ſ	RECEIV ED EAU RESOURCES LTE	<u>).</u>
	NOV 2 5 2001	
	Gold Commissioner's Office VANCOUVER, B.C. ASSESSMENT REPORT	

DIAMOND DRILLING PROGRAM

Drill Holes P01-1 to P01-4

PEG PROPERTY

Matthew Creek Area FORT STEELE MINING DIVISION

TRIM Mapsheet 82F.070

Latitude 49°35'N

Longitude 116°09'W

UTM 5,500,050 N 565,800E

By

Serguei Soloviev, Ph.D., Sci.D. (Geol.)

Chapleau Resources Ltd. 104-135-10th Ave.South Cranbrook, B.C.

GEOLOGICAL SURVEY BRANCI

November, 2001

TABLE OF CONTENTS

1.00	INTRODUCTION								
1.10	Location and Access								1
1.20	Property								1
1.30	Physiography							•	1
1.40	History of Previous I	Explora	ation fo	or Rare	Metals	and			
	and Industrial					•		-	3
1.50	Scope and Purpose o	f Worl	ς.	•	•	•			4
2.00	GEOLOGY								
2.10	Regional Geology								4
2.20	Local Geology							•	5
3.00	DIAMOND DRILL	ING							
3.10	Introduction								6
3.20	Results	•		•	•	•	•	•	8
4.00	SUMMARY AND C	CONC	LUSIC	DNS					9
5.00	ITEMIZED COST S	STAT	MENT					•	9

List of Figures

FIGURE 1 - Property Location Map ~1:1,600,00	00 scale .		2
FIGURE 2 – Claim & Drill Hole Location Map	1:20,000 scale		7

Appendices

APPENDIX "A" - Diamond Drill I	Hole 2	Logs – PO)1-1 to	P01-4 h	oles	attached
APPENDIX "B" - Assay Records					-	attached

CHAPLEAU RESOURCES LTD.

Assessment Report on a Diamond Drill Program DDH's P01-1 to 4 Peg Property

Fort Steele Mining Division

November, 2001

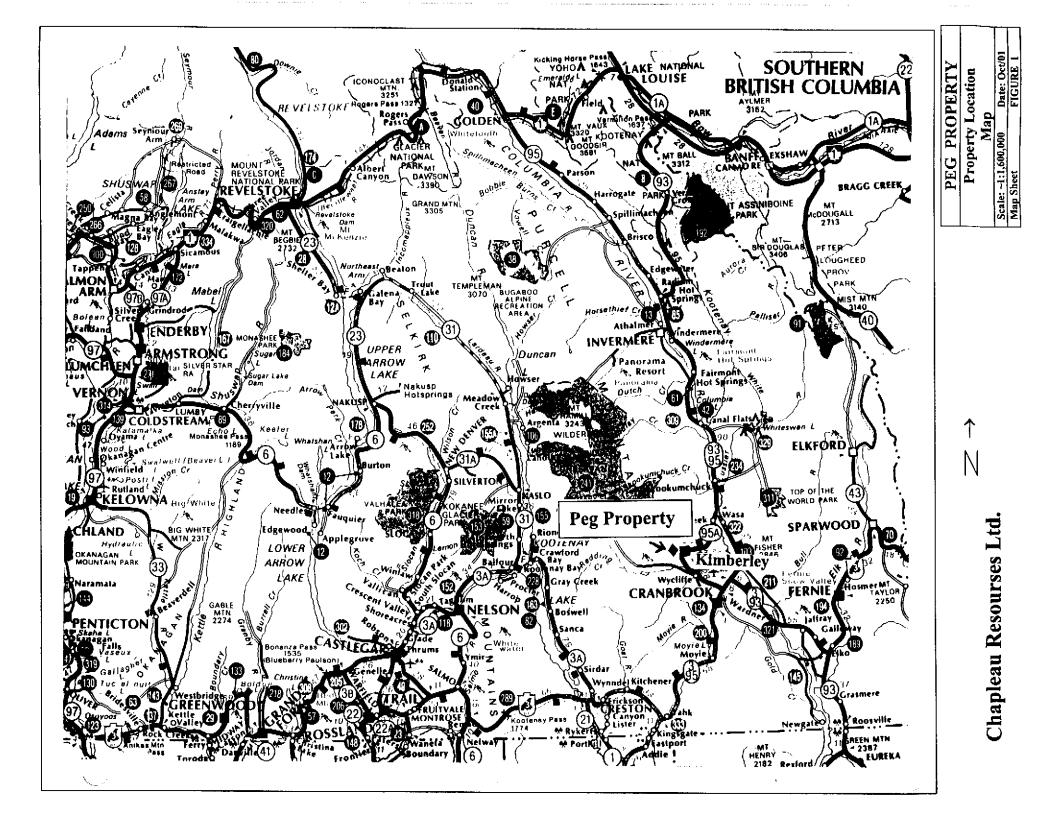
1.00 INTRODUCTION

This report describes a drilling program conducted on the Peg property during January, 2001.

1.10 Location and Access

The Peg property, which includes the Peg and Flagship claims, is located approximately 6 kilometres west of Kimberley, B.C., in the Fort Steele Mining Division (Fig.1). The claims are centered near 40° 39' N Latitude and 116° 06' W Longitude / UTM 5,499,000 N, 565,000 E.

Access to the property is via roads servicing the St.Mary and Matthew Creek drainages. The claims lie immediately west of Matthew Creek and extend west to Denver Creek, a small tributary into the St. Mary River.


1.20 Property

The Peg property consists of 106 claim units in 48 claims known as the Peg 1 to 42 and the Flagship 1 to 6 optioned by Chapleau Resources Ltd. from Super Group Holdings Ltd. in November, 2000.

1.30 Physiography

The Peg property covers a variety of mountainous terrain within the Moyie Range of the Purcell Mountains, from the relatively flat valley bottom of the St.Mary River to very steep rocky sub-alpine slopes west of Matthew Creek. Elevations on the claim block range from about 960 metres in the St. Mary valley to 2100 metres on the Peg 26 claim in the western portion of the claim block. Glacial till covers much of the lower mountain slopes and St.Mary valley is floored by thick glacio-fluvial deposits.

Forest cover consists of mature and immature stands of a mixture of pine, fir and larch with local patches of spruce and cedar. Parts of the property have been clear-cut and selectively logged with most of the logging occurring in the past 30 years.

1.40 History of Previous Exploration for Rare Metals and Industrial Minerals

The central portion of the Hellroaring Creek pegmatite stock was first staked in 1958 as a beryllium prospect by H.Bennett of Cranbrook who located the Linda and Linda 1 claims on a pegmatite showing in which he found beryl crystals. International Beryllium Corporation was formed in 1961 to prospect the property, which had been expanded to 32 claims. Some 1,219 metres of trenching was done before the project was abandoned.

The property was acquired by Canuck Beryllium Corporation, and a small amount of stripping and open-cutting was reported done by the company in 1963. An agreement between Canuck Beryllium, a subsidiary of Peace River Petroleum Ltd., and Richfield Oil Corporation of California for prospecting and development work on the property was announced in August 01, 1965. Under the terms of the agreement, Richfield Oil had control over operations. Work in 1965 was limited to blasting and sampling some 365.7 metres of trench. This work was reported to indicate 500,000 tons averaging 0.1% BeO (Bearcat Explorations Ltd. News Release, 1/02/1984), or 450,000 tonnes of 0.1% BeO (Assessment Report 13415, p.21,) contained in the north end of the stock. The conclusion was made that the beryllium reserves were not of sufficient grade to warrant further development of the property as a beryllium prospect.

Approximately 4,550 acres of mineral claims covering these showings were acquired in early 1984 by Bearcat Explorations Ltd. (80%) and Colt Exploration (Western) Ltd. (20%). A joint venture agreement in the same year with Fairholme Development Ltd. and Barnwell Industries Inc. provided financing for the initial stage of exploration. Work carried out in 1984 by Lumberton Mines Ltd., Bearcats 100%-owned subsidiary, included trenching and 500 metres of diamond drilling in 7 NQ drill holes. Further work in 1985-86 included 2,584 metres of diamond drilling in 29 holes, and a bulk sample flotation test. The work delineated three surface areas with significant high-grade ceramic feldspar. Potential by-products are high-grade mica, high-grade silica, and a minor amount of beryllium in the form of beryl. Tests carried out by CANMET indicate that the pegmatite can be processed to produce feldspar and mica concentrates that meet industry standards with full liberation at 50 mesh.

A study of the property by governmental geologists was simultaneously conducted. In particular, R.Mulligan visited the property in the mid-1960's and reported that "... the pegmatite is a part of a large mass that extends across the ridge from Hellroaring Creek to Angus Creek. Beryl is also found in Angus Creek ... most of the beryl was intimately associated with muscovite near the boundaries of quartz segregations. Columbite-tantalite occurs in crystals more than an inch across ... minor amounts of tin were reported in composite samples of pegmatite ..." (Geology of Canadian Beryllium Deposits: Geological Survey of Canada Economic Geology Report N 23 (1968)).

