1	DEPMIT TO PRACTICE
· · ·	Debrouge Generation Consulting Ltd.
	Partouge decrystear consuming rea.
	Signature
	Data Feb. 11/2002.
	DEDMIT NURAPED. D6703
- AENEY	The Association of Professional Fridingers
DECE	Geologists and Geophysicists of Alberta
2 2002	
FEB 12 The Off	ice
I missioner's On	
Loold COMINIS	
VANCOUVE	

COMMERCE RESOURCES CORP.

2001 GEOLOGIC MAPPING, SAMPLING, AND GEOPHYSICAL SURVEYS ON THE FIR PROPERTY

NORTH OF BLUE RIVER, BRITISH COLUMBIA (KAMLOOPS MINING DIVISION)

CLAIMS: FIR 1 to 12

Geographic Coordinates

52° 18' N 119° 10' W

NTS Sheet 83 D/6

Owner/Operator: Commerce Resources Corp. 600, 789 West Pender Street Vancouver, B.C. V6C 1H2

Consultant: Dahrouge Geological Consulting Ltd. 18, 10509 - 81 Avenue Edmonton, Alberta T6E 1X7

Authors:. J. Reeder, P.Geo. Jody Dahrouge, P.Geol. GEOLOGICAL SURVEY BRANCH

Date Submitted:

2002 02 11

TABLE OF CONTENTS

.

 \int

 $(\)$

1.	Introduction 1.1 Geographic Setting 1.1.1 Location and Access 1.1.2 Topography, Vegetation, Climate and Geographic Names 1.2 Property 1.3 History and Previous Investigations 1.4 Purpose of Survey 1.5 Summary of Work 1.6 Field Operations	1 1 2 3 3 3
2.	Regional Geology	4
3.	Property Geology 3.1 Stratigraphy, Structure and Lithology 3.2 Mineralization 3.2.1 Bone Creek Carbonatite 3.2.2 Fir Carbonatite	4 4 5 5 5
4.	 2001 Exploration and Field Work 4.1 Sampling and Analytical Procedures 4.2 Grid Establishment 4.3 Magnetometer Geophysical Survey 	7 7 7 8
5.	Discussion and Conclusions	8
6.	References	9

LIST OF TABLES

Table 1.1	List of Mineral Claims	2
Table 3.2	Whole Rock and Trace Geochemistry of Samples from the Bone Creek and Fir Carbonatites	6

<u>Page</u>

LIST OF ILLUSTRATIONS

		Page
Fig. 1.1 Fig. 1.2	Location Map	F1 F2
Fig. 2.1	Regional Geology	F3
Fig. 3.1 Fig. 3.2	Geology and Results of 2001 Soil Sampling	(in Pocket) (in Pocket)
Fig. 4.1	Total Magnetic Field Data with Line Profiles	(in Pocket)

LIST OF APPENDICES

Appendix 1:	Itemized Cost Statement	A1
Appendix 2A:	Analytical Report by Acme Analytical Laboratories Ltd. for Bock Samples Collected from the Fir Claims	80
Appendix 2B:	Analytical Report by Acme Analytical Laboratories Ltd. for	A3
	Soils Samples Collected from the Fir Claims	A9
Appendix 2C:	Analytical Report by Acme Analytical Laboratories Ltd. for	
		A15
Appendix 3A:	Descriptions and Composition of Rocks Samples Collected in 2001 From the Fir Claims	A18
Appendix 3B:	Location and Composition of Soil Samples Collected	
Appendix 3C:	in 2001 From the Fir Claims	A20
Appendix 50.	in 2001 From the Fir Claims	A22
Appendix 4:	Magnetometer Readings from the Fir Claims	A23
Appendix 5:	Statement of Qualifications	A32

- -

INTRODUCTION

Throughout this report the term Fir Property refers to the Fir 1 through 12 mineral claims, which encompass the tantalum-niobium-phosphate bearing Fir and Bone Creek carbonatites, located about 26 km north of Blue River, British Columbia. Claims Fir 1 to 9 were acquired by Commerce Resources Corp. during February, 2000 and claims Fir 10 to 12 were acquired during October, 2000.

Between May 15 and October 27, 2001, Commerce Resources Corp. conducted geologic mapping, collected thirteen rock, eight pan concentrates and seventy-five soil samples. A grid was established with a north-south baseline and east-west wing lines spaced 200 meters apart. About 10.40 line-km of grid was established with five-meter stations, and later surveyed by magnetometer.

1.1 GEOGRAPHIC SETTING

1.1.1 Location and Access

The Fir Property, which includes the Fir and Bone Creek carbonatites, is located in North Thompson River valley of east-central B.C. (Fig. 1.1), within NTS map area 83 D/6. The property is centred at about 52° 18' north latitude between 119° 09' and 119° 11' longitude. The Fir Carbonatite is located in the northern part of the property, whereas the Bone Creek Carbonatite is about 2 kilometres to the south.

The property is accessible from B.C. Highway 5 (Yellowhead South Highway) and is approximately 68 km south of Valemount, British Columbia and about 26 km north of Blue River. The main line of the Canadian National Railway passes through the western part of the property. The property is accessible from Gum Creek logging road, which branches from Highway 5 about 23 km north of Blue River. For the most part, the logging road follows a powerline corridor, which passes through the property.

1.1.2 Topography, Vegetation, Climate and Geographic Names

The Fir Property is between 720 m and 1240 m elevation above sea level. It is located along the steep western slopes of the Monashee Mountains. The property is covered by thick undergrowth consisting of buckbrush, devil's club and huckleberry. Areas not affected by recent logging are covered mostly by hemlock and cedar. Precipitation averages about 120 cm per year, and snowfall is generally heavy.

1.

1.2 PROPERTY

The property is held under nine contiguous 2-post mineral claims (Fir 1 to 9) and three 4-post mineral claims (Fir 10 to 12), which encompass about 17¼ km², within Kamloops Mining (Fig, 1.2, Table 1.1). The claims are held 100 per cent by Commerce Resources Corp. (Commerce).

Claim Name	Tenure	Units/Claim	Record	Actual or
	Number		Date	Expected
				Expiry Date
FIR 1	380030	1	2000/2/15	2007/2/15
FIR 2	380031	1	2000/2/15	2007/2/15
FIR 3	380032	1	2000/2/15	2007/2/15
FIR 4	380033	1	2000/2/15	2007/2/15
FIR 5	380034	1	2000/2/15	2007/2/15
FIR 6	380035	1	2000/2/15	2007/2/15
FIR 7	380036	1	2000/2/15	2007/2/15
FIR 8	380037	1	2000/2/15	2007/2/15
FIR 9	380038	1	2000/2/15	2007/2/15
FIR 10	382163	20	2000/10/28	2006/10/28
FIR 11	382164	20	2000/10/28	2008/10/28
FIR 12	382165	<u>20</u>	2000/10/28	2006/10/28
	Totals	69		

TABLE 1.1

LIST OF MINERAL CLAIMS

1.3 HISTORY AND PREVIOUS INVESTIGATIONS

Exploration for carbonatites within the Blue River area began in about 1949 with the discovery of a vermiculite-bearing carbonate by Mr. Oliver E. French (Mariano, 1982). Subsequent exploration programs between about 1950 and 1980 included geologic mapping, geophysics, prospecting, stripping and trenching, and sampling for niobium, phosphate, vermiculite, uranium and tantalum.

Exploration culminated in 1980 and 1981 with a series of drill programs conducted by Anshutz Mining of Canada Ltd. This work was directed at the identification of carbonatite hosted tantalum mineralization, and included drilling the most promising of the known carbonatites: Bone Creek, Fir, Mill and Verity. Based primarily upon the 1980 and 1981 drill programs Aaquist (1982a, p.1) concluded

"The carbonatite occurrences at Blue River, British Columbia have the highest tantalum concentrations of any carbonatite in the world."

. . .

And (Aaquist, 1982b; p. 12),

"The Verity area, that was drilled in 1981, is the best defined and most continuous zone of carbonatite to date. About 2.13 million tons averaging 0.02% Ta_2O_5 and 0.126% Nb_2O_5 occur in the area..."

During 1987 and 1988, Digel et. al. (1989) located two new carbonatites within the Blue River area. The first, along Serpentine Creek, is exposed by a logging road at about 1370 m elevation. The second carbonatite is at about 2040 m elevation, on a small ridge just south of Gum Creek. It forms an approximately 10 m thick layer, concordant with the surrounding host rocks.

During February, 2000, Commerce re-staked the known carbonatites and conducted a short surface sampling program to confirm the known tantalum mineralization at both Fir and Verity, and to locate new exposures on recently constructed logging trails.

1.4 PURPOSE OF SURVEY

The work described in this report was primarily undertaken to define the surface trace of the Fir carbonatite.

1.5 SUMMARY OF WORK

Between May 15 and October 27, 2001, Jeff Reeder, P.Geo. and Jody Dahrouge, P.Geol., supervised the exploration of the Fir Property. Work included geologic mapping, the collection of 13 rock samples, nine pan concentrates, 75 soil samples, the establishment of about 10.36 line-km of grid, and the completion of about 8.55 line-km of ground magnetic surveys. The work was authorized by Commerce Resources Corp.

1.6 FIELD OPERATIONS

Field work was conducted by a total of seven personnel between May 15 and October 27, 2001. Personnel were based either at Summit River Lodge about 40 km north of the property, or in a motel in Valemount, with transportation to the property by either two- or four-wheel-drive vehicle. Garmin hand-held 'GPS' instruments were used to provide generalized location information. Accuracy was primarily dependent on forest cover, but generally varied from a few to about 50 meters.

REGIONAL GEOLOGY

The Fir Property is within Omineca Crystalline Belt of the Canadian Cordillera. The eastern flank of the Cordillera has previously been recognized as a locus of alkaline igneous activity (Currie, 1976). Pell (1987) has subdivided the Omineca Alkaline Province, within British Columbia, into three northwest trending belts:

- a) an eastern belt, east of the Rocky Mountain Trench and encompassing most of the Main and Western Ranges of the Rocky Mountains;
- b) a central carbonatite belt, which predominately encompasses the Rocky Mountain Trench and eastern part of the Omineca; and
- c) a western belt.

The central carbonatite belt generally hosts multiple deformed and metamorphosed sill-like bodies hosted by Late Precambrian to Early Cambrian metasedimentary rocks (Pell, 1987). This belt includes the Blue River area carbonatites: Fir, Verity and Paradise; Howard Creek; and Mud Lake-Blue River.

3.

2.

PROPERTY GEOLOGY

3.1 STRATIGRAPHY, STRUCTURE AND LITHOLOGY

The Fir Carbonatite area is underlain by a sequence of nearly horizontal to shallow easterly dipping metasediments and interlayered metabasites of the Proterozoic Horsethief Creek Group. The gneisses have a general strike of 360° and dip 11° to 26° East (Aaquist, 1982b). Pegmatite dykes, lenses and sills, each of which may be several meters across, intrude the sequence and cut all lithologies. The pegmatites generally consist of white feldspar and quartz with accessory muscovite. A number of flat-lying, sill-like carbonatites intrude the Proterozoic Horsethief Creek Group; they include Bone Creek, Fir and Gum Creek. The Fir Carbonatite has been identified in outcrop and intersected by four core holes over an area measuring about 350 m east-west and 450 m north-south. It consists of two subparallel sills of beforsite; the lower sill is between 26 to 50 m thick, and the upper is up to 22 m thick.

Witin the Blue River area the carbonatites are either sovite (calcite-dominated) or beforsite (dolomite-dominated). Aaquist (1982a) indicates that the most significant tantalum-niobium mineralization is confined to the beforsites. In general those carbonatite sills composed of sovite are thin and universally barren. Both rock types are medium- to coarse-crystalline. Most exposures display layering defined by varying quantities of accessory minerals.

The carbonatites contain accessory minerals including Na-amphibole, pyroxene, phylogopite, magnetite, pyrite/pyrrhotite and apatite, as well as niobium and tantalum bearing minerals.

3.2 MINERALIZATION

In all cases the tantalum and niobium values are contained within the minerals pyrochlore $((Ca,Na)_2Nb_2O_6(OH,F))$, ferrocolumbite $(FeNb_2O_6)$ and fersmite $((Ca,Na)Nb_2(O,OH,F)_6)$. Tantalum may substitute for niobium in either the pyrochlore or ferrocolumbite structures. While uranium may substitute for calcium or sodium within the A-Site of the pyrochlore structure; however, it is generally not present within either ferrocolumbite or fersmite (Mariano, 1982).

At Bone Creek, pyrochlore is the dominant tantalum bearing mineral, while at Fir the dominant tantalum bearing mineral is ferrocolumbite.

3.2.1 Bone Creek Carbonatite

The Bone Creek Carbonatite is within in the south-central part of the Fir Claim Group. A total of 17 NQ core holes, completed in 1981, showed that the carbonatite is near flat-lying, discontinuous, and typically less than 5 m thick (Aaquist, 1982a). According to Mariano (1982, p. 50)

"A continuous stream running over an apatite beforsite outcrop on the Bone Creek logging road has caused decalcification of dolomite and simultaneous replacement by Fe3+ oxide muds insitu....

Pyrochlore crystals that appear to be black, on close scrutiny, are found to be dark mahogany brown. They are mostly rounded grains but some show well-developed octahedrons with the dodecahedral modification. The average grain size for the pyrochlore is 0.75 mm but some grains exceed 5 mm in dimension."

Results typical of the Bone Creek carbonatite include BC-4 (Ahroon, T.A; 1980) with 262 g/t Ta_2O_5 and 2,831 g/t Nb₂O₅ across 4.1 m (25.4 - 29.6 m). Two surface samples collected from weathered bolders at the approximate location of the Bone Creek Carbonatite (Fig. 3.2) contained highly anomalous concentrations of tantalum and niobium (Table 3.2).

3.2.2 Fir Carbonatite

According to Mariano (1982) the Fir Carbonatite is almost exclusively Beforsite, composed predominately of ferroan dolomite with minor apatite and dark-green amphibole. Both outcrops and drill core display primary igneous layering with bands that are richer and poorer in non-carbonate minerals. Fenitized country rock associated with the carbonatite appears limited to narrow intervals, with amphibole-rich layers and pods up to 1 m across. Macroscopic textures such as a diffuse gneissocity, augen gneiss and tectonic brecciation indicate (Mariano, 1982, p.1)

"extensive tectonic deformation and post-emplacement metamorphism with significant mineralogical and geochemical redistribution."

Prior ore mineralogical studies by Mariano (1982) identified two primary Ta-bearing phases: ferrocolumbite (Fe(Nb,Ta)₂O₆) and pyrochlore ((Ca,Na)₂(Nb,Ta)₂O₆(OH,F)). For rocks examined from the Fir Carbonatite Mariano noted an approximate ratio of 20:1 columbite to pyrochlore and that

"all pyrochlores examined from BC-19 are relatively low in U and high in Ta. They are light yellow in color and occur as grains intimately crystallized with ferrocolumbite and as isolated crystals in the dolomite ground mass. ... Unlike BC-19, BC-21 core at 173.6 m contains jet black pyrochlore that is strongly radioactive indicating high U content."

TABLE 3.2: WHOLE ROCK AND TRACE GEOCHEMISTRY OF SAMPLES FROM THE BONE CREEK AND FIR CARBONATITES*

Samples	Bone	Creek	·····	F	ir	
Composition	15028A	15028B	10529	10530	10533	10535
Major Elements (weight %)						
CaO	13.79	16.82	29.47	29.15	30.52	32,23
MgO	2.96	12.26	15. 47	15.50	15.18	14.24
SiO ₂	24.73	48.61	2.56	1.76	1.10	1.58
TiO₂	0.35	0.53	0.02	0.02	0.01	0.01
Al ₂ O ₃	7.06	4.35	0.07	0.03	0.05	0.05
Fe ₂ O ₃	23.84	10.72	7.96	8.15	7.35	7,33
Na ₂ O	1.23	2.02	0.36	0.42	0.31	0.09
K ₂ O	0.92	0.23	0.05	0.05	0.03	0.03
P ₂ O ₅	9.6	1.73	2.25	2.01	2.06	3.87
Trace Elements (ppm)						
Ta ₂ O ₅	576	137	188	148	147	216
Nb ₂ O ₅	1907	610	3006	2768	3016	929
Cu	78	19	4	< 1	< 1	2
Ni	211	26	< 1	< 1	< 1	1
Rb	52	5	3.7	2.8	11.5	2.5
Sr	1694	615	5247	5153	5234	3932
Th	32	5	7	8.5	7	5.2
U	231	23	5	4.2	3.1	41.3
V	84	143	11	9	8	8
Zr	200	36	8.5	6.4	6.4	26.9
<u>Ratios</u>						
Nb ₂ O ₅ / Ta ₂ O ₅	3.31	4.45	15.99	18.70	20.52	4.30
Ta ₂ O ₅ / U	2.49	5.96	37.60	35.24	47.42	5.23

* See Appendix 2A for analytical results and Appendix 3A for sample descriptions.

* Sample 10535 is from float along rail line and may be derived from either the Bone Creek or Fir Carbonatite.

- -

In 1981 four NQ-sized diamond drill holes (Aaquist, 1982a) intersected the main Fir Carbonatite. The best intersection obtained during the 1981 program was Hole BC-19: 8.2 m of 319 g/t Ta₂O₅, 1400 g/t Nb₂O₅ and 3.15 per cent P_2O_5 . This intersection likely correlates to surface exposures mapped and sampled during 2001 (Appendix 3A, Table 3.2).

2001 EXPLORATION AND FIELD WORK

4.1 SAMPLING AND ANALYTICAL PROCEDURES

4.

Thirteen rocks samples were collected during 2001 (Fig. 3.2). Samples were taken from both the Bone Creek and Fir carbonatites and consisted of both chip and grab samples(Appendix 2A). Nine pan concentrates were collected from various streams draining the property. The material was collected by filling a five gallon pail with -1 cm material, which was panned to about 1 kg of concentrate (Appendix 2B).

Seventy-five soil samples were collected in the northern portion of the Fir Claim Group (Appendix 2B; Fig. 3.1). Samples were collected at 40-metre intervals along those lines thought to cover the possible strike extensions of the Fir Carbonatite. Samples were collected at 20-metre intervals along line 7600 North, for orientation purposes. All samples taken were of the B-Horizon which varied from 20 to 30 centimetres depth.

Pan concentrate, rock, and soil samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, B.C. for preparation and analyses for both whole rock and trace element constituents by standard ICP techniques. Analytical reports from Acme Analytical Laboratories Ltd. are in Appendices 2A, 2B and 2C, and descriptions of the samples are in Appendices 3A, 3B and 3C.

4.2 GRID ESTABLISHMENT

In preparation for ground geophysical surveys and mapping a grid was established, based on the UTM NAD 83 Grid System (Fig. 3.2). The base line (BL 2400 East) was placed north-south and was corrected for variations in slope. East-West cross lines were spaced 200 metres apart and were blazed and marked with flagging at 5-m intervals. They totalled 10.36 line-km.

7

4.3 MAGNETOMETER GEOPHYSICAL SURVEY

Although the Fir Carbonatite is not known to contain significant concentrations of magnetite, the grid were surveyed using a ground magnetometer, at 5-m stations along each cross-line. Magnetometer readings were collected using a GEM System GSM-19 integrated Overhauser effect proton procession magnetometer. The magnetic readings were corrected for diurnal magnetic variations using a stationary GSM-19 base station. The corrected magnetometer data (Appendix 4) was processed, gridded, and used to generate a series of magnetic profiles (Fig. 4.1). About 8.55 line-km of a ground magnetic survey were completed at the Fir Property.

