MIN Red	ERAL MELLO LA CAR
	FEB - 4 2002
Fiol	VANCOUVER B.C

NTS 92 B/12 W LAT.- 48° 31' 00" N LONG.- 123° 55' 00" W

GOLD COMMISSIONER RECEIVED and RECORDED
JAN 3 1 2002
M.R. # VICTORIA, B.C.

GEOLOGICAL, GEOCHEMICAL AND BULK SAMPLE MICRONEX MILL TEST REPORTon the VALENTINE CLAIM GROUP, SOOKE, B.C.

FOR: BEAUPRE EXPLORATIONS LTD., 110-850 Blanshard Street, Victoria, B.C. Canada V8W 2H2

BY: ANDRIS KIKAUKA, P.GEO., 4-6 4901 East Sooke Road., Sooke, B.C. VOS 1N0

Jan. 15, 2002

GEOLOGICAL SUBMEY DE

Yeesen

(

TABLE OF CONTENTS

Ś

٩

 \langle

 \langle

PAGE NO.

1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0	PROPERTY STATUS	1
4.0	AREA HISTORY	2
5.0	PROPERTY HISTORY	2
6.0	GENERAL GEOLOGY	10
7.0	2001 FIELD PROGRAM	13
7.1	METHODS AND PROCEDURES	13
7.2	PROPERTY GEOLOGY & MINERALIZATION	14
7.3	MICRONEX TEST-DISCOVERY ZONE	15
7.4	STREAM SEDIMENT SAMPLING	17
7.5	GEOLOGICAL MAPPING & ROCK CHIP SAMPLING	18
8.0	DISCUSSION OF RESULTS	21
9.0	CONCLUSION AND RECOMMENDATION	22
	REFERENCES	13
	STATEMENT OF QUALIFICATIONS	14
	ITEMIZED COST STATEMENT	15

LIST OF FIGURES AND APPENDIX

- FIGURE 1 LOCATION MAP
- FIGURE 2 CLAIM AREA MAP
- FIGURE 3A GENERAL GEOLOGY
- FIGURE 3B 'B' AND 'C' VEIN TRENCH SITE
- FIGURE 4 REGIONAL GEOLOGY
- FIGURE 5 LOG DAM ZONE GEOLOGY AND MINERALIZATION
- FIGURE 6 DISCOVERY WEST ZONE GEOLOGY AND MINERALIZATION
- FIGURE 7 STREAM SEDIMENT SAMPLES

APPENDIX A LIST OF CLAIMS

APPENDIX B GEOCHEMICAL AND ASSAY CERTIFICATES

APPENDIX C MICRONEX TEST

くて

Ç

1.0 INTRODUCTION

くくく

ć

~ ~ ~ ~ ~ ~ ~ ~ ~

This report was prepared at the request of Beaupre Explorations Ltd. and consists of a compilation of geological and geochemical fieldwork carried out between April 1, 2001 and November 30, 2001 within the Valentine claim group. Fieldwork included hand trenching, prospecting, geological mapping, geochemical analysis, and bulk sampling (bench testing of 2.1 tonnes of quartz vein material processed through Micronex, a dry circuit mill). The purpose of this report is to summarize geological data in order to evaluate economic mineral potential within the Valentine claim group.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The property is located 49 km. WNW of Victoria, and 19 km. N of Sooke on SW Vancouver Island (Fig. 1 & 2). A network of logging roads, owned by Western Forest Products, access about 50% of the claims. A small portion of the logging roads have steep grades which require four-wheel drive. The main logging road access has weekday travel restrictions during the period 07:00 to 17:00 hours. The area gets occasional heavy rain in the autumn, fire closures in the summer and snow at higher elevations in the winter. Relatively mild coastal climate allows year round fieldwork to be carried out.

The property is part of the Insular Mountains which formed as a result of crustal thickening and subsequent mature dissection of a Tertiary erosion surface of relatively low relief, now expressed as fault controlled valleys and fault-line scarps forming monadnock-like plateaus (Grove,E.W.,1990). The terrain is mountainous and rugged between 370-800 meters elevation (the lower levels of the claim group). Plateaus are developed on the ridge tops at elevations >800 meters above sea level. Quaternary ice advances from the north and west have deposited a 1-5 meter depth of till throughout the region.

3.0 **PROPERTY STATUS** (Appendix A)

The Valentine property consists of 58 claims (241 units=6,025 Ha) registered to Beaupre Explorations Ltd. and 21 claims (21 units=525 Ha) which are registered to Robert Charles Beaupre. Refer to Appendix A for a complete mineral title search of all of the claims from the Ministry of Energy and Mines website dated Jan. 31, 2001. All of the 79 claims (262 units=6,550 Ha) have been grouped and have a common anniversary date of February 14. The Blaze 1-4 claims and BPEX 1-9, & 12 claims have a new expiry year of 2004, and the other claims have been extended to an expiry year of 2003.

4.0 AREA HISTORY

くてく

(

たい

1.1.

r

×,

.

x

~

ζ,

Ç

ۍ د

 \langle

 Placer gold was discovered in the 1860's in sand and gravel alluvium along the San Juan, Leech, Jordan, Sombrio and Loss Creek drainage basins. Leech River was hydraulic mined intermittently until 1941. Nuggets up to 1 ounce and a total production of 10,000-20,000 ounces were sluiced from gravel/bedrock contacts along riverside bars.

Base and precious metal lode deposits in Southern Vancouver Island consist of massive sulphides, skarns, quartz veins and shears. Cu-Pb-Zn-Ag-Au massive sulphides occur near Mt. Sicker. Past producers in this area include Lenora, Tyee, Richard III, and Lara (which has published reserves of 529,000 tonnes grading 1.11% Cu, 1.22% Pb, 5.87% Zn, 4.73 g/t Au and 100.1 g/t Ag). Magnetite-chalcopyrite skarns in the Cowichan Lake area have produced in excess of 15 million pounds of copper and 75,000 ounces of silver. Shear zone copper deposits occur near the mouth of the Jordan R. where then Sunloch-Gabbro property is located. Past production includes several million pounds of Cu as well as minor silver and gold. The adjacent prospect known as the Sunro shear is reported to contain probable reserves of 1,470,000 tonnes @ 1.43% Cu.

5.0 VALENTINE MOUNTAIN HISTORY AND GEOLOGY

Gold bearing quartz and/or sulphide zones have been the focus of attention on Valentine Mountain. A summary of previous work (which is mostly situated on Blaze 1,2 claims) is outlined as follows:

 Gold bearing quartz is hosted in mixed schist/gneiss (i.e. metapelites/metasandstones). Amphibolite units are key stratigraphic horizons and outline major structures, and host gold bearing quartz in the area of the "Discovery Zone" (3 km. west of RB claims). A weakly altered, E-W trending, steeply dipping, laterally continuous, 50-200 m. thick amphibolite unit is in close proximity (about 5-50 m.) to the main series of gold-quartz veins. A total of 3 gold-quartz veins were defined by drill intercepts as follows:

"C" vein zone: Located parallel and 10-15 m. south of the "36" (aka "B" vein), the "C" vein consists of white to grey quartz, trace amounts of pyrrhotite, marcasite and native gold hosted in mixed gneiss and schist. DDH 82-6 intersected the "C" vein at 36.0-36.5 m. depth and returned 7.550 opt Au across 0.5 m. Several other holes drilled nearby (i.e. 82-3,7,7A,5,5A,6A) intersected the "C" vein with assay values up to 0.174 opt Au across 0.3 m.

"D" vein zone: Parallel and 50 m. north of the "C" vein is the "D" vein, which is localized along a fault zone along an amphibolite/gneiss contact. This vein was intersected by DDH 82-6A, 6, 5, & 21 with values up to 0.063 opt Au across 1.3 m., which was recorded in the drill hole furthest west, and appears that the vein improves westward along strike. "A" vein zone: The depth continuity of the "A" vein was tested by DDH 82-15. At 150.4-151.3 m. (0.9 m. wide) and at 154.6-155.1 m. (0.5 m. wide), two veins were intersected that returned 0.042 and 0.098 opt Au respectively.

	-	-	-	
DISTANCE	LOCATION	WIDTH	OPT Ag	OPT Au
2 m.	footwall	.46 m.	.07	.41
2 m.	vein	.17 m.	3.85	34.950
2 m.	hangingwall	.61 m.	.16	.852
10 m.	footwall	.36 m.	.56	.005
10 m.	vein	.03 m.	2.27	33.200
10 m.	hangingwall	.37 m.	.79	3.845
20 m.	footwall	.46 m.	.10	.142
20 m.	vein	.03 m.	.03	.003
20 m.	hangingwall	.50 m.	.02	.090
30 m.	footwall	.48 m.	.01	.010
30 m.	vein	.13 m.	.12	.328
30 m.	hangingwall	.37 m.	.10	.003

2) The "36" gold-quartz vein trench gave the following values:

くくくくら

•

.

/

Ś

Ć

Ç

- 1. Only 1 out of 13 drill holes (DDH #82-6) gave results (7.550 opt Au over 1.6 ft. or 0.5 m.) which compared to the multi-ounce assays returned from the high grade section of the "36" vein trench.
- 1. The main reason for erratic results appears to be structural, i.e. free gold occurs in scattered pockets in the quartz veins, and in fractures and on shear planes in the adjacent wall rocks (Grove, 1984).

1. A bulk sample was shipped to Trail, B.C. (1983) giving the following results:

ANALYZED FOR:	SAMPLE # 1 (223 lbs.)	SAMPLE # 2 (296 lbs.)
	FINES from 5 tons sluiced	GOLD-QUARTZ grab vein & wall rock
GOLD	4.82 OPT	18.44 OPT
SILVER	0.60 OPT	1.25 OPT
SILICA	66.9%	89.4%

- 2. Gold bearing quartz mineralogy includes crystalline arsenopyrite, marcasite, rare chalcopyrite, sphalerite, galena and ilmenite.
- 3. Alteration within the 50-200 m. thick amphibolite unit adjacent to the "Discovery Zone" consists of : extensive quartz, calcite and gypsum veining, spotty to vein-like K-spar zoning,

tourmalinization, epidotization, biotitization of hornblende, and magnetite development (Grove, 1984).

- 4. Spatial relation of gold-quartz and extensive alteration suggest that the amphibolite unit is significant in the localization of gold ore.
- 5. Drill results reflect structure and give a "hit and miss" account of gold grades due to its scattered distribution as streaks, pockets and fracture infillings.

The 1985 Falconbridge mapping and trenching program identified the following geological features present in the "Discovery Zone":

- 1. The "36" and "A" vein gold-quartz systems trend at azimuth 068 degrees, dipping 70 degrees south.
- 2. There are numerous 090 trending, steep S dipping dextral strike-slip faults, offset by later dextral and sinstral strike slip micro-faults (several cm. displacement). Gold-quartz veins appear to have emplaced in between the macro and micro faulting events.
- 3. Gold grades of the main quartz vein and adjacent wall rock increase where there are zones of increased cross and/or diagonal faulting and fracturing
- 4. Calculation of weighted averages of vein and wall rock from the "A" trench returned a value of 0.094 opt Au over 1.38 m. along a strike length of 11.0 m.
- 5. Arithmetic averages of quartz vein from the "A" trench gave 0.959 opt Au and wall rock assays averaged 0.028 opt Au.
- 6. Biotite gneiss (metasandstone) is the dominant host lithology for gold-quartz veins in the "Discovery Zone". Carbonaceous andalusite-staurolite-garnet-biotite schist (metapelite) forms about 15% of the host lithology for the gold-quartz veins and occurs as narrow, .1-5.0 m. wide, E-W trending bands within the more massive biotite gneiss.
- 7. Samples identified as carrying visible gold returned assays of 0.001-0.013 opt Au. These samples included severe dilution from non-mineralized wall rock which would partially explain the low values. The other explanation is that the assay lab did not effectively metallic screen the entire sample to recover the observed native gold.

Bondar-Clegg treated a 42.1 kg. (92.8 lbs.) sample from the trench and obtained 8.74 grams Au and 0.46 grams Ag. The grade of this sample is 13.362 opt Au and 0.70 opt Ag.

In 1987-88, Valentine Gold established a bulk sample pilot mill and cored 43 diamond drill holes, with the following significant results:

"C" Vein zone:

Ĵ

くくくてく

Depth extension of the "C" vein (located 10-15 m. south of and parallel to the "36" vein), defined by a total of 10 drill intercepts are projected on longitudinal section by Gord Allen, outlined an ore reserve calculation of 33,795 tons of 0.429 opt Au (based on a 1.2 m. width) from the "C" vein. The "C" vein is located parallel to and 25-35 m. south of a 100 m. thick, steep south dipping altered amphibolite unit.

"D" vein zone: The "D" vein is located along the south contact of the altered amphibolite unit.

This vein has an inferred strike length of 500 meters, but no ore reserves have been calculated due to grades which average less than 0.100 opt Au across 1.0 m. in the drill intercepts. The main feature of the "D" vein is a) amphibolite contact and b) fault-bound affinity. The "D" vein fault has led to poor recovery and consequent loss of fines as core drills cut this zone.

"E" vein zone:

アンシント

N. 1911 - 1

Ś

へくくくくとくへん

The "E" vein was discovered by drilling towards a well defined Au soil anomaly 100 m. north of the "C" vein and 70 m. north of the "D" vein. The "E" vein is hosted by altered amphibolite, and is in close proximity to the gneiss/schist contact (10-40 m. to the north) and to a 2 m. wide, cross-cutting, (unit 5) quartz diorite dyke. DDH 87-14 recorded 0.226 opt Au across a 0.3 m. wide fault zone (@ 49.1-49.4 m.) and 0.033 opt Au across 1.0 m. (@ 78.0-79.0 m.), suggesting the presence of two parallel vein zones.

"A" vein zone:

The "A" vein was intercepted by DDH 87-3 returning 0.046 opt Au across 0.6 m. in a fault zone (@28.5-29.1 m.). The "A" vein is located 20 m. south of the altered amphibolite contact, thus there is some speculation that it is the continuation of the "D" vein because if we follow the zone west to 87-4,5 (0.136 opt Au over 1.0 m. and 0.031 opt Au across 0.9 m. respectively), these intercepts align with a fault zone adjacent to the altered amphibolite, characteristic of the "D" vein.

