

PROSPECTING ASSESSMENT REPORT

ON THE

ISH PROPERTY

KAMLOOPS MINING DIVISION

NTS 082M/14W

LAT. 51° 54' N LONG. 119° 27' W

BY

J.E.L. (LEO) LINDINGER, P.Geo.

DECEMBER 27, 2001

TABLE OF CONTENTS	page
Summary	1
Introduction	2
Location and Access	2
Physiography	2
Property	3
History	3
Regional Geology	4
Property Geology	5
2001 Prospecting Program	6
Results	7
Conclusion	8
Expenditures	8
Recommendations	8
Selected References	9
Statement of Qualifications	10
List of Figures	following page
Figure 1 Location Map	2
Figure 2 Property Map	2
Figure 3 Regional Geology	4

Rock Sample Location Map

Figure 4

6

Introduction

The ISH claims were staked to cover strike extensions of a portion of the stratigraphy favourable for hosting high grade "Broken Hill"-shuswap type zinc-lead-silver base metal mineralization between the Finn Occurrence 2 Kilometers north of, and the newly discovered Vista, Navan, Mike occurrences 6 to 12 kilometers south of the property. The claims also cover the area around the location of a mineralized float sample in till that returned 5.25% zinc, 2% lead and 8.4 g/t silver taken earlier by the writer. This report documents the results of four days of prospecting on the ISH Property near Avola, British Columbia, discusses the findings, and make recommendations to further enhance the economic potential of this property.

Location and Access

The ISH property is 13 kilometers north of the village of Avola, B.C. Access to the property is north from Avola on the Yellowhead Highway (5) for 18 kilometers, then east onto the Finn Creek logging road for 0.5 km, then south onto the Elevator logging road. The Elevator logging road switchbacks up the steep east side of the North Thompson River valley south of Finn Creek. The property covers from 1.5 to 8 kilometers of the Elevator logging road.

Physiography

The region lies within the northwest end of the Shuswap Highland part of the Interior Plateau. More locally the North Thompson River occupies a south draining, steeply incised valley, the floor of which is about 1200 meters below the surrounding plateau. The ISH Property covers a 1.75 square kilometer portion of the east side of the North Thompson River valley 13 kilometers north of Avola and south of Finn Creek. The property slopes steeply west. The lowest part of the property is in the North Thompson River Valley bottom at 640 meters. The highest part is the southwest corner at 1280 meters. The floodplain of the North Thompson River 200 meters west is at 580 meters. The property was treed by lodgepole pine, interior fir, black spruce, balsam and red cedar, but was intensely burned in 1998 and logged in 1999 and 2000.

0 250 KM

ISH PROPERTY

KAMLOOPS

VANCOUVER

LOCATION MAP ISH PROPERTY

KAMLOOPS M.D. 51 Deg. 54' N - 119 Deg. 27' W

Figure i December 27, 2001

GRAPHICS BY RENAISSANCE GEOSCIENCE SERVICES

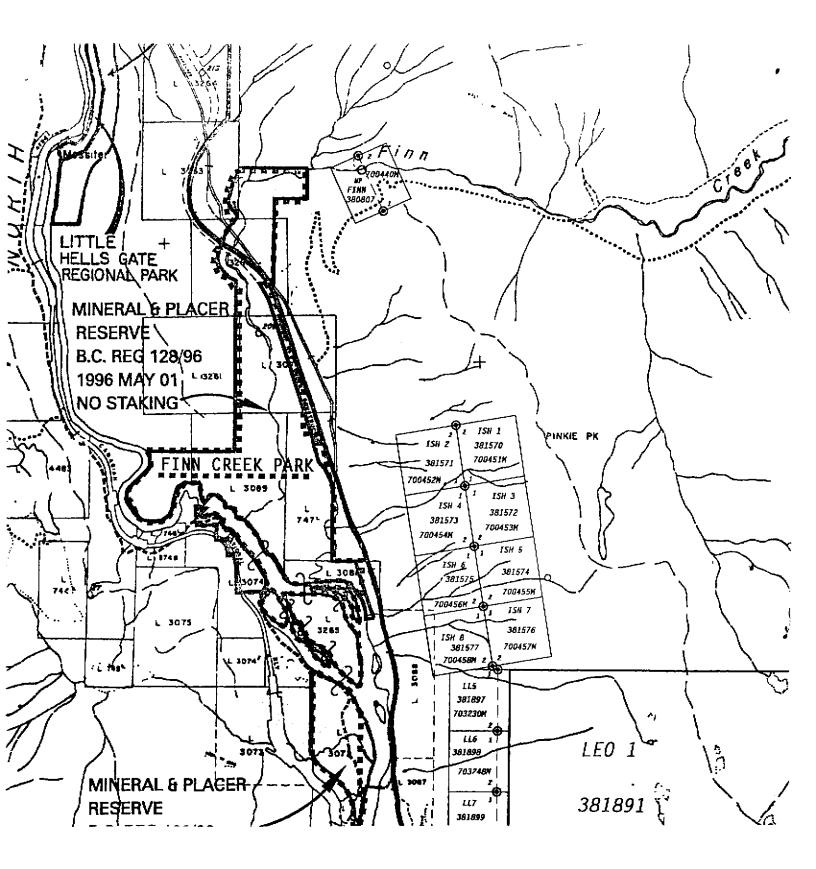


FIGURE 2 - PROPERTY MAP SCALE 1:31,360

Property

The ISH Property comprise seven two post claims (7 units) covering 175 hectares. The claims lie within the Kamloops Mining Division at Latitude 51° 53° North, Longitude 119° 27' West on NTS sheet 082M/14W and are owned by Leo J. Lindinger. The claims have been grouped as the ISH group Event# 317328 dated October 5, 2001.

Claim Name	Tenure No.	Expiry Date.
ISH 1	381570	October 6, 2002*
ISH 3	381572	October 6, 2002*
ISH 4	381573	October 6, 2002*
ISH 5	381574	October 6, 2002*
ISH 6	381575	October 6, 2002*
ISH 7	381576	October 6, 2002*
ISH 8	381577	October 6, 2002*

^{*} Assuming acceptance by the Ministry of Energy and Mines of the assessment work this report documents in Notice Of Work Event# 3172331.

History

The Finn Occurrence, 2 kilometers north of the ISH property was discovered in 1978 (Murrell, 1980). Cominco Ltd. optioned the property, and in 1980 completed an extensive geochemical program that extended south onto the current ISH property. This survey generated several moderately anomalous zinc, lead and silver soil and silt anomalies. The ISH property now covers the strongest unexplained soil and silt anomalies from that survey. Cominco in 1981 drill tested the Finn Showing with disappointing results. The property was allowed to lapse. In October 1991, Teck Corp. staked the area including the ground now covered by the ISH claims (Evans 1993). Teck completed a property wide mapping program, and Evans mapped a portion of the carbonate stratigraphy the ISH property now covers. Teck also completed a self potential survey and a trenching program in the vicinity of the Finn Showing. The claims were allowed to lapse in 1996.

The Finn showing was intermittently staked after 1996 but no work was recorded and entire area was untenured in August 2000. In September 2000 the writer discovered the Vista, Navan and Mike high grade zinc-lead-silver massive sulphide showings south of the ISH claims in the Fowler Lake area. The Vista-Navan property was subsequently

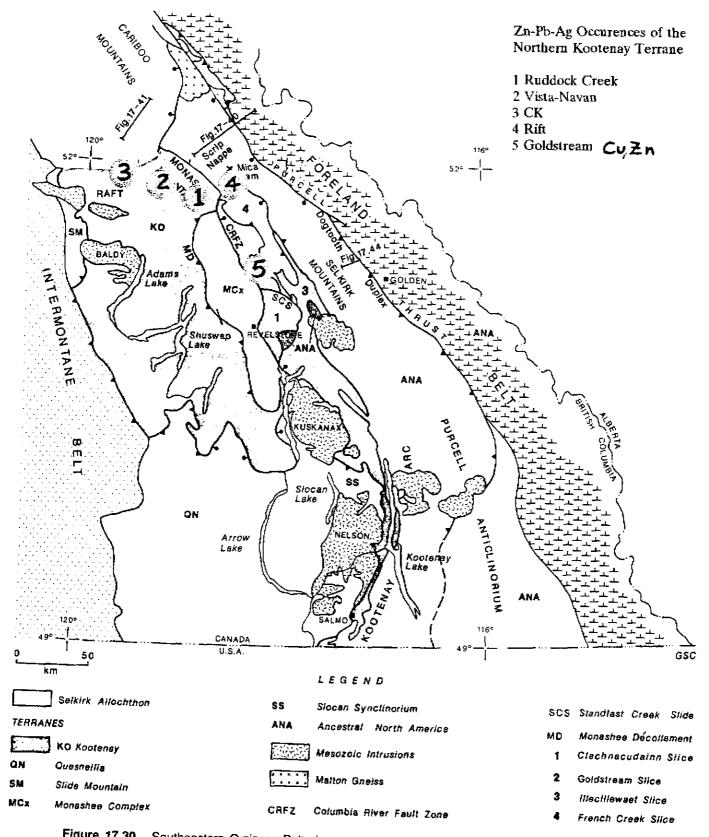


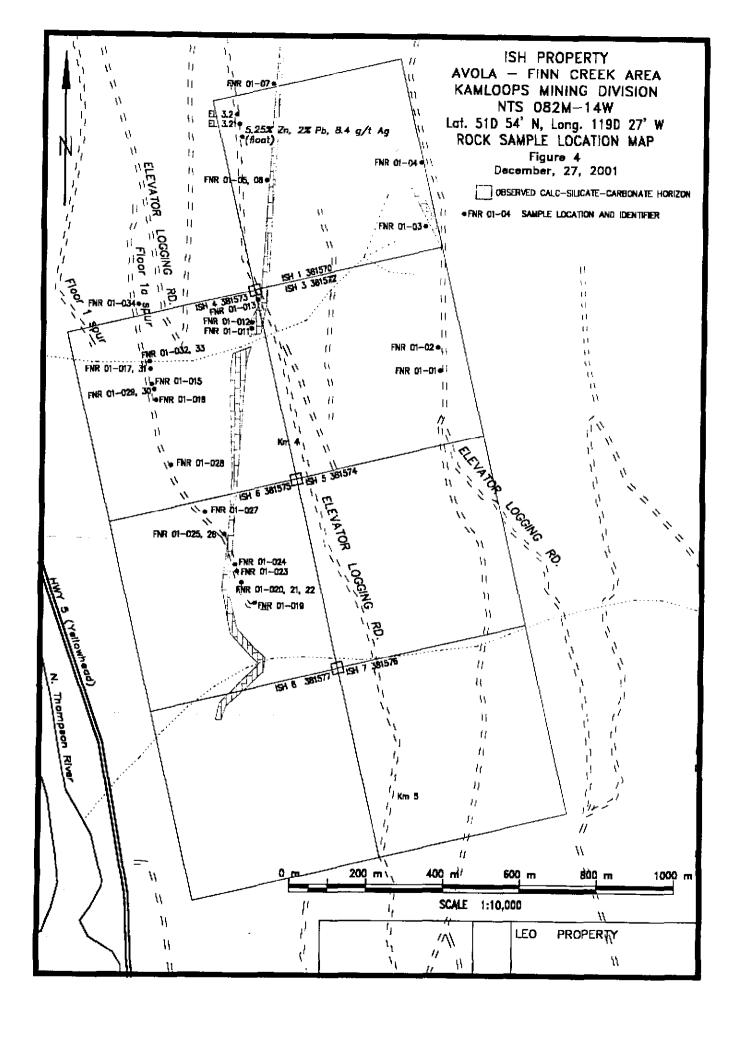
Figure 17.30. Southeastern Omineca Belt showing the distribution of terranes, some of the regional structures, and the location of structural cross-sections in Figures 17.40, 17.41 and 17.44.