5.

DISCUSSION AND CONCLUSIONS

The 2001 exploration confirmed that soil sampling is an effective method in locating buried carbonatite. Amongst other constituents, the niobium and tantalum bearing minerals appear to have been liberated and incorporated within the overlying soil profile. An orientation soil survey line, 7600 North, was centered over known outcrops of the Fir Carbonaite. Soil samples were collected at 20 m intervals, and returned an approximately 100 m long anomaly with between 27 and 212 ppm tantalum and 329 to 2251 ppm niobium. Although apparently less pronounced on adjacent lines, the anomaly can be traced from line 7400 to 8000. The anomaly remains open to the north of line 8000.

Of particular interest is a second anomaly about 500 m upslope of the Fir Carbonatite on line 7600 North. It is centered at 2250E, 7600N with 22 ppm tantalum and 204 ppm niobium. The anomaly is at approximately the same stratigraphic position as the Bone Creek Carbonatite, which is located more than 1,500 meters to the south. If this occurrence is part of the Bone Creek Carbonatite it confirms the relatively continuity of the local stratigraphic sequence within the area of the Bone Creek and Fir carbonatites. Additional soil sampling is required to trace the possible extensions of both carbonatites.

Pan concentrate sample 18083 colleted from a creek, a few hundred meters downslope of the Fir Carbonatites confirms the effectiveness of this method in identifying tantalum and niobium bearing deposits. Two addition samples, 18082 and 18085, from the southern part of the claims also returned anomalous values. The likely source for these samples is the Bone Creek carbonatite.

The ground magnetic survey failed to delineate the known Fir Carbonaties, perhaps due to the paucity of magnetic minerals within the occurrence.

Edmonton, Alberta 2002 2 11

C

REFERENCES

- Aaquist, B. (1982a) Blue River Carbonatites, British Columbia, Final Report; B.C. Min.Energy, Mines Petr. Res. Ass. Rept. 10,274, 30 p.
- Aaquist, B. (1982b) Assessment Report Blue River Carbonatites, British Columbia,; B.C. Min.Energy, Mines Petr. Res. Ass. Rept. 11,130, 15 p.

6.

- Ahroon, T.A. (1980) Geologic Report on the Blue River Project, British Columbia; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 9566, 13 p.
- Currie, K.L. (1976) The Alkaline Rocks of Canada; Geol. Surv. Can., Bull. 239., 228 p.
- Jackson, E.V., James, G.L., and Forester, J.E. (eds.) (1978) Canoe River 83D: Verity; B.C. Min. Mines Petr. Res., Exploration In B.C. 1978, p. 117.
- Knox, A. (2000) Summary Report on the Blue River Carbonatite Property; prepared for Commerce Resources Corp., 21 p.
- Mariano, A.N. (1979) Report on Nb-Ta-U Mineralization in the Blue River Carbonatites; Confidential Report for Anschutz Mining (Canada) Ltd., 360 p.
- Mariano, A.N (1982) Petrology, Mineralogy and Geochemistry of the Blue River Carbonatites; Confidential Report prepared for Anschutz Mining (Canada) Ltd., 129 p.
- Mariano, A.N., (1989) Nature and Economic Mineralization in Carbonatites and Related Rocks, in Carbonatites: Genesis and Evolution, ed. by Keith Bell, Unwin Hyman, Ltd., London, 1989, 618 p.
- Mariano, A.N Tony (2001) Illustrations on Blue River Carbonatite Mineralogy Pertinent to Economic Beneficiation and Exploration; Confidential Report for Zimtu Technologies Inc., 8 p.
- McCammon, J.W. (1950) Vermiculite: Verity B.C. Min. Mines Petr. Res., Ann. Rept. 1950, p. 229-230.
- McCammon, J.W. (1952) Uranium: Verity, Paradise, etc.; B.C. Min. Mines Petr. Res., Ann. Rept. 1952, p. 115-119
- Pell, J. (1987) Alkaline Ultrabasic Rocks in British Columbia: Carbonatites, Nepheline Syenites, Kimberlites and Related Rocks; B.C. Min. Energy, Mines Petr. Res.; Open File 1987-17, 109 p.

APPENDIX 1: ITEMIZED COST STATEMENT TO OCTOBER 27, 2001

С	a) <u>Personnel</u> 	riet		
	2.00 days	field work and travel June 16 to 17		
	10.00 days	arrange for field equipment and supplies, co-ordinate field		
	12.00 days	 (@ \$ 481.50) 	\$ 5,778.00	
	J. Reeder, geologis	t		
	10.50 days	field work and travel May 15 to 21, 27, July 12, 19, 21		
	8.00 days	prepare applications for drill permits and road building, prepare for field work, arrange for cat operator and drill contractor(s), report preparation		
	18.50 days	@ \$ 428.00	\$ 7,918.00	
	R. Hardy, geologist			
	4.00 days	field work and travel May 14 to 17,		
	1.00 days	prepare for field work, organize and pack field gear,		
	5.00 days	@ \$ 374.50	\$ 1,872.50	
	R. Grywul, geologis	r		
	20.50 days	field work and travel May 14 to 23; June 3, 5, 11, 12, 16, 17; July 15, 21, 24, 25		
	4.00 days	prepare for field work, organize and pack field gear, compile geological and geophysical data		
	24.50 days	@ \$ 267.50	\$ 6,553.75	
\mathcal{C}	B. Blakney, geologis	st		
`~	5.00 days	field work and travel July 23 to 27		
	5.00 days	@ \$ 267.50	\$ 1,337.5 0	
	M. Conlin, assistant			
	<u> </u>	field work and travel May 18 to 21		
	3.00 days	@ \$ 176.55	\$ 529.6 5	
	W. McGuire, draftsn	nan		
	13.00 days	compiling field data, drafting, preparing and plotting maps, figures and cross-sections, other		
	13.00 days	@ \$ 406.60	\$ 5,285.80	A 00 075 00
				\$ 29,275.20
	b) Food and Accomm	odation	¢ 0.005.00	
	45 man-days	(0) \$ 51.24 accommodations and means	\$ 2,305.63	
	45 man-days	@ \$ 16.39 groceries and other	\$ 737.48	\$ 3,043.11
	a) Transportation			
	Vy <u>Transportation</u>	May 3 SHV(e)/Truck(e) 4072 km @ 0.41 (PC Portion Only)	¢ /17.90	
	venicies.	Way, $3.30V(s)/110ck(s), 4072 km (\oplus 0.41 (BC Portion Only)$	φ 417.30 \$ 471.00	
		$U_{\rm eff}$, $U_{$	- ው ዓለበ ነው። ው አለን ውን	
		aaiy, a sovisy muckisy, 4330 km @ 0.41 (oo Porton Only)	<u>φ 443.07</u>	\$ 1,333.24
	d) Instrument Rental		¢ 447.00	
	5 unit-days	W a 22.50 laptop computer	φ (17.00 ¢ αρεάαλ	
\square	so unn-days		2,2,37.04	\$ 2,376.84

A1

APPENDIX 1: CONTINUED

e) <u>Drilling</u>			n/a					
f) <u>Analys</u>	<u>95</u>							
13	samples	@	\$	32.64	ICP analyses (Acme)	\$	424.26	
2	samples	ā	\$	13.21	Precious Metal Geochem analyses (Acme)	\$	26.43	
13	samples	@	\$	5.08	Rock Sample Preparation	\$	66.07	
8	samples	0	\$	35.90	Silt: ICP whole rock and trace analyses (Acme)	\$	287.19	
8	samples	@	\$	1.65	Silt: Sample Preparation	\$	13.18	
75	samples	@	\$	23.54	Soil: ICP whole rock and trace analyses (Acme)	\$	1,765.50	
75	samples	@	\$	5.47	Soil: Sample Preparation and storage	\$	410.48	
								\$ 2,993.11
g) <u>Report</u>			Rej	productio	on and assembly	\$	_168.45	
								\$ 168.45
h) <u>Other</u>								
			Cou	rier and	Shipping	\$	199.83	
			Field	d Equipn	nent and Supplies	\$	323.83	
			Long	g distand	ce telephone	\$	61.73	
			Plot	S		\$	205.98	
			Rep	orts and	Maps	\$	47.87	
	Reproductions and photocopying						220.83	
								\$ 1,060.06
<u>Total</u>								\$ 40,250.00

- - - -

ANALYTICAL REPORT BY ACME ANALYTICAL LABORATORIES LTD. FOR ROCK SAMPLES COLLECTED FROM THE FIR CLAIMS*

 $\langle \bar{} \rangle$

From ACME ANALYTICAL L	ABORAT	ORIES L	TD. 852 E	. HASTI	NGS ST.	VANCOU	VER BC	V6A 1R6	PHONE	(604)253	3158 FAX	(604)253	-1716@	CSV TEX	T FORM	AT		
To Dahrouge Geological Con	sulting																	
Acme file # A9101924 Rec	eived: JU	N 29 200	1 * 17 s	amples ir	n this disk	file.												
	• ·																	
ELEMENT	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P2O5	MnO	Cr2O3	Ba	Ni	Sc	LOI	TOT/C	TOT/S	SUM
SAMPLES	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ррт	%	%	%	%
7002*	1.99	0.05	8.16	15.35	29.16	0.58	0.06	0.02	2.3	0.84	0.006	34	40	5	38.9	11.33	0.13	97.42
7003°	1.96	0.06	7.78	15.23	29.5	0.52;	0.06	0.02	2.53	0.87	0.001	54	39	5	39.2	11.42	0.07	97.74
10526	0.9	< .03	1.58	3.47	50.1	0.24	0.04	0.01	3.65	0.25	< .001	412	78	12	38.6	10.85	0.01	98.92
10527A	0.92	0.28	3.14	16.91	32.94	0.12	0.04	0.03	3.95	0.43	0.005	48	51	6	40.1	11.33	< .01	98.88
10527B	0.17	0.15	84.43	2.95	4.36	0.08	0.04	1.68	0.46	0.33	0.001	21	33	4	4.7	1.9	< .01	99.35
10528A°	24.73	7.06	23.84	2.96	13.79	1.23	0.92	0.35	9.6	1.72	0.009	647	347	15	12.3	1.88	0.03	98.63
10528B°	48.61	4.35	10.72	12.26	16.82	2.02	0.23	0.53	1.73	0.58	0.005	138	104	20	1.8	0.11	0.11	99 .69
10529°	2.56	0.07	7.96	15.47	29.47	0.36	0.05	0.02	2.25	0.91	0.001	56	37	5	38.8	11.42	0.2	97.93
10530°	1.76	< .03	8.15	15.5	29.15	0.42	0.05	0.02	2.01	0.87	0.004	41	96	5	40.1	11.81	0.18	98.07
RE 10530°	1.6	0.04	8.05	15.39	29.85	0.39	0.05	0.02	1.87	0.87	0.006	40	26	5	40	11.52	0.21	98.15
10531°	1.63	0.03	7.94	15.55	29.15	0.38	0.04	0.01	1.06	0.84	0.001	40	28	5	41.7	12	0.12	98.34
10532°	2.41	0.06	8.23	15.27	29.26	0.49	0.05	0.01	1.33	0.84	0.005	48	46	6	40.5	11.42	0.12	98.46
10533°	1.1	0.05	7.35	15.18	30.52	0.31	0.03	0.01	2.06	0.88	0.005	52	20	4	40.5	11.9	0.07	98
10534°	2.75	0.07	8.17	14.99	28.76	0.51	0.06	0.02	1.68	0.94	0.004	99j	< 20	6	40.1	11.23	< .01	98.06
10535°	1.58	0.05	7.33	14.24	32.23	0.09	0.03	0.01	3.87	0.76	0.003	46	25	4	38.7	10.94	0.05	98.91
10536	2.86	0.27	5.15	9.28	39.89	0.11	0.04	0.87	1.15	0.18	0.007	280	67	16	39.5	11.14	< .01	99.35
10537	31.87	2.14	15.39	11.09	20.52	0.17	0.15	0.12	9.22	0.74	0.01	123	147	25	8	0.99	< .01	99.46
STANDARD SO-15/CSB	49.02	12.96	7.31	7.3	5.97	2.28	1.83	1.76	2.55	1.41	1.075	1976	81	13	5.9	2.42	5.33	99.59

a de la companya de la

* As received by e-mail.

* Sample from Fir Property.

()

CONTINUED

o Dahrouge Ge	ologie	cal Co	nsulti	ng											[· -	 			· ·			,						+
cme file # A91	01924	Re	ceived	1: JUN	1 29 2	001 *	17 s	sample	as in t	his dis	sk file.	·			+ 															
ELEMENT	Со	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	TI	υ.	v	w	Zr	Y	la	Се	Pr	Nd	Sm		Gd	Th	Γıν	Ho	 Fr	Tm	Vh	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm	ppm	ppm	DOM	DDM	opm	moa	000	
7002*	16.5	0.2	1,1	< .5	2570	2	< 1	4934	62.7	19.7	0.2	1.8	< 5	< 1	8.5	25.6	118.9	254.3	29.14	109.2	17.9	5.48	12.42	1.51	7.86	1.1	2.6B	0.24	1.55	0.16
7003*	14.3	0,4	1	< .5	2292	1.8	< 1	5052	134.7	7.4	0.2	7.6	< 5	< 1	8.8	27.5	122.7	262.7	30.81	118.6	19.8	6.18	13.85	1,71	8.9	1.21	2.86	0.29	1,49	0.2
10526	2.7	0.5	< .5	8.7	18.6	1.9	< 1	5284	3.1	1.4	0.1	2.2	11	< 1	603.9	78.4	234.B	503.5	59.2	226.3	41.5	13.14	30.65	3.74	20.45	3.08	7.27	0.8	4.55	0.6
10527A	9.2	0.4	1.2	0.8	850.1	2.6	1	4570	82.1	19.8	0.1	39.8	7	< 1	36	33.6	135.1	321.9	39.59	157.5	28.1	8.11	19.42	2.17	10.86	1.38	3.24	D.33	1.7	0.2
105278	43.7	0.5	16.8	< .5	226	2.6	2	750.1	11.1	1.8	0.2	2.8	1264	4	0.1	4.9	19.4	44,3	5.37	20.3	3.4	1,15	2.72	0.29	1.59	0.19	0.39	< .05	0.24	0.0
10528A*	108.5	2.6	10.2	3.4	1333	52.3	< 1	1694	472.1	32	0.4	230.9	84	3	200.3	91.8	297.7	745.8	77.23	292.2	55.3	15,73	40,88	4.94	24.05	4	10.1	1.07	6.55	0.9
10528B*	33.3	0.4	8.9	1,3	426,1	5.2	2	615.1	112.2	5.3	0.2	22.9	143	7	36.2	34.2	61.1	152.5	17.3	68. 9	13	3.8	11.44	1.58	B.11	1,4	3.5	0.43	2.37	0.3
10529*	15.5	0.5	1	< .5	2101	3.7	1	5247	153.7	7	0.2	5	11	< 1	8,5	26.3	116.7	252.1	28.83	111.6	19.4	5.82	13.1	1.6	8,16	1.05	2.73	0.28	1.7	0.2
10530*	19.1	0.4	1	< .5	1788	2.8	< 1	5153	112.2	8.5	0.2	4.2	ę	< 1	6.4	23.5	108.9	234,3	26,54	95.7	16.9	5.02	11.75	1,4	7.21	1.02	2.41	0.25	1.47	0.1
RE 10530*	16.6	0.6	1.4	< .5	1935	2.9	3	4952	120.8	8,6	0.3	4.6	9	< 1	6,4	23.1	105.9	228	25.8	96.3	17.2	5.01	11.9	1,41	6.89	1.05	2.3	0.24	1,44	0.1
10531*	.14.8	0.4	1,1	< .5	1732	2.9	< 1	4781	98.7	5	0.3	1.9	9	< 1	5.1	17	75.5	159.8	17.98	66.1	11.3	3.48	7.88	D.94	4.73	0.69	1.62	0.17	0.98	0.14
10532*	15.3	0.3	1.3	= .5	1285	3.1	< 1	4640	64.8	7,8	0.2	1	10	< 1	5.3	18,9	90.2	189.8	21.1	79.8	14	4.02	9.05	1.14	5.57	0.83	1.98	0.2	1.13	0.18
10533*	12.2	0.5	0.7	< .5	2108	11.5	<1	5234	120.6	7	0,1	3.1		< 1	6.4	24.9	116.2	247.5	2B.05	106,6	18,5	5.45	13.5	1.48	7.53	1.11	2.52	0.27	1.46	0.2
10534*	9.3	0.6	0.8	< .5	2079	3.3	<1	4859	78.5	5.3	0,1	1	9	< 1	6,4	22,4	104.6	221.9	24.96	91,6	16.5	4.77	11.26	1.25	6.57	1.01	2.3	0.23	1.42	0,1
10535"	9.7	0.7	1	< .5	649.1	2.5	< 1	3932	177	5,2	0.1	41.3	8	1	26.9	33.5	140.5	303.7	35.51	135.6	23.4	7.16	17.2	2.07	9.3	1.45	3.42	0.31	1.89	0.26
10535	48 5		4.5	<i>3</i> 6,8	95.7	2.8	< 1	1867	16,9	9,8	< .1	3.2	76	< 1	1467	29.5	110.7	220.6	24.95	95,1	19.6	5.42	13.38	1.63	7.51	1.19	2.71	0.26	1.89	0.24
10537	40.3	0.9	5.4	2.8	229.6	в.3	1	1433	60.4	3,9	0.2	51.4	80	2	124.3	62.6	310.1	687.4	78.27	306.4	56.3	15.01	38.31	4.05	19.22	2.68	6.92	0.73	4.3	0.f

* Sample from Fir Property

and a second second

1

CONTINUED

From ACME ANALYTICAL L	ABORAT	ORIES L	TD. 852 E	. HASTI	NGS ST.	VANCOU	VER BC	V6A 1R6	PHONE	(604)253	-3158 FAX	(604)25	3-1716 (D CSV T	EXT FOR	MAT		· ·
To Dahrouge Geological Con	sulting															T		
Acme file # A9101924 Rece	eived: JU	N 29 200	1* 18 s:	amples in	this disk	file.								1				
ELEMENT	Mo	Cu	Pb	Zn	Ni	As	Cđ	Sb	Bi	Ag								
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm								
7002*	3	5	< 3	30	< 1	< 2	0.6	0.5	< .5	< .5								
7003*	2	3	< 3	33	< 1	< 2	0.6	0.6	0.6	< .5								
10526	1	1	< 3	11	< 1	< 2	0.2	0.8	0.7	< .5								
10527A	1	2	3	26	< 1	< 2	0.3	<.5	0.5	< .5				1				
10527B	13	3	< 3	141	< 1	< 2	< .2	< .5	< .5	< .5								
10528A*	41	78	16	79	211	< 2	0.6	< .5	1.4	< .5								
10528B*	4	19	7	25	26	< 2	0.2	< .5	0.8	< .5					T		_	
10529*	3	4	< 3	33	< 1	< 2	0.6	< .5	1.4	< .5								
10530*	3	< 1	< 3	41	< 1	< 2	0.6	0.6	< .5	< .5								
RE 10530*	3	< 1	< 3	33	< 1	< 2	0.6	< .5	< .5	< 5				1	i			
10531*	3	< 1	< 3	34	< 1	< 2	0.5	< .5	< .5	< .5				:				
10532*	3	< 1	< 3	37	< 1	< 2	0.5	< .5	< .5	< .5				1				
10533*	2	< 1	< 3	34	<1	< 2	0.6	0.9	0.6	< .5				1				
10534*	3	< 1	< 3	41	< 1	< 2	0.6	< .5	0.5	< .5								
10535*	3	2	< 3	33	1	< 2	0.4	0.9	0.5	< .5				}				
10536	1.	68	< 3	21	47	< 2	< .2	1.2	< .5	< .5				1				
10537	7	50	15	36	69	3	0.5	< .5	< .5	< .5								
STANDARD C3	27	65	32	168	35	62	24	14.5	22.6	6								
STANDARD G-2	3	3	< 3	49	8	< 2	< .2	< .5	< .5	< .5				:				