1.50 Scope and Purpose of Work

In January, 2001, a 4 hole diamond drilling program, totaling 98.7 metres, tested the northeastern portion of the exposed Matthew Creek stock. Due to its similarities with the Hellroaring Creek stock to the south, including the presence of abundant and often large beryl crystals, a series of 4 holes were proposed to:

- 1) follow up on anomalous surface rock samples,
- 2) test the sub-surface extent of the granitic stock, and
- 3) determine and document any mineralization associated with the stock.

2.00 GEOLOGY

2.10 Regional Geology

The property is situated within the Purcell anticlinorium, west of the Rocky Mountain Trench, and is an elongated uplifted dome of Middle Proterozoic sedimentary and volcanic rocks. The anticlinorium is cored by rocks of the Purcell Supergroup and flanked by Late Proterozoic Windermere rocks and Lower Paleozoic cratonic rocks. The anticlinorium is cut by a number of generally east- or northeast-trending transverse faults that had intermittent movement on them since Middle Proterozoic time. The area is wellknown as hosting a number of zinc-lead deposits including the world class Sullivan (SEDEX) deposit.

The oldest rocks exposed in the core of the Purcell anticlinorium are quartzites, siltstones, and argillites of the Aldridge Formation (lower part of the Purcell Supergroup), which host the Sullivan deposit. The lower Aldridge and the lower part of the middle Aldridge Formation is intruded by numerous laterally extensive gabbroic sills referred to as the "Moyie Sills". They are a few tens to several hundred metres thick, and have an isotopic age of approximately 1,440 Ma. The younger rocks are represented by the Windermere Supergroup (850-570 Ma), a sequence of shallow-water sedimentary and volcanic rocks that is well developed north and west of Kimberley, the Cranbrook Formation (Lower Cambrian), and some Cretaceous granitic intrusions.

The age of emplacement of the Hellroaring Creek stock is questionable. The original interpretation of its Proterozoic age (1,300 Ma; Ryan and Blenkinsop, 1971), based on observed relationships with the Moyie sills and radiological age determinations, is not supported by more detailed data showing ambigious relationships between the stock and the gabbroic sills (Eithier et al., 1975) as well as its complicated internal structure with a number of intrusive phases and metasomatic (alteration) zones that may have affected radiological age determinations.

On the other hand, the Hellroaring Creek stock is situated within the inner Cordilleran belt of Mesozoic to Tertiary muscovite and two-mica granite plutons and is very similar to other rare-metal and pegmatite-bearing intrusives found in this belt with respect to its appearance, mineral and petrochemical composition, geochemical signatures as well as the set of related mineralization. This belt includes the White Creek batholith, situated to the north of the property, and extends the whole length of the North American Cordillera, close to the Rocky Mountain Trench. This plutonic belt controls numerous rare metal (beryllium, tantalum, tin, lithium, etc.) granite and pegmatite occurrences and deposits, which, in accordance to the age of the parental plutons, are believed to be of 90-70 Ma.

2.20 Local Geology

Rare metal mineralization in the area has been documented in the granitic rocks of the Hellroaring Creek stock (located several kilometres to the south) and in rocks of the much smaller (satellitic ?) Matthew Creek stock as well as in related pegmatite and greisen occurrences situated close to the stock contacts.

The Hellroaring Creek stock is a northwest elongated (about 4x1.5 km) pluton of granitic rocks. It has complicated internal structure and is interpreted to incorporate several smaller intrusive bodies representing different intrusive phases. There are also large roof pendants wholly or partially insulated by intrusive rocks.

A number of intrusive phases and facies have been distinguished on a preliminary basis within the stock. These include granodiorites, muscovite-tournaline and tournalinemuscovite granites, leucogranites, aplites, etc. General features of the intrusive rocks are their essential enrichment in tournaline (locally, in excess of 10 percent; local segregations of large tournaline crystals are also common), accessory garnet (locally, up to several percent), presence of accessory beryl and fluor-apatite; broad occurrence of micropegmatitic and pegmatoid textures and local segregations of large-crystalline minerals (especially K-feldspar, tournaline, micas), layered textures, strong late- and post-magmatic albite replacement of the rocks and other evidence for a high degree of magma saturation in volatiles.

The Hellroaring Creek stock is surrounded by smaller intrusives found at some distance (hundreds of metres to a few kilometres), interpreted to be satellite stocks or cupolas. Pegmatite bodies are also found at a distance from the main pluton contacts, together with relatively small stocks (large dykes ?) of aplitic granites, probably controlled by the same local-scale fault structures. The contact aureole also incorporates various altered and hydrothermal rocks. Among them, thin bedded lenses of altered pyroxene-garnet skarns (with molybdoscheelite and molybdenite), vein-like bodies of quartz-micaceous greisens, and quartz-sulphide veins (with sphalerite, galena, pyrhotite, etc.) are observed.

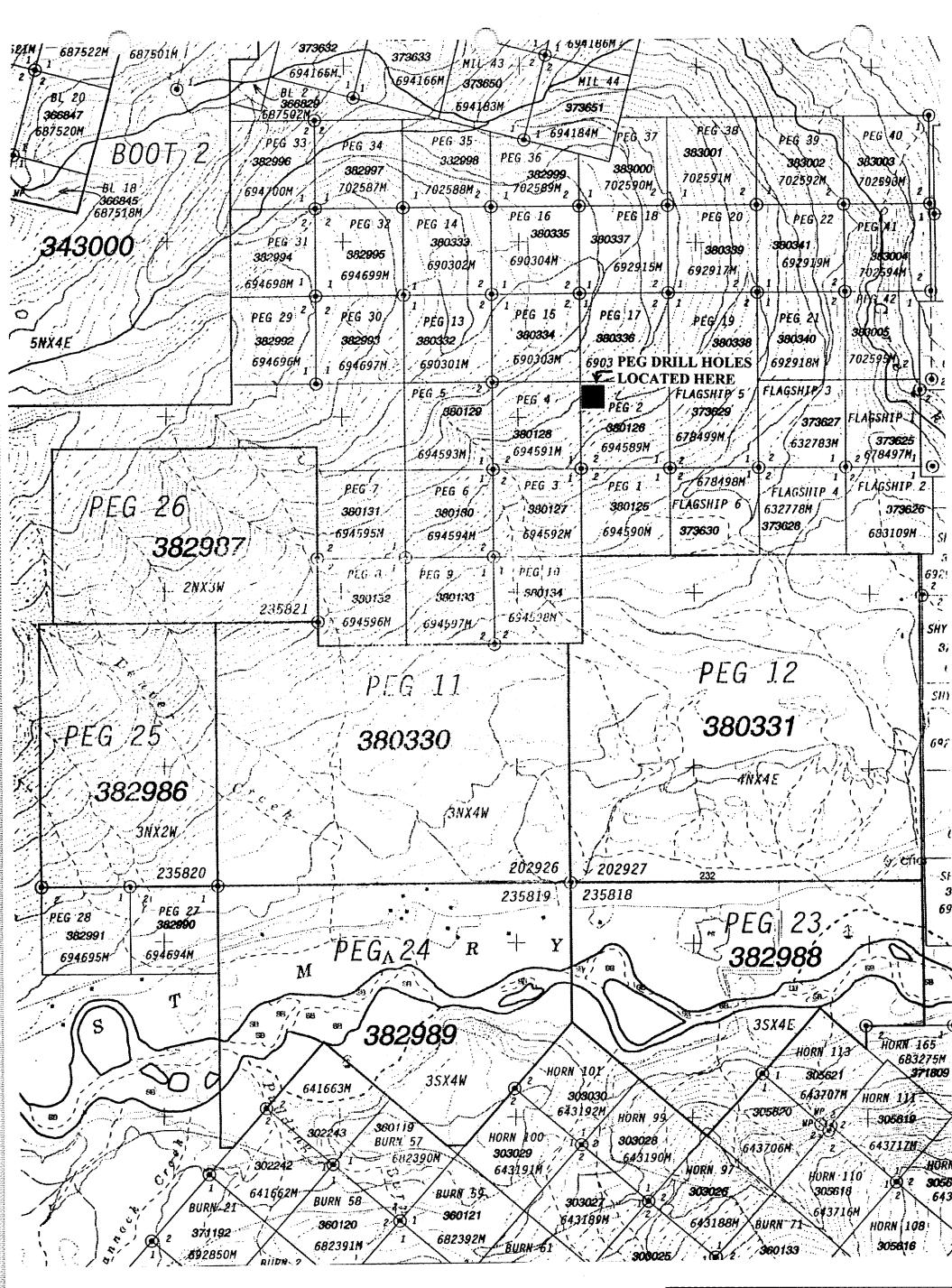
A relatively large pegmatite body outcrops in Lightning (Angus) Creek, immediately east of the Hellroaring Creek stock. The pegmatite is represented by very coarse-grained to large-crystalline (single crystals up to 20-40 cm across) rock, which outcrops for several metres. Proximal float fragments of the exposure were observed in the creek for a distance of, at least, 100 m upstream. As a result, a strike length of the pegmatite body of some 100 m can easily be accepted.

