, 61.4m and at 99m. Core axes suggest an apparent relatively flat to 15° E dip for the foliations. Minor folding, with an apparent 30° NE plunge, is evident within the biotite gneiss at 48.7 to 50.4m. No significant mineralization was intersected possibly due to the extensive pegmatite that was encountered above the amphibolite unit.

BH DDH 01-9 (Figure 9D)
BH DDH 01-9 was drilled to test the down dip extension of an extensive 0.3 mgal gravity anomaly on line 8350 N.

Calc-silicate skarn was intersected in the top of the hole to 11.3m, followed by the white and the grey banded marble and chert horizons to 14.0m. Biotite gneiss, with calc-silicate bands, is the dominant lithology between 14.0 and 66.4m. A pegmatite sill cuts the gneiss from 23.9 to 34.4m. The amphibolite gneiss unit was intersected at 66.4m but is intruded by abundant pegmatite sills. A vertical fault was encountered at 34m, which may have down-dropped the stratigraphy on the southwest side. In this case the chert unit intersected at the top of the pegmatite sill at 66.4m, may correlate with the marble/chert horizon from 11.3 to 14.0m.

No significant mineralization was intersected. The presence of skarn in the top of the hole and a relatively thick sequence of calc-silicate may be partially responsible for the gravity anomaly. The marble and exhalite marker horizons, similar to those in DDH 01-01, -02 and -03, were also encountered. Local topographic effects may also be partially responsible for the gravity anomaly.

BH DDH 01-10(Figure 9D)

BH DDH 01-10 was collared at the same site as DDH 01-9 and drilled vertically to test for the down dip extent of the marble/exhalite units intersected in hole 9. A Tertiary mafic dyke, with a narrow interval of calc-silicate and biotite gneiss, was intersected from the top of the hole to 20.8m. The dyke appears to dip steeply to the southwest at an apparent dip of $60-70^{\circ}$ and appears to be correlative with mafic dykes intersected in DDH 01-3, -4 and -6. The dyke would consequently trend westnorthwesterly and dip to the southwest. Biotite gneiss was encountered from 20.8 to 25.1m, followed by pegmatite to the end of the hole at 29.6m. The pegmatite appears to be correlative with the pegmatite sill that intrudes the biotite gneiss from 23.9 to 34.4 m in DDH 01-9.

The Tertiary dyke appears to have obscured the favourable horizon consequently no significant mineralization was intersected. The mafic dyke, intersected in the top of the hole, may be partially responsible for the gravity anomaly.

BH DDH 01-11 (Figure 9D)

BH DDH 01-11 was drilled to test the down dip extension of a 0.4 mgal gravity anomaly, which forms the locus of a large gravity anomaly on L8350N and stratigraphic continuity west of hole BHDDH 09-09.

The top of the hole down to 23.6m consists primarily of calc-silicate with a biotite gneiss interval from 13.3 to 18.8m and 25-30% pegmatite. Amphibolite gneiss, extensively intruded by pegmatite, was encountered from 23.6 to 28.0m, followed by pegmatite. This appears to correlate with the amphibolite/pegmatite interval intersected at 66.8m in DDH 01-9. Approximately 60% of the hole consists of pegmatite.

No significant mineralization was intersected. The near surface effect of the calc-silicate compared to the pegmatite, and local topographic effects each may be partially responsible for the gravity anomaly. Also the mineralized horizon may have been missed and be exposed uphill to the north of holes 9,10, and 11.

BH DDH 01-12 was drilled to test the *for the up*dip extension of mineralization *intersected* in DDH 01-3 and is located 395 meters at 102° from the Vista Showing and 65 meters west of DDH 01-3.

Pegmatite, with remnant zones of skarn, was intersected from the top of the hole to 15.9m. A chert band was noted at 13.5m. Biotite gneiss predominates from 15.9 to 34.1m with a calc-silicate and grey banded marble interval from 26.4 to 29.6m. A calc-silicate band was again intersected from 34.1 to 42.0m, with grey banded marble occurring near the base of the interval. Pegmatite with minor amphibolite gneiss continued to the end of the hole at 44.8m.

No significant mineralization was intersected. However, a thick sequence of calc-silicate and the marble marker unit were encountered.

BH DDH 01-13 (Figure 9B)

BH DDH 01-13 was collared from the same site as hole 12 and was drilled at bearing 055 at a dip of 45° to test for the north extent of mineralization in DDH 01-3, approximately 30m to the northwest of hole 3.

Pegmatite was encountered in the top of the hole down to 21.1m with biotite gneiss making up to 30% of the interval below 16.7m. From 21.1m to 28.4m quartz-calcite-gametdiopside-actinolite-tremolite skarn was intersected with a cherty exhalite from 24.9 to 25.5m. Biotite gneiss was intersected from 28.4 to the end of the hole at 41.8m and was intruded by a pegmatite sill from 33.7 to 39.6m.

A 3.9m wide interval with sphalerite and minor galena mineralization was intersected from 24.5m to 28.4m. The mineralization occurs as bands up to 5 cm wide and as disseminations of sphalerite, with minor galena, pyrrhotite and pyrite, hosted by the calc-silicate skarn and an exhalite unit. Some of the skarn within the section is unmineralized. This zone is very similar and stronger to the mineralization intersected in hole 3 and has similarities to the Vista Showing. The chert hosting the mineralization also describes a shallow fold closure with repetition of the units hosting the zinc mineralization.

SIGNIFICANT INTERSECTIONS

FROM (m)	то	Width (m	n) % Zn	ppm Zn% Pb
24.5	24.9	0.4	2.83	
24.9	25.5	0.6	2.96	0.82
25.5	26.3	0.8	162	
26.3	27.5	1.2	3.92	
27.5	27.8	0.3	505	
27.8	28.4	0.6	3.65	

Weighted average from 24.5 - 28.4 is 2.52 % Zn over 3.9m (estimated true width 2.3m)."

DISCUSSION

This section is as written in Lindinger and Pautler 2001. Sections in italics are added by Lindinger, this report.

"Mineralization in the zinc-lead-silver deposits of the Shuswap Metamorphic Complex is associated with clean marble horizons at the transition between platformal carbonates (calc-silicate) and pelitic sediments (biotite gneiss). Chert commonly underlies mineralization (Oliver, 1988).

Although the favourable marble/chert horizon at the calc-silicate/biotite gneiss transition was intersected in DDH 01-1 at the target depth for the down dip extent of the Vista Showing, no mineralization was encountered. The Vista Showing contains Zn values up to 15.9% over 0.3m (Gruenwald, 2000). The marble horizon at the same transitional zone was also encountered in DDH 01-2, with no accompanying mineralization. Correlation of the stratigraphy encountered in DDH 01-3 and 13, in which mineralization was encountered, with that in DDH 01-1 and -2 suggests that the Vista Horizon may flatten through this area and consequently airs out. Pegmatite in the very top of DDH 01-1 may even have obscured the mineralized horizon. Although accessibility is difficult, sites above (north) of the road should test the Vista Horizon, provided that the pegmatite sills that occur through this area are not too extensive. An attempt should be made to target possible fold closures. From the limited geological mapping on the property, a favourable location is at L8700N/ 2400E with a -90° and -50 ° hole at 200° azimuth.

DDH 01-13 intersected what appears to be the Vista Horizon at 24.5 to 28.4m. Mineralization is associated with skarn and a chert (possible exhalite) unit at a favourable calc-silicate/biotite gneiss transition, approximately 20-25m above the marble/chert horizon intersected in DDH 01-1 and -2. The mineralized zone grades 2.5% Zn over 3.9m (2.3m true width) as a weighted average and is magnetic due to the presence of pyrrhotite. DDH 01-3 also intersected the same mineralized horizon but was interrupted by a pegmatite sill. The remnant mineralization grades 1.2% Zn over 1.1m (weighted average). The same horizon should have been encountered in DDH 01-12 but is *interpreted to be* interrupted by extensive pegmatite sills. Future drill holes should target possible fold closures in this area. Sufficient data is not currently known to accomplish this but a vertical drill hole from L8500N/2575E should intersect the horizon, hopefully without extensive pegmatite.

A possible north to northeasterly trending down-dropped block may occur between DDH 01-3 and -4. If this is the case, the Vista Horizon is down-dropped in DDH 01-9 to -11 and should have been intersected again in DDH 01-3 at a depth of 70m and possibly at 35m in DDH 01-9. A large pegmatite sill is present through this area that may have obliterated the mineralized horizon. If down-dropping hasn't occurred, the horizon would air out through this region *possibly above the collars of holes 9, 10 and 11*. Evidence for the fault block includes the intersection of the high-angle faults, repetition of stratigraphy above the amphibolite unit, and the lower level of the amphibolite within the proposed fault block.

The calc-silicate unit was not intersected in DDH 01-4. It appears to be too low in the stratigraphy since the amphibolite was intersected at 30m. Drill holes would need to be targeted higher on the hillside, northeast of the road. An unnamed Creek a short distance

west of hole 4 returned anomalous in zinc and lead from moss mat sampling (Lindinger 2000).

DDH 01-6 was successful in intersecting the Navan Showing at the projected down dip target depth of 25m. The Navan Showing reportedly grades up to 21.5% Zn, 3.8% Pb and 11 g/t Ag from grab samples (Gruenwald, 2000). The Navan Horizon was encountered at 25.5 to 25.75m, grading 1.2% Zn with 0.1% Pb, but was disrupted by a pegmatite sill. The mineralization occurs 20m above a marker marble/chert horizon. This represents the same distance that the Vista Horizon was intersected above the marker horizon in DDH 01-13. Hence it is probable that the Vista and Navan Horizons are the same.

Based on the intersection in DDH 01-6, the Navan Horizon should have been intersected in DDH 01-5 at an approximate depth of 30m, at 30-35m in DDH 01-7 and 5-10m in DDH 01-8. Unfortunately, a large pegmatite sill *or coarse grained leucogranitic stock* invades the stratigraphy in this area. The marble horizon was intersected in DDH 01-8 at 26m. The Navan Horizon should therefore occur near the top of the hole. Approximately 60% of the core from the casing consisted of skarn with 30% pegmatite. At the Navan Showing, mineralization occurs within the skarn, adjacent to pegmatite (Gruenwald, 2000). In the Navan area, the amphibolite contact appears to be at 1275m, dipping shallowly northeast. Potential occurs east of the road, further down dip and hopefully away from the pegmatite. A prospective drill site, targeting a possible fold closure in the area would be at 7625N/2700E with a -90° and -50° hole at 200° azimuth.

The large soil anomaly on L7700N with values up 2590 ppm Zn and 412 ppm Pb may be due to downslope dispersion of mineralization related to the airing out of the Navan Horizon near the collar of DDH 01-8. Mineralized boulders in this area returned values up to 5.5 % Zn with 0.6% Pb (Gruenwald, 2000).

CONCLUSIONS

The preliminary soil and rock sampling programs partially outlined several open ended multi-element soil anomalies, especially in the Navan and Mike areas. These anomalies have not been tested by subsequent programs. Rock samples of mineralized material from the VISTA, NAVAN, and MIKE showings returned economic grades of zinc-lead-silver mineralization.

A preliminary gravity survey over a small portion of the property failed to outline mineralization. However the survey was incomplete and the most prospective areas remain untested. The survey did succeed in outlining larger areas underlain by felsic intrusive (gravity low) and thick calc-silicate (gravity high) areas.

The following conclusions on the diamond drilling is excerpted from Lindinger and Pautler 2001.

"The 2001 diamond drill program on the Broken Hill-Leo property was successful in intersecting both the Vista and Navan mineralized horizons, down dip from the surface exposures. An interpretation of the drill hole intersections of the horizons indicates that the Vista and Navan Horizons are probably the same. The Navan Showing is located 1.3 km southeast of the Vista. The Vista-Navan Horizon occurs approximately 20m above a marker marble (chert) horizon.

The Vista Horizon, which reportedly contains 15.9% Zn over 0.3m at the Vista Showing (Gruenwald, 2000), was intersected in DDH 01-3 and -13, approximately 500m east-

southeast of the Vista Showing. The mineralized zone grades 2.5% Zn over 3.9m (2.3m true width) as a weighted average in DDH 01-13 and is magnetic due to the presence of pyrrhotite. The intersection in DDH 01-3 was interrupted by a pegmatite sill, with the remnant mineralization grading 1.2% Zn over 1.1m (weighted average). It appears that pegmatite sills obliterated the Vista Horizon in DDH 01-12. The Horizon appears to air out along the road between the Vista Showing and DDH 01-13. Future drilling should concentrate to the north of the road, further down dip on the Horizon.

DDH 01-6 was successful in intersecting the Navan Horizon 25m down dip from the surface showing but was disrupted by a pegmatite sill. The diluted intersection grades 1.2% Zn with 0.1% Pb over 0.25m. The Navan Showing reportedly grades up to 21.5% Zn, 3.8% Pb and 11 g/t Ag from grab samples (Gruenwald, 2000). The Navan Horizon should also have been intersected in DDH 01-5, -7 and possibly in the very top of -8 but a large pegmatite sill invades the stratigraphy in this area.

A possible down-dropped fault block was delineated midway between the Vista and Navan Showings. In this case a pegmatite sill obliterated the Horizon in DDH 01-9, -10 and -11. Or the mineralization outcrops above holes 9 10 and 11. Also it is interpreted that the horizon has aired above DDH 01-4 and future drill holes need to be targeted higher on the hillside.

In conclusion, the Broken Hill-Leo property covers a 9 km strike extent of the carbonate stratigraphy, favourable for hosting high grade zinc-lead-silver Shuswap style mineralization similar to the Ruddock Creek (5 million tonnes grading 7.5% Zn, 2.5% Pb), CK (1.5 million tonnes grading 8.6% Zn), and Finn occurrences. Similar style mineralization occurs on the property and needs to be traced down dip, into potential fold closures and away from the pegmatite sills. The excellent access and infrastructure, in contrast to the Ruddock Creek, Cottonbelt and CK occurrences, add to the potential of the property."

TABLE 3 - EXPENSES

<u>A.</u>	<u>B</u> .	C .	D	E .	<u> </u>
2.	COST ITEM	dates (2000)	Rate/Day or	Days or	TOTAL
			km	km	
3.	Preparatory survey - 6.1 km cut tight				
	chained baselines				
4.	Wages- L Lindinger, P. Geo.	Oct 9-13	\$ 347.75	4.5	\$1,564.88
5.	Wages - Denis Delisle	Oct 10-13	\$ 256.80	4	\$1027.20
6.	Geochemical survey - 479 soil samples				
7.	Wages- L Lindinger, P. Geo.	Oct 14-17	\$ 347.75	3	\$1,043.25
8.	Wages - Denis Delisle	Oct 14-17	\$ 256,80	3	\$ 770.40
9.	Wages - Warner Gruenwald, P.Geo	Oct 12-17	\$ 374.50	6	\$2,247.00
	mapping, 30 rock samples				
10.	Wages - Rob Montgomery	Oct 12-17	\$ 267.50	6	\$1,605.00
11.	Transportation				
12.	Wages - L. Lindinger, P.Geo.	Oct 9, 18	\$ 347.75	2	\$ 695.50
13.	Wages - Denis Delisle	Oct. 9, 18	\$ 256.80	2	\$ 513.60
14.	Wages - Warner Gruenwald, P.Geo	Oct 11, 18	\$ 214.00	2	\$ 428.00
15.	Wages - Rob Montgomery	Oct 11,18	\$ 187.25	2	\$ 374.50
16.	Vehicle - Lindinger	Oct 9-17	\$ 53.50	8	\$ 428.00
17.	extra kilometers		\$ 0.27	470	\$ 126.90
18.	Vehicle - Delisle	Oct 9, 18	\$ 53.50	2	\$ 107.00
19.	Vehicle - Gruenwald	Oct 11, 18	\$ 40.66	2	\$ 81.32
20.	extra kilometers		\$ 0.27	400	\$ 108.00
21.	Vehicle - Montgomery		\$ 37.45	2	\$ 74.90
22.	extra kilometers	Oct 11, 18	\$ 0.27	400	\$ 108.00
23.	Accommodation				
24.	30 mandays	Oct 10-17	\$ 95.00	30	\$2,850.00
25.	Supplies, equipment rental and fuel			-	\$2,420.58
26.	Analyses				
27.	Analyses costs soils 479 samples		\$ 10.43	479	\$4,995.97
28.	Analyses - rocks 30 samples		\$ 15,52	30	\$ 465.60
29.	Analyses - metallic assays				\$ 105.81
30.	total preparatory and geochemistry				\$22,547.03
31.	Photogammetry - 8 square km	· · · · · · · · · · · · · · · · · · ·			
32.	Eagle Mapping Ltd.				\$6,329.05
33.	Preparatory work. Line brushing (13.2 km)	Nov 24-Dec17			·
	and logistical support gravity survey.				
34.	Wages - L. Lindinger, P.Geo. Supervision	Nov 24-Dec 1.	\$ 353.10	10.3	\$3,636.93
	surveying and line brushing.	5-8, 13, 17-18			-
35.	Wages - Denis Delisle - line brushing	Nov 24-29	\$ 262.15	6	\$1,572.90
36.	Wages - Mickey Sidhu - line brushing	Dec1-10, 15-18	\$ 219.35	13	\$2,851.55
37.	Accomodation per inv Blue River Motel	Dec 1-18		1	\$2,628.53
38.	food, fuel, supplies, radio rental	Dec1 - Dec 18	A		\$1,632.34
39.	Snowmobile & skimmer rental	Decl-Decl8	ser F	12X	\$3,289.52

.

`

Α.	<u>B</u> .	C .	D .	E.	F .
2.	COST ITEM	dates (2000)	Rate/Day or	Days or	TOTAL
			km	<u>km</u>	
40.	Truck rental - Canex rental	Dec1-18			\$1,650.76
41.	Chainsaw rental	Dec 1-18	\$ 33.67	9	\$ 303.05
42.	4x4 vehicle -Lindinger	Dec 5-7, 14	\$ 58.85	4	\$ 235.40
43.	4x4 vehicle Mickey Sidhu	Dec1, Dec18	\$ 53.50	2	\$ 107.00
44.	Gravity survey - Discovery Geophysics 8.3	Dec 1 to 17			\$22,272.33
45	line km at 25 m spacing	I. E.1. 2002			
45.	Diamond Drilling	Jan - Feb 2002			R (001 00
46.	Plowing road d7 and grader - 21 km	Jan 19, Feb 12	0.050.10	10.0	50,981,88
47.	L. Lindinger, P.Geo	Jan 15, 27-Feb	\$ 353.10	10,5	\$3,707.55
		1, Feb 5-8			A 4 900 00
48.	J. Pautler, P. Geo.	Jan 28-Feb 7	\$ 428.00		\$4,708.00
49.	Accomodation and food 22 mandays @\$60.	Jan 28-Feb7	\$ 60.00	22	\$1,320.00
50.	Vehicle rental Lindinger 4X4	Jan28-Feb7	\$ 58.85		\$ 706.20
<u>51.</u>	Vehicle Lindinger 1 ton van	Jan 28-29	\$ 53.50		\$ 107.00
52.	3 tonne 4x4 pickup Canex rental				\$ 653.63
53.	Core Shack rental	Jan 28-Feb 7	\$ 32.10	11	\$ 353.10
54.	Chain saw rental	Jan 28-Feb 7	\$ 21.40	13	\$ 278.20
55.	Radio rental	Jan 28 Feb 7	\$ 10.70	13	\$ 139.10
56.	Generator rental per invoice	Jan 28, - Feb 7			\$ 610.00
57.	Core Splitter rental per invoice				\$ 133.75
58.	Rock Saw rental		\$ 21.40	11	\$ 235.40
59.	Geochemical analyses per inv. 41 samples	_			\$1,347.00
60.	fuel, supplies				\$2,177.28
61.	Drilling - 930 meters in 13 holes				\$61,075.32
62.	Project preparation and				\$5,096.00
	administration	- -	Asia 1		
63.	report		1 IN		\$5,000.00
64.	grand total expenditures		- ANDINGER		\$163,280.18
			BRITISH COLUMBIA S OSCIENT		
REC	OMMENDATIONS		SCIEN		

RECOMMENDATIONS

The following recommendations are excerpted from Lindinger and Pautler, 2001.

"A program of detailed geological mapping, prospecting, a possible magnetic survey and excavator trenching is proposed. This should be followed by a second phase diamond drill program.

The geological mapping is necessary to expand the knowledge in and outside of the known grid area to delineate possible fold closures, to exclude areas with a high concentration of pegmatite and to incorporate the Mike Showing, 5 km southeast of the Vista. Only very limited geological mapping for the Vista-Navan area has been completed. Prospecting is necessary to follow up the high grade float, carrying 20% Zn, from the Mike Showing. Since the Vista-Navan Horizon is magnetic in DDH 01-13, the magnetic signature of the existing core that intersects the Horizon should be tested and if the Horizon has a distinct

signature, the Vista and Navan Showings should be surveyed magnetically. If favourable a magnetic survey should be completed over the grid and as possible reconnaissance lines to follow up the Mike Showing. Excavator trenching should be undertaken on the Vista, Navan and on the Mike, if a bedrock source is suspected or located, and trace them along strike. This would provide more geological, particularly structural data.

The second phase diamond drill program would target fold closures and projected extents of the Vista-Navan and possibly the Mike Horizons through areas of lower pegmatite content. Possible favourable drill sites that have already been identified, but should be confirmed by additional mapping, include the following:

- 1) L8700N/ 2400E -90° and -50 $^{\rm o}$ 200° azimuth
- 2) L8500N/2575E-90°
- 3) 7625N/27E-90° and -50° 200° azimuth
- 4) higher on the hillside, northeast of the road from DDH 01-4
- 5) north of the road, further down dip between the Vista Showing and DDH 01-13."

Selected References

Campbell, R.B. 1963: Geological Map of Adams Lake, 82M W1/2. GSC Map 48-1963.

Evans, G. 1993: Geological, Geochemical and Geophysical Assessment Report on the Blue River Property for Teck Corp. 10 pages plus attachments. EMPR Assessment Report# 22742.

Gibson, G. 1991: Geological Report on the Hos 1-19 Mineral Claims, for Bethlehem Resources Corp. 16 pages plus attachments. EMPR Assessment Report# 21201.

Gruenwald, W. 2000: Preliminary Report on the Broken Hill Property. Unpublished report for Cassidy Gold Corp., 3 pages plus attachments.

Hoy, T. 1996: Irish-Type Carbonate Hosted Zn-Pb. BC Mineral Deposit Model E13, 5 pages.

Hoy, T. 1996: Broken Hill-Type Pb-Zn-Ag+/-Cu. BC Mineral Deposit Model S01, 5 pages.

Lewis, T.D. 1883: Geological and Geochemical Report on the Otter Creek Property, for Noranda Exploration Company, Ltd. 5 pages plus attachments. EMPR Assessment Report# 11904.

Lindinger, 2000. Unpublished prospecting program

Lindinger, 2000: Report on the Leo Property. Unpublished report for La Rock Mining Corp. 10 pages plus attachments.

Lindinger and Pautler, 2001; Report on the 2001 Diamond drill Program on the Broken Hill Property. Unpublished report for Cassidy Gold Corp. 17 pages plus attachments..

MacIntyre D. 1992: Sedimentary Exhalitive Zn-Pb-Ag. BC Mineral Deposit Models E14, 4 pages.

Murrell, M. 1980: Geochemical Assessment report on the Finn 1 Claim for Cominco Ltd. 2 pages plus attachments. EMPR Assessment Report# 9027.

Oliver, J. 1988: Drilling and geological report on the 1987 exploration of the CK property, 54 pages plus attachments. EMPR Assessment Report# 17539.

Scammell, R.J. 1990: Preliminary results of stratigraphy, structure, and metamorphism in the southern Scrip and northern Seymour ranges, southern Omineca Belt, British Columbia. In Current Research, Part E, Geological Survey of Canada, Paper 90-1E: pp 97-106.

Wheeler J.O., & Palmer A.R. ed, 1992: Geology of the Cordilleran Orogen in Canada. Geology of North America, Volume G-2; Geology of Canada No. 4, pages 146, 162, 195-196, 293, 508, 514, 545-546,607-610, 619, 621-622, 715,

STATEMENT OF QUALIFICATION

I, J E. L.(Leo) Lindinger, hereby do certify that:

I am a graduate of the University of Waterloo (1980) and hold a BSc. degree in honors Earth Sciences.

I have been practicing my profession as an exploration and mine geologist continually for the past 20 years.

I am a registered member, in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1992).

I am the vendor of the Broken Hill-Leo property and have an interest in the securities of Cassidy Gold Corp.

The sections of the report that I have participated in writing do not include the discussion, conclusions and recommendation described in this report of the drilling program.

J.E.L.(Leo) Lindinger. P. Geo.

27+00E 100+601 20+00E 100+621 100+6

> CASSIDY GOLD CORP. BROKEN HILL PROJECT BROKEN HILL PROPERTY AVOLA AREA, KAMLOOPS MINING DIVISION SILVER, LEAD, ZINC GEOCHEMICAL RESULTS FIGURE 7 - NORTH VISTA-NAVAN AREA NYS 082M/14, 51 Deg. 49'N, 119 Deg. 14'W 0 100 200 300 400 500 m. Scale - 1:4000 GRAPHICS BY RENAISSANCE GEOSCIENCE SERVICES

AREA GREATER THAN 150 ppm ZINC

AREA GREATER THAN 40ppm LEAD

_	
004	,
+69+	
14_26 A T	18_34 0.2
20 14	14 _ 36
20_62	14_32
12 40	0.2 10_30 0.4
12 54	<u> </u>
16 48 0.2	18_56 0.2
2244 0.6	14 54 0.2
16 38 .4	12 - 34 0.2 -
22 84).6	18 55 0.4
18_40).4	18_70 0.2
20 <u>1</u> 42).2	18 <u>52</u> 0.2
Receiver	common area to figures 7- North and 7 - South

APPENDIX I

SOIL AND ROCK GEOCHEMISTRY

,

•

•

٠

.

emex Α

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total er :1-A 4 :2 Certificate Date: 24-OCT-2000 Invoice No. : [0031433 P.O. Number : icyo Account

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031433

SAMPLE	PREP CODE	λg ppm λλs	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg 🔭 (ICP)	Ma ppa (ICP)
VNA 0+00B VNA 0+25B VNA 0+50B VNA 0+75B VNA 0+75B VNA 1+00B	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.2 < 0.2 0.2 0.2 0.2	7.89 8.07 7.84 8.41 8.17	560 1090 630 440 450	3.0 2.5 2.5 4.0 2.0	< 2 < 2 < 2 < 2 < 2	1.26 1.20 1.13 3.77 1.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 7 9 18 6	47 33 52 56 16	11 12 12 18 15	4.07 2.91 3.74 3.72 2.43	1.56 1.42 1.70 1.32 1.15	0.65 0.49 0.76 0.96 0.29	415 370 470 470 420
VNA 1+25B VNA 1+50B VNA 1+75B VNA 2+00B VNA 2+25B	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.2 0.6 0.2 < 0.2 < 0.2	8.09 10.15 9.09 8.58 8.51	470 480 190 590 440	2.0 3.0 10.5 3.0 2.5	< 2 < 2 16 < 2 < 2 < 2	0.95 1.51 3.07 1.22 1.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 13 10 12 9	23 49 35 49 33	14 20 23 23 11	2.38 4.22 4.03 3.76 2.83	1.26 1.36 0.57 1.50 1.48	0.33 0.54 0.57 0.71 0.42	365 455 635 515 385
VNA 2+508 VNA 2+758 VNA 3+008 VNA 3+258 VNA 3+508	201 285 201 285 201 285 201 285 201 285 201 285	0.6 0.2 < 0.2 0.8 0.4	8.44 8.86 7.78 9.58 8.48	490 470 560 490 450	2.5 2.0 3.0 5.0 3.5	< 2 < 2 < 2 2 2 2	0.99 0.94 1.17 1.91 1.65	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 9 20 14	33 31 37 66 54	10 12 17 20 18	3.09 2.71 2.87 4.66 4.35	1.46 1.21 1.77 1.28 1.03	0.43 0.36 0.56 0.76 0.56	360 360 375 535 635
VNA 3+75B VNA 4+00B VNA 4+25B VNA 4+50B VNA 4+50B VNA 4+75B	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.2 0.4 0.2 0.2	9.12 7.31 >25.0 9.51 10.00	640 500 2030 510 460	2.5 2.0 8.0 3.0 6.5	2 < 2 < 2 < 2 < 2 < 4	1.38 0.93 3.04 1.56 1.75	< 0.5 < 0.5 0.5 0.5 1.0	13 9 26 12 15	69 35 149 72 40	14 14 49 27 16	5.46 2.92 11.55 4.68 4.19	1.84 1.40 6.02 1.38 1.00	0.80 0.39 1.92 0.69 0.40	580 460 1225 440 955
VNA 5+00B VNA 0+00C VNA 1+00C VNA 2+00C VNA 3+00C	201 285 201 285 201 285 201 285 201 285 201 285	0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	9.35 8.51 7.18 6.72 7.68	470 720 610 640 600	2.0 3.5 3.5 3.5 3.5 3.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.83 1.60 1.57 1.72 1.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 13 11 7 10	33 42 36 28 36	9 22 29 12 24	3.07 2.79 2.57 1.90 2.15	1.32 2.19 2.07 2.09 2.35	0.37 0.80 0.70 0.58 0.64	405 545 625 550 485
VNA 4+00C VNA 4+50C VNA 5+00C L70+00N 23+25E L70+00N 23+50E	201 285 201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.8 < 0.2 0.8 0.2	8.43 8.32 6.67 7.19 7.20	770 590 640 490 500	3.5 3.5 2.5 2.5 1.5	< 2 2 < 2 < 2 < 2 < 2 < 2	1.34 3.47 1.48 1.52 1.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 26 7 14 5	41 71 23 26 17	18 73 11 56 8	2.75 3.69 1.71 2.44 1.73	2.24 1.61 1.94 1.44 1.53	0.69 1.14 0.40 0.62 0.53	445 620 535 1015 415
L70+00N 23+75E L70+00N 24+00E L70+00N 24+50E L70+00N 24+75E L70+00N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	0.4 0.2 0.4 0.6 0.2	7.04 7.22 7.74 7.09 6.76	480 520 630 570 590	2.0 3.0 3.5 4.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.60 1.65 1.52 1.07 1.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 12 19 12 9	40 44 55 35 43	25 22 52 32 12	3.45 2.91 3.72 3.69 3.41	1.46 2.07 2.08 1.89 1.87	0.77 0.74 1.04 0.55 0.57	640 495 690 595 420
L70+00N 25+25E L70+00N 25+50E L70+00N 25+75E L70+00N 23+75E L70+50N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 0.6 0.6	7.09 7.50 7.29 6.75 7.14	590 510 590 540 590	2.5 2.0 2.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.84 0.92 1.24 1.07 1.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 4 6 9 10	34 28 31 39 33	13 10 10 13 20	2.37 2.77 2.53 3.44 3.00/	1.91 1.47 1.89 1.55 1.72	0.58 0.37 0.45 0.57 0.61	520 290 320 470 445

CERTIFICATION:

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page ber :1-B Total as :2 Certificate Date: 24-OCT-2000 Invoice No. :10031433 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031433

SAMPLE	PREP CODE	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
VNA 0+00B VNA 0+25B VNA 0+50B VNA 0+75B VNA 1+00B	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 < 1 < 1 1	1.55 1.94 1.55 1.46 2.20	17 9 15 38 4	580 750 830 1560 760	32 54 24 38 16	272 255 246 856 228	0.39 0.35 0.35 0.38 0.38	100 66 89 68 45	< 10 < 10 < 10 < 10 < 10 < 10	104 88 108 140 70		
VNA 1+25B VNA 1+50B VNA 1+75B VNA 2+00B VNA 2+25B	201 285 201 285 201 285 201 285 201 285 201 285	< 1 1 1 1	1.95 1.81 1.08 1.64 1.54	7 15 29 23 12	970 1790 1250 750 780	20 28 184 32 28	206 321 483 264 203	0.31 0.45 0.27 0.31 0.27	46 90 63 77 59	< 10 < 10 < 10 < 10 < 10 < 10	88 148 184 190 94		
VNA 2+50B VNA 2+75B VNA 3+00B VNA 3+25B VNA 3+50B	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 < 1 < 2	1.51 2.00 1.64 1.63 1.68	10 11 19 23 19	600 830 710 1660 2690	24 22 24 26 24	233 216 253 228 202	0.27 0.33 0.26 0.53 0.59	64 56 63 97 99	< 10 < 10 < 10 < 10 < 10	84 88 84 340 178		
VNA 3+75B VNA 4+00B VNA 4+25B VNA 4+50B VNA 4+75B	201 285 201 285 201 285 201 285 201 285 201 285	1 < 1 2 4	2.01 1.42 5.03 1.42 1.63	22 9 45 26 11	1130 1160 4590 1560 2600	30 26 22 30 192	272 199 785 206 182	0.74 0.30 1.08 0.46 0.45	164 64 271 105 86	< 10 < 10 < 10 < 10 < 10 < 10	202 116 390 224 702		
VNA 5+00B VNA 0+00C VNA 1+00C VNA 2+00C VNA 3+00C	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 < 1 < 1 < 1 < 1	1.33 2.07 1.80 2.07 2.05	8 24 23 14 20	880 710 790 680 540	30 30 30 104 34	195 339 310 374 280	0.27 0.33 0.26 0.25 0.22	66 76 60 50 53	< 10 < 10 < 10 < 10 < 10 < 10	90 86 80 448 60		
VNA 4+00C VNA 4+50C VNA 5+00C L70+00N 23+25E L70+00N 23+50E	201 285 201 285 201 285 201 285 201 285 201 285	1 2 < 1 1 1	2.06 1.54 1.95 2.05 2.57	21 96 12 14 6	760 1200 720 1420 430	20 22 28 16	329 285 344 285 315	0.29 0.60 0.24 0.33 0.37	69 110 49 59 45	< 10 < 10 < 10 < 10 < 10	122 210 60 58 40		
L70+00N 23+75E L70+00N 24+00E L70+00N 24+50E L70+00N 24+75E L70+00N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	2 1 1 < 1	1.63 1.83 1.55 1.40 1.60	15 22 53 21 11	800 690 890 1200 650	16 22 24 34 18	239 332 268 242 259	0.46 0.35 0.47 0.32 0.40	95 74 89 65 80	< 10 < 10 < 10 < 10 < 10 < 10	80 44 96 100 62		
L70+00N 25+25E L70+00N 25+50E L70+00N 25+75E L70+50N 23+50E L70+50N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 < 1 1 1	1.83 1.50 1.74 1.42 1.69	13 8 7 12 12	780 720 350 670 940	16 14 18 16 20	392 225 305 225 279	0.29 0.27 0.26 0.31 0.32	71 60 65 71 68	< 10 < 10 < 10 < 10 < 10 < 10	40 44 32 72 60	\cap	

•

CERTIFICATION:

'and

1 1

hemex C AI

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total i er :2-A :2 .8 Certificate Date: 24-OCT-2000 Invoice No. : 10031433 P.O. Number • Account CYO

A0031433

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

SAMPLE	PREP CODE	дд ррт Ллз	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L70+50N 24+00E L70+50N 24+25E L70+50N 24+50E L70+50N 24+75E L70+50N 24+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.37 7.38 6.78 6.50 6.38	620 640 660 590 680	2.0 2.5 2.0 2.0 2.0 2.0	× × × × × × × × × × × × × × × × × × ×	1.22 1.23 1.28 1.29 1.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 5 7 7	33 40 19 36 34	11 11 12 13 8	2.67 3.01 1.81 2.89 2.11	1.88 1.96 1.88 1.75 2.13	0.48 0.61 0.38 0.56 0.44	395 405 335 405 340
L70+50N 25+25E L70+50N 25+50E L70+50N 25+75E L71+00N 23+50E L71+00N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 0.6 0.8	6.72 6.91 7.07 6.78 7.14	550 640 650 540 560	2.0 2.0 2.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.24 1.22 1.09 1.24 1.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 5 8 11	48 43 28 33 32	16 8 6 23 15	3.14 3.57 2.27 2.09 2.42	1.59 1.93 1.94 1.54 1.74	0.49 0.54 0.36 0.47 0.54	425 365 270 390 535
L71+00N 24+00E L71+00N 24+50E L71+00N 24+75E L71+00N 25+00E L71+00N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.2 0.2 0.4 1.6	7.02 6.86 6.80 7.11 7.87	540 560 570 490 560	2.5 1.5 2.5 2.0 3.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.16 1.31 1.77 0.97 1.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 7 7 7 7	30 19 28 56 31	19 8 9 9 10	2.11 1.88 2.52 2.98 2.93	1.55 1.71 1.73 1.43 1.58	0.42 0.47 0.56 0.53 0.49	350 400 450 305 380
L71+00N 25+50E L71+00N 25+75E L71+50N 23+50E L71+50N 23+75E L71+50N 24+00E	201 285 201 285 201 285 201 285 201 285	0.2 0.2 0.8 NotRcā 0.4	7.36 7.05 7.20 NotRed 7.46	600 620 610 NotRcd 520	2.5 2.0 2.5 NotRed 2.5	<pre>< 2 < 2 < 2 < 2 NotRcd < 2</pre>	1.42 1.31 0.96 NotRed 1.25	< 0.5 0.5 < 0.5 NotRcd < 0.5	8 6 8 NotRcd 8	36 33 52 NotRad 36	12 14 24 NotReđ 11	3.06 1.98 2.92 NotRcd 2.87	1.73 1.68 1.72 NotRcd 1.41	0.58 0.38 0.56 NotRcd 0.46	440 430 400 NotRed 430
L71+50N 24+25E L71+50N 24+50E L71+50N 24+75E L71+50N 25+00E L71+50N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.6 < 0.2 0.2 0.4	6.91 7.13 7.45 7.65 7.49	570 560 530 520 540	3.0 2.0 2.5 2.0 1.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.46 1.51 1.45 1.37 1.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 7 6 7	32 20 38 30 29	13 19 13 10 12	2.33 2.32 3.33 2.82 2.26	1.67 1.64 1.57 1.55 1.63	0.50 0.57 0.60 0.52 0.50	435 580 415 385 425
L71+50N 25+75E L71+50N 26+00E	201 285 201 285	0.8 < 0.2	8.44 7.42	350 690	5.0 2.0	2 < 2	1.77 1.30	< 0.5 < 0.5	13 7	53 32	9 7	3.28 2.58	0.90 2.06	0.66 0.52	815 340
														1	•

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 5: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page er :2-B Total - J :2 Certificate Date: 24-OCT-2000 Invoice No. :10031433 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031433

SAMPLE	Prep Code	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
L70+50N 24+00E L70+50N 24+25E L70+50N 24+50E L70+50N 24+75E L70+50N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	3 1 1 < 1 < 1	2.06 1.75 2.31 1.77 1.87	7 11 5 14 8	330 420 290 400 170	20 24 18 22 20	292 279 301 289 323	0.39 0.34 0.35 0.33 0.31	73 76 53 67 73	< 10 < 10 < 10 < 10 < 10 < 10	46 56 36 46 32		
L70+50N 25+25E L70+50N 25+50E L70+50N 25+75E L71+00N 23+50E L71+00N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	1 < 1 < 1 3 < 1	1.86 1.68 1.69 1.98 1.75	18 10 4 10 11	480 330 230 820 530	24 20 22 22 22 22	278 280 269 266 319	0.33 0.42 0.39 0.32 0.32	75 95 72 51 63	< 10 < 10 < 10 < 10 < 10 < 10	38 46 20 46 36		
L71+00N 24+00E L71+00N 24+50E L71+00N 24+75E L71+00N 25+00E L71+00N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 1 1 < 1	1.79 2.63 2.31 1.48 1.86	15 5 10 15 10	290 260 360 620 750	18 14 22 22 20	265 287 311 202 271	0.26 0.36 0.51 0.40 0.32	49 52 95 80 65	< 10 < 10 < 10 < 10 < 10 < 10	36 44 48 78 68		
L71+00N 25+50E L71+00N 25+75E L71+50N 23+50E L71+50N 23+75E L71+50N 24+00E	201 285 201 285 201 285 201 285	< 1 1 < 1 NotRod 1	1.92 2.61 1.63 NotRcd 1.93	12 7 20 NotRed 12	820 470 360 Notređ 320	22 34 52 NotRed 22	308 284 248 NotRad 262	0.36 0.44 0.29 NotRcd 0.38	73 57 67 NotRed 68	< 10 < 10 < 10 NotRed < 10	88 76 56 NotRed 66		
L71+50N 24+25E L71+50N 24+50E L71+50N 24+75E L71+50N 25+00E L71+50N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 3 1 1 1	1.94 2.55 1.97 2.22 2.45	13 6 11 9 10	400 340 330 340 650	30 18 20 20 18	312 319 273 283 307	0.30 0.36 0.40 0.41 0.35	61 62 81 77 52	< 10 < 10 < 10 < 10 < 10 < 10	38 50 50 52 72		
L71+50N 25+75E L71+50N 26+00E	201 285 201 285	1 < 1	1.36	14 9	1420 210	40 24	194 284	0.31 0.43	-	< 10 < 10	192 88	()	

.

CERTIFICATION:

hemex

Aurora Laboratory Services Ltd. Analytical Chemists " Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total er:1-A 4 :4 4 Certificate Date: 25-OCT-2000 Invoice No. : 10031547 P.O. Number : icyo Account

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

		1	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1		l l l l l l l l l l l l l l l l l l l	T T		1	1	l		<u> </u>
SAMPLE	PREP CODE	λg ppm AλS	λ1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bippm (ICP)	Ca % {ICP}	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L68+00N 23+50E L68+00N 23+75E L68+00N 24+00E L68+00N 24+25E L68+00N 24+50E	201 285 201 285 201 285 201 285 201 285 201 285	0.4 0.2 0.2 0.4 0.2	7.86 7.80 7.44 7.26 7.53	530 480 550 570 640	2.5 2.0 2.5 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.98 1.73 1.40 1.51 1.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 7 5 7	40 40 35 18 38	12 16 11 7 10	2.82 3.47 2.58 1.90 2.38	1.59 1.43 1.83 1.84 2.00	0.42 0.65 0.48 0.40 0.54	385 490 390 410 415
L68+00N 24+75E L68+00N 25+00E L68+00N 25+25E L68+00N 25+50E L68+00N 25+75E	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.2 0.4 0.2 0.2	6.74 6.83 6.95 7.16 7.70	480 610 400 470 650	2.0 2.0 1.5 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.88 1.06 1.01 1.28 1.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 5 4 7	56 32 17 17 33	15 13 16 9 11	3.55 3.18 1.91 1.93 2.35	1.37 1.73 1.14 1.42 2.02	0.63 0.47 0.30 0.34 0.55	450 530 280 315 370
L68+00N 26+00E L69+00N 23+50E L69+00N 23+75E L69+00N 24+00E L69+00N 24+25E	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.2 0.2 0.6 0.4	6.87 5.93 6.67 6.84 7.32	650 510 600 560 570	2.0 2.0 1.5 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.07 1.39 1.18 1.10 1.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 5 10 6	30 29 23 42 16	8 12 15 18 9	3.00 3.27 2.60 4.03 1.80	1.93 1.55 1.77 1.87 1.75	0.47 0.44 0.41 0.65 0.54	385 395 340 475 390
L69+00N 24+50E L69+00N 24+75E L69+00N 25+00E L69+00N 25+25E L69+00N 25+50E	201 285 201 295 201 285 201 285 201 285 201 285	0.6 0.2 0.2 0.2 0.2	7.40 7.02 7.23 6.84 8.00	500 530 530 540 510	2.0 1.5 2.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.67 1.55 1.20 1.27 1.69	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 5 7 10	25 27 30 32 33	15 16 13 16 12	2.90 3.62 2.35 2.69 3.07	1.45 1.54 1.52 1.58 1.61	0.46 0.66 0.40 0.53 0.63	420 470 430 385 725
L69+00N 25+75E L69+00N 26+00E L69+50N 23+45E L69+50N 23+75E L69+50N 24+00E	201 285 201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.4 0.8 0.2 0.4	7.31 6.11 6.42 8.42 7.34	210 580 530 530 600	1.0 1.5 2.0 2.0 1.5	<pre></pre>	0.38 0.92 1.45 1.05 1.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 10 7 7	16 11 36 26 39	9 16 17 16 11	2.30 1.60 4.52 2.72 2.68	0.61 1.63 1.65 1.48 1.83	0.11 0.20 0.67 0.38 0.54	130 255 480 405 415
L69+50N 24+25E L69+50N 24+50E L69+50N 24+50E L69+50N 25+00E L69+50N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	0.4 0.2 0.2 0.6 0.4	6.43 6.81 7.11 7.21 6.99	510 440 540 620 500	1.5 1.5 2.5 2.0 2.5	< 2 8 < 2 < 2 < 2 < 2	0.95 1.04 1.10 1.43 1.77	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 8 7 9	37 13 40 32 26	11 24 16 13 18	4.30 1.80 4.02 3.12 2.09	1.58 1.19 1.56 1.78 1.51	0.44 0.31 0.61 0.57 0.52	350 310 525 460 980
L69+50N 25+50E L69+50N 25+75E L75+00N 23+50E L75+00N 23+75E L75+00N 24+00E	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.2 0.4 0.6 0.2	6.73 6.75 7.74 7.72 7.40	440 810 650 630 560	1.5 1.5 2.0 2.5 2.5	<pre></pre>	0.79 1.12 1.47 1.29 1.69	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 8 8 6	22 19 34 38 22	15 12 9 15 10	2.34 1.62 2.65 2.75 2.41	1.28 1.93 1.86 1.88 1.78	0.24 0.42 0.56 0.57 0.55	275 320 470 380 405
L75+00N 24+25E L75+00N 24+50E L75+00N 24+50E L75+00N 25+00E L75+00N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	0.2 0.4 0.6 0.4 < 0.2	7.66 8.23 7.80 7.90 8.60	580 580 540 560 510	2.0 3.5 2.5 2.0 2.0	<pre></pre>	1.45 1.69 1.74 1.37 1.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 9 8 6 7	29 45 29 27 22	13 25 9 12 11	2.88 3.61 2.37 -2.50 2.49	1.65 1.64 1.65 1.48 1.42	0.55 0.63 0.57 0.44 0.44	425 415 445 410 340
		J		<u> </u>	I		J,	<u></u>	<u>.</u>	CEF		N: ha			

Chemex

• • • • • • • • •

.

Aurora Laboratory Services Lid. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page er :1-B Total + _s :4 Certificate Date: 25-OCT-2000 Invoice No. :10031547 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

٠

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
L68+00N 23+50E L68+00N 23+75E L68+00N 24+00E L68+00N 24+25E L68+00N 24+50E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 1 < 1 < 1	1.67 2.23 1.86 2.54 1.86	11 14 9 4 11	660 430 450 290 530	18 18 12 14	235 282 300 331 324	0.26 0.48 0.28 0.30 0.29	60 87 61 50 70	< 10 < 10 < 10 < 10 < 10	52 70 56 34 54				
L68+00N 24+75E L68+00N 25+00E L68+00N 25+25E L68+00N 25+50E L68+00N 25+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 2 < 1	1.39 1.72 1.72 2.14 1.83	18 8 5 2 8	850 580 830 370 390	18 16 10 14 14	214 246 214 280 330	0.30 0.33 0.24 0.28 0.30	72 70 38 45 70	< 10 < 10 < 10 < 10 < 10 < 10	56 70 30 32 36				
L68+00N 26+00E L69+00N 23+50E L69+00N 23+75E L69+00N 24+00E L69+00N 24+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 2 < 1 1 < 1	1.84 1.49 1.96 1.63 2.53	8 9 6 15 5	240 480 510 950 530	18 20 18 22 16	287 253 268 242 315	0.31 0.47 0.39 0.32 0.35	68 85 64 87 49	<pre> 10 10 10 10 10 10 10 </pre>	34 42 40 64 38				
L69+00N 24+50E L69+00N 24+75E L69+00N 25+00E L69+00N 25+25E L69+00N 25+50E	201 285 201 285 201 285 201 285 201 285 201 285	2 < 1 3 1 < 1	1.80 2.29 1.65 1.50 1.69	8 8 8 12	1300 760 640 620 980	22 16 12 12 20	245 258 259 273 455	0.48 0.60 0.33 0.35 0.28	74 103 61 62 64	< 10 < 10 < 10 < 10 < 10 < 10	44 48 54 40 62				
L69+00N 25+75E L69+00N 26+00E L69+50N 23+45E L69+50N 23+75E L69+50N 24+00E	201 285 201 285 201 285 201 285 201 285 201 285	3 < 1 3 1	0.72 2.23 1.63 1.67 2.05	2 1 15 7 10	660 380 480 760 440	20 14 20 14 22	92 239 264 233 272	0.16 0.31 0.48 0.29 0.53	39 36 94 59 81	< 10 < 10 < 10 < 10 < 10 < 10	14 26 42 54 58				
L69+50N 24+25E L69+50N 24+50E L69+50N 24+75E L69+50N 25+00E L69+50N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	1 3 1 1	1.32 2.19 1.67 1.96 1.73	9 3 12 10 14	530 900 1540 840 1340	22 22 24 20 16	206 222 226 272 324	0.39 0.38 0.42 0.43 0.27	95 39 93 80 61	< 10 < 10 < 10 < 10 < 10 < 10	40 40 78 64 72				
L69+50N 25+50E L69+50N 25+75E L75+00N 23+50E L75+00N 23+75E L75+00N 24+00E	201 285 201 285 201 285 201 285 201 285 201 285	1 < 1 < 1 < 1	1.46 2.69 2.23 1.86 2.46	3 7 11 16 9	1040 370 490 440 240	18 18 20 22 26	192 411 309 285 328	0.28 0.44 0.40 0.33 0.35	- 54 - 59 77 74 72	< 10 < 10 < 10 < 10 < 10 < 10	30 34 98 76 46				
L75+00N 24+25E L75+00N 24+50E L75+00N 24+75E L75+00N 25+00E L75+00N 25+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 1 1	2.03 1.76 2.56 2.57 2.43	13 28 8 7 6	440 500 360 590 430	48 30 20 26 22	289 281 311 285 277	0.35 0.41 0.42 0.48 0.40	72 85 66 64 60	< 10 < 10 < 10 < 10 < 10 < 10	96 484 80 104 74	7	7	ي من الم	

-

.

CERTIFICATION: 100

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

nyucau Criennists Geocrielmists Medistered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD.