FIGURE 4 - REGIONAL GEOLOGY

From Wheeler, 1992: Page 608

occurrences and prospects. The clusters are generally aligned along north trending large scale folds. Significant thicknesses of mineralization may be present where east trending secondary folding occurs. These occurrences range from multimillion tonne deposits (Ruddock Creek - 5 million tonnes grading 7.5% zinc, 2.5% lead, 25 km east, and the CK - 1.5 million tonnes grading 8.6% zinc, 25 km west), to numerous thin exposures, less than 100 meters long. All of these occurrences can be considered partially explored. Carbonatite hosted ultramafic pegmatitic niobium-tantalum occurrences are found 60 km north of the property (BCDEM Minfile database).

Other base or precious metal deposit types known in the region are epigenetic deposits usually related to an intrusive event. Some of these are: Bizar-Readymix-GQ style high and low grade gold-bismuth-copper-arsenic-tungsten veins, replacement and skarn showings of unknown, but possibly Tertiary age; Copper, tungsten, molybdenum and gold bearing intrusive and associated skarn and wallrock hosted deposits; and metamorphic related gemstone and industrial mineral (ie. garnet) deposits.


Property Geology

The ISH Property geology comprises north-northwest trending moderate east dipping sequence of Shuswap stratigraphy. The stratigraphic package contains portions of two carbonate bands that are coincident with zinc soil anomalies and considered prospective for hosting stratiform Zn-Pb-Ag mineralization.

Evans 1993, Page 4 writes;

"...The sequence consists of three distinct lithologic packages which are strongly intruded by Eocene intrusive sills and dykes.

The lowest structural package is dominated by biotite schists and amphibolites. This package is likely derived from a pelitic-mafic volcanic protolith which forms a thick monotonous sequence several hundred meters thick. This is overlain by a 10-50 meter thick sequence of graphitic

stratigraphy across the property, and sampling any interesting looking rock. The undisturbed surface carbonate exposures were quite weathered and pitted. Therefore it was where the recently constructed logging roads cross the stratigraphic horizon that the best "looking rocks" were found and most sampling took place. 34 rock samples were taken for description and 32 were sent for analyses. All visually significantly mineralized rocks sampled and sent in for multielement and if warranted gold analyses at ALS-Chemex Laboratories Ltd. in Vancouver. Details of the analytical procedures used are included with the analytical results in Appendix 2.

Results

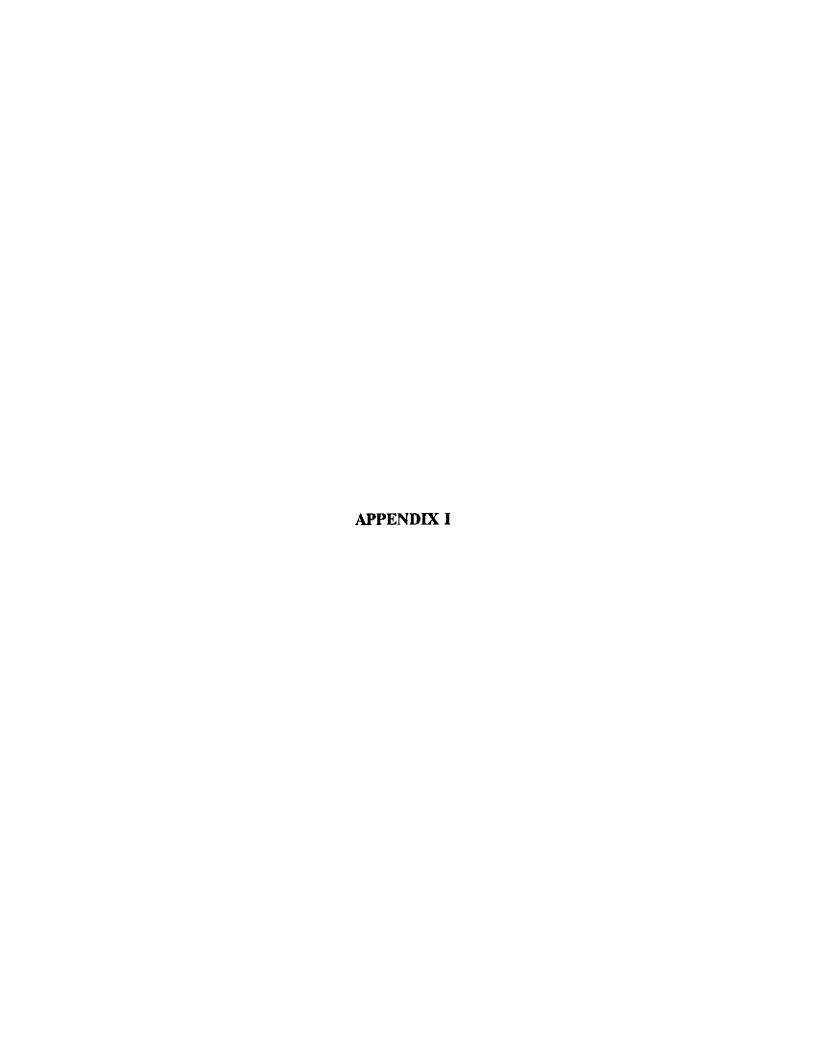
Please refer to Appendix 1, "Analytical results" and Appendix 2, "Rock Descriptions"

One fairly continuous horizon of carbonate strikes northerly and dips easterly at about 25 degrees through the property entering it near its southwest corner and exiting near the northeast corner. A second north northwest striking, very shallowly east dipping horizon about 300 meter east (up hill) was discovered while following up a zinc-lead in soil anomaly from the 1980 Cominco work. No significant "Broken Hill" or "shuswap type" zinc-lead-silver mineralization was discovered during prospecting. The sulphide rich samples taken in these areas were mostly iron sulphides that upon analyses returned anomalous copper and weakly anomalous lead, zinc and nickel. While prospecting the debuilt south end of "Floor 1A" samples of sulphide rich schist, pyrrhotite matrix brecciated intrusive, and sulphidic skarn were taken. Several samples reported highly anomalous bismuth, and tungsten values associated with anomalous copper, and weakly to sporadically anomalous vanadium, arsenic, molybdenum and antimony. Reanalyses of selected pulps for gold returned up to 220 ppb.

Conclusion

Preliminary prospecting and rock sampling on the ISH property failed to located any high grade zinc bearing massive sulphide mineralization. However iron sulphide bearing cherty or exhalitive rocks possibly representing distal or weak proximal expressions of sulphide mineralization were located that returned anomalous in copper, and weakly anomalous in lead, zinc and nickel values. Sulphidic matrix brecciated intrusive, calsilicate, skarn returned anomalous gold, bismuth and tungsten values along with weakly anomalous copper nickel, molybdenum, arsenic and antimony.

Expenditures


EXPENSE ITEM	DETAILS	C	HARGE	
Prospector	4 days @ \$250.00	\$	1,000.00	
Supplies and equipment rental		\$	80.00	
Travel		\$	400.00	
Analyses		\$	653.17	
Report		\$	700.00	
Total		\$	2,833.17	

Recommendations

Further work, especially on the gold sulphide skarn area is recommended. The recommended work program would comprise rock and soil sampling in an effort to located higher grade gold material. A row of soil samples should be taken about 25 to 50 meters below all of the carbonate horizons to explore for buried zinc and gold massive sulphide mineralization.

Selected references

- Evans, G. 1993: Geological, Geochemical and Geophysical Assessment Report on the Blue River Property for Teck Corp.. 10 pages plus attachments. EMPR Assessment Report# 22742.
- Gibson, G. 1991: Geological Report on the Hos 1-19 Mineral Claims, for Bethlehem Resources Corp. 16 pages plus attachments. EMPR Assessment Report# 21201.
- Hoy, T. 1996: Broken Hill-Type Pb-Zn-Ag+/-Cu. BC Mineral Deposit Model S01, 5 pages.
- Lewis, T.D. 1883: Geological and Geochemical Report on the Otter Creek Property, for Noranda Exploration Company, Ltd. 5 pages plus attachments. EMPR Assessment Report# 11904.
- Lindinger, 2000: Report on the Leo Property. Unpublished report for La Rock Mining Corp. 10 pages plus attachments.
- Lindinger, 2001: Geochemical, Geophysical, and Diamond drilling assessment report on the Broken Hill-Leo property for Cassidy Gold Corporation. 22 pages plus attachments.
- Lindinger, 2001: Geological assessment report on the Finn Property. 9 pages plus attachments.
- MacIntyre D. 1992: Sedimentary Exhalitive Zn-Pb-Ag. BC Mineral Deposit Model E14, 4 pages.
- Murrell, M. 1080: Geochemical Assessment report on the Finn 1 Claim for Cominco Ltd.. 2 pages plus attachments. EMPR Assessment Report# 9027.
- Scammell, R.J. 1990: Preliminary results of stratigraphy, structure, and metamorphism in the southern Scrip and northern Seymour ranges, southern Omineca Belt, British Columbia. In Current Research, Part E, Geological Survey of Canada, Paper 90-1E: pp 97-106.
- Wheeler J.O., & Palmer A.R. ed, 1992: Geology of the Cordilleran Orogen in Canada. Geology of North America, Volume G-2; Geology of Canada No. 4, pages 146, 162, 195-196, 293, 508, 514, 545-546,607-610, 619, 621-622, 715, 720.

ALS Chemex

Aurora Laboratory Services Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0121305

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0121305

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: P.O. # : ADAMS

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-AUG-2001.