The results from drilling in the "Discovery Zone" resulted in an ore reserve calculation on the "C" vein zone:

CELL #	HOLE #	AREA m2	TONNAGE @1.2	opt Au 1.2	Ozs. Au
			m.	m.wide	
1	87-11	1054	3630	1.580	5735
2	88-16	996	3430	0.087	298
3	88-18	1550	5338	0.001	5
4	88-17	1454	5008	0.041	205
5	82-3	748	2576	0.019	49
6	82-6A	530	1825	0.149	272
7	82-6	530	1825	3.080	7393
8	87-22	980	3375	0.033	111
9	88-14	1185	4081	0.031	127
10	88-15	619	2132	0.145	309
		Total toni	nage= 33,795	Total ounces A	Au= 14,504
		Calculated g	grade= 0.429 opt Au	(see Appendix	C)

In 1988, Vancouver Petrographics Ltd. (Dr.John Payne, Dr Jeff Harris, & Wendy Sisson) prepared detailed reports on core and trench samples taken from gold bearing quartz/sulphide zones located 2.5 km. ESE of Valentine Mountain. A summary of their work is listed below:

- 1. The main rock types which host ore in the vicinity of the "Discovery Zone" trenches are a) metasandstone, b) metasiltstone, c) metamudstone. Less abundant host rocks include garnetbearing schist and a mafic volcanic rock altered to chlorite-carbonate-epidote-actinolite. Several 1-3 m. wide granodiorite/quartz diorite dykes/sills cut the above sequence.
- 2. Regional deformation resulted in a series of SE trending folds with steeply dipping axial planes and moderately ESE plunging fold axes. Strongly folded, finely banded argillitic schist is crosscut at a high angle by quartz veins up to 10 cm. across. These veins are folded moderately to tightly about axes which may be coaxial to those which had already deformed the schist host rock. This suggests that two pulses of deformation occurred in the same stress field, and were separated by a tensional event during which quartz veins were introduced.
- 3. Rocks from the "Braiteach Zone" are less deformed, and contain less interbedded argillaceous siltstone/mudstone than the "Discovery Zone".
- 4. Early quartz veins are distended and smeared out, being locally obliterated in part. Less deformed quartz veins may represent later veins which represent tensional dilation that crosscuts the regional trend of foliation at a small angle.
- 5. The "Discovery Zone" gold bearing veins contain quartz which has deformed and partly recrystallized to much finer aggregates, with inclusions of quartz with abundant fine grained pyrite and/or pyrrhotite along grain boundaries. Native gold occurs in later, discontinuous veinlets and replacement patches, whose emplacement is moderately controlled by grain borders of deformed quartz. Locally, native gold (and pyrrhotite) occurs in tiny tiny inclusions in coarse grained arsenopyrite.
- 6. Paragenetic assemblages suggest that during metamorphism, native gold and arsenopyrite were concentrated into shears zones (preferentially in fold closures), and in part into quartz veins formed during early stages of deformation. The presence of K-spar envelopes and euhedral tourmaline suggests a component of hydrothermal contribution to Au-As bearing mineralization. At a later stage, further quartz veins formed, and gold migrated into some of these, possibly near the end of the deformational event.
- Noranda Exploration Ltd. (1989), performed work on the area of the West Leech claims as part of a geological, geochemical, geophysical and diamond drilling program that covered an area 3-5 km. east and west of Valentine Mountain. A summary of Noranda's work is given as follows:
- Unit 2 gneiss (metasandstone) is divided into 2 sub-units: 2a) meta-greywacke has a better developed schistosity and higher % of lithic fragments than 2b and is generally darker coloured, 2b) massive metasandstone light to dark grey colour with minor schistosity with 5% disseminated biotite. Unit 2b is very hard to break because it has been partially recrystallized.
- 2. Unit 1 schist (metapelite) is divided into 5 sub-units: 1a) phyllite, extremely fine grained and fissile, with abundant sericite and minor biotite on cleavage surfaces as a result of retrograde metamorphism related to movement along proximal faults. 1b) biotite schist, medium grey to black colour, quartz and biotite form light and dark bands 1-3 mm wide, garnet and/or andalusite/staurolite porphyroblasts are often observed within the biotite schist. 1c) Biotite-

くていい

Ś

,

1111

garnet schist, similar to 2b with the addition of 1-10 cm. reddish brown, euhedral garnet crystals. 1d) Biotite-garnet-staurolite schist, similar to 1c with the addition of euhedral staurolite commonly cruxiform. 1e) Biotite-garnet-staurolite-andalusite schist, similar to 1d with addition of 1-8 cm., pink andalusite porphyroblasts.

- 3. Cataclastic textures observed in unit 1 schist consist of angular quartz fragments that have been deformed and flattened in the direction paralleling schistosity as a result of mechanical forces caused by proximal faults and/or overthrusts.
- 4. Unit 5 Eccene intrusives consist of quartz diorite which occurs as a 2.8 km. long X 0.1-0.6 km. wide sill feature that widens out in Walker Creek. This quartz diorite has numerous 1-3 m. wide aplite sills with localized 1-3 mm wide orange-red colour, euhedral garnets.
- 5. Unit 6 pegmatite is leucocratic with calcic feldspar, sericite, quartz and localized tourmaline crystals up to 10 cm. in length. Pegmatite dykes and sills range from 0.1-1.5 m. width and occur in the Walker Creek area.
- 6. 1-5 cm. wide parasitic "S" and "Z" folds were observed in schist layers and quartz veinlets, which serve as a guide to direction of fold hinges and indicate a major E-W trending, gentle east plunging anticline along the axis of Valentine Mountain Ridge.
- 7. Quartz veins occur throughout all rock units mapped and vary from 0.05 to 2.0 m. width. They are generally milky white "bull" quartz with occasional subhedral crystals. Limonite is frequently observed, minor fine grained pyrite and lesser pyrrhotite occurs as fracture coatings in quartz. Arsenopyrite crystals were observed in quartz veins and wall rock. There appears to be an association of arsenopyrite and gold bearing quartz veins.
- 8. Gold bearing zones within the amphibolite are associated with pyrrhotite aggregates (forming 3% of total volume), however not all pyrrhotite zones contain gold mineralization.
- 9. Quartz veins hosted in schist (metapelite) generally parallel well developed schistosity. In gneiss (metasandstone), quartz veins 0.05-0.1 m. wide cut sandstone beds at angles of 30-45 degrees, and bedding is at low angles to foliation.
- 10. Variation in quartz veining between various lithologic units reflects the units themselves, i.e. quartz vein material is of metamorphic origin with relatively minor influence of hydrothermal activity. Phyllites contain the least quartz and metasiltsones contain the most quartz, with amphibolite and metasandstone containing relatively medium amounts of quartz.
- 11. Gold bearing quartz veins are predominantly hosted by metasandstone. The "B" quartz veins are translucent to transparent and commonly light orange in colour and the "C" vein is generally grey black in colour. Gold mineralization occurs within the vein material as well as the adjacent wall rock.
- 12. Magnetometer data shows a strong, narrow, 120 trending dipolar (high and low) feature east of L 18100 E. In the area of the "Discovery Zone" this feature appears as a broad mag high over the amphibolite unit (probably caused by increased magnetite and/or pyrrhotite) and an adjacent mag low to the north which may reflect massive metasandstone. West of L 17600 E, a similar, narrow magnetic response has a more subtle character. The pronounced background and source shift hints at a possible fold axis occurring on L 17600 E at stn. 20750 N (also observed by IP data).

13. IP data from the west "Discovery Zone" indicates a chargeability/resistivity high and

Ç

くくくこ

-

٩,

 \langle

Ę

Ń

۰.

:

 \langle

((

Ś

coincident Au soil geochem anomaly between L 20600 E/20087 N and L 19600 E/ 20137 N. Core drilling this target between L 19800 E and L 19900 E proved to be successful in identifying two gold bearing zones localized along the contact of mixed metapelite/metasandstone and altered amphibolite. DDH 89-24 intersected 2.301 opt Au across 0.3 m. @ 59.1-59.5 m.

- 14. IP data from "BN" and "Braiteach" zones identified a similar IP chargeability/resistivity high and coincident Au soil geochem anomaly between L 17150 E to L 18000 E located parallel and 50-125 m. north of the baseline.
- 15. "Braiteach Zone" DDH 89-20 and 89-21 were collared on the west projection of Au intercept 0.136 opt Au across 3.0 m. in DDH 88-12. DDH 89-20 cut 17.8 m. overburden, the following 99.1 m. cored through amphibolite with 5-7% quartz as stringers and veinlets with no significant Au values. Increased quartz, with 3-4% pyrite, pyrrhotite and chalcopyrite occur at 62.8-63.8 m. Fault breccia and gouge with 2-3% pyrite and pyrrhotite was cut at 76.5-77.8 m. An increase in biotite rich layers occurs at 77.8-84.4 m. with up to 4% disseminated pyrite, pyrrhotite and chalcopyrite. DDH 89-21 had 25 m. of overburden, followed by 86.1 m. of amphibolite. An increase in biotite rich layers with 4% disseminated pyrite, pyrrhotite and chalcopyrite occurs at 75.1-82.6 m. Fault gouge and shearing with 2-3% pyrite occurs at 93.5-94.7 m. and 103.3-109.0 m.
- "Discovery West" DDH 89-22,23,24 were drilled to intersect an IP target of high 16. chargeability and resistivity which coincides with anomalous Au geochem and is interpreted as being the west extension of the "C" and "D" vein systems. DDH 89-22 cut 3 quartz veins, the largest being 20 cm., with mineralization consisting of 10% pyrite and 1% pyrrhotite. The "D" vein system located 4 m. above the metasandstone/amphibolite contact returned 740 ppb Au over 1.5 m. Within the amphibolite at 148.3-149.3 m. there is a 1.0 m. interval with visible gold that returned 0.027 opt Au. DDH 89-23 cut two quartz veins, the largest being 0.35 m. wide with 1-2% pyrite and 1% pyrrhotite which are interpreted as the "C" vein system was intersected at 56.9-58.4 m. returning 0.040 opt Au across 1.5 m. width and the "D" vein at 106.5-108.0 m. assaying 0.028 opt Au across 1.5 m. DDH 89-24 cut 4 quartz veins, the largest being 0.41 m, wide, with 1-2% pyrite and less than 1% pyrrhotite. DDH 89-24 intersected 2.301 opt Au across 0.4 m. @ 59.1-59.5 m. depth. This intersection is situated 2.2 m. above the metasandstone/amphibolite contact and is interpreted as the "D" vein system. At 69.0-70.0 m. depth, DDH 89-24 cut a biotite rich layer with 0.5% euhedral garnet porphyryblasts, 1-2% pyrite and 1% pyrrhotite which returned assay values of 0.087 opt Au across 1.0 m. At a depth of 129 m., DDH 89-24 intersected a 5 m. wide band of 2-3% pyrrhotite blebs (with assay values up to 0.013 opt Au across 0.4 m.), and the projected IP chargeability high correlates with this mineral zone.
- 17. Detailed mapping of the "BN Zone" shows the gold-bearing quartz vein systems are predominantly hosted by gneiss (metasandstone, unit 2), typically with 10-20% biotite and exhibiting "woodgrain texture". There is some interbedded biotite-garnet-staurolite schist (unit 1) at L 17600 E/20935 N where there are 5-25 m, wide quartz vein swarms along the contacts of unit 1 & 2. At the southern edge of the Au soil anomaly is a massive, chlorite altered amphibolite (unit 3).

イン・ション とうとい

. A total of 41 fock clip samples were taken with the following inglinguis.			
SAMPLE #	Au ppb	As ppm	WIDTH m.
59655	5950	2219	0.03
58559	5530	3	0.05
59662	3960	1730	0.02
59660	3850	573	0.02

to 1 of 41 mode abin annual as more taken with the following highlighter

1

くいいてい

Ś

~

くくくくくく

19) "Braiteach Zone" trench sampling is summarized as follows: a) Zone #1outcrops in a road cut on J-6 logging road where specks of visible gold were found in limonitic, vuggy quartz hosted in a hydrothermal alteration zone within metasandstone. Out of 5 channel, 3 panel and 1 grab sample, the highest geochemical value returned was 390 ppb Au and 538 ppm As.
b) Zone #2 is located 55 m. north of the baseline on L 16800 E where a 0.08 m. wide E-W trending quartz vein was channel sampled in 11 locations along the outcrop, returning a high value of 740 ppb Au, and 875 ppm As. c) Zone #3 is 80 m. WNW of zone #2 and consists of a main E-W trending, steep north dipping quartz vein with 10-20% quartz stringers 1 m. from the vein, which decrease with distance from the main vein. Results produced a high value of 150 ppb Au and 1063 ppm As. d) 8 chip samples from Zones #4-6 returned values up to 159 ppb Au and 25 ppm As.

- 1. Rock chip sampling on the Peg and Bo Claim Groups (Walker Creek area), returned 0.67% Cu across 0.2 m. and 0.28% Cu across 0.1 m.
- 2. Recommendations for further work include exploration and development of low tonnage, high grade ores shoots along the 7 km. strike length which is known to host gold-bearing quartz vein systems.
- 1994- Fairbank Engineering Ltd performs detailed mapping of the 'C' vein trench at a scale of 1:250 (Appendix B). A total of 13 samples were taken ranging in width from 9-110 cm. Sample No. 6 returned a value of 30.20 g/t Au across a width of 7 cm.
- 1998- A geological and exploration evaluation of the Valentine Mountain Gold Property was carried out by Burgoyne Geological Inc. (Burgoyne, 98). The report concluded that the highest priority exploration targets include the areas 50-300 m east of and 200-600 m west of the mill site (Figure 3). The high priority areas include Discovery ("B" and "C" Veins) depth extension, Discovery West (Noranda DDH 89-24), and Log Dam (mag and Au in soil anomaly located approximately 300 m west of mill site). A separate geological evaluation of the Valentine Mountain Gold Project was carried out by W.R. Epp, P.Geo., who developed a new exploration model of subduction related mineralization in the Leech River Formation. Based on multi-depositional, subduction zone mineral deposit models, there is potential to discover porphyry copper-gold and related dyke-sill hosted gold, stockwork and breccia zones at depth. The geological model for a deep buried high tonnage, hydrothermal mineral zone is supported by the presence of auriferous quartz veins (e.g. 'C', 'B' and 'D' veins) which are believed to originate from underlying intrusives.