Page er :2-A Total & :4 Certificate Date: 25-OCT-2000 Invoice No. :10031547 P.O. Number : Account :CYO

V1B 3M9 Project : PROJECT #86

VERNON, BC

Project: PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A0031547 PREP yd bbu A1 🛠 Ca 🐒 Ba ppm Be ppm Bi ppm Cđ ppm Co ppm Fe % Cr ppm Cu ppm K % Ma 🍾 Mn ppm SAMPLE CODE λAS (ICP) (ICP) {ICP} {ICP} (ICP) (ICP) (ICP) {ICP} (ICP) (ICP) (ICP) (ICP) (ICP) L75+00N 25+75E 201 285 0.2 7.99 420 3.5 2 < 0.5 1.48 8 58 13 4.60 1.00 0.48 445 L75+00N 26+00E 201 285 < 0.2 8.64 510 1.5 < 2 0.84 < 0.5 4 18 2.62 8 1.47 0.22 410 L75+00N 26+25E 201 285 0.8 6.84 630 1.5 < 2 1.24 < 0.5 3 16 6 1.33 2.04 0.32 305 L75+00N 26+50E 201 285 < 0.2 6.78 640 1.5 < 2 1.15 < 0.5 5 10 6 1.89 2.07 0.47 435 175+00N 26+75g 201 285 < 0.2 7.24 750 2.0 < 2 1.22 < 0.5 6 33 8 2.53 2.36 0.60 450 L75+00N 27+00E 201 285 0.2 7.23 700 2.0 < 2 1.18 < 0.5 6 36 11 2.44 2.18 0.62 380 L75+50N 23+50E 201 285 < 0.2 7.33 570 1.5 < 2 1.49 < 0.5 7 18 8 2.35 1.89 0.59 395 L75+50N 23+75E 201 285 < 0.2 7.44 780 2.0 < 2 1.37 < 0.5 6 30 7 2.35 2.36 0.54 350 L75+50N 24+00E 201 285 < 0.2 7.22 700 2.5 < 2 1.16 < 0.5 11 44 17 3.42 2.09 0.68 425 L75+50N 24+25E 201 285 0.6 7.16 570 2.0 < 2 1.56 < 0.5 7 29 11 2.70 1.74 0.53 420 L75+50N 24+50E 201 285 0.8 8.00 550 2.0 < 2 1.24 < 0.5 10 33 11 3.34 1.68 0.45 470 L75+50N 24+75E 201 285 < 0.2 < 2 8.37 600 2.5 1.45 < 0.5 12 43 26 3.62 1.73 0.68 795 L75+50N 25+00E 201 285 0.6 8.59 560 2.5 < 2 0.96 < 0.5 8 21 40 3.65 1.55 0.50 330 L75+50N 25+25E 201 285 1.0 7.58 540 2.0 < 2 1.28 < 0.5 11 57 11 4.14 1.43 0.53 460 L75+50N 25+50E 201 285 < 0.2 7.35 480 1.5 < 2 1.40 < 0.5 6 22 10 2.82 1.41 0.47 420 175+50N 25+75E 201 285 0.4 7.00 560 2.0 < 2 1.47 < 0.5 7 36 9 3.39 1.67 0.56 450 L75+50N 26+50E 201 285 < 0.2 6.62 630 2.0 < 2 1.08 < 0.5 6 32 1.98 8 2.42 0.51 370 175+50N 26+75E 201 285 < 0.2 7.06 550 2.0 < 2 0.94 < 0.5 5 28 7 3.38 1.65 0.40 280 175+50N 27+00E 201 285 < 0.2 8.09 660 2.5 < 2 0.91 < 0.5 12 52 30 3.93 2.08 0.99 635 L76+00N 23+50E 201 285 0.2 7.16 680 < 2 2.5 1.67 < 0.5 34 R 19 2.40 2.01 0.69 660 L76+00N 23+75E 201 285 < 0.2 8.01 680 3.0 < 2 1.34 < 0.5 13 35 34 2.89 1.55 0.69 830 L76+00N 24+00E 201 285 0.2 7.36 630 < 2 2.0 1.31 < 0.5 9 31 17 2.46 1.60 0.55 435 L76+00N 24+25E 201 285 < 0.2 6.63 600 2.0 < 2 1.44 < 0.5 6 28 9 2.39 1.84 0.42 400 L76+00N 24+50E 201 285 < 0.2 6.83 530 1.5 < 2 1.14 < 0.5 3 20 8 2.32 1.63 0.30 315 L76+00N 24+75E 201 285 0.6 7.00 580 2.0 < 2 1.41 < 0.5 6 35 8 2.12 1.94 0.46 365 L76+00N 25+00E 201 285 < 0.2 9.37 420 2.0 < 2 0.84 < 0.5 4 15 11 3.33 1.17 0.22 260 L76+00N 25+25E 201 285 < 0.2 7.86 480 2.5 < 2 1.22 < 0.5 6 39 12 3.11 1.72 0.51 345 L76+00N 25+50E 201 285 0.6 7.06 540 3.0 < 2 1.59 < 0.5 11 41 19 2.83 1.65 0.55 455 L76+00N 25+75E 201 285 < 0.2 7.46 510 1.5 < 2 1.00 < 0.5 5 30 9 2.72 1.57 0.36 330 L76+00N 26+25E 201 285 0.2 7.32 660 2.0 < 2 1.07 < 0.5 Э 22 10 1.21 1.96 0.34 295 L76+00N 26+50% 201 285 < 0.2 7.20 510 2.0 < 2 0.97 < 0.5 4 23 7 2.52 1.44 0.34 310 L76+00N 26+75R 201 285 < 0.2 6.90 670 2.0 < 2 1.26 < 0.5 4 28 7 1.73 2.05 0.48 375 L76+00N 27+00E 201 285 < 0.2 6.71 660 2.0 < 2 1.15 < 0.5 7 36 11 3.62 2.17 0.56 440 L76+50N 23+50g 201 285 < 0.2 7.01 640 2.0 < 2 1.19 < 0.5 6 30 8 2.31 2.09 0.45 345 L76+50N 23+75E 201 285 < 0.2 7.23 570 2.5 < 2 1.09 < 0.5 8 33 14 2.90 1.76 0.50 470 L76+50N 24+00E 201 285 0.4 8.72 450 2.0 < 2 0.75 < 0.5 24 4 12 3.19 1.39 0.21 245 L76+50N 24+25E 201 285 < 0.2 7.94 460 2.5 < 2 0.95 0.5 6 29 9 3.55 1.44 0.31 275 L76+50N 24+50E 201 285 < 0.2 7.05 < 2 1.36 560 2.5 < 0.5 7 32 8 2.61 1.71 0.49 440 L76+50N 24+75E 201 285 1.0 7.49 420 1.5 2 1.00 < 0.5 3 10 10 2.39 1.30 0.27 315 L76+50N 25+00E 201 285 < 0.2 7.94 360 2.0 < 2 1.66 5 < 0.5 25 9 2.90 1.24 0.52 395 ---

CERTIFICATION

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 >: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page er :2-B Total I- 3 :4 Certificate Date: 25-OCT-2000 Invoice No. : 10031547 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

SAMPLE	PREP CODE	Moppm (ICP)	Na % (ICP)	N1 ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	TI % (ICP)	V ppm {ICP}	W ppm (ICP)	Zn ppm (ICP)		
L75+00N 25+75E L75+00N 26+00E L75+00N 26+25E L75+00N 26+50E L75+00N 26+75E	201 285 201 285 201 285 201 285 201 285 201 285	2 2 1 < 1 1	1.44 1.93 2.41 2.64 1.84	13 2 1 3 8	4670 1530 340 440 400	44 22 20 18 14	155 208 291 282 328	0.62 0.33 0.36 0.27 0.25	120 55 45 47 70	< 10 < 10 < 10 < 10 < 10 < 10	174 50 34 38 130		
L75+00N 27+00E L75+50N 23+50E L75+50N 23+75E L75+50N 24+00E L75+50N 24+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 2 < 1 < 1	1.79 2.30 2.03 1.75 1.98	10 6 8 17 12	460 360 260 410 480	16 16 28 24 22	308 319 338 272 305	0.27 0.26 0.29 0.33 0.32	67 58 71 84 69	< 10 < 10 < 10 < 10 < 10 < 10	60 46 54 114 136		
L75+50N 24+50E L75+50N 24+75E L75+50N 25+00E L75+50N 25+25E L75+50N 25+50E	201 285 201 285 201 285 201 285 201 285 201 285	1 1 1 1	1.82 1.76 1.95 1.74 2.50	9 32 14 13 5	990 700 780 1860 2470	28 36 36 30	258 270 233 227 280	0.34 0.42 0.32 0.64 0.40	71 79 71 122 61	< 10 < 10 < 10 < 10 < 10 < 10	186 818 172 256 136		
L75+50N 25+75E L75+50N 26+50E L75+50N 26+75E L75+50N 27+00E L76+00N 23+50E	201 285 201 285 201 285 201 285 201 285 201 285	1 1 2 1	2.13 1.55 1.17 1.35 1.85	9 7 20 12	1290 690 710 790 660	82 16 20 24 24	303 277 227 243 359	0.39 0.23 0.26 0.34 0.28	83 66 73 109 73	< 10 < 10 < 10 < 10 < 10 < 10	366 42 96 112 46		
L76+00N 23+75E L76+00N 24+00E L76+00N 24+25E L76+00N 24+50E L76+00N 24+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 1 5 1 < 1	1.68 1.88 2.05 2.13 1.99	24 19 7 3 8	670 290 400 450 620	28 24 22 24 24	291 290 308 253 274	0.28 0.31 0.38 0.43 0.42	69 65 80 67 70	< 10 < 10 < 10 < 10 < 10 < 10	88 78 62 44 76		
L76+00N 25+00E L76+00N 25+25E L76+00N 25+50E L76+00N 25+75E L76+00N 26+25E	201 285 201 285 201 285 201 285 201 285 201 285	211 * 1 * 4	1.87 1.78 1.73 1.93 2.22	3 13 23 7 3	1740 870 800 1540 840	36 28 26 30 18	187 233 282 236 275	0.38 0.31 0.33 0.39 0.37	64 71 62 72 50	< 10 < 10 < 10 < 10 < 10 < 10	70 56 80 70 36		
L76+00N 26+50E L76+00N 26+75E L76+00N 27+00E L76+50N 23+50E L76+50N 23+50E	201 285 201 285 201 285 201 285 201 285 201 285	11111 ~ ~ ~ ~ ~	1.66 1.96 1.60 1.68 1.59	3 6 9 8 16	850 580 550 540 800	16 14 26 18 46	243 326 295 299 240	0.28 0.32 0.29 0.23 0.26	57 - 60 83 64 64	< 10 < 10 < 10 < 10 < 10 < 10	42 42 42 78 542		
L76+50N 24+00E L76+50N 24+25E L76+50N 24+25E L76+50N 24+50E L76+50N 24+75E L76+50N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 2 1 1 1	1.88 1.63 2.02 2.24 2.40	1 8 10 2 5	2240 690 1040 710 650	32 36 30 24 24	188 212 277 219 301	0.41 0.39 0.33 0.35 0.35	64 77 63 48 53	< 10 < 10 < 10 < 10 < 10 < 10	126 462 356 90 100		

-

.

.S Chemex AL

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

b: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Ecro Account

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

· · · · · · · · · · · · · · · · · · ·							CERTIFICATE OF ANALYSIS A0031547								
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L76+50N 25+25E L76+50N 25+50Z L76+50N 25+75E L76+50N 26+00Z L76+50N 26+25E	201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 NotRcd < 0.2 1.0	7.79 7.21 NotRcd 8.13 7.87	560 530 NotRed 580 600	4.0 2.0 NotRod 2.0 2.0	< 2 < 2 NotRed < 2 < 2	1.60 1.24 NotRed 0.96 1.06	< 0.5 < 0.5 NotRed < 0.5 < 0.5	8 5 NotRed 6 6	47 28 NotRed 41 34	13 6 NotRad 12 14	3.96 2.62 NotRed 2.66 2.60	1.75 1.97 NotRed 1.58 1.89	0.56 0.36 NotRed 0.40 0.50	400 375 NotRed 850 370
L76+50N 26+50E L76+50N 26+75E L76+50N 27+00E L77+00N 23+50E L77+00N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.2 0.6 1.0 < 0.2	7.80 6.90 6.74 8.52 7.73	490 480 690 460 540	2.0 2.0 2.5 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2	0.75 1.10 1.14 1.44 1.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 7 5 7	30 35 36 15 19	11 12 10 6 6	3.14 4.18 2.65 2.17 2.09	1.46 1.53 2.22 1.47 1.67	0.33 0.44 0.55 0.38 0.47	420 545 495 330 415
L77+00N 24+00E L77+00N 24+25E L77+00N 24+50E L77+00N 24+75E L77+00N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 0.2 < 0.2 0.4	8.56 8.09 9.57 8.90 7.56	520 630 540 370 560	2.5 3.0 3.0 2.5 5.0	10 < 2 < 2 < 2 < 2 .4	1.03 1.19 1.02 1.20 1.71	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 12 8 6 8	24 47 37 26 49	11 24 16 7 9	2.39 3.63 3.22 3.31 3.60	1.44 1.90 1.61 1.16 1.71	0.29 0.71 0.49 0.39 0.57	375 405 370 290 415
L77+00N 25+25E L77+00N 25+50E L77+00N 25+75E L77+00N 26+00E L77+00N 26+25E	201 285 201 285 201 285 201 285 201 285 201 285	0.4 0.4 < 0.2 0.2 0.8	7.75 8.05 8.14 6.29 8.67	550 630 700 660 460	5.5 13.0 2.5 2.0 2.0	4 6 < 2 < 2 < 2 < 2	1.84 2.85 1.06 1.02 0.84	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 9 11 6 5	42 44 45 36 27	9 10 13 9 13	3.37 3.43 3.02 3.64 2.77	1.73 1.61 2.25 1.94 1.39	0.52 0.63 0.71 0.45 0.27	405 435 400 520 325
L77+00N 26+50E L77+00N 26+75E L77+00N 27+00E L84+00N 23+00E L84+00N 23+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.49 7.39 7.98 7.46 7.59	670 550 540 490 470	2.5 2.0 2.0 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.26 1.03 0.98 1.53 1.50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 6 11 8	23 42 27 17 17	16 13 12 9 8	2.36 3.77 2.45 2.27 2.48	2.29 1.82 1.64 1.37 1.57	0.43 0.54 0.33 0.41 0.45	290 455 400 410 385
L84+00N 23+50E L84+00N 23+75E L84+00N 24+00E L84+00N 24+50E L84+00N 24+75E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.06 8.90 11.65 8.11 8.15	650 600 330 700 700	3.0 4.0 6.5 3.0 3.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.15 1.33 0.67 1.28 1.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 13 29 8 8	25 31 33 27 27	7 13 36 15 15	2.54 3.45 2.72 2.59 2.64	2.14 1.55 1.08 2.30 2.14	0.39 0.51 0.61 0.41 0.42	285 450 930 300 305
L84+00N 25+00E L85+50N 22+50E L85+50N 22+75E L85+50N 23+00E L86+00N 22+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.17 8.25 8.31 7.93 8.03	430 680 580 520 560	1.5 2.5 2.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.75 1.11 1.12 1.09 1.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 10 8 5 12	17 29 23 25 34	14 14 8 8 18	2.67 2.54 2.45 3.29 2.80	1.18 2.04 1.72 1.62 1.77	0.20 0.46 0.32 0.35 0.64	335 300 280 290 565
L86+00N 22+75E L86+00N 23+50E L86+50N 22+05E L86+50N 22+25E L86+50N 22+50E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 0.2 0.8 < 0.2 < 0.2	8.45 8.27 7.97 8.34 9.01	440 720 640 590 510	2.0 2.5 2.0 2.0 3.0	<pre>x x</pre>	1.53 0.95 1.24 1.20 1.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 11 11 10 8	15 36 32 32 30	6 18 15 10 9	2.68 2.90 2.58 3.12 3.25	1.56 2.28 1.86 1.84 1.57	0.45 0.67 0.49 0.47 0.44	310 345 310 330 . 275
		I 	•	I	<u></u>		<u>، </u>	<u>L</u>	L	CER		N: 172	\subset		Z

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page r:3-B Total F:4 Certificate Date: 25-OCT-2000 Invoice No. : 10031547 P.O. Number : Account : CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	TI % (ICP)	V ppm (ICP)	W ppm {ICP}	Zn ppm {ICP}			
L76+50N 25+25E L76+50N 25+50E L76+50N 25+75E L76+50N 26+00E L76+50N 26+25E	201 285 201 285 201 285 201 285	2 < 1 NotRcd < 1 < 1	1.58 1.77 NotRcđ 1.96 1.83	26 6 NotRed 8 9	490 840 NotRcd 1950 840	32 30 NotRed 34 28	271 263 NotRcā 209 262	0.32 0.31 NotRed 0.39 0.32	69 72 NotRođ 65 64	< 10 < 10 NotRed < 10 < 10	916 132 NotRed 170 112			
L76+50N 26+50E L76+50N 26+75E L76+50N 27+00E L77+00N 23+50E L77+00N 23+75E	201 285 201 285 201 285 201 285 201 285 201 285	1 1 < 1 < 1 1	1.27 1.53 1.68 2.29 2.25	7 7 11 3 6	1080 1240 680 460 640	20 26 26 16 24	190 245 299 308 329	0.29 0.31 0.29 0.30 0.31	65 81 70 48 49	< 10 < 10 < 10 < 10 < 10 < 10	80 48 46 82 116			
L77+00N 24+00E L77+00N 24+25E L77+00N 24+50E L77+00N 24+55E L77+00N 25+00E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 1 < 1 1 2	1.94 1.60 1.82 1.80 1.65	7 24 21 6 12	1050 410 920 940 1320	36 58 152 60 412	240 258 217 225 235	0.35 0.41 0.37 0.36 0.38	49 91 69 75 87	< 10 < 10 < 10 < 10 < 10 < 10	220 932 1500 392 1155			
L77+00N 25+25E L77+00N 25+50E L77+00N 25+75E L77+00N 26+00E L77+00N 26+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 2 < 1 2 < 1	1.73 1.48 1.58 1.53 1.92	11 15 16 8 5	980 1210 650 1880 1800	208 88 32 16 28	255 254 285 265 206	0.35 0.38 0.30 0.32 0.29	80 83 76 93 48	< 10 < 10 < 10 < 10 < 10 < 10	1215 2590 194 80 64			
L77+00N 26+502 L77+00N 26+75E L77+00N 27+00E L84+00N 23+00E L84+00N 23+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 < 1 1 1	1.80 1.39 1.64 2.13 2.25	10 13 6 5 6	430 790 920 2180 740	20 20 20 24 22	331 240 249 274 316	0.24 0.29 0.28 0.38 0.34	64 75 56 48 59	< 10 < 10 < 10 < 10 < 10 < 10	56 70 54 126 76			
L84+00N 23+50E L84+00N 23+75E L84+00N 24+00E L84+00N 24+50E L84+00N 24+50E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 < 1 2 < 1 2	1.72 1.78 0.71 1.93 1.85	9 26 58 9 9	1190 1370 1090 630 620	26 36 70 22 20	300 256 174 342 342	0.24 0.38 0.18 0.25 0.26	68 80 57 71 71	< 10 < 10 < 10 < 10 < 10 < 10	84 634 730 70 70			
L84+00N 25+00E L85+50N 22+50E L85+50N 22+75E L85+50N 23+00E L86+00N 22+25E	201 285 201 285 201 285 201 285 201 285 201 285	1 1 < 1 < 1	1.72 1.88 1.85 1.51 1.84	3 14 6 7 29	810 670 1230 1790 490	22 24 18 24 28	187 296 279 246 290	0.28 0.28 0.30 0.31 0.33	44 - 65 - 57 75 67	< 10 < 10 < 10 < 10 < 10 < 10	60 62 72 74 432			
L06+00N 22+75E L06+00N 23+50E L06+50N 22+05E L06+50N 22+25E L06+50N 22+50E	201 285 201 285 201 285 201 285 201 285 201 285	< 1	2.33 1.58 1.76 1.78 1.57	4 19 26 16 12	940 550 460 860 1610	18 29 30 28 32	323 258 298 292 293	0.29 0.30 0.33 0.34 0.34	55 77 70 79 76	< 10 < 10 < 10 < 10 < 10 < 10	48 92 106 188 282	Â		

•

*

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page er :4-A Total s :4 Certificate Date: 25-OCT-2000 Invoice No. : 10031547 P.O. Number : Account : CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

SAMPLE	PREP CODE	λg ppm λλS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm {ICP}	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L86+50N 22+75E L87+00N 21+75E L97+00N 22+00E L87+00N 22+15E L87+00N 22+50E	201 205 201 205 201 205 201 205 201 205 201 205	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.34 7.91 7.66 9.10 8.88	680 520 540 650 560	2.0 2.0 2.0 3.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.14 1.52 1.42 1.16 1.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 10 7 13 7	32 39 28 54 31	14 14 7 18 14	2.78 2.87 2.83 3.12 2.95	2.07 1.65 1.76 2.22 1.65	0.54 0.63 0.61 0.61 0.41	320 355 385 330 290
L37+00N 22+75E L37+50N 21+25E L37+50N 21+50E L37+50N 22+00E L38+00N 21+00E	201 285 201 285 201 285 201 285 201 285 201 285	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.50 7.66 7.58 8.64 8.22	580 560 680 560 740	2.0 2.0 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.03 1.97 1.56 1.24 1.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 10 7 13 8	35 33 24 36 32	12 11 9 16 13	3.98 2.41 2.10 2.92 2.51	1.84 1.82 2.34 1.67 2.33	0.45 0.70 0.57 0.52 0.60	260 420 310 435 370
L88+00N 21+25E L88+00N 21+50E L88+00N 21+75E L88+00N 22+00E L88+00N 22+25E	201 285 201 285 201 285 201 285 201 285 201 285	0.2 < 0.2 < 0.2 0.2 0.2 0.4	8.13 8.50 7.73 9.01 8.02	600 400 590 450 640	2.0 1.5 2.0 1.5 2.0	<pre></pre>	1.71 1.65 1.54 1.18 1.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 11 4 12	23 14 28 14 28	8 7 13 12 20	2.63 2.70 2.37 2.58 2.94	2.03 1.41 1.86 1.38 2.03	0.58 0.48 0.55 0.35 0.55	400 365 415 290 350
L88+00N 22+50E	201 285	< 0.2	8.44	640	2.5	< 2	1.24	< 0.5	8	39	16	3.60	1.98	0.53	335

-

.S Chemex Α

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total ver :4-B s :4 Certificate Date: 25-OCT-2000 Invoice No. : 10031547 P.O. Number : CYO Account

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031547

.

SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	TI % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L86+50N 22+75E L87+00N 21+75E L87+00N 22+00E L87+00N 22+15E L87+00N 22+50E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 1 3 < 1	1.78 1.90 2.26 1.68 1.85	12 19 13 21 10	520 340 540 850 1240	24 20 92 32 36	289 318 312 283 262	0.32 0.34 0.36 0.35 0.36	74 77 68 90 77	< 10 < 10 < 10 < 10 < 10	380 194 1090 584 328			
L87+00N 22+75E L87+50N 21+25E L87+50N 21+25E L87+50N 22+00E L88+00N 21+00E	201 285 201 285 201 285 201 285 201 285 201 285	1 < 1 < 1 < 1 3	1.43 2.25 2.08 1.93 1.94	10 17 9 19 11	930 320 230 1140 330	26 26 22 28 30	262 378 384 281 392	0.32 0.38 0.25 0.38 0.30	103 70 66 75 82	< 10 < 10 < 10 < 10 < 10 < 10	96 104 96 126 82			
L88+00N 21+25E L88+00N 21+50E L88+00N 21+75E L88+00N 22+00E L88+00N 22+25E	201 285 201 285 201 285 201 285 201 285 201 285	< 1 1 < 1 < 1 < 1	2.38 2.50 2.16 2.20 1.85	8 3 15 3 18	720 1130 520 960 900	20 14 26 18 16	381 331 342 264 327	0.36 0.35 0.31 0.36 0.30	78 63 64 55 78	< 10 < 10 < 10 < 10 < 10 < 10	76 64 180 49 72			
L88+00N 22+50E	201 285	1	1.70	13	800	22	311	0.34	90	< 10				
										CEF		N: lba	\sum	 Î

-

-

7

•: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page er : 1-A Total, s :3 Certificate Date: 31-OCT-2000 Invoice No. : 10031747 P.O. Number : Account : CYO

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Analytical Chemists * Geochemists * Registered Assayers

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031747

SAMPLE	PREP CODE	Ад рры ААЗ	Al % (ICF)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg X (ICP)	Mn ppm (ICP)
L72+00N 23+50E L72+00N 23+75E L72+00N 24+00E L72+00N 24+25E L72+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	. 0.6 < 0.2 < 0.2 < 0.2 2.4	7.92 7.36 6.42 7.21 7.55	470 480 480 430 620	4.0 2.0 1.5 2.0 2.5	<pre>< 2 < 2</pre>	1.55 0.99 1.13 1.00 1.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 7 6 7 7	37 46 37 38 61	38 9 12 12 16	3.37 3.45 3.40 3.65 4.69	1.42 1.42 1.35 1.26 1.78	0,65 0,42 0,45 0,43 0,88	500 320 360 335 435
L72+00N 24+75E L72+00N 25+00E L72+00N 25+50E L72+00N 25+55E L72+00N 25+75E L72+00N 26+00E	201 202 201 202 201 202 201 202 201 202 201 202	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	7.18 7.66 8.12 7.16 7.82	610 500 610 610 470	2.5 2.5 2.0 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.16 0.96 1.01 1.05 1.19	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	8 9 7 5 8	54 72 39 19 44	14 16 13 14 15	3.64 3.96 2.91 1.93 3.53	1.94 1.65 1.96 1.74 1.47	0.58 0.65 0.57 0.34 0.50	395 340 350 420 400
L72+00N 26+25E L72+50N 23+25E L72+50N 23+50E L72+50N 23+50E L72+50N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.11 7.65 7.69 7.67 6.83	520 530 530 570 540	2.0 3.0 2.0 2.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.66 1.40 1.13 1.22 1.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 11 8 9 7	31 41 37 38 71	15 17 11 15 11	2.58 3.45 3.09 2.79 2.62	1.50 1.51 1.53 1.63 1.73	0.47 0.62 0.48 0.62 0.61	370 435 350 425 405
L72+50N 24+25E L72+50N 24+50E L72+50N 24+50E L72+50N 25+00E L72+50N 25+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 1.0 < 0.2 < 0.2 < 0.2 < 0.2	8.12 8.41 7.27 7.01 7.39	700 420 620 540 570	2.5 2.0 2.0 2.0 2.0	2 4 4 4 4 7 4 4 4 4	1.37 1.11 1.24 1.04 1.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 6 13 7 8	52 37 83 73 37	21 14 13 11 15	4.00 3.05 3.53 4.08 3.86	2.03 1.21 1.92 1.60 1.71	0.87 0.48 0.82 0.50 0.58	490 360 420 315 515
L72+50N 25+75E L72+50N 26+00E L72+50N 26+25E L72+50N 26+50E L73+00N 23+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.4 0.6 < 0.2	7.41 7.42 6.52 6.78 7.44	480 480 640 630 610	1.5 1.5 2.0 1.5 2.0	****	1.14 1.56 1.11 1.15 1.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 8 7 7	27 12 37 50 40	11 9 11 11 9	2.28 1.60 3.58 3.42 2.50	1.67 1.59 1.84 1.65 1.85	0.40 0.51 0.51 0.43 0.54	465 385 385 300 430
L73+00N 23+75E L73+00N 24+00E L73+00N 24+50E L73+00N 24+55E L73+00N 24+75E L73+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.6 < 0.2 0.2 < 0.2	6.53 6.93 6.91 6.87 8.43	590 640 560 560 610	1.5 2.0 2.0 2.0 2.0	****	1.07 1.42 1.37 1.35 1.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 6 10	42 24 36 33 70	12 9 10 9 13	2.52 1.82 2.38 2.17 4.32	1.67 2.03 1.81 1.74 1.56	0.42 0.60 0.59 0.57 0.81	325 515 370 395 350
L73+00N 25+50E L73+00N 25+75E L73+00N 26+00E L73+00N 26+25E L73+00N 26+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.24 9.37 7.50 7.87 7.50	530 360 560 520 610	2.0 1.5 1.5 1.5 2.0	< 2 2 < 2 2 < 2 2 < 2 < 2	1.12 1.49 0.97 0.87 0.93	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 6 4 4	22 8 31 23 29,	12 10 11 9 11	2.47 2.25 2.51 2.49 2.41	1.58 1.22 1.69 1.36 1.80	0.36 0.47 0.40 0.38 0.40	340 365 895 360 275
L73+50N 23+50R L73+50N 23+75R L73+50N 24+00Z L73+50N 24+25Z L73+50N 24+25Z L73+50N 24+50Z	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.74 8.34 7.07 7.18 7.67	590 570 640 620 560	2.5 2.5 2.0 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.30 1.31 1.48 1.46 1.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 11 7 9 8	32 36 30 38 41	15 25 9 10 12	2.61 3.42 2.38 2.60 2.98	0.69 1.66 1.83 1.91 1.83	0.57 0.59 0.63 0.67 0.55	395 390 435 405 395

CERTIFICATION:_

6 2 ale

emex Α

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page or :1-B Total Pages :3 Certificate Date: 31-OCT-2000 Invoice No. :10031747 P.O. Number Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A0031747

÷

×.

f		T	1	r	r	1	1		1				-		
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	TI % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	۰.			
L72+00N 23+50E L72+00N 23+75E L72+00N 24+00E L72+00N 24+25E L72+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 1 < 1 1 1	1.91 1.50 1.57 1.65 2.08	24 9 10 8 10	760 640 1300 1120 810	26 24 22 16 44	288 199 210 188 252	0.30 0.43 0.37 0.46 0.57	- 60 97 79 82 144	< 10 < 10 < 10 < 10 < 10 < 10	62 70 54 70 122				
L72+00N 24+75E L72+00N 25+00E L72+00N 25+50E L72+00N 25+50E L72+00N 25+75E L72+00N 26+00E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 2 1	1.84 1.63 1.85 2.72 1.60	17 24 8 4 10	700 810 1180 1760 960	26 18 18 24 14	238 211 235 255 221	0.43 0.32 0.36 0.42 0.34	96 73 74 48 76	< 10 < 10 < 10 < 10 < 10 < 10	100 80 69 42 82				
L72+00N 26+25E L72+50N 23+25E L72+50N 23+50E L72+50N 23+75E L72+50N 23+75E L72+50N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1 < 1	2.48 1.71 2.07 1.91 2.13	7 21 9 16 16	500 870 880 830 600	16 18 18 14 14	250 272 250 259 265	0.41 0.34 0.37 0.31 0.28	59 72 71 66 59	< 10 < 10 < 10 < 10 < 10 < 10	82 54 68 60 38				
L72+50N 24+25E L72+50N 24+50E L72+50N 24+75E L72+50N 25+00E L72+50N 25+50E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1	1.95 2.05 1.98 1.61 2.03	26 10 25 22 11	1010 880 580 820 520	24 14 30 22 54	295 222 242 207 246	0.51 0.32 0.55 0.31 0.41	106 56 107 73 87	< 10 < 10 < 10 < 10 < 10 < 10	146 72 222 62 156	-			
L72+50N 25+75E L72+50N 26+00E L72+50N 26+25E L72+50N 26+50E L73+50N 23+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	2.23 3.12 1.67 1.69 2.19	6 1 11 13 10	770 410 500 340 960	22 8 16 20 14	237 319 273 240 289	0.34 0.32 0.31 0.42 0.35	57 33 100 98 66	< 10 < 10 < 10 < 10 < 10 < 10	72 46 40 60 62				
L73+00N 23+75E L73+00N 24+00E L73+00N 24+50E L73+00N 24+55E L73+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1	1.87 2.64 2.22 2.43 1.99	8 8 10 9 19	600 360 440 480 1820	24 14 18 14 18	237 311 277 276 305	0.51 0.40 0.36 0.39 0.47	79 56 72 61 110	< 10 < 10 < 10 < 10 < 10 < 10	80 54 62 52 86				
L73+00N 25+502 L73+00N 25+75E L73+00N 26+00E L73+00N 26+25E L73+00N 26+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 1 1 < 1	2.36 2.79 2.11 2.23 1.79	6 3 7 6 7	580 530 1170 710 300	20 10 20 28 20	244 293 235 220 236	0.45 0.29 0.35 0.29 0.34	68 - 38 59 54 70	< 10 < 10 < 10 < 10 < 10 < 10	58 40 78 58 26				
L73+50N 23+50E 173+50N 23+75E L73+50N 24+00E L73+50N 24+25E L73+50N 24+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 3 < 1 1 < 1	2.07 1.83 2.34 2.31 2.13	13 17 9 12 11	390 600 530 410 620	18 22 16 16 24	269 255 318 307 263	0.32 0.38 0.44 0.39 0.43	62 76 74 72 80	< 10 < 10 < 10 < 10 < 10	52 66 50 76 96			-/	`
				•		•		•		ĆE9			1 500	1.0	

.

CERTIFICATION:

.

•

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031747

SAMPLE	PREP	λg ppm	A1 %	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Coppa	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppn
L73+50N 24+75E L73+50N 25+00E L73+50N 25+50E L73+50N 25+75E	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.6 < 0.2	7.60 8.24 7.53 7.98	560 450 420 630	3.5 2.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.22 1.02 1.61 1.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 12 9	33 28 37 28	8 12 19 13	2.28 2.87 4.56 2.68	2.04 1.47 1.20 1.69	0.50 0.40 0.73 0.60	355 305 720 460
L73+50N 26+00E L73+50N 26+25E L73+50N 26+50E L74+00N 23+50E L74+00N 23+75E L74+00N 23+75E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.85 8.74 6.31 8.01 8.31 7.55	570 460 700 520 460 600	1.5 2.0 1.5 2.0 2.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.08 0.70 0.89 1.82 1.89	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 3 7 9 9	31 35 27 24 21 31	19 13 8 15 16	2.92 3.11 1.09 2.27 2.52 7.52	1.77 1.36 1.95 1.65 1.39	0.50 - 0.29 0.23 0.56 0.65	430 530 205 445 470 265
L74+00N 24+25E L74+00N 24+50E L74+00N 24+50E L74+00N 25+00E L74+00N 25+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 1.4 2.4 1.6	7.42 7.08 8.17 7.52 7.87	530 500 530 580 500	2.0 2.5 2.0 3.0 2.5	< 2 2 < 2 < 2 < 2 < 2 < 2	1.37 2.67 1.18 1.25 1.54	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 19 6 9 5	40 66 27 51 20	11 12 14 12 9	4.17 4.68 3.02 3.17 2.37	1.54 1.55 1.62 1.76 1.50	0.54 1.33 0.38 0.60 0.50	445 675 340 375 365
L74+00N 25+50E L74+00N 25+75E L74+00N 26+00E L74+00N 26+25E L74+00N 26+25E L74+00N 26+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.51 8.69 8.32 8.11 6.44	490 600 380 590 650	2.5 2.0 1.5 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.47 1.27 2.09 1.10 1.02	0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 7 16 8 5	31 26 56 36 27	14 15 22 11 8	2.83 2.71 3.56 2.43 2.07	1.40 1.60 1.18 1.68 1.74	0.49 0.45 0.87 0.39 0.34	570 460 610 480 270
L74+50N 23+50E L74+50N 23+75E L74+50N 24+00E L74+50N 24+25E L74+50N 24+55E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.74 7.79 7.91 7.13 7.86	620 390 540 680 590	2.0 1.5 2.5 2.0 3.0	2 < 2 < 2 < 2 < 2 < 2 < 2	1.37 1.85 1.21 1.36 1.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	B 7 7 4 11	32 14 31 24 50	14 8 12 23 22	3.04 2.34 2.75 1.75 3.74	1.80 1.33 1.51 1.92 1.65	0.67 0.59 0.44 0.41 0.64	415 425 345 420 390
L74+50N 24+75E L74+50N 25+00E L74+50N 25+25E L74+50N 25+75E L74+50N 26+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.61 7.34 7.08 7.62 7.91	460 570 550 590 470	2.5 3.0 4.0 2.0 1.5	2 < 2 < 2 < 2 < 2 < 2 < 2	1.32 1.48 1.34 0.99 0.91	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 6 11 4	22 32 44 46 22	10 9 12 12 8	2.85 2.54 3.19 3.73 2.32	1.35 1.66 1.59 1.74 1.50	0.52 0.61 0.48 0.53 0.26	420 390 330 410 410
L74+50N 26+25E L74+50N 26+50E VNA 5+25B VNA 5+50B VNA 5+75B	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.92 8.10 8.80 7.31 8.34	390 530 420 520 540	1.5 2.0 1.5 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.59 1.11 1.21 1.08 0.89	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 4 4 7 5	10 24 15 29 29	9 9 7 8 10	2.03 2.47 2.07 2.39 2.32	1.35 1.56 1.44 1.68 1.64	0.52 0.34 0.35 0.39 0.36	520 275 380 590 310
VNA 6+00B VNA 6+25B VNA 6+25C VNA 6+25C VNA 6+50B VNA 6+75B	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.12 7.80 7.64 9.00 8.32	600 580 520 600 670	2.5 2.5 2.0 2.5 2.0	<pre>< 2 < 2</pre>	1.13 1.10 1.25 1.00 0.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 9 7 7 9	46 45 23 34 35	15 13 10 14 11	2.86 3.15 2.31 2.77 2.42	2.15 1.76 1.54 1.82 2.05	0.70 0.57 0.42 0.38 0.47	455 440 510 325 330
L			I											م م	

CERTIFICATION:_

Analytical Chemiats * Geochemiata * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.

BEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V18 3M9 Page i ar :2-B Total F. 2 :3 Certificate Date: 31-OCT-2000 Invoice No. : 10031747 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031747

SAMPLE	PREP CODE	No ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L73+50N 24+75E L73+50N 25+00E L73+50N 25+50E L73+50N 25+75E L73+50N 26+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 2	2.31 1.91 2.13 2.19 2.21	8 8 10 10 9	370 990 1640 720 1620	22 19 18 16 16	263 221 255 288 256	0.35 0.30 0.57 0.34 0.38	66 64 110 64 73	< 10 < 10 < 10 < 10 < 10 < 10	100 54 90 72 50			
L73+50N 26+25E L73+50N 26+50E L74+00N 23+50E L74+00N 23+75E L74+00N 23+75E L74+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 3 < 1 < 1	1.36 1.74 2.67 2.46 2.16	6 4 15 10 7	840 300 610 870 830	30 16 10 10 18	172 247 326 344 286	0.29 0.32 0.34 0.31 0.40	67 50 49 55 72	< 10 < 10 < 10 < 10 < 10 < 10	66 20 60 86 60			
L74+00N 24+25E L74+00N 24+50E L74+00N 24+75E L74+00N 25+00E L74+00N 25+25E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 < 1 < 1 < 1 < 1	2.38 2.15 2.42 1.97 2.53	10 23 6 16 5	1060 1350 720 930 590	22 16 19 14 14	275 311 267 274 314	0.70 1.16 0.37 0.35 0.32	114 146 64 77 52	< 10 < 10 < 10 < 10 < 10 < 10	84 150 52 78 54	•		
L74+00N 25+50E L74+00N 25+75E L74+00N 26+00E L74+00N 26+25E L74+00N 26+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	2.25 2.41 1.80 2.14 1.68	12 7 23 8 6	840 860 1540 1000 350	18 12 14 16 12	239 274 188 255 258	0.46 0.35 0.49 0.33 0.31	70 62 105 56 61	< 10 < 10 < 10 < 10 < 10 < 10	268 70 78 100 34			
L74+50N 23+50B L74+50N 23+75B L74+50N 24+00E L74+50N 24+25E L74+50N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	2.14 2.78 2.13 2.85 2.06	8 5 9 5 15	530 340 550 360 880	16 8 16 14 18	293 340 252 312 280	0.35 0.34 0.35 0.40 0.46	74 45 57 56 90	< 10 < 10 < 10 < 10 < 10 < 10	72 44 72 68 158			
L74+50N 24+75E L74+50N 25+00E L74+50N 25+25E L74+50N 25+75E L74+50N 26+00E	201 202 201 202 201 202 201 202 201 202 201 202	<1 <1 <1 1 <1	2.55 2.40 1.86 1.77 2.20	8 10 14 17 3	1060 640 1140 950 1170	16 16 18 24	281 310 268 236 210	0.40 0.42 0.37 0.37 0.35	58 66 76 82 55	< 10 < 10 < 10 < 10 < 10 < 10	90 92 70 98 40			
L74+50N 26+25E L74+50N 26+50E VNA 5+25B VNA 5+50B VNA 5+75B	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	2.92 2.15 2.37 1.79 1.86	3 5 3 8 6	990 750 570 2070 740	6 12 16 22 14	318 267 255 237 215	0.29 0.27 0.29 0.26 0.28	35 52 43 53 51	< 10 < 10 < 10 < 10 < 10 < 10	46 40 52 70 74			
VNA 6+00B VNA 6+258 VNA 6+25C VNA 6+50B VNA 6+75B	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	1.96 1.71 2.35 2.12 2.07	20 15 6 8 11	670 1140 1160 770 550	62 56 18 62 18	271 246 278 253 259	0.34 0.32 0.30 0.31 0.33	69 65 52 60 60	< 10 < 10 < 10 < 10 < 10 < 10	220 316 128 326 114	()	7	

CERTIFICATION:_

+ Z Xale

.

Chemex Α

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page ' 9r : 3-A Total F : 3 Certificate Date: 31-OCT-2000 Invoice No. : 10031747 P.O. Number

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANA

>	P.O. Number Account	CYC
LYSIS	A0031747	

SAMPLE	PREP CODE	λg ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % {ICP}	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
VNA 7+00B VNA 7+00C VNA 7+25B VNA 7+25B	201 202 201 202 201 202 201 202	1.8 < 0.2 < 0.2	8.36 7.54 8.49	540 690 630	2.5	< 2 < 2 < 2	0.98 1.17 1.09	< 0.5 < 0.5 0.5	8 8 10	38 38 34	12 14 10	3.49 2.50 2.60	1.65 2.06 2.00	0.47 0.66 0.44	330 365 380
·		0.4	0.64	620	¥.5	~ 4	1.09	,	10	•0	14	4.45	1.87	0.44	360
											2				
										CER		N:	Distin		

~

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **D: GEOQUEST CONSULTING LTD.**

8055 ASPEN RD. VERNON, BC V1B 3M9

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

-

A0031747

SAMPLE	Prep Code	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
VNA 7+00B VNA 7+00C VNA 7+25B VNA 7+50B	201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1	1.52 1.93 1.76 . 2.03	11 14 9	1060 590 770 630	14 14 12 14	242 299 277 262	0.24	70 64 59 58	< 10 < 10 < 10 < 10	118 98 78				
										. 10	140	,			
		:													
												-			
													:		
								1							
														7	

-

.

-

Page er :3-B Total & :3 Certificate Date: 31-OCT-2000 Invoice No. : 10031747 P.O. Number : Account : CYO

!\

S Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Totai ber :1-A as ;5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : icyo Account

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A0031990

SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L42+00N 11+00E L42+00N 11+30E L42+00N 11+30E B L42+00N 11+50E L42+00N 11+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 0.4 < 0.2	8.09 8.25 7.24 6.97 7.43	660 710 490 380 510	3.0 2.5 2.0 1.5 1.5	<pre>< 2 < 2</pre>	0.77 0.81 0.54 0.63 0.88	< 0.5 < 0.5 < 0.5 0.5 0.5	8 9 4 4	51 46 34 28 23	13 20 8 10 7	3.71 2.54 2.99 3.31 2.34	2.46 3.02 1.95 1.80 2.17	0.67 0.71 0.37 0.30 0.35	365 425 245 235 290
L42+00N 12+00E L42+00N 12+25E L43+00N 11+00E L43+00N 11+00E C L43+00N 11+25	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.2 0.4 < 0.2 0.2	6.78 7.40 8.33 8.09 7.76	470 480 500 700 520	1.5 2.0 2.0 3.0 2.0	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.10 0.76 0.63 0.79 0.68	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 5 10 4	22 24 38 45 25	9 8 11 19 6	2.71 2.37 2.76 2.47 2.70	1.71 1.92 2.05 2.93 2.00	0.39 0.32 0.48 0.70 0.30	290 305 345 470 260
L43+00N 11+50E L43+00N 11+75E L43+00N 12+00E L43+00N 12+25E L45+00N 09+75E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.2 0.2 0.2 0.2	7.50 8.10 7.81 7.46 7.88	540 480 390 400 510	2.0 2.0 1.5 2.0 2.0	12 < 2 < 2 < 2 < 2 < 2	0.62 0.85 1.02 0.65 0.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 5 4 5	40 38 28 25 43	14 15 9 5 9	3.92 2.76 3.12 3.93 3.24	2.20 1.70 1.54 2.51 1.97	0.54 0.39 0.39 0.26 0.41	295 360 300 270 280
L45+00N 10+00E L45+00N 10+25E L45+00N 10+50E L45+00N 10+75E L45+00N 11+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.2 0.2 < 0.2 < 0.2	8.07 7.41 7.51 9.39 7.71	540 400 430 630 570	2.0 1.5 2.5 5.0 3.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.68 0.86 0.85 1.17 0.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 6 11 7	44 39 37 67 45	10 19 9 31 13	3.01 3.61 3.51 4.09 2.72	1.87 1.10 1.68 2.18 2.32	0.43 0.80 0.39 0.82 0.59	460 1035 295 545 430
L45+00N 11+25E L45+00N 11+50E L45+00N 11+75E L45+00N 12+00E L45+00N 12+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.10 8.17 7.57 7.71 7.23	450 460 370 350 530	2.0 1.5 2.0 2.0 2.0	* * * * *	1.00 1.08 0.75 0.59 0.82	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 5 4 4	48 16 25 25 32	13 12 8 7 8	3.86 2.26 2.61 2.34 3.31	1.73 1.41 1.72 1.48 2.07	0.46 0.34 0.31 0.26 0.38	510 285 295 215 275
L45+00N 12+50E L45+00N 12+75E L45+00N 13+00E L45+00N 13+50E L45+00N 14+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.38 8.26 7.02 7.09 7.39	380 510 470 580 520	1.5 2.0 1.5 1.5 1.5	<pre></pre>	0.70 0.84 1.11 1.11 1.48	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 5 4 7	22 29 24 12 7	11 8 6 10 13	3.02 2.89 2.57 1.49 1.81	1.34 1.93 1.82 2.12 1.76	0.27 0.38 0.49 0.38 0.55	220 290 390 345 690
L45+00N 14+50E L45+00N 15+00E L45+00N 15+50E L45+00N 16+00E L45+00N 16+50E	201 202 201 202 201 202 201 202 201 202 201 202	1.0 0.2 < 0.2 < 0.2 0.8	7.79 7.42 6.87 6.74 7.53	400 490 560 450 470	1.0 1.5 1.5 1.5 2.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.98 1.22 1.22 1.05 1.66	< 0.5 < 0.5 < 0.5 < 0.5 1.5	4 5 5 8	8 9 29 25	13 9 7 9 47	3.09 1.93 1.55 2.72 2.67	1.20 1.57 2.00 1.79 1.71	0.33 0.41 0.49 0.41 0.57	275 335 380 330 660
L45+00N 17+00E L65+00N 17+50E L45+00N 18+00E L45+00N 18+50E L45+00N 19+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.35 7.11 6.99 7.09 6.86	490 590 600 570 610	2.5 2.0 2.5 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.36 0.98 0.90 0.70 0.90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 4 6 5	30 24 35 35 32	16 8 10 11 12	3.59 1.93 1.78 2.61 2.31	1.59 2.07 2.23 2.10 2.21	0.49 0.35 0.55 0.43 0.50	345 280 370 295 , 370
									· · · · · · · · · · · · · · · · · · ·	CER	TIFICATIO	1: 12			Ì

SAMPLE

L42+00N 11+00E

L42+00N 11+30E

T.49+00N 11+E0P

L42+00N 11+30E B

Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

Page er :1-6 Total - _ s :5 er :1-B Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account :CYO

A0031990

.

8055 ASPEN RD. VERNON, BC V1B 3M9 PROJECT #86 Project :

Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

.

PREP Na 🍾 P ppm Pb ppm V ppm Мо ррш Ni ppm Sr ppm Ti 🍾 W ppm Zn ppm CODE (ICP) (ICP) (ICP) (ICP) **AVR** (ICP) (ICP) (ICP) (ICP) (ICP) 201 202 1 1.67 17 370 30 228 0.35 76 < 10 96 201 202 201 202 201 202 < 1 1.97 20 610 28 251 0.27 59 < 10 62 < 1 1.32 7 800 22 170 0.24 57 < 10 38 4 60

142+00N 11+75E	201 202	< 1	2.18	5	530	26	231	0.39	эв 54	< 10 < 10	38				
L42+00N 12+00E L42+00N 12+25E L43+00N 11+00E L43+00N 11+00E C L43+00N 11+25	201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 < 1 1 < 1	2.18 1.97 1.52 1.96 1.78	6 5 12 17 4	610 1190 950 490 760	28 26 24 30 24	244 203 186 246 205	0.44 0.34 0.23 0.28 0.28	59 49 52 58 50	< 10 < 10 < 10 < 10 < 10 < 10	42 50 80 64 52				
L43+00N 11+50E L43+00N 11+75E L43+00N 12+00E L43+00N 12+25E L43+00N 09+75E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	1.48 1.84 1.96 1.87 1.49	11 13 8 5 10	730 700 490 790 540	32 350 22 38 30	193 200 219 184 183	0.37 0.35 0.26 0.26 0.27	78 60 48 73 60	10 < 10 < 10 < 10 < 10	86 270 48 42 66				
L45+00N 10+00E L45+00N 10+25E L45+00N 10+50E L45+00N 10+75E L45+00N 10+75E L45+00N 11+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 1	1.43 1.63 1.55 1.67 1.90	14 41 8 34 13	880 2080 720 910 720	24 20 28 44 32	184 185 176 239 229	0.27 0.39 0.35 0.44 0.35	57 69 71 82 63	< 10 < 10 < 10 < 10 < 10	88 50 92 168 80				
L45+00N 11+25E L45+00N 11+50E L45+00N 11+75E L45+00N 12+00E L45+00N 12+25E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1	1.90 2.34 2.00 1.57 1.95	11 3 6 5 7	3510 680 660 750 580	48 24 30 28 30	205 240 194 158 214	0.52 0.37 0.30 0.22 0.41	82 44 48 41 80	< 10 < 10 < 10 < 10 < 10	182 50 40 40 40				<u> </u>
L45+00N 12+50E L45+00N 12+75E L45+00N 13+00E L45+00N 13+50E L45+00N 13+50E	201 202 201 202 201 202 201 202 201 202 201 202	3 < 1 1 < 1 < 1	1.79 1.97 2.42 2.86 3.04	5 7 6 1 3	740 480 690 360 1690	26 30 26 24 16	169 214 246 276 316	0.38 0.41 0.37 0.40 0.30	64 73 61 42 36	< 10 < 10 < 10 < 10 < 10	36 72 44 38 46				<u> </u>
L45+00N 14+50E L45+00N 15+00E L45+00N 15+50E L45+00N 16+00E L45+00N 16+50E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1 1 < 1 < 1 < 1	2.26 2.80 3.09 2.07 2.25	5 1 2 6 14	800 340 360 890 1220	16 16 16 22 26	222 268 279 223 296	0.39 0.40 0.32 0.38 0.32	51 44 40 58 51	<pre>< 10 < 10</pre>	34 40 38 44 186				
L45+00N 17+00E L45+00N 17+50E L45+00N 18+00E L45+00N 18+50E L45+00N 19+00E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	4 < 1 < 1 < 1 < 1	1.89 2.01 1.90 1.69 1.94	8 3 12 11 11	1010 510 790 570 530	24 20 22 20 24	249 244 254 213 239	0.40 0.33 0.27 0.23 0.31	61 48 48 47 55	10 < 10 < 10 < 10 < 10 < 10	98 46 46 40 40		7		
L	<u> </u>	<u></u>		J	L	[]		L]	E	CER		v: 62-		-21	Ħ

.

.

S Chemex A

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page I Total F or :2-A :5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031	990

SAMPLE	PREP CODE	λg ppm λAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L45+00N 19+50E L45+00N 20+00E L45+00N 20+50E L45+00N 21+00E L45+00N 21+50E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	0.8 0.2 0.6 < 0.2 < 0.2	7.44 7.20 7.19 7.04 7.25	540 610 520 670 520	2.5 2.0 1.5 2.5 1.5	< < < < < < < < < < < < < < < < < < <	0.92 0.90 1.22 0.76 1.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 10 5 8 4	34 37 22 44 22	16 13 18 12 10	3.33 2.79 1.68 2.52 1.88	1.90 2.10 1.72 2.45 1.66	0.49 0.54 0.47 0.64 0.42	1210 615 340 335 340
L45+00N 22+00E L45+00N 22+50E L45+00N 23+00E L45+00N 23+50E L45+00N 23+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	6.43 6.57 6.68 6.41 6.42	440 540 580 610 510	2.0 1.5 1.5 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.42 1.18 1.06 0.97 1.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 1 3 5	35 27 25 10 23	11 9 5 11 10	3.26 2.26 0.86 1.29 2.32	1.57 1.76 2.05 1.91 1.84	0.42 0.38 0.26 0.28 0.40	375 315 225 305 345
L45+00N 24+50E L45+00N 25+00E L48+00N 17+00E L48+00N 17+50E L48+00N 18+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.10 6.94 6.81 6.74 7.22	510 550 600 430 470	2.0 1.5 2.0 1.5 1.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.97 1.07 1.18 0.55 0.82	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 5 2 5 3	32 26 25 24 16	10 14 6 10 6	2.56 2.71 1.60 3.36 2.64	1.66 1.75 2.25 1.35 2.07	0.36 0.33 0.24 0.22 0.29	285 365 325 255 275
L48+00N 19+00E L48+00N 20+00E L48+00N 20+50E L48+00N 21+00E L48+00N 21+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 0.2 0.4	7-98 6-49 8-01 6-88 7-47	460 560 680 570 580	2.5 2.5 2.5 2.5 2.5 2.0	<pre>< 2 < 2</pre>	0.90 0.90 1.02 0.81 1.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 10 8 9 12	42 32 52 42 27	13 10 20 34 18	2.97 2.91 3.01 3.57 2.64	1.69 2.11 2.62 2.04 1.94	0.48 0.44 0.82 0.62 0.58	315 445 370 510 570
L48+00N 22+00E L48+00N 22+50E L48+00N 23+00E L48+00N 24+50E L48+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	7.30 8.35 6.23 7.35 7.78	510 560 620 690 670	1.5 2.0 2.0 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.19 1.31 1.17 0.74 1.17	< 0.5 < 0.5 < 0.5 0.5 < 0.5	5 8 7 9 9	26 35 34 54 30	9 21 12 18 15	3.25 2.56 2.57 3.21 2.94	1.72 1.87 2.12 2.55 2.18	0.51 0.54 0.47 0.71 0.64	375 440 335 365 550
L48+00N 25+50E L52+00N 23+00E L52+00N 24+00E L52+00N 24+50E L54+00N 17+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	7.22 6.85 6.72 7.06 7.01	590 440 610 530 470	2.0 2.0 2.0 2.0 2.0 2.0	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.95 1.78 0.80 1.52 1.71	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 4 5 7	35 16 29 24 31	25 11 10 9 13	2.48 2.77 2.63 2.07 3.61	2.00 1.40 2.11 1.85 1.82	0.55 0.42 0.42 0.49 0.53	365 370 350 375 395
L54+00N 17+50E L54+00N 18+00E L54+00N 18+50E L54+00N 19+00E L54+00N 19+50E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.17 7.19 6.77 7.05 8.26	440 460 490 450 430	1.5 1.5 1.5 1.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.81 1.51 0.87 0.57 1.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 6 1 3 5	13 11 13 17 24	4 6 13 9 8	1.14 1.63 2.28 2.29 3.85	2.69 1.73 1.53 1.54 1.75	0.21 0.52 0.25 0.18 0.44	245 370 315 210 310
L54+00N 20+00E L54+00N 20+50E L54+00N 21+00E L54+00N 21+50E L54+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.4 1.2 < 0.2 < 0.2	6.64 6.70 6.86 7.30 6.49	530 440 500 470 680	1.5 1.5 1.5 2.0 2.0	< 3 < 3 < 2 < 2 < 2 < 2	1.22 0.85 1.31 1.02 0.98	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 4 9 4	14 16 14 55 18	12 12 15 13 7	1.88 2.77 2.46 4.06 1.27	1.69 1.37 1.66 1.58 2.23	0.35 0.24 0.38 0.46 0.29	315 240 310 495 , 335

CERTIFICATION:

mex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

>: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page ' Total } er :2-B . :5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

								CERTIFICATE OF ANALYSIS				6 A	4003199	0	
SAMPLE	Prep Code	Mo ppa (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			:	
L45+00N 19+50E L45+00N 20+60E L45+00N 20+50E L45+00N 21+00E L45+00N 21+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 1	1.90 1.96 2.42 1.90 2.50	10 12 5 17 3	1180 870 770 530 660	22 22 22 20 18	238 244 277 248 276	0.30 0.33 0.38 0.27 0.44	55 62 45 55 46	< 10 < 10 < 10 < 10 < 10 < 10	48 52 36 42 36				
L45+00N 22+00E L45+00N 22+50E L45+00N 23+00E L45+00N 23+50E L45+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1	1.47 2.15 1.99 3.07 1.86	7 4 2 < 1 4	830 640 650 330 600	14 24 20 18 19	282 271 271 251 292	0.38 0.46 0.38 0.35 0.31	76 62 46 32 60	< 10 < 10 < 10 < 10 < 10 < 10	26 28 20 36 26				
L45+00N 24+50E L45+00N 25+00E L48+00N 17+00E L48+00N 17+50E L48+00N 18+00E	201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 1 < 1 < 1 < 1 < 1	1.84 2.26 2.08 1.32 2.09	4 4 3 5 3	760 880 330 1210 420	22 22 26 26 30	228 259 291 153 222	0.43 0.44 0.42 0.32 0.26	71 55 54 66 39	< 10 < 10 < 10 < 10 < 10 < 10	26 32 28 30 52				
L48+00N 19+00E L48+00N 20+00E L48+00N 20+50E L48+00N 21+00E L48+00N 21+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 1	1.47 1.76 1.78 1.52 2.32	12 10 20 17 16	430 560 500 980 940	20 22 28 32 28	215 251 280 219 283	0.27 0.25 0.30 0.30 0.36	53 55 73 66 59	< 10 < 10 < 10 < 10 < 10 < 10	50 66 76 60 68				
L49+00N 22+00E L49+00N 22+50E L49+00N 23+00E L49+00N 24+50E L49+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 3 < 1 < 1 1	2.14 2.27 1.81 1.71 2.49	6 10 17 19 9	690 1030 580 540 870	24 30 22 26 24	265 272 248 224 290	0.40 0.39 0.24 0.32 0.39	60 59 46 69 64	< 10 < 10 < 10 < 10 < 10 < 10	46 62 52 64 54				
L48+00N 25+50E L52+00N 23+00E L52+00N 24+00E L52+00N 24+50E L52+00N 17+00E	201 202 201 202 201 202 201 202 201 202 201 202	1 3 1 < 1 < 1	2.16 2.06 1.65 2.03 1.95	13 4 9 7 11	800 880 710 650 780	30 20 22 22 23 28	275 301 238 290 352	0.41 0.34 0.30 0.23 0.44	62 49 57 43 67	< 10 < 10 < 10 < 10 < 10 < 10	52 46 36 46 80				
L54+00N 17+50E L54+00N 18+00E L54+00N 18+50E L54+00N 19+00E L54+00N 19+50E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1 < 1	2.23 2.76 3.21 1.39 1.98	1 4 4 3 5	380 420 1070 830 440	32 18 32 24 32	232 320 211 179 267	0.25 0.34 0.45 0.24 0.41	30 39 42 41 75	<pre>< 10 < 10</pre>	24 42 32 26 66				
L54+00N 20+00E L54+00N 20+50E L54+00N 21+00E L54+00N 21+50E L54+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	2.68 2.00 2.44 1.57 2.18	3 1 7 15 2	840 900 550 1040 430	22 30 22 24 22	269 206 263 197 274	0.44 0.42 0.37 0.50 0.28	49 64 44 78 39	< 10 < 10 < 10 < 10 < 10 < 10	42 30 38 78 26		Ţ,		·····

.