17

* Sample from Fir Property

ſ

CONTINUED *

From ACME ANALYTICAL I	_ABORA	TORIES I	.TD. 8521	E. HASTI	NGS ST.	VANCOL	VER BC	V6A 1R	S PHONE	(604)253	-3158 EA	X/604\25	3-1716 @	COV TE		4AT	Γ Τ	
To Dahrouge Geological Cor	sulting									(
Acme file # A101471 Rece	ived: MA	Y 29 200 [.]	1* 9 sa	mples in	this disk f	ile.	·····									 .		<u> </u>
ELEMENT	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P205	MnO	Cr2O3	Ba	Ni	Sc	101	TOTIC	TOTIS	SLIM
SAMPLES	%	%	%	%	%	%	%	%	%	%	%	pom	pom	000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	%	0/
10643°	3.91	0.08	8.63	14.37	29.85	0.42	0.07	0.01	2.41	1	0.007	57	22	5	39.1	11.23	/0	70
10644°	2.54	0.05	8.99	15.94	30.06	0.29	0.05	< .01	0.64	1.07	0.007	53	< 20	<u> </u>	40.6	12 10	0.13	100.25
10645	2.73	0.11	6.42	16.18	30.65	0.23	0.17	0.08	3.92	0.32	0.008	115	< 20	21	39.7	11 14	< 01	100.23
10646	2.27	0.03	6.04	17.11	30.01	0.19	0.15	0.01	2	0.38	0.005	106	24	39	42 1	12	0.02	100.33
10647	1.38	< .03	5.89	16.97	30.8	0.08	0.08	0.01	2.91	0.32	0.01	94	67	16	41.8	11 0	0.02	100.52
10648	1.68	< .03	5.51	18.1	29.58	0,14	0.16	< .01	1.11	0.37	0.008	151	44	23	43.5	12 10	0.02	100.20
RE 10648	1.61	< .03	5.56	18.13	29.52	0.15	0.13	< .01	0.99	0.37	0.01	153	< 20	23	43.7	12.13	0.00	100.10
10649	2.1	< .03	5.84	17.71	30.19	0.21	0.16	0.01	2.05	0.37	0.011	117	106	25	41.7	11 71	0.04	100.19
10650	2.31	< .03	5.81	17.37	29.73	0.26	0.19	0.01	2.23	0.37	0.007	120	< 20	28	41.7	11.62	0.06	100.38
STANDARD SO-15/CSB	50.17	12.95	7.14	7.21	5.82	2.44	1.85	1.71	2.71	1.37	1.05	1976	76	13		2.44	6.25	100.11
	-					'.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							2.44		100.55

* As received by e-mail.

* Sample from Fir Property.

()

the second second second second second second

A6

 $\langle \hat{\gamma} \rangle$

To Dahrouge Ge	ologic	al Co	nsulti	ng																										
Acme file # A10	1471	Rec	eived:	MAY	29 20	01 *	9 sa	mples	s in th	is disk	file.						••••													
ELEMENT	Со	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	TI	U	v	w	Zr	Y	La	Сө	Pr	Nd	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	 Lu
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
10643*	15.8	< .1	< .5	< .5	1915	1.6	< 1	4299	144.9	4	0.4	2.4	11	< 1	6.2	25,4	117.9	239.4	27.41	107	16.4	4.84	12.66	1.45	6.48	1.15	2.32	0.3	1,41	0.19
10644*	14	< ,1	< .5	_ < .5	665.3	<.5	≺ 1	4022	41.3	1	0.2	0.1	9	< 1	6	13.5	64.5	125.2	13.55	51.6	8.1	2.45	6.01	0.71	3.5	0.56	t.37	0,17	0.87	0.10
10645	24.9	0,1	2,6	0.8	615.8	2.1	1	3108	112,1	4,2	0.2	62.5	35	< 1	29.9	21,4	156.4	308.6	35.57	132.B	20.6	5.98	14.67	1,61	6.54	0.96	1.89	0.21	1,07	0.1;
10646	19.3	0.2	< .5	< .5	1778	1.9	< 1	3190	79.2	9.2	0.2	8.4	e	< 1	5.5	14.3	109.7	216.1	24.47	92.6	13.8	3.97	9.98	1.03	4.42	0,69	1.23	0.15	0.79	0.1
10647	16	0.3	1.8	1.2	26	4.4	< 1	3368	7	0.6	0.2	4.3	19	< 1	52.9	18.1	133.2	270.3	30.79	120,8	17.8	5.05	12.45	1.34	5.54	0.8	1.58	0.19	0.86	0.1
1064B	23.9	0.2	<.5	< .5	602.3	3.5	< 1	409B	106,9	2.1	0.2	44,8	7	< 1	2.7	12.6	106.3	203.1	22.28	82.9	12	3.39	8.31	0.84	3.92	0.54	1.08	0.13	0.6	0.0
RE 10648	22. 9	<.1	< .5	<.5	613.7	1.9	< 1	4115	113.1	2.2	0.2	48.4	7	< 1	2.1	12.8	101.6	201.2	21.89	B2.4	12,4	3.57	8.29	0.86	3.66	0.6	1.05	0.13	0.61	0.0
10649	22.8	<.1	< .5	≺.5	1211	1.6	1	4159	160.4	3.7	0.2	57.2	10	< 1	2.7	18.4	154.2	297.9	33.41	121.1	17.7	5.39	12.88	1.38	5.93	0.85	1.63	0.16	0.87	0.0
10650	21.5	<.1	≺.5	< .5	1578	2.2	2	4147	153.6	5.4	0.2	36.4	13	< 1	3.6	19	155.4	302.8	33.0B	125.9	18,1	5.2	13.04	1.38	5.33	0.87	1,68	0.2	0.87	0.09
STANDARD SO-15	21.4	2.7	17,4	26,4	32.6	66.6	16	401	1.8	24.4	1	20	155	18	1048	24.1	29.2	57.7	6.16	22.3	3.9	0.98	4.2	0.64	3.85	0.86	249	0 42	2.58	0.44

* Sample from Fir Property

A7

and the second second

 $\langle \gamma \rangle$

54

and the second second

CONTINUED

Dahrouge Geological Cor	sulting]]		T	<u>, , , , , , , , , , , , , , , , , , , </u>		
me file # A101471 Rece	ived: MA	Y 29 2001	* 10 sa	mples in	this disk	file.								
ELEMENT	Мо	С⊔	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au**	Pt**	Pd**	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppb	daa	opb	
10643°	1	< 1	< 3	34	< 1	< 2	0.8	< .5	< .5	< .5	< 2	< 2	3	
10644°	< 1	< 1	< 3	33	< 1	< 2	0.5	0.8	< .5	<.5	3	< 2	4	
10645	1	1	< 3	21	< 1	< 2	0.3	0.7	< .5	< .5	4	< 2	< 7	
10646	1	< 1	< 3	17	< 1	< 2	0.3	< .5	< .5	<.5	2	< 2	2	
10647	1	< 1	< 3	20	< 1	< 2	0.2	0.7	<.5	< .5	2	< 2	2	
10648	1	< 1	< 3	17	< 1	< 2	0.4	<.5	< .5	< .5	2		2	
RE 10648	1	< 1	< 3	18	< 1	< 2	0.4	< .5	<.5	< .5	< 2			
10649	1	< 1	< 3	17	1	< 2	0.4	0.5	< .5	< .5	< 2	วั	2	
10650	1	< 1	< 3	20	1	< 2	0.4	< ,5	< .5	< .5	< 2	- 3	<u> </u>	<u> </u>
STANDARD C3/FA-10R	26	67	32	177	34	62	25	14.7	21.6	59	502	468	2	
STANDARD G-2	2	2	3	49	7	< 2	< .2	<.5	< 5	< 5	002		455	

* Sample from Fir Property

()

(

ANALYTICAL REPORT BY ACME ANALYTICAL LABORATORIES LTD. FOR SOIL SAMPLES COLLECTED FROM THE FIR CLAIMS *

2

From ACME AN	ALY	ICAL	LABO	RAT	ORIE	S LTD	. 852 1	E. HA	STIN	SS ST	. VAI	ICOU	VERI	зс v	6A 1R	6 PH	ONE(6	04)2	53-315	58 FA)	(604)	253-1	716 @	D CS	/ TEX	T FOI	RMAT				
To Dahrouge Ge	eologi	cal Co	nsulti	ng																						[
Acme file # A10	1923	Page	1 (a)	Rec	eived:	JUN :	29 200	11 *	39 sa	mples	in th	s disk	file.																		
					i i																										
ELEMENT	Ba	Co	Сs	Ga	Hf	Nb	Rþ	Sn	Sr	Та	Th	ΤI	υ	V	W	Zr	Y	La	Ce	Pr	Nđ	Sm	Eυ	Gd	Тb	Dy	Ho	Er	Tm [†]	Yb	Lu
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
15201	737	11,6	5.3	22.3	5.3	98.9	139.2	5	222.1	5.4	11.3	0.7	3.1	73	4	179.2	19.2	39.5	B4.2	8.78	31.8	5.9	1.07	4.53	0.59	3.63	0.7	1.91	0.27	1.85	0.3
15202	731	5.8	3.1	15	3.6	15.8	113.1	2	244.5	1.5	9.1	0.5	2	36	4	123.1	17.6	30.4	62	6.71	23.7	4.5	0.79	3.72	0.5	2.92	0.55	1.85	0.26	1,72	0.26
15203	646	9.9	3.5	16,5	5,4	41	104.7	3	240	3	12	0.4	2.9	54	5	189.1	24.7	44.1	91.7	10.23	36.9	6.8	1.35	5.12	0.73	4,74	0.86	2.91	0.39	2.44	0.35
15204	608	43.3	4.6	1B.4	4.2	1043	75.2	2	513.3	50.2	16.8	0.3	3.1	88	4	136.9	29	86.1	214.5	20.74	75.1	14,5	3.9	9.85	1.27	7.18	1.22	3.22	0.41	2.67	0.35
15205	54B	41.3	5.5	16.8	3.3	329.8	69.6	2	522.9	27.4	11	0.3	3.5	87	3	104.1	32	83.2	190.6	20.02	73.4	13.9	3.67	9.83	1.3	7.02	1,17	3.28	0,39	2.52	0.41
15206	735	45	5.2	15.8	3.7	1077	73.3	3	744.4	88.4	16.1	0.3	7.5	85	4	135	52.9	140.3	297.2	34.35	125	23.1	6,16	15,93	2.09	11.48	1.98	5.41	D.69	4.48	0.64
15207	822	57.6	6	12.6	2.6	2251	55.3	3	1078	212.8	23	0.3	10.8	72	3	94.1	69.4	215.4	444	52.93	190.4	33.2	10.22	24.45	3.06	15.59	2.65	7.03	0.78	5.15	0.73
15206	618	38.5	4.4	19.4	4,7	1363	128.2	4	675.1	112.9	18.5	0.3	4	112	4	156.9	52.2	126.1	275.9	28.99	105.6	18.6	5.15	13.81	1.83	10.85	1.95	5.6	0.64	4.07	0.58
15209	774	33.7	7	22.9	5.2	128,7	181.9	3	236.1	5.9	20.8	0.2	3.4	104	7	176.4	29.6	71.5	142.7	15.28	53.3	10	1.66	7.24	1.05	6.06	1.1	3.25	0.41	2.56	D.41
15210	922	33.2	7.1	23,1	5.2	85	154.1	4	255	3.6	20.6	0.3	5	106	6	198	38.6	72.6	143.8	15.61	55.1	10.2	2.06	7.62	1,14	7,15	1,39	4.05	0.54	3.5B	0.55
15211	822	37.1	6.9	19.9	6.1	62.6	127.4	5	238.6	2.7	19.9	0.3	4,7	102	6	203.7	33.4	66.8	127.2	13.96	49.5	9,3	1.88	6.8	1.01	6.2	1.18	3.51	0.48	3.15	0,45
15212	803	9.3	4.5	20.6	6.7	29.1	102.2	3	227.1	2.2	13.8	0.2	2.7	78	5	226.9	28.5	47.4	90.3	10.36	36.7	7.1	1,3	5.44	0.79	5.26	0.98	3.31	0.43	3,1	0.46
15213	1109	16.1	6,6	22.2	6.9	25.3	132.2	3	250.1	1.9	15.3	0.4	3.6	80	6	228.9	36.6	48,9	97.9	10.98	40.5	7.5	1.49	5.89	0.94	5.97	1.34	4.02	0.57	4.08	0.58
15214	585	10.7	3.6	17.3	6.4	32.8	82.6	6	234.9	2.6	15.2	0.2	2.8	67	6	233.1	32.6	54.5	102.6	11.1	40	7.3	1,37	5.73	0.86	6.12	1.03	3.64	0.53	3.54	0.51
15215	591	12.3	3.8	15.8	6.9	31.1	78,3	3	228.8	2.3	15.4	0.2	3.7	63	5	280.4	28.7	62.3	119.5	13.02	45.7	8.3	1.56	6.01	0.83	5.25	0.95	3.16	0.44	2.97	0.44
15216	579	11.7	3.4	16.9	7.9	37.1	79.1	5	210.8	2.9	16.6	0.2	4.3	63	6	249.2	32.2	64.4	123,2	13.59	48.8	8.7	1.68	6.73	0.98	5.84	1.09	3.33	0.44	3.03	0.47
15217	503	8.9	2.7	15.1	5.4	25.2	62	2	215	2.3	10	0.2	2.7	55	5	190.2	23.2	37	70	7.99	28.8	5.1	1.08	4.07	0.63	4.1	0.8	2.41	0.33	2.75	0.36
15218	546	13.2	3.3	15.1	8.1	33.7	70.1	3	234.1	3.1	15.2	0.3	4,5	66	6	302.7	33.1	60.3	114.9	12.66	47.5	8.7	1.71	6.09	0.94	6.25	1.1	3.6	0.49	3,33	0.52
15219	452	14.9	3.2	15,5	7.1	24.4	58.3	3	186.8	1.4	39.9	0.3	3.2	70	4	265.6	34.6	50.3	94.4	10.47	38.1	6.5	1.35	5,28	0.86	5.91	1.08	3.93	0.51	3.4	0.49
15220	576	12.3	3.7	16.7	6.7	44.8	82.3	2	217.8	3	15.6	0,2	3	81	8	228.1	26.9	53.3	99.9	10,66	39.5	7.4	1.42	5.25	0.83	4.85	0.98	2.79	0.4	2.94	0.42
RE 15220	565	11.3	3.7	16.9	6.2	44.6	79.3	2	215	4.1	13.2	0,3	3.2	73	8	209.8	29.2	50.9	94,7	10.28	36.9	6.8	1.52	5.31	0.79	5.18	1.02	3.32	0.48	3.19	0.48
15221	631	10.9	3.5	16,1	5.2	64,3	73.7	3	259.2	5.3	13.1	0.4	3	70	11	184	23.1	54,4	95.9	10.36	35.8	6	1.38	4.28	0,72	4,4	0.77	2.55	0.32	2.18	0.33
15222	572	13.2	3.7	16.6	5.1	35	84	3	247.2	2.4	12.3	0,3	3.1	63	6	182.2	24.3	48	90.2	9.81	36.1	5.7	1.37	4.98	0.75	4.81	0,83	2.75	0.38	2.53	0.36
15223	547	8.7	3.6	16,4	5.6	37.8	69.7	3	196,6	2,1	12.5	0.3	3.5	61	8	214.7	30.6	48.5	91,2	9.82	37.1	6.5	1.28	5.3	0,86	5.42	1.02	3.36	0.47	3.25	0.47
15224	611	8.1	5.1	21.3	6,3	62.5	93.2	4	217.2	3.3	12.1	0.B	3	83	9	221.9	22.7	45.7	84.5	9.53	34.3	6.1	1.26	4.52	0.7	4.22	0.76	2.46	0.37	2.56	0.35
15225	604	11.3	4.3	19.2	5.8	51.3	80.2	3	293.2	2.9	13.3	0.6	2.8	79	6	211.3	26	49.7	68.8	9.83	34.1	6	1.44	5.05	0.71	4.89	0.89	2.8	0.43	3,1	0.39
15226	711	21.9	6.3	20.2	8	71	152.2	4	239.3	5.9	15.6	2.1	4.1	84	7	253.1	29.6	64.7	123.4	12.85	4B.5	8.8	1.68	6.44	0.89	5.63	1.07	3.42	0,45	3.01	0.43
15227	714	19.7	6.7	22.2	7.4	43.8	130.3	4	266.6	3.4	14.6	0.5	3.9	90	8	259,8	34.1	53.3	103.8	11.49	43.2	7.4	1.6	5, 99	0.89	5.74	1.12	3.47	0.49	3.39	0.51
15228	589	29.4	5.5	22.6	5.9	47.4	107.9	3	286.6	2.8	12.1	0,8	2.8	86	7	197.3	23.3	44.8	86.2	9.45	34.1	6.3	1.38	4.6	0.75	4.32	0.81	2.4	0.36	2.41	0.33
STANDARD SO-15	2047	21.9	_ 2.6	17.6	27.1	30.7	64.5		405.6	2.1	23	0,9	20.5	142	20	1081	22.8	28	57.2	6.27	23.4	4.2	1.02	4.08	0.57	3.69	0,74	2.47	0.34	2.58	0.43

the second second

* As received by e-mail.