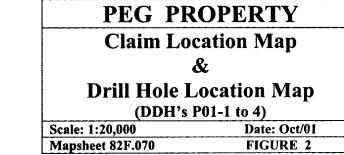
The major minerals comprising the pegmatite are K-feldspar, quartz, large books of silverish-white to greenish muscovite, and black tourmaline. Typically, the pegmatite contains about 40 vol.% K-feldspar, 30% quartz, 20% tourmaline, and 10% muscovite, with local enrichment in some of these minerals. Locally, large (several centimetres across) crystals of greenish beryl are present. Also locally, very large (up to 10-15 cm across) segregations of fluor-apatite are found. Marginal facies of the pegmatite are locally enriched in fine-grained hematite and contain segregations of small well-shaped garnet crystals.

In contrast to pegmatites, greisens are more closely spatially related to the stocks and are commonly superimposed on the granites. Most of the greisens have essentially quartz-muscovite composition (with some minor albite and tournaline). Essentially quartz-tournaline greisens are locally observed. Greisenized granites are very common, especially in the interpreted uppermost portions of local granite cupolas. They are essentially enriched in muscovite (up to 40-50%) and associated quartz that form short vein-like aggregations, short stringers and veinlets, or just muscovite-enriched "lenses". Generally, there are very gradual transitions of the greisenized granite to almost unaltered granite. Probably, most of fine- to coarse-grained light-greenish to white beryl occurring at the property is related to greisenization.

Relatively more intensive occurrence of greisens were observed at the Matthew Creek property. These are mainly mica-quartz greisens formed over both granite and host metasedimentary rocks. They contain greenish to even pinkish (Li-enriched, i.e., similar to lepidolite?) mica in association with quartz and white to light-green beryl.

3.00 DIAMOND DRILLING


3.10 Introduction


In 2000 early 2001, four diamond drill holes totaling 98.7 metres, were drilled on the Peg property.

Drill holes P01-1 to 4 were drilled within the Peg sector to test the north-eastern continuations of the Matthew Creek granitic stock, where abundant and often large beryl crystals were observed in scattered surface outcrops of greisenized granites.

Drilling was done by LeClerc Diamond Drilling of Cranbrook, B.C. Core was logged by D.L.Pighin, P.Geo. Core is stored at the Vine Property north of Moyie Lake.

Figure 2 is the drill hole location map. Complete drill logs are provided in Appendix "A".

↑

N

Chapleau Resources Ltd.

Drill	Collar	Dip	Elevation	Start	End	Length	Claim
Hole	Azimuth		(metres)	(metres)	(metres)	(metres)	
P01-1	148 ⁰	-46 ⁰	1416	0.8	14.0	14.0	
P01-2		-90 ⁰	1416	0	14.0	14.0	
P01-3		-90 ⁰	1418.5	1.3	32.3	32.3	
P01-4	165 ⁰	-52 ⁰	1413.1	1.1	38.4	38.4	

Table 1: Diamond Drill Hole Data

3.20 Results

Drill Holes P01-1 to 4

These drill holes were targeted to test the Matthew Creek stock on the Peg property. This newly discovered area is located approximately six kilometers west of Kimberley, B.C. and consists of 106 claim units. The drill program tested the Peg 2 beryllium showing for width and grade. The showing is represented by a pegmatoid granite sill containing abundant beryl crystals. The sill has a minimum exposed thickness of 6 metres and can be traced in outcrop for 80 metres.

The drill holes revealed a continuous, gently dipping $(10^9 \text{ to } 30^9)$ pegmatoid granite body along strike for over 60 metres and downdip for over 42 metres, with the thickness varying from 5 to 21 metres and increasing to the southwest and downdip. The pegmatoid granite body remains open along the strike and downdip.

Significant beryllium intersections include:

<u>Hole No</u>	Interval (m)	Width (m)	BeO(g/t)
P01-1	5.7-11.7	6.0	1133
Incl.	5.7-6.7	1.0	2908
P01-2	8.8-9.8	1.0	2141
P01-4	11.8-15.8	4.0	1086
Incl.	13,8-14.8	1.0	2007

The drill holes have also intersected anomalous tantalum grades. These intersections include:

Hole No	Interval (m)	Width (m)	Ta2O5 (g/t)
P01-1	12.7-14.0	1.3	65
P01-3	22.0-23.0	1.0	96
P01-4	11.8-15.8	4.0	81
Incl.	12.8-13.8	1.0	113
Incl.	36.9-38.4	1.5	89

4.00 SUMMARY AND CONCLUSIONS

The presence of "abundant and often large beryl crystals" and macroscopic similarities with the Hellroaring Creek stock to the south, suggested rare metal mineralization associated with the Matthew Creek stock.

Exploration on the Pakk property (Hellroaring Creek and Lightning (Angus) Creek occurrences) and the Peg property (Matthew Creek stock) has revealed a large rare metalbearing granite-related magmatic-hydrothermal system that is, in general, similar to world-wide high tonnage, but relatively low grade rare metal (mainly tantalum) deposits. Although no significant rare metal orebodies (with consistent and high economic grades of beryllium and tantalum) have yet been discovered, the results briefly described above may indicate potential to identify a deposit. A number of anomalous beryllium and tantalum intersections support this conclusion.

5.00 ITEMIZED COST STATEMENT

Diamond Drilling Contractor

LeClerc Drilling Ltd., Cranbrook, B.C. 4 diamond drill holes totalling 98.7 metres	\$ 14,320.00
Wages/Geology	
David L. Pighin, P.Geo./program layout, core logging 7 days @ \$330/day Serguei Soloviev, Ph.D./report writing 1.5 days @ \$400/day	2,310.00 600.00
Equipment Rental	
Pighin's Welding Water Truck 40.5 hrs @ \$65/hr 6 days rental @ \$26/day	2,632.50 156.00
Assay Charges	
Acme Analytical Laboratories, Vancouver, B.C. 64 samples @ \$30/sample Freight	1,920.00 264.85
TOTAL EXPENDITURES =	<u>\$ 22,203.35</u>
St. J. John Co.	

Serguei Soloviev, Ph.D., Sci.D. (Geol.) Signed:

APPENDIX "A"

DIAMOND DRILL HOLE LOGS Holes P01-01 to 4

DRILL HOLE RECORD CHAPLEAU RESOURCES LTD. PAGE 1 OF 2 HOLE #: Peg01-1 PROPERTY: PEG HORI COMP: 9.7 m LOCATION: Mathew Creek Area LENGTH: 14.0 m VERT. COMP: 10.08 m COMMENCED: January 24, 2001 COMPLETED: January 24, 2001 CORR, DIP: -46° DRILL CONTRACTOR: Leclerc Diamond COORDS: (long) (lat) **TRUE BEARING: 148°** CORE SIZE: HQ COORDS: (UTM) (E) 565,861.7 (N) 5,500,047.5 (EL) % RECOVERY: CASING: 0 - 0.8 m COORDS: (grid) (E) (N) (EL) LOGGED DATE: January 2001 CORE STORAGE: Vine Property ELEVATION: 1416 m COLLAR: (dip) -46° (Azi) 148° LOGGED BY: D.L. Pighin **OBJECTIVE:** To test the pegmatite for rare metalş Additional Surveys: Dip: Azi: Type: SURVEYS: (depth) Depth Dip Azi From To LITHOLOGY: Metasediments, Lower Aldridge 0.8-3.7 TEXTURE: phyllitic, thin to very thin bedded, finely parallel laminated COLOR: gray banded brown COMPOSITION: siltstone, silty argillite TECTONIC STRUCTURE: bedding to core at 1.5m = 58°, at 3.7m = 64° GENERAL ALTERATION: recrystallized to muscovite phyllite, and muscovite schist, strongly limonitic due to surface weathering MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: metasediments strongly limonitic, due to surface weathering

· •

DRILL HOLE RECORD

ı.

A second s

Management of the second s

Others and the second se

CHAPLEAU RESOURCES LTD.

PAGE 2 OF 2

From To	LITHOLOGY: Muscovitic, Granite Pegmatite
3.7-13.3	TEXTURE: phancritic, very coarsely crystalline, see hole P01-2. Base of sill is marked by 30cm of massive coarse crystalline muscovite.
	COLOR: white with silvery gray and gray mottling
	COMPOSITION: 32% perthite, 36% smoky quartz, 32% muscovite, tiny crystals of apitite are weakly disseminated throughout, rare specks of hyalite. Massive quartz-minor muscovite 10.7-12.0m, quartz zone parted by 30cm of massive muscovite and beryl. Contacts on quartz veins very irregular, approximately 70° to core. Pegmatite contacts top and bottom are parallel to subparallel to bedding in host sediments.
	TECTONIC STRUCTURE:
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Beryl crystals generally large, are generally abundant throughout pegmatite. See sample sheet 1a attached. Note: tiny widely disseminated crystals, metallic black mineral scattered throughout pegmatite. The mineral is very soft.
From To	LITHOLOGY: Metasediments
13.3-14.0	TEXTURE: thin bedded, fine grained
	COLOR: light gray with dark brown banding
	COMPOSITION: mainly siltstone
·····	TECTONIC STRUCTURE: bedding - foliation to core at 14.0m = 60°
· · ·	GENERAL ALTERATION: intensely muscovitized, with abundant bands of amber zircon? (brown tourmaline?)
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: See attached sample sheet 1a.
14.0	END OF HOLE