ſ

CERTIFICATION: 12-1-3-

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **D: GEOQUEST CONSULTING LTD.**

8055 ASPEN RD. VERNON, BC V1B 3M9 Page er :3-A Total = :5 Certificate Date: 26-OCT-2000 Invoice No. :10031990 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD ٠

		9					L	CERTI	FICATE	OF AN	ALYSIS	<u> </u>	100319	90	
SAMPLE	PREP CODE	Ад ррш Ааз	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
L54+00N 22+50E L54+00N 23+00E L54+00N 23+50E L54+00N 24+00E L54+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.41 7.19 7.81 7.15 7.86	620 580 590 480 660	2.0 2.0 2.0 1.5 2.0	× × × × × × × × × × × × × × × × × × ×	0.90 1.25 1.38 1.91 0.96	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 8 11 7 7	30 27 37 12 51	13 23 49 10 11	2.80 2.43 3.22 2.74 3.39	2.10 1.01 1.93 1.62 2.62	0.38 0.53 0.56 0.72 0.71	365 710 635 460 340
L54+00N 25+00E L56+00N 18+00E L56+00N 18+50E L56+00N 19+00E L56+00N 19+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.29 6.75 7.32 6.78 7.23	500 580 600 640 550	2.0 1.5 2.0 1.5 1.5	* 2 2 2 * 2 2 2 * 2 2 2	1.09 1.18 1.51 1.44 1.75	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 5 6 6 5	29 29 27 8 16	18 6 12 7 8	3.31 1.97 1.99 1.97 1.78	1.69 1.94 1.58 2.23 1.86	0.46 0.49 0.71 0.65 0.47	295 325 480 455 360
L56+00N 20+00E L56+00N 20+50E L56+00N 21+00E L56+00N 21+50E L56+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 0.2 < 0.2	7.16 6.54 8.14 8.01 7.61	380 500 390 510 500	1.0 1.5 2.0 2.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.50 1.12 1.56 1.70 1.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 8 8 9 5	36 67 45 224 43	14 9 15 25 10	3.88 4.45 4.01 2.91 2.90	1.24 1.89 1.26 1.69 1.61	0.42 0.68 0.40 0.59 0.36	830 450 335 1105 370
L56+00N 22+50E L56+00N 23+00E L56+00N 23+50E L56+00N 24+00E L56+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	6.63 6.74 6.60 8.80 6.75	530 570 550 310 540	2.5 2.0 2.0 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.49 0.77 1.36 2.16 0.83	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 5 5 5 5	36 33 26 8 31	24 9 10 10 7	2.07 3.79 1.92 1.79 3.96	2.09 2.03 1.90 1.16 1.76	0.47 0.47 0.43 0.65 0.41	625 305 465 420 300
L56+00N 25+00E L58+00N 22+50E L58+00N 23+00E L58+00N 23+50E L58+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.20 7.03 8.02 8.29 7.82	550 650 560 410 420	1.5 2.0 5.5 3.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.80 1.11 1.92 2.16 1.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 8 13 6	32 35 33 95 22	11 9 11 22 16	4.47 2.57 2.93 3.94 2.69	1.82 2.29 2.34 1.81 1.45	0.35 0.42 0.46 1.11 0.43	350 330 450 550 355
L58+00N 24+50E L58+00N 25+50E L58+00N 26+00E L60+00N 22+00E L60+00N 22+50E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.4B 7.64 6.57 6.42 8.04	380 490 500 520 570	4.5 2.0 1.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.78 1.33 0.89 1.40 1.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 7 4 6 7	50 25 24 27 35	21 17 12 10 10	3.78 2.59 3.32 2.68 2.58	1.87 1.52 1.54 1.77 2.04	0.68 0.37 0.32 0.36 0.50	645 460 285 305 385
L60+00N 23+00E L60+00N 23+50E L60+00N 24+00E L60+00N 24+50E L60+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.54 7.98 6.76 6.53 6.90	530 520 570 560 590	2.0 2.0 2.5 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.96 0.91 1.28 0.97 1.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 4 5 4	31 21 23 23 23	8 13 8 9 11	2.65 2.25 2.20 2.55 1.14	1.92 1.86 2.12 1.81 2.09	0.40 0.29 0.36 0.30 0.32	330 430 355 335 415
L60+00N 25+50E L60+00N 26+00E L62+00N 23+00E L62+00N 23+50E L62+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.50 6.49 6.23 7.18 7.34	510 630 560 570 520	2.5 2.0 2.5 2.5 2.5	<pre>< 2 < 2</pre>	1.47 1.10 0.85 1.01 0.67	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 4 6 7 5	24 26 31 41 25	7 10 9 14 17	2.74 1.91 2.80 3.01 2.86	1.75 2.15 1.89 2.12 2.54	0.42 0.24 0.40 0.59 0.40	860 630 285 340 320

CERTIFICATION:

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page / ir :3-B Total F :6 Certificate Date: 26-OCT-2000 Invoice No. :10031990 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031990

Sample	PREP CODE	Moppm (ICP)	Na 🍾 (ICP)	Ni ppm (ICP)	P ppm (ICP)	РЪррт ААЗ	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppn (ICP)			
L54+00N 22+50E L54+00N 23+00E L54+00N 23+50E L54+00N 24+00E L54+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 < 1 < 1	1.88 1.96 1.81 2.85 1.87	7 11 20 7 14	560 900 1190 740 340	26 24 28 18 24	246 266 268 355 265	0.32 0.30 0.35 0.38 0.32	56 55 61 57 77	< 10 < 10 < 10 < 10 < 10 < 10	62 72 104 56 60			
L54+00N 25+00E L56+00N 18+00E L56+00N 18+50E L56+00N 19+00E L56+00N 19+50E	201 202 201 202 201 202 201 202 201 202 201 202	3 < 1 1 < 1 < 1 < 1	1.93 2.21 2.70 3.11 2.68	8 6 11 5 3	780 490 990 330 410	20 24 28 18 20	252 287 373 309 353	0.34 0.40 0.49 0.32 0.38	62 62 55 55 45	< 10 < 10 < 10 < 10 < 10 < 10	46 32 52 46 40		•	
L56+00N 20+00E L56+00N 20+50E L56+00N 21+00E L56+00N 21+50E L56+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 < 1 4 < 1	1.70 1.54 1.55 2.10 1.54	11 18 10 69 8	1520 1090 1040 510 630	30 36 32 30 28	360 228 307 355 252	0.47 0.52 0.48 0.40 0.39	71 121 80 65 74	< 10 < 10 < 10 < 10 < 10 < 10	70 54 66 118 60			
L56+00N 22+50E L56+00N 23+00E L56+00N 23+50E L56+00N 24+00E L56+00N 24+50E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 7 < 1 < 1	1.89 1.45 1.98 3.00 1.56	15 10 8 3 7	620 430 870 500 320	26 26 26 12 22	289 211 287 401 231	0.24 0.32 0.31 0.28 0.30	48 70 56 30 74	< 10 < 10 < 10 < 10 < 10 < 10	38 46 48 46 44			
L58+00N 25+00E L58+00N 22+50E L58+00N 23+00E L58+00N 23+50E L58+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	3 < 1 3 2 1	1.53 1.67 1.56 1.54 2.09	7 7 10 36 8	650 640 470 800 830	26 22 28 32 22	217 293 274 294 271	0.33 0.32 0.31 0.63 0.30	76 69 65 87 45	< 10 < 10 < 10 < 10 < 10 < 10	42 48 78 104 64			
L58+00N 24+50E L58+00N 25+50E L59+00N 26+00E L60+00N 22+00E L60+00N 22+50E	201 202 201 202 201 202 201 202 201 202 201 202	1 3 2 < 1 < 1	1.39 1.88 1.80 1.67 1.75	34 8 5 6 9	950 820 650 1050 600	32 20 24 16 22	250 261 223 290 293	0.37 0.37 0.37 0.31 0.30	64 52 64 59 61	< 10 < 10 < 10 < 10 < 10	96 74 34 36 70			
L60+00N 23+00E L60+00N 23+50E L60+00N 24+00E L60+00N 24+50E L60+00N 25+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1	1.89 2.14 1.86 1.79 2.09	6 4 7 6 8	760 1100 500 420 610	22 22 20 18 22	248 237 289 257 315	0.28 0.30 0.21 0.25 0.20	56 44 45 36	< 10 < 10 < 10 < 10 < 10 < 10	50 76 28 42 38			
L60+00N 25+508 L60+00N 26+00E L62+00N 23+00E L62+00N 23+50E L62+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	2 < 1 < 1 < 1 < 1	1.85 1.84 1.63 1.60 1.64	7 7 12 10	640 650 560 830 720	22 20 20 24 34	320 277 229 250 206	0.24 0.26 0.23 0.24 0.22	58 47 55 61 45	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	34 32 38 56 62	1	,	

.

.

.

CERTIFICATION:

.

Aurora Laboratory Services Lid.

Analytical Chemista * Geochemista * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page per :4-A Total .s :5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account : CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD .

			. .					CERTI	FICATE	OF AN	ALYSIS	5 4	4003199) 0	
SAMPLE	PREP CODE	λg ppm λλs	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppma (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppa (ICP)
L62+00N 24+50E L62+00N 25+00E L62+00N 25+50E L62+00N 25+50E L62+00N 23+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.00 6.81 5.86 7.17 7.58	540 570 540 500 380	2.0 2.0 2.0 2.5 1.5	<pre></pre>	0.80 0.99 0.99 0.88 1.43	< 0.5 < 0.5 < 0.5 0.5 < 0.5	4 5 4 5 5	25 24 21 28 14	9 11 7 15 15	2.07 2.46 2.48 2.87 2.30	1.72 1.70 1.65 1.48 1.24	0.30 0.35 0.28 0.26 0.46	375 470 355 320 315
L64+00N 23+50E L64+00N 24+00E L64+00N 24+50E L64+00N 25+00E L64+00N 25+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.15 7.86 7.01 8.33 7.12	600 410 670 630 660	2.5 1.5 2.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.84 1.23 0.90 1.16 1.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 5 10 7	29 23 29 29 29 30	11 8 8 11 14	2.39 3.04 1.99 2.74 2.29	1.84 1.52 2.12 1.81 2.10	0.42 0.48 0.46 0.44 0.44	315 335 355 705 440
L64+00N 25+75E L66+00N 23+00E L66+00N 23+05E L66+00N 23+50E L66+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.47 7.18 6.64 6.77 7.18	570 640 580 610 530	2.0 2.5 2.0 1.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.30 1.30 1.79 1.25 0.78	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 8 4 4	29 31 25 25 22	13 10 13 6 13	2.74 2.33 2.15 1.54 2.18	1.83 2.18 1.70 2.04 1.74	0.36 0.55 0.54 0.34 0.26	345 355 1440 295 310
L66+00N 24+50E A L66+00N 24+50E B L66+00N 25+25E L66+00N 26+00E L87+50N 22+50E A	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.29 8.09 7.20 6.48 9.42	620 660 680 520 620	2.5 2.0 2.0 2.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2	1.24 1.09 0.75 0.69 1.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 7 4 20	35 31 32 29 32	23 9 10 8 27	2.78 2.29 2.92 2.46 2.86	1.99 2.03 1.95 1.59 1.88	0.46 0.42 0.43 0.33 0.49	360 430 340 285 335
L87+50N 22+50E B L87+50N 22+75E L87+50N 23+00E L88+50N 21+00E L88+50N 21+25E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	9.29 8.78 8.95 8.77 9.14	660 700 690 680 410	2.5 2.5 2.5 2.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2	1.25 1.07 1.15 1.48 1.56	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 16 12 7 8	48 49 47 25 15	23 39 36 12 9	3.50 3.23 3.59 2.73 2.88	2.23 2.55 2.48 2.23 1.33	0.64 0.76 0.70 0.51 0.52	330 315 380 310 445
L88+50N 21+50E L88+50N 21+75E L88+50N 22+00E L89+00N 20+50E L89+00N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	9.60 8.99 9.14 7.77 8.66	570 570 520 620 610	2.5 2.5 2.0 3.0 2.5	< 2 < 2 < 2 < 2 < 2 < 2	1.16 1.53 1.05 1.72 1.66	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 8 7 9 10	36 21 30 31 26	13 15 13 17 16	3.34 2.79 3.13 2.59 2.77	1.81 1.94 1.59 2.22 2.08	0.43 0.48 0.32 0.65 0.64	335 330 270 390 380
L89+00N 21+00E L89+00N 21+25E L89+00N 21+50E L89+00N 21+75E L89+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.83 8.69 7.99 8.29 8.29	630 640 710 620 670	2.5 2.5 2.5 2.5 3.0	****	1.56 1.46 1.57 1.52 1.76	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 8 9 9	23 30 31 31 29	10 13 14 11 14	2.41 2.91 2.55 2.88 2.67	2.24 2.08 2.59 2.18 2.61	0.49 0.53 0.64 0.59 0.76	290 330 360 365 380
L89+50N 19+50E L89+50N 19+75E L89+50N 20+25 L89+50N 20+50E L89+50N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.42 8.40 8.86 8.71 8.52	560 460 660 670 680	2.5 2.5 2.5 3.0 3.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.80 2.76 1.63 1.87 1.86	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 29 8 7 10	47 66 27 28 26	18 68 10 9 7	3.39 5.88 2.69 2.55 2.53	1.67 1.51 2.14 2.42 2.35	0.82 1.73 0.53 0.56 0.57	715 835 325 340 . 370

CERTIFICATION: 193-

Analytical Chemists " Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 D: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page i er: 4-B Total F. :5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account : CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031990

SAMPLE	PREP CODE	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
L62+00N 24+50E L62+00N 25+00E L62+00N 25+50E L62+00N 26+00E L62+00N 23+00E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 < 1 1 1	1.59 1.88 1.61 1.57 2.30	5 7 5 5 4	870 860 340 700 780	18 14 18 20 16	222 253 270 224 285	0.22 0.29 0.24 0.32 0.28	42 50 45 56 40	< 10 < 10 < 10 < 10 < 10 < 10	56 46 24 40 40			
L64+00N 23+50E L64+00N 24+00E L64+00N 24+50E L64+00N 25+00E L64+00N 25+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 1	1.64 2.00 1.87 1.87 1.88	8 5 7 8 10	760 920 650 550 500	20 18 18 26 24	234 262 260 269 286	0.23 0.30 0.23 0.33 0.26	47 63 47 58 51	< 10 < 10 < 10 < 10 < 10 < 10	38 42 36 144 98			
L64+00N 25+75E L66+00N 23+00E L66+00N 23+05E L66+00N 23+50B L66+00N 24+00E	201 202 201 202 201 202 201 202 201 202 201 202	3 <1 <1 <1 1	1.78 1.82 1.78 2.02 1.80	8 9 10 3 5	660 480 1070 450 830	26 22 26 24	270 335 330 291 211	0.31 0.25 0.31 0.41 0.29	60 60 51 60 44	< 10 < 10 < 10 < 10 < 10	130 40 70 30 40			
L56+00N 24+50E A L66+00N 24+50E B L56+00N 25+25E L66+00N 25+25E L66+00N 26+00E L87+50N 22+50E A	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	1.70 1.98 1.65 1.43 2.07	13 6 8 6 40	630 580 510 480 950	26 22 20 20 32	265 286 222 202 257	0.31 0.32 0.27 0.22 0.39	61 60 59 43 64	< 10 < 10 < 10 < 10 < 10 < 10	46 54 60 28 156			
L87+50N 22+50E B L87+50N 22+75E L87+50N 23+00E L88+50N 21+00E L88+50N 21+25E	201 202 201 202 201 202 201 202 201 202 201 202	<1 <1 <1 <1 <1	1.85 1.65 1.72 1.96 2.53	18 30 29 9 3	1010 640 780 1060 1570	26 28 22 22 18	284 272 293 366 316	0.39 0.34 0.33 0.29 0.36	95 87 87 77 63	< 10 < 10 < 10 < 10 < 10 < 10	106 90 106 54 78			
L88+50N 21+50E L88+50N 21+75E L88+50N 22+00E L89+00N 20+50E L89+00N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	1 <1 <1 <1 <1	1.92 2.46 2.02 2.07 2.27	13 11 7 23 13	1400 740 1850 490 570	22 22 26 26 26	272 346 230 369 373	0.35 0.36 0.44 0.30 0.32	75 75 72 80 77	< 10 < 10 < 10 < 10 < 10 < 10	104 58 70 86 82			
L89+00N 21+00E L89+00N 21+25E L89+00N 21+50E L89+00N 21+75E L89+00N 22+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	2.01 2.04 1.94 1.83 1.97	6 11 18 10 10	880 700 630 1760 750	20 22 22 20 20	370 338 374 355 416	0.29 0.33 0.26 0.30 0.24	77 81 80 87 90	< 10 < 10 < 10 < 10 < 10 < 10	40 128 72 60 50			
L89+50N 19+50E L89+50N 19+75E L89+50N 20+25 L89+50N 20+50E L89+50N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1 1 1	2.33 1.90 2.06 2.07 2.02	32 54 10 9 9	540 790 1770 810 1210	26 22 22 22 22	324 292 381 440 426	0.51 1.06 0.33 0.26 0.29	81 165 77 86 82	< 10 < 10 < 10 < 10 < 10 < 10	168 168 86 50 102	7	2	

.

.

.

.

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page 1 r :5-A Total F. :5 Certificate Date: 26-OCT-2000 Invoice No. :10031990 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031990

4

		1	l	Г		T	T	T		T	1	T	1	1	l
SAMPLE	PREP Code	λg ppm λλS	A1 % (ICP)	Bappa (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm {ICP}	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg × (ICP)	Mn ppm (ICP)
L89+50N 21+00E L90+00N 20+002 L90+00N 20+25E L90+00N 20+50E L90+00N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.40 7.45 8.42 9.21 8.65	650 650 600 610 640	2.5 2.5 2.5 2.5 2.5 2.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.56 1.80 1.54 1.59 1.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 9 7 10 9	26 35 30 30 31	10 14 7 9 10	3.03 2.62 2.81 3.08 2.68	2.14 2.32 1.98 2.14 2.16	0.49 0.64 0.53 0.54 0.57	340 375 420 430 380
L90+00N 21+00E L91+00N 20+50E L91+00N 20+75E L91+00N 21+00E L92+00N 20+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	8.80 8.38 8.47 7.76 9.21	550 510 630 520 560	2.5 2.0 2.5 2.0 4.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.49 1.58 1.76 1.84 1.79	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 7 7 20	25 33 23 18 36	10 6 7 14 30	2.53 2.92 2.68 2.51 3.91	1.90 1.74 2.18 1.85 1.65	0.44 0.48 0.53 0.63 0.80	370 310 360 390 390
L92+00N 20+50E L92+00N 20+75E L92+00N 21+00E L93+00N 19+00E L93+00N 19+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 0.2 1.4	7.76 8.26 8.98 8.05 8.02	540 490 390 540 550	4.0 2.0 2.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.03 1.63 1.53 1.78 1.91	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 8 7 7 7	28 23 16 30 22	5 7 14 7 6	2.85 3.03 2.77 2.67 2.51	1.86 1.65 1.32 1.84 1.90	0.71 0.51 0.62 0.64 0.57	400 320 345 355 365
L93+00N 19+50E L93+00N 19+75E L93+00N 20+00E L93+00N 20+25E L93+00N 20+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.4 < 0.2 < 0.2 < 0.2 2.0	7.69 7.82 7.73 8.27 7.96	640 800 770 430 780	2.5 2.0 2.5 2.0 2.5	<pre>< 2 < 2</pre>	1.79 1.28 1.25 1.40 1.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 7 5 6 5	37 23 22 16 22	9 4 5 5 7	2.65 2.27 2.03 3.04 2.27	2.13 2.65 2.63 1.46 2.71	0.68 0.48 0.46 0.43 0.50	430 260 255 270 280
L93+00N 20+75E L93+00N 21+00E 75+00N 26+25E MK 0+50E MK 0+50EC	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.32 8.69 6.83 9.14 9.66	610 710 680 410 490	2.5 3.0 2.0 2.5 5.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.57 1.24 1.08 1.13 1.65	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	6 9 7 10 16	20 27 39 44 44	5 14 7 15 16	2.53 2.54 2.99 3.26 2.48	2.11 2.42 2.20 1.33 1.96	0.43 0.59 0.57 0.50 0.62	330 325 475 420 535
MK 1+50E MK 1+50E C MK 2+00E MK 2+00E C MK 2+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.80 8.26 7.09 8.22 8.08	600 570 530 650 570	2.5 2.5 2.0 2.5 2.5	<pre>< 2 < 4 2 < 4</pre>	0.77 0.65 0.75 0.74 0.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 12 9	46 45 45 52 48	15 15 18 29 16	2.57 3.46 3.63 2.90 2.99	2.69 2.25 2.34 2.96 2.52	0.63 0.58 0.62 0.77 0.71	365 310 370 475 400
MK 2+50E C MK 3+25E MK 3+25E C	201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2	7.74 7.16 8.01	680 530 780	2.5 2.0 3.0	< 2 < 2 < 2	0.73 0.77 0.93	< 0.5 0.5 < 0.5	7 4 12	39 30 38	20 11 16	2.34 3.08 2.25	2.75 1.75 2.93	0.68 0.41 0.65	430 270 490
													2	and the second	

CERTIFICATION:

hemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

SECOUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page er :5-8 Total H _ s :5 Certificate Date: 26-OCT-2000 Invoice No. : 10031990 P.O. Number : Account : CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

				_				CERTI	FICATE	OF AN	ALYSIS	A	\00319	90	
SAMPLE	PREP CODE	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm {ICP}				
L89+50N 21+00E L90+00N 20+00E L90+00N 20+25E L90+00N 20+50E L90+00N 20+75E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 1 < 1	1.89 2.02 2.02 1.88 1.97	7 19 10 7 12	1670 490 1240 1390 1070	22 20 20 20 20 20	361 383 351 364 352	0.32 0.37 0.32 0.29 0.30	85 84 76 89 74	< 10 < 10 < 10 < 10 < 10 < 10	80 68 108 94 96				
L90+00N 21+00E L91+00N 20+50E L91+00N 20+75E L91+00N 21+00E L92+00N 20+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	2.04 2.04 2.21 2.35 1.69	6 9 5 7 49	1140 1250 980 480 490	18 22 22 18 34	337 308 419 387 287	0.30 0.38 0.31 0.33 0.38	72 75 81 67 85	< 10 < 10 < 10 < 10 < 10 < 10	68 70 78 56 110				
L92+00N 20+50E L92+00N 20+75E L92+00N 21+00E L93+00N 19+00E L93+00N 19+25E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	2.14 2.08 2.37 2.22 2.27	10 7 10 13 8	370 970 680 610 730	24 20 18 20 20	365 337 299 379 397	0.37 0.32 0.30 0.36 0.32	82 80 56 72 73	< 10 < 10 < 10 < 10 < 10 < 10	118 98 84 60 50				
L93+00N 19+50E L93+00N 19+75E L93+00N 20+00E L93+00N 20+25E L93+00N 20+50E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	2.07 2.09 2.14 2.07 2.17	19 B 7 5 7	660 520 400 840 890	22 20 20 18 22	388 370 363 304 364	0.38 0.24 0.23 0.28 0.22	81 69 63 74 67	< 10 < 10 < 10 < 10 < 10 < 10	68 38 32 38 34		<u> </u>		
L93+00N 20+75E L93+00N 21+002 75+00N 26+25E MR 0+50E MR 0+50EC	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	2.04 2.02 1.75 1.55 1.85	4 13 10 28 32	2530 520 1180 690 1120	22 28 22 22 22 260	368 340 283 185 278	0.27 0.26 0.26 0.35 0.27	70 73 68 64 55	< 10 < 10 < 10 < 10 < 10 < 10	36 44 48 96 700				
MK 1+50E MK 1+50E C MK 2+00E C MK 2+00E C MK 2+50E	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	1.80 1.51 1.67 1.84 1.57	18 14 16 24 17	790 1070 1040 500 420	36 30 26 30 28	216 191 199 229 186	0.24 0.27 0.28 0.28 0.28	57 65 62 64 66	< 10 < 10 < 10 < 10 < 10 < 10	128 132 74 78 116				
MR 2+50E C MR 3+25E MR 3+25E C	201 202 201 202 201 202	< 1 7 < 1	1.85 1.57 2.12	16 7 16	390 770 590	24 40 24	244 192 290	0.25 0.38 0.27	57 79 55	< 10 < 10 < 10	50 60 52				
												- A	2		

ſ

CERTIFICATION:

Aurora Leboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

	<u> </u>				_	CERTIFICATE OF ANALYSIS A0031429									
SAMPLE	PREP CODE	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
VNA 0+50R VNA 0+79R VNA 1+77R VNA 2+05R VNA 2+32R	205 226 205 226 205 226 205 226 205 226 205 226	0.2 0.4 0.6 6.8 0.2	4.25 8.13 6.09 5.55 4.96	170 60 150 110 140	12.0 13.5 9.0 1.5 1.5	2 118 130 52 4	20.9 4.88 2.65 4.30 0.36	< 0.5 < 0.5 3.5 34.0 < 0.5	4 11 21 27 32	49 63 111 181 136	11 222 451 546 226	0.75 7.41 9.36 6.03 5.01	0.74 0.99 2.17 1.70 2.39	0.41 1.77 0.42 0.28 0.04	480 1895 990 330 65
-													-		
														- 70	

CERTIFICATION:_

2 also in

iemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total i ver :1-B a :1 Certificate Date: 24-OCT-2000 Invoice No. : 10031429 P.O. Number : Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031429

٠

SAMPLE	PRI COI	ep De	Moppma (ICP)	Na X (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
VNA 0+50R VNA 0+79R VNA 1+77R VNA 2+05R VNA 2+32R	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 3 10 8	1.15 2.87 2.08 0.53 1.93	6 10 8 108 4	400 1120 770 2280 110	12 8 36 7960 46	1835 501 249 156 166	0.08 0.16 0.08 0.34 0.01	14 47 21 100 3	< 10 140 30 < 10 < 10	42 252 234 >10000 74				
	-		- -													
												:				
										-						
		, ,												$\left(\right)$	-1	
								-			CER	TIFICATION	4: <u>'''</u>	<u>Veec. []</u> {	$\frac{1}{1}$	

-

hemex Α

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

. GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page per :1-A Total Fages :1 Certificate Date: 26-OCT-2000 Invoice No. :10031548 P.O. Number : Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

	CERTIFICATE OF ANALYSIS A0031548												18			
SAMPLE	P	REP	λg ppm λλs	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
VNA 22+26R VNR-05 VNR-06 VNR-07 VNR-08	205 205 205 205 205	226 226 226 226 226 226	3.0 < 0.2 < 0.2 < 0.2 < 0.2 6.2	2.52 7.52 6.28 9.27 0.40	30 2220 30 70 70	0.5 2.5 0.5 1.0 < 0.5	24 < 2 4 < 2 6	5.41 11.20 6.37 1.50 20.7	119.0 16.5 295 43.5 69.5	122 17 78 49 6	96 184 138 141 98	1850 23 164 509 44	17.20 4.09 6.51 6.13 0.60	0.07 2.00 1.80 4.26 0.10	0.22 0.78 0.77 1.31 0.35	925 1220 975 370 105
VNR-09 VNR-10 VNR-11 VNR-12 VNR-13	205 205 205 205 205	226 226 226 226 226 226	< 0.2 7.4 11.2 0.2 < 0.2	7.79 7.50 2.44 5.21 7.34	1140 430 140 600 720	2.5 3.0 < 0.5 8.0 1.5	< 2 32 70 8 < 2	3.02 1.88 4.55 8.42 1.05	4.0 1.5 113.5 0.5 1.5	10 5 36 8 3	103 152 185 161 92	17 100 111 10 18	2.54 5.41 5.76 2.31 1.11	1.94 2.64 0.27 0.89 2.70	0.82 0.32 0.17 0.37 0.16	310 185 620 480 80
							· ·									
											-					
													1		p	•
				L	I <u></u>	ļ	l		<u> </u>		CER		N: 2		<u>10</u>	

emex

Autora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page Total per :1-B .s :1 Certificate Date: 25-OCT-2000 Invoice No. : 10031548 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031548

SAMPLE	PRI	ep De	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm {ICP}	W ppm (ICP)	Zn ppm (ICP)	,, <u></u> , <u></u> , <u></u> , <u></u> , <u></u>			
VNA 22+26R VNR-05 VNR-06 VNR-07 VNR-08	205 205 205 205 205 205	226 226 226 226 226 226	10 < 1 < 1 1 < 1	0.01 0.43 1.06 2.95 0.02	399 35 112 95 6	4490 1510 910 360 600	2620 54 942 1590 >10000	113 576 292 288 183	0.15 0.31 0.30 0.55 < 0.01	42 82 80 122 9	<pre>< 10 < 10</pre>	>10000 >10000 >10000 4820 >10000				
VNR-09 VNR-10 VNR-11 VNR-12 VNR-13	205 205 205 205 205 205	226 226 226 226 226 226	1 3 1 < 1 < 1	2.36 0.20 0.12 0.26 3.18	12 10 42 23 5	700 700 1300 750 230	376 3510 6720 102 328	420 52 70 188 291	0.37 0.27 0.11 0.30 0.08	48 84 39 59 8	< 10 < 10 < 10 < 10 < 10	2350 2200 >10000 1105 1480				
									1							
					r r r r r r r r r r r r r									1		
									-	-						i.
														\cap		
]]					CER		 e	Vale	70	

Chemex A

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page er :1-A Total Hages :1 Certificate Date: 25-OCT-2000 Invoice No. :10031748 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

	r		CERTIFICATE OF ANALYSIS A0031748													
SAMPLE	P C	REP ODE	λg ppm λλS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
VNR-01 VNR-02 VNR-03 VNR-04 VNA 6+53R	205 205 205 205 205	226 226 226 226 226 226	1.2 8.4 < 0.2 < 0.2 3.6	8.74 5.81 5.09 8.30 6.35	700 40 430 1250 130	3.0 9.5 3.0 11.5 3.0	6 44 < 2 10 46	1.14 5.52 5.75 12.40 1.77	4.0 90.5 83.5 5.5 35.0	20 25 20 13 17	162 180 173 162 169	62 128 34 < 1 155	5.03 5.40 4.82 3.99 4.45	2.99 0.36 1.53 1.14 1.54	1.14 0.35 1.10 0.85 0.71	620 1530 845 1140 455
VNA 16+97R VNA 19+64R	205	226	< 0.2	5.56 8.27	350 1190	1.5 3.0	< 2	0.61 6.81	< 0.5	12 18	213	25 41	2.86 3.63	1.57	0.90 2.16	285 665
	1										CER		, _,	Normal	0 Teb	

F

CERTIFICATION:

AL Chemex .S

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD, VERNON, BC V1B 3M9

Page er :1-B Total Fuges :1 Certificate Date: 25-OCT-2000 Invoice No. :10031748 P.O. Number : Account :cyo

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

									CERTI	FICATE	OF AN	ALYSIS		4003174	18	
SAMPLE	PRI COI	ep De	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	РЬ рры Адз	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)				
VNR-01 VNR-02 VNR-03 VNR-04 VNA 6+53R	205 2 205 2 205 2 205 2 205 2	226 226 226 226 226 226	< 1 1 < 1 8	2.42 0.72 1.38 0.99 2.11	36 52 25 27 56	610 1390 1070 860 610	696 6450 82 70 2090	159 215 368 623 236	0.55 0.26 0.33 0.28 0.35	107 67 50 75 67	< 10 < 10 < 10 < 10 < 10 < 10	2790 >10000 >10000 2570 >10000				
VNA 16+97R VNA 19+64R	205 2 205 2	226 226	1 2	1.56 1.04	19 36	290 770	14 14	133 503	0.29 0.37	62 101	< 10 < 10	108 110				
													:			
								-		-						
									-							
															you	
											CER	TIFICATION	<u>-</u>	S _{er} d	100	

-

.

٢

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page ver :1-A Total. a :1 Certificate Date: 25-OCT-2000 Invoice No. :10031796 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

									CERTI	FICATE	OF AN	ALYSIS	<u> </u>	4003179)6	
SAMPLE	PRE COI	ZP DE	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
MRR-01 MKR-02 VNA 4+79R VNR 14 VNR 15	205 2 205 2 205 2 205 2 205 2	126 126 126 126 126	< 0.2 < 0.2 11.0 < 0.2 < 0.2	3.47 9.69 1.62 8.67 6.12	20 790 10 30 140	13.0 4.5 0.5 9.0 1.5	4 4 112 10 < 2	3.88 1.27 5.90 3.22 0.07	352 < 0.5 250 0.5 < 0.5	36 9 38 18 < 1	146 143 175 63 169	262 123 73 153 5	8.95 6.34 8.50 7.65 0.56	0.08 2.84 0.09 0.46 2.77	0.30 1.14 0.12 1.58 0.07	2110 705 575 1850 155
VNR 16 VNR 17 L69N 24+70E (R)	205 2 205 2 205 2	126 126 126	< 0.2 < 0.2 < 0.2	6.77 6.40 6.40	330 200 110	3.5 4.5 5.5	< 2 < 2 2	7.37 14.10 7.53	0.5 < 0.5 < 0.5	18 13 20	219 137 88	41 21 149	3.17 3.11 7.35	2.05 1.14 0.88	0.60 1.24 3.11	560 770 1705
															:	
							-									
															,	
															-1	

CERTIFICATION:_

Chemex S A

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page / Total | er :1-B :1 Certificate Date: 25-OCT-2000 Invoice No. : 10031796 Invoice No. P.O. Number : Account CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

A0031796

.

	PREP	Мо ррв	Na %	Ni ppm	Рррт	Pb ppm	Sr ppm	Ti X	V DDm	W ppm	Zn ppm				
SAMPLE	CODE	(ICP)	(ICP)	(ICP)	(ICP)	AAS	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)				
MKR-01 MKR-02 VNA 4+78R VNR 14 VNR 15	205 22 205 22 205 22 205 22 205 22 205 22	5 < 1 5 7 5 10 5 1 5 < 1	0.62 3.15 0.01 3.00 2.04	49 8 84 8 1	1160 340 960 950 100	90 224 >10000 92 42	119 311 66 395 86	0.21 0.60 0.12 0.28 0.01	60 131 50 69 2	< 10 < 10 < 10 < 10 < 10 < 10	>10000 390 >10000 630 102				
VNR 16 VNR 17 L69N 24+70E (R)	205 22 205 22 205 22	5 1 5 1 5 4	0.57 1.43 1.98	38 25 15	570 860 1270	64 24 12	826 771 189	0.36 0.35 1.01	97 68 235	< 10 < 10 < 10	336 189 150				
														Ţ	
					••••••••••				·	CER	TIFICATIO	N:	·Dim	Rlog)l
														<u>``</u>)	

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 'o: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9 Page per :1 Total .s :1 Certificate Date: 25-OCT-2000 Involce No. :10032221 P.O. Number : Account :CYO

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A0032221

CERTIFICATION:

SAMPLE	P	REP	Au ppb FA+AA	Zn %					
VNA 2+05 R	212		< 5	1.06					
		х. Х							
								n jetta	•

S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Page er :1 Total I .a :1 Certificate Date: 27-OCT-2000 Invoice No. :10032460 P.O. Number : icro Account

PROJECT #86 Project : Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS A0032460

PREP Au ppb Pb Zn SAMPLE CODE FA+AA * % VNA 22+26R 212 ----< 5 7.10 ____ 212 212 VNR-05 ----____ 1.29 ____ VNR-06 --15.95 _ _ _ ____ VNR-07 212 ___ < 5 ---------VNR-08 212 ___ 4.07 6.57 ____ VNR-11 212 ____ 6.53 ---____

CERTIFICATION: Deschar Office

Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATE OF ANALYSIS

*

A0032485

·····			 						
SAMPLE	PREP CODE	Zn %							
VNR-02 VNR-03 VNA 6+53R	212 212 212	5.55 2.51 2.32							
				- - -					
									· · ·
	I	I	 		c	ERTIFICATIO	V	°~~√{	• •
JVERLIMI IS from A0031748	•						5. State 1.	اند ک	

Page ! Total F 9r 11 :1 Certificate Date: 27-OCT-2000 Invoice No. 10032485 Invoice No. 11 P.O. Number CYO Account

emex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: GEOQUEST CONSULTING LTD.

8055 ASPEN RD. VERNON, BC V1B 3M9

Project : PROJECT #86 Comments: ATTN: WARNER GRUENWALD

CERTIFICATION:_

1.00

OCOTICIOATE OF ANIAL VOID

Page Total I er:1 a::1 a -Certificate Date: 27-OCT-2000 Invoice No. : 10032486 P.O. Number : :cyo Account

				 C	ERTIFIC	ATE OF A	NALYSIS	A00	32486	
SAMPLE	PREP Code	Pb %	Zn %							
MKR-01 VNA 4+78R	212 212	3.83	19.55 21.5							
										3
					-					
								. 1		•
								. Jakanak	curre Ale	and the second

APPENDIX II

ROCK DESCRIPTIONS (W. GRUENWALD, P.GEO.

VISTA NAVAN PRELIMINARY ROCK SAMPLE DATA

Sample No	Co-ordinates	 Description	Ag	Bi	Cu	Pb	Zn
		Description	ppm	ppm	ppm	ppm	ppm
L69N 24+70E	Grid	Not collected by WG	<0.2	2	148	12	150
MKR-01	~42+60E;11+00E	"Mike Showing" - grab sample of 2m mineralization from till	<0.2	4	262	90	19.55%
		bank along road. Zn associated with dark green skarn, gneiss					
		and pegmatite host.		_			
MKR-02	~42+30N;11+10E	Grab from 0.3m subangular boulder in glacial till. Consists of	<0.2	4	123	224	390
		calc-silicate with trace sphalerite.					
VNA 0+50R	Grid co-ordinate 71+00N;25+68E	Grab sample from 10 length of marble/minor calc-silicate	0.2	2	11	12	42
	50m @345°m from bridge at Fowler L	along road cut.		_			
VNA 0+79R	Grid co-ordinate 71+30N;25+55E	Grab sample of angular, rusty calc-silicate, local source.	0.4	118	222	8	252
<u> </u>	29 m @ 348° from bridge	Disseminated py-po, trace cpy.	_				
VNA 1+77R	Grid co-ordinate 72+25N;25+25E	Float cobble (ferricrete) with 10% semi-stratified py, minor	0.6	130	451	36	234
		cpy in a siliceous matrix. Rock is angular and 2m deep in till					
		cover.					
VNA 2+05R	Grid co-ordinate 72+55N;25+25E	Angular, rusty and vary angular quartz rich gneiss with	6.8	52	546	7960	1.06%
		noteable ga, sph and cpy. Suspect this is from zone proximal					
		to massive sulphides.					
VNA 2+32R	Grid co-ordinate 72+82N;25+25E	15 cm cobble of quartz rich "granular" looking rock with 5-	0.2	4	226	46	74
		10% disseminated py, trace cpy.		_			
VNA 4+78R	Grid co-ordinate est. 75+15N;20=15E	NAVAN I SHOWING grab composite of fine grained	11.0	112	73	3.83%	21.50%
	251 2 5 <i>E</i>	massive sulphide fragments over ~7m length of road cut.					
	<u>/</u>	Collected to identify lithogeochemistry as well as Zn content.					
VNA 6+53R	Grid co-ordinate est. 77+00N;25+10E	Angular, limonitic 30 cm boulder. Contains 2 cm band of fine	3.6	46	155	2090	2.32%
	(12 25tope	grained dense sphalerite similar to Navan I showing. Contains					
		>cpy than Navan I					
VNA 16+97R	Grid co-ordinate est. 83+00N;26+00E	Random grab across 5 m of limonitic, platy, feldspar. Quartz-	<0.2	<2	25	14	108
	U APPROX	biotite gneiss with disseminated py					
VNA 19+64R	Grid co-ordinate est, 83+30N;24+20E	Chip sample across 2.0 m of calc-silicate	<0,2	<2	41	14	110
VNA 22+26R	Grid co-ordinate est. 83+50N;22+30E	Sphalerite bearing float (~15-20cm) below road cut.	3.0	24	1850	2620	7.10%
VNR-01	Grid co-ordinate est. 76+79N;25+10E-	NAVAN II SHOWING - chip sample across 4.0 m of rusty	1.2	6	62	696	2790
	617m from bridge 25+856	qtz-fs-bio gneiss with disseminated py-po and minor sph.					
VNR-02	Grid co-ordinate est. 76+70N; 25+10E	Sample of blocks of skarn material on hanging wall of schist	8.4	44	128	6450	5.55%
	617m from bridge // 25+85E	(VNR-01). Est., a 0.3 m zone with irregular clots of sph,					
	<u> </u>	minor ga.				. <u></u>	

٠

.

VISTA NAVAN PRELIMINARY ROCK SAMPLE DATA

Sample No.	Co-ordinates	Description	Ag	Bi	Cu	Pb	Zn
			ppm	<u>ppm</u>	ppm	ppm	ppm
VNR-03	Grid co-ordinate ~83+50N;21+95E	VISTA II SHOWING - uppermost sample across 0.2m of	<0.2	<2	34	82	2.51%
	Road co-ordinate 22+83 from bridge	green-gray calc-silicate. Lower 5 cm contains modest amounts					
		of coarse sphalerite.					
VNR-04	Grid co-ordinate ~83+50N;21+95E	Lower sample across 1.4 m of mottled white, green and	< 0.2	10	<1	70	2570
	Road co-ordinate 22+83 from bridge	pinkish skarn, minor sphalerite.					
VNR-05	Grid co-ordinate 83+60N;21+80E	Chip sample across 0.5 m of green and pink massive skarn	<0.2	<2	23	54	1.29%
	Road co-ordinate 22+87	with minor disseminated sph near VNR-06 sample.					
VNR-06	Grid co-ordinate 83+60N;21+80E	Across 0.3m (true width) of scmi to massive f.g. sphalerite	<0.2	4	164	942	15.95%
	Road co-ordinate 22+88	with irregular clots of skarn.					
VNR-07	Grid co-ordinate 83+60N;21+80E	Estimated width of 0.2 m of dark grey gnciss with	< 0.2	<2	509	1590	4820
	Road co-ordinate 22+89	disseminated py, sph, go.					
VNR-08	Grid co-ordinate est. 87+80N;21+65E	Orange weathered siliceous (otz vein) zone on top of skarn	6.2	6	44	4.07%	6.57%
	Road co-ordinate 22+98	horizon. Sample along 0.9m strike length and average width		*			0.2170
		of 8 cm. Modest amounts of galena and sphalerite present					
VNR-09	Grid co-ordinate est. 87+80N;21+65E	Chip sample across 0.25m of hanging wall gneiss adjacent to	<0.2	</td <td>17</td> <td>376</td> <td>2350</td>	17	376	2350
	Road co-ordinate 22+98	VNR-08	-0.2	-2-	17	570	#330
VNR-10	Grid co-ordinate est, 87+80N;21+65E	Sample across 0.85m of rusty fault zone with local quartz and	7.4	32	100	3510	2200
	Road co-ordinate 23+01 to 23+02	gouge $020^{\circ}/85^{\circ}W^{\circ}$ + Normal fault displacement			100	5510	2200
VNR-11	Grid co-ordinate est. 87+85N:21+60E	VISTA I type mineralization. Chip sample acoss 0.3m	11.2	70	111	6720	6 53%
	Road co-ordinate 23+06	Upper 15 cm is quartz with disseminated sph. Zone pinches				0/20	0.5570
		out to west in 0.75m to a narrow "cataclastic" zone					
VNR-12	Grid co-ordinate est. 87+85N:21+60E	Chip sample across 0.75m of hanging wall skarp	0.2	8	10	102	1105
	Road co-ordinate 23+06	and anothe worker of the Burght And Strain	0.2	v	10	102	1105
VNR-13	Grid co-ordinate est 87+85N:21+60E	Chin sample across 0 40m footwall negmatite	<0.2	<2	18	378	1480
	Road co-ordinate 23+06		-0.2	~ L	10	520	1400
VNR-14	032° and 28m from B/L25E:70+00N	Rusty float in road bank	<0.2	10	153	92	630
VNR-15	Grid co-ordinate est. 89+55N:20+90E	Sample across 2.0m fault zone in negmatite area	<0.2	<2	5	42	102
	Road co-ordinate 25+20	sampte autobo atom mant hone in peginatite inei			-	74	102
VNR-16	Grid co-ordinate est 89+75N 20+80E	Sample across 2 30m fault zone near contact between	<0.2	</td <td>41</td> <td>64</td> <td>336</td>	41	64	336
	Road co-ordinate 25+39	negratite and calc-cilicate. Sucnect trace on	~0,2	~4	11	0-	550
VNR-17	Grid co-ordinate est 90+64N-21+05E	Grab sample of sharp/calc-silicate/marble	<0.2	~?	21	24	100
1 7 7 7 7 7	Dond co-ordinate 26 ± 10	Grav sample of skall/cale-smcale/fild(Die.	~0, ∠	~4	21	24	100
	Toau co-oramate 20±10						

APPENDIX III

GRAVITY SURVEY - DISCOVERY GEOPHYSICS LTD.

.

GEOPHYSICAL REPORT ON A GRAVITY SURVEY

BROKEN HILL PROJECT

AVOLA, BRITISH COLUMBIA

LATITUDE: 51°50.1'N LONGITUDE: 119°15.0'W NTS: 82M/14 UTM: 345,000E 5,745,000N

by

Wes K. Kubo, B.Sc. Dennis V. Woods, Ph.D., P.Eng. Consulting Geophysicists

for

CASSIDY GOLD CORP. 220-141 Victoria Street Kamloops, B.C., Canada V2C 1Z5

DATE OF WORK: 1-17 December 2000

DATE OF REPORT: 23 February 2001

TABLES

TABLE 1	- Gravity	survey coverage	5
---------	-----------	-----------------	---

ILLUSTRATIONS

FIGURE 1 -	- Location Map2	2
FIGURE 2 -	- Survey Grid Map5	;

APPENDIX A

Tabulation of Gravity Data

APPENDIX B

Maps

INTRODUCTION

During the period 1 to 17 December 2000, Discovery Geophysics Inc. carried out a gravity survey on the Broken Hill property of Cassidy Gold Corp. near Avola, British Columbia. The survey was carried out as a follow-up investigation to previous sampling and geochemical studies on the property. Of particular interest were the Navan and Vista showings, two high-grade zinc discoveries within the survey area. The survey was the first geophysics done on the property. Wes Kubo and Alain Cotnoir recorded a total of 350 stations on 20 lines over 14 days of surveying.

A LaCoste & Romberg model G gravity meter was used for the gravity readings. A GDD hydrostatic chain level was used to determine relative elevation differences between successive stations and between adjacent survey lines. These relative elevations were converted to absolute elevations by tying into a benchmark elevation obtained with a handheld GPS unit. Station locations were determined by interpolating and extrapolating from GPS fixed locations on a chained grid. Clinometer readings were taken at every station in order to map detailed topography around the stations so that near-station terrain corrections could be made.

The results of this survey are presented in this report along with a technical description of the gravity survey method, survey procedures, and data processing and presentation. The results from the survey are discussed in detail and the report concludes with a review of the interpretations and recommendations for further work. The data are presented in tabular form in Appendix A and as gridded, contoured, colour maps in Appendix B. All map plots are overlain on a digital topographic base showing hydrography and elevation contours.

SURVEY LOCATION, ACCESS AND PHYSIOGRAPHY

The Broken Hill property is located on NTS map sheet 82M/14 near Avola in eastern British Columbia (Figure 1). The town of Avola, where there are minimal facilities, is located 2 km south of the entrance to the property. Accommodations and meals were provided in Blue River, approximately 35 km north of the property on the Yellowhead Highway (Hwy 5). Travel time to the property was approximately half an hour on the highway, 15 minutes up a snow-covered

logging road and a further 45 minutes up the logging road on snowmobile.

The topography in the survey area varies from gently rolling in the centre of the survey grid to very steep on the northeast and southwest boundaries of the grid. There is a 120 m range in elevation over the survey area. A large cliff lies to the southwest and the northeast edge of the grid sits on a steep mountain slope. Fowler Lake lies at the southern end of the grid. There are numerous creeks and ravines which made surveying difficult (Figure 2). As well, the ground in certain areas was swampy. While the main blockages were cleared off of the grid, there was much underbrush blocking the lines. It was anticipated that the snow would have covered the brush by the time the survey commenced, however this was not the case. Traversing grid lines was often difficult due to an abundance of brush and steep, slippery slopes.

SURVEY METHODOLOGY

The gravity method is conceptually one of the simplest of the geophysical methods. This potential field method uses the measured gravity response to find variations in subsurface structure due to small changes in density. A body that has a density that is greater than the surrounding rock will exert a larger gravitational pull at the surface, which is measured by the gravity meter. Similarly, a density low such as a void will result in decreased gravitational pull at the surface. Gravity measurements are sensitive to many factors including latitude, elevation, topography, earth tides and the quantity of interest, subsurface density variations. The former four factors must be accounted for before a meaningful result can be obtained. For a comprehensive resource on the gravity method, the reader is referred to Applied Geophysics (Telford et al., 1990, pp. 6-61).

The gravity meter measures changes in the gravitational pull due to variations in subsurface density. Gravity meters are essentially a fine mechanical balance consisting of a mass supported by a spring. Changes in gravity pull the mass against the restoring force of the spring. The amount of adjustment necessary to bring the spring back to its null position is an indicator of the strength of the gravity field. The LaCoste & Romberg gravimeter uses a zero-length spring, which theoretically collapses to a length of zero in the absence of any outside forces, i.e. the tension is directly proportional to the length of the spring.