A9

CONTINUED *

ELEMENT	Ba	Co	Cs	Ġa	Hf	Nb	Rb	Sn	Sr	Та	Th	TI	11	v	w	Zr	v	1.0	<u> </u>	Dr	Nd	C -m	.	~				_	_	· · · ·	
SAMPLES	ppm	nnm	nnm	nom	nnm	nom	DDM	nnm	0000	000			<u> </u>					·	00	F 1	- INQ	SIL	Eu	Ģđ		Dy	HO	Er	Tm	YD_	Lu
	PPIII	PPIII	Abiii	Phili		Phil	- ppm	hhu	ppm	ppin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
15229	663	17,1	4.5	21	5.8	35.1	83.6	3	314.5	2.4	11.5	Q.7	3.3	70	e	200.9	25.8	46.3	82.8	10.27	38.9	6.8	1.53	4.8	0.73	4 76	0.86	2.63	0.34	2 47	0.37
15230	732	29.4	5.8	20.3	5.e	51.5	125.2	2	297.7	3	15.0	0.4	4.2	89	5	223.7	36.4	<u>67 5</u>	118.2	12.5	50.0		0.40	1 00						4.91	
15231	592	14.5	2.2	46.4	,	50.4		<u> </u>								+	-+11	02.0		, 0,0			4.13	1.09	1.11	0.55	1.25	3.99	0.55	3.37	0.51
	0.02	14.5	3.3	10.4		59.1	32	3	264,4	4.7	15	0.4	3.5	70	7	257.6	30.2	61.3	110.8	11.88	44.6	7.3	1.71	5.99	0.84	5.42	1.06	3.16	0.47	3.16	0.43
15232	645	14	4.4	16,7	7.6	203.9	100.2	3	244.4	21.8	16,1	0.2	5.1	81	7	303.4	32.2	75	131.2	13.45	45.9	89	1 62	6 27	707	8 76	1 24	3.60	0.47	2.00	0.54
15233	708	39.8	6.1	18.7	5.8	63.2	105.3	2	304.7	10	15.7	0.2	- E 0	07	-									V.L.		0.20	1.42.1		0.47	3.02	
					0.0			-		4.5	19,1	0.5		ġ/	6	212.4	31.2	56.4	108.9	12.24	44.1	9.3	2.04	7.24	1.01	6.15	1.21	3.33	0.44	2.68	0.49
15234	591	16.1	4.3	19.2	7.4	46,1	102.8	< 1	248.5	4,5	15	0.2	4	72	7	280.6	26.2	58.2	107.2	11.11	39.6	8.3	1.51	5 4B	0.84	5.09	0.00	2 80	0.27	363	0.20
15235	673	12.9	3.6	14.3	8.3	69.2	B4 7	1	262.3	63	14.6	0.2	44	CE.		200.7	34.0	67 A	400.7							0.00			0.57	2.03	
15026	670	40.7			ł					0.0				0	·	203./	31.2	5/.4	108,7	11.4	39.4	7	1.7	5.9	1	5.7	1.14	3.3	0.45	3.15	0.46
10230	600	10.7	4,4	18.8	8	47.2	96.4	3	226.1	3.7	14.5	0.2	4.2	75	9	298.9	26.8	62.1	110.2	11.19	40.6	7,5	1.61	5.77	0.92	5.63	1.04	2.9	0.42	2.67	0.44
15237	756	7.7	4.6	19.2	9	73.8	99.2	< 1	270.3	6,1	14.2	0.3	3.6	74	7	314.4	26	58 0	104.7	10.01	20.0								0.12		
RE 15237	718	87	E	10.5	7.4		404.0						•.•			014.4		30.3	104,7	10.01	- 30.0	•	1.55	5,44	0.84	4.92	0.99	2.99	0.42	2.68	0.42
	- 10	0.7		18,5	7.4	54.2	101.6	_ < 1	264	4	14.9	0.2	3.9	72	6	309.5	30,8	60.5	109.6	11,39	40.8	7.B	1.6	5.73	D,92	5.52	1.13	3.56	0.52	2.99	0.55
STANDARD SO-15	2056	22.2	2.8	17.3	26,3	31.2	63	17	391	1.7	23.2	1	20.9	149	20	1130	21.9	27.9	57 2	6.07	23.2	4 6	1.07	2.00	0.00						
* As received by	e-ma	il					4	·	·					- 1171					51.2		د.ن.ه	4.0	1.07	3,90	V.59	3.99	0,82	2.54	0.37	2.52	0.4

 \cup

As received by e-mail.

()

 \bigcirc

CONTINUED *

1

From ACME ANALYTICAL	ABORAT	ORIES L	TD. 852	E. HASTI	NGS ST.	VANCOL	VER BC	V6A 1R		(604)253	3158 FAX(6	04)253-1	716 @ CS	SV TEXT F	ORMAT		
To Dahrouge Geological Con	sulting									<u> </u>							
Acme file # A101923 Page 1	(b) Rec	eived: JL	JN 29 200)1* 41 :	samples ir	n this dis	k file.		·· · ··					·		·····	
			· · · · · · · · · · · · · · · · · · ·											·			
ELEMENT	Mo	Си	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	······································	}					
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	рргп	ppm	ppm							
15201	2	12	8	86	27	< 2	< .2	< .5	< 5	<.5							
15202	2	10	4	46	15	< 2	< .2	< .5	< .5	< .5			<u> </u>	· · · · · · · · · · · · · · · · · · ·		·	
15203	2	11	5	68	22	< 2	< .2	< .5	< .5	< .5						-+	
15204	3	44	6	195	72	< 2	0.5	< .5	< .5	<.5				<u></u>			_
15205	3	50	7	126	92	< 2	0.3	1	< .5	< .5				· · · · · · · · · · · · · · · · · · ·			
15206	3	45	7	143	85	< 2	0.7	1.2	< .5	< .5							
15207	3	54	10	166	117	< 2	1.5	2.4	0.6	< .5				-	· · · · · -·		
15208	2	47	8	167	55	< 2	0.6	0.9	< .5	< .5							
15209	4	100	8	82	63	< 2	< .2	0.5	< .5	< .5							
15210	5	122	6	88	93	< 2	< .2	< .5	< .5	< .5							
15211	5	109	8	80	96	< 2	< .2	0.6	< .5	5, >							
15212	3	17	9	56	15	< 2	< .2	< .5	< .5	< .5				····			·
15213		30	6	133	38	< 2	< .2	0.5	< .5	< .5							
15214	3	13	5	69	16	< 2	< .2	< .5	< .5	< .5							
15215	3	18	5	68	21	< 2	< .2	< .5	< .5	< .5							
15216	3	12	6	61	18	< 2	< .2	< .5	< .5	< .5							
15217	. 2	12	5	47	14	< 2	< .2	< .5	< .5	<.5							
15218	3	23	5	57	27	< 2	< .2	< .5	< .5	< .5						1	
15219	2	22	4	61	24	< 2	< .2	0.5	< .5	< .5							
15220	4	18	6	55	22	< 2	< .2	< .5	< .5	< .5							
RE 15220	4	18	6	55	22	< 2	< .2	< .5	< .5	< .5							
15221	5	18	6	75	16	< 2	< .2	< .5	< .5	< .5						•=••	
15222	4	25		47	31	< 2	< .2	< .5	< .5	< ,5				· · · · · · · · · · · · · · · · · · ·			
15223	4	21	5	38	23	< 2	0.2	< .5	< .5	< .5				• • • • • • • • • • • • • • • • • • • •			
15224	5	13	10	39	13	< 2	0.2	< .5	0.6	<.5				1			
15225	4	23	7	67	15	< 2	< .2	< .5	< .5	< .5							
15226	4	17	7	73	20	< 2	< .2	< .5	< .5	< ,5							
15227	4	13	8	64	18	< 2	< .2	< .5	< .5	< .5							
STANDARD C3	27	65	37	158	35	57	24.7	14	23	6.1							
STANDARD G-2	1	3	< 3	48	7	< 2	< .2	< .5	< .5	< .5							

* As received by e-mail.

CONTINUED *

ELEMENT	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ad			····		-
SAMPLES	ррпп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mag		<u> </u>		-+	
15228	6	30	8	72	55	2	< .2	< 5	<.5	<.5		·			
15229	5	24	8	35	22	< 2	< .2	< .5	< .5	<.5					, <u> </u>
15230	4	42	7	89	66	< 2	<.2	< .5	<.5	< 5				-+	
15231	4	17	5	54	20	< 2	<.2	< .5	< .5	< 5	·			+	
15232	3	10	5	85	18	2	<.2	<.5	< .5	< .5					
15233	6	51	7	86	83	2	0.3	<.5	<.5	< 5				· ·	<u> </u>
15234	6	13	6	33	18	2	<.2	<.5	< .5	< 5					
15235	4	15	5	49	21	< 2	< .2	< .5	< 5	< 5	i		· · - 		
15236	3	9	7	61	12	< 2	< .2	< .5	<.5	< 5					
15237	3	5	7	31	8	< 2	<.2	< .5	< 5	< 5					
RE 15237	3	5	7	31	7	2	< .2	< .5	<.5	< 5		<u> </u>		-	
STANDARD C3	28	65	32	168	35	62	25.3	14.5	22.6	6		— · ·	<u> </u>		· <u> </u>
STANDARD G-2	2	3	< 3	49	8	< 2	< 2	<i>e</i> 5	- 5					┿╼╌╴╶╟	

* As received by e-mail.

the second se

(

1

CONTINUED *

 $\langle \gamma \rangle$

From ACME A	VALY	FICAL	LABO	ORAT	ORIES	S LTD	. 852	E. HA	STIN	GS ST	. VAN	ICOU	VER		SA 1R	R6 PH		504)25	53-315	58 FA)	(604)	253-1	716 @	D CSV	/ TEX						i
To Commerce F	Resou	rces C	orp.	T							-		T				<u> </u>	<u> </u>	I · · · · · · ·	[<u>, , , , , , , , , , , , , , , , , , , </u>					Ī					
Acme file # A10	2702	Page	1 R	eceive	d: AU	G 16	2001	• 40	samp	les in	this d	lisk fil	e.				₩							· ·	<u>}</u> —.—. ;	<u>+-</u>					
														· ·	· ·		i														
ELEMENT	Ва	Co	Ċs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	Т	U	V	W	Zr	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
SAMPLES	ppm	ррт	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	рргп	ppm	ppm	ppm	ppm	ppm	naa	ppm	DDM	naa
18026	884	11.6	9,4	24.8	9.8	81.4	116.4	5	281.3	6.2	34.3	0.6	в	107	8	355.9	49,1	105.9	200.3	22.73	83.7	15,5	2.05	11.55	1.58	9.62	1.79	5.18	0.78	5,46	0.8
18027	833	18.7	9,9	27.6	9.2	60.5	112.5	9	279	5	31.4	0.5	6.2	119	6	283.4	40	104.5	190,2	20.71	75.6	12.7	1.99	9.74	1,37	8.38	1.53	4.1	0.61	4.07	0.63
18028	1217	22.3	16.1	31	9.2	77.9	207.5	6	266.7	4.8	30.8	0.5	5.7	135	7	334.9	51.9	98.8	183.1	20.4	77	13.1	2.01	9.7	1.52	9.72	1.92	5.64	0.68	5.88	0.9
18029	932	49,8	7.9	18.2	4.9	197.7	126.6	2	312.7	75	17.7	0.5	23.2	75	4	169.3	105.8	232.4	408.7	54.36	208.2	36.5	9.75	27.44	3.53	19.36	3.55	9.36	1,32	8,86	1.33
18030	690	28.9	15.2	21.1	5.4	44.1	92.2	2	328.9	11.2	13.5	0.7	11.1	78	4	196.9	44.5	58.8	120.7	13.48	53.4	10	1.93	7.65	1.12	6.92	1.34	4.05	0.6	4.02	0.63
18031	682	9.9	9.7	24.8	8.9	51.5	116	3	253.5	2.3	24.7	0.5	5.4	105	5	305.6	39.8	79.4	151.6	16.99	63.8	11.6	1.71	7.73	1.22	7.8	1.51	4.26	0.64	4.25	0.67
18032	767	21.4	17.6	18,2	8.1	49.4	219.8	з	269.2	3.8	33.6	0.4	7.5		6	281.2	48.6	132.1	208,1	24,18	87.5	14.7	2.78	10.31	1,53	9.21	1.72	4.66	0.67	4.48	0.67
18033	674	21.9	4.9	16.9	6.1	37.1	103.9	2	241.2	6.4	_ 21	0.5	7.8	62	6	243	36.1	74.9	150.8	16.77	64	11.4	1.93	8.56	1.22	7.25	1.35	3.79	0.53	3.86	0.52
18034	588	14.4	12.9	21.4	5.5	30.4	89	2	264.3	5.7	14	0,3	4	79	6	194.9	23.6	40.3	86,3	8.92	34.3	6	0.98	4.58	0.72	4.37	0.9	2.54	0.4	2.73	0.42
18035	658	18,4	9.7	23.5	5.4	35	81.5	1	292.7	5.1	10.7	0.3	4.3	80	4	191.6	21.3	34	70.9	7.36	27.7	4.6	0.86	4,13	0.56	3.66	0.73	2.29	0.35	2.43	0.39
18036	635	43	9.7	19.4	4.9	57.4	98.8	2	259,6	15.1	13,1	0.4	. 6.1		. 4	175.1	24.1	50.3	118,4	10.96	43.6	7.8	1.49	5.6	0.83	4.79	0.92	2.65	0.36	2.62	0.37
18037	323	91	7	15,2	2.8	22.9	45.3	< 1	14B.4	2.4	5.6	0.3	1.3	133	2	106.2	12.5	19.3	40.5	4.12	15.6	3.1	0.45	2,51	0.34	2.43	0.47	1.29	0.2	1,37	0.2
18038	761	25.3	11.8	21.9	6.9	46.4	127.2	2	261.3	4.2	17.2	0.4	4	102		241.6	31,2	57,4	109,3	12.18	46.1	8.4	1.24	5.77	0.91	5.64	1.14	3.45	D.5	3.47	0.52
18039	702	23.9	10	20	_ · 5	45.2	133	2	164.1	3.4	16,6	0.4	3.8	93	4	190.2	26.4	53.6	105.8	11.6 5	44.5	8.7	1.24	6.05	0.92	5.29	0.96	2.71	0.37	2.77	0.4
18040	835	8.7	7.1	23	8.9	40.4	105.8	2	214.8	2.3	26.2	0.3	5.4	88	6	303.7	42.4	81.9	160.3	17.54	66	11.5	1,59	8.79	1.33	B.D4	1.5	4.43	0.7	4,47	0.72
18041	869	34	7.7	21	6.1	71.4	101.9	2	206.8	2.1	32.9	0.4	4.4	111	6	226.8	33.5	84	157.8	15.98	58.1	10.5	1.6	7.71	1.09	6.B6	1.3	3.61	0.52	3.73	. 0.5
18042		7	4.4	21	7.9	68.6	64.2	3	233.1	- 6	28.8	D,4	5,7	80	8	291.8	46.8	95.5	179.8	19.63	73.5	13.3	2	9.53	1,4	8.48	1.7	4.71	0.71	5.26	0.78
RE 18042	599	7,1	4.6	22.9	8.8	82.4	68.6	4	250.5	7.7	30.1	0.3	6.3	B5	8	325,7	50.1	95.4	179.4	19.53	72.9	12.8	2.08	9.56	1.39	9.39	1.66	5.25	0.8	5.53	0.85
19043	693	12.4	5.6	24.9	B.5	37.5	84.7	3	204.6	2.1	18.3	0.4	5.6	96	7	297.9	38.1	68.4	127.1	13.78	53,4	9.8	1.83	6.86	1.12	7.32	1,35	4.04	0.61	4.24	0.62
18044	750	21.6	5.7	22,9	9,4	73	102.9		233.8	4.8	29.1	0.4	7.3	95	9	339.8	50.6	90.7	176.2	18,89	70.5	12.8	2.15	9.51	1.52	10.07	1.78	5.31	0.82	5.59	0.75
16045	/52	16.3	4.9	24	B.7	60	89.3	3	231.6	3.0	24.9	0.3	4.7	91	8	301.6	37.2	84.2	163.9	17.2	62.9	11.5	2.06	8.2	1.2	7.53	1.41	3.86	0.55	3.98	0.57
18046	829	13.5	7.1	26.9		48.3	105.5		271.9	2.5	22.2	0.4	4.8	94	. В	309.9	37.6	72.9	141.8	15.1	55.4	10.3	1.71	7,6	1.1	7.13	1.37	3,97	0.56	4.12	0.61
18047	13/	15.2	6	22.1		52	98.5	5	265	2.3	21.3	0.5	5.6	96	7	304.5	46	79,4	155.5	16.01	59.8	10.7	1.94	8.09	1.28	8.19	1.61	4,9	0.77	5.12	D.76
10040	470		14.9	23.9		41.1	120.3		219,3	2	19.9	0.6	6.3	98	6	177,1	35.9	61.8	124.4	13.09	50.2	9,8	2.32	7.95	1.2	7.9	1.43	3.88	0.56	3.77	0.55
18049	4/6	30 C	3.9	24,4	4.3	20.1	57.1	2	354.8	1,1	8.7	0,3	2.9	55	. 4	164.3	18,9	33,4	63.6	6.82	27.1	4.9	1.04	3,69	0.58	3.39	0.63	1.88	0,28	1.92	0.28
19050	109	30.8	6.8	20.7	0.9	45.4	117.6	3	231,4	2.1	18.8	0.4	4.3	148	5	242.3	31.5	61.5	114.8	12.35	47.2	8.5	1.59	6.57	0.95	6.21	1.19	3.27	0.47	3.24	0.5
19051	625	14.1		30	0.1 	0.ec د ا	03.5		310.0 219.4	2.9	15.5	0.7	5.4	102		283.1	44,6 	97.2	103.7	13.54	51.9	10.2	2	8.25	1.21	7.91	1.52	4.6	0.65	4.75	0.66
18052	707	9 1	e	24.5	57	23.4	108.4		178 4	3./ 1 =	13.7	0.4	0.1			209	25	00.3	129.9	13.85	52.9	10.1	1.61	7.11	1.07	6.72	1.22	3.46	0.56	3.71	0.53
STANDARD SO 16	R/+	404 3	ت • • •	18.2	7 7 7	40,4 77 7	220.4	3 	510.0	1.0	10./	 	4.0		4	220.1	20,0	94.1 60.0	08.8	8.25	35./	6.9	1,07	4.9	0.71	5.02	0.92		0.44	2.89	0.45
		4,04,3	9,1	L 10.3	L		230.4	L	JZ.0	1.D	<u>~</u> 9	l	44.7		24	258.9	AR.0	59.5	124.5	14.63	81.8	17.5	Z.42	T4.56	2.38	15.37	2.98	9.13	1.3	8.75	1.3

* As received by e-mail.