2000- Beaupre Explorations Ltd carried out a program of diamond drilling on the Discovery Zone ('B' and 'C' Vein structures). A total of 182.73 meters of BQ core drilling (DDH 00-01 to DDH 00-08) was performed from 6 different pads between the 'B' and 'C' Veins. Core drilling was set up to intersect the known 'C' vein structure (which strikes 092 and dips 60-75 degrees south) at an oblique angle and to cut quartz veining that my be perpendicular to the known structure. The results of significant precious metal intercepts are listed as follows:

From	То	Width	Au OPT
34.0 ft	34.8 ft	0.8 ft	0.094
10.37 m	10.61 m	0.24 m	
74.8 ft	79.8 ft	5.0 ft	0.116
22.81 m	24.33 m	1.52 m	
13.2 ft	14.5 ft	1.3 ft	0.019
4.03 m	4.42 m	0.39 m	
	From 34.0 ft 10.37 m 74.8 ft 22.81 m 13.2 ft 4.03 m	From To 34.0 ft 34.8 ft 10.37 m 10.61 m 74.8 ft 79.8 ft 22.81 m 24.33 m 13.2 ft 14.5 ft 4.03 m 4.42 m	From To Width 34.0 ft 34.8 ft 0.8 ft 10.37 m 10.61 m 0.24 m 74.8 ft 79.8 ft 5.0 ft 22.81 m 24.33 m 1.52 m 13.2 ft 14.5 ft 1.3 ft 4.03 m 4.42 m 0.39 m

The presence of minor amounts of arsenopyrite as medium to coarse grained aggregates, are coincident with an increase in gold (Kikauka, 2001).

6.0 GENERAL GEOLOGY (FIG. 4)

Ć

くくく

くて

(

بر ج

Ę

۲

í.

(

Ś

L.H. Fairchild (1979), completed a structural and metamorphic analysis of the Leech River Group in partial fulfillment of the requirements for a Masters degree at the University of Washington. Most of his work focused on the Valentine Mountain area. A point form summary of his study is listed below:

 Leech River Group consist of greenschist to amphibolite facies gneiss and schist metamorphic rocks Their protolith rock types listed in order of abundance are: a-pelite (shale), b-sandstone, c-volcanic,

d-chert, e-conglomerate.

- 1. Two Eocene deformational events, separated by a static period of unknown duration, consisted of fragmentation, rotation and regional shortening resulted in axial-plane cleavage, linear structures and coaxial mesoscopic parasitic folds about east-plunging fold axes.
- 2. Amphibolite facies metamorphism resulted in biotite-garnet and staurolite-andalusite successively introduced by continuous reaction, which extended from the end of the first phase of deformation into the second phase.
- 3. Greenschist facies metamorphism results in muscovite-chlorite-quartz assemblages.
- 4. San Juan, Clapp Ck. And Leech R. faults are E-W trending, steeply dipping, relatively straight zones of regional sub-parallel fault traces. The Leech R. fault is interpreted to be a left-lateral strike-slip fault zone active during the Eocene-Oligocene-Miocene.
- 5. In the Jordan R. valley southwest of Valentine Mountain, 10-50 m. wide coarse-grained

biotite orthogneiss to grandioritic sills and related pegmatite dykes are concordant with regional schistosity.

- 6. In both mesoscopic and macroscopic folds throughout the Leech R. Group, metasandstone and metavolcanic units behave competently and pelitic rocks, which typically filled-in between competent bodies, behaved in a more ductile fashion. This competency contrast indicates that buckling, rather than homogenous flattening or slip-folding, was the dominant mechanism of folding.
- 7. Isoclinal F1 structures are refolded by F2 resulting in cylindrical folds which are generally asymmetric-open in the north study area, and progressively symmetric-closed to the south.
- 8. Dominant foliation in the study area is steeply dipping, F2 axial planar.

いへん

((

ζ

.

 $\langle \rangle$

. . .

.

•

١,

`

Gay A. Wingert (1984), completed a B.Sc. thesis for U.B.C. entitled Structure and Metamorphism of the Valentine Mountain Area, SW Vancouver Island, B.C. Her study is summarized as follows:

- 1. The Leech R. Fm. underwent 2 stages of deformation and metamorphism which correlates with 2 stages of intrusion. Evidence for polymetamorphism is defined by distribution of staurolite and andalusite, indicating there was a primary metamorphic event which reached temperatures high enough to produce andalusite and a secondary metamorphic event of lower grade which only produced staurolite.
- 2. The second stage of metamorphism began prior to the second stage of deformation.
- 3. The final stages of igneous activity (presumed to have occurred in Late Eocene to Early Oligocene) coincide with dextral strike-slip movement along the Leech R. Fault. Retrograde alteration consists of staurolite & andalusite partially replaced by sericite-chlorite-quartz, garnets are crushed and altered to chlorite, and biotite and hornblende appears kinked and boudinaged. Late stage retrograde alteration is associated with late stage faulting and intrusive activity which produced dykes & sills, and gold-bearing quartz.
- 4. The axial trace of a regional E-W trending anticline fold axis is centered on Valentine Mountain.
- 5. Walker Creek is an axis for an E-W trending anticline fold axis

The B.C. Geological Survey Branch and the G.S.C. prepared a paper titled Andalusite in British Columbia-New Exploration Targets (Dr. G. Simandl, et.al., 1994)). There was a chapter of this paper devoted to the Leech River Area with specific reference to potential economic deposits within the subject property (Appendix A). A point form summary of this paper is given below:

- 1. Typical grades of primary "hard rock" and alusite ores vary from 7 to 20%. Typical production capacities of individual mines vary from 25,000 to 65,000 tonnes per year.
- 2. The coarser the crystals, the easier it is to upgrade the ore. Garnet and staurolite typically coexist with andalusite and where grades and textures permit, they are recovered as byproducts.
- 3. Most of the area east of Valentine Mountain contains and alusite strongly retrograded to either mica and staurolite or mica and chlorite. The retrograde alteration appears to be

strongest in the "Discovery Zone"

- 4. The degree of retrograde alteration diminishes west of Jordan River where an E-W trend is especially interesting and may host zones of economic andalusite-garnet-staurolite.
- 5. There is a 6 m. wide zone of 7% and alusite bearing schist surrounded by a felsic intrusion.

The following legend lists rock types of the Leech River Group and younger intrusive rocks which underlie the Valentine Mountain claim group:

EOCENE AND YOUNGER? INTRUSIVE ROCKS

- 6 Pegmatite, Leucocratic dykes and sills
- 5 Quartz diorite, minor granodiorite, granite
- 5a Aplitic dykes and sills (leucocratic, fine grained)

TRIASSIC TO CRETACEOUS? LEECH R. GROUP METAMORPHIC ROCKS

- 4 Phyllite (finer grained and better cleaved than schist)
- 3 Amphibolite (metavolcanic)
- 3a Tuff

くくてくく

((

(

ζ

.

アメアメアシアメ

- 3b Flow
- 3c Pervasive chlorite alteration
- 2 Gneiss (metasandstone)
- 2a "Dirty"- greywacke
- 2b "Clean"- metaquartzite

1 Schist (metapelite)

- la Biotite schist
- 1b Biotite-garnet schist
- 1c Biotite-garnet-staurolite schist
- 1d Biotite-garnet-staurolite-andalusite schist

7.0 2001 FIELDWORK

くく

(

((

C

く くろく く くく

7.1 METHODS AND PROCEDURES

A total of 4 shipments with a combined weight of 2.1 tonnes were processed through the Micronex dry mill (Appendix C). Sample material was collected from the 'Discovery- C Vein' trench and shipped to Delta, B.C. for assay balance and bench tests performed by Mineral Associates (R. Salter, Ph.D., P.Eng. and de Monte, Ph. D.) at Vancouver Blower, River Road, Delta, on behalf of First American Scientific Corp who have patented the Micronex 'sonic wave' mineral processing machine. This chain driven impact mill has other applications in agricultural, forestry, and bio-solid applications.

All 4 shipments totaling 2.1 tonnes of quartz-sulphide vein material was crushed in a portable jaw crusher to less than 2.0 cm rock chips and processed in a rotor chamber where the high frequency, mechanically induced sonic wave reduced quartz-sulphide chips (which are fed into the machine on a conveyor belt) into 2-5 micron sized grains. These micro-grains are fractured and the light fraction is expelled by a classifier, with heavies falling into a clam-shaped trap at the bottom of the rotor (Appendix C). Mineral Associates reviewed the operating protocol and procedures with First American Scientific's rig operator before any test work began. The rig was inspected and determined to be in good condition, mechanically and electrically, and very clean, prior to testing the quartz-sulphide sample material.

A total of 29 rock chip samples were extracted from quartz-sulphide enriched portions of outcrops using hammer and moil, bagged and sent to Bondar-Clegg, N. Vancouver for metallic sieve Au assay (Appendix B). Geological mapping of the sampled outcrop area was carried out at scale of 1:500 covering the 'Discovery West' and 'Log Dam' quartz-sulphide vein zones (Fig. 5,6)

A total of 2 stream sediment silt samples labeled 01-ST-1,2 were taken from the Log Dam and Trip Creek area. These samples were taken with a shovel in active streams, screened through -40 mesh screen, placed in a marked kraft bag, dried and sent to Bondar-Clegg, N. Vancouver Au geochemical analysis (Appendix B, Fig. 7).

7.2 **PROPERTY GEOLOGY AND MINERALIZATION**

The Valentine Property is underlain by the Leech River Group metasediments and metavolcanics. The following lithologies were recognized:

EOCENE AND OLDER (CATFACE INTRUSION)

- 6 Pegmatite, leucocratic with calcic feldspar.
- 5 Quartz diorite

くくりく

<

((

0

(

 \langle

,

.

,

5

-

,

۰,

.

1.1 1.1

(

Ś

 \langle

<

 \langle

TRIASSIC TO CRETACEOUS? LEECH R. GROUP METAMORPHIC ROCKS

- 3 Amphibolite (metavolcanic), 20-60% actinolite, 10-20% chlorite, 1-4% calcite as stretched vessicles
- 2 Biotite gneiss, (metasandstone, greywacke) weakly developed gneiss texture, locally feldspathic
- 1c Biotite-garnet-staurolite schist (metapelite), cruciform, euhedral porphyryblasts of staurolite, 1-4% almandine garnet
- 1b Biotite-garnet schist, 1-3% euhedral almandine garnet

The low grade metamorphism has produced abundant quartz veining which occurs as milky white to clear veins and veinlets forming 1-20% of the volume of bedrock. The gold bearing veins are distinct from the metamorphic quartz. The gold bearing veins are weakly mineralized and contain quartz which has deformed and partly recrystallized to much finer aggregates, with inclusions of quartz with abundant fine grained pyrite and/or pyrrhotite along grain boundaries. Native gold occurs in later, discontinuous veinlets and replacement patches, whose emplacement is moderately controlled by grain borders of deformed quartz. Locally, native gold occurs as tiny inclusions within coarse grained arsenopyrite. Paragenetic assemblages suggest that during metamorphism, native gold and arsenopyrite were concentrated into shears zones (preferentially in fold closures), and in part into quartz veins formed during early stages of deformation. The presence of K-spar envelopes and euhedral tourmaline suggests a component of hydrothermal contribution to Au-As bearing mineralization. At a later stage, further quartz veins formed, and gold migrated into some of these, possibly near the end of the deformational event. The metamorphic grade is greenschist (indicated by muscovite-chlorite-quartz assemblages) and the retrograde metamorphism accounts for vuggy and/or ribbon textured quartz which parallel and cross-cut the country rock schistose fabric. In detail, the texture of the ribbon veins are a combination of elongate and deformed quartz grains which are restricted to bands, fine grained recrystallized grains and sub-grains which mantle and cut older relict crystals (Dowling, 1988). Retrograde alteration consists of staurolite and andalusite partially replaced by sericite-chloritequartz. Retrograde alteration has also produced fine grained garnets that are crushed and altered to chlorite, biotite and hornblende. Late stage retrograde alteration is associated with Eocene faulting and intrusive activity (dykes-sills) with related gold-bearing quartz vein systems.

7.3 MICRONEX TEST- DISCOVERY ZONE 'C' VEIN SAMPLE (APPENDIX C)

The gold bearing quartz veins of the 'C' vein are hosted in schist (meta-sandstone/siltstone). Gold bearing quartz and adjacent wall rock contains feldspar, quartz, biotite, muscovite, garnet, and alusite, staurolite, calcite, clays, tournaline, pyrite, marcasite, and arsenopyrite.

Representative samples of approximately 2,100 Kg of gold bearing quartz with minor amounts of wall rock were excavated from the 'C' vein trench site (Fig. 3b). Gold bearing quartz was shipped to Vancouver Blower, Delta, B.C. where the Micronex dry mill was tested for gold recovery. The Micronex dry mill uses high speed chains to produce a 'sonic wave' which combined with a blower to classify the light fraction, can be used as a mineral processing machine. This chain driven impact mill operates dry and expels moisture. The Micronex has other applications in agricultural, forestry, and bio-solid applications.

The 2,100 Kg of quartz vein sample was delivered in 50-60 gunny sacks and loaded into the Micronex mill by conveyor. Tests were carried out on six separate sections of the sample. Each of the six tests were weighed and gold assay of concentrate and tailings were recorded. Complete results from processing 2.1 tonnes of quartz-sulphide material from the 'Discovery Zone-C Vein' are summarized in the report written by Dr. R. Salter, P.Eng., representing Mineral Associates (Appendix C), with highlights as follows:

Test # 1	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing	355 6214	25.58 0.38
Gold Recovery = 82.0 %		
Test # 2	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing	1305 6214	2.52 3.24

Gold Recovery = 17.1 %

く く く く く

((

((

Ç

ć

`

トイン バッドン・シ

Test # 3	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing	539 5732	67.07 0.67
Gold Recovery = 90.5 %		
Test # 4	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing	1078 8683	16.40 1.32
Gold Recovery = 62.1 %		
Test # 5	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing	794 8342	15.06 1.33
Gold Recovery = 52.2 %		
Test # 6	Weight (grams)	Gold Assay (grams/ tonne)
Concentrate Tailing Gold Recovery = 20.0 %	1419 8512	2.07 1.36

Gold recovery was excellent in Test 1 and 3 where tailings contained less than 1 gram/tonne gold, including one as low as 0.38. Test 4 and 5 gave encouraging results. Test 2 and 6 results were unsatisfactory. Test 6 was a high temperature test (sample was heated to 350 degrees F), and can be discarded. Test 2 gave no apparent reason for being unsatisfactory although it did yield the highest weight recovery. Preliminary batch testwork on 6 samples yielded recoveries ranging from 17.1 % to 90.5 %. Further test samples should be larger in mass. A study of the tailings is necessary to optimize recoveries.

いいいくいいく

/

(

.

Ň

くこく

Prior to testing the 2.1 tonnes of material, the Micronex equipment was used in December, 2000 to test 0.68 tonnes of quartz sulphide material from the 'Discovery Zone-C Vein'. The average head grade of this 0.68 tonne sample was calculated from 3 representative samples that gave an average assay value of 1.098 opt Au. This sample was processed under the supervision of Mineral Associates and initial recovery rates of 57% were obtained. Initial testing indicated that modifications of the mill circuit would be implemented with a design, configured specifically for the ore from the companies Valentine Mountain gold property, although no details of the modifications to the mill circuit are discussed.