SA	SAMPLE PREPARATION									
METHOD CODE	NUMBER SAMPLES	DESCRIPTION								
PUL-31 STO-21 LOG-22 CRU-31 SPL-21 229 3285	24 24 24 24 4	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Splitting Charge ICF - AQ Digestion charge ICP-587 Tri Acid Dig'n Charge								
NOTE 1:										

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL	PROCEDURES	1 of 2
------------	-------------------	--------

	SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPE LIMIT
1433	24	Weight of received sample	BALANCE	0.01	1000.0
λu-λλ23	13	Au-AA23 : Au ppb: Fuse 30 grams	Pa-are	5	10000
Au-AA25	1	Au g/t: 1 assay ton, AA finish	Pa-aas	0.03	150.00
2n-AA46	1	Zn %: Conc. Nitric-HCl dig'n	aas	0.01	50.0
Ag-ICP41	4	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
A1-ICP41 As-ICP41	4	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
B-ICP41	4	As prm: 32 element, soil & rock	icp- ae s	2	10000
Ba-ICP41	4	B ppm: 32 element, rock & soil	ICP-AES	10	1000
Be-ICP41	1	Ba ppm: 32 element, soil & rock	icp-aes	10	10000
Bi-ICP41	- 1	Be prm: 32 element, soil & rock	icp-aes	0.5	100.0
Ca-ICP41	1	Bi ppm: 32 element, soil & rock	ICP-AES	3	10000
Cd-ICP41	1	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
Co-ICP41	- ;	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
Cr-ICP41	: 1	Co ppm: 32 element, soil a rock	icp-ars	1	10000
Cu-ICP41	1	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
Fe-ICP41		Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock	ICP-AES	1	10000
Ga-ICP41	- 7	Ga ppm: 32 element, soil & rock	ICP- AE S	0.01	15.00
Hg-ICP41		Hg ppm: 32 element, soil & rock	ICP-AES	10	10000
K-ICP41	- 1	K %: 32 element, soil & rock	ICP-AES	1	10000
La-ICP41		La ppm: 32 element, soil & rock	ICP-AES	0.01	10.00
Mg-ICP41	4	Mg %: 32 element, soil & rock	ICP-AES	10	10000
Mn-ICP41	- Ā	Mn ppm: 32 element, soil & rock	icp-aes icp-aes	0.01	15.00
Mo-ICP41	4	Mo ppm: 32 element, soil & rock	ICP-AES	5	10000
Na-ICP41	4	Na %: 32 element, soil & rock	ICP-AES	0.01	10000
Ni-ICP41	4	Ni prm: 32 element, soil & rock	ICP-AES		10.00
P-ICP41	4	P ppm: 32 element, soil & rock	ICP-AES	1 10	10000
Pb-ICP41	4	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
S-ICP41	4	S %: 32 element, rock & soil	ICP-AES	0.01	10000
Sb-ICP41	4	Sh ppm: 32 element, soil & rock	ICP-AES	0.01	10.00
Sc-ICP41	4	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
Sr-ICP41	4	Sr ppm: 32 element, soil & rock	ICP-AES		10000
Ti-ICP41	4	Ti %: 32 element, soil & rock	ICP-AES	0.01	10000
F1-ICP41	4	Tl prm: 32 element, soil & rock	ICP-AES	10	10.00

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0121305

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0121305

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project:

ADAMS

P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-AUG-2001.

SA	SAMPLE PREPARATION									
METHOD CODE	NUMBER SAMPLES	DESCRIPTION								
PUL-31 STO-21 LOG-22 CRU-31 SPL-21 229 3285	24 24	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Splitting Charge ICP - AQ Digestion charge ICP-587 Tri Acid Dig'n Charge								

The 32 element ICF package is suitable for trace metals in soil and rock samples. Elaments for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ANALYTICAL	PROCEDURES 2	of 2
------------	--------------	------

U-ICP41 V-ICP41 W-ICP41 Zn-ICP41 Ag-ICP61 Al-ICP61 Ba-ICP61 Ba-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	4 4 4 20 20 20 20 20 20	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock En ppm: 32 element, soil & rock Ag ppm: 72 element, soil & rock Ag ppm: Tri Acid Dig. ICP Package Al %:Tri Acid Dig. ICP Package Ba ppm: Tri Acid Dig. ICP Package Be ppm: Tri Acid Dig. ICP Package	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2 0.5 0.01	10000 10000 10000 10000 100
W-ICP41 Zn-ICP41 Ag-ICP61 Al-ICP61 As-ICP61 Ba-ICP61 Be-ICP61 Be-ICP61 Ca-ICP61 Cd-ICP61	4 20 20 20 20 20 20	V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock En ppm: 32 element, soil & rock Ag ppm:Tri Acid Dig. ICP Package Al %:Tri Acid Dig. ICP Package As ppm:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 10 2 0.5 0.01	10000 10000 10000 1000
Zn-ICP41 Ag-ICP61 Al-ICP61 As-ICP61 Ba-ICP61 Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	4 20 20 20 20 20 20	Zn ppm: 32 element, soil & rock Ag ppm:Tri Acid Dig. ICP Package Al %:Tri Acid Dig. ICP Package As ppm:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package	ICP-AES ICP-AES ICP-AES ICP-AES	10 2 0.5 0.01	10000 10000 100
Ag-ICP61 Al-ICP61 As-ICP61 Ba-ICP61 Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	20 20 20 20 20 20	Ag ppm:Tri Acid Dig. ICP Package Al %:Tri Acid Dig. ICP Package As ppm:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package	ICP-AES ICP-AES ICP-AES	0.5 0.01	10000 100
Al-ICP61 As-ICP61 Ba-ICP61 Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	20 20 20 20 20	Al %:Tri Acid Dig. ICP Package As ppm:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package	icp-aes icp-aes	0.01	
As-ICP61 Ba-ICP61 Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	20 20 20 20	As ppm:Tri Acid Dig. ICP Package Ba ppm:Tri Acid Dig. ICP Package	ICP-AES		25 00
Ba-ICP61 Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	20 20 20	Ba ppm: Tri Acid Dig. ICP Package		5	23.00
Be-ICP61 Bi-ICP61 Ca-ICP61 Cd-ICP61	20 20	Be pomitri keid Dig. Ter Package		_	10000
Bi-ICP61 Ca-ICP61 Cd-ICP61	20		ICP-AES	10	10000
Cd-ICP61		Bi ppm:Tri Acid Dig. ICP Package	ICP-AES	0.5	1000
	#U .	Ca %: Tri Acid Dig. ICP Package	ICP-AES		1000(
	20	Cd ppm:Tri Acid Dig. ICP Package	ICP-AES ICP-AES	0.01	25
Co-ICP61	20	Co ppm:Tri Acid Dig. ICP Package	ICP-AES	0.5	500
Cr-ICP61	20	Cr ppm:Tri Acid Dig. ICP Package	ICP-AES	1 1	10000
Cu-ICP61	20	Cu ppm:Tri Acid Dig. ICP Package	ICP-AES	1	10000
Fe-ICP61	20	Fe %: Tri Acid Dig. ICP Package	ICP-AES	0.01	25.00
K-ICP61	20	K %: Tri Acid Dig. ICP Peckage	ICP-AES	0.01	10.00
Mg-ICP61	20 [Mg %: Tri Acid Dig. ICP Package	ICP-AES	0.01	15.00
Mn-ICP61	20	Mn ppm:Tri Acid Dig. ICP Package	ICP-AES	5	10000
Mo-ICP61	20	Mo ppm:Tri Acid Dig. ICP Package	ICP-AES	ĭ	10000
Na-ICP61	20	Na %:Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00
Ni-ICP61	20	Ni ppm:Tri Acid Dig. ICP Package	ICP-AES	1	10000
P-ICP61 Pb-ICP61	20 20	P ppm:Tri Acid Dig. ICP Package	ICP-AES	10	10000
S-ICP61	20	Pb ppm:Tri Acid Dig. ICP Package	ICP- AES	2	10000
Sb-ICP61	20	S %:Tri Acid Dig. ICP Package Sb ppm:Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00
Sr-ICP61	20	Sr ppm:Tri Acid Dig. ICP Package	ICP-AES	5	10000
Ti-ICP61	20	Ti %:Tri Acid Dig. ICP Package	ICP-AES	1	10000
V-ICP61	20	V ppm: Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00
W-ICP61	20	W ppm: Tri Acid Dig. ICP Package	ICP-AES	. 1	10000
Zn-ICP61	20	Zn ppm:Tri Acid Dig. ICP Package	ICP-AES	10	10000
	-•	- Planti Mold Dig. 10P Package	ICP-AES	2	10000

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project : ADAMS Comments: ATTN: LEO LINDINGER

Pag[,] mber :1-A

Tota Jes :1
Certiticate Date: 10-AUG-2001
Invoice No. :10121305
P.O. Number :
Account : RJH

		-	,			, - -		CERTI	FICATE	OF AN	ALYSIS	3	A01213	05	
SAMPLE	PREP CODE	Weight Kg	Au ppb FA+AA	Au g/t	Zn %	ppm yg	Al %	As ppm	ppm B	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co
PKR-01-01	94139402	0.62	< 5						 		 -	 			
PKR-01-02	94139402	0.48	₹5	1											
PKR-01-04	94139402	0.72	₹5												
PKR-01-07	94139402	0.82	3												
PKR-01-08	94139402	0.58	₹ 5												
NR-01-13	94139402	0.78	< 5		 	 									
WRTR-01-04	94139402	0.48	45												
OLR-01-02	94139402	0.54	< 5												
OLR-01-04	94139402	0.88	< 5												
EL.3.2	94139402	0.82	₹ 5			< 0.2	2.09	< 2	< 10	50	< 0.5	2	0.03	< 0.5	1
EL.3.21	94139402	0.62	< 5			< 0.2	0.11	< 2	< 10						
OLR-01-01	94139402	0.40	< 5			0.6	0.66	₹ 2		< 10	< 0.5	< 2	0.05	< 0.5	<
OLR-01-03	94139402	0.30	< 5		19.55	5.6	0.63	₹ 2	< 10	< 10	7.0	< 2	0.55	1.5	41
AR-01-200	94139402	0.48		< 0.03					< 10	20	< 0.5	< 2	1.70	193.5	2:
PMN-01-01	94139402	0.44													
FNR-01-02	94139402	0.66	<u></u>												
FNN-01-03	94139402	0.70												 -	
FNN-01-04	94139402	0.62													
FNR-01-06	94139402	0.46													
FMR-01-07	94139402	0.54													
FNR-01-12	94139402	0.56													·
WRTR-01-05	94139402	0.36		-	 -										
WRTR-01-06	94139402	0.54													
WRTR-01-08	94139402	0.16	 -												

	/
CERTIFICATION:	1

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project : ADAMS Comments: ATTN: LEO LINDINGER