Construction and a construction of the constru

which consider the constraint of the constraint of the second second second second second second second second

1993 - 1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -

CONTINUED *

ELEMENT	Ba	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	TI	LI I	v	w	7r	v	1.2	Co	Dr	Nd	6	En	04		D		-			
SAMPLES	ppm	ppm	ppm	pom	ppm	noa	DDIT	DOM	nom	nnm	nnm	onm	nom	 DDD	nom							oin		- 60	ID	y	HO	Er	<u>im</u>	YD	Lu
							ppm		<u> </u>	PPIN	PPIII	phili	phin	ppm	, hhiii	hbiii	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
18054	726	20.2	8.3	26.1	7.5	50.5	112.5	3	254	6.7	21	0.4	6.4	100	8	262.4	35	63.8	126.5	13.33	52.5	9.6	1.64	7.16	1.03	6.45	1.25	3.35	0.52	3.52	0.54
18055	714	11.5	3.6	17.2	7.1	37.2	94.3	3	297,8	7.1	27.2	0.4	6	56	10	277.2	49.4	89.6	177.5	19.26	72.1	13.7	1.88	9.74	1.41	9.28	173	4 98	0.79	5 4 8	0.77
18056	741	9.4	5.3	22.2	6.3	21.2	115.9	3	199.2	1.7	14.7	0.4	3.3	65	5	216,9	24.6	47.6	96.1	10.22	37.6	7	1 14	53	0.77	47		2.46	0.74	0.40	0.77
18057	718	33,4	7	21.2	9,1	43.8	102.3	2	298.6	2.8	26.7	0.4	77			317 5	56.7	80.5	105 0	10.07	00.0	40.0		40.04	0.71		0.04	4.40	0.34	2.65	0.37
19059	OFC										·				·				100.0	10.91	09.0	12.8	2.64	10.81	1.63	10.15	1.97	6.28	0.91	6	0.88
10030	000		1.4	23,1		74.3	137.2		293.2		31	0.4	5.7	119	7	273.5	52,3	102.5	200.1	21.06	75,6	14.2	2,73	10.85	1.59	9.59	1.75	5.6B	0.85	5,56	0.89
18059	590	27.3	5.4	19.6	6,3	65.6	77	2	309.2	2.6	19.4	0,3	3.6	118	8	220	35.8	70.2	135.1	14.28	50,9	10	1.98	7.66	1.15	6 84	1 27	4 07	ÓВ	3 08	0.67
18060	774	48.2	10.3	21.8	5.3	200.2	98.1	2	458.4	7.7	27.9	0.3	2.8	183	5	213.2	34.4	129.8	2434	23.41	76.9	17.0	3.02	9.67	4.75		4.00		0.0	0.50	0.57
18081	716	12.1	4.9	24.2		00.0	404.0						··· ··			· · · · ·				20,41	14.4		0.0 <u>2</u>	0.07		0.59	1.26	3.51	0,5	3.2	0.48
				24.2	8.5	00.3	104.2		- 297.3	3.8	19.7	0.3	4,4	94	8	345.5	36,1	78.3	145.7	15.33	53.8	10.3	1.85	7.59	1.13	6.63	1.22	3.81	0.57	3.72	0.59
18062	- 646	15,9	7	28.1	8.4	27	98.4	3	329.8	1.9	13.9	0.4	3.6	99	7	299.7	29.7	47	93,4	10.56	37	7,5	1.4	6	0.89	5.32	1.08	3.25	D.48	3.33	0.48
18063	636	13.5	5	28,1	7.9	22.5	77	3	344.7	1.6	13,3	0.3	3.9	92	7	273.9	28.7	42.9	85.6	9.52	35.1	71	1 18	5 20	0.94	5.25	1.04	7.00			
RE 18063	612	13.1	5	26.5	77	21.6	74.6		322.6	47	12.4	0.7			-											0,20	1.01	. <u>3.22</u>	0.47	3.24	0.45
	007	445.0						£			19.1		3.2	89		2/1./	27.1	41	81.6	9,04	33.4	6.5	1.2	5.39	0.75	4.81	0.96	2.89	0.45	3.03	0.44
STANDARD SO-16	007	415,2	6	1/.2	7.1	22	235.7		52.3	1.8	29.5	0.7	44,9	131	24	228.2	99.2	62.7	130.4	15.32	63.6	17.t	2.7	15.31	2.38	15.93	3.11	9 62	1 38	9.5	1 30
* As received by	e-ma	1																					I			I_					

As received by e-mail.

í l

.

A14

ANALYTICAL REPORT BY ACME ANALYTICAL LABORATORIES LTD. FOR PAN CONCENTRATE SAMPLES COLLECTED FROM THE FIR CLAIMS *

<u>َ</u>

From ACME ANALYTICAL L	ABORAT	FORIES L	.TD. 852 F	E. HASTIN	IGS ST.	VANCOU	VER BC	V6A 1RE	B PHONE	(604)253	-3158 FAX	X(604)25	3-1716 @	CSV TE>		IAT		
To Commerce Resources Co	vrp.						j											
Acme file # A103460 Recei	ived: OC	T 2 2001 *	* 10 san	nples in th	lis disk fi	le.					-							····
ELEMENT	SIO2	AI2O3	Fe2O3	MgÓ	CaO	Na2O	K20	TiO2	P2O5	MnO	Cr2O3	Ba		Sc	LOI	тот/с	TOT/S	SUM
SAMPLES	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	%	%	%	%
18076	43.7	23.48	18.07	3.19	4.2	0.5	1.01	3.4	0.27	0.36	0.025	195	48	29	0.9	0.08	< .01	99.14
18078"	66.43	14.46	8.42	2.47	3.41	1.3	0.71	0.95	0.16	0.38	0.023	247	54	26	0.6	0.15	< .01	99.35
18079°	58.83	15.88	13.46	2.93	4.02	1.19	0.71	1.58	0.19	0.48	0.018	799	< 20	30	0.2	0.12	0.03	99.59
18080°	55.95	14.53	17.02	2.98	4.08	1.3	0.73	1.86	0.21	0.55	0.026	664	50	33	0.1	0.07	0.04	99.42
RE 18080°	55.7	14.54	17.09	2.95	4.07	1.28	0.76	1.87	0.25	0.54	0.028	672	38	32	0.2	0.08	0.03	99.36
18081°	49.61	18.51	18.42	3.05	4.26	0.89	0.45	2.96	0.23	0.86	0.027	242	47	46	< .1	0.06	< .01	99.01
18082"	53.01	10.71	15.7	5.79	7.19	2	0.8	2.42	0.49	0.31	0.06	431	55	38	0.6	0.08	0.01	99.14
18083"	46.17	10.76	12.04	4.99	11.37	1.91	0.9	1.21	5.28	0.49	0.048	268	37	36	1.1	0.09	< .01	96.31
18084°	67.37	11.83	6.86	2.77	3.59	1.72	0.94	0.98	0.09	0.22	0.025	21601	28	19	1	0.14	< .01	99.81
18085°	67.56	11.25	7.85	2.96	4.36	1.9	1.08	1.39	0.22	0.25	0.025	200	44	22	0.7	0.06	< .01	99.57
STANDARD SO-17/CSB	61.28	13.85	5.81	2.32	4.71	4.14	1.46	0.63	0.97	0.53	0.439	407	34	23	3.4	2.31	5.33	99.59

* As received by e-mail.

* Sample from Fir Property.

CONTINUED *

From ACME AN	VALY	FICAL	LAB	DRAT	ORIES	LTD.	852 E	. HAS	TING	S ST.	VANC	COUV	ER B	C V6/	A 1R6	PHO	NE(60)4)253	-3158	FAX	60412	53-17	16 @	CSV	TEXT	FOR	AAT		T	
To Commerce F	Resou	rces C	orp.					T	<u>г</u>	I			· · - ·		Τ		[1					001					· · _	
Acme file # A10	3460	Rec	eived:	ост	2 2001	• 1	1 sam	iples i	n this	disk fl	le.		···· ···			· · · · · ·														
ELEMENT	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	TI	U	v	W	Zr	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Ть	עת	Bo	Fr	Τm	Yb	
SAMPLES	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	DDm	000	maa	nom	DOM	000	0000
SI	1.1	0.1	2.3	1.9	1.4	3.2	. 1	175.4	< ,1	0.4	<.1	0.4	< 5	1	73.2	3.2	1.6	3.6	0.47	2.1	0.5	0.25	0.63	0.11	0,37	0.1	0.31	0.06	0.33	0.06
18076	20	1.4	20.8	13.1	276.4	29.2	2	104.4	23.7	116.6	۲.1	29.1	207	9	481.8	155.8	431,8	711.7	60.59	285,7	53.7	8.08	37.85	5.82	30.22	5.36	15.3	2.46	15.03	2.19
18078°	13.6	0.8	13	5.8	. 111.9	17.5	< 1	151.6	3.2	76.2	<.1	5.4	104	25	212.3	108.6	762.6	816.B	68,42	184.5	22.8	3.38	10.6	2.51	17.38	3.76	12.4	2.16	13.92	2.11
18079*	16.6	0.9	14,8	7.8	192.2	18.1	2	182.4	7	122.5	<.1	8.6	197	17	266.4	138.4	478.2	586.2	55.23	164.6	24.1	3.88	16.27	3.27	21.41	4.75	14.98	2.55	16,83	2.65
18080°	17.8	0,8	14.1	8.8	222.8	20.1	1	197.8	9.1	212.5	<.1	8.2	182	40	292.3	141.5	469.8	592.5	55.13	170.6	27.1	4.16	17.54	3,29	22.34	4.89	15.B	2.67	17.41	2.76
RE 18080*	16.6	0.6	14.6	7.7	220.3	19,3	1	188.5	9.1	214.1	<.1	8.9	177	38	271.5	133.9	462.9	576.4	54.79	174.4	26.8	4.48	18.22	3.06	21.31	4.72	14.69	2.46	15.41	2.53
18081*	17	0.5	15.6	14.9	207.4	11,3	2	131.6	8.7	193.9	<.1	16,4	184	42	536.8	243.2	683	B70.8	84.34	267.5	43,4	5,95	29.5	5.71	38.52	B.55	26.56	4.58	29.63	4.78
18082*	23.6		13	8.3	1538.4	20,1	2	256.1	119.9	231.3	<.1	24.1	389	57	335.4	116.8	540.9	682.6	65,72	203.9	31,4	5,43	21.51	3.53	19.62	3.96	11.72	2	12.3	1.86
19083*	24.2	1.6	13,2	10.7	16890	30.7	< 1	1263	1073.9	150.2	<.1	32.8	126	18	405.2	149	518	831	93,59	330.9	58.6	11.82	39.17	5.71	30.57	5.49	15.67	2.36	14.94	2.19
19084*	14.1	1,1	13.4	7.4	119,8	29.9	1	203.8	5.1	94.8	< .1	6.8	109	11	239.2	85.2	201.3	295	30.99	104.5	19.2	1.2	14.41	2.39	14.89	2.95	9.21	1.52	9.46	1.54
18085*	14.3	1.3	12	8	489.6	32.9	1	226.1	33.2	89.2	_<.1	14.2	120	45	309.1	116.5	302	442.7	46.55	159.8	28,4	4.32	19.81	3.32	20.17	3.94	12.17	1.95	12.62	1,86
STANDARD SO-17	18.3	3.8	20.4	12	25.7	22.8	8	313.9	4.1	11.9	0.4	12	123	13	348.4	2 6 .7	10.7	22.5	2.93	12.6	3	1.03	3.82	0.69	4.26	0.94	2,91	0.46	2.99	0.47

* As received by e-mail.

* Sample from Fir Property.

A16

CONTINUED *

 $(\cap$

From ACME ANALYTICAL L	ABORAT	ORIES L	TD. 852 E	E. HASTI	NGS ST.	VANCOL	JVER BC	V6A 1R6	PHONE	(604)253	3-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Commerce Resources Co	ф.				·						
Acme file # A103460 Recei	ved: OC1	2 2001	11 san	nples in ti	his disk fil	le.					
ELEMENT	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	
SI	0.4	1	< 2	2	1	1	< .2	< .5	< .5	< .5	5
18076	2.3	10	2	28	22	1	< .2	< .5	< .5	< .5	5
18078°	3.2	6	< 2	17	12	1	< .2	< .5	< .5	< .5	5.
18079°	3.3	5	2	20	14	1	< .2	< .5	< .5	< .5	5
18080*	2.8	9	3	23	22	1	< .2	< .5	1,1	< .5	5
RE 18080°	2.9	9	3	18	21	1	< .2	< .5	0.5	< .5	5
18081°	3.8	5	2	18	11	1	< .2	< .5	< .5	< ,5	5
18082°	3.4	11	3	24	24	1	< .2	< .5	< .5	< .5.	5
18083*	2.3	15	3	34	36	1	0.2	< .5	0.5	< .5	5
18084°	3.3	11	3	24	20	1	< .2	< .5	< .5	< .5	5
· 18085°	4.1	6	2	22	14	1	< .2	< .5	< .5	< .5	5
STANDARD SO-17	9.1	126	34	155	35	30	5.4	4.9	5.2	< .5	5

* As received by e-mail.

* Sample from Fir Property.

APPENDIX 3A:

DESCRIPTIONS AND COMPOSITIONS OF SAMPLES COLLECTED IN 2001 FROM THE FIR CLAIMS

Notes: UTM Coordinates are NAD 83. See Appendix 2A for analytical results.

Sample	Ū	TM - Coord	ls	Sa	mple	Description						
	Easting	Northing	Elev,	Type	Length			Comp	osition			
					(m)		Nb₂O₅ (ppm)	Ta ₂ O ₅ (ppm)	P ₂ O ₅ (%)	U (nnm)		
Bone Cre	ek Carbon	atite						<u></u>	(79)			
10528A	352379	5796442	1034	Grab	-	Carbonatite , weathered bolders/talus within talus or till, dark-red, apatite-bearing, associated with dark-green amphibolite bolders/talus; source likely some distance unclose	1907	576	9.60	231		
10528B	352379	579 6 442	1034	Grab	-	Amphibolite, weathered bolders/talus within talus or till, dark- green, coarse-grained	610	137	1.73	23		
Fir Carbo	natite											
7002	-	-	-	Chip	3	Amphibole Apatite Sovite (at prior sample 10643 and 10529) crude mineral layering, black, semi-metallic acicular mineral, trace pyrite	3677	76	2.30	41		
10529	351875	5797576	803	Chip	21⁄3	Apatite Sovite (prior sample 10643) near upper contact with gneiss; orange-brown weathered; several per cent milky-grey, oval, apatite grains to 5 mm; 1 to 2% dark-green amphibole laths to 3-4 mm; trace po.; foliation at 32°/10°F	3006	188	2.25	5		
10530	351875	5797576	800	Chip	21⁄2	Apatitic Dolomitic Carbonatite, grey to greyish-white fresh, few per cent black lath-like grains (columbite2) to 4 mm	2 768	148	2.01	4		
10531	351875	579 757 6	799	Chip	1	Apatitic Dolomitic Carbonatite, grey to greyish-white fresh, few per cent black lath-like grains (columbite?) to 4 mm; trace po	2478	121	1.06	2		
-	-	-	-	-	-	covered						
10532	351818	5797614	789	Chip	1	Apatitic Dolomitic Carbonatite, grey to greyish-white fresh; rusty weathered; up to 7½ per cent black lath-like grains (columbite?) to 5 mm; some pieces with Augen texture, coarse-grained, and barren	- 1838	- 79	- 1.33	- 1		
-	-	-	-	-	- `	covered						
7003	351803	5797604	805(?)	Chip	2	Apatitic Dolomitic Carbonatite (prior sample 10644) abundant magnesium-amphibole (?), rusty outcrop 2 m high by 5 m long	- 3279	- 164	2.53	- 8		
10533	351803	57 97604	805(?)	Chip	1	Apatitic Dolomitic Carbonatite and Augen Carbonatite, grey to greyish-white fresh; rusty weathered; contact zone (~25 m @ 260° to near base 10833)	3016	147	2.06	3		

A18

1	\mathbf{i}	
)	

Sample	UTM - Coords			Sample		Description	Composition				
	Easting	Northing	Elev.	Туре	Length (m)		Nb ₂ O ₅ (ppm)	Ta ₂ O ₅ (ppm)	P ₂ O ₅ _(%)	U (ppm)	
10534	351661	5797866	708	FI	oat	Apatitic Dolomitic Carbonatite, rusty-brown weathered, abundant black lath-like grains to 5 mm, rounded boulder	2974	96	1.68	1	
10535	351700	5796900	-	Fl	oat	Amphibole Carbonatite, rusty-brown weathered, minor apatite, abundant dark green lath-like grains to 3 mm (magnesium amphibole)	929	216	3.87	41	
10643 10644	351814 351814	5797603 5797603	-	Grab Grab	-	Carbonatite Carbonatite	2739 952	177 50	2.41 0.64	2 0	

.

LOCATIONS AND COMPOSITION OF SOIL SAMPLES COLLECTED IN 2001 FROM THE FIR CLAIMS

Notes:

The local grid is based on UTM Grid NAD 83. A Grid Easting/Northing of 2000, 8000 corresponds to UTM 352000, 5798000. See Appendix 2B for analytical results.

Sample	G	irid	Nb	Ta				
Number	Easting	Northing	ppm	na	nom	1 fi	U	Zr
				ppin_	ppm	ppin	ppm	ppm
Line 7200 North								
18044	2000	7200	73.00	4.80	233.80	20.10	7 20	220.00
18045	1960	7200	60.00	3 80	231.60	23.10	1.30	339.80
18046	1920	7200	48.30	2 50	271.00	29.30	4.70	301.60
18047	1880	7200	52.00	2.30	265.00	22.20	4.0U 5.60	309.90
18048	1840	7200	41.10	2.00	219 30	21.30	0.00	304.50
18049	1800	7200	20.10	1 10	354.80	9.90	0.30	177.10
18050	1760	7200	45 40	2 10	231 40	19.00	2.90	164.30
18 051	1720	7200	34 80	2 50	310.60	10.00	4.30	242.30
18052	1680	7200	54.00	2.50	212.40	10,00	5.40	283.10
18053	1640	7200	23.40	1.60	213.40	21.70	6.10	289.00
18054	1600	7200	50.50	6 70	320.00	13.70	4.60	226.70
			00.00	0.70	204.00	21.00	6.40	262.40
Line 7400 North								
18063	2000	7400	22.50	1.60	344 70	13 30	2 00	070.00
18062	1960	7400	27.00	1.90	329.80	13.00	3.90	273.90
18061	1920	7400	68 30	3.80	207.30	10.30	3.00	299.70
18060	1880	7400	200.20	7 70	458.40	27.00	4.40	345.50
18059	1840	7400	65.60	2.60	300.40	27.90	2.60	213.20
18058	1800	7400	74.30	3 70	203.20	21 00	5.00	220.00
18057	1760	7400	43 80	2.80	293.20	31.00	5.70	273.50
18056	1720	7400	21 20	1 70	100.00	20.70	2.20	317.50
18055	1680	7400	37.20	7 10	297.80	27.20	3.30 6.00	216.90
			-		207.00	21.20	0.00	217.20
Line 7600 North								
15237	2350	7600	73.80	6.10	270.30	14.20	3.60	314 40
15236	2330	7600	47.20	3.70	226.10	14.50	4.20	298.90
15235	2310	7600	69.20	6.30	262.30	14.60	4.10	289 70
15234	2290	7600	46.10	4.50	248.50	15.00	4.00	280.60
15233	2270	7600	63.20	4.90	304.20	15.70	5.20	212 40
15232	2250	7600	203.90	21.80	244.40	16.10	5.10	303 40
15231	2230	7600	59.10	4.70	264,40	15.00	3.50	257.60
15230	2210	7600	51.50	3.00	297.70	15.80	4 20	223 70
15229	2190	7600	35.10	2.40	314.50	11.50	3 30	200.90
15228	21 70	7600	47.40	2.80	286.60	12.10	2.80	197.30
15227	2150	7600	43.80	3.40	266.60	14.60	3.90	259.80
15226	2130	7600	71.00	5.90	239.30	15.60	4 10	253.00
15225	2110	7600	51.30	2.90	293.20	13.30	2.80	211.30
15224	2090	7600	62.50	3.30	217.20	12.10	3.00	221.00
15223	2070	7600	37.80	2.10	196.60	12.50	3.50	214 70
15222	2050	7600	35.00	2.40	247.20	12.30	3 10	182.20
1522 1	2030	7600	64.30	5.30	259.20	13 10	3.00	184.00
15220	2010	7600	44.80	3.00	217.80	15.60	3.00	228.10