METERS	% K	×.	: مر <i>ا</i> بور	10	in in irill od	Mineralization, Alteration, Lessor Mineral Components.				K	192	E N	2_(14
1.7- 3·7		뇎	F			Mineralization, Alteration, Lessor Mineral Components.	Semple No.	rii e	Be	CI	NB	20	195	1
					╧╂	mainly amonthic, Marcoule Refullite and Marcoule selest.	08064		10	12.0	16.5	497.8	41	19.2
3.7 - 4.7			4)1É 🖣	0	4	mainly limonitic, Muscoule Rollice and Muscoule salest. mainly Quartz and Muscoule, rore Bary Notab. Blut this	080.65		144	26.7	46.1	552.5	83	4
47- 5.7	20	10	" 4	601	'Z I	Mainly Purplete, Mussoan to with ohmed Band	08066	Ι	183			4206		2
57-67	50	<u>a</u> et	<u>~ F</u>	70		manily Portle Burger State Scatlered Berger atts "	08067		1046					2
6.7. 7.1				0	2	Decorts, Perthile, Musicourto and abund, Beryl xtic. " moning Perthele, and Queertz; Same scatting Reege xtis. " Maning Perthile & Massaulte with scattered clarge xtis. of Beryl. " Mainly Perthile & Queertz, with vore Renal.	08068		583			219.7		5
7.7 7.7	45	45	<u>". /</u>	21	2	monity Perthole and Queerto Some scathered Louge Beart it's	080 69		63				10	Ē
8.7-9.7	60	20	<u></u> !·	2.	2	Manily Pertlete & Mascowite with scattered starse alles & Reading "	090 70			11.5		/47.2		6
97-107	15	95	" [ω	2	Mainly Parchite & Dwords, with Nore Bengl.	08071	<u>† </u>				115.7		Ľ
10-7-11-7	121	70	• •	25	2	To Con Bull Quartz, 30 cm & Marsing Mascarile with 159. Boust its	080 12			8.5				P
11.7 -12.7	25	50	1/ 2	20	2		08073	<u> </u>	13	1.8	<u>8.7</u>	72.4	15	11
12.7 - 13.8	5	51	1 8	· ۵	2	Mainly mossive Nuscovite that his while the the the	080 74							4
13- H- 0	Mek	i - E	in de	i.	fs	Strongly disso to Bouched "bus Rive ? Timore (Book michael (Soft) 1			13-	25:5	55.0	596.3	23	-
	I	Γ				/ calmarine () , y	00015	07	1.9	28	23:5	2/6.2	- 56 -	3
								┝━━━						+-
			•				ļ		[1
	1 1					5.7 - 11.7 aurage Be 622 ppm		-						1
														
		+	+											
	╞─┼				-+	, , , , , , , , , , , , , , , , , , ,								
	┠┉┼	-+	+-											Ĺ
	┫──┼	-+					·			i [
	┠──┼		-		+	ten a second de la constante de								Г
•	┠┉╼┼		<u> </u>		·									Γ
	╞─┤			\rightarrow				1						r
	\vdash	1	<u> </u>	-										Γ
· .	┠━━━┥	$ \downarrow$												r
								<u>├──┤</u>						F
								— i						1
								┝╼┥						┢
														⊢
		+	-+				<u> </u>							_
			\neg					┝──┤						┢
										└──┤				_
-	╏──┤	-+-	+											L
	┟─┟	-+		-+-									_	L
	┢╌┼				-+									Ĺ
	┢─┤	┈┼												Ĺ
	┢──┤	<u></u>			_				i					Ē
		1	-		- F					·····	1			<u></u>

The answering program and the second s

DRILL HOLE RECORD

.

CHAPLEAU RESOURCES LTD.

PAGE 1 OF 2

PROPERTY: PEG			HORI COMP:	HOLE #: PEG01-02
LOCATION: Mathew Creek Area			VERT. COMP: 14.0	LENGTH: 14.0 m
COMMENCED: January 24, 2001	COMPLETED: Janua	ary 24, 2001	CORR. DIP: -90°	
COORDS: (long)	(lat)		TRUE BEARING:	DRILL CONTRACTOR: Leclørc Diamond
COORDS: (UTM) (E) 565,860.8E	(N) 5,500,049.3	(EL)	% RECOVERY:	CORE SIZE: HQ
COORDS: (grid) (E)	(N)	(EL)	LOGGED DATE: January 2001	CASING: 0.0 m
ELEVATION: 1416 m	COLLAR: (dip) -90°	(Azi)	LOGGED BY: D.L. Pighin	CORE STORAGE: Vine Property
OBJECTIVE: Test pegmatite sill for rai metals SURVEYS: (depth)	ne Dip:	Azi:	Туре:	Additional Surveys: Depth Dip Azi
From To LITHOLOGY	: Metasediments, lower aldr	idge formation		
0-5.8 TEXTURE: T COLOR: gra	hin to very thin bedded, par yish brown	allel laminated, ge	nerally phyllitic	
COMPOSITIO	DN: silty argillite			
	TRUCTURE: bedding to co			
foliation, usua	ally associated with intense r	nuscovitization, th	ese talc lenses form "rod like" structure in th	
	TION & ASSOCIATED ALT	ERATIONS, HOS	ST STRUCTURE: strongly limonitic (surface	e weathering?)

DRILL HOLE RECORD

 $X \to X$

CHAPLEAU RESOURCES LTD.

the second se

PAGE 2 OF 2

rom To	LITHOLOGY: Muscovitic Pegmatite
5.8-11.0	TEXTURE: phaneritic coarse to very coarse crystalline, very coarsely crystalline muscovite in book 10cm thick, near lower contact. Coarsely crystalline feldspar and quartz form matrix to muscovite
	COLOR: white with silvery gray and smoky quartz mottling
	COMPOSITION: in general 43% perthite and albite, 40% smoky quartz, 17% muscovite. Tiny crystals of apitite scattered throughout, abundant large
	apitite 10.50-11.0m, scattered spots of weakly disseminated hyalite.
<u> </u>	7.6-8.9m – quartz vein cuts core at 22°, base of sill is marked by 25cm of massive muscovite.
	TECTONIC STRUCTURE:
	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: Rare large beryl crystals noted, finely and weakly disseminated black mineral scattered
	throughout, generally in irregular and rounded grains generally soft. Tiny py crystals are very widely scattered throughout the hole.
rom To	LITHOLOGY: Metasediments, lower aldridge
11.0-14.0	TEXTURE: thin to very thin bedded
	COLOR:
	COMPOSITION: metasiltstone, interbedded meta-argillite
	TECTONIC STRUCTURE: generally phyllitic. Bedding to core at 11.0m = 37°, 13.0m = 54°
	GENERAL ALTERATION: strongly muscovitized, quartz grains, generally recrystallized
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: 13.0-13.5m bedding parallel bands of finely crystalline tourmaline from 1cm to 10cm thick are parallel to bedding or foliation, abundant black submetallic mineral.
14.0	End of Hole

METERS % % % % Pope 48.40-15: METERS % % % % Pope 48.40-15: HOLE NO. <u>POI-2</u> Log Mineralization, Alteration, Lessor Mineral Components.	<u> </u>		P	4.67	NQ_	A
Mineralization, Alteration, Lessor Mineral Components	Semple	vita Be	Cs	N6 1	8 Sn	Ta
	080 76	8		3.9 1		121
1.8-5.8 40 45 NK 15 2 mainly Operate - Perchite - Minor Muscoulte, Black Mineral (55/1) 58-6.8 40 40 MC 60 2 11 11 - 11 - 11 11 6.8-7.8 50 35 MIL 15 2 11 11 - 11 - 11 11	080 77	4			269 31	11.6
58-6.8 40 40 mil 6 2 11 11 - 11 - 11 - 11 11 6.8-7.8 50 35 Mil 15 2 11 11 - 11 - 11 - 11	030 78	135		27.1 3		12.7
6.8-7.8 50 35 MIL 15 2 " " " "	080 19	*			37.4 36	18:6
18-8.8 5 80 we 15 2 70 cm Smakly Ots. 30 cm f Regnotile, """"""""""""""""""""""""""""""""""""	080 80	149			20.7 15	5.9
00-3.0 15 10 MR 15 2 mining Kerolita & Museourfe	28081	710	9.1	2.8 12	1.8 18	100
BB-9.8 75 10 un 15-2 minuty - Perchile & Museourle "" "Baryl Lits. 28-11.0 50 30 un 26 2 "" " Qtz, Museourle "" "Baryl Lits. 11.0-11.18 male Sebs 3 monity Museourle Phyllicite & Museourle Schust, des. Zinger churd. 11.8-12.8 suche Sebs 3 " " " " Qty files ourle Schust, des. Zinger churd.	000 82	68		25.9 3		72.3
11.0-11.8 male Sebs 3 monity Huseoulia phylliete & suresouvile Schust, des. Zinon churd.	080 83	5	100	2.6 1	17.0 19	5.1
11:8-12:8 such 52 25 3 11 11 11 11 11 11 11 11 11 11 11 11 1	08084	0	6.4	5.4 11	20 9	06
12:3-14.0 resto - Set 3 - " " , me ludos, 20 cm Marrais In	100 5 Sunt	4	6.8	16.6 H	6.0 21	26.0
	<u> </u>		ł			
7.8 to 9.8 auroge Be 459 pp.H						
			i i		<u> </u>	
	I					
					- [
				<u>†</u>		<u> </u>
				بمرابع سرو		ليقيبين