7.4 STREAM SEDIMENT SAMPLING

(

くくくてくて

A total of two second order tributary drainages that empty in Trip Creek were sampled in the vicinity of the Log Dam showings (Fig. 7). The objective of the sampling was to determine if there were anomalous gold values in these seasonal creeks. Results of the sampling are as follows:

Sample 01-ST-1 was taken from a north tributary to the main east-west trending creek located 80 m west of the Log Dam and gave an assay of 12 ppb Au (Fig. 7). Sample 01-ST-2 was taken from an east tributary to north-south trending Trip Creek located 80 m west of the Log Dam and gave an assay of 9 ppb Au (Fig. 7).

7.5 GEOLOGICAL MAPPING AND ROCK CHIP SAMPLING (FIG. 5,6)

((

くく

((

Ę

いいいいい

く く く

Samples taken from the 'Discovery West Zone-D Vein' (Fig. 6) are summarized as follows:

Sample #	Width	Description	Au g/t
599301	0.3 m	25% quartz as concordant 0.3-3.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599302	0,3 m	20% quartz as concordant 0.2-4.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599303	0.3 m	15% quartz as concordant 0.1-1.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
399304	0.3 m	20% quartz as concordant 0.3-4.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599305	0.4 m	30% quartz as concordant 0.3-5.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01

Sample #	Width	Description	Au g/t
599306	0.3 m	35% quartz as cross-cut and concordant 1.0-5.5 cm wide veins, 2% limonite, 2% py. in unit 2 schist, strike 100, dip -75 south	0.01
599307	0.3 m	30% quartz as cross-cutconcordant 0.2-4.5 cm wide stringers. 2% limonite, 2% py. in unit 2 schist, strike 100, dip -75 south	0.07
599308	0.3 m	10% quartz as concordant 0.2-2.0 cm wide stringers, 1% limonite, 0.5% py. in unit 2, strike 100, dip -76 south	0.01
399309	0.4 m	40% quartz as concordant 2.0-10.0 cm wide vein, 2% limonite, 1% py. in unit 3 amphibolite, strike 97, dip -70 south	0.01
599310	1.0 m	12% quartz as concordant 0.3-5.5 cm wide stringers, 2% limonite, 1% py. in unit 3 amphibolite, strike 100, dip -71 south	0.01
599311	1.0 m	10% quartz as concordant 0.3-5.5 cm wide stringers, 2% limonite, 1% py. in unit 3 amphibolite, strike 100, dip -73 south	0.01

Sample #	Width	Description	Au g/t
599321	0.3 m	15% quartz as cross-cut and concordant 1.0-2.5 cm wide veins. 1% limonite, 1% py. in unit 2 schist, strike 96, dip -75 south	0.55
599322	0.5 m	20% quartz (vuggy and buck texture) as cross-cut and concordant 0.2-4.5 cm wide veins, 2% limonite., 2% py. in unit 2 schist/unit 3 amphibolite contact, strike 95, dip -S.	100.08
599323	1.5 m	5% quartz as concordant 0.2-2.0 cm wide stringers, 1% limonite, 0.5% py., 3% calcite, 1% ankente in unit 3 amphibolite, strike 100, dip -78 south	0.79

Samples from the Log Dam and Trip Creek Zone (Fig. 5) are summarized as follows:

Sample #	Width	Description	Au g/t
599312	0.4 m	12% quartz as concordant 0.1-1.5 cm wide stringers, 1% limonite, trace py., as disseminated blebs in unit 3 amphibolite, strike 092, dip -76 south	10.0
599313	0.3 m 25% quartz as concordant and cross-cutting 0.2-3.5 cm wide stringers, 2% limonite, 1% py. in unit 3 amphibolite, strike 110, dip -72 south, contorted foliation and folding		0.01
599314	0.3 m	15% quartz as concordant 0.1-1.5 cm wide stringers, 2% limonite, 1% py. in unit 3 amphibolite, strike 092, dip -76 south	0.01
399315	0.3 m	15% quartz as concordant 0.3-4.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 094, dip -76 south	0.01
599316	0.4 m	12% quartz as concordant 0.3-5.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 093, dip -76 south	0.01

Sample #	Width	Description	Au g/t
599317	0.3 m	25% quartz as cross-cut and concordant 1.0-3.5 cm wide veins, 2% limonite, 2% py. in unit 2 schist, strike 094, dip -75 south	0.01
599318	0.3 m	30% quartz as cross-cut concordant 0.2-4.5 cm wide stringers, 2% limonite, 2% py. in unit 2 schist, strike 100, dip -75 south	0.01
599246	0.6 m	25% quartz as concordant 0.2-5.0 cm wide stringers, 1% limonite, 0.5% py, in unit 2, strike 90, dip -80 south, contorted folding	0.01
399247	0.8 m	40% quartz as concordant 2.0-10.0 cm wide vein, 2% limonite, 1% py. in unit 3 amphibolite & unit 2 biot-and-gt-staur schist, strike 92, dip -70 south	0.01
599248	1.0 m	12% quartz as concordant 0.3-1.5 cm wide stringers, 20% tremolite, 1% tourm. 2% limonite, 1% py. in unit 3 amphibolite, strike 93. dip -71 south	0.01

Sample #	Width	Description	Au g/t
599319	0.3 m	20% quartz as cross-cut and concordant 1.0-3.5 cm wide veins, 1% limonite, tr py. in unit 3 amphibolite, strike 096, dip -70 south	2.13
599320	0.2 m	50% quartz as cross-cut concordant 0.2-6.5 cm wide stringers, 1% limonite, tr py. in unit 3 amphibolite, contorted foliation, wild tolding	0.07
599249	0. та	25% quartz as concordant 0.2-5.0 cm wide stringers, 1% limonite, 0.5% py. in unit 2, strike 90, dip -80 south, contorted folding	0.01
399250	0. 4 m	30% quartz as concordant 2.0-10.0 cm wide vein, 2% limonite, 1% py. in unit 3 amphibolite & unit 2 biot-and-gt-staur schist, strike 92, dip -70 south	32.02

The "C" vein or "Discovery Zone" on Valentine Mountain contains an indicated mineral resource of 30,415.5 tonnes at an average grade of 0.429 opt Au (Allen, 1989). The "C" vein is an east-west trending, steeply dipping fault structure which contains white to grey quartz, trace amounts of pyrrhotite, pyrite, arsenopyrite, marcasite and native gold hosted in mixed phyllite and schist (Fig. 3B).

Geological mapping and sampling carried out in 2001 outlined two new gold occurrences 600 and 1,100 meters west of the "C" vein.

 $\left(\right)$

(

((

1

 1) "Discovery West Zone" (Fig. 6, sample numbers 599301-311 and 599321-323) is the west extension of the "D" vein zone and is located 600 m west of the 'Discovery Zone'. Parallel and 50 m. north of the "Discovery Zone-C Vein" is the "D Vein", which is localized within a fault zone along a steeply dipping amphibolite/schist contact. Adjacent to the "Discovery Zone" the "D" vein was intersected by DDH 82-6A, 6, 5, & 21 with values up to 0.063 opt Au across 1.3 m. The "Discovery West Zone" is 600 meters west of the "Discovery Zone". The 'Discovery West Zone' features DDH 89-24 which intersected the "D vein" at 59.15-59.52 meters depth and returned 2.301 opt Au across 0.37 m (Fig. 6). A surface fault zone with quartz-pyrite-marcasite and native gold mineralization was localized along a schist/amphibolite contact with minor tournaline and garnet alteration located 50 meters north of DDH 89-24. This gold bearing fault zone (see sample 599322, Fig. 6)) is interpreted as the 'D' vein which was intersected by DDH 89-24. The following table lists the results from 2001 field sampling of the "Discovery West Zone" and "D" vein zone:

Sample #	Width	Description of rock chip sample taken from 'Discovery West Zone'	opt Au (g/t Au)
599321	0.3 m	15% quartz, 1% limonite, 1% pyrite in schist 200+52 N, 203+50 E	0.016 (0.55)
599322	0.5 m	Fault zone at schist/amphibolite contact, 20% quartz (vuggy), 2% limonite, 2% pyrite, trace visible gold in quartz 200+55 N, 203+50 E	2.919 (100.08)
599323	1.5 m	5% quartz as concordant 0.2-2.0 cm wide stringers, 1% limonite, 0.5% py., 3% calcite, 1% ankerite in unit 3 amphibolite, strike 100, dip -78 south20+115 N, 20+300 E	0.023 (0. 79)

2) "Log Dam Zone" (See Fig. 5-Sample numbers 599312-320 and 599246-250) is located 1,100 meters west of the "Discovery Zone" and extends west for 250 meters to Trip Ck.. The Log Dam Zone features coincident geochemical (Au-As soil anomalies from Valentine Gold, 1986) and geophysical (IP and magnetometer anomalies from Noranda,1989) where a quartz vein was sampled in 1997 (at 201+75 N, 197+80 E), and returned a value of 2.762 opt Au across 0.4 meters (Applied Mine Technologies sampling, 1997). The following table lists the results from 2001 fieldwork outcrop sampling of the "Log Dam Zone":

Sample #	Width	Description	opt Au (g/t Au)
599250	0.4 m	30% quartz, 2% limonite, 2% pyrite in schist/amphibolite contact 201+70 N, 197+85 E	0.934 (32.02)
599319	0.3 m	20% quartz, 1% limonite, trace pyrite hosted in contorted amphibolite 201+60 N, 196+00 E	0.062 (2.13)

Sample 599319 was taken 50 meters east of Tripp Creek where geological mapping indicates a major structural break occurs. The schist- phyllite-amphibolite bedrock lithology dips steeply south on the east side of Tripp Creek and dips steeply north on the west side of Tripp Creek. This structural break also coincides with the presence of increased sulphides east of Tripp Creek as demonstrated by the IP chargeability increases shown by Noranda's 1989 ground survey, and a ground magnetic low (<55,180 nT) located west of Tripp Creek, suggesting increased alteration and mineralization in the vicinity of Tripp Creek. Geological mapping near Tripp Creek shows contorted foliation and fabric, with random oriented fold hinge plunges, suggesting a complex folding and deformation history.

8.0 DISCUSSION OF RESULTS

Ċ

 \langle

 $\left< \right>$

Ç

 $\left(\right)$

×

.

(

Ç

(

Ć

Drill results indicate a scattered distribution of gold bearing quartz, suggesting that the higher grade gold values occur as streaks, pockets and/or fracture infillings along deformation zones. The style of gold bearing quartz/sulphide mineralization which occurs on the Valentine Mountain Property is a typical low-sulphidation mesothermal ribbon guartz-fissure vein system emplaced by a somewhat untypical Eocene intrusive complex. What makes the Eocene (Catface) intrusive unusual is the fact that the Mesozoic volcanic and sedimentary rocks of the Leech River Formation were metamorphosed by locally dynamic tectonics into a low to medium temperature-low pressure complex which contains widespread tourmalinization with mesothermal quartz and sulphide (pyrite, pyrrhotite, arsenopyrite, marcasite) associated with intermediate composition intrusion-related, volatile-rich late stage fluids which are localized within ore shoots (elongate, lenselike, and irregular lenselike shoots in rolls, drag folds, and other contorted fold hinges) which occupy dilatant zones along brittle-ductile fault structures active during late deformation of the metamorphic belt. Metamorphism of the host rock has resulted in ribbon texture, re-crystallized quartz being the dominant ore texture. It is possible that the emplacement of hydrothermal fluids was constrained by complex macro and micro fault displacements which has resulted in erratic distribution of gold values, i.e. 'Nugget effect' gold distribution. This 'ore shoot' and nugget effect distribution of gold are the result of structural distortion related to faulting, fracturing and folding producing various dilatant features, e.g. dragged, crenulated and severely contorted country rock.

Surface trenches and drill core from the 'C' vein in the Discovery Zone and the 'D' vein in the Discovery West Zone contain coarse native gold and have produced high assay values. It is likely that there are several other gold bearing quartz veins along strike, such as the one found near the Log Dam Zone located 1,300 m west of the Discovery Zone. The Log Dam Zone has the potential to produce high gold assay values, based on sample 599250 which returned 32.02 grams/tonne Au across 0.4 m (Fig. 5). Gold bearing quartz veins are likely to change mineralogy as they are traced to depth. Geological modeling suggests quartz dominant gangue changes to a sulphide-rich gangue. The change in mineralization may be enhanced by constraining brittle-ductile lithological changes and/or fold hinges. Further exploration should involve deeper testing of geochemical and geophysical targets.

9.0 CONCLUSION & RECOMMENDATION

 $\langle \langle \cdot \rangle$

Ç

くこ

C

1

Ç

さくくく

Based on the results of rock chip samples, there is potential to host a gold deposit(s) on the Valentine Mountain Property. Further trenching, geological mapping, diamond drilling and prospecting in the area 600 m west and 250 m east of the mill site is recommended to locate additional gold bearing quartz/sulphide mineralization. Particular attention should be focused on minor flexures and/or cross faulting along the main east-west trending, steep south dipping quartz vein zones. The quartz/sulphide 'corridor of mineralization' that occurs adjacent to the Discovery and Log Dam area would be the most likely environment for further accumulations of quartz/sulphide mineralization.

If significant gold bearing quartz veins could be identified, then a phase 2 follow up program of trenching and diamond drilling would be recommended. Approximate budgets for the completion of phase 1 and 2 would be in the order of \$100,000 and \$150,000 respectively.

Further testing of larger samples of quartz-sulphide material from the 'C' vein and 'D' vein is proposed using the Micronex dry mill. Larger sample size and detailed examination of tailings will facilitate greater accuracy and precision in order to optimize gold recovery.

10.0 REFERENCES

Q

10 22

1

 $\langle \rangle$

(

(

Allen, G. (1989): Valentine Mountain Property "C" Vein Ore Reserves, Beau Pre Expl. Ltd.

Burgoyne, A.A., (1998): Geological and Exploration Evaluation Report on the Valentine Mountain Gold Property, Assessment Report for Beaupre Explorations Ltd.

Dowling, K., (1988): Applications of Quartz Textures to the Classification of Gold Deposits, The Geology of Gold Deposits: The Perspective in 1988, Economic Geology Monograph No.6

Fairchild, L.H. (1979): The Leech River Unit and Leech River Fault, Southern Vancouver Island, B.C.; M.Sc. Thesis, University of Washington.

Fairchild, L.H. (1982): Structure, Petrology, and Tectonic History of the Leech River Complex, NW of Victoria, Vancouver Island; Can. Journal of Earth Sciences, Vol. 19, pages 1817-1835.