APPENDIX 3	В;
------------	----

A21

Sample Grid Nb Та Sr Ū Th Zr Number Easting Northing ppm ppm ppm ppm ppm ppm Line 7600 North (Cont.) 15219 1990 7600 24.40 1.40 186.80 39.90 3.20 265.60 15218 1970 7600 33.70 3.10 234.10 15.20 4.50 302.70 15217 1950 7600 25.20 2.30 215.00 10.00 2.70 190.20 15216 1930 7600 37.10 2.90210.80 16.60 4.30 249.20 15215 1910 7600 31.10 2.30228.80 15.40 3.70 280.40 15214 1890 7600 32.80 2.60 234.90 15.20 2.80 233.10 15213 1870 7600 25.30 1.90 250.10 15.30 3.60 228.90 15212 1850 7600 29.10 2.20 227.10 13.80 2.70 226.90 15211 1830 7600 62.60 2.70238.60 19.90 4.70 203.70 15210 1810 7600 85.00 3.60 255.00 20.60 5.00 198.00 15209 1790 7600 128.70 5.90 236.10 20.80 3.40 176.40 15208 1770 7600 1362.90 112.90 675.10 18.50 4.00 156.90 15207 1750 7600 2251.20 212.80 1078.30 23.00 10.80 94.10 15206 1730 7600 1077.20 88.40 744.40 16.10 7.50 135.00 15205 1710 7600 329.80 27.40 522.90 11.00 3.50 104.10 15204 1690 7600 1042.50 50.20 513.30 16.80 3.10 136.90 15203 1670 7600 41.00 3.00 240.00 12.00 2.90 189.10 15202 1650 7600 15.80 1.50 244.50 9.10 2.00 123.10 15201 1630 7600 98.90 5.40 222.10 11.30 3.10 179.20 Line 7800 North 18043 2000 7800 37.50 2.10 204.60 18.30 5.60 297.90 18042 1960 7800 68.60 6.00 233.10 28.80 5.70 291.80 18041 1920 7800 71.40 2.10 206.80 32.90 4.40 226.80 18040 1880 7800 40.40 2.30 214.80 26.20 5.40 303.70 18039 1840 7800 45.20 3.40 164.10 16.60 3.80 190.20 18038 1800 7800 46.40 4.20 261.30 17.20 4.00 241.60 18037 1760 7800 22.90 2.40 148.40 5.60 1.30 106.20 18036 1720 7800 57.40 15.10 259.60 13.10 6.10 175.10 18035 1680 7800 35.00 5.10 292.70 10.70 4.30 191.60 18034 1640 7800 30.40 5.70 264.30 14.00 4.00 194.90 18033 1600 7800 37.10 6.40 241.20 21.00 7.80 243.00 Line 8000 North 18026 2000 8000 81.40 6.20 281.30 34.30 8.00 355.90 18027 1960 8000 60.50 5.00 279.00 31.40 6.20 283.40 18028 1920 8000 77.90 4.80 266.70 30.80 5.70 334.90 18029 1880 8000 197.70 75.00 312.70 17.70 23.20 169.30 18030 1840 8000 44.10 11.20 328.90 13.50 11.10 196.90 18031 1800 8000 51.50 2.30 253.50 24.70 5.40 305.60 18032 1760 8000 49.40 3.80 269.20 33.60 7.50 281.20

APPENDIX 3C:

LOCATIONS AND COMPOSITION OF PAN CONCENTRATE SAMPLES COLLECTED IN 2001 FROM THE FIR CLAIMS

Sample	UTM Co-	ordinates	Nb	Та	Sr	Th	U	Zr	
Number	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm	
FIR CLAIMS									
7001	351,999	5,797,314	43.5	4.9	251.6	34.1	6.6	316.9	
18078	351,704	5,793,606	111.9	3.2	151.6	76.2	54	210 3	
18079	351,723	5,793,769	192.2	7.0	182.4	122.5	86	212.3	
18080	-	•	222.8	9.1	197.8	212.5	82	292.3	
18081	351,756	5,794,033	220.3	8.7	131.6	193.9	16.4	536.8	
18082	351,736	5,795,438	1,538.4	119.9	256.1	231.3	24.1	335.4	
18083	351,674	5,797,584	16,890.0	1,073.9	1,263.3	150.2	32.8	405.2	
18084	351,802	5,794,334	119.8	5.1	203.8	94.8	6.8	239.2	
18085	351,743	5,795,806	489.6	33.2	226.1	89.2	14.2	309.1	

Notes: UTM co-ordinates are NAD 83. See Appendix 2C for analytical results.

APPENDIX 4:

MAGNETOMETER READINGS FROM THE FIR CLAIMS

Notes: The local grid is based on UTM Grid NAD 83. A Grid Easting/Easting of 2000, 8000 corresponds to UTM 352000, 5798000. Magnetic readings are Total Magnetic Intensity (TMI), with readings corrected for diurnal variation.

Grid Co-	ordinates	TMI	Grid Co-o	rdinates	TMI	Grid Co-c	ordinates	тмі	Grid Co-	ordinates	TMI
Northing	Easting	(nT)	Northing E	Easting	(nT)	Northing	Easting	(nT)	Northing	Easting	(nT)
l ine 6000	Morth		Line 6000 k	lath (con		Line 6000	North (cont.)		Line 6000	North food	`
EIN# 0000	<u>1700</u>	55926 5	Ente 0000 h	1060	CO16 44		norta (cont.)	500047	LING 0200		-)
6000	1700	55650.5	6000	1930	50915.44	6000	2190	20824.7	6200	1735	50460.0
6000	1700	50400.Z	6000	1935	50907.34	0000	2195	50817.8	6200	1740	50402.4
0000	1710	56599.9	6000	1900	00904.99	6000	2200	56806.2	6200	1/45	56445.0
6000	1/15	56751.3	6000	1980	56690.41	6000	2205	56792.7	6200	1750	56447.4
6000	1720	56962.0	6000	1985	56696.23	6000	2210	56788.0	6200	1755	56453,3
6000	1725	56900.2	6000	1990	56677.48	6000	2215	56782.3	6200	1760	56443.7
6000	1730	57066.4	6000	1995	56704.45	6000	2220	56782.1	6200	1765	56442.6
6000	1735	57013.1	6000	2000	56729.31	6000	2225	56803.5	6200	1770	56436.9
6000	1740	56969.0	6000	2005	56739.19	6000	2230	56824.1	6200	1775	56409.7
6000	1745	56901.1	6000	2010	56742.6	6000	2235	56850.0	6200	1780	56383.0
6000	1750	56910.7	6000	2015	56727.82	6000	2240	56883.0	6200	1785	56356.6
6000	1755	56881.9	6000	2020	56720.22	6000	2245	56923.0	6200	1790	56338.9
6000	1760	56 861.7	6000	2025	56711.38	6000	2250	56939.3	6200	1795	56310.8
6000	1765	56823.2	6000	2030	56717.28	6000	2255	56927.1	6200	1800	56314.2
6000	1770	56804.8	6000	2035	56712.7	6000	2260	56905.3	6200	1805	56326.3
6000	1775	56838.3	6000	2040	56717.98	6000	2265	56853.2	6200	1810	56513.5
6000	1780	56842.6	6000	2045	56712.35	6000	2270	56819.0	6200	1815	56509.0
<u> </u>	1785	56869.5	6000	2050	56715.47	6000	2275	56779.7	6200	1820	56479.2
	1790	56929.3	6000	2055	56716.9	6000	2280	56763.3	6200	1825	56540.8
6000	1820	56930.1	6000	2060	56713.15	6000	2285	56749.3	6200	1830	56643.4
6000	1825	56913.2	6000	2065	56714.57	6000	2290	56730.1	6200	1835	56756.9
6000	1830	56841.7	6000	2070	56707.24	6000	2295	56696.3	6200	1840	56823.2
6000	1835	56865.0	6000	2075	56707.07	6000	2300	56666.3	6200	1845	56850.7
6000	1840	57110.3	6000	2080	56707 67	6000	2305	56726.0	6200	1850	56823.2
6000	1845	57091.9	6000	2085	56711.92	6000	2310	56758.2	6200	1855	56794 1
6000	1850	56992.2	6000	2090	56717.36	6000	2315	56733 7	6200	1860	56795 0
6000	1855	56941.2	6000	2095	56708 67	6000	2320	56716.4	6200	1865	56749 3
0003	1860	56914.8	6000	2100	56714.06	6000	2325	56714 7	6200	1870	56606.0
6000	1865	56863 3	6000	2100	56714.50	6000	2320	56711.2	6200	1975	56660 5
6000	1970	56963.7	6000	2110	56710.03	0000	2000	56701.0	6200	1990	56627 6
6000	1975	56003.1	6000	2110	56746 34	0000	2340	50701.0	6200	1000	56624 4
6000	107.5	50030.1	6000	2110	507 10.24	6000	2340	50000.5	6200	1000	50031.4
0000	1000	50040.0	6000	2120	50722.70	0000	2343	50703.0	0200	1090	50000.0
6000	1885	56654.7	6000	2125	30/23.//	6000	2350	56712.1	6200	1895	20088.2
6000	1890	56857.7	6000	2130	56721.72	6000	2355	56691.7	6200	1900	56698.3
6000	1895	56856.9	6000	2135	56706.11	6000	2360	56637.3	6200	1905	56677.7
6000	1900	56903.5	6000	2140	56692.9	6000	2365	56602.4	6200	1910	56658.6
6000	1905	56958.5	6000	2145	56682.1	6000	2370	56597.2	6200	1915	56688.9
6000	1910	56980.3	6000	2150	56668.69	6000	2375	56669.9	6200	1920	56693.1
6000	1915	56955.5	6000	2155	56585.58	6000	2380	56741.6	6200	1925	56683.6
6000	1920	57017.2	6000	2160	56511.17	6000	2385	56746.4	6200	1930	56663.9
6000	1925	56992.3	6000	2165	56772.11	6000	2390	56752.7	6200	1935	56659.8
6000	1930	56969.5	6000	2170	56938.74	<u>Line 6200 I</u>	North		6200	1940	56642.8
6000	1935	56968.8	6000	2175	56885.71	6200	1720	56475.0	6200	1945	56684.4
6000	1940	56957.1	6000	2180	56845.54	6200	1725	56460.2	6200	1950	56729.4
6000	1945	56 933.5	6000	2185	56830.95	6200	1730	56480.3	6200	1955	56749.7

A23

APPENDIX 4:

Grid Co-o	rdinates	TMI	Grid Co-o	rdinates	TMI	Grid Co-c	rdinates	TMI	Grid Co-o	rdinates	
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Fasting	(nT)	Northing J	Contina	
							Loading	<u>wii)</u>		asting	(11)
Line 6200 I	North (cont.	1	Line 6200 I	North (cont.)		Line 6200	klantin faansi S		Line (2000 b	1	
6200	1955	56749.7	6200	2205	56020.0	EIII8 8200	2460	5C740 8		<u>ιοπη</u> (cont.)
6200	1960	56704.7	6200	2210	56923.2	6200	2400	56705.0	0200 Lize 6400 E	Z/1U Set (cont)	57182.8
6200	1965	56685 9	6200	2215	56964 0	6200	2400	50700.0		:ast (cont.)	
6200	1070	50005.5 E6600.6	6200	2213	50004.0	6200	2470	56702.6	6400	1700	56502.1
0200	1970	20090.5	6200	2220	56834.6	6200	2475	56687.4	640 0	1705	56505.8
6200	1975	56686.9	6200	2225	56827.8	6200	2480	56680.1	6400	1710	56517.7
6200	1980	56694.4	6200	2230	56 796. 7	6200	2485	56653.9	6400	1715	56503.7
6200	1985	56684.2	6200	2235	56797.1	6200	2490	56695.8	6400	1720	56518.0
6200	1990	56680.5	6200	2240	56783.1	6200	2495	56746.7	6400	1725	56497.2
6200	1995	56673.9	6200	2245	56779.3	6200	2500	56731.3	6400	1730	56489.8
6200	2000	56675.3	6200	2250	56762.9	6200	2505	56730.3	6400	1735	56480.5
6200	2005	56676.1	6200	2255	56782.5	6200	2510	56698.5	6400	1740	56483.9
6200	2010	56678.9	6200	2260	56772.2	6200	2515	56669.5	6400	1745	56475.0
6200	2015	56667.4	6200	2265	56779.8	6200	2520	56649.7	6400	1750	56443.2
6200	2020	56668.7	6200	2270	56760.4	6200	2525	56649.0	6400	1755	56433.3
6200	2025	56665.4	6200	2275	56749.1	6200	2530	56660.4	6400	1760	56539.0
6200	2030	56674.4	6200	2280	56735.7	6200	2535	56718.5	6400	1765	56555.4
6200	2035	56681.7	6200	2285	56716.5	6200	2540	56724.3	6400	1770	56502.4
6200	2040	56705.0	6200	2290	56726.8	6200	2545	56649.2	6400	1775	56530.9
6200	2045	56739.4	6200	2295	56693.2	6200	2550	56645.1	6400	1780	56494.8
6200	2050	56772.6	6200	2300	56768.8	6200	2555	56655.0	6400	1785	56442.9
6200	2055	56801.7	6200	2305	56816.4	6200	2560	56665.9	6400	1790	56472.3
6200	2060	56835.3	6200	2310	56874.4	6200	2565	56667.8	6400	1795	56573.1
6200	2065	56859.3	6200	2315	56913.1	6200	2570	56666.3	6400	1800	56609.5
6200	2070	56879.6	6200	2320	56930.2	6200	2575	56664.5	6400	1805	56601.9
6200	2075	56888.4	6200	2325	56918.5	6200	2580	56678.8	6400	1810	56657.4
6200	2080	56897.0	6200	2330	56871.1	6200	2585	56732.1	6400	1815	56651.5
6200	2085	56889.1	6200	2335	56846.0	6200	2590	56690.0	6400	1820	56729.4
6200	2090	56882.9	6200	2340	56818.8	6200	2595	55713.5	6400	1825	56713.3
6200	2095	56894.4	6200	2345	56815.2	6200	2600	56203.7	6400	1830	56787.1
6200	2100	56872.6	6200	2350	56867.3	6200	2605	58758.8	6400	1835	56933.9
6200	2105	56869.8	6200	2355	56829.6	6200	2610	56405.9	6400	1840	57091.2
6200	2110	56858.6	6200	2360	568 1 4.6	6200	2615	56251.0	6400	1845	57209.8
6200	2115	56842.1	6200	2365	56780.4	6200	2620	56364.1	6400	1850	57239.9
6200	2120	56827.6	6200	2370	57278.7	6200	2625	56434.1	6400	1855	57114.0
6200	2125	56830.9	6200	2375	56729.3	6200	2630	56482.4	6400	1860	57016.1
6200	2130	56862.1	6200	2380	56648.2	6200	2635	56506.4	6400	1865	56906.0
6200	2135	56901.8	6200	2385	56763.5	6200	2640	56448.2	6400	1870	56815.6
6200	2140	56815.2	6200	2390	56754.8	6200	2645	56596.2	6400	1875	56762.1
6200	2145	56825.6	6200	2395	56851.8	6200	2650	56608.7	6400	1880	56712.7
6200	2150	56774.5	6200	2405	58157.0	6200	2655	56671.9	6400	1885	56702.5
6200	2155	56800.9	6200	2410	51820.3	6200	2660	56843.1	6400	1890	56674.1
6200	2160	56755.3	6200	2415	56545.7	6200	2665	56835.9	6400	1895	56627.3
6200	2165	56748.4	6200	2420	56662.3	6200	2670	56830.0	6400	1900	56592.8
6200	2170	56733.7	6200	2425	56877.2	6200	2675	56853.2	6400	1905	56564.2
6200	2175	56719.5	6200	2430	56772.5	6200	2680	56885.1	6400	1910	56556.1
6200	2180	56732.7	6200	2435	56752.1	6200	2685	56854.7	6400	1915	56639.6
6200	2185	56812.8	6200	2440	56735.0	6200	2690	56837.8	6400	1920	56696.5
6200	2190	57601.4	6200	2445	56708.8	6200	2695	56867.8	6400	1925	56720.7
6200	2195	57665.3	6200	2450	56706.0	6200	2700	56255.3	6400	1930	56730.5
6200	2200	57017.6	6200	2455	56726.2	6200	2705	56570.7	6400	1935	56719.1

~

Gri	d Co-or	dinates	TMI	Grid Co-o	dinates	TMI	Grid Co-or	rdinates	тмі	Grid Co-	ordinates	TMI
Nor	thing E	asting	(nT)	Northing E	asting	(nT)	Northing E	asting	(nT)	Northing	Easting	(nT)
										1 : 6600	North Issat	`
Line	6400 N	orth (cont.)	E000E 7	Line 6400 P	DAGE	56702 4		<u>1710</u>	56497 0	EITIE 0000	noor <u>mron</u> 1980	- <i>;</i> 56597-7
	6400	1940	50095.7	6400	2100	56606.5	6600	1715	56550 5	0000	1965	56629.5
	6400	1945	50013.0	6400	2170	50050.5	0000	1720	56603.0	6600	1070	56603 5
	6400	1950	50004.9	0400	2173	20030.1	6000	1720	56625.3	0000	1075	56560.2
	6400	1955	56666.3	6400	2160	50090.0	6600	4720	50023.3	6600	1090	56542.9
	6400	1960	56672.3	6400	2185	50000.5	6600	1730	50020.2	6600	1005	56537 S
	6400	1965	56670.3	6400	2190	00004.4	6600	1730	50041.9	0000	1905	CCE42 (
	6400	1970	56659.9	6400	2195	56671.7	6600	1740	50630.1	0000	1990	00043.3 56570 (
	6400	1975	56661.9	6400	2200	56668.4	6600	1/45	56645.0	0000	1995	56507 (
	6400	1980	56661.8	6400	2205	56675.7	6600	1/50	56655.2	6600	2000	50527.8
	6400	1985	56 665.2	6400	2210	56659.8	6600	1755	56661.2	6600	2005	55403.1
	6400	1990	56667.1	64 00	2215	56657.9	6600	1760	56684.9	6600	2010	56515.1
	6400	1995	56668.8	64 00	2220	56656.6	6600	1765	56669.2	6600	2015	56679.9
	6400	2000	56669.5	6400	2225	56672.0	6600	1770	56675.9	6600	2020	56639.0
	6400	2005	56668.1	6400	2230	56662.2	6600	1775	56667.2	6600	2025	56537.6
	6400	2010	56665.4	6400	2235	56660.8	6600	1780	56657.2	6600	2030	56366.7
	6400	2015	56677.0	6400	2240	56677.1	6600	1785	56654.8	6600	2035	56522.1
	6400	2020	56638.1	6400	2245	56694.5	6600	1790	56640.2	6600	2040	56814.1
	6400	2025	56695.5	6400	2250	56694.1	6600	1795	56632.4	6600	2045	56849.3
	6400	2030	56692.2	6400	2255	56713.1	6600	1800	56599.1	6600	2050	56830.2
	6400	2035	56710.8	6400	2260	56701.2	6600	1805	56568.7	6600	2055	56806.8
	6400	2040	56726.0	6400	2265	56808.1	6600	1810	56852.4	6600	2060	56791.
	6400	2045	56730.5	6400	2270	56786.5	6600	1815	56877.2	6600	2065	56773.3
	6400	2050	56742.9	6400	2275	56810.4	6600	1820	56729.0	6600	2070	56766.1
••••	6400	2055	56768 8	6400	2280	56777.4	6600	1825	56677.4	6600	2075	56763.0
	6400	2060	56770.0	6400	2285	56764.4	6600	1830	56653.9	6600	2080	56750.4
	6400	2065	56764.6	6400	2290	56736.6	6600	1835	56727.2	6600	2085	56754.1
	0400	2000	56754.0	6400	2205	56764.4	6600	1840	56676.7	6600	2090	56754.3
	0400	2010	56740.2	6400	2200	56775 4	6600	1845	56715.9	6600	2095	56735.
	6400	2015	20740.Z	6400	2305	56742.6	6600	1850	56723.1	0033	2105	56718.
	0400	2000	50133.2	6400	2303	56770.2	6600	1955	56721.8	6600	2110	56728
	6400	2060	50729.3	0400	2010	50110.2	6600	1960	56729.2	6600	2115	56723.8
	6400	2090	55/31./	6400	2313	50700.3	6600	1000	56717.0	0000	2170	56716 (
	6400	2095	56735.9	6400	2320	50733.0	0000	1000	50111.9	0000	2120	56705
	6400	2100	56750.3	6400	2325	00701.0	0000	1070	50099.0	6000	2120	56706 0
	6400	2105	56735.2	6400	2330	56751.4	0000	18/5	50094.4	0000	2130	50700.4
	6400	2110	56718.2	6400	2335	56730.1	6600	1880	56676.9	0000	2133	50703.
	6400	2115	56724.0	6400	2340	56724.5	6600	1885	56663.3	6600	2140	50704.4
	6400	2120	56712.6	6400	2345	56716.0	6600	1890	56636.7	6600	2145	50700.
	6400	2125	56700.3	6400	2350	56 682.7	6600	1895	56628.6	6600	2150	56714.3
	6400	2130	56695.0	6400	2355	56700.2	6600	1900	56626. 6	6600	2155	56715.0
	6400	2135	56778.4	6400	2360	56711.8	6600	1905	56612.8	6600	2160	56724.0
	6400	2140	56722.1	6400	2365	56704.5	6600	1910	56609.4	6 600	2165	56726.0
	6400	2145	56678.5	6400	2370	56771.3	6600	1915	56613.6	6600	2170	56721.0
	6400	2150	56694.4	6400	2375	56756.9	6600	1920	56609.1	6600	2175	56712.2
	6400	2155	56709.7	6400	2380	56747.4	6600	1925	56587.8	6600	2180	56708.
	6400	2160	56687.8	6400	2385	56715.4	6600	1930	56579.8	6600	2185	56698.
	6400	2165	56703.4	6400	2390	56693.3	6600	1935	56579.5	6600	2190	56689.
	6400	2170	56696.5	6400	2395	57908.7	6600	1940	56571.9	6600	2195	56680.:
	6400	2175	56698.7	6400	2400	53893.8	6600	1945	56563.9	6600	2200	56684.
	6400	2180	56696.6				6600	1950	56575.2	6600	2205	56672.4
	0+00 6400	2100	56699 5				6600	1955	56545.3	6600	2210	56677.2
-	0400	2100	00000.0								_ · -	