SURVEY PROCEDURES

Gravity readings were taken at 25 m intervals on lines 7650N to 8600N (50 m line spacing) using a LaCoste & Romberg Model G Gravity Meter (see "INSTRUMENT SPECIFICATIONS"). Readings were taken as close as possible to flagged grid markers, which were generally tied to trees. The gravity meter was placed on a concave, long-legged, base-plate tripod, whose legs were sunk into the ground for stability. The gravity meter reading and the time of each reading were entered into a logbook. The height of the edge of the plate was measured and recorded as the instrument height. In the event that a station needed to be reoccupied, a 20 - 30 cm circle with a dot in the centre was spray-painted (fluorescent orange) on the ground to mark the station. The occasional station had to be relocated along the grid line or skipped entirely due to terrain complications. Such complications included swampy ground where a steady reading couldn't be taken, steep ground where there was no convenient spot to place the gravimeter, and creeks where it was unsafe to take a reading. A base station reading in the clearing in the southern end of the grid at 7900N/2550E was repeated at the beginning and end of each survey day to monitor instrument drift. A few stations were also re-read for additional drift monitoring or to check for tares (sudden shifts in the readings due to the gravity meter receiving a slight knock during the course of the survey). Note that the baseline at 2500E was not surveyed. Details of the survey coverage are listed below in Table 1 and the survey grid is shown in Figure 2.

Some difficulties were encountered during the course of the survey. Originally, the survey plan included up to 120 stations on Fowler Lake. However, the lake surface only froze over toward the end of the survey period after an intense cold snap, and although the thickness of ice was sufficient to walk on (carefully) and a survey grid was hence flagged in across the lake, the ice thickness was not great enough to obtain a gravity reading. Any slight vertical movement of the ice surface, due for instance, to wind action across the surface, is enough to cause wild fluctuations in the gravity meter reading and hence no useful data could be obtained. Ice thickness of over a foot, and preferably over two feet, are required to obtain a reasonably stable gravity reading. An additional complication arose during an extremely cold day on 15 December, when thick frost formed inside the gravity meter and rendered the levels and thermometer unreadable.

TABLE 1: Gravity survey coverage

Line	Stations	Length (m)
7650N	2558E to 2800E	242.5
7700N	2550E to 2925E	375.0
7750N	2500E to 2925E	425.0
7800N	2500E to 2900E	400.0
7850N	2500E to 2900E	400.0
7900N	2500E to 2900E	400.0
7950N	2450E to 2900E	450.0
8000N	2400E to 2900E	500.0
8050N	2400E to 2900E	500.0
8100N	2425E to 2900E	475.0
8150N	2425E to 2900E	475.0
8200N	2450E to 2875E	425.0
8250N	2350E to 2825E	475.0
8300N	2350E to 2850E	500.0
8350N	2400E to 2850E	450.0
8400N	2450E to 2800E	350.0
8450N	2450E to 2750E	300.0
8500N	2375E to 2700E	325.0
8550N	2325E to 2700E	375.0
8600N	2275E to 2700E	425.0
	Total	8.3 km

A total of 13 station locations and elevations (spread over the survey area) in NAD83 UTM were determined using a handheld GPS. All other station locations were determined by numerically interpolating and extrapolating from these 13 points. The station elevations were surveyed using a GDD hydrostatic chain level (see "INSTRUMENT SPECIFICATIONS"). This level measures the relative elevation between two points by sensing hydrostatic pressure within an oil filled tube and survey chain. Since the GDD level only measures relative elevations, every reading has to be tied to the network of stations, in order to calculate an elevation that is relative to a common point with a known elevation. The benchmark point was chosen as 7900N/2525E. Also, to correct for cumulative errors due to instrument drift, all readings must be taken in closed loops that are tied into the network of known elevation points. The elevation control network was established at stations on every survey line close to the road crossing using the same looping technique, before

the gravity survey was carried out on these lines. The elevation surveyor worked ahead of the gravity operator, setting up and marking the station and taking slope measurements. When the gravity reading was complete, an elevation reading was recorded and the survey proceeded to the next station.

In order to map the near station terrain, the level operator took four slope readings at each station. A clinometer was used to sight the slope in the grid north, east, south and west directions. These readings were input for a near-station terrain correction using the sloping-wedge technique (Barrows and Fett 1991).

DATA PROCESSING AND PRESENTATION

Station locations are determined from the 13 handheld GPS control points located on the chained grid. The Geosoft XYFILL program is used to interpolate and extrapolate UTM locations for the entire grid. The relative elevations from the GDD electronic level are entered into a spreadsheet at the end of each survey day. The relative elevation at each point in a loop is first determined relative to the starting point on the road by adding individual relative elevations. When the loop is closed off, the summed elevation for the loop is generally non-zero due to errors and instrument drift. This is corrected by dividing the loop error by the number of stations and then cumulatively adjusting each station elevation by that amount, thus bringing the summed elevation for the loop back to zero. The corrected relative elevations are then tied into the entire network through the road control points. This provides an absolute elevation at every point with a relative average accuracy of ± 2 cm. Note that the GPS benchmark elevation of 1400 m at 7900N/2525E was changed to 1348 m to better match the DEM derived elevation. This resulted in a mean difference between DEM and gravity elevations that was as close to zero as possible.

The slope measurements are input into a spreadsheet routine that calculates the gravitational effect of a quarter wedge of uniform slope θ out to radius R (Barrows and Fett, 1991).

$$g_w = \frac{1}{2}\pi G\rho R(1-\cos\theta)$$

where G is the gravitational constant and ρ is the density of the terrain.

These near-station terrain corrections ranged from 0.01 to 0.31 mGals over the survey area for the selected radius of 25 m.

A digital elevation model (DEM) was prepared using orthophoto techniques by Eagle Mapping Services Ltd. This model consisted of elevation data at a 25 m interval over a 1.5 km x 3 km area covering the survey grid. In addition, there was elevation data at a regular 50 m interval (plus along hydrological features) extending approximately 2 km past the more detailed area. The coloured and contoured DEM is shown in a 1:5000 scale map in Appendix B.

An accurate DEM allows a precise terrain correction to be calculated for every station using "RasterTC", a DEM-based, integrated-surface, terrain correction program (Cogbill, 1990). RasterTC performs terrain corrections over two zones, deemed the inner and outer zone. The inner zone extends from 25 to 250 m out from the station and the outer zone extends from 250 to 2500 m from the station. The supplied DEM is used to calculate an elevation surface in each of the zones. Terrain corrections are calculated independently for every station. The actual elevations of the gravity stations are not used. Instead, the elevation on the surface at the station location is used, thus avoiding any bias that may exist between actual and DEM elevations.

The RasterTC terrain corrections over the survey area are depicted in a colour gridded and contoured map in Appendix B. The combined inner and outer zone terrain corrections ranged from 2.18 to 7.57 mGals over the survey area, which is some ten times the expected amplitude from a real geologic body. Hence, in this mountainous area, the terrain effect can produce false anomalies that are greater in size and amplitude than a real geological feature, and in this case at least, have the appropriate shape of the gravity field from a real geologic target.

All gravity data processing was carried out using a specialized application from LaCoste & Romberg and Geotools Corp. called "GravMaster". This program uses MS-Excel spreadsheets for data input and output (see Appendix A). The program first converts the gravity meter readings from arbitrary units to mGals using the scale factor chart supplied with the instrument. Earth tide corrections are then determined for each reading using the recorded date and time and the UTM station locations. The tide corrected gravity readings are then corrected for instrument drift and tares using the base station and repeat station readings, linearly interpolating any differences in these repeat readings over the time interval between readings. The station elevations, copied into the spreadsheet from the GDD level processing output, are used to determine the combined free-air and Bouguer slab, elevation corrections. The Bouguer correction is determined for a range of slab densities from 2.5 to 2.8 g/cm³ in order to determine the optimal density for the survey area (i.e. the density that results in the least correlation between final corrected gravity and elevation).

The corrected, relative, gravity readings are then converted to absolute gravity values by inputting into GravMaster the known absolute gravity value of 980965.31 mGals at the control station at the Sandman Inn in Blue River (Canadian Gravity Standardization Net Station No. 9051-82). As a result, the corrected, absolute gravity values at the Broken Hill property can be tied into the GSC regional gravity grid of Canada.

The final step of the gravity processing procedure is to calculate the theoretical gravity at every station using an internationally accepted formula for the gravity field of the World Geodetic System (1984) reference ellipsoid: i.e. the US National Imagery and Mapping Agency (1998) formula (Blakely, 1995, pg. 135). The gravity stations locations were used to calculate the theoretical gravity at each station.

The "simple Bouguer gravity" is calculated by subtracting the theoretical ellipsoid gravity from the observed and corrected absolute gravity at each station. The "complete Bouguer gravity" is found by adding the near-station wedge, and inner and outer zone DEM terrain corrections at each station to the simple Bouguer gravity. By comparing the complete Bouguer gravity to the elevation map, it was determined that a density of 2.7 g/cm³ showed the least correlation between Bouguer gravity and terrain features. The final accumulated error of the complete Bouguer gravity is estimated to be about ± 0.03 mGals (reading error: 0.005 mGals; drift correction: 0.002 mGals; elevation correction: 0.008 mGals; terrain correction: 0.015 mGals; all other corrections have negligible errors).

The complete Bouguer gravity are listed in Appendix A and displayed as a colour gridded and contoured map in Appendix B.

DISCUSSION OF RESULTS

After adding the terrain effect to the Bouguer gravity, we are left with a fairly flat gravity field over most of the survey grid except for an area of elevated gravity from line 8200N to line 8500N, plus additional gravity highs at a few locations along the edges of the survey grid. The latter anomalies are likely due to residual terrain effects which where not completely eliminated by the terrain correction routine; probably because of minor inaccuracies in the DEM. Note that they generally occur where the terrain is steepest.

The 300 m by 300 m area between line 8200N and 8500N with elevated gravity values of about 0.4 mGals above background should be considered geologically anomalous. The relatively abrupt edges and flat top of this gravity high suggest that it is due to a relatively shallow geologic formation with sharp boundaries – possible faulted. The anomalous area does not appear to be due to a deeply buried massive body. The anomaly is consistent with a bounded, flat-lying to gently dipping, high density, stratigraphic formation, such as a sedex massive sulphide deposit. However, other high density formations such as a mafic sill or an iron/magnesium-rich exhalite could be causing the anomaly.

The undulating character of the gravity high suggests that the causative formation is not laterally uniform. Small peaks in the gravity field may indicate areas where the formation has greater density, presumably due to increased concentrations of high-density mineralization, or to areas where the formation is thicker. In either case, these areas should receive first priority for drill testing.

CONCLUSION AND RECOMMENDATIONS

After careful correction and processing of the survey data, especially the determination of an accurate terrain correction, the gravity survey on the Broken Hill property has resulted in the definition of an anomalous zone of higher residual gravity over the northern portion of the survey grid from line 8200N to line 8500N. This area of higher gravity of order 0.4 mGals is interpreted to be due to a fault-bounded, flat-lying to gently dipping, high-density, stratigraphic formation. A sedex massive sulphide deposit is one of many possible high-density formations that could be

causing this zone of elevated gravity. The undulating character of the gravity high suggests that the causative formation is not laterally uniform but may consist of pockets of greater density and/or thicker formation. It is recommended that some of these slightly elevated gravity highs should receive highest priority for follow-up drilling. Additional isolated gravity anomalies along the edges of the survey area are probably due to residual terrain correction effects due to imprecise DEM near abrupt changes in topographic slope.

The anomalous gravity zone is not coincident with the highest zinc geochemical anomalies, which occur immediately northwest of the survey area (the Vista prospect), and at the west end of lines 7700N, 7650N and further south (the Navan prospect). However, there is a single, isolated zinc geochemical anomaly at the west end of line 8400N that is in close proximity to the observed gravity anomaly. There is a very weak gravity high centred at 125E on line 7700N close to the Navan prospect, which could be targeted for drill testing. The north limit of the survey towards the Vista prospect may also have anomalously high gravity. However, additional gravity data should be collected both to the south and to the north of the present survey to better define any possible gravity features in these areas.

Respectfully submitted,

Dennis V. Woods, Ph.D., P.Eng. Consulting Geophysicist

REFERENCES

Barrows, L.J., and Fett, J.D.: A sloping wedge technique for calculating gravity terrain corrections, *Geophysics*, vol. 56, no. 7, pp. 1061-1063, 1991.

Blakely, R.J.: Potential Theory in Gravity and Magnetics Applications, Cambridge University Press, 1995.

Cogbill, A.H.: Gravity terrain corrections calculated using Digital Elevation Models, *Geophysics*, vol. 55, no. 1, pp. 102-106, 1990.

Telford, W.M., Geldarti, L.P. and Sheriff, R.E.: *Applied Geophysics Second Edition*, Cambridge University Press, 1990.
CERTIFICATE OF QUALIFICATIONS:

Dennis V. Woods

I, Dennis V. Woods of the municipality of Surrey, in the province of British Columbia, hereby certify as follows:

- I am a Consulting Geophysicist with an office at #4 2320 King George Highway, Surrey, B.C., V4A 5A5.
- I hold the following university degrees: Bachelor of Science, Applied Geology, Queen's University, 1973; Master of Science, Applied Geophysics, Queen's University, 1975; Doctor of Philosophy, Geophysics, Australian National University, 1979.
- 3. I am a registered professional engineer with The Association of Professional Engineers and Geoscientists of the Province of British Columbia (registration number 15,745), and of the Province of Newfoundland (registration number 03551).
- 4. I am an active member of the Society of Exploration Geophysicists, the Canadian Society of Exploration Geophysicists and the Australian Society of Exploration Geophysicists.
- 5. I have practised my profession as a field geologist (1971-1975), a research geoscientist (1974-1986), and a geophysical consultant (1979 to the present).
- 6. I have no direct interest in Cassidy Gold Corp. or the above described properties and projects, which are the subject of this report, nor do I intend to have any direct interest.

Dated at Surrey, in the Province of British Columbia, this 23rd day of February, 2001.

Remo March

Dennis V. Woods, Ph.D., P.Eng. Consulting Geophysicist

Instrumentation GDD

home about us email français

THE CHAIN+LEVEL

The Fastest Way to Do Surveys Without Visual Contact. Period.

The Chain+Level Is a Real Productivity Booster

Have you ever dreamed of surveying elevation profiles or road sections up to 5 times faster than with a total station without even cutting trees? It is now possible with the Chain+Level.

The Chain+Level, model D, is a true alternative to total stations and GPS (Global Positioning System) used to measure the difference of elevation between two points in woody or hilly areas. The Chain+Level gives additional flexibility to do fast and inexpensive topographic surveys in such environments.

Unique advantages of the Chain+Level

- No need to cut vegetation : time and cost savings.
- Field applications so far indicate a productivity improved by 200 to 500 % compared to total station surveys as there is no permit nor line cutting required.
- Faster surveys, less errors as the storage of the coordinates are transferred from the optional datalogger to the office computer at the end of each day.
- The high precision of the elevation

obtained (Z) from the Chain+Level can be combined with the coordinates (XY) from a relational GPS. With the Chain+Level, one can level between benchmarks spotted with a highprecision GPS or total station at every kilometer or so.

Successful applications so far include:

- Staking out longitudinal profiles and measuring cross-sections on roads, power lines, etc.
- Staking out flood basins, such as for hydroelectric dams.
- Topographic surveys, especially in woody areas.
- Geophysical surveys: gravity, seismic, electromagnetic, etc.
- Drill hole collars and geological section surveys.

The Chain+Level is Really Fast and Simple to Operate

The GDD Chain+Level consists of a digital reading unit and two pressure sensors connected by a flexible 25 or 50-meter chaining cable containing a special fluid. Three other sensors measure temperature and density variations in the fluid. Readings are quick, and the meter indicates true elevation differences with high precision at any outside temperature.

The sensor rods at each end of the cable are placed on the points to be measured. The digital reading of the difference of elevation, V, is obtained instantly just by pressing one key. The rods are then transferred to new positions to read successive differences in elevation. No visual contact is ever needed between the points to be measured.

Road survey crews report that they are at least three times more productive with a GDD Chain+Level than with a total station. They especially like the fact that it is so simple to operate.

Precision

For a one-kilometer profile, typical closure errors are less than 10 cm. The error on each station is less than 2 cm (0.1 foot).

For sections or profiles, the Chain+Level can measure a difference of elevation of ~15 meters in millimeters in a single reading with a precision of 0.2 %. The reading precision gives an immediate feedback of the reading quality the operator.

The reading unit with a cable, combined to the optional datalogger and the Multi-Carnet software for advanced surveys, allow to relate total station data or transform the data obtained to make them compatible with any COGO software. Users can use the datalogger with the Multi-Carnet software, choose the Chain+Level driver and later change the driver to work with almost any total stations on the market.

Operating the instrument

The operator presses the slope distance button and is given the exact slope distance (S) he must chain for a preset horizontal interval (H).

The slope distance (S) is chained. The two stations are now exactly H meters or feet apart horizontally. The pickets are driven in or a reference point is marked on the ground.

With sensor supports on top of the pickets, the

exact elevation difference between the two points is read instantly by pressing the vertical distance button.

Whether it is used by itself or jointly with a GPS or a total station, the Chain+Level is designed to suit your own requirements. You just have to choose between these options:

- The reading unit with a cable (the easiest way to use it)
- The reading unit with a cable, plus the optional datalogger and the GDD Chain+Level software enabling the recording and transferring of data to a computer in ASCII format at the end of the day. The ASCII format is a universal standard.

Specifications

Standard Components

- Reading unit with leather case and cable
- Battery charger (110 VAC, 220 VAC)
- Extra bottle of fluid for the cable
- Spare screws and screwdriver
- Springs for gravimeter table
- Instructions manual
- Calibration tape
- Shipping case

Options	 6 aluminium sensor rods Portable debubbling vacuum pump Electronic notebook: Multi-Carnet (PC9000-MEMO4) Extra 25 or 50-m cable (100 or 200 ft) Special cable lengths available upon request
Measuremer	its
Range	± 15 m (± 50 ft)
Reading resolution	1 mm (0.005 ft)
Calibration stability	± 0.2% (less than a 2-cm error per 10-m elevation)
Typical closure error	<10 cm (4 in) on a 1-km (3/4 mile) traverse

(sigma)	
Elevation precision per station	<1 cm (0.04 in) on a 1-km (3/4 mile) traverse
Tested temperature range	-40°C to 40°C (-40°F to 104°F)
Reading Uni	t
Size	25.7 x 11.1 x 12 cm (10 x 4.25 x 4.75 in)
Weight	2.5 kg (5.5 lb)
Case	Aluminum, shock resistant
Display	Adjustable contrast, backlight dot matrix (LCD)
Power source	12-V rechargeable battery
Usage	1.2 watt (100 mA)
Battery life	Up to 12 hours
Battery charger	110 VAC, 220 VAC
Cable	
Standard lengths	25 m and 50 m (100 and 200 ft)
Weight	2 kg / 30 m (4.5 lb / 100 ft)
Chaining cable	Robust, shock resistant, waterproof
Cable chained	At every 0.1 m (12 in)

ł

.

•

.

LaCoste & Romberg uc

The first name in gravity since 1939

Land Gravity Meters

LaCoste & Romberg, manufacturer of high precision gravity meters since 1939, introduced the world's first worldwide range gravity meter — the Model G meter — in 1959. A more sensitive version — the Model D meter — was introduced in 1968. LaCoste & Romberg land gravity meters have become the standard by which all other gravity meters are currently measured. They have a proven record of reliability and ruggedness, so much so that virtually all L&R meters manufactured to date are still in use.

The two types of land gravity meters — the Model G (geodetic) meter and the Model D (microgal) meter — both use the famous patented L&R zero-lengthTM spring suspension system. The Model G meter has been the standard of the industry for almost 40 years. We estimate that more than 10 million gravity stations have been observed with this meter on every continent. The Model D meter is the preferred instrument for microgravity applications. The main difference is that the Model D meter has two screws - a course screw that gives the meter worldwide range, and a limited range fine screw that has greater accuracy than the single screw in the Model G meter.

TECHNICAL FEATURES

- Accuracy: Both the Model G and the Model D have a reading precision of 0.001 mGal (1 μ Gal) using the standard optical system. Reading precision using the optional MVR system is 0.0001 mGal (0.1 μ Gal). The measurement repeatability of the Model G is under 0.01 mGal, while the repeatability of the Model D with its fine adjustment system is under 0.005 mGal (5 μ Gal). By reading the beam position with an optional electronic system, the Model G's repeatability can be improved to under 0.005 mGal (5 μ Gal). The LaCoste & Romberg sensor uses a 12 g tungsten proof mass (unlike light-weight quartz sensors whose proof masses are under a 0.1 g). Our denser metal sensor is fundamentally capable of higher system accuracies than any other portable gravity sensor. In one study, the thermal noise floor of the L&R sensor was shown to be under 0.014 μ Gal. While this level of accuracy is not yet achievable in field measurements, it shows that the LaCoste & Romberg meter is extremely well-designed for the task of measuring remarkably small variations in the earth's gravity.
- Reliability: The basic LaCoste & Romberg sensor has been manufactured since 1939. The Model G Meter has been manufactured since 1959 and the Model D Meter since 1968. Both meters have undergone gradual evolution in design details that have improved their accuracies and reliability. New meters employ components that are designed for long life and require little maintenance. Some meters have undergone automobile and airplane accidents without sustaining any sensor damage whatsoever. Our sensors contain rugged metal components which can reliably withstand extreme field conditions, unlike quartz spring instruments which rely upon delicate glass parts. L&R meters improve with age, unlike quartz meters which tend to become more fragile with age. In fact our land meters are so robust, NASA chose to take a modified LaCoste & Romberg Model G Meter to the moon on Apollo 17.

- **Range:** The G-Meter has a worldwide range of 7,000 mGal without resetting. The Model D has a fine adjustment range of 200 mGal, which is adequate for most microgravity applications. A course adjustment screw allows the Model D to be re-ranged to any location worldwide.
- Drift: Gravity meter drift for a new meter is less than 1 mGal per month. As a LaCoste & Romberg meter ages, the drift often improves to rates of less than 0.5 mGal per month. Our sensors are manufactured entirely of metal. Once initial expansions have taken place, the sensor does not radically change its characteristics with time, in fact they become more stable. By contrast, quartz spring sensors, because they are made of glass, tend to flow, devitrify, or crystallize with time. Because these are changes in state of the fundamental sensor, their drift rates can exceed 30 mGal per month and only degrade with time.

Model G meter with MVR digital feedback system,

Stable Factory Calibration: The calibration depends on a hardened micrometer screw and metal lever system. It is stable over the life of the meter and is not affected by loss of operating temperature. Our comprehensive calibration procedure takes place in two stages. In the first stage, a computer-operated testing apparatus simulates the full worldwide gravity range by

Ease of use and rugged reliability are the reasons why L&R's land gravity meters have surveyed more gravity stations than any other meter.

systematically applying different proof masses to the beam. In the final stage, we rigorously field test our instruments over the highest precision gravity calibration range in the world, located in New Mexico.

Sensor Environment: The sensor is sealed in a dry nitrogen atmosphere. The housing is temperature controlled and protected from magnetic fields. Because the sensor is permanently sealed, it is unaffected by changes in humidity. The sensors have a built-in fail-safe pressure compensation system. If the pressure seals fail for any reason during a survey, reasonable accuracy can be maintained until the meter is serviced.

RELIABLE FACTORY SERVICE

LaCoste & Romberg's famous reliable factory service stands behind every gravity meter we produce. Our trained technicians have many years of experience at building and maintaining gravity meters. There are three basic types of factory service: Targeted Service, General Service and Comprehensive Service (recommended every eight years).

OPTIONS

Electronic Readout: A Capacitive Positioning Indicator (CPI) system used to read the beam without using the optical system. Improves the meter repeatability to below 0.005 mGal.

MVR: High accuracy electronic feedback system which keeps the beam at null. Produces a high accuracy gravity reading through the use of its feedback voltage. Electronic levels and dial clamp options are recommended.

Pendulum Levels: High accuracy electronic level indicator system.

Ceramic Levels: A resistive liquid electronic level indicator system.

- Variable Damping: A special adjustment allowing the user to change the beam damping in cases where vibrations or ground motions are a problem.
- Nulling Dial Clamp: Used to prevent the dial from being moved during measurements. Recommended in cases where meter is used to observe earth tides or for the MVR option.

High Speed Crank: Useful for resetting the counter over a large interval between surveys.

- Extended Range (Model D only): The fine adjustment screw can be built with a 300 mGal range rather than the standard 200 mGal range.
- Calibrated Course Screw (Model D only): The course adjustment screw can be calibrated like a Model G meter with a worldwide range.
- TIDEDAQ: A 16 bit data acquisition system for digitizing and recording land meter output for earth tide monitoring applications.

LAND METER SPECIFICATIONS

System Performance

G Meter System Precision 0.001 mGal G Meter System Repeatability 0.01 mGal G Meter Accuracy 0.04 mGal or better

D Meter System Precision 0.001 mGal D Meter System Repeatability 0.005 mGal D Meter Accuracy 0.01 mGal or better

G Meter MVR option System Precision 0.0001 mGal G Meter MVR option System Repeatability 0.005 mGal G Meter MVR option Accuracy 0.01 mGal or better

- Drift: 1.0 mGal (or better) per month new, 0.5 mGal (or better) per month after 2 years
- Range: G Meter 7,000 mGals (worldwide), D Meter - 200 mGals, resetable for worldwide use

Size and Weight

Warranty

Size: 7.75 x 7.0 x 9.875 inch; 19.7 x 17.8 x 25.1 cm Weight of meter: 7 lbs; 3.2 kg Weight of battery: 5 lbs; 2.3 kg Weight of meter, battery and carrying case: 22 lbs; 10.0 kg

All new land gravity meters come with a one-year warranty on parts and labor.

LaCoste & Romberg uc

4807 Spicewood Springs Road, Bldg. 2 Austin, TX 78759-8495, USA Tel: 512-346-0077; Fax: 512-346-0088 Email: info@LaCosteRomberg.com Internet: www.LaCosteRomberg.com

APPENDIX A

ĺ

I

Tabulation of Gravity Data

.

Line	Statio	n Comment	ID	X	Ŷ	Elev (m)	Time	Date	InstV	instri (m)
base	base	base out	000	345221.2	5744890	1348.231	12:46	12/3/00	42 19.90	0.39
7900N	2550	v.shaky	083	345221.2	5744890	1348.231	12:46	12/3/00	4249.90	0 39
7900N	2575		084	345239.4	5744904	1348.826	13:32	12/3/00	4249.99	0.45
7900N	2600		085	345257.6	5744919	1349.579	13:45	12/3/00	4250.04	0.48
7900N	2025		086	3452/5.8	5/44933	1349.892	13:56	12/3/00	4250.11	0.44
7000N	2000		08/	345294.D	5/44947	1349.434	14:05	12/3/00	4250.29	0.42
7900N	2073		000	345330 4	5744901	1347.779	14:15	12/3/00	4250.66	0 50
7900N	2725		000	345330.4	5744975	1346.201	14:25	12/3/00	4251.0D	0 43
7900N	2750	shaky	090	345366.8	5745003	1340.970	14.37	12/3/00	4250.74	0.46
7900N	2775	anany	097	345385.0	5745017	1353 570	14.40	12/3/00	4250.31	0.37
7900N	2800		093	345403.2	5745031	1356 559	15.10	12/3/00	4249.37	0.401
7900N	2825	shaky	094	345421.4	5745045	1360 866	15-21	12/3/00	4240.77	0.45
7900N	2850	•	095	345439.6	574506D	1367,763	15:29	12/3/00	4246 55	0 47
base	base	base in	000	345221.2	5744890	1348.231	15:53	12/3/00	4249.91	0.38
base	base	base out	000	345221.2	5744890	1348.231	9:17	12/4/00	4249.82	0.36
7900N	2875		096	345457.8	5745074	1375.219	10:03	12/4/00	4244.98	0 48
7900N	2900	4 !	097	345476.0	5745088	1382.509	10:15	12/4/00	4243.52	0.46
700UN 7850N	2900	new line	080	345538.5	5745053	1383.906	10:32	12/4/00	4243.22	0.45
7850N	2010	Snaky	079	345518.0	5745039	1375,397	1D:46	12/4/00	4244.93	0.49
7850N	2825		075	343497.0	5745024	1367.205	10:53	12/4/00	4246.64	0.49
7850N	2800	shaku	077	343477.1	5745010	1359.724	11:00	12/4/00	4248.11	0.48
7850N	2775	anaky	075	345436.0	5744995	1324.378	11:08	12/4/00	4249.22	0 44
7850N	2750	no marker	074	345415 7	5744966	1331,311	11:10	12/4/00	4249.89	0.45
7850N	2725		073	345395 2	5744950	1349.030	11.22	12/4/00	4250.20	U.46
7850N	2700		072	345374.8	5744937	1350 386	11.20	12/4/00	4250.19	0.45
7650N	2675		071	345354.3	5744923	1351 036	11:42	12/4/00	4250.14	0.47
7850N	2650	shaky	070	345333.8	5744908	1352.517	11:50	12/4/00	4249.55	0.45
7850N	2625	v. shaky	069	345313.3	5744894	1352.218	12:00	12/4/00	4249 67	0.43
7850N	2600		068	345232.9	5744879	1352.204	12:08	12/4/00	4249.43	0.44
7850N	2575		067	345272.4	5744865	1350.576	12:15	12/4/00	4249.53	0.42
7850N	2550		066	345251.9	5744850	1348.895	12:22	12/4/00	4249.53	0.48
7650N	2525		065	345231.5	5744836	1345.791	12:48	12/4/00	4249.82	0.48
7000M	2500	steep!!	064	345211.0	5744821	1335.642	13:06	12/4/00	4251.43	0.50
70001	2000		081	345182.5	5744862	1343.325	13:22	12/4/00	4249.96	0.44
hasa	haso	Race in	002	345203.0	5/448/5	1348.015	13:29	12/4/00	4249.41	0.51
hase	hase	Rase out	000	345221.2	5744690	1340.231	13:35	12/4/00	4249.8D	0.36
7800N	2550		049	345280.4	5744690	1345.231	13:35	12/4/00	4249.80	0.36
7800N	2575	shakv	050	345300.9	5744825	1348 443	13.44	12/4/00	4249.97	0.45
7800N	2600	····,	051	345321.4	5744839	1353 520	13.52	12/4/00	4249.82	0.44
7800N	2625		052	345341.8	5744854	1355 212	14:06	12/4/00	4240.55	0.47
7800N	2650	shaky	053	345362.3	5744868	1356,533	14:16	12/4/00	4248 74	0.43
7800N	2675		054	345382.8	5744883	1356.165	14:22	12/4/00	4248.99	0.42
7800N	2700		055	345403.3	5744897	1352.615	14:29	12/4/00	4249.77	D.47
7800N	2725	v shaky	056	345423.7	5744912	1351.722	14:37	12/4/00	4249.98	0.42
7800N	2750		057	345444.2	5744926	1352.666	14:45	12/4/00	4249.70	0.49
7800N	2775		058	345464.7	5744941	1351.694	14:51	12/4/00	4249.86	0 40
78000N 7800N	2000		059	345485.1	5744955	1350.765	14:59	12/4/00	4249.95	0.47
780010	2850	steen	060	343303.0	5744970	1349./10	15:05	12/4/00	4250.01	0.43
7800N	2875	steen	067	345546 5	5744999	1360 529	15.10	12/4/00	4240 00 4247 78	0.42
base	base	Base In/hard to read	000	345221.2	5744890	1348 321	15:42	12/4/00	4247.70	0.40
base	base	Base Out	000	345221.2	5744890	1348.321	9:08	12/5/00	4249.00	0.36
7800N	2900		063	345567.0	5745013	1369,110	9:43	12/5/00	4245.97	0.51
7750N	2925	v. steep	046	345616.0	5744987	1363.193	10:05	12/5/00	4247.03	0.50
7750N	2900	steep	045	345595.5	5744972	1352.973	10:16	12/5/00	4249.04	0.45
7750N	2875	v, shaky	044	345575.0	5744958	1347.058	10:23	12/5/00	4250.21	0.45
7750N	2850		043	345554.6	5744943	1343.581	10:29	12/5/00	4251.00	0.46
7750N	2825		042	345534.1	5744929	1343.369	10:36	12/5/00	4251.15	0.47
7750N	2800	shaky	041	345513.6	5744914	1343.213	10:43	12/5/00	4251.32	0.42
7750N	2775	v, shaky	040	345493.2	5744900	1345.600	10:50	12/5/00	4250.91	0.45
7750N	2750		039	345472,7	5744885	1350.416	11:00	12/5/00	4250.05	0.40
TTEON	2725		038	345452.2	5744871	1353.225	11:08	12/5/00	4249.53	0.42
7750N	2700		160	345431.8	5/44856	1354.381	11:15	12/5/00	4249.22	0.48
7750N	2650	v shakv	030	343411.3	5744042 5747807	1304.277	11:21	12/5/00	4249.30	0.47
775DN	2625		033	345370 3	5744813	1354 783	11:29	12/0/00	4246./7 4249.PO	0.42
7750N	2600		033	345349.9	5744798	1351 395	11:43	12/5/00	4240.00 4249 35	0.43
7750N	2600	tare check	033	345349.9	5744798	1351.395	11:50	12/5/00	4249 37	0 42
7750N	2575		032	345329.4	5744784	1346.004	11:57	12/5/00	4250 28	0.44
7750N	2550		031	345308.9	5744769	1345,265	12:05	12/5/00	4249.79	0.44

.

J

7750N	2525	v. steep	030	345288.5	5744755	1334.928	12:20	12/5/00	4251.51	0.43
7750N	2500	v steen	029	345268.0	5744740	1325.169	12:34	12/5/00	4253.23	0.47
79051	2000		047	346330 6	5744781	1332 761	12.47	12/5/00	4251.81	0.46
7800N	2500	steep	047	343233.3	5144701	1002.701	40.04	12/5/00	4060.60	0.40
7800N	2525	steep	048	345260.0	5744796	1340.142	13:01	12/5/00	4250.58	0.42
7800N	2550	R12/04/00	049	345280.4	5744810	1345.717	13:10	12/5/00	4249.96	0.46
77001	2000		014	345357.0	5744744	1343 938	13-39	12/5/00	4250.65	0.46
7700N	2575		014	545557.5	5744744	1040.000	10.00	12/0/00	4250.05	0.40
7700N	2600		015	345378.4	5744758	1345.735	13:45	12/5/00	4250.68	0.45
7700N	2625		016	345398.8	5744773	1347.766	13:51	12/5/00	4250.46	0.45
770011	2020		017	345410 3	5744787	1348 102	13.50	12/5/00	4250 50	0.20
TOUN	2650	snaky	017	343413.3	5144107	1340.132	10.00	12/5/00	42.00.00	0.00
7700N	2675		018	345439.8	5744802	1349.517	14:05	12/5/00	4250.29	0.36
7700N	2700		019	345460.3	5744816	1349,335	14:12	12/5/00	4250.33	0.40
77001	0705	- halas	020	345490 7	5744931	1346 373	14.10	12/5/00	4250 80	0.42
770014	2/23	snaky	020	343400.)	3744031	1040.010	14.13	1210/00	4230.00	0.42
7700N	2750		021	345501.2	5/44845	1345,048	14:25	12/5/00	4251.06	0.45
7700N	2775		022	345521.7	5744860	1338,393	14:32	12/5/00	4252.28	0.47
77001	2000		033	345542.1	5744874	1334 571	14:40	12/5/00	4252.95	0.48
770014	2000		025	343342.1	5744014	1004.011	14.40	12/3/00	4202.00	040
7700N	2825		024	345562.6	5744889	1332.305	14:48	12/5/00	4253.25	0 45
7700N	2850	shaky	025	345583.1	5744903	1329.745	14:56	12/5/00	4253.63	0 43
770011	2026	2. and 1	016	3 46 C 12 E	674404P	1222 091	15:04	12/5/00	4252 68	0.40
770014	2075		020	343003.3	5744510	1000.001	12.04	12/3/00	4202.00	0 40
7700N	2900		027	345624.0	5744932	1339,801	15:14	12/5/00	4251.57	0.45
7700N	2925	EOL	028	345644.5	5744947	1347,368	15:21	12/5/00	4250.16	0 39
	hone	Base In	000	345221.2	5744890	13/8 321	16.47	\$2/5/00	4249.82	0.34
pase	Dase		000	040221.2	5744030	1040,021	10.41	12/3/00	4240.02	0.34
base	base	Base Out	000	345221.2	5744890	1348,321	9:12	12/6/00	4249.51	0.34
7650N	2795	nr lake/v shakv/bad reading	011	345566,5	5744830	1328.592	10:39	12/6/00	4253.88	0.49
TEEAN	7775	shalor	010	345550.2	5744819	1334 530	10.49	12/6/00	4252.99	D 48
1030IN	2115	snaky	010	343330.2	5744015	1004.000	10.43	12/0/00	42.52.55	0.40
7650N	2750	shaky	009	345529.7	5744804	1340.718	10:57	12/6/00	4251.77	Q.49
7650N	2725		008	345509.2	5744790	1341.828	11:04	12/6/00	4251.74	0.43
7650N	2700		007	345488 8	5744775	1344 002	11.11	12/6/00	4251 31	0.42
76501	2700		001	040400.0	5744775	1044.002		1210/00	4254.51	0.42
7650N	2675		006	345468.3	5/44/61	1344.861	11:18	12/6/00	4251.09	0.49
7650N	2650		005	345447.8	5744746	1345,378	11:25	12/6/00	4251.10	0.45
765014	2626		004	345427 3	5744732	1348 246	11.31	12/6/00	4250 30	∩ 47
PIDCON	2025		004	0-0-27.0	5744752	1040.240	11.01	120000	4200.00	0.47
7650N	2600		003	345406.9	5/44/1/	1348.438	11:39	12/6/00	4250.04	U.4Z
7650N	2575	road	002	345386.4	5744703	1345.297	11:48	12/6/00	4250.27	0.48
705011	2553	FOI	001	345371 7	5744600	1330 701	11.57	12/6/00	4250.99	0.42
1000N	2007	£.U.L.	001	343371.1	3144032	1333.701	11.01	12/0100	42.00.00	0.72
7700N	2550	steep	013	345337.4	5744729	1340.382	12:10	12/6/00	4250.83	D.44
7700N	2575	hard to read/R12/05/00	014	345357.9	5744744	1343.938	12:20	12/6/00	4250.62	0.46
70501	0775		110	345374 3	5745064	1354 710	14-10	12(6)(0)	4249.06	0.47
19201	2113		110	343374.2	3743004	1004.710	14.15	12/0/00	4243.00	0,47
7950N	2800	v. shaky	111	345394.7	5745078	1359.896	14:27	12/6/00	4247.90	D.50
7950N	2825	-	112	345415.2	5745093	1365.322	14:33	12/6/00	42/16.90	0.46
705011	2020		112	346436.7	6746107	1371 657	14:42	12(6/00	4245 68	0.47
1920N	2850		113	343433.7	5745107	1311.037	14.42	12/0/00	4243.00	0.47
7950N	2875		114	345456.2	5745122	1377.090	14:49	12/6/00	4244.58	0.47
705.0M	2000	v steen/E O I	115	345476 7	5745136	1386 608	15.07	12/6/00	4242.66	0.33
700014	2500	A Steep, C.C.C.	100	04041011	5745470	4007.400	45.01	1010/00	47 47 44	0.45
8000N	2900		136	345442.4	5745178	1387.460	15:21	12/6/00	4242.44	0.40
8000N	2875		135	345421,9	5745164	1382.001	15:27	12/6/00	4243.61	0.38
BOODN	7850		134	345401.5	5745149	1376 770	15 32	12/6/00	4744 68	0.50
000014	2000		104	045901.0	5745406	1070.170	15.00	1010/00	42 46 82	0.50
8000N	2825		133	345381.0	5745135	1370.132	15:36	12/6/00	4240.02	0.52
base	base	Base In	000	345221.2	5744890	1348.321	15:50	12/6/00	4249 79	0.35
		Been Out	000	345221.2	57//890	1348 321	9.52	12/7/00	4249 76	0.33
Dase	Dase	Dase Out	000	045000.5	5745400	1040.021	40.00	4017/00	42.40.00	0.10
8000N	2800		132	345360.5	5745120	1364.852	10:09	12/700	4246.99	U.4Z
8000N	2775		131	345340.1	5745106	1360.003	10:15	12/7/00	4247.98	0.43
80000	2760		130	345319.6	5745091	1355 145	10.21	12/7/00	4248.96	0.46
000011	2150		100	040010.0	6746633	40.47.0.40	10.20	40/7/00	4050.50	0.46
8000N	2725	shaky	129	345299.1	0740U77	1347.242	10:50	127700	4200.00	0.40
8000N	2700		128	345278.7	5745062	1346.829	10:35	12/7/00	4250.61	0.46
800051	2675		127	345258.2	5745048	1346 695	10:41	12/7/00	4250.58	0.46
DUUUN	2013		400	345001 3	6746000	1344440	40.49	13/7/00	4250.00	0.46
8000N	2650	shaky	126	345237.7	5745033	1344.116	10:48	12/7/00	4200.99	0.45
8000N	2625		125	345217.3	5745019	1337.925	10:54	12/7/00	4252.21	0.39
80001	1600	noor crook	124	945196.8	5745004	1335 956	11.01	12/7/00	4252 49	0.45
DUUUN	2000	near creek	144	040100,0	5744004	4000.000	11.40	10/7/02	4363.40	<u> </u>
8000N	2575	v, shaky!!	123	345176.3	5744990	1335.624	11:10	12///00	4252.40	0.43
7950N	2475	Grav only	099	345128.2	5744890	1345.673	11:18	12/7/00	4249.23	0.44
00000	2550	and any	122	345155 8	5744975	1335 603	11.25	12/7/00	4252 30	0.46
OUUUN	2000	D\$01	144	0.001000		1000.000	14.07	1217/00	4050 20	0.70
8000N	2550	tare check	122	345155.8	. 5744975	1335.693	11:27	12//00	4202.SU	0.46
8000N	2525		121	345135.4	5744961	1335.427	11:36	12/7/00	4252.23	0.43
00000	2020		120	345114.0	574404A	1336 092	11.41	12/7/00	4251.81	0.45
SUDUN	2000		120	040114.5	0144340	1000.002	4.4.4	4017/00	4064 30	0.40
8000N	2475		119	345094.4	5744932	1335.623	11:46	12/7/00	4251.70	0.38
8000N	2450		118	345074.0	5744917	1331.366	11:53	12/7/00	4252.22	0.45
000011	2400		447	245057 5	5744002	1333 050	12.00	12/7/00	4253 37	0.44
8000N	2425		117	343033,3	5144803	1323.930	12.00	1211100	4200.01	2 11
8000N	2400	E.O.L.	116	345033.0	5744888	1316.212	12:08	12/7/00	4254,59	0.43
70501	2460		098	345107.7	5744975	1339 251	12:37	12/7/00	4250.11	0.46
190014	2400		000	045400.0	ET44000	404E 070	13.45	10/7/00	4240.22	0.46
7950N	2475	R120700	099	340126.2	3744890	1343.073	12:40	12///00	4243.32	0.40
7950N	2500		100	345148.7	5744904	1345.805	13:03	12/7/00	4249.66	0.46
70501	7575		101	345169.2	5744919	1344 948	13 09	12/7/00	4250.20	0.41
VADOIN	2020		100	046400 7	6744010	1044.040	17.4.4	4017-00	1750 50	
7950N	2550		102	345189.7	5/44933	1544.351	13:14	12///00	4200,00	0.46
7950N	2575		103	345210.2	5744948	1343.943	13:20	12/7/00	4250.88	Q.40
70501	2600		104	345230.7	5744962	1343 302	13 26	12/7/00	4251.08	0.37
1930IN	2000		105	245354.2	5744077	1242 202	12.20	12/7/00	4354 40	0.40
/950N	2625		IVO	J4J2J1.2	2144911	1242.262	13.32	12(7)00	+201.4V	0.40

I MAG	· · · · ·			0 (F0	F3 / 100 ·	1010				
7950N	2650	I	106	345271.7	5744991	1342.637	13:40	12/7/00	4251.42	0.41
7950N	2675	•	107	345292.2	5745006	1342.666	13:47	12/7/00	4251.46	0.38
7950N	2700	1	108	345312.7	5745020	1342.853	13:54	12/7/00	4251.39	0.44
7950N	2750	,	109	345353 7	5745049	1346 504	14.10	12/7/00	4250.62	n 46
7050N	2775	P120600	110	345374 0	5745064	1754 710	14:26	12(7/00	4240.02	0.40
790014	2773	R120000	110	343374.2	5745004	1004.710	14.25	12/7/00	4249.03	0.42
BOSON	2750		151	345266.1	5745133	1355,178	14:32	12/7/00	4248.95	0.47
8050N	2775		152	345306.6	5745148	1362.477	14:41	12/7/00	4247.49	0.47
8050N	2800		153	345327.1	5745162	1366.702	14 47	12/7/00	4746 72	0.48
ROSON	2875		154	345347 6	6746177	1371 /31	14.54	12/7/00	47 46 70	0.40
000014	2025		104	045097.0	5745157	1371.431	14.54	12/7/00	4240.70	0.44
8050N	2850		155	345368.1	5745191	13/6.62/	15:D0	12/7/00	4244.73	0.39
8050N	2875		156	345388.6	5745206	1381.747	15:06	12/7/00	4243.76	0.43
8050N	2900	E.O.L.	157	345409.1	5745220	1386.153	15:11	12/7/00	4242.88	0.47
base	bace	Base lo	000	345221.2	5744800	1348 301	15:25	12(7)00	4240.70	0.22
5436	Lase	Dase M	000	0400221.2	5744030	1040.021	10.20	12/1100	4243.73	0.33
Dase	Dase	Base Out	000	345221.2	5/44890	1346.321	9:21	12/8/00	4249./8	0.33
8100N	2900	steep/shaky	176	345374.8	5745262	1388.003	10:02	12/8/00	4242.17	0.42
8100N	2875		175	345354.3	5745248	1383.098	10:08	12/8/00	4243.22	0.47
8100N	2850	shakv	174	345333.9	5745233	1377 235	10.16	12/B/00	4744 45	0.35
9100M	2825		173	246212 4	6746310	1272 403	10.14	12/0/00	4246.90	0.55
010014	2020		175	343313.4	5745215	1372.402	10.24	12/6/00	4245.33	0.45
8100N	2800		172	345292.9	5745204	1366.827	10:30	12/8/00	4246.53	0.42
8100N	2775		171	345272.5	5745190	1361.266	10:36	12/8/00	4247.66	0.44
8100N	2750		170	345252.0	5745175	1356 364	10.43	12/8/00	4248.67	0.45
81005	2725		169	345231.5	57/5161	1340.020	10:40	10/0/00	4250.41	0.40
BIOON	2720		105	343231.3	5745101	1349.029	10:49	12/0/00	4250.11	0.41
8100N	2700		168	345211.1	5745146	1346,799	10:56	12/8/00	4250.59	0.38
8100N	2675		167	345190.6	5745132	1345,15 1	11:01	12/8/00	4250.87	0.46
8100N	2650		166	345170.1	5745117	1342 883	11.07	12/8/00	4251 29	0.43
81001	7676	-bala.	100	245140.7	5745403	1240.000	11.07	12/0/00	4231.23	0.45
010014	2023	Snaky	103	343149.7	5745103	1340.662	11:15	12/6/00	4251.61	0.48
8100N	25/5		164	345108.7	5745074	1334.707	11:26	12/8/00	4252.63	0.45
8100N	2550		163	345088.3	5745059	1334.218	11:33	12/8/00	4252.59	0.4D
8050N	2575	other line	144	345142.6	5745032	1334 606	11.41	12/8/00	4252.69	0.47
81001	2525	road	167	345067.9	5745045	1330 801	11.46	12/8/00	4353 17	0.40
010014	2020	DI DECOE	102	045007.0	5745045	1000,001	11.40	12/0/00	4233.17	0 40
NOOLR	2500	BL2500E	161	345047.3	5745030	1327.042	11:52	12/8/00	4253.80	0.47
8100N	2475		160	345026.8	5745016	1324.449	11:58	12/8/00	4254.18	0.44
8100N	2450		159	345006.4	5745001	1321.976	12:04	12/8/00	4254.37	0.44
8100N	7475	EOL	158	344985 9	5744987	1311 776	12.20	12/8/00	4256 27	0.46
SOCON.	2400	E.O.E.	427	244000.4	5744020	1000.445	12.20	12/0/00	42.30.27	0.40
NIJCOG	2400		157	344999.1	5744930	1309.445	12:35	12/8/00	4206.32	0.43
8050N	2425		138	345019,6	5744945	1317.872	12:42	12/8/00	4254.96	0.43
8050N	2450		139	345040.1	5744959	1321.901	12:48	12/8/00	4254,47	0.35
8050N	2475		140	345060.6	5744974	1323 806	12:55	12/8/00	4254 25	0.42
ROEON	2600	DI DEME	1.44	345091 1	5744099	1214 535	13:01	10/2/00	4354.20	0.40
OUDUN	2300	BL25WE	141	345001.1	5144900	1524.535	13:01	12/0/00	4254.35	0.46
8050N	2525		142	345101.6	5745003	1326.655	13:07	12/8/00	4254.09	0.50
8050N	2550		143	345122.1	5745017	1330.980	13.13	12/8/00	4253.28	0.46
8050N	2575	R120800	144	345142.6	5745032	1334 606	13:32	12/8/00	4752.66	n 49
ROEDNI	2600		144	3464634	E74E046	1240 207	13.30	1210/00	4252.00	
NUCUO I	2000		145	345103.1	3743046	1340.707	13:39	12/0/00	4251.54	0.45
8050N	2625		146	345183.6	5745061	1343.255	13:46	12/8/00	4251.21	0.46
8050N	2650		147	345204.1	5745075	1349.356	13:51	12/8/00	4250.09	0.45
8050N	2675		148	345774.6	5745090	1348 102	13.57	12/8/00	4250 41	0.45
DOCON	2070	1	1 40	045045.4	5745404	1040.102	13.37	12/0/00	4200.41	0.45
NOCOR	2700	v. snaky!!	149	343245.1	5745104	1347.662	14:07	12/8/00	4250.33	0.39
8050N	2725		150	345265.6	5745119	1349.163	14:13	12/8/00	4250.16	0.46
8050N	2750	R120700	151	345286.1	5745133	1355.178	14:19	12/8/00	4248.9B	0,48
8150N	2750		190	345225.0	5745205	1359 870	14:27	12/8/00	4247 96	0 47
RIEON	2776		101	346346.3	5745118	1364 846	14.40	12/0/00	4246.05	
DISUN	2113		121	345240.2	5745200	1367 366	14.40	12/0/00	4240.93	2. <u></u>
8150N	2800		192	345267.4	D/45232	130/,200	14:46	12/8/00	4246.58	0.46
8150N	2825	on top of 4 m ridge	193	345288.7	5745245	1373.065	14:52	12/8/00	4245.29	0.43
8150N	2850		194	345309,9	5745258	1374.012	14:57	12/8/00	4245.12	0.41
8150N	2875		195	345331 t	5745271	1376 470	15:04	12/8/00	4244 53	0 44
8450N	2000		100	746257 2	5746795	1791 374	15:00	10/0/00	1212 44	0.7T
NUCLO	79M	- .	130	343332.3	3743203	1301.324	13.03	12/0/00	4243,44	0.30
base	base	Base in	000	345221.2	5/44890	1348.321	15:20	12/8/00	4249,84	0.33
base	base	Base Out	000	345221.2	5744890	1348.321	9:30	12/9/00	4249.84	0.33
8200N	2875	steep/shaky	214	345291.0	5745329	1378 478	10.10	12/9/00	4243 90	0.43
02000	2010	croop criery	-13	345070 6	5746344	1373 205	10.10	10,000	AT AE 43	~~~~
02UUN	2000		213	343270.0	. 3743314	1312.393	10.10	12/9/00	4243.13	0.42
8200N	2825		212	345250.1	5745300	1367.532	10:22	12/9/00	4246.21	0.48
8200N	2800	frozen creek/swamp	211	345229.6	5745285	1365,204	10:28	12/9/00	4246.74	0.50
8200N	2775	•	210	345209.2	5745271	1364 551	10:34	12/9/00	4746 88	D 46
820044	2750	road	200	346400 7	5746950	1360 031	10:42	10/0/00	ADAT FE	2.74
0200N	2750	1080	209	J43100./	J/4J2J0	1000.931	10:42	12/3/00	4247.00	U.4/
8200N	2725	frozen swamp	208	345168.2	5745242	1353.237	10:54	12/9/00	4249.09	0.52
8200N	2700	swamp/shaky	207	345147.8	5745227	1348.756	11:01	12/9/00	4249.98	0.46
8200N	2675	shaky	206	345127.3	5745213	1346.062	11:07	12/9/00	4250 52	اە⊿ ن
92001	2010	chalou	200	346102.9	5746400	1345 744	44-49	10000	4164 25	2.22
02UUN	2000	SILARY	200	343100.0	0140190	1040.741	11.10	12(9)00	4231.33	940
8200N	2625	near creek	204	345086.3	5745184	1334.731	11:20	12/9/00	4252.46	0.44
8200N	2600	near creek	203	345065.9	5745169	1330.650	11:28	12/9/00	4253.15	0.44
8200N	2575	near creek	202	345045.4	5745155	1327.530	11:37	12/9/00	4253.64	0.45
87001	2540	near creek	201	345016.8	5745134	1321 351	11 53	12/0/00	1254 76	0.5.1
0200IN	2040		291	040010.0	5745400		40.00	12(3)00	4234.10	0.54
8200N	2525	near creek	200	345004.5	5745126	1318,918	12:00	12/9/00	4255.12	0.38
8200N	2500	near creek	199	344984.0	5745111	1314,696	12:09	12/9/00	4255.82	0.43
										•