Pac mber :1-B

Tot. ges :1 Certificate Date: 10-AUG-2001 Invoice No. :10121305 P.O. Number :

Account RJH

	· 	_	·	,		-	CERTIFICATE OF ANALYSIS A0121305									
Sample	PREP CODE	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррш	Na %	Ni ppm	ppm P	Pb ppm	
PKR-01-01	94139402											· ·				
PKR-01-02	94139402		!													
PKR-01-04	94139402															
PKR-01-07	94139402															
PKR-01-08	94139402															
FNR-01-13	94139402											 				
WRTR-01-04	94139402										-					
OLR-01-02	94139402					 _										
OLR-01-04	94139402															
EL.3.2	94139402	89	23	3.43	10	< 1	1.52	< 10	0.87	235	1	0.04	18	70	< 2	
EL.3.21	94139402	87	4	0.29	< 10	< 1	0.07	< 10	< 0.01	10	< 1	0.03	3			
OLR-01-01	94139402	7	658	>15.00	20	< 1	0.01	< 10	0.02	105	` Ē	0.03	25	130	2	
OLR-01-03	94139402	63	53	7.68	10	26	0.25	< 10	0.06	460	و ا	0.11	16	550	< 2	
AR-01-200	94139402													520	>10000	
PNN-01-01	94139402															
FNR-01-02	94139402								 							
FNN-01-03	94139402														-	
FMN-01-04	94139402															
FNR-01-06	94139402															
FNR-01-07	94139402															
FNR-01-12 WRTR-01-05	94139402															
WRTR-01-06	94139402															
WRTR-01-08	94139402					 -			-			-		*****		
WKTK-01-08	94139402			*										 -		
					:											
		J					<u></u>								[

CERTIFICATION:

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project :

Project: ADAMS
Comments: ATTN: LEO LINDINGER

Pagr mber :1-C
Tot jes :1
Certimate Date: 10-AUG-2001
Invoice No. : I0121305
P.O. Number :

Account RJH

							CERTIFICATE OF ANALYSIS A0121305								
Sample	PREP CODE	s *	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 PFM	DDm O	A bbe	Dizar M	Zn ppm	Ag ppm (ICP)	Al % (ICP)	As ppm (ICP)	Ba ppm (ICP)
PKR-01-01 PKR-01-02 PKR-01-04 PKR-01-07 PKR-01-08	94139402 94139402 94139402 94139402 94139402											< 0.5 < 0.5 < 0.5 < 0.5	6.61 7.41 7.48 6.95	5 5 30 < 5	160 1020 440 170
FMR-01-13 WRTR-01-04 OLR-01-02 OLR-01-04 EL.3.2	94139402 94139402 94139402 94139402 94139402	0.10	2	7	5	0.21	< 10	 < 10		 < 10		< 0.5 < 0.5 1.0 < 0.5 < 0.5	7.81 4.53 5.79 7.25	20 85 < 5 < 5	510 610 170 470 610
EL.3.21 OLR-01-01 OLR-01-03 AR-01-200 FNN-01-01	94139402 94139402 94139402 94139402 94139402	0.04 6.77 5.62	< 2 < 2 32	< 1 < 1 < 1	4 28 16	< 0.01 < 0.01 0.03	< 10 < 10 < 10	< 10 < 10 < 10	< 1 1 46	< 10 < 10 < 10	12 14 >10000	< 0.5 < 0.5	6.61 5.76	 < 5 < 5	870 20
FNR-01-02 FNN-01-03 FNN-01-04 FNR-01-06 FNR-01-07	94139402 94139402 94139402 94139402 94139402											< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3.42 3.32 10.25 8.14 6.08	< 5 < 5 5 5	220 40 1000 380 460
FNR-01-12 WRTR-01-05 WRTR-01-06 WRTR-01-08	94139402 94139402 94139402 94139402											< 0.5 25 1.5 < 0.5	7.98 5.54 8.79 5.38	< 5 115 10 5	440 500 320 480
,															

CERTIFICATION:	<i>!</i> !	
OLITHI IOATION,		

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: ADAMS Comments: ATTN: LEO LINDINGER

Pao Tot mber :1-D

Tot. ges :1
Certinicate Date: 10-AUG-2001
Invoice No. :10121305
P.O. Number :
Account : RJH

						·		CERTI	FICATE	OF AN	ALYSIS	5 /	A01213	05	
SAMPLE	PREP CODE	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICF)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K %	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)
PKR-01-01	94139402	14.5	< 2	0.34	< 0.5	5	84	8	1.07	2.05	0.09	210	1	2.08	
PKR-01-02	94139402	1.5	< 2	0.42	< 0.5	4	92	- آ	0.76	2.25	0.19	265	3	2.04	8 5
PKR-01-04	94139402	2.5	< 2	0.09	< 0.5	5	135	12	2.00	1.96	0.18	250	3	0.90	16
PKR-01-07	94139402	1.0	< 2	0.08	< 0.5	3	36	11	0.63	3.07	0.04	75	< 1	0.48	1 4
PKR-01-08	94139402	2.0	< 2	0.02	< 0.5	3	142	- 6	2.55	1.49	0.06	1160	7	0.08	12
FNR-01-13	94139402	0.5	< 2	0.37	< 0.5	5	54	79	1.08	5.19	0.08	50	1	1.44	3
WRTR-01-04	94139402	0.5	2	2.3	< 0.5	21	127	220	3.66	0.66	1.42	1360	496	1.90	61
OLR-01-02	94139402	1.0	< 2	0.70	< 0.5	15	259	69	2.90	1.79	0.67	190	13	1.23	41
OLR-01-04	94139402	2.0	< 2	0.68	< 0.5	23	222	73	3.66	2.76	1.09	390	7	1.18	40
EL.3.2	94139402														
EL.3.21	94139402														
OLR-01-01	94139402														
OLR-01-03	94139402										! 				
AR-01-200	94139402	0.5	 < 2	0.74	< 0.5	12	148	42	2.17	2.21	0.54	175	3	1.59	22
FXM-01-01	94139402	2.5	< 2	8.7	0.5	20	138	300	9.05	0.10	1.72	>10000	6	0.11	59
FNR-01-02	94139402	0.5	< 2	0.48	< 0.5	44	174	245	4.14	0.82	0.36	145	5	1.15	
FNN-01-03	94139402	< 0.5	< 2	2.3	< 0.5	21	262	235	7.84	0.40	1.69	7570	3	0.10	110
FNN-01-04	94139402	1.0	< 2	7.6	< 0.5	35	264	168	6.02	1.35	0.74	1125	3	0.61	42 73
FNR-01-06	94139402	2.5	< 2	7.6	< 0.5	15	158	18	3.31	1.81	1.04	480	2	1.27	30
FNR-01-07	94139402	1.5	< 2	13.5	< 0.5	12	94	29	2.91	1.81	1.00	445	< 1	0.79	25
FNR-01-12	94139402	3.0	< 2	13.0	< 0.5	17	88	54	3.58	2.50	1.15	530	< 1	1.05	36
WRTR-01-05	94139402	1.0	56	0.13	69.5	38	143	450	8.91	2.30	0.30	170	1	0.11	54
WRTR-01-06	94139402	2.0	< 2	3.1	< 0.5	17	117	150	4.20	4.21	2.68	1065	26		
WRTR-01-08	94139402	1.0	< 2	0.55	< 0.5	10	225	55	3.03	1.22	2.68	1065	26 9	0.12	46 42

CERTIFICATION:	F.	
	~ ~	

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: ADAMS Comments: ATTN: LEO LINDINGER

Pagr vmber :1-E

Tot. Jes :1 Certinicate Date: 10-AUG-2001 Invoice No. :10121305

RJH P.O. Number Account

· · · · · · · · · · · · · · · · · · ·								CERTIFICATE OF ANALYSIS					A01213	05	
Sample	PREP CODE	P ppm (ICP)	Pb ppm (ICP)	5 % (ICP)	Sb ppm (ICP)	Sr ppm (ICP)	Ti % (ICF)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)					
PKR-01-01	94139402	180	26	0.03	< 5	94	0.09	14	< 10	 					-
PKR-01-02	94139402	410	48	< 0.01	< 5	198	0.08	12	< 10	98	1 1				1
PKR-01-04	94139402	250	24	0.02	< 5	106	0.15	32	< 10	28 46	1			i	
PKR-01-07	94139402	130	50	0.01	< 5	52	0.01	2	₹ 10	30				!	i
PKR-01-08	94139402	320	38	0.01	< 5	72	0.06	19	₹ 10	98	1 1				
FNR-01-13	94139402	210	44	0.21	5	291	0.05	1	< 10	18	 				ļ
WRTR-01-04	94139402	1880	56	2.98	< 5	647	0.14	15	< 10	104	1		1		1
OLR-01-02	94139402	640	26	0.84	< 5	137	0.30	المثنا	< 10	58	1			ł	I
OLR-01-04	94139402	550	24	1.08	< 5	114	0.34	115	< 10	74	1 1				ŀ
EL.3.2	94139402														
EL.3.21	94139402														
OLR-01-01	94139402														1
OLR-01-03	94139402]	
AR-01-200	94139402	240	118	0.52	< 5	345	0.26	47	< 10	238	1 1		i		
PNN-01-01	94139402	3400	20	3.46	5	69	0.18	250	< 10	250					
FNR-01-02	94139402	110	26	2.42	5	93	0.09	18	< 10	36					
PNN-01-03	94139402	4030	10	1.45	10	13	0.16	186	< 10				1	ļ	ł
FNN-01-04	94139402	1300	40	2.12	< 5	304	1.22	270	< 10	48 146				ľ	
FNR-01-06	94139402	230	24	0.05	< 5	1340	0.34	62	< 10	82	1				F
FNR-01-07	94139402	590	24	0.03	< 5	1200	0.43	68	< 10	52					
FNR-01-12	94139402	320	20	0.09	5	2080	0.34	61	< 10	-	 				
WRTR-01-05	94139402	350	7134	8.59	< 5	44	0.15	60	< 10	72 >10000	1				
WRTR-01-06	94139402	370	48	3.11	15	115	0.31	565	< 10						
WRTR-01-08	94139402	420	222	0.52	5	118	0.18	247	< 10	74 112					
			İ							ļ	j			İ	
			ļ					ļ]	;		}	
													l		1
	i ,	1			}						<u> </u>				
		i			ŀ	i					1				
						ļ									
			i												
	1		ļ												
			1								[
	1	1	ļ :												
		}								i		ł			
		[
		ľ													
		1									[!
		1													

CERTIFICATION:	

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0121307

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0121307

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: ADAMS

P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2001.

