GEOCHEMICAL & GEOLOGICAL ASSESSMENT REPORT

VANCOUVER, B.C.

.

h....

on the

TAN PROPERTY

Kamloops Mining Division, British Columbia

Field Work:Sept 6 – 10, Oct 4, 2001Claims:Tan 1-4Location:• 45 Km Northwest of Revelstoke, B.C.
• NTS Map No. 082M/02

- Latitude: 51 ° 11.5 ' North
- Longitude: 118 ° 43.5 ' West

Prepared By:

GEOQUEST CONSULTING LTD. 8055 Aspen Road Vernon, B.C. V1B 3M9

W. Gruenwald, P. GEO. OGICAL SURVEY BRANCH

November 15, 2001

TABLE OF CONTENTS

 $\left[\right]$

, ,

INTRODUCTION
General Statement1
Location and Access1
Pbysiography1
Climate and Vegetation1
Claims
History
REGIONAL GEOLOGY
LOCAL GEOLOGY
Lithology
Structure
Alteration5
Mineralization
REGIONAL GEOPHYSICS6
EXPLORATION WORK - 20016
Stream Sampling6
Prospecting6
Sample Analysis
Petrography7
RESULTS
Stream Sampling
Panned Concentrates
Soil Sampling
Rock Sampling
CONCLUSIONS AND RECOMMENDATIONS9

Page

A DESCRIPTION OF A DESC

ł

FIGURES

÷

ł

			After Page
Figure 1	Location Map	1:250,000	TOC
Figure 2	Claim Map	1:50,000	1
Figure 3	Generalized Geology of the Shuswap Metamorphic Complex	1: 625,000	3
Figure 4	Geological Plan – Anstey Range	1:100,000	5
Figure 5	Geology and Geochemistry of the Main Carbonatite Showing	1: 1,000	6
Figure 5A	Aeromagnetic Map – Anstey Range	1:100,000	6
Figure 6	Geochemical Plan - Niobium	1: 25,000	In Pocket
Figure 7	Geochemical Plan - Tantalum	1: 25,000	In Pocket
Figure 8	Geochemical Plan - Cerium	1: 25,000	In Pocket
Figure 9	Geochemical Plan - Lanthanum	1: 25,000	In Pocket

APPENDICES

Appendix A	Analytical Data and Methodologies
Appendix B	Petrographic Report
Appendix C	Tan Property Sampling
Appendix D	Personnel
Appendix E	Statement of Expenditures
Appendix F	References
Appendix G	Certificate

INTRODUCTION

General Statement:

While working on a Prospectors Assistance grant in 1999, five "intrusion related" gold occurrences were discovered along recently constructed logging roads. These were staked and are referred to as the GQ property. During this program several areas containing anomalous rare earth elements and tantalum in stream sediments were also identified. The recent surge in the price of tantalum and increased activity spurred by Commerce Resources on a large carbonatite occurrence near Blue River prompted the acquisition of the Tan claims. This report describes an exploration program of prospecting and geochemical sampling conducted on the Tan property in 2001.

Location and Access:

The Tan property is centered approximately 45 kilometres west-northwest of Revelstoke and 18 kilometres southeast of the community of Seymour Arm, B.C. (Figure 1) Geographic coordinates are 51°11.5' north latitude and 118° 43.5' west longitude on NTS Map No. 082M/02W.

Access to the project area is via the Trans Canada Highway between Sicamous and Revelstoke near the Louisiana Pacific (Evans) mill. A major logging road along Craigallachie Creek and Anstey River (Gorge Creek road) provides access to the Anstey Range. At kilometre 41 a road heads easterly along Third Creek and transects the western part of the property. New logging along the west side of the Perry River provides access to the easternmost boundary of the property (Figure 2).

Physiography:

The Tan property is situated in rugged terrain of the Anstey Range along the west flank of the Monashee Mountains. Glaciation has been extensive resulting in deeply incised drainages. The central portion of the property straddles the height of land between the Anstey River to the west and Perry River to the east (Figure 2). Third Creek, the largest on the property, flows westerly into the Anstey River. Several smaller drainages in the eastern portion of the property flow to the Perry River. The majority of the property slopes moderately to steeply to the southwest and easterly. Topographic elevations range from 1280 metres along Third Creek in the southwest to 2500 metres at the height of land along the northern claim boundary.

Climate and Vegetation:

The Monashee Mountain Range is characterized by temperate climate and moderately high annual precipitation. Winter snow packs of 3 to 5 metres are not uncommon at the higher elevations. The ample water supply supports a wide variety of coniferous and deciduous vegetation. Commercial stands of cedar, hemlock, fir and pine are found, usually below elevations of 1500 metres (5000 ft). At higher elevations, spruce and balsam predominate. Alpine areas are typically found above 1800 metres.

Claims:

Prior to 1999 there were no mineral claims in the Anstey Range. Discoveries made during the summer of 1999 prompted the staking of several claims (GQ property) near the headwaters of Second and Third Creeks. Exploration work in 2000 led to the staking of the Tan claims in 2001. Details of the claims are as follows:

Claim Name	Tag No.	Record No.	No of Units	Expiry Date
Tan 1	215786	384320	15	Feb 28, 2001
Tan 2	215787	384321	20	Feb 28, 2001
Tan 3	208305	384322	18	Feb 28, 2001
Tan 4	220761	384323	18	Feb 28, 2001

The claims are situated in the Kamloops Mining Division and are registered to the writer. The writer and Mr. John Kerr each own a 50% share of the property. There is no private land indicated within 14 km of the property.

History:

Exploration work is documented primarily in the northern part of the Anstey Range. Two carbonatite occurrences known as the Ren (Ce, La, Nb and Nd) were explored in 1983 by Duval Exploration and in 1989 by Teck Exploration. Teck conducted the most extensive work consisting of detailed soil, silt and rock sampling, as well as magnetic and radiometric surveys. A total of 745 metres of trenching were also completed. Although the mineralization was considered to be too low grade, there were recommendations to follow-up highly anomalous lanthanum values in a creek three kilometres to the southeast.

During August 1994, a Prospector's Assistance Grant was awarded to Mr. Terry Turner. The exploration target was stratabound lead-zinc mineralization similar to the Cottonbelt deposit on Mt. Grace north of Ratchford Creek. The work conducted by Mr. Turner straddled Ratchford Creek and covered the Ren carbonatite showing. A small lead-zinc mineralized zone was discovered along Ratchford Creek, but was not considered of economic interest. Mr. Turner recommended that "future exploration should be concentrated south of the project area".

The writer was awarded a Prospectors Assistance Grant in 1999 to explore a 300m² area northeast of Shuswap Lake. The Perry River project consisted of prospecting, stream and rock sampling in an area that had only recently become road accessible. The discovery of several new mineral occurrences prompted the acquisition of the GQ property. During the following year, under another grant, the writer focused on exploring the GQ property. Follow-up of streams containing anomalous amounts of tantalum and niobium was also conducted. Two of the primary targets are now within the Tan claims.

REGIONAL GEOLOGY

The GQ property is situated within metamorphic, plutonic and sedimentary rocks of the Omineca Belt. The metamorphic, structural and intrusive history of these rocks is complex and spans a geologic time frame from Paleozoic to Eocene.

The Omineca Belt in southern British Columbia comprises metasedimentary rocks of the Windemere and Purcell Supergroups as well as Kootenay Terrane. Also present are metamorphic core complexes, the two most local being the Shuswap and Monashee complexes (Figure 3).

Two major structural features in the region are the Adams-North Thompson fault and the *Monashee Décollement*. The *Monashee Décollement* is described as a zone up to one km thick that represents a major west dipping contractional (thrust) structure. The footwall terrane known as the Monashee Complex is the deepest exposed structural level of the southern Omineca belt. The complex consists of an Early Proterozoic paragneiss core (Frenchman's Cap dome). These rocks were intruded by 2,000 Ma granitoid plutons. Unconformably overlying the core rocks are stratified metamorphic rocks that include a basal quartzite conglomerate that in turn is covered by a thick succession of pelitic, psammitic and calc-silicate gneiss (2,000 to 770 Ma). The metamorphism of the cover rocks is regarded to have occurred from Middle Jurassic to Paleocene.

The hanging wall of the *Monashee Décollement* is rock of the Shuswap Metamorphic Complex (Selkirk Allochthon). This complex comprises a thick sequence of Late Proterozoic Windemere, Purcell and Kootenay terrane. It includes rocks of sedimentary, plutonic and volcanic origin predominantly within the sillimanite isograd. Lithologies include paragneiss, orthogneiss, quartz-mica schist and lesser amounts of marble, calc-silicate, and amphibolite. Abundant granitoid intrusions occur within the Shuswap Metamorphic Complex ranging from Devono-Mississippian to Eocene in age (Figure 3). These rocks are thought to have formed during accretion and subduction of allochthonous oceanic terranes (Brandon and Smith, 1994). One such intrusion referred to as the Anstey pluton, forms a sheared, metamorphosed elongate body situated west of the Tan and GQ properties. Radiometric dating for the Anstey pluton indicates a 92 to 94 Ma (mid Cretaceous) age.