Grove, E.W. (1981): Assessment Report, Blaze & BPEX Claims, for Beau Pre Explorations Ltd.

Grove, E.W. (1982): Geological Report and Work Proposal on the Valentine Mountain Property for Beau Pre Explorations Ltd.

Grove, E.W. (1984): Geological Report and Work Proposal on the Valentine Mountain Property for Beau Pre Explorations Ltd.

Kikauka, Andris, (2001): Geological, Geochemical and Diamond Drilling Report on The Valentine Claim Group, Assessment Report, January, 2001.

Simandl. G.J., (1994): Andalusite in British Columbia-New Exploration Targets, B.C. Geological Survey Branch and G.S.C.

Valentine Gold Corp. (1988): Valentine Mountain Project Report.

Wingert, G.A. (1984): Structure and Metamorphism of the Valentine Mountain Area, SW Vancouver Island

11.0 CERTIFICATE

(

くくく

(

くく

 $\langle \cdot \rangle$

Ç

(

I, Andris Kikauka, of 4901 East Sooke Rd., Sooke B.C., V0S 1N0 hereby certify that;

- 1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I am registered in the Province of British Columbia as a Professional Geoscientist.
- 4. I have practiced my profession for twenty years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., South America, and for three years in uranium exploration in the Canadian Shield.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties.
- 6. I have no direct or indirect interest in the subject claims or the securities of Beaupre Explorations Ltd.
- 7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of public or private financing.
- 8. It is believed that the information contained within this report is reliable, The author (A.A.Kikauka, P.Geo), does not guarantee accuracy. The use of this report or any part thereof, shall be at the user's risk.

A. Kikanka

Andris Kikauka, P. Geo.,

Dec. 5, 2001

Victoria Mining Division, NTS 92 B 12 W

ĺ,

くくく

 \langle

Ć

((

/ · ·

~

ŕ

されならく

くくくくくくく

Field Crew:	
Simon Salmon, Geotechnician 84 days	\$ 15,590.00
Andris Kikauka, Geologist, 21 days	3,937.50
Robert Beaupre, Geotechnician, 44 days	5,500.00
John Teligus, Geotechnician, 12 days	1,500.00
Wayne Walker, Geotechnician, 5 days	625.00
James Neill, Geotechnician, 7 days	700.00
Ken Neill, Geotechnician, 6 days	600.00
Field Costs:	
Process Research Assoc. Ltd.	963.00
Bondar-Clegg Assays (28 rock, 2 silt)	1,102.00
ALS (1 rock sample analysis)	21.72
Mineral Assoc. Ltd. (Micronex test 2.1 tonnes)	13,963.50
Equipment and supplies	2,500.00
Transportation	5,497.00
Total=	\$ 52,499.72

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - Looking east at trenches on B Vein (L), C Vein (R)

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - photos of office and equipment sheds on site

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - small mill on site

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - larger mill and crusher on site

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - gravity table below larger mill

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - supplies, equipment and refuse? at mill site

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - Andris Kikauka - granite/metasandstone contact

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - Andris Kikauka in C Vein trench looking west

November 20, 2001 - Valentine Mountain Project - MINFILE 092B108 - hand trench on Discovery West Zone (L. side up)

(

 $\left(\right)$

(\langle

C \langle

C

 \langle

C $\left(\right)$

(

Ç

Ç

(

C

C $\left(\right)$

 \langle C

 \langle

C

Ċ

インアンマンマン アンアンアンアン マンアンシャンション シンション

1071

マネマ ション・アネ

Victoria Mining Division, Scale 1 .62,500

LEGEND

and the second second second second second second

TERTIARY

OLIGOCENE AND/OR MICCENE

 $(\mathcal{T} \mathbf{N} \circ \mathcal{C}^{*} \mathbf{N} \circ \mathcal{C} \circ \mathbf{N} \circ \mathcal{T}_{\mathcal{T}} \circ$

Ts.

SOOKE FORMATION: conglomerate, sandstone, shale

EOCENE (AND OLDER?)

CATFACE INTRUSIONS: quartz diorite, agmatite

METCHOSIN VOLCANICS: TM1: pillow basalt, breccia, tuff; TM_2 : mainly basaltic lava ; TM_3 : schistose metavolcanic rock

SOOKE GABBRO, mainly gabbro

JURASSIC AND CRETACEOUS

UPPER JURASSIC AND LOWER CRETACEOUS

SPIEDEN FORMATION: conglomerate, sandstone, siltstone

TRIASSIC TO CRETACEOUS

METAGREYWACKE UNIT: metagreywacke, meta-arkose, quartz-feldspar-biotite schist

ARGILLITE-METAGREYWACKE UNIT: thinly bedded greywacke and argillite, slate, phyllite, quartz-biotite schist

CHERT-ARGILLITE-VOLCANIC UNIT: ribbon chert, chorty argillite, meterbyolite, metabasalt, chlorite schist

CONSTITUTION FORMATION (San Juan Island): thinly bedded greywacke, argillite and chert

JURASSIC

LOWER TO MIDDLE JURASSIC

ISLAND_INTRUSIONS: granodiorite, quartz diorite

BONANZA GROUP

Basaltic to rhyolitic tull, breccia, flows, minor argillite, greywacke

LOWER PALEOZOIC (OR YOUNGER?)

COLQUITZ_GNEISS: quartz-feldspar gneiss

WARK GNEISS: massive and gneissic metadiorite, metagrabbro, amphibolite

Geological boundary, (approximate)	~~ ~ ~
Fault, (approximate)	
Anticlinal axis	+
Synclinal axis	
Bedding, (inclined, vertical, overturned)	1770
Foliation (inclined, vertical, with olunge of lineation)	117
Gneissosity, (inclined, vertical)	

Geology by J. E. Muller, 1970, 1980

Sample #	Width	Description	Au g/t
599301	0.3 m	25% quartz as concordant 0.3-3.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599302	0.3 m	20% quartz as concordant 0.2-4.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599303	0.3 m	15% quartz as concordant 0.1-1.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
399304	0.3 m	20% quartz as concordant 0.3-4.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01
599305	0.4 m	30% quartz as concordant 0.3-5.5 cm wide stringers, 2% limonite, 1% py. in unit 2 schist, strike 100, dip -76 south	0.01

· _		
Sample #	Width	Description
599306	0.3 m	35% quartz unit 2 schis
599307	0.3 m	30% quartz unit 2 schis
599308	0. 3 m	10% quartz strike 100, o
399309	0.4 m	40% quartz amphibolite
599310	1.0 m	12% quartz amphibolite
5993 11	1.0 m	10% quartz amphibolite

OSCIEN

Scale 1: 31,680

80 m west of Log Dam at the base of 25 ft high waterfall 01-ST-2 East side tributary (seasonal) to Trip Ck. Sample taken at the crest of Trip Ck canyon.

CONTRACTOR AND A REAL AND A

9

APPENDIX A

Mineral Titles Search by Owner

The mineral tenure information at this site was last updated on the morning of January 30, 2001.

Title Search by Owner

Name: Beau pre Tenure Type: All Standing: Good

Tenures held by BEAU PRE EXPLORATIONS LTD.:

There were 58 results.

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
<u>260251</u>	BLAZE #1	<u>101792</u> 100%	092B12W	20020214	Good Standing 20020214	24 Victoria	1	357
<u>260253</u>	BLAZE #2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	2	729
<u>260263</u>	BLAZE 3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	12	41260
<u>260306</u>	BLAZE #4	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	3	54919
<u>260324</u>	BPEX #1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	20	54921
<u>260325</u>	BPEX #2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	18	54923
<u>260326</u>	BPEX #3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	54924
<u>260333</u>	BPEX #4	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	3	41261

<u>260334</u>	BPEX #5	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria]	54925
<u>260335</u>	BPEX #6	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria		54926
<u>260338</u>	BPEX #12	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	14	55176
<u>260354</u>	BPEX #7	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	8	72272
<u>260381</u>	BPEX 9	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	16	72273
<u>260414</u>	JORDAN GOLD 5	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	18	86354
<u>260415</u>	LUSTER #2	<u>101792</u> 100%	092B12W	20020214	Good Standing 20020214	24 Victoria	18	55179
<u>260418</u>	LUSTER #1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	2	85009
<u>261022</u>	DORAN 1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	2	28258
<u>261023</u>	DORAN 2 FR	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	28259
<u>261042</u>	DORAN 5 FR	<u>101792</u> 100%	092B12W	20020214	Good Standing 20020214	24 Victoria	1	28306
<u>320947</u>	EDEN	<u>101792</u> 100%	092C060	20010214	Good Standing 20010214	24 Victoria	1	654078M
<u>355196</u>	GS 1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640155M
<u>355197</u>	GS 2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640156M
<u>355198</u>	GS 3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640157M
<u>355610</u>	A1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	672426M

· · ·

^

2

, ``

2

r		າ	<u>المستعمر المستعمر ا</u>][II	1
<u>355611</u>	A2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	672427M
<u>355612</u>	A3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	672428M
<u>355613</u>	A4	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	672429M
<u>355614</u>	A5	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640147M
<u>355615</u>	A6	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640148M
<u>355616</u>	A7	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640169M
<u>355617</u>	A8	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640170M
<u>355618</u>	А9	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640171M
<u>355619</u>	A10	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria]	640172M
<u>355620</u>	A11	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640173M
<u>355621</u>	A12	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640174M
<u>355622</u>	A13	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	640175M
<u>362862</u>	WALKER 1	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	20	98177
<u>362863</u>	LUSTER 3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	20	98321
<u>362864</u>	B24	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685035M
<u>362865</u>	B23	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685034M

÷

							<u> </u>	
<u>362866</u>	B22	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685033M
<u>362867</u>	B21	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685032M
<u>362868</u>	B20	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685031M
<u>362869</u>	B19	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685030M
<u>362870</u>	B18	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685029M
<u>362871</u>	B17	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685028M
<u>362872</u>	B16	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685027M
<u>362873</u>	B15	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685026M
362874	B14	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria]	685025M
<u>362875</u>	B13	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685024M
<u>362876</u>	В6	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685013M
<u>362877</u>	B5	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685012M
<u>362878</u>	B4	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685011M
<u>362879</u>	В3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685010M
<u>362880</u>	В2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685009M
<u>362881</u>	ВІ	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	685008M

. . . .

i N

• • •

<u>365460</u>	WALKER 2	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	18	98340
<u>365461</u>	WALKER 3	<u>101792</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	6	98341

Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

Shortcuts: [<u>Main Menu</u>] [<u>Free Miner</u>] [<u>Tenure Number</u>] [<u>Owner</u>] [<u>Locator</u>] [<u>Map</u>] [<u>Claim Name</u>] [<u>Tag</u> <u>Number</u>] [<u>Lot</u>]

Last date page updated November 12, 1999.

•Top •Copyright •Disclaimer •Privacy

•Feedback

Mineral Titles Search by Owner

The mineral tenure information at this site was last updated on the morning of January 30, 2001.

Title Search by Owner

Name: Beaupre, Robert Tenure Type: All Standing: Good

Tenures held by BEAUPRE, ROBERT CHARLES:

There were 24 results.

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
<u>269465</u>		<u>101848</u> 100%	092B12W	20011231	Good Standing 20011231	24 Victoria	0	P32753
<u>269466</u>		<u>101848</u> 100%	092B12W	20011231	Good Standing 20011231	24 Victoria	0	P32754
<u>269467</u>		<u>101848</u> 100%	092B12W	20011231	Good Standing 20011231	24 Victoria	0	P32755
<u>336403</u>	RB-1	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663917M
<u>336404</u>	RB-2	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663913M
<u>336405</u>	RB-5	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663916M
<u>336406</u>	RB-6	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663918M
<u>336407</u>	RB-3	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria]	663914M
<u>336408</u>	RB-4	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria		663915M
<u>336409</u>	RB-7	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	l	663919M
<u>336410</u>	RB-8	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	I.	663920M

<u>336411</u>	RB-9	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663921M
<u>336412</u>	RB-10	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663922M
<u>336413</u>	RB-11	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663923M
<u>336414</u>	RB-12	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663924M
<u>336415</u>	RB-13	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663925M
<u>336416</u>	RB-14	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663926M
<u>336417</u>	RB-15	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	I	663927M
<u>336418</u>	RB-16	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663928M
<u>336419</u>	RB-17	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663929M
<u>336420</u>	RB-18	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663930M
<u>336421</u>	RB-19	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663931M
<u>336422</u>	RB-20	<u>101848</u> 100%	092B12W	200102]4	Good Standing 20010214	24 Victoria	J	663932M
<u>336423</u>	RB-21	<u>101848</u> 100%	092B12W	20010214	Good Standing 20010214	24 Victoria	1	663933M

Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

Shortcuts: [Main Menu] [Free Miner] [Tenure Number] [Owner] [Locator] [Map] [Claim Name] [Tag Number] [Lot]

Last date page updated November 12, 1999.

•Top •Copyright •Disclaimer •Privacy

•Feedback

FIRST AMERICAN

	gold ore)	
	Weight (kg)	Gold Assay (grams / metric ton)
Assay Head (Feed)	462 kg	10.0 - 32.5
Calculated Head	426 kg	9.0
Concentrate	20.4 kg	107.8
Tailing	411.0 kg	4.0
Weight Recovery =	4.4 %	
Gold Recovery = 57	.4 %	
	Weight (kg)	Gold Assay (grams / metric ton)
Assay Head (Feed)	193	4.0
Calculated Head	191	4.3
Concentrate	.21	352
	191	3.9
Tailing		
Tailing Weight Recovery =	0.1%	
Tailing Weight Recovery = Gold Recovery = 9.0	0.1%	

	Weight (kg)	Gold Assay (grams / metric ton)
Assay Head (Feed)	234	0.02 - 0.86
Calculated Head	200	3.97
Concentrate	2.27	236
Failing	198	1.69
Weight Recovery = 1	.0 %	

Gold Recovery = 57.8 %

Although concentrate grades were high, gold in tailings remained over 1.0 gm / ton and recoveries were less than 60 %. A second pass of the tailings from the quartz sample generated additional recovery of 9 % from the tailing but only about 1 % overall. The very fine grind of the tailings would allow for rapid kinetics and very high recoveries of most of the remaining gold in the tailings with cyanide.