÷

i

DRILL HOLE RECORD CHAPLEAU RESOURCES LTD. PAGE 1 OF 2 HOLE #: PEG01-03 PROPERTY: PEG HORI COMP: ---LOCATION: West of Mathew Creek LENGTH: 32.3 m VERT. COMP: 32.3 COMMENCED: January 25, 2001 COMPLETED: January 25, 2001 CORR. DIP: -90° DRILL CONTRACTOR: Leclerc Diamond COORDS: (long) (iat) **TRUE BEARING:** CORE SIZE: HQ COORDS: (UTM) (E) 565,839.9E (N) 5,500,067.2 (EL) % RECOVERY: CASING: 0 - 0.3 m COORDS: (grid) (E) (N) (EL) LOGGED DATE: January 2001 CORE STORAGE: Vine Property ELEVATION: 1418.5 m COLLAR: (dip) 90° LOGGED BY: D.L. Pighin (Azi) **OBJECTIVE:** To test a pegmatite sill for rare metals Additional Surveys: SURVEYS: (depth) Dip: Azi: Type: Depth Dip Azi From LITHOLOGY: Metasediments, mainly talcose, muscovite schist То TEXTURE: finely crystalline, muscovite, minor guartz crystals, white feldspar, overprinted by small greenish talc spheres and large lenses up to 3cm in 0.3-21.0 length. COLOR: banded light greenish gray and light green COMPOSITION: mainly a finely crystalline muscovite matrix surrounding fine quartz crystals, and feldspar crystals, overprinted by small spheres and larger lenses of greenish talc. TECTONIC STRUCTURE: foliation, relic bedding? to core, at 11.0m = 80°, at 18.0m = 60°. Bedding or foliation planes are highly disrupted by small scale asymmetrical folds. GENERAL ALTERATION: intensely altered to muscovite, quartz, feldspar and talc. **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:**

DRILL HOLE RECORD

CHAPLEAU RESOURCES LTD.

PAGE 2 OF 2

From To	LITHOLOGY: Muscovitic granite pegmatite
21.0-29.4	TEXTURE: phaneritic, very coarsely crystalline, generally pegmatite is miarolitic
· · · · · · · · · · · ·	COLOR: light grays and white, mottled by light greenish gray, gray and silvery gray
	COMPOSITION: 60% perthite, minor light greenish white microcline, 22% smoky gray quartz, 18% clear silvery gray and clear greenish muscovite. Apitite very weakly disseminated throughout pegmatite and a white fluorescence mineral widely scattered throughout
	TECTONIC STRUCTURE: 24.0-24.6m - bull quartz vein cuts core at 35°
······	GENERAL ALTERATION:
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: white to slightly greenish white beryl crystals noted from 26.0-27.0m. An Iron block soft mineral is very weakly disseminated in tiny grains through pegmatite. See sample page (2a)
rom To	LITHOLOGY: Metasediments
29.4-32.3	TEXTURE: Finely crystalline, thin bedded to medium bedded
	COLOR: gray with brown banding
	COMPOSITION: quartzite, metasiltstone
<u> </u>	TECTONIC STRUCTURE: at 32.0m bedding to core = 63°
	GENERAL ALTERATION: totally recrystallized, some sections are banded by massive finely crystalline black and transparent light greenish gray tourmaline
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: See sample page 2a. Abundant black submetalic mineral.
32.3	End of Hole

IETERS 96 % % % Page IETERS 9 % % Page Interaction , Alteration , Lessor Mineral Components				F.	AGE	S N	24	11
10-21.0 10-2 10-	Sample No.	wide.	Cs	Sn	NB	RЬ	Ta	Be
1.0-21.0	080.86		14.1	20	13.7	2000	1.5	17
0-220 TO 10 VIL 20 2 Pagarolila, lile greenich Michaeling Portfile	080 81		17.4		28.2	~~~	2010	
e-23.060 30 " 10 2 " "			17.9	10	67.8	2.4	120	23
0-24-0 20 10 2 1			9.3		3.0	200 -	200	1,7
10-25:0 30 60 " 10 2 + 60 cm Bull Quests mainly Particle	08090	+	4.1	10	6.0	105.5	1.0	12
e-26070 10 . 20 2 " mainly Berthite + Mas.	C8091		7.7	19	11.2	122	m.7	5
10-260 70 10 . 20 2 " mointy Bertite + Mus. 0-270 70 10 " 20 2 " , " " " " Bertite + Mus.	5. 08092				20.1	121.5	3.7	F
	080.95	╉╌┨	7.0		8.8	400	13.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	280.94				26.8	000		
	000.95	<u>+</u>	24 3		33.8			
4-34 male stor 3 Metreading to the United Block (194) DO to dian	06075		24-3 8-1	120		199.2		
4-31.4 " " 3 " Bands and Breast & Amber Zing T	08097	$\left\{ \right\}$	8.1		0.4	197.0	1.5	
1-314 11 " " 3 " Bands and lenses of Amber Zincon, rore Tour	08097	+	8.1	+"	10-6	12.3	14.5	+
		┽╌╏	5.0	1 /7	13.3	14.4	26.1	ť
				+	<u> </u>	<u> </u>		╀
		┿╼┤				<u>+</u>		+
		┿╍╍╽			 	┿╾───	<u> </u>	╇
		┢╍╍┥				 	ł	4
								┢
				<u> </u>		ļ		╇
		┿╼╸┥		 		ļ		\downarrow
		+	- <u></u>		<u> </u>			+
		┿╾┥		L	Ļ	<u> </u>		┺
				 		ļ		╞
							L	\bot
								Γ
						[Γ
								Γ
		·			ļ	<u> </u>		F
		├──!						t
								f
	1				•		<u> </u>	T
				<u> </u>				+
		+		i —				+
		╆╍╍┥				<u> </u>		\vdash
		╈╼┥		<u> </u>				\vdash
bre: all % is symmated	 	┝┈┥	<u> </u>	I	ssays	÷		

.

HOLE #: PEG01-4 PROPERTY: PEG HORI COMP: 23.6 LOCATION: west of Mathew Creek LENGTH: 38.4 m VERT. COMP: 30.2 COMMENCED: January 26, 2001 COMPLETED: January 27, 2001 CORR, DIP: -52° DRILL CONTRACTOR: Leclerc Drilling COORDS: (long) (lat) TRUE BEARING: 165° COORDS: (UTM) (E) 565,801.4 CORE SIZE: HQ (N) 5,500,039.9 (EL) % RECOVERY: CASING: 0 - 1.1 m COORDS: (grid) (E) (N) (EL) LOGGED DATE: January 2001 CORE STORAGE: Vine Property ELEVATION: 1413.1 m COLLAR: (dip) -52° (Azi) 165° LOGGED BY: D.L. Pighin OBJECTIVE: drill test for rare metals Additional Surveys: SURVEYS: (depth) Dip: Azi: Type: Sperry Sun Depth Dip Τo LITHOLOGY: Metasediments From 1.1-8.8 TEXTURE: finely crystalline, thin bedded COLOR: COMPOSITION: TECTONIC STRUCTURE: bedding to core at 4.9m = 56°, 7.8m = 45°. Bedding distorted by small scale asymmetrical folds

MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:

DRILL HOLE RECORD

GENERAL ALTERATION:

CHAPLEAU RESOURCES LTD.

PAGE 1 OF 2

Azl

 $X_{i,j} \in \mathcal{F}$

DRILL HOLE RECORD

CHAPLEAU RESOURCES LTD.

and the second mergeneric to be the mergeneric to the second second second second second second second second s

PAGE 2 OF 2

From To	LITHOLOGY: Muscovitic granite pegmatite
8.8-33.8	TEXTURE: Phaneritic, very coarsely crystalline, feldspar, quartz and muscovite with fine white muscovite deposited along crystal boundaries
	COLOR: light grayish white with white and gray mottling, locally light greenish white patches.
	COMPOSITION: in general 60% perthite, minor microcline, 22% smoky to white quartz, 18% muscovite, finely disseminated widely scattered, tiny apatite crystals throughout, some scattered patches of white fluorescence mineral. 20.1-21.0m massive quite guartz vein cuts core at 62°.
	TECTONIC STRUCTURE: light greenish coarsely crystalline microcline scattered throughout sill approximately 25% of the muscovite is greenish.
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: very weakly disseminated tiny iron black mineral occur throughout pegmatite sill, the mineral is soft and powders readily. Locally abundant beryl crystals noted, isolated beryl crystals noted widely scattered throughout. At 26.2m – rare specks of ZnS and tetrahedrite noted. See sample sheet page 2a.
From To	LITHOLOGY: Metasediments
33.8-36.9	TEXTURE: fine crystalline quartz with minor medium crystalline muscovite schist
	COLOR: gray with some dark brown banding
	COMPOSITION: thin bedded muscovitic quartzite, minor interbedded muscovite schist
	TECTONIC STRUCTURE: bedding to core at 36.0m = 37°
	GENERAL ALTERATION: intense muscovitization and silicification and 33.8 to 35.5m abundant bands of finely crystalline black and transparent greenish gray tourmaline
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: See sample sheet 2a.
	May be some graphite associated with graphite and abundant black submetallic mineral.
From To	LITHOLOGY: Pegmatite Dyke
36.9-38.4	TEXTURE: coarsely crystalline
· · · · · · · · · · · · · · · · · · ·	COLOR: light gray mottled gray to greenish gray
	COMPOSITION: 10% perthite, 50% smoky quartz, 40% greenish muscovite
	TECTONIC STRUCTURE: dyke cuts core axis at 10°
	MINERALIZATION & ASSOCIATED, HOST STRUCTURE: See sample sheet 2a. Abundant black sulphide? or graphite?
38.4	End of Hole