LOCAL GEOLOGY

During the exploration on the Tan property, outcroppings and float occurrences were examined and documented. Logging roads, clearcuts and ridge tops often provided excellent bedrock exposures. Overburden thickness beyond the valley bottoms is quite thin.

Lithology:

The lithologies observed are quite diverse with several metamorphic and intrusive rock types present. Mapping by various authors indicates that the *Monashee Décollement* trends northerly through the western portion of the project area (Figure 3). The lithologies observed on the property and surrounding area consist predominantly of gneiss and quartzite with lesser amounts of schist, amphibolite, marble and calc-silicate gneiss.

Generalized geology of the Shuswap metamorphic complex and adjacent areas (modified after Wheeler and McFeely, 1991) showing locations of new intrusion-related gold prospects and granitoid intrusions. Adams-North Thompson fault (ANTF), Monashee decollement and Columbia River fault are after Parrish *et al.* (1988) and Johnson (1994). Sillimanite isograd is after Read *et al.* (1991)

•

The gneiss is generally a white to grey biotitic rock comprised of feldspar and quartz, with varying amounts of garnet. Some of this rock can be considered granite gneiss. Local boudinage structures of quartz and feldspar are not uncommon and likely reflect partial melting of these rocks. Found as locally thick units are quartzites ranging from white, grey-green to purplish in colour. Micaceous (muscovite) partings are common giving the rock a platy habit. One of the best exposures of this rock type is seen in the central part of the Tan 2 claim. Intercalated in the gneiss are lesser amounts of grey to red-brown quartz-biotite \pm muscovite \pm garnet schist. These rocks are usually fine grained, well foliated and may be locally folded, crumbly and weathered. Another rock seen on the property and throughout the region is amphibolite. This rock typically occurs as dark green to black, medium to coarse-grained bands up to several metres thick intercalated within gneiss, quartzite or schist. This rock can often be quite garnetiferous. The amphibolite is thought to represent metamorphosed mafic rich beds in original sedimentary sequence.

A relatively uncommon but distinct rock is marble that occurs as beds from several tens of centimeters to 3 metres or more in thickness. The rock is a milky white to grey-green colour and medium to coarse-grained. Flakes of silvery graphite are often disseminated through these rocks. Another uncommon but distinct rock is referred to as calc-silicate gneiss. This rock is comprised of varicoloured, fine to medium-grained bands. These rocks can occur as more irregular lenticular bodies. Their proximity to calcareous or marble units suggests a possible skarn association.

Intrusive rocks are scattered throughout the area and have several modes of occurrence. The largest area of intrusive rocks is found west of the property. The Anstey pluton is an elongate northerly trending body of Cretaceous age rock. These rocks are described as white to grey, medium to coarse-grained intrusives usually with biotite as the chief mafic mineral. Quartz content is usually >10% and there are garnetiferous zones. The closest example is seen in the southwest region of the GQ property. A foliated texture is not uncommon in the main body west of the Anstey River and attests to recent tectonic deformation.

Observed throughout the region is pegmatite. This rock is typically white to pale grey, coarse-grained and comprised of white Kspar, quartz and minor but coarse flakes of biotite and occasional muscovite. Locally these rocks contain red garnet and/or black elongate crystals of tourmaline. Pegmatite occurs as dykes and sills throughout the area and ranges from centimeters to several tens of metres wide. These rocks occur with increasing frequency further west and are especially common on parts of the GQ property. The origin of these rocks is likely both metamorphic (anatectic) and as late stage emanations from granitoid bodies. The youngest intrusive rocks are dark green, grey to brown, fine-grained, mafic (basaltic) dykes. The dykes cut all lithologies and range from a few centimeters to 1.5m+ wide and occasionally occur in clusters. Chill margins are often seen along the contacts. Mafic dykes most often strike north to north-northeast and dip steeply. Occasionally they appear to have been intruded along faults. Dykes are found in the Second and Third Creek valleys and have been observed north of the Tan property to Fifth Creek. A rather unusual rock observed near the eastern boundary of the claims is Sample T-04. Here a black, coarse, biotite rich dyke cuts gneissic rocks. The origin of this rock is unclear.

Found along a road cut in the west central part of the Tan 3 claim is *carbonatite*. The main showing consists of a pale brownish-grey, knobbly, weathered, medium-grained rock that appears similar to marble. Figure 5 is a detailed plan of the main showing. A petrographic report of the carbonatite is found in Appendix B. The carbonatite occurs

within gneiss as a conformable sill(?) approximately 0.5 metres wide that can be traced in the road bank for 10 metres. An attitude for the carbonatite yields a strike of 174° and a 34° dip to the west. The footwall of the carbonatite is a crumbly, weathered, black micaceous zone 10 - 20 cm thick. Cutting the gneiss and carbonatite is a grey, fine-grained dyke approximately 0.5 metres wide that dips steeply east and strikes nearly north south. There is evidence of there being more than a single carbonatite. Approximately 450 metres south-southwest of the main showing, a narrow (0.1m) carbonatite with a biotite rich footwall was observed (T-19). The strike and dip of this unit are virtually identical to the main zone. The position and attitude suggest that this is a separate and likely parallel carbonatite band (Figure 6). Situated 290 metres northeasterly of the main showing are scattered boulders of carbonatite along a road. Since these are uphill, up-ice and not on strike with the main showing it also points to the presence of additional carbonatite bodies. Geochemical indications also support this view.

Structure:

Although quite variable, the metamorphic fabric of the schists and gneisses generally strikes from 160° to 195° and dips from 35° to 60° westerly. Strong variations in schistosity are locally observed however no large-scale fold structures are evident. Faulting and shearing are occasionally observed with orientations ranging from 165° to 215° and dips generally steep to the west or east. Faults cut all lithologies and some display distinct dip-slip displacement. Figure 4 shows several larger scale linears (faults) that transect the Tan property area. These structures parallel the general schistosity and may have played a role in the emplacement of the carbonatite intrusions (sills). The mafic dykes for the most part are thought to have been emplaced along near vertical north trending faults.

Alteration:

By far the most common form of alteration observed is limonite staining. Weathering of the ubiquitous and finely disseminated pyrrhotite in schist and gneiss often discolours many of these rocks. Pegmatitic rocks are occasionally limonitic whereas the granitoid bodies seldom display any significant limonite staining. On occasion, sericitic alteration is observed in some pegmatites and granitic dykes.

Mineralization:

According to Minfile records, there are four mineral occurrences indicated in the area (Figure 4). Situated just south of Ratchford Creek are two mineral occurrences known collectively as the *Ren* (Minfile #082M199). Rare earth (Ce, La, Nb, Nd) and base metal mineralization (Cu, Zn, Mo) are associated with north-northwest trending, concordant carbonatite sills and tuffs. Mapping by Journeay (1983) indicates that the Ren carbonatite layer extends to the southeast. Recently these occurrences have been explored by Cross Lake Minerals for their tantalum and rare earth (REE) potential. A news release dated July 26, 2001 reported the results of trenching of the Myoff Creek carbonatite sill. It stated that the carbonatite was trenched along a length of 410 metres and found to strike 150° and dip 35° west. Cross Lake also stated that the carbonatite horizon has a potential strike length of 12 kilometres. In the same news release the company reported, "the weighted average for the combined 276.8 metres of carbonatite trenched is $34.0 \text{ ppm } \text{Ta}_2\text{O}_5$; $345.5 \text{ ppm } \text{La}_2\text{O}_5$; $732 \text{ ppm } \text{Ce}_2\text{O}_5$ and $299.2 \text{ pp } \text{Nd}_2\text{O}_5$.

Situated approximately 1.5 km and 5.5 km south-southeast of the *Ren* are two kyanite occurrences referred to as *Ratchford Creek* and *Chilly Lake*. The fourth mineral occurrence known as *Rip* (Minfile 082M027) is situated 8 km

south of the Chilly Lake occurrence. Molybdenite is described as disseminations in nepheline and pegmatite dykes that intrude biotite gneiss and schist.

The writer, while working on a Prospectors Assistance program in 1999, discovered five new mineral occurrences along new logging roads in Second Creek. Mineralization occurs in sulphide rich zones associated with calc-silicate rock near or adjacent to pegmatitic bodies. Sulphides consist of disseminations to semi-massive pyrrhotite with minor chalcopyrite and locally scheelite. Several of these showings contain gold in the 1 to 3 g/t range.

REGIONAL GEOPHYSICS

The claims are shown on an aeromagnetic base map for the Anstey Range (Figure 5A). Two magnetic patterns are evident. One is a broad north trending magnetic high straddling but primarily west of the Anstey River. This corresponds largely with the Anstey Pluton. The second notable feature is a north-south trending magnetic high that extends from the Ren carbonatite to the Tan property. The exact cause of this feature is unknown but is considered to be primarily lithologic.