8200N	2475	i pear creek	100	344063 6	5745007	1311 670	10.40	10,000	1959 10	A
8200N	2475		130	3440404	514305/	1311.3/8	12:16	12/9/00	4256.40	0.42
DZUUN AKCOL	2450	, E.U.L.	197	344943.1	5745082	1306.956	12:27	12/9/00	4257.12	0.52
8150N	2425)	177	344952.0	5745030	1309.046	13:06	12/9/00	4256.74	0 42
8150N	2450)	178	344972.5	5745044	1314.548	13:12	12/9/00	4255.83	0.45
8150N	2475	5	179	344993.0	5745058	1319.124	13:21	12/9/00	4255.03	0.48
8150N	2500) BL2500E	180	345013.5	5745072	1321,827	13:28	12/9/00	4254.61	D 46
8150N	2525	i	181	345034 D	5745086	1324 048	13:35	12/9/00	4254.27	D 45
8150N	2550		182	345055.2	5745099	1328 840	13:42	12/9/00	4254.21	0.40
8150N	2575		193	346076 A	5745112	1020.040	13.42	12/9/00	4233,44	0.52
8150N	2010	, chalar	194	345007.7	5745113	1332.020	13:40	12/9/00	4253.00	0.36
OTSON	2000	snaky	104	345097.7	5745126	1336.131	13:55	12/9/00	4252.28	0.38
NUCLO	2625		185	345118.9	5745139	1340.770	14:02	12/9/00	4251.45	0.44
8150N	2650	i de la constante de	186	345140.1	5745152	1342.473	14:08	12/9/00	4251.21	0.46
8150N	2675		187	345161.3	5745166	1345.940	14:14	12/9/00	4250.63	0.37
8150N	2700		188	345182.6	5745179	1348.862	14:20	12/9/00	425D 05	0.39
8150N	2725		189	345203.8	5745192	1353 482	14.28	12/9/00	4246.14	0.45
8150N	2750	R120900	190	345225.0	57/5205	1350 870	44.27	12/0/00	4243.14	0.43
8250N	2775	11120000	100	345170.0	5745205	1309.070	14,37	12/9/00	4247.86	0.50
02JOIN	2000		232	3431/9,2	5745310	1361,390	2:46	12/9/00	4247.45	0.49
6250N	2800		233	345199.6	5745324	1366.844	2:51	12/9/00	4246.33	0.45
8250N	2825	E.O.L.	234	345220.1	5745339	1371.762	2:58	12/9/00	4245.27	0.44
base	base	Base In	000	345221.2	574489D	1348.321	3:24	12/9/00	4249.79	0 35
base	base	Base Out	000	345221.2	5744890	1348 321	10.10	12/10/00	1749 81	0.25
8300N	2650		255	345211.2	5745392	1377 329	10.27	12/10/00	4243.00	0.33
8300N	2825		254	3/5100 7	574537P	1371.525	10.21	12/10/00	4243.99	0.47
8300N	2020		204	245130,7	5745570	1070.001	10.33	12/10/00	4245.09	0.35
830014	2000		203	345170.2	5745363	1370,190	10:40	12/10/00	4245.78	0.45
NUULA	2115		252	345149.7	5745349	1367.888	1D:45	12/10/00	4246.18	0.48
8300N	2750		251	345129.2	5745334	1362.220	10:52	12/10/00	4247.23	0.45
8300N	2725		250	345108.7	5745320	1358.826	10:59	12/10/00	4247 91	0 42
8300N	2700		249	345088.2	5745305	1355 218	11.05	12/10/00	4248 63	0.41
8300N	2675		248	345067.7	5745291	1352 327	11.11	12/10/00	4240.00	0.40
8300N	2650		247	345047.2	5745276	1350 640	11.19	12/10/00	4249.22	0.45
83006	2625		246	345076 7	5745260	1330.042	11.10	12/10/00	4249.00	0.35
8300N	2023		240	343020./	0/40262	1348.496	11:24	12/10/00	4249.86	0.48
OSUUN	2600		245	345006.2	5745247	1345.019	11:31	12/10/00	4250.47	0.41
8300N	2575	steep	244	344985.7	5745233	1344.020	11:38	12/10/00	4250.48	D.44
8300N	2550	near creek	243	344965.2	5745218	1334.624	11:51	12/10/00	4252 13	0.50
8300N	2525		242	344944.7	5745204	1339.197	12.11	12/10/00	4251 23	0.41
8300N	2500		241	344924.2	5745189	1330 265	12.17	12/10/00	4201.20	
8300N	2475		240	3/4002 7	5746176	1000.200	40.00	12/10/00	4201.15	0.44
8300M	2450		240	344503.7	5745175	1334.001	12:22	12/10/00	4251.92	0.47
BSOUN	2400	A .	239	344883.2	5745160	1329.515	12:28	12/10/00	4252.78	0.45
base	base	Base In	000	345221.2	5744890	1348.321	9:15	12/11/00	4250.08	0.35
base	base	Base Out	000	345221.2	5744890	1348.321	9:15	12/11/00	4250.08	0.35
8300N	2425	redo	238	344862.7	5745146	1325.655	9:33	12/11/00	4253 64	0.48
8300N	2400	redo	237	344842.2	5745131	1320 887	9.18	12/11/00	4254 43	0.51
8300N	2375	redo	236	344821.7	5745117	1316 950	0.13	12/11/00	4255.45	0.51
830DN	2350	rada	235	344901.2	5745100	1310.000	0.43	12111/00	4200.11	0.50
8250N	2350	redu	230	344001.2	5745102	1312.977	9:47	12/11/00	4255.75	0.49
025011	2330	redo	215	344831.2	5745063	1307.222	9:53	12/11/00	4257.08	0.50
025UN	23/5	redo	216	344851.7	5745078	1309.912	9:58	12/11/00	4256 70	0.51
8250N	2400	redo	217	344872.1	5745092	1316,160	10:03	12/11/00	4255.58	0.45
8250N	2425	back on track	218	344892.6	5745107	1318.930	10:11	12/11/00	4255.11	0 49
8250N	2450		219	344913.1	5745121	1322 849	10.17	12/11/00	4254 46	0.51
8250N	2475		220	344933 5	5745136	1326 480	10.23	12/11/00	4263.02	0.49
8250N	2500	BI 2500E	221	344954.0	5746160	1207 507	10.20	12/11/00	4200.02	0.40
825/04	2505	op creek		3440745	5745120	1321 397	10:00	12/11/00	4253.78	0.47
02300	2020	UT CIECK	222	3449/4.5	0/40165	1324.303	10:37	12/11/00	4254.48	0.49
8250N	2550		223	344994.9	5745179	1335.200	10:50	12/11/00	4252.47	0.45
8250N	2575		224	345015.4	5745194	1338.608	10:57	12/11/00	4251.99	0.47
8250N	2600		225	345035.9	5745208	1342,805	11:04	12/11/00	4251.23	0.42
8250N	2625		226	345056 3	5745223	1346 255	11.11	12/11/00	4250.70	044
8250N	2650	shaky	227	345076 8	5745227	1346 001	11.19	12/11/02	4350 53	, <u>, , , , , , , , , , , , , , , , , , </u>
0250N	2030	SHORY	220	345070.0	5745257	1340.991	11:10	12/11/00	4250.53	0.48
023014	2010		220	345097.3	5745252	1348.839	11:24	12/11/00	4250.11	0.45
6250N	2700		229	345117.8	5/45266	1349.849	11:30	12/11/00	4249.79	0.47
8250N	2725		230	345138.2	5745281	1351.180	11:37	12/11/00	4249.79	0.49
8250N	2750		231	345158.7	5745295	1356.690	11:47	12/11/00	4248.68	0.46
8250N	2775	R120900	232	345179.2	5745310	1361 390	11:54	12/11/00	4247 78	0.47
8350N	2725		269	345078.6	5745359	1370 843	14.41	12/11/00	4745 88	0.54
8350NI	2750		200	345000 4	5745979	1077 020	14.50	12/11/00	4249.00	0.31
9350M	2775		270	2451400	57453/3	1377.030	14.00	12(11)00	4244.43	U 46
0000IN	2//5		2/1	345119.6	5745388	1384.660	14:55	12/11/00	4243.0B	0.40
8350N	2800		272	345140.0	5745402	1392.479	15:02	12/11/00	4241.49	0.46
8350N	2825		273	345160.5	5745417	1398.903	15:08	12/11/00	4240.22	0.45
8350N	2850	E.O.L.	274	345181.0	5745431	1402.915	15:14	12/11/00	4239 97	0 46
base	base	Base In	000	345221.2	5744890	1348 321	15.77	12/11/00	4250 10	0.20
control	9999	Sand Ctrl. St: 980956 44	999	1417120 5	775310 24	631 350	8.02	12/12/00	4380.10	0.00
hase	harn	Baca Out	000	345331 3	5734000	1240 224	0.00	12/12/00	4309.23	0.47
BACON	2000	Dage VUL	000	343221.2	314483Ú	1340.321	9:36	12/12/00	4250.49	0.36
OUUN AUTON	2000		209	345110.7	0/40441	1402.230	10:22	12/12/00	4240.01	D.45
8400N	2775		288	345090.2	5745427	1395.062	10:27	12/12/00	4241.49	0.49
8400N	2750		287	345069.7	5745412	1388,596	10:32	12/12/00	4242.73	0.46

8400N	2725		286	345049 2	5745398	1381.954	10:37	12/12/00	4244.09	0.50
8400N	2700)	265	345028 7	5745383	1378.887	10:44	12/12/00	4244 72	0.47
8400N	2675		284	345008.2	5745369	1377.314	10:51	12/12/DD	4245.04	0.47
8400N	2650		283	344987.7	5745354	1373.616	10:56	12/12/00	4245.58	0.44
8400N	2625		282	344967.2	5745340	1369,790	11:01	12/12/00	4246.18	0.38
8400N	2600	•	281	344946.7	5745325	1365,993	11:08	12/12/00	4246.72	0.49
8400N	2575	v. steep	280	344926.2	5745311	1371.611	11:17	12/12/00	4245.42	0 42
8400N	2550		279	344905.7	5745296	1371.268	11:25	12/12/00	4245.33	0.49
8400N	2525		278	344885.2	5745282	1366.926	11:31	12/12/00	4246.0D	0.43
8400N	2500	BL2500E	277	344864.7	5745267	1361.314	11:39	12/12/00	4246.81	0.42
8400N	2475	v. steep	276	344844.2	5745253	1359.968	11:47	12/12/00	4246.91	0.40
8400N	2450	E.O.L.	275	344823.7	5745238	1361.808	12:00	12/12/00	4246.15	0.36
8350N	2400		256	344812.5	5745170	1332.323	12:24	12/12/00	4252.40	0.46
8350N	2425		257	344833.0	5745185	1338.663	12:44	12/12/00	4251.38	0.41
8350N	2450		258	344853.5	5745199	1340.827	12:51	12/12/00	4251.04	0 40
8350N	2475		259	344873.9	5745214	1343.834	12:56	12/12/00	4250.75	0.42
8350N	2500	BL2500E	260	344894.4	5745228	1347.361	13:01	12/12/00	4250.22	0.52
8350N	2525		261	344914.9	5745243	1350.581	13:07	12/12/00	4249.69	0.48
8350N	2550		262	344935.3	5745257	1353.717	13:12	12/12/00	4249.18	0.38
8350N	2575	near creek	263	344955.8	5745272	1345.621	13:21	12/12/00	4250.71	0.45
8350N	2600	steep	264	344976.3	5745286	1354.279	13:30	12/12/00	4249.22	0.46
8350N	2625	steep	265	344996.8	5745301	1360,519	13,38	12/12/00	4248.03	0.44
8350N	2650	shaky	266	345017.2	5745315	1363.429	13.48	12/12/00	4247.52	0.42
8350N	2675	new battery	2 6 7	345037.7	5745330	1367.004	13:58	12/12/00	4246.91	0.45
8350N	2700		268	345058.2	5745344	1368.972	14:03	12/12/00	4246.57	0.48
8350N	2725	R121100	269	345078.6	5745359	1370.843	14:13	12/12/00	4246.24	0.47
8450N	2525		293	344855.4	5745321	1389.761	14:21	12/12/00	4241.58	0.40
8450N	2550		294	344875.8	5745335	1389.973	14:33	12/12/00	4241.73	0.48
8450N	2575		295	344896.3	5745350	1391.427	14:42	12/12/00	4241.64	0.50
8450N	2600		296	344916.8	5745364	1388,286	14:52	12/12/00	4242.38	0.45
8450N	2625		297	344937.3	5745379	1389.356	15:02	12/12/00	4242.19	0.46
8450N	2650	- .	298	344957.7	5745393	1386.475	15:08	12/12/00	4242.95	0.45
base	base	Base In	000	345221.2	5/44890	1348.321	15:20	12/12/00	4250.45	0.34
Dase	Dase Dase	Base Out		345221.2	5/44890	1348.321	9:10	12/13/00	4250.66	0.34
04DUN 9.4CON	2070	nuctuating	299	344970.2	5745408	1381,585	10:27	12/13/00	4242.18	0.46
	2700		300	344990.7	0/404ZZ	1397.519	10:37	12/13/00	4241.08	D.45
8450N	2720	FOI	301	345019.1	5745457	1399.442	10:43	12/13/00	4240.74	0.50
0430N	2700	E.U.L.	3UZ 216	343039,0	5745451	1403.964	10:50	12/13/00	4239.82	0.43
BEDOM	2700		310	344909.1 344040.0	5745461	1412.167	11:03	12/13/00	4238.16	0.46
9600M	20/0		313	244940.0	5743447	1407.420	11.00	12/13/00	4239.20	0.43
8500N	2000		314	344920.1	5745432	1406.363	11:23	12/13/00	4239.25	0.40
PEODNI SECONI	2023		313	344907.7	5745410	1406,200	11.29	12/13/00	4238.77	0.41
REDOM	2000		312	344007.2	5743403	1404.323	11:35	12/13/00	4239.52	0.49
8500N	2550	ebalor	310	344000.7	5745355	1403.713	11.42	12/13/00	4239.00	0.50
8500N	2505	fluctuating still	3/0	344040.5	5745360	1403.330	11.50	12/13/00	4239,03	0.49
8500N	2520	BL 2500E	308	344805.3	5745345	1409.007	12:08	12/13/00	4237,90	0.40
8500N	2475	DE2000E	307	344784 8	5745331	1407.020	12.00	12/13/00	4230.21	0.49
8500N	2450		306	344764.4	5745316	1408.630	12.10	12/13/00	4237.55	0.57
RSOON	2425		305	344743 9	5745302	1405 322	12.20	12/13/00	4207.47	0.54
8500N	2400		304	344723.4	5745287	1405 549	12:37	12/13/00	4237.63	0.00
8500N	2375		303	344703.0	5745273	1404 425	13:04	12/13/00	4237 38	0.50
8450N	2450		290	344794.0	5745277	1398.723	13:21	12/13/00	4239.13	0.46
8450N	2475		291	344814.4	5745292	1394,704	13:28	12/13/00	4240 27	0.46
8450N	2500	BL2500E	292	344834.9	5745306	1392,050	13:35	12/13/00	4241.13	0.47
8450N	2525	R121200	293	344855.4	5745321	1389,761	13:40	12/13/00	4241.81	0.48
8550N	2350		318	344653.1	5745299	1409.049	13:54	12/13/00	4236.44	0.4B
8550N	2375		319	344673.6	5745314	1412,374	14:00	12/13/00	4236.04	0.41
8550N	2400		320	344694.0	5745328	1412.494	14:07	12/13/00	4236.41	0.54
8550N	2425		321	344714.5	5745343	1413.431	14:15	12/13/00	4236.51	0.47
8550N	2450		322	344735,0	5745357	1414.351	14:23	12/13/00	4236.65	0.42
8550N	2475		323	344755.4	5745372	1415.878	14:31	12/13/00	4236,50	0.45
8550N	2500		324	344775.9	5745386	1416.617	14:40	12/13/00	4236.53	0.47
8550N	2525		325	344796.4	5745401	1419 194	14:48	12/13/00	4236.15	0.49
8550N	2550		326	344816.8	5745415	1419.417	14:55	12/13/00	4236.34	0.46
8550N	2575		327	344837.3	5745430	1418.480	15:02	12/13/00	4236.75	0.48
8550N	2600		328	344857.8	5745444	1417.631	15:08	12/13/00	4237.03	0.43
base	base	Base In	000	345221.2	5744890	1348.321	15:31	12/13/00	4250.71	0.34
base	base	Base Out	000	345221.2	5744890	1348.321	9:22	12/14/00	4251.02	0.34
7650N	2800E	lake shore	012	345570.6	5744833	1328.592	10:16	12/14/00	4255.37	0.52
8550N	2625	swamp/shaky	329	344878.3	5745459	1416.368	11:48	12/14/00	4237.86	0.30
8550N	2650		330	344898.7	57 4 5473	1418.1 1 8	11:53	12/14/00	4237.49	0.46
8550N	2675		331	344919.2	5745488	1420.369	12:00	12/14/00	4237.06	0.45
8550N	2700	E.Q.L.	332	344939.7	5745502	1418.524	12:07	12/14/00	4237.66	0.46

8600N	2700		350	344910.3	5745542	1424,444	12:20	12/14/00	4236.45	0 46
8600N	2675		349	344889.8	5745528	1423.519	12:26	12/14/00	4236.56	0.51
8600N	2650		348	344869.3	5745513	1423,370	12:31	12/14/00	4236.47	0.45
BEDON	2625		347	344848.8	5745499	1423.251	12:36	12/14/00	4236.44	0.50
BERON	2600		346	344828.4	5745484	1423,865	12:43	12/14/00	4236.26	0.49
REDON	2575		345	344807.9	5745470	1424,995	12:49	12/14/00	4235.90	0.44
BEDON	2550		344	344787.4	5745455	1426,151	12:55	12/14/00	4235.41	0.48
REDON	2525		343	344767.0	5745441	1425.085	13:01	12/14/00	4235.42	0.50
8600N	2500		342	344746.5	5745426	1420.655	13:08	12/14/00	4236.23	0.46
8600N	2475		341	344726.D	5745412	1420.052	13:32	12/14/00	4236.17	0.48
REDON	2450		340	344705.6	5745397	1420.233	13:37	12/14/00	4235.91	0.39
8600N	2425		339	344685.1	5745383	1423.531	13:44	12/14/00	4234.80	0.42
8600N	2400		338	344664.6	5745368	1424.894	13:50	12/14/00	4234.17	0.54
8600N	2375		337	344644.2	5745354	1427.040	13:56	12/14/00	4233.23	0.45
8600N	2350		336	344623.7	5745339	1417.589	14:07	12/14/00	4235.09	0.51
8600N	2325		335	344603.2	5745325	1411.116	14:13	12/14/00	4236.16	0.56
8600N	2300		334	344582.8	5745310	1405,993	14:2D	12/14/00	4236.97	0.49
8600N	2275	FOL	333	344562.3	5745296	1401.632	14:27	12/14/00	4237.45	0.40
8550N	2325	2.2.2	317	344632.6	5745285	1406,421	14:41	12/14/00	4235.66	0.48
8550N	2350	R121300	318	344653.1	5745299	1409.049	14:51	12/14/00	4236.74	0.47
base	base	Base In	000	345221.2	5744890	1348.321	15:05	12/14/00	4250. 9 2	0.35

•

GravMaster Output

	x	Y	Line	Station	Elev (m)	Boug2.5	Boug2.6	Bougz./	Boug2.8
0	345221.2	5744890	7900N	2550	1348.231	-145.58	-151.23	-156.89	-162 54
1	345371.7	5744692	7650N	2557	1335.701	-145.95	-151.57	-157,19	-162.81
2	345386.4	5744703	7650N	2575	1345.297	-145.54	-151.18	-156.82	-162.46
3	345406.9	5/44/1/	7650N	2600	1348.438	-145,16	-150.81	-156.47	-162.12
4	345427.3	5744732	7650N	2625	1348.246	-144.93	-150.58	-156.24	-161.89
	345447.8	5/44/45	765UN	2650	1345.378	-144.72	-150.36	-156.00	-161.64
6	345468.3	5/44/61	7650N	2675	1344.861	-144.83	-150.47	-156.11	-161.75
	345488.8	5/44//3	763UN	2700	1344.002	-144.82	-150.45	-156.09	-161.72
8	345509.2	5744790	7650N	2720	1341.828	-144.83	-150.46	-156.09	-161./1
10	340029.7	5744004	700019	2750	1340.716	-143.02	-150.64	-156.26	-161.89
11	340000.2	5744019	70300	2775	1334,330	-140.00	150.05	-156.25	-161.84
12	343306.3	5744030	TEEDN	2790	1326.092	-140.37	-150.94	-156.51	-762.08
12	245227 4	5744033	7630N	2500	1320.092	-140.07	-130.64	-156.21	-161.78
13	343337.4	5744725	7700N	2000	1340.302	-146,00	+101.02	-107.24	-162.86
15	345378 /	5744758	7700N	2575	1345,330	-145.50	-131.13	-100.77	-162.40
16	345398.8	5744773	7700N	2625	1347 766	-144.93	-150.75	-106.40	162 04
17	345419.3	5744787	7700N	2650	1348 192	-144.35	-150.09	-156.14	-101 051
18	345439.8	5744802	7700N	2675	1349 517	-144.80	-150.46	.156.12	161 78
19	345460.3	5744816	7700N	2700	1349 335	-144.80	150.46	-156 11	-161.77
20	345480.7	5744831	7700N	2725	1346 373	144.83	-150.47	156 12	-161.76
21	345501.2	5744845	7700N	2750	1345 048	144 94	-150.58	156 22	161.86
22	345521.7	5744860	7700N	2775	1338 393	-145.06	-150.67	156.28	161.00
23	345542.1	5744874	7700N	2800	1334.571	-145.17	-15D 76	-156.36	161.96
24	345562.6	5744889	7700N	2825	1332,305	-145.35	150.93	-156 52	-152 10
25	345583.1	5744903	7700N	2850	1329,745	-145.50	151 07	156 65	-162 22
26	345603.5	5744918	7700N	2875	1333,981	-145.62	151,21	156.81	-162 40
27	345624.0	5744932	7700N	2900	1339.801	-145.55	-151.17	156,79	162.41
28	345644.5	5744947	7700N	2925	1347.368	-145.47	-151.12	-156,77	162.42
29	345268.0	5744740	7750N	2500	1325.169	-146.68	-152.24	-157.79	-163.35
30	345288.5	5744755	7750N	2525	1334,928	-146.46	-152.06	-157.66	-163.25
31	345308.9	5744769	7750N	2550	1345.265	-146.11	-151.75	-157.39	-163.03
32	345329.4	5744784	7750N	2575	1346.004	-145,47	-151 11	-156.76	-162.40
33	345349.9	5744798	7750N	2600	1351.395	-145.32	-150.98	-156.65	-162.32
34	345370.3	5744813	7750N	2625	1354.783	-145.11	-150.79	-156.47	-162.15
35	345390.8	5744827	7750N	2650	1356.478	-144.96	-150.65	-156.34	162.03
36	345411.3	5744842	7750N	2675	1354.277	-144.81	-150.48	-156.16	-161.84
37	345431.8	5744856	7750N	2700	1354.381	-144.87	-150.55	-156.23	-161.91
38	345452.2	5744871	7750N	2725	1353.225	-144.82	-150.50	-156.17	-161.85
39	345472.7	5744885	7750N	2750	1350.416	-144.88	-150.55	-156.21	-161.87
40	345493.2	5744900	7750N	2775	1345.600	-144.99	-150.63	+156.27	-161.91
41	345513.6	5744914	7750N	2800	1343,213	-145.07	-150.71	-156.34	-161.97
42	345534.1	5744929	7750N	2825	1343.369	-145,21	-150.84	-156,47	-162.11
43	345554.6	5744943	7750N	2850	1343.581	-145.33	-150.96	-156.60	-162.23
44	345575.0	5744958	7750N	2875	1347.058	-145.44	-151.09	-156.73	-162.38
45	345595.5	5744972	7750N	2900	1352.973	-145.43	-151.10	-156.78	-162.45
46	345616.0	5744987	7750N	2925	1363.193	-145.38	-151.10	-156.81	-162.53
47	345239.5	5744781	7800N	250D	1332,761	146.61	-152.20	-157.79	-163.38
48	345260.0	5744796	7800N	2525	1340,142	146,38	-152.00	-157.62	-163.24
49	345280.4	5744810	7800N	2550	1345,717	145.86	-151.50	-157.14	-162.79
50	345300.9	5744825	7800N	2575	1348,443	-145,45	-151.11	-156.76	-162.42
51	345321.4	5/44639	TROOM	260U 2625	1353,520	-145.27	-150,95	-156.62	-162.30
52	345341.8	5744854 5744969		2020	1333.212	-145,03	-100./1	-136.39	162.08
23	343362.3	5744000	7600N	2000	1356,333	- 144,94	-100.03	-130.32	-162.01
⊋4 65	343382.8	3/44003 67/4907	7800N	2010	1350,100	-144.0U	-100.49 167 /7	-130.17	101.00
50	343403.3	5744657	7000N	2700	1352.013	-144.73	-100.40	-120.07	161.70
20	343423.7	2744312 5744020	780011	2720	1301.722	-744.73	150.40	- 100.07 156.16	161.74
57	343444.2	5744920	79000	2730	1352,000	144.02	-150.49	130.10	161.04
50	343464./	5744941	78000	2773	1351,054	-144.90	-150.57	156.20	161.50
	343403.1	5744555	7800N	2000	13/0 716	144.55	150.00	+55.40	-101.50
60	343303.0	5744570	7800N	2023	1365 246	-145.17	-130.03 157 pp	156.49	162.10
67	343320.1 345546 5	5744000	7800N	2030	1360 520	.145.20	-150.22	-156.67	162.20
62 62	343340.3 345567 0	5745013	78/00	2073	1360,329	-143.20	-151.00	*130.07 .156.74	102.30
60	345301.0	5744821	7850N	2500	1335 642	-146 40	-152.00	-157 60	-162.40
65	345231.0	5744836	7850N	2500	1345 701	-146.40	-151 63	-157.00	-163.20
88	345251.0	5744850	785064	2550	1348 805	.145 67	.151 20	-156 09	167 52
67	345272 4	5744865	7850N	2575	1350 576	-145.35	151 02	+156.68	162.34
68	345292.9	5744879	7850N	2600	1352 204	-145 13	-150.80	-156 47	-167.14
69	345313 3	5744894	7850N	2625	1352 218	-144 90	-150 57	-156 24	161 91
70	345333.8	5744908	7850N	2650	1352 517	-144 90	-150.57	-156 24	-161 91
71	345354.3	5744923	7850N	2675	1351.036	-144.84	-150.50	-156.17	-161.83
72	345374.8	5744937	7850N	2700	1350.386	-144.82	-150.48	-156.15	-161.81

l

I

70	245205 3	5744052	7860M	3725	13/0 068	144 89	150 54	156 20	161 96
13	343333.Z	214430Z	703014	2123	1040.000	-144.00	-100.04	-130.20	-101.00
74	345415.7	5744966	7850N	2750	1349.838	-144,90	-150.56	-156,22	-161.88
75	345436 2	5744981	7850N	2775	1351.311	-144.93	-150.60	-156.26	-161.93
76	345456 8	5744005	7850N	2800	1354 378	-145.00	-150 68	156 36	162.04
10	343436.0	5744990	PILICON	2000	1004.070	-143.00	-100.00	-130.30	-162.04
- 77	345477.1	5745010	7850N	2825	1359.724	-145.04	-150.74	-156.44	-162.14
78	345497.6	5745024	7850N	2850	1367.205	-145.01	-150 75	-156 48	-162 21
	046540.0	5745024	79501	2925	1276 207	145.00	450.90	450.00	100.40
79	345518.0	3745038	V IUCO L	2015	1313.397	-143.09	-100.66	-136.63	+16Z 4Q
80	345538.5	5745053	7850N	2900	1383.905	-145.12	-150.92	-156.73	-162.53
81	345182.5	5744862	7900N	2500	1343 325	-146 37	.152.00	-157.64	-163 27
00	040102.0	5744070	700011	2500	4040.045	4 45 00	454.00	467.07	400.21
82	345203.0	5/446/6	1900IN	2325	1340,015	-140.90	-151.62	-157.27	-102.92
83	345221.2	5744890	7900N	2550	1348.231	-145.58	-151,23	-156.89	-162.54
84	345239.4	5744904	790DN	2575	1348 826	-145 37	-151.02	-156 68	-162.33
07	040200.4	6744040	700011	2000	10 10 570	4 45 47	400.00	150.00	102.00
85	345257.6	5744919	790014	2000	1349.379	-140.17	-150.65	-100.40	-162.14
86	345275.8	5744933	7900N	2625	1349.892	-145.06	-150.72	-156.38	-162.04
87	345294.0	5744947	7900N	2650	1349 434	-144 99	-150.64	-156 30	-161.96
	040204.0	5744047	700011	2000	1040.404	-144.00	-150.04	450.00	-101.00
68	345312.2	5744961	7900N	2675	1347.779	-144.93	-150.59	-156.24	-161.89
89	345330.4	5744975	7900N	2700	1346.201	-144.94	-150.59	-156 23	-1 6 1 88
00	0 460 40 C	6744080	700061	2726	1246 076	145.05	160.20	150.35	163.00
90	343340.0	3744509	790014	2720	1340.870	143.05	- 100.70	-130.33	-102.00
91	345366.8	5745003	7900N	2750	1349.447	-145.02	-150.68	-156.34	-162.00
92	345385.0	5745017	7900N	2775	1353 579	-145 12	-150.80	-156.47	-162.15
02	545500.0	5745001	Zocolu	2000	1000.010		-100.00	100.41	-102.13
93	345403.2	5745031	1900N	2600	1356.559	145.14	-150.83	-156.52	-162.21
94	345421.4	5745045	790DN	2825	1360.866	-145.20	150.90	-156.61	-162.31
OF.	345430.6	6745060	700051	2850	1367 763	1 /5 15	160.99	166.60	101 20
30	343439.0	3743000	190014	2000	1307.103	-140.10	-130,00	-130.02	-102.55
96	345457.8	5745074	7900N	2875	1375.219	-145.11	-150.87	-156.64	162.41
97	345476.0	5745088	7900N	2900	1382 509	-145.12	-150.92	.156 72	.162.51
00	215102.7	5744975	70501	2450	1220.051	4 47 02	150.04	150.00	102.07
90	343107.7	\$144613	VACON	243V	(338,231	-147.03	+132.04	-100,2D	-103.07
99	345128.2	5744890	7950N	2475	1345.673	146.57	-152.22	-157.86	163.50
100	345148 7	5744904	7950N	2500	1345 805	-146 18	-151.82	-157.46	-163 11
404	045400.0	6744040	705011	2505	1344.049	4 45 00	464 47	467.44	400.75
101	340169.2	2/44212	192014	2020	1344,940	-140.00	-101.47	-157.11	-102.75
102	345189,7	5744933	7950N	2550	1344.351	-145.56	-151.20	-156.83	-162.47
103	345210.2	5744948	7950N	2575	1343 943	.145 38	.151.01	156.65	162.28
10.5	343210.2	5744540	700014	2010	1040.040	-1-0.00	-101.01	-100.00	102.20
104	345230.7	5744962	7950N	2600	1343.302	-145.32	-150.96	-156.59	-162.22
105	345251.2	5744977	7950N	2625	1342.322	-145.20	-150.83	-156.46	-162.09
100	245371 7	5744901	7960N	7650	1342 637	145 13	160.76	156 30	162.02
100	545271.7	3744331	735014	2000	1342.001	-145.15	-100.70	-120,02	+102.02
107	345292.2	5745006	7950N	2675	1342.666	-145.10	-150.73	-156.36	+161.99
108	345312.7	5745020	7950N	2700	1342 853	-145.13	-150 76	-156 39	-162.02
100	040012.1	5745040	205011	0750	4240 504	145.40	450.00	450.40	102.02
109	345353.7	5745049	LADOW	2150	1346.304	-145.19	-150.83	-156.48	-102.12
110	345374.2	5745064	7950N	2775	1354.710	-145.14	-150.82	-156.50	-162.18
111	345394 7	5745078	7950N	2800	1359 896	-145 25	-150.96	-156 66	.167.36
	343334.1	0140010	10001	2000	1000.000	-1-0.20	-100.00	-130.00	-102.50
112	345415.2	5745093	7950N	2825	1365.322	-145,19	-150.91	-156.64	162.36
113	345435.7	5745107	7950N	2850	1371.657	-145.14	+150.89	-156.64	162,40
114	245456.7	5745122	7050N	2875	1377 000	145 16	150.04	156 71	162.49
114	343430.2	3743122	V950N	2015	1377.050	-145,10	-150.94	-130.71	-102.40
115	345476.7	5745136	795DN	2900	1386.608	-145.22	-151.03	-156.85	-162.65
116	345033.0	5744888	8000N	2400	1316 212	-147 19	-152 7D	-158 22	-163 74
	040000.0	6744000	000001	2405	1202 050	140.05	453.44	457.00	400.04
117	345053.5	5/44903	0000M	2423	1252,820	-140,00	-172.41	-121.90	-103.51
118	345074.0	5744917	8000N	2450	1331.366	146.52	-152.10	-157,68	-163.27
110	345094 A	5744932	RODON	2475	1335 623	.146.21	-151 81	-157 41	.163.01
110	040004.4	5744040	000011	2410	1000.020	445.00	454.00	457.20	4 6 2 . 0 2
120	345114.9	5/44946	RUDOIN	2500	1335.092	-140.99	-151.60	-157.20	-162.8U
121	345135.4	5744961	8000N	2525	1335.427	-145.72	-151.32	-156.92	-162.52
122	345155.8	5744975	8000N	2550	1335 693	-145 59	.151.20	-156.80	.162.40
144	040100.0	5144000	000011	2500	1000.000	4 45 44	151.05	450.05	102.40
123	3451/6.3	5744990	BOODN	20/0	1333.624	-143.44	-151.05	-100.60	-162.25
124	345196.8	5745004	8000N	2600	1335.956	-145,37	-150.97	-156.57	162.18
175	345717 7	57/5019	800057	2625	1337 925	.145 28	150.89	.156 50	162 11
120	040211.0	5745015	000011	2020	1007.020	4 45 05	450.00	400.00	400.40
126	345237.7	5745033	BUUUN	2650	1 344.116	145.25	-150.89	-106.02	-162.16
127	345258.2	5745048	8000N	2675	1346.695	-145.15	-150.80	-156.45	-162.09
130	346379 7	5745060	800051	2700	1346 820	_145 10	-150 75	-156 40	162 05
120	343210,1	5745002		2100	1040.023	-140.10	-100.70	-100.40	-102.03
129	345299.1	5745077	8000N	2725	1347.242	-145.12	-150.77	-156,41	-162.06
130	345310 6	5745091	8000N	2750	1355.145	-145 11	•150 79	-156.47	-162 15
	347546 -	ET 12100	800011	3776	1200 000	146 43	160.04	150 6 4	123 14
131	345340.1	5/45106	ROODIN	2115	1360.003	-145,13	-150.64	-135.34	-102.24
132	345360.5	5745120	8000N	2800	1364.852	-145,16	-150,89	-156.61	-162.33
133	345391.0	5745135	RODON	2825	1370 132	145.09	-150.84	-156 58	-162.33
	040001.0	5745135	000001	2050	1070 770	145 40	150.04	460.00	100.00
134	345401.5	5745149	8000N	2850	13/6.//0	-143.12	-100,89	-100.07	162.44
135	345421 9	5745164	8000N	2875	1382.001	-145.19	-150.99	-156.78	-162.58
122	946447 4	5745470	BROOM	2000	1397 460	1/5 14	151 09	156 20	163 74
130	343442.4	3/431/8	NUUUA	2800	1307.400	-143.20	-131.00	-150.09	-102.71
137	344999.1	5744930	8050N	2400	1309.445	-146.87	-152.36	-157.85	-163.34
198	345010 6	5744046	8050M	2425	1317 972	-146 55	.152 08	-157.60	163 13
130	340018.0	J/44340	000014	2723	1011.012	-140.00	-132.00	-101.00	400.10
139	345040.1	5744959	8020N	2450	1321.901	-146,26	-151.81	-157.35	-162.89
140	345060.6	5744974	8050N	2475	1323.806	-146.09	-151.64	-157.19	-162.74
	345004 4	E744000	SDEON	2500	1374 525	145.00	161 20	150 02	103.40
141	245081,1	0144900	NICCO	2000	1324,335	-140.00	-121.30	-120.93	102.49
42	345101.6	5745003	8050N	2525	1326.655	-145.68	-151.24	-156.80	-162.37
43	345122 1	5745017	8050N	255D	1330,980	-145 64	-151 22	-156.81	.162.39
	0454 10 0	E745000	000011	7675	1224 000	146.50	454.44	100.01	
44	34514Z.5	5745032	NUCUB	25/5	1334.606	-140.02	-121.11	-100.71	-162.30
45	345163.1	5745046	8050N	2600	1340.707	-145.46	-151.08	-156.70	-162.33
46	345183.6	5745061	8050N	2625	1343 255	-145.29	-150 92	-156 55	-162 18
	343,03.0		000011	1010	0.00				

I

F

147	345204.1	5745075	8050N	2650	1349.356	-145.20	-150.86	-156.51	-162.17
148	345224.6	5745090	8050N	2675	1348.102	-145.14	-150.79	-156.45	-162.10
149	345245.1	5745104	8050N	2700	1347.682	-145.34	-150.99	-156.64	-162.29
150	345265.6	5745119	8050N	2725	1349.163	-145.20	-150.86	-156.52	-162.17
151	345286.1	5745133	8050N	2750	1355.178	-145.18	150.86	-156.54	-162.22
152	345306.6	5745148	8050N	2775	1362.477	-145.18	-150.89	-156.61	-162.32
153	345327.1	5745162	8050N	2800	1366.702	-145.11	-150.84	-156.57	-162.30
154	345347.6	5745177	8050N	2825	1371.431	-145.14	-150.90	-156.65	-162.40
104	345369 1	5745191	8050M	2850	1376 627	-145.16	-150,93	-156.70	-162.47
155	345399.0	5745206	8050N	2875	1381 747	-145 10	150.89	-156.69	-162.48
100	343366.6	5745200	805051	20/0	1386 153	-145.09	-150.90	-156 72	-162.53
157	343409.1	5740220	81000	2300	1311 778	-146.48	-151.98	-157 48	-162.98
158	344985.9	3/4490/	RECON	2425	1371.076	-146 34	-151.89	-157.43	-162.97
159	345006.4	5745001	O LOUN	2400	1321.370	-140,34	151.00	167 15	162.37
160	345026.8	5745016	8100N	2475	1324.449	-140.04	454 47	457.03	162.70
161	345047.3	5745030	8100N	2500	1327.042	-145.90	-131.47	+137.03	+162.55
162	345067.8	5745045	8100N	2525	1330.801	-145.78	-151.36	-10.94	-162.52
163	345088.3	5745059	8100N	2550	1334.218	-145.71	-151.30	-156.90	-162.49
164	345108.7	5745074	8100N	2575	1334.707	-145.56	-151.16	-156.76	-162.35
165	345149.7	5745103	8100N	2625	1340.882	-145,35	-150.97	-156.60	-162.22
166	345170.1	5745117	8100N	2650	1342.883	-145.29	-150.93	-156.56	-162.19
167	345190.6	5745132	8100N	2675	1345.151	-145.26	-150.90	-156.54	-162.18
168	345211.1	5745146	8100N	2700	1346.799	-145,24	-150.89	-156.54	-162.19
169	345231.5	5745161	8100N	2725	1349.029	-145.28	-150.94	-156.59	-162.25
170	345257 D	5745175	8100N	2750	1356,364	-145.24	-150.93	-156.62	-162.31
171	345272 5	5745190	8100N	2775	1361.266	-145.29	-150,99	156,70	-162.41
172	345202.0	5745204	8100N	2800	1366 827	-145.32	151.05	156.78	-162.51
472	345213 4	5745219	8100N	2825	1372 402	-145 40	-151 16	156 91	-162.66
173	343313.4	5745213	81/00N	2950	1377 235	145 35	-151 13	156.90	-162.68
174	340333.9	5745233 6745748	8100N	2000	1383 098	1/5 38	-151.18	156.98	-162.78
175	345354.3	5745240	BIOON	2010	1300.030	1 45 47	151 20	157.11	162.93
176	345374.8	5/45262	BIUUN	2900	1300.003	- 140.41	167 11	157.50	163.00
177	344952.0	5745030	8150N	2425	1309.046	-140.00	-102.11	157.00	163.03
178	344972.5	5745044	8150N	2450	1314.546	-146.43	-751.94	-157.40	-162,97
179	344993.0	5745058	8150N	2475	1319.124	-146.32	-151.85	-157.38	-162.91
180	345013.5	5745072	8150N	2500	1321.827	-146.21	-151,75	-157.30	-162.84
181	345034.0	5745086	8150N	2525	1324.048	-146.12	-151.67	-157.22	-162.77
182	345055.2	5745099	8150N	2550	1328.840	-145.98	-151.55	-157.12	-162.69
183	345076.4	5745113	8150N	2575	1332.028	-145.84	-151.42	-157.01	-162.59
184	345097.7	5745126	8150N	2600	1336.131	-145.74	-151.34	-156.94	-162.54
185	345118.9	5745139	8150N	2625	1340.770	-145.63	-151.25	-156.87	-162.49
186	3451401	5745152	8150N	2650	1342.473	-145.53	-151.16	-156,79	-162.42
187	345161 3	5745166	8150N	2675	1345,940	-145.45	-151.10	-156.74	-162.38
101	345197.6	5745179	8150N	2700	1348 862	-145 45	-151.11	-156.76	-162.42
100	245102.0	5745102	\$150N	2725	1353 482	-145.43	-151 10	-156 78	·162 45
109	345203.0	5745152	9150N	2720	1350.970	145 37	-151.07	-156 77	162.48
190	345225.0	5745205	61JUN 8150N	2730	1205.070	-145.37	-151.01	-156.80	-162.52
191	345246.2	5/45218	815UN	2775	1304.040	-143.33	450.00	-150.00	102.32
1 92	345267.4	5745232	B15UN	2600	1367.266	-145.24	-150.97	+130.71	·102.44
193	345288.7	5745245	B15DN	2825	13/3.065	-145.39	-151.15	-156.90	-162.00
194	345309.9	5745258	B15DN	2850	1374.012	-145.39	-151.15	-156.91	-162.67
195	345331.1	5745271	8150N	2875	1376.470	-145.49	-151.26	-157.03	-162.80
196	345352.3	5745285	8150N	2900	1381.324	145.64	-151.43	-157.23	-163.02
197	344943.1	5745082	8200N	2450	1306.956	-146,67	-152.15	-157.63	-163.11
198	344963.5	5745097	8200N	2475	1311.578	-146.50	-152.00	-157.50	-163.00
199	344984.0	5745111	8200N	2500	1314.696	-146.46	-151.97	-157.48	-163.00
200	345004.5	5745126	8200N	2525	1318.918	-146.34	-151.87	-157,40	162.93
201	345016.8	5745134	8200N	2540	1321.351	-146.16	-151.70	-157.24	162.78
202	345045.4	5745155	8200N	2575	1327.530	-146.08	-151.65	-157.22	-162.78
202	345065.0	5745169	8200N	2600	1330.650	-145.96	-151.54	-157.12	-162.70
203	345005.3	5745184	8200N	2625	1334 731	-145.84	-151.44	-157.03	-162.63
204	345000.5	574510R	820011	2650	1340 741	-145 74	-151 36	156,98	-162.60
205	345106.0	5745120	9200N	2675	1345.062	-145 51	-151 15	156 79	-162 44
206	345127.3	3743213	0200IN	2070	1248 766	1/5 53	.151.18	156.84	162.49
207	345147.8	5/4522/	6200N	2700	1240.720	145.55	451.10	156.86	162.53
208	345168.2	5/45242	BZUUN	2720	1000.201	-143,31	161.10	-152.00	162.00
209	345188.7	5745255	8200N	2750	1360.931	-145.55	-151.24	-100.93	-102.03
210	345209.2	5745271	8200N	2775	1364.551	-145,49	-151.21	-156,93	-102.00
211	345229.6	5745285	8200N	2800	1365.204	-145.50	-151.22	-156,95	-162.67
212	345250.1	5745300	8200N	2825	1367.532	-145.58	-151.32	-157.05	-162.78
213	345270.6	5745314	8200N	2850	1372,395	-145.72	-151.47	-157.23	-162.98
214	345291.0	5745329	8200N	2875	1378.478	-145.74	-151.52	-157.30	-163.08
215	344831.2	5745063	8250N	2350	1307,222	-146.91	-152.39	-157.87	-163.35
216	344851 7	5745078	8250N	2375	1309.912	-146.75	-152.25	-157.74	-163.23
217	344872 1	5745092	8250N	2400	1316.160	-146.64	-152.16	-157.68	-163.20
218	344807 5	5745107	8250N	2425	1318.930	-146.56	-152.09	-157.62	-163.15
210	3440121	5745121	8250N	2450	1322 849	-146.42	-151.97	-157.52	-163.06
219	344313.1 344032.5	5745128	8250NI	2475	1326 480	-146 25	-151.82	-157.38	-162.94
∡∠∪	344933.3	0010410	02000	2410	1020.400				· - · - ·

GravMaster Output

			00501	9500	4227 507	146 18	154 75	-157 32	162.88
221	344954.D	5/45150	825UN	2500	1327.397	-140.10	-131.73	467.02	102.00
222	344974.5	5745165	8250N	2525	1324,303	-146.15	-151./0	-157.25	102.01
223	344994 9	5745179	8250N	2550	1335.200	-145.99	-151.59	-157.19	-162.79
1 224	245045 4	57/510/	8250N	2575	1338 608	-145.79	-151.40	-157.02	162.63
224	343013.4	3743124	DZJON	2010	1040.000	146 73	151 36	156.99	162 62
225	345035.9	5745208	825UN	2600	1342.003	-140.70	454.00	450.00	102.02
226	345056.3	5745223	825DN	2625	1346,255	-145.57	-151.22	-100.00	-102.01
227	345076.8	5745237	8250N	2650	1346.991	-145.60	-151.24	-156.89	162.54
228	345097 3	5745252	825DN	2675	1348,839	-145,67	-151.32	-156.98	162.63
220	045037.5	5745202	925011	2700	13/0 8/9	-145 79	-151 45	-157 11	-162 77
229	343117.0	5743200	023014	2100	4264 190	1 45 53	151 10	156 B6	162 52
230	345138.2	5745281	825UN	2120	1351.160	-140.00	-131.18	•100.00	102.02
231	345158.7	5745295	8250N	2750	1356.690	-145.55	-151.24	-156,93	-162.62
232	345179.2	5745310	8250N	2775	1361.390	-145,53	-151.24	-156,95	-162.66
232	345199.6	5745324	8250N	2800	1366.844	-145.60	-151.33	-157.07	-162.80
200	040100.0	5745330	8250M	2825	1371 762	-145 70	-151 45	-157 20	-162.95
234	3452ZU.1	2143338	OZJUN	2023	10/1./02	447.40	450.00	169 12	102.02
235	344801.2	5745102	8300N	2350	1312.977	-147.12	-132.62	-100.10	+103.03
236	344821.7	5745117	8300N	2375	1316.950	-146.97	-152.49	-158.01	-163.53
237	344842 2	5745131	8300N	2400	1320,887	-146,87	-152.40	-157.94	-163.48
2.57	344042.2	5746146	930011	2425	1325 655	-146 72	-152 28	-157.83	-163 39
238	344662,7	0740140	000014	2423	1020.000	440.52	150 15	467.73	163.30
239	344883.2	5745160	8300N	2450	1329.515	-146.00	-152.15	-157.75	-163.30
240	344903.7	5745175	8300N	2475	1334.601	-146.42	-152.01	-157.61	-163.21
241	344924.2	5745189	8300N	2500	1339.265	-146.27	-151.88	-157.50	-163.12
1 2 2 2	244044 7	5745204	B300N	2525	1339 197	-146 22	-151 84	-157 45	-163.07
242	344944.7	5745204	000011	2525	1004.004	146.00	151.91	157.41	163.01
243	344965.2	5745218	\$300N	2550	1334.024	-146.22	-121.01	-137.41	-103.01
244	344985.7	5745233	8300N	2575	1344.020	-146.01	-151.64	-157.28	-162.91
245	345006.2	5745247	8300N	2600	1345.019	-145.83	-151.47	-157.11	-162.75
1 576	3/5070.2	5745707	RECENT	2625	1348 496	-145 73	-151 39	-157.04	-162 70
246	343026.7	5145202	99000	2020	1050 010	145 00	164 33	150.00	162.65
247	345047.2	5745276	8300N	2650	1330.642	-140.00	-131.32	100,33	-102.00
248	345067.7	5745291	8300N	2675	1352.327	-145.62	-151.29	155.96	-162.63
249	345088.2	5745305	8300N	2700	1355.218	-145.67	-151.35	-157.03	-162.71
250	245100.2	5745300	8300N	2725	1358 826	-145.67	-151 37	-157.06	-162.76
250	343100.7	5745520	000014	2750	1963.020	145.67	151 32	157.00	162.80
251	345129.2	5/45334	830014	2750	1362.220	-140.01	-101,00	157.05	-102.00
252	345149.7	5745349	8300N	2775	1367.888	-145.58	-151.32	-157.05	-162.79
253	345170.2	5745363	8300N	2800	1370.190	-145.54	-151.29	-157.03	162.78
354	345100 7	5745378	8300N	2825	1371.651	-145.99	151.74	-157.49	-163.24
254	343130.1	5745510	DOCON	1050	1277 300	145.02	151.69	-157.47	163.24
255	345211.2	5/45392	PICOCO	2000	13(1.323	-140.02	452.04	450.00	102 70
256	344812.5	5745170	8350N	2400	1332.323	-147.0Z	-152,61	-158.20	-103.70
257	344833.0	5745185	8350N	2425	1338.663	-146.79	-152.41	-158.02	-163.63
269	344953.5	5745199	8350N	2450	1340 827	-146.71	-152.33	-157.95	-163.58
200	044000.0	5746744	0250N	2475	1343 834	-146.40	152 03	-157.67	-163 30
528	344873.9	5/45/14	PIDCCO	2473	1040.004	140,90	151.05	157.50	162.16
260	344894.4	5745228	8350N	250X)	1347.361	-146.20	-101.00	-157.50	-103.13
261	344914.9	5745243	8350N	2525	1350.581	-146,10	-151.77	-157.43	-163.09
262	344935 3	5745257	8350N	2550	1353.717	-146.02	151.70	-157.38	-163.05
202	044055 0	5745272	8350N	2575	1345 621	146 11	-151.75	-157 40	-163.04
263	344935.0	3743272	022011	2010	1040.021	446.07	164 66	157.70	162.00
264	344976.3	5745286	8350N	2600	1354.279	-145.67	-151.55	-121.22	-102.90
265	344996.8	5745301	8350N	2625	1360.519	-145.82	-151.53	-157.23	-162.94
266	345017.2	5745315	8350N	2650	1363.429	-145.76	-151.48	-157.20	162.91
200	040017.2	5745320	\$350N	2675	1367.004	.145.66	-151.39	-157 12	-162.85
267	345037.7	3143330	000011	2013	4009.009	145.00	151 24	157.09	162.82
268	345058.2	5745344	8350N	2700	1300.972	-143.60	-101.04	+101.00	102.02
269	345078.6	5745359	8350N	2725	1370.843	-145.57	-151.32	-157.07	162.81
270	345000 1	5745373	8350N	2750	1377.836	145.64	-151.42	-157.20	162.98
210	343033.1	6746000	OCCON	1775	139/ 660	145.66	-151 46	-157 27	-163.07
2/1	345119.6	0/40300	BJJUN	2110	1202.470	145 67	-154 64	-157 25	167 10
272	345140.0	5745402	8350N	2800	1392.479	143.07	-101,01	427 40	100,10
273	345160.5	5745417	8350N	2825	1398.903	-145.67	-151.53	-157.40	103.26
274	345181.0	5745431	8350N	2850	1402.915	-145.11	-151.00	-156.88	-162.76
376	244219 7	5745238	84001	2450	1361.808	-147.45	-153.16	-158.87	-164.58
2/0	344023.7	5745250	040051	2475	1350 059	.147.06	-152.76	-158 46	164 16
276	344844.Z	5745253	6400N	24/3	1333.900	440.00	162.00	150.70	164.01
277	344864.7	5745267	8400N	2500	1361.314	146.89	-152.60	-120.31	-104.01
278	344885.2	5745282	8400N	2525	1366.926	-146.58	-152.31	-158.04	163.77
270	344005 7	5745296	8400N	2550	1371.268	-146.37	-152.12	-157.87	-163.62
215	J-4-900.1	5175290	SADON	2575	1771 6+1	-146 25	-152.00	-157 75	163.50
280	344926.2	5745311	OHUUN	20/0	1011.011	4 46 00	164 70	157 53	167.25
281	344946.7	5745325	8400N	2600	1365.993	-146.06	-131./9	-137.32	103.23
282	344967.2	5745340	8400N	2625	1369,790	-145.88	-151.63	-157.37	163.12
282	344987 7	5745354	8400N	2650	1373.616	-145.71	-151.47	-157.23	162.99
1 AA -		67 AF200	840081	2675	1377 314	145 51	-151 28	157.06	-162.83
284	345008.2	5/40308	040019	2010	10/1.014	446.62	151 24	157.00	167.97
285	345028.7	5745383	8400N	2700	13/8.88/	140.00	-131.31	- (57.03	-102.07
286	345049.2	5745398	8400N	2725	1381.954	-145.54	151 34	-157.13	-162.93
287	345069 7	5745412	8400N	2750	1388,596	145.60	-151.42	-157.24	-163.06
401 000	3450000.1	5745437	84006	2775	1395 062	145 54	151 39	-157 24	163.09
208	343090.2	5140427	0.10011	2175	1400 000	115 01	151 /0	157 97	163.75
289	345110.7	5745441	8400N	2800	1402.230	-143.01	-131,48	10,101	-100.20
290	344794.0	5745277	8450N	2450	1398.723	-147.28	-153.14	-159.01	-104.67
291	344814.4	5745292	8450N	2475	1394.704	-146.95	-152.80	-158.65	-164.50
201	2440240	6746206	8450NI	2500	1392 050	-146 63	-152.47	-158.30	-164.14
292	344034.9	3743300	043011	2000	1300 701	1/2/2	153.25	158.09	-163 01
293	344855.4	5745321	845UN	2525	1308./01	-140.43	102.20	-130.00	465 74
294	344875.8	5745335	8450N	2550	1389.973	-146.23	-152.05	-157.66	-103./1