METERS	70	/₀ ₹	/0 *	Macante 2/	Poge oritt	HOLE NO. POI-4				A	1GE	N	212	Ħ
	3	3	\$	-	Log	Mineralization , Alteration , Lessor Mineral Components .	Semple No.		C s	Sh	Nb	RЬ	Ta	Be
8.8.8		2.	42		/	Mete Schnights, Very limonable.	08099		27.+	68	59.4	565.9	26.3	84
	10		Ne	10	2	Pagmolite, whele Fluoresque His sautimet Through - as t	08100		9.6	24		190.6		_
	10			10	2		09101	1	106	25	22.9		22.8	1.
2-8-11-8	_	_		30	2	1 mainly Parthile, and fire etter Muscouls.	08/02		12.2	35			33.8	匚
1.8-12.8		20	NIL	30	2	11 1 11 August August Course Mudereast.	08/03		23.9	47			512	ŧ
	60		NH		2.	11 1 Mainly bile green Microching & Course Murouito - Some green Muse.	08/04	2	241	59		411.4	76.3	ť
8-16-9				30	2-	" many Partile and Harcouila, some granish Museoviche, Brayl eller	08/05		32.1	BS			12.2	-
18-15-8		_	_	20	2	the state of a construction of Restate	08/06		1711	51		3/6.0		+-
-8-16-8				15	2_	11 Mainly Pertecto	08/07		23.4	29	1.5 4	595.2		ť
8-17.8					2_	" manly Perterla, with Some like queen Microschnix, Course Muse.	08/08		22-B	45		528.5	37.0	ľ
7.B-188			~~		-	11 11 11 11 fine duscouite, and very Course alle Mass. Some Treen	08/09	-	27.6	48	- · · · ·	173.9		ť
8-128	*	5	MIL		r	We have the second the second the second sec	08/10		31.8	14		9182	7.2	t
-8-10-B	15.	20	AL	5	2	Bo can white Q12, Beach atts in Davolg.	08/11		9.3	4		237.7	1.6	t
2-21-B	80	10	40	10	2	11 mointy Porteto	08/12		2.6	22	13.4		16.6	t
1.8-228	BO	10	m	10	2		08/13		2.9	20	18:5	128.3	21.4	t
6 - 25 B			e.L	10	2	II) " "	109114		13.8	18		328.2	A-1	
6-24.8	80	10	un	10	2		VAVIS		18-6	4	2.5	6193	<u> </u>	
8-158			NUL	10	2		08//6		21.7	19		65.7	a.	f
-8-26-8	60	20	NE	20	2		08117		12.6	28	70.6	279-3		ť
8-27.8	75	10	NIL	15	2	"	VA118		19.0	22			21.5	ť
78-288	40	40	INL	20	2	" Bert atts	19		16.4	38		30a.9	19.2	f
8-29 8	60	20	Na	20	2		08/20		33.4	20	35.6		28.6	+
.8 - 30-8	40	40	arti	Zu	2		08/21	-	12.0	18	<u>35-6</u> 9-2		80	ť
8-31.8	60	30	NIL	10	2	" Portuto & tilo green desrueline.	05122		11.9	26	15.4	****	18.4	t
8 - 32.8	50	10	NIL	40	2	1 Moinly Huscouch & greenis Hisroeline, Bary alls	08/23		25.7					-
8 - 35.8	70	N	piL	20	r	" + + Pearly in the Pearly ine	NA124		10.6	28	19.4	392.9		-
8-36B			55		3	Melazabeinents, abut verilets and Banks up to 10m that of Ziran, o	081 25		7.1	28	8.6		<u>R:6</u>	+
8-369		٤	65		3	in the part Zircon.	08/26		7.8		9.1	116.7		╀
	-10			40	4	Dentite Oct way and all a second second	_					116.5 313 9		+
	<u>``</u>	<u> </u>	†			Pagmetito Dyter, Mainly greensh Muscarte & gray greater, wit abound Blook Salo	08/27		17:1	2/	42"	713 9	001	F
						11.R 1.A. A and 8 all	+	-					. ,	ł
						118 - 1A.B average & 456 ppm		+	<u>⊦</u>	<u> </u>				╀
			- 1					+						╋
			-				+							╀
										<u> </u>				╇
						■ ### 18-9g			<u> </u>	<u> </u>				╋
NOTE: All	المعرجيا								1		ssays			+

4-1

ASSAY RECORDS Holes P01-01 to 4

APPENDIX "B"

1

.

		·			<u>Ch</u>	aplo	eau	Res 1	<u>iour</u> 04 - 1	<u>ces</u> 35 -	<u> </u>	d. Ave S	<u>PRC</u> ., C	JEC ranbr	CT I ook B	<u>PEG</u> IC V10	F	'ile 1 su	# bmitt	A10 ed by	029 : D.L	7 Pigh	Pac	je i	L (a) 2	a c	Po		+04		
AMPLE#		Ba ppm	Be ppm		Cs ppm			Nb ppm		Sn ppm	Sr ppm	Ta ppm		Ti ppm	U ppm	V PPm		Zr ppm	Y ppm		Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu	Gd	Τb	Dy	Ho	Ppm P	Tm	YЬ
064 065 066 067 068	רוסטי-	37 13	144 183 1046	1.8 2.4 1.7	26.7 16.6 14.2	29.2 25.4 18.0	.5 1.1 .8	46.1 55.7 29.9	497.8 552.5 420.6 212.3 268.7	83 56 35	5.2 15.9	42.3 34.2 22.4	6۔ 9۔ 7.	2.1 1.9 1.1	.6 4.0 3.2	10 6 7	13 11 5	373.2 11.2 20.0 12.8 30.0	1.7 2.3 1.8	2.0 1.9 1.7	4.1 4.2 3.9	.45 .47 .43	1.8 2.0 1.8	6.6 .5 .7 .6	1.60 .13 .12 .10	5.17 .42 .68 .60	.72 4 .08 .12 .11	.63 .36 .47 .41	.90 2 <.05 <.05 <.05		34 2. 05 05 05	53 .09<.
069 070 071 072 073		9 10 8 8 5	63 396 222 764 13	.6 .7 .6	11.5 8.0 8.5	17.5 12.7 7.6	1.0 .6 <.5	15.8 12.3 8.7	60.3 147.2 115.7 95.4 21.9	24 20 16	24.0 19.2 4.8	9.5 6.9	.4 .2 .1	1.3 2.0 .8	1.4 2.0 1.1	<5 5	3 8 3 12 2	18.4 10.2 8.8	2.2	1.1 1.6 .5			1.0 1.2	.5 .5 .2	.14 .17 <.05		.06 .09 .03	.29 .38 .19	<.05 .06 <.05	.09<. .07<. .18<. .09<. .20<.	05 05 05	.08< .17 .08
074 8074 1E 8074 075 076		38 37 31 58 519	13 17 19	1.5 1.5 4.4	24.7 24.7 9,8	38.9 37.4 17.0	1.6 1.3 9.4	54.4 55.6 23.5	596.3 580.9 579.5 216.2 284.0	92 90 36	21.2 18.5 14.5	44.6 44.9 36.3	.4 .3 7.7	1.9 1.7 .6	4.1	6 6 50	14 12 30	21.1 20.7 352.0	14.7 13.8 16.5	3.6 3.0 21.7	9.6 8.1 47.0	1.12 1.23 1.02 5.03 8.53	5.5 4.5 19.6	2.1 1.9 3.7	.42 .37 .84	2.57 2.15 3.00	.50 / .46 /	2.86	.49 .43 .56	1.38 . 1.28 . 1.83	15 1. 15 . 25 1.	.06 .96 .75
)77)78)79)80)81) Phoi-	15	135 74 149	3.2 .9 1.4	17.7 12.8 7.0	20.0 14.8	8. 7. 5.>	27.1 19.5 9.1	226.9 320.1 237.4 120.7 121.8	53 36 15	18.6 13.1 14.4	22.7 18.6 5.9	9. 1.0 1.	.5	.7	10 <5 5	6 11 3	4.1 19.9 19.3 4.5 15.9	2.8 2.0 1.4	3.2 2.0 <.5	7.5 4.3 .7	.82 .51 .11	3.3 1.9 .5	.6 .5 .2	.16 .09 .08	.54 .48	.09 .09 .04	.56 .48 .30	.08 .05 <.05	<.05<. .26<. .15<. .11<. .27<.	05 05 05	.21 .11< .11<
)82)83)84)85)86)	53 115 62 73 600	5 <1 4	3.8 5.6 7.8	10.0 6.4 6.8	14.0 11.9 21.1	15.2 11.0 18.1	9.6 5.4 16.6	306.7 177.0 112.0 116.0 265.5	19 9 21	24.9 20.6 62.3	5.1 .6 26.0	9.7 6.9 12.5	1.0 .4 .6	2.5	50 49 62	18 5 16	539.1 415.0 659.1	16.3 15.3 24.4	26.4 21.7 38.4	59.5 50.2 84.1	5.40	26.0 21.3 37.9	4.7 4.0 7.1	1.27	3.47 3.16 5.15	.47 .43 .68	5.06 2.90	.60 .54 .87	1.84 . 1.70 . 2.73 .	23 1 24 1 38 2	.86 .70 .72
8086 8 8086 87 988 989	\$ \$ \$(101-	614 653 66 74 3.41	1 184 237	17.0 2.1 5.1	14.9 17.4 17.9	24.8 20.4 23.3	10.3 .5 1.1	14.4 28.2 67.8	268.4 278.7 358.8 324.1 189.3	32 49 48	41.0 32.7 24.3	1.6 25.6 65.0	12.5 .3 .4	1.5 1.0 1.0	4.2 6.9	102 5 9	15 5 12	381.2	28.9 3.3 12.1	41.1 .7 1.0	91.1 1.7 2.4	10.34 .19 .28	41.5 .9	7.4 .4 .4	1.93 .18 .21	5.38 .31 .77	.79! .06 .19	5.27 .45 1.82	1.07 .09 .43	2.81 . 3.21 . .42 . 1.89 . .31<.	433 	.05 .44 .27
090 091) FANDARC	SO-15	15 22 2073	50	.7	7.7	17.2	2.7	11.2	66.0 127.0 63.1	19	39.9	5.7	.4	.3	17.8 57.0 20.4	<5	3	13.8 37.6 989.2	2.7	1.4	3.1	. 34	1.4	. 5	. 16	45	08	45	08	.18<. .24<. 2.41 .	05	. 19 .24 .46
										1	GROUP - SAMP Sample	48 - 11E TI	REE (PE:	- LÍE CORE	102 FL R150	JSION 60C	, 10	P/MS F	INIS	HED.												