SA	SAMPLE PREPARATION									
METHOD CODE	NUMBER SAMPLES	DESCRIPTION								
PUL-31 ST0-21 LOG-22 CRU-31 299 3285	4 4 4 3	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Pulp; prepped on other workorder ICP-587 Tri Acid Dig'n Charge								

ANALYTICAL PROCEDURES 1 of 3

1433	SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPE LIMIT
		Weight of received sample	BALANCE	0.01	1000.0
Ag-ICP61		Ag Dom: Tri Acid Dig. ICP Package	ICP-AES	0.5	100
Al-ICP61		Al %: Tri Acid Dig. ICF Package	ICP-AES	0.01	25.00
As-ICP61	•	As ppm:Tri Acid Dig. ICP Package	ICP-AES	5	1000
Ba-ICP61		Ba ppm:Tri Acid Dig. ICP Package	ICP-AES	10	1000
Be-ICP61 Bi-ICP61		Be ppm:Tri Acid Dig. ICP Package	ICP-AES	0.5	100
Ca-ICP61		Bi ppm:Tri Acid Dig. ICP Package	icp-aes	2	10000
Cd-ICP61		Ca %: Tri Acid Dig. ICP Package Cd ppm:Tri Acid Dig. ICP Package	ICP- ae s	0.01	2
Co-ICP61		Co ppm:Tri Acid Dig. ICP Package	ICP-AES	0.5	500
Cr-ICP61	_	Cr ppm:Tri Acid Dig. ICP Package	ICP-AES	1	10000
Cu-ICP61		Cu ppm:Tri Acid Dig. ICP Package	ICP-AES ICP-AES	1	10000
Fe-ICP61		Fe %: Tri Acid Dig. ICP Package	ICP-RES	1	10000
K-ICP61	3	K %: Tri Acid Dig. ICP Package	ICP-AES	0.01 0.01	25.00
Mg-ICP61		Mg %: Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00 15.00
Mn-ICP61	3	Mn ppm: Tri Acid Dig. ICP Package	ICP-AES	5	10000
Mo-ICP61	3	Mo ppm: Tri Acid Dig. ICP Package	ICP-AES	ĭ	1000
Na-ICP61		Na %: Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00
N1-ICP61	3	Ni ppm:Tri Acid Dig. ICP Package	ICP-AES	1	10000
P-ICP61		P ppm:Tri Acid Dig. ICP Package	ICP-AES	10	1000
Pb-ICP61 8-ICP61	3	Ph ppm:Tri Acid Dig. ICP Package	icp- ae s	2	1000
Sb-ICP61	3 3	S %:Tri Acid Dig. ICP Package	ICP-AES	0.01	10.00
Sr-ICP61		Sb ppm:Tri Acid Dig. ICP Package Sr ppm:Tri Acid Dig. ICP Package	ICP-AES	5	10000
Ti-ICP61	3	Ti %:Tri Acid Dig. ICP Package	ICP-AES	1	10000
V-ICP61		V ppm: Tri Acid Dig. ICP Package	icp-aes icp-aes	0.01	10.00
W-ICP61	3	W ppm: Tri Acid Dig. ICP Package	ICP-AES	1	10000
Zn-ICP61	3	Zn ppm:Tri Acid Dig. ICP Package	ICP-AES	10 2	10000
Ag-MS61	1	Ag ppm: ICP + ICP-MS package	ICP-MS/ICP	0.02	10000
A1-M 561	1 1	Al %: ICP + ICP-MS package	ICP	0.01	25.0
As-MS61	1 1	As ppm: ICP + ICP-MS package	ICP-MS/ICP	0.2	10000
Ba-MS61	1 1	Ba ppm: ICP + ICP-MS package	ICP	0.5	10000
Be-MS61	1 1	Be ppm: ICP + ICP-MS package	ICP-MS/ICP	0.05	1000
Bi-MS61	1 1	Bi ppm: ICP + ICP-MS package	ICP-MS/ICP	0.01	10000

ALS Chemex

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0121307

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0121307

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: P.O. # :

ADAMS

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2001.

	SAMPLE PREPARATION									
MET	HOD ODE	NUMBER SAMPLES	DESCRIPTION							
STO LOG CRU	L-31 D-21 J-22 J-31 299 3285	4 4 4 3	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Pulp; prepped on other workorder ICP-587 Tri Acid Dig'n Charge							

METHOD CODE	NUMBER		METHÓD	DETECTION LIMIT	UPPE LIMIT
Ca-M861		Ca %: ICP + ICP-MS package	ICP	0.01	25.0
C4-M861		Cd ppm: ICP + ICP-MS package	ICP-MS/ICP	0.02	500
Ce-M861	_	Ce ppm: ICP + ICP-MS package	ICP-MS	0.01	500
Co-MS61		Co ppm: ICP + ICP-MS package	ICP-MS/ICP	0.1	1000
Cr-MS61 Cs-MS61		Cr ppm: ICP + ICP-MS package	ICP	1	1000
Cu-MS61		Cs ppm: ICP + ICP-MS package	ICP-MB	0.05	500
Fe-MS61	_	Cu ppm: ICP + ICP-MS package Pe %: ICP + ICP-MS package	ICP	0.2	1000
Ga-MS61	· -	Ga ppm: ICP + ICP-MS package	ICP	0.01	25.0
Ge-MS61		Ge prm: ICP + ICP-MS package	ICP-MS	0.05	500.0
Hf-MS61		Hf ppm: ICP + ICP-MS package	ICP-MS	0.05	500.0
In-MS61		In ppm: ICP + ICP-MS package	ICP-MS/ICP ICP-MS/ICP	0.1	500
K-MS61	1	K %: ICP + ICP-MS package	ICP-MS/ICP	0.005 0.01	500
La-MS61	1	La ppm: ICP + ICP-MS package	ICP-MS	0.01	10.00 500
L1-MB61	1	Li ppm: ICP + ICP-MS package	ICP-MS	0.3	500 500
Mg-MS61	1	Mg %: ICP + ICP-MS package	ICP	0.01	15.00
Mn-MS61		Mn ppm: ICP + ICP-MS package	ICP	5	10000
Mo-MS61	1	Mo ppm: ICP + ICP-MS package	ICP	0.05	10000
Na-MS61		Ne %: ICP + ICP-MS package	ICP	0.01	10.00
Nb-M861 Ni-M861		Nb ppm: ICP + ICP-MS package	ICP-MS	0.1	500
P-MS61	_	Ni ppm: ICP + ICP-MS package	ICP-MS/ICP	0.2	10000
Pb-MS61		P ppm: ICP + ICP-MS package	ICP	10	10000
Rb-M561	i	Pb ppm: ICP + ICP-MS package Rb ppm: ICP + ICP-MS package	ICP-MS/ICP	0.5	10000
Re-MS61		Re ppm: ICP + ICP-MS package	ICP-MS	0.1	500
S-MS61	Ī	S %: ICP + ICP-MS package	ICP-MS/ICP ICP-MS/ICP	0.002	50.0
Sb-MS61	1	Sb ppm: ICP + ICP-MS package	ICP-MS/ICP	0.01 0.05	10.00
Se-MS61	1	Se DDM: ICP + ICP-MS package	ICP-MS/ICP	0.05	1000.0
Sn-MS61	1	Sn ppm: ICP + ICP-MS package	ICP-MS/ICP	0.2	1000 500
Sr-M361	1	Sr ppm: ICP + ICP-MS backage	ICP-MS/ICP	0.2	10000
Ta-MS61	1	Ta ppm: ICP + ICP-MS package	ICP-MS	0.05	100.0
Te-MS61	1	Te ppm: ICP + ICP-MS package	ICP-MS	0.05	500
Th-MS61		Th ppm: ICP + ICP-MS package	ICP-MS	0.2	500
Ti-M961		Ti %: ICP + ICP-MS package	ICP	0.01	10.00
T1-MS61 U-MS61	1	Tl ppm: ICP + ICP-MS package	ICP-MS	0.02	500
V-MS61		U ppm: ICP + ICP-MS package	ICP-MS	0.1	500
W-MS61		V ppm: ICP + ICP-MS package	ICP	1	10000
Y-MS61		W ppm: ICP + ICP-MS package Y ppm: ICP + ICP-MS package	ICP-MS/ICP	0.1	10000
Zn-MS61			ICP-MS ICP	0.1	500
				2	10000

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0121307

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0121307

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: P.O. #: **ADAMS**

Samples submitted to our lab in Vancouver, BC. This report was printed on 07-AUG-2001.

SA	MPLE	PREPARATION
METHOD CODE	NUMBER SAMPLES	DESCRIPTION
PUL-31 STO-21 LOG-22 CRU-31 299 3285	4 4 4 3	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Pulp; prepped on other workorder ICP-587 Tri Acid Dig'n Charge

		ANALYTICAL	PROCEDURES	3 of 3	
METHOD CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Zr-MS61	1	Zr ppm: ICP + ICP-MS package	ICP-MS/ICP	0.5	500
		·			
ļ					

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: ADAMS
Comments: ATTN: LEO LINDINGER

Par mber :1-A Tot

Account

Tot. ges 1 Certificate Date: 07-AUG-2001 Invoice No. P.O. Number : [0121307

PJH

CERTIFICATE OF ANALYSIS A 0.4 0.4 0.0 T

		T								- CI	RTIF	ICATI	E OF	ANAL	YSIS	····	A012	1307		
SAMPLE	PREP	Kg		Al % (ICF)	As ppm (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppu (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe %	K %	Mg % (ICP)	Mn ppm (ICP)	No ppm (ICP)	Na %	Ni ppm
FNR-01-15 FNR-01-16 FNR-01-17 OLR-01-06	94139402 94139402 94139402 94139402	0.40 0.80 0.44	< 0.5 0.5	7.22 7.31 6.79	< 5	90 60 60	2.5 5.0 4.5	68 292 330	6.3 6.5 4.2	1.0 0.5 1.5	35 27 69	68 74 82	161 300 526	7.55 4.63 6.87	0.57 0.10	2.35 1.49 0.87	1505 1260	4 4 3	1.88	49 17 33
		!																		
																	- ,			
				,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						-		<u>-</u> ,	····		<u></u>		\downarrow		7'	

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS BC V2B 7X8

Project : ADAMS Comments: ATTN: LEO LINDINGER

Page ber :1-B
Total ...ges :1
Certificate Date: 07-AUG-2001 Invoice No. P.O. Number :10121307

Account : RJH

CERTIFICATE OF ANALYSIS	A0121307
	70121001

·															ANAL	. 0.0		AU12	1007		
Sample	PRE COD		P ppm (ICP)	Pb ppm (ICP)	S % (ICP)	Sb ppm (ICP)	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	Ag ppm (ICP)	Al %) As	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Cm %	Cd ppm (ICP)	Ce ppm (ICP)	Co ppm (ICP)
FNR-01-15 FNR-01-16 FNR-01-17 OLR-01-06	94139 94139 94139	402 402 402	1160 1320 800	20 8	2.38 2.99 5.30	15		1.02 0.25 0.22		4060 40 < 10	106 120										
DEK-01-09	74139	402										0.20	3.60	3.0	11.0	0.50	0.90	1.71	0.62	12.45	105.8
•																					
																		Ĺì		j	

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brookshapk Avo.