EXPLORATION WORK – 2001

Exploration of the Tan property took place between September 6, 2001 and October 4, 2001. Work consisted of stream sampling, prospecting, and soil and rock sampling. Analytical data is found in Appendix A and plotted on a series of geochemical plans (Figures 6-9).

Stream Sampling:

A major component of the Tan property exploration was stream sampling. The objective was to follow-up anomalous samples from the 2000 program as well as increase sample density by testing smaller drainages.

Stream sediments were collected from the active portions of drainages and sieved to minus 10 mesh to yield a sample of approximately 400 – 500 grams. The coarse float was logged in the field to determine the lithologic components. Two full gold pans (12 to 15 kg) of hand-screened material were reduced to produce a concentrate weighing 15 to 25 grams. A total of 10 stream silt, and 9 panned concentrates were collected from the property. Stream silt samples were submitted to Bondar-Clegg Labs in Vancouver while panned concentrates were submitted to Activation Labs in Ancaster, Ontario,

Prospecting:

Logging roads provided numerous bedrock exposures in the Third Creek valley. A primary focus was on the carbonatite and otherwise suspicious bedrock and float. Representative hand specimens were collected for reference and petrographic work. In the main showing area "B" horizon soil was sampled along road cuts (Figure 5). A total

of 21 rock and 15 soil samples were collected and submitted to Bondar-Clegg Labs in North Vancouver for analysis. Locations for the rock and soil samples are shown on Figures 6 - 9.

Sample Analysis:

The stream sediment and rock samples were analyzed for 34 elements using neutron activation. Panned concentrates were analyzed for a somewhat different suite of elements also using neutron activation. Soil samples were analyzed for niobium only.

Petrography:

Vancouver Petrographics conducted an analysis of one rock specimen collected from the main carbonatite showing. The complete report is contained in Appendix B.

RESULTS

The 2001 exploration work confirmed the presence of carbonatite on the Tan claims. Prospecting and sampling indicates that other carbonatites exist over a considerable area.

Stream Sampling:

The current program yielded a number of samples containing elevated rare earth elements and tantalum. These are described as follows:

Niobium:

The results indicate anomalous niobium in streams over a north south length of 3.5 kilometres (Figure 6). The highest values, up to 859 ppm, are associated with a stream in the northeast part of the property. Another stream sampled near the south boundary of the claim in 2000 also displays consistently anomalous niobium with the highest values being furthest upstream. The source of these anomalous values though undiscovered, points to an area near the height of land. In general the anomalous niobium coincides with anomalous tantalum, cerium and lanthanum.

Tantalum:

Tantalum anomalies roughly coincide with the anomalous niobium sites. There is currently no explanation for these anomalies although one or more carbonatites is suspected.

Cerium and Lanthanum:

The GQ property contains by far the greatest concentration of anomalous cerium stream samples. The abundance of pegmatitic and granitic rocks is likely the cause of the high cerium on the GQ property. On the Tan property there are several anomalous cerium and lanthanum sites. Those streams with anomalous cerium show a moderate coincidence with niobium, tantalum and lanthanum and may reflect a carbonatite source.

Panned Concentrates:

Analysis of panned concentrates yielded highly variable results. One sample (TPC 13) contains very anomalous amounts of cerium, lanthanum and neodymium. The REE content was in fact so high that it caused interference and raised the lower detection levels of many of the elements. Interestingly this sample came from a stream near mineralized carbonatite float (T-12). Near the northeast corner of the property, sample TPC-01 contained 250 ppb gold, a value that based on past exploration is considered highly anomalous for the region.

Soil Sampling:

Soil sampling in the area of the main carbonatite showing revealed anomalous niobium extending along the road and northerly for nearly 100 metres. Values range up to 305 ppm, well above the background level of under 40 ppm Nb. This demonstrates that soil sampling should be an effective means of exploring for additional carbonatite sources.

Rock Sampling:

Highly anomalous amounts of niobium were indicated in and around the main showing. A grab sample (WP 053) collected in 1999 returned a value of 172 ppm Nb. Detailed sampling in 2000 however indicates significantly greater niobium content. Samples collected during this program yielded substantially higher values with one sample of the main carbonatite assaying 0.53% Nb₂O₅. Sample T-00A, collected across 0.35 m and along a strike length of 10 metres, contains 0.37 % Nb₂O₅. Biotite rich material in bedrock and float along the road also contains highly anomalous amounts of niobium. The origin of this material is unclear. Sample T-19, situated 450 metres southsouthwest of the main showing, is a narrow carbonatite with a biotite rich footwall zone. In this case a grab sample of the footwall material contained 546 ppm Nb. One of several pieces of carbonatite float found 290 metres northeast of the main showing contains 462 ppm Nb. The position of this float relative to the main showing indicates the presence of a separate carbonatite. It is apparent that carbonatite occurs and is inferred over a considerable area.

CONCLUSIONS AND RECOMMENDATIONS

The 2000 exploration program of the Tan property has confirmed the discovery of a new niobium bearing carbonatite. One sample from this zone was found to contain 0.53% Nb₂O₅. To date, stream sampling and prospecting has outlined a substantial area prospective for the discovery of additional carbonatite. Geochemical work has demonstrated that soil and stream sampling are effective exploration tools in the search for these rocks.

Although this was a very limited exploration program, the discoveries made thus far and the geologic setting demonstrate the potential for additional carbonatites. Cross Lake's Myoff Creek property to the north demonstrates that the carbonatites can be quite large. Further exploration of the Third Creek valley and the height of land are warranted and should include detailed geochemical sampling, prospecting and mapping. Geophysical surveys such as magnetics could also be employed to aid in the delineation of carbonatite zones.

Submittensby UENWAL G8 CIEN

Warner Gruenwald, P. Geo. November 15, 2001

APPENDIX A

. .

λ.

ι.,

-

ι.

L

L

. . .

.

1000

ANALYTICAL DATA and METHODOLOGY

Geochemical Lab Report

BONDAR CLEGG

REPORT: V01-01809.0 (COMPLETE)

REFERENCE:

SUBMITTED BY: J.R. KERR

DATE RECEIVED: 17-SEP-01 DATE PRINTED: 2-OCT-01

CLIENT: JOHN R. KERR & ASSOCIATES LTD.

PROJECT: TAN PROJECT

:

NATE								CT 7				
	FLEMENT ANA	NER OF	DETECTION	EXTRACTION	METHON	SAMPLE ITTES		512	E FRALIIUNS	NUMBER	SAMPLE PREPARATIONS	NUMBER
			PC/20/100	2,1101011101	The T Head	R ROCK	21	2	- 150	21	CONSH/SPITT & DULV	21
010920 1 AL	Au-Na03Subcontractor	- 21	5 PP8	NOT APPLICABLE	NEUTRON ACTIVATION	1) Maran	E .	-	120		RIVER ROCK CI FANTNG	21
010920 2 17	In-NA03Subcontractor	- 21	100 PPB	NOT APPLICABLE	NEUTRON ACTIVATION						CILICA CLEANING	21
010020 3 40	An-NAR3SI bcontractor	- 21	5 DPM		NEUTRON ACTIVATION						SILIUM GEEMAING	21
010020 / 7		- 21	200 ppm	NOT ADDI TCARLE	NEUTRON ACTIVATION							
010720 4 L	Mo-W075(hoostnesta	. 21	200 666	NOT ADDITCADIE	HEUTOON ACTIVITION					tentor		
010920 0 10		21	2 PPM	NUL AFFLICADLE	NEUTRUN ALITVATION	REPORT COPIES TO: P	IR. JUMN KERK			INVOICE	IU: MR. JOHN KERR	
U10920 6 N1	N1-NAUSSUBCONTRACTOR	r 21	20 PP M	NUT APPLICABLE	NEUTRON ACTIVATION	******			and a start of the st			
010920 7 Ca	Co-NAD3Subcontractor	- 21	10. PPM	NOT APPLICABLE	NEUTRON ACTIVATION	This rew	net must not		nendinal aveant	in full The	data procented in thi	
010920 8 04	Cd-NA03Subcontractor	21	10 PPM	NOT APPLICABLE	NEUTRON ACTIVATION	report is	enecific to	thre	a campler ident	ifind under M	Sample Numberil and is	ь
010020 0 0.0		- 21	1 000	NOT ADDITCABLE	NEUTON ACTIVATION	and inshi	sapeciiic to Isaniv to th		ne somples loent		sample number and is	
010720 7 78				NOT APPLICABLE	NEUTRON ACTIVATION:	appercapt	te unity to the	ę san	pres as receive	a expressed o	n a ony pasis unless	
010920 10 50		. 21	U.C PPM	NOT APPLICADLE	NEUTRON ACTIVATION	otherwise	e indicated					
010920 11 76		r 41 - 31	10 PCI	NOT APPLICABLE	NEUTRON ACTIVATION		ART	****	II SCHNNNNSSIE	************		
010920 12 56	Se-NAUSSUBCONTractor	r 21	10 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 13 Te	Te-NA03Subcontractor	r 21	20 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 14 Ba	Ba-NA03Subcontractor	r 21	100 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 15 Cr	Cr-NA03Subcontractor	r 21	50 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 16 Sr	Sn-NA03Subcontractor	r 21	200 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 17 4	V-NA03Subcontractor	21	2 PPM	NOT APPLICABLE	NEUTRON ACTIVATION				1			
010920 18 C	Cs-NA03Subcontracto	r 21	1 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 19 La	La-NA03Subcontracto	r 21	5 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 20 0	Ce-NA03Subcontractor	r 21	10 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 21 4	Sm-NA03Subcontracto	r 21	0.2 PPM	NOT APPLICABLE	NEITPON ACTIVATION							
010920 22 5	Eu-NA03Subcontracto	r 21	2 DPM	NOT ADDITCADIE	NEUTRON ACTIVATION							
010020 22 20		e 21	1 DOM	NOT ADD TOADLE	NEUTOON ACTIVATION							
010920 24 Y	yb-NA03Subcontracto	r 21	5 PPN	NOT APPLICABLE	NEUTRON ACTIVATION							
010000 07		_ ~*	0 5				1					
010920 25 LI	LU-NAUSSUCCONTRACTO	r 21	0.5 PPM	NUI APPLILABLE	NEUTRON ACTIVATION							
010920 26 50	SC-NAUSSLICONTRACTO	r 2]	U.S PPM	NUT APPLICABLE	NEUTRON ACTIVATION							
010920 Z7 H	HT-NAUSSubcontracto	r 21	2 PPM	HUI APPLICABLE	NEUTRON ACTIVATION							
UTUY20 28 Ta	Ta-NAUSSubcontracto	r 21	1 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 29 11	n Th-NA03Subcontracto	r 21	0.5 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 30 U	U-NA03Subcontractor	21	0.5 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 31 N	Na-NA03Subcontracto	r 21	0.05 PCT	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 32 B	 Br-NA03Subcontracto 	r 21	1 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 33 el	Rb-NA03Subcontracto	r 21	10 PPM	NOT APPLICABLE	NEUTRON ACTIVATION							
010920 34 7	Zr-NA03Subcontracto	r 21	500 PPM	NOT APPLICARIE	NEUTRON ACTIVATION							
010920 35 14	Mb = XP01/A	10	2 DOM	Pressed Dallat	YRAY FILMDERMEURE							
ام کی مصححات		10			ANT FLUENCOUCHUE							

Geochemical Lab Report

BONDAR CLEGG

ł.

i

IENT: JOH	N R. KERR	& ASS	DCIAT	ES L	π.																											PROJ	ECT:	TAN	PROJE	CT
PORT: VO1	-01809.0	(COMP	LETE	}					••••••								DA1	E RE	CEI	ÆD:	17-9	SEP-Û	1	DAT	ie pr	RINTE	ED:	2-001	r-01		PAGE	1 OF	3			
MPLE	ELEMENT	Au	Ir	Ag	Zn	Mo	Ńĭ	Co	Cđ	As	sb	Fe	Se	Te	8e	Cr	Sn	¥	Cs	La	Ce	. Sm	Eu	ть	۲b	Lu	Sc	Hf	Ta	Th	U	Na	Br	Rb	ZΓ	ND
MBER	UNITS	PPB	PPB	PPM	PPN	PPM	PPM	PPM I	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPN	PPH	PPM	PPM	PPM	PPN	PPM	PPM	PPM	PPH	PPM	PPM	PPM	PPM	PCT	PPN	PPM	PPM	PPM
			185									- /											e de							 -a		; ;				
JUAR		<5 -E	<100	<u>с</u>	<200	~~	<20	<10 ·	<10	<1	U.4	5.0	19	<20	680	<50	<200	2	1	190	410	21.8		· 2	5	<.5	1.5	ି ଏ ଜ	- 34	:16.D	21.0	0.35	<1	45	<500	>1000
JUBK Allen		<	-100	<5 -2	~200	~	770	30	<10	<1 	4U.2	NU.U	35	<20 	940	100	<200	्र द	5	370	770	33.2	11	5	9	0.8	8.1	ຸ່າມ	49	60.0	24.0	1.80	Z	. 85	-500	>1000
VUCK Moon		<2 -E	<100		- 220	· •2	220	150	<10 248	<1	40.Z	>10.0	<10	<20	1100	्रा	<200	्य	5	. 120	240	14.0) (4) (4)	1	0	<.5	27.0	9	- 4	1.4	0,9	0,54	୍ୟ	56	610	745
		<2 -	×100	- -	~200	2	~20	<10	< 10 	< 	-0.2	2.0	<(U)	_<20	1200	ిదర - గా	<200		1	: 50 : 140	100	5.4	~~	् <1	ୁର୍	0.5	1.5	<u>ે</u> 4	14	11.0	2.0	3.50		170	<500	595
UTUY NK		<5	<100	<2	~200	~~~	~20	<10	<1U	<1 :	<0.2	5.5	<]U	<20	1100	95	<200	~2	3	160	280	14.0	15	1	•	×.5	4.2	<2	5	5.5	7.0	2.50	2	60	<500	
01.05 MD		~	-100	æ	5/0	L	70	10	-10		-0.2	7 4	-40	~20	2000	120	-200	<u>_</u>									1. 17. A			74 0	7.0					
		~	-100	· ~	-200	6	20	77	10		-0.2	J.0 7 7	- 10	່~20 >∩	2000	50	2200	. <u>~</u>	1	47	100	1/ 0	2	ः रा		<.2	12.0	. 0	<u>्</u> य	24.0	3.8	2.10	4	110	<500	
0+20 MR		~	-100	Å	~200	2	~20	11	-10	· • •	-0.2	1.J 6.6	- 10	`~20 `∠⊃0	790		~200	د :	ି କୁ ଜୁନ	:150 75	140	0.2	,	-1		- S. P	20.0	· 4	1		2.7	0.41		29	<>00	
0+10 SP		-5	<100	5	<200	0	220	28	<10	-1	-11 2	7 1	15	<20	(20	71	~200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	220	140	25.7	. 4 7 0	2	2		11 0	· •	77	5.5 0.37	4.0	1.70		19	500	
P1119		<5	<100	-5	200	7	76	36	<10	<1	an 2	7 5	<10	~ <u>∠</u> 0	<100	140	<200	 	R	023	100	10.0	جر ا	-		2.5	5.0	2 F 5	്ച	32.0	7 5	-0.76		01 10	-500	
				~	-200	. 1		~	- 10	~1			-10	-60	~)00		-200			76	170	10.0	· ~	: 1	2	~	5.0	. P	Ē	. 22.0	2.7	U.43	2	. 12	<200	
R03		<5	<100	<5	210	0	120	54	<10	<1	⊲0.2	8.5	<10	<20	280	370	<200	0	,	20	24	. र व्र	2	· ~1	-5	~ 5	44 0		-1	. 1 0	1.6	1 70	وسريا	90	-500	
R04		-5	<100	-s	340	~2	700	85	<10	<1	≪0.2	10.0	; <10	<20	200	.810	<200	2	5	100	220	14 0	ביייב דיון	<1		्र २	25 0	- A	7	13.0	7.4	0.50	، ~ 1	270	~500	
R10		<5	<100	ক	<200	-2	49	20	<10	<1	1.6	3.5	<10	<20	2000	120	<200	2	3	41	71	. 4.8		<1	ँ	< 5	16.0	ँर	1	12 0	4 1	0.56		120	-500	
R12A		<5	<100	ক	-200	<2	-20	<10	<10	<1	<0.2	<0.5	<10	<20	270	<50	<200	ં રુ	্র	-	<10	0.8	2	<1	-5	<.5	0.9	~2	×1	5.7	0.9	0.25		∷<10	<500	17
R128		<5	<100	⊲5	<200	<2	-20	<10	<10	<1	<0.2	0.6	<10	⊲20	590	-50	<200	⊲2	<1	8	16 16	1.3	~2	: <1	ŝ	<.5	2.4	2	<1	4.1	1.6	0.32	-	18	<500	25
														÷										•			1.00	. –		3						-
R12C		ব	<100	ব	<200	2	<20	<10	<10	<1	<0.2	3.3	<10		2000	72	200	2	3	160	250	.11.0) - 2 2	1	5	<.5	3.8	11	6	7.7	13.0	3.70	1	140	830	462
R15		-5	<100	ক	<200	<2	37	15	<10	<1	0.2	>10.0	<10	<20	<100	65	<200	22	<1	210	310	8.5	i .3	<1	-5	<.5	13.0	2	3	13.0	4.1	0.09	1	<10	-500	
R16		<5	<100	\$	<200	2	<20	<10	<10	<1	<0.2	2.2	<10	<20	1500	<50	<200	2	5	110	190	10.0) 2	<1	-5	<.5	3.6	3	2	3.5	6.8	1.60	i ≺1	130	-500	202
R19A		ব	<100	4	<200	~2	2 0	<10	<10	<1	<0.2	1.9	<10	<20	1100	<50	<200	2	3	28	53	3.5	2	<1	-5	<.5	7,1	-2	<	14.0	1.1	1.70	्र चि	54	<500	27
R19B		-5	<100	ଶ	<200	<2	<20	41	<10	<1	11.0	8.1	<10	∕<20	520	58	<200	2	2	86	260	10.0	3	<1	്ട്	<.5	16.0	7	11	5.1	10.0	1.50	া ব	37	510	546
																				•												: :				
R21		<5	<100	<5	<200	<2	~ 0	<10	<10	10	75.7	1.0	<10	<20	750	<50	<200	2	<1	: 1é	21	1.8	2	<1	s	<.5	2.3	<2	. <1	16.0	1.8	0.33	4	27	<500	
											ни. - Кар								.:				 													
			de la										۰.			;					: '							·	d ig							
										•	2, 111 2, 112														1			•					11		··· ··	
																			14 14																	
			na Mr. Pri s				. '		1																:											
					· .		••••				ана 1911 г. – Салана 1911 г. – Салана			÷.			· · · · ·									1							· : ·			
																								-							1 1					
																	1											•							1. 1. s. s.	
																													1. 1							