14

BC BOY	IDAR -	CLEG	G			A/ 1/	well	D C()	- (
couver, B.C. Canada		i Shëbkeze e		¥# 18 k= a	196 <u></u> 9				
	P ()	RGENT	& CONF	IDEN	T I A L	R 47			
To: BEAU FRE EXPL	ORATIONS L	[D.			Our	Fax No:	(604) 985-10)7 <u>1</u>	
Reference :				1	unbar o	f Pages :	5 inc	luđing ti	his nace.
Submitter : A. KIKAUKA				-					
Report : V01-02103.0	Status	: COMPLET	8		Total	number of	samples:	5	
Element Method	Totl	Element	Method		Totl	Element	: Method		Totl
Wt. (-) FTRE ASSAY	5	WT (+)	FIRE ASSAV		5	n (-)	FTRE 1991V		 5
AU (+) FIRE ASSAY	5	Au Tot	FIRE ASSAY		5	AC (7	INDUC. COUP.	PLASKA	1
Cu INDUC. COUP. FLAS	na 1	Pb	INDUC. COUP.	PLASMA	1	ZD	INDUC. COUP.	PLASMA	1
MO INDUC. COUP. PLAS	Ma 1	Ni	INDUC. COUP.	PLASMA	1	Co	INDUC. COUP.	PLASMA	1
Cd INDUC. COUP. PLAS	Ma 1	Bi	INDUC. COUP.	PLASMA	1	As	INDUC. COUP.	Plasma	1
Sb INDUC. COUP. PLAS	Ma 1	Fe	INDUC. COUP.	PLASMA	1	Kn	INDUC. COUP.	Plasma	1
Te INDUC. COUP. PLAS	MA 1	Ba	INDUC. COUP.	PLASMA	1	Cr	INDUC. COUP.	PLASMA	1
V INDUC, COUP, PLAS	MA. ⊥ Ma: 1	Sn Bl	INDUC. COUP.	PLASKA	1	M Mar	INDUC. COUP.	PLASMA DLA CMA	1
Ca INDEC. COUP. PLAS	MA 1	Na	INDUC. COUP.	PLASMA	1	ny K	INDUC. COUP.	PLASMA	1
Sr INDUC, COUP. PLAS	KA 1		INDUC. COUP.	PLASMA	1	Ga	INDUC. COUP.	PLASMA	1
Li INDUC. COUP. PLAS	MA 1	Nb	INDUC. COUP.	PLASMA	1	ŝc	INDUC. COUP.	PLASMA	1
TA INDUC. COUP. PLAS	MA 1	Ti	INDUC. COUP.	PLASMA	1	Zr	INDUC. COUP.	PLASMA	1
5 1,000,000, 12,0									
ple Preparations Totl Sample	Туре	Totl	Sire Fract:	ion Tot		ar ke			
SE/SPLIT & PULV. 5 ROCK		5	+150/-150		5				
ALLICS SCREENING 5			ŧ		I				
RWEIGET/KG 5			I		I				
1			1						
1			1		I I				
u j			1		1				
•			,]		i				
I			1		1				

es :									

10/24/01 WED 14:42 [TX/RX NO 5530] 20001

λ.

CLIENT: BEAU P	RE EXPLON	TIONS LT	D,					PR	OJECT: VAI	LNT INE			
REPORT: V01-02103.0 (COMPLETE)					DATE RECEIVED: 19-OCT-01			DATE PRINTED: 24-OCT-01				PAGE	1A (1/ 4)
SAMPLE	ELEMENT	Wt (-)	WT (+)	Au (-)	Au (+)	Au Tot	λg	Cu	Pb	Σn	Мо	Ni	Co
NUMBER	UNITS	g	g	OPT	OPT	OPT	PPM	PPM	PPM	PPM	PPM	PPN	P PN
RW 599301		193.6	24.37	<0.001	<0.01	<0.001	<0.2	36	3	55	1	29	12
RW 599302		205.6	28.03	<0.001	<0.01	<0.001							
RW 599303		216.0	28.17	<0.001	<0.01	<0.001							
RW 599304		217.1	24.95	<0,001	<0.01	<0.001							
RW 599305		209.3	20.65	<0.001	<0.01	<0.001							

CLIENT: BEAU PRE EXPLORATIONS LTD. REPORT: V01-02103.0 { COMPLETE)						RECEIVED:	19-0CT-01	PR	OJECT: VAI DATE PRIM	LENTINE TED: 24-0)CT-01	PAGE	1B(2/ 4)
SAMPLE NUMBER	element Onits	Cd PPM	B1 PPN	As PPM	SD PPM	Ге Рст	Mn PPN	Te PPK	Ba PPM	Cr PPM	V PPM	Sn PPN	W PPN
RW 599301 RW 599302 RW 599303 RW 599304 RW 599305		<0.2	<5	7	<5	2.79	356	<10	173	72	57	<20	<20

Ś

CLIENT: BEAU	PRE EXPLORAT	IONS LTD	•					PRO	JECT: VAI	ENTINE			
REPORT: V01-02103.0 { COMPLETE }					DATE RECEIVED: 19-0CT-01			DATE PRINTED: 24-OCT-01				PAGE	10(3/4)
SAMPLE	ELEMENT	La	Al	Mg	Ca	Na	ĸ	ŝr	Y	Ga	Li	Nb	Sc
NUMBER	UNITS	P PM	PCT	PCT	PCT	PCT	PCT	P PM	PPN	PPM	PPK	P PN	P PM
RW 599301		7	2.53	0.95	0.47	0.11	0.47	40	4	3	26	4	<5
RM 599302													
RW 599303													
RW 599304													
RW 599305													

.

CLIENT: BEAU	PRE EXPLORAT	IONS LT).		PROJECT: VALENTINE							
REPORT: V01-	02103.0 { COM	PLETE }			DATE	RECEIVED: 19-OCT-01	DATE PRINTED: 24-OCT-01	PAGE	1D(4/ 4)			
Sample Number	<u>element</u> Units	tə PPN	Ti PCT	Žr PP n	s PCT							
RW 599301 RW 599302 RW 599303 RW 599304 RW 599305		<10	0.055	<1	0.06							

		•••••	K G E N T	6 CONFID	ENTIA	L *			
To: BEA Attention : Reference : Submitter : A.	u pre explor: Kikauka	ATIONS LTI), 		Or Yc Nunber	ir Fax No: (f our Fax No: 1- of Pages :	04) 985-0 250-384-6 2 in	681 431 cluding this	page.
Report : V01-02	386.0	Status :	COMPLETE		Total	. number of sa	mples:	2	
Element Method		Totl	Element	Method	Totl	Element M	iethod	т	otl
ample Preparations Tot	1 Sample Ty	pe	Totl	Sire Fraction	Totl Re				
ample Preparations Tot RYING >10% MOISTURE RY, SIEVE -90	1 Sample Ty 2 STREAM SE 2 	pe D, SILT	Totl 2	<pre>i Sire Fraction i i80 i i i i i i i i i i i i i i i i i i i</pre>	Totl Re 2 				

Ż

x.

CLIENT: BEA	J PRE EXPLORAT -02386.0 (CON	IONS LTD. PLETE)	DATE RECEIVED:	28-NOV-01	PROJECT: VALENTINE MTN DATE PRINTED: 30-NOV-01	PAGE 1 OF	1
SAMPLE	ELEMENT	Au30					
NURBER	UNITS	P PB					
II 01-ST-1		12					
T1 01-ST-2		9					

11/30/01 FRI 12:59 [TX/RX NO 5907] 2002

BONDAR CLEGG

.

REPORT:	V01-021	103.0 (COMPLETE)					REFERENCE :		* **				
CLIENT: PROJECT:	BEAU PR	RE EXPLORATIONS	LTD.		·····			SUBMITTED BY: A. DATE RECEIVED: 19-0	KIKALIKA CT-01 DA	TE PRINTED: 2	25-oct-01		······ · · · · · · · · ·	
date APPROVED) EL	EMENT	NUMBER OF	lower Detection	EXTRACTION	Method	date APPROVED	Element	NUMBER OF	LOWER DETECTION	EXTRAC	rion	METHOD	
011023 011023 011023 011023 011023 011023 011023	1 Wt (* 2 WT (* 3 Au (* 4 Au (* 5 Au To 6 Ag	-) Pulp Wt.Minus +) Pulp wt.Plus -) Au (-) - FA20 +) Au (+) - FA20 ot Au Total - FA Ag - ICO1	Fract. 5 Fract 5 /21 5 /21 5 /21 5 20/21 5	9 0.001 g 0.001 OPT 0.01 OPT 0.001 OPT 0.2 PPM	HCL:HN03 (3:1)	FIRE ASSAY FIRE ASSAY FIRE ASSAY FIRE ASSAY FIRE ASSAY INDUC. COUP. PLASM	011023 37 Ta 011023 38 Ti 011023 39 Zr 011023 40 S	Ta - 1001 Ti - 1001 Zr - 1001 S - 1001	1 1 1 5175 EDAG	10 PPM 0.010 PCT 1 PPM 0.01 PCT	HCL:HNQ3 HCL:HNQ3 HCL:HNQ3 HCL:HNQ3	(3:1) (3:1) (3:1) (3:1)	INDUC. COUR INDUC. COUR INDUC. COUR INDUC. COUR	 PLAS PLAS PLAS PLAS
011023 011023 011023 011023 1 011023 1 011023 1	7 Cu 8 Pb 9 Zn 10 Mo 11 Ní	Cu - ICO1 Pb - ICO1 Zn - ICO1 Mo - ICO1 Ni - ICO1		1 PPM 2 PPM 1 PPM 1 PPM 1 PPM	HCL:HN03 (3:1) HCL:HN03 (3:1) HCL:HN03 (3:1) HCL:HN03 (3:1) HCL:HN03 (3:1)	INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM	A R ROCK	5	₩ +150/	-150	5	CRUSH/SI METALLI OVERWEI	PLIT & PULV. CS SCREENING GHT/KG	5 5 5
011023 1 011023 1 011023 1 011023 1 011023 1 011023 1 011023 1	12 CO 13 Cd 14 Bi 15 As 16 Sb 17 Fe 18 Mn	Cd - 1C01 Bi - 1C01 As - 1C01 Sb - 1C01 Fe - 1C01 Mn - 1C01		0.2 PPM 5 PPM 5 PPM 5 PPM 5 PPM 5 PPM 1 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM	REPORT COPI	ES TO: 110 - 850 BLA (his report must not report is specific to applicable only to th otherwise indicated	INSHARD ST be reproduce those samples a	ed except in les identifi s received e	INVOICE full. The ed under " expressed o	to: 110 - data pre Sample Nu n a dry b	850 BLANSHARI sented in this mber" and is asis unless) ST *** 5
011023 1 011023 2 011023 2 011023 2 011023 2 011023 2	19 Te 20 Ba 21 Cr 22 V 23 Sn 24 W	Te - ICO1 Ba - ICO1 Cr - ICO1 V - ICO1 Sn - ICO1 W - ICO1		10 PPM 1 PPM 1 PPM 1 PPM 20 PPM 20 PPM	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM	*** A A A	*******	*****	****	******	******	****	***
011023 2 011023 2 011023 2 011023 2 011023 2 011023 2 011023 2	25 La 26 Al 27 Mg 28 Ca 29 Na 30 K	La - ICO1 Al - ICO1 Mg - ICO1 Ca - ICO1 Na - ICO1 K - ICO1		1 PPM 0.01 PCT 0.01 PCT 0.01 PCT 0.01 PCT 0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM	A A A A							
011023 011023 011023 011023 011023 011023	31 Sr 32 Y 33 Ga 34 Li 35 Nb 36 Sc	Sr - ICO1 Y - ICO1 Ga - ICO1 Li - ICO3 Nb - ICO1 Sc - ICO1		1 PPM 1 PPM 2 PPM 1 PPM 1 PPM 1 PPM 1 S PPM	HCL:HNQ3 (3:1) HCL:HNQ3 (3:1) HCL:HNQ3 (3:1) HCL:HNQ3 (3:1) HCL:HNQ3 (3:1) HCL:HNQ3 (3:1) HCL:HNQ3 (3:1)	INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM INDUC. COUP. PLASM	A A A A							

N 6.

× .:

BONDAR CLEGG

NT: BE	AU PRE EXPLO 1-02103.0 (RATION COMPLE	IS LTD. TE)						DATE RE	ECE I VED	: 19-0CT-0)1 DA	TE PRINTE	D: 25-00	T-01	PAGE	PROJEC	T: VALE	NTINE		••••••
PLE BER	ELEMENT W UNITS	t (-) 9	₩Т (+) Au (-) g орт	AU (+) AU Tot OPT OPT	Ag Cu PPM PPM	Pb Zn PPM PPM	Mo PPM F	NÍ CO PM PPM I	Cd Bi / PPM PPM PF	as Sd Ph Ppm	Fe Min PCT PPM F	Te Ba PM PPM P	Cr V S PH PPM PP	in W L M PPM PF	a AL M PCT	Mg PCT 1	Ca Na PCT PCT	K. Pct P	Sr Y PM PPM P	Ga Li PM PPM PI	ND S PM PP
501		193.6	24.37 <0.001	<0.01 <0.001	<.2 38	3 55	1	29 12 <	0.2 <5	7 <5	2.79 356 <	10 173	72 57 <2	0 <20	7 2.53 ().95 D	.47 0.11	0.47	40 4	3 26	4
)2	i	205.6	28.03 < 0.001	<0.01 <0.001								ini. Artera	- 19				a tarr				
3	i	216.8	28.17 <0.001	<0.01 <0.001									.'	•							
i i	:	217.1	24.95 <0.001	<0.01 <0.001					·		· · ·					.:	·· ;:-			÷	
5	:	209.3	20.65 <0.001	<0.01 <0.001						1.0				• .				· · · · · · ·			
			u - Vienne Anglen (* 1997) Real - Santa Studiet Real - Santa Studiet Real - Santa Studiet	 The All Constraints of the All Constraints All Constraints of the All Constraints All Constraints of the All Constraints All Constraints All Constraints All Constraints All Constraints All Constraints 	n an an an an An Anna Anna An Anna Anna									·····							
			n an ann an Anna Anna Anna Anna Anna Ann		na an an Art Anna Antar Anna Antar Anna Anna An					1917)			, ** 1.1								
				a an an an an an an ann an ann an An Anna an Anna Anna												·					:
			ingeningen andre street Second and second and Second and second and Second and second	 A STANDARD CONTRACTOR A S																	
				a na shina na ta ta shi ana sa ta ta shi a ta ta ta shina sa ta ta ta ta ta ta ta				n heren er en e En er en e					· · · · ·	· · · · ·							
																	18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		· · · · ·		
														· · ·			÷			· · ·	
													· · · ·	. ¹ .							
												·		·. · ·						· .	
									۰۰. بالتعلق												
				e egune d'an d'an an d' gana d'an dear an d' ang an dear an an d' an dear an												1				: :	
			(a) and (a) and (b)	 A supervised and the second sec						iter. Engler											
			nennen (hall bal) (h) and (h)	y de segure e para de seña a companya de seña de seña a companya de seña de seña de seña de a companya de seña de seña de seña de	a a sharan Tara ta ta ta Tara ta ta ta					- 699										inty.	
				Angeland (Construction) Angeland (Construction) Angeland (Construction) Angeland (Construction)		teri di secono The Control		i se al francis de Tanto de Calendario Na al francis de Ventra de Calendario													
		:	un du fini de nature. Na contra da contra da Natura da contra da contra da	en e	na di katika Provinsi di Parti da Contra Parti da Contra	na na Alan Ing Na Santa Santa Na Santa Santa															
			n ng gangan ang ang ang Tan Ang ang gang ang tang tang Ang ang ang ang tang tang tang Ang ang ang ang ang ang ang ang ang ang a							1996						i i					
				jan hara bada shu ta ta Tana a sa sa sa sa sa sa Sa sa												2	17 . 				
											· · · · · · · · · · · · · · · · · · ·		· · ·		· · ·			····· ·			
									· · .												
								1				· · · ·		۰.	n an an Arian An An Arian						
										مرتبع											
		:								i en co Constantes			1 - E			5					
				Anna Anna Anna Anna Anna An Anna Anna An																	:
															·····	1					
				 Andreas Carlos Ca										1. N.		i i					
						· · · · · · · · · · · · · · · · · · ·							• •	·	di di	1.					
			arteat att. Startus turcitus Startus turcitus Startus turcitus	 A second s						· · ·											
															·· .	•	·				
												· ·									

Ponder Clerry Conade Limbod, 130 Pember on Attend - Neith Vincori, P.C. VIP 2015, 704) 005-0091

BONDAR CLEGG

.