-Data____FA __

Chapleau Resources Ltd. PROJECT PEG FILE # A100297

Page 2 (a)

CHE ANALYTICA

SAMPLE#	Ba Se			Ga	Hf	Nb	Rb		\$r	Ĩa		TL		٧		Zr	Ŷ	La	Ce	Pr		Sm	Eu	Gd		Dy Ho		Tm	Yb Lu	u
	ppm ppm	i ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ррт	ppm	ppm	ppm	ppm p	א שכ	opm ppr	i ppm	ppm	pbu pbu	n
8092 8093 8094 8095 8096	40 22 147 89 166 57	2 1.8 9 1.1 7 2.2	7.0 18.8 24.3	13.5 18.7 26.9	1.1 1.0 2.0	8.8 26.8 33.8	449.2	18 41 58	67.8 13.4 24.3	6.8 29.6 34.6	.5 .6 .9	1.4 1.8 2.1	59.9 5.4 1.4 5.5 2.5	<5 7 9	8 3 13 10 14	26.6	2.6 5.1 3.9	1.1 2.5 2.6	2.3 5.7 5.9	.28 .65 .73	1.1 2.6 2.8	.5 .7 1,0	.10 .17 .26	.44 . .82 . .89 .)9 8 7	.49 .00 .94 .13 .78 .09	.15 .37 .28	05 05	.30 .04 .18 .01 .30 .03 .26 .03 1.47 .24	1 3 3
8097 8098 8099 8100 8101	61 1 584 84	6.0 11.0	8.6 27.4 9.6	11.7 36.0	10.6 6.6 <.5	13.3 59.4 13.8	116.4	14 88 24	32.0 79.2 15.3	26.1 26.3 10.4	7.1 13.0 .3	1.0 2.9 1.1	2.3 4.7	40 110 <5	15 8 9	388.9 223.6 7.8	13.6 30.4 1.4	22.5 42.6 .9	45.1 85.2 1.5	4.76 9.57 .16	17.9 35.5 .6	3.5 6.8 .1	.82 1.76 .08	2.53 . 5.55 . .20 .	392. 935.	.35 .49 .51 .90 .25<.0	1.33 3 2,92 1 .064	.20 .47 : .05	1.15 .19 1.39 .22 2.84 .44 .06<.01 .07<.01	2 4 1
8102 RE 8102 RRE 8102 8103 8104	29 111 28 128 30 722	1.0 1.1 2.9	11.8 11.1 23.9	18.1 17.7 21.4	1.6 1.5 1.3	34.9 32.4 60.6	241.5 234.9 218.8 321.1 421.4	35. 33 47	23.0 22.5 26.9	27.3 24.8 54.2	.9 .9 .2	1.4 1.4 1.7	4.7 4.7 4.1 5.5 11.6	<5 5 <5	9 9 4 9 6	29.6 26.1 13.3	3.2 3.6	2.9 2.8 .7		.67 .61 .14	2.5 2.4 .6	.6 .6 .3	.10 .11 .11	.72 . .65 .	15 . 14 . 10 .	.67 .04 .66 .04 .48<.0	5 .19 3 .21 5 .08	<.05 <.05 <.05	.19 .02 .18 02 .19 .02 .06<.01	2 2 1
8105 8106 8107 8108 8109 PGOI-1	20 193 53 54 41 32	2.4 .6 2 1.4	17.1 23.4 22.8	21.7 15.5 22.2	.9 .5 <.5	47.5 19.7 37.8	519.8 316.0 595.2 538.5 493.9	51 29 45	22.8 28.4 22.5	32.9 17.1 37.0	.3 .1 .3	1.5 3.6 2.6	10.2 8.5 3.5 7.8 8.1	<5 <5 <5	10 4 5 4 7	8.8 5.3 8.3	2.9 1.3 2.7	.9 <.5	1.7 .9 1.6	. 17 . 08 . 15	.8 <.4 .7	.3 .1 .2	.12 .11 .13	.43 . .16 . .41 .	11 . 04 . 12 .	.51<.0 .22<.0 .55<.0	5 .10 5 <.05 5 .10	<.05 <.05 <.05	.22 .02 .07<.01 <.05<.01 .07<.01 .07<.01	1 1 1
8110 8111 8112 8113 8114	14 6 19 39	<pre>.5 .5 .7 .5 .5</pre>	9.3 9.6 9.9	2.9 13.2 13.9	<.5 <.5 .7	1.0 13.4 18.5	918.2 237.7 180.6 198.3 358.2	4 23 20	8.7 14.0 20.3	1.6 16.6 21.4	<.1 <.1 <.1	1.8 1.3 1.2	.2 1.3 6.1	<5 <5 <5	1 8 3 6 2	4.6 2.2 3.1 5.6 4.1	<.1 .4	<.5 <.5 <.5	<.5 <.5 .5	<.02 .03 .05	<.4 <.4 <.4	<.1 <.1 <.1	<.05 .07 .10	<.05<. .06<. .09 .	01 <. 01 . 03 .	.05<.0 .09<.0 .14<.0	5 <.05 5 <.05 5 <.05	<.05 <.05 <.05	<.05<.0' <.05<.0' <.05<.0' <.05<.0' .09<.0'	1 1 1
RE 8114 RRE 8114 8115 8116 8117	37 101 40 103 69 47 89 43 29 115	5.7 7.5 5.7	15.5 18.6 21.7	14.2 10.6	1.4 .6 <.5	11.2 2.5 9.9	355.7 385.5 659.3 645.7 273.3	19 7 19	29.7 36.2 42.4	11.6 2.5 9.5	<.1 <.1 <.1	1.6 2.9 2.6	3.0 .8	<5 <5 <5	2 5 <1 5 3	4.0 13.4 7.0 4.6 7.5	.9 .7 .8	<.5 <.5 <.5 <.5	.6 <.5 .5	.05 .04 .04	< 4 < 4 < 4	< 1 < 1 < 1	.11 .10 .13	.13 . .08 . .11 .	03 02 03	.15<.0 .12<.0 .16<.0	5 <.05 5 <.05 5 <.05	<.05 <.05 <.05	<.05<.0' <.05<.0' <.05<.0' <.05<.0' <.05<.0'	1 1 1
8118 8119 8120 STANDARD SO-15	27 57 44 299	7.6 1.0	16.4 33.4	16.5 21.0	<.5 .9	22.4 35.6	502.4 240.9 412.4 64.8	38 62	26.1 17.8	19.2 28.6	.2 .8	1.2	3.5 .6 5.9 21.1	<5 <5	4 10	3.6 15.6	1.5	.7 2.3	1.3	.14 .47	.5 1.8	.2 .5	.09 .08	.24 .	06 . 11 .	.23<.0	5 .05·	<.05	<.05<.0' <.05<.0' .13 .0' 2.54 _4'	1 2