Geochemical Lab Report

BONDAR CLEGG

REPORT: V01-	-01814.0 (a Ass COMP	LETE)														DATE	REC	EIVE	D: 17	7-SEP	-01	1	DATE	PRI	ITED:	2-0	CT-C	1	PAG	PR = 1	OF 3	ί : τ έ	AN PROJE
SAMPLE Number	ELEMENT UNITS	Au PPB	lr PPB	Ag PPM	2n PPN	Mo PPM	Ni PPM	Co PPM	Cd PPN	As PPM	SD PPM	Fe PCT	Se PPN	Te PPM	Ba PPN	Cr PPM	Sn PPM	W PPM I	Cs PPM	La PPM	Ce	Sm PPM	EU PPM	ть Ррм	Yb PPM	Lu 'PPM	Sc	Hf PPM	Ta PPM	Th PPM	. U PPM	Na PCT	Br PPM	Rb PPM	Zr
																									÷							:			
T 0+00		<5	<100	-5	<200	3	-20	<10	<10	3	0.2	4.0	<10	<20	540	<50	<200	<2	4	72	170	9.2	3	<1	-5	<.5	9.1	13	3	ප.0	5.6	1.20	6	130	<500
T 0+12		ব	<100	ক	<200	<2	<20	<10	<10	2	0.2	3.1	<10	<20	620	-50	<200	<2	3	65	150	8.2	3	<1	5	<.5	7.9	10	2	23.0	4.6	1.50) 2	100	<500
T 0+255		<5	<100	ح	<200	2	<20	<10	<10	3	0.2	3.2	<10	<20	490	<50	<200	<2	5	72	160	9.3	2	<1	ିତ		8.4	11	2	24.0	4.5	1.40	5	92	<500
T 0+501		<5	<100	4	<200	2	22	<10	<10	<1	<.2	1.9	<10	<20	600	59	<200	2	3	92	180	12.0	2	1	ঁত	<.5	7.2	10	2	36.0	5.4	1.30	2	: 70	<500
T 0+755		4	<100	ক	<200	<2	<20	<10	<10	2	0.3	2.8	<10	<20	620	53	<200	2	4	75	160	10.0	<2	<1	Ś	<.5	8.0	10	2	25.0	4.6	1.10	j	110	570
			ie:						j.										·•			•			4.29	3									
T 1+00		ক	<100	-5	<200	<2	<20	<10	<10	2	0.3	2.8	<10	<20	560	<50	<200	<2	5	57	120	7.9	2	<1	<5	≺.5	7.0	9	1	19.0	3.8	1.50	4	69	<500
T 0+125		<5	<100	-5	<200	<2	<20	15	<10	2	<.2	4.6	<10	<20	530	52	<200	<2	5	90	200	12.0	2	<1	ব	<.5	11.0	9	4	24.0	6.6	1.20	j . <mark>7</mark>	120	<500
т 0+25 м		-5	<100	ক	<200	<2	60	. 29	<10	2	<.z	7.1	<10	<20	690	130	<200	<2	6	130	340	15.0	3	2	-5		16.0	9	10	28.0	12.0	0.88	5 11	190	750
T 0+50 %		<5	<100	ক	<200	<2	<20	<u></u> 17	<10	. 2	<.2	5.2	<10	<20	560	67	<200	<2	4	97	260	11.0	<2	1	<5	<.5	11.0	10	5	23.0	7.8	1.10) – Š	96	<500
T 0+753		4	<100	<5	<200	2	59	20	<10	- 1	<.2	5.6	<10	<20	620	94	<200	<2	7	130	330	15.0	4	2	< 5	.0.7	12.0	9	8	34.0	10.0	1.70) 10	150	<500
T 1+00 9		-5	<100	ঁত	<200	~2	50	<10	<10	<1	<.2	2.4	<10	<20	700	79	<200	2	2	99	200	14.0	2	z	-5		1D.0	13	2	29.0	5.8	1.20	ງີ 3	66	<500
T21 0+00		ক	<100	ंद	<200	<2	<20	<10	<10	<1	<.2	3.2	<10	<20	510	75	<200	· 2	4	91	200	11.0	2	1	~5	i <. 5	10.0	11	2	25.0	7.5	1.00) 10	68	570
T21A 0+255		ব	<100	4	<200	~2	35	10	<10	<1	<.2	3,1	<10	<20	650	62	-200	<2	3	110	240	13.0	<2	1	<	i <.5	10.0	14	5	36.0	8.1	1.60) · 7	120	<500
T218 0+25s		<5	<100	6	<200	<2	<20	14	<10	2	<.2	3.6	<10	<20	620	67	<200	<2	3	110	250	14.0	- 2	2	. 4	<.5	11.0	13	. 3	31.0	10.0	i.1.20) 16	i 81	<500
T21 0+50S		\$	<100	<5	<200	<2	<20	15	<10	<1	<.2	3.7	<10	<20	450	52	<200	. <2	3	. 110	290	15.0	2	2	<	0.5	11.0	· 12	2	32.0	11.0	1.00) 12	62	640
TSL01		<5	<100	4	<200	2	-48	17	<10	2	<.2	6.3	<10	<20	640	140	<200	. <5	3	270	550	30.9	5	4	15	2.2	20.0	140	14	55.8	28.0	1.6	ן ניינ	130	5400
TSL02		<5	<100	ব	<200	2	35	.<10	<10	1	<.2	3.8	<10	<20	660	ব্ব0	<200	<2	2	73	170	15.0	Ż	3	16	2.3	15.0	99	5	17.0	11.0	ं1 .8 0) ្ម៍ 3	130	3100
TSL05		4	<100	- 5	<200	3	20	11	<10	2	0,2	3.6	<10	<20	510	56	<200	<2	3	100	200	- 18. 0	3	3	-10) 1.5	12.0	- 46	6	22.0	15.0	i 1.7 0) 8	1,110	1600
TSL06		-5	<100	i 4	<200	<	-4	_<10	<10	2	<.2	3.9	<10	.<20	650	82	<200	<2	4	180	380	21.6	4	3	1	3 1.3	13.0	37	7	29.0	15.0	1.40) 6	110	1500
TSL07		4	<100	< 5	<200	<2	: <2(<10	<10	2	<.2	3.7	<10	< 20	790	98	<200	2	1	240	490	30.1	7	3	<	6-0.7	17.0	20	16	56.2	18.0	1.00	<u>יי</u> נ ניין	55	900
TSL08		14	<100	5	210	0	20	11	<10	2	<.2	4.2	<10	Q 0	63D	75	<200	4	3	150	300	20.0	3	3	: 10)):1.5	13.0	45	7	24.0	36.0	1.7) IC	110	2000
TSL09		<5	<100	া ক	<200	0	57	12	<10	- <1	<.7	5.9	<10	<20	710	81	<200	. 2	3	170	370	29.7	0	Ę	1	3 2.A	19.0	120		45_n	20.0	I P	a 7	, 17r	4100
TSL13		<5	<100	6	200		4	2 13	<10	<2	<.2	5.7	<10	<20	1500	180	<200	ক	- 4	848	1210	33.7	4	7		5 0.9	18.0	9	2	61.6	9 1	2.7	 3 11	. oc	< <u>500</u>
TSL14		<5	<100	- -	-200		4	12	<10	2	<:2	3.9	<10	<20	700	84	200	<2	1	84	190	14.0) 🤕	-		5 0.5	11.0	12	5	28.0	8.6	0.7	7 9		580
TSL15		ৎ	<100) < 5	<200) <z< td=""><td>2</td><td>) 13</td><td><10</td><td>1</td><td><.Z</td><td>3.3</td><td><10</td><td><20</td><td>610</td><td>54</td><td><200</td><td><2</td><td>4</td><td>73</td><td>170</td><td>11.0</td><td>) ⊲2</td><td>1</td><td></td><td>5 0.5</td><td>10.0</td><td>10</td><td>Z</td><td>21.0</td><td>5.8</td><td>0.7</td><td>5 10</td><td>69</td><td><500</td></z<>	2) 13	<10	1	<.Z	3.3	<10	<20	610	54	<200	<2	4	73	170	11.0) ⊲2	1		5 0.5	10.0	10	Z	21.0	5.8	0.7	5 10	69	<500
TSL17		4	<100) <5	<200) <2	2) 11	<10	i <1	<.2	23.4	<10	<20	680	74	<200) 3	3	180	380	24.4	. 4	3	s	5 0.5	14.0	22	4	47.0	13:0	1.2	D 5	76	820
TSL18			<100) <	<200) <	2) 21	<10	i <1	<.2	23.3	<10	-20	740	90	<200	2	. 4	120	250	18.0	2	2		\$_0.6	13.0	20	. 2	39.0	8.0	0.8	0 j ž	j	680
			-10		- 200) 22	, ż	15	. z10		14	ं च	210	-20	69 0	59	-700	<u>در ا</u>		120	- 350	10 r	1		هد د		. 11 1	ć	- 4	70 0	50.0	ໂດຍເ		:	con