ľ

GravMaster Output

296 344916.8 6745364 8450N 2800 1388.266 1.45.34 1151.75 155.75 155.75 298 344957.7 5745393 8450N 2650 1386.475 1.45.33 151.75 151.57 151.57 167.38 163.20 300 344987.7 5745428 8450N 2700 1337.519 1.45.66 151.52 167.38 1.63.24 301 345019 5745421 8450N 2750 1403.384 1.45.66 1.51.45 1.57.76 1.55.76 1.68.50 304 304703 5745527 8500N 2470 1405.549 1.47.04 1.53.76 1.58.61 1.65.06 306 344724.4 5745502 8500N 2400 1405.320 1.46.74 1.52.61 1.56.2 1.64.64 306 344784.4 5745331 8500N 2500 1407.520 1.46.44 1.52.61 1.56.76 1.68.46 310 3449053 5745348 8500N 2550 1409.557 <th>295</th> <th>344896.3</th> <th>5745350</th> <th>8450N</th> <th>2575</th> <th>1391.427</th> <th>-146.03</th> <th>-151.86</th> <th>-157.70</th> <th>-163.53</th>	295	344896.3	5745350	8450N	2575	1391.427	-146.03	-151.86	-157.70	-163.53
297 344937.3 5745379 8450N 2625 1388 346 -145.93 -151.57 -157.38 .163.20 298 344978.2 5745408 8450N 2675 1381.995 -145.63 -151.57 -157.38 .163.20 200 344988.7 5745422 8450N 2775 1398.942 -145.61 -151.42 .157.42 .163.24 201 345019.1 5745273 8500N 2375 1404.425 .147.87 -153.36 .159.19 .165.04 .157.42 .163.30 303 344703 0 5745273 8500N 2470 1405.539 .147.04 .152.84 .158.19 .165.06 .165.64 304 34472.8 5745316 8500N 2475 1409.233 .146.71 .152.84 .158.24 .164.45 300 344625.8 5745340 8500N 2555 1405.57 .146.32 .151.57 .157.84 .163.40 310 344486.7 5745340 8500N 2557 1405.75 .161.53 .157.76 .163.44 .157.84 .163.42	296	344916.8	5745364	8450N	2600	1388.286	-145.94	-151.76	-157.58	-163.41
288 344957 5745393 8450N 2650 1366475 -145.76 -15157 -157.40 -163.24 300 344980.7 5745422 8450N 2700 1397.519 -145.66 -151.82 -157.38 -163.24 301 3450151 57454547 8450N 2725 1399.442 -145.61 -151.48 -157.34 -163.24 302 347030 5745451 8450N 2750 1403.984 -1445.65 -151.84 -157.84 -165.83 304 34472.34 5745273 8500N 2400 1405.549 -147.40 -152.94 -158.83 -164.62 306 344764.4 5743316 8500N 2500 1407.620 -146.44 -152.81 -158.24 -164.64 309 344867.7 5743345 8500N 2500 1405.558 -146.32 -157.46 -163.26 310 344967.7 5744518 8500N 2550 1406.536 -151.87 -157.84 -164.53	297	344937.3	5745379	8450N	2625	1389.356	145.93	151.75	-157.58	-163.40
299 344978.2 5745408 6450N 2675 1331.595 -145.73 -151.52 -157.38 -163.24 301 345019.1 5745437 6450N 2725 1339.442 -144.66 -151.52 -157.42 -163.31 302 345036 5745273 8500N 2375 1404.425 -147.87 -153.56 -155.86 -165.50 303 3447030 5745273 8500N 2425 1405.522 -147.04 -153.30 -158.18 -165.83 -165.83 -164.53 304 34473.9 5745306 8500N 2475 1404.632 -147.40 -152.84 -158.78 -164.64 300 34405.3 5745345 8500N 2575 1405.575 -146.32 -152.34 -158.24 -164.34 310 344867.7 5745148 8500N 2575 1405.575 -145.36 -151.95 -157.63 -163.36 311 344867.7 5745188 8500N 2657 1405.87 -1	298	344957.7	5745393	8450N	2650	1386 475	-145.76	-151.57	-157.38	-163.20
300 344986.7 5745422 8450N 2700 1387.519 -145.66 -151.82 -157.34 -163.21 301 345013 5745451 8450N 2750 1403.844 -145.65 -151.84 -157.34 -163.21 302 347030 5745273 8500N 2470 1405.425 -147.87 -153.76 -159.89 -165.83 304 344723.4 5745202 8500N 2420 1405.52 -147.04 -152.84 -158.83 -164.62 306 344764.4 5745302 8500N 2450 1409.623 -146.32 -152.81 -158.24 -164.63 308 344805.3 5745340 8500N 2550 1405.573 -146.32 -151.87 -157.64 -163.26 310 344867.2 5743348 8500N 2850 1408.23 -145.83 -151.7 -157.64 -163.26 313 34497.7 5744348 8500N 2850 1408.427 -151.48 -157.76 -163	299	344978.2	5745408	8450N	2675	1391.595	-145.73	-1 51 .57	-157.40	-163.24
345013.1 5745437 8450N 2725 1399.442 -145.61 -151.46 -157.34 -163.31 302 344703.0 5745273 8500N 2405 1404.425 -147.67 -155.76 -159.86 -165.53 304 344723.4 5745287 8500N 2400 1405.522 -147.04 -152.94 -158.83 -164.70 305 344764.8 5745316 8500N 2475 1403.923 -146.71 -152.85 -158.76 -164.46 300 344825.8 5745302 8500N 2250 1407.533 -146.71 -152.23 -158.76 -163.46 303 344825.8 5745303 8500N 2255 1405.53 -145.83 -151.95 -157.84 -163.23 311 344867.2 5745433 8500N 2855 1405.25 -145.83 -151.95 -157.85 -157.84 -163.24 313 344907.7 5745433 8500N 2855 1405.257 -151.45 -157.85	300	344998.7	5745422	8450N	2700	1397.519	-145.66	-151.52	-157.38	-163.24
345038.6 5746451 8450N 2750 1403.984 -145.65 -151.54 -157.42 -163.31 303 344723.4 5745273 8500N 2400 1405.549 -147.40 -153.76 -158.83 -168.56 304 344723.4 5745202 8500N 2426 1405.549 -147.40 -152.94 -158.83 -158.76 -168.73 306 344764.4 5745316 8500N 2450 1406.630 -146.95 -152.93 -158.74 -164.45 308 344805.3 5745345 8500N 2550 1405.556 -146.05 -151.95 -157.76 -163.46 301 344806.7 5745346 8500N 2550 1405.536 -146.05 -151.95 -157.76 -163.46 313 344807.7 5745443 8500N 2625 1405.31 -145.83 -151.77 -157.64 -163.43 313 344866.7 5745443 8500N 260 1406.21 -145.83 -151.73	301	345019.1	5745437	8450N	2725	1399.442	-145.61	-151.48	-157,34	-163.21
303 344703 0 5745273 8500N 2275 1404.425 -147.67 -153.30 -159.19 -165.50 305 344723.4 5745302 8500N 2425 1405.32 -147.04 -152.94 -158.83 -164.72 306 344764.5 5745316 8500N 2475 1409.23 -146.71 -152.81 -158.52 -164.43 308 344805.3 5745345 8500N 2501 1409.536 -146.44 -152.34 -158.14 -164.15 309 344806.5 5745360 8500N 2501 1409.536 -146.95 -151.95 -157.84 -163.36 310 344866.7 5745303 8500N 2251 1409.235 -145.83 -151.87 -157.76 -163.46 313 344907.7 5745418 8500N 2260 1404.323 -145.67 -151.43 -157.76 -163.46 313 344963 5745438 8500N 2260 1406.383 -145.77 -151.48	302	345039.6	5745451	8450N	2750	1403,984	-145.65	-151.54	-157.42	-163.31
304 344723.4 5745287 8500N 2400 1405.549 -147.40 -153.30 -158.19 -165.00 305 344764.4 5745302 8500N 2450 1406.530 -146.95 -152.86 -158.76 -164.63 306 344805.3 5745331 8500N 2450 1406.630 -146.44 -152.34 -158.82 -164.45 308 344805.3 5745306 8500N 2550 1409.575 -146.95 -151.95 -157.84 -163.76 310 344867.5 5745403 8500N 2550 1405.536 -145.83 -151.77 -157.66 -163.49 313 344867.5 5745403 8500N 2205 1406.333 -145.83 -151.73 -157.63 -163.49 313 344867.5 5745403 8500N 2205 1409.421 -145.83 -169.78 -163.43 314 344826.5 5745447 8500N 2205 1409.421 -145.83 -167.78 -163.43 <td>303</td> <td>344703 0</td> <td>5745273</td> <td>8500N</td> <td>2375</td> <td>1404.425</td> <td>-147.87</td> <td>-153.76</td> <td>-159.65</td> <td>-165.54</td>	303	344703 0	5745273	8500N	2375	1404.425	-147.87	-153.76	-159.65	-165.54
305 344743.9 5745302 8500N 2425 1405.322 -147.04 -152.84 -158.83 -164.72 307 344784.8 5745331 8500N 2475 1409.223 -146.71 -152.85 -158.76 -164.43 308 344825.3 5745336 8500N 2525 1409.557 -146.42 -152.23 -158.14 -164.05 310 344866.3 5745390 8500N 2575 1405.536 -146.92 -151.95 -157.74 -163.76 311 344867.7 5745349 8500N 2575 1405.715 -145.82 -151.72 -157.60 -163.49 313 344907.7 5745418 8500N 2650 1406.383 -145.73 -151.83 -157.51 -163.49 317 344652.6 5745283 8500N 2257 1406.421 -148.65 -153.79 -158.75 -163.49 317 344652.6 5745328 8550N 2252 1409.421 -148.46 -154.39	304	344723.4	5745287	8500N	2400	1405.549	-147.40	-153.30	-159.19	-165.08
306 344764.4 5745316 8500N 2460 1406.630 -146.671 -152.65 -158.76 -164.66 308 344805.3 5745345 8500N 2500 1407.620 -146.42 -152.34 -158.24 -164.05 308 344806.3 5745374 8500N 2550 1405.536 -146.62 -152.23 -158.14 -164.05 310 344866.7 5745374 8500N 2550 1405.536 -146.05 -151.87 -157.76 -163.66 311 344867.2 5745403 8500N 2625 1408.232 -145.83 -151.73 -157.63 -163.54 313 344928.1 5745434 8500N 2675 1406.33 -145.57 -151.48 -157.38 -163.26 -163.26 315 344928.1 5745347 8500N 2205 1409.421 -145.57 -151.48 -153.78 -153.78 -153.78 -153.78 -153.78 -153.78 -156.29 -156.29 -166.62	305	344743.9	5745302	8500N	2425	1405.322	-147.04	-152.94	-158.83	-164.72
307 344784.8 5745331 8500N 2475 1409.223 -146.71 -152.61 -158.52 -164.43 309 344825.8 5745360 8500N 2525 1409.553 -164.44 -152.23 -158.14 -164.05 310 344865.3 5745300 8500N 2525 1405.538 -146.405 -151.23 -157.76 -163.66 311 344867.7 5745418 8500N 2550 1405.38 -146.52 -151.72 -157.76 -163.46 313 344907.7 5745418 8500N 2650 1406.383 -145.73 -151.64 -157.53 -163.42 314 344962.6 5745427 8500N 2675 1407.425 -145.62 -151.19 -157.51 -163.42 317 344652.6 574528 8500N 2350 1409.042 -147.86 -153.79 -156.75 -165.42 318 344673.6 574534 8550N 2355 1414.346 -154.78 -153.78 <t< td=""><td>306</td><td>344764.4</td><td>5745316</td><td>8500N</td><td>2450</td><td>1408.630</td><td>-146.95</td><td>-152.85</td><td>-158.76</td><td>-164.66</td></t<>	306	344764.4	5745316	8500N	2450	1408.630	-146.95	-152.85	-158.76	-164.66
308 3448053 5745345 6500N 2500 1407.620 -146.32 -152.34 -156.24 -164.05 310 344863.5 5745374 6500N 2525 1409.557 -146.32 -151.95 -157.84 -163.35 311 344867.7 5745349 8500N 2500 1405.538 -146.33 -151.95 -157.60 -163.49 313 344907.7 5745418 8500N 2650 1406.323 -145.83 -151.72 -157.60 -163.49 313 3449281 5745447 8500N 2650 1406.323 -145.87 -151.61 -157.53 -163.42 316 3449861 5745447 8500N 2250 1406.421 -148.56 -151.99 -157.51 -163.43 317 3446331 5745348 8550N 23250 1409.49 -147.89 -153.79 -155.10 -165.62 319 344673.6 5745348 8550N 2455 1416.431 -147.89 -153.80	307	344784.8	5745331	8500N	2475	1409.223	-146.71	-152.61	-158.52	-164.43
309 344825.8 5745360 6500N 2525 1409.557 -146.32 -152.23 -156.14 -164.05 311 344867.7 5745389 6500N 2575 1405.538 -145.93 -151.87 -157.76 -163.76 312 344867.7 5745418 8500N 2650 1405.233 -145.92 -151.77 -157.60 -163.49 313 344907.7 5745418 8500N 2650 1406.235 -145.32 -151.73 -157.63 -163.28 315 344986.6 5745447 8500N 2675 1407.425 -145.57 -151.48 -157.51 -163.28 316 344962.6 5745285 8550N 2325 1409.049 -147.85 -153.80 -159.92 -165.15 319 344673.6 5745328 8550N 2320 1412.444 -147.25 -153.18 -159.10 -165.02 321 344673.6 5745328 8550N 2400 1412.444 -147.25 -153.18	308	344805.3	5745345	8500N	2500	1407.620	-146.44	-152.34	-158.24	-164.15
310 344846.3 5745374 6500N 2550 1405.538 -146.05 -151.95 -157.84 -163.76 311 344867.7 5745403 8500N 2600 1404.323 -145.83 -151.72 -157.60 -163.49 313 344907.7 5745403 8500N 2650 1406.255 -145.82 -151.72 -157.63 -163.49 314 3449281 5745447 8500N 2650 1406.383 -145.73 -151.63 -157.53 -163.49 315 3449861 5745447 8500N 2250 1406.421 -148.567 -151.96 -157.51 -163.43 317 344632.6 5745248 8550N 23250 1409.49 -147.86 -153.80 -159.52 -166.45 319 344673.6 5745314 8550N 2350 1409.49 -147.26 -153.80 -159.52 -166.45 321 344714.5 5745348 8550N 2425 1412.374 -147.26 -153.80 -159.52 -166.45 322 344755.4 5745348 8550N	309	344825.8	5745360	8500N	2525	1409.557	-146.32	-152.23	-158.14	-164.05
311 344866.7 5745399 8500N 2575 1405.715 1405.715 145.83 -151.87 157.60 -163.49 313 344907.7 5745418 8500N 2620 1406.323 -145.83 -151.72 -157.60 -163.49 314 344928.1 5745432 8500N 2650 1406.383 -145.57 -151.43 -157.33 -163.42 315 344969.1 5745441 8500N 2700 1472.167 -145.57 -151.48 -157.35 163.28 317 344652.6 5745285 8550N 2325 1406.421 -147.68 -153.80 -159.52 -165.45 318 344673.6 574538 8550N 2375 1412.374 -147.25 -153.80 -159.50 -165.62 320 344754.5 5745378 8550N 2400 1412.494 -147.25 -153.80 -159.50 -165.42 322 344754.5 5745378 8550N 2450 1414.351 -147.25 -153.80 -159.52 -165.42 322 344754.5 5745438	310	344846.3	5745374	8500N	2550	1405.536	-146.05	-151.95	-157.84	-163.73
312 344867.2 5745403 8500N 2600 1404.323 -145.82 -151.72 -157.63 -163.48 313 344907.7 5745418 8500N 2655 1408.255 -145.63 -151.73 -157.63 -163.42 315 3449466 5745447 8500N 2655 1407.425 -145.67 -151.59 -157.51 -163.43 316 344965.1 5745285 8550N 2225 1406.421 -146.6 -154.36 -159.70 -165.61 317 344632.1 5745289 8550N 2355 1409.949 -147.86 -153.78 -159.70 -165.61 319 344673.6 5745314 8550N 2357 1412.374 -147.68 -153.80 -159.70 -165.62 321 344755.4 574537 8550N 2450 1414.351 -146.70 -152.48 -158.42 -164.78 322 344755.4 574537 8550N 2550 1419.194 -146.27 -151.97 -157.92 -163.48 323 344755.4 5745448 8550N	311	344866.7	5745389	8500N	2575	1405.715	-145.98	-151.87	-157.76	163.66
313 344907.7 5745418 8500N 2650 1408.255 .145.73 .151.73 .157.53 .163.42 314 3449281 5745432 8500N 2650 1406.383 .145.73 .151.63 .157.53 .163.42 315 344948.6 5745447 8500N 2650 1407.425 .145.57 .151.63 .157.53 .163.28 316 34498.1 5745285 8550N 2325 1406.421 .148.46 .157.38 .150.26 .166.15 318 344632.6 5745314 8550N 2375 1412.374 .147.68 .153.80 .159.10 .165.60 320 344694.0 5745328 8550N 2450 1413.431 .147.00 .152.63 .158.56 .164.49 322 344755.0 5745378 8550N 2450 1414.351 .146.37 .152.48 .158.56 .164.49 323 344755.4 5745378 8550N 2500 1416.617 .146.37 .151.75 .157.70 .163.42 324 344754.5 5745438 8550N	312	344887.2	5745403	8500N	2600	1404.323	-145.83	-151.72	-157.60	-163.49
314 344928.1 5745432 8500N 2650 1406.383 -145.73 -151.63 -157.53 -163.42 315 344968.6 5745447 8500N 2675 1407.425 -151.59 -157.51 -163.28 317 344632.1 5745285 8550N 2325 1406.421 144.64 -154.36 -160.26 1166.15 318 344673.6 5745314 8550N 2355 1412.374 -147.88 -153.80 -159.52 -165.45 320 344694.0 5745314 8550N 2400 1412.494 -147.25 -153.80 -159.52 -165.45 321 344755.4 5745373 8550N 2450 1414.351 -146.70 -152.92 -158.85 -164.49 323 344755.4 574537 8550N 2500 1416.870 -152.43 -158.42 -164.35 324 344756.4 5745446 8550N 2505 1419.417 -46.02 -151.97 -158.25 -164.49 326 344816.8 5745440 8550N 2505 1419.417 <	313	344907.7	5745418	8500N	2625	1408.255	-145.82	-151.73	-157.63	-163.54
315 344948.6 5745447 8500N 2675 1407.425 -145.57 -151.48 -157.38 -163.43 317 344692.6 5745285 8550N 2325 1406.421 -148.46 -154.36 -157.51 -163.43 318 344673.6 5745285 8550N 2325 1409.049 -147.89 -153.79 -159.70 -156.51 318 344673.6 5745328 8550N 2300 1412.347 -147.89 -153.80 -159.52 -166.42 322 344714.5 5745333 8550N 2425 1413.431 -147.00 -152.92 -158.85 -164.78 322 344754.4 5745372 8550N 2450 1414.351 -164.35 -152.48 -158.42 -164.35 324 344755.4 5745340 8550N 2550 1419.194 -146.24 -152.19 -158.14 -164.08 327 34487.8 5745440 8550N 2550 1419.194 -146.24 -152.19 -158.14 -164.08 328 34487.8 5745440 8550N	314	344928.1	5745432	8500N	2650	1406.383	-145.73	-151.63	-157.53	-163.42
316 344969.1 5745461 8500N 2700 1412.167 -148.46 -151.59 -157.51 -166.43 317 344632.6 5745295 8550N 2325 1409.049 -147.89 -153.79 -158.70 .166.15 319 344673.6 5745218 8550N 2375 1412.374 -147.89 -153.79 -158.70 .165.02 320 344694.0 5745328 8550N 2400 1412.494 -147.25 -153.81 -159.52 -166.02 321 344714.5 5745333 8550N 2425 1413.431 -147.00 -152.92 -158.85 -164.78 323 344754.5 5745336 8550N 2450 1416.617 -146.37 -152.31 -158.25 -164.35 326 344756.4 5745401 8550N 2525 1419.194 -152.21 -158.14 -164.35 327 344857.8 5745443 8550N 2575 1418.480 -151.75 -157.70 -163.65 329 344857.8 5745445 8550N 2625 1416.368	315	344948.6	5745447	8500N	2675	1407.425	-145.57	-151,48	-157.38	-163.28
317 344632.6 5745285 8550N 2325 1406.421 -148.46 -154.36 -160.26 -166.15 318 344673.6 5745299 8550N 2350 1409.049 -147.89 -153.79 -159.70 -165.45 320 344694.0 5745328 8550N 2400 1412.494 -147.25 -153.80 -159.50 -166.45 321 344714.5 5745337 8550N 2425 1414.351 -146.70 -152.46 -158.56 -164.49 323 344755.4 5745372 8550N 2475 1415.876 -146.54 -152.48 -158.25 -164.19 325 344756.4 5745306 8550N 2550 1419.194 -146.27 -152.19 -158.14 -164.08 326 344876.8 5745401 8550N 2550 1419.194 -146.02 -151.97 -157.92 -163.85 327 344837.8 5745444 8550N 2625 1416.186 -145.48 -151.40 -157.35 -163.29 328 344857.8 5745443 8550N	316	344969.1	5745461	8500N	2700	1412.167	145.67	151.59	-157.51	-163.43
318 344653.1 5745299 8550N 2350 1409.049 -147.89 -153.79 -159.70 .165.61 319 344673.6 5745314 8550N 2375 1412.374 -147.68 -153.18 -159.10 -165.02 321 344714.5 5745343 8550N 2425 1413.431 -147.00 -152.92 -158.85 .164.78 322 344735.0 5745372 8550N 2475 1415.878 -146.54 -152.48 -158.25 .164.49 323 344775.9 5745372 8550N 2500 1416.617 -146.37 -152.31 -158.25 .164.95 326 344817.8 5745410 8550N 2550 1419.417 -146.02 -151.97 -157.92 -163.86 327 344837.3 5745444 8550N 2600 1417.631 -145.70 -151.67 -157.61 153.52 329 344878.3 5745444 8550N 2650 1418.18 -145.45 -151.40 <t< td=""><td>317</td><td>344632.6</td><td>5745285</td><td>8550N</td><td>2325</td><td>1406.421</td><td>148.46</td><td>-154.36</td><td>-160.26</td><td>-166.15</td></t<>	317	344632.6	5745285	8550N	2325	1406.421	148.46	-154.36	-160.26	-166.15
319 344673.6 574531.4 8550N 2375 1412.374 -147.68 -153.60 -159.52 -165.02 320 344694.0 574532.8 8550N 2400 1412.494 -147.25 -153.18 -159.10 -165.02 321 344735.0 5745343 8550N 2425 1413.431 -147.00 -152.63 -158.56 -164.78 323 344755.4 5745372 8550N 2475 1415.878 -146.54 -152.63 -158.56 -164.35 324 344775.9 5745346 8550N 2500 1416.617 -146.37 -152.19 -158.14 -154.19 326 344816.8 5745415 8550N 2550 1419.417 -146.02 -151.75 -157.70 -163.88 327 344837.3 5745430 8550N 2650 1418.480 -145.48 -151.75 -157.70 -163.29 330 344878.3 5745444 8550N 2650 1418.18 -145.48 -151.40 -157.35 -163.29 331 344682.3 5745473 8550N	318	344653.1	5745299	8550N	2350	1409.049	-147.89	-153.79	-159.70	-165.61
320 344694.0 5745328 8550N 2400 1412.494 -147.25 -153.18 -159.10 -165.02 321 344714.5 5745343 8550N 2425 1413.431 -147.00 -152.92 -158.85 ,164.78 322 344755.4 5745372 8550N 2450 1414.351 -146.70 -152.43 -158.25 -164.43 323 344755.9 5745386 8550N 2455 1419.194 -146.54 -152.43 -158.25 -164.13 325 344796.4 5745401 8550N 2550 1419.194 -146.24 -152.19 -157.192 -163.86 326 344857.8 5745440 8550N 2550 1419.417 -146.02 -151.97 -157.92 -163.86 327 344857.8 5745444 8550N 2650 1418.480 -145.48 -151.47 -157.35 -163.29 330 344857.8 5745473 8550N 2650 1418.118 -145.45 -151.40	319	344673.6	5745314	8550N	2375	1412.374	-147.68	-153.60	-159.52	-165.45
321 344714.5 5745343 8550N 2425 1413.431 -147.00 -152.92 -158.85 -164.78 322 344755.0 5745357 8550N 2475 1415.878 -146.70 -152.92 -158.85 -164.49 323 344755.4 5745372 8550N 2475 1415.878 -146.54 -152.48 -158.25 -164.19 326 344764.4 5745401 8550N 2550 1419.194 -146.24 -152.19 -158.14 -164.08 326 344816.8 5745430 8550N 2550 1419.194 -146.22 -151.97 -157.92 -163.86 328 344857.8 5745443 8550N 2600 1417.631 -145.48 -151.42 -157.35 -163.29 330 344898.7 5745473 8550N 2650 1418.480 -145.45 -151.40 -157.35 -163.29 331 344939.2 5745488 8550N 2670 1418.524 -151.40 -157.35	320	344694.0	5745328	8550N	2400	1412.494	-147.25	-153.18	-159.10	-165.02
322 344735.0 5745357 8550N 2450 1414.351 -146.70 -152.63 .158.56 -164.49 323 344755.4 5745372 8550N 2475 1415.878 -146.37 -152.31 .158.42 -164.35 324 344755.4 5745366 8550N 2500 1416.617 -146.37 -152.31 -158.14 -164.08 326 344816.8 5745401 8550N 2550 1419.417 -146.02 -151.97 -157.92 -163.86 328 344857.8 5745444 8550N 2600 1417.631 -145.42 -151.75 -157.70 -163.65 328 344857.8 5745478 8550N 2605 1418.118 -145.48 -151.42 -157.35 -163.29 310 344898.7 5745473 8550N 2650 1418.514 -145.45 -151.40 -157.35 -163.29 313 344952.3 5745488 8550N 2675 1420.369 -145.45 -151.40	321	344714.5	5745343	8550N	2425	1413.431	-147.00	-152.92	-158.85	-164.78
323 344755.4 5745372 8550N 2475 1415.878 -146.54 -152.48 -158.42 -164.35 324 344775.9 5745366 8550N 2500 1416.617 -146.37 -152.31 -158.25 -164.19 326 344816.8 5745415 8550N 2550 1419.417 -146.02 -151.97 -157.92 -163.86 327 34487.8 5745430 8550N 2625 1419.417 -146.02 -151.97 -157.92 -163.86 328 34487.8 5745444 8550N 2600 1417.631 -145.48 -151.40 -157.35 -163.29 330 344898.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.35 -163.29 331 344939.7 5745473 8550N 2670 1418.52 -151.40 -157.35 -163.29 333 344562.3 5745296 8600N 2275 1401.632 -148.67 -154.55 -160.42 <td< td=""><td>322</td><td>344735.0</td><td>5745357</td><td>8550N</td><td>2450</td><td>1414.351</td><td>-146.70</td><td>-152.63</td><td>-158.56</td><td>-164.49</td></td<>	322	344735.0	5745357	8550N	2450	1414.351	-146.70	-152.63	-158.56	-164.49
324 344775.9 5745386 8550N 2500 1416.617 -146.37 -152.31 -158.25 -164.19 325 344796.4 5745401 8550N 2525 1419.417 -146.24 -152.19 -157.92 -163.88 327 344837.3 5745430 8550N 2575 1418.480 -145.80 -151.75 -157.70 -163.65 328 344878.3 5745434 8550N 2600 1417.631 -145.72 -151.66 -157.61 -163.29 330 344898.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.35 -163.29 331 344891.2 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 332 344939.7 5745473 8550N 2700 1418.52 -146.55 -160.42 -166.30 333 344562.8 5745310 8600N 2300 1405.993 -148.26 -154.15 -160.05 <	323	344755.4	5745372	8550N	2475	1415.878	-146.54	152.48	-158.42	164.35
325 344796.4 5745401 8550N 2525 1419.194 -146.24 -152.19 -158.14 -164.09 326 344816.8 5745415 8550N 2575 1419.417 -146.02 -151.97 -157.92 -163.86 327 344857.8 5745430 8550N 2600 1417.631 -145.70 -151.66 -157.61 -163.65 328 344878.3 5745473 8550N 2600 1417.631 -145.48 -151.40 -157.35 -163.29 330 344898.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.35 -163.29 331 344939.7 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 332 344939.7 5745488 8550N 2700 1418.524 -145.22 -151.17 -157.12 -163.06 333 344562.3 5745326 8600N 2300 1405.993 -148.67 -154.55	324	344775.9	5745386	8550N	2500	1416.617	-146,37	-152.31	-158.25	-164.19
326 344816.8 5745415 8550N 2550 1419.417 -146.02 -151.97 -157.92 -163.88 327 344837.3 5745430 8550N 2575 1418.480 -145.80 -151.75 -157.70 -163.65 328 344857.8 5745448 8550N 2600 1417.631 -145.72 -151.66 -157.61 -163.65 329 344878.3 5745473 8550N 2625 1418.118 -145.45 -151.40 -157.35 -163.29 331 344892.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.36 -163.31 332 344939.7 574528 8600N 2275 1401.632 -148.67 -154.55 -160.42 -166.30 333 344562.8 5745310 8600N 2300 1405.993 -148.26 -154.15 -160.05 -165.78 336 344603.2 5745358 8600N 2375 1427.040 -147.82 -153.80 <	325	344796.4	5745401	8550N	2525	1419.194	-146.24	-152.19	-158.14	-164.09
327 344837.3 5745430 8550N 2575 1418.480 -145.80 -151.75 -157.70 -163.65 328 344857.8 5745444 8550N 2600 1417.631 -145.72 -151.66 -157.61 -163.55 329 344878.3 5745459 8550N 2625 1416.368 -145.48 -151.40 -157.35 -163.29 330 344898.7 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.29 331 34499.7 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 333 344552.3 5745206 8600N 2275 1401.632 -148.67 -154.55 -160.42 -166.30 334 344603.2 5745325 8600N 2300 1405.993 -148.26 -154.15 -160.02 -165.78 336 344603.2 5745339 8600N 2375 1427.040 -147.82 -153.77 <	326	344816.8	5745415	8550N	2550	1419.417	-146.02	-151.97	-157,92	-163.88
328 344857.8 5745444 8550N 2600 1417.631 -145.72 -151.66 -157.61 -163.55 329 344878.3 5745473 8550N 2625 1416.368 -145.48 -151.42 -157.35 -163.29 330 344898.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.35 -163.29 331 344919.2 5745488 8550N 2670 1418.524 -145.22 -151.17 -157.12 -163.31 332 344939.7 5745202 8550N 2700 1418.524 -145.22 -151.17 -157.12 -166.30 334 344562.3 5745310 8600N 2300 1405.993 -148.67 -154.55 -160.42 -165.38 335 344603.2 5745325 8600N 2325 1411.16 -148.03 -153.94 -159.86 -165.78 336 344623.7 574538 8600N 2375 1427.040 -147.82 -153.30 <t< td=""><td>327</td><td>344837.3</td><td>5745430</td><td>8550N</td><td>2575</td><td>1418.480</td><td>-145.80</td><td>-151.75</td><td>-157.70</td><td>-163.65</td></t<>	327	344837.3	5745430	8550N	2575	1418.480	-145.80	-151.75	-157.70	-163.65
329 344878.3 5745459 8550N 2625 1416.368 -145.48 -151.42 -157.35 -163.29 330 344898.7 5745473 8550N 2650 1418.118 -145.45 -151.40 -157.35 -163.29 331 344991.2 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 332 344939.7 5745502 8550N 2700 1418.524 -145.22 -151.17 -167.12 -163.06 333 344562.3 5745296 8600N 2275 1401.632 -148.67 -154.15 -160.42 -166.30 334 344603.2 5745325 8600N 2350 1417.589 -147.82 -153.94 -159.86 -165.78 336 344603.2 5745339 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.77 337 344644.2 5745388 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344665.1 5745388 8600N	328	344857.8	5745444	8550N	2600	1417.631	-145.72	-151.66	-157.61	-163,55
330 344898.7 5745473 8550N 2650 1418.118 -145.46 -151.40 -157.35 -163.29 331 344919.2 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 332 344939.7 5745502 8550N 2700 1418.524 -145.22 -151.17 -157.12 -163.06 333 344562.3 5745296 8600N 2275 1401.632 -148.67 -154.55 -160.42 -166.30 334 344582.8 5745310 8600N 2300 1405.993 -148.67 -154.55 -160.42 -166.30 335 344603.2 5745325 8600N 2350 1417.589 -147.82 -153.77 -159.71 -165.65 336 344623.7 5745354 8600N 2400 1424.894 -147.82 -153.80 -159.79 -165.77 338 344664.6 5745368 8600N 2450 1420.531 -146.98 -152.95 -158.92 -164.49 341 344705.6 5745383 8600N	329	344878.3	5745459	8550N	2625	1416.368	-145.48	-151.42	-157.35	-163.29
331 344919.2 5745488 8550N 2675 1420.369 -145.45 -151.40 -157.36 -163.31 332 344939.7 5745502 8550N 2700 1418.524 -145.22 -151.17 -157.12 -163.06 333 344562.3 5745296 8600N 2275 1401.632 -148.67 -154.55 -160.42 -166.30 334 344582.8 5745310 8600N 2305 1411.116 -148.03 -153.94 -159.86 -165.78 335 344603.2 5745339 8600N 2350 1417.589 -147.82 -153.77 -159.71 -165.65 337 344644.2 5745368 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.77 338 344664.6 5745383 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344665.1 5745383 8600N 2450 1420.635 -146.55 -152.50 -158.42 -164.41 341 344705.6 5745426 8600N	330	344898.7	5745473	8550N	2650	1418.118	-145.46	-151.40	-157.35	-163.29
332 344939.7 5745502 8550N 2700 1418.524 -145.22 -151.17 -157.12 -163.06 333 344562.3 5745296 8600N 2275 1401.632 -148.67 -154.55 -160.42 -166.30 334 344562.8 5745310 8600N 2300 1405.993 -148.26 -154.15 -160.05 -165.94 335 344603.2 5745325 8600N 2325 1411.116 -148.03 -153.94 -159.71 -165.65 337 344644.2 5745354 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.73 338 344664.6 5745368 8600N 2375 1427.040 -147.82 -153.26 -159.24 -165.21 339 344685.1 5745383 8600N 2425 1423.531 -146.98 -152.95 -158.92 -164.89 340 344705.6 5745412 8600N 2475 1420.055 -146.15 -152.10	331	344919.2	5745488	8550N	2675	1420.369	-145.45	-151.40	-157.36	-163.31
333344562.357452968600N22751401.632-148.67-154.55-160.42-166.30334344582.857453108600N23001405.993-148.26-154.15-160.05-165.94335344603.257453258600N23251411.116-148.03-153.94-159.86-165.78336344623.757453398600N23501417.589-147.82-153.77-159.71-165.65337344644.257453548600N23751427.040-147.82-153.80-159.24-165.21339344664.657453688600N24251423.531-146.98-152.95-158.92-164.89340344705.657453978600N24501420.233-146.55-152.50-158.46-164.41341344726.057454128600N24751420.052-146.31-152.26-158.22-164.17342344767.057454128600N25001420.655-146.15-152.11-158.06-164.02343344787.057454418600N25501420.655-146.15-152.11-158.06-164.02344344787.457454558600N25501426.151-145.86-151.86-157.84-163.82345344807.957454708600N25751424.995-145.65-151.63-157.45-163.42345344807.957454848600N26501423.251<	332	344939.7	5745502	8550N	2700	1418.524	-145.22	-151.17	-157.12	-163.06
334344582.857453108600N23001405.993-148.26-154.15-160.05-165.94335344603.257453258600N23251411.116-148.03-153.94-159.86-165.78336344623.757453398600N23501417.589-147.82-153.77-159.71-165.65337344644.257453548600N23751427.040-147.82-153.80-159.79-165.77338344664.657453688600N24001424.894-147.29-153.26-159.24-165.21339344685.157453838600N24251423.531-146.98-152.95-158.46-164.41341344726.057453978600N24751420.052-146.31-152.26-158.22-164.17342344765.057454128600N25001420.655-146.15-152.11-158.06-164.02343344767.057454418600N25251425.085-146.07-152.05-158.02-164.02344344787.457454558600N25751426.95-146.07-152.05-158.02-164.02344344787.457454558600N25751422.995-146.65-151.63-157.84-163.82345344807.957454488600N25751423.865-145.51-151.63-157.45-163.42345344807.957454488600N26001423.865 <t< td=""><td>333</td><td>344562.3</td><td>5745296</td><td>8600N</td><td>2275</td><td>1401.632</td><td>-148.67</td><td>-154.55</td><td>-160.42</td><td>-166.30</td></t<>	333	344562.3	5745296	8600N	2275	1401.632	-148.67	-154.55	-160.42	-166.30
335 344603.2 5745325 8600N 2325 1411.116 -148.03 -153.94 -159.86 -165.78 336 344623.7 5745339 8600N 2350 1417.589 -147.82 -153.77 -159.71 -165.65 337 344644.2 5745354 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.77 338 344664.6 5745368 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344665.1 5745383 8600N 2425 1423.531 -146.98 -152.95 -158.46 -164.489 340 344705.6 5745312 8600N 2450 1420.233 -146.55 -152.50 -158.46 -164.41 341 344767.0 5745412 8600N 2500 1420.052 -146.15 -152.11 -158.06 -164.02 343 344767.0 5745426 8600N 2550 1420.055 -146.07 -152.05 -158.02 -164.02 343 344767.0 5745441 8600N	334	344582.8	5745310	8600N	2300	1405.993	-148.26	-154.15	-160.05	-165,94
336 344623.7 5745339 8600N 2350 1417.589 -147.82 -153.77 -159.71 -165.65 337 344644.2 5745354 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.77 338 344664.6 5745388 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344685.1 5745383 8600N 2425 1423.531 -146.98 -152.95 -158.92 -164.89 340 344705.6 5745397 8600N 2450 1420.233 -146.55 -152.50 -158.46 -164.41 341 344725.0 5745421 8600N 2475 1420.052 -146.15 -152.10 -158.02 -164.17 342 344767.0 5745426 8600N 2500 1420.655 -146.07 -152.05 -158.02 -164.00 343 344767.0 5745441 8600N 2550 1426.151 -145.86 -151.86	335	344603.2	5745325	8600N	2325	1411.116	-148.03	-153.94	-159.86	-165.78
337 344644.2 5745354 8600N 2375 1427.040 -147.82 -153.80 -159.79 -165.77 338 344664.6 5745368 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344665.1 5745383 8600N 2425 1423.531 -146.98 -152.95 +158.92 +164.89 340 344705.6 5745397 8600N 2450 1420.233 -146.55 -152.50 +158.46 -164.41 341 344726.0 5745426 8600N 2475 1420.052 -146.31 -152.26 -158.02 -164.01 342 34476.5 5745426 8600N 2500 1420.655 -146.07 -152.05 -158.02 -164.00 343 344767.0 5745426 8600N 2550 1426.151 -145.86 -151.80 -157.80 -164.00 344 344787.4 5745455 8600N 2550 1426.151 -145.65 -151.63 <	336	344623.7	5745339	8600N	2350	1417.589	-147.82	-153.77	-159.71	-165.65
338 344664.6 5745368 8600N 2400 1424.894 -147.29 -153.26 -159.24 -165.21 339 344685.1 5745383 8600N 2425 1423.531 -146.98 -152.95 -158.92 -164.89 340 344705.6 5745397 8600N 2450 1420.233 -146.55 -152.50 -158.46 -164.41 341 344728.0 5745412 8600N 2475 1420.052 -146.31 -152.26 -158.22 -164.17 342 344765.5 5745426 8600N 2500 1420.055 -146.07 -152.11 -158.06 -164.02 343 344767.0 5745414 8600N 2550 1426.055 -146.07 -152.05 -158.02 -164.02 344 344787.4 5745455 8600N 2550 1426.151 -145.65 -151.86 -157.84 -163.82 345 344807.9 5745448 8600N 2600 1423.865 -145.65 -151.63	337	344544.2	5745354	8600N	2375	1427.040	-147.82	-153.80	-159.79	-165.77
339344685.157453838600N24251423.531-146.98-152.95.158.92.164.89340344705.657453978600N24501420.233-146.55-152.50-158.46-164.41341344726.057454128600N24751420.052-146.31-152.26-158.22-164.17342344746.557454268600N25001420.655-146.15-152.11-158.06-164.02343344767.057454418600N25251425.085-146.07-152.05-158.02-164.02344344787.457454558600N25501426.151-145.86-151.86-157.84-163.82345344807.957454708600N25751424.995-145.65-151.63-157.60-163.58346344828.457454848600N26001423.865-145.51-151.48-157.45-163.42347344848.85745998600N26251423.251-145.47-151.44-157.40-163.37348344869.357455138600N26501423.370-145.44-151.41-157.38-163.3234934489.857455288600N26751423.519-145.27-151.24-157.21-163.29350344910.357455428600N27001424.444-145.27-151.24-157.21-163.19	338	344664.6	5745368	8600N	2400	1424.894	-147.29	-153.26	-159.24	-165.21
340 344705.6 5745397 8600N 2450 1420.233 -146.55 -152.50 -158.46 -164.41 341 344726.0 5745412 8600N 2475 1420.052 -146.31 -152.26 -158.22 -164.17 342 344746.5 5745426 8600N 2500 1420.655 -146.15 -152.11 -158.06 -164.02 343 344767.0 5745441 8600N 2525 1425.085 -146.07 -152.05 -158.02 -164.00 344 344787.4 5745455 8600N 2550 1426.151 -145.86 -151.86 -157.84 -163.82 345 344807.9 5745470 8600N 2575 1424.995 -145.65 -151.63 -157.60 -163.58 346 344828.4 5745484 8600N 2600 1423.865 -145.47 -151.48 -157.45 -163.42 347 344888.8 5745499 8600N 2650 1423.251 -145.47 -151.44	339	344685.1	5745383	8600N	2425	1423.531	-146.98	-152.95	-158.92	-164.89
341344728.057454128600N24751420.052-146.31-152.26-158.22-164.17342344746.557454268600N25001420.655-146.15-152.11-158.06-164.02343344767.057454418600N25251425.085-146.07-152.05-158.02-164.00344344787.457454558600N25501426.151-145.86-151.86-157.84-163.82345344807.957454708600N25751424.995-145.65-151.63-157.60-163.58346344828.457454848600N26001423.865-145.51-151.48-157.45-163.42347344848.857454998600N26551423.251-145.47-151.44-157.40-163.3734834469.357455138600N26501423.370-145.44-151.41-157.38-163.22350344910.357455428600N26751423.519-145.32-151.28-157.25-163.22350344910.357455428600N27001424.444-145.27-151.24-157.21-163.19	340	344705.6	5745397	8600N	2450	1420.233	-146.55	-152.50	-158.46	-164.41
342 344746.5 5745426 8600N 2500 1420.655 -146.15 -152.11 -158.06 -164.02 343 344767.0 5745441 8600N 2525 1425.085 -146.07 -152.05 -158.02 -164.00 344 344787.4 5745455 8600N 2550 1426.151 -145.86 -151.86 -157.84 -163.82 345 344807.9 5745470 8600N 2575 1424.995 -145.65 -151.63 -157.60 -163.58 346 344828.4 5745484 8600N 2600 1423.865 -145.51 -151.48 -157.45 -163.42 347 344848.8 5745499 8600N 2650 1423.251 -145.47 -151.44 -157.40 -163.37 348 344669.3 5745513 8600N 2650 1423.370 -145.44 -151.41 -157.38 -163.22 349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.24	341	344726.0	5745412	8600N	2475	1420.052	-146.31	-152.26	-158.22	-164.17
343 344767.0 5745441 8600N 2525 1425.085 -146.07 -152.05 -158.02 -164.00 344 344787.4 5745455 8600N 2550 1426.151 -145.88 -151.86 -157.84 -163.82 345 344807.9 5745470 8600N 2575 1424.995 -145.65 -151.63 -157.60 -163.58 346 344828.4 5745484 8600N 2600 1423.865 -145.51 -151.48 -157.45 -163.42 347 344848.8 5745499 8600N 2625 1423.251 -145.47 -151.44 -157.40 -163.37 348 344869.3 5745513 8600N 2650 1423.370 -145.47 -151.44 -157.40 -163.37 348 344869.3 5745528 8600N 2675 1423.370 -145.44 -151.41 -157.38 -163.22 349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.24	342	344746.5	5745426	860DN	2500	1420.655	-146.15	-152.11	-158.06	-164.02
344 344787.4 5745455 8600N 2550 1426.151 -145.88 -151.86 -157.84 -163.82 345 344807.9 5745470 8600N 2575 1424.995 -145.65 -151.63 -157.60 -163.58 346 344807.9 5745484 8600N 2600 1423.865 -145.51 -151.48 -157.45 -163.42 347 344848.8 5745499 8600N 2625 1423.251 -145.47 -151.48 -157.40 -163.37 348 344869.3 5745513 8600N 2650 1423.370 -145.44 -151.41 -157.38 -163.32 349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.28 -157.25 -163.22 350 3448910.3 5745542 8600N 2700 1424.444 -145.27 -151.24 -157.21 -163.19	343	344767.0	5745441	8600N	2525	1425.085	-146.07	-152.05	-158.02	164.00
345344807.957454708600N25751424.995-145.65-151.63-157.60-163.58346344828.457454848600N26001423.865-145.51-151.48-157.45-163.42347344848.857454998600N26251423.251-145.47-151.44-157.40-163.37348344869.357455138600N26501423.370-145.44-151.41-157.38-163.35349344889.857455288600N26751423.519-145.32-151.28-157.25-163.22350344910.357455428600N27001424.444-145.27-151.24-157.21-163.19	344	344787.4	5745455	8600N	2550	1426.151	-145.88	-151.86	-157.84	-163.82
346344828.457454848600N26001423.865-145.51-151.48-157.45-163.42347344848.857454998600N26251423.251-145.47-151.44-157.40-163.37348344869.357455138600N26501423.370-145.44-151.41-157.38-163.35349344889.857455288600N26751423.519-145.32-151.28-157.25-163.22350344910.357455428600N27001424.444-145.27-151.24-157.21-163.19	345	344807.9	5745470	8600N	2575	1424.995	-145.65	-151.63	157.60	-163.58
347 344848.8 5745499 8600N 2625 1423.251 -145.47 -151.44 -157.40 -163.37 348 344869.3 5745513 8600N 2650 1423.370 -145.44 -151.41 -157.38 -163.35 349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.28 -157.25 +163.22 350 344910.3 5745542 8600N 2700 1424.444 -145.27 -151.24 -157.21 +163.19	346	344828.4	5745484	8600N	2600	1423.865	-145.51	-151.48	157.45	-163.42
348 344869.3 574551.3 8600N 2650 1423.370 -145.44 -151.41 -157.38 -163.35 349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.28 -157.25 +163.22 350 344910.3 5745542 8600N 2700 1424.444 -145.27 -151.24 -157.21 +163.19	347	344848.8	5745499	8600N	2625	1423.251	-145.47	-151.44	157.40	-163.37
349 344889.8 5745528 8600N 2675 1423.519 -145.32 -151.28 -157.25 -163.22 350 344910.3 5745542 8600N 2700 1424.444 -145.27 -151.24 -157.21 -153.19	348	344869.3	5745513	8600N	2650	1423.370	-145.44	-151.41	-157,38	-163.35
350 344910.3 5745542 8600N 2700 1424.444 -145.27 -151.24 -157.21 -163.19	349	344889.8	5745528	8600N	2675	1423.519	-145.32	-151.28	-157.25	163.22
	350	344910.3	5745542	8600N	2700	1424.444	-145.27	-151.24	-157.21	163,19

ł

APPENDIX B

Maps

1475	Nettonia -
1456	場合時間
447	
1428	
1418	
1399	ana ang
1390	Alan Alan Alan Bada
1371	
1362	
1343	
1333	
1314	
1305	
1286	
1276	
1257	are data
1248	
1229	and a state of the
1219	
1200	
1191	
1172	and the second
1143	WILLIAM .
1134	
1115	
1106	a an an an air

Elevation (metres)

PROCESSING HISTORY

note: steps 1−5 were performed using the GravMaster™software pockage.

- 1) Instrument value converted to milliGals and shifted to absolute gravity (980984.31 mGals at control station #9051-82 in Blue River, B.C.)
- 2) Add tide correction based on the program of W. Dewhurst.
- 3) Subtract drift correction based on differences in repeat gravity observations.
- 4) Subtract theoretical gravity from each station using 1998 NIMA formula.
- 5) Add free air correction and subtract Bouguer correction based on density 2.70 g/cm.3 This step also accounts for instrument height.
- 6) Add near-station terrain corrections using field slope measurements with sloping wedge technique(Barrows and Fett, 1991).
- 7) Add inner and outer zone terrain corrections using Cogbill (1990)²DEM, integrated surface, terrain correction algorithm.
- 8) Gridded using Geosoft RANGRID program.
- 9) Contoured using Muir-GMS CONTUR.
 - Barrows, L.J. and Fett, J.D., 1991, A sloping wedge technique for cal gravity terrain corrections, Geophysics, Vol. 56, No. 7, p. 1061-1063.
 Cogbil, A.H., 1980, Gravity terroin corrections using digital elevation on Geophysics, Vol. 55, No. 1, p. 102-108.

tel: (709)673-5359 fax: (709)673-5359 email: harizon@thezone.net

(mgeis)

PROCESSING HISTORY

note: steps 1-5 were performed using the GravMasterTMsoftware package.

- 1) Instrument volue converted to milliGals and shifted to absolute gravity (980984.31 mGals at control station #9051-82 in Blue River, B.C.)
- 2) Add tide correction based on the program of W. Dewhurst.
- Subtract drift correction based on differences in repeat gravity observations.
- 4) Subtract theoretical gravity from each station using 1998 NIMA formula.
- 5) Add free air correction and subtract Bouguer correction based on density 2.70 g/cm.³ This step also accounts for instrument height.
- 6) Add near-station terroin corrections using field slope measurements with sloping wedge technique(Barrows and Fett, 1991).
- 7) Add inner and outer zone terrain corrections using Cogbill (1990)²DEM, integrated surface, terrain correction algorithm.
- 8) Gridded using Geosoft RANGRID program.
- 9) Contoured using Muir-GMS CONTUR.
- Barrows, L.J. and First, J.D., 1991. A sloping wedge technique for calculating gravity terrain corrections, Geophysics, Vol. 56, No.7, p. 1001–1063.
 Copbil, A.H., 1990, Crawty terrain corrections using digital elevation models. Geophysics, Vol.55, No.1, p. 102–106.

	1.115.0
156.29	雪雪雪 1
-156.51	10.0 00
-156.61	
-156.83	
-156.94	
-157.15	
-157.26	
-157.47	[]]]
-157.58	14113
-157.79	121111
-157.90	12225-21
-158.12	
-158.23	
-158,44	
-158.55	
-158.76	
-158.87	
159.08	
-159.19	
-159.41	
-159.51	
-159.73	
-160.05	र र र र र र
-160.16	125425
-160.37	
-160.48	

		152 152 153 153 153 153 153 153 153 153 153 153	.87 .93 .96 .025 .121 .24 .333 .42 .48 .57 .66 .66 .70 .854 .97 .03 .06	
--	--	--	---	--

Bouguer Gravity (mgals)

PROCESSING HISTORY

note: steps 1−5 were performed using the GravMaster[™]software package.

- Instrument value converted to milliGals and shifted to 1) #9051-82 in Blue River, B.C.)
- 2) Add tide correction based on the program of W. Dewhurst.
- Subtract drift correction based on differences in repeat gravity observations.
- 4) Subtract theoretical gravity from each station using 1998 NIMA formula.
- 5) Add free air correction and subtract Bouguer correction based on density 2.70 g/cm.³ This step also accounts for instrument height.
- 6) Add near-station terrain corrections using field slope measurements with sloping wedge technique(Barrows and Fett, 1991).
- Add inner and outer zone terrain corrections using Cogb⁽¹⁾ (1990)²DEM, integrated surface, terrain correction algorithm.
- 8) Gridded using Geosoft RANGRID program.
- 9) Contoured using Muir-GMS CONTUR.
 - Berrows, L.J. and Fett, J.D., 1901, A stoping wedge technique for calculating, growity termain connections, Geophysics, Vol. 56, No.7, p. 1061–1063.
 Cagbilli, A.H., 1980, Gravity termain corrections using digital elevation models. Geophysics, Vol.26, No.1, p. 102–106.