North Veneguwer

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

DE RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0122051

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0122051

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: 0 P.O. #:

029

Samples submitted to our lab in Vancouver, BC. This report was printed on 16-AUG-2001.

SA	MPLE	PREPARATION
METHOD CODE	NUMBER SAMPLES	DESCRIPTION
244	4	Pulp; prev. prepared at Chemex
;		

		ANALYTICAL P	ROCEDURE	S	
METHOD CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPE! LIMIT
Au-MS21 Au-MS23 Pt-MS23 Pd-MS23	1 1	Au ppm: Fuse 30 gram-ICPMS fin. Au pph: Fuse 30g - ICPMS Finish Pt pph: Fuse 30g - ICPMS Finish Pd pph: Fuse 30g - ICPMS Finish	FA-ICPMS	0.001 1 0.5 1	2.00 1000 1000 1000
į					

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

D: RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: 029

Comments: ATTN: LEO LINDINGER

Page Total nber :1 ∋s :1

Certificate Date: 16-AUG-2001 Invoice No. : 10122051 Invoice No. P.O. Number

Account RJH

						CERTIFIC	CATE OF	NALYSIS	A0	122051	
SAMPLE	PREP CODE	Au ppm ICP-MS	Au ppb ICP-MS	Pt ppb ICP-MS	Pd ppb ICP-MS						
FNR-01-15 FNR-01-16 FNR-01-17 AR 98	244 244 244 244	39.0 101.0 120.0	 < 1	2.0	1						

ALS Chemex

Aurora Laboratory Services Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Y. RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

A0123209

Comments: ATTN: LEO LINDINGER

CERTIFICATE

A0123209

(RJH) - RENAISSANCE GEOSCIENCE SERVICES

Project: P.O. # : FINN-15H

Samples submitted to our lab in Vancouver, BC. This report was printed on 03-SEP-2001.

SA	MPLE	PREPARATION
MÉTHÓD CODE	NUMBER SAMPLES	DESCRIPTION
PUL-31 STO-21 LOG-22 CRU-31 SPL-21 WSH-21 WSH-22 3285	14 14 14 14 2	Pulv. <250g to >85%/-75 micron Reject Storage-First 90 Days Samples received without barcode Crush to 70% minus 2mm Splitting Charge Clean rock 'wash' in crusher Silica 'wash' in pulverizer ICP-587 Tri Acid Dig'n Charge

WEI-21 14 Weight of received sample Au-MS21 2 Au ppb: Fuse 30g - ICPMS Finish FA-ICPMS Ag-ICP61 14 Ag ppm:Tri Acid Dig. ICP Package ICP-AES As-ICP61 14 As ppm:Tri Acid Dig. ICP Package ICP-AES Ba-ICP61 14 Ba ppm:Tri Acid Dig. ICP Package ICP-AES Ba-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Ca %: Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Ca ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Cu ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Cu ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Cu ppm:Tri Acid Dig. ICP Package ICP-AES K-ICP61 14 K %:Tri Acid Dig. ICP Package ICP-AES K-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Ma-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Ma-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES ICP-	### BALANCE
Au-MS21 2 Au ppb: Fuse 30g - ICPMS Finish FA-ICPMS Ag-ICP61 14 Ag ppm:Tri Acid Dig. ICP Package ICP-AES Al-ICP61 14 As ppm:Tri Acid Dig. ICP Package ICP-AES Al-ICP61 14 Ba ppm:Tri Acid Dig. ICP Package ICP-AES Ba-ICP61 14 Ba ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Bi ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Bi ppm:Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Ca %: Tri Acid Dig. ICP Package ICP-AES CC-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES CC-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES CC-ICP61 14 Cr ppm:Tri Acid Dig. ICP Package ICP-AES CC-ICP61 14 Cr ppm:Tri Acid Dig. ICP Package ICP-AES CC-ICP61 14 Cr ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mm-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mm-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES ICP-AES Mn-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-AES S-ICP61 14 S:Tri Acid Dig. ICP Package ICP-AES ICP-	Finish FA-ICPMS 1 200. Package ICP-AES 0.5 10. ckage ICP-AES 0.01 25.00 Package ICP-AES 5 10.000 Package ICP-AES 5 10.000 Package ICP-AES 10 10.000 Package ICP-AES 0.5 10.000 Package ICP-AES 0.01 2: Package ICP-AES 0.01 2: Package ICP-AES 1 10.000 Package ICP-AES 1 10.00
Au-MS21 2 Ag-ICP61 14 Ag-JCP61 14 As-JCP61 14 As-JCP61 14 As-JCP61 14 As-JCP61 14 Ba-JCP61 14 Ca-JCP61	Finish FA-ICPMS 1 200. Package ICP-AES 0.5 10. ckage ICP-AES 0.01 25.00 Package ICP-AES 5 10.000 Package ICP-AES 5 10.000 Package ICP-AES 10 10.000 Package ICP-AES 0.5 10.000 Package ICP-AES 0.01 2: Package ICP-AES 0.01 2: Package ICP-AES 1 10.000 Package ICP-AES 1 10.00
Ag-ICP61 14 Ag ppm:Tri Acid Dig. ICP Package ICP-AES As-ICP61 14 As ppm:Tri Acid Dig. ICP Package ICP-AES Ba-ICP61 14 Ba ppm:Tri Acid Dig. ICP Package ICP-AES Be-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Bi-ICP61 14 Ca %: Tri Acid Dig. ICP Package ICP-AES Ca-ICP61 14 Ca ppm:Tri Acid Dig. ICP Package ICP-AES Cc-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Cc-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Cc-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Cc-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES Cc-ICP61 14 Fe %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 K %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Sh-ICP61 14 Sh ppm:Tri Acid Dig. ICP Package ICP-AES I	Package ICP-AES 0.5 10 ckage ICP-AES 0.01 25.00 Package ICP-AES 5 1000 Package ICP-AES 10 1000 Package ICP-AES 0.5 1000 Package ICP-AES 2 1000 ackage ICP-AES 0.01 21 Package ICP-AES 1 1000 Package ICP-AES 1 1000 Package ICP-AES 1 1000 ckage ICP-AES 0.01 25.00 kage ICP-AES 0.01 15.00 Package ICP-AES 0.01 10.00 Package ICP-AES 1 1000 Package ICP-AE
Al-ICP61 As printification Dig. ICP Package Ba-ICP61 Ba-ICP61 Ba-ICP61 Ba-ICP61 Bi-ICP61 Bi-I	ckage ICP-AES 0.01 25.00 Package ICP-AES 5 1000 Package ICP-AES 10 1000 Package ICP-AES 0.5 1000 Package ICP-AES 2 1000 ackage ICP-AES 0.01 2: Package ICP-AES 1 1000 Package ICP-AES 1 1000 Package ICP-AES 1 1000 Package ICP-AES 0.01 25.00 kage ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 1 1000 Package ICP-AES 0.01 10.00 Package
As-ICP61 14 As ppm:Tri Acid Dig. ICP Package ICP-AES Be-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES Be-ICP61 14 Be ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES Be-ICP61 14 Bi ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES ICC-ICP61 14 Ca %: Tri Acid Dig. ICP Package ICP-AES ICP-A	Package ICP-AES 5 1000 Package ICP-AES 10 1000 Package ICP-AES 0.5 100 Package ICP-AES 2 1000 ackage ICP-AES 0.01 2: Package ICP-AES 1 1000 Package ICP-AES 1 1000 Package ICP-AES 1 1000 Package ICP-AES 1 1000 ckage ICP-AES 0.01 25.00 ckage ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 1 1000 Package ICP-AES 0.01 10.00 Package ICP-
Ba-ICP61 14 Bi-ICP61 14 Bi-ICP61 14 Bi-ICP61 14 Bi-ICP61 14 Bi-ICP61 14 Ca-ICP61 14 Cd-ICP61 14 Co-ICP61 14 Fe %:Tri Acid Dig. ICP Package ICP-AES ICP	Package ICP-AES 10 1000 Package ICP-AES 0.5 1000 Package ICP-AES 0.5 1000 Package ICP-AES 2 10000 ackage ICP-AES 0.01 2: Package ICP-AES 0.05 500 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 0.01 25.00 Ckage ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 1 10000
Be-ICP61 Bi-ICP61 Bi-	Package ICP-AES 0.5 1000 Package ICP-AES 2 10000 ackage ICP-AES 0.01 2: Package ICP-AES 0.5 500 Package ICP-AES 1 10000 Package ICP-AES 1 10000 ckage ICP-AES 0.01 25,00 kage ICP-AES 0.01 10.00 ckage ICP-AES 0.01 15.00 ckage ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package
Si-ICP61 Ca-ICP61 14 Ca-ICP61 14 Cc-ICP61 16 Cc-ICP61	Package ICP-AES 2 10000 ackage ICP-AES 0.01 2! Package ICP-AES 0.5 500 Package ICP-AES 0.5 500 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 0.01 25.00 Ckage ICP-AES 0.01 10.00 Ckage ICP-AES 0.01 15.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 1 10000 Package ICP-AES 1 10000
Ca-ICP61 14 Cd ppm:Tri Acid Dig. ICP Package Co-ICP61 14 Cd ppm:Tri Acid Dig. ICP Package Cr-ICP61 14 Cd ppm:Tri Acid Dig. ICP Package Cr-ICP61 14 Cr ppm:Tri Acid Dig. ICP Package ICP-AES Cu-ICP61 14 Cr ppm:Tri Acid Dig. ICP Package ICP-AES Cu ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES K-ICP61 14 K %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES	ackage ICP-AES 0.01 22 Package ICP-AES 0.5 500 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Rage ICP-AES 1 10000 Rage ICP-AES 0.01 25.00 Rage ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 1 10000 Rage ICP-AES 1 10000 Rage ICP-AES 1 10000 Rage ICP-AES 1 10000 Rage ICP-AES 1 10000 Rackage ICP-AES 1 10000
CC-ICP61 CC-	Package ICP-AES 0.5 50 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 ckage ICP-AES 0.01 25.00 ckage ICP-AES 0.01 15.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 2 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10.00 Package ICP-AES 1 10.00 Package ICP-AES 1 10.00 Package ICP-AES 1 10.00 Package
CO-ICP61 14 Co ppm:Tri Acid Dig. ICP Package ICP-AES CU-ICP61 14 Cu ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES Cu ppm:Tri Acid Dig. ICP Package ICP-AES ICP	Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Ckage ICP-AES 0.01 25.00 Ckage ICP-AES 0.01 15.00 Package ICP-AES 0.01 15.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Package ICP-AES 1 10000
CT-ICP51 CU-ICP51 14 Cu ppm:Tri Acid Dig. ICP Package Fe-ICP61 K-ICP61 14 Fe %:Tri Acid Dig. ICP Package ICP-AES ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES PD ppm:Tri Acid Dig. ICP Package ICP-AES	Package ICP-AES 1 10000 Package ICP-AES 1 10000 ckage ICP-AES 1 10000 ckage ICP-AES 0.01 25.00 kkage ICP-AES 0.01 10.00 ckage ICP-AES 0.01 15.00 Package ICP-AES 5 10000 ckage ICP-AES 1 10000
Fe-ICP61 14 Fe %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mm-ICP61 14 Mg ppm:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mc ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sh-ICP61 14 Sh ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sh ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sh ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sh ppm:Tri Acid Dig. ICP Package ICP-AES ICP-	Package ICP-AES 1 10000 Ckage ICP-AES 0.01 25.00 kage ICP-AES 0.01 10.00 Ckage ICP-AES 0.01 10.00 Ckage ICP-AES 0.01 15.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Ckage ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 2 10000 Package ICP-AES 5 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 1 10000
K-ICP61 14 K %:Tri Acid Dig. ICP Package ICP-AES Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mm-ICP61 14 Mm ppm:Tri Acid Dig. ICP Package ICP-AES Mm-ICP61 14 Mm ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES	ckage ICP-AES 0.01 25.00 kage ICP-AES 0.01 10.00 ckage ICP-AES 0.01 15.00 Package ICP-AES 5 10000 ckage ICP-AES 1 10000 Package ICP-AES 1 10000 ackage ICP-AES 1 10000 Package ICP-AES 2 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00
Mg-ICP61 14 Mg %:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Mn-ICP61 14 Mn ppm:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 Ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sh:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES	kage ICP-AES 0.01 10.00 ckage ICP-AES 0.01 15.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 ckage ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 2 10000 Rege ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00
Mn-ICP61 Mo-ICP61 Mo-ICP61 Mo-ICP61 Mo ppm:Tri Acid Dig. ICP Package Ni-ICP61 Ni-ICP61 Ni-ICP61 Ni-ICP61 Ni-ICP61 Ni-ICP61 Ni-ICP61 Ni ppm:Tri Acid Dig. ICP Package P ppm:Tri Acid Dig. ICP Package P ppm:Tri Acid Dig. ICP Package ICP-AES NI-ICP61 Ni ppm:Tri Acid Dig. ICP Package P ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 Ni ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 Ni ppm:Tri Acid Dig. ICP Package ICP-AES ICP-A	CRAGE CCP-AES 0.01 15.00
Mo-ICP61 14 Mo ppm:Tri Acid Dig. ICP Package ICP-AES Na-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Pb ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S%:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sp ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 N:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 N:Tri Acid Dig. ICP Package ICP-AES	Package ICP-AES 5 10000 Package ICP-AES 1 10000 Ekage ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Reckage ICP-AES 1 10000 Package ICP-AES 2 10000 Reckage ICP-AES 0.01 10.00 Package ICP-AES 5 10000 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00
Na-ICP61 14 Na %:Tri Acid Dig. ICP Package ICP-AES Ni-ICP61 14 Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Pb ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES	Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 1 10000 Package ICP-AES 10 10000 Package ICP-AES 2 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 5 10000 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00 Package ICP-AES 0.01 10.00
Ni ppm:Tri Acid Dig. ICP Package ICP-AES P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Pb ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 Sb rtri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES	CF-AES CO-1 CF-AES CO-1 CF-AES CF-AE
P-ICP61 14 P ppm:Tri Acid Dig. ICP Package ICP-AES Pb-ICP61 14 Sh-ICP61 14 Sh-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES	CP-AES 10 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000
Fb-ICF61 14 Pb ppm:Tri Acid Dig. ICP Package ICP-AES S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES Sb-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 %:Tri Acid Dig. ICP Package ICP-AES	Package ICP-AES 2 100000 tage ICP-AES 0.01 10.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00
S-ICP61 14 S %:Tri Acid Dig. ICP Package ICP-AES Sb-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-AES Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES	Rage ICP-AES 0.01 10.00 Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00
Sb-ICP61 14 Sb ppm:Tri Acid Dig. ICP Package ICP-ARS Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-ARS Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-ARS	Package ICP-AES 5 10000 Package ICP-AES 1 10000 Package ICP-AES 0.01 10.00
Sr-ICP61 14 Sr ppm:Tri Acid Dig. ICP Package ICP-AES Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package ICP-AES	Package ICP-AES 1 10000 ckage ICP-AES 0.01 10.00
Ti-ICP61 14 Ti %:Tri Acid Dig. ICP Package TCP-APC	ckage ICP-AES 0.01 10.00
" " A DCTA DIA- ICE PECKECH TODING	Package TCD_apg
V=TCDE1 14 17 ==== = = = = = = = = = = = = = = = =	ACKANA TCP-WES 1 1949
	Dagbage Top Inc
Zn-ICP61 14 Zn ppm: Tri Acid Dig. ICP Package ICP-AES	Package Top and
TCF-RES	PACKAGE ICF-AES 2 10000