19

CLIERT: JOEN B	. KERR & AS	SOCIATES LTD.				PROJECT	: TAN PRO	JECT		
REPORT: V01-01	814,1 (COM	PLETE)	DATI	E RECEIVED	12-0CT-01	DATE	PRINTED:	24-0CT-01	PAGE	1 OF 1
SAMPLE	ELEMENT	No								
NUNSER	UN179	2.5%								
S1 T 0+00		51								
S1 T 0+123		39								
\$1 T 0+258		33								
81 T 0+508 _		24								
91 T 0+755		29								
61 T 1+005		21								
51 T 0+12N		134								
51 T 0+25W		305								
51 T 0+50N		159	•							
51 T 0+75N		173								
31 T 1+00N		41								
81 721 0+00		50								
81 T21A 0+258		51								
81 7218 0+258		52								
81 721 0+538		<u>62</u>							-	
T1 T5101		IS								
TI TELO2		37								
TI TELOS		125								
71 TSLOS		241								
71 78107		440								
71 78L09		199								
TI TELDO		55								
T1 TSL13		35								
71 T5514		22								
T1 T8113		24								
71 TSL17		35								
71 73118		21								

71 75120

, FEPR (AS	SOCIATES	LTC.		FLOJECT:	TAN PROJECT	
809.2 (COM	PLETE)		DATE RECEIVED 12-	-OCT-01 DAIE I	PRINTED: 23-OCI-01	PAGE 1 OF 1
ELEMINT	芯	No				
UN 176	7 2X	PPX				
	442					
	45					
	771					
	>1000	1035				
	>1000	1052				
	90					
	. FAPR & AS 809.2 { Con Element UN175	. FRPR & ASSOCIATES 809.2 (COMPLETE) ELEMENT Xb UNITS FPM 442 45 771 >1000 >1000 90	. FRPR & ASSOCIATES LTD. 809.2 (COMPLETE) EIEMENT No No UNITS FPN PPN 442 45 771 >1000 1035 >1000 1052 90	. FEPR & ASSOCIATES LTD. 809.2 (COMPLETE) DATE RECEIVED: 12- ELEMENT ND ND 442 45 771 >1000 1035 >1003 1052 90	. FRPR & ABSOCIATES LTD. FROJECI: 809.2 (CONFLETE) DATE RECEIVED: 12-OCT-01 ELEMENT No UNITE FPM 442 - 45 - 771 >1000 >1003 1052	. FRPR & ABBOCIATES LTD. FROJECT: TAN PROJECT 809.2 (COMPLETE) DATE RECEIVED: 12-OCT-01 DATE PRINTED: 23-OCT-01 ELEMENT ND 442 46 771 >1000 >1000 1035 >1000 1052

i

ſ

٤,

BONDAR CLEGG

CLIENT: JOHN R. K				R	EFERENCE:	
PROJECT: TAN PROJ	ERR & ASSOCIATES LTD. Ect		DATE RECEIVED:	S 09-0CT-01	UBMITTED 8Y: J.R. KER Date Printed: 12-0	R CT-01
DATE PPROVED ORDER	ELEMENT	NUMBER OF Analyses	LOWER DETECTION LIMIT	EXTRACTION	METHOD	
011011 1 Nb205 011011 2 Ta205	(C51 - Nb205 (C51 - Ta205	3 3	0.01 PCT 0.01 PCT		INDUC. COUP. INDUC. COUP.	PLASMA PLASMA
SAMPLE TYPES	NUNBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
R ROCK	3	2 -150)	3	CRUSH/SPLIT & PULV. RIVER ROCK CLEANING	1
1/1	le ronart miet nat ha				ed in this	
Г¢)	is report must not be port is specific to the	iose samples i	dentified under /	Sample Number	ed in this " and is	
rej apj ot! ****	is report must not be port is specific to the blicable only to the s herwise indicated	samples as rec	dentified under '	Sample Number	ed in this " and is unless	
re apj oti ***	is report must not be port is specific to the blicable only to the s nerwise indicated	nose samples j samples as rec	dentified under '	Sample Number	ed in this	
re ap oti ***	is report must not be port is specific to the blicable only to the s nerwise indicated	nose samples j samples as rec	dentified under /	Sample Number	ed in this " and is : unless	
re ap oti ★★★	is report must not be port is specific to the blicable only to the s nerwise indicated	nose samples is rec	dentified under /	Sample Number	ed in this " and is : unless	
re ap oti ★★★	s report must not be port is specific to the blicable only to the s nerwise indicated	nose samples is	dentified under /	Sample Number	ed in this	
re ap oti ★★★	is report must not be port is specific to the blicable only to the s nerwise indicated	nose samples j samples as rec	dentified under	Sample Number	ed in this	
	is report must not be port is specific to the blicable only to the s herwise indicated	nose samples j	dentified under '	Sample Number	ed in this	

Bondar Clegg Canada Limited 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Geochemical Lab Report

BONDAR CLEGG

REPORT: VO1	-01809.1 (CO	NPLETE)		DATE RECEIVED: 09-OCT-01	DATE PRINTED: 12-OCT-01	PAGE	1 OF ;
SAMPLE Number	ELEMENT UNITS	Nb205 PCT	Te205 PCT				
R2 TOOBR R2 TOOAR R2 TWP53		0.43 0.37 0.53	<0.01 <0.01 <0.01				
			······				
							-
					•		
						•	
		•					

130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

ļ

-T

~

٣

i.

L

Geochemical Lab Report

BONDAR CLEGG

CLIENT: JOHN I REPORT: VOI-OJ	R. KERR & ASS 2076.0 (COMP	OCIATES LTD. PLETE)	DATE RECEIVED: 16-OCT-D1	PROJECT: NOME GIVEN DATE PRINTED: 22-OCT-01	PAGE 1 OF 2
SAMPLE NUMBER	ELEMENT	Nb PP N			
\$1 TSL-21		41			· · · · · · · · · · · · · · · · · · ·
				·····	
				-	
		.,,	······································		
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••				
			Bondar Clegg Canada Limited	ADE C	
		130 Pembe	rton Avenue, North Vancouver, BC, V7P Tel: (604) 985-0681, Fax: (604) 985-107	2KD, Canada 1	