APPENDIX IV

GEOCHEMICAL PROCEDURE AND RESULTS

ï

09109101	13:26	0 2505734557	ECO-TECH KAM.	
	\sim	Post-it [™] Fax Note 7671E	Date # of pages 2	
	\bigcirc	To Jim Gillis	From	ASSAYING
\cap		Co./Dept.	Co.	
		Phone #	Phone #	ONMENTAL TESTING
EGO		Fax #	Fax# 828-2269	
LABORAT	ORIES	Langer (1997)		#2, Kamloops, B.C. V2C 614 73-5700 Fax (250) 573-4557
ď	\square	\mathcal{O}	email: e	cotech@mail.wkpowerlink.com

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contains beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

K:Methods/methicp

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

Analytical Procedure Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

K:Methods/geoauana

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dalas Drive, Kamtoops, B.C. V2C 674 Phone (250) 573-8700 Fax (250) 573-4657 email: ecoteon@direct.ca

CERTIFICATE OF ASSAY AK 2001-004

CASSIDY GOLD CORP. #220, 141 Victoria Street KAMLOOPS, BC V2C 1Z5

8-Feb-01

ATTENTION: JAMES T. GILLIS, President

No. of samples received: 12 Sample type: Core **Project #: None Given Shipment #: None Given** Samples submitted by: J. Pautler

		Pb	Zn	
ET #.	Tag #	(%)	(%)	
1	131301	-	2.83	
2	131302	0.82	2.96	
4	131304	-	3.92	
6	131306	-	3.65	
QC DATA:	=			
Resplit:				
1	131301		2.79	
Standard:				
CCU-1a		0.35	2.87	

ECO-TECH LABORATORIES LTD. ∕Frank J. Pezzetti, A/Sc.T. B.C/Certified Assayer

XLS/00

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dalias Drive, Kamioocs, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotecn@direct.ca

CERTIFICATE OF ASSAY AK 2001-003

CASSIDY GOLD CORP. #220, 141 Victoria Street

KAMLOOPS, BC V2C 1Z5 6-Feb-01

ATTENTION: JAMES T. GILLIS, President

No. of samples received: 40 Sample type: Core **Project #: None Given Shipment #: 2001-01** Samples submitted by: J. Pautler

		Zn	
ET #.	Tag #	(%)	
2	131856	1.69	
4	131858	1.58	
26	131880	1.19	

QC DATA:

Standard: Mpla

19.01

ECO ECH LABORATORIES LTD. Ffank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/00

8 Feb-01

ECO-TECH LABORATORIES LTD. 10041 Daltas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-004

CASSIDY GOLD CORP. #220, 141 Victoria Street KAMLOOPS, BC V2C 1Z5

ATTENTION: JAMES T. GILLIS, President

No. of samples received: 12 Sample type: Core Project #: None Given Shipment #: None Given Samples submitted by: J. Pautier

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Рb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	131301	-	<0.2	0.61	<5	10	<5	5.67	98	30	90	19	1.62	20	0.13	443	<1	0.01	44 >	10000	22	<5	<20	74	0.03	<10	18	<10	24 >	10000
2	131302	<5	1.6	0.37	<5	80	10	6.25	54	12	122	171	2.76	<10	0.05	253	<1	0.08	49	5090	8812	<5	<20	68	<0.01	<10	13	<10	3 >	10000
3	131303	-	<0,2	1.10	<5	10	10	3.98	<1	3	72	3	0.74	<10	0.11	387	<1	0.02	9	800	22	<5	<20	29	0.06	<10	12	<10	16	162
4	131304	≺5	1.1	0.44	-5	15	5	3.45	87	17	87	39	1.80	<10	0.08	409	<1	0.02	26	3230	300	<5	<20	66	0.03	<10	 Q	=10	- 1 S	10000
5	131305	-	<0.2	0.37	<5	10	<5	1.30	1	5	99	4	0.77	<10	0.16	171	<1	0.03	13	890	10	<5	<20	36	0.12	<10	9	<10	13	505
6	131306	<5	<0.2	0.59	<5	25	<5	2.04	90	20	95	17	1.50	<10	0.21	297	<1	0.02	22	2160	32	<5	<20	39	0.05	<10	13	<10	<1 >	10000
7	131895	<5	<0.2	0.41	<5	15	<5	1.09	<1	3	64	4	Q.77	10	0.20	131	<1	0.04	2	270	6	<5	<20	24	0.04	<10	7	<10	7	66
8	131896	<5	<0.2	0.22	<5	15	<5	1.49	<1	1	71	4	0.42	<10	0.07	104	2	0.03	2	260	18	<5	<20	89	0.01	<10	2	<10	7	52
9	131897	<5	0.3	1.03	<5	<5	5	>10	<1	4	34	5	0.63	<10	D.30	415	<1	0.07	11	500	52	5	<20	1103	0.03	<10	10	<10	10	74
10	131898	<5	<0.2	1.97	<5	90	10	0.38	<1	18	79	48	4.58	10	1.05	753	<1	0.05	15	650	<2	<5	<20	21	0.24	<10	72	<10	21	105
11	131899	<5	<0.2	0.38	-5	10	<5	0.32	<1	<1	72	8	0.45	<10	0.06	109	1	0.06	2	270		<5	<20	25	0.01	<10	2	~10	42	14
12	131900	-	<0.2	0.98	<5	85	<5	0 74	2	20	60	48	4.86	20	0.17	447	2	0.01	47	920	10	<5	<20	12	0.01	<10	38	<10	1	534
<u>QC D</u> AT Resplit:	A:																													
1 Repeat:	131301		<0.2	0.63	<5	10	<5	5.51	94	28	92	20	1.58	20	0.12	433	<1	0.01	40 =	10000	24	<5	<20	78	0.03	<10	18	<10	26 >	10000
1 Standar	131301 d:		<0.2	0.67	<5	10	<5	5.71	98	30	92	20	1.63	20	0.13	468	<1	0.01	44 >	>10000	20	<5	<20	82	0.03	<10	20	<10	27 >	10000
GEO'00		120	1.5	1.68	50	170	<5	1.52	<1	18	47	89	3.37	10	0.95	669	<1	0.02	22	650	4	<5	<20	66	0.08	<10	72	<10	10	73

ECOVECH LABORATORIES LTD. Julia Jealouse B.C. Gertified Assayer

Page 1

٠

.

df/4 XLS/00 ICP CERTIFICATE OF ANALYSIS AK 2001-003

CASSIDY GOLD CORP.

Et #.	Tag #	Au(ppb)	Ag	Ał %	As	Ba	Bi	Ca %	Ċđ	Co	Cr	Cu	Fc %	La	Mg %	Мп	Мо	Na %	NI	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
26	131880		1.4	0,98	<5	100	10	0.59	17	13	90	55	2.53	20	0.41	280	<1	0.05	27	220	1216	<5	<20	20	0.10	<10	21	<10	17	10000
27	131881	-	<0.2	2.10	<5	220	5	0.48	1	27	148	40	4.77	20	1 07	502	<1	0.07	34	840	8	<5	<20	11	0.39	<10	91	<10	31	136
28	131882	-	0.3	1.24	<5	10	10	4.74	-1	5	72	3	0.81	<10	0.21	339	<1	0.02	, n	990	16	<5	<20	35	0.12	<10	20	<10	13	113
29	131883	-	0.4	0.99	≺5	20	<5	4.85	<1	8	90	24	1.68	20	0.34	389	<1	0.05	13	370	38	<5	<20	159	0.07	<10	14	<10	24	75
30	131884	5	0.4	0.23	<5	15	<5	0.84	≺1	3	93	6	0.79	<10	0.15	266	3	0.02	8	170	44	<5	<20	30	<0.01	<10	1	<10	4	31
31	131885	<5	0.3	6.02	<5	150	<5	4 39	<1	25	114	100	4 100	10	1 10	147		0.40	<u></u>	4000	50		-20	004	0.00	-10	60	~10	4.4	70
32	131886	<5	0.2	0.72	<5	25	<5	1.02	<1	6	80	10	4.20	40	0.14	100		0.19	40	1300	20	<0 	~20	024	0.23	~10	14	~10	1.4	12
33	131887	<5	<0.2	0.22	<5	10	<5	0.39	<1	-1	00 85	0	0.46	~10	0.04	400	2	0.03	12	100	10	<	~20	31	20.03	<10	14	~10	14 C	49
34	131888	65	<0.2	2.01	<5	25	15	2.63	2	10	0.J 65	50 00	1.04	10	0.04	132	~ ~ ~	0.04		140	10	<0 -0	~20	70	40.07	<10	51	×10 70		11
35	131889	<5	<0.2	0.19	<5	5	<5	0.14	<1	<1	104	3	0.28	<10	0.40	90	2	0.04	36 4	40	<2 <2	<5 <5	<20 <20	73 5	<0.07	<10 <10	29 <1	<10 <10	;z <1	336 16
36	131890	5	<0.2	1.29	<5	50	5	231	<1	14	70	16	2 70	20	0.77	1015	21	0.04	24	1020		-2	-20	57	0.00	-10	20	~10	17	979
37	131891	<5	< 0.2	0.26	<5	15	<Š	0.84	-1	3	77	12	1.00	~10	0.00	620	ור פ	0.04	24	200	4 74	~7 75	~20	27 20	V.00 ~0.04	~10	00 0	<10	10	3/3
38	131892	<5	< 0.2	0.29	<5	10	<5	0.41	<1	1	80	7	0.00	<10	0.03	020	- 2	0.03	1	200	29	<>	~20	- 38 40	<0.01	~10	4	<10	10	00
39	131893	5	<0.2	0.18	<5	<5	<5	0.10	<1	ح1	00	, e	0.55	210	0.04	240		0.04	כ מ	100	12		~20	10	SU.01	510	ا م	~10	11	49
40	131894	<5	<0.2	0.30	<5	15	<5	1.15	<1	<1	74	7	0.44	10	0.02	171	2	0.04	3 7	100	12	<5 <5	~20	د مد	<0.01	10 ~10	-1	~10	12	78 78
QC DAT	A :																	0.00	Ť	200		.0	-20	0.	.0.01	10	.,			20
Resplit:																														
1	131855	<5	<0.2	3.99	<5	45	<5	5.90	<1	8	102	13	1.15	20	0.35	161	<1	0.23	15	4610	4	<5	<20	587	0.07	<10	25	<10	36	56
36	131890	5	<0.2	1.33	<5	50	<5	2.30	<1	15	82	15	2.90	20	0.77	1049	<1	0.04	30	1040	8	<5	<20	32	0.09	<10	38	<10	18	374
Repeat:																														
i i	131855	<5	<0.2	3 85	10	45	<5	5 99	~1	0	01	10	1.10	90	0.05	400						-					~ .			
10	131864		0.4	0.31	<5	15	-5	2.04	-1	2	120	10	0.74	~10	0.30	100	~ ~ ~ ~	0.22	5	4000	4	- 10	~20	013	0.07	<10	24	<10	34	52
18	131872	15		-					- 1	U	120	2	0.71	~10	0.06	400	3	0.01	(100	38	<5	<20	8.1	<0.01	<10	1	<10	/	20
19	131873	_	<02	0 29	15	35	<5	2.07	-1	0	04		- • 11-7	40		-	•	-	-	-	-	- -	-	-	-	-	-		-	-
35	131889	<5	- -	0.20		-		2.07	~1	9	94	20	2.07	10	0.40	300	3	<0.01	zu	610	24	<5	<20	109	<0.01	<10	4	<10	6	65
36	131890	-	<0.2	1.29	<5	50	<5	2.31	<1	14	72	16	- 2.88	20	0.77	- 1057	<1	- 0.04	- 27	1070	8	<5	<20	32	- 80.0	- <10	- 38	- <10	- 17	- 366
Standard	1 :																													
GEO'00		125	1.4	1.83	50	175	<5	1.68	<1	20	56	87	3.79	20	0.99	718	≺1	0.03	28	750	14	<5	<20	65	0.11	<10	79	<10	10	76
GE0'00		-	1.4	1.84	55	175	<5	1.71	1	20	58	89	3.85	20	0.99	726	<1	0.02	29	740	12	<5	<20	65	0.12	<10	81	<10	11	80

Page 2

ECOTECH LABORATORIES LTD. Juitte Jealouse B.C. Certified Assayer Clese

df/3 XLS/00 6-Feb-01

6-Feb-01

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2001-003

CASSIDY GOLD CORP. #220, 141 Victoria Street KAMLOOPS, BC V2C 1Z5

ATTENTION: JAMES T. GILLIS, President

No. of samples received: 40 Sample type: Core Project **#:** None Given Shipment **#:** 2001-01 Samples submitted by: J. Pautler

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba_	Bi	Ca %	Cd	Co	Ċr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Tî %	U	v	W	Y	Zn
1	131855	<5	<0.2	4.00	<5	50	<5	5.88	<1	8	81	14	1.14	20	0.36	158	<1	0.23	16	4770	<2	<5	<20	601	0.07	<10	25	<10	33	48
2	13185 6	5	<0.2	0.56	<5	15	<5	4.15	61	11	95	15	1.36	10	0.13	464	<1	0.02	20	9440	194	<5	<20	78	0.03	<10	17	<10	19 >	>10000
3	131857	~5	0.3	0.27	<5	<5	<5	1.43	2	<1	139	7	0.38	70	0.03	85	2	0.06	9	4760	6	<5	<20	34	0.03	<t0< td=""><td>6</td><td><10</td><td>52</td><td>467</td></t0<>	6	<10	52	467
4	131858	-	0.4	0.86	<5	20	<5	3.39	51	15	110	14	2.39	30	0.50	538	<1	0.05	31	990	98	<5	~20	108	0.07	<10	11	<10	8 ≻	×10000
5	131859	-	0.3	0.64	<5	25	<5	2.50	<1	12	63	28	2.12	30	0.46	428	<1	0.04	35	150	12	5	<20	58	0.18	<10	11	<10	22	351
6	131860	<5	<0.2	1.63	<5	45	<5	3.11	1	21	109	38	4,33	20	1.25	1010	4	0.02	30	660	14	<5	<20	189	0.01	<10	38	<10	7	186
7	131861	<5	<0.2	0.26	<5	20	<5	0.77	<1	2	B4	5	0.61	< 10	0.05	164	2	0.01	14	200	68	<5	<20	40	-0.01	<10	2	<10	4	97
8	131862	<5	<0.2	1.42	<5	45	5	9.06	1	22	69	35	4.29	20	0.80	1490	3	0.01	38	900	8	<5	-20	590	0.02	<10	25	<10	16	206
9	131883	5	<0.2	0.77	<5	45	<5	6.52	2	22	67	60	4.60	20	0.37	1187	3	0.01	41	730	14	<5	<20	322	<0.01	<10	21	<10	13	174
10	131864	<5	0.3	0.34	<5	20	<5	1.95	<1	3	116	10	0.70	<10	0.08	445	3	0.01	9	180	36	<5	<20	100	<0.01	<10	2	<10	7	20
11	131865	-	<0.2	1.24	<5	10	10	>10	2	4	36	10	1.43	<10	0.54	1287	<1	0.04	6	610	12	5	<20	801	0.02	<10	14	<10	25	228
12	131866	• •	0.3	1.29	<5	10	5	7.59	<1	5	67	2	1.26	<10	0.72	523	<1	0.03	6	700	26	5	<20	192	0.04	<10	13	<10	19	232
13	131867	-	0.3	0.36	<5	20	<5	0.52	<1	1	88	4	0.54	20	0.09	110	2	0.05	3	630	6	<5	<20	22	0.02	<10	4	<10	19	14
14	131868	-	0.2	0.14	<5	10	<5	0.15	<1	1	86	6	0.35	<10	0.02	70	3	0.03	3	150	12	<5	<20	4	<0.01	<10	<1	<10	7	12
15	131869	-	<0.2	1.19	<5	80	5	0,55	<1	12	94	16	2.64	10	0.58	352	<1	0.03	19	290	8	<5	<20	20	0.10	<10	28	<10	7	73
16	131870	-	<0.2	0.79	≺5	55	<5	0.58	<1	10	101	15	2.23	20	0.35	320	2	0.03	17	200	4	<5	<20	34	0.04	<10	16	<10	8	107
17	131871	70	0.3	0.22	60	15	<5	0.33	<1	<1	125	6	0.51	<10	0.02	112	2	0.01	4	170	14	<5	<20	12	<0.01	<10	<1	<10	2	22
18	131872	16	0.3	0.24	<5	10	<5	1.06	<1	<1	95	5	0.38	<10	0.01	147	2	0.01	2	300	32	<5	<20	65	<0.01	<10	<1	<10	6	13
19	131873	-	<0.2	0.26	10	30	<5	2.12	<1	8	96	23	2.06	10	0.39	303	3	<0.01	20	590	22	<5	<20	107	<0.01	<10	3	<10	6	60
20	131874	65	<0.2	0.26	80	20	<5	0.14	<1	<1	87	6	0.36	<10	0.01	273	2	<0.01	5	70	30	<5	<20	5	<0.01	<10	<1	<10	7	156
21	131875	<5	<0.2	1.26	<5	75	<5	2.31	2	17	125	33	3.53	30	0.69	398	<1	0.04	30	760	6	<5	<20	77	0.14	<10	47	<10	32	413
22	131876	-	<0.2	4.75	-5	80	<5	3.55	1	32	193	38	3.26	<10	1.21	647	<1	0.32	80	780	10	<5	<20	309	0.14	<10	107	<10	7	295
23	131877	-	<0.2	2.36	<5	145	10	0.31	1	26	139	29	5.17	20	1.19	525	<1	0.05	44	260	14	<5	<20	10	0.33	<10	85	<10	17	220
24	131878		<0.2	0.89	<5	25	<5	0.61	<1	6	70	11	1.93	50	0.44	305	2	0.05	3	440	12	<5	<20	17	80.0	<10	28	<10	24	34
25	131879	<5	<0.2	1.55	<5	105	10	0.99	<1	13	99	23	2.68	20	0.66	358	<1	0.06	24	450	30	<5	<20	36	0.11	<10	35	<10	12	94
														P	age 1															

.

-

•

APPENDIX V

DIAMOND DRILL LOGS - J. PAUTLER, P. Geo.

:
TABLE OF LITHOLOGICAL UNITS AND LEGEND

TERTIARY:

Т	Unit 6	Tertiary mafic dykes: The dykes are very fine grained, dioritic in composition and contain 1-2mm phenocrysts of pyroxene.
CRE	TACEOUS - TERTIA	RY:
XX	Unit 5	Pegmatite: Pegmatite occurs primarily as sills but locally crosscuts as dykes and consists of quartz, feldspar and biotite. Occasionally muscovite dominates over biotite.
Gdi	Unit 4	Granodiorite: Minor dykes of weakly foliated generally medium grained granodiorite of uncertain age are evident.
PROT	TEROZOIC to PALE	OZOIC: Shuswap Metamorphic Complex
c/s	Unit 3	Calc-silicate: This unit grades from a fine grained, banded pale green and pink calc-silicate to coarser grained skarn (SK) containing calcite, quartz, diopside, lesser garnet, actinolite, and tremolite. May contain beds and pods of white crystalline or grey banded marble (Mb) and chert.
	Unit 2:	Biotite Gneiss: Unit 2 consists of quartz-feldspar-biotite gneiss (Gn) with lesser schist. Commonly weathers gossanous due to the presence of trace pyrite and pyrrhotite and high iron content. Narrow quartzite beds may be present (Qte) .
vv	Unit 1:	Amphibolite Gneiss: Unit 1 exhibits a dark, often green, medium grained groundmass dominated by amphiboles with lesser amounts of biotite and plagioclase. Laminae with almandine garnets, 0.5 to 1 cm in size, are common. May contain narrow bands of calc-silicate and larger bands of biotite gneiss.
ру	pyrite	
ро	pyrrhotite	
sp	sphalerite	
ga	galena	

•

•

			-									. 			agran .		•
COMP/ PROJEC PROPE	DIANY_ NY_ CT RTY_	Cassidy Broken Hill	NTS CLAIM ELEVATIOI GRID COOI NORTHING EASTING	8.2 N RD	м/14 1421 m еббол/ э	DA 	HOLE TE: Collared 1/27 Completed 1/27 Logged 1/27 - 2 GGED BY: T. Paul RE SIZE: N/IV	NO. <u>ВН</u> <u>Гаг</u> <u>в Гаг</u> <u>1/а г</u>	<u>סאר</u> סור - ייר	4 ('1 A 	<u> /</u>	LENG DEPT CASI WATI PROS	TH: TH of O NG REI ERLINE BLEMS	78 VB.: MAININ E LENG	PAGE_ VG: DTH:	of	
DEPTH (metres)	G R A P	DESCRIPTION	~	RUCO	STRUC Angles	TURE Veins	ALTERATION	METALLIC MINERALS (%)	s	AMPLI	E DAT	A A		 F	RESULT	S	
Fform To	н с								SAMPLE No:	FROM	то	LENGTH					Τ
0-4,0		CASING - rusty be me	se schuist - giviss		·				131700	-g`ul	4.6 CC3	sh y					—
							······				<u>↓</u>						
<u>4.6 - 4.7</u> 1	7 × ×	Rubble - B5 to quarter rich	<u>poynethe</u>														
	X X							· · · · · · · · · · · · · · · · · · ·				·					-
49-61	* *	Pequinatite - very and	se quantel				W. hondas to		<u>1518</u> 4	5.9	6.9	10					
	* *	Called antest with	/ re_ 3 "	·			Wenthe way				+	ŀ	\vdash				+
	××																+
k.1 - 7.3	**	Reg grades fine gree.	red - 1 ton					124212	131875	6.9	77	0.8					Ţ
	<u>~~</u>	XLS : Muss py - other Si	Hicle (······································				──	 		-+			
	<u> × </u>	- cos					· ····	1					┟╍╍╸╽				+
73-7.9		Bio Gn bin - survey	j-n-2:55		90-60'CA	forn.											\pm
ļ	<u>, 1</u>	mina collectul tem ru	isty								ļ	<u> </u>					
	 	cy. d. tod zone at stant of	y suchon;		<u> </u>	1								-+			+
	1	SUNT TIT , 2000 WGD . (13. 37	unyno		JUCA					<u> </u>	<u> </u>	<u>+</u>				_	+
7.9-10.7	┢┈──	greench to de green cale-s	1 gradin				· · · · · · · · · · · · · · · · · · ·				1						
	1	from fire to c. grand	\$ 25 %		30"+0	with dar	· · · · · · · · · · · · · · · · · · ·	<u> </u>									 .
		to 2 cm - SKALL					· ····································	· [-····	1	†		+	∤	_			+-

			•			HO	LE NO	1+	70	H	-01	-1	 PAG	E_Z_ of
DEPTH (metres)	UR AD	DESCRIPTION	RECO	STRU	CTURE	ALTERATION	METALLIC MINERALS (%)	S		E DAT	ſA		 RESU	LTS
From To	H - C		U>ERY					SAMPLÊ No:	FROM	το	LENGTH			
10.7-11.0	+4	- Peg		·		· · · · · · · · · · · · · · · · · · ·								
<u>11.9.12.2</u>		calc-sil, less got then previous											 	
12.2-14.9	¥ ¥	Pen											 	
149-16-8		Cak-sil - less gent (max 5 %)				······································								
		and find grand			···· ·									
		140 (0 13.0 - 70.at							<u> </u>		-		 	
14.8-20.6		Peg				······							 	
				BS'CA	Gntat								 	
21.6		None marble (Mb) rich bands				······································	=16, 10 py							
	-	tram at - 21.3 with fire py str	·· <u>··</u>			···· ••••, ••								
				45"CA	fy str								 	
21.6 -		Pegnatite.				-	·····						 	
					 			<u> </u>	╂					
231-		Color of the Alexandree		50°CA	context						+		 	
24.2		15% got; cal str. grades				······							 	
	 	tuskam		45°CA	contact									
24.2-		leg.											 	

. . . . **.** .

.

	•	a second a s
	• • •	• •

			1			HOL	.E No	H	<u> </u>	4 01	-/		PAG	¥E_ <u>3</u> _of_
DEPTH (metres)	GRAPI	DESCRIPTION	RECO	STRU Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	\$	AMPL	E DA1	A		RESI	ULTS
То	č		ËRY					SAMPLE No.	FROM	то	LENGTH			
26.8 -	<u> </u>	cale-sil with up to o.sm					· · · · · · · · · · · · · · · · · · ·	13/05	JF.9	29.2	1.3			╞╌╌┦╌╌╸
29.7		bande of Mb. with w s lim,		0-10°	fract	w-slim	tr do	131846	29.2	30.5	13			
		Vugs, Very unor 9' 22 also with												
								<u> </u>	ļ		<u> </u>			
29.2 -		les - assimilation City Lawing											<u> </u>	
32.8		Calt sil vemnants and silvers						+	 					<u> </u>
		They ware @ 322-323							+			······		
		@ 32.6 - 33.8 - nov lin garding		للجواني المتحصطا	⊥ ممـ⊈م							<u> </u>		┣
		into lover chestrant					<u> </u>			<u> </u>				┤ ── ┤ ────
					Contert				+• • • ••					<u> </u>
33 8 -		Silicenes unit - anades broom it			(3 M PACE	·								╄━━┉┠━━━━
30.7		kin Greens to		70000	Cal.	· · · · · · · · · · · · · · · · · · ·				+			_ _	┥──┤────
		34,1-34.7 - Cherty 2000 - dt		20°(1	bundirgin	possible related to		1470	114				_ _	
		grey-surplish		<u></u>	Chart -	and the there of the state	·	1.70 18	2/1	199.1	0.3		_ 	<u>∔</u>
		- min mic pro the week section						2.00	71.1	<u>74 r</u>	0.0			<u> </u>
L		cherty zing fas mine cape				· · · · · · · · · · · · · · · · · · ·	<u></u>	121869	2 - H	<u> }}.</u>	19			}
		Sil development user book of		70°(A	fethin	······································		121870	2 2 2	517	1.0			╉ ╼── ┤ ───
		Dection				······································		1 1014	131.1	pe. 7	7.1-1	 	<u> </u>	}
						······································		•	Í					+
								<u> </u>	<u> </u>		h			+
387-	X.7	legnatite - good marke texture				W Ser	1770000				<u>,</u>			<u>}</u>
_ <u></u>	58	Coarse charbed I wim				White fact	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	* <u>'</u>	[Ŧ			
	<u>~ · y</u>	- @ 387. 419 - Fault Zone	6.11	10°CA	Fault	In su make	54	13181	367	39.7	1.0	 		<u>╋───</u> ┤───
<u> </u>	XX	@ 387-39.1 -5 silzons,				w-ssil 7	(Bib-un		<u> </u>	1	+		-	∮ −−−− ∤
-4ª./_	<u> </u>	lin vyo								1			<u> </u>	╃─── ┼──╴·
 	 } +	W 47. 84: 1 Viggy soil zone inpers				min ssil		1311 12	47.4	URC	11			+
├	- <u>-</u> x	clean ytz						1	1	110.3	† <u>-</u>			
<u> </u>	ļ	U -		25"	Config +			1	⊢ -'	`	 			
<u> </u>								1	1	<u> </u>			<u> </u>	╉──┾─
												 	<u> </u>	<u>†</u> <u>†</u>

						HOL	E No. Br	-1 i	<u>ה ת</u> כ	01	- /		·	PAGE	<u>4</u> of
DEPTH			R	STRU	CTURE		METALLIC					1			
(metres)	DESCRIPTION		č	Angles	Veins	ALTERATION	MINERALS (%)	S	AMPL	E DA1	ΓA			RESUL	.TS
To			V E R Y			:		SAMPLE No:	FROM	TO	LENGTH				
49.1-	Amphib	Gruss - with mor Bie Gin						1		<u> </u>	-				
	-miner P	ey sections star		50°CA	foli			1							
- 53.9 6	V bottom o	Ty elhor 10-15 cm wide				·									
	some Calc-	11 Torso Nen Outfor for													
52.9-1	Provent la	generally													
580	X Legman	- 4p to lend x co				W-service de				!					
×	XI KO VINDA 3	<u>mr.</u>				I willay tucht					-				
	·			7.00	in Lack					ł					
58.0-	Amphib Car	veiss		<u> </u>	011110										
62.2						· · · · · · · · · · · · · · · · · · ·					<u> </u>	h			
L								1			+				<u>+</u>
							1	1	1	İ	·				
63.3-	- Pegmatit	c - Come grazed - to	···-	U-106	frach y	whim on fract	to Du pp	1	•			f=			
	- serveral	in size local				w-mser ucht.									
<i>1</i> - 2 -	<u></u>	The second s	ļ			+ welay									
├─ ──┼─	·· ·· · ·			3.00	conhort	/		ļ							
77 2-		A. P		····-				<u> </u>							
77.6	mited int	7 		·····				<u> </u>		ļ					
	Garaiss a	with BA "		<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
	Zones	Cault@ 73 Em - 74 Bm	İ	10	Caulto					<u> </u>	<u> </u>				
3-2-5		mariposte (~ 735m			t-read F	and tor	1 2	1 4073	733	<u> 11 K</u>	1.5	┫───┤			
72.8-						<u> </u>	1 2 1 14, 10			<u> </u>		┟╌╌┤			
									+	!	+			 _	
	_		1					1	1		*				
-72.8 -	Amphila	Graiss very mappie	[ļ					[1	ţ			
- 78.5		, <u>, , C'</u>	 												
EOH			ł												
			<u> </u>					<u> </u>	 		<u> </u>				
	~	······································			ł				 		<u> </u>				
			[1	Ł		4	1	t i	4	1	I	1		

•

.....

•

••••••

			ļ	١			HOLI	NO. ^{BH} DD	H O	1 -	2.			PAGE	01
COMP/ PROJE(PROPE	DIAI ANY_ CT RTY_	MOND DRILL LOG Cassiany Cield Brokens Hall	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	₽Э. N_ <u>1</u> - RD_{ 3	m/14 t10_m 1550 m/z	DA1	TE: Collared <u>27/07</u> Completed <u>28/07</u> Logged <u>30/07</u> GGED BY: <u>T</u>	<u>/c1</u> Pm DEPTH /c1 C c1 ufficr			vz	LENGT DEPTH CASING WATEF PROBL	"H: I of OVB.:_ G REMAIN RLINE LEN .EMS:	844, 3 IING: IGTH:	<u>ייז</u> 7m
DEPTH (metres)	G R A P	DESCRIPTION		RECO	STRU Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	s	AMPL	E DA1	A		RESUL'	TS
From To	H C			V E R Y					SAMPLE No	FROM	то	LENGTH			
0-370		CASING 60010 pur													
31m-												•••••].	·	++	
<u>14.2m</u>	45-	act diop got call silie	atc.		ļ										
		with more pay dys	3 10 10		75	folm	m im & start	de pe	1.318.76	44	5.4	100			
		a section mum bio Gr	22.44		e 5°	tractions		-	<u> </u>	+	.	}		\downarrow	
		- rusty costs 17-5.4m	·····/#						131871	12.1	17.6	05m		┝┈┝	
		more bin Ge and see	n /1072+72		+				-	<u> </u>		<u> </u>		+	<u>+</u>
							· · · · · · · · · · · · · · · · · · ·		12128	2 11.4	05	0.6		╂───┼─	<u> </u>
											12:0				
142-	¥	Pag firm grand a c	Sum A				Ween	4, 20.							
_23.8 m	<u> </u>	Kon greyish-white of	adia		+										
 	 	cearson down section	; some		5-20-	hack					ļ				
	4-	bio (in remnants					· · · · · · · · · · · · · · · · · · ·					+		 	
·	ł	Clots of ry, i'm peg. te	Tem .						+			+		++	
	7	(some mail un remante (COTS) LANG	<u> </u>				5 4.00 at		<u> </u>		+		+	-+
		he as well - make (up = 2	prepreza J					Unite of section	-					+	<u> </u>
			1 m		1			<u> </u>			+	┼──┤		┼┼-	
23.8m-		Pala - silicate with 5	JUA M	1			·		+		\uparrow	┽┈╌╉		┼──┼─	-+
	14	bridget marble.			70"	and, my			1		1			+	
31.3	-mu	manning per dys in section	}			, _				1					
		Wiead dys	_		45	Contract			1						

· •

•

course care shout ownerals march

1

i

۲

× 4.

•		
	•	
	2.0	
	1	
	:	
	,	

						HO	LE NO. <u>DDH</u>	0	- 5	>		_	PAGE	: <u> ನ</u> of
DEPTH (metres)	GRAD	DESCRIPTION	REC	STRU	CTURE	ALTERATION	METALLIC MINERALS (%)	SA	MPLI	E DA1	A		RESU	LTS
From To	H - C							SAMPLE No:	FROM	το	LENGTH	T		
<u>31.3</u> - 33.8	ex.	Mapic Greens - bib domingent, bb, minor Galesilicate development V minor up to sup peg dys												
33.8- 36.9	→ + →	Peg fairly coarse wk peg, less up to from XLS: , muse		55"	conhact-	w cericite							+ +	
<u>36.9</u> - 39.3		Magic Ginews bio, was he		100 100	Fracture.									
39.3 		Peg coarse paint 1 - 5 con size		U-10"	Franker		Clots							
43.9- 46.5.		Ampile - Grass		b5"	amper amper									
44.5- 48.7		Calc Siliate light gran-pint bottom contact gradutional mith Ampib Graiss		70°	bounding									
448.2- 50.0		Amphilo-bio Greise				· · · · · · · · · · · · · · · · · · ·								
<u>50.0-</u> <u>52.5</u>		Peg. Coain ground, some got.		45+70' 50°	contacts								 	

• •		
1		
$\sim \chi^{-}$		
• *		
. •		
11.1		
· .		

_		

				į		HO	LE NO. BH	DD	H d	<u> 21 -</u>	A			PAG	e_ <u>3</u>	of _
DEPTH	QR.		RE	STRU	CTURE		METALLIC	L e			ГА		-	0.501		
(metres)	P	DESCRIPTION	C C	Angles	Veins		MINERALS (%)	Ľ			<u> </u>			RESU	- LIS	
To			PER Y					SAMPLE No:	FROM	10	LENGTH					
525		Calc Silicale sperm			•			1								
55.7	<u>'k</u>	light green diop got, all them at			ļ											
5570	J I	An alite Grand the second			<u> </u>						-				ł	
62.0	14	rear tite (20%)		150° "T	Pres Luck	· · · · · · · · · · · · · · · · · · ·				-						<u> </u>
	V	parenter cong	·	1.20	COT HACS								-+			<u> </u>
625-	1	Calc silicate		450	contect				÷	f					/ 	
66.1	45	I miner Amphib and = 30% at		450	folin		_		+	<u>†</u>						
		10		300	requested											
	**				. 0											
661-	V	Amphib-Con with calc-sil		ļ												
74.1	<u>-</u> -/	horizono internexed and	-	· · · · · · · · · · · · · · · · · · ·					<u> </u>	ļ					L	
	<u> </u>	Cale - sit development lasithus	ast.		Carlo M	mont. h		 		ļ						
	<u>- 645</u> -	amphile an O In of pry		65-70	pareing in	Z/S				 	+					ļ
	10	at start of sochers)								+						
	V.V	prov disproch calc -sil Tonza		45.50	Curring											<u> </u>
	1	1/ the right gar trom			<u> </u>	14.0						┥			\vdash	<u> </u>
	-			41" (4	1. m beck				1	 					<u>├</u>	
74.1-	XX	white with out a don to	 			ulea.		<u> </u>		+		$\left\{ - \right\}$				+ ·
84.4	17	list surch	•	1		-0.364			• • • • • • • • • • •	t						<u>+</u>
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					· · · · · · · · · · · · · · · · · · ·				1	-			l		
EOH		have been been and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s								<u> </u>					h	
·	ļ										-					<u> </u>
	ļ		ļ													
·		·····	<b> </b>							ļ.,						
<b>├</b> ───	──				ļ			1								
		···-	<b></b>	-		·		<b> </b>	1						ļ	<b>_</b>
<b>[</b>			<b> </b>	+		· · · · · · · · · · · · · · · · · · ·				<u> </u>				ا ا		<b> </b>
	+	<u>.</u>	+											ا ا	<u> </u>	<u> </u>
	1											+		ا <del>م</del> ا	<u> </u>	<b>-</b>
Service and the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the servi		· · · · · · · · · · · · · · · · · · ·	L			<u>1</u>		1						'	1 /	1

											<b></b>				
DIA COMPANY_ PROJECT_ PROPERTY	MOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	<u>₿</u> ∂ N RD_8	m/14 1397m 455N/250	DA	HOL TE: Collared <u>28/01</u> Completed <u>29/</u> Logged <u>29/0</u> GGED BY: <u>J fam</u> RE SIZE: <u>29/01/0</u>	ENO. <u>BH</u> <u>/o1</u> <u>DEPTH</u> <u>o1/o1</u> Am O <u>1/01</u> <u>Han</u>		- C)	<u>1 - 5</u>	LENG DEPT CASII WATI PROE	TH: IH of Q NG RE ERLINI BLEMS	// )VB.: :MAININ E LENG \$:	PAGE   37.3.11 3.7.7 IG: IG: ITH:7	_ of _5
DEPTH G (metres) A From H	DESCRIPTION		RECOVE	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SAMPLE	AMPLI	E DAT	A		F	RESULTS	
<u>To</u> C <i>a</i> - 5.7m کر ک	CASING -> BIU GN		Ř					No	FROM	то	LENGTH				<b> </b>
<u>37-4.1 </u>	Mubly dience GNEISS in guesta-feldapen matrix	- 30 10 0.0		65×(H	felin.										
+1-64	BIOTIFE GNEISS 20-30". In Str-for matax ; rushy ( miner harablende (hb) 3.5%	Biotife Dentings ; ;		60° CA Some 45t	foli										
	PEGMATITE & 10000	49-5.1 5.2-5.4m		55°01 70°04	contract										
×4	grain xite ; fip deminant dem git grains more some graphic texture ; off	straller muse 1-2%													
-7.5 <u>8</u> - <u>8.3</u> - <u>-</u>	BIOTITE GARLISS	3 ^{nt}		85"CH 65" CH 60°CH	contact Gela										
θ 3 -81 C/S	Diops. du - A terrerit - gannet ( SILICATE, caller gannet ( Vuga	CALC-		50° ca. 70″	folis confrict		- pessible to hydre enak?	131855	8.3	8.9	0.6				
						<u> </u>		–							

**~r**r -

-						HO	LE No. <u>BH</u>	د	DH (	27-	3			PAG	е <u>_</u> 2	of
DEPTH	GR		RE	STRU	CTURE	ALTERATION	METALLIC	8			۵			DEGI		
(metres)	P.	DESCRIPTION	្ត្រ	Angles	Veins		MINERALS (%)				<u> </u>			REGU	1213	
rom To	п С С		Ř R Y					SAMPLE No.	FROM	то	LENGTH	fîn Zn	7, Zn			
89-	××.	pegnatite cy some KL to	100%	ł											<b>!</b>	
13.1	×	5cm. minor grey bunded					PQ + Yz * a							$\neg$		
	<u>'-</u>	of z ou ant ou date of point	HA				00 4 12 10									
	7	Finer ground tewards bottom					, ,									
	<u> </u>	of section 1.2% scheepter?														
-	<b></b> _	()	L	53°(A	ion fact.							r				
13.1 -		Bunte An Roberto Greecos														
17.1		- green grader new maple, 10-16-15														
· ·		No more greened byers, some		60004	foli											
		porphynoplast		ļ												
·	ļ		1	ļ												
17.1 -	<u>+t</u>	Pegmatite - large ilute of														
25.9	<b>→</b> +	brown protite when top of section	<b>_</b>				14 - 42.40									
<u>├──</u>	+	fecal zones up to 30cm with														
	~	tennante of bio Gness loral	ļ													
	<u> </u>	clots of py in uppublik					'		<u> </u>							
	ļ	-some coarses sections of Peg		ļ												
	<u> </u>	(5-7cm ×4-5)	<u> </u>					L				1				
	<u>                                     </u>			70"CA	Contact									-		Į
15.9 -		CALC SILICATE - SKARN	<u> </u>	05-60	Rola		<del>````````````````````````````````</del>	131856	25.9	26.5	0.6		1. 109%			
20.5	145	gtz-al-diop-trem. gnt, a fina	фі	45.	0		\('									
		with 15 10 sphal over 5cm @ 24.1m a	s string	ours 75"(A	50 stris	652074G	Sp +rg2									
		and traga " ) Less sp. in unreader	- <u> </u>													
		of all from Lisalated itission in crs	·	1		···		1						+ 1.	22 10	Zn/
	<u> </u>		<u> </u>					l								1.10
<u> 26 15</u>	1 <del>×.</del>	pag 0.5 cm givin size up to lam					- Or fatter the sec	131853	26 5	26.9	0.3	467				
26.8	×	<b>.</b>				- <u></u>										
				45°LA	contact		Unosp trea	and	36.81	27. <b>O</b>	08		1.58			
040.98 -	1-0/5	CALC SILICATE	<u> </u>				211 1/0	<b> </b>			1	L				ΙΤ
<u>- + 1.5</u>	+	94- trem - wall - cap - gt & cate - silvate to it	<u>412 - </u>	·		· · · · · · · · · · · · · · · · · · ·		3059	37.0	17.5	0.5	<b>.</b>		L		
<u>├</u> ────	╈	a with por more per impossion 2000 the	+	0.4						<b> </b>	+	<u> </u>		<b></b>	<b> -</b>	
	1 717	1 5 30 10 - 10 60 - 157	1	1 70 CA	150 0 11	1	1	3	1	1	1		1	1	1	1

.....

÷

.

.

-----



1
•

		<u> </u>	
•	_	PAGE	3

1.10

						HO	L <b>e No</b> . <u>BH</u>	ы	DH.	01	3	_	PAG	E_ <u>3</u> _	_ of
DEPTH (metres)	G R A	DESCRIPTION	R E C	STRU	CTURE	ALTERATION		S	AMPL	E DA	ГА		 RESU	LTS	
From To	H H C	DESCRIPTION	D V E A	Angles				SAMPLE	FROM	то	LENGTH	T	 		
27.5-	×	Peg - course I con up to	Y	5884	Combert			NHO.					 		
30.8	××	5cm yes - with local						- <b> </b>	<u>}</u>	<u> </u>		·	 		<u> </u>
	×¥-	sections of biotite Gneiss								†			 	——-†	
		up to your -dissemption Greas											 		
		and clots of polyto the Dem in				· · · · · · · · · · · · · · · · · · ·	po71% -2	<b> </b>	ļ						
		peg. ; muse tractures with ser.		10-150	fractures.		<u>                                      </u>	_		ļ			 		
				"70"ca	milar								 		
348-		still Bio Gin w ser alfind		<u> </u>	<u>- «nracr</u>	W See alked	10, -			-			 		
32.2		few oul str.					1 10 pc	+	 		•		 		
										<u> </u>			 -+		
2.1.2		· · · · · · · · · · · · · · · · · · ·		30°CA	contract										
30.2-	C.	Calc-siticate Imarble band			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·									
- 33.8	~4	mind per - light green act, diep,								ļ			 		
F	[	- madea to sharp		<u> </u>						<u> </u>			 		
	_												 		
378 -	`	Bio Greeks			· · · · · · · · · · · · · · · · · · ·	···· <u></u>	1.70 1.78				+		 		* <b></b>
35.5								1	<u> </u>			└ <b>╶</b> ──┤	 		
				45°CH	wontract						-		 $\rightarrow$		
255-	<u> </u>	Coll cil un la di						ļ					 		
37.5	5	arc sil. Us above			-	· · · · · · · · · · · · · · · · · · ·					-		 		
	1	montainer of himster		ruchy	upper last		112 500 000			<u> </u>			 		
37.5-	T	300 - And to duke - whenever		· · ·			- <u>22</u> /0 p0	+					 		
		with small or charos.				····	··		<u> </u>	1		·	 	-	
421	1			4524	im-it			1	1		+	·			<u> </u>
		wraget 1		ļ											
-40.1-	<del>  ×</del>	tiller gramed 1200 , some bie, d. (2%)			<u> </u>										
471	L≁	- Usible remaints of Gio Graiss				w swinte	Y2 hpy	<b> </b>	<b> </b>	ļ			 ]		
	l [*] ∽	Us or man to		5 86 /1	cutert	Source FC						$ \rightarrow $	 I		
				<u>, ,,, ((</u>	<u>u v en ver t</u>			<u> </u>		1	1				

														<b></b> .			
D Compa Projec Proper	IAI	AOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	<u>837</u> N <u>14</u> RD <u>8</u>	n/14 t10 m 550 nj/23	D D D D	HOLE ATE: Collared <u>27/07</u> Completed <u>28/07</u> Logged <u>30/07</u> OGGED BY: <u>T. fac</u> ORE SIZE: <u>M@</u>	NO. BH <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u> <u>DD</u>	/ 0 DIP - Q(		<u>2</u>	LENG DEPT CASIN WATE PROB	TH: H of O IG REI IRLINE SLEMS	VB.: MAIN() : LEN( :	РАСЕ 	- <u>1</u> -7n	of
DEPTH (metres)	GRAD			RHCO	STRU	CTURE	ALTERATION	METALLIC MINERALS (%)	S	AMPLI	E DAT	A		1	RESUL	TS	
From To	H C			)>#IR>					SAMPLE No:	FROM	то	LENGTH					
<u>3.1</u> m- <u>14.2</u> m	4	CASING 600% program 40% Bill Gress act-diop-got Calc Silic with miner peg dys Greathon, miner bio Gr -runty zones 44-5.4m and 123-12.5 m	a He 3 10°iu 4:55 11-		75°	bon film frachun	m lim to start		1.318-76 1318-77	44 121	5.Y 13.6	1.0m					
		more big Gn rich sec	400-03						131822	n.4	05	0.6		$\square$	$\square$		
14.2 - 23.8m	¥ ¥_	Peg finn grained & c lem greyish - white gr courses down section	scen to		5-20-	frack	wser.	4, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · ·	L .							
	7 7 7	(Some may so myes to (Some maje so remants ( po as well) motic (on => by po.	letz) in the					5 "NPO ut Unce of section									
23.8m- 31.3	C/5-	bunded marber hundred marber minor ( per dys in section ) blogdi dys	50% 304 		70° 45	Confact											

Comme colle - store to minerale - share



				STRUCTURE ALTE		HOL	E NO. <u>Bh</u>	D.	DHG	<u> </u>	3		PAGE	4	_ of
DEPTH	G R		R	STRUC	TURE		METALLIC	s			A		RESIN	TS	
(metres)	A	DESCRIPTION	ç	Angles	Veins		MINERALS (%)				<u> </u>				
From	H		Ĕ					SAMPLE	FROM	то	LENGTH				
<u> </u>	C		Ŷ					No:							
47.2 -	~	get rich cole glook with by													
59.2	75	ding grades to more act - from						<b></b>					 		
	AL.	digs - int and silicate a 48.3 m											 		
		(carrier grained (starn)											 		
		- some word giz-cul and		70°CH	banding.								 		
		Manble (Mh) sections - 1412			In Mb J		·····	l							
		generally whe but grades to						<u> </u>					 		
		wied grey!				······································				1			 		
											ļ :				
								ļ	ļ		ļ		 		
59.2-	F	Fault Zone		-Factoria	Contact	M-5 sericite							 		
67.9	•	- appears to be pegmatik.					tr. py cubas		ļ	ļ					
	*	grades more bxed and pord	L										 		
	* *	gaugey particularly from			·		2.340 64	13/840	60.9	623			 		
	<u> </u>	60.1 - 650 and 66.2 - 61.9					12 hpy	861	623	\$5.0	L	····			
F		peg alterates with smaller		ļ			12 10	562	65.0	66.1			 		
	<u> </u>	tones of grey gik with var					3-5% 04	263	66.1	67.4	L		 		]
	X -4-	""Cale sil development by str					11024	864	67.4	61.9					
	7	and clobs		45°CA	contact		• •			}					
									i						
67.9-681		diffe a cut cale -sil													
			L	73 CA	contact-										
481-	¥ v	Pen whe - ligh yranish (see), in up	per p	an t		W servicite	PY . 00								
99.1	· /	the pype as 16/5 de minor got. (	sect				12%								
	×¥	punc. 12 concuptu from XL size		"i5"	Gruct -	- 5 suicife on track	- non py								
ļ	K Y	undes coarses down pole with		1	1	materia									
<u> </u>	Χ¥	KLS to 3cm	<b>_</b>												
		74.7-77.2 - durty 22te -biefon	ļ	40°CA	Contac L										
	ΥĻ	Section													
<u> </u>	يح ا	84.6- 85.63 price delation													
	<u>/ ×</u>	19.1 - 08.6 5 (mya) Gin	<u> </u>	ļ	ļ <u> </u>	····-			1						
	IX X	l	<u> </u>		<u> </u>	l						1			
				-			· · · · · · · · · · · · · · · · · · ·								

·····

. . . . .



## HOLE NO.BH DDH CI-3

PAGE <u>5</u> of

والمعمومين

									<u></u>	<u> </u>					_
DEPTH (metres)	GR A	DESCRIPTION	E ECO	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	s	AMPL	E DAI	A	ĺ	 RESU	LTS	
From To	н С		V E R Y					SAMPLE No:	FROM	10	LENGTH				
49.1-73		magic Greiss													
49.3-	Crr.	Calc silicate fig act digs			······	*****							 		
107.2	Thh	Compen got some lie Gr Zoren					ti py, a			<u> </u>					
	1.2.1	1.ch Zarez , Jun 11 akos 11,													
·····		section @ 10thom													
	4												 		-
109.2-	10	Amphile Gr with some work			puy										
126.3	1 v	Des dytes up to so on		45-65							+	•			
	1 v	instal instaly up 15-\$ 57 tone.		60-70	folin:	······	trpu								$\square$
124.3-	~~~	Feg cut by fault of				M-5.547	4770 14,00						 		
13E K	F	127.1 - 138.2 - 6xell, gouge		15"(H 1	Band F										
	× +												 		
138 6-	ΙV,	Amphilo (In.				······				ļ					
	~~	<u> </u>		6,8°CA	forth										
131.1-	× ×	fea liance around.						-							-
135.4	4	, <u>,</u> , , , , , , , , , , , , , , , , ,		7,0		· · · · · · · · · · · · · · · · · · ·									+ ·- -
135.4-		Amphib Gineiss, mor pay	-					<u>+</u>				 	-		
1341.3 150H	$\overline{v}$								+	-					<b>+</b>
									1					[	$\Box$

COMP/ PROJE PROPI	DIAI ANY_ Ct Rty_	MOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	8.2 m N RD5	1/14 <u>13 75 m</u> Вчост N/ Эс	DAT	HOL E: Collared <u>29/0</u> Completed <u>29/</u> Logged <u>31/01</u> GGED BY: <u>T. Pa</u> RE SIZE: <u>N@</u>	ENO. BH- 1/01 DEPTH 01/01 0 1/01 0	<b>О</b> ОН 90	0/ >°	<u>×</u> <u>×</u>	LENG DEPT CASIF WATE PROE	TH: H of C NG RE RLINI	)VB.: :MAINI E LEN4 3:	PAGE	<u> </u>
DEPTH (metres) From	GRAPH-	DESCRIPTION	, ,	RECOVE	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SAMPLE		E DAT	A			RESUL	TS
To 0-4.30	ć	CASING - And - Diorufe o	<i>4</i> 4	Ÿ					No.	FROM	TO	LENGTH				
<u>4.3-</u> -7.9	7	Tertiary dyte, with small px phenos @ 6.7 - 7.4 Fac minon pag / Tent dy 1 - py/pa str, Alatz	It with It with Frags and		05-10°CH	fault		Jury print								
7.9 - 11.4	¥1 × H× × 1, ×	Pegnolife nixed with 0 9.3-9.50 T d mice gut in pegn.	bic Gress lyter		<u>ب</u> ە ە	T. dy contact		to purply								
1.4 - 19.0		Bio Gn-maßic Gne	يحين		(05° CA	foln.		tr: ju								
19.0-	×,7,1	-godational lower cont.	ac 45		50 ⁰	anlad										
	t			<u> </u>		+	-*		<b> </b>		L			<u>ا</u> ا	ł	

						HQ	LE NO. BA	- D1	H	01-	- 4		PAG	е_ <i>8</i>	_ of
DEPTH (metres)	GR 40		RECO	STRU	CTURE	ALTERATION	METALLIC MINERALS (%)	5	- AMPL	E DA'	TA		 RESU	LTS	
From To	H-C		DV ERY					SAMPLE No:	FROM	то	LENGTH				
21.5-	XX	Pey					·······						 		
22.7	~+	ð			1	· · · · · · · · · · · · · · · · · · ·									
						·	¬			•	-		 		<u> </u>
22.2-	·	Bio Gn - grading more hbrich								1			 		
25.0		(10%) ")											 		
		0		60°CA	contact.										
25.0-	<u>×~</u> ~	Regnatite uningnt		600	folin	uw ser.	to py, Po			<u> </u>			 ĺ		
20:1	×	ava fan XLa								ļ			 		
28.9 -		A 150		60	Com 1-94			1			_		 		<b></b> .
32.4		Amph & Choiss		69 CA	for an					<u> </u>	_		 		
				10 2°CA	- inter								 		
22.9,-		Promotile among ant.			· · · · · · · · · · · · · · · · · · ·	t +.				<u> </u>	-		 		·
36.2		August Icm Str YIS		1		vw ser	+r Py, Po			-		┠─────┤	 	<u> </u>	
				600	Contract				•	+		ł	 		
						····	·	-					 		
36.7 -		Amphilo Greiss		70~	Coló				ł		+				<b></b>
38.1					/		-						 		
· <b></b>		· · · · · · · · · · · · · · · · · · ·		1		· · · · · · · · · · · ·		1							
38.1-		Regnatite fairly cg		70"	Cartinet	······································				1			 		[
41.8										1			 		
<u> </u>									1	1					
418-		Amphib Gress with			folm.						_				
	<b> </b>	~ Peg @ 48.0- 49.3		ļ											
57.0	1	and 50.6 - 51.6											 		
FOU	<u> </u>														
				40°EM	baraity	· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>					<b>—</b>
		pant			/ /	+		<b> </b>		l					<b></b> .
<u> </u>				╂					·	₋			 		
<u> </u>	<u> </u>	Weith Charley W. L. H. J.	<u>.</u>		+			- <u> </u>		-					<u> </u>
							_ <u> </u>	<u> </u>	-∤						<b>-</b>

										·						
DIAI COMPANY_ PROJECT_ PROPERTY_	MOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	<u>ළ</u> න N RD	135 <b>4</b> m 135 <b>4</b> m 7870 N/	DA	TE: Collared _ 29/01         Completed _ 30 / 01         Logged / 02         GGED BY: Paul         RE SIZE: NC	NO. <u>BH</u> -	DD.	H ()	<u>z.</u>	LENG DEPT CASH WATH PROF	- I'H of C NG RE ERLINI BLEMS	DVB.: EMAINII E LENC 3:	PAGE 81 6:	1 .4n	of _2
DEPTH R (metres) A From H	DESCRIPTION		RECOV	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	s		E DAT	A			RESUL	.TS	
то с			E R Y					SAMPLE No:	FROM	τö	LENGTH					
Q- 6.1	CASING - PEGMATITE,	very monor										-				
6.1-11 ×	Pegnatite mint time ong all il and big Gruns Sect	1 = , Adres				with we save.	tr poj, po	 								
	R			SU"CA	cont-act											
197 -	- 10tite (Thoiss or rul	n sil		60"	bol'n		+rpo									
	pag. in section	sa, ⁻ s A		}	-											
	Rubbly zone F	-nom 133														
	Point of the fault		85%					<b> </b>								
31.1	Course forme int,			15'CA	in fault	m in waln with	1 6/10 2 4		0.00							
21.1 - C/	Calc-Silicate ant	rich		65 "	banding		1600	1.8.92 1	2.7		0.1	<b> </b>		— <u> </u> -	<b></b>	
23.7 15	diop - set, them gt 2-cal			ļ	0		72 14									
<u>├</u> ────	- some bio Gn sections				/**J			<b> </b>								$\square$
23.7 - XX	Big Gouing with ha	" is Roy .		15-A A	Robert		No Ye Do	1.2.					$\left  \right $			
28.6 4-*-		J			Compacts		Hepoin Gn	F		<u> </u>						
	Į						· · · · · · · · · · · · · · · · · · ·			1						
28.1	Color - Hirale will me			<u>  55°ca</u>	fcont-rc t				<b> </b>			ļ				
	dien ont	<u>ni</u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·	NZ N 20							<u> </u>		<u> </u>
	@ 393. 29.5 25 1/0 PC	grades		1			3-7.00	13689	24-3	14, 4 194	14 R#5	<b> </b>	<u> </u>			
31-31	to B & Grein form 303-	31.3							299							

•

. А. А. К. А.