CLIENT: B REPORT: V	EAU PRE EXPLORATIONS LTD. 01-02103.0 (COMPLETE)	DATE RECEIVED: 19-OCT-01	DATE PRINTED: 25-OCT-01 PAG	PROJECT: VALENTINE E 1B(2/ 4)
SAMPLE	ELEMENT Ta Ti Zr S			
NUMBER	UNITS PPM PCT PPM PCT			
599301	<10 0.055 <1 0.06			
599302				
599303				
599304				
599305				
	entre propie de la construcción la construcción de la construcción la construcción de la construcción			
	en de la constante de la consta La constante de la constante de			
	andalah karangan kar Karangan karangan kar			

No. S. A. S.

BONDAR CLEGG

i

CLIENT: BE	au pre exp	LORATI	ONS LTD.																									P	SOJEC.	T: VAL	LENT 1	NE				
REPORT: VO	1-02103.0	(COMP	PLETE)										Di	ATE F	RECE	IVED): 19	-OCT-	01	D	ATE	PRIN	TED :	25-0	OCT	01	PA	GE 2	A(3/	4)						
STANDARD NAME	ELEMENT UNITS	Wt (-) WT (+ 9) Au (-) a Opt) ali (+) 1 opt	Au Tot A OPT PF	g Cu M PPM	Pb PPM P	Zn . PM	Mo I PPM pf	Ni (PM PI	Co PM P	Cd PPN	Bi PPM F	As P PM	sd PPM	Fe PCT	Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM I	La PPM	Al PCT	Mg PCT	Ca PCT	Na PCT	K PCJ	Sr PPM	Y PPM	Ga PPM	Lî PPN	ND PPM I	Sc PPM
ANALYTICAL	BLANK		- 1 - 113	<0.001	nan asar Nga Shija		::: 2: ≺1	<2	<1 ·		े दा े व	<1 <0).2	<5	<5	<5	<.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	. <1	<2	· <1	् <1	<5
Number of .	Analyses		•	6 1		: • ;	1. 1		1	1	1	1	1		1	: 1 :	1	1	1		1		1		1		. 1	l	: 1	1	1	1	1	1	1	1
Mean Value	-		- 2.200	<0.001		- 0.	1 <1	1	<1	<1 -	دا .	<1 0).1	3	3	3	<.01	<1	5	<1	<1	<1	10	10	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	1	<1	<1	3
Standard D	eviation			-	•	- 23	91. H.C	lener i tran i i				4		, En	-	·			-		-	- <u>-</u>	-	· ··-	-						-				_	- 2,
Accepted V	alue	<0.	1 <0.0	<0.001	<0.01	<0.001 0.	2 1	2	1	1	1	1 0).1	2	5	5	0.05	1	<1	<1	1	1	<1	<1	<1	<.01	<.01	<.01	<.01	<.01	<1	1	<1	<1	<1	· <1
OX11 Oxide				0.085		-					-		_		-		_		_		-		_	3. <u>-</u> -	_	· · · · · ·	_		: · _		-				_	ing. Ngl
Number of .	Analyses		•	. 1		- ::	- 97 -		_ {				•		-		_	11.1 1 2 4	_		-		-	· · · · ·	-		_	이 같다. - 기다 국	_		· _					1271) 1284
Mean Value	•			0.085	, 1999. 1999.)			-	-	- 11		- 1					····	-	•	-		-				-	· · · · · ·			· _	·	-		-	·
Standard D	eviation			-3 -		- 1			-		-	ti i			-	-	-	1414 	_	<u>.</u>	-	, The second se	-	<u> </u>	-	- <u>-</u>	: -				•			-	-	· · · ·
Accepted V	alue			0.086	5	- [-		-				-	•	-	•	-		-	· . · .	-	÷	-	-	-	Ţ	-		-	-	-	7	•	-	-	
HX12 Oxide			- 30.3	5 -	0.19	,	-1) 120 -		-						-		-		_	_	-	<u> </u>	_	-	_	:		•••••	-			·	-	· -	_	
Number of .	Analyses		-	: 1 [.] -	•	- 1.7	-	-			•			-	-		-		-	: 	-	÷÷	-	· · <u>·</u>	-		-	· · · -				. <u>-</u>	-	-	-	- -
Mean Value	1		- 30.3	s -	0.19	• 8	101 145 -	- 			- 7	1000. 1.≓.			-	i i N	-		-	i i ji	-	· · •	-	· - ;	-	t st	-			1. ÷.	-	•	-	· _	-	
Standard D	eviation		-	-		- 8	98 -				- 3		- :		-				-	:	-		-		-		-		: -	 .		· . <u>-</u>	-		-	- 10
Accepted V	alue		 and by Dir Dir and and a set and a set and and a set and and and a set and	0.192	2	-	- 		-		- :		-		-		-		-		-	-	-		-		-		-		-	-	-		-	
GS01-1 In-	House			ě.		- 3,	3 3 316	4718 9	21	4016 19	76	15 10	:).3 ⁻	<5	69	228	2.05	652	<10	185	236	43	<20	<20	16	0.75	0.37	0.69	0.05	0,12	46	7	<2	7	4	<5
Number of .	Analyses		- 2000	÷ -		•	1 1	1	1	1	1 5	1	1	1	1	ાં	1		1	<u></u>	1	1	1	1	1	1	1	1	1	1	1	1	1	j	1	1
Mean Vatue			-	8		- 3.	3 316	4718 9	21 4	4016 19	96	15 10).3	3	69	228	2.05	652	5	185	236	43	10	10	16	0.75	0.37	0.69	0.05	0.12	- 46	7	1	7	4	3
Standard D	eviation			ं -	-	- 12	-		-)	-	- :	Ξ	-		-		•	Ŧ	-		•	i i i i	-	· - -	-		-	-	-			÷	-	-	- 1	
Accepted V	alue		-			- 4,	4 326	4207 9	796 4	4604 20	02 📝	20 5	9.5	2	67	239	1.92	695	-	, .	-		-	•	•		•		-	· -	-		-	•	•	•
									-		-							÷.,						· · ·					2	÷.,						÷.
				6 0														· · · ·										· .			-					
				ę. –																1.5.1.								1.11		1.1				1 - 2		
				:																		· · ·		· .··					-							
				···· ··:																																
																	1							n na Na S										in the second se		
						:	· · · · · · · · · · · · · · · · · · ·		:											· · · ·		· · · · ·		· · ·						۰ ۱۰		d pr	•	· :		
							••• •••••		:																					÷		, ¹ .		·		
											1.																					•				
					· · · · · · · · · · · · · · · · · · ·																	·		÷		i di si										
				1	1.4.4.1.1.1		· .			an bi e						1.1.1																				

BONDAR CLEGG

Product: V01-02103.0 COMPLET DATE REFERVED: 10-001-01 DATE REFERVED: 10-001-01 PAGE 28 (4/4) TANDARD ELDENT Ta T(2,7) S AKE UNITS PM PDI. PM PCT MAUNTICAL BLANK 10 -000 - 1 <000 - MAUNTICAL BLANK 10 -000 - 1 <000 - - MAUNTICAL BLANK 5 0.000 - 1 <000 - - MAUNTICAL BLANK 5 0.000 - 1 <000 - - MAUNTICAL BLANK - - - MAUNTICAL BLANK 10 -000 - 1 <000 - - MAUNTICAL BLANK - - - MURCE 01 ANDLES -<	LIENT: BEAU PRE EXE	PLORATIONS IT		 			·· ·	DDO (507 - 144) 5117 - 145
TAMANGO ELBERT Ta TT, Z, Š ME LUITS PM PCT PM PCT MALTICAL BLAK 40 - QDD - 1 - QD UIDEP 07 ANalyses 1 - 1 - 1 tambard Deviation	EPORT: V01-02103.0	(COMPLETE)	-		DATE RECEIVED: 19-0CT-01	DATE DRINTED - 25-001-01	DACE	PROJECT: VALENTIN
TAUMAR ELEMENT To	·····	·····		 			FAUL	26(4/ 4/
NAME UNI13 FM FC FM FC NALYTICAL BLANK 50 0.0 1 0.0 NALYTICAL BLANK 50 0.0 1 0.0 sem Value 50 0.00 1 0.0 sem Value 50 0.00 1 0.0 scapted Values 0 1 0.0 sem Value 0 0 0.0 scapted Value 0 0 0.0 sem Value 0 0.00 0 scapted Value 1 0 0.00 scapted Value 0 0.00 0 scapted Value 1 0 0.00 scapted Value 1 0 0.00 scapted Value 1 1 1 sem Value 1 1 1 scapted Value 1 1 1 scapted Va	TANDARD ELEMENT	T Ta Ti Z	г \$					
NL1YTICAL BLAUK 410 < 010	AME UNITS	S PPM PCT PP	M PCT					
MALTICAL BLANK 10 1 1 1 1 MIDEr of Analyses 1 1 1 1 1 servialue 5 0.000 1 1 1 servialue 5 0.000 1 1 1 servialue 5 0.000 1 1 1 servialue 1 1		1.1. A second s second second seco						
Utiler of Aralyses 1 1 sen value 5 0.005 < <.01 centratur leviation - - - centratur leviation - - - x11 Oxide - - - x11 Oxide - - - x12 Oxide - - - x130-1 1 1 1 1 x140/2 -	WALYTICAL BLANK	<10 <.010 <	1 <.01					
ean Value 5 0,005 4 4 -01 tandard Deviation - 4 -001 4 5 01 x11 Oxide - 4 -01 4 5 01 x11 Oxide - 4 - 7 - 7 x11 Oxide - 4 - 7 - 7 x11 Oxide - 4 - 7 - 7 x11 Oxide - 4 - 7 - 7 x12 Oxide - 7 - 7 x12 Oxid	Number of Analyses	1 2221	1 8819					
tandard Deviation - - cccepted Value - - viber of Analyses - - and Deviation - - viber of Analyses - - and Deviation - - viber of Analyses - - and Deviation - - analyses 1 1 analyses	Mean Value	5 0.005 <	1 <.01					
cccpted Value 1 01 xifler of Analyses ean Value ccopted Value xillo croft Analyses ccopted Value	Standard Deviation	- 1100 (1000) - 1100 (1000) - 1100 (1000)						
X11 Oxide - unber of Analyses - ean Value - - - coopted Value - - - x12 Oxide - - - x12 Oxide - - - x12 Oxide - - - san Value - - - coopted Value - - - coopted Value - - - coopted Value - - - san Value - - - coopted Value - - - san Value 5 - - coopted Value - - - coopted Value - - - - - coopted Value - - - - - - -	Accepted Value	<1 <.001 <	1 <.01					
x11 0xide - - - and value - - - an value - - - copted Value - - - copted Value - - - value - - - an Value - - - an Value - - - an Value - - - copted Value - - - solo 11 In-House - - - uiber of Analyses 1 1 - copted Value 5 0.060 10 0.067 uiber of Analyses 1 - - - copted Value 5 0.060 - -		n na an na Unite da Auro A an an Antonio Statuto Unite da Auro Antonio Statuto Antonio Statuto Antonio Statuto Antonio Statuto Antonio Statuto						
under of Analyses - , , , , , , , , , , , , , , , , , ,	OX11 Oxide							
een Value	Number of Analyses	 An or a state of the state of t	- 2000-00					
tandard Deviation + + + + + + + + + + + + + + + + + + +	Mean Value	-	• : .• X.					
ccopted Value - - - xX12 0xide - - - unber of Analyses - - - aan Value - - - ccepted Value - - - s01-1 In-House 10 0.667 - unber of Analyses 1 0 - s01-1 In-House 10 0.67 - unber of Analyses 1 0 - an Value 5 0.061 10 0.67 ccepted Value - - - - ean Value 5 0.600 - -	Standard Deviation	• • • • • •	-					
X12 Oxide - - - unber of Analyses - - - ean Value - - - coepted Value - - - s01-1 In-House 10 0.67 unber of Analyses 1 1 1 ean Value 5 0.061 10 0.67 tandard Deviation - - - - ccepted Value 5 0.061 10 0.67 tandard Deviation - - - - ccepted Value 5 0.66 - -	Accepted Value		• 111.47					
X12 Oxide virz Oxide - unber of Analyses - ean Value - ean Value - ccepted Value - - 1 1 1 ean Value 5 5 0.66								
under of Analyses	nX12 Oxide		•					
ean value	Number of Analyses							
tancard upviation	Mean Value							
S01-1 In-House <10	Standard Deviation	 Control to the second se						
S01-1 In-House <10	Accepted value	 A statistical set of the set of						
unber of Analyses 1 1 1 1 ean Value 5 0,067 tandard Deviation - 0.60	GS01-1 In-House	<10 0 061 1	0 0 67					
ean Value 5 0.061 10 0.67 tandard Deviation 0.60	Number of Analyses	1	1					
tandard Deviation - 0.60 ccepted Value - 0.60	Mean Value	5 0.061 1	0.0.67					
ccepted Value - 0.460	Standard Deviation		•					
	Accepted Value		- 0.60					
			en e caracteria de la composición de la composición de la composición de la composición de la composición de la composición de la composición					
		da parte da parte 1930 - Carlo Carlos da parte 1930 - Carlos Carlos da parte						
		C. State of the second seco						
			··· ·· ·· ··					
			sana si ba					

A state of the sta

· .