Activation Laboratories Ltd. Work Order: 23121 Report: 22920

Sample ID	Au	Ag	A	Ba	Br	Ca	Co	Cr	Ca	Fø	Hf	Hg	lr i	Мо	Na		di R(ь :	5b \$	c	Se	Sr	Ta	Th	U	w	Zn	La	C C	e Nid
·	ppb	ppm	ppm	ppm	ррт	%	ppm	ppm	ppm	%	ppm	ppm	ррь	ppm	*	pp	n ppr	n pp	ndel un	πp	pm	*	ррт	pp m	ppm	ppm	pp m	ppm	ppr	n ppm
TCP-01	250	-5	-2	1400	-5	-3	15	126	-2	18.9	450	-5	-50	-20	1	-20	0 20:	1 -0	.2 34.	7	-20	-0.2	42	172	79.9	43	325	917	124	0 359
TCP-02	20	-5	-	1000	-5	-2	10	56	-2	6.39	168	-5	-50	-20	2	-20	0 -50	0 -().2 24.	2	-20	-0.2	7	102	18.2	-4	-200	460	72	2 191
TCP-05	5	-5		1200	-5	-2	20	115	-2	8.5	250	-5	-50	-20	2	-20	0 -50	0 -().2 27.	5	-20	-0.2	33	152	50.6	-4	-200	441	72	9 254
TCP-07	15	-5		-200	-5	-3	22	144	-2	20.5	174	-5	-50	-20	· 1	70	3 -50	0 -0).2 43.	1	-20	-0.2	85	275	99.9	30	-200	912	141	0 445
TCP-09	20	-5	-3	200	-5	-5	15	91	-2	24	600	-5	-50	-20	1	-28	5 -52	2 -(). 4 42 .	7	-20	-0.2	20	298	82.6	41	-200	1260	174	0 521
TCP-13	-70	-49	-11	-1200	-10	-21	-17	-67	-11	10.9	- 54	-20	-50	-20	1	-138	0 -24	1 -1	1.8 54.	6	-41	-0.3	-18	295	61.7	-18	-464	8880	838	0 2970
TCP-14	-5	-5	; -:	2 740	-5	-1	18	139	-2	15.6	25	-5	-50	-20	1	- 20	07	1 -().2 34.	5	-20	-0.2	6	66.8	17.6	11	-200	290	49	4 168
TCP-17	-5	-5	i -1	200	-5	-2	11	104	-2	10.1	39	-5	-50	-20	1	-20	0 -50	0-0	0.2 40.	6	-20	-0.2	14	157	38	37	-200	561	85	0 288
TCP-20	24	-5) 4	2 1100	-5	-2	18	104	-2	14.1	44	-5	-50	-20	1	-20	0 -50	0 -0).2 51.	5	-20	-0.2	18	120	54.6	11	-200	275	44	2 154
DMMAS-18-2085	665	-5	2070) 440	-5	8	62	150	-2	8.41	3	-5	-50	-20	1	-20	0 -56	0 0).9 23.	2	-20	-0.2	-1	2	-0.5	20	330	14	2	7 23
Accepted Value-DMMAS-18B	544+-72		2020+-22	435+-150	2.5+-1.5	7+-2	58+-15	151+-20		8.05+-0.85	2+-1				0.74+-0.48		38+-1	0 124	-3 20.5+-3.	4				1.5+-0.5		19+-2	250+-50	12.2+-1.3	23+-	3 11+-3

T.

.

Activation Laboratories Ltd. Work Order: 23121 Report: 22920

Sample ID	Sm	Eu	Tb	Yb	Lυ	Mass
	ppm	ppm	ppm	ppm	ppm	g
TCP-01	58.6	11.2	6	39	6.4	20.31
TCP-02	36.7	3.8	6	35.4	5.6	15.04
TCP-05	49.1	9.4	7	42.1	6.5	17.74
TCP-07	83.3	20.4	9	18.7	3.1	20.44
TCP-09	87.8	9.5	18	80.6	12.4	20.23
TCP-13	264	24.4	10	27.2	4	9.49
TCP-14	36.9	5.4	5	21.6	3.2	15.01
TCP-17	61.7	8.5	8	22.9	3.6	19,45
TCP-20	30.9	4.8	4	25.6	3.8	18.29
DAMAS_18_2085	4.3	12		20	0.6	28.00

Accepted Value-DMIMAS-188 4.1+-0.5 1.2+-0.2 0.8+-0.35 3.6+-0.6 0.54+-0.05

Bondar Clegg	Author	:	Becquerel Labs
North Vancouver	Revision No.	:	4
	Expiry Date	:	03/07/02

MDINAA : General Description for Instrumental Neutron Activation Analysis (Subcontracted)

MDINAA : General Description for Instrumental Neutron Activation Analysis (Subcontracted) SCOPE :

Instrumental neutron activation analysis (INAA) is especially powerful in its sensitivity and throughput and in its capacity to accurately determine many elements on a single sample. INAA does not require chemical treatments of samples with their attendant possibilities of losses and contamination and incomplete dissolution.

PRINCIPLE:

For stream sediments and soil samples, the neutron activation analysis method involves the transfer of the sample material to tared, plastic, water-tight vials of 2.5,15 or 45 ml capacity. (We do not recommend analysis of samples less than one gram in weight.) Note that the weight of the sample analyzed depends upon the packing density of the sample material. Each vial is identified with a bar code and also has a flux monitor affixed to the base.

The vials are stacked into one foot long bundles and the bundles are submitted for exposure to a flux of neutrons at a nuclear reactor. These bundles are inserted into the core of a nuclear reactor for a short period of time. In the RIFLS reactor sites, the bundles are rotated during irradiation so that there is no horizontal flux variation. This irradiation causes many of the elements in the sample to become radioactive and begin to emit radiation in the form of penetrating gamma rays whose energies (or wavelengths) are characteristic of particular elements.

After an appropriate decay period, the irradiated samples are loaded onto the counting system. There the sample weight and the sample LD, are verified before the sample is placed close to a gamma-ray spectrometer with a high resolution, coaxial Germanium detector. Gamma rays radiate continuously and the interaction of these with the detector lead to discrete voltage pulses proportional in height to the incident gamma-ray energies. Our specially developed multichannel analyzer system sorts out the voltage pulses from the detector according to their size and digitally constructs a spectrum of gamma-ray energies versus intensities. The counting time varies from one to thirty minutes per sample, depending upon the analysis. By comparing spectral peak positions and areas with library standards, the elements comprising the samples are qualitatively and quantitatively identified. The results of the analysis are computed and data reports are generated. In addition Bondar Clegg QC protocol requires Bondar Clegg to insert one reference standard and analytical repeat per 30 samples. This internal QC must pass established tolerances before the report is approved by authorized personnel and issued to the client.

Note: Both thermal and epithermal irradiation is used depending upon the nature of the sample and the elements of interest. For example, thermal irradiation can be used for low activity materials such as vegetation and this improves the sensitivity for most clements. However, iron, scandium and sodium levels are often significant in rocks and sediment samples, and their gamma rays elevate the spectral background so that the peak definition is poorer. Epithermal irradiation is used to provide better gold analysis¹. Epithermal irradiation reduces the overall activity and improves the peak to background resolution because the gold cross-section is 15 times higher epithermally than thermally. As well, these samples are safer to handle because of the lower activity.

1. Reference: Stuart, D.C., and Ryan, D.E., "Epithermal neutron activation analysis with a Slowpoke nuclear reactor", Canadian Journal of Chemistry, Vol. 59, No. 10, 1981, p. 1470-1475.

PRECISION:

Expected Toleran	xe
Method Detection Limit	<u>+ 100%</u>
(MDL)	
10 x MDL	<u>+ 20%</u>
>10 x MDL	+_6%

APPENDIX B

1

....

 $\left[\right]$

•

PETROGRAPHIC REPORT

Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

webpage: www.members.home.net/vanpetro

Report 010576 for

John R. Kerr, John R. Kerr & Associates, 1702 - 438 Seymour Street, Vancouver, B.C., V6B 6H4

September, 2001

Sample: TWP-53 Carbonatite from Shushwap Complex

Summary:

Sample TWP-53 is a medium to coarse grained carbonatite dominated by calcite with disseminated apatite, tremolite, phlogopite, columbite, and pyrrhotite, and minor pyrite, garnet, and scheelite. A moderate foliation is defined by elongation of mafic grains.

John Grame

John G. Payne, Ph.D., Tel: (604)-597-1080 Fax: (604)-597-1080 (call first) email: jgpayne@telus.net

Sample TWP-53 Carbonatite: Calcite-(Apatite-Tremolite-Phlogopite-Columbite)

The sample is a medium to coarse grained carbonatite dominated by calcite with disseminated apatite, tremolite, phlogopite, columbite, and pyrrhotite, and minor pyrite, garnet, and scheelite. A moderate foliation is defined by elongation of mafic grains.

mineral	percentage	main grain size range (mm)
calcite	82-85%	0.5-2
apatite	5- 7	0.5-1.7 (a few up to 2 mm long)
tremolite	3-4	0.5-2
phlogopite	2-3	0.3-1.5 (one grain 3.5 mm long)
columbite	1-2	0.3-1.2
pyrrhotite	1	0.1-0.3
pyrite	0.3	0.2-0 7
Na-amphibole	0 1	0.05-0 1
garnet	minor	0.35
scheelite	trace	0.35
chalcopyrite	trace	0.01-0.02

Calcite forms anhedral, slightly to locally moderately interlocking grains.

Apatite forms equant to prismatic grains, many of which have well rounded outlines.

Phlogopite forms anhedral flakes intergrown coarsely with calcite. The mineral is pale to light brown in colour with weak pleochroism.

Tremolite forms anhedral to subhedral, colourless, equant to prismatic grains. A few contain irregular patches up to 0.1 mm in size of a Na-amphibole with pleochroism from light to medium greenish to grayish blue. Many of these patches are along the margins of grains. They give the amphibole grains containing them a nearly black colour in the hand sample.