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project : FINN-15H Comments: ATTN: LEO LINDINGER

CERTIFICATE OF ANALYSIS

Page Total nber :1-A

A0123209

Total es :1 Certificate Date: 03-SEP-2001 Invoice No. P.O. Number :10123209

Account :RJH

PREP CODE 9413940	+		Au p		Ag ppm	λ1 %	3.0	_													
9413940	امہ			MS	(ICP)	(ICP)	(ICP)		Be ppm (ICP)		Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na (ICE
			-		< 0.5	8.31	5	130	2.0	10	5.9	< 0.5	26	127	02	2.66					
					< 0.5	8.81	5	810	1.0	< 2	5.2	< 0.5	18	177	92 83	3.96	0.32	0.68	510	< 1	2.
9413940					< 0.5	5.73	< 5	60	2.5	24	6.9	< 0.5	15	132	78	3.29	4.41	1.04	265	< 1	1.0
P413P40					< 0.5	8.56	5	310	3.0	< 2	4.6	< 0.5	25	82	105	5.94 5.19	0.20	1.34	2030	< 1	1.
P413P40	02	0.58		-	< 0.5	6.70	< 5	90	1.5	< 2	6.5	< 0.5	32	83	173	5.65	1.82 0.65	1.47	1065 1235	< 1 < 1	2.6 1.7
					< 0.5	7.62	< 5	70	2.5		8.1	- O 5	30						·· ·		
					< 0.5	10.95	5														2.3
		0.30		-	< 0.5	7.20	5			_											1.0
					< 0.5	6.63	5														2.2
9413940)2	0.54		-	< 0.5	8.59	5													< 1	2.3
	_ -										2.0			/2	52	2.83	1.98	0.96	530	< 1	2.5
							5	70	3.0	30	4.7	< 0.5	11	70	107	2 00	0 22	0.22	200		
									2.5	226	10.5	0.5									3.9
										438	10.0	< 0.5								_	1.0
h412h40)2	1.02		-	< 0.5	7.24	< 5	110	4.5	8	7.2										0.3 2.0
	9413940 9413940 9413940 9413940 9413940 9413940	94139402 94139402 94139402 94139402 94139402 94139402 94139402	94139402 0.58 94139402 0.46 94139402 0.30 94139402 0.54 94139402 0.54 94139402 0.66 94139402 0.70 94139402 0.66	94139402	94139402	9413 9402	9413 9402	9413 9402	9413 9402	9413 9402	9413 9402	9413 9402	94139402	94139402	94139402 0.58 < 0.5	94139402 0.58 < 0.5	94139402 0.58 < 0.5	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\frac{94139402}{94139402}\$ \begin{array}{c ccccccccccccccccccccccccccccccccccc	94139402 0.58 < 0.5

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

DE RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: FINN-15H

Comments: ATTN: LEO LINDINGER

Page iber :1-B

Total ses :1
Certificate Date: 03-SEP-2001
Invoice No. :10123209
P.O. Number

RJH Account

SAMPLE	ſ 		7.1	<u> </u>					·		CE	RTIFIC	CATE OF ANALYSIS	3 ,	A0123209	-
FNR-01-21	SAMPLE					S % (ICP)	Sb ppm (ICP)	Sr ppm (ICP)	Ti %	V prm '	W ppm (ICP)	Zn ppm (ICP)				
FNR-01-21		94139402								42	< 10	82				
FNR-01-24 9413 9402 42 900 8 0.92 < 5 579 0.79 109 10 112 9413 9402 29 1780 2 0.72 < 5 504 1.38 196 < 10 140 FNR-01-26 9413 9402 58 550 6 1.60 < 5 833 1.11 113 < 10 114 FNR-01-27 9413 9402 34 270 14 0.35 < 5 188 0.56 160 10 92 FNR-01-28 9413 9402 47 1070 6 1.33 < 5 540 0.91 126 < 10 118 FNR-01-29 9413 9402 36 1080 4 0.72 < 5 357 1.04 158 10 146 FNR-01-30 9413 9402 29 380 18 0.79 < 5 386 0.32 77 10 96 FNR-01-31 9413 9402 8 1900 12 0.35 < 5 590 0.17 20 10 58 FNR-01-32 9413 9402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186 FNR-01-34 9413 9402 84 54 9414 9414 9414 9414 9414 9414 9414		94139402 94139402									10	60				
FNR-01-25 94139402 29 1780 2 0.72 < 5 504 1.38 196 < 10 140 FNR-01-26 94139402 58 550 6 1.60 < 5 833 1.11 113 < 10 114 FNR-01-27 94139402 34 270 14 0.35 < 5 188 0.56 160 10 92 FNR-01-28 94139402 47 1070 6 1.33 < 5 540 0.91 126 < 10 118 FNR-01-29 94139402 36 1080 4 0.72 < 5 357 1.04 158 10 146 FNR-01-30 94139402 29 380 18 0.79 < 5 386 0.32 77 10 96 FNR-01-31 94139402 8 1900 12 0.35 < 5 590 0.17 20 10 58 FNR-01-32 94139402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 94139402 88 570 < 2 5.54 < 5 81 0.14 114 820 186	FNR-01-24	94139402														
FNR-01-27	FNR-01-25	94139402	29	1780	2											
FNR-01-27		94139402		550	6	1.60	< 5	833	1.11	113	< 10	114				
FNR-01-29 94139402 36 1080 4 0.72 < 5 357 1.04 158 10 146 FNR-01-30 94139402 29 380 18 0.79 < 5 386 0.32 77 10 96 FNR-01-31 94139402 8 1900 12 0.35 < 5 590 0.17 20 10 58 FNR-01-32 94139402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 94139402 88 570 < 2 5.54 < 5 81 0.14 114 820 186		94139402			14		< 5	188	0.56							
FNR-01-30 9413 9402 29 380 18 0.79 < 5 386 0.32 77 10 96 FNR-01-31 9413 9402 8 1900 12 0.35 < 5 590 0.17 20 10 58 FNR-01-32 9413 9402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 9413 9402 88 570 < 2 5.54 < 5 81 0.14 114 820 186		94139402					-					118				ĺ
FNR-01-31 94139402 8 1900 12 0.35 < 5 590 0.17 20 10 58 FNR-01-32 94139402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 94139402 88 570 < 2 5.54 < 5 81 0.14 114 820 186		94139402														
FNR-01-32 94139402 59 850 < 2 4.18 < 5 191 0.26 97 520 162 FNR-01-33 94139402 88 570 < 2 5.54 < 5 81 0.14 114 820 186	FNR-01-31	94139402		1900	12	0.35							·			i
FNR-01-33	FNR-01-32	94139402	59													
		94139402				5.54	< 5		0.14							1
	ENK-01-34	94139402	39	1270	10	0.94	< 5	406	1.22	186		128				
		1 1 1														ŀ
																j
		1 1 1														
		1 1 1														}
]														i
		i i i														
		1 1 1														į
		1 1 1														
																1
		1 1 1														
																İ
																ļ
		1 1														
																i
															$/\Lambda$	-
								·-··							1 1	1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