Grid Co-c	ordinates	TMI	Grid Co-o	rdinates	TMI	Grid Co-o	rdinates	TMI	Grid Co-o	rdinates	TMI
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	asting	/nT\	Northing I	Seting	(a)D
							-030119		Northing 1	astrig	(01)
Line 6600	North (cont.)		<u>Line 6600 </u>	North (cont.)	•	Line 6800 N	lorth (cont.)		Line 6800 N	lorth (cont.)
6600	2215	56700.7	6600	2465	56830.4	6800	1660	56976.7	6800	1910	56993.1
6600	2220	56669.8	6600	2470	56776.0	6800	1665	56997.5	6800	1915	57037.3
6600	2225	56632.7	6600	2475	56795.7	6800	1670	56991.2	6800	1920	57025.3
6600	2230	56629.0	6600	2480	56835.8	6800	1675	56990.6	6800	1925	57027.5
6600	2235	56604.8	6600	2485	56857.5	6800	1680	56985.4	6800	1930	57041.3
6600	2240	56611.5	6600	2490	56865.1	6800	1685	56979.4	6800	1935	57066.1
6600	2245	56585.7	6600	2495	56851.7	6800	1690	56996.9	6800	1940	57065.5
6600	2250	56662.7	6600	2500	56841.5	6800	1695	57014.5	6800	1945	57018 9
6600	2255	56125.1	6600	2505	56835.9	6800	1700	57027.7	6800	1950	56997 1
6600	2260	56303.1	6600	2510	56836.6	6800	1705	57026.5	6800	1955	56067.2
6600	2265	56489.6	6600	2515	56823.2	6800	1710	57158.0	6800	1960	56054.7
6600	2270	56481.5	6600	2520	56815.7	6800	1715	57196.5	6800	1965	56953.6
6600	2275	56527.1	6600	2525	56810.8	6800	1720	57127.3	6800	1970	56941 2
6600	2280	56558.3	6600	2530	56810.9	6800	1725	57098 7	6800	1975	56922.6
6600	2285	56571.4	6600	2535	56836.3	6800	1730	57106.4	6800	1980	56908.0
6600	2290	56578.0	6600	2540	56828.7	6800	1735	57132.4	6800	1085	56801.0
6600	2295	56596.7	6600	2545	56796.4	6800	1740	57099.1	6800	1000	58002.2
6600	2300	56614.4	6600	2550	56809.8	6800	1745	57118.2	6800	1005	56011 4
6600	2305	56624.3	6600	2555	56804.5	6800	1750	57095.2	6800	2000	56010.7
6600	2310	56633 5	6600	2560	56815.8	6800	1755	57001 7	6800	2000	56985 0
6600	2315	56646.7	6600	2565	56810.1	6800	1760	57104.2	6800	2000	56964 7
6600	2320	56655 7	6600	2570	56795.8	6800	1765	57128.1	6800	2010	56927 7
6600	2325	56648.0	6600	2575	56785 4	6800	1700	57124.1	6800	2010	56922.0
6600	2330	56645.2	6600	2580	56772 7	6800	1775	57132.2	6900	2020	50023.9
6600	2335	56644 5	6600	2585	56778 7	6800	1780	57009.2	6800	2020	50047.5
6600	2340	56665 3	0000	2500	56706.6	6900	1795	57070-7	6900	2030	00094.0 ECCE4 0
6600	2345	56726.8	6600	2550	56902.7	6000	1700	57067 4	6900	2035	20021.9
8600	2340	56717.2	6600	2090	50002.7	6000	1705	57032.2	0000	2040	55965.3
6600	2330	56702.7	6600	2000	56795.0	6800	1790	57000.0	6800	2045	55626.0
6600	2300	3070Z.7	6600	2003	50707.4	0000	1000	57040 A	0000	2050	56250.4
6600	2300	50101.8 56672 5	6600	2010	50000.0	0000	1000	57046.0	6600	2000	00983.2
6000	2303	50073.5	6600	2013	50012.5	0000	1010	5/015.6	6600	2060	56887.2
6600	2370	50004.9 66600 A	6600	2020	20040.3	6800	1010	57032.1	6800	2065	56669.6
6600	2313	56620.4	6600	2020	56830.4	0000	1820	57008.8	6800	2070	50667.1
6600	2300	000ZU.4	0000	2030	50029.4	6000	1020	57002.2	0000	2070	00669.6
0000	2303	00010.0 EC0E4 C	6600	2033	50052.7	6800	1030	57003.3	0000	2080	50696.4
6600	2390	55351.0	6600	2040	50003.1	6600	1835	57017.1	6800	2085	56915.5
6600	2393	01401.2 52472.7	6600	2040	56901.3	6800	1840	57013.4	6800	2090	56925.4
0000	2400	500173.7	0000	2000	20012.0	6800	1840	57000.9	0060	2095	56922.7
0000	2400	000 IV.U	0000	2000	20012.0	6800	1850	00999.1	0080	2100	56927.3
0000	2410	50013.0	6600	2000	50637.4	6800	1855	00980.3	6800	2105	56916.4
6600	2415	56849.6	6600	2665	56842.9	6800	1860	56976.3	6800	2110	56909.2
6600	2420	56833.1	6600	2670	56856.8	6800	1865	56973.4	6800	2115	56909.4
6600	2425	56639.0	6600	2675	56849.8	6800	1870	56976.1	6800	2120	56904.2
6600	2430	56808.0	6600	2680	56848.8	6800	1875	56990.5	6800	2125	56898.3
6600	2435	56797.9	6600	2685	56816.1	6800	1880	56984.2	6800	2130	56903.9
6600	2440	56793.0	6600	2690	56794.8	6800	1885	56976.8	6800	2135	56907.0
6600	2445	56792.9	6600	2695	56765.0	6800	1890	56972.4	6800	2140	56914.9
6600	2450	56690.8	6600	2700	56736.4	6800	1895	56976.0	6800	2145	56928.1
6600	2455	56748.8	Line 6800 N	lorth		6800	1900	56970.7	6800	2150	56930.4
6600	2460	56824.7	6800	1655	57028.99	6800	1905	56978.7	6800	2155	56945.5

-

APPENDIX 4:

Grid Co-	ordinates	TMI	Grid Co-o	rdinates	TMI	Grid Co-c	rdinates	TMI	Grid Co-o	rdinates	TMI	
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Easting	ίnΤι	Northing	Fasting	(nT)	
		·			<u>`</u>				ttorunig	casting	000	
Line CPOA	North (cont		1 in	4								
<u>CIII0 6000</u>	NOTITI (CONC.	}	<u>Line 7000 r</u>	North (Cont.)		Line 7000	North		<u>Line 7000 I</u>	North (cont	.)	
0000	2160	50903.0	7000	1655	56972.6	7000	1905	56914.0	7000	2155	56933.2	
6800	2165	56973.4	7000	1660	56958.8	7000	1910	56924.3	7000	2160	56945.1	
6800	2170	56970.3	7000	1665	56957.6	7000	1915	56940.9	7000	2165	56953.6	
6800	2175	56952.6	7000	1670	56969.4	7000	1920	56975.1	7000	2170	56950.3	
6800	2180	56942.3	7000	1675	56970.6	7000	1925	56965.1	7000	2175	56954.1	
6800	2185	56948.4	7000	1680	56967.1	7000	1930	56960.9	7000	2180	56908.2	
6800	2190	56952.5	7000	1685	56955.4	7000	1935	56950.4	7000	2185	56849.0	
6800	2195	56965.0	7000	1690	56955.2	7000	1940	56947.2	7000	2190	56826.1	
6800	2200	56971.0	7000	1695	56948.8	7000	1945	56944.5	7000	2195	56861.8	
6800	2205	56983.2	7000	1700	56943.5	7000	1950	56940.5	7000	2200	56861.4	
6800	2210	56974.3	7000	1705	56941.2	7000	1955	56943.5	7000	2205	56859 7	
6800	2215	56969.1	7000	1710	56942.2	7000	1960	56947.6	7000	2210	569214	
6800	2220	57010.0	7000	1715	56941.4	7000	1965	56945.6	7000	2215	57012.7	
6800	2225	56989.8	7000	1720	56949.7	7000	1970	56942.4	7000	2220	57056.0	
6800	2230	56970.9	7000	1725	56932.8	7000	1075	56043.3	7000	2220	57030.3	
6800	2235	56964.6	7000	1730	56028.6	7000	1000	50543.3	7000	2223	57079.4	
6800	2240	56956 7	7000	1725	56020.0	7000	1900	50943.3	7000	2230	5/0/8.9	
6800	2245	56940.2	7000	1740	50323.2	7000	1900	20943.2	7000	2235	5/0//.0	
6800	2250	56047.1	7000	1740	50952.0	7000	1990	56948.3	7000	2240	57101.4	
6000	22.00	50547.1	7000	1743	50931.8	7000	1995	56944.3	7000	2245	57100.2	
6800	2200	56965.4	7000	1750	56947.9	7000	2000	56939.3	7000	2250	57101.8	
6600	2260	56965.8	7000	1755	56949.8	7000	2005	56942.4	7000	2255	57094.8	
	2265	56989.5	7000	1760	56946.1	7000	2010	56941.1	7000	- 22 60	57096.0	
500	2270	57023.9	7000	1765	56956.7	7000	2015	56934.7	7000	2265	57088.4	
6800	2275	56965.5	7000	1770	56942.4	7000	2020	56940.8	7000	2270	57079.9	
6800	2280	56951.3	7000	1775	56948.6	7000	2025	56942.0	7000	2275	57074.0	
6800	2285	56935.9	7000	1780	56949.5	7000	2030	56942.2	7000	2280	57063.3	
6800	2290	56925.5	7000	1785	56945.5	7000	2035	56953.5	7000	2285	57065.1	
6800	2295	56925.9	7000	1790	5694 0.6	7000	2040	56973.1	7000	2290	57058.2	
6800	2300	56924.1	7000	1795	56938.3	7000	2045	56976.1	7000	2295	57062.9	
6800	2305	56947.6	7000	1800	56931.3	7000	2050	56980.6	7000	2300	57061.1	
6800	2310	56986.5	7000	1805	56936.9	7000	2055	56982.7	7000	2305	57070.1	
6800	2315	57038.8	7000	1810	56954.7	7000	2060	56986.7	7000	2310	57076.3	
6800	2320	56942.6	7000	1815	56958.2	7000	2065	56980.2	7000	2315	570924	
6800	2325	56879.3	7000	1820	56982.6	7000	2070	569724	7000	2320	57060.9	
6800	2330	56875.6	7000	1825	56980.8	7000	2075	56970.6	7000	2325	57076 7	
6800	2335	56898 1	7000	1830	56990.3	7000	2080	56072 /	7000	2020	57063.0	
6800	2340	56904 3	7000	1835	57000 1	7000	2085	56077.6	7000	2000	57005.0	
6800	2345	56014.2	7000	1840	56050.3	7000	2000	50000 5	7000	2333	57065.1	
6800	2350	56887 /	7000	1040	50950.5	7000	2090	00902.0	7000	2340	57044.7	
6800	2355	56964 5	7000	1040	56957.4	7000	2090	00992.4	7000	2345	57040.6	
6800	2300	50004.5	7000	1000	50900.9	7000	2100	57002.5	7000	2350	57032.9	
0000	2300	20024.7	7000	1800	56957.9	7000	2105	56990.9	7000	2355	57026.0	
6600	2300	56958.2	7000	1860	56956.3	7000	2110	56983.2	7000	2360	57019.8	
6800	2370	56949.6	7000	1865	56924.7	7000	2115	56988.1	7000	2365	57009.4	
6800	23/5	56929.2	7000	1870	56894.9	7000	2120	56987.7	7000	2370	57001.0	
6800	2380	56897.8	7000	1875	56892.7	7000	2125	56991.1	7000	2375	56995.5	
6800	2385	56926.7	7000	1880	56894.6	7000	2130	56981.6	7000	2380	56985.7	
6800	2390	57000.0	7000	1885	56874.1	7000	2135	56984.8	7000	2385	56973.4	
6800	2395	57212.5	7000	1890	56890.0	7000	2140	56974.8	7000	2390	56976.2	
6800	2400	57237.5	7000	1895	56888.0	7000	2145	56956.6	7000	2395	56830.3	
7000 سر	1650	56970.0	7000	1900	56891. 1	7000	2150	56949.5	7000	2400	56900.0	
í,												

APPENDIX 4:

Grid Co-	ordinates	ТМІ	Grid Co-o	rdinates	TMI	Grid Co-	ordinates	TMI	Grid Co-o	rdinates	TMI
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Easting	ίnΤ	Northing	Easting	(nT)
				<u>v</u>					Northing	casung	<u>[ni)</u>
Line 7200 North (cont.)			l ine 7200 i	North (cont	•	1 In . 3000					
7200	1630	56839.9	7200	1890	- <i>)</i> 56960 c	Line 7200	North		<u>Line 7200 N</u>	lorth (con	L)
7200	1635	56845.7	7200	1896	50009.0	7200	2135	56903.7	7200	2385	56883.8
7200	1640	56830.8	7200	1000	50043.0	7200	2140	56917.3	7200	2390	56883.8
7200	1645	56826 4	7200	1090	00919.9	7200	2145	56931.0	7200	2395	52793.7
7200	1650	56821.1	7200	1090	56964.3	7200	2150	56933.8	7200	2400	51664.0
7200	1655	56810.6	7200	1005	56934.6	7200	2155	56942.6	<u>Line 7400 N</u>	lorth	
7200	1660	56924 6	7200	1905	56909.4	7200	2160	56952.9	7400	1670	56706.1
7200	1665	50031.0	7200	1910	56905.3	7200	2165	56927.5	7400	1675	56787.9
7200	1670	50020.0	7200	1915	56903.9	7200	2170	56920,2	7400	1680	56 807 .0
7200	1070	50036.1	7200	1920	56910.5	7200	2175	56892.2	7400	1685	56818.5
7200	4600	50000.1	7200	1925	56911.2	7200	2180	56876.9	7400	1690	56819.8
7200	1000	56050.2	7200	1930	56890.7	7200	2185	56874.1	7400	1695	56821.8
7200	1000	20929.3	7200	1935	56864.8	7200	2190	56888.3	7400	1700	56821.6
7200	1090	50918.8	7200	1940	56837.6	7200	2195	56875.4	7400	1705	56814.8
7200	1095	56863.0	7200	1945	56814.4	7200	2200	56899.3	7400	1710	56815.7
7200	1700	56813.2	7200	1950	56802.9	7200	2205	56906.1	7400	17 15	56827.1
7200	1705	56796.0	7200	1955	56796.4	7200	2210	56894.4	7400	1720	56825.1
7200	1710	56783.3	7200	1960	56793.1	7200	2215	56883.3	7400	1725	56822.5
7200	1715	56798.7	7200	1965	56786.6	7200	2220	56876.3	7400	1730	56830.4
7200	1720	56812.7	7200	1970	56783.5	7200	2225	56871.6	7400	1735	56833.4
7200	1725	56807.3	7200	1975	56777.2	7200	2230	56869.6	7400	1740	56831.3
7200	1730	56803.8	7200	1980	56781.7	7200	2235	56866.0	7400	1745	56832.4
7200	1735	56815.6	7200	1985	56786.9	7200	2240	56872.9	7400	1750	56833.4
7200	1740	56832.6	7200	1990	56793.3	7200	2245	56880.5	7400	1755	56841.4
7200	1745	56839.4	7200	1995	56797.7	7200	2250	56889.3	7400	1760	56844.3
7200	1750	56830.7	7200	2000	56827.3	7200	2255	56894.9	7400	1765	56882.4
7200	1755	56830.8	7200	2005	56872.6	7200	2260	56902.1	7400	1770	56940.6
7200	1760	56821.3	7200	2010	56888.6	7200	2265	56908.8	7400	1775	56773.3
7200	1765	56823.9	7200	2015	56884.5	7200	2270	56908.2	7400	1780	56779.4
7200	1770	56827.8	7200	2020	56891.0	7200	2275	56894.2	7400	1785	56767.6
7200	1775	56830.6	7200	2025	56908.2	7200	2280	56892.2	7400	1790	56762.2
7200	1780	56833.1	7200	2030	56916.3	7200	2285	56893.5	7400	1795	56747.8
7200	1785	56835.1	7200	2035	56909.3	7200	2290	56900.7	7400	1800	56682.6
7200	1790	56834.5	7200	2040	56903.2	7200	2295	56899.9	7400	1805	56757.3
7200	1795	56829.6	7200	2045	56929.7	7200	2300	56905.9	7400	1810	56822.7
7200	1800	56831.6	7200	2050	56913.2	7200	2305	56902.7	7400	1815	56848.6
7200	1805	56830.1	7200	2055	56902.7	7200	2310	56902.3	7400	1820	56853.5
7200	1810	56830.1	7200	2060	56907.2	7200	2315	56899.3	7400	1825	56829.5
7200	1815	56826.7	7200	2065	56904.5	7200	2320	56897 7	7400	1830	56810 3
7200	1820	56830.8	7200	2070	56902.9	7200	2325	56896.2	7400	1935	56800 7
7200	1825	56832.1	7200	2075	56907.6	7200	2330	56892.7	7400	1840	56781 3
7200	1830	56826.1	7200	2080	56922.6	7200	2335	56888.0	7400	1846	56902.1
7200	1835	56844.7	7200	2085	56961.3	7200	2340	56877 8	7400	1850	56910.0
7200	1840	56877.1	7200	2090	56946.9	7200	2345	56870 4	7400	1000	50015.0
7200	1845	56952.9	7200	2095	56898 5	7200	2350	56972 5	7400	1000	50007.1
7200	1850	56980.2	7200	2100	56838 1	7200	2330	56970.0	7400	1000	50/40./
7200	1855	56940.2	7200	2105	56705.5	7200	2300	50070.9	7400	1000	56770.1
7200	1860	56941 1	7200	2110	56742 6	7200	2000	20302.4	7400	1870	56632.6
7200	1865	56964.9	7200	2110	56602.0	7200	2000	20063.1	7400	10/5	508/2.1
7200	1970	56057 9	7200	2110	00032.2 EC767 A	7200	2370	20222.2	7400	1880	56911.7
7200	1975		7200	2120	30/3/,U	7200	2375	56879.3	7400	1885	56962.7
7200	10/0	50344.9	7200	2120	500003.5	7200	2380	56864.9	7400	1890	57014.4
1200	1000	0.60000	1200	2130	20096.3	7200	2385	56883.8	7400	1895	57010.5