Columbite forms anhedral, commonly poikilitic grains intergrown with calcite, either alone, in clusters of a few grains. It is pleochroic from medium blood red to dark blood-red and nearly opaque. Anisotropism in reflected light is weak to moderate. Hardness is 5. Some grains are associated with tremolite and phlogopite. It also contains 1-3% disseminated inclusions of garnet. Although reference books list columbite as being opaque, the deep red colour has been described for tantalite, the other end member of the columbite-tantalite solid solution series, and it is probable that this colour extends to some varieties of columbite (itself containing a solid solution series between Fe and Mn).

Pyrrhotite forms disseminated, equant, interstitial grains and a few patches up to 1 mm long of a few grains. Some are altered slightly on their margins to secondary pyrite and/or hematite.

Pyrite forms disseminated anhedral grains. Some subhedral to euhedral grains from 0.03-0.1 mm in size are intergrown with pyrrhotite.

Scheelite forms one rounded grain

1

Garnet forms one rounded, pale orange grain intergrown with calcite. It also occurs in two columbite porphyroblasts as disseminated, minor to moderately abundant grains (0.03-0.1 mm).

Chalcopyrite forms minor grains associated with pyrite and pyrrhotite.

APPENDIX C

TAN PROPERTY SAMPLING

Location	Sample	UTM Coordinates		Samples	Description
Number	Туре	Easting	Northing	Collected	Description
T-01	Creek	381773	5674735	TPC and TSL	~25% garnets, low opaques, minor apatite, kyanite. Float: gneiss, minor pegmatite, marble.
<u>T-02</u>	Creek	381771	5674481	TPC and TSL	Moderate garnet and black sand, minor zircon, 10% intrusives, mainly gneiss.
T-03	Outcrop	381520	5673387	TR	Chip/1.3 meter - across full width of biotite rich shear and basic dyke. Strike- 165°, Dip- 65° west.
T-04	Outcrop	380940	5673387	TR	Chip/1.5m - across width biotite-rich dyke. Strike- 010°; Dip-steeply west.
T-05	Creek	380940	5672745	TPC and TSL	Small seep, limited boulders gneiss/quartzite. Moderate garnet, minor zircon.
<u>T-06</u>	Creek	380567	5672750	TS	Mainly gneiss, minor pegmatite (south tributary).
T-07	Creek	380532	5672824	TPC and TS	Gneiss, minor pegmatite and possible sygnite. Low garnet and opaques; moderate zircon.
T-08	Creek	380580	5672907	TSL	South flowing tributary, dominant gneiss boulders
т-09	Creek	382503	5670807	TPC and TSI	180 m west of Perry River road. Boulders mainly gneiss and quartzite and pegmatite, possible marble. Low garnet,
	Cleek 382503 5070807 IFC and ISI			moderate zircon, high opaques.	
T-10	Outcrop	381561	5667553	TR	Chip/0.1 meter. Lens of marble with small seams of sulphide-rich basic dyke
T-12	Float	378447	5670993	TR	Considerable float carbonatite. Sample A- low mafies; Sample B- moderate biotite; Sample C - high content of biotite and
					other mafics
T-13	Creek	378487	5670968	TPC and TSL	Mainly gneiss, minor quartzite and pegmatite; High garnet - coarse crystals.
<u></u>	Creek	378907	5670610	TPC and TSL	Much variation boulders; gneiss, schist, quartzite, pegmatite, vcin and aplite. Apatite, monazite?, garnet; low opaques.
<u>T-15</u>	Creek	378777	5670723	TSL and TR	Gneiss, schist, calc silicate. Chip sample calc-silicate boulder
T-16	Float	378573	5670756	TR	5-6 boulders of carbonatite in overcast of road at switchback. Moderate mafics
T -17	Creek	378339	5672553	TSL and TPC	Dominant gneiss, minor quartzite and pegmatite. Large west flowing creek from divide. High garnet, low opaques.
					Monazite, apatite, zirconium and kyanite noted.
<u>T-18</u>	Dry Creek	378169	5671838	TSL	Collection from three drainages in ditch.
					Carbonatite body exposed in road-cut. Size cannot be determined as outcrop follows road. Moderate to high mafics, mainly
T-19	Outcrop	378087	5670325	TR	biotite. Sample 19A - chip/ 0.1 meter carbonatite; Sample 19B - grab biotite-rich zone.
	•				Strike -170° ; Dip -40° west.
T-0 00	Outcrop	In area o	f WP 053	Rocks - 9	All "B" horizon, collected at top of road bank
— —— —				<u> 50118 - 11</u>	
T-20	Creek	378523	5670376	TSL and TPC	same creek as 1-14, 400 m downstream. Gneiss, calc-silicate, possible carbonatite. Mainly garnet, some sphene, zircon
T-21	Soil			Soils - 4	South projection of main carbonatite - 300 maters from main should be faile taken alow much start in the interview
				0013	south projection of main carbonatic, ~500 meters from main snowing. Sons taken along foad across projected strike,

and the second second

APPENDIX D

PERSONNEL

FIELD DAYS:

L.

-

ы.

.....

 \Box

W. Gruenwald, P. Geo.	
September 6-10, Oct 4, 2001	6 days
J. Kerr, P. Eng.	
September 6-10, 2001	5½ days
OFFICE DAYS:	
W. Gruenwald, P. Geo.	
November 12-15, 2001	2½ days

:

J. Kerr, P. Eng.	
October 31, 2001	1 day

APPENDIX E

ς.,

STATEMENT OF EXPENDITURES

LABOUR: W. Gruenwald, P. Geo. 8½ days @ \$400/day	\$3,400.00	
J. Kerr, P. Eng. 6½ days @ \$400/day	2,600.00	
E. Gruenwald, Drafting/Secretarial 20 hours @ \$25/hour	<u>500.00</u>	\$6,500.00
GEOCHEMICAL/ASSAY: Bonder Clagg Labe	\$1.556.06	
Activation Labs:	\$1,550.05 190.46	
Vancouver Petrographics:	<u>164.51</u>	1,911.03
VEHICLE COSTS: J. Kerr 1330 km @ \$.38/km	505.40	
W. Gruenwald 730 km @ \$.38/km	<u>277.40</u>	782.80
ACCOMMODATION/MEALS: 9 man days @ \$60/man/day		540.00
SUPPLIES: Flagging, thread, sample bags, aluminum tags		94.50
REPORT COMPILATION AND MISCELLANEOUS: Photocopies, map printing, report binding, telephone, freight		<u>100.00</u>
TOTAL:		<u>\$9,928.33</u>

1

.

APPENDIX F

r --

b.....

REFERENCES

ļ

1

Gruenwald, W. (2000)	Perry River Project. B.C. Prospector's Assistance Program 1999
Cathro, M.S. and Lefebure, D.V. (2000)	Several New Plutonic related Gold, Bismuth and Tungsten Occurrences in Southern British Columbia; Geological Field Work, 1999; Paper 2000-1
Journeay, M. (1982)	Geology of North Central Frenchman Cap Dome, Open File 2447
Lefebure, D.V. and Cathro, M (1999)	Prospective areas in British Columbia for Gold-Tungsten-Bismuth Veins; B.C. Ministry of Energy and Mines, Open File 1999-3, 1:2,000,000 scale map.
Ministry of Energy and Mines:	Minfile and Assessment reports for Project area.
Okulitch, A.V. (1984)	The role of the Shuswap Metamorphic Complex in Cordilleran Tectonism: a review; Canadian Journal of Earth Sciences, Volume 16, pages 1171-1193
Parrish, R.R. (1995)	Thermal Evolution of the Southeastern Canadian Cordillera; Canadian Journal of Earth Sciences, Volume 32, pages 1618-1642
Smith, M. et al (1999)	Geology of the Liese Zone, Pogo Property, East-Central Alaska; SEG Newsletter – Number 38
Turner, T. (1995):	Prospecting Report on the Ratchford Creek Area, NTS Map No 082M/07
Wheeler, J.O. (1965)	Big Bend Map Area, British Columbia, 82M (East Half); Geological Survey of Canada, Paper 64-32, 37 pages

APPENDIX G

CERTIFICATE

I, WARNER GRUENWALD OF THE CITY OF VERNON, BRITISH COLUMBIA HEREBY CERTIFY THAT:

1. I am a graduate of the University of British Columbia with a B. Sc. degree in Geology (1972).

- 2. I am a registered member of the Professional Engineers and Geoscientists of British Columbia (#23202),
- 3. I am a fellow of the Geological Association of Canada (F2958)
- 4. I am employed as consulting geologist and president of Geoquest Consulting Ltd., Vernon, and B.C.
- 5. I have practiced continuously as a Geologist for the past 28 years in western Canada and the US.
- 6. I was actively involved in the 2001 exploration program on the Tan property.

W. Gruenwald, P. Geo., FGAC

Dated: November 15, 2001