•

LIENT REPORT	: BEAU PRE EXPLOR : V01-02260.0 { C	ATIONS LT OMPLETE)	D.		DATE	RECEIVED:	10-NOV-01	PROJECT: VALENT DATE PRINTED	INE : 13-Nov-01	PAGE	1 OF 1
AMPLE	ELEMENT	Wt (-)	HT (+}	Au (-)	Au (+)	Au Tot					
NUMBER	UNITS	g	g	OPT	OPT	opt					
יאר 599	312	322.0	29,69	<0.001	<0.01	<0.001					
WW 599	313	153.3	47.48	<0.001	<0.01	<0.001					
W 599	314	261.0	45.21	<0.001	<0.01	<0.001					
RW 599	315	236.6	33.21	<0.001	<0.01	<0.001					
XW 599	316	177.9	45.32	<0.001	<0.01	<0.001					
RW 599	317	218.6	52.44	<0.001	<0.01	<0.001					
AN 599	319	254.7	44.99	<0.001	<0.01	<0.001					
NW 599	246	265.2	38.45	<0.001	<0.01	<0.001					
RW 599	247	260.8	40.13	<0.001	<0.01	<0.001					
JUY 599	248	274.9	45.05	<0.001	<0.01	<0.001					

(

۰.

	T: V01-0	2194.0 (COMPLETE)			R	EFERENCE :	
CL IEN PROJE	T: BEAU CT: VALE	PRE EXPLORATIONS LTD. INTINE		DATE RECEIVED:	s 02-nov-01	UBNITTED BY: A. KIKAUKA DATE PRINTED: 7-NOV	-01
DATE APPROVED	ORDER	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METROD	
011106 011106	1 141 2 141	(-) Pulp Wt.Minus Fra (+) Pulp wt. Plus Fra	ct. 7 ct 7	9 0.01 g		FIRE ASSAY FIRE ASSAY	
011106 011106 011106	3 Au 4 Au 5 Au	(-) Au (-) - FA20/21 (+) Au (+) - FA20/21 Tot Au Total - FA20/2	7 7 1 7	0.001 OPT 0.01 OPT 0.001 OPT		FIRE ASSAY FIRE ASSAY FIRE ASSAY	
	SAMPLE 1	YPES NUMBER	SIZE FRA	ICTIONS I	NUMBER	SAMPLE PREPARATIONS N	UMBER
F	ROCK	7	W +150	0/-150	7	CRUSH/SPLIT & PULV. METALLICS SCREENING	7 7
		otherwise indicated				a unitaa	
				******	*****	*********	
							· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·							

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

r N

1.1.1.

~

BONDAR CLEGG

REPORT: V01-02	194.0 (CC	OMPLETE)	p.	DATE	RECEIVED:	02-NOV-01	PROJECT: VALENTINE DATE PRINTED: 7-NOV-01 PAGE 1 OF 3
SAMPLE	ELEMENT	Wt (-)	WT (+)	Au (-)	Au (+)	Au Tot	
NUMBER	UNIIS	g	g	UPI	021	UP I	
RW 599306		252.7	17.30	<0.001	<0.01	<0.001	······································
RV 599307		229.0	11.43	<0.001	0.02	0.002	
RW 599308		229.1	12.45	<0.001	<0.01	<0.001	
RW 599309		218.7	9.38	<0.001	<0.01	<0.001	
RW 599310		225.1	12.60	<0.001	<0.01	<0.001	
RW 599311		204.3	7.24	0.001	<0.01	0.001	
R₩ LOG DAM 401		88.2	6.79	<0.001	<0.01	<0.001	
			· · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·							
					· · · · · · · · · · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

.

	CLIENT: BEAU PR	E EXPLORA	TIONS LT	D.				PROJECT: 1	ALENT	INE			
	REPORT: V01-021	94.0 (CC	WPLETE)		DATE	RECEIVED:	02-NOV-01	DATE PRI	NTED:	7-NOV-01	PAGE	2 OF 3	
	STANDARD NAME	ELEMENT UNITS	Vt (-) 9	WT (+) g	Au (-) Opt	Au (+) Opt	Au Tot OPT						
					-0.001				•••••	•••••	• •• ••	••••••	
	ANALTIILAL BLAN	ik Mene	-	-	<0.001 1	-	-						
	Monder Of Anaty Moon Value	565	_	_	0.0004	-	_						
	Standard Deviat	ion	-	-	-	-	-						
	Accepted Value		<0.1	<0.01	<0.001	<0.01	<0.001						
•••••					·····		• • • • • • • • • • • • • • • • • • • •				••••••••	•••••	· · · · · ·
	HX12 Oxide		-	-	0.188	-	-						
	Number of Analy	ses	-	-	1	-	-						
	Mean Value		-	-	0.1878	•	-						
	Standard Deviat	100	-	-	-	-	-						
	Accepted Value				U. 192	•	•••••••••••••••••••••••••••••••••••••••	···· ·· ····· ··· ··· ··· ··· ··· ···	·····				
	OX11 Oxide			30.46	• • • • •	0.08	•		•••••••				
	Number of Analy	'S e 5	-	1	-	1	-						
	Mean Value	•••	-	30.460	-	0.082	-						
	Standard Deviat	ion	-	-	-	-	-						
	Accepted Value		-	-	0.086	-	-						
	·····		· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·	•• •• •• ••	· ·····			••••••				
			•••••••	· · · · · · · · · · · · ·	· ·····		••••••••••		····•				
						···· ·· ··· ··· ··· ··			·····•• · ···				
••••									••••••	,			

BONDAR CLEGG

Geochemical Lab Report

REPORT: VD1	J PRE EXPLOR/ -02194.0 (CC	ATIONS LT OMPLETE)	D.	DATE	RECEIVED:	02-NOV-01	PROJECT: VALENT DATE PRINTED:	INE 7-NOV-D1	PAGE	3 OF 3
SAMPLE NUMBER	ELEMENT Units	Wt (-) 9	WT (+) g	Au (-) OPT	Au (+) OPT	AU Tot OPT				
599311 Duplicate		204.3	7.24	0.001 <0.001	<0.01	0.001				
					••••••	·····				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·								
 	· ·· ·· ·· ··					······································	·····	····· ·· ·· · · · · · ·		
	· ··· · · · · · · · · · · · · · · · ·									
				•• •. •. •. • •• •						
· · · · · · · · · · · · · · · · · · ·										
	· · · · · · ·									

			• U	RGENT	6 CONFID	ENTIAL	F	
			****		******			
•••• •• ••	To: BEAU Attention : Reference : Submitter : A. K	PRE EXPLOS	ATIONS LT	D,		Our You: Number o:	Fax No: (604) 985-0681 r Fax No: 1-250-384-6431 f Pages : 2 includir	ng this page.
	Report : V01-023	35.0	Status	: COMPLET	E	Total r	number of samples: 3	
	Element Method		Totl	Element	Method	Totl	Element Nethod	Totl
	Wt (-) FIRE ASS Au (+) FIRE ASS	λ λ	3 3	WT (+) Au Tot	fire Assay Fire Assay	3 3	Au (-) FIRE ASSRY	3
Sample Pi	reparations Totl	Sample T	уре	Totl	Size Fraction	Totl Rema	ar ke	
Sample Pi TRUSB/SPI METALLICS DVERWEIGJ	reparations Totl LIT & POLV. 3 S SCREENING 3 HT/NG 6	Sample T ROCK 	уре	Totl 3	Size Fraction 	Totl Rema 3 1 1 1 1 1 1 1 1 1 1 1 1	ar kø	

`

"LIENT: BEAU PRE EXPLORATIONS LTD. xEPORT: V01-02384.0 (COMPLETE)					PROJECT: VALENTINE DATE RECEIVED: 28-NOV-01 DATE PRINTED: 30-NOV-01 PAGE 1 OF					1 OF 1	
° Ample Mumber	ELEMENT UNITS	Wt (-) g	WT (+) g	Au (-) Opt	Au (+) OPT	Au Tot Oft					
RH 599249		245.2	16.89	<0.001	<0.01	<0.001					
W 599250		249.5	19.13	0.313	9.04	0.934					
W 599319		221.2	24.72	<0.001	0.62	0.062					
RM 599320		249.8	22.54	0.002	<0.01	0.002					

11/30/01 FRI 15:12 [TX/RX NO 5911] 2002

FAXER: 604-985-1071 At 30-NOV-2001 14:16 Page 2

7

CLIENT: BEAU PRE EXPLORATIONS LTD. Report: V01-02305.0 (Complete)					DATE	RECEIVED:	28-NOV-01	PROJECT: VALENTINE MTN DATE PRINTED: 30-NOV-01	PAGE	1 OF 1
SAMPLE NUMBER	element Units	Ht (-) ġ	WI (†) g	Au (-) Opt	Au (+) OPT	Au Tot OPT				
RW 599321		211.4	17.64	0.017	0.01	0.016				
RW 599322		250.1	29.91	0.576	22.51	2.919				
RW 599323		223.8	36.03	0.008	0.12	0 023				

APPENDIX C-Page 1 MICRONEX TEST SUMMARY REPORT

MINERAL ASSOCIATES, 799 Morphet Street, Peterborough, ON, Canada K9J 2X7 Tel: 705-745-3083, Fax: 705-743-9856, e-mail rsalter@cgocable.net

1.0 INTRODUCTION

Mineral Associates held discussions with Mr. Robert Beau Pre of Beau Pre Explorations Ltd. of Victoria, B.C. concerning the gold occurrence and mineralogy of their material. The mineralogy is quartz veins hosted in schist with quartzite (meta-sandstone), amphibolite, calcite, clays, tournaline, pyrite, marcasite, and arsenopyrite. Representative samples of approximately 2 tonnes of gold bearing quartz were available nearby on short notice.

1.0 PRELIMINARY TESTWORK

Mr. Phil Coulter, consulting engineer, supervised some communition testwork on 6 samples of gold bearing quartz. The purpose of this study was to determine the effect of very low temperature and very high temperature pre-treatment of the ore on its grindability in the Micronex. Gold deportment and accountability was measured through the sampling and analysis of products. Size distributions were determined. The host rock was predominantly schist, with gold associated with minor pyrite and arsenopyrite as fine particles from 5 to 30 microns in size. Samples 1-3 were coarse, 100% less than ½ inch (1.3 cm.) And a K80 (80% passing) 8 mm.

The Micronex was operated at 61 Hz for both the 20 Hp blower motor and the 10 Hp classifier motor. An operating temperature of 130 F was maintained. The machine was setup with nine chains, each with 9 links. The outside 3 links were 5/8 inch boron and the inside 6 links were 3/8 inch G70 load chain. The cyclone product (hereinafter referred to as tailings) which is blown out of the machine and a coarser product (hereinafter referred to as concentrate) which remained in the pan of the machine were weighed, assayed and the size distribution determined.

The results of these test are summarized as follows:

lest # 1		
	Weight (grams)	Gold Assay (grams/ tonne)
Assay Head (Feed)		
Calculated Head	6569	1.70
Concentrate	355	25,58
Tailing	6214	0.38
Weight Recovery = 5.4 %	Vo.	
Gold Recovery = 82.0 %		

Test # 2	Page 2	
1031 # 2	Weight (grams)	Gold Assay (grams/ tonne)
Assay Head (Feed)		
Calculated Head	6157	3.13
Concentrate	1305	2.52
Tailing	6214	3.24
Weight Recovery = 21.2 %		
Gold Recovery = 17.1 %		
Test # 3		
	Weight (grams)	Gold Assay (grams/ tonne)
Assay Head (Feed)		
Calculated Head	6271	6.35
Concentrate	539	67.07
Tailing	5732	0.67
Weight Recovery = 8.6 %		
Gold Recovery = 90.5 %		
Test # 4		
	Weight (grams)	Gold Assay (grams/ tonne)
Assay Head (Feed)		
Calculated Head	9761	2.97
Concentrate	1078	16.40
Tailing	8683	1.32
Weight Recovery = 11.0%		
Gold Recovery = 62.1%		
Test # 5		
	Weight (grams)	Gold Assay (grams/ tonne)
Assay Head (Feed)		
Calculated Head	9136	2.52
Concentrate	794	15.06
Tailing	8342	1.33
Weight Recovery = 8.6 %		
Gold Recovery = 52.2 %		

Test # 6	Page 3					
1031/1 0	Weight (grams)	Gold Assay (grams/ tonne)				
Assay Head (Feed)						
Calculated Head	9931	1.51				
Concentrate	1419	2.07				
Tailing	8512	1.36				
Weight Recovery = 14.3 %						
Gold Recovery = 20.0 %						

The size distribution of the tailings for tests 1,3,4 and 5 were very similar at a K80 of 30 microns and a K50 of about 12 microns. More than 30% was less than 5 microns. The concentrates were much coarser at a K80 of 400 microns, and a K50 of about 150 microns and less than 10% <50 microns. No data is available for test # 2. However test 6, a test where the ore was preheated to over 350 degrees, produced a slightly coarser tailing of K50 of 20 microns.

2.0 DISCUSSION OF RESULTS

Gold recovery was excellent in Test 1 and 3 where tailings contained less than 1 gram/tonne gold, including one as low as 0.38. Test 4 and 5 gave encouraging results. Test 2 and 6 results were unsatisfactory. Test 6 was a high temperature test and can be discarded. Test 2 gave no apparent reason for being unsatisfactory although it did yield the highest weight recovery. The gold ore entering the Micronex occurs as 10 to 30 micron sized grains associated with arsenopyrite, pyrite, pyrrhotite, and hematite and sometimes as large free grains with quartz (nugget effect). No mineralogical examinations were carried out on any of the tailings. It would be useful to determine grain size and distribution of the unrecovered gold.

The very small size of the test samples, possibility of cross contamination, incomplete recovery of tailings and concentrate samples, possibility of choking the pan with concentrate and flash carryover with the tailings contribute to the inconsistency and uncertainty in the results. Regardless this testwork shows the potential of the Micronex as a device for recovery of gold.

3.0 CONCLUSION

Proof of Concept testwork has been completed on the recovery of gold with the Micronex Reduction System. Batch and continuous testing was completed on free gold in quartz samples. Preliminary batch testwork on 6 samples yielded recoveries ranging from 17.1 % to 90.5 %. Further test samples should be 5 to 10 times larger in mass and a study of the tailings would be necessary to optimize recoveries.