						HOL	ENO. BA-	<u>.</u> DI	<u>0H.C</u>	71-	5		 PAGE	<u>_ a</u>	_ of
DEPTH	GR		Ř	STRU	CTURE		METALLIC				A		oceur	. TE	,
(metres)	P	DESCRIPTION	ē	Angles	Veins	ACTORATION	MINERALS (%)	3			н —————		 REGUI		
From To	H-C		V E R Y					SAMPLE No:	FROM	то	LENGTH ノわ				
31.3-		Pegmatite some tio Fin		60°<4	conterct	+ wellow when in	troy au.								
		in top of interval and more				<i>የ</i> ሚን /	some intervals								
		light ener when at top ->			<u></u>	·····	10 gran								
		chading to white mino got													
		present up to 3. " po at				١٠	3% poster	131884	31.3	328	7.5				
		top, finer glame at top grading					9+31.2			1			i	]	
		into c.g. por 15 to Scon and								· ·			l I		
	ļ	maperie textures											1		
		BIU Gin @ 34.5-34.8 and		รร ิ (4	v+iback +		Y2-10 00								
		48.2 - 48.6		400	11		Yz								
		@ 57.4-58.9 - peg appears st.				5.51	2 3 10 00 00	13182.7	57.4	-58.9	15				
ļ	<b> </b>	Some cully beauty str		6 <b>5°</b> CA	sturg.		*								
·															
76.7	ļ														
	ļ														
ļ	ļ			70"(4	contract										
<u>707 -</u>	1	Bic Grandin to Amplyb Gu		70	Aclin						1				
74.3	1	after 0.8 m - S 20% Rio GA and													Ĺ
·		2 50% people the									1				
I		• ()		· · ···=······························											
	ļ			70° (H	constrict		_								
·	ļ														
74.3-		Regnatite c.c. good graphic					tr p0, p4								
<u><u> </u></u>		5% gots terture		1							1				
	<b> </b>	for 10 79.1. 79.3		45"617	Foult										
- Colt	ļ	14 the 14th gats and make		0-75"	Ancher										
EUN		remark in pro-			γ										
·			L												
												Ι			
L															
					1										
1	1		1		1							1	1		

. . . . . . . . .

D Compa Projec Prope	IAI	AOND DRILL LOG Cassidy Gold Broken 1411	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	87) N33	1342m 1342m 2485N/2	DA	HOLI TE: Collared <u>30/0</u> Completed <u>31/0</u> Logged <u>31/01/</u> GGED BY: <u>T. far</u> RE SIZE: <u>NO</u>	ENO. <u>BH</u> 1/01 <u>DEPTH</u> 1/01 <u>0</u> 1/01 <u>0</u> 1/	DIF -6	<i>H</i> <b>(</b>	<u>7/ -</u> <u>vz.</u> ?5 °	LENG DEPT CASII WATI PROE	- I'H of ( NG RE ERLIN BLEM	2008.;_ EMAINI E LEN 3;	PAGE 9_7/ 6. NG: GTH:	/ m 	of _2
DEPTH (metres) From	GRAPI-	DESCRIPTION		RECOVE	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SAMPLE	AMPLI	E DAT	A			RESUL	.TS	<u> </u>
6-61 61-7.6 7.6- 10.8 10.8 237		CASING legenshite Tax Pegnstife generally Trimp hit some Zins Teittany dyle fignan divite since In or p colcarences; both control Pegnshite becomesh th Sight grue colour, -1 grades coaver grained First P 176- 1841 First P 196- 194 185-23.7 - peg 2922 be assualleting cole -51 - good graphic textures	+ dyke eL sizz ed ed ed ed ed to are o upe to 5% ogn f > (4.5cm m m licat. 1. pro- dialogna (1.5cm)		90"(A 	comtact failt	in clary w s. 1.	+r γγ,ρь +r γγ,ρь 									

		•	 
		and an An	
	÷		
• •	Nan.	•.	

		· · · · · · · · · · · · · · · · · · ·				HO	LE No. <u>sh-</u>	701	<u>4 C</u>	<u>1- (</u>	2			PAG	€ <u>,2</u>	_ of <u>_ 3</u> _
DEPTH (metres)	GRAP	DESCRIPTION	RECO	STRU Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	s	AMPL	E DA1	A			RESU	LTS	
To	ċ		VER Y					SAMPLE No:	FROM	то	LENGTH	FAN En	1/0	PPM Pb		
		Biotike Gruss group of ten					+r py					-				
28.7		grades nove notice & 24.5m	<u> </u>	78500	0.0				<u> </u>	ļ				$\vdash$		
<i>L</i>	92	Callo - Silico la distritori Some		10 CM	405/1					<u> </u>						
		rear astim of section	<i>ny</i>	DC CA	Con bort			5 1.154			/0	04		┝──╄		
	*	25.3 - 25.7 - see du with		45 70'0	So hand	····	50.00	31211	124.4	25.5	1.00	44	1.19		<u> </u>	
·	<u> </u>	In py and Clail band & 25.55 m			*** <u>****</u>	·····	1 pr gec , pr	810181	102.2			170	1.17	1516	<u> </u>	
·	<u> </u>	with 1.2 mm stripter of 50, 3rd						21670	10. 34 12			1.38				
·····		Band one spin below see contact in	<u> </u>					-	1	1			1			
		Dia Greist - fix 2mm to 3cm wide				· · · · · · · · · · · · · · · · · · ·							f			
<u></u>	┣═ <u></u>	minor ga and sp in peg in between	en			·····										
		sturgens an dissem														
38 7 -		and a seturate the set	·····													
2115	$\overline{c_{\prime}}$	Care silicate in the 35 to peg.						ļ		<u> </u>	L					
31.8	19-	Her Hem - gnt - a. 070.		170°CA	unding	I		ļ		ļ	<u> </u>		ļ			
	l				V	<del>_</del>	-			<b> </b>			ļ			
31.8 -		Make biotik Govern			• •				+				<b> </b>	<b>├──</b> -	$ \rightarrow $	
34,4	1	0		1	····	······································		<u> </u>						$\vdash$		<u>-</u> .
				750	contract				·}				-	<u>├</u>		<u> </u>
34.6-	×	Pegmatite with histik clots							╂───			·			-+	
37.8	××	min b.o.G calesil - ones					m tuck t		÷	<u> </u>						
		2 5 40.					in clubs				<u> </u>		{		<u> </u>	
								1			<b> </b>			<u> </u>		
37.8-		Bio Gn with muse calcisit	•	450	foly.		ter en co	1					<u> </u>			
43.3	╞┲┈╼	development - more cole sit rear		<b> </b>			on Front									
		Corton 40-50 Jocale SI		70"	Alp.											
1172	<u> </u>			65	contact			<u> </u>	<u> </u>							
54		resmahle - strange cyprease to	——	+		wservete.	1-2"1+1-4.,00	ļ	ļ	ļ						
<u>~~~~~</u>	<u>+</u>	Le accepting Narble - calc/silicale		-			on first as cloty	<b> </b>	ļ	<u> </u>						
	<u> </u>	Cight and it the for all - the		1.5				ł	ļ		<u> </u>		ļ	<b>_</b>	$\square$	
		VATT CLUIN IN WILLS BOUNDAINT SUCCENT		<u> </u>	1001-0107					I			1			



· · ·

. . ....

						HO	LE No. <u> Bh-</u>	DD	<u>H 01</u>	1-6	,	_		PAGI	e <u>3</u>	_of_
DEPTH (metres)	GRAD		REC	STRU	CTURE	ALTERATION	METALLIC MINERALS (%)	s	AMPLI	E DAT	Ά			RESU	LTS	
From To	H-C		U V E RY					SAMPLE No:	FROM	то	LENGTH					
43.3 -	L/5	" silicified mb - banded light even @		70°CA	bundingin	· · <u> </u>		1.240						<b>†</b>		-
540	$\frac{7}{7}$	46.0-46.1 m, followed by dE					(1.2° 0 0 - 25	31883	460	468	0.2					
cont.	CK	grey cherty Zono to 46.5m - st.				ક, કોંદ	P C P P		1							
	Х¥	appens to the recordary, ayee														
	<u> </u>	Strippers through 2312														
	4					·										
				5	headow in						ļ		ļ	<b>↓</b> Ì		l.
560-	Cle	aconverte gren pk cale s. 1		45	C/S			<b> </b>	<u> </u>		<u> </u>		<u> </u>	1		<u> </u>
1.75		Witti 30 10 page		58-55	(2211-115				<b>i</b>	<u> </u>			—	╡───┤		┟───┤
											÷	·	┨────	┥──┤		<b>⊢</b>
57.5-		Big bb Garaiss with Almohile Can			+			-					<u> </u>	<u>}</u> }		⊢−−+
60.1		Section Q						+		<u> </u>			<del> </del>	+		<b>├</b>
					* <b>{</b>								<b>+</b>	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>		+
											+		<u>}</u>		$ \rightarrow $	<u> </u>
60.1-	<u>74</u>	Resonatite with ate bio(5%)												<u> </u>		
63.4	44										1	1	1			
·				75	untact							i				
63.4-	C/c	Calc Silicate with 600 Go		70	fola								<b> </b>	1		
66.0	· ′	Zone	····											<b>†</b>		· · ·
	ļ					-					1				[]	
660-	$\vdash$	Pagmatite with more				IN Seriale	1-24000000									-
·	×	dy's up what goe or bin Go		70"	foli	1 weater	an clube str.									
		zones? V minor got in per - but	ļ		-											
<u>-99.t</u>		gut in creases and bio 2 1-2 /old					2-3	131-18	10.1	924	-++			<u> </u>	ļ	
		(0) Rd. 4 - Olem Amphab TOTO		70~	Holi								<u> </u>		<b> </b>	
	-x-	ten sections higher bio			····			·				ļ	—	<b> </b>	—	<b>↓</b> ¦
	<u>↓</u>	Complete Trank () () ()	<b> </b>	+	+				+							<b> </b>
	>	E 6 991 9916	<u> </u>	. مهندن سم	Ca. OL					+	··		┼──	┿		┨──── │
	$\mathbf{x}$		<b> </b>	<u> 5¤.\//</u>	Tempe.		-		+		-		+	+	┥────	<b> </b> ;
			t			· · · · · · · · · · ·				+	-{	<u>†</u>	+	+		<b> </b> i
	-				· .			-		<u> </u>			-		<u></u>	<u> </u>

	1. Q			
	1. C.			
			•	
	1. · · · · · · · · · · · · · · · · · · ·			
			• •	
	•			
	••			
	· · ·			
•				
·· · · ·	•• V ~ '-		1	

r

						HO	LE No. <u>B 14</u>	וק	<u>2H</u>	<u>òı</u>	- 9			PAGI	e_4	_ of _(
DEPTH (metres)	GRAP	DESCRIPTION	RECO	STRU Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SA	MPLE	E DAT	A			RESU	LTS	
From To	H C		V E R Y					SAMPLE No.	FROM	to	LENGTH					
644-		lesmatite				····	to py po									
938		@ 71 4 - 71 & culc - 51		75	Catal			l								
(Contid)		1 mand @ 76.1m - man Frank I with		45~	.forme to											
		+tom 77.7 - 33.0 - mixed														
		with trained, Amphile Gineiss														
	┨────	generally 10:200m wide but						· · · · · · · · ·								
		up to your; 2 20% Grass											<b></b>			
		· · · · · · · · · · · · · · · · · · ·				······································						<b> </b>	<b>⊢</b>			; ;
024					1 12 41		• ·						<b></b>			
00.01		Fimphybolite Greiss with 2		70	HARN .					· · · · · · · · · · · · · · · · · · ·	ļ					i]
02.		40-10 pez dyles - conne greinet									1					!
<u> </u>		whe print					<u> </u>						i		I	
<. II	l	a bigtike Gdi dyke (* 84.8m		40,50"	contact	······································		1								
Ech-		85.4 m			-	······					<u> </u>					
				·							+		$\square$			
}	<u> </u>				-		_	<b> </b>					<b>└──</b> ┨			
	1		·		-					l						
											<u> </u>	Ļ!				
						······································	u									
					_ <b> </b>			<u> </u>								
										<u> </u>						1
<u> </u>	<b>├</b> ──															
	<b> </b>										ł					
						····										
											_					
<b> </b>	<b>_</b>															
···	L												]			
	1															<u> </u>
<u> </u>	<u> .                                    </u>							1								· ·
			<b></b>													
		<u> </u>		<u> </u>		<u> </u>										

						HO	LE No. <u>814</u>	Dï	<u>)н-с</u>	• <i>i —</i>	- 2			PAG	<u>е З</u>	of{
DEPTH (metres)	G R A		REG	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	S	AMPL	E DAT	A			RESU	LTS	
From To	Р. Н С	DESCRIPTION	V E R Y					SAMPLE No:	FROM	то	LENGTH					
39.3-		Call Silcapp - Purpy fine		BUCA	contack		7270 50									
		grained some got brinds 5.10-m		75 CA	banding in											
41.4		unde.		ļ						ļ					ا 	<b>.</b>
		pro contracts in 60% of section		4.5-50	"interty		IN WINCLARY		ļ						·	╉╼╾╌┤
				ļ	<u> </u>		, 									
		the Duck's of Brutite														<b>}</b>
่⇔เม่ไป	<u>.</u>			(Gana)	contact		<u> </u>		+	<u> </u>						┨──┤
- 141		Dio Grass as to pay section		10-15	1 derection		<u> </u>		+							╉──┤
to0.0		Annah Gin wines			1-2 5 1440										(	1
<b></b>		51.0-54.0 - mano muro sil		75-20"	1. sading											
		rul zone with 20 cuts sim				······	···-									1
	·	70m @ 51.3 m + 151000 / 5cm					151000/5cm		1							
· ·		Some Rey		45-	Paralate		, ,					i				
		10													<u> </u>	
60.0-		Lole-silicate with 75-80%			<b> </b>	· · · · · · · · · · · · · · · · · · ·			Ļ	ļ					L	$\downarrow$
<u> </u>		promoti Le		<u>° ی معم ا</u>	2 mg comback				-	<u> </u>		[			<b> </b>	
		(0 61.5 - 18 cm 2000 - Silicomo	ļ	· · ·	┞───┼			4818	615	61.62	.15			$\vdash$	<u> </u>	+
	·	with possible much sp in 2 kinds			· <u>}</u> ]·		+- 32 77				-	<u> </u>		┟╼╾─┤	├──	╉───┤
		1cm 1.5cm withe	<b> </b>											$\vdash$	<u> </u>	┼──┤
137-		mul Carrow as a the total			1.2					-				d		+
		may a Gruss way man rich		- <b>1</b> a ~ <b>1</b> a CA	1 Oren			+	·		+		<u> </u>	┢───┦	├──	╉──┦
<u> 6 10. Y</u>					1 1					1						++
				-70" (H	contact.											++
64.4-		promobile will unon Amer										1		, · · · ·		
·		Ginerss Tonlo VY. Maner arte sil.	[													
· · · · · · · · · · · · · · · · · · ·		@ 66 2- 470 - cherty zone					+r 30?	13127	9 66.2	671	.3					
		with possible top in bands in	<b> </b>											ļ		
	ļ	Withanty want within pog/ce/Amet	4		- <u> </u>	····		-				1			<b> </b>	!
220	·	invest zone + sport fig - near	+		· · · · · · · · · · · · · · · · · · ·	· · ·									<b>_</b>	

				•			HOLE	NO <u>.</u> BH-	<u>DDH</u>	01	7				PAGI	E_1	of_2_
COMP/ PROJEC PROPE	DIAI ANY_ CT RTY_	MOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATION GRID COON NORTHING EASTING_	9 m/ N RD7	1348m 1348m 700N/247	DA1	TE: Collared <u>⊰ /פו</u> / Completed <u>3(/פו</u> Logged <u>1/ סב/</u> GGED BY: <u>ד Pou</u> RE SIZE: <u>את</u>	01 DEPTH 101 0 101	DIF (	· A	<b>z.</b>	LENG DEPT CASII WATE PROE	TH: TH of C NG RE ERLINI BLEMS	DVB.:_ MAIN E LEN 3:	<u>38.7</u> ,  ING: IGTH:	n In 	
DEPTH (metres) From	GRAPH	DESCRIPTION		R ECO>	STRUC Angles	TURE Veins	ALTERATION	METALLIC MINERALS (%)	S		E DAT	A			RESU	LTS	
То	Ë C			ËRY					SAMPLE No:	FROM	то	LENGTH					
0 6.1m		CASING withered peg and stain - diop, gut, anget skain	with po					12 Jupp				3					
61-7.6		d.op, gat, act skan with very never fract, with	၉၈ ၉၈ (၉၇)ရ (၉၇)ရ		IS [°] CA	fract		11210 po	131820	4 I	-7.6	15					
7.6- 8.5		folicited m.g. granadic (appens young - Pat early Moscane) - or for to structure?	rute_ eoz or clà due		40° CA	folin + Confacts											
<u>85</u> - 11.6		Pegnatite py, po as clots and st. graphic texture mine gents, call sit bander 10.1m	r. Source		40°CA Suina 30'	str · py		Yz % ρο, ργ									
11.6 - 17.3		biotite (GDi) granodion -cg. eccasional V. mak f (Simian in compin But ao in 7.6-8.5 m; sear track	k m.g. oliation out fol	·····	v = 10"CA	Frack											
		isone peginternes-from	15. Cm - M	3.n	5 <b>5</b> °CA	1 entert	h.lim	- 1 ⁶ /6 g c				+					

с. С. в. С.

. ..





......

.....

		- P			· · ·	HOI	LE NO. <u>Bh</u>	- DI	рн -	01	- 7			PAG	2	of_2
DEPTH	g		R	STRUC	TURE		METALLIC	_	AMD					oceu		
(metres)	Å	DESCRIPTION	50	Angles	Veins	ALTERATION	MINERALS (%)	3	AMPL	EUAI	A			KEQU	L13	
From _	Ĥ	DEBORIF HOM	С С					SAMPLE	FROM	то	LENGTH					
То	<u> </u>		Ŷ					1 100.	<b> </b>	Ļ	m					<u> </u>
14.3		Pegmatite. C.g. XLS to Sim				+ vw son	+. Py . Po	ļ	<u></u>							<u> </u>
		any lem, minor get, good and bic							<u>  •</u>		<u> </u>				ł	
· <u> </u>		some your example for these							<u> </u>		<u> </u>			{	-+	
		(a) JUG- 21.8 - More britan more				w see tim.	1 + + + + + + + + + + + + + + + + + + +	13182	1 20 7	3.6	109				-+	<del>_</del>
		musc.		· · ·		-		ļ —	<u> </u>	<u> </u>	<u> </u>				<u> </u>	
		@ 25.0 in small frendt				w clay ser.		+		<u> </u>						
							-[									
<u> </u>	ļ	- miner section of bio age(tg)														
<b></b>	<b> </b>	cremently up to loca long						1								<del>_</del>
	├	@ 33.0 - ganzally nov gar - 5 10								-						
	<b> </b>										-					
38.7m	ļ		<b> </b>	1		··									<del> </del>	
ļ				-											<u>+</u>	<u> </u>
			<b> </b>	ļ											┢────┤	<u> </u>
EOH									-						┟╌╍╌┤	
ļ-				<b> </b>				-	-			┥			┟───┼	
	┨───		<b> </b>	<u> </u>											┟╾╼╾╌╄	
	╄──-•			-}				_							┢	• ·
	1			-	ļ	-		_		+					┢───┼	<u> </u>
						<u> </u>						-			╞──┤	<u> </u>
			I		<b> </b>			1	_	_			· · · · · · · · · · · · · · · · · · ·		$\vdash$	<u> </u>
		· · · · · · · · · · · · · · · · · · ·	<b></b>	+				1				-			<b>├</b> ──┤	
<u> </u>	╂		┨		+					·		<u> </u>		<b>├</b> ────	┝───┦	
	╂───			+	<b> </b>	<u> </u>					<del>.</del>		<b> </b>	<b> </b>	┝──┤	
										+	+	<b>-</b>		┼──-	┟┦	
	<b>_</b>				4	+							<u> </u>		$\vdash$	
I					<u> </u>				_		<u> </u>		<b> </b>		$\vdash$	<u> </u>
			1		<u> </u>			-			<u> </u>			<u> </u>	+	
													+	┥───	$\square$	<u> </u>
<u> </u>				1	ļ			_	<u> </u>			4			$\downarrow$	

DIA COMPANY_ PROJECT_ PROPERTY	MOND DRILL LOG Cassidy Gold Broken Hill	NTS CLAIM ELEVATION GRID COOF NORTHING EASTING	<u>, 2 M</u>	/14 345 m 720 <i>n/2</i>	DA  <u>5+65</u> LO CO	HOLE TE: Collared <u>31/01</u> Completed <u>1/03</u> Logged <u>2/03</u> GGED BY: <u>T</u> fact RE SIZE: <u>1/02/01</u>	NO. <u>BH</u> -	)))   DIP 		<u>vz.</u> <u>35</u> "	LENGI DEPTH CASIN WATER PROBI	[H: I of OVB.; G REMAII RLINE LE LEMS;	99	E   7 14-7 DA	
DEPTH G (metres) A			REC	STRUC	TURE	ALTERATION	METALLIC MINERALS (%)	s	AMPL	E DAT	A		RESU	JLTS	
From H To C	DESCRIPTION				·			SAMPLE No.	FROM	то	LENGTH				<u></u>
	CASING - disposit-gat skow pegmakite bio Greas Calc silicate grading to blettle Greace - 100m is	60°10 30°10 10°10		55°ca	barreding in	t tr mgts, pr		131870	<u> </u>	71	1.0				
75	at start with a lim: make in sections of co notably at 6.2 and 71 pen contacts - light pink calc sil.	some sinne De -st/Ge Men lanne													
	Pegnalite - very 6 borren from 7.1 - 8.6 appens silicified 9.3-9.5 Fault @ 14.6 - 17.	Inact, 7 Fault - Im S Fault -		35°CH 0-15th	fract fract -	tw-meday 5 lim + m-s Sil m lim 25 cl, MimwMn.	+r popy +2"10 po 	131891 131891	71	8.F I.8	1.5 1. <b>A</b>				
	Gibid- failting from 14:4 - 19.9 Failting from 14:4 - 19.9	:Ha ру, ро e Gn. - Ль у м		30° (A 75° (A 25° (A	contact foli	m sor	1-2" hs py , pu	13/649	12.3	13.5	1.2				

• ...

.

		•		
			•	
			<ul> <li>A State of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se second second li></ul>	
			•	
		h		
				Constanting of the constant of
			and the second second second second second second second second second second second second second second second	
	1			
			•* ·	
			1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	
			the second second second second second second second second second second second second second second second se	
•				
	with the second second	the second second second second second second second second second second second second second second second se	6	

Г

						HOI	LE NO. <u></u>	DDH C	<u>, - ,</u>	8		PAGE	<u>= ੨</u>	_ of _
DEPTH (metres)	Git ≪n	DESCRIPTION	RECO	STRU: Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SAMPI	E DA	TA		RESUI	LTS	<u></u>
From To	H C		VERY					SAMPLE FROM	01	LENGTH			T	
28.4 29.6		calc silicate to minor Sio Gn. contact weekly silicitized, hourfeloof		30°5A 704A	Contact Bolin	- w sil (local)								
<i>39.6 -</i> 34.0	¥¥ X¥	Personatite n-rey 1- upto 500				9,655 / mile 43	tr po, 14							
54.0 n- 36.1		Bio Gneiss		45	foln	······································						 		
36.1- 39.5	1 ¥ * *	Bio Gneiss - partially assimilated										+		
39.5 -	F.7	Vations Openans of asomilation					, Øct							
40.7	74	5 Asken at top - fault from 39.3- 39.8		15" ?	fault	wser, wday	- + pi po - + pi po							
40.7- 444	 Cis Y Y	BioGness / Call Silicak with 30 10 pegmentile; gracess hourfelsed		60°	6 Stating									
44.6-	47 174	Reenghite C.g. ut e. biggd: dy @ stat 452-45.5m		40° (A	contast.	Υ <u>τ</u> <del>***</del> ρ _γ ρι								
4.8.7-		Bio Gness - folding and		70° CA	foln									
		Usingly Coults - displ. but and and direction not endent		50"01	for the									
		some pp at contact and 11 contac	F	65"	(overat						 			; ;
	<u> </u>	I	I	<u> </u>	1			11	1					

• .



.

Earl

## 

-----

						HO	LE NO. <u>Bit</u>	DI	≥H	01-	- 8			PAGE	: <u>3</u> of
DEPTH (metres)	G R A		R E C	STRUC	CTURE	ALTERATION	METALLIC MINERALS (%)	S	AMPL	E DA1	TA			RESUL	.TS
From To	₽ H C	DESCRIPTION	OV ERV		VOIIIS			SAMPLE Na:	FROM	σ	LENGTH			· · · · ·	
50.4 -	××	Pegnatite c.g., gnt		-			trpy,pu					+			
56.8		Very minor time Big (In ( 53.3- 535													
	- <del>`×</del>	with pay frago in Ga		15 1.0	Const.										
	¥			7.5".	Contact	·				<u> </u>					<u> </u>
54.8-	4	Ample & Greiss, some biv Gn					tr.po								
	t	intervals with 15 10 peg		870	foli		·		<b> </b>	 					
	v2	fault of left - conce				it il a					+				
69. N		the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		87°	Loli	no clary, ser.									
		-larger pez dy @ 70.8 - 734		75°	Genlact-										
		Grinsson lower in section ground		75-80"	Goen										
		85.0 m													
							•		·		-				
									[						
<u>-</u>	-								+						
						1 % dage og			+				~+		
<u> 39.4 -</u>		-2													
<u> </u>		Vaymante, c.g. 20me shinright	-						Į		-				
		@ 943-99.7 Eur - Dault 702		Se"	Contract	in ser i da	····		<u>+</u>				ł-		
	<u> </u>	UU		15~	handt	,									
au n	<u> </u>				<b> </b> ∽−−−−			<u> </u>			-				
<u></u>						- ***		+	<u> </u>	<u>+</u>					

DIA COMPANY_ PROJECT_ PROPERTY_	WOND DRILL LOG Cassidy Gous Broken Hill	NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	83 N RD2	m/14 13 <b>53</b> m 1350N/21	DA1	HOLI TE: Collared 2/03 Completed 2/0 Logged 2,5/0 GGED BY: 7 fan RE SIZE: N (2)	ENO. <u>BH</u> -	00 01F	<u>vz.</u>	LENG DEPT CASIN WATE PROE	- 'H of Q NG RE ERLINI BLEMS	<u>29.6</u> )VB.:_ :MAINI E LEN 3:	PAGE	<u>€_/</u>	_ of
DEPTH G (metres) A From H To C	DESCRIPTION		RECOVER	STRUC Angles	Veins	ALTERATION	METALLIC MINERALS (%)	S SAMPLE		'A Length			RESU	LTS	
0 - 8.8 11.5	Tertiary matic dyte in a Tertiary matic dyte pr phenes, usably cal f.g. dioxite rully contact	ASING Small													
13.9	Calc-silicate with 30° Granss	ີ່ໄດ (ວ <u>6</u> +`ດ		15°CA	Con les (										
13.9 - 20.8	Testiany making dy as about	<u>ke</u>		45° (A	confact		-								
20.B - 25.1	Bio Graiss - With s minipegnatife - up to loca	some (5%	)	50-55° 70° cA	folis										
25.1- 29.6 EoH	Regnatife with some Bio Greiss	(25%)	-	7 <u>,7</u> ,°	folh										

									- ···	-					
DIAMOND DRILL LOG COMPANY Cassidy Gold PROJECT Broken Hill PROPERTY	NTS <u>&amp;</u> CLAIM ELEVATION GRID COOF NORTHING EASTING	<u>∂</u> ↓/ RD <u>8</u>	/14 352m 350N/25	DA1	HOLE TE: Collared 1/02 Completed 2/02 Logged 3/02 GGED BY: <u>J. Puo</u> RE SIZE: <u>M2</u>	NO. <u>Вн</u> /от <u>рертн</u> /от <u>о</u> /от <u>о</u>	) DIP -50	- <u>-</u>	<u>1 - 9</u> <u>z.</u> <u>35</u>	LENG DEPT CASII WATE PROE - 10s	TH: H of C NG RE ERLINI BLEMS F 15 NG A	<u>ع</u> ۱۷۵:: ۱۸۵۱۱۱۲ ۱۹۹۵ - ۲۵۲ ۱۹۹۵ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۲ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ - ۲۵۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۵۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹	PAGE 	1 of 93 1m 1m 0 co bo pollogi	· L
DEPTH G (metres) A From H To C		RECOVER	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	SAMPLE		E DAT	A		F		.TS	<u> </u>
0-9.1m CASING 60"10 cmt-diop ca 30"10 mg 10"10 Bio Gri	le silicate ska . Otz Monz	¥ 					3								
91-11.3 Calc silicate low - An colcite - diop - gnt : A in section - ling	t <u>c.g skan</u> - Scimper vugs:	×	90°CA	60 - d. H. In Cis											
11.3 - Why whe x Live markele.	+ @ 12.1 m 6:0 C7n			6a. a. 7 . r			(3187),	12.1	12.7	07					
at 128 gradio inte	oney		68°CA 62°CA	contact.		tr SX purey	131874	12.8	13.3	0.5					
Silicions/charly => sil	eified? ML ichied? ML ica wishe n-not-massive		25:35 62-01	Snoel Caulty -	Rifdisplassmant 0.5 mm							·			
Hto (B 13.3 - grey banded M Horis spothy cole-sil d NB. * in = unverter to ix	50: 10 to 1320 15 w. th 3 welopmant in chlored	<u> </u>	90"(1)	bunding in most			13187	713.3	14.05	0.75					

THE STOPPING

•
- 4 - 4
• .

•

. . . . ..

PAGE	<u> 2</u> of
------	--------------

· ·····

-		·				HO	LE NO. <u>Bh</u>	- DT	<u>) H (</u>	<u>21 -</u>	- 9			PAG	<u>е 2</u>	_ of
DEPTH	90		RE	STRU	CTURE		METALLIC	SA	MDI	E DA1	ГА			PESI		
(metres)	P	DESCRIPTION	ç	Angles	Veins		MINERALS (%)							KEOU	, CI 3	
rrom To	H-C		Y R Y					SAMPLE No:	FROM	το	LENGTH					
14.0 -		Rezmotite.		55°(A	confact		trice on									
16.0		@14.3- fractures with		15 CA	Ingener											
		<u>sejekennedes</u>		Detin	Slicks											
				30"00	contact-							$\square$				
16.0-		Calcosil 15 1/2 min dem		1700	bandurt		TTF-	<b> </b>	·	ł		+			├───╂	
17.7		Cm.a.			<b>1</b>		12 10 00, 17				<u> </u>	<u>├</u> {				
		·····														
17.7 -		mixed Big Green with some		75	contract							$\left  - \right $	···		$\left  \right $	
_		man call sheak rich hands		1.5	for			1			1					<u> </u>
23.9		cale sil burde sudent from to														<u> </u>
		21.3m then sin Go dominat		7 . '	folini		-			1						<u> </u>
		225º10 peg in Section.			GA					1	+					
		10								1						
				900	contact					1						
23.9-	L	Pregnatite union cont				W-m ser.	YZ"00004	1								
	<u></u>	nuse t bio. some buo Gn														
34.4	7	Sections (avine) gravish to use														
· · · ·	$\Sigma_{\mathbf{x}}$	iolon			-											
	1-	1 33.0-34.4 Fault		400	faul ,	contect -	<u> </u>									
			<u> </u>	15-22	fract							L				
24.4.		Bio GA		804	1 Lota		·									
35.0		1-1-2 kr.		<u> </u>	L						_				ļ!	
				70	Contrael-						<u> </u>	Į				
-35.0-	145	Calcisilicate , 30 upon			barding					1	<u> </u>			ļ	<b>↓</b> !	<b></b>
1-36.2	┨───	· · · · ·		55	22 con La	uts				<u> </u>		4		ļ	<b> </b>	<b> </b>
36.2-	+	Bio Graces with 30° 10 10			1 C.P.								<b> </b>		+	<b> </b>
79.3		miner land with a light		10-10	- ATTA		- fail		<b> </b>	+		<b> </b>		<u>├</u> ───	<del> </del>	<b> </b>
	1	the Schuller	t	1	+		<u></u>			1	+	<b>+</b>		1	+	<b>-</b>
	1 -		1		1					1	+	+	<u> </u>		+	+
					•			<b>.</b>	<b>L</b>		_ /	<u> </u>				<u> </u>

		·····		<u>.</u>			НОІ	ENO. RH	<u></u>		- /	,			PAGE	 ₹_/_of
COMP/ PROJE PROPE	DIAMOND DRILL LOG COMPANY <u>Cassidy Guid</u> PROJECT <u>Broken Hill</u> PROPERTY		NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	<u>8</u> : N RD 3	2 <i>m/14</i> 1345m 1350 <i>N/2</i> 0	DA	TE: Collared <u>03/0</u> Completed <u>3/0</u> Logged <u>4/0</u> GGED BY: <u> </u>	2/0/ DEPTH 2/0/ 0 2/0/ 0 2/0/ 0 2/0/ 0 2000	007 - 7(	· · · · · · · · · · · · · · · · · · ·	<u>vz.</u> <u>30</u> [°]	LENG DEPT CASI WATH PROF	TH: TH of O NG REI ERLINE	/VB.:_  MAINI E LEN/  :	<u>41, 8</u> <u>6.7</u> NG: GTH:	
DEPTH (metres) From	GRAPH	DESCRIPTION		RECOVE	STRU Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	S,	AMPL	E DA	TA			RESU	LTS
To	¢	10 × 110 × 12	,	R Y		· · ·			No:	FROM	10	LENGTH			$\square$	
		40" v chline - u	4 17 in 17 an 19 5 5								<u> </u>		┢━━━━╋			
47-81		Peg -cg - grading into mg.	Gio G for	145	0.9m			troy				1			-+	
8.0~		Dominently calc-sil	i(4 P					1. 04,00								
12 3		Finddipp with some of	n+ Gentes			0.0					ļ <b>*</b>		┢━━╋		-+	
		to hall Groves Group	<u>- grads</u>	<u> </u>	60°CH	torin							┝──┼			
		of selfion - and dys	nyte	1							+		<b>├</b> ──┼		-+	
	ļ	wy 30 10 of section, c	- peg										<u> </u> -			
					600	cn kak										
113.3		· · · · · · · · · · · · · · · · · · ·		ł				· · · · · · · · · · · · · · · · · · ·	<b> </b>				┢───┼			
- 18 8		Big Grades with 27%	RIQ.		4.20	Colo						-	┢───┾		-+	<b>_</b>
			10		50-60	200	· · · · · · · · · · · · · · · · · · ·								-+	
						1 CONHOS										
18.9 -		Calc-strate with	10 m	-	750	Con Frick			<u> </u>				$\vdash$			
		Very main win 6	in Gn		55-75	- HORA	· · · · · · · · · · · · · · · · · · ·						┝──┾		<del> </del>	
		bands.		1							<u> </u>		┟───┾		-+	
23.6				ļ	10 "	lu vertenet										
<b>├</b> ──				<b> </b>		(14 1 m)					<u>                                     </u>					
				<u> </u>		-				<b> </b>			┟┈──┤			
		· [**· - · · · · · · · · · · · · · · · · ·				1	f		<u> </u>	<del> </del>	-		$\vdash$			

, k

. . . . .

	•			
	-			
	:			

	Q I					HOI	LE NO. <u>BH</u>	DD		<u> </u>	- 11		<u></u>	PAGE	:_2	_ of <u>_</u> 2
DEPTH (metres)	GRAPI	DESCRIPTION	R ECO	STRUC Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	ŝ	AMPLI	E DAT	A	,		RESUI	LTS	
То	Ĉ		E R Y					SAMPLE No:	FROM	то	LENGTH					
23 y -		Amold Greiss with mon				· · · · · · · · · · · · · · · · · · ·										-+
Z 🕄 C	>	4 - locas Lide; muss galia whe bus	5_07_	\$ b5-85	foli											
		c g flog = 60"10 of. Zone	V			······							-+	$\longrightarrow$		
				60°CA	confeict		w. po at contac	~	ļ							
380-		Pegnatite with new gat		PSYCAT	pag rentycts	W chl.			1							
		Zoni		0.2 41 6	bassner				<u> </u>							
41.8						· · · · · · · · · · · · · · · · · · ·										
<u>E</u> <u>CH</u> .				······												
•- <u>-</u>		······································														
			<u> </u>													$\mid$
											1					
									+	<b> </b>	<b> </b>					
	-				· ·		···		+		<u> </u>	┨	┞──┦			

(i) A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

		a and a second second second second second second second second second second second second second second second						'n.									
			· ·				HOLE	NO. <u>DDH</u>	01	- 1	a				PAGI	E_4_	_ of _7
DIAMOND DRILL LOG COMPANY Cassidy Gald PROJECT Broken Hill PROPERTY			NTS CLAIM ELEVATIO GRID COO NORTHING EASTING_	8 N RD <u>E</u>	2 m/14 Tto7m 2490N/24	DA  LO CO	TE: Collared <u>3/02/</u> Completed <u>3/03</u> Logged <u>4/02</u> GGED BY: <u>Σ</u> Ραυ RE SIZE: <u>N</u> Φ	<u>LI AM</u> <u>DEPTH</u> <u>/UI 0</u> <u>/UI</u>	DIF  - うし		z	LENG DEPT CASI WATI PROP	TH: TH of C NG RE ERLINI BLEMS	>VB.: MAINI E LEN: 5:	<u>/ 4 8</u>  NG; GTH:	<u>м</u> З т	
DEPTH (metres)	GRAP	DESCRIPTION		RECO	STRU( Angles	CTURE Veins	ALTERATION	METALLIC MINERALS (%)	S	AMPLI	E DAT	A			RESU	LTS	
From To	н I C			>ER >					SAMPLE No:	FROM	TO	LENGTH				T	
0 - <del>6 - 1</del> 4.3		CASING Peymakke															
Last-																	
4.3 -		Pegmahite c.g. w.	th									ļ					
-15.7		Calc S.I (GR (a) 7.	<u>5 m (3.3 m</u> )		66 40°	(m. Last										_ <b></b>	
		15.7	- 15.9		55		· · · · · · · · · · · · · · · · · · ·										
		@ 11.3 - 12.0m - for	alt in		30-35	funt	mcla, w sor.										
		1200 Jacky				ļ			<u> </u>								
		U (W13.5M - ICM ban	(th		<u> </u>	•		42 is po		<u> </u>			<u> </u> !	┟───┦		ł	
								1			<u> </u>			┟───┦			
159-		Biothe Gneiss wit	h 40%		65~	Foln_		-tr po	_		<u> </u>		<b> </b>	$\mid$			i
264		peg. and call Si	N DW		1								<u> </u> i	<u> </u> !			
		45cm burds except					······································						t	<u> </u>			
		6and Q - 241-250 -	cale .	ļ													;
	┨	Sduak.		}	1.00	1 malad						+	<b> </b>		!		·
	<u> </u>				167	CONTRACT		1	+			1	<u> </u>	╞───┘			
25							· · · · · · · · · · · · · · · · · · ·						<u> </u>			<u> </u>	
	<b> </b>		·····										<u> </u>				
L				1	<u> </u>	<u> </u>		L			1			L'			L!

.....




.

						HO	LE NO. <u>DD</u>	4 0	<u>u – i</u>	2		<u> </u>	PAG	е_ <u></u> Э	_ of _2
DEPTH	GR		R	STRU	CTURE		METALLIC	1					 		
(metres)	A	DESCRIPTION	Č	Angles	Veins	ALTERATION	MINERALS (%)	6	AMPL	EDAI	A		RESU	LTS	
From To	H-C		Ý ERY			<u> </u>		SAMPLE No:	FROM	το	LENGTH				
26.4- 29.6		calc silicate greedpink											 		
		Co 28.5 - 10, mb. band - greg banded.											 		
29.6 - 34.1		Biu Gneiss		55-60	<u>Colin</u>		tr po						 	·····	
	······	duelopment in namon											 		
341 -	 	Colla - wilks le (s. 25%)											 	· ··· · · ·	
420		presmetite (2) 41.4 - 416 - 200- banded			(und re	+							 		
)		Marinte			Contact						-		 		
						-	· ·						 		
42.0 -		Permatite with Amphib				· · · · · · · · · · · · · · · · · · ·						 			
EOH		Pag - wite, coarse grained.													

-

· · ·

							<u>.</u> :						,					
								• :			<u> </u>		-		• •			
								• •										
		2						н										
				•														
			HOLENO, RH NOH OF 13												PAGE _ / _ of _			
DIAMOND DDUU 100			NTS	NTS							AZ. LENGTH: 4/.8 m							
	JIAI	NURU UNILL LUG	CLAIM		· · · ·		Completed <u>3/0</u> 3	2/01 0	- 45	i ke	150	DEPT	'H of C	OVB.:_		551	<u>m</u>	
0040	Line		ELEVATIO	N	7407m	1406m	Logged	101	<u> </u>			CASI	NG RE	EMAIN	ING:			
CUMPS	А <b>П</b> Ү	- Cossidy Gold Curp.		RD <u>.</u>	<u>2470N/</u>	<u>2450</u> 2		1.6 m				WATE		IE LEN	GTH:_			
PKUJE	<u>اتا</u>	Broken Hill	EASTING	3		LU	GGED BT: <u>1 PAU</u> RE SIZE:	<u></u>		+		PRUE	5L.E.W;	5;				
PROPE	RTY_					00			<u> </u>	-	<del></del>				·			
050711	G		L	R	етри		 T											
(metres)	Ř	DESCRIPTION		С С	Angles	Veins	ALTERATION	METALLIC MINERALS (%)	SAMPLE DAT			ГА			RESULTS			
From	H I	DESCRIPTION		Ĕ					SAMPLE	5004			PPM	6,	1	<b></b>		
To	Ċ			PR Y					No:	FRUM	10	LENGIH M	ZA	zn	PB			
0-5.5		CASING													<u> </u>			
5.15.		Por mal la un on					o «k	,,							;───┼		+	
16.7		Nic, some ants	g I Im	·	<u> </u>		Lu				·				┌ <b>───</b> ┾	····	+	
# # #	-	(0 7.0 - 7.3 - Charl	4 zone				L'12 TOPY										<u> </u>	
		(02 13.0 in weak fail)	- fixitor	1	205	fault	• • • • • • • • • • • • • • • • • • • •											
		- V	<u> </u>	ľ	20,60	prochen												
41		Prince 1 the state	1	<b> </b>														
21.1		the assumed Rin G	<u>r Gipuls</u> Nuas	t	67'CA	toen	ł								┟───┤		╂──┤	
		sections making up to 30	10 4			Conterers		1	•	ł				<u>†</u>	├──╂		+	
	ļ	section some remna	1ª prings			ļ												
		of metics in py =7 chi	2, põ. –		<u> </u>	<u> </u>	tr chl	+rpo	1									
211-		a construction of a state		<u> </u>	40	(intach	···								<u> </u>		┼╼┅╌┤	
<u>~</u>	-	diag-ont-act them we	7/3-		25	Con-wal-									├──┤	i	+i	
28.4		(2. 21.3 - 10 cm fault	Zine		45	Foult		14000 00	1		+				┢──┤		+	
		(portigo, 124, 00															+	
·	<b> </b>	- some mapping blue bain	ts esp.						L		ļ							
·		@ 33.5-25°6	ay Fim		T Vesuvia	ph.										<b> </b>	_	
<b></b>	++	Louis n charlet	d sp	<u> </u>	45	1 4 por aling	1/4/14 \$ 1	17. sp distrim.	15130	24.5	124.7	0.1		2.83		$\vdash$		
	1	Larchalite! Cheste erch From	2 24.9-		1 24	Unert	which Lyn	1247, PO, 1000	1 21 20 2	<u>74.1</u> <u>35.5</u>	21.2	. F.	التعريب ا	9.94	0 82	$\vdash$ t	2.7	
		25.5m -so in lande : to sa 1	my some	1					13130	25.5	1.6 3	CE.	102					
							HOLE	NO. <u>вн</u>	ממ	H_G	<del>21 -</del>	13			PAGE_	<u> </u> of	<u>a</u>	
------------------------------------------------------------------------------------	------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------	--------	------------	---------------------------------------	----------------------------------------	-----------------------	----------	-----------------	-----------------------------------------------------------------------------------------------------------------------------------	------------	------	-----------	-------------	----------	
DIAMOND DRILL LOG COMPANY Cossidy Gold Corp. PROJECT Broken Hill PROPERTY			NTS 32-11/14 DATE: Collared 3/02/01 DEPTH DIP   CLAIM Completed 3/02/01 0 -45   ELEVATION 1407m 1400m Logged 4/02/01   GRID COORD B-490N/2450E 0 -45   NORTHING LOGGED BY: T. PauHer 0							05	5	LENGTH: <u>41.8m</u> DEPTH of OVB.: <u>5.5m</u> CASING REMAINING: <u></u> WATERLINE LENGTH: <u></u> PROBLEMS: <u></u>						
		 		STRUC	TURE	ALTERATION	METALLIC	S/	MPLE	DATA	TA RESULTS							
From To	DESCRIPTION			)0 > E R >	Angles	veins		WINERALS (70)	SAMPLE No: FROM TO			LENGTH	ppin Zn	10	·/U Ph			
5-5.5		CASING			1		-											
					ļ									+			<u> </u>	
5- 16.7-	F Kis, some gats					west lin								{·		+		
		@ 7.0 - 7.3m - Cher.	hy zone				242 hpy											
		@ 13.0 m weak full	H - Alachen	Ø	200	fault	· · · · · · · · · · · · · · · · · · ·		··									
		/	·	ſ	24,60	Arstring											_	
	4	<u>A</u>		<b>Ⅰ</b>				···••·································								<u> </u>	ł	
<u></u>		permatite with who	+ appen	+		foen.								• •			+	
.# <u>1.</u>		to be winned sio (	<u>huon</u>	+	67 4	conteres											-	
		Sections making up to 30	<u>, 0</u>	ł	+			+ ·	┢───	<b> </b>	<b> </b> +						+	
		sector the remain	at grass	<b>f</b>		+ · -·	t - at l			+	•						-1 -	
		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	<del>, ро</del>	1	4.5	Contact		<u> </u>	+*	† -	ļ		<u> </u>				-+	
211-		Cale Silverte der Lavel	6		320	handie	]	I	<u></u> }∕	<b>-</b>	1							
····		disp-ont - act - trem 0	0	1	+	1 <u></u>	<u>†</u>		t	+		<u> </u>				· · †—	1-	
28.4		(P. 21.3 - Win Carlt	7 m	· [	454	Could	f	1 4/10 0- 0-	1	1	t	t-··						
		Cherlage A. Az		1		1 32	<b></b>		1	†			<b>-</b>			-	-1	
		- some bulle- eller ban	d sao	1	1	1				1	1	1	1		[			
		@ 23.5-25% -1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200	act from		· ]	••••••	1			1	1	<u> </u>						
	¥	@ 24.5-24.4 dissen be	d so		400	Compline		1% so disem	13130	24.5	24.9	0.1		2.83		1.	00	
	T	bands in colosil stom to	cherty		30	tonds Th	Vary siliens	2-3750, traa.	13130	2 949	25.5	0.6		2.96	0.82	2.5	01	
		exhalite? changersh Fra	m. 249-			thent-	when hy extr.	1644, 20, think	1	355	26.3	0.8	1			_ <u>+</u>	1320	
		255m -so intendet to an a	المستوق أهمره	1	1		1		14120	4265	ت مند ا	10.6	162		I [			

Mar. 08 2002 11:53AM P1

FROM : RENALCE GEOSCIENCE SERUICE PHONE ND. : 250 554 6397

;

DEPTH R		R	STRUC	TURE	ALTERATION	METALLIC	s			A	RESULTS					
(metres) A From H	DESCRIPTION		Angles	Veins		MINERALS (%)	SAMPLE	FROM	10		prm	%			—T	
Ó of		<u><u></u></u>					No.			m	Zn	'Zh	ļ			
	ga in fractures				- · · · · · · · · · · · · · · · · · · ·		<u> </u>				<b> </b> !	<b> </b> _	<b>.</b>			
	C - Darren Cali-Sil Skann 2013			sa bisad		7 107	47.1.1	11. 2	35- -)7 C	48	<b></b> ;	767	<b>\</b>	┟╾──┟·	+	
(entin	(a) 24 34 3-5 cm and band of		/ ]0	11.0000		1710/05p	121305	375	278	03	Soe	1-277	7		—+	
	So (15-20% #15cm)	احسر	480	50 band		5-8250	301	27.8	28.4	0.4	203	3.45		<u>├</u> ──- <u>├</u> -	+	
	@ 283 - 1-3cm band of so.										77	<u> </u>	$\succ$			
			· ·				[		<b></b> .		<u> </u>		i			
	2		30°C17	Contrat			۰ <u>ــــ</u>					<b>_</b>	<u> </u>	<u>↓</u>  -		
25.4-	Dio Green with 2 25%			<u> </u>									ł			
	La silver a 227 - 29.9 m		40 20	123 44		= 47 ° 4 00 00	+	<u>†</u>		<del> </del>				┝┈┼		
			74			Call ( Silicate		1		+ •····	1	1	-	<u>+</u>  -	+	
			50"CA	confrut						<u>†</u>						
33 ] -	Regmante -generally mg										ļ	-				
	@ 37.1 · meror full		15°CA	frend + 1	·····			ļ	ļ					╧		
31.6	( 37.8 - 38.5 - Call C SHIGHE		300	(071 HZ				·	+		<u> </u>			++	— <del> </del>	
	to be Viller new bettom of	<u></u>	<u> </u>	toanen)				-						╆┯┾	·· -+	
	- Section		<b>F</b>	†		· · · ·	••• <b>·</b>	1	+- ·	1			1		-+	
			30°	Con Lord			1		Ť			-		1 1	+	
									1						]	
39.6-	Brotite Gress		350	Kolna	<u>d</u>					- <b> </b>		ļ		┿╾		
<b>├</b> ──	$- \frac{\partial}{\partial t} \frac{Q \partial d - Q \partial s}{\partial t} - \frac{\partial A \partial s}{\partial t} \frac{\partial A \partial s}{\partial t}$			and a	<u>a</u>		-	+			+ .	4	<u> </u>			
	1 hold			~~ <u>r</u> ~2				1	-	+						
418		!				·		+	<u> </u>	·		-	+	1	+	
			Ţ											*****		
EOH	· · · · · · · · · · · · · · · · ·		<b> </b>								-					
L	· + · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		+		······································						-	<b></b>	÷		+	
		↓					-1				_					

MAR 08 2002 12:15