RENAISSANCE GEOSCIENCE SERVICES

879 MCQUEEN DRIVE KAMLOOPS, BC V2B 7X8

Project: ADAMS Comments: ATTN: LEO LINDINGER

Page f er :1-C Total Pages :1 Certificate Date: 07-AUG-2001 Invoice No. : I0121307 P.O. Number :

: RJH Account

CERTIFICATE OF ANALYSIS	A0121307
-------------------------	----------

											CENTIFICATE OF ANALYSIS AUT										
Sample	PREP CODE	C	r ppm (ICP)	Cs ppm (ICP)	Cu ppm	Fe %	Ga ppm (ICP)	Ge ppm (ICP)	Hf ppm	In ppm	K % (ICP)	La ppu (ICP)	Li ppm (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na %	Mb ppm (ICP)	Ni ppm (ICP)	P ppm (ICP)	Fb ppm (ICP)
FNR-01-15 FNR-01-15 FNR-01-17 OLR-01-06	941394 941394 941394 941394	02	 2540	0.40	121.5	6.96	9.05	0.20	0.4	0.065	0.06	6.5	3.0	16.00	1000	0.70	0.13	4.2	852	162	9.5
		į																			
																				1	

Sheet1

CARSTER			TY ROCK DESCRIPTIONS	analyzed?					<u> </u>
SAMPLE	No.	CLAIM	DESCRIPTION	у-усв.п-по	AU	Cu	ZN	PB	OTHE
EL 3.2		ISH I	Grey medium grained feldspathic-graphitic-biotite gneiss. 5% very fine grained iron sulphides disseminated with matic minerals.	Y	na	23	92	tr	V 55
EL 3.21		ISH 1	Grey massive cryptocrystalline chert. Appears to be exhalitive. 2% very finely disseminated black sulphides.	Y	na	4	12	2	
FNR-01-00) 1	ISH 3	Rusty weathering pale grey vitreous siliceous sulphidic intrusive? or skarn 35% quartz 10% plagioclase, 30% mafics, 10% interstitial pyrrhotite.	Y	na	300	250	20	Ni 59
FNR-01-00	2	ISH 3	Banded quartz (chert?), plag-biotite gneiss, siliceous bands are interlaminated with semimassive tectonized pyyrhotite +/-chalcopyrite sulphide laminations and zones. 6% sulphide content, has similarities to Navan "exhalite".	Y	na	245	36	26	Ni 110
FNR-01-00	3	ISH 1	Dark grey siliceous sulphidic vesuvianite chlorite-muscovite garnet gneissic skarn. 10% very fine grained sulphides throughout.	Y	na	235	48	10	
FNR-01-00	4	ISH 1	Rusty weathering pale grey vitreous siliceous sulphidic intrusive? or skarn 35% quartz 10% plagioclase, 30% mafies, 10% interstitial pyrrhotite.	Y	na	168	146	40	Ni 73
FNR-01-00	5	ISH 1	Tan banded tectonized carbonate. Exotic fragments throughout.	N					
FNR-01-00	6	ISH 1	Green and white banded fine to medium grained cale-silicate rock. interbanded with amphibolite rich cale-silicate. Possible 1% very fine grained disseminated sulphides.	Y	Na	18	82	24	
FNR-01-00	7	ISH 1	Tan banded calc silicate rock. 25% grey very fine grained irregularly shaped masses of quartz. Possible very finely disseminated sulphides throughout.	Y	na	29	52	24	
FNR-01-0	11	ISH 4	Buff garnet(30%), white carbonate(50%), green vesuvianite(15%) skarn. Crudely banded medium grained crystalline texture. Possible trace sulphides.	Y	na	54	72	20	
FNR-01-0	12	ISH 4		Y	na .	79	18	55	As 20
FNR-01-0	13	ISH 4		N					
FNR-01-0	14	ISH 4		Y		0			
FNR-01-0	15	:	Pale white very fine grained quartz (meta-chert?) in contact with dark and pale mottled sulphidic quartz-amphibole skarn or vein. Skarn is 65% quartz, 10% calcite?, 5% mafic minerals and 10% very fine grained pyrrhotite. Pyyrhotite is highly reactive.	Y	39	161	206		Bi 68 V 204 W 4060
FNR-01-0			Pale white very fine grained quartz (meta-chert?) in intruded by dark and pale mottled sulphidic quartz veining. Possible durzgebewang texture Rock is 65% quartz, 5% calcite?, 10% mafic minerals and 15% very fine grained pyrrhotite.	Υ	101	300	106		Bi 292 V 52 W 40
FNR-01-0	17		Buff weathering fine grained siliceous marble. Banded on weathered surface. highly tectonized with sulphidic silicate and calc-silicate fragments throughout.	Y	120	526	120		Bi 330 Sb 15
FNR-01-0	18	ISH 6		Y		92	82	6	
İ			plagioclase-calcite-pyrrhotite skarn.				İ		

FNR-01-0	19	ISH 6	Grey vitreous very fine grained crudely banded quartz or recrystalized chert with up to 7 mm lensoid feldspathic	N					
			segregations. In contact with dark bronze graphitic biotite schist. Trace iron sulphides in late fractures.						
FNR-01-0	20	ISH 6	Rusty weathering pale grey vitreous siliceous sulphidic intrusive?	Y		83	60	24	4
			85% quartz 10% plagioclase, 3% matics, 2% interstitial pyrrhotite.						
FNR-01-0	21	ISH 6	Banded calc-silicate gneiss. 2 to 4 mm laminations of pale siliceous and dark biotite-amphibole. crosscut by late green is chlorite-calc-silicate filled fractures.	N					
FNR-01-0	22	ISH 6	Rusty weathering interzoned chert and dark fine grained felted textured calc?-silicate rock. 70% mafic minerals, 25% feldspars with the remainder interstitial very fine grained iron sulphides and quartz. Gypsum in fractures.	Y		78	148		2 Bi 24
FNR-01-0	23	ISH 6	Fine grained diorite appearing rock. Weak fabric, 60% quartz, 30% plagioclase, 8% bronze biotite or phlogopite, 2% interstitial pyrrhotite.	Y		105	112	8	3
FNR-01-0	24	ISH 6	Rusty weathering dark fine grained felted textured calc?-silicate rock. 70% mafic minerals, 25% feldspars with the remainder interstitial very fine grained iron sulphides and quartz.	Y		173	140	2	
FNR-01-0	25	ISH 6	Rusty weathering coarsely banded siliceous gneiss with pegmatite or siliceous segregation. 30% quartz, 50% plag, 15% chloritized mafics and 5% disseminated psyrhotite.	Y		313	114	6	i
FNR-01-0	26	ISH 6	Brown weathering shiny medium grained muscovite-bronzite- amphibolite gneiss. With late siliceous banded segregations.	Y		46	92	14	
FNR-01-0	27	ISH 6	Rusty brown weathering pale mottled siliceous sulphidic gneiss. rock 70% quartz, 25% plagioclase and 5% very dark very fine grained iron sulphides.	Y		154	118	6	
FNR-01-0	28	ISH 4		Y		72	146	4	Bi 14
FNR-01-0	29		Pale and dark banded very fine grained rock. siliceous bands appear to be recrystallized chert. Dark bands are siliceous-graphitic +/- sulphidic rock.	Y		52	96	18	
FNR-01-0	30	ISH 4	Rusty weathering pele grey vitreous siliceous sulphidic intrusive? 85-90% quartz and 10-15% interstitial pyrrhotite.	Y		107	58	12	
FNR-01-0	31		Rusty weathering pale grey vitreous siliceous sulphidic breccia and intrusive? (endoskarn?) 60% quartz, 20% carbonate (on analyses), minor mafics, and 15% interstitial pyrrhotite.	Y	99	265	162	tr	Bi 226 W 520 Ni 59 Mo 8
FNR-01-0	32	İ	Rusty weathering pale grey vitreous siliceous sulphidic intrusive (endoskarn?) 50% quartz, 10% feldspar, 20% carbonate (on analyses) and 20% interstitial pyrrhotite.	Y	220	380	186	tr	Bi 438 W 820 Ni 88
FNR-01-0			Dark grey green medium grained amphibolite, mottled amphibolite-garnet skarn gneiss with white coarse grained plagioclase and quartz segregations or pegmatite, skarn contains 3% fine grained sulphides.	Y		175	128	10	Mo 4 Bi 8, W 60
NR-01-0 3	4		Brown weathering shiny medium grained muscovite-bronzite- amphibolite gneiss. With late siliceous banded segregations.	N					

STATEMENT OF QUALIFICATIONS

I, JE. L.(Leo) Lindinger, hereby do certify that:

I am a graduate of the University of Waterloo (1980) and hold a BSc. degree in honours Earth Sciences.

I have been practicing my profession as an exploration and mine geologist continually for the past 20 years.

I am a registered member, in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1992).

15 H I own the mineral claims described as the Fisaure Group.

I completed the Exploration program described in the above report.

I.E.L.(Leo) Linding of D.Geo.