Sample type: CORE R150 60C. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

All rest are conside

ata FA

	V	
ACIE	ANAL	VTICA

Chapleau Resources Ltd. PROJECT PEG FILE # A100297

ACHE ANALYTICAL SAMPLE# Ba Be Со Cs Ga Nb Hf Rb Sn Sr. Ta Th Ti u V W Z٢ Y La Ce Рг Nd Sm Eu Gd Tb Dv Ho Er Tm Yb Lu ppm ppm **PD**M DDM ppm ppn ppm ppm ppm ppm ppm pom pom pom pom pom pom pom pom 8121 80 8 .6 12.8 12.4 <.5 9.2 346.1 18 57.7 8.0 <.1 1.1 4.0 5 3 5.5 .7 <.5 .5 .04 -<.4 .2 .14 .11 .02 .13<.05 <.05<.05 <.05<.01</p> 8122 66 111 .7 17.9 13.1 <.5 15.4 487.6 26 32.0 18.4 <.1 1.4 2.4 5 8 7.6 1.3 <.5 <.5 .03 <.4 <.1 .10 .10 .02 .16<.05 <.05<.05 <.05<.01 8123 40 336 1.2 25.7 22.4 1.5 39.5 392.9 61 19.5 34.0 37.9 2.3 3.3 6.9 .74 2.8 .7 .22 .52 .08 .39 .05 .17<.05 .16 .02 .8 1.1 9.9 15 9 8124 43 102 2.9 10.6 17.2 4.8 19.4 206.2 28 56.6 8.6 2.3 .6 16.3 - 9 9 98.2 3.3 4.1 9.1 1.04 3.8 1.4 .25 1.32 .18 .77 .10 .29<.05 .27 .03 Phon-4 8125 50 4 2.1 7.1 7.9 9.2 8.6 116.7 11 19.5 4.7 4.4 .4 2.0 33 8 399.1 11.7 22.9 45.4 4.78 17.8 3.3 .73 2.36 .33 2.15 .40 1.37 .17 1.31 .20 8126 57 2 3.5 7.8 7.9 12.5 9.1 136.5 10 12.6 7.1 8.8 .7 2.4 34 10 543.6 13.1 24.6 48.5 5.18 19.3 3.5 .72 2.67 .38 2.45 .46 1.58 .20 1.59 .25 72 43 3.2 17.7 21.8 11.7 42.7 343.4 57 20.7 60.1 6.1 .9 9.4 30 8 365.5 8.3 14.1 28.5 3.07 11.4 2.5 .45 2.16 .31 1.74 .27 .88 .11 .89 .14 8127 RE 8127~ 72 28 2.0 18.9 22.3 12.1 43.5 355.5 56 21.6 58.9 6.3 1.0 10.2 30 8 376.2 8.1 15.4 31.7 3.49 12.9 2.9 .48 2.22 .33 1.78 .25 .86 .11 .87 .13 STANDARD SO-15 2012 2 22.7 2.9 16.4 25.2 28.6 66.6 18 405.5 1.7 25.5 1.1 20.0 149 21 1100.0 22.4 29.7 58.6 5.97 23.2 4.4 .93 3.80 .56 3.89 .75 2.53 .34 2.59 .42

Page 3 (a)

Jata OF

Sample type: CORE R150 60C. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

	Chapleau Resources	<u>3 Ltd.</u> 10th Av	PROJ e S., Cri	ECT P	<u>EG</u> F C V1C 2N1	ile # Submi	A100 tted by:	297 D.L. Pi	Page	e 1 (b)			Ĺ
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm			<u> </u>
	8064 8065 8066 8067 8068	3 1 3 1 3 3	14 6 5 4 4	20 19 94 18 18	34 20 102 61 22	16 3 4 2	16 <2 <2 <2 <2 <2	.4 <.2 .3 .2 <.2	× • • • • • • • • • • • • • • • • • • •	<5 <5 <5 <5 <5		UNITED STATES AND STATE	
	8069 8070 8071 8072 8073	2 2 2 4 2	63 63 7	27 65 60 24 14	16 9 13 10 13	4 1 4 3 5	<2 <2 <2 <2 <2	<.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < < <	 <!--</td--><td></td><td></td><td></td>			
	8074 RE 8074 RRE 8074 8075 (8076	1 1 1 3 2	4 4 5 6 9	38 38 36 54 10	12 11 12 49 30	2 2 13 25	4 4 86 12	-22 <.22 -22 -22 -5	<5 <55 <7	សភាមា 			
	8077 8078 8079 8080 8081	3 1 4 2 3	4 7 3 8 4	18 30 36 74 169	11 27 14 20 14	2 4 25 1	<2 <2 <2 <2 <2	<.2 <.2 <.2 <.2 <.2		ა v v v v 			
	8082 8083 8084 8085 8085	1 3 1 3 2	5 2 3 2 13	108 35 41 43 7	14 30 43 29 33	3 10 13 8 24	59 100 24 19 22	.22 <.22 <.22 <.22	ភភភភ ភភភភ ភភិមិ ភភិមិ ភភិមិ	ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა			
	RE 8086 RRE 8086 8087 8088 8088	3 2 1 2 1	13 12 5 11 5	6 17 25 16	34 33 16 16 8	25 24 3 4 3	20 19 <2 8 <2	.6 .52 .22 .2	. 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		·	
	8090 8091 STANDARD C3 STANDARD G-2	3 1 28 1	23 5 68 3	19 21 38 3	$16 \\ 14 \\ 171 \\ 42$	3 3 37 7	4 <2 59 <2	<.2	<.5 <.5 17.2	<.5 <.5 24.7 <.5			
ASSA	JP 1D - 0.50 GM SAMPLE LEACHED WITH 3 FR LIMITS - AG, AU, HG, W = 100 PPM; M AY RECOMMENDED FOR ROCK AND CORE SAMPL MPLE TYPE: CORE R150 60C Samples	MO, CO, CD	D, SB, BI I PB ZN AS	I, TH, U8 S > 1%, AG	& B = 2,0 .G > 30 PPI	000 PPM; 1 PM & AU >	CU, PB, 7 > 1000 PPI	DILUTED TO ZN, NI, N PB	(0.10 ML.)	ANALYSED BY J /, LA, CR = 1(CP-ES.),000 PPM.		

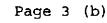
Ata AFA

All resk / are consider the confidential property of the client. Ac ssume the liabilities for actual cost of the analysis only.

Chapleau Resources Ltd. PROJECT PEG FILE # A100297

Page 2 (b)

sta AF


SAMPLE#	Mo ppm	Cu ppm	PD ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
8092 8093 8094 8095 8096	32 32 31 3	57 7563	23 420 149 312 71	17 12 3 7 35	2 5 2 3 12	3 17 9 15 16	<.2 <.2 <.2 <.2 <.2 <.2	<.55 <.55 <.6	<.5 1.6 1.5 <.5	
8097 8098 8099 8100 8101	2 3 3 3 1	8 26 3 5	44 12 10 7 21	21 25 31 10 11	11 10 26 2 3	26 20 10 <2 <2	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<5 <5 3.7	
8102 RE 8102 RRE 8102 8103 , 8104	2 3 1 3 1	6 8 26 45	97 97 91 85 34	25 24 24 48 65	2 2 4 3 4	<2 <2 <2 29 28	- 55 - 56 - 37	<.55 <.55 <.55	.7 .665 <.5	
8105 8106 8107 8108 8109	2 1 1 2	7 8 2 3 2	26 6 12 21 8	36 34 14 35 16	1 4 1 3 2	<2 <2 <2 <2 <2	.4 <.2 <.3 <.2	<.5 <.55 <.5 <.5		
8110 8111 8112 8113 8114	1 4 1 2 1	2 3 3 2 4	11 7 7 13	12 9 15 33 20	2 2 3 1 2	<2 <2 <2 <2 <2	<.2 <.2 .2 .2 .2 <.2	<.5 <.5 <.5 <.5	5555 5555 5555	
RE 8114 RRE 8114 8115 8116 8117	1 2 1 2 1	4 33 28	12 11 11 13 89	20 22 12 13 118	2 1 2 1 3	<2 <2 <2 <2 <2	.2 .2 .2 2.6	۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰. ۰	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
8118 8119 8120 STANDARD C3 STANDARD G-2	2 1 3 29 1	2 3 68 3	25 11 21 40 3	$10 \\ 7 \\ 17 \\ 171 \\ 43$	1 3 1 38 8	<2 <2 <2 61 <2		<.5 <.5 <.5 14.5 <.5	<.5 <.5 23.9 <.5	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

the confidential property of the client. A

Chapleau Resources Ltd. PROJECT PEG FILE # A100297

ra · ·										
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	
8121 8122 8123 8124 8125	1 2 1 3 2	7 3 4 5 6	128 40 52 115 30	38 65 21 44 18	32355	<2 <2 7 36 24	<.2 .5 <.2 <.2 <.2	<.5 <.5 <.7 <.5	<.5 <.5 <.5 <.5 <.5	
 8126 8127 RE 8127	3 1 2	2 5 5	10 11 11	19 19 17	7 6 6	5 8 7	<.2 <.2 .2	<.5 <.5 <.5	<.5 <.5 <.5	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All resk a are conside the confidential property of the client. A assume the liabilities for actual cost of the analysis only.

,∕ata