 \mathbf{D}

APPENDIX 4:

CONTINUED

Grid Co-	ordinates	TMI	Grid Co-c	ordinates	ТМІ	Grid Co-c	ordinates	ТМІ	Grid Co-c	ordinates	TMI
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Easting	ínTi	Northing	Easting	(nTi
		<u> </u>			<u> </u>						
Line 7400	North (cont)	1 ine 7400	North (cont.)		Line 7400	North (cont.)		l ina 7600	klamble faans	
7400	1900	56949.8	7400	2150	56022.6	7/00	2290	569/0 7	LINE 7600	AP40) EC044 D
7400	1905	56904 1	7400	2155	56027.3	7400	2300	56945.4	7600	1840	00641.8
7400	1910	56901.6	7400	2155	56057.3	7400	2300	50045.1 56974 5	7600	1845	20062.2
7400	1015	56054 B	7400	2100	56937.1	7400	2390	506/1.5	7600	1850	56900.6
7400	1020	56025 A	7400	2100	50971.5	7400	2395	56870.7	7600	1855	56889.1
7400	1920	56010.0	7400	2170	57044.0	/4UU	2400	56841.7	7600	1860	56864.6
7400	1920	50919.0	7400	21/5	57014.9	Line / 600 I	North		7600	1865	56871.1
7400	1930	50073.1	7400	2180	57028.9	7600	1620	56840.0	7600	1870	56881.8
7400	1935	20007.3	7400	2185	57028.4	7600	1625	56855.7	7600	1875	56897.4
7400	1940	56862.9	7400	2190	57002.6	7600	1630	56859.3	7600	1880	56897.9
7400	1945	56865.0	7400	2195	57000.9	7600	1635	56854.3	7600	1885	56892.3
7400	1950	56854.6	7400	2200	56997.5	7600	1640	56853.6	7600	1890	56897.0
7400	1955	56845.3	7400	2205	57006.8	7600	1645	56846.5	7600	1895	56913.3
7400	1960	56834.4	7400	2210	57024.0	7600	1650	56842.3	7600	1900	56928.3
7400	1965	56836.8	7400	2215	57011.3	7600	1655	56841.4	7600	1905	56931.7
7400	1970	56827.5	7400	2220	57012.2	7600	1660	56847.1	7600	1910	56924.5
7400	1975	56837.8	7400	2225	57011.3	7600	1665	56859.4	7600	1915	56928.6
7400	1980	56829.7	7400	2230	56995.7	7600	1670	56864.3	7600	1920	56940.8
7400	1985	56839.3	7400	2235	56990.6	7600	1675	56862.9	7600	1925	56954.6
7400	1990	56834.8	7400	2240	56977.0	7600	1680	56867.9	7600	1930	56946.8
7400	1995	56830.5	7400	2245	56979.5	7600	1685	56859.5	7600	1935	56901.2
7400	2000	56854.3	7400	2250	56990.0	7600	1690	56854.0	7600	1940	56854.2
7400	2005	56857.2	7400	2255	57019.8	7600	1695	56851.7	7600	1945	56854.5
400	2010	56864.0	7400	2260	57058.7	7600	1700	56853.1	7600	1950	56858.9
` ∽ -/400	2015	56862.9	7400	2265	57116.6	7600	1705	56849.8	7600	1955	56867.8
7400	2020	56857.4	7400	2270	57159.7	7600	1710	56833.0	7600	1960	56904.5
7400	2025	56851.1	7400	2275	57160.7	7600	1715	56827.3	7600	1965	56931.6
7400	2030	56883.9	7400	2280	57097.2	7600	1720	56848.6	7600	1970	56933.9
7400	2035	56881.9	7400	2285	57027.2	7600	1725	56859.9	7600	1975	56016.2
7400	2040	56882.6	7400	2290	56968.3	7600	1730	56901 1	7600	1980	56906.4
7400	2045	56875.7	7400	2295	56924.9	7600	1735	56897 9	7600	1985	56807.0
7400	2050	56918.4	7400	2300	56910.1	7600	1740	56895 3	7600	1900	56877 1
7400	2055	56920.3	7400	2305	56916 7	7600	1745	56972 0	7600	1005	50017.1
7400	2060	56955.3	7400	2310	56013.0	7600	1750	56971 2	7600	2000	50057.5
7400	2065	56081 8	7400	2315	56802 E	7600	1755	50071.3	7600	2000	00003.3 EC054 7
7400	2000	57052.7	7400	2010	50093.0	7000	1700	50037.4	7000	2005	50054.7
7400	2075	57130 /	7400	2320	50005.2	7000	1700	50631.2	7000	2010	50053.4
7400	2073	57204.6	7400	2020	00040.9 66933 0	7600	1700	50002.3	7600	2015	5005Z.1
7400	2000	57204.0	7400	2000	50023.0	7600	1770	56646.9	7600	2020	566/6.1
7400	2000	57220.9	7400	2335	50615.9	7600	1775	56859.7	7600	2025	56892.3
7400	2090	5/1/9.6	7400	2340	56816.4	7600	1780	56862.3	7600	2030	56906.6
7400	2095	56993.6	7400	2345	56829.5	7600	1785	56866.2	7600	2035	56918.7
7400	2100	56/5/./	7400	2350	56841.2	7600	1790	56877.3	7600	2040	56930.2
7400	2105	56552.8	7400	2355	56837.8	7600	1795	56871.2	7600	2045	56930.3
7400	2110	56507.1	7400	2360	56837.1	7600	1800	56837.1	7600	2050	56935.3
7400	2115	56545.9	7400	2365	56853.6	7600	1805	56830.5	7600	2055	56937.0
7400	2120	56672.2	7400	2365	56845.3	7600	1810	56841.5	7600	2060	56940.4
7400	2125	56776.4	7400	2370	56849.9	7600	1815	56844.0	7600	2065	56940.0
7400	2130	56838.4	7400	2370	56838.0	7600	1820	56845.8	7600	2070	56938.5
7400	2135	56869.6	7400	2375	56849.6	7600	1825	56844.9	7600	2075	56938.3
7400	2140	56899.5	7400	2375	56849.9	7600	1830	56841.5	7600	2080	56932.4
7400	2145	56912.9	7400	2380	56840.6	7600	1835	56835.7	7600	2085	56940.4
\mathcal{C}											
N											

APPENDIX 4:

CONTINUED

Grid Co	-ordinates	TMI	Grid Co-	ordinates	TMI	Grid Co-	ordinates	TM)	Grid Core	rdinates	TLU
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Fasting	(nT)	Northing	Fasting	1 1112
						literating	costing	<u>(nn)</u>	Northing	Easting	<u>(nT)</u>
Line 7600 North (cont.)			l ing 7600	North (cont	1						
7600	2090	56048 4	7600	0000) <u>011016</u> 01240	.)	Line 7600	North (cont.)	<u>Line 7800 </u>	North (con	t.)
7600	2095	56952.6	7600	2340	57058.0	7600	2580	56827.9	7800	1715	56801.3
7600	2100	56947.0	7000	2340	5/052.7	7600	2585	56834.8	7800	1720	56882.2
7600	2105	56020 P	7000	2350	5/03/./	7600	2590	56838.1	7800	1725	56932.3
7600	2110	56887 1	7000	2300	57028.1	7600	2595	56843.3	7800	1735	56975.9
7600	2115	56827.2	7600	2300	57028.8	7600	2600	56842.2	7800	1740	56829.5
7600	2110	500Z1.Z	7600	2365	56928.6	7600	2610	5683 6.2	7800	1745	56769.7
7000	2120	50000.9	7600	2370	56940.9	7600	2615	56831.2	7800	1750	56751.5
7600	2120	50090.7	7600	2375	57046.1	7600	2620	56827.9	7800	1755	56756.3
7600	2100	50944.8	7600	2380	57039.5	7600	2625	56812.5	7800	1760	56780.8
7600	2130	50913.0	7600	2385	56978.8	7600	2630	56806.2	7800	1765	56812.9
7000	2140	50005.6	7600	2390	56939.9	7600	2635	56811.9	7800	1770	56799.6
7600	2140	56887.4	7600	2395	56826.3	7600	2640	56844.7	7800	1775	56786.9
7000	2150	56894.1	7600	2400	56536.6	7600	2645	56874.2	7800	1760	56823.7
7600	2155	56902.3	7600	2405	56972.6	760 0	2650	56915.1	7800	1785	56849.0
7600	2160	56902.7	7600	2400	49915.6	7600	2655	56935.1	7800	1790	56858.3
7600	2165	56899.7	7600	2405	56636.7	7600	2660	56939.0	7800	1795	56861.3
7600	2170	56877.5	7600	2410	56697.8	7600	2665	56925.3	7800	1800	56900.9
7600	2175	56867.2	7600	2415	56732.5	7600	2670	56902.6	7800	1805	56888.1
7600	2180	56855.7	7600	2420	56762.1	7600	2675	56893.0	7800	1810	56879.5
7600	2185	56876.4	7600	2425	567 78.2	7600	2680	56862.1	7800	1815	56874.0
7600	2190	56898.2	7600	2430	56795.3	7600	2685	56845.2	7800	1820	56866 5
7600	2195	56913.9	7600	2435	56804.4	7600	2690	56865.1	7800	1825	56854 0
7600	2200	56908.9	7600	2440	56797.1	7600	2695	56902.8	7800	1830	56961 9
7600	2205	56901.0	7600	2445	56 798 .9	7600	2700	56880.4	7800	1835	56962.2
7600	2210	56892.5	7600	2450	56802.3	Line 7800 N	lorth		7800	19/0	50002.3
7600	2215	56879.3	7600	2455	56825.6	7800	1590	56568.9	7800	1846	56957 4
7600	2220	56870.3	7600	2460	56762.8	7800	1595	56784 5	7800	1950	50007.1
7600	2225	56885.0	7600	2465	56779.5	7800	1600	56837.8	7900	1050	50009.1
7600	2230	56882.7	7600	2470	56733.2	7800	1605	56953.0	7900	1000	56693.0
7600	2235	56899.3	7600	2475	56688.7	7800	1610	56849 5	7900	1000	50904.9
7600	2240	56909.6	7600	2480	56794 8	7800	1615	56842.5	7800	1000	00927.0
7600	2245	56919.2	7600	2485	56819.8	7800	1620	56945 1	7000	1010	50947.5
7600	2250	56935.7	7600	2490	56822.4	7800	1625	50040.1	7000	10/0	56952.0
7600	2255	56946.9	7600	2495	56840.7	7800	1620	50040.3	7800	1880	55948.9
7600	2260	56950.8	7600	2500	56851 7	7800	1635	50041.1	7800	1885	56935.5
7600	2265	56954.5	7600	2505	56852.7	7800	1640	56924.3	7800	1890	56925.9
7600	2270	56960.5	7600	2510	56851 0	7800	1040	56031.3	7800	1895	56918.9
7600	2275	56970.6	7600	2515	56845 B	7800	1650	50030.1	7800	1900	56904.9
7600	2280	56980 4	7600	2520	56850 5	7000	1000	50002.0	7800	1905	56884.5
7600	2285	56998 6	7600	2525	568425	7000	1000	50904.2	7800	1910	56902.2
7600	2290	57017.9	7600	2525	50043.5	7800	1000	56886.9	7800	1915	56925.1
7600	2205	57037 7	7600	2000	50043.0	7800	1665	56897.3	7800	1920	56935.8
7600	2300	57066.5	7600	2030	50050.0	7800	1670	56888.9	7800	1925	56938.5
7600	2300	57000.5	7000	2540	56856.1	7800	1675	56860.5	7800	1930	56923.7
7600	2000	57097 4	7000	2040	8.00800	7800	1680	56845.4	7800	1935	56901.8
7600	2310	57000 -	7600	2550	56856.5	7800	1685	56876.0	7800	1940	56889.2
7000	2315	57058.7	/600	2555	56857.0	7800	1690	56901.3	7800	1945	56873.0
7000	2320	57056.3	7600	2560	56852.0	7800	1695	56891.2	7800	1950	56861.6
7000	2325	5/056.8	7600	2565	56847.4	7800	1700	56929.2	7800	1955	56853.3
7600	2330	57068.7	7600	2570	56846.5	7800	1705	56836.2	7800	1960	56847.5
7600	2335	57075.3	7600	2575	56830.2	7800	1710	56768.0	7800	1965	56851.3

-

APF	PEN	DIX	4:
(

Grid Co-ordinates		TMI	Grid Co-	ordinates	TMI	Grid Co-o	rdinates	TMI
Northing	Easting	(nT)	Northing	Easting	(nT)	Northing	Easting	(nT)
Line 7800	North (cont.)	Line 7800	North (con	L)	Line 7600 f	North (cont.)
7800	1970	56860.4	7800	2225	56924. 6	7800	2555	56985.1
7800	1975	56870.2	7800	2230	57016.1	7800	2560	56915.6
7800	1980	56903.1	7800	2235	56865.8	7800	2565	56872.5
7800	1985	57002.4	7800	2240	56830.5	7800	2570	56860.4
7800	1990	57140.9	7800	2245	56862.8	7800	2575	56866.5
7800	1995	57172.0	7800	2250	56880.7	7800	2580	56763.3
7800	2000	56995.8	7800	2255	568 76.8	7800	2585	56759.4
7800	2005	56960.9	7800	2260	56869. 8	7800	2590	56757.8
7600	2010	56979.7	7800	2265	56850. 6	7800	2595	56790.6
7800	2015	57000.6	7800	2270	56844.8	7800	2600	56798.8
7800	2020	57015.8	7800	2275	56862.2	7800	2605	56822.5
7800	2025	57011.7	7800	2280	56837.8	7800	2610	56848.4
7800	2030	56989.1	7800	2285	56833.2	7800	2615	56865.0
7800	2035	56975.5	7800	2290	56795.4	7800	2620	56880.3
7800	2040	56979.5	7800	2295	56790.2	7800	2625	56885.4
7800	2045	56960.1	7800	2300	56840.2	7800	2630	56854.0
7800	2050	56959.3	7800	2305	56839.8	7800	2635	56783.2
7800	2055	56978.3	7800	2310	56857.7	7800	2640	56785.1
7800	2060	57002.9	7800	2315	56883.2	7800	2645	56860.3
7800	2065	57017.7	7800	2320	56887.5	7800	2650	56921.6
7800	2070	57093.7	7800	2325	56898.2	7800	2655	56900.8
7800	2075	57115.7	7800	2330	56877. 6	7800	2660	56875.7
(7800	2080	57091.5	7800	2335	56821.4	7800	2665	56823.1
Sec. 7800	2085	57070.8	7800	2340	56868.0	7800	2670	56842.6
7800	2090	57048.1	7800	2345	56863.4	7800	2675	56853.0
7800	2095	57033.5	7800	2350	56865.2	7800	2680	56867.6
7800	2100	57014.3	7800	2355	56885.3	7800	2685	56875.4
7800	2105	56961.2	7800	2360	56903.9	7800	2690	56870.2
7800	2110	56947.3	7800	2365	56883.1	7800	2695	56880.7
7800	2115	56947.2	7800	2370	56873.4	7800	2700	568 93.6
7800	2120	56929.9	7800	2375	56869.8			
7800	2125	56905.1	7800	2380	56906.9			
7800	2130	56869.0	7800	2385	56855.9			
7800	2135	56848.4	7800	2390	56866.2			
7800	2140	56837.4	7800	2395	56907.1			
7800	2145	56847.4	7800	2475	56849.5			
7800	2150	5 6881.1	7800	2480	56850.7			
7800	2155	56920.2	7800	2485	56843.7			
7800	2160	56951.7	7800	2490	56834.6			
7800	2165	56983.2	7800	2495	56833.9			
7800	2170	57001.3	7800	2500	56845.9			
7800	2175	57033.1	7800	2505	56846.8			
7800	2180	5698 9 .9	7800	2510	56806.1			
7800	2185	56938.1	7800	2515	56801.9			
7800	2190	56934.0	7800	2520	56794.6			
7800	2195	56968.3	7800	2525	56825.5			
7800	2200	56988.9	7800	2530	56823.1			
7800	2205	57005.6	7800	2535	56814 .9			
7800	2210	57117,9	7800	2540	56864.4			
7800	2215	57065.2	7800	2545	56805.0			
7800	2220	56825.7	7800	2550	56835.6			
~_ -								

APPENDIX 5: STATEMENT OF QUALIFICATIONS

The field work described in this report was supervised by Jeff Reeder and Jody Dahrouge.

Mr. Reeder is a geological consultant with Dahrouge Geological Consulting Ltd. based in Edmonton, Alberta. He obtained a degree in geology from the University of Alberta, Edmonton in 1988. He is registered as P. Geo. with the Association of Professional Engineers and Geoscientists of B.C. He has more than 13 years of experience in mineral exploration.

J.R. Dahrouge is a geological consultant with Dahrouge Geological Consulting Ltd. based in Edmonton, Alberta. He obtained degrees in geology and computing science from the University of Alberta, Edmonton in 1988 and 1994, respectively. He has more than 10 years of experience in mineral exploration. He is a member of the Canadian Institute of Mining and Metallurgy and is registered as P. Geol. with